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Abstract

A major challenge in the post-genomic era is the annotation of functionally uncharac-

terized proteins that emerge from an ever increasing number of sequencing projects.

This task is almost always accomplished by the transfer of information from other

known proteins. Here, we evaluate the strengths and weaknesses of established and

novel bioinformatics approaches to transfer functional annotations from characterized

to yet uncharacterized proteins. Starting with the fundamentals of homology inferred

via sequence similarity, we expand the concept of functional inference from homology

to functional inference from protein domain structure. We introduce the term feature

architecture to summarize the entirety of functional domains, secondary structure el-

ements, and compositional properties, and show that feature architecture similarity

serves as a good proxy for the degree of functional similarity between two proteins.

With FACT, we provide an implementation of a feature architecture based search

algorithm. Subsequently, we evaluate the reliability of domain detection and inves-

tigate the evolution of protein domains in a simulation framework. We, therefore,

introduce REvolver, a simulator implementing biologically meaningful models of pro-

tein sequence evolution by taking domain constraints into account. More precisely,

REvolver extracts information from a profile Hidden Markov Model (pHMM) of a

domain to automatically parameterize position specific substitution models. Guided

by the pHMM it also places insertions and deletions preferentially at positions where

they have been observed in other domain instances. In our simulation of protein do-

main evolution, we identified domains that lose their domain characteristics already

after few substitutions. Others preserve their characteristics over large evolutionary

distances. Interestingly, some domains repeatedly lose and regain their characteristics

in the course of simulated evolution. We discuss this phenomenon in greater detail

and suggest a maximum likelihood approach to distinguish between domain detec-

tion errors and true evolutionary losses and gains. We then propose how to extend

our approach from individual domains to the entire protein and investigate over what

evolutionary distances we expect orthologs to be detectable.
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Finally, we apply methods to detect orthologs and functional equivalents in the

proteomes of microsporidia and zygomycetes. Thereby, we discuss their proposed

monophyly and investigate the evolutionary ancestry of sex determination. This anal-

ysis illustrates the versatility and complementarity of ortholog inferences and feature

architecture similarity searches in the search for functionally equivalent proteins.

Parts of this thesis have been published in the following articles:

(i) T. Koestler, A. von Haeseler, and I. Ebersberger (2012) Modeling sequence evo-
lution under domain constraints. Molecular Biology and Evolution, in press

(ii) T. Koestler and I. Ebersberger (2011) Zygomycetes, microsporidia, and the evo-
lutionary ancestry of sex determination. Genome Biology and Evolution, (3):186-
194.

(iii) T. Koestler, A. von Haeseler, and I. Ebersberger (2010) FACT: Functional anno-
tation transfer between proteins with similar feature architecture. BMC Bioin-
formatics, 11(1):417.

In preparation:

(i) T. Koestler, B. Q. Minh, I. Ebersberger, and A. von Haeseler
Stability of Protein Domains.

(ii) T. Koestler, A. von Haeseler, and I. Ebersberger
Evolutionary traceability of Proteins.
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Chapter 1

Introduction

A phylogenetic tree is one way to represent the evolutionary relationships of species

that all evolved from a single common ancestor (Darwin, 1959). Hence, the genomes

of two species underwent independent mutations only for a certain amount of time.

Before speciation they shared an ancestral genome and thus the same mutations. From

this follows that the more closely related two species are the more similar are their

genomes assuming an approximately constant rate of evolutionary sequence change.

The same applies for the entire set of proteins encoded in a genome - the proteome.

Since the advent of next generation sequencing the number of fully sequenced genomes

and available proteomes is increasing rapidly. Meanwhile, sequences from almost all

major groups in the eukaryotic tree are available. However, whole genome sequencing

efforts typically end with the annotation of the draft genome sequence and little is

known about the encoded genes beyond their exon-intron structure and their sequence.

Investigating the function of these sequences experimentally in all sequenced species

is not feasible, and functional characterizations of genes and proteins are limited to

a small number of model organisms. It is, thus, up to computational approaches to

transfer insights into the function of individual proteins from model organisms to other

species.

For the simple transfer of information from one species to another pairwise compar-

isons are often sufficient, however, in order to learn more about the evolution of the

proteins in question we need to consider larger phylogenetic trees. The presence and

absence information of a protein in a phylogeny is called phylogenetic profile. It was

shown that proteins of similar phylogenetic profiles strongly tend to be functionally

linked (Pellegrini et al., 1999). Thus, the observation that two proteins are either both

present or both absent suggests that they cooperate in some biological process i.e. part

1
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Species 1 Species 2 Species 3

Speciation

Speciation

A1 A2 A3

Gene Duplication

B1 B2

Figure 1.1: Evolutionary relationships of species and their genes. The black
tree shows the phylogeny of species 1, 2, and 3. All genes are homologous. A1
and A3 are orthologs whereas B1 and A2 are paralogs.

of the same pathway or building a protein complex (Pellegrini et al., 1999). Moreover,

the shared presence or absence of proteins belonging to the same functional module

indicates when during evolution the module emerged or where it was, for example,

lost. Bioinformatics approaches to search for functionally equivalent proteins together

with the available proteome data from almost all major groups in the eukaryotic tree

facilitate now to investigate in what eukaryotic species a functional module is present,

when during evolution it emerged, and how it evolved. As a result, a more refined

picture of organismal and functional evolution will emerge.

1.1 Homology

Homology is a central concept in biology implying a common origin of traits. In other

words, pairs of genes that share a common ancestry are called homologs. Depending

on the evolutionary event that separated the extant genes, we distinguish between

orthologs and paralogs. Orthologous genes descended from a single gene in their an-

cestral species and were separated by a speciation event. Paralogous genes, on the

other hand, were separated by a duplication event (Fitch, 1970). Figure 1.1 shows

a phylogenetic tree of 3 species. Species 1 has one copy of both genes B1 and A1,

species 2 of B2 and A2, and species 3 only a copy of gene A3. All extant genes share

a common ancestor in the ancestral species of all three species. Thus, all genes are

homologous. More specifically, genes A1 and A2 are orthologs because their lineages

were separated by a speciation event. The same applies to the gene pairs B1/B2,
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A1/A3, and A2/A3. In contrast, the gene pairs A1/B2 and B1/A2 are paralogous: In

the common ancestor of species 1 and 2 a gene duplication gave rise to genes A and

B. Please note that orthology is not transitiv. For example, A2 is orthologous to A3,

A3 is orthologous to B1, however B1 is paralogous to A2.

Later, two additional terms were introduced to further distinguish between gene

pairs in different species that were duplicated i) before the speciation (out-paralogs)

and ii) after the speciation (in-paralogs) (Remm, Storm and Sonnhammer, 2001).

Figure 1.1 illustrates a scenario where a gene duplication has happened after the

speciation that gave rise to species 3 and the last common ancestor of species 1 and

2. This event has resulted in two genes in the last common ancestor of species 1 and

2 that were both retained in the contemporary species 1 and 2. Both genes in species

1 (A1 and B1) were separated from the gene A3 in species 3 via a speciation event.

Thus, each of these genes is orthologous to A3. However, with respect to each other,

genes A1 and B1 are paralogous. To indicate that the gene duplication event post-

dates the speciation of species 3, A1 and B1 are called in-paralogs with respect to this

speciation event. In contrast, genes B1 and A2 are an example for out-paralogs with

respect to the split of species 1 and 2.

Inference of Evolutionary Relationships

The introduced terms to describe the evolutionary relationships between genes also

apply to proteins and were defined already more than four decades ago by Fitch (1970).

However, to decide whether two proteins are orthologous or paralogous is still challeng-

ing (Dessimoz et al., 2012). To infer their evolutionary relationships, we commonly

assume that the degree of sequence similarity between proteins reflects their degree

of relatedness. This simplification is justified by the observation that the number of

amino acid differences between evolutionarily related proteins changes approximately

linearly with time (Zuckerkandl et al., 1962). In general, the rate of evolutionary

changes of a protein is assumed to be constant over time (Margoliash, 1963; Kimura,

1979). Although several deviations from this assumption have been shown (reviewed

in Kumar 2005 and Schwartz and Maresca 2006), it is widely deployed.

A commonly used way to detect orthologs relies on the assumption that a protein

exhibits a higher sequence similarity to an ortholog than to any other protein outside

its own proteome. A standard procedure to identify these proteins is therefore to

measure the sequence similarity between a query protein and each member of a search
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proteome. The most similar sequence is then considered as a putative ortholog. An

extension of this unidirectional best hit approach is a reciprocal best hit approach

(RBH) that consists of 3 steps. We exemplify the procedure by using Blast as sequence

similarity search tool (Altschul et al., 1997):

1. Blast: Choose a protein from the proteome of species 1 and perform a Blast

search in the proteome of species 2.

2. Re-Blast: Take the best Blast hit from species 2 as query for the reciprocal

similarity search in the proteome of species 1.

3. Evaluate reciprocity: If the best Blast hit in step 2 is the query protein from

step 1, the two proteins are reciprocal best hits, and we thus consider them as

orthologs. Otherwise, we could not identify an ortholog to the protein in species

1.

The reciprocity in the similarity search is crucial for the ortholog identification. Con-

sider the example shown in figure 1.2: Subsequent to a gene duplication in the common

ancestor of species 1 and species 2, the A variant in species 1 was lost. In contrast,

in species 2 both duplication products (A2 and B2) were retained. Assume we search

in species 1 for the ortholog to gene A2. Following the RBH approach, we start a

Blast search against species 1. Gene B1 would show up as best Blast hit, since it is

closest to A2. However, A1 and B1 were separated by a duplication event and are

therefore paralogs. According to the RBH protocol, we now take B1 as query for the

Blast search in species 2. B2 will be most similar. Thus, A2 and B1 are not reciprocal

best Blast hits and we therefore conclude correctly that species 1 does not have an

ortholog to A2. It was shown that RBH based ortholog assignments reduce the false

positive rate by a factor of 6 compared to unidirectional best hit based assignments

(Chen et al., 2007).

Using the RBH approach we identify pairs of orthologs (one-to-one orthologs). How-

ever, as shown in figure 1.1, there exist also one-to-many or many-to-many ortholog

relationships. InParanoid (Remm, Storm and Sonnhammer, 2001) is a program that

extends the RBH approach to achieve a more exhaustive ortholog inference by adding

in-paralogs to a pair of orthologs. InParanoid first identifies a best Blast hit pair

as orthologs that additionally fulfills the following two criteria. First, the symmetric

Blast score (average of the Blast score (A,B) and (B,A)) needs to be above a certain

threshold (50 bits per default) and second, the overlapping region must exceed 50%

of the length of the longer protein. These filtering steps are performed in order to
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Species 1 Species 2 Species 3

Speciation

Speciation

A2 A3

Gene Duplication

B1 B2

Gene loss

Figure 1.2: Evolutionary relationships of species and their genes. The black
tree shows the phylogeny of species 1, 2, and 3. After the speciation of species
1 and species 2, one of the duplicated genes was lost in species 1. Consequently,
species 1 comprises one gene (B1), species 2 comprises two genes (A2 and B2),
and species 3 comprises one gene (A3). The most similar gene to A2 in species
1 is gene B1. However, it is not an orthologous gene. A Blast search of gene B1
in species 2 reveals this situation by identifying B2 as best Blast hit.

reduce false positives that result from short local similarities. In cases where Blast

generates multiple high-scoring segment pairs (HSPs), InParanoid requires that they

are in the same relative order on both sequences. Additionally the HSPs must not

overlap by more than 5%. For a detailed description of the updated overlap criteria

or the low-complexity filters see Ostlund et al. (2010). Afterwards, proteins that are

more similar to the orthologous protein in the same species than to any other protein

in the other species are added. Again, assuming that all proteins, by and large, evolve

at the same rate, these proteins in the same species must have separated after the

speciation event and are therefore in-paralogs. Figure 1.3 illustrates the distinction

between in- and out-paralogs.

1.2 Three Major Questions

The prevalent method to transfer experimentally verified functional annotations from

one protein to yet uncharacterized proteins and to construct phylogenetic profiles is the

search for orthologs. However, orthology-based approaches bring along three questions

that shall be addressed with the studies and methods presented this thesis.
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A1 A2

Species 1 Species 2

dRBH

dparalog

d pa
ral

og

Figure 1.3: Adding in-paralogs to a reciprocal best hit pair (modified from
Remm, Storm and Sonnhammer 2001). Filled circles represent proteins from
species 1 and empty circles proteins from species 2. Protein A1 from species 1
and A2 from species 2 are a reciprocal best hit pair. The distance between the
two proteins in the graph is inversely proportional to their sequence similarity.
All other proteins are also placed according to their distances. Any protein that
lies within the two big circles with radius dRBH (dparalog ≤ dRBH) is more similar
to the ortholog in the same species that to any other protein in the respective
other species. It is, therefore, added as in-paralog.

Do orthologs have the same function? Ohno (1970) was among the first to spec-

ulate about the genealogy of genes and their functional similarity. The idea was that

one gene copy after a gene duplication preserves the original function and the second

copy is more or less free to evolve and has the potential to develop a new function.

From this it was concluded that orthologs generally preserve their ancestral function,

whereas paralogs are likely to functionally diverge. More than four decades later, this

hypothesis has been captured in the so called ortholog conjecture - that at a simi-

lar degree of sequence divergence, orthologs are generally more conserved in function

than genes that result from a duplication. The ortholog conjecture is widely accepted,

however some debate is still going on (Dessimoz et al., 2012). Supporting evidence

comes, for example, from a study where it was shown that orthologous proteins are

significantly more similar in domain structure than paralogs at the same evolutionary

distance (Forslund, Pekkari and Sonnhammer, 2011). Furthermore, orthologous gene

pairs have a significantly higher degree of intron position conservation compared to

non-orthologous pairs (Henricson, Forslund and Sonnhammer, 2010). In contrast, a

study using Gene Ontology (GO; Ashburner et al. 2000) terms indicates that paralogs

have a higher functional similarity than orthologs and paralogs are therefore often bet-

ter predictors of function than are orthologs (Nehrt et al., 2011). Thus, in addition to

sequence similarity further evidences are needed to infer functional equivalence from
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Figure 1.4: Orthologs between O. sativa and E. coli plus in-paralogs as dis-
played on the InParanoid webpage. The proteins are related by a tree where the
branches leading to sequences of the same species have the same color. Next
to the sequence names, the domain annotation of each protein is shown. All
proteins consist of a malic (green) and a Malic M (red) Pfam domain.

orthologs.

Protein domains can be informative about the proteins’ function since they take

over individual functions within a protein. As a first step, we added a new feature to

InParanoid to quickly assess whether orthologous proteins share the same functional

domains and thus may have the same function (Ostlund et al., 2010). For an ortholog

group the neighbor-joining bootstrap tree is displayed together with the Pfam (Finn

et al., 2008) domain annotations for the individual sequences. Figure 1.4 shows four

proteins from O. sativa that are all orthologous to one protein in E. coli. All proteins

comprise a malic and a Malic M Pfam domain. Thus, the conservation of the domain

content adds further evidence on the functional equivalence of these orthologs. In con-

trast, if the domains are different between orthologs a functional annotation transfer

between them should be treated with caution. For a more thorough assessment of func-

tional similarity we extended this concept by considering a more comprehensive set of

protein features that included functional domains, secondary structure elements, and

compositional properties. We implemented a feature dotplot to contrast the feature

architectures of two proteins.

What if functional equivalents are not orthologous? There are cases where the

same function evolved multiple times independently (Fitch, 1970; Galperin, Walker

and Koonin, 1998; Gough, 2005; Forslund and Sonnhammer, 2008). Thus, although

being functionally equivalent, the corresponding proteins did not descend from a com-

mon ancestor and any sequence similarities are only due to chance. This calls for

comprehensive methods to complement sequence similarity-based approaches in the

search for functional equivalents. To close this gap in methodology, we introduce
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a Feature Architecture Comparison Tool (FACT). FACT is designed to search for

proteins of similar feature architecture to a query protein. The similarity in feature

architecture between proteins is taken as a proxy for their functional similarity. We

investigate the performance of identifying functionally equivalent proteins based on

sequences and feature architecture similarity. Our analysis shows that the two ap-

proaches complement each other and annotation transfers between proteins are most

reliable when feature architecture similarity and sequence similarity are taken into

account jointly.

Over what evolutionary distances can orthologs be found? We show that feature

architecture similarity based approaches compensate some limitations in the search for

functional equivalents. However, feature architecture similarity between two proteins

is not sufficient evidence to assign evolutionary relationships. This assignment still

relies on sequence similarity. This can pose a problem, because the more orthologous

proteins diverge in their sequences, the harder it gets to identify them as orthologs. In

cases where orthology inferences fail, the question remains whether an ortholog is truly

absent or whether it is present but may be too diverged to exhibit enough sequence

similarity, and thus is not detected due to limitations of the algorithm. This issue is

especially important, since recent efforts for whole genome sequencing with subsequent

downstream analyses target species that are separated from their most closely related

well annotated species by billions of years of evolution e.g. early branching eukaryotes

such as T. brucei (Baurain et al., 2010; Berriman et al., 2005; Embley and Hirt,

1998; Philippe, 2000). The identification of orthologs is also difficult in extremely

fast evolving species as, for example, microsporidia (Thomarat, Vivarès and Gouy,

2004). Thus, the integration of these data into the existing network of functionally

annotated proteins is challenging. Here, we address the question ‘How far back in time

can we trace a protein?’. Evolutionarily conserved domains are often the trigger for

orthology assignments due to a high local sequence similarity. However, domains are

rapidly lost in standard simulations of protein sequence evolution. The first step in this

analysis was, therefore, the development of REvolver a program to simulate protein

evolution with conserved domain structure. REvolver considers information regarding

which sequence sites remain conserved over time and where in a domain insertions

or deletions are likely to occur in the simulation of domain evolution. The resulting

preservation of domains during simulated evolution is essential for the generation of

realistic data that reflects sequences of a protein family sharing functionally important
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domains.

With the help of REvolver, we then studied the stability of domains during the

course of evolution. We simulate their evolution and assess the number of mutations

until a sequence loses its domain specific characteristics and is no longer recognized

as an instance of the studied domain. We present a likelihood approach to distinguish

between cases where a domain is truly absent in evolutionarily related proteins and

cases where it is overlooked in the domain search. Finally, we show how to predict

the evolutionary traceability of a protein that serves an estimate whether we expect

to find this protein in a specific species or whether the protein is assumed to have

accumulated too many substitutions to be identified via sequence similarity based

methods.

In summary, we present bioinformatics methods to construct and interpret phyloge-

netic profiles. The first, and most straightforward approach is the search for orthologs.

The functional equivalence of identified orthologs can be validated via the comparisons

of their feature architectures. Moreover, for any protein we can estimate over what

evolutionary distances we expect to find this protein if it is present. If a protein is

expected to be found, however was not found, we conclude that it is indeed missing.

In contrast, if a protein is not expected to be found via sequence similarity we comple-

ment the construction of phylogenetic profiles via feature architecture similarity based

searches for a protein.

To exemplify the application of the introduced approaches and to highlight pit-

falls, we investigate the evolutionary ancestry of sex determination and discuss the

proposed monophyly of microsporidia and zygomycetes (Lee et al., 2008). This chap-

ter illustrates the versatility and complementarity of ortholog inferences and feature

architecture searches, but also their limitations.





Chapter 2

FACT: Functional Annotation

Transfer between Proteins with

Similar Feature Architectures.

Here, we present the Feature Architecture Comparison Tool (http://www.cibiv.

at/FACT) to search for functionally equivalent proteins. FACT uses the similarity

between feature architectures of two proteins, i.e., the arrangements of functional do-

mains, secondary structure elements and compositional properties, as a proxy for their

functional equivalence. A scoring function measures feature architecture similarities,

which enables searching for functional equivalents in entire proteomes. Our evaluation

of 9,570 EC classified enzymes reveals that FACT, using the full feature set, outper-

formed the existing architecture-based approaches by identifying significantly more

functional equivalents as highest scoring proteins. We show that FACT can identify

functional equivalents that share no significant sequence similarity. However, when

the highest scoring protein of FACT is also the protein with the highest local sequence

similarity, it is in 99% of the cases functionally equivalent to the query. We demon-

strate the versatility of FACT by identifying a missing link in the yeast glutathione

metabolism and also by searching for the human GolgA5 equivalent in Trypanosoma

brucei.

FACT facilitates a quick and sensitive search for functionally equivalent proteins in

entire proteomes. FACT is complementary to approaches using sequence similarity to

identify proteins with the same function. Thus, it is particularly useful when functional

equivalents need to be identified in evolutionarily distant species, or when functional

equivalents are not homologous. The most reliable annotation transfers, however, are

11
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achieved when feature architecture similarity and sequence similarity are jointly taken

into account.

2.1 Background

The sequencing of entire genomes has become a routine task in molecular biology. To

date, about 650 fully sequenced eukaryotic genomes comprising more than 9 Million

protein coding sequences are available in the public domain (Hammesfahr et al., 2011).

Only a small fraction of these species are model organisms with considerably well

characterized protein functions. Most of the remaining species are either of commercial

or medical interest, qualify for new model organisms, or hold key positions required

for the understanding of organismal evolution. The benefit of a newly sequenced

organism essentially depends on the extent to which its data is integrated into existing

knowledge about function and evolutionary relationships of genes in other species.

A thorough experimental characterization of all proteins is not feasible. Therefore,

comprehensive bioinformatics approaches are needed to reliably identify functionally

equivalent proteins across species. Two roads are usually followed to accomplish this

task.

The first and more common approach searches for proteins with a significant se-

quence similarity, which is commonly taken as evidence for their common ancestry.

For example, a protein with unknown function can be used as query to search for simi-

lar sequences in annotated protein databases, e.g., with Blast (Altschul et al., 1997) or,

for more sensitive searches, using machine learning algorithms, like PsiBlast (Altschul

et al., 1997) or support vector machines (Leslie et al., 2004; Vinayagam et al., 2004;

Shah, Oehmen and Webb-Robertson, 2008). The functional annotations of the best

hits serve then as tentative annotations for the query (e.g., Quackenbush et al. 2001;

Carbon et al. 2009).

Clearly, one limitation is inherent in this approach: Functional equivalence is not

tied to a significant sequence similarity. This can have several reasons: First, a query

may not obtain a significant hit in a similarity search since the homologous proteins

with the same function are too diverged, or are of low complexity. Second, homologs

may be identified via sequence similarity but they have assumed different functions

(Bartlett, Borkakoti and Thornton, 2003; Kassahn et al., 2009). For example, in

the case of enzymes about 60% of sequence identity between homologous proteins is
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required to reliably infer functional equivalence (Tian and Skolnick, 2003; Rost, 2002).

Thus, a functional annotation transfer between homologs can be wrong. If such an

error remains undetected, it can spread through databases (Gilks et al., 2005). Third,

it has been shown that proteins with the same function are not always homologous,

but rather are a result of convergent evolution (Galperin, Walker and Koonin, 1998).

In such instances sequence similarity based searches for functional equivalents produce

no results. In summary, functional equivalence is not synonymous with homology.

The second approach to identify functional equivalents does not rely on homology

inference by means of pair-wise sequence similarity but rather considers other measures

of protein similarity. Amino acid sequences can be annotated with a variety of fea-

tures, capturing different properties of the protein. Among others, these are functional

domains, secondary structure elements and compositional properties. The aggregate

of all features in a protein constitutes its feature architecture, and it is supposed that

this feature architecture allows conclusions about the function of a protein. A num-

ber of studies have shown the applicability of such a feature based approach (e.g.,

Forslund and Sonnhammer 2008; Hollich and Sonnhammer 2007). The possibility to

deduce protein function from the feature architecture suggests that feature architec-

ture similarity can be used to identify proteins sharing a similar function. For example,

InParanoid displays the Pfam (Finn et al., 2006) domain annotation of homologous

proteins (Ostlund et al., 2010). Thus, we can quickly assess if homologs can be func-

tional equivalents. In the same way, ProteinArchitect (Haimel, Pröll and Rebhan,

2009) finds similar proteins to a query sequence and displays the feature architecture

of the hits. However, these tools provide the feature annotation only as an accessory

information. The search for similar proteins in the first place is still performed on

the amino acid sequence level. The necessity to include information about the feature

architecture into the search for functional equivalents was emphasized by Forslund et

al. (2008). They showed that roughly 12% of the feature architectures in 96 eukaryotic

proteomes evolved more than once independently. Hence, the corresponding proteins

are functionally similar although they are not homologous.

Despite its potential for identifying functionally equivalent proteins, only few strate-

gies exploit the feature architecture for similarity searches (Lin, Zhu and Zhang, 2006;

Lee et al., 2008; Lee and Lee, 2009). Lin et al. (2006) were the first to measure the

similarity between feature architectures using a weighted sum of three indices. The

first index measures the ratio of shared features to the total amount of features. The

second index assesses the feature duplication similarity, and the third, the Goodman-
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Kruskal index, measures to what extent the same feature pairs occur in two proteins.

A detailed description of the Lin score is given in the implementation section. Lee and

Lee (2009) additionally introduced a weighting scheme that reduces the influence of

promiscuous Pfam domains (Basu et al., 2008). Notably, all approaches share the same

limitations. Most importantly, feature architectures are constructed only from Pfam

domains. Thus, other features such as transmembrane regions or coiled coil domains

indicative of protein function are ignored. Furthermore, the positional information

of shared features in the compared proteins is not taken into account. Eventually, a

systematic evaluation to what extent feature architecture similarity is helpful in de-

tecting functional equivalents is also missing. Lin et al. (2006) and Lee and Lee (2009)

evaluated their approaches only for their capability of detecting homologous proteins.

Thus, the search for functional equivalents using feature architecture similarity is still

in its infancy.

Here, we present FACT a comprehensive method for searching for functionally equiv-

alent proteins using the criterion of feature architecture similarity. FACT considers

a broad spectrum of features (functional domains, secondary structure elements, and

compositional properties) to determine the feature architecture of a protein. More-

over, the positions of the features in a protein sequence are taken into account. FACT

can be used to search for functional equivalents in entire proteomes and the credi-

bility of the best hit is assessed by a p-value. This makes an automated large scale

search for functional equivalents possible. A graphical interface, the feature dotplot,

complements the automated similarity search and facilitates a visual comparison of

two feature architectures. We evaluate the fidelity of FACT using a collection of EC

classified enzymes and demonstrate FACT’s applicability for identifying functional

equivalents. A comparison to the performance of existing approaches to infer func-

tional equivalence from feature architecture similarity, as e.g., described in Lin, Zhu

and Zhang (2006) or Lee and Lee (2009), on the same set of enzymes is used to assess

the improvement of FACT. Finally, we compare for the first time the usability of two

protein similarity measures, sequence similarity and feature architecture similarity,

for identifying functional equivalents, and we explore their respective strengths and

weaknesses.
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2.2 Implementation

As a first step, FACT annotates the query and each protein in the search set with

a broad variety of features (figure 2.1A), i.e., functional domains (Pfam domains,

SMART domains Letunic, Doerks and Bork (2009), transmembrane regions, signal

peptides), secondary structure elements (helix, strand, coiled coils), and compositional

properties (low complexity regions, sequence composition). A pipeline of several fea-

ture prediction programs serves this purpose. The underlying feature set Φ is, there-

fore, determined by the collection of prediction programs. The feature architecture of

a protein is then the arrangement of instances of features in Φ (figure 2.1B).

2.2.1 Measuring the Similarity of Feature Architectures

To identify proteins with a similar feature architecture to a query protein Q, we

measure the pairwise similarity between Q and every protein P in a proteome. We

implemented a modified version of the score from Lin et al. (2006) and introduce the

FACT score.

Modified Lin Score (MLS)

Lin et al. (2006) score the similarity of two Pfam based feature architectures by com-

bining the Jaccard index, a domain duplication similarity index, and the Goodman-

Kruskal index with relative weights 0.36, 0.63, and 0.01, respectively. Calculating

the Goodman-Kruskal index requires the order of Pfam domains along the sequence.

Our feature set Φ contains a variety of additional features that can overlap in the

feature architecture (c.f. figure 2.1B). In such instances, it is unclear how to assess the

feature order. However, given its low relative weight of 0.01, the contribution of the

Goodman-Kruskal index to the total score is negligible. Thus, we ignored this index

in our implementation and adapted the weights of the two other indices accordingly.

We calculate the MLS as

L(P,Q) = 0.365 ∗ NPQ

NP +NQ −NPQ
+

0.635 ∗ exp (−
NP +NQ∑

i=1

|NP
i −NQ

i |/Nmax),

(2.1)
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where NPQ is the number of shared features between protein P and the query

protein Q. NP and NQ are the number of different features in P and Q, respectively.

NP
i and NQ

i count the instances of feature i in P and Q, respectively and

Nmax =
NP +NQ∑

i=1

max(NP
i , N

Q
i ). (2.2)

One drawback of the MLS is that it does not include information about the position

of individual features in the proteins. Therefore, we introduce a new scoring function.

FACT Score

The FACT score computes the feature architecture similarity between proteins as the

weighted sum of three scores considering (i) the number of instances for all shared

features, (ii) Pfam clan annotations, and (iii) the positions of shared features in the

proteins. We describe the three building blocks of the FACT score in the following

paragraphs.

Feature Multiplicity Similarity (MS): The MS assesses to what extent the numbers

of instances for a shared feature agree between two architectures. For each shared

feature i, we compute the product of its number of instances in P (NP
i ) and Q (NQ

i ),

and normalize this number by the theoretically maximal value max(NP
i , N

Q
i )2. The

MS is then the weighted sum over all shared features.

MS(P,Q) =
NPQ∑

i=1

ωi ∗
NP
i ∗NQ

i

max(NP
i , N

Q
i )2

, (2.3)

where ωi > 0 is the weight for feature i. We use two weighting functions. First,

ωi = 1/NQ where i = 1, ..., NPQ. This corresponds to an equal weighting of all

features in Q. The resulting score is called MSuni. Second, we include the frequency

of a feature i from Q in P into the weighting. To this end, NP
i counts how often

feature i from Q is observed in P . The corresponding weight is then

ωi =
NP
i∑NQ

j=1N
P
j

, (2.4)
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Figure 2.1: Overview of FACT: (A) The amino acid sequence of query protein
Q serves as input for a collection of prediction programs, which annotate Q with
features from Φ. (B) The assembly of instances from Φ constitutes the feature
architecture of a protein. (C) The FACT score captures the similarity between
two feature architectures by a combination of the Feature multiplicity similarity
(MS), the Pfam clan similarity (CS), and the Feature positional similarity (PS).
The score is calculated between Q and every protein in a pre-annotated search
proteome resulting in a list where the proteins in the search proteome are ranked
in decreasing order according to their FACT score. (D) From the score list any
protein P can be extracted and its feature architectures similarity to Q can be
visualized in the feature dotplot.
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where i = (1, ..., NQ). This ensures that
∑NQ

i=1 ωi = 1. It is now straightforward to

extend this weighting to a set of proteins {P1, P2, ..., Pl}, e.g., a search proteome. We

calculate the weight as

ωi =

∑l
k=1N

Pk
i∑l

k=1

∑NQ

j=1N
Pk
j

. (2.5)

We refer to this score as MSst. In the MSst, feature architectures sharing features

that are rare in the search proteome receive a higher score than those sharing frequent

features. This reflects the intuition that shared rare features are more likely to point

towards a similar function than shared frequent features.

Pfam Clan Similarity (CS): Pfam groups similar domains into clans (Finn et al.,

2006). For example, the Pfam clan RNase H (CL0219) consists of 25 domains with a

tertiary structure similar to that of Ribonuclease H. This structural similarity implies

similarity in the function of the clan members. The CS score takes into account the

co-occurrence of different Pfam domains in a clan. It is calculated analogously to the

MSuni score.

CS(P,Q) =
1

CQ

CPQ∑

i=1

CP
i ∗ CQ

i

max(CP
i , C

Q
i )2

, (2.6)

where CQ is the number of different Pfam clans in Q, CPQ is the number of shared

Pfam clans between P and Q, and CP
i and CQ

i are the numbers of instances of clan i

in P and Q, respectively.

Feature Positional Similarity (PS): The PS measures the distance between the rel-

ative positions a shared feature occupies in the compared proteins. For every instance

of a shared feature in P and Q, we first determine the relative position within P and

Q. Subsequently, we identify for each instance in Q the instance in protein P having

minimal distance. One minus the minimal distance between two feature instances

yields a similarity. We calculate PS as following

PS(P,Q) =
NPQ∑

i=1

ωi

NQ
i

NQ
i∑

j=1

(1− min
1≤l≤NP

i

|qj − pl|), (2.7)

where the relative position qj of the jth instance of feature i in protein Q is the center

position of this instance divided by the sequence length. The positions pl of the feature



2.2 Implementation 19

instances in protein P are calculated accordingly. The use of relative positions ensures

that shared features located at the C-terminus in both proteins have a small distance

even if the protein lengths are different. The weights ωi of the individual features

correspond to those of the MSst.

The FACT score is a weighted linear combination of the Feature multiplicity simi-

larity (MSst), the Pfam clan similarity (CS), and the Feature position similarity (PS)

(figure 2.1C).

FACT = α ∗MSst + β ∗ CS + γ ∗ PS ∈ [0, 1], (2.8)

where α + β + γ = 1, and α, β, γ ≥ 0.

2.2.2 Score Statistics

Using the scoring functions introduced in the previous section, we calculate the feature

architecture similarity scores between a query protein and every protein in a search

proteome. From the resulting distribution of scores, we assess the extent to which the

top scoring protein stands out from the lower ranking proteins (figure 2.1D). For this

purpose, we fit a beta distribution (Kotz, Johnson and Balakrishnan, 2000) to the score

histogram. We have chosen the beta distribution for two reasons. First, it can assume

different shapes. This fits well with histograms, even when different scoring functions

are used (figure 2.2). Second, it is defined in the range from 0 to 1, which is the exact

range of the scores. We estimate the two shape parameters of the beta distribution

from the mean, and the variance from all scores by the method-of-moments (Kotz,

Johnson and Balakrishnan, 2000). The p-value for a score x is then calculated as one

minus the cumulative distribution function of the beta distribution of x. The smaller

the p-value is, the more pronounced is the feature architecture similarity between the

query and the highest scoring protein compared to that of the lower ranking proteins.

2.2.3 Feature Dotplot

For a visual inspection of individual query hit pairs, we have developed the feature

dotplot (FDP, figure 2.1D), which extends the idea of a classical dotplot to the feature

level. The FDP projects the features of two proteins along the x- and y-axis, respec-

tively. A feature occurring in both proteins is represented by a diagonal line in the

dotplot, where the slope of the line indicates the length ratio of the features in the
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(a) MSuni (b) MSst

Figure 2.2: Fit of the beta distribution to the score histograms: Shown are
typical score histograms from two FACT searches in the T. brucei proteome
using the scoring function (a) MSuni, and (b) MSst. Despite the different shapes
of the histograms, the beta distribution displays in both cases a good fit to the
data.

proteins. Different features are represented by different colors. The standard amino

acid dotplot is embedded into the FDP as well.

2.2.4 FACT Webpage

Version 1: FACT is provided online on the webpage http://www.cibiv.at/FACT_

V1/. The user can search for functional equivalents to a query protein in entire pro-

teomes. The collection in version 1 consists of 26 eukaryotic species (13 animals, 7

fungi, 3 plants, and 3 protists). For every query protein FACT determines the feature

architecture. Then the FACT, MSuni, MSst and the MLS scores between the query

protein and all proteins in a search proteome are computed. For each scoring function

the 100 highest scoring proteins are listed and a histogram of all scores is displayed.

Additionally, the p-values for the highest scoring protein are shown. The FDP between

the query protein and any protein from the score list can be viewed. The FDP links

Pfam and SMART domains to the corresponding web pages. Furthermore, possibili-

ties for displaying or hiding specific features, changing the word size for the amino acid

dotplot, and for exporting the feature dotplot are provided. Finally, a Blast search
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against the search proteome is performed and the best three hits are listed.

As an alternative to the proteome wide search, the FDP can be used to compare

two user-defined proteins. The features of both sequences are annotated automatically

and displayed in the dotplot.

Version 2: We recently updated the FACT webpage (www.cibiv.at/FACT). All

pHMM based protein features are now annotated with HMMER Version 3 (http:

//hmmer.janelia.org/). This significantly decreases the time to annotated proteins

with features. Furthermore, batch mode searches are enabled, where the user can

paste in more than one sequence or upload a multi-fasta file and can also choose more

than one search species. All query proteins will then be searched against all chosen

species. The new version consists of 37 eukaryotic species (21 animals, 7 fungi, 5

plants, and 4 protists) and a set of experimentally characterized proteins1. However,

the FACT webpage version 1 is still online and can be reached via the new version.

2.3 Results

FACT has been developed for identifying functionally equivalent proteins. To assess

the applicability of our program we require that the tested proteins have their exact

function assigned. To the best of our knowledge, only the proteins annotated by the

Enzyme Commission (EC) satisfy this condition. The EC provides a hierarchical clas-

sification of the reaction catalyzed by an enzyme. The code consists of four numbers

separated by dots. The first number determines the main catalyzed reaction (1=Ox-

idoreductases, 2=Transferases, 3=Hydrolases, 4=Lyases, 5=Isomerases, 6=Ligases),

while the last number provides the most specific information about the catalyzed re-

action. If two enzymes share the same EC number, they catalyze the same reaction

and are therefore functional equivalents. Thus, the EC classifies enzymes according

to their function and not according to their evolutionary relationships (c.f., Galperin,

Walker and Koonin 1998). We collected EC annotated proteins from human, fly,

worm, yeast, and arabidopsis and filtered the dataset such that each EC number is

represented at least twice. The final test set is comprised of 9,570 proteins. The

average and median numbers of proteins with the same EC number are 10 and 4,

respectively.

1http://www.jcvi.org/charprotein-ext/char.cgi/home
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scoring function # prot (%)
MLS (Eq. 2.1) 7,685 (80.30)
MSuni (Eq. 2.3) 7,712 (80.59)
MSst (Eq. 2.3, 2.5) 7,908 (82.63)
FACT (Eq. 2.8) 8,017 (83.77)

Table 2.1: Fidelity of FACT using different scoring functions. ’# prot (%)’
denotes the number and percentage of correctly identified functional equivalents
in the test set of 9,570 proteins.

2.3.1 Comparison of Different Scoring Functions

For our evaluation, each protein from the test set served as a query for FACT. The

similarity scores between the query protein and the remaining 9,569 proteins from

the test set were then calculated. Subsequently, we compared the EC number of the

highest scoring protein(s) to that of the query. If one highest scoring protein has the

same EC number as the query, the proteins are functional equivalents. The fidelity of

a scoring function is then the percentage of searches where a functional equivalent gets

the best score. Table 2.1 shows the fidelities for the different scoring functions. For

the FACT score we chose α, β and γ in the ratio 3:1:1 (cf. equation 2.8). The MLS

and MSuni display fidelities of around 80%, thus in 20% of the 9,570 searches a protein

that is not functionally equivalent to the query obtains the highest score. Weighting

the individual features according to their frequency in the test set (MSst) increases the

fidelity to 83%. The best result was obtained with the FACT score which also takes

clan similarity and positional information into account. In 8,017 out of 9,570 cases

(84%), a functional equivalent to the query obtained the highest score.

When we analyzed the fidelity with respect to the main reaction catalyzed (first

digit of the EC number), a functional equivalent was identified for 9,018 query proteins

(94%; FACT score).

2.3.2 Relevance of Features

In addition to Pfam and SMART domains, the underlying feature set Φ of FACT

includes a variety of other protein features, e.g., secondary structure elements and

compositional properties. We next assessed the relevance of including these features.

We compared the fidelity of the functional equivalent search using Pfam domains only

to the fidelity based on the full feature set. The median number of proteins having
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Pfam domains all features
scoring function # prot (%) # prot (%)
MLS 891 (9.31) 5,618 (59.70)
MSuni 572 (5.98) 5,592 (58.43)
MSst 594 (6.21) 5,792 (60.52)
FACT - 7,091 (74.10)

Table 2.2: Fidelity of FACT depending on the feature set. ’# prot (%)’ de-
notes the number of top ranked functional equivalents with a unique highest
score. Since the FACT scoring considers clan information it was not used for
the calculation with only Pfam domains.

the same best score is 9-13 (depending on the scoring function) for the Pfam only set.

This number decreases to 1 for the full feature set. Thus, considering a broad variety

of features leads to a better discrimination in the assessment of feature architecture

similarity. In contrast, searches using only Pfam domains frequently end up with

many equally best scoring proteins representing different EC numbers. For further

evaluation, we consider a hit protein only then as an identified functional equivalent

when its EC number matches that of the query, and additionally when it is uniquely

top ranked in the score list. Table 2.2 shows the results of this analysis. The fidelities

for the Pfam only set range, depending on the scoring function, between 6 and 9%.

Using the full feature set leads to a drastic increase of the fidelity to values between

58 and 74%.

2.3.3 p-value for FACT Hits

For each highest scoring protein a p-value is calculated. We determined the relation

between p-value and the fidelity of FACT using the FACT score. With a decreasing

p-value, the fidelity increases to a maximum of 98% at a p-value smaller than 10−11

(Appendix figure A.1). Considering only those functional equivalents as identified

that are uniquely top ranked, the fidelity increases up to 85% at a p-value below 10−9.

However, as expected, the increased fidelity comes at the cost of the coverage. For

example, of the 9,570 searches only 1,558 have a highest scoring protein with a p-

value smaller than 10−9 (Appendix table A.1). Our analysis shows that an annotation

transfer between the query hit pair becomes more reliable when the p-value is small.

Thus, we conclude that the choice of the beta distribution leads to sensible results.
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2.3.4 Feature Architecture Similarity vs. Sequence Similarity as a

Proxy for Functional Equivalence

With FACT we provide a comprehensive tool to search for functional equivalents using

feature architecture similarity. We now compare FACT to the alternative approach

that identifies functional equivalents via a significant sequence similarity, e.g., using

Blast (Quackenbush et al., 2001; Carbon et al., 2009). Therefore, we run both methods

on the test set. To ease the comparison between the two results, we again required

a correctly identified functional equivalent to be uniquely top ranked. Figure 2.3

breaks down the results from Blast and FACT (FACT score). Blast identified 6,935

(72.5%) functional equivalents compared to 7,091 (74.1%) for FACT. In 5,805 (60.7%)

searches both approaches obtained a functional equivalent as highest scoring protein.

Moreover, in 4,017 (42%) searches the highest scoring proteins were even identical.

1,286 (13.4%) functional equivalents were detected exclusively by FACT, whereas 1,130

(11.8%) were detected only by Blast. Although FACT performs slightly better than

Blast, the large number of functional equivalents found only by Blast indicates that

both approaches are complementary. This conjecture is further corroborated by the

following observation: When FACT and Blast detect the same protein as best hit, the

query hit pair is in 99% of the cases functionally equivalent.

FACT outperforms Blast in situations where sequence similarity between functional

equivalents is low. When the E-value exceeds one, the best Blast hit is only in 1% a

functional equivalent. For the same query proteins FACT still achieves a fidelity of

31% (Appendix figure A.2). For E-values ≥ 10−20 the fidelity of Blast increases to

39%, but it is still higher for FACT (46%).

To further explore the complementarity of both approaches we conducted a more

detailed analysis. For any query protein in our test set, Blast and FACT each identified

a top scoring protein with an associated E-value and p-value, respectively. First we

showed that E-value and p-value are not correlated (Pearson correlation coefficient:

0.09). Thus, a query obtaining a Blast hit with a small E-value does not imply a

FACT hit with a small p-value, and vice versa. Second, we binned the query proteins

according to their E-value/p-value combination. For each combination, we counted the

number of query proteins that fall into the bin. Then for each bin we counted how often

Blast and FACT identified a functional equivalent. These numbers are represented in

the matrix shown in figure 2.4. This matrix gives a guideline under which E-value/p-

value combination either Blast or FACT is more likely to find a functional equivalent.



2.3 Results 25

1
,
1
3
0

5,805

6,935 7,091

UNION 8,221

1
,
2
8
6

BLAST

FACT

Figure 2.3: Venn diagram contrasting the performance of FACT (FACT score)
and Blast on the test set: Given are the numbers of uniquely top ranking proteins
having the same EC number as the query. For 1,286 (FACT) and 1,130 (Blast)
queries, respectively, only one program identified a functional equivalent.

For query proteins obtaining poor Blast hits (E-value > 0.1), the FACT predictions

are more credible. A similar picture emerges for queries having a Blast hit with a

reported E-value of zero. Once the p-value exceeds 10−3, FACT always identifies more

functional equivalents than Blast. Finally, we note that PsiBlast is more sensitive

than Blast in detecting even weak sequence similarities that may be indicative of a

similar function. We therefore compared FACT also to PsiBlast. This confirmed our

findings from the FACT–Blast comparison (Appendix figures A.3 and A.4).

2.3.5 Example Applications of FACT

To illustrate the versatility of FACT in searching for functional equivalents we discuss

two examples. The general procedure of a FACT search is summarized in figure 2.1.

Missing Link in the Glutathione Metabolic Pathway

A common task in comparative genomics is the identification of proteins that are

involved in known metabolic pathways in different species. As of today, the evolution-

ary relationships between proteins are usually used for this purpose, e.g., Kanehisa

et al. (2008). In some cases however, orthologs to individual proteins cannot be iden-

tified. Consequently, the question is raised of whether the corresponding functional

equivalents are not present in the respective species or whether sequence similarity

based searches cannot detect them. The glutathione metabolic pathway in the KEGG

database (Kanehisa et al., 2008) constitutes one illustrative example. It is one of the
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Figure 2.4: Contrast of Blast and FACT (FACT score) for different E-value/p-
value combinations: The matrix bins the 9,570 proteins according to the E-value
and the p-value of the best hit when used as query for Blast and FACT, respec-
tively. The total number of proteins for a E-value/p-value combination is given
by the bottom number in the corresponding cell. The two further numbers in a
cell give the number of searches FACT (top) and Blast (middle) had a functional
equivalent as top scoring protein. The number for the better performing tool is
given in bold face. Yellow cells show E-value/p-value combinations where FACT
identified more functional equivalents than Blast, whereas the blue cells indicate
a higher fidelity of Blast. Grey cells mark ties.
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Figure 2.5: Section of the KEGG glutathione metabolic pathway (ko00480):
Grey filled boxes represent proteins of the human pathway for which KEGG or-
thologs exist in S. cerevisiae. An ortholog to the human glutathione S-transferase
(EC 2.5.1.18), a central component of this pathway, could not be identified in
yeast.

central detoxification pathways in animals and fungi. An ortholog to the human glu-

tathione S-transferase (EC number 2.5.1.18), a central enzyme in this pathway, is not

annotated in the yeast genome. However, orthologs to the human proteins flanking

the glutathione S-transferase in the pathway are present (figure 2.5).

A Blast search using the human glutathione S-transferase protein as query revealed

no significant hits in the yeast proteome. The best Blast hit (YNL286W; E-value =

0.51) has no feature in common with the human query protein except α-helices and

β-sheets. Instead, it contains two RNA recognition motifs (RRM 1). Similarly, the

best PsiBlast hit (YCL009C; E-value = 1.3) has no feature in common with the human

query protein except α-helices and β-sheets. Next, we performed a FACT search in

the yeast proteome, again with the human enzyme as query. This revealed the same

best hit for all scoring functions (YLL060C; FACT score: p-value= 3 ∗ 10−6). Thus,

from the corresponding E-value/p-value entry in figure 2.4 (> 10−1 / ]10−6, 10−5]),

there is a 50% chance of having detected a functional equivalent. We next used

the FDP of the FACT hit and the query protein to validate the candidate (figure

2.6). Both proteins have the N-terminal and the C-terminal glutathione S-transferase

(GST) domains and share a predicted transmembrane region. Therefore, we conclude

that the two proteins are functional equivalents. This has indeed been confirmed,

since both proteins have been annotated with the same EC number (Choi, Lou and

Vancura, 1998). Thus, FACT helps to identify candidate proteins that may close gaps

in biochemical pathways.
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PHDhtm_in_the_membrane

Figure 2.6: Feature dotplot of the human glutathione S-transferase and the best
FACT hit in yeast: The two proteins share the Pfam domains GST N (PF02798)
and GST C (PF00043), as well as a transmembrane domain. A signal peptide
(signalP) is present only in the human protein. For better readability α helix
and β sheet annotations are not shown.

Functional Equivalents for GolgA5

In our second example we focused on a structural protein, GolgA5, which is impor-

tant for assembling and maintaining the structure of the human golgi apparatus (Diao

et al., 2003; Satoh et al., 2003). Almost the entire protein is made up of coiled coils.

This structure is formed by low complexity repeat units consisting of hydrophobic

and polar residues. Consequently, many different sequences can assume a coiled coil

structure. Thus, a sequence similarity based search for functional equivalents in very

distantly related species is likely to be not successful. We performed a FACT search

with the human GolgA5 in Trypanosoma brucei. The highest scoring protein agrees

only between the MSst and the FACT score (Tb11.02.5040), while two different pro-

teins were identified by the MSuni (Tb11.02.4670) and the MLS (Tb927.5.1900). For

that reason, all top ranked hits, the best Blast hit (Tb11.52.0008), and best the Psi-

Blast hit (Tb927.7.3330) were analyzed with the FDP (see Appendix figure A.5-A.8.

The FDP of the PsiBlast hit is not shown since this protein is 4,334 aa in length.)

Since the function of GolgA5 requires its anchoring in the plasma membrane, we cu-

rated the results according to the presence of a transmembrane region. Among all hits,

Tb11.02.4670 (MSuni) is the only protein that shares a C-terminal transmembrane re-

gion with the human GolgA5. Thus, we consider it to be the most promising candidate



2.4 Discussion 29

for the GolgA5 functional equivalent in T. brucei. Notably, it was recently shown that

this protein exerts the same function in T. brucei as GolgA5 does in humans (Ramirez

et al., 2008).

2.4 Discussion

Here we present FACT, a tool for searching for functionally equivalent proteins. FACT

computes the pairwise similarity between feature architectures and identifies for a

query protein the highest scoring hit in an entire proteome. Evaluating the perfor-

mance of FACT on EC classified enzymes reveals a fidelity of 84%.

How to measure the similarity between feature architectures still remains an open

question. So far, all suggestions are ad-hoc solutions to the scoring problem. For ex-

ample, the Lin score (Lin, Zhu and Zhang, 2006) assesses the similarity between two

proteins from their features in common and also considers the set difference. Thus, fea-

tures that are not shared between two proteins reduce the score. This scoring appears

reasonable when feature architectures consist only of functional domains, e.g., Pfam

domains. In such cases, the presence of an extra feature in one protein is likely to also

reflect a functional difference between the compared proteins. However, in our study

we used a comprehensive feature set, where some features lack an obvious connection

to function. Therefore, we introduce a new score that considers only shared features.

Our evaluation on a set of EC classified enzymes reveals that the fidelity in identi-

fying functional equivalents does not heavily depend on whether or not the feature

set difference between two proteins is taken into account. Both scoring functions, the

MLS and MSuni perform equally well. Their conceptual difference, however, becomes

relevant in individual cases as shown by our GolgA5 example application. The best

scoring protein according to the MLS shares 4 features with the query and has one

extra feature (Appendix figure A.5). In contrast, MSuni identifies a highest scoring

protein that shares 5 features with the query but has 4 extra features (Appendix figure

A.6).

The idea of giving individual features different weights has been presented before.

Lee and Lee (2009) weight a Pfam domain depending on its frequency in the RefSeq

database (Pruitt, Tatusova and Maglott, 2007) and on the diversity of its flanking

Pfam domains. Note that the latter criterion is not straightforward to implement when

features can fully overlap, and hence, feature order cannot be determined. In the MSst,
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we weight a feature according to its inverse frequency in the search proteome. This

weighting scheme can be applied to any feature, and takes into account that feature

frequencies can vary between search proteomes. The comparison of MSuni and MSst

reveals that the introduction of weighting increases the fidelity by 2%. Unfortunately,

comparing the effect of our weighting to that of Lee and Lee (2009) is impossible, since

in their evaluation the scoring functions differed not only in the weighting but also in

the way shared domains are scored.

Among all scoring functions, the FACT score performs best (table 2.1 and 2.2).

This is the consequence of including clan similarity and positional similarity. We

compute the FACT score by combining the scoring functions MSst, CS, and PS in

a ratio of 3:1:1. We consider the number of shared features and their number of

instances to be the most important parameters in determining the similarity between

feature architectures. The clan annotation as well as the position of features are

supplementary information that only have a moderate influence on the final score.

Note that we deliberately did not optimize the weight parameters α, β, and γ with

respect to the fidelity on the EC based functional annotation. Enzymes cover only

a fraction of the diversity of protein functions. We wanted to avoid a bias towards

this particular class of proteins, which could interfere with the general applicability of

FACT (Boulesteix, 2010).

In contrast to existing tools that use Pfam domains for identifying functionally

similar proteins (Lin, Zhu and Zhang, 2006; Lee and Lee, 2009), FACT recruits a

diverse set of features for building the feature architectures. Our evaluation highlights

the significance of using a comprehensive feature set. When considering only Pfam

domains, the median number of equally best scoring proteins is 9-13, depending on the

scoring function. The most extreme case comprises the 589 enzymes lacking any Pfam

domain. When these proteins are used as query, all proteins in the search proteome

obtain the same score. However, the median number of enzymes with the same EC

number as the query is only 3. Consequently, in the vast majority of searches more

than one EC number is represented by the top ranked proteins. The search result is

therefore ambiguous. To facilitate a meaningful assessment of the fidelity, we required

a correctly identified functional equivalent to be uniquely top ranked. This reveals a

maximal fidelity of 9% (table 2.2). In contrast, when we use the FACT feature set,

the median number of equally best scoring proteins reduces to one. This shows that

the similarity score becomes more discriminative when more features are considered.

As a consequence, the fidelity raises to 74% (FACT score). Notably, for the proteins
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without Pfam domains a correct functional equivalent was still identified in 158 cases.

There is still room for improvement regarding the search for functional equivalents.

So far, all approaches are based on ad-hoc solutions for measuring the similarity be-

tween feature architectures since modeling their evolution is still an open problem.

Moreover, the function of a protein essentially depends on its tertiary structure. How-

ever, tertiary structure elements are not yet part of the feature set. Both the integra-

tion of evolutionary models and of complex features is likely to result in more sensible

similarity measures.

Feature architecture similarity based approaches identify functional equivalents.

This supposedly complements sequence similarity based approaches represented, e.g.,

by Blast or PsiBlast. Here we have compared the fidelity of FACT to that of Blast.

A substantial fraction of functional equivalents were top ranked exclusively by FACT.

This includes the cases where sequence similarity was too low to result in a significant

Blast hit, but FACT still detected functional equivalents. Finally, we observed no

linear correlation between the E-value of the best Blast hit and the p-value of the best

FACT hit for a given query. In summary, these results confirm the complementar-

ity of feature architecture similarity based approaches and sequence similarity based

approaches in the search for functional equivalents. This finding is independent of

whether we used Blast or PsiBlast. The complementarity is further corroborated by

those searches where FACT and Blast identify the same best hit. In such instances, the

fidelity increases to 99%. Thus, a joint application of a feature architecture measure

and a sequence similarity measure allows for highly reliable automated functional an-

notation transfers. However, this increase of the fidelity comes at the cost of detecting

only 42% of the present functional equivalents in our test data.

In cases where the two approaches disagree, we need to decide which of the hits is

more likely to be a functional equivalent. To facilitate this decision, we have compared

the fidelities of Blast/PsiBlast and FACT depending on the E-value and p-value of

the highest scoring protein for a given query (c.f. figure 2.4, Appendix figure A.4).

Notably, for searches where both methods obtained a good hit, i.e., small E-value and

small p-value, respectively, FACT finds a functional equivalent more often than the

other program. However, in most cases, a decision of whether a FACT hit that is not

confirmed by Blast, or vice versa, is a functional equivalent will require manual cura-

tion. We have presented two examples where we searched for functional equivalents to

the human glutathione S-transferase in yeast, and to the human GolgA5 in T. brucei.
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These examples showed that the feature dotplot is a versatile tool to curate results

from FACT searches. The feature dotplot facilitates an educated judgment of how

similar two feature architectures are, and how likely it is that the corresponding pro-

teins are functionally equivalent. Together with the implementation of four different

scoring functions and the Blast search, the feature dotplot complements the toolbox

for a comprehensive search for functional equivalents.

2.5 Conclusion

FACT uses the similarity of feature architectures between two proteins to search for

functional equivalents in entire proteomes. FACT has a high fidelity and outper-

forms existing approaches that identify functional equivalents based on the presence

of PFAM domains. This increase in fidelity is mainly accomplished by using a diverse

set of features that are recruited for building the feature architectures. The different

weighting of individual features and the relative position of shared features in the

compared proteins provide additional information. FACT complements sequence sim-

ilarity based approaches, such as Blast, in the search for proteins with an equivalent

function. It is, thus, particularly useful when distantly related species with highly

diverged sequences are analyzed, or in cases where functional equivalents are not ho-

mologous. Both aspects will become increasingly relevant the more genome data from

‘exotic’ species becomes available. However, there exists no globally optimal solution

to the problem of identifying functionally equivalent proteins. It is therefore necessary

to compare the results from different scoring functions measuring feature architecture

similarity and from sequence similarity based searches to select the most promising

functional equivalent candidates. The feature dotplot to visually inspect the feature

architectures of two proteins facilitates this manual curation. We have demonstrated

the joint use of FACT, Blast, and the feature dotplot in a comprehensive search for

functional equivalents in two example applications. They serve as a guideline of how

to use these tools to propagate existing knowledge about the function of proteins from

one species to another.
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2.6 Methods

FACT

FACT annotates functional domains, secondary structure elements and compositional

properties in protein sequences using the tools in the Sfinx package (Sonnhammer

and Wootton, 2001). Low complexity regions are identified with the program seq,

helices and strands with the program PHDseq, coiled coils with the program COILS2,

and signal peptides with the program SignalP. Transmembrane regions are predicted

both with TMHMM and PHDhtm. Pfam (version 23; Finn et al. 2008) and SMART

(smart 16 04 2008; Letunic, Doerks and Bork 2009) domains are identified with HM-

MER2 and with HMMER3 in the new version (http://hmmer.janelia.org/). Re-

gions enriched for a particular amino acid are annotated with CAST (Promponas et al.,

2000). Pfam clan information was downloaded from http://pfam.sanger.ac.uk/.

All annotation results are transformed into the SFS format (Sonnhammer and Woot-

ton, 2001). This data structure allows for an easy extension of the feature set with

features currently not considered by FACT. For sequence similarity searches Blast

version 2.2.13 and PsiBlast version 2.2.23 was used. PsiBlast searches were run with

default parameter settings using 5 iterations. The FDP is implemented as a Java

applet requiring Java 1.5 or higher. It can be accessed with a web browser with Java

and with Java script enabled.

Test Set

We compiled the test set for the FACT evaluation using an initial collection of 9,897 EC

annotated enzymes from Homo sapiens (6,339), Arabidopsis thaliana (1,156), Saccha-

romyces cerevisiae (1,099), Drosophila melanogaster (896) and Caenorhabditis elegans

(407). Protein sequences were downloaded from Ensembl 52 (D. melanogaster, C.

elegans, S. cerevisiae), Ensembl 51 (H. sapiens) and UniProt 1.0 (A. thaliana). The

associated EC annotations were retrieved from Ensembl and UniProt. From this set

we removed all proteins that were annotated with more than one EC number or with

partial EC numbers. Subsequently, we discarded all EC numbers and associated pro-

teins which were present only once in the protein collection. The final test set consists

of 9,570 proteins representing 1,016 different EC numbers.
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Data

Proteome data for Trypanosoma brucei was obtained from the Sanger Center (http:

//www.sanger.ac.uk). The human glutathione S-transferase was identified in the glu-

tathione metabolic pathway in the KEGG database at http://www.genome.jp/kegg/

pathway/map/map00480.html. The human protein ENSP00000196968 (Ensembl 51)

was used as query for the FACT search in the yeast proteome. For the GolgA5 search,

the human protein ENSP00000163416 (Ensembl 51) was used as query for the FACT

search in the T. brucei proteome.

2.7 Availability and Requirements

Project name: FACT

Project home page: http://www.cibiv.at/FACT

Operating system: Platform independent

Programming language: Java

Other requirements: Java 1.5 or higher, java script enabled



Chapter 3

REvolver: Modeling Sequence

Evolution under Domain Constraints

Simulating the change of protein sequences over time in a biologically realistic way

is fundamental for a broad range of studies with a focus on evolution. It is, thus,

problematic that typically simulators evolve individual sites of a sequence identically

and independently. More realistic simulations are possible, however they are often

prohibited by limited knowledge concerning site-specific evolutionary constraints or

functional dependencies between amino acids. As a consequence, a protein’s functional

and structural characteristics are rapidly lost in the course of simulated evolution.

Here we present REvolver (www.cibiv.at/software/revolver), a program that

simulates protein sequence alteration such that evolutionarily stable sequence charac-

teristics, like functional domains, are maintained. For this purpose, REvolver recruits

profile hidden Markov models (pHMMs) for parameterizing site-specific models of

sequence evolution in an automated fashion. pHMMs derived from alignments of ho-

mologous proteins or protein domains capture information regarding which sequence

sites remained conserved over time and where in a sequence insertions or deletions

are more likely to occur. Thus, they describe constraints on the evolutionary process

acting on these sequences. To demonstrate the performance of REvolver as well as its

applicability in large-scale simulation studies, we evolved the entire human proteome

up to 1.5 expected substitutions per site. Simultaneously, we analyzed the preserva-

tion of Pfam and SMART domains in the simulated sequences over time. REvolver

preserved 92% of the Pfam domains originally present in the human sequences. This

value drops to 15% when traditional models of amino acid sequence evolution are

used. Thus, REvolver represents a significant advance towards a realistic simulation

35
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of protein sequence evolution on a proteome-wide scale. Further, REvolver facilitates

the simulation of a protein family with a user-defined domain architecture at the root.

3.1 Introduction

Molecular sequences change over time and their rate and pattern of sequence change

are influenced by a variety of different parameters, such as mutation rate or functional

and structural constraints. Simulating the evolution of biological sequences is therefore

a trade-off between simplifying assumptions to reduce complexity of the problem and

biological reality. Several programs exist to simulate the evolution of proteins along a

phylogenetic tree (Rambaut and Grassly, 1997; Stoye, Evers and Meyer, 1998; Fletcher

and Yang, 2009; Strope et al., 2009). All either start with a user-provided sequence or

generate a random sequence at the root. Seq-Gen (Rambaut and Grassly, 1997) sim-

ulates the evolution of the root sequence only by substitutions and does not consider

insertions and deletions. ROSE (Stoye, Evers and Meyer, 1998) was the first program

to close this gap by also modeling the insertion and deletion process. By default, both

programs assume that sites evolve independently and identically. While this is a fair

assumption for sequences not assuming any structure or exerting any function, it is

an obvious oversimplification when it comes to the simulation of sequence change in

functional sequences, such as genes or gene products. As a result, relevant sites that

remain unchanged over considerable evolutionary distances in real sequences may be

altered by a simulator after only a few simulation steps. To cope with this problem,

both programs consider substitution rate heterogeneity by randomly assigning rate

scaling factors to individual sequence positions. While this is valid for random root

sequences, it is not when the evolution of real protein sequences should be simulated.

In such cases it cannot be avoided that a functionally relevant site, which is unlikely to

change over time, is assigned a high substitution rate by chance. Even more problem-

atic is the modeling of insertion and deletion events (indels) that are typically placed

randomly in a sequence by the simulator. Moreover, indel lengths are often drawn from

a single distribution. However, a biologically meaningful simulation requires that the

placement of indels be guided by information, about where in a sequence insertions or

deletions can be tolerated and where they likely interfere with the protein’s function.

Since the spacing between interacting amino acids in the native structure of a protein

is important, the length distribution of indels may also vary between individual posi-

tions of a sequence (see Laity, Lee and Wright 2001). INDELible (Fletcher and Yang,
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2009), SIMPROT (Pang et al., 2005), and indel-Seq-Gen (iSG; Strope et al., 2009)

represents major steps towards more realistic simulation. These programs facilitate

the manual assignment of different evolutionary parameters to specific segments of

the sequence. This enables explicit differentiation between evolutionary constraints

acting for example on functional protein domains, and those acting on intervening

linker regions. Despite this progress, two major limitations remain. First, it is not

feasible to use these programs in large scale studies where the evolution of hundreds or

thousands of protein sequences is simulated, as there is no automatized procedure to

extract meaningful constraints. Second, there is no standard operating procedure for

inferring evolutionary constraints. This opens the door for ad-hoc decisions that may

later be hard to justify or reproduce. Considering sequence structure is an obvious so-

lution for the second problem. The emergence of fast algorithms capable of evaluating

the effects of mutations on the structure of the protein facilitated the development of

programs integrating structural consequences of individual mutations into the simula-

tion (e.g. Parisi and Echave, 2001; Rastogi, Reuter and Liberles, 2006; Lakner et al.,

2011; Grahnen et al., 2011; Grahnen, Kubelka and Liberles, 2011). Unfortunately,

for the vast majority of sequences the relevant information for deriving evolutionary

constraints, i.e. the structure, is not available. Moreover, predicting the exact effect

of individual mutations on structure and function of a protein, and extrapolating this

to the evolutionary behavior of individual sites of a protein is still hard. This limits a

wide use of structure-informed constraints in simulated sequence evolution.

Here, we suggest a pragmatic approach to achieve a biologically meaningful simula-

tion of sequence evolution. Homologous sequences have been evolving independently

since they last shared a common ancestor. The comparison of such sequences reveals

sites that remain entirely conserved over time, sites displaying only a subset of the

amino acid alphabet, as well as sites that appear to be free to change. Moreover, it

indicates the preferred positions of insertions and deletions, as well as their respective

length distributions. This pattern of sequence conservation and alteration represents

the footprint of a constrained evolutionary process acting on these sequences. In

principle, databases such as PFAM (Finn et al., 2010) or SMART (Letunic, Doerks

and Bork, 2009) provide exactly this information. They have been specialized in the

collection and alignment of homologous protein sequences or protein domains and de-

scribe the characteristics of the resulting alignments by a profile hidden Markov model

(pHMM; figure 3.1). In these models, site-specific emission probability vectors reflect

the frequencies of the 20 amino acids at the corresponding positions in real instances of
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the modeled domain. Similarly, the models provide site-specific insertion and deletion

probabilities. Unfortunately, it is not straightforward to exploit this information for

the simulation of sequence evolution. Traditionally, pHMMs are defined as generative

models that produce instances of a domain or protein family rather than modeling

its change. Consequently, time is not considered in the pHMM formalism. Our new

simulator, REvolver, solves this problem by implementing the following key features:

• Emission probabilities of the pHMM are used as site-specific amino acid equilib-

rium frequencies in the substitution model.

• Insertions and deletions are placed preferentially at positions where they have

been already observed in real instances.

• REvolver corrects for the formation of artificially large insertions due to repeated

nested insertions.

• Evolution acts on the amino acid sequence AND on the relationship between

the amino acids sequence and the constraints. Hence, the information about

site-specific evolutionary constraints is maintained throughout the simulation.

• A mechanism counterbalancing the erosion of characteristic sites prevents a sim-

ulated sequence from losing its identity as a domain instance.

3.2 The Simulator

In the following sections we describe the general procedure to simulate the evolution

of a domain along a phylogenetic tree. The ancestral evolutionary instance consists

of the amino acid sequence together with its state path through a pHMM. A typical

pHMM is depicted in figure 3.1. It consists of match states (M), insertion states (I),

deletion states (D), and a Begin state, and an End state. States are connected via

transitions, where each transition has its individual transition probability (P ). Match

states and insertion states emit amino acids according to an emission probability vector

E = (e1, ..., e20) for the 20 amino acids. A random path through a pHMM starts at

the Begin state, passes through match, insertion and deletion states, and terminates

at the End state. By that, an instance of the modeled domain/protein is generated.

The resulting state path represents the relationship between the constraints and the

specific amino acid positions.
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Figure 3.1: Structure of a pHMM: The pHMM comprises match states (Mx),
insertion states (Ix), deletion states (Dx), a Begin state, and an End state. The
index x ranges from 0 to X, where X is the length of the pHMM. Since states
(Mx, Ix, Dx) of the same position x (except for position 0 and X) have together 7
transitions to states x+1, the model is called Plan7. Arrows indicate transitions
between individual states, where the line weight is proportional to the transition
probability P (Statex, Statey). The amino acid sequence is indexed from 1 to
the sequence length L. The respective states in the corresponding state path are
shaded in grey in the pHMM. The sequence RQVEG...G are amino acids emitted
from match (RQGG) and insertion (VE) states.
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Starting at a node in a phylogeny, the parent instance evolves along a branch leading

to a child instance. Mutations result in changes in the amino acid sequence, but can

also alter the state path. Thus, the state path must evolve with the sequence. The

procedure for the simulated evolution on one branch is repeated for each branch in

the tree, resulting in protein sequences on the leaf nodes sharing a common ancestry,

together with their state paths. Next, we explain the realization of the individual mu-

tations (substitutions, insertions, and deletions) with and without domain constraints.

Note, that in the context of this manuscript, we partition a protein sequence into do-

mains and linker regions. We refer to a domain as a segment of a protein that is

modeled by a pHMM and refer to the remainder of the protein as linker sequences.

In our simulations, domain regions evolve under constraints inferred from the pHMM,

whereas linker regions evolve free of constraints. If a protein contains more than one

segment, we perform the simulation on each segment separately. REvolver is based

on Plan7 pHMMs produced by the program hmmscan from the HMMER3 software

package (http://hmmer.janelia.org/; cf. figure 3.1).

3.2.1 Simulation Procedure

To simulate substitutions, insertions, and deletions, we apply the Gillespie algo-

rithm (Gillespie, 1977) as outlined in Algorithm 1. Substitutions are described by

a continuous-time Markov chain that is characterized by a matrix Q of instantaneous

rates qij, where qij is the product of the relative rate of substitution ρij from amino

acid i to amino acid j, and the amino acid frequency πj. Currently, 14 standard

amino acid substitution models are implemented in REvolver (table 3.1). In addi-

tion, REvolver can use any user-defined substitution model composed of the relative

rate matrix R = {ρij} and the equilibrium frequencies πj. The substitution rate

for any amino acid i is given by qi =
∑

j 6=i qij. Finally, the total substitution rate

ΛS =
∑L

l=1 qil , where L is the sequence length and il the amino acid at position l

of the sequence. In addition to substitutions, we simulate insertions and deletions.

The rates for insertions λI and deletions λD are independent from each other. Since a

sequence of length L has L possible positions to start a deletion, the total deletion rate

is ΛD = LλD. Insertions can occur before the first amino acid and after every amino

acid. Consequently, the total insertion rate is ΛI = (L+ 1)λI . The insertion position

at the very beginning of a sequence is considered to be an immortal link (Thorne,

Kishino and Felsenstein, 1991). Thus, an insertion can occur even when all amino
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Substitution model Reference
JTT Jones, Taylor and Thornton 1992
JTT dcmut Kosiol and Goldman 2005
Dayhoff Dayhoff, Schwartz and Orcutt 1978
Dayhoff dcmut Kosiol and Goldman 2005
WAG Whelan and Goldman 2001
mtMAM Yang, Nielsen and Hasegawa 1998
mtART Abascal, Posada and Zardoya 2007
mtREV Adachi and Hasegawa 1996
cpREV Adachi et al. 2000
Vt Müller and Vingron 2000
Blosum62 Henikoff and Henikoff 1992
LG Le and Gascuel 2008
HIVb Nickle et al. 2007
HIVw Nickle et al. 2007

Table 3.1: Standard protein evolution models implemented in REvolver.

acids were deleted in a previous step. Note that, ΛI = (L1 + 1)λI applies only to

the first segment. The total insertion rate for the remaining segments is LnλI , where

Ln is the length of the nth segment, n > 1. Eventually, we set the total event rate

Λ = ΛS + ΛI + ΛD.

To simulate the evolutionary process along a branch of a tree (cf. Algorithm 1),

we divide the branch into a number of time steps that are exponentially distributed.

To this end, we draw a ‘waiting’ time tw from an exponential distribution with mean

1/Λ during which exactly one mutation occurs (von Haeseler and Schöniger, 1998).

trem is the remaining time, initialized with the branch length t. If tw is smaller than

or equal to trem, a mutation occurs. We next choose according to ΛI , ΛD, and ΛS

whether an insertion, deletion, or a substitution should occur. The sequence and the

state are then changed, and we update Λ as follows: If the event was an insertion

or deletion, we adjust the sequence length L by adding or subtracting the length

of the insertion or deletion, respectively, and recalculate ΛI and ΛD accordingly. An

important property of REvolver is that once a sequence has been inserted it undergoes

the same evolutionary process as the root sequence, i.e. it can be substituted, deleted,

and the insertion can be extended. If a substitution occurred in which amino acid

j replaced amino acid i, we exchange qi by qj to update ΛS. Finally, we set trem =

trem−tw, draw a new tw from the exponential distribution with the updated parameter

Λ, and repeat until tw > trem.



42 Chapter 3 REvolver

This general procedure is used for all sequences. The specific details of simulating

unconstrained and constrained sequences are described in the next sections.

Algorithm 1 Outline of the simulation procedure

Λ← ΛS + ΛI + ΛD

trem = t
tw ∼ Exp(Λ)
while tw 6 trem do

randomVariable ∼ Uniform()
if randomVariable 6 ΛI/Λ then

doInsertion()
else if randomVariable 6 (ΛI + ΛD)/Λ then

doDeletion()
else

doSubstitution()
end if
Λ = updateEventRate()
trem ← trem − tw
tw ∼ Exp(Λ)

end while

3.2.2 Evolutionary Events for Unconstrained Segments (Linker)

In the following we describe the simulation of substitutions, insertions, and deletions

for unconstrained segments, where the evolutionary instance is simply the amino acid

sequence.

Substitutions REvolver simulates the substitution process in unconstrained seg-

ments based on a substitution model Q plus a parameter r that encodes variation

in rate across sites (RAS). The substitution rate at a given site l is, thus, calculated

as qirl, where rl is a rate scaling factor and i is the current amino acid at site l. We

provide three types of RAS models, where rl is always independently and identically

distributed among sites: the scaling factor is (i) the same at all sites (default), (ii)

drawn from a continuous gamma distribution, and (iii) drawn from a discrete gamma

distribution. Both gamma distributions have a mean of 1 and shape parameter α.

In the case of rate heterogeneity ((ii) and (iii)), rate scaling factors are assigned to

each position l in the root sequence. Child nodes inherit the scaling factors from their
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parent node. Newly inserted positions receive a scaling factor from this gamma dis-

tribution. The sequence site l where the substitution occurs is chosen proportional to

its substitution rate qirl. The probability that amino acid i is substituted with amino

acid j is proportional to qij/qi for i 6= j (Karlin and Taylor, 1975).

Insertions and Deletions Insertion and deletion positions are distributed uniformly

along the unconstrained segments. To determine the length of an individual insertion

or deletion, we draw a value from a probability distribution. Currently, we have

implemented the geometric distribution and the Zipfian distribution (Benner, Cohen

and Gonnet, 1993; Chang and Benner, 2004). The parameters for the distributions

are user-defined. Once position and length of an insertion are determined, we sample

the amino acids from the equilibrium frequency of the selected substitution model Q.

3.2.3 Evolutionary Events for Constrained Segments (Domains)

Next, we describe the simulation of substitutions, insertions, and deletions for a con-

strained segment. The evolutionary instance is now the amino acid sequence together

with its state path through the pHMM (cf. figure 3.1).

Substitutions For each site l, the emission probabilities of the associated pHMM

state are taken as the stationary amino acid frequencies of the user-selected substitu-

tion model Q. Thus, each site l in the domain gets assigned its own model Ql. The

substitution rate qil at site l is therefore
∑

j 6=i ρijejMx
for a match state or

∑
j 6=i ρijejIx

for an insertion state, where ejMx
and ejIx

are the state specific emission probabilities

for amino acid j of the pHMM. The sequence site l where the substitution occurs is

chosen proportional to the substitution rate qil . The probability that amino acid i is

substituted with amino acid j is proportional to qij/qi for i 6= j (Karlin and Taylor,

1975).

Insertions The probability of placing an insertion after position l in the amino acid

sequence is P (Mx, Ix) if l is associated with Mx, or P (Ix, Ix) otherwise. The proba-

bility of placing an insertion before the first amino acid is P (Begin, I0). We apply a

geometric distribution with parameter 1− P (Ix, Ix) to determine the insertion length

n. Simply adding the insertion to the sequence, however, poses one problem. Sub-

sequent nested insertion events would allow insertions to grow to total lengths that
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do not adhere to the model. To counterbalance this effect we have implemented the

following procedure. If there are already k insertion states Ix in the state path, we only

add the number of insertion states required to achieve length n, rather than adding

all n insert states. Thus, at one insertion event only n − k amino acids are inserted.

Finally, we sample the amino acids proportional to the emission probabilities of Ix and

insert them to the right of any amino acids that are already associated with state Ix.

Deletions The site l where a deletion occurs is either associated with state Mx or

state Ix. In the case of Mx, we enter Dx from the respective previous state x − 1 to

realize the deletion. Recall, that Dx can be reached either via the transition Mx−1 →
Dx or via the transition Dx−1 → Dx. The deletion probability is, therefore, either

P (Mx−1, Dx) or P (Dx−1, Dx). We replace Mx with Dx in the state path and remove

the corresponding amino acid l from the sequence. Next, we determine the length

of the deletion. Note, that the pHMM does not provide an explicit deletion length

distribution. Instead, it gives two choices to leave Dx: either we can move to Mx+1

and terminate the deletion or we can move to Dx+1 and extend the deletion. Thus,

amino acids get deleted one by one, where in each step we have the choice to terminate

the deletion. If Dx+1 is already present in the state path, we move to the last deletion

state in a row Dx+z, where z is the number of successive deletion states, and consider

P (Dx+z, Dx+z+1) for a deletion extension. Alternatively, if the amino acid l marked

for deletion is associated with Ix we proceed as follows: Transitions from I states to D

states are not allowed in Plan7 pHMMs. Therefore, we first assign the same deletion

probability to each I state, namely, the mean deletion probability of all match states.

Then we choose the deletion length either from a geometric or a Zipfian distribution

with the same parameters as for unconstrained sequence parts. Note that the deletion

length is limited by the number of consecutive I states. Finally, we remove the I states

from the state path and the corresponding amino acids from the sequence. This, in

principle, completes the simulation schema. However, we take into account one more

detail.

Resurrection of M States Deletions remove amino acids that are associated with

I or M states. Insertions, on the other hand, only create I states. Consequently, on

the long run the state path gets depleted of M states until only I states remain. To

compensate for this erosion, we allow the insertion of amino acids that are associated

with lost M states. More formally, if Ix emits an amino acid and Ix is followed by
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Figure 3.2: A generic insertion scenario: circles represent the amino acid se-
quence, the corresponding state path is shown as squares. Dashed circles and
dashed squares represent newly inserted amino acids and the corresponding
states, respectively. The insertion position is chosen at amino acid K with the
corresponding state I2 (A). The geometric distribution with the transition prob-
ability 1 − P (I2, I2) as parameter determines the length of the insertion (B).
Amino acids are randomly emitted according to their emission probabilities EI2
at state I2. The stepwise insertion of amino acids considers the emission prob-
abilities ei for individual amino acids i at deleted match states (M3,M4,M5)
(C-F).
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Dx+1, we facilitate the resurrection of Mx+1. Thus, the new amino acid emitted by

the Ix state can be assigned to the Mx+1 state.

Let us illustrate this by the example in figure 3.2: Suppose the amino acid sequence

is associated with a state path as follows:

sequence : A G K A

state path : M2 I2 I2 D3 D4 D5 M6

Furthermore, suppose that an insertion length of 5 was drawn from the geometric

distribution with parameter 1 − P (I2, I2) to extend I2. Since I2 already appears two

times in the state path, we extend this insertion by additional three amino acids. We

emit amino acids (CQL) proportional to the emission probabilities in vector EI2 , and

insert them stepwise, starting with the C, after amino acid K (cf. figure 3.2). The

deletion states D3, D4, D5 follow directly after I2, and thus the C is now given the

chance to resurrect one of the corresponding match states: M3, M4, or M5. We first

choose the candidate for resurrection with probabilities proportional to the match

state emission probability for C. Assume M4 was selected, then we decide whether or

not M4 will be resurrected. The emission probability for C at M4 is 0.8. Consequently

C will be associated with M4 with probability 0.8 and with probability 0.2 it will stay

with I2. We then continue with the next amino acid in the insertion string, Q. Since

we associated C with M4, Q can either be associated with I4 or M5. In our example,

we selected I4. Finally, we insert L. With probability 0.7 (eL at M5), we associate L

with M5. The resulting sequence with the associated state path after the insertion is

then:
sequence : A G K C Q L A

state path : M2 I2 I2 D3 M4 I4 M5 M6

and M4 and M5 are the newly populated match states.

3.2.4 Additional Features

Input REvolver takes a user-defined phylogenetic tree in Newick format and a root

sequence as input. If the root sequence is also user-specified, a protein sequence to-

gether with its protein domain annotation via hmmscan (HMMER software package)

is required. If the same amino acid in a protein is assigned to more than one domain,

REvolver considers only the domain with the smallest E-value. Alternatively, the root

sequence can be randomly generated. In this case, the user defines a domain architec-

ture, i.e. a linear order of domains from the pHMM database (e.g. Pfam or SMART)
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together with the lengths of any linker regions. The root protein can consist of any

combination of domains and linkers. REvolver extracts the corresponding pHMMs

from the database and generates a random instance for each domain. For uncon-

strained segments, the sequence is sampled proportional to the equilibrium frequency

of the substitution model Q. Then the root sequence evolves along the tree.

When REvolver is invoked without any input, REvolver guides the user interactively

through the setting of all required parameters and input files suggesting reasonable

default values. Upon execution, the program generates a configuration file encoding

these input parameters in xml format, which can be re-used, e.g. when integrating

REvolver into an automated workflow.

Output After the simulation, REvolver outputs a multiple alignment of the sim-

ulated leaf node sequences with the options to include the root sequence or inner

node sequences. Simulated sequences can be annotated with models from a pHMM

database, e.g. Pfam or SMART automatically. Moreover we provide the option to

present the domain architectures of the sequences visually.

Lineage specific evolution REvolver allows the specification of the substitution

model and the insertion and deletion parameters individually for each branch in the

tree. The model and the insertion and deletion rates will then apply to all domains

and linkers.

Running time The simulation of evolution of constrained segments is obviously com-

putationally more expensive than of unconstrained segments. Nevertheless, REvolver

runs in a reasonable time. For example, the simulated evolution of a root protein of

500 amino acids with two domains along a tree with 30 leaf nodes (total tree length:

24.17 expected substitutions per site) with equal insertion and deletion rates of 0.01

took 4.9 seconds (user + sys time) on an Intel quad core i5 PC (3.30 GHz). The

simulation with the same setup, but without domain constraints ran for 1.2 seconds.

3.2.5 Availability

REvolver, the manual, and example files are available for download at www.cibiv.

at/software/revolver. The source code is available upon request. The software is
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written in java, and thus runs on any platform where java 6 is installed. REvolver

requires the HMMER3 software package, which is freely available at http://hmmer.

janelia.org. pHMM databases for the REvolver simulations (e.g. Pfam, or SMART)

have to be downloaded from the appropriate sources. Alternatively, custom pHMM

collections may be used.

3.3 Verification of the Implementation

REvolver is the first simulator of protein sequence evolution that uses profile hidden

Markov models for automatically customizing evolutionary models. In the following,

we evaluated the effect of pHMM informed constraints on simulated sequence change.

3.3.1 Simulation of Substitutions

The equilibrium frequencies of REvolver’s site-specific substitution models are derived

from the emission probabilities of the corresponding states in the pHMM. Conse-

quently, if related sequences evolve long enough and are then aligned, the amino acid

frequencies at individual positions should again reflect the emission probabilities of the

corresponding states in the original pHMM. To demonstrate this property, we used the

Pfam domain A1 Propeptide whose pHMM was trained on a gap free seed alignment of

85 sequences. We evolved a single domain instance along a star tree with 85 branches

to obtain a corresponding simulated seed alignment. Every sequence position on each

branch was substituted on average 30 times. From the simulated sequences we then

constructed a pHMM and computed a similarity score to the original A1 Propeptide

pHMM with hhalign (Söding, 2005). The similarity score between the original pHMM

and the pHMM inferred from the simulated data is 75.13, only slightly smaller than

the score that is obtained when the original pHMM is compared to itself (80.83). In

contrast, when we repeated the simulation, this time without domain constraints, the

similarity score between the original pHMM and the pHMM based on the simulated

sequences dropped to only 0.22. This demonstrates that REvolver’s domain constraint

maintains site-specific compositional properties of protein sequences.
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3.3.2 Simulation of Insertions

The placement of insertions within a domain, as well as their individual length distri-

butions, are guided by the transition probabilities in the domain pHMM. Insertions

are placed preferentially at such positions where the probability for reaching an insert

state is high. In the same way, the transition probability to leave the insert state is

used as parameter for the insertion length distribution. To verify the implementa-

tion of this procedure, we tracked insertions in the simulated evolution of the ABC

transporter domain (ABC tran; PF00005). In 10,000 simulations, we each started

with an instance of the ABC tran domain at the root that consisted of only match

states (M1M2M3...M118). This sequence was then evolved under the WAG substitu-

tion model (Whelan and Goldman, 2001) up to 0.5 expected substitutions per site

with ΛI = ΛD = 0.1. Then we tracked the positions of insertions as well as their

respective lengths on the state path level and compared the results with the expected

positions and lengths given the pHMM (figure 3.3a). We observed insertion hot-spots

in our simulations at match states 21, 22, 36, 47, 64, 80, and 84 (figure 3.3b). The

same match states are flagged as the most prominent insertion positions in the pHMM

logo (cf. fig. 3.3a). However, note that insertions in our simulation were not restricted

to these positions. They also occurred after other match states, but with consider-

ably lower frequency. Similar to the position of the insertions, their respective length

distributions also meet the expectations given the pHMM. We observed the longest

insertions (mean length of 31.78 aa) at M64 (figure 3.3c). Similarly, insertions at M52

and M84 tend to be longer than those at other states. In summary, our results indicate

that REvolver models insertions in such a way that both their distribution along the

sequence and their lengths agree with what is seen in real sequences.

3.4 Benchmarking and Example Applications

3.4.1 Comparing REvolver to other Simulation Programs

For the benchmarking of REvolver we utilized the framework introduced by Strope,

Scott, and Moriyama (2007), which is based on the simulated evolution of G protein-

coupled receptors (GPCR). The GPCR superfamily includes a vertebrate olfactory

receptor protein family, characterized by, on average, 7 transmembrane (tm) regions

and an extracellular N-terminus. Strope, Scott, and Moriyama (2007) collected 29
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Figure 3.3: Positions and lengths of insertions in the ABC tran domain.
(A) The pHMM logo (Schuster-Bockler, Schultz and Rahmann, 2004) of the
ABC tran domain (http://pfam.sanger.ac.uk/family/PF00005) summarizes
for each pHMM position information about emission probabilities, transition
probability to enter an insertion state and the probability to stay in an insertion
state. The relative height of an amino acid at a certain match state reflects
its emission probability. The thickness of dark pink bars represent how likely
an insertion occurs at a given position whereas the thickness of light pink bars
represent the expected length of an insertion. (B) The histogram shows how
often a pHMM position was chosen for an insertion event in 10,000 REvolver
simulations starting from an ABC tran root sequence. (C) The plot displays for
each of the 118 positions of the ABC tran pHMM the mean insertion length in
the 10,000 simulations.
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olfactory receptors, constructed an alignment, and inferred a maximum parsimony

(MP) tree. The consensus sequence of the 29 proteins was then evolved on this MP

tree. For the simulations, Strope and colleagues manually defined a variety of individ-

ual parameter settings, including the assignment of site-specific rates, invariant sites,

individual rates and length distributions for insertions and deletions, and tree scaling

factors for different protein segments. With these optimized settings, they compared

iSG (Strope, Scott and Moriyama, 2007), ROSE (Stoye, Evers and Meyer, 1998), Seq-

Gen (Rambaut and Grassly, 1997), and SIMPROT (Pang et al., 2005) with respect

to the following properties of the simulated sequences: (i) the preservation of trans-

membrane regions, (ii) the preservation of Pfam domains, and (iii) the maintenance

of a significant sequence similarity to the GPCR superfamily.

We simulated the evolution of GPCRs with REvolver adhering as closely as possible

to the procedure described by Strope et al. (2007). To this end, we took the published

MP tree topology and the alignment, and estimated the number of substitutions on

each branch with PAUP (Wilgenbusch and Swofford, 2003). The number of substitu-

tions per site was obtained by dividing the number of substitutions per branch inferred

from the MP tree by the alignment length. We constructed a consensus sequence from

the alignment of 29 olfactory receptors with iSG, annotated this sequence with Pfam,

and performed 1,000 independent REvolver simulations starting from this sequence.

The simulations were performed using the JTT substitution model (Jones, Taylor and

Thornton, 1992). The insertion and deletion rates of 0.018 were chosen as the mean

of 15 different insertion and deletion rates that were assigned to individual segments

of the root protein in the analysis by Strope et al. (2007). For the benchmark test,

we analyzed the simulated sequences by (i) counting the number of transmembrane

regions with a transmembrane prediction program (hmmtop v2.1; Tusnády and Simon

2001), (ii) determining the presence of Pfam domains (Finn et al., 2010) with hmm-

scan, and (iii) assessing their similarity to GPCRs as represented in Uniprot (The

UniProt Consortium, 2010) with BlastP (Altschul et al., 1997).

Table 3.2 displays the results of the benchmark test. (i) REvolver preserves on aver-

age 6.89 transmembrane regions, which is close to 7, the expected number for GPCRs.

The mean observed number of transmembrane regions for sequences simulated with

the other simulators are as follows: ROSE: 5.94, SIMPROT: 0.20, Seq-Gen: 6.84, and

iSG: 7.03. Considering the standard deviations for the individual experiments, the

differences between Seq-Gen, iSG, and REvolver are negligible. (ii) The average bit

score between REvolver simulated sequences and the 7tm 1 Pfam domain (PF00001)
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REvolver iSG ROSE SIMPROT Seq-Gen

tm regions 6.89± 0.60 7.03± 0.30 5.94± 1.25 0.20± 0.37 6.84± 0.91

Pfam bit score 102.75 -5.09 -31.47 - -7.18

Top n BlastP hits
25 152.0 174.0 141.1 - 196.7

100 143.6 164.7 132.7 - 183.3
250 135.5 155.9 124.4 - 177.8

Table 3.2: Comparison of REvolver to other simulators. Results for the analysis
of GPCR proteins. Values for iSG, ROSE, SIMPROT, and Seq-Gen were taken
from Strope et al. (2007). ‘tm regions’ denotes the number of transmembrane
regions. ‘Pfam bit score’ shows the mean bit scores between simulated sequences
and the Pfam domain 7tm 1. No score is given for SIMPROT, because of missing
7tm 1 hits. The mean bit scores of the first 25, 100, and 250 BlastP hits are
shown under ‘Top n BlastP hits’. Values for SIMPROT are missing because the
top scoring BlastP hits did contain non-GPCR proteins.

is 102.8 (cf. table 3.2). In contrast, sequences simulated with the other programs

achieve a mean bit score of no more than -5.1 (iSG). (iii) In the third part of the

analysis we show that REvolver simulated sequences have a higher sequence similarity

to members of the GPCR protein family than to any other protein in the Uniprot

database. For each simulated sequence, the top 250 BlastP hits were only comprised

of GPCRs. The mean bit scores lie in the range between those of ROSE and iSG

(table 3.2).

In summary, REvolver performs comparable or even outperforms existing protein

simulators in the maintenance of functional characteristics in the chosen benchmark

dataset. The major improvement however is that the parameterization to achieve

this performance was done automatically and did not require any manual interaction.

Thus, REvolver is able to deal with large scale data as demonstrated next.

3.4.2 Proteome wide Evaluation of Domain Content Preservation

We simulated the evolution of human proteins on a proteome-wide scale. For this

purpose, we annotated 21,971 human proteins (Ensembl 51) with Pfam (Finn et al.,

2010) and with SMART (Letunic, Doerks and Bork, 2009) using hmmscan with default

settings. This procedure identified 45,738 Pfam and 32,289 SMART domains. Then



3.4 Benchmarking and Example Applications 53

insertion and deletion rates abbreviation
unconstrained 0 I 0

0.05 I 0.05
0.1 I 0.1

constrained 0 F + I 0
0.05 F + I 0.05
0.1 F + I 0.1

Table 3.3: Parameter settings for the simulations of human protein evolution.
All simulations were performed for 0.1, 0.5, 1.0, and 1.5 expected substitutions
per site under the WAG substitution model (Whelan and Goldman, 2001). The
geometric distribution (p = 0.25) was used to model indel lengths. The last
column shows the abbreviations for the parameter setting used in figure 3.4,
where F labels simulations under domain constraints and I denotes the param-
eter for the insertion and deletion rates. The analysis was performed once using
the Pfam database and once using the SMART database for protein domain
annotation.

we took each human protein as root sequence, simulated its evolution over different

evolutionary times T (scaled in expected substitutions per site) and annotated the

resulting sequences again with hmmscan. Finally, we compared the domain content

for each simulated sequence with that of the root sequence. We considered a domain

to be preserved if it was present both in the root sequence and in the respective

simulated sequence. The fractions of preserved domains for T , ranging from 0.1 to

1.5, are shown in figures 3.4A (Pfam) and 3.4B (SMART). The parameter settings for

the individual rounds of simulations are summarized in table 3.3. In the first round

we set the insertion and deletion rates to 0 (λI = λD = 0). When simulating in the

traditional way, i.e. without domain constraints, only 15% of the Pfam and 9% of

the SMART domains were preserved at T = 1.5. This figure changes substantially,

when we impose domain constraints. In this case, more than 90% of the Pfam and

SMART domains were detected in the simulated sequences at T = 1.5. Subsequently,

we assessed the effect of insertions and deletions. For the evolution without domain

constraints, the percentages of retained domains decreased rapidly with increasing

evolutionary time. At T = 1.5 only 1%/2% (Pfam/SMART) of the original domains

were maintained with insertion and deletion rates of 0.05, and only 0.5%/1% with

insertion and deletion rates of 0.1.

Here, the effect of domain constraints on the preservation of domains over time

was even more pronounced. At T = 1.5 still 79%/74% (insertion and deletion rates
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Figure 3.4: Fraction of preserved Pfam (A) and SMART (B) domains. All
human proteins were taken as root sequences and evolved with 0.1, 0.5, 1.0
and 1.5 expected substitutions per site. F denotes simulations with domain
constraints (blue lines). Simulations without domain constraints are colored in
red. I 0 stands for simulations without indels, I 0.05 for insertion and deletion
rates of 0.05, and I 0.1 for insertion and deletion rates of 0.1 (cf. table 3.3).
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of 0.05) and 67%/60% (insertion and deletion rates of 0.1) of the domains were pre-

served. Simulations under a rate across sites (RAS) model are often used to account

for sites under different evolutionary constraints in a protein. We therefore repeated

our simulation procedure for the unconstrained case using two different values for the

shape parameter of the gamma distribution (α = 1 and α = 0.5). Despite the case of

the RAS model, the increase in the number of retained domains was only marginal,

when insertions and deletions were included in the model (Appendix tables B.1 and

B.2). Without indels, simulations under domain constraints still outperformed the

RAS model by a factor of 2-3.

3.4.3 Preservation of Structure

So far we have shown that REvolver substantially increases the evolutionary stability

of protein domains in the course of simulated sequence change. Although structural

constraints are not explicitly captured in pHMMs (but see Eddy 1998), we next as-

sessed whether sequences simulated under domain constraints are also structure-wise

more similar to the native protein than sequences simulated without constraints. For

our analysis we used the human SAP SH2 protein (Poy et al., 1999) and evolved it with

and without domain constraints (ΛD = ΛI = 0). Then we assessed the rooted mean

square distance (RMSD) between the structure of the native protein (1d4tA; Velankar

et al. 2011) and the inferred structure of the simulated sequences. SARA (Grahnen,

Kubelka and Liberles, 2011) was used for analyzing the RMSD between corresponding

side chains in the two structures. Next, we used MODELLER (Eswar et al., 2006) to

analyze the RMSD between the peptide backbones of two structures. This analysis

was performed with 3 different insertion and deletion rates (ΛD = ΛI = 0/0.05/0.1).

In all comparisons, the RMSD between the native structure and the inferred structure

of the simulated sequence was smaller for the constrained simulation than for the un-

constrained simulation (Appendix figure. S1 and S2). A one-sided t-test (α = 0.05)

revealed that, except for a single case, the differences are significant.

3.4.4 Simulation of Proteins with user-defined Domain

Architectures

REvolver is the first program that offers the possibility to simulate protein evolution

with user-defined domain architectures. To exemplify this feature, we used REvolver
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to generate a random root sequence consisting of instances of an RLI domain (Pos-

sible metal-binding domain in RNase L inhibitor; PF04068), a Fer4 domain (4Fe-4S

binding domain; PF00037), and two ABC tran domains (ABC transporter; PF00005).

The domains are separated by unconstrained segments of different lengths. The root

sequence was then evolved under the WAG model along an arbitrary phylogeny dis-

played in figure 3.5, using insertion and deletion rates of 0.1. Figure 3.5 shows the

input tree together with the resulting domain architectures of the simulated sequences

at the leaves. Not all domains are preserved in all of the simulated sequences. For

example, at leaves G, F, and E the Fer4 domain was lost. Domains also diverged in

length due to insertions and deletions. Hence, REvolver produces sequences of similar,

but not identical, domain architectures. The resulting pattern of presence and absence

of protein domains resembles what can be observed in real protein families.

3.5 Discussion

In recent years, a number of approaches were developed to simulate evolutionary pro-

tein sequence change (e.g. Rambaut and Grassly 1997; Stoye, Evers and Meyer 1998;

Fletcher and Yang 2009; Pang et al. 2005; Strope et al. 2009; Rastogi, Reuter and

Liberles 2006; Lakner et al. 2011; Grahnen et al. 2011). With REvolver we present

a new, versatile simulator that stands out from existing programs in two relevant

aspects: The maintenance of protein domains in the course of evolution, and the

large-scale applicability due to the automatic inference of sequence specific evolu-

tionary constraints. We have shown that the pattern of sequence differences between

homologous sequences, as captured in pHMMs, can be used to describe adequately the

constrained evolutionary process to which a protein domain is subjected. REvolver

is the first tool that integrates this information about protein sequence evolution in

an automated fashion. To facilitate the use of pHMMs in sequence evolution simu-

lations we implemented several essential features. The first aspect is concerned with

the modeling of insertions. We have derived the parameter for the geometric distri-

bution used to model insertion lengths from the transition probability P (Ix, Ix) of an

insertion state. This transition probability was trained on an alignment of contem-

porary sequences. Consequently, sampling from the resulting geometric distribution

results in insertions lengths that are observed in extant sequences. However, they do

not necessarily represent the lengths of individual insertion events. Multiple nested

insertions in the simulation would therefore result in much longer insertions than they
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were observed in the sequences used to train the model. To prevent the formation of

such unrealistically long insertions, REvolver only extends insertions to the actually

drawn random variable from the geometric distribution. Thus, the total length of

an insertion in the sequence is always a value from the geometric distribution. The

second aspect is concerned with the gradual erosion of M states due to the deletion

process. We counterbalance this effect by facilitating the resurrection of M states

via the insertion process. This is important to maintain the identity of the domains;

otherwise, it would just be a matter of time until all match states have been lost and

amino acids are all associated with insertion states. From the biological point of view,

our procedure is also reasonable: Suppose, for example, that at one point during evo-

lution, a functional site is deleted. This deletion may not abolish the functionality of

the protein or domain but modify it. If at some point later in time, an amino acid

is inserted at the previously deleted position that, by chance, has similar or the same

properties as the original amino acid, the protein’s function would be fully restored. In

the current version of REvolver we assess the probability that an inserted amino acid

revives a previously lost M state using the probability that this M state emits exactly

this amino acid. We can think of alternative ways of realizing the resurrection. One

possibility would be to consider the inserted segment as a single entity rather than

individual amino acids. The goal would then be to find the state path that most likely

emitted that amino acid segment (Viterbi 1967). Insertion states and deleted match

states would be valid states for the path, deletion states would be forbidden. However,

for now we decided to implement the step-wise insertion procedure, since it is simpler

and computationally less expensive.

Our comparison of REvolver to other simulators of protein sequence evolution has

shown that REvolver solves two tasks in the benchmarking optimally, i.e. the main-

tenance of 7 tm domains, and maintaining a significant similarity of the simulated

sequences to the GPCR protein family. However, in contrast to the other programs,

for which 7 transmembrane regions were explicitly defined and parameters had to be

tweaked manually to obtain optimal performance, REvolver performed the parame-

terization automatically. The difference between the compared simulators becomes

even more obvious in the third task, namely the maintenance of the similarity of

the simulated sequences to the 7tm 1 pHMM (PF00001). This pHMM models a 7

transmembrane receptor domain, which is characteristic for the GPCR protein family

(Palczewski et al., 2000). While the similarity between the sequences generated with

the existing simulators and the 7tm 1 pHMM is poor, sequences simulated with our
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program achieve average bit scores (102.8) that are only slightly lower than what is

achieved on average when comparing real GPCRs to the pHMM (124.4). Thus, RE-

volver not only preserves the correct number of tm domains, but also the intervening

regions required for placing them in a functional context of a 7 transmembrane re-

ceptor. This result suggests that REvolver may also conserve structural properties

of protein domains, although they are not embedded in the pHMMs (but see Eddy

1998). To follow this issue up further, we simulated the evolution of the human SAP

SH2 protein both with and without domain constraints and determined the RMSD

between the structure of the native protein and the inferred structure of the simulated

sequences. The results confirmed that, indeed, the simulation of sequence evolution

under domain constraints not only maintains domain sequences, but also has a positive

influence on the preservation of their structure.

So far we have demonstrated the use of REvolver only in the combination with

pHMMs derived from public databases. However, REvolver simulations under domain

constraints are applicable to all proteins even if they show no significant sequence

similarity to any of the domains for which public pHMMs are available. Alternatively,

it may be desired to use pHMMs more specific than those available in the public

databases, e.g. when a particular protein sub-family is analyzed. In such instances, the

protocol is straightforward: For any given root sequence, homologous sequences can

first be identified, e.g. via a Blast search. The root together with a set of homologous

sequences can then be aligned and used to construct and train a pHMM. REvolver then

uses this custom pHMM to infer the evolutionary constraints for the root sequence. We

have exemplified this procedure with the GPCR dataset. To this end, we constructed

a pHMM from the alignment of the 29 GPCRs. Next, we simulated the evolution

of the GPCR protein family using this custom pHMM. The simulated sequences still

retain most of the transmembrane regions, show a significant sequence similarity to

the 7tm 1 domains, and find only other GPCRs among the top BlastP hits (Appendix

table B.3). This shows that even in the case of missing explicit information about

protein specific features, REvolver still preserves most of them.

In summary, REvolver is a versatile tool for simulating evolutionary sequence change

and improves in many aspects over existing simulators. Although not limited to it, one

obvious application of REvolver is the generation of benchmark datasets for programs

designed to trace and interpret the evolutionary signal in molecular sequences, e.g.

programs for sequence alignment, orthology prediction, or tree reconstruction (e.g.

Felsenstein 2004; Notredame 2007; Remm, Storm and Sonnhammer 2001). Testing
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the accuracy of these tools with real data is obviously problematic, since the evolu-

tionary history is frequently not known (cf. Chen et al. 2007). Benchmarking on

sequences that have been evolved in silico, in principle, overcomes this problem. Still,

the results are of little relevance if the scheme used for simulating sequence evolution

is unrealistic (Kim and Sinha, 2010). From this perspective, we expect that REvolver

is a significant contribution to this field. We envision an even stronger impact when

it comes to the benchmarking of programs that search for proteins with similar fea-

ture architecture (Koestler, von Haeseler and Ebersberger, 2010) or that infer the

function of a protein based on its domain content (Forslund and Sonnhammer, 2008).

The simulated evolution of a domain architecture along a tree is still in its infancy,

as REvolver does not consider evolutionary events like domain shuffling and domain

stealing. However, an integration of such mutation events will be a logical extension

to REvolver’s simulation scheme.
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Evolutionary Stability of Protein

Domains

In chapter 2, we have shown that domains are important for the functional annota-

tion of proteins. Profile Hidden Markov Models (pHMMs) trained on a set of known

domain instances summarize the characteristics of a domain and are commonly used

to search for new domain instances in uncharacterized proteins. The corresponding

program in the software package HMMER (http://hmmer.janelia.org), for exam-

ple, measures the similarity between a sequence and a pHMM. If the similarity is

considered significant - by default an E-value < 0.01 is used - the program reports

the domain as present. Otherwise it is typically concluded that the domain is absent.

As a matter of fact, the result from HMMER does not tell us whether a domain is

truly absent or whether it just escaped detection. The differentiation between the two

possibilities is, however, sometimes important. For instance, orthologous proteins that

have preserved the ancestral function are also expected to have the same homologous

domains. However, the domain content of orthologs is in many cases not identical.

A decision whether or not such orthologs can still be functionally equivalent depends

on an assessment of the sensitivity of the domain search, i.e. how sure we are that

we have not missed a domain in our search. In this study, we simulate the evolution

of domains with REvolver (chapter 3) to assess the extent of evolutionary change a

domain can bear before it is no longer detected by HMMER. We characterized 11,912

Pfam domains by computing their half-lifes i.e. the number of mutations per site it

takes until 50% of instances are no longer recognized as domain. First, domains with

long half-lifes can be detected even after many mutations, thus, over large evolutionary

distances (measured in substitutions per site). Second, domains with short half-lifes

61
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become undetectable already after few sequence changes. We consider the first do-

mains as evolutionarily stable and the second as unstable. An interesting third type

are zombie domains that repeatedly disappear and reappear in the course of simulated

evolution. This temporary disappearance can again be interpreted as a lack of sensi-

tivity in the domain search. We use this information to parameterize an evolutionary

model of domain loss and gain. This serves as a null model to distinguish between

cases where the domain is truly absent (true negatives) in a phylogenetic tree and cases

where it is overlooked in the domain search (false negatives). In summary, the knowl-

edge about evolutionary domain stability enables a more meaningful interpretation of

the presence-absence patterns of a domain in evolutionarily related proteins.

4.1 Introduction

Profile hidden Markov models (pHMMs) are probabilistic models describing a multiple

sequence alignment and are commonly used as position-specific scoring systems (Eddy,

1998). Pfam (Finn et al., 2010), SMART (Finn et al., 2010), Superfamily (Gough et al.,

2001), and prosite (Hulo, 2006) are examples of databases dedicated to collect domain

sequences, align them, and finally construct and train pHMMs. These pHMMs have

become a standard bioinformatics tool for analyzing sequences. For example, they

are used for remote homolog detection or to annotate a protein with domains (see

chapter 2). Protein domain annotations are important for a variety of biological and

evolutionary questions. For instance, the function of a protein can be inferred based on

its domain content (Forslund and Sonnhammer, 2008). The similarity between domain

architectures (i.e. the linear order of domains) helps to identify functionally equivalent

proteins even if they miss a significant sequence similarity (chapter 2; Koestler, von

Haeseler and Ebersberger 2010; Song, Sedgewick and Durand 2007; Lee and Lee 2009).

Apart from inferring a protein’s function, the annotation of whole proteomes with

pHMMs facilitates studies on the evolution of domain architectures (Forslund et al.,

2008; Buljan and Bateman, 2009; Gough, 2005). It has been shown that domain losses

and gains are enriched at protein termini compared to losses and gains at more central

regions of the protein (Weiner, Beaussart and Bornberg-Bauer, 2006) and that between

0.4% and 12.4% of the domain architectures evolved at least two times independently

during evolution (Gough, 2005; Forslund et al., 2008). Furthermore, some domains

occur always in the same domain context whereas others contribute to many different

domain architectures (cf. promiscuous domains; Marcotte et al. 1999).
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Inferences of domain loss and gain rates, domain architecture evolution, or assess-

ment of domain promiscuity heavily depend on the accurate recognition of domains.

However, examples were reported where a domain is physically present in a protein, but

does not show a significant similarity to the corresponding pHMM (Weiner, Beaussart

and Bornberg-Bauer, 2006). Especially, since pHMMs are models and, thus, simpli-

fications of the reality, they do not necessarily reflect the full sequence space of a

domain. For example, the underlying multiple sequence alignment used to train the

pHMM may miss instances of the domain that deviate in sequence from the known

instances. The resulting biased training of the model parameter can be one source

of erroneous domain annotation. Moreover, it is unclear how many substitutions can

happen until a sequence is no longer detected as domain instance. Some domains are

characterized by a strict motif. Hence, already a single substitution might destroy the

domain. Other domains show a much higher sequence variability. Here, the domain

instance matches the domain specific characteristics even after several substitutions.

Apparently, also insertions and deletions, that are modeled by a pHMM, can destroy

the domain characteristics. Some domains require a fixed sequence lengths, whereas

others tolerate length deviations and are, thus, detected as domain instance even after

several insertions and deletions. Thus, the sensitivity in the domain annotation is

domain specific.

Here, we present a study on the sensitivity of domain annotations. For this purpose,

we asses over what evolutionary distances a sequence can be detected as domain

instance that we then call the evolutionary stability of the domain. In particular we

are focusing on Pfam (Finn et al., 2010) one of the most widely used protein family

databases.

4.2 Methods

Insertion and deletion rate estimation To overcome ad-hoc decisions in the inser-

tion and deletion rate parameterization during simulation of domain evolution, we

estimated the insertion and deletion rates for each domain using the following par-

simony approach (summarized in figure 4.1): We downloaded the pHMMs and the

corresponding multiple sequence alignments (seed alignments) for all domains from

the Pfam database. For each seed alignment, we calculated a bifurcating tree with

FastTree (Price, Dehal and Arkin, 2010). Subsequently, we split the seed alignment at
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every column where a gap started. We then transformed the alignment by replacing

each block of consecutive gaps in a sequence by the number of consecutive gaps. The

transformed alignment and the phylogeny served as input to calculate the minimum

number of events (insertions and deletions) to explain the observed pattern (Fitch,

1971). Next, we calculated the event rate by dividing the parsimony score of the

transformed alignment by the length of the seed alignment and the tree length. Thus,

the unit of the event rate is per substitution per site. The insertion rate and the

deletion rate were then taken as half of the calculated event rate. Additionally, we

chose one most parsimonious solution of the insertion and deletion history for which

we stored the individual lengths for each node in the tree and calculated the mean

indel length. We estimated the parameter p for a geometric indel length distribution

to be 1 divided by the mean indel length. This distribution is taken by REvolver to

simulate the evolution of sections that are not covered by a pHMM (linker regions;

see chapter 3).

Evolutionary stability estimation We simulated the evolution of all 11,912 Pfam

domains (Finn et al. 2010; Version 24) where time ranges from 0.5 to 11 expected

substitutions per site using REvolver (figure 4.2). The root domain instance was

generated with REvolver by passing through all match states in the pHMM of a domain

and emitting an amino acid according to the state specific emission probabilities. We

estimated the insertion and deletion rates from the Pfam seed alignment as described

in the previous paragraph. In cases where the seed alignment comprised only 1 or

2 sequences, or if all sequences in the seed alignment were identical, we used the

default insertion and deletion rates of 0.01 insertions and deletions per substitution,

respectively (subsection 4.3.1). Finally, we started REvolver for each Pfam domain.

Every 0.5 substitutions per site a copy of the simulated sequence was made and stored

for subsequent domain analyses. All simulated sequences were analyzed with HMMER.

If a sequence or parts of a sequence showed a significant similarity (E-value ≤ 0.01)

to the domain pHMM, we considered a domain to be recognized. We repeated the

procedure 100 times for each domain. Eventually, we calculated the half-life of a

domain as the number of substitutions per site it takes until 50% of the simulated

sequences were no longer recognized as domain.
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Figure 4.1: Parsimony approach to estimate indel rates and length distribution
parameters. We split a multiple sequence alignment (MSA) whenever an indel
starts. We construct a transformed alignment by writing down for each align-
ment part the number of consecutive gaps for each sequence. Next, we calculate
the maximum parsimony score for each column of the transformed alignment
given the tree that was inferred form the original alignment. The maximum
parsimony score is the minimum number of insertions and deletions required to
generate the transformed alignment. The parsimony score is equally distributed
between insertions and deletions. The insertion and deletion lengths of one most
parsimonious solution are used for calculating p, the parameter for the geometric
indel length distribution.
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Figure 4.2: Workflow to estimate the evolutionary stability of a Pfam domain.
The first step is the estimation of domain specific insertion and deletion rates
based on its seed alignment. A domain instance generated by REvolver serves
as the root sequence and its evolution is simulated up to 11 substitutions per
site considering insertions and deletions. The simulation is performed in steps
of 0.5 substitutions per site where a copy of the simulated sequence is made
before the simulation continues. All simulated sequences are analyzed with the
corresponding program in the HMMER software package (hmmscan). The table
next to the hmmscan box summarizes the detection (1) or non-detection (0) of
the domain. The procedure is repeated 100 times for each domain. The row
sums, given in red, represent in percent how often a sequence was recognized as
a domain instance. In this example, after 10.5 substitutions per site only 49%
of the sequences show a significant similarity to the corresponding pHMM. The
half-life for this domain is therefore 10.5.
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Figure 4.3: Histogram of estimated insertion and deletion rates for all Pfam
domains. Most rates are close to the average of 0.01 insertions and deletions per
substitution. Insertion and deletion rates of 0.05 or higher are very rare.

4.3 Results

4.3.1 Insertion and Deletion Rates in Domains

Figure 4.3 shows the histogram of estimated insertion and deletion rates. Most rates

are close to the average of 0.01 insertions and deletions, respectively, per substitution

(standard deviation: 0.009). A substantial fraction (5%) of the Pfam domains had no

insertion or deletion in the corresponding seed alignment. Consequently, the estimated

indel rate was zero. On the other hand, insertion and deletion rates above 0.05 occurred

very rarely (0.5%). Obviously, a maximum parsimony approach is a very conservative

way to estimate insertion and deletion rates and likely underestimates the true number

of events. To assess the impact of higher insertion and deletion rates, we performed

the simulated evolution first with the estimated indel rate, second with twice the

estimated indel rate, and third with a fixed indel rate of 0.1.

4.3.2 Half-lifes of Domains

Figure 4.4a shows the histogram of half-lifes with a mean of 11.2±1.23 substitutions per

site using the indel rates estimated with the parsimony approach. For 10,986 domains
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Figure 4.4: Log scaled histograms of half-lifes (in substitutions per site) of
all Pfam domains resulting from simulations with (a) estimate indel rates, (b)
doubled estimated indel rates, and (c) fixed indel rates of 0.1.

(92%) the half-life exceeds 11 substitutions per site. However, some domains are no

longer detected already after a few substitutions. A doubling of the estimated indel

rates slightly shortens the half-lifes of domains to a mean of 10.3 ± 2.3 substitutions

per site (cf. figure 4.4a and b). However, the overall shape of the histogram does

not change. This shows that the half-life estimations are fairly robust against small

variations of the insertion and deletion rates. Only when we increase the insertion

and deletion rates to an extreme value of 0.1, the shape of the half-life histogram

changes substantially (mean of 2.8 ± 1.54; figure 4.4c). Now, only 24 domains have

an half-life ≥ 11 substitutions per site. Since the half-lifes between simulations with

twice the estimated indel rates are similar and since we consider an indel rate of 0.1

as unrealistically high, we focus on the parsimony indel rates.

In summary, the vast majority of domains display a very long half-life and are,

therefore, considered evolutionarily stable. We, therefore, expect that such domains

can be detected even in highly diverged sequences. Oppositely, some domains are

no longer recognized already after very few mutations. These domains have short

half-lifes and are, thus, hard to detect among distantly related sequences.

Why are some domains more stable than others?

The question remains why some domains are not recognized as domain already after

a few mutations, while others are recognized even after 11 substitutions per site? The

histograms in figure 4.4 show that the insertion and deletion rates might influence

the domains’ half-life. To follow this issue up further, we contrast the indel rates for
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Figure 4.5: Boxplots of the parsimony insertion and deletion rates for domains
of the same half-life. The red line shows the linear correlation between half-life
and insertion and deletion rate.

the domains with their half-lifes (figure 4.5). We observe a negative linear correlation

(Pearson correlation coefficient = -0.6) between the half-lifes and the indel rates. In

contrast to the general trend, domains with a half life of 0.5 substitutions show very

small indel rates. The coefficient of determination between the rates and the half-lifes

is 0.35. In other words, the insertion and deletion rate explains only a part (35%)

of the differences in half-lifes. Moreover, we also observe differences in half-lifes in

the simulation where the insertion and deletion rate was the same for all domains (see

figure 4.4c). We, therefore, analyzed the following additional factors for their influence

on the half-lifes:

sequence diversity We calculated the mean pairwise sequence identity (%) of the seed

alignments using alistat and compute the sequence diversity = (100 - percent

identity).

nseq1 Number of sequences in the seed alignment.

eff nseq1 Effective number of sequences in the seed alignment.

M1 Number of match states in the pHMM.

compKL1 The Kullback-Leiber distance between the average amino acid composition

of the pHMM and the background frequency distribution.

1Factor is extracted from the pHMMs with hmmstat (HMMER software package).
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r R2

indel rate -0.59 0.35
compKL -0.19 0.04
relent -0.10 0.01
info -0.09 0.01
p relE -0.08 0.01
nseq -0.07 0.01
eff nseq 0.04 0
M 0.12 0.01
sequence div. 0.15 0.02

Table 4.1: Pearson correlations coefficient r and the coefficient of determination
R2 between individual factors (characteristics of a pHMM and the underlying
trainings data) and the half-lifes of domains. r is commonly interpreted as
follows: 0 to 0.09 = none; 0.1 to 0.3 = small; 0.3 to 0.5 = medium; 0.5 to 1.0 =
strong; the same applies to negative correlations by adding a minus sign.

relent1 Mean relative entropy per match state.

info1 Mean information content per match state.

p relE1 Mean positive relative entropy.

Table 4.1 summarizes the Pearson correlation coefficient and the coefficient of deter-

mination between the individual factors and the half-life. The indel rate influences the

half-lifes to the greatest extent. Intuitively, one would expect that pHMMs trained on

many sequences from a diverse set of species capture the sequence space more com-

prehensively than those trained on only a few sequences and thus should tend to have

longer half-lifes. However, this trend is not prominent in the data. Both, the absolute

and the effective number of sequences do not correlate with the domain half-life. The

correlation coefficients are close to zero. The sequence diversity shows a small positive

correlation with the half-life. Hence, pHMMs trained on seed alignments with diverse

sequences indeed tend to be recognized longer than models trained on seed alignments

with very similar sequences. This is however independent of the number of sequences.

The factors describing the distinctiveness of a pHMM (compKL, p relE, info, and re-

lent) have none or a very small negative correlation with the half-life. In contrast, the

number of match states and the half-lifes are positively correlated. In summary, long

domains trained on a diverse set of sequences with a small indel rate are in general

evolutionarily stable. Notice, that only linear correlations between the half-life and

individual factors were analyzed.
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4.3.3 Zombie Domains

In the previous sub-section we evaluated the half-lifes of domains. However, the half-

life is a summary statistic of the simulated evolution of 100 instances per domain. In

the following, we took a closer look at the individual domain instances. Lets assume

that after some substitutions, insertions, and deletions a protein sequence is no longer

recognized as domain. It may now happen that after an additional substitution the

sequence is again recognized as domain. Two simulation runs in figure 4.2 (run 1 and

4) show such a situation. In simulation run 4, for example, the sequence was recognized

as domain after 0.5 substitutions per site, not recognized after 1 substitution per site,

and then again recognized after 1.5 substitutions per site. Apparently, the domain

was overlooked in the domain search due to a lack of sensitivity (false negatives). In

the following, we investigate this behavior in our simulations.

Of all domains for which at least one instance was not recognized at one point in the

simulated evolution (10,797) 99% recurred later in the simulation. Thus, an apparent

loss was followed by an apparent gain. We measured two values for each domain.

First, the percent of recurrences: For each domain we generated 100 instances and

simulated their evolution independently. 100 percent recurrence means that all 100

instances were apparently lost and subsequently re-gained. Second, the mean number

of recurrences: We counted how many times a single domain instance was apparently

lost followed by an apparent gain. From the 100 simulations we determined the mean

number of recurrences for the domain. Figure 4.6 shows the percent of recurrences

versus the mean number of recurrences for all Pfam domains. Interestingly, the phe-

nomenon of apparent losses with subsequent gains is widely spread in Pfam domains.

Extreme cases are domains where almost all instances underwent several rounds of

apparent loss and gain (top right dots in figure 4.6). For example, the bacterial

transferase hexapeptide (Hexapep; PF00132), is such a zombie domain where each

simulated instance disappeared and recurred. Other extreme examples with a 99%

recurrence are the following seven domains: Involucrin repeat (Involucrin; PF00904),

KID repeat (KID; PF02524), Insect kinin peptide (Kinin; PF08260), Seven Residue

repeat (SRR, PF07709), Coagulation Factor V LSPD repeat (LSPR; PF06049), Cop-

per binding octapeptide repeat (Prion octapep; PF03991), and RII binding domain

(RII binding 1; PF10522). Five of the seven domains are repeats and all pHMMs

consist of very few match states. The RII binding domain is with 18 match states

the longest of these domains. In general, we observe a negative correlation between
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Figure 4.6: Comparison of the percentage of instances per domain that recurred
after they disappeared (x-axis) and the mean number of recurrences per domain
(y-axis).

the number of match states in the pHMM and its zombie behavior. The Pearson cor-

relation between the number of match states and the percent of recurrences is -0.48.

Similarly, the correlation between the number of match states and the mean number

of recurrences per domain is -0.55. Thus, the less match states a pHMM contains the

more it tends to behave like a zombie.

The temporary disappearance of zombie domains can be viewed as a lack of sensi-

tivity of the domain detection method. This raises the question, how to distinguish

between erroneous non-detection of a domain (false negatives) and a real loss of the

domain (true negatives) in a phylogenetic tree? We, therefore, suggest a general time

reversible model Q for domain losses and gains with one free parameter and normalize

it to one event per time unit.

Q =

( 0 1

0 − 1
2π0

1
2π0

1 1
2(1−π0)

− 1
2(1−π0)

)
(4.1)

where, π0 is the equilibrium frequency of ‘domain not detected’ (0). The equilibrium

frequency for ‘domain detected’ π1 = 1−π0 (1). Based on the simulations, we param-

eterize the Q matrix for a specific domain. This matrix then serves as a null model to
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evaluate the possibility of a real domain loss in a phylogenetic tree. In the following,

we exemplify this approach on the RII binding domain.

To estimate π0 and π1, we determine the number of substitution where the pro-

portion of detected domains per simulation stays approximately constant. This is the

case for the RII binding 1 domain, where from 1 substitution per site onwards 58±6%

of the instances are recognized as domain. We count how often a domain (i) remains

recognized, (ii) remains not recognized, (iii) flips from recognized to not recognized

(disappears), and (iv) flips from not recognized to recognized (reappears) after the pe-

riod of 1 substitution per site. The following matrix P (t) is the resulting probability

matrix for the RII binding 1 (RII) domain and time t = 1:

PRII(1) =

(
0.60 0.40

0.70 0.30

)
(4.2)

From P = eQt, we can approximate QRII for the RII binding 1 using a least square

approach:

QRII =

(
−0.73 0.73

1.61 −1.61

)
(4.3)

According to matrix 4.1, the approximate π0 = 0.69 and π1 = 0.31 for the RII binding 1

domain. Next, we use this evolutionary model to calculate a likelihood for observing a

presence-absence pattern of the RII binding domain in real data. To this end, we search

for orthologs to the 14 proteins present in the seed alignment of the RII binding 1 do-

main in the OMA database of orthologs (Altenhoff et al., 2010). We find 11 groups

of orthologs that include proteins from the seed alignment (OMA22923, OMA22764,

OMA23705, OMA26667, OMA29639, OMA36688, OMA445565, OMA445570, OMA-

50272, OMA61969, OMA85984) summing up to a total of 263 sequences. A Pfam

annotation of these proteins reveals that 119 sequences contain the RII binding 1 do-

main. We align each OMA group individually with mafft (Katoh et al., 2005) and

construct the trees with FastTree (Price, Dehal and Arkin, 2010). Figure 4.7 shows

the phylogeny of orthologous sequences from OMA22923. 12 of the 26 sequences are

annotated with the RII binding 1 domain. In the remaining 14 proteins this domain is

not detected. This allows now different possible interpretations concerning the evolu-

tion of this domain. Either it was present in the common ancestor protein and was lost

several times, or it was not present and, thus, gained independently on some branches,

or a mixture of gain and loss events. Any of these scenarios requires a considerable
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number of events. Given that this domain acts like a zombie in our simulations we

have to consider the possibility of false negatives. We, therefore, calculate the like-

lihood for the tree and the corresponding presence-absence pattern. As null model

we use QRII (matrix 4.3) and as alternative model we optimize the free parameter π0

along the tree to obtain two maximum likelihood estimations of the presence-absence

pattern. The log-likelihood for OMA22923 (figure 4.7) using the null model is -24.16

and it is -30.05 when we use the alternative model (π0 = 0.91). A likelihood ratio

test shows, that we reject the null model (p-value=0.0006). From this it can be con-

cluded that the presence-absence pattern of the RII binding 1 domain represents real

losses and gains of this domain. In support of this conclusion, the protein sequences of

Myotis lucifugus, Pteropus vampyrus, Oryctolagus cuniculus, and Sorex araneus show

gaps in the alignment regions where the RII binding domain is located in the other

proteins. Next, we remove these four species with an obvious loss of the domain (gaps

in the domain region) and redo the analysis. This time, the log-likelihood for the null

model is -25.54 and it is -24.82 for the alternative model (π0 = 0.09). The likelihood

ratio test now shows, that we do not reject the null model (p-value=0.23). Thus, the

remaining presence-absence pattern can also be explained by the zombie behavior of

the RII binding domain.

4.4 Discussion and Conclusion

Given that a domain is physically present in a protein and that pHMM based domain

identifications are without errors, we would always observe a significant similarity be-

tween the sequence and the pHMM. However, here we have shown, that annotations

of proteins with domains are not always reliable and we, therefore, miss some do-

mains. Our analysis of domains’ half-lifes provides an estimation of the evolutionary

stability of a domain that reveals over what evolutionary distances we expect to de-

tect a domain. For instance, for domains with a half-life above 11 substitutions per

site the situation is considerably simple. If such a domain is present in a protein one

can be certain that the sequence shows a significant similarity to the pHMM. On the

other hand, if this domain is not found it is highly likely that it is indeed not present.

The situation is different for domains with a very short half-life. In such cases it can

happen that a domain is physically present, however it does not exhibit a significant

similarity to the corresponding pHMM. Our simulations show, that for the vast major-

ity of Pfam domains pHMM based annotations have a low number of false negatives.
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Figure 4.7: Phylogenetic tree for the ortholog group OMA22923. The
boxes indicate presence (black filled box) or absence (white filled box) of the
RII binding 1 Pfam domain. * indicates gaps in the alignment regions where
the RII binding 1 domain is located in the other proteins.
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However, for almost 8% of the domains we have to take care when annotating very

distantly related sequences. The most extreme cases are 14 Pfam domains that are

recognized in less than 50% of their instances already after 0.5 substitutions per site.

These domains might be physically present in some proteins, but are not detected by

a pHMM scan. Here, only experiments can give a final answer. We identified factors

that influence whether a domain is stable. The most influential factor is the rate of

insertions and deletions. As part of this study, we developed a parsimony approach to

estimate parameters for insertions and deletions. We could show that for most protein

domains insertion and deletion rates are in the range of one insertion and one deletion

per 100 substitutions. Rates of 0.05 or higher are very rare. Our parsimony approach

presumable underestimates the rates. However, we have shown that although the indel

rates influence the stability of a domain, the half-life did generally not change with

doubled rates. Obviously, extreme rates of insertion and deletion (e.g. 0.1) reduce

the half-lifes substantially. However, the insertion and deletion rates and other ana-

lyzed factors explain the variability in half-lifes only partially. The question therefore

remains what is the driving factor of domain stability?

Furthermore, another interesting observation resulted from this study. Some do-

mains seem to be lost, but re-appear after additional mutations. An increase of the

E-value threshold in the pHMM search would presumably solve mostly this problem

of false negatives. However, this comes at the cost of an increase of false positives.

Thus, a more permissive approach is not advisable in general. However, in the rare

cases of zombie domains an explorative strategy is encouraged.

The half-life and the zombie behavior of domains influence the domain annotation.

Hence, the observed presence-absence pattern of a domain in homologous proteins is a

result of true evolutionary events like domain losses and gains plus errors in the domain

detection. This needs to be considered in estimations of domain loss and gain rates,

horizontal transfers, or convergent evolution. A first step is the likelihood ratio test

of the evolutionary domain loss and gain models to distinguish between cases where

the domain is truly absent in a phylogenetic tree and cases where it is overlooked in

the domain search. In summary, this study on domain evolution reveals new insights

and highlights the limitations of pHMM based domain annotations.



Chapter 5

Zygomycetes, Microsporidia, and the

Evolutionary Ancestry of Sex

Determination

Zygomycetes and their alleged sister taxon, the microsporidia, exclusively share the

presence of a cluster of three genes encoding a sugar transporter, a High Mobility

Group (HMG) type transcription factor, and an RNA helicase. In zygomycetes the

HMG type transcription factor acts as the sole sex determinant. This intimately ties

the evolutionary history of this gene cluster to the evolution of sex determination. Here

we have unraveled the relationships of the two gene clusters by vicariously analyzing

the sugar transporters and the RNA helicases. We show that if the two gene clus-

ters share a common ancestry it dates back to the early days of eukaryotic evolution.

As a consequence, the zygomycete MAT locus would be old enough to represent the

archetype of fungal and animal sex determination. However, the evolutionary scenario

that has to be invoked is complex. An independent assembly of the two clusters de-

serves therefore consideration. In either case, shared ancestry or convergent evolution,

the presence of the gene cluster in microsporidia and in zygomycetes represents at

best a plesiomorphy. Hence, it is not phylogenetically informative. A further genome-

wide re-analysis of gene order conservation reveals that gene order is not significantly

more similar between microsporidia and zygomycetes than between microsporidia and

any other fungal taxon or even humans. Consequently, the phylogenetic placement of

microsporidia as sister to the zygomycetes needs to be re-considered.

77
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5.1 Introduction

In zygomycetes, an early branching fungal lineage, the mating type is determined by

a single gene (Idnurm et al., 2008) encoding a High Mobility Group (HMG) type tran-

scription factor (Thomas and Travers, 2001). The sex determining locus is flanked by

two genes, one encoding a triosephosphate transporter (TPT) and the other encod-

ing an RNA helicase. Initial analyses suggested that the arrangement of these three

genes is unique to the zygomycetes. However, recently, it was reported that a similar

cluster encompassing also genes for a TPT, an HMG protein, and an RNA helicase is

present in microsporidia (figure 5.1). It was concluded that the two gene clusters have

a common evolutionary origin, i.e. they are shared syntenic (Lee et al., 2008). The

consequences of this conclusion are of relevance for two open questions.

First, is sex determination via HMG type transcription factors evolutionarily an-

cient? Fungal sex is determined by mating-type specific genes organized in so-called

MAT loci. A number of MAT loci have been described in ascomycetes and basid-

iomycetes (e.g. Butler et al. 2004; Haber 1992; Lengeler et al. 2002, reviewed in Lee

et al. 2010b). Based on the transcription factors present, the MAT loci are classified

into three major groups: i) HMG type, ii) homeodomain type, and iii) alpha-domain

type. The identification of the zygomycete MAT locus (Idnurm et al., 2008) revealed

that in the earliest branching fungal lineage characterized so far, an HMG type tran-

scription factor determines sex. This laid the odds on an HMG type MAT locus

having determined sex in the last common ancestor of all fungi. The simplicity of

the zygomycete MAT locus further suggested that it could resemble the archetype of

fungal sex determination (Dyer, 2008b). Interestingly, also in mammals sex is deter-

mined by a single HMG type transcription factor (Haqq et al., 1993). This coincidence

was taken as an indication that both fungal and mammalian sex determining systems

descended from the same HMG type MAT locus in the last common ancestor of fungi

and animals (Dyer, 2008b; Idnurm et al., 2008). However, this scenario is specula-

tive. The high evolutionary rate of sex determining genes (Swanson and Vacquier,

2002) prevents a reconstruction of their evolutionary relationships already within the

fungi (e.g. Lee et al. 2010a). Thus, protein sequence data provide no information

about whether sex determining HMG type transcription factors in fungi and animals

are derived from a single ancestral gene, or whether they are a product of conver-

gent evolution. To still establish homology for highly diverged genes, gene order has

proven helpful (Dietrich et al., 2004). The sex determining gene in zygomycetes and
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the gene for the microsporidian HMG protein identified by Lee et al. (2008) are both

flanked by genes encoding a TPT and an RNA helicase. They concluded that this

results from shared synteny, ergo the microsporidian HMG type transcription factor

is the first homolog to the zygomycete sex determinant identified in a non-zygomycete

taxon. Consequently, we can now investigate the evolutionary history of HMG-driven

sex determination by reconstructing the evolutionary history of the two gene clusters

in zygomycetes and microsporidia.

Second, what is the exact position of microsporidia in the eukaryotic tree of life

(reviewed in Corradi and Keeling 2009)? Initially, microsporidia were considered an

early branching eukaryotic lineage (e.g. Cavalier-Smith 1986; Vossbrinck et al. 1987).

Later findings, however, were not consistent with this view (e.g. Thomarat, Vivarès

and Gouy 2004; Brinkmann et al. 2005; Gill and Fast 2006; James et al. 2006; Keeling

2009). After several taxonomic revisions it is now widely accepted that microsporidia

are associated with the fungi (Corradi and Keeling, 2009). Alas, so far protein phylo-

genies failed to resolve whether microsporidia are sister to the fungi, or whether they

fall within the true fungi. Some studies suggested a grouping of microsporidia with

various fungal lineages, such as the ascomycetes, the basidiomycetes, the zygomycetes,

or Rozella a chytridiomycete (e.g. Gill and Fast 2006; James et al. 2006; Keeling 2003;

Keeling, Luker and Palmer 2000; Thomarat, Vivarès and Gouy 2004). However, their

position as a sister taxon to all fungi could not be rejected (James et al., 2006). Only

recently comparative genome structure analyses provided complementary information

about the phylogenetic position of the microsporidia. Among all tested fungal and

non-fungal species only the zygomycetes are reported to have a gene order that is

more similar to that of the microsporidia than it is expected by chance (Lee et al.,

2008). The microsporidian gene cluster that is shared syntenic to the zygomycete sex

related locus was the most prominent example of conserved gene order. Its presence,

together with the finding that microsporidia contain several genes required for meio-

sis, implies that microsporidia actually may have sex (Lee et al., 2010b). In summary,

the analysis of gene order indicated that microsporidia share an exclusive common

ancestry with the zygomycetes, and it was concluded that microsporidia evolved from

ancient sexual fungi (Lee et al. 2008; Dyer 2008a, reviewed in Corradi and Keeling

2009).

Studies of both the evolutionary origins of HMG driven sex determination and the

phylogenetic position of the microsporidia hinge on the microsporidian gene cluster.

It is, therefore, unfortunate that the evolutionary history of this gene cluster itself is
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Figure 5.1: Gene arrangements in the MAT locus of P. blakesleeanus and in
the corresponding gene cluster of E. cuniculi. In the sex related region of P.
blakesleeanus (S1) the gene encoding the sex determining transcription factor
(HMG) is flanked by two genes coding for a sugar transporter (TPT) and an
RNA helicase, respectively. The corresponding cluster in E. cuniculi (S2) con-
tains also genes for a TPT, an HMG type transcription factor, and an RNA
helicase. The two additional genes in S2 encode a hypothetical protein (HP)
and a protein with a weak similarity to a HMG domain protein.

not clear (Lee et al., 2010a). Here we perform a comprehensive analysis to unravel

the phylogenetic relationships of the genes linked to the sex determining transcription

factor in zygomycetes and their counterparts in the microsporidia. Based on the

results we discuss the evolutionary history of the microsporidian gene clusters, as well

as the implications for both the evolutionary ancestry of sex determination and the

phylogenetic placement of the microsporidia. In a subsequent genome-wide analysis of

gene order conservation we carefully re-address the proposed sister-group relationship

of microsporidia and zygomycetes.
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5.2 Materials and Methods

5.2.1 Ortholog Search and Phylogeny Reconstruction

We predicted orthologs to the RNA helicases and the TPTs using InParanoid v. 3.0

(Berglund et al., 2008). For a less stringent ortholog search a standard reciprocal

Blast (Altschul et al., 1997) search using NCBI Blast v. 2.2.13 was performed. The

gene IDs for the identified orthologs together with the corresponding data sources are

summarized in Appendix table C.1. RNA helicase and TPT alignments were generated

with MAFFT v. 6.833b (Katoh et al., 2005). Throughout all analyses MAFFT was

used with the options –maxiterate 1000 –localpair. The resulting multiple sequence

alignments were then each used for tree reconstruction. Maximum likelihood tree

reconstruction was performed with RAxML v. 7.2.2 (Stamatakis, 2006) and branch

support was assessed with 100 bootstrap replicates. Bayesian tree reconstruction

was performed with Phylobayes v. 2.3 (Lartillot and Philippe, 2004) running two

independent chains per dataset. The chains were stopped after 84,000 generations

(TPT) and 120,000 generations (RNA helicase), respectively and we discarded the

first 10,000 generations as burn-in. Convergence was confirmed with bpcomp from

the Phylobayes package sampling every 10th tree (maxdiff: TPT: 0.02; RNA helicase:

0.08).

5.2.2 Analysis of Characteristic Sites in the Multiple Sequence

Alignments

For the analysis of characteristic sites we pursued the following strategy: We aligned

the sequences individually for the four ortholog groups, TPT-S1 and TPT-S2, and

RNA helicase-S1 and RNA helicase-S2. The corresponding S1 and S2 alignments

were then combined with MAFFT using the option –addprofile. We then called a

site characteristic if in the combined S1-S2 alignment the majority of sequences from

one group share an amino acid or an insertion/deletion that is not seen in the re-

spective other group. To assess whether the microsporidian sequences share more

characteristic sites with the S1 or the S2 sequences we added them individually to the

appropriate S1-S2 alignment using MAFFT and the option –add. For the analysis

of characteristic sites in the DEXDc domain (SM00487), we downloaded the align-

ment for this domain from the SMART database (Letunic, Doerks and Bork, 2009).
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The alignment was converted into a profile Hidden Markov Model with hmmbuild

from the HMMER package v.3 (http://hmmer.janelia.org/). The Logo (Schuster-

Bockler, Schultz and Rahmann, 2004) for the pHMM was generated with the tool pro-

vided at http://www.sanger.ac.uk/cgi-bin/software/analysis/logomat-m.cgi

(Appendix figure C.1). The sub-sequences in the RNA helicases corresponding to the

DEXDc domain were extracted and aligned with hmmalign using the option –trim.

In the resulting pHMM alignment the analysis of characteristic sites were performed

as described above.

5.2.3 Identification of RNA helicases, TPTs and HMG box

Proteins

We identified putative RNA helicases, TPTs, and HMG type transcription factors in

B. dendrobatidis, P. blakesleeanus, and S. cerevisiae by searching for proteins harbor-

ing the characteristic conserved functional domains. For the RNA helicase we used

the DEXDc SMART domain (SM00487), for the HMG type proteins the HMG box

PFAM domain (PF00505), and for the TPTs the TPT PFAM domain (PF03151). All

three domains are present both in the proteins encoded in the sex related cluster of P.

blakesleeanus and in the microsporidian counterparts. Domain annotations of the pro-

teins were performed as described in section 2.6. Feature dotplots were generated with

FACT (see chapter 2) and in the case of overlapping PFAM domains or overlapping

SMART domain only the domains with the smallest E-value are shown.

5.2.4 Analysis of Gene Order Conservation

The extent of gene order conservation to E. cuniculi was determined in two zy-

gomycete taxa Phycomyces blakesleeanus and Rhizopus oryzae, as well as in the fol-

lowing species: Batrachochytrium dendrobatidis (Fungi; Chytridiomycota; Chytrid-

iomycetes), Sporobolomyces roseus (Fungi; Dikarya; Basidiomycota; Pucciniomycotina;

Microbotryomycetes), Laccaria bicolor (Dikarya; Basidiomycota; Agaricomycotina;

Agaricomycetes), Aspergillus niger (Dikarya; Ascomycota; Pezizomycotina; Euro-

tiomycetes), H. sapiens (Metazoa). The non-zygomycete species were chosen to com-

plement the fungal lineages whose gene order conservation with respect to E. cuniculi

were already found to be not conserved (Lee et al., 2008), i.e. Saccharomyces cere-

visiae (Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes), Ashbya gossypii
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(Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes), Schizosaccharomyces

cerevisiae (Dikarya; Ascomycota; Taphrinomycotina; Schizosaccharomycetes), Neu-

rospora crassa (Fungi, Dikarya, Ascomycota, Pezizomycotina; Sordariomycetes), Cryp-

tococcus neoformans (Fungi; Dikarya; Basidiomycota; Agaricomycotina; Tremello-

mycetes). Genome assemblies and annotated gene sets were downloaded from: Joint

Genome Institute (http://genome.jgi-psf.org/euk_cur1.html): A. niger, B. den-

drobatidis, L. bicolor, P. blakesleeanus, S. roseus ; Broad Institute (http://www.broad-

.mit.edu/): R. oryzae; EBI (http://www.ebi.ac.uk/integr8): E. cuniculi ; EN-

SEMBL (http://www.ensembl.org): Homo sapiens. For taxa for which the order of

the annotated genes was not readily provided for download, we mapped the coding

sequences for the predicted genes to the genome assembly using BLAT (Kent, 2002).

The position of the best BLAT hit was taken as the gene position.

5.3 Results and Discussion

5.3.1 The Evolutionary History of the TPTs and the RNA

helicases

In shared syntenic gene clusters, each gene shares the evolutionary history of the en-

tire gene cluster. Thus, the split between the sex related region in zygomycetes and

its counterpart in the microsporidia can be vicariously dated by analyzing the evolu-

tionary relationships of the TPTs and RNA helicases, respectively. The HMG type

transcription factors were omitted from this analysis, since they lack any phylogenetic

information (Lee et al., 2010a). In the following, we refer to the zygomycete sex related

gene cluster as syntenic region 1 (S1) and to the microsporidia gene cluster as syn-

tenic region 2 (S2). Correspondingly, we refer to the respective genes as TPT-S1/RNA

helicase-S1 and as TPT-S2/RNA helicase-S2 (figure 5.1).

To start our analyses we used the Phycomyces blakesleeanus (zygomycetes) S1 pro-

teins to identify orthologs in Encephalitozoon cuniculi (microsporidia). Similarly, we

searched for orthologs to the E. cuniculi S2 proteins in P. blakesleeanus. We chose the

two species in which the S1 and S2 gene cluster had been initially described (Idnurm

et al., 2008; Lee et al., 2008). InParanoid (Remm, Storm and Sonnhammer, 2001), one

of the most reliable orthology prediction programs (Chen et al., 2007), was used for

this purpose. No orthologs to the S1 proteins were found in E. cuniculi. In contrast,
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P. blakesleeanus$ E. cuniculi
(Genomic location) (Genomic location)

TPT S1 11516* (Scaffold 41)
RNA helicase S1 80075** (Scaffold 41)
TPT S2 4053 (Scaffold 4) Q8SV84 (Chr VI)

19565 (Scaffold 8)
RNA helicase S2 14395 (Scaffold 1) Q8SRN8 (Chr VI)
$ JGI Gene ID
* Accession-No. ABX27908.1
** Accession-No. ABX27910.1

Table 5.1: Ortholog pairings for the P. blakesleeanus and E. cuniculi S1 and
S2 genes. Genes located in the sex related gene cluster of zygomycetes and in
its microsporidian counterpart are emphasized.

both S2 proteins have orthologs in P. blakesleeanus. The corresponding genes are,

however, not located in the sex determining region but resided on different scaffolds

in the P. blakesleeanus genome assembly (table 5.1). Note that the results did not

change when we reduced the stringency of the ortholog search by performing only a

reciprocal best Blast hit search and omitted the additional filtering steps invoked by

InParanoid (Remm, Storm and Sonnhammer, 2001). Thus, neither TPT-S1/TPT-S2

nor RNA helicase-S1/RNA helicase-S2 were identified as ortholog pairs.

We assessed next when during evolution the corresponding genes in the S1 and

S2 clusters of zygomycetes and microsporidia have separated. A screen in 15 plant,

animal, and fungal species for orthologs to each of the four genes resulted in four

disjoint ortholog groups (c.f. Appendix table C.1). We combined all RNA helicases and

all TPTs, respectively, and conducted maximum likelihood (ML) tree reconstructions

for both data sets. The resulting trees are shown in figure 5.2 (RNA helicases) and

Appendix figure C.2 (TPTs). In both trees the S1 orthologs and the S2 orthologs

are placed into two well-supported clades (RNA helicase: BS=100, TPT: BS=100).

A complementary Bayesian analysis corroborated the results (RNA helicase: BPP=1;

TPT: BPP=1; trees not shown). All four clades, corresponding to the four ortholog

groups, contain sequences from animals, fungi, and plants. This indicates that the

genes in the zygomycete sex related region have separated from their microsporidian

homologs already before the three eukaryotic kingdoms emerged.

To further substantiate the hypothesis that the zygomycete S1 genes and the mi-

crosporidian S2 genes are evolutionarily only very distantly related, we analyzed the
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Figure 5.2: Maximum likelihood tree of the S1 and S2 RNA helicases. Se-
quences in the zygomycete sex related region are labeled in red, sequences in the
corresponding region of the microsporidia are labeled in green. Branch labels
denote bootstrap support values.
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#char.
sites*

Ortholog
group

E.
cuniculi

A.
locustae

N.
ceranae

E.
bieneusi

RNA helicase
390

S1 24 - 22 17
S2 197 - 194 206

TPT
58

S1 0 0 1 3
S2 22 23 21 15

* total number of characteristic sites distinguishing the S1 from the S2 sequences.

Table 5.2: Number of characteristic sites conserved in the microsporidian RNA
helicases and TPTs.

protein sequence alignments. We first removed all microsporidian RNA helicases. We

then aligned the S1 RNA helicases and the S2 RNA helicases separately and subse-

quently combined them using a profile-to-profile alignment. In the resulting alignment

we searched for evolutionarily conserved sites that characterize the S1 and the S2 or-

tholog groups. We called a site characteristic if in the combined alignment of two

ortholog groups the majority of sequences from one group share an amino acid or an

insertion/deletion that is not seen in the respective other group. 390 characteristic

sites distinguish the S1 RNA helicases from the S2 RNA helicases. We applied the

same procedure to the TPTs and identified 58 characteristic sites. To assess whether

the microsporidian sequences display any marked similarity with either the S1 or the

S2 sequences, we aligned each of them to the corresponding combined S1-S2 align-

ment. This revealed that the E. cuniculi RNA helicase shares 197 characteristic sites

with the S2 RNA helicases and only 24 with the S1 RNA helicases. Similarly, the E.

cuniculi TPT shares 22 of the 58 characteristic sites with the S2 TPTs and 0 with the

S1 TPTs. The same results were obtained with the other microsporidian sequences

(table 5.2). Thus, the proteins encoded in the microsporidian gene cluster share a

substantial extent of sequence conservation with the other S2 sequences. In contrast

they have virtually nothing in common with the S1 sequences.

We pursued the analysis of characteristic sites in greater depth exemplarily for the

RNA helicases. We extracted the subsequences matching to the DEXDc SMART do-

main (Letunic, Doerks and Bork, 2009), the functional domain of DEAD and DEAH

box helicases, and performed a pHMM alignment. A section from this alignment is

shown in figure 5.3. Figure 5.3 shows clearly that the marked sequence conservation be-

tween the microsporidian RNA helicase and the S1 RNA helicases is present also in the

functional domain of the proteins. The helicase domain of the RNA helicase encoded

in the zygomycete sex related locus contains two short sequence motifs IQGPPGT-
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                                         **********                                      ******* 
P. blakesleeanus-S1 ----QMDALQTMITN--NIAIIQGPPGTGKTFv...gtYGMKVLLKNFDQG-.......LGPIVCICQTNHALDQFLEHVLDF 
R. oryzae-S1        ---TQLDALKTILSR--NLSIIQGPPGSGKTFv....gTYAMRVLLNNFNES.......LGPIVCICQTNHALDQFLEHILTY 
D. melanogaster-S1  LNESQKTAFKEALCR--EFSIIQGPPGTGKTHl...svQLVNSLIQNAKALG.......TGPIIVLTYTNNSLDKFLVKISRY 
C. reinhardtii-S1   --DSQRQAVTLALSA-KDLALVHGPPGTGKTT......AVVEIILQEVARG-.......-SRVLAASASNIAVDNLVERLVRA 
P. anserina-S1      ---SQLDGLHRIISN--ELAIVQGPPGTGKTFt...svQALKVLVANRRKHG.......GPPIIVAAHTNHALDQLLT----- 
A. niger-S1         ----QWQALQEMLTK--RLSLIQGPPGTGKTYv...svVALKVLLLNMKYG-.......DSPIILASQTNHALDQL------- 
N. vectensis-S1     --KSQLRAVQTALTK--EFAVIQGPPGTGKTYiglkvrALFHHIQNH----Qae...vrHRPILVVCFTNHALDQFLEGIQEF 
H. sapiens-S1       LDDSQMEALQFALTR--ELAIIQGPPGTGKTY......VGLKIVQALLTNESvwqislqKFPILVVCYTNHALDQFLEGIYNC 
P. blakesleeanus-S2 PTPIQRRCIPLVMQG--DDVVGMARTGSGKTA......AFLIPMLERLKTHSa....kvGARGLVLSPSRELALQTQKVCKEL 
M. brevicollis-S2   PTPIQRKTIPLLMAG--QDVVAMARTGSGKTA......AFLIPLFERLKNHSa....rvGIRALVLSPTRELALQTFKFVKEL 
D. melanogaster-S2  PTPIQRKTIPLILEG--RDVVAMAKTGSGKTA......CFLIPLFEKLQRREp....tkGARALILSPTRELAVQTYKFIKEL 
C. reinhardtii-S2   PTPIQRRAMPMIMQG--LDVVGMARTGSGKTA......AFVLPMIHRLKEHSi....raGARAVILSPTRELALQTHKTVRDL 
S. cerevisiae-S2    PTPIQRKTIPLILQS--RDIVGMARTGSGKTA......AFILPMVEKLKSHSg....kiGARAVILSPSRELAMQTFNVFKDF 
P. graminis-S2      PTPIQRAALPHILASPPRDVVGMARTGSGKTL......AYLIPLIQTLSGVHsv...qfGIRALILVPTRELALQVLKVGKDL 
A. thaliana-S2      PTPIQRKTMPLILSG--VDVVAMARTGSGKTA......AFLIPMLEKLKQHVp....qgGVRALILSPTRDLAEQTLKFTKEL 
P. anserina-S2      PTPIQRKTIPLVLER--RDVVGMARTGSGKTA......AFVIPMIERLKGHSp....kvGARALILSPSRELALQTLKVVKEL 
A. niger-S2         PTPIQRKTIPVVMED--QDVVGMARTGSGKTA......AFVIPMIQKLKSHSt....qvGARGLILSPSRELALQTLKVVKEL 
N. vectensis-S2     PTPIQRKTLPLVMDG--KDVVAMARTGSGKTA......AFLIPMFEKLQTHTa....kvGIRALILSPTRELALQTQKFIKEL 
H. sapiens-S2       PTPIQRKTIPVILDG--KDVVAMARTGSGKTA......CFLLPMFERLKTHSa....qtGARALILSPTRELALQTLKFTKEL 
R. oryzae-S2        PTPIQRKCIPLVLQG--DDVVGMARTGSGKTA......AFLIPMLERLKAHSa....ktGARSLVLSPSRELALQTQKVCKEL 
                                         **********                                      *******          

E. cuniculi-S2      PTPIQRKTIPLILER--RSLMGVGRTGSGKTL......CYLIPAIQRAISG-.......-EKTLVIVPTKELVIQARRVLKRL 
E. bieneusi-S2      PTPIQRKTIPEILIG--RSIVGIGRTGSGKTL......CYLIPAVQGAIE--.......NKRCLIILPTRELVFQTKRILKML 
N. ceranae-S2       PTPIQRKIIPMILEH--KSVMGIGRTGSGKTF......CYLIPAIQKALE--.......NKNILILVPTRELINQVNRNIKYL  

 

 

Figure 5.3: Section of the pHMM guided multiple sequence alignment of the
DEXDc domain in the S1 and S2 RNA helicases. Characteristic sites for the
S1 RNA helicases are labeled in green and for the S2 RNA helicases are labeled
in red. The microsporidian sequences display almost exclusively characteristic
sites of the S2-type RNA helicases. Amino acids in the grey shaded columns
are conserved in all sequences and are specific for the DEXDc domain (c.f. Ap-
pendix figure C.1). Dashes denote deletion states in the pHMM alignment, and
lower case letters opposed to dots denote insertion states. Green and red se-
quence labels denote the sequences in the zygomycete sex related cluster and
its microsporidian counterpart, respectively. The green stars denote two evo-
lutionarily conserved motifs of the RNA helicase in the sex related region of
P. blakesleeanus. The red stars denote the corresponding motif in the S2 RNA
helicases.

GKT and NHALDQF that are almost perfectly conserved among all sequences in the

RNA helicase-S1 group (green stars in figure 5.3). A parsimony argument implies

that these motifs were already present in the most recent common ancestor of these

sequences. At the same alignment positions two evolutionarily highly conserved motifs

are also seen in the helicase domains from the S2 group, which however are distinct

from the S1 motifs (P. blakesleeanus : GMARTGSGKT and RELALQT; red stars in

figure 5.3). The microsporidian sequences display slight variants of the S2 motifs.

Next, we contrasted the feature architecture of the E. cuniculi RNA helicase with

the feature architecture of the P. blakesleeanus RNA helicase S1 and S2, respectively,

with FACT (chapter 2). Figure 5.4 shows the feature dotplot of both comparisons.

The E. cuniculi RNA helicase consists of a DEXDc SMART/DEAD PFAM domain,
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a HELICc SMART/Helicase C PFAM domain (Letunic, Doerks and Bork, 2009; Finn

et al., 2010), and a K-rich region. All three RNA helicases consist of the already de-

scribed DEXDc SMART domain (Letunic, Doerks and Bork, 2009). However, in the

case of E. cuniculi S2 and P. blakesleeanus S1 this is the only shared domain. In con-

trast, the P. blakesleeanus S2 proteins consists of all domains that are present in the E.

cuniculi RNA helicase. Namely, they share the DEXDc SMART/DEAD PFAM do-

main, the HELICc SMART/Helicase C PFAM, and the K-rich stretch. Moreover, the

features are in the same order. Thus, the RNA helicase encoded in the microsporidian

gene cluster shares a very similar feature architecture with the P. blakesleeanus RNA

helicase S2.

The evolutionary history of the genes in the zygomycete sex related region (gene

cluster S1) and its shared syntenic counterpart in the microsporidia (gene cluster S2)

has been investigated before (Lee et al., 2010a). However, the authors did not deci-

sively conclude whether the corresponding genes in the two clusters are paralogs or

extremely diverged orthologs. We followed a tripartite approach to solve this issue.

Orthology predictions using both InParanoid (Berglund et al., 2008) and a less strin-

gent reciprocal best Blast hit search failed to recognize the S1 RNA helicase of P.

blakesleeanus and the S2 RNA helicase of E. cuniculi as orthologs, and the same ap-

plies to the TPTs. A phylogenetic tree reconstruction placed S1 and S2 sequences in

distinct clades where each clade contained sequences from fungi, animals, and plants.

This already suggests an early separation of the S1 and S2 genes that predates the

split of microsporidia and fungi. However, the validity of conclusions drawn from both

orthology assignment and phylogenetic tree reconstruction can be compromised by the

high evolutionary rate particularly of microsporidian proteins (e.g. Brinkmann et al.

2005). Hence, we added the analysis of evolutionarily conserved characteristic sites

as a third line of evidence. We found that the microsporidian sequences share sub-

stantially more characteristic sites with the S2 sequences then with the S1 sequences.

This finding seamlessly integrates with the results from the ortholog search and the

tree reconstruction. Thus, all evidences point towards a common ancestry of the mi-

crosporidian genes and the respective other S2 genes to the exclusion of the S1 genes.

On the contrary, they are not compatible with the hypothesis that the microsporidian

genes are extremely diverged orthologs of the genes in the zygomycete sex related

cluster, as it has been suggested before (Lee et al., 2010a).
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Figure 5.4: Feature dotplot contrasting the feature architecture of the E. cuni-
culi RNA helicase and the P. blakesleeanus RNA helicase S1 (left hand side) and
S2 (right hand side), respectively. The feature architecture of the E. cuniculi
protein is shown on the both x-axes and the P. blakesleeanus proteins are shown
on the y-axes.
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5.3.2 The Implications of Shared Synteny

Our analyses have revealed that both gene pairs, RNA helicase-S1/S2 and TPT-S1/S2,

separated early in eukaryotic evolution and long before the split of zygomycetes and

microsporidia. How can this result be reconciled with the proposed shared synteny of

the genomic regions the genes reside in? To do so, we need to assume that an ances-

tral TPT-HMG-RNA helicase gene cluster existed already in the common ancestor of

plants, animals and fungi. This gene cluster gave rise to two independently evolving

copies in this primordial species. One copy each was retained with conserved gene

order in microsporidia and zygomycetes and the second copy was reciprocally lost in

the two lineages. In all other taxa analyzed so far both copies of the ancestral gene

cluster were lost. Thus, conditioned on the shared synteny assumption we provide now

for the first time evidence that the evolutionary history of the zygomycete MAT locus

can be traced back to the early days of eukaryote evolution. It would be therefore old

enough to represent the archetype of fungal and animal sex determination.

However, a considerable number of evolutionary events need to be assumed to up-

hold the initial assumption of shared synteny. It is, therefore, worthwhile to consider

an alternative hypothesis. The two gene clusters in zygomycetes and microsporidia

may have been assembled twice and independently during evolution and are not shared

syntenic. In this case the presence of a microsporidian HMG type transcription factor

flanked by a TPT and an RNA helicase allows no conclusions about the evolutionary

history of HMG driven sex determination. Although convergent evolution appears on

the first sight unlikely we will now show that it is not implausible. P. blakesleeanus

has 132 different proteins with a DEXDc smart domain (Letunic, Doerks and Bork,

2009), the characteristic feature of the RNA helicase-S1. Further 30 proteins contain

a HMG box, and 17 TPTs exist. The numbers for Batrachochytrium dendrobatidis

(chytridiomycetes) and Saccharomyces cerevisiae (ascomycetes) are similar (RNA he-

licases: 115/123; HMG: 10/9; TPT: 8/11). This indicates that these genes were as

abundant in the last common ancestor of all fungi. Microsporidia evolved from the

ancestor shared with the fungi by undergoing a massive genome compaction and an as-

sociated loss of genes (Katinka et al., 2001). Still E. cuniculi has retained 48 helicases,

3 TPTs and 2 HMG type proteins. It can be easily imagined that the re-organization

of the microsporidian genome during its evolution has just by chance placed any of

the genes encoding RNA helicases, TPTs, and HMG type transcription factors next

to each other. By that a gene cluster emerged resembling that of the zygomycete sex
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related region.

At the moment it is impossible to decide which of the two scenarios, ancient relation-

ships or convergent evolution, applies to the two gene clusters. Presumably only an

in-depth functional analysis of the individual proteins in microsporidia, with a focus

on the HMG type transcription factor will help to shed further light on this matter.

5.3.3 Are Microsporidia and Zygomycetes Monophyletic?

How do our findings relate to the debate about the phylogenetic position of mi-

crosporidia? The conservation of gene order, and in particular the presence of the

microsporidian gene cluster resembling the zygomycete sex related locus, has served

as argument to place the microsporidia next to the zygomycetes in the fungal tree

of life (Lee et al., 2008, 2010b). However, we have shown that the suggested shared

synteny traces the two gene clusters back to an ancient gene cluster in the common

ancestor of plants, animals and fungi. In cladistic terms they represent a shared ances-

tral character, or a plesiomorphy. Plesiomorphies are phylogenetically not informative

(Hennig, Davis and Zangerl, 1966). Hence, they cannot serve as supporting evidence

for the proposed monophyly of microsporidia and zygomycetes (but see Lee et al. 2008,

2010a). This emphasizes that phylogenetic inferences based on gene order conserva-

tion are problematic when the exact evolutionary relationships of the genes remain

uninvestigated. Unfortunately, the only quantitative analysis of gene order conser-

vation to determine the phylogenetic position of microsporidia used a unidirectional

BlastP search (E-value cutoff 10E-5) for homology inference (Lee et al., 2008). A

comparison between several orthology prediction methods has shown that orthology

assignments based on unidirectional BlastP searches are wrong in 50% of the cases

(Chen et al., 2007). This bears the risk that a considerable fraction of the identified

zygomycete-microsporidia gene pairs comprise paralogs. To assess whether this has

any consequences for the conclusions of this study we re-investigated the extent of

gene order conservation between microsporidia and zygomycetes. In brief, we used

InParanoid (Remm, Storm and Sonnhammer, 2001) for orthology prediction. In con-

trast to the unidirectional BlastP search, InParanoid has a reported false positive rate

of only 7% (Chen et al., 2007). We established the evolutionary relationships be-

tween the genes of Encephalitozoon cuniculi and two zygomycete species, Phycomyces

blakesleeanus and Rhizopus oryzae. Four further fungal species (Batrachochytrium

dendrobatidis, Sporobolomyces roseus, Laccaria bicolor, Aspergillus niger) and human
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Figure 5.5: Re-analysis of the proposed shared syntenic gene clusters between
R. oryzae and E. cuniculi. Two decision rules were used to assign shared synteny
(c.f., figure S5 in Lee et al. 2008). Rule 1 requires that (1a) two R. oryzae genes
have a Blast hit with an E-value < 10E-05 in E. cuniculi, (1b) the two R. oryzae
genes must be separated by no more than 4 genes, and (1c) the corresponding
E. cuniculi genes must be separated by no more than 3 genes. Rule 2 extends
rule 1 if one of the intervening R. oryzae genes also has a Blast hit (E-value <
10E-05) in E. cuniculi. In this case, the R. oryzae genes must be separated by
no more than 12 genes (2b). Please note that in the original publication the
decision rules where described for a search in the opposite direction, i.e., with
the E. cuniculi proteins as query. However, the data presented in table S1 of
Lee et al. (2008) (cf. also Appendix table C.2) are not compatible with this
direction of the search. Hence, we adjusted the decision rules to fit the data.
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were analyzed to investigate whether the extent of gene order conservation to E. cu-

niculi varies between species. For 461 E. cuniculi genes an ortholog was present in

all seven taxa. In E. cuniculi these 461 genes are arranged in 674 gene pairs with

no more than 3 genes in-between. We then considered a microsporidian gene pair as

conserved if its orthologs in the non-microsporidian species are separated by no more

then 9 intervening genes. The results are summarized in table 5.3. From the 674 E.

cuniculi gene pairs only 4 were recovered in R. oryzae, 5 were present in B. dendroba-

tidis, a chytridiomycete, and 3 in humans. In essence, no marked conservation of gene

order between E. cuniculi and zygomycetes is seen. However, again in the light that

orthology prediction for the fast evolving microsporidia is hard, our approach bears

the risk of being overly stringent. We thus may lack the sensitivity for a meaningful

analysis of gene order conservation. To address this point, we re-analyzed the exist-

ing data that were obtained with the unidirectional Blast searches (table S1 in Lee

et al. 2008). The results are summarized in figure 5.5 and in Appendix table C.2. In

their relaxed stringency analysis Lee et al. (2008) found 33 clusters with conserved

gene order in E. cuniculi and R. oryzae. Of these clusters 5 do not fulfill the E-value

cutoff of 10E-5 in the original data. Further 4 clusters exceed the maximally allowed

number of intervening genes in R. oryzae. Of the remaining 24 clusters, 13 R. oryzae

clusters point to only five clusters in E. cuniculi. The corresponding cluster must have

duplicated on the R. oryzae lineage after the split from the microsporidia. Hence,

they can be counted only once each. This reduces the number of independent shared

syntenic regions between the two species to 16 what would be expected by chance (Lee

et al., 2008). Thus, a proper analysis of Lee et al.’s (2008) data provides no evidence

that the gene order is more conserved between microsporidia and zygomycetes than

between microsporidia and any other fungal taxon or even humans. As a consequence,

the proposed placement of microsporidia as a sister to the zygomycetes receives no

support by the data. The question remains therefore open where to confidently place

this enigmatic taxon in the fungal tree of life.

In summary, our study has revealed what can and what cannot be inferred from the

observation that microsporidia harbor a gene cluster closely resembling the sex related

region of zygomycetes. If we take shared synteny for granted, our results trace the

zygomycete sex related region back to the early days of eukaryote evolution. It may

therefore indeed comprise the archetype of animal and fungal sex determination. How-

ever, the evolutionary scenario that has to be invoked is complex. Thus, sacrificing

the shared synteny assumption may lead to a more parsimonious hypothesis, i.e., that
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Number of intervening genes**
0 1 2 3 4 5 6 7 8 9
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67
4* Batrachochytrium dendrobatidis 3 1 1

Aspergillus niger 1 1 1
Laccaria bicolor 1 1
Sporobolomyces roseus 1 1 1
Rhizopus oryzae 2 1 1
Phycomyces blakesleeanus 1
Homo sapiens 1 1 1

Table 5.3: Number of E. cuniculi gene pairings recovered in six fungi and
humans. *Gene pairs separated by no more than three genes with orthologs
in 6 fungal taxa and H. sapiens. **Number of intervening genes between two
orthologs to an E. cuniculi gene pair.

the two gene clusters arose independently through convergent evolution. Independent

of the true evolutionary relationships of the two gene clusters, however, one observa-

tion stands out. Their presence in zygomycetes and microsporidia represent, at best,

a plesiomorphy and provide no information about the phylogenetic relationships of

zygomycetes and microsporidia. As there is no further evidence for a significant con-

servation of gene order between the two taxa, the proposed alliance of microsporidia

and zygomycetes remains speculative.



Chapter 6

Summary and Outlook

The general purpose of this thesis was to investigate and develop methods to identify

functionally equivalent proteins. We, therefore, set of by introducing strategies for

ortholog detection for a given query protein (chapter 1.1). The resulting presence-

absence pattern of orthologs across the analyzed species constitutes the phylogenetic

profile of this protein (Pellegrini et al., 1999). The functional similarity between these

orthologs can then be assessed with a dotplot that contrasts the feature architecture of

two proteins (presented in chapter 2). We then described how searches for proteins of

similar feature architecture with FACT (chapter 2) complement phylogenetic profiles

in regions of the phylogeny where orthologs were not found. Still, ortholog searches

are the prevalent method to address questions about the evolutionary history of indi-

vidual proteins for instance when during evolution they presumably emerged or when

they may have been secondarily lost. However, we have to cope with one essential

detail: Not detecting a protein is not synonymous to the true absence of a protein. A

central question in this thesis was, therefore, how to interpret the apparent absence

of homologs to a query protein in a given species. In particular, we were interested

in the question over what evolutionary distances can orthologs be found at all with

the method at hand. We started our approach to address this problem by developing

a software, REvolver, that facilitates the simulation of protein evolution considering

domain constraints. We investigated cases where a protein domain was not detected

due to a lack of sensitivity in the domain search (chapter 4). This analysis revealed

domains that are evolutionarily stable and those that lose their domain characteristics

already after a few mutations. The latter ones might cause problems when they have

to be identified over large evolutionary distances.

The questions ‘Over what evolutionary distances can orthologs be found?’ is, how-

95
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ever, not yet answered. This problem may be solved by extending the approach to

evaluate the evolutionary stability of individual protein domains (chapter 4) to the

entire protein. To investigate whether we expect to identify an existing ortholog pB

in species B to a particular protein pA in species A, we have to consider three ad-

ditional issues. First, the definition of the term half-life, introduced in chapter 4,

needs to be adjusted to the detection of orthologs via sequence similarity. Second, the

evolutionary distance between two species A and B needs to be assessed. Since fast

evolving proteins aggregate many times more mutations than slowly evolving proteins

over the same timespan, we, third, need to assess the specific rate of evolution kpA
for

pA. The half-life can then be scaled according to the protein’s specific evolutionary

rate. The resulting evolutionary traceability of pA represents an estimate whether we

expect to find pB in B or whether the protein is assumed to have accumulated too

many mutation to be identified via sequence similarity based methods. As a result, the

phylogenetic profile of any protein p can be interpreted in a more meaningful way. In

the following we outline a possible approach to estimate the evolutionary traceability

of a particular protein.

First, we calculate the pairwise distances d(A, S) between species A and any species

S ∈ S, where B ∈ S. A method to obtain the evolutionary distance between a pair of

species is exemplified in Appendix D where we first search for orthologs, then calculate

the evolutionary distances between the orthologs, and finally build the average. The

average evolutionary distance between the orthologs is taken as d(A, S). We then

calculate the evolutionary traceability of pA and evaluate whether the probability to

find pB is higher than the probability to miss it as follows (cf. figure 6.1):

1. Determine P , the set of detectable orthologs to pA in S. C ⊂ S consists of those

species for which an orthologs was found. If B ∈ C we are done.

2. Estimate protein specific parameters based on P ∪ {pA}:
a) Compute d(pA, p) for all p ∈ P .

b) Calculate the scaling factor

kpA
=

∑

S∈C

d(A, S)

∑

p∈P

d(pA, p)
. (6.1)

If kpA
< 1, pA is faster evolving that the average protein and if kpA

> 1, pA
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is more slowly evolving than the average protein.

c) Compute a multiple sequence alignment for P ∪ {pA} and estimate the

protein specific insertion rate λI and deletion rate λD using the parsimony

approach described in chapter 4.

d) Annotate protein pA with domains (e.g. Pfam; Finn et al. 2010).

3. For 100 times:

a) Use REvolver to simulate the evolution of protein pA under domain con-

straints (chapter 3).

b) Perform a Blast search using the simulated sequence as query against the

proteome of species A and check whether pA is the best Blast hit.

4. Calculate the half-life for pA (HLpA
) as the number of substitutions where less

than 50% of the simulated sequences identify pA as the best Blast hit.

5. The traceability for protein pA is finally

τpA
= HLpA

∗ kpA
. (6.2)

Thus, τpA
is now scaled according to the distances between the species in C.

Assuming that pB is present in species B, we conclude as follows: If d(A,B) ≤ τpA

the probability to find pB is ≥ 0.5. Otherwise the probability to find pB is < 0.5 and

we, thus, have a high chance to miss pB in an ortholog search.

To illustrate the procedure, we calculated the traceability of the S. cerevisiae SUS1

protein. SUS1 is involved in the re-location of activated genes to the nuclear pore

complex (Rodriguez-Navarro et al., 2004). Our approach obtained the following re-

sults: HLSUS1 = 4.00; kSUS1 = 0.41; τSUS1 = 1.65 (see Appendix D). Thus, after 4

substitutions per site, less than 50% of the simulated SUS1 sequences obtained the

yeast SUS1 as best Blast hit. The scaling factor of 0.41 shows that SUS1 is faster

evolving than the average protein. Finally, the calculated τSUS1 tells us that we expect

to find an ortholog to SUS1 in any other species only, if its evolutionary distance to

yeast is ≤ 1.65 substitutions per site. To demonstrate the results also graphically, we

mapped the traceability of the yeast SUS1 onto a phylogenetic tree of 244 eukaryotes

(figure 6.2). Among these, the E. bieneusi (microsporidia) proteins have with 2.37

substitutions per site the longest average evolutionary distance to its yeast orthologs.

E. bieneusi is, therefore, the most diverged species in this phylogeny. Thus, we do
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Figure 6.1: Workflow to estimate the evolutionary traceability for pA. Given the
evolutionary distances between species A and every species in S, we determine
whether or not we expect to find an ortholog pB in species B to protein pA. The
individual steps are numbered consecutively from 1 to 5 and described in detail
in the main text. The table in step 4 shows whether the best Blast hit using the
simulated sequence as query was pA (1) or not (0). The row sums are given in
red. After 5.75 substitutions per site only 49 out the 100 simulated sequences
identified pA as best Blast hit. The half-life of pA in this example is therefore
5.75. In step 5, the traceability is calculated and if d(A,B) ≤ τpA

, pB is expected
to be found.
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not expect to find orthologs to the yeast protein in distantly related species like mi-

crosporidia, cryptophyta, or other protists (black labels in figure 6.2). SUS1 orthologs

were mainly identified in several fungi and animals (red labels in figure 6.2). However,

no orthologs where, for instance, found in the Caenorhabditis clade or in the pezi-

zomycotina. However, the reason for not finding orthologs may be different. For the

pezizomycotina, we expect to find SUS1 orthologs, since the average protein distance

between any species of this systematic group and yeast is below the traceability of

SUS1 (green labels). Thus, it is likely that pezizomycotina lost SUS1. In contrast, in

the Caenorhabditis clade we do not expect to find SUS1 orthologs (black labels) since

too many substitutions have accumulated. Consequently, we still do not know whether

the protein is truly absent in Caenorhabditis species. More sensitive searches for SUS1

proteins (e.g. via FACT; see chapter 2) together with confirmative experiments are

necessary to get a final answer.

In summary, the protein traceability is a first approach to predict over what evolu-

tionary distances orthologous proteins can be identified via sequence similarity. The

protein traceability facilitates an important step towards a more reliable interpretation

of phylogenetic profiles. Moreover, it also highlights the limits of sequence similarity

based approaches and depicts those cases where more sensitive methods to identify pro-

teins should be applied. To conclude, the presented approaches and ideas contribute

to our understanding in phylogenetic profiles, protein evolution, and organismal and

functional evolution.
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Figure 6.2: Unrooted phylogenetic tree of 244 eukaryotes. Metazoan and their
two closest relatives C. owczarzaki and M. brevicollis are highlighted in blue,
fungi in red, plants in green, microsporidia in yellow, and cryptophyta are high-
lighted in grey. Red labels indicate species where an ortholog to the SUS1 protein
in S. cerevisiae (arrow) was found. Green labels indicate species where a SUS1
ortholog was not found, however the probability to find it, if it is present, is
≥ 0.5. In the remaining species (black labels) neither an ortholog was found nor
it is expected to be found.
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p-value max rank 1 unique rank 1
< 10−0 9570 8014 7091
< 10−1 9536 8007 7084
< 10−2 8981 7740 6849
< 10−3 7961 6979 6185
< 10−4 5703 5154 4574
< 10−5 4018 3712 3290
< 10−6 3045 2864 2513
< 10−7 2387 2278 1992
< 10−8 1934 1859 1620
< 10−9 1558 1508 1317
< 10−10 1325 1286 1114
< 10−11 1073 1047 892
< 10−12 909 891 760
< 10−13 758 743 635
< 10−14 650 636 541
< 10−15 558 548 465

Table A.1: Impact of p-value thresholds on the coverage of FACT (FACT
score). ‘max’ denotes the number of searches resulting in a highest scoring
protein with a p-value below the given threshold (‘p-value’). ‘rank 1’ denotes the
number of searches were the highest scoring protein has the same EC annotation
as the query. ‘unique rank 1’ denotes the number of searches were the highest
scoring protein has the same EC annotation as the query and is uniquely highest
scoring.
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Figure A.1: Impact of p-value thresholds on the fidelity of FACT (FACT score).
‘fidelity’ denotes the fraction of FACT searches where a protein with the same
EC number as the query is top scoring (blue graph). The red line represents the
percentage of correctly and uniquely top ranked proteins with FACT (unique
rank 1). The coverage of FACT for the p-value thresholds are given in table
A.1.

Figure A.2: Cumulative fidelity along E-value thresholds for FACT (FACT
score), Blast, and the union of FACT and Blast.
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Figure A.3: Venn diagram contrasting the performance of FACT (FACT score)
and PsiBlast. Given are the the numbers of uniquely top ranking proteins having
the same EC number as the query.
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Figure A.4: Contrast of PsiBlast and FACT (FACT score) for different E-
value/p-value combinations. The matrix bins the 9,570 proteins according to
the E-value and the p-value of the best hit when used as query for PsiBlast
and FACT, respectively. The total number of proteins for a E-value/p-value
combination is given by the bottom number in the corresponding cell. The two
further numbers in a cell give the number of searches FACT (top) and PsiBlast
(middle) had a functional equivalent as top scoring protein. The number for the
better performing tool is given in bold face. Yellow cells show E-value/p-value
combinations where FACT identified more functional equivalents than PsiBlast,
whereas the blue cells indicate a higher fidelity of PsiBlast. Grey cells mark ties.
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Figure A.5: FDP of the human GolgA5 and the highest scoring hit (MLS) in
T. brucei : Tb927.5.1900

Figure A.6: FDP of the human GolgA5 and the highest scoring hit (MSuni) in
T. brucei : Tb11.02.4670
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Figure A.7: FDP of the human GolgA5 and the highest scoring hit
(MSst/FACT score) in T. brucei : Tb11.02.5040

Figure A.8: FDP of the human GolgA5 and the best Blast hit in T. brucei :
Tb11.52.0008
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ΛI = ΛD = 0.1
T unconstrained α = 1 α = 0.5 constrained
0 45738 (1.000) 45738 (1.000) 45738 (1.000) 45738 (1.000)
0.1 38273 (0.837) 38542 (0.843) 38600 (0.844) 42267 (0.924)
0.5 16223 (0.355) 18702 (0.409) 20361 (0.445) 39149 (0.856)
1 1670 (0.037) 3728 (0.082) 5496 (0.120) 34960 (0.764)
1.5 31 (0.001) 378 (0.008) 1034 (0.023) 30837 (0.674)

ΛI = ΛD = 0.05
T unconstrained α = 1 α = 0.5 constrained
0 45738 (1.000) 45738 (1.000) 45738 (1.000) 45738 (1.000)
0.1 39574 (0.865) 39565 (0.865) 39727 (0.869) 42763 (0.935)
0.5 22457 (0.491) 24665 (0.539) 26462 (0.579) 40817 (0.892)
1 5700 (0.125) 10151 (0.222) 13185 (0.288) 38504 (0.842)
1.5 484 (0.011) 2942 (0.064) 5572 (0.122) 36230 (0.792)

ΛI = ΛD = 0
T unconstrained α = 1 α = 0.5 constrained
0 45738 (1.000) 45738 (1.000) 45738 (1.000) 45738 (1.000)
0.1 40772 (0.891) 40811 (0.892) 41061 (0.898) 43288 (0.946)
0.5 29602 (0.647) 31834 (0.696) 33326 (0.729) 42646 (0.932)
1 15742 (0.344) 22017 (0.481) 26064 (0.570) 42150 (0.922)
1.5 6727 (0.147) 15134 (0.331) 20510 (0.448) 41943 (0.917)

Table B.1: Number (fraction) of preserved Pfam domains in the course of sim-
ulated evolution with and without imposing domain constraints. All human
proteins were taken as root sequences and evolved up to 0.1, 0.5, 1.0 and 1.5
substitutions per site. In the unconstrained case we additionally modeled substi-
tution rate heterogeneity using two different α-values for the gamma distribution.
The simulations were performed with three different insertion and deletion rates
(0.1; 0.05; 0).
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ΛI = ΛD = 0.1
T unconstrained α = 1 α = 0.5 constrained
0 32289 (1.000) 32289 (1.000) 32289 (1.000) 32289 (1.000)
0.1 25721 (0.797) 25836 (0.800) 25883 (0.802) 29536 (0.915)
0.5 8695 (0.269) 10274 (0.318) 11279 (0.349) 26095 (0.808)
1 746 (0.023) 1755 (0.054) 2694 (0.083) 22547 (0.698)
1.5 33 (0.001) 170 (0.005) 482 (0.014) 19484 (0.603)

ΛI = ΛD = 0.05
T unconstrained α = 1 α = 0.5 constrained
0 32289 (1.000) 32289 (1.000) 32289 (1.000) 32289 (1.000)
0.1 26726 (0.828) 26874 (0.832) 26949 (0.835) 29965 (0.928)
0.5 12734 (0.394) 14491 (0.449) 15603 (0.483) 28019 (0.868)
1 2566 (0.079) 4999 (0.155) 6610 (0.205) 25767 (0.798)
1.5 259 (0.008) 1307 (0.040) 2567 (0.080) 23846 (0.739)

ΛI = ΛD = 0
T unconstrained α = 1 α = 0.5 constrained
0 32289 (1.000) 32289 (1.000) 32289 (1.000) 32289 (1.000)
0.1 27826 (0.862) 28036 (0.868) 28201 (0.873) 30349 (0.940)
0.5 17818 (0.552) 19619 (0.608) 20917 (0.648) 29905 (0.926)
1 7730 (0.239) 11995 (0.371) 15086 (0.467) 29572 (0.916)
1.5 2754 (0.085) 7265 (0.225) 10739 (0.333) 29467 (0.913)

Table B.2: Number (fraction) of preserved SMART domains in the course of
simulated evolution with and without imposing domain constraints. All hu-
man proteins were taken as root sequences and evolved up to 0.1, 0.5, 1.0 and
1.5 substitutions per site. In the unconstrained case we additionally modeled
substitution rate heterogeneity using two different α-values for the gamma dis-
tribution. The simulations were performed with three different insertion and
deletion rates (0.1; 0.05; 0).
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Figure B.1: RMSD of the side chains between sequences simulated with do-
main constraints and the native structure (white boxes), and between sequences
simulated without domain constraints and the native structure (gray boxes).
The mean RMSD for all sequences simulated under domain constraints are sig-
nificantly smaller than for sequences simulated without domain constraints (t-
test). The p-values are as follows. T = 0.1 : p = 0.022; T = 0.5 : p = 2e−5;
T = 1 : p = 3e−12.
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(a) ΛI = ΛD = 0.1; p0.1 = 5e−9; p0.5 =
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Figure B.2: RMSD of the backbone between sequences simulated with domain
constraints and the native structure (white boxes), and between sequences sim-
ulated without domain constraints and the native structure (gray boxes). p0.1

and p0.5 below each figure show the p-values for the t-test between the resulting
mean RMSD from simulations with domain constraints and simulations without
domain constraints.
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REvolver

tm regions 6.13± 1.27

Bit score (7tm 1) 20.71
Bit score (custom pHMM) 170.30

Top n BlastP hits
25 117.4

100 109.5
250 101.8

Table B.3: Results for the simulated evolution of a consensus GPCR sequence.
The consensus sequence was annotated with a custom pHMM built from the
alignment of 29 GPCR proteins. 1,000 independent simulations were performed.
‘tm regions’ denotes the average number of transmembrane regions in the sim-
ulated sequences. 75% of the simulated sequences show a significant similarity
to the Pfam domain 7tm 1 and all simulated sequences are significantly similar
to the custom pHMM. For 99% of the simulated sequences all 250 BlastP hits
each were members of the GPCR family. Only in 302 cases (1%) a non-GPCR
protein was among the top 250 BlastP hits. The mean bit scores of the first 25,
100, and 250 BlastP hits are shown below ‘Top n BlastP hits’.
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Figure C.1: Logo of the DEXDc pHMM.
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Figure C.2: Maximum likelihood tree of the S1 and S2 TPTs. Sequences in
the zygomycete sex related region are labeled in green, sequences in the corre-
sponding region of the microsporidia are labeled in red. Branch labels denote
bootstrap support values.
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Cluster-

Id$

R. oryzae

protein

E. cuniculi

Blast hit4%

Blast

e-value

E. cuniculi

ortholog4
Chromo-

some

1& RO3G 00003 19068537 7.0E-30 - I

RO3G 00004 19069234 7.0E-05 - VII

RO3G 00005 -

RO3G 00006 19068534 3.0E-09 - I

2* RO3G 00009 19170836 2.0E-28 19170836 V

RO3G 00010 19170838 5.0E-09 19170838 V

3 RO3G 01355 19171027 2.0E-23 19171027 VIII

RO3G 01356 19171031 1.0E-06 - VIII

RO3G 01357 -

RO3G 01358 -

RO3G 01359 -

RO3G 01360 19171024 1.0E-67 - VIII

4 RO3G 02423 19168763 1.0E-17 19168763 III

RO3G 02424 -

RO3G 02425 19069007 3.0E-10 - VI

RO3G 02426 -

RO3G 02427 -

RO3G 02428 19168761 6.0E-12 - III

5 RO3G 03308 19068592 4.0E-44 19068592 II

RO3G 03309 19068589 9.0E-09 - II

6*& RO3G 03530 19068611 2.0E-63 19068611 II

RO3G 03531 -

RO3G 03532 19068606 3.0E-16 19068606 II

RO3G 03533 -

RO3G 03534 19170972 3.0E-15 19170972 VIII

RO3G 03535 19068608 1.0E-10 19068608 II

7 RO3G 04457 19168720 9.0E-29 19168720 III

RO3G 04458 -

RO3G 04459 19168723 5.0E-24 - III

8& RO3G 04463 19068607 6.0E-13 19068607 II

RO3G 04464 -

RO3G 04465 -

RO3G 04466 -
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RO3G 04467 -

RO3G 04468 -

RO3G 04469 -

RO3G 04470 19171321 5.0E-13 19171321 IX

RO3G 04471 -

RO3G 04472 19068605 2.0E-15 - II

1& RO3G 05485 19068537 1.0E-32 - I

RO3G 05486 19171356 1.0E-17 19171356 IX

RO3G 05487 19068534 1.0E-84 19068534 I

1 RO3G 05592 19068534 2.0E-08 - I

RO3G 05593 19068537 9.0E-24 - I

9 RO3G 05835 19069147 5.0E-20 - VII

RO3G 05836 19069144 9.0E-83 19069144 VII

◦ RO3G 05865 19168645 9.0E-04 - III

RO3G 05866 - 19168649 III

RO3G 05867 -

RO3G 05868 19168651 8.0E-30 - III

# RO3G 06214 19168723 1.0E-49 - III

RO3G 06215 -

RO3G 06216 -

RO3G 06217 -

RO3G 06218 -

RO3G 06219 -

RO3G 06220 -

RO3G 06221 19168720 4.0E-30 19168720 III

#& RO3G 07828 19068701 1.0E-13 - II

RO3G 07829 -

RO3G 07830 -

RO3G 07831 -

RO3G 07832 -

RO3G 07833 -

RO3G 07834 -

RO3G 07835 -

RO3G 07836 -

RO3G 07837 -
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RO3G 07838 -

RO3G 07839 19069299 2.0E-09 - X

RO3G 07840 -

RO3G 07841 -

RO3G 07842 19068700 2.0E-06 - II

2* RO3G 08158 19170838 6.0E-26 19170838 V

RO3G 08159 19170836 6.0E-29 19170836 V

2* RO3G 08282 19170836 2.0E-28 19170836 V

RO3G 08283 19170838 6.0E-26 19170838 V

7 RO3G 08889 19168720 3.0E-11 19168720 III

RO3G 08890 -

RO3G 08891 -

RO3G 08892 19168723 6.0E-22 - III

◦& RO3G 09031 19069361 6.0E-08 - X

RO3G 09032 -

RO3G 09033 -

RO3G 09034 19068933 2.0E-11 - VI

RO3G 09035 19069362 2.0E-04 - X

10 RO3G 10613 19170970 4.0E-48 - VIII

RO3G 10614 -

RO3G 10615 -

RO3G 10616 19170971 9.0E-10 - VIII

11* RO3G 10956 19069314 1.0E-113 19069314 X

RO3G 10957 19069313 7.0E-07 19069313 X

◦& RO3G 11255 19168644 9.0E-15 - III

RO3G 11256 -

RO3G 11257 19068709 7.0E-08 - II

RO3G 11258 -

RO3G 11259 -

RO3G 11260 -

RO3G 11261 -

RO3G 11262 -

RO3G 11263 -

RO3G 11264 -

RO3G 11265 -
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RO3G 11266 -

RO3G 11267 -

RO3G 11268 19168645 2.0E-04 - III

#& RO3G 12238 19069100 3.0E-24 - VII

RO3G 12239 -

RO3G 12240 -

RO3G 12241 -

RO3G 12242 -

RO3G 12243 -

RO3G 12244 -

RO3G 12245 -

RO3G 12246 -

RO3G 12247 -

RO3G 12248 19068936 3.0E-18 - VI

RO3G 12249 -

RO3G 12250 -

RO3G 12251 -

RO3G 12252 19069102 2.0E-12 - VII

12& RO3G 12682 19168744 4.0E-36 19168744 III

RO3G 12683 -

RO3G 12684 19069355 1.0E-178 19069355 X

RO3G 12685 -

RO3G 12686 -

RO3G 12687 -

RO3G 12688 -

RO3G 12689 19168742 1.0E-13 - III

13& RO3G 12888 19069579 1.0E-119 19168679 III

RO3G 12889

RO3G 12890

RO3G 12891 19069662 5.0E-23 19069662 XI

RO3G 12892

RO3G 12893

RO3G 12894

RO3G 12895 19069580 2.0E-10 III

6* RO3G 13173 19068611 1.0E-60 19068611 II
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RO3G 13174 19068608 1.0E-10 19068608 II

14& RO3G 13322 19069361 7.0E-06 - X

RO3G 13323 19170962 4.0E-33 - VIII

RO3G 13324 -

RO3G 13325 -

RO3G 13326 19069362 3.0E-09 - X

◦& RO3G 14144 19068528 3.0E-94 - I

RO3G 14145 -

RO3G 14146 -

RO3G 14147 19170857 2.0E-38 19170857 V

RO3G 14148 -

RO3G 14149 -

RO3G 14150 -

15 RO3G 14309 19069097 2.0E-08 - VII

RO3G 14310 19069100 2.0E-25 - VII

◦ RO3G 14965 19068691 5.0E-04 - II

RO3G 14966 -

RO3G 14967 19068690 1.0E-15 19068690 II

2* RO3G 15055 19170836 2.0E-28 19170836 V

RO3G 15056 19170838 6.0E-26 19170838 V

16 RO3G 15651 19069192 7.0E-47 19069192 VII

RO3G 15652 19069191 7.0E-10 - VII

16 RO3G 15944 19069192 6.0E-46 19069192 VII

RO3G 15945 19069191 3.0E-09 - VII

# RO3G 16080 19168720 3.0E-30 19168720 III

RO3G 16081 -

RO3G 16082 -

RO3G 16083 -

RO3G 16084 -

RO3G 16085 -

RO3G 16086 -

RO3G 16087 -

RO3G 16088 19168723 3.0E-40 - III
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Table C.2: Re-analysis of the proposed 33 syntenic cluster between Rhizopus
oryzae and Encephalitozoon cuniculi.
$ Conserved gene cluster between R. oryzae and E. cuniculi. Cluster involving
the same E. cuniculi genes are counted only once.
4 NCBI gi ID of the E. cuniculi proteins.
% Blast hit reported by Lee et al. (2008).
* Syntenic cluster involving orthologous genes.
& E. cuniculi genes assigned to a R. oryzae gene cluster but reside on different
chromosomes are marked in yellow. These clusters indicate that the data is not
compatible with the decision rules described in figure S5 of Lee et al. (2008).
There, two gene cluster are defined to be syntenic if two genes in E. cuniculi
that have at most three intervening genes have homologs in R. oryzae that are
separated by at most 4 genes. If one of the intervening genes in E. cuniculi also
has a homolog in R. oryzae, then the R. oryzae genes must be in a window of
less than 15 gene (Figure 4, rule 2).The yellow marked E. cuniculi genes are not
intervening and can only be found when the search was performed with the R.
oryzae genes.
# Number of intervening genes in R. oryzae exceeded.
◦ E-value limit of 10.0E-05 exceeded
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Tree reconstruction For the tree reconstruction, we took 598 OMA (Altenhoff et al.,

2010) groups of orthologs for which at least one species from each of four system-

atic categories is represented. The four systematic categories are given in the fol-

lowing where the numbers of ortholog groups in which a species is represented is

given in parenthesis: Group1 (Metazoa): Lottia gigantea (463), Daphnia pulex (448),

Homo sapiens (504), Caenorhabditis elegans (429), Nematostella vectensis (438); Gr-

oup2 (Fungi): Cryptococcus neoformans (403), Yarrowia lipolytica (462); Group3

(Viridiplantae): Arabidopsis thaliana (466), Oryza sativa (427), Ostreococcus luci-

marinus (389); Group4: Leishmania major (306), Cryptosporidium parvum (227),

Plasmodium falciparum (200), Trypanosoma brucei (227), Dictyostelium discoideum

(481), Giardia lamblia (136). The 598 core-ortholog groups were used to perform

a subsequent broader ortholog search with HaMStR (Ebersberger, Strauss and von

Haeseler, 2009) in 235 proteomes. The strict version of the HaMStR search was cho-

sen, which uses all species from the core-ortholog group as reference species. 113

ortholog groups were retained for which an ortholog was found in at least 80% of the

proteomes. These groups were complemented with orthologs from 9 further species

whose annotated genome became available in the course of the analysis and were then

used for the tree reconstruction. First, the sequences were aligned with MAFFT –

linsi (Katoh et al., 2005). The alignments were then concatenated and columns with

more than 20% gaps or an X in the sequences were removed. The final alignment

comprised 244 species and 34,540 amino acids. We used raxmlHPC v. 7.2.2 and

the PROTGAMMAILGF model of sequence evolution (Stamatakis, 2006) for tree re-

construction, performing 100 bootstrap replicates. The bootstrap consensus tree was

computed with tree puzzle (Schmidt and von Haeseler, 2007).
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Traceability calculation of SUS1 We followed the procedure described in chapter

6 to estimate the evolutionary traceability for the yeast SUS1 protein. To this end,

we took the patristic distance (sum of branches connecting two taxa) from the recon-

structed phylogeny (see previous paragraph) as average pairwise distances between

proteins from yeast and from each of the other 243 species under study. We aligned

the OMA (Altenhoff et al., 2010) group of orthologs including the yeast SUS1 protein

with MAFFT –linsi (Katoh et al., 2005), reconstructed a tree with FastTree (Price,

Dehal and Arkin, 2010), and again took the patristic distances as pairwise distances

between the yeast SUS1 and its orthologs. We annotated the yeast SUS1 with Pfam

domains (Finn et al., 2010) using hmmscan from the HMMER3 software package

(http://hmmer.janelia.org/) and simulated its evolution with REvolver (chapter

3). Insertion and deletion rates where estimated according to the parsimony approach

described in chapter 4. Blast (Altschul et al., 1997) using the simulated sequences as

queries was used to search for the protein with the highest score in yeast.

Phylogenetic profiling The search for orthologs to the yeast SUS1 protein was per-

formed with HaMStR (Ebersberger, Strauss and von Haeseler, 2009). The core-

ortholog set was constructed in an iterative way as follows: First, the initial core-

ortholog set consisted only of the yeast protein. A pHMM was constructed based

on the single sequence (hmmbuild; http://hmmer.janelia.org/) and then used to

search for the most similar protein in any of the 243 species under study. To this end,

all significant hmmsearch hits (default settings) served as query for a Blast search

(Altschul et al., 1997) against yeast. If an ortholog candidate found the protein

from the core-ortholog set as best Blast hit, it was added to the list of candidate

core-ortholog proteins. A Smith-Waterman alignment (Smith and Waterman, 1981)

between each protein from the list of candidate core-orthologs and the yeast protein

from the core-ortholog set was computed. The protein with the highest similarity

to the yeast protein was added to the set. The new core-ortholog set was aligned

with MAFFT –linsi (Katoh et al., 2005) and a new pHMM was constructed. In the

next iteration, all hmmsearch hits were used as query for Blast searches against each

species that was already present in the core-ortholog set. Those proteins that found

the respective protein from the core-ortholog set as best Blast hit, were added to the

list of candidate core-orthologs. Of these, only the one with the highest average sim-

ilarity to the proteins in the core-ortholog set was added to the set. This procedure

of identifying and adding new proteins to the core-ortholog set was repeated till the
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core-ortholog set consisted of 5 sequences plus the initial yeast protein (SUS1). The fi-

nal pHMM was constructed based on the set of 6 core-orthologs. With this pHMM we

performed a final HaMStR search in all species. Again, the strict version of HaMStR

was used where all 6 species from the core-ortholog set are reference species.


