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ZUSAMMENFASSUNG

Massenbewegungen  oder  Hangrutschungen  sind  komplexe  Prozesse,  die 

naturgemäß  in  der  geologischen  Entwicklung  von  Bergregionen  vorkommen.  Oft 

werden sie mit wirtschaftlichen und sozialen Katastrophen in Verbindung gebracht, aber 

ihre Mechanismen und auslösenden Faktoren sind mannigfaltig und mitunter unbekannt. 

Auf der für diese Arbeit relevanten Gradenbach (GB) Massenbewegung, wurden bereits 

1969 erste geotechnische und geodätische Untersuchungen durchgeführt, nachdem sie 

in  den  Jahren  1965  und  1966  beschleunigte,  Schuttströme  auslöste  und  das  Dorf 

Putschall  in  Kärnten,  Österreich  zerstörte.  Die  Verwendung  von  Monitoring 

Netzwerken, bestehend aus mehreren über das Untersuchungsgebiet verteilten Seismo-

metern,  hat  im Bereich  der  Seismik  zu  einer  Vielzahl  neuer  Möglichkeiten  geführt, 

Hangrutschungen permanent zu beobachten und zu analysieren. 

In den an den Stationen aufgezeichneten Signalen finden sich neben Signalen, die 

von der Massenbewegung selbst ausgelöst werden, auch Signale von Erdbeben aus aller 

Welt.  Diese  Arbeit  versucht  herauszufinden,  ob  und welche  Informationen  über  die 

strukturelle  Beschaffenheit  der  Massenbewegung  Gradenbach  gewonnen  werden 

können,  wenn Signal  Korrelationen durchgeführt  und geeignete  Reduktionsverfahren 

auf  diese Erdbebendaten angewendet werden.  Der Vergleich von Laufzeitdifferenzen 

von Wellen aus drei verschiedenen Richtungen über einen Zeitraum von zwei Jahren 

erlaubt  möglicherweise  eine  Aussage  über  die  physikalischen  Eigenschaften  der 

Massenbewegung selbst oder deren strukturellen Änderungen mit der Zeit. 

Nachdem  der  Einfluss  der  unterschiedlich  aufzeichnenden  Seismometer 

rückgängig gemacht wurde (inverse filtering), werden zur Bestimmung der Laufzeiten 

Signal Korrelationen berechnet und anschließend die Korrelationsmaxima gepickt. Als 

Referenzsignal  dient  ein zuvor  aus  den Aufzeichnungen von GB03 ausgeschnittener 

Signalteil, der den Ersteinsatz enthält. Um Signale aus verschiedenen Richtungen und 

Distanzen  miteinander  vergleichen  zu  können  werden  folgende  Reduktionen 

durchgeführt: eine Richtungsreduktion auf Basis einer orthogonalen Projektion um den 

Einfluss der Richtung rückgängig zu machen, eine Moho-dip Reduktion basierend auf 

der Änderung der Scheingeschwindigkeiten für geneigte Schichten um den Einfluss der 

Neigung  der  Mohorovičić Diskontinuität  rückgängig  zu  machen  und  eine  Höhen 

Reduktion  um  die  Höhendifferenzen  der  einzelnen  Stationen  zu  beachten.  Die 

Endresultate zeigen, dass beinahe alle untersuchten Signale Station GB03 in der Mitte 



der Massenbewegung, als Letzte erreichen. Zwar ist die Auflockerung des Gesteins an 

dieser Stelle groß (was zu Verzögerungen dieser Art führen könnte), doch reicht auf 

Grund  der  großen  Picking-Fehler  und  der  vereinfachten  Annahmen  für  das 

Untergrundmodell die Genauigkeit der Resultate nicht aus, um eindeutige Schlüsse über 

die Struktur des Hanges oder die zeitlich strukturellen Veränderungen ziehen zu können.



ABSTRACT

Landslides are complex processes that occur naturally in the geological evolution 

of  mountain  areas.  They  often  cause  economical  and  social  disasters  but  their 

mechanisms  and  triggering  factors  are  various  and  sometimes  unknown.  At  the 

Gradenbach  (GB)  landslide,  pertinent  to  this  study,  first  geotechnical  and  geodetic 

measurements were started in 1969, after the mass-movement accelerated in 1965 and 

1966,  triggering  catastrophic  debris  flows  and  devastating  the  village  of  Putschall, 

Carinthia,  Austria.  Within  the  field  of  seismic  applications,  the  usage  of  seismic 

monitoring networks, consisting of multiple seismometers spread over the moving rock 

mass, was leading to a variety of new possibilities to observe and analyse landslides 

permanently. 

Besides  signals  coming  from  the  movement  itself,  also  earthquake  signals 

occurring all  over the world can be found within the individual monitoring stations' 

recordings. The goal of this thesis is to find out if and what kind of information about 

the structural properties of the Gradenbach landslide can be received, by carrying out 

signal  correlations  and  applying  the  appropriate  reduction  techniques  to  these 

earthquake  signals.  In  order  to  get  an  idea  of  the  physical  properties  of  the  mass-

movement itself or even structural changes with time, travel time differences of waves 

coming from three different directions over a period of two years are investigated. 

Signal correlations are carried out, using parts of the recording from station GB03 

including the first break as reference signal to pick the travel times. Furthermore, to be 

able to compare the signals with each other three reductions are applied after reversing 

the influence of the (different) seismometers on the signals recorded (inverse filtering): 

a directivity reduction on the basis of an orthogonal projection to reverse the influence 

of  direction,  a  Moho-dip  reduction  based  on  the  change  of  apparent  velocities  for 

dipping layers to reverse the influence of the incline of the Mohorovičić discontinuity 

and a height reduction to regard the stations' height differences as well. The final results 

show, that almost all waves arrive last at station GB03 in the middle of the landslide. 

There the loosening of the rock mass is large (which could lead to these kind of travel 

time delays) but due to errors coming with time picking and simplified assumptions for 

modelling the subsurface, the accuracy of the results is insufficient to draw accurate 

conclusions on the structure of the landslide or even structural changes with time. 
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1. Introduction

Landslides, mass-movements or moving rock masses are complex processes that 

occur naturally in the geological evolution of mountain areas. They are often associated 

with economical and social disasters but their mechanisms and triggering factors are 

various and sometimes unknown. Thus, it should be of particular importance to improve 

the understanding of how they work, what is causing them, and when.

After the mass-movement pertinent to this study, the Gradenbach (GB) landslide, 

accelerated in 1965 and 1966, triggering catastrophic debris flows and devastating the 

village of Putschall, first geodetic and geotechnical measurements were started in 1969. 

Within the field of seismic  applications,  the development  of affordable,  robust 

instruments, compact data storage and easy data transmission was leading to a variety of 

new possibilities  to  analyse  landslides  and  their  movements.  To  gather  information 

about  landslides,  the  usage  of  so  called  seismic  monitoring  networks  still  gains  in 

importance. These networks consist of multiple seismometers spread over the moving 

rock mass, permanently recording different types of signals.

Signals of interest may come from the movement itself but also signals coming 

from earthquakes all over the world can be found within the recordings of the individual 

monitoring  stations.  The main aim of  this  study is  to  find  out  if  and what  kind  of 

information  can  be  dragged  out  by  applying  the  appropriate  processing  to  these 

earthquake signals. 

 The comparison of travel times of waves coming from an earthquake might be a 

way to get an idea of the physical properties of the landslide itself or even structural  

changes with time. One big advantage is the passivity of this method since no additional 

sources have to be installed. 

To start with, when wanting to compare travel times of signals being recorded by 

different seismometers (as it  is the case in this study), it  is necessary to reverse the 

influence of the instrument on the recorded signal first. Therefore a filter consisting of 

the  inverse  transfer  function  of  the  particular  seismometer  in  combination  with  a 

bandpass has been applied. 

Afterwards, to receive - early or delayed - arrival times relatively to a reference 

station, signal correlation using ProMAX has been carried out. The designated reference 
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signal is part of the signal recorded on reference station GB03, including the first break 

(P or  Pn).  The  maxima  of  the  cross  correlations  represent  the  point  of  time  when 

maximum correlation was achieved,  which  means that picking the  maximum of  the 

signal correlation function returns the value of time when the designated signal appears 

within the other trace. 

For  a  comparison  of  travel  time  differences  of  waves  coming  from  different 

directions, it is necessary to reverse the influence of direction on the recorded signal. 

Assuming that  wave  fronts  reach  the  stations  as  wave fronts  of  a  plane  wave,  the 

distances  the  waves  have  to  cover  between  the  individual  stations  depend  on  the 

direction of the incoming wave fronts  relatively  to  reference station GB03. Thus,  a 

directivity reduction on the basis of an orthogonal projection has been used. 

In case of a Pn wave as first arrival the incline of the Mohorovičić discontinuity 

has been taken into account by applying a Moho-dip reduction based on the change of 

apparent velocities for dipping layers. 

Furthermore to regard the stations'  height differences, the data has been height 

reduced as well. 

Three  clusters  of  a  total  of  43  individual  events  occurring  in  three  different 

directions and distances from the landslide over a period of two years have been invest-

igated. Due to mechanical limitations resulting from the usage of mainly 4.5 Hz seismo-

meters only near earthquakes with an epicentral distance smaller than 1000 km have 

been taken into account. 
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1.1. Landslides

There is no unified definition for the term landslide. Sometimes it is used in a 

broad sense meaning downward and outward mass-movements in general, other times it 

is used for a certain kind of mass-movement only. 

Generally the movement involves the development of a sliding surface. Hence the 

displaced material can be sharply distinguished from the unmoving area. Landslides are 

unavoidable discontinuous processes that occur in the natural geological evolution of 

mountain areas. Periods of limited activity can be followed by calamitous events that 

have often been associated with economical and social disasters. To prevent damage it 

would be necessary to predict not only the volume of a potential landslide,  but also 

when it will occur. Since the triggering factors are various and sometimes unknown, 

especially the moment when a mass actually starts its movement is very hard to predict. 

(Marui 1988: 1-6, Brückl et al. 2006a: 149-150)

1.1.1. Causes of landslides

 In most cases a number of causes contribute towards movement but still  the 

common force tending to generate movement is gravity. The mass in a slope is subjected 

to gravity which is usually balanced by the shear strength of the material concerned, 

making the slope stable. There are numerous elements which influence slope stability 

but  altogether,  landslides  occur  because  the  forces  creating  movement exceed those 

resisting it. (Bell 1998: 84-86)

"If along a potential sliding surface in the slope shear stress from any source (such as 
groundwater, earthquakes or constructions) exceeds the shear strength of the soil along 
the surface, shear failure and movement occur. The loss of balance arises with either 
increased shear stress or decreased shear strength, or both." (Marui 1988: 6)

1.1.2. Classification of landslides

Due to  the  complexity  of  slope  movements  there are  many classifications  of 

landslides but the one most widely used is that of Varnes (1978). He was introducing 

two main criteria for classifying landslides: the type of movement on the one hand and 

the type of material involved on the other. (Bell 1998: 88)
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Figure 1.1   abbreviated version of Varnes' classification of slope movements (1978) 

(Source: http://pubs.usgs.gov/fs/2004/3072/pdf/fs2004-3072.pdf [2013-02-27])

Expressed  in  simplified  terms  the  five  main  types  of  movements  are:  falls, 

topples, slides, spreads and flows. This study takes a closer look at a phenomenon that 

has been frequently observed on Alpine slopes and which is called deep-seated gravita-

tional creep, rock flow or sagging of rock masses. 

1.1.3. Deep-seated gravitational creep

"Deep-seated  gravitational  creep  in  rocks,  rock  flow or  sackung  is  a  special 
category of mass-movement, in which long-lasting-small-scale movements prevail. The 
prime causes of these mass-movements in the Alpine area seem to have been glacial 
retreat at  ∼ 15 000 a B.P. Many sackung stabilize and some undergo the transition to 
rapid sliding." (Brückl et al. 2005: 155)

Crystalline  rocks  of  different  metamorphic  grades  frequently  undergo  deep-

-seated gravitational creep. The rock material forming sagging slopes is best described 

as brittle  rock since it  has not been altered significantly by weathering.  The typical 

thickness of slopes involved is 100 m and the volume of the creeping rock mass is about 

108 m3 or even larger. Surface velocities reach from millimetres to some metres per year 

and vary significantly with time. Phases of relatively high velocities alternate with peri-

ods of lower activity. The movements are known to be influenced by precipitation and 
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groundwater level variations but modelling these effects has been rather difficult since it 

is not so simple as it is for shallow mass-movements in soil. (Brückl et al. 2006b: 255)

Especially  through  deep-seated  mass-movements,  deformations,  thus  fabric 

changes of the original range formation occur. This leads to areas of effective partial 

mobility within a potential consistently moving rock mass. Hereby structural geological 

units form that are hydrogeologically operative as well. (Weidner et al. 2011: 23)
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2. Investigation area

The  Gradenbach  landslide,  a  deep-seated  mass-movement,  is  located  in  the 

crystalline rocks of Schober mountain range, south of the central Eastern Alps at the 

intersection of the Graden and the Möll valleys near Döllach, Carinthia, Austria. 

From a tectonical and geological point of view the area around the landslide can 

be divided into three different zones: the Penninic Zone (Penninic Tauern-window), the 

Matrei Zone and the Austroalpine Zone, with the actual landslide being situated in the 

Matrei Zone only. (Brückl et al. 2006: 255-256) 

The active deformation zone is located close to the village of Putschall,  at the 

southeast side of the Eggerwiesenkopf.

Figure 2.1   tectonic map and location of the Gradenbach deep-seated mass-movement

(Source: Brückl et al. 2006b: 255)
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With width ranging between 600 and 1000 m, and an extent of approximately 

1000 m in height, from the clearly developed head scarp at 2270 m down to the slide 

toe,  at  a  height  between 1100 and 1270 m, the landslide involves  an area  of  about 

1.7 km2. (Brückl et al.  2006a: 150)

Figure 2.2   topography of the Gradenbach landslide area: all GPS stations of the monitoring 
network are shown; for scale estimation: the horizontal distance between Ref 2 and A is 2600 m

(Soure: Brückl et al. 2006 a: 150)

Rocks - types and distribution

In contrast  to the  middle and western parts  of the moving mass  that  mainly 

consist  of  carbonate-free  metasediments  of  the  Matrei  Zone  (chlorite-phyllites, 

quarzites and sericite-phyllites), the eastern part is dominated by darkgrey lime-mica-

phyllites. (Weidner et al. 2011: 22)

Rocks of the upper Glockner-nappe system make up the largest part of the eastern 

boundary of the landslide (carbonate-micaschists).  Rocks of the Petzeck-Rottenkogel 

complex, mainly consisting of garnet-micaschists and paragneisses, make up the largest 

part of the western nappe-boundary to the east alpine Schober crystalline. Occasionally 
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serpentine-steatite, dolostone-breccia and yellowish greywacke outliers that disintegrate 

to sandy grus can be found. (Weidner et al. 2011: 22)

With  a  thickness  up  to  5 m  the  solid  rocks  are  partly  covered  with  rockfall 

material, moraines and fluvioglacial sediments. The weathering cover, with a thickness 

of less than 1 m, is relatively small. (Weidner et al. 2011: 22)

Figure 2.3   geologic-geotechnical map of the Gradenbach landslide
 

(Source: Weidner et al. 2011: 22)
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2.1. Previous mass-movements and investigations

When  examining  old  pictures  of  the  investigation  area  the  first  evidence  of 

sliding-motions of the Gradenbach landslide can be found in 1870 and between 1880 

and 1885. By oral tradition, first movements of the SE-flank of the Eggerwiesenkopf 

occurred after a very snowy winter in the year 1917. (Weidner et al. 2011: 19)

The  first  control  structures  have  been  applied  in  the  1930s.  Geodetic  and 

geotechnical measurements were started in 1969 after the mass-movement accelerated 

in 1965 and 1966, triggering catastrophic debris flows and devastating the village of 

Putschall (fig. 2.4). (Weidner et al. 2011: 20)

Figure 2.4   devastated village of Putschall (1968)
(Source: Weidner et al. 2011: 20 )

Geophysical  models  could  already  be  submitted  in  the  1980s  (Brückl,  1984) 

followed by papers in even more detail, including diverse geotechnical analysis since 

the late 1990s. (Weidner et al. 2011: 21)

GPS  observations  were  started  in  1999,  revealing  an  average  creep  rate  of 

0.6 m/year between 1999 and 2003 at 4 stations distributed over the whole slope which - 

taking into account  the  larger  displacements  in  1965 and 1966 and also  during  the 

summer of 2001, with a creep rate of 0.2 m/month -  is  regarded as a quite reliable 

estimate for the last 50 years. (Brückl et al. 2006b: 258)
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2.2. Structure and physical properties of the moving rock mass

The base as one of the most important structural elements of a moving rock mass 

may either be a transition zone or, as in this case, a significant discontinuity and may 

therefore be identified and later referred to as the basal (sliding) plane. 

Information about the basal plane may be derived from the geological and rock 

mechanical  interpretation  of  boreholes,  or  from  e.g.  seismic  investigations. 

(Brückl et al. 2006b: 258)

Figure 2.5   topography and location of seismic lines and boreholes

(Source: Brückl et al. 2006b: 256)

2.2.1. Evidence from boreholes

From the boreholes that have been drilled mainly for hydrogeological purposes, 

two give information about the basal plane: 
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One  borehole  (B1)  is  located  in  the  valley  where  the  sagging  rock  mass 

overthrusts moraines - at the so called toe area of the mass-movement.  At a depth of 

35 m compact and stable rock has been found. (Brückl et al. 2006b: 259)

The other borehole (B2) is located in the lower bulge of the sagging rock mass. 

Drilling was stopped at a depth of 132 m in a distinct shear zone and is therefore taken 

to be the minimum depth for the basal plane. (Brückl et al. 2006b: 259)

2.2.2. Evidence from seismic investigations

Older seismic refraction data from the years 1976 (one longitudinal line from the 

scarp  down to  the  steep  slope)  and  1978  (one  longitudinal  and  3  transverse  lines) 

already give clear evidence about the basal plane. (Brückl et al. 2006b: 259-260)

Figure 2.6   seismic cross sections of Gradenbach landslide 
(above: GB78_01, below: GB78_02)

(Source: http://www.ktn.gv.at/9923_DE-Geologie_und_Bodenschutz-
GB_DEEP_CREEPING_MASS_MOVEMENTS_.pdf [2013-02-27])

Further  seismic  investigations  have  been  carried  out  in  the  summer  of  1998 

(2 transverse lines). The basal plane produced clear first arrivals of refracted P-waves at 
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offsets larger than 200-400 m. By application of the so called survey-sinking concept an 

accurate imaging of the discontinuity in the velocity field was done. 

The  average  P-wave  velocity  of  the  compact  rock  below the  basal  plane  is 

4740 m/s. (Brückl et al. 2006: 260-261)

Figure  2.7   P-wave  velocity  models  of  the  creeping  rock  mass  and  the  stable  rock  base 
(B) GB98_01, (C) GB98_02

(Source: Brückl et al. 2006b: 259)
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2.3. Monitoring network

Figure 2.8   Gradenbach monitoring network

(Source: Mertl et al. 2008: 3)

Within the scope of the ISDR-20 project of the Vienna University of Technology, 

whose  task  is  to  integrate  geodetic  and  geophysical  monitoring  into  a  uniform 

surveillance  system  for  deep-seated  mass-movements,  six  permanent  seismic 

monitoring stations have been installed at Gradenbach since August 2006. The sensors 

are  buried at  a  depth of 60 cm at least,  the stations have solar power supply and a 

lightening protection. (Mertl et al. 2008: 1-3)

Station Recorder Sensor

GB01, GB02, GB03, GB05, GB06 Reftek 130-01
Geospace GS-11 D
4.5 Hz
3 components

GB04 Reftek 130-01
Geospace GS-1 SeisMonitor
1 Hz
3 components

Table 1.1   Seismic equipment used for monitoring

The data is recorded continuously with a sampling frequency of 200 Hz during summer 

and 100 Hz during winter to prevent data loss caused by data storage overflow. 
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3. The data and its processing

The first part of this chapter deals with the receiving of the raw data and the data  

selection and preparation.  In order to decide which events are  going to  be used for 

further processing, some restrictions have to be imposed. 

After the data selection is complete, the influence of the individual seismometer 

on the recorded data has to be reversed. Thus, a filter consisting of the inverse transfer 

function of a seismometer in combination with a bandpass has to be applied. 

To  receive  travel  time  differences  of  waves  reaching  the  monitoring  stations 

relatively to each other, signal correlations have been carried out. Picking the maxima of  

the cross-correlation functions and subtracting the reference stations' time value from 

the other ones, will lead to an expression of early or delayed arrival times.

Furthermore,  in  order  to  be  able  to  compare  travel  time  differences  of  waves 

coming from different directions, and to regard the stations' height differences as well, a 

few reductions have to be applied. 
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3.1. Receiving the raw data

As mentioned before the data of six seismic stations over a period of almost two 

years has been taken into account. All stations excluding one (GB04) are 4.5 Hz seismo-

meters, GB04 is a 1 Hz seismometer. This fact of course will not only have an influence 

on the recording but also on the processing of the signals later on. 

The recording unit used is a Reftek 130-01 which incorporates a seismic recorder 

with  a  24-bit  delta  sigma  analog-to-digital  converter.  It  has  two  input  channel 

connectors (3 to 6 channels) for connection to any geophysical sensor available and can 

be equipped with one or two compact flash card storage media (disks). The data can be 

collected on site by swapping the compact flash cards.1

Approximately every 3 months the data is collected but especially from November 

to March, when the stations are not safely accessible, the interval cannot be sustained 

and therefore data loss might occur. (Mertl et al. 2008: 3-4)

Figure 3.1   recording unit Reftek 130-01

(Source: http://www.reftek.com/products/seismic-recorders-130-01.htm [2013-02-27])

For further processing the raw data has been converted to the miniSeed format.2

1 For further information: http://www.reftek.com/products/seismic-recorders-130-01.htm 
[last downloaded: 2013-02-27]

2 For further information: http://www.iris.edu/manuals/SEEDManual_V2.4.pdf 
[last downloaded: 2013-02-27|]
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3.2. Data selection and preparation

3.2.0. Excursion: Seismon - the software used

Seismon is an open source software project written by Stefan Mertl to mainly 

facilitate the scientific work of smaller seismic research projects. It is written in Matlab 

using a MySQL database as storage space for the data and is quite similar to handle to 

other  well  known software for seismic processing. Seismon does not only take care 

about the import, the management and the display of seismic data but it also includes 

basic seismic processing algorithms such as e.g. frequency filtering, spectral analysis, 

time  picking  etc.  Furthermore  it  has  a  flexible  recorder  and  station  geometry 

management and also the data visualization is flexible.3 

3.2.1. Importing location, time and magnitude of seismic events 

Besides importing miniSeed data, Seismon can also import data from earthquake 

bulletins received after sending an AutoDRM bulletin request.4 

The  request,  in  this  case  addressed  to  the  Austrian  Central  Institution  for 

Meteorology and Geodynamics (ZAMG), returns a list of coordinates of hypocentres, 

magnitudes, dates and times of events, occurring all over the world within the desired 

period of time (e.g. two years). 

Just like the raw data from the investigation side, also the bulletin data is stored 

in the MySQL database and can easily be accessed through any function or program 

written in Matlab simply by connecting to the database and implying a MySQL query to 

retrieve the data needed for taking further action. 

Mainly  due  to  data  quality  reasons,  not  all  of  the  events  will  be  taken  into 

account, so it is necessary to impose some restrictions and to classify them first in order 

to select the appropriate ones. 

3 For further information: http://www.stefanmertl.com/science/software/seismon/ 
[last downloaded: 2013-02-27]

4 For further information: http://www.iris.edu/manuals/autoDRM.htm [last downloaded: 2013-02-27]
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3.2.2. Imposing restrictions on the seismic events

3.2.2.1. The epi-distance

  The further the waves have to travel from the hypocentre to the recording units, 

the  lower  the  frequency  content  of  the  signal.  Since  preserving  higher  frequencies 

means preserving information and also because most of the receivers are 4.5 Hz seismo-

meters, only earthquakes with an epi-distance d ≤1000 km were taken into account.

Limitation no. 1: near earthquakes only

d ≤ 1000 km

d... epi-distance

3.2.2.2. The magnitude

  The second limitation regards the magnitude of the seismic events. Only events 

showing  higher  local  magnitudes  were  used  for  further  processing.  In  fig. 3.2  the 

different magnitudes are indicated by different colours.

Limitation no. 2: preference for events with higher local magnitudes 

3.2.2.3. The direction

  When comparing travel time differences throughout the year, it is necessary to 

make  sure,  that  the  waves  reaching  the  stations  come from the  same  or  a  similar 

direction at least. Events occurring within a particular direction from the landslide will 

be combined into one cluster of events. 

  To display both the epicentral  distance and the direction of the propagating 

wave front in one plot, a polar plot with the GB stations in the centre of it has been 

used. To get the distances and the directions relatively to the GB stations Matlab has a 

function  distance(lat1,lon1,lat2,lon2)  that  computes  the  distance(s)  and  the  back 

azimuth(s)  between given points along a great  circle on the  surface of a  sphere by 

entering their coordinates. 

In  this  case the  coordinates  are  the  stations'  and epicentres'  respectively.  The 

locations of the epicentres relatively to the GB stations were plotted in a polar plane 
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where the  radial  distance from the origin  of the plot  is  equivalent  to  the epicentral 

distances  (in  degrees)  of  the  various  events  while  the  backazimuths  represent  the 

directions  of  the  incoming  wave  fronts  (fig. 3.2).  Note:  compared  to  the  common 

conventions of a polar plane the polar angle is NOT the counter clockwise angle from 

the x-axis but the clockwise angle from the y-axis.

Figure 3.2   polar plot of "visible" near earthquakes; the radius is the epi-distance in degrees; 
for data selection purposes a function returns the information needed to find the events in the  
database when clicking on the individual marker; author: myself

 Since  the  bulletin  request  returned  hundreds  of  events  occurring  within  an 

epicentral distance d ≤ 1000 km and a time period of two years, it might be difficult to 

spot  clusters  of  events  and  also  to  tell  of  how  many  events  one  cluster  consists. 

Generating a histogram that shows from which direction most of the wave fronts come 

from is very helpful to get an idea where to look first (fig. 3.3). 

Note: It might not seem too difficult to find clusters of events in fig. 3.2 but for 

reasons  of  simplification  only  "visible"  earthquakes  are  being  displayed 

(cf. chapter 3.2.2.4). 
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 Knowing the direction where to find clusters of events one can take a closer look 

by zooming into the  wished region of  the  polar  plot  (fig.  3.2). By clicking  on the 

individual marker a function will return the parameters that are necessary to find the 

selected events in the database and to mark the time of their occurrence when displaying 

the GB stations' recordings .

Figure 3.3   histogram of "visible" local earthquakes (blue) and near earthquakes (black) with 
different  magnitudes;  "local"  means an  epicentral  distance  smaller  than  150 km;  the x-axis 
indicates the direction of the occurring events relatively to the GB monitoring stations;  the  
circles mark the directions where to look for clusters of events in the polar plot (fig. 3.2)

Limitation no. 3: clusters of events only

3.2.2.4. The visibility

 Mainly  due  to  noise  the  earthquake  signals  can  sometimes  not  be  seen 

immediately thus, it is necessary to check whether the selected events as a result of the 

limitations above can at all be seen within the recordings of the monitoring stations or 

not.  Seismon band-pass-filters and displays the recorded seismic data  and marks the 

point of time where the selected events occurred (fig.  3.4). This enables the user to  
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classify the events into “visible” and “not visible” ones. Of particular interest are signals 

that have a high S/N-ratio and therefore a clear first arrival. 

Figure 3.4   visible (a) and not visible (b) event filtered with a 4th order butterworth band-pass 
(lower cut-off: 2Hz, upper cut-off: 12 Hz); 

3.2.2.5. The date

 Besides the spatial distribution, the temporal distribution of data is of importance  

as  well. The best case would be data from events evenly spread over the year (one to 

two per month), but since earthquakes do not occur that regularly and due to noise and 

data loss during winter this could not be achieved (fig. 3.6). 

Limitation no. 4: events evenly spread over the year
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3.2.3. The dataset

After imposing and applying the limitations above, a total of 43 events occurring 

within an epicentral distance d ≤ 1000 km were chosen to be the final dataset used for 

further processing.

In order to "cover" a range of possible directions of arriving wave fronts of 360°, 

events occurring in three different directions from the stations have been taken into 

account. The three clusters of events were named after the countries where the incident  

wave fronts originally come from (fig. 3.5).

name no. of events ϑmean [°] mL

1 POLAND 16 25 ≥ 3

2 ITALY 21 210 ≥ 2

3 AUSTRIA 6 280 ≥ 1

Table 3.1   final dataset
ϑmean... backazimuth

mL... local magnitude

It has to be mentioned, that the data selection was iterative which means that e.g. 

after limiting the magnitudes the visibility was checked and if there were not enough 

visible events left for the designated period of time, the selection was extended to events  

showing lower local magnitudes as well etc.. However, table 3.1 indicates the lowest 

local magnitude of events used for further processing. 
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Figure 3.5   spatial distribution of the final dataset

Figure 3.6   temporal distribution of the final dataset
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3.2.4. Inverse filtering

The transfer function is an important tool to describe the behaviour of a recording  

system and to quantify its influence on the output signal obtained. Different seismo-

meters have different transfer functions depending on their damping constants and their 

corner frequencies and therefore show different filter performances (cf. chapter 6.3). 

When wanting to compare signals recorded by different seismometers (e.g. five 

4.5 Hz  and  one  1 Hz seismometer  like  in  this  study)  it  is  necessary  to  reverse  the 

influence of the seismometer on the recorded signal first. Therefore inverse filtering has 

been applied. 

Figure 3.7  Recording the displacement spectrum of an idealized earthquake source

(Source: Scherbaum 2007: 140)

Figure 3.8   Recovering the source spectrum by inverse filtering

(Source: Scherbaum 2007: 141)
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The Matlab function freqs(b,a,w) calculates transfer functions of various systems 

by  entering  the  required  filter  coefficients.  The  filter  coefficients  a and  b contain 

information describing the system, such as the damping h and the corner frequency in  

the undamped case  ω0. To translate these parameters into the demanded  filter coeffi-

cients a and b, we will take a look on the transfer function of a seismometer (eq. (6.34)) 

and the transfer function of a general continuous Nth order LTI system (eq. (6.35)) in 

the LaPlace domain:

T s = −s 2

s22 s 0
2

T s =
01 s2 s2...L sL

01 s2 s2...N s N

where ε = hω0 is a damping parameter. 

Comparing  the  above  equations,  introducing a  damping of  h = 0.707 and the 

corner frequencies  ω0 = 1 Hz and  ω0 = 4.5 Hz respectively will  lead to the following 

expressions for the filter coefficients a and b:

b = [-1, 0, 0]

a = [1, 2ε, ω0
2]

Note:  The parameters  used  for  calculation  are  theoretical  values  that  are  not 

completely the same as the actual damping constants of the seismometers on side but 

the difference is negligibly small. 
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Figure 3.9   transfer function of a 1 Hz seismometer with a damping of 0.707

Figure 3.10   transfer function of a 4.5 Hz seismometer with a damping of 0.707

In order to get rid of the instrumental influence it is necessary to reverse what the 

the transfer function did to the recorded data by creating a new filter  that basically 

consists of the inverse transfer function H(s) = A(s) / B(s).
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Figure 3.11   inverse transfer function of a 1 Hz seismometer with a damping of 0.707

Figure 3.12   inverse transfer function of a 4.5 Hz seismometer with a damping of 0.707

Outside the pass-band of the recording instrument the magnification of the inverse 

filter is largest which leads to an amplification of noise within that frequency band. 

Especially the low frequency electronic noise needs to be taken care of. Thus, and to 

exclude the singularity at f = 0 Hz which is part of the denominator as well, a basic 2-

pole-butterworth high pass filter with a cutoff frequency fc = 0.8 Hz has been used. 
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Figure 3.13    transfer function of a 2-pole butterworth highpass with a cutoff frequency of 
0.8 Hz

The “analog” filters can be combined either multiplicating the transfer functions 

or convolving the filter coefficients with each other and can then be digitized switching 

from the s-plane to the z-plane performing a bilinear transform (cf. chapter 6.2.4) using 

the Matlab function bilinear(num,den,fs) and introducing the sampling rate respectively 

the sampling frequency fs = 200 Hz during summer and fs = 100 Hz during winter. 

Figure 3.14   "analog" filter consisting of the inverse transfer function of a 1 Hz seismometer 
and a high-pass with a cut-off frequency of 0.8 Hz.
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Figure 3.15   "analog" filter consisting of the inverse transfer function of a 4.5 Hz seismometer 
and a highpass with a cut off frequency of 0.8 Hz

Figure 3.16   bilinear transformed digital filter consisting of the inverse transfer function of a 
1 Hz seismometer and a high-pass with a cut-off frequency of 0.8 Hz
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Figure 3.17   bilinear transformed digital filter consisting of the inverse transfer function of a 
4.5 Hz seismometer and a high-pass with a cut-off frequency of 0.8 Hz

3.2.5. Data export

After manually sorting out the data that is going to be used for signal correlation, 

Seismon can export the desired traces to the well known SEG-Y format. The data used 

for further processing can then be imported again using ProMAX. 

Figure 3.18   exported data (window length: 12 s, start: 2 s before first break)
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3.3. Time picking using signal correlations

         To carry out signal correlation using one of the stations' signals as reference signal  

it was decided to export the data and import it again using the well known interactive 

seismic  data  processing  software,  ProMAX.  ProMAX  offers  a  comprehensive 

processing toolkit, including tools such as to cut out parts of different lengths from  any 

trace and to e.g. apply them as a filter later on. Also time picking and exporting the 

uniquely assigned picks in order to access them with any other software,  is easy to 

handle with ProMAX.5 

Signal correlation methods could be integrated in Seismon as well, but this was 

not part of the study.

3.3.1. Data import

Figure 3.19    ProMax data import 

 Using the flow shown in figure 3.19, the designated data has been imported 

again using ProMAX. To determine the travel time differences using signal correlations 

it is important to limit the frequency content of the signals to a uniform bandwith. After 

taking a look on the spectral composition by bringing a tool called Interactive Spectral  

Analysis into action it was decided to apply a bandpass with 20 Hz as upper limit. 

5 For further information: http://www.halliburton.com/ps/Default.aspx?
navid=221&pageid=862&prodid=MSE%3a%3a1055450737429153 [last downloaded: 2013-02-27]
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Figure 3.20   "inverse filtered" data with band-pass
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Figure 3.21   spectral analysis of "inverse filtered" data with band-pass
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3.3.2. Signal Correlation 

 As described in chapter 6.4. signal correlation is a powerful tool to reduce noise 

as well as to find out when and if one signal occurs in another. Since we are interested 

in  travel  time  differences  of  waves  coming  from  different  events,  we  will  need  a 

reference signal (wavelet) related to the designated event, in order to find out when that 

signal appears in the individual stations recordings. 

 The reference signal  was chosen to  be part  of the signal recorded at  station 

GB03, because it was the only station where data was available for all the final events. 

To get a clearer picture of the first arrival it is adequate to choose correlation windows 

that include the peak of the first arrival followed by two or three more peaks only. This 

leads to a variation of window lengths of 400 ms to 800 ms depending on the direction 

of the incoming waves. 

Figure 3.22   an example for a correlation window with 800 ms in length
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After conducting the signal correlations the maxima of the auto and cross correl-

ations were manually picked to receive the values of time when maximum correlation of  

waveforms was attained.

The table containing the field file identifier (FFID), the channels (stations) and 

the manually picked time values can be exported and later compared to the calculated 

travel time differences. 

Figure 3.23   picking of maxima of received auto and cross correlations
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3.4. Calculating theoretical travel time differences

In  order  to  be  able  to  compare  travel  times  of  waves  coming  from different 

directions some reductions have to be applied. Thus, theoretical travel time differences 

have to be calculated. To calculate travel times (or travel time differences) based on the 

concept of ray theory (cf. chapter 6.5.), we first need the know the so called horizontal  

slowness or ray parameter p and the "real" distances between the individual stations. 

Since dipping layers have an effect on apparent velocities, the dip of the Moho-

discontinuity has been taken into account by altering the ray parameter p. 

To regard the stations' height differences, vertical travel time differences have to 

be calculated, using the so called vertical slowness η.

3.4.1. Receiving the ray parameter p using the TauP toolkit

To receive the ray parameter p a java based toolbox called "TauP Toolkit" was 

used.  The  "TauP Toolkit"  is  free  software,  copyrighted  by  the  University  of  South 

Carolina and offers a variety of flexible seismic travel time and raypath utilities. Based 

on a tau-p model of the earth it calculates e.g. arrivals of different phases, returns their 

names, ray parameters, travel times etc.6

In this study the tau-p model was set to be "ak135" and the seismic phase was set 

to be a first arrival P wave in the crust or mantle. The epi-distances were taken from the 

calculations  using  the  distance()  function  in  chapter  3.2.2.2.. Entries  from  the 

earthquake bulletin that included a depth of the source were depth corrected using the 

depthCorrect function of the "TauP Toolkit".

The parameters being returned were the ray parameter p (that can also be called 

horizontal slowness not only after the conversion from [s/rad] in [m/s]) and the seismic 

phase.  The  corresponding  average  apparent  velocities resulted  in  8000 m/s for  Pn 

waves coming from direction Poland and Italy and 5800 m/s for P waves coming from 

direction Austria.

The elevation of the stations was not taken into account yet. The stations are at 

this point all lying in the same plane with z = 0.

6 For further information: (http://www.seis.sc.edu/software/TauP/)
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3.4.2. Applied reductions

3.4.2.1. Moho-dip reduction 

 The  Mohorovičić discontinuity,  today  simply  referred  to  as  Moho,  is  the 

boundary that separates crustal rocks from rocks of the upper mantle. An abrupt increase 

in velocity is seismically detectable and contributions to the boundary may arise not 

only from chemical contrasts but also "(...) from transitions in rheological properties, 

phase transitions in shallow mineral structures, and petrographic fabrics of the rocks." 

(Lay et al. 1995: 254) 

Recognizing the complexity of the crust it is still useful to assess the basic seis-

mological feature of shallow rocks having slower seismic velocities than deeper rocks. 

Figure  3.24  shows a  low-velocity  layer  over  a  faster  mantle,  approximating  crustal 

structure (two subdivisions) in a highly schematic way. (Lay et al. 1995: 252-254)

Figure 3.24   generic continental crustal structures and schematic travel time curves where Pg is 

a wave in the upper crust, P* is a wave in the lower crust or along the Conrad discontinuity and  

Pn  is  a  head  wave,  refracted  below  the  Mohorovičić discontinuity;  the  150 km  mark  the 

crossover distance

(Source: Lay et al. 1995: 254)

 

The  thickness  of  continental  crust  varies  from  20  to  70 km.  Below  the  European 

continent  the Moho is  quite  oblique  which has been taken into account  as well.  To 

estimate what happens to the apparent velocity α and the ray parameter p when having 

a tilted plane instead of a horizontal  one,  a simple sketch has been drawn that also 

shows  the  displacement  of  the  so  called  piercing  point.  Based  on  the velocity  of 

8000 m/s for the Moho and a velocity of 6500 m/s for the crust, one can see that neither 

36



p nor the location of the piercing point change significantly with a dip of this order of 

magnitude. Even when assuming a dip of approximately 10° the piercing point moves 

"only" 20 km uphill along the slope. 

Figure 3.25   central European Moho with lines into direction Poland (25°) and Italy (210°) to 
estimate the dip of the Moho around the investigation side; the dataset was provided by the 
Vienna Technical University 
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Figure 3.25 shows a map of the Mid-European Moho, with lines in the directions 

of  the  events  having a  Pn wave (head  wave  along the  Moho)  as  first  arrival.  The 

piercing  point  is  lying  within  the  range  of  the  two  lines,  therefore  the  dip  can  be 

assumed to be constant. Inserting the values read out off figure 3.25 the dip has been 

calculated using the simple equation of a line y = kx + d where k = Δy / Δx = Θ. Δy is 

the difference in depth of the Moho, Δx is about 110 km. 

ΘPoland ≈ 6.5°

ΘItaly ≈ 2.7°

In  presence  of  dipping  layers,  head  waves  have  different  apparent  velocities 

depending on whether the rays are travelling updip or downdip (cf. chapter 6.5.2.4.). In 

this case, the rays are travelling downdip coming from both directions Poland and Italy. 

Using equation (6.57) for waves travelling downdip, leads to a new apparent velocity α. 

αPoland ≈ 7400 m/s

αItaly ≈ 7700 m/s

3.4.2.2. Directivity reduction

  Since we are interested in calculating travel time differences we need to know 

the distances between the individual monitoring stations. Based on the assumption that 

waves reach the stations as wave fronts of a plane wave, the actual distances between 

the  individual  stations  depend on the  incident  angle of  the  wave front  at  reference 

station  GB03 respectively  on  the  backazimuth  being  returned  when  calculating  the 

distance between GB03 and the appropriate event and can therefore not be taken into 

account directly. The base for a calculation that regards the direction of the propagating 

wave  front  is  an  orthogonal  projection  where  the  calculated  distances  between  the 

stations  and  station  GB03  are  being  projected  onto  the  direction  of  propagation 

(fig. 3.26).
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Figure 3.26   sketchy geometrical considerations for a correction of the epicentral distances 
regarding the direction of propagation of the incident wave front

The horizontal travel time differences can be calculated using the first term of 

equation (6.52):

tt Hor= pX

where p = 1 / α (reciprocal of the new apparent velocity α from above) and X is the new 

reduced distance between the corresponding station and the reference station GB03. 

Subtracting the calculated values for the horizontal travel times from the picked 

ones will lead to the following results, where tdiff obs (ttObs) are the picked values, and 

tdiff calc (ttHor) are the calculated horizontal travel time differences between the corres-

ponding station and station GB03:
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Poland

Figure 3.27   horizontal travel time differences (Poland)

tdiff obs - tdiff calc [ms]

Median Min Max

GB01 -40 -66 -24

GB02 -35 -43 -30

GB03 0 0 0

GB04 -15 -20 -13

GB05 14 -3 27

GB06 -23 -37 8

Table 3.2   horizontal travel time differences (Poland)
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Italy

Figure 3.28   horizontal travel time differences (Italy)

tdiff obs - tdiff calc [ms]

Median Min Max

GB01 -34 -61 2

GB02 -8 -46 15

GB03 0 0 0

GB04 3 -10 19

GB05 10 -23 51

GB06 19 1 75

Table 3.3   horizontal travel time differences (Italy)
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Austria

Figure 3.29   horizontal travel time differences (Austria)

tdiff obs - tdiff calc [ms]

Median Min Max

GB01 -31 -44 -16

GB02 -23 -62 6

GB03 0 0 0

GB04 -14 -21 -9

GB05 -20 -30 33

GB06 3 -9 26

Table 3.4   horizontal travel time differences (Austria)
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3.4.2.3. Height reduction

  As described in chapter 6.5.1.1., the vertical travel time depends on the vertical 

slowness η = (γ2 - p2 )1/2 only, where  γ = 1/α. To regard the station's heights, an average 

velocity of  α =  4500 m/s for the solid rock has been assumed (see fig. 2.7). The  ray 

paramater p is taken from the calculations above.  Using the second term of equation 

(6.52) and dropping the factor 2 (one-way vertical  travel)  will  return values for the 

vertical travel time differences:

tt Ver=h

where due to simplicity reasons h is the height of the corresponding station above sea  

level. To get the travel time differences relatively to reference station GB03, the value at 

station GB03 has to be subtracted from the others. 

Figure 3.30   plot of travel time residuals over the stations' heights using an average velocity 
for the solid rock of 4500 m/s

Adding up the travel time residuals for both, the horizontal and the vertical travel 

path,  returns  the  preliminary  results  (fig.  3.30).  When  plotting  the  results  over  the 

stations' heights, one can immediately see that there still is a dependence on height. 

Therefore the estimated average velocity α has been increased, until the regression line 

for  the  mean  results  turned  about  horizontal.  Inserting  an  average  velocity  of 

α = 5500 m/s returned usable results (fig. 3.31). 

Since the velocity increases with depth and the ray starts its vertical  travel at 

height z = 0, a velocity of 5500 m/s is quite feasible.
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Figure 3.31   plot of travel time residues over the stations' heights using an average velocity for 
the solid rock of 5500 m/s

Poland

height [m] ttObs - ttHor [ms] ttVer [ms]

GB01 1370 -40 -20

GB02 1445 -35 -11

GB03 1532 0 0

GB04 1571 -15 5

GB06 1773 -23 29

GB05 1811 14 34

Table 3.5   vertical travel time differences (POLAND)

Italy

height [m] ttObs - ttHor [ms] ttVer [ms]

GB01 1370 -34 -21

GB02 1445 -8 -11

GB03 1532 0 0

GB04 1571 3 5

GB06 1773 19 31

GB05 1811 10 36

Table 3.6   vertical travel time differences (ITALY)

Austria

height [m] ttObs - ttHor [ms] ttVer [ms]

GB01 1370 -31 -9

GB02 1445 -23 -5

GB03 1532 0 0

GB04 1571 -14 2

GB06 1773 3 14

GB05 1811 -20 16

Table 3.7  vertical travel time differences (AUSTRIA)
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4. Results

Poland

Figure 4.1   final results for "Poland" showing reduced mean travel time differences; the shaded 
contour plot in the background indicates the thickness of the moving mass

Italy

Figure 4.2   final results for "Italy" showing reduced mean travel time differences; the shaded 
contour plot in the background indicates the thickness of the moving mass

45



Austria

Figure 4.3   final results for "Austria" showing reduced mean travel time differences; the shaded 
contour plot in the background indicates the thickness of the moving mass

Mean

Figure 4.4   final results showing reduced mean travel time differences; the shaded contour plot 
in the background indicates the thickness of the moving mass
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Figure 4.5   final results plotted over the thickness of the moving rock mass 

After applying the reductions above to the data observed, almost only negative 

values remain which means that the travel time differences calculated are bigger than 

those  observed.  Obviously  the  "real"  waves  spend  less  time  to  cover  the  distances 

between the individual monitoring stations than the calculated ones which again means 

that they are travelling at a higher speed than primarily assumed. The waves arrive last 

at station GB03 in the middle of the landslide where the loosening of the rock mass is 

large, but unfortunately the accuracy of the results does not satisfy the requirements 

necessary to draw conclusions on structural changes of the landslide with time. 
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5. Conclusion

The main aim of this study was to explore if and what kind of information about 

the Gradenbach landslide can be dragged out by applying the appropriate processing to 

earthquake  data  that  can  be  found  within  the  recordings  of  the  put  up  seismic 

monitoring network. Thus, signal correlations using near earthquake data, have been 

carried  out  and in  order  to  compare  travel  time differences  of  waves  coming from 

different directions some reductions have been applied.
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5.1. Errors

5.1.1. Time picking

 The largest error derives from the signal correlations and the time picking of the 

correlation maxima afterwards. The correlations have been executed with a reference 

signal recorded on station GB03. This is quite inconvenient, since GB03 is located in 

the  middle  of  the  landslide  and  therefore  the  signals  are  itself  influenced  by  the 

loosening of the moving rock mass. However, it was the only recording permanently 

available and therefore GB03 was chosen to function as reference station. 

When  excluding  errors  emerging  from  common  problems  in  routine  hand 

picking,  such  as  picking  the  wrong  phase  etc.,  the  accuracy  of  the  results  mainly 

depends on the similarity of waveforms. The shape of a seismic wavelet is generally 

affected by multiple components leading to highly complex waveforms. Thus, it is not 

surprising that  waveforms of some of the events appear to be more similar at  some 

stations than others. As a consequence maxima of the cross correlations might not be 

that definite and therefore not that easy to pick. A change of the correlation window 

length mainly resulted in a shift of the error which means that e.g. a clear maximum at 

one station became broad at another while a broad maximum became more distinct. 

This indicates that it would not be expedient to specify a constant picking error for all 

the stations and all the events investigated. Nevertheless, an average picking error of 

about ± 10 ms is regarded as a quite reliable estimate. 

5.1.2. Applied reductions

The applied reductions are simple, thus they are a source for further errors as well. 

It has been assumed that the wave fronts reach the stations as wave fronts of a plane 

wave. The ray parameter p represents an average value such as the dip of the Moho is an 

average dip assumed to be constant within the region around the piercing point. The 

height correction includes an assumed average velocity for the solid rock of 5500 m/s 

which can be compared to a mass-correction in gravimetry where the density is assumed 

to be constant and the calculated values are being subtracted from the observed ones. 
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5.1.3. Statistics

Furthermore it has to be mentioned, that the final results for the three different 

directions represent mean values of the events investigated  (fig. 4.1 - fig. 4.3) while 

fig. 4.4  represents  the  mean value  of  all  of  the  results  put  together.  Sometimes  the 

variation  of  travel  time  differences  along  the  horizontal travel  path  was  bigger, 

sometimes smaller, but all in all showing no trend except the basic trend that the signals 

arrive earlier at some stations and later at others. 

It is important to keep in mind that the final results are an average of all the events 

investigated,  containing  all  sorts  of  time  differences,  so  improving  the  statistical 

methods or classifying the different events in any way might be a first step towards 

results of bigger accuracy. 

All in all, an average error of about ± 15 ms is regarded as a quite reliable estimate 

for the final results. 
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5.2. Outlook

Since the selection of the final events used for signal correlation was made by 

hand, which might be inconvenient when dealing with an even bigger dataset, it would 

be necessary to introduce methods, parameters to automatise the data selection and to 

automatically classify the events.

Due  to  the  large  picking-error,  first  arrival  time  picking  would  have  to  be 

improved by all means in order to make a clear statement about the structural changes 

of the landslide with time. To make a clear point using signal correlations, it would be 

indispensable  to  establish  another  reference  station,  preferably  at  the  foot  of  the 

mountain range but outside the area of movement. 

Improving the applied corrections by modelling the subsurface in greater detail 

(e.g. ray tracing), could definitely contribute towards results of bigger accuracy as well.

Replacing  the  passive  sources  by  active  ones  and  shooting  at  regular  time 

intervals from a known position, could be another possibility to improve this approach.
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6. Theoretical and mathematical background

The  mathematical  background  is  mainly  taken  from  Arens  et  al.  2008  and 

Lang et al. 2005.
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6.1. Transformation of functions - integral transformations

Integral transforms frequently offer a smart way to solve complicated differential- 

or integral- equations. When carrying out an integral transform, one function is mapped 

onto  another.  In  general  an integral  transform can be  described by a  linear  integral 

operator  A.  Looking at  a given function  f : D → ₵, one will receive the transformed 

function A f through a differentiation under the integral sign (Parameterintegral).

A f s=∫
D

k  t , s f t dt  where s∈G (6.1)

By means of f and the term k : G x D → ₵, the new function A f is set. The function k is 

often referred to as the kernel of the integral operator and D is the domain. 

If  the  kernel  k and the  domain  D are  given,  the  integral  describes  a  mapping 

A : V → W that  assigns  each  function f ∈V to  a  function  A f,  but  only  if  it  is 

guaranteed  that  the  integrals  of  functions  of  the  set  V do exist.  Hence  the  integral 

transform is defined by its kernel k and the domain D. 

Furthermore to be able to talk about a transform it must be guaranteed that the 

transform can actually  be reversed.  That  means,  that  for  the  operator  A : V → W a 

reverse-mapping A-1 : W → V with the properties A-1 A = I = A A-1 does exist, where 

I is the identity,  i.e. the mapping, that assigns one function  f to the same function f 

again. (Arens et al. 2008: 1130-1131)

6.1.1. Fourier transform

The Fourier transform is defined by the following equation 

X  f =∫
−∞

∞

x  t e− j 2 f t dt  , (6.2)

writing the frequency in terms of angular frequency ω = 2πf: 

X  j=∫
−∞

∞

x t e− j t dt
(6.3)
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The inverse transform is:

x (t )= 1
2π∫−∞

∞

X ( jω)e j ωt dω  (6.4)

(Scherbaum 2007: 97)

6.1.2. LaPlace transform

To a function f : [0,∞ℂ , on an interval J⊆ℝ≥0 the LaPlace transform is 

defined as the function L f : Jℂ , that is given through the Parameterintegral 

L f s=L  f  t =∫0

∞
f t e−st dt  (6.5)

if the integral exists for s ϵ J. (Arens  et al. 2008: 1133)

For application the most important property of the LaPlace transform arises from 

looking at the LaPlace transform of a derivative of a function.  

L  d
dt

f  t =∫
0

∞

e−st d
dt

f t dt=e−st f t  ∣∞
0
−∫

0

∞

 d
dt

e−st  f t dt =

= − f 0s∫
0

∞

e−st f  t dt=− f 0 s L  f  t   (6.6)

with the assumption lim
t∞

e−st f t =0 which means that f(t) for t → ∞ is not growing 

too strongly. Anyway, if f(t) is LaPlace transformable this has to apply, otherwise the 

LaPlace transform would be unlimited. (Lang et al. 2005: 423)

6.1.3. z transform

The z transfor is  the discrete  counterpart  to the LaPlace transform. While the 

LaPlace  transform  can  be  used  to  analyse  continuous  differential  equations  the 

z transform can be used to analyse discrete difference equations. 
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The z transform of a discrete sequence x[n] is defined as:

Z  x[n]= ∑
n=−∞

∞

x [n] z−n=X  z   (6.7)

where z is a continuous complex variable. (Scherbaum 2007: 107)
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6.2. Linear time invariant systems (LTI systems)

In order to understand how filters and LTI-systems etc. work and also why it is of 

importance  to apply inverse and simulation filtering we will  start  by looking at  the 

behaviour  of  a  very  simple  filter  (electric  circuit)  consisting  of  a  resistor  R  and  a 

capacitor C in series. 

Figure 6.1   RC circuit 

(Source: Scherbaum 2007: 12)

It is possible to obtain a differential equation describing the voltage in the circuit  

by virtually applying a time-dependent input voltage and describing the behaviour of the 

voltage while the current flows through the resistor R and across the capacitor C:

RC ẏ t y  t −x  t=0  (6.8)

 This  equation  is  an  example  of  a  first  order  linear  differential  equation.  It 

describes the physical properties of the circuit (the corresponding system) and therefore 

we call it linear system.

One important property of linear systems is that if y1(t) and y2(t) are the output 

signals corresponding to the input signals x1(t) and x2(t) respectively, the input signal 

x3 t =1 x1  t2 x 2 t   (6.9)

will produce the output signal:

y3  t=1 y1 t 2 y2 t   (6.10)

Since the properties of the filter (capacitor, resistor) are assumed to be constant in 

time we call it a time invariant system as well. 

(Scherbaum 2007: 12-14)
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LTI systems can be described by linear  differential  equations with coefficients 

constant in time. In the continuous case one could use the LaPlace transform and in the 

discrete case the z-transform to describe them. (Schurr 2007)

In general one is interested in finding an output that satisfies the temporal differ-

ential equation describing the input-output behaviour of a physical system for a given 

input. A very convenient way to solve differential equations with given initial conditions 

is the LaPlace transform that converts the differential equations into algebraic equations.  

One can solve the equation for an output in the LaPlace domain and through inverse 

LaPlace transform the output function can be transformed back into the time domain. 

(Schurr 2007)

6.2.1. The frequency response function and the Fourier transform

In signal processing the frequency response function is a very important tool. It 

allows  us  to  predict  a  filter's  output  for  any  given  input  signal  without  further 

knowledge  about  the  physical  processes  going  on  inside  the  filter. 

(Scherbaum 2007: 21)

 Intuitively one would say that it is easy to find a solution for the above differ-

ential equation representing the RC-filter (6.8) when applying an input signal such as a 

zero input signal x(t) = 0.  Due to the fact that under very general conditions an arbitrary 

function can be described as the superposition of harmonics (Fourier!),  knowing the 

output signal of a linear system for a harmonic input signal x t =Ai e
j t  will allow 

us to obtain the solution for a arbitrary input signal by superimposing the responses for 

the individual frequencies using the linearity property equations (6.9) and (6.10) and the 

synthesis equation of the Fourier transform (6.4). (Scherbaum 2007: 14-18)

For a general harmonic signal, equation (6.8) can be solved using the classical 

trial solution for the output signal:

y  t =Ao e j t  (6.11)

ẏ  t = j Ao e jt  (6.12)

Inserting this in equation (6.8) we obtain:
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Ao e j t RCj1=A ie
 j t  (6.13)

Relating the amplitude of the output signal to the amplitude of the input signal 

will lead to a first expression of the frequency response function:

Ao

Ai

= 1
RCj1

=T  j  (6.14)

Altogether when having a harmonic input signal x(t) the corresponding output 

signal from (6.14) is y t =Ao e j t with 

Ao=T  j⋅A i  (6.15)

where T(jω) is the frequency response function. (Scherbaum 2007: 18-19)

When  having  an  harmonic  input  signal  the  output  of  the  filter  is  again  an 

harmonic signal with different amplitude and phase but with the same frequency. This 

property can also be found in the eigenvector concept of linear algebra, with the values 

of  the  frequency  response  function  being  the  eigenvalues  of  the  system  and  the 

harmonic functions being the corresponding eigenvectors. In a linear transformation an 

eigenvector is transformed onto itself, it does not change direction or compared to the 

concept  of  harmonic  signals:  the  frequency  content  of  the  signal  does  not  change. 

(Scherbaum 2007:19–20)
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Figure 6.2   Frequency response function and the eigenvector/eigenvalue concept. 

(Source: Scherbaum 2007: 20)

Since  Ai(jω)  and  Ao(jω)  can  be  visualized  as  the  corresponding  harmonic 

components  of  the  input  and  the  output  signal's  Fourier  spectra  X(jω)  and  Y(jω) 

respectively, the spectra are related to each other by the frequency response function. 

(Scherbaum 2007: 20)

T  j=
Y  j
X  j

 (6.16)

"The  properties  of  an  arbitrary  linear  filter  are  uniquely  described  by  its 
frequency response function.  In general, the Fourier spectrum of a signal which has 
passed through a filter is obtained by multiplying (complex multiplication) the Fourier 
spectrum  of  the  input  signal  by  the  frequency  response  function  of  the  filter." 
(Scherbaum 2007: 21)
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6.2.2. The transfer function and the LaPlace transform

Sometimes the term frequency response function is also referred to as transfer 

function.  Their  concepts are closely related to each other but they are not the same 

thing.  We can solve the differential  equation (6.8) using the Laplace transform of a 

function  (6.5).  This  is  very  convenient  since  the  derivative  in  the  time  domain 

corresponds to a multiplication with the complex variable s =  σ + jω in the LaPlace 

domain (6.6). (Scherbaum 2007: 21)

Transforming equation (x.x) and dividing the LaPlace transformed output signal 

by the LaPlace transformed input signal will lead to the following expression for the 

transfer function of a linear RC filter:

T s = Y s 
X s 

= 1
1sRC

= 1
1 s

 (6.17)

For s = -1/τ he transfer function T(s) grows to infinity and therefore T(s) has a so called 

pole at this location. (Scherbaum 2007: 22)

 "We will see in the following that the existence and the position of a pole at s = sp= -1/τ 

are  sufficient  to  describe  most  of  the  properties  of  the  transfer  function." 

(Scherbaum 2007: 22)

6.2.3. The impulse response function

At  this  point  I  only  want  to  summarize  some  core  statements  regarding  the 

impulse response function: 

The impulse response function h(t) is defined as the response of a filter to an im-

pulsive input signal represented by a Dirac delta function δ(t). (Scherbaum 2007: 24)

The Dirac delta function

The Dirac delta function is not a function in the usual mathematical sense but a 

singular distribution since it cannot be defined by means of a local integrable function. 

It is a synthetic product that only under the integration sign has the following formal 

significance (Lang et al. 2005: 449-450):
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∫
a

b

dt t−t0 ≡{1 at0b
0 sonst

 (6.18)

∫
a

b

dt f  t t−t0 ≡{ f  t0  at0b
0 sonst

 , (6.19)

where (6.19) can be regarded as a convolution of the delta function with a function f(t). 

The delta function somehow repeals the integration and substitutes the integral for the 

value  of  the  integrand  at  a  certain  position  but  only  if  lying  within  the  range  of 

integration. (Lang et al. 2005: 450)

Using the important property that both, the LaPlace and the Fourier transform of 

the delta function equals 1 and using the definitions of the frequency response function 

(6.16) and the transfer function (6.17) will lead to the following statements: 

"The frequency response function T(jω) is the Fourier transform of the impulse 

response function." (Scherbaum 2007: 25)

T  j=
Y  j
X  j

=
Y  j

1
=H  j  for x(t) = δ(t) (6.20)

"The transfer  function  T(s)  is  the  Laplace  transform of  the  impulse  response 

function." (Scherbaum 2007: 25)

T s = Y s 
X s 

=Y s 
1
=H s  for x(t) = δ(t) (6.21)

6.2.4. Bilinear transform 

If the continuous transfer function of a recording system is known as a rational 

function, it  is convenient to approximate the discrete transfer function T(z) from the 

continuos one T(s) by carrying out a mapping procedure called bilinear transform. 
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Figure 6.3   mapping of the complex s-plane onto the complex z-plane; the imaginary axis is 
mapped onto the unit circle, the right half s-plane onto the outside of the unit circle and the left  
half s-plane onto the interior of the unit circle in the z-plane

(Source: Scherbaum 2007: 157)

The transform is defined as

s= 2
T
⋅1−z−1

1z−1  (6.22)

with the sampling interval T and the variables of the complex s- and z-planes, s and z 

respectively while the inverse transform is given by

z= 1T /2 s
1−T /2 s

 . (6.23)

Setting s = σ + jω in equation 6.23 leads to

z=
[2 /T ] j
[2 /T− ]− j

 . (6.24)

The values of the discrete transfer function T(z) become

T  z=T s  ∣
s=2/T [1−z

−1 /1 z
−1 ]  . (6.25)

(Scherbaum 2007: 156-163)
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6.3. The seismometer – an example for a LTI

A simple  vertical  pendulum  seismometer  consists  of  a  mass,  a  spring  and  a 

damping mechanism also referred to as dashpot. Through the spring and the dashpot the 

mass is connected to a frame and the frame itself is fixed relative to the ground. The 

motion of the mass relatively to the frame can be described by the mass position xr(t), 

and the motion of the mass relatively to the ground by um(t). 

Figure 6.4   vertical pendulum seismometer 

(Source: Scherbaum 2007: 49)

The forces acting on the mass and controlling the movements are the following:

• The inertia of the mass:

f i=−müg t   (6.26)

 where üg(t) is the acceleration of the ground

• The spring:

f sp=−k xr  t  (6.27)

 where k is the spring constant

• The dashpot:

f f =−D ẋm t   (6.28)

 where D is the friction coefficient
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Using the fact, that in equilibrium these forces add up to zero one can set up the 

following equation of motion:

ẍr  t
D
m

ẋr t 
k
m

xr  t =−üg  t   (6.29)

or

ẍr  t2  ẋr t o
2 xr  t =−üg  t   (6.30)

where ω0 = k/m is the natural frequency of the undamped system and 

2ε =  D/m = 2hω0 is a damping parameter. (Scherbaum 2007: 48-50)

6.3.1. Frequency response function of a seismometer

To retrieve the frequency response function of the seismometer one can look in 

more detail at how the system reacts when having an harmonic input signal. This is very 

revealing  since  most  functions  can  be  described  as  the  superposition  of  harmonics 

(Fourier!):

When  having  a  harmonic  input  signal ug  t=A ie
jt with  the  ground 

acceleration üg  t=−
2 A i e

j t corresponding to it equation (6.30) becomes:

ẍr  t2  ẋr t 0
2 xr  t =

2 Ai e
j t  (6.31)

The approach to solving the equation again is a harmonic function:

xr  t=Ao e j t , ẋr  t= j Ao e jt , ẍr  t=−
2 Ao e j t

 

The  frequency  response  function  then  derives  from  the  ratio  between  the 

amplitudes of the input and the output signal:

Ao

Ai

=
2

0
2−2 j 2

=T  j  (6.32)

(Scherbaum 2007: 60-61)
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6.3.2. Transfer function of a seismometer

 To obtain an expression for the transfer function of the seismometer the LaPlace 

transform can be used to solve equation (6.30) based on the following initial conditions:

• starting displacement: xr 0=xr 0

• mass is at rest at time t = 0: ẋr 0=0

• ground excitation is zero: üg  t=0

 The LaPlace transform of equation (6.31) is:

s 2 X r s2 s X r s 0
2 X r s =−s2 U g s  (6.33)

 and therefore the transfer function of the seismometer is:

T s =
X r s 
U g s 

= −s2

s22 s0
2  (6.34)

 When  zeroizing  σ in  s = σ + jω  or  replacing  s  by  jω  in  simple  terms,  the 

frequency  response  function  can  directly  be  obtained  from  the  transfer  function. 

(Schurr 2007, Scherbaum 2007: 51-63)

   The transfer functions of standardized seismometer-galvanometer systems can 

be effectively approximated by a rational transfer function of the form

T s =
L

N


∏
k=1

L

s− s0k

∏
k=1

N

s−s pk 
=
01 s2 s2...L s L

01 s2 s2...N sN  (6.35)

representing a general continuous Nth order LTI system with s0k and spk the k-th zero 

and pole, respectively. (Scherbaum 2007: 173, 187)
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6.4. Correlation

The correlation of two random processes x(m1), y(m2) is defined as:

r xy m1 ,m2  =E [ xm1 y m2]  

          = ∫
−∞

∞

∫
−∞

∞

x m1 y m2 f x m1 y m 2x m1 , y m2 dx m1dy m2
(6.36)

where f x m1  y m2 x m1 , y m2 is the joint probability density function, giving the 

likelihood of two or more variables assuming certain states or values. 

For processes with a time invariant covariance (wide-sense stationary process), the 

correlation  function  only  depends  on  the  time  difference  k = m1 - m2, called  cross 

correlation lag. (Vaseghi 2008: 83)

r xy m1 ,m2= r xym1 , m2=r xy m1−m2=r xy k   (6.37)

The correlation method can be used to determine where (or if) a signal occurs in 

another signal. It uses two different input signals to produce a third one which is then 

called cross correlation. If a signal is correlated with itself it is called  autocorrelation 

instead. (Smith 2003: 37)

"The amplitude of each sample in the cross-correlation signal is a measure of how much 
the received signal resembles the target signal, at that location. This means a peak will 
occur in the cross-correlation signal for every target signal that is present in the received 
signal. In other words, the value of the cross-correlation is maximized when the target 
signal is aligned with the same features in the received signal." (Smith 2003: 138)

6.4.1. Noise reduction

 A common problem in signal processing is to extract the signal of interest from 

the recorded one, which is buried in noise. Compared to the spectrum of white noise (all 

frequencies) the actual signal spectrum mainly consists of lower frequency components. 

Since these two spectra overlap, it is necessary to find a way how to separate them. 

Since random noise looks a certain amount like any arbitrary target signal it is 

impossible not to have any noise on the cross correlation signal if there is noise on the 

66



received signal, but except for this noise the peak generated is symmetrical even if the 

target  signal  is  not.  Knowing the  shape  of  the target  signal,  the  correlation method 

produces an output where the top of the peak is farther above the residue noise than 

provided by any other linear filter. (Smith 2003: 307-309)

6.4.2. Time delay estimation

The  cross  correlation  of  two  signals  y1(m)  and  y2(m),  each  composed  of  an 

information bearing signal x(m) and an additive noise n1(m) and n2(m), given by

y1 m=xmn1m  (6.38)

y 2m=Ax m−Dn2m   (6.39)

looks as follows:

        r y1 y 2
k =E [ y1m  y2 mk ]

= E {[ x m n1m ][Ax m−Dk n2 mk ]}

= Ar xx k−D  r xn2
k Ar xn1

k−D rn1 n2
k 

(6.40)

where A is an amplitude factor and D is a time delay variable. 

Assuming that signal and noise are uncorrelated (random noise is uncorrelated anyway), 

all terms besides the first one drop out. (Vaseghi 2008: 84)

r y1 y 2
=Ar xx k−D   (6.41)

Figure 6.5   The cross correlation function has its maximum at lag D which corresponds to the 
time delay in demand

(Source: Vaseghi 2008: 84)
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6.5. Ray theory

The chapter about ray theory is mainly taken from: Lay et al. 1995. 

The basis of almost all body-wave interpretation is the concept of rays. Although 

this concept is limited to smaller wavelengths (smaller than a few hundred kilometres) 

and only slowly varying seismic velocities, rays can be an adequate solution to the wave 

equation even at boundaries between materials showing strong velocity gradients. 

Rays are defined as the normals to a wave front (loci of points that undergo the 

same motion at a given instant time), pointing in the direction of propagation.
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6.5.1. Ray geometry and the raypath equation

The direction cosines associated with a ray normal to a three-dimensional wave 

front W(x), travelling an arc length s in a time t, are given by dx1/ds, dx2/ds, dx3/ds and 

must satisfy 


dx1

ds


2

 
dx2

ds


2

 
dx3

ds

2

=1  (6.42)

Because the gradient of a function is oriented normal to it we get a physical connection 

between s and W(x) by stating: ∇W ( x )∝s and thus (6.42) can be rewritten as

a
∂W  x
∂ x1


2

 a
∂W x
∂ x2


2

 a
∂W x 
∂ x3


2

=1  (6.43)

If  a, as  a  constant  of  proportionality,  is  set  to  a=c( x) /c0 ,  (6.43)  is  the  eikonal 

equation 

∂W  x
∂ x1


2

 ∂W x 
∂ x2


2

  ∂W  x
∂ x3


2

=
c0

2

c  x2
 (6.44)

which relates rays to the seismic velocity distribution and will “ (...) approximate the 

wave  equation  well  if  the  fractional  change  in  velocity  gradient  over  one  seismic 

wavelength is small compared to the velocity.” (Lay et al. 1995: 72) 

For rays, as a portion of a seismic wavefield, very simple equations are obtained 

from the eikonal.

The  raypath  equation (6.45)  is  a  generalized  form  of  the  normal equations 

obtained through the combination of eq. (6.42) and eq. (6.43):

d
ds
n

d xi

ds
= ∂n
∂ x i

d
ds
 1

c x
d x
ds
=∇ 1

c x 
  (6.45)

When  following  a  ray  through  a  material  that  changes  velocity  only  in  one 

direction (e.g. x3), (6.45) reduces to
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n
dx1

ds
=c1= const

n
dx2

ds
=c2= const

d
ds
n

dx3

ds
= dn

dx3

  . (6.46)

“The ratio of c1 and c2 confines the raypath to a plane that is normal to the x1x2 plane. 

(In  other  words,  the  projection  of  the  ray  into  the  x1x2 plane  is  a  straight  line.)” 

(Lay et al. 1995: 74) 

Choosing this plane to coincide with the x1x3 plane, (6.46) reduces to

n 
dx1

ds
=const

d
ds
n

dx3

ds
= dn

dx3

  . (6.47)

The direction cosine of the ray at a given point is given by 

l1=
dx1

ds
= sin i

l3=
dx3

ds
= cos i  . (6.48)

and thus

n
dx1

ds
=

c0

c
sin i = const

 ⇒ sin i
c
= const=p

(6.49)

 Depending  on  the  orientation  of  the  travel  path,  the  constant  p (called  ray 

parameter or horizontal slowness) varies from 0 (vertical) to 1/c (horizontal). The angle 

of incidence i, gives the inclination of a ray measured from the vertical (direction x3) at 

any given depth or any point along the travel path. For a given reference point and 

takeoff  angle,  the  ray  parameter  p is  constant  for  the  entire  travel  path  of  the  ray. 

Equation (6.49) is also known as Snell's law. (Lay et al. 1995: 74-75)
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6.5.1.1. The travel time equation: the where and the when

   As mentioned before, at any point along the travel path we have 

sin i=
dx1

ds
=cp  

cos i=
dx3

ds
=1−sin2 i=1−c2 p2

⇒dx1=dssin i=
dx3

cos i
cp= cp

1−c2 p2
dx3

(6.50)

   For a surface source and receiver, integrating equation (6.50) over the depth 

will give the distance X(p), at which a ray with ray parameter p will emerge:

X  p=2∫
0

z
cp

1−c2 p2
dx3  (6.51)

z is the maximum depth of penetration and a factor 2 comes from the symmetry of the  

upgoing and downgoing portions of the raypath. In this case, it is obviously enough to 

know the angle at which the ray leaves the source, in order to calculate  where it will 

arrive.  For  a  general  3-dimensional  case,  the  azimuth of  the  raypath  relative to  the 

source has to be taken into account as well. 

   The corresponding travel time along the raypath to the distance defined by 

(6.51)  is obtained similarly:

T=2∫
0

z dx3

c21 / c2−p2
 (6.52)

   Noting  the  similarity  between  (6.51)  and  (6.52)  and  introducing  some 

shorthand like γ = 1/c we can relate the two, resulting in a separable expression for the 

travel time equation

T=pX2∫
0

z

2− p2 dx3  (6.53)
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where the vertical travel time depends only on the vertical slowness η = (γ2 - p2 )1/2 and 

the  horizontal  travel  time  only  on  the horizontal  slowness  p,  also  known  as  ray 

parameter which is itself equal to the change in travel time with distance:

dT
dX
=p  (6.54)

6.5.2. Travel times in a layered earth

Having a velocity structure that represents a layer over a half space with seismic 

velocities α2  > α1, three primary travel paths exist between the source and the receiver: 

(1) the direct arrival, (2) a reflected arrival and (3) a head wave.

Figure 6.6   the three principal rays in a velocity structure that is a layer of half space

(Source: Lay et al. 1995: 81)

6.5.2.1. Apparent velocity and horizontal slowness

Because of geometric reasons, the wave front of a reflected ray will travel along 

the  surface  at  a  higher  velocity  than  the  actual  seismic  velocity  of  the  layer,  and 

therefore it is called apparent velocity αa.

a=
x
 t
= d

sin i
1
 t
=
1

sin i
= 1

p
 (6.55)

For a ray with a vertical incidence on the free surface, p would be zero and αa infinite. 

Once  again  this  equation  shows  were  the  name  horizontal  slowness for  the  ray 

paramater p comes from.
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Figure 6.7   P wave hitting a boundary between contrasting materials

(Source: Lay et al. 1995: 80)

6.5.2.2. Travel time equation for a layered earth

  Finding travel time equations for rays along the 3 different types of primary 

travel  paths  and  combining  them will  lead  to  the  very  useful  form of  the  layered 

structure equivalent to (6.53),

T=Xp2 th1  (6.56)

where η1 = (1 - p2 α1
2)1/2/α1.  (Lay et al. 1995: 82)

(LA

6.5.2.3. The crossover distance 

  Since the head wave travels with a faster apparent velocity than the direct wave, 

it becomes the first arrival after a so called crossover distance Xc. At Xc the travel times 

of the direct arrival and the head wave are the same:

T direct=T head

⇒ X c=2 th 21

2−1

 (6.57)

(Lay et al. 1995: 82-83)
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6.5.2.4. Apparent velocities for dipping layers

  In the presence of a dipping layer, head waves have different apparent velocities 

depending on whether the rays are travelling  updip or  downdip, since the wave fronts 

are incident on the surface at different angles (fig. 6.8). 

1
vu

=
sin  ic−

v1

 

1
vd

=
sin ic

v1

(6.58)

ic... critical angle, θ... dip of layer

(Lay et al. 1995: 87-88)

Figure 6.8   raypath geometry for head waves along a dipping interface

(Source: Lay et al. 1995: 88)

Figure 6.9   travel time curves for a dipping structure (time increasing to the right for downdip 
and time increasing to the left for updip direction)

(Source: Lay et al. 1995: 88)
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