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Chapter 1
Topological Preliminaries

In this chapter we will prepare the necessary topological tools and terminology for
the study of non-linear maps between non-metrizable locally convex spaces. The first
part introduces different types of spaces, in which sequences suffice to describe certain
topological features such as continuity or the closure of a set. It turns out that for
locally convex spaces which most commonly appear in applications the property of
being a Fréchet-Uryson space is — like first-countability — equivalent to metrizability
(Theorem 2.5.16]), while many important non-metrizable spaces are (k)- and sequen-
tial spaces. In the second part we briefly discuss the Arzela-Ascoli-theorem and the
compact-open topology.

1.1 Sequential, (k)- and Fréchet-Uryson-spaces

Definition 1.1.1. Let X be a set, U C X and let (;),.; be a net in X. We say that
(2);1 18 finally contained in U, if there exists an index iy € I so that {z;| i >io} C U.
If X is a topological space and U an open subset of X, then every net in X which
converges to an element of U is finally contained in U.

Definition 1.1.2. Let (X, 7) be a topological space. A subset U of X is called sequen-
tially open, if every sequence which converges to an element of U is finally contained in
U. For a subset A of X, we set [A]seq := {x € X | F(an),eny C At — x}, which we
call the sequential adherence of A. If A = [Alseq, then A is called sequentially closed;
i.e. a subset is sequentially closed iff all sequences of A which converge in X have all
their limit points in A. The family of sequentially open sets defines a topology 7 on
X and the closed sets of (X, 7;) are exactly the sequentially closed ones. A topological
space (X, 7) is called sequential if T = 74, i.e. if every sequentially open set is T-open.
We note that in an arbitrary topological space (X, 7) every 7-open/closed set is also
Ts-open/closed, but in general the converse does not hold. However, 75 has the same
convergent sequences as 7: If z,, — x and if U is a 7,-open-neighborhood of z, then
there exists an index ngy so that (a:n)n>n0 C U, hence =, = x. Conversely, every
Te-convergent sequence is 7-convergent since 7 < 7,. In fact, 74 is the finest topology
on X which has the same convergent sequences as 7 (see [Lemma 1.1.4]). Note that
the operation of forming the sequential topology 7, is idempotent, i.e. (7)s = 75.

Lemma 1.1.3 ([Eng89, p.53]). Let (X, 7) be a topological space. TFAE:
(1) (X,7) is sequential.
(2) For every topological space (Y,o), a function f: X — Y is continuous if it is
sequentially continuous.
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Proof: (1)= (2) Let (Y,0) be an arbitrary topological space and f: X — Y a se-
quentially continuous map. Suppose that f is not continuous. Then there exists
a (non-empty) open set U C Y so that f~'(U) is not open. Hence there exists a
sequence (z,),cy S0 that z, — z € f~!'(U) but which is not finally contained in
f71(U). So we can extract a subsequence (zn, ),y € X \ f7'(U). Thus z,, — =
but f (x,,) # f(x), which contradicts the sequential continuity of f. (2)=-(1) The
identity map id: (X,7) — (X, 7g) is sequentially continuous and hence continuous,
which implies 7 = 75. O

Lemma 1.1.4. Let (X, 7) be a topological space.
(1) 7g is the finest topology on X which has the same convergent sequences
as T.
(2) [KM97, p.37 |, [Gor] 7¢ is the final topology with respect to all convergent se-
quences; i.e. the final topology with respect to all continuous maps
f: Ny — (X, 1), where Ny, denotes the Alexandroff-compactification of N.

Proof: (1) Let o another topology on X which has the same convergent sequences
as 7. Then id: (X,7s) — (X, 0) is sequentially continuous, and thus by the above
lemma continuous, which means that 7 is finer than o.

(2) Let U € 7g, let s: Ny, — X be continuous and let s(o0) =: z. If x ¢ U, then
oo & s7H(U) and hence s (U) is open in Ny,. If z € U, then there exists a number
ng 50 that (s),,, C U and hence {n >ne} C s7' (U), so the preimage of U under
s is open. Since s was arbitrary, it follows that U is open in the final topology of all
convergent sequences. Conversely, suppose that U is open in the final topology. Let
z, — x € U and let s be the continuous extension of the sequence to N. Since U
is open and since oo € s~ (U), there is an ng so that {n > ng} C s~ (U), and thus
x, = s(n) € U for n > ny. Hence U is sequentially open. O

Example 1.1.5. Every topological space which satisfies the first axiom of countability
(AA1) is a sequential space. For separated topological vector spaces the properties
metrizable and (AA1) are equivalent. Nevertheless, there are important classes of
non-metrizable sequential LCVS: A (DFM)-space is a locally convex space which is
the strong dual of a Fréchet-Montel space (see [Definition 2.5.12). Webb ([Web68])
showed that every (DFM)-space is sequential.

Theorem 1.1.6 ([Eng89, p.54, Appendix], [Fra67]).
Let X be a sequential space and let A C X.
(1) Sequentiality is passed over to open and closed subspaces of X, while arbitrary

subspaces of X need not to be sequential.
(2) In general A = [Alseq does not hold.

Definition 1.1.7. A topological space X is called a Fréchet-Urysohn-space (shortly
(FU)-space) if A = [Alseq holds for every subset A of X.

Remark. Tt is easy to see that every (FU)-space is sequential, while the converse
is false ([Eng89, p.54]). (FU)-spaces can be characterized as hereditary sequential
spaces: A topological space (X, 7) is an (FU)-space if and only if every subspace of X
is sequential. ([Fra67, Proposition 7.2])
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Definition 1.1.8. A topological space (X, 7) is called a (k)-space or compactly gen-
erated space if a subset U of X is open if and only if U N K is open in K for all
compact subsets K of X. In other words a topological space is a (k)-space if its topol-
ogy coincides with 7k - the final topology with respect to all pairs (K, tx) where K
is a compact subset of X and where (i denotes the inclusion map K — X. If X is
Hausdorff then 7« can also be described as the final topology with respect to all pairs
(K, f) where K is a compact topological space and f: K — X a 7- continuous map.
We note that a topological space is a (k)-space if and only if a function f: X — Y to
an arbitrary topological space is continuous iff all its restrictions to compact subsets
of X are continuous.

Remark. 1t is easy to see that every Hausdorff sequential space is a (k)-space.

Definition 1.1.9. Let X,Y be topological spaces and F C € (X,Y). A topology
on F is called jointly continuous or admissible if the evaluation ev: F x X — Y is
continuous.

Theorem 1.1.10 ([Wil04, p.288]). Let (X, 7) be Hausdorff and a (k)-space, let Y be
a topological space and F C € (X,Y) a family of continuous functions. The compact-
open topology on F is jointly continuous and it is the coarsest topology with this prop-
erty.

Definition 1.1.11. A topological space (X, 7) is called a Lindeldf space if every open
cover of X possesses a countable subcover. We say that X is strongly or hereditarily
Lindeldf if every open subspace of X is again a Lindelof space.

Theorem 1.1.12 ([Eng89, p.256]). A metrizable space is a Lindeldf space iff it is
second-countable.

Definition 1.1.13. X is called hemicompact if there exists a sequence ([,), oy of
compact subsets of X so that every compact subset K of X is contained in some
Kpy,. We say that X is hereditarily hemicompact if every open subspace of X is
hemicompact.

Definition 1.1.14. A Hausdorff topological space is a Tychonoff space or a completely
reqular space if for every closed set A C X and every xy € X \ A there is a continuous
function f: X — [0,1] so that f|4 = 0 and f(z¢) = 1. Every Hausdorff topological
vector space is a Tychonoff space (see for example [Sch71]).

Theorem 1.1.15 ([Wil04, p.289] [Eng89, p.165]).
Let X be a Hausdorff topological space.
(1) If X is hemicompact, then (€ (X,R), Te,) is metrizable.
(2) Suppose that X is Tychonoff space. Then (€ (X,R), 7o) is metrizable if and only
if X is hemicompact.
(3) If X is first-countable and hemicompact, then it is locally compact.

Corollary 1.1.16. A metrizable topological vector space (over K € {R,C}) is hemi-
compact iff it is finite-dimensional.

Proof: Recall that a Hausdorff topological vector space is locally compact iff it is
finite-dimensional, in which case it is isomorphic to some KV (see for example [Sch71]).
Then the claim is an immediate consequence of part (3) of the above theorem. [
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1.2 Function spaces

Definition 1.2.1. Let X be a topological space and let Y be a uniform space. A
family F of functions X — Y is said to be equicontinuous on a subset A of X if the
family of restriction F|4 is equicontinuous as a family of functions A — Y. In general,
this does not imply that F is equicontinuous at a point x € A, this (in general) holds
true only if x € A°.

Theorem 1.2.2 (Ascoli [Kel75l, p.234]). Let X be a (k)-space which is either Hausdorff
or reqular, let Y be a Hausdorff uniform space. A subfamiliy F of € (X,Y) is compact
in (€(X,Y), 7.) if and only if satisfies the following:

(i) F is closed in (€ (X,Y), Teo)-

(ii) F(z) is relatively compact for each x € X.

(iii) F is equicontinuous on every compact subset of X.

Definition 1.2.3. Let X and Y be topological spaces. A family F of functions X — Y
is called evenly continuous if for every x € X, every y € Y and each neighborhood U
of y there is a neighborhood V' of z and a neighborhood W of y so that f(x) € W
implies that f(V) C U.

Theorem 1.2.4 ([Kel75, p.236]). Let X, Y be topological spaces and let Y be a reg-
ular Hausdorff space. If a family F C € (X,Y) is compact with respect to a jointly
continuous topology, then F is evenly continuous.

Theorem 1.2.5 ([Kel75, p.237]). Let X be a topological space, let Y be a uniform
space and F C €(X,Y).
(1) If F is equicontinuous, then it is evenly continuous.
(2) If F is evenly continuous and x € X is a point of X so that F(x) is relatively
compact in Y, then F is equicontinuous at x.

Proposition 1.2.6. Let X be a (k)-space and let Y be a reqular Hausdorff uniform
space. A family F C € (X,Y) is compact in (€ (X,Y),Te) if and only if

(i) F is closed in (€ (X,Y), Teo)

(ii) F(z) is relatively compact for all x € X.

(iii) F is equicontinuous.

Proof: Sufficiency follows from [Theorem 1.2.2] Suppose that F is compact. Then
(1) and (2) follow again from [Theorem 1.2.2] The compact-open topology is jointly
continuous on (k)-spaces ([Wil04], p.288]) so[Theorem 1.2.4] can be applied to conclude
that F is evenly continuous. Because of (2) we an apply [Theorem 1.2.5]to conclude
that F is equicontinuous. O

This form of the Arzela-Ascoli-theorem is particularly useful in the setting of locally
convex spaces: They are always regular, and the class of locally convex spaces which
are (k)-spaces covers metrizable as well as (DFM)-spaces (see [Proposition 2.5.15]).




1.2 Function spaces

Theorem 1.2.7 ([Din99, p.166]). Let X be a topological space and let F be a lo-
cally convex space whose topology is generated by the set of semi-norms P. Then
(€(X, F),Teo) is a locally convex space and T, is described by the system of semi-

norms {|| Ik + KCX, ¢€ 73}, where || F||x 4 := sup,ex ¢ (F(a)).






Chapter 2
Functional Analysis

After recalling basic definitions and properties of locally convex spaces we give a
broader survey of projective and especially inductive limits of locally convex spaces,
which are in applications the most important spaces beyond Banach or Fréchet spaces.
Even the inductive limit of a sequence of normed spaces may have pathological topo-
logical properties, hence additional regularity assumptions are needed to ensure that
the limit topology enjoys good features and relates to the generating sequence. Par-
ticular strong results hold for (DFM)-spaces (a limit of normed spaces which has the
Heine-Borel property), which turn out to be sequential spaces, and the subclass of
(DFS)-spaces (a limit of a sequence of normed spaces with compact linking maps),
which additionally satisfy that the convergent sequences are exactly those of the "steps"
of a generating sequence. In the last part we discuss Mackey-convergence and local
completeness, which play an important role in infinite-dimensional calculus.

Basic definitions. We call a topological vector space (TVS) over a field K €
{R,C} locally convex space (LCVS) if it is Hausdorff (instead of Hausdorff we will
also use the term separated) and if its topology admits a zero-neighborhood-base of
absolutely convex sets. A topology T on a vector space E is called locally conver if
(E,T) is a topological vector space (over K € {R,C}) and if the topology admits a
zero-neighborhood-base of absolutely convex sets. A locally convex topology may not
be Hausdorff. By cs ((F, 7)) we denote the set of all continuous semi-norms on a vector
space E carrying a locally convex topology 7. We say that a system of semi-norms P
on E describes the topology 7 if a net (x4),c4 converges to z in (E,7) if and only
if p(x —x,) — 0 for all p € P. By UF we denote the system of zero neighborhoods
of E. A subset B of a topological vector space is called bounded if for every U € UF
there is a A > 0 so that B C AU. If E is equipped with a locally convex topology
which is generated by the system of semi-norms P then a subset B of E' is bounded iff
sup{p(x) | = € B} < oo for every p € P. As a consequence, the absolutely convex hull
of a bounded set in a TVS with a locally convex topology is again bounded. By B(F)
we denote the family of bounded subsets of E. A set M C E is called bornivorous
if for every B € B(E) there exists a A > 0 so that B C AM and a locally convex
space in which every absolutely convex bornivorous set is a neighborhood of zero is
called bornological. A bounded and absolutely convex subset B of a LCVS (E,7)
is called a disc. We write D (F) for the family of all discs in E. If B is a disc in
E, then Eg denotes the linear span of B endowed with the topology defined by the
Minkowski functional pg, which is a norm on Eg. The gauge-topology on Ep is finer
than the subspace-topology of Eg as the inclusion map +: Egp — FE is continuous since
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it is bornological. A disc B is called a Banach disc if Eg is complete. We note that
every compact disc is a Banach disc (see [PCB87, p.83]). E’ denotes the dual space
of a LCVS FE and E’ equipped with the topology of uniform convergence on bounded
subsets of E is called the strong strong dual of E which we will denote by FEj.

2.1 Inductive Limits of locally convex spaces

Definition 2.1.1. A partially ordered set (A, <) is called a directed set if for any
a, 3 € A there exists a v € A so that a <~ and § <. A subset J of A is cofinal in
A if for any o € A there exists v € J so that a < 7.

Definition 2.1.2. Let S = (Ej, 7;),.; be a system of LCVS, let E be a vector space
and F = (f;);cz be a system of linear maps, where f;: E; — E. The inductive topology
on E with respect to (S,F) is the finest locally convexr topology on E for which all
maps f; are continuous. Note that - in general - it is not Hausdorff and that it is
strictly coarser than the final topology on E with respect to (S, F) (i.e. the finest
topology on E for which all f; are continuous). The inductive topology is generated
by the set of semi-norms {¢ seminorm on E | g o f; continuous Vi € Z}. Let (F,0) be
a topological vector space carrying a locally convex topology. Then a linear map
T: F — F is continuous if and only if all compositions T" o f; are continuous.

Definition 2.1.3. An inductive spectrum is a system S = (Eq, Ta) 5 4 0f locally convex
spaces which is indexed by a directed set A together with a system IT = (74,5),, seA
of continuous linear maps where 7, 3: £, — Ej3, which satisfies that 7, , = id, and
that g, 0 Ta 3 = Ta. A topological vector space (£, 7) carrying a locally convex
topology 7 is called inductive limit of an inductive spectrum (S, II), if there exists a
system of continuous linear maps £ = (eq),c4 (Which we call a universal inductive
cone ), where ¢,: E, — E, which satisfies:

(i) €g0Tap = €a

(ii) For any locally convex space (H,o) and a system of continuous linear maps
fo: Eo — H satistying fgom,3 = fo (any such system is called an inductive
cone), there exists a unique continuous linear map F': £ — H with Foe, = f,.

The inductive limit exists for every inductive spectrum and is - up to isomorphism
in the category of topological vector spaces - uniquely determined. We denote it by
lii>n(8 ,IT). The topology of the inductive limit is the inductive topology with respect
to (S, ). It might fail to be Hausdorff, even if all ¢, are injective and all steps E,, are
Hausdorff (see [Example 2.1.7]).

Theorem 2.1.4 (Construction of the inductive limit). Let (S,II) be an inductive
spectrum indexed by the directed set A. Let 1o: Ey — @Doca Eo be the canonical

injection and let M = spanU,<gIm (ta — tg 0T g). Set B := B,ea EQ/M, and let

O: Poca Ea — E be the canonical quotient map. Furthermore, let €, := ® o, and
let £ = (€a)gen- Then E equipped with the inductive topology with respect to (S, &) is
an inductive limit of (S,I1) and is unique up to isomorphism.
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Proof: For a < 3, observe that €, —€30m, 3 = Po(Ly — L3 0 T ) = 0,50 €4 = €307, 3.
Let (H, o) be a topological vector space and let F = (f,),c4 be a system of continuous
linear maps such that f,: E, — H and f, = fgom,pfora X 5. Let T': P cq B0 —
H, T(x) =3 fo (pa (z)), where po: @oeca Fa — E, is the canonical projection. T is
linear by definition and we observe that 70 (1o, — t3 0 Ta.8) = fa— f30Tap = fa—fa =
0. Hence M C ker (T). Let F be the unique linear map F': ' — H which satisfies that
Fo® =T. Since Foe, = f, we can conclude that F is continuous. Also, F'is uniquely
determined by the condition F o€, = f, since spanUu,c4 € (Fo) = E. So far we have
shown that (E,7) is an inductive limit of (S,II). Let (Ey, 72) be another inductive
limit with lifting maps 0 = (0a),c 4, Where d4: Eq — E5. Then there exist continuous
linear maps T': £y — Eyand U: Ey — E; so that To E, = ¢, and U od, = ¢,. Hence
UoToe, = €,. This means that UoT lifts the system of maps £: S — (E, 7). However,
idg has the same property and by uniqueness we conclude that idg = U o T. By the
same arguments we can also conclude that idgy, = 7" o U. Hence T' is a continuous
linear bijection between F and E; with continuous inverse. O

Definition 2.1.5. An inductive net is a family of locally convex spaces (Ea,Ta)aca
which is indexed by a directed set A and which satisfies that £, C Ejz and that
the inclusion map tn3: Fo — Ej is continuous (which we are going to denote by
E, — Ejy), for a < . If the index set is N with the usual ordering, the inductive net
is called an inductive sequence. The inductive limit of an inductive net (Eq, 7o) e 4 19
the vector space £ := U,e4 Eo equipped with the inductive topology with respect to
all inclusion ¢, : E, — FE. We say that a given topological vector space with a locally
convex topology (£, 7) is generated by an inductive net (Eo, 7o) 4 4 if lim E, = (E, 7).
We call an inductive net proper if E, C Ejs for a 2 3.

Lemma 2.1.6. Let (S,11) be an inductive spectrum indexed by A.

(1) [Mor93, p.246] Let J be a cofinal subset of A, let S|, = (Ej,Tj)jej and
My, = {Tap : @ =B, @, €T} Then lim (S, 1) = lim (8,11}, ).

(2) [FWG68, p.120] Suppose that all w, g are injective. Then all e, are injective and we
have that €, (Ea) C €5 (Eg). Let F, = €, (E,) and let o, be the topology induced
by € on F, so that (E,,7,) = (Fu,04). Then (Fy,04).e4 @ an inductive net
which produces the same inductive limit as (S,11). Furthermore, all properties of
the linkinkg maps w3 which are invariant under composition with isomorphisms

(of LCVS) carry over to the injections vop: Fr, — Fp.

Remark. From now on we will not distinguish between inductive nets and inductive
spectra with injective linking maps, which is justified by the above lemma. We will
intrinsically assume that we pass over to the representation as an inductive net if we
deal with an inductive spectrum with injective linking maps.

Remark. One of the consequences of the first part of the lemma is that we can enlarge
diagrams as long as the linking maps in the new diagram lead back to the old one (in
the fashion as required in the lemma) and that in applications it is usually enough
to consider enumerable spectra: For example, we consider the inverse half-ordering

<iny O Ri, where 7 =, siff r; > s; for all 1 < ¢ < d. If (S§,1I) is an inductive
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spectrum indexed by (R‘i, jmv> and (7,,),,cy is an arbitrary null sequence in R%, then

lim (S,11) = lim (S |y, s M) ) Of course the same holds whenever the index
i N n/neN n/neN

set has a countable cofinal subset. Suppose now that in addition all linking maps
Tq,3 are injective. Then (S ()t H](Tn)neN) is equivalent to an inductive sequence.
From now on, we will only regard inductive nets, which are in applications the most
common form of inductive spectra. Still, all problems (concerning the topology) of
the general concept for inductive spectra appear when dealing with inductive nets:

Example 2.1.7 ([Flo80, p.207]). The inductive topology might decay to the chaotic
topology, even if all steps are normed spaces: Let Py be the space of all real polynomials
vanishing at 0 and let E, := (P, || ||,), where |f]|, = max{|f(x)| DT € {O,H}
Then E = lim E,, carries the chaotic topology (= indiscrete topology).

Definition 2.1.8. We are going to introduce different types of inductive limits. A
LCVS (E,7) is called an (LF)/(LB)/(LNORM)/(LM)-space, if there is an induc-
tive net of Fréchet/Banach/Normed/Pre-Fréchet spaces (Ey), ey With lim (E,,), oy =
(E, 7). The terminology is not unified in the literature - for example Schaefer reserves
the term (LF)-space to limits of strict inductive sequences of Fréchet spaces - but in
more recent publications the terms (LB) and (LF) are used according to the above
definitions.

Despite the above example the most important spaces carrying an inductive limit
structure (e.g. the space of bump functions or the space of germs of holomorphic
functions) have good properties in the sense that their (linear-)topological features are
strongly related with those of the spaces of a defining inductive net of locally convex
spaces (which has the space under consideration as inductive limit). Indeed these
properties may depend on the choice of the defining net, but usually the regularity
properties are passed over to equivalent inductive nets.

Definition 2.1.9. Two inductive sequences (E,), oy, (Fn),ey are called equivalent
if for every n € N there exists an m € N so that F,, — F,, and if vice versa for
all m € N there exists an n € N so that F,, — E,. Equivalent sequences have the
same inductive limit, the converse is true if the limit is Hausdorff and if all sequence
members are Fréchet spaces ((Theorem 2.1.11).

Theorem 2.1.10 ([Flo71, p.161]). Let F' and (E,), oy be Fréchet-spaces and suppose
that £ = lim E,, is separated. For every continuous linear map T: F — E there is an
indezx ng so that T(F) C E,, and T: F — (Ey,, Ty,) s continuous.

Theorem 2.1.11 ([Flo80, p.209]). Let E be a Hausdorff-(LF)-space and let (E,), cx
and (F,),cn be inductive sequences of Fréchet spaces which generate E, i.e. E =
lim £, =lim F,,. Then (E,), oy and (F,), oy are equivalent.

— —

As a consequence the usual regularity properties of separated (LF)-spaces which
relate to the steps of a generating sequence (of Fréchet-spaces) are independent of the
particular choice of the generating sequence, which is quite useful as one can be sure
that the lack of good properties of a sequence of Fréchet spaces is not due to a bad
choice of the generating sequence but a defect of the limit space itself. However, there
are (LM)-spaces with nonequivalent generating sequences (Example 2.2.9)).

10



2.2 Regularity concepts for inductive limits

2.2 Regularity concepts for inductive limits

Definition 2.2.1. Let (E,, 7,),c4 be an inductive net of LCVS.

(1) We call (Ea,Ta)aeq regular if for every bounded set B C lim E, there exists a
step E,, so that B is bounded in (E,,, Ta,)-

(2) (BasTa)aeq is sequentially retractive if for every convergent sequence (x,),, oy in
lim E, there is a step Eq, so that (z,,),cy C Ea, and x,, converges in (Fq,, Ta,)-
H

(3) Let A = N with the usual ordering. We say that (£, 7,),,cy has property (M) if
there exists a sequence (U,,) of 0-neighborhoods U, in (E,, 7,,) so that U, C U, 11
and which satisfies

Vn 35 >nVk>j:(Uy,1) = (U, )
We will call property (M) also Retakh’s condition.

Lemma 2.2.2. If (E,), oy s regular, then lim E,, is Hausdorff.

Proof: E :=lim E, is Hausdorff if and only if N := Nygue U = {0}. N is the closure
of {0} in E and hence a subspace of E, which is bounded and therefore contained and
bounded in some step £,,,. For U € U(;E "0 there is a A > 0 so that N C AU, and hence
N c U. This implies that N C mUeUOE"O U and thus N = {0} as E,,, is Hausdorff. [

Theorem 2.2.3 ([F1lo80, p.214]). Let (E,),cy be an inductive sequence of normed
spaces, and let K, be the closed unit ball in E,,. If the set 31" | €, K; is closed in E,, 14
for allm € N and for all €;,. .. €y, >0, then (E,), oy s reqular.

Lemma 2.2.4 ( [Flo73], [KucO0l]). For an inductive sequence (E,), .y of Fréchet-
spaces, TFAE:
(1) lim Ei, is regular.
(2) lim E), is Hausdorff and sequentially complete.
(3) lim E,, is Hausdorff and Mackey-complete (see|Definition 2.9.1)).

The following theorem is a generalization of Grothendieck’s factorization theorem
due to K. Floret, which we present in a slightly more general way as we make no local
convexity assumptions about the source space.

Theorem 2.2.5 ([Flo73, p.69]). Let (F,7) be a metrizable topological vector space,
and let ((Ey, Tn)),en be a sequentially retractive sequence. For every continuous linear
map T: F — h_I)nEn there is a number ng € N so that T factorizes continuously over
some E,,, i.e. there is an ng € N so that T € L (F,(Engy, Tny))-

Proof: Let (V,),cy be a countable zero-neighborhood-base of F with V,,;; C V.
First we show that T (F) C E,, for some ng € N. Suppose that this does not
hold. Then for every n € N there is a z,, € F so that T'(z,) € F \ E, and we
may choose x,, so that x, € V,. By construction, x, — 0 but (7'(z,)) cannot be a
null sequence in lim £, as it is not contained in any step E,, which contradicts the
continuity of 7" and thus 7' (F") has to be contained in some E,, . It remains to show

11
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that T: F — (E,,,T,,) is continuous for some n; > nyg. WLOG we may suppose
ng = 1. Suppose T: F' — (FEy, 1) is discontinuous for every k € N. Then for every
k € N there is a null-sequence (a:f;)neN, where z¥ € V,, for which (T(xfl))neN does not
converge to 0 with respect to 7,. Then the sequence z},x 23 zi 22 23 z} ... is a
null-sequence in F, but the image sequence cannot converge to 0 in any step E,,, which
again contradicts the continuity of T' because of the supposed sequential retractivity

of (Ey),en, Which proves the claim. O

Lemma 2.2.6 ([Flo73, p.67/68]). For a sequentially retractive sequence of LCVS
(En)yen: the following holds:
(1) (En),ey is regular.
(2) lim B, ds separated.
(3) zn — x in lim K, implies that x, — x in some (Ey,, 7).
(4) If all E,, are Fréchet-spaces, then any basis of im E,, is a Schauder-basis.
(5) Any equivalent sequence to (Ey), oy is also sequentially retractive.

Proof: (1) Let B be bounded in lim E,,. WLOG we may suppose B to be absolutely
convex and we define Ep as the linear span of B equipped with the gauge-topology
associated to B. The space Ep is metrizable and the injection ¢: Ep — lim E,, is
continuous, thus (by[Theorem 2.2.5)) ¢ has to continuously factorize over some step F,,,
which implies that B has to be bounded in E,,,. (2) and (3) follow from
(4) see [F1o70] . (5) follows from the definition. O

As an immediate consequence of the preceding lemma and|T'’heorem 2.1.11|we obtain
the following result:

Lemma 2.2.7. If an (LF)-space E possesses a sequentially retractive generating se-
quence of Fréchet spaces, then every other generating sequence of Fréchet spaces for B
1s also sequentially retractive.

Definition 2.2.8. An (LF)-space which can be generated by a sequentially retractive
sequence of Fréchet spaces is called a sequentially retractive (LF)-space. By the pre-
ceding lemma this property is independent of the particular choice of the sequence.
However, this is not true if the sequences consist of Pre-Fréchet spaces:

Example 2.2.9 (|[Flo73, p.69/4.1 and p.70]). Let (H,7) be a Banach-space and let
(Hp),en be a sequence of proper and dense subspaces with H = U,ey Hyp. Then
(H,7) =lim H,, and (H,),y is a generating sequence of (H,7) which is not sequen-
tially retractive. Now set (F),, 7,,) = (H, 7). Then also (F, ),y is a generating sequence
of (H,7), but which is of course sequentially retractive.

There are other strong regularity concepts which we only mention briefly (see for
example [Wen90] ).

Definition 2.2.10. An inductive sequence (E,, 7,), oy With inductive limit (£, 7) is
called boundedly retractive if for every bounded set B in E there is n € N such that
B C E, and the topologies 7 and 7, coincide on B. The sequence (E,, 7,),,cy is called
(sequentially) compactly reqular if every (sequentially) compact subset of the inductive
limit is (sequentially) compact in some step.

12
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Theorem 2.2.11 ([Wen96, Theorem 2.7]).
For an inductive sequence (E,,T,),cy of Fréchet-spaces, TFAE:
(1) (En, Tn)pey U8 sequentially retractive.

)
(2) (B, Tn)pey i boundedly retractive.
(3) (En, Tn)pen 18 sequentially compactly reqular.
(4) (En,Tn)pey s compactly regular.
(5) (En,Tn)pen satisfies property (M).

Theorem 2.2.12 ([Wen96, Corollary 2.8]). Let E be an (LF)-space.
If E is sequentially retractive, then E is complete.

2.3 Projective Limits of locally convex spaces
The dual concept to inductive spectra is that of projective spectra:

Definition 2.3.1. Let S = (E,, 7o), 4 be a system of LCVS. Let E be a vector space
and £ = (€q),c 4 be a system of linear maps, where e,: E — E,. The projective topol-
09Y Tpro; o1 E with respect to (S, &) is the coarsest topology on E for which all maps
€q are continuous (it coincides with the initial topology from general topology). Tpre;
is locally convex and {go f,|q € cs(E4,7s), a € A} describes 7,,0;. If € separates
points (i.e. Vx € E 3f € &€: f(x) # 0), then 7,.,, is Hausdorff. Let (X,7) be an
arbitrary topological space and f: X — (E, 7). Then f is continuous if and only if
€, © f is continuous for every o € A.

Definition 2.3.2. A projective spectrum is a system of LCVS S = (E,, Ta) ,c 4 Which
is indexed by a directed set A together with a system II = (m,4),, ~BeA of continu-
ous linear maps where 7, 3: Eg — E,, which satisfies that m, g o 73, = 7, and that
Taa = id,. We say that a projective spectrum is enumerable if its index set is enumer-
able. To a given projective spectrum (S, IT), a topological vector space (E, T) carrying
a locally convex topology 7 is called its projective limit, if there exists a system of
continuous linear maps £ = (€4), 4 (Which we call a universal projective cone), where
€o: F — E,, which satisfies:

(i) 75065 = €a

(ii) For any locally convex space (H,o) and any system of continuous linear maps
fo: H — E, satistying 7,3 0 fg = f, (any such system is called a projective
cone), there exists a unique continuous linear map F': H — F with €, 0 F = f,.

The projective limit exists for every projective spectrum and is - up to isomorphism
in the category of topological vector spaces - uniquely determined. We denote it by
liin(S ,IT). The topology of the projective limit is the projective topology with respect
to (S,E).

13
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Theorem 2.3.3 (Construction and properties of the projective limit). Let (S,1II) be
a projective spectrum indexed by A and let ey [lgeq Eg — Eo be the projection onto
E,. Set

E:= {xe IT E.

acA

€a() =Tapoes(r) Va< B e A} , €= (€a) e

(1) E equipped with the projective topology with respect to (S, E) is a projective limit
of (S,1I1) with universal projective cone £ and is unique up to isomorphism.

(2) E is a closed subspace of [laea Fa and the projective topology on E is the
subspace-topology induced by [Tpes Eao-

(3) E is always Hausdorff and is complete if all (E,,T,) are complete.

(4) E is metrizable if A is countable and if all (E,,T,) are metrizable.

(5) Ewvery complete LC'VS can be represented as the limit of a projective spectrum of
Banach spaces.

(6) Let J be a cofinal subset of A. Then lim (S,1I) = lim (S‘J, H‘J)

(7) If E = lim(S,1I1) is complete, then a subset K of E is relatively compact if and
only if e, (K) is relatively compact in E, for all « € A.

The proof of (1) is simple and similar to that of [Theorem 2.1.4] proofs to (2)-(5)
can be found in [FW68, §6 and §12] and for (6) we refer to [Mor93| p.294]. (7) is a
direct consequence of Tychonoft’s Theorem (see [FWG68|, p.75]).

Definition 2.3.4. A projective spectrum (S,II) indexed by A with projective limit
E and a universal cone £ = (€,)ac4 is called reduced if €,(F) is dense in E, for every
a € A and we say that (S,1I) is strict if 7, g(Ep) is dense in E,. By construction we
have 7, 5(€s(Es)) = €o(E), which shows that every reduced spectrum is strict.

Definition 2.3.5. A projective net is a family (E,),. 4, of LCVS indexed by a directed
set which satisfies that Eg — E, and that the inclusion is continuous for a < 3. A
projective sequence is a projective net whose index set is N with the usual ordering.

The limit of a projective net is (| E,.
acA

2.4 Duality of Projective and Inductive spectra

Definition 2.4.1. For T" € Lp(E, F) the dual or adjoint map T*: F] — Ej is the
continuous linear mapping f — foT. Let (S,II) be a projective/ inductive spec-
trum with index set A. Set &* := {(So();7 | a € A} and IT* := {W;ﬂ ’ Top € H}.
Then (S§*,I1*) is an inductive/projective spectrum which we call the dual inductive/
projective spectrum of (S, 1I).

Definition 2.4.2. If 1: E' — F'is the inclusion map then we write p for its dual map
t*. It is easy to see that p: F] — Ej is the restriction mapping f — f|g. The dual
spectrum to an inductive sequence (E), oy will be written as ((E,);, pn),cn, Where

pn: (Eni1), — (E,), denotes the restriction mapping,.

14



2.4 Duality of Projective and Inductive spectra

Lemma 2.4.3 ([Flo71) p.158]).
(1) Let E, F be locally convex spaces and let T € Lg(E,F). T has dense range if
and only if the dual map T™* is injective.
(2) Let (S,1II) be a projective spectrum. (S,11) is strict if and only if all dual maps
T 50 (Ea)y — (Eg)y are injective.

Theorem 2.4.4 ([FW68| p.143]).
(1) Let (S,1II) be a reduced projective spectrum indexed by A and let
E = (€a)peq be a universal projective cone. Let £ := (€,),c4 be the system of
dual maps, where €: (E,), — (@1 (S, H)); The family & is an inductive cone
and can thus be lifted to a linear map
/
v: lim (8%, 117) — (lim (S, 1)),
which is bijective and continuous.
(2) Let (S,1I) be an inductive spectrum indexed by A and let € = (€a),cq be a

universal inductive cone, where €,: E, — lm(S,11). Let & = (€3),c4 be
the system of dual maps, where € (hi>n (&H)); — (E,),. The family € is a

projective cone and can thus be lifted to a linear map
. / . * *
L: (hl)n(S,H))b—%in(S ,1T7)
which is bijective and continuous.

In the next theorems we are going to state conditions on the inductive and projective
spectrum, respectively, which assure that the dual spectrum generates the dual space
of the limit of the spectrum under consideration. For this we need the following
generalization of regularity:

Definition 2.4.5. Let (S,1II) be an inductive spectrum, £ = lim (S, 1I) and let & =
(€a)aea be a universal inductive cone. (S,II) is called regular, if for every B € B(E)
there exists an oy € A and a B € B(E,,) so that €,,(B) = B.

Theorem 2.4.6 ([FW68| p.145)). If (S,11) is a regular inductive spectrum, then
. " s * *
(tiny (8,11)), == Jim (87, 11°)
Theorem 2.4.7. Let (E,), oy be a reduced projective sequence of normed spaces and
suppose that (h;n En>; is bornological. Then ((Ey)}),cy @ an inductive sequence of
Banach spaces and

iy (), = (lim ),

Proof: Since F = th FE,, is a metrizable LCVS and thus bornological, its strong dual
is complete and as Ej is bornological this implies that it is already ultrabornological
IMV92, p.283]. Since (E,),cy is reduced the dual maps ¢ : (E,), — (En41); are
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injective (by |[Lemma 2.4.3|) and thus <(E”);> oy 15 an inductive sequence. The limit

of an inductive sequence of normed spaces is webbed (see [Jar81l p.92]) and so we can

apply Webb’s open mapping theorem to conclude that the continuous linear bijection

¢: lim ((En);)) — Ej (see [Theorem 2.4.4)) is an isomorphism. O
— neN

2.5 Some classes of locally convex spaces

Definition 2.5.1. A sequence of bounded sets (B,),,cy in a locally convex space £
is called a fundamental sequence of bounded sets if for every B € B(FE) there exists
aA>0and an ny € Nsothat B C A- B,,. A locally convex space E is called a
(DF)-space if it possesses a fundamental sequence of bounded sets and if for every
sequence of absolutely convex 0-neighborhoods the set N,y Vi, is a 0-neighborhood in
E whenever (,ey Vi, is bornivorous.

Remark. The letters (DF) stand for Dual-Fréchet. Indeed the dual of a Fréchet-space
is a (DF)-space (see [MV92, p.298]) and the strong dual of a (DF)-space is a Fréchet-

space. Note that a (DF)-space is metrizable if and only if it is normable (|Jar81)
p.259]).

Another important example of (DF)-spaces are separated (LNorm)-spaces. In gen-
eral, a generating sequence for such a space need not to be regular [Flo71 p.163].
Still the family of closures of bounded sets of a generating sequence forms a funda-
mental system of bounded sets and we will see in [Theorem 2.5.4] that every separated
(LNorm)-space possesses a regular generating sequence.

Theorem 2.5.2 (Grothendieck [Flo71l, p.163]). Let (E,), oy be a sequence of normed
spaces and suppose that E = hi>nEn is separated and let B,, denote the unit ball of E,.

If B is a bounded subset of E, then there exists an ng € N such that B C )\BinoE. In
particular, lim E, is a bornological (DF)-space.

Theorem 2.5.3. For a locally conver space E, TFAE:
(1) E has a fundamental sequence of bounded sets and is bornological.
(2) E is a bornological (DF')-space.
(3) E is the limit of a reqular inductive sequence of normed spaces.

Proof: (3) = (1) Let (E,), oy be a regular inductive sequence of normed spaces which
generates F and let B,, be the unit ball in £,,. As every bounded set of F is contained
in some step E,, and hence in some AB,,, it follows that (B,,),, .y forms a fundamental
sequence of bounded sets. Normed spaces are bornological and the inductive limit of
a family of bornological spaces is again bornological.

(1) = (2) If (V,),ey s a sequence of absolutely convex zero-neighborhoods then
V' = nen Vi is absolutely convex and hence a zero-neighborhood if it is bornivorous,
since E is bornological by assumption.

(2) = (3) Suppose that E is a (DF)-space with fundamental sequence (B,), .. As
the closed absolutely convex hull of a bounded set is again bounded, we may WLOG
assume that all members of the fundamental sequence are bounded discs.
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Let E, := Ep,. Then E = U,y £, and even E = lim E, holds: As every F, injects
continuously into £ we have that (h_n} E,) — E. Since E is bornological, the map
id: £ — lim E,, is continuous if it is bornological. Let B € B(E). Then there is an
no € Nand a A > 0so that B C AB,,,. Hence B is bounded in E,,, and hence bounded
in li_rr>1En, which shows that £ = hi>nEn As every bounded subset of E is contained
in some step FE,, the sequence is regular. O

As an immediate consequence of [Theorem 2.5.2] and [Theorem 2.5.3| we obtain:

Corollary 2.5.4. An (LNorm)-space admits a regular generating sequence iff it is
separated.

Definition 2.5.5. A locally convex space F is called semi-Montel if it satisfies the
Heine-Borel-property - i.e. if every bounded subset of E is relatively compact in E.
We say that £ is a Montel space if it is semi-Montel and barrelled.

Definition 2.5.6. Let (E,7) be a locally convex space and let ¢ denote the natural
injection £ — (E;)" into the bidual space of E, where (v(z)): f +— f(z) is the evalua-
tion map, for x € E, f € E’. The mapping ¢: £ — (E}); is injective and continuous
and we say that E is semi-reflexive if it is surjective and FE is called reflexive if ¢ is an
isomorphism of LCVS.

Theorem 2.5.7 ([Mor93, p.242]). A semi-reflexive space is reflexive if and only if it
is barrelled.

Theorem 2.5.8 ([Mor93| p.242], [FWG6S, p.108], [KCT73], [AKGS]).
(1) Semi-Montel spaces are semi-reflexive and Montel spaces are reflexive.
(2) The strong dual of a Montel space is again a Montel space.
(3) Montel spaces are quasi-complete (every bounded Cauchy net converges).
(4) There are Montel spaces which fail to be complete.

Theorem 2.5.9 ([FWG68| p.108]). Let E be a Montel space and B C E' be a bounded
subset. Then the strong topology coincides with the weak topology on B. In particular,
a sequence in E converges strongly iff it converges weakly.

Remark. Note that in general the topology on a Montel space is different from its
weak topology, even though both topologies have the same convergent sequences. For
example (DFM)-spaces (defined below) carry the weak topology iff they are finite-
dimensional (see [KS92]).

Example 2.5.10. For any open subset 2 of C?, the space of C-valued holomorphic
functions H(2) equipped with the compact-open topology is a Montel space.

Example 2.5.11. By the Riesz lemma a normed space is semi-Montel iff it is finite-
dimensional: Suppose that (E,|| ||) is a normed semi-Montel-space. Then its closed
unit ball is by assumption compact, so E has to be finite-dimensional by Riesz’ lemma.

Definition 2.5.12. An (FM)-space (Fréchet-Montel space) is a Fréchet space which
is also a Montel space. A (DFM)-space is a (DF)-space which is also a Montel space.
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Theorem 2.5.13 (Duality of (FM)- and (DFM)-spaces).
(1) The strong dual of an (FM)-space is a (DFM)-space.
(2) The strong dual of a (DFM)-space is an (FM)-space.

Proof: (1) If F' is a Fréchet space then its strong dual is a (DF)-space and the strong
dual of a Montel space is a Montel space. (2) The dual of a (DF)-space is a Fréchet
space and again the property of being Montel transfers to the strong dual. O]

Corollary 2.5.14. (DFM)-spaces are complete.

Proof: Every (DFM)-space is the strong dual of a metrizable (hence bornological)
LCVS, and hence complete, since the space of continuous linear operators L£,(E, F')
equipped with the topology of uniform convergence on bounded subsets of E is com-
plete if F is bornological and F' is complete (see [Sch71l p.117]). O

Proposition 2.5.15 ([KS02, p.397], [CO86]). For an (LM)-space E, TFAE:
(1) E is sequential.
(2) E is a (k)-space.
(3) E is metrizable or a (DFM)-space.

Theorem 2.5.16 ([KS02, p.2]). Let E be either an (LM)- or a (DF)-space. TFAE:
(1) E is a Fréchet-Urysohn-space.
(2) E is metrizable.

Corollary 2.5.17. A (DFM)-space is a Fréchet-Urysohn-space if and only if it is
finite-dimensional.

Proof: Let E be a (DFM)- and (FU)-space. E is metrizable by the above theorem
and even normable, as it is a (DF)-space ([Jar81, p.259]). A normed space is a Montel
space if and only if it is finite-dimensional, as the closed unit ball of a normed space
is compact if and only if its dimension is finite (Riesz’ lemma). The converse of
the theorem holds as every finite-dimensional Hausdorff topological vector space is
isomorphic to some KV (see [Sch71]). O

Despite sequentiallity, (DFM)-spaces satisfy other strong topological properties:

Theorem 2.5.18 ([Din75, p.462, 465]). (DFM)-spaces are strongly Lindeldf and
hereditarily hemicompact.

2.6 Special classes of inductive and projective lim-
its

Definition 2.6.1. A linear map 7' : E — F between locally convex spaces E, F' is
said to be compact if there exists a 0-neighborhood U in E so that T(U) is relatively
compact in F. If T(U) is already compact in F', then T is called bicompact.
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Remark. As the absolutely convex zero-neighborhoods form a zero-neighborhood base,
one can always choose an absolutely convex zero-neighborhood V' so that T'(V) is
relatively compact, if T' is a compact linear map. It is easy to see that a compact map
is continuous and maps bounded sets to relatively compact sets. The second property
is equivalent to the compactness of an operator if £ and F' are both normed spaces.

Theorem 2.6.2 (Bicompact factorization of compact maps [FWG68|, p.88]).

Let (E, 1), (F,o) be LCVS, and let T: E — F be compact. Let U be an absolutely
convex zero-neighborhood so that K := T(U) is compact.

Then T € Lg (FE, Fk), the inclusion map v: Fx — F is bicompact and the closed unit
ball of F is compact in F.

Proof: F is a Banach space since K is a compact disc in F'. Note that K is the closed
unit ball of F (i.e. K = {z € Fx | px(z) < 1} ) as it is closed in F, which shows
that ¢: Fx — F is bicompact. Since T'(U) C Fx and hence T'(E) C Fk it remains to
show that T': F — Fy is continuous. For any ¢ > 0 we have that ¢ - U C T~ !(eK)
and consequently T71(eK) € UF which means that 7' is continuous at 0 and hence
T: E — Fyg is continuous. ]

Definition 2.6.3. A projective spectrum (S, 1II) (index by a directed set A) is called
compact if for every a € A there exists an index § > a € A so that the linking
map 7,3 Ez — E, is compact. Likewise, an inductive spectrum (S, II) (index by a
directed set A) is called compact if for every o € A there exists an index § > a € A
so that the linking map 7, 3: Fo — Ejp is compact.

Corollary 2.6.4. Any compact inductive sequence (E,), .y of LCVS is equivalent to
a bicompact inductive sequence of Banach spaces (G),cy, such that the closed unit ball
of every Gy is compact in Gpy1.

Proof: Let (E, ),y be a subsequence so that ¢: E,, — E,_, is compact.
shows that for any [ € N there is a Banach-space (G, || ||) so that E,,
includes continuously into Gy; furthermore ¢: G; — E,, . is bicompact and the closed
unit ball B; of Gy is compact in E, . Consequently B; is compact in Gy, and
(En),ey 1s equivalent to (Gy),oy, which is illustrated by the following commutative
diagram (the arrows being the (continuous) inclusion maps):

'.'_>EnléEnz+14Enl+24"'

RNANAN

"'—>Gl4Gl+lq"'
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Theorem 2.6.5 (Schauder [Sch7ll p.111]). Let E and F be Banach spaces and let
T: E — F be continuous. T is compact if and only if the dual operator T*: F| — Ej
s compact.

Definition 2.6.6. A linear map T": £ — F' between topological vector spaces is called
nuclear, if it satisfies the following: There exist

(1) an equicontinuous sequence (f,),cn C E'

(2) a sequence (A,), ey C C with Y2 [A,] < o0

(3) a bounded sequence (yy), oy C F
so that

T(x) = f; At fo ()

Lemma 2.6.7 ([EWGS, p.101]). Let E, F' be locally convex spaces, and let T: E — F
be nuclear.

(1) If F is complete, then T is compact.

(2) The dual map T": F' — E' is nuclear.

Definition 2.6.8. A projective spectrum (S,1I) (index by a directed set A) is called
nuclear if for every a € A there exists an index § > a € A so that the linking map
Tap: Eg — E, is nuclear. Likewise, an inductive spectrum (S, II) (index by a directed
set A) is called nuclear if for every a € A there exists an index f > « € A so that
the linking map 7, 3: E, — Ej is nuclear.

Definition 2.6.9. A LCVS E is called nuclear, if its completion E can be represented
as the projective limit of a nuclear projective spectrum of sequentially complete LCVS.

Theorem 2.6.10. Let E be a locally convex space. The following are equivalent:
(1) E is nuclear.
(2) Ewvery continuous linear map from E to a Banach space is already nuclear.
(3) The completion E of E is the limit of a nuclear projective spectrum of Hilbert
spaces.

For Fréchet spaces it is possible to give another characterization of nuclearity in
terms of absolute summability:

Definition 2.6.11. A subset S of a locally convex space E is called summable to x
in £ if for every ¢ > 0 and each ¢ € cs(E) there is a finite subset F of S so that
q(z — Y 4ea8) < € holds for any finite subset A of S which contains F. We write
Ysess = x if S is summable to z. Call a sequence (z,,), oy absolutely summable if
it is summable and if for every ¢ € cs(&) the sequence (q(z,)),cy is summable in
R. (%n),cy is absolutely summable if and only if limy_. S, x exists in E and
if Yoo q(xn) < oo for all ¢ € cs(£). If E is complete, then a sequence (z,,),cy
is absolutely summable if and only if for each ¢ € cs(E) the sequence (¢(x,))nen is
summable in R (see [Jar&81][p.305]).
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2.7 Fréchet-Schwartz and (DFS)-spaces

Theorem 2.6.12 ([Sch71], p.184]).
(1) A Fréchet space is nuclear if and only if each summable sequence is also absolutely
summable.
(2) A Banach space is nuclear if and only if it is finite-dimensional.

Theorem 2.6.13 (Permanence Properties of nuclear spaces [FW68, pp155]).
The class of nuclear spaces is closed under forming subspaces, projective limits, prod-
ucts and quotients by closed subspaces.

2.7 Fréchet-Schwartz and (DFS)-spaces

Definition 2.7.1. We call a locally convex space (5)-space if it is the projective limit
of a compact spectrum of locally convex spaces. A Schwartz space is a LCVS whose
completion is an (S)-space. A Fréchet-Schwartz (shortly (FS)-space) is a LCVS which
is the projective limit of an enumerable compact spectrum of locally convex spaces.
The factorization theorem for compact maps between LCVS (Theorem 2.6.2) yields
that every (F'S)-space can be generated by a compact projective sequence of Banach
spaces. Dually, the inductive limit of a compact sequence of locally convex spaces is
called (DFS)-space. Indeed (FS)-spaces and (DFS)-spaces are dual (as locally convex

spaces) to each other.

Remark. Note that the class of limits of compact inductive nets is not designated
with its own name - the reason for this lies in the fact that every ultrabornological
space is the limit of a compact net of Banach spaces (which was proven by Raikov
- see [Flo71), p.168]). So according to Floret [Flo71) p.168] "there is little hope that
special properties could be deduced from the compactness of the linking maps". Note
that every Banach space is an ultrabornological space and hence limits of compact
inductive nets are in general not semi-Montel spaces - unlike projective or inductive
sequences with compact linking maps.

Remark. In [FW68] Wloka and Floret study compact inductive spectra with linking
maps which are not necessarily injective. Limits of such spectra are called (LS)-spaces.
Recently also the class of projective limits of sequences of (LS)-spaces received some
attention, which are called (PLS)-spaces. Examples for (PLS)-spaces are the space
Lp(E,F) if both £ and F are (FS)-spaces ([DL08, p.17]) and the space A(2) of
real-analytic functions on a non-compact real-analytic manifold €2 (see [Dom12]).

Theorem 2.7.2 ([FW68]).

(1) Ewvery (S)-space is a complete semi-Montel space.
(2) Every (FS)-space is a Fréchet-Montel space.

Proof: (1) Let (S,1I) be a compact projective spectrum indexed by A and let E =
liLn(S ,IT). The compact factorization theorem implies that there exists a spectrum
of Banach space (S,1I) indexed by a cofinal subset J of A so that any mapping
Ta,p € Il is bicompact and which is equivalent to (S,1I). Hence £ = lim(S,1I) is
complete (see [Theorem 2.3.3). Let € = (¢;);cs be a universal cone of (S,11). As II
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consists of bicompact maps it follows that all ¢; are compact maps. If B € B(E), then
€;(B) is relatively compact for all j € J. By [Theorem 2.3.3| this implies that B is
relatively compact in E which is thus a semi-Montel space. (2) Again the compact
factorization theorem yields that an (FS)-space can be generated by a bicompact
enumerable spectrum of Banach spaces and is hence metrizable (Theorem 2.3.3(7)).

]

Theorem 2.7.3 (Duality between (FS)- and (DFS)-spaces).
(1) Let (E,),cn be a compact inductive sequence of Banach spaces which generates
the (DFS)-space E. Then Ej is an (F'S)-space which is generated by the compact

projective spectrum (((En)g)neN,(pn)neN), where py: (Eny1), — (En), denotes
the restriction f— f|g,.

(2) Let ((Fn)pen s (Pn)nen) be a compact projective sequence of Banach spaces which
generates the (FS)-space F. Then F} is a (DFS)-space and if (F,), oy is reduced

then the compact inductive sequence ((Fy,)}),cn generates Fy.

Proof: (1) Let (S*1II*) := (((En)g)neN,(pn)neN). By [Theorem 2.4.6| we have that
E, = liLn(S*, IT*). The compactness of ¢y, p1: E, — E, 1) carries over to the dual map
Uik = Ptk (Bnan)y — (En),. Hence (8%, 11%) is a compact spectrum of Banach
spaces and Ej is an (FS)-space. (2) As before the compactness of py ;1 (Ep), —
(Enx), is inherited from the compactness of py, nik: Enyr — E, and Prntk 18 Injective
as pn(Ey+1) is dense in E,. Because of[Theorem 2.4.4/we have lim ((F},)}),,eny = E- O

neN

In the next theorem we will see that (DFS)-spaces have all desirable properties a
locally convex space could have. Even more, the fact that (DFS)-spaces are Montel
spaces, sequential and that their convergent sequences are exactly the convergent
sequences of the steps of a generating sequence of Banach spaces, makes them the
optimal setting if one studies non-linear maps on non-metrizable locally convex spaces.

Proposition 2.7.4. Let (E,),cy = (En,To)nen be a compact sequence of Banach-
spaces which generates E. Then:
(1) E is Hausdorff.
2) E is a (DF)-space.
3) E is a Montel space.
4) E is a sequential space.
) E is complete.
) E is webbed and ultrabornological.
) (En),en s compactly retractive.
) Every generating sequence of E consisting of Fréchet spaces is compact.
) Every generating sequence of E consisting of Fréchet spaces is sequentially re-
tractive.
(10) Ewvery basis of E is a Schauder basis. [Flo73]

(11) E carries the final topology with respect to (<En>n€N7€> where € denotes the
family of all inclusion mapping E,, — E. Consequently a map f : E — X to an

arbitrary topological space is continuous if and only if all restrictions f|g, )
are continuous. [FWG68, p.135].

5
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2.7 Fréchet-Schwartz and (DFS)-spaces

Proof: We show that (E,), . satisfies Retakh’s condition (see [Definition 2.2.1|(3))
that E is semi-Montel. Then the rest of the properties (1)-(10) follow directly from
the theorems stated about sequentially retractive (LF) spaces and (DF) Montel spaces.
For more direct proofs we refer to [FW68]. WLOG we may assume that all ¢,,: E,, —
E,+1 are compact since there exists in any case a subsequence (E,, )ren with this
property. Let B,, denote the closed unit ball in £, and choose A\, € R, so that A\, B,, C
Ani1Bpyq for all n € N. As A\, B, is relatively compact in E,,; the topology induced
on B, by E, (for any k > 1) coincides with that induced by E,; which shows
that (E,), .y satisfies Retakh’s condition (M). Hence (by [Theorem 2.2.11)) (E,),, oy is
sequentially retractive, regular and consequently Hausdorff. Thus, if B € B(F), there
is an ny € N so that B € B(E,,,) and hence B is relatively compact in E,, 1 (because
of the compactness of the inclusion ¢,,) and hence in E. Now we show (11). Let X be
a topological space, let f: E — X be a function and let €, denote the inclusion map
E, — E. If f is continuous, then all f, := foe,: (F,,7,) — X are continuous since
all €,: (E,,7,) — (E,7) are continuous. Now suppose that all f,, are continuous. We
want to conclude that f is continuous and since (F, 1) is a (k)-space it suffices to show
that all restrictions of f to compact sets are continuous. Let K be a compact subset of
E. Then there exists a step F,, so that K is contained in F,, and compact with respect
to 7, and consequently (K, 7,) = (K, 1) (since (K, 7,) — (K, 7)). As f, is continuous,
the restriction fn|( K,7,) is continuous and hence f|( k,7) is continuous. This shows that
a function f: E — X is continuous if and only if all compositions f oe, are continuous
and hence E carries the final topology with respect to ((Ey), oy ; (en)neN). ]

Lemma 2.7.5. Let (E,),cy be an inductive sequence of Banach spaces and let
E=1lmFE,. Then E is a (DFS)-space if and only if E is semi-Montel and (E,),,cy
is sequentially retractive.

Proof: If E'is a (DFS)-space then it is a Montel space. A compact sequence of Banach
spaces is sequentially retractive and since all generating sequences of an (LF)-space are
equivalent (Theorem 2.1.11)) and sequential retractivity is passed over to equivalent
sequences it follows that (E,), .y is sequentially retractive. Now suppose that £ is
semi-Montel and that (E),),y is sequentially retractive. Let B, be the unit ball in

E,. For any ng € N, we have that K = BinoE is compact in E and since (E,), oy
is compactly retractive (by [Theorem 2.2.11)) there exists an ny; > ng so that K is
compact in E,,. Hence B,, is relatively compact in £, , which shows that (E,), .y is
a compact sequence and consequently F is a (DFS)-space. O

Theorem 2.7.6 (Permanence properties of (DFS)/(FS)-spaces [Flo71, p.182]).
(1) The class of (FS)-spaces is closed under taking closed subspaces, quotients with
respect to closed subspaces and finite products.
(2) The class of (DFS)-spaces is closed under taking closed subspaces, quotients with
respect to closed subspaces and finite products.
(3) Let (Ey),cn be a compact sequence of Banach spaces, let E = lim £, and let F
be a closed subspace of E. Then F' is also a (DFS)-space and is generated by the

compact sequence (F'N Ey), cx-
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Next we study nuclear inductive sequences of Fréchet spaces. Since a nuclear map
T: E — F is compact if F'is complete, these are special cases of compact sequences
and the limit spaces obtained (i.e. (DFN)-spaces are (DFS)-spaces) and it turns out
that nuclear (DFS)-spaces are exactly the (DFN)-spaces.

Definition 2.7.7. We call a locally convex space £ (DFN)-space if it is the inductive
limit of a nuclear sequence of Frechet spaces. Dually, the projective limit of a nuclear
sequence of Fréchet spaces is called an (FN)-space.

Theorem 2.7.8 ([FW68|, p.160-163] [Elo71, p.175]).
(1) The classes of (FN)- and (DFN)-spaces are dual to each other: The strong dual
of a (DFN)-space is an (FN)-space and the strong dual of an (FN)-space is a
(DFN)-space.

) Every (DFN)-space is a (DFS)-space and every (FN)-space is an (FS)-space.

) A (DFS)-space is nuclear if and only if it is a (DFN)-space.

) An (FS)-space is nuclear if and only if it is an (FN)-space.

) The inductive limit of a nuclear sequence of sequentially complete LCVS is a
(DFN)-space.

(2
(3
(4
(5

As a consequence of the stability properties of (DFS)-, (FS)- and nuclear spaces
and the characterization of (DFN)/(FN)-spaces as nuclear (DFS)/(FS)-spaces we im-
mediately obtain the following corollary:

Corollary 2.7.9 (Stability properties of (FN)- and (DFN)- spaces). The classes
of (FN)-spaces and (DFN)-spaces satisfy the same stability properties as (FS)- and
(DFS)-spaces, respectively.

2.8 Non-linear maps between LCVS

Definition 2.8.1. Let E, F be LCVS. A map T : E — F is called bornological if
the image of every bounded set under T is again bounded and is called sequentially
bornological if (T(ay)),,cy is bounded whenever (a,,), oy is bounded.

Theorem 2.8.2. Let E be a sequential semi-Montel space and let F be a semi-Montel
space which satisfies that all its compact subsets are metrizable (in the topology induced
by F') and which possesses a Schauder basis {xp}nen. Let T: E — F be a (possibly
non-linear) map, let T,,: E — C denote the n'" coordinate function of T. TFAE:

(1) T is continuous.

(2) T is bornological and all T,, are continuous.

(3) T is sequentially bornological and all T,, are continuous.

Remark. Despite the strong requirements on the spaces E, F' there are huge classes
of locally convex spaces to which the theorem applies:
(1) Every (DFM)-space is (by definition) a Montel space and sequential by a result
of Webb ([Web68]).
(2) In every (LM)-space all pre-compact subsets are metrizable by a result of Cas-
cales and Orihuela (see [CO86]).
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(3) In particular the result applies to the case where F is a (DFM) and F' a (DFS)-
space with a basis: Floret showed in ([Flo70]) that in a sequentially retrative
(LF)-space (and thus in every (DFS)- space) every basis is already a Schauder
basis.

Proof: (1) = (2) Let B be a bounded set in E. Then B is relatively compact, hence
T (B) is relatively compact and thus bounded in F'. The coordinate projections are
continuous, and thus all 7}, are so. (2) = (3) is trivial. (3) = (1) Let a,, — a in E.
Then A := {an},y U {a} is bounded in E, hence T (A) is bounded and thus 7" (A)
is compact and by assumption metrizable. Let p,,: F — C be the m'" coordinate
projection. By compactness we can extract a subsequence (7'(ay, ))reny Wwhich converges
to an element y € F. Then for all m € N we have p,,, (T'(an,)) — pm(y). By continuity
of the coefficient functions limp,, (T'(an,)) = limp,, (T (a,)) = T, (a), which means
that p., () = pm (T (a)) and we conclude that y = T (a). We have shown that any

convergent subsequence of T (a,) converges to T (a), and since T (A) is a compact
metrizable space it follows that T (a,) — T (a) in F. O

We can drop the requirement that F' has a basis and substitute the condition that
the coefficient functions are continuous for example by demanding that 7" is continuous
if I is equipped with the weak topology:

Theorem 2.8.3. Let E be a sequential semi-Montel space and let F' be a semi-Montel
space which satisfies that all its compact subsets are metrizable (in the topology induced
by F). Let T: E — F be a (possibly non-linear) map. Let F C F' be any family of
functionals which separates points. TFAE:

(1) T is continuous.

(2) T is sequentially bornological and f o T is continuous for all f € F'.

(3) T is sequentially bornological and f o T is continuous for all f € F.

Proof: The fact that bounded sets are relatively compact yields (1) = (2) and (2) =
(3) is clear. (3) = (1) Let a, — a in E. Then {T(a,)}nen is compact and by
assumption metrizable. By compactness we can extract a subsequence (T'(ay,))ken
which converges to an element y € F. Then for all f € F we have f (T(a,,)) — f(y).
Since foT is continuous, lim f (T'(ay,)) = f(T(a)), which means that f(y) = f(T(a)).
This holds for all f € F and as the family F separates points we have y = T'(a). We
have shown that any convergent subsequence of T (a,,) converges to T (a), and since
T (A) is a compact metrizable space it follows that T (a,) — T (a) in F. O

Theorem 2.8.4. Suppose that (X, 7) is a reqular Lindelof space and let (E, o) be a
LCVS. Let F C €(X, E) be a vector space which satisfies the following:
(i) F is closed in the compact-open-topology T.o.
(ii) For every x € X, there is a neighborhood U, so that that the restriction map
p: (F,Teo) = (€ (U, E) , 7o) is compact.
(ii1) (F,Teo) is metrizable.

Then (F,7.,) is a semi-Montel space.

25



Chapter 2 Functional Analysis

Note that we don’t require the restriction map to be injective. We need a small
lemma concerning coverings by compact sets in regular topological spaces before we
can prove the theorem stated above. We recall that a regular topological space is a
topological space in which points and closed sets can be separated by open sets. In
a regular space every point possesses a neighborhood-base of closed sets. Important
examples of regular topological spaces are Hausdorff topological vector spaces.

Lemma 2.8.5. Let (X, 7) be a reqular Hausdorff topological space. Let K be compact
in X and let Uy, ..., U, be a covering by open sets of K. Then there exist compact
sets Ky, ..., K, with K; C U; so that K C K1 U---UK,,.

Proof: Let Ry :=U;NK. Ry C U{, hence Ry C UyU---UU,,. For z € R; there exists
a closed neighborhood V,, of x which is contained in UsU- - -UU,,. Since R; is compact,
there exist z1,..., 2y so that Ry C V := UX, Vo, C UL, Uj. Let Ky := KNU; \V
and let Ky := (K \ K;) U(VNK). Then K = K; U Kj, Ky C Uj_,U; and K is a
compact subset of U;. Now we show that (K \ K) is compact:

(K\ K1) = (K\ (KN U\ V)" =(KNU)UKNV) = (R U(KNV))°.

Hence K\ K; = (R U (K NV)), which is a compact set. So K is also a compact
set. We have shown that there exist compact sets K7, K5 so that K = K7 U Ky with
K, Cc Uy and Ky C Uy U...U,. Proceeding in this manner, we can find compact sets
Kq,...,K,sothat K; CU;and K = K;U---UK,. O

Proof: (of the theorem): Let B be a bounded subset of F. Since (F,7,,) is metriz-
able, it is enough to show that every sequence (f,), oy PoOssesses a subsequence which
converges in F to prove that B is relatively compact in F. For z € X there exists
a neighborhood U, of x so that B|y, is relatively compact in (¢ (U, E),7.,). By the
Lindelof property of X there exists (z;),cy so that X = U;enUs,. Let (fn),en be a
sequence in B. For any i € N, there exists a subsequence (f,),cy Which converges
in (¢ (Uy,),Te). Using the diagonal argument, we can thus extract a subsequence
(fur)ey Which converges in (¢ (Us,) , 7eo) for all i € N. Let f (2) = limy_ fr, (). Let
K be a compact subset of X. Then there exists a finite subset A = {y1,...,y,} of
(%) ;en s0 that K C Ui, Uy,. Let {K;}7_| be compact subsets of X with K; C U, so
that K C Uj_, K Since (fn,),cy converges uniformly on compact subsets of the sets
Uy, it follows that (fy,),cy converges uniformly on K. Hence (fy,),c converges in the
compact-open topology to a function f € € (X, 7o), and since F is closed, f € F and
thus B is relatively compact in F. ]

2.9 Local convergence and local completeness

Definition 2.9.1. A net (z;);e; is Mackey- (or locally-) convergent to x, if there exists
a disc B, so that x; converges to x in Ez. We write x; Mot (x;) ;e converges locally

to x and x; o, g if it converges in Ep to z. A LCVS (F,T) satisfies the Mackey
condition (Mc) if every T-convergent sequence is Mackey-convergent. We say that F
satisfies the strict Mackey condition (sMc) if for every bounded set B in E there is a
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disc D in E so that the relative topologies on B with respect to Ep and (F, 1) coincide.
E is called Mackey- (or locally-) complete or convenient if E is complete for any closed
disc B in E —i.e., if every closed disc is already a Banach disc ([PCB87, p.83]). We note
that every semi-Montel space is locally complete as every compact disc is a Banach

disc. We have the implications complete = sequentially complete = locally complete
([KMOT7, p.15]).

Theorem 2.9.2 ([Val82 p.167] and [Jar81l p.265/266]).
(1) (sMc) implies (Mc).
(2) If E is an (LNorm)-space, then E satisfies (Mc) if and only if it satisfies (sMc).
(3) A (DFM)-space is a (DFS)-space if and only if it satisfies (Mc).

Proof: (1) Let E be a LCVS with property (sMc) and let x, — x. The set B :=
{Zn}nen U {z} is bounded, hence there exists a D € D(F) so that the topologies
induced by E and Ep on B coincide. As a consequence z, ~2 z. (2) See [Val82,
p.167] (3) A (DFM)-space E admits a regular generating sequence (E,), . which
consists of normed spaces. Let B, be the closed unit ball of E,. Then (B,), oy is a
fundamental sequence of bounded sets. Let ng € N. Then K := B,," is compact in
FE and since E satisfies (sMc) there is an n; > ng so that the topologies induced on
K by E,, and E coincide. Consequently B, is relatively compact in £, and hence
(En),en 1s @ compact spectrum, which shows that £ is a (DFS)-space. O

Corollary 2.9.3. A bornological (DF)-space satisfies (Mc) if and only if it is the limit
of a sequentially retractive sequence of normed spaces.

Lemma 2.9.4 ([KM97, p.12]). Let B be a bounded and absolutely convex subset of E
and let (z,) . be a net in Ep. TFAE:

(1) z, £5 0
2) There exists a net p, — 0 in Ry, such that z., € p,B.
gl gl vy

Proof: (2) = (1) Note that pg (z,) < |u,| and hence pp (z,) — 0. (1) = (2) Recall
that pp(y) = inf{r > 0|y € rB}. Hence for any ¢ > 0: y € (pgp(y) +¢€) B. Set
py = pp (T,) + exp (ﬁ;)) > pp (). Then py, — 0 and =, € p,B. O

Example 2.9.5. Every metrizable LCVS (F, ) satisfies the Mackey-condition: E

possesses an enumerable and absolutely convex 0-neighborhood-base (U,),,oy satisfy-
ing U, C U,. Let 2, = x. We are going to construct a sequence (An)pen C Ry with
An — 00 and A, (z, —x) — 0. WLOG we may assume that all x, are contained in
Ur. Let ny = 1 and let ngyy = min {N > ny | 2, — 2 € 1Uks1 Yn > N} Set A = 1
and \; = k for ny < j < nyy1. Hence \; — oo and A; (x; — ) — 0 by construction.

Let B be the absolute convex hull of (A; (z; — x)),.y. We have that (z; — ) € LB,
so by the above lemma the sequence x; is Mackey-convergent.

Theorem 2.9.6 ([PCBS87, p.157/Thm 5.1.27]). Every metrizable LCVS satisfies the
strict Mackey-condition.

27



Chapter 2 Functional Analysis

Definition 2.9.7. Let (j,),,cy — 00 be a real-valued sequence. A sequence (zy),,cy C
E converges to x with quality (gn), ey if (2, — 2) p1, is bounded and is said to converge

fast to x if (x,), oy converges to x with quality (nk> o for all £ € N.

Lemma 2.9.8. Let E be an LCVS and let (u,), oy be a real-valued sequence with

(,Un)neN — 0.
(1) Any locally convergent sequence in E possesses a subsequence which converges

with quality (fn),ex-
(2) Any locally convergent sequence in E possesses a fast convergent subsequence.

Proof: (1) WLOG we can assume that |u,| # 0 for alln € N. Let L2, x and llyll ==
ps (y). Let ny = min{N eN ‘ Vn > N |z, —z| < ITI1|} For ny,...,n; already

chosen, we set n, 1 := min {N eN ‘ N >ny, Vn > N : |z, —z|| < m} Then
k—o00

we have ||(z,, — z)ue| < ¢, hence (z,, — x) pp — 0. (2) Let y,, := x, — x and
let (Yn, )nyen be a subsequence of (y,,),, oy Which converges with quality (n'),en to 0.
Again we can extract a subsequence of y,, which converges with quality (n?),cy to
0 and so forth. The diagonal sequence of this family of subsequences then converges
fast to 0. O

Definition 2.9.9 (Mackey-closure-topology). A subset A of a LCVS FE is called

locally- or Mackey-closed if x, Kl implies that € A for any sequence (), oy
in A. It is easy to check that the family of Mackey-closed sets satisfies the axioms of
a family of closed sets of a topology, which is called the Mackey-closure-topology and
which we will denote by 7),. Every 7-closed set is Mackey-closed and hence 7 <X 7.
Note however that 1), is in general strictly finer than 7 and that 7, in general does
not define a linear topology - i.e. (E, 7)) is in general not a topological vector space.
Also note that the Mackey-closure topology is not the Mackey-topology from duality
theory.

Example 2.9.10. Every locally convex space (F,7) which is sequential and satis-
fies the Mackey-convergence-condition carries the Mackey-closure topology 7a;: By
construction, every Mackey-convergent sequence converges with respect to 75, which
shows that id: (F,7) — (F, 7)) is sequentially continuous and hence continuous as £
was assumed to be sequential. Hence every (DFS)- space and every metrizable LCVS
carries the Mackey-closure topology.

Lemma 2.9.11. For B € D (FE) let 1 : Eg — E denote the inclusion map.
The Mackey-closure topology is the final topology with respect to ((Ep, pg) ,tB) pep(p)-

Proof:

A C E is Mackey-closed < V (2,,),,cn C A @ 2y Y, 2 implies = € A

& VBeB(E) Y (n),ey CA: LB, 7 implies z € A
& VB eB(E): AN Egisclosed in Ep
< A s closed in the final topology of ((Es,p5).t8)pepm) U
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Chapter 3
Infinite-dimensional Calculus

The aim of this chapter is to give a short survey of two of the most common concepts
of holomorphicity in the setting of locally convex spaces. From now on we will assume
that any locally convex space is a vector space over C. Note that there exist 25 non-
equivalent definitions for the differentiability of a function between topological vector
spaces (cite [KM97, p.76],JAS68]). We will begin by giving a brief overview of the
convenient calculus as proposed by Kriegl and Michor (see [KM97] ), which starts by
introducing the notion of smooth curves and then defines smooth mappings f: £ — F
between locally convex spaces F and F' as those which are smooth along smooth
curves. In an infinite-dimensional setting, smoothness may not imply the continuity
of a function, but in the setting of convenient vector spaces, it is always continuous with
respect to the ¢™-topologies associated to of £ and F. The ¢>*-topology turns out to
be the Mackey-closure-topology, as introduced in the last chapter. In a similar fashion
the concept of a curve-holomorphic mapping is introduced. Another definition of
holomorphy is used for example by S.Dineen: A map f: E — F between locally convex
spaces is holomorphic if for all ¢ € F’ the composition ¢o f is holomorphic if restricted
to any finite-dimensional subspace (it is G-holomorphic) and if f is continuous. Curve-
holomorphic mappings can be characterized as G-holomorphic mappings which are
continuous with respect to the ¢>-topologies. So the two concepts coincide whenever
the spaces under consideration carry the respective Mackey-closure-topologies, which
is the case for example if the spaces are metrizable or (DFS)-spaces.

3.1 Curves and convenient calculus

Definition 3.1.1. Let F and F' be LCVS. A curve ¢ : R — F is called differentiable if

the derivative ¢/(t) := hr% W exists for all ¢ € R. It is called smooth if all iterated

derivatives exist and is called C™ if all derivatives up to order n exist. A curve c is
called locally Lipschitz if its difference quotient is bounded on every bounded interval,
i.e. if for every bounded interval I the set {% |t # s;t,s € ]? is bounded. Note
that differentiable curves are locally Lipschitzian and hence continuous. A LCVS
is called convenient if it is Mackey complete. Among others [KM97, p.20], this is
equivalent to the property that a curve c¢ into F is smooth if and only if for any
continuous functional ¢ the composition ¢ o ¢ is a smooth mapping.

Lemma 3.1.2 (Mean value theorem, [KM97, p.10]). Let c: [a

,b] — E be a differen-
tiable curve into a LCVS E. Then c¢(b) — c(a) € co{c'(t) (b—a)|

te(a,b)}.
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Proof: Suppose that ¢(b) — c¢(a) € c6{c(t)| t € (a,b)} (b — a). Then by the Hahn-
Banach theorem there exists a continuous linear functional ¢ so that

¢(c(b) — c(a)) & ¢ (@ {c(t) (b—a)| t € (a,b)}).

Note that ¢oc: [a,b] — R is differentiable on (a, b) and that (¢poc)(t) = ¢ (¢'(t)). We
conclude that (¢ o ¢) (b)—(poc)(a) & {(gb oc) (t)(b—a)|te (a,b) } - a contradiction
to the classical mean value theorem. ]

Lemma 3.1.3 (Special curve lemma, [KM97, p.18]). Let E be a LCVS. Let (zy,),cn
be a sequence which converges fast to x. Then there exists a smooth curve c¢ so that
c (%) =z, and c(0) = z.

Definition 3.1.4. The ¢ topology on a LCVS (F, 1) is defined as the final topology
with respect to all smooth curves. It coincides with the Mackey-closure topology 7/,
but in general not with the given topology 7. Let U be a ¢*-open subset of E. A
map f: U — F' is called smooth if it maps smooth curves to smooth curves, i.e. if for
any smooth curve c: R — FE the composition f o c is a smooth curve to F. Smooth
mappings are c¢>*-continuous but may fail to be continuous with respect to 7.

Theorem 3.1.5 ([KM97, p.19, Thm 2.13.]). The c¢®-topology coincides with the
Mackey-closure-topology Ty .

Proof: Let U C E be ¢*-open. Let x € U and z, Mo Suppose that there is a
subsequence (7y,),.y C E\ U. We can extract a subsequence (xnkl)leN which is fast
convergent to x and by the special curve lemma there is a smooth curve ¢ : R — F
so that ¢ (%) = 1z, and c¢(0) = x. But this (by the continuity of ¢) means that

ki
Ty, 1220, 2 with respect to ¢ - a contradiction to (2,,) C E\U, and hence (z,), .y
must be finally contained in U. So U is open in 7, and ¢*° < 7j,. Now consider the
identity map id: (E,c¢®) — (E,7y). We want to show that id is continuous, hence
we need to show that every smooth curve into E is continuous into (E, 7). Let ¢ be a
smooth curve and I C R be a compact interval. Since differentiable curves are locally
Lipschitzian, there exists a disc B so that for all ¢,s € I : ¢(t) —c(s) € (t—s)B. Hence
¢,,: J — Ep and c is continuous since pp (c(t) — c(s)) < [t — s|. O

3.1.1 Curve-holomorphic mappings

Definition 3.1.6. Let D be the open unit disk {z € C : |z] < 1} and let E be a

c(z+w)—c(2)

LCVS. A map c¢: D — E is called holomorphic curve if ¢ (z) := lirr%) exists

for all z € D. We say that a family of functions f, (z) : D — E converges Mackey-
uniformly to a function f: D — FE, if for any compact subset K of D there exists a
B € D (F) so that Jn, converges uniformly to f|, as functions K — Ep.

Lemma 3.1.7. Holomorphic curves are continuous.
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Proof: Let E be an arbitrary locally convex space, let ¢: D — E be a holomorphic
curve and let z € D. Let U € UF and let V € UF be absolutely convex and such
that V +V C U. Then there exists an open disc D, with D, + 2z C D and so that
d(z) — C(ZLU))_C(Z) € V for all w € D,. Hence ¢(z + w) — ¢(z) € wd(z) + V for all

w € D,. Now choose 0 < 7" < r so that D,» - ¢(z) C V. Then for all w € D,» we have
c(z+w) —c(z) € V+V C U, which shows that ¢ is continuous. O

Theorem 3.1.8 ([KM97, p.81-82]). Let E be a convenient vector space and let c¢: D —
E be a mapping. TFAE:
(1) ¢ is a holomorphic curve.
(2) poc: D — C is holomorphic for all ¢ € E'.
(3) ¢ factors locally to a holomorphic curve to some Eg, i.e. for any open and
relatively-compact subset U of D there exists a disc B in E so that c¢|y — Epg is
a holomorphic curve.
(4) All complex higher derivatives ¢™ (0) exist and c(z) = ioj 22 (0) converges

n=0

Mackey-uniformly.

Definition 3.1.9. Let U C E be a c™-open subset of U and F' a LCVS. A map
f: E — F is called curve-holomorphic if it maps holomorphic curves to holomorphic
curves.

Theorem 3.1.10 ([KM97, Theorem 7.19]). Let E, F be convenient vector spaces, let
U be a c¢>* — open subset of E, and let f: U — F be a mapping. TFAE:
(1) fis curve-holomorphic.
(2) For all ¢ € F' and for all B € D(FE) the mapping ¢ o f: Eg — C is curve-
holomorphic.
(3) For all ¢ € F' and for any holomorphic curve c: D — E the mapping ¢ o f oc
is curve-holomorphic.
(4) f is holomorphic along all affine (complex) lines (G-holomorphic - see below)
and s c¢>-continuous.

3.2 Holomorphic maps between LVCS

Definition 3.2.1. Let E, F' be LCVS. We say that a subset U of E is finitely open if
UNM is open in M for every finite-dimensional subspace M of E. Let U be a finitely
open subset. A function f: U — F is called Gateaux- or G-holomorphic if for any
(elU, we E, and ¢ € F’ the C-valued function of one complex variable

Hewg: 2= ¢o f(C+2-w)

is holomorphic in a neighborhood of 0 € C. We say that a function f: U — F is
Gateaux-differentiable if for any ( € U, w € F

i JCHA-0) = Q)
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exists in the completion F of F. A function is Gateaux-differentiable if and only it is
G-holomorphic (|[Din99, p.149]).

We call a function f: U — C holomorphic if it is G-holomorphic and continuous
with respect to the locally-convex topologies of E and F. By Hq (U, F') we denote the
family of G-holomorphic functions U — F' and by H(U, F’) the family of holomorphic
functions U — F. Instead of H(U, C) we also write H(U).

Lemma 3.2.2. Let E be a convenient vector space and let c: D — E. ¢ is a holomor-
phic curve (in the sense of |Definition 3.1.0) if and only if it is a holomorphic mapping
(in the sense of|Definition 3.2.1)).

Proof: By[l'heorem 3.1.8| ¢ is a holomorphic curve if and only if ¢oc is a holomorphic
function D — C for all ¢ € E’, which means that ¢ is a holomorphic curve if and only
if ¢ is G-holomorphic. By holomorphic curves are continuous, which
proves the claim. O

Theorem 3.2.3. Let (E,7r) and (F,Tr) be convenient vector spaces and let U be an
open subset of (E,T). Suppose that ¢ = 1 and that ¢ = 7p. Then a function
f: U — F is holomorphic if and only if it is curve-holomorphic.

Proof: By [T'heorem 3.1.10| f is curve-holomorphic if and only if it is G-holomorphic
and c*°-continuous. As F and F carry the respective ¢>*-topologies a function f: F —
F' is ¢®-continuous iff it is continuous. [

Definition 3.2.4. Let E, F be LCVS, let A C E and let F be a family of functions
A — F. Fis called locally bounded at x € A° if there exists a neighborhood U C A
of x so that User f (U) is bounded in F and if V' is an open subset of £/ we say that a
family F C Hg (V, F) is locally bounded if it is locally bounded at every point x € V.

Proposition 3.2.5 ([Din99, p.153]). If U is an open subset of a LCVS E and F is
a normed linear space then f € Hg (U, F) is holomorphic if and only if it is locally
bounded.

Corollary 3.2.6. Let U be an open subset of a (DFS)-space E and let F' be a normed
space. Then a function f: U — F is holomorphic iff it is G-holomorphic and if f(K)
is bounded in F' for every compact subset K of U.

Proof: (=) T is G-holomorphic and continuous by definition, hence f(K) is compact
whenever K is a compact subset of U. (<) Let (E,), oy be a bicompact generating
sequence of Banach spaces for E so that the closed unit ball B,, of E, is compact
in E,.1 (see [Theorem 2.6.4). Then T is continuous iff Ty, is continuous for all
n € N, where U, = E, NU (see |Proposition 2.7.4| (11)). Let x € U,, and let € > 0
so that x +¢- B, C U,. Hence x + ¢ - B, is compact in U,.; and thus in U. By
assumption T'(z + € - B,,) is bounded, which means that T'|y, is locally bounded and
hence holomorphic by [Proposition 3.2.5, Consequently T'|y, is continuous for all n €
N, yielding the continuity of 7', which is thus holomorphic. O]
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Theorem 3.2.7. Let E and F be LCVS and let U be an open subset of . For a
family F C H (U, F), the following holds:
(1) If F is locally bounded, then F is bounded in the compact-open topology.
(2) If E is a (DFM)-space, and F a Banach space, then TFAE:
(i) F is locally bounded.
(ii) F is point-wise bounded and equicontinuous.
(1ii) F is bounded in the compact-open topology.

Proof: If F is locally bounded, then every compact subset of U can be covered by a
finite number of open subsets of U on which F is bounded, hence F is bounded on
every compact subset and is thus bounded in 7,, which shows (1) and (i) = ().
Now suppose that E is a (DFM)-space and that F' is a Banach space. For (iii) = (i7)
see [Din99, p.157]. Suppose that F is equicontinuous and pointwise bounded and let
x € U. Then there exists a neighborhood W of z so that ||F(y) — F(z)|| < 1 for all
F € F and all y € W. Further there is an M > 0 so that F(z) C {||z|| < M} and so
|F'(y)]| <1+ M for all y € W, which means that F is locally bounded, which shows
(i7) = (4). O

Corollary 3.2.8. Let U be an open subset of a (DFM)-space E and let F' be a
Banach space.

(1) [Din99l p.172] (H(U, F), 7eo) is a Fréchet space.

(2) If F =C?, then (H(U, F),Teo) is a Fréchet-Montel space.

Proof: (1) Any open subset of a (DFM)-space has a countable fundamental system
of compact sets, hence H(U, F') is metrizable. By [Din99l p.157] a function f: U — F
is holomorphic if it is G-holomorphic and bounded on the compact subsets of U. Let
(fn)nen be a Cauchy-sequence in H(U, F') and let f: U — F be its pointwise limit.
Let ¢ € F', let x € U and W be an absolutely convex 0-neighborhood in E so that
r+W CU. Forve Eset g,: D— C, g,(2) := ¢po fr,(x+v-2). The sequence (¢y),,exn
converges uniformly on compact subsets to g(z) := ¢ o f(z + v - z) which implies that
g is holomorphic and that f is G-holomorphic. Obviously f is bounded on compact
subsets of U and is hence holomorphic. (2) By [Theorem 3.2.7, every bounded subset
of H(U,C?) is pointwise bounded and equicontinuous, and hence relatively compact
by the theorem of Arzela-Ascoli.

]
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Chapter 4

Rings of convergent power series

After establishing the necessary notational framework we will investigate the topo-
logical features of the ring of convergent power series Oy equipped with its natural
inductive topology, which turns it into a (DFN)-space. Then we are going to ex-
amine holomorphic maps O; — C. These maps appear rather naturally also in the
study of finite-dimensional holomorphy, for example if one is interested in describing
the coefficients of substitution maps ¢ +— F(x,¢(x)). Another example is the map
(@n)nen — 1 ﬁ, which locally in O; defines a holomorphic map. We will see that
holomorphic maps on O, can be expanded again into convergent power series y_ ¢, 27,
which enables concrete computations. We will then turn our attention to holomorphic
functions Oy — Oy. After investigating the topological properties of H(Oy4, O,) we
will establish the monomial series expansion for maps Oy — O,.

Basic definitions and Notation. By P;(R) we will denote the ring of formal
power series in d variables over the commutative ring R and we shortly write P, for
P4 (C). The subring of P4(C) of convergent power series will be denoted by Oy. We will
write elements of Pj in the form (3, car?®);cpcp = (Zaend Cals - - s Laend Capt®)-
For ¢ = (X cant®) ey € Pis let [0 = (X [carl2%);, € P4 and for e € N
1 < j < p let ¢le,j|] := ccj. The ejet of ¢ is jo(P) = Y a<e Capr®, where for
a, € N? we write o < 3 if o, < B holds for all k. We set |oz_| =1+ + g
For 2 = (21,...,249) € C4 a = (a1,...,0q) € N4 let 2% := 20" .. 29 and for
S =(S,...,85,) € (CH and V = (Vi,...,V,) € Myp(N) let SV := Syt ... S, For
T eR? and F = Y oena ca® € Py, let | FI|% := (Caend |caT®[9)Y4 for g € [1,00) and
let || F||7 = supgend |¢a| T For d,p € N,q € [1,00], M = (M,...,M,) € RE,
S=(5,...,5) € (Ri)p we set

Hsar = {F = (Fi....,F,) € P} ¢ |3 < My fork=1,....p)
which will play the role of an infinite-dimensional polydisc. Furthermore, let
((S):={F =(F,....F,) € P} : |Fi|l% <oofork=1,.. p}

We equip ¢(S) with the norm || [[§, where [[(F,..., F,)[|§ := maxi<x<, || Fil[§, and
note that ¢7(5) is a Banach space. For S = (Si,...,S;) € RZ and
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Chapter 4 Rings of convergent power series

T=(Ty,...,T;) € R%, we write S < T'if S; < T; for 1 < i < d and we set

T

S /S Sa
<T1""’Td>€R+

Likewise, for S = (S1,...,5,) € <Ri)p, T=(T,...,T,) € (R‘fr)p, we set

S S S
T:: (Ti’u"Tp> € (R‘i)p

p

For n € Z and S = (S1,...,5;) € RY let
S = (ST ST

Definition 4.0.9. The ring of convergent power series in d variables O, is the set of
power series which converge locally at 0, equipped with the usual operations (Cauchy-
product multiplication plus coefficient-wise scalar multiplication and addition) in-
herited from the ring of formal power series P; in d variables. For p € N we set

=04 % x0O4 A power series Y cni Ca® € Py is locally convergent iff there
is a T € RL with sup,ena [ca| T < 0o. Hence Oy = Urera € (T). We equip Oy
with the locally convex topology with which it becomes the inductive limit of the
inductive net of Banach spaces ({3 (T))TeRi (indexed by (Ri, jmv))- For any null

sequence (1},), .y C R% the inductive sequence (> (T},)),cy is equivalent to the net
(0> (T»TeRi , and thus induces the same inductive limit. Note that for 1 < p < ¢ < oo

we have that (7 (T) — (P (S) for T > S. The inclusions are continuous, and so the
inductive nets (¢ (T))TeRi and (P (T))TeRd+ are equivalent for any 1 < p < ¢ < oc.

4.1 The topology of O}

Theorem 4.1.1.
(1) OF is a (DFN)-space.
(2) The set of monomials forms a Schauder-basis for Oy.
(3) The set of polydisc Hg s forms a fundamental system of compact sets of O and
the compact subsets of O are metrizable.

Proof: (1) Let p =1 and let R > S € R%. We are going to show that the inclusion
map T': (* (R) — > (S) is nuclear. Let f, = R%q € (> (R)), let A\ = (%)a and
Ya = g% € (> (S)a and let a = ZaeNd Cal'a € (> (R) Then
S« x®
Z )\afa<a>ya = Z ﬁQyRD‘@ = Z Car® = T(CL)

a€Nd a€Nd a€Nd

The sequence of functionals (fy),cnae is uniformly bounded on the unit ball of /*(R)
and hence equicontinuous, the sequence (Aq), e is absolutely summable and (), cne
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is bounded in ¢*(S). By [Definition 2.6.6| this means that 7" is nuclear and hence
any generating sequence (¢(*°(R,)),.y (Where R, — 0) is nuclear, which shows by
|Theorem 2.7.8| that O, is a (DFN)-space. And since both the class of nuclear and
(DFS)-spaces are closed with respect to taking finite products we conclude that OF is
a nuclear (DFS)-space and hence a (DFN)-space. (Theorem 2.7.8)).

(2) Let a = Y 4ena o™ € Og. Then there is an R € R% so that a € (*(R). For any
S < R we have that Hzla\én Cal® — aHOO 2, 0 and hence >laj<n Cat® — a in Og.
As Oy is sequentially retractive, it follows that any basis of Oy is Schauder basis by a
result of Floret ([Flo73, p.67/68]).

(3) Let (Ry),cy be a strictly monotonous null sequence in (R%)? and let K be a
compact subset of OF. By [Theorem 2.2.11| we know that ¢>°(R,,) is compactly regular,
hence K is a compact subset of some ¢*°(Ry,). Consequently there exists an M € RE
so that K C Hpgy, v As the embedding (*(Ry,) — (>(Rn,+1) is compact (by
(1)) we conclude that Hgy v is relatively compact in £°(Ry,+1). In fact, Hry v is
even compact as it is closed in ¢*°(Ry,+1) and is thus compact in O, which shows
that the family of polydiscs forms a fundamental system of compact discs. Since
Hp, ar is compact in ¢*°(Ry,+1), the subspace topologies induced by ¢*°(Rpy,+1) and
O% coincide, which shows that compact subsets of O are metrizable. O

Corollary 4.1.2 (Montel’s Theorem). Let Q be an open subset of C¥ and let
BCH (Q, (Cd2>. The family B is relatively compact if and only if it is locally bounded.

Proof: If B is locally bounded, then it is bounded on compact subsets of 2 and is
hence a bounded subset of (H (Q, Cd2> ,TCO), which is a semi-Montel space by [Theo-
and hence B is relatively compact. Conversely, suppose that B is relatively
compact and let P,(zy) C €. The evaluation is continuous on (H (Q, (CdQ) ,Tco) x €,

hence F (PT(ZQ)) is relatively compact in C? and so B is locally bounded. O

Now we show that the strong dual of O, is isomorphic to the space of entire functions
H(C?) equipped with the compact open topology.

Theorem 4.1.3. Let d,p € N. For ¢ = > cnd pat® € H (Cd> and a = Y end CaT

set ¢*(a) ==Y qend Caba- The map *: (H ((Cd) ,TCO> — ((’)d)/lg, ¢ — @ is an isomor-
phism of locally convex spaces.

Proof: As O, is a (DF)-space, its strong dual is a Fréchet space and thus it suffices
to show that the map * is a continuous linear bijection as the open mapping theorem
holds for Fréchet spaces. Let ¢ = Y, dpox® € 'H (Cd> and a = Y, end Caz® € Oy
There exist M € Ry and S € R% so that sup|ca|S® < M and since Y ,ena Paz®
converges absolutely for all z € C? we conclude that ¢* is well-defined. Next we
show that * is surjective. Let f € O and a = Y cni cax® € Oy. Then f(a) =
Ya Cozf( ) = D aeNd CaPa = ¢*( ) where we set ¢, = f(l'a) and ¢ = 2a Gax® € Py.
As a(z) = Y, 2% € Oy and since ¢(2) = X gend Paz® = f(a(z)) < oo for all
2z € C? we have that ¢ € H (Cd) and it follows that % is surjective. The linearity
and injectivity of % are obvious, so it remains to show that x is continuous. Let
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bi = Y pend L2 be a sequence in H ((Cd) which converges in the compact-topology

to ¢. Let B be a bounded set in Oy and ¢ > 0. Then there are S € Ri, M € R, so
that B C Bg. Let ip € N so that [|¢" — ¢[|a,,, < € holds for i > 4. Let a € Bg .
We have

60 = 6@l = X 164 - dulleal = = () (50) <

a€Nd a€Nd

1\ lel
<eM Z <2> < eM2?

We conclude that (¢)* converges to ¢* and hence * is continuous, which gives the
desired result.

O
Definition 4.1.4. For ¢ = (¢1,...,¢,) € H (Cd)p, where ¢ = > ¢z,
aENd
p
we set ¢* 1 O — C, (X ca1x® ..., 2 CapT®) = > Y PakCak
k=1 aeNd

Corollary 4.1.5. The map ¢ — ¢* is an isomorphism (H ((Cd> ,Tco)p — (Og);,.

Theorem 4.1.6. Let T : O — Og, be a linear map.

Then T is continuous iff there exists a sequence (¢or) seniz C (H (Cd))p which sat-
1<k<p
isfies
VS e (R)P VM eR) 3RERE:  sup  |dsella,,, R < o0

S5eNd2 | 1<k<p

so that T(a) = sena (dsx)" (a) 2°.

1<k<p
Proof: Suppose that T is continuous. Then all coordinates Ty are continuous, hence
there exist (¢5)5ene; € H ((Cd)p such that ¢ = T5. Since T is continuous and hence
bornological, we have that for every S € (R%)? and M € R% there exists an R €
Rff and a K € R% so that T'(Hg ) C Hg . Hence we obtain the estimate
| skl Aon S %, which holds V1 < k < p V6 € N%. Conversely, suppose that

the sequence (¢sx) sendz C (H (Cd))p satisfies the hypothesis of the theorem, and
1<k<p

let T(a) == Y sene (¢s1)" (a)2°. As in the proof of [Theorem 4.1.3) one sees that
1<k<p

lo* (a)] < M ||¢;]|gs_l for any ¢ € H (Cd> , and a € Hg . Hence for any S, M > 0

there exist R, K so that |¢5, (a)‘ < % holds V1 < k < p, V6 € N and Va € Hgy,
which means that T': Hgy — Hppx. Consequently 7' is bornological and hence
continuous. [
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Lemma 4.1.7 (]MV92, p.332]).
(1) A sequence fi converges to f in Oy iff it converges weakly to f.
(2) For ¢ = > ¢pox* € H ((Cd), set py(X cax®) == X |caal. The system of semi-
norms (p¢)¢€H(Cd) generates the inductive topology of Oy.

(3) For ¢ = pox* € H (Cd>, set p3 (3 cax®) i= sup |[pacal. The system of semi-
norms (pgﬁo)%?{((cd) generates the inductive topology of Oy.

(4) A formal power series Y end Cox® is convergent iff Y, cnd Caa < 00 for all

S aa® € H (Cd)

Proof: (1) If f; converges weakly to f, then the set B := {fr}ren U {f} is weakly
bounded and weakly closed, and hence bounded and closed in O, which means that
B is compact. Compact subspaces of OF are metrizable, hence f, converges to f in the
topology of OF if and only if all convergent subsequences of fi. converge to f, which
follows from the weak convergence.

(2) Recall that the topology of a locally convex space is described by its set of contin-
uous semi-norm. A semi-norm ¢q: Oy — [0, 00) is continuous if and only if g|se(r) is
continuous for all R € R%. Let ¢ € ¢s(O,) and set ¢, := g(z*). Since g is a continuous
seminorm on ¢*°(R) there is a Cr > 0 so that ¢(a) < Cg - ||a||¥ for all a € £57, which
implies that ¢, < CrR® for all & € N4, We conclude that ¢ = 3 cna 9oz € H ((Cd>
and since ¢(a) < py(a) for all a € Oy the claim follows.

(3) Let ¢ = ¥ gz € H (C?). Set 1) = 32 276,2%l2% € H (C?) and let a = Y coa® €
Og4. Then

p¢(a) = Z |¢O¢CO¢| = Z ;bjdca

= py (a)

1\ o N
() < 2%. sup (b—ca
2 acNd 2l
It is easy to see the pfy is indeed a semi-norm. The above estimate and (3) shows that

the system {pg’ [ ¢ € H (Cd)} generates the inductive topology.

(4) is a consequence of the fact that (H (Cd) ,TCO) can be represented as a Kothe
sequence space and the canonical representation of its dual, as well as of the reflexivity
of Oy - see [MV92]. O

Remark. Considering (1) and (2) of the theorem above, one might suppose that O,
carries the weak topology. However, this is wrong, which was pointed out to us by

user "jbc" in [staa). In fact, if F is a Fréchet-space, then the strong topology coincides
with the weak topology on E’ if and only if E is finite-dimensional (see [KS92|).

4.2 The space of entire functions

As a direct consequence of the duality between (FN)- and (DFN)- spaces (Theo-|
rem 2.7.8)) we obtain the following result:

Lemma 4.2.1. (H((Cd), Tco) is a nuclear Fréchet space.
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We note that the topology induced by Oy on H (Cd) is strictly weaker than the
compact-open topology: the sequence (%) e is a null-sequence in Oy but is un-
bounded in (H (Cd) ,TCO>.

Next we are going to discuss point-wise convergence of entire functions.
Definition 4.2.2. The topology of point-wise convergence on H (Cd) is the topol-
ogy initiated by all semi-norms {év | z € (Cd} where €,(f) = |f(z)]. A net (¢;)
converges point-wisely to ¢ if ¢;(z) — ¢(z) for all x € C4.

jed

The pointwise limit of a sequence of entire functions need not to be holomorphic,
but still there is an open and dense subset of C? on which the convergence is locally
uniform and on which the limit function is holomorphic.

Theorem 4.2.3 (Osgood [Kral). Let (fj)jGN be a sequence of holomorphic functions
on a domain ) C C. Assume that (fj)jeN converges pointwise to a limit function f on
Q. Then f is holomorphic on a dense, open subset of Q). The convergence is uniform
on compact subsets of the dense, open set.

In the light of Osgood’s theorem it makes sense to ask whether a sequence of holo-
morphic functions which converges pointwise to a function f converges uniformly on
all compact subsets, if we further suppose that the limit function f is holomorphic on
Q - i.e. whether pointwise and uniform convergence coincide on H (€2). However, it
turns out that the answer is negative, even if all sequence members are entire functions:

Lemma 4.2.4 ([stab]). The topology of pointwise convergence on H ((Cd> is strictly
weaker than the compact-open topology on H (Cd).
Proof: Let d=1. Using Runge’s theorem we are going to construct a sequence of

polynomials which converges to zero pointwise but fails to converge uniformly to zero
in any neighborhood of 0 € C. Let K, := {rew | ref0,1], 2<0< 277}, let A, =

n- K, let z, := % and L, := A, U{z,}. Let V! and V? be open and disjoint
neighborhoods of z,, and A,, respectively, and let V;, = VI U V2 Set

0 z2zeV?
£ zeV!

Zn

fa: V—=C, fu(z):=

By Runge’s Theorem we can find a sequence of polynomials p,, so that

| fo = Pally, < % Since A,, C A, 11 and LEJN A, = C, we have that (p,),cy converges

pointwise to zero. But (p,),,oy does not converge in any neighborhood of 0: Note that
zn — 0. Given € > 0, let Ny € N so that z, € D, for n > Ny. So [|pall, > 1 — + for
n > Ny. The same counterexample applies also for d>1. O

A positive result for the question when pointwise convergence coincides with locally
uniform convergence can be achieved for sequences of univalent functions. Let 2 C C
be a domain. A function f: Q0 — Cis called univalent if f is holomorphic and injective.
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Theorem 4.2.5 ([BMO03]). Let Q@ C C be a domain, f, € H(Q) be a family of
univalent functions which converges pointwise to some function f: Q) — C. Then f is
analytic and f, converges locally uniformly to f. If ) is connected, then f is either an
univalent function or a constant function.

The proof is done by using that fact that around an arbitrary point zy € {2 one can
find a disc centered at a point at which the sequence converges locally uniform (which
follows from Osgoods theorem). Then the growth theorem for schlicht functions on
the unit disc can be applied to show that the sequence is bounded on compact subsets
of the disc containing 2.

Other topologies which naturally appear in the study of power series spaces are the
simple topology and the Krull topology inherited by P,;. The following results are
taken from [BZ79] and we state them for the sake of completeness of our study of
topological properties of O, without using them later.

Definition 4.2.6. The simple topology 7um of O, is the metrizable locally-convex
topology described by the set of seminorms {gz} senes Where

45(Xaent Cat®) = |cg|. Anet f; = 3 ena ¢,z converges to f =3 qena Caz® in (O, 75)
iff ¢, el cq for all o € N (Oy,7,) is a Fréchet-algebra — a complete commutative
metrizable topological algebra.

Lemma 4.2.7 ([BZ79, p.37/38/39]). Let J be an ideal in Oy.
(1) J is closed in the simple topology.

(2) Od/J has a unique Fréchet-topology.

(3) The Krull topology and the simple topology admit the same continuous linear
functionals.

Note that this also implies that Oy has a unique topology which turns it into a
Fréchet-algebra.

4.3 Holomorphic maps between rings of conver-
gent power series

In the first part of this section we discuss different characterizations of holomorphy
for maps between rings of convergent power series. In the second part we establish
the monomial series expansion for holomorphic functions U — C for suitable open
subsets U of O - a result which is due to Boland and Dineen ([BDT78]). We are
going to show that a map O — O is holomorphic iff it is bornological and if its
coefficients are holomorphic, which allows us to characterize holomorphic maps in
this setting as sequences of power series whose coefficients satisfy certain Cauchy-
type estimates, which results in a projective-inductive description of H(O%, OF) (see
IDefinition 4.4.15)). Then we will investigate the compact-open topology on H (O}, Oq)
and show that (H(O%, O}), 7.,) has a basis.
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Chapter 4 Rings of convergent power series

Theorem 4.3.1. Let U be an open subset of Of . Let F': U — Of . TFAE:
(1) F is holomorphic.

(2) F is continuous and has holomorphic coefficient functions.
(3) F has holomorphic coefficient functions and F(K) is bounded for all K C U.
(4)

4) For any holomorphic curve c: D — O} the composition I o c is bounded on
compact subsets of the open unit disc D and F' has holomorphic coefficient func-
tions.

(5) F is curve-holomorphic.

(6) F' is G-holomorphic and F(K) is bounded for all K cuU.

Proof: (1) = (2) Let For = pai © F, where p, ) denotes the continuous coefficient
projection (X genaz €127, . .., Y genaz €g,q2”) > Cax. Note that continuous linear maps
between locally convex spaces (over C) are holomorphic and that the composition of
holomorphic functions is again holomorphic [Din99, p.219].

(2) = (3) F is continuous, therefore F'(K) is compact and thus bounded, for K cU.

(3) = (4) The image of a compact subset of D under a holomorphic curve is compact
since holomorphic curves are continuous (see ), therefore F'oc is bounded
on compact subsets of .

(4) = (5) We need to show that for any holomorphic curve ¢: D — U and any
Y € (0F,)" the composition 1) o F o ¢ is a holomorphic function D — C. Recall that

*: (H (Cd2>)q — ((’)32>/ is an isomorphism (see [Theorem 4.1.5). Let ¢: D — U, set

fok = Par o Focandlet ¢ = (¢1,...,¢0,) € (H (CdQ))q, Ok = Yaend Ca k. By
Lemma 3.2.2] holomorphic curves into (O4)? are holomorphic functions and as the

composition of holomorphic functions is holomorphic ([Din99) p.219]) we have that all
fak: D — C are holomorphic. For r € (0,1), there exist S € (R%)q and M € R% so
that (F o c)(A,) C Hg,y, which implies that || fo ||z~ < 4%. For z € A, we have

r k

|(¢* oFo C) (Z)’ = Z ¢a,kfo¢7k(z) S Z |¢a,k| ||fa,k”m S

1<k<q, a€N92 1<k<q, a€Nd2

M
< Y |¢a,k|sg’j < o0

1<k<q, a€Nd2

This shows that the series 31 <y <, pend2 Pakfar = ¢ 0 Foc converges locally uniformly
on D and as the coefficient functions f, ; are holomorphic we conclude that ¢* o Foc
is a holomorphic function D — C. Hence F' is curve-holomorphic.

For (1) < (5) see [Theorem 3.2.3| and [Theorem 3.1.10 and recall that the (inductive)
topology on OF coincides with its ¢*-topology as it is a (DFS)-space and therefore
also a convenient space as it is complete and hence locally complete (< convenient).
(1) = (6) Holomorphic maps are G-holomorphic and continuous.

(6) = (3) All coordinates of F' are G-holomorphic and bounded on compact subsets.
[Theorem 3.2.6| then yields that all coordinates of F' are holomorphic. O

Since bounded subsets of OF are relatively compact, we obtain the following char-
acterization of entire functions:
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Theorem 4.3.2. For a map F : O} — O, the following are equivalent:
(1) F is holomorphic.
(2) F is continuous and has holomorphic coefficient functions.

(3) F is bornological and has holomorphic coefficient functions.

(4) For any holomorphic curve c: D — Oy the composition I o c is bounded on
compact subsets of the open unit disc D and F has holomorphic coefficient func-
tions.

(5) F is curve-holomorphic.

(6) F is bornological and G-holomorphic.

Definition 4.3.3. A sequence (z,,), .y of elements in a locally convex space £ is called
a basis for E if for every element a € E there exists a unique sequence (ay),ony C C
so that a = Y02 arxy = lim, o > g akxr. A basis is called a Schauder-basis if
all projections p,: E — C, p,, (21?;0 akxk) ‘= a,, are continuous. For n € N we set
sn (52 apr) == Yp_oaxTr. An equi-Schauder-basis is a basis which satisfies that
the set of sum-operator {s,} - is equicontinuous.

Lemma 4.3.4. Let E be a locally convex space.
(1) If E is the inductive limit of a sequentially retractive sequence of locally convex
spaces, then every basis in E is already a Schauder-basis. |[Flo73]
(2) If E is barrelled, then every Schauder-basis is already an equi-Schauder-basis.
[Din99l p.188]

Definition 4.3.5. We say that a series Y, y,, converges unconditionally it >7° ; y, =
> on—o Y (k) for any permutation 7 of the natural numbers. A series >272 y,, converges

unconditionally to S if and only if the set {y, | n € N} is summable to S (see

inition 2.6.11f). A basis (wn)neN for a space E is called unconditional if Y72 arxy

converges unconditionally for every >32 arx, € E. A basis (xy),oy is called ab-
solute, if py(Xnen CnTn) = Ynen |Cnlg(z,) defines a continuous semi-norm for every
q € cs(F). If {zg}ren is an absolute basis, then it is an equi-Schauder-basis and
> ken @xTr converges absolutely (and hence unconditionally) whenever it converges
(see [Din99l p.189]).

Lemma 4.3.6. The monomials form an absolute basis for OF.
Proof: WLOG p=1. A semi-norm ¢: Oy — R, is continuous iff there exists a C' > 0
and a ¢ = 3 ¢p,2® € H(C?) so that g(a) < C - py(a) for all @ € O4. Set g, = q(x®).
As g, < Cloo| we see that p,(3 caz®) = X |callq(x®)| < Cpgla), which shows both
that p, is well-defined and continuous. O]
Definition 4.3.7. We define

Mg :={f: N* = N | f(a) # 0 for only finitely many a € N}

For v € My and ¢ = Y pena Caz® € Py (R), we set ¢7 1= [[pene Y, where we use
the convention 0° = 1. Analogously, for v = (y1,...,7,) € M} and
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Chapter 4 Rings of convergent power series

¢ =(¢1,....0p) € PY(R) let ¢7 := ¢]" ... ¢J». By e we denote the k" standard unit
vector of NP. For v € M%, we set

sh (y) := zp: > (@) e e NP

k=1 aqcNd

wt () :== Zp: > () - e N

k=1 acNd

wty (’7) = (Wt(/yl)v s ’Wt(7p)) € Md><p (N)

We note that sh(y) = >7_; sh(yx)er and that wt(y) = >F_; wt(yx). The support
supp(7) of v € MP is defined as the set {a € N?| 3k : () # 0}. We set

Iiy = {a € Nd‘ oy < n}

P P <
Ay, = {y € Mj|supp(y) C I and 1%?%2%&@%( a) < n}

For S € (Ri)p, M € R:i, let gsm = <ZaeNd M, o ,...,ZaeNd pg) € Op

Theorem 4.3.8. Let d,p € N. The infinite-dimensional geometric series

- Y @

YEMg
converges on the infinite-dimensional polydisc H1 10 = = {DXaend CaZ® : |ca] < QS*}
for0 <@ <1, §<(1,...,1),5 € RL. Furthermore for a € H;Q we have the
following estimate:
1
lg9(a)] < glgs—10) = D QM) = 11 T-0g« (4.1)
YEMy aeNd

Analogously, let S = (Si,...,S,) € (RL)? such that Sy < (1,...,1) for all k < p, and

let Q = (Q1,...,Q,) € RE satisfying Qr < 1 for all k < p. Then g = Yemr @7
converges on H%Q, and for a € H%Q

p
9(a)] < glgs10) = >, QPO H H Q = (4.2)
veMy j=1aeNd I

Proof: First, we show the case p=1. Let (ak)ivzl be an enumeration of /;, and set
Y = Y(ay,) for v € M.

g(gsfl,Q) = Z QSh(W)SWtV(W) = lim Z QSh(V)Swt\,('y)

n—oo

yeM?b YE€EALR
. +- Y IN __
=l 3 QU (g (5 =
’YeAd,n
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4.3 Holomorphic maps Of — O}

= lim Y QU (S (SN =

n—oo

0<m<N
= lim Z Q% (Sm)’h L. Z Q’YN (SOZN)’YN
[ YN=0
1—(Qs)™!
= lim H _—
e e O
If we set ( ) .
1 1—(QSY)"
T = H ———and T,, = H e
meld 1—QS8~ a€lan 1-QS
then

ron g (I gs I 0-@)

OtEId’n €Id ae]d n

Un Un

We are going to show that [,ene 7= Qsa is convergent (which implies that u, ~—— 1)
and that v, == 1. Set f,(z,y) = [laer,, (1 — (yz®)) and S™ := (S},...,S7) and
observe that v, = f,,(S"™!, Q"*1). Next we show that fn(z,y) converges uniformly to
F(@,y) == Taene (1 — (y2®)) on A, x A for r € RY with r < (1,...,1) and 0 < ¢ < 1.
Let log denote the principal branch of the complex logarithm. The series Y 72, %
converges locally uniformly to —log(1— z) on the open unit disc in the complex plane,
, |2] < 1. For ¢ > 0 the

which yields the inequality [log(1 — z) =

that —— < C for all @ € N? and (x,y) € A, x A,.

S toa(l - )| < Y L <0 e (4.3

a€Nd aeNd |y$a| B a€Nd

The inequality shows both that [[,ene = QS& converges and that f,, converges locally

uniformly to f and it follows readily that

lim v, = = lim f, (™t Q") = £(0,0) = 1.

n—oo

Therefore T;, converges to T', which completes the case p = 1. For p > 1, the validity
of our claim can now be deduced easily:

gSQ Z gSQ — Z QSh(’Y)Sth('Y) = 7}1*)1,20 Z QSh(’y)Swtv(ry) _

yeMb yeMb VEAY
_ 3 sh(71) gwt(71) sh(vy) awt(r) |
_1}520< Z N Vl)"'( Z Qp(v)gpt(v))_
Y1 G.Ad n ’YpE-Ad,n
Jj= 1a€Nd Q]Sa
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Chapter 4 Rings of convergent power series

]

Corollary 4.3.9. Let 0 < S <1 and 0 < @Q <1, let a = Y cnyap2™ € Hg-1 ¢ and
9(x) =X em, 7. Then

o 1
=T
n=0

Proof: g(a) = Yemi @’ = lim,, o0 T 15— 11a . We have already seen that [[,~o = =

converges. As in the proof above we establish the estimate

] _asien
1 [ = T (SR

‘log (1— a”“)‘ <

And hence
n MSh’c)n—i—l Mn+1 n
n+1 < kE\n+1
_g. Amwﬂ—l—MsZ“) =
1 1
< Mn+1
- 1-MS1-S

which yields lim,, .o 37y log(1 — af™) = 0 and lim,, o [T}—(1 — af™') = 1. Hence

llmﬁl_anﬂ—limﬁ( L )ﬁ aytt) ﬁ
e L—ap  moeopig N —a/ = im0 L — @

O

Example 4.3.10. The following representation of the Dirichlet series as the value
of an infinite dimensional holomorphic function is a result of H. Bohr (see [Din99l
p.231]). Let p, denote the n'® prime number (py = 2,p; = 3,...) and for z € C let
P(z) = 3,5 piz". For n € N, there is a unique 7 € M so that n = P(1)".

Let R(2) >1,0<S<1,0< M <1 and Y=o " € Hg-1). Set a, = a, for
n=P(1)Y € N,. Then 3,5, %2 = > oy, a,P(—2)7.

Definition 4.3.11. Let S € (R4)?, M € R} and a € OF. The set a+ Hgy is called a
compact polydisc with center a. For S € (R1)?, M € R, R = (Rak)acty .. 1<k<p: Such
that all R, € R, we set

. M,
Hpsar = {(Z Ca,kxa)lgkgp ok < Rag if @ € Igp, |cap| < 5o if a ¢ Idn}

and Hr s (a) = a+ Hp gy These sets will be called quasi-polydiscs with center a.
For ¢ = (¢1,....¢,) € (H (Cd))p and € > 0 the set

_&sz{feOg

max pg.(a—f) < 6}
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4.3 Holomorphic maps Of — O}

is called an open polydisc with center a. Since the semi-norms pg° are continuous

(Lemma 4.1.7)), the open polydiscs are indeed open subsets of OF.

Lemma 4.3.12. Let U be an open subset of OF.
(1) The family of finite unions of compact polydiscs contained in U forms a funda-
mental system of compact sets for U.
(2) Suppose that U is an open polydisc Py .. Then there exists a fundamental system
of compact sets consisting of quasi-polydiscs centered at a for U.

Proof: (1) Let K be a compact subset of U. Then there is an S € (Ri)p so that K
is a compact subset of £°°(S). Since U N ¢>(S) is open, we can cover K with a finite
number of translated polydiscs of radius S which are contained in U.

(2) WLOG a = 0. Let K be a compact subset of U. Since the compact polydiscs form
a fundamental system of compact sets for OF, there are S, M > 0 so that K C Hg .

There exists an ng € N so that |¢ak|¥—§ < €/2, for all a > (ng,...,ng). For a € Iy,
let R, := max.exk |ala, j]| < ﬁ and R = (Rok)acr,, € Rf‘). By construction,
«,j ’

K C Hgpsm C U and it is easy to see that Hpg s is compact. O

Theorem 4.3.13. Let U = Py (a) be an open polydisc and let Hg sy (a) C U. There
exist K > M, 0 <T < S and R> R so that Hr sy C Hpp e CU.

Proof: WLOG a=0. Forn € N, R = (Ra,k)aeld,n,lgkgp, = (Ri)p’ M e R let
hrsmr = (Xa ha,kxa)lgkgp € O, where

hoz,k =

My,

S

Ra,k ifa € [dﬂ
else ’

Let ¢: C\ {0} — OY, z — h,p.s.m. The coefficients of ¢ are polynomials and ¢

is bornological, hence ¢ is a holomorphic function. Consequently v(t) = p3°(h(t))
is a continuous function B, %} — Ry, with v(1) < e. Hence there is a A > 1
so that ps(A) < e. This means that Hypsyn C© U - Forb e Hyp sy we have
pFr(b) < P;o(h,\Rg,M,O =v(\) <€ 50 b€ Uy, O

Theorem 4.3.14. Let S = (S,...,5,) € (RL)? satisfy S, < (1,...,1) for all k < p,
and assume that Q = (Q1,...,Q,) € RY satisfies Qr < 1 for allk < p. Letn € N, let
0 < Rop <1 forallacly, 1<k<pandlet R= (Rak)acry,1<k<p- Fory € My,

n € N set p,(y) = 7|15n and R0 = Haer,,1<k<p Rzé’fk(;a). Then g := ¥ epm 2"
converges on HR,%,Q? and for a € Hg gy we obtain the estimate

P 1 1
< RPr (M) Osh(r=pn (7)) gwiv(y=—pn(7)) —
g < 3 ROQ I I =g U 75,

’YGMZ k=1 aeNd\Id,n k ae[d,n
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Proof:

lg(a)] < Z la]” < Z an('y)Qsh(%pn(v))Swtv(%pn(v)):

yeM?h yeM?h
_ 1 on (V) Osh(vy=pn (7)) Qwtv(vy=pn (7)) —
—afm, 2 RUTQETTS -
'YEAZ,M

S (1 S e) (TS @) -

M—co . .
a€lg Mg n jo, k=1 a€lgnm\ldn Ja, k=1

p M+1 _ o 1
— lim H< H M H (Qp S )M+ _1> _

M—oco Roz,k -1 a€lya\lan (kag) -1

k=1 OéEIdyM
' P Ri/lg-l -1 (kaa>M—|—1 1 (kaa)M—l—l 1 -1
= i H<H For—1 Al S —1 (H S -1 ) >:
Ookzl OéefdyM O‘vk aeldﬂM (Qk k) ae]d,n (Qk k,‘)

1

4 1 1 !
SO0 e s asp=1) )

Proposition 4.3.15 ([Din99, p.205,208,172]).
Let U = Uy, be an open polydisc in OF and let f € H(U,C).

(1) There exists a unique sequence of coefficients (cw),yeMg so that

fl@)= > cy(z—a) (4.4)

p
YEM,

for all x € U. The series converges absolutely and uniformly on the compact
subsets of U.
(2) (Cauchy-estimates) Let Hgsn(a) C U, where R = (Rak)aety,i<k<p- Then

Svtv(r=pn(v) 1
|C’Y| S ||f||HR,s,M(a) MSh(’Y_Pn(V)) Rﬂn("/)

Especially, if Hg pr(a) C U, then

Sth(’Y)
[ < Wl g as0) 37500y
(3) The monomials form an absolute basis for (H(U), Teo)-
(4) (H(U), 7e) is a nuclear Fréchet space.

Proof: (1),(2),(3) WLOG let a=0. Let Hgr gp C U. By [Theorem 4.3.13| there exist
0<T <S8, R>Rand K > M such that Hr s C Hp gy CU. Set

Exy:={(f1,-- -, fp,) €04 | fela] =0 for a € Iyn}, Apsm(N) := ENNHpsnr, My :=
{y € MY | supp(y) C Ex} and d(N) = dim Ey. Since the restriction of f to any
finite-dimensional open subset of U is holomorphic we can expand fy := f| Arsar(N)
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4.3 Holomorphic maps Of — O}

into a locally uniformly convergent Taylor series Y senacm ¢52°. Let v € M5 and let N
be large enough so that v € My. Then the monomial 27 can be identified with its
restriction to E, and thus there exists a unique §(y) € N¥™ such that 27|g, = 290

and we set ¢, = cs(,). Note that c, is independent of N as fN+1|AR,s,M(N) = fn. The
. . wtv ()
Cauchy-estimates yield || < || fl sz .2 Tobe—r ey R’Yi(v)' Set g(x) = Xy cy2”. For

b € Hr sy we have

, 1 Tvtv(=pn() Msh(=pn()) (1)
l9(0) < EZA;p|Cv||b| = 6%; 1Mtk iy Tty ) om0 ) <
TeMy YeMg

M\ ShO=pn() oy wiv(r=pn(7)) , RN Pn(Y)
<l ¥ (%) (5) () <=

P
yeEMY

The convergence of the geometric series is the content of [['heorem 4.3.14|and the above
estimate implies that >°. . ME cyx” converges absolutely and uniformly on Hpg g a7, thus

g: Hg s — Cis continuous. By construction, g (jc(a)) = f (je(a)) for all ¢ € N%. The
continuity of f —g yields (f —g)(a) = limja|—oo(f — 9)(Ja(a)) = 0, which together with
the uniqueness of the Taylor-expansion on finite-dimensional subspaces of FE implies
that the monomials form a basis for (H(U, C), 7). Again the Cauchy-estimates imply
that the monomials even form an absolute basis.
For the proof of (4) we refer the reader to [Din99, p.208] and [Din99, p.172].

]

Corollary 4.3.16. A function F: O — C is holomorphic if and only if F is a power
Series e ME Cy T which converges uniformly and unconditionally on the compact sub-
sets of OF.

Proof: (=) O} is an open polydisc since O} = P, ; with ¢ = 0.

(<) Clearly every monomial and hence every linear combination of monomials is a
holomorphic function. As (H (O4,C),7e) is complete it follows that 3, c v cya? is
holomorphic. O

Lemma 4.3.17 (Lifting of finite-dimensional holomorphic maps). Let f: C* — C
be a sequence of holomorphic functions such that fk‘(ckflx{o} = fr_1. Suppose further

that for every M,R > 0 there is a C' > 0 so that | fxlla,, oy < C for all k € N,
where Ay r(k) = {(21,...,2) € CF ) |2;] < % V1 < j < k}. Then there is a unique
holomorphic function F': O; — C so that that F|ck = fi, where we identify C* with a

subspace of Oy via 1,: CF — Oy, Lz, 2k) = 21 + 202t -+ 7% et
Proof: Let f, = Y ent cix®. The fact that fk‘ckflx{o} = fr_1 yields c’(“;é) = ¢ for
a € N¥ and inductively we get

i o =chfora e Nf, neN, (4.5)

A monomial v € M; with supp(vy) C {0,...,n} can be identified with the vector
(7(0), ..., v(n)). Weset ¢, = g ), Which is well defined (which follows from the
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above equation) and F' = Y ¢y, ¢y2”. Let k € N be fixed, let (z,...,2) € CF

(Fouw)((z1,...,2k) = Z Cy (21 +... zkx"/’_l)7 -
yEMy

— Z Cy (21 + ... kakq)“f = Z = fulz, .. )

supp(y)C{1,...,n} a€eNF

Let S, M > 0. By assumption, there is a C' > 0 independent of k so that || fi|s,, ;) <
C. For v € M, with supp(y) C {0,...,n} we have

1 RYt()

&3] = 150),...hm| < C(M)»y(m — (M>v(n) =0 mm
RO R™

This shows that F'(a) converges for every a € Of and that F' is holomorphic as the
series Y., ¢y converges uniformly on the compact subset of O;. m

4.4 The space H(O}, OF)

In the study of holomorphic functions between locally convex spaces, two other canon-
ical topologies beside the compact open topology on H(FE, F) appear - the Nachbin
topology 7, and the topology 75. However, we focus on the setting where both the
definition and the image space are rings of convergent power series, in which the
situation becomes far simpler than in the general theory and the three mentioned
topologies coincide. We will state the relevant theorems as formulated by Dineen with
respect to the topologies 7., 75, 7, without actually defining these topologies (as they
coincide with 7., in our setting) and refer the interested reader to [Din99] for further
information. In the literature usually only the space H(FE) of scalar-valued functions
holomorphic functions is studied. If £ is a (DFM)-space and if F' is complete, then we
can identify (H(E, F'), 7.,) with Lp (H (E),, F ), which enables us to use these results
to study also the vector-valued case.

Lemma 4.4.1. Let U be an open subset of OF. The compact-open topology Te, on
H (U, 0%) is generated by the system of semi-norms {|| ||, | K CU, ¢ € H (Cd)q},
’ co

where ||F[| ;= SuPye PY (F(a)).
Proof: See[Theorem 1.2.7 and [Lemma 4.1.7. O

Definition 4.4.2. For an open subset U of a locally convex space F let
G (U):={¢ € H(U)"| ¢ is 1eo-continuous on the locally bounded subsets of H (U)} .

We endow G (U) with the topology of uniform convergence on locally bounded subsets
of H (U), with which it becomes a complete locally convex space.

Lemma 4.4.3. If U is an open subset of a (DFM)-space E, then
GU)=(HU),Te)y = ((H(U),TCO)/,TCO) and G (U) is again a (DFM)-space.
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4.4 The space H(OY, OF)

Proof: If E is a (DFM)-space then (H (U),7) is a Fréchet-Montel space
rem 3.2.8)). In particular (H (U), 7e) is a (k)-space and hence a function

f: (H(U),7e) — C is continuous if its restrictions to compact subsets are continu-
ous. The locally bounded subsets of (H (U), 7,) coincide with the 7.,-bounded ones
and these coincide with the relatively compact subsets ((I'heorem 3.2.7)), which implies

that G (U) = (H(U), 7ea), = (H(U), Teo)' s Teo)) 0

Theorem 4.4.4 ([Din99, p.184]). Let U be an open subset of a locally convex space
E and let F be a complete locally convex space. For each f € H (U, F) there exists a
unique Jp (f) € L(G(U),F) so that f = Jg (f) o 0y, where dy: U — G (U) denotes
the mapping x — €, and €, is the evaluation f — f(x). The mapping f — Jr (f)
establishes a linear topological isomorphism between the spaces (H (U, F),7s) and

(L(GU), F), 7).

Proposition 4.4.5. Let U be an open subset of a (DFM)-space E and let F' be an
arbitrary locally convexr space. On H(E,F), the canonical topologies Teo,Ts and T,
coincide.

Proof: For any pair of spaces, 7., = 7, < 75 (see [Din99, p.170]). If E is a (DFM)-
space and F' a normed space, then all three topologies coincide on H(U, F) by a
result of Dineen [Din99, p.172, ex.3.20(b)]. For any locally convex space F, we
have by definition (H (U, F'),71s5) = h£1a€cs(F) (H (U, F,),7s), where F, is the quo-
tient space (F,«)/ker(a) (see [Din99, p.11]). Let m,: F — F, be the canonical
quotient map and let #,: (H(U,F), 7o) — (H(U,F,),7e0), [ — mao f. Tt is
easy to see that 7, is continuous (for any a € cs(F')) and since (H (U, F,),Teo) =
(H (U, Fy),7s) it follows that id: (H (U, F,),7e) — (H(U,F,),7s) is continuous.
The projective description (H (U, F),7s) = lim (H (U, F,) ,7s) yields then that

<—accs(F)

id: (H(U,F),7e) — (H (U, F),7s) is continuous, which means that 75 < 7, and we
obtain that 7., = 75. O

Summarizing the above results in our setting we obtain:

Theorem 4.4.6. If E is a (DFM)-space and F a complete locally convex space, then
(H(U, F), 7o) = L (H(U);, F)
If we additionally assume that F' is reflexive, then

(H (U7 F) 7TCO) = ‘cB (FI:7 (H (U) 7700))

Proof: It remains to show that under the additional assumption that F' is reflexive the

[l

second linear topological isomorphy holds, i.e. we need to show that Lp (H 0),, F) =
Lp (F,,H(U)). Suppose that E and F are both reflexive. By [FWG68 p.84] the
barrelledness of the target space implies that dual operators

®: Lp(E,F)— Lp(F,E}), ®(T) =T
Oo: Ly (Fy, By) = Lo (B, (Fy),) , ®o(T) =T
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Chapter 4 Rings of convergent power series

are continuous. If H is a LCVS, then let ty: H — (H}); be the mapping = — ¢,
where €, denotes the evaluation x — f(z). E and F are reflexive which means that ¢p
and ¢p are isomorphisms. Let U be the isomorphism Lg ((E{));7 ) (Fé);) — Lp(E,F),
U:S 1" oS o Now it is easy to see that (U o ®y) = 7', which show that

Lp(E,F) = Lp (Fy, Ey)
Recall that H (U) is a Montel space and hence reflexive, which yields that

Ly (H(U),, F) 2= Ly (F ), (H(U) 7). m

Theorem 4.4.7. Let E, F' be locally convex spaces.
(1) If both E and F are reflexive, then Lp (E,F) = Lg (F}, E}).
(2) [Schl] If E is bornological and F complete, then Lg (E, F) is complete.
(3) Lp (E,F) is a closed subspace of (¢ (E,F), Teo).
(4) If E is a Montel space and if F is a semi-Montel space, then Lg (E,F) is a
semi-Montel space. Furthermore, the pointwise bounded subsets are exactly the
relatively compact subsets of L (E, F).
(5) [Schl] If E is semi-reflexive, and if E; and F' are nuclear spaces, then L (E, F)
is nuclear.

3
4

Proof: For (2) and (6) we refer to [Sch7ll, p.117, Ex 8], [Sch71l p.173], respectively;
and for (1) see the proof of the theorem above.
(3) If a net (f;);c; of linear functions converges pointwise to a function f, then f is
again linear.
(4) Let B be a pointwise bounded subset of Lp (F, F'). By the theorem of Banach
([FW68, p.51]), B is equicontinuous. Its pointwise closure B (taken in F'¥) is again
equicontinuous and 7, reduces to 7, on equicontinuous families ([Wil04, p.286]). Hence
(B",7,) = (B”,7e0) = (B, 7eo). As the pointwise limit of linear functions is again
linear we have that B is contained in £ (FE,F). Since F is semi-Montel, B (x)
is compact for every x € E, which means (by Tychonov’s theorem) that (B™,7,) is
compact. By assumption E is a Montel space, which yields Lg (E, F) = (L (E, F) , Teo)
and as (B, 7,) = (B, 7e) we conclude that B is relatively compact in Lz (E, F).
Note that a family F is bounded in Lp (E, F) iff it is uniformly bounded on the
bounded sets of F, and is hence pointwise bounded - which shows that Lp (E, F) is a
semi-Montel space.

[

Corollary 4.4.8. If E is a (DFM)-space and F' a complete semi-Montel space, then
(H (U, F),Teo) is a semi-Montel space.

Proof: If £ is a (DFM)-space, then H(U) and hence H(U); is a Montel-space. Using
Theorem 4.4.6| and [Theorem 4.4.7|(4) then gives the desired result. O

So for a huge class of spaces questions about topological properties of H(FE, F)
can be reduced to questions about properties of Lz(V, W), where VW are Fréchet
spaces. In light of[Theorem 4.4.7/one might expect that a lot of other linear-topological
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4.4 The space H(OY, OF)

properties of Fréchet spaces such as barrelledness may be transferred to Lg(V, W).
However, the issue is far more subtle than it appears at first sight, and additional
assumptions on the spaces V, W are needed to establish positive results.

In our setting we have to deal with the space Lp (H((Cd), H((’)d)). The following
(linear-topological invariant) properties of Fréchet spaces were introduced and studied
by Vogt ([HH95]), and appear (among others) for example in the study of power series
spaces [MV92].

Definition 4.4.9 ([HH95]). Let E be a Fréchet space with a fundamental system
of semi-norms {|| ||, },oy and let By := {|z[|, <1}. On Ej we introduce the dual
semi-norm || f||; :=sup {|f(z)| | € By}

Definition 4.4.10. If £ is a LCVS, then Hg (E) denotes the vector space of holo-
morphic functions on E which are bounded on bounded sets equipped with the topol-

ogy of uniform convergence on bounded sets. If E is a semi-Montel space, then
Hp (E) = (H(E),Teo). We say that E has property () if

*1+d * *d
¥p3gVk3d,C>0: | ;<N I
E is said to have property (DN) if
Ip Vg Ik, C>0: | Iz <L,

We note that property (£2) is valid for all power series spaces, while property (DN)
holds only for power series spaces of infinite type [MV92].

Theorem 4.4.11 ([Vog84l p.369; Proposition 4.5]). Let E and F be nuclear Fréchet
spaces. If E has property (DN) and if F' has property (2), then Lg (E, F) is bornolog-
ical.

Theorem 4.4.12 ([HH95, p.2]). Let E be a Fréchet space. Then
(1) Hp(E}) has property (DN) if E has property (DN).
(2) Hp(E}) has property (2) if E} has an absolute basis.

Proposition 4.4.13. (H (O}, 0Y) , 7e) is a complete nuclear ultrabornological space.

Proof: By |[heorem 4.4.6| we have:

H (05, 08) = L (09, H(OF)) = L (H(CH)*, H(OF)) = H L (H(CY), H(OD))

Theorem 4.4.12| yields that H ((Cd) satisfies property (DN) as C? satisfies (DN) as it
is a normed space. We have seen in that O} has an absolute basis and
so we can apply the above result to conclude that H (OF) has property ().
then implies that H (0%, OF) is bornological. By [Theorem 4.4.7] we have
that H (0%, O}) is complete and thus ultrabornological, as every Mackey-complete
bornological locally convex space is ultrabornological [Gac04, p.105]. [Theorem 4.4.7|
(5) yields that H (OF, Od) is nuclear. O
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Chapter 4 Rings of convergent power series

Having showed that Lp (H((Cd), H(Od)) is a Montel-space (complete barrelled nu-
clear space are Montel spaces [FW68, p.155]) and in the light of Webb’s theorem that
a Montel (DF)-space is sequential, it makes sense to investigate the question whether
Lp (H(Cd), H((’)d)) is a (DF)-space. However, it turns out the answer to this question
is negative, which follows from a result by Bierstedt and Bonet and the fact that a
Fréchet space is a (DF)-space iff it is normable ([Jar81, p.259]).

Theorem 4.4.14 ([BB88|, Proposition 4]). Let A\; be a Koethe-sequence space of order
one. If E is a locally complete LCVS, then Lg (M1, E) is a (DF)-space if and only if
E is a (DF)-space.

Recall that a map F': O) — O, is holomorphic iff it is bornological and if all its
coefficient functions F,: Of — C are holomorphical (see [Theorem 4.3.2)). The coeffi-
cient functions F,, are holomorphic iff they can be written as convergent power series
2 M Can?, and the bornologicity of F' translates into certain growth conditions
on the coefficients ¢, , as presented below. We will use this description to show that
H (OF, Oy) is the projective limit of a sequence of (LB)-spaces, which shows for exam-
ple that it is a webbed space. In chapter 5 we will make use of these results to show
that the inductive description of certain subclasses of holomorphic functions carries the
compact-open topology, so that we can transfer results obtained for (H (0%, O4) , 7eo)
on these subspaces. From now on - if not stated otherwise - we will consider H (0%, O,)
always to be equipped with 7,.

Definition 4.4.15. Let d,p € N let fixed. A formal power series (of type (d,p)) is an

expression of the form
d
yeMh a€eN

- i.e. a sequence of monomial series which are indexed by M. By Pya, we are going
to denote the set (of type (d,p)-) formal power series, which becomes a vector space
under the usual operations of coefficient-wise addition and scalar multiplication. For
v e MY ae N we define

x): Py — Py, a—a -z

. . .
So we can write a formal power series (Zwe ME Can T ) as

aeNd
Z CanTo

aeN? yeMb
p q
For S € (Ri)  MeR,, Te (Ri) cand F =Y qeniens Candl, We set

Msh()
Swty ()

||F||S,M,T i= sup T sup |[cay
aeNd yeM?

Esyr = {F € Py & 1Fllgpr < OO}

o4



4.4 The space H(OY, OF)

Bsyr = {F € Pray HFHS,M,T < 1}

Using the standard argument for £*°-type sequence spaces one sees that the spaces
Esyr (which we consider from now on equipped with || [|g,,) are Banach-Spaces
(see for example [MV92, p.326]. We note that

ESl,M,T — ESQ,M,T for Sl < SQ
Eg v, — Eg o, for My < M,
Esym — Esyr, for To < Ty

Let Eg s := h_I)TlT Esyr. By |Theorem 4.3.16|, |Theorem 4.3.2| and |Proposition 4.3.15|
we have that

H (057 Od) = ﬂ ES’,M

Se(Rd )P, Me(R )P

We are going to show that in fact we even have the isomorphism

(H (057 Od) 7Tc0) = lﬂl ES,M

Lemma 4.4.16. Let S € (R‘fr)p, M € RL. The net (Esnr)pege 5 sequentially
+
retractive.

Proof: By By we are going to denote the closed unit ball in Eg ;7. We are going to
show that (Fgar)pegas satisfies property (M).
+

For T1 > T2 > T3 > O, we have ES,M,Tl — ES,M,TQ — ES,M,T3- Let (Fk)kEN be a
sequence in Bp,, Fy = (Zwe MP c';ﬁx'y)aeN ,» Which converges with respect to || ||l 5/ 7,
to F'= (ZVGMZ cowx7>a€Nd € Bp,. Set G, = F' — F}, € 2- By, and g’o“w = cfjw — Cany-
We claim that Gy — 0 with respect to || [, 5, Let € > 0 and choose ag large
enough, so that (%)a < 5 holds for a > ay. Let kg € N so that |G|l pp, <€ (%)ao
for k > ko. Then ||Gy|lg s, < € for k> ky:

Msh(v)
<

< ga”Y‘ Swte(y) —

k
Jor| Gwtn(7) =

T

sup 717" sup
a>ag WGMZ

sup 713" sup
a>aqg 7€M5

Msh(v) (TQ)O‘O

€
< 2 ||GkHS,M,T1 <€

Msh(w) - (T2>a0

Sviv@) =\ Ty

Msh(v)

sup T3 sup |t sup T3 sup |2, | Sy <
v d

a<ao  yeM? a<ag

= (TQ>% |Gl <e
— T3 S,M, T3 —

Hence the topologies induced on By, by Eg 1, Es .y, respectively, coincide. Thus
(Esm1)pege satisfies property (M) and is sequentially retractive. O
+
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Chapter 4 Rings of convergent power series

Definition 4.4.17. Let X = (<En>neN , (Wn)neN) be a projective spectrum of LCVS,
where 7, : E,;1 — FE,. Set

B(X) := {(x")neN S HEn : 3 (Yn)pen € HEn with @, =y, — Tp(yns1) for all n}

Proj'X :=[[ E./B (X)

Our main interest in Proj', which is called the derived projective functor, is as a useful
tool for showing that the projective limit of a sequence of (separated) (LB)-spaces is
ultrabornological.

Theorem 4.4.18 (Vogt [Wen03| Theorem 3.3.4]). Let X = (X,),cn be a projective
sequence of separated (LB)-spaces with Proj' = 0. Then lim X, is ultrabornological.

Theorem 4.4.19 (Retakh-Palamodov). [[Wen03, p.27, Theorem 3.2.9]] For a pro-
jective sequence X = (Xy,), oy consisting of separated (LB)-spaces, the following are
equivalent:
(1) Proj' X = 0.
(2) There is a sequence of Banach discs B, C X,, such that
((I) B, C B,
(b) VN € N IM > N such that Xy C lim X, + By

Theorem 4.4.20.
Proj' (Esnm)g =0

Proof: Recall that Eg, ar, C Eg, a, if S1 < S5, My < M; and note that for any se-
quence (Sy, M), oy with lim S, = 0 and lim M,, = oo the projective sequence (Eg, )
is equivalent to the projective net (Es)g ), (which we order by inclusion). Without
specifying any such sequence we just show that the net of unit balls (Bg a7)sm (for a
fixed T' € R%) satisfies the conditions of [Theorem 4.4.19, Let Sy < Sy and My < M.
Then it is easy to see that Bg, .7 C Bs, .1, 50 the net (Bgarr)s.am satisfies (2)(a)
and it remains to show that it satisfies condition (2)(b) of [Theorem 4.4.19, We are
going to show that Eg, a, C H(OY, O4) + Bs, v, 1 by showing that for F' € Eg, u,
we can split off a suitable generalized textile map F (which is an entire function; see
|Theorem 5.3.8[) so that F' — F € Bg, a1 Let | Flls, ar, g < K < 00. Note that

Mzsh(’Y) TN\ Mg sh(v) Sl Wty ()
Pl = 500 T sup e | i < sup (L) sup 1 (A2)77 (51)
AT aewe ey Sy Taene \R/ sep \ M Sy

Set Q@ = 2 € (RL)P, Q = (Quj)i<j<dr - - » (Qpj)i<i<a), let

U= (U,...,U) €R, Uy = nax Qi

.....

and choose N € N so that UV < % Further, choose v € N so that U” < % Then
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4.4 The space H(OY, OF)

for v = (m,...,7) € M with wt(y) > N - a + v we obtain

wty (7)
(g:) _ Q‘{vt(%) . Q;vt(“/p) < (4.6)

< vt o gwtn) = gwt() o ety o <R)a L (4.7)
hS T

Noj..., N 1.1
Moreover, choose Ny € N, vy € NP so that (%>( e N0) < (%)( : and —1)V0 %

<
Set A = (a;)i; € Myyqa(N), a;; = N for all 1,j. For v € MY with v(0) > A-a + vy
3 )isg P J d

we obtain b "
Mo\ Mo\ RN® 1
) =Gn) <) (49
M, My T) K

Set h(a) = N-a+vand g(a) = A-a+ vy, F = (¢4,) where

aGNd,'yEMZ7
X Can  if wi(7) < h(a) and 7(0) < g(a)
Cony =

7 0 else

and G = F — F. Then F is a generalized textile map with growth vector (h, g)
and since the coefficients satisfy the necessary Cauchy-type estimates F': O — Oy
is a holomorphic (entire) function (see [Theorem 5.3.8). It remains to show that G €

BSQ,MZ,T:
Sh("/)
G = sup T¢ sup |Cary| ——= <
|| ||SQ,M2,T aend ’YEMS Y S;)Vtv('y)
v(0)>A-a+vy or wt(y)>N-a+v
T\ M, sh(7) S, wy ()
s (B ¢Gr) )
aceNd 'YGMZ R M1 SQ
~v(0)>A-a+vy or wt(y)>N-a+v () (I1)

Because of [Equation 4.6/ and [Equation 4.8 we see that either (1) < (%)a +or (II) <
(%)a = Whif)h shows that ||G||g, rrr < 1.
Hence F = F' + G € H (0%, O4) + Bs, m,,1, which completes the proof. O

Proposition 4.4.21. H (O}, 0f) = lim, lim . Egur

Proof: We are going to denote the projective topology of lim s hi)nR Eg v,r with

Tproj- For showing that id: lim M lim . Esnpr— M (O, Oy) is continuous it is enough

S
to show that every 7,o;-null-sequence is a 7.,-null sequence, since lim S lim R Esu.r

Tproj

is bornological by the preceding theorem. Let F,, — 0, where F}, = >, F. x].
Then VS, M > 0 3T > 0: |[F,l|g57 — 0 by |[Lemma 4.4.16, We need to show that

1F = Flly, .o — 0forall R € (R)?, K € RY and ¢ € H (C?)" (see|Lemma 4.4.1).
For given R, K choose 0 < S < Rand R < M and T € R so that ||F,[|g,,, < 0.
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Chapter 4 Rings of convergent power series

For a € Hg i, we have

[ Enllg s SO KSh()

(Fla)[a]] =] > Fara?| < ) Ta () pw
yeMP yemMh M=0) Rt
[ra8| KA\ g\t |
= TiM?T 2 (M) <R> = TiﬁM’T'C1
yeM?h

for some C; € Ry. For ¢ =3 ¢ x* € H (Cd) let Cy € Ry so that ] 2| < Cy for all
a € N%. Hence we obtain

[Enll 0 = sUP sup |¢o - (F(a))[a]] < Cr- G| Fallgayr

a€HR Kk aeNd

and thus |||, — 0. As ¢, Hp ¢ were arbitrary, it follows that F,, =% 0 and thus
id: hm hm ESMR — H (O}, 0%) is continuous. The space hms hm Eg R is

webbed and H (08, Oy) is ultrabornological, so the open mapping theorem can be
applied to conclude that lim . lim  FEgy g = H (Og, Og). O

Corollary 4.4.22. H (0}, OF) is a webbed space.

In chapter 5 we will study certain classes of holomorphic functions with polyno-
mial coefficients. The following theorem is tailored to this end and shows that ultra-
bornologicity is passed over to these classes. Note that in general ultrabornologicity
is mot passed over to closed subspaces - in fact there exist ultrabornological spaces
with closed subspaces which are not even bornological ([Jar81l, p.281]). However, ul-
trabornologicity is always passed over to quotients taken by closed subspaces (|Jar81)
p.281]), which will be the key to prove the following theorem.

Theorem 4.4.23. Let p,~: H (04, O4) — C, (EaeNd,,},EMs caﬁxg) = Camys

let R = {pa~ | a €N4 ~€ MS} and let Q be an arbitrary subset of R. Then:
(1) The projections p,. are continuous.
(2) Hg :=Nyegker(f) is an ultrabornological closed subspace of H (O}, Og).
(3) H (O, Oy) is the topological direct sum Ho @ Hge.

Proof: (1) Let F, = (Z%Mg cgﬁx“’) i be a null sequence in H (04, O4). For

S e (RL)P, M € RY, there exists a T € R% so that ||F,||g,, 7 — 0, which implies that
0 = lim, . ¢, ., by the definition of the norm. (2),(3) Clearly Ho and Hge are closed
subspaces of H (O, O4) and thus webbed. Since ultrabornologicity is passed over to
quotients taken by closed subspaces we have that H (0%, O,) / Hge is ultrabornological.
We show that the projection po: E — Hg is continuous by showing that its graph is
closed, which yields that Ho @ Hge is a topological direct sum. Let (z;, pm(z;)) —
(z,y). Note that

pQ( > Cowxl>:< > Ca,ﬂ?l)-

’YEMS,CMGNd pa;yEQC
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4.4 The space H(OY, OF)

We have:
0 if pay € Q

lim po (z;)  else

0 if pa~y € Q
pa,’y(Q) = { 7

Pan(y) = limpay (po(wi) = {

Paqy(x) else
Hence po(z) = y and thus pg is continuous, which implies (3). Consider the following

commutative diagram to obtain (2), where E := H (O}, Oy):

E —"2 Hg

[

E/HQC

Po is an isomorphism as pg is continuous, hence Hy is ultrabornological. ]

Theorem 4.4.24. The set of monomials {:pg |a e N v € /\/l:;} forms a basis for
H (O, 04).

Proof: Let ' =Y cniqyemr Can@d € H(Og, Og). We will use the projective descrip-
tion of H (Of, Og) as lim Es yr obtained in [Proposition 4.4.21 So we have to show
that the net of partial sums (the ordering on the finite sets being the inclusion)

( Z CanTa
(

a,y)EF >}‘ C NixMP

finite

converges to F in all Egj. Let S; € (R%)? and M; € RY, and choose S, € (RL)?
and M, € RY with Sy < Sy and My > M;. There exists a Ty € Ri so that C' =
1 Fllsypyr, < 0o Let Tt € RE with Ty < Th. We claim that the sum converges

with respect to || |lg, ys,z, to F. Let € > 0 and let ag € N so that the estimate

(%)a < & holds for all o« > «. Recall that Evemg <%)sh(’7) (gi)wtv(v)

by [Theorem 4.3.8, Hence there is a finite set G C MY so that

> () (@) <6

is summable

Set F ={a < ap} x G. We claim that

<e€

S1,M1,Th

_ o
F Z CanyTy,,
(ay)eF

Let d,, denote the coefficients of F' — 3=, )er Cay 2. We have:
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sh(y
Z Can Ty, = sup 1} sup |d, ,7|]\{/1tv( =
(o)) EF Sy MyT aeNd yeME
— sup (T) sup Ta|dM|MShm (M) " (52>“”“<’”
aend \ 15 veM?, Wt" M, St
Ea(ay) Ea(v)

Ei(a)

Note that Ey(a,v) < C and that F3(y) < 1 for all @ € N¥ v € M%. So if a > ag
we have that E;(a) < € since we have that (T;)a < & in this case. If a < ag and if
v € F, then d,, = 0. If v € ML\ F, we have that E3( ) < ¢/C and hence that
Es(a,7y) - E3(y) < e. This shows that ‘ (ay)eF Can T ST
this estimate also holds for any finite subset F of N x MY which contains F. Thus
(Z(a,w)ef Cow”%)

< € and clearly

F o Nixa? converges to F'in Eg, y, 1, and hence in Eg, »s,. Since Sy
finite

and M; were arbitrary, it follows that (Z(a y)erF Ca 7:L’a) converges to F' in

F C NixMPb
. » finite
limg Esn = H(Og Oa).

S,.M

O
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Chapter 5
Textile maps

In this chapter we are going to study maps F': O} — O whose coefficients have the
same structure as those of substitution maps ¢ — H(z,¢(x) — ¢(0)) (called tactile
maps), which we will call textile maps. It turns out that a textile maps is holomorphic
if and only it preserves the boundedness of a polydisc Hg s — a criterion similar as for
linear maps between normed spaces. This allows us to establish an inductive descrip-
tion of the space of holomorphic textile maps. The natural inductive topology turns it
into a (DFS)-space, and the strong results of chapter 4 show that it coincides with the
compact-open topology. Then we will turn our attention to certain generalizations of
textile maps, for which we establish similar characterizations of holomorphy. In the
final section we will investigate the Cauchy-Kovalevskaya-type differential equation
deu(z,t) = F(u(x,t)), where the right side is a (holomorphic) textile map. We will
show that this equation is always solvable in P, but the solution might fail to be
convergent. A positive result will be established for the subclass of tactilly bounded
maps.

5.1 Special classes of Holomorphic functions

Definition 5.1.1. For v € M¥ we set 7! := [T} _; [Taene (71(0)!) and

S ) DA Y
ion Lo we()! 5
aENd

This is a generalization of the multinomial coefficient <|a|> = al, o

For v € M¥ we set w (7) := (sh(y), wt(7)) € NP x N<,

to our purpose.

Lemma 5.1.2. Let k€N, a =Y c,z® € P; and § € N%. Then

. k
(da(a))” [e] = > p(y)a?
YEMg
W(V):(kve)v Supp(7)§§

and

(a)[e] = ) p(y)a?

YEMa, w(v)=(k,e)

61



Chapter 5 Textile maps

More generally, let a = (ay,...,a,) € P}, 8= (Bi,...,0,) € NP, e € N%. Then

a’l =Y py)a
yeM?b
w()=(8se)

Proof: Let (o?);<j<y be an enumeration of the set {« < §} =: A. By the multinomial
theorem we get that

k N .
<Z caxo‘> = (calxo‘l + ..+ caNxaN)k = > <k> 11 Do (5.1)
ot pen o=k \B/ i1

Let 7: B:=={Be€N": |8 =k} — M,, where

0 ifagA

(ﬂmmw:{@ o=l c A

7 is a bijection between B and {y € My | sh(vy) = k,supp (v) <0} =: C and

RY_ K _ G00) I c.() N
<@_H%@V1Lm<mx>>‘mmmmmmm‘“<@”

So we can rewrite as
=> u@) [[ a@er@ =" 3 ply)ara™,

~eC acNd YEMy
sh(v)=k,supp(v)<é

from which we see that

. k
(s ()" [e] = > a ()
vEMg, supp(v)<s
w(y)=(k,e)

and that
a'le = (e (a) = > au(v).

’YG/,VIVd
w(v)=(k,e)

Now let a = (a4, ...,a,) € Py, 6= (01,....5,) € NP. Then

aﬁz( Z u(%>amxwtm> ) ( Z (v, )avpxwt(vp)> —

T1EMy YpEMa
sh(v1)=p1 sh(vp)=Pp
= Z w(y1) - p(yp)a v pWt(yL) Wt () — Z p(y)a 2™t
yeM? sh(v)=p yeMb

sh(v):ﬂ
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5.1 Special classes of Holomorphic functions

So for € € N we obtain
d’ld= > p(y)ad O

yeMb
w(v)=(Bse)

Definition 5.1.3. We are going to treat functions of the form ¢ — F(x, ¢ —¢(0)) and
such which show a similar analytical behavior. By definition these functions ignore
the value ¢(0), so it is convenient to set

MG = {f € MY} | f(0) =0}

in order to describe the coefficients of their power series expansion.

Theorem 5.1.4. Let F(2,y) = ¥4 5)enixne Ca,s2°Y° € Payy and ¢ € PY. For e € N*
we set F. (¢) := F (z,¢ (x) — ¢(0)) [¢] . Then

Fo(o)= Y Fo\¢" where Fey = () C(e—wi(v)sh(v))

YEMP wi()<e

If [co ] < % for (Ry, Ry) = R € R4 M e R, then

M - u(y) _ M - p(v)
Ri—wt(v) R;h(f) R(e—wt(v),sh(v))

[Fer| <

Proof:

F(9) = Z Caﬂ(gbﬁ)[e —al = Z Ca,B Z ()" =

a<e a<e ’YEMZ
w(v)=(B,e—a)

=22 X e, s =

ageBeNt e

= > () Ce—wtisuin @ =

ase 'yejf\\/ljz
wt(y)=e—a

= D O (V) Clewity), sy

VEMG =:Fe ~
wt(y)<e

Definition 5.1.5. A map F: P — Py, F(¢) =3 sena Ful@)z® is called textile if all
coefficient functions F,, are polynomials on P} of the form

Fo(9)= >, Fur¢?
'yE/f\XZ
wt(y) <o

Following the notation introduced in |Definition 4.4.15| we can write a textile map F
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Chapter 5 Textile maps

in the form

Z Foqx),

wt(y)<a

The space of all textile maps P} — P, will be denoted by 7%?. Note that textile maps
ignore the value of a power series at 0 (by definition), i.e. F'(¢) = F (¢ — ¢(0)) for any
FeT4 ¢ e PL Due to the condition wt(y) < «, we have that F,(¢) = F,(ja(9))

An important example of textile maps are tactile maps: For G € Pgy,, the as-
sociated substitution map G: ¢ — G(z,¢(zx) — ¢(0)) is called a tactile map. By
[Theorem 5.1.4| G is a textile map. We denote the set of tactile maps P? — P, by
S%P_ Tactile maps can be characterized by a certain interdependency between their
coefficients (see [Theorem 5.1.4]).

Throughout this chapter, we consider O to be equipped with its (unique) (DFN)-
topology (see [Theorem 4.1.1). A map F: O — Oy is called textile (tactile) if it is
the restriction of a textile (tactile) map F': P? — Py with F (O}) C Oy A textile
map F : OF — O, is called analytic if it is continuous. We have already seen in
ITheorem 4.3.2| that a textile map F': Of — Oy is continuous iff it is holomorphic, as
its coefficient functions are polynomials and hence holomorphic function 0% — C. In
[Theorem 5.1.10] we will give further characterizations of analyticity of textile maps.
The set of analytic textile maps 0% — Q4 will be denoted by T4 and the set of

analytic tactile maps by Sf{p . [Lemma 5.1.7| shows that every tactile map which is

induced from a convergent power series is analytic. The converse will be shown in

Lemma 5.2.31 We say that a textile map F' € TP is tactilly bounded if there exist
M € Ry, R € R so that the coefficients of F' satisfy the estimate

M - pu()
|Fa,“/| < R(a—wt(7),sh(7)) "

This means that the coefficients of a tactilly bounded maps are bounded in the same
way as those of an analytic tactile map (see(Theorem 5.1.4)). It turns out that this class
is the right one if one seeks convergent solutions for the Cauchy-Kovalevskaya-type
differential equation d,u(z,t) = F (z,u(x,t)), if the defining function F is a textile
map Cgsee ITheorem 5.4.2)). We denote the family of tactilly bounded maps P} — Py
by T5™*.

Remark. The notions of textile and tactile maps were coined by H.Hauser, who proved
rank theorems for tactile maps (see [HM94], [BHI10]). Note that our definition of textile
maps is more restrictive as we require that F,, , = 0 if wt(y) > a, while in [BHI0] the
authors study maps with arbitrary polynomial coefficient functions.

Definition 5.1.6. Let d,p € N and R, M € R,. Since geometric series are going to
play a vital role, it is convenient to set

Mx®

— — p
gd7R7M - Z R‘a| and gd7R7M7p - (gd1R7M7 tee 7gd7RaM) E Od’
aeNd
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5.1 Special classes of Holomorphic functions

We introduce the symmetrical polydiscs

Hopwm ={ Z car® ]ca|R|a| < M} and Hg,RM = (Hqpm)" C OF.

a€eNd

It is easy to see that the family of symmetrical polydiscs forms a fundamental system
of bounded sets for OF.

Lemma 5.1.7. Let F = Y, gjena+s Ca,s2°Y° € Payyp
(1) If F € Oyyp, then the associated tactile map F: O — Oy is analytic.
(2) Tactilly bounded maps are analytic.
(3) A textile map F is tactile iff (ay —wt(71),8h(71)) = (a2 —wt(az),sh(y2)) implies
that Fyy ~, = Fayny (for all an,an € N4, 41,79 € ME).

Proof: (2) Let F = Y F, ,x) be a tactilly bounded map Py — P,. By definition
there exist M € Ry, R € Rd+p so that |F, | < Let G = grm € Oggyp.
Let K € R}, S € (RL)? and a € Hg . Then

a)| = | Z Fona'| < Z |Fayl(lal)?

wt(v)<a wit(v)<a

Mheorem 5.7.41

R R C
=7 Gallal) < Galos) < 7o

Mpu(y)
R(a—wi(7),sh(7)) *

for some C' € Ry, T € R%. Hence F(Hs ) C Hrc, which shows that

F: 05 — O, and that F is bornological and thus holomorphic (see [Theorem 2.8.2)).
) By tactile maps induced from convergent power series are tactilly

bounded. (3) The necessity of the condition is the content of [Theorem 5.1.4, Suppose

that the above relation between the coefficients holds. Let f: N4 — N,

fla) = {1 if o = ey

0 else

For (o, ) € N x NP let v(8) := (B1- f,..., By f) € M} and
e(a,B) = a +Wt( (8)). Note that (e(v, B) — wt(v(8)),sh(v(8))) = (o, B). Set
Ca,3 = Fe(ap)m(p) and let G(z,y) := > Ca3r°Y® € Payp. Then

~

Gany = Ca—wi(y)sh(r) = Fawt(y)+wt(u(sh(y)wsh() = Fay-

This means that F' = @, so I is tactile. O

Lemma 5.1.8 (Cauchy-Estimates for textile maps). Let F': P} — Py be a textile
map, and suppose there exist S € (RL)?, K € R, R € R, M € R, so that F(Hg ) C
Hp . Then we have the following estimates:
Wty ()
(1) |Fanl < 55500

(2) There exist T,Q € Ry so that |F, | < Qla‘ AT ST

Proof: As the coefficient functions of F' are polynomials and hence holomorphic func-
tions O — C we can apply [Proposition 4.3.15(to conclude (1).
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Chapter 5 Textile maps

(2) Let K = (Ki)zpzla S = (Si’j)lgigd. Set KO = minlgigp Ki7 RO = minlgigd Ri7

1<j<p
So = max;<j<p(maxi<i<q(S;;)). Choose 0 < T < min{Ky, Ry} and set @ := Slo Let

o € N? and v € MY with wt(y) < o. Then

%Swtv('y) M S(‘)Wt(’m
Ro Ksh(v) — Rl)a‘ K(|)Sh(’7)| -

M So Wt o\ sk, o e
= T el =lwt(y)|+Ish(v)] (T) (Ko> (R0>

|Fa77| S

< 1 M
= Qlol Tlol=[wt(v)|+Ish(7)|

Since F,, = 0 if wt(7) £ «, the estimate holds ¥y € M, O

While it seems hard to give a direct growth estimate for the multinomial coefficient
w(7y), it is easy to estimate the growth rate by using the Cauchy estimates.

Theorem 5.1.9. For o € N* let my = max{u(y) | v € Mg, wt(y) < a}. The
countable net (mq) ena grows geometrically or slower - i.e. there exist an R € R? so
that supena R¥mg < 00.

Proof: Consider the geometric series G = >, g)end xne z%y? and let g, denote the
coefficients of G. By [Theorem 5.1.4] we know that g,, = u(y) if wt(y) < a. Set
S =1(1,...,1) € RL. We know that G: Oy — Oy is continuous, hence there exist

M € R; and R € R? so that CA?(HSJ) C Hpg y. The estimates from [Lemma 5.1.8| then

yield that |ga| < %, which shows that m,R* < M for all a € N ]

Theorem 5.1.10. For a textile map F: P, — Pg, the following are equivalent:
(1) F: O — Oy is holomorphic.
2) F: 08 — Oy is continuous.

(2)
(3) F: O — Oy is bornological.
(4) 3S e (RL)P, K eRY : F(Hs k) C Hpm
(5) ElS, K, R,M € R+I F(Hg,S,K) C Hd,R,M

@ sh(y
(6) 3S,K,R € Ry : sup,ene R SUp, |Fa,7|§(Tm))
(7)

7) 3R, Q €Ry: Ya e N Vy e MY |Fuy| < Gior parmmitommio

Proof: The coefficient functions F,, are polynomials and thus holomorphic functions
O — C. Hence the equivalence (1) < (2) < (3) is just a special case of
orem 4.3.2L (3) = (4) is clear (4) = (5) Let K = (K))_,, S = (Sij)i<i<d-
1<j<p
Set Ko = minlgigp Kia SO = maxlgjgp(maxlgigd(sm)), RO = minlgigd Rz Then
HY s 1, C Hsx and Hpy C Hg gy, which yields the claim.

(5) = (6) is|Lemma 5.1.8/and (6) = (7) follows out of the proof of [Lemma 5.1.8
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5.1 Special classes of Holomorphic functions

()= (3) Let H(z,y) = ¥  zmare®y’. Let S, K > 0 and let
(o B)eNdtr
a € Hj g ;. Then

M

@< Y |Flla € o Y o ) (8as.00)" =
wh(y)<a Q' | trea RO MOHSG)
Thoorem 514 M
= Q|Q|H(xagd,S,K,p)[a] S
M K . P
= Q|a|T7‘ or some >

Hence F'(H}, rc) C Hyr.q .p> Which means that F is bornological as the symmetrical
polydiscs form a fundamental system of bounded sets for OF [

Remark. The above theorem shows that from a topological point of view textile maps
behave similarly to linear maps between normed spaces: They are continuous iff they
preserve the boundedness of a "ball" Hy g .

Corollary 5.1.11. A power series F' € P, converges around 0 if and only if there
erist d +p = n so that F e S . In other words: F' is holomorphic at 0 ZﬁF 1S
holomorphic.

Proof: (<) Let F' = 3 c,p2” y? E Pd+p, and suppose that F € 8 P Then there
exist R, M,Q € R, s.t. |Fa7| < e IWt(W)Iﬂsh(W)I Let f: N4 = N,

Ia\ Rl

fla) = {1 if o = ey

0 else
For (o, ) € N¢ x NP let v(8) := (B1 - f,..., By f) € M} and

e(a, B) = a + wi(v() = a + (|6],0,0,...,0)
Hence

M 1 < M 1 < M
Qlel Rlol=IwtM)I+Ish(N] = Qlel+18] Rlal+|51-15]+16] Q- R)lalﬂﬁl’

so F € O}. (=) was shown in [Lemma 5.1.7] O

Corollary 5.1.12. Let F € T%P. Suppose that F has non-negative coefficients and

that F preserves the convergence of a geometric series, i.e. that there are M € R, | R €
(R%)P so that F(grm) € Oq. Then F : O — O4 and F is continuous.

|Cap = [Fer| <

Proof: Let a € Hpy. Then |Fy(a)] < Fu(la]) < Fa(grym) < & for some S €
R‘i,K € Ry. This yields that F(Hg ) C Hg, which implies by [Theorem 5.1.10]
that F' is holomorphic. O

67



Chapter 5 Textile maps

5.2 The topology of textile maps

Definition 5.2.1. Let d,p be fixed and let F' = } ()< Faptl € T = 1y, For
R,Q,M € R, we define:

Pro: T — RyU{oo}, pp, (F) = SO%) |Fow|R|a|—\wt(v)|+\sh(v)|Qlal

Tro = {F € T|p,(F) < o0}, Broum ={F €T|p,q (F) < M}

|Theorem 5.1.10| yields that

Ta= U Tro
R,QeR4
We endow the spaces Tpq with the norm p, , with which they become Banach
spaces and equip 74 with the inductive topology so that 7, = lii>n’]' Rr.Q, Where
(7Tr,Q) r,Qer, is ordered by inclusion.

Lemma 5.2.2. Let 0 < S < R and 0 < P < Q.
(1) The inclusion mapping Trqo — Tsp is compact.
(2) Ty is a (DFS)-space.
(3) Sa is a closed subspace of T and hence a (DFS)-space.
Proof: (1) Let (Fk>k€N C Brgq, F* = (Zwi()<a Fi,7]) be an arbitrary sequence.

We need to show that (F '“)keN possesses a subsequence which converges in 7gg.

As the coordinate sequences (Fc’fﬁ)keN are bounded we can extract for each coordi-
nate a convergent subsequence. Using a diagonal argument we can extract a sub-
sequence of (F*),en which converges coordinate-wisely. So without loss of general-
ity we may suppose that (F*),cy itself converges coordinate-wisely to a textile map

F = (Xwi(y)<a Fayrl). The coordinate-wise convergence yields that F' € Brgq. Let
N
€ > 0 and choose N; € N so that (g) ' < 5. Let Ny > N; so that

€ 1 1
2 Rlel=lwt()[+sh(M)] Qlel

Vk > Ny V]a| < Ny Vv : |Folf,y —F,,] <

Then for k > Ny we have p, ,(FF* — F) < ¢

Psp (Fk _ F) — 8;1},) |Folj'y _ Fow|S\a|—lwt(v)|+lsh(v)|pla\ _

k ()l ] (S TR/ [
=s;1$|FW—FM|R\a [we () +1sh()| e <R> <Q>
v () (I1T)

Note that (I) < p,,(F* —F) <2, (II) < 1and (III) < 1 for all @ € N and
v e My If |a| < Ny, then (1) < 5, and if |a| > Ny, then (/1) < §. This shows that
psp(F* — F) < e for k > N,, and hence F* converges to F in Tgp. (2) is a simple
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5.2 The topology of textile maps

consequence of (1), since the spectra (’2'1 i /n) o and (Zrg) RQcr, are equivalent,
yielding im 71 /5,10 = 7a

et € &4 converge to Fin T4 . Let (aq,71), (Qo,72) € x M so that
3) L F* heN S Fi ’T’ L N¢ MZ h
(1 — wt(71),8h(71)) = (g — wt(72),sh()). Then F,, ,, = Jim Ft = lim FF =

—>OO 1,71 k—00 a2,72

Fyy - By [Lemma 5.1.7, this means that F is tactile, and since F' € 74 we conclude
that F' € S4. ]

Lemma 5.2.3. O, = 85" as LCVS.

Proof: The canonical map ¢: O,, — Sf{p F +— F is a linear isomorphism by
rem 5.1.11] Since the open mapping theorem holds for maps between (DFS)-spaces,
it suffices to show that ® is continuous, for which we use the sequential closed-graph
theorem. Let (F,, ®(F,)) — (F,G), F, = Y45¢ap2y’, ®(F,) = 2117’0’}73137 The
projection pog: F' + cqg and poy: F — I, are continuous on Oy, and Sip AW, Te-

spectively. This implies that the coefficients of G have to coincide with those of F
which yields G = ®(F). O

Lemma 5.2.4.
(1) The inductive topology of ’Tj’p coincides with the compact-open topology T.,.
(2) T4 is a closed subspace of H (O}, Oq).
(3) po is a (DFN)- -space.
(4) The bounded sets of TA are equicontinuous as a family
of functions Of — O,. N
(5) The family {xg | e N%, v e M5 wt(y) < a} forms a basis for T,

Proof: Asin|Theorem 4.4.23|let p, , denote the coordinate projections on H (OF, Oy).
Let Q = {pan | Wt(y) > a}. Then T4* = Mpaco ket pa, and thus (Ti7 1.,) is an
ultrabornological space by [I'heorem 4.4.23] Recall that Webb’s form of the open
mapping theorem (see for example [MV92, p.289]) states that if T: E — F is a
continuous linear bijection, E a webbed space, F' ultrabornological, then T is an
isomorphism (i.e. 77! is continuous). ij is webbed and bornological, so for showing
that id: ’ij’p — (7, X’p , Teo) 18 continuous it suffices to show that every set which is
bounded in the inductive topology is also bounded in the compact-open topology.
If B C Tf’p is bounded in the inductive topology, then there exist R, ¢ > 0 so
that B C Brgm. The compact-open topology is generated by the family of semi-

norms {H HK#)‘ Kc Oh, ¢ € H(Cd)}, where [|F[[;, = sup,cx p3(F(a)). Let

¢ € H((Cd), K C O Choose S, M so that K C Hgy. For F' € Bpgu and
a € Hgy we have that [F,(a)| < Qa9d+pRM(K95M) < £ forsome C €R,, T €

R¢. Therefore pF(F(a)) < ¥ |dalas < C, so ||BRQM||K¢ < C and it follows that
Bro.m is Teo-bounded since K, ¢ were arbitrary. (2), (4) and (5) are a consequence
of (1) and [Theorem 4.4.23| and [Theorem 4.4.24] (3) H (04, O,) is a nuclear space by
|Proposition 4.4.13] and since nuclearity is passed over to subspaces (Theorem 2.6.13))
we see that 747 is nuclear and hence a (DFN)-space by [Theorem 2.7.8 O
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Chapter 5 Textile maps

5.2.1 Limit topologies on S4 and 73

Definition 5.2.5. Let d,p € N be fixed, 7Tz = TBd’p. We recall that a textile map
F =3 F,,x], is tactilly bounded iff there exists an R € R, so that

lal—[wi(2)|+lsh(+)]
SUD,, - | Faqy| 2 M(i/) = < 0o. We define

Rlal=lwt(v)|+[sh(v)]

()

v,: T — Ry U{oo}, v, (F):= SSE\FCW\
T, ={F €T |v,(F) < oo}

We note that 75 = Uger, 75,- Let Tina be the inductive topology such that
(75, Tina) = im{(Z5,,v,) : R € Ry }. Likewise we can introduce an inductive topology
on Sy = S4: We set

S, ={F eS|v,(F)<oo},

equip S, with v, and denote by 75 the inductive topology

so that (Sa,7s) = lm{(S,,v,): R € Ry }. We will see that while the inductive
—)

topology 7g coincides with 7., on S, the limit topology 7.q is strictly stronger than

Teo 0N T and unlike (S4, 75) the larger space (75, Tina) fails to be a (DFS)-space.

Theorem 5.2.6. Let d,p € N.

(1) 75 is dense in T4.

(2) (75, Tina) s not a (DFS)-space.
(3) (7p, Tina) is sequentially retractive.
(4)

(5)

Tind 1S strictly finer then 7., on 7g.

<8A7 TS) = (SA, Tco)-

Proof: (1) Any textile map which has only finitely many coefficients # 0 is tactilly
bounded, and hence for any F' € 7, the sequence of jets is contained in 7. (2) For
a € N let a* € M, be the monomial with

a*(ﬁ):{1 if 6 =a

0 else
Let e, = (n,0,...,0) € N? let v, = ((en)*,0,...,0) € /\75 and let F), be the textile
map with coefficients (F. ), where

" 1 ifa=e, and y=1,
F! =
7 0 else

For any R € R, we have v.(F,) = R. Hence the sequence is contained in every
unit (norm) ball Br := {F € Tz | v,(F) < 1} if R < 1. However, (F},), oy cannot
have a convergent subsequence in any 7g,, as v, (F, — F,,) = R for n # m, for any
R € R;. We conclude that the inclusion ¢: 7, — 7, can never be compact for
any 0 < .S < R, which shows that the inductive sequence (7p,,, Jnen (which generates
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5.2 The topology of textile maps

(75, Tina)) is not compact, and hence 7z cannot be a (DFS)-space, since this would
imply that any generating sequence of Banach spaces for 75 is compact.

(3) We will show that (’]}gl /”)neN has property (M), which is equivalent to (73, Tinq)
being sequentially retractive (Theorem 2.2.11)). For 0 < T' < S < R, the topologies
induced by v, and v, coincide on Bg: By continuity of the embedding ¢: 75, — 75,
it suffices to show that id : (Bg,v,) — (Bg,v,) is continuous. Let (F*)ien, F' € Bg so
that v, (Fk - F) — 0. G¥ := F*"—F € 2-Bg. We need to show that v, (Gk> — 0. Let

€ > 0. Choose N € N s.t. (%)N <€/2. Let No e N: VI > Ny: v, (Gl) <€/ (%)N

Then for I > Ny : v (Gl) <e LetaeNd ye MZ.
Case 1: |a| — |wt(y)|+|sh(7)| <N

al—|w s al—lw < S |at|—|wt(y)|+]|sh(v)]
|GIOW|S| |~ |wt(y)|+Ish()] _ |Gf)w]T| |—Iwt(y)[+|sh ()] (T) -
SVT(Gk) S(;)N
Case 2: [a] — [wt (7) | +[sh () | > N
al—|w al—lw S la]—|wt(v)]+|sh()]
|G277|S‘ =TI+ = ‘G’;N‘H |~ [wt(7) [ +sh ()] (R) <

<2 <e/2

Taking the supremum yields v (Gk) <€ for k> Ny. Hence v (Gk> — 0.

(4) Tt is easy to see that id: (7, Tina) — (7B, Teo) is bornological and thus continuous.
By [Theorem 2.2.12| we have that (73, Tina) is @ complete LCVS. But (73, 7,) cannot
be complete, as it is a proper and dense subspace of 74.

(5) First we show that the spectrum {Sp : R € R} is compact, i.e. that ¢: Sp — Sr
is compact for 0 <T' < R. Let F,, = X c, 2], C Bs, :={F € § | v,(F) < 1}, which
we may assume WLOG to converge coordinate-wisely to I’ € Bg,,.

Let G,, = anﬁxayﬂ € Ogyp so that é\n = F,. Let ¢ > 0 and let Ny € N so that

(%)NO < e Let A= {(61,02) € NP . |§;| + |52] < Ny}. Recall that we have the

relation ¢, () sn(y)(7) = Fi,. Let Ko € N so that

<e€

‘Clgl,ég - 051752
holds for all k > K, for all (61,02) € A. For n > K, we have

T) |af—=|wt(v)|+[sh(v)]

v, (F — F,) = sup (

Rla—hwtiisn) iy = Fanl
R

()

T |(51|+|(52‘
= sup <) RN R o — 5, 5]
(61,00)eNe+p \ R ’
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Chapter 5 Textile maps

T |61]4|02] PRI
+
Sup <> R ! 2||cgl,52 - 061752| S €
(Gr02)gA M
<v,(F"—F)<1
S(%)NOSE R )

T [61]+]02] 611415
1]+|02]] .1
6 S;lQI))eA <R> R €56, — Coroa| S €

17

<e

Hence v.(F, — F) < € for all k > K,. We have shown that any sequence in Bg,
has a convergent subsequence which converges with respect to v,., which shows that

Bs,, is compact in Sr, hence ¢ is compact. Now we show that V: (Sa, 7)) = Ouyp =
(84, Teo), F'— F is continuous. The family of all By 1= {FeS|v,(F)<M}isa

fundamental system of bounded set of (S, 7). If F € Bsy > Where F =3 cq g2%y”,
then [ 5, = |Fasl (1)~ < M grsches for (31, 62) = (v~ wi(3),sh(y)). This shows
that ¥ is bornological and thus continuous, and as the open mapping theorem holds
for pairs of (DFS)-spaces, U is an isomorphism. [

5.3 Generalized textile maps

In this section we introduce a class of functions similar to textile maps, with a more
relaxed growth condition concerning wt (7).

Definition 5.3.1. For N € N,v € N? a function F': P} — P; is called a generalized
textile maps if its coefficient functions F,, are of the form

Fy (Qb) = Z Coy o
~eMP
wt(y)<N-a+v

The function h: N® — N h(a) := N - a + v is the growth-function associated to F'.

The key property of textile maps carries over to generalized textile maps: bound-
edness on a ball implies that the map preserves convergence and that it is analytic.

Proposition 5.3.2. Let I’ be a generalized textile map with growth function
ha)=N-a+v. TFAE:

(1) F is a holomorphic function O — Oj.

(2) 3Se (R, K eR,, RERL, M R, : F(Hgg) C Hru. i

(3) 35 € (RU)P, K € RE, R € RY ¢ supgene R sup, vy | Fas Y < oo

Proof: (1) = (2) = (3) see |Proposition 4.3.15]

(3) = (1) Let sup,ene R Sup_ oo |Fa77|% < M < oco. Set U = RN and let G be
d

the textile map with coefficients

U Ksh(’y)

MoV O) g wt(y) < «
Gaopy =
0 else
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5.3 Generalized textile maps

The construction yields

Let C; € (R4)P, Ty € Ry. Then (by [Theorem 5.1.10) there exist Oy, Ty so that
CS<HC1,T1> C HCE’TQ' So for a € Nd,gb € fv’]CLT17 we obtain |F ( )| < UV aN+y(|¢|) <
C’(TQ%)Q, where C' = U%T;,
F(Heym) C He gy We conclude that F' is bornological and hence holomorphical. [

and hence

Definition 5.3.3. A power series F' = 3" end yerz Faqpal is called locally textile with
growth function h(a) = N -a + v if ¢o, = 0 if wt(y) £ h(a). We identify M% with
NP x MP, ie. we identify 4 € MY with (7(0),7), where v(0) = (71(0), ..., 7,(0)) and
F(a) = v(a) if @ # 0, 4(0) = 0. By definition, wt(y) = wt(¥), which means that the
weight condition wt(y) < h(a) does not impose any restriction on v(0). Note that
unlike textile functions we allow locally textile functions to depend on the constant
coefficient. Explicitly, let ¢ € O, ¢(0) =: ¢y. Then

Fa(¢) = Z Coz,'y¢’y = Z Ca,'y(bg([))(ﬁ;y < Z Ca,(6,1)¢g¢}y
yEMG YEMG SENP yEMD,
wt(v)<h(e) wt(7)<h(a) wt(9)<h(c)

Clearly, the coefficients of a locally textile power series will fail to converge in general,
unless we presuppose that |¢g| is small enough. For C' € RY | we set

Pi(C) ={d = (¢1,....6p) € Pyl 16x(0)| < Ci} and Oy(C) = Og N P(C).

Theorem 5.3.4. Let F' be a locally textile power series with growth function h and
suppose that there exist C € RE, M € Ry, S € (RL)?, K € R} such that

1 M Swt()
C(0) Re [sh(v)

Then F' is a holomorphic function O(C) — O,.

|F041"/| S

Proof:
. gzﬁ() M S¥t ()
Fa(@)l < Y [Faslldtllel < Y 5| o om0 <
N | C% |ReK
seNP yeMP SeNP Ae MY
wt(§)<h(c) (A)<h(a)
M St

- H ¢k(0 ZV Ra Ksh | |7

k=11 — Ck yeM?h
wt(§)<h(a)

The estimate shows that for each a the power series F,,(¢) converges uniformly on com-
pact subsets of O%(C'), which means that the coefficients are holomorphic functions.
The same estimate yields the bornologicity of F', and thus F' is holomorphical. O]
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Chapter 5 Textile maps

Definition 5.3.5. Let F' € Q44 and ¢ € O4. We define the formal composition
F(z,¢(z)) coefficient-wise: Let e € N°. Then F(xz, ¢(z))[e] := Yo 5Cas(d(x))"[€]. Of
course this definition makes only sense for certain power series, as specified in the
next lemma. If F' is holomorphic in a neighborhood of the compact polydisc Ag, g,
centered at zero, if ¢ = (¢1,...,¢,) is holomorphic at zero and if |¢x(0)] < Ry for
all 1 <k < p, then the coefficients of the formal composition F'(x, ¢(x)) coincide with
the coefficients of the taylor series at 0 of the analytic function F'(z, ¢(x)), which is a

consequence of Faa di Bruno’s formula.

Lemma 5.3.6. Let F(z,y) = Yo 3Capt”y’ € Ouyp, let Ry € RY,

Ry = (Ra1,...,Ray) € RY and M € Ry so that

M
ReRY

|Cap] <

Then the formal composition F: ¢ — F(x,¢(x)) is a well-defined operator

PY(R2) — Py and the restriction F|: OY(R2) — Oy is a holomorphic locally textile

map. The coefficient functions are

F(¢) == (F (¢>)) [e] == Y. F,a), where Fopy = Cei(y)shiy) - 14(7).

yeME, wi(y)<e

We obtain the estimates

M p(y)
RTWW) R;h(v)

[Feq| <

1 1

» ] sh(v)+1
' Y P

and |F6<¢)| < Z Ri—wt('y) P.;h('y)’u(’y)gzs k:l:ll (1 _ Q;I;(O)) '
= 2,k

’YEMZ,Wt('y) <e

Proof:
F(z,¢(x)[] =Y cap(d(@)’[e—a] = cap Y,
B o, veM?
w(y)=(B,e—)

We readily receive the estimate

Mp(v)
Ri—wt(v) . R;h(v)

|F€7’Y| S

For § € NP let 6* = (47, ...,0;) € M} be the monomial with

o —
(5,:(04):{5k fa=0

0 else

74
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5.3 Generalized textile maps

(sh(vg + 5) _ ﬁ (Sh(wj;); 5k>

k=1

We set

It is easy to see that for v = (y1,...,7,) € /\72 and § € NP we have the identity
pu(y +0%) = p(y) - (Sh 7)J”S) Using [Equation 5.3 and [Equation 5.4 we obtain

M 1

[F(,¢@))dl < > WW

)
S 67|y + 6%) (@) =
~EME, wh(y)<e GENP 2

M 1) +06\ (160

= Z € wt Sh’y Z |¢7< >< ) =
weM" wt(y)<e Ry R2 ) seNr Ry

_ M P2 (sh(v) + 6 (166(0)]\ ™

g SIS (M) ()

e—wt(y sh
weM” wt(v) Rl R2

Now we rewrite the binomial series to obtain
1 1 P sh(yg)+1
Feowils T e et ]I (=
weMp wt () 1 k=1 Ro i
O

Definition 5.3.7. We say that a locally textile map F = }°, Fo 2] is tactilly
bounded if F, ., = 0 if wt(y) > « and if there exist Ry € R%, Ry € R} and M € R,

so that
M p(y)
Rtl)z—wt( Rsh(7

|F057’Y| S

for all @ € N4, v € M%.

Imposing a linear growth condition on 7y and thus restoring the triangle scheme
for the coefficients F, , leads to another class of holomorphic functions for which a
characterization of holomorphy as in [['heorem 5.1.10|is possible:

Theorem 5.3.8. Let F be a locally convergent textile power series with growth function
h and suppose that there is a linear function g: N* — NP, g(a) = La + vy,
L e Myi(N),vy € NP, so that

Fo(9) = > Foro?
seNd yeMP
wt(¥)<h(a), v(0)<g(a)

Then F' is called a generalized textile map with growth vector (h, g).
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Chapter 5 Textile maps

The following are equivalent:
(1) F is a holomorphic function O — Oj.
(2) 3Se (REP, KeR,, ReRL, M eRy : F(Hgg) C Hru.

(3) 3S e (R, K e Ry, R € R : sup,ee R sup v |Fa7|]§i}:f:> < 00

Proof: (1) = (2) = (3) See|[Proposition 4.3.15|
(3) = (1) Let sup,ene R sup,e e |Faﬂ|% < M < oco. Let F be the generalized

textile map whose coefficients are

N M Swtv(H)
— P
Fo= 2 a e %
yemMb
wi(3) <h(a)

Let (w;(a), ..., wy(a))t = g(a). We estimate F by F:

M ¥t ()
[Fu(9)] < > —
a [(sh(¥)
YoENP FEMP re K
($)<h( )s vo<g( )

chl7 <

M“/o

)|

|¢k — 1=
_H o1 T

Let T € (RL)P,C € RE, WLOG Cj, > 1 for all 1 < k < p. Choose Ty, C so that
F(Hrco) C Hp, ¢ Set E = (1,...,1) € NP. Then, for ¢ € Hy ¢, we obtain

= |¢k(0)|wk(a)+1 -1 (o) 7 Vo Lag
Al = 1170 = Fallél = 07 Falol) < €07 7

2

The estimate yields that F': O) — O, is bornological and thus holomorphical. O]

5.4 A Cauchy-Kovalevskaya-type theorem

Definition 5.4.1. For u(z,t) = (w1, ... ,u,) € Py, = (Pa(P1))",
U (£7 t) - Z(a,j)eNde C’ocz,jxat] = 2 aeNd ui (t) = Za,w Fong, and
v € MY we formally set

u(z,t) == ] ]I (ui (t))%(a)

1<k<p aeNd
F, (u(z,t)) = Z Fon(u(z,t))’
yeM?b
Flu(z,t) = > F,(u(z,t))z"

Note that F,(u(z,t)) may be ill-defined (divergent) for general F,u.
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5.4 A Cauchy-Kovalevskaya-type theorem

Theorem 5.4.2. Let (F};)1<k<p be locally textile maps with growth function h(a) = «,

i.e.
F(a)a) = Y Fi
WGMS
wi(y)<a

Further let w € P} with w(0) = 0 and consider the Cauchy-Problem
opu(r,t) = F(u(z,t)), u(r,0)=w (5.5)

If all Fy are locally textile maps which are tactilly bounded and if w € OF then there
exists a unique solution u(x,t) € O, ;.

Proof: Let u(t) = (uy(t),. .., up(t)), ur(t) = Xoena ch(t)z®, where ci(t) = ¥ jen ¢k 17,

and w = (wy,...,w,), where wy, = Y ,ene diz®. The condition w(0) = 0 yields that

¢t =0forall 1 <k < p, which is critical for the fact that the other coefficients can
be calculated polynomially. For v in M let

N v(a) ifa#0
e Mb, =
7 @ (@) {0 fora=0
We observe that

Su(z,t) = F(u(x,t)) & Vk € NVa € NY: §,ch(t) = FF(u(z, t))
& VkeNVaeN' VjeN:c .. - (j+1) = F(u(z,1)]j

1 N
eVkeNVaeN'VjeN:ch = T > OFE (U(I,i)wco(t)ﬂo)) ]
J WGMZ
wi(y) <o
Hence, for every o € N¢
chgrr = Pay | (Fas) vemr s (5 1zmeposi<i, (5.6)
1(0)<j 0sfsa

where PO’fJ- is a polynomial with non-negative coefficients. Proceeding iteratively in
this manner we obtain

Cl;uj - QZJ ((ng)lﬁnép, 7(0)|<j > (dZ) 1§k§p> (5.7)

e<a, yeM?¥ 0<B<a

where Q’;J is a polynomial with non-negative coefficients depending only on the initial
data w and the textile operator F', which shows that has a solution in PY
for any w € P with w(0) = 0. Now suppose that the initial data w is a convergent
power series and that F' is tactilly bounded, i.e. that there are s € R, so that

7



Chapter 5 Textile maps

we HY, yand C € RY, R = (R, Ry) € RT'? so that

C-py) 1
Rivfwt(v) R;h(v)

|Fh | <

o o,
for all O‘u/yak' Set g(l‘) = M- Za;é() %7 H((L’,y) = K- Z(}%>( )l’ayﬁ € Od—l—p
and G(r,y) = (H(x,y),...,H(z,y)) € Of,,. Let w be the solution to the analytic
Cauchy-Kovalevskaya-Problem

o (x,t) = Gz, v(z, 1)), v(z,0)=(g,...,9) (5.8)
This is equivalent to w solving
dv(w, 1) = G(u(@, 1), v(x,0) = (g,...,9) (5.9)

The Cauchy-Kovalesvkaya Theorem yields that w is analytic, hence there exist t, K’ > 0
so that for all (o, j) € N**L 1 <m <p:

K
m
0< Wa,j < tlal+i

Since G is a locally textile map, we can calculate the coefficients W/oi, ; also by evaluating

the polynomials Q(]i,j at the coefficients of G and g, which enables us to bound the
modulus of the coefficients of u by the coefficients of w:

<

]c’;j‘ = | ’;,j ((F:w)lsngp, 7(0)[<j > (dF)1<m<p)

P <8<
e<a, yeEM 0<f<a

< Qnyj ((|F:7|)1§ns@ MOESE (|d2”\)1<m<p) <

e<a, yeM? 0<p<a

P <p<
e<a, yeEM 0<B<a

5 K
k n m k
<QL, ((Gm)léngp, o)< (95 )1<m<p> = Yay S jal

Hence we obtain the estimate

m K
‘c | < -
) tlel+i

which means that u(z,t) € 04, ;. O
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5.4 A Cauchy-Kovalevskaya-type theorem

Corollary 5.4.3. Let w € O with w(0) = 0.
(1) Let F be tactilly bounded textile map. Then the Cauchy-problem

du(x,t) = F(u(x,t)), u(z,0) =w

has a unique analytic solution.
(2) Let G € O}, ,. Then the Cauchy-problem

deu(z,t) = Gz, u(z, t) — u(0,t)), u(zr,0) =w

has a unique analytic solution.

Proof: (1) follows directly from [Theorem 5.4.2]
(2) We may rewrite the differential equation as

Sou(z,t) = G(u(z,t)), u(z,0) = w.

G is tactilly bounded, so (2) is a direct consequence of (1). O

Example 5.4.4. For analytic textile maps F' the solution to|[I'heorem 5.4.2/ might fail
to be convergent, even if the coefficient functions of F' are linear and the equation is
homogeneous. Let ¢ € (0,1) and let F' be the textile map P; — P; with

an 1
Fn(z Ck$k) = q7n + —

keN q

Applying [Theorem 5.1.10]it is easy that F': O; — O, is analytic.
Let v(z,t) = ¥ k)enz Unez™t" be the solution in Py to

dv(z,t) = F(v(z,t)), v(z,0)=0

We see that
’Umo = 0
1
Un,1 = n
q
1 1
and hence
1/1)\"
Unk = — | — ifk:>0,vn0:()
9 k! qn 9

But v does not converge in any neighborhood of zero. Let R > 0 and choose k£ € N

s.t. ¢ < R. Then
RF (R\"
n+k n—00
UanR = ﬁ (qk> —
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Abstract

This thesis deals with holomorphic functions Of — Oy, where Oy denotes the ring of
convergent power series in d variables. In the first two chapters the necessary concepts
from functional analysis and topology are developed. The representation of O, as
union USeRi 0>°(S) of weighted Banach spaces yields a natural inductive topology,
where £>°(S) is the Banach space of power series for which sup,cna [¢oS®| is finite. It
turns out that Oy is a (DFS)-space, which seems to be the best setting for the usage of
concepts of infinite-dimensional calculus, as different approaches coincide and smooth
functions are always continuous, which is in general false. In chapter three we give an
overview of two concepts of holomorphicity. Chapter four then specifically deals with
O, and the holomorphic functions on it. We extend the result by Dineen and Boland,
that holomorphic functions O; — C can be expanded into monomial series, to the
vector-valued case Oy — Oy and establish some results on the space (H(O%, O4), Teo)-
The last chapter treats a special class of holomorphic functions 0% — O, whose
Taylor coefficients have a similar structure as those of substitution maps

¢(x) — F(x,¢(xr)). We start by studying such maps that ignore the constant term ¢(0)
— which we call textile maps — which behave similar to linear maps in normed spaces:
they are continuous if and only if they preserve the boundedness of a "ball". The same
condition also implies that maps of this class are entire functions. It is then shown that
the space of these maps equipped with the compact-open topology is a (DFS)-space
and the results established before are then generalized to broader classes. Finally we
turn our attention to the differential equation d,u(z,t) = F(u(x,t)), where the right
side is a generalized textile map, and show that it is analytically solvable for analytical
initial conditions. A consequence of this result is that ,u(z,t) = F(z,u(z,t)) (where
F is a convergent power series) remains analytically solvable if the coefficients of
the right side (considered as a holomorphic function Of — OF) are continuously
perturbated.

85



86



Zusammenfassung

Diese Arbeit beschéftigt sich mit holomorphen Funktionen OF — Oy, wobei O, fiir den
Ring konvergenter Potenzreihen in d Variablen stehe. In den ersten beiden Kapiteln
werden die hierfiir notwendigen Konzepte aus Funktionalanalysis und Topologie erar-
beitet. Die Darstellung Oy = U Serd 0>°(.S) ergibt eine natiirliche Topologisierung von
O, als induktiven Limes, wobei £°(.S) der Banachraum aller Potenzreihen Y ¢,z ist,
fir welche die gewichtete Supremumsnorm sup,cya [co S| endlich ist. Es zeigt sich,
dass Oy mit dieser Topologie ein (DFS)-Raum wird. Raume dieser Klasse erscheinen
als besonders geeigneter Rahmen fiir die Verwendung von Konzepten unendlichdi-
mensionaler Analysis, da hier verschiedene Zugénge tibereinstimmen und glatte Funk-
tionen stetig sind, was im Allgemeinen falsch ist. In Kapitel drei wird ein kurzer
Uberblick iiber zwei Konzepte holomorpher Funktionen zwischen lokalkonvexen Réu-
men geschaffen. In Kapitel vier wird dann speziell auf O, eingegangen, und ein Resul-
tat von Boland und Dineen, wonach jede holomorphe Funktion O — C in eine Tay-
lorreihe bestehend aus Monomen entwickelt werden kann, auf holomorphe Funktionen
O — Oy, verallgemeinert. Im letzten Kapitel wird dann eine Klasse holomorpher
Funktionen, deren Koeffizienten eine dhnliche Struktur wie jene von Substitutions-
abbildungen ¢(x) — F(x,$(z)) besitzen, betrachtet. Zunéchst werden Abbildungen
dieser Klasse, welche den konstanten Term ¢(0) ignorieren — die wir als textile Ab-
bildungen bezeichnen — untersucht. Diese zeigen ein dhnliches Verhalten wie lineare
Abbildungen zwischen normierten Radumen: sie sind stetig genau dann wenn sie auf
einer "Kugel" beschrankt sind und die selbe Bedingung ist hinreichend dafiir, dass
Abbildungen dieser Klasse ganze Funktionen sind. Ausgestattet mit der kompakt-
offenen Topologie wird der Raum dieser Abbildungen zu einem (DFS)-Raum. Diese
Resultate werden dann auf allgemeinere Klassen ausgeweitet. Im letzten Teil dieses
Kapitels betrachten wir die Differentialgleichung d,u(x,t) = F(u(x,t)), wobei F' eine
verallgemeinerte textile Abbildung ist. Es wird gezeigt, dass diese bei analytischer
Anfangsbedingung analytisch 16sbar ist. Dieses Resultat kann so interpretiert werden,
dass die Differentialgleichung d,u(z,t) = F(x,u(z,t)) analytisch 16sbar bleibt, wenn
die Koeffizienten der rechten Seite (aufgefasst als holomorphe Abbildung O} — OF)
stetig perturbiert werden.
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