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Chapter 1
Topological Preliminaries
In this chapter we will prepare the necessary topological tools and terminology for
the study of non-linear maps between non-metrizable locally convex spaces. The first
part introduces different types of spaces, in which sequences suffice to describe certain
topological features such as continuity or the closure of a set. It turns out that for
locally convex spaces which most commonly appear in applications the property of
being a Fréchet-Uryson space is – like first-countability – equivalent to metrizability
(Theorem 2.5.16), while many important non-metrizable spaces are (k)- and sequen-
tial spaces. In the second part we briefly discuss the Arzelà-Ascoli-theorem and the
compact-open topology.

1.1 Sequential, (k)- and Fréchet-Uryson-spaces
Definition 1.1.1. Let X be a set, U ⊂ X and let (xi)i∈I be a net in X. We say that
(xi)i∈I is finally contained in U , if there exists an index i0 ∈ I so that {xi | i ≥ i0} ⊂ U .
If X is a topological space and U an open subset of X, then every net in X which
converges to an element of U is finally contained in U .
Definition 1.1.2. Let (X, τ) be a topological space. A subset U of X is called sequen-
tially open, if every sequence which converges to an element of U is finally contained in
U . For a subset A of X, we set [A]seq :=

{
x ∈ X | ∃ (an)n∈N ⊂ A : an → x

}
, which we

call the sequential adherence of A. If A = [A]seq, then A is called sequentially closed;
i.e. a subset is sequentially closed iff all sequences of A which converge in X have all
their limit points in A. The family of sequentially open sets defines a topology τs on
X and the closed sets of (X, τs) are exactly the sequentially closed ones. A topological
space (X, τ) is called sequential if τ = τs, i.e. if every sequentially open set is τ -open.
We note that in an arbitrary topological space (X, τ) every τ -open/closed set is also
τs-open/closed, but in general the converse does not hold. However, τs has the same
convergent sequences as τ : If xn τ−→ x and if U is a τs-open-neighborhood of x, then
there exists an index n0 so that (xn)n>n0

⊂ U , hence xn τs−→ x. Conversely, every
τs-convergent sequence is τ -convergent since τ ≺ τs. In fact, τs is the finest topology
on X which has the same convergent sequences as τ (see Lemma 1.1.4). Note that
the operation of forming the sequential topology τs is idempotent, i.e. (τs)s = τs.
Lemma 1.1.3 ([Eng89, p.53]). Let (X, τ) be a topological space. TFAE:
(1) (X, τ) is sequential.
(2) For every topological space (Y, σ), a function f : X → Y is continuous if it is

sequentially continuous.
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Chapter 1 Topological Preliminaries

Proof: (1)⇒ (2) Let (Y, σ) be an arbitrary topological space and f : X → Y a se-
quentially continuous map. Suppose that f is not continuous. Then there exists
a (non-empty) open set U ⊂ Y so that f−1 (U) is not open. Hence there exists a
sequence (xn)n∈N so that xn → x ∈ f−1 (U) but which is not finally contained in
f−1 (U). So we can extract a subsequence (xnk)k∈N ⊂ X \ f−1 (U). Thus xnk → x
but f (xnk) 6→ f(x), which contradicts the sequential continuity of f . (2)⇒(1) The
identity map id: (X, τ) → (X, τS) is sequentially continuous and hence continuous,
which implies τ = τS.

Lemma 1.1.4. Let (X, τ) be a topological space.
(1) τS is the finest topology on X which has the same convergent sequences

as τ .
(2) [KM97, p.37 ], [Gor] τS is the final topology with respect to all convergent se-

quences; i.e. the final topology with respect to all continuous maps
f : N∞ → (X, τ), where N∞ denotes the Alexandroff-compactification of N.

Proof: (1) Let σ another topology on X which has the same convergent sequences
as τ . Then id: (X, τS) → (X, σ) is sequentially continuous, and thus by the above
lemma continuous, which means that τs is finer than σ.
(2) Let U ∈ τS, let s : N∞ → X be continuous and let s (∞) =: x. If x 6∈ U , then
∞ 6∈ s−1 (U) and hence s−1 (U) is open in N∞. If x ∈ U , then there exists a number
n0 so that (sn)n≥n0

⊂ U and hence {n ≥ n0} ⊂ s−1 (U), so the preimage of U under
s is open. Since s was arbitrary, it follows that U is open in the final topology of all
convergent sequences. Conversely, suppose that U is open in the final topology. Let
xn

τ−→ x ∈ U and let s be the continuous extension of the sequence to N∞. Since U
is open and since ∞ ∈ s−1 (U), there is an n0 so that {n ≥ n0} ⊂ s−1 (U), and thus
xn = s(n) ∈ U for n ≥ n0. Hence U is sequentially open.

Example 1.1.5. Every topological space which satisfies the first axiom of countability
(AA1) is a sequential space. For separated topological vector spaces the properties
metrizable and (AA1) are equivalent. Nevertheless, there are important classes of
non-metrizable sequential LCVS: A (DFM)-space is a locally convex space which is
the strong dual of a Fréchet-Montel space (see Definition 2.5.12). Webb ([Web68])
showed that every (DFM)-space is sequential.

Theorem 1.1.6 ([Eng89, p.54, Appendix], [Fra67]).
Let X be a sequential space and let A ⊂ X.
(1) Sequentiality is passed over to open and closed subspaces of X, while arbitrary

subspaces of X need not to be sequential.
(2) In general A = [A]seq does not hold.

Definition 1.1.7. A topological space X is called a Fréchet-Urysohn-space (shortly
(FU)-space) if A = [A]seq holds for every subset A of X.

Remark. It is easy to see that every (FU)-space is sequential, while the converse
is false ([Eng89, p.54]). (FU)-spaces can be characterized as hereditary sequential
spaces: A topological space (X, τ) is an (FU)-space if and only if every subspace of X
is sequential. ([Fra67, Proposition 7.2])
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1.1 Sequential, (k)- and Fréchet-Uryson-spaces

Definition 1.1.8. A topological space (X, τ) is called a (k)-space or compactly gen-
erated space if a subset U of X is open if and only if U ∩ K is open in K for all
compact subsets K of X. In other words a topological space is a (k)-space if its topol-
ogy coincides with τK - the final topology with respect to all pairs (K, ιK) where K
is a compact subset of X and where ιK denotes the inclusion map K → X. If X is
Hausdorff then τK can also be described as the final topology with respect to all pairs
(K, f) where K is a compact topological space and f : K → X a τ - continuous map.
We note that a topological space is a (k)-space if and only if a function f : X → Y to
an arbitrary topological space is continuous iff all its restrictions to compact subsets
of X are continuous.
Remark. It is easy to see that every Hausdorff sequential space is a (k)-space.
Definition 1.1.9. Let X, Y be topological spaces and F ⊂ C (X, Y ). A topology
on F is called jointly continuous or admissible if the evaluation ev: F × X → Y is
continuous.
Theorem 1.1.10 ([Wil04, p.288]). Let (X, τ) be Hausdorff and a (k)-space, let Y be
a topological space and F ⊂ C (X, Y ) a family of continuous functions. The compact-
open topology on F is jointly continuous and it is the coarsest topology with this prop-
erty.
Definition 1.1.11. A topological space (X, τ) is called a Lindelöf space if every open
cover of X possesses a countable subcover. We say that X is strongly or hereditarily
Lindelöf if every open subspace of X is again a Lindelöf space.
Theorem 1.1.12 ([Eng89, p.256]). A metrizable space is a Lindelöf space iff it is
second-countable.
Definition 1.1.13. X is called hemicompact if there exists a sequence (Kn)n∈N of
compact subsets of X so that every compact subset K of X is contained in some
KN0 . We say that X is hereditarily hemicompact if every open subspace of X is
hemicompact.
Definition 1.1.14. A Hausdorff topological space is a Tychonoff space or a completely
regular space if for every closed set A ⊂ X and every x0 ∈ X \A there is a continuous
function f : X → [0, 1] so that f |A = 0 and f(x0) = 1. Every Hausdorff topological
vector space is a Tychonoff space (see for example [Sch71]).
Theorem 1.1.15 ([Wil04, p.289] [Eng89, p.165]).
Let X be a Hausdorff topological space.
(1) If X is hemicompact, then (C (X,R), τco) is metrizable.
(2) Suppose that X is Tychonoff space. Then (C (X,R), τco) is metrizable if and only

if X is hemicompact.
(3) If X is first-countable and hemicompact, then it is locally compact.

Corollary 1.1.16. A metrizable topological vector space (over K ∈ {R,C}) is hemi-
compact iff it is finite-dimensional.
Proof: Recall that a Hausdorff topological vector space is locally compact iff it is
finite-dimensional, in which case it is isomorphic to some KN (see for example [Sch71]).
Then the claim is an immediate consequence of part (3) of the above theorem.
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Chapter 1 Topological Preliminaries

1.2 Function spaces
Definition 1.2.1. Let X be a topological space and let Y be a uniform space. A
family F of functions X → Y is said to be equicontinuous on a subset A of X if the
family of restriction F|A is equicontinuous as a family of functions A→ Y . In general,
this does not imply that F is equicontinuous at a point x ∈ A, this (in general) holds
true only if x ∈ A◦.

Theorem 1.2.2 (Ascoli [Kel75, p.234]). Let X be a (k)-space which is either Hausdorff
or regular, let Y be a Hausdorff uniform space. A subfamiliy F of C (X, Y ) is compact
in (C (X, Y ), τco) if and only if satisfies the following:
(i) F is closed in (C (X, Y ), τco).
(ii) F(x) is relatively compact for each x ∈ X.
(iii) F is equicontinuous on every compact subset of X.

Definition 1.2.3. LetX and Y be topological spaces. A family F of functionsX → Y
is called evenly continuous if for every x ∈ X, every y ∈ Y and each neighborhood U
of y there is a neighborhood V of x and a neighborhood W of y so that f(x) ∈ W
implies that f(V ) ⊂ U .

Theorem 1.2.4 ([Kel75, p.236]). Let X, Y be topological spaces and let Y be a reg-
ular Hausdorff space. If a family F ⊂ C (X, Y ) is compact with respect to a jointly
continuous topology, then F is evenly continuous.

Theorem 1.2.5 ([Kel75, p.237]). Let X be a topological space, let Y be a uniform
space and F ⊂ C (X, Y ).
(1) If F is equicontinuous, then it is evenly continuous.
(2) If F is evenly continuous and x ∈ X is a point of X so that F(x) is relatively

compact in Y , then F is equicontinuous at x.

Proposition 1.2.6. Let X be a (k)-space and let Y be a regular Hausdorff uniform
space. A family F ⊂ C (X, Y ) is compact in (C (X, Y ) , τco) if and only if
(i) F is closed in (C (X, Y ) , τco)
(ii) F(x) is relatively compact for all x ∈ X.
(iii) F is equicontinuous.

Proof: Sufficiency follows from Theorem 1.2.2. Suppose that F is compact. Then
(1) and (2) follow again from Theorem 1.2.2. The compact-open topology is jointly
continuous on (k)-spaces ([Wil04, p.288]) so Theorem 1.2.4 can be applied to conclude
that F is evenly continuous. Because of (2) we an apply Theorem 1.2.5 to conclude
that F is equicontinuous.

This form of the Arzelà-Ascoli-theorem is particularly useful in the setting of locally
convex spaces: They are always regular, and the class of locally convex spaces which
are (k)-spaces covers metrizable as well as (DFM)-spaces (see Proposition 2.5.15).
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1.2 Function spaces

Theorem 1.2.7 ([Din99, p.166]). Let X be a topological space and let F be a lo-
cally convex space whose topology is generated by the set of semi-norms P. Then
(C (X,F ), τco) is a locally convex space and τco is described by the system of semi-
norms

{
‖ ‖K,φ : K

co
⊂ X, φ ∈ P

}
, where ‖F‖K,φ := supa∈K φ (F (a)).
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Chapter 2
Functional Analysis
After recalling basic definitions and properties of locally convex spaces we give a
broader survey of projective and especially inductive limits of locally convex spaces,
which are in applications the most important spaces beyond Banach or Fréchet spaces.
Even the inductive limit of a sequence of normed spaces may have pathological topo-
logical properties, hence additional regularity assumptions are needed to ensure that
the limit topology enjoys good features and relates to the generating sequence. Par-
ticular strong results hold for (DFM)-spaces (a limit of normed spaces which has the
Heine-Borel property), which turn out to be sequential spaces, and the subclass of
(DFS)-spaces (a limit of a sequence of normed spaces with compact linking maps),
which additionally satisfy that the convergent sequences are exactly those of the "steps"
of a generating sequence. In the last part we discuss Mackey-convergence and local
completeness, which play an important role in infinite-dimensional calculus.

Basic definitions. We call a topological vector space (TVS) over a field K ∈
{R,C} locally convex space (LCVS) if it is Hausdorff (instead of Hausdorff we will
also use the term separated) and if its topology admits a zero-neighborhood-base of
absolutely convex sets. A topology τ on a vector space E is called locally convex if
(E, τ) is a topological vector space (over K ∈ {R,C}) and if the topology admits a
zero-neighborhood-base of absolutely convex sets. A locally convex topology may not
be Hausdorff. By cs ((E, τ)) we denote the set of all continuous semi-norms on a vector
space E carrying a locally convex topology τ . We say that a system of semi-norms P
on E describes the topology τ if a net (xα)α∈A converges to x in (E, τ) if and only
if p (x− xα) → 0 for all p ∈ P . By UE0 we denote the system of zero neighborhoods
of E. A subset B of a topological vector space is called bounded if for every U ∈ UE0
there is a λ > 0 so that B ⊂ λU . If E is equipped with a locally convex topology
which is generated by the system of semi-norms P then a subset B of E is bounded iff
sup{p(x) | x ∈ B} <∞ for every p ∈ P . As a consequence, the absolutely convex hull
of a bounded set in a TVS with a locally convex topology is again bounded. By B(E)
we denote the family of bounded subsets of E. A set M ⊂ E is called bornivorous
if for every B ∈ B(E) there exists a λ > 0 so that B ⊂ λM and a locally convex
space in which every absolutely convex bornivorous set is a neighborhood of zero is
called bornological. A bounded and absolutely convex subset B of a LCVS (E, τ)
is called a disc. We write D (E) for the family of all discs in E. If B is a disc in
E, then EB denotes the linear span of B endowed with the topology defined by the
Minkowski functional ρB, which is a norm on EB. The gauge-topology on EB is finer
than the subspace-topology of EB as the inclusion map ι : EB → E is continuous since

7



Chapter 2 Functional Analysis

it is bornological. A disc B is called a Banach disc if EB is complete. We note that
every compact disc is a Banach disc (see [PCB87, p.83]). E ′ denotes the dual space
of a LCVS E and E ′ equipped with the topology of uniform convergence on bounded
subsets of E is called the strong strong dual of E which we will denote by E ′b.

2.1 Inductive Limits of locally convex spaces
Definition 2.1.1. A partially ordered set (A,�) is called a directed set if for any
α, β ∈ A there exists a γ ∈ A so that α � γ and β � γ. A subset J of A is cofinal in
A if for any α ∈ A there exists γ ∈ J so that α � γ.
Definition 2.1.2. Let S = (Ei, τi)i∈I be a system of LCVS, let E be a vector space
and F = (fi)i∈I be a system of linear maps, where fi : Ei → E. The inductive topology
on E with respect to (S,F) is the finest locally convex topology on E for which all
maps fi are continuous. Note that - in general - it is not Hausdorff and that it is
strictly coarser than the final topology on E with respect to (S,F) (i.e. the finest
topology on E for which all fi are continuous). The inductive topology is generated
by the set of semi-norms {q seminorm on E | q ◦ fi continuous ∀i ∈ I}. Let (F, σ) be
a topological vector space carrying a locally convex topology. Then a linear map
T : E → F is continuous if and only if all compositions T ◦ fi are continuous.
Definition 2.1.3. An inductive spectrum is a system S = (Eα, τα)α∈A of locally convex
spaces which is indexed by a directed set A together with a system Π = (πα,β)α�β∈A
of continuous linear maps where πα,β : Eα → Eβ, which satisfies that πα,α = idα and
that πβ,γ ◦ πα,β = πα,γ. A topological vector space (E, τ) carrying a locally convex
topology τ is called inductive limit of an inductive spectrum (S,Π), if there exists a
system of continuous linear maps E = (εα)α∈A (which we call a universal inductive
cone ), where εα : Eα → E, which satisfies:
(i) εβ ◦ πα,β = εα

(ii) For any locally convex space (H, σ) and a system of continuous linear maps
fα : Eα → H satisfying fβ ◦ πα,β = fα (any such system is called an inductive
cone), there exists a unique continuous linear map F : E → H with F ◦ εα = fα.

The inductive limit exists for every inductive spectrum and is - up to isomorphism
in the category of topological vector spaces - uniquely determined. We denote it by
lim−→(S,Π). The topology of the inductive limit is the inductive topology with respect
to (S, E). It might fail to be Hausdorff, even if all εα are injective and all steps Eα are
Hausdorff (see Example 2.1.7).
Theorem 2.1.4 (Construction of the inductive limit). Let (S,Π) be an inductive
spectrum indexed by the directed set A. Let ια : Eα →

⊕
α∈AEα be the canonical

injection and let M := span⋃α�β Im (ια − ιβ ◦ πα,β). Set E := ⊕
α∈AEα

/
M , and let

Φ: ⊕α∈AEα → E be the canonical quotient map. Furthermore, let εα := Φ ◦ ια and
let E = (εα)α∈A. Then E equipped with the inductive topology with respect to (S, E) is
an inductive limit of (S,Π) and is unique up to isomorphism.

8



2.1 Inductive Limits of locally convex spaces

Proof: For α � β, observe that εα−εβ◦πα,β = Φ◦(ια − ιβ ◦ πα,β) = 0, so εα = εβ◦πα,β.
Let (H, σ) be a topological vector space and let F = (fα)α∈A be a system of continuous
linear maps such that fα : Eα → H and fα = fβ ◦ πα,β for α � β. Let T : ⊕α∈AEα →
H, T (x) := ∑

fα (pα (x)), where pα : ⊕α∈AEα → Eα is the canonical projection. T is
linear by definition and we observe that T ◦(ια − ιβ ◦ πα,β) = fα−fβ ◦πα,β = fα−fα =
0. HenceM ⊂ ker (T ). Let F be the unique linear map F : E → H which satisfies that
F ◦Φ = T . Since F ◦εα = fα we can conclude that F is continuous. Also, F is uniquely
determined by the condition F ◦ εα = fα since span⋃α∈A εα (Eα) = E. So far we have
shown that (E, τ) is an inductive limit of (S,Π). Let (E2, τ2) be another inductive
limit with lifting maps δ = (δα)α∈A, where δα : Eα → E2. Then there exist continuous
linear maps T : E1 → E2 and U : E2 → E1 so that T ◦Eα = δα and U ◦ δα = εα. Hence
U◦T ◦εα = εα. This means that U◦T lifts the system of maps E : S → (E, τ). However,
idE has the same property and by uniqueness we conclude that idE = U ◦ T . By the
same arguments we can also conclude that idE2 = T ◦ U . Hence T is a continuous
linear bijection between E and E1 with continuous inverse.

Definition 2.1.5. An inductive net is a family of locally convex spaces (Eα, τα)α∈A
which is indexed by a directed set A and which satisfies that Eα ⊂ Eβ and that
the inclusion map ια,β : Eα → Eβ is continuous (which we are going to denote by
Eα ↪→ Eβ), for α < β. If the index set is N with the usual ordering, the inductive net
is called an inductive sequence. The inductive limit of an inductive net (Eα, τα)α∈A is
the vector space E := ⋃

α∈AEα equipped with the inductive topology with respect to
all inclusion ια : Eα → E. We say that a given topological vector space with a locally
convex topology (E, τ) is generated by an inductive net (Eα, τα)α∈A if lim−→Eα = (E, τ).
We call an inductive net proper if Eα ( Eβ for α � β.

Lemma 2.1.6. Let (S,Π) be an inductive spectrum indexed by A.
(1) [Mor93, p.246] Let J be a cofinal subset of A, let S|J := (Ej, τj)j∈J and

Π|J := {πα,β : α � β, α, β ∈ J }. Then lim−→ (S,Π) = lim−→
(
S|J ,Π|J

)
.

(2) [FW68, p.120] Suppose that all πα,β are injective. Then all εα are injective and we
have that εα (Eα) ⊂ εβ (Eβ) . Let Fα = εα (Eα) and let σα be the topology induced
by εα on Fα so that (Eα, τα) ∼= (Fα, σα). Then (Fα, σα)α∈A is an inductive net
which produces the same inductive limit as (S,Π). Furthermore, all properties of
the linkinkg maps πα,β which are invariant under composition with isomorphisms
(of LCVS) carry over to the injections ια,β : Fα ↪→ Fβ.

Remark. From now on we will not distinguish between inductive nets and inductive
spectra with injective linking maps, which is justified by the above lemma. We will
intrinsically assume that we pass over to the representation as an inductive net if we
deal with an inductive spectrum with injective linking maps.
Remark. One of the consequences of the first part of the lemma is that we can enlarge
diagrams as long as the linking maps in the new diagram lead back to the old one (in
the fashion as required in the lemma) and that in applications it is usually enough
to consider enumerable spectra: For example, we consider the inverse half-ordering
�inv on Rd+, where r �inv s iff ri ≥ si for all 1 ≤ i ≤ d. If (S,Π) is an inductive
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Chapter 2 Functional Analysis

spectrum indexed by
(
Rd+,�inv

)
and (rn)n∈N is an arbitrary null sequence in Rd+, then

lim−→ (S,Π) = lim−→
(
S|(rn)n∈N

,Π|(rn)n∈N

)
. Of course the same holds whenever the index

set has a countable cofinal subset. Suppose now that in addition all linking maps
πα,β are injective. Then

(
S|(rn)n∈N

,Π|(rn)n∈N

)
is equivalent to an inductive sequence.

From now on, we will only regard inductive nets, which are in applications the most
common form of inductive spectra. Still, all problems (concerning the topology) of
the general concept for inductive spectra appear when dealing with inductive nets:
Example 2.1.7 ([Flo80, p.207]). The inductive topology might decay to the chaotic
topology, even if all steps are normed spaces: Let P0 be the space of all real polynomials
vanishing at 0 and let En := (P0, ‖ ‖n), where ‖f‖n := max

{
|f(x)| : x ∈

[
0, 1

n

]}
.

Then E = lim−→En carries the chaotic topology (= indiscrete topology).
Definition 2.1.8. We are going to introduce different types of inductive limits. A
LCVS (E, τ) is called an (LF)/(LB)/(LNORM)/(LM)-space, if there is an induc-
tive net of Fréchet/Banach/Normed/Pre-Fréchet spaces (En)n∈N with lim−→ (En)n∈N =
(E, τ). The terminology is not unified in the literature - for example Schaefer reserves
the term (LF)-space to limits of strict inductive sequences of Fréchet spaces - but in
more recent publications the terms (LB) and (LF) are used according to the above
definitions.
Despite the above example the most important spaces carrying an inductive limit

structure (e.g. the space of bump functions or the space of germs of holomorphic
functions) have good properties in the sense that their (linear-)topological features are
strongly related with those of the spaces of a defining inductive net of locally convex
spaces (which has the space under consideration as inductive limit). Indeed these
properties may depend on the choice of the defining net, but usually the regularity
properties are passed over to equivalent inductive nets.
Definition 2.1.9. Two inductive sequences (En)n∈N , (Fn)n∈N are called equivalent
if for every n ∈ N there exists an m ∈ N so that En ↪→ Fm and if vice versa for
all m ∈ N there exists an n ∈ N so that Fm ↪→ En. Equivalent sequences have the
same inductive limit, the converse is true if the limit is Hausdorff and if all sequence
members are Fréchet spaces (Theorem 2.1.11).
Theorem 2.1.10 ([Flo71, p.161]). Let F and (En)n∈N be Fréchet-spaces and suppose
that E = limEn is separated. For every continuous linear map T : F → E there is an
index n0 so that T (F ) ⊂ En0 and T : F → (En0 , τn0) is continuous.
Theorem 2.1.11 ([Flo80, p.209]). Let E be a Hausdorff-(LF)-space and let (En)n∈N
and (Fn)n∈N be inductive sequences of Fréchet spaces which generate E, i.e. E =
lim−→En = lim−→Fn. Then (En)n∈N and (Fn)n∈N are equivalent.
As a consequence the usual regularity properties of separated (LF)-spaces which

relate to the steps of a generating sequence (of Fréchet-spaces) are independent of the
particular choice of the generating sequence, which is quite useful as one can be sure
that the lack of good properties of a sequence of Fréchet spaces is not due to a bad
choice of the generating sequence but a defect of the limit space itself. However, there
are (LM)-spaces with nonequivalent generating sequences (Example 2.2.9).
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2.2 Regularity concepts for inductive limits
Definition 2.2.1. Let (Eα, τα)α∈A be an inductive net of LCVS.
(1) We call (Eα, τα)α∈A regular if for every bounded set B ⊂ lim−→Eα there exists a

step Eα0 so that B is bounded in (Eα0 , τα0).
(2) (Eα, τα)α∈A is sequentially retractive if for every convergent sequence (xn)n∈N in

lim−→Eα there is a step Eα0 so that (xn)n∈N ⊂ Eα0 and xn converges in (Eα0 , τα0).
(3) Let A = N with the usual ordering. We say that (En, τn)n∈N has property (M) if

there exists a sequence (Un) of 0-neighborhoods Un in (En, τn) so that Un ⊂ Un+1
and which satisfies

∀n ∃j > n ∀k > j : (Un, τj) = (Un, τk)

We will call property (M) also Retakh’s condition.

Lemma 2.2.2. If (En)n∈N is regular, then lim−→En is Hausdorff.

Proof: E := lim−→En is Hausdorff if and only if N := ⋂
U∈UE0 U = {0}. N is the closure

of {0} in E and hence a subspace of E, which is bounded and therefore contained and
bounded in some step En0 . For U ∈ U

En0
0 there is a λ > 0 so that N ⊂ λU , and hence

N ⊂ U . This implies that N ⊂ ⋂
U∈U

En0
0

U and thus N = {0} as En0 is Hausdorff.

Theorem 2.2.3 ([Flo80, p.214]). Let (En)n∈N be an inductive sequence of normed
spaces, and let Kn be the closed unit ball in En. If the set ∑m

i=1 εiKi is closed in Em+1
for all m ∈ N and for all ε1, . . . , εm > 0, then (En)n∈N is regular.

Lemma 2.2.4 ( [Flo73], [Kuc01]). For an inductive sequence (En)n∈N of Fréchet-
spaces, TFAE:
(1) lim−→En is regular.
(2) lim−→En is Hausdorff and sequentially complete.
(3) lim−→En is Hausdorff and Mackey-complete (see Definition 2.9.1).

The following theorem is a generalization of Grothendieck’s factorization theorem
due to K. Floret, which we present in a slightly more general way as we make no local
convexity assumptions about the source space.

Theorem 2.2.5 ([Flo73, p.69]). Let (F, τ) be a metrizable topological vector space,
and let ((En, τn))n∈N be a sequentially retractive sequence. For every continuous linear
map T : F → lim−→En there is a number n0 ∈ N so that T factorizes continuously over
some En0, i.e. there is an n0 ∈ N so that T ∈ L (F, (En0 , τn0)).

Proof: Let (Vn)n∈N be a countable zero-neighborhood-base of F with Vn+1 ⊂ Vn.
First we show that T (F ) ⊂ En0 for some n0 ∈ N. Suppose that this does not
hold. Then for every n ∈ N there is a xn ∈ F so that T (xn) ∈ E \ En and we
may choose xn so that xn ∈ Vn. By construction, xn → 0 but (T (xn)) cannot be a
null sequence in lim−→En as it is not contained in any step En, which contradicts the
continuity of T and thus T (F ) has to be contained in some En0 . It remains to show

11
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that T : F → (En1 , τn1) is continuous for some n1 ≥ n0. WLOG we may suppose
n0 = 1. Suppose T : F → (Ek, τk) is discontinuous for every k ∈ N. Then for every
k ∈ N there is a null-sequence

(
xkn
)
n∈N

, where xkn ∈ Vn, for which
(
T (xkn)

)
n∈N

does not
converge to 0 with respect to τk. Then the sequence x1

1, x
1
2, x

2
2, x

1
3, x

2
3, x

3
3, x

1
4, . . . is a

null-sequence in F, but the image sequence cannot converge to 0 in any step En, which
again contradicts the continuity of T because of the supposed sequential retractivity
of (En)n∈N, which proves the claim.

Lemma 2.2.6 ([Flo73, p.67/68]). For a sequentially retractive sequence of LCVS
(En)n∈N, the following holds:
(1) (En)n∈N is regular.
(2) lim−→En is separated.
(3) xn → x in lim−→En implies that xn → x in some (En0 , τ0).
(4) If all En are Fréchet-spaces, then any basis of lim−→En is a Schauder-basis.
(5) Any equivalent sequence to (En)n∈N is also sequentially retractive.

Proof: (1) Let B be bounded in lim−→En. WLOG we may suppose B to be absolutely
convex and we define EB as the linear span of B equipped with the gauge-topology
associated to B. The space EB is metrizable and the injection ι : EB → lim−→En is
continuous, thus (by Theorem 2.2.5) ι has to continuously factorize over some step En0 ,
which implies that B has to be bounded in En0 . (2) and (3) follow from Lemma 2.2.2.
(4) see [Flo70] . (5) follows from the definition.

As an immediate consequence of the preceding lemma and Theorem 2.1.11 we obtain
the following result:

Lemma 2.2.7. If an (LF)-space E possesses a sequentially retractive generating se-
quence of Fréchet spaces, then every other generating sequence of Fréchet spaces for E
is also sequentially retractive.

Definition 2.2.8. An (LF)-space which can be generated by a sequentially retractive
sequence of Fréchet spaces is called a sequentially retractive (LF)-space. By the pre-
ceding lemma this property is independent of the particular choice of the sequence.
However, this is not true if the sequences consist of Pre-Fréchet spaces:

Example 2.2.9 ([Flo73, p.69/4.1 and p.70]). Let (H, τ) be a Banach-space and let
(Hn)n∈N be a sequence of proper and dense subspaces with H = ⋃

n∈NHn. Then
(H, τ) = lim−→Hn and (Hn)n∈N is a generating sequence of (H, τ) which is not sequen-
tially retractive. Now set (Fn, τn) = (H, τ). Then also (Fn)n∈N is a generating sequence
of (H, τ), but which is of course sequentially retractive.

There are other strong regularity concepts which we only mention briefly (see for
example [Wen96] ).

Definition 2.2.10. An inductive sequence (En, τn)n∈N with inductive limit (E, τ) is
called boundedly retractive if for every bounded set B in E there is n ∈ N such that
B ⊂ En and the topologies τ and τn coincide on B. The sequence (En, τn)n∈N is called
(sequentially) compactly regular if every (sequentially) compact subset of the inductive
limit is (sequentially) compact in some step.

12
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Theorem 2.2.11 ([Wen96, Theorem 2.7]).
For an inductive sequence (En, τn)n∈N of Fréchet-spaces, TFAE:
(1) (En, τn)n∈N is sequentially retractive.
(2) (En, τn)n∈N is boundedly retractive.
(3) (En, τn)n∈N is sequentially compactly regular.
(4) (En, τn)n∈N is compactly regular.
(5) (En, τn)n∈N satisfies property (M).

Theorem 2.2.12 ([Wen96, Corollary 2.8]). Let E be an (LF)-space.
If E is sequentially retractive, then E is complete.

2.3 Projective Limits of locally convex spaces
The dual concept to inductive spectra is that of projective spectra:

Definition 2.3.1. Let S = (Eα, τα)α∈A be a system of LCVS. Let E be a vector space
and E = (εα)α∈A be a system of linear maps, where εα : E → Eα. The projective topol-
ogy τproj on E with respect to (S, E) is the coarsest topology on E for which all maps
εα are continuous (it coincides with the initial topology from general topology). τproj
is locally convex and {q ◦ fα |q ∈ cs (Eα, τα) , α ∈ A} describes τproj. If E separates
points (i.e. ∀x ∈ E ∃f ∈ E : f(x) 6= 0), then τproj is Hausdorff. Let (X, τ) be an
arbitrary topological space and f : X → (E, τproj). Then f is continuous if and only if
εα ◦ f is continuous for every α ∈ A.

Definition 2.3.2. A projective spectrum is a system of LCVS S = (Eα, τα)α∈A which
is indexed by a directed set A together with a system Π = (πα,β)α�β∈A of continu-
ous linear maps where πα,β : Eβ → Eα, which satisfies that πα,β ◦ πβ,γ = πα,γ and that
πα,α = idα. We say that a projective spectrum is enumerable if its index set is enumer-
able. To a given projective spectrum (S,Π), a topological vector space (E, τ) carrying
a locally convex topology τ is called its projective limit, if there exists a system of
continuous linear maps E = (εα)α∈A (which we call a universal projective cone), where
εα : E → Eα, which satisfies:

(i) πα,β ◦ εβ = εα

(ii) For any locally convex space (H, σ) and any system of continuous linear maps
fα : H → Eα satisfying πα,β ◦ fβ = fα (any such system is called a projective
cone), there exists a unique continuous linear map F : H → E with εα ◦F = fα.

The projective limit exists for every projective spectrum and is - up to isomorphism
in the category of topological vector spaces - uniquely determined. We denote it by
lim←−(S,Π). The topology of the projective limit is the projective topology with respect
to (S, E).

13
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Theorem 2.3.3 (Construction and properties of the projective limit). Let (S,Π) be
a projective spectrum indexed by A and let εα : ∏β∈AEβ → Eα be the projection onto
Eα. Set

E :=
{
x ∈

∏
α∈A

Eα

∣∣∣∣∣ εα(x) = πα,β ◦ εβ(x) ∀α ≤ β ∈ A
}
, E := (εα)α∈A

(1) E equipped with the projective topology with respect to (S, E) is a projective limit
of (S,Π) with universal projective cone E and is unique up to isomorphism.

(2) E is a closed subspace of ∏α∈AEα and the projective topology on E is the
subspace-topology induced by ∏α∈AEα.

(3) E is always Hausdorff and is complete if all (Eα, τα) are complete.
(4) E is metrizable if A is countable and if all (Eα, τα) are metrizable.
(5) Every complete LCVS can be represented as the limit of a projective spectrum of

Banach spaces.
(6) Let J be a cofinal subset of A. Then lim←− (S,Π) = lim←−

(
S|J ,Π|J

)
(7) If E = lim(S,Π) is complete, then a subset K of E is relatively compact if and

only if εα(K) is relatively compact in Eα for all α ∈ A.

The proof of (1) is simple and similar to that of Theorem 2.1.4, proofs to (2)-(5)
can be found in [FW68, §6 and §12] and for (6) we refer to [Mor93, p.294]. (7) is a
direct consequence of Tychonoff’s Theorem (see [FW68, p.75]).

Definition 2.3.4. A projective spectrum (S,Π) indexed by A with projective limit
E and a universal cone E = (εα)α∈A is called reduced if εα(E) is dense in Eα for every
α ∈ A and we say that (S,Π) is strict if πα,β(Eβ) is dense in Eα. By construction we
have πα,β(εβ(Eβ)) = εα(E), which shows that every reduced spectrum is strict.

Definition 2.3.5. A projective net is a family (Eα)α∈A of LCVS indexed by a directed
set which satisfies that Eβ ↪→ Eα and that the inclusion is continuous for α ≤ β. A
projective sequence is a projective net whose index set is N with the usual ordering.
The limit of a projective net is ⋂

α∈A
Eα.

2.4 Duality of Projective and Inductive spectra
Definition 2.4.1. For T ∈ LB(E,F ) the dual or adjoint map T ∗ : F ′b → E ′b is the
continuous linear mapping f 7→ f ◦ T . Let (S,Π) be a projective/ inductive spec-
trum with index set A. Set S∗ :=

{
(Sα)′b | α ∈ A

}
and Π∗ :=

{
π∗α,β

∣∣∣ πα,β ∈ Π
}
.

Then (S∗,Π∗) is an inductive/projective spectrum which we call the dual inductive/
projective spectrum of (S,Π).

Definition 2.4.2. If ι : E ↪→ F is the inclusion map then we write ρ for its dual map
ι∗. It is easy to see that ρ : F ′b → E ′b is the restriction mapping f 7→ f |E. The dual
spectrum to an inductive sequence (En)n∈N will be written as ((En)′b, ρn)n∈N, where
ρn : (En+1)′b → (En)′b denotes the restriction mapping.
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Lemma 2.4.3 ([Flo71, p.158]).
(1) Let E,F be locally convex spaces and let T ∈ LB(E,F ). T has dense range if

and only if the dual map T ∗ is injective.
(2) Let (S,Π) be a projective spectrum. (S,Π) is strict if and only if all dual maps

π∗α,β : (Eα)′b → (Eβ)′b are injective.

Theorem 2.4.4 ([FW68, p.143]).
(1) Let (S,Π) be a reduced projective spectrum indexed by A and let
E = (εα)α∈A be a universal projective cone. Let E∗ := (ε∗α)α∈A be the system of
dual maps, where ε∗α : (Eα)′b →

(
lim←− (S,Π)

)′
b
. The family E is an inductive cone

and can thus be lifted to a linear map

ι : lim−→ (S∗,Π∗)→
(
lim←− (S,Π)

)′
b

which is bijective and continuous.
(2) Let (S,Π) be an inductive spectrum indexed by A and let E = (εα)α∈A be a

universal inductive cone, where εα : Eα → lim−→(S,Π). Let E∗ := (ε∗α)α∈A be
the system of dual maps, where ε∗α :

(
lim−→ (S,Π)

)′
b
→ (Eα)′b. The family E is a

projective cone and can thus be lifted to a linear map

ι :
(
lim−→ (S,Π)

)′
b
→ lim←− (S∗,Π∗)

which is bijective and continuous.

In the next theorems we are going to state conditions on the inductive and projective
spectrum, respectively, which assure that the dual spectrum generates the dual space
of the limit of the spectrum under consideration. For this we need the following
generalization of regularity:

Definition 2.4.5. Let (S,Π) be an inductive spectrum, E = lim−→ (S,Π) and let E =
(εα)α∈A be a universal inductive cone. (S,Π) is called regular, if for every B ∈ B(E)
there exists an α0 ∈ A and a B̃ ∈ B(Eα0) so that εα0(B̃) = B.

Theorem 2.4.6 ([FW68, p.145]). If (S,Π) is a regular inductive spectrum, then(
lim−→ (S,Π)

)′
b

∼= lim←− (S∗,Π∗)

Theorem 2.4.7. Let (En)n∈N be a reduced projective sequence of normed spaces and
suppose that

(
lim←−En

)′
b
is bornological. Then ((En)′b)n∈N is an inductive sequence of

Banach spaces and
lim−→(En)′b ∼=

(
lim←−En

)′
b

Proof: Since E = lim←−En is a metrizable LCVS and thus bornological, its strong dual
is complete and as E ′b is bornological this implies that it is already ultrabornological
[MV92, p.283]. Since (En)n∈N is reduced the dual maps ι∗n : (En)′b → (En+1)′b are
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injective (by Lemma 2.4.3) and thus
(
(En)′b

)
n∈N

is an inductive sequence. The limit
of an inductive sequence of normed spaces is webbed (see [Jar81, p.92]) and so we can
apply Webb’s open mapping theorem to conclude that the continuous linear bijection
ι : lim−→

(
(En)′b

)
n∈N
→ E ′b (see Theorem 2.4.4) is an isomorphism.

2.5 Some classes of locally convex spaces
Definition 2.5.1. A sequence of bounded sets (Bn)n∈N in a locally convex space E
is called a fundamental sequence of bounded sets if for every B ∈ B(E) there exists
a λ > 0 and an n0 ∈ N so that B ⊂ λ · Bn0 . A locally convex space E is called a
(DF)-space if it possesses a fundamental sequence of bounded sets and if for every
sequence of absolutely convex 0-neighborhoods the set ⋂n∈N Vn is a 0-neighborhood in
E whenever ⋂n∈N Vn is bornivorous.

Remark. The letters (DF) stand for Dual-Fréchet. Indeed the dual of a Fréchet-space
is a (DF)-space (see [MV92, p.298]) and the strong dual of a (DF)-space is a Fréchet-
space. Note that a (DF)-space is metrizable if and only if it is normable ([Jar81,
p.259]).
Another important example of (DF)-spaces are separated (LNorm)-spaces. In gen-

eral, a generating sequence for such a space need not to be regular [Flo71, p.163].
Still the family of closures of bounded sets of a generating sequence forms a funda-
mental system of bounded sets and we will see in Theorem 2.5.4 that every separated
(LNorm)-space possesses a regular generating sequence.

Theorem 2.5.2 (Grothendieck [Flo71, p.163]). Let (En)n∈N be a sequence of normed
spaces and suppose that E = lim−→En is separated and let Bn denote the unit ball of En.
If B is a bounded subset of E, then there exists an n0 ∈ N such that B ⊂ λBn0

E. In
particular, lim−→En is a bornological (DF)-space.

Theorem 2.5.3. For a locally convex space E, TFAE:
(1) E has a fundamental sequence of bounded sets and is bornological.
(2) E is a bornological (DF)-space.
(3) E is the limit of a regular inductive sequence of normed spaces.

Proof: (3)⇒ (1) Let (En)n∈N be a regular inductive sequence of normed spaces which
generates E and let Bn be the unit ball in En. As every bounded set of E is contained
in some step En0 and hence in some λBn0 , it follows that (Bn)n∈N forms a fundamental
sequence of bounded sets. Normed spaces are bornological and the inductive limit of
a family of bornological spaces is again bornological.
(1) ⇒ (2) If (Vn)n∈N is a sequence of absolutely convex zero-neighborhoods then
V = ⋂

n∈N Vn is absolutely convex and hence a zero-neighborhood if it is bornivorous,
since E is bornological by assumption.
(2) ⇒ (3) Suppose that E is a (DF)-space with fundamental sequence (Bn)n∈N. As
the closed absolutely convex hull of a bounded set is again bounded, we may WLOG
assume that all members of the fundamental sequence are bounded discs.
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Let En := EBn . Then E = ⋃
n∈NEn and even E ∼= lim−→En holds: As every En injects

continuously into E we have that (lim−→En) ↪→ E. Since E is bornological, the map
id: E → lim−→En is continuous if it is bornological. Let B ∈ B(E). Then there is an
n0 ∈ N and a λ > 0 so that B ⊂ λBn0 . Hence B is bounded in En0 and hence bounded
in lim−→En, which shows that E ∼= lim−→En. As every bounded subset of E is contained
in some step En, the sequence is regular.

As an immediate consequence of Theorem 2.5.2 and Theorem 2.5.3 we obtain:

Corollary 2.5.4. An (LNorm)-space admits a regular generating sequence iff it is
separated.

Definition 2.5.5. A locally convex space E is called semi-Montel if it satisfies the
Heine-Borel-property - i.e. if every bounded subset of E is relatively compact in E.
We say that E is a Montel space if it is semi-Montel and barrelled.

Definition 2.5.6. Let (E, τ) be a locally convex space and let ι denote the natural
injection E → (E ′b)′ into the bidual space of E, where (ι(x)) : f 7→ f(x) is the evalua-
tion map, for x ∈ E, f ∈ E ′. The mapping ι : E → (E ′b)′b is injective and continuous
and we say that E is semi-reflexive if it is surjective and E is called reflexive if ι is an
isomorphism of LCVS.

Theorem 2.5.7 ([Mor93, p.242]). A semi-reflexive space is reflexive if and only if it
is barrelled.

Theorem 2.5.8 ([Mor93, p.242], [FW68, p.108], [KC73], [AK68]).
(1) Semi-Montel spaces are semi-reflexive and Montel spaces are reflexive.
(2) The strong dual of a Montel space is again a Montel space.
(3) Montel spaces are quasi-complete (every bounded Cauchy net converges).
(4) There are Montel spaces which fail to be complete.

Theorem 2.5.9 ([FW68, p.108]). Let E be a Montel space and B ⊂ E ′ be a bounded
subset. Then the strong topology coincides with the weak topology on B. In particular,
a sequence in E converges strongly iff it converges weakly.

Remark. Note that in general the topology on a Montel space is different from its
weak topology, even though both topologies have the same convergent sequences. For
example (DFM)-spaces (defined below) carry the weak topology iff they are finite-
dimensional (see [KṠ92]).

Example 2.5.10. For any open subset Ω of Cd, the space of C-valued holomorphic
functions H(Ω) equipped with the compact-open topology is a Montel space.

Example 2.5.11. By the Riesz lemma a normed space is semi-Montel iff it is finite-
dimensional: Suppose that (E, ‖ ‖) is a normed semi-Montel-space. Then its closed
unit ball is by assumption compact, so E has to be finite-dimensional by Riesz’ lemma.

Definition 2.5.12. An (FM)-space (Fréchet-Montel space) is a Fréchet space which
is also a Montel space. A (DFM)-space is a (DF)-space which is also a Montel space.
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Theorem 2.5.13 (Duality of (FM)- and (DFM)-spaces).
(1) The strong dual of an (FM)-space is a (DFM)-space.
(2) The strong dual of a (DFM)-space is an (FM)-space.

Proof: (1) If F is a Fréchet space then its strong dual is a (DF)-space and the strong
dual of a Montel space is a Montel space. (2) The dual of a (DF)-space is a Fréchet
space and again the property of being Montel transfers to the strong dual.

Corollary 2.5.14. (DFM)-spaces are complete.

Proof: Every (DFM)-space is the strong dual of a metrizable (hence bornological)
LCVS, and hence complete, since the space of continuous linear operators Lb(E,F )
equipped with the topology of uniform convergence on bounded subsets of E is com-
plete if E is bornological and F is complete (see [Sch71, p.117]).

Proposition 2.5.15 ([KS02, p.397], [CO86]). For an (LM)-space E, TFAE:
(1) E is sequential.
(2) E is a (k)-space.
(3) E is metrizable or a (DFM)-space.

Theorem 2.5.16 ([KS02, p.2]). Let E be either an (LM)- or a (DF)-space. TFAE:
(1) E is a Fréchet-Urysohn-space.
(2) E is metrizable.

Corollary 2.5.17. A (DFM)-space is a Fréchet-Urysohn-space if and only if it is
finite-dimensional.

Proof: Let E be a (DFM)- and (FU)-space. E is metrizable by the above theorem
and even normable, as it is a (DF)-space ([Jar81, p.259]). A normed space is a Montel
space if and only if it is finite-dimensional, as the closed unit ball of a normed space
is compact if and only if its dimension is finite (Riesz’ lemma). The converse of
the theorem holds as every finite-dimensional Hausdorff topological vector space is
isomorphic to some KN (see [Sch71]).

Despite sequentiallity, (DFM)-spaces satisfy other strong topological properties:

Theorem 2.5.18 ([Din75, p.462, 465]). (DFM)-spaces are strongly Lindelöf and
hereditarily hemicompact.

2.6 Special classes of inductive and projective lim-
its

Definition 2.6.1. A linear map T : E → F between locally convex spaces E,F is
said to be compact if there exists a 0-neighborhood U in E so that T (U) is relatively
compact in F. If T (U) is already compact in F , then T is called bicompact.
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Remark. As the absolutely convex zero-neighborhoods form a zero-neighborhood base,
one can always choose an absolutely convex zero-neighborhood V so that T (V ) is
relatively compact, if T is a compact linear map. It is easy to see that a compact map
is continuous and maps bounded sets to relatively compact sets. The second property
is equivalent to the compactness of an operator if E and F are both normed spaces.

Theorem 2.6.2 (Bicompact factorization of compact maps [FW68, p.88]).
Let (E, τ) , (F, σ) be LCVS, and let T : E → F be compact. Let U be an absolutely
convex zero-neighborhood so that K := T (U) is compact.
Then T ∈ LB (E,FK), the inclusion map ι : FK → F is bicompact and the closed unit
ball of FK is compact in F .

E
T

> F

FK

ι

∧
T

>

Proof: FK is a Banach space sinceK is a compact disc in F . Note thatK is the closed
unit ball of FK (i.e. K = {x ∈ FK | ρK(x) ≤ 1} ) as it is closed in F , which shows
that ι : FK → F is bicompact. Since T (U) ⊂ FK and hence T (E) ⊂ FK it remains to
show that T : F → FK is continuous. For any ε > 0 we have that ε · U ⊂ T−1(εK)
and consequently T−1(εK) ∈ UE0 which means that T is continuous at 0 and hence
T : E → FK is continuous.

Definition 2.6.3. A projective spectrum (S,Π) (index by a directed set A) is called
compact if for every α ∈ A there exists an index β ≥ α ∈ A so that the linking
map πα,β : Eβ → Eα is compact. Likewise, an inductive spectrum (S,Π) (index by a
directed set A) is called compact if for every α ∈ A there exists an index β ≥ α ∈ A
so that the linking map πα,β : Eα → Eβ is compact.

Corollary 2.6.4. Any compact inductive sequence (En)n∈N of LCVS is equivalent to
a bicompact inductive sequence of Banach spaces (Gl)l∈N, such that the closed unit ball
of every Gl is compact in Gl+1.

Proof: Let (Enl)l∈N be a subsequence so that ι : Enl → Enl+1 is compact. Theo-
rem 2.6.2 shows that for any l ∈ N there is a Banach-space (Gl, ‖ ‖) so that Enl
includes continuously into Gl; furthermore ι : Gl → Enl+1 is bicompact and the closed
unit ball Bl of Gl is compact in Enl+1 . Consequently Bl is compact in Gl+1, and
(En)n∈N is equivalent to (Gl)l∈N, which is illustrated by the following commutative
diagram (the arrows being the (continuous) inclusion maps):

· · · > Enl > Enl+1
> Enl+2

> · · ·

· · · > Gl

∧

>

>

Gl+1

∧

>

>

· · ·
>
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Theorem 2.6.5 (Schauder [Sch71, p.111]). Let E and F be Banach spaces and let
T : E → F be continuous. T is compact if and only if the dual operator T ∗ : F ′b → E ′b
is compact.

Definition 2.6.6. A linear map T : E → F between topological vector spaces is called
nuclear, if it satisfies the following: There exist
(1) an equicontinuous sequence (fn)n∈N ⊂ E ′

(2) a sequence (λn)n∈N ⊂ C with ∑ |λn| <∞
(3) a bounded sequence (yn)n∈N ⊂ F

so that

T (x) =
∞∑
n=1

λnynfn (x)

Lemma 2.6.7 ([FW68, p.101]). Let E,F be locally convex spaces, and let T : E → F
be nuclear.
(1) If F is complete, then T is compact.
(2) The dual map T ′ : F ′ → E ′ is nuclear.

Definition 2.6.8. A projective spectrum (S,Π) (index by a directed set A) is called
nuclear if for every α ∈ A there exists an index β ≥ α ∈ A so that the linking map
πα,β : Eβ → Eα is nuclear. Likewise, an inductive spectrum (S,Π) (index by a directed
set A) is called nuclear if for every α ∈ A there exists an index β ≥ α ∈ A so that
the linking map πα,β : Eα → Eβ is nuclear.

Definition 2.6.9. A LCVS E is called nuclear, if its completion Ẽ can be represented
as the projective limit of a nuclear projective spectrum of sequentially complete LCVS.

Theorem 2.6.10. Let E be a locally convex space. The following are equivalent:
(1) E is nuclear.
(2) Every continuous linear map from E to a Banach space is already nuclear.
(3) The completion Ẽ of E is the limit of a nuclear projective spectrum of Hilbert

spaces.

For Fréchet spaces it is possible to give another characterization of nuclearity in
terms of absolute summability:

Definition 2.6.11. A subset S of a locally convex space E is called summable to x
in E if for every ε > 0 and each q ∈ cs(E) there is a finite subset F of S so that
q(x − ∑s∈A s) < ε holds for any finite subset A of S which contains F . We write∑
s∈S s = x if S is summable to x. Call a sequence (xn)n∈N absolutely summable if

it is summable and if for every q ∈ cs(E) the sequence (q(xn))n∈N is summable in
R. (xn)n∈N is absolutely summable if and only if limN→∞

∑N
k=0 xk exists in E and

if ∑∞n=0 q(xn) < ∞ for all q ∈ cs(E). If E is complete, then a sequence (xn)n∈N
is absolutely summable if and only if for each q ∈ cs(E) the sequence (q(xn))n∈N is
summable in R (see [Jar81][p.305]).
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Theorem 2.6.12 ([Sch71, p.184]).
(1) A Fréchet space is nuclear if and only if each summable sequence is also absolutely

summable.
(2) A Banach space is nuclear if and only if it is finite-dimensional.

Theorem 2.6.13 (Permanence Properties of nuclear spaces [FW68, pp155]).
The class of nuclear spaces is closed under forming subspaces, projective limits, prod-
ucts and quotients by closed subspaces.

2.7 Fréchet-Schwartz and (DFS)-spaces

Definition 2.7.1. We call a locally convex space (S)-space if it is the projective limit
of a compact spectrum of locally convex spaces. A Schwartz space is a LCVS whose
completion is an (S)-space. A Fréchet-Schwartz (shortly (FS)-space) is a LCVS which
is the projective limit of an enumerable compact spectrum of locally convex spaces.
The factorization theorem for compact maps between LCVS (Theorem 2.6.2) yields
that every (FS)-space can be generated by a compact projective sequence of Banach
spaces. Dually, the inductive limit of a compact sequence of locally convex spaces is
called (DFS)-space. Indeed (FS)-spaces and (DFS)-spaces are dual (as locally convex
spaces) to each other.

Remark. Note that the class of limits of compact inductive nets is not designated
with its own name - the reason for this lies in the fact that every ultrabornological
space is the limit of a compact net of Banach spaces (which was proven by Raikov
- see [Flo71, p.168]). So according to Floret [Flo71, p.168] "there is little hope that
special properties could be deduced from the compactness of the linking maps". Note
that every Banach space is an ultrabornological space and hence limits of compact
inductive nets are in general not semi-Montel spaces - unlike projective or inductive
sequences with compact linking maps.
Remark. In [FW68] Wloka and Floret study compact inductive spectra with linking
maps which are not necessarily injective. Limits of such spectra are called (LS)-spaces.
Recently also the class of projective limits of sequences of (LS)-spaces received some
attention, which are called (PLS)-spaces. Examples for (PLS)-spaces are the space
LB(E,F ) if both E and F are (FS)-spaces ([DL08, p.17]) and the space A(Ω) of
real-analytic functions on a non-compact real-analytic manifold Ω (see [Dom12]).

Theorem 2.7.2 ([FW68]).
(1) Every (S)-space is a complete semi-Montel space.
(2) Every (FS)-space is a Fréchet-Montel space.

Proof: (1) Let (S,Π) be a compact projective spectrum indexed by A and let E =
lim←−(S,Π). The compact factorization theorem implies that there exists a spectrum
of Banach space (S̃, Π̃) indexed by a cofinal subset J of A so that any mapping
π̃α,β ∈ Π̃ is bicompact and which is equivalent to (S,Π). Hence E = lim←−(S̃, Π̃) is
complete (see Theorem 2.3.3). Let E = (εj)j∈J be a universal cone of (S̃, Π̃). As Π̃
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consists of bicompact maps it follows that all εj are compact maps. If B ∈ B(E), then
εj(B) is relatively compact for all j ∈ J . By Theorem 2.3.3 this implies that B is
relatively compact in E which is thus a semi-Montel space. (2) Again the compact
factorization theorem yields that an (FS)-space can be generated by a bicompact
enumerable spectrum of Banach spaces and is hence metrizable (Theorem 2.3.3(7)).

Theorem 2.7.3 (Duality between (FS)- and (DFS)-spaces).
(1) Let (En)n∈N be a compact inductive sequence of Banach spaces which generates

the (DFS)-space E. Then E ′b is an (FS)-space which is generated by the compact
projective spectrum

(
((En)′b)n∈N , (ρn)n∈N

)
, where ρn : (En+1)′b → (En)′b denotes

the restriction f 7→ f |En.
(2) Let ((Fn)n∈N , (ρn)n∈N) be a compact projective sequence of Banach spaces which

generates the (FS)-space F . Then F ′b is a (DFS)-space and if (Fn)n∈N is reduced
then the compact inductive sequence ((Fn)′b)n∈N generates F ′b.

Proof: (1) Let (S∗,Π∗) :=
(
((En)′b)n∈N , (ρn)n∈N

)
. By Theorem 2.4.6 we have that

E ′b
∼= lim←−(S∗,Π∗). The compactness of ιn,n+k : En → En+k carries over to the dual map

ι∗n,n+k = ρn,n+k : (En+k)′b → (En)′b. Hence (S∗,Π∗) is a compact spectrum of Banach
spaces and E ′b is an (FS)-space. (2) As before the compactness of ρ∗n,n+k : (En)′b →
(En+k)′b is inherited from the compactness of ρn,n+k : En+k → En and ρ∗n,n+k is injective
as ρn(En+1) is dense in En. Because of Theorem 2.4.4 we have lim−→ ((Fn)′b)n∈N = E ′b.

In the next theorem we will see that (DFS)-spaces have all desirable properties a
locally convex space could have. Even more, the fact that (DFS)-spaces are Montel
spaces, sequential and that their convergent sequences are exactly the convergent
sequences of the steps of a generating sequence of Banach spaces, makes them the
optimal setting if one studies non-linear maps on non-metrizable locally convex spaces.

Proposition 2.7.4. Let (En)n∈N = (En, τn)n∈N be a compact sequence of Banach-
spaces which generates E. Then:
(1) E is Hausdorff.
(2) E is a (DF)-space.
(3) E is a Montel space.
(4) E is a sequential space.
(5) E is complete.
(6) E is webbed and ultrabornological.
(7) (En)n∈N is compactly retractive.
(8) Every generating sequence of E consisting of Fréchet spaces is compact.
(9) Every generating sequence of E consisting of Fréchet spaces is sequentially re-

tractive.
(10) Every basis of E is a Schauder basis. [Flo73]
(11) E carries the final topology with respect to

(
(En)n∈N , E

)
where E denotes the

family of all inclusion mapping En ↪→ E. Consequently a map f : E → X to an
arbitrary topological space is continuous if and only if all restrictions f |(En,τn)
are continuous. [FW68, p.135].
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2.7 Fréchet-Schwartz and (DFS)-spaces

Proof: We show that (En)n∈N satisfies Retakh’s condition (see Definition 2.2.1(3))
that E is semi-Montel. Then the rest of the properties (1)-(10) follow directly from
the theorems stated about sequentially retractive (LF) spaces and (DF) Montel spaces.
For more direct proofs we refer to [FW68]. WLOG we may assume that all ιn : En →
En+1 are compact since there exists in any case a subsequence (Enk)k∈N with this
property. Let Bn denote the closed unit ball in En and choose λn ∈ R+ so that λnBn ⊂
λn+1Bn+1 for all n ∈ N. As λnBn is relatively compact in En+1 the topology induced
on Bn by En+k (for any k ≥ 1) coincides with that induced by En+1 which shows
that (En)n∈N satisfies Retakh’s condition (M). Hence (by Theorem 2.2.11) (En)n∈N is
sequentially retractive, regular and consequently Hausdorff. Thus, if B ∈ B(E), there
is an n0 ∈ N so that B ∈ B(En0) and hence B is relatively compact in En0+1 (because
of the compactness of the inclusion ιn0) and hence in E. Now we show (11). Let X be
a topological space, let f : E → X be a function and let εn denote the inclusion map
En ↪→ E. If f is continuous, then all fn := f ◦ εn : (En, τn)→ X are continuous since
all εn : (En, τn)→ (E, τ) are continuous. Now suppose that all fn are continuous. We
want to conclude that f is continuous and since (E, τ) is a (k)-space it suffices to show
that all restrictions of f to compact sets are continuous. Let K be a compact subset of
E. Then there exists a step En so that K is contained in En and compact with respect
to τn and consequently (K, τn) ∼= (K, τ) (since (K, τn) ↪→ (K, τ)). As fn is continuous,
the restriction fn|(K,τn) is continuous and hence f |(K,τ) is continuous. This shows that
a function f : E → X is continuous if and only if all compositions f ◦εn are continuous
and hence E carries the final topology with respect to

(
(En)n∈N , (εn)n∈N

)
.

Lemma 2.7.5. Let (En)n∈N be an inductive sequence of Banach spaces and let
E = lim−→En. Then E is a (DFS)-space if and only if E is semi-Montel and (En)n∈N
is sequentially retractive.

Proof: If E is a (DFS)-space then it is a Montel space. A compact sequence of Banach
spaces is sequentially retractive and since all generating sequences of an (LF)-space are
equivalent (Theorem 2.1.11) and sequential retractivity is passed over to equivalent
sequences it follows that (En)n∈N is sequentially retractive. Now suppose that E is
semi-Montel and that (En)n∈N is sequentially retractive. Let Bn be the unit ball in
En. For any n0 ∈ N, we have that K = Bn0

E is compact in E and since (En)n∈N
is compactly retractive (by Theorem 2.2.11) there exists an n1 > n0 so that K is
compact in En1 . Hence Bn0 is relatively compact in En1 , which shows that (En)n∈N is
a compact sequence and consequently E is a (DFS)-space.

Theorem 2.7.6 (Permanence properties of (DFS)/(FS)-spaces [Flo71, p.182]).
(1) The class of (FS)-spaces is closed under taking closed subspaces, quotients with

respect to closed subspaces and finite products.
(2) The class of (DFS)-spaces is closed under taking closed subspaces, quotients with

respect to closed subspaces and finite products.
(3) Let (En)n∈N be a compact sequence of Banach spaces, let E = lim−→En and let F

be a closed subspace of E. Then F is also a (DFS)-space and is generated by the
compact sequence (F ∩ En)n∈N.
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Next we study nuclear inductive sequences of Fréchet spaces. Since a nuclear map
T : E → F is compact if F is complete, these are special cases of compact sequences
and the limit spaces obtained (i.e. (DFN)-spaces are (DFS)-spaces) and it turns out
that nuclear (DFS)-spaces are exactly the (DFN)-spaces.

Definition 2.7.7. We call a locally convex space E (DFN)-space if it is the inductive
limit of a nuclear sequence of Frechet spaces. Dually, the projective limit of a nuclear
sequence of Fréchet spaces is called an (FN)-space.

Theorem 2.7.8 ([FW68, p.160-163] [Flo71, p.175]).
(1) The classes of (FN)- and (DFN)-spaces are dual to each other: The strong dual

of a (DFN)-space is an (FN)-space and the strong dual of an (FN)-space is a
(DFN)-space.

(2) Every (DFN)-space is a (DFS)-space and every (FN)-space is an (FS)-space.
(3) A (DFS)-space is nuclear if and only if it is a (DFN)-space.
(4) An (FS)-space is nuclear if and only if it is an (FN)-space.
(5) The inductive limit of a nuclear sequence of sequentially complete LCVS is a

(DFN)-space.

As a consequence of the stability properties of (DFS)-, (FS)- and nuclear spaces
and the characterization of (DFN)/(FN)-spaces as nuclear (DFS)/(FS)-spaces we im-
mediately obtain the following corollary:

Corollary 2.7.9 (Stability properties of (FN)- and (DFN)- spaces). The classes
of (FN)-spaces and (DFN)-spaces satisfy the same stability properties as (FS)- and
(DFS)-spaces, respectively.

2.8 Non-linear maps between LCVS
Definition 2.8.1. Let E,F be LCVS. A map T : E → F is called bornological if
the image of every bounded set under T is again bounded and is called sequentially
bornological if (T (an))n∈N is bounded whenever (an)n∈N is bounded.

Theorem 2.8.2. Let E be a sequential semi-Montel space and let F be a semi-Montel
space which satisfies that all its compact subsets are metrizable (in the topology induced
by F ) and which possesses a Schauder basis {xn}n∈N. Let T : E → F be a (possibly
non-linear) map, let Tn : E → C denote the nth coordinate function of T . TFAE:
(1) T is continuous.
(2) T is bornological and all Tn are continuous.
(3) T is sequentially bornological and all Tn are continuous.

Remark. Despite the strong requirements on the spaces E, F there are huge classes
of locally convex spaces to which the theorem applies:
(1) Every (DFM)-space is (by definition) a Montel space and sequential by a result

of Webb ([Web68]).
(2) In every (LM)-space all pre-compact subsets are metrizable by a result of Cas-

cales and Orihuela (see [CO86]).
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(3) In particular the result applies to the case where E is a (DFM) and F a (DFS)-
space with a basis: Floret showed in ([Flo70]) that in a sequentially retrative
(LF)-space (and thus in every (DFS)- space) every basis is already a Schauder
basis.

Proof: (1)⇒ (2) Let B be a bounded set in E. Then B is relatively compact, hence
T (B) is relatively compact and thus bounded in F . The coordinate projections are
continuous, and thus all Tn are so. (2) ⇒ (3) is trivial. (3) ⇒ (1) Let an → a in E.
Then A := {an}n∈N ∪ {a} is bounded in E, hence T (A) is bounded and thus T (A)
is compact and by assumption metrizable. Let pm : F → C be the mth coordinate
projection. By compactness we can extract a subsequence (T (ank))k∈N which converges
to an element y ∈ F . Then for all m ∈ N we have pm (T (ank))→ pm(y). By continuity
of the coefficient functions lim pm (T (ank)) = lim pm (T (an)) = Tm (a), which means
that pm (y) = pm (T (a)) and we conclude that y = T (a). We have shown that any
convergent subsequence of T (an) converges to T (a), and since T (A) is a compact
metrizable space it follows that T (an)→ T (a) in F .

We can drop the requirement that F has a basis and substitute the condition that
the coefficient functions are continuous for example by demanding that T is continuous
if F is equipped with the weak topology:

Theorem 2.8.3. Let E be a sequential semi-Montel space and let F be a semi-Montel
space which satisfies that all its compact subsets are metrizable (in the topology induced
by F ). Let T : E → F be a (possibly non-linear) map. Let F ⊂ F ′ be any family of
functionals which separates points. TFAE:
(1) T is continuous.
(2) T is sequentially bornological and f ◦ T is continuous for all f ∈ F ′.
(3) T is sequentially bornological and f ◦ T is continuous for all f ∈ F .

Proof: The fact that bounded sets are relatively compact yields (1)⇒ (2) and (2)⇒
(3) is clear. (3) ⇒ (1) Let an → a in E. Then {T (an)}n∈N is compact and by
assumption metrizable. By compactness we can extract a subsequence (T (ank))k∈N
which converges to an element y ∈ F . Then for all f ∈ F we have f (T (ank))→ f(y).
Since f ◦T is continuous, lim f (T (ank)) = f(T (a)), which means that f(y) = f(T (a)).
This holds for all f ∈ F and as the family F separates points we have y = T (a). We
have shown that any convergent subsequence of T (an) converges to T (a), and since
T (A) is a compact metrizable space it follows that T (an)→ T (a) in F .

Theorem 2.8.4. Suppose that (X, τ) is a regular Lindelöf space and let (E, σ) be a
LCVS. Let F ⊂ C (X,E) be a vector space which satisfies the following:
(i) F is closed in the compact-open-topology τco.
(ii) For every x ∈ X, there is a neighborhood U , so that that the restriction map

ρ : (F , τco)→ (C (U,E) , τco) is compact.
(iii) (F , τco) is metrizable.
Then (F, τco) is a semi-Montel space.
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Note that we don’t require the restriction map to be injective. We need a small
lemma concerning coverings by compact sets in regular topological spaces before we
can prove the theorem stated above. We recall that a regular topological space is a
topological space in which points and closed sets can be separated by open sets. In
a regular space every point possesses a neighborhood-base of closed sets. Important
examples of regular topological spaces are Hausdorff topological vector spaces.

Lemma 2.8.5. Let (X, τ) be a regular Hausdorff topological space. Let K be compact
in X and let U1, . . . , Un be a covering by open sets of K. Then there exist compact
sets K1, . . . , Kn with Ki ⊂ Ui so that K ⊂ K1 ∪ · · · ∪Kn.

Proof: Let R1 := δU1∩K. R1 ⊂ U c
1 , hence R1 ⊂ U2∪· · ·∪Un. For x ∈ R1 there exists

a closed neighborhood Vx of x which is contained in U2∪· · ·∪Un. Since R1 is compact,
there exist x1, . . . , xN so that R1 ⊂ V := ⋃N

i=1 Vxi ⊂
⋃N
j=2 Uj. Let K1 := K ∩ U1 \ V

and let K2 := (K \K1) ∪ (V ∩K). Then K = K1 ∪ K2, K2 ⊂
⋃n
j=2 Uj and K1 is a

compact subset of U1. Now we show that (K \K1) is compact:
(K \K1) = (K \ (K ∩ (U1 \ V )))◦ = ((K ∩ U c

1) ∪K ∩ V )◦ = (R1 ∪ (K ∩ V ))◦.
Hence K \K1 = (R1 ∪ (K ∩ V )), which is a compact set. So K2 is also a compact
set. We have shown that there exist compact sets K1, K2 so that K = K1 ∪K2 with
K1 ⊂ U1 and K2 ⊂ U2 ∪ . . . Un. Proceeding in this manner, we can find compact sets
K1, . . . , Kn so that Ki ⊂ Ui and K = K1 ∪ · · · ∪Kn.

Proof: (of the theorem): Let B be a bounded subset of F . Since (F , τco) is metriz-
able, it is enough to show that every sequence (fn)n∈N possesses a subsequence which
converges in F to prove that B is relatively compact in F . For x ∈ X there exists
a neighborhood Ux of x so that B|Ux is relatively compact in (C (U,E) , τco). By the
Lindelöf property of X there exists (xi)i∈N so that X = ⋃

i∈N Uxi . Let (fn)n∈N be a
sequence in B. For any i ∈ N, there exists a subsequence (fni)i∈N which converges
in (C (Uxi) , τco). Using the diagonal argument, we can thus extract a subsequence
(fnl)l∈N which converges in (C (Uxi) , τco) for all i ∈ N. Let f (x) = liml→∞ fnl (x). Let
K be a compact subset of X. Then there exists a finite subset A = {y1, . . . , yn} of
(xi)i∈N so that K ⊂ ⋃ni=1 Uyi . Let {Kj}nj=1 be compact subsets of X with Kj ⊂ Uyj so
that K ⊂ ⋃n

j=1Kj Since (fnl)l∈N converges uniformly on compact subsets of the sets
Uyi , it follows that (fnl)l∈N converges uniformly on K. Hence (fnl)l∈N converges in the
compact-open topology to a function f ∈ C (X, τco), and since F is closed, f ∈ F and
thus B is relatively compact in F .

2.9 Local convergence and local completeness
Definition 2.9.1. A net (xi)i∈I is Mackey- (or locally-) convergent to x, if there exists
a disc B, so that xi converges to x in EB. We write xi M−→ x if (xi)i∈I converges locally
to x and xi

EB−−→ x if it converges in EB to x. A LCVS (E, τ) satisfies the Mackey
condition (Mc) if every τ -convergent sequence is Mackey-convergent. We say that E
satisfies the strict Mackey condition (sMc) if for every bounded set B in E there is a

26



2.9 Local convergence and local completeness

discD in E so that the relative topologies on B with respect to ED and (E, τ) coincide.
E is calledMackey- (or locally-) complete or convenient if EB is complete for any closed
disc B in E – i.e., if every closed disc is already a Banach disc ([PCB87, p.83]). We note
that every semi-Montel space is locally complete as every compact disc is a Banach
disc. We have the implications complete⇒ sequentially complete⇒ locally complete
([KM97, p.15]).

Theorem 2.9.2 ([Val82, p.167] and [Jar81, p.265/266]).
(1) (sMc) implies (Mc).
(2) If E is an (LNorm)-space, then E satisfies (Mc) if and only if it satisfies (sMc).
(3) A (DFM)-space is a (DFS)-space if and only if it satisfies (Mc).

Proof: (1) Let E be a LCVS with property (sMc) and let xn → x. The set B :=
{xn}n∈N ∪ {x} is bounded, hence there exists a D ∈ D(E) so that the topologies
induced by E and ED on B coincide. As a consequence xn

ED−−→ x. (2) See [Val82,
p.167] (3) A (DFM)-space E admits a regular generating sequence (En)n∈N which
consists of normed spaces. Let Bn be the closed unit ball of En. Then (Bn)n∈N is a
fundamental sequence of bounded sets. Let n0 ∈ N. Then K := Bn0

E is compact in
E and since E satisfies (sMc) there is an n1 > n0 so that the topologies induced on
K by En1 and E coincide. Consequently Bn0 is relatively compact in En1 and hence
(En)n∈N is a compact spectrum, which shows that E is a (DFS)-space.

Corollary 2.9.3. A bornological (DF)-space satisfies (Mc) if and only if it is the limit
of a sequentially retractive sequence of normed spaces.

Lemma 2.9.4 ([KM97, p.12]). Let B be a bounded and absolutely convex subset of E
and let (xγ)γ∈Γ be a net in EB. TFAE:
(1) xγ

EB−−→ 0
(2) There exists a net µγ → 0 in R+, such that xγ ∈ µγB.

Proof: (2)⇒ (1) Note that ρB (xγ) ≤ |µγ| and hence ρB (xγ)→ 0. (1)⇒ (2) Recall
that ρB (y) = inf {r ≥ 0 | y ∈ rB }. Hence for any ε > 0 : y ∈ (ρB (y) + ε)B. Set
µγ := ρB (xγ) + exp

(
−1

ρB(xγ)

)
> ρB (xγ). Then µγ → 0 and xγ ∈ µγB.

Example 2.9.5. Every metrizable LCVS (E, τ) satisfies the Mackey-condition: E
possesses an enumerable and absolutely convex 0-neighborhood-base (Un)n∈N satisfy-
ing Un+1 ⊂ Un. Let xn τ−→ x. We are going to construct a sequence (λn)n∈N ⊂ R+ with
λn → ∞ and λn (xn − x) → 0. WLOG we may assume that all xn are contained in
U1. Let n1 = 1 and let nk+1 = min

{
N > nk

∣∣∣ xn − x ∈ 1
k+1Uk+1 ∀n ≥ N

}
. Set λ1 = 1

and λj = k for nk ≤ j < nk+1. Hence λj → ∞ and λj (xj − x) → 0 by construction.
Let B be the absolute convex hull of (λj (xj − x))j∈N. We have that (xj − x) ∈ 1

λj
B,

so by the above lemma the sequence xj is Mackey-convergent.

Theorem 2.9.6 ([PCB87, p.157/Thm 5.1.27]). Every metrizable LCVS satisfies the
strict Mackey-condition.
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Definition 2.9.7. Let (µn)n∈N →∞ be a real-valued sequence. A sequence (xn)n∈N ⊂
E converges to x with quality (µn)n∈N if (xn − x)µn is bounded and is said to converge
fast to x if (xn)n∈N converges to x with quality

(
nk
)
n∈N

for all k ∈ N.

Lemma 2.9.8. Let E be an LCVS and let (µn)n∈N be a real-valued sequence with
(µn)n∈N →∞ .
(1) Any locally convergent sequence in E possesses a subsequence which converges

with quality (µn)n∈N.
(2) Any locally convergent sequence in E possesses a fast convergent subsequence.

Proof: (1) WLOG we can assume that |µn| 6= 0 for all n ∈ N. Let xn
EB−−→ x and ‖y‖ :=

ρB (y) . Let n1 := min
{
N ∈ N

∣∣∣ ∀n ≥ N : ‖xn − x‖ ≤ 1
|µ1|

}
. For n1, . . . , nk already

chosen, we set nk+1 := min
{
N ∈ N

∣∣∣ N > nk, ∀n ≥ N : ‖xn − x‖ ≤ 1
(k+1)|µk+1|

}
. Then

we have ‖(xnk − x)µk‖ ≤ 1
k
, hence (xnk − x)µk k→∞−−−→ 0. (2) Let yn := xn − x and

let (yn1)n1∈N be a subsequence of (yn)n∈N which converges with quality (n1)n∈N to 0.
Again we can extract a subsequence of yn1 which converges with quality (n2)n∈N to
0 and so forth. The diagonal sequence of this family of subsequences then converges
fast to 0.
Definition 2.9.9 (Mackey-closure-topology). A subset A of a LCVS E is called
locally- or Mackey-closed if xn M−→ x implies that x ∈ A for any sequence (xn)n∈N
in A. It is easy to check that the family of Mackey-closed sets satisfies the axioms of
a family of closed sets of a topology, which is called the Mackey-closure-topology and
which we will denote by τM . Every τ -closed set is Mackey-closed and hence τ � τM .
Note however that τM is in general strictly finer than τ and that τM in general does
not define a linear topology - i.e. (E, τM) is in general not a topological vector space.
Also note that the Mackey-closure topology is not the Mackey-topology from duality
theory.
Example 2.9.10. Every locally convex space (E, τ) which is sequential and satis-
fies the Mackey-convergence-condition carries the Mackey-closure topology τM : By
construction, every Mackey-convergent sequence converges with respect to τM , which
shows that id : (E, τ)→ (E, τM) is sequentially continuous and hence continuous as E
was assumed to be sequential. Hence every (DFS)- space and every metrizable LCVS
carries the Mackey-closure topology.
Lemma 2.9.11. For B ∈ D (E) let ιB : EB → E denote the inclusion map.
The Mackey-closure topology is the final topology with respect to ((EB, ρB) , ιB)B∈D(E).
Proof:

A ⊂ E is Mackey-closed⇔ ∀ (xn)n∈N ⊂ A : xn M−→ x implies x ∈ A

⇔ ∀B ∈ B (E) ∀ (xn)n∈N ⊂ A : xn
EB−−→ x implies x ∈ A

⇔ ∀B ∈ B (E) : A ∩ EB is closed in EB
⇔ A is closed in the final topology of ((EB, ρB) , ιB)B∈B(E) .
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Chapter 3
Infinite-dimensional Calculus
The aim of this chapter is to give a short survey of two of the most common concepts
of holomorphicity in the setting of locally convex spaces. From now on we will assume
that any locally convex space is a vector space over C. Note that there exist 25 non-
equivalent definitions for the differentiability of a function between topological vector
spaces (cite [KM97, p.76],[AS68]). We will begin by giving a brief overview of the
convenient calculus as proposed by Kriegl and Michor (see [KM97] ), which starts by
introducing the notion of smooth curves and then defines smooth mappings f : E → F
between locally convex spaces E and F as those which are smooth along smooth
curves. In an infinite-dimensional setting, smoothness may not imply the continuity
of a function, but in the setting of convenient vector spaces, it is always continuous with
respect to the c∞-topologies associated to of E and F . The c∞-topology turns out to
be the Mackey-closure-topology, as introduced in the last chapter. In a similar fashion
the concept of a curve-holomorphic mapping is introduced. Another definition of
holomorphy is used for example by S.Dineen: A map f : E → F between locally convex
spaces is holomorphic if for all φ ∈ F ′ the composition φ◦f is holomorphic if restricted
to any finite-dimensional subspace (it is G-holomorphic) and if f is continuous. Curve-
holomorphic mappings can be characterized as G-holomorphic mappings which are
continuous with respect to the c∞-topologies. So the two concepts coincide whenever
the spaces under consideration carry the respective Mackey-closure-topologies, which
is the case for example if the spaces are metrizable or (DFS)-spaces.

3.1 Curves and convenient calculus
Definition 3.1.1. Let E and F be LCVS. A curve c : R→ E is called differentiable if
the derivative c′(t) := lim

h→0
c(t+h)−c(t)

h
exists for all t ∈ R. It is called smooth if all iterated

derivatives exist and is called Cn if all derivatives up to order n exist. A curve c is
called locally Lipschitz if its difference quotient is bounded on every bounded interval,
i.e. if for every bounded interval I the set

{
c(t)−c(s)
t−s | t 6= s; t, s ∈ I

}
is bounded. Note

that differentiable curves are locally Lipschitzian and hence continuous. A LCVS
is called convenient if it is Mackey complete. Among others [KM97, p.20], this is
equivalent to the property that a curve c into E is smooth if and only if for any
continuous functional φ the composition φ ◦ c is a smooth mapping.

Lemma 3.1.2 (Mean value theorem, [KM97, p.10]). Let c : [a, b] → E be a differen-
tiable curve into a LCVS E. Then c(b)− c(a) ∈ co {c′(t) (b− a) | t ∈ (a, b)}.
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Proof: Suppose that c(b) − c(a) 6∈ co {c′(t) | t ∈ (a, b)} (b − a). Then by the Hahn-
Banach theorem there exists a continuous linear functional φ so that

φ(c(b)− c(a)) 6∈ φ (co {c′(t) (b− a) | t ∈ (a, b)}) .

Note that φ◦ c : [a, b]→ R is differentiable on (a, b) and that (φ◦ c)′(t) = φ (c′(t)). We
conclude that (φ ◦ c) (b)−(φ ◦ c) (a) 6∈

{
(φ ◦ c)′ (t)(b− a) | t ∈ (a, b)

}
- a contradiction

to the classical mean value theorem.

Lemma 3.1.3 (Special curve lemma, [KM97, p.18]). Let E be a LCVS. Let (xn)n∈N
be a sequence which converges fast to x. Then there exists a smooth curve c so that
c
(

1
n

)
= xn and c (0) = x.

Definition 3.1.4. The c∞ topology on a LCVS (E, τ) is defined as the final topology
with respect to all smooth curves. It coincides with the Mackey-closure topology τM ,
but in general not with the given topology τ . Let U be a c∞-open subset of E. A
map f : U → F is called smooth if it maps smooth curves to smooth curves, i.e. if for
any smooth curve c : R → E the composition f ◦ c is a smooth curve to F. Smooth
mappings are c∞-continuous but may fail to be continuous with respect to τ .

Theorem 3.1.5 ([KM97, p.19, Thm 2.13.]). The c∞-topology coincides with the
Mackey-closure-topology τM .

Proof: Let U ⊂ E be c∞-open. Let x ∈ U and xn
M−→ x. Suppose that there is a

subsequence (xnk)k∈N ⊂ E \ U . We can extract a subsequence
(
xnkl

)
l∈N

which is fast
convergent to x and by the special curve lemma there is a smooth curve c : R → E
so that c

(
1
l

)
= xnkl and c (0) = x. But this (by the continuity of c) means that

xnkl
l→∞−−−→ x with respect to c∞ - a contradiction to (xnk) ⊂ E \U , and hence (xn)n∈N

must be finally contained in U. So U is open in τM , and c∞ ≺ τM . Now consider the
identity map id: (E, c∞) → (E, τM). We want to show that id is continuous, hence
we need to show that every smooth curve into E is continuous into (E, τM). Let c be a
smooth curve and I ⊂ R be a compact interval. Since differentiable curves are locally
Lipschitzian, there exists a disc B so that for all t, s ∈ I : c(t)−c(s) ∈ (t−s)B. Hence
c|J : J → EB and c is continuous since ρB (c(t)− c(s)) ≤ |t− s|.

3.1.1 Curve-holomorphic mappings
Definition 3.1.6. Let D be the open unit disk {z ∈ C : |z| < 1} and let E be a
LCVS. A map c : D→ E is called holomorphic curve if c′ (z) := lim

w→0
c(z+w)−c(z)

w
exists

for all z ∈ D. We say that a family of functions fn (z) : D → E converges Mackey-
uniformly to a function f : D → E, if for any compact subset K of D there exists a
B ∈ D (E) so that fn|K converges uniformly to f|K as functions K → EB.

Lemma 3.1.7. Holomorphic curves are continuous.
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3.2 Holomorphic maps between LVCS

Proof: Let E be an arbitrary locally convex space, let c : D → E be a holomorphic
curve and let z ∈ D. Let U ∈ UE

0 and let V ∈ UE
0 be absolutely convex and such

that V + V ⊂ U . Then there exists an open disc Dr with Dr + z ⊂ D and so that
c′(z) − c(z+w)−c(z)

w
∈ V for all w ∈ Dr. Hence c(z + w) − c(z) ∈ wc′(z) + V for all

w ∈ Dr. Now choose 0 < r′ < r so that Dr′ · c′(z) ⊂ V . Then for all w ∈ Dr′ we have
c(z + w)− c(z) ∈ V + V ⊂ U , which shows that c is continuous.

Theorem 3.1.8 ([KM97, p.81-82]). Let E be a convenient vector space and let c : D→
E be a mapping. TFAE:
(1) c is a holomorphic curve.
(2) φ ◦ c : D→ C is holomorphic for all φ ∈ E ′.
(3) c factors locally to a holomorphic curve to some EB, i.e. for any open and

relatively-compact subset U of D there exists a disc B in E so that c|U → EB is
a holomorphic curve.

(4) All complex higher derivatives c(n) (0) exist and c (z) =
∞∑
n=0

zn

n! c
(n) (0) converges

Mackey-uniformly.

Definition 3.1.9. Let U ⊂ E be a c∞-open subset of U and F a LCVS. A map
f : E → F is called curve-holomorphic if it maps holomorphic curves to holomorphic
curves.

Theorem 3.1.10 ([KM97, Theorem 7.19]). Let E,F be convenient vector spaces, let
U be a c∞ − open subset of E, and let f : U → F be a mapping. TFAE:
(1) f is curve-holomorphic.
(2) For all φ ∈ F ′ and for all B ∈ D (E) the mapping φ ◦ f : EB → C is curve-

holomorphic.
(3) For all φ ∈ F ′ and for any holomorphic curve c : D → E the mapping φ ◦ f ◦ c

is curve-holomorphic.
(4) f is holomorphic along all affine (complex) lines (G-holomorphic - see below)

and is c∞-continuous.

3.2 Holomorphic maps between LVCS
Definition 3.2.1. Let E,F be LCVS. We say that a subset U of E is finitely open if
U ∩M is open in M for every finite-dimensional subspace M of E. Let U be a finitely
open subset. A function f : U → F is called Gâteaux- or G-holomorphic if for any
ζ ∈ U, ω ∈ E, and φ ∈ F ′ the C-valued function of one complex variable

Hζ,ω,φ : z 7→ φ ◦ f (ζ + z · ω)

is holomorphic in a neighborhood of 0 ∈ C. We say that a function f : U → F is
Gâteaux-differentiable if for any ζ ∈ U, ω ∈ E

lim
λ→0
λ∈C

f(ζ + λ · ω)− f(ζ)
λ
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Chapter 3 Infinite-dimensional Calculus

exists in the completion F̂ of F . A function is Gâteaux-differentiable if and only it is
G-holomorphic ([Din99, p.149]).

We call a function f : U → C holomorphic if it is G-holomorphic and continuous
with respect to the locally-convex topologies of E and F . By HG (U, F ) we denote the
family of G-holomorphic functions U → F and by H(U, F ) the family of holomorphic
functions U → F . Instead of H(U,C) we also write H(U).

Lemma 3.2.2. Let E be a convenient vector space and let c : D→ E. c is a holomor-
phic curve (in the sense of Definition 3.1.6) if and only if it is a holomorphic mapping
(in the sense of Definition 3.2.1).

Proof: By Theorem 3.1.8, c is a holomorphic curve if and only if φ◦c is a holomorphic
function D→ C for all φ ∈ E ′, which means that c is a holomorphic curve if and only
if c is G-holomorphic. By Lemma 3.1.7 holomorphic curves are continuous, which
proves the claim.

Theorem 3.2.3. Let (E, τE) and (F, τF ) be convenient vector spaces and let U be an
open subset of (E, τ). Suppose that c∞E = τE and that c∞F = τF . Then a function
f : U → F is holomorphic if and only if it is curve-holomorphic.

Proof: By Theorem 3.1.10 f is curve-holomorphic if and only if it is G-holomorphic
and c∞-continuous. As E and F carry the respective c∞-topologies a function f : E →
F is c∞-continuous iff it is continuous.

Definition 3.2.4. Let E,F be LCVS, let A ⊂ E and let F be a family of functions
A → F . F is called locally bounded at x ∈ A◦ if there exists a neighborhood U ⊂ A
of x so that ⋃f∈F f (U) is bounded in F and if V is an open subset of E we say that a
family F ⊂ HG (V, F ) is locally bounded if it is locally bounded at every point x ∈ V .

Proposition 3.2.5 ([Din99, p.153]). If U is an open subset of a LCVS E and F is
a normed linear space then f ∈ HG (U, F ) is holomorphic if and only if it is locally
bounded.

Corollary 3.2.6. Let U be an open subset of a (DFS)-space E and let F be a normed
space. Then a function f : U → F is holomorphic iff it is G-holomorphic and if f(K)
is bounded in F for every compact subset K of U .

Proof: (⇒) T is G-holomorphic and continuous by definition, hence f(K) is compact
whenever K is a compact subset of U . (⇐) Let (En)n∈N be a bicompact generating
sequence of Banach spaces for E so that the closed unit ball Bn of En is compact
in En+1 (see Theorem 2.6.4). Then T is continuous iff T |Un is continuous for all
n ∈ N, where Un = En ∩ U (see Proposition 2.7.4 (11)). Let x ∈ Un and let ε > 0
so that x + ε · Bn ⊂ Un. Hence x + ε · Bn is compact in Un+1 and thus in U . By
assumption T (x + ε · Bn) is bounded, which means that T |Un is locally bounded and
hence holomorphic by Proposition 3.2.5. Consequently T |Un is continuous for all n ∈
N, yielding the continuity of T , which is thus holomorphic.
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3.2 Holomorphic maps between LVCS

Theorem 3.2.7. Let E and F be LCVS and let U be an open subset of E. For a
family F ⊂ H (U, F ), the following holds:
(1) If F is locally bounded, then F is bounded in the compact-open topology.
(2) If E is a (DFM)-space, and F a Banach space, then TFAE:

(i) F is locally bounded.
(ii) F is point-wise bounded and equicontinuous.
(iii) F is bounded in the compact-open topology.

Proof: If F is locally bounded, then every compact subset of U can be covered by a
finite number of open subsets of U on which F is bounded, hence F is bounded on
every compact subset and is thus bounded in τco, which shows (1) and (i) ⇒ (iii).
Now suppose that E is a (DFM)-space and that F is a Banach space. For (iii)⇒ (ii)
see [Din99, p.157]. Suppose that F is equicontinuous and pointwise bounded and let
x ∈ U . Then there exists a neighborhood W of x so that ‖F (y)− F (x)‖ ≤ 1 for all
F ∈ F and all y ∈ W . Further there is an M > 0 so that F(x) ⊂ {‖z‖ ≤M} and so
‖F (y)‖ ≤ 1 +M for all y ∈ W , which means that F is locally bounded, which shows
(ii)⇒ (i).

Corollary 3.2.8. Let U be an open subset of a (DFM)-space E and let F be a
Banach space.
(1) [Din99, p.172] (H(U, F ), τco) is a Fréchet space.
(2) If F = Cd, then (H(U, F ), τco) is a Fréchet-Montel space.

Proof: (1) Any open subset of a (DFM)-space has a countable fundamental system
of compact sets, hence H(U, F ) is metrizable. By [Din99, p.157] a function f : U → F
is holomorphic if it is G-holomorphic and bounded on the compact subsets of U . Let
(fn)n∈N be a Cauchy-sequence in H(U, F ) and let f : U → F be its pointwise limit.
Let φ ∈ F ′, let x ∈ U and W be an absolutely convex 0-neighborhood in E so that
x+W ⊂ U . For ν ∈ E set gn : D→ C, gn(z) := φ◦fn(x+ν ·z). The sequence (gn)n∈N
converges uniformly on compact subsets to g(z) := φ ◦ f(x+ ν · z) which implies that
g is holomorphic and that f is G-holomorphic. Obviously f is bounded on compact
subsets of U and is hence holomorphic. (2) By Theorem 3.2.7, every bounded subset
of H(U,Cd) is pointwise bounded and equicontinuous, and hence relatively compact
by the theorem of Arzelà-Ascoli.
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Chapter 4

Rings of convergent power series

After establishing the necessary notational framework we will investigate the topo-
logical features of the ring of convergent power series Od equipped with its natural
inductive topology, which turns it into a (DFN)-space. Then we are going to ex-
amine holomorphic maps Od → C. These maps appear rather naturally also in the
study of finite-dimensional holomorphy, for example if one is interested in describing
the coefficients of substitution maps φ 7→ F (x, φ(x)). Another example is the map
(an)n∈N 7→

∏ 1
1−an , which locally in O1 defines a holomorphic map. We will see that

holomorphic maps on Od can be expanded again into convergent power series ∑ cγx
γ,

which enables concrete computations. We will then turn our attention to holomorphic
functions Od → Od. After investigating the topological properties of H(Od,Od) we
will establish the monomial series expansion for maps Od → Od.

Basic definitions and Notation. By Pd(R) we will denote the ring of formal
power series in d variables over the commutative ring R and we shortly write Pd for
Pd (C). The subring of Pd(C) of convergent power series will be denoted byOd. We will
write elements of Ppd in the form (∑α cα,kx

α)1≤k≤p := (∑α∈Nd cα,1, . . . ,
∑
α∈Nd cα,px

α).
For φ = (∑ cα,kx

α)1≤k≤p ∈ P
p
d , let |φ| := (∑ |cα,k|xα)1≤k≤p ∈ P

p
d and for ε ∈ Nd,

1 ≤ j ≤ p, let φ[ε, j] := cε,j. The ε-jet of φ is jε(φ) := ∑
α≤ε cα,kx

α, where for
α, β ∈ Nd we write α ≤ β if αk ≤ βk holds for all k. We set |α| := α1 + · · · + αd.
For z = (z1, . . . , zd) ∈ Cd, α = (α1, . . . , αd) ∈ Nd, let zα := zα1

1 · · · zαdd , and for
S = (S1, . . . , Sp) ∈ (Cd)p and V = (V1, . . . , Vp) ∈ Md,p(N) let SV := SV1

1 · · ·SVpp . For
T ∈ Rd+ and F = ∑

α∈Nd cαx
α ∈ Pd, let ‖F‖qT := (∑α∈Nd |cαTα|q)1/q for q ∈ [1,∞) and

let ‖F‖∞T = supα∈Nd |cα|Tα. For d, p ∈ N, q ∈ [1,∞], M = (M1, . . . ,Mp) ∈ Rp+,
S = (S1, . . . , Sp) ∈

(
Rd+
)p

we set

HS,M :=
{
F = (F1, . . . , Fp) ∈ Ppd : ‖Fk‖∞Sk ≤Mk for k = 1, . . . , p

}
which will play the role of an infinite-dimensional polydisc. Furthermore, let

`q(S) :=
{
F = (F1, . . . , Fp) ∈ Ppd : ‖Fk‖qSk <∞ for k = 1, . . . , p

}
We equip `q(S) with the norm ‖ ‖qS, where ‖(F1, . . . , Fp)‖qS := max1≤k≤p ‖Fk‖qSk and
note that `q(S) is a Banach space. For S = (S1, . . . , Sd) ∈ Rd+ and
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Chapter 4 Rings of convergent power series

T = (T1, . . . , Td) ∈ Rd+, we write S < T if Si < Ti for 1 ≤ i ≤ d and we set

S

T
=
(
S1

T1
, . . . ,

Sd
Td

)
∈ Rd+

Likewise, for S = (S1, . . . , Sp) ∈
(
Rd+
)p
, T = (T1, . . . , Tp) ∈

(
Rd+
)p
, we set

S

T
:=
(
S1

T1
, . . . ,

Sp
Tp

)
∈
(
Rd+
)p

For n ∈ Z and S = (S1, . . . , Sd) ∈ Rd+ let

Sn := (Sn1 , . . . , Snd )

Definition 4.0.9. The ring of convergent power series in d variables Od is the set of
power series which converge locally at 0, equipped with the usual operations (Cauchy-
product multiplication plus coefficient-wise scalar multiplication and addition) in-
herited from the ring of formal power series Pd in d variables. For p ∈ N we set
Opd = Od × · · · × Od. A power series ∑α∈Nd cαx

α ∈ Pd is locally convergent iff there
is a T ∈ Rd+ with supα∈Nd |cα|Tα < ∞. Hence Od = ⋃

T∈Rd+ `
∞ (T ). We equip Od

with the locally convex topology with which it becomes the inductive limit of the
inductive net of Banach spaces (`∞d (T ))T∈Rd+

(indexed by
(
Rd+,�inv

)
). For any null

sequence (Tn)n∈N ⊂ Rd+ the inductive sequence (`∞ (Tn))n∈N is equivalent to the net
(`∞ (T ))T∈Rd+

, and thus induces the same inductive limit. Note that for 1 ≤ p ≤ q ≤ ∞
we have that `q (T ) ↪→ `p (S) for T > S. The inclusions are continuous, and so the
inductive nets (`q (T ))T∈Rd+

and (`p (T ))T∈Rd+
are equivalent for any 1 ≤ p ≤ q ≤ ∞.

4.1 The topology of Op
d

Theorem 4.1.1.
(1) Opd is a (DFN)-space.
(2) The set of monomials forms a Schauder-basis for Od.
(3) The set of polydisc HS,M forms a fundamental system of compact sets of Opd and

the compact subsets of Opd are metrizable.

Proof: (1) Let p =1 and let R > S ∈ Rd+. We are going to show that the inclusion
map T : `∞ (R) → `∞ (S) is nuclear. Let fα = Rαpα ∈ (`∞ (R))′, let λα =

(
S
R

)α
and

yα = xα

Sα
∈ `∞ (S), and let a = ∑

α∈Nd cαx
α ∈ `∞ (R). Then

∑
α∈Nd

λαfα(a)yα =
∑
α∈Nd

Sα

Rα
cαR

α x
α

Sα
=

∑
α∈Nd

cαx
α = T (a)

The sequence of functionals (fα)α∈Nd is uniformly bounded on the unit ball of `∞(R)
and hence equicontinuous, the sequence (λα)α∈Nd is absolutely summable and (yα)α∈Nd
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is bounded in `∞(S). By Definition 2.6.6 this means that T is nuclear and hence
any generating sequence (`∞(Rn))n∈N (where Rn → 0) is nuclear, which shows by
Theorem 2.7.8 that Od is a (DFN)-space. And since both the class of nuclear and
(DFS)-spaces are closed with respect to taking finite products we conclude that Opd is
a nuclear (DFS)-space and hence a (DFN)-space. (Theorem 2.7.8).
(2) Let a = ∑

α∈Nd cαx
α ∈ Od. Then there is an R ∈ Rd+ so that a ∈ `∞(R). For any

S < R we have that
∥∥∥∑|α|≤n cαxα − a∥∥∥∞S n→∞−−−→ 0 and hence ∑|α|≤n cαxα → a in Od.

As Od is sequentially retractive, it follows that any basis of Od is Schauder basis by a
result of Floret ([Flo73, p.67/68]).
(3) Let (Rn)n∈N be a strictly monotonous null sequence in (Rd+)p and let K be a
compact subset of Opd. By Theorem 2.2.11 we know that `∞(Rn) is compactly regular,
hence K is a compact subset of some `∞(RN0). Consequently there exists an M ∈ Rp+
so that K ⊂ HRN0 ,M

. As the embedding `∞(RN0) → `∞(RN0+1) is compact (by
(1)) we conclude that HRN0 ,M

is relatively compact in `∞(RN0+1). In fact, HRN0 ,M
is

even compact as it is closed in `∞(RN0+1) and is thus compact in Opd, which shows
that the family of polydiscs forms a fundamental system of compact discs. Since
HR0,M is compact in `∞(RN0+1), the subspace topologies induced by `∞(RN0+1) and
Opd coincide, which shows that compact subsets of Opd are metrizable.

Corollary 4.1.2 (Montel’s Theorem). Let Ω be an open subset of Cd1 and let
B ⊂ H

(
Ω,Cd2

)
. The family B is relatively compact if and only if it is locally bounded.

Proof: If B is locally bounded, then it is bounded on compact subsets of Ω and is
hence a bounded subset of

(
H
(
Ω,Cd2

)
, τco

)
, which is a semi-Montel space by Theo-

rem 2.8.4 and hence B is relatively compact. Conversely, suppose that B is relatively
compact and let Pr(z0) ⊂ Ω. The evaluation is continuous on

(
H
(
Ω,Cd2

)
, τco

)
× Ω,

hence F
(
Pr(z0)

)
is relatively compact in Cd and so B is locally bounded.

Now we show that the strong dual ofOd is isomorphic to the space of entire functions
H(Cd) equipped with the compact open topology.

Theorem 4.1.3. Let d, p ∈ N. For φ = ∑
α∈Nd φαx

α ∈ H
(
Cd
)
and a = ∑

α∈Nd cαx
α

set φ∗(a) := ∑
α∈Nd cαφα. The map ∗ :

(
H
(
Cd
)
, τco

)
→ (Od)′β , φ 7→ φ∗ is an isomor-

phism of locally convex spaces.

Proof: As Od is a (DF)-space, its strong dual is a Fréchet space and thus it suffices
to show that the map ∗ is a continuous linear bijection as the open mapping theorem
holds for Fréchet spaces. Let φ = ∑

α φαx
α ∈ H

(
Cd
)
and a = ∑

α∈Nd cαx
α ∈ Od.

There exist M ∈ R+ and S ∈ Rd+ so that sup |cα|Sα ≤ M and since ∑α∈Nd φαz
α

converges absolutely for all z ∈ Cd we conclude that φ∗ is well-defined. Next we
show that ∗ is surjective. Let f ∈ O′d and a = ∑

α∈Nd cαx
α ∈ Od. Then f(a) =∑

α cαf(xα) = ∑
α∈Nd cαφα = φ∗(a), where we set φα = f(xα) and φ = ∑

α φαx
α ∈ Pd.

As a(z) := ∑
α z

αxα ∈ Od and since φ(z) = ∑
α∈Nd φαz

α = f(a(z)) < ∞ for all
z ∈ Cd we have that φ ∈ H

(
Cd
)
and it follows that ∗ is surjective. The linearity

and injectivity of ∗ are obvious, so it remains to show that ∗ is continuous. Let
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Chapter 4 Rings of convergent power series

φi = ∑
α∈Nd φ

i
αx

α be a sequence in H
(
Cd
)
which converges in the compact-topology

to φ. Let B be a bounded set in Od and ε > 0. Then there are S ∈ Rd+,M ∈ R+ so
that B ⊂ BS,M . Let i0 ∈ N so that ‖φi − φ‖∆2Ṡ−1 ≤ ε holds for i ≥ i0. Let a ∈ BS,M .
We have

|(φ∗i − φ∗)(a)| ≤
∑
α∈Nd
|φiα − φα||cα| ≤

∑
α∈Nd

(
εSα

2|α|
)(

M

Sα

)
≤

≤ εM
∑
α∈Nd

(1
2

)|α|
≤ εM2d

We conclude that (φi)∗ converges to φ∗ and hence ∗ is continuous, which gives the
desired result.

Definition 4.1.4. For φ = (φ1, . . . , φp) ∈ H
(
Cd
)p
, where φk = ∑

α∈Nd
φα,kx

α,

we set φ∗ : Opd → C, (∑ cα,1x
α, . . . ,

∑
cα,px

α) 7→
p∑

k=1

∑
α∈Nd

φα,kcα,k

Corollary 4.1.5. The map φ 7→ φ∗ is an isomorphism
(
H
(
Cd
)
, τco

)p
→ (Opd)

′
β.

Theorem 4.1.6. Let T : Opd1 → Od2 be a linear map.
Then T is continuous iff there exists a sequence (φδ,k) δ∈Nd2

1≤k≤p
⊂
(
H
(
Cd
))p

which sat-

isfies
∀S ∈ (Rd+)p ∀M ∈ Rp+ ∃R ∈ Rd2

+ : sup
δ∈Nd2 , 1≤k≤p

‖φδ,k‖∆S,M
Rδ <∞

so that T (a) = ∑
δ∈Nd

1≤k≤p
(φδ,k)∗ (a)xδ.

Proof: Suppose that T is continuous. Then all coordinates Tδ are continuous, hence
there exist (φδ)δ∈Nd2 ⊂ H

(
Cd
)p

such that φ∗δ = Tδ. Since T is continuous and hence
bornological, we have that for every S ∈ (Rd+)p and M ∈ Rp+ there exists an R ∈
Rd2

+ and a K ∈ Rp+ so that T (HS,M) ⊂ HR,K . Hence we obtain the estimate
‖φδ,k‖∆S,M

≤ K
Rδ

, which holds ∀1 ≤ k ≤ p ∀δ ∈ Nd2 . Conversely, suppose that
the sequence (φδ,k) δ∈Nd2

1≤k≤p
⊂
(
H
(
Cd
))p

satisfies the hypothesis of the theorem, and

let T (a) := ∑
δ∈Nd

1≤k≤p
(φδ,k)∗ (a)xδ. As in the proof of Theorem 4.1.3, one sees that

|φ∗ (a)| ≤ M ‖φ‖∆S−1
for any φ ∈ H

(
Cd
)
, and a ∈ HS,M . Hence for any S,M > 0

there exist R,K so that
∣∣∣φ∗δ,k (a)

∣∣∣ ≤ K
T δ

holds ∀1 ≤ k ≤ p, ∀δ ∈ Nd2 and ∀a ∈ HS,M ,
which means that T : HS,M → HR,p·K . Consequently T is bornological and hence
continuous.

38



4.2 The space of entire functions

Lemma 4.1.7 ([MV92, p.332]).
(1) A sequence fk converges to f in Od iff it converges weakly to f .
(2) For φ = ∑

φαx
α ∈ H

(
Cd
)
, set pφ(∑ cαx

α) := ∑ |cαφα|. The system of semi-
norms (pφ)φ∈H(Cd) generates the inductive topology of Od.

(3) For φ = ∑
φαx

α ∈ H
(
Cd
)
, set p∞φ (∑ cαx

α) := sup |φαcα|. The system of semi-
norms (p∞φ )φ∈H(Cd) generates the inductive topology of Od.

(4) A formal power series ∑α∈Nd cαx
α is convergent iff ∑

α∈Nd cαφα < ∞ for all∑
φαx

α ∈ H
(
Cd
)

Proof: (1) If fk converges weakly to f, then the set B := {fk}k∈N ∪ {f} is weakly
bounded and weakly closed, and hence bounded and closed in Opd, which means that
B is compact. Compact subspaces of Opd are metrizable, hence fk converges to f in the
topology of Opd if and only if all convergent subsequences of fk converge to f , which
follows from the weak convergence.
(2) Recall that the topology of a locally convex space is described by its set of contin-
uous semi-norm. A semi-norm q : Od → [0,∞) is continuous if and only if q|`∞(R) is
continuous for all R ∈ Rd+. Let q ∈ cs(Od) and set φα := q(xα). Since q| is a continuous
seminorm on `∞(R) there is a CR ≥ 0 so that q(a) ≤ CR · ‖a‖∞R for all a ∈ `∞R , which
implies that φα ≤ CRR

α for all α ∈ Nd. We conclude that φ = ∑
α∈Nd φαx

α ∈ H
(
Cd
)

and since q(a) ≤ pφ(a) for all a ∈ Od the claim follows.
(3) Let φ = ∑

φαx
α ∈ H

(
Cd
)
. Set ψ = ∑ 2dφα2|α|xα ∈ H

(
Cd
)
and let a = ∑

cαx
α ∈

Od. Then

pφ(a) =
∑
|φαcα| =

∑∣∣∣∣∣ φα2|α| cα
∣∣∣∣∣
(1

2

)|α|
≤ 2d · sup

α∈Nd

∣∣∣∣∣ φα2|α| cα
∣∣∣∣∣ = p∞ψ (a)

It is easy to see the p∞ψ is indeed a semi-norm. The above estimate and (3) shows that
the system {p∞ψ | ψ ∈ H

(
Cd
)
} generates the inductive topology.

(4) is a consequence of the fact that
(
H
(
Cd
)
, τco

)
can be represented as a Köthe

sequence space and the canonical representation of its dual, as well as of the reflexivity
of Od - see [MV92].

Remark. Considering (1) and (2) of the theorem above, one might suppose that Od
carries the weak topology. However, this is wrong, which was pointed out to us by
user "jbc" in [staa]. In fact, if E is a Fréchet-space, then the strong topology coincides
with the weak topology on E ′ if and only if E is finite-dimensional (see [KṠ92]).

4.2 The space of entire functions
As a direct consequence of the duality between (FN)- and (DFN)- spaces (Theo-
rem 2.7.8) we obtain the following result:

Lemma 4.2.1.
(
H(Cd), τco

)
is a nuclear Fréchet space.
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Chapter 4 Rings of convergent power series

We note that the topology induced by Od on H
(
Cd
)
is strictly weaker than the

compact-open topology: the sequence (xα)α∈Nd is a null-sequence in Od but is un-
bounded in

(
H
(
Cd
)
, τco

)
.

Next we are going to discuss point-wise convergence of entire functions.

Definition 4.2.2. The topology of point-wise convergence on H
(
Cd
)
is the topol-

ogy initiated by all semi-norms
{
ε̂x | x ∈ Cd

}
where ε̂x(f) = |f(x)|. A net (φj)j∈J

converges point-wisely to φ if φj(x)→ φ(x) for all x ∈ Cd.

The pointwise limit of a sequence of entire functions need not to be holomorphic,
but still there is an open and dense subset of Cd on which the convergence is locally
uniform and on which the limit function is holomorphic.

Theorem 4.2.3 (Osgood [Kra]). Let (fj)j∈N be a sequence of holomorphic functions
on a domain Ω ⊂ C. Assume that (fj)j∈N converges pointwise to a limit function f on
Ω. Then f is holomorphic on a dense, open subset of Ω. The convergence is uniform
on compact subsets of the dense, open set.

In the light of Osgood’s theorem it makes sense to ask whether a sequence of holo-
morphic functions which converges pointwise to a function f converges uniformly on
all compact subsets, if we further suppose that the limit function f is holomorphic on
Ω - i.e. whether pointwise and uniform convergence coincide on H (Ω). However, it
turns out that the answer is negative, even if all sequence members are entire functions:

Lemma 4.2.4 ([stab]). The topology of pointwise convergence on H
(
Cd
)
is strictly

weaker than the compact-open topology on H
(
Cd
)
.

Proof: Let d=1. Using Runge’s theorem we are going to construct a sequence of
polynomials which converges to zero pointwise but fails to converge uniformly to zero
in any neighborhood of 0 ∈ C. Let Kn :=

{
reiθ | r ∈ [0, 1], 2

n
≤ θ ≤ 2π

}
, let An :=

n · Kn, let zn := ei
1
n

n
and Ln := An ∪ {zn}. Let V 1

n and V 2
n be open and disjoint

neighborhoods of zn0 and An, respectively, and let Vn = V 1
n ∪ V 2

n . Set

fn : V → C, fn(z) :=

0 z ∈ V 2
n

z
zn

z ∈ V 1
n

By Runge’s Theorem we can find a sequence of polynomials pn so that
‖fn − pn‖Vn <

1
n
. Since An ⊂ An+1 and ⋃

n∈N
An = C, we have that (pn)n∈N converges

pointwise to zero. But (pn)n∈N does not converge in any neighborhood of 0: Note that
zn → 0. Given ε > 0, let N0 ∈ N so that zn ∈ Dε for n > N0. So ‖pn‖Dε ≥ 1 − 1

n
for

n ≥ N0. The same counterexample applies also for d>1.

A positive result for the question when pointwise convergence coincides with locally
uniform convergence can be achieved for sequences of univalent functions. Let Ω ⊂ C
be a domain. A function f : Ω→ C is called univalent if f is holomorphic and injective.
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Theorem 4.2.5 ([BM03]). Let Ω ⊂ C be a domain, fn ∈ H (Ω) be a family of
univalent functions which converges pointwise to some function f : Ω→ C. Then f is
analytic and fn converges locally uniformly to f . If Ω is connected, then f is either an
univalent function or a constant function.

The proof is done by using that fact that around an arbitrary point z0 ∈ Ω one can
find a disc centered at a point at which the sequence converges locally uniform (which
follows from Osgoods theorem). Then the growth theorem for schlicht functions on
the unit disc can be applied to show that the sequence is bounded on compact subsets
of the disc containing z0.

Other topologies which naturally appear in the study of power series spaces are the
simple topology and the Krull topology inherited by Pd. The following results are
taken from [BZ79] and we state them for the sake of completeness of our study of
topological properties of Od without using them later.

Definition 4.2.6. The simple topology τsim of Od is the metrizable locally-convex
topology described by the set of seminorms {qβ}β∈Nd , where
qβ(∑α∈Nd cαx

α) := |cβ|. A net fi = ∑
α∈Nd c

i
αx

α converges to f = ∑
α∈Nd cαx

α in (Od, τs)
iff ciα

i∈I−−→ cα for all α ∈ Nd. (Od, τs) is a Fréchet-algebra – a complete commutative
metrizable topological algebra.

Lemma 4.2.7 ([BZ79, p.37/38/39]). Let J be an ideal in Od.
(1) J is closed in the simple topology.
(2) Od

/
J has a unique Fréchet-topology.

(3) The Krull topology and the simple topology admit the same continuous linear
functionals.

Note that this also implies that Od has a unique topology which turns it into a
Fréchet-algebra.

4.3 Holomorphic maps between rings of conver-
gent power series

In the first part of this section we discuss different characterizations of holomorphy
for maps between rings of convergent power series. In the second part we establish
the monomial series expansion for holomorphic functions U → C for suitable open
subsets U of Opd - a result which is due to Boland and Dineen ([BD78]). We are
going to show that a map Opd → O

q
d is holomorphic iff it is bornological and if its

coefficients are holomorphic, which allows us to characterize holomorphic maps in
this setting as sequences of power series whose coefficients satisfy certain Cauchy-
type estimates, which results in a projective-inductive description of H(Opd,O

q
d) (see

Definition 4.4.15). Then we will investigate the compact-open topology on H (Opd,Od)
and show that (H(Opd,O

q
d), τco) has a basis.
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Chapter 4 Rings of convergent power series

Theorem 4.3.1. Let U be an open subset of Opd1. Let F : U → Oqd2. TFAE:
(1) F is holomorphic.
(2) F is continuous and has holomorphic coefficient functions.
(3) F has holomorphic coefficient functions and F (K) is bounded for all K ⊂

co
U .

(4) For any holomorphic curve c : D → Opd1 the composition F ◦ c is bounded on
compact subsets of the open unit disc D and F has holomorphic coefficient func-
tions.

(5) F is curve-holomorphic.
(6) F is G-holomorphic and F (K) is bounded for all K ⊂

co
U .

Proof: (1) ⇒ (2) Let Fα,k = pα,k ◦ F , where pα,k denotes the continuous coefficient
projection (∑β∈Nd2 cβ,1x

β, . . . ,
∑
β∈Nd2 cβ,qx

β) 7→ cα,k. Note that continuous linear maps
between locally convex spaces (over C) are holomorphic and that the composition of
holomorphic functions is again holomorphic [Din99, p.219].
(2)⇒ (3) F is continuous, therefore F (K) is compact and thus bounded, for K ⊂

co
U .

(3)⇒ (4) The image of a compact subset of D under a holomorphic curve is compact
since holomorphic curves are continuous (see Lemma 3.1.7 ), therefore F ◦c is bounded
on compact subsets of D.
(4) ⇒ (5) We need to show that for any holomorphic curve c : D → U and any
ψ ∈ (Oqd2)′ the composition ψ ◦ F ◦ c is a holomorphic function D → C. Recall that
∗ :
(
H
(
Cd2

))q
→

(
Oqd2

)′
is an isomorphism (see Theorem 4.1.5). Let c : D → U , set

fα,k = pα,k ◦ F ◦ c and let φ = (φ1, . . . , φq) ∈
(
H
(
Cd2

))q
, φk = ∑

α∈Nd cα,kx
α. By

Lemma 3.2.2 holomorphic curves into (Od)p are holomorphic functions and as the
composition of holomorphic functions is holomorphic ([Din99, p.219]) we have that all
fα,k : D → C are holomorphic. For r ∈ (0, 1), there exist S ∈ (Rd2

+ )q and M ∈ Rq+ so
that (F ◦ c)(∆r) ⊂ HS,M , which implies that ‖fα,k‖Dr ≤

Mk

Sα
k
. For z ∈ ∆r we have

|(φ∗ ◦ F ◦ c) (z)| =

∣∣∣∣∣∣
∑

1≤k≤q, α∈Nd2

φα,kfα,k(z)

∣∣∣∣∣∣ ≤
∑

1≤k≤q, α∈Nd2

|φα,k| ‖fα,k‖Dr ≤

≤
∑

1≤k≤q, α∈Nd2

|φα,k|
Mk

Sαk
<∞

This shows that the series∑1≤k≤q,α∈Nd2 φα,kfα,k = φ∗◦F ◦c converges locally uniformly
on D and as the coefficient functions fα,k are holomorphic we conclude that φ∗ ◦F ◦ c
is a holomorphic function D→ C. Hence F is curve-holomorphic.
For (1)⇔ (5) see Theorem 3.2.3 and Theorem 3.1.10, and recall that the (inductive)
topology on Opd coincides with its c∞-topology as it is a (DFS)-space and therefore
also a convenient space as it is complete and hence locally complete (⇔ convenient).
(1)⇒ (6) Holomorphic maps are G-holomorphic and continuous.
(6)⇒ (3) All coordinates of F are G-holomorphic and bounded on compact subsets.
Theorem 3.2.6 then yields that all coordinates of F are holomorphic.

Since bounded subsets of Opd are relatively compact, we obtain the following char-
acterization of entire functions:
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Theorem 4.3.2. For a map F : Opd1 → O
q
d2, the following are equivalent:

(1) F is holomorphic.
(2) F is continuous and has holomorphic coefficient functions.
(3) F is bornological and has holomorphic coefficient functions.
(4) For any holomorphic curve c : D → Opd1 the composition F ◦ c is bounded on

compact subsets of the open unit disc D and F has holomorphic coefficient func-
tions.

(5) F is curve-holomorphic.
(6) F is bornological and G-holomorphic.

Definition 4.3.3. A sequence (xn)n∈N of elements in a locally convex space E is called
a basis for E if for every element a ∈ E there exists a unique sequence (ak)k∈N ⊂ C
so that a = ∑∞

k=0 akxk := limn→∞
∑n
k=0 akxk. A basis is called a Schauder-basis if

all projections pk : E → C, pm
(∑∞

k=0 akx
k
)

:= am are continuous. For n ∈ N we set
sn (∑∞k=0 akxk) := ∑n

k=0 akxk. An equi-Schauder-basis is a basis which satisfies that
the set of sum-operator {sn}∞n=0 is equicontinuous.

Lemma 4.3.4. Let E be a locally convex space.
(1) If E is the inductive limit of a sequentially retractive sequence of locally convex

spaces, then every basis in E is already a Schauder-basis. [Flo73]
(2) If E is barrelled, then every Schauder-basis is already an equi-Schauder-basis.

[Din99, p.188]

Definition 4.3.5. We say that a series∑∞n=0 yn converges unconditionally if∑∞n=0 yn =∑∞
k=0 yπ(k) for any permutation π of the natural numbers. A series ∑∞n=0 yn converges

unconditionally to S if and only if the set {yn | n ∈ N} is summable to S (see Def-
inition 2.6.11). A basis (xn)n∈N for a space E is called unconditional if ∑∞k=0 akxk
converges unconditionally for every ∑∞

k=0 akxk ∈ E. A basis (xn)n∈N is called ab-
solute, if ρq(

∑
n∈N cnxn) := ∑

n∈N |cn|q(xn) defines a continuous semi-norm for every
q ∈ cs(E). If {xk}k∈N is an absolute basis, then it is an equi-Schauder-basis and∑
k∈N akxk converges absolutely (and hence unconditionally) whenever it converges

(see [Din99, p.189]).

Lemma 4.3.6. The monomials form an absolute basis for Opd.

Proof: WLOG p=1. A semi-norm q : Od → R+ is continuous iff there exists a C > 0
and a φ = ∑

φαx
α ∈ H(Cd) so that q(a) ≤ C · pφ(a) for all a ∈ Od. Set qα = q(xα).

As qα < C|φα| we see that ρq(
∑
cαx

α) = ∑ |cα||q(xα)| ≤ Cpφ(a), which shows both
that ρq is well-defined and continuous.

Definition 4.3.7. We define

Md := {f : Nd → N | f(α) 6= 0 for only finitely many α ∈ Nd}

For γ ∈ Md and φ = ∑
α∈Nd cαx

α ∈ Pd (R), we set φγ := ∏
α∈Nd c

γ(α)
α , where we use

the convention 00 = 1. Analogously, for γ = (γ1, . . . , γp) ∈Mp
d and
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φ = (φ1, . . . , φp) ∈ Ppd (R) let φγ := φγ1
1 . . . φγpp . By ek we denote the kth standard unit

vector of Np. For γ ∈Mp
d, we set

sh (γ) :=
p∑

k=1

∑
α∈Nd

γk(α) · ek ∈ Np

wt (γ) :=
p∑

k=1

∑
α∈Nd

γk(α) · α ∈ Nd

wtv (γ) := (wt(γ1), . . . ,wt(γp)) ∈Md×p (N)

We note that sh(γ) = ∑p
k=1 sh(γk)ek and that wt(γ) = ∑p

k=1 wt(γk). The support
supp(γ) of γ ∈Mp

d is defined as the set {α ∈ Nd | ∃k : γk(α) 6= 0}. We set

Id,n :=
{
α ∈ Nd

∣∣∣αk ≤ n
}

Apd,n := {γ ∈Mp
d| supp(γ) ⊂ Id,n and max

1≤k≤p
max
α∈Nd

γk(α) ≤ n
}
.

For S ∈ (Rd+)p, M ∈ Rp+, let gS,M =
(∑

α∈Nd
M1 xα

Sα1
, . . . ,

∑
α∈Nd

Mp xα

Sαp

)
∈ Opd.

Theorem 4.3.8. Let d, p ∈ N. The infinite-dimensional geometric series

g(a) =
∑
γ∈Md

aγ

converges on the infinite-dimensional polydisc H 1
S
,Q = {∑α∈Nd cαx

α : |cα| < QSα}
for 0 < Q < 1, S < (1, . . . , 1), S ∈ Rd+. Furthermore, for a ∈ H 1

S
,Q we have the

following estimate:

|g(a)| ≤ g(gS−1,Q) =
∑
γ∈Md

Qsh(γ)Swtv(γ) =
∏
α∈Nd

1
1−QSα (4.1)

Analogously, let S = (S1, . . . , Sp) ∈ (Rd+)p such that Sk < (1, . . . , 1) for all k ≤ p, and
let Q = (Q1, . . . , Qp) ∈ Rp+ satisfying Qk < 1 for all k ≤ p. Then g := ∑

γ∈Mp
d
xγ

converges on H 1
S
,Q, and for a ∈ H 1

S
,Q

|g(a)| ≤ g(gS−1,Q) =
∑
γ∈Mp

d

Qsh(γ)Swtv(γ) =
p∏
j=1

∏
α∈Nd

1
1−QjSαj

(4.2)

Proof: First, we show the case p=1. Let (αk)Nk=1 be an enumeration of Id,n and set
γk = γ(αk) for γ ∈Md.

g(gS−1,Q) =
∑
γ∈Mp

d

Qsh(γ)Swtv(γ) = lim
n→∞

∑
γ∈Ad,n

Qsh(γ)Swtv(γ) =

= lim
n→∞

∑
γ∈Ad,n

Qγ1+···+γN (Sα1)γ1 · · · (SαN )γN =
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= lim
n→∞

∑
0≤γn≤N

Qγ1+···+γN (Sα1)γ1 . . . (SαN )γN =

= lim
n→∞

 n∑
γ1=0

Qγ1 (Sα1)γ1

 · · ·
 n∑
γN=0

QγN (SαN )γN


= lim
n→∞

∏
α∈Id,n

1− (QSα)n+1

1−QSα

If we set
T =

∏
α∈Nd

1
1−QSα and Tn =

∏
α∈Id,n

1− (QSα)n+1

1−QSα ,

then
T − Tn =

∏
α∈Id,n

1
1−QSα

( ∏
α 6∈Id,n

1
1−QSα︸ ︷︷ ︸
un

−
∏

α∈Id,n

(
1− (QSα)n+1

)
︸ ︷︷ ︸

vn

)
.

We are going to show that ∏α∈Nd
1

1−QSα is convergent (which implies that un n→∞−−−→ 1)
and that vn n→∞−−−→ 1. Set fn(x, y) := ∏

α∈Id,n (1− (yxα)) and Sn := (Sn1 , . . . , Snd ) and
observe that vn = fn(Sn+1, Qn+1). Next we show that fn(x, y) converges uniformly to
f(x, y) := ∏

α∈Nd (1− (yxα)) on ∆r×∆t for r ∈ Rd+ with r < (1, . . . , 1) and 0 < t < 1.
Let log denote the principal branch of the complex logarithm. The series ∑∞k=1

zk

k

converges locally uniformly to − log(1−z) on the open unit disc in the complex plane,
which yields the inequality |log(1− z)| ≤ |z|

1−|z| for z ∈ C, |z| < 1. For q > 0 the
sequence 1

1−qn is bounded and so there is a constant C > 0 depending only on r, t such
that 1

1−|yxα| ≤ C for all α ∈ Nd and (x, y) ∈ ∆r ×∆t.∣∣∣∣∣ ∑
α∈Nd

log(1− (yxα))
∣∣∣∣∣ ≤ ∑

α∈Nd

|yxα|
1− |yxα| ≤ C

∑
α∈Nd
|yxα| (4.3)

The inequality shows both that ∏α∈Nd
1

1−QSα converges and that fn converges locally
uniformly to f and it follows readily that

lim
n→∞

vn = = lim
n→∞

fn(Sn+1, Qn+1) = f(0, 0) = 1.

Therefore Tn converges to T , which completes the case p = 1. For p > 1, the validity
of our claim can now be deduced easily:

g(gS,Q) =
∑
γ∈Mp

d

gγS,Q =
∑
γ∈Mp

d

Qsh(γ)Swtv(γ) = lim
n→∞

∑
γ∈Ap

d,n

Qsh(γ)Swtv(γ) =

= lim
n→∞

 ∑
γ1∈Ad,n

Q
sh(γ1)
1 S

wt(γ1)
1

 · · ·
 ∑
γp∈Ad,n

Qsh(γp)
p Swt(γp)

p

 =

=
p∏
j=1

∏
α∈Nd

1
1−QjSαj
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Corollary 4.3.9. Let 0 < S < 1 and 0 < Q < 1, let a = ∑
n∈N anx

n ∈ HS−1,Q and
g(x) = ∑

γ∈M1 x
γ. Then

g(a) =
∞∏
n=0

1
1− an

Proof: g(a) = ∑
γ∈M1

1
aγ = limn→∞

∏n
k=0

1−an+1
k

1−ak
. We have already seen that∏n≥0

1
1−an

converges. As in the proof above we establish the estimate

∣∣∣log(1− an+1
k )

∣∣∣ ≤
∣∣∣an+1
k

∣∣∣
1−

∣∣∣an+1
k

∣∣∣ ≤ (MSk)n+1

1− (MSk)n+1

And hence ∣∣∣∣∣
n∑
k=0

log(1− an+1
k )

∣∣∣∣∣ ≤
n∑
k=0

(MSk)n+1

1− (MSk)n+1 ≤
Mn+1

1−MS

n∑
k=0

(sk)n+1 ≤

≤Mn+1 1
1−MS

1
1− S

which yields limn→∞
∑n
k=0 log(1− an+1

k ) = 0 and limn→∞
∏n
k=0(1− an+1

k ) = 1. Hence

lim
n→∞

n∏
k=0

1− an+1
k

1− ak
= lim

n→∞

n∏
k=0

( 1
1− ak

) n∏
k=0

(1− an+1
k ) =

∞∏
k=0

1
1− ak

.

Example 4.3.10. The following representation of the Dirichlet series as the value
of an infinite dimensional holomorphic function is a result of H. Bohr (see [Din99,
p.231]). Let pn denote the nth prime number (p0 = 2, p1 = 3, . . . ) and for z ∈ C let
P (z) = ∑

n≥0 p
z
nx

n. For n ∈ N+ there is a unique γ ∈M1
1 so that n = P (1)γ.

Let <(z) > 1, 0 < S < 1, 0 < M < 1 and ∑
n=0 anx

n ∈ HS−1,M . Set aγ = an for
n = P (1)γ ∈ N+. Then

∑
n≥1

an
nz

= ∑
γ∈M1 aγP (−z)γ.

Definition 4.3.11. Let S ∈ (Rd+)p,M ∈ Rp+ and a ∈ Opd. The set a+HS,M is called a
compact polydisc with center a. For S ∈ (Rd+)p,M ∈ Rp+, R = (Rα,k)α∈Id,n,1≤k≤p, such
that all Rα,k ∈ R+, we set

HR,S,M :=
{(∑

cα,kx
α
)

1≤k≤p
: |cα,k| ≤ Rα,k if α ∈ Id,n, |cα,k| ≤

Mk

Sαk
if α 6∈ Id,n

}

and HR,S,M(a) := a+HR,S,M . These sets will be called quasi-polydiscs with center a.
For φ = (φ1, . . . , φp) ∈ (H

(
Cd
)
)p and ε > 0 the set

Pφ,ε(a) =
{
f ∈ Opd

∣∣∣∣ max
1≤k≤p

p∞φk(a− f) < ε
}
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is called an open polydisc with center a. Since the semi-norms p∞φ are continuous
(Lemma 4.1.7), the open polydiscs are indeed open subsets of Opd.

Lemma 4.3.12. Let U be an open subset of Opd.
(1) The family of finite unions of compact polydiscs contained in U forms a funda-

mental system of compact sets for U .
(2) Suppose that U is an open polydisc Pφ,ε. Then there exists a fundamental system

of compact sets consisting of quasi-polydiscs centered at a for U .

Proof: (1) Let K be a compact subset of U . Then there is an S ∈
(
Rd+
)p

so that K
is a compact subset of `∞(S). Since U ∩ `∞(S) is open, we can cover K with a finite
number of translated polydiscs of radius S which are contained in U .
(2) WLOG a = 0. Let K be a compact subset of U . Since the compact polydiscs form
a fundamental system of compact sets for Opd, there are S,M > 0 so that K ⊂ HS,M .
There exists an n0 ∈ N so that |φα,k|Mk

Sα
k
< ε/2, for all α ≥ (n0, . . . , n0). For α ∈ Id,n0 ,

let Rα,j := maxa∈K |a[α, j]| < ε
|φα,j | and R = (Rα,k)α∈Id,n ∈ R

N0
+ . By construction,

K ⊂ HR,S,M ⊂ U and it is easy to see that HR,S,M is compact.

Theorem 4.3.13. Let U = Pφ,ε(a) be an open polydisc and let HR,S,M(a) ⊂ U . There
exist K > M, 0 < T < S and R̃ > R so that HR,S,M ⊂ HR̃,T,K ⊂ U .

Proof: WLOG a=0. For n ∈ N, R = (Rα,k)α∈Id,n,1≤k≤p, S ∈ (Rd+)p, M ∈ Rp+ let
hR,S,M = (∑α hα,kx

α)1≤k≤p ∈ O
p
d, where

hα,k =

Rα,k if α ∈ Id,n
Mk

Sα
k

else .

Let c : C \ {0} → Opd, z 7→ hz·R,z·S,z·M . The coefficients of c are polynomials and c
is bornological, hence c is a holomorphic function. Consequently v(t) := p∞φ (h(t))
is a continuous function

[
1
2 ,

3
2

]
→ R+, with v(1) < ε. Hence there is a λ > 1

so that pφ(λ) < ε. This means that HλR,S
λ
,Mλ ⊂ U : For b ∈ HλR,S

λ
,Mλ we have

p∞φ (b) ≤ p∞φ (hλR,S
λ
,Mλ) = v(λ) < ε, so b ∈ Uφ,ε.

Theorem 4.3.14. Let S = (S1, . . . , Sp) ∈ (Rd+)p satisfy Sk < (1, . . . , 1) for all k ≤ p,
and assume that Q = (Q1, . . . , Qp) ∈ Rp+ satisfies Qk < 1 for all k ≤ p. Let n ∈ N, let
0 < Rα,k < 1 for all α ∈ Id,n, 1 ≤ k ≤ p and let R = (Rα,k)α∈Id,n,1≤k≤p. For γ ∈ Mp

d,
n ∈ N set ρn(γ) := γ|Ip

d,n
and Rρn(γ) := ∏

α∈Id,n,1≤k≤pR
γk(α)
α,k . Then g := ∑

γ∈Mp
d
xγ

converges on HR, 1
S
,Q, and for a ∈ HR,S,M we obtain the estimate

|g(a)| ≤
∑
γ∈Mp

d

Rρn(γ)Qsh(γ−ρn(γ))Swtv(γ−ρn(γ)) =
p∏

k=1

( ∏
α∈Nd\Id,n

1
1−QkSαk

∏
α∈Id,n

1
1−Rα,k

)
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Proof:

|g(a)| ≤
∑
γ∈Mp

d

|a|γ ≤
∑
γ∈Mp

d

Rρn(γ)Qsh(γ−ρn(γ))Swtv(γ−ρn(γ)) =

= lim
M→∞

∑
γ∈Ap

d,M

Rρn(γ)Qsh(γ−ρn(γ))Swtv(γ−ρn(γ)) =

= lim
M→∞

p∏
k=1

(( ∏
α∈Id,M∩Id,n

M∑
jα,k=1

R
jα,k
α,k

)
·
( ∏
α∈Id,M\Id,n

M∑
jα,k=1

(QkS
α
k )jα,k

))
=

= lim
M→∞

p∏
k=1

( ∏
α∈Id,M

RM+1
α,k − 1
Rα,k − 1

∏
α∈Id,M\Id,n

(QkS
α
k )M+1 − 1

(QkSαk )− 1

)
=

= lim
M→∞

p∏
k=1

( ∏
α∈Id,M

RM+1
α,k − 1
Rα,k − 1

∏
α∈Id,M

(QkS
α
k )M+1 − 1

(QkSαk )− 1

( ∏
α∈Id,n

(QkS
α
k )M+1 − 1

(QkSαk )− 1

)−1)
=

=
p∏

k=1

( ∏
α∈Id,n

1
Rα,k − 1

∏
α∈Nd

1
(QkSαk )− 1

( ∏
α∈Id,n

1
(QkSαk )− 1

)−1)

Proposition 4.3.15 ([Din99, p.205,208,172]).
Let U = Uφ,ε be an open polydisc in Opd and let f ∈ H(U,C).
(1) There exists a unique sequence of coefficients (cγ)γ∈Mp

d
so that

f(x) =
∑
γ∈Mp

d

cγ (x− a)γ (4.4)

for all x ∈ U . The series converges absolutely and uniformly on the compact
subsets of U .

(2) (Cauchy-estimates) Let HR,S,M(a) ⊂ U , where R = (Rα,k)α∈Id,n,1≤k≤p. Then

|cγ| ≤ ‖f‖HR,S,M (a)
Swtv(γ−ρn(γ))

M sh(γ−ρn(γ))
1

Rρn(γ)

Especially, if HS,M(a) ⊂ U , then

|cγ| ≤ ‖f‖HS,M (a)
Swtv(γ)

M sh(γ)

(3) The monomials form an absolute basis for (H(U), τco).
(4) (H(U), τco) is a nuclear Fréchet space.

Proof: (1),(2),(3) WLOG let a=0. Let HR,S,M ⊂ U . By Theorem 4.3.13 there exist
0 < T < S, R̃ > R and K > M such that HR,S,M ⊂ HR̃,T,K ⊂ U . Set
EN := {(f1, . . . , fp) ∈ Opd | fk[α] = 0 for α 6∈ Id,N}, ∆R,S,M(N) := EN∩HR,S,M ,MN :=
{γ ∈Mp

d | supp(γ) ⊂ EN} and d(N) = dimEN . Since the restriction of f to any
finite-dimensional open subset of U is holomorphic we can expand fN := f |∆R,S,M (N)
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into a locally uniformly convergent Taylor series ∑δ∈Nd(n) cδz
δ. Let γ ∈Mp

d and let N
be large enough so that γ ∈ MN . Then the monomial xγ can be identified with its
restriction to En and thus there exists a unique δ(γ) ∈ Nd(n) such that xγ|EN = zδ(γ)

and we set cγ = cδ(γ). Note that cγ is independent of N as fN+1|∆R,S,M (N) = fN . The
Cauchy-estimates yield |cγ| ≤ ‖f‖HR,S,M Twtv(γ)

Ksh(γ−ρn(γ))
1

Rγn (γ) . Set g(x) = ∑
Mp

d
cγx

γ. For
b ∈ HR,S,M we have

|g(b)| ≤
∑
γ∈Mp

d

|cγ| |b|γ ≤
∑
γ∈Mp

d

(
‖f‖HR̃,T,K

1
R̃ρn(γ)

Twtv(γ−ρn(γ))

Ksh(γ−ρn(γ))

)(
M sh(γ−ρn(γ))

Swtv(γ−ρn(γ))R
ρn(γ)

)
≤

≤ ‖f‖HR̃,T,K
∑
γ∈Mp

d

(
M

K

)sh(γ−ρn(γ)) (T
S

)wtv(γ−ρn(γ)) (R
R̃

)ρn(γ)
<∞

The convergence of the geometric series is the content of Theorem 4.3.14 and the above
estimate implies that ∑γ∈Mp

d
cγx

γ converges absolutely and uniformly on HR,S,M , thus
g : HR,S,M → C is continuous. By construction, g (jε(a)) = f (jε(a)) for all ε ∈ Nd. The
continuity of f−g yields (f−g)(a) = lim|α|→∞(f−g)(jα(a)) = 0, which together with
the uniqueness of the Taylor-expansion on finite-dimensional subspaces of E implies
that the monomials form a basis for (H(U,C), τco). Again the Cauchy-estimates imply
that the monomials even form an absolute basis.
For the proof of (4) we refer the reader to [Din99, p.208] and [Din99, p.172].

Corollary 4.3.16. A function F : Opd → C is holomorphic if and only if F is a power
series ∑γ∈Mp

d
cγx

γ which converges uniformly and unconditionally on the compact sub-
sets of Opd.

Proof: (⇒) Opd is an open polydisc since Opd = Pφ,1 with φ = 0.
(⇐) Clearly every monomial and hence every linear combination of monomials is a
holomorphic function. As (H (Od,C) , τco) is complete it follows that ∑γ∈Mp

d
cγx

γ is
holomorphic.

Lemma 4.3.17 (Lifting of finite-dimensional holomorphic maps). Let fk : Ck → C
be a sequence of holomorphic functions such that fk|Ck−1×{0}

= fk−1. Suppose further
that for every M,R > 0 there is a C > 0 so that ‖fk‖∆M,R(k) ≤ C for all k ∈ N,
where ∆M,R(k) := {(z1, . . . , zk) ∈ Ck

∣∣∣ |zj| ≤ M
Rj
∀1 ≤ j ≤ k}. Then there is a unique

holomorphic function F : O1 → C so that that F |Ck = fk, where we identify Ck with a
subspace of O1 via ιk : Ck → O1, ι(z1, . . . , zk) := z1 + z2x

1 · · ·+ zkx
k−1.

Proof: Let fk = ∑
α∈Nk c

k
αx

α. The fact that fk|Ck−1×{0}
= fk−1 yields ck+1

(α,0) = ckα for
α ∈ Nk and inductively we get

ck+n
α,0,...,0 = ckα for α ∈ Nk, n ∈ N. (4.5)

A monomial γ ∈ M1 with supp(γ) ⊂ {0, . . . , n} can be identified with the vector
(γ(0), . . . , γ(n)). We set cγ = cnγ(0),...,γ(n), which is well defined (which follows from the
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above equation) and F = ∑
γ∈M1 cγx

γ. Let k ∈ N be fixed, let (z1, . . . , zk) ∈ Ck

(F ◦ ιk) ((z1, . . . , zk)) =
∑
γ∈M1

cγ
(
z1 + . . . zkx

k−1
)γ

=

=
∑

supp(γ)⊂{1,...,n}
cγ
(
z1 + . . . zkx

k−1
)γ

=
∑
α∈Nk

ckαz
α = fk(z1, . . . , zk)

Let S,M > 0. By assumption, there is a C > 0 independent of k so that ‖fk‖∆M,S(k) ≤
C. For γ ∈M1 with supp(γ) ⊂ {0, . . . , n} we have

|cγ| = |cn+1
γ(0),...,γ(n)| ≤ C

1(
M
R0

)γ(0)
· · ·

(
M
Rn

)γ(n) = C
Rwt(γ)

M sh(γ)

This shows that F (a) converges for every a ∈ Opd and that F is holomorphic as the
series ∑γ∈M1 cγx

γ converges uniformly on the compact subset of O1.

4.4 The space H(Op
d,O

q
d)

In the study of holomorphic functions between locally convex spaces, two other canon-
ical topologies beside the compact open topology on H(E,F ) appear - the Nachbin
topology τω and the topology τδ. However, we focus on the setting where both the
definition and the image space are rings of convergent power series, in which the
situation becomes far simpler than in the general theory and the three mentioned
topologies coincide. We will state the relevant theorems as formulated by Dineen with
respect to the topologies τco, τδ, τω without actually defining these topologies (as they
coincide with τco in our setting) and refer the interested reader to [Din99] for further
information. In the literature usually only the space H(E) of scalar-valued functions
holomorphic functions is studied. If E is a (DFM)-space and if F is complete, then we
can identify (H(E,F ), τco) with LB

(
H (E)′b , F

)
, which enables us to use these results

to study also the vector-valued case.

Lemma 4.4.1. Let U be an open subset of Opd. The compact-open topology τco on
H (U,Opd) is generated by the system of semi-norms {‖ ‖K,φ | K ⊂co

U, φ ∈ H
(
Cd
)q
},

where ‖F‖K,φ := supa∈K p∞φ (F (a)).

Proof: See Theorem 1.2.7 and Lemma 4.1.7.

Definition 4.4.2. For an open subset U of a locally convex space E let

G (U) := {φ ∈ H (U)∗| φ is τco-continuous on the locally bounded subsets of H (U)} .

We endow G (U) with the topology of uniform convergence on locally bounded subsets
of H (U), with which it becomes a complete locally convex space.

Lemma 4.4.3. If U is an open subset of a (DFM)-space E, then
G (U) = (H(U), τco)′b =

(
(H(U), τco)′ , τco

)
and G (U) is again a (DFM)-space.
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Proof: If E is a (DFM)-space then (H (U) , τco) is a Fréchet-Montel space (Theo-
rem 3.2.8). In particular (H (U) , τco) is a (k)-space and hence a function
f : (H (U) , τco) → C is continuous if its restrictions to compact subsets are continu-
ous. The locally bounded subsets of (H (U) , τco) coincide with the τco-bounded ones
and these coincide with the relatively compact subsets (Theorem 3.2.7), which implies
that G (U) = (H(U), τco)′b =

(
(H(U), τco)′ , τco

)
.

Theorem 4.4.4 ([Din99, p.184]). Let U be an open subset of a locally convex space
E and let F be a complete locally convex space. For each f ∈ H (U, F ) there exists a
unique JF (f) ∈ L (G (U) , F ) so that f = JF (f) ◦ δU , where δU : U → G (U) denotes
the mapping x 7→ εx and εx is the evaluation f 7→ f (x). The mapping f 7→ JF (f)
establishes a linear topological isomorphism between the spaces (H (U, F ) , τδ) and
(L (G (U) , F ) , τω).

Proposition 4.4.5. Let U be an open subset of a (DFM)-space E and let F be an
arbitrary locally convex space. On H (E,F ), the canonical topologies τco, τδ and τω
coincide.

Proof: For any pair of spaces, τco � τω � τδ (see [Din99, p.170]). If E is a (DFM)-
space and F a normed space, then all three topologies coincide on H(U, F ) by a
result of Dineen [Din99, p.172, ex.3.20(b)]. For any locally convex space F , we
have by definition (H (U, F ) , τδ) = lim←−α∈cs(F )

(H (U, Fα) , τδ), where Fα is the quo-
tient space (F, α)/ ker(α) (see [Din99, p.11]). Let πα : F → Fα be the canonical
quotient map and let π̂α : (H(U, F ), τco) → (H(U, Fα), τco) , f 7→ πα ◦ f . It is
easy to see that π̂α is continuous (for any α ∈ cs(F )) and since (H (U, Fα) , τco) =
(H (U, Fα) , τδ) it follows that id : (H (U, Fα) , τco) → (H (U, Fα) , τδ) is continuous.
The projective description (H (U, F ) , τδ) = lim←−α∈cs(F )

(H (U, Fα) , τδ) yields then that
id : (H (U, F ) , τco)→ (H (U, F ) , τδ) is continuous, which means that τδ � τco and we
obtain that τco = τδ.

Summarizing the above results in our setting we obtain:

Theorem 4.4.6. If E is a (DFM)-space and F a complete locally convex space, then

(H (U, F ) , τco) ∼= LB
(
H (U)′b , F

)
If we additionally assume that F is reflexive, then

(H (U, F ) , τco) ∼= LB (F ′b, (H (U) , τco))

Proof: It remains to show that under the additional assumption that F is reflexive the
second linear topological isomorphy holds, i.e. we need to show that LB

(
H (U)′b , F

) ∼=
LB (F ′b,H (U)). Suppose that E and F are both reflexive. By [FW68, p.84] the
barrelledness of the target space implies that dual operators

Φ1 : LB (E,F )→ LB (F ′b, E ′b) , Φ1(T ) = T ′

Φ2 : LB (F ′b, E ′b)→ LB
(
(E ′b)

′
b , (F

′
b)
′
b

)
, Φ2(T ) = T ′
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are continuous. If H is a LCVS, then let ιH : H → (H ′b)′b be the mapping x 7→ εx,
where εx denotes the evaluation x 7→ f(x). E and F are reflexive which means that ιE
and ιF are isomorphisms. Let Ψ be the isomorphism LB

(
(E ′b)

′
b , (F ′b)

′
b

)
→ LB(E,F ),

Ψ : S 7→ ι−1
F ◦ S ◦ ιE. Now it is easy to see that (Ψ ◦ Φ2) = Φ−1

1 , which show that

LB (E,F ) ∼= LB (F ′b, E ′b)

Recall that H (U) is a Montel space and hence reflexive, which yields that

LB
(
H (U)′b , F

) ∼= LB ((F ′)b, (H (U) , τco)) .

Theorem 4.4.7. Let E, F be locally convex spaces.
(1) If both E and F are reflexive, then LB (E,F ) ∼= LB (F ′b, E ′b).
(2) [Sch71] If E is bornological and F complete, then LB (E,F ) is complete.
(3) LB (E,F ) is a closed subspace of (C (E,F ) , τco).
(4) If E is a Montel space and if F is a semi-Montel space, then LB (E,F ) is a

semi-Montel space. Furthermore, the pointwise bounded subsets are exactly the
relatively compact subsets of LB (E,F ).

(5) [Sch71] If E is semi-reflexive, and if E ′b and F are nuclear spaces, then LB (E,F )
is nuclear.

Proof: For (2) and (6) we refer to [Sch71, p.117, Ex 8], [Sch71, p.173], respectively;
and for (1) see the proof of the theorem above.
(3) If a net (fi)i∈I of linear functions converges pointwise to a function f , then f is
again linear.
(4) Let B be a pointwise bounded subset of LB (E,F ). By the theorem of Banach
([FW68, p.51]), B is equicontinuous. Its pointwise closure Bτp (taken in FE) is again
equicontinuous and τco reduces to τp on equicontinuous families ([Wil04, p.286]). Hence
(Bτp , τp) = (Bτp , τco) = (Bτco

, τco). As the pointwise limit of linear functions is again
linear we have that Bτp is contained in L (E,F ). Since F is semi-Montel, Bτp(x)
is compact for every x ∈ E, which means (by Tychonov’s theorem) that (Bτp , τp) is
compact. By assumption E is a Montel space, which yields LB (E,F ) = (L (E,F ) , τco)
and as (Bτp , τp) = (Bτco , τco) we conclude that B is relatively compact in LB (E,F ).
Note that a family F is bounded in LB (E,F ) iff it is uniformly bounded on the
bounded sets of E, and is hence pointwise bounded - which shows that LB (E,F ) is a
semi-Montel space.

Corollary 4.4.8. If E is a (DFM)-space and F a complete semi-Montel space, then
(H (U, F ) , τco) is a semi-Montel space.

Proof: If E is a (DFM)-space, then H(U) and hence H(U)′b is a Montel-space. Using
Theorem 4.4.6 and Theorem 4.4.7(4) then gives the desired result.

So for a huge class of spaces questions about topological properties of H(E,F )
can be reduced to questions about properties of LB(V,W ), where V,W are Fréchet
spaces. In light of Theorem 4.4.7 one might expect that a lot of other linear-topological
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properties of Fréchet spaces such as barrelledness may be transferred to LB(V,W ).
However, the issue is far more subtle than it appears at first sight, and additional
assumptions on the spaces V,W are needed to establish positive results.
In our setting we have to deal with the space LB

(
H(Cd),H(Od)

)
. The following

(linear-topological invariant) properties of Fréchet spaces were introduced and studied
by Vogt ([HH95]), and appear (among others) for example in the study of power series
spaces [MV92].

Definition 4.4.9 ([HH95]). Let E be a Fréchet space with a fundamental system
of semi-norms {‖ ‖k}k∈N and let Bk := {‖x‖k ≤ 1}. On E ′b we introduce the dual
semi-norm ‖f‖∗k := sup {|f(x)| | x ∈ Bk}.

Definition 4.4.10. If E is a LCVS, then Hβ (E) denotes the vector space of holo-
morphic functions on E which are bounded on bounded sets equipped with the topol-
ogy of uniform convergence on bounded sets. If E is a semi-Montel space, then
Hβ (E) ∼= (H (E) , τco). We say that E has property (Ω) if

∀p ∃q ∀k ∃d, C > 0 : ‖ ‖∗q
1+d ≤ C ‖ ‖∗k ‖ ‖

∗
p
d

E is said to have property (DN) if

∃p ∀q ∃k, C > 0 : ‖ ‖2
q ≤ C ‖ ‖k ‖ ‖p

We note that property (Ω) is valid for all power series spaces, while property (DN)
holds only for power series spaces of infinite type [MV92].

Theorem 4.4.11 ([Vog84, p.369; Proposition 4.5]). Let E and F be nuclear Fréchet
spaces. If E has property (DN) and if F has property (Ω), then LB (E,F ) is bornolog-
ical.

Theorem 4.4.12 ([HH95, p.2]). Let E be a Fréchet space. Then
(1) Hβ(E ′b) has property (DN) if E has property (DN).
(2) Hβ(E ′b) has property (Ω) if E ′b has an absolute basis.

Proposition 4.4.13. (H (Opd,O
q
d) , τco) is a complete nuclear ultrabornological space.

Proof: By Theorem 4.4.6 we have:

H (Opd,O
q
d) ∼= LB ((Oqd)′b,H (Opd)) ∼= LB

(
H(Cd)q,H (Opd)

) ∼= p∏
k=1
LB

(
H(Cd),H(Opd)

)

Theorem 4.4.12 yields that H
(
Cd
)
satisfies property (DN) as Cd satisfies (DN) as it

is a normed space. We have seen in Lemma 4.3.6 that Opd has an absolute basis and
so we can apply the above result to conclude that H (Opd) has property (Ω). Theo-
rem 4.4.11 then implies that H (Opd,O

q
d) is bornological. By Theorem 4.4.7 we have

that H (Opd,O
q
d) is complete and thus ultrabornological, as every Mackey-complete

bornological locally convex space is ultrabornological [Gac04, p.105]. Theorem 4.4.7
(5) yields that H (Opd,O

q
d) is nuclear.
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Having showed that LB
(
H(Cd),H(Od)

)
is a Montel-space (complete barrelled nu-

clear space are Montel spaces [FW68, p.155]) and in the light of Webb’s theorem that
a Montel (DF)-space is sequential, it makes sense to investigate the question whether
LB

(
H(Cd),H(Od)

)
is a (DF)-space. However, it turns out the answer to this question

is negative, which follows from a result by Bierstedt and Bonet and the fact that a
Fréchet space is a (DF)-space iff it is normable ([Jar81, p.259]).

Theorem 4.4.14 ([BB88, Proposition 4]). Let λ1 be a Koethe-sequence space of order
one. If E is a locally complete LCVS, then LB (λ1, E) is a (DF)-space if and only if
E is a (DF)-space.

Recall that a map F : Opd → Od is holomorphic iff it is bornological and if all its
coefficient functions Fα : Opd → C are holomorphical (see Theorem 4.3.2). The coeffi-
cient functions Fα are holomorphic iff they can be written as convergent power series∑
γ∈Mp

d
cα,γx

γ, and the bornologicity of F translates into certain growth conditions
on the coefficients cα,γ as presented below. We will use this description to show that
H (Opd,Od) is the projective limit of a sequence of (LB)-spaces, which shows for exam-
ple that it is a webbed space. In chapter 5 we will make use of these results to show
that the inductive description of certain subclasses of holomorphic functions carries the
compact-open topology, so that we can transfer results obtained for (H (Opd,Od) , τco)
on these subspaces. From now on - if not stated otherwise - we will considerH (Opd,Od)
always to be equipped with τco.

Definition 4.4.15. Let d, p ∈ N let fixed. A formal power series (of type (d,p)) is an
expression of the form ( ∑

γ∈Mp
d

cα,γx
γ

)
α∈Nd

- i.e. a sequence of monomial series which are indexed byMp
d. By PNd,p we are going

to denote the set (of type (d,p)-) formal power series, which becomes a vector space
under the usual operations of coefficient-wise addition and scalar multiplication. For
γ ∈Mp

d, α ∈ Nd, we define

xγα : Ppd → Pd, a 7→ aγ · xα

So we can write a formal power series
(∑

γ∈Mp
d
cα,γx

γ
)
α∈Nd

as

∑
α∈Nd,γ∈Mp

d

cα,γx
γ
α

For S ∈
(
Rd+
)p
, M ∈ Rp+, T ∈

(
Rd+
)q
, and F = ∑

α∈Nd,γ∈Mp
d
cα,γx

γ
α, we set

‖F‖S,M,T := sup
α∈Nd

Tα sup
γ∈Mp

d

|cα,γ|
M sh(γ)

Swtv(γ)

ES,M,T :=
{
F ∈ PNd,p : ‖F‖S,M,T <∞

}
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BS,M,T :=
{
F ∈ PNd,p : ‖F‖S,M,T ≤ 1

}
Using the standard argument for `∞-type sequence spaces one sees that the spaces
ES,M,T (which we consider from now on equipped with ‖ ‖S,M,T ) are Banach-Spaces
(see for example [MV92, p.326]. We note that

ES1,M,T ↪→ ES2,M,T for S1 ≤ S2

ES,M1,T ↪→ ES,M2,T for M2 ≤M1

ES,M,T1 ↪→ ES,M,T2 for T2 ≤ T1

Let ES,M := lim−→T
ES,M,T . By Theorem 4.3.16, Theorem 4.3.2 and Proposition 4.3.15

we have that
H (Opd,Od) =

⋂
S∈(Rd+)p,M∈(R+)p

ES,M

We are going to show that in fact we even have the isomorphism

(H (Opd,Od) , τco) ∼= lim←−ES,M

Lemma 4.4.16. Let S ∈
(
Rd+
)p
, M ∈ Rp+. The net (ES,M,T )T∈Rd+

is sequentially
retractive.

Proof: By BT we are going to denote the closed unit ball in ES,M,T . We are going to
show that (ES,M,T )T∈Rd+

satisfies property (M).
For T1 > T2 > T3 > 0, we have ES,M,T1 ↪→ ES,M,T2 ↪→ ES,M,T3 . Let (Fk)k∈N be a
sequence in BT1 , Fk =

(∑
γ∈Mp

d
ckα,γx

γ
)
α∈Nd

, which converges with respect to ‖ ‖S,M,T3

to F =
(∑

γ∈Mp
d
cα,γx

γ
)
α∈Nd

∈ BT1 . Set Gk = F − Fk ∈ 2 · BT1 and gkα,γ = ckα,γ − cα,γ.
We claim that Gk → 0 with respect to ‖ ‖S,M,T2

. Let ε > 0 and choose α0 large
enough, so that

(
T2
T1

)α
< ε

2 holds for α ≥ α0. Let k0 ∈ N so that ‖Gk‖S,M,T3
< ε

(
T3
T2

)α0

for k ≥ k0. Then ‖Gk‖S,M,T2
≤ ε for k > k0:

sup
α>α0

Tα2 sup
γ∈Mp

d

∣∣∣gkα,γ∣∣∣ M sh(γ)

Swtv(γ) ≤
(
T2

T1

)α0

sup
α>α0

Tα1 sup
γ∈Mp

d

∣∣∣gkα,γ∣∣∣ M sh(γ)

Swtv(γ) ≤

≤ ε

2 ‖Gk‖S,M,T1
≤ ε

sup
α≤α0

Tα2 sup
γ∈Mp

d

∣∣∣gkα,γ∣∣∣ M sh(γ)

Swtv(γ) ≤
(
T2

T3

)α0

sup
α≤α0

Tα3 sup
γ∈Mp

d

∣∣∣gkα,γ∣∣∣ M sh(γ)

Swtv(γ) ≤

≤
(
T2

T3

)α0

‖Gk‖S,M,T3
≤ ε

Hence the topologies induced on BT1 by ES,M,T2 , ES,M,T3 , respectively, coincide. Thus
(ES,M,T )T∈Rd+

satisfies property (M) and is sequentially retractive.
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Definition 4.4.17. Let X =
(
(En)n∈N , (πn)n∈N

)
be a projective spectrum of LCVS,

where πn : En+1 → En. Set

B (X) :=
{

(xn)n∈N ∈
∏
n

En : ∃ (yn)n∈N ∈
∏
En with xn = yn − πn(yn+1) for all n

}
Proj1X :=

∏
n

En/B (X)

Our main interest in Proj1, which is called the derived projective functor, is as a useful
tool for showing that the projective limit of a sequence of (separated) (LB)-spaces is
ultrabornological.

Theorem 4.4.18 (Vogt [Wen03, Theorem 3.3.4]). Let X = (Xn)n∈N be a projective
sequence of separated (LB)-spaces with Proj1 = 0. Then lim←−Xn is ultrabornological.

Theorem 4.4.19 (Retakh-Palamodov). [[Wen03, p.27, Theorem 3.2.9]] For a pro-
jective sequence X = (Xn)n∈N consisting of separated (LB)-spaces, the following are
equivalent:
(1) Proj1X = 0.
(2) There is a sequence of Banach discs Bn ⊂ Xn such that

(a) Bn+1 ⊂ Bn

(b) ∀N ∈ N ∃M > N such that XM ⊂ lim←−Xn +BN

Theorem 4.4.20.
Proj1 (ES,M)S,M = 0.

Proof: Recall that ES1,M1 ⊂ ES2,M2 if S1 ≤ S2, M2 ≤ M1 and note that for any se-
quence (Sn,Mn)n∈N with limSn = 0 and limMn =∞ the projective sequence (ESn,Mn)
is equivalent to the projective net (ES,M)S,M (which we order by inclusion). Without
specifying any such sequence we just show that the net of unit balls (BS,M,T )S,M (for a
fixed T ∈ Rd+) satisfies the conditions of Theorem 4.4.19. Let S1 < S2 and M2 < M1.
Then it is easy to see that BS1,M1,T ⊂ BS2,M2,T , so the net (BS,M,T )S,M satisfies (2)(a)
and it remains to show that it satisfies condition (2)(b) of Theorem 4.4.19. We are
going to show that ES1,M1 ⊂ H(Opd,Od) + BS2,M2,T by showing that for F ∈ ES1,M1

we can split off a suitable generalized textile map F̃ (which is an entire function; see
Theorem 5.3.8) so that F − F̃ ∈ BS2,M2,T . Let ‖F‖S1,M1,R

≤ K <∞. Note that

‖F‖S2,M2,T
= sup

α∈Nd
Tα sup

γ∈Mp
d

|cα,γ|
M

sh(γ)
2

S
wtv(γ)
2

≤ sup
α∈Nd

(
T

R

)α
sup
γ∈Mp

d

K
(
M2

M1

)sh(γ) (S1

S2

)wtv(γ)

Set Q = S1
S2
∈ (Rd+)p, Q = ((Q1,j)1≤j≤d, . . . , (Qp,j)1≤j≤d), let

U = (U1, . . . , Ud) ∈ Rd+, Uk = max
i=1,...,p

Qi,k

and choose N ∈ N so that UN < R
T
. Further, choose ν ∈ Nd so that Uν < 1

K
. Then
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for γ = (γ1, . . . , γp) ∈Mp
d with wt(γ) > N · α + ν we obtain

(
S1

S2

)wtv(γ)
= Q

wt(γ1)
1 · · ·Qwt(γp)

p ≤ (4.6)

≤ Uwt(γ1) · · ·Uwt(γp) = Uwt(γ) < UN ·α+ν <
(
R

T

)α 1
K

(4.7)

Moreover, choose N0 ∈ N, ν0 ∈ Np so that
(
M1
M2

)(N0,...,N0)
<
(
R
T

)(1,...,1)
and

(
M1
M2

)ν0
< 1

K
.

Set A = (ai,j)i,j ∈ Mp×d(N), ai,j = N for all i, j. For γ ∈ Mp
d with γ(0) > A · α + ν0

we obtain (
M2

M1

)sh(γ)
≤
(
M2

M1

)γ(0)
<
(
R

T

)α 1
K

(4.8)

Set h(α) = N · α + ν and g(α) = A · α + ν0, F̃ = (c̃α,γ)α∈Nd,γ∈Mp
d
, where

c̃α,γ =

cα,γ if wt(γ) ≤ h(α) and γ(0) ≤ g(α)
0 else

and G = F − F̃ . Then F̃ is a generalized textile map with growth vector (h, g)
and since the coefficients satisfy the necessary Cauchy-type estimates F̃ : Opd → Od
is a holomorphic (entire) function (see Theorem 5.3.8). It remains to show that G ∈
BS2,M2,T :

‖G‖S2,M2,T
= sup

α∈Nd
Tα sup

γ∈Mp
d

γ(0)>A·α+ν0 or wt(γ)>N ·α+ν

|cα,γ|
M

sh(γ)
2

S
wtv(γ)
2

≤

≤ sup
α∈Nd

sup
γ∈Mp

d
γ(0)>A·α+ν0 or wt(γ)>N ·α+ν

(
T

R

)α
K
(
M2

M1

)sh(γ)

︸ ︷︷ ︸
(I)

(
S1

S2

)wtv(γ)

︸ ︷︷ ︸
(II)

Because of Equation 4.6 and Equation 4.8 we see that either (I) <
(
R
T

)α 1
K

or (II) <(
R
T

)α 1
K
, which shows that ‖G‖S2,M2,T

≤ 1.
Hence F = F̃ +G ∈ H (Opd,Od) +BS2,M2,T , which completes the proof.

Proposition 4.4.21. H (Opd,O
q
d) = lim←−S,M lim−→R

ES,M,R

Proof: We are going to denote the projective topology of lim←−S,M lim−→R
ES,M,R with

τproj. For showing that id : lim←−S,M lim−→R
ES,M,R → H (Opd,Od) is continuous it is enough

to show that every τproj-null-sequence is a τco-null sequence, since lim←−S,M lim−→R
ES,M,R

is bornological by the preceding theorem. Let Fn
τproj−−→ 0, where Fn = ∑

α,γ F
n
α,γx

γ
α.

Then ∀S,M > 0 ∃T > 0: ‖Fn‖S,M,T → 0 by Lemma 4.4.16. We need to show that
‖Fn − F‖HR,K ,φ → 0 for all R ∈ (Rd+)p, K ∈ Rp+ and φ ∈ H

(
Cd
)q

(see Lemma 4.4.1).
For given R,K choose 0 < S < R and R < M and T ∈ Rd+ so that ‖Fn‖S,M,T < ∞.
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For a ∈ HR,K , we have

|(F (a))[α]| = |
∑
γ∈Mp

d

Fα,γa
γ| ≤

∑
γ∈Mp

d

‖Fn‖S,M,T

Tα
Swt(γ)

M sh(γ)
Ksh(γ)

Rwt(γ)

≤
‖Fn‖S,M,T

Tα
∑
γ∈Mp

d

(
K

M

)sh(γ) (S
R

)wt(γ)
≤
‖Fn‖S,M,T

Tα
· C1

for some C1 ∈ R+. For φ = ∑
φαx

α ∈ H
(
Cd
)
let C2 ∈ R+ so that | φα

Tα
| ≤ C2 for all

α ∈ Nd. Hence we obtain

‖Fn‖HR,K ,φ = sup
a∈HR,K

sup
α∈Nd
|φα · (F (a))[α]| ≤ C1 · C2 ‖Fn‖S,M,T

and thus ‖Fn‖HR,K ,φ → 0. As φ,HR,K were arbitrary, it follows that Fn τco−→ 0 and thus
id : lim←−S,M lim−→R

ES,M,R → H (Opd,O
q
d) is continuous. The space lim←−S,M lim−→R

ES,M,R is
webbed and H (Opd,Od) is ultrabornological, so the open mapping theorem can be
applied to conclude that lim←−S,M lim−→R

ES,M,R
∼= H (Opd,Od).

Corollary 4.4.22. H (Opd,O
q
d) is a webbed space.

In chapter 5 we will study certain classes of holomorphic functions with polyno-
mial coefficients. The following theorem is tailored to this end and shows that ultra-
bornologicity is passed over to these classes. Note that in general ultrabornologicity
is not passed over to closed subspaces - in fact there exist ultrabornological spaces
with closed subspaces which are not even bornological ([Jar81, p.281]). However, ul-
trabornologicity is always passed over to quotients taken by closed subspaces ([Jar81,
p.281]), which will be the key to prove the following theorem.

Theorem 4.4.23. Let pα,γ : H (Opd,Od)→ C,
(∑

α∈Nd,γ∈Mp
d
cα,γx

γ
α

)
7→ cα,γ,

let R = {pα,γ | α ∈ Nd, γ ∈Mp
d

}
and let Q be an arbitrary subset of R. Then:

(1) The projections pα,γ are continuous.
(2) HQ := ⋂

f∈Q ker(f) is an ultrabornological closed subspace of H (Opd,Od).
(3) H (Opd,Od) is the topological direct sum HQ

⊕
HQc.

Proof: (1) Let Fn =
(∑

γ∈Mp
d
cnα,γx

γ
)
α∈Nd

be a null sequence in H (Opd,Od). For
S ∈ (Rd+)p, M ∈ Rp+, there exists a T ∈ Rd+ so that ‖Fn‖S,M,T → 0, which implies that
0 = limn→∞ c

n
α,γ by the definition of the norm. (2),(3) Clearly HQ and HQc are closed

subspaces of H (Opd,Od) and thus webbed. Since ultrabornologicity is passed over to
quotients taken by closed subspaces we have thatH (Opd,Od) /HQc is ultrabornological.
We show that the projection pQ : E → HQ is continuous by showing that its graph is
closed, which yields that HQ

⊕
HQc is a topological direct sum. Let (xi, pm(xi)) →

(x, y). Note that

pQ

( ∑
γ∈Mp

d
,α∈Nd

cα,γx
γ
α

)
=
( ∑

pα,γ∈Qc
cα,γx

γ
α

)
.
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We have:

pα,γ(y) = lim pα,γ (pQ(xi)) =

0 if pα,γ ∈ Q
lim pα,γ(xi) else

pα,γ(y) =

0 if pα,γ ∈ Q
pα,γ(x) else

Hence pQ(x) = y and thus pQ is continuous, which implies (3). Consider the following
commutative diagram to obtain (2), where E := H (Opd,Od):

E
pQ
> HQ

E/HQc

π

∨

p̂Q
>

p̂Q is an isomorphism as pQ is continuous, hence HQ is ultrabornological.

Theorem 4.4.24. The set of monomials
{
xγα | α ∈ Nd, γ ∈M

p
d

}
forms a basis for

H (Opd,Od).

Proof: Let F = ∑
α∈Nd,γ∈Mp

d
cα,γx

γ
α ∈ H (Opd,Od). We will use the projective descrip-

tion of H (Opd,Od) as lim←−ES,M obtained in Proposition 4.4.21. So we have to show
that the net of partial sums (the ordering on the finite sets being the inclusion)( ∑

(α,γ)∈F
cα,γx

γ
α

)
F ⊂
finite

Nd×Mp
d

converges to F in all ES,M . Let S1 ∈ (Rd+)p and M1 ∈ Rp+, and choose S2 ∈ (Rd+)p
and M2 ∈ Rp+ with S2 < S1 and M2 > M1. There exists a T2 ∈ Rd+ so that C :=
‖F‖S2,M2,T2

< ∞. Let T1 ∈ Rp+ with T1 < T2. We claim that the sum converges
with respect to ‖ ‖S1,M1,T1

to F . Let ε > 0 and let α0 ∈ Nd so that the estimate(
T1
T2

)α
< ε

C
holds for all α ≥ α0. Recall that ∑γ∈Mp

d

(
M1
M2

)sh(γ) (
S2
S1

)wtv(γ)
is summable

by Theorem 4.3.8. Hence there is a finite set G ⊂Mp
d so that

∑
Mp

d
\G

(
M1

M2

)sh(γ) (S2

S1

)wtv(γ)
<

ε

C

Set F = {α ≤ α0} × G. We claim that∥∥∥∥∥∥F −
∑

(α,γ)∈F
cα,γx

γ
α

∥∥∥∥∥∥
S1,M1,T1

≤ ε

Let dα,γ denote the coefficients of F −∑(α,γ)∈F cα,γx
γ
α. We have:
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∥∥∥∥∥∥F −
∑

(α,γ)∈F
cα,γx

γ
α

∥∥∥∥∥∥
S1,M1,T1

= sup
α∈Nd

Tα1 sup
γ∈Mp

d

|dα,γ|
M

sh(γ)
1

S
wtv(γ)
1

=

= sup
α∈Nd

(
T1

T2

)α
sup
γ∈Mp

d

Tα2 |dα,γ|
M

sh(γ)
2

S
wtv(γ)
2︸ ︷︷ ︸

E2(α,γ)

(
M1

M2

)sh(γ) (S2

S1

)wtv(γ)

︸ ︷︷ ︸
E3(γ)︸ ︷︷ ︸

E1(α)

Note that E2(α, γ) ≤ C and that E3(γ) ≤ 1 for all α ∈ Nd, γ ∈ Mp
d. So if α ≥ α0

we have that E1(α) ≤ ε since we have that
(
T1
T2

)α
< ε

C
in this case. If α < α0 and if

γ ∈ F , then dα,γ = 0 . If γ ∈ Mp
d \ F , we have that E3(γ) < ε/C and hence that

E2(α, γ) · E3(γ) ≤ ε. This shows that
∥∥∥F −∑(α,γ)∈F cα,γx

γ
α

∥∥∥
S1,M1,T1

≤ ε and clearly
this estimate also holds for any finite subset F̂ of Nd ×Mp

d which contains F . Thus(∑
(α,γ)∈F cα,γx

γ
α

)
F ⊂
finite

Nd×Mp
d

converges to F in ES1,M1,T1 and hence in ES1,M1 . Since S1

and M1 were arbitrary, it follows that
(∑

(α,γ)∈F cα,γx
γ
α

)
F ⊂
finite

Nd×Mp
d

converges to F in

lim←−S,M ES,M = H (Opd,Od).
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Chapter 5
Textile maps
In this chapter we are going to study maps F : Opd → O

q
d whose coefficients have the

same structure as those of substitution maps φ 7→ H(x, φ(x) − φ(0)) (called tactile
maps), which we will call textile maps. It turns out that a textile maps is holomorphic
if and only it preserves the boundedness of a polydisc HS,M – a criterion similar as for
linear maps between normed spaces. This allows us to establish an inductive descrip-
tion of the space of holomorphic textile maps. The natural inductive topology turns it
into a (DFS)-space, and the strong results of chapter 4 show that it coincides with the
compact-open topology. Then we will turn our attention to certain generalizations of
textile maps, for which we establish similar characterizations of holomorphy. In the
final section we will investigate the Cauchy-Kovalevskaya-type differential equation
δtu(x, t) = F (u(x, t)), where the right side is a (holomorphic) textile map. We will
show that this equation is always solvable in Ppd , but the solution might fail to be
convergent. A positive result will be established for the subclass of tactilly bounded
maps.

5.1 Special classes of Holomorphic functions

Definition 5.1.1. For γ ∈Mp
d we set γ! := ∏p

k=1
∏
α∈Nd (γk(α)!) and

µ(γ) :=
p∏

k=1

sh(γk)!∏
α∈Nd

γk (α)! =
p∏

k=1
µ (γk) .

This is a generalization of the multinomial coefficient
(
|α|
α

)
= |α|!

α1!···αd! to our purpose.
For γ ∈Mp

d we set ω (γ) := (sh(γ),wt(γ)) ∈ Np × Nd.

Lemma 5.1.2. Let k ∈ N, a = ∑
cαx

α ∈ Pd and δ ∈ Nd. Then

(jδ(a))k [ε] =
∑
γ∈Md

ω(γ)=(k,ε), supp(γ)≤δ

µ(γ)aγ

and
(a)k[ε] =

∑
γ∈Md, ω(γ)=(k,ε)

µ(γ)aγ
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Chapter 5 Textile maps

More generally, let a = (a1, ..., ap) ∈ Ppd , β = (β1, ..., βp) ∈ Np, ε ∈ Nd. Then

aβ[ε] =
∑
γ∈Mp

d
ω(γ)=(β,ε)

µ(γ)aγ

Proof: Let (αj)1≤j≤N be an enumeration of the set {α ≤ δ} =: A. By the multinomial
theorem we get that(∑

α≤δ
cαx

α

)k
=
(
cα1xα

1 + ...+ cαNx
αN
)k

=
∑

β∈NN ,|β|=k

(
k

β

)
N∏
i=1

cβiαix
αi·βi (5.1)

Let π : B := {β ∈ NN : |β| = k} →Md, where

(π(β))(α) :=

0 if α 6∈ A
βj if α = αj ∈ A

π is a bijection between B and {γ ∈Md | sh(γ) = k, supp (γ) ≤ δ} =: C and(
k

β

)
= k!∏N

j=1 βj!
= sh(π(β))!∏N

j=1 ((π(β))(αj))!
= sh(π(β))!∏

α∈Nd((π(β))(α))! = µ (π (β)) .

So we can rewrite Equation 5.1 as

(jδ(a))k =
∑
γ∈C

µ (γ)
∏
α∈Nd

cγ(α)
α xα·γ(α) =

∑
γ∈Md

sh(γ)=k,supp(γ)≤δ

µ(γ)aγxwt(γ),

from which we see that

(jδ (a))k [ε] =
∑

γ∈M̃d, supp(γ)≤δ
ω(γ)=(k,ε)

aγµ (γ)

and that
ak[ε] = (jε (a))k =

∑
γ∈M̃d

ω(γ)=(k,ε)

aγµ (γ) .

Now let a = (a1, ..., ap) ∈ Ppd , β = (β1, ..., βp) ∈ Np. Then

aβ =
( ∑

γ1∈Md
sh(γ1)=β1

µ(γ1)aγ1xwt(γ1)
)
· · ·

( ∑
γp∈Md

sh(γp)=βp

µ(γp)aγpxwt(γp)
)

=

=
∑

γ∈Mp
d
,sh(γ)=β

µ(γ1) · · ·µ(γp)aγ1+···+γpxwt(γ1)+···+wt(γp) =
∑
γ∈Mp

d
sh(γ)=β

µ(γ)aγxwt(γ)
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5.1 Special classes of Holomorphic functions

So for ε ∈ Nd we obtain
aβ[ε] =

∑
γ∈Mp

d
ω(γ)=(β,ε)

µ(γ)aγ

Definition 5.1.3. We are going to treat functions of the form φ 7→ F (x, φ−φ(0)) and
such which show a similar analytical behavior. By definition these functions ignore
the value φ(0), so it is convenient to set

M̃p
d := {f ∈Mp

d | f(0) = 0}

in order to describe the coefficients of their power series expansion.

Theorem 5.1.4. Let F (x, y) = ∑
(α,β)∈Nd×Np cα,βx

αyβ ∈ Pd+p and φ ∈ Ppd . For ε ∈ Nd

we set F̂ε (φ) := F (x, φ (x)− φ(0)) [ε] . Then

F̂ε (φ) =
∑

γ∈M̃p
d
,wt(γ)≤ε

Fε,γφ
γ where Fε,γ := µ(γ)c(ε−wt(γ),sh(γ))

If |cα,β| ≤ M

Rα1R
β
2
for (R1, R2) = R ∈ Rd+p

+ , M ∈ R+, then

|Fε,γ| ≤
M · µ(γ)

R
ε−wt(γ)
1 R

sh(ε)
2

= M · µ(γ)
R(ε−wt(γ),sh(γ))

Proof:

Fε(φ) =
∑
α≤ε

cα,β(φβ)[ε− α] =
∑
α≤ε

cα,β
∑
γ∈M̃p

d
ω(γ)=(β,ε−α)

µ(γ)φγ =

=
∑
α≤ε

∑
β∈Nd

∑
γ∈M̃p

d
ω(γ)=(β,ε−α)

µ(γ)c(ε−wt(γ), sh(γ))φ
γ =

=
∑
α≤ε

∑
γ∈M̃p

d
wt(γ)=ε−α

µ(γ)c(ε−wt(γ),sh(γ))φ
γ =

=
∑
γ∈M̃p

d
wt(γ)≤ε

φγ µ (γ) c(ε−wt(γ), sh(γ))︸ ︷︷ ︸
=:Fε,γ

Definition 5.1.5. A map F : Ppd → Pd, F (φ) = ∑
α∈Nd Fα(φ)xα is called textile if all

coefficient functions Fα are polynomials on Ppd of the form

Fα(φ) =
∑
γ∈M̃p

d
wt(γ)≤α

Fα,γφ
γ

Following the notation introduced in Definition 4.4.15 we can write a textile map F

63



Chapter 5 Textile maps

in the form ∑
wt(γ)≤α

Fα,γx
γ
α

The space of all textile maps Ppd → Pd will be denoted by T d,p. Note that textile maps
ignore the value of a power series at 0 (by definition), i.e. F (φ) = F (φ− φ(0)) for any
F ∈ T d,p, φ ∈ Ppd . Due to the condition wt(γ) ≤ α, we have that Fα(φ) = Fα(jα(φ))

An important example of textile maps are tactile maps: For G ∈ Pd+p, the as-
sociated substitution map Ĝ : φ 7→ G(x, φ(x) − φ(0)) is called a tactile map. By
Theorem 5.1.4 Ĝ is a textile map. We denote the set of tactile maps Ppd → Pd by
Sd,p. Tactile maps can be characterized by a certain interdependency between their
coefficients (see Theorem 5.1.4).

Throughout this chapter, we consider Opd to be equipped with its (unique) (DFN)-
topology (see Theorem 4.1.1). A map F : Opd → Od is called textile (tactile) if it is
the restriction of a textile (tactile) map F̃ : Ppd → Pd with F̃ (Opd) ⊂ Od. A textile
map F : Opd → Od is called analytic if it is continuous. We have already seen in
Theorem 4.3.2 that a textile map F : Opd → Od is continuous iff it is holomorphic, as
its coefficient functions are polynomials and hence holomorphic function Opd → C. In
Theorem 5.1.10 we will give further characterizations of analyticity of textile maps.
The set of analytic textile maps Opd → Od will be denoted by T d,pA and the set of
analytic tactile maps by Sd,pA . Lemma 5.1.7 shows that every tactile map which is
induced from a convergent power series is analytic. The converse will be shown in
Lemma 5.2.3. We say that a textile map F ∈ T d,p is tactilly bounded if there exist
M ∈ R+, R ∈ Rd+p

+ so that the coefficients of F satisfy the estimate

|Fα,γ| ≤
M · µ(γ)

R(α−wt(γ),sh(γ)) .

This means that the coefficients of a tactilly bounded maps are bounded in the same
way as those of an analytic tactile map (see Theorem 5.1.4). It turns out that this class
is the right one if one seeks convergent solutions for the Cauchy-Kovalevskaya-type
differential equation δtu(x, t) = F (x, u(x, t)), if the defining function F is a textile
map (see Theorem 5.4.2). We denote the family of tactilly bounded maps Ppd → Pd
by T d,pB .

Remark. The notions of textile and tactile maps were coined by H.Hauser, who proved
rank theorems for tactile maps (see [HM94], [BH10]). Note that our definition of textile
maps is more restrictive as we require that Fα,γ = 0 if wt(γ) > α, while in [BH10] the
authors study maps with arbitrary polynomial coefficient functions.

Definition 5.1.6. Let d, p ∈ N and R,M ∈ R+. Since geometric series are going to
play a vital role, it is convenient to set

gd,R,M =
∑
α∈Nd

Mxα

R|α|
and gd,R,M,p = (gd,R,M , . . . , gd,R,M) ∈ Opd.
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5.1 Special classes of Holomorphic functions

We introduce the symmetrical polydiscs

Hd,R,M := {
∑
α∈Nd

cαx
α : |cα|R|α| ≤M} and Hp

d,R,M := (Hd,R,M)p ⊂ Opd.

It is easy to see that the family of symmetrical polydiscs forms a fundamental system
of bounded sets for Opd.
Lemma 5.1.7. Let F = ∑

(α,β)∈Nd+p cα,βx
αyβ ∈ Pd+p

(1) If F ∈ Od+p, then the associated tactile map F̂ : Opd → Od is analytic.
(2) Tactilly bounded maps are analytic.
(3) A textile map F is tactile iff (α1−wt(γ1), sh(γ1)) = (α2−wt(α2), sh(γ2)) implies

that Fα1,γ1 = Fα2,γ2 (for all α1, α2 ∈ Nd, γ1, γ2 ∈ M̃p
d).

Proof: (2) Let F = ∑
Fα,γx

γ
α be a tactilly bounded map Ppd → Pd. By definition

there exist M ∈ R+,R ∈ Rd+p
+ so that |Fα,γ| ≤ Mµ(γ)

R(α−wt(γ),sh(γ)) . Let G = gR,M ∈ Od+p.
Let K ∈ Rp+, S ∈ (Rd+)p and a ∈ HS,K . Then

|Fα(a)| = |
∑

wt(γ)≤α
Fα,γa

γ| ≤
∑

wt(γ)≤α
|Fα,γ|(|a|)γ ≤

Theorem 5.1.4
≤ Ĝα(|a|) ≤ Ĝα(gS,K) ≤ C

Tα

for some C ∈ R+, T ∈ Rd. Hence F (HS,K) ⊂ HT,C , which shows that
F : Opd → Od and that F is bornological and thus holomorphic (see Theorem 2.8.2).
(1) By Lemma 5.1.7 tactile maps induced from convergent power series are tactilly
bounded. (3) The necessity of the condition is the content of Theorem 5.1.4. Suppose
that the above relation between the coefficients holds. Let f : Nd → N,

f(α) :=

1 if α = e1

0 else

For (α, β) ∈ Nd × Np, let ν(β) := (β1 · f, . . . , βp · f) ∈Mp
d and

ε(α, β) := α + wt(ν(β)). Note that (ε(α, β) − wt(ν(β)), sh(ν(β))) = (α, β). Set
cα,β := Fε(α,β),ν(β) and let G(x, y) := ∑

cα,βx
αyβ ∈ Pd+p. Then

Ĝα,γ = cα−wt(γ),sh(γ) = Fα−wt(γ)+wt(ν(sh(γ))),ν(sh(γ)) = Fα,γ.

This means that F = Ĝ, so F is tactile.
Lemma 5.1.8 (Cauchy-Estimates for textile maps). Let F : Ppd → Pd be a textile
map, and suppose there exist S ∈ (Rd

+)p, K ∈ Rp+, R ∈ Rd+,M ∈ R+ so that F (HS,K) ⊂
HR,M . Then we have the following estimates:
(1) |Fα,γ| ≤ M

Rα
Swtv(γ)

Ksh(γ)

(2) There exist T,Q ∈ R+ so that |Fα,γ| ≤ 1
Q|α|

M
T |α|−|wt(γ)|+|sh(γ)|

Proof: As the coefficient functions of F are polynomials and hence holomorphic func-
tions Opd → C we can apply Proposition 4.3.15 to conclude (1).
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Chapter 5 Textile maps

(2) Let K = (Ki)pi=1, S = (Si,j)1≤i≤d
1≤j≤p

. Set K0 = min1≤i≤pKi, R0 = min1≤i≤dRi,

S0 = max1≤j≤p(max1≤i≤d(Si,j)). Choose 0 < T ≤ min{K0, R0} and set Q := T
S0
. Let

α ∈ Nd and γ ∈ M̃p
d with wt(γ) ≤ α. Then

|Fα,γ| ≤
M

Rα

Swtv(γ)

Ksh(γ) ≤
M

R
|α|
0

S
|wt(γ)|
0

K
|sh(γ)|
0

≤

≤ M

T |α|−|wt(γ)|+|sh(γ)|

(
S0

T

)|wt(γ)|

︸ ︷︷ ︸
≤( 1

Q)|α|

(
T

K0

)|sh(γ)| ( T
R0

)|α|
︸ ︷︷ ︸

≤1

≤ 1
Q|α|

M

T |α|−|wt(γ)|+|sh(γ)|

Since Fα,γ = 0 if wt(γ) 6≤ α, the estimate holds ∀γ ∈ M̃p
d

While it seems hard to give a direct growth estimate for the multinomial coefficient
µ(γ), it is easy to estimate the growth rate by using the Cauchy estimates.

Theorem 5.1.9. For α ∈ Nd let mα = max{µ(γ) | γ ∈ M̃d, wt(γ) ≤ α}. The
countable net (mα)α∈Nd grows geometrically or slower - i.e. there exist an R ∈ Rd+ so
that supα∈Nd R

αmα <∞.

Proof: Consider the geometric series G = ∑
(α,β)∈Nd×Nd x

αyβ and let gα,γ denote the
coefficients of Ĝ. By Theorem 5.1.4 we know that gα,γ = µ(γ) if wt(γ) ≤ α. Set
S = (1, . . . , 1) ∈ Rd+. We know that Ĝ : Od → Od is continuous, hence there exist
M ∈ R+ and R ∈ Rd+ so that Ĝ(HS,1) ⊂ HR,M . The estimates from Lemma 5.1.8 then
yield that |gα,γ| ≤ M

Rα
, which shows that mαR

α ≤M for all α ∈ Nd.

Theorem 5.1.10. For a textile map F : Ppd → Pd, the following are equivalent:
(1) F : Opd → Od is holomorphic.
(2) F : Opd → Od is continuous.
(3) F : Opd → Od is bornological.
(4) ∃S ∈ (Rd+)p, K ∈ Rp+ : F (HS,K) ⊂ HR,M

(5) ∃S,K,R,M ∈ R+ : F (Hp
d,S,K) ⊂ Hd,R,M

(6) ∃S,K,R ∈ R+ : supα∈Nd R
α sup

γ∈M̃p
d

|Fα,γ| K
sh(γ)

Swtv(γ) <∞
(7) ∃R,Q ∈ R+ : ∀α ∈ Nd ∀γ ∈ M̃p

d : |Fα,γ| ≤ 1
Q|α|

M
R|α|−|wt(γ)|+|sh(γ)|

Proof: The coefficient functions Fα are polynomials and thus holomorphic functions
Opd → C. Hence the equivalence (1) ⇔ (2) ⇔ (3) is just a special case of The-
orem 4.3.2. (3) ⇒ (4) is clear (4) ⇒ (5) Let K = (Ki)pi=1, S = (Si,j)1≤i≤d

1≤j≤p
.

Set K0 = min1≤i≤pKi, S0 = max1≤j≤p(max1≤i≤d(Si,j)), R0 = min1≤i≤dRi. Then
Hp
d,S0,K0 ⊂ HS,K and HR,M ⊂ Hd,R0,M , which yields the claim.

(5)⇒ (6) is Lemma 5.1.8 and (6)⇒ (7) follows out of the proof of Lemma 5.1.8.
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5.1 Special classes of Holomorphic functions

(7)⇒ (3) Let H(x, y) := ∑
(α,β)∈Nd+p

1
R|(α,β)|x

αyβ. Let S,K > 0 and let

a ∈ Hp
d,S,K . Then

|Fα(a)| ≤
∑

wt(γ)≤α
|Fα,γ||aγ| ≤

1
Q|α|

∑
wt(γ)≤α

M

R|α|−|wt(γ)|+|sh(γ)|µ(γ) (gd,S,K,p)γ =

Theorem 5.1.4= M

Q|α|
H(x, gd,S,K,p)[α] ≤

Lemma 5.1.7
≤ M

Q|α|
K̃

T |α|
for some K̃, t > 0.

Hence F (Hp
d,s,K) ⊂ Hd,T ·Q,K̃·M , which means that F is bornological as the symmetrical

polydiscs form a fundamental system of bounded sets for Opd

Remark. The above theorem shows that from a topological point of view textile maps
behave similarly to linear maps between normed spaces: They are continuous iff they
preserve the boundedness of a "ball" Hd,S,K .

Corollary 5.1.11. A power series F ∈ Pn converges around 0 if and only if there
exist d + p = n so that F̂ ∈ Sd,pA . In other words: F is holomorphic at 0 iff F̂ is
holomorphic.

Proof: (⇐) Let F = ∑
cα,βx

αyβ ∈ Pd+p, and suppose that F̂ ∈ Sd,pA . Then there
exist R,M,Q ∈ R+ s.t. |F̂α,γ| ≤ 1

Q|α|
M

R|α|−|wt(γ)|+|sh(γ)| . Let f : Nd → N,

f(α) :=

1 if α = e1

0 else

For (α, β) ∈ Nd × Np, let ν(β) := (β1 · f, . . . , βp · f) ∈Mp
d and

ε(α, β) := α + wt(ν(β)) = α + (|β|, 0, 0, . . . , 0)

Hence

|cα,β| = |Fε,γ| ≤
M

Q|ε|
1

R|α|−|wt(γ)|+|sh(γ)| ≤
M

Q|α|+|β|
1

R|α|+|β|−|β|+|β|
≤ M

(Q ·R)|α|+|β|
,

so F ∈ O1
n. (⇒) was shown in Lemma 5.1.7.

Corollary 5.1.12. Let F ∈ T d,p. Suppose that F has non-negative coefficients and
that F preserves the convergence of a geometric series, i.e. that there areM ∈ R+, R ∈
(Rd+)p so that F (gR,M) ∈ Od. Then F : Opd → Od and F is continuous.

Proof: Let a ∈ HR,M . Then |Fα(a)| ≤ Fα(|a|) ≤ Fα(gR,M) ≤ K
Sα

for some S ∈
Rd+, K ∈ R+. This yields that F (HR,M) ⊂ HS,K , which implies by Theorem 5.1.10
that F is holomorphic.
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5.2 The topology of textile maps
Definition 5.2.1. Let d, p be fixed and let F = ∑

wt(γ)≤α Fα,γx
γ
α ∈ T = Td,p. For

R,Q,M ∈ R+, we define:

ρ
R,Q

: T → R+ ∪ {∞}, ρR,Q (F ) := sup
α,γ
|Fα,γ|R|α|−|wt(γ)|+|sh(γ)|Q|α|

TR,Q := {F ∈ T |ρ
R,Q

(F ) <∞}, BR,Q,M :=
{
F ∈ T

∣∣∣ρ
R,Q

(F ) ≤M
}

Theorem 5.1.10 yields that
TA =

⋃
R,Q∈R+

TR,Q

We endow the spaces TR,Q with the norm ρ
R,Q

with which they become Banach
spaces and equip TA with the inductive topology so that TA = lim−→TR,Q, where
(TR,Q)R,Q∈R+ is ordered by inclusion.

Lemma 5.2.2. Let 0 < S < R and 0 < P < Q.
(1) The inclusion mapping TR,Q → TS,P is compact.
(2) TA is a (DFS)-space.
(3) SA is a closed subspace of T and hence a (DFS)-space.

Proof: (1) Let
(
F k
)
k∈N
⊂ BR,Q, F

k = (∑wt(γ)≤α F
k
α,γx

γ
α) be an arbitrary sequence.

We need to show that
(
F k
)
k∈N

possesses a subsequence which converges in TS,Q.
As the coordinate sequences (F k

α,γ)k∈N are bounded we can extract for each coordi-
nate a convergent subsequence. Using a diagonal argument we can extract a sub-
sequence of (F k)k∈N which converges coordinate-wisely. So without loss of general-
ity we may suppose that (F k)k∈N itself converges coordinate-wisely to a textile map
F = (∑wt(γ)≤α Fα,γx

γ
α). The coordinate-wise convergence yields that F ∈ BR,Q. Let

ε > 0 and choose N1 ∈ N so that
(
P
Q

)N1 ≤ ε
2 . Let N2 > N1 so that

∀k > N2 ∀|α| ≤ N1 ∀γ : |F k
α,γ − Fα,γ| ≤

ε

2
1

R|α|−|wt(γ)|+|sh(γ)|
1
Q|α|

Then for k > N2 we have ρ
S,P

(F k − F ) ≤ ε :

ρ
S,P

(F k − F ) = sup
α,γ
|F k
α,γ − Fα,γ|S|α|−|wt(γ)|+|sh(γ)|P |α| =

= sup
α,γ
|F k
α,γ − Fα,γ|R|α|−|wt(γ)|+|sh(γ)|Q|α|︸ ︷︷ ︸

(I)

(
S

R

)|α|−|wt(γ)|+|sh(γ)|

︸ ︷︷ ︸
(II)

(
P

Q

)|α|
︸ ︷︷ ︸

(III)

Note that (I) ≤ ρ
R,Q

(F k − F ) ≤ 2 , (II) ≤ 1 and (III) ≤ 1 for all α ∈ Nd and
γ ∈ M̃p

d. If |α| ≤ N1, then (I) ≤ ε
2 , and if |α| ≥ N1, then (II) ≤ ε

2 . This shows that
ρ
S,P

(F k − F ) ≤ ε for k > N2, and hence F k converges to F in TS,P . (2) is a simple
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consequence of (1), since the spectra
(
T1/n,1/n

)
n∈N

and (TR,Q)R,Q∈R+
are equivalent,

yielding lim−→
n

T1/n,1/n = TA

(3) Let
(
F k
)
k∈N
∈ SA converge to F in TA, . Let (α1, γ1), (α2, γ2) ∈ Nd × M̃p

d so that
(α1−wt(γ1), sh(γ1)) = (α2−wt(γ2), sh(γ)). Then Fα1,γ1 = lim

k→∞
F k
α1,γ1 = lim

k→∞
F k
α2,γ2 =

Fα2,γ2 . By Lemma 5.1.7, this means that F is tactile, and since F ∈ TA we conclude
that F ∈ SA.

Lemma 5.2.3. Od+p ∼= Sd,pA as LCVS.

Proof: The canonical map Φ: On → Sd,pA F 7→ F̂ is a linear isomorphism by Theo-
rem 5.1.11. Since the open mapping theorem holds for maps between (DFS)-spaces,
it suffices to show that Φ is continuous, for which we use the sequential closed-graph
theorem. Let (Fn,Φ(Fn)) → (F,G), Fn = ∑

α,β cα,βx
αyβ, Φ(Fn) = ∑

F n
α,γx

γ
α. The

projection pα,β : F 7→ cα,β and pα,γ : F̂ → Fα,γ are continuous on Od+p and Sd,pA , re-
spectively. This implies that the coefficients of G have to coincide with those of F̂ ,
which yields G = Φ(F ).

Lemma 5.2.4.
(1) The inductive topology of T d,pA coincides with the compact-open topology τco.
(2) T d,pA is a closed subspace of H (Opd,Od).
(3) T d,pA is a (DFN)-space.
(4) The bounded sets of T d,pA are equicontinuous as a family

of functions Opd → Od.
(5) The family {xγα | α ∈ Nd, γ ∈ M̃

p
d : wt(γ) ≤ α} forms a basis for T d,pA .

Proof: As in Theorem 4.4.23 let pα,γ denote the coordinate projections onH (Opd,Od).
Let Q = {pα,γ | wt(γ) > α}. Then T d,pA = ⋂

pα,γ∈Q ker pα,γ and thus (T d,pA , τco) is an
ultrabornological space by Theorem 4.4.23. Recall that Webb’s form of the open
mapping theorem (see for example [MV92, p.289]) states that if T : E → F is a
continuous linear bijection, E a webbed space, F ultrabornological, then T is an
isomorphism (i.e. T−1 is continuous). T d,pA is webbed and bornological, so for showing
that id : T d,pA → (T d,pA , τco) is continuous it suffices to show that every set which is
bounded in the inductive topology is also bounded in the compact-open topology.
If B ⊂ T d,pA is bounded in the inductive topology, then there exist R,Q > 0 so
that B ⊂ BR,Q,M . The compact-open topology is generated by the family of semi-
norms

{
‖ ‖K,φ

∣∣∣ K ⊂
co
Opd, φ ∈ H

(
Cd
)}

, where ‖F‖K,φ := supa∈K p∞φ (F (a)). Let

φ ∈ H
(
Cd
)
, K ⊂

co
Opd. Choose S, M̃ so that K ⊂ HS,M̃ . For F ∈ BR,Q,M and

a ∈ HS,M̃ we have that |Fα(a)| ≤ M
Qα

ĝd+p,R,M(KgS,M̃) ≤ C
Tα

for some C ∈ R+, T ∈
Rd+. Therefore p∞φ (F (a)) ≤ ∑ |φα| CTα ≤ C̃, so ‖BR,Q,M‖K,φ ≤ C̃ and it follows that
BR,Q,M is τco-bounded since K,φ were arbitrary. (2), (4) and (5) are a consequence
of (1) and Theorem 4.4.23 and Theorem 4.4.24. (3) H (Opd,Od) is a nuclear space by
Proposition 4.4.13, and since nuclearity is passed over to subspaces (Theorem 2.6.13)
we see that T d,pA is nuclear and hence a (DFN)-space by Theorem 2.7.8.
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5.2.1 Limit topologies on SA and TB
Definition 5.2.5. Let d, p ∈ N be fixed, TB = T d,pB . We recall that a textile map
F = ∑

Fα,γx
γ
α is tactilly bounded iff there exists an R ∈ R+ so that

supα,γ |Fα,γ|R
|α|−|wt(γ)|+|sh(γ)|

µ(γ) <∞. We define

ν
R

: T → R+ ∪ {∞}, νR(F ) := sup
α,γ
|Fα,γ|

R|α|−|wt(γ)|+|sh(γ)|

µ(γ)
TBR := {F ∈ T | ν

R
(F ) <∞}

We note that TB = ⋃
R∈R+ TBR . Let τind be the inductive topology such that

(TB, τind) = lim−→{(TBR , νR) : R ∈ R+}. Likewise we can introduce an inductive topology
on SA = Sd,pA : We set

S
R

:= {F ∈ S | ν
R

(F ) <∞} ,

equip S
R
with ν

R
and denote by τS the inductive topology

so that (SA, τS) = lim−→{(SR , νR) : R ∈ R+}. We will see that while the inductive
topology τS coincides with τco on S, the limit topology τind is strictly stronger than
τco on TB and unlike (SA, τS) the larger space (TB, τind) fails to be a (DFS)-space.

Theorem 5.2.6. Let d, p ∈ N.
(1) TB is dense in TA.
(2) (TB, τind) is not a (DFS)-space.
(3) (TB, τind) is sequentially retractive.
(4) τind is strictly finer then τco on TB.
(5) (SA, τS) ∼= (SA, τco).

Proof: (1) Any textile map which has only finitely many coefficients 6= 0 is tactilly
bounded, and hence for any F ∈ TA the sequence of jets is contained in TB. (2) For
α ∈ Nd let α∗ ∈ M̃d be the monomial with

α∗(β) =

1 if β = α

0 else

Let en = (n, 0, . . . , 0) ∈ Nd, let γn = ((en)∗, 0, . . . , 0) ∈ M̃p
d and let Fn be the textile

map with coefficients (F n
α,γ), where

F n
α,γ =

1 if α = en and γ = γn

0 else

For any R ∈ R+ we have ν
R

(Fn) = R. Hence the sequence is contained in every
unit (norm) ball BR := {F ∈ TB | νR(F ) ≤ 1} if R ≤ 1. However, (Fn)n∈N cannot
have a convergent subsequence in any TBR , as νR(Fn − Fm) = R for n 6= m, for any
R ∈ R+. We conclude that the inclusion ι : TBR → TBS can never be compact for
any 0 < S < R, which shows that the inductive sequence (TB1/n)n∈N (which generates
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(TB, τind)) is not compact, and hence TB cannot be a (DFS)-space, since this would
imply that any generating sequence of Banach spaces for TB is compact.
(3) We will show that

(
TB1/n

)
n∈N

has property (M), which is equivalent to (TB, τind)
being sequentially retractive (Theorem 2.2.11). For 0 < T < S < R, the topologies
induced by ν

S
and ν

T
coincide on BR: By continuity of the embedding ι : TBS → TBT

it suffices to show that id : (BR, νT )→ (BR, νS) is continuous. Let (F k)k∈N, F ∈ BR so
that ν

T

(
F k − F

)
→ 0. Gk := F k−F ∈ 2·BR. We need to show that ν

S

(
Gk
)
→ 0. Let

ε > 0. Choose N ∈ N s.t.
(
S
R

)N
< ε/2. Let N0 ∈ N : ∀l > N0 : ν

T

(
Gl
)
< ε/

(
S
T

)N
.

Then for l > N0 : ν
S

(
Gl
)
< ε. Let α ∈ Nd, γ ∈ M̃p

d.
Case 1: |α| − |wt (γ) |+ |sh (γ) | ≤ N

|Gl
α,γ|S|α|−|wt(γ)|+|sh(γ)| = |Gl

α,γ|T |α|−|wt(γ)|+|sh(γ)|︸ ︷︷ ︸
≤ν

T (Gk)

(
S

T

)|α|−|wt(γ)|+|sh(γ)|

︸ ︷︷ ︸
≤( ST )N

≤ ε

Case 2: |α| − |wt (γ) |+ |sh (γ) | > N

|Gk
α,γ|S|α|−|wt(γ)|+|sh(γ)| =

∣∣∣Gk
α,γ

∣∣∣R|α|−|wt(γ)|+|sh(γ)|︸ ︷︷ ︸
≤2

(
S

R

)|α|−|wt(γ)|+|sh(γ)|

︸ ︷︷ ︸
<ε/2

≤ ε

Taking the supremum yields ν
S

(
Gk
)
≤ ε for k > N0. Hence νS

(
Gk
)
→ 0.

(4) It is easy to see that id : (TB, τind)→ (TB, τco) is bornological and thus continuous.
By Theorem 2.2.12 we have that (TB, τind) is a complete LCVS. But (TB, τco) cannot
be complete, as it is a proper and dense subspace of TA.
(5) First we show that the spectrum {SR : R ∈ Rd+} is compact, i.e. that ι : SR → ST
is compact for 0 < T < R. Let Fn = ∑

cnα,γx
γ
α ⊂ BSR := {F ∈ S | ν

R
(F ) ≤ 1}, which

we may assume WLOG to converge coordinate-wisely to F ∈ BSR .
Let Gn = ∑

cα,βx
αyβ ∈ Od+p so that Ĝn = Fn. Let ε > 0 and let N0 ∈ N so that(

T
R

)N0
< ε. Let A = {(δ1, δ2) ∈ Nd+p : |δ1| + |δ2| < N0}. Recall that we have the

relation cnα−wt(γ),sh(γ)µ(γ) = F n
α,γ. Let K0 ∈ N so that∣∣∣ckδ1,δ2 − cδ1,δ2

∣∣∣ < ε

holds for all k ≥ K0, for all (δ1, δ2) ∈ A. For n > K0 we have

ν
T
(F − Fn) = sup

(
T

R

)|α|−|wt(γ)|+|sh(γ)|
R|α|−|wt(γ)|+|sh(γ)| |F

n
α,γ − Fα,γ|
µ(γ) =

= sup
(δ1,δ2)∈Nd+p

(
T

R

)|δ1|+|δ2|
R|δ1|+|δ2||cnδ1,δ2 − cδ1,δ2|
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sup
(δ1,δ2)6∈A

(
T

R

)|δ1|+|δ2|

︸ ︷︷ ︸
≤(TR)N0≤ε

R|δ1|+|δ2||cnδ1,δ2 − cδ1,δ2 |︸ ︷︷ ︸
≤ν

R
(Fn−F )≤1

≤ ε

sup
(δ1,δ2)∈A

(
T

R

)|δ1|+|δ2|
R|δ1|+|δ2||cnδ1,δ2 − cδ1,δ2 |︸ ︷︷ ︸

≤ε

≤ ε

Hence ν
T
(Fn − F ) < ε for all k ≥ K0. We have shown that any sequence in BSR

has a convergent subsequence which converges with respect to ν
T
, which shows that

BSR is compact in ST , hence ι is compact. Now we show that Ψ: (SA, τs) → Od+p ∼=
(SA, τco), F̂ 7→ F is continuous. The family of all BSR,M := {F ∈ S | ν

R
(F ) ≤M} is a

fundamental system of bounded set of (SA, τs). If F̂ ∈ BSR,M , where F = ∑
cα,βx

αyβ,
then |cδ1,δ2 | = |Fα,γ|(µ(γ))−1 ≤M 1

R|δ1|+|δ2| for (δ1, δ2) = (α−wt(γ), sh(γ)). This shows
that Ψ is bornological and thus continuous, and as the open mapping theorem holds
for pairs of (DFS)-spaces, Ψ is an isomorphism.

5.3 Generalized textile maps
In this section we introduce a class of functions similar to textile maps, with a more
relaxed growth condition concerning wt(γ).

Definition 5.3.1. For N ∈ N, ν ∈ Nd a function F : Ppd → Pd is called a generalized
textile maps if its coefficient functions Fα are of the form

Fα(φ) =
∑
γ∈M̃p

d
wt(γ)≤N ·α+ν

cα,γφ
γ

The function h : Nd → Nd, h(α) := N · α + ν is the growth-function associated to F .

The key property of textile maps carries over to generalized textile maps: bound-
edness on a ball implies that the map preserves convergence and that it is analytic.

Proposition 5.3.2. Let F be a generalized textile map with growth function
h(α) = N · α + ν. TFAE:
(1) F is a holomorphic function Opd → Od.
(2) ∃S ∈ (Rd+)p, K ∈ Rp+, R ∈ Rd+,M ∈ R+ : F (HS,K) ⊂ HR,M .
(3) ∃S ∈ (Rd+)p, K ∈ Rp+, R ∈ Rd+ : supα∈Nd R

α sup
γ∈M̃p

d

|Fα,γ| K
sh(γ)

Swtv(γ) <∞

Proof: (1)⇒ (2)⇒ (3) see Proposition 4.3.15.
(3)⇒ (1) Let supα∈Nd R

α sup
γ∈M̃p

d

|Fα,γ| K
sh(γ)

Swtv(γ) < M <∞. Set U = R1/N and let G be
the textile map with coefficients

Gα,γ :=


M
Uα

Swtv(γ)

Ksh(γ) if wt(γ) ≤ α

0 else
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The construction yields
|Fα,γ| ≤

1
Uν

GN ·α+ν,γ.

Let C1 ∈ (Rd+)p, T1 ∈ R+. Then (by Theorem 5.1.10) there exist C2, T2 so that
G(HC1,T1) ⊂ HC2,T2 . So for α ∈ Nd, φ ∈ HC1,T1 , we obtain |Fα(φ)| ≤ 1

Uν
Gα·N+ν(|φ|) ≤

C̃ 1
(TN2 )α , where C̃ = 1

UνT ν2
, and hence

F (HC1,T1) ⊂ HC̃,TN2
. We conclude that F is bornological and hence holomorphical.

Definition 5.3.3. A power series F = ∑
α∈Nd,γ∈Mp

d
Fα,γx

γ
α is called locally textile with

growth function h(α) = N · α + ν if cα,γ = 0 if wt(γ) 6< h(α). We identifyMp
d with

Np × M̃p
d, i.e. we identify γ ∈Mp

d with (γ(0), γ̂), where γ(0) = (γ1(0), . . . , γp(0)) and
γ̂(α) = γ(α) if α 6= 0, γ̂(0) = 0. By definition, wt(γ) = wt(γ̂), which means that the
weight condition wt(γ) ≤ h(α) does not impose any restriction on γ(0). Note that
unlike textile functions we allow locally textile functions to depend on the constant
coefficient. Explicitly, let φ ∈ Opd, φ(0) =: φ0. Then

Fα(φ) =
∑
γ∈Mp

d
wt(γ)≤h(α)

cα,γφ
γ =

∑
γ∈Mp

d
wt(γ)≤h(α)

cα,γφ
γ(0)
0 φγ̂ ≤

∑
δ∈Np,γ̂∈M̃p

d
wt(γ̂)≤h(α)

cα,(δ,γ̂)φ
δ
0φ

γ̂

Clearly, the coefficients of a locally textile power series will fail to converge in general,
unless we presuppose that |φ0| is small enough. For C ∈ Rp+, we set
Ppd (C) = {φ = (φ1, . . . , φp) ∈ Ppd | |φk(0)| < Ck} and Opd(C) = Opd ∩ P

p
d (C).

Theorem 5.3.4. Let F be a locally textile power series with growth function h and
suppose that there exist C ∈ Rp+,M ∈ R+, S ∈ (Rd+)p, K ∈ Rp+ such that

|Fα,γ| ≤
1

Cγ(0)
M

Rα

Swtv(γ)

Ksh(γ) .

Then F is a holomorphic function Opd(C)→ Od.

Proof:

|Fα(φ)| ≤
∑

δ∈Np,γ̂∈M̃p
d

wt(γ̂)≤h(α)

|Fα,γ||φδ0||φγ̂| ≤
∑

δ∈Np,γ̂∈M̃p
d

wt(γ̂)≤h(α)

∣∣∣∣∣φ(0)δ
Cδ

∣∣∣∣∣ MRα

Swtv(γ)

Ksh(γ) |φ|
γ̂ ≤

≤
p∏

k=1

1
1− φk(0)

Ck

∑
γ̂∈M̃p

d
wt(γ̂)≤h(α)

M

Rα

Swtv(γ)

Ksh(γ) |φ|
γ̂

The estimate shows that for each α the power series Fα(φ) converges uniformly on com-
pact subsets of Opd(C), which means that the coefficients are holomorphic functions.
The same estimate yields the bornologicity of F , and thus F is holomorphical.
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Definition 5.3.5. Let F ∈ Od+p and φ ∈ Opd. We define the formal composition
F (x, φ(x)) coefficient-wise: Let ε ∈ Nd. Then F (x, φ(x))[ε] := ∑

α,β cα,β(φ(x))β[ε]. Of
course this definition makes only sense for certain power series, as specified in the
next lemma. If F is holomorphic in a neighborhood of the compact polydisc ∆R1,R2

centered at zero, if φ = (φ1, . . . , φp) is holomorphic at zero and if |φk(0)| < R2,k for
all 1 ≤ k ≤ p, then the coefficients of the formal composition F (x, φ(x)) coincide with
the coefficients of the taylor series at 0 of the analytic function F (x, φ(x)), which is a
consequence of Faà di Bruno’s formula.

Lemma 5.3.6. Let F (x, y) = ∑
α,β cα,βx

αyβ ∈ Od+p, let R1 ∈ Rd
+,

R2 = (R2,1, . . . , R2,p) ∈ Rp+ and M ∈ R+ so that

|cα,β| ≤
M

Rα
1R

β
2

Then the formal composition F̃ : φ 7→ F (x, φ(x)) is a well-defined operator
Ppd (R2) → Pd and the restriction F̃ | : Opd(R2) → Od is a holomorphic locally textile
map. The coefficient functions are

F̃ε(φ) :=
(
F̃ (φ)

)
[ε] :=

∑
γ∈Mp

d
, wt(γ)≤ε

Fε,γa
γ, where Fε,γ = cε−wt(γ),sh(γ) · µ(γ).

We obtain the estimates

|Fε,γ| ≤
M

R
ε−wt(γ)
1

µ(γ)
R

sh(γ)
2

and |F̃ε(φ)| ≤
∑

γ∈M̃p
d
,wt(γ)≤ε

1
R
ε−wt(γ)
1

1
R

sh(γ)
2

µ(γ)φγ
p∏

k=1

 1
1− φk(0)

R2,k

sh(γk)+1

.

Proof:

F (x, φ(x))[ε] =
∑
α,β

cα,β(φ(x))β[ε− α] =
∑
α,β

cα,β
∑
γ∈Mp

d
ω(γ)=(β,ε−α)

φγµ(γ) = (5.2)

=
∑

γ∈Mp
d
,wt(γ)≤ε

cε−wt(γ),sh(γ)µ(γ)︸ ︷︷ ︸
=:Fε,γ

φγ (5.3)

We readily receive the estimate

|Fε,γ| ≤
Mµ(γ)

R
ε−wt(γ)
1 ·Rsh(γ)

2
(5.4)

For δ ∈ Np let δ? = (δ?1, . . . , δ?p) ∈M
p
d be the monomial with

δ?k(α) =

δk if α = 0
0 else
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We set (
sh(γ) + δ

δ

)
:=

p∏
k=1

(
sh(γk) + δk

δk

)

It is easy to see that for γ = (γ1, . . . , γp) ∈ M̃p
d and δ ∈ Np we have the identity

µ(γ + δ?) = µ(γ) ·
(

sh(γ)+δ
δ

)
. Using Equation 5.3 and Equation 5.4 we obtain

|F (x, φ(x))[ε]| ≤
∑

γ∈M̃p
d
,wt(γ)≤ε

M

R
ε−wt(γ)
1

1
R

sh(γ)
2

∑
δ∈Np
|φγ|µ(γ + δ?)

(
|φ(0)|
R2

)δ
=

=
∑

γ∈M̃p
d
,wt(γ)≤ε

M

R
ε−wt(γ)
1

µ(γ)
R

sh(γ)
2

∑
δ∈Np
|φγ|

(
sh(γ) + δ

δ

)(
|φ(0)|
R2

)δ
=

=
∑

γ∈M̃p
d
,wt(γ)≤ε

M

R
ε−wt(γ)
1

µ(γ)
R

sh(γ)
2

p∏
k=1

∞∑
δk=0

(
sh(γk) + δk

δk

)(
|φk(0)|
R2,k

)δk

Now we rewrite the binomial series to obtain

|F (x, φ(x))[ε]| ≤
∑

γ∈M̃p
d
,wt(γ)≤ε

1
R
ε−wt(γ)
1

1
R

sh(γ)
2

µ(γ)φγ
p∏

k=1

(
1

1− φk(0)
R2,k

)sh(γk)+1

Definition 5.3.7. We say that a locally textile map F = ∑
α,γ Fα,γx

γ
α is tactilly

bounded if Fα,γ = 0 if wt(γ) > α and if there exist R1 ∈ Rd+, R2 ∈ Rp+ and M ∈ R+
so that

|Fα,γ| ≤
M

R
α−wt(γ)
1

µ(γ)
R

sh(γ)
2

for all α ∈ Nd, γ ∈Mp
d.

Imposing a linear growth condition on γ0 and thus restoring the triangle scheme
for the coefficients Fα,γ leads to another class of holomorphic functions for which a
characterization of holomorphy as in Theorem 5.1.10 is possible:

Theorem 5.3.8. Let F be a locally convergent textile power series with growth function
h and suppose that there is a linear function g : Nd → Np, g(α) = Lα + ν0,
L ∈Mp×d(N), ν0 ∈ Np, so that

Fα(φ) =
∑

δ∈Nd,γ̂∈M̃p
d

wt(γ̂)≤h(α), γ(0)≤g(α)

Fα,γφ
γ

Then F is called a generalized textile map with growth vector (h, g).
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The following are equivalent:
(1) F is a holomorphic function Opd → Od.
(2) ∃S ∈ (Rd+)p, K ∈ Rp+, R ∈ Rd+,M ∈ R+ : F (HS,K) ⊂ HR,M .
(3) ∃S ∈ (Rd+)p, K ∈ Rp+, R ∈ Rd+ : supα∈Nd R

α sup
γ∈M̃p

d

|Fα,γ|K
sh(γ)

Swtv <∞

Proof: (1)⇒ (2)⇒ (3) See Proposition 4.3.15.
(3) ⇒ (1) Let supα∈Nd R

α supγ∈Mp
d
|Fα,γ| K

sh(γ)

Swtv(γ) < M < ∞. Let F̃ be the generalized
textile map whose coefficients are

F̃α =
∑
γ̂∈M̃p

d
wt(γ̂)≤h(α)

M

Rα

Swtv(γ̂)

Ksh(γ̂) x
γ
α

Let (w1(α), . . . , wp(α))t = g(α). We estimate F by F̃ :

|Fα(φ)| ≤
∑

γ0∈Np,γ̂∈M̃p
d

wt(γ̂)≤h(α), γ0≤g(α)

M

rα
swtv(γ̂)

Ksh(γ̂)

∣∣∣∣∣ φ
γ0
0

Mγ0

∣∣∣∣∣ |φ|γ̂ ≤

≤
p∏

k=1

|φk(0)|wk(α)+1 − 1
|φk(0)| − 1 F̃α(|φ|)

Let T ∈ (Rd+)p, C ∈ Rp+, WLOG Ck > 1 for all 1 ≤ k ≤ p. Choose T2, C̃ so that
F̃ (HT,C) ⊂ HT2,C̃

. Set E = (1, . . . , 1) ∈ Np. Then, for φ ∈ HT,C , we obtain

|Fα(φ)| ≤
p∏

k=1

|φk(0)|wk(α)+1 − 1
|φk(0)| − 1 F̃α(|φ|) ≤ Cg(α)F̃α(|φ|) ≤ Cν0CLα C̃

Tα2

The estimate yields that F : Opd → Od is bornological and thus holomorphical.

5.4 A Cauchy-Kovalevskaya-type theorem
Definition 5.4.1. For u(x, t) = (u1, . . . , up) ∈ Ppd+1 = (Pd (P1))p ,
uk (x, t) = ∑

(α,j)∈Nd×N c
k
α,jx

αtj = ∑
α∈Nd u

k
α (t)xα, F = ∑

α,γ Fα,γx
γ
α and

γ ∈Mp
d we formally set

u (x, t)γ :=
∏

1≤k≤p

∏
α∈Nd

(
ukα (t)

)γk(α)

Fα (u (x, t)) :=
∑
γ∈Mp

d

Fα,γ (u (x, t))γ

F (u(x, t)) :=
∑
α∈Nd

Fα (u (x, t))xα

Note that Fα(u(x, t)) may be ill-defined (divergent) for general F, u.
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5.4 A Cauchy-Kovalevskaya-type theorem

Theorem 5.4.2. Let (Fk)1≤k≤p be locally textile maps with growth function h(α) = α,
i.e.

Fk(a)[α] =
∑
γ∈Mp

d
wt(γ)≤α

F k
α,γa

γ

Further let w ∈ Ppd with w(0) = 0 and consider the Cauchy-Problem

δtu(x, t) = F (u(x, t)), u(x, 0) = w (5.5)

If all Fk are locally textile maps which are tactilly bounded and if w ∈ Opd then there
exists a unique solution u(x, t) ∈ Opd+1.

Proof: Let u(t) = (u1(t), . . . , up(t)), uk(t) = ∑
α∈Nd c

k
α(t)xα, where ckα(t) = ∑

j∈N c
k
α,jt

j,
and w = (w1, . . . , wp), where wk = ∑

α∈Nd d
k
αx

α. The condition w(0) = 0 yields that
ck0,0 = 0 for all 1 ≤ k ≤ p, which is critical for the fact that the other coefficients can
be calculated polynomially. For γ inMp

d let

γ̂ ∈ M̃p
d, γ̂(α) =

γ(α) if α 6= 0
0 for α = 0

We observe that

δtu(x, t) = F (u(x, t))⇔ ∀k ∈ N ∀α ∈ Nd : δtc
k
α(t) = F k

α(u(x, t))
⇔ ∀k ∈ N ∀α ∈ Nd ∀j ∈ N : ckα,j+1 · (j + 1) = F k

α(u(x, t))[j]

⇔ ∀k ∈ N ∀α ∈ Nd ∀j ∈ N : ckα,j+1 = 1
1 + j

∑
γ∈Mp

d
wt(γ)≤α

F k
α,γ

(
u(x, t)γ̂c0(t)γ(0)

)
[j]

Hence, for every α ∈ Nd

ckα,j+1 = P k
α,j

(F k
α,γ) γ∈Mp

d
|γ(0)|≤j

, (cmβ,l)1≤m≤p,0≤l≤j,
0≤β≤α

 (5.6)

where P k
α,j is a polynomial with non-negative coefficients. Proceeding iteratively in

this manner we obtain

ckα,j = Qk
α,j

(F n
ε,γ

)
1≤n≤p, |γ(0)|≤j
ε≤α, γ∈Mp

d

,
(
dkβ
)

1≤k≤p
0≤β≤α

 (5.7)

where Qk
α,j is a polynomial with non-negative coefficients depending only on the initial

data w and the textile operator F , which shows that Equation 5.5 has a solution in Ppd
for any w ∈ Ppd with w(0) = 0. Now suppose that the initial data w is a convergent
power series and that F is tactilly bounded, i.e. that there are s ∈ R+ so that
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Chapter 5 Textile maps

w ∈ Hp
d,s,M and C ∈ Rp+, R = (R1, R2) ∈ Rd+p

+ so that

|F k
α,γ| ≤

C · µ(γ)
R
α−wt(γ)
1

1
R

sh(γ)
2

for all α, γ, k. Set g(x) = M · ∑α 6=0
xα

s|α|
, H(x, y) = K · ∑(

1
R

)(α,β)
xαyβ ∈ Od+p

and G(x, y) = (H(x, y), . . . , H(x, y)) ∈ Opd+p. Let ω be the solution to the analytic
Cauchy-Kovalevskaya-Problem

δtv(x, t) = G(x, v(x, t)), v(x, 0) = (g, . . . , g) (5.8)

This is equivalent to ω solving

δtv(x, t) = G̃(v(x, t)), v(x, 0) = (g, . . . , g) (5.9)

The Cauchy-Kovalesvkaya Theorem yields that ω is analytic, hence there exist t,K > 0
so that for all (α, j) ∈ Nd+1, 1 ≤ m ≤ p :

0 ≤ ωmα,j ≤
K

t|α|+j

Since G̃ is a locally textile map, we can calculate the coefficients ωkα,j also by evaluating
the polynomials Qk

α,j at the coefficients of G̃ and g, which enables us to bound the
modulus of the coefficients of u by the coefficients of ω:

∣∣∣ckα,j∣∣∣ =

∣∣∣∣∣∣Qk
α,j

(F n
ε,γ

)
1≤n≤p, |γ(0)|≤j
ε≤α, γ∈Mp

d

, (dmβ )1≤m≤p
0≤β≤α

∣∣∣∣∣∣ ≤
≤ Qk

α,j

(|F n
ε,γ|
)

1≤n≤p, |γ(0)|≤j
ε≤α, γ∈Mp

d

, (|dmβ |)1≤m≤p
0≤β≤α

 ≤
≤ Qk

α,j

(G̃n
ε,γ

)
1≤n≤p, |γ(0)|≤j
ε≤α, γ∈Mp

d

, (gmβ )1≤m≤p
0≤β≤α

 = ωkα,j ≤
K

t|α|+j

Hence we obtain the estimate ∣∣∣cmα,j∣∣∣ ≤ K

t|α|+j
,

which means that u(x, t) ∈ Opd+1.
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5.4 A Cauchy-Kovalevskaya-type theorem

Corollary 5.4.3. Let w ∈ Opd with w(0) = 0.
(1) Let F be tactilly bounded textile map. Then the Cauchy-problem

δtu(x, t) = F (u(x, t)), u(x, 0) = w

has a unique analytic solution.
(2) Let G ∈ Opd+p. Then the Cauchy-problem

δtu(x, t) = G(x, u(x, t)− u(0, t)), u(x, 0) = w

has a unique analytic solution.

Proof: (1) follows directly from Theorem 5.4.2.
(2) We may rewrite the differential equation as

δtu(x, t) = Ĝ(u(x, t)), u(x, 0) = w.

Ĝ is tactilly bounded, so (2) is a direct consequence of (1).

Example 5.4.4. For analytic textile maps F the solution to Theorem 5.4.2 might fail
to be convergent, even if the coefficient functions of F are linear and the equation is
homogeneous. Let q ∈ (0, 1) and let F be the textile map P1 → P1 with

Fn(
∑
k∈N

ckx
k) = an

qn
+ 1
qn

Applying Theorem 5.1.10 it is easy that F : O1 → O1 is analytic.
Let v(x, t) = ∑

(n,k)∈N2 vn,kx
ntk be the solution in P2 to

δtv(x, t) = F (v(x, t)), v(x, 0) = 0

We see that

vn,0 = 0

vn,1 = 1
qn

vn,j+1 = 1
j + 1

1
qn
vn,j

and hence

vn,k = 1
k!

(
1
qn

)k
if k > 0, vn,0 = 0

But v does not converge in any neighborhood of zero. Let R > 0 and choose k ∈ N
s.t. qk < R. Then

vn,kR
n+k = Rk

k!

(
R

qk

)n
n→∞−−−→∞
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Abstract
This thesis deals with holomorphic functions Opd → Od, where Od denotes the ring of
convergent power series in d variables. In the first two chapters the necessary concepts
from functional analysis and topology are developed. The representation of Od as
union ⋃

S∈Rd+ `
∞(S) of weighted Banach spaces yields a natural inductive topology,

where `∞(S) is the Banach space of power series for which supα∈Nd |cαSα| is finite. It
turns out that Od is a (DFS)-space, which seems to be the best setting for the usage of
concepts of infinite-dimensional calculus, as different approaches coincide and smooth
functions are always continuous, which is in general false. In chapter three we give an
overview of two concepts of holomorphicity. Chapter four then specifically deals with
Od and the holomorphic functions on it. We extend the result by Dineen and Boland,
that holomorphic functions Od → C can be expanded into monomial series, to the
vector-valued case Od → Od and establish some results on the space (H(Opd,Od), τco).
The last chapter treats a special class of holomorphic functions Opd → Od, whose
Taylor coefficients have a similar structure as those of substitution maps
φ(x) 7→ F (x, φ(x)). We start by studying such maps that ignore the constant term φ(0)
– which we call textile maps – which behave similar to linear maps in normed spaces:
they are continuous if and only if they preserve the boundedness of a "ball". The same
condition also implies that maps of this class are entire functions. It is then shown that
the space of these maps equipped with the compact-open topology is a (DFS)-space
and the results established before are then generalized to broader classes. Finally we
turn our attention to the differential equation δtu(x, t) = F (u(x, t)), where the right
side is a generalized textile map, and show that it is analytically solvable for analytical
initial conditions. A consequence of this result is that δtu(x, t) = F (x, u(x, t)) (where
F is a convergent power series) remains analytically solvable if the coefficients of
the right side (considered as a holomorphic function Opd → Opd) are continuously
perturbated.
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Zusammenfassung
Diese Arbeit beschäftigt sich mit holomorphen FunktionenOpd → Od, wobeiOd für den
Ring konvergenter Potenzreihen in d Variablen stehe. In den ersten beiden Kapiteln
werden die hierfür notwendigen Konzepte aus Funktionalanalysis und Topologie erar-
beitet. Die Darstellung Od = ⋃

S∈Rd+ `
∞(S) ergibt eine natürliche Topologisierung von

Od als induktiven Limes, wobei `∞(S) der Banachraum aller Potenzreihen ∑ cαx
α ist,

für welche die gewichtete Supremumsnorm supα∈Nd |cαSα| endlich ist. Es zeigt sich,
dass Od mit dieser Topologie ein (DFS)-Raum wird. Räume dieser Klasse erscheinen
als besonders geeigneter Rahmen für die Verwendung von Konzepten unendlichdi-
mensionaler Analysis, da hier verschiedene Zugänge übereinstimmen und glatte Funk-
tionen stetig sind, was im Allgemeinen falsch ist. In Kapitel drei wird ein kurzer
Überblick über zwei Konzepte holomorpher Funktionen zwischen lokalkonvexen Räu-
men geschaffen. In Kapitel vier wird dann speziell auf Od eingegangen, und ein Resul-
tat von Boland und Dineen, wonach jede holomorphe Funktion Opd → C in eine Tay-
lorreihe bestehend aus Monomen entwickelt werden kann, auf holomorphe Funktionen
Opd → Od verallgemeinert. Im letzten Kapitel wird dann eine Klasse holomorpher
Funktionen, deren Koeffizienten eine ähnliche Struktur wie jene von Substitutions-
abbildungen φ(x) 7→ F (x, φ(x)) besitzen, betrachtet. Zunächst werden Abbildungen
dieser Klasse, welche den konstanten Term φ(0) ignorieren – die wir als textile Ab-
bildungen bezeichnen – untersucht. Diese zeigen ein ähnliches Verhalten wie lineare
Abbildungen zwischen normierten Räumen: sie sind stetig genau dann wenn sie auf
einer "Kugel" beschränkt sind und die selbe Bedingung ist hinreichend dafür, dass
Abbildungen dieser Klasse ganze Funktionen sind. Ausgestattet mit der kompakt-
offenen Topologie wird der Raum dieser Abbildungen zu einem (DFS)-Raum. Diese
Resultate werden dann auf allgemeinere Klassen ausgeweitet. Im letzten Teil dieses
Kapitels betrachten wir die Differentialgleichung δtu(x, t) = F (u(x, t)), wobei F eine
verallgemeinerte textile Abbildung ist. Es wird gezeigt, dass diese bei analytischer
Anfangsbedingung analytisch lösbar ist. Dieses Resultat kann so interpretiert werden,
dass die Differentialgleichung δtu(x, t) = F (x, u(x, t)) analytisch lösbar bleibt, wenn
die Koeffizienten der rechten Seite (aufgefasst als holomorphe Abbildung Opd → O

p
d)

stetig perturbiert werden.
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