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Abstract

We show that the second group of cohomology with compact supports is nontrivial for
3�dimensional systolic pseudomanifolds. As a prerequisite we review the basics on systolic
complexes and compactly supported cohomology, and we explore basic examples.

Zusammenfassung

Es wird gezeigt, dass die zweite Kohomologiegruppe mit kompaktem Träger für 3�
dimensionale systolische Pseudomannigfaltigkeiten nichttrivial ist. Als Voraussetzung dafür
werden die Grundlagen der systolischen Komplexe und der Kohomologie mit kompaktem
Träger besprochen und einfache Beispiele angegeben.
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1 Introduction

Systolic complexes were introduced by T. Januszkiewicz and J. �wi�atkowski ([5]) and,
independently, by F. Haglund([3]) and V. Chepoi ([1]) as combinatorial analogues of non-
positively curved spaces. They are simply connected simplicial complexes satisfying some
local combinatorial conditions. Roughly speaking, there is a lower bound on the length of
�essential� closed paths in the one-skeleton of every link.

This condition is an analogue of the Gromov condition implying nonpositive curvature
for cubical complexes. However, systolic complexes equipped with the metric for which ev-
ery simplex is isometric to the regular Euclidean simplex are not necessarily nonpositively
curved. Conversely, there exist nonpositively curved spaces (e.g. manifolds of dimension at
least three) that do not admit systolic triangulations. Nevertheless systolic spaces (some-
times referred to as complexes of simplicial nonpositive curvature - SNPC) possess many
properties analogous to those of spaces of nonpositive curvature. They are contractible (this
is an analogue of the Cartan-Hadamard theorem), with some additional assumptions they
are Gromov hyperbolic or CAT (0) (CAT (−1)), and complexes of groups with local devel-
opments satisfying the same conditions as links in systolic spaces are developable (see [5] for
details).

The latter property allows one to construct many examples of systolic spaces and groups
(i.e. groups acting geometrically on systolic complexes) with some additional properties and
to answer some open questions (see [5]).

In this paper we study systolic complexes, focusing on pseudomanifolds and compactly
supported cohomolgy groups. Our main result is the following.

Main Theorem (Theorem 4.3.2) Let X be a systolic 3�pseudomanifold. Then the sec-

ond group of cohomology with compact supports H2
c (X;Z) is nontrivial.

The most important consequence of this result, and the initial motivation for this work,
is the following. Main Theorem implies that groups acting geometrically on systolic 3�
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pseudomanifolds are not duality groups. However, in the current paper we do not explore
this issue � see e.g. [5, 7] for related discussions and results.

The paper is divided in three parts. In the �rst part we introduce systolic complexes
(which are particular simplicial complexes) and pseudomanifolds. Basic de�nitions and
examples are given, and we �nish by proving that 2�dimensional spheres in a systolic 3�
pseudomanifold are 2�pseudomanifolds. This result is central to prove the main theorem of
this paper.

In the second part we de�ne cohomology of simplicial complexes and cohomology with
compact supports. Before that, we recall some basic results from homology theory.

The last chapter is devoted to the proof of Main Theorem. We start by computing the
cohomology groups H1

c (R;Z) and H∗c (Rn;Z), which use the tools presented in the previous
sections and help us to understand the techniques used to solve our problem. Finally, we
proceed to the proof of Main Theorem.
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2 Systolic complexes

In this section we introduce systolic complexes (which are particular simplicial complexes)
and pseudomanifolds. Basic de�nitions and examples are given, and we �nish by proving that
2�dimensional spheres in a systolic 3�pseudomanifold are 2�pseudomanifolds. This result is
central to prove the main theorem of this paper. Further details on systolic complexes can
be found in [5, 7].

2.1 Simplicial complexes

De�nition 2.1.1. Given a set VS of vertices, an abstract simplicial complex on VS is a
collection S of subsets of VS satisfying the condition that if σ is one of the subsets in S, then
so is every subset of σ. The subsets σ are called the simplices of S.

If σ ∈ S has n + 1 elements, we say that σ is an n�simplex, or dimension of σ is n,
denoted dim(σ) = n. Vertices are the 0�simplices of X, 1�simplices are called edges and
2�simplices are called triangles. We say that S has dimension n if it contains n�simplices
but it does not contain simplices of dimension n + 1. That means it has no simplices of
dimension greater than n+ 1 either.

So far we have given an abstract description of a simplicial complex which is purely
combinatorial. We can think as well in a geometric way, where a simplex is a generalization
of the notion of a triangle to arbitrary dimensions. An n�simplex σ = [v0, . . . , vn] is the
convex hull of n+ 1 points v0, . . . , vn (the vertices) in Rn+1 for which v1− v0, . . . , vn− v0 are
linearly independent.

De�nition 2.1.2. The standard n�simplex is

∆n = {(t0, . . . , tn) ∈ Rn+1 |
n∑
i=0

ti = 1 and ti ≥ 0}
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and there is a canonical map ∆n −→ [v0, . . . , vn] via

(t0, . . . , tn) 7→
∑
i

tivi

called barycentric coordinates on [v0, . . . , vn].

The convex hull of any nonempty subset of n+1 points that de�ne an n�simplex is called
a face of the simplex. A facet of [v0, . . . , vn] is de�ned as the simplex obtained by deleting
just one of the vertices vi and we denote it [v0, . . . , v̂i, . . . , vn]. The union of all facets is
called the boundary of the simplex.

Figure 1: Oriented n�simplices, 0 ≤ n ≤ 3. An oriented simplex induces orientation on its faces, as shown for the edges of the
triangle and two faces of the tetrahedron.

De�nition 2.1.3. A simplicial complex X is a �nite set of simplices such that:

1. Any face of a simplex from X is also in X.

2. The intersection of any two simplices σ1, σ2 ∈ X is a face of both σ1 and σ2.

A subcomplex is a subset L ⊆ X that is also a simplicial complex. The union of all the
simplices of dimension lower or equal to k, denoted by X(k), is a subcomplex of the simplicial
complex X, and it is called its k�skeleton.

De�nition 2.1.4. The geometric realization |X| of a simplicial complex X is the topological
space |X| =

⋃
σ∈X σ, where we regard each simplex as a topological subspace.

De�nition 2.1.5. A triangulation of a topological space Y is a pair (X, f) with X simplicial
complex and f : |X| → Y homeomorphism. We say Y is triangulable when X exists.

De�nition 2.1.6. Suppose we �x an order on the set of vertices. An orientation of an n�
simplex σ = [v0, . . . , vn] ∈ X is an equivalence class of orderings of the vertices of σ, where
(v0, . . . , vn) ∼ (vτ(0), . . . , vτ(n)) are equivalent orderings if the parity of the permutation
τ is even. An oriented simplex is a simplex with an equivalence class of orderings. We
may show an orientation graphically using arrows, as in Figure 1. An oriented simplex
induces orientations on its faces, where we drop the vertices not de�ning a face in the
sequence to get the orientation. For example, triangle [v0, v1, v2] induces oriented edge [v0, v1].
Two n�simplices sharing an (n− 1)�face τ are consistently oriented if they induce di�erent
orientations on τ .
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Figure 2: 3-dimensional simplicial complex

Figure 3: Arrangement of simplices that is not a valid simplicial complex

De�nition 2.1.7. Let σ = [v0, . . . , vn] be an n�simplex of X. We de�ne the barycenter of

σ as the point bσ ∈ σ given by

bσ =
n∑
i=0

1

n+ 1
vi.

For example, the barycenter of a 0�simplex σ = [v] is bσ = v and the barycenter of a
1�simplex τ = [v0, v1] is its middle point.

De�nition 2.1.8. Given a simplicial complex X, we de�ne its barycentric subdivision as
the simplicial complex X ′ whose vertices are all the barycenters of the simplices of X and
the simplices are all the �nite ordered sets [bσ0 , . . . , bσn ] with σi a face of σi+1 for all i.

The map |X ′| → |X| induced by the identity on the vertices is a homeomorphism, so we
can identify the geometric realization of the barycentric subdivision with the one of X.
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The following examples illustrate the notions we have introduced so far, and they are
used as well in the rest of the paper:

Example 2.1.9.

a) The complexX with vertices corresponding to the integer numbers and 1�simplices [n, n+
1] for n ∈ Z is a 1�dimensional simplicial complex and |X| ' R.

b) The complexX = (v1, . . . , v6, v1) with vertices vi and 1�simplices [vi, vi+1] is a 1�dimensional
simplicial complex and |X| ' S1. As we will see in Section 2.2, X is called a cycle.

c) A triangulation X as in Figure 4 is a 2�dimensional simplicial complex and |X| ' T2,
where T2 is the 2�dimensional torus.

Figure 4: Triangulation of a torus (vertices with the same labels are identi�ed).

d) A triangulation X as in Figure 5 is a 2�dimensional simplicial complex and |X| ' R2.

Figure 5: Triangulation of the plane.

Remark 2.1.10. There is a strong relationship between the geometric and abstract de�-
nitions. Every abstract simplicial complex S is isomorphic to the vertex scheme of some
simplicial complex X, which is its geometric realization. We usually compute simplicial
complexes using geometric techniques, but discard the realization and focus on its topology
as captured by the vertex scheme. As such, we refer to abstract simplicial complexes simply
as simplicial complexes from now on, and we use X to denote both the simplicial complex
and the associated geometric realization.
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2.2 k-large and k-systolic simplicial complexes

For the rest of this section we follow the notations of T. Januszkiewicz and J. �wi�atkowski
from [5]. From now on, we are interested in locally �nite simplicial complexes, i.e., every
vertex belongs to �nitely many edges.

Now that we know what simplicial complexes are, we want to de�ne systolic complexes.
To that end, we start with the following de�nitions.

De�nition 2.2.1. A simplicial complex X is �ag if any �nite set of vertices, which are
pairwise connected by edges of X, spans a simplex of X (i.e., it is contained in a simplex
of X). A subcomplex K in X is called full (in X) if any simplex of X spanned by a set of
vertices in K is a simplex of K.

Remark 2.2.2. Let A,B ⊆ VX be two sets of vertices. We denote A ∗ B := span{A,B},
i.e., the minimal full subcomplex containing A and B (the subcomplex spanned by A ∪ B).
If two vertices v, w are joined by an edge, then {v} ∗ {w} is denoted by vw. Let σ, τ be two
disjoint simplices spanning a simplex in X. Then dim (σ ∗ τ) = dim σ + dim τ + 1.

De�nition 2.2.3. Let X be a simplicial complex, and let σ be a simplex in X. The link of σ
in X, denoted by Xσ, is a subcomplex of X consisting of all simplices that are disjoint from σ
and which span a simplex of X together with σ; i.e., Xσ = {γ ∈ X|γ∩σ = ∅ and γ ∗σ ∈ X}.

Figure 6: a) A 0�simplex and its link. b) A 0�simplex and its residue.

De�nition 2.2.4. The residue of a simplex σ in X, denoted by Res(σ,X), is the union of
all simplices of X that contain σ; i.e., Res(σ,X) = {γ ∈ X|σ ⊆ γ}.

Remark 2.2.5. The residue Res(σ,X) is naturally the join of σ and the link Xσ. Notice
that the link and residue describe the local structure of X.

De�nition 2.2.6. A cycle in a simplicial complex X is a subcomplex γ of X isomorphic to
a triangulation of S1. We denote by |γ| the length of γ, i.e., the number of 1�simplices in γ.
A full cycle in X is a cycle that is full as a subcomplex of X.

De�nition 2.2.7. The systole of X is

sys(X) = min{|γ| : γ is a full cycle in X}.
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In particular, we have sys(X) ≥ 3 for any simplicial complex X, and if there is no full
cycle in X, then sys(X) =∞.

De�nition 2.2.8. Let k ≥ 4 be a natural number and let X be a �ag simplicial complex.
Then:

1. X is k�large if sys(X) ≥ k.

2. X is locally k�large if the residue of every simplex of X is k�large.

3. X is k�systolic if it is locally k�large, connected and simply connected.

We abbreviate 6-systolic to systolic.

Some easy properties of the above introduced classes of simplicial complexes are gathered
in Fact 2.2.9. The proofs are immediate, hence we omit them.

Fact 2.2.9.

1) A complex is locally k�large i� the link of every nonempty simplex has the systole at
least k.

2) A (locally) k�large complex is (locally) m�large for k ≥ m.

3) A full subcomplex in a (locally) k�large complex is (locally) k�large.

4) A simplicial complex is 4�large i� it is �ag.

5) For k > 4, X is k�large i� it is �ag and sys(X) ≥ k.

6) A k�large complex is locally k�large.

7) The universal cover X̃ of a connected, locally k�large complex X is k�systolic.

Here are some examples of k�large and k�systolic complexes:

Example 2.2.10.

a) Let X = (vi) for i ∈ Z be a triangulation of R as in Example 2.1.9(a), with vertices vi
corresponding to the integer numbers and 1�simplices vivi+1. Since there is no full cycle
in X, then sys(X) = ∞. So in particular X is 6�large. It is locally 6�large (by Fact
2.2.9(6)), connected and simply connected. Therefore X is a systolic complex.

b) A tree is a systolic complex.

c) A triangulation of R2 as in Example 2.1.9(d) is a systolic complex.

d) Let X = (v1, . . . , v6, v1) be a cycle. Then X is 6�large.

e) A triangulation of the torus as in Example 2.1.9(c) is 6�large.
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The following results are easy as well, but this time we prove them, so it helps us un-
derstand better the concepts we have introduced so far and get us acquainted with the
techniques we use in the rest of the paper.

Lemma 2.2.11. Let X be a simplicial complex. Then the intersection of a simplex γ ∈ X
with a full subcomplex K ⊆ X, if nonempty, is a simplex.

Proof. By de�nition of fullness, any simplex γ ∈ X spanned by vertices of K is a simplex
of K. So in particular, γ ∩K, if is nonempty, is a subcomplex whose set of vertices is in K
and spans a simplex in X, and by fullness spans a simplex in K.

Lemma 2.2.12. Given a simplex σ in a �ag simplicial complex X, its link Xσ is a full
subcomplex of X.

Proof. Let A = {v1, . . . , vn} be a set of vertices contained in Xσ, and spanning in X a sim-
plex τ . We want to show that τ ∈ Xσ.

Since by de�nition of the link A∩ σ = ∅, we have τ ∩ σ = ∅. Now we consider σ(0) ∪ τ (0),
which is a set of vertices pairwise connected by edges. By �agness we have that σ ∗ τ is a
simplex in X. Therefore τ ∈ Xσ.

Lemma 2.2.13. Let X be a �ag simplicial complex and let σ ⊆ τ be simplices in X. Then
Xτ = (Xσ)τ∩Xσ .

Proof. By de�nition

Xτ = {γ ∈ X|γ ∩ τ = ∅ and γ ∗ τ ∈ X}

(Xσ)τ∩Xσ = {γ′ ∈ Xσ|γ′ ∩ (τ ∩Xσ) = ∅ and γ′ ∗ (τ ∩Xσ) ∈ Xσ}

First we show that Xτ ⊆ (Xσ)τ∩Xσ :

Let γ ∈ Xτ . We have that γ ∩ τ = ∅, therefore γ ∩ (τ ∩ Xσ) = ∅. Now let Xσ = {β ∈
X|β ∩ σ = ∅ and β ∗ σ ∈ X}. Obviously, γ ∩ σ = ∅ (since γ ∩ τ = ∅ and σ ⊂ τ), and γ ∗ σ
spans a simplex in X (since γ ∗ τ ∈ X and σ ⊂ τ) ⇒ γ ∈ Xσ. Therefore γ ∗ (τ ∩Xσ) ∈ Xσ

(since γ ∈ Xσ and (τ ∩Xσ) ∈ Xσ due to Lemmas 2.2.11 and 2.2.12 ).

Now let us see that (Xσ)τ∩Xσ ⊆ Xτ :

Let γ′ ⊆ (Xσ)τ∩Xσ . Then ∅ = γ′ ∩ (τ ∩ Xσ) = (γ′ ∩ Xσ) ∩ τ = γ′ ∩ τ . Now let
γ′′ = γ′ ∗ (τ ∩ Xσ) ∈ Xσ. Then, by Lemmas 2.2.11 and 2.2.12, γ′′ ∗ σ ∈ X, with γ′, τ ∈
(γ′′ ∗ σ)⇒ γ′ ∗ τ ∈ X.
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2.3 Convexity, Balls and Spheres

Here we introduce the notions of balls and spheres, and we state the so-called Projection
Lemma, fundamental result for what follows. Unless otherwise stated, proofs of the results
of this section can be found in [5].

A subcomplex Q in a 6�large simplicial complex X is 3�convex if Q is full in X and for
every geodesic (v0, v1, v2) in X with v0, v2 ∈ Q we have v1 ∈ Q. Note that here by geodesic

we mean the shortest path that joins a given set of vertices.

A subcomplex Q in a systolic simplicial complex X is locally 3�convex if ∀σ ⊂ Q, Qσ is
3�convex in Xσ. We say that Q is convex if it is connected, and it is locally 3�convex. Note
that if Q is a convex subcomplex, then it is full.

Now let X be a systolic complex and let σ be a simplex contained in it. One can de�ne
a closed combinatorial ball of radius i around σ in X, Bi(σ,X), inductively:

B0(σ,X) = σ and Bi(σ,X) = ∪{τ ⊂ X|τ ∩Bi−1(σ,X) 6= ∅}, for i > 0.

Note that, more generally, one can de�ne combinatorial balls for any convex subcomplex
instead of just considering a simplex. But we are interested in this special case since is the
one we use.

The closed combinatorial sphere of radius i around σ in X, Si(σ,X), is the subcomplex
of Bi(σ,X) spanned by the vertices at combinatorial distance i from σ, i.e., not belonging

to Bi−1(σ,X). By
◦
Bi (σ,X) we denote the interior of the closed combinatorial i-ball around

σ in X; i.e.,
◦
Bi (σ,X) = Bi(σ,X)\Si(σ,X).

One can de�ne closed combinatorial balls of small radii in k�large complexes so that they
are isomorphic to ones in the corresponding universal covers (i.e. in systolic complexes):

Lemma 2.3.1. For a 6�large simplicial complex X and a simplex τ ∈ X, let X̃
p−→ X

with p(τ̃) = τ be the universal cover of X. Then p|B1(τ̃ ,X̃) : B1(τ̃ , X̃) −→ B1(τ,X) is an
isomorphism.

The following lemma gives us another way of viewing balls and spheres. For that, �rst
we de�ne the distance between a vertex and a simplex as the minimum distance between the
vertex and any vertex contained in the simplex, i.e., d(v, σ) = min {d(v, v′)} for v′ ∈ σ.

Lemma 2.3.2. Bi(σ,X) is the simplicial span of the vertex set {v ∈ X| d(v, σ) ≤ i}.
Si(σ,X) is the simplicial span of the vertex set {v ∈ X| d(v, σ) = i}.

Some properties of balls and spheres are gathered in the next lemma:
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Lemma 2.3.3. The ball Bi(σ,X) and the sphere Si(σ,X) are full subcomplexes of X and
by Fact 2.2.9(3) they are k�large. Moreover, balls are convex.

The next lemma is fundamental for the understanding of this paper. Its application plays
an important role in most of the proofs.

Lemma 2.3.4. [Projection Lemma] For any τ ∈ Si(σ,X), ρ = Si−1(σ,X)∩Xτ is a single
(nonempty) simplex. Moreover, Xτ ∩Bi(σ,X) = B1(ρ,Xτ ) and Xτ ∩ Si(σ,X) = S1(ρ,Xτ ).

Proof. See Section 2 of [7].

In the rest of the paper we call the simplex ρ, as in the above lemma, the projection of

τ on Bi−1(σ,X).

Let X be a simplicial complex, and let σ ∈ X be a simplex. By Projection Lemma
(Lemma 2.3.4) we can de�ne an elementary contraction

πBi(σ,X) : Bi+1(σ,X)′ → Bi(σ,X)′

between barycentric subdivision of balls by putting

πBi(σ,X)(bν) =

{
bν∩Bi(σ,X) if ν ∩Bi(σ,X) 6= ∅,
bXν∩Bi(σ,X) if ν ∩Bi(σ,X) = ∅

and then extending simplicially. In Section 8 of [5] it is shown that πBi(σ,X) is a de-

formation retraction and that πBi(σ,X)(Bi+1(σ,X)\
◦
Bi (σ,X)) ⊂ Si(σ,X). Then we de-

�ne a deformation retraction PBi(σ,X) : X → Bi(σ,X) as follows: if x ∈ Bj(σ,X) then
PBi(σ,X)(x) = πBi(σ,X) ◦ πBi+1(σ,X) ◦ · · · ◦ πBi+j(σ,X)(x).

Lemma 2.3.5. For j > i, the projection PBi(σ,X)|Bj(σ,X) : Bj(σ,X)X → Bi(σ,X) provides a

deformation retraction of Bj(σ,X)\
◦
Bi (σ,X) onto Si(σ,X) within Bj(σ,X)\

◦
Bi (σ,X).

The above lemma implies the following.

Theorem 2.3.6. Let X be a �nite-dimensional systolic complex. Then X is contractible
(see [5], Theorem 4.1).
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2.4 Manifolds and Surfaces

Recall that an n�manifold is a Hausdor� space in which every point has a neighbourhood
homeomorphic to an open ball in Rn. Here are some examples of manifolds. The Euclidean
space Rn is certainly an n�manifold. Also, the n�sphere Sn is an n�manifold. Dn is not a
manifold, but there is a more general concept of `manifold with boundary' of which Dn is an
example. Since the product of an n�ball and an m�ball is homeomorphic to an (n+m)�ball,
it follows that the product of an n�manifold with an m�manifold is an (n+m)�manifold. It
follows that any n�torus is an n�manifold.

If p : X̃ → X is a covering, then it is not hard to see that X is an n�manifold if and
only if X̃ is an n�manifold. It follows that RPn is an n�manifold. Note that a manifold is
certainly locally path connected.

A triangulable n�manifold is orientable if all n�simplices in any of its triangulations can
be oriented consistently.

Now we classify all compact, connected 2-manifolds. Such manifolds are called closed

surfaces.

Theorem 2.4.1. Let S be a closed surface. Then S is homeomorphic to one of the following:

1. the 2�dimensional sphere S2,

2. the connected sum of g tori (g ≥ 1),

3. the connected sum of g projective planes (g ≥ 1).

Proof. See Section 5 of [2]

The surfaces in the �rst two families are orientable. It is convenient to combine the
two families by regarding the sphere as the connected sum of 0 tori. The number g of tori
involved is called the genus of the surface. The surfaces in the third family are nonorientable.

To complete the classi�cation, let us recall that the Euler characteristic of the geometric
realization of a simplicial complex X is de�ned as χ(|X|) = V − E + F , where V,E and F
are, respectively, the number of vertices, edges and faces of |X|. Then we have the following
lemma:

Lemma 2.4.2. Let S be a closed surface, and χ(S) the Euler characteristic of its triangu-
lation. Then,

1. If S is homeomorphic to a sphere, then χ(S) = 2.

2. If S is homeomorphic to the connected sum of g tori, then χ(S) = 2− 2g.
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3. If S is homeomorphic to the connected sum of g projective planes, then χ(S) = 2− g.

It follows that a closed surface is determined, up to homeomorphism, by two pieces of
information: its Euler characteristic, and whether it is orientable or not. In other words,
Euler characteristic and orientability completely characterize closed surfaces up to homeo-
morphism.

We note that every closed surface S can be triangulated. This is actually a rather deep
theorem not at all easy to prove. But accepting that fact, we are interested in showing
which surfaces admit a 6�large triangulation. Suppose that we have a surface S that admits
a k�large triangulation. The link of a vertex is an l�cycle with l ≥ k, and its residue consists
of exactly l triangles. Therefore, each vertex is contained in at least k edges, and each edge
contains 2 vertices, hence 2E ≥ kV . Analogously, each triangle contains 3 edges, and each
edge is contained in 2 triangles, hence 3F = 2E. Using this relations in Euler's characteristic
we obtain

χ(S) = V − E + F = V − 1

3
E ≤ V (1− k

6
) .

By Lemma 2.4.2, χ(S2) = 2 and χ(RP2) = 1, hence

2 ≤ V (1− k

6
)⇒ k ≤ 5 ,

and

1 ≤ V (1− k

6
)⇒ k ≤ 5 .

We conclude that the sphere and projective plane do not admit 6�large triangulations.
It is a fact that any other surface admits a 6�large triangulation (see [5], 1.8(3)). Thus we
have:

Lemma 2.4.3. The only surfaces that admit a 6�large triangulation are:

1. The connected sum of g tori (g ≥ 1).

2. The connected sum of g projective planes (g > 1).

Remark 2.4.4. The fact that there is no k�large triangulation of the 2�sphere for k ≥ 6,
implies that no triangulation of a manifold of dimension above 2 is 6�large, since 2�spheres
would occur as links of some simplices in such triangulation (see [5], 1.8(5)).

2.5 Pseudomanifolds

A simplicial complex X is called a simplicial pseudomanifold of dimension n (or shortly
n�pseudomanifold) if it is a union of n�simplices such that every (n−1)�simplex is contained
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in exactly two n�simplices. Let τ be a subsimplex of a maximal simplex σ of dimension n.
Then we say that τ has codimension k if its dimension is (n − k). Note that the notion of
pseudomanifold is more general than the notion of manifold.

Example 2.5.1.

a) The only connected 1�pseudomanifolds are: a line, i.e., a triangulation of R; a cycle, i.e.,
a triangulation of S1. Other 1�pseudomanifolds are unions of those.

Figure 7: Examples of 1�pseudomanifolds

b) Links of vertices in 2�pseudomanifolds are 1�pseudomanifolds (see Lemma 2.5.2 below),
and thus disjoint unions of circles. It follows that 2�pseudomanifolds are triangulated
surfaces (possibly disconnected) with some vertices identi�ed.

Figure 8: I) Example of a 2�pseudomanifold in a 2 dimensional space and the link of a vertex. II) Example of a 2�
pseudomanifold in a 3 dimensional space and the link of a singular vertex v

Lemma 2.5.2. Let X be an n�pseudomanifold and let σ be a k�simplex of X. Then Xσ is
an (n− k − 1)�pseudomanifold.

Proof. First we show that Xσ is the union of (n−k−1)�simplices. By de�nition, Xσ = {τ ∈
X|τ ∩ σ = ∅ and σ ∗ τ is a simplex in X}. Take τ ∈ Xσ. Since X is an n�pseudomanifold,
σ ∗ τ ⊆ ρ, where ρ is an n�simplex of X. Let ρ = (σ ∗ τ ′), where τ ′ ∩ σ = ∅. Since
n = dim ρ = dim (σ ∗ τ ′) = dim σ + dim τ ′ + 1 = k + dim τ ′ + 1⇒ dim τ ′ = n− k − 1.
Therefore every simplex τ in the link is contained in an (n− k− 1)�simplex, and thus Xσ is
the union of (n− k − 1)�simplices.
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Now we show that every codimension 1 simplex in Xσ is contained in exactly two (n −
k − 1)�simplices. Let ω be a codimension 1 simplex in Xσ. Therefore dim ω = n − k − 2
and dim (ω ∗ σ) = dim ω + dim σ + 1 = n − k − 2 + k + 1 = n − 1. Thus (ω ∗ σ) is an
(n− 1)�simplex in X, i.e., a codimension 1 simplex in X. Since X is an n�pseudomanifold,
there exists exactly two n�simplices α, β that contain (ω ∗ σ). Now we take α′ and β′ such
that α′ ∩ (ω ∪ σ′) = ∅, β′ ∩ (ω ∪ σ′) = ∅ and α = (ω ∗ σ) ∗ α′, β = (ω ∗ σ) ∗ β′. We show that
α′ ∗ ω and β′ ∗ ω, that belong to Xσ, have dimension (n− k − 1):

n = dim α = dim(σ ∗ ω ∗ α′) = k + dim(ω ∗ α′) + 1⇒
dim(ω ∗ α′) = n− k − 1.

Similarly,

dim(ω ∗ β′) = n− k − 1

Finally, remains to see that this two simplices are the only two (n− k − 1)�simplices. If
there exists γ′ with dim γ′ = n−k−1, γ′ ⊇ ω and γ′ 6= α′∗ω,γ′ 6= β′∗ω, then γ′∗σ 6= α′∗ω∗σ
and γ′ ∗ σ 6= β′ ∗ ω ∗ σ. But since all three have dimension n, that contradicts the fact that
α and β are the only n�simplices containing ω ∗ σ.

Lemma 2.5.3. Let X be a systolic pseudomanifold of dimension 2. Then Sk(σ,X) is a
1�dimensional pseudomanifold for all k ≥ 1.

Proof. First we show that Sk(σ,X) is at most 1�dimensional. Suppose there exists an l�
simplex τ in Sk(σ,X) with l ≥ 2. By Projection Lemma (Lemma 2.3.4), the projection of τ
on Bk−1(σ,X) is a nonempty simplex ρ = Sk−1(σ,X)∩Xτ . That means ρ ⊂ Xτ and by de�-
nition of the link, τ ∗ρ must be a simplex of X. But dim(τ ∗ρ) = l+1+dim(ρ) > 2 =dim(X),
which is a contradiction.

Now we show that every l�simplex τ of Sk(σ,X) is contained in some 1�simplex. We
have seen that τ can just have dimensions 0 or 1. If it has dimension 1 we are done. Suppose
it has dimension 0. By Projection Lemma (Lemma 2.3.4), Xτ ∩ Sk(σ,X) = S1(ρ,Xτ ), and
Xτ is a 6�large (by Fact 2.2.9(3)) 1�pseudomanifold (by Lemma 2.5.2). Thus Xτ is a union
of cycles. Take ρ contained in one of those cycles. Then S1(ρ,Xτ ) = {v, w}, with v, w two
distinct vertices. Therefore, τ ∗ v is a 1�simplex of Sk(σ,X) containing τ (by Lemma 2.3.3).

Moreover, τ ∗ v and τ ∗ w are the only two maximal simplices of Sk(σ,X) that contain
the codimension 1 simplex τ of Sk(σ,X).

Lemma 2.5.4. Let X be a systolic pseudomanifold of dimension 3. Then Sk(σ,X) is a
2�dimensional pseudomanifold for all k ≥ 1.
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Proof. To see that Sk(σ,X) is at most 2�dimensional, the proof is analogous as in the pre-
vious lemma.

We show that every l�simplex τ of Sk(σ,X) is contained in some 2�simplex. Now τ can
have dimensions 0, 1 and 2. If it has dimension 2 we are done. Suppose it has dimension 0.
By Projection Lemma (Lemma 2.3.4), Xτ ∩ Sk(σ,X) = S1(ρ,Xτ ). Now Xτ is a 6�large (by
Fact 2.2.9(1)) 2�pseudomanifold (by Lemma 2.5.2). By Fact 2.2.9(7) its universal cover X̃τ

is systolic, and by Lemma 2.3.1 S1(ρ,Xτ ) is isomorphic to S1(ρ, X̃τ ). Therefore by Lemma
2.5.3 S1(ρ,Xτ ) is a 1�pseudomanifold. The span of one of its 1�simplices, call it τ ′, with our
vertex τ , is a 2�simplex τ ∗ τ ′ of Sk(σ,X).

Now suppose that τ has dimension 1. Then Xτ is a 6�large (by Fact 2.2.9(3)) 1�
pseudomanifold (by Lemma 2.5.2). Thus Xτ is a union of cycles. Take ρ contained in
one of those cycles. Then S1(ρ,Xτ ) = {v, w}, with v, w two distinct vertices. Therefore,
τ ∗ v is a 1�simplex of Sk(σ,X) containing τ (by Lemma 2.3.3).

Moreover, τ ∗ v and τ ∗ w are the only two maximal simplices of Sk(σ,X) that contain
the codimension 1 simplex τ of Sk(σ,X).

Remark 2.5.5. The general version of this last lemma, with X being n�dimensional and
Sk (n− 1)�dimensional is also true. See [7], Lemma 4.1, for a proof.
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3 Cohomology

In this section we de�ne cohomology of simplicial complexes and cohomology with com-
pact supports. Before that, we recall some basic results from homology theory. Explanations
in more detail together with proofs of all the results presented can be found in [4].

We start with the notion of homotopy, which is any family of maps ft : X → Y , with
X, Y topological spaces and t ∈ I = [0, 1], such that the associated map F : X × I → Y
given by F (x, t) = ft(x) is continuous.

Continuous functions f and g are said to be homotopic, denoted f ' g, if and only if
there is a homotopy F taking f to g as described above.

Given a topological space X and a subspace A, we say that a deformation retraction of
X onto A is a homotopy from the identity map of X to a retraction of X onto A, i.e., a map
r : X → X such that r(X) = A and r|A = 1X .

A map f : X → Y is called a homotopy equivalence if there is a map g : Y → X such
that fg ' 1Y and gf ' 1X . The spaces X and Y are said to be homotopy equivalent.

A chain complex (A•, d•) is a sequence of abelian groups or modules

. . . , A2, A1, A0, A−1, A−2, . . .

connected by homomorphisms dn : An → An−1, such that the composition of any two
consecutive maps is zero, i.e., dndn+1 = 0 for all n. They are usually written out as:

· · · → An+1
dn+1−−−→ An → · · ·

d1−→ A0
d0−→ A−1 · · ·

Let X be a simplicial complex. A simplicial n�chain is a formal sum of n�simplices∑N
i=1 ciσ

i, where ci ∈ Z, σi ∈ X is the i�th n�simplex of X. The group of simplicial n�
chains on X, the free abelian group de�ned on the set of n�simplices in X, is denoted Cn(X).
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Consider a basis element of Cn(X), i.e., an n�simplex σ = [v0, . . . , vn]. The boundary

operator ∂n : Cn(X)→ Cn−1(X) is a homomorphism de�ned by:

∂n(σ) =
n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn]

In Cn(X), elements of the subgroup Zn(X) := ker ∂n are referred to as cycles, and the
subgroup Bn(X) := Im ∂n+1 is said to consist of boundaries. Direct computation shows
that Bn(X) ⊆ Zn(X), thus the boundary of a boundary must be zero. In other words,
(Cn(X), ∂n) form a simplicial chain complex. The n�th homology group Hn of X is de�ned
to be the quotient Hn(X) := Zn(X)/Bn(X).

A sequence

· · · −→ An+1
αn+1−→ An

αn−→ An−1 −→ · · ·

of groups and group homomorphisms is said to be exact if Ker αn = Im αn+1 for each n.
The inclusions Im αn+1 ⊂ Ker αn are equivalent to αnαn+1 = 0, so the sequence is a chain
complex, and the opposite inclusions Ker αn ⊂ Im αn+1 say that the homology groups of

this chain complex are trivial. A sequence 0 −→ A
α−→ B

β−→ C −→ 0 is exact i� α is
injective, β is surjective, and Ker β = Im α, so β induces an isomorphism C ' B/Im α. An
exact sequence like that is called a short exact sequence.

3.1 Cohomology of Simplicial Complexes

Cohomology is in many ways dual to homology, but not (always) literally so. To obtain
the cohomology groups Hn(X;Z) we replace the chain groups Cn(X) by the dual groups
Hom(Cn(X),Z) and the boundary maps ∂ by their dual maps δ, before forming the coho-
mology groups ker δ/Im δ. Now we explain that in detail.

Given a simplicial complex X, we de�ne the group Cn(X;Z) of simplicial n�cochains
with coe�cients in Z to be the dual group Hom(Cn(X),Z) of the simplicial chain group
Cn(X). Thus an n�cochain ϕ ∈ Cn(X;Z) assigns to each simplicial n�simplex σ a value
ϕ(σ) ∈ Z.

The coboundary map δn : Cn−1(X;Z) → Cn(X;Z) is the dual from ∂n, and has the
following description: for ϕ ∈ Cn−1(X;Z), the coboundary δnϕ is the composition

Cn(X)
∂n−→ Cn−1(X)

ϕ−→ Z
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so that for a simplicial n�simplex σ = [v0, . . . , vn],

δnϕ(σ) =
∑
i

(−1)iϕ([v0, . . . , v̂i, . . . , vn]).

In Cn(X;Z), elements of the subgroup Zn(X;Z) := ker δn+1 are referred to as cocycles,
and the subgroup Bn(X;Z) := Im δn is said to consist of coboundaries. For a cochain ϕ to
be a cocycle means that δnϕ = ϕ∂n = 0, or in other words, ϕ vanishes on boundaries. Since
δn+1δn is the dual of ∂n∂n+1 = 0, then δn+1δn = 0. Thus the sequence

· · · ←− Cn+1(X;Z)
δn+1

←− Cn(X;Z)
δn←− Cn−1(X;Z)←− · · · ←− C0(X;Z)←− 0

forms a simplicial cochain complex. We de�ne the cohomology group Hn of X with coe�-

cients in Z as Hn(X;Z) := Zn(X;Z)/Bn(X;Z).

We know from homology theory that the maps f : X → Y induce chain maps f# :
Cn(X)→ Cn(Y ). The cochain maps are the dual maps f# : Cn(Y ;Z)→ Cn(X;Z), de�ned
as f#(ϕ)(σ) := ϕ(f#(σ)) . The relation f#∂ = ∂f# dualizes to δf# = f#δ, so f# induces
homomorphisms f ∗ : Hn(Y ;Z)→ Hn(X;Z).

Homotopy equivalent spaces have the same cohomology groups. More precisely, if f '
g : X → Y , then f ∗ = g∗ : Hn(Y ;Z)→ Hn(X;Z). From this result immediately follows,

Lemma 3.1.1. If a space X is contractible, then Hn(X;Z) ' {0} for n ≥ 1.

Some other important results that we are going to use in the rest of the paper are the
following:

Lemma 3.1.2. Given n,m ∈ Z with n,m ≥ 1, let Sm be the m�dimensional sphere. Then

Hn(Sm;Z) '

{
Z if n = m,

{0} otherwise.

Lemma 3.1.3. Let Sg be a closed orientable surface of genus g. Then

Hn(Sg;Z) '


Z for n = 0, 2

Z⊕2g for n = 1

{0} for n > 2

Lemma 3.1.4. Let S be a closed nonorientable surface di�erent from RP2. ThenH1(S;Z) 6'
{0}.
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3.2 Relative Cohomology Groups and the Long Exact Sequence of

a Pair

It sometimes happens that by ignoring a certain amount of data or structure one ob-
tains a simpler, more �exible theory which, almost paradoxically, can give results not readily
obtainable in the original setting. Relative homology is an example, where one ignores all
simplicial chains in a subspace of the given space.

Relative homology groups are de�ned in the following way. Given a space X and a
subspace A ⊆ X, let Cn(X,A) be the quotient group Cn(X)/Cn(A). Thus chains in A
are trivial in Cn(X,A). Since the boundary map ∂n : Cn(X) → Cn−1(X) takes Cn(A) to
Cn−1(A), it induces a quotient boundary map ∂n : Cn(X,A)→ Cn−1(X,A). Letting n vary,
we have a sequence of boundary maps

· · · −→ Cn(X,A)
∂n−→ Cn−1(X,A) −→ · · ·

The relation ∂n∂n+1 = 0 holds for these boundary maps since it holds before passing to
quotient groups. So we have a chain complex, and the homology groups Ker ∂n / Im ∂n+1

of this chain complex are by de�nition the relative homology groups Hn(X,A).

Now we want to de�ne relative cohomology groups Hn(X,A;Z). We �rst consider the
short exact sequence

0 −→ Cn(A)
i#−→ Cn(X)

j#−→ Cn(X,A) −→ 0

where i# is the map induced by the inclusion i : A ↪→ X, and j# is the map induced by the
quotient map j : X → X/A. We dualize it by applying Hom(-,Z), getting

0←− Cn(A;Z)
i#←− Cn(X;Z)

j#←− Cn(X,A;Z)←− 0

where by de�nition Cn(X,A;Z) = Hom(Cn(X,A),Z). This sequence is exact by the fol-
lowing direct argument. The map i# restricts a cochain on X to a cochain on A. Thus
for a function from n�simplices in X to Z, the image of this function under i# is obtained
by restricting the domain of the function to n�simplices in A. Every function from n�
simplices in A to Z can be extended to be de�ned on all n�simplices in X, for example
by assigning the value 0 to all n�simplices not in A, so i# is surjective. The kernel of
i# consists of cochains taking the value 0 on n�simplices in A. Such cochains are the
same as homomorphisms Cn(X,A) = Cn(X)/Cn(A) → Z, so the kernel of i# is exactly
Cn(X,A;Z) = Hom(Cn(X,A),Z), giving the desired exactness. Notice that we can view
Cn(X,A;Z) as the functions from n�simplices in X to Z that vanish on simplices in A, since
the basis for Cn(X) consisting of n�simplices in X is the disjoint union of the simplices with
image contained in A and the simplices with image not contained in A.
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The coboundary map δn : Cn−1(X;Z) → Cn(X;Z) takes Cn−1(A;Z) to Cn(A;Z), thus
it induces a quotient coboundary map δn : Cn−1(X,A;Z) → Cn(X,A;Z). The relation
δn+1δn = 0 holds for these coboundary maps since it holds before passing to quotient groups.
So we have a cochain complex, and the cohomology groups Ker δn+1 / Im δn of this cochain
complex are by de�nition the relative cohomology groups Hn(X,A;Z).

We do not prove it here, but one can see in Section 3.1 of [4], that the preceding displayed
short exact sequence of cochain groups gives rise to an associated long exact sequence of
cohomology groups

· · · −→ Hn(X,A;Z)
j∗−→ Hn(X;Z)

i∗−→ Hn(A;Z)
δ−→ Hn+1(X,A;Z) −→ · · ·

There are induced homomorphisms for relative (co)homology just as there are in the non-
relative case. A map f : X → Y with f(A) ⊂ B, or more concisely, f : (X,A)→ (Y,B), in-
duces homomorphisms f# : Cn(X,A)→ Cn(Y,B) since the chain map f# : Cn(X)→ Cn(Y )
takes Cn(A) to Cn(B), so we get a well-de�ned map on quotients. The relative cochain

maps are the dual maps f# : Cn(Y,B;Z) → Cn(X,A;Z). The relation f#∂ = ∂f# holds
for relative chains since it holds for absolute chains, and it dualizes to δf# = f#δ, thus f#

induces homomorphisms f ∗ : Hn(Y,B;Z)→ Hn(X,A;Z).

Analogously as for the nonrelative case, if f ' g : (X,A) → (Y,B), then f ∗ = g∗ :
Hn(Y,B;Z)→ Hn(X,A;Z).

3.3 Cohomology with Compact Supports

We start with a simplicial complex X which is locally compact. This is equivalent to
saying that every point has a neighbourhood which meets only �nitely many simplices. Con-
sider the subgroup Ci

c(X;Z) of the simplicial group Ci(X;Z) consisting of cochains which
are compactly supported in the sense that they attain nonzero values only on �nitely many
simplices. The coboundary of such cochain ϕ can have a nonzero value only on those (i+1)�
simplices having a face on which ϕ is nonzero, and there are only �nitely many such simplices
by the local compactness assumption, so δϕ lies in Ci+1

c (X;Z). Thus we have a subcomplex
of the simplicial cochain complex. The resulting cohomology groups for this subcomplex,
denote by H i

c(X;Z), are called compactly supported cohomology groups.

However, we will use another de�nition of the cohomology groups with compact supports
H i
c(X;Z) in terms of algebraic limits. The cochain group Ci

c(X;Z) is the union of its sub-
groups Ci(X,X − K;Z) as K ranges over compact subsets of X. Each inclusion K ↪→ L
induces inclusions Ci(X,X −K;Z) ↪→ Ci(X,X − L;Z) for all i, so there are induced maps
H i(X,X −K;Z)→ H i(X,X − L;Z).
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In order to give this de�nition, we need to introduce �rst the notion of direct limit and
show some basic properties. Let I be a set with a partial order ≤ satisfying the property
that for any i, j ∈ I there is a k ∈ I with i ≤ k and j ≤ k. Such a set is called a directed

set. Let Ai be an abelian group for each i, and for each pair i ≤ j a map ϕij : Ai → Aj
with ϕii = 1Ai for each i, and such that whenever i ≤ j ≤ k, we have ϕik = ϕjk ◦ ϕij. Then
{Ai, ϕij} is called a directed system of groups. The direct limit lim−→Ai is the unique up to
isomorphism group L satisfying the following universal mapping property. Consider maps
ϕi : Ai → L such that ϕi = ϕj ◦ ϕij for every pair i ≤ j. If there is an abelian group C
together with maps τi : Ai → C such that τi = τj ◦ ϕij for each i ≤ j, then there is a unique
group homomorphism τ : L→ C with σ = τ ◦ ϕi.

Ai
τi //

ϕi
��

C

L

∃!
τ

>>

Let M be the direct sum of the Ai, and let N be the subgroup generated by all elements
of the form a − ϕij(a) for all i ≤ j and a ∈ Ai. Then M/N together with ϕi the composi-
tions of the natural maps Ai →M →M/N , satisfy the mapping property for the direct limit.

An alternative description for the direct limits is the following. Let {Ai, ϕij} be a directed
system of groups. Consider pairs (Ai, ai) with ai ∈ Ai. De�ne a relation ∼ on such pairs
by (Ai, ai) ∼ (Aj, aj) if there is a k ≥ i, j with ϕik(ai) = ϕjk(aj). We denote [Ai, ai] the
equivalence class of a pair (Ai, ai). Let G be the set of equivalence classes. Then we can
de�ne an operation on G by

[Ai, ai] + [Aj, aj] = [Ak, ϕik(ai) + ϕjk(aj)],

where k is any index with k ≥ i, j. With this operation G becomes a group. The map
ϕi : Ai → G given by ϕi(a) = [Ai, a] is a group homomorphism. Then, it is easy to prove
(see [6]) that G ' lim−→Ai.

Lemma 3.3.1. Let lim−→Ai be the direct limit of a directed system of groups. Then,

1. Every element of lim−→Ai can be written in the form ϕi(a) for some a ∈ Ai.

2. If a ∈ Ai satis�es ϕi(a) = 0, then there is a j ≥ i with ϕij(a) = 0 (see [6] for a proof).

Proof. see [6]

Now we can give the de�nition of cohomology with compact supports in terms of direct

limits. For a space X, the compact subsets K ⊂ X form a directed set under inclusion since
the union of two compact sets is compact. To each compact K ⊂ X we associate the group
H i(X,X−K;Z), with a �xed i and a coe�cient group Z. To each inclusionK ⊂ L of compact
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sets, we have the inclusion (X − L)
i
↪→ (X −K). We associate the natural homomorphism

H i(X,X − K;Z)
i∗→ H i(X,X − L;Z). The resulting limit group lim−→H i(X,X − K;Z) is

then equal to H i
c(X;Z) since each element of this limit group is represented by a cocycle in

Ci(X,X − K;Z) for some compact K (by Lemma 3.3.1(1)), and such a cocycle is zero in
lim−→H i(X,X −K;Z) i� it is zero in Ci(X,X − L;Z) for some compact L ⊃ K (by Lemma
3.3.1(2)), which means is the coboundary of a cochain in Ci−1(X,X − L;Z).

31



4 Computation of Compactly Supported Cohomology Groups

of Systolic Pseudomanifolds

This last chapter is devoted to the proof of Main Theorem. We start by computing the
cohomology groups H1

c (R;Z) and H∗c (Rn;Z) , which use the tools presented in the previous
sections and help us to understand the techniques used to solve our problem. Finally we
proceed to the proof of Main Theorem by proving �rst a lemma that states that H1(Y ;Z)
is nontrivial for Y a 6�large 2�pseudomanifold.

4.1 Computation of H1
c (R;Z)

We start by computing H1
c (X;Z), where X is a triangulation of R as in Example 2.1.9(a).

As seen in Example 2.2.10(a), X is a systolic complex, and by Example 2.5.1(a) it is a
pseudomanifold.

Example 4.1.1. H1
c (X;Z) ' Z.

Proof. Let K1 = (v1, . . . , vn) be a closed interval in X, where vi are the vertices and vivi+1

1�simplices. Then C1(X,X − K1;Z) is the set of functions ϕ that assign some integer
values to the 1�simplices inside K1 and 0 outside. We de�ne a map ΣC : C1(X,X −
K1;Z) → Z that sends each cochain ϕ to the sum of its values on all the 1�simplices,
i.e., ΣCϕ :=

∑
i∈Z ϕ(vivi+1) =

∑n−1
i=1 ϕ(vivi+1). We show that this induces an isomorphism

ΣH : H1(X,X −K1;Z)→ Z with ΣH [ϕ] = ΣCϕ.

We show that ΣH is well de�ned: [ϕ1] = [ϕ2] ⇐⇒ [ϕ1 − ϕ2] = 0 ⇐⇒ (ϕ1 − ϕ2) ∈
δ1(C0(X,X −K1;Z)) ⇐⇒ (ϕ1 − ϕ2) = δ1α (for α ∈ C0(X,X −K1;Z)). But ΣC vanishes
on coboundaries, therefore ΣC(δ1α) = 0⇒ ΣC(ϕ1 − ϕ2) = 0⇒ ΣCϕ1 = ΣCϕ2 ⇒ ΣH [ϕ1] =
ΣH [ϕ2].

Obviously ΣH is surjective since ΣC is surjective and every element of C1(X,X −K1;Z)
is a cocycle.
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We show that ΣH is injective: Suppose ΣH [ϕ] = 0. We show that in this case, ϕ = δα
for some α ∈ C0(X,X − K1;Z). For that, we construct α such that given a vertex vk,
α :=

∑k
i=−∞ ϕ(vi−1vi) =

∑k
i=2 ϕ(vi−1vi). We check �rst that with this de�nition, ϕ = δα:

δα(vk−1vk) = α∂(vk−1vk) = α(vk)− α(vk−1) =
k∑
i=2

ϕ(vi−1vi)−
k−1∑
i=2

ϕ(vi−1vi) = ϕ(vk−1vk).

Now we need to check that α ∈ C0(X,X − K1;Z). For that it must assign some inte-
ger value to the vertices contained in K1 and 0 outside. Obviously, for all i ≤ 0 we have
that α(vi) = 0, since ϕ(vi−1vi) = 0 for all vi−1vi. Now consider k ≥ n. Then α(vk) =∑k

i=2 ϕ(vi−1vi) =
∑n

i=2 ϕ(vi−1vi) = ΣCϕ = ΣH [ϕ] = 0. Therefore α ∈ C0(X,X −K1;Z) ⇒
ϕ ∈ δ1(C0(X,X −K1;Z))⇒ [ϕ] = 0.

So we proved that H1(X,X−K1;Z) ' Z. Now, given an interval K2 such that K1 ⊆ K2,

the exact same proof gives that H1(X,X −K2;Z) ' Z. Given the inclusion (X −K2)
i
↪→

(X−K1), there is an induced map H1(X,X−K1;Z)
i∗→ H1(X,X−K2;Z). Since we can map

an element [ϕ1] ∈ H1(X,X −K1;Z), such that [ϕ1]
ΣH→ 1 is a generator, as i∗([ϕ1]) = [ϕ2],

with [ϕ2] ∈ H1(X,X − K2;Z) and [ϕ2]
ΣH→ 1, we conclude that i∗ is an isomorphism. The

compact subsets K1 ⊂ K2 ⊂ K3 ⊂ . . . form a directed set under inclusion. But since the
induced homomorphisms between cohomology groups associated to each inclusion turn to
be isomorphisms, the resulting limit group is

lim−→H1(X,X −Ki;Z) = H1(X,X −Kn;Z) = Z

Since this limit is equal to H1
c (X;Z), the calculation is done.

4.2 Computation of H∗c (Rn;Z)

The method used in the next example will be used to prove the main theorem. We want
to compute H∗c (Rn;Z). Note that R2, as well as R as seen in the prior example, has a systolic
triangulation (see Example 2.2.10(c)). However, in general there is no systolic triangulation
of Rn for n > 2 (see Remark 2.4.4).

Example 4.2.1. For i, n ≥ 1, H i
c(Rn;Z) '

{
Z if i = n,

{0} otherwise.

Proof. Let Bk ⊂ Rn be the n�dimensional ball centred in (0, . . . , 0) ∈ Rn of radius k with
the Euclidean metric. Consider the long exact sequence of cohomology groups
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· · · −→ H i(Rn;Z)
i∗−→ H i(Rn −Bk;Z)

δ−→ H i+1(Rn,Rn −Bk;Z)
j∗−→ H i+1(Rn;Z) −→ · · ·

By Lemma 3.1.1, we have that H i(Rn;Z) = {0} and H i+1(Rn;Z) = {0}, since Rn is con-
tractible. Therefore we have the sequence

· · · −→ 0
i∗−→ H i(Rn −Bk;Z)

δ−→ H i+1(Rn,Rn −Bk;Z)
j∗−→ 0 −→ · · ·

In this situation, δ is an isomorphism, which means that H i(Rn−Bk;Z) ' H i+1(Rn,Rn−
Bk;Z).

Now, let i : ∂Bk ↪→ (Rn − Bk) be the inclusion map and r : (Rn − Bk) → ∂Bk with
r(x) = k x

|x| a deformation retraction. Then ri = 1 and ir ' 1, so ∂Bk and (Rn − Bk) are

homotopy equivalent and thus H i(Rn − Bk;Z) ' H i(∂Bk;Z). Since ∂Bk ' Sn−1, we have
H i(Rn −Bk;Z) ' H i(Sn−1;Z). By Lemma 3.1.2, we know

H i(Sn−1;Z) '

{
Z if i = n− 1,

{0} otherwise.

Therefore we obtain

H i+1(Rn,Rn −Bk;Z) ' H i(Rn −Bk;Z) ' H i(Sn−1;Z) '

{
Z if i = n− 1,

{0} otherwise.

Now we take BL such that BK ⊂ BL. Using a similar argument as before, the inclu-

sion map (Rn − BL)
i
↪→ (Rn − BK) is a homotopy equivalence. Therefore, the induced

map H i(Rn,Rn − BK ;Z)
i∗→ H i(Rn,Rn − BL;Z) is an isomorphism. The compact subsets

B1 ⊂ B2 ⊂ B3 ⊂ . . . form a directed set under inclusion. But since the induced homomor-
phisms between cohomology groups associated to each inclusion turn to be isomorphisms,
the resulting limit group is

lim−→H i(Rn,Rn −Bj;Z) = H i(Rn,Rn −Bm;Z) =

{
Z for i = n,

{0} otherwise.

Since this limit is equal to H i
c(Rn;Z), the calculation is done.
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4.3 Main Theorem

We come now to the main goal of this paper. But before that, we start by proving an
important lemma:

Lemma 4.3.1. If Y is a 6�large 2�pseudomanifold, then H1(Y ;Z) 6= {0} .

Proof. Let S be the disjoint union of all the 2�simplices σ in Y , i.e., S := t{σ ∈ Y | dim σ =
2}. Consider the map f : S → Y such that f(x) = x for x ∈ σ. Now let S̄ = S/ ∼ be
the quotient space where we identify 1�simplices τ and τ ′ of S in the following way: for
x ∈ τ ∈ σ(1) ∈ S and x′ ∈ τ ′ ∈ σ′(1) ∈ S, x ∼ x′ if f(x) = f(x′) and f(τ) = f(τ ′). Observe
that ∼ is an equivalence relation since each edge in Y belongs to exactly two triangles. Con-
sider the map i : S̄ → Y such that i([x]∼) = x for x ∈ σ. This is well de�ned: if two edges
τ and τ ′ are identi�ed in Y , then i([x]∼) = x = f(x) = f(x′) = x′ = i([x′]∼)) for x ∈ τ and
x ∈ τ ′.

Figure 9: Diagram of a 6�large 2�pseudomanifold Y and the spaces S and S̄ formed from it, together with the maps between
them.

Now we show that S̄ is a surface. The space S̄ is a simplicial complex being a union
of 2�simplices, and by construction, each 1�simplex is contained in exactly two 2�simplices.
Therefore it is a pseudomanifold. Since S̄ is �nite, the link of a vertex can only be a union
of circles. Again, by construction, all the triangles are glued together so that they have an
edge in common, but it can not happen that two triangles have just one vertex in common.
Therefore the link of any vertex is connected, so it is just one circle. Thus we conclude that
S̄ is a surface. Moreover, it is 6�large.
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Now we see that the map i : S̄ → Y is locally injective. Take any vertex v ∈ S̄ and
consider its link. If v and any of the vertices of its link were mapped to the same vertex in
Y , that would mean that the triangles containing both vertices would be mapped either to a
vertex or to an edge in Y , contradicting the fact that i sends triangles to triangles. Therefore
i is locally injective.

Given a cocycle ϕ̄ ∈ Z1(S̄;Z), suppose [ϕ̄] ∈ H1(S̄;Z) is di�erent from 0. We de�ne a
cochain ϕ in C1(Y ;Z) as

ϕ(i([τ ]∼) := ϕ̄([τ ]∼) for an edge [τ ]∼ ∈ S̄.

This is well de�ned since i is a bijection on the set of edges. We show that ϕ is a
cocycle. Consider a triangle σ ∈ Y . Let [σ]∼ be a triangle in S̄ with i([σ]∼) = σ , ∂[σ]∼ =
[τ1]∼ + [τ2]∼ + [τ3]∼ and i([τi]∼) = τi for i ∈ {1, 2, 3}. Then we have,

δϕ(σ) = ϕ(∂σ) = ϕ(τ1 + τ2 + τ3) = ϕ(τ1) + ϕ(τ2) + ϕ(τ3) =

ϕ̄([τ1]∼) + ϕ̄([τ2]∼) + ϕ̄([τ3]∼) = ϕ̄([τ1]∼ + [τ2]∼ + [τ3]∼) = ϕ̄(∂[σ]∼) = ∂ϕ̄([σ]∼) = 0.

Finally we show that [ϕ] ∈ H1(Y ;Z) is nontrivial. Suppose that ϕ = δα for some
α ∈ C0(Y ;Z). We de�ne an ᾱ ∈ C0(S̄;Z) as ᾱ([v]∼) := α(i([v]∼)). Then ϕ̄([τ ]∼) =
ϕ(i([τ ]∼)) = δα(i([τ ]∼)) = α(∂i([τ ]∼)) = α(i([v1]∼)) − α(i([v2]∼)) = ᾱ([v1]∼) − ᾱ([v2]∼),
where [τ ]∼ = [v1]∼[v2]∼ and i([vi]∼) = vi. This is a contradiction since ϕ̄ is not a coboundary.

Since S̄ is 6�large, by Lemma 2.4.3 it can only be a connected sum of tori (single torus
included) or a connected sum of RP2 (minimum two projective planes). Then by Lemmas
3.1.3 and 3.1.4, we know that S̄ has nontrivial �rst cohomology group. So there exists [ϕ̄] 6= 0
in H1(S̄;Z), thus [ϕ] 6= 0 in H1(Y ;Z).

Finally, we have all the necessary tools to prove the main theorem of this paper.

Theorem 4.3.2. Let X be a systolic 3�pseudomanifold. Then H2
c (X;Z) 6= {0} .

Proof. To simplify the notation, we denote the ball and sphere of radius k around a �xed
simplex σ ∈ X by Bk and Sk respectively. To prove this theorem, we proceed as in examples
in Sections 4.1 and 4.2.

Given the long exact sequence of cohomology groups (see Section 3.2)

· · · −→ H1(X;Z)
i∗−→ H1(X −Bk;Z)

δ−→ H2(X,X −Bk;Z)
j∗−→ H2(X;Z) −→ · · ·
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we know that H1(X;Z) = {0} and H2(X;Z) = {0} since X is contractible (by Theorem
2.3.6). Therefore we have the sequence

· · · −→ 0
i∗−→ H1(X −Bk;Z)

δ−→ H2(X,X −Bk;Z)
j∗−→ 0 −→ · · ·

In this situation, δ is an isomorphism, which means that H1(X − Bk;Z) ' H2(X,X −
Bk;Z).

Now, by Projection Lemma (Lemma 2.3.4), (X −Bk) deformation retracts into Sk, thus
H2(X,X −Bk;Z) ' H1(Sk;Z).

Thus we have that

H2
c (X;Z) = lim−→H2(X,X −Bk;Z) = lim−→H1(Sk;Z)

So our problem reduces to work on the cohomology group of pseudosurfaces Sk, which we
know is nontrivial by Lemma 4.3.1. Thus all we need to prove is that given a cocycle di�erent
from 0 in Sk it can be mapped to Sk+1 by the induced (by projection) homomorphism of
cohomology groups so that its image is nontrivial too. For that we use the contraction
de�ned in Section 2.3

πSk : S ′k+1 → S ′k

between barycentric subdivisions of spheres. For the induced map

π∗Sk : H1(S ′k)→ H1(S ′k+1)

we want to see that a cocycle ϕ̃ ∈ Z1(S ′k+1;Z) de�ned as ϕ̃ := π∗Sk(ϕ) is nontrivial, if the
cocycle ϕ ∈ Z1(S ′k;Z) is nontrivial.

Suppose that ϕ̃ = δα̃ for some α̃ ∈ C0(S ′k+1;Z). We show that in this case we can
construct an α ∈ C0(S ′k;Z) such that ϕ = δα, reaching then a contradiction. To de�ne such
α in S ′k we need to do three steps:

1. De�ne α on all the vertices of S ′k corresponding to barycenters of triangles in Sk.
Consider a triangle τ in Sk. Since X is a 3�pseudomanifold its link Xτ consists of
two vertices ṽ1 and ṽ2. By Projection Lemma (Lemma 2.3.4), Sk−1 ∩ Xτ is a single
(nonempty) simplex. Thus one of the vertices of the link, say ṽ2, belongs to Sk−1.
Therefore the other vertex ṽ1 must belong to Sk+1. We can see this situation in Figure
10, where we name the barycenter of the triangle as v. We de�ne α(v) := α̃(ṽ1).

2. De�ne α on all the vertices of S ′k corresponding to barycenters of edges in Sk. Consider
an edge e. Since Sk is a pseudosurface, e belongs to two triangles τ1 and τ2. Let w
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Figure 10: Link of a triangle τ ∈ Sk.

be the barycenter of e. By Lemma 2.5.2 and Example 2.5.1, the link of this edge
is a �nite 1�pseudomanifold, thus a disjoint union of circles. By Projection Lemma
(Lemma 2.3.4) only one of this circles intersects with Bk resulting in an interval. The
rest of the interval that complements the circle belongs to Sk+1. We denote it by
L = (ṽ1, . . . , ṽm), where ṽ1 and ṽm span a simplex with τ1 and τ2 respectively. Let
L′ = (ṽ1, w̃1, ṽ2, w̃2, . . . , w̃m−1, ṽm) ⊆ S ′k+1 be the barycentric subdivision of L (see
Figure 11). Now we use that πSk projects the edges ṽ1w̃1 and w̃m−1ṽm into the edges
v1w and wvm respectively and we obtain

ϕ(v1w) = δα̃(ṽ1w̃1) = ϕ̃(ṽ1w̃1) = α̃(w̃1)− α̃(ṽ1) = α̃(w̃1)− α(v1);

but since we want that ϕ = δα, we have to have

ϕ(v1w) = δα(v1w) = α(w)− α(v1).

Thus we have to set α(w) = α̃(w̃1). Now we can see that if we do the same ar-
gument as above for the edge wvm we obtain α(w) = α̃(w̃m−1). For α to be well
de�ned on all the barycenters of the edges, we have to check that this two values are
in fact the same. However, πSk projects all the edges of L′ di�erent from ṽ1w̃1 and
w̃m−1ṽm into w. That gives ϕ̃(w̃1ṽ2) = . . . = ϕ̃(ṽm−1w̃m−1) = 0. This means that
0 = ϕ̃(w̃1ṽ2) = δα̃(w̃1ṽ2) = α̃(ṽ2) − α̃(w̃1), thus α̃(ṽ2) = α̃(w̃1). The same argument
with the rest of the edges results in α̃(w̃1) = α̃(ṽ2) = . . . = α̃(ṽm−1) = α̃(w̃m−1).
Therefore it follows that α is well de�ned.

3. De�ne α on all the vertices u of Sk. Consider a triangle 4uu′u′′, where w is the
barycenter of uu′ and v the barycenter of the triangle (see Figure 12). We want that
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Figure 11: Link of an edge e ∈ Sk.

ϕ(wu) = α(u) − α(w) =⇒ α(u) = ϕ(wu) + α(w). That is the value we set for α(u).
Notice that we want to have ϕ(uv) = α(v)− α(u) =⇒ α(u) = α(v)− ϕ(uv). Thus we
have to check that this two values are the same. Joining both equations we get

ϕ(wu) + α(w)− α(v) + ϕ(uv) = 0 ⇐⇒ ϕ(wu) + ϕ(vw) + ϕ(uv) = 0,

but since ϕ is a cocycle, we have δϕ = 0. Therefore ϕ(wu) + ϕ(vw) + ϕ(uv) =
δϕ(uvw) = 0, so α(u) is well de�ned.

Figure 12: Triangle 4uvw ∈ S′k

In all cases 1.,2. and 3. α was de�ned so that δα = ϕ. Thus the proof is completed.
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