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1 Introduction

Most species exhibit a certain population structure. Evidently, this holds for physi-
ologically structured populations, where individuals could for instance di�er in body
size or available energy reserves (Diekmann et al., 2007). The ecological dynamics of
structured populations have been studied extensively, in particular using mathemati-
cal tools (Metz and Diekmann, 1986; Cushing, 1998; Caswell, 2001). They are charac-
terized by demographic parameters, namely death rates, maturation rates and rates
of reproduction. We can go further and ask, why species di�er in the demographic
parameters and whether they can be understood from an evolutionary perspective.
Life history theory (Stearns, 1989) tries to �nd answers to this question: due to nat-
ural limitations, at least some demographic parameters have to be traded o� against
each other. This means that reinforcing one demographic parameter automatically
results in the mitigation of at least one other demographic parameter. Obviously,
there is a wide range of di�erent strategies of how to allocate given ressources, e.g.
food or time, to the various demographic parameters, like maturation or reproduction.
Species which show more e�cient strategies, will be more successful.

In the past two decades, a considerable amount of research has been done on the
evolutionary analysis of structured populations (De Roos, 2008; Hoyle et al., 2008;
Bowers, 2011; Rue�er et al., 2013) in particular making use of the mathematical
eco-evolutionary framework of Adaptive Dynamics (Dieckmann and Law, 1996; Metz
et al., 1996; Geritz et al., 1998; Diekmann, 2004). Likewise, this holds for the present
thesis. It aims to provide an eco-evolutionary analysis of structured-population mod-
els. Rue�er et al. (2013) analyze the evolution of life histories in the following way:
evolutionary dynamics of structured-population models in discrete time are predicted
by (i) structural properties of the underlying life histories, (ii) the choice of demo-
graphic parameters which are traded o� against each other, as well as (iii) the choice
of demographic parameters which depend on the density of the population. In this
thesis, we go along the lines of Rue�er et al. (2013) and translate the results therein
to population dynamical models in continuous time.

Mathematical models which are used to analyze physiologically structured popu-
lations, also �nd applications for the analysis of other types of population structure,
like stages of infection in epidemiological models, spatial or social structure. Let us
give some examples.

Examples of population structure: We consider populations that can be sub-
divided into several discrete developmental stages each of which is characterized by
respective traits for survival and reproduction (Cushing, 1998). Juvenile-adult struc-
tures are likely to be the most basic examples of discrete population structures: the
whole population consists of non-reproductive juveniles and reproductive adults. Ju-
veniles develop into adults, which in turn give birth to juveniles. Clearly, population
structure could be more �ne-grained: the stage of juvenile individuals could be split
up into multiple juvenile stages, each of which has its own survival rate, for instance
in order to account for a decreasing mortality rate. Likewise, the adult stage could
be split up into multiple classes characterized by di�ering rates of fecundity. Further-
more, post-reproductive stages could be considered.

Also more complex stage-structured populations can be found: The amoeba species
Dictyostelium discoideum (Flowers et al., 2010; Li and Purugganan, 2011), for in-
stance, shows three di�erent modes of reproduction: at low densities, amoebae repro-
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Figure 1: Examples of stage-structured populations. Figure A shows a juvenile-adult
cycle, as can be found in a huge number of species. Figure B shows the life-cycle
structure of the amoeba D. discoideum with its three qualitatively di�erent ways of
reproduction.

duce mitotically in a vegetative life cycle. If nearby bacteria, which function as food,
become sparse, amoebae have the possibility to change to two rather di�erent modes
of reproduction: in the �rst, amoebae switch from asexual to sexual reproduction,
thereby forming macrocysts. Macrocysts feed on amoebae and build a protecting
shell, which allows them to produce a large number of (again asexual) amoebae.
Alternatively, amoebae cooperatively aggregate and form a slug, which is capable
of moving to areas of higher food supply. A fruiting body develops, which in turn
produces amoebae. See Figure 1 for illustration.

Epidemiology provides another example of population structure: host popula-
tions can be divided into susceptible (compartment S ) and infected (compartment
I ) individuals (Diekmann and Heesterbeek, 2000). Further compartments could be
considered, like exposed (compartment E ) individuals, which are infected but not yet
infective, and recovered (compartment R) individuals. The choice of compartments
depends on the considered disease. Structured epidemiological models are referred to
as SI -, SIR-, SEI -, SEIR-models, depending on the respective compartments.

Furthermore, spatial structure (Doebeli and Dieckmann, 2004), with di�erent
habitat patches, or social structure (Cavalli-Sforza and Feldman, 1981; Doebeli, 2011)
could be considered. Finally, we have to emphasize that all of the above mentioned
types of population structures can be combined. That is, for example spatially struc-
tured SI -models with juvenile-adult cycles as well as spatially and socially structured
SEIR-models could be considered.
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Approach and outline: This thesis is concerned with the long-term evolutionary
analysis of structured-population models in continuous time. While certain popula-
tions are better to be investigated under the assumption of discrete time, like models
of annual plants, we are focusing on the case of continuous time. Rue�er et al.
(2013) provide a thorough analysis of long-term evolution in discrete-time structured-
population models. Although population dynamical modeling obviously di�ers in the
continuous-time case, this thesis is pursuing the same approach as elaborated by Ruef-
�er et al. (2013), where evolutionary predictions are based on an analysis of population
structure itself, or more precisely, the con�guration of life cycles therein. It has to
be remarked, that Hoyle and Bowers (2008), Hoyle et al. (2008), and Bowers (2011)
provide useful tools for the evolutionary analysis of structured populations, which are,
however, based directly on the population dynamical model at hand, rather than on
population structure. In this thesis, precisely like in Rue�er et al. (2013), it is the
structural properties of a life cycle together with the choice of evolving and regulated
demographic parameters, which serves as basis for evolutionary predictions, rather
than properties of a mathematical model. In this respect, the results in this thesis
will have slightly more direct biological interpretation.

Like in Rue�er et al. (2013), long-term evolution is investigated by employing
the mathematical framework of Adaptive Dynamics. Using this framework, we can
investigate the evolutionary trajectories of certain demographic parameters, which
are perceived as phenotypic traits and are subject to mutations. The key feature
of Adaptive Dynamics is the evolutionary feed-back loop. Populations in�uence the
environment they are living in to a certain extent. If a rare mutant occurs, it has to
cope with the environment set by the resident population. If the mutant population
replaces the resident, it will shape the environment in a slightly di�erent manner. It is
now this new environment, a potential subsequent mutant population is going to face.
In this way, evolution is modeled as a trait-substitution sequence. It is cruical, that
in Adaptive Dynamics the �tness of a mutant is derived from an explicit population
dynamical scenario and not assumed a priori.

We proceed as follows: in section 2 the class of structured-population models is
de�ned. In this section, only ecological dynamics will be considered. Structured-
population models will be described by demographic parameters and functions mod-
ifying demographic parameters which account for density regulation.

Section 3 introduces the Adaptive Dynamics approach. The set of evolutionary
scenarios can be subdivided into two main types: frequency independent and frequency
dependent selection. In models of the former type the evolutionary dynamics can be
derived by analyzing an optimization criterion. That is, there are (more or less easy to
interpret) measures of �tness, which are maximized by evolution (Mylius and Metz, in
press). Under frequency dependence, selection can become disruptive, thereby giving
rise to stable polymorphisms, i.e., stably coexisting di�ering species.

Finally, section 4 joins both parts together: the class of models introduced in
section 2 is analyzed using the tools of Adaptive Dynamics given in section 3. This
is done by providing an algebraically simple quantity to measure �tness, which in
addition is tightly related to population structure. Using this so-called �tness proxy,
we show which models support optimization, and derive conditions under which fre-
quency dependent selection can be disruptive for a subset of our model family. The
shape of trade-o�s between evolving phenotypic traits will be cruical.

We will see, that with certain restrictions, the present results coincide with the
discrete-time case presented in Rue�er et al. (2013). Throughout the whole thesis,
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examples are provided, which shall help to illustrate both, introduced concepts as well
as derived results.
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2 Structured population models

This part is meant to provide an introduction of the basic mathematical tools which
are needed to describe the ecological dynamics of structured populations. Population
structure is assumed to be discrete. That is, we will assume that the whole population
of individuals can be subdivided into a �nite number of separate classes, stages or
states (Key�tz and Caswell, 2005). Such states can be interpreted in several ways,
such as di�erent stages of maturity or stages of infectivity. Likewise spatial structure
could be considered. In contrast to Rue�er et al. (2013), we are focusing on popu-
lation dynamics in continuous rather than discrete time. Consequently, population
dynamics are descibed by systems of ordinary di�erential equations (ODEs) as com-
pared to di�erence equations. Life histories will be described by three di�erent types
of demographic parameters: fertility rates, death rates and rates for transition from
one state to another. The latter could represent maturation rates, rates of infection,
or migration rates. Density dependence will be accounted for via regulatory functions,
which modify demographic parameters.

Section 2.1 will introduce the model family. Section 2.2 gives a short outline of
stability theory (Hofbauer and Sigmund, 1998). This will be useful, since for the
evolutionary analysis we will by assumption demand the existence of stable point
attractors of the ecological dynamics. Finally, 2.3 will introduce life-cycle graphs,
i.e., graphical representations of the underlying system of ODEs. The structural
properties of those life-cycle graphs will be exploited later on in order to facilitate
an evolutionary analysis of structured-population models (Hoyle and Bowers, 2008;
Rue�er et al., 2013). This, however, will be subject to a latter part, namely section
4.

2.1 Ecological dynamics of structured populations

Since we are interested in the evolutionary dynamics of life-histories, the relevant
demographic parameters are fertility and survival rates of di�erent life-history stages
as well as rates at which individuals switch from one life-history stage to another one.
For a given structured population model, these so-called transition rates implicitly
de�ne the set of possible life histories for each individual. It is assumed that certain
demographic parameters can depend on the density of the whole population or on
densities of subpopulations. For instance, the fertility of adults could decrease as the
number of reproductive adults increases (as it is for instance the case for the European
rabbit, see Rödel et al., 2004, cf. Example 4).

The mathematical description of the structured population is straightforwardly
done in terms of a (generally nonlinear) dynamical system. This system then is
converted into a more accessible matrix formulation. The core theory of dynamical
systems can be found for instance in Hofbauer and Sigmund (1998).

Basic description via ODEs: The dynamics of populations with discrete popula-
tion structure are described by k -dimensional dynamical systems in continuous time,
where k is the number of di�erent states (cf. Hoyle and Bowers, 2008). For each state
i ∈ {1, ..., k}, the dynamics of the respective populations size ni(t) is de�ned by an
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ordinary di�erential equation (ODE) of the form

dni
dt

= ṅi = fii +

k∑
j=1,j 6=i

(tij + fij)nj −
k∑

j=1,j 6=i

tjini − dini, (1)

where fji, tji, and di are parameters which are relevant for the description of life
histories (Key�tz and Caswell, 2005):

2 Fertility rates: fji ≥ 0, i, j ∈ {1, ..., k}, denotes the rate at which individuals
in state i give birth to individuals in state j.

2 Transition rates: tji ≥ 0, i, j ∈ {1, ..., k} with i 6= j, denotes the rate at which
individuals in state i change into state j.

2 Death rates: di > 0, i ∈ {1, ..., k}, denotes the rate at which individuals in
state i die.

We will refer to fji, tji, and di as demographic parameters.
The �rst term in equation (1) is given by the intrastate fertility rate of state i. The

second term collects all individuals that enter state i via reproduction or transition
from a state j which is di�erent from i. The third term collects all individuals that
leave state i for other states j. Finally, the fourth term gives the number of i-
individuals that die.

The use of deterministic models (like ODEs) is justi�ed by the assumption that
populations are su�ciently large to be insensitive to stochastic e�ects (Hofbauer and
Sigmund, 1998; Dercole and Rinaldi, 2008). For employing di�erential equations
(where time is measured continuously) rather than di�erence equations (where time
is measured discretely), we need that each demographic event corresponding to a
demographic parameter c ∈ {fji, tji, di} occurs after a time-span following an expo-
nential distribution around an average of 1

c . This means, that the probability for a
demographic event to occur in the time interval [0, τ ] is 1−e−cτ (Nowak, 2006, p. 11).
This di�ers from discrete-time models, where all demographic events corresponding
to a demographic parameter occur at exactly the same time. In practice, di�erential
equations are used, if populations are relatively large, if demographic events are inde-
pendent of each other, if the time-span between two demographic events is relatively
short, or if generations are overlapping. For example, it is common practice to employ
continuous-time models in epidemiological applications.

Example 1. Consider a population in which individuals are in either of two states,
1 and 2, where 1 denotes the juvenile non-reproductive state and 2 denotes the adult
reproductive state, as depicted in Figure 1. Individuals can change from state 1 to
state 2, i.e., they can develop from juvenile to adult, but not the reverse. Only adults
can produce o�spring of state 1. Both, juvenile and adult individuals die at certain
rates. The resulting system of di�erential equations then reads:

ṅ1 = f12n2 − t21n1 − d1n1

ṅ2 = t21n1 − d2n2.

Regulatory functions: Demographic parameters can be either constant or de-
pending on the density of all individuals or on the density in a subset of states. There
are multiple reasons for why demographic parameters can be density dependent. For
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instance, individuals could compete for limited resources, like food, space or nesting
sites, hence resulting in increased rates of maturation or reproduction. Furthermore,
mortality could increase due to increased probability of infection or an increased num-
ber of predators, both as a re�ex of high population densities. Likewise, stress could
cause increased death rates or decreased fertility rates.

If all demographic parameters fij , tij , and di (or equivalently ri) remain constant,
the system of ODEs given by equation (1) is linear. Otherwise it will become a non-
linear system of ODEs. For plausible modeling of population dynamics, population
regulation is essential: otherwise we could not exclude unlimited exponential growth.

For the k-dimensional vector of state sizes let us write n = (n1, ..., nk)T .

De�nition 1. A regulatory function corresponding to a demographic parameter xij
is a continuously di�erentiable strictly monotone function Rx,ij : Rk+ ⊇ D → (0,∞),
n 7→ Rx,ij(n). We use the abbreviation Rx,i for Rx,ii. A demographic parameter is
called multiplicatively regulated, if it is of the form x̃ij := xij ·Rx,ij(n) and additively
regulated if it is of the form x̃ij := xij +Rx,ij(n), where xij denotes the unregulated
demographic parameter and x̃ij denotes the corresponding regulated demographic
parameters. A regulatory function is called multiplicative and additive if it regulates
a demographic parameter in the respective manner.

In the following, if not explicitly stated otherwise (as this is the case for density

regulation by the law of mass action, see example below), we will assume that
∂Rx,ij
∂nl

≤
0 for all l = 1, ..., k, if xij is a fertility or transition rate and

∂Rx,i
∂nl

≥ 0 for all
l = 1, ..., k, if xi is a death rate. The cruical di�erence between additively and
multiplicatively regulated parameters x̃ij is, that while the former are bounded from
below by xij > 0, the latter are in general bounded from below by 0. From now on, for
general considerations we assume that any demographic parameter can be regulated.
In speci�c examples, however, regulatory functions will be indicated as shown in the
de�nition.

The way in which regulatory functions are de�ned above, allows for a wide range
of applications. Due to the monotonicity requirement, however, Allee-e�ects are im-
plicitly excluded.

Example 2. Let us give some examples of regulatory functions (for illustration see
Figure 2):

1. For a demographic parameter xij and positive constants a and b, and cl ≥ 0,
l = 1, ..., k, Rx,ij : n 7→ a

b+
∑

1≤l≤k clnl
de�nes a hyperbolic regulatory function.

The constants cl are state speci�c weighting parameters. The corresponding
multiplicatively regulated demographic parameter reads x̃ij =

axij
b+

∑
1≤l≤k clnl

.

This type of saturating regulatory functions is related to Michaelis-Menten en-
zyme kinetics (Murray, 2002) and Holling type II functional response (Otto and
Day, 2007; Kot, 2001). If we consider the structured population given in the
previous example, and if x12 = f12 and c1 = c2 = c, then f̃12 = af12

b+c(n1+n2) ,

which means that the fertility of adult individuals is (deceleratingly) decreasing
in the overall size of the population (for instance due to competition for nesting
sites).

2. Consider a demographic parameter xij and constants a > 0 and bl ≥ 0, L =

1, ..., k, Rx,ij : n 7→ a · exp
(
−
∑

1≤l≤k blnl

)
de�nes a decreasing regulatory

7



Figure 2: Plots of regulatory functions Rx,ij as in Example 2.1-4 for two dimensions
n1 and n2, where weighting constants are chosen as 1 and 0.75, respectively, and
xij = 1. Regulation is hyperbolic in (1), negatively-exponentially in (2), and logistic,
i.e., linear, in (3), while (4) gives an example of parameter regulation via the law of
mass action.

function, where the constants bl can be used to weight the e�ect of each class
on the demographic parameter. It describes an exponential decrease in the
demographic parameter as the sizes of classes are increasing. For instance, it
has been incorporated into (discrete time) models of stage-structured insect
populations, so-called LPA-models (as an abbreviation for larvae-pupae-adult,
see Cushing, 1998; Henson, 1999; Otto and Day, 2007).

3. Clearly, Rx,ij : n 7→ a ·
(
1−

∑
l∈α nl/K

)
, for some constants a,K > 0 and

α ⊆ {1, ..., k}, de�nes a decreasing logistic regulatory function. According to
this function, a multiplicatively regulated parameter declines linearly, as the
number of individuals in all states l ∈ α increases. Due to its simplicity, this
type of regulatory functions is commonly used to implement density dependence
into all sorts of population dynamical models (see Hofbauer and Sigmund, 1998;
Otto and Day, 2007; Kot, 2001). Note, that logistic regulatory functions are in
need of a restricted domain D in order to ful�ll Rx,ij > 0.

4. Finally, as a somewhat more unconventional regulatory function, for a subset
α ⊆ {1, ..., k} and al > 0 (for l ∈ α) we have Rx,ij : n 7→

∏
l∈α alnl, which, if

applied multiplicatively, can be used to model parameter regulation via the law
of mass action. That is, the considered parameter is proportional to the product
of all sizes of classes in α, and hence increasing (Murray, 2002). It is important
to emphasize, that this type of population regulation is rather di�erent from
the decreasing regulatory functions in the three examples above. This type of
regulatory functions is often used in epidemiology, where transmission rates are
supposed to be proportional to the number of contact events of susceptible and
infected individuals (Diekmann and Heesterbeek, 2000; Dieckmann and Metz,
2006).
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Matrix formulation: More conveniently, the system of ODEs given by (1) can
equivalently be written as

ṅ = A(n) · n, (2)

where ṅ = (ṅ1, ..., ṅk)T and A(n) is a k × k-matrix. The entry aij of A is given by

aij(n) = f̃ij + t̃ij i 6= j

aii(n) = f̃ii − d̃i −
∑
l 6=i

t̃li

We will refer to such a matrix A as a life-cycle matrix or simply life cycle. The
entries of A(n) are (possibly constant) functions of n, i.e., functions aij(n), as they
may contain regulatory functions.

Since all demographic parameters fij and tij are nonnegative, since all di are posi-
tive, and since all regulatory functions are strictlly positive, it follows that aij(n) ≥ 0
if i 6= j.

Example 3.

1. Consider the life-cycle of the amoeba D. discoideum (Flowers et al., 2010; Li
and Purugganan, 2011; see also Figure 1): At high densities, amoebae either
enter a cooperative life cycle or a cannibalistic life cycle, by moving to stage 2 or
3, respectively. Under the cooperative life cycle, amoebae form movable slug, so
it is reasonable not to assume density dependence in stage 2. Amoebae in stage
3, on the other hand, form a zygote and become cannibalistic. Hence, amoebae
in stage 3 a�ect the death rate d1. The corresponding life-cycle matrix reads

A =

 f11 − t̃21 − t̃31 − d̃1 f12 f̃13

t̃21 −d2

t̃31 −d3

 .

2. The following epidemiological compartment model describes the dynamics of
a disease with a latent but not infectious state, like for instance tuberculosis
(see Ozcaglar et al., 2012 for an overview). The population is structured into
the classes S (susceptible), E (exposed, i.e., infected but not infectious), and I
(infected and infectious). We will use standard epidemiological notation. The
variables S, E and I measure the densities of the respective subpopulations.
Birth and death rates of the disease free susceptibles are denoted as b and d.
Parameters related to the disease are denoted by Greek letters: rates of infection
βji, recovery rates θSi from infected/exposed to susceptible (where i ∈ {S,E, I})
and ρEI from infected to exposed, are transition rates as de�ned above. Disease
free death rates increase by αi (i ∈ {E, I}) and depend on the state of infection.
Assume that individuals always have to pass through the latent state E in order
to reach I. Then, the dynamics are given by

Ṡ = [b− βESI − d]S + θSEE + θSII

Ė = βESIS − [βIEI + θSE + (d+ αE)]E + ρEII

İ = βIEIE − [ρEI + θSI + (d+ αI)] I

yielding the life-cycle matrix

A =

 b− β̃ES − d θSE θSI
β̃ES −β̃IE − θSE − (d+ αE) ρEI

β̃IE −ρIE − θSI − (d+ αI)

 ,
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where the transition rates β̃ES = βESI and β̃IE = βIEI are regulated via the
law of mass action by the number of individuals in class I: it is assumed that
the number of transitions from S to E only depends on the number of contacts
of class S and class I individuals, since exposed individuals by de�nition are
not infectious. Similar considerations hold for the number of transitions from E
to I: here, β̃IE represents the rate of exogenous reinfection1 depending on the
number of contacts of exposed and infective individuals (Ozcaglar et al., 2012).
Likewise it could be assumed that βIE does not depend on contact events with
infectious individuals, and is thereby unregulated. Then βIE represents the rate
of endogenous reactivation.

2.2 Ecological long-term behavior

For an evolutionary analysis of a structured population model �nding an exact solution
of the system of di�erential equations at hand is not of primary interest. We are only
interested in the attractors of the system. As will be shown in section 3 we will
assume the existence of nontrivial point attractors of the dynamical system in order
to determine the �tness of a mutant in a resident structured population. Note, that
for the existence of an internal equilibrium, regulatory functions are necessary. The
structure of the life-cycle matrix A will play a key role in the evolutionary analysis
of the structured population. Therefore, this section comprises a result about the
structure of A when the system has reached its equilibrium on the ecological time
scale.

Equilibria and stability: We are interested in the long-term dynamics of (2),

ṅ = A(n) · n.

Although this system only rarely has an explicit solution we can make qualitative
predictions about the behavior of the dynamical system by �nding its equilibria and
employing standard stability analysis (Hofbauer and Sigmund, 1998). As usual, for
a k-dimensional dynamical system ṅi(t) = fi(n(t)), i = 1, ..., k, a point n̂ is a popu-
lation dynamic equilibrium, if fi(n̂) = 0 for all i = 1, ..., k. A population dynamical
equilibrium n̂ is said to be stable if for all neighborhoods U of n̂ there is another
neighborhood V so that all orbits n(t) starting in V remain in U for all t. It is
asymptotically stable if in addition lim

t→∞
n(t) = n̂ for all n ∈ V .

The stability of a population dynamic equilibrium n̂ can be determined by lin-
earizing the dynamical system around n̂ and calculating the eigenvalues of the corre-
sponding Jacobian matrix evaluated at n̂:

J|n̂ =

(
∂fi
∂nj

)
1≤i,j≤k

∣∣∣∣
n=n̂

.

If for all eigenvalues of the Jacobian matrix, λ(J|n̂), the real part is negative, then n̂
is asymptotically stable, and n̂ is unstable if for at least one eigenvalue the real part
is positive (in the case of max

λ
{Reλ} = 0 higher order terms have to be considered).

1As opposed to endogenous reactivation, where the exposed individual becomes infective without
external infection, �[e]xogenous reinfection is caused by a secondary external infection in which
the new [Mycobacterium tuberculosis complex, i.e., the pathogen] makes the individual infectious,
thereby causing the active [tuberculosis] infection� (Ozcaglar et al., 2012, 78).
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Example 4. Consider the structured population given by

ṅ1 = f12n2 − t21n1 − d1n1

ṅ2 = t21n1 − d2n2.

This dynamical system has only one equilibrium, namely n̂ = (0, 0)T , as the system
is linear. In order to determine the stability of this equilibrium point we calculate the
Jacobian matrix of the system given above:

J =

(
−t21 − d1 f12

t21 −d2

)
Note, that in this case, since there are no entries depending on n, J is just the life-
cycle matrix of the structured population, A (an observation which will be useful later
on in section 4). The Jacobian matrix does not depend on n, hence A = J = J|n̂. We
can directly calculate the eigenvalues of J obtaining

λ1,2 = −1

2
(d1 + d2 + t21)︸ ︷︷ ︸

α

± 1

2

√
(d1 + d2 + t21)2 − 4(d1d2 + d2t21 − f12t21)︸ ︷︷ ︸

β

.

The stability of n̂ then depends on whether α < Reβ.

Now, let us incorporate a hyperbolic regulatory function as in Example 2.1. This
means that the rate of adults giving birth to juveniles hyperbolically depends on the
overall population size. The phenomenon of density dependent fertility regulation is
widespread among mammals (Krebs, 1996) and particularly a characteristic feature
of the European rabbit, Oryctolagus cuniculus, (Rödel et al., 2004): it has been
shown that the average number of o�spring is decreasing with increasing numbers of
female rabbits. For simplicity, let us only keep track of the number of female rabbits.
Accordingly, in the regulatory function Rf,12 as given in Example 2.1 we set c1 = 0
and c2 = 1. Furthermore, let us assume a = b = 1. Consequently, the system reads

ṅ1 =
f12

1 + n2
n2 − t21n1 − d1n1

ṅ2 = t21n1 − d2n2.

This nonlinear system has two equilibria: n̂1 = (0, 0)T and a nonzero equilibrium.
As described above, calculating the eigenvalues of the linearized system evaluated at
n̂1 and n̂2 shows us, whether or not the equilibria are stable. Note, that n̂2 > 0 only
if f12t21 > d2(d1 + t21).

Population dynamic equilibria and the sign structure of A: For simplicity,
we will assume that for system (1) there is an equilibrium which is a single point
attractor n̂.2 We can make certain assertions about the sign structure of a life-cycle
matrix A(n̂). We can state the following proposition:

2This assumption will simplify the evolutionary analysis of the model family. Strictly speaking,
under the assumption that mutational e�ects are small, the requirement that there is exactly one

point attractor is not necessary. If there are multiple point attractors, one has to be speci�c about
at which the population resides before the �rst mutant appears.
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Proposition 1. If the system ṅ = A(n)·n is in a population dynamic equilibrium n̂,
then the diagonal entries of A(n̂) are nonpositive, i.e., aii(n̂) ≤ 0, for all i. Moreover,
if state i has (possibly regulated) incoming transition or fertility rates, i.e., there are
t̃ij or f̃ij > 0 for some j 6= i and if each class has positive density at population
dynamic equilibrium, i.e., n̂ > 0, then aii(n̂) < 0.

Proof. If n̂ is a population dynamic equilibrium of (1), then for all i we have

0 = fiin̂i +

k∑
j=1

(t̃ij + f̃ij)n̂j −
k∑
j=1

t̃jin̂i − din̂i

=

f̃ii − di − k∑
j=1

t̃ji

 n̂i

+

∑
j 6=i

(t̃ij + f̃ij)n̂j

 .
︸ ︷︷ ︸

≥0

Since all demographic parameters and all n̂i are nonnegative, it immediately follows
that 0 ≥ f̃ii − di −

∑k
j=1 t̃ij = aii(n̂). If there are incoming transition or fertility

rates, then t̃ij + f̃ij > 0 for some j 6= i and n̂ > 0. Hence the �rst summand has to
be strictly negative, whereby the second statement follows.

Note that this also applies if some demographic parameters are regulated, since
regulatory functions are strictly positive. The proposition implies that

aij(n̂)

{
≥ 0 if i 6= j

≤ 0 if i = j
.

2.3 Life-cycle graphs

Life-cycle graphs are a useful tool to investigate structured populations, as they pro-
vide a straight forward graphic representations of a given life cycle (see for instance-
Caswell, 2001, Otto and Day, 2007 and Kot, 2001). There is a natural one-to-one
relation between life-cycle graphs and life-cycle matrices: roughly speaking, states
are mapped to vertices and demographic parameters are mapped to edges. In this
section we will de�ne the loop transmission, which factorizes the rates that correspond
to the states that are passed through in a loop in the life-cycle graph. As will be seen
later on, the evolutionary dynamics of a structured population are closely linked to
the structure of its corresponding life-cycle graph.

Graphs are formally de�ned as pairs of sets of vertices and edges (see Appendix
A.1 for a precise de�nition). For a n × n life-cycle matrix A = (aij)1≤i,j≤n the set
of vertices SA is de�ned by the set of states {1, ..., n}. The set of edges EA collects
all pairs of states (i, j) with aij 6= 0 (i 6= j), and all pairs (i, i) for all i. The graph
GA = (SA, EA) then is called a life-cycle graph. The weights on the edges are de�ned
by the respective matrix entries, i.e., w(i, j) = aij .

Example 5. The directed graph correponding to the structured population given in
Example 1 can be represented in the following way:

12



1
t21
//−d1−t21 66 2

f12

��
−d2hh

In a somewhat more intuitive way, it can be rearranged as a �ow diagram, such that
the death rates do not form self loops. Rather, death rates simply de�ne outgoing
arrows. Moreover outgoing transition rates do not contribute to the weight in the
corresponding self loop (and do not establish self loops).

1
t21
//

d1

��

2

f12

��

d2

��

It is cruical that life-graphs as de�ned above directly represent its underlying life-cycle
matrix, even if the type of a demographic parameter is not known. Without further
information about the type of demographic parameters, this does not hold for �ow
diagrams. Hence, the latter way of representing a life-cycle matrix is ambiguous.

Sub-life-cycles and loops: A sub-life-cycle can be any subset of states of a struc-
tured population, whereas loops intuitively describe particular life-histories of indi-
viduals.

De�nition 2. Let A be a k × k life-cycle matrix and let α ⊂ {1, ..., k} be a proper
subset of the set of states. The principal sub-matrix of A that consists only of rows
and columns with indices in α is denoted as Aα. A sub-life-cycle is then the life cycle
corresponding to Aα. The principal sub-matrix of A, where all rows and columns with
indices in α are deleted is denoted as A{1,...,k}\α =: A\α)

The sub-graph describing Aα is given by GAα := (α,EAα). It contains exactly
those edges (si, sj) ∈ EA with si, sj ∈ α. Note that in the diagonal entries aii of
Aα transition rates tji with a negative sign where j /∈ α may appear. For biological
interpretation, these should be added to the corresponding death rates di.

Loops are closed paths through a graph, where each vertex is traversed exactly
once. For a formal de�nition of paths and loops see Appendix A.1. The length `(G)
of a loop G is the number of vertices in G. A self loop is a loop of length 1. By
factorizing all weights along a loop, we get the corresponding loop transmission:

De�nition 3. The loop transmission L of a loop G = (S,E) is de�ned as the product
of the weights of the edges of G, i.e., L :=

∏
e∈E w(e).

For loops G = ({i1, i2, ..., il}, {(i1, i2), (i2, i3), ..., (ili1)}) =: [i1, i2, ..., il, i1] (see
Appendix A.1) in a directed graph GA induced by a life-cycle matrix A, the loop
transmissions are then simply given by L = ai2i1 ·ai3i2 · ... ·ailii . Note, that loops and
paths are graph-theoretic objects, while loop transmissions are products of matrix
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entries. We can de�ne L(A) := {L|L is the loop transmission of a loop G ⊆ GA} as
the set of all loop transmissions in a directed graph generated by A. That is, L(A)
collects all products along loops in a given life cycle. In a somewhat sloppy manner
we will also use the term loop instead of loop transmission.

In a life cycle self loops are of the form L = aii = fii − di −
∑
l 6=i tli while

all other loops are products of (sums of) fertility and transition rates, i.e., L =
xi2i1 · xi3i2 · ... · xilii , where xij = aij ∈ {tij , fij , tij + fij}.

Alternatively, we could have de�ned loops as products of demographic parameters.
Then each ii-entry would correspond to separated, pairwise connected loops of the
form fii, −di, −tli (l 6= i). The de�nition of loops as products of matrix entries
as opposed to products of demographic parameters is not unproblematic: First, as
a consequence, factors in a loop can be sums of (possibly regulated) demographic
parameters. This can make algebraic manipulations complicated. Second, at �rst
sight it is biologically less intuitive.

We stick, however, to the above de�nition for the following reasons: First, if loops
are de�ned as products of matrix entries, there is an injective correspondence between
the set of pairwise unconnected loops and the set of disjoint permutation cycles in
{1, ..., n}. This will simplify calculations.

Second, while reproductive self loops of the form fii are biologically intuitive,
it is less plausible to perceive −di as a self loop. Fertility rates and death rates
are often simply combined to growth rates ri := fii − di (also in epidemiological
applications). Furthermore, there is no clear biological interpretation of self loops
which are generated by outgoing transition rates, i.e., −tli. An intuitive option would
be to perceive loops of the form −tli as quasi-death-rates. Then, as it is done in
de Camino-Beck et al. (2009) for epidemiological models, we can combine death rates
and outgoing transition rates to sums mi := di +

∑
l 6=i tli. Altogether, we can de�ne

the state-speci�c overall per-capita growth rate

ρi := fii −mi = ri −
∑
l 6=i

tli = aii = L,

which describes at which rate individuals in state i contribute to the growth of state
i.

Third, additive regulatory functions are problematic, since under additive density
regulation, self loops by de�nition show sums of demographic parameters and regu-
latory functions. This again complicates algebraic manipulations. Alternatively, we
could perceive regulatory functions as self loops: for instance fii and −Rf,ii could
generate two connected self loops. Interpreting −Rf,ii as a loop is, however, not
entirely satisfying from a biological point of view.

Example 6.

1. The life-cycle graph for the stage-structured juvenile-adult model in Example 1
represented by

1
t21
//−d1−t21 66 2

f12

��
−d2hh
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has two loops of length 1, G1 = [1, 1], G2 = [2, 2], and one loop of length
2, G3 = [1, 2, 1]. The corresponding loop transmissions read L1 = −d1 − t21,
L2 = −d2, and L3 = t21f12, respectively. Note that although the graph which
goes from 1 to 2, from 2 back to 1, and �nally from 1 to 1 (more precisely the
graph ({1, 2}, {(1, 2), (2, 1), (1, 1)})) is a path, it is not a loop.

2. Consider the SEI -model from Example 3.2. If we are only interested in the
dynamics of exposed and infected individuals, we have a similar life cycle as in
the previous example. It corresponds to the submatrix A{E,I}.

S
β̃IE

//−θSE−(d+αE) 55 I

ρEI

��
−ρEI−θSI−(d+αI)hh

We �nd two loops of length 1, G1 = [E,E], G2 = [I, I], and one loop of length 2,
G3 = [I, E, I]. The corresponding loop transmissions read L1 = −θSE−(d+αE),
L2 = −ρEI − θSI − (d+ αI), and L3 = β̃ISρEI , respectively.

3. We have the following life-cycle graph for D. discoideum (see Example 3.1):

1

t̃21��
t̃31 ��

f11−d̃1−t̃21−t̃31

��

2

f12 66

−d2 66 3

f̃13hh

−d3hh

There are three pairwise unconnected loops of length 1, and two pairwise con-
nected loops of length 2, one for each non-mitotic mode of reproduction. Loop
Gvege = [1, 1] represents the mitotic-vegetative life cycle, Gcoop = [1, 2, 1] rep-
resents the cooperative life cycle and Gcann = [1, 3, 1] represents the canni-
balistic life cycle. There are the following corresponding loop transmissions:
Lvege = f11 − d̃1 − t̃21 − t̃31, Lcoop = t̃21f12, and Lcann = t̃31f13. Futhermore,
there are two additional self loop transmissions: −d2 and −d3.

Irreducible and reducible life-cycles: Although the term life cycle suggests that
an individual may pass through all stages in a cyclic manner, this is not necessarily
the case: First, it is possible that an individual may choose among several di�erent
paths. Second, there can be stages from which an individual cannot reach certain
other stages through transition or reproduction. The �rst possibility corresponds to
di�erent connected paths or loops. The second possibility refers to the reducibility of
a life cycle.

De�nition 4. In a graph, state i is accessible from state j, in short j → i, if there
exists a path from j to i. Two states i and j are connected if j → i and j → i. A
graph is irreducible if all of its states are pairwise connected, and reducible otherwise.
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We say that a life cycle is reducible if this holds for its corresponding life-cycle
graph. Likewise, the life-cycle matrix A is reducible, if its life-cycle graph is reducible,
which is equivalent to the possibility to rearrange the rows and columns in A in such
a way that

A =

(
B Ø
C D

)
,

as can be shown using standard Markov-chain theory (Feller, 1950).
Note that, if A is irreducible and if the population is at population dynamic

equilibrium (n̂ > 0), it follows from Proposition 1 and the fact that loop transmissions
are only de�ned by non-zero factors, that

L

{
> 0 if `(L) > 1

< 0 if `(L) = 1
. (3)

Example 7. Consider the following life-cycle graphs G1 and G2:

1
t21
//f11−d1−t21 66 2

f12

��
−d2hh 1

t21
//f11−d1−t21 66 2 −d2hh

Clearly, the graph on the left hand side, G1, is irreducible, since we can go from state
1 to state 2, and back to state 1 again. The graph on the right hand side is reducible:
this life cycle has a post-reproductive class, namely stage 2. Its life-cycle matrix reads

A2 =

(
f11 − t21 − d1 0

t21 −d2

)
.

The purpose of this section was to collect all concepts which are necessary to de-
cribe the ecological dynamics of a structured population. The family of structured
population models, as outlined above, resorts to two di�erent ingredients: First, de-
mographic parameters, and second, regulatory functions. The former fully describe
the life history of a given population, the latter account for density dependence. Fi-
nally we have seen how to identify systems of ODEs, which model the dynamics of a
population, with life-cycle graphs. We will come back to structured population models
in section 4. Before that, the framework of Adaptive Dynamics shall be introduced,
which will serve as foundation for the evolutionary analysis of life histories.
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3 Adaptive Dynamics

Adaptive Dynamics is a mathematical framework, which has been developed to in-
vestigate long-term evolutionary dynamics of traits (Diekmann, 2004). It comprises
elements of Evolutionary Game Theory and of population dynamics (Nowak and
Sigmund, 1990; Nowak, 2006), thereby linking ecology and evolution in a unifying
framework. More precisely, Adaptive Dynamics investigates the evolution of pheno-
typic traits, thereby ignoring all underlying genetic details. Sometimes, traits are also
referred to as strategies. Furthermore, only phenotypic traits that can be identi�ed
with numerical characters are considered.

In Adaptive Dynamics, evolution is driven by two mechanisms, mutation and
selection, while populations are assumed to be su�ciently large so that drift can be
neglected. Mutations are random events, which modify phenotypic traits. Concerning
mutations, Adaptive Dynamics relies on two basic assumptions (Dercole and Rinaldi,
2008, p. 65), namely that

1. mutations are rare, and

2. mutational e�ects are small.

If mutations are rare, on the ecological time scale populations have their time to settle
down to population dynamical attractors, before a new mutant is going to appear.
Hence, we can separate the evolutionary time scale from the ecological (demographic)
time scale. The second assumption ensures that successful invasion of a rare mutant
implies substitution of the resident by the mutant (Geritz et al., 2002). Furthermore,
only under this assumption the evolution of a numerically measured phenotypic trait
can be described as the trajectory of an ODE, namely, the so-called canonical equation
of Adaptive Dynamics (Dieckmann and Law, 1996; Diekmann, 2004; Dercole and
Rinaldi, 2008), which is a di�erential equation, modeling the change of a numerical
trait by mutation and selection.

The concept of the changing (or adaptive) �tness landscape is cruical to Adaptive
Dynamics: the �tness landscape a rare mutant faces is determined by the resident
population, and � more importantly � generally di�ers for distinct resident popula-
tions. Each resident population shapes an environment (e.g. by consuming ressources
therein). If now a mutant population occurs, it will be exposed to the environment set
by the resident population. After successful invasion the mutant population, which by
de�nition di�ers from the resident, becomes the new resident population and shapes
a new environment, which need not be the same as before. This cyclic process is
referred to as the eco-evolutionary feedback loop (Metz et al., 2008).

This section will present a short outline of Adaptive Dynamics. In section 3.1,
the central concept of invasion �tness as well as a useful graphical method to study
evolutionary dynamics for simple trait spaces will be introduced. Section 3.2 intro-
duces evolutionarily singular strategies, the equilibria of the evolutionary dynamics.
By identifying certain properties of evolutionarily singular strategies, one can im-
mediately predict long-term evolutionary outcomes. Subsequently, section 3.3 shows
under which conditions evolution can be perceived as process which optimizes traits.
Finally, in section 3.4 we will see how evolutionary predictions can be made by solely
inspecting the shape of trade-o�s among various evolving traits. Later on, in section
4 the framework of Adaptive Dynamics will be applied to the structured population
models which have been introduced previously.
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Box 1. Eco-evolutionary assumptions

In the following list, all eco-evolutionary assumptions concerning the model
family considered in this thesis shall be summarized:

General assumptions:

2 Populations are su�ciently large, so that ecological dynamics can be
described by deterministic models.

2 The waiting time between two demographic events is exponentially dis-
tributed, so that ecological dynamics can be described by ODEs.

2 Reproduction is perceived as clonal.

Assumptions concerning population dynamics:

2 Populations can be decomposed into a �nite number of pairwise disjoint
states. That is, at each point in time, each individual belongs to exactly
one state.

2 Realized demographic parameters can be regulated by population den-
sity. The resulting systems of ODEs is non-linear.

2 We restrict ourselves to modes of population regulation such that the
population dynamics converge to a singe point attractor.

Assumptions concerning evolutionary dynamics:

2 The genes determining the demographic parameters are subject to mu-
tations. Demographic parameters are numerically measured phenotypic
traits. All underlying genetic details can be ignored.

2 Mutations are su�ciently rare, so that populations settle down on their
single point attractor before the next mutant comes along.

2 Mutations are su�ciently small, so that invasion implies substitution.
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3.1 The trait-substitution sequence

Let us start with an introduction of the basic concepts.

Invasion �tness: A population can be characterized by several traits, x1, ..., xn,
which are collected in the so-called trait vector x = (x1, ..., xn), which lies in the trait
space X ⊆ Rn. The resident population given by x fully determines the environment
Ê(x) ∈ E, a new mutant population with trait vector y is exposed to, where E⊆ Rm is
the set of all possible environments (Metz et al., 2008). The population density of the
resident population determined by its population dynamic equilibrium may in�uence
certain parameters which in turn in�uence the growth of the mutant population.
No other factors are assumed to act upon the environment. We can now de�ne the
invasion �tness of a mutant (Metz et al., 1992, 2008; Metz, 2008):

De�nition 5. The invasion �tness s(y, Ê(x)) is the long-term exponential growth

rate of a rare mutant population with strategy y in an environment Ê(x) set by a
resident population with strategy x.

Invasion �tness is a function s : X × X → R, (x,y) 7→ s(y, Ê(x)). For nota-
tional simplicity, with some abuse of notation, we will also write s(y,x) instead of

s(y, Ê(x)), whenever the environment is not the primary focus of considerations.
The initial dynamics of the mutant population now are fully determined by its

invasion �tness: if s(y,x) < 0 the mutant population will disappear, if s(y,x) > 0
it has a positive probability to to invade. In the case of equality, i.e., if s(y,x) = 0,
the mutant population is selectively neutral with respect to the resident. Clearly, the
resident is selectively neutral with respect to itself: by assumption, the resident pop-
ulation characterized by strategy x has reached its population dynamic equilibrium,
hence s(x,x) = s(x, Ê(x)) = 0.

Generally, we cannot make any further assertion about the future fate of an in-
vading mutant population. There are two possible scenarios: First, the mutant could
replace the resident population: under the assumption of small mutational e�ects, �x-
ation of the mutant population is a consequence of its invasion. This is ensured by the
so-called Tube Theorem (Geritz et al., 2002). Second, under certain circumstances the
mutant and the resident may coexist. In the latter case, a subsequent mutant would
face an environment determined by two resident populations. Its invasion �tness then
is written as s(y, Ê(x1,x2)) = s(y,x1,x2).

The changing �tness landscape: If we assume that a mutant population is able
to replace the resident population this leads to an evolutionary trajectory in the form
of a trait-substitution sequence. Each given resident x de�nes a �tness landscape
as a function of y by virtue of s(y,x). The graph of this function then is Φx =
{((y, s(y,x)) : y ∈ X}. All strategies y that lie above the zero contour line of Φx

will have a positive probability to invade, and all strategies that lie below the zero
contour line will go extinct. The �tness landscape changes with each new resident.
We can think of the surface Φ = {((x,y), s(y,x)) : x,y ∈ X} as a changing �tness
landscape.

The previously described surface can be nicely visualized if we restrict the trait
vectors to be one-dimensional. Then invasion �tness is given by s(y, x) and the
changing �tness landscape reads Φ = {((x, y), s(y, x)) : x, y ∈ X}. Since X ⊆ R, Φ is
a 2-dimensional surface over the set X× X. For the investigation of the evolutionary
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Figure 3: The changing �tness landscape. The upper left �gure shows a pairwise
invasibility plot, which is the sign plot of s(y, x), where x is the resident trait value
and y is the mutant trait value. The plot in the upper right corner shows the plot
of the invasion �tness function s(y, x). Dark gray areas denote the positive region of
the �tness landscape whereas light gray areas denote the negative region of the �tness
landscape. For three di�erent residents a, b, and c the respective �tness landscapes
a rare mutant faces are shown in the bottom panel. The horizontal axes measure the
trait value of the mutant y, the vertical axes measure invasion �tness. Each of the
three �tness landscapes corresponds to a dashed straight line in the PIP on the left and
a dashed curve in the changing �tness landscape on the right. As the trait value for
the resident population changes from a to b to c, the shape of the �tness landscape, a
rare mutant is exposed to, varies drastically. Note, that the horizontal axes measuring
y in the lower panel are inverted.
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dynamics of the one-dimensional trait it is su�cient to know the sign of s(y, x).
Therefore, it is useful to look at the sign plot of s(y, x), which is referred to as
pairwise invadibility plot (PIP, Figure 4). In a PIP, the positive and the negative
regions of Φ are separated by the zero contour lines, i.e., where s(y, x) = 0. Since by
the de�nition of the invasion �tness we have s(x, x) = 0, the diagonal of the PIP is
always such a zero contour line.

The entries xi of the trait-substitution sequence (xi)i∈{0,1,2,...} are derived by the
following procedure:

1. Start with some strategy xi ∈ X for i = 0 characterizing the initial resident
population.

2. Choose a mutant strategy yi in a small neighborhood of the resident strategy
xi.

3. If (xi, yi) does not lie in the positive region of the PIP, go back to step 2.
Otherwise continue.

4. De�ne the new resident strategy as yi =: xi+1, and go to step 2.

3.2 Evolutionarily singular strategies

In the previous section we have seen that each resident with trait vector x de�nes a
�tness landscape Φx. A mutant characterized by a trait vector y is able to invade, if
the corresponding point on Φx is positive (and is not able to invade in the negative
case). The question to be asked now is: what if the �tness landscape Φx lies entirely
above or entirely below the zero contour line (apart from the point which corresponds
to the resident itself)? Then, in the �rst case all mutants y can invade, and in the
second case no mutant y can invade. Such points x are of special interest to our
analysis. They are examples of so-called evolutionarily singular strategies. We will
see in this section, that evolutionarily singular strategies can be classi�ed with respect
to two properties, viz. invadibility and convergence stability. In the remainder of this
sub-section we will for simplicity restrict our considerations to one-dimensional trait
spaces X ⊆ R. In this special case, both properties can be determined directly by
inspecting the corresponding PIP locally around the evolutionarily singular strategy.

The direction of evolution: The direction of the evolution of a strategy x is
given by the local �tness gradient

D(x) =
∂s(y, x)

∂y

∣∣∣∣
y=x

.

It is easy to see that D(x) determines, which mutants can invade: if D(x) > 0 nearby
mutants with y > x can invade. If D(x) < 0 nearby mutants with y < x can invade
(Geritz et al., 1998).

Evolution in the direction of the local �tness gradient continues as long as a so-
called singular strategy is reached:

De�nition 6. A strategy x∗ is called an evolutionarily singular strategy if

D(x∗) =
∂s(y, x∗)

∂y

∣∣∣∣
y=x∗

= 0.
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Figure 4: Trait-substitution sequence. The �gure on the left shows a stepwise trait-
substitution sequence in a pairwise invadibility plot. On the horizontal axis, the trait x
of the resident is measured while the vertical axis gives the trait value of the mutant y.
The dark gray area denotes the positive region in the changing �tness landscape where
s(y, x) > 0. The light gray area represents the negative region, i.e., where s(y, x) < 0.
The pairs of strategies where s(y, x) = 0 are given by the solid black line. The trait-
substitution sequence is illustrated by a step-shaped dashed arrow, which denotes the
mutational steps on the evolutionary time scale. The �gures on the right show the
respective population dynamics on the ecological time scale as phase portraits. The
vertical dashed arrow represents the evolutionary time scale. Note, that in the trait-
substitution sequence shown in the �gure, equilibrium population sizes are decreasing,
as can be seen from the right panel.
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As long as the mutational step size is kept small and as long as the resident strategy
x is not close to an evolutionarily stable x∗, invasion of a mutant characterized by
strategy y will imply the substitution of y by x.

A singular strategies is a local extremum or saddle in the �tness landscape de-
termined by itself. Here, evolutionary dynamics can show more interesting behavior
than mere trait substitution events, as will be shown in the next paragraph.

Properties of singular strategies: In general, singular strategies are classi�ed
in terms of four di�erent properties (Geritz et al., 1998; Diekmann, 2004). However,
for our purpose the restriction to invadibility and convergence stability will su�ce,
since this allows for a division of evolutionarily singular points into four evolutionarily
relevant and qualitatively well di�ering types (Rue�er et al., 2004). Both properties
can be easily evaluated by inspecting PIPs.

If a singular strategy is uninvadible, then it cannot be invaded by nearby mutants:
uninvadible singular strategies are maxima of the �tness landscape. Conversely, an
invadible singular strategy lies at the bottom of a �tness landscape determined by the
resident itself. Here, every mutant close to the resident will show a higher invasion
�tness. The exact de�nition of invadibility reads as follows (see for instance Geritz
et al., 1998; Otto and Day, 2007, ch. 12):

De�nition 7. An evolutionarily singular strategy x∗ is called uninvadible (or an evo-
lutionarily stable strategy, short ESS ) if it is a local maximum of the �tness landscape
determined by itself, i.e., if

∂2s(y, x∗)

∂y2

∣∣∣∣
y=x∗

< 0,

and invadible if it is a local minimum of the �tness landscape determined by itself,
i.e., if

∂2s(y, x∗)

∂y2

∣∣∣∣
y=x∗

> 0.

Note, that the locality condition is of great importance: it may well be that due to
a very large mutational step, the evolutionary dynamics could leap over a valley from
a peak (i.e., an ESS) to a higher position on the �tness landscape (not necessarily
another peak). However, since we generally assume that the mutation step size is
kept small in order to make �xation of the mutant possible, such cases are ignored
for the de�nition of invadibility and noninvadibility.

In a PIP, the invadibility or noninvadibility can be determined by looking at the
vertical line through the evolutionarily singular strategy x∗. If locally around the
singular strategy, the vertical line completely lies in a positive region of the PIP, then
x∗ is invadible. On the contrary, if locally around x∗, the vertical line completely lies
in a negative region of the PIP, then x∗ is uninvadible, i.e., an ESS. In this case, the
�tness landscape given by the resident x∗ is decreasing around x∗.

Neutral stability captures the nongeneric case where the �tness landscape is �at
around the singular point (but see Meszéna et al. 2001 for a discussion of the relation
between neutrally stable strategies and ESSs in evolutionary matrix games). In a PIP
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then the vertical line through x∗ coincides with the nondiagonal boundary given by
s(y, x) = 0 in some neighborhood around x∗.

The second property to be considered here is convergence stability. Roughly
speaking, a singular strategy x∗ is convergence stable if in some neighborhood, x
is driven towards x∗ (Otto and Day, 2007, p. 468). That is, the strategies in the
trait-substitution sequence are approaching the convergence stable strategy: x∗ is an
evolutionary attractor.

In order to bring the concept of convergence stability in a more precise shape, we
continue along the derivation in (Geritz et al., 1998, p. 39) by observing the local
�tness gradientD(x). Since evolution follows the direction of the local �tness gradient,
D(x) should be positive for strategies x which are less than x∗ and negative for
strategies x which are greater than x∗ in some neighborhood of the singular strategy.
We know that by de�nition D(x∗) = 0. By continuity it follows that locally around
the singular strategy, the �tness gradient is a decreasing function of x, i.e.,

0 >
dD(x)

dx

∣∣∣∣
x=x∗

=
d

dx

[
∂s(y, x)

∂y

∣∣∣∣
y=x

] ∣∣∣∣
x=x∗

=

[
∂2s(y, x)

∂x∂y

∣∣∣∣
y=x

+
∂2s(y, x)

∂y2

∣∣∣∣
y=x

] ∣∣∣∣
x=x∗

= ♦

Since constantly s(y, x) = 0 if x = y, the second-order directional derivative of s(y, x)
in the direction of (x, x)T (or more precisely: v = 1

‖(x,x)‖ (x, x)T ) must vanish, i.e.,

0 = ∇2
vs(y, x) = ∂2s(y,x)

∂x2 + 2∂
2s(y,x)
∂x∂y + ∂2s(y,x)

∂y2 . Hence, we proceed with

♦ =

[
1

2
·

(
−∂

2s(y, x)

∂x2

∣∣∣∣
y=x

− ∂2s(y, x)

∂y2

∣∣∣∣
y=x

)
+
∂2s(y, x)

∂y2

∣∣∣∣
y=x

] ∣∣∣∣
x=x∗

=
1

2
·

[
−∂

2s(y, x)

∂x2

∣∣∣∣
y=x

+
∂2s(y, x)

∂y2

∣∣∣∣
y=x

] ∣∣∣∣
x=x∗

from which we obtain the condition

∂2s(y, x)

∂x2

∣∣∣∣
y=x=x∗

>
∂2s(y, x)

∂y2

∣∣∣∣
y=x=x∗

. (4)

This motivates the following de�nition:

De�nition 8. An evolutionarily singular strategy x∗ is convergence stable if in a
neighborhood the �tness gradient points towards x∗, which is the case if condition (4)
holds.

The right hand side in (4) corresponds to the curvature of the changing �tness
landscape Φ de�ned by s(x, y) along the vertical line through x∗, whereas the left
hand side corresponds to the curvature of Φ along the horizontal line though the
singular strategy. With respect to the two curvatures, convergence stability is a
relative matter.

More conveniently, one can simply look at the PIP and examine whether the region
at the left of x∗ over the 45° diagonal is positive and at the right of x∗ is negative.
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This is a direct translation of the condition that the �tness gradient has to point
towards x∗: mutants with a trait value which is closer to the singular strategy are
able to invade if the mutation step size is su�ciently small.

Note that the right part in condition (4) is the same as the left part in De�nition
7. Thus, convergence stability and invadibility are related but nevertheless mutually
independent properties, since the left part in condition (4) can vary independently of
its right part.

Classi�cation of singular strategies: Invadibility and convergence stability be-
ing two mutually independent binary-valued properties, one can distinguish between
four di�erent types of evolutionarily singular strategies (Geritz et al., 1998; Diekmann,
2004; Rue�er et al., 2004):

De�nition 9. An evolutionarily singular strategy x∗ is a continuously stable strategy
(CSS) if it is uninvadible (an ESS) and convergence stable, a branching point if it
is invadible (not an ESS) and convergence stable, a Garden of Eden point if it is
uninvadible (an ESS) and not convergence stable, and an evolutionary repellor if it is
invadible (not an ESS) and not convergence stable.

Continuously stable strategies are attractors and steady states of the evolutionary
dynamics: the trait x evolves towards x∗ and remains there.

Branching points are attractive as well in the sense that selection drives the trait
towards x∗. However, once the dynamics are su�ciently close to the branching point,
selection becomes disruptive and the once monomorphic population turns into a di-
morphic population (Geritz et al., 1998; Rue�er et al., 2004). The rational behind
this is the following: if x∗ is a branching point we know that it is invadible as well as
convergence stable. By De�nition 7 and De�nition 8 then evaluated at the singular
strategy x∗ it follows that

∂2s(y, x)

∂y2
> 0

and
∂2s(y, x)

∂x2
>
∂2s(y, x)

∂y2

hence again using ∇2
vs(y, x) = 0 as above we also have

∂2s(y, x)

∂x2
> −∂

2s(y, x)

∂y2

⇔ 2 ·
(
∂2s(y, x)

∂x2
+
∂2s(y, x)

∂y2

)
> 0

⇔ 2 ·
(
∂2s(y, x)

∂x2
+
∂2s(y, x)

∂y2

)
−
(
∂2s(y, x)

∂x2
+ 2

∂2s(y, x)

∂x∂y
+
∂2s(y, x)

∂y2

)
︸ ︷︷ ︸

=∇vs(y,x)=0

> 0

⇔ ∂2s(y, x)

∂x2
− 2

∂2s(y, x)

∂x∂y
+
∂2s(y, x)

∂y2
> 0

⇔ ∇2
ws(y, x) > 0,
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where ∇2
ws(y, x) is the second-order directional derivative of the �tness gradient in

the direction of w = 1
‖(x ,−x)‖ (x ,−x)T , i.e., the -45° diagonal in the PIP. Along this

line, the changing �tness landscape is convex.
Since by de�nition s(x∗, x∗) = 0, then the -45° diagonal lies in a positive region

locally around x∗. But then there are pairs of nearby strategies x and y such that
s(y, x) > 0 and s(x, y) > 0: if the axes in the PIP are swapped, the -45° diagonal
will remain in the positive region of the changing �tness landscape. Hence, x and y
can mutually invade each other whereby a dimorphic population will be established
(Geritz et al., 1998, 40). This is the only con�guration which allows to account for
evolutionary branching.

A singular strategy which is referred to as a Garden of Eden point (Nowak and
Sigmund, 1990; Nowak, 1990) is evolutionarily stable in that it cannot be invaded
by rare mutants. However, it cannot be reached via small mutational steps. Rather
it is only possible to reach a Garden of Eden point by precisely entering it. Any
perturbation will drive the evolutionary dynamics away from the Garden of Eden
point.

An evolutionary repellor simply is a strategy which is neither convergence stable
nor immune to invasion. If the resident strategy happens to be an evolutionary
repellor it can be successfully invaded by any nearby mutant and selection will drive
the evolution of the trait directionally away from it.

Figure 5 shows examples of PIPs for each of the four scenarios.

3.3 Optimization and frequency dependence

The four evolutionary scenarios illustrated in Figure 5 are not possible for all models.
Evolution could simply optimize a trait value. Under the assumptions of Adaptive
Dynamics it is not a priori clear whether evolution optimizes a trait value or not. It
seems intuitive that under optimization, evolutionary behavior is somewhat unspec-
tacular. If a trait value is optimized it corresponds to a CSS (Metz et al., 2008). In
particular, there can be no evolutionary branching. Models which support optimiza-
tion are lacking what is referred to as frequency dependent selection (Heino et al.,
1998), which roughly means that �tness depends on the frequencies of di�erent types
(a concept which is well known from Evolutionary Game Theory, see Nowak, 2006).

This section is meant to summarize the relevant notions and results about opti-
mization. The �rst and the second paragraph give alternative necessary and su�cient
conditions for optimization. We will see that both characterizations have their own
raison d'être. The last paragraph then gives a de�nition of frequency dependence and
links it to the previous results.

Optimization principles and monodimensional behavior: We start with the
de�nition of optimization and pessimization principles:

De�nition 10. An optimization principle or optimization criterion is a function
ξ : X → R with the property that evolution maximizes ξ under any constraint on
X. A pessimization principle, pessimization criterion or Verelendungs principle is a
function η : E → R with the property that evolution minimizes η(Ê(x)), x ∈ X,
under any constraint on X.

This means that evolution drives the trait vector to a (local) maximum of ξ in X
(or similarly to a local minimum of η in E). In this way, an optimization principle
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Figure 5: Evolutionarily singular strategies. The PIPs corresponding to the four quali-
tatively di�erent types of singular strategies are shown with respect to their convergence
stability and invadibility properties. The dark gray area de�nes the positive region of
the changing �tness landscape, while the light gray area corresponds to its negative
region.
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(pessimization principle) quali�es as a Lyapunov function for the adaptive dynamics3

in X: by maximizing ξ (minimizing η) we can �nd the end point of the evolutionary
dynamics in the trait space (Mylius and Metz, in press). Hence, having an optimiza-
tion principle at hand for a given model, the evolutionary analysis turns out to be
fairly straight forward.

Note that the phrase under any constraint on X in the de�nition above stresses
that the optimization (pessimization) principle should not depend on how the trait
space is restricted, i.e., constrained, for a given model (Mylius and Metz, in press, p.
635).

For notational simplicity we will write Ê = Ê(x) ∈ E for the vector that denotes
the environment (determined by some resident trait vector x ∈ X).

De�nition 11. The trait acts in a monotone and monodimensional manner if there
is a function ξ : X→ R and a function α : R× E→ R increasing in its �rst argument
such that

sign s(y, Ê) = signα(ξ(y), Ê).

The environment acts in a monotone and monodimensional manner if there is a
function η : E→ R and a function β : X× R→ R increasing in its second argument
such that

sign s(y, Ê) = signβ(y, η(Ê)).

The diagram below (taken fromMylius and Metz, in press, with slight adaptations)
visualizes the latter two concepts. Note that according to the previous de�nition this
diagram commutes as long as the trait and the environment, respectively, act in a
monotone and monodimensional manner:

R× E α //R
sign

$$
X× E s

//

environment acts monodimensionally (id,η)

��

(ξ,id)trait acts monodimensionally

OO

R
sign
// {−, 0,+}

X× R
β
//R

sign

::

The next proposition directly links optimization (pessimization) principles and
monodimensional behavior of traits (environments), thereby providing a necessary
and su�cient condition for the existence of an optimization (pessimization) principle:

Proposition 2. A model has an optimization principle i� the trait acts in a monotone
monodimensional manner. A model has a pessimization principle i� the environment
acts in a monotone monodimensional manner.

Proof. See Proposition 3.1 and Proposition 3.2 and the corresponding proofs in the
appendix of Metz et al. (2008).

The search for an optimization (pessimization) principle then boils down to �nding
functions ξ and α (or η and β, respectively) as speci�ed in De�nition 11. However,
proving that there is no optimization principle for a given model turns out to be less
convenient: one has to show that for all possible choices of candidate functions ξ and α

3Or more precisely: for the corresponding canonical equation of Adaptive Dynamics.
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the above given sign equality does not hold. We will see in the subsequent paragraph
that there is an alternative necessary and su�cient condition for the existence of an
optimization principle, which is particularly useful for one-dimensional trait spaces.

The following proposition allows us to restrict ourselves to investigating optimiza-
tion principles or pessimization principles only. We will see that this proposition is
particularly useful, since for some models it is quite easy to �nd optimization princi-
ples but quite di�cult to directly derive pessimization principles.

Proposition 3. A model has an optimization principle i� it has a pessimization
principle.

Proof. For a given pessimization principle η set ξ(x) := −η(Ê(x)), and vice versa.
See Proposition 3.3 in Metz et al. (2008).

Let us consider the case of one-dimensional trait spaces: for two trait values
x and y, being selectively neutral with respect to each other de�nes an equivalence
relationship on the trait space X (Mylius and Metz, in press). If a model supports
an optimization principle, say ξ, by de�nition we have that a mutant with trait y
can invade a resident with trait x, as long as ξ(y) > ξ(x). This can be used to
order all equivalence classes in X (with respect to selective neutrality). Then, in the
corresponding PIP invasion boundaries must be symmetric with respect to the 45°
diagonal. Furthermore, we have that s(x, y) > 0 ⇔ s(y, x) < 0. Thus, if a model
supports an optimization principle, the corresponding PIP (or more sloppily put: the
model) is skew-symmetric.

In general, we have that anti-symmetry, i.e., s(x,y) > 0 ⇔ s(y,x) < 0, is neces-
sary for the existence of an optimization principle (but not su�cient, see Metz et al.,
2008).

Optimization and rock-paper-scissors cycles: As we have seen, Proposition 2
is partially unpractical in the sense that it is di�cult to show that optimization is not
possible. Gyllenberg and Service (2011) provide another proposition which, assuming
anti-symmetry, gives necessary and more importantly quite handy su�cient conditions
for the nonexistence of an optimization criterion:

Proposition 4. Let for all x,y ∈ X hold that s(x,y) > 0 ⇔ s(y,x) < 0. Then there
exists an optimization principle i� there are no weak rock-paper-scissors cycles (RPS),
i.e., no ordered triple (x,y, z) ∈ X3 with s(x,y) > 0, s(y, z) > 0, and s(z,x) > 0
and ≥ for any two of the previous relations.

Proof. See Theorem 4.3 in Gyllenberg and Service (2011).

In the previous paragraph we have seen that anti-symmetry is necessary for the
existence of an optimization principle. Proposition 4 now shows, which models, al-
though ful�lling anti-symmetry, actually support an optimization principle: namely
those, which have no weak rock-paper-scissors cycle. Conversely, if we have a skew-
symmetric model, we only need to �nd at least one such weak rock-paper-scissors
cycle with trait values in X to prove that there exists no optimization principle.

The following proposition is a consequence of the previous one.

Proposition 5. There exists an optimization principle i� the family V = {Vx : x ∈
X} where Vx = {y ∈ X : s(x,y) ≥ 0} is totally ordered by inclusion, i.e., for any
x1,x2 ∈ X either Vx1

⊂ Vx2
or Vx2

⊂ Vx1
.
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Proof. See Theorem 6.2 in Gyllenberg and Service (2011).

For models with a one-dimensional trait space, this proposition asserts, that for
models supporting an optimization principle, in the corresponding PIP we can draw
a rectangle (with edges parallel to the horizontal and vertical axes) such that two
diagonally opposed vertices lie in a positive region and the two remaining vertices lie
in a negative region of the PIP.

Let us pause at this point and recall that we are interested in the quality of evolu-
tionarily singular points. As illustrated in Figure 5, evolutionarily sigular points can
be characterized as intersecting points of the zero contour lines of the changing �tness
landscape, and the angle between the zero contour lines determines the evolutionary
quality of the singular point. Anti-symmetry, as de�ned above, clearly means that in
an evolutionarily singular point, this angle is precisely 90°. Hence, we have either a
CSS or an evolutionary repellor. Since optimization requires skew-symmetry, these
are the only two possible outcomes for models supporting an optimization principle.

The following proposition states that for the local study of evolutionarily singular
points we do not have to bother about rock-paper-scissors cycles.

Proposition 6. Let X be one-dimensional. For each evolutionarily singular strategy
x∗ there is a restricted trait space which is an interval S ⊆ X with x∗ ∈ S, in such a
way that a model supports an optimization principle in S i� it is skew-symmetric in
S.

Proof. It is clear from the consideration above that skew symmetry follows from the
existence of an optimization principle. Let us consider the opposite direction:

Choose an interval S ⊆ X, with x∗ ∈ S, so small, such that the boundary de�ned
by the zero contour line which is not the 45° diagonal is a decreasing concave function
f : S → S. The convex case is completely analogue. We show that there is no
optimization principle for s in S by demonstrating that there is no rectangle in such a
way that two diagonally opposed vertices lie in a positive region and the two remaining
vertices lie in a negative region of the PIP de�ned by s.

Without loss of generality, let us assume that in the PIP the region between
the 45° diagonal and f is positive. Choose two points p1 = (x∗ − a, x∗ − b) and
p2 = (x∗ + c, x∗ − b) in S × S with s(x∗ − b, x∗ − a) > 0 and s(x∗ − b, x∗ + c) < 0,
a, b, c > 0. We have that a > b. Clearly p1 lies in a positive and p2 negative region.
The line between p1 and p2 is the edge at the bottom of the rectangle. Let us assume
for contradiction that we can complete the rectangle in the above described manner,
i.e., that we can �nd appropriate vertices p3 and p4 in a negative and positive region
of S× S, respectively.

We can de�ne δ1 := f−1(x∗ − b) − x∗. Then s(x∗ − b, x∗ + δ1) = 0. Because
of the shape of f and since p2 lies in a negative region, we know that the point
q1 = (x∗ + δ1, x

∗ − b) lies on the right of p2, or more precisely, δ1 > c. Furthermore,
de�ne δ2 := f−1(x∗ − a)− f−1(x∗ − b). Since f is decreasing, δ2 > 0. By de�nition,
s(x∗−a, x∗+ δ1 + δ2) = 0. From symmetry then follows that also s(x∗+ δ1 + δ2, x

∗−
a) = 0. Due to skew-symmetry, above the evolutionarily singular point we have that
s(x∗+ δ1 + δ2 + δ3, x

∗−a) < 0 i� δ3 > 0. Hence, the third vertex of the rectangle is of
the form p3 = (x∗−a, x∗+ δ1 + δ2 + δ3). Consequently, the remaining vertex must be
p4 = (x∗+c, x∗+δ1 +δ2 +δ3). But then, since δ1 +δ2 +δ3 > c and s(x∗+c, x∗+c) = 0,
it follows that necessarily s(x∗ + δ1 + δ2 + δ3, x

∗ + c) < 0, a contradiction.
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The existence of an optimization principle then is a consequence of Proposition
5.

Frequency dependence: There are di�erent ways to de�ne frequency dependent
selection (Heino et al., 1998). In its stricter sense, frequency dependent selection is
de�ned as a process leading to ecologically stable polymorphisms, i.e., all evolutionary
scenarios where we have s(y, x) > 0 and s(x, y) > 0 in the neighborhood of an
evolutionarily singular strategy.

In a wider sense, frequency dependent selection occurs if �di�erent individuals [...]
have a di�erent in�uence on the environment and, moreover, a di�erent perception of
the environment� (Heino et al., 1998, p. 370) by virtue of density dependence. That
is, frequency dependence is related with multidimensionally behaving environments.
Then it is natural to de�ne frequency dependent selection via optimization:

De�nition 12. A model is called frequency dependent in a connected subset S ⊆ X
if it does not support an optimization principle in S.

For the one-dimensional case, Proposition 6 then entails that around an evolution-
arily singular point, a model is frequency dependent, if and only if the corresponding
PIP is not skew symmetric. Note in particular, that even in a small neighborhood of
an evolutionarily singular point an angle of 90° between the two zero contour lines,
or equivalently,

∂2s(y, x)

∂x2
=
∂2s(y, x)

∂y2
,

does not necessarily imply skew symmetry (see section 3.2), even if a restricted trait
space S ⊆ X is considered. In other words: stating whether or not a model shows
frequency dependent selection in a restricted trait space, requires more than local
analysis of the intersecting zero contour lines by means of derivatives.

With this (not very surprising) insight and the following diagram, which summa-
rizes the relevant relations for one-dimensional trait spaces, we conclude this section.

∂2s
∂x2 = ∂2s

∂y2 ⇐ ¬ frequency dep.
⇑ m

skew symm. ⇔ ∃ opt. ξ(x) ⇔ x acts 1-dim.
m m

@weak RPS ∃pess. η(E) ⇔ E acts 1-dim.︸ ︷︷ ︸
in a su�ciently small S 3 x∗

(5)

3.4 Trade-o�s and invasion boundaries

It is reasonable to assume that the set of possible combinations of trait values is
limited. Otherwise traits which are linked to �tness would be driven by selection to
ever larger values (or lower, in the case of death rates), and thereby would result
in a so-called Darwinian demon (Law, 1978). For instance, it can be expected that
increasing fecundity will result in decreased survival chances at later ages (see Law,
1978; Stearns, 1989). This brings us to the notion of the trade-o�. We assume that,
ultimately, the increase in one relevant trait automatically results in a decrease in
some other traits (or reversed in the case of death rates).
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The second concept, which is subject to this section, is the so-called invasion
boundary, which is the curve de�ned by all combinations of trait values that are
selectively neutral with respect to a given resident type at its populations dynamical
attractor. Comparing the trade-o� curve with the invasion boundary will allow us to
make predictions about possible evolutionary outcomes (Levins, 1962; Rue�er et al.,
2004; Hoyle et al., 2008).

Central concepts: In this section, we restrict our considerations to two-dimensional
trait spaces, that is, trait vectors in X = X1 ×X2 are of the form x = (x1, x2), where
xi ∈ Xi ⊆ R+. We assume that the set of possible trait values is limited by a trade-o�
curve. In general, trade-o�s on a n-dimensional trait space are n−1-dimensional (and
for biological reasons compact) manifolds, i.e., hyperplanes. For the two-dimensional
case we de�ne trade-o�s as follows:

De�nition 13. A trade-o� T is a strictly decreasing function T : X1 → X2, x1 7→
T (x1).

Strictly speaking, if either x1 or x2 is a death rate, decreasing has to be replaced
with increasing. In the following section, we will de�ne evolving traits in such a way,
that tedious di�erentiations concerning death rates, and fertility or transition rates
can be avoided.

Note, that T is de�ned as a function. The trade-o� curve separates the trait space
into biologically possible and impossible combinations of traits, i.e., trait vectors
(x1, x2) which ful�ll x2 ≤ T (x1) and x2 > T (x1), respectively. The area in the �rst
orthant of R2 below the trade-o� curve is referred to as feasibility set (Rue�er et al.,
2004). In the following, we assume that over the course of evolution all trait vectors
have evolved in such a way that they have �nally reached the trade-o� curve. That
is, without loss of generality, we assume x2 = T (x1) for all pairs (x1, x2).

De�nition 14. An invasion boundary is a function I : X1 → X2, x1 7→ I(x1) which

is implicitly de�ned by s((x1, I(x1)), Ê) = 0.

Again, we are making the simplifying assumption, that I can be locally described
as a function. Furthermore, we assume that I is strictly decreasing (or increasing,
if again one of the two traits is a death rate). We observe, that in contrast to the
trade-o� curve, the invasion boundary depends on the environment Ê, and is thereby
changing with each new resident.

Similar to the trade-o� curve, the invasion boundary determined by a resident
x = (x1, x2) separates the trait space into two areas: mutants y = (y1, y2) below the
invasion boundary, i.e., y2 < I(y1), are not able to invade: since �tness is assumed to

increase in both traits, we have 0 = s((y1, I(y1)), Ê(x)) > s((y1, y2), Ê(x)). Likewise,
mutants above the invasion boundary, i.e., y2 > I(y1) can invade. By de�nition trait
vectors with y2 = I(y1) are selectively neutral with respect to the resident. In other
words, the set of trait vectors below the invasion boundary corresponds to the subset
of X where the �tness landscape Φx is below the zero contour line, and the set of trait
vectors above the invasion boundary corresponds to the subset of X where the �tness
landscape Φx is above the zero contour line.

Predicting evolutionary outcomes: At an evolutionarily singular point x∗ the
invasion boundary (determined by x∗) and the trade-o� curve are tangent (Rue�er
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et al., 2004). If the invasion boundary lies locally in the inside of the feasibility set
(except for the point of tangency), nearby pairs of traits (x1, x2) on the trade-o� curve
can invade, since then (x1, x2) is in the region where Φx∗ is above the zero contour
line. If, on the contrary, the invasion boundary lies in the outside of the feasibility
set, then all nearby pairs of traits cannot invade (x1, x2), as they are located in the
region where Φx∗ is below the zero contour line. This shall be summarized in the
following proposition:

Proposition 7. A singular point x∗ is uninvadible if d2T/dx2
1|x1=x∗1

< d2I/dx2
1|x1=x∗1

and invadible if d2T/dx2
1|x1=x∗1

> d2I/dx2
1|x1=x∗1

.

Proof. See Appendix in Rue�er et al. (2004).

For linear trade-o�s, it is clear that as a consequence from the previous propo-
sition, x∗ is uninvadible if I is convex and invadible if I is concave. Due to this
observation, we will see in section 4.3 that Proposition 7 proves to be very useful to
make predictions about the evolutionary behavior of structured population models.

Let us recapitulate: We have seen, that if mutations are assumed to be rare
and small, evolution driven by selection and mutation can be modeled as a trait-
substitution sequence. Adaptive Dynamics provides tools for the analysis of the long-
term behavior of this sequence, by means of a classi�cation of di�erent evolutionarily
singular strategies. We �nd, that the case of evolutionary branching points is of
special interest. Evolutionary branching points are those singular points which are
convergence stable and invadible. In some cases, models do not support the whole
spectrum of evolutionary outcomes: rather they follow an optimization process. Fi-
nally, we have seen, that invadibility can also be determined by comparing invasion
boundaries and trade-o� curves. Let us proceed and apply the framework of Adaptive
Dynamics to models of structured populations.
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4 Evolutionary dynamics of structured populations

Up to this point preparations have been made. We were presenting concepts and
results, which are necessary for an eco-evolutionary analysis of structured populations.
Now, let us reap the fruits of our labor and apply the tools of Adaptive Dynamics
given in section 3 to the model family outlined in section 2.

Models of structured populations in continuous time have been evolutionarily ana-
lyzed particularly by Hoyle et al. (2008) and Hoyle and Bowers (2008), who elaborated
necessary criteria (see Hoyle and Bowers, 2008, 312) on the shape of the life-cycle ma-
trix A for di�erent evolutionary outcomes:

1. at least two rows of A are evolving (criterion A),

2. at least two columns of A are evolving (criterion B), and

3. at least two entries of A or two components of one entry of A are regulated
di�erently (criterion C).

We will go one step further and derive necessary conditions on the life cycle itself,
more precisely on its loop structure. Along the lines of Rue�er et al. (2013), where the
discrete-time case has been worked out extensively, we will persue the following strat-
egy: First, we shall establish an algebraically simple way to measure invasion �tness,
a so-called �tness proxy. Hoyle and Bowers (2008) used the next generation matrix
(Diekmann and Heesterbeek, 2000) to account for reduction of algebraic complexity.
Rue�er et al. (2013), however, suggest an even simpler method for discrete-time mod-
els based on the determinant of A, which will be translated into the continuous-time
case in section 4.1.

This �tness proxy will be applied with the following two objectives: First, in 4.2 it
will be used to give su�cient conditions for optimization to occur. More precisely, we
will calculate a list of explicit optimization principles for certain types of life cycles.4

Second, the �tness proxy will be employed to predict evolutionary outcomes in the
case of frequency dependence, based on the loop structure of a given life cycle. To
this end, the methods introduced in 3.4 will be made use of. Throughout the whole
section, models with multiplicative as well as additive regulatory functions will be
considered, to extend the range of applications of the derived results.

4.1 Fitness proxies for continuous-time structured-population

models

The goal of this section is to �nd an e�cient way to determine whether or not a mutant
of a given structured population can invade. We will see that, in a way, invasion �tness
can be reduced to an expression which is tightly connected with the loop structure
of a given life cycle. This will then enable us to make predictions about the behavior
of the evolutionary dynamics just based on properties of the corresponding life cycle
graph.

Consider a life-cycle matrix A. The components of the trait vector x = (x1, ..., xk),
which is an element of a k-dimensional trait space X, are identi�ed with demographic
parameters in A in the following way: if fertility rates fij or transition rates tij are
evolving, then fij and tij are monotonically increasing positive functions of a com-
ponent xl of x, l ∈ {1, ..., k}, i.e.� fij : X → R+, xl 7→ fij(xl), and tij : X → R+,

4A word of caution: we will not show, that the list provided in 4.2 is exhaustive.
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xl 7→ tij(xl). Likewise, if a death rate di is evolving, then di is a monotonically de-
creasing positive function of a component xl of x, l ∈ {1, ..., k}, i.e., di : X → R+,
xl 7→ di(xl). We assume that for each demographic parameter, there is exactly one
component of x and vice versa. We will also say, that a component xl of the trait
vector is acting on a demographic parameter cij ∈ {fij , tij , di}, if cij is evolving, i.e., a
function of xl in the previously described manner. Evolving demographic parameters
will be referred to as traits. For notational simplilcity, evolving demographic param-
eters cij will be directly identi�ed with components xl of x, by setting xij := cij(xl).
Dropping the argument, we then simply write xij = cij for an evolving demographic
parameter cij .

5

Resorting to the Adaptive Dynamics approach as introduced in section 3, we have
to calculate the invasion �tness for the mutant population characterized by y ∈ X in
the structured population model (2), i.e.,

ṅy = A(ny) · ny.

Invasion �tness is de�ned as the long-term exponential growth rate of a rare mutant
in an environment determined by the resident. The non-zero entries of the life-cycle
matrix may depend on the population-density vector ny via regulatory functions
Rc,ij , where c can be any demographic parameter. Since by assumption the resident
population is in a single point attractor n̂x and since the mutant is assumed to be
initially rare, the regulatory functions depend on the environment Ê(x) as determined

by the resident x. Note, that the vector Ê(x) ∈ E ⊆ Rm is not the same as n̂x ∈ Rn.
The entries of Ê(x) are (possibly constant) functions of the entries of n̂x and x.

With notational generosity6 we write Rc,ij(Ê(x)) = Rc,ij(Ê). Consequently, the life-
cycle matrix of a rare mutant is characterized by evolving demographic parameters
y and the environment Ê(x) = Ê by virtue of Rc,ij(Ê). This justi�es the notation

A(y, Ê(x)). Then, the system of ODEs describing the dynamics of a rare mutant
subpopulation becomes

ṅy = A(y, Ê(x)) · ny.

We know that in a constant environment the growth rate of a structured population
model in continuous time is given by the stability modulus of the corresponding life-
cycle matrix (Metz, 2008). By the Perron-Frobenius Theorem, Proposition B.3, we
have that the stability modulus is real for life-cycle matrices. For the above given
model, invasion �tness then is given as

s(y, Eattr(x)) := λd(y, Ê(x)) := µ(A(y, Ê(x))),

where λd(y, Ê(x)) is the dominant eigenvalue, i.e., stability modulus, of A(y, Ê(x)).

Subsequently, we will use the more economical notations λd = λd(y, Ê(x)) and E =

Ê(x) whenever appropriate.

Unfortunately, explicitly calculating eigenvalues, and hence λd, is a complicated
matter, if possible at all, and notably so for large life cycle matrices. In the remainder
of this section we derive an algebraically more comfortable way to measure invasion
�tness, by just demanding sign equivalence with respect to s(y, Ê(x)). This is justi�ed

5Note, that this detour is necessary, since death rates are assumed to be decreasing functions of
a component of a trait vector. The notation xii = cii = di should should be used with caution.

6In 2.1, regulatory functions were de�ned as functions of components of the population-density
vector n ∈ Rn. Now, regulatory functions are seen as functions of the environment Ê ∈ E ⊆ Rm.
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Figure 6: Changing �tness landscapes de�ned by three sign equivalent measures of
invasion �tness: the dominant real eigenvalue λd(y, Ê(x)), the logarithm of the basic

reproductive ratio R0(y, Ê(x)), and the �tness proxy QA(y, Ê(x)). All three mea-
sures are leading to the same pairwise invadibility plot and thereby show to the same
evolutionary dynamics.

by the following argument: in Adaptive Dynamics primarily the dynamics on the
evolutionary timescale are of particular interest. Due to the separation of time scales,
we can ignore the actual population dynamic behavior of a mutant, as long as we
know that it is successfully able to invade. This, however, solely depends on whether
invasion �tness is positive or negative.

De�nition 15. A �tness proxy is a function p : X× E→ R for which

sign p(y, Ê(x)) = sign s(y, Ê(x))

holds for all y ∈ X in a su�ciently small neighborhood of x.

Example 8. The basic reproductive ratio R0 denotes the expected number of o�spring
of an individual throughout its whole lifetime, as long as there is only one birth state
(more broadly, the basic reproductive ratio can also be de�ned for several birth states,
see Rue�er and Metz, 2013). Formally, R0 is de�ned as the dominant eigenvalue of
the next generation matrix corresponding to the given model (see Diekmann et al.
(1990) and Diekmann and Heesterbeek (2000)).

In continuous-time structured-population models the next generation matrix reads
−FT−1, where for a given life-cycle matrix A, F comprises all fertility rates and T
comprises all death and transition rates, such that A = F+T. Hence, R0 = ρ(−FT−1).
By the Perron-Frobenius Theorem (Proposition B.2 and Proposition B.3) one can

show that R0 T 1 i� λd(A) T 0. Consequently, lnR0(y, Ê(x)) and R0(y, Ê(x)) − 1

qualify as �tness proxies (see also Kon, 2007, for a comprehensive overview on R0 in
continuous-time structured-population models).

At �rst sight, calculating the dominant eigenvalue of the next generation matrix
does not really seem much more bene�cial than calculating the dominant eigenvalue
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of the life-cycle matrix. If however F or T are sparse, this also holds for the next gen-
eration matrix, whereby the calculation of the dominant eigenvalue usually becomes
simpler. More precisely, the number of birth states constitutes an upper bound of the
degree of the characteristic polynomial of the next generation matrix. In particular,
if there is only one birth state, the characteristic polynomial is linear, whereby R0

can be easily calculated.

Analoguous to Rue�er et al. (2013) we derive a �tness proxy, which essentially
reduces complexity to calculating a determinant rather than the dominant eigenvalue.
From now on, we will assume that life-cycle matrices are irreducible.

Proposition 8. For a given irreducible life-cycle matrix A(y, Ê(x)) let

QA(y, Ê(x)) := −det(−A(y, Ê(x))).

Then QA(y, Ê(x)) is a local �tness proxy .

Proof. We know that the invasion �tness s(y, Ê(x)) is given by the dominant eigen-

value λd(y, Ê(x)) = λd of A(y, Ê(x)).

The characteristic polynomial of A(y, Ê(x)) is given by

χ(λ,y, Ê(x)) = det(λI− A(y, Ê(x))),

where I is the identity matrix of appropriate dimension. We know that λd = 0 for
y = x. Clearly, χ(λd,x, Ê(x)) = 0, as λd by de�nition is a root of χ. Furthermore,
we know that the leading coe�cient of χ equals +1. Since λd is the largest eigenvalue
of A(x, Ê(x)), and since the life-cycle matrix is irreducible, we have that evaluated at

the dominant eigenvalue ∂
∂λχ(λ,x, Ê(x))|λ=λd=0 > 0. Consequently, χ is increasing

locally around λd.
Thus, if for some nearby y we have λd(y, Ê(x)) < 0, then, since χ(0,x, Ê(x)) = 0,

necessarily χ(0,y, Ê(x)) > 0. Conversely, if χ(0,y, Ê(x)) > 0 for some y, from the

local monotonicity around 0 follows that λd(y, Ê(x)) < 0. Similarly, if λd(y, Ê(x)) >

0 for some nearby y, it follows that χ(0,y, Ê(x)) < 0 and vice versa. Hence, for all y

in a su�ciently small neighborhood of x, we have that χ(0,y, Ê(x)) > 0 if and only

if λd(y, Ê(x)) < 0.

Clearly, χ(0,y, Ê(x)) = det(0 · I− A(y, Ê(x))) = det(−A(y, Ê(x))). Since

QA(y, Ê(x)) = −det(−A(y, Ê(x))),

we �nd that 0 ≷ QA(y, Ê(x)) if and only if 0 ≷ λd(y, Ê(x)) = s(y, Ê(x)). Thus,

QA(y, Ê(x)) and s(y, Ê(x)) are sign equivalent, i.e., QA(y, Ê(x)) is a �tness proxy.

The formula provided by the preceding proposition proves to be very handy. In-
deed, due to the immediate relation between the �tness proxy and the determinant of
the life-cycle matrix, structural properties of the determinant directly translate into
properties of the �tness proxy QA. In particular, A being an n × n matrix we �nd
that

QA =

{
−det(A) if n even

+ det(A) if n odd
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since the determinant is a multilinear function of the columns (or rows) of A.
Note, that the �tness proxy in the above introduced manner is not necessarily

well de�ned for sub-life-cycles given by Aα, i.e., life cycles only containing states
i ∈ α ⊂ {1, ..., n}, since Aα is not necessarily irreducible. However, this can be easily
repaired by de�ning

QAα := max{QAβ : Aβ is an irreducible principal submatrix of Aα}.

Then, the preceding proposition can be applied to each QAβ separately. Similarly,
de�ne QA\α for a life cycle containing states i ∈ {1, ..., n}\α.

From Proposition B.4 we then immediately have the following very useful corro-
lary:

Corollary 1. Let α ⊂ {1, ..., n}. Then QAα(y, Ê(x)) < QA(y, Ê(x)) and in partic-

ular QAα(x, Ê(x)) < 0.

Remember, that the goal is to derive a �tness proxy which directly re�ects the
structure of the life cycle at hand. Therefore, we will further exploit the formula for
the �tness proxy given in Proposition 8. The idea is to use the Leibniz formula for the
determinant in order to restructure QA such that loops within the life cycle become
visible.

Proposition 9. For the �tness proxy QA of a given life-cycle matrix A, the following
formula holds:

QA =

n∑
k=1

(−1)k+1
∑

`(L1)+...+`(Lk)=n

Li∩Lj=∅, i 6=j

L1 · · ·Lk . (6)

Proof. From Proposition 8, multilinearity, and the Leibniz representation formula for
the determinant follows that

QA = −det(−A)

= (−1)n+1 det(A)

= (−1)n+1
∑
π∈Sn

sgn(π) a1π(1)a2π(2) · · · anπ(n).

From Proposition A.1 we know that the sign of a permutation can be written as
sgn(π) = (−1)n−z(π), where z(π) is the number of disjoint permutation cycles in π.

The set of permutations Sn can be decomposed into pairwise disjunct subsets
Ck := {π ∈ Sn|z(π) = k}, for k = 1, ..., n. So, for each k the set Ck just collects the
permutations, which are composed by exactly k permutation cycles. Then, we can
rewrite the Leibniz formula and continue the calculation:

= (−1)n+1
n∑
k=1

∑
π∈Ck

(−1)n−k a1π(1) · · · anπ(n)

= (−1)2n
∑
π∈C1

a1π(1) . . . anπ(n) + (−1)2n−1
∑
π∈C2

a1π(1) · · · anπ(n) + . . .

. . .+ (−1)n+1
∑
π∈Cn

a1π(1) . . . anπ(n)
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A permutation π ∈ Ck is composed by k disjoint permutation cycles. According
to Appendix A.2, we can identify loop transmissions of (unconnected) loops with
permuation cycles c of π via L = as1c(s1)...aslc(sl). The product in the sum in the
formula above then is the product of k loop transmissions. This �nally yields

=
∑

`(L1)=n

L1 −
∑

`(L1) + `(L2) = n
L1 ∩ L2 = ∅

L1L2 + . . .

. . .+ (−1)k+1
∑

`(L1) + . . .+ `(Lk) = n
Li ∩ Lj = ∅, i 6= j

L1 · · ·Lk + . . .

. . .+ (−1)n+1
∑

`(Li) = 1, 1 ≤ i ≤ n
Li ∩ Lj = ∅, i 6= j

L1 · · ·Ln

=

n∑
k=1

(−1)k+1
∑

`(L1) + . . .+ `(Lk) = n
Li ∩ Lj = ∅, i 6= j

L1 · · ·Lk .

The formula given above has the following interpretation: The �tness proxy can
be decomposed into sums of products of unconnected loops. In each sum, lengths
always add up to n, i.e., the number of states in the life cycle. The �tness proxy QA

is linear in all loops and demographic parameters in A.

Sums of demographic parameters: Matrices for structured population models
in continuous time often contain sums of demographic parameters. The loops (or
more precisely: loop transmissions) in the formula for the �tness proxy derived in the
previous proposition are products of matrix entries. Hence, loops can contain sums
of demographic parameters as factors.

First, let us consider self loops, i.e., the diagonal entries of A, which are are of the
form aii = fii − di −

∑
j 6=i tji. The following proposition shows how to expand QA in

such a way, that diagonal entries show only single demographic parameters.

Proposition 10. Let for α ⊆ {1, ..., n}, |α| = k, QA(vii+wii|i∈α) denote the �tness
proxy of a life-cycle matrix where all ii-entries, i ∈ α, are sums aii = vii + wii, i.e.,
a matrix which is, without loss of generality, of the form

A(vii + wii|i ∈ α) =



vi1i1 + wi1i1 · · · ? ? · · · ?
...

. . .
...

...
...

? · · · vikik + wikik ? · · · ?
? · · · ? ? · · · ?
...

...
...

...
? · · · ? ? · · · ?


.
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Then QA(vii+wii|i∈α) = QA(vii|i∈α) −
∑
i∈α

wiiQA\i , where

A(vii|i∈α) = A(vii+wii|i∈α) − diag(wi1i1 , ..., wikik , 0, ..., 0).

Proof. We show the proof for α = {i}. The assertion for arbitrary α ⊆ {1, ..., n} then
follows inductively.

The ith row of A is of the form (?, . . . , ?, vii +wii, ?, . . . , ?). We use multilinearity
to calculate

QA(vii+wii) = −det(−A) = −det

 −?
−(?, . . . , ?, vii + wii, ?, . . . , ?)

−?


= −det

 −?
−(?, . . . , ?, vii, ?, . . . , ?)

−?


−(−1)n det

 ?
(0, . . . , 0, wii, 0, . . . , 0)

?

 ,

and applying Laplace's expansion rule we get

= QA(vii) + (−1)n−1wii det(A\i)

= QA(vii) − wiiQA\i

Now, let us consider loop transmissions L of loops G with `(G) > 1 (note, that
here G is a graph and L is a product of matrix entries). Assume, that all factors in
L are of the form aij = cij , c ∈ {f, t}, except for one factor, which is of the form
ai0j0 = fi0j0 + ti0j0 . Then,

L = (fi0j0 + ti0j0)
∏

(j,i)∈EG\{j0,i0}

cij = fi0j0
∏

(j,i)∈EG\{j0,i0}

cij + ti0j0
∏

(j,i)∈EG\{j0,i0}

cij .

Hence, L is a sum of two products, each of which has `(G) factors. If we now interprete
the �rst product as loop transmission Lf of a loop going from j0 to i0 via fi0j0 , and
the second product as loop transmission Lt of a loop going from j0 to i0 via fi0j0 ,
we �nd that Lf and Lt are two connected loops (more precisely: loop transmissions
of two connected loops) of the same length. Hence, they do not appear together in a
product of loops in the �tness proxy (6). Applying this argument repeatedly for all
factors of the form fij + tij , we can assume that, without loss of generality, no loop in
the �tness proxy contains a factor which is a sum of two demographic parameters. We
will do so for the remainder of this thesis. Note, that according to the same logic we
could have separated demographic parameters in the diagonal entries of the life-cycle
matrix. We decided against this possibility, in order to keep the interpretation of
L = aii as the per capita rate at which indiduals in state i contribute to the growth
of state i.

With QA we now have a useful tool to study the evolutionary dynamics of struc-
tured populations. There are two di�erent strands: in section 4.2, we are going to
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study the case of frequency independent selection. More precisely, optimization and
pessimization criteria as presented in section 3.3 will be derived for certain types of
life-cycle structures. Section 4.3 deals with the cases where frequency dependent se-
lection is possible. This is done by employing the tools which have been introduced
in 3.4, i.e., the analysis of invasion boundaries and trade-o� curves (Rue�er et al.,
2004).

4.2 Optimization

In this section we derive optimization criteria for continuous-time structured popula-
tion models given by a life-cycle matrix A. Recall from section 3.3 that optimization
criteria are certain functions which allow us to predict evolutionary outcomes from
maximization arguments, thereby implicitly excluding frequency dependent behavior.
To this end, we will make extensive use of the �tness proxy introduced in the pre-
vious section. By rearranging this �tness proxy, we give su�cient conditions for the
existence of optimization criteria.

As we will see, �nding optimization criteria is easier for models where regulatory
functions are assumed to be multiplicative rather than additive. However, a short list
of optimization criteria will also be derived for the latter class of models. Finally, we
will derive optimization criteria which are based on the dominant eigenvalue of the
life-cycle matrix and on the basic reproductive ratio R0.

The following general proposition is directly taken from Rue�er et al. (2013):

Proposition 11. Let p be a �tness proxy and let there be functions g1, g2 : X → R
and e1, e2 : E→ R with g2(x) 6= 0 for all Ê ∈ E such that

p(y, Ê) = g1(y)e1(Ê)︸ ︷︷ ︸
a

+ g2(y)e2(Ê)︸ ︷︷ ︸
b

.

If e1(Ê) > 0, then ξ(x) := g1(x)/|g2(x)| is an optimization criterion. If e1(Ê) < 0,
then ξ(x) := −g1(x)/|g2(x)| is an optimization criterion.

In particular the following holds:

1. If p(y, Ê) = g1(y)e1(Ê) + e2(Ê) and if e1(Ê) ≷ 0, then ξ(x) := ±g1(x) is an
optimization criterion.

2. If p(y, Ê) = g1(y)e1(Ê) + g2(y) and g1(x) 6= 0, then ξ(x) := g2(x)/|g1(x)|
is an optimization criterion. Similarly, if g2(x) 6= 0 and if e1(Ê) > 0, then

ξ(x) := g1(x)/|g2(x)| is an optimization criterion. If e1(Ê) < 0, then ξ(x) :=
−g1(x)/|g2(x)| is an optimization criterion.

3. If p(y, Ê) = g1(y) + e2(Ê), then ξ(x) := g1(x) is an optimization criterion.

Proof. See Proposition 10 in Rue�er et al. (2013).

Proposition 12. LetM⊂ L(A) be a set of loops in a given life cycle A. Then

QA = −
∑
L∈M

L ·QA\{L}︸ ︷︷ ︸
a

+ R\M︸ ︷︷ ︸
b

, (7)

where RL(A)\M is an expression which does not depend on any of the loops inM.
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Proof. For a given permutation cycle c, let Lc = as1c(s1)...aslc(sl) denote the corre-
sponding loop transmission, where {s1, ..., sl} ⊆ {1, ..., n}. Conversely, for a given
loop transmission L, let cL be the corresponding permutation cycle. The relation
c E σ denotes that c is a cycle in the composition of disjoint permutation cycles of
a permutation σ (cf. Appendix A.2). Similarly, σ D c shall denote a permutation
containing a given permutation cycle c. Making use of the Leibniz formula for the
determinant, we get from Proposition 8 that

QA = −det(−A)

= −
∑

σ∈S{1,...,n}

sgn(σ)(−a1σ(1))...(−anσ(n))

= −
∑

σ∈S{1,...,n}

sgn(σ)
∏
cEσ

(−1)`(c)Lc

= −
∑

σ∈S{1,...,n},σDcL for someL∈M

sgn(σ)
∏
cEσ

(−1)`(c)Lc

−
∑

τ∈S{1,...,n},τ4cL for allL∈M

sgn(τ)
∏
cEτ

(−1)`(c)Lc.

︸ ︷︷ ︸
=4

The �rst sum ranges over all permutations σ which have a cycle cL, L ∈ M, in
the composition of disjoint permutation cycles. In other words, σ can be decomposed
into permutation cycles one of which corresponds to some loop L inM.

The second sum 4 ranges over all permutations τ which have a composition into
disjoint permutation cycles not including a cycle which corresponds to one of the
loops L in M. That is, no loop L ∈ M appears in one of the products in this sum.
We then de�ne RL(A)\M := −4, which is an expression independent of all L ∈M.

In the next step, we split the �rst sum into subsums, one for each of the loops in
M. Each of this subsums ranges over permutations that contain cycles corresponding
to the respective loops. We use that if σ = τ1τ2 is the product of two permutations,
then sgn(σ) = sgn(τ1) · sgn(τ2). In particular this holds for compositions of disjoint
permutation cycles σ = c1 . . . ck. Let σ\cL denote the permutation which is composed
of all permutation cycles of σ but cL. Then sgn(σ) = sgn(σ \ cL) · sgn(cL) and can we
continue with

= −
∑
L∈M

∑
σDcL

sgn(σ \ cL) · sgn(cL) · (−1)`(cL)
∏
zEσ

Lz +R\M

= −
∑
L∈M

∑
σDcL

sgn(σ \ cL) · sgn(cL) · L · (−1)`(cL)
∏

zEσ,z 6=cL

Lz +R\M

=
∑
L∈M

sgn(cL) · (−1)`(cL) · L ·

−∑
σDcL

sgn(σ \ cL)
∏

zEσ,z 6=cL

Lz

+R\M.

For the next step, we consider that summing over all possible permutations that
include cL and building the product of all loops generated by these permutations with
the exception of L is precisely the same as summing over all possible permutations
of the set of states reduced by all the states touched by L and then multiplying the
relevant loops. Hence, we obtain
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=
∑
L∈M

sgn(cL) · (−1)`(cL) · L ·

− ∑
π∈S{1,...,n}\{L}

sgn(π)
∏
zEπ

Lz

+R\M. (8)

The expression within the brackets now is the �tness proxy for the sub-life-cycle
A\{L}, i.e., QA\{L} . Finally, we make use of Proposition A.1 and conclude with

=
∑
L∈M

(−1)`(cL)−1(−1)`(cL)L ·QA\{L} +R\M (9)

= −
∑
L∈M

L ·QA\{L} +R\M,

which proves the proposition.

We will go back to this proof in some of the following results. The previous
proposition can also be shown in a more direct way, resorting to Proposition 9. We
present an alternative proof:

Proof. Using the formula given in Proposition 9, we �nd that

QA =

n∑
k=1

(−1)k+1
∑

`(L1) + . . .+ `(Lk) = n
Li ∩ Lj = ∅, i 6= j

∃i0 ∈ {1, ..., k} : Li0 ∈M

L1 · · ·Lk

+

n∑
k=1

(−1)k+1
∑

`(L1) + . . .+ `(Lk) = n
Li ∩ Lj = ∅, i 6= j

∀i ∈ {1, ..., k} : Li /∈M

L1 · · ·Lk.

︸ ︷︷ ︸
=:R\M

Without loss of generality, let us assume that Lio = Lk for each k ∈ {1, ..., n}. We
extract exactly one L = Li0 ∈M out of each sum. Then

QA =

n∑
k=1

(−1)k+1
∑
L∈M

L
∑

`(L1) + . . .+ `(Lk−1) = n− `(L)
Li ∩ Lj = ∅, i 6= j, i, j /∈ {L}

L1 · · ·Lk−1

︸ ︷︷ ︸
(?)

+R\M

= −
∑
L∈M

L

n−|{L}|∑
k=1

(−1)k
∑

`(L1) + . . .+ `(Lk−1) = n− |{L}|
Li ∩ Lj = ∅, i 6= j, i, j /∈ {L}

L1 · · ·Lk−1

︸ ︷︷ ︸
QA\{L}

+R\M.
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The reduction from n to n−|{L}| in the preceding step is possible, since |{L}| = `(L)
and since summands in (?) only exist for k = 1, ..., n − |{L}|, for each L ∈ M. This
gives formula (7) as desired.

Note, that in the previous proposition R\M may well contain loops that appear
in QA\{L} . That is, the loops in the �rst summand of the right-hand side of (7) are
not generally exclusive toM. If all L ∈ M are pairwise connected, then for each L,
QA\{L} contains no other loops inM.

If we now consider a structured-population model given by a life-cycle matrix A,
we see that the environment Ê acts on the �tness proxy QA(y, Ê) solely through
regulatory functions Rc,ij modifying (possibly evolving) demographic parameters c ∈
{f, t, d} with indices ij. We collect all regulatory functions in a vector R. Then, with
some abuse of notation, we can write the �tness proxy as QA(y,R). If an expression
h (in particular, for instance, a loop) depends on some traits in y or some regulatory
functions in R we write h(y) and h(R) respectively, or h(y,R) if h depends on both,
traits and regulatory functions. If there is no argument (.), we assume that h does not
depend on any traits or regulatory functions. Note, that strictly speaking h(y), h(R),
and h(y,R) are not functions of their respective arguments. Rather h(y) should be
read as h contains evolving traits, and similarly for h(R) and h(y,R).

Using this notation we have seven di�erent ways to write the �tness proxy as a
sum of two expressions depending on traits or regulatory functions, QA = a+ b:

QA(y,R) = a(y) + b(R) (10)

QA(y,R) = a(R) + b(y) (11)

QA(y,R) = a(y) + b(y,R) (12)

QA(y,R) = a(R) + b(y,R) (13)

QA(y,R) = a(y,R) + b(y) (14)

QA(y,R) = a(y,R) + b(R) (15)

QA(y,R) = a(y,R) + b(y,R) (16)

The subsequent proposition shows how the �rst summand a can be written as a
product, i.e., a = e · g.

Proposition 13. Let all loops L ∈ M be pairwise connected and contain the same
set of factors FM. Let Π :=

∏
f∈FM f . Then

a = −
∑
L∈M

L ·QA\{L} = −Π︸︷︷︸
e

·
∑
L∈M

L

Π
QA\{L}︸ ︷︷ ︸,
g

where all f ∈ FM only appear in the �rst factor e but not in g.

Proof. The proposition immediately follows from the fact that loops are products of
matrix entries.

The following proposition will show when a factorization of R\M = b = e · g is
possible:
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Proposition 14. If there is a nontrivial partition α, β of {1, ..., n} such that each
loop L ∈ L(A)\M either passes through states in α or through states in β, i.e., either
{L} ⊆ α or {L} ⊆ β , then the rest term in (7) can be written as

R\M = −Rα︸ ︷︷ ︸
e

· Rβ︸︷︷︸
g

,

where Rα and Rβ contain exclusively loops passing through α or β, respectively.

Proof. According to the proof of Proposition 12 we have

R\M = −
∑

τ∈S{1,...,n},τ4cL for allL∈M

sgn(τ)
∏
cEτ

(−1)`(c)Lc.

By assumption all relevant loops either pass through α or through β. Hence,
instead of summing over τ ∈ S{1,...,n}, we can equivalently consider compositions
παπβ = τ , where without loss of generality πα ∈ S{1,...,|α|}, πβ ∈ S{n−|β|,...,n}. In
particular πα and πβ are disjoint. Then we have

= −
∑

παπβ∈S{1,...,n},πα,πβ4cL for allL∈M

sgn(πα) · sgn(πβ)
∏

cEπαπβ

(−1)`(c)Lc

= −

 ∑
πα∈S{1,...,|α|}, πα4cL for allL∈M

sgn(πα)
∏
cEπα

(−1)`(c)Lc


·

 ∑
πβ∈S{n−|β|,...,n},πβ4cL for allL∈M

sgn(πβ)
∏
cEπβ

(−1)`(c)Lc


=: −Rα ·Rβ .

First, note that in contrast to Rue�er et al. (2013, 3.2), here Rα in general is not
the same as the �tness proxy QAα , since in particular Rα is lacking the product of
loops of length 1, which is located in one of the QA\{L} , L ∈ M. The same holds
analogously for Rβ .

Second, to be precise, the quantifying condition on the loops, i.e., each loop L ∈
L(A)\M, is stricter than is necessary for some life cycles. In other words, for certain
life cycles the proposition would not tell us that a factorization R\M = Rα · Rβ is
possible, although actually it is possible. This is, because there could exist loops
L ∈ L(A)\M which do not appear in the expression R\M but only in one of the
�tness proxies QA\{M} , for some M ∈ M. Clearly, this holds for loops N ∈ L(A)\M
connected to all other L ∈ L(A)\M: since M 6= ∅, it follows that `(N) = n −
|
⋃
M∈M{M}| < n. Hence, N cannot be part of any product in R\M. That is, it

is su�cient to check whether for each loop L ∈ L(A)\M not being connected to all
other loops in L(A)\M holds that either {L} ⊆ α or {L} ⊆ β.

Optimization criteria based on QA: Recall that the goal of the previous para-
graphs was to provide conditions for which the �tness proxy QA is of the form
QA = a + b = g1e1 + g2e2 such that a (or alternatively gi, i = 1, 2) depends only
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on the trait vector x and b (or alternatively ei, i = 1, 2) depends only on the en-
vironment, acting through the vector of regulatory functions R. If we �nd such a
rearrangement of the �tness proxy, we can make use of Proposition 11 to prove the
existence of an optimization criterion (and, which is no less important, thereby show-
ing that selection is not frequency dependent in the model at hand). It is important
to stress that the conditions on the life cycles which allow to rearrange the �tness
proxy in the described manner are only su�cient and not necessary for the existence
of an optimization criterion. That is, the list of optimization criteria presented below
in this paragraph is by no means exhaustive. In this paragraph, only multiplicative
regulatory functions will be considered.

Before we proceed, some additional notation shall be introduced: remember that
via Proposition 9 we can express QA(y,R) in terms of loops, where L(A) denotes
the set of loops in the life cycle de�ned by A. We will use the following nota-
tion: E shall denote the set of evolving loops, or more precisely E = {L ∈ L(A) :
L(y) orL(y,R)}. Likewise, R shall denote the set of regulated loops, i.e., R = {L ∈
L(A) : L(R) orL(y,R)}. Furthermore, for a given loop L we will use the notation
{L} to denote the set of states traversed by L. For a set of loops M we de�ne
{M} =

⋃
L∈M{L}.

So, this is the plan: Proposition 12 shows how to split the �tness proxy into
QA = a+ b. Then, for each of the formulas (10) to (16) the conditions can be checked
under which a or b can be written as products gi(y)ei(R). Here, we make extensive
use of Propositions 13 and 14. Subsequently, by Proposition 11 we explicitly calculate
optimization criteria.7 This is done in the following list:

1. QA(y,R) = a(y) + b(R) = −
∑
L∈M

L(y) ·QA\{L}(y) +R\M(R)

Conditions: Let M = E , such that E ∩ R = ∅, E ∩ R 6= ∅ for all E ∈ E
and R ∈ R. Note that it is not necessary for the E ∈ E to be pairwise
connected. Apply Propositions 12 and 11.3.

Optimization criterion: ξ(x) = a(x)

2. QA(y,R) = a(R) + b(y) = −
∑
L∈M

L(R) ·QA\{L}(R) +R\M(y)

Conditions: Let M = R, such that E ∩ R = ∅, E ∩ R 6= ∅ for all E ∈ E
and R ∈ R. Note that it is not necessary for the R ∈ R to be pairwise
connected. Apply Propositions 12 and 11.3.

Optimization criterion: ξ(x) = b(x)

3. QA(y,R) = a(y) + b(y,R) = −
∑
L∈M

L(y) ·QA\{L}(y)−Rα(y) ·Rβ(R)

Conditions: LetM⊆ E , such thatM∩R = ∅, L ∩R 6= ∅ for all L ∈M and
R ∈ R. Furthermore, let there be a partition α, β of the set of states in
such a way that {E\M} ⊆ α and {R} ⊆ β. Note that it is not necessary
for the E ∈ E to be pairwise connected. Apply Propositions 12, 14 and
11.2.

7Note, that for some optimization criteria the sign is written as ± or ∓, which denotes that the
actual sign ultimately depends on whether ei or gi is positive or negative as stated in Proposition
11.
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Optimization criterion: ξ(x) = ∓a(x)/Rα(x)

4. QA(y,R) = a(R) + b(y,R) = −
∑
L∈M

L(R) ·QA\{L}(R)−Rα(y) ·Rβ(R)

Conditions: LetM⊆ R, such that E ∩M = ∅, E ∩ L 6= ∅ for all E ∈ E and
L ∈ M. Furthermore, let there be a partition α, β of the set of states in
such a way that {E} ⊆ α and {R\M} ⊆ β. Note that it is not necessary
for the R ∈ R to be pairwise connected. Apply Propositions 12, 14 and
11.1.

Optimization criterion: ξ(x) = ∓Rα(x)

5. QA(y,R) = a(y,R) + b(y) = −Π(R) ·
∑
L∈M

L(y)
Π QA\{L}(y) +R\M(y)

Conditions: Let M = R, such that all R ∈ R are pairwise connected and
contain the same product Π(R) of all regulatory functions (which is only
possible if there are no sums of traits and regulatory functions). Apply
Propositions 12, 13 and 11.2.

Optimization criterion: ξ(x) = b(x)/|
∑
L∈M

L(x)
Π QA\{L}(x)|

6. QA(y,R) = a(y,R) + b(R) = −Π(y) ·
∑
L∈M

L(R)
Π QA\{L}(R) +R\M(R)

Conditions: Let M = E , such that all E ∈ E are pairwise connected and
contain the same product Π(y) of all traits (which is only possible if there
are no sums of traits and regulatory functions). Apply Propositions 12, 13
and 11.1.

Optimization criterion: ξ(x) = ∓Π(x)

7. QA(y,R) = a(y,R) + b(y,R) = −Π(y) ·
∑
L∈M

L(R)
Π QA\{L}(R)−Rα(y) ·Rβ(R)

Conditions: Let M⊆ E , such that all E ∈ M are pairwise connected and
contain the same product Π(y) of all traits appearing in loops inM (which
is only possible if there are no sums of traits and regulatory functions).
Furthermore, let there be a partition α, β of the set of states in such a way
that {E\M} ⊆ α and {R} ⊆ β. Apply Propositions 12, 13, 14 and 11.

Optimization criterion: ξ(x) = ±Π(x)/Rα(x)

8. QA(y,R) = a(y,R) + b(y,R) = −Π(R) ·
∑
L∈M

L(x)
Π QA\{L}(x)−Rα(x) ·Rβ(R)

Conditions: Let M⊆ R, such that all R ∈ R are pairwise connected and
contain the same product Π(R) of all regulatory functions appearing in
loops in M (which is only possible if there are no sums of traits and
regulatory functions). Furthermore, let there be a partition α, β of the set
of states in such a way that {E} ⊆ α and {R\M} ⊆ β. Apply Propositions
12, 13, 14 and 11.

Optimization criterion: ξ(x) = ∓
∑
L∈M

L(x)
Π QA\{L}(x)/Rα(x)
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Remark on disjunct sets of loops: In contrast to formula (14) in Rue�er et al.
(2013, p. 244), due to the structural nature of the �tness proxy, splitting QA up into
two summands of which one contains exactly those loops in a set of loopsM and the
other one contains exactly those loops in a set of loops N , turns out to be possible
only for very simple partitionsM∪N = L(A): To see this, we �rst choose the sets of
loopsM, N in such a way that for all K ∈ M and for all L ∈ N holds that K and
L are connected. Then it is easy to see that we can write the �tness proxy as

QA =

n∑
k=1

(−1)k+1
∑

`(K1)+...+`(Kk)=n

Ki∩Kj=∅, i 6=j

Kl∈M

K1 . . .Kk

+

n∑
k=1

(−1)k+1
∑

`(L1)+...+`(Lk)=n

Li∩Lj=∅, i 6=j

Ll∈N

L1 . . . Lk .

Since M, N qualify as a partition of L(A), M∪N = L(A) and M∩N = ∅ must
hold. Now, let us assume without loss of generality that K0 with `(K0) = 1 is an
element ofM. All loops of length 1 occur in (at least) one product of (6), since they
are always pairwise unconnected. It follows that all length-1 loops Ki are inM. All
loops Kj with 1 < `(Kj) < n are necessarily unconnected with at least one of the
length-1 loops Ki. Since `(Kj) + `(Ki) ≤ n it follows that all Kj are inM. Hence,
N contains only loops of length n (but not necessarily all of them). Thus,

QA =
∑

Ll ∈ N
Ll

︸ ︷︷ ︸
a

+

n∑
k=1

(−1)k+1
∑

∑
`(Kl)=n

Ki∩Kj=∅, Kl∈M

K1 . . .Kk

︸ ︷︷ ︸
b

.

Example 9. Consider the D. discoideum life cycle from Example 3. The correspond-
ing �tness proxy without regulated parameters reads

QA = −(f11 − t21 − t31 − d1)(−d2)(−d3) + t21f12(−d3) + t31f13(−d2).

The set of loops is L(A) = {f11−t21−t31−d1,−d2,−d3, t21f12, t31f13}. As in Example
6 we de�ne Lvege = f11 − t21 − t31 − d1, Lcoop = t21f12, Lcann = t31f13, L2 = −d2,
L3 = d3. We now choose subsets E and R of L(A), such that there are optimization
principles according to the cases 1 to 8 in the list above:

1. Set E = {Lvege} andR = {Lcoop, Lcann}. According to 1, ξ(x) = −Lvege(x)L2L3

is an optimization criterion.

2. Set E = {Lvege, L3} and R = {Lcoop}. ChoosingM = {Lvege} ⊆ E , and a parti-

tion α = {3}, β = {1, 2}, we �nd that according to 3, ξ(x) = −Lvege(x)L2L3(x)
L3(x) =

−Lvege(x)L2 is an optimization criterion.

3. Set E = {Lcoop}, where f12 is evolving, and R = L(A). According to 6, ξ(x) =
f12(x) is an optimization criterion.
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4. Set E = {Lvege, Lcoop, L3}, and R = {L3}. ChoosingM = {L3} ⊆ E , and a par-
tition α = {1, 2}, β = {3}, we �nd that according to 7, ξ(x) = L3(x)/Lcoop(x)
is an optimization criterion.

Optimization of life cycles with additive components: In this paragraph,
optimization principles for life cycles with additive components, in particular addi-
tive regulatory functions, will be derived. Up to this point, we have only consid-
ered regulatory functions which act upon demographic parameters in a multiplicative
manner, i.e., entries of the life-cycle matrix of the form cijRc,ij . Doing this, we
have been ignoring models with additive regulatory functions, where the life-cycle
matrix includes expressions like cij + Rij , cii + Ry,iibii, or Rc,iicii + Rb,iibii where
c, b ∈ {f, t, d} and cij , bij are possibly evolving. Additive components are obviously
relevant for two reasons: First, life cycle matrices contain diagonal elements of the
form aii = fii − di −

∑
j 6=i tji. Here, demographic parameters could be regulated

di�erently. Second, regulatory functions can be additive as well.
The strategy here is the same as for the mutliplicative case: The �tness proxy is

split into two summands a + b by Proposition 10 and 12. Proposition 10 captures
the case when the diagonal entries of the life-cycle matrix show additive traits and
regulatory functions. Proposition 12 provides the split by collecting all loops with
additive traits and regulatory functions. Then under certain assumptions, a and b
can be written as products of factors depending on either only evolving traits or only
regulatory functions.

Unfortunately, additive components make the algebraic manipulation of the �t-
ness proxy very complicated. Hence, the conditions on the existence of optimization
criteria become very strict for additive-component models.

The following list shows a selection of optimization principles together with the
conditions on their respective existence:

1. QA(y,R) = QA(xii + Rii|i ∈ α) = QA(xii|i ∈ α) −
∑
i∈α

RiiQA\i(y) = QA(xii|i ∈

α)−Rii ·
∑
i∈α

QA\i(y) = a(y) + e(R)g(y)

Conditions: Rii = Rjj for all i, j ∈ α. All demographic parameters cij , i 6= j,
may be evolving. Apply Propositions 10 and 11.2.

Optimization criterion: ξ(x) =
∑
i∈α

QA\i(x)/QA(xii|i ∈ α)

2. QA(y,R) = QA(xii + Ry,iiyii|i ∈ α) = QA(xii|i ∈ α) −
∑
i∈α

Ry,iiyiiQA\i(y) =

QA(xii|i ∈ α)−Ry,ii ·
∑
i∈α

yiiQA\i(y) = a(y) + e(R)g(y)

Conditions: Ry,ii = Ry,jj for all i, j ∈ α. All demographic parameters cij ,
i 6= j, may be evolving. Apply Propositions 10 and 11.2.

Optimization criterion: ξ(x) =
∑
i∈α

yiiQA\i(x)/QA(xii|i ∈ α)

3. QA(y,R) = QA(Rxii +Ry,iiyii|i ∈ α) = QA(Rxii|i ∈ α)−
∑
i∈α

Ry,iiyiiQA\i(y) =

Rn ·QA(xii|i ∈ α)−Ry,ii ·
∑
i∈α

yiiQA\i(y) = e1(R)g1(y) + e2(R)g2(y)
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Conditions: Ry,ii = Ry,jj for all i, j ∈ α and all demographic parameters but
yii are regulated by the same function R. All o�-diagonal demographic
parameters may be evolving. Apply Propositions 10 and 11.

Optimization criterion: ξ(x) = ±QA(xii|i ∈ α)/|
∑
i∈α

yiiQA\i(x)|

4. QA(y,R) = −
∑
L∈M

L(xL + RL) · QA\{L} + R\M = −
∑
L∈M

L(xL) · QA\{L} +(
−
∑
L∈M

L(RL) ·QA\{L} +R\M(R)

)
= a(y) + b(R)

Conditions: LetM be the set of all loops L with exactly one additive compo-
nent of evolving traits and regulatory functions, i.e., xL + RL, such that
all loops inM are pairwise connected. Note that not necessarily xL = xM
and RL = RM for all L,M ∈ M. Let there be no additional evolving
traits. There may be a set of regulated loops R ⊆L(A)\M, but L∩R 6= ∅
for all L ∈M and R ∈ R. Apply Propositions 12 and 11.3.

Optimization criterion: ξ(x) = −
∑
L∈M

L(xL) ·QA\{L}

5. QA(y,R) = −
∑
L∈M

L(xL + RL) · QA\{L} + RL(A)\M = −
∑
L∈M

L(RL) · QA\{L} +(
−
∑
L∈M

L(xL) ·QA\{L} +R\M(x)

)
= a(R) + b(x)

Conditions: LetM be the set of all loops L with exactly one additive compo-
nent of evolving traits and regulatory functions, i.e., xL + RL, such that
all loops inM are pairwise connected. Note that not necessarily xL = xM
and RL = RM for all L,M ∈ M. Let there be no additional regulated
traits. There may be a set of evolving loops E ⊆L(A)\M, but L ∩ E 6= ∅
for all L ∈M and E ∈ E . Apply Propositions 12 and 11.3.

Optimization criterion: ξ(x) = −
∑
L∈M

L(xL) ·QA\{L} +R\M(x)

6. QA(y,R) = −
∑
L∈M

L(xL +RL) ·QA\{L} +RL(A)\M = −R ·
∑
L∈M

L
R ·QA\{L}(y) +(

−
∑
L∈M

L(xL) ·QA\{L}(y) +R\M(y)

)
= e(R)g(y) + b(y)

Conditions: LetM be the set of all loops L with exactly one additive compo-
nent of evolving traits and regulatory functions, i.e., xL+RL, such that all
loops inM are pairwise connected. Note that not necessarily xL = xM but
nevertheless RL = RM = R for all L,M ∈M. That is, all loops inM are
regulated by the same regulatory function R. Let there be no additional
regulated traits. There may be a set of evolving loops E ⊆L(A)\M. Apply
Propositions 12 and 11.2.

Optimization criterion: ξ(x) = ±
∑
L∈M L(xL)·QA\{L} (x)−R\M(x)

|
∑
L∈M

L
R ·QA\{L} (x)|

We see that the requirements on the structure of the life cycle are much stricter
than in the case of multiplicative regulatory functions. In particular, the �rst three
optimization criteria in the above list require that all relevant diagonal entries are
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regulated in the same way, Ry,ii = Ry,jj for all i, j ∈ α, meaning that although the
traits appearing in the diagonal entries di�er, they have to be a�ected by the same
regulatory functions. Such life cycles are not necessarily biologically meaningless:
consider for instance a population where all regulated death rates and/or all (intra-
state) fertility rates depend on the overall density of the population.

The next two optimization criteria in the list require that all evolving traits are
additively regulated and appear in pairwise connected loops. In particular this is the
case if for one state all outgoing transition rates are regulated additively. For instance,
the transition rates could depend on the numbers of individuals in the state where
the transitions are originating.

Finally, the last optimization criterion has similar conditions on the set of regulated
evolving loops but requires that all regulating functions are identical. However, it also
allows for additional evolving loops without strict requirements.

Optimization principles based on λd: We �nally consider optimization and pes-
simization criteria which are directly based on the dominant eigenvalue λd of the life-
cycle matrix A. The following proposition is the continuous-time version of Proposi-
tion 13 in Rue�er et al. (2013):

Proposition 15. If there is a scalar function η(Ê) such that all regulatory functions

Rf,ij are monotonically increasing functions of η(Ê) and all multiplicative regulatory

functions Rd,ii are monotonically decreasing functions of η(Ê), then evolution will

minimize η(Ê).

Proof. By Proposition B.2 the dominant eigenvalue λd is monotonically increasing in
all matrix entries aij = f̃ij + tij − δij(d̃i +

∑
tli). If only fertility and death rates

are a�ected by regulation in the above described manner, clearly aij is increasing as

η(Ê) increases. Let β(y, η(Ê)) = λd(y, η(Ê)) and apply Proposition 11.

Note that in contrast to the discrete-time case Rue�er et al. (2013, Proposition
13) transition rates may not be a�ected by regulation. The reason for this is that by
increasing a transition rate the corresponding diagonal entry of the life-cycle matrix
is decreasing. Hence, we cannot apply the Perron-Frobenius theorem (Proposition
B.2).

Also note that Proposition 15 works for multiplicative as well as additive regula-
tory functions, i.e., demographic parameters of the form f̃ij = fij +Rf,ij(η(Ê)) and

d̃ij = dij +Rd,ii(η(Ê)).
We continue with the next pessimization criterion as in Metz et al. (2008) and

Rue�er et al. (2013):

Proposition 16. If all demographic parameters cij are multiplicatively regulated by

the same regulatory function R = Rc,ij, c ∈ {f, d, t}, then evolution minimizes R(Ê)
and maximizes λd(x).

Proof. The proof is similar to the one in Rue�er et al. (2013, Proposition 15).We
have A(y, Ê) = R(Ê)A(y), where A(y) denotes the unregulated analogue to the
original life-cycle matrix. This is the same as the life-cycle matrix where all regulatory
functions are set to 1. Hence, λd(y, Ê) = R(Ê)λd(y). Set η(Ê) = R(Ê), ξ(y) =

λd(y) and β(y, η(Ê)) = R(Ê)λd(y) = α(ξ(y), Ê) and apply Proposition 11 to see
that the trait vector and the environment act in a monodimensional manner.
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Optimization principles based on R0: In this paragraph we use the basic re-
production ratio R0 to derive optimization and pessimization principles. Recall from
Example 8 that for a given life-cycle matrix A, the basic reproduction ratio is de�ned
by R0 = ρ(−FT−1) where F is the matrix de�ned by all fertility rates and T is the ma-
trix de�ned by all transition and death rates, such that A = F+T. Then we can state
the following proposition, which is related to Proposition 15 but in addition gives us
an optimization criterion, namely R0(x). It has already been stated by Mylius and
Diekmann (1995).

Proposition 17. If all fertility rates fij are multiplicatively regulated by the same
regulatory function RF = Rf,ij and all transition rates tij and death rates di are

unregulated then evolution minimizes RF(Ê) and maximizes R0(x).

Proof. According to the assumptions we have that F(y, Ê) = RF(Ê)F(y), where in

F(y) all regulatory functions are set to 1. Then R0(y, Ê) = ρ(−F(y, Ê)T(y)−1) =

RF(Ê)ρ(−F(y)T(y)−1) = RF(Ê)R0(y). Set η(Ê) = RF(Ê), ξ(y) = R0(y) and

β(y, η(Ê)) = R(Ê)R0(y) = α(ξ(y), Ê). The assertion then follows from Proposi-
tion 11 and the fact that sign(lnR0) = sign(λd).

Unfortunately, showing the existence of an optimization principle via R0 if, in
addition to Rf = Rf,ij , also transition and death rates are regulated, requires a reg-
ulating function RT = Rt,ij = Rd,ii which is monotonically increasing. It is intuitive
to assume that death rates increase as the number of individuals in one (or more)
state(s) increases (decreasing death rates are biologically less plausible). However,
the assumption of transition rates which are directly monotonically related to state
densities is less intuitive.

We nevertheless �nd such kinds of density dependence in epidemiological models
where parameters are regulated by the law of mass action. If then in a more general
model all transition rates and death rates are equally regulated, we have the following
re�ned version of Proposition 17, which, according to our knowledge, has not been
stated previously:

Proposition 18. If all fertility rates fij are multiplicatively regulated by the same
regulatory function RF = Rf,ij and all death and transition rates multiplicatively
regulated by an increasing function RT = Rt,ij = Rd,ii, then evolution minimizes

R(Ê) = RF(Ê)

RT(Ê)
and maximizes R0(x).

Proof. Similar to the previously given proof we have that F(y, Ê) = RF(Ê)F(y) and

T(y, Ê) = RT(Ê)T(y). ThenR0(x, Ê) = ρ(−F(y, Ê)T(x, Ê)−1) = RF(Ê)

RT(Ê)
ρ(−F(y)T(y)−1) =

R(Ê)R0(y). Set η(Ê) = R(Ê), ξ(y) = R0(y) and β(y, η(Ê)) = R(Ê)R0(y) =

α(ξ(y), Ê). Again apply Proposition 11 and sign(lnR0) = sign(λd).

Example 10. We consider a simple extension of the juvenile-adult model given in
Example 4 and Figure 1, by adding social structure into the population of rabbits: it
is known, that rabbit populations establish strict hierarchical structures (Rödel et al.,
2004). The state of adults can be split into a lower social class and a higher social
class. Rödel et al. (2004) show that the fertility rates of female rabbits are depending
on (i) the density of the subpopulation of female rabbits and (ii) on the social status.
Does, i.e., female rabbits, with a higher status on average produce more o�spring that
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does with a lower status. For simplicity, we assume that there are two di�erent social
classes of does and that rabbits can only increase their social status. We have the
following extended version of the life cycle given in Example 4

1
t21
//−d1−t21 66 2

f̃12
RR

−d2−t32

UU t32
// 3

f̃13

��
−d3hh

where state 2 corresponds to the lower and state 3 to the higher social class. As-
sume that t32 and f13 are evolving, hence we have a two dimensional trait vec-
tor x = (t32, f13). This relates to the following biological question: is it better to
restict access to the higher social class and bene�t from increased fertility, or to fa-
cilitate entering the higher social class but accept the costs of reduced fertility. We
parametrize the trait vecor along a trade-o� curve by a scalar parameter ξ according
to x = (2ξc, 3f12(1− ξ)c). Thus, we can consider an e�ectively one-dimensional trait
space. Let ξ and η denote the mutant and resident parameter, respectively.
Let us specify the regulatory functions acting on the fertility rates: First, let the
fertility rates f̃12 and f̃31 be regulated logistically by Rf,12(n) = Rf,31(n) = 1−(n2 +
n3)/K, where K is a parameter which can be interpreted as breeding capacity, e.g.
the number of breeding sites in a burrow. This means that reproductive rates for both
social classes depend on the overall density of female adults. Let there be no other
regulated parameters. From Proposition 17 it follows immediately, that there exists
an optimization principle, namely R0(x). The existence of an optimization principle
can also be seen from the skew-symmetric PIP in Figure 7.
Next, we consider the regulatory functions Rf,12(n) = 1 − n2/K1 and Rf,31(n) =
1− n3/K2. In this case, fertility rates of lower class and higher class females depend
on the respective subpopulation sizes. This can be interpreted as a distribution of
breeding sites among the two classes. In each class, females compete for respective
breeding sites. We see in Figure 7, that the PIP is not skew-symmetric around the
singular point ξ∗. Selection is frequency dependent. Since locally around the singular
point, above the 45° line through ξ∗ the PIP is positive and since the vertical line
through ξ∗ lies in a negative region, we know that ξ∗ is a CSS.

4.3 Trade-o�s and invasion boundaries

We will now consider the case of frequency dependent selection. In particular, the
goal is to show conditions under which evolutionary branching occurs. To this end,
we will employ the methods presented in 3.4. This will be done in the following way:
after some preparations, we will derive conditions for invasion boundaries to be linear,
concave or convex. In the case of linear invasion boundaries, it is easy to determine
whether an evolutionarily singular point is invadible or not. In our �nal result, we
will use this to show that in two-dimensional trait spaces evolutionary branching can
only occur, if locally around an evolutionarily singular point, the trade-o� curve is
slightly convex.

The derivatives of QA: From Proposition B.2 we know that the dominant eigen-
value (or more precisely, the stability modulus) of a life-cycle matrix is increasing in
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Figure 7: PIP A on the left shows a case of optimization while PIP B on the right
shows frequency dependent selection. In both cases, the singular strategy ξ∗ is a CSS
(t12 = 2, d1 = 2, d2 = 1, d3 = 1

2 , f12 = 4, c = 3
2 , and K = 20).

its entries. This however is not necessarily true for demographic parameters, which
may appear in two di�erent entries. This is shown by the following proposition:

Proposition 19. Let QA be the �tness proxy corresponding to a life-cycle matrix
A(y, Ê(x)). De�ne PA\ij := (−1)i+j+1det(−A\ij), where A\ij is the life-cycle matrix
reduced by the ith row and jth column. Then

1. ∂
∂fij

QA(x, Ê(x)) > 0 for all i, j ∈ {1, ..., n}, and QA\α(x, Ê(x)) < 0, for all

α ⊂ {1, ..., n},

2. ∂
∂di

QA(x, Ê(x)) < 0 for all i ∈ {1, ..., n}, and

3. ∂
∂tij

QA(x, Ê(x)) ≷ 0 if PA\ij ≷ QA\j , where i, j ∈ {1, ..., n}.

Proof. From Theorem B.3 we know that λd is increasing in all entries of A. Since the
matrix entry aij is increasing in fij , we have

∂λd

∂fij
> 0. Due to the fact thatQA is a local

�tness proxy, by continuity we have that ∂
∂fij

λd(x, Ê(x)) ≷ 0 i� ∂
∂fij

QA(x, Ê(x)) ≷ 0.

This shows the �rst part of 1.
Applying Laplace expansion to QA, it is easy to see that

0 <
∂

∂fij
QA = (−1)n−1 ∂

∂fij
det(A) = (−1)n−1(−1)i+jdet(A\ij) = −PA\ij (17)

and setting j = i, from PA\ii = QA\i we obtain the second part of 1 (simply iterate
the calculation for all i ∈ α).

Since aii is decreasing in di, for all i ∈ {1, ..., n}, we analogously obtain the second
assertion.

The transition rates tij always appear in two di�erent entries of a life-cycle matrix,
both of which lie in the jth column. Note particularly, that in the ij-entry, tij
has a positive sign, and in the jj-entry tij has a negative sign. Let us expand the
determinant of QA along the jth column:

∂

∂tij
QA = (−1)n−1 ∂

∂tij
det(A) = (−1)n−1

(
−det(A\jj) + (−1)i+jdet(A\ij)

)
= QA\j − PA\ij
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From inequality (17) we know that QA\j , PA\ij < 0. Hence ∂
∂tij

QA(x, Ê(x)) ≷ 0 if

QA\j ≶ PA\ij , which shows the third assertion.

The condition for ∂
∂tij

QA > 0, i.e., PA\ij > QA\j , can be interpreted in the following

way: QA\j = − ∂
∂ajj

QA can be read as the change in �tness, as ajj is changing. Fitness

(i.e., QA) is increasing if tij (and therefore aii) is increasing, i.e., if more individuals
stay in class j. Similarly, PA\ij = − ∂

∂aij
QA is the change in �tness, as aij = tij

is changing (in particular, aij is a linear function of tij). Consequently, �tness is
increasing if less individuals stay in class j. Note, that since locally sign ∂

∂aij
QA =

sign ∂
∂aij

λd, we can perceive −PA\ij as the sensitivity of the �tness proxy with respect

to the ij-entry of the life-cycle matrix (Caswell, 1978; Key�tz and Caswell, 2005).
Proposition 19.3 then says, that if it is more bene�cial to move from class j to class
i than to stay there, then �tness is increasing in tij .

The curvature of the invasion boundary: In this paragraph we will present
one of the main results of this thesis: as an analogue to Proposition 18 in Rue�er
et al. (2013) we will give su�cient conditions for the invasion boundary to be convex,
linear, or concave. We restrict the trait space to be 2-dimensional, i.e., x = (x1, x2).

Recall, that the invasion boundary I is implicitly de�ned by s((x1, I(x1)), Ê) = 0.

Lemma 1. Let M be a set of pairwise connected loops and let (M1, ...,Mk) be a
partition ofM. Then

QA = −
k∑
i=1

∑
L∈Mi

L ·QA\{L} + R\M.

Furthermore, let N be another set of pairwise connected loops. Let (P1, ...,Pk) be a
partition of P :=M⊗N := {(M,N)|M ∈M, N ∈ N , M andN unconnected}. Then

QA =

k∑
i=1

∑
(M,N)∈Pi

M ·N ·QA\{M}∪{N} + R\M⊗N .

Proof. The �rst part immediately follows from Proposition 12. For the second part,
we calculate as in the proof of Proposition 12 (see in particular equation (8) and
equation (9)):

QA =
∑

(M,N)∈M⊗N

(−1)`(cM )−1(−1)`(cM )M ·

·(−1)`(cN )−1(−1)`(cN )N ·QA\{M}∪{N} + R\M⊗N

=
∑

(M,N)∈M⊗N=P

M ·N ·QA\{M}∪{N} + R\M⊗N

=

k∑
i=1

∑
(M,N)∈Pi

M ·N ·QA\{M}∪{N} + R\M⊗N .
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Table 1: Su�cient conditions for the invasion boundary I(x1) = x2 to be convex,
linear, or concave.

life-cycle type trait x1 trait x2 curvature of I

fij , dj fkl, dl linear

1.
pairwise connected
single trait loops
or multi trait loop
with length 1

tij fkl, dl linear and allL(x2) pass through j

tij tkl
formulti trait loops:
linear and j = l

fij fkl convex

2.
multi trait loops

with length >1 and
evolving loops are
pairwise connected

tij fkl

{
convex if ∂QA

∂x1
> 0

concave if ∂QA

∂x1
< 0

and allL(x2) pass through j
tij tkl impossible

fij , dj fkl, dl concave

3.
onlysingle trait loops

andat least one
pair of unconnected

evolving loops

tij fkl, dl undetermined

tij tkl undetermined

Theorem 1. Let X be two-dimensional, and let for x = (x1, x2), I(x1) = x2 de-
note the invasion boundary. Let both x1, x2 a�ect single demographic parameters
fij , dj , tij and fkl, dl, tkl for some i, j, k, l ∈ {1, ..., n}. Furthermore, let ∂

∂x2
QA 6= 0.

Consider the following three classes of life-cycle structures as in (Rue�er et al., 2013,
Proposition 9):

1. All evolving loops are either single trait loops or multi trait loops of length 1,
and in addition pairwise connected.

2. There are evolving multi trait loops of length larger than 1 and all evolving loops
are pairwise connected.

3. All evolving loops are single trait loops and there is at least one pair of uncon-
nected evolving loops.

Then the curvature of the invasion boundary I evaluated at a singular point, i.e.,
d2I
dx2

1
(x∗1) is given as in Table 1.

Proof. See Appendix C.1.

As a direct consequence of Theorem 1 we obtain

Corollary 2. Let X be two-dimensional and let T (x1) = x2 be a trade-o� function.
Consider the classes of life cycles as de�ned in Theorem 1.1-3. If in an evolution-
arily singular point x∗ the curvature of the trade-o� function is known, invadibility
properties of x∗ are as shown in Table 2 and Table 3.

Proof. This immediately follows from Proposition 7 on page 33 and Theorem 1.

Since invadibility already gives us half of the information needed to classify an
evolutionarily singular strategy (and in particular to determine whether a singular
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Table 2: Invadibility properties for evolutionarily singular points x∗ implied by life-
cycle structures and trade-o� curvatures. Birth and death rates are evolving. A long
dash denotes that uninvadible as well as invadible singular strategies are possible.

x1, x2 ∈ {fij , dk}
trade-o� T

linear concave convex

1.
pairwise connected
single trait loops
or multi trait loop
with length 1

neutrally stable uninvadible invadible

2.
multi trait loops

with length >1 and
evolving loops are
pairwise connected

uninvadible uninvadible

3.
onlysingle trait loops

andat least one
pair of unconnected

evolving loops

invadible invadible

Table 3: Invadibility properties for evolutionarily singular points x∗ implied by life-
cycle structures and trade-o� curvatures. Transition and birth or death rates are
evolving. A long dash denotes that uninvadible as well as invadible singular strategies
are possible.

x1 ∈ {tij}, x2 ∈ {fkl, dl}
trade-o� T

linear concave convex

1.
pairwise connected
single trait loops
or multi trait loop
with length 1

neutrally stable uninvadible invadible

2.
multi trait loops

with length >1 and
evolving loops are
pairwise connected

∂QA
∂x1

> 0
∂QA
∂x1

< 0

uninvadible
invadible

uninvadible
invadible

3.
onlysingle trait loops

andat least one
pair of unconnected

evolving loops

57



point is a branching point), we are left with examining convergence stability. At least
for the case of pairwise connected single (or length 1 multi-) trait loops, as we will
see in the subsequent paragraph, this turns out to be unproblematic.

Linear invasion boundaries: In this paragraph, we consider the special case of
linear invasion boundaries. In this case, for the classi�cation of singular points it
su�ces to investigate the (local) curvature of the trade-o� curve. We use this in our
�nal result, viz. Theorem 2, which is the continuous time analogue of Proposition
21 in Rue�er et al. (2013). We will see that under certain assumptions evolutionary
scenarios can be predicted.

Again, we consider two-dimensional trait spaces, i.e., trait vectors of the form
(x1, x2) = x ∈ X, where x1 and x2 are linked by a trade-o� T (x1) = x2. As in
Rue�er et al. (2013, Section 6), along the trade-o� curve (x1, x2) are parametrized
by a scalar on the unit interval. We will use ξ to denote the scalar value of the
mutant, y := x(ξ) = (x1(ξ), x2(ξ)), and η to denote the scalar value of the resident,
x := x(η) = (x1(η), x2(η)). We assume that x1(.) is increasing and that x2(.) is
decreasing, at least locally around a singular point. Additionally, we assume that
x1(.) and x2(.) are both convex or both concave. Under this assumption, we know
from Rue�er et al. (2013, Appendix C) that x1(.) and x2(.) have the same curvature
as T .

We are now ready to state the following result

Theorem 2. Let the trait space be two-dimensional, i.e., there are two traits x1

and x2. Let all evolving loops be pairwise connected single trait loops or multi trait
loops with length one. Assume that all evolving loops contain at most one regulatory
function. Furthermore let for each trait xi all evolving loops be regulated by the same
regulatory function Ri. We allow for additive and multicative regulatory functions.
Let the trait values of the mutant and the resident determining the environment be
parametrized by ξ and η ∈ [0, 1], respectively, along the trade-o� curve T . We write
xi = xi(ξ) and Ri = Ri(η). Finally, let ξ∗ be the parameter corresponding to a
singular point x∗ = (x∗1, x

∗
2) = (x1(ξ∗), x2(ξ∗)). We write |∗ for |ξ=η=ξ∗ .

1. Let x1 a�ect a fertility rate and let x2 a�ect a fertility or death rate. Let R1 and
R2 be multiplicative regulatory functions with dR1/dη|∗ < 0, and dR2/dη|∗ > 0,
or let R1 be additive and R2 be multiplicative with dR2/dη|∗ > 0. Then there is
a constant k > 0 so that

(a) x∗ is an evolutionary repellor if d2T/dx2
1|∗ > k,

(b) x∗ is an evolutionary branching point if k > d2T/dx2
1|∗ > 0, and

(c) x∗ is a CSS if 0 > d2T/dx2
1|∗.

2. Let x1 a�ect a transition rate and let x2 a�ect a fertility or death rate. Let R1

and R2 be multiplicative regulatory functions with dR1/dη|∗ < 0, and dR2/dη|∗ >
0, or let R1 be additive and R2 be multiplicative with dR2/dη|∗ > 0, or let R1

be multiplicative with dR1/dη|∗ < 0,and R1 be additive. Without loss of gener-
ality, let us assume that the transition rate originates in state 1. Then there are
constants k, h > 0 so that (a) to (c) apply as above, as long as h > −QA\{1} > 0.

3. Let x1 a�ect a fertility or transition rate and let x2 a�ect a fertility or death rate.
If both regulatory functions are additive, evolution is not frequency dependent
such that x∗ is a repellor for d2T/dx2

1|∗ > 0 and a CSS for d2T/dx2
1|∗ < 0.

58



Proof. See Appendix C.2.

Note, that the constant h is de�ned as in (19) to (22) in Appendix C.2, respectively.
Analogously to the preceding Theorem, one can show that if the signs of dR1/dη|∗,
and dR2/dη|∗ are reversed, i.e., dR1/dη|∗ > 0 and dR2/dη|∗ < 0, then similar results
apply, where (a) to (c) is replaced by

(a') x∗ is an evolutionary repellor if d2T/dx2
1|∗ > 0,

(b') x∗ is a Garden of Eden point if 0 > d2T/dx2
1|∗ > k, and

(c') x∗ is a CSS if k > d2T/dx2
1|∗.

A comparison of Theorem 2 and Proposition 21 in Rue�er et al. (2013) shows that for
evolving fertility and death rates and multiplicative regulatory functions the results
are precisely the same. Moreover, including additive rather than multiplicative regu-
latory functions simpli�es the results, in that on the one hand conditions are relaxed
and on the other hand predictions are stronger. The case of a mix of multiplicative
and additive regulatory functions is of particular interest: here, we only have to ac-
count for the (local) slope of one regulatory function. Slightly changing the curvature
of the trade-o� then gives us the whole spectrum of evolutionary scenarios.

Fortunately, for a mix of evolving transition rates and fertility rates the results
are not much worse. The only requirement is, that the �tness proxy of the reduced
life cycle, i.e., QA\{1} , is su�ciently close to zero. Since |QA\{1} | = |∂QA/∂a11|, this is
equivalent with requiring that �tness should only slightly depend on state 1. In other
words, if �tness is su�ciently insensitive (cf. Caswell, 1978; Key�tz and Caswell,
2005) with respect to the state where the transition is originating, we can treat the
transition rate like a fertility rate.
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5 Discussion

The aim of this thesis was to provide criteria which allow for predictions concerning the
long-term evolution of structured populations. Those criteria were desired to be based
on (i) the structure of the population in terms of life-cycle con�gurations as well as on
(ii) the shape of trade-o�s among evolving demographic parameters. Particularly, (i)
di�ers from existing approaches to continuous-time structured-population models, in
particular those of Hoyle and Bowers (2008), Hoyle et al. (2008), and Bowers (2011),
where predictions are based on the model rather than on the population-structure
itself.

Proceeding along the lines of Rue�er et al. (2013), we were persuing the following
strategy: In section 2 we de�ned our model family, namely the family of continuous-
time matrix-population models, which are described by demographic parameters as
well as regulatory functions. In order to widen the scope of the present approach,
mutliplicative as well as additive regulatory functions were permitted. We allowed
for various types of regulatory functions, including population regulation via the law
of mass action, as this is of particular relevance to the study of evolutionary epidemi-
ology.

The main analytical tools for the evolutionary analysis of the models are derived
within the framework of Adaptive Dynamics. We presented all concepts relevant to
our study in section 3, two of them shall be emphasized: First, we presented a review
of results related to optimization. If a model supports an optimization principle, the
evolutionary dynamics is expected to approach a set of trait values that maximizes
the optimization principle. Second, we prepared all results which are necessary in
order to determine the invadibility of evolutionarily singular points right from the
curvature of trade-o� curves.

The tools presented in section 3 were then used to investigate the family of struc-
tured population models. First, following Rue�er et al. (2013) we presented a �tness
proxyQA for our class of models, which reduces computational e�ort to the calculation
of a determinant. This has three advantages: First, it is algebraically simple. Second,
we can directly use results from the theory of determinants to calculate �tness: via the
Leibniz rule for the determinant, we were able to identify loops in a life-cycle graph
with products in the determinant of the corresponding life-cycle matrix. Most of the
following results in this thesis are based on this �tness proxy. Third, in contrast to λd,
it can always be expressed analytically. We have to stress that although the �tness
proxy QA is algebraically simple, models of structured populations in continuous time
are to a certain extent problemantic in comparison to their discrete-time analogues.
This is due to the transition rates, which always show up in two separate entries of the
life-cycle matrix and hence also in two separate loops, which are pairwise connected.

In section 4.2, we made use of the �tness proxy in order to calculate explicit
optimization principles for a class of models. This is done by splitting the set of loops
in a life cycle into approproate subsets of regulated loops, evolving loops or loops
which are evolving and regulated. We also found optimization principles using the
basic reproductive number R0, which is widely used in mathematical epidemiology.

Finally, we considered the case of frequency dependent selection in section 4.3. As
in Rue�er et al. (2013), for two-dimensional trait spaces, su�cient conditions for the
invasion boundary to be concave, linear, or concave could be given (Theorem 1 as a
counterpart of Proposition 18 in Rue�er et al., 2013). The linear case is of special
interest: it allows to predict invadibility of an evolutionarily singular point solely by
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inspecting the trade-o� curve. We used this fact to show under which conditions
evolutionary branching becomes possible (Theorem 2 as a counterpart of Proposition
21 in Rue�er et al., 2013).

Comparing the results to the discrete-time case (Rue�er et al., 2013):
Due to the structural properties of continuous-time matrix models, namely transition
rates appearing in two matrix entries, the conditions in both theorems become stricter
as the number of evolving transition rates increases. Hence, the results are less elegant
than in the discrete-time case. Note however, that according to Theorem 2, we
obtain similar predictions as in the discrete-time case, as long as the �tness proxy is
su�ciently insensitive with respect to originating states of evolving transition rates,
i.e., as long as changes in the relevant diagonal entries of A do not contribute much to
changes in the �tness proxy. Keeping this in mind, we can make similar predictions as
in Rue�er et al. (2013) concerning the evolution of traits in structured populations:

First, if only death rates or fertility rates are evolving and if these rates appear
in a pair of unconnected evolving loops, then the invasion boundary is concave. This
entails that evolutionarily singular strategies are likely to be repellors or branching
points (Rue�er et al., 2004, 2013). In the �rst case, by selection the loop transmission
of one of the two loops is increasing, while the loop transmission of the other one is
decreasing. In the second case, two coexisting species arise, both of which increase
the respective loop transmission and decrease the other one. If fertility rates (not
located in a self loop) are decreased to zero, the corresponding loop vanishes. Thus,
species with unconnected loops containing evolving fertility rates are predicted to be
unlikely to occur. Furthermore, since in the case of continuous-time models, death
rates (which are assumed to be non-zero) establish unconnected self loops, there are
two possible predictions: either, one of the two death rates increases while the other
decreases, thereby resulting in species which specialize in the survival of one state, or
death rates of separate states are unlikely to be traded o� against each other (but see
Stearns, 1989, who argues for intergenerational mortality trade-o�s).

Second, if there are only mutli-trait loops which in addition share exactly the
same evolving demographic parameters as factors, then by virtue of the optimization
principles derived in section 4.2, evolutionary branching is not possible. Hence, in
accordance with Rue�er et al. (2013), closely related coexisting species are predicted
to di�er in traits which are not exclusively located in the same set of loops.

Third, in the case of pairwise connected single-trait loops it can be predicted by
virtue of Theorem 2, that evolutionary branching is possible only if evolving loops
are regulated di�erently. Note, that the conditions on the respective regulatory func-
tions are di�erent for multiplicative and additive density regulation. For evolutionary
branching to be possible, it is required that not all regulatory functions are additive.

Comparing the results to Hoyle et al. (2008), Hoyle and Bowers (2008),
and Bowers (2011): In the approach of Hoyle et al. (2008), Hoyle and Bowers
(2008), and Bowers (2011), conditions are directly based on properties of the life-
cycle matrix rather than on the corresponding loop structures (Hoyle and Bowers,
2008, p. 312; see also section 2). Recall, that the criteria established therein assert
the following:

2 Criterion A: at least two rows of A are evolving.

2 Criterion B: at least two columns of A are evolving.
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Table 4: Classi�cation of evolutionary outcomes depending on d2T/dx2
1 according

to Hoyle and Bowers (2008). In this table, + denotes that a criterion is ful�lled,
− denotes that a criterion is not ful�lled. I1 is the invasion boundary de�ned by
s(y,x) = 0, while I2 is the invasion boundary de�ned by s(x,y) = 0.

Case I1 I2 Possible evolutionary outcomes A B C

I linear linear CSS/repellor − − −
II curved curved CSS/repellor + + −
III linear curved CSS/BP/repellor or repellor/GoE/CSS + − +
IV curved curved CSS/BP/repellor or repellor/GoE/CSS + + +

2 Criterion C: at least two entries of A or two components of one entry of A are
regulated di�erently.

Evolutionary scenarios are classi�ed with respect to the trade-o� curve T , the invasion
boundary I1, implicitly de�ned by s(y,x) = 0 (i.e., I1 = I), and an additional curve
I2, which is the invasion boundary implicitly de�ned by s(x,y) = 0. Hoyle and
Bowers (2008) show the following:

2 If A is not ful�lled, then I1 and I2 are linear and superimposed.

2 If B is not ful�lled, then I1 is linear.

2 If C is not ful�lled, then selection is frequency-independent.

Let us compare this to our results: The �rst part of the �rst result follows from
Theorem 1: if A is not ful�lled, then only demographic parameters in one, say the
jth, row of A are evolving. Then all evolving demographic parameters correspond to
edges in the life-cycle graph which go to state j. Consequently, all evolving loops are
pairwise connected single-trait loops, or there is a multi-trait self loop. Hence, I1 is
linear. A similar argument applies to the second result: if B is not ful�lled, then all
evolving demographic parameters are located in the ith column, hence corresponding
to edges which go away from state i. Again, all evolving loops are pairwise connected
single trait loops, or there is a multi-trait self loop, whereby I1 is linear. We see
that Theorem 1 provides a more general result by widening the class of life-cycles for
which I1 is linear. Note, however, that the conditions on the life cycle in Theorem 1
for I1 to be linear are still only su�cient and not necessary, since for life-cycles with
unconnected evolving loops, the invasion boundary can be linear (although only in
non-generic cases). Furthermore, Theorem 1 gives conditions for I1 to be convex or
concave. Obviously, Theorem 1 makes no assertion about the curvature of I2.

The third result asserts, that there exists an optimization principle, if criterion C
is not ful�lled. Then all demographic parameters, if regulated, are regulated in the
same way. It is still to be shown whether or not this special case is captured by one
of the optimization principles which have been derived in section 4.2.

Table 4 shows the classi�cation of possible evolutionary outcomes together with
necessary conditions on the criteria A, B and C. Let us consider the four di�erent
cases: in case I and case II only CSSs or repellors are possible evolutionarily singular
strategies. According to Hoyle and Bowers (2008), both require that criterion C is not
ful�lled, and hence frequency-independent selection. Whether the singular strategy

62



is a CSS or a repellor depends on the curvature of T . Given that there exists an
optimization principle, case I and case II directly follow from Proposition 7.

Case III corresponds to Theorem 2: particularly, an evolutionarily singular point
is a branching point if the trade-o� curve is locally slightly convex. Necessary assump-
tions are however di�erent: A and not B is a special case of the condition that all
evolving loops must be pairwise connected: if entries in at least two di�erent rows are
evolving (criterion A) and if those entries must not be located in di�erent columns
(not criterion B), then all entries correspond to outgoing loops of one state i and
thereby to pairwise connected loops through i. Then, by Theorem 1, the invasion
boundary is linear and Theorem 2 applies. That is, Theorems 1 and 2 taken together
give more general results, which are ultimately based on the loop structure of the life
cycle. Note, that case IV has not been considered in this thesis.

Altogether, we conclude, that the classi�cation via loops rather than via properties
of the life-cycle matrix in terms of the criteria A, B and C, provides a more general
picture of the evolutionary dynamics in structured populations.

The analysis presented in this thesis can be extended in multiple ways. First,
higher-dimensional trait spaces could be considered. Second, it could be checked
whether rede�ning loops as products of demographic parameters and regulatory func-
tions as opposed to products of matrix entries simpli�es the results. Third, it would
be desirable to �nd necessary conditions for optimization principles to exist, which are
based on the loop con�guration of the life cycle at hand (but see Theorem 2). Fourth,
one could investigate conditions for evolutionary branching in the case of multi-trait
loops or unconnected single-trait loops, thereby accounting for case IV in Hoyle and
Bowers (2008, see also Table 4 on the preceding page), in order to shed more light on
the diversi�cation of structured populations.
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A Elementary combinatorics

A.1 Graphs

De�nition A.1. The directed graph is de�ned as an ordered pair G := (S,E) such
that E ⊆ S×S. If T ⊆ S and F ⊆ E, then H := (S,E) is a subgraph of G. Similarly,
for two directed graphs G = (S,E) and H = (T, F ) we set G ∩H := (S ∩ T,E ∩ F )
and G∪H := (S∪T,E∪F ). If S∩T is empty, then G and H are disjoint. A weighted
directed graph is a triple Gw := (S,E,w), where w is a function from the set of edges
to R.

De�nition A.2. A path is a directed graph P = (S,E) with

S = {s1, ..., sl}, E = {(s1, s2), ..., (sl−2, sl−1), (sl−1, sl)} .

A loop is a path C = (S,E) with

S = {s1, ..., sl}, E = {(s1, s2), ..., (sl−1, sl), (sl, s1)}

and |S| = |E|, i.e., no state is entered more than once. The number of states in S is
called the length of the path. A self loop is a loop of length 1.

Since in a loop no state is entered more than once, we can use the simpler notation

C = (S,E) = ({s1, ..., sl}, {(s1, s2), ..., (sl−1, sl), (sl, s1)}) =: [s1, s2, ..., sl, s1] .

A.2 Permutation cycles

This appedix introduces permutation cycles, which function as analogues to uncon-
nected loops in life-cycle graphs.

De�nition A.3. A permutation of a set S = {1, ..., n} is a bijective function π : S →
S. We use the notation

π =

(
1 2 3 . . . n

π(1) π(2) π(3) . . . π(n)

)
.

The set of possible permutations of a set {1, ..., n} is labelled Sn. An inversion in a
permutation π is a pair (i, j) with i < j and π(i) > π(j). The sign of a permutation
π, sgnπ, is the number of its inversions. A permutation cycle is a permutation of the
form

c =

(
s1 s2 s3 . . . sl
s2 s3 s4 . . . s1

)
,

where l is called the length of the permutation cycle. Each permutation can be
written as a composition of disjoint permutation cycles π = c1 . . . ck. If π = c1 . . . ck
is a composition of disjoint permutation cycles and c = ci for some i ∈ {1, ..., k}, we
write c E π. We de�ne z(π) as the number of cycles in the composition of disjoint
permutation cycles of π.

If S is the set of states in a given life cycle, it is clear from the previous de�nition
that there is a one-to-one relation between the set of pairwise disconnected loops in the
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corresponding life-cycle graph and the set of permutation cycles of a permutation on
S: to a loop G = ({s1, ..., sl}, {(s1, s2), ..., (sl, s1)}) there corresponds a permutation
cycle

c :=

(
s1 s2 s3 . . . sl
s2 s3 s4 . . . s1

)
.

Conversely, given c we de�ne G = ({s1, ..., sl}, {(s1, c(s1)), ..., (sl, c(sl))}). Similarly,
by setting L = as1c(s1)...aslc(sl), there is a one-to-one relation between permutation
cycles and loop transmissions.

This identi�cation allows us to use results about permutations for the investigation
of the loop structure of given life cycles. In particular we will use the following
proposition (for a proof, see for instance Cameron, 1994, ch. 5):

Proposition A.1. Let π ∈ Sn and c be a cycle with length `(c). Then

1. sgn(π) = (−1)n−z(π) and

2. sgn(c) = (−1)`(c)−1.

B Matrix analysis

Matrices that are used to describe structured populations usually have a special struc-
ture. In discrete time models of structured populations, such matrices are nonnega-
tive, since all demographic parameters (if appearing in the entries of the matrix) are
positive. Nonnegative matrices have been well studied: for a survey on nonnegative
matrices see the reference works Berman and Plemmons (1979) and Horn and John-
son (1985; 1991). As it is de�ned in section 2.1, a life-cycle matrix that models the
dynamics of structured populations in continuous time shows a slightly di�erent struc-
ture. In the so-called essentially nonnegative matrices negative entries may appear,
albeit only in diagonal entries. This is clear, as in a life-cycle matrix the diagonal
entries comprise explicit death rates and outgoing transition rates in contrast to its
analogue in the discrete time case.

However, much of the theory of nonnegative matrices can be translated into results
about essentially nonnegative matrices. This section collects some of the basic results
for each of the two types.

Nonnegative matrices: We �rst state basic de�nitions and standard results for
general nonnegative square matrices. For a matrix A we write A ≥ 0 (or ≤, >, <) if
for all of its entries we have aij ≥ 0 (or ≤, >, <, respectively).

De�nition B.1. The spectral radius of a k × k square matrix A with eigenvalues
λ1, ..., λk is de�ned as ρ(A) := max

1≤i≤k
(|λi|).

Proposition B.1. Let A be a nonnegative square matrix and for a proper subset of
indices α, let Aα be the principal submatrix of A. Then ρ(Aα) < ρ(A).

Proof. See Varga (2000, p. 35, Lemma 2.6).

Proposition B.2. Perron-Frobenius Theorem for nonnegative matrices. Let A be a
nonnegative irreducible k × k matrix. Then

1. A has a positive real eigenvalue λ0 > 0 with λ0 = ρ(A).
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2. ρ(A) is a simple eigenvalue of A.

3. There is a positive eigenvector u0 > 0 corresponding to λ0.

4. ∂ρ(A)
∂aij

> 0 for all 1 ≤ i, j ≤ k.

Proof. See Varga (2000, p. 35, Theorem 2.7).

Essentially nonnegative matrices: As the diagonal entries of a life-cycle ma-
trix can be negative, we have to reconsider the previously stated propositions. In
general, the results about nonnegative matrices can be translated into quite similar
propositions about matrices with negative diagonal entries.

De�nition B.2. A k × k matrix A is called essentially nonnegative if aij ≥ 0 for all
i 6= j, i, j ∈ {1, ..., k}.

It is clear that a life-cycle matrix given by aij = fij + tij−δij(di+
∑k
l=1 tli) ful�lls

the criteria for being essentially nonnegative (this holds even if the population is not
in its population dynamic equilibrium).

De�nition B.3. The stability modulus of a k × k square matrix A with eigenvalues
λ1, ..., λk is de�ned as µ(A) := max

1≤i≤k
(Reλi).

Proposition B.3. Perron-Frobenius Theorem for essentially nonnegative matrices.
Let A be an essentially nonnegative irreducible k × k matrix. Then

1. A has a real eigenvalue λ0 = µ(A).

2. µ(A) is a simple eigenvalue of A.

3. There is a positive eigenvector u0 > 0 corresponding to λ0.

4. ∂µ(A)
∂aij

> 0 for all i, i ∈ {1, ..., k}.

Proof. See Varga (2000, 282, Theorem 8.3).

Proposition B.4. Let A be an essentially nonnegative, irreducible square matrix
and for a proper subset of indices α, let Aα be the principal submatrix of A. Then
µ(Aα) < µ(A).

Proof. Since A is essentially nonnegative, there exists a real s > 0 such that B =
A + sIk, where Ik denotes the k-dimensional identity matrix, is nonnegative. The
Perron-Frobenius theorem for nonnegative matrices implies that there exists a vector
u such that

Bu = ρ(B)u

⇔ (A + sIk)u = ρ(A + sIk)u

⇔ Au = (ρ(A + sIk)− s)︸ ︷︷ ︸
=:µ(A)

u = µ(A)u

which de�nes the stability modulus of the Perron-Frobenius Theorem for essentially
nonnegative matrices.

Set l = |α| and Bα := Aα+sIl. analogously we can de�ne ρ(Aα+sIl)−s =: µ(Aα).
Clearly, Bα is nonnegative and a principal submatrix of B. From Proposition B.1 then
follows that ρ(Bα) < ρ(B). Hence, µ(Aα) = ρ(Aα + sIl)− s = ρ(Bα)− s < ρ(B)− s =
ρ(A + sIk)− s = µ(A), which proves the proposition.
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C Proofs

In this appendix, the proofs of the two main results, Theorem 1 and Theorem 2 shall
be given.

C.1 Proof of Theorem 1

The �rst steps in this proof are completely analogous to the proof of Proposition
18 in Rue�er et al. (2013). Since QA is a �tness proxy, we have that the invasion
boundary ful�lls QA((x1, I(x1)), Ê) = s((x1, I(x1)), Ê) = 0. We di�erentiate twice
for x1 yielding

∂2

∂x2
1

QA + 2
∂

∂x1
I · ∂2

∂x1∂x2
QA +

∂2

∂x2
2

QA ·
(

∂

∂x1
I

)2

+
∂

∂x2
QA ·

∂2

∂x2
1

I = 0.

Recall, that ∂2

∂x2
1
QA = ∂2

∂x2
2
QA = 0. After some rearrangement we then obtain

∂2

∂x2
1

I = −
2 ∂
∂x1

I · ∂2

∂x1∂x2
QA

∂
∂x2

QA

. (18)

Let us consider all parts of the expression on the right-hand side separately. First,
we have ∂

∂x1
I < 0 for all x1 which are increasing birth rates fij and decreasing death

rates di. Second, Proposition 19 gives us conditions for the sign of the denominator
∂
∂x2

QA.

Third, we calculate the sign of ∂2

∂x1∂x2
QA. This requires some additional consider-

ations:

Case 1. Let x1 a�ect either fij or dj , and let x2 a�ect either fkl or dl for some
i, j, k, l ∈ {1, ..., n}. From Proposition 19.1 and 2 then follows, that ∂

∂x2
QA > 0, as x2

is assumed to increases fij and decreases di.

If all evolving loops are single trait loops and pairwise connected, x1 and x2

do not appear together in one summand of QA. Hence ∂2

∂x1∂x2
QA = 0 and I is

linear. If there is only a multi trait loop of length 1, it is necessarily of the form

L = aii = fii−di−
∑
thi where fii and di are evolving. Then clearly also

∂2

∂x1∂x2
QA = 0

(by multilinearity split QA into two summands).

If the set M(x1, x2) of evolving multi trait loops of length ` > 1 is non-empty,
i.e., M(x1, x2) := L(x1, x2)\{L|`(L) = 1} 6= ∅ and all evolving loops are pairwise
connected, we apply Lemma 1 and get

∂2

∂x1∂x2
QA = − ∂2

∂x1∂x2

∑
L∈M(x1,x2)

L(x1, x2) ·QA\{L} + 0

= −
∑

L∈M(x1,x2)

∂2x1x2

∂x1∂x2
·K1 ·QA\{L}

for some K1 > 0. Since here we are only interested in QA near the singular point x∗

we get from Proposition 19.1 that QA\{L} < 0. Then ∂2

∂x1∂x2
QA > 0 and the invasion

boundary is locally convex.
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If all loops are single trait loops and the set of pairs of unconnected evolving loops
L(x1)⊗ L(x2) is non-empty, we apply Lemma 1 and �nd that

∂2

∂x1∂x2
QA =

∂2

∂x1∂x2

∑
(L,M)∈L(x1)⊗L(x2)

L(x1) ·M(x2) ·QA\{L}∪{M} + 0

=
∑

(L,M)∈L(x1)⊗L(x2)

∂2x1x2

∂x1∂x2
·K2 ·QA\{L} < 0

since K2 > 0 is a constant depending solely on positive factors. Thus, the invasion
boundary is concave.

Case 2. Let x1 a�ect tij and x2 a�ect either fkl or dl. Again, from 19.1 and 2 we
get ∂

∂x2
QA > 0.

Let all evolving loops be single trait loops and pairwise connected. Since tij
generates at least two connected evolving loops, one of which is the length-1 loop
L = ajj = fjj − dj − tij −

∑
h 6=i,j thj , this entails that all loops in L(x1) pass through

j. Then x1 and x2 do not appear together in one summand of QA and ∂2

∂x1∂x2
QA = 0,

i.e., the invasion boundary is linear. If there is a multi trait loop of length 1, it is of
the form L = ajj = fjj − dj − tij −

∑
h 6=i,j thj where tij and fjj , or tij and di are

evolving. Hence, again ∂2

∂x1∂x2
QA = 0.

Now, let the set of evolving multi trait loops with length ` > 1, M(x1, x2), be
non-empty and let all evolving loops be pairwise connected. Again, this entails that

all L(x2) pass through j. As in Case 1 we obtain ∂2

∂x1∂x2
QA > 0. Since the sign of

∂QA

∂x1
is a priori not known, we have that I is locally convex if ∂QA

∂x1
> 0 and concave if

∂QA

∂x1
< 0.
If all evolving loops are single trait loops and there are unconnected evolving loops,

i.e., L(x1)⊗ L(x2) 6= ∅ and L(−x1)⊗ L(x2) 6= ∅, we can expand the �tness proxy in
the following way:

∂2

∂x1∂x2
QA =

∂2

∂x1∂x2

∑
(L,M)∈L(x1)⊗L(x2)

L(x1) ·M(x2) ·QA\{L}∪{M}

+
∂2

∂x1∂x2

∑
(L,M)∈L(−x1)⊗L(x2)

L(−x1) ·M(x2) ·QA\{L}∪{M}

Here, the �rst part contains all pairs of loops (L(x1),M(x2)) ∈ L(x1)⊗L(x2), where
`(L(x1)) > 1. The second part contains all pairs of loops where the �rst loop has
length 1. In these loops tij has a negative sign, which is denoted by L(−x1). Note,
that since there are no multi-trait loops, there are in particular no multi-trait loops
of length 1. Hence, for L ∈ L(−x1), we have ∂

∂x1
L(−x1) = − ∂

∂x1
x1 · const + 0, since

all other summands in L = ajj vanish. Thus, we can �nd positive constants K3 and
K4 such that

∂2

∂x1∂x2
QA =

∑
(L,M)∈L(x1)⊗L(x2)

∂2x1x2

∂x1∂x2
·K3 ·QA\{L}∪{M}

−
∑

(L,M)∈L(x1)⊗L(x2)

∂2x1x2

∂x1∂x2
·K4 ·QA\{L}∪{M}
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where both parts are positive. From this follows, that we cannot predict the curvature
of I without explicit calculation of the di�erence

4 :=
∑

(L,M)∈L(x1)⊗L(x2)

K3 ·QA\{L}∪{M} −
∑

(L,M)∈L(x1)⊗L(x2)

K4 ·QA\{L}∪{M} .

Case 3. Let x1 a�ect tij and x2 a�ect either tkl. The case of pairwise connected
single trait loops is not possible, since both tij and tkl generate loops of length 1: x1

and x2 necessarily appear in the multi trait loop L = ajj = fjj−dj− tij− tkl−
∑
thj

where l = j. Clearly, L has length 1. In this case, as in Case 1 and 2 we �nd that
∂2

∂x1∂x2
QA = 0, hence the invasion boundary is linear, as long as ∂

∂x2
QA 6= 0, and

unde�ned otherwise.
Also the case of multi trait loops with length ` > 1 and pairwise connected single

trait loops is not possible: otherwise, we would have two single trait loops L1(−tij) =
ajj and L2(−tkl) = all which are only connected if j = l. But then ajj constitues a
multi trait loop of length 1.

Finally, let L(±x1)⊗L(±x2) 6= ∅ for all possible combinations of signs. Expanding
the �tness proxy, we �nd

∂2

∂x1∂x2
QA =

∂2

∂x1∂x2

∑
(L,M)∈L(x1)⊗L(x2)

L(x1) ·M(x2) ·QA\{L}∪{M}

+
∂2

∂x1∂x2

∑
(L,M)∈L(−x1)⊗L(x2)

L(−x1) ·M(x2) ·QA\{L}∪{M}

+
∂2

∂x1∂x2

∑
(L,M)∈L(x1)⊗L(−x2)

L(x1) ·M(−x2) ·QA\{L}∪{M}

+
∂2

∂x1∂x2

∑
(L,M)∈L(−x1)⊗L(−x2)

L(x1) ·M(x2) ·QA\{L}∪{M}

and further

=
∑

(L,M)∈L(x1)⊗L(x2)

K5 ·QA\{L}∪{M}

−
∑

(L,M)∈L(−x1)⊗L(x2)

K6 ·QA\{L}∪{M}

−
∑

(L,M)∈L(x1)⊗L(−x2)

K7 ·QA\{L}∪{M}

+
∑

(L,M)∈L(−x1)⊗L(−x2)

K8 ·QA\{L}∪{M}

for some constantsK5, ...,K8 > 0, whereby the curvature of I is a priori undetermined.

C.2 Proof of Theorem 2

All evolving loops are pairwise connected single trait loops or multi-trait loops of
length one. Hence, from Corollary 2 we know that x∗ is uninvadible if the trade-o�
is locally concave, i.e., d2T/dx2

1|∗ < 0, and invadible if the trade-o� is locally convex,
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i.e., d2T/dx2
1|∗ > 0. So, in order to fully classify the singular point, we have to check

for convergence stability (see 3.2). Since locally around the singular point invasion
�tness can be replaced by the �tness proxy QA, we have to evaluate

∂2

∂ξ2
QA(ξ, η)|∗ +

∂2

∂ξ∂η
QA(ξ, η)|∗ =: 4.

If 4 < 0, then x∗ is convergence stable, and if 4 > 0, then x∗ is repelling.
Let us collect all evolving (and by assumption pairwise connected) loops in a set

E . In the following we will make use of Lemma 1 in order to simplify 4. We will need
some additional

Notation. Let M(xi · Ri) denote the set of loops containing xi and the corre-
sponding multiplicative regulatory function, let M(xi + Ri) denote the set of loops
containing xi and the corresponding additive regulatory function, and letM(xi\Ri)
denote the set of loops containing xi and no regulatory function. We will assume that
xi is positive, i.e., we haveM(−xi ·Ri),M(−xi−Ri), andM(−xi\Ri) for denoting
the sets of loops a�ected by xi in a negative way (in particular, this is the case for
self loops a�ected by outgoing transition rates). For ? ∈ {·,+, \} we use the notation∑

M(xi?Ri)

= −
∑

L∈M(xi?Ri)

L ·QA\{L}∑
×

M(xi?Ri)

= −
∑

L∈M(xi?Ri)

L/(xi ? Ri + C) ·QA\{L}

where C denotes some (not necessarily positive) constant not depending on any trait
or regulatory function. Furthermore, for the sake of clarity we use © instead of

∑
,

if there is only one summand which in addition is a self loop, i.e., a loop of length 1.
Finally, let R(R) denote some expression depending on regulatory functions but not
on evolving traits.

We have
∑
M(xi?Ri)

× > 0 and ©M(xi?Ri)× > 0 since the �tness proxy is evalu-

ated su�ciently close to the singular point and since L/(xi ?Ri +C) > 0. By Lemma
1 we can write

QA(ξ, η) =
∑
E

+R(R) =
∑
M1

+ ...+
∑
Mk

+R(R)

for any partition M1, ...,Mk of E . In the following case-by-case analysis E will be
decomposed into suitable subsets.

Case 1. Assume that only death and fertility rates are evolving and that R1, R2

are multiplicative regulatory functions. Let E =M(x1 ·R1)∪M(x2 ·R2)∪M(x1\R1)∪
M(x2\R2). Then

QA(ξ, η) =
∑

M(x1·R1)

+
∑

M(x2·R2)

+
∑

M(x1\R1)

+
∑

M(x2\R2)

+ R(R)

= (x1R1 + C)
∑
×

M(x1·R1)

+ (x2R2 + C)
∑
×

M(x2·R2)

+(x1 + C)
∑
×

M(x1\R1)

+ (x2 + C)
∑
×

M(x2\R2)

+ R(R)
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and

4 =
d2x1

dξ2
R1

∣∣∣∣
∗

∑
×

M(x1·R1)

+
d2x2

dξ2
R2

∣∣∣∣
∗

∑
×

M(x2·R2)

+
d2x1

dξ2

∣∣∣∣
∗

∑
×

M(x1\R1)

+
d2x2

dξ2

∣∣∣∣
∗

∑
×

M(x2\R2)

+
dx1

dξ

dR1

dη

∣∣∣∣
∗

∑
×

M(x1·R1)

+
dx2

dξ

dR2

dη

∣∣∣∣
∗

∑
×

M(x2·R2)

.

If T is concave, i.e., d2T/dx2
1|∗ < 0, then xi(ξ) is concave for i = 1, 2, whereby

all summands containing double derivatives are negative. Under the conditions in
Theorem 2.1. all mixed derivatives are negative, since dx1/dξ > 0 and dx2/dξ < 0.
Thus, 4 < 0 and x∗ is convergence stable, and hence a CSS. If T is convex, then
all summands containing double derivatives are positive. The summands containing
mixed derivatives remain negative. That is, there exists a threshold k > 0 such that
4 < 0, i.e., convergence stable, for k > d2T/dx2

1|∗ > 0, and 4 > 0, i.e., repelling, for
d2T/dx2

1|∗ > k. Thus, x∗ is an evolutionary branching point in the former case and
an evolutionary repellor in the latter case.

Note, that with some algebra, one can easily show that the case of linear combi-
nations of the formM(x1 ·R1 + x2 ·R2) leads to precisely the same result.

Case 2. Assume that only death and fertility rates are evolving, and that R1,
R2 are multiplicative regulatory functions. Let E = M(x1 + R1) ∪M(x2 + R2) ∪
M(x1\R1) ∪M(x2\R2). Then

QA(ξ, η) =
∑

M(x1+R1)

+
∑

M(x2+R2)

+
∑

M(x1\R1)

+
∑

M(x2\R2)

+ R(R)

= (x1 +R1 + C)
∑
×

M(x1+R1)

+ (x2 +R2 + C)
∑
×

M(x2+R2)

+(x1 + C)
∑
×

M(x1\R1)

+ (x2 + C)
∑
×

M(x2\R2)

+ R(R)

The assertion then follows from an optimization argument: it is easy to see that
the �tness proxy can be rearranged as QA(ξ, η) = a(x) + b(R). By Proposition 11,
there exists an optimization principle. Hence, the evolutionarily singular strategy is
convergence stable i� it is uninvadible, i.e., it is a CSS if d2T/dx2

1|∗ < 0 and a repellor
if d2T/dx2

1|∗ > 0.

Case 3. Assume that only death and fertility rates are evolving, and that R1 is a
multiplicative and R2 an additive regulatory function. Let E =M(x1 ·R1)∪M(x2 +
R2) ∪M(x1\R1) ∪M(x2\R2). Then

QA(ξ, η) =
∑

M(x1·R1)

+
∑

M(x2+R2)

+
∑

M(x1\R1)

+
∑

M(x2\R2)

+ R(R)

= (x1R1 + C)
∑
×

M(x1·R1)

+ (x2 +R2 + C)
∑
×

M(x2+R2)

+(x1 + C)
∑
×

M(x1\R1)

+ (x2 + C)
∑
×

M(x2\R2)

+ R(R)
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and

4 =
d2x1

dξ2
R1

∣∣∣∣
∗

∑
×

M(x1·R1)

+
d2x2

dξ2

∣∣∣∣
∗

∑
×

M(x2+R2)

+
d2x1

dξ2

∣∣∣∣
∗

∑
×

M(x1\R1)

+
d2x2

dξ2

∣∣∣∣
∗

∑
×

M(x2\R2)

+
dx1

dξ

dR1

dη

∣∣∣∣
∗

∑
×

M(x1·R1)

.

Hence, the same results as in Case 1 apply, but we only need dR1/dη < 0.

Case 4. We now turn over to combinations of transition rates, and fertility or
death rates as evolving traits. Assume that x1 is a�ecting a transition rate, that x2 is
a�ecting a fertility or death rate and that both regulatory functions are multiplicative.
Then

QA(ξ, η) =
∑

M(x1·R1)

+ ©
M(−x1·R1)

+
∑

M(x2·R2)

+
∑

M(x1\R1)

+ ©
M(−x1\R1)

+
∑

M(x2\R2)

+ R(R)

= (x1R1 + C)

 ∑
×

M(x1·R1)

− ©×
M(−x1·R1)

+ (x2R2 + C)
∑
×

M(x2·R2)

+(x1 + C)

 ∑
×

M(x1\R1)

− ©×
M(−x1\R1)

+ (x2 + C)
∑
×

M(x2\R2)

+ R(R)

and

4 =
d2x1

dξ2
R1

∣∣∣∣
∗

 ∑
×

M(x1·R1)

− ©×
M(−x1·R1)

+
d2x2

dξ2
R2

∣∣∣∣
∗

∑
×

M(x2·R2)

+
d2x1

dξ2

 ∑
×

M(x1\R1)

− ©×
M(−x1\R1)

+
d2x2

dξ2

∣∣∣∣
∗

∑
×

M(x2\R2)

+
dx1

dξ

dR1

dη

∣∣∣∣
∗

 ∑
×

M(x1·R1)

− ©×
M(−x1·R1)

+
dx2

dξ

dR2

dη

∣∣∣∣
∗

∑
×

M(x2·R2)

where ©M(−x1·R1)× 6= 0 i� ©M(−x1\R1)× = 0, since the self loop containing −x1

is either regulated or unregulated, but not both. If ©M(−x1·R1)× > 0 is su�ciently
small so that

h :=
∑
×

M(x1·R1)

> ©×
M(−x1·R1)

= −QA\{L(−x1·R1)} > 0, (19)

the same as in Case 1 applies, and similarly if ©M(−x1\R1) > 0 in such a way that

h :=
∑
×

M(x1\R1)

> ©×
M(−x1\R1)

= −QA\{L(−x1\R1)} > 0. (20)
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Case 5. Assume that x1 is a�ecting a transition rate, that x2 is a�ecting a fertility
or death rate and that both regulatory functions are additive. Then

QA(ξ, η) =
∑

M(x1+R1)

+ ©
M(−x1−R1)

+
∑

M(x2+R2)

+
∑

M(x1\R1)

+ ©
M(−x1\R1)

+
∑

M(x2\R2)

+ R(R)

= (x1 +R1 + C)

 ∑
×

M(x1+R1)

− ©×
M(−x1−R1)

+ (x2 +R2 + C)
∑
×

M(x2+R2)

+(x1 + C)

 ∑
×

M(x1\R1)

− ©×
M(−x1\R1)

+ (x2 + C)
∑
×

M(x2\R2)

+ R(R)

and after some rearrangements we can apply an optimization argument as in Case 2.
Hence, d2T/dx2

1|∗ < 0 i� 4 < 0.

Case 6. Assume that x1 is a�ecting a transition rate, that x2 is a�ecting a fertility
or death rate and that R1 is additive and R2 is multiplicative. Then

QA(ξ, η) =
∑

M(x1+R1)

+ ©
M(−x1−R1)

+
∑

M(x2·R2)

+
∑

M(x1\R1)

+ ©
M(−x1\R1)

+
∑

M(x2\R2)

+ R(R)

= (x1 +R1 + C)

 ∑
×

M(x1+R1)

− ©×
M(−x1−R1)

+ (x2R2 + C)
∑
×

M(x2·R2)

+(x1 + C)

 ∑
×

M(x1\R1)

− ©×
M(−x1\R1)

+ (x2 + C)
∑
×

M(x2\R2)

+ R(R)

and

4 =
d2x1

dξ2

∣∣∣∣
∗

 ∑
×

M(x1+R1)

+
∑
×

M(x1\R1)

− ©×
M(−x1+R1)

− ©×
M(−x1\R1)


+
∂2x2

∂ξ2

∣∣∣∣
∗

R2

∑
×

M(x2+R2)

+
∑
×

M(x2\R2)

+
dx2

dξ

dR2

dη

∣∣∣∣
∗

∑
×

M(x2·R2)

.

Then the same results as in Case 3, with the exception that only dR2/dη > 0 is
required, apply as long as

h :=
∑
×

M(x1+R1)

+
∑
×

M(x1\R1)

> ©×
M(−x1−R1)

= −QA\{L(−x1·R1)} (21)

or
h :=

∑
×

M(x1+R1)

+
∑
×

M(x1\R1)

> ©×
M(−x1\R1)

= −QA\{L(−x1\R1)} . (22)
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Case 7. Finally, consider the case of x1 a�ecting a transition rate, and x2 a�ecting
a fertility or death rate, R1 being multiplicative and R2 being additive. Then

QA(ξ, η) =
∑

M(x1·R1)

+ ©
M(−x1·R1)

+
∑

M(x2+R2)

+
∑

M(x1\R1)

+ ©
M(−x1\R1)

+
∑

M(x2\R2)

+ R(R)

= (x1R1 + C)

 ∑
×

M(x1·R1)

− ©×
M(−x1·R1)

+ (x2 +R2 + C)
∑
×

M(x2+R2)

+(x1 + C)

 ∑
×

M(x1\R1)

− ©×
M(−x1\R1)

+ (x2 + C)
∑
×

M(x2\R2)

+ R(R)

and

4 =

[
d2x1

dξ2
R1 +

dx1

dξ

dR1

dη

]
∗

 ∑
×

M(x1·R1)

− ©×
M(−x1·R1)


+
d2x1

dξ2

 ∑
×

M(x1\R1)

− ©×
M(−x1\R1)

+
d2x2

dξ2

∣∣∣∣
∗

 ∑
×

M(x2+R2)

+
∑
×

M(x2\R2)


so that again for 0 < −QA\{L(−x1·R1)} < h, as de�ned in equation (19) and equation
(20), the same results as in Case 3 apply.
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Abstract

We investigate the evolutionary dynamics of life-history traits in structured popu-
lations, under the assumption of discrete population structure. The model family
analyzed in this thesis consists of deterministic models in continuous time, that is,
we consider systems of ordinary di�erential equations. Life cycles are characterized
by demographic parameters and regulatory functions, which account for density de-
pendence. We employ the framework of Adaptive Dynamics in order to conduct the
evolutionary analysis of the model family, thereby investigating phenotypic evolution.
An algebraically simple �tness proxy is derived, which allows to predict long-term
evolutionary outcomes based on the con�guration of loops, evolving and regulated
demographic parameters in a life cycle. We derive a list of su�cient conditions on
the structure of life cycles for frequency-independent selection. More precisely, we
provide a range of explicit optimization criteria. If for a given life cycle there is an
optimization criterion, then phenotypic variation is selected against. Furthermore,
we consider frequency-dependent selection. In the case of two evolving demographic
parameters which are traded o� against each other, we derive su�cient conditions
for di�erent evolutionary outcomes. For this, the curvature of the trade-o� between
the two evolving parameters plays a cruical role. In particular, we show under which
conditions evolutionary branching occurs.

Zusammenfassung

Es wird die evolutionäre Dynamik von Lebenszyklusparametern (life-history traits)
in strukturierten Populationen unter Annahme diskreter Populationsstruktur un-
tersucht. Die in dieser Arbeit analysierte Modellfamilie besteht aus deterministi-
schen Modellen in kontinuierlicher Zeit, es werden also Systeme gewöhnlicher Dif-
ferentialgleichungen betrachtet. Lebenszyklen werden durch demogra�sche Para-
meter und regulierende Funktionen, welche Dichteabhängigkeit in die Modelle ein-
bringen, charakterisiert. Für die evolutionäre Analyse der Modellfamilie wird das
Adaptive-Dynamics-Framework angewandt. Dabei ist die Evolution phänotypischer
Merkmale Gegenstand der Untersuchungen. Es wird ein algebraisch einfacher Fit-
nessproxy hergeleitet, welcher es ermöglicht, über das evolutionäre Langzeitverhalten
Vorhersagen zu tre�en, die auf der Anordnung von Schleifen (loops), evolvierenden
und regulierten demogra�schen Parametern in einem Lebenszyklus basiert. Es wird
eine Liste hinreichender Bedingungen für frequenzunabhängige Selektion erarbeitet,
oder genauer, eine Liste von expliziten Optimierungskriterien (optimization princi-
ples). Gibt es ein solches für einen Lebenszyklus, so ist phänotypische Variation un-
wahrscheinlich. Weiters wird frequenzabhängige Selektion betrachtet. Im Falle von
zwei evolvierenden demogra�schen Parametern, welche einem Trade-o� unterliegen,
werden hinreichende Bedingungen für verschiedene evolutionäre Szenarien hergeleitet.
Dabei spielt die Krümmung der Trade-o�-Kurve eine bedeutende Rolle. Insbeson-
dere wird gezeigt, unter welchen Umständen evolutionäre Verzweigungen (evolution-
ary branching) vorkommen.
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