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Abstract

It is the purpose of this thesis to emphasize the connection between general Vander-
mode matrices and the specific properties of the Fourier matrix, which is interpreted
as the Vandermonde matrix for the unit roots of order N . In doing so a num-
ber of interesting properties can be derived in an elementary way, and it can be
demonstrated that they are in principle consequences of elementary properties of
complex numbers. For example, the Fourier matrix is (up to the normalization fac-
tor
√
N) a unitary matrix, which follows from the exponential law combined with

the formula for finite geometric series. Thesis provides some basic information about
Complex Fourier Series for periodic functions and pointwise convergence of Fourier
series.Reviewing Euler formula and properties of ”odd and even” functions, Fourier
series satisfying Dirichlet’s conditions can be expressed with complex number coeffi-
cients. Further in the thesis some basic properties such as ’linearity, scaling, shifting
and modulation’ of Fourier transform is introduced along with Plancherel’s formula,
Convolution property and Shannon’s theorem. At the end of the thesis we provide
some small applications using MATLAB to the elementary probability theory, large
integer multiplication and digital filtering.





Abstrakt

Das Ziel dieser Diplomarbeit besteht darin, den Zusammenhang zwischen allge-
meinen Vandermonde Matrizen und spezifischen Eigenschaften der Fourier Matrix
zu beschreiben, wobei letztere als Vandermonde Matrix für die Einheitswurzeln der
Ordnung N interpretiert wird. Auf diese Weise kann eine Reihe von wichtigen Eigen-
schaften der Fourier Matrix in elementarer Weise hergeleitet werden. insbesondere
wird gezeigt, dass diese im Wesentlichen nichts als Eigenschaften der komplexen
Zahlen sind. Beispielsweise ist die Fourier Matrix (bis auf Normalisierung mit

√
N)

eine unitäre Matrix, was aus dem Exponentialgesetz und der Summen Formel für
endliche geometrische Reihen folgt.
Unter anderem werden in dieser Arbeit grundlegende Eigenschaften komplexer Fouri-
erreihen für periodische Funktionen vorgestellt, es wird auch die punktweise Konver-
genz von Fourierreihen charakterisiert. Weiters wird mit Hilfe der Euler Formel und
einigen Eigenschaften gerader und ungerader Funktionen hergeleitet, dass Fourierrei-
hen, die die Dirichletbedingungen erfüllen, mit komplexen Koeffizienten dargestellt
werden können. Nicht zuletzt werden einige einfache Eigenschaften der Fourier-
transformation, wie z.B. Linearität, die Skalierungseigenschaft, Shift und Modula-
tion eingeführt, wie auch die Formel von Plancherel, die Konvolutionseigenschaft
und das Theorem von Shannon. Abschließend werden einige Anwendungen in der
Wahrscheinlichkeitstheorie, der Multiplikation großer Zahlen und der Theorie der
digitalen Filter gegeben.





Summary

The Fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier
transform (DFT) and its inverse. In 1965 J. Cooley and J. Tukey published a paper
about the algorithm and describing how to perform it conveniently on a computer.
The DFT was long known before 1965. However getting benefit from it was limited
because of the computational workload. Because the calculation of the DFT of an
input sequence of an N length sequence {fn} requires N complex multiplications
to compute each on the N values, Fm, for a total of N2 multiplications. The fast
Fourier transform which enables practical fast frequency domain implementation of
processing algorithms, revolutionized the digital signal processing.
The aim of this thesis is to emphasize the connection between Vandermonde matrices
and some properties of a Fourier matrix which is an interpretation of Vandermonde
matrix for the unit roots of order N .
The first chapter gives a brief summary of the representation of polynomials and
Vandermonde matrices. Then it is emphasized that the polynomial multiplication
is in fact a convolution. Thus, the Cauchy Product of two polynomials is replaced
with convolution integral which has the same properties as ordinary multiplication
such as bilinearity, commutativity and associativity.
The second chapter is concerned with Discrete Fourier Transform (DFT), whose
kernel is the principal root of unity. Further in this chapter the inverse transform
and convolution theorem in both time and frequency domains will be introduced.
Furthermore some important properties of DFT is explained.
In the third chapter, complex Fourier series for periodic functions is denoted and
pointwise convergence of Fourier series is explained. Reviewing Euler formula and
properties of ”odd and even” functions, Fourier series satisfying Dirichlet’s condi-
tions can be expressed with complex number coefficients. Further in this chapter
some basic properties such as ’linearity, scaling, shifting and modulation’ of Fourier
transform are introduced along with Plancherel’s formula, the convolution property
and Shannon’s theorem. In the last Chapter, some applications in probability the-
ory, large integer multiplication and digital filtering are conducted with the help of
MATLAB.





Zusammenfassung

Die schnelle Fouriertransformation (FFT) ist ein Algorithmus um die diskrete Fouri-
ertransformation (DFT) und ihre Inverse zu berechnen. Im Jahr 1965 publizierten
J. Cooley und J. Tukey ein Paper, das sowohl den Algorithmus selbst als auch eine
Möglichkeit beschrieb ihn effizient auf einem Computer zu implementieren. Die
diskrete Fouriertransformation war zwar schon lange vor 1965 bekannt, aber auf-
grund der der hohen notwendigen Rechenleistung konnte man keinen großen Nutzen
aus ihr ziehen. Um die DFT einer Input-Folge {fn} der Länge N zu berechnen,
benötigt man nämlich N komplexe Multiplikationen für jeden der N Werte Fm, was
insgesamt N2 Multiplikationen ergibt. Die schnelle Fouriertransformation (FFT)
hat die digitale Signalverarbeitung revolutioniert, weil sie von vielen schnellen Algo-
rithmen verwendet wird.
Das Ziel dieser Diplomarbeit ist es, den Zusammenhang zwischen Vandermonde Ma-
trizen und einigen Eigenschaften der Fourier Matrix zu beleuchten, die man als
Vandermonde Matrix für die Einheitswurzeln der Ordnung N interpretieren kann.
Das erste Kapitel gibt einer kurzen Übersicht über die Darstellung von Polynomen
und über Vandermonde Matrizen. Es wird dargelegt, dass man die Multiplika-
tion von Polynomen als Konvolution betrachten kann. Im Kontinuierlichen ersetzen
wir das Cauchyprodukt von zwei Polynomen durch das Konvolutionsintegral, das
dieselben Eigenschaften wie die gewöhnliche Multiplikation aufweist, wie z.B. Bi-
linearität, Kommutativität und Assoziativität.Das zweite Kapitel beschäftigt sich
mit der diskreten Fouriertransformation (DFT), die auf den Eigenschaften auf die
Gruppe der n-tenEinheitswurzeln beruht. Es werden die inverse Transformation und
das Konvolutionstheorem sowohl im Zeit-, als auch im Frequenzraum eingeführt.
Weiters werden einige wichtige Eigenschaften der DFT beschrieben.Im dritten Kapi-
tel werden komplexe Fourierreihen für periodische Funktionen definiert und es wird
die punktweise Konvergenz von Fourierreihen beschrieben. Mit Hilfe der Euler
Formel und einigen Eigenschaften gerader und ungerader Funktionen wird hergeleitet,
dass Fourierreihen, die die Dirichletbedingungen erfüllen, mit komplexen Koeffizien-
ten dargestellt werden können. Weiters werden in diesem Kapitel einige einfache
Eigenschaften der Fouriertransformation, wie z.B. Linearität, die Skalierungseigen-
schaft, Shift und Modulation eingeführt, wie auch die Formel von Plancherel, die
Konvolutionseigenschaft und das Theorem von Shannon.Im letzten Kapitel werden
einige Anwendungen in der Wahrscheinlichkeitstheorie, der Multiplikation großer
Zahlen und der Theorie der digitalen Filter mit Hilfe von MATLAB ausgeführt.
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1 Polynomials

1.1 Basic Notations and Theorems

First we recall some basic notions and mention a few theorems which will be impor-
tant for the exposition of the topic.

Definition 1.1.1. A polynomial in the variable x is a representation of a function
A(x) = an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 as a formal sum A(x) = ∑n−1

j=0 ajx
j.

We call the values a0, a1, . . . , an−1 the coefficients of the polynomial.

A(x) is said to have degree k if its highest nonzero coefficient is ak. Any integer
strictly greater than the degree of a polynomial is a degree-bound of that polyno-
mial.

Example 1.1.2. Coefficient representation of the polynomial p(x) = 6x3 + 7x2 −
10x+ 9 is (9,−10, 7, 6).

Evaluating the polynomial p(x) at point x0 consists of computing the value of p(x)
at point x0. Numerical evaluation is possible, for instance, via Horner’s Rule,

p(x) = a0 + x0(a1 + x0(a2 + ...+ x0(an−2 + x0(an−1))...)),

although it is costly in terms of time.
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1 Polynomials

1.2 Point Value Representation

Definition 1.2.1. A point-value representation of a polynomial A(x) of degree-
bound n is a set of n point-value pairs {(x0, y0), (x1, y1), ..., (xn−1, yn−1)}. All of the
xk are distinct and yk = A(xk).

Definition 1.2.2. [7] (p.199) A determinant is a special number which is associated
to any square matrix. I.e., the determinant of an n×n matrix A having entries from
a field F is a scalar in F . It is denoted by det(A) and can be computed as follows:

1. If A is 1× 1, then det(A) = A11, the single entry of A.

2. If A is n× n for n > 1, then det(A) =
n∑
j=1

(−1)i+jAij det(Aij),

where Aij denotes the (n − 1) × (n − 1) matrix obtained from A by deleting row i

and column j.

Remark 1.2.3. It is one of the well-known results in Linear Algebra that an n × n-
matrix is invertible if and only if det(A) , 0.

Definition 1.2.4. A Vandermonde Matrix V is a matrix with terms of a geometric
progression in each row (Vi,j = αj−1

i M for all indices i and j) I.e., it is an m × n
matrix of the form

V =



1 α1 α2
1 ... αn−1

1

1 α2 α2
2 ... αn−1

2

1 α3 α2
3 .. αn−1

3
...

...
...

. . .
...

1 αm α2
m ... αn−1

m


.

Theorem 1. [15](p.10-11) An n× n Vandermonde matrix V has the following de-
terminant

det(V ) =
∏

1≤i<j≤n
(aj − ai)

Proof. For n = 2 the determinant of V is

det
 1 x1

1 x2

 = x2 − x1,

so the property holds.

2



1.2 Point Value Representation

Let

Vn =

∣∣∣∣∣∣∣∣∣∣∣∣

an−1
1 an−2

1 ... a1 1
an−1

2 an−2
2 ... a2 1

...
...

. . .
...

...

an−1
n an−2

1 ... an 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

For all n ∈ N, let P (n) be the proposition that Vn = ∏
1≤i<j≤n

(ai − aj). We have

showed the basis with the 2×2 matrix. Now we will show that if P (k) is true, where
k ≥ 2, then it follows that P (k + 1) is true. So this is our induction hypothesis:
Vk = ∏

1≤i<j≤n
(ai − aj), and

Vk+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

xk xk−1 ... x2 x 1
ak2 ak−1

2 ... 1
...

...
. . .

...
...

...

akk+1 ak−1
k+1 a1

k+1 ak+1 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

If we expand it in the terms of the first row, we can see it as a polynomial in x whose
degree is not greater than k. We denote this polynomial by f(x). If we substitute
any ar for x in the determinant, two of its rows will be the same. If two columns
of a matrix are the same, then the determinant of the matrix is 0. Substitution in
the determinant is equivalent to substituting ar for x in f(x). Thus it follows that
f(a2) = f(a3) = . . . = f(ak+1) = 0. So f(x) is divisible by each of the factors
x − a2, x − a3, . . . , x − ak+1. All these factors are distinct, otherwise the original
determinant is zero. So f(x) = C(x − a2)(x − a3) . . . (x − ak)(x − ak+1). As the
degree of f(x) is not greater than k, it follows that C is independent of x. From
expansion, we can see that the coefficient of xk is

∣∣∣∣∣∣∣∣∣
ak−1

2 . . . a2
2 a2 1

...
. . .

...
...

...

ak−1
k+1 . . . a2

k+1 ak+1 1

∣∣∣∣∣∣∣∣∣ .

By the induction hypothesis, this is equal to ∏
2≤i<j≤k+1

(ai − aj). So this has to be

3



1 Polynomials

our value of C. Therefore we obtain

f(x) = C(x− a2)(x− a3) . . . (x− ak)(x− ak+1)
∏

2≤i<j≤k+1
(ai − aj).

Substituting a1 for x, we get the proposition P (k + 1). So P (k) ⇒ P (k + 1).
Therefore Vn = ∏

1≤i<j≤n
(ai − aj). This is equivalent to

det(V ) =
∏

1≤i<j≤n
(aj − ai).

�

Theorem 2. For any set of n point value pairs (xi, yi) with xi , xj for i , j, there
is a unique order n polynomial A(x) such that A(xi) = yi for all pairs.

Proof. We need to solve


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
...

...
... · · · ...

1 xn−1 x2
n−1 . . . xn−1

n−1




a0

a1
...

an−1

 =


y0

y1
...

yn−1

 .

According to the former theorem, the determinant of the Vandermonde matrix is
equal to ∏

j<k
(xk − xj).

Because by assumption the xi are pairwise distinct, the Vandermonde matrix is
nonsingular and the linear system has a unique solution for every right hand side. �

Remark 1.2.5. If we have two polynomials in (the same) point value representation
{(x0, y

1
0), (x1, y

1
1), . . . , (xn, y1

n)} and {(x0, y
2
0), (x1, y

2
1), . . . , (xn, y2

n)} the sum of two
degree n polynomials in point value representation is computed in O(n) time:

{
(x0, y

1
0 + y2

0), (x1, y
1
1 + y2

1), . . . , (xn−1, y
1
n−1 + Y 2

n−1)
}

To compute the product of two degree n polynomials we need an ”expanded” point
value representation of 2n points in order to recover the coefficients.

4



1.3 Polynomial Multiplication

Given such a representation, the product of two polynomials in point value repre-
sentation is computed in O(n) 1 time and it can be written as

{
(x0, y

1
0y

2
0), (x1, y

1
1y

2
1), . . . , (x2n−2, y

1
2n−1y

2
2n−1)

}
.

1.3 Polynomial Multiplication

The convolution operation is quite important in Harmonic Analysis. At first sight
one can say that it corresponds to the multiplication of polynomials. For the contin-
uous domain one can say that the convolution of f and g, each of them describing
the probability density of a random variable (call it X + Y respectively), then f ∗ g
describes the probability distribution of X + Y (assuming that X and Y are inde-
pendent variables). [4]

The convolution of two vectors is like the multiplication of two polynomials in coeffi-
cient form. If the coefficient representations of two n degree polynomials are spread
out by padding the representation with n zero coefficients as place holders for the
higher-order terms, then polynomial multiplication is equivalent to convolution.

Definition 1.3.1. (Polynomial multiplication) If p(x) and q(x) are polynomials of
degree-bound n, we say their product C(x) is a polynomial of degree-bound 2n− 1
such that

C(x) = p(x)q(x)

for all x ∈ F . There is another way to denote C(x): The well known Cauchy Product,
which is a discrete convolution of two sequences (in our case, the coefficients of the
two polynomials)

C(x) =
2n−2∑
j=0

cjx
j, where cj =

j∑
k=0

akbj−k.

Therefore degree(C) = degree(p) + degree(q), which means if p is a polynomial of
degree-bound n and q is a polynomial of degree-bound m, then C is a polynomial of
degree-bound n+m−1. To simplify notation we only say that C has a degree-bound

1Landau’s symbol O(n) is used to describe the situation that the duration of the operation is
controlled by Cn time units, where C > 0.
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1 Polynomials

n+m, since a polynomial of degree-bound k−1 is also a polynomial of degree-bound
k.

There is a continuous analogue for the Cauchy-product, which can also be seen as
the operation which allows to determine the probability distribution of the sum of
two independent random variables with (absolutely) continuous distribution.

Example 1.3.2. [16] Given two polynomials p(x) = 6x3 + 7x2− 10x+ 9 and q(x) =

−2x3 + 4x− 5, their product can be calculated by Matlab as follows

a = [9,−10, 7, 6]; for p(x) = 6 ∗ xˆ3 + 7 ∗ xˆ2− 10 ∗ x+ 9
b = [−5, 4, 0,−2]; for q(x) = −2 ∗ xˆ3 + 4 ∗ x− 5
c = conv(a, b)
c = −45, 86,−75,−20, 44,−14,−12

That means p(x) · q(x) = −12x6 − 14x5 + 44x4 − 20x3 − 75x2 + 86x− 45

Polynomial p(x), above, is shown in a coefficient representation as the vector of
coefficients (9,−10, 7, 6).

The point-value representation of p(x) can also be described by evaluating the poly-
nomial at m + 1 distinct points. If p(x) was evaluated at the points x = 0, 1, 3,−1,
its point value representation would be {(0, 9), (1, 12), (3, 204), (−1, 20)}.

The inverse of evaluation is interpolation.e.g. using interpolation, one can derive the
coefficient representation of a polynomial from a point-value representation. Any set
of m+ 1 point-value pairs (xi, yi) such that all xi values are distinct uniquely defines
a polynomial.

Two polynomials described in point-value representation using the same evaluation
points can be multiplied by point-wise multiplication.

Though, as the product C(x) of two m-degree polynomials is degree of 2m, we need
to expand the point-value representation of polynomials p(x) and q(x) to 2m + 1
points in order to be able to interpolate C(x) from the point-wise multiplication of
the 2m+ 1 points of p(x) and q(x).

6



1.3 Polynomial Multiplication

If p(x) and q(x) above are each evaluated at the points x = −3,−2,−1, 0, 1, 2, 3,
their point-value representations are

p = {(−3,−60), (−2, 9), (−1, 20), (0, 9), (1, 12), (2, 65), (3, 204)}
q = {(−3, 37), (−2, 3), (−1,−7), (0,−5), (1,−3), (2,−13), (3,−47)}.

Given the value of the two polynomials at 7 points one can apply the inverse Van-
dermode matrix inv(vander(−3 : 3)) and obtain the coefficients of the product
polynomial r(x) = p(x)q(x) in this way. It is easy to compute the values of product
polynomial at the same seven points.

Note however, that in a numerical procedure this computation of the coefficients from
the values my be unstable, in the sense that minor errors in the data (the numerical
evaluation of the two factor polynomials and subsequent pointwise multiplication)
may result in significant deviations between the computed and the true coefficients,
if the Vandermonde matrix is not well conditioned (see Chapter 2 for a discussion of
condition numbers). As we will see the best choice where this problem of stability
is not occurring is to choose unit roots of order n.

Another important fact about Polynomials is the following theorem which states
that every polynomial can be written as a product of linear factors.

Theorem 3. [14] Every polynomial is a product of linear factors, i.e.

p(x) =
n∏
k=1

(x− xi)

for a uniquely determined family of complex points (xi)ni=1 (counted with multiplici-
ties).

7



1 Polynomials

1.4 Roots of Unity

Definition 1.4.1. A complex number z is the n-th rooth of unity if zn = 1.

There are n complex n-th roots of unity given by e2πik/n, for k = 0, . . . , n− 1, where
eiu = cos(u) + i sin(u) 2 and i =

√
−1.

Complex numbers z = a+ ib can be represented using their modulus |z| =
√
a2 + b2

and their argument, defined as arg z = arctan b
a
, where the arctangent function is

defined so that it takes values in (- π,π ], s.t.

z = |z|ei arg z = |z|(cos (arg z) + i sin (arg z)).

Recall that complex numbers, zn = |z|n ein arg z; thus, if we take the primitive n-th
root of unity, i.e., zn = e

2π
n
i, since |zn| = 1, we have |zmn | = |zn|

m, for all m. Note that
zkn = e

2πk
n
i; thus, all powers of zn belong to the unit circle and are equally spaced,

having arguments which are integer multiples of 2π
n

.

In addition to being equally spaced, the roots of unity satisfy the following cancella-
tion property (zdn)dk = zkn. Consequently, taking the primitive root of unity of order
d times n to the power d times k, is the same as taking the root of unity of order n
to the power k. This is demonstrated by the following simple calculation

(zdn)dk = (e 2π
dn
i)dk = (e 2π

n
i)k = (zn)k.

This has the following consequence:

Lemma 1.4.2 (Halving lemma). If n > 0 is an even number, then the squares of
the n-th root of unity are exactly the n

2 complex roots of unity of order n
2 .

Proof. Using the cancellation property we have

(zkn)2 = (z2n2 )2k = zkn
2
.

�

2Euler’s Formula

8



1.4 Roots of Unity

Thus, the total number of squares of roots of unity of order n is n
2 . This is in fact

very important for the FFT algorithm.

Lemma 1.4.3 (Summation lemma). For any integer n > 1 and non-zero integer k
not divisible by n,

n−1∑
j=0

(zkn)j = 0.

Proof. The closed form of summation applies to complex values as well as to reals
and therefore we have

n−1∑
j=0

(zkn)j = (zkn)n − 1
zkn − 1 = (znn)k − 1

zkn − 1 = (1)k − 1
zkn − 1 = 0.

Since k is not divisible by n, the denominator is never 0 (zkn = 1 happens only when
k is divisible by n). �
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2 Discrete Fourier Transform

2.1 Motivation

We want to evaluate the polynomial p(x) =
n−1∑
j=0

ajx
j of order-bound n at n different

points. We use the complex n-th roots of unity z0
n, z

1
n, z

2
n, . . . , z

n−1
n as our evaluation

points.

We assume that p(x) is given in coefficient form: a = (a0, a1, ..., an−1).

Definition 2.1.1. Given k = 0, 1, . . . , n − 1 and yk = p(zkn) =
n−1∑
j=0

ajz
kj
n , the vector

y = (y0, y1, . . . , yn−1) is called the Discrete Fourier Transform(DFT) of the
coefficient vector a = (a0, a1, . . . , an−1).

Example 2.1.2. We have discrete Fourier series f(x) =
N−1∑
k=0

ake
ikx and x = 0, 2π

N
, 4π
N
, . . . , (N−1)π

N

For N = 4 the unit roots of order 4 looks like this:

11



2 Discrete Fourier Transform

N − 1 = 3, therefore we have x4 = x0 = 0, x1 = 2π
N
, x2 = 4π

N
, x3 = 6π

N
.

Let f(x) = y and w = e
2πi
N , then

y0 = f(0) = a0 + a1 + a2 + a3

y1 = f(2π
N

) = a0 + wa1 + w2a2 + w3a3

y2 = f(4π
N

) = a0 + w2a1 + w4a2 + w6a3

y3 = f(6π
N

) = a0 + w3a1 + w6a2 + w9a3

This is equal to: 
y0

y1

y2

y3

 =


1 1 1 1
1 w w2 w3
1 w2 w4 w6

1 w3 w6 w9


︸                         ︷︷                         ︸

FourierMatrix


c0

c1

c2

c3

 .

Definition 2.1.3. [2](p.13) The evaluation of p(x) can also be written as matrix-
vector multiplication:



p(1)
p(z)
p(z2)
...

p(zn−1)


=



a0

a1

a2
...

an−1





1 1 1 ... 1
1 z z2 ... zn−1

1 z2 z4 ... z2(n−1)

...
...

...
. . .

...

1 zn−1 z2(n−1) ... z(n−1)(n−1)



This linear mapping is called discrete Fourier transform of order n; the correspond-
ing matrix DFTn := (zij)i,j<n is called the DFT matrix. The recursive evaluation
algorithm which computes this matrix-vector product O(n log n) operations (as op-
posed to O(n2) for standard matrix-vector multiplication) is called the fast Fourier
transform (FFT) algorithm.

Example 2.1.4. The coefficients of the DFT always are on the unit circle. We take
a look at the complex plane for N = 8. Then w8 = e

2πi
8

12



2.1 Motivation

The 8× 8 Fourier Matrix consists just of powers of i. Therefore

8∑
j=0

= 1 + w + w2 + w3 + w4 + w5 + w6 + w7

= 1 + i+ (−1) + (−i) + 1 + i+ (−1) + (−i) = 0.

Remark 2.1.5. What happens if N = 1024? Observe that N2 ≈ 106 and the workload
takes a lot time. However in FFT N → N logN and this is approximately equals to
104. This means incredible time and effort saving.
Remark 2.1.6. We get our Data from physical space and put it into the frequency
space. Then we try to understand what is going on and consequently have to go
back to physical space. At this point we encounter the question: How do we get
F−1?

Note that F−1
kj = (w)jk, where w = e

−2πi
N . In order to illustrate things, we take a

look at the product of a 4× 4 Fourier Matrix and its inverse:

FF−1 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 −i




1 1 1 1
1 −i −1 i

1 1 −1 −1
1 i −1 i

 = N


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

which implies that 1
N
FF−1 = I and F ′ = F

N
.

13



2 Discrete Fourier Transform

The columns of the Fourier matrix are pairwise orthogonal and all have the same
length, namely

√
n. As we will see this is important for the stability of the forward

and inverse Fourier transform. In particular it follows that the Fourier matrix is
non-singular.

Definition 2.1.7. Given the N complex numbers, {wj}N−1
j=0 , their N -point DFT is

denoted by {Wk} where Wk is defined by

Wk =
N−1∑
j=0

hje
−i2πjk/N .

Remark 2.1.8. Although the N -point DFT is defined for all integers it is a periodic
sequence having period n, hence it is enough to know W0, . . . ,Wk−1 in order to
completely describe this infinite sequence.

Definition 2.1.9. A is unitary if and only if A′ ∗ A = I

(or A ∗ A′ = I, or resp. both).

Proposition 2.1.10. A linear mapping from Cn to Cn is unitary if and only if it
preserves the length.

Proof. Let A be unitary and x ∈ V . Then

‖ Ax ‖2= 〈Ax,Ax〉 = 〈x,A ∗ Ax〉 = 〈x, Ix〉 = 〈x, x〉 =‖ x ‖2 .

For the other direction, suppose ‖ Ax ‖=‖ x ‖ for all x ∈ V . Then for all x, y ∈ V ,
we obtain

‖ A(x−y) ‖2=‖ Ax−Ay ‖2=‖ Ax ‖2 −2 〈Ax,Ay〉+ ‖ Ay ‖2=‖ x ‖2 −2 〈Ax,Ay〉+ ‖ y ‖2

and
‖ x− y ‖2=‖ x ‖2 −2 〈x, y〉+ ‖ y ‖2 .

Equating ‖ A(x− y) ‖2 and ‖ x− y ‖2 gives 〈Ax,Ay〉=〈x, y〉. Hence, for all x,y

〈x, (A ∗ A− I)y〉 = 〈x,A ∗ Ay〉 − 〈x, y〉 = 〈Ax,Ay〉 − 〈x, y〉 = 0.

Thus A′ ∗ A = I. �
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2.1 Motivation

IF A is a scalar multiple of a unitary matrix (i.e. the columns are a fixed multiple
of an orthonormal system , say γ, then of course the action of A on vectors is just a
multiple γId and the operator norm is γ. On the inverse matrix is (1γ)Id and hence
has operator norm 1/gamma. The condition number is thus the product γ/γ = 1

Proposition 2.1.11. F is a matrix and for α > 0, αF is unitary ⇒ the condition
number of F cond(F ) = ‖F‖ ‖F−1‖ = 1

Proof. αF is unitary, then αF (αF )′ = α2FF ′ = I for some α > 0

Using Proposition 2.1.10 we can write

‖αF (x)‖ = ‖x‖ ⇒ ‖F (x)‖ = 1
α
‖x‖ ⇒ ‖F‖ = 1

α

∥∥∥F−1(y)
∥∥∥ = α2 ‖F (y)‖ = α2 1

α
‖y‖ = α ‖y‖ ⇒

∥∥∥F−1
∥∥∥ = α

⇒ cond(F ) = 1

�

Corollary 2.1.12. Let F be a Fourier Matrix of size N . Then F ′ = conj(F ′).
Because F = F t

Remark 2.1.13. ‖fft(x)‖2 =
√
N ‖x‖2

Lemma 2.1.14. Assume that a polynomial p(x) can be expressed as another poly-
nomial (of half degree) in z2 (i.e., p(x) = q(x2) or p(x) = r(xs) for some s in N),
then its Fourier transform is a 2-periodic (respectively s-periodic) function on the
unit roots of order N (if s is a divisor of N).

Proof. Similar to halving lemma. �

This brings us to the following conclusion:

Remark 2.1.15. A function has a periodic FFT (with N
s

periods) if and only if the
coefficients are concentrated on the positions 1, s + 1, 2s + 1, ...etc (which is just
the sequence of MATLAB coordinates or counting the unit roots of order N). The

15



2 Discrete Fourier Transform

general description is the following: Assume that a sequence of coefficients is concen-
trated on a subgroup, then its Fourier transform is periodic with respect to another
group.

2.2 Basic Properties of the DFT

In this section we will mention some basic properties of the DFT. These properties
are linearity, periodicity, time shifting, conjugation, and inversion. The inversion
property allows us to define the inverse DFT and remove the asymmetry between the
original sequence (of length N) and the transformed sequence (of infinite length).

Theorem 4. [12] (p.37-39) Suppose that the sequence {wj}N−1
j=0 has the N-point

DFT {Wj} and the sequence {gj}N−1
j=0 has N-point DFT {Gk}, then the following

properties hold:

(a) Linearity: For all complex constants a and b, the sequence {awj + bgj}N−1
j=0 has

N-point DFT{aWk + bGk}.

(b) Periodicity: For all integers k we have Wk+N = Wk.

(c) Inversion: For j = 0, 1, ..., N − 1, wj = 1
N

N−1∑
j=0

Wje
−i2πjk/N .

Proof. To prove (b) and (c) we put w = e
−i2π
N and we use the property wN = 1. The

DFT {Hk} is defined by

Hk =
N−1∑
j=0

hjW
jk,

hence

Hk+N =
N−1∑
j=0

hjW
j(k+N) =

N−1∑
j=0

hjW
jk(WN)j

=
N−1∑
j=0

hjW
jk

which proves (b). To prove (c) we note that

W−1 = e
i2π
N

16



2.2 Basic Properties of the DFT

and then changing both sides of this last equation to the power jk, we get

W−jk = e
i2πjk
N .

Then it follows that

1
N

N−1∑
k=0

Hke
i2πjk
N = 1

N

N−1∑
k=0

HkW
−jk

= 1
N

N−1∑
k=0

[
N−1∑
m=0

hmW
mk

]
W−jk

= 1
N

N−1∑
k=0

[
N−1∑
m=0

hmW
mkW−jk

]
.

Now, since WmkW−jk = W (m−j)k, by changing the order of sums we obtain

1
N

N−1∑
k=0

Hke
i2πjk
N = 1

N

N−1∑
m=0

hm

[
N−1∑
k=0

W (m−j)k
]

(∗).

For fixed j, if m , j, putting r equal to Wm−j gives

N−1∑
k=0

W (m−j)k = 1− (Wm−j)N
1−Wm−j = 0

1−Wm−j

= 0,

since Wm−j , 1. If, however, m = j, then W (m−j)k= W 0 = 1 and (∗) becomes

1
N

N−1∑
k=0

Hke
i2πjk
N = 1

N
hj

N−1∑
k=0

1 = hj

and (c) is proved. �

Remark 2.2.1. The most important consequence of the inversion property of DFT is
that no two distinct sequences can have the same DFT.

Now we will work on an example which illustrates the complete operation of the
DFT:

Example 2.2.2. [8](p.333-335) We define a discrete pulse as following:

fk =
 k (0 ≤ k ≤ 3)

0 (otherwise)

17



2 Discrete Fourier Transform

In this example our purposes are:

(a) To transform the given function fk using the DFT analysis equation, in this
way one can produce the DFT line spectrum1 Fn.

(b) To invert the line spectrum received in (a) using DFT synthesis equation, in
this way one can recreate the original input vector fk.

(c) To show that fk has been rewritten as a linear combination of complex expo-
nentials.

For N = 4, the input data calculated from the analytical definition of the function
becomes the vector

f = (0, 1, 2, 3) (2.2.1)

(a) Expanding Fn =
N−1∑
k=0

fke
−j2πnk

N delivers the following equations:

n = 0 : F0 = f0W
0 + f1W

0 + f2W
0 + f3W

0 (2.2.2)
n = 1 : F1 = f0W

0 + f1W
1 + f2W

2 + f3W
3 (2.2.3)

n = 2 : F2 = f0W
0 + f1W

2 + f2W
4 + f3W

6 (2.2.4)
n = 3 : F3 = f0W

0 + f1W
3 + f2W

6 + f3W
9. (2.2.5)

Using the values for f from (2.2.1) and substituting the numerical values of the
powers of W , these four equations then give us the DFT coefficient as follows:

n = 0 : F0 = 0 + 1 + 2 + 3 = 6 (2.2.6)
n = 1 : F1 = 0− j1− 2 + j3 = −2 + j2 (2.2.7)
n = 2 : F2 = 0− j1− 2 + j3 = −2 (2.2.8)
n = 3 : F2 = 0 + j1− 2− j3 = −2− j2. (2.2.9)

We combine these results to form the DFT spectrum vector

F =(6,−2 + j2,−2,−2− j2). (2.2.10)

1The Fourier transform is often called ’the spectrum’, because large values of the Fourier coeffi-
cients at certain frequency implies that the contribution of the pure frequencies in this part of
the “musical spectrum” is relevant.

18



2.2 Basic Properties of the DFT

(b) Expanding fk = 1
N

N−1∑
n=0

Fne
j2πnk
N gives us the four synthesis equations:

k = 0 : f0 = 1
4
[
F0W

0 + F1W
0 + F2W

0 + F3W
0
]

(2.2.11)

k = 0 : f0 = 1
4
[
F0W

0 + F1W
−1 + F2W

−2 + F3W
−3
]

(2.2.12)

k = 0 : f0 = 1
4
[
F0W

0 + F1W
−2 + F2W

−4 + F3W
−6
]

(2.2.13)

k = 0 : f0 = 1
4
[
F0W

0 + F1W
−3 + F2W

−6 + F3W
−9
]
. (2.2.14)

To verify that these four equations in fact give us back the original function fk, we
now substitute the numerical values for the powers of W and use the values for Fn
appearing in (2.2.10), obtaining

f0 = 1
4 [F0 + F1 + F2 + F3] (2.2.15)

= 1
4 [6 + (−2 + j2) + (−2) + (−2− j2)] = 0 (2.2.16)

f1 = 1
4 [F0 + jF1 − F2 − jF3] (2.2.17)

= 1
4 [6 + j(−2 + j2)− (−2)− j(−2− j2)] = 1 (2.2.18)

f2 = 1
4 [F0 − F1 + F2 − F3] (2.2.19)

= 1
4 [6− (−2 + j2) + (−2)− (−2− j2)] = 2 (2.2.20)

f3 = 1
4 [F0 − jF1 − F2 + jF3] (2.2.21)

= 1
4 [6− j(−2 + j2)− (−2) + j(−2− j2)] = 3. (2.2.22)

These results can then be assembled to give us the output vector

f = (0, 1, 2, 3), (2.2.23)

which is seen to be the same as f in (2.2.1) that we started out with.
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2 Discrete Fourier Transform

(c) To show that we have been able to rewrite f as a linear combination of complex
exponentials, we rewrite (2.2.11) through (2.2.14) using the values of F from part
(a) as follows:


0
1
2
3

 = 6
4


W 0

W 0

W 0

W 0

+−2 + j2
4


W 0

W−1

W−2

W−3

−
2
4


W 0

W−2

W−4

W−6

+−2− j2
4


W 0

W−3

W−6

W−9

 . (2.2.24)

On the LHS(left hand side) we have the vector f , while on the RHS(right hand side)
we see four vectors of complex exponentials in a linear combination, with the values
of F as the constants of that combination. This is the discrete counterpart to the
two synthesis statements, namely

fp(t) =
∞∑

n=−∞
Fne

jnω0t (2.2.25)

and

f(t) =
∞∫
−∞

F (ω)ejωtdt.2 (2.2.26)

Three statements in the beginning of this examples are actually the same, in the sense
that in each case the given function has been reconstructed as a linear combination
of complex exponentials.

The vectors on the RHS of the linear combination build an orthogonal set in the
sense of linear algebra. The inner product of these vector with each other is zero.
The inner product of each with itself is equal to N . Each of these vectors represents
the sampling of a complete complex exponential. They are the discrete counterparts
of the countably infinite set of quantities

. . . ej0ω0t, ej1ω0t, ej2ω0t, ej3ω0t, . . .

and of the uncountably infinite set of quantities

S =
{
ejωt | ω ∈ R

}
which formed the ’bases’ for the expansion in Fourier Transforms.

2The continuous Fourier transform will be introduced in Chapter 3.
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2.2 Basic Properties of the DFT

Time Shifting Property: [5] Let n0 be any integer. If x[n] is a discrete-time
signal of period N , then so is y[n] = x[n − n0]. The kth Fourier coefficient of y[n]
is

ŷ[k] = 1
N

N−1∑
n=0

y[n]e−2πi kn
N = 1

N

N−1∑
n=0

x[n− n0]e−2πi kn
N .

Here we substitute m = n− n0 in the sum:

ŷ[k] = 1
N

N−1−n0∑
m=−n0

x[m]e−2πi k(m+n0)
N = e−2πi kn0

N

 1
N

N−1−n0∑
m=−n0

x[m]e−2πi km
N

 .

The summand is periodic of period N . Substituting m by m + N has no effect on
the summand. So all domains of summation which consist of a single full period give
the same sum. Therefore we can replace the sum

N−1−n0∑
m=−n0

by the sum
N−1∑
m=0

and the

sum in parenthesis is exactly x̂[−k]. Hence ŷ[k] = e−2πi kn0
N x̂[k].

Remark 2.2.3. If x[n] is a discrete-time signal of period N , then so is y[n] = x[n].

Conjugation property: [5] The kth Fourier coefficient of y[n] is

ŷ[k] = 1
N

N−1∑
n=0

y[n]e−2πihn
N = 1

N

N−1∑
n=0

x[n]e−2πihn
N = 1

N

N−1∑
n=0

x[n]e−2πi (−h)n
N = x̂[−k].

This tells us that the The kth Fourier coefficient of the periodic discrete-time signal
x[n] is x̂[−k]. In particular, x[n] is real valued if and only if x[n] for all n, which is
true if and only the Fourier coefficients of x[n] and y[n] = x[n] are the same. That
is,

x[n] is real for all n ⇔ x̂[−k] = x̂[−k] for all k

Waveform decomposition: Any sequence {xn} can always be decomposed into
the sum of two sequences, where one is even and the other odd. This is obtained by
defining

{xn}even = {xn}+ {x−n}
2 and {xn}odd = {xn} − {x−n}2

and noting that
{xn} = {xn}even + {xn}odd .

Because of inversion and linearity property, we can write the waveform decomposition
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2 Discrete Fourier Transform

as follows

DFT [{xn}even]k = Xk +X−k
2 and DFT [{xn}odd]k = Xk −X−k

2 .

The consistency in these relations can be seen via

DFT [{xn}]k = DFT [{xn}even + {xn}odd]k = Fk.

Parseval’s Theorem This theorem implies that the sums of the squared magni-
tudes of the input and the DFT sequences are related by the constant N , the number
of samples. That is the signal power can also be computed from the DFT coefficient
of the sequence.

Theorem 5. [10](p.90-91) Let xn ⇔ Xk , n, k = 0, 1, ..., N − 1. Then

N−1∑
n=0
|xn|2 = 1

N

N−1∑
k=0
|xk|2 .

Since the squared magnitude can be computed by multiplying a complex number by
its conjugate, we can write the left summation as

N−1∑
n=0
|xn|2 =

N−1∑
n=0

xnx
∗
n.

Substituting the corresponding IDFT expressions for xn and x∗n, we get

=
N−1∑
n=0

1
N2

N−1∑
k=0

N−1∑
m=0

XkX
∗
mW

−n(k−m)
N

= 1
N2

N−1∑
k=0

N−1∑
m=0

XkX
∗
m

N−1∑
n=0

W
−n(k−m)
N

If k = m, the expression becomes

1
N

N−1∑
k=0

XkX
∗
m = 1

N

N−1∑
k=0
|xk|2

Otherwise, it evaluates to zero due to the orthogonal property.

Example 2.2.4. Consider the DFT pair

{2, 1, 4, 3} ⇔ {10,−2 + j2, 2,−2− j2}
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2.3 Discrete Convolution

The sum of the squared magnitude of the data sequence is 30 and that of the DFT
coefficients divided by 4 is also 30.
Remark 2.2.5. The generalized form of this theorem applies for two different signals
xn and yn are given as following:

N−1∑
n=0

xny
∗
n = 1

N

N−1∑
k=0

XkY
∗
k

2.3 Discrete Convolution

The linear convolution of two finite series allows us to approximate continuous con-
volution using sampled function values and the fact that linear convolution is alge-
braically equivalent to the multiplication of two polynomials. However, for applica-
tions in signal processing and system analysis, it is crucial to see the definition as
the discrete counterpart of the continuous convolution. In the presentation of time-
and frequency-domain convolutions we follow the book of Chu.

Definition 2.3.1. [1](p.282-285) Let {An} and {Bn} be two sequences of the period
N . The periodic convolution of two sequences of period N is a finite sequence of
length N given by the following equation:

Uk =
N−1∑
l=0

AlBk−l, for k = 0, 1, ..., N − 1,

where Al = Al+−N and Bk−l = Bk−l+−N are satisfied because of periodicity, which
ensures that Uk = Uk+−N . Thus, continuing the convolution process beyond one
period would simply result in a periodic extension of the first N results. Cyclic
convolution of two sequences of period N is defined by the following equation:

An ∗N Bn =
N−1∑
l=0

AlBk−l for k = 0, 1, ..., N − 1.

Theorem 6. (Time-Domain Cyclic Convolution Theorem)[1] Let the cyclic con-
volution of sequences {xl} and {gl} of period N be denoted by {xl} � {gl}. If the
discrete Fourier transforms of the two sequences are given by {Xr} = DFT[{xl}] and
{Gr} = DFT[{gl}], then

{xl} � {gl} = N IDFT[{XrGr} (2.3.1)
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2 Discrete Fourier Transform

Proof. By definition, we have {uk} = {xl} � {gl} with its elements given by

uk =
N−1∑
l=0

xlgk−l, for k = 0, 1, . . . , N − 1, (2.3.2)

where gk−l = gk−l+N , because of periodicity. Assuming that the DFT coefficients
{Xr} and {Gr} are computed by formula

Xr = 1
N

N−1∑
l=0

xlω
−rl
N , for r = 0, 1, . . . , N − 1,

we use the corresponding IDFT formula

xl =
N−1∑
l=0

xlω
−rl
N , ωN = e

j2π
N for l = 0, 1, . . . , N − 1,

to express

xl =
N−1∑
r=0

Xrω
lr
N , gk−l =

N−1∑
r=0

Grω
(k−l)r
N

and we rewrite uk as

uk =
N−1∑
l=0

xl︷               ︸︸               ︷[
N−1∑
m=0

Xmω
lm
N

]
×

gk−l︷                  ︸︸                  ︷[
N−1∑
r=0

Grω
(k−l)r
N

]

=
N−1∑
l=0

[
N−1∑
r=0

Grω
kr
N ω

−lr
N

]
×
[
N−1∑
m=0

Xmω
lm
N

]

=
N−1∑
l=0

N−1∑
r=0

[
Grω

kr
N

N−1∑
m=0

Xmω
l(m−r)
N

]

=
N−1∑
r=0

Grω
kr
N

[
N−1∑
m=0

N−1∑
l=0

Xmω
l(m−r)
N

]

=
N−1∑
r=0

Grω
kr
N

[
N−1∑
m=0

Xm

N−1∑
l=0

ω
l(m−r)
N

]

= N
N−1∑
r=0
{XrGr}ωkrN .

In the last step we used the orthogonality property. �
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2.3 Discrete Convolution

Theorem 7. (Frequency-domain cyclic convolution theorem) [1] Let {Xr} and {Gr}
denote two DFT sample sequences of period N . If {xl} = IDFT [{Xr}] and {gl} =
IDFT [{Gr}] , then

{Xr} � {Gr} = DFT [{xlgl}] .

Proof. By periodic convolution we get {Uk} = {Xr} � {Gr} with its elements given
by

Uk =
N−1∑
r=0

XrGk−r , for k = 0, 1, ..., N − 1 ,

where Gk−r = Gk−r+N because of the periodicity property. Using the DFT formula
we express

Xr = 1
N

N−1∑
l=0

xlω
−rl
N , Gk−r = 1

N

N−1∑
l=0

glω
−(k−r)l
N

and we rewrite Uk as

uk =
N−1∑
r=0

Xr︷                ︸︸                ︷[
N−1∑
m=0

xmω
−rm
N

]
×

Gk−r︷                  ︸︸                  ︷[
N−1∑
l=0

glω
−(k−r)l
N

]

= 1
N2

N−1∑
r=0

[
N−1∑
l=0

glω
−kl
N ωrlN

] [
N−1∑
m=0

xmω
−rm
N

]

= 1
N2

N−1∑
l=0

glω
−kl
N

[
N−1∑
m=0

xm
N−1∑
r=0

ω
−r(m−l)
N

]

= 1
N

N−1∑
l=0
{xlgl}ω−klN .

Thus, we have proved

{Uk} = {Xr} � {Gr} = DFT [{xlgl}] .

�

These two discrete convolution theorems show that the cyclic convolution of two
sequences of length N (in either time or frequency domain) can be computed via
DFT and IDFT.
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3 Fast Fourier Transform

3.1 Historical Background

FFT algorithm was actually invented around 1805 by Carl Friedrich Gauss. Gauss
used this Method to interpolate the trajectories of the asteroids Pallas and Juno.
However, his work was not widely recognized. Besides, He didn’t analyse the asymp-
totic computational time. Throughout the 19th and early 20th centuries many ver-
sion with restrictions were also rediscovered. However, the FFT became popular
in 1965, after James Cooley of IBM and John Tukey of Princeton published a pa-
per reinventing the algorithm and describing how to perform it conveniently on a
computer.
“Although the DFT was known for many decades, to get benefit from it was severely
limited because of the computational workload. The calculation of the DFT of an
input sequence of an N length sequence {fn} requires N complex multiplications
to compute each on the N values, Fm, for a total of N2 multiplications. Early
digital computers had neither fixed-point nor floating point hardware multipliers, and
multiplication was performed by binary shift-and-add software algorithms. Therefore
Multiplication was an ”expensive” and time consuming operation. These problems
made the DFT impractical for common usage. After the development of the Fast
Fourier Transform ,digital signal processing was revolutionized by allowing practical
fast frequency domain implementation of processing algorithms.” [3]

3.2 Fourier Series

Definition 3.2.1. A function on R is said to be periodic with period N (N is a
nonzero constant) if we have

f(x+N) = f(x) ∀x.

Theorem 8. (Complex Fourier Series for periodic functions) Let fp(n) be peri-
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3 Fast Fourier Transform

odic with period T0. Then it can also be represented by infinite series of complex
exponentials

fp(t) =
∞∑

N=−∞
F (n)ejnω0t,

where the coefficients F (n) can be found by using fp(t) as follows

F (n) = 1
T0

T0/2∫
−T0/2

fp(t)e−jnω0t ∀x.

Example 3.2.2. [8](p.16-17) The waveform fp(t) is described as:

fp(t) =


0 (−2 < t < −1)
1 (−1 < t < 1)
0 (1 < t < 2)

fp(t+ 4) = fp(t).

In order to rewrite fp(t) as an infinite series of complex exponentials we must find
the Fourier coefficients F (n). We use the analysis equation, and for that purpose we
note that ω0 = 2π

T0
= π

2 . Then

F (n) = 1
T0

T0/2∫
−T0/2

fp(t)e−jnω0t dt = 1
4

= 1
4
e−jnπt/2

−jnπ/2

1

−1
= 1

2
ejnπ/2 − e−jnπ/2

2j(nπ/2)

= 1
2

sin(nπ/2)
nπ/2 .

For this particular waveform the general expression of the Fourier coefficients is

Fn = 1
2

sin(nπ/2)
nπ/2 , n ∈ Z.

We use some of the coefficients for F (n), Then we have

fp(t) =
∞∑

N=−∞
F (n)ejnπt/2

= 1
π

[
...+ 1

5e
−j5πt/2 − 1

3e
−j3πt/2 + 1

1e
−jπt/2 + π

2

]
+ 1

1e
jπt/2 − 1

3e
j3πt/2 + 1

5e
j5πt/2 + . . .
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3.2 Fourier Series

In this series form we can see precisely what our waveform is comprised of. The
average value is F (0) = 1

2 , The first few nonzero harmonics 1 are

h(1) = F (1)ejω0t + F (−1)e−jω0t

= 1
π
ejπt/2 + 1

π
e−jπt/2 = 2

π
cos πt2

h(3) = −1
3π e

j3πt/2 + −1
3π e

−j3πt/2 = −2
3π cos(3πt

2 )

and so on. All this means that we could synthesize our waveform by combining the
outputs of an array of cosine oscillators, using the amplitudes. Thus our waveform
could be generated as follows:

fp(t) = 1
2 + 2

π
cos πt2 −

2
3π cos 3πt

2 + 2
5π cos 5πt

2 − . . .

3.2.1 Pointwise Convergence of Fourier Series

Definition 3.2.3. A function f on a finite interval [a, b] is piecewise continuous on
[a, b] if the interval [a, b] can be divided into a finite number of subintervals on each
of which g is continuous. If g is piecewise continuous on every finite interval, then g
is called piecewise continuous on the real line.

Theorem 9. [12](p.13-14) Let g be a piecewise continuous function having period
P. At each point x where g has a right- and left-hand derivative, the Fourier series
for g converges to [g(x+) + g(x−)] /2. Thus, we can write

∞∑
n=−∞

cne
i2πnx/P = 1

2 [g(x+) + g(x−)] .

If x is also a point of continuity for g, then this result simplifies to

∞∑
n=−∞

cne
i2πnx/P = g(x).

Theorem 10. If
∞∑

n=−∞
|cn| converges, then the Fourier series

∞∑
n=−∞

cne
i2πnx/P con-

verges uniformly to a continuous function g with period P .
1A harmonic of a wave is a component frequency of the signal that is an integer multiple of the

fundamental frequenc.i.e. f is the fundamental frequency, then 2f, 3f, 4f, ...etc are the harmonic
frequencies.
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3 Fast Fourier Transform

Definition 3.2.4. (Discontinuity) Let f be a function with real variable x . We
define f in a neighbourhood of the point x0 where f discontinuous is. There appears
three possible cases:

1. Left- and right-sided limits exist at x0, are equal to L = L− = L+. If f(x0) , L,
then x0 is called a removable discontinuity.

2. If the left- and right-sided limits exist and are finite, but not equal, then x0 is
called a jump discontinuity.

3. If one or both of the left- and right-sided limits don‘t exist or are infinite, then
x0 is called an infinite discontinuity.

Example 3.2.5. The function f(x) graphed below has a jump discontinuity at
x = 0.

f(x) =


1 x > 1,

anyvalue x = 0
−1 x < 1

Example 3.2.6. [9] Let us observe where the Fourier series of the function defined
and graphed below converge, at x = −2, x = 0, x = 3, x = 5, and x = 6.

f(x) =
 1 − 3 ≤ x ≤ 0

2x 0 < x ≤ 3
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3.2 Fourier Series

The first two points are inside the original definition of f(x), so we can just directly
consider that instead of having to consider fper(x). The only discontinuity of f(x)
occurs at x = 0. So at x = −2, f(x) is continuous, so the Fourier series will converge
to f(−2) = 1.
On the other hand, at x = 0 we have a jump discontinuity, so the Fourier series will
converge to the average of the one-sided limits.
f(0+) = limx→0+ = 0 while f(0−) = limx→0− = 1, so the Fourier series will converge
to 1

2 [f(0+) + f(0−)] = 1
2 .

For the other three points, we have to consider fper(x) and where it has jump dis-
continuities. These can only occur either at x = x0 + 2lm where −l < x0 < l is a
jump discontinuity of f(x) or at endpoints x = ±+2lm, since the periodic extension
might not ”sync up” at these points, producing a jump discontinuity.
At x = 3, we are at one of these ”boundary points”, and left-sided limit is 6 while
the right-sided limit is 1.Therefore the Fourier series will converge here to 7

2 .
x = 5, on the other hand, is a point of continuity for fper(x), and so the Fourier
series will converge to fper(5) = f(−1) = 1.
x = 6, though, is a jump discontinuity( corresponding to x = 0), and so the Fourier
series will converge to 1

2 .

3.2.2 Even and Odd Functions

Definition 3.2.7. A function f is even if and only is f(−t) = f(t) for all t, and it
is odd if and only if f(−t) = −f(t) for all t.
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3 Fast Fourier Transform

Lemma 3.2.8. Euler’s Formula for Fourier series:

cne
2πinx/P + c−ne

−2πinx/P = an cos
(2πnx

P

)
+ bn sin

(2πnx
P

)

The Fourier series of f(x) on the interval −P < x < P , is then defined as

f(x) = 1
2A0 +

∞∑
n=1

An cos
(
nπx

P

)
+
∞∑
n=1

An sin
(
nπx

P

)

Remark 3.2.9. [13] The question of pointwise convergence of the partial sums of
Fourier Series is a classical one. The Dirichlet conditions are sufficient conditions
for a real-valued, periodic function f(x) to be equal to the sum of its Fourier series
at each point where f is continuous. However, the behaviour of the Fourier series at
points of discontinuity is determined as well (it is the midpoint of the values of the
discontinuity).
The conditions are:

1. f(x) must be absolutely integrable over a period.
2. f(x) must have a finite number of extrema in any given interval, i.e. there

must be a finite number of maxima and minima in the interval.
3. f(x) must have a finite number of discontinuities in any given interval, however

the discontinuity cannot be infinite.
4. f(x) must be bounded

The following two theorems shows Fourier series of even and odd functions.

Theorem 11. [1](p.51-52) If f(t) is an even function satisfying the Dirichlet ‘s
conditions, the coefficients in the Fourier series of f(t) are given by the formulas

Ak = 4
T

T/2∫
0

f(t) cos 2kπt
T

dt, k = 0, 1, 2, ...

Bk = 0 k = 1, 2, ...

Proof. Using the Euler-Fourier formula, we obtain
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3.2 Fourier Series

Ak = 2
T

T/2∫
−T/2

f(t) cos 2πkt
T

dt

= 2
T

 0∫
−T/2

f(t) cos 2πkt
T

dt+
T/2∫
0

f(t) cos 2πkt
T

dt


= 2

T

− 0∫
T/2

f(−s) cos 2πk(−s)
T

ds+
T/2∫
0

f(t) cos 2πkt
T

dt

 ( let t = −s)

= 2
T

 T/2∫
0

f(s) cos 2πks
T

ds+
T/2∫
0

f(t) cos 2πkt
T

dt

 (f(−s) = f(s))

= 2
T

T/2∫
0

f(t) cos 2πkt
T

dt. (let s = t)

Using the Euler-Fourier formula, we obtain

Bk = 2
T

T/2∫
−T/2

f(t) sin 2πkt
T

dt

= 2
T

 0∫
−T/2

f(t) sin 2πkt
T

dt+
T/2∫
0

f(t) sin 2πkt
T

dt


= 2

T

− 0∫
T/2

f(−s) sin 2πk(−s)
T

ds+
T/2∫
0

f(t) sin 2πkt
T

dt

 ( let t = −s)

= 2
T

 T/2∫
0

f(s) sin 2πk(−s)
T

ds+
T/2∫
0

f(t) sin 2πkt
T

dt

 (f(−s) = f(s))

= 2
T

− T/2∫
0

f(s) sin 2πks
T

ds+
T/2∫
0

f(t) sin 2πkt
T

dt

 ( sin(−θ) = − sin θ)

�
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3 Fast Fourier Transform

Theorem 12. [1](p.52) If f(t) is an odd function satisfying the Dirichlet ‘s condi-
tions, the coefficients in the Fourier series of f(t) are given by the formulas

Ak = 0, k = 0, 1, 2, ...

Bk = 4
T

T/2∫
0

f(t) sin 2kπt
T

dt, k = 1, 2, ...

Proof. (Similar to the proof for Theorem 13) �
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3.3 Fourier Transform

3.3 Fourier Transform

While one can consider the Fourier series expansions of periodic functions on the real
line with their natural scalar product (integration over the fundamental domain of
the periodic function) as an orthogonal expansion in some Hilbert space the situation
is becoming quite a bit different in the setting of the real line or the Euclidean space,
where one faces the problem that the so-called pure frequencies, i.e. the complex
exponential functions, are not square integrable. As a compensation one has to
impose (both in the definition of the Fourier transform or of the convolution) extra
properties.

Definition 3.3.1. A function f for which ‖f‖1 =
∫∞
−∞ |f(t)|dt is finite, the Fourier

transform of f is denoted by f̂ and is defined by

f̂(u) =
∞∫
−∞

f(x)e−2πiuxdx

Theorem 13. [12](p.155-156) The Fourier transform operation f
F→ f̂ has the

following properties:
(a)Linearity: For all constants a and b,

af + bg
F→ af̂ + bĝ

(b)Scaling: For each positive constant %,

f

(
x

%

)
F→ %f̂(%u) and %f(%x) F→ f̂

(
u

%

)

(c)Shifting: For each real constant c,

f(x− c) F→ f̂(u)e−2πicu

(d)Modulation: For each real constant c,

f(x)e2πicx F→ f̂(u− c)

Proof. The proof of (a) is straightforward. To prove (b), we make the change of
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3 Fast Fourier Transform

variables s = x
%

in the following Fourier transform integral:

f

(
x

%

)
F→

∞∫
−∞

f

(
x

%

)
e−i2πuxdx =

∞∫
−∞

f (s) e−i2πu(%s)d(%s)

= %

∞∫
−∞

f (s) e−i2π(u%)sd(s) (3.3.1)

= %f̂(%u) (3.3.2)

Thus, f
(
x
%

)
F→ %f̂(%u). Substituting 1

%
in place of %, it follows that f (%x) F→ 1

%
f̂(u

%
)

and (b) is verified by multiplying the resulting equation by %.
To prove (c) we make change of variable s = x− c in the following Fourier transform
integral;

f(x− c) F→
∞∫
−∞

f(x− c)e−i2πuxdx =
∞∫
−∞

f(s)e−i2πu(s+c)ds

=
∞∫
−∞

f(s)e−i2πusdse−i2πuc

= f̂(u)e−i2πuc

Thus (c) holds.
To prove (d), we note that ei2πcxe−i2πux = e−i2π(u−c)x, hence

f(x)ei2πcx F→
∞∫
−∞

f(x)e−i2π(u−c)xdx = f̂(u− c)

and (d) holds. �

3.3.1 Plancherel’s Formula

In the presentation of Plancherel’s theorem we follow the book of Vretblad ([11],
p.180-181).
We shall indicate an intuitive deduction of a formula that corresponds to the Par-
seval formula . If the Fourier series arising in Parseval’s theorem are written in the
”complex” version, we have

36



3.3 Fourier Transform

∞∑
n=−∞

|cn|2 = 1
2π

π∫
−π

|f(t)|2 dt , where cn = 1
2π

π∫
−π

f(t)e−intdt

A simple change of variables yields the corresponding formula on the interval (−P, P ):
We put

cn = 1
2P

P∫
−P

f(t)e−inπt/Pdt

and thus obtain from Parseval’s formula

∞∑
n=−∞

|cn|2 = 1
2P

P∫
−P

|f(t)|2 dt.

Here we introduce the ”truncated” Fourier transform

f̂(P, ω) =
P∫
−P

f(t)e−iωtdt,

so that cn = 1
2P f̂(P, nπ/P ) takes the form

1
4P 2

∞∑
n=−∞

∣∣∣∣f̂(P, nπ
P

)
∣∣∣∣2 = 1

2P

P∫
−P

|f(t)|2 dt

or
P∫
−P

|f(t)|2 dt = 1
2π

∞∑
n=−∞

∣∣∣∣f̂(P, nπ
P

)
∣∣∣∣2 πP

We consider the right-hand expression as a Riemanian sum, and if we let P → ∞
we obtain the following identity for integrals:

∞∫
−∞

|f(t)|2 dt = 1
2π

∞∫
−∞

∣∣∣f̂(ω/2π)
∣∣∣2 dω =

∞∫
−∞

∣∣∣f̂(ω)
∣∣∣2 dω

where we have done a substitution in order to obtain the last equality sign. Mak-
ing use of the the L2-norm ‖f‖2 = (

∞∫
−∞
|f(t)|2 dt)1/2 we can reformulate Parseval’s

equation as
‖f̂‖2 = ‖f‖2 ∀f ∈ L2. (3.3.3)

In the literature the formula is known as the Plancherel formula (sometimes as the
Parseval Formula). It tells us that the Fourier transform, properly extended to all
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3 Fast Fourier Transform

of L2(R) is a unitary mapping on this Hilbert space.
Now we can recall the polarization identity which hold true for arbitrary complex
Hilbert spaces H. For any x, y ∈ H the scalar product 〈x, y〉H can be expressed as
a sum of norms:

〈x, y〉H = 1
4

3∑
k=0

ik〈(x+ iky), (x+ iky)〉H = 1
4

3∑
k=0

ik‖x+ iky‖2, (3.3.4)

where i denotes to complex unit in C.
It implies that any unitary mapping also preserves scalar products, hence one has
for f, g ∈ L2(R)

〈f, g〉L2 = 〈f̂ , ĝ〉L2 . (3.3.5)

Example 3.3.2. With the help of Plancherel’s formula certain integrals can be
computed. If f(t) = 1 for |t| < 1 and = 0 otherwise, then f̂(ω/2π) = 2 sinω

ω
.

Plancherel now gives
1∫
−1

1dt = 1
2π

∞∫
−∞

4 sin2 ω

ω2 ,

∞∫
−∞

4 sin2 t

t2
dt = π

This integral is not very easy to compute using other methods.

While random variables with integer values, in particular with values in the natu-
ral number, can be modelled by Laurent series resp. even polynomials and hence
the addition of independent random variables corresponding to the sum of indepen-
dent variables of such a type are given by the (discrete) Cauchy-product a similar
thing is true for random variable with continuous density distributions. For them
the Cauchy product has to replaced by the continuous convolution integral to be
discussed next.

Definition 3.3.3. The convolution integral is given by

y(t) =
∞∫
−∞

x(τ)h(t− τ)dτ = x(t) ∗ h(t).

The function y(t) is said to be the convolution of x(t) and h(t).

It is well defined at least if both of the functions are (Lebesgue) integrable. Then the
resulting convolution product y(t) is integrable as well. If both factors are probability

38



3.3 Fourier Transform

distributions (i.e., they are non-negative with integral 1) then so is their convolution
product.
It is really difficult to visualize the convolution operation. The true meaning of
convolution can be developed by graphical analysis

Theorem 14. [6] Convolution obeys the same algebraic laws as ordinary multipli-
cation. It is a bilinear, commutative and associative relation, i.e.,

(i) f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h) for any constants a, b,
(ii) f ∗ g = g ∗ f ,

(iii) f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Proof. (i) is obvious since integration is a linear operation. For (ii) we make the
change of variable z = x−y. Then f ∗g(x) =

∫
f(x−y)g(y) dy =

∫
f(z)g(x−z) dz =

g ∗ f(x). For (iii), use (ii) and interchange the order of integration:

(f ∗ g) ∗ h(x) =
∫
f ∗ g(x− y)h(y) dy =

"
f(z)g(x− y − z)h(y) dz dy

=
"

f(z)g(x− z − y)h(y) dy dz =
∫
f(z)g ∗ h(x− z)dz

= f ∗ (g ∗ h)(x)

�

The convolution product of two functions inherits also the smoothness properties of
the factors, because differentiation can be applied to each of the factors.

Theorem 15. [6] Suppose that f is differentiable and convolutions f ∗ g and f ′ ∗ g
are well-defined. Then f ∗ g is differentiable and (f ∗ g)′ = f ′ ∗ g. Likewise, if g is
differentiable, then (f ∗ g)′ = f ∗ g′

Proof. We just need to differentiate under the integral sign:

(f ∗ g)′(x) = d

dx

∫
f(x− y)g(y)dy =

∫
f ′(x− y)g(y)dy = f ′ ∗ g(x).

Since f ∗ g = g ∗ f , the same argument works with f and g interchanged. �

The importance of the Fourier transform is partially based on the following convo-
lution theorem.

Theorem 16. Assume that f and g are integrable functions, then F(f∗g) = Ff ·Fg.
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3.3.2 The Sampling Theorem

We follow the Fourier analysis and applications book of Vretblad to explain Shan-
non’s sampling theorem.
From Parseval’s relation one can derive the so-called Shannon sampling theorem
which is of great interest for digital sound processing. It deals with band-limited
functions, i.e. with functions which do not contain frequencies above some threshold
frequency. The usual standard applied in practice is to use 20 kHz as maximal
frequency, because the human ear cannot perceive any pure frequency higher than
that. The sound signal can thus be considered to have its frequency spectrum totally
within this range. If it is sampled at sufficiently small intervals, and if the sampling
is precise enough, it is then possible to recover the sound from the digitalized sample
record.
Mathematically speaking we assume that a function f(t) is built up using (angular)
frequencies ω satisfying |ω| ≤ c. We will explain how to reconstruct the entire signal
by sampling it at regular points at distance not larger than π

c
.

Theorem 17. (Shannon‘s sampling theorem)[11](p.187-188) Suppose that f is con-
tinuous on R, that f ∈ L1(R) and that hatf(ω) = 0 for |ω| > c. Then

f(t) =
∑
n∈Z

f
(
nπ

c

) sin(ct− nπ)
ct− nπ

where the sum is uniformly convergent on R.

Proof. By the Fourier inversion formula, we have

f(t) = 1
2π

c∫
−c

f̂(ω)eitωdω

We shall rewrite this integral. We introduce a function g as follows:

g(ω) = c

π
f̂(ω), |ω| < c.

This can be considered as a restriction to the interval (−c, c) of a 2c-periodic function
with Fourier series

g(ω) ∼
∑
n∈Z

cn(g)ei(nπ/c)ω,
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3.3 Fourier Transform

where

cn(g) = 1
2c

c∫
−c

g(ω)e−i(nπ/c)ωdω = 1
2π

c∫
−c

f̂(ω)e−i(nπ/c)ωdω = f(−nπ
c

)

We also consider the function h given by

h(ω) = e−itω, |ω| < c.

In a similar way as for g, we compute

h(ω) ∼
∑
n∈Z

cn(h)ei(nπ/c)ω,

from which we can derive

cn(h) = 1
2c

c∫
−c

e−itωe−i(nπ/c)ωdω

= 1
2c

[
e−itω−i(nπ/c)ω

−it− inπ
c

]ω=c

ω=−c

= sin(ct+ πn)
ct+ πn

We now rewrite the Fourier inversion formula and using the polarized Parseval for-
mula for functions with period 2c:

f(t) = 1
2c

c∫
−c

c

π
f̂(ω)e−iωtdω = 1

2c

c∫
−c

g(ω)h(ω)dω

=
∑
n∈Z

cn(g)cn(h) =
∑
n∈Z

f
(
−nπ
c

) sin(ct+ πn)
ct+ πn

=
∑
n∈Z

f
(
nπ

c

) sin(ct+ πn)
ct− πn

The convergence of the series is clear, since both g and h are L2 functions. INdeed,
the convergence of symmetric partial sums sN =

N∑
−N

is uniform in t, because estimates
of the remainder are uniform. The theorem is proved. �
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4 Some FFT Applications

In this last chapter we are going to give some applications of the use of the FFT in
probability theory,large integer multiplication and digital filtering. All examples are
done in cooperation with Hans G. Feichtinger. We start with some problems from
probability theory.

4.1 Applications from Probability Theory

The first observation is the fact, that the complete information about a random
variable with integer values can be packed into a polynomial resp. Laurent series.
The first and maybe most natural example would be a fair dice, which is assumed to
have the possible outcomes 1, 2, 3, 4, 5, 6 with equal probability, hence with probabil-
ity 1/6. The corresponding polynomial is then pD(x) = (x+x2+x3+x4+x5+x6)/6.
Another example would be flipping the coin to go left or right over the integers. Here
one would use the simple Laurent series q(t) = 0.5/t+ 0.5 · t.
Now the interesting story is the fact, that the addition of independent random vari-
ables can be directly translated into multiplication of the corresponding polynomials.
Just for illustration, consider two dices. The probability of having a sum equal to
4 is of course 3/36, because out of the 36 possible outcomes with two independent
dices exactly three of them are favorable for our request, namely the three pairs
(1, 3), (2, 2) and (3, 1).
But if we look at the computation of p2

D(t) as it is done at school and we look out
for the coefficient of x4 we find that it arises as the sum of the coefficients

x1/6 · x3/6 + x2/6 · x2/6 + x3/6 · x1/6 = 3/36x4.

Of course what we have tested for k = 4 is valid for general exponents and thus we
can claim:

Lemma 4.1.1. Given K dices (acting independently), the probability distribution
for the sum their results is exactly described by the polynomial pKD(t).
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The connection between FFT and the multiplication of polynomials as described
above then allows to compute these coefficients in a fast way.

Example 4.1.2. For the case of illustration of this principle we choose K = 20,
and display the coefficients of the corresponding probability distribution (which of
course has non-zero values only between 20 and 120) as follows:

20 40 60 80 100 120
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

probability distribution with 20 dices

This shows the probability distribution with 20 dices. Since there is an obvious
maximal sum of 120, resp., the degree of the corresponding polynomial (x + x2 +
x3 + x4 + x5 + x6)/6 is exactly120, hence order 121, it is enough to use an FFT or
length 128 = 27.

>> N = 256; qgam = zeros(1,N);
>> qgam(N) = 0.2; qgam(2) = 1-0.2;
>> q100 = real( ifft( fft(qgam) .ˆ100));
>> plot(q100); figure(gcf);
% looks phragmented! because no odd outcome is possible!
>> plot(1:2:N,q100(1:2:N)); grid; figure(gcf); e}
>> title(’ random walk, probability 20% to go left, otherwise right’);
>> xlabel(’ 100 iterations’)

Given this distribution, various probabilities can be computed. e.g one can answer
the question:’What is the probability of moving more than 50 point to the right. In
practice this is:
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>> sum(q100(52:N))
ans = 0.8686
>> 100*ans

86.8647

tells us that the probability of moving more than 50 points to the right is at 86,86
percent.

Lemma 4.1.3. ∀l ∈ Z, P (Z = l) = ∑
k+n=l

P (X = k)P (Y = n) is equivalent PZ =
PX · PY

Proposition 4.1.4. (Convolution of probability distributions)
Let ak and bj two different random variables. If

ak ≥ 0,
∑

ak = 1
bj ≥ 0,

∑
bj = 1

then, the Cauchy product c given as usual by

cl =
∑

k+n=l
akbl

has the same property.

Example 4.1.5. The next example concerns a random walk over the integers. By
some random process it is determined whether one takes one step to the left or to
the right. For our example we choose an asymmetric version, just for illustration.
We define X as a discrete random variable (random walk) which takes only two values
(Left, Right) = (L,R) = (−1, 1) and E as Expectancy value. X is distributed as
follows:

P [X = L] = 0.2 defines going left,
P [X = R] = 0.8 defines going right

Now we define a stochastic process S, through the outcomes of random walk. We
set S0 = 0 and
S =

n∑
k=1

Xk.

E [Sn] = E
[
n∑
k=1

Xk

]
=

n∑
k=1

E [Xk]
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4 Some FFT Applications

E [X] = 0.8(1) + 0.2(−1) = 0.6
We take n = 100 to determine the probability
E [S100] = E

[ 100∑
k=1

Xk

]
=

100∑
k=1

0.6 = 60

The following plots show the probability of the random walk %20 going left and
otherwise going right of reading a certain position after 100 steps:
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 random walk, probability 20% to go left, otherwise right

 100 iterations
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Example 4.1.6. What is the probability distribution of the relative positions after
throwing 100 coins?
We describe the computation and use a little application of the fft and ifft, with
n = 256, because there is a range of 200 possible positions, and 256 is the next
power of two to this number. It will be sufficient to identify a Laurent series with at
most 201 terms (range −100 to +100) from 256 values on the unit circle.

MATLAB CODES:
c=zeros(1,N);c(2:3)=.5; the probability for heads or tails is .5
fc=fft(c); take the fft of c
c100=ifft(fc.ˆ100); prob. distr. of 100 coins
subplot(3,1,1); plot(c); axis tight; grid on;
subplot(3,1,2); plot(fc); axis tight; grid on;
subplot(3,1,3);
plot(c100); axis ([100 200 -0.001 0.082]); grid on;
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4.2 Multiplication of Long Integers Using FFT

Large integer numbers can be written as values of polynomials, typically at x = 10
because we are used to the decimal system. Let X and Y be two large numbers.
The polynomial representation X and Y which has the powers of 10 as basis:

P (z) =
N−1∑
k=0

xkz
k, Q(z) =

N−1∑
l=0

xlz
l and R(z) = P (z) ·Q(z)

If we want to multiply 2 n numbered integers, we must do n2 multiplications.
So If x and y have thousands of digits, multiplication would require millions of single-
digit multiplications. While the numbers gets larger, the time needed to multiply
them becomes enormously long.
Now let us look at multiplication in a different way.Because a number is a sequence
of digits, we can consider it as a polynomial with x is 10.
For example: We have the number

1234 = 4 + 3.x+ 2x2 + 1.x3 = 4.100 + 3.101 + 2.102 + 1.103

We multiply it with itself

1234.1234 = (4.100 + 3.101 + 2.102 + 1.103).(4.100 + 3.101 + 2.102 + 1.103)
= (4.100 + 3.101 + 2.102 + 1.103).4

+(4.100 + 3.101 + 2.102 + 1.103).3.101

+(4.100 + 3.101 + 2.102 + 1.103).2.102

+(4.100 + 3.101 + 2.102 + 1.103).1.103

= (16 + 12.101 + 8.102 + 4.103)
+(12.101 + 9.102 + 6.103 + 3.104)
+(8.102 + 6.103 + 4.104 + 2.105)
+(4.103 + 3.104 + 2.105 + 1.106)

= 16 + 24.101 + 25.102 + 20.103 + 10.104 + 4.105 + 106

= 1522756

In this case n = 4 we still need to perform n2 = 16 multiplications.However, we don‘t
need to do that much addition and multiplication. The following example shows how
to multiply large integers in a easy and quick way.
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4.2 Multiplication of Long Integers Using FFT

Example 4.2.1. Consider the numbers 12345678 and 87654321. Their polynomial
forms are

x = [8, 7, 6, 5, 4, 3, 2, 1] and y = [1, 2, 3, 4, 5, 6, 7, 8]

where
x0 = 8, x1 = 7, x2 = 6, x3 = 5, x4 = 4, x5 = 3, x6 = 2, x7 = 1

and
y0 = 1, y1 = 2, y2 = 3, y3 = 4, y4 = 5, y5 = 6, y6 = 7, y7 = 8

Both integers have 8 digits. Therefore polynomials are of order 8 and have degree
7. As introduced above, we compute the fast Fourier transform of the vectors x and
y to get their FFT coefficients. We multiply xval and yval in the frequency domain
and finally take the inverse Fourier transform of the solution in order to return to the
time domain. As mentioned in Chapter 1/ Polynomial Multiplication, we pad x and
y with 8 zero coefficients as place holders for the higher-order terms.Recall that the
polynomial multiplication is in fact a convolution. After finding Fourier coefficients
we apply convolution. Zero padding allows us to use a longer FFT, which will
produce a longer FFT result vector. Zero padding before FFT is a computationally
effective method to interpolate a large number of points.

>> xz = [zeros(1,8), 8:-1:1];
>> yz = [zeros(1,8), 1:8];
>> xconvy = real(ifft( fft(xz) .* fft(yz)));
>> polyval(xconvy,10),
>> xz=[0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8];
>> yz=[0 0 0 0 0 0 0 0 8 7 6 5 4 3 2 1];
>> xzval=fft(xz)
xzval =

Columns 1 through 4
36.0000 8.1371 +25.1367i -4.0000 + 9.6569i -3.3801 + 7.4830i
Columns 5 through 8
-4.0000 + 4.0000i -4.2768 + 3.3409i -4.0000 + 1.6569i -4.4802 + 0.9946i
Columns 9 through 12
-4.0000 -4.4802 - 0.9946i -4.0000 - 1.6569i -4.2768 - 3.3409i
Columns 13 through 16
-4.0000 - 4.0000i -3.3801 - 7.4830i -4.0000 - 9.6569i 8.1371 -25.1367i
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>> yzval=fft(yz)
yzval =

Columns 1 through 4
36.0000 -17.1371 +20.1094i 4.0000 - 9.6569i -5.6199 + 5.9864i
Columns 5 through 8
4.0000 - 4.0000i -4.7232 + 2.6727i 4.0000 - 1.6569i -4.5198 + 0.7956i

Columns 9 through 12
4.0000 -4.5198 - 0.7956i 4.0000 + 1.6569i -4.7232 - 2.6727i

Columns 13 through 16
4.0000 + 4.0000i -5.6199 - 5.9864i 4.0000 + 9.6569i -17.1371 -20.1094i

>> xconvy = real(ifft( fft(xz) .* fft(yz)));
xconvy =

Columns 1 through 8
8.0000 23.0000 44.0000 70.0000 100.0000 133.0000 168.0000 204.0000

Columns 9 through 16
168.0000 133.0000 100.0000 70.0000 44.0000 23.0000 8.0000 0.0000

>> polyval(xconvy,10)
ans = 1.0822e+016

Polynomial representation of the multiplication of two vectors x and y is

x.y = 0.1015 + 8.1014 + 23.1013 + 44.1012 + 70.1011

+100.1010 + 133.109 + 168.108 + 204.107 + 168.106

+133.105 + 100.1014 + 70.103 + 44.102 + 23.101 + 8.100

=
15∑
n=0

zn10n where zn is the coefficients of the polynomial multiplicaton

In this example, we represented the integers x and y in base 10, using digits(1-8).
It is also possible to use this technique with different bases. Especially, choosing a
base that is a power of 2 is mostly applied when we wish to do these computations
on a computer which represents the integers in binary form.
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4.3 Application of DFT: Digital Filtering

Many digital filters are based on the Fast Fourier transform. FFT extracts the
frequency spectrum of a signal and allows us to manipulate the spectrum. Then we
can convert the modified spectrum back into our fundamental time-series signal.

Example 4.3.1. [2] (p.17-20) The discrete Fourier transform has a natural inter-
pretation as a transform of the time (signal) domain of a periodic function into its
frequency (spectral) domain:
Let a : Z → C be an n-periodic function on the discrete time domain Z given by
n consecutive value (a(0), ..., a(n − 1)). The Fourier transform of a is the vector
(A(0), ..., A(N − 1))T := (ωij)i,j<n· (a(0), ..., a(n− 1))T , where ω := e

2πi
n describes a

primitive n-the root of unity. It is easy to see that for all t ∈ Z,

a(t) = 1
n

n−1∑
f=0

A(f)ω−ft.

In other words, every n-periodic function a : Z → C can be uniquely written as
a linear combination of the n-periodic basis functions χf : (t → ω−ft) and the
coefficient belonging to frequency f equals A(f)

n
. Because of this interpretation, the

Fourier transform of a function is often called its Fourier spectrum. Let us consider
a real cosine wave of frequency 4, sampled at 256 equidistant points:

a(t) = cos
(4 · 2πt

256

)
, t = 0, ..., 255
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4 Some FFT Applications

As
cos

(4 · 2πt
256

)
= 1

2e
i( 4·2πt

256 ) + e−i(
4·2πt
256 ) = 1

2(ω4t + ω−4t),

its Fourier spectrum has exactly two non-zero coefficients

A(4) = A(256− 4) = 128

corresponding to the basis functions ω−4t and ω−(256−4)t = ω4t. Indeed, these func-
tions are complex conjugates and add up to a real cosine function of frequency 4.

One important application of discrete Fourier transform is filtering of digital signals:
Suppose that our cosine-wave is an audio signal transmitted over a radio channel
and distorted by strong random noise, so the receiver sees something like this:

Note that this signal looks unlikely that the receiver will be able to find out what
was actually transmitted. However, looking at the absolute values of the Fourier
coefficients of the received signal makes us recognize the peaks corresponding to the
original signal:
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4.3 Application of DFT: Digital Filtering

the receiver may send the signal through a low-pass filter to improve its quality.This
filter function removes high-frequency components from the spectrum by pointwise
multiplication . Transforming the result back into the time domain, the receiver gets
a filtered signal that is much closer to the original:

So the low-pass filter is successful in reducing the noise considerably, and make the
signal understandable again.
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