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Abstract

In the present thesis, we are concerned with the modelling and simulation of
nanowire field-effect bio- and gas sensors, with special focus on non-intrusive
methods for uncertainty quantification (UQ).
So far most of the effort regarding the mathematical understanding of nanowire
sensors was devoted to deterministic models and this branch of research is still
actively pursued. However, due to the structure of such a sensor, random effects
play an important role. By incorporating them, one is naturally led to stochastic
formulations that need to be assessed in a quantitative fashion. To this end, we
apply different methods for uncertainty quantification to help gain insight into the
(physical) behaviour the system under the influence of stochastic drivers. More
precisely, we investigate a semi-linear second order elliptic PDE with random in-
put data.

The work is organised as follows:

• Chapter 1 gives a rather general introduction to nanowire sensors, their
structure and functional principle as well as to the stochastic effects we
need to incorporate.

• Chapter 2 presents the Poisson-Boltzmann equation as the proper model
to capture the physical situation at hand. We then turn to the stochastic
formulation, discuss methods for uncertainty quantification and identify the
calculation of deterministic solutions as well as high-dimensional integrals
as our main task.

• Chapter 3 starts with a brief review of the finite element method and the
damped Newton method. We also comment on the issue of generating a
suitable unstructured mesh to resolve our computational domain. The focus
of the remaining part is then on the numerics of high-dimensional integra-
tion. After summarizing some classical results regarding quadrature formu-
las, we take a closer look at sparse-grid quadrature based on Smolyak’s con-
struction, for which we also briefly discuss adaptive strategies, and (quasi)
Monte Carlo methods.
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• Chapter 4 sketches the program developed for the numerical simulations.

• Chapter 5 shows the numerical results, gives a comparison between the dif-
ferent approaches and discusses the findings with respect to the differences
between the linear and the non-linear equation.

• Chapter 6 contains some concluding remarks and states aspects considered
to be of interest in a future work.
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Zusammenfassung

In der vorliegenden Arbeit beschäftigen wir uns mit der Modellierung und
Simulierung von Nanodraht Feldeffekt Bio- und Gassensoren, mit besonderer
Aufmerksamkeit auf nicht-eindringende Verfahren zur Uncertainty quantification
(UQ) (wörtlich: Unsicherheits-Quantifizierung).
Bisher lag der Fokus im Hinblick auf das mathematische und physikalische
Verständnis von Nanodrahtsensoren bei deterministischen Modellen, wobei in
diesem Forschungsgebiet auch weiterhin aktiv gearbeitet wird. In Folge des
Aufbaus eines solchen Sensors spielen zufällige Einflüsse jedoch eine wichtige
Rolle. Durch deren Einbeziehung gelangt man auf natürliche Weise zu einer
stochastischen Formulierung, die einer quantitativen Untersuchung bedarf. Zu
diesem Zweck wenden wir mehrere Methoden der UQ an, die helfen, Einblicke
ins das (physikalische) Verhalten des System unter Einfluss stochastischer Treiber
zu gewinnen. Mathematische ausgedrückt, untersuchen wir eine semi-lineare
elliptische PDE zweiter Ordnung mit stochastischen Daten.

Konkret gliedert sich die Arbeit wie folgt:

• Kapitel 1 gibt eine allgemein Einführung zu Nanodrahtsensoren, deren Auf-
bau und Funktionsweise sowie den auftretenden stochastischen Effekten,
die einbezogen werden müssen.

• Kapitel 2 präsentiert die Poisson-Boltzmann Gleichung als das geeignete
Modell zur Abbildung des betrachteten physikalischen Problems. Wir wen-
den uns dann der stochastischen Formulierung zu und diskutieren Metho-
den zur Uncertainty quantification und indentifizieren die Berechnung von
deterministischen Lösungen und hochdimensionalen Integralen als unsere
Hauptaufgabe.

• Kapitel 3 beginnt mit einer kurzen Darstellung der Finite-Elemente-Methode
und eines gedämpften Newton-Verfahrens. Wir Befassen uns auch mit der
Erzeugung einer geeigneten Triangulierung zur Auflösung des physikali-
schen Aufbaus. Der Schwerpunkt des nachfolgenden Teils liegt dann auf der
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numerischen Berechnung hochdimensionaler Integrale. Nach einer Zusam-
menfassung klassischer Resultate ber Quadraturformeln, setzen wir uns ge-
nauer mit dünne-Gitter-Quadraturverfahren, die auf der Smolyak-Konstruktion
basieren, auseinander, wo wir auch kurz adaptive Strategien diskutieren.
(Quasi)-Monte Carlo Methoden werden ebenfalls vorgestellt.

• Chapter 4 skizziert das für die numerischen Simulationen entwickelte Pro-
gramm.

• Kapitel 5 zeigt die numerischen Resulate, einen Vergleich der verschiede-
nen Methoden und diskutiert die Ergebnisse im Hinblick auf die Unterschie-
de zwischen der linearen und der nichtlinearen Gleichung.

• Kapitel 6 beinhaltet abschließende Bemerkungen und nennt Aspekte, die
in zukünftigen Arbeiten untersuchenswert erscheinen.
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Chapter 1

General Introduction

In this chapter we briefly outline the working principle of nanowire-based field-
effect bio- and gas-sensors and discuss the kind of uncertainties that arise when
modelling such a real-world device. For a book chapter discussing state of the art
quantitative approaches for the deterministic problem, see for example [6].

Nanowire Sensors
The core element of a nanowire sensor is a physical transducer combined with a
recognition layer. The choice of the transducer determines the measuring princi-
ple and the layer, comprising receptors such as enzymes or binding proteins like
antibodies, is responsible for the required sensitivity and selectivity. Being in
close contact with the transducer, one aims to measure the physical or chemical
change that occurs as a result of (bio)specific interactions between the targeted
substance and the recognition layer. Optical devices for example try to exploit
interferometric effects occurring, when targets bind to receptors (reflectometric
interference spectroscopy).

• In the case of nanowire gas sensors, the nanowire is directly exposed to the
targeted substance. Occurring surface reactions result in a charge transfer
between gas molecules and the nanowire, thereby increasing or decreasing
the number of free carriers in the nanowire. This change in the conduc-
tance can be measured and allows to draw conclusions regarding the type of
gas molecules that are present. However, due to the absence of a selective
recognition layer, the identification of a characteristic sensor behaviour for
a certain gas is very challenging (it is difficult to distinguish between gases
causing the same type of interaction). Since the physical properties of gas
sensors are not yet well understood, we investigate nanowire biosensors as
described in below. Note however, that the methodology developed in this
work is applicable in both cases.
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General Introduction

• The nanowire biosensor considered here, a so called bioFET, resembles a
field-effect transistor by making use of the field effect due to the partial
charges of target molecules such as DNA strands. A sketch of such a de-
vice is shown in Figure 1.1. We see that the gate structure is replaced by a
bio-functionalized layer of immobilized receptor molecules such as ssDNA
strands. When complementary target molecules hybridize to the receptors,
the charge distribution near the surface changes, leading to an increase of
conductance and thereby modulating the current through the transducer, that
is a semiconductor. Due to the use of specific receptor molecules, biosen-
sors are by design highly selective and, in contrast to conventional detection
methods, do not require labeling of target molecules. This is their main ad-
vantage.
See for example [9], [35] or [32] for experimental set-ups and findings. For
a theoretical treatment of nanosensors see for example [30], [3], [5] and
[17].

Figure 1.1: Top: a convential FET, bottom: a nanowire based sensor. We see that, as
negative charges assemble at the gate contact, charge carriers accumulate near the surface
increasing the conductivity. A current, related to the potential difference between the
source (S) and the drain (D) contact as well as the transducers conductivity, can then
be measured and allows to draw conclusions regarding the presence of target molecules.
Figure taken from [6].

Uncertainty Quantification
In many applications, we observe the need for including uncertainties in mathe-
matical models in order to quantify their effect on given outputs of interest. Such
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uncertainties my enter a model for different reasons. On one hand side, it might
be our inability to exactly characterize all input parameters and on the other hand
side, uncertainties might as well be an intrinsic property of the situation we model,
as is the case here.

In a BioFET, several input parameters are indeed subject to natural fluctuations.
This is easily seen when considering the situation when it is applied, since then, a
lot of unknowns, whose determination is part of the job, enter the game:

• How many and what kind of target molecules are there?

• How do they distribute over the sensor surface?

• What about the ionic concentration in or a possible contamination of the
analyte or other parts used in the sensor?

It is clear that such fluctuations give rise to fluctuations in the electrostatic poten-
tial and hence in the current through the transducer, the measured variable, from
which the experimenter has to draw his conclusions regarding the substance under
investigation. By means of random variables, we can incorporate such effects in a
rigorous fashion, leading to an elliptic PDE with random input data, where we try
to estimate mean and variance of the solution. In order to address this problem,
we consider so called non-intrusive methods, i.e., methods that build on solvers
for the deterministic problem. We will develop such a solver using the finite ele-
ment method and are then able to generate an ensemble of solutions from which
statistical information can be extracted. Usually, this process is closely related to
integration and we therefore investigate the following two and a half approaches:

1. (Quasi) Monte Carlo Sampling ((q)MCS): the method of choice for high-
dimensional problems. We simply forward propagate the input randomness
to obtain the statistical parameters. In its naive form, we mention that MC
methods suffer from low convergence rates and only statistical error esti-
mates. Therefore we also investigate the usefulness of quasi Monte Carlo
methods, being the half approach.

2. Stochastic Collocation (SC): based on the Smolyak algorithm for integra-
tion and interpolation, we construct sparse grids of collocation points, to
efficiently exploit possible regularity of the solution and achieve better con-
vergence rates.

For a discussion related to different approaches see for example [39].
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Chapter 2

Mathematical Model of Nanowire
Field-Effect Sensors

In this chapter we formulate the model equations describing the situation depicted
in Figure 2.1. A doped silicon nanowire serving as the transducer (T) is embedded
in a rather thick layer of silicon dioxide, the substrate (S), whose boundary layer is
bio-functionalised. The substance to be investigated, the analyte, is an electrolyte
(E) containing the target molecules is put/dripped onto of the sensor.

2.1 Formulation and Motivation
For reasons that will be explained in more detail later on, see Section 2.1.1, we are
preliminarily interested in calculating the electric potential u in the cross section
shown below. We assume the device to be symmetrical about the y-axis and having
the following dimensions:

S1 = (xS1,yS1) = (108,0) nm, T1 = (xT1,yT1) = (25,145) nm,
S2 = (xS2,yS2) = (108,145) nm, T2 = (xT2,yT2) = (25,195) nm,
S3 = (xS3,yS3) = (58,145) nm, E1 = (xE1,yE1) = (108,253) nm.
S4 = (xS4,yS4) = (58,203) nm,

Since in an ionic system electrostatic interactions are screened and therefore
limited in range, we only consider target molecules that are bound to a recep-
tor, i.e., directly attached to the boundary layer, for we expect them to have the
greatest influence on the transducer. For brevity, we refer to such pairs simply as
molecules. Since we focus on the stochastic aspect, we avoid scaling problems by
not resolving the true (and possibly unknown) structure of a molecule and instead
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2.1 Formulation and Motivation

Figure 2.1: Schematic diagram of the BioFET investigated here. Figure taken from [4]
(and modified).

consider a simplified geometric form as shown in Figure 2.2. In Section 2.1.2
we elaborate further on the physical properties of the molecules and their distribu-
tion. For now it is clear, that given radius ri

M, length li
M, angle ϕ i

M and position xi
M,

each molecule is uniquely described. As the molecules are negatively charged, the
repulsive electrostatic forces cause non-intersecting configurations. Defining

• DM :=
⋃n

i=1 Di
M,

• DT := [−xT1,xT1]× [yT1,yT2 ],

• DS := [−xS1,xS1]× [yS1,yS2]∪ [−xS3 ,xS3]× [yS3,yS4]\DT ,

• DE := [−xE1,xE1]×(yS4,yS4]∪[−xE1,−xS3 ]×(yS3,yS4 ]∪[xS3,xE1]×(yS3 ,yS4],

we obtain a decomposition of the cross section, D := DM ∪DT ∪DS ∪DE , into
non-intersecting domains.
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Mathematical Model of Nanowire Field-Effect Sensors

Figure 2.2: Schematic diagram of a molecule attached to the surface.

The electrostatic interactions between molecules in an ionic solution can be mod-
elled using the Poisson-Boltzmann equation (PBE), a second order semi-linear
elliptic PDE (the difference to the ordinary Poisson equation lies in the additional
term ρfree, which is defined below):

−∇ · (A∇u) = ρfixed +ρfree in D, (2.1a)
u = uD on ∂DD, (2.1b)

ν ·∇u = uN on ∂DN . (2.1c)

uD and uN are the Dirichlet and Neumann boundary conditions respectively, where
∂DN is the left and right hand side boundary and ∂DD the lower and upper bound-
ary of D (such that ∂D = ∂DD ∪ ∂DN and DD ∩ ∂DN = /0) and ν the respective
outward pointing unit vector. On the left hand side we have the permittivity A,
describing how the electric field, given by E = −∇u, with u the electrostatic po-
tential, is affected by a dielectric medium and vice versa. On the right hand side,
we find the charge density, already written as a sum over the fixed and the free
charge density. The fixed charge density ρfixed includes the contribution from im-
mobile charges, such as molecules, the surface charge at the boundary between
the substrate and the electrolyte and additionally the dopants in the transducer,
see (2.10) and the comments at (2.5). The ions in the electrolyte enter via the
Boltzmann-term, ρfree, which is given by

ρfree(x,u) := ∑
j∈S

z jκ j exp
(
−

z jq(u(x)−ϕF)

kBT

)
.
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2.1 Formulation and Motivation

Here S is the set of charge species such as anions and cations in the ionic solution,
z j ∈ Z is the valence of the respective species, κ j(x) ≥ 0 is the corresponding
bulk concentration, q the elementary charge, kB the Boltzmann constant, T the
temperature and ϕF the Fermi level. In our case, the above expression simplifies
due to the fact that we only consider two different kind of species, allowing to set
S := {−1,+1}, z j := j and κ−1(x) = κ1(x) =: κ(x). Accordingly, we obtain

ρfree(x,u) =−2κ(x)sinh
q(u(x)−ϕF))

kBT
. (2.2)

As we see, without ρfree, equation (2.1) is the Poisson equation, whose solution
gives the electrostatic potential resulting from a given charge distribution. How-
ever, due to the free charges, this distribution is a priori not known. Indeed, one
observes the following situation: depending on the sign of their charge, ions pref-
erentially reside in regions with high or low electric potential, i.e., closer or farther
apart from the molecules, and thereby in turn influence the electrostatic potential,
explaining why we have to consider an non-linear equation. Since in such an
ionic system electrostatic interactions are screened, i.e., molecules having already
attracted ions become ‘invisible’ for the more distant ones, electrostatic effects
due to the solute are limited to a small distance. Equation (2.1) incorporates these
observations and the electrostatic potential obtained by solving (2.1) corresponds
to the steady-state distribution. A brief discussion of the derivation of the PBE
can be found for example in [12]. Note further that the main assumption in this
continuum model is that the charges are points.

Calculating the linear term of the Taylor expansion around a suitable expansion
point u0 yields

ρ f ree(x) = α(x)− γ(x)u(x)+O
(
(u(x)−u0)

2) , (2.3a)

α(x) := 2κ(x)sinh
q(u0−ϕF)

kBT
+

2qu0κ(x)
kBT

cosh
q(u0−ϕF)

kBT
, (2.3b)

γ(x) :=
2qκ(x)

kBT
cosh

q(u0−ϕF)

kBT
, (2.3c)

and we then obtain the so called linearised Poisson-Boltzmann equation (LPBE)
as

−∇ · (A∇u)+ γu = ρfixed +α in D, (2.4a)
u = uD on ∂DD, (2.4b)

ν ·∇u = uN on ∂DN . (2.4c)
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Mathematical Model of Nanowire Field-Effect Sensors

Clearly, a more advanced model to capture the situation in the transducer would
be the drift-diffusion-Poisson system (DDP) [6]:

−∇ · (A∇u) = q(C+ p−n), (2.5a)
∇ · Jn = R, (2.5b)
∇ · Jp =−R, (2.5c)

Jn = Dn∇n−µnn∇u, (2.5d)
Jp =−Dp∇p−µp p∇u, (2.5e)

where ni is the intrinsic charge concentration, C is the doping concentration, n and
p are the concentration of the free carriers, Jn and Jp are the current densities and
Dn and Dp the diffusion coefficients, µn and µp the mobilities of the electrons and
holes respectively and R is the recombination rate, taken as the Shockley-Read-
Hall term

R =
np−ni

τp(n+ni)+ τn(p+ni)
.

Here, τn and τp denote the lifetime of electrons and holes respectively. However,
assuming thermal equilibrium, one can obtain, taking κ = ni = C + p− n and
ρfixed = qC for x ∈ DT , the PBE already introduced above.

2.1.1 The Graded-Channel Approximation
Starting from the DDP system, we will now derive a first approximation of the
current I, given as the integral over the current densities Jn and Jp, in the trans-
ducer. Neglecting diffusion and assuming that the electric field is constant with
respect to the z-axis, i.e., given by E = (us−ud)/zsd , with the potential difference
us−ud between the source and the gate contact and zsd the respective distance, we
get, since E =−∇u,

Jdrift
n + Jdrift

n =−qµnn∇u−qµp p∇u = qE(µnn+µp p). (2.6)

Approximating the carrier charge concentration by the Boltzmann distribution, we
have

p = ni exp
(

q(u−φF)

kBT

)
, (2.7a)

n = ni exp
(
−q(u−φF)

kBT

)
. (2.7b)

In total, we arrive at

I =
∫

DT

Jdrift
n + Jdrift

p dxdy = qE
∫

DT

(µnn(x,y)+µp p(x,y)) dxdy, (2.8)
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2.1 Formulation and Motivation

where we only rely on a solution u of the PBE on a cross section of the sensor.
Although simpler than a self-consistent transport model, this first approximation
is sufficient for our purposes.

2.1.2 Properties and Distribution of Molecules

In this subsection we are concerned with the physical properties of the molecules
and their distribution.

Physical Properties
We consider so called oligomers or n-mers, i.e., DNA strands comprising n base
pairs. The structure, double helices coiled around the same axis, has typically a
radius of rM = 1nm, an increase per base of about 0.34nm and a charge per base of
−q, where q is the (positive) elementary charge. Possible targets are PNA, ssDNA
(single stranded) or dsDNA (double stranded), which – for our purposes – only
differ in their charge and otherwise share the same properties. PNA is uncharged
and dsDNA has twice the charge of ssDNA. As an example, let n = 20, an ssDNA
strand is then of length lM = 6.8nm and total charge qM = −20q. To obtain the
charge density, one divides by the molecules AM in the 2D case, see Figure 2.2,
or by its volume in the 3D case. In the numerical simulations we use polygons to
approximate the shape of a molecule.

Distribution
The simplest counting process in continuous time is the widely used Poisson pro-
cess, that finds its applications in a variety of different fields. It models well
phenomena, where one counts uniformly distributed events over a certain unit of
time or space and it is thus suitable to adequately describe the spread of molecules
in our sensor. For sake of brevity, we restrict ourselves to the basic definitions, for
a detailed account on stochastic processes see the vast literature on this subject,
for example [31].

For we will need it, recall that the Poisson distribution is given by Pλ (n) = eλ λ n

n! ,
with n ∈ N0 and parameter λ > 0. Note that λ equals both the mean and the
variance of a Poisson distributed random variable. A stochastic process (Nλ ,t)t≥0
with values in N0 is called Poisson process with parameter λ > 0, if the following
conditions are met:

1. Nλ ,0 = 0, i.e., the counting of events begins at time t = 0.

2. Nλ ,t+s−Nλ ,t ∼ Pλ s ∀s, t > 0, i.e., the increments on any interval of length s
are Poisson-distributed with parameter λ s.

9



Mathematical Model of Nanowire Field-Effect Sensors

3. For n ∈ N and given times 0 < t1 < · · · < tn, the family of increments(
Nλ ,ti−Nλ ,ti−1

)
2≤i≤n, is independent.

The time between events is exponentially distributed, and the parameter λ is
sometimes referred to as intensity, since we expect λ increments per time unit.
Due to the third condition, the increments are stationary, i.e., the distribution of
the number of events occurring in an arbitrary time interval depends only on the
length of this interval. Returning to the our scenario, note that although the total
number of molecules is given by a Poisson distribution, the occurrences are never-
theless distributed uniformly on any given interval. Having specified the position
of the molecules, it now remains to discuss the distribution of angles. As a result
of chemical reactions between the substrate and the electrolyte, the formation of
a surface charge is observed. It is hence reasonable to imagine that different an-
gles are assumed with different probabilities, as is indeed the case. We follow the
approach of [16], in order to associate orientations (with respect to the surface)
with probabilities. To this end, we consider the free energy Ei of a given config-
uration i, i.e., with angle ϕi, and assign a probability according to the Boltzmann
distribution

pi :=
exp(−Ei/(kBT ))

∑i exp(−Ei/(kBT ))
.

We use the data in [16]. In order to obtain a reasonable probability distribution,
it is beneficial to first fit polynomials (in a least-squares sense) of total degree
of four to the energy data. Polynomials of lower degree are cannot reproduce all
relevant features whereas polynomials of higher degree lead to over-fitting. Figure
2.3 shows two examples.

10



2.2 Variables and Units

Figure 2.3: Energy levels and obtained probability distribution for two different scenarios
are depicted. The energies are the electrostatic free energies of the molecules. Data taken
from [16].

2.2 Variables and Units

For a better overview, we summarize all relevant physical units and numerical
parameters in the Table 2.1 below and review the coefficients for the PBE (the
situation in linearized case is similar). The given values are used in the simulations
(if not stated otherwise).

• On the left hand side of (2.1), we have the position dependent permittivity
A, given by

A(x) :=


ε0εT if x ∈ DT ,

ε0εS if x ∈ DS,

ε0εM if x ∈ DM,

ε0εE if x ∈ DE .

(2.9)

• On the left hand side, we find the two charge concentrations. Firstly, ρfixed,

11



Mathematical Model of Nanowire Field-Effect Sensors

related to the fixed charges, namely

ρfixed(x) :=


ρM if x ∈ DM,

ρC if x ∈ ∂DS∩∂DE ,

ρT = q ·C if x ∈ DT ,

0 otherwise.

(2.10)

Recall that ρM = qM/AM =−qn/(r2
Mπ +2(lM−2rM)), where n is the num-

ber of base pairs, rM = 1 nm the radius and lM = n ·0.34nm nm the length
of the molecule.

• Secondly, ρfree, incorporating the contribution of the free charges, according
to the potential u and the respective bulk concentration κ , the latter given as

κ(x) :=


κT = ni if x ∈ DT ,

κE if x ∈ DE ,

0 otherwise.
(2.11)

12



2.3 Uncertainty Quantification

Meaning Variable (Value·)Unit
Temperature T 300 K
Elementary charge q 1.60218 ·10−19 C
Electron Volt eV = q·V 1.60218 ·10−19 J
Boltzmann constant kB 1.38065 ·10−23 J·K−1

Mole per litre M = mol/l 1000 mol m−3

Vacuum permittivity ε0 8.85419·10−12 A·s·V−1·m−1

Relative permittivity of electrolyte
(water)

εE 80.1

Relative permittivity of substrate
(silicon dioxide)

εS 3.9

Relative permittivity of transducer
(silicon)

εT 11.9

Relative permittivity of molecules
(DNA)

εM 4

Surface charge density ρC 0.5 q·nm−2

Ion concentration κE 10 mM
Doping concentration C 1·10−5 nm−3

Intrinsic concentration ni 1.059·10−12 nm−3

Electron mobility µn 1500 cm2· V−1·s−1

Hole mobility µp 450 cm2· V−1·s−1

Distance between source and drain
contact

zsd 1000 nm

Potential difference between source
and drain contact

us−us 3 V

Table 2.1: Variables and units

2.3 Uncertainty Quantification

Introduction

Numerical simulations are devised to predict the behaviour of natural or engi-
neered systems. In the field of numerical analysis, extensive efforts are devoted
to the development of numerical algorithms, to ensure that numerical errors in-
evitably occurring in any calculation are understood and controlled. Much less
attention has been paid to the question of estimating the impact of possible errors
or uncertainties in the input data. By investigating the effect of such errors un-
certainty quantification (UQ) aims to bridge this gap and provide more reliable
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predictions for practical applications.

In our context, we wish to incorporate the uncertainty introduced by both the
positions xi

M as well as the angles ϕ i
M of the molecules, which are random param-

eters whose stochastic influence we denote by ω . Now let D ⊂ Rd be a bounded
physical domain with boundary ∂D and let (Ω,A ,P) be a complete probability
space. Here Ω is the event space, the set of possible outcomes ω , A ⊂ 2Ω is a
σ -algebra of events and P : A → [0,1] a probability measure. We then consider
the stochatic Poisson-Boltzmann equation (SPBE)

−∇ · (A(x;ω)∇u(x;ω)) = ρfixed(x;ω)+ρfree(x,u;ω) in D, (2.12a)
u(x;ω) = uD(x) on ∂DD, (2.12b)

ν ·∇u(x;ω) = uN(x) on ∂DN , (2.12c)

and the problem of finding a random function u : D̄×Ω→ R, such that P-almost
everywhere (a.e.) in Ω, or in other words, almost surely (a.s.), the above equation
(2.12) is satisfied. Note that the boundary data is still deterministic. Because of
the randomness in the parameters, the solution u(x;ω) now exhibits an implicit
dependence on ω and we thus obtain a family of solutions, where one is in gen-
eral not interested in any particular solution related to a particular choice of ω

(except the case of investigating worst-case scenarios) and instead aims to char-
acterize its statistics. Clearly, the average behaviour of the system, expressed by
E[u(x)] = ū(x), as well as the variance V[u(x)] from that average are of most inter-
est. Intuitively, one would address this problem by solving (2.12) for any possible
value of ω and then weigh the result by is probability P(ω). Hence, considering
the weak formulation of the problem by integrating over Ω yields∫

Ω

∫
D

A(x,ω)∇u(x,ω) ·∇φi(x,ω)dxdP(ω) =

=
∫

Ω

∫
D
(ρfixed(x;ω)+ρfree(x,u;ω))φi(x,ω)dxdP(ω),

where the φi are suitable test functions. Interchanging the order of integration then
gives the usual formulation encountered in the finite element method, resulting in
a (non-linear) equation of the form A(Ū)Ū = F(Ū) which we can solve to obtain
an approximation of ū(x). Clearly, calculating A and F requires integration over
the physical, as well as the stochastic domain, the latter being potentially high-
dimensional.
In the linear case, a straightforward application of the Lax-Milgram theorem al-
lows to proof existence and uniqueness of the weak solution, see for example [2].
In the nonlinear case, the situation is more involved, see for example [18]. After
this introduction, we now discuss the general mathematical framework.
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Mathematical Framework

Let D and (Ω,A ,P) be as above and be L a differential and B a boundary operator.
We consider a system of PDEs

L(x,u;ω) = 0 x in D×Ω, (2.13a)
B(x,u;ω) = 0 x on ∂D×Ω, (2.13b)

where ω = (ω1, . . . ,ωk) ∈ Ω denotes the random input, which we assume can be
parametrized by mutually independent random variables y = (y1, . . . ,yn)

T ∈ Rn,
1 ≤ n ≤ k. Let ρi : Γi → R+ be the probability density function of the random
variable yi(ω), we can write the joint probability density of y as

ρ(y) =
n

∏
i=1

ρi(yi), (2.14)

with support

Γ :=
n

∏
i=1

Γi ⊂ Rn, (2.15)

with images Γi := yi(Ω)⊂ R. We now reformulate (2.13) as

L(x,u;y) = 0 x in D×Γ, (2.16a)
B(x,u;y) = 0 x on ∂D×Γ, (2.16b)

allowing us to conduct our considerations for the finite dimensional random space
Γ, in replacement of the infinite dimensional space Ω. Clearly, we wish to find a
stochastic function u = u(x,y) : D̄×Γ→ R satisfying (2.13) for all (x,y) ∈ D̄×Γ

and therefore make the assumption that (2.13) is well-posed P-almost surely in Ω.

Karhunen-Loève Expansion
Since we have and will heavily exploit the fact, that the random input can be
parametrized by a finite set of n independent random variables, we mention the
Karhunen-Loève expansion, a widely used technique for dimension reduction and
representation of random processes. In this connection, one seeks an expan-
sion of the random input process Yt with mean µY (t) and covariance function
C(t,s) = cov(Yt ,Ys) as

Yt(ω) = µY (t)+
∞

∑
i=1

√
λiψi(t)Yi(ω),

where ψi are the orthogonal eigenfunctions with eigenvalues λi of the correspond-
ing eigenvalue problem∫

T
C(t,s)ψi(s)ds = λiψi(t), t ∈ T,

15



Mathematical Model of Nanowire Field-Effect Sensors

and {Yi(ω)}i are mutually independent uncorrelated random variables defined by

Yi(ω) =
1√
λi

∫
T
(Yt(ω)−µY (t)ψi(t))

and satisfying E[Yi] = 0 (and E[YiYj] = δi j, as they are independent). In any appli-
cation, one relies on a truncation of the above series to obtain an approximation
based on independent random variables. Its accuracy is related to the decay of the
eigenvalues λi. From now on, assume the existence of a suitable parametrization.
Further details can be found for example in [39].

Stochastic Collocation

We now seek an approximation to the exact solution of (2.16) by means of a col-
location method. Generally speaking, collocation methods require the governing
equation to be satisfied at a discrete set of nodes, the collocation points, in the
computational domain. Hence, let Θ = {yi}i ⊂ Γ be such a finite set of prescribes
nodes, we determine respective solutions ui = u(·,yi) of

L(x,ui;yi) = 0 x in D, (2.17a)
B(x,ui;yi) = 0 x on ∂D. (2.17b)

Clearly, this is a deterministic problem which can be solved given a corresponding
solver. One then applies post-processing operations, such as interpolation and/or
integration, on the ensemble {ui}i to obtain an approximation and/or statistical
information.

More precisely, we seek a numerical approximation uh,p to the exact solution u
of (2.12) in the finite dimensional tensor product subspace Vh,p := Hh(D)⊗Pp(Γ),
where:

• Hh(D) ⊂ H1
0 (D) is a standard finite element space of dimension Nh, based

on continuous piecewise polynomials associated with a regular triangulation
with maximum mesh spacing parameter h > 0,

and

• Pp(Γ) = L2
ρ(Γ) denotes the space spanned by tensor product polynomials

of degree at most p = (p1, . . . , pn), giving Pp(Γ) =
⊗n

i=1 Ppi(Γi), with

Ppi(Γi) = span
(

yk
i , k = 0, . . . , pi

)
, i = 1, . . . ,n,

yielding that Pp(Γ) is of dimension Np = ∏
n
i=1(pi +1).
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Our collocation method now amounts to the following:

1. Calculate a semi-discrete approximation uh : Γ→ Hh(D) satisfying the de-
terministic weak form of (2.12)∫

D
A(x;y)∇uh(x;y) ·∇φh(x)dx = (2.18)

=
∫

D
(ρfixed(x;y)+ρfree(x,u;y))φh(x)dx ∀φh ∈ Hh(D), for a.e.y ∈ Γ,

to obtain a finite element approximation in the physical domain.

2. Collocate (2.18) on a set of prescribes nodes yi ∈ Θ ⊂ Γ and construct the
fully discrete approximation uh,p ∈ C 0(Γ;Hh(D)) by interpolation in y in
the collocated solutions,

uh,p(x;y) = ∑
i

uh(x,yi)l
p
i (y), (2.19)

to obtain a polynomial approximation in the stochastic domain. The in-
terpolating basis functions lp

i can, for instance, be taken as the Lagrange
polynomials.

3. Compute

E[u]≈ ūh,p = ∑
i

uh(·,yi)
∫

Γ

lp
i (y)ρ(y)dy, (2.20a)

V[u]≈∑
i

uh(·,yi)
2
∫

Γ

lp
i (y)ρ(y)dy−

(
ūh,p
)2
, (2.20b)

to obtain an approximation of the statistical parameters of interest.

A more detailed account, including error estimation for the (linear) Poisson equa-
tion with random input data, can be found in [24] and the references therein. See
also [39] for a different exposition. Note that the nomenclature is not uniform,
since this field of research is still under rapid development.

Summary, Observation and Outlook:

• For a given collocation point yi ∈Θ, we need to calculate the corresponding
solution uh of (2.18). To this end we develop a FEM-based solver, the nec-
essary prerequisites are presented in Chapter 3.1. Although other solution
methods are equally possible, the FEM with its unstructured meshes is well
suited to resolve the underlying geometry and produce results efficiently –
for a lot of them are needed.

17



Mathematical Model of Nanowire Field-Effect Sensors

• Equation 2.20 is basically a quadrature formula and this motivates the use
of quadrature points for the collocation. Indeed, since we are primarily
interested in E[u] and V[u] and do not require an explicit representation
of uh,p, we can leave out the second step above, i.e., (2.19). We instead
sample at the nodes of a quadrature rule and estimate mean and variance
directly. Chapter 3.2 is therefore denoted to numerical integration, where
we present a sparse grid technique, namely the Smolyak construction to
integrate smooth functions over high-dimensional tensor product domains.
Additionally, we also consider (q)MC methods to carry out the integration
and obtain reference values for comparison. Since every collocation point
requires a solution of the deterministic system, it is particularly important
to both have an efficient solver and an efficient integration method. In the
interpolation framework, the approach is similar, the only difference being
the additional post-processing step for the interpolation.

• Note that we are primarily interested in the nonlinear case whose treatment
is more involved both theoretically and numerically. Although the expo-
nential term in the charge distribution might cause problems, we avoid the
error-prone choice of expansion points and the difficult question, in which
regime the linear approximation is still valid. Therefore, by directly ad-
dressing the physically well founded PBE, we expect to obtain sound and
realistic results.

Recall that we made the assumption that the uncertainty can by parametrized by a
set of independent random variables yi, allowing us to write Γ as a tensor product
of intervals Γi. For this condition to be met, we devised the scenarios described in
Chapters 5. The idea being that we assign each molecule an admissible region on
the boundary layer, chosen in such that the molecules are expected not to interfere
and this way guaranteeing independent inputs. The Poisson process is approxi-
mated by distributing the molecules uniformly in their respective region. Having
n molecules, for the ith molecule we get, cf. Figure 2.2,

xi
M = (1−α

i)ai
M +α

ibi
M, α

i ∈ [0,1],

ϕ
i
M = (1−α

n+i)(−π)+α
n+i

π, α
n+i ∈ [0,1],

where α j, with 1≤ j ≤ n is distributed uniformly and α j, with n+1≤ j ≤ 2n is
distributed according to the experimental data. Clearly, parametrizing the random
input is trivial and we obtain the unit hypercube Γ = [0,1]2n as stochastic domain.
Further details can be found in Chapter 5.
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Chapter 3

Numerical Methods

3.1 Finite-Element Method

In this section, we give a brief outline of the idea behind the finite-element method
(FEM), assuming that the reader is already familiar with the basic concepts. We
also comment on methods for solving non-linear systems of equations. We then
have a closer look at an algorithm to create unstructured meshes for our purposes.

3.1.1 FEM in a Nutshell

Given a linear elliptic boundary value problem, we multiply with an arbitrary
testfunction v and integrate over the domain to obtain the corresponding weak
formulation:

find u ∈V , such that a(u,v) = l(v) ∀v ∈V. (3.1)

Here V is the solution and testfunction space (usually a Sobolev space), a(·, ·) a
bilinear functional on V ×V and l(·) a linear functional on V . We now replace
V by a finite-dimensional subspace Vh of dimension N(h) and obtain the finite
dimensional problem

find uh ∈Vh, such that a(uh,vh) = l(vh) ∀vh ∈Vh, (3.2)

the projection of the weak form of the differential equation onto this subspace.
Denoting by φ1, . . . ,φN(h) a basis, we can express the approximate solution uh in
terms of the basis functions

uh(x) =
N(h)

∑
i=1

Uiφi(x), (3.3)
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with uniquely determined coefficients Ui. Clearly, since the φi form a basis, we
can replace vh ∈Vh in (3.2) by φi, i = 1, . . .N(h), yielding

find (Ui)
N(h)
i=1 ∈ RN(h), such that

N(h)

∑
i=1

a(φi,φ j) ·Ui = l(φ j) ∀ j = 1, . . . ,N(h),

(3.4)
a system of linear equations. Introducing the shorthand notation Ai, j = a(φi,φ j)
for i, j = 1, . . . ,N(h), U = (U1, . . . ,UN(h))

T and F = (l(φ1), . . . , l(φN(h)))
T, we ar-

rive at the linear problem

find U ∈ RN(h), such that AU = F.

A and F are usually called stiffness matrix and load vector respectively. Solving
(3.4), (3.3) gives the approximation uh to the exact solution u.

The subspace Vh ⊂ V is usually chosen in such a way, that it is spanned by
continuous piecewise polynomials of fixed degree and small support, which are
associated with certain subdivisions of the computational domain. Polynomials
are practical, in the sense, that the integrals that have to be evaluated in order to
calculate A and F can be computed with little effort. The small support leads to
a sparse structure, reducing the cost of solving the resulting system of equations.
The process of calculating A and F is usually referred to as assembling. Note
further, that if a is elliptic and self-adjoined, then A is both symmetric and posi-
tive definite allowing to use powerful iterative algorithms, such as the conjugated
gradient (CG) method, to calculate the solution.

As already indicated, the starting point of every finite element method is choosing
subdivision of the computational domain D. Usually, one considers a decompo-
sition into triangles, the finite elements, giving a triangulation or mesh. Here we
assume, that any pair of triangles intersect at a complete edge, at a vertex or not
at all, such a triangulation is called regular. With each interior node, we then as-
sociate basis functions φi(x), that are equal to 1 at that node and equal to 0 at all
others. In the simplest case, one chooses piecewise linear functions, which then
look like a hat or tent and are illustrated in Figure 3.1. Denoting a basis function
associated with interior node xi by φi, we obviously have φi(x j) = δi j, yielding the
important property, that

uh(x j) =
N(h)

∑
i=1

Uiφi(x j) =U j.

Hence the expansion coefficients are exactly the nodal values of the approximate
solution. Another immediate consequence of this choice of basis functions is, that
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3.1 Finite-Element Method

Figure 3.1: A subdivision (triangulation) of D̄ and a typical finite element basis function
φ . Figure taken from [34] (and modified).

Ai j is zero unless xi and x j belong to the same triangle, leading to sparse matrices.
See [1] for a well commented FEM implementation in MATLAB, the issue of
incorporating boundary conditions is also discussed there. However, for perfor-
mance reasons, we rely on the MATLAB function assempde1.

3.1.2 Solving Systems of Nonlinear Equations
When dealing with a non-linear PDE, the above procedure leads to a non-linear
system of equations

A(U)U = F(U),

where the stiffness matrix A(U) as well as the load vector F(U) depend on U . We
denote the residual vector by

r(U) := A(U)U−F(U)

and consider different methods to find a solution, i.e., U , such that r(U) = 0. Since
in the following we are not restricted to our FEM-related problem, we instead
write f : Rn→ Rn (sufficiently smooth) instead of r and x instead of U . A well
known approach to the problem

find x ∈ Rn : f (x) = 0 (3.5)

is Newton’s method. Starting with an initial guess xk, one obtains an improved
approximation by computing

xk+1 := xk−D
(

f (xk)
)−1

f (xk),

1http://www.mathworks.de/de/help/pde/ug/assempde.html
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where D denotes the Jacobian. Although under suitable assumptions quadratically
convergent, see for example [33], a bad initial guess can easily render Newton’s
method useless, for it is only locally convergent. One therefore turns to interpret
(3.5) as an unconstrained optimization problem

min
x∈Rn

h(x), (3.6)

where h(x) = ‖ f (x)‖2
2, and wishes to construct a descent sequence {xk}k such that

{h(xk)}k decreased monotonically, i.e., h(xk+1)< h(xk), and xk thus converges to
a minimum. Let gk = g(xk) with g(x) = Dh(x) be the gradient of our objective
function h. To construct the descent sequence, we choose in the kth step a search
direction dk 6= 0 satisfying the descent condition

gkT
dk < 0, (3.7)

and consider the associated search path given by xk +αdk, α ≥ 0. We then calcu-
late a suitable step size parameter αk, such that

h(xk +α
kdk)< h(xk), (3.8)

which is, due to the descent condition (3.7) and h(xk+αkdk) = h(xk)+αkgkTdk+
o(αk), indeed possible for sufficiently small αk. This process is referred to as line
search and an obvious candidate for αk is

α
k := argminα>0h(xk−αdk),

which is called exact line search. However, this choice is considered ineffec-
tive due to its large effort (in every step, a global optimization problem has to
be solved). One therefore tries to minimize f inexactly, while taking care that
the steps are neither too long nor too short. To achieve this, one can compute a
measure for the progress of the line search, such as the Goldstein quotient

µ
k(α) :=

h(xk +αdk)−h(xk)

αgkTdk
, α > 0, (3.9)

and introduces the Goldstein condition

µ1 ≤ µ
k(α)≤ µ2, 0 < µ1 < µ2. (3.10)

The Goldstein condition tries to ensure sufficient descent and keep α away from
0, the situation is nicely illustrated in Figure 3.2. Usually one introduces a third
parameter 1 ≥ µ3 as well, to prevent too small steps whenever gk becomes too
small, i.e., h flat.
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Figure 3.2: Geometric interpretation of the Goldstein condition (3.10), note the admissi-
ble set of step length parameters. Figure taken from [7] (and modified).

An efficient way to obtain a step length parameter satisfying the Goldstein
condition, is the use of a backtracking strategy. In its simplest form, it looks as
follows:

1. Start with initial value α0 > 0, e.g α0 = 1, set α(0) = α0 and l = 0.

2. Until µk(α(l)) satisfies (3.10) (or alternatively, until descent is achieved):

• set: α(l+1) = τα(l), where τ ∈ (0,1) is fixed, e.g., τ = 1
2 ,

• increment: l = l +1.

3. Choose αk = α(l).

This way one reduces the line search to a finite process. By choosing the New-
ton direction dk = D( f (xk))−1 f (xk) as decent direction and α0 = 1 as initial step
length, we recover the quadratic convergence of Newton’s method as xk advances
towards the minimum, cf. [33]. Such an approach is called damped Newton
method and the non-linear solver pdenonlin2 implemented in MATLAB and used
for our simulations is based on a similar methodology as described above. For the
calculation of the Jacobian, we rely on a numerical approximation computed by
finite differences. We mention that we presented only the very basic ideas, for a

2http://www.mathworks.de/help/pde/ug/pdenonlin.html
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more in-depth discussion of optimization algorithms see the vast literature on the
subject (note that the nomenclature is not uniform). An introduction can be found
in [33].

3.1.3 Grid Generation

As we have outlined above, the triangulation of the computational domain is the
very foundation of the finite element method and much of the quality of the nu-
merical results relies on the quality of the mesh. We therefore consider it impor-
tant to understand the basic working principle and devote this section to a short
description of distmesh3 by [29], on which mesh2d4, the algorithm used for our
simulations, is based. Note that the working principle of distmesh naturally ex-
tends to the 3D case.

The rationale behind unstructured meshes is to use elements of varying size to
resolve fine features of the underlying geometry while at the same time balancing
the total mesh size by having a coarse grid where possible. Using error indicators,
a adaptive solvers can be developed to impose further constraints on the mesh size,
in order to improve the approximate solution.

Distmesh

We consider the planar 2D case. To begin with, we note that for any given set
of points (that do not lie on the same straight line), there exists a Delaunay tri-
angulation [11]. Such a triangulation is characterised by the Delaunay condition,
demanding that no point lies inside the circumcircle of any triangle. This kind
of triangulation is widely used, since it tends to maximize the minimum angle
of all triangles, thereby improving error estimates. One way, and probably least
efficient, to obtain a Delaunay triangulation is to start with any triangulation and
then flip edges until all triangles satisfy the Delaunay condition. Knowing that
every non-degenerated point set can be triangulated, we need a to find a way to
distribute these points to obtain in well-shaped mesh. Distmesh uses a signed dis-
tance function d(x,y), that assumes negative values inside the region, to describe
the shape of the region. The basic idea of the algorithm is to interpret a triangu-
lation as a truss structure or a structure of springs, where an edge corresponds to
a bar or spring and a node to a joint. In accordance with this interpretation, we
discover a proper distribution of points by solving for a static force equilibrium.
We use ordinary linear springs to implement this idea. Allowing only repulsive

3http://persson.berkeley.edu/distmesh/
4http://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-

generation
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Figure 3.3: A Delaunay triangulation of a point set, note that indeed no point lies inside
the circumcircle of any triangle. Figure taken from [38].

forces, we get a force-displacement relationship f (l, l0) given by

f (l, l0) :=

{
k(l0− l) if l < l0,
0 if l ≥ l0,

(3.11)

where k is the spring constant, l the current length of the bar, i.e., the euclidean
distance between the joints, and l0 its unextended length. An external reaction
force acting normal to the boundary will be needed to prevent the nodes from
moving outside the region (see below). Collecting (applying MATLAB notation)
the x- and y-coordinates of all N meshpoints in p,

p = [x y],

the resulting force at each point is given by

F(p) = Fint(p)+Fext(p). (3.12)

Here Fint denotes the interior forces due to the point-to-point interaction via the
bars and Fext is the external (reaction) forces coming from the boundaries. Since
the force-displacement relationship depends on the triangulation, i.e., how the
points are connected might change as they move, F(p) depends non-continuously
on p. As a consequence, finding p, such that F(p) = 0, is not an easy task. We
therefore introduce an the artificial time-dependence, to avoid a direct calculation
of p and obtain an iterative scheme. Considering the system of ODEs,

d p
dt

= F(p), for t > 0 and p(0) = p0, (3.13)
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where p0 is arbitrary initial distribution, we see that a stationary solution naturally
satisfies F(p) = 0. Using a simple forward Euler scheme, we get

pn+1 = pn +∆tF(pn), with tn = n∆t. (3.14)

The external reaction forces are implemented by moving every point that moved
outside the boundary back to the closest boundary point. By doing so, points
are allowed to move along the boundary but cannot go outside, conforming the
requirement of a force acting normal to the boundary.

To facilitate the point spread and assure that they cover the whole region, it
is important to have repulsive forces, i.e., f > 0, at most of the bars. This can
be achieved by choosing l0 slightly larger than the actually desired length. The
desired edge length distribution enters the algorithm by means of an element size
function h(x,y), giving the relative distribution of element sizes over the domain.
For a uniform mesh, l0 is the same everywhere and thus h is constant. In the
non-uniform case, we want higher h-values effect smaller desired lengths, i.e.,
relatively more points in the respective region. We therefore introduce a scaling
factor s, being the ratio between the actual mesh area and the desired size,

s :=
(

∑ l2
i

∑h(xi,yi)

)1/2

, (3.15)

where li is the actual edge length and h(xi,yi) the value of h at the midpoints of
the edges. The desired length is then given by l0 = 1.2hs, where the additional
factor 1.2 ensures slightly larger l0 and thus f > 0 at most of the bars. Regarding
the initial distribution, uniform distributions p0 perform well for uniform meshes.
For non-uniform meshes, it is advisable to start with a weighted distribution, for
example by using a rejection method, where points are discarded with probability
proportional to 1/h(x,y)2.

The overall procedure is depicted in Figure 3.4.

Now, some remarks regarding the size function h are in order, for there are a
variety of different constituting factors that should be incorporated. First of all,
the user may specify some regions, where a higher resolution is desirable. Ad-
ditionally, there might be external information available, for example from error
indicators, hinting at areas that need to be refined. Besides that, we certainly wish
to resolve the underlying geometry and therefore need small elements to resemble
curved boundaries and narrow features. To accomplish this, one has to identify
parameters that specify the local feature size. For the mesh to be well-shaped,
we further require neighbouring elements to be of not too different size. Last but
not least, the overall number of points should be minimal. Clearly, the automatic

26



3.1 Finite-Element Method

construction of suitable size function is a non-trivial task and beyond the scope of
this work. See [28] for an insightful discussion of this subject. As already men-

Figure 3.4: The generation of a non-uniform triangular mesh using distmesh, note the
higher resolution in areas with finer geometric features. Figure taken from [29] (slightly
modified).

tioned, we use (a slighty modified version of) mesh2d for the mesh generation.
The main difference for the user being the possibility to define regions and sub-
regions (faces) using polygons. See Figures 3.5 and 3.6 for exemplary meshes.

Figure 3.5: Left: a point set together with additional connectivity arrays defining sub-
regions serves as input data for mesh2d. Middle: the result after the iterative procedure,
note how local features are resolved by placing more points in narrower regions. Left: the
mesh obtained after triangulation.
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Figure 3.6: The mesh finally used in the FEM. Note that we use a uniform mesh (denser
than depicted here) in the transducer, allowing us to compare solutions resulting from
different configurations.

3.2 Numerical Integration

3.2.1 Problem Formulation

In this section we consider various methods for the numerical integration of
(smooth) functions over high-dimensional domains. After formulating the
problem and recalling some basic facts about 1D quadrature rules and their
extension to higher dimensions, we take a closer look at sparse grid and stochastic
integration methods. Most of the following is based on [15] and we thus adopt
(almost) the same notation.

For r ∈ N, let

C r :=
{

f : Ω 7→ R,
∥∥∥∥∂ s f

∂xs

∥∥∥∥
∞

< ∞,s≤ r
}
,

W r
d :=

{
f : Ω 7→ R,

∥∥∥∥∥ ∂ |s| f
∂xs1

1 · · ·x
sd
d

∥∥∥∥∥
∞

< ∞,si ≤ r

}
,

be the function classes and Ω := [−1,1]d the d-dimensional integration domain
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under consideration. Denoting the exact integral of a function f over Ω by

Id f :=
∫

Ω

f (x)dx,

we seek an approximation by means of interpolatory quadrature formulas

Qd
l f :=

nd
l

∑
i=1

wli f (xli),

where the nodes or abscissas xli and weights wli depend on the level l ∈N but not
on f . Requiring nd

l < nd
l+1, we obtain an ordered sequence. For the underlying set

of nodes, we introduce

Γ
d
l :=

{
xli, i ∈ 1,2, . . . ,nd

l

}
,

and say a quadrature formula is nested, if the respective grids satisfy Γd
l ⊂ Γd

l+1.
To assess the performance of a given rule Qd

l , we define the quadrature error

Ed
l f :=

∣∣∣Id f −Qd
l f
∣∣∣ ,

and say a quadrature formula is of order, exactness or precision p, if it integrates
exactly all polynomials having degree less then p. Clearly, the art of numerical
integration lies in the advantageous selection of nodes xli and weights wli. In the
following, we only consider nested rules, in order to keep the point count low by
reusing points. As such rules tend to grow exponentially, we always start with

n1
l = 1 and Q1

l f = 2 f (0).

Figure 3.7 depicts the nodes of one of the quadrature formulas considered in the
next subsection.

3.2.2 Review of 1D Quadrature Formulas
Newton-Cotes formulas

Newton-Cotes formulas, such as the well known trapezoidal or Simpson rule, are
based on the idea of substituting the integrand f by a suitable interpolation poly-
nomial P and using

∫
P(x)dx as an approximation for

∫
f (x)dx. The nodes are

taken to be equally spaced and the weights are derived by integrating the inter-
polating Lagrange polynomial. For larger number of nodes, some of the weights
become negative and render the approach numerically unstable. In general one
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Figure 3.7: Clenshaw-Curtis quadrature points for different levels l, observe the nesting
property and the exponential growth of the point count, n1

l = 2l−1 +1 for l ≥ 2.

thus uses iterated versions of low degree formulas to obtain a composite rule. We
conclude with the properties of the trapeziodal rule [15]. For l ≥ 2, we have

n1
l = 2l−1 +1,
p = 2,

E1
l f = O

(
2−2l

)
for f ∈ C 2.

For a thorough treatment of rules of different accuracy see for example [10]. Note
however, that in general, using n1

l points allows to integrate exactly polynomials
up to order n1

l .

Gauss(-Patterson) formulas

Gauss formulas are defined by choosing the nodes and weights in such a way,
that the resulting formula maximizes the degree of polynomials that it integrates
exactly. With respect to their order, Gauss formulas are thus optimal quadrature
rules. The integrands are of the more general form f (x) = w(x)g(x), where w(x)
is a non-negative weight function. One then considers w-orthogonal polynomials,
whose roots serve as the nodes and the weights can be derived by integrating the
associated w-weighted Lagrange polynomials. The formulas obtained in this way
are then of order 2n1

l +1. From a numerical perspective, it is important to note that
the computation of nodes and abscissas can be related to an eigenvalue problem.
Clearly, different weight functions lead to different orthogonal polynomials, some
of the more common examples are given in Table 3.1.
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w(x) [a,b] rule prob. distr.
1 [−1,1] Gauss-Legendre Uniform
exp(−(x−α)2/β 2) (−∞,∞) Gauss-Hermite Gaussian
exp(−xα) [0,∞) Gauss-Laguerre Gamma
(1− x)α(1+ x)β [−1,1] Gauss-Jacobi Beta

Table 3.1: Weight functions and corresponding Gaussian rule, the second term denotes
the respective class of orthogonal polynomials. For stochastic integrals, it is recom-
mended to use the appropriate type of quadrature rule.

Unfortunately, the roots of orthogonal polynomials are not nested. However,
Kronrod [21] and Patterson [27] extended the original formulation to obtain se-
quences of nested quadrature formulas with maximal degree of exactness, which
we will refer to as Gauss-Patterson rules. For more details we regarding the con-
struction we refer to the above the literature and [10]. We conclude with the
properties of the Gauss-Patterson rule [15]. For l ≥ 2, we have

n1
l = 2l−1,

p = 3 ·2l−1−1

E1
l f = O

(
2−lr

)
for f ∈ C r.

Clenshaw-Curtis formula

The Clenshaw-Curtis formula [8] is based on integrating an expansion of the in-
tegrand in terms of Chebyshev polynomials, with the non-equidistant abscissas
being the respective extreme points and leading to a nested rule. From a numeri-
cal perspective, we note that above procedure can be related to the discrete cosine
transform, see [10] for a thorough treatment. We conclude with the properties of
the Clenshaw-Curtis rule [15]. For l ≥ 2, we have

n1
l = 2l−1 +1,

p = n1
l +1 and

E1
l f = O(2−lr) for f ∈ C r.
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Practical Considerations

We did not elaborate further on the details of the construction of the above quadra-
ture rules, since we can rely on the MATLAB library SANDIA RULES5, providing
a variety of different formulas.

Considering Figure 3.8, we observe that although comparable in the sense of
polynomial exactness, the nodes of a Clenshaw-Curtis rule resemble more Gaus-
sian quadrature points than equidistant Newton-Cotes points. Note further, that
the pronounced factor-of-2 advantage of Gaussian rules (in the non-nested case)
is rarely realized in numerical experiments, [36] and the insightful discussion
therein. Recall that due to the different exponents, for a given level l, the number
of nodes n1

l in a Gaussian and Clenshaw-Curtis rule can differ by almost a factor
of 2.

Figure 3.8: Newton-Cotes (l = 6, n1
l = 33), Gauss-Legendre (l = 5, n1

l = 31) and
Clenshaw-Curtis (l = 6, n1

l = 33) quadrature points. The latter two showing a similar
distribution, with more points shifted towards the end of the interval.

The Curse of Dimension

In the d-dimensional case, Fubini’s theorem allows to compute a d-fold integral
using iterated 1D integrals. This amounts to the so called tensor product rule

5http://people.sc.fsu.edu/∼jburkardt/m src/sandia rules/sandia rules.html and
http://people.sc.fsu.edu/∼jburkardt/m src/sgmga/sgmga.html
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Q1
l1⊗·· ·⊗Q1

ld
, which is defined as the summation over all possible combinations

(
Q1

l1⊗·· ·⊗Q1
ld

)
f :=

n1
l1

∑
i1=1
· · ·

n1
ld

∑
id=1

wl1i1 · · ·wld id f (xl1i1, . . . ,xld id). (3.16)

For simplicity, let the number of abscissas be the same in every dimension. For
a given level l, we then need a total of n =

(
n1

l

)d function evaluations, whereas
the accuracy remains the same, consider for example f (x1, . . . ,xd) = g(x1). Now,
assuming our integration is based on a Gaussian rule, we observe the error bound

Ed
l = O(n−r/d),

to deteriorate dramatically with increasing dimension, this behaviour is some-
times referred to as the curse of dimension. The remainder of this chapter will
be devoted to methods that allow to overcome this problem, at least to a certain
extent. We mention that the development of such methods is still an active area of
research.

3.2.3 Numerical Integration using Sparse Grids
Before giving the exact definition of Smolyaks’s method to handle tensor product
problems, we sketch the basic idea. Let Ω = [0,1]2 and Q1

l to be a family of
nested quadrature rules, integrating exactly polynomials of degree up to l. The
2D product rule is then given by Q2

l1,l2 = Qx
l1
⊗Qy

l2
, where adapted the notation

regarding the upper subscripts in the 1D rules on the right hand side to indicate the
dimension on which the rule acts. For example Q2

1,1 = Qx
1⊗Qy

1, uses four points,
two in each dimension, to integrate exactly any terms in the linear combination of
1, x, y, xy. Assume that the product rules take the following form:

Qx
1 = a f (0,0),

Qx
2 = b f (0,0)+ c f (1,0),

Qy
2 = d f (0,0)+ e f (0,1).

We now consider the combination

A 2
2 := Qx

2 +Qy
2−Qx

1 = (b+d−a) f (0,0)+ c f (1,0)+ e f (0,1)

and see, that A 2
2 achieves the same as the product rule Q2

1,1 using only three
points. This is already the idea of Smolyak’s construction: combine low-order
product rules in a way to achieve a desired performance while at the same time
avoiding the excessive function evaluations arising in the standard full product
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rule.

To begin with, we start with a sequence of 1D quadrature formulas

Q1
l f :=

n1
l

∑
i=1

wli f (xli),

and define the difference quadrature formula

∆
1
k := Q1

k−Q1
k−1, setting Q1

0 := 0.

∆1
k , being a sum combining weights and function evaluations, is again a quadrature

formula operating on the union of grids Γ1
k ∪Γ1

k−1, which equals Γ1
k in the nested

case.
Smolyak now devised the following rule to integrate a d-dimensional function f :

A d
l f := ∑

|k|1≤l+d−1

(
∆

1
k1
⊗·· ·⊗∆

1
kd

)
f , (3.17)

where k = (k1, . . . ,kd) ∈ Nd is a multi-index and l ∈ N. Observe, that since

(
Q1

l1⊗·· ·⊗Q1
ld

)
f =

d

∑
j=1

∑
1≤k j≤l

(
∆

1
k1
⊗·· ·⊗∆

1
kd

)
f ,

performing the summation in (3.17) over a different index set, namely the cube
|k|∞≤ l instead of the simplex |k|1≤ l+d−1, recovers the ordinary product rule.
Expressing A d

l in terms of the quadrature formulas Q1
k j

yields [37]

A d
l f = ∑

l≤|k|1≤l+d−1
(−1)l+d−|k|1−1

(
d−1
|k|1− l

)(
Q1

k1
⊗·· ·⊗Q1

kd

)
f . (3.18)

We have not restricted ourselves to specific 1D rules and we will see later on, that
we can further modify the index set in the summation to tailor the construction
according to our needs. With the current choice, it is clear that the level k j of any
1D rule never exceeds l.
We define the so called sparse grid as the set of points in A d

l , namely the union

Θ
d
l :=

⊎
|k|1≤l+d−1

Θ
1
k1
×·· ·×Θ

1
kd
,

over the pairwise disjoint difference grids Θ1
k1
×·· ·×Θ1

kd
, where

Θ
1
l := Γ

1
l \Γ1

l−1, with Γ
1
0 := /0,
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are the one-dimensional difference grids. Not surprisingly, for nested 1D quadra-
ture formulas, the corresponding sparse grid formula is nested as well [26]. The
number of points constituting the tensor product is calculated by

nd
l = ∑

k|1≤l+d−1
mk1 · · ·mkd ,

and if the 1D rule is based on n1
l = O(2l) points, we have [37]

nd
l = O

(
2lld−1

)
.

Here we observe the important difference to the full tensor product grid, where
the point count is O(2ld).
In a practical application, one computes

A d
l f := ∑

|k|1≤l+d−1

mk1

∑
j1=1
· · ·

mkd

∑
jd=1

wkv f (xkv),

to obtain an approximation of the exact integral. To compute the nodes an weights,
we resort to the mentioned SANDIA library. For a discussion regarding the numer-
ical aspects, see for example [15].

Finally, a short discussion of the integration error Ed
l is in order. We assume

the underlying 1D formulas to satisfy the error bound

E1
l f = O

((
n1

l
)−r
)

for f ∈ C r
1 ,

which holds for all interpolatory quadrature formulas with positive weights, such
as the above discussed Clenshaw-Curtis and Gauss-Patterson rules, cf. [10]. Such
formulas with a point count of order n1

l = O(2l) taken as a 1D basis then lead to a
sparse grid formula of order [37]

Ed
l f = O

((
nd

l

)−r(
lognd

l

)(d−1)(r+1)
)

(3.19a)

= O
(

2−lrl(d−1)(r+1)
)
, for f ∈W r

d . (3.19b)

Note the strong dependency on the smoothness and only the weak one on the
dimension. Regarding its order, the multi-variate rule is exact for polynomials
with total degree less or equal l + d− 1 whenever the uni-variate rules are exact
for polynomials with degree less or equal to l [26].

In our simulations, we use sparse grids based on Clenshaw-Curtis and Gauss-
Patterson rules, which are depicted in Figure 3.9. An application to test problems
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Figure 3.9: From left to right: Newton-Cotes full product grid based on trapezoidal rule
(l = 6, n2

6 = 332 = 1089), Clenshaw-Curtis sparse grid (l = 6, n2
6 = 113), Gauss-Patterson

sparse grid (l = 5, n2
6 = 129).

is presented in 3.2.5. To create a more tangible picture of how the rules are actually
combined, we consider a 2D example, having in mind for example Clenshaw-
Curtis rule Q1

l =CCl . The Smolyak rule then takes the form

A 2
1 =CC1⊗CC1,

A 2
2 =CC1⊗CC1 +CC1⊗CC2−CC1⊗CC1,

A 2
3 =CC3⊗CC1 +CC2⊗CC2 +CC1⊗CC3−CC2⊗CC1−CC1⊗CC2,

and Figure 3.10 shows, qualitatively, the situation for A 2
3 . For larger levels the

coefficients take a more complicated form.

Figure 3.10: Only the five lower order grids contribute to A 2
2 , which are, because of

nesting, contained in the diagonal entries. Figure taken from [20].
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Generalized Sparse Grids

What we have discussed so far is often termed the conventional or classical con-
struction and we only considered isotropic grids, i.e., grids where each dimension
is treated the same. Clearly, one can base the construction on mixed rules to ac-
count for anisotropic effects, an example being shown in Figure 3.11.

Figure 3.11: A Smolyak sparse grid based on a Gauss-Hermite rule in x- and Clenshaw-
Curtis rule in y-direction (l = 5).

For some applications however, it is more appropriate to consider general in-
dex sets in (3.17). This allows to tackle anisotropic problems in a systematic
fashion and the respective approach is called general sparse grid construction
[15]. To begin with, we say an index set I is called admissible if the condition

∀k ∈I : k− e j ∈I for (some) 1≤ j ≤ d, k j > 1,

is satisfied, where e j denotes the jth unit vector. According to the above condition,
an index set is admissible, if for every index k, I contains all indices having
smaller entries than k in at least one dimension as well. The general sparse grid
construction is then given by replacing the index set in (3.17) by an arbitrary
admissible index set I , i.e.

A d
l f := ∑

k∈I

(
∆

1
k1
⊗·· ·⊗∆

1
kd

)
f . (3.20)

Note that by choosing I := {k : |k|1 ≤ l + d− 1} or I := {k : |k|∞ ≤ l} both
the conventional and the full product formula are included as special cases. Since
we aim to resolve the dimensions differently, a straightforward generalization is
to consider a general class of simplices of the form a ·k≤ l+d−1, where a∈R+

is a weight vector directed at the different dimensions. This route is taken in [25]
and an example is depicted in Figure 3.12. [14] proposes a more general setting,
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since in some cases, for example when more or less points in mixed directions are
required, even such a simplex may be inadequate.

Figure 3.12: First line, from left to right: isotropic Clenshaw-Curtis sparse grid (l = 8),
anisotropic Clenshaw-Curtis sparse grid a2/a1 = 3/2, anisotropic Clenshaw-Curtis sparse
grid a2/a1 = 2/1. Second line, from left to right: the corresponding indices entering the
rule. Figure taken from [25].

Depending on whether a priori information regarding the integrand is avail-
able, the weight vector a is either set beforehand or chosen iteratively by means of
an adaptive algorithm throughout the integration process. We do not elaborate on
this subject further and instead refer the interested reader to [25] and [14]. In our
case, we expect the molecules farther away from the transducer to have a smaller
impact on the overall result.

3.2.4 (Quasi) Monte Carlo Methods
Generally speaking, a Monte Carlo method is a computational algorithm based on
random numbers devised to solve a problem whose solution can be obtained by
means of a stochastic process. As is the case in numerical integration, the under-
lying problem must not be directly related to random events at all.
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Now, let λd the Lebesgue-measure on Rd and B an integration domain with 0 <
λ (B)<∞. Then, by defining the probability space (B,L (B), dµ) with probability
measure dµ = λ/λ (B), we have∫

B
f (x)dx = λ (B)

∫
B

f (x)dµ(x) = λ (B)E f (X)

for an integrable function f . Here X is a µ-distributed (i.e., uniformly) random
variable and E denotes the expected value. We have thus transformed the prob-
lem of integrating f to estimating E f (X). Intuitively, we expect to obtain an
approximation of the expected value by repeatedly sampling the random variable.
According to the strong law of large numbers, which by Kolmogorov’s theorem
holds for independent and identically distributed (iid) random variables, we in-
deed obtain

lim
N→∞

1
N

N

∑
i=1

f (xi) = E f (X),

almost surely. In any computation, N is clearly a finite number and one usually
takes the standard deviation σ( f ) =

√
V f (X) to obtain a measure for the devi-

ation from the true expected value. For the variance V f (X), it is easy to show,
that ∫

B
. . .
∫

B

(
1
N

N

∑
i=1

f (xi)−E f (X)

)2

dµ(x1) . . .µ(xN) =
V f (X)

N
,

holds for f ∈ L2(µ) and iid random variables. This results in an average error of

Ed
MC f = O(σ( f )N−1/2), (3.21)

which does not depend on the dimension at all. In the naive form, one generates a
set of uniformly distributed point xi ∈ B, i = 1, . . . ,N to get

λ (B)
N

N

∑
i=1

f (xi)≈
∫

B
f (x)dx.

Although we overcame the curse of dimension, we now face some serious short-
comings. First and foremost, the error bound is only of stochastic nature, sec-
ondly, the above result heavily relies on the quality of the random variables (inde-
pendence) and thirdly, the constant σ( f ) is unknown. Quasi Monte Carlo meth-
ods (qMC) try to remedy the disadvantages of the naive approach by resorting
to quasi-random numbers, thereby leading to both better and deterministic error
bounds. For a detailed account on the qMC method and the topic of random num-
ber generation, see for example [23]. In the following, we will only state the most
important ingredients needed for our purpose.
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Let P = (x1, . . . ,xN) be a set of points in Ω, J ∗ the family of sub-cubes of Ω

given by ∏
d
i=1[0,ui) and by J the family of sub-cubes of Ω given by ∏

d
i=1[ui,vi).

Then the (star) discrepancy of P with respect to J (∗) is defined as

D(∗)
N

(
J (∗),P

)
= sup

J∈J (∗)

∣∣∣∣A(J;P)
N

−λd(J)
∣∣∣∣ ,

where A(J;P) is a counting function giving the number of points in P that also
belong to J. We see from the definition, that a sequence has low discrepancy, if
the proportion of points that belong to an arbitrary set B is roughly the same as the
measure of B. This resembles the situation that occurs on average for uniformly
distributed points (in contrast to a particular sample that can exhibit large holes or
clusters). Hence, a low-discrepancy quasi-random sequence seeks to fill the space
uniformly. The prefix ‘quasi’ emphasizes that such sequences are neither random
nor pseudorandom, as they indeed fail many statistical tests for randomness. We
require the integrand f to have bounded variation V ( f ) on Ω̄ in the sense of
Hardy and Krause and a point set P = (x1, . . . ,xN) in Ω given. We then have the
fundamental Koksma−Hlawka inequality [19], stating that

Ed
qMC f =

∣∣∣∣∣ 1
N

N

∑
i=1

f (xi)−
∫

Ω̄

f (u)du

∣∣∣∣∣≤V ( f )D∗N(P). (3.22)

Accordingly, we aim to find sequences with lowest possible star discrepancy
which are usually simply called low-discrepancy sequences. In contrast to (3.21),
the above error bound (3.22) is deterministic and we indeed exploit the integrands
regularity (in terms of its variation). Furthermore, the inequality is sharp in the
sense, that for every such set P and ε > 0, there exists a C ∞ function f with
V ( f ) = 1 such that∣∣∣∣∣ 1

N

N

∑
i=1

f (xi)−
∫

Ω̄

f (u)du

∣∣∣∣∣> D∗N(x1, . . . ,xN)− ε.

The dimension enters to some extend via the discrepancy D∗N(P), which is ob-
served to be bounded from below by a term depending on N and d. However,
it is possible to obtain near optimal sequences whose construction is beyond the
scope of this work but treated thoroughly for example in [23]. For our purpose,
it is sufficient to note that MATLAB6 provides generators for the well known van
der Corput sequences, Halton sequences and Sobol sequences.

6http://www.mathworks.de/de/help/stats/generating-quasi-random-numbers.html
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As a concluding remark, we state that in the one-dimensional case, one can
show for 0≤ x1 < x2 < · · ·< xn ≤ 1, that

D∗N(P) =
1

2N
+ max

1≤i≤N

∣∣∣∣xi−
2i−1

2N

∣∣∣∣ ,
with equality for xi =

2i−1
2N , which corresponds to the classical midpoint rule.

In Figure 3.13, we see a comparison of the nodes of all types of quadrature
rules considered in this work. An application to test problems is presented in the

Figure 3.13: Upper left: a 22× 22 full product grid, upper right: 500 uniformly dis-
tributed (pseudo)random points (note the holes and clusters), lower left: a Smolyak sparse
grid based on Clenshaw-Curtis nodes (l = 7, n2

7 = 321), lower right: 500 low-discrepancy
quasi-random points (a Halton point set, observe the uniform filling).

next subsection.
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3.2.5 Comparison and Adaptive Strategies

We will now assess the performance of the so far discussed methods by applying
them to the set of well known Genz test functions [13]. Each of them belonging
to a certain family with distinguished properties.

Integrand Family Attribute

f1(x) = cos

(
2πu1 +

n

∑
i=1

aixi

)
Oscillatory

f2(x) =
n

∏
i=1

(
a−2

i +(xi−ui)
2)−1

Product Peak

f3(x) =

(
1+

n

∑
i=1

aixi

)(n+1)

Corner Peak

f4(x) = exp

(
−

n

∑
i=1

a2
i (xi−ui)

2

)
Gaussian

f5(x) = exp

(
−

n

∑
i=1

ai|xi−ui|

)
C0 Function

f6(x) =


0 if x1,2 > u1,2,

exp

(
n

∑
i=1

aixi

)
otherwise.

Discontinuous

The integration domain is the n-dimensional unit hypercube Ω = [0,1]n. The
parameters u = (u1, . . . ,un)

T ∈ Ω can be varied randomly to generate different
samples, the difficulty of the corresponding integral should not be affected. The
parameters a = (a1, . . . ,an)

T ∈ Ω will, with increasing ‖a‖, make the integrands
more difficult. The difficulty level for a given series can be fixed by properly scal-
ing a. Here, for the jth integrand family one selects fixed numbers n, e j and h j
and computes for each test in series a vector a′ ∈Ω. a is then obtained by a = ca′,
where c is chosen in such that a satisfies

ne j
n

∑
i=1

ai = h j. (3.23)

In order to use our integration methods effectively, we need a suitable termination
criterion. Note that this is indeed a vital question, since stepping up the level l
of our sparse grid quadrature rules doubles the size of the grid, i.e., the new level
comes at the cost of all previous ones. The obvious candidates are clearly the
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absolute as well as the relative changes in the integral value for two consecutive
levels, i.e.

∆l = A d
l −A d

l−1, (3.24)

δl =
∆l

A d
l
, (3.25)

and we terminate when either |∆l| or |δl| falls below a given tolerance ε . For
(q)MC integration a similar scheme can be applied. However, we also want to
consider Richardson extrapolation, as proposed in [22].
The idea of Richardson extrapolation is the following: Suppose we want to ap-
proximate a quantity Â and we have an approximation of order p with small pa-
rameter h > 0 satisfying

Â = A(h)+ c ·hp +O(hp+1).

Now, we take two slightly different parameters h1 and h2, which are of similar
order of magnitude, O(h), but not too close together, i.e.,

(
hp

2 −hp
1
)
= O(1/hp).

We then have two equations

Â = A(h1,2)+ c ·hp
1,2 +O

(
hp+1

1,2

)
from which we can eliminate the c ·hp

1,2 term by multiplying the first equation by
hp

2 , the second by hp
1 and then subtract to obtain(

hp
2 −hp

1
)

Â = hp
2A(h1)−hp

1A(h2)+O
(
h2p+1) ,

yielding

Â =
hp

2A(h1)−hp
1A(h2)(

hp
2 −hp

1
) +O

(
hp+1) .

This motivates the definition of the Richardson extrapolation value for Â,

AR =
hp

2A(h1)−hp
1A(h2)(

hp
2 −hp

1
) , (3.26)

whose error is of order p+1.
Although the assumptions regarding the error are not exactly met in the Smolyak

construction, using (3.19), we nevertheless hope that

AR
d
l :=

al−1A
d

l −alA
d

l−1

al−1−al
, (3.27a)

ad
l := 2−lrl(d−1)(r+1), (3.27b)
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gives an improved estimate. For a given level l, we then compute

∆Rl = A d
l −AR

d
l , (3.28)

and terminate if |∆Rl| is below ε . Clearly, r is not known and we have to rely on
guesses.

We apply our integration methods to the above stated test functions, using
the parameters given in [26]. Hence we set d = 10 and the difficulty according to
(3.23) with ne j = 1 and h j as in Table 3.2, where j denotes the respective integrand
family f j. Additionally, we also consider the performance of the three different
choices for the termination criterion.

j 1 2 3 4 5 6
h j 9.0 7.25 1.85 7.03 2.04 4.3

Table 3.2: Level of difficulty for the different integrand families.

Conclusion
Considering Figure 3.14, we observe a very good performance of the sparse grid
quadrature rule. In particular it seems to be superior to conventional (q)MC in-
tegration methods. It is to no surprise, that all methods fail in the discontinuous
case ( f6(x)), however, the comparatively good result of the sparse grid rule in case
of the non-smooth C0 function is noteworthy. As the qMC method based on the
Halton sequence delivers better results than the one based on the Sobol sequence,
the former will be used in our simulations.
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3.2 Numerical Integration

Figure 3.14: For d = 10 dimensions, we integrate the Genz test functions using:
SG – Gauss-Patterson sparse grid, MC1 – Monte Carlo, MC2 – Monte Carlo, qMCs

– quasi-Monte Carlo Sobol sequence, qMCh quasi-Monte Carlo Halton sequence,
for level l = [1, 2, 3, 4, 5, 6], which corresponds to a total number of points nd

l =
[21, 221, 1581, 8801, 41265, 171425]. The (q)MC results are based on the respective
sparse grid point count. Note the very good performance of the sparse grid rule.
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Figure 3.15: For the same set up as in Figure 3.14, we show the different candidates for
the termination criterion. Note the similar behaviour.
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Chapter 4

Algorithm

Below, the main steps performed in our program are summarized. The procedure
is similar in the (q)MC-case.

Sparse Grid FE Stochastic Collocation:
• Define scenario (assign admissible regions to the

molecules), select quadrature rule and termination

criterion.

• Repeat until integration converges:

1. Calculate sparse grid quadrature points and,

if there are any, incorporate old results to

exploit nesting.

Then, collocate in the stochastic domain:

(a) Place molecules according to quadrature

point and generate mesh.

(b) Compute FE-approximation in the spatial

domain by solving the linear as well as the

nonlinear Poisson-Boltzmann equation.

(c) Calculate current in transducer.

2. Use quadrature rule to estimate expected value

and variance of the current.

3. Increment level if termination criterion is not

satisfied.

• Post-processing, i.e., analysing the impact of the

number of molecules and their respective position

and/or angle on the current.

47



Chapter 5

Numerical Results

Before we present the numerical results, some remarks regarding the investigated
scenarios are in order. As already indicated in Section 2.1.2, we assign to each
molecule a certain region on the boundary layer. These regions, intervals in our
case, are chosen such that the molecules do not overlap after rotations or trans-
lations. We create scenarios by placing different numbers of molecules in each
of the five regions, which we index from left to right, of the boundary layer (re-
call Figure 2.1). Using a row vector M, we can describe the situation by writing
M = (m1,m2,m3,m4,m5), where the ith entry denotes the number of molecules
occupying the ith face. Let d be the number of stochastic dimensions; we have
d = 2(m1 +m2 +m3 +m4 +m5), since every molecule has two degrees of free-
dom. To keep the number of dimensions as low a possible, we restrict ourselves
to ssDNA strands of equal size. A scenario is then defined by prescribing the
molecule type, i.e., the number of base pairs n, the ion concentration κE as well
as the mi. The considered cases are as follows:

• Scenario 1: M = m(0,1,1,1,0), with m = 1,2,3(,4), κE = 10mM,30mM,
100mM and n = 12,20.

• Scenario 2: M = m(1,1,1,1,1), with m = 1,2,3,4 and κE = 10mM and
n = 12.

Each scenario is then investigated by means of the numerical methods developed
in Chapter 3. Figure 5.1 illustrates scenario 2 for m = 1,2,3. To get a better
understanding for cost of the stochastic collocation procedure, Table 5.1 gives the
point count of the Gauss-Patterson sparse grid rule (which we will from now on
abbreviate by SG) used in the simulations. We mention that scenario 2 is only
considered in the beginning to obtain information regarding the anisotropy of the
problem. Later on we focus on Scenario 1 to reduce the enormous computational
effort.
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Figure 5.1: Exemplary distribution of molecules in scenario 2 (from left to right: m =
1,2,3). The black lines indicate the admissible regions in which the molecules reside.

Level l
m d 1 2 3 4 5 6
1 6 13 97 545 2561 10625 40193
2 12 25 337 3249 25089 164865 956929
3 18 37 721 9841 105601 948289
4 24 49 1249 22049 302849

Table 5.1: The number of grid points for a given number of molecules m per admissible
region and level l of the sparse grid rule (Gauss-Patterson) in Scenario 1. The number is
of course far larger in scenario 2.

In Section 2.1.2, we outlined that due to the surface charge, the angles of the
molecules are distributed according to certain probability density functions p that
were determined experimentally. Following the arguments in Section 3.2, it is ad-
vantageous to use a quadrature rule which is defined with respect to this weight
function p. However, the derivation of a nested quadrature rule for an arbitrary
weight function is a non-trivial task and we therefore resort to the following strat-
egy. First, we assume a uniform distribution for which our developed methods
are directly applicable. Then we compare these results to (q)MC simulations, for
which it is rather simple (at least in our case) to create random numbers distributed
according to the weight function p. We shall denote these methods by w(q)MC.
To generate the random numbers, we apply the well-known inversion method.

Inversion Method:
Let X be a continuous random variable with probability density function (pdf)
fX . The cumulative distribution function (cdf) FX is given by FX(x) =

∫ x
−∞

f (t)dt.
Clearly we have FX : R 7→ [0,1] and note, that Y = FX(X) is uniformly distributed
on [0,1]. Therefore, if Y is uniformly distributed on [0,1] and X as above, then
the cdf of the random variable given by F−1

X (Y ) is FX . Since number generators

49



Numerical Results

for uniformly distributed numbers are widely available, this idea can be used to
obtain numbers for arbitrary distributions given that one can invert the cdf. To
summarize, one performs the following steps:

1. Generate uniformly distributed (quasi) random number y ∈ [0,1].

2. Compute x, such that FX(x) = y. x is then distributed according to fX .

In our case, we invert a piecewise linear approximation of the cdf FX . Note that

Figure 5.2: Probability density function of the angles of a ssDNA strand with 20 base
pairs in a solute with an ion concentration of 30 mM, according to [16]. The histogram
shows a random sample produced using the inversion method.

for numerical reasons we do not include the (constant) surface charge, which is
no severe restriction, since we are primarily interested in the fluctuations.

Since stochastic collocation requires solving the underlying problem at a pre-
scribed set of nodes, we included an example. In the first step, see Figure 5.3,
the molecules are placed according to the collocation point and in the second step,
see Figure 5.4, the respective solution u of the PBE equation is calculated to com-
pute the current I through the transducer.
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Figure 5.3: A certain molecule distribution corresponding to scenario 1 with m = 2 and
n = 12. On the left hand side we see a sketch of illustrating how the molecules are placed
and on the right hand side we see a part of the unstructured mesh generated for the finite-
element method.

Figure 5.4: Left: The solution u of the LPBE (top) as well as of the PBE (bottom). Right:
the solution in the cross section of the transducer only. The ‘bumps’ in the electrostatic
potential close to the boundary stem from the molecules. Note the clear difference be-
tween the two solutions. In the linearised case, the the effect of the molecules is more
pronounced, whereas in the non-linear case their electric field is screened to a larger ex-
tent. In this case we obtain ILPBE = 1.0807 ·10−11 A and IPBE = 4.8226 ·10−13 A.
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Numerical Results

5.1 Comparison of Scenario 1 and 2
We begin with a comparison of scenarios 1 and 2. The ion concentration in this
case is 10 mM and we have molecule consisting of n = 12 base pairs. Figure 5.5
shows the current I in the transducer for both scenarios.

Figure 5.5: PBE, SG results: We observe fast convergence and similar results for small
m. This indicates, that the molecules that reside to the left and right hand side of the
transducer have a lesser impact on the current, implying that our problem is anisotropic.
However, as m grows, more of these molecules are located closer to the transducer and
the effect diminishes.
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5.1 Comparison of Scenario 1 and 2

Figure 5.6: LPBE, SG results: The difference to the non-linearised case in Figure 5.5 is
obvious, although the effect is exaggerated due to the far larger current for m = 4 which
makes scaling difficult. We see that the results have not yet converged. Note that for
increasing m, the quadrature rule places more points near the boundary of the integration
domain, see Figure 3.8, and therefore more samples with molecules lying almost flat on
the boundary surface are considered. Since in the linearised case the effect of screening
is reduced, the current increases much faster than in the non-linear case and higher levels
are necessary to resolve this behaviour. Compare the speed of convergence for m = 1 in
both cases.
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Numerical Results

5.2 Scenario 1 – PBE: 10 mM and 30 mM
For the remainder of this chapter we only consider scenario 1 and start with the
results for an ion concentration of 10 mM and ssDNA strands with 12 base pairs.

Figure 5.7: PBE, SG results: We observe fast convergence and have no difficulty in
distinguishing the cases relating to different m, highlighting the high sensitivity of the
device. The error bars showing the standard deviation indicate that the fluctuations are
comparatively small, the likely reason being the screening of the molecules.
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5.2 Scenario 1 – PBE: 10 mM and 30 mM

Figure 5.8: PBE, MC results: The situation is comparable to the one already described in
Figure 5.7, note in particular the very similar values for the current. The convergence in
the sparse grid case is faster, at least in lower dimensions.
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Numerical Results

Figure 5.9: PBE, qMC results: The situation is comparable to the one already described
in Figure 5.7, note in particular the very similar values for the current. Convergence is
certainly faster than in the MC case, which was to be expected, and is even slightly faster
than in the sparse grid case.
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5.2 Scenario 1 – PBE: 10 mM and 30 mM

Figure 5.10: PBE, wMC results: As discussed above, we now observe regions which are
sampled with very low probability. Using a sample chosen according to the calculated
probability density, we observe a difference of about 5% compared with the MC case.
This effect is not more pronounced, since molecules that stay away from the surface have
already a lesser impact due to screening.
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Numerical Results

Figure 5.11: PBE, wqQM results: For the results are, besides the faster convergence,
very similar and we refer to the discussion in Figure 5.10.
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5.2 Scenario 1 – PBE: 10 mM and 30 mM

In the following, we step up the ion concentration to 30 mM and now consider
ssDNA strands with 20 base pairs.

Figure 5.12: PBE, SG results: We again observe quick convergence and have no diffi-
culty in distinguishing the cases relating to different m, highlighting the high sensitivity
of the device also for higher ion concentrations. Note however, that due to the higher
concentration, the current is now significantly smaller than in the 10 mM case depicted in
Figure 5.7.
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Numerical Results

Figure 5.13: PBE, MC results: Again the results agree very well with the ones presented
in Figure 5.12, note in particular the very similar values for the current.
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5.2 Scenario 1 – PBE: 10 mM and 30 mM

Figure 5.14: PBE, qMC results: The situation is comparable to the one already described
in Figure 5.12, note in particular the very similar values for the current. Convergence is
certainly faster than in the MC case, which can be expected, and comparable to the sparse
grid case.
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Numerical Results

Figure 5.15: PBE, wMC results: As can be seen from Figure 5.2, there is a region where
the probability density function is almost zero, restricting the set of admissible angels.
Therefore, the difference in the current is now clearly visible. Note further, that the current
is larger here than in Figure 5.13, which is reasonable since we only consider orientations,
i.e., the molecules lie flat, which have a large impact on the current.
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5.2 Scenario 1 – PBE: 10 mM and 30 mM

Figure 5.16: PBE, wqQM results: We refer to Figure 5.15 for the discussion therein.
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Numerical Results

5.3 Scenario 1 – LPBE: 100 mM
As already illustrated and discussed in Figure 5.6, the results in the linearised dif-
fer greatly from the more realistic non-linear case. However, the situation changes
when we consider a much larger ion concentration of 100 mM. The molecules we
are again ssDNA strands consisting of 12 base pairs. Figure 5.17 shows the results
for the non-linear equation and the sparse grid approximation whereas Figure 5.18
shows the results for the linear equation.

Figure 5.17: PBE, SG results: In the nonlinear case, we observe a behaviour similar to
the one already discussed above in the other examples, see for example the Figures 5.7 or
5.12.
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5.3 Scenario 1 – LPBE: 100 mM

Figure 5.18: LPBE, SG results: In the linearised case, in contrast to the lower ion concen-
tration of 10 mM depicted in Figure 5.6, we now indeed observe convergence, justifying
the arguments stated there. For such a large ion concentration, the molecules are effec-
tively screened also in the linearised case, mitigating the dependency on the angle and
allowing faster convergence already for lower levels.
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Chapter 6

Conclusion

In this thesis, we aimed to enhance numerical simulation methods for nanowire
sensors by estimating the impact of uncertainties (or noise and fluctuations) in the
model. To this end, we presented two different non-intrusive methods for uncer-
tainty quantification: Besides the classical (q)MC approach, we also considered a
stochastic collocation scheme based on the Smolyak algorithm for tensor product
problems.
The numerical results show a very good agreement between the different methods
and prove the Smolyak sparse grid quadrature to be superior to the classical sam-
pling schemes, at least for a moderate number of dimensions. Since the method
is non-intrusive, it can be parallelised without further modifications, as has been
done here, and provides an effective framework to deal with the stochastic lin-
ear and nonlinear Poisson-Boltzmann equations. We paid particular attention to
the more involved non-linear case and the very different behaviour of the solution
highlights the importance of addressing the problem in a proper fashion.
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