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INTRODUCTION

Approximation Theory is one of the oldest branches of Numerical Mathemat-
ics. The historical evolution of the methods and results of Approximation
Theory traces back to Leonhard Euler 1 in 1777. 2

Approximation Theory determines how functions can be best approximated
by simpler or more tractable functions. The ambition is to make the approx-
imation as close as possible to the effective function. It also explores the size
and properties of the error introduced thereby.
Polynomials and rational functions turn out to be the most natural instru-
ment to achieve a fairly good approximation with Building blocks which are
too complicated.

The goal of this thesis is to analyse and compare two common methods of
Approximation Theory, namely Interpolation and Quasi-interpolation.

The first chapter of this thesis deals with the interpolation of a function by
different interpolating polynomials, for instance Lagrange polynomials,
Newton Divided Difference Formula, piecewise linear polynomials, cubic splines
and B-Splines.

The second chapter is concerned with Spline-type spaces, respectively principal-
shift invariant spaces, and the Riesz basic sequences generating them. Within
the Spline-type spaces the various defintions of the quasi-interpolant and its

1Leonhard Euler (1707-1783) was a Swiss mathematician, who made enormous
improvements in lots of mathematical domains - such as analytic geometry, trigonometry,
geometry, calculus and number theory.

2To read more about the historical background see [31].
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characteristics can be discussed. An iterative procedure indicates exactly the
correspondence between interpolating and quasi-interpolating methods, and
a special case of functions, the radial basis functions, with its qualities are
demonstrated.

In the third chapter some experiments in MATLAB are described in order
to provide the reader with insight on both approximation methods. A few
examples show the differences, the advantages and the disadvantages of both
methods. The reader should see that in several cases it is even better to
use quasi-interpolation than interpolation. Although the error estimates for
quasi-interpolation are not as strong as similar interpolation, it may be ad-
vantageous to apply nevertheless quasi-interpolants instead of interpolating
methods, because no linear system of equations has to be solved.
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CHAPTER 1

INTERPOLATION

The first commencements in Interpolation Theory started around 300 BC
in the ancient Babylon and Greece. By using not only linear but also more
complex interpolation methods they predicted the position of the sun, moon
and the familiar planets. The beneficiaries were the farmers, who could cal-
culate their planting strategies of their crops on these predictions.
In early-medieval China and India the first utilization of interpolation theory
dates back to around 600 AC. The astronom Liù Zhuó worked with a second
order interpolation formula and produced the “Imperial Standard Calendar”.
The word “interpolation” itself has been used first by J. Wallis in 1655.
Interpolation Theory reached the Western countries only after a great revo-
lution in scientific thinking. The theories of Newton influenced the advance-
ment of mathematics including the Interpolation Theory a lot. (“There is
no single person who did so much for this field, as for so many others, as
Newton.”)1

Throughout history interpolation has always been a very important issue
in physics, astronomy and mathematics. The application areas concerning
mathematics were and still are Numerical Analysis and Approximation The-
ory. In the mathematical subfield of numerical analysis, interpolation is a
method to approximate functions which are known only at a finite set of
points.

1To read more about the historical background see [20].
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Given a sequence of n + 1 pairwise distinct numbers x0, x1, ..., xn (called
nodes) and n+ 1 corresponding values y0, y1, ..., yn. The problem consists of
finding a function f so that

f(xi) = yi for i = 0, 1, ..., n .

A pair (xi, yi) is then called a data point and f is called an interpolant
for all the data points.

The quality of the interpolation not only depends on the chosen interpolation
method, but also on the class of interpolating functions.
A very elementary class of interpolating functions are the polynomials. Their
big advantage is the approximation of any continuous functions in a bounded
interval with arbitrarily small error. But if the data points are given in a
wide interval, the polynomials tend to oscillate near the ends of these inter-
val. Therefore polynomials are only used over narrow intervals and larger
intervals are subdivided in smaller ones.

This operation methode leads to the interpolation by piecewise polynomials.
In that class the splines are of extreme importance, because they have very
strong smoothness and excellent approximation properties.
Originally splines were developed for ship-building. The challenge was to
draw a smooth curve through a set of points. To solve that problem the
architects placed metal weights (nodes) at the control points, and bend a
thin metal or wooden beam (spline) through the weights. So the influence of
each weight was greatest at the point of contact, and diminished smoothly
along the spline. To get more control over a certain region, more weights
were added.

Figure 1.1: Spline and Weights
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1.1 Lagrange-Interpolation

Lagrange-Interpolation was first discovered by Edward Waring in 1779, and
16 years later Lagrange proposed the same formula.
Nowadays Lagrange-Interpolation is a very well-established classical tech-
nique in Interpolation Theory.

Given a set of n+ 1 data points (xi, yi), the problem is to find a polynomial
pn(x) ∈ Pn such that

pn(x) = a0 + a1x+ ...+ anx
n ,

which satisfys the condition

pn(xi) = yi for i = 0, 1, ..., n .

Definition 1.1. Pn denotes the vector space (over R) of polynomials of
degree ≤ n in one variable. Its dimension over R is (n+ 1).

Theorem 1.2. For any pairwise distinct points x0, x1, ..., xn and n+1 corre-
sponding values y0, y1, ..., yn, there is a unique polynomial pn ∈ Pn such that
pn(xi) = yi for i = 0, 1, ..., n.

Proof.
Uniqueness: To prove uniqueness, suppose that qn is an arbitrary interpo-
lating polynomial of degree ≤ n with qn(xi) = yi for i = 0, 1, ..., n. Then the
difference polynomial pn − qn is of degree ≤ n and vanishes at n+ 1 distinct
points xi. So pn − qn has to be the null polynomial. Therefore, pn ≡ qn.
Existence: By using a more constructive approach, the existence can be
proved. If {Li}ni=0 is a basis for Pn, then the polynomial pn is of the form

pn(x) =
n∑
i=0

biLi(x)

with the property that

pn(xi) =
n∑
j=0

bjLj(xj) = yi, i = 0, 1, ..., n. (1.1)
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If the definition of the polynomials Li ∈ Pn is

Li(x) =
n∏
j=0,
j 6=i

x− xj
xi − xj

i = 0, 1, ..., n (1.2)

then Li(x) = δij
2 and from (1.1) immediately follows that bi = yi.

So the polynomials {Li : i = 0, 1, ..., n} form a basis for Pn. Hence the inter-
polating polynomial exists and has the following form

pn(x) =
n∑
i=0

yiLi(x) . (1.3)

Formula (1.2) bears the name Lagrange polynomials. Frequently (1.3) is
written

pn(x) =
n∑
i=0

ω(x)

(x− xi)ω′(xi)
yi

with ω(x) =
n∏
i=0

(x− xi).

Example 1.3. Find the Lagrange polynomials of the Sinus-Function through
the points (−π, 0), (−π

2
,−1), (0, 0), (π

2
, 1) and (π, 0) !

L0(x) =
(x+π

2
)·(x−0)·(x−π

2
)·(x−π)

(−π+π
2

)·(−π−0)(−π−π
2

)·(−π−π)
= x·(x−π)·(2x+π)·(2x−π)

6π4

L1(x) =
(x+π)·(x−0)·(x−π

2
)·(x−π)

(−π
2

+π)·(−π
2
−0)(−π

2
−π

2
)·(−π

2
−π)

= 4x·(x+π)·(2x−π)·(π−x)
3π4 etc.

2δij is called the Kronecker-Delta. δij=

{
0 if i 6= j

1 if i = j
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Figure 1.2: Interpolating Polynomial for the Sinus-Function

Lagrange Interpolation is simple, but there exist several disadvantages. Firstly
the individual Lagrange polynomials are very complicated especially in the
case of numerical calculations. Secondly they depend on the location of pa-
rameter values and therefore all of them have to be recomputed whenever
any one of the parameter values is being changed.
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1.2 Newton-Interpolation

Although the Lagrange polynomials solve the interpolation problem com-
pletely, there are lots of situations in which a different representation of the
interpolation polynomial is more useful.
For practical applications and to minimize the computational cost the Newton-
Interpolation is more convenient.

Given again a set of n+1 distinct data points (xi, yi) (i = 0, 1, ..., n), Newton
searched for a series of unknown coefficients a0, a1, ..., an so that the interpo-
lation polynomial satisfies pn(xi) = f(xi) = yi and can be written as

pn(x) = a0+a1(x−x0)+a2(x−x0)(x−x1)+...+an(x−x0)·...·(x−xn−1). (1.4)

The unknown coefficients ai (i = 0, 1, ...n) can be determined by solving (1.4)
recursively.:

y0 = pn(x0) = a0 → a0 = y0 = f [x0]
y1 = pn(x1) = a0 + a1(x1 − x0) → a1 = y1−y0

x1−x0
= f [x0, x1]

f [x0, x1] is called the first-order divided difference of f .
The same procedure is used to find the second-order divided difference.:

y2 = pn(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

→ a2 =
y2−y0
x2−x0

− y1−y0
x1−x0

x2−x1
= f [x0, x1, x2]

Generally the n-th order divided difference is denoted by

an = f [x0, x1, ..., xn] .

With this additional information, the interpolating polynomial (1.4) obtains
the following form

pn(x) = f [x0]+f [x0, x1] (x−x0)+...+f [x0, x1, ..., xn] (x−x0)·(x−x1)·...·(x−xn−1).

This equation is called the Newton Divided Difference Formula.
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With the aid of the divided differences, it is possible to evaluate the coeffi-
cients of the interpolating polynomial. Therefore the divided differences are
written in form of a table

x0 f(x0)
f [x0, x1]

x1 f(x1) f [x0, x1, x2]
f [x1, x2]

x2 f(x2) f [x1, x2, x3]
. . .

f [x2, x3] f [x0, x1, ..., xn] ,

x3 f(x3)
...

...
... f [xn−1, xn]

xn f(xn)

and they are computed by the recursive formula

f [xk, xk+1, ..., xk+j] =
f [xk+1, ..., xk+j]− f [xk, ..., xk+j−1]

xk+j − xk
(for j = 2, ..., n and k = 0, 1, ..., n−j) with the initial condition f(x0) = f [x0].

This formula implicates that for each nonnegative integer i, the divided dif-
ference f [x0, x1, ..., xi] only depends on the interpolation points x0, x1, ..., xi
and the value of f(x) at these points.
Hence the coefficients a0, a1, ..., an do not change when some new data points
will be added. That is the most important advantage of Newton Interpola-
tion.

Example 1.4. Find the interpolating polynomial through the points (−2, 0),
(−1, 1), (0, 0), (1, 1) and (2, 0) by using divided differences!

xi f(xi) f [xi, xi+1] f [xi, ..., xi+2] f [xi, ..., xi+3] f [xi, ..., xi+4]
-2 0

1
-1 1 -1

-1 2
3

0 0 1 -1
3

1 -2
3

1 1 -1
-1

2 0
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The coefficients of the interpolating polynomial are given by the first entries
of each column. Thus pn(x) is

pn(x) = 0 + 1 · (x+ 2) + (−1) · (x+ 2)(x+ 1) + 2
3
· (x+ 2)(x+ 1)(x− 0)

+(−1
3
) · (x+ 2)(x+ 1)(x− 0)(x− 1)

= x4−4x2

3
.

Figure 1.3: Interpolating Polynomial

Suppose that the given data points (xi, yi) (for i = 0, 1, ..., n) correlate to a
real-valued function f(x) defined on an interval [a, b]. If pn(x) is the inter-
polating polynomial then

f(x) = pn(x) + f [x0, ..., xn, x] (x− x0) · ... · (x− xn).

Consequentially the interpolation error is given by

f(x)− pn(x) = f [x0, ..., xn, x] (x− x0) · ... · (x− xn).
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Theorem 1.5. 3 Suppose that the function f : [a, b] → R is (n + 1)-times
continuously differentiable.

(i) If x0, ..., xn ∈ [a, b], 0 ≤ i ≤ n, then

f [x0, ..., xi] =
f (i)(ξ)

i!
when ξ ∈ [a, b] .

(ii) The error of the interpolation polynomial pn(x) to f at x0, ..., xn ∈ [a, b]
can be written as

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
· (x− x0) · ... · (x− xn) for ξ ∈ [a, b] .

Corollary 1.6. If x, x0, ..., xn ∈ [a, b], then

|f(x)− pn(x)| ≤ ‖ f
(n+1) ‖∞

(n+ 1)!
· (x− x0) · ... · (x− xn). (1.5)

3To prove Theorem 1.5. see [21] page 138-139.
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1.3 Piecewise Interpolation

Since polynomial interpolation has good approximation properties on nar-
row intervals, it sometimes failures on wide ones. This yields to piecewise
interpolation, in particular to spline interpolation.

1.3.1 Piecewise Linear Interpolation

Before spline interpolation will be embraced, take a look at the simplest case
of piecewise linear interpolation.

Definition 1.7.

(i) A grid on [a, b] is a set ∆ = {x0, x1, ..., xn} satisfying

a = x0 < x1 < x2 < ... < xn−1 < xn = b .

x0, x1, ..., xn are called the nodes of ∆, and h := max {|xj+1 − xj| |j = 0, ..., n− 1}
is called mesh size of ∆.
A grid ∆ = {x0, x1, ..., xn} is called equispaced if

xi = a+ i · h for i = 0, 1, ..., n ;

the mesh size is then h = b−a
n

.

(ii) A function p : [a, b] → R is called piecewise linear over a gird ∆
if it is continuous and agrees on each interval [xi, xi+1] with a linear
polynomial.

(iii) On the space of continuous, real-valued functions f defined on the in-
terval [a, b], one defines the norms

‖ f ‖∞:= sup {|f(x)||x ∈ [a, b]} 4

and

‖ f ‖2:=

√∫ b

a

f(x)2dx 5 .

4‖ f ‖∞ is called the supremum norm.
5‖ f ‖2 is called the euclidean norm.

17



The choice of the grid ∆ for piecewise interpolation is very simple, because
it must be the set of the interpolating points. Therefore the interpolation
condition

S(xi) = f(xi) for i = 0, 1, ..., n

guarantees continuity in the interval [a, b], and there exists a unique inter-
polant

S(x) = f(xi) + f [xi, xi+1] (x− xi) ∀x ∈ [xi, xi+1] .

The approximation is more accurate, if the mesh size h is small (i.e., if the
data points are closely spaced).

Theorem 1.8. Let S(x) be a piecewise linear interpolating function on the
grid ∆ = {x1, ..., xn} with mesh size h over [a, b]. If the function f(x) to be
interpolated is twice continuously differentiable, then

|f(x)− S(x)| ≤ h2

8
‖ f ′′ ‖∞ ∀x ∈ [a, b] .

Proof. For x ∈ [xi, xi+1], the relation

f(x)− S(x) = f [xi, xi+1, x] (x− xi)(x− xi+1)

holds.
Because of equation (1.5) the bound for the error is

|f(x)− S(x)| ≤ 1

2
‖ f ′′ ‖∞ ·|(x− xi)(x− xi+1)| .

The maximum of the quadratic function (x− xi)(x− xi+1) over the interval
[xi, xi+1] is incurred at the midpoint

x =
xi + xi+1

2
,

therefore following inequality is essential

(x− xi)(x− xi+1) ≤ h2

4
.

So the error will be bounded anywhere on the interval [a, b] by

|f(x)− S(x)| ≤ h2

8
‖ f ′′ ‖∞ .
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Figure 1.4: Piecewise Linear Interpolation
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1.3.2 Cubic Splines

A special class of piecewise polynomials represent the splines, which have
strong smoothness and excellent approximation properties.

Definition 1.9. Let x0, x1, ..., xn be n+1 distinct nodes and ∆ = {x0, x1, ..., xn}
be a grid on [a, b]. A spline of order k over ∆ is a function S : [a, b] → R
such that

S|[xi,xi+1] ∈ Pk for i = 0, 1, ..., n− 1

and

S ∈ Ck−1 [a, b] . (1.6)

Sk,∆ denotes the space of splines S over ∆ with dim(Sk,∆)=n+k.

Apparently, any polynomial on [a, b] of degree k is a spline; although the main
idea behind spline interpolation is to assemble polynomials, since the given
function f(x) is represented by a different polynomial over each subinterval.
Unfortunately, there can occure discontinuity in its k-th derivative at the
internal nodes x1, x2, ..., xn−1. But the result of equation (1.6) is

S
(j)
i−1(xi) = S

(j)
i (xi) for i = 1, ..., n− 1; j = 0, ..., k − 1,

where Si = S|[xi,xi+1].

So a spline can be represented as

S(x) =
k∑
i=0

Si(x− xi)i if x ∈ [xi, xi+1] .

The simplest form of spline interpolation are linear splines (k = 1), which
are equivalent to linear interpolation; but the most familiar ones are cubic
splines (k = 3).
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Figure 1.5: Cubic Spline

Definition 1.10. Let ∆ = {x0, x1, ..., xn} be a grid over [a, b] with spacings

hi = xi+1 − xi for i = 0, 1, ..., n− 1.

Let f(x) be a function defined on an interval [a, b], and let x0, ..., xn be n+ 1
distinct nodes with

a = x0 < x1 < ... < xn−1 < xn = b.

A cubic spline is a piecewise polynomial S(x) that satisfies the following
conditions:

(i) On each interval [xi, xi+1] (i = 0, 1, ..., n− 1)

S(x) = Si(x) ,

where Si(x) is a cubic spline.

(ii) The interpolation condition S(xi) = f(xi) (i = 0, 1, ..., n) holds.

(iii) S(x) is twice continuously differentiable on (a, b).

(iv) Either one of the following boundary conditions is satisfied:

• S ′′(a) = S ′′(b) = 0, then the spline is called natural cubic
spline.

• S ′(a) = f ′(a) and S ′(b) = f ′(b), then the spline is called clamped
cubic spline.
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Clamped cubic splines approximate the function f(x) more accurate, be-
cause they comprehend more information about f(x). However, if the values
of f ′(x) are not receivable, then other boundary conditions like the natural
ones are applied.

To construct a cubic spline, it is clear from Definition 1.10. that the piecewise
polynomial is of the form

S(x) = Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di. (1.7)

To get the value of S(x) in each subinterval [xi, xi+1], it is necessary to cal-
culate for every subinterval a different cubic polynomial.

The aim is to obtain the coefficients ai, bi, ci and di. Therefore all charac-
teristics of a cubic spline have to be used.

Si(xi) = di = yi
Si(xi+1) = aih

3
i + bih

2
i + cihi + di = yi+1

S ′i(xi) = ci
S ′i(xi+1) = 3aih

2
i + 2bihi + ci

S ′′i (xi) = 2bi = y′′i
S ′′i (xi+1) = 6aihi + 2bi = y′′i+1

(1.8)

Some translations of (1.8) lead to the coefficients

ai = 1
6hi

(y′′i+1 − y′′i )

bi = 1
2
y′′i

ci = 1
hi

(yi+1 − yi)− 1
6
hi(y

′′
i+1 + 2y′′i )

di = yi

(1.9)

By inserting the coefficients ai, bi, ci and di in equation (1.7), substituting
the index i by i− 1 and some further translations, one receives the following
equation

hi−1y
′′
i−1+2(hi−1+hi)y

′′
i +hiy

′′
i+1−

6

hi
(yi+1−yi)+

6

hi−1

(yi−yi−1) = 0. (1.10)
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All interior nodes xi (i = 1, 2, ..., n− 1) must achieve constraint (1.10). This
equation leads to a system of (n−1) linear equations for the (n−1) unknown
values y′′1 , ..., y

′′
n−1 of a natural cubic spline (y′′0 = y′′n = 0). For instance, the

linear system of equations for n = 5 is:

y′′1 y′′2 y′′3 y′′4 1

2(h0 + h1) h1
6
h0

(y1 − y0)− 6
h1

(y2 − y1) + h0y
′′
0

h1 2(h1 + h2) h2
6
h1

(y2 − y1)− 6
h2

(y3 − y2)

h2 2(h2 + h3) h3
6
h2

(y3 − y2)− 6
h3

(y4 − y3)

h3 2(h3 + h4) 6
h3

(y4 − y3)− 6
h4

(y5 − y4) + h4y
′′
5

For equispaced grids (i.e. xi = a + i · h for i = 0, 1, ..., n) the system of
equations is going to be simplified.

y′′1 y′′2 y′′3 y′′4 1

4 1 − 6
h2 (y2 − 2y1 + y0) + y′′0

1 4 1 − 6
h2 (y3 − 2y2 + y1)

1 4 1 − 6
h2 (y4 − 2y3 + y2)

1 4 − 6
h2 (y5 − 2y4 + y3) + y′′5

So to obtain a cubic spline the system Ax = b has to be solved, where the
matrix A is symmetric, tridiagonal 6 and strictly diagonally dominant7. The
Gaussian elimination algorithm yields a unique solution for both boundary
conditions.

6A (n× n) matrix A is called tridiagonal if aij = 0 for i > j + 1 or j > i+ 1.
7A matrix A = (aij) is strictly diagonally dominant if |aii| >

n∑
j=1
j 6=i

|aij |

∀i = 1, ..., n.
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Theorem 1.11. 8 Let x0, x1, ..., xn be n + 1 distinct nodes in the interval
[a, b], where

a = x0 < x1 < ... < xn−1 < xn = b ,

and let f(x) be a function defined on [a, b]. Then f(x) has a unique cubic
spline S(x) that is defined on the nodes and satisfies the natural (clamped)
boundary condition S ′′(a) = S ′′(b) = 0 (S ′(a) = f ′(a) and S ′(b) = f ′(b)).

Example 1.12. Represent the natural cubic spline for the following data
points and only for comparison show the interpolating polynomial P14(x) too.

xk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
yk 7 6 4 4 5 4 2 3 5 7 6 4 4 5 7

Figure 1.6: Natural Cubic Spline and P14(x)

After knowing how to construct a cubic spline, it is time for one main property
which was not mentioned yet.

Corollary 1.13. Let f(x) ∈ C2([a, b]), and let S(x) be the natural cubic
spline interpolating f(x). Then

a∫
b

[S ′′(x)]2 dx ≤
a∫
b

[f ′′(x)]2 dx , (1.11)

where equality holds if and only if f(x) = S(x).

8To prove Theorem 1.11. see [6] page 145-148.
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Proof. It is ordinary that following equation holds

f(x) = S(x) + (f(x)− S(x)).

Therefore one gets

a∫
b

[f ′′(x)]2 dx =

a∫
b

[S ′′(x)]2 dx+ 2 ·
a∫
b

S ′′(x) · [f ′′(x)− S ′′(x)] dx

+

a∫
b

[f ′′(x)− S ′′(x)]
2
dx

︸ ︷︷ ︸
≥0

.

Using integration by parts leads to

a∫
b

S ′′(x) · [f ′′(x)− S ′′(x)] dx = S ′′(x) [f ′(x)− S ′(x)]

∣∣∣∣b
a

+

−
a∫
b

S ′′′(x) · [f ′(x)− S ′(x)] dx .

The first term S ′′(x) [f ′(x)− S ′(x)]

∣∣∣∣b
a

vanishes because of the natural bound-

ary conditions. Since S ′′′(x) is constant in every subinterval [xi, xi+1] (i.e.
S ′′′(x) = S ′′′i (x)), the second interval has the value

a∫
b

S ′′′(x) · [f ′(x)− S ′(x)] dx =
n−1∑
i=0

S ′′′i (x) · [f(x)− S(x)]

∣∣∣∣xi+1

xi

.

The function f(x) and the natural cubic spline S(x) agree at all the nodes,
and consequently all the terms of the sum above are zero.
Thus

a∫
b

[f ′′(x)]
2
dx ≥

a∫
b

[S ′′(x)]
2
dx .
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The main property (1.11) of cubic splines is called the minimum norm prop-
erty, which means that the cubic splines minimize the energy principle in
mechanics. Historical constraint (1.11) was the reason for mathematician to
grapple with the theory of splines.

Remark 1.14. The total curvature of a function f(x) is

κ(x) =
|f ′′(x)|

(1 + [f ′(x)]2)
3
2

≈ |f ′′(x)| .

Hence Corollary 1.13. can be interpreted in the following geometrical way:
The cubic spline has a total curvature that is at least as large as that of
the original function f(x). Moreover S(x) is approximately optimal over all
interpolating functions, because it has minimal total curvature.

Concerning the error estimate for cubic splines, following result holds.:

Theorem 1.15. Let ∆ = {x0, x1, ..., xn} be a grid over [a, b] with spacing
h = max

i
|xi+1 − xi| (for i=0,1,...,n-1). Let S(x) be the cubic spline interpo-

lating the function f(x) ∈ C4([a, b]), then

‖ f(x)− S(x) ‖∞≤
5

384
h4 ‖ f (4) ‖∞ .
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1.3.3 B-Splines

B-splines are a very good instance of computing splines to fit given data
points, because they form a basis for the vector space of splines Sk,∆. The
letter B is based on the fact that these splines form a basis and have
bell-shaped graphs.

Definition 1.16. Let t0 ≤ t1 ≤ ... ≤ tn be a sequence of distinct nodes. For
x ∈ R and i = 0, ..., n− k − 1 the B-splines Bi,k(x) of degree k are defined

Bi,0(x) :=

{
1 if x ∈ [ti, ti+1[

0 otherwise

Bi,k(x) := ωi,k(x)Bi,k−1(x) + (1− ωi+1,k(x))Bi+1,k−1(x) for k ≥ 1,

(1.12)

for

ωi,j(x) :=

{
x−ti
ti+j−ti if ti < ti+j

0 otherwise .

Hence, if the nodes are coincident (i.e. ti = ti+k+1) one has Bi,k ≡ 0.
Apparently formula (1.12) indicates the following properties for B-splines.:

Theorem 1.17. Let Bi,k(x) be a B-spline, then

(i) Bi,k(x) is a piecewise polynomial of degree k.

(ii) Bi,k(x) = 0 for x /∈ [ti, ti+k+1], so supp Bi,k = [ti, ti+k+1]. Thus, each
B-spline has compact support 9.

(iii) Bi,k(x) > 0 for x ∈ ]ti, ti+k+1[; Bi,k(ti) = 0 unless ti = ti+1 = ti+2 =
... = ti+k < ti+k+1, and then Bi,k(ti) = 1.

9The support of a function f(x) : C→ R is supp(f)={x ∈ R|f(x) 6= 0}.
f(x) has compact support if supp(f) is a compact set.
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(iv) Let [a, b] be an interval such that tk ≤ a and tn−k ≥ b. Then

n−k−1∑
i=0

Bi,k(x) = 1 ∀x ∈ [a, b] .

Therefore, the B-splines form a partition of unity 10 on [a, b].

(v) Let x ∈ ]ti, ti+k+1[. Then Bi,k(x) = 1 if and only if x = ti+1 = ... = ti+k.

(vi) Bi,k(x) is right-continuous (and even right-infinitely differentiable), for
all x ∈ R.

Figure 1.7: B-Splines Bi,2(x)11

Proof. Properties (i), (ii), (iii), (v) and (vi) are true for k = 0, and by
induction on k they also become clear for Bi,k.
So only property (iv) once again has to be proved by induction on k; k = 0
achieves (iv).
Let x ∈ [a, b]. Then it exists j with k ≤ j ≤ n−k−1, such that x ∈ [tj, tj+1[ .
If x = tj and Bj,k(x) = 1 one preserves immediately (iv).
In the other cases, it follows towards (ii)

n−k−1∑
i=0

Bi,k(x) =

j∑
i=j−k

Bi,k(x).

Consequently the recursive formula yields to

j∑
i=j−k

Bi,k(x) =

j∑
i=j−k

ωi,k(x)Bi,k−1(x) +

j∑
i=j−k

(1− ωi+1,k(x))Bi+1,k−1(x) .

10A partition of unity of a topological set X is a set of continuous functions {χi}i∈I
(χi : X → [0, 1]) such that

∑
i∈I

χi(x) = 1 for all x ∈ X.

11The B-splines Bi,2(x) are built from three arcs of parabolas and two half-lines with
junction C1 at the knotes.
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Some terms can be combined, so that

j∑
i=j−k

Bi,k(x) = ωj−k,k(x)Bj−k,k−1(x) +

j∑
i=j+1−k

Bi,k−1(x) +

+ (1− ωj+1,k(x))Bj+1,k−1(x) .

Due to property (ii) it is Bj−k,k−1(x) = 0 and Bj+1,k−1(x) = 0, because
x ∈ [tj, tj+1[ . So the following result holds

j∑
i=j+1−k

Bi,k−1(x) =

n−(k−1)−1∑
i=0

Bi,k−1(x) = 1 .

Remark 1.18. If tn−k = t = ... = tn = b and Bn−k−1,k(b) = 1, then the
B-spline Bn−k−1,k(x) is left-continuous at b.

Corollary 1.19. For all k ≥ 0 and all x ∈ R, Bi,k(x) is right-differentiable
and

B′i,k(x) = k

[
Bi,k−1(x)

ti+k − ti
− Bi+1,k−1(x)

ti+k+1 − ti+1

]
. (1.13)

Proof. By using induction on k, formula (1.13) is true for k = 0.
The common case is shown by differentiate definition (1.12):

B′i,k(x) = 1
ti+k−ti

Bi,k−1(x) + x−ti
ti+k−ti

B′i,k−1(x)+

+ (−1)
ti+k+1−ti+1

Bi+1,k−1(x) + ti+k+1−x
ti+k+1−ti+1

B′i+1,k−1(x) .

Now formula (1.13) is going to be inserted for B′i,k−1(x) and B′i+1,k−1(x), so
one gets

B′i,k(x) =
Bi,k−1(x)

ti+k−ti
− Bi+1,k−1(x)

ti+k+1−ti+1
+ (k − 1)

[
x−ti

ti+k−ti

(
Bi,k−2(x)

ti+k−1−ti
− Bi+1,k−2(x)

ti+k−ti+1

)
+

+ ti+k+1−x
ti+k+1−ti+1

(
Bi+1,k−2(x)

ti+k−ti+1
− Bi+2,k−2(x)

ti+k+1−ti+2

)]
.
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⇒ B′i,k(x) =
Bi,k−1(x)

ti+k−ti
− Bi+1,k−1(x)

ti+k+1−ti+1
+ k−1

ti+k−ti
x−ti

ti+k−1−ti
Bi,k−2(x)+

+ k−1
ti+k−ti+1

(
ti+k+1−x
ti+k+1−ti+1

− x−ti
ti+k−1−ti

)
Bi+1,k−2(x)+

+(−1) · k−1
ti+k+1−ti+1

ti+k+1−x
ti+k+1−ti+2

Bi+2,k−2(x)

(1.14)

To receive a more elementary form of (1.14), it is important to know that

ti+k+1−x
ti+k+1−ti+1

− x−ti
ti+k−ti

= ti+k+1−x
ti+k+1−ti+1

− ti+k+1−ti+1

ti+k+1−ti+1
+ ti+k−ti

ti+k−ti
− x−ti

ti+k−ti

= ti+k−x
ti+k−ti

− x−ti+1

ti+k+1−ti+1
.

This additional information and the correct arrangement of the terms lead
to

B′i,k(x) =
Bi,k−1(x)

ti+k−ti
− Bi+1,k−1(x)

ti+k+1−ti+1
+ k−1

ti+k−ti

[
x−ti

ti+k−1−ti
Bi,k−2(x)+

+ ti+k−x
ti+k−ti+1

Bi+1,k−2(x)
]
− k−1

ti+k+1−ti+1

[
x−ti+1

ti+k−ti+1
Bi+1,k−2(x)+

+ ti+k+1−x
ti+k+1−ti+2

Bi+2,k−2(x)
]

.

(1.15)

Now Definition 1.16. is used to get formula (1.13)

B′i,k(x) = k

[
Bi,k−1(x)

ti+k − ti
− Bi+1,k−1(x)

ti+k+1 − ti+1

]
.
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To be able to construct the required basis for Sk,∆, it is necessary to examine
a new sequence ∆̄ = {τi}i=0,...,l+k of points in [a, b].

∆ : a = t0 < t1 < . . . < tn = b

= = =

∆̄ : τ0 = . . . = τk < τk+1 < . . . < τl = . . . = τl+k

The points τi (i = 0, ..., l + k) are called knots, and they are uniquely
determined by the sequence t0, ..., tn.
A knot τi is of multiplicity r, if τi = τi+1 = . . . = τi+r−1. Hence the knots
τk and τl in the new gird ∆̄ are of multiplicity k + 1.

It is easy to show that l = n + k holds, which complies with the dimension
of the vector space Sk,∆.
Consequently the l B-splines Bi,k(x) (i = 0, ..., l − 1) of the grid ∆̄ form the
new basis of Sk,∆.

Theorem 1.20. 12 If all the knots are of multiplicity ≤ k + 1, then the
B-splines Bi,k(x) (i = 0, ..., l − 1) constitute a basis 13 for the vector space
Sk,∆.

A part and parcel of the proof of Theorem 1.20. is the following Lemma.:

Lemma 1.21. 14 For t ∈ [a, b] following result

(x− t)k =
l−1∑
i=0

ψi,k(t)Bi,k(x)

with ψi,k(t) =
k∏
j=1

(τi+j − t) and ψi,0(t) = 1 holds.

Due to Theorem 1.20. any spline S(x) ∈ Sk,∆ can be uniquely written as

S(x) =
n−1∑
i=0

diBi,k(x) .

The coefficients di are going to be calculated by De Boor’s algorithm15,
which was developed by De Boor in 1972 and is numerically stable.

12To prove Theorem 1.20. see [25] page 21 and [28] page 163-165.
13A basis of a vector space V is a linearly independent subset of V that spans V.
14To prove Lemma 1.21. see [25] page 21-22.
15To read more about De Boor’s algorithm see [3] page 63-65.
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Corollary 1.22. Let x ≥ τk, then

S(x) =
∑
i

diBi,k(x) =
∑
i

d
(1)
i Bi,k−1(x) = . . . =

∑
i

d
(k)
i Bi,0(x) ,

with
dj+1
i = ωi,k−j(x)d

(j)
i + (1− ωi,k−j(x))d

(j)
i−1

holds.

A special case of the B-splines are the cubic splines - already mentioned in
Section 1.3.2 .

Example 1.23. B-splines are a very useful tool in Approximation Theory.
An application range of the B-splines are for instance the Bernstein poly-
nomials16, which are used to build Bézier curves17.

Figure 1.8: Bézier curve

16The Bernstein polynomials over the interval [0, 1] are defined as
Bki (X) =

(
k
i

)
(1−X)k−iXi (0 ≤ i ≤ k).

17To read more about Bézier curves see [23] and [25].
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CHAPTER 2

QUASI-INTERPOLATION

The last preceding chapter delivered insight into different methods of In-
terpolation Theory. Over the past years another well-known application
area of Approximation Theory became more and more important. Quasi-
interpolation schemes are nowadays well-established among approximation
theoretican, but unfortunately have found small support in practical em-
ployments.

Isaac Schoenberg 1 and Carl de Boor 2 did a lot of research on this area.
(“The fundamental papers by Schoenberg form a monument in the history
of the subject as well as its inauguration.”3) Hence the quasi-interpolant is
often known as Schoenberg-operator by various authors.

Given a sequence of n+ 1 nodes x0, x1, ..., xn and n+ 1 corresponding values
y0, y1, ..., yn. The problem consists of finding a function Qf so that

Qf(xi) ≈ yi for i = 0, 1, ..., n .

Qf is then called quasi-interpolant operator for all the data points (xi, yi).

1Isaac Schoenberg (1903-1990) was a Romanian mathematician. He is deemed to be
the father of splines.(“Schoenberg’s more than 40 papers on splines after 1960 gave much
impetus to the rapid development of the field.”)

2Carl de Boor (born 1937) is a German-American mathematician.
3To read more about the biographical abstract of Issac Schoenberg see [2].
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In opposition to the interpolating function f(x), which fits all the given data
points, the quasi-interpolating function Qf(x) does not necessarily match
function values at all the nodes exactly.
The flexibility and the simplicity of a quasi-interpolant make it much eas-
ier to evaluate the approximant directly, without solving any linear systems
of equations. This actuality is the biggest advantage of Quasi-interpolation
schemes.

Figure 2.1: Interpolating function and Quasi-interpolating function

The earliest appearance of quasi-interpolating functions is perhaps
Bernstein’s 4 approximation, which uses Bernstein polynomials

Bk
i (x) =

(
k

i

)
xi(1− x)k−i

to build a quasi-interpolant of an univariate function f(x) on [0, 1] via

k∑
i=0

f(
i

k
)Bk

i (x), x ∈ [0, 1] .

Nowadays this method is well-known under the names of Bézier and
De Casteljau 5 and used in Computer Aided Geometric Design.

4Sergei Natanovich Bernstein (1880-1968) was a Russian and Soviet mathematician.
5Paul De Casteljau (born 1930) is a French physicist and mathematician.
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2.1 Spline-type space

Popular methods like interpolation and least squares approximation produce
a spline function from given discrete data points. Therefore both of these
approximation schemes resolve a linear system of equations with as many
unkowns as the dimension of the spline space. Hence both methods are not
suitable for real-time processing of large streams of data.

Quasi-interpolation is a good methodology that allows to obtain from given
functions or discrete data (generally regular samples of a continuous func-
tion) smooth functions that observe the general behaviour of the underlying
continuous function.

First and foremost some notations and basic facts, which are an important
issue within the Approximation Theory of shift-invariant spaces, for instance
interpolation theory, radial basis approximation, wavelets and sampling the-
ory.

Definition 2.1. A space V p is called shift-invariant space for a lattice
Λ = Zd if it is a closed linear subspace of Lp(Rd) 6 (1 ≤ p < ∞), which is
invariant under all translations, i.e. if for every λ ∈ Λ and f ∈ V p implies
f(· − λ) ∈ V p.

Whenever the shifts of a single function f ∈ Lp(Rd) (1 ≤ p < ∞) generate
the Lp-closure of all finite linear combinations of translates of f , V p is called
principal shift-invariant space.

A lot of research on this domain has been done by [10], [11], [7] and [26].

Definition 2.2. For a given Hilbert space H a sequence {ϕk}∞k=1 is called a
Riesz basis or a Riesz basic sequence if there exist constants A,B > 0
such that for all c ∈ `2 :7

A · ‖c‖2
`2 ≤ ‖

∞∑
k=1

ckϕk‖2 ≤ B · ‖c‖2
`2 (2.1)

In reference to the Linear Algebra a sequence {ϕk}∞k=1 is a Riesz basis if and
only if the corresponding Gram matrix, whose entries are the scalar products
(〈ϕk, ϕk′〉)k,k′ , is invertible on (`2, ‖·‖2). This can be used to prove Lemma
2.3.:

6The Lebesgue space Lp is the completion of the continuous functions with compact
support using the Lp-norm.

7`2 =
{
{xn}∞n=1 | ‖x‖2`2 :=

∑∞
n=1 |xn|2 <∞

}
is a Hilbert space.
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Lemma 2.3. A countable family {ϕk}∞k=1 in H is a Riesz basic sequence if
and only if there exists some orthonormal family {ψk}∞k=1 and an invertible
mapping T : H → H such that ϕk = Tψk.

Remark 2.4. It is well justified to call the quotient of the optimal values for
A and B the Riesz condition number of the Riesz basic sequence, i.e.

κ =
B

A
.

Lemma 2.5. If Λ is a lattice in Rd and ϕ ∈ Cc(Rd) 8 the familiy of functions
such that {Tλϕ}λ∈Λ

9 is a Riesz basis, then the following statements are
equivalent for any 1 ≤ p <∞:

(i) f ∈ Lp(Rd) and f =
∑

λ∈Λ cλTλϕ

(ii) f =
∑

λ∈Λ cλTλϕ with cλ ∈ `p

(iii) f is in the Lp-closure of the finite linear combinations of the form∑K
k=1 cλkTλkϕ.

Proof. To show the correctness of those statements, let p = 2 and ϕλ = Tλϕ.
The general case requires more detailed knowledge of function spaces, in
particular Wiener Amalgam spaces10.
(ii)⇒ (iii): If c ∈ `2, then the finite partial sums of the form∑

λ∈F

cλϕλ =
K∑
k=1

cλkϕλk ,

for F ⊆ Λ is finite, form a Cauchy sequence11, because for K1 < K2

‖
K1∑
k=1

cλkϕλk −
K2∑
k=1

cλkϕλk‖2 ≤ ‖
K2∑

k=K1+1

cλkϕλk‖2 ≤ B ·
K2∑

k=K1+1

|cλk |2︸ ︷︷ ︸
→ 0

for K1, K2 →∞
8Cc(Rd) =

{
f : Rd → C| f is complex-valued, continuous and has compact support

}
9The translation operator T moves the graph of the function f by the vector x to

another position, i.e. Tx : Txf(z) = [Txf ] (z) = f(z − x)
10The Wiener Amalgam space with local component X, a normed space with ‖·‖X ,

and global component Lpm, a weighted Lp space with non-negative weight m, is defined
by W (X,Lpm) :=

{
f :
(∫

Rd‖f(·)ḡ(· − x)‖pXmp(x)dx
)1/p

<∞
}

, where g is a continuously
differentiable, compactly supported function.

11A sequence of real numbers {xn}n is a Cauchy sequence if for every ε > 0 there
exists N > 0 such that |xm − xn| < ε ∀m,n > N .
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using the upper estimate in (2.1).
Consequently the completenes of the Hilbert space L2 yields the convergence
to f =

∑∞
k=1 cλkTλkϕ, i.e.

‖
K∑
k=1

cλkTλkϕ− f‖`2 → 0 for K →∞.

(i) ⇒ (ii): L2-convergence of the series
∑

λ∈Λ cλTλϕ implies that the corre-
sponding sequence {cλ}λ∈Λ is in `2.

Finally assume that fn
L2

→ f with fn =
∑∞

k=1 c
(n)
k ϕk. Since fn is a Cauchy

sequence by (2.1), then
{
c(n)
}

is a Cauchy sequence in `2, again by the lower
estimate in (2.1).
Since `2 is complete there exists c ∈ `2(Λ) such that c = limn→∞ c

(n) in `2,
and hence f ≡

∑∞
k=1 ckϕk.

Lemma 2.6. shows a nice extra property for
∑

k∈Zd ckϕk(x):

Lemma 2.6. Unique representation property
If
∑

k∈Zd ckϕk(x) = f(x) =
∑

k∈Zd dkϕk(x), then ck = dk ∀k ∈ Zd.

Proof.
∑

k∈Zd(ck − dk)ϕk(x) = 0
{ϕk}k∈Zd is a Riesz basic sequence and therefore by (2.1)

A · ‖c− d‖2 ≤ ‖
∑
k∈Zd

(ck − dk)ϕk︸ ︷︷ ︸
=0

‖2 .

This implies c = d and consequently ck = dk ∀k ∈ Zd.

Hence the Spline-type space for a function f can be defined as the
Lp-closure of all finite linear combinations of translates of f . An important
special case, obtained by the choice Λ = aZd, is given by Definition 2.7.:

Definition 2.7. Given a > 0 and a function ϕ ∈ L2(Rd). Vϕ,a is called
Spline-type space generated by the pair (ϕ, a) if the family (Takϕ)k∈Zd is a
Riesz basis for Vϕ,a, its closed linear span in L2(Rd).

Vϕ,a is translation invariant along the lattice aZd. Based on the circumstances
that those spaces are generated by a single function and its translates, they

39



are sometimes called principal shift-invariant spaces.
(Takϕ)k∈Zd accomplishes the Riesz basis property, and therefore

Vϕ,a =

{∑
k∈Zd

ckTakϕ | c ∈ `2(Zd)

}
.

Before discussing the verification of the Riesz basis property, one needs the
following definition first.:

Definition 2.8. The convolution f ∗ g of f with g is defined to be

(f ∗ g)(x) =

∫
R
f(y)g(x− y)dy .

The Riesz basic sequence condition of (Takϕ)k∈Zd is demonstrated by

〈Takϕ, Tak′ϕ〉 = 〈ϕ, T−akTak′ϕ〉 = 〈ϕ, Tak′−akϕ〉 .

That shows that the corresponding Gram matrix Tak′−ak is circulant with
entries being the sampling values of the autocorrelation function ϕ ∗ϕ∗ with
ϕ∗(x) = ϕ̄(−x). Hence (Takϕ)k∈Zd is a Riesz basic sequence if and only if
this circulant matrix is invertible.

Remark 2.9. The B-splines form a Riesz basic sequence and consequently
they are a good choice for the family (Takϕ)k∈Zd.

For any Riesz basic sequence {ϕk}k∈Zd spanning a closed subspace H0 ⊆ H
there exists another uniquely determined Riesz basic sequence {ϕ̃k}k∈Zd for
H0 such that

〈ϕk, ϕ̃k′〉 = δk,k′ ,

called the biorthogonal Riesz basic sequence. ϕ̃ := ϕ̃0 is the dual atom
of ϕ.

It is useful because it allows to determine the coefficients of f =
∑

k∈Zd ckϕk
through

ck = 〈f, ϕ̃k〉 .

More generally, for f ∈ H, one has

PH0f =
∑
k∈Zd
〈f, ϕ̃k〉ϕk.

If ϕk = Tkϕ then one can show that ϕ̃k = Tkϕ̃ holds.
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Lemma 2.10. Biorthogonality criteria
For each Riesz basic sequence (Tkϕ) the unique biorthogonal12 basis is of the
form (Tkϕ̃) for Vϕ.

Proof. If ϕ(x) = ϕ(−x) one can show that ϕ̃(x) = ϕ̃(−x).

First of all the statement ϕ̃k = T̃kϕ = Tkϕ̃ for ϕ̃ := ϕ̃0 has to be proved.

〈Takϕ̃, Tak′ϕ〉 =
〈
ϕ̃0, Ta(k′−k)ϕ

〉
=

{
1 if k = k′

0 if k 6= k′
.

By the uniqueness of the biorthogonal system one gets ϕ̃k = T̃kϕ = Tkϕ̃.
Currently the orthogonal projection P of the function f can be calculated
by

Pϕf(x) =
∑

k 〈f, ϕ̃k〉ϕk(x) =
∑

k 〈f, Tkϕ̃〉Tkϕ(x)

=
∑

k f ∗ ϕ̃(k)ϕ(x− k) = Qϕ(f ∗ ϕ̃)

with f ∗ ϕ̃(k) being the convolution of f and ϕ̃, restricted to Zd.

Now it is necessary to discuss how one can verify the Riesz basic property
and how ϕ̃ is determined.

Definition 2.11. The Fourier transform of a complex-valued function
f(x), x ∈ Rd, is defined formally by

(Ff)(s) = f̂(s) =

∫
Rd
f(x)e−2πisxdx.

Lemma 2.12. Let Λ = (aZd)⊥ = 1
a
Zd, then (Tak)k∈Zd is a Riesz basic se-

quence if and only if there exists A′, B′ > 0 such that

0 < A′ ≤
∑
λ∈ 1

a
Zd
|Tλϕ|2(s) =

∑
n∈Zd
|ϕ|2(s− n/a) ≤ B′ <∞ ∀s ∈ Rd.

In most cases this condition is easily satisfied if a is large enough, hence 1
a

is
small.

12Two sequences {vi}i and {ui}i in a Hilbert space H are biorthogonal if
〈vi, uj〉 = δij .
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Lemma 2.13. If (Takϕ) generates a Riesz basic sequence, then (Takϕ̃) is a
Riesz basic sequence too.

ϕ̃ = ϕ̃0 is characterized by its Fourier transform as follows

F(ϕ̃0)(s) =
ϕ̂(s)∑

n∈Zd |ϕ̂(s− n/a)|2
.

42



2.2 Quasi-interpolant

In the application area of Approximation Theory there does not exist a
unique definition of the quasi-interpolant. Quasi-interpolation operators are
used and defined by various mathematician in many different ways.

Definition 2.14. Given a > 0 and a function ϕ ∈ Cc(Rd) the operator Q
with

f 7→ Qf(x) =
∑
k∈Zd

f(ak)ϕ(x− ak)

is called quasi-interpolant for f, along the lattice Λ = aZd, using
the atom ϕ.

Sometimes it is useful to adapt the function ϕ to the lattice size.

Definition 2.15. Let f be a continuous function on Rd 13 and h > 0 then
the quasi-interpolant Qhf is defined by

Qhf(x) =
∑
k∈Zd

f(hk)ϕ(
x

h
− k), x ∈ Rd (2.2)

for some prescribed function ϕ on Rd.

In the general terminology one can see that Qhf is just a variant of Qf , but
with ϕ replaced by a dilated version of ϕ, namely ϕh(z) := ϕ( z

h
).

In the literature the quasi-interpolant Qhf is often called Schoenberg’s oper-
ator. Qhf is a superposition of dilated and shifted versions of ϕ, which uses
samples of the function f on the fine grid hZd to get a good approximation
of f .

For appropriate ϕ, e.g. B-splines, formula (2.2) describes an approximation
to the function f on Rd from its samples on the fine grid hZd.
Among the quasi-interpolants the most important ones are those which arise
from BUPUs.

Definition 2.16. Let ϕ ∈ Cc(Rd) be a compactly supported function and aZd

be a lattice in Rd. A sequence Φ = (Tλϕ)λ∈aZd is called a regular bounded
uniform partition of unity (BUPU) if∑

λ∈aZd
ϕ(x− λ) ≡ 1.

13Rd is the d−dimensional Euclidean space.
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Figure 2.2: Bounded uniform partition of unity (BUPU)

Remark 2.17. For B-splines the advantage of this normalization is that
BUPU, i.e. Qh(1) = 1 ∀h > 0.

Theorem 2.18. Assume that the function ϕ ∈ Cc(Rd) defines a BUPU, and
Qhf (h > 0) is the quasi-interpolant of f .
Then for all uniformly continuous 14 functions f one has

‖Qhf − f‖∞ → 0 for h→ 0 . (2.3)

The proof of statement (2.3) makes use of the oscillation function and its
properties.

Definition 2.19. For a function f on Rd and any δ > 0, the function

x 7→ oscδ(f)(x) = sup
|y|≤δ
|Tyf(x)− f(x)| = sup

y∈Bδ(x)

|f(x)− f(x+ y)|

is called the δ-oscillation function of f .

Remark 2.20. For any uniformly continuous function f

‖oscδf‖∞ → 0 for δ → 0 .

The claim of Remark 2.20. can be verified taking a closer look at the defini-
tions used.

14A real function f is uniformly continuous if ∀x, y ∀ε > 0 ∃δ > 0
|x− y| < δ ⇒ |f(x)− f(y)| < ε.
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Starting the Proof of Theorem 2.18.:

Proof. To prove the correctness of (2.3) only the following pointwise estimate
between Qhf(x) and f(x) has to be shown

|(Qhf − f)(x)| ≤ oscδ(f)(x) ∀x ∈ Rd, (2.4)

because then (2.3) follows from Remark 2.20.
One can obtain the estimate (2.4) following three steps.:

1. For h > 0 let the sequence Ψ = (ψk)k∈Zd given by ψk(x) = ϕ(x
h
− k)

be a BUPU, if
∑

k∈Zd Tkϕ ≡ 1.∑
k∈Zd

ψk(x) =
∑
k∈Zd

ϕ(
x− kh
h

) =
∑
k∈Zd

ϕ(
x

h︸︷︷︸
y= x

h

−k) =
∑
k∈Zd

ϕ(y−k) =
∑
k∈Zd

Tkϕ(y) = 1.

2. Without loss of generality supp ϕ ⊆ BR(0). Hence ϕ(x
h
− k) 6= 0 if and

only if x
h
−k ∈ BR(0) or |x

h
−k| ≤ R⇔ |x−hk| ≤ R ·h ≤ δ, i.e. in particular

supp ψk ⊆ Bδ(hk) if h is small enough, namely h < δ
R

.

3. Assume that x ∈ Rd is fixed. Since f(x) = f(x) · 1 =
∑

k∈Zd ψk(x)f(x), it
only has to be estimated

|(Qhf − f)(x)| = |Qhf(x)− f(x)
∑
k∈Zd

ψk(x)︸ ︷︷ ︸
=1

| ≤
∑
k∈Zd
|(f(hk)− f(x))|ψk(x).

Due to Step 2 the following inequality

|f(hk)− f(x)| ≤ oscδ(f)(x) for |hk − x| ≤ δ

holds, which implies the desired estimate

|(Qhf − f)(x)| ≤
∑
k∈Z

oscδ(f)(x)ψk(x) ≤ oscδ(f)(x) .

Consequently
‖Qhf − f‖∞ ≤ ‖oscδ(f)‖∞.
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To obtain a generalisation of the estimate (2.3) the choice of the function
space is of paramount importance. In signal processing, sampling theory,
wavelet theory, etc. a lot of research on Quasi-interpolation in the
Feichtinger algebra S0(Rd)15, the Fourier algebra, Wiener Amalgam spaces,
Sobolev spaces16, etc. has been done. To obtain a better appreciation of
those spaces and the resulting convergence criteria see [12], [13], [14], [34]
and [39].

The approximation theorem of Stone-Weierstrass17 signifies that each con-
tinuous function f can be uniformly approximated by polynomials to any
degree of accuracy in the uniform sense.
In contrast Bernstein did not claim that the function f should be interpolated
by polynomial functions. His idea was to make the intervall small enough,
so that a good approximation is possible.

Sometimes it is quite difficult to receive an interpolating polynom because a
huge linear equation system has to be solved, and therefore quasi-interpolation
methods are a good alternative to Interpolation theory. Quasi-interpolants
guarantee smooth approximation and are easier to compute. The big disad-
vantage is the fact, that the quasi-interpolant do not interpolate correctly.

In order to improve the situation an iterative procedure can be described,
which applies at least for quaradtic and cubic splines.:
Consider the case d = 1; and since one can reduce the dilation to the case
a = 1, let us assume without loss of generality a = 1.
Given a sequence of data (f(n))n∈Z one can form f (1) := Qϕf as a first
approximation, using as a generator the cubic B-spline ϕ. Since

d(1)(n) := f(n)−Qϕf(n) = f(n)− f (1)(n)

may be different from zero, it is plausible to correct this error by adding the
function

g(1)(x) =
∑
n∈Z

d(1)(n)Tnϕ(x) .

15The function space S0(Rd) includes continuous and integrable functions. Nowadays it
is called Segal Algebra or Feichtinger’s algebra.

16Let Ω ⊆ RN be open, m ∈ N, und 1 ≤ p <∞.
The vectorspace Wm,p(Ω) := {f ∈ Lp(Ω) | ∀α mit 1 ≤ |α| ≤ m ∃Dαf ∈ Lp(Ω)} is called
Sobolev space.

17If f is a continuous real-valued function on an interval [a, b], then for every ε > 0 there
exists a polynomial function P on [a, b], such that |f(x)− P (x)| < ε ∀x ∈ [a, b].
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Then f (2) := f (1) + g(1) = Qϕf + g(1) provides a better approximation with

d(2)(n) = f(n)− f (2)(n)

even smaller, in fact ‖d(2)‖`2(Z) < γ‖d(1)‖`2(Z) for some γ < 1.
The existence of γ < 1 stems from the fact that∑

n 6=0

ϕ(n) ≤ γ · ϕ(0) ,

which is certainly valid for cubic and other low order B-splines.
Going on like that, i.e. forming

f (m+1) = f (m) + g(m) = f (m)(n) +
∑
n∈Z

d(m)(n)Tnϕ

one finds that ‖d(m)‖`2(Z) ≤ γm−1‖d(1)‖`2(Z) → 0 for m→∞, i.e. in the limit
one has perfect interpolation of the data (f(n))n∈Z.
Since (by induction) one has for each m ∈ N

‖
∑
n∈Z

d(m)(n)Tnϕ‖L2(R) ≤ B′‖d(m)‖`2 .

The series built in this way is convergent, because

‖
∑∞

m=1

∑
n∈Z d

(m)(n)Tnϕ‖L2(R) ≤
∑∞

m=1‖
∑

n∈Z d
(m)(n)Tnϕ‖L2(R)

≤ B′
∑∞

m=1 γ
m−1‖d(1)‖`2(Z) ≤ B′ 1

1−γ <∞ .

Hence h = Qϕf +
∑

n∈Z d
(m)(n)Tnϕ belongs to Vϕ and interpolates exactly.

There is however a method similar to the one used for biorthogonality of the
Riesz basic sequence to obtain this interpolating spline function as quasi-
interpolator, at the cost of replacing ϕ by another generator ϕL, the
Lagrange interpolator.
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Lemma 2.21. If (Takϕ) is a Riesz basic sequence, and ϕ̂(s) ≥ 0 ∀s ∈ R
(e.g. cubic B-splines), then Φ(s) =

∑
n∈Z ϕ̂(s − n/a) is free of zeros, and

consequently one can define a Lagrange interpolator ϕL with

ϕL(ak) = δ0,ak

in Vϕ,a by its Fourier transform

F(ϕL)(s) =
ϕ̂(s)∑

n∈Zd ϕ̂(s− n/a)
.

Moreover, ϕL is uniquely determined within Vϕ,a by this property.

Remark 2.22. The result above turns out to be exactly QϕLf .

In practice the Lagrange interpolator is a frequently used technology in image
processing. To gain a bit of more insight see [16].
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2.3 Radial basis functions

To get good approximation properties the choice of the the generator (func-
tion) ϕ is of prime importance.
Buhmann18 applies quasi-interpolants with radial basis functions φ, where
ϕ is a finite linear combination of radial basis functions, i.e.

ϕ(x) =
∑
|k|<F

λkφ(|x− k|), x ∈ R, N > 0.

Several examples for radial basis functions are φ(x) = x2 log x (thin-plate
splines), φ(x) =

√
x2 + c2 for c > 0 (multiquadratic functions) or

φ(x) = exp−αx
2

for α > 0 (Gaussian functions).

The quasi-interpolant Qhf depends on h as well as on f , however ϕ(x) is
completely independent of the function f . Although Qhf does not need to
satisfy any interpolation properties, it should be a proper approximation due
to qualities of the function ϕ, i.e. Qhf ≈ f .
To guarantee the convergence for d = 1 of Qhf , ϕ has to satisfy the conditions∑

k∈Z

|ϕ(x− k)| <∞ and
∑
k∈Z

ϕ(x− k) ≡ 1 for all x ∈ R.

For though these conditions are relative weak, they will yield to good ap-
proximation methods.

Lemma 2.23. 19 Presupposed the radial basis functions are of the form
φ(x) =

√
x2 + c2 with a parameter c > 0 and ϕ is a second divided difference

of φ, e.g.

ϕ(x) =
1

2
φ(|x− 1|)− φ(|x|) +

1

2
φ(|x+ 1|) ,

then the following polynomial reproduction property∑
k∈Z

(a+ bk)ϕ(x− k) = a+ bx for any x, a, b ∈ R

holds.

Lemma 2.23. supplies polynomial recovery, which helps to receive a uniform
convergence result by suitable Taylor20 polynomials.

18Martin D. Buhmann is a German mathematician.
19To prove Lemma 2.16. see [4] page 18-19.
20T (x) = f(a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + ... + fn(a)
n! (x − a)n + Rn is called the

n-th Taylor polynomial of f around a with error term Rn.
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Theorem 2.24. Convergence Theorem21

Let the function f be twice differentiable such that ‖f ′‖∞ and ‖f ′′‖∞ are
finite. Then for any nonnegative c

‖f −Qhf‖ = O(h2 + c2h2| log h|), h→ 0 .

It is quite evident that there exists a close relation between convergence and
polynomial recovery, because smooth functions can be locally approximated
by Taylor polynomials which may be recovered by quasi-interpolation.
Radial basis functions ϕ are good components to approximate linear polyno-
mials by quasi-interpolant just as well as smooth functions of higher order.
These results were generalized for arbitrary Hilbert spaces by [4], [5] and [40].

21To prove Theorem 2.17. see [4] page 20-21.
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CHAPTER 3

INTERPOLATION VS. QUASI-INTERPOLATION

Quasi-interpolating methods compared with interpolating schemes show that
quasi-interpolants are a good alternative for approximation.

Example 3.1.

xx = lowsign(n,11);
plot(xx);
hold on; plot(xx(1:a:n),’r*’);figure(gcf);
xs = xx(1:a:n);
xxbsp = xs*BUPU;
plot(xxbsp,’r’); figure(gcf)
xxbspi = xs*trlbas(bspi,a);
plot(xxbspi,’k’);
plot(xs*trlbas(bspai2,a),’g’); figure(gcf)
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This is a good example to show how difficult it is to find a suitable quasi-
interpolant for some data points. The black interpolating function fits the
given data set perfectly. Although the red quasi-interpolanting function is
smoother, the green quasi-interpolating function draws near the original blue
function. But both quasi-interpolants do not fit all the given points. The
choice of ϕ and the density of the samples are an important tool for the
quasi-interpolant to approach the given points.

Example 3.2.

xx = real(lowsign(n,20));
n/41;
xx = real(lowsign(n,10));
n/11; n/21;
plotcsa(xx,a);
xx = (lowsign(n,10));
plotcsmpi(xx,a);
plot(xx);
xx1= [xx, xx(1)];
plot(xx1);
hold on; plot(xx1(1:a:n),’r*’);
[BUP,bsp] = bupuspline(n,a,a/2,4);
plotc(bsp);
bspi = trl1int(bsp,a); plotc(bspi);
sh = zeros(1,n); sh(1:a:n) = 1;
xxint = ifft( fft(xx.*sh) .* fft(bspi));
plot(xx); hold on; plot(xx(1:a:n),’r*’); plot([xxint,xxint(1)] ,’k ’); hold off;
plot(real(xx)); hold on; plot(real(xxint),’k’);
plot(real(xx(1:a:n)),’r*’); hold off;
plot(real(xxint),’k’); plot(1:a:n,real(xx(1:a:n)),’r*’);
xxbsp = ifft( fft(xx.*sh) .* fft(bsp));
hold on; plot(real(xxbsp),’r’); figure(gcf)
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interpolatory spline−approximation vs. simple quasi−interpolation [red] 

This plot indicates the interpolant and the quasi-interpolant of a smooth
complex function. The blue curve shows the choice of a smooth signal with
maximal frequency 10, so that 21 random complex coefficients are used.
The red curve is the cubic quasi-interpolant, which does not match all the
points exactly. On the contrary the black curve is the interpolant via spline
functions, which matches exactly at the given sampling points.

Example 3.3.

maxfr = 8;
xx = (lowsign(n,maxfr));
sh = zeros(1,n); sh(1:a:n) = 1;
[BUPU, bsp ] = bupuspline(n,a,a/2,4);
bspi = trl1int(bsp,a);
hold off; plot(xx);
xp = 1:a:n;
hold on; plot(xx(xp),’r*’);
xxint = ifft( fft(xx.*sh) .* fft(bspi));
plot([xxint, xxint(1)], ’k’);
xxbsp = ifft( fft(xx.*sh) .* fft(bsp));
plot([xxbsp, xxbsp(1)],’r-’); figure(gcf)
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Example 3.3. shows that the quasi-interpolant function in red approximates
the original function in blue quite exactly. Although the number of sampling
points is low, the choice of ϕ is good enough so that in some areas the actual
error is nearly zero.
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Example 3.4.

function [gi,gd,gdi,gid] = nicoldem1(n,a);
if exist(’n’) == 0; n = 480; end;
if exist( ’a’) ==0; a= 20; end;
g = gaussnk(n);
gi = trl1int(g,a);
gd = trl1du(g,a);
gdi = trl1int(gd,a);
gid = trl1du(gi,a);
subplot(221); plotcsmp(gi,a,’r.’); title(’g interpolating’);
subplot(223); plotcsmp(gd,a,’r.’); title(’dual atom’);
subplot(223); plotcsmp(gid,a,’r.’); title(’dual of interpolator’);
subplot(224); plotcsmp(gdi,a,’r.’); ; title(’interpolator to dual’);
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The first row of pictures shows the interpolator of the Gaussian function g
and the dual atom of g. In the next step the dual of the interpolator is built
and the dual of g is interpolated. The pictures of the “dual atom” and the
“dual of the interpolator” look alike, but it is just a visual illusion. On closer
inspection one sees that the scaling is completely different. On the contrary
the pictures of “g interpolating” and “interpolator to dual” are identical.
All these elements received by translations are in the same space.
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Example 3.5.

The first series of plots shows some random real data, marked with red stars,
which should be the given data at the regularly spaced points in Z480 at a
relative distance of 20 samples apart from each other. After using of B-spline
(quasi)-interpolation for B-splines of order j = 1, 2, 3, 4, one can see that the
B-splines are interpolating the data for j = 1, 2, but unfortunately not for
j ≥ 2.
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In the next picture the black curve indicates a smooth curve, generally a
real valued and band-limited function, with 31 random complex Fourier co-
effcients.
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Example 3.6.

The picture of Example 3.6. shows that the best spline-approximation, given
by the green curve, approximates the original function in blue nearly exactly.
The relative error is around 7%. The quasi-interpolating curve in the second
window is a very good approximation too. The relative error is arounf 13%.
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The quasi-interpolation spectrum shows that the oscillations at the endings
get smaller compared to the spectrum of the best spline-approximation, but
do not disappear completely.
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MATLAB-FILES

All MATLAB files stem from the NuHAG database. The holder of the copy-
right of these codes is the NuHAG. I do not claim these codes being my own
work. The computations for the experiments are done in cooperation with
Hans G. Feichtinger. All functions that are not listed and explained in this
chapter here, but appear in the code, are standard MATLAB functions. The
codes can be found in the NuHAG database:
http://www.univie.ac.at/nuhag-php/home/index.php

bupuspline creates discrete B-spline type BUPUs
Input: n = signal length

gap = lattice constant
bas = basis of smoothing spline of order zero
ord = order of smoothness (through iterative convolution)
default: ord=5

Output: BUPU = elements of the BUPU rowwise

Usage: [BUPU,bsp] = bupuspline(n,gap,bas,ord)

lowsign(n,a) generates a signal of length n (row vector)
with maximal (random) frequency r

Usage: xx = lowsign(n,r)
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gaussnk creates the canonical discrete gauss function
Input: xx = some signal

n = dimension
Output: g = a canonically discretized gaussian, an eigenvector with

eigenvalue 1 of the unitary DFT (that is g=fft(g)/sqrt(n))
(normed with respect to 2-norm)

Usage: g = gaussnk(n)
g = gaussnk(xx)

plotcsa adds samples on a central plot
Input: xx = a complex valued signal

a = sampling distance
col1, col2 = plotting colors

Usage: plotcsa(xx,a,col1,col2)
plotcsa(xx,a,col)
plotcsa(xx,a)

plotcsmp adds sampling markers on a central plot
Input: xx = a real or complex signal

a = vector of sample indexes (can be written in the
form 1:step:n or just step as a singular value)
symb1,symb2 = symbols that appear on the plot(x,d,s,o,...)

Usage: plotcsmp(n,a,symb)
plotcsmp(xx,a,symb)

plotcsmpi adds samples on a central plot (also works for irregular sampling)
Input: xx = a real or complex signal

a = vector of sample indexes (can be written in the
form 1:step:n or just step as a singular value)
symb1,symb2 = symbols that appear on the plot(x,d,s,o,...)

Usage: plotcsmpi()
plotcmspi(xx)
plotcsmpi(xx,a)
plotcsmpi(xx,a,’*’,’o’)
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trlbas the result is the translation basis matrix
Input: wind = a vector

xp = a vector
gap = a number
offset = the starting point of the regular grid

Output: trl = a matrix

Usage: trl = trlbas(wind,gap,offset)
= trlbas(wind,xp); by default offset=1
= trlbas(wind); by default xp=1:length(wind)
= trlbas; starts a demonstration

trl1du the resulting vector atdu is the dual atom
(works for real and complex atoms)
Input: atom, xp = vectors

gap = number
thresh = number

Output: atdu,xes = vectors
dev = scalar product of atdu with atom
condfam = condition number of Riesz basis

Usage: [atdu,xes,dev,condfam] = trl1du(atom,gap,thresh)
= trl1du(atom,gap); by default thresh=10−10

= trl1du(atom); by default xp=1:length(atom)
= trl1du; starts a demonstration

trl1int is a Lagrange type interpolating function which tries to solve
the interpolation grid over a grid with step-width gap
(the generating space might be different from the interpolation grid)

Usage: atint = trl1int(atom,[gap])
= trl1int(atom,xp)

60



61



ABSTRACT

In many lectures the readers are introduced in the topic of Interpolation
Theory. They learn about the characteristics of Lagrange interpolation, the
Newton interpolation and spline interpolation. They get a feeling how inter-
polating polynomials work and what their advantages are. Nevertheless the
reader rarely hears about another very useful approximation method, namely
the Quasi-interpolation.

Quasi-interpolation is a good methodology that allows to obtain from given
discrete data (generally regular samples of a continuous function) smooth
functions that observe the general behaviour of the underlying continuous
function, although these functions do not fit the given data exactly.

For the descripton of the quasi-interpolant operator the so-called Spline-type
space, respectively a principal shift-invariant space, is quite useful, and the
set of translates of some “atom” ϕ form a Riesz basis for such a space. The
master thesis informs the reader about the most important characteristics of
these Riesz basic sequences.

One difficulty of Quasi-interpolation is the fact, that in the application area of
Approximation Theory there does not exist a unique defnition of the quasi-
interpolant operator. The different definitions and their qualities are dis-
cussed and some theoretical statements are shown and proved.

At the end of this master thesis some practical applications via MATLAB ex-
periments demonstrate the correspondence between Interpolation and Quasi-
interpolation. The reader sees that Quasi-interpolation is a good alternative
to Interpolation.
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ZUSAMMENFASSUNG

Vorlesungen über die verschiedensten Methoden der Approximationstheorie
beinhalten immer das Thema “Interpolation”. Man hört von den unter-
schiedlichsten Arten der Interpolation, beginnend von der Lagrange-Interpolation
über die Newton-Interpolation bis hin zur Interpolation via Splines. Man
erfährt von den Vorteilen und ebenso von den Nachteilen der einzelnen in-
terpolierenden Polynome; jedoch wird eine doch recht nette andere Methode
der Interpolation, nämlich die Quasi-Interpolation, kaum behandelt.

Mittel Quasi-Interpolation erzeugt man eine schöne glatte Kurve, welche alle
Eigenschaften der Orginalfunktion beinhaltet, aber leider nicht die gegebe-
nen Daten genau interpoliert. Trifft man eine gute Wahl für das “Atom” ϕ,
so ist der Approximationsfehler minimalst.

Der Raum, in welchem die Quasi-interpolierenden Funktionen aggieren, ist
der Spline-type space, welcher von den Riesz Basen aufgespannt wird. Diese
Riesz Basen haben einige besondere Eigenschaften, welche in dieser Diplo-
marbeit kurz besprochen und behandelt werden.

Die Schwierigkeit der Quasi-Interpolation liegt eher darin, dass es leider keine
eindeutige Definition des Quasi-interpolant Operators gibt. Viele Mathe-
matiker verwenden den Begriff “Quasi-Interpolation” in den unterschiedlich-
sten Zusammenhängen. Diese Diplomarbeit gibt einen kleinen Einblick in
die verschiedenen Definitionen und deren theoretischen Aussagen.

Zu Ende hin sieht man anhand praktischer Beispiele via MATLAB den
Zusammenhang zwischen Interpolation und Quasi-Interpolation. Man erkennt,
dass Quasi-Interpolation eine gute Alternative zur Interpolation darstellt.
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[29] Schwarz, H. R. , and Köckler, N. , Numerische Mathematik, B.G. Teubner
Verlag, 2006

[30] Section 3: Newton Divided-Difference Interpolating Polynomials,
http://pegasus.cc.ucf.edu/∼klee/EGN3420/Notes/Interp NDD.pdf

[31] Steffens, K. G. , The History of Approximation Theory: From Euler to
Bernstein, Birkhäuser, 2006
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