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Introduction

The aim of this work is to provide an overview over recent advances in the
simulation algorithms for quantum many body problems.

We focus on the class of algorithms that are based on the density matrix
renormalization group or short DMRG [32] [20] [21]. It is a procedure origi-
nally designed to simulate one dimensional systems so called spin chains. The
classical density matrix renormalization group is an extremely fast and precise
algorithm, but is surprisingly only suited to simulate one dimensional systems
while breaking down even for the two dimensional case. Obviously one would
like to be able to have access to similar powerful methods for the much more
interesting two or three dimensional case. In this work we will outline the den-
sity matrix renormalization group based approach to simulating quantum many
body problems and the proposals to generalize the density matrix renormaliza-
tion group to two or higher dimensional problems.

We do not cover Monte Carlo methods for quantum many body problems.
These can be seen as the second big class of algorithms for simulating quantum
many body problems. The main drawback of these techniques is that there
are problems simulating interesting physical systems. Monte Carlo simulations
exhibit the so-called fermionic sign problem when applied to fermions, lead-
ing to effort exponential in particle number of Monte Carlo simulations. The
problem has been shown to be NP-hard [24]. This makes the density matrix
renormalization group approach especially relevant for fermionic systems.

In chapter 1 we start by introducing the reader to the general description
of quantum mechanical systems. First we consider in 1.1 the description of an
isolated system and then we proceed to describing several interacting systems
in 1.2.

Chapter 2 introduces the classical formulation of the density matrix renor-
malization group ansatz. 2.3 covers the reformulation of the ansatz from a
renormalization group to a variational ansatz. This is a more modern view-
point, that is based on the realization that the density matrix renormalization
group ansatz always creates a certain class of states the so-called matrix product
states. Finally we will explore in 2.3.7 the issue why the density matrix renor-
malization group breaks down in two and higher dimensions. We highlight the
connection between the spectrum of a state, it’s entanglement and the problems
we encounter simulating the state in higher dimensions.

Computations with quantum many body problems involve many differently
labelled coefficients. A lot of bookkeeping is required to keep track of all them. 3
introduces the tensor network formalism, that allows to graphically represent the
coefficient tensors arising in the description of quantum many body problems.
The special case of tree tensor networks is especially useful for calculating ground
states, reduced density matrices and expectation values of spin systems. We will
illustrate these possibilities in 3.5 - 3.6. In 3.4 we outline a possibility to reduce
general tensor networks to tree tensor networks and make effort considerations
about this process.

We proceed by introducing in detail the multiscale entanglement renormal-



ization ansatz in 4.1 and a short notice on projected entangled pair states 4.2.1
which are the two contemporary simulation algorithms for two or higher di-
mensional systems. Both are successful in the two dimensional case and are
constantly being improved upon.

We close the work with a detailed literature overview in 5, where we discuss
by topic articles, that could be of interest.






Chapter 1

Physical Basics

1.1 Description of a Quantum Mechanical Sys-
tem

Quantum mechanics usually employs the bra-ket notation, where elements of
a vector space are written with brackets even if they are not part of a scalar
product. We define the notation:

Convention. 1.1.1. (Bra-Ket Notation) In this work H always denotes a
complex separable Hilbert space. We also refer to a complex separable Hilbert
space as a state space.

Let p € C™ be a column vector. It is called a ket and written as |). The
conjugate transposed row vector ¥* is called a bra and written (|,

the scalar product of ¥ and ¢

Vo = (Yl¢) € C,

the outer product is

A =1g* = [P)(4] € C"T,
the norm of ¢:

o]l := V/{9l0).

While in mathematics it is common to denote vectors with lower case Latin
letters (i.e.: z,y,2), in quantum mechanics states (i.e.: vectors) are usually
denoted by Greek letters (i.e.: 1, ¢). Since this convention may read quite un-
familiar for a mathematician, we compare the definition of positive definiteness
in standard notation

x* Az > 0 for all ¢ € C\ 0,

with Bra-Ket notation
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(Y]Afp) > 0 for all € C\ 0.

An analogous notation is used for general Hilbert spaces.

Definition. 1.1.2. A quantum mechanical system is described by a pair
(H,H), where H is a Hilbert space and H is a Hermitian, linear, selfadjoint
operator defined on a dense subspace of H. H is called the Hamiltonian of the
system. The elements of H are referred to as pure states of the system.

There is a very common convention in physics regarding the notation of basis
elements from H, that should be pointed out because it is rather uncommon in
mathematics. All possible orthonormal bases of H are of course related simply
by a unitary transformation. We can obviously choose any basis we like to
describe H. Physicist often do not state explicitly which basis is chosen, but
simply label the basis elements. This allows for arguments using orthonormality
of the basis without further specifying the basis.

Convention. 1.1.3. Let H is a Hilbert space and 0 < n < dimH — 1 € IN.
Then |n) denotes the nth basis element of H.

In the following we will cover the central objects of study in quantum me-
chanics the states and the observables. We define a state using the so-called
density matrix:

Definition. 1.1.4. p € Lin(H) is a density matriz, if the following condi-
tions hold:

o p=p! (Hermitian)
e irp =1 (normalization)

o (YPlpl)y >0 for allyp € H (positive semidefiniteness)

A state p is a pure state if p has rank 1 and can be written as p = Pp*
with ||¢]| = 1. A state p is a mixed state if it is not pure.

Defining a state via the density matrix is the most general approach to
defining the state. It is however also common to first define only a part of all
possibly interesting states, the so called pure states 1. In a second step we
also allow convex mixtures of pure state density matrices so called mixed states
> i Pilhi) (1), requiring 0 < p; < and ), p; = 1 turning them into probabilities.

Observables describe interesting experimentally measurable properties of a
system. The Hamiltonian is our first example of an observable. In general we
define an observable as follows.

Definition. 1.1.5. Let H be a Hilbert space. An observable O is a Hermitian,
linear, selfadjoint operator defined on a dense subspace of H.
The expectation value of an observable O with respect to p is defined by

(0), :=trpO.
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For pure states we express the expectation value (O) in terms of the state
vector:

Lemma. 1.1.6. Let O be an observable, |1} a vector and p its density matriz
then

(0)p = (¥[O[4).
Proof: Recall the property of the trace: trxy’ = > iy, = (z|y). This
yields: trpO = tr [1) (4]0 = ([O]).

There are many possible observables. The following examples would be
typical observables for a system at rest.

e Let H = C2. The spin operator S = (Sz, Sy, S:), where S; = %ai and
o; denotes the Pauli matrices o, = (94),0, = (9 ) 0. = (§ %).

o Let H=C?>®..C? and s; € C2. A sum of spin operator Zj S.,, where
S, is the spin operator measuring the direction z in the jth subsystem.
This evaluates the spin at several sites s; and sums over the results. This is
relevant for studying quantities such as magnetization, which is essentially
the sum over all spins in a system.

e The Hamiltonian H.
e The number of particles of type j IV;.

Since the expectation value of the Hamiltonian is of special interest we will
give it a name.

Definition. 1.1.7. The energy of a state p is

E(p) := (pH).
We introduce in the following quantities which are of interest in physics.

Definition. 1.1.8. A ground state is defined as one eigenvector of the mini-
mal eigenvalue of the Hamiltonian H.

There are cases where Hamiltonians exhibit a degenerate spectrum. These
cases are sometimes studied as well, but often unwanted. If we want to ex-
clude the possibility of non unique ground states, we have to make an extra
assumption.

Definition. 1.1.9. A Hamiltonian is non-degenerate if the smallest eigen-
value \g has multiplicity 1.

In quantum mechanics the energy of a system at rest can take only discrete
values, so called energy levels. These are the eigenvalues of H. The eigen-
vector eigenvalue pairs describe the states attaining these energy levels and the
associated energy. The state of lowest energy is usually of special interest.

A central concept from statistical mechanics which often needs to be calcu-
lated in physics, is the canonical partition function.
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Definition. 1.1.10. Let E; be the energy levels or eigenvalues of a systems
(H, H) Hamiltonian, T > 0 and k the fized Boltzmann constant. We define the
canonical partition function at temperature T by

Ej

Z=Z(T)=> e ¥,

The reason this is interesting is because the probability of finding a system
in a state of given energy level Ej; is defined in statistical mechanics as

1
Pj = Ee_Ej/kT.

The division by Z ensures that this is a probability distribution. This basi-
cally states that high energy states are far more unlikely than low energy states.
All interesting quantities in equilibrium statistical mechanics can be derived
from the partition function.

In statistical mechanics a system is assumed to be in contact with a much
larger system the environment or heat bath. Several assumption are made
regarding which parameters of system are to be seen as fixed and which can be
exchanged with the heat bath. A system which can exchange energy, but has
fixed temperature, volume and particle number is described by the canonical
partition function. Assuming other combinations of parameters to be fixed or
exchangeable results in a different partition function.

1.2 Composite Systems and Entanglement

We have already given the definition of a quantum mechanical system. If we
have descriptions of different systems we might be interested in the interaction
of these systems. The description of both systems should again be a system, al-
though a larger one. The operation describing the process of finding a composite
system is the tensor product.

Definition. 1.2.1.

e Let us be given one quantum mechanical system A of dimension r and
another system B of dimension s. They are described by the Hilbert spaces
Ha and Hp. Then the composite system AB is described by the Hilbert
space

HAB = HA & HB.

of dimension rs.

e As in the case of a single system the basis of the composite system
is often not chosen explicitly. Often we write |iajg) to denote ij-th basis
element of H.ap, which is exactly the tensor product of the i-th element of
Ha and the j-th element of Hp.
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o [f A, B are in the state p4 and pp the composite system’s state is pap
acting upon Ha @ Hp.

e The general case with n systems si,...,S, and their respective Hilbert
spaces Hq, @ ... ® Hs, of dimensions dg, .. q, 15 analogously described
by their composite system’s Hilbert space

Sn

Hsl...sn = Hsl Q... Hs,u

of dimension ds,...d,, and the composite system’s state ps, s, is acting
on Hsy...s, -

On the other hand we might have a too complex description of a system,
while we are only interested in a subsystem of the given system. We need an
operation describing this simplification. This will be a generalization of the
trace, the partial trace. Reducing a larger system to a subsystem is sometimes
called tracing out the environment.

Definition. 1.2.2. Let AB be a composite system and a state pap € Hap-
|k) g is the kth basis element of the Hilbert space describing B.

o We define the partial trace over subsystem B by

trg : Lin(Ha @ Hg) = Lin(H.a)
dim(B)

trp(pas) == Y _ (kplpas|ks).
k=1

o The state of A can be found by applying the partial trace over B to pap,
pa =trp(pas).

Definition. 1.2.3. Let A, B be quantum mechanical systems with associated
Hilbert spaces Ha, Hp.

o We call pap € Ha ® Hp a separable state if there exist pure states
(pa)r € Ha,(pB)r € HB,D_;pi = 1 with pap = Y ;. pr(pa)r ® (pB)k

o We call pap entangled if it is not separable.
The case for n systems is again analogous.

In the above definition, a system is either entangled or not entangled. It is
however useful to quantify entanglement. In order to compare two entangled
systems, we define so-called entanglement measures. They allow us to say that
a system is more or less entangled then another one.

Definition. 1.2.4.
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o Let p be a state of a quantum mechanical system, \; the eigenvalues of p.
We define the entropy S(p) of a system in state p by

S(p) = Z Ailogy ().

o Let pap be the state of a pure composite bipartite quantum system AB.
We define the entanglement entropy E(.) of the state pap by

E(pap) == S(pa) = S(pB),

where pa = trp(pap) and pg =tra(pas).

Applying the partial trace to the Schmidt decomposition of p4p yields that
the spectra of the reduced density matrices are identical, hence the equality
S(pa) = S(pp) holds.

The entanglement of entropy & is only defined for bipartitions of a pure
composite system. It is interpreted as fixing a subsystem of AB and describing
the entanglement between the fixed subsystem and the remainder of the system.
It is a property of the whole system AB! This definition only considers the two
parts of a fixed bipartition. Choosing a different bipartition of the same system
may result in a different entanglement entropy.

We make a few comments to show that the above definition is plausibly
quantyfing entanglement. Let us assume p4p is separable and pure thus pap =
pa ® (pp. Recall that (p.), are as reductions of pure state again pure and that
pure states have only a single eigenvector, which has to have eigenvalue 0. It
follows from the concavity of S that the entropy of an entangled state is 0.

We will see at the end of the next chapter that the amount of entanglement,
as defined by the entanglement entropy, is indeed connected to the performance
of a simulation algorithm for spin chains.



Chapter 2

Density Matrix
Renormalization Group

We will discuss in this chapter the density matrix renormalization, often abbre-
viated as DMRG, algorithm. It was developed to study various models from
statistical physics such as the Ising model or the Heisenberg model. These mod-
els are often employed to model the magnetic behaviour of a wire, surface or
volume. The objects of study are discretized approximations of the models.
When interaction rules between neighbouring sites are implemented, one can
study the resulting behaviour of the system. One of the central features of the
approximation value is that it depends strongly on the size of the discretized
lattice. Larger lattices yield a better approximation value. Often one is inter-
ested in properties at the so-called thermodynamic limit, which is achieved
if the lattice size L goes to infinity. Many of the models from statistical physics
pose a serious challenge for numerical computation if the lattice size is chosen
big enough.

The predecessor of DMRG is the renormalization group method introduced
by WILSON [33] trying to improve the tradeoff between lattice size and effort.
The basic idea is to divide an initially big lattice into small sectors and approx-
imating each sector through a single site, which is set to the mean value of the
sector. Thereby a more coarse and more smaller grid is obtained, which reflects
the properties of the bigger one.

The density matrix renormalization group was a refinement of earlier renor-
malization methods proposed by White [32]. His method was very successful
in the simulation of one dimensional systems, so called spin chains, being quick
as well as accurate. Unfortunately the generalization to higher dimensions en-
counters certain fundamental problems which will be covered in the Section 2.3
on matrix product states. One possible generalization attempt is to consider
a tree structure instead of a line. We will focus in this work mostly on giving
an overview over this line of thought. Meanwhile there have been certain other
attempts which have been successful to a certain degree, where we will give a

13
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short overview in Section 4.2.

Initially DMRG has been described as a renormalization group method, but
meanwhile other descriptions with slightly different viewpoints have come up.
Such as regarding DMRG as a nonlinear block-Gauss-Seidel method see Espic
et al. [5] It has also been reformulated as a variational problem, see Section
2.3.6.

We now introduce the classical one dimensional density matrix renormaliza-
tion group.

One can distinguish two algorithms in DMRG. First we have infinite-DMRG
which creates iteratively longer systems. Second there is finite-DMRG which is
run after a desired length of the chain is attained. It improves our approximation
quality iteratively until some sort of convergence is reached.

2.1 Description of Quantum Mechanical System
by Spin Chains

We set the stage by introducing spin models on lattices, these are the objects we
want to simulate. Recall that a general quantum mechanical system is described
by a pair (H,H ), where H is a Hilbert space and H a Hamiltonian. In this section
we give the explicit form these two objects take, when describing systems by spin
chains and introduce some notation which is needed for the DMRG algorithms
such as defining chains, blocks and reduced blocks.

2.1.1 The Hilbert space H of a Spin Model

We start by defining a microscopic system. It’s behaviour should be well under-
stood and their interaction will be described later on by the Hamiltonian. We
refer to these in future as sites. These systems can be thought of as the building
blocks of a macroscopic system.

Definition. 2.1.1.

o A site s is described by a d-dimensional Hilbert space H. The state of a
site is an element s € H. Sites are denoted by lowercase letters.

e d is the dimension of the local basis of a site.

Recall that by H we always refer to a complex separable Hilbert space. In
the case of a spin system one usually chooses H = C? at each site.

Now we introduce a macroscopic one dimensional object. This is what we
want to study. All macroscopic objects in this text are lattices. In this section
we consider the one dimensional special case. We reserve the name chain for
that special case.

Definition. 2.1.2.
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e A spin model’s Hilbert space is described by the temsor product of
several sites. In the context of DMRG we regard one dimensional spin
models or also called spin chains. Chains are denoted by uppercase letters
i.e. SE. The state of a chain is an element Ysp € H® ... ® H.

—_———

Ltimes

e We call the total chain length L. Frequently we will indicate the chain
length in superscript brackets by SE(F). We label the sites of the chain
from left to right as s1, ...,s;,. Without loss of generality we set s1 as the
leftmost site of the chain. For simplicity we assume dim s; = dim s;.

2.1.2 The Hamiltonian H of a Spin Model

Definition. 2.1.3. Let us be given a composite system S consisting of d di-
mensional subsystems s;. The Hamiltonian of a spin model S is

H:=> Hi+Y Hu,
% ik

where H; is the Hamiltonian of site s; and H; i is the two body interaction
between i, k. The amount of H;, # 0 is an important modelling choice! Usually
all adjacent H;, should be non zero. In a d dimensional spin model all sites
have 2d neighbours. We refer to one dimensional spin models as spin chains.
The difference between a chain of nine sites and a 3 X 3 grid is defined solely by
these interaction terms! Often all other Hyy, are set to zero which would describe
local or short range interactions. If there are non zero, non next neighbour
interaction terms we talk of long range interactions.

Here we have made the common assumption that we can decompose the
Hamiltonians into one site terms and two body interactions. This assumption
is not only common in the literature it will also prove to be beneficial later on,
because it allows for significant effort reductions, when employing tree tensor
networks we will encounter in 3.

2.1.3 DMRG Jargon: Blocks, reduced Blocks and Trun-
cation Error

DMRG uses a chain divided into two blocks. One part should describe the state
of our system. This part of the chain is usually called the system block and
denoted as S.

Not the whole part of the chain will be devoted to describe this state though.
All unneglected outside influences are summed up in the remainder of the chain
and referred to as the environment block E. Usually the construction of
the environment depends highly on the problem setting. Most papers specificly
state how they choose to build the environment, there is no general construction
process.

Definition. 2.1.4.
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e A block is described by the tensor product of a subset of the sites creating
a chain of length L. Blocks are denoted by capitals as well i.e. S,E. The
state of a block ¢ is acting on H® ... @ H with [ < L.

—_———

ltimes

o We call the block length l. Analogous to whole chains we will sometimes
write the block length in superscript by SW.

An exact representation of a chain would require d”* basis elements, which
is clearly too large for big L. Instead DMRG determines only the D most
significant basis elements and ignores the remaining ones of a block. We call
that truncating the basis.

Definition. 2.1.5.
Let S be a chain with chain length L and local basis dimensions d.

e D is the reduced dimension of a block after truncation, we need D <<
d™ and have to choose D small enough to be computationally feasible.

e The reduced chain S of a chain S is a chain, with Hilbert space H
satisfying dim(H)=D and H C H ® ... ® H and the same Hamiltonian as
—_———

Ltimes
the original chain S.

Computationally feasible in this context means that we should choose our
D as large as possible while still being able to diagonalize a D x D matrix.
This is done by means of the Lanczos algorithm or any other diagonalization
method of choice. The diagonalization should be possible quickly enough to be
iterated many times, since we will perform a new diagonalization in every step
of DMRG!

Note that in the literature there are various notations for the reduced di-
mension, other common choices are M or x. In general the notation varies
significantly and should always be checked.

DMRG makes a compromise between accuracy and effort by neglecting all
but the D lowest eigenvalues. Therefore one can not expect exact accuracy.

Definition. 2.1.6. Let p the density matriz of a state generated by DMRG.
We order the eigenvalues A; of p ascending as A1 < .... < A,. We define

n
€trunc +— 1- § /\1
i=D+1

We call €tryne the truncation error.

This is the theoretical limit of accuracy we can hope for.



2.2. CLASSICAL DMRG 17

2.2 Classical DMRG

The aim of the density matrix renormalization group is to simulate a spin chain
in the thermodynamic limit. This is of course not possible directly, because
we can only simulate finitely many sites. Instead we want to generate a spin
chain with enough sites, so that we deem it as a good approximation to the
thermodynamic limit. We fix some chain length L, that is sufficiently large. We
will now introduce two algorithms infinite DMRG and finite DMRG.

A simulation begins by running the infinite DMRG algorithm. It starts with
a small exactly diagonalizable spin chain and creates in every iteration a by
two sites longer chain. We run this algorithm until we have reached a chain
of length L, that should be able to approximate the thermodynamic limit well.
However infinite DMRG tends to produce approximations that are not optimal.
Infinite DMRG creates in every iteration two new sites. The newly created
sites have relatively little iterations to interact with the remaining system and
it can happen that they do not adapt fast enough to approximate the system
well. For this reason finite DMRG is run afterwards, which usually decreases
the approximation error of infinite DMRG down to nearly the truncation error.

Finite DMRG keeps the chain length constant but increases in every iteration
the approximation value of the chain. We iterate until no changes in the system
are observed anymore. We initialize finite DMRG with the spin chain obtained
by infinite DMRG. Keep that the shorter chains calculated by infinite DMRG
are also reused by finite DMRG and need to be stored!

The following two algorithms use the definitions for Hilbert spaces and
Hamiltonians of spin models and DMRG jargon given in 2.1.1,2.1.2 and 2.1.3.

2.2.1 infinite DMRG

Let D be the maximal dimension we can diagonalize exactly, we call it the
truncated dimension.

e We start with a so-called system block or system of size [, labelled S®.
The initial choice is quite arbitrary! For example a single random spin is
a valid initial choice or any system gained by exact diaoganalization. We
add a new site sg with full degrees of freedom d resulting in a new block
S = S0 @ sg.

e Analogously we start with a second block E of length [ called the envi-
ronment. There is no single way to choose the environment, that depends
on the application. It should capture the interaction of the system with
the rest of the chain. A simple way for reflection symmetric Hamiltoni-
ans is simply copying S. We again add a site sg of full degree forming
E(H—l) — E(l) ® sg.

e We now form a so-called superblock SE?*2) .= S g E( of length 21+ 2
and determine and store its lowest eigenvector and eigenvalue pairs. This
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is done using Lanczos algorithm. This step accounts for the main effort
in the algorithm.

By now dim(S¢+1) = dim(S*)*d. In the first iteration we have dim(S®) <
d" in later iterations dim(S()) < d'. This is too much since the dimension
of the block S!*1) should at most be be D!

In order to restrict the effort of the algorithm, we project S¢+1) @ E(+1)
on the basis spanned by the D lowest eigenvectors of the superblock. The
projection can be achieved by a truncated singular value decomposition.
This yields the reduced chain S+ @ EU+HDL This step keeps the size of
the basis constant, while we continue adding new sites to the chain.

We separate the reduced chain into blocks S+ BU+D have a new length
of I + 1. They can be used as blocks for the next iteration.

e Repeat until L large enough

2.2.2 finite DMRG

It should be noted that this phase can be left out, but then our simulation
will be a worse approximation. Therefore it might be worthwhile to consider
using symmetries or other structural information and take care in calculating
the environment of infinite DMRG.

e We start with a given 1d lattice of length L. It is the result of infinite-

DMRG. Initially we set the two block sizes equally as ls = g = L/2. One
block will grow by one site with each iteration, while the other shrinks
until it becomes diagonalizable. We chose a growing direction n = +1

We separate the lattice into two parts, a system block Ss) of size Ig and
an environment block EU2) and size Ig

We replace one lattice site at the border of each block by a site with full
degree of freedom d. This usually increases the dimension of the block,
since DMRG truncates it’s basis and not all basis elements of a site are
kept! We label the sites we insert sg,sg. Note that in this step the
border of a block depends on whetever we use open or periodic boundary
conditions. Typically one would choose two adjacent sites sg = s;,,55 =
51,41 in the middle of the chain for open boundary conditions. For periodic
boundary conditions one would rather choose sg = s; and sg = s;,41 to
separate the blocks from both sides.

We call the block to which s;, _,, belongs the growing block and the other
one the shrinking block. We run the Lanczos algorithm determining
the D lowest eigenvalues and eigenvectors of the growing block. Then
we project the superblock SU¢s*1D) @ E(s+1) onto a basis consisting of
the newly determined D eigenvectors of the growing block. We obtain a
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System block Environment block

O O O O O O O O

Adding two new sites with full dimension d

O O O O o o O O O O
Regarding all sites as one superblock
O O O @ @ O O O

Diagonalization of superblock & projection on D lowest Eigenvalues

) ) ) ) ) ) ) )
N\ N\ N\ N\ N\ N\ N\ N\

Splitting into new system & environment blocks

MG, O O O O O O O

Repeat until desired chain length is reached

Q
O

O  Site described by Blockbasis

@ Site described by its local Basis

Figure 2.1: Graphical representation of one step of the infinite DMRG algorithm
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O O O O O O O O O O
Replacement of the sites at the block borders
by sites with full degree of freedom
O O @ @ O O O

Construction of a new block,
by diagonalization of the block
and projection on block eigenbasis

) ) ) )
N\ N\ N\ N\

O; O; O; O]
This smaller block is taken
from an earlier iteration

The resulting block is now one site longer

O O O @ @ O O O O O
We iterate the above,
in every iteration one block
shrinks by one site and the
other grows by one
O @ @ O O O O O O O
Once the left site can be
exactly diagonalized the
growth direction is reversed
O O O O O O O @ @ O
Once the other side can be diagonalized,
we reverse the growth direction again

O O O O @ @ O O O O
Letting the blocks grow and shrink until the initial partition is reached
defines one sweep

@ Site described by blockbasis,
derived from an earlier iteration
no new effort necessary

O  Site described by blockbasis

@ Site described by its local basis

Figure 2.2: Graphical representation of one sweep of the finite DMRG algorithm
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reduced growing block S+ or BUHD  Now we proceed slightly different
for finding new blocks SUs*1h and E(e+1),

In contrast we do not make any calculations regarding the shrinking block!
We simply reuse one of the previously stored blocks of appropriate length.
Initially the blocks calculated by infinite DMRG are reused. Later sweeps
simply use old blocks calculated in prior finite DMRG sweeps. Therefore
we will keep the growing block before projecting it onto its eigenbasis. We
can overwrite one of the old stored blocks, they will not be used anymore
and save some storage.

e If the smaller block is small enough to be exactly diagonalizable multiply
growing direction n with —1.

e setlg=ls+n,lg=Ilg—n
e repeat from the second step until some kind of convergence is reached

The key difference to the earlier algorithm is that the total lattice length L
remains constant. Furthermore in each step one of the blocks grows, while the
other block shrinks by one site. This continues until the smaller black becomes
exactly diagonalizable, then the process is reversed. One sweep is determined by
reversing the direction of shrinking two times and reaching equal block length
again.

2.3 Matrix Product States

2.3.1 Motivation

The DMRG method was very well suited to simulate one dimensional systems,
while on the other hand higher dimensional systems are problematic. The aim
of this section is to explain this phenomenon.

This section follows Schollwdck [21], who provides an extensive review article
entirely devoted to the connection between DMRG and matrix product states .

2.3.2 Construction of Matrix Product States

Definition. 2.3.1. We call a pure state ¢ defined on a lattice with L sites a
matriz product state (MPS) if we can express it as

M) = > MEPMED MEPMD|sy.sL),

s1=1...sp=1

with $1, ..., s, denoting the sites from 1 to L, (|s;))1<i<q, the basis of s; and
d; the local dimension of the basis at a site s;. M being d; X d; 11 matrices of
coefficients.
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2.3.3 General States expressed as Matrix Product States

A general pure state ¢ is described by its coefficient tensor. The following argu-
ment is mainly about reshaping this coeffcient tensor in suitable ways to derive
a matrix product state. We have to introduce some notation distinguishing the
various forms in which we will express the coefficient tensor.

Definition. 2.3.2.

e CcHi®..QHY isa coefficient tensor and C;, . ;, € Cwith1l <14, <d
are coeffcients. Here we have made the assumption that all Hilbert spaces
H? have the same local dimension d to simplify notation.

o CV ¢ %" s the tensor C expressed in coefficient matrix form.
We construct CY) by putting all the coefficients corresponding to the ith
basis element of the first site in the ith column. The resulting matriz looks
as following

C11..1 --- Cid.d

C21..1 .- Ca2d..d
oM —

Cdl..1 --- Cnd.d

This reshaping is sometimes referred to as a tensor unfolding or ma-
tricization.

o We introduce the reshaping operation (.) : Qd'xa" ™!y gd Tt xd T
maps a coefficent matrix which orders its first | coefficients in rows and
the remaining L — 1 in columns into a coefficent matrix which orders its
first L + 1 coefficients in rows and the remaining L — 1 — 1 in columns.

d

1oL Cs,,...sp|81...51) can be

We show that a general pure state ¢ = Y
described by a matrix product state.

It is necessary to arrange the coefficients in matrix form, because the singular
value decomposition is only valid for matrices. Generalizations for higher order
tensors exist, but they are not unique and do not possess all properties of the
standard singular value decomposition. An overview over these generalizations
can be found in the work by De Lathauwer et al [10].

We aim to express a single coefficient as a matrix product. We use the
singular value decomposition and the tensor unfolding to transform a general
state into a matrix product state. We perform a matricization of the coefficient
tensor by moving the coefficients of the first site into the first row. We call the
resulting matrix C'(!

o — U(l)E(l)V(l), U ¢ Cdxd’z(l) c Cdxd“17v(1) c thlxd“{

Since we are interested in expressing the single coefficients we consider the ma-
trix elements in more detail

d
1 (1 1
Cijy...jr, = Ci(j) = Z Uz‘(k)El(ek)(VT);j)-
k=1
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Right now UM is a d x d matrix. We want to express coefficients, that are of
course scalars, as some form of matrix product. Regardless how the product
continues we should start with a row vector to obtain again a scalar in the
end. That is why we decompose U™ into its row vectors U:(jg for 1 <k <d.

To describe the particular coefficient Cf]l ) we keep only the for that coefficient
relevant ith row of UM, We define

cntl) . E(")(V("))T.

We apply the reshaping operator and another singular value decomposition
yielding
(C(Z))/ — U(2)2(2)(V’[)(2)(U2)/ c CdQXdL’Q.

Now again U® has to be reshaped because it is a d? x d? matrix, which can
not be multiplied with U:(}C) € €. We split it into d matrices U;f) 1<j-<dof
dimension d x d? each. We keep the joth of these matrices U ;22) for expressing

Cij,...j. - Note that U ;2) and US? can be multiplied! We repeat this procedure
iteratively generating in this way matrices U}i) 1 <1< L with Uj(i) e qd " xd,
Finally we obtain
_ W@ (L)

Cijg...jL = Uz Uj2 "'UjL s
where the last C(F) is already a column vector and can be simply renamed into
U, All of this matrix products can be formed by construction. The product
starts with a row vector and ends with a column vector so it is simply a number
again! This is consistent with the left side and what we wanted from beginning.
We have shown

d d
0y =" D Cosplsresp)= > UPVUR..UDPlsy,..,s0) =|M).
51,...,3L:1 81...SL:1

We call this procedure left canonisation.

However there is a second way to choose C™*1. Let us assume we have
done [ left canonisation iterations, we obtain after another SVD with a different
labelling

d d
Z v pOol+l) — Z UM oW gt s o Gy
S1 Sy S1 Sl N ,

sr,
S1,--581=1 81,..,81=1 —C(+2)

This is a right canonisation. We call the site [, the site of canonisation.
It is the site where we switch from left to right canonisation, typically this will
be the border between the system and environment block. Special cases are
pure right or left canonisation. This is iterated L — [ times leaving us with
D7r(L) s (L L l
Corag, = Z Us(ll)"'Us(l)U( ) S (¢ ))T~-~(VS(L+2))T>

Si41 Si42
S815--58L
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in case of a general site of canonisation at s;y1. For the special case of left
canonisation we obtain
=uM..ud. (2.1)

CS1»--~78L

2.3.4 Properties of Matrix Product States

We constructed the matrix product state entirely by using the singular value
decomposition. The constructed state inherits useful properties of the singular
value decomposition.

First the singular value decomposition gives us a natural way to find lower
rank approximations (;NS of any state ¢. If rk(¥) = r and we want a ¢t < r rank
state

ﬁ = Ul:t,:zlzt,lzt(‘/:,l:t)Ta

is the approximation of p with minimal Frobenius norm. This is an easy way to
project p onto a basis of it’s ¢ largest eigenvalues. A projection onto this basis
is a key ingredient of DMRG.

Furthermore certain normality properties are guaranteed by the singular
value decomposition. The singular value decomposition guarantees

This simple consequence justiﬁes choosing the border between system and en-
vironment block as the site of canonisation. We can ensure by the above the
orthonormality within the different blocks.

2.3.5 DMRG produces Matrix Product States

We will now show that any DMRG calculation produces in fact always matrix
product states. The result has been proven by Rommer & Ostlund [19]. To
see that let us regard DMRG as a process in essential determining a certain
projector P. The exact way how DMRG chooses this projector is unimportant,
it suffices that it does.

DMRG is in this view simply a way of projecting the tensor product of a
reduced D-dimensional block S(X) and a site s back into a one site longer block
S(LA1D) “that should again be described by a basis of only D dimensions.

We assume for simplicity that all sites are describable by a d-dimensional
Hilbert space H. Let |k)gr € Hy € H®Y and dim(H)=D with D < d* be the
kth basis element of a reduced D-dimensional block of length L.

Let |I)s be the the lth basis element of a d dimensional site s.

We define Pry1 : ’HL RXH — HL+1 as exactly the projector describing
the truncation process in DMRG. A projector is a linear mapping and linear
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mapping can be written as a matrix. We express the basis of the composite

system as
|j>S(L+1) = Z Z PL+1 |k>S(L) |l>5L+1'
ko1

This is an inductive relation which we can exploit by replacing |k) gz), obtaining

d
‘j)s(LJrl) == Z PL+1---P1|l1~-~lL+1>51...sL+1-

lp41,501

Any state |[¢¥)parrg produced by the DMRG algorithm can always be written
as a tensor product of the system block basis and its environment block basis.
We utilise the relation above for the two different block bases utilising A for

the projectors of the system block and B for the projectors of the environment
block

lYpMmRG) = Z Cijls)srrzle)r2 =

= ZAL+1....AL/2+1BL/2...31|11...1L+1>51,,,5L+1. (2.2)

This is a matrix product state. Therefore DMRG naturally creates matrix
product state.

The argument above hardly uses any properties of DMRG, therefore it holds
more generally. All procedures which control growing dimensions by projecting
back onto some fixed dimensions can be expressed as matrix product states.

2.3.6 Variational Matrix Product States

Traditionally DMRG has been considered as a renormalization group method.
Surprisingly this viewpoint is not the only one anymore. The discovery that
DMRG produces matrix product states has led to some authors considering
DMRG as a variational method minimizing the energy over all matrix product
states. This has led to a reformulation of the DMRG algorithm sometimes
denoted shortly as (VMPS) or variational matrix product states [31]. This
approach allows to approach DMRG without utilising the classic algorithms
given in Section 2.2.1 and 2.2.2! Instead we can address several problems by
means of quadratic optimization techniques.

For example we reformulate the calculation of a ground state algorithm into
a multiquadratic problem. We find the ground state of a Hamiltonian H by
solving the following problem

win  (lH)
subject to  (Y|y) =1
d
v= Y MUM™L MM sy.sp).

81:1...SL:1
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It has been demonstrated by Fisert [3] that solving this problem is in general
NP-hard! This problem is solved by employing the alternating least squares
method (ALS). ALS means starting with some guess for ¢ and then iteratively
fixing all but one component j of 1. This simplifies our multiquadratic problem
into a quadratic problem. This problem is now solvable. We will get some
solution of the quadratic problem Q/AJO. Choose another component to vary over
and repeat. This yields a decreasing sequence of approximate solutions 1[)[ <
1&“‘1 < .. < 1ﬁl+”Vn. There is no guarantee of convergence, if we use this
simplification procedure! Still it is claimed to converge in practice.

2.3.7 Performance of DMRG in 1D and 2D+

DMRG divides a system into two blocks S, E. In each block we only allow a
certain maximal dimension D. Higher dimensional bases of a block’s state pg or
pp are projected onto the D-dimensional truncated eigenbasis of the D-largest
eigenvalues \; < ... < Ap. When will the obtained D-dimensional approxima-
tion p be able to represent p well? DMRG can inherently only represent systems
with decaying eigenvalues welll The more significant the contributions of the
smaller eigenvalues Apy; < ... < A\, are the less reliable the method gets. This
relates DMRG performance to the spectrum via

dim(p)

lp=pl—0=| > X[ =0
i=D+1

Let us recall the definition of the entanglement entropy of a bipartition of
the composite system p4p into p4 and pp

E(pap) = S(pa) = — Z Ailoga ().

Here \; denotes the eigenvalues of p4. This allows us to connect the notion
of entanglement entropy to the spectrum. A spectrum with only one large
eigenvalue will have minimal entropy. This extreme case corresponds in fact
to a pure state. A spectrum of many equally sized eigenvalues favours large
entropy. The other extreme case will be the maximally mixed state. Since
DMRG performs better if only few eigenvalues are large, the equation tells us
that DMRG performs well if we have small entanglement entropy.

This may be a nice connection to physics, but we have not yet tackled our ini-
tial question why DMRG performance is related to its dimension. Surprisingly
this is answered in the literature by the equation above. It has been found that
certain states, including ground states and especially matrix product states[21],
which are exactly the states created by DMRG exhibit the so-called entropic
area law

S(pa) ~ [0A],
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where 0 A denotes the border of A. Basically the law states that a subsystems
entanglement entropy scales proportional to the size of the border of the sub-
system and the remainder. Intuitively this behaviour should be expected of
systems with short range or next neighbour interactions, since there interior
sites wouldnot interact outside of theis block. On the other hand systems with
long range interaction should scale proportional to the volume.

The entropic area law is a subject currently undergoing research. It is not en-
tirely clear which states satisfy it. However there are many single results, where
the area laws have been proven for particular states or some classes of states. A
clear classification is not yet published. Maybe the most important result has
been proven by HASTINGS [9] showing that ground states of one dimensional,
non-degenerate, one dimensional systems with local interactions satisfy the en-
tropic area law. Furthermore BRANDAO & HORODECKI [2] have shown that one
dimensional systems with exponentially decaying spectrum satisfy the are law.
Similar results are expected for higher dimensional systems, but to the best of
our knowledge not yet proven. Even though many states do not satisfy the area
law, it seems that interesting class of groundstates tend to satisfy it.

It is seen as the relation between the entropy and the dimension of the spin
model, because borders are related to dimension. EISERT et al. [4] provide a
review article discussing the entropic area law for many physical systems and
its connection to DMRG.

A border is dependent on the dimension of the system. Especially in the
case of a one dimensional system the border of a block consists always of two
sites. This is totally independent of the block length [ leading to

0A] = 0(1),

for one dimensional systems! This means that the entropy is bounded regardless
of system size and with that we get somewhat heuristically a bound on the
equal distribution of the spectrum. In contrast in two or more dimensional
spin models, if we have large systems and large blocks we also will have large
borders. In this case it can and in practice does happen that DMRG is not
suited to describe these systems anymore. Higher dimensional systems borders
scale as

[5A] = 0™,

making entropy between a block and the remainder grow with block size. This
is considered the reason why DMRG performs different in one and higher di-
mensional systems.

We can take the physical interpretation a little bit further. Since an increase
in entropy is bad for DMRG performance, one idea to improve upon DMRG
was to try to avoid entanglement in the systems we study. This is the key in-
gredient in Vidal’s multi scale entanglement renormalization ansatz we describe
in Section 4.1.
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Chapter 3

Tree Tensor Network and
Contractibility

In this chapter we will introduce tensor networks. We employ them to describe
the geometry underlying the interactions of a composite system. Traditionally
DMRG assumes the geometry of a line. A tree can be regarded as a gener-
alization of a line. The idea is to utilise the method for composite systems
describable by tree geometries. This allows us to treat systems that are some-
what in between the one dimensional and two dimensional case.

In order to define tensor networks we need the notion of a contraction.
Consider the following simple case of a product of several matrices A, B,C, D €
C™*™ and a vector v € C"

x = ABCDwv.

We get of course by the standard definition of matrix multiplication, the com-
ponent wise formula

x; = Zzzzaijbjkckldlmvm. (31)
7 k I m

Note that only the terms j, k, [, m which appear in two different coefficents are
summed over. In this case only i appears once and it is not summed over.
Vectors and matrices could also be seen as tensors of respectively order 2 and
1. We write the above as tensors , pay attention that «? is not a component but
a (1,0)-tensor i.e. a vector.

o' = ALB]CFD! ™ (3.2)

We employ Einstein’s summation convention, where we sum over an index
if it appears once as superscript and once as subscript. We also see that in the
resulting 2* all indices we summed up vanished and only i remains.

If we are interested in studying tensors of order 3 or higher, we might want
to generalize this approach. The resulting operation, in fact simply summation

29
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i J k 1 m
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v

Figure 3.1: A simple tensor network representing the equations 3.1 & 3.2
from above

over matching superscript and subscript indices, is called contraction. The
argument above should illustrate that the contraction is simply a generalization
of the matrix multiplication to higher order tensors.

In order to avoid keeping track of lots of indices, which inevitable result
from employing higher order tensors and their contractions, we introduce the
so-called tensor networks in this chapter. In addition tensor networks allow us
to connect multilinear algebra with graph theory.

3.1 Tensor Networks

Tensor networks are a way of visualizing complicated tensors by a graphical
representation. We start by visualizing the above tensor network.

Definition. 3.1.1. A tensor network is a pair (G, 7). G(V,E) is a graph
with an edge labelling J = j1, .., jnn = |E| and a vertex labelling T = iy, ..., iym =
|V |, where edges may connect with either one or two vertices! T is a family of
tensors where the rank of T;, equals the degree of v;, and the indices of T;, share
the labelling of the edges connected to v;, .

The tensor associated to the tensor network graph is the tensor obtained by
taking the product of the tensors T;,, ..., T;, and summing over all edge indices
Ji shared by any T;,,T;, € T.

Take care not to confuse the summation indices with the vertex labelling!
Definition. 3.1.2. A edge connected to only one vertez is called an open indez.

If we want to describe covariant and contravariant tensors, we should require
G to be a directed graph. This allows us to define:

Definition. 3.1.3. Letv;, € V with fan—in(v;, ) =7 and fan—out(v;, ) = s.
The r edges ending in v;, are called arms. The s edges starting in are called
legs. The arms are usually depicted pointing upwards and the legs are pointing
downwards from the vertex.

Definition. 3.1.4. A directed tensor network is a pair (G, 7). G(V,E)
is a digraph with an edge labelling J = j1,..,jnn = |E| and a vertex labelling
T =1i1,....,imm = |V|, where edges may connect with either one or two vertices!
T is a family of tensors where T;, € T) if v;, has r arms and s legs. The r
covariant indices are labelled like the arms and the s contra like the legs of v;, .

The tensor associated to the tensor network graph is the tensor obtained by
taking the product of the tensors T;,, ..., T;, and summing over all edge inidices
Ji shared by any T;,,T;, € T.

a?
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Connecting two edges simply means summing over the summation index
denoted by their shared label. This can be seen as a graphical representation of
Einsteins summation convention.

Definition. 3.1.5. A tree tensor network is an tensor network that has tree
form.

For a lenghty but mathematical concise definition of a tensor network and
its associated graph refer to ESpi1G et al. [5]. The graphical representation of
tensors is also known as Penrose graphical notation. It might be worthwhile to
read PENROSE [16] work for an introduction to the notation.

Definition. 3.1.6. We call a edge representing a site a physical index, it has
to be designated whetever a edge is physical or not. Connecting two vertices by
a physical index results in summation over the index and the respective basis of
the site!

A edge not representing a physical index is a virtual index. Connecting
two vertices by a virtual index result only in summation over the index!

There is no mathematical way to see what a physical index is or not. This
is modelling choice. Connecting a tensor to physical index means that it acts
locally on that site. Connecting a tensor to virtual index means that the tensor
acts directly on another tensor and indirectly on all the sites connected to it.

Definition. 3.1.7. Another graph G'(V, E) is associated to a tensor net-
work G, if the graph can be gained by a sequence of allowed manipulations of
the tensor network. Allowed manipulations are contracting edges of the graph
G or inserting two unitary tensors in an edge.

Note that a graph associated to a tensor network is by no means unique!
We will introduce in the following the allowed manipulations and argue why
it is sensible to consider them as allowed. We will see that under the right
manipulations the graphs associated to the network are invariant. Later on we
will introduce a second class of manipulations, which change the network, but
compute something interesting in the process.

3.2 Invariant Operations on Tensor Networks

We call contracting an edge, if we replace an edge and its adjacent vertices, by a
vertex representing the two multiplied tensors of the removed vertices summed
up over all values of the removed edges index.

Definition. 3.2.1. If A, B are tensors their respective contraction Con over
the indices ji,..Jn 15 again a tensor C
ilv“i'm jlv--jn _ ilv--iWL jl?--jn _ il,..iyn
Con(Ajl,...,janl,,,‘,kl) = E Ajl,..‘,janl,‘..,kl = Okl,.“,kl'
Ji,--Jn
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We call the value of a tensor network the number which results after con-
tracting all tensors. If we do not want to contract all indices we write the indices
to be contracted as subscript of Con like this

Con (A7 15, Bl ) 1= D A By e
Jr.gs

The second important manipulation is inserting suitable tensors into the
tensor network. Note that a single vector or a matrix are of course only rank-1
or rank-2 tensors and can be just treated as any other matrices. Therefore in
tensor networks there is always a certain degree of freedom because between
two neighbouring sites s;, s;,1 one can always insert matrices BB~! = 1 and
contract s; B, B~'s;,1 leaving the tensor network invariant. This is referred to
as the canonical freedom or inherent degeneracy of tensor networks.

If for example B = UX V™ is a singular value decomposition we have

S A'BFC; =) AUU*BIVV*C; =) (A)SC}.

i3,k W4,k W5,k
Therefore the canonical freedom opens up a number of interesting derived ma-
nipulations, such as the singular value decomposition or the QR decomposition.
Especially the singular value decomposition is interesting since it splits a ma-
trix into three matrices. Due to this the singular value decomposition can be
considered as in some sense inverse to the contraction of a tensor, which merges
several tensors into a single one.

We also note that the singular value decomposition is only defined for ma-
trices or tensors of rank 2. There are generalizations of the singular value de-
composition for higher order tensors. Unfortunately this requires us frequently
to use the sometimes inconvenient matricization of higher order tensors, if we
want to make them accessible to the singular value decomposition. The singu-
lar value decomposition has several desirable properties like the orthogonality
of the rows or columns for V and U or uniqueness of the singular values.

There is no single generalization which fullfills all desired properties, so which
one is to be utilised depends on the context. One rather successful approach
to generalize the singular value decomposition as well as an overview and a
discussion over alternative attempts is given by De Lathauwer et al. [10]. To
the best of our knowledge there is no current literature employing higher order
singular value decompositions in the context of tensor networks, this may be
due to the difficulties of generalizing these.

We have introduced the contraction and the insertion of the unity as allowed
manipulations. In other words the allowed manipulations are exactly those that
leave the value of a tensor network invariant.

3.3 Noninvariant Operations on Tensor Networks

We will outline in the following manipulations of tensor networks, which calcu-
late interesting properties of the tensor network. The possibility to represent
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operations such as taking reduced density matrices and expectations by tensor
networks have been pointed out by SHI et al. [22].

3.3.1 Reduced Density Matrices

Summing over a physical index s; is interpreted as summing over the respective
basis of subsystem s;. A contraction is nothing else than summation over the
edge’s index

d

Con(T™on (T = 3 is [0} (lis,) =" tr (102 {0)-

=1

This means that connecting the physical indices s; of a state’s [¢) tensor
network representation 7 to the corresponding physical index s} of it’s adjoint
is nothing else then the reduced density matrix traced over subsystem s;. We
can represent calculating the reduced density matrix of subsystems s;,...s;, as
a tensor network by connecting all physical indices s; # s;,...s;, to the same
index of the adjoint tensor network.

Connecting all physical indices to their adjoint counter part results in simply
taking the trace. By definition of the density matrix we have

Con TT = tr([¥)(¢]) = tr(p) = L.

3.3.2 Expectation Values

Among the most common tasks is the calculation of an observable’s expecta-
tion value. We have argued how to represent traces by tensor networks, so we
can also represent expectation values, since they are defined via the trace. We
now specialise to the case of tree tensor networks, because they allow a simple
calculation of expectation values for pure states. Calculating a pure state’s ex-
pectation value is equivalent to calculating the value of a certain tensor network.

Let T be the tensor network representing |¢)) with open indices si, ..., sp
representing physical indices. If an observable O acts on a site s; it is connected
to the open physical index s; of T representing that site. An observable O
acting on n sites has to be of rank 2n. Con(7*1*~O3!) has the same rank as
T and can therefore be connected to TT. Con(7 #1505 (T*+*)T) is a rank
0 tensor. This number is exactly the expectation value of O.

Tree tensor networks are especially suited for calculating observables which
have support on very few leaves, then it is possible to make big effort reductions
through the tree structure. Due to the orthogonality, that can always be en-
forced in tree tensor networks, the matrices connected directly to its conjugate
transposed can be immediately contracted to the identity. This can make whole
branches of the tree disappear.
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3.4 Contractibility

Contracting a tensor network is a useful operation, because it enables us to
manipulate the tensor network and easily calculate a number of physically in-
teresting properties such as expectation values, reduced density matrices and
correlation function. For example calculating expectation values is equivalent
to contracting certain tensor networks. Furthermore should a tensor network
be given in non tree form, it can be contracted into tree form.

The effort of calculating all the above properties is dominated by the cost
of the singular value decomposition and the contraction of the tensor network,
which in turn depends on the so called contraction complexity.

3.4.1 Effort of a single Contraction

We first ask how much effort contracting only two tensors takes. Let uyly? _ be

a (I, m)-tensor and wﬁ]km a (m,n)-tensor both defined on some vector space V
of dimension n, then contracting u and w has effort of O(nrank(w)+rank(w)—m)

We check that representing the matrix multiplications of two n X n matrices
u,v as a tensor network leads as expected to an effort of O(n?). One advantage
of the tensor network representation is that one can easily read of the effort
of contracting two tensors by counting the number of open indices of the two
connected tensors, this is the power of the contraction effort.

It should be cautioned that when contracting more then two tensors, the
complexity is determined by the maximal tensor rank appearing in the whole
contraction process. This maximal rank depends on the contraction ordering!

3.4.2 Contraction Complexity of a Tensor Network

We define contraction complexity and note its relation to tree width as in
MARKOV & SHI [11].

Definition. 3.4.1. A contraction ordering of a graph G 7 is an ordering of
all the edges of G in which they are contracted.

The complexity of © a contraction ordering, is the maximum degree of the
merged vertices.

The contraction complexity cc(G) of G is the minimal complexity of all
contraction orderings.

The line graph of G is denoted as G*.

A tree decomposition of a graph G = (V, E) is a pair (C,T). C is a family
of subsets of C, of V and T is a tree. In addition we require the following
properties:

o UVEC CV =V
e for all edges (v,w) € E, there exists a v € C withv € C, an w € C,

o foralli,j,k €V with j on a path from i to k inT: C;NCy € C;
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The tree width tw(G) is the minimal value of the width of all tree decom-
positions of the graph G.

It is not easy to see which contraction order is optimal but it is shown by
MARKOV & SHI [11] that ce(G) = tw(G*).

Furthermore it is noted that though finding the tree width is NP-hard,
ROBERTSON & SEYMOUR give a way of finding a nonoptimal tree decomposition
of width O(tw(G)) [18]. Readers further interested in finding a tree decomposi-
tion should refer to NEUMAIER, who gives an review on how to efficiently find
tree decompositions. [15].

If a problem has bounded tree width, it is said to lie in a class of so-called
parametrized complexity. This means basically that an initially NP-hard prob-
lem, becomes tractable if we are able to bound a certain parameter, where in our
case the tree width is the parameter. If the tree width is reasonably bounded
we can efficiently contract a tensor network containing circles to a tree tensor
network! The following work might be interesting, but technical. It concerns
finding a best approximation, with given rank, to a tensor network by means of
optimization see ESPIG et al. [5], which should allow to find easier contractible
approximations of given tensor networks.

Furthermore it is notable that while the contraction complexity is not inde-
pendent of the contraction order, the value resulting from contracting a tensor
network is!

We close this section by summing up, that it is in general hard to find the
optimal contraction order for a tensor network. It is however easy to check the
effort of a particular contraction ordering. This leads to most authors simply
trying to find a clever contraction ordering and then computing the effort for
that ordering and bound the effort by that. Explicit optimal effort estimates
are usually not given. This also means that it is very much possible that later
papers give lower effort estimates if a better contraction ordering is found.

3.5 Causal Cones and Orthogonality

The canonical freedom of tensor networks can be exploited to it’s full extent only
in the case of tree tensor networks. Choosing a canonical representation enforc-
ing the orthogonality of the basis at any local site s; becomes possible there. The
canonical freedom allows us to insert suitable unitaries, which in turn makes sin-
gular value decompositions possible. In quantum mechanical context often the
reformulation of the singular value decomposition as the Schmidt decomposition
is used. They are mathematically equivalent. It allows us decompose the state
of a composite system [¢)) 4p into a linear combination of the tensor product of
the two orthogonal bases of the composite systems bipartition |k)4 ® |s)p. If
we have for example several d dimensional sites s; forming one system we can
proceed with
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d d
|¢>Sl~~~sn = Z >‘k1|k1>31 ® |ls2~~3n> = e = Z Akl‘k1>51 ®.® |kn>sna
k1=1 kla“-:knzl

where all (|k;y)1<i<a are orthogonal bases.

The difference between a general tensor network and a tree network is that
the latter one has leaves and no circles. The Schmidt decomposition is used to
obtain a basis, that is the tensor product of an orthogonal basis at a leave and
another basis of the rest of the system. Iteratively applying the Schmidt decom-
position to basis of the remainder, we can obtain leave per leave an orthogonal
basis until all local bases are orthogonalized as shown in SHI et al. [22] or QR
decomposition in MURG et al. [12].

In a general tensor network it can happen that we have a circle and we cannot
not apply the above because removing one edge does not result in a bipartition
any more. If we start with one site s of the circle and orthogonalize, we will have
to orthogonalize a neighbour s’ later on. It is possible that recontracting the
unitaries needed to orthogonalize this neighbour s’, destroys the orthogonality
of the site s we started at!

The reason for requiring the orthogonality condition is that many applica-
tions are interested in expectation values of operators, which always leads to
some kind of quadratic problem.

If an operator only acts on a few leaves of a tensor tree network, whole
branches of the tensor tree network disappear due to the orthogonality. This
simplifies the calculation of the operators expectation value tremendously. To
formalize the idea we introduce the causal cone of a site s;.

Definition. 3.5.1. Let T be a tree tensor network. The leaves of T are labelled
S1y ...y Sn. We consider T' a directed graph, with identical edges and vertices as
T ,where the edges always lead from the site with smaller tree order to the site
with larger tree order. We call the subtree Cs, of T the causal cone of s;

Cs, ={vjv~sveT}

More generally we have

Corys; = Cs; UCs,-

The causal cone Cg, is the set of all sites in the tree, which can be influenced
by operators acting only locally at a leave s;. We already argued above in 3.3
that calculating the expectation of an operator o acting on i.e. s;, s is the same

as calculating Con(T"l""*i”(J?’“i“Y'T ).

(TR R 14
Let for example o be acting on sites s;,,s;, then all tensors w ¢ C
cancel leading to

SipySiy

E(0j;!) = Con(T* ot I T ) = Con(C 0 (Coiy s )T

Tk, ik, 71 Siq s Sig Tk,
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Figure 3.2: Graphical representation of the Causal Cone C,, on one dimensional
16 site lattice

For operators acting on few sites this results in big effort reductions. It can
be argued that the effort reduction made by considering only the causal cone is
the idea which motivated the research into tree tensor methods.

Traditionally DMRG has been used to find the ground states (i.e. Hamilto-
nians of minimal energy) of spin chain systems. Finding a ground state leads to
a quadratic nonconvex minimization problem. Several authors propose schemes
to compute the ground state of a tree tensor network by employing the causal
cone.

3.6 Application: Ground State Calculation on a
Tree Tensor Network I

In order to study the entropy of ground states of quantum mechanical systems
representable by 2 dimensional lattices TAGLIACOZZO et al. [23] propose an
iterative optimization procedure. To find the ground state of a tree tensor
network. The lattice length is denoted L and the number of sites is denoted
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N = Lx L. The tensors s1, ..., sy at the leaves represent physical indices on the
lattice, while the tensors w connecting them are interpreted as several coarse
graining steps applied to a lattice. A gauge condition is assumed requiring
every tensor w or s; to be an isometry in order to allow an easy computation
of expectation values. This can always be achieved by exploiting the canonical
freedom of tensor networks.

Definition. 3.6.1. The isometries w, are rank p + 1 tensors satisfying

’
Z (w*)gl,...,up(w>31,...,up = 50170/'

Vi,..5Vp

The rank of w depends on how many lattice sites are renormalized into a
site. Renormalizing p sites is described by a rank p 4+ 1 tensor.

To make use of the orthogonality properties of a tree tensor network we
have to make the assumption that the Hamiltonian H of our system can be
decomposed into two body interactions h, yielding

H:Zhr.
T

It is a common assumption in the literature and therefore seems to be deemed
justified in the literature. We will see later that it is a basic requirement for all
tensor network based algorithms and is utilised in the multiscale entanglement
renormalization ansatz and the projected entangled pair state algorithm as well.
This assumption is essential because the h,. only act on two sites s;, sp. Therefore
they have small causal cones Cs, 5, and can be efficiently evaluated by a tree
tensor network method.

To find the ground state |[tgg) of our lattice we would like to solve the
quadratic problem

min E(0) = (6[H[).

In order to simplify this quadratic problem we regard a series of easier problems
which depend only on a single tensor w;

min E(hy) = (¢b(wi) hr |4 (w;))-
We sweep through all the tensors w;, optimising them site wise while fixing the
rest. Let us call the two interacting sites described by h, s, s;. We rewrite the

general problem in terms of a tensor network by expanding 1 into a tree tensor
network 7T~

(@lhelip) = Con(T*1 " (hy )33 (T s, 0n) = Con(Cop s (hr) 375 (Cop 1))

This is already a much simpler tensor network then before, since C is a much
smaller tree tensor network than 7. We split the tensor w; we want to vary in
this step from the causal cone to be able to rewrite the simplified problems in
tensor networks Cs, 5, = (Csps, \ W) o2, (wi) o 7.
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This allows us to rewrite the above tensor network depending on w;

(¢ (wi) |t (wi)) =

= Con[((Cays; \wi)izth, (wi)i2 7Y (he) 3005 (Coposy \ wi)irth, (wi)id 7).
(3.3)

Now remember that all the rewriting we have done has left the tensor net-
work noninvariant. It is still the same problem we have started with and is
still quadratic! To ease the quadratic optimization problem, it is linearized by
considering w’ to be independent of w.

If we remove a single isometry w and contract the remaining tensor net-
work, including its now fixed conjugated counterpart w’, we gain the so called
environment T of w. The effort is determined by the tree width of the tensor
network

Vp+1

Con[(CSk,Sz \ U’Z)Z’fﬂup(hr)Zf,;ﬁ ((CSk,Sz \ wi)ul.“up (MZ)Z;HVP)T](wz)Z;HVp)

._~pt1
=T,

It might be good to refer to figure 13 in TAGLIACOZZO ET.AL. [23] to visualize
the environment. We have approximated our initial quadratic problem by a
linear problem. This can now of course be solved. The problem

min tr(Tw)
w

is solvable by singular value decomposition of T = UXV' with solution w’ =
—VU'. w' is of course by no means guarantueed to be a minimum of the
quadratic problem but it yields a smaller or equal energy. We can iterate this
processes with an updated value w’ by linearising again, recalculating the en-
vironment and solving a new linear problem. This could be done until conver-
gence. This is a very popular optimization scheme for solving tensor network
problems called alternating least squares, we will encounter again in all fol-
lowing applications!

The authors advise not to wait for convergence because it is unclear if quick
convergence occurs. They rather accept a small decrease in energy and continue
to the next tensor. Minimizing all tensors once defines one sweep. The sweeps
are iterated until only small changes in energy occur delivering an tree tensor
approximation to the ground state |)gs). In principle every other way to min-
imize the energy could be chosen but this seems to be the most popular one in
the literature.

3.7 Application: Ground State Calculation on a
Tree Tensor Network II

Another way to calculated ground states by tree tensor networks is given MURG
et al. [12]. We note that in February 2013 shortly before finishing this work a
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new paper by NAKATANI & CHAN has been published continuing the work of
MURG et al., that has not been included in our work, but should be noted since
it directly continues this line of thought.

MURG et al. use a tree tensor network 7 with fixed coordination number z.
All nodes represent a physical site. Comparably to DMRG a gauge condition is
assumed, which enforces orthogonality of the basis on a local site. They propose
an iterative two step optimization procedure to solve the problem

E= min ((A1,...,Ax,U)|H[Y (Aq, ..., Apn, U)) .
Aty A, U
Here A; are the tensors of the tree tensor network 7, U unitary rotations of
the basis and H the Hamiltonian and [¢)) =3, Ck, _k,,|k1,..km) resulting
from contracting A;. The algorithm divides itself into a network optimization
step minimizing over the A; and an orbital optimization step minimizing over
U. Both steps are made iteratively until convergence.

Network Optimization

In the network optimization step we regard U as fixed, resulting in a fixed basis.
We want to minimize the energy subject to the constraint that |¢) is normed
over only the A; leading to

4 HllI"l4 F = <’(/)(A1, ceey A]\/[)‘H|(A1, ceey AM)w>_E(<w(A1; ceng AM)|(A1, teny AM)w>—1)
1seeesAM

Similar to the alternating least squares method we have employed already, we

fix all tensors but A,, to simplify the problem. The resulting problem is a
quadratic problem, solving quadratic problems is equivalent to solving general-

ized eigenvalue problems
H, Ay = Np A,

Here A,, refers to the optimized tensor, H,, is the effective Hamiltonian at site
m. Ny, is introduced using A as the tensor written in vector form

(W) = Al Ny Ay

Since we are using a tree tensor network we can use the canonical freedom of
tensor networks to get orthogonal local bases of the sites forcing NV,, = 1. Now
that only is an eigenvalue problem. What remains is calculating the effective
Hamiltonian.

The Hamiltonian can be split in to sum of Hamiltonians h, yielding

R
H=> h,

where we will solve for each of the summands independently.
To find the effective Hamiltonian, we are forming the environment in this
step. If we remove a tensor A,, from 7, we are left with z connected components
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we label as 7, for 1 < s < z, z being the coordination number. We gain the
effective Hamiltonian h,, , of the rth interaction at site A, if we contract along
all edges except the z edges of A,,

Bmr = Con(T1)" @ ... ® Con(T,)* = h}n’r ®...® hy, -

Note that the contraction of the connected components Con(7T;)% is efficient due
to the tree tensor network structure. This can be seen as a DMRG form with
z environment blocks instead of the usual one. Each Con(T;)% describes the
interaction of A,,, considered as the system, with the sth environment block.

WIH|) = D (Wl hme|)

T
Each Hamiltonian splits into a sum of tensor product of z matrices. Note
that if h, describes only a few body action, many h;, , might be missing. In

the case of a 2-body interaction we will have only 2 terms!
hmﬂ“ = hin,r ® hgnﬂ"

Calculating (1|H|1) all branches of the tree, where h, does not interact, dis-
appear due to the orthogonality condition of the tree tensor network. Even
vertices in a branch with non trivial interaction cancel, if they are not on the
path between the two interacting sites. In the case of a 2-body interaction
this simplifies the calculation to only the path connecting the interacting edges
remaining to be calculated.

This can be regarded as a spin chain on which DMRG is possible, finding a
state of minimal energy for that chain. Therefore one run of DMRG yields one
2-body interaction effective Hamiltonian. We repeat for all h, and the move on
to the next site. Repeating this for all sites defines a sweep.

Orbital Optimization

After several sweeps of network optimization, where the energy is minimized by
varying the tensors in the tensor network, MURG et al. optimize the basis of
the state 1 in the so-called orbitial optimization step. They explain that the
choice of basis can heavily influence how many basis elements D are needed to
describe the system. The authors use a basis in so-called second quantization,
defined by

k1, ., kar) = (al)® ... (al,)Fm|0),

where a; denote so called creation operators, that arise in physics when descibing
fock spaces. The explicit form of these operators depends on the particles that
are studied, but they can be thought of as fixed matrices. We do not cover
second quantization further, but simply remark that |0) is interpreted as the
basis describing a state without any particle. Applying a creation a; operator
changes this basis to another basis describing a system with on more particle.
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The basis is optimized by unitary rotations U in order to minimize the
local virtual dimension D. Recall that the accuracy of a DMRG calculation
depends on the truncated dimension Dpprra. If we can make D < Dpyra
all DMRG calculation in the orbital optimization step are exact, else we can at
least improve DMRG’s accuracy by minimizing D. To achieve this a gradient
search is applied to

min (4(U) H(0))

It is noted that the resulting problem is non convex, but finding a minimum
is not necessary, simply minimizing the energy a bit suffices, to improve the
algorithm.

3.8 Application: Circuits

We close the chapter on tree tensor networks with a small note on the topic of
circuits, where tree tensor networks also have recently played a role. We are not
going to treat them in depth, just note that these applications exist as well. In
classical and quantum theoretical informatics central objects to be studied are
circuits, who model calculation steps on a computer. One would assume some
input string or state and a predetermined sequence of manipulations on that
string or state. Each input bit or gbit corresponds to a leave and manipulations
are represented vertices. The incoming edges represent input and the outgoing
output.

Simulating these circuits under various inputs of gbits and calculating their
respective expectation values on classical computer is often interesting in com-
puter science. Circuits can be represented naturally by tree tensor networks.
As long as we have circuits with reasonably bounded tree width computing an
expectation value is possible efficiently see MARKOV & SHI. [11].

Apart from this practical question, there have been theoretical applications.
AHARONOV [1] et al. reduced the circuit of the quantum Fourier transform
to tree tensor network with bounded tree width. This shows that it can be
feasibly simulated on classical computers. This is a surprising fact since the
quantum Fourier transform appeared to be a key ingredient in the prime num-
ber factorization algorithm on quantum computers, which can not be classical
simulable.



Chapter 4

Higher Dimensional
Algorithms

4.1 Multiscale Entanglement Renormalization Ansatz

Meanwhile several generalizations to DMRG have been proposed. One of the
successful generalizations of the DMRG method is the multiscale entanglement
renormalization ansatz. It has been proposed by VIDAL[29] in 2007 . In contrast
to DMRG it is applicable for two dimensional or higher systems [7]. It also allows
calculation of energy and expectation values of operators with support on few
sites. It is a variation of the renormalization group idea.

Wilson’s renormalization scheme only applied rescaling steps, approximating
blocks of several sites in fine lattices by a single site in coarser lattices. The core
idea of MERA is to add another renormalization step in between the rescaling
steps. In this step the entanglement between a block and the adjacent blocks
is minimized. This seems plausible since we have demonstrated in 2.3.7 that a
large amount of entanglement entropy has limits the performance of DMRG in
higher dimensions. The natural remedy in MERA is to eliminate that harmful
entanglement.

MERA introduces two different kinds of tensors which are applied to a lattice
in succession in every coarse graining step:

Definition. 4.1.1.
e A disentangler u is a rank 4 tensor satisfying
D W)l () = baadps
v,

We require furthermore that the disentangler decreases the entanglement
of the sites it is applied to.

43



44 CHAPTER 4. HIGHER DIMENSIONAL ALGORITHMS

o An isometry w is a rank 3 tensor satisfy

Z(w*)gu(w)g; = 5a,a’~

i

We require that the isometries map a block of neighbouring sites to a single
site. We call applying an isometry coarse graining the lattice.

e We call a tensor in a tensor network, which is connected by d disentanglers
and v isometries to the next leave, a tensor in layer T =141+ d.

MERA applies at first the disentantglers u to all neighbouring sites, which
are not in the same block. Second an isometry w is applied to each block. It
maps all sites of the block to a single site. This defines one iteration, each
iteration yielding a renormalized lattice.

We have left the definition of decreasing entanglement and coarse graining
intentionally inexplicit. This is because in the literature does not provide a
constructive way of deriving the tensors. Instead an optimization algorithm is
applied which determines the form of disentanglers and isometries best suited
to the particular tensor network. We go on detailing the optimization procedure
for an isometry w, in principle the same procedure is used for the disentanglers.

4.1.1 Determining Isometries and Disentanglers of the MERA

We point out that the optimization algorithm for single isometries w or dis-
entanglers is not given in the original paper[29] explaining MERA, but in a
subsequent one [6].

In general every single isometry w has to be optimized on its own, although
symmetries (i.e. translation or scale invariance of a system) might reduce the
effort considerably.

Definition. 4.1.2. Let (G, T) be a tensor network representing a MERA. We
define the environment of w € T by

Ty := Con(T \ w).

For each isometry w, we keep all other tensors (i.e. isometries and disentan-
glers) of ¢ fixed and only vary in w.

Let 1) be a pure state, operating on a lattice of L sites, we want to represent
by means of a MERA. We assume 1 can be represented by a tensor network
T with L open indices and index labelling ¢. Furthermore we denote by 7T
the family consisting of all conjugated transposed tensors from 7 with index
labelling }, ..., iTEI' All elements in T have either rank 4, rank 2 or rank 1.

We want to solve the following optimization problem
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min E(6(w)) = Con(Titet X HE (T, ) =

s B

= COn((wTw)ihm’i‘E‘ H’ilvﬂi‘E‘ (U)Tw)j/ i )

Zl,...,’i‘E‘ 1508 g
subject to Z(w*)l‘f#(w)ff; = a.a'
v
’
Z(w*)gp,(w)gp, = 60‘70/'
v

This is a quadratic optimization problem in w.
The following algorithm is used iteratively to calculate a solution for the
problem:

e While optimizing over w, we keep the whole remaining tensor network
constant including w’ pretending it to be independent of w! Thereby our
quadratic problem is linearized. We then contract the whole part we are
not optimizing into the environment Y7 .

min E(w) = tr(wY))
w

subject to wiw =1

D (W), (w)S, = ba,ar

Vi

T! now contains the whole conjugated transposed part 7!

e The linearized minimization problem is now easily solvable by means of
a singular value decomposition of T,, = UXV yielding a solution of the
simplified problem w® = VU?.

e We now return to the quadratic problem inserting w® and linearize again
resulting in the new problem:
min E(w) = tr(wY)0)

w

subject to  (w®)Tw =
(

1
Z U)*):H(U})gﬂ = 5%06/
v, p

This updates the environment and we need to calculate the new T;jo.

e Finally we solve the new linearized problem yielding a new solution w' as

above and repeat

The authors do not give an analysis of convergence but claim that in practice
very fast convergence is achieved. It is suggested to only use very few iterations
instead of searching for true convergence before moving on. Since this algorithm
will be run over and over again in several sweeps the authors seem to be confident
that it is only required to improve the energy a bit in every step.
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4.1.2 Optimization Sweeps over the Entire MERA

We now have a way to determine each tensor of the MERA. Running a small
fixed number of algorithm steps for each of the involved tensors defines one
sweep of the MERA. Usually several sweeps are applied. In practice effort can
be saved by optimising the tensor in a sensible order. A sensible ordering is
optimizing layer wise either from top-down or from-bottom up. The main effort
of the MERA is determined by the contraction. If we start i.e. from bottom up
we can reuse old contractions. The past causal cone of layer 7 can be updated
by contracting all tensors of the layer and then be reused as the past causal cone
of the layer 7 + 1. Analogously the intersection of future causal cones needs to
be only computed once.

To exactly quantify the effort of contracting the MERA is difficult since
the optimal contraction order is related to the tree width see 3.4. Another
problem is that there are many possible choices for the rank of the isometries
and disentanglers and it is not clear what the optimal choice is. In fact finding
the best combination of contraction order and tensor rank is still under research.
This means that the effort anounced in papers can still go down later on.

In the case of the one dimensional MERA with type (2,2) disentanglers and
type (1,3) isometries EVENBLY & VIDAL [6] initially assume an effort of O(x®),
but in a subsequent paper a better contraction order resulting in O(x%)[8] is
found.

In the more interesting case of two dimensional MERA working with type
(4,4) as well as type (4,2) disentanglers and type (5,1) isometries they derive an
effort of rather big O(x'%) [29]. The authors are confident to improve the effort
by finding a suitable scheme with a lower effort.

It is notable that MERA can be represented as a tensor network. The
resulting networks are tree like structures. In fact a tree tensor networks could
be seen as a special case of the MERA, where the disentanglers are set to the
identity. A MERA network contains many circles but not very big ones. This
makes them efficiently computable. Since the tree width is bounded, the mera
can be contracted to a tree [11]. Therefore a MERA shares the benefits of a
tree tensor network namely the easy calculation of 2 site operators.

4.2 Other Algorithms of Interest

4.2.1 Projected Entangled Pair States

We want to point out that there is at the moment another algorithm for simulat-
ing 2 dimensional systems besides the MERA. The so-called projected entangled
pair states algorithm or shorter PEPS. It has been proposed in a paper by Ver-
strate and Cirac in 2004 [25]. PEPS and MERA are the two most discussed
methods for higher dimensional systems in the literature at the moment. Ver-
strate et al. [26] provide a review article revising DMRG, matrix product states
and projected pair states . This work has focused on the MERA but we want to
emphasize that the PEPS approach is also completely viable. At the moment
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Figure 4.1: graphical representation of the multiscale entanglement renormal-
ization ansatz

there seems to be no clear tendency in the literature to favour one approach
over the other!

4.2.2 Time Evolution

Another topic left out up until now is how to calculate the time evolution of
a system. It should be said that efficient time evolution algorithms exist. The
most well-known may be Vidal’s time evolving block decimation [28], it is a
truncation procedure related to DMRG and we have added a small section of
recommended reading introducing the various formulations of it in 5.5. Both
two dimensional generalizations of DMRG PEPS [26] as well as MERA[17] allow
for time evolution.
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Chapter 5

Literature Overview

In the following we give a short summary of the utilised literature:

5.1 Density Matrix Renormalization Group

The density-matrix renormalization group by SCHOLLWOECK [20] This
is an extensive review article, which serves as the standard introduction into
DMRG. It covers the basics of DMRG how it works and how it relates to ma-
trix product states. Moreover it provides an overview over various fields and
applications which have adapted the method with success such as quantum in-
formation theory or quantum chemistry. The only drawback is that it is not en-
tirely new anymore, being written in 2004. Generalizations of DMRG on higher
dimensions are only covered for the 2D case, applications with tree structure
are not covered.

The density-matrix renormalization group in the age of matrix prod-
uct states by SCHOLLWOECK [21] Another long review article by Schollwoeck,
which is also widely cited. It takes a different focus than the previous article.
Published in 2011 it is quite recent it uses less time to talk about the basics of
DMRG, provide citations to applications or give examples of dmrg variations
such as momentum space DMRG or non equilibrium systems. On the other
hand it focuses on the meanwhile discovered connection of matrix product states
and the density matrix renormalization group. Important applications such as
ground state calculations and time evolution are still covered. The two arti-
cles are somewhat complementary and can both be considered as the standard
introduction into DMRG at the moment.

5.2 'Tree Tensor Network Approaches

Simulating Strongly Correlated Quantum Systems with Tree Tensor
Networks by MURG et al. [12].

49
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This work is a good example for a generalization of DMRG on a tree ten-
sor network. The theoretical part treats calculation of expectation values and
ground state energy quite detailed. It might be notable that the author give
some references to the use of DMRG in quantum chemistry. It is pointed out
that fermionic systems are treatable by the tree tensor network methods in con-
trast to quantum Monte Carlo methods. The second part gives the results the
authors obtained in a series of numerical simulations of models from statistical
physics and quantum chemistry.

Simulation of two-dimensional quantum systems using a tree tensor
network that exploits the entropic area law by TAGLIACOZZO et al. [23].

Together with the above work by Murg another of the more cited approaches
to calculating ground states. The work is similar and also explains calculation of
expectations or correlations. Vidal the inventor of MERA regards the tree tensor
network as a special case of his MERA network and applies similar optimization
techniques as in his work covering optimization of MERA. There is a short
introduction to the entanglement are law, which is deemed to be the reason for
the different achievement between 1d and 2d+ DMRG.

5.3 Multiscale Entanglement Renormalization Ansatz

Class of quantum many-body states that can be efficiently simulated
by G. VIDAL [30]

Here the multiscale entanglement renormalization ansatz is introduced and
explained. It is interesting historically because it is the first paper on MERA.
The article gives an introduction but is quite short and does not provide every-
thing which is needed to implement a MERA, a review article like the following,
which examines technical details should be read as follow up or even be the one
to start with. It is along with projected entangled pair states one of the two
successful generalizations of DMRG to higher dimensional systems. It is similar
to tree tensor networks in some ways. It is describable also as a tree like tensor
network, which simplifies quite similar to tensor tree networks when calculating
expectation values of observable between few sites. The article should be read
together with the earlier Entanglement Renormalization [29] by Vidal where
he introduces the tensors which are needed to renormalize the entanglement of
blocks in the MERA.

Algorithms for entanglement renormalization by G. EVENBLY AND G.
VIDAL [6]

This review article covers calculations with MERA. It gives an intro on
the definition and motivation, evaluating two site operators and correlations,
incorporation of translation and scale invariance and most importantly delivers
optimization procedures to find the exact form of the tensors involved in MERA.
It is recommended as an introduction to MERA. We also warn that the article
exists in 4 versions, where some of the interesting content of earlier versions
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have been dropped. Version two for example contains remarks on the explicit
optimization which are lost in the newest version, it might be worthwhile to
compare different versions.

Vidal has published several follow up articles on the topic of the MERA.
In Entanglement Renormalization in Two Spatial Dimensions [7] might be of
interest because it introduces for the first time a generalization of MERA onto
2 dimensional lattices.

5.4 Projected Entangled Pair States

Matrix Product States, Projected Entangled Pair States, and varia-
tional renormalization group methods for quantum spin systems by
F. VERSTRATE et al. [6]

We recommend this review article as an introduction into the projected en-
tangled pair states ansatz. The authors regard their work as another a two
dimensional generalization of the variational matrix product states ansatz util-
ising another class of states to vary over. The projected entangled pair sates are
better suited to approximating two dimensional lattices then matrix product
states. They start with recalling the matrix product state formalism and then
introducing their approach. Apart from the calculation of ground states, the
calculation of time evolution is also covered.

5.5 Time Evolving Block Decimation

Efficient simulation of one-dimensional quantum many-body systems
by G. VIDAL [28]

In this paper Vidal introduces his time evolving block decimation method
or (TEBD). It is closely related to DMRG. It shares the requirement on the
simulation to be a one dimensional system and to restrict entanglement in the
system. While DMRG simulates the ground state or other static properties of a
system, TEBD allows to simulate the time development of a given ground state.
Often one would first get the ground state via DMRG and then use TEBD on
it, to simulate both at once.

The method has gained quite some attention leading to several generaliza-
tions especially suited to simulate infinite translational invariant one dimen-
sional systems [27], tree structured systems [22] and finally infinite translational
invariant tree structure systems [14].

Local Hamiltonians in Quantum Computation by D. NAGAJ [13]
Unfortunately i do not know of a review article devoted specificly to TEBD,
but for an overview i would recommend this thesis by Nagaj. The thesis covers
a diverse set of topic so one should directly commence the chapter 3 ”‘Matrix
Product States on Infinite Trees”’, where he outlines the developments above.
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5.6 Tensor Networks & Tensor Decompositions

Applications of Negative Dimensional Tensors by R. PENROSE [16]

Introduces the concept of representing tensors by tensor networks for the
first time. Gives very nice step by step introduction including pictures along
with formulas.

A Multilinear Singular Value Decomposition by DE LATHAUWER et al.
[10]

Proposes a multilinear generalization of the singular value decomposition.
Among many other proposed generalizations this paper seem well received with
over 1000 citations. Gives an overview over the several desirable properties of
a generalized singular value decomposition and argues why some of them are
attainable and others not with the proposed decomposition. De Lathauwer et
al. are successful in generalizing concepts such as row and column orthogonality
and singular value uniqueness. They state themselves that the generalization of
rank is problematic in this approach. There is also a well written section with
examples that illustrate i.e. the problem of generalized rank notions. Therefore
there is no unified concept of a generalized SVD. De Lathauwers generalization
can be seen as one example of the class of Tucker decomposition generalizations.
Other attempts to generalize are also pointed out and compared, the most
prominent other decompositions are the class of CP decompositions, which are
better suited to generalizing the rank.



Chapter 6

Curiculum Vitae &
Deutsche Zusammenfassung

6.1 Curiculum Vitae

Personal

Name: Claude Klockl
Date of birth: 11.06.1985

Curiculum Vitae

10.05 - 04.13  Student of mathematics (University of Vienna)

Branch: ”Applied Mathematics and Scientific Computing”
10.04 - 10.05 Civil service
06.2004 High school certificate

Further Skills

Languages: German (fluent), English (fluent), French (moderate)
Experience with: Matlab,Mathematica

6.2 Deutsche Zusammenfassung

Das Ziel dieser Arbeit ist einen berblick ber die Entwicklung der Simulation
von quanten Vielteilchenproblemen zu geben. Wir behandeln die Algorithmen
die auf der Density Matrix Renormalization Methode basieren. Sie ist eine der
schnellsten und przisesten Simulationsmethoden. Allerdings war ursprnglich
die Methode ausschlielich zur Simulation eindimensionaler Probleme gedacht.
Diese Arbeit behandelt den klassischen Ansatz sowie die Versuche diese eindi-
mensional Methode auf hherdimensionale Probleme umzulegen. Im speziellen

53



54CHAPTER 6. CURICULUM VITAE & DEUTSCHE ZUSAMMENFASSUNG

wird auf die Mglichkeit der generalisierung auf Probleme mit baumartiger Ge-
ometrie eingegangen und auch auf andere Tensornetzwerk basierende Methoden
eingegangen.
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