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Abstract

The paper �Finding the Homology of Submanifolds with High Con�dence from
Random Samples� ([NSW08]) by Partha Niyogi, Stephen Smale and Shmuel Wein-
berger shows that a compact submanifoldM of Rn with condition number τ is ho-
motopy equivalent to the union of ε-balls around some sample points x1, . . . , xN ∈
Br(M) with probability greater 1 − δ, if the samples are taken identically and
independently distributed according to a probability measure µ, which has a lower
bound ks > 0 for all µ(Bs(x)), and the parameters N ,r,τ ,s,ε obey three geometric
relations.
This will be extended as follows. Let M be a complete Riemannian manifold

with bounded sectional curvature κ ≤ sec ≤ K and S ⊆ M a closed submanifold
with condition number τ . And let x1, . . . , xN ∈ Br(M) such that S ⊆

⋃N
i=1 Bs(xi).

Then the union of ε-balls inM around these points, is di�eomorphic to the normal
bundle B⊥(S), moreover exp−1(U) is an open and �brewise star-shaped subset of
the normal bundle, if the parameters r,τ ,s,ε and the injectivity and convexity
radius obey some geometric relations. This will be done with the use of the Rauch
Comparison Estimate and Toponogov's Theorem. At last we will combine this
result with a probabilistic estimate for the number of sample points to get a similar
high con�dence result as in [NSW08].

Zusammenfassung

Im Artikel �Finding the Homology of Submanifolds with High Con�dence from Ran-
dom Samples� ([NSW08]) von Partha Niyogi, Stephen Smale and Shmuel Wein-
berger wurde gezeigt, dass eine kompakte Teilmannigfaltigkeit M des Rn mit
Konditionszahl τ , homotopieäquivalent zur Vereinigung von ε-Bällen um Sam-
plepunkte x1, . . . , xN ∈ Br(M), mit Wahrscheinlichkeit gröÿer als 1 − δ ist, wenn
die Punkte unabhängig und identisch verteilt bezüglich eines Wahrscheinlichkeits-
maÿes µ gewählt wurden, und für alle x das Maÿ von µ(Bs(x)) eine untere Schranke
ks > 0 besitzt, und wenn die Parameter N ,r,τ ,s,ε drei geometrische Bedingungen
erfüllen.
Dieses Resultat wird folgendermaÿen verallgemeinert. Sei M eine vollständige

Riemann'sche Mannigfaltigkeit mit beschränkter Schnittkrümmung κ ≤ sec ≤ K
und S ⊆ M eine geschlossene Teilmannigfaltigkeit mit Konditionszahl τ . Und
seien x1, . . . , xN ∈ Br(M) mit der Eigenschaft S ⊆

⋃N
i=1 Bs(xi). Dann ist die Vere-

inigung von ε-Bällen in M um diese Punkte di�eomorph zum Normalenbündel
B⊥(S). Wir werden sogar zeigen dass exp−1(U) eine o�ene faserweise sternförmige
Teilmenge des Normalenbündels ist. Vorausgesetzt dass die Parameter r,τ ,s,ε
sowie der Injektivitätsradius und Konvexitätsradius einige geometrische Bedin-
gungen erfüllen. Dabei werden wir als zentrales Werkzeug das Vergleichstheorem
von Rauch sowie den Satz von Toponogov verwenden. Zum Schluss werden wir
dieses Ergebnis mit Wahrscheinlichkeitsabschätzungen kombinieren, um ein analo-
ges �high-con�dence� Resultat wie in [NSW08] zu erhalten.
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Intro

What is manifold learning?

Manifold learning or non-linear dimensionality reduction is an algorithm or map-

ping to embed a set of high dimensional data into a low dimensional manifold. In

some cases this can lead to a visualization of the data. One of the most promi-

nent examples in manifold learning is face/feature recognition. See [ZCPR00] for

an overview over the development these years or more recently [LJ11] for further

reading.

High dimensional data - and possibly low dimensional substructure

I want to start with an example of face recognition. Let us assume we have a set

of pictures of faces, and assume that all of those pictures have the same amount of

horizontal and vertical pixels, or at least can be converted in such a format. If we

start with the set of 64× 64-pixel images as in [LZ08], then we can think of every

image as a point in a 4096-dimensional space. It is reasonable, as all human faces

have about the same shape, that all of these images have a common substructure,

an underlying �ideal face�. And given an appropriate metric one should be able to

distinguish a picture of a tree, from that of a face. However the task of biometry

is still more complicated: One would like to �nd out whether a given face in one

picture is the same as that in another picture, which may be hard due to the fact

that the second picture is taken from a di�erent angle, or at a di�erent lighting

environment, or that the person is not the same on both pictures. Where in the

�rst two cases an algorithm should con�rm the identity with high con�dence, in

the latter case it should falsify the equality of the pictures. Coming back of the

idea of the �ideal face�, it should be possible to extract a number of features in all

facial pictures, that have a common substructure.

It is unlikely for this substructure to be a linear subspace of this high dimensional

base space, so we will try to model it with the tools of smooth manifolds. More

precisely in this thesis I will assume that this substructure is a closed submanifold
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INTRO

of a Riemannian manifold.

One setting - Riemannian manifold learning

In the setting of Riemannian geometry a lot of algorithms for �manifold learning�

or �non-linear dimension reduction� have been developed, the English Wikipedia

entry of Nonlinear Dimensionality Reduction alone lists 24 di�erent manifold learn-

ing algorithms [Wik12]. For a short comparison see [LZL06] or [LZ08].

another prominent choice - persistent homology

Persistent homology is a framework for computing the homology of a simplicial

complex. Usually one constructs a �ltered complex depending on a parameter ε,

which de�nes whether (n + 1)-many points are connected to an n-simplex, and a

set of sample points. Then one tries to argue why the resulting simplicial complex

has the same homology type as the underlying manifold given the current con�g-

uration of sample points and ε. Persistent Homology takes a di�erent approach,

one calculates many homologies by varying the parameter ε and then �lters out

the �short lived� cycles in homology by embedding each complex with smaller pa-

rameter into the ones with greater ε. And thus getting a homology that persists

over almost all ε, hence the name.

Why manifold learning?

Data is everywhere

The 21st century could be called the age of data, if by any means we are judged by

our primary tools, and the waste we leave behind ourselves. Everyday more people

are �lling in their pro�les at social media sites, posting pictures and tagging them.

Hormones and Proteins are being analysed by biologists and put into databases. In

Geneva the European Organization for Nuclear Research, is running the LHC and

producing approximately 25 Petabytes per year [Gri12]. All of this data contains

useful information, which has to be extracted. And there is even data, where one

wouldn't expect it, as we will see [LPM03] had a closer look at 3× 3 pixel patches

taken from natural grey-scale images provided by [vHvdS98] and did �nd, quite

unexpectedly in my opinion, a quite complex structure within it.

ii



INTRO

Data is hard to manage

Most of this data is provided by measurement, and thus has inherently a few

problems. One is that there is a certain inaccuracy due to measurement errors or

other human errors. Another problem is the �curse of dimensionality� mentioned

before, i.e. that data is often high dimensional but can be embedded in a low

dimensional manifold. And after �nding a substructure one has to interpret the

result and apply heuristics to provide feedback to the problem at hand.

Data has structure - obvious and hidden

At last I would like to show an example given in �Topology & Data� by Gunnar

Carlsson (see [Car09] for a short summary or [LPM03] for more details). Though

the methods used there di�er from the ones used in this thesis, I want to spend

some time with it as it was the �rst paper that introduced me to the idea of

manifold learning and made me want to explore this subject more thoroughly.

Following [LPM03] I will brie�y describe the procedure that lead from the grey-

scale pictures to data within the manifold of the 7-dimensional sphere.

• Each high-contrast picture was partitioned in 3× 3 pixel-squares, which can

be viewed as points in R9, in addition they switched to logarithmic values,

to compensate for the variety of intensity found in the optical pictures.

• From the resulting 4.2 million pixel patches Lee, Pedersen and Mumford

selected 5000 at random.

• Subtracted mean value and normalizing the contrast for each patch.

• Then they �ltered out the lower 80% by contrast, which is measured by the

so called �D-norm�, and kept 1000 image patches for further processing.

• The next step was to mean centring the �points�, which is equivalent to factor

out a plane

• at last we normalize the �D-norm�.

So we obtain a data set in a 7-sphere. Starting with this set Carlsson shows

that in �rst approximation step one �nds a substructure of a circle, in the second

step two more circles appear that intersect the �rst one but not with each other,

and in the third and last step one can reason that these three circles happen
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all to be on a Klein's bottle. All these observations were made with the tool of

�Persistent Homology�. Which seems to be quite powerful, though I couldn't �nd

any estimates how big � or small the likelihood of an error, that the persistent

homology di�ered from the homology of the underlying manifold. Which lead me

to the paper by Partha Niyogi, Stephen Smale and Shmuel Weinberger [NSW08].

Finding the Homology of Submanifolds with High Confidence from

Random Samples

The authors discover that provided a �well behaved� submanifold M of Rn and

su�ciently dense sample points taken from M guarantee, that the �ech complex

obtained from the sample points has the same homology as the underlying mani-

fold. Furthermore they give an estimate, given that the number of sample points,

identically independently drawn according to a probability measure, is larger than

a certain number, then the ε-�ech complex of the points is homotopy equivalent

to the manifold with high con�dence. This number can be expressed in terms of

the condition number τ , which measures how the manifold is embedded in Rn, the

noise r, the ε
2
-covering number, the probability measure µ and the error δ one is

bound to accept. In addition the noise has to be relatively small compared to the

condition number, and the construction number ε for the �ech complex has to be

in bounds given in terms of τ and r.

Generalization of [NSW08]

In this thesis I attempt to put the aforementioned result of P. Niyogi, S. Smale

and S. Weinberger in the context of Riemannian geometry in the following sense.

Replace Rn with a complete Riemannian manifold M with bounded sectional cur-

vature, injectivity radius rinj > 0 and convexity radius rcvx > 0. Then I will prove

that for a closed submanifold S that has condition number τ then the union U
of ε-balls around r-noisy sample points is homotopy equivalent to S, moreover

exp−1(U) is an open, �brewise star-shaped subset of the normal bundle if the

following conditions hold

r < min{rinj, τ − ε} (3.1)

ε ≤ rcvx (3.2)

2ε+ r ≤ rinj (3.3)

iv
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2ε+ r ≤ π√
K

in the case of K > 0 (3.4)

tnK(ε+ r) ≤ tnκ(τ) and (3.5)

tnK(ε)

snκ(ε)
·
(
mdκ(ε)−mdκ(r)

tnκ(τ)
+ snκ(r)

)
≤ tnK

(
ε− s

2

)
(3.6)

In particular ε-�ech complex constructed from the samples is homotopy equivalent

to S.

In order to do that we will start to reprove the deformation retraction lemma

from [NSW08, Lemma 4.1], with slightly di�erent methods. Which will be used

quite similarly in our main argument; most prominently will be the Law of Cosines

and the monotonicity of the solution function. Then we will introduce the mod-

ifying function for the distance on manifolds md∗ and prove some of its basic

properties. And relate manifolds of constant sectional curvature with the sur-

rounding manifold, more precisely the distance, by using the famous result by

Harry Rauch, to get a generalized version of the Law of Cosines, employing the

methods introduced by Hermann Karcher. All this methods lead to the conclusion

that the union of balls of radius ε is retractible along geodesics to S. And apply-

ing the nerve lemma we get our desired result. Afterwards we spend some time

with the special cases of manifolds with constant curvature. In the last section we

transform the restriction of the sample points being s-dense into a probabilistic

estimate on the number of sample points that asserts that the ε-�ech complex

constructed from them is homotopy equivalent to the submanifold S with high

con�dence.

Though through all of the paper it is assumed that the reader is familiar with

basic di�erential geometry I provide some de�nitions in Section 2.1, otherwise the

interested reader might consult some textbook on di�erential geometry like [Pet06]

or [Jos08]. And as some understanding of homology is needed I provide the nec-

essary tools to understand the nerve lemma, though the prove would need some

more knowledge, for an introduction in the subject matter I would recommend to

read [Hat02] or [Die08].
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I. Setting and short recapitulation

When I introduce the topic of my thesis to laymen I always tell them the following

story: �Imagine a sphere and you have obtained some points on that sphere by a

measuring procedure, that all are near the equator of this sphere, then the aim of my

work is to give an estimate on how likely it is, that all of these points connected are

an approximation of the equator, and on what parameters this probability depends.

Obviously two or three points lead to a very bad approximation of the equator, thus

more sample points should lead to a higher probability. Another parameter that has

to a�ect the probability is the radius of the sphere, the bigger it is compared to the

sampling error, the more likely you should get a good approximation.�

1.1. Finding the Homology of Submanifolds with High

Confidence from Random Samples

The original idea that lead to this thesis can be found in the paper �Finding the

Homology of Submanifolds with high Con�dence from Random Samples� by Partha

Niyogi, Stephen Smale and Shmuel Weinberger. So I will summarize their work

and point out the di�erence compared to the results in this thesis.

The setting in [NSW08] is divided in two parts. One without noise, where

sample points are taken from a compact submanifold and the other part where the

samples are noisy, i.e. taken from the tubular neighbourhood of radius r around

M . Then the aim then is to learn the homology of the manifold by studying the

sample points.

Without noise:

For the �rst part this is done in three steps. A geometric one that shows that

M is a deformation retract of the union of ε-balls around x1, . . . , xN , provided

that ε is small in relation to the condition number and that the sample points

are ε
2
-dense. The condition number τ is a parameter, which measures how M is

1



I SETTING AND SHORT RECAPITULATION

embedded in Rn and bounds its curvature. It is de�ned as the maximal number τ

such that B⊥
r (M), the open normal bundle of radius r < τ is embedded in Rn by

the exponential mapping.

Then there is a probabilistic step that asserts sample points are su�ciently dense

with probability higher 1− δ if cov ε
4
(M)(1− α)N < δ. Where α is a lower bound

for the volume of ε
4
-balls intersected with M .

The last step is to provide a lower bound for the volume of Bn
ε (p) ∩M

vol(Bε(p) ∩M) ≥ cosk(θ) vol(Bk
ε (0)),

where p ∈ M and Bk
ε (x) denotes the Euclidean ball in Rk with centre x, and

θ := arcsin( ε
2τ
). And estimate the covering number by the packing number, which

again is bounded by

pckε(M) ≤ vol(M)

cosk(θ) vol(Bk
ε (0))

.

And relate the condition number τ to the curvature and the norm of the second

fundamental form.1

Combined this gives the following theorem [NSW08, Theorem 3.1].

I.1 Proposition: Let M be a compact k-submanifold of Rn with condition num-

ber τ . And let x1, . . . , xN be sample points in M , drawn identically and inde-

pendently distributed according to the uniform probability measure on M . For

0 < ε < τ
2
we de�ne U :=

⋃N
i=1. Then for all

N > β1
(
log(β2) + log(

1

δ
)
)

the homology of U equals the homology of M with high con�dence (probability

> 1− δ), where β1 :=
vol(M)

cosk(arcsin( ε
8τ

)) vol(Bk
ε/4

(0))
and β2 :=

vol(M)

cosk(arcsin( ε
16τ

)) vol(Bk
ε/8

(0))
.

With noise:

The second part is introducing the notion of noise. This is done by taking a

probability measure µ that satis�es the following conditions

supp(µ) ⊆ Br(M) and

∀s > 0 : ∃ks > 0 such that ks ≤ inf{µ(Bs(p))|p ∈M}.

1Note that in [NSW08] both τ and (1/τ) are referred to as the condition number.

2



I SETTING AND SHORT RECAPITULATION

Then there are two geometric results that provide su�cient conditions that assert

U :=
⋃N

i=1 Bε(xi) is homotopy equivalent toM , where x1, . . . , xN are sample points

drawn identically and independently distributed according to µ. The latter is the

most general and has the following form.

For a compact submanifold M of Rn with condition number τ , we have sample

points x1, . . . , xN ∈ Br(M) such that M ⊆
⋃N

i=1 Bs(xi). Then for ε > 0 there are

three geometric conditions such that the manifold M is a deformation retract of

U =
⋃N

i=1 Bε(xi)

(τ − w)2 < (τ − r)2 − ε2 (1.1)

(τ − r)2 − (τ − β)2 = s2 − β2 (1.2)

s2 − β2 + (β + w)2 = ε2, (1.3)

where the lengths β and w are as denoted in Figure I.1.

·

·

τ
−
r

ε

τ
−

β

τ −
r

s

ε

ββ

ww

ε

τ

x

TT

T ′

v

v′

q

h

p = π(v)p = π(v)

T⊥
p M

TpM

Figure I.1.: the triangles discussed in [NSW08, Lemma 7.1]: The points p,q and
v again span a plane, and p,x and v do too, without loss of generality we may
assume that these planes coincide. We can retract the line p̄vmax if the lines
Bε(xi) ∩ T⊥

p M and Bε(q) ∩ T⊥
p M intersect.
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I SETTING AND SHORT RECAPITULATION

Niyogi, Smale and Weinberger argue that the situation depicted in Figure I.1

is the worst case, for a q ∈ x̄ and for any v ∈ Bε(q) the line v̄p can be retracted

if the distance d(v, p) < w, where w is the maximal length of the segment of

{t · ~pv|t > 0} ∩ Bε(x) and x ∈ x̄ is the farthest point from v such that d(p, x) < s.

And β is the projection of the segment x̄p to T⊥
p S. Then the �rst inequality (1.1)

is a consequence of the Law of Cosines. The second condition (1.2) follows from

the Theorem of Pythagoras applied to the triangle (x, h, T ′) and the third condi-

tion (1.3) uses the Theorem of Pythagoras applied to the triangles (v′, x, h) and

(p, x, h), which have the segment x̄h in common.

1.2. Reproving the deformation retraction argument

without noise

As a �rst step we want to reprove two geometric lemmata, presented in [NSW08]

and introduce the core idea for generalizing this proof to the setting of submanifolds

within manifold. But before we need to de�ne the condition number.

I.2 De�nition: condition number

Let M be a submanifold in Rn, then the condition number is de�ned analogous

to [NSW08], as follows

τ := sup{r ≥ 0|B⊥
r (M) is embedded in Rn by the exponential mapping},

where B⊥
r (M) is the open normal bundle of radius r around M .

Note that later on we will de�ne a generalization of this condition number for

submanifolds of Riemannian manifolds. See De�nition III.1 for more details.

I.3 Proposition: an alternative proof of [NSW08] Lemma 4.1

LetM be a manifold embedded in Rn with condition number τ and x̄ := x1, . . . , xN

a �nite number of points in M , and let v be a point in Bε(q)∩T⊥
p ∩Bε(p) ⊆ Bε(x̄),

where 0 < ε < τ , and p is the unique nearest point of v in M , and q ∈ x̄ \ Bε(p).

Then the distance

d(v, p) <
ε2

τ
. (1.4)

Proof. At �rst take a look at the situation described in [NSW08]. The three points

4



I SETTING AND SHORT RECAPITULATION

p, q and v span a plane in Rn. And the points T and T ′ are given by T := p+τ ~pv
‖ ~pv‖

and T ′ := p+ 2τ ~pv
‖ ~pv‖

θ

θ

θ

h = a · sin(θ)

a > ε

b < ε

ε

τ

√
b2 − h2 = t2

a cos(θ) = t1

T

v

q′

q ∈ x̄ \ Bε(p)

p = π(v)

T ′

T⊥
p S

TpS

θ

θ

θ

h = a · sin(θ)

a > ε

b < ε

ε

τ

√
b2 − h2 = t2

a cos(θ) = t1

T

v

q′

q ∈ x̄ \ Bε(p)

p = π(v)

T ′

T⊥
p S

TpS

(a)

A detailed picture of the original version. Note

any manifold M with condition number τ has

to lie outside the circle with centre T and ra-

dius τ . The dashed line denotes all points that

have distance ε from T⊥
x (M). Then the distance

d(p, v) can be decomposed in the two segments

t1 := a · cos(θ) and t2 :=
√
b2 − h2, where the

auxiliary length is given by h := a·sin(θ), the an-
gle θ at the bottom is equal to the angle at T ′ as
the triangles (T ′, p, q) and (p, q′, q) are similar.

ϕ

c
>
τ

a > ε

b < ε

ε

τ

t

T

v

q ∈ x̄

p = π(v)

T ′

T⊥
p S

TpS

(b)

alternative view on the

situation, where the re-

gion (M ∩ Bε(v)) \ Bε(p)
is indicated by the yellow

area. a denotes the distance

d(p, q) > ε, b := d(v, q) <
ε and c := d(T, q) > τ .

Figure I.2.: Comparison of Lemma 4.1 found in [NSW08]

5



I SETTING AND SHORT RECAPITULATION

I would like to start with comparing the approach taken in [NSW08] with the one

here. Niyogi, Smale and Weinberger start with a the larger triangle in Figure ??

and use the angle θ. We will now calculate the length of the side a which have

ϕ

θ

θ

2τ

a

(a) �g:anglecomp1

ϕ

2θ

θ

ϕ
τ

a

τ

(b) �g:anglecomp2

Figure I.3.: Equivalence of the angles ϕ and θ.

both triangles in common. As the triangle in the right picture is equilateral, we

know that the angles at the segment a have to be equal (ϕ), if we do a simple

calculation, we see that the angle at the centre of the circle is given by 2θ. The

triangle on the left hand side is a right-angled one by construction. So the length

of a is given in terms of the condition number τ and the angles θ/ϕ:

a = 2τ · sin(θ)

a = 2τ · cos(ϕ)

In our approach we will always consider the smaller triangle of Figure ?? and the

angle ϕ. With a short calculation we see that the length of a is equal to the one

derived before.

a2 = 2τ 2 − 2τ 2 · cos(2θ)

a2 = 2τ 2(1− cos2(θ) + sin2(θ))

a2 = 4τ 2 sin2(θ)

a = 2τ sin(θ)

a = 2τ sin(
π

2
− ϕ)

a = 2τ cos(ϕ)

6



I SETTING AND SHORT RECAPITULATION

We will resume all calculations with ϕ being the angle of choice. If we want to

calculate the distance d(v, p) in the original case we �rst need to express ϕ in terms

of a and c, which is given by:

ϕ(a, c) = arccos

(
a2 + τ 2 − c2

2aτ

)
(1.5)

Now we denote d(v, p) = t(a, b, c) = t1(a, b, c) + t2(a, b, c) where

t1(a, b, c) = t1(a, c) = a cosϕ(d, a) = a · a
2 + τ 2 − c2

2aτ
=
a2 + τ 2 − c2

2τ

and

t2 =
√
b2 − h(a, c) =

√
b2 − a2 · sin2 ϕ(a, c) =

√
b2 − a2(1− cos2 ϕ(a, c))

=

√
b2 − a2 + a2 · (a

2 + τ 2 − c2)2

4a2τ 2
=

√
(a2 + τ 2 − c2)2

4τ 2
+ b2 − a2.

Or more easily with the law of cosines:

b2 = t2 + a2 − 2 · t · a · cosϕ

0 = t2 − 2 · t · a · cosϕ− (b2 − a2)

t1,2 = a · cosϕ±
√
a2 · cos2 ϕ+ b2 − a2

t(a, b, c) =
a2 + τ 2 − c2

2τ
+

√
(a2 + τ 2 − c2)2

4τ 2
+ b2 − a2

Now to conclude what happens in the �worst case� we take a closer look at the

partial derivatives of t, and want to prove that

(i) t(a, b, c) is increasing with respect to b

∂t

∂b
=

b√
(a2+τ2−c2)2

4τ2
+ b2 − a2

> 0

(ii) t(a, b, c) is decreasing with respect to a

∂t

∂a
=
a

τ
+

2(a2+τ2−c2)2a
4τ2

− 2a

2
√

(a2+τ2−c2)2

4τ2
+ b2 − a2

7



I SETTING AND SHORT RECAPITULATION

=
a

τ
+

a(a2 + τ 2 − c2 − 4τ 22)

4τ 2
√

(a2+τ2−c2)2

4τ2
+ b2 − a2

< 0

which is true, for we have the following chain of equivalences:

⇔ a2 − 3τ 2 − c2 + 2τ

√
(a2 + τ 2 − c2)2

4τ 2
+ b2 − a2 < 0

⇔ 2τ

√
(a2 + τ 2 − c2)2

4τ 2
+ b2 − a2 < 3τ 2 + c2 − a2

⇔ 4τ 2
(a2 + τ 2 − c2)2

4τ 2
+ b2 − a2 < (3τ 2 + c2 − a2)2

⇔ (a2 + τ 2 − c2)2 + 4τ 2(b2 − a2) < (3τ 2 + c2 − a2)2

as we know that b < ε < a it remains to show

0 < (3τ 2 + c2 − a2)2 − (a2 + τ 2 − c2)2 =

= 9τ 4 + 6τ 2c2 − 6τ 2a2 + c4 − 2c2a2 + a4

− (τ 4 − 2τ 2c2 + 2τ 2a2 + c4 − 2c2a2 + a4) =

= 9τ 4 + 4τ 2c2 − 4τ 2a2

which is equivalent to

0 < 2τ 2 + c2 − a2

and this is true as we have τ > a.

(iii) t(a, b, c) is decreasing with respect to c

∂t

∂c
= − c

τ
+

− (a2+τ2−c2)c
τ2

2
√

(a2+τ2−c2)2

4τ2
+ b2 − a2

< 0

so the �worst case scenario� is as follows. We replace a→ ε, b→ ε and c→ τ and

get

t(τ, ε, ε) =
ε2 + τ 2 − τ 2

2τ
+

√
(ε2 + τ 2 − τ 2)2

4τ 2
+ ε2 − ε2 =

ε2

2τ
+

√
ε4

4τ 2
=
ε2

τ

We saw that in the proof of the last theorem argumentation was a bit more

easily when using the Law of Cosines, which is a bit more complicated than the

8



I SETTING AND SHORT RECAPITULATION

Theorem of Pythagoras but it allows us to generalize the previous theorem (see

Proposition II.5). Another thing we will see later on, there is a way to avoid

deriving an expression like that above. Of course one cannot hope to get an

explicit formula for the distance t if the setting is on a manifold.

Next I want to give an example that if the maximal distance is ε2

τ
one needs the

condition that the sample points are ε
2
-dense, and in addition ε has to be small, to

be precise one can prove that S is a deformation retraction of Bε(x̄), if x̄ is ε
2
-dense

and 0 ≤ ε <
√

3
5
τ . See [NSW08, Lemma 4.2].

I.4 Example: Let M = R2 and S = S1, let the sample points ϕ̄ := ϕ−4, . . . , ϕ4 ∈
S1 given by ϕ0 := arccos( 7

10
) for i = −4, . . . , 4 we de�ne ϕi := ϕ0 − 2i arccos(37

40
)

Then for ε =
√

3
5
we have S1 ⊆

4⋃
i=−4

B̄ ε
2
(ϕi) and v = (2

5
, 0) π(v) = p = (1, 0). Note

that τ = 1 and the distance d(v, p) = ε2

τ
= 3

5
and the whole line v̄p is contained in

B̄ε(ϕ0).

ϕ−4

ϕ−3

ϕ−2

ϕ−1

ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

v

p

ξ

TpS1

T⊥
p S1

Figure I.4.: Example 4.1: The dashed circles are the ε-balls around the
sample points, and the smaller dotted ones indicate that the samples are
ε/2-dense. Note that the picture is rotated by 90 degrees.

9



I SETTING AND SHORT RECAPITULATION

1.3. Reproving the deformation retraction argument with

noise

One thing to note is, that one does not need to have both points, v and p in

one ball, but rather that it is only necessary to have the �lowest point� in the

q-ball covered by a ball containing p. Which is the underlying idea of the second

approach, taken in [NSW08]. In addition we take noise r > 0 into account, in

the following graphic Figure I.5 this will be marked as the dotted circles. And we

replace the condition of x̄ being ε
2
-dense by it being s-dense, which is slightly more

general.

I.5 Proposition: improved distance estimate in [NSW08]

Let M be a complete Riemannian manifold with condition number τ . Let x̄ :=

x1, . . . , xN ∈ Br(M) be s-dense, then Bε(x̄) is contractible to M if the following

conditions hold:

tq < txi
(1.6)

(τ − tq)
2 < (τ − r)2 − ε2 (1.7)

t2xi
+
r2 + 2τr + s2

τ
txi

+ s2 − ε2 < 0 (1.8)

Let q be a sample point, and vq ∈ B̄ε(q), then we denote its unique nearest point in

M by p and we de�ne tq := d(vq, p). As the sample points x1, . . . , xN are s-dense

there exists an i such that xi contains p, the farthest position for xi to be is shown

in Figure I.5 by vxi
we denote the farthest point to p in {t · ~pvq|t > 0}∩ B̄ε(xi) and

txi
:= d(vxi

, p).

Proof. As before we begin with a sketch of the current situation see Fig.I.5. If we

look at the triangle (T, v, q) we note that the law of cosines gives

(τ − r)2 < c2 = b2 + (τ − tq)
2 − 2b(τ − tq) cos(ψ) (1.9)

in addition we know the angle ψ is always acute, as vq is the unique closest point

to p within the closed ball of radius ε around q. So we have cos(ψ) > 0 and get

(τ − r)2 < b2 + (τ − tq)
2 < ε2 + (τ − tq)

2. (1.10)

So the next step is to estimate txi
, which we do by looking at the second triangle

10
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ϕ

ψ

ε <
a1

b1 < ε

c
1 >

τ −
r

τ
−
t
a

t
x
i

a 2
<
s

b 2
<
ε

c
2
>
τ
−
r

T

xi

−T

vq

vmax

vxi

q ∈ x̄ \ Bε(p)q ∈ x̄ \ Bε(p)

p = π(vxi)p = π(vxi)

T⊥
p S

TpS

Figure I.5.: the triangles discussed in [NSW08, Lemma 7.1]: The points p,q and
vq again span a plane, and p,xi and vxi

do too, without loss of generality we
may assume that these planes coincide. We can retract the line ¯pvmax if the lines
Bε(xi) ∩ T⊥

p M and Bε(q) ∩ T⊥
p M intersect.

11
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and apply the same logic as in Proposition I.3.

s2 > a22 = b22 + t2xi
− 2b2txi

cos(ϕ) (1.11)

(τ − r)2 > c22 = b22 + (τ + txi
)2 − 2b2(τ + txi

) cos(ϕ). (1.12)

For reasons of simplicity we omit the subscripts during our calculation and get

b2 + (τ + t)2 − (τ − r)2

(τ + t)
<
b2 + t2 − s

t
, (1.13)

which leads to

t2 +
r2 + 2τr + s

τ
t− b2 + s2 < 0 (1.14)

and keeping b < ε in mind and reattaching the indices we now have

t2xi
+
r2 + 2τr + s

τ
txi

− ε2 + s2 < 0; (1.15)

the desired implicit inequality for txi
.

See [NSW08, Section 7] for a discussion of the special cases, where the noise r

is zero; and the samples are r-dense.

Getting the distance estimate was the hardest step in proving a probability

estimate on how many points ought to collect in order to retrieve the homotopy

type of a manifold. Now the last step is to �nd a constraint for the sample

points being s-dense, which can easily be done in terms of the covering number

a probability measure and the maximal error δ, and then one can estimate the

packing number, which itself gives control over the covering number.
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II. Comparison Results in Riemannian

Geometry

In the following I will assume that the reader is familiar with knowledge provided

in a basic course on di�erential geometry or in some standard text on that subject

like [Lee03], [Lee09] and [Lan96]. Nevertheless we will recapitulate some facts and

de�nitions from Riemannian Geometry. Further on we will de�ne the auxiliary

functions sn, cs, tn, which are generalized versions of sine, cosine and tangent func-

tion. As sn and cs have origin in a parametrized ordinary di�erential equation,

which has sine and cosine as a special case, we have similar sum and di�erence

identities for these functions. We will also de�ne md, a modifying function for

the distance functional, which allows us to formulate the �Law of Cosines� for

triangles in the setting of manifolds with constant sectional curvature.

The next section is devoted to collect the tools to compare distances and vol-

umes of manifolds with bounded sectional curvature to the volumes of manifolds

of constant sectional curvature. The starting point is the famous Rauch Com-

parison Theorem, a local statement which compares Jacobi-�elds along geodesics

between two manifolds. This leads to comparing distances between a manifold

with bounded sectional curvature and one of constant sectional curvature. With

the use of the �Law of Cosines� we are then able to provide local upper and lower

bounds for the inner angles of a triangle with given side-lengths. Then we will take

a look at Toponogov's Theorem, which is a global distance estimate for manifolds

with sectional curvature bounded from below. Combining this with the �Law of

Cosines� we get a global upper bound for the inner angles of a triangle in such a

manifold.

Then we will study the volume form on manifolds, and see that for Riemannian

manifolds with sectional curvature bounded from above, we have the result of

the �Volume Comparison theorem of Günther�, which gives a lower bound for the

volume of su�ciently small balls. Which itself is again a consequence of Rauch's

Comparison Theorem.

13



II COMPARISON RESULTS IN RIEMANNIAN GEOMETRY

At last we will take a closer look on the tubular neighbourhood of a submanifold

S of M and prove that for a point x ∈ M but not in S a geodesic from x to S is

always perpendicular to S.

2.1. Notation and some Results from Riemannian

Geometry

A Riemannian manifold M is a smooth manifold equipped with the Riemannian

metric g, which will also be denoted 〈_,_〉, which is an inner product in every

tangent space, that depends smoothly on the base point. This means, for two

smooth vector �elds ξ, η ∈ X(M) the map x 7→ g(ξ(x), η(x)) is smooth. For a

submanifold S ⊆M this inner product allows us to decompose the tangent space

at y ∈ S in TyS⊕T⊥
y S, so we can de�ne the normal bundle as T⊥S :=

⊔
y∈S T

⊥
y S.

With the Riemannian metric we are also able to de�ne the length of a piecewise

smooth curve c : [a, b] →M by

`(c) :=

b∫
a

√
〈c′(t), c′(t)〉dt.

And thus we can endow a Riemannian manifold with a metric by de�ning the

distance between two points x, y ∈M as

d(x, y) := inf{`(c)|c[0, a] →M piecewise smooth, with c(0) = x and c(a) = y}.

Note that in general one is not able to connect two points x, y ∈ M by a curve,

if for example they lie in di�erent connected components. But there is a class of

special curves connecting two points in M , that generalize the concept of straight

lines to non-Euclidean geometry. These so called geodesics γ are characterised by

the property of vanishing acceleration dγ
d2t

= 0, and with the theory of ordinary

di�erential equations one can show that geodesics do exist locally and are unique

for given starting point and initial direction. Note that no acceleration implies

that the speed of a geodesic is constant, i.e. dγ
dt

= const, and one can show that

there always exists a reparametrization γ̃, such that ‖dγ̃
dt
‖ = 1, which is called

parametrized by arclength. In addition we de�ne a segment σ between points

x, y ∈M to be a geodesic parametrized by arclength such that d(x, y) = `(σ) and

x and y are starting and endpoint of σ.
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II COMPARISON RESULTS IN RIEMANNIAN GEOMETRY

Another thing in which geodesics di�er from lines in Euclidean space, is that

geodesics may not exist for all times, see [Pet06, Example 28, p. 119]. So we

say a manifold M is geodesically complete, if every geodesic in M exists for all

times t > 0. By the Hopf-Rinow Theorem, this new notion of completeness is

not di�erent from M being complete as a metric space, with the distance de�ned

above. For a proof see [Pet06, Theorem 16, p. 137].

At last let us recall that we can de�ne the exponential map as

TxM ⊇ U −→M

expx(v) := γv(1),

where γv is the unique geodesic with γv(0) = x and γ′v(0) = v, and U is the

set of all v ∈ TxM , such that 1 is in the domain of γv. Note that we have

expx(tv) = γv(t), `(expx(tv)) = ‖v‖ and that expx is a di�eomorphism between

TxM ⊇ Bε(0) ∼= Bε(x) ⊆ M for su�ciently small ε > 0. The largest ε, such

that expx is a di�eomorphism of ε-balls is called the injectivity radius and will be

denoted rinj(x), and

rinj := inf{rinj(x)|x ∈M}

is the global variant of it. Another number closely related to the injectivity radius

is the convexity radius. The convexity radius(see [Pet06, p. 177]) rcvx(x) is the

largest R such that the radius function rx(y) := d(x, y) is convex on BR(x) and

for any two points in y1, y2 ∈ BR(x) we have a unique segment σ : [0, α] → BR(x)

with σ(0) = y1 and σ(α) = y2. We will denote the global in�mum of all such radii

by

rcvx := inf{rcvx(x)|x ∈M}.

To connect this with the injectivity radius we note the following proposition

see [Pet06, Theorem 29, p. 177] for a proof.

II.1 Proposition: For a Riemannian manifold and a point x ∈M if we have for

B = BR(x)

R ≤ 1

2
min{rinj(B),

π√
sec(B)

}. (2.1)

then R ≤ rinj(x). Here sec(B) := sup{secy |y ∈ B} is the least upper bound for

the sectional curvature (see De�nition II.2) on B.
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2.2. Special functions and the Law of Cosines

Both the study of the exp-mapping and geodesic-variations, i.e. variational curves,

where every such variation is a geodesic, naturally lead to the idea of Jacobi-�elds.

We call J ∈ Γ(γ∗TM) a vector-�eld along a geodesic γ a Jacobi-�eld, if it solves

the Jacobi-equation

∇∂t∇∂tJ +R(J, γ′)γ′ = 0. (2.2)

Here ∇∂t denotes the Levi-Civita connexion, which is the unique torsion-free linear

connexion compatible with the Riemannian metric g, i.e. it is characterised by the

equations

∇XY −∇YX = [X,Y ] (2.3)

X · g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). (2.4)

And R is the Riemannian curvature tensor de�ned as

R(X,Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (2.5)

If we have a submanifold S ⊆ M we can use the Levi-Civita connexion and a

decomposition of the tangent bundle TM |S = TS ⊕ T⊥S and corresponding pro-

jections prTS : TM |S → TS and prT⊥S : TM |S → T⊥S, to de�ne

∇‖
XY := prTS(∇XY ) X,Y ∈ X(S) (2.6)

II(X,Y ) := prT⊥S(∇XY ) X,Y ∈ X(S) (2.7)

∇‖
Xξ := prT⊥S(∇Xξ) X ∈ X(S), ξ ∈ Γ(T⊥S) (2.8)

BXξ := −prTS(∇Xξ) X ∈ X(S), ξ ∈ Γ(T⊥S). (2.9)

Where II is called the second fundamental form and B is the Weingarten map.

We will write IIy(X,Y ) for the second fundamental form in a point y ∈ S, where

X,Y ∈ TyS. We can also de�ne a norm for the second fundamental form by

‖ IIy ‖ := sup
{
‖ IIy(X,Y )‖

∣∣X,Y ∈ TyS with ‖X‖ = ‖Y ‖ = 1
}
. (2.10)

Note that in the following γ : [0, α] → M will always denote a geodesic with

starting point γ(0) = x. If we have such a geodesic, then we want to analyse
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variations of such a curve, i.e. a function γ̄ : (−ε, ε)× I → M , where γ̄(s, 0) = x,

for �xed s the curve γs(t) := γ̄(s, t) is a geodesic and γ̄(0, t) = γ(t). Then the

variational �eld along γ de�ned as J(t) = ∂γ̄
∂s
(0, t) is a Jacobi-�eld. Another

important fact is that, given ξ ∈ TxM and η ∈ TξTxM ∼= TxM we have the unique

Jacobi-�eld J , along γ with J(0) = ξ and ∇∂tJ(0) = η. On the other hand, given

a Jacobi �eld along a geodesic with J(0) = 0 and �xed ∇∂tJ(0), we can de�ne a

geodesic variation of γ by

γ̄(s, t) = expx(t(γ
′(0) + s∇∂tJ(0))). (2.11)

The equation (2.11) can be used to connect the derivative of the exp-mapping with

Jacobi-�elds, a short calculation shows that

J(t) = Ttγ′(0) exp(x) · (tη) (2.12)

is a unique Jacobi-�eld with J(0) = 0 and ∇∂tJ(0) = η.

Another link between Jacobi-�elds and the exponential mapping are conjugate

points. We call two points x, y ∈ M conjugated along γ : [0, α] → M , if γ(0) = x

and γ(α) = y and there exists a non-vanishing Jacobi �eld along γ with γ(0) = 0

and γ(α) = 0. This can be equivalently characterized by the fact that expx :

TxM →M is not a local di�eomorphism at αγ′(0) ∈ TxM .

At last we note that an arbitrary Jacobi-�eld J along a geodesic γ can be

decomposed J = J⊥ + J‖ in an orthogonal and a parallel Jacobi-�eld. Where J⊥

and J‖ are de�ned as

X‖ :=
〈X, γ′〉
〈γ′, γ′〉

, X⊥ := X −X‖. (2.13)

We now take a look at Jacobi-�elds in the setting of constant sectional curvature,

and see that there exists a concrete decomposition in the form of equation (2.23).

II.2 De�nition: sectional curvature

For a two dimensional subspace E ⊆ TxM we de�ne the sectional curvature at a

point x ∈M

secx(E) := −gx(R(X,Y )X,Y ), (2.14)

where X,Y ∈ E are an orthonormal base for this subspace. Note that this def-

inition does not depend on the choice of this orthonormal base, see [Pet06, 3.3
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Sectional Curvature, p. 36] for more details.

In most cases we will restrict ourselves to manifolds with bounded sectional

curvature, so we have to introduce a bit of notation. We say a manifold has

sectional curvature bounded from above resp. below, if for all x ∈ M and all

planes E ⊆ TxM we have secx(E) ≤ K for some K ∈ R resp. secx(E) ≥ κ for some

κ ∈ R, and we will denote this by sec(M) ≤ K and sec(M) ≥ κ respectively.

Note that for a submanifold S ⊆ M we have an upper bound for the sectional

curvature given by the sectional curvature of M and its second fundamental form.

Let RS be the Riemannian curvature tensor of (S, gS) then we have the Gauss-

Equation [Pet06, Theorem 3, p. 44] for X,Y, Z,W ∈ X(S)

gy(R(X,Y )Z,W ) = gSy (R
S(X,Y )Z,W )

+ g⊥y (II(X,Z), II(Y,W ))− g⊥y (II(Y, Z), II(X,W )). (2.15)

Here g⊥ denotes the orthogonal part of g. And using the de�nitions of sec and

‖ II ‖ we obtain

secS ≤ secM +2‖ II ‖2. (2.16)

If we have bounds on the sectional curvature of a manifold M we can compare the

distances and volumes in M with the ones of the space form Mn
κ, which we de�ne

as follows.

II.3 De�nition: For κ ∈ R and n ∈ N we say a manifold is a model space, if it

is n-dimensional and has constant sectional curvature equal to κ. If M is simply

connected and κ = −1,κ = 0 and κ = 1 we have Hn the hyperbolic space, Rn

and Sn, the n-dimensional sphere, as the most important examples. We de�ne the

space forms to be

(Mn
κ, gκ) :=


sphere with sectional curvature sec = κ if κ > 0

Euclidean space with standard metric if κ = 0

hyperbolic space with sectional curvature sec = κ if κ < 0

Note that the Hopf-Killing Theorem says that, if M is a simply connected

n-dimensional model space then M is isometric to either Hn, Rn or Sn, if the

sectional curvature is −1, 0 or +1. For more information see [Cha06, Note II.6,

p. 104; Theorem IV.2.1, p. 198].
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Another important result to note is that the Riemannian curvature tensor is

R(X,Y )Z = − sec(M)g(X,Z)Y + sec(M)g(Y, Z)X (2.17)

for a manifold M with constant sectional curvature sec(M).

When studying Jacobi-�elds on model spaces, we have the functions snκ and

csκ as coe�cients for a decomposition in the sum of two parallel vector �elds. In

addition these functions as well as tnκ and mdκ will be used in Theorem III.2 and

Proposition II.5 extensively. So let us de�ne.

II.4 De�nition: sine, cosine, tangent and a modi�ed distance

We de�ne the sn-function, called the κ-sine function

snκ(t) :=


1√
κ
sin(

√
κt) for κ > 0

t for κ = 0

1√
|κ| sinh(

√
|κ|t) for κ < 0

(2.18)

and the cs-function, called the κ-cosine function, which is the derivative of snκ,

csκ(t) :=


cos(

√
κt) for κ > 0

1 for κ = 0

cosh(
√
|κ|t) for κ < 0

(2.19)

and at last the tn-function, called the κ-tangent function, which is the quotient

snκ / csκ,

tnκ(t) :=


1√
κ
tan(

√
κt) for κ > 0

t for κ = 0

1√
|κ| tanh(

√
|κ|t) for κ < 0

(2.20)

At last we de�ne the modifying function mdκ for the radial distance

mdκ(r) :=

r∫
0

snκ(t)dt =

 1
κ
(1− csκ(r)) for κ 6= 0

1
2
r2 for κ = 0

(2.21)

Going back to the Jacobi-equation (2.2) we see that snκ and csκ are the simplest

cases, where we can solve it.

So we see that the functions above (snκ) and (csκ) are solutions to the Jacobi-
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equation with respective initial condition.
f ′′ + κf = 0

snκ csκ

snκ(0) = 0 csκ(0) = 1

sn′
κ(0) = 1 cs′κ(0) = 0

In addition we have the derivatives

sn′
κ = csκ, cs′κ = −κ snκ . (2.22)

With the help of (2.17) one can derive that on a space form of sectional curvature

κ a Jacobi-�eld along a geodesic γ parametrized by arclength with initial condition

J(0) = v⊥γ′(0) and ∇∂tJ = w⊥γ′(0), can be written as

J(t) = csκ(t)V (t) + snκ(t)W (t). (2.23)

Where V (t) and W (t) are the unique parallel vector �elds with V (0) = v and

W (0) = w.

For the modifying function we have analogous to snκ and csκ that mdκ satis�es

the inhomogeneous Jacobi equation.

md′′
κ+κmdκ = 1. (2.24)

Which is can be seen as follows: for κ = 0 this is a simple calculation; for κ 6= 0 it

is an application of the fundamental theorem of calculus:

md′
κ(r) =

d

dr

r∫
0

snκ(t)dt = snκ(r) (2.25)

md′′
κ(r) = sn′

κ(r) = csκ(r) (2.26)

so from the de�nition of mdκ we get

md′′
κ(r) + κmdκ(r) = csκ+κ · 1

κ
(1− csκ(r)) = 1. (2.27)

We also have the following sum and di�erence identities for snκ and csκ and a

very useful identity that links csκ with mdκ.

1 = cs2κ +κ sn
2
κ (2.28)

20
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snκ(a± b) = snκ(a) csκ(b)± csκ(a) snκ(b) (2.29)

csκ(a± b) = csκ(a) csκ(b)∓ κ snκ(a) snκ(b) (2.30)

1 = csκ +κmdκ . (2.31)

In addition the functions mdκ and csκ are even functions and snκ is odd.

From [Mey89, Section 1.5] we have a generalized version of the �Law of Cosines�.

II.5 Proposition: Generalized Law of Cosines

Let Mκ be a complete Riemannian manifold with constant sectional curvature κ

and let x, y and z be points in Mκ. Let us denote the distances a := d(y, z),

b := d(x, z) and c := d(x, y), and let ϕ be the angle at z on the inside of the

triangle. As depicted in Figure II.1.

ϕ

x y

z

b a

c

Figure II.1.: Law of Cosines

then the following equation is true

mdκ(c) = mdκ(a− b) + snκ(a) snκ(b)(1− cos(ϕ)). (2.32)

This formula combines the three �classical� versions of the Law of Cosines for the

cases κ > 0, κ = 0 and κ < 0 respectively:

cos(
√
κc) = cos(

√
κa) cos(

√
κb) + sin(

√
κa) sin(

√
κb) cos(ϕ) (2.33)

c2 = a2 + b2 − 2ab cos(ϕ) (2.34)

cosh(
√

|κ|c) = cosh(
√

|κ|a) cosh(
√

|κ|b)− sinh(
√
|κ|a) sinh(

√
|κ|b) cos(ϕ).

(2.35)

Proof. Let us denote the radial distance from the corner point x to any q ∈ Mκ as

r(q) := d(x, q). Composing this with the modifying function mdκ we get a smooth
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function f(q) := mdκ(r(q)). And for its derivative we have

df = d(mdκ ◦r) = (md′
κ ◦r)dr = (snκ ◦r)dr,

and thus we can calculate the Hessian of f as follows:

Hess(f) = ∇df = ∇((snκ ◦r)dr) = (snκ ◦r)∇dr + (csκ ◦r)dr ⊗ dr

= (snκ ◦r)Hess(r) + (csκ ◦r)dr ⊗ dr

Knowing that an orthogonal Jacobi-�eld along a given curve γ, parametrized by

arclength, can be written in the form J(t) = csκ(t)J1(t) + snκ(t)J2(t) (see equa-

tion (2.23)), where J1 and J2 are parallel vector �elds along γ. Combined with

Hess(1
2
r2)(X,X) = 〈∇∂tX,X〉 we get

Hess(r) =
csκ ◦r
snκ ◦r

(g − dr ⊗ dr). (2.36)

Now using this and (2.31) we obtain

Hess(f) = (1− κf)g. (2.37)

For a geodesic γ with γ(0) = z, γ(a) = y and ‖γ′‖ = 1 we de�ne the composed

function ϕ(t) := f(γ(t)). We show that this function is solution to the inhomoge-

neous Jacobi equation

ϕ′′ + κϕ = 1, (2.38)

by calculating the �rst derivative ϕ′ = df(γ′) and with ∇∂tγ
′ = 0 the second

derivative is

ϕ′′ = (∇df)(γ′, γ′)− df(∇∂tγ
′) = Hess(f)(γ′, γ′)

= (1− κ(f ◦ γ))g(γ′, γ′) = 1− κϕ.

From (2.24) we know mdκ is also a solution to (2.38). Furthermore snκ and csκ

are solutions to the Jacobi-equations, which gives combined

ϕ(t) = mdκ(t) + C0 csκ(t) + C1 snκ(t). (2.39)
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Where

C0 = ϕ(0) = mdκ(r(γ(0))) = mdκ(r(z)) = mdκ(d(x, z)) = mdκ(b) (2.40)

and

C1 = ϕ′(0) = df(γ′(0)) snκ(r(γ(0)))dr(γ
′(0)) = snκ(b)dr(γ

′(0))

= snκ(b)〈r, γ′(0)〉 = snκ(b)‖∇r‖ · ‖γ′(0)‖ cos(π − ϕ) = − snκ(b) cos(ϕ). (2.41)

At last we evaluate (2.39) at t = a to see

mdκ(c) = ϕ(a) = mdκ(a) + csκ(a)mdκ(b)− snκ(a) snκ(b) cos(ϕ). (2.42)

Which concludes the proof.

For a detailed proof of the �Law of Cosines� on Mκ in the special cases κ =

0,κ = 1 and κ = −1 see [Pet06, Sec. 11, Prop. 48, p. 340]. Note that the general

case of κ < 0 and κ > 0 follow, with a rescaling of the metric.

After this study of geometry on space forms we want to take a closer look on

the basic properties of the modifying function as they will be used extensively in

Lemma III.4.

II.6 Remark: sum and di�erence identities of md∗

If we have a closer look at the mdκ-function de�ned above, we can prove the

following properties:

mdκ(a+ b) = mdκ(a) + csκ(a)mdκ(b) + snκ(a) snκ(b) (2.43)

= mdκ(b) + csκ(b)mdκ(a) + snκ(a) snκ(b) (2.44)

mdκ(a− b) = mdκ(a) + csκ(a)mdκ(b)− snκ(a) snκ(b) (2.45)

= mdκ(b) + csκ(b)mdκ(a)− snκ(a) snκ(b) (2.46)

Proof. For κ = 0 we have mdκ(a + b) = (a+b)2

2
= a2

2
+ 1 · b2

2
+ 2·a·b

2
= mdκ(a) +

csκ(a)mdκ(b) + snκ(a) snκ(b).

Let κ 6= 0 then note that mdκ has the property csκ+κmdκ = 1 (see (2.31)). If

we evaluate this equation at a+ b we get the following

csκ(a+ b) + κmdκ(a+ b) = 1 (2.47)
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And using the sum identities of csκ from equation (2.30) we get

csκ(a) csκ(b)− κ snκ(a) snκ(b) + κmdκ(a+ b) = 1, (2.48)

which is equivalent to

(1− κmdκ(a))(1− κmdκ(b))− κ snκ(a) snκ(b) + κmdκ(a+ b) = 1. (2.49)

This can be simpli�ed to

mdκ(a+ b) = mdκ(a) + mdκ(b) csκ(a) + snκ(a) snκ(b) (2.50)

Now the other equations (2.44)-(2.46) follow easily.

Another very helpful identity is the following

II.7 Lemma: The function mdκ can be expressed in terms of snκ and tnκ

mdκ(r) = snκ(r) tnκ(
r

2
) (2.51)

Proof. A simple calculation using the basic identities from before shows

mdκ(r) =
1

κ

(
1− csκ

(r
2
+
r

2

))
=

1

κ

[
1−

(
cs2κ
(r
2

)
− κ sn2

κ(
r

2
)
) ]

=
1

κ

[
1− cs2κ(

r

2
) + κ sn2

κ(
r

2
)
]
= 2 sn2

κ(
r

2
)

=
2 snκ(

r
2
) csκ(

r
2
) snκ(

r
2
)

csκ(
r
2
)

= snκ

(r
2
+
r

2

)snκ(
r
2
)

csκ(
r
2
)

= snκ(r) tnκ(
r

2
)

In the case of κ = 0 this is simply proven by the observation r2

2
= r · r

2

Note that one can use this formula to derive the half angle formula for the

tangent and hyperbolic tangent function.

2.3. Comparison Estimates

Distance Comparison

The �rst part will be focussed on the distance comparison estimate by Harry Ernest

Rauch, which allows us to reduce the situation of bounded sectional curvature to
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the case of constant curvature. We will formulate it in terms of Jacobi-�elds and

derive a distance version using the previously de�ned function md to treat both

tangential and normal Jacobi �elds at the same time. Another key theorem is

by Victor Andreevich Toponogov a global extension of the Rauch Comparison

Theorem. Later on we will use both to provide bounds on the inner angle.

In this section we will derive a few important corollaries, which have their origin

in the classical theorem by Rauch.

The Rauch Comparison Theorem has found its way into mathematical literature

in numerous versions see [Jos08], [Kar87] or [Cha06] or [dC92], which is the source

for the following formulation. For a complete prove of this estimate see [dC92,

Theorem 2.3, p. 215].

II.8 Theorem: (Rauch) Comparison Theorem

Let γ : [0, α] →Mn and γ̃ : [0, α] → M̃n+k (k ≥ 0), be geodesics with ‖γ′‖ = ‖γ̃′‖.
And let J and J̃ be Jacobi-�elds along γ and γ̃, such that:

J(0) = 0 = J̃(0) (2.52)

〈J ′(0), γ′(0)〉 = 〈J̃ ′(0), γ̃′(0)〉 (2.53)

‖J ′(0)‖ = ‖J̃ ′(0)‖ (2.54)

Assume that γ̃ does not have conjugate points on (0, α], and for all t and all

X ∈ Tγ(t)M , X̃ ∈ Tγ̃(t)M̃ , for which X, γ′ and X̃, γ̃′ are linearly independent, we

have

secγ(t)〈X, γ′(t)〉vs ≤ ˜secγ̃(t)〈X̃, γ̃′(t)〉vs,

where 〈v1, . . . , vn〉vs denotes the vector space generated by the vectors v1, . . . , vn.

Then for all t we have

‖J̃(t)‖ ≤ ‖J(t)‖.

In addition, if for some t0 ∈ (0, l], we have ‖J̃(t0)‖ = ‖J(t0)‖, then for all t ∈ [0, t0]

we have

˜secγ(t)(J̃(t), γ̃
′(t)) = secγ̃(t)(J(t), γ

′(t)).

Note that the idea of the following proof and also the notation md∗ were coined

by Hermann Karcher in �Riemannian comparison constructions� [Kar87]. A rather

lengthy proof of the following statement can be found in [Pet06, Theorem 27,

p. 175].
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II.9 Corollary: Let M be a Riemannian manifold with bounded sectional curva-

ture κ ≤ sec(M) ≤ K. And for a geodesic γ : [0, α] → M let X be a vector �eld

orthogonal to γ. Then the following is true

sn′
K(r)

snK(r)
g(X,X) ≤ Hess(r)(X,X) ≤ sn′

κ(r)

snκ(r)
g(X,X), (2.55)

as long as there is no conjugate point to γ(0) on γ for all t ∈ (0, α].

Combining this corollary with the idea of md we see that the Riemannian metric

is bounded. We will follow the proof given in [Hal11] as the other proof I found

in [Pet06, Lemma 53, p. 342] is unfortunately rather short. Another proof can be

found in [Mey89, Section 1.6, p. 13].

II.10 Proposition: (Karcher) Hessian Comparison

Let M be a Riemannian manifold with bounded sectional curvature κ ≤ sec ≤ K
and r the radial distance function induced by the Riemannian metric g at a point

x ∈ M de�ned as r(y) := d(x, y) and fκ(y) := (mdκ ◦r)(y), fK(y) := (mdK ◦r)(y)
then its Hessian satis�es

Hess(fκ) + κfκg ≤ g ≤ Hess(fK) +KfKg (2.56)

on BR(x) for R < rinj.

Proof. For reasons of simplicity we just prove the estimate using the lower bound

on the sectional curvature, as the one for the upper bound can be proven in the

same manner. To get an estimate on the Hessian of the modi�ed radial distance

function we start with

dfκ = d(mdκ ◦r) = (md′
κ ◦r)dr = (snκ ◦r)dr,

which leads to

Hess(fκ) = (sn′
κ ◦r)dr ⊗ dr + (snκ ◦r)∇dr

= (sn′
κ ◦r)dr2 + (snκ ◦r)Hess(r)

= (csκ ◦r)dr2 + (snκ ◦r)Hess(r).

Now we want to calculate Hess(r)(Y, Y ) for an arbitrary vector �eld Y ∈ X(M)

along a minimal geodesic γ, which is parametrized by arclength. As this vector �eld

26



II COMPARISON RESULTS IN RIEMANNIAN GEOMETRY

can be decomposed in the sum of two vector �elds X⊥ a perpendicular component,

and X‖ a parallel to γ, we only have to consider the two cases:

Let X⊥ ∈ X(M) perpendicular to γ in every point, then dr(X⊥) = 0, and we get

Hess(fκ)(X
⊥, X⊥) = 0 + (snκ ◦r)Hess(r)(X⊥, X⊥) (2.57)

≤ (sn′
κ ◦r)g(X⊥, X⊥) = (csκ ◦r)g(X⊥, X⊥). (2.58)

In the second case let X‖ be a parallel vector �eld, i.e. it has the form X‖ =

λ(t) · γ′(t), and let Y be an arbitrary vector �eld along γ. Then Hess(r)(X‖, Y ) =

(∇X‖dr)Y = (∇λ(t)·γ′(t)dr)Y . From (∇γ′(t)dr)Y = 〈grad(r), Y 〉 = 〈∇∂tγ
′, Y 〉 = 0

we get Hess(X‖, Y ) = 0. So now easily follows that

Hess(fκ)(X
‖, Y ) = (csκ ◦r)dr2(X‖, Y ) + 0. (2.59)

Combining both results we obtain for an arbitrary vector �eld Y ∈ X(M):

Hess(fκ)(Y, Y ) = Hess(Y ⊥, Y ⊥) + Hess(Y ‖, Y ⊥) + Hess(Y, Y ‖)

≤ (csκ ◦r)(g(Y ⊥, Y ⊥) + g(Y ‖, Y ⊥) + g(Y, Y ‖))

= (csκ ◦r)g(Y, Y )

= (1− κfκ)g(Y, Y ).

We see that for the upper bound of the Riemannian metric, one could use the

same line of arguments.

For the interested reader I want to note that the original idea of the modifying

function and additional information can be found in [Kar87], but I would rather

advise you to look into the collection [CC89] since it includes the paper �Conjugate

and Cut loci� by Shoshichi Kobayashi which Karcher frequently refers to.

Now as we have this auxiliary statement proven we will now compose the result

with Rauch's Theorem.

II.11 Corollary: (Rauch) Comparison Theorem cosine version Let M be

a complete Riemannian manifold with bounded sectional curvature κ ≤ sec ≤ K.

Suppose x, y and z be three points in M . Then we de�ne a := d(y, z), b := d(x, z)

and c := d(x, y) and let ϕ be the inner angle at the point z. Then

mdK(b− a) + snK(b) snK(a)
(
1− cos(ϕ)

)
≤ mdK(c) (2.60)
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mdκ(c) ≤mdκ(b− a) + snκ(b) snκ(a)
(
1− cos(ϕ)

)
(2.61)

holds as long as the whole geodesic, γ connecting y with z, i.e. γ(0) = y and

γ(a) = z, is contained in BR(x) with 0 ≤ R < rinj(x). In case of K > 0, we

additionally have to assume a, R < π√
K .

Proof. First note that the function f(w) := mdK(d(x,w)) is smooth on BR(x),

since we have R < rinj. And the distance function for �xed x is the same as the

radial distance on the tangent space at x, r(w) := d(x,w). So within BR(x) the

Hessian of f satis�es

Hess(f) +Kfg ≥ g (2.62)

by Proposition II.10. Also note (f ◦ γ)(0) = mdK(b) and

(f ◦ γ)′(0) = snK(b)〈∇r, γ′〉 = − snK(b) cos(ϕ). (2.63)

And with equation (2.2) we may conclude that the function

h(t) := f(γ(t))−
[
mdK(t− b) + snK(t) snK(b)(1− cos(ϕ))

]
(2.64)

satis�es the following initial value problem

h′′ +Kh ≥ 0 h(0) = 0 h′(0) = 0. (2.65)

From this di�erential inequality we obtain (h′ snK −h sn′
K)

′ = (h′′ snK −h sn′′
K) =

(h′′ +Kh) snK ≥ 0, hence the function h′ snK −h sn′
K is increasing. With h(0) = 0

this leads to h′ snK −h sn′
K ≥ 0. Which yields

(
h

snK

)′
=

h′ snK −h sn′K
sn2K

≥ 0, which

implies h
snK

is increasing. From the calculation h
snK

(0) = lim
x→0

h(x)
snK(x)

= h′(0)
K csK(0)

=

h′(0) = 0 we conclude h
snK

≥ 0, and hence the desired inequality h ≥ 0 follows.

The next theorem is an important generalization of the Rauch Comparison The-

orem. One can show that for Riemannian manifolds with sectional curvature

bounded from below there exists a global comparison of lengths in a model space

and the lengths measured in the manifold. This theorem is due to Victor An-

dreevich Toponogov and has two equivalent formulations, the triangle version and

the hinge version. A proof for this theorem can be found in many textbooks on

Riemannian Geometry like [Cha06, Theorem IX.5.1/2 p. 400], [CES75, 2.2 The-
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orem, p. 42], [Kli82, Theorem 2.7.12, p. 226] or [Pet06, Theorem 79, p. 339] The

proof requires quite some preparation and is rather lengthy so we will just cite the

theorem. But before we need the following de�nition.

II.12 De�nition: geodesic triangle and hinge

A hinge or geodesic hinge is a triple (γ1, γ2, ϕ), where γ1 : [0, α1] → M is a

unit speed geodesic from z to x and γ2 : [0, α2] →M a segment from x to y. And

ϕ := ](−γ′1(α1), γ
′
2(0)) is the angle on the inside of the triangle. A geodesic triangle

is a triple (γ1, γ2, γ3) of three unit speed geodesics γi : [0, αi] →M , called the sides,

such that γi(αi) = γi+1(0) and αi+αi+1 ≥ αi+2. The points xi = γi+2(0) are called

the vertices of the triangle and αi = ](−γ′i+1(αi+1), γ
′
i+2(0)) the corresponding

angles. Note that indices are taken modulo 3.

y

x

z

γ2

γ1

ϕ

(a) Sketch of a hinge

x1

x2

x3

γ1

γ2

γ3

ϕ1

ϕ2

ϕ3

(b) Sketch of a geodesic triangle

II.13 Theorem: (Toponogov)

LetM be a complete Riemannian manifold with sectional curvature bounded from

below sec(M) ≥ κ.

(hinge version) Let (γ1, γ2, ϕ) be a geodesic hinge inM , such that γ1 is minimal,

and if κ > 0, then suppose α2 ≤ π√
κ
. Let (γ̃1, γ̃2, ϕ) be a geodesic hinge in M2

κ

with `(γ̃1) = α1 and `(γ̃2) = α2. Then

d(γ1(0), γ2(α2)) ≤ d(γ̃1(0), γ̃2(α2)). (2.66)

(triangle version) Let (γ1, γ2, γ3) be a geodesic triangle in M . Suppose γ1 and

γ3 are minimal, and if κ > 0, we assume α2 ≤ π
κ
. Then there exists a geodesic

triangle (γ̃1, γ̃2, γ̃3) in M2
κ such that for i = 1, 2, 3

`(γ̃i) = αi, α̃1 ≤ α1, α̃3 ≤ α3. (2.67)
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This triangle (γ̃1, γ̃2, γ̃3) is uniquely determined, unless κ > 0 and αi =
π√
κ
.

We will use a more convenient form of the Toponogov theorem by combining it

with the �Law of Cosines� II.5.

II.14 Corollary: (Toponogov) cosine version Let M be a complete Rieman-

nian manifold with sectional curvature bounded from below κ ≤ sec. Suppose

x, y ∈M and σ a geodesic parametrized by arclength, with starting point x = σ(0).

Now de�ne a := d(x, y) and furthermore let ϕ be the inner angle at x between σ

and a minimal geodesic from x to y. Then for all t we have

mdκ(d(y, σ(t))) ≤ mdκ(t− a) + snκ(t) snκ(a)
(
1− cos(ϕ)

)
. (2.68)

In case of κ > 0, we additionally have to assume |t| < π√
κ
.

ϕ

y

x = σ(0)

σ(t)

a

σ

Figure II.2.: Triangle for Toponogov's Theorem

At last we cite the diameter estimate by Sumner Byron Myers, which gives

an upper bound for the maximal distance two points in a manifold with Ricci

curvature bounded from below can have. See [Pet06, Theorem 25, p. 171] for a

complete proof. But before we start we have to de�ne the Ricci-curvature.

The Ricci curvature is the trace of the Riemannian curvature tensor R, i.e.

ric(X,Y ) := tr(ξ → R(ξ,X)Y ). If we choose an orthonormal basis (E1, . . . , En)

of the n-dimensional tangent space, we can write this as

ric(X,Y ) =
n∑

i=1

〈R(X,Ei)Ei, Y 〉.

We say ric ≥ k, if and only if for all X ∈ TxM we have ric(X,X) ≥ k〈X,X〉.
Note that we can write ric in terms of sec. For if we have a unit vector X we can
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complete it to an orthonormal basis {X,E2, . . . , En} for TxM then

ric(X,X) = 〈R(X,X)X,X〉+
n∑

i=2

〈R(Ei, X)X,Ei〉 =
n∑

i=2

sec(X,Ei),

and thus if sec is bounded from below by κ, we also have ric ≥ (n− 1)κ.

II.15 Theorem: Myers' diameter estimate

Let M be a complete n-dimensional Riemannian manifold with Ricci curvature

bounded from below by ric ≥ (n − 1)k > 0. Then diam(M) ≤ π√
k
. Where

the diameter is de�ned as diam(M) := sup{d(x, y)|x, y ∈ M}. In particular the

condition holds if sec ≥ κ > 0.

Note that if we combine Myers' Theorem II.15 and Lemma II.19 we see that the

condition number as de�ned below in De�nition III.1 τ ≤ diam(M) ≤ π√
K .

Volume Comparison

Another consequence of the Rauch Comparison Theorem is the following. We can

estimate the volume of balls in M , by the volume of balls in the model spaces,

which is due to Paul Günther [Gün60]. A proof for this theorem can be found

in [Cha06, Theorem III.4.2, p. 129].

II.16 Lemma: metric lemma

Let g ≤ g̃ be two Riemannian metrics on an oriented n-manifold M . Then the

associated volume forms can be compared volg ≤ volg̃

Proof. Let x ∈ M and A a linear, orientation preserving automorphism of TxM

such that for all X,Y ∈ TxM : g(X,Y ) = g̃(AX,AY ). Which leads to ‖AX‖2 =

g̃(AX,AX) = g(X,X) ≤ g̃(X,X) = ‖X‖2, this yields ‖A‖g̃ ≤ 1 and there-

fore for all eigenvalues λ of A we have |λ| ≤ 1 and therefore det(A) ≤ 1. If

we have (E1, . . . , En), a positively oriented orthonormal base with respect to g,

then 1 = volg(E1, . . . , En) = volg̃(A(E1), . . . , A(En)) = det(A) volg̃(E1, . . . , En) ≤
volg̃(E1, . . . , En).

Using this we can prove the next theorem.

II.17 Theorem: (Günther) volume comparison

LetM be a Riemannian manifold of dimension n, with sectional curvature sec < K
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bounded from above. And let the injectivity radius ofM be denoted by rinj. Then

we have for 0 ≤ r < rinj and a point x ∈M

vol(BMn
K

r (0)) ≤ vol(BM
r (x)). (2.69)

Proof. Let g be the Riemannian metric on M , then de�ne a Riemannian metric

on Sr(0) := {X ∈ TxM |g(X,X) = r2} by g̃ := (expx |Sr(0))
∗g and a comparison

metric g̃K :=
sn2K(r)

r2
g0 on the model space with constant curvature K, where g0 is

the �at Riemannian metric induced by g on the tangent space. Then we apply

Rauch's Comparison Theorem II.8 to see

g̃ ≥ g̃K, (2.70)

Combined with Lemma II.16 this implies:

volg̃ ≥ volg̃K

And with (Sr(0), g̃) ∼= (Sr(x), g) by construction and exp being a di�eomorphism

on Sr(x).

(Sr(x), g)

(Sr(0), exp
∗ g) (Sr(0), g̃K)

(SMn
K

r (0), gK)

exp

id

ψ

where ψ is just the isometry given by x 7→ snK(r)
r

x and ψ∗g0(X,Y ) = g0(ψX,ψY ) =

g0(
snK(r)

r
X, snK(r)

r
Y ) =

sn2K(r)

r2
g0(X,Y ), so we get

vol(Sr(x)) = volg̃(Sr(0)) ≥ volg̃K(Sr(0)) = vol(SMn
K

r (0)).

Now we get vol(Br) ≥ vol(BMn
K

r (0)) by vol(Br(0)) =
∫ r

0
vol(St(0))dt, since we know

the radial vector �eld ∂r is normed and perpendicular to the sphere.

Note that we can explicitly calculate the volume of an s-ball in the model space

of constant sectional curvature in terms of Γ-functions

vol(BMn
κ

s (0)) =
2π

n
2

Γ(n
2
)

s∫
0

snn−1
κ (t)dt. (2.71)
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see [?, III.7.1 Bemerkung, p. 189]quation III.89.

2.4. On the tubular neighbourhood

As a last part in this chapter we will prove that for a Riemannian manifold M ,

a closed submanifold S and a point x ∈ M every geodesic realizing the distance

d(x, S) is orthogonal to S.

II.18 Lemma: minimal Geodesics are orthogonal

Let M be a complete manifold, S a closed submanifold, i.e. compact without

boundary, and x ∈ M then every distance realizing geodesic σ : [0, α] → M from

S to x is orthogonal to S.

Proof. By [Pet06, Proposition 17, p. 126] we have, that the minima of the length

function are equal to the minima of the energy functional

E(γ) :=
1

2

1∫
0

‖dγ
dt

‖2. (2.72)

So we take a geodesic variation σ̄ of σ withσ̄(s, α) = x and σ̄(s, 0) ∈ S for all s.

So we can calculate the following

0 =
d

ds
|s=0E(σs) =

d

ds
|s=0

1

2

α∫
0

〈 ∂
∂t
σ̄,

∂

∂t
σ̄〉dt = 1

2

α∫
0

d

ds
|s=0〈

∂

∂t
σ̄,

∂

∂t
σ̄〉dt

=

α∫
0

〈 ∂2

∂s∂t
σ̄,

∂

∂t
σ̄〉dt|s=0 =

α∫
0

∂

∂t
〈 ∂
∂s
σ̄,

∂

∂t
σ̄〉dt|s=0 −

α∫
0

〈 ∂
∂t
σ̄,

∂2

∂t2
σ̄︸ ︷︷ ︸

=0

〉dt|s=0.

The underbraced term here is zero because all σs are geodesics, which are charac-

terised by d
dt2
σs = 0. With this we have

0 = 〈 ∂
∂s
σ̄,

∂

∂t
σ̄〉dt|(0,α)(0,0) = 〈 ∂

∂s
σ̄(0, α)︸ ︷︷ ︸
=0

,
∂

∂t
σ̄(0, α)〉dt− 〈 ∂

∂s
σ̄(0, 0),

∂

∂t
σ̄(0, 0)〉dt

The underbraced term is zero because σ̄(s, α) is constant. Finally note that for

any curve c : (−ε, ε) → S with c(0) = y, there exists a variation of σ such that
∂
∂s
σ(s, 0) = c′(0) ∈ TyS.
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The previous lemma is based an on �Exercise 1� given in [Jos08, Chapter 4,

p. 232].

II.19 Lemma: Let M be a complete Riemannian manifold, and S ⊆M a closed

submanifold. If the exponential mapping of B⊥
r (y)

exp−−→∼= BM
r (S) is a di�eomorphism

onto its image. Then for all X ∈ exp−1
y (Br(S)) the curve γX(t) := exp(tX) is the

unique minimal geodesic connecting expy(X) with S.

Proof. Suppose x ∈ Br(S), since S is compact there exist a point y ∈ S realizing,

the distance of x to S. Using the Hopf-Rinow Theorem (see [Pet06, Theorem 16,

p. 137]) we see that there exists a geodesic of minimal length connecting x with S.

By the previous Lemma II.18 this geodesic is perpendicular to the submanifold S,

with unit direction ν ∈ T⊥S. So for every point in x ∈ Br(S) we have a geodesic

connecting this point x with S. So for X := d(x, S)ν the geodesic γ := expy(tX)

is the unique geodesic connecting x with S, otherwise the exponential mapping

would not be injective and thus no di�eomorphism.
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III. Manifold Learning from s-dense

Samples

We are now �nally able to proof the central theorem. We will show that for a

Riemannian manifold and noisy sample points around a submanifold that the union

of ε-balls around the sample points is di�eomorphic to B⊥
τ (S) by a �bre-invariant

di�eomorphism.

3.1. Learning the structure of a submanifold by s-dense

samples

The proof of this central theorem will be split up in three parts. At �rst we will see

that we have an increasing series of inclusions of neighbourhoods of S in M . The

next part shows that if the sample points are taken from a small neighbourhood of

S then the set U constructed by the union of ε-balls around the sample points is

open, contains S and is �brewise star-shaped with centre 0, i.e. for x ∈ U and for

its nearest point y ∈ S, the minimal geodesic connecting x and y is fully contained

in U . In order to do that we need an auxiliary lemma, that re�ects the derivation

step in Proposition I.3. At last we will show that open star-shaped neighbourhoods

of the zero-section of a vector bundle are di�eomorphic to the whole vector bundle,

by a di�eomorphism that is �bre invariant. In particular S is a strong deformation

retract of Bε(x̄).

At last I want to note that the proof of the next theorem is based on notes of

my supervisor Stefan Haller, for which I am very thankful that he provided me

with. We begin with de�ning the condition number τ for submanifold analogous

to De�nition I.2 from [NSW08]. This number is a measure for the curvature of S

in M , and gives a bound for S to intersect with itself.

III.1 De�nition: condition number

LetM a complete Riemannian manifold, S ⊆M a closed submanifold, i.e. compact
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III MANIFOLD LEARNING FROM S -DENSE SAMPLES

without boundary. So we de�ne the condition number

τ := sup{r ≥ 0|T⊥S ⊇ Br(0)
expM−→ U ⊆M is a di�eomorphism onto its image}.

Note that both Lemma II.18 and Lemma II.19 apply and we have that exp is a

di�eomorphism of B⊥
τ (S)

∼= BM
τ (S) and within BM

τ (S) geodesics are unique.

With all the preparation done we can now prove our main theorem.

III.2 Theorem: Let M be a complete Riemannian manifold with bounded sec-

tional curvature κ ≤ sec ≤ K, injectivity radius rinj > 0, convexity radius rcvx > 0.

Let S be a closed submanifold, with condition number τ . Furthermore for r ≥ 0

we have points x̄ := (x1, . . . , xN) ∈ Br(S) such that S ⊆ Bs(x̄), where 0 < s < ε.

Now suppose the following conditions hold

r + ε < τ (3.1)

ε ≤ rcvx (3.2)

2ε+ r ≤ rinj (3.3)

2ε+ r ≤ π√
K

in the case of K > 0 (3.4)

tnK(ε+ r) ≤ tnκ(τ) and (3.5)

tnK(ε)

snκ(ε)
·
(
mdκ(ε)−mdκ(r)

tnκ(τ)
+ snκ(r)

)
≤ tnK

(
ε− s

2

)
. (3.6)

If we denote U :=
⋃N

i=1 Bε(xi) then exp−1(U) ∩ Bτ (S) is an open subset of T⊥S

containing the zero section and �brewise star shaped with centre 0. In particular

U is a tubular neighbourhood of S, hence a di�eomorphism to the total space of

T⊥S. Moreover this di�eomorphism can be chosen to intertwine vector bundle

projection π with the retraction r : U → S.

Proof. At �rst note that the condition number τ is strictly positive, by compactness

of S and the Inverse Function Theorem. The proof will be split in 3 parts.

Lemma III.3

Proposition III.4 and Sublemma III.5

Proposition III.6

So we start with the chain of neighbourhoods of S.
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III.3 Lemma: Let M be a Riemannian manifold and S a submanifold with con-

dition number τ . For 0 < s < ε, r > 0 and ε+ r < τ let x̄ := x1, . . . , xN be points

in Br(S) such that S ⊆ Bs(x̄). Then we have

S ⊆ Bε−s(S) ⊆ Bε(x̄) ⊆ Bε+r(S) ⊆ Bτ (S). (3.7)

Proof. The �rst inclusion is trivial, since d(y, S) = 0 < ε − s for y ∈ S. To see

the second inclusion let x ∈ Bε−s(S) be arbitrary then the distance d(x, x̄) < ε as

there exists a point y ∈ S with d(x, y) < ε − s and as there has to be an i such

that d(xi, y) < s and so d(x, xi) < d(x, y) + d(y, xi) < ε. The third inclusion is

true, because for an arbitrary x ∈ Bε(x̄) there exists an i such that x ∈ Bε(xi) and

as d(xi, S) < r we get d(x, S) < d(x, xi) + d(xi, S) < ε + r. The last inclusion is

true, as ε+ r < τ .

III.4 Proposition: LetM , S and U be as de�ned in Theorem III.2. Furthermore

let the inequalities (3.1)-(3.6) hold. Then for each x ∈ U we have the segment

σ connecting x with the base-point y := π⊥(x), fully contained in U . Where π⊥

denotes the projection of x to its unique nearest point in S.

Proof. Now suppose x ∈ U and let σ : [0, t] →M be the segment in M connecting

y := σ(0) ∈ S with σ(t) = x. Since we have x ∈ U = Bεx̄, there exists an i such

that x ∈ Bε(xi). If y ∈ Bε(xi), then σ([0, t]) ⊆ Bε(xi) by geodesic convexity of the

ε-ball, since ε < rcvx.

Otherwise there exits an q ∈ σ([0, t]), such that q /∈ Bε(xi). So it su�ces to

show t < ε − s, then σ ⊆ Bε−s(S) ⊆ Bε(x̄) follows by Lemma III.3. In order

ϕ

γ

a
d(xi, x) < ε

y

xi

ξ = γ(τ) x = γ(t)

Figure III.1.: The geodesic triangle spanned by the points x, xi and y, and the
auxiliary geodesic triangle spanned by ξ, xi and y.
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to do that, we study the geodesic triangles given by the vertices (x, xi, y) and

(ξ, xi, y). For a minimal geodesic γ connecting xi with y : [0, α] → M we de�ne

ϕ := 〈−γ(α), σ(0)〉 to be the inner angle at y as denoted in the picture, and we

de�ne a := d(xi, y), ξ := σ(τ). Note that we have a > ε, d(ξ, y) = τ , d(x, y) = t,

d(x, xi) < ε, d(xi, S) < r and d(ξ, xi) > τ −r, where the last estimate follows from

τ = d(ξ, S) ≤ d(ξ, xi) + d(xi, S) < d(ξ, xi) + r. (3.8)

And both τ and d(ξ, xi) are less than π√
K by Myers' Diameter Theorem II.15. We

�rst analyse the triangle with vertices (ξ, xi, y), and use the lower bound on the

sectional curvature forM and apply Toponogov's Theorem (Corollary II.14) to see

mdκ(d(ξ, xi)) ≤ mdκ(τ − a) + snκ(τ) snκ(a)(1− cos(ϕ)). (3.9)

Next note that we have md′
κ(r) = snκ(r) and thus mdκ(r) is increasing for r, as

we have r < π√
K ≤ π√

κ
. So we have an implicit lower bound for ϕ

mdκ(τ − r)−mdκ(τ − a)

snκ(τ) snκ(a)
< 1− cos(ϕ). (3.10)

For the triangle with vertices x,xi and y we use the upper bound on the sectional

curvature and Rauch's theorem (Corollary II.9) to get

mdK(t− a) + snK(t) snK(a)(1− cos(ϕ)) ≤ mdK(d(x, xi)). (3.11)

Using x ∈ Bε(xi) we get mdK(d(xi, x)) ≤ mdK(ε), and combining this with the

inequality before we have the implicit lower bound for the angle ϕ

1− cos(ϕ) ≤ mdK(ε)−mdK(t− a)

snK(t) snK(a)
. (3.12)

Combining both inequalities (3.10) and (3.12) we obtain

mdκ(τ − r)−mdκ(τ − a)

snκ(τ) snκ(a)
≤ mdK(ε)−mdK(t− a)

snK(t) snK(a)
. (3.13)

Using the addition property of md∗ (see Remark II.6) to expand the previous
equation (3.13) we have
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mdκ(τ) + csκ(τ)mdκ(r)− snκ(τ) snκ(r)− [mdκ(τ) + csκ(τ)mdκ(a)− snκ(τ) snκ(a)]

snκ(τ) snκ(a)

≤ mdK(ε)− [mdK(a) + csK(a)mdK(t)− snK(t) snK(a)]

snK(t) snK(a)
. (3.14)

Which is equivalent to

csκ(τ)mdκ(r)− snκ(τ) snκ(r)− csκ(τ)mdκ(a)

snκ(τ) snκ(a)
+ 1

≤ mdK(ε)−mdK(a)− csK(a)mdK(t)

snK(t) snK(a)
+ 1. (3.15)

We apply Sublemma III.5 below, to see that the inequality above is still valid, if

we replace the parameter a by ε, for 0 < ε ≤ a to get

csκ(τ)mdκ(r)− snκ(τ) snκ(r)− csκ(τ)mdκ(ε)

snκ(τ) snκ(ε)
≤ −csK(ε)mdK(t)

snK(t) snK(ε)
. (3.16)

Which is equivalent to

mdκ(r)−mdκ(ε)

tnκ(τ) snκ(ε)
− snκ(r)

snκ(ε)
≤ − mdK(t)

snK(t) tnK(ε)
(3.17)

and by the identity given in (2.46) tnK(
t
2
) = mdK(t)

snK(t)
this leads to

tnK(
t

2
) ≤ tnK(ε)

snκ(ε)
·
(
mdκ(ε)−mdκ(r)

tnκ(τ)
+ snκ(r)

)
. (3.18)

Combining this with the requirement (3.6) we �nally conclude tnK(
t
2
) ≤ tnK(

ε−s
2
),

and by monotonicity of tn∗ we have t ≤ ε− s.

III.5 Sublemma: Monotonicity of the md-inequality

The inequality (3.13) is still valid if we replace a with ε, where 0 < ε ≤ a, as long

as inequality (3.5) holds.

Proof. We see with the same kind of reasoning as before and by

md(a) + md(b) cs(a) = md(b) + md(a) csκ(b),
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that (3.13) is equivalent to

mdκ(τ − r)−mdκ(τ)− csκ(τ)mdκ(a)

snκ(τ) snκ(a)
≤ mdK(ε)−mdK(t)− csK(t)mdK(a)

snK(t) snK(a)

(3.19)

this transforms to the following function being increasing with respect to a

f(a) =
snK(t) snK(a)

snκ(τ) snκ(a)
(mdκ(τ − r)−mdκ(τ)− csκ(τ)mdκ(a)) + csK(t)mdK(a).

(3.20)

Which can be checked by looking at its derivative:

d

da
f ′(a) =

snK(t)

snκ(τ)

csK(a) snκ(a)− snK(a) csκ(a)

sn2κ(a)︸ ︷︷ ︸
≤0

· [mdκ(τ − r)−mdκ(τ)− csκ(τ)mdκ(a)]︸ ︷︷ ︸
≤0

+
snK(t) snK(a)

snκ(τ) snκ(a)

(
− csκ(τ) snκ(a)

)
+ csK(t) snK(a)︸ ︷︷ ︸

≥0

≥ 0 (3.21)

Here the �rst underbraced term is negative as we have the equivalent term

csK(a) csκ(a)

sn2
κ(a)

(tnκ(a)− tnK(a)) ≤ 0,

It is negative since tnk is monotonic increasing with respect to k. The second

underbraced term is negative by monotonicity of the modifying function. And the

third term being positive is equivalent to

snK(t) snK(a)

tnK(t) tnκ(τ)

(
tnκ(τ)− tnK(t)

)
≥ 0

which is true as we have t ≤ ε+ r and inequality (3.5).

III.6 Proposition: Let E
π−→ B a vector bundle and U an open, �brewise star-

shaped subset of E containing the zero section as centre. Then there exists a

�bre-invariant di�eomorphism Φ : U → E, which is the identity on a neighbour-

hood of the zero-section. Where �bre-invariant means that for X ∈ U we have

Φ(X) ∈ R ·X

Proof. We start with de�ning auxiliary the functions R : U → (1,∞]

R(x) := sup{t > 0|t · x ∈ U}
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and r : U → (0; 1]

r(x) := min{R(x)− 1, 1}.

At �rst we show that the function r is semi-continuous from below, i.e. for every

point x ∈ U and for all ε > 0 we have a neighbourhood Vε of x such that r(Vε) >

r(x) − ε. So for s > 0 we de�ne the open set Us := {y ∈ U|(1 + s)y ∈ U}. We

have two cases:

If r(x)− ε ≤ 0, then put Vε = U .

If r(x)− ε > 0, then there exists an sε ∈ (r(x)− ε, r(x)), then put Vε := Usε .

Which proves the semi-continuity of r. By partition of unity we get a smooth

function χ : U → (0, 1] such that χ(x) ≤ r(x) and χ|V ≡ 1 for an open set V , such

that V ⊆ U1. Next we de�ne the smooth scaling function λ : U −→ [1,∞] by

λ(x) :=

1∫
0

1

χ(τx)
dτ

and at last the smooth map Φ : U −→ E

Φ(x) := λ(x) · x

A short calculation shows λ(tx) = 1
t

∫ t

0
1

χ(τx)
dτ , which implies Φ(tx) =

∫ t

0
1

χ(τx)
dτx.

Now note that the mapping t 7→
∫ t

0
1

χ(τx)
dτ is strictly monotonic increasing, since

χ > 0 which shows that Φ is injective. To see that Φ is surjective we have to look

at two cases:

(i) If R(x) = ∞ we have

R(x)∫
0

1

χ(τx)
dτ =

∞∫
0

1dτ = ∞.

(ii) If R(x) < ∞ we have R(tx) = R(x)
t
, and χ(tx) ≤ R(x)

t
− 1. So the integral

may be estimated by

R(x)∫
0

1

χ(τx)
dτ ≥

R(x)∫
0

τ

R(x)− τ
dτ = ∞.
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It remains to show that the derivative of Φ is a linear isomorphism, then we apply

the Inverse Function Theorem see [AE06, Theorem 7.3, p. 215] to see that Φ is a

di�eomorphism.

The derivative of Φ at a point x is a local concept, so it can be calculated in

E|V , a small neighbourhood of x. For this neighbourhood E|V we can use a local

trivialization V × Rd. Then we write (x, ξ)
Φ7−→ (x, λ(x; ξ)ξ) and the derivative is

the block matrix

D(x,ξ)Φ =

 id 0

∗ A(x,ξ)


where the sub-matrix A(x,ξ) is the derivative of Φ restricted to the �bre over x.

This mapping Φx is an endomorphism on the �bre Φx : Ex → Ex and given by

ξ 7→ λx(ξ)ξ, thus its derivative is (DξΦx)η = dξλx(η)ξ + λx(ξ)η. If we calculate

the kernel of DΦx we see the following equivalent equations are true

(DξΦx)η = 0

dξλx(η)ξ + λx(ξ)η = 0

η = −dξλx(η)
λx(ξ)

ξ.

So η is a radial vector, i.e. it is of the form µ · ξ for some constant µ. If η is the

zero vector, then Φx is the identity mapping for a small neighbourhood, thus the

derivative is invertible. Otherwise equation (3.1) implies that

dλx(µξ)ξ + λx(ξ)µξ = (dλx(ξ) + λx(ξ))µξ = 0,

and using that t 7→
∫ t

0
1

χ(τx)
dτ is strictly monotonic increasing we see (dξλx(ξ) +

λx(ξ)) > 0, so µ = 0. Thus DΦx is a linear isomorphism and Φ|V ≡ id by

construction.

This concludes the proof of Theorem III.2. We have shown that for small dis-

tances t < (ε− s) the tubular neighbourhood Bt(S) of S is contained in U . Then
we have shown that exp−1(U)∩Bτ (S) is open and �brewise star-shaped with cen-

tre 0. And in the last step we saw that a set like this is di�eomorphic to the full

normal bundle.

III.7 Corollary: The submanifold S is a strong deformation retract of U .
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Proof. As we have exp−1(U)∩Bτ (S) being di�eomorphic to the normal bundle T⊥S

by a �bre-invariant di�eomorphism Φ, i.e. Φ(x, ξ) ∈ {(x, tξ)|t ∈ R}. It su�ces to

show that T⊥S is a strong deformation - which can be seen with the homotopy

relative the zero-section given by Ht(x, ξ) := (x, tξ).

3.2. Building a homotopy equivalent simplicial complex

In this section we will derive an important corollary of the previous theorem,

namely that the ε-�ech complex built from the sample points, has the same ho-

motopy type as the submanifold S. Where the �ech-complex is a simplicial com-

plex, whose vertices are the sample points x1, . . . , xN and we add a k-cell for each

non-empty intersection
⋂k

i=1 Bε(xji). Moreover this �nite complex makes it feasi-

ble to calculate the homology groups as well as the Betti numbers. I will assume

that the reader is familiar with basic concepts of algebraic topology see [Koz08],

[Die08], [Spa94] or [Hat02] for further reference. Nevertheless I will provide the

most basic de�nitions to understand the Nerve Lemma III.8, which asserts that for

a paracompact Hausdor� space X and an open covering U , such that every �nite,

non-empty intersections of cover sets is contractible, the nerve of this covering is

homotopy equivalent toX. Combining this lemma with the result of Theorem III.2

we get a simplicial complex to calculate the homology and Betti numbers from,

which are the same as the homology and Betti numbers of the submanifold S.

We need to introduce two concepts from algebraic topology one is homotopy

equivalence, which is an equivalence relation on spaces and the other is simplicial

complexes.

Homotopy and Homotopy Equivalence

For X,Y topological spaces and two continuous functions h0, h1 : X → Y a homo-

topy is a function H : [0, 1] → C(X,Y ) with the two properties:

(i) Ĥ : [0, 1] × X → Y is continuous as a mapping from the product (with

product topology) to Y

(ii) H(0) = h0 and H(1) = h1.

The functions h0, h1 are then called homotopic, denoted by h0 ∼ h1. This is an

equivalence relation with equivalence classes [f ] := {h ∈ C(X,Y )|h ∼ f}.
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Let f, g : X → Y be continuous maps then the pair (f, g) is called a homotopy

equivalence if f ◦ g ∼ idX and g ◦ f ∼ idY . The spaces X and Y are then called

homotopy equivalent, or to be of the same homotopy type, and denoted by X ' Y .

A space X will be called contractible, if X ' {∗} or equivalently idX ∼ const∗.

For a space X and a subspace A, a homotopy relative A is a homotopy H such

that Ht|A is constant for all t. We say a subspace A ⊆ X is a (strict) deformation

retract if there exists a homotopy relative A from idX to a retraction r : X → A.

Simplicial Complexes

A �nite simplicial complex K is a pair (V,S) where V is a �nite set, called the

vertices and S, the simplices, is a set of �nite non-empty subsets of V, with the

following properties:

(i) {x} ∈ S for all x ∈ V

(ii) If σ ∈ S and τ ⊆ σ then τ ∈ S, such a τ ⊂ σ is called a face of σ.

A σ ∈ S with (q+1)-many elements is called a q-simplex or q-dimensional simplex

of K. We then say a simplicial complex has dimension q, if the maximal dimension

of its simplices is q. The 0-simplices and 1-simplices will be called vertices and

edges. Note that a simplex is determined by its vertices.

For a given simplicial complex K we have an associated topological space |K|
the geometric realization. We start with RV and build |K| as a subspace of this

product. We de�ne |K| to be the set of functions ϕ := V → [0, 1] with the two

properties:

(i) {x ∈ V|ϕ(x) > 0} is a simplex of K.

(ii)
∑

x∈V ϕ(x) = 1

and we equip |K| with the subset topology of the product space [0, 1]V.

For a topological space X and a covering U := {Ui}i∈I . The nerve of U is the

simplicial complex N (U) = (V,S), with vertices given by the index set S = I, and

the set {i0, . . . , ik} ∈ S :⇔
⋂k

j=0 Uij 6= ∅. If this covering is the union of ε-balls we

will call this the ε-�ech complex.

At last I want to show the nerve lemma, as the proof requires a bit more prepa-

ration. For a full proof and a bit more information I strongly recommend read-

ing [Hat02, Section 4.G] or [Koz08] for a more category theoretic approach.
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III.8 Theorem: Nerve Lemma

If U is an open cover of a paracompact Hausdor� space X, such that every non-

empty intersection of �nitely many sets in U is contractible, then X is homotopy

equivalent to the nerve N (U)

Now we can combine Theorem III.2 and the Nerve Lemma III.8 to see.

III.9 Corollary: For a submanifold S and a covering U as de�ned in Theo-

rem III.2 we have the nerve of U is homotopy equivalent to S.

Proof. The Theorem III.2 shows that the covering is open and star-shaped in

each �bre, in particular we have every intersection of �nitely many balls around

sampling points is convex, by the requirement of inequality (3.2), ε < rcvx, and

thus contractible. So we can apply the Nerve Lemma III.8 to see S ' N (U).

3.3. Corollaries and special cases

We will now spend some time to examine the conditions we demanded in Theo-

rem III.2 more detailed and compare them to the results, given in [NSW08], where

the manifold M is always the Euclidean space Rn.

First note that the condition (3.5), which asserts that inequality (3.13) still holds

if we substitute a with ε, is equivalent to inequality (3.1), if the manifold M has

constant (sectional) curvature. Though in general it is hard to check whether the

inequality (3.6)

tnK(ε)

snκ(ε)
·
(
mdκ(ε)−mdκ(r)

tnκ(τ)
+ snκ(r)

)
≤ tnK

(
ε− s

2

)
(3.6)

is satis�ed, one can see that in various special cases it can be simpli�ed to a

quadratic inequality.

The �rst special case we look at is the situation, where the points are taken from

the submanifold without sampling errors.

III.10 Corollary: Let M , S as in Theorem III.2, but let x̄ := (x1, . . . , xN) ⊆ S

be chosen such that
⋃N

i=1 Bs(xi) is a covering of S. If the following conditions hold:

ε ≤ min{rcvx,
rinj
2
, τ} (3.22)

2ε ≤ π√
K

in the case of K > 0 (3.23)
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tnK(ε) ≤ tnκ(τ) and (3.24)

tnK(ε) tnκ(
ε
2
)

tnK(
ε−s
2
)

≤ tnκ(τ) (3.25)

Then U :=
⋃N

i=1 Bε(xi) is di�eomorphic to Bτ (S), and exp−1(U) ∩ Bτ (S) is open

and �brewise star-shaped with the zero section as its centre.

Proof. The only thing to show is that (3.6) is equivalent to (3.25). To see this we

apply the equation mdκ(x) = snκ(x) tnκ(x/2) in Lemma II.7 to (3.6) with r = 0

tnK(ε)

snκ(ε)
·
(
mdκ(ε)

tnκ(τ)

)
≤ tnK

(
ε− s

2

)
and obtain

tnK(ε)

tnκ(τ)
tnκ(

ε

2
) ≤ tnK

(
ε− s

2

)

Another interesting special case, which we want to examine is the case of com-

plete manifolds with constant sectional curvature.

III.11 Corollary: Let M be a simply connected complete Riemannian manifold

with constant sectional curvature κ, and S a closed submanifold, that has condition

number τ . Furthermore for r ≥ 0 we have points x̄ := (x1, . . . , xN) ∈ Br(S) such

that S ⊆ Bs(x̄), where 0 < s < ε. Now suppose the following conditions hold:

ε+ r ≤ τ (3.26)

1

csκ(ε)
·
(
mdκ(ε)−mdκ(r)

tnκ(τ)
+ snκ(r)

)
≤ tnκ

(
ε− s

2

)
(3.27)

Then U :=
⋃N

i=1 Bε(xi) is di�eomorphic to Bτ (S), and exp−1(U) ∩ Bτ (S) is open

and �brewise star-shaped with the zero section as its centre.

Proof. First note that the manifold M is isometric to Mn
κ and Myers' Diameter

Estimate II.15 asserts that τ ≤ π√
κ
in the case of positive κ. In addition we know

τ ≤ diam(Mn
κ) = r

(Mn
κ)

inj , combined with condition (3.26) this implies r ≤ rinj. Next

note that in the case of non-positive curvature the convexity radius is in�nity, and

otherwise equal to the injectivity radius. At last we note that (3.6) is equivalent

to (3.27).
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Now take a closer look at the setting examined in [NSW08], where the sur-

rounding manifold M is just the n-dimensional Euclidean space and S being a

submanifold of it.

Specializing the previous result to κ = 0 we get the following corollary.

III.12 Corollary: Let S be a closed submanifold of Rn with condition number

τ . For r > 0 let x̄ := (x1, . . . , xN) ⊆ Br(S) such that S ⊆
⋃N

i=1 Br(xi). If the

following conditions are met,

ε+ r ≤ τ (3.28)

ε ∈

(
τ

2
−
√
τ 2

4
− 3rτ + r2,

τ

2
+

√
τ 2

4
− 3rτ + r2

)
which requires (3.29)

0 ≤ r ≤
√
9−

√
8

2
τ (3.30)

Then U :=
⋃N

i=1 Bε(xi) is di�eomorphic to Bτ (S), and exp−1(U) ∩ Bτ (S) is open

and �brewise star-shaped with the zero section as its centre.

Proof. With the de�nitions of snκ, csκ, tnκ and mdκ we have an equivalent condi-

tion
tn0(ε)

sn0(ε)
·
(
md0(ε)−md0(r)

tn0(τ)
+ sn0(r)

)
≤ tn0

(
ε− s

2

)
,

and with r = s this results in

ε2 − r2

2τ
+ r ≤ ε− r

2
(3.31)

ε2 − r2 + 2τr ≤ ετ − rτ (3.32)

ε2 − τε+ 3rτ − r2 ≤ 0 (3.33)

If we regard the left hand side as a function with parameter ε, we see this is a

parabola with a minimum at τ/2 and the inequality holds as long as

ε ∈

(
τ

2
−
√
τ 2

4
− 3rτ + r2,

τ

2
+

√
τ 2

4
− 3rτ + r2

)
.

This requires the discriminant to be non-negative, thus

r2 − 3τr +
τ 2

4
≥ 0. (3.34)
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This is positive if r is smaller than the lower root of this polynomial:

r ≤ 3− 2
√
2

2
τ (3.35)

or equivalently

r ≤
√
9−

√
8

2
τ. (3.36)

This is a slightly less optimal result compared to the version shown in [NSW08,

Proposition 7.2], this is due to the fact that Niyogi, Smale and Weinberger use

better estimates that allows them to extend the upper bound for t further than

ε − s, which was just a consequence of the triangle inequality. The authors in

comparison use the Theorem of Pythagoras and some more elaborate worst case

scenarios, which I could, unfortunately, not generalize to the setting of Riemannian

geometry.

And at last the most special case, where the sample points are drawn from the

submanifold itself, this corresponds to a real world situation, where the sampling

error would be negligible.

III.13 Corollary: Let S be a closed submanifold of Rn with condition number

τ . And let x̄ := (x1, . . . , xN) ⊆ S such that S ⊆
⋃N

i=1 Bs(xi). If the following

conditions are met,

ε ≤ τ (3.37)

ε ∈
(
τ −

√
τ 2 − 4τs

2
,
τ +

√
τ 2 − 4τs

2

)
which requires (3.38)

s ≤ τ

4
, (3.39)

we have U :=
⋃N

i=1 Bε(xi) being di�eomorphic to Bτ (S) and exp−1(U) ∩ Bτ (S) is

open and star-shaped with the zero section as its centre.

Proof. The only thing to show is that (3.38) and (3.39) imply (3.6). The condi-

tion (3.6)
tn0(ε)

sn0(ε)
·
(
md0(ε)−md0(r)

tn0(τ)
+ sn0(r)

)
≤ tn0

(
ε− s

2

)
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with r = 0, sn0(t) = tn0(t) = t, md0(t) =
t2

2
results in

ε2

τ
≤ ε− s

or equivalently

ε2 − τε+ τs ≤ 0.

again this is a parabola with minimum at τ/2 and holds for

ε ∈
(
τ −

√
τ 2 − 4τs

2
,
τ +

√
τ 2 − 4τs

2

)
.

This requires the discriminant to be non-negative, so we see

τ 2 − 4τs ≥ 0

and with τ > 0 we get

s ≤ τ

4
.

On a �nal note: One sees that the in Corollaries III.12 and III.13 the condi-

tions (3.29) and (3.38) introduce lower bounds for the parameter ε in each case.

Which should be no surprise as the parameter r and s prevent ε-balls from inter-

secting with S, if ε is small.
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IV. Manifold Learning from Random

Samples

We will start with some observations on the packing and covering numbers, and

that one can be used to estimate the other. We will de�ne an extended packing

and extended covering number to analyse the situation of a submanifold S of a

manifold M , which can be packed/covered by balls in M . And we will relate all

concepts of packing and covering numbers.

The next section is used to derive analogue high-con�dence estimates as in

the paper [NSW08]. Where we start with a probability measure µ on a metric

space X that has the property for all s-balls with centres in the subspace Y there

exists a ks > 0 such that ks ≤ inf{µ(Bs(y))|y ∈ Y }. And then we will relate

the number of sample points x1, . . . , xN , this constant ks, the extended covering

number ecovs(Y ⊆ X, d) to the probability of the sample points being s-dense,

i.e. Y ⊆
⋃N

i=1 Bs(xi). Then we will provide two estimates of the extended packing

number one by the probability measure constant ks, which we can apply to the

situation of Theorem III.2. The other estimate we can prove uses the volume form

and the second fundamental form of S and again we apply this to Theorem III.2

to get a high con�dence result.

4.1. Packing and Covering Numbers in Metric Spaces

We begin with some observations of metric spaces and establish the terms of

packing and covering number. For a metric space (X, d) we have the s-packing

number de�ned as the maximum number of s-balls that do not overlap. And the

s-covering number is the minimal number of s-balls one needs to cover X. We will

denote them by pcks(X, d) and covs(X, d) respectively. For a subset Y ⊆ X we

de�ne the extended s-packing number, denoted epcks(Y ⊆ X, d), to be the maximal

number of s-balls in X with centres in Y that do not overlap. And analogously

we de�ne the extended s-covering number as the minimal number of s-balls in X
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with centres in Y that cover Y . We will denote it by ecovs(Y ⊆ X, d).

IV.1 Remark: on packing numbers

Let M be a Riemannian manifold and S a submanifold. Then we have to di�erent

ways to endow S with a metric. We have the intrinsic distance in S denoted by

dS and we can restrict the distance functional of M to S, denoted by d |S, to get

another metric. Note that dM |S ≤ dS and therefore BS
r (x) ⊆ Br(x) ∩ S, which

dS(y, y′)

d |S(y, y′)y

y′ (M, d)

(S,dS)

Figure IV.1.: The distance measured in S compared to the distance in M

implies the following on packing numbers and covering numbers.

pcks(S, d
M |S) ≤ pcks(S, d

S) covs(S, d
M |S) ≤ covs(S, d

S) (4.1)

Or more informally there are more S-balls that �t in S, than restricted M -balls of

the same radius, because they are smaller; and one needs less M -balls to cover S,

as they are bigger.

IV.2 Proposition: relations of packing and covering numbers

Let M be a Riemannian manifold and S a submanifold, with respective Rieman-

nian metrics g and gS, and the respective distance functions d and dS. Then the

(extended) packing numbers of S and the (extended) covering numbers of S meet

the following relations:

pcks(S,d
S) covs(S, d

S) pck s
2
(S,dS)

pcks(S,d |S) covs(S,d |S) pck s
2
(S,d |S)

epcks(S ⊆ M, d) ecovs(S ⊆ M, d) epck s
2
(S ⊆ M, d)

6 6

6 6

6 6

6 6 6

6 = 6

Figure IV.2.: A diagram of the relations between the di�erent notions of packing
and covering numbers of a submanifold S of M .
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Proof. First note that we will denote by Br(y) the balls in M , by BS
r (y) the balls

in S and by Bs|S(y) := Bs(y)∩S, the balls in M restricted to S. And we have the

following inclusions

Bs(y) ⊆ Bs|S(y) ⊆ Bs(y).

A proof for the horizontal inequalities in the �rst and second line of Figure IV.2

can be found in [NSW08, Lemma 5.2]. The vertical inequalities between �rst and

second line are consequences of d |S ≤ dS.

The boxed inequalities are a consequence of Bs(y) ∩ S ⊆ Bs(y) and the fact

that the Bs(y) may overlap outside of S. And the equality in the middle follows

from the de�nition of Bs|S(y). So if one has a minimal covering Bs|S(y)i=1,...,n then

(Bs(yi))i=1,...,n is a minimal covering too, and vice versa.

Now only the last horizontal line of inequalities remains to be shown. The �rst

one

pcks(S, d |S) ≤ covs(S, d |S)

is a consequence of the more general fact that any packing of S has less (or equal)

balls than a covering of balls with the same radius. Which can be seen as follows.

For a given packing every centre of an s-ball has to be contained in one of the

covering balls. But no covering ball can contain more than one packing ball centre,

because then such balls would overlap by triangle inequality.

At last the inequality at the bottom right is obtained as follows: Let y1, . . . , yn
be the centres of a maximal packing of S with B s

2
(yi). Then U :=

⋃n
i=1 Bs(yi)

covers all of S, because assume indirectly that there exists a y ∈ S \ U . Then as

a result of the triangle inequality we have

B s
2
(y) ∩

n⋃
i=1

B s
2
(yi) = ∅

which is a contradiction to pck s
2
(S, d |S) being maximal.

4.2. Probability Theory applied to Manifold Learning

Following the proof from [NSW08, Lemma 5.1] we obtain:

IV.3 Lemma: estimate on the number of points

Let (X, d) be a metric space and Y ⊆ X a subspace. And let µ be a probability
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measure on X, for all s > 0 we de�ne ks by

ks := inf
y∈Y

{µ(Bs(y))}. (4.2)

And let x̄ := x1, . . . , xN ∈ X be identically and independently distributed drawn

with respect to µ, or shorthand µ-i.i.d. drawn. Then

P(Y * Bs(x̄)) ≤ ecov s
2
(Y ⊆ X, d)(1− k s

2
)N .

Note that if ks = 0 then the estimate above is tautological. And if Y = ∅ we have

ecovs = 0 for all s, so the inequality above is also true.

Proof. At �rst I want to clarify that y will always denote a point in Y , furthermore

we will write Br(x) := {x′ ∈ X| d(x, x′) < r} and Br|Y (y) := {y′ ∈ Y | d(y, y′) < r}.
The latter can also be realized as Br(y) ∩ Y . Let c := ecov s

2
(Y ⊆ X, d) and

ȳ := y1, . . . , yc ∈ Y such that Y ⊆ B s
2
(ȳ) then the probability, that one of the xi

does not lie in one of the balls B s
2
(yj) is given by:

P
(
xi /∈ B s

2
(yj)

)
= 1− µ

(
B s

2
(yj)

)
≤ 1− k s

2
.

This implies the probability that none of the x1, . . . , xN is in B s
2
(yj) is

P
(
{x̄} ∩ B s

2
(yj) = ∅

)
= [1− µ

(
B s

2
(yj)

)
]N ≤ [1− k s

2
]N ,

and then

P
(
Y * Bs(x̄)

)
≤ P

(
∃j : {x̄} ∩ B s

2
(yj) = ∅

)
≤ P

( c⋃
j=1

[{x̄} ∩ B s
2
(yj) = ∅]

)
≤

c∑
j=1

P
(
{x̄} ∩ B s

2
(yj) = ∅

)
≤

c∑
j=1

[1− k s
2
]N

= c · [1− k s
2
]N

Note that Niyogi, Smale and Weinberger use this to derive a lower bound for

the number of sampling points. So if we have a δ > 0 such that

ecov s
2
(S ⊆M, d) · [1− k s

2
]N ≤ δ.
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Then we have P(S ⊆ Bs(x̄)) ≥ 1− δ if the number of sample points

N ≥
log(ecov s

2
(S ⊆M, d))− log(δ)

log( 1
1−k s

2

)
. (4.3)

IV.4 Lemma: Let (X, d) be a manifold and Y ⊆ X a subspace, let µ be a

probability measure on X, let ks be as previously de�ned. Then the extended

packing number epcks(Y ⊆ X, d) can be estimated by:

epcks(Y ⊆ X, d) ≤ 1

ks
, (4.4)

where 1
ks

= ∞ in the case of ks = 0.

Proof. Let c := epcks(Y ⊆ X, d) and y1, . . . , yc ∈ Y be the centres of a maximal

extended packing of S with M -balls of radius s. Then we get

1 ≥ µ
( c⋃
i=1

Bs(yi)
)
=

c∑
i=1

µ
(
Bs(yi)

)
≥ c · ks = epcks(Y ⊆ X, d) · ks.

IV.5 Corollary: Let M be a complete Riemannian manifold with bounded sec-

tional curvature κ ≤ sec ≤ K and S a closed submanifold with condition number

τ . Let rinj, rcvx, r, ε > 0 such that the inequalities (3.1)-(3.6) in Theorem III.2

hold. And let µ be a probability measure on M with ks := inf{µ(Bs(y))|y ∈ S}.
Let x̄ := (x1, . . . , xN) ⊆ Br(S) points i.i.d. drawn according to µ, if

[1− k s
2
]N

k s
4

≤ δ. (4.5)

then for U := Bε(x̄) we have exp−1(U) ∩ Bτ (S) is an open �brewise star-shaped

neighbourhood with centre 0, with high con�dence, i.e. the complementary event

is true with probability less than δ.

Proof. With Proposition IV.2 we see that ecov s
2
(S ⊆ M, d) ≤ epck s

4
(S ⊆ M, d)

and then we apply Lemma IV.4 to see that epck s
4
(S ⊆M, d) ≤ 1

k s
4

. So

epck s
4
(S ⊆M, d) · [1− k s

2
]N ≤ 1

k s
4

· [1− k s
2
]N ≤ δ
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asserts S *
⋃N

i=1 Bs(xi) with probability less than δ. So Theorem III.2 applies

with probability higher than 1− δ.

IV.6 Lemma: estimate on the packing number with the volume form

LetM be a Riemannian manifold with injectivity radius rinj > 0, and S be a closed

k-submanifold then by equation (2.16) we have an upper bound on the sectional

curvature of S given by

ω := sup
y∈S

(
secMy +2‖ IIy ‖2

)
<∞.

then the packing number pcks(S, d
S) can be estimated by:

pcks(S, d
S) ≤ vol(S)

2π
n
2

Γ(n
2
)

∫ s

0
snn−1

ω (t)dt

In the case of ω > 0 we have to require that s < π√
ω
.

Proof. Let c := pcks(S, d
S) and y1, . . . , yc ∈ S be the centres of a maximal packing

of S with S-balls of radius s. Then we get

vol(S) ≥ vol
( c⋃
i=1

BS
s (yi)

)
=

c∑
i=1

vol
(
BS
s (yi)

)
= c · vol

(
BS
s (yi)

)
.

Now we apply Theorem II.17 and the formula for the volume of a ball in the model

space with constant sectional curvature (2.71) to get

vol(S) ≥ c · 2
√
πn

Γ(n
2
)
·

s∫
0

snn−1
ω (t)dt.

Again with Proposition IV.2 we are able to deduce a high con�dence version of

our central theorem.

IV.7 Corollary: Let M be a complete Riemannian manifold with bounded sec-

tional curvature κ ≤ sec ≤ K. Let S a closed submanifold with condition number

τ . Let rinj, rcvx, r, ε > 0 such that the inequalities (3.1)-(3.6) in Theorem III.2

hold. And let µ be a probability measure onM , such that for all s > 0 there exists

a ks > 0 such that

ks < inf{µ(Bs(y))|y ∈ S}.
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Let x̄ := (x1, . . . , xN) ⊆ Br(S) points i.i.d. drawn according to µ, if

vol(S)

2π
n
2

Γ(n
2
)

∫ s
4

0
snn−1

ω (t)dt
· [1− k s

2
]N ≤ δ,

where ω := K + 2‖ II ‖2 and for ω > 0 we have to require that s < π√
ω
. Then

the probability that for U := Bε(x̄) we have exp−1(U) ∩ Bτ (S) is an open �bre-

wise star-shaped neighbourhood of the zero section with high con�dence, i.e. with

probability higher 1− δ.

Proof. With Proposition IV.2 we see that ecov s
2
(S ⊆ M, d) ≤ pck s

4
(S, dS) and

then we apply Lemma IV.6 to see that pck s
4
(S, dS) ≤ vol(S)

2π
n
2

Γ(n2 )

∫ s
4
0 snn−1

ω (t)dt
. These two

results combined show

ecov s
4
(S ⊆M, d) · [1− k s

2
]N ≤

vol(S) · [1− k s
2
]N

2π
n
2

Γ(n
2
)

∫ s
4

0
snn−1

ω (t)dt
≤ δ,

which asserts S *
⋃N

i=1 Bs(xi) with probability less than δ. So Theorem III.2

applies with probability higher than 1− δ.
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