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Glossary

2BP two body problem
3BP three body problem
AHZ Average Habitable Zone
AM astrometry
CHZ Continuously Habitable Zone
CR3BP circular restricted three body problem
EBM energy balance model
EHZ Extended Habitable Zone
EIH Einstein-Infeld-Hoffmann
ESA European Space Agency
ESO European Southern Observatory
EUV extreme ultra violet
FLI Fast Lyapunov Indicator
GCM General/Global Circulation Model
GHZ Galactic Habitable Zone
GR general relativity
HD Henry Draper
HIP Hipparchos catalog identifier
HZ Habitable Zone
IR infrared
KAM Kolmogorov-Arnold-Moser
KHZ Classical/Kasting’s Habitable Zone
LCO Lower Critical Orbit
LEBM Latitudinal Energy Balance Model
NASA National Aeronautics and Space Agency
PHZ Permanently Habitable Zone
P-Type the planet moves around both stars of a stellar binary
R3BP restricted three body problem
RBM radiation balance model
RMS root mean square
RV radial velocity
SPH smoothed-particle hydrodynamics
S-Type the planet moves around one star of a stellar binary
TD transit depth
TP transit photometry
UCO Upper Critical Orbit
UV ultra violet
VLBI Very Long Baseline Interferometer
WDC The Washington Visual Double Star Catalog
WDS Washington Double Star catalog
XUV extreme ultra violet
ZAMS Zero Age Main Sequence
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Non SI units and constants

au (AU) astronomical unit 149597870700 m
D days 86400 SI seconds

at mean sea level (Earth)
deg (◦) degree π/180◦ rad
◦C degree Centigrade +273.15 K
Ga gigayears 109 years

k Gaussian gravitational constant 0.01720209895 au3/2 M
−1/2
� D−1

L� solar luminosity ≈ 4·1026 W
M� solar mass ≈ 1.989·1030 kg
RJ Jupiter radius ≈ 7·107 m
S� solar constant at 1 au ≈ 1360 W/m2

pc parsec ≈ 3.085678·1016 m
yr Gregorian year 3.1557·107 SI seconds
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”Vidit Alcor at non Lunam plenam.”

Arabian proverb, Latin translation (Wallis, J. 1693).





Chapter 1

Introduction

The discovery of extrasolar planets1 has lead to a scientific gold rush during the past two
decades (e.g. Campbell et al. 1988, Dumusque et al. 2012, Mayor & Queloz 1995, Wolszczan &
Frail 1992). Hundreds of specimen orbiting all sorts of host stars are known to date (Schneider
et al. 2011), with thousands of candidates waiting in line to be confirmed (e.g. Batalha et al.
2013, Borucki & Koch 2011). Many scientific disciplines from astronomy over geophysics and
chemistry to meteorology are nowadays involved in the attempt to find new exoplanets and
explain the properties of the discovered ones. An especially intriguing question in this respect
is, of course, whether we will find evidence for life as we know it on other worlds. The field of
exobiology has, thus, been established to provide suggestions on how to trace possible extra-
terrestrial life-forms. This is, however, a tricky endeavor. Even the prerequisites for life on
Earth are hard to pin down (Benner 2010). Accounting for alien environments, e.g. greater
surface gravity on an exoplanet heavier than our Earth, differences in insolation and atmosphere
or climate variations caused by a changing planetary orbit make this task rather challenging
(Lammer et al. 2011). Increased stellar UV flux for instance, may prove adverse to surface
inhabitants (Buccino et al. 2006), but might not matter so much for deep-sea life forms or
subsurface ocean dwellers. The scientific consensus today seems to require a planet to support
liquid water on its surface as well as to show a certain degree of climatic stability in order to
be considered capable of hosting life as we know it. Planets that fulfill such criteria are called
”habitable”. Investigations on where to find such exoplanets have become more and more
intricate over the years showing that habitability research is a very active scientific field, see
section 1.2. Up until now, most resources have been devoted to looking for terrestrial planets
around single stars. Yet, the implicit assumption that a second Earth may be found in an
analogon to our Solar System is, perhaps, unnecessarily restrictive. Observational evidence
shows that stellar multiplicity, for instance, does not prevent the existence of planets (Roell
et al. 2012, Welsh et al. 2012). Since more than half of the F and G type stars in the solar
neighborhood are members of stellar multiple systems (Duquennoy & Mayor 1991, Raghavan
et al. 2010), such constellations should not be ignored in the search for habitable worlds. The
discovery of a telluric planet in the double star system α-Centauri AB (Dumusque et al. 2012)
emphasizes this point2.

Given the number of potential targets for observation campaigns, an efficient way of iden-
tifying systems that could harbor habitable worlds is needed to guide observational efforts. Of

1Extrasolar planets (exoplanets) are planets orbiting other stars than our Sun.
2The α Centauri system is generally thought to contain more than two stars. Proxima Centauri, however, is so
far away from the AB binary that its actual membership to α Centauri is debatable (Wertheimer & Laughlin
2006).
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1. INTRODUCTION

course, determining habitable zones for Earth-like planets in binary star systems requires the
synthesis of several astrophysical aspects. The influence of the combined radiation of both stars
on the planet has to be considered. A planet’s insolation is strongly linked to the evolution of
its orbit which makes a detailed understanding of the gravitational interactions between the
binary star and the planet essential. Naturally, the dynamical stability of the system needs to
be confirmed as well.

It is the aim of this work, to develop an analytic framework that will allow a quick assessment
of binary star systems regarding their potential for harboring habitable Earth-like planets.
Hereby, the focus will be put on circumstellar (S-Type) configurations (Dvorak 1984) in which
the planet orbits one star only, as these are thought to be the most abundant in the solar
neighborhood (Duquennoy & Mayor 1991, Eggleton 2006). Such a method is presented in
chapter 2 and applied to nearby binary star systems in chapters 3 & 4. It will also be shown
in chapter 3 that habitable Earth-like planets might, in fact, be easier to spot in binary star
systems than around single stars. Chapter 5 contains an extensive discussion on the advantages
and restrictions of the proposed analytic method while chapter 6 points out possibilities to apply
and improve the established analytic methodologies in future. The chapter at hand provides
the necessary background as well as an introduction to the relevant physical and mathematical
concepts. A brief summary (chapter 7) concludes this thesis.

1.1 Binary Stars

The phenomenological observation that some stars appear to be much closer on the sky than
others can be traced back several thousands of years. The explicit mentioning of the Pleiades
in the Homer’s Iliad and Odyssey (Laoupi 2006), as well as their occurrence in the Christian
Bible (Driver 1956) support this notion. One of the most impressive artifacts that can be
interpreted to show the uneven distribution of stars in the night sky is doubtlessly the so-called
”Sky Disc of Nebra”, which has been dated to 1600 BC (Müller 2004, Pernicka & Wunderlich

Figure 1.1: Left: The Pleiades (M 45) in J-band. Image credits: CDS-Aladin, POSSI 1986. Right:
The Sky Disc of Nebra (Himmelsscheibe von Nebra). Assuming the small golden dots represent stars,
the grouping of stars in the upper right quadrant can be interpreted as a multiple star system, perhaps
the Pleiades (Müller 2004). Image credits: Rainer Zenz, creative commons license.
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1.1 Binary Stars

2002), see Figure 1.1.
Seemingly close associations encompassing more than one star are generally referred to as

multiple star systems. The special case of two stars flocking together will be referred to as double
star system or simply double star. Identifying multiple star systems observationally is not a
trivial task, since configurations that look close on the plane of the sky might not be physically
close at all. One such example is α-1/2 Capricorni, see Figure 1.2. While this association
seems like a perfectly nice example for a double star, its constituents are separated by roughly
200 pc. Cases which only seem to be close from an Earth based observer’s perspective are
called optical doubles or virtual double stars. It took Sir Frederick William Herschel about 25
years to collect enough data on double stars to support his hypothesis that some of them do
not only appear to be close. In fact, he could show that the mutual gravitational attraction
between close stars had altered their apparent relative positions on the sky (Herschel 1803).
Herschel named double stars which were so close that their gravitational attraction was sufficient
to put them on a mutual orbit binary stars, or binaries. This thesis will focus on binaries,
especially those with mutual separations smaller than 50 au will be of interest to us. Among
such, a variety of observationally motivated classifications exist, such as visual double stars1

or spectroscopic binaries2. Furthermore, there are interferometric double stars, astrometric
binaries and common proper motion pairs3 which are all classified after the method used to
expose them as members of a binary or a multiple association (Mullaney 2005).

From an astrophysical standpoint, the most relevant distinctions are probably the stars’

1Visual double stars can be optically separated with telescopes, but they do not necessarily have to be physically
close.

2Spectroscopic binaries are stars so close that they cannot be resolved optically. A distinction between the two
stellar components is only possible, if e.g. RV variations in their common spectrum can be observed.

3Stars that exhibit the same direction of motion with respect to the Earth are called proper motion pairs.

Figure 1.2: Left: a J-band image of the virtual double star α-1/2 Capricorni. The two stars seem to
form a binary systems, but they are separated by roughly 200 pc. Image credits: CDS-Aladin, SERC
1979. Right: The Big Dipper’s multiple system Alcor (left) and Mizar (right) captured in the E-band.
They constitute a proper motion pair and both Alcor and Mizar are binary stars themselves (Mullaney
2005). Image credits: CDS-Aladin, POSSI 1953. Projected distances on the sky alone are not sufficient
to provide evidence as to which systems are actually multiple, and which systems only appear to be
multiple.
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1. INTRODUCTION

mass and luminosity ratios, as well as their true mutual distance. The latter determines in
which ways the stars will interact with each other. Close stars will experience tidal forces that
can change their shape as well as their mutual orbit (Zahn 1989). If the stars are very close
and their radii extend beyond the so-called Roche lobes1 they can exchange material. This in
turn can alter not only their spectral and photometric signatures, but it can ultimately lead
to a common evolution different from their single-star main sequence counterparts (Eggleton
2006). Such arrangements are referred to as contact binaries.

Even if the stars are not close enough to exchange material directly, interactions with stellar
winds and tidal deformations can lead to observable changes in their spectra and/or light curves.
Only beyond a separation of approximately 10-12 au can a G2V-G2V binary be regarded as
consisting of two separate stars, which evolve independently of each other (Eggleton 2006).
For circumstellar planetary systems (S-Type), which have been chosen as the main targets of
this thesis, the assumption of the two stars having properties close to their single star counter-
parts is reasonable. This will allow us to apply the globally averaged habitability estimates by
Kasting et al. (1993), Underwood et al. (2003) and Kopparapu et al. (2013) later on, which
were derived assuming a planet receives insolation from a single ZAMS star2. Furthermore,
tidal interactions between the stars as well as GR effects can be neglected at such distances,
which simplifies the construction of analytical estimates.

Binaries are not only interesting objects to study in their own right, they also offer the only
direct access to measuring stellar masses. These can be gained either by combining astrometric,
parallactic and radial velocity measurements3 of binary stars (Torres et al. 2010), or by observing
light curves of eclipsing binaries and merging them with stellar atmosphere models to determine
effective temperatures as well as the stars’ mutual distance4 (Eggleton 2006). Conversely, if the
stars’ properties have been derived via theoretical models, the binary’s orbital motion offers
the unique chance to test the validity of these models, or separate observed binaries in well
modeled and poorly measured/understood sub-groups (see chapter 4).

Another good reason to be interested in binary and multiple star systems is their relative
abundance. More than 50% of the Sun-like stars in the solar neighborhood seem to be members
of multiple systems (Duquennoy & Mayor 1991, Raghavan et al. 2010)! This result has been
confirmed by recent SPH simulations5 of star-cluster formation from interstellar gas-clouds
(Bate 2012). In fact, some studies propose that initially most - if not all - of the stars in
the galactic field form in associations of binary and multiple systems (Marks & Kroupa 2011).
Single stars would then be a mere byproduct of dynamical relaxation of newly formed multiple
systems. Such dynamical relaxation processes are also known to ”harden” existing binaries
over time, i.e. to shrink their semimajor axes (Bate 2012, Hut 1985), especially if the formation
clusters are relatively large. Yet, very tight binary systems do not allow for circumstellar
planetary motion (Holman & Wiegert 1999, Pilat-Lohinger & Dvorak 2002, Rabl & Dvorak

1Roche-lobes are the regions in which a star’s material is gravitationally bound to its core.
2The restriction to zero age main sequence stars comes from the fact that AGB stars might evolve into a rapid
state of atmosphere and mass loss (van Winckel 2003). Such effects are not accounted for in the planetary
atmosphere treatment by Kasting et al. (1993), Underwood et al. (2003) and Kopparapu et al. (2013).

3See chapter 3 for a quantitative description of these procedures.
4If the double star’s mutual distance is small, relativistic and tidal corrections have to be applied to the Keplerian
motion.

5Simulations describing star formation require the modeling of hydrodynamical processes on vastly different
length- and density-scales. This makes the use of grid based codes impractical. In order to deal with similarly
asymmetric hydrodynamical problems, Gingold & Monaghan (1977) developed a method based on N-body
approaches, where hydrodynamical properties are attributed to particles. Modeling observables such as pressure
and density require the particles to be smoothed over finite regions of space - hence the name smoothed-particle
hydrodynamics (SPH).
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1.2 Habitable Zones

1988). Also, binary stars with spectral classes F-M1 are the most interesting to be investigated
with respect to habitability, because their relatively long lifetime supports a sustainable climate
on planets within HZs over gigayears (Kasting et al. 1993). Thus follows the question: Are there
any systems left containing F-M stars which have semi-major axes large enough to allow for
dynamically stable circumstellar planets?

As it turns out, the current distribution of binary periods for F and G dwarfs actu-
ally peaks between 104 and 106 days (Duquennoy & Mayor 1991, Eggleton 2006, Heintz 1969).
This roughly corresponds to semimajor axes between 10 and 150 au which is wide enough for
stable circumstellar planetary motion to occur (see section 1.3.1). In chapter 2 we will make
use of this result when selecting fictitious systems to test our analytical method.

The fact that binaries with relatively wide separations do exist in our stellar neighborhood
may also indicate that this area of our galaxy is fairly calm as far as interstellar dynamical
interactions are concerned. This is an important condition for habitability, since the long
lifetime of a planet’s host star may not be very helpful if the planet is ejected during a stellar
scattering event. Stellar encounters are a valid concern for habitable worlds in single as well as
multiple star systems. Other conditions for worlds to be habitable are discussed in the following
sections.

1.2 Habitable Zones

1.2.1 Coining the Term

Predating the discovery of the first exoplanet by roughly three decades, Huang (1959) is now
credited with introducing the term ”habitable zone”. Originally a habitable zone was defined as
the region around a star where: ”... The heat received by the living beings on a planet must be
neither too large nor too small. ...” (Huang 1959). It is not hard to imagine that this statement
has motivated the colloquial use of ”Goldilocks Zone”2 for regions around a star where a planet
such as our Earth is supposed to be able to support life. Although Huang (1959) gave first
analytical estimates on the approximate extent of such a circumstellar region, his predictions
on how much radiation a planet had to receive in order to stay at ”just the right temperature”
were necessarily vague. The following decades have seen a great number of studies aimed at
proving that - unlike the porridge in the fairytale of Goldilocks - the extent of habitable zones
around stars including our Sun is not a mere matter of taste.

1.2.2 Defining Habitability

Dole (1964), for instance, claimed habitability for a planet on which more than 10% of the
surface had a mean temperature between 0◦C and 30◦C. Also, he postulated that temperature
extremes should not exceed −10◦C or 40◦C, as such conditions seemed appropriate for human
habitation.3 In contrast, Hart (1978, 1979), Kasting (1988), Rasool & de Bergh (1970) and
Kasting et al. (1993) relied on the concept of liquid water on a planet’s surface as an indicator
for habitability. Some advocate other rules and possibilities for a life sustaining environment.
Buccino et al. (2006) for instance suggest to take the impact of UV radiation on lifeforms

1For a detailed discussion on the current issues with habitable planets around M-stars see chapter 4.
2In the fairy tale ”The Story of the Three Bears” a little girl called ”Goldilocks” wanders into the home of three
bears and, since she is hungry, tries from the three bowls of porridge standing on the kitchen table. After
finding that the content of one bowl was too hot and another was too cold, she finally came across a porridge
that was ”just right”.

3Climate records for Earth indicate that extreme temperatures can easily surmount 50◦C and be as low as
−89◦C. (http://www.ncdc.noaa.gov/oa/climate/globalextremes.html, retrieved 12.02.2013)
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1. INTRODUCTION

more seriously. Lammer et al. (2009) allow for life in subsurface oceans below ice mantles and
Schulze-Makuch & Irwin (2004) postulate that it is necessary to expand our search-parameters
to biochemistries altogether different from ours based on solvents other than water. In the
end, the ”liquid surface water” criterion has become the standard against which planetary
habitability is measured. Yet, the fact that we consider water to be a necessary ingredient for
life as we know it (Des Marais et al. 2002) is not the only reason for the predominance of the
liquid surface water hypothesis. Vast amounts of surface water such as we encounter on Earth
also play an important role in stabilizing a terrestrial planet’s climate (Kasting 1988). This
is due to the fact that on the one hand water does have a considerable specific heat capacity
[' 4kJ/(kg K)] allowing oceans to regulate local as well as global temperatures effectively. On
the other hand, water vapor in the atmosphere interacts with visible and near infrared light
and can, thus, act as a greenhouse regulator trapping Earth’s thermal radiation while reflecting
visible Sunlight (Kaltenegger et al. 2007). Using a convective radiation balance model (RBM)
which included the most fundamental photochemical and physical processes Kasting (1988)
found, that an Earth-like planet’s surface temperature was much more sensitive to the amount
of water vapor in the atmosphere than to CO2. If the amount of water vapor changes drastically
via photochemical reactions, weathering or thermal forcing such as high (effective) insolation,
strong climatic changes can be expected.

1.2.3 Kasting’s Approach

Following this line of thought, Kasting et al. (1993) established boundaries for habitable zones
around main sequence stars by investigating the changes in a planet’s atmosphere that follow
from alterations in the amount and spectral distribution of stellar insolation. To be more
precise, Kasting et al. (1993) were looking for insolation thresholds that would lead to climatic
runaway states on a terrestrial planet with an initially Earth-like atmosphere. Runaway states
are unstable climatic conditions in which small changes in insolation are no longer buffered by
the atmosphere. Such processes generally lead to extreme surface temperatures (Spiegel et al.
2008). Known runaway states include, for instance, a total evaporation of surface oceans, which
would lead to photo-dissociation of water-molecules in the upper atmosphere and, ultimately,
cause a sever loss of hydrogen to space. The opposite runaway process starts with a complete
freeze-out of all greenhouse gases in the atmosphere resulting in a high surface albedo due to
(water and CO2) ice. This, in turn, will cause a rapid drop in planetary surface temperatures
leading to so-called ”snowball states”, see Figure 1.3.

Using the spectral type and luminosity of a main sequence star, Kasting et al. (1993) and
later Selsis et al. (2007), Underwood et al. (2003) and Kopparapu et al. (2013) were able to
derive habitable zone limits for planets on circular orbits around their stellar hosts:

d = 1 au

(
L/L�
Seff

)0.5

(1.1)

where d is the planet’s distance to its host star, and L is the host star’s luminosity. The
parameter Seff represents the normalized stellar flux at a distance of 1 au, which allows a planet
to maintain a given surface temperature. The interaction between a planet’s atmosphere and the
incoming stellar radiation is a highly complex process involving radiative transfer, scattering and
photo-chemistry. Therefore, a numerical treatment is required in all but the most rudimentary
studies. Combining the effects of insolation quantity and quality on a planet’s atmosphere in
a single parameter, namely Seff , Kasting et al. (1993) provide numerically determined Seff
values for three given stellar spectral types, and for the inner and outer borders of the respective
habitable zones. In other words, Kasting et al. (1993) found threshold insolation values for

6



1.2 Habitable Zones

Figure 1.3: Concepts of climatic runaway states for an Earth-like planet following Kasting et al.
(1993). Top: A planet orbits too close to its host star, i.e. beyond the inner border of the habitable
zone. A complete evaporation of its oceans followed by a quick rise in surface temperatures might be
the consequence. Mid: If the planet remains within habitable insolation boundaries, oceans and green
house gases such as water vapor and CO2 can stabilize its climate. Bottom: Too little insolation and all
greenhouse gases will freeze out leaving the atmosphere more transparent in the infrared (IR) spectrum.
This in turn will cause an even faster decline of surface temperature, since the peak of Earth’s thermal
radiation lies in the IR. Texture credit NASA Visible Earth (http://visibleearth.nasa.gov).

7
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1. INTRODUCTION

different kinds of stars that would cause and Earth-like atmosphere to be captured into a
runaway state. Whereas it is straight forward to see that different amounts of insolation are
required to vaporize oceans or cause a complete freeze-out of atmospheric greenhouse gases,
the role of stellar spectral classes might not be so obvious. Roughly speaking, one could say
that, if both G and M stars had the same luminosity, an M star’s effect would be much more
pronounced on the Earth’s climate. An M star’s spectrum is shifted towards the red end of
the spectrum compared to a G star. Earth’s current thermal radiation curve also rises towards
the red end of the visible spectrum and peaks in the infrared (IR). Kirchhoff’s radiation law
tells us that the spectral bands in which a body radiates its thermal energy most effectively
are also the wavelengths where it absorbs radiation most efficiently. Due to the fact that the
M star’s spectral properties are more similar to the Earth’s, an M star could feed the planet
more energy than a G star assuming both had a similar energy output. A listing of effective
insolation limits for F, G and M stars is given in chapter 2, Table 1.

Applying the climatic collapse conditions of runaway greenhouse (evaporating oceans) and
maximum greenhouse (CO2 freeze-out) to the Solar System will put the habitable zone between
0.84 au and 1.67 au (Kasting et al. 1993). Recent estimates by Kopparapu et al. (2013) corrected
these values to 0.97 au for the inner and 1.70 au for the outer border of the Solar System’s HZ.
If the Earth was in the vicinity of Mars, these results would mean that it could still be habitable
assuming a best-case greenhouse scenario. Due to its reduced luminosity, an M-class star would
only support habitable worlds within distances between roughly 0.03 au - 0.5 au. Although
Kasting’s has become the most widespread approach, the values given in Kasting et al. (1993)
are by no means strict limits. For one, Kasting et al. (1993) themselves give alternate borders
if for example the onset of water loss was chosen over collapse states. Also, the limits presented
are snapshots of stars on the zero age main sequence (ZAMS). When host-stars evolve, their
luminosities change and so do their habitable zones. As a consequence, stellar spectral types
younger than F-class are mostly excluded in the search for habitable worlds, since their life-
times are deemed to be too short for complex life to evolve. For this purpose, Hart (1979)
introduced the concept of the Continuously Habitable Zone (CHZ), i.e. the region around a
star where a planet could hold liquid surface water despite the changes in luminosity due to
stellar evolution. Hart (1979) gives very strict limits for the CHZ (douter − dinner = 0.046 au),
but CHZs by Kasting et al. (1993) are about 4-20 times broader.

1.2.4 Habitability after 1993

In spite of the popularity of Kasting’s approach, many points of critique have been raised over
the past decades. The following arguments reside among the most prevalent:

• Convective RBMs can only account for globally averaged climates. They can neither
model local surface temperature variations such as polar ice caps and equatorial deserts
which are present on Earth, nor can they account for dynamical heat transport in the
atmosphere except for convection, see e.g. Spiegel et al. (2008), Williams & Kasting
(1997).

• Long term geophysical effects such as vulcanism, the carbon-silicate cycle, and biological
factors binding or releasing large amounts of greenhouse gases are unsatisfactorily modeled
or not considered at all, see for instance Franck et al. (2000), Williams & Kasting (1997).

• Planetary orbits were believed to be circular and remain so. Variations in planetary
insolation due to eccentric orbits was not accounted for (Dressing et al. 2010, Spiegel
et al. 2010, Williams & Pollard 2002).
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1.2 Habitable Zones

• Star-planet interaction may encompass more photochemical and physical long-term ef-
fects, such as water loss through increased stellar extreme UV (XUV) or X-ray radiation.
High rates of such non-thermal radiation is believed to be common among M-stars, see
e.g. Lammer et al. (2011).

• The proposed concept of CHZs was based on the assumption that Earth’s atmosphere
was roughly composed of the same constituents throughout its existence. This is not the
case. At some point in history CO2 and CH4 seem to have been much more abundant
(Kaltenegger et al. 2007), which might have compensated for a faint young Sun. Also
continuous habitability over 4.5 Ga might not be necessary for life to evolve on a terrestrial
planet. In fact, current studies date the first occurrence of life back to roughly 1.5 Ga
after the Earth’s formation, see e.g. Gaidos et al. (2005) and references therein.

Especially after Laskar & Robutel (1993) showed that an Earth-like planet without a large
moon can be subjected to chaotic changes in its obliquity, questions arose in what way the
orientation of the Earth’s rotation axis influences a planet’s climate1. Even though the most
simple RBMs are able to predict the occurrence of stable snowball and warm states for an Earth-
like planet, they can only provide global and temporal averages independent of the planet’s spin
rate and obliquity (Spiegel et al. 2008). Consequently, Williams & Kasting (1997) used a more
sophisticated zonally averaged (latitudinal) energy balance model (EBM, LEBM) so that the
influence of changes in a planet’s spin axis could be studied, see Figure 1.4. They found that the
temperature extremes rise rapidly with high planetary obliquities, a result which was confirmed
also for cases of eccentric planetary orbits (Dressing et al. 2010, Williams & Pollard 2002).
However, Williams & Kasting (1997) admit that very crude approximations were made, in
order to account for dynamical weathering and climate effects that would best be modeled
with a general circulation model (GCM). GCMs do not require implicit averages such as RBMs
and LEBMs. They can take full atmospheric dynamics, photochemistry and anisotropies in
land-ocean distribution into account. Some atmospheric phenomena can only be studied via
GCMs. The exact patterns of thermal redistribution influenced by Coriolis forces or the climatic
behavior over realistic continent-ocean boundaries are only two examples. In fact, GCMs are
essential for studying atmospheric circulations in planets close to a tidally locked rotation state2

(Edson et al. 2011). Yet, these enhanced capabilities come at a cost. High computational
resource requirements, many system parameters as well as the demand for a large number of
initial and boundary conditions make GCMs powerful but capricious tools.3

The increasing complexity of models can also make it difficult to reproduce results convinc-
ingly via other approaches. Applying an LEBM Dressing et al. (2010), for instance, tried to
find the same dependency of global mean temperatures on orbital longitudes as presented in
Williams & Pollard (2002) who were using a GCM in their investigation. Dressing et al. (2010)
did find a qualitatively similar behavior of the peaks of global mean temperatures that were
produced via LEBMs and GCMs, but there were shifts by as much as 60◦ in orbital longitude.
Also, the relative differences in peak global mean temperatures for lower eccentricities could
reach up to 25%. Dressing et al. (2010) stated that the encountered deviations were probably
due to the continent of Antarctica, which introduced asymmetries in Williams’ and Pollard’s
simulations that could not be accounted for in LEBMs. This introduces another point worth
considering. A large number of initial and boundary conditions are required for simulations

1The results by Laskar & Robutel (1993) were recently confirmed by Lissauer et al. (2012), although the latter
group did not find that the changes in Earth’s obliquity are as drastic as pointed out in Laskar & Robutel
(1993).

2For a brief discussion of tidal lock states see chapter 4, section 7.
3As John von Neumann allegedly put it: ”With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk.” (Dyson 2004)
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Figure 1.4: a) A convective radiation balance model (RBM). Surface temperatures are iteratively
modified until the atmosphere is in radiative equilibrium. The energy irradiated by the planet is of
thermal nature and generally peaks at longer wavelengths than the incoming Sunlight. Atmospheric
photochemistry, radiative transfer and convection are taken into account. No regional differences in
surface or atmospheric conditions can be modeled.
b) A latitudinal energy balance model (LEBM). Additionally to the processes accounted for in the
RBM models, latitudinal differences in atmosphere and surface properties, such as polar caps or ocean
bands, can be described. LEBMs are zonally averaged, i.e. only mean longitudinal values and processes
can be modeled.
c) A general circulation model (GCM). Longitudinal as well as latitudinal processes can be modeled.
GCMs are the most complex of the three models, but they can account for all major atmospheric
effects.
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1.2 Habitable Zones

supporting a high level of detail. Currently, those can only be acquired from the one planet
that is known to be habitable with certainty - the Earth. Basing our estimates for habitable
zones around other stars on models which resemble the Earth in more and more detail might,
perhaps, introduce an unnecessary bias of our search towards exact Earth-clones. A third point
of critique has roots in meteorology. Lorenz (1963) showed that atmospheric processes can
be strongly dependent on initial conditions. In models featuring complex dynamics individual
results may be hard to interpret. Hence, probabilistic approaches are required, which will again
increase computational demands.

Be that as it may, a careful application of LEBMs and GCMs can offer vital insights into
planetary atmospheric dynamics, if detailed parameters are available. Kasting’s idea of defin-
ing habitable zone borders via atmospheric greenhouse and freeze-out runaway states has, for
instance, been generalized using LEBMs and GCMs. In fact, many more possible climatic
collapse scenarios were discovered. These include photochemical collapses (Lorenz et al. 1997,
Zahnle et al. 2008), atmospheric collapses (Haberle et al. 1994), ice-albedo feedback (Roe &
Baker 2010), ocean thermohaline circulation bistability (Epica Community Members et al. 2006,
Stommel 1961), as well as enhanced sub-stellar weathering instabilities and sub-stellar disso-
lution feedback in tidally locked planets (Kite et al. 2011). Thus, runaway greenhouse effects
might not be the only instabilities worth considering in order to determine habitable zones.
On top of that, LEBMs and GCMs can be used to model and predict observable properties of
exoplanets via their thermal phase curves, see e.g. Selsis et al. (2011).

In summary one can say that the introduction of more intricate models has also made the
issue of determining habitability more complex. Nowadays, many parameters such as planetary
obliquities, rotation rates and the initial percentage of ice, ocean and cloud coverage should
be considered, if one wants to investigate planetary habitability in detail. The inclusion of a
greater number of atmospheric processes in modern models has also helped to identify numerous
scenarios that can cause a planet to become inhospitable. While such detailed approaches
allow for more accurate investigations of selected cases, top level guidance on where to look for
potentially habitable worlds seems harder and harder to come by. This might be one of the
reasons why Kasting’s way of determining habitable zones is still so frequently used. Given the
recent updates of effective insolation values for main sequence stars (Kopparapu et al. 2013,
Selsis et al. 2007, Underwood et al. 2003) the popularity of the method by Kasting et al. (1993)
is unlikely to fade any time soon. Consequently, it is all the more important to construct a
supporting framework that is capable of taking variations in a planet’s orbit into account. Why
such a feature is desirable will be discussed in the following section.

1.2.5 Habitability of Planets in Binary Star Systems

In contrast to the case of the Earth in the Solar System, where the Sun is the only stellar
radiation source and the gravitational perturbations on the Earth’s orbit by the other planets
are relatively small, terrestrial planets in binary star systems experience a much more variable
radiative environment. The combined radiative and gravitational influence of a second star
can lead to considerable changes in planetary insolation (see chapter 2), and the additional
issue of dynamical stability of the system adds another degree of complexity to this problem.
Despite such difficulties it took Su-Shu Huang only one year after introducing the concept of the
habitable zone to publish his first results on habitable planets in binary star systems. Huang
(1960) gives analytical estimates on the extent of the circumstellar as well as circumbinary
habitable zones using results from the analytical treatment of the circular restricted three body
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problem (CR3BP)1 and observations of the stability limits for satellites in the Solar System.
Thus, he was among the first to unite radiative considerations with dynamical ones in order
to investigate the existence of dynamically stable habitable planets in binary star systems. Of
course, his method is severely limited, because it can neither account for a binary’s, nor for a
planet’s orbital eccentricity. Especially the latter is playing an important role for habitability in
double star systems (see chapter 2, section 4). Furthermore, he could not give precise insolation
values for the borders of his habitable zone, so that up to Kasting et al. (1993) habitable regions
were more or less defined as regions where a planet receives comparable thermal input to the
Earth’s in the Solar System. Nevertheless, for an Earth-like planet to be habitable in a G2V-
G2V binary, Huang (1960) predicts an orbital separation for of at least 4.22 au for the stars, if
the planet orbits one star in a distance of 1 au. This is fully compatible with results from the
method proposed in chapter 2, see Figure 1.5.
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Figure 1.5: Left: A so-called ”habitability map” of an Earth-like planet in a planar G2V-G2V binary
star system with a semimajor axis of a2 = 4.22 au is shown. The planet’s semimajor axis with respect
to the primary is drawn on the x-axis; on the y-axis the binary’s eccentricity is shown. Red colors
indicate that the planet either receives too much or too little radiation to be habitable. Blue colored
parameter-regions are permanently habitable, if Kasting’s maximum and runaway greenhouse radiation
boundaries are assumed (Kasting et al. 1993). Yellow and green regions denote Averaged and Extended
habitable zones as defined in chapter 2, section 5. Purple areas are dynamically unstable (Holman &
Wiegert 1999, Pilat-Lohinger & Dvorak 2002). Huang (1960) predicts that a planet at 1 au - indicated
by the white vertical line - can be habitable in such a configuration, if the binary’s orbit is circular
ebinary = 0. As the white line lies well within the permanently habitable area (blue), both models are in
good agreement. Right: Critical binary semimajor axis as a function of binary eccentricities according
to Harrington (1977). Minimum binary distances for habitable planets on fictitious circular orbits at
0.8, 1 and 1.6 au with respect to their primary are shown. Applying Harrington’s model, the minimum
binary distance for an Earth-like planet at 1 au to be habitable is abinary ≥ 4.3 au. Consequently, all
three models produce comparable results where their domains of applicability overlap.

Among the few articles that followed Huang (1960), Harrington (1977) found that the insola-
tion - and with it the mean temperature of Earth - fluctuated due to the dynamical interactions

1A massless particle moves in the gravitational field of two celestial bodies represented by point-masses on a
circular orbit around their common center of gravity.
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1.2 Habitable Zones

of the planet with the binary. Applying a numerically derived stability criterion for planar
non-restricted three body problems, he was able to give a semi-analytic estimate for planetary
habitability in binary star systems, where he took the binary’s eccentricity into account. His
estimate reads (

1− e22
) (
a22
√

1− e22 − L2

)

L1
≥ F 2, (1.2)

where a2 and e2 are the binary’s semimajor axis and eccentricity and L1 and L2 denote the
primary’s and secondary’s luminosities. The parameter F represents the numerically derived
stability function and reads in our case

F = q2/a1 =
7

2

(
1 +

7

10
log

[
2

3

(
1 +

m2

m0 +m1

)])
, (1.3)

where q2 is the secondary’s periastron distance, a1 is the planet’s semimajor axis, m0 and m2

are the primary’s and secondary’s masses and m1 denotes the planet’s mass. His prerequisites
for habitability demand that a G2V-G2V binary star should have a semimajor axis of at least
a2 = 4.2 au with e2 = 0 in order to allow for an Earth-like planet to be habitable at a distance
of 1 au from its primary. Compared the methodology presented in this work, his estimates
are rather conservative. Curiously, Harrington (1977) neglected the planet’s eccentricity in his
semi-analytical habitability estimates. Thus, he was implicitly assuming that the variations in
planetary insolation encountered in his numerical investigations were due to the eccentric orbit
of the second star. In chapter 2 we will show that the eccentricity of the planet’s - not the
secondary’s - orbit has the most influence on insolation and, thus, on planetary habitability.

Before the discovery of the first exoplanet in a tight double star system named γ Cephei
(Campbell et al. 1988, Hatzes et al. 2003, Neuhäuser et al. 2007) the study of habitable zones
in binary stars systems could have been considered an academic exercise. As we now know of
roughly 60 cases where planets orbit one star in a double star system, the interest in determining
habitable zones within such configurations has risen dramatically. Similarly, the discovery of
circumbinary planets via NASA’s Kepler spacecraft has boosted interest in finding habitable
zones for this type of planetary motion. Numerical insolation studies have been conducted
for the systems Kepler-34 and Kepler-35, but with 0.76 and 0.73 RJ those planets are neither
Earth-like nor habitable (Welsh et al. 2012).

Not surprisingly, many studies on the topic of habitable planet formation (e.g. Guedes et al.
2008, Haghighipour et al. 2010, Haghighipour & Raymond 2007, Thebault 2011, Thébault et al.
2009, Whitmire et al. 1998) and stability (e.g. Dvorak et al. 2003, Haghighipour 2006, Sándor
et al. 2007, Schwarz et al. 2009) followed the discovery of the first planet in a binary star system.
Most of them focused on dynamical habitability, simply applying the limits by Kasting et al.
(1993) to the primary star and investigating the system for regions of stable planetary motion.
In chapter 2 we will see that especially in eccentric double star systems with semimajor axes
a2 < 50 au, such an approach can lead to a considerable overestimation of the extent of the
circumprimary habitable zone.

A similar problem was identified by Kane & Hinkel (2012) for planets in circumbinary orbits
around double stars. Up until then, habitable zones for planetary systems discovered by the
Kepler mission were either calculated numerically or estimated assuming a habitable spherical
shell around the brightest star only. Kane & Hinkel (2012) could show that a ”single radiation
source” approach for such P-Type systems can lead to inaccurate habitable zone boundaries,
especially for well separated stars of nearly equal luminosity. However, in their work they
assumed the Keplerian motion of the binary stars and the planet to be decoupled. This is
problematic, because Welsh et al. (2012) have shown that coupled dynamical effects can cause
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1. INTRODUCTION

insolation variations up to 40% for a potentially habitable planet in the HZ of Kepler 35. Our
approach for circumstellar HZs will take the dynamical as well as radiative interaction between
both stars and the planet into account. See chapters 2 and 6 for details.

Recently, Forgan (2012) has investigated circumstellar habitability in the α Centauri system
applying LEBMs (see section 1.2.4). He included the radiative influence of the secondary, and
considered a range of likely planetary eccentricities. Whereas the time averaged inner borders
of α Cen B’s habitable zones are in very good agreement with our simple RBM model (see
chapter 3, section 5), his outer borders are much more conservative. This is due to the fact
that the studies presented in this thesis used a best case greenhouse scenario for the outer
HZ insolation limits (see chapter 2, Table 1), whereas Forgan (2012) assumed an Earth-like
atmospheric composition throughout his studies. Similar to the results presented in chapter
2 section 2, Forgan (2012) concluded that the primary’s insolation is much more important
than the secondary’s. Only in systems with a secondary considerably more luminous than the
primary one can expect a significant contribution of the second star to planetary insolation.

Doubtlessly, LEBMs can offer a more detailed picture of habitability fractions, i.e. of how
much of Earth’s surface would be habitable, and on the actual processes caused by the sea-
sonal forcing. However, such investigations have to be conducted numerically, which makes
them rather time consuming. Also, Forgan (2012) did not consider a consistent evolution of
the terrestrial planet’s eccentricity and obliquity. The consequences of such an omission are
discussed in detail in section 5.7. One of the goals of this thesis is, therefore, the construction
of a self-consistent analytical treatment of the problem of habitability of an Earth-like planet
in circumstellar motion within a binary star system.

1.2.6 Galactic Habitability

Apart from habitability considerations at the solar/binary system level, there are also other
prerequisites for the development and sustenance of planetary habitability. Stellar systems with
low metallicity, i.e. systems where heavier elements than hydrogen and helium are rare might
not be able to produce planets with atmospheres comparable to that of the Earth (Lineweaver
et al. 2004). Sterilization due to near Super Novae might prove to be another issue for planets
around stars in dense stellar regions such as in the vicinity of galactic center. In order to
account for these effects the concept of the galactic habitable zone (GHZ) has been introduced
(Gonzalez et al. 2001, Gowanlock et al. 2011, Lineweaver & Chopra 2012, Lineweaver et al.
2004, Prantzos 2008). Definite estimates on these exterior effects are, however, difficult to pin
down and no common consensus on the GHZ borders has been established yet (Prantzos 2008).
We will, therefore, assume that the binary star systems in our investigation are in the Solar
System’s galactic neighborhood, where all necessary conditions are fulfilled.

1.3 Orbital Dynamics

In order to be able to make analytic predictions on the habitability of a planet in a binary star
system, the underlying dynamical problem must be understood and ”tamed” - at least as far
as such a thing is possible. Disregarding all physical properties except for the masses of the
two stars and the planet, one immediately arrives at the celestial mechanic’s constant plight
and delight, the gravitational three body problem (3BP). No attempt is being made here as to
discuss the gradual progress scientists have made over the last four centuries uncovering layer
after layer of this pinnacle of problems in dynamical astronomy.1 It is similarly futile to try to

1The problem of three point passes moving in their mutual gravitational fields is considered to be non-integrable.
In other words, some solutions do exist for special cases, but no practical global solution to the problem has been
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Figure 1.6: Observed types of planetary motion in a coplanar binary star system:
a) S-Type A/I: Here, the planet orbits the more luminous binary star component.
b) S-Type B/II: The planet orbits the less luminous star.
c) P-Type: The planet orbits both stars.

list important literature on the topic, as such a list would probably require a volume of its own.
We will, however, briefly discuss the fundamental results we will need later on in chapter 2.
Following this principle, only one book on the 3BP is to be mentioned here on behalf of all the
exquisite literature. The choice has been made according to the fact that we will be using results
derived therein - not just because its title reads ”The Three Body Problem” (Marchal 1990).
In order to construct analytic estimates for planetary habitability in binary stars we require
two things from orbital dynamics:

1. We need to find regions where the planet can orbit one or both stars without being ejected
from the system or colliding with one of the stars.1 A system where the planet will not
be lost over a given number of binary periods (Dvorak 1986, Holman & Wiegert 1999) is
henceforth referred to as being stable.

2. Analytic predictions on the orbital evolution of the planet and the two stars are neces-
sary, since we want to track the combined insolation the planet receives from both stars.
Perturbation theory will provide us with fine tools in this respect.

found so far. The Finnish mathematician Karl F. Sundman proved in 1912 the existence of a series solution
for the 3BP. Unfortunately, the series’ convergence is so slow that it is of little practical use. Therefore,
approximate analytical and numerical methods are required to investigate this problem.

1While the problem of two body collisions in a three body system is quite common in reality - a good exam-
ple is the case of Sun, Jupiter and the comet Shoemaker-Levi 9, it is not an easy problem in the idealized
world of the 3BP. In the case of three point masses moving in their common field of gravity, collisions would
lead to singularities, since the forces between the colliding bodies would become infinite. Such cases require
regularization measures, see e.g. Stiefel & Scheifele (1975).
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1.3.1 Stability

Let us first focus on issue of dynamical stability. The three types of planetary motion in binary
stars that have been observed in nature so far are (Dvorak 1984, Roell et al. 2012, Welsh et al.
2012, Whitmire et al. 1998):

S-Type A/I: The planet orbits the more luminous binary star component.

S-Type B/II: The less luminous star is the planet’s host.

P-Type: The planet orbits both stars.

Concepts of the three different types of planetary motion are presented in Figure 1.6. Since we
excluded 1:1 resonant (Trojan) planetary orbits (Schwarz et al. 2009) the three bodies constitute
so-called ”hierarchical triple systems”, meaning that two of the three bodies share a tight orbit,
whereas the third body orbits the inner two on a wide ellipse. No close encounters or exchanges
between the bodies on the inner and outer orbits are permitted. For very rough estimates on
the stability of hierarchical binary-planet systems, the model of the restricted 3BP (R3BP)
can be applied. In this approach, one assumes the planet to be a massless particle moving in
the gravitational field of the two stars, which orbit their common center of gravity. Since the
planet’s mass is very small compared to the stars of a binary, in the case of an Earth-like planet
mp/m? ≈ 10−5, such a simplification is permissible as long as we are satisfied with finding only
approximate regions of orbital stability. It was briefly mentioned in section 1.2.5 that Huang
(1960) has used results from the circular restricted 3BP (CR3BP) in his work on habitability of
planets in binary star systems. This means that on top of considering the planet to be massless,
the two stars are assumed to orbit their center of gravity on a strictly circular path.

The stability of a system modeled via the CR3BP can be checked by finding periodic orbits
and investigate linear stability via Hill’s equation and consequently by means of Floquet theory.
Erdi (1974) showed that this method is also applicable to the case of the elliptic restricted 3BP,
i.e. for binaries on eccentric orbits. An alternative way is to simply study the system’s zero
velocity curves (Szebehely 1967). In the CR3BP zero velocity curves are circumferences to
regions which a test particle cannot access - a consequence of the existence of an integral of
motion called the Jacobi Integral (CJ)

ẋ2 + ẏ2 + ż2 = 2U(x, y, z,m0,m2)− CJ , (1.4)

where ẋ, ẏ and ż are the components of the test-planet’s velocity v in a frame of reference co-
rotating with the massive bodies. The problem’s potential, U , depends on the planet’s position
and the masses of the primary (m0) and secondary (m2) respectively. The left hand side of this
equation is positively definite, which limits the values for U and CJ . Zero velocity curves can
now be defined by investigating the limit case where v → 0. It follows that

CJ = 2U(x, y, z, µ) = x2 + y2 + 2
1− µ√

(x+ µ)2 + y2 + z2
+

µ√
(x+ 1− µ)2 + y2 + z2

, (1.5)

with µ = m2/(m0 +m2). This integral of motion confines the planetary orbit to a sub-manifold
very much like the conservation of energy restricts the whole system’s trajectory in phase space.
The size of the permissible region for the test particle depends on the binary star’s mass ratio
and the planet’s initial conditions, see Figure 1.7. Unfortunately, such a Jacobi integral does
not exist in the more general cases of the 3BP (e.g. Szebehely 1967, and references therein).
However, it can be shown that stable hierarchical triple configurations in the 3BP are possible
(e.g. Marchal & Saari 1975, and references therein). In a series of papers Szebehely (1977),
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Figure 1.7: Forbidden regions (red) in the circular restricted three body problem found via zero
velocity curves. A test planet can move within the white areas. The more massive and the less massive
component of the binary star are represented by the full and open star symbols, respectively. The
stars have a mass ratio of µ = 1/3. The graphs show the change in forbidden regions due to various
planetary initial conditions mirrored in the different values of the Jacobi Integral CJ .

Szebehely & Zare (1977) and Szebehely & McKenzie (1977) were able to modify the idea of
zero velocity curves to determine the stability of hierarchical systems with three massive bodies
by using a function of the system’s energy and angular momentum as a stability parameter.
Whereas the determination of a planet’s dynamical stability in the CR3BP is relatively easy,
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Szebehely’s method for the general three body problem is more involved and requires to sort
through solutions of a fourth and fifth degree algebraic equation in order to calculate the critical
value for the stability parameter (Szebehely & Zare 1977). Consequently, some authors followed
a different path. Harrington (1972, 1977), for instance, used numerical methods to solve the
full equations of motion of gravitationally bound hierarchical triple systems in order to derive
stability criteria for his works on triple stars and habitable zones in binary star systems. Black
(1982), Graziani & Black (1981) essentially followed the same approach claiming that their
criterion fit better with Szebehely (1977)’s analytic estimates, but was much easier to handle.
Since then, many authors used various numerical techniques to derive stability criteria for such
systems presenting their results either in the form of plots and tables (e.g. Doolin & Blundell
2011, Georgakarakos 2013, Pilat-Lohinger & Dvorak 2002, Pilat-Lohinger et al. 2003, Sándor
et al. 2007), or via polynomial least square fits in the hierarchical triples’ masses and orbital
parameters (e.g. Dvorak 1986, Holman & Wiegert 1999, Rabl & Dvorak 1988, Whitmire et al.
1998). Dvorak (1986), for instance, investigated coplanar P-Type systems (see Figure 1.6) with
equally massed stars and a massless planet. He was able to provide fits for the upper and lower
critical planetary semimajor axis, i.e. the semimajor axis where the first (UCO) and finally all
(LCO) planetary orbits became unstable. The simple quadratic fits read

aUCO1 = a2(2.37 + 2.76e2 − 1.04e22), aLCO1 = a2(2.09 + 2.79e2 − 2.07e22). (1.6)

Here, aUCO1 and aLCO1 are the planet’s critical semimajor axes with respect to the binary
star’s center of mass. The parameters ab = a2 and e2 are the binary’s semimajor axis and
eccentricity, respectively. See Figure 1.8 for an application of the stability estimates presented
in equations (1.6). Later on, Rabl & Dvorak (1988) produced similar results for S-Type systems.
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Figure 1.8: This figure shows a habitability map for an Earth-like planet in P-Type orbit around
a G2-G2 binary star with a semimajor axis of a2 = 0.5 au. The colors indicate different zones of
habitability similar to Figure 1.5. UCO (purple-striped) and LCO (purple-solid) stability estimates by
Dvorak (1986) have been applied to determine dynamical stability.

Holman & Wiegert (1999) included binaries with different mass-ratios in their fits. All those
criteria were derived for coplanar systems, however. Another approach to identify ejections in
hierarchical triple systems was introduced by Mardling & Aarseth (2001). Proposing chaotic
energy exchange between the inner binary and the outer body to be fundamental for ejections,
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they developed a three dimensional criterion taking the mutual inclination between the inner
and outer orbit (i2) into account. Their formula reads Mardling & Aarseth (2001), Naoz et al.
(2012b)

a2
a1

> 2.8

(
1 +

m2

m0 +m1

)2/5
(1 + e2)2/5

(1− e2)6/5

(
1− 0.3i2

180◦

)
, (1.7)

where i2 is given in degrees, and 2.8 as well as the factor including the mutual inclination have
been found through numerical studies. While Harrington (1977) did not discover any significant
changes of three body stability with mutual inclination, Mardling & Aarseth (2001) claim that
inclined systems are actually more stable than coplanar ones. This result was confirmed and
extended by Valtonen & Karttunen (2006) but later somewhat mitigated by Valtonen et al.
(2008) for inner binaries of equal mass. Another interesting fact is that equation (1.7) does not
contain the mass ratio of the inner binary - or in our case the mass ratio of the star and planet.
The assumption that the mass ratio of the inner binary can be neglected in a first approximation
dates back to numerical experiments by Hills (1984), who investigated close encounters between
a star-planet system and a stellar perturber. The approximate independence of orbital stability
with respect to the mass ratio of the inner bodies of a hierarchical triple system will be our
justification to apply equation (1.7) to our mutually inclined S-type binary-planet systems in
chapter 5 despite the fact that the criterion was originally based on ejections of the outer body.

The rapid progress in the numerical study of Hamiltonian systems during the second half
of the previous century has spawned more delicate numerical tools to differentiate between
ordered and chaotic motion than searching for derailed orbits. These are based on the theory
of Lyapunov exponents (Lyapunov 1907). Here, not only the differential equations governing
the motion of the system itself but also the so-called ”variational equations” are propagated
numerically. The variational equations represent the evolution of vectors tangential to the
system’s trajectory in phase space. If nearby trajectories diverge close to exponentially, this
region of phase-space can be classified as being chaotic, or, to be more precise, to react very
sensitive to variations in its initial conditions. Many different approaches to utilizing variational
equations have evolved, see for instance Benettin et al. (1980), Froeschlé et al. (1997), Oseledec
(1968), Sándor et al. (2004), Skokos (2010) or Gerlach et al. (2011). In chapter 2 we will apply
the FLI technique by Froeschlé et al. (1997) and Pilat-Lohinger & Dvorak (2002) to assess its
correspondence with the results from the ejection criteria used by Holman & Wiegert (1999).

A hybrid approach between numerical and analytical methods has been introduced by
Pichardo et al. (2005) and Jaime et al. (2012). They attempt to find the outer or inner-
most periodic planetary orbits in a binary star setup numerically in order to adapt coefficients
of the Roche lobe approximation by Eggleton (1983). Here, the stability limit is defined as the
largest stable periodic circular orbit that can be inscribed in a binary’s Roche lobe.

To summarize, one may state that the purely numerically derived fits by Dvorak (1986), Rabl
& Dvorak (1988) or Holman & Wiegert (1999) are not necessarily the most precise of all the
possible methods to study a system’s dynamical stability, but they are the most convenient in
terms of usability. Consequently, they have become a widespread tool used for quick estimates
on the regions of planetary stability in binary star systems. In order to constrain the parameters
of specific systems however, numerical simulations using the actual system parameters give more
accurate results (e.g. Goździewski et al. 2012, Welsh et al. 2012).

1.3.2 Perturbation Theory

The idea behind perturbation theory is a simple but powerful one. Looking at our Solar Sys-
tem, the gravitationally dominating bodies are the Sun and the gas giants, especially Jupiter.
Though, even Jupiter is about a hundred times less massive than the Sun. Now, instead of
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searching for complete analytic solutions for a gravitational multi-body problem, one acknowl-
edges that the planets’ main movement happens along a Keplerian orbit around the Sun, which
is only slightly perturbed by the other massive bodies in the system. This ansatz makes it
possible to construct analytic predictions on the evolution of the perturbed planetary orbit.
Since its birth in the 18th century perturbation theory has been linked to famous names like
Newton, Lagrange or Poincaré and it has indeed spawned many useful results throughout the
following centuries such as the KAM theorem or Nekhoroshev’s stability estimates (e.g. Celletti
2010). Perturbation theory has played and still plays important roles in many scientific fields -
from understanding the influence of the giant planets on the asteroid belt (Brouwer 1963), to
string theory (Adam 2009, D’Hoker & Phong 1988).

1.3.3 Kaula’s Approach

Not surprisingly, most of the specific perturbation methodology used in celestial mechanics
was originally created for artificial satellites and later expanded to treat problems in the Solar
System (Brouwer 1959, Kaula 1961, 1962). Following Murray & Dermott (2000) we will briefly
discuss how such an ansatz works. Given a hierarchical 3BP consisting of point masses repre-
senting the Sun (m0) and two planets (m1, m2), we can write the equations of motion for the
inner planet m1 in a heliocentric frame of reference

r̈1 = −G(m0 +m1)
r1
r31

+ Gm2

(
r2 − r1
‖r2 − r1‖3

− r2
r32

)
. (1.8)

Here r1 and r2 are the relative positions of the inner and outer planet with respect to the Sun,
r1 and r2 are the corresponding scalar distances, and G denotes the gravitational constant. The
right hand side can now be rewritten in terms of the gradient of a scalar potential U = K + R

which is the sum of the pure two body potential K and the so-called ”perturbing function” R.
Thus,

r̈1 = ∇r1
U1 = ∇r1

(K1 + R1), (1.9)

where

K1 = G
m0 +m1

r1
and R1 =

Gm2

‖r2 − r1‖
− Gm2

r1 · r2
r32

(1.10)

Here, the perturbing function R1 consists of two parts, a ”direct” part proportional to ‖r2 − r1‖−1,
which describes the interaction between the two planets, and an ”indirect part” proportional
to r1 · r2/r32 which is due to the choice of the center of our coordinate system. Such equations
can also be constructed for the outer planet without much difficulty (Murray & Dermott 2000).

Now, if the outer planet were a test particle, i.e. m2 → 0 and consequently R1 → 0, then
the inner planet would move on an unperturbed Keplerian orbit around the Sun. As we would
like to take the gravitational interaction between massive planets into account, however, we
have to deal with the effects caused by a non-vanishing perturbing function R1 6= 0. Let us,
therefore, rewrite the disturbing function in terms of Legendre polynomials (Pl)

R1 = Gm2

(
1

‖r2 − r1‖
− r1 · r2

r32

)

= Gm2

(
1

r2

∞∑

l=0

(
r1
r2

)l
Pl(cosψ)− r1r2P1(cosψ)

r32

)

=
Gm2

r2

(
1 +

∞∑

l=2

(
r1
r2

)l
Pl(cosψ)

)
, (1.11)
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using the fact that r1 · r2 = r1r2 cosψ = r1r2P1(cosψ). The first summand is often omitted as
only partial derivatives of R1 will ultimately be dealt with, where this term vanishes. Therefore,
we have

R1 + Gm2

r2

∞∑

l=2

(
r1
r2

)l
Pl(cosψ). (1.12)

Since we assume that this disturbing function will cause a deviation of the motion of the inner
planet from its Keplerian shape, the rest of the procedure involves the following steps:

• Change the perturbing function’s arguments to Keplerian orbital elements. The perturb-
ing function will then read R1(m1, r1, r2, ψ)→ R′1({a, e, i, ω,Ω,M}1,2), where one usually
has to deal with combinations of integer multiples of the angles within trigonometric
functions. Those represent the system’s dominating frequencies.1

• Write R′1 as a power-series in eccentricities and inclinations, and/or ratios of semimajor
axes. Decide which combination of frequencies to discard in the problem.

• If one is interested in the long term behavior of a system, it is possible to construct
averages over the ’fast angles’ like the mean anomalies (or the mean longitudes) of the
perturber and the perturbed body, thus, eliminating them from the equations. A simple
but controversial approach (Ferraz-Mello 2007) is the so-called ”averaging principle” or
”scissors method”

〈R′1〉({a, e, i, ω,Ω}1,2) =
1

2π

∫∫ 2π

0

R′1({a, e, i, ω,Ω,M}1,2) dM1 dM2,

where the elimination of the short period terms containing trigonometric functions of M1

and M2 is performed by a direct integration. A more elegant and self-consistent approach
to average R′1 is the von Zeipel-Brouwer method discussed in the next section.

• Finally, Lagrange’s equations can be used to evaluate variations of orbital elements of the
inner planet (Roy 2005)

da1
dt

=
2

n1a1

∂R′1
∂χ1

,
de1
dt

=
1

n1a21e1

(
(1− e21)

∂R′1
∂χ1

−
√

(1− e21)
∂R′1
∂ω1

)
, . . .

with χ = −n τ , where n is the mean motion and τ the time of pericenter passage. Using
the averaged 〈R′1〉 instead of R′1 generally reduces the number of differential equations that
need to be solved simultaneously. In some cases, an analytic solution for {a1(t), e1(t), ...}
can be found.

As we will not use this exact approach and the rigorous construction of the presented steps
is rather tedious in practice, the reader is referred to literature for details (e.g. Kaula 1961,
Murray & Dermott 2000).

The interplay between the Sun, the Moon and the Earth, or Jupiter’s and Saturn’s orbital
elements, for instance, can be very convincingly modeled applying perturbation theory. As
we have seen, the methods often require series expansions in the bodies’ eccentricities and/or
inclinations (e.g. Kaula 1961, Murray & Dermott 2000). This is reasonable, when the system’s
eccentricities and mutual inclinations are small, so that series expansions in those parameters
converge rapidly. Binary star-planet systems on the other hand do not necessarily fulfill such

1In practice, non singular variants of the angular variables are applied, i.e. the mean longitude L = M + Ω + ω
instead of M and the longitude of the ascending node $ = Ω + ω instead of the argument of pericenter ω.
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Figure 1.9: a) Heliocentric position vectors r1 and r2 of two planets represented by mass points m1

and m2 in orbit around the Sun (m0). The angle ψ is spanned between vectors r1 and r2.
b) Jacobian Coordinates of an hierarchical triplet. The relative positions of the close pair is given by
the vector q1, the distance of the outer body with respect to the inner binary’s center of gravity is
given by q2.

conditions. The S-Type systems γ Cephei, HD 41004 and HD 196885 for instance are all
known to host planets, even though the secondary stars’ orbits have considerable eccentricities,
e2 ' 0.4 (Roell et al. 2012). Hence, Kaula’s techniques would require lengthy expansions up to
high orders in eccentricity to provide adequate results.

1.3.4 Brouwer’s Approach

A more practical ansatz makes use of the canonical properties of Hamiltonian systems to deal
with perturbations. One attempts to split a system’s Hamiltonian H into an ”integrable” part
(H0) and a ”perturbation” part (H1), which is proportional to a small parameter ε.

H(p, q) = H0(p, q) + εH1(p, q) (1.13)

The fact that this is a very powerful approach is most obvious, if we change from generalized
momenta p and coordinates q to so-called ”action-angle” variables using canonical transforma-
tions. Action-angle variables a set of generalized coordinates which contain (pseudo)1 invariants
of motion I (the actions), and their conjugate counterparts φ (the angles). The benefit of this
transformation lies in the fact that Hamiltonians representing completely integrable systems
can be expressed as functions of actions only.

(p, q) → (I,φ) (1.14)

H(p, q) → H∗(I) (1.15)

Hamilton’s equation of motion predict that in this case the actions stay constant, whereas the
angles become linear functions of time (e.g. Ferraz-Mello 2007)

∂H∗(I)

∂φi
= −İi = 0,

∂H∗(I)

∂Ii
= φ̇i = wi(I), (1.16)

1Actions are only exact invariants of motion, if the problem is fully integrable.
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1.3 Orbital Dynamics

and consequently

Ii(t) = ci, φi(t) = wi(I) t+ ci. (1.17)

Here, the subscript i denotes the ith component of the respective vectors, c are integration
constants and w represents the system’s angular frequencies: wi = φ̇i = 2π/Ti, T being
the system’s proper periods. Equation (1.17) shows that, if one can find a Hamiltonian that
depends on the actions I only, the equations of motion can be solved in a very straight forward
manner. Topologically speaking, one attempts to map the system’s trajectory in phase space
onto an invariant n-torus1, where the actions define the torus’ radii and the angles give the
system’s momentary position on the torus; see Figure 1.10. Finding action angle variables for

Ι2

Ι1

φ
2

φ
1

Figure 1.10: This graph shows a 2-torus spanned by a set of action angle variables (I,φ).

dynamical systems is not always straight forward (Ferraz-Mello 2007). Fortunately, the action
angle variables for Keplerian motion have already been derived by Delaunay (1860)

I = (L,G,H), φ = (l, g, h) (1.18)

where

L =
√
G(m0 +m1)a, l = M, (1.19)

G = L
√

1− e2, g = ω,

H = G cos i, h = Ω

The elegance of formulating perturbation theory in action angle variables becomes evident when
we express the Hamiltonian H as a function of actions and angles2

H(I,φ) = H0(I) + εH1(I,φ). (1.20)

For ε → 0 the system becomes integrable as H → H0 resulting in constant actions I and
uniformly progressing angles φ(t). The unperturbed Kepler problem provides a simple example.
Here, the Hamiltonian is a function of L only

H = −G(m0 +m1)

2a
= −G2(m0 +m1)2

2L2
. (1.21)

1The integer n stands for the dimension of the torus. Two independent actions with two corresponding angles
can span a 2-torus, see Figure 1.10.

2For the sake keeping the notation simple, we will no longer differentiate between Hamiltonians given in action
angle variables (H∗) and those given in other variables (H).
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From Hamilton’s equations we get

dl

dt
=

∂H

∂L
(1.22)

=
G2(m0 +m1)2

L3

=
√
G(m0 +m1)a−3 = n,

where n denotes the mean anomaly. Since the partial derivatives with respect to all the other
actions and corresponding angles vanish, the solution of the problem is simply

I = const, g = h = const, l = n(t− τ) = M, (1.23)

where the angle l grows linearly with time.
If ε in equation (1.20) is of finite size, but small, the system becomes no longer globally inte-

grable. KAM theory states that systems can still remain integrable under small perturbations,
though, if certain criteria are met1. Regarding the topological picture one could say that some
n-tori spanned by the action angle variables survive a slight deformation, whereas others break
up. For a detailed account on the application of KAM theory to the spin-orbit problem see, for
instance, Celletti (2010).

By applying a method pioneered by Delaunay and developed further by Bohlin and Poincaré
one can extend the validity of our analytical estimates beyond the first order in the perturbing
parameter ε. The aim is to consecutively find new sets of action angle variables (I,φ)n which
are linked to the old ones (I,φ)0 via canonical transformations S0...n, so that the transformed
Hamiltonian becomes independent of the new angles up to terms of order εn. The integrable
part of the analytical solution is, thus, extended to higher orders in the perturbing parame-
ter. If a full elimination of all the angles is not feasible, one can at least attempt to reduce
the degrees of freedom of the dynamical system at hand trying to make it integrable in such
a way. Using such an approach, Brouwer (1959) was able to describe the secular behavior
of the orbit of an artificial satellite assuming a small additional anisotropic correction to the
Earth’s spherical gravitational potential, which constituted his perturbing function. Applying
the averaging method developed by von Zeipel he found successive canonical transformations
S0...n, which eliminate short period terms without the need for series expansions in the satel-
lite’s eccentricity or inclination. For a detailed discussion of the von Zeipel - Brouwer method
including suggestions to circumnavigate problems which arise during this procedure - such as
the appearance of small divisors for instance - see e.g. Brouwer (1959) and Ferraz-Mello (2007).
A similar approach was later applied to hierarchical triple systems by Harrington (1968, 1969),
extended by Soderhjelm (1984) and Marchal (1990) and has since become very popular, as it
allows for long term (secular) predictions on the dynamical evolution of a hierarchical triple
system without restrictions on eccentricities or inclination (e.g. Beaugé et al. 2012, Eggleton
2006, Farago & Laskar 2010, Ford et al. 2000, Georgakarakos 2002, 2003, Krymolowski & Mazeh
1999, Lee & Peale 2003). The Hamiltonian of such a hierarchical three body approach reads
(in action angle variables)

HJ = − G2(m0m1)3

2L2
1(m0 +m1)

− G2[(m0 +m1)m2]3

2L2
2(m0 +m1 +m2)

− RJ , (1.24)

where L1 and L2 are the actions of the inner and outer orbits and RJ is the perturbing function.
The subscript J indicates that we will work in a Jacobian frame of reference from now on, see

1E.g. the system’s frequencies must not be resonant (diophantine).
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Figure 1.9, right. Consequently, our definition of the system’s action variables has to be adapted
(Harrington 1968, Krymolowski & Mazeh 1999)

L1 =
m0m1

m0 +m1

√
G(m0 +m1)a1, G1 = L1

√
1− e21, (1.25)

L2 =
m2(m0 +m1)

m0 +m1 +m2

√
G(m0 +m1 +m2)a2, G2 = L2

√
1− e22.

Similar to equation (1.12) Legendre expansions of the perturbing function can be used. Before
changing to action angle variables RJ reads

RJ =
G

q2

∞∑

j=2

Mj

(
q1
q2

)j
Pj(cos Φ), (1.26)

with q1 being the scalar distance between m0 and m1. The distance q2 is then counted from
the center of mass of m0 and m1 to m2 (Figure 1.9, right). The relative angel between q1 and
q2 is denoted by Φ, and the mass parameter Mj is defined as (Harrington 1968)

Mj = m0m1m2
mj−1

0 − (−m1)j−1

(m0 +m1)j
.

After expressing the Hamiltonian in action angle variables, where the perturbing function up to
Legendre polynomial P2 is included, a von Zeipel - Brouwer averaging procedure can be applied,
see e.g. Marchal (1990).1 The resulting averaged Hamiltonian for coplanar (i1 = i2 = 0)
hierarchical triple configurations reads

〈HJ〉P2 = −G2

2

[
M1

L2
1

+
M2

L2
2

+ M3
L4
1(5− 3G2

1/L
2
1)

4L3
2G

3
2

]
(1.27)

where

M1 =
(m0m1)3

(m0 +m1)
, M2 =

[(m0 +m1)m2]3

(m0 +m1 +m2)
, M3 =

[(m0 +m1)m2]
7

[m0m1(m0 +m1 +m2)]
3 . (1.28)

Equation (1.27) shows that the averaged Hamiltonian including P2 terms does neither depend
on the mean anomalies l1, l2, nor on the arguments of pericenter g1, g2. Consequently, all actions
are preserved meaning that the eccentricities as well as the semimajor axes of both, the inner
and the outer orbit, stay constant. The arguments of pericenter and the mean anomalies will
grow linearly with time.

It is true that, in reality, the semimajor axes of the inner and outer orbit do stay almost
constant. However, this is not the case for the orbital eccentricities in such a system. Numerical
integration of the 3BP’s full equations of motion allows us to visualize the evolution of orbital
elements in hierarchical triple systems, see Figures 1.11 and 1.12.

Since the eccentricity of a planet’s orbit in an S-Type binary star configuration is of great
importance for its habitability (see chapter 2), more accurate analytical approximations will
be required. Hence, we need to include more terms in the Legendre expansion of the perturb-
ing function. Pushing the Legendre expansion to include P3, for instance, solves the issue of
constants eccentricities already, and produces the following averaged Hamiltonian for coplanar

1There is a small misprint of formula (203) in Marchal (1990). The outer semiminor axis should read
bT = MLTGT /(Gm

2
3(m1 +m2)2).
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hierarchical triple configurations expressed in osculating orbital elements (Georgakarakos 2003,
Marchal 1990)

〈HJ〉P3 = −Gm0m1

2a1
− G(m0 +m1)m2

2a2
+Q1 +Q2 +Q3, (1.29)

where

Q1 =− 1

8

Gm0m1m2

(m0 +m1)a2(1− e22)3/2
(2 + 3e21),

Q2 =
15

64

Gm0m1m2(m0 −m1)a31e1e2
(m0 +m1)2a42(1− e22)5/2

cos (ω1 − ω2)(4 + 4e21),

Q3 =− 15

64

Gm0m1m
2
2a

7/2
1 e21(1− e21)1/2

(m0 +m1)3/2(m0 +m1 +m2)1/2a
9/2
2 (1− e22)3

·
[
15 + 10e22 + 3e22 cos 2(ω1 − ω2)

]
.

The Q1 term originates from the Legendre polynomial P2, Q2 comes from the Legendre poly-
nomial P3 and the expression Q3 arises from the canonical transformations during the von
Zeipel - Brouwer procedure. Even though the octupole (P3) expansion allows for changes in
the eccentricities of both orbits, its predictions are not very accurate in planar configurations
(Figures 1.11 and 1.12). This lack of accuracy is due to the omission of short period terms
that were intentionally eliminated during the von Zeipel - Brouwer approach, in order to make
the system of differential equations easier to handle. Yet, short period terms can contribute
significantly to the overall evolution of the inner orbit’s eccentricity.

1.3.5 Georgakarakos’ Approach

Georgakarakos (2002, 2003, 2005) has found a way to re-introduce short period terms in the
analytic solution for the inner eccentricity, making use of the evolution of the ’Laplace-Runge-
Lenz’ or eccentricity vector (e) of the inner orbit

e1 =
q1
q1

+
1

G(m0 +m1)
[q̇1 × (q1 × q̇1)]. (1.30)

This vector always points in the direction of the pericenter of the corresponding orbit and its
length is equal to the orbit’s eccentricity. Georgakarakos calculated short period contributions
by integrating the x and y components of ė1 after expressing them in terms of Legendre poly-
nomials up to P3. He then recombined the short period solutions with the secular evolution
of the eccentricity gained from the Hamiltonian in equation (1.29). Thus, he was able to pro-
duce an improved analytic solution for the inner orbit’s eccentricity, containing information on
its long term evolution as well as on its short term behavior, see appendix 1.A. Furthermore,
Georgakarakos (2005) provides estimates on the average squared eccentricity of the inner orbit,
which will be used extensively in chapters 2 and 3. Also, the planet’s maximum eccentricity
in S-Type configurations could be determined using results from Georgakarakos (2003, 2005),
see chapter 2, appendix B. Figures 1.11 and 1.12 have been generated in order to visualize the
performance of the analytic estimates based on Georgakarakos’ method. The figures present a
comparison between

• purely secular predictions on the planet’s eccentricity derived from 〈HJ〉P3 via Hamilton’s
equations of motion, see equations (1.29) and (1.41),

• Georgakarakos’ method unifying secular and short period terms for the inner body’s
eccentricity, see equations (1.31), (1.32) and (1.41),
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m0 m1 m2 a2/a1 e1 e2 L2 − L1 [deg]
system a 1 3.04043d-6 1 10 0 0.5 0
system b 1 3.04043d-6 0.5 20 0 0.01 0

Table 1.1: Initial conditions for the two different S-Type systems harboring Earth-like planets pre-
sented in Figures 1.11 and 1.12. The subscript 1 on the Keplerian orbital elements refers to the inner
- in this case the planetary - orbit. The subscript 2 is used for the orbit of the second star around the
common center of mass of the host star and the planet. Here, a, e and L denote initial semimajor axis,
eccentricity and mean longitude (L= ω + Ω + M) respectively. The masses for the primary (m0), the
planet (m1) and the secondary (m2) are given in solar masses.

• and a numerical integration of the Newtonian 3BP using a Gauss Radau collocation
method (Everhart 1974).

The constancy of the semimajor axes of the inner and outer orbit predicted by perturbation
theory is mirrored in the results of the numerical integrations (upper left panels in Figures
1.11 and 1.12). As far as the eccentricities are concerned, there are still discrepancies between
the numerical results and Georgakarakos’ estimates. However, the improvement compared to
the purely secular approach is striking. Especially for perturbers on almost circular orbits as
depicted in Figure 1.12 the short period terms dominate the evolution of the planet’s eccen-
tricity. The fact that the inner eccentricity’s secular period is not as well determined as the
eccentricity’s amplitude is not going to impact the determination of HZs in binary star systems
significantly, see section 5.2.
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Figure 1.11: Evolution of semimajor axes and planetary eccentricities in a coplanar S-Type binary star
system hosting an Earth-like planet. The system’s initial conditions are given in Table 1.1, referenced
as ’system a’. The second star is massive and on a close, elliptic orbit. Top left: The logarithmic
deviation of the secondary star’s and the planet’s semimajor axes from their initial values as found from
numerical integrations of the full Newtonian 3BP. Even though the planet’s variations in semimajor
axis are larger than the secondary’s, they stay within the range of a few percent. The assumption
that both semimajor axes remain constant is, therefore, a reasonable one. Variations in the secondary
star’s eccentricity remain below 10−7. Top right & bottom: The various figures show a comparison
between the predictions on the evolution of the planet’s eccentricity (ep) in ’system a’ on different
timescales. Hereby, numerical integration results are shown in red, a secular analytic approach derived
from the averaged Hamiltonian presented in equation (1.29) is shown in blue, and the solutions by
Georgakarakos (2003, 2005) reuniting secular and short period terms are colored green. Estimates for
the planet’s maximum eccentricity derived in chapter 2 are represented by the dashed horizontal line.
While the secular part is dominating the planet’s eccentricity evolution, the addition of the short period
terms clearly improves ep estimates. However, the analytic predictions for the planetary eccentricity’s
secular period are not as precise as the ones for the corresponding amplitudes.
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Figure 1.12: Same as Figure 1.11 only for ’system b’. The system’s initial conditions are given in
Table 1.1. As the configuration involves a second star on an almost circular orbit, the short period terms
are dominating the planet’s eccentricity evolution on short and intermediate timescales. In contrast
to ’system a’ (Figure 1.11) the secular periods are in good agreement with numerical results when the
perturbations remain small (bottom right). The estimates for the maximum eccentricity are not as
convincing for ’system b’ as they were for ’system a’. Since the overall planetary eccentricity is very
small, however, the deviations will not cause grave problems in our model for planetary habitability,
which is presented in chapter 2. The secondary star’s variation in eccentricity remains below 2 · 10−8.
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1. INTRODUCTION

1.A Georgakarakos’ Solution for the Inner Eccentricity

In a sequence of articles Georgakarakos (2002, 2003, 2005) has improved the analytic estimates
for the eccentricity evolution of the inner orbit in coplanar hierarchical triple systems (see
Figure 1.9). He achieved this by deriving the secular equations of motion for the eccentricity
vector’s x and y components from the doubly averaged octupole Hamiltonian 〈HJ〉P3 [equation
(1.27)] and combining them with the dominating short period terms gained directly from the
perturbed eccentricity vector of the inner orbit. Here, a rough outline of the process leading to
Georgakarakos’ solution for the inner eccentricity is presented. For a detailed derivation of the
equations see Georgakarakos (2003, 2005).

Let e1 be the time dependent eccentricity vector of the inner orbit as presented in equa-
tion (1.30). The eccentricity vector’s x and y components e1x and e1y can be written as a
combination of short period (sp) and secular (sec) terms:

e1 =

(
e1x
e1y

)
= esp1 + esec1 − ec1 (1.31)

where ec1 = (ec1x, e
c
1y)T are constants of integration. Since we assume coplanarity, the z com-

ponent of e1 is always zero and will thus not be mentioned. Assuming an initially circular
planetary orbit, the dominating short period terms of e1 can be expressed as follows (Geor-
gakarakos 2003)

esp1 =
m2

MX2(1− e22)3

(
P 21 +

1

X
P 22 +m∗X

1/3P 31 +
m∗
X2/3

P 32

)
+ ec1. (1.32)

The variables M and m∗ are combinations of the three bodies’ masses

M = m0 +m1 +m2, m∗ =
m1 −m0

(m0 +m1)2/3M1/3
. (1.33)

The parameter X = T2/T1 =
√

(m0 +m1)/(m0 +m1 +m2)(a2/a1)3/2 denotes the period ratio
between the outer and inner orbit and the terms P ij = (Pijx, Pijy)T are originating with the
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respective Legendre polynomial Pi. More specifically:

P21x = (1 + e2 cos[f2])3
(
−1

2
cos[n1t] +

1

4
cos[3n1t− 2f2 − 2$2] +

9

4
cos[n1t− 2f2 − 2$2]

)
;

P22x =
(1 + e2 cos[f2])4

(1− e22)3/2

{
9

2
cos[n1t− 2f2 − 2$2] +

1

6
cos[3n1t− 2f2 − 2$2]+

e2

(
−3

4
cos[n1t− f2] +

3

4
cos[n1t+ f2] +

45

8
cos[n1t− 3f2 − 2$2]+

5

24
cos[3n1t− 3f2 − 2$2]− 9

8
cos[n1t− f2 − 2$2]− 1

24
cos[3n1t− f2 − 2$2]

)}
;

P31x =
√

1− e22
{

15

16
cos[f2 +$2] +

15

32
e2 cos[2f2 +$2]+

e22

(
45

32
cos[f2 +$2]− 75

64
cos[f2 −$2] +

5

64
cos[3f2 +$2]

)
+

e32

(
45

128
cos[2f2 −$2]− 45

128
cos[2f2 +$2]

)
+

e42

(
5

32
cos[3f2 +$2]− 5

32
cos[3f2 −$2]

)}
;

P32x =
(1 + e2 cos[f2])4

1− e22

(
3

32
cos[2n1t− f2 −$2]− 45

32
cos[2n1t− 3f2 − 3$2]−

15

64
cos[4n1t− 3f2 − 3$2]

)
;

P21y = (1 + e2 cos[f2])3
(
−1

2
sin[n1t] +

1

4
sin[3n1t− 2f2 − 2$2]− 9

4
sin[n1t− 2f2 − 2$2]

)
;

P22y =
(1 + e2 cos[f2])4

(1− e22)3/2

{
−9

2
sin[n1t− 2f2 − 2$2] +

1

6
sin[3n1t− 2f2 − 2$2]+

e2

(
−3

4
sin[n1t− f2] +

3

4
sin[n1t+ f2]− 45

8
sin[n1t− 3f2 − 2$2]+

5

24
sin[3n1t− 3f2 − 2$2] +

9

8
sin[n1t− f2 − 2$2]− 1

24
sin[3n1t− f2 − 2$2]

)}
;

P31y =
√

(1− e22)

{
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16
sin[f2 +$2] +

15

32
e2 sin[2f2 +$2]+

e22
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45

32
sin[f2 +$2] +

75

64
sin[f2 −$2] +

5

64
sin[3f2 +$2]

)
+

e32

(
− 45

128
sin[2f2 −$2]− 45

128
sin[2f2 +$2]
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+

e42
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5

32
sin[3f2 +$2]− 5

32
sin[3f2 −$2]

)}
;

P32y =
(1 + e2 cos[f2])4

1− e22

(
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32
sin[2n1t− f2 −$2] +

45

32
sin[2n1t− 3f2 − 3$2]−

15

64
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)
.
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Here, n1 is the inner body’s mean motion, f2 the outer body’s true anomaly and $2 the outer
body’s longitude of pericenter ($ = ω+Ω). The true anomaly f2 can be expressed as a function
of time via the equation of the center, see chapter 3, appendix A.

In order to find the secular evolution of the inner eccentricity vector, we define its secular x
and y components as follows

k1 + esec1x = e1 cos$1 h1 + esec1y = e1 sin$1, (1.34)

where e1 denotes the length of esec1 .1 The time derivative of these quantities can be written as

k̇1 = ė1 cos$1 − e1 sin$1$̇1 = ė1 cos$1 − h1 $̇1

ḣ1 = ė1 sin$1 + e1 cos$1$̇1 = ė1 sin$1 + k1 $̇1.
(1.35)

Let us now use the averaged Hamiltonian from equation (1.29) to find expressions for ė1 and
$̇1. Hamilton’s equations of motion for the Delaunay actions Gi and corresponding angles gi
read

dGi
dt

= −∂〈HJ〉P3

∂gi

dgi
dt

=
∂〈HJ〉P3

∂Gi
. (1.36)

Applying the identity ei = (1−Gi/Li)1/2 to find the time derivative of the eccentricities ei we
have

dei
dt

=
∂ei
∂Li

dLi
dt

+
∂ei
∂Gi

dGi
dt

.

Using equations (1.36) and considering that for the averaged Hamiltonian

dLi
dt

= −∂〈HJ〉P3

∂li
= 0 ,

one arrives at

de1
dt

=

√
1− e21
e1L1

∂〈HJ〉P3

∂g1
=

√
(m0 +m1)(1− e21)

Ga1(m0m1e1)2
∂〈HJ〉P3

∂$1
, (1.37)

Here, we have used that gi and the longitudes of pericenter $i are identical in the coplanar
case. We can, therefore, calculate the following time derivative

$̇1 =
dg1
dt

=
∂〈HJ〉P3

∂G1
=
∂〈HJ〉P3

∂e1

∂e1
∂G1

(1.38)

= −
√

1− e21
e1L1

∂〈HJ〉P3

∂e1
= −

√
(m0 +m1)(1− e21)

Ga1(m0m1e1)2
∂〈HJ〉P3

∂e1
.

Consequently, the differential equations governing the secular evolution of the eccentricity vec-
tor’s components can be derived

d

dt

(
k1
h1

)
=

[
A
∂〈HJ〉P3

∂$1
−B

∂〈HJ〉P3

∂e1

(
0 1
1 0

)](
k1
h1

)
, (1.39)

1Please note that there is a clash in nomenclature regarding e1. While generally e1 refers to the total inner
eccentricity, i.e. the combination of short period and secular contributions, it represents only the secular eccen-
tricity in equations (1.34-1.40). This global inconsistency is tolerated, because it helps to keep the derivation
of the secular equations as well as sections 1.3.3-1.3.5 intuitively accessible. A similar clash in nomenclature
exists for the letter L which may be referred to as mean longitude, luminosity or a given action.
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1.A Georgakarakos’ Solution for the Inner Eccentricity

where

A =
1

e21m0m1

[
(1− e21)(m0 +m1)

Ga1

]1/2
and B = e1A.

The partial derivatives of the Hamiltonian will still contain the variables $2 and e2. Hence,
their evolution has to be taken into account as well. In order to complete the set of secular
differential equations we construct expressions for ġ2 = $̇2 and ė2, following Georgakarakos
(2003). The full equations for the secular evolution of the eccentricity vector read

dk1
dτ

=α
5

16

e2(1− e21)1/2

(1− e22)5/2
[
(4 + 3e21) sin$2 + 6(k1h1 cos$2 + h21 sin$2)

]

−
[

(1− e21)1/2

(1− e22)3/2
+ γ

25

8

3 + 2e22
(1− e22)3

(
1− 3

2
e21

)]
h1

+ γ
15

8

e22
(1− e22)3

[
h1 cos 2$2 − k1 sin 2$2 −

h1
2

(
k21 + 3h21

)
cos 2$2 + k1

(
k21 + 2h21

)
sin 2$2

]

dh1
dτ

=− α 5

16

e2(1− e21)1/2

(1− e22)5/2
[
(4 + 3e21) cos$2 + 6(k1h1 sin$2 + k21 cos$2)

]

+

[
(1− e21)1/2

(1− e22)3/2
+ γ

25

8

3 + 2e22
(1− e22)3

(
1− 3

2
e21

)]
k1

+ γ
15

8

e22
(1− e22)3

[
k1 cos 2$2 + h1 sin 2$2 −

k1
2

(
h21 + 3k21

)
cos 2$2 − h1

(
h21 + 2k21

)
sin 2$2

]

de2
dτ

=αβ
5

16

(4 + 3e21)

(1− e22)2
(h1 cos$2 − k1 sin$2)− βγ 15

8

e2(1− e21)1/2

(1− e22)5/2
[2k1h1 cos 2$2 − (k21 − h21) sin 2$2]

d$2

dτ
=
β(2 + 3e21)

2(1− e22)2
− αβ 5

16

(1 + 4e22)

e2(1− e22)3
(4 + 3e21)(k1 cos$2 + h1 sin$2)

+ βγ
5

8

(1− e21)1/2

(1− e22)7/2
[
5e21(11 + 4e22) + 3(1 + 2e22)

(
(k21 − h21) cos 2$2 + 2k1h1 sin 2$2

)]
.

(1.40)

The parameters α, β, γ and τ are defined as follows

α =
m0 −m1

m0 +m1

a1
a2
, β =

m0m1M
1/2

m2(m0 +m1)3/2

(
a1
a2

)1/2

,

γ =
m2

M1/2(m0 +m1)1/2

(
a1
a2

)3/2

, dτ =
3

4

G1/2m2a
3/2
1

a32(m0 +m1)1/2
dt,

where M is given in equation (1.33). In order to find analytical solutions to the set of coupled
differential equations (1.40), the following assumptions are made:

• The changes in the eccentricity of the outer body are negligible. Therefore, de2/dτ ≈ 0.
This is certainly the case for the S-Type binary star systems hosting a terrestrial planet,
see for instance Figures 1.11 and 1.12.

• Since the planet-to-binary semimajor axis ratio a1/a2 is small, all terms proportional to α
and γ are neglected causing the equation for d$2/dτ to become independent of k1 and h1.
However, this simplification modifies the frequencies in the planet’s eccentricity evolution,
which causes a period error in e1, see Figure 1.11, bottom right panel.
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• The injected secular planetary eccentricities are small, so that terms proportional to e21 can
be neglected. In one of the most extreme cases treated in this work, namely the system
HIP 64241 in chapter 4, the maximum eccentricity of the planet’s orbit does not rise
much above emax ≈ 0.2 before dynamical instability sets in. Therefore, this assumption
is reasonable for our purposes.

Applying the afore mentioned simplifications, an analytic solution for the secular evolution of
the eccentricity vector can be given

esec1 =

(
k1
h1

)sec
=

(
K1 K2

−K2 K1

)(
cos[Bτ ]
sin[Bτ ]

)
+

C

B −A

(
cos[Aτ +$1,0]
sin[Aτ +$1,0]

)
, (1.41)

where K1 and K2 are constants of integration

K1 = −ec1x −
C

B −A cos$1,0, K2 = ec1y −
C

B −A sin$1,0,

and variables A, B, and C are

A = β(1− e22)−2, B = (1− e22)−3/2 + γ
25

8

3 + 2e22
(1− e22)3

, C = α
5

4

e2
(1− e22)5/2

.

Finally, short period and secular solutions (1.32) and (1.41) can be combined as pointed out
in equation (1.31), to give a full set of time dependent equations for e1(t). The corresponding
equations for $1(t) can then be gained via

$1 = arctan

(
h1
k1

)
. (1.42)

The performance of Georgakarakos’ analytic estimates is visualized in Figures 1.11 and 1.12.
Furthermore, Georgakarakos (2003, 2005) provided an expression for 〈e21〉 which constitutes an
integral part of the analytic method to determine HZs in binary star systems; see sections 2.6
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and 5.2 for details. Averaging e21 over time as well as over the initial angles f2,0 and $2 yields

〈e21〉 =
m2
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+
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(1.43)
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Chapter 2

An Analytic Method To
Determine Habitable Zones For
S-Type Planetary Orbits In
Binary Star Systems

The following article contains the analytical and conceptual groundwork necessary to investigate
possible states of habitability an Earth-like planet can attain on circumstellar orbits in binary
star systems. The classical concept of habitability as defined in Kasting et al. (1993) is combined
with state of the art analytical estimates for the gravitational interaction between the planet
and the binary star (Georgakarakos 2003, 2005).
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ABSTRACT

With more and more extrasolar planets discovered in and around binary star systems, questions concerning the
determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of
the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host
star only? In this article, we investigate the implications of stellar companions with different spectral types on the
insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates
and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a
strong dependence of permanent habitability on the binary’s eccentricity, as well as a possible extension of habitable
zones toward the secondary in close binary systems.

Key words: astrobiology – celestial mechanics – methods: analytical – planet–star interactions
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1. INTRODUCTION

Fueled by the successes of current transit-observation incen-
tives like Kepler (Welsh et al. 2012; Borucki & Koch 2011) and
CoRoT (Baglin et al. 2009; Tingley et al. 2011) the quest for
discovering the first Earth twin has lead to a considerable cross-
disciplinary interest in the interplay between stellar and plan-
etary properties necessary to produce habitable worlds. Even
though opinions differ on what exactly to look for in a system
harboring a terrestrial planet in order to declare it “habitable”
(see, e.g., Buccino et al. 2006; Kaltenegger et al. 2007; Selsis
et al. 2007; Lammer et al. 2009), the classical assumption inves-
tigated by Kasting et al. (1993), i.e., the capacity for water to stay
liquid on the planet’s surface, may still be considered a prerequi-
site for the development and sustainability of complex life as we
know it (Kaltenegger & Sasselov 2011). This entails restrictions
on planetological characteristics, such as mass, atmospheric, and
bulk composition, and sets limits to the host star’s activity as
well as radiation properties (Lammer et al. 2009). Dynamical
considerations are of equal importance, since changes in orbital
stability or extreme variations in insolation due to large planetary
eccentricities (ep > 0.7) may also result in a hostile environ-
ment (Williams & Pollard 2002). It is therefore only natural that
one would look for a copy of our solar system when searching
for habitable worlds. Yet the study of exoplanetary systems so
far has clearly shown that a broader perspective is required.

In fact, up to 70% of all stellar systems in our galaxy may
not be single-stellar systems but multi-stellar systems (e.g.,
Kiseleva-Eggleton & Eggleton 2001 and references therein).
Together with the approximately 60 planets that have already
been discovered in systems harboring two stars (Schneider et al.
2011) this suggests that binary and multiple star systems should
not be ignored in the search for habitable worlds.

Investigations of environments that permit planetary forma-
tion in binary star systems have progressed rapidly over the last
decade (see, e.g., Thebault 2011 and references therein). Even
though important questions regarding the early phases of planet
formation in binary star systems—especially the transition from
planetesimal to planetary embryos—still remain to be answered,

late stage formation scenarios for terrestrial planets in such en-
vironments are available (Whitmire et al. 1998; Haghighipour
& Raymond 2007; Haghighipour et al. 2010). Since previous
studies did consider the extent of the classical habitable zone
(KHZ) to be purely a function of the primary star’s luminosity
and spectral type as introduced by Kasting et al. (1993, here-
after KWR93), we aim to refine this definition to encompass the
gravitational and radiative influence of a second star.

This article is structured as follows: after a short recapitula-
tion of the main radiative aspects of habitability as defined in
KWR93, Section 2 introduces three exemplary binary–planet
configurations, which will serve as test-cases for habitability
considerations. Section 3 briefly mentions the dynamical re-
quirements that binary–planet configurations have to fulfill in
order to ensure system stability. In Section 4, the maximum
radiative influence of the second star on a terrestrial planet in
the primary’s HZ is estimated and compared to actual inso-
lation simulations. The occurring differences are investigated
in the following section. Finally, generalized, analytical esti-
mates are developed and compared to numerical simulations in
Sections 6 and 7, and the results concerning the behavior of HZs
in binary star systems are presented in Section 8. A discussion
of the results concludes this article.

2. BINARY–PLANET CONFIGURATIONS

Apart from planetological and dynamical aspects, the insola-
tion a terrestrial planet receives from its host star is naturally the
main driver determining the extent of the HZ. When considering
planets within a binary star system it is therefore important to
track the combined radiation of both stars arriving at the planet.
KWR93 showed that not only the sheer amount of insolation
but also the spectral distribution is essential to estimate limit-
ing values for atmospheric collapse. In order to model the im-
pact of diverse stellar spectral classes on an Earth-like planet’s
atmosphere, KWR93 introduced the so-called effective radia-
tion values. These measure the relative impact a comparable
amount of radiation (e.g., 1360 [W m−2]) with different spectral
properties has on a planet’s atmosphere. Taking the effects of

1
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PlanetStar 2

Star 1
Planet

Star 1

Star 2

Figure 1. Two examples of S-Type motion, i.e., the planet orbits only one binary
component (Dvorak 1984); left: S-Type I (μ � 0.5), the more massive star is
the planet’s host (primary); right: S-Type II (μ > 0.5), the less massive star is
the planet’s host.

Table 1
Limiting Radiation Values for the Inner (A) and Outer (B) Border of

the HZ in Units of Solar Constants (1360 [W m−2])

Spectral Type A B

F0 1.90 0.46
G2 1.41 0.36
M0 1.05 0.27

Note. The values were taken from Kasting et al. (1993) assuming
a runaway greenhouse scenario for the inner limit, and a maximum
greenhouse effect for the outer limit.

different stellar spectra into account is especially important in
binary star systems with different stellar components. Table 1
reproduces the effective radiation values for the inner (runaway
greenhouse) and outer (maximum greenhouse) edges of a single
star’s HZ as given in KWR93. Notice how the onset of runaway
greenhouse effects requires almost twice as much radiation for
a spectral distribution akin to F0 class stars compared to M0
spectral types. Even though Kaltenegger & Sasselov (2011) as-
sume similar effective radiation values for M and K spectral
classes, actual calculations have only been done for F0, G2, and
M0 zero-age main-sequence (ZAMS) stars. For this reason, we
first investigate the following three stellar configurations:

1. G2–M0 μ � 0.3.

2. G2–G2 μ � 0.5.

3. G2–F0 μ � 0.6.

All stellar components are considered to be ZAMS stars, and
μ = m2/(m1 +m2) denotes the binary’s mass ratio. A terrestrial
planet is orbiting the Sun-like G2 host-star, hereafter referred to
as primary. Such binary–planet configurations are considered to
be of satellite type (S-Type), i.e., the planet revolves around
one star (Dvorak 1984); see Figure 1. In fact, most of the
planets in binary systems have been discovered to be of S-Type
(Schneider et al. 2011), e.g., the system Gamma Cephei (Hatzes
et al. 2003). In the following, we choose binary systems with
semimajor axes between 10 and 50 AU for the comparison of
numerical and analytical estimates on the extent of the HZ, as
for closer binaries the HZs in G2–G2 and G2–F0 configurations
are considerably reduced due to dynamical instability, whereas
the qualitative differences for results beyond 50 AU are small.
However, the methods presented in Section 6 are viable beyond
those limits, as long as the assumptions given in Georgakarakos
(2003) remain valid.

The terrestrial planet is assumed to be cloudless (Kaltenegger
& Sasselov 2011) and orbits the G2 star only, resulting in
configurations (1) and (2) to be classified as S-Type I (μ � 0.5)
and (3) as S-Type II (μ > 0.5), respectively (see Figure 1).

Table 2
Critical, Planetary Semimajor Axis in a Normalized Binary Star System

ab = 1 with Mass-ratio μ as Stated in Holman & Wiegert (1999) Compared to
the Values Found by Pilat-Lohinger & Dvorak (2002) via Fast Lyapunov

Chaos Indicator (FLI)

eb μ = 0.3 μ = 0.5 μ = 0.6

FLI HW99 FLI HW99 FLI HW99

0.0 0.37 0.37 0.27 0.26 0.23 0.23
0.1 0.29 0.30 0.25 0.24 0.21 0.20
0.2 0.25 0.25 0.19 0.20 0.18 0.18
0.3 0.21 0.21 0.16 0.18 0.15 0.16
0.4 0.18 0.18 0.15 0.15 0.12 0.13
0.5 0.13 0.14 0.12 0.12 0.09 0.10
0.6 0.09 0.11 0.08 0.09 0.07 0.08
0.7 0.07 0.07 0.05 0.06 0.05 0.05
0.8 0.04 0.04 0.03 0.04 0.02 0.035
0.9 0.01 . . . 0.01 . . . 0.01 . . .

Notes. The higher the binary’s eccentricity eb, the smaller the test-planet’s
semimajor axis has to be to permit dynamical stability. Even though the results
are very similar, the FLI limits tend to be more conservative for higher mass
ratios and binary eccentricities.

3. DYNAMICAL STABILITY

Binary–planet configurations that lead to highly chaotic
orbits and eventual ejection of the planet cannot be considered
habitable. Therefore, dynamical stability of the system is a
basic requirement for our consideration. In order to assess the
dynamical stability of a test planet’s orbit within the given
binary star systems, we applied results of numerical stability
studies by Rabl & Dvorak (1988; hereafter RD88), Pilat-
Lohinger & Dvorak (2002; hereafter PLD02), and Holman &
Wiegert (1999; hereafter HW99), determining stable zones in a
planar, normalized system (binary semimajor axis ab = 1). In
contrast to RD88 and HW99 who classified unstable orbits via
ejections of test planets from the system, PLD02 applied the Fast
Lyapunov Indicator (FLI) chaos detection method (Froeschlé
et al. 1997) implemented in a Bulirsch–Stoer extrapolation
code (Bulirsch & Stoer 1964). In Table 2 maximum planetary
semimajor axes which still allow for a stable configuration in the
normalized setup are shown for different binary orbits and mass
ratios. Results gained via FLI by PLD02 are compared to those
published in HW99. Even though the critical values are very
similar, the onset of dynamical chaos (PLD02) in G2–G2 and
G2–F0 configurations appears for smaller planetary semimajor
axes than predicted by the ejection criterion in HW99. For
the following investigations the more conservative FLI stability
estimates by PLD02 are used.

4. INFLUENCE OF THE SECONDARY

The main question in dealing with habitability in binary star
systems is doubtlessly: “How does the second star affect the
HZ around the primary?” Let us focus on the dynamical aspects
first, as stability is a prerequisite to habitability. The results
from the previous section dictate that not all combinations of
a binary’s semimajor axis ab and eccentricity eb are viable,
if orbital stability of planets in the primary’s HZ is required.
Figure 2 (top left) shows quadratic fits of the FLI stability data
presented in Table 2. The secondary’s allowed eccentricities are
higher for planets orbiting the primary near the inner border
of the KHZ than for cases where the planet’s semimajor axis
is close to the KHZ’s outer rim. Such dynamical restrictions
set limits on how close the secondary can approach the planet,
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Figure 2. Top left: highest possible binary eccentricity as a function of the secondary’s semimajor axis, if a terrestrial planet was to remain dynamically stable on
orbits with semimajor axes corresponding to the inner (runaway greenhouse, open symbols) or outer (maximum greenhouse, full symbols) boundaries of the HZ as
defined by Kasting et al. (1993). The curves represent quadratic fits of the FLI stability data presented in Table 2. Three different S-Type stellar configurations are
shown: G2–F0 (�, �), G2–G2 (�,�), and G2–M0 (◦, •). Top right: minimum distance between planet and secondary (D) permitting planetary orbital stability in
units of planetary aphelion distances from the primary (d = ap(1 + emax

p )). The planet’s eccentricity was estimated following Georgakarakos (2005). Bottom left: here,
the increase of the primary’s effective insolation onto a terrestrial planet with injected eccentricity is compared to a single-star setup where the planet remains on a
circular orbit. The planet is considered to be in periastron position (ap(1 − emax

p )). Bottom right: the secondaries’ maximum radiative contributions to planetary
insolation are presented—the planet is in apocenter position with regard to the primary (d) and the secondary is at pericenter. Once again, the results are
normalized with regard to values which a single-star configuration with a terrestrial planet on a constant circular orbit would exhibit. One can see that the primary’s
radiative influence dominates in S-Type I systems, whereas for close S-Type II configurations the secondary’s contribution is almost equally important.

(A color version of this figure is available in the online journal.)

which will in turn limit its insolation on the planet. Applying an-
alytical approximations introduced later in this section Figure 2
(top right) demonstrates that the smallest possible separation
between planet and secondary is always larger than the planet’s
aphelion distance to its primary. This lessens the second star’s
potential radiative contribution considerably for all but close
S-Type II configurations. In the latter case, the enhanced lu-
minosity of the secondary compensates larger distances to the
planet. Using the minimum distances presented in Figure 2 (top
right), one can estimate that in a G2–G2 S-Type I system with
ab = 20 AU, the secondary’s radiative influence on a planet
started at the inner edge of the KHZ is in the order of only
10% of the primary’s contribution. As a consequence, the sec-
ondary was often considered not to have a significant radiative
impact on the extent of the primary’s HZ (Whitmire et al. 1998;
Haghighipour & Raymond 2007; Haghighipour et al. 2010).

Such a so-called single-star approach, however, stands in con-
trast to numerical experiments presented in the left panel of
Figure 3. The effective insolation curves shown were generated
solving the full Newtonian Three-Body Problem (3BP) numer-
ically via Lie-Series (Hanslmeier & Dvorak 1984; Eggl & Dvo-
rak 2010) and Gauss–Radau (Everhart 1974) integrators, where
the actual amount of radiation the planet receives was calcu-
lated for each integration step. One can see that a planet started

at the inner edge of the KHZ in a G2–G2 S-Type binary expe-
riences an increase of more than 30% in insolation compared
to a planet on a circular orbit with corresponding semimajor
axis around a single G2 star. Consequently, an Earth-like planet
would spend a considerable time outside the classical, circular
HZ in a G2–G2 configuration. Is, therefore, the secondary’s ra-
diative impact more important than assumed? The fact that the
variations in insolation perfectly correlate with the dynamical
evolution of the planet’s eccentricity (see Figure 3, right panel)
permits an alternative explanation: changes in the planetary or-
bit induced via gravitational perturbation by the second star
might be responsible for the increased insolation values. Even
though planetary and binary orbits’ semimajor axes are not ex-
pected to show any secular variation (e.g., Harrington 1968),
it is known that even a distant companion would inject some
eccentricity into the orbit of two bodies revolving around their
common center of mass (e.g., Mazeh & Shaham 1979; Geor-
gakarakos 2002). Elevated planetary eccentricities would entail
smaller periastron distances—allowing for increased insolation
by the primary.

In order to draw a clearer picture of whether the perturbation-
induced rise in the planet’s eccentricity or the secondary
star’s radiative influence are the dominant factors causing the
increased insolation onto the planet encountered in Figure 3 (left
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panel), we will make three assumptions, which our analytical
estimates will be based on:

1. the binary–planet system is coplanar;
2. stellar luminosities L are constant on timescales of the

system’s secular dynamics; and
3. stellar occultation effects are negligible.

Since we assume coplanar orbits, we make extensive use
of the analytic expressions in Georgakarakos (2003, 2005)
to calculate the time-averaged-squared planetary eccentricity
〈e2

p〉t . In Appendix B, we derive estimates on the planet’s
maximum injected eccentricity emax

p . Unlike the recent ansatz
by Giuppone et al. (2011) and earlier by Thébault et al. (2006),
where the eccentricity evolution of a planet in a stellar binary
was modeled by empirical formulae, Georgakarakos (2003,
2005) derived an entirely analytical formula for the eccentricity
of the inner—in this case the planet’s—orbit of a hierarchical
triple system, which is valid for a wide range of mass ratios
and initial conditions. Together with the estimates for emax

p in
Appendix B, the formulae presented in Georgakarakos (2003,
2005) are an analytical extension to the first order with respect
to the perturbing mass secular perturbation theory, as given for
example in the longstanding work of Heppenheimer (1978).

Assumptions 2 and 3 are reasonable for well-separated binary
stars, where both components are on the main sequence. The
combination of the dynamical stability results presented in
Figure 2 (top left panel) and the analytic expressions for the
injected planetary eccentricity allows us to estimate not only
the minimum distances between the secondary and the planet
as shown in Figure 2 (top right panel), but also the maximum
contributions to the planetary insolation from the primary and
the secondary star, respectively.

Figure 2 (bottom left panel) shows the primary’s effective
insolation onto a terrestrial planet during its closest perihelion
passage d = ap(1−emax

p ). Here, the largest dynamically possible
perturbation by the secondary is considered. In order to separate
the secondary’s radiative and gravitational effects, the second
star’s radiation has been excluded in this plot. Given a binary
semimajor axis of 10 AU, Earth analogs started at the inner edge
of the KHZ permit considerably higher binary eccentricities
(Figure 2, top left panel) compared to planets near the outer
edge. Therefore, higher insolations for planets near the inner
edge of the KHZ are expected, since the injected planetary
eccentricities are coupled strongly to the binary’s eccentricity;
see Appendix B. This effect abates around ab = 20 AU, where
the primary’s insolation becomes almost equal for planets
started near the inner and outer rims of the KHZ. For binary
semimajor axes beyond ab = 20 AU planetary orbits closer
to the secondary are more severely perturbed than the ones
near the inner edge of KHZ, as the binaries’ maximum allowed
eccentricities become similar for inner and outer borders of the
KHZ and the perturbation is merely dependent on the binary to
planet period ratios.

For planets on eccentric orbits in a G2–G2 configuration
with ab = 20 AU, the primary’s insolation can increase up
to almost 50% compared to circular orbits sharing the same
semimajor axis. In contrast, even with the planet being as close
to the second star as dynamically possible, the secondary’s
maximum radiative input only accounts for an additional 10%
in the same setup. This can be seen in the bottom right panel of
Figure 2. Hence, the primary is the main source of the additional
insolation in S-Type I systems, which can only be explained via
changes in the planet’s eccentricity. Solely for S-Type II systems

like G2–F0 binaries, the secondary’s radiative contributions to
planetary insolation can become comparable to the primary’s
(cf. Figure 2, bottom panels).

5. CONSEQUENCES FOR THE HABITABLE ZONE

In the previous section, the rise in the planet’s eccentricity was
identified as a main driver for the strong variance in simulated
insolation curves in S-Type I systems. Eccentric planetary orbits
entail strong variations in insolation over an orbital period.
Nevertheless, Williams & Pollard (2002) concluded that this
might not necessarily be prohibitive for habitability. As long
as the average insolation values lie within habitable limits and
ep < 0.7, the atmosphere should be able to act as a buffer,
preventing immediate carbon freeze-out or instantaneous water
evaporation. In order to distinguish between cases where the
planet remains within the radiative boundaries of the KHZ for
all times, configurations where the planet is “on average” within
the HZ, and non-habitability, we introduce the following three
categories.

Permanently Habitable Zone (PHZ). The PHZ is the region
where a planet always stays within the insolation limits (A, B)
of the corresponding KHZ, i.e.,

A � Seff � B, (1)

where A denotes the inner and B the outer effective radiation
limit for a given spectral type; see Table 1.

Extended Habitable Zone (EHZ). In contrast to the
PHZ—where the planet stays within the KHZ for all times—
parts of the planetary orbit lie outside the HZ due to, e.g., the
planet’s eccentricity. Yet the binary–planet configuration is still
considered to be habitable when most of its orbit remains inside
the HZ boundaries:

〈Seff〉t + σ � A ∧ 〈Seff〉t − σ � B, (2)

where 〈Seff〉t denotes the time-averaged effective insolation from
both stars and σ 2 is the effective insolation variance.

Averaged Habitable Zone (AHZ). Following the argument
of Williams & Pollard (2002), this category encompasses
all configurations which allow for the planet’s time-averaged
effective insolation to be within the limits of the KHZ:

A � 〈Seff〉t � B. (3)

6. ANALYTICAL ESTIMATES

We now propose analytical estimates to achieve a classifica-
tion of planetary habitability as was suggested in the previous
section. The aim is to circumvent time-consuming numerical
integrations when global parameter scans are required to check
systems for possible habitability. Even though the following
analytical estimates are presented utilizing the Seff values de-
veloped in KWR93, more advanced atmospheric models for
exoplanets can easily be introduced by exchanging the effective
insolation values A and B.

6.1. Estimates for the PHZ

Let the second star move on a fixed Keplerian orbit with semi-
major axes ab and eccentricity eb. Accordingly, the planet’s orbit
has the semimajor axis ap and acquires a maximum eccentricity
of emax

p due to the secondary’s gravitational perturbations (cf.
Figure 3, right panel). This permits us to estimate the maximum
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Figure 3. Evolution of insolation onto an Earth-like planet in a G2–G2 binary star system. The oscillations (left) are due to the injected changes in the planet’s
eccentricity (right) caused by the gravitational perturbations of the secondary.

(A color version of this figure is available in the online journal.)

and minimum insolation conditions for the planet to perma-
nently remain within the KHZ.

Insolation minimum condition. Both planet and secondary
are assumed to be in apocenter position and opposition. The
additional normalization of the stellar luminosities per solid
angle (L = Lbol/(4π )) with regard to the respective outer
insolation limits for each star (B1, B2) ensures that different
spectral properties are taken into account:

1 � L1

B1

(
ap

(
1 + emax

p

))−2
+

L2

B2

(
ab(1 + eb) + ap

(
1 + emax

p

))−2
.

Insolation maximum condition. Again the luminosities are
normalized, but this time with regard to the inner insolation
limits (A1, A2). Since we consider S-Type I and II systems,
it is possible that the secondary at pericenter may produce a
higher insolation on the planet than the primary star. If this
is the case, the maximum insolation configuration will have the
planet at apocenter with regard to the primary and the secondary
at pericenter:

1 � max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1

A1

(
ap

(
1 − emax

p

))−2

+
L2

A2

(
ab(1 − eb) − ap

(
1 − emax

p

))−2
,

L1

A1

(
ap

(
1 + emax

p

))−2

+
L2

A2

(
ab(1 − eb) − ap

(
1 + emax

p

))−2
.

6.2. Estimates for the AHZ

The combined stellar insolation Stot on the planet is, of course,
a function of time. In order to calculate time-averaged insolation
values, we will use that

〈Stot〉t = 〈S1〉t + 〈S2〉t , (4)

where 〈S1〉t is the time average of the planetary insolation due
to its host star and 〈S2〉t is the time-averaged contribution of the
second star. Let us focus on the two-body problem planet–host
star first. Here, 〈S1〉t = 〈

L1/δ
2(t)

〉
t

where δ(t) denotes the scalar
distance between planet and primary. The average insolation a
planet on an unperturbed Keplerian orbit experiences can be

calculated using the planet’s angular momentum h = δ2ḟ , f
being the true anomaly:

〈S1〉t = L1

P

∫ P

0

1

δ2(t)
dt (5)

= L1n

2π

∫ 2π

0

1

h
df

= L1n

h
.

This expression states that the time-averaged insolation a planet
receives over one orbit depends only on the star’s luminosity,
the planet’s mean motion n, and its orbital angular momentum
(see, e.g., Seager 2010, p. 18). Now let us construct a circular
orbit so that hcircle = hellipse. A planet moving on such an orbit
with “equivalence radius” r = ap(1−〈e2

p〉t ) will experience the
same amount of insolation per unit time as a planet on an elliptic
orbit sharing the same angular momentum. The advantage of
considering “equivalent circular orbits” is that the insolation
remains constant for any orbital position of the planet. Of course,
the reduction of elliptic orbits to circular orbits with common
angular momentum will decrease the planet’s orbital period, as
r � a and r = a only if 〈e2

p〉t = 0. However, as we have
chosen the “equivalent circular orbit” to have the same angular
momentum, it will share the same constant rate of change of
insolation with the true orbit. Therefore, even an average over
the longer period of the elliptic orbit will still yield valid results.

We will now apply the same line of argumentation to construct
the equivalence radius R for the secondary. This allows us
to extend the pseudostatic radiation environment to include
the average radiative influence of the secondary. Since the
distinction between averaged and initial eccentricity is small
for the secondary—its secular variance is negligible for the
cases investigated—we can safely use the secondary’s initial
eccentricity to calculate R. The suggested configuration is shown
in Figure 4. The secondary circles the primary in a fictitious orbit
with equivalence radius R, and the planet orbits the primary in
a circle with radius r.

The insolation on the planet depends on the relative distances
of the planet to both stars. In order to estimate the insolation on
the planet caused by the secondary (S2), we simply apply law of
cosine, and average over all possible geometric configurations
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Figure 4. “Equivalence orbits” of the planet (dotted) and the secondary (dashed)
around the primary. R denotes the equivalence radius of the secondary’s
circular orbit sharing the same angular momentum with its actual elliptic orbit
(continuous). The planet’s equivalence radius (r), and the distance between
the time-averaged secondary’s and planet’s positions (ρ) as well as the angle
(φ) opposite to ρ are highlighted. In order to calculate the secondary’s mean
insolation on the planet, an averaging over 1/ρ2(φ) is required.

(A color version of this figure is available in the online journal.)

(Figure 4):

ρ2 = R2 + r2 − 2rR cos(φ)

〈S2〉t =
〈

L2

ρ2(φ)

〉
φ

(6)

= L2

2π

∫ 2π

0

1

R2 + r2 − 2rR cos(φ)
dφ

= L2

(R2 − r2)
if R > r,

where ρ is the planet’s distance to the secondary and φ denotes
the angle between the distance vectors of planet and secondary
to the host star. Since we do not allow for orbit crossings of the
planet and the secondary, R > r will always hold. Consequently,
the total, time-averaged insolation onto the planet is given by

〈Stot〉t = L1

r2
+

L2

(R2 − r2)
. (7)

Equation (7) does not yet take the different spectral properties
of the binary’s components into account. Therefore, we note the
following conditions for the planet’s averaged insolation being
within habitable limits.

Average insolation minimum condition:

1 � 〈Seff,B〉t = L1

B1

1

r2
+

L2

B2

1

R2 − r2
.

Average insolation maximum condition:

1 � 〈Seff,A〉t = L1

A1

1

r2
+

L2

A2

1

R2 − r2
.

Here, the indices 1, 2 indicate the respective star’s KHZ bound-
ary values A and B, R = ab(1 − e2

b), and r = ap(1 − 〈e2
p〉t ),

where the averaged-squared planetary eccentricity was calcu-
lated following Georgakarakos (2005).

6.3. Estimates for the EHZ

Having derived the insolation time averages in the previous
section, the expected insolation variance (σ 2) still remains to be
determined:

σ 2 = 〈
S2

tot

〉
t
− 〈

Stot
〉2
t
. (8)

Using Equation (7), and analytic estimates for 〈S2
tot〉t , the

effective insolation variance can be calculated as follows (see
Appendix A):

σ 2
X = L2

1

X2
1r

4

( − 1 + 3
〈
e2
p

〉 − 3
〈
e2
p

〉2
+

〈
e2
p

〉3)

+
L2

1

X2
1r

4

√
1 − 〈

e2
p

〉 (
1 −

〈
e2
p

〉
2

−
〈
e2
p

〉2
2

)

− 2L1L2

X1X2(r4 − r2R2)

(
1 −

√
1 − 〈

e2
p

〉(
1 +

〈
e2
p

〉))
− 2L2

2r
2

X2
2(r2 − R2)3

, (9)

where Xi ∈ {Ai, Bi} and the index i denotes the respective star.
The minimum and maximum conditions for a planet to be within
the EHZ are given as follows.

Extended insolation minimum condition:

1 � 〈Seff,B〉t − σB.

Extended insolation maximum condition:

1 � 〈Seff,A〉t + σA.

7. RELIABILITY OF ANALYTICAL ESTIMATES

In order to test the reliability of the analytical estimates pre-
sented in Section 6, we used high-precision numerical inte-
gration methods based on Gauss–Radau quadrature (Everhart
1974) and Lie-Series (Hanslmeier & Dvorak 1984; Eggl &
Dvorak 2010) to determine the actual positions of both stars
with respect to the Earth-like planet. Assuming that the stellar
luminosities will not change significantly on the timescale of the
planet’s secular period in eccentricity, good approximations of
insolation patterns can be obtained. Figure 6 shows a compari-
son of analytic habitability classifications versus results gained
via numerical orbit integration and direct insolation calculation.
The setup consists of a terrestrial planet (1 M⊕) in S-Type or-
bit around a G2 host star, with three different spectral types as
secondary: F0 (top), G2 (middle), and M0 (bottom). The terres-
trial planet was started on circular orbits with semimajor axes
between 0.6 AU � ap � 2 AU with the secondaries’ semimajor
axes being ab = 50 AU. The time span of the numerical integra-
tions encompassed at least two secular periods in the planet’s
eccentricity. It is evident that for small binary eccentricities,
all three types of HZ coincide well with the borders defined in
KWR93 indicated by the vertical lines at 0.84 and 1.67 AU. For
eb > 0.1, however, a splitting into the HZ categories defined in
Sections 5 and 6 becomes eminent. The PHZ (black; blue in the
online journal) shrinks considerably with growing eccentricity
of the binary’s orbit. This is due to the perturbation-induced ele-
vation of the planet’s eccentricity. In contrast, the region defined
in KWR93 is best approximated by the AHZ (light gray; yellow
in the online journal), which remains virtually unaffected by the
secondary’s eccentricity. In this setup all analytically calculated
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Figure 5. Classification of HZs in a G2–F0 binary star system of S-Type II with a semimajor axis ab = 10 AU. Left: zoom on the outer limit of the classical HZ
(dashed line) close to the instability region (purple). The results were gained using analytic estimates presented in Section 6. Black (blue in the online journal) denotes
the PHZ, dark gray (green in the online journal) the EHZ, light gray (yellow in the online journal) the AHZ, and white (red in the online journal) indicates that the
planet is not habitable. The gray striped area (purple in the online journal) corresponds to the dynamically unstable region (HW99), the striped extension shows the
onset of dynamical chaos (PLD02). Right: the numerical simulation results for the same configuration. The HZ limits extend beyond the values defined in Kasting
et al. (1993). However, the white dash-dotted line corresponds to the semi-analytic estimates of the PHZ using numerically derived values for emax

p . The semi-analytic
results agree with the fully analytic estimates. This may indicate shortcomings of the entirely numerical approach to identify PHZ boundaries. The resolution of these
calculations is Δap = 0.002 AU and Δeb = 0.002.

(A color version of this figure is available in the online journal.)

Table 3
Percentages of Planetary Orbits Classified Identically via a Numerical Simulations and Analytical Estimates as Presented in Section 6

[AU] G2–M0 (%) G2–G2 (%) G2–F0 (%)

ab Total PHZ EHZ AHZ Total PHZ EHZ AHZ Total PHZ EHZ AHZ

10 95.9 97.4 99.8 98.3 94.4 97.4 99.2 98.0 93.6 95.8 98.5 98.2
20 98.8 99.3 99.5 99.8 98.5 99.2 99.6 99.6 98.5 99.5 99.4 99.6
30 99.0 99.5 99.7 99.9 99.2 99.7 99.6 99.8 98.9 99.8 99.4 100.0
40 99.2 99.5 99.6 99.9 99.3 99.9 99.6 100.0 99.0 99.8 99.5 99.8
50 99.2 99.6 99.7 99.9 99.4 99.7 99.7 99.9 99.4 99.8 99.7 99.9

Note. Three binary component configurations have been investigated; the reference classifications were extracted from numerical orbit
integrations and insolation simulations.

HZs are in excellent agreement with the numerical ones. Only
close to the stability limit (shaded region; purple in the online
journal) the correspondence between simulation and analytical
estimates decreases. This can be seen more clearly when the
secondary’s influence becomes stronger, e.g., in the cases of
ab = 10 AU; see Figure 7. In general the analytical approach is
producing more conservative results compared to the numerical
data (cf. Figures 5 and 7). In order to determine whether these
deviations in the determination of the PHZ are due to

1. inaccurate analytical estimates for emax
p ,

2. insufficient time resolution in numerical simulations with
regard to determining emax

p values, or
3. insufficient total integration time to reach minimum and

maximum insolation conditions,

we constructed semi-analytical PHZs using numerically deter-
mined emax

p values in the analytic equations to determine the PHZ
presented in Section 6.1. The borders of the semi-analytically
derived PHZs are depicted as white dash-dotted lines in
Figures 5 and 7. As they are nearly identical with the fully an-
alytic estimates, we can exclude (1) and (2), which would have
led to significantly different results for semi-analytic and ana-
lytic approaches. Therefore, (3) seems most likely to cause the
differences between the numerical and analytical PHZs, since

encountering an exact alignment of planetary aphelion and sec-
ondary perihelion at the moment where ep = emax

p may take
far longer than two secular periods. As the computational ef-
forts required to ensure that a simulation’s time resolution as
well as total integration time is sufficient to identify the correct
PHZ boundaries are enormous, the necessity to have analytical
methods at hand becomes evident.

As far as EHZ and AHZ regions are concerned, clear
differences can be seen in high perturbation environments close
to the transition to instability (Figures 5 and 7, shaded regions).
In these cases, the authors favor the numerical results, as single
configurations are not critical for the more statistically oriented
measures.

A quantitative overview of the correspondence between
numerical and analytical results for all system configurations
investigated is given in Table 3. Here, similar maps as presented
in Figures 6 and 7 were generated with a resolution of Δap =
0.01 AU, and Δeb = 0.01 and evaluated statistically. In spite
of their shortcomings in determining the PHZ, the numerical
classification results have been used as reference values and are
compared to the analytical estimates given in Section 6. The total
correspondence percentages are calculated as the number of all
orbits below the stability limit that were classified identically
via numerics and analytics, divided by the total number of orbits
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Figure 6. Comparison of HZ classifications in three binary star systems with a secondary’s semimajor axis of ab = 50 AU. Left: analytical estimates as discussed in
Section 6; right: reference results gained via numerical integration, with a resolution of Δap = 0.01 AU and Δeb = 0.01. The investigated stellar spectral configurations
are—top: G2–F0; middle: G2–G2; bottom: G2–M0. The PHZ is represented in black (blue in the online journal), the EHZ is dark gray (green in the online journal),
light gray (yellow in the online journal) indicates the AHZ, and white regions (red in the online journal) mean that the planet is outside of any defined HZ. The gray
striped area (purple in the online journal) denotes dynamically unstable parameter regions (HW99), whereas the striped extension highlights the onset of dynamical
chaos (PLD02); see Section 3. The borders of the classical HZ as defined in KWR93 are represented by the vertical solid and dashed lines.

(A color version of this figure is available in the online journal.)

simulated. The number of orbits classified as PHZs analytically
divided by the number of orbits classified as PHZs numerically
yields the percentage of PHZs, etc. Table 3 shows that the global
correspondence between both methods is quite convincing,
which can be considered a strong indicator that the behavior
of the respective HZs is modeled correctly.

Also, Figures 5–7 indicate that most of the significant devi-
ations between numerical and analytical results occur near the
border of orbital instability, especially for high mass and small
period ratios. This might be expected for AHZs and EHZs given

the approximations involved in determining the analytic esti-
mates. In the case of PHZs, however, semi-analytical results sug-
gest caution in using simulation outcomes as reference values.

8. RESULTS

Diverse trends in the behavior of the different types of HZs
can be seen in Figures 6 and 7. While the AHZ is almost inde-
pendent of the binary’s eccentricity and coincides well with the
KHZ by KWR93 for distant stellar companions, the PHZ and
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Figure 7. Same as Figure 6 but for binary configurations with semimajor axis of ab = 10 AU. A decrease in the binaries’ semimajor axes leads to more pronounced
differences between analytic estimates and numerical simulation results. This can be expected from the approximations used to calculate PHZ, EHZ, and AHZ, see
Section 6. Strong perturbations near the area of instability (gray striped; purple in the online journal) are modeled less accurately by the analytical estimates. The white
dash-dotted line corresponds to the semi-analytic estimates of the PHZ using numerically derived values for emax

p .

(A color version of this figure is available in the online journal.)

EHZ shrink with higher binary eccentricities. The fact that the
PHZ and EHZ contract around the center of the KHZ empha-
sizes the importance of the changes in the planet’s eccentricity,
as the secondary’s radiation alone could only account for one-
sided features toward the outer edge of the KHZ. The PHZs
seem most affected by strong perturbations and shrink to almost
half their size before the systems investigated become unstable.
Interestingly, in close S-Type II binaries with low eccentricity
the extent of the EHZs and AHZs can reach beyond the pre-
dicted values by KWR93. This can be seen in Figure 5, where
a zoom on the outer border of the KHZ in a G2–F0 configu-

ration is shown. Here, an extension toward the second star of
about 0.1 AU seems possible for the system’s AHZ if the bi-
nary’s eccentricity remains below the system’s stability limit of
eb � 0.2.

9. CONCLUSIONS

In this work, the impact of the second star on habitable zones
in S-Type binary star systems with different stellar constituents
has been investigated analytically as well as numerically. The
radiative contribution of the secondary on a terrestrial planet is
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negligible in all but S-Type II systems, if orbital stability of the
planet is required. The gravitational influence of the second star,
on the other hand, perturbs in the planet’s eccentricity, which
in turn can lead to substantial changes in planetary insolation.
Therefore, the secondary indeed has to be taken into account
when calculating the extent of habitable zones.

Our analytical estimates for planetary eccentricities in bi-
nary star systems introduced in Appendix B are an extension
to secular perturbation theory as used in, e.g., Heppenheimer
(1978). Together with methods presented in Section 6 suggest-
ing an analytic determination of habitable zones, they allow us
to paint a global picture of habitability in S-Type binary star
systems without having to rely on time consuming numerical
orbit integrations. Our approach is quite flexible in the sense
that different planetary atmospheric models and average stellar
luminosities can be integrated via adaption of the Seff values.
Thus, the formulae presented in this article grant access to cal-
culating habitable zones for a large set of possible binary–planet
configurations.

For the three stellar configurations investigated it could be
shown that the permanently habitable zone, i.e., the zone where
the planet never exceeds the classical insolation limits for habit-
ability shrinks considerably with the binary’s eccentricity. If one
considers average insolation values only, the extent of the aver-
age habitable zone coincides well with predictions by Kasting
et al. (1993) for wide binaries, whereas a significant exten-
sion toward the secondary is possible for close, eccentric binary
systems. The overall correspondence between numerical and
analytical results presented is excellent, as 93%–99% of all in-
vestigated orbits were classified identically. The computational
efforts required to calculate the true extent of permanently hab-
itable zones numerically, however, can be enormous and might
in fact be prohibitive in some cases. In contrast, the analytical
method presented offers immediate, reliable estimates.

A more careful approach than the one proposed in this work
is advisable when multi-planetary systems, systems close to the
stability limit, or resonant configurations are being investigated.
In a next step we plan to extend our classification methods to
mutually inclined systems.

The authors acknowledge the support of FWF projects
AS11608-N16 (E.P.-L., S.E.), P20216-N16 (S.E., M.G., and
E.P.-L.), and P22603-N16 (E.P.-L. and B.F.). S.E. acknowledges
the support of University of Vienna’s Forschungsstipendium
2012.

APPENDIX A

INSOLATION VARIANCE

The insolation variance a planet receives on an S-Type orbit
in a binary star system was defined in Section 6.3 as

σ 2 = 〈
S2

tot

〉
t
− 〈Stot〉2

t . (A1)

Considering the linearity of the expectation value operator, the
term 〈Stot〉2 can be decomposed in3

〈Stot〉2 = 〈S1〉2 + 2〈S1〉〈S2〉 + 〈S2〉2. (A2)

Averages for insolation values from both stars have been derived
in Section 6 already and are therefore not repeated here. Instead,

3 We drop the subscript t on the averages, as there is no danger of
misinterpretation.

we will develop expressions for the first term on the right-hand
side of Equation (A1):〈

S2
tot

〉 = 〈
S2

1

〉
+ 2〈S1S2〉 +

〈
S2

2

〉
. (A3)

Using equivalence radii r and R for the planet and the secondary,
respectively, which were introduced in Section 6, we get

〈
S2

1

〉 = 1

P

∫ P

0

L2
1

δ4(t)
dt = L2

1

2πr4

∫ 2π

0
dM = L2

1

r4
= L2

1

a4
p

(
1 − 〈

e2
p

〉)4

(A4)

〈S1S2〉 = 1

2π

∫ 2π

0

L1

r2

L2

R2 + r2 − Rr cos(φ)
dφ = L1L2

R2r2 − r4

(A5)

〈
S2

2

〉 = 1

2π

∫ 2π

0

(
L2

R2 + r2 − Rr cos(φ)

)2

dφ = −L2
2(R2 + r2)

(r2 − R2)3
,

(A6)

where δ(t) is again the time-dependent distance of the planet
to its host star, and ap and ep are the planetary semimajor
axis and eccentricity, respectively. Given the circular nature
of the orbital equivalence approximations we have applied, the
results are bound to underestimate the true variances. Since the
radiative contribution of the primary dominates the planetary
insolation for S-Type I systems and is at least as important as the
secondary’s insolation for the S-Type II systems investigated, we
will use stronger estimates for 〈S2

1 〉t than given in relation (A4):

〈
S2

1

〉 = 1

P

∫ P

0

L2
1

δ4(t)
dt = L2

1n

2πh

∫ 2π

0

1

δ2
df

= L2
1n

2πh

∫ 2π

0

(
1 + 〈ep〉 cos(f )

ap

(
1 − 〈

e2
p

〉)
)2

df

= L2
1

(
1 +

〈
e2
p

〉/
2
)

a4
p

(
1 − 〈

e2
p

〉)5/2
= L2

1

r4

(
1 − 〈

e2
p

〉)3/2

(
1 +

〈
e2
p

〉
2

)
. (A7)

As one can see, the difference between relations (A4) and (A7)
is negligible for small injected planetary eccentricities, but its
contribution becomes important if the injected eccentricities
grow. Combining expressions (A7), (A5), and (A6) with the
respective terms of 〈Stot〉2

t produces the desired variance:

σ 2 =

L2
1

r4

⎛
⎜⎝−1 + 3

〈
e2
p

〉
− 3

〈
e2
p

〉2
+

〈
e2
p

〉3
+

√
1 −

〈
e2
p

〉 ⎛
⎜⎝1 −

〈
e2
p

〉
2

−
〈
e2
p

〉2

2

⎞
⎟⎠

⎞
⎟⎠

− 2L1L2

r4 − r2R2

(
1 −

√
1 −

〈
e2
p

〉(
1 +

〈
e2
p

〉))
− 2L2

2r
2

(r2 − R2)3
. (A8)

APPENDIX B

MAXIMUM PLANETARY ECCENTRICITY

The maximum possible eccentricity a terrestrial planet’s orbit
can acquire in an S-Type setup is composed of

emax
p = esp

p + esec
p , (B1)

where e
sp
p denotes amplitude of short-period terms and esec

p the
planetary eccentricity’s secular amplitude. Using expressions
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derived in Georgakarakos (2003) via the Laplace–Runge–Lenz
vector, we can estimate the maximum short-period contributions
for the planet’s eccentricity by taking only terms including
the dominant frequencies into account. The amplitude of the
secular part of the planet’s eccentricity is given by 2C/(B − A)
(Georgakarakos 2003) resulting in the following expressions:

esp
p = α

(
15

64

β

X5/3

(
4 + 11e2

b

)
(
1 − e2

b

)5/2
+

11

4

1

X2

(1 + eb)3(
1 − e2

b

)3

+
3

4

1

X3

(1 + eb)4(6 + 11eb)(
1 − e2

b

)9/2

)
(B2)

esec
p = ebβ

(
5

4

α

X1/3

3 + 2e2
b(

1 − e2
b

)1/2 − 2

5
γX1/3(1 − e2

b

)1/2

+
2

5
X2/3

(
1 − e2

b

))−1

. (B3)

The mass parameters α, β, and γ are defined as

α = m2

M
β = m1 − mp

(m1 + mp)2/3M1/3
γ = m1mpM1/3

m2(m1 + mp)4/3
,

where mp is the planetary mass, and m1 and m2 are the stellar
masses of primary and secondary, respectively.

M = m1 + m2 + mp is the total mass of the system. Finally, X
denotes the secondary-to-planet period ratio:

X = Pb

Pp

=
(m1 + mp

M

)1/2
(

ab

ap

)3/2

.
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Chapter 3

Detectability of Earth-like
Planets in Circumstellar
Habitable Zones of Binary Star
Systems with Sun-like
Components

The analytic estimates developed in the previous article are used to generate expressions mirror-
ing the influence of the binary star on planetary transit probabilities, as well as radial velocity
and astrometric signal amplitudes. The resulting methods are then applied to α Centauri and
similar systems. Also, the effects of general relativity as well as the newly discovered planet
(Dumusque et al. 2012) on α Cen B’s HZ are investigated.
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ABSTRACT

Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood,
it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial
planet in the α Centauri system supports this notion. Due to the potentially strong gravitational interaction that
an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ),
especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us
to identify regions around the star permitting permanent habitability. While the discovery of α Cen Bb has shown
that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to
be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum
and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such
systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets’
detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended,
and permanent HZs around both stars of the α Centauri system.

Key words: astrobiology – celestial mechanics – methods: analytical – planet–star interactions

1. INTRODUCTION

The past decades have seen a great number of discoveries of
planets around stars other than our Sun (Schneider et al. 2011).
As some of these planets are of terrestrial nature, the hope of
identifying Earth analogs has lead to considerable advances
toward the detection of possibly habitable worlds (Borucki
2011; Ford et al. 2012). Even though quite frequent in the solar
neighborhood (Kiseleva-Eggleton & Eggleton 2001), not many
attempts have yet been made to specifically target binary stars in
this endeavor. Nonetheless, more than 60 planets have already
been found in and around such systems (Haghighipour 2010;
Doyle et al. 2011; Welsh et al. 2012; Roell et al. 2012; Orosz
et al. 2012a, 2012b; Dumusque et al. 2012). Although several
P-type (circumbinary) planets orbiting both stars of a close
binary have also been discovered (Doyle et al. 2011; Welsh
et al. 2012; Orosz et al. 2012a, 2012b), most planets are in the
so-called S-type (Rabl & Dvorak 1988) configuration where
the planet orbits only one of the binary’s stars. A prominent
example of an S-type system is α Centauri AB which hosts a
terrestrial planet around the fainter binary component, α Cen B
(Dumusque et al. 2012).

The reason for the general reluctance to include binary
systems in the search for terrestrial, habitable planets lies in
the assumption that the additional interactions with a massive
companion will make planets harder to find. That is primarily
because the gravitational interaction between the second star and
a planet may alter the planet’s orbit significantly and complicate
the task of interpreting the planetary signal. One aim of this work
is therefore to show that changes in the planet’s orbit can actually
enhance its detectability (see Section 5). Of course, the orbit of a
binary as well as its stellar parameters have to be well determined
in order to be able to identify signals from additional terrestrial
planets. Sensing the need for a better understanding of binary
star systems, efforts have been intensified to improve physical as
well as orbital data for nearby binaries (e.g., Torres et al. 2010)

and to evolve existing data analysis methodologies (Chauvin
et al. 2011; Haghighipour 2010; Pourbaix 2002; Pourbaix et al.
2002).

Understanding the complex interactions between a stellar
binary and a planet is essential if a system’s potential habitability
is to be evaluated. For instance, one of the main assumptions
of classical habitability, as introduced by Kasting et al. (1993),
is that the planet moves around its host star on a circular orbit.
This may not be a valid assumption for planets in a binary star
system where the gravitational perturbation of the secondary
can excite the eccentricity of the planet’s orbit (Marchal 1990;
Georgakarakos 2002; Eggl et al. 2012). Eggl et al. (2012) found
that except for S-type systems where the secondary star is much
more luminous than the planet’s host star, variations in planetary
orbit around the planet-hosting star are the main cause for
changes in insolation. Even though Eggl et al. (2012) gave an
analytic recipe for calculating the boundaries of the habitable
zones (HZs) in S-type binaries, it remains to be seen whether an
Earth-like planet in the HZ of a system with two Sun-like stars
will in fact be detectable.

In order to answer this question, we consider three techniques,
namely, radial velocity (RV), astrometry (AM), and transit
photometry (TP), and discuss whether the current observational
facilities are capable of detecting habitable planets in such
systems. We provide analytical formula for estimating the
strength of RV and AM signals for habitable, Earth-like planets,
and show that the planet–binary interaction can enhance the
chances for the detection of these objects.

The rest of this article will be structured as follows. In
Sections 2 and 3 analytic estimates of the maximum and root
mean square (rms) of the strength of an RV and an AM signal that
an Earth-like planet produces in an S-type binary configuration
will be derived. Section 4 will deal with the consequences of
such a setup for TP. We will then briefly recall the different
types of HZs for S-type binaries established in Eggl et al.
(2012), and use their methodology to identify similar habitable
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regions in the α Centauri system (Section 5). This system has
been chosen because first, it has inspired many studies on the
possibility of the formation and detection of habitable planets
around its stellar components (Forgan 2012; Guedes et al. 2008;
Thébault et al. 2009) and second, Dumusque et al. (2012)
have already discovered an Earth-sized planet in a short-period
orbit around its secondary star. Therefore, we will compare
our RV estimates to the actual signal of α Cen Bb, and study
its influence on an additional terrestrial planet presumed in α
Cen B’s HZ. Finally, in Section 6, the projected RV, AM, and
TP trace that terrestrial planets will leave in the HZ of the
α Centauri system are analyzed, and the results are discussed
within the context of the sensitivity of the current observational
facilities.

2. RADIAL VELOCITY

To estimate the RV signal that an Earth-like planet produces
in an S-type binary system, we will build upon the formalism
presented by Beaugé et al. (2007). We assume that the non-
planetary contributions to the host star’s RV signal (such as the
RV variation caused by the motion of the binary around its center
of gravity) are known and have been subtracted, leaving behind
only the residual signal due to the planet. The motion of the
planet around its host star then constitutes a perturbed two-body
problem, where the gravitational influence of the secondary star
is still playing a role and is mirrored in the forced variations of
the planet’s orbit.

In practice, the extraction of the planetary signal is all but a
trivial task. Even after subtraction of the binary’s barycentric and
proper motion, the residual will contain contributions from the
binary’s orbital uncertainties as well as from non-gravitational
sources which could be orders of magnitude larger than the
star’s reflex signal, such as the Rossiter–McLaughlin effect in
transiting systems, for example (Ohta et al. 2005). The discovery
of α Cen Bb showed, however, that a substantial reduction of
non-planetary RV interference is possible if the respective binary
star has been studied in sufficient detail.

The amplitude of the planet induced RV signal of the host
star, Vr, is given by

Vr = K [cos(f + ω) + e cos ω], (1)

where K is equal to

K = μ(κ np)1/3 sin i√
1 − e2

. (2)

In Equation (2), μ = m1/(m0 + m1) is the planet to star mass
ratio with m1 and m0 being the masses of the planet and host
star, respectively. The planet’s mean motion, np = 2π/Pp, is
given by np =

√
κ/a3 with κ = G(m0 + m1), and Pp and G

being the planet’s orbital period and gravitational constant. The
quantities a, e, i, f, and ω in Equations (1) and (2) denote the
planet’s semimajor axis, eccentricity, orbital inclination relative
to the plane of the sky, true anomaly, and argument of periastron,
respectively.

Our goal in this section is to identify the range of the
possible peak amplitudes that a terrestrial planet in an S-type
binary configuration can produce. We note that the gravitational
influence of the second star causes the planet’s orbital elements
to vary, thus inducing additional time-dependent changes in the
RV signal Vr (Lee & Peale 2003). While we know from secular
perturbation theory that a does not change significantly with
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Figure 1. Top: the radial velocity signal caused by an Earth-like planet orbiting
a Sun-like star with different eccentricities (Beaugé et al. 2007). The planet is
at 1 AU with ω = 45◦ when e �= 0. Bottom: the amplitude variations of the
primary’s radial velocity signal due to an Earth-like planet that is subject to
the gravitational perturbations of a second star. Both stars are Sun-like with
a separation of 20 AU and an orbital eccentricity of 0.5. The planet’s initial
orbit was circular with a semimajor axis of 1 AU. Our analytically estimated
maximum amplitude V max

r is also shown.

(A color version of this figure is available in the online journal.)

time for hierarchical systems such as the one under consideration
(Marchal 1990; Georgakarakos 2003), ω becomes a function of
time. We assume coplanar orbits of the planet and the binary
star which result in the planet’s inclination to the plane of the
sky (i) to remain constant. In contrast, the planetary eccentricity
will vary between zero and a maximum emax, where the latter
value can be expressed as a function of the system’s masses
and the binary’s orbital parameters (Eggl et al. 2012). This
is important, because the reflex RV signal (Vr) of a star can
be increased significantly by planetary orbital eccentricities
(Figure 1). Using Equation (1), we identify the global maximum
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of Vr at f = ω = 0, when e = emax. This leads to

V max
r = V circ

r

√
1 + emax

1 − emax
, (3)

where

V circ
r =

√
G m1 sin i√
a(m0 + m1)

. (4)

Equation (3) presents a fully analytic estimate of the expected
maximum RV signal that a terrestrial planet produces in an
S-type binary configuration.4

As an example for the influence of a double star on a planetary
RV signal, the induced variations in the RV of the planet’s host
star are presented in the bottom panel of Figure 1. The host star is
a constituent of a solar-type binary with a semimajor axis of 20
AU and an orbital eccentricity of 0.5. Changes in the amplitude
of Vr are due to variations in the planet’s eccentricity.

Since we do not know the state of the planet’s orbital
eccentricity at the time of observation, we consider a range
for the maximum possible amplitudes of its RV

V circ
r � Vr |f =ω=0 � V max

r . (5)

Although the range of the amplitude of the host star’s RV signal,
as given by Equation (5), can be used to identify the “best case”
detectability limits, the maximum values of the RV signal due to
the planet will be “snapshots” that are reached only during brief
moments. As a result, their values for assessing the precision
needed to trace fingerprints of an Earth-like planet are rather
limited. In such cases, expressions for the rms of the astrometric
signal are preferable.

Since rms values are by convention time-averaged, we sub-
stitute f by the mean anomaly M = npt in all corresponding
functions using the equation of the center expansion up to the
sixth order in planetary eccentricities (see Appendix A) and
average over M and ω. The vastly different rates of change of
these quantities (Ṁ � ω̇) make it possible to consider ω to
remain constant during one cycle of M, so that independent
averaging can be performed. In order to eliminate short-term
variations in the RV signal, we first average over M. Averag-
ing over ω as well might be desirable if for example the initial
state of ω is unknown, or if observations stretch beyond secular
evolution timescales of the planets argument of pericenter. We,
therefore, define two different types of rms evaluations for a
square-integrable function F:

〈〈F 〉〉M = 〈F 2〉1/2
M =

[
1

2π

∫ 2π

0
F 2(M)dM

]1/2

, (6)

and

〈〈F 〉〉M,ω = 1

2π

[∫ ∫ 2π

0
F 2(M,ω)dMdω

]1/2

. (7)

Using Equations (6) and (7), the rms values of Vr are then
given by

4 Larger signals are possible, if the terrestrial planet has a considerable initial
eccentricity after its formation and migration phase. Yet, due to the
eccentricity dampening in protoplanetary disks, this seems unlikely
(Paardekooper & Leinhardt 2010).

〈〈Vr〉〉M = 〈〈Vr〉〉M,ω

×
{

1 −
[ 〈e2〉M

4
+ O

(〈e2〉2
M

)]
cos(2ω)

}1/2

, (8)

with

〈〈Vr〉〉M,ω =
√
G m1| sin i|√

2a(m0 + m1)
= 1√

2
V circ

r . (9)

Here we have considered 〈a〉M = a since ȧ 	 0 (Marchal 1990;
Georgakarakos 2003). Also

∫ 2π

0
〈e2〉M cos(2ω) dω = 0,

as indicated in Appendix B. It is noteworthy that the averaging
over ω causes the rms value of the RV signal to become
independent of e so that its difference with the peak signal in
the circular case (V circ

r ) becomes a mere factor of 1/
√

2. Thanks
to their intricate relation to power spectra, rms values can also
be valuable for orbit fitting. The choice of singly or doubly
averaged rms relations for this purpose will depend on how
many planetary orbital periods are available in the data set. In
the case of α Cen Bb, there are order-of-magnitude differences
in the rates of change of the mean anomaly (Ṁ) and the argument
of pericenter (ω̇). It would therefore make more sense to assume
ω to be constant and add it as a variable in the fitting process. If
stronger perturbations or additional forces act on the planet, the
periods can be considerably shorter, so that the fully averaged
equations might come in handy.

3. ASTROMETRY

In order to derive the maximum and rms values for an
astrometric signal, we will use the framework presented in
Pourbaix (2002). We again assume that the non-planetary
contributions have been subtracted from the combined signal
of the host star and planet. The projected motion of the planet
on the astrometric plane is then given by

xE = A(cos E − e) + F
√

1 − e2 sin E,

yE = B(cos E − e) + G
√

1 − e2 sin E, (10)

where xE and yE are the Cartesian coordinates of the projected
orbit, e is the planet’s orbital eccentricity, E is the eccentric
anomaly, and A, B, F, and G are the modified Thiele–Innes
constants given by

A = a

d
(cos ω cos Ω − sin ω sin Ω cos i),

B = a

d
(cos ω sin Ω + sin ω cos Ω cos i),

F = −a

d
(sin ω cos Ω + cos ω sin Ω cos i),

G = −a

d
(sin ω sin Ω − cos ω cos Ω cos i). (11)

In these equations, d is the distance between the observer and
the observed system in units of the planetary semimajor axis a.
We can rewrite Equations (10) in terms of the true anomaly f as

xf = A

a
r cos f +

F

a
r sin f,

yf = B

a
r cos f +

G

a
r sin f. (12)
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In these equations, r = a(1 − e2)/(1 + e cos f ) represents the
planet’s radial distance to its host star. Because the motion of
the planet itself cannot be traced, we translate these equations
into the apparent motion of the host star by the application of
Newton’s third law. That is

x� = X − μxf ,

y� = Y − μyf . (13)

Here, X and Y are the projected coordinates of the center of mass
of the planet–star system, and μ denotes the planet–star mass
ratio as defined for Equation (2).

Assuming without the loss of generality that the barycenter of
the star–planet system coincides with the origin of the associated
coordinate system, the distance of the projected stellar orbit to
the coordinate center will be equal to

ρ2 = x2
� + y2

�

= μ2a2

d2

(1 − e2)2[1 − sin2 i sin2(f + ω)]

(1 + e cos f )2
. (14)

The right-hand side of Equation (14) is independent of Ω and
has a global maximum at f = π,ω = 0 when e = emax. This
translates into a maximum astrometric amplitude given by

ρmax = ρcirc (1 + emax), (15)

where
ρcirc = μa

d
. (16)

The planetary maximum AM signal will again lie between
ρcirc and ρmax. A remarkable feature of ρmax and ρcirc is their
independence of the system’s inclination i. This is visualized
in Figure 2. The same figure also shows the time evolution of
the AM signal due to an Earth-like planet orbiting α Cen B at a
distance of 1 AU.

The astrometric rms values are given by

〈〈ρ〉〉M = ρcirc

[
1 +

3〈e2〉M
2

+

(
−1

2
+

〈e2〉M
4

(5 cos[2ω] − 3)

)
sin2 i

]1/2

, (17)

and

〈〈ρ〉〉M,ω = ρcirc

2

[
3 +

9

2
〈e2〉M,ω

+

(
1 +

3

2
〈e2〉M,ω

)
cos(2i)

]1/2

. (18)

Details regarding the derivation of Equations (17) and (18) can
be found in Appendix B. In contrast to the doubly averaged
equations for the rms of an RV signal, Equation (18) shows a
dependence on the binary’s eccentricity. In cases where the
planetary inclination i coincides with the inclination of the
binary itself, analytic expressions for 〈e2〉M,ω are available
(Georgakarakos 2003, 2005).5

5 The analytic expressions given in these articles are also averaged over
initial phases, i.e., different relative starting positions of the planet and the
binary stars.

-5

-4

-3

-2

-1

 0

 1

 2

 3

-2 -1  0  1  2  3

 y
f [

μa
s]

 xf [μas]

ρmax

i=0o

i=45o

i=90o

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

 y
f [

μa
s]

 xf [μas]

0e+00

5e+04

1e+05

2e+05

2e+05

2e+05

3e+05

tim
e 

[d
]

Figure 2. Top: the maximum astrometric amplitude, ρmax =
μ (x2

f + y2
f )1/2|f =π,ω=0, due to an Earth-like planet orbiting its Sun-

like host star. The planet’s orbital elements are a = 1 AU, e = emax = 0.5,
ω = 0, Ω = 111◦. As shown here, the maximum distance from the origin of
the coordinate system is independent of the system’s inclination with respect
to the plane of the sky (i). Bottom: evolution of the astrometric signal (xf , yf )
caused by an Earth-like planet in a binary star system. The planet is orbiting α

Cen B at a distance of 1 AU. The evolution of the astrometric signal is shown
for 3750 periods of α Centauri AB. Since the system is coplanar, the changes
in orientation and shape of the projected ellipse are due to variations in the
planet’s eccentricity (e) and argument of pericenter (ω).

4. TRANSIT PHOTOMETRY

In TP, signal strength is equivalent to the relative depth of
the dint the planet produces in the stellar light curve during its
transit. Assuming that the star–planet configuration allows for
occultations, and excluding grazing transits, the fractional depth
of the photometric transit (TD) produced by an Earth-like planet
is simply given by the proportion of the luminous area of the
disk of the star that is covered by the planet as the planet moves
between the observer and the star. Ignoring limb darkening, that
means, TD 	 R2

p/R2
� where Rp is the radius of the planet and R�

is the stellar radius. The overall probability to observe a transit
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Table 1
Physical and Orbital Parameters of the α Centauri ABb System
(Kervella et al. 2003; Guedes et al. 2008; Pourbaix et al. 2002;

Dumusque et al. 2012)

α Centauri A B

Spectral classification G2V K1V
Mass (M
) 1.105 ± 0.007 0.934 ± 0.007
Teff (K) 5790 5260
Luminosity (L
) 1.519 0.500

Distance (pc) 1.339 ± 0.002
Period (Pb) (days) 29187 ± 4
ab (AU) 23.4 ± 0.03
eb 0.5179 ± 0.00076
ib (deg) 79.205 ± 0.0041
ωb (deg) 231.65 ± 0.076
Ωb (deg) 204.85 ± 0.084

α Centauri B b

Pp (days) 3.2357 ± 0.0008
ep 0 (fixed)
Minimum mass (mmin

p ) (MEarth) 1.13 ± 0.09

is given by (Borucki & Summers 1984)

pT = R�

rT

. (19)

In Equation (19), rT is the radial distance of the planet to
the star during the transit. For an eccentric planetary motion,
the planet–star distance during transit can be expressed as
rT 	 a(1−e2)/(1+e cos ω̄) (Ford et al. 2008), where ω̄ denotes
the argument of pericenter measured from the line of sight.6 In
analogy to Sections 2 and 3, the maximum and averaged transit
probability for a planet perturbed by the secondary star in a
planar configuration can be calculated by substituting for rT in
Equation (19) and averaging over ω̄. This will result in

pmax
T 	 R�

a(1 − emax)
, (20)

and

〈pT 〉ω̄ 	 R�

a(1 − 〈e2〉M,ω)
. (21)

Equations (20) and (21) indicate that the increase in the
eccentricity of the planet due to the perturbation of the secondary
increases the probability of transit. In deriving these equations,
we have ignored the occultation of the planet by the second star.
However, depending on the period ratio between the secondary
and the planet, such conjunctions are either scarce or short-lived.
Consequently, their contribution to the probability of witnessing
a planetary transit is negligibly small.

5. APPLICATION TO THE α CENTAURI SYSTEM

In this section, we will show that the previously derived an-
alytic expressions produce results that are in good agreement
with the current observations of α Cen Bb. We will also present
numerical evidence that the presence—or the absence—of an
additional terrestrial planet in the HZ of α Cen B cannot be
derived easily from the orbit evolution of α Cen Bb. Conse-
quently, we argue that an independent detection of additional

6 Note that this is different from the conventions used for RV and AM
measurements.

Table 2
A Comparison between the Predicted RV Values Using the Analytic

Expressions Derived in Section 2 and the Observed Values for
the Terrestrial Planet Discovered around α Cen B

(Dumusque et al. 2012).

Predicted Signal Observed Signal
(m s−1) (m s−1)

〈〈Vr 〉〉M,ω 0.365 ± 0.029
V circ

r 0.517 ± 0.041 0.51 ± 0.04
V max

r 0.519 ± 0.041

Notes. Coplanarity of the system was assumed. The formal uncertainties have
been derived assuming Gaussian error propagation of the uncertainties given
in Table 1. The maximum predicted planetary eccentricity for α Cen Bb is
emax = 0.003. When taking general relativity into account, however, the orbit
of α Cen Bb will remain practically circular (see Figure 6).

terrestrial companions might be difficult, but more promising.
For this purpose, we will determine the HZ of α Cen B, as well
as the RV, AM, and TP signatures of an Earth-like planet or-
biting in the HZ of α Cen B. Since there is no a priori reason
why the brighter component of α Centauri could not be hosting
a terrestrial planet as well, we perform a similar analysis for α
Cen A. We will also study the behavior of Equations (1)–(21)
for a broad range of binary eccentricities.

5.1. α Centauri’s Terrestrial Planet

The planet discovered around α Cen B offers a perfect
opportunity to compare the RV amplitude predictions derived in
Section 2 with actual measurements. The planet’s known orbital
parameters are given in Table 1. In Table 2, we present the
analytic estimates of Section 2 applied to the α Centauri ABb
system. Assuming the system to be coplanar (i 	 79.◦2), the
predicted RV amplitude for circular planetary motion (V circ

r ) is
very close to the observed RV amplitude. This is not surprising,
since the planetary parameters were derived from an RV signal
using the same methodology in reverse. While still well within
measurement uncertainties, the deviation of the maximum RV
amplitude (V max

r ) from the observed value is larger than that
of V circ

r . On the one hand, this might indicate that the planet is
currently in an orbital evolution phase where its eccentricity is
almost zero. On the other hand, the planet may be too close
to its host star for our model to predict V max

r correctly. In
fact, we show in Section 5.3 that the latter explanation is more
likely, since the influence of general relativity (GR) cannot be
neglected in this case. Estimates based on Newtonian physics
exaggerate the actual eccentricity of α Cen Bb. Its orbit remains
practically circular despite the interaction with the binary star
(see Section 5.3 for a detailed discussion). This justifies the
assumption of a circular planetary orbit made by Dumusque
et al. (2012).

Since we are especially interested in additional habitable
planets, however, it is worthwhile to ask whether predictions
on the orbital evolution of α Cen Bb can be used to exclude the
presence of other gravitationally active bodies in the system. In
other words, could an Earth-like planet still orbit in the HZ of
α Cen B or would the accompanying distortions of the orbit of
α Cen Bb be significant enough to detect them immediately?
Before we try to answer these questions, we need to briefly recall
some important aspects regarding HZs in binary star systems.

5.2. Classification of HZs

Combining the classical definition of an HZ (Kasting et al.
1993) with the dynamical properties of a planet-hosting double

5
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Figure 3. Habitability maps showing the maximum amplitudes and rms of the RV signal of the planet-hosting stars for the α Centauri system. The quantity ap is the
semimajor axis of the terrestrial planet and eb is the binary eccentricity. The color blue shows the PHZ, the EHZ is green, yellow indicates the AHZ, and red means
that the planet is outside of any defined HZ. The purple area denotes dynamical instability. The horizontal line in each panel denotes the actual eccentricity of the α

Centauri binary. As shown here, V max
r reacts strongly to enhanced binary eccentricities (top row, curved, solid lines) whereas in contrast, 〈〈Vr 〉〉M,ω is independent of

the binary’s eccentricity (bottom row, straight, vertical lines). The straight, vertical lines in the top row correspond to RV amplitudes for circular orbits (V circ
r ). See

Section 5.4 for details.

star system, Eggl et al. (2012) have shown that one can
distinguish three types of HZ in an S-type binary system.

The permanently habitable zone (PHZ) where a planet al-
ways stays within the insolation limits (SI , SO) as defined
by Kasting et al. (1993) and Underwood et al. (2003). In
other words, despite the changes in its orbit, the planet
never leaves the classical HZ. The total insolation the
planet receives will vary between the inner (SI) and outer
(SO) effective radiation limits as SI � Stot � SO where,
for a given stellar spectral type, SI and SO are in units of
solar constant (1360 W m−2).

The extended habitable zone (EHZ) where, in contrast to the
PHZ, parts of the planetary orbit may lie outside the HZ
due to the planet’s high eccentricity, for instance. Yet,
the binary–planet configuration is still considered to be
habitable when most of the planet’s orbit remains inside
the boundaries of the HZ. In this case, 〈Stot〉t +σ � SI and
〈Stot〉t − σ � SO where 〈Stot〉t denotes the time-averaged
effective insolation from both stars and σ 2 is the effective
insolation variance.

The averaged habitable zone (AHZ). Following the argu-
ment of Williams & Pollard (2002) that planetary eccen-
tricities up to e < 0.7 may not be prohibitive for hab-

itability as long as the atmosphere can act as a buffer,
the AHZ is defined as encompassing all configurations
which support the planet’s time-averaged effective insola-
tion to be within the limits of the classical HZ. Therefore,
SI � 〈Stot〉t � SO .

Analytic expressions for the maximum insolation, the average
insolation (〈Stot〉), and insolation variance that a planet encoun-
ters in a binary system have been derived in Eggl et al. (2012).
We refer the reader to that article for more details.

Figures 3 and 4 show the application of the proposed
habitability classification scheme to the α Centauri system.
In these figures, blue denotes PHZs, green shows EHZs, and
yellow corresponds to AHZs. The red areas in Figures 3 and 4
are uninhabitable, and purple stands for dynamically unstable
regions. Table 1 shows the physical properties of the system.
We used the formulae by Underwood et al. (2003) to calculate
SI and SO for the given effective temperatures of α Cen A
and B. In general, these formulae allow for extending the
analytic estimates for HZs, as given by Eggl et al. (2012),
to main-sequence stars with different spectral types. Runaway
greenhouse and maximum greenhouse insolation limits were
used to determine the inner and outer boundaries of HZs,
respectively.
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Figure 4. Habitability maps showing the maximum amplitudes and rms of the astrometric signals for the α Centauri system. The color coding is similar to Figure 3.
The vertical dashed lines in the top panels represent regions with similar values of ρcirc. The curved lines in these panels show regions with similar ρmax amplitudes.
In the bottom panels, the vertical lines represent areas of equal rms amplitudes, 〈〈ρ〉〉M,ω . One can see that planetary orbits with dynamically enhanced eccentricities
can have smaller semimajor axes and still produce similarly high astrometric amplitudes as circular orbits which are more distant from the host star.

Table 3
Detectability of an Earth-like Planet in the HZs of the α Centauri System.

α Cen ac Inner AHZ Inner EHZ Inner PHZ Outer PHZ Outer EHZ Outer AHZ
(AU)

1.03 1.07 1.12 1.81 1.94 2.06 HZ border (AU)

8.97 8.83 8.66 7.14 6.97 6.82 V max
r (cm s−1)

A 2.76 5.89 5.78 5.65 4.44 4.30 4.17 〈〈Vr 〉〉M,ω

2.28 2.37 2.49 4.20 4.52 4.84 ρmax
(μas)

1.53 1.59 1.66 2.69 2.88 3.06 〈〈ρ〉〉M,ω

0.62 0.64 0.65 1.13 1.19 1.23 HZ border (AU)

12.21 12.09 11.94 9.37 9.19 9.04 V max
r (cm s−1)

B 2.51 8.25 8.16 8.05 6.12 5.98 5.86 〈〈Vr 〉〉M,ω

1.58 1.62 1.66 2.97 3.12 3.26 ρmax
(μas)

1.09 1.11 1.14 1.98 2.08 2.16 〈〈ρ〉〉M,ω

Notes. Each row shows the maximum amplitude of the radial velocity signal as well as the astrometric fingerprints of a terrestrial planet in the α Centauri HZs.
The critical planetary semimajor axis (ac) indicates the onset of dynamical instability (Holman & Wiegert 1999). Computations using chaos indicators are in good
agreement with those stability limits (Pilat-Lohinger & Dvorak 2002). Analytic expressions for calculating the boundary values of planetary semimajor axes in the
system’s HZs are given in Eggl et al. (2012).

As shown in Figures 3 and 4, the locations of the HZs
and the detectability of habitable planets in those regions
depend strongly on the eccentricity of the binary (eb). The
actual eccentricity of the α Centauri system is denoted by a

horizontal line at eb = 0.5179. The values for the borders
of the different HZs using α Centauri’s actual eccentricity are
listed in Table 3. As shown here, both stars permit dynamical
stability for habitable, Earth-like planets. Due to the difference
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Figure 5. Graphs of the maximum (emax
p ) and rms (〈e2

p〉1/2
M,ω) values of the planetary eccentricity for different values of the planet semimajor axis (ap) and the binary

eccentricity (eb) for α Cen A (left) and α Cen B (right). The meshed region (purple online) denotes orbital instability. The horizontal line indicates the actual eccentricity
of the α Centauri binary.

(A color version of this figure is available in the online journal.)

in stellar luminosities, the HZs around α Cen A are larger and
farther away from the host star compared to α Cen B. Since the
binary’s mass ratio is close to 0.45, the gravitational influence
of α Cen B is more pronounced on the PHZ of α Cen A. This
is a consequence of the larger injected planetary eccentricities
(ep) as can be seen from the top row of Figure 5. The relatively
larger gravitational influence of α Cen B onto the HZ of α
Cen A is also mirrored in the fact that the region of dynamical
instability (meshed, purple online) reaches toward lower binary
eccentricities. The change in the range and configuration of HZs
with the change in planetary semimajor axis and eccentricity of
the binary is pronounced. A clear shrinking trend for PHZ and
EHZ can be observed for high values of the binary’s eccentricity.
While as shown by Eggl et al. (2012), the AHZ in general
expands slightly when the eccentricity is enhanced, Figures 3
and 4 show that in the α Centauri system, this HZ depends
only weakly on eb, making it the closest approximation to the
classical HZ as defined by Kasting et al. (1993). Comparing
these results with the existing studies on the HZs for α Cen B
such as Guedes et al. (2008) and Forgan (2012), one can see that
the values of the inner boundaries of the HZs around α Cen B
as given in Figures 3 and 4 coincide well with the previous
studies. Forgan (2012) even found a similar shrinking trend
with higher planetary eccentricity. Yet, Forgan (2012) did not
take the actual coupling between the planet’s eccentricity and the
binary’s orbit into account. The limits for the outer boundaries
of HZ in our model are different from the ones in Forgan (2012)

since different climatic assumptions were made. In this work,
we used insolation limits for atmospheric collapse assuming a
maximum greenhouse atmosphere (Kasting et al. 1993) whereas
Forgan (2012) focused on emergence from snowball states.

5.3. Additional Terrestrial Planets in α Centauri’s HZs

While the classification of HZs presented in the previous
section is globally applicable to binary star systems, the analytic
estimates to calculate their extent (Eggl et al. 2012) are only
strictly valid for three-body systems, e.g., the binary star and a
planet. Additional perturbers will influence the shape and size
of the HZs. It is thus necessary to investigate which effect the
already discovered planet around α Cen B would have on an
additional terrestrial planet in α Cen B’s HZ.

If the mutual perturbations were large, the HZ boundaries
given in Table 3 would have to be adapted, but α Cen Bb’s
orbital evolution could also contain clues on the presence–or
the absence—of an additional planet. Should the interaction
between the inner planet and an additional terrestrial body in
the HZ be small, then the HZ boundaries would hold. However,
a detection of the habitable planet via its influence on α Cen
Bb’s orbit would become difficult.

In Figure 6, results of numerical investigations on the coupled
orbital evolution of an additional terrestrial planet and α Cen Bb
are presented. The top row of Figure 6 shows the eccentricity
evolution of α Cen Bb altered by an additional Earth-like planet
at the inner and outer edge of α Cen B’s AHZ. The corresponding
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Figure 6. Additional terrestrial planet in α Cen B’s HZ affects the orbit of α Cen Bb (top row) and vice versa (bottom row). In the top left panel, the numerically
computed evolution of the eccentricity of α Cen Bb in the Newtonian three-body problem (3BP) consisting of the binary α Cen AB and the planet α Cen Bb is
compared with different four-body problem scenarios (4BP). In one scenario, an additional Earth-sized body orbits α Cen B at the inner edge of its AHZ (see Table 3).
In the other scenario, the terrestrial planet is assumed to be at the outer edge of α Cen B’s AHZ. The analytic estimate for the maximum eccentricity (emax) in the
3BP is presented as well (horizontal line). The top right panel shows the exact same setup, only with general relativity (GR) taken into account. The orbit of α Cen
Bb becomes practically circular. While the influence of an additional planet at the outer edge of the HZ is barely noticeable in the eccentricity evolution of α Cen Bb,
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respectively.

(A color version of this figure is available in the online journal.)

reference curve (dashed, blue online) represents α Cen Bb’s
eccentricity influenced only by the binary α Cen AB. The top
left panel of Figure 6 shows the results in Newtonian three
(3BP) and four (4BP) body problems. The top right panel depicts
similar analysis with GR7 included. The difference between the
two approaches is quite pronounced, as GR clearly prevents the
secular rise in Cen Bb’s eccentricity predicted in the classical
setup (Blaes et al. 2002; Fabrycky & Tremaine 2007). Thus,
the orbit of α Cen Bb stays circular, even when tidal forces are
neglected. The variations in semimajor axis (Δa) for α Cen Bb
are not shown, because they remain below 10−8 AU for all cases.

7 GR was introduced by numerically solving the Einstein Infeld Hoffman
equations (Einstein et al. 1938) for the respective systems.

A possible method to search for additional companions is to
measure variations in α Cen Bb’s orbital period. Yet, the small
Δa values make this approach difficult, since ΔPp ∝ P

1/3
p Δa.

Disentangling the effects of GR and perturbations due to other
habitable planets on α Cen Bb’s period would require precisions
several orders of magnitude greater than currently available.
The top right panel in Figure 6 shows that the perturbations an
additional planet at the inner edge of α Cen B’s AHZ causes in α
Cen Bb’s eccentricity are, in principle, distinguishable from the
nominal signal. Unfortunately, it is also clear from this graph that
neither the required precision nor the observational timescales
necessary to identify the presence of an additional Earth-sized
companion via observations of α Cen Bb’s eccentricity seem
obtainable in the near future. For habitable planets at the outer
edge of α Cen B’s AHZ the chances for indirect detection
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seem even worse, as their influence on α Cen Bb’s orbit is
negligible.

In order to confirm that the interaction between α Cen Bb
and Earth-like planets in the HZ is small, as well as to further
study the influence of the GR on the dynamics of the system, we
examined the orbital evolution of a fictitious habitable planet in
that region. The results are shown in the bottom row of Figure 6.
The left panel depicts the eccentricity evolution of additional
terrestrial planets positioned at the inner and outer edges of
α Cen B’s AHZ. The secular variations in the eccentricity
(bottom left panel) and semimajor axis (bottom right panel)
of the habitable planet were computed numerically, taking the
influence of the binary α Cen AB, the planet α Cen Bb, as well
as GR into account. When comparing the analytic estimates of
emax with the evolution of the habitable planet’s eccentricity in
the full system, it is evident that neither GR nor α Cen Bb alter
the results for planets in α Cen B’s HZ significantly. Also, the
deviation in the habitable planet’s semimajor axis due to GR
and α Cen Bb (Δap) remains below 0.1% and 0.5% for planets
at the inner and outer edge of α Cen B’s AHZ, respectively.

We conclude that the interaction between additional terrestrial
planets in α Cen B’s HZ and α Cen Bb is indeed small. Thus,
our estimates for the HZs of the α Centauri system remain valid.
The existence of additional terrestrial planets on the other hand
cannot be determined easily from observing the orbital evolution
of α Cen Bb.

The presented results are, strictly speaking, only valid for a
coplanar configuration, i.e., the binary and both planets are in the
same orbital plane. Mutually inclined configurations can exhibit
much more involved dynamics such as Kozai resonant behavior
(see, e.g., Correia et al. 2011). A detailed study of such effects
lies beyond the scope of this work. Nevertheless, the arguments
presented in this section suggest that the search for an additional
coplanar planet in the HZ around α Cen B will most likely have
to be performed without relying on observations of α Cen Bb. We
will therefore investigate whether habitable planets can actually
be detected independently in Sun-like binary star configurations
using current observational facilities.

5.4. Detectability through Radial Velocity and Astrometry

We apply our methodology, as derived in Sections 2 and 3,
to a fictitious terrestrial planet in the HZ of binary systems
similar to α Centauri AB but with a broadened range of binary
eccentricities. In addition to the habitability maps discussed in
Section 5.2, Figures 3 and 4 show the results regarding the peak
and rms strength of the RV and astrometric signals. Here, the
aim is to illustrate how the different types of HZs presented in
Section 5.2, as well as the maximum and rms signal strengths
defined in Section 2 vary with the binary’s eccentricity (eb)
and planetary semimajor axis (ap). The left column of Figure 3
shows maximum (top) and rms (bottom) values of the signal
strengths for the more massive binary component, in this case
similar to α Cen A. Results for the less massive component akin
to α Cen B are shown in the right column.

The dashed vertical lines in the top rows of Figures 3
and 4 represent the sections of the parameter space with
similar V circ

r and ρcirc values, respectively. Since V circ
r and

ρcirc are independent of the planetary (and consequently the
binary’s) eccentricity, the different values of these quantities
vary linearly with the planet’s semimajor axis. In contrast, V max

r

and ρmax, represented by the solid contour lines, depend on
the maximum eccentricity of the planet (emax

p ) and therefore
change with the binary’s eccentricity (eb). Since for circular

binary configurations only small eccentricities are induced into
the planet’s orbit, V max

r and V circ
r almost coincide. The same

holds true for ρmax and ρcirc in this case. Yet, V max
r and

ρmax grow with the binary’s eccentricity. The corresponding
contour lines indicate that for high binary eccentricities even
small planetary semimajor axes can produce similar AM peak
signal strengths. Similarly, planets with larger distances to their
host stars can still cause similar RV amplitudes if the binary’s
eccentricity is sufficiently large. If a fixed detection limit is set,
e.g., Vr = 9.5 m/s, planets with semimajor axes up to 1.5 AU
could still be found around stars similar to α Cen A, assuming a
binary eccentricity of eb = 0.7. To produce a similarly high RV
amplitude, a circular planet has to orbit its host star at roughly
0.8 AU (Figure 3). In other words, high binary eccentricities
lead to excited planetary eccentricities which in turn increase the
peak signal strengths suggesting that binary–planet interactions
can actually improve the chances for detecting terrestrial planets.
Naturally, if the planet’s eccentricity happens to be close to zero
at the time of observation, this advantage is nullified.

The bottom row of Figures 3 and 4 show the same setup
with rms signal strengths 〈〈Vr〉〉M,ω and 〈〈ρ〉〉M,ω, respectively.
While 〈〈Vr〉〉M,ω is independent of the binary’s eccentricity, it
is evident from Equation (17) that 〈〈ρ〉〉M,ω depends weakly on
eb since 〈e2

p〉1/2 	 0.1 for the cases considered and therefore
〈e2

p〉 � 1 (see Figure 5, bottom). The slight curvature of the
contour lines representing the rms signal in Figure 4 indicates
this behavior. A summary of RV and AM signal strengths for
an Earth-like planet at the boundaries of α Centauri’s HZ is
presented in Table 3.

We illustrated in this section that the dynamical interactions
between a terrestrial planet and the secondary star can produce
large peak amplitudes which may enhance the detectability of
the planet with the RV and AM methods considerably. The rms
values of the planet’s AM and RV signals, on the other hand,
remain almost unaffected by the gravitational influence of the
secondary star.

5.5. Transit Photometry

To assess the detectability of a terrestrial planet in the
HZ of α Centauri AB (and similar binaries) through TP, we
calculated the relative transit depths that an Earth-like planet
would produce during its transit. If such a system hosted a
transiting terrestrial planet, TD values would range around
55 ppm for α Cen A, and 115 ppm for α Cen B. Such
transit depths are detectable by NASA’s Kepler telescope for
instance—stellar and instrumental sources included—as the
spacecraft’s median noise level amounts to ≈29 ppm (Gilliland
et al. 2011). Therefore, Earth-like planets could in theory
be found around α Centauri stars. However, Kepler was not
designed to observe stars with apparent magnitudes between 0
and 3 such as those of α Centauri. The Transiting Exoplanets
Survey Satellite mission, for instance, will aim for TP of brighter
stars (Ricker et al. 2010). Nevertheless, the example of Kepler
suggests that the detection of transiting habitable planets in
S-type systems would be possible using current technology. In
fact, very much similar to the cases discussed in the previous
section, the orbit forcing that an Earth-like planet experiences
in a binary star system may enhance its possibility of detection
via TP (Kane & von Braun 2008; Kane et al. 2012; Borkovits
et al. 2003; Schneider 1994; also see Figure 7). Assuming α
Centauri was a transiting system,8 a comparison of the transit

8 ib = 90◦ ± θplanet/2 (Borucki & Summers 1984).
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Figure 7. Graphs of the ratio of transit probabilities (pT /pT c) with pT ≡
pT |e=emax and pT c ≡ pT |e=0, in a binary similar to the α Centauri system.
The graphs show the transit probabilities in terms of the planet’s argument
of pericenter (ω̄), as measured from the line of sight for component A (top)
and component B (bottom). The curved full lines correspond to the planet
starting at the inner border of AHZ and dashed-curved line represents planets
that started at the outer edge, for each star (see Table 3). The full and dashed
straight lines are the corresponding ratios of the averaged transit probabilities
(〈pT 〉/〈pT c〉) evaluated using Equation (21). Compared to the transit probability
ratios pT /pT c , the ratio of averages 〈pT 〉/〈pT c〉 shows only a weak dependence
on the planet’s initial position in the HZ.

(A color version of this figure is available in the online journal.)

probabilities of actual planetary orbits to circular orbits shows
that an 18% increase in pT values seems possible for terrestrial
planets at the outer edge of α Cen A’s AHZ (Figure 7). Given the
right orbital configuration, it may be more likely to identify a
transiting habitable terrestrial planet around a stellar component
of a binary than around a single star assuming similar initial
planetary eccentricities.

The increase in transit probability for planets in double star
systems is less dramatic when the equations are averaged over
all possible configurations of the argument of pericenter as in
Equation (21). Averaged transit probabilities are represented

by the straight lines in Figure 7. As 〈pT 〉/〈pT |e=0〉 > 1,
for terrestrial planets’ orbits with e > 0, the chance for
transit is in general higher for Earth-like planets in binary
stars than for terrestrial planets in circular orbits around single
stars.

6. DISCUSSION

Comparing the quantitative estimates of RV, AM, and TP
signals, TP seems to be the best choice for finding Earth-like
planets in the HZs of a coplanar S-type binary configuration
with Sun-like components. Even for a system as near as α
Centauri, AM peak signals only measure μas. Unfortunately,
neither ESO’s very long baseline interferometry with PRIMA
nor ESA’s Gaia mission will be able to deliver such precision in
the near future (Quirrenbach et al. 2011). Gaia’s aim to provide
μas AM will most likely not be achieved until the end of the
mission (Hestroffer et al. 2010). Also, from an astrometric point
of view, Earth-like planets would be easier to find around α
Cen A than α Cen B. That is because the HZ around star A is
more distant from this star. Naturally, the opposite is true for RV
detections. Due to the difference in the stellar masses, α Cen B
offers a better chance of finding a terrestrial planet there using
RV techniques. The recent discovery of an Earth-sized planet
around this star supports our results. The observed planetary RV
signal was reproduced excellently by our analytic estimates for
circular planetary orbits.

Our prediction of RV amplitudes for terrestrial planets around
α Cen B are also in good agreement with those presented
by Guedes et al. (2008). The four terrestrial planets used in
the RV model by these authors produce almost exactly four
times the predicted rms amplitude given in Figure 3. Guedes
et al. (2008) claim that Earth-like planets in the α Centauri are
detectable even for signal-to-noise ratios of single observations
below 0.1. However, obtaining sufficient data to reconstruct the
planetary signal requires a great amount of dedicated observing
time (approximately five years in their example). Validating
this statement, it took Dumusque et al. (2012) about four years
of acquired data to detect α Cen Bb. The data published by
Dumusque et al. (2012) also allow a glimpse on the current
performance of the HARPS spectrograph revealing a precision
around 50–80 cm s−1. Given the fact that the RV signal of a
habitable planet around α Cen B would be still half an order of
magnitude smaller (Figure 3), considerably more observation
time would be required to identify habitable companions.
HIRES measurements are currently yielding precisions around
1 m s−1. Identifying RV signals of habitable worlds around
α Cen B therefore seems even more unlikely when using
HIRES. The previous examples show that some development
of observational capacities is still necessary to achieve the RV
resolution required for discovering habitable planets in the α
Centauri system.

The success of NASA’s Kepler space telescope in identifying
countless Earth-sized planetary candidates (e.g., Borucki 2011)
that require follow-up observations might provide the necessary
momentum to develop instruments capable of resolving RV
signals in the range of cm s−1. Focusing on less massive binaries
would have the advantage of having greatly enhanced RV signals
as the HZs will be situated closer to the planet’s host stars. How
far this might simplify the task of finding habitable worlds will
be the topic of further investigations.

In regard to TP, both Kepler and CoRoT telescopes have
proven that it is possible to find terrestrial planets around Sun-
like stars (e.g., Léger et al. 2009; Borucki et al. 2012). The
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combination of proven technology and the presented argument
that the dynamical environment in binary star systems will
enhance transit probabilities makes photometry currently the
most promising method for finding Earth-like planets in the
HZs of S-type binary star systems.

7. SUMMARY

In this work, we provided an analytic framework to estimate
the detectability of a terrestrial planet using RV, AM, as well
as TP in coplanar S-type binary configurations. We have shown
that the gravitational interactions between the stars of a binary
and a terrestrial planet can improve the chances for the planet’s
detection. The induced changes in the planet’s eccentricity
enhance not only RV and AM peak amplitudes, but also the
probability to witness a planetary transit. Next to the presented
“best case” estimates, we offered rms/averaged expressions
which are deemed to be more suited to determine the long-
term influence of the second star on planetary fingerprints in
S-type systems. In contrast to peak amplitudes, the rms of a
planet’s AM signal is only modified slightly by the additional
gravitational interaction with the second star. A similar behavior
can be seen in planetary transit probabilities. The rms values
of RV signals are altogether independent of the secondary’s
gravitational influence, assuming that the system is nearly
coplanar.

After defining the permanent, extended, and average habitable
zones for both stellar components of the α Centauri system,
we investigated the possible interaction between the newly
discovered α Cen Bb and additional terrestrial companions in
α Cen B’s HZ. Our results suggest that α Cen Bb is on an
orbit with very low eccentricity which would not be influenced
significantly by habitable, terrestrial companions. Conversely,
α Cen Bb’s presence would also not affect Earth-like planets in
the HZ of α Cen B.

We estimated the maximum and rms values of the RV as well
as AM signal for a terrestrial planet in the α Centauri HZs. The
peak and rms amplitudes of the RV signal ranged between 4 and
12 cm s−1. Astrometric signals were estimated to lie between 1
and 5 μas. Given the current observational facilities, enormous
amounts of observing time would be required to achieve such
precisions. If the α Centauri was a transiting system, however, a
habitable planet could be detectable using current technologies.
It seems that the detection of Earth-like planets in circumstellar
HZs of binaries with Sun-like components via astrometry and
RV is still somewhat beyond our grasp, leaving photometry to
be the only current option in this respect.
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APPENDIX A

EQUATION OF THE CENTER

The equation of the center providing a direct relation between
the true anomaly f and the mean anomaly M is presented up to
the sixth order in eccentricity e:

f = M +

(
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)
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(
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APPENDIX B

AVERAGING OF ρ2

The averaging integrations over M and ω in Equations (17)
and (18) were carried out as in the following:

1

4π2
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}
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The integration over M is trivial. Using the partial integration
technique to integrate over ω, we obtain
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]
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Here we have used the fact that 〈e2〉M,ω = (1/2π )
∫ 2π

0 〈e2〉Mdω
does no longer depend on ω. From the definition of averaging
given by Equation (6), we have

〈〈ρ〉〉M,ω = μa
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[
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A similar procedure has been applied to derive Equation (8).
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Chapter 4

Circumstellar Habitable Zones of
Binary Star Systems in the Solar
Neighborhood

Binary stars close to the Solar System are being investigated in order to determine their capa-
bility to host habitable planets. Hereby, the analytic HZ classifications presented in chapter 2
as well as the analytic estimates from chapter 3 regarding the observability of such planets are
applied to real systems selected from the Washington Double Star Catalog.
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ABSTRACT
Binary and multiple systems constitute more than half of the total stellar population in the
solar neighbourhood. Their frequent occurrence as well as the fact that more than 70 planets
have already been discovered in such configurations – most notably the telluric companion of
α Cen B – make them interesting targets in the search for habitable worlds. Recent studies have
shown that despite the variations in gravitational and radiative environment, there are indeed
circumstellar regions where planets can stay within habitable insolation limits on secular
dynamical time-scales. In this paper, we provide habitable zones for 19 near S-type binary
systems from the Hipparcos and Washington Double Star catalogue (WDS) catalogues with
semimajor axes between 1 and 100 au. Hereby, we accounted for the combined dynamical
and radiative influence of the second star on the Earth-like planet. Out of the 19 systems
presented, 17 offer dynamically stable habitable zones around at least one component. The 17
potentially habitable systems contain 5 F, 3 G, 7 K and 16 M class stars. As their proximity to
the Solar system (d < 31 pc) makes the selected binary stars exquisite targets for observational
campaigns, we offer estimates on radial velocity, astrometric and transit signatures produced
by habitable Earth-like planets in eccentric circumstellar orbits.

Key words: astrobiology – binaries: general.

1 IN T RO D U C T I O N

The discovery and confirmation of terrestrial bodies orbiting other
stars (e.g. Léger et al. 2009; Borucki 2011; Borucki et al. 2012;
Dumusque et al. 2012) have generated enormous public as well as
scientific interest. It has shown that after a mere two decades of
exoplanetary research finding potentially habitable worlds around
other stars seems to be almost within our grasp. Close-by stars and
stellar systems are thereby premium targets, as they tend to offer
reasonable signal-to-noise ratio (S/N) values for photometry and ra-
dial velocity (RV) as well as comparatively large astrometric (AM)
amplitudes (Beaugé, Ferraz-Mello & Michtchenko 2007; Guedes
et al. 2008; Malbet et al. 2012; Eggl, Haghighipour & Pilat-Lohinger
2012a). As more than half of the stars in the solar neighbourhood
are members of binary or multiple systems (Kiseleva-Eggleton &
Eggleton 2001), it is not surprising that more than 70 planets in or
around binary stars have been discovered (Schneider et al. 2011)
despite the current observational focus on single-star systems. Even
though NASA’s Kepler mission has been quite successful in find-
ing circumbinary planets (e.g. Doyle et al. 2011; Orosz et al. 2012;

� E-mail: siegfried.eggl@univie.ac.at

Welsh et al. 2012), we will focus on binary-star systems with poten-
tial circumstellar habitable zones (HZs) in this study. In fact, most
of the planets discovered in double stars are in these so-called S-
type configurations (Rabl & Dvorak 1988; Roell et al. 2012), where
the planet orbits one star only. The telluric companion of α Cen B
is such an example (Dumusque et al. 2012).

An interesting question in this regard is doubtlessly: can S-type
binary stars harbour habitable worlds? Already Huang (1960) and
Harrington (1977) and more recently Forgan (2012) investigated
the effects such configurations have on the insolation hypothetical
planets would receive. Eggl et al. (2012b) (in the following referred
to as EG12) were able to derive analytic expressions to find HZs
in binary-star systems unifying dynamical and radiative balance
models for S-type binary star–planet systems. While the exact man-
ner in which planets form in tight binary-star systems is still hotly
debated in astrophysical literature – see, for instance, Müller &
Kley (2012), Batygin, Morbidelli & Tsiganis (2011), Paardekooper
& Leinhardt (2010), Thebault (2011) and references therein, the
discovery of α Cen B b has made the existence of terrestrial
planets in S-type binary-star systems an observational fact. Opin-
ions still differ on whether it is theoretically possible that planets in
α Centauri’s HZs can form on stable orbits. Even though classical
N-body simulations with best case accretion scenarios seem to be

C© 2012 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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able to produce terrestrial planets near the HZs of the α Centauri
system (Guedes et al. 2008; Quintana & Lissauer 2010), Thébault,
Marzari & Scholl (2009) and Thébault, Marzari & Scholl (2008)
concluded that even when gas drag is included the encounter veloc-
ities between kilometre-sized planetesimals would lead to erosive
collisions, thus making constant accretion unlikely. However, in
their model they did not include a self-consistent evolution of the
gas disc, nor did they consider planetesimal self-gravitation or re-
accretion of collisional debris. Paardekooper & Leinhardt (2010)
used a self-consistent disc model with planetesimals. They were
able produced accretion friendly scenarios when the collision fre-
quency was sufficiently high to prevent orbital dephasing. Other
possible solutions to the problem of high encounter velocities range
from including planetesimal and embryo migration (Payne, Wyatt
& Thébault 2009) over mild inclination of planetesimal discs with
respect to the binary’s orbit (Xie, Zhou & Ge 2010) to more realistic
radiative modelling of the system’s gaseous disc (Müller & Kley
2012).

Eggl et al. (2012a) show that even if additional Earth-like planets
in α Centauri do exist, it is not an easy task to find them given
current observational limitations in RV resolution. The RV signal
semi-amplitude of α Cen B b was near the current edge of feasibility
with δ RV � 50 cm s−1, whereas accuracies lower than 10 cm s−1

would be necessary to discover telluric planets in α Cen B’s HZs.
Astrometry is not much more helpful in this case, as the necessary
AM amplitudes to detect habitable worlds in α Centauri will only
be available near the end of the Gaia mission’s lifetime (Hestroffer
et al. 2010).

In this study we tackle the question whether there are S-type
systems in the solar neighbourhood that might make for easier
targets. For this purpose we select 19 S-type binary systems from
‘The Washington Visual Double Star Catalog’ (WDC) (Mason et al.
2012) with well-determined stellar parameters that lie within a dis-
tance of 31 pc from the Solar system, and calculate HZs for each
stellar component using the analytic method presented in EG12.
We provide estimates on the RV and AM root mean square (rms)
signal strengths expected for an Earth-like planet orbiting at the
borders of a system’s HZs. Furthermore, we present likely transit
depths (TDs) for potentially transiting habitable planets in co-planar
S-type double-star systems.

This paper is structured as follows. First, we will discuss the
selection criteria for the 19 systems investigated (Section 2). After
a brief summary of the main factors that determine habitability for
terrestrial planets in binary-star systems (Section 3), the issue of
dynamical stability of planets in such configurations is addressed in
Section 4. Our results – tables with HZ borders and signal strength
estimates – are presented and discussed in Sections 5 and 6. Current
problems in modelling tidal-locking of planets in binary systems
are mentioned in Section 7. A summary (Section 8) concludes this
study.

2 SELECTION OF B I NA RY-S TA R SYSTEMS

We preselected all detached binaries with semimajor axes 1 < ab <

100 au using the stellar orbital parameters provided in the WDC,
in order to find suitable S-type systems in the solar neighbourhood
where Earth-like planets in HZs could be detectable. Hereby, we
only considered systems within a distance of d < 31 pc from our So-
lar system as determined by the Hipparcos mission (van Leeuwen
2007). Together with the prerequisite that the binaries’ orbital ele-
ments had to be available, the aforementioned restrictions reduced
the number of admissible double-star systems to 313. Furthermore,

only double-star configurations with known spectral types of both
components were used. Peculiar spectra that might have been clas-
sified incorrectly by Hipparcos such as HIP 17544 and 73695 were
also excluded, narrowing the set of candidate systems from 313 to
35. The ultimate selection criterion consisted of calculating the bi-
naries’ periods using bolometric luminosity derived masses together
with the semimajor axes given in WDS and comparing them to the
observed binary periods. The stellar bolometric luminosities and
masses required for this purpose were derived as follows: with the
distances available through Hipparcos data the systems’ absolute
visual magnitudes could be calculated. In order to assess the bolo-
metric luminosities of the binary sample, we performed bolometric
corrections (BCs) of the absolute visual magnitudes using the poly-
nomial fits by Flower (1996). The required effective temperatures
were estimated via spectral type and luminosity using the ATLAS9
catalogue of stellar model atmospheres (Castelli & Kurucz 2004).
We then calculated the binaries’ periods using the masses derived
via the mass–luminosity relations given in Salaris & Cassisi (2005).
Only those systems whose derived periods did not deviate more than
11 per cent from the observed periods were selected for the final
sample. Stellar and orbital parameters for the final set of 19 S-type
binary systems are presented in Table 1.

In the next section we will briefly discuss the main points on how
to determine HZs for these S-type binary systems.

3 H A B I TA B I L I T Y O F E A RT H - L I K E PL A N E T S
IN S-TYPE BINA RY-STA R SYSTEMS

The most pronounced difference between determining classical HZs
and HZs for Earth-like planets in binary-star systems lies in the as-
sumption that planetary orbits are basically circular. In fact, the well-
known borders defined by Kasting, Whitmire & Reynolds (1993)
are built on the premises that planetary insolation will change only
on stellar evolutionary time-scales. Thus, the planet is thought to
remain more or less at the same distance from its host star on a
circular orbit. This assumption is implicitly made in almost all re-
cent works (e.g. Kaltenegger & Sasselov 2011; Pierrehumbert &
Gaidos 2011; Kane & Gelino 2012). However, in three-body sys-
tems, such as the planet–binary-star configurations we are investi-
gating, gravitational interactions will alter the planetary orbit.

Perturbation theory of hierarchical triples predicts that the orbit
of the inner pair – in our case host star and planet – will experi-
ence significant alterations in its eccentricity, whereas its semimajor
axis remains almost constant (Marchal 1990; Georgakarakos 2002,
2003). For nearly equiplanar systems, the influence of planetary
inclination and ascending node to the overall dynamics can be con-
sidered small; they will be neglected in what follows. Even though
there may be short-periodic variations, some important changes in
a planet’s orbit happen also on secular time-scales. Secular periods
are usually much larger than the planet’s orbital period. However,
they are a lot smaller than stellar evolutionary time-scales for de-
tached binary systems with semimajor axes ab < 100 au. It is thus
necessary to include the effects of changing planetary orbits in our
estimates regarding HZs within binary-star environments. In their
work, EG12 confirmed that variations in the planet’s orbit are even
more important for changes in its insolation than the additional ra-
diation form the second star! The only exceptions to this rule are
systems where the second star is much more luminous than the
planet’s host-star (LB/LA > 4, where binary component A is the
planet’s host star in this case). Therefore, a planet’s eccentricity is
a dominating factor in determining habitability. Yet, how eccentric
can a planetary orbit become, in order to still allow for habitability?
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Table 1. Orbital and stellar parameters of the 19 investigated binary-star systems. The values of parameters printed in bold
letters are taken from Mason et al. (2012) and van Leeuwen (2007); the others were derived as described in Section 2. The
binary’s eccentricity and semimajor axis are denoted by ab and eb; I is the system’s inclination to the plane of the sky. A
binary components’ masses are symbolized by MA and MB, their respective luminosities by LA and LB and their effective
temperatures are denoted by TeffA and TeffB . Stellar classifications are given in the columns headed ‘class A’ and ‘class B’.

HIP ID ab eb I d MA MB LA LB TeffA TeffB Class A Class B

14669 9.0 0.14 96.8 15.8 0.56 0.39 0.096 0.026 3580 3370 M2 M4
30920 4.3 0.37 51.8 4.1 0.22 0.08 0.007 0.001 3370 3145 M4V M5.5V
31711 42.7 0.34 93.9 21.3 1.03 0.57 1.137 0.109 5860 4060 G2V K7Ve
44248 10.4 0.15 131.4 16.1 1.44 0.89 4.285 0.638 6740 5250 F3V K0V
45343 97.2 0.28 21.0 5.8 0.52 0.51 0.073 0.067 3850 3850 M0V M0V
51986 9.9 0.75 129.1 26.8 1.88 1.29 12.535 2.790 6710 6740 F4IV F3
58001 11.7 0.30 51.0 25.5 2.94 0.79 65.255 0.397 9520 4780 A0Ve K2V
64241 11.8 0.50 90.1 17.8 1.30 1.12 2.887 1.553 6440 6360 F5V F6V
64797 89.2 0.12 93.4 11.1 0.73 0.52 0.277 0.072 5015 3715 K1V M1V
66492 46.9 0.61 36.3 22.0 0.59 0.48 0.121 0.054 3782 3647 M0.5 M1.5
67422 32.7 0.45 47.4 13.4 0.72 0.65 0.273 0.174 4560 4205 K4V K6V
84425 7.7 0.49 115.2 30.6 1.23 0.86 2.267 0.556 6280 5860 F7V G2V
84720 91.6 0.78 35.6 8.8 0.79 0.50 0.393 0.062 5570 3850 G8V M0V
87895 2.4 0.41 68.0 28.2 1.19 0.90 2.031 0.648 5860 4780 G2V K2V
93825 32.7 0.32 149.6 17.3 1.27 1.25 2.570 2.432 6200 6200 F8V F8V

101916 15.7 0.80 107.0 30.1 1.61 0.37 6.794 0.023 5745 4420 G1IV K2IV
106972 5.3 0.29 69.4 24.5 0.57 0.43 0.105 0.033 3370 3370 M2 M4
114922 6.7 0.44 117.1 30.8 0.49 0.52 0.059 0.073 3715 3580 M1 M2
116132 42.5 0.20 123.5 6.2 0.38 0.20 0.025 0.006 3370 3305 M4 M5

(au) (◦) (pc) (M�) (M�) (L�) (L�) (K) (K)

Williams & Pollard (2002) concluded that an Earth-like atmo-
sphere together with surface oceans can buffer the harsh changes
between high insolation at periastron and long cold phases near
apoastron up to eccentricities of ep ≈ 0.7, as long as the average
insolation is comparable with the current insolation of the Earth.
Although planetary eccentricities of such magnitude are usually not
reached in close S-type set-ups (EG12), the region where the planet
remains within classical insolation boundaries is still strongly im-
pacted. In order to distinguish orbital zones that are only habitable
‘on average’ and zones where the planet will never exceed classical
insolation limits, EG12 introduced three types of HZs for binary-
star systems.

Permanently habitable zone (PHZ). The PHZ is the region where
a planet stays within habitable insolation limits for all times, despite
the changes its orbit experiences due to gravitational interactions
with the secondary. For this study, we have chosen the classical
runaway/maximum greenhouse insolation limits (KHZ) as defined
by Kasting et al. (1993) and Underwood, Jones & Sleep (2003).

Extended habitable zone (EHZ). The binary–planet configura-
tion is still considered to be habitable when most of its orbit remains
within the HZ boundaries. This is true if the average received inso-
lation plus one standard deviation does not put the planet beyond
KHZ insolation limits.

Averaged habitable zone (AHZ). Even an elevated planetary ec-
centricity (e < 0.7) may not be prohibitive for habitability since
the atmosphere acts as a buffer (Williams & Pollard 2002), if the
time-averaged insolation stays within habitable limits. The AHZ
represents such regions.

For details on the definition and calculation of PHZ, EHZ and
AHZ we refer the reader to EG12. We use the interpolation formulae
given in Underwood et al. (2003) to calculate effective insolation
values for the selected stellar types. After a brief discussion concern-
ing aspects of dynamical stability, the application of the proposed

classification scheme to the 19 selected binary-star systems will be
presented in the next section.

4 DYNAMI CAL STABI LI TY O F
CIRCUMSTELLAR PLANETS IN BI NA RY
STARS

As was briefly mentioned during the introduction, there are many
open questions regarding the formation of planets in double-star
environments (Thebault 2011). However, once formed a planet can
survive in the dynamically stable region around one of the binary
components – a fact proven by observed planets in S-type binary
configurations (Dumusque et al. 2012; Giuppone et al. 2012; Roell
et al. 2012). If the necessary dynamical prerequisites are fulfilled,
even both stars can harbour planets. Generalized dynamical investi-
gations such as Holman & Wiegert (1999), Pilat-Lohinger & Dvorak
(2002), semi-analytical (Pichardo, Sparke & Aguilar 2005) or ana-
lytical approaches (Szebehely & McKenzie 1977; Eggleton 1983)
can be used to determine regions where a test-planet can remain
on a stable orbit on secular dynamical time-scales. As the set-up
used in this work consists of a planar binary – Earth configuration,
the restricted three-body approach used in the articles mentioned
above can be considered a reasonable approximation. We will ap-
ply the numerical fit by Holman & Wiegert (1999) and results by
Pilat-Lohinger & Dvorak (2002) to find critical semimajor axis for
circumstellar motion.

5 R ESULTS

The different HZs discussed in Section 3 are presented for a fictitious
Earth-like planet in each of the selected double-star systems (Fig. 1).
The region of instability (striped) is also marked. The left-hand
graph of Fig. 1 represents HZs around the primary (S-type A), and
the right-hand graph shows HZs around the secondary (S-type B)
(Whitmire et al. 1998). Black (red online) denotes regions which are
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Figure 1. Habitable zones of 19 S-type binary-star systems in the solar neighbourhood are shown. The light grey regions (blue online) denote zones of
permanent habitability (PHZ), medium grey (green online) extended (EHZ) and dark grey (yellow online) averaged habitable zones (AHZ), see Section 3.
Black (red online) are regions where the planet either receives too much or too little radiation to keep atmospheric temperatures stable. The striped areas are
zones of dynamical instability (Holman & Wiegert 1999). Left: HZs around the system’s primary star are shown (S-type A); right: habitability of regions
around the secondary is investigated (S-type B) (Whitmire et al. 1998). The dashed ‘I’ symbols indicate the inner, and the full symbols indicate the outer border
of the classical HZ as defined by Kasting et al. (1993) and Underwood et al. (2003). In most cases, the AHZ and the classical HZ coincide well as was pointed
out in Eggl et al. (2012b), except for the systems HIP 58001 and 101916 where the considerable luminosity of the brighter companions shifts the HZs of the
S-type B configurations to larger planetary semimajor axes. Evidently, 17 out of the 19 investigated systems allow for dynamically stable terrestrial planets
within HZs around at least one of its binary’s components.

non-habitable due to excessive or insufficient insolation, dark grey
(yellow online), medium grey (green online) and light grey (blue
online) represent the AHZ, EHZ and PHZ, respectively. Dashed and
full ‘I’ symbols give the inner and outer borders of the classical HZ
as defined by Kasting et al. (1993) and Underwood et al. (2003)
(KHZ). EG12 found a good correspondence between the KHZ and
the AHZ, which is also mirrored in the results at hand. Exceptions
are the systems HIP 58001 and 101916 where the more luminous
companion shifts the HZs of the less luminous one considerably.
Out of the 19 selected systems, 17 permit Earth-like planets in HZs
on dynamically stable orbits around at least one stellar component.
In total, the 17 habitable systems feature 16 M, 7 K, 3 G and 5 F
class stars. Even if the all F and M class stars were to be excluded
from the list of hosts for HZ – either because of their comparatively
short lifespans (Kasting et al. 1993) or tidal and radiative effects (see
Section 7) – more than 26 per cent of the stars in this sample would
be capable of sustaining habitable planets on secular dynamical
time-scales. If the stars’ mass loss via stellar winds is negligible,
and no cataclysmic events occur (Veras & Tout 2012), habitability
might be given even for stellar evolutionary time-scales.

A detailed listing of HZ borders as well as expected RV and
AM signal strengths produced by a terrestrial planet in the selected
systems is presented in Tables 2–4. Maximum and rms1 signal
strengths have been calculated following Eggl et al. (2012a). The
corresponding equations are repeated in Appendix A for the reader’s
convenience. Comparing AM and RV signal strengths one can see
that – current observational equipment assumed – RV seems to stand
a better chance to find Earth-like planets in HZs of nearby double
stars. With the discovery of α Cen B b the currently feasible RV
resolution is approximately 50 cm s−1. For the detection of habitable
planets in the α Centauri system, however, semi-amplitudes around
10 cm s−1 would be required (Eggl et al. 2012a). Possible candidate
systems such as HIP 14699, 30920, 106972, 114922 or 116132
would offer better conditions for finding habitable Earth analogues
via RV than α Centauri does.

1 In this case rms values have not only been time averaged, but they were
also averaged over the planet’s argument of pericentre.
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Table 2. Critical semimajor axis [acrit (au), column 3] for orbital stability and borders for the HZs [(au), columns 5–9] as measured for the respective
host stars A&B are given for 19 binary-star systems in the solar neighbourhood. Additionally, rms radial velocity [RV (cm s−1)] and astrometric [AM
(µas)] signatures of terrestrial planets have been evaluated at the HZ borders. The conditions required for a planet to be within the averaged (AHZ),
extended (EHZ) and permanent (PHZ) habitable zones are discussed in Section 3. Dashed fields (–) represent cases where a given HZ border lies
beyond the critical semimajor axis acrit. Planets there would be on dynamically unstable orbits.

HIP ID Comp. acrit Inner AHZ Inner EHZ Inner PHZ Outer PHZ Outer EHZ Outer AHZ

0.306 0.308 0.310 0.590 0.596 0.604 HZ
22.02 21.95 21.88 16.04 15.96 15.86 Max RV

A (M2) 2.287 15.39 15.34 15.29 11.09 11.03 10.96 rms RV
0.107 0.108 0.109 0.209 0.211 0.214 Max AM
0.076 0.076 0.077 0.146 0.147 0.149 rms AM

14669
0.162 0.162 0.162 0.316 0.318 0.320 HZ
36.00 36.00 36.00 25.94 25.86 25.78 Max RV

B (M4) 1.806 25.30 25.30 25.30 18.12 18.06 18.00 rms RV
0.081 0.081 0.081 0.159 0.160 0.161 Max AM
0.057 0.057 0.057 0.112 0.112 0.113 rms AM

0.086 0.086 0.088 0.162 0.166 0.168 HZ
52.37 52.37 51.80 38.90 38.47 38.26 Max RV

A (M4V) 0.865 36.24 36.24 35.83 26.43 26.11 25.95 rms RV
0.291 0.291 0.298 0.557 0.571 0.578 Max AM
0.237 0.237 0.242 0.445 0.456 0.462 rms AM

30920
0.027 0.027 0.027 0.051 0.051 0.051 HZ

157.79 157.79 157.79 115.07 115.07 115.07 Max RV
B (M5.5V) 0.470 110.84 110.84 110.84 80.36 80.36 80.36 rms RV

0.255 0.255 0.255 0.487 0.487 0.487 Max AM
0.210 0.210 0.210 0.400 0.400 0.400 rms AM

0.886 0.894 0.902 1.694 1.724 1.756 HZ
9.63 9.59 9.55 7.09 7.03 6.97 Max RV

A (G2V) 8.351 6.68 6.65 6.62 4.83 4.79 4.74 rms RV
0.125 0.126 0.127 0.243 0.247 0.252 Max AM
0.087 0.088 0.088 0.166 0.169 0.172 rms AM

31711
0.316 0.318 0.320 0.614 0.618 0.622 HZ
21.36 21.29 21.23 15.42 15.37 15.32 Max RV

B (K7Ve) 5.848 15.00 14.95 14.90 10.76 10.72 10.69 rms RV
0.079 0.080 0.080 0.155 0.156 0.157 Max AM
0.056 0.056 0.056 0.108 0.109 0.109 rms AM

1.581 1.619 1.697 2.686 2.686 2.686 HZ
4.80 4.75 4.66 – – – Max RV

A (F3V) 2.686 3.19 3.15 3.08 – – – rms RV
0.221 0.226 0.238 – – – Max AM
0.176 0.181 0.189 – – – rms AM

44248
0.710 0.718 0.734 1.340 1.418 1.456 HZ
8.76 8.71 8.62 6.59 6.44 6.38 Max RV

B (K0V) 1.967 6.03 6.00 5.93 4.39 4.27 4.21 rms RV
0.154 0.156 0.160 0.300 0.320 0.329 Max AM
0.127 0.129 0.132 0.241 0.255 0.262 rms AM

0.263 0.263 0.263 0.515 0.515 0.517 HZ
8.79 8.79 8.79 6.30 6.30 6.28 Max RV

A (M0V) 17.932 6.20 6.20 6.20 4.43 4.43 4.43 rms RV
0.265 0.265 0.265 0.520 0.520 0.522 Max AM
0.256 0.256 0.256 0.501 0.501 0.503 rms AM

45343
0.252 0.252 0.254 0.494 0.496 0.496 HZ
9.08 9.08 9.04 6.50 6.48 6.48 Max RV

B (M0V) 17.698 6.41 6.41 6.38 4.58 4.57 4.57 rms RV
0.259 0.259 0.261 0.509 0.511 0.511 Max AM
0.250 0.250 0.252 0.491 0.493 0.493 rms AM

A (F4IV) 0.545 – – – – – – HZ
51986

B (F3) 0.448 – – – – – – HZ

A (A0Ve) 2.828 – – – – – – HZ
58001

0.639 0.653 0.775 1.263 1.331 1.331 HZ
10.31 10.21 9.46 7.85 – – Max RV

B (K2V) 1.331 6.98 6.91 6.34 4.97 – – rms RV
0.100 0.102 0.123 0.210 – – Max AM
0.080 0.082 0.097 0.159 – – rms AM
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Table 3. Continuation of Table 2. Radial velocity (RV) amplitudes are given in cm s−1, and astrometric (AM) amplitudes are
given in µas. The critical planetary semimajor axis acrit as well as the HZ borders are given in au.

HIP ID Comp. acrit Inner AHZ Inner EHZ Inner PHZ Outer PHZ Outer EHZ Outer AHZ

1.354 1.465 1.465 1.465 1.465 1.465 HZ
8.19 – – – – – Max RV

A (F5V) 1.465 4.82 – – – – – rms RV
0.209 – – – – – Max AM
0.126 – – – – – rms AM

64241
1.002 1.056 1.226 1.339 1.339 1.339 HZ
9.76 9.58 9.15 – – – Max RV

B (F6V) 1.339 6.05 5.90 5.47 – – – rms RV
0.173 0.184 0.219 – – – Max AM
0.109 0.115 0.133 – – – rms AM

0.472 0.472 0.474 0.924 0.926 0.926 HZ
15.48 15.48 15.45 11.08 11.07 11.07 Max RV

A (K1V) 23.212 10.93 10.93 10.91 7.81 7.80 7.80 rms RV
0.179 0.179 0.180 0.351 0.352 0.352 Max AM
0.126 0.126 0.127 0.248 0.248 0.248 rms AM

64797
0.263 0.263 0.263 0.517 0.517 0.517 HZ
24.51 24.51 24.51 17.50 17.50 17.50 Max RV

B (M1V) 18.564 17.32 17.32 17.32 12.35 12.35 12.35 rms RV
0.140 0.140 0.140 0.275 0.275 0.275 Max AM
0.099 0.099 0.099 0.194 0.194 0.194 rms AM

0.339 0.341 0.345 0.645 0.655 0.667 HZ
12.20 12.17 12.10 8.99 8.92 8.85 Max RV

A (M0.5) 4.289 8.48 8.46 8.41 6.15 6.10 6.05 rms RV
0.081 0.081 0.082 0.156 0.158 0.161 Max AM
0.072 0.072 0.073 0.137 0.139 0.142 rms AM

66492
0.227 0.229 0.231 0.439 0.443 0.449 HZ
16.40 16.33 16.26 11.92 11.87 11.80 Max RV

B (M1.5) 3.835 11.46 11.41 11.36 8.24 8.21 8.15 rms RV
0.066 0.066 0.067 0.129 0.130 0.132 Max AM
0.059 0.060 0.060 0.114 0.115 0.117 rms AM

0.486 0.490 0.496 0.916 0.934 0.952 HZ
11.47 11.43 11.36 8.51 8.43 8.36 Max RV

A (K4V) 4.503 7.95 7.92 7.87 5.79 5.74 5.68 rms RV
0.155 0.157 0.159 0.298 0.304 0.310 Max AM
0.130 0.131 0.133 0.245 0.250 0.255 rms AM

64722
0.398 0.400 0.404 0.754 0.766 0.780 HZ
13.37 13.34 13.27 9.85 9.78 9.70 Max RV

B (K6V) 4.212 9.30 9.27 9.23 6.75 6.70 6.64 rms RV
0.142 0.143 0.144 0.273 0.277 0.282 Max AM
0.119 0.120 0.121 0.226 0.229 0.234 rms AM

A (F7V) 1.024 – – – – – – HZ
84425

0.635 0.667 0.797 0.835 0.835 0.835 HZ
12.54 12.32 11.67 – – – Max RV

B (G2V) 0.835 7.82 7.63 6.98 – – – rms RV
0.082 0.087 0.107 – – – Max AM
0.056 0.059 0.071 – – – rms AM

0.535 0.543 0.551 1.003 1.029 1.057 HZ
8.34 8.29 8.23 6.25 6.17 6.10 Max RV

A (G8V) 4.275 5.73 5.69 5.65 4.19 4.13 4.08 rms RV
0.240 0.244 0.248 0.461 0.474 0.487 Max AM
0.213 0.216 0.219 0.399 0.410 0.421 rms AM

84720
0.242 0.242 0.244 0.462 0.468 0.474 HZ
15.40 15.40 15.33 11.27 11.20 11.14 Max RV

B (M0V) 3.364 10.75 10.75 10.70 7.78 7.73 7.68 rms RV
0.170 0.170 0.172 0.329 0.333 0.337 Max AM
0.153 0.153 0.154 0.292 0.296 0.300 rms AM

A (G2V) 0.371 – – – – – – HZ
87895

B (K2V) 0.312 – – – – – – HZ
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Table 4. Continuation of Table 2. Radial velocity (RV) amplitudes are given in cm s−1, and astrometric (AM) amplitudes are
given in µas. The critical planetary semimajor axis acrit as well as the HZ borders are given in (au).

HIP ID Comp. acrit Inner AHZ Inner EHZ Inner PHZ Outer PHZ Outer EHZ Outer AHZ

1.289 1.311 1.337 2.421 2.505 2.581 HZ
3.71 3.68 3.65 2.79 2.74 2.71 Max RV

A (F8V) 5.623 2.54 2.51 2.49 1.85 1.82 1.79 rms RV
0.185 0.189 0.193 0.358 0.371 0.383 Max AM
0.168 0.170 0.174 0.315 0.326 0.336 rms AM

93825
1.254 1.274 1.300 2.358 2.438 2.512 HZ
3.79 3.76 3.72 2.84 2.80 2.76 Max RV

B (F8V) 5.575 2.59 2.57 2.54 1.89 1.86 1.83 rms RV
0.183 0.186 0.190 0.353 0.365 0.377 Max AM
0.165 0.168 0.171 0.311 0.321 0.331 rms AM

A (G1IV) 0.754 – – – – – – HZ
101916

0.155 0.159 0.233 0.261 0.381 0.381 HZ
38.16 37.73 31.89 30.40 – – Max RV

B (K2IV) 0.381 25.63 25.31 20.91 19.75 – – rms RV
0.045 0.046 0.069 0.078 – – Max AM
0.031 0.032 0.047 0.053 – – rms AM

0.322 0.330 0.338 0.588 0.616 0.640 HZ
20.73 20.50 20.28 15.94 15.65 15.41 Max RV

A (M2) 1.034 13.99 13.82 13.65 10.35 10.12 9.93 rms RV
0.074 0.076 0.077 0.139 0.147 0.153 Max AM
0.053 0.054 0.055 0.096 0.101 0.105 rms AM

106972
0.179 0.183 0.185 0.339 0.351 0.359 HZ
31.41 31.08 30.92 23.35 22.99 22.76 Max RV

B (M4) 0.865 21.63 21.40 21.28 15.73 15.46 15.28 rms RV
0.053 0.055 0.055 0.103 0.107 0.110 Max AM
0.039 0.040 0.040 0.074 0.077 0.078 rms AM

0.239 0.245 0.251 0.435 0.455 0.473 HZ
24.59 24.31 24.05 18.89 18.53 18.24 Max RV

A (M1) 0.897 16.60 16.40 16.20 12.30 12.03 11.80 rms RV
0.050 0.051 0.053 0.094 0.099 0.103 Max AM
0.037 0.038 0.039 0.068 0.071 0.074 rms AM

114922
0.266 0.272 0.282 0.480 0.504 0.528 HZ
22.83 22.60 22.23 17.67 17.32 17.00 Max RV

B (M2) 0.924 15.33 15.16 14.89 11.41 11.14 10.88 rms RV
0.053 0.055 0.057 0.100 0.105 0.111 Max AM
0.039 0.040 0.042 0.071 0.075 0.078 rms AM

0.158 0.158 0.158 0.310 0.310 0.312 HZ
30.77 30.77 30.77 22.02 22.02 21.95 Max RV

A (M4) 10.619 21.72 21.72 21.72 15.51 15.51 15.46 rms RV
0.204 0.204 0.204 0.401 0.401 0.404 Max AM
0.165 0.165 0.165 0.323 0.323 0.325 rms AM

116132
0.076 0.076 0.076 0.152 0.152 0.152 HZ
60.97 60.97 60.97 43.14 43.14 43.14 Max RV

B (M5) 7.091 43.07 43.07 43.07 30.45 30.45 30.45 rms RV
0.184 0.184 0.184 0.369 0.369 0.369 Max AM
0.149 0.149 0.149 0.298 0.298 0.298 rms AM

As nine out of the 17 potentially habitable systems feature M
stars, it is worth mentioning that determining the effective inso-
lation a terrestrial planet receives might not be enough to claim
habitability. In fact, Lammer et al. (2011) are convinced that the
potentially elevated level of X-ray and extreme ultraviolet (EUV)
radiation in M stars might lead to a different atmospheric evolution
of an Earth-like planet in an M-star’s HZ, thus preventing the ex-
istence of life as we know it. Ultimately, direct observation of the
interaction between stellar and planetary atmospheres will be nec-
essary to determine to which degree planets can remain habitable
in the vicinity of M-type stars. The proposed transit spectroscopy
mission ECHO (Tinetti et al. 2012) can be a step in this direction,
although currently only super-Earths down to 1.5 r⊕ around K–F

stars are planned to be observed. With RV signal amplitudes of
≈ 5−−12 cm s−1 for potentially habitable planets in systems con-
taining Sun-like G stars (HIP 31711 and 84425), our estimates are
comparable to those for α Centauri presented in Eggl et al. (2012a)
and Guedes et al. (2008). Detecting planets around Sun-like stars
would therefore require a considerable amount of dedicated obser-
vation time (Guedes et al. 2008; Dumusque et al. 2012).

The AM amplitudes determined for the 19 systems at hand are
well below 1µas. This will put the systems in consideration even
beyond the reach of ESA’s Gaia mission (Hestroffer et al. 2010).
However, recently Malbet et al. (2012) proposed the Nearby Earth
Astrometric Telescope (NEAT) which would be capable of resolv-
ing AM motion down to 0.05µas at a 1σ accuracy level. This
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Table 5. Transit depths (TDs), visual brightness (V, WDS) and
planetary period (Pp) ranges are given for potentially transiting
planets in the HZs of those selected binary systems with I ≈
90◦.

HIP ID Comp. V (mag) TD (ppm) Pp (D)

A 10.32 128 270.80–380.35
14669

B 12.5 369 235.67–331.14

A 6.32 78 338.38–476.35
31711

B 9.84 187 270.91–380.10

A 4.85 44 372.23
64241

B 5.53 79 346.09–382.82

A 6.66 171 294.45–412.52
64797

B 9.5 198 260.18–364.81

instrument would be able to identify habitable planets in most of
the presented binary-star systems. Such a mission would indeed be
valuable, since AM does not only favour planet detection in binary
configurations with Sun-like components – their HZs are further
away from their host stars thus producing larger AM amplitudes
– it would more importantly grant observational access to all the
planet’s orbital parameters. Especially mutual inclinations are of
interest in this case, as they could provide answers to many im-
portant problems regarding planet- formation as well as migration
in binary-star systems (Wu & Murray 2003; Batygin et al. 2011;
Thebault 2011).

6 POTENTIALLY T R A N S I T ING SY S T EM S

With an inclination of I ≈ 90◦ with respect to the plane of the sky the
systems HIP 14669, 31711, 64241 and 64797 could harbour transit-
ing planets that still would be compatible with our assumptions of
a planar-binary-planet configuration. Assuming non-grazing tran-
sits, i.e. transits where less than the full planetary disc obscures the
stellar surface during transit, and neglecting entry as well as limb-
darkening effects, we can estimate the relative TD that the planet
will cause in its host star’s photometric signal:

TD � R2
p

R2
�

. (1)

Hereby, Rp and R� denote the planetary and stellar radii, respec-
tively. Table 5 shows the relative TDs for Earth-like planets in
systems allowing for transits while still being close to planar. Even
though some stellar components are on the verge of being too bright
to be observed by Kepler, the spacecraft’s current performance
(combined noise level ≈29 ppm; Gilliland et al. 2011) would allow
for an Earth-like planet in circumstellar HZs to be found in all of
these systems given sufficient observation time.

7 T I DA L L O C K I N G

An orbital state, where the planet rotates around its own axis with
the same speed as it orbits its host star – much like the Moon around
the Earth – is called 1:1 spin-orbit resonance. A star–planet system
might evolve into such a state due to tidal interactions (see e.g.
Murray & Dermott (1999)). Therefore, this state is often referred
to as tidal lock. Since a tidal locking potentially adds additional
instabilities to a planet’s climate (Kite, Gaidos & Manga 2011),
regions where 1:1 spin-orbit resonances occur are usually excluded
from HZs. Kasting et al. (1993) used an equation dating back to

Peale (1977) to calculate the distance up to which a planet would
be tidally locked in a time span equal to age of the Solar system.
Inserting such values as chosen in Kasting et al. (1993), the simple
estimate reads

rTL ≈ 0.46

(
au

M1/3
�

)
m1/3

� , (2)

with rTL denoting the tidal-locking radius in au and m� the mass of
the host star in M�. Applying this estimate to our selected systems
indicates that all HZs in M–M binaries fall at least partly in the
tidal-locking zone. However, tidal evolution of a planet in a binary
system is much more involved than simple two-body dynamics can
account for, as the angular momentum transfer between the host-
star–planet system and the secondary needs to be included in the
model. Eggleton (2006) provides analytical estimates for the tidal
evolution of stellar hierarchical triple systems showing that in fact
many possible resonant states other than 1:1 spin-orbit locking exist
for the inner pair although with different degrees of stability. Wu
& Murray (2003) and Fabrycky & Tremaine (2007) investigated
the possibility for tidal migration of planets due to mutually in-
clined massive perturbers via Kozai cycles (Kozai 1962). Yet, as
pointed out by Correia et al. (2011), only quadrupolar secular ex-
pansions had been used to evaluate the planet’s eccentricity, which
give inaccurate results for low-inclination configurations such as
discussed in the study at hand (Lee & Peale 2003). Similar to
Eggleton (2006), Correia et al. (2011) show that tidal interactions
in inclined hierarchical triple systems can produce many different
outcomes, especially when the component’s changes in obliquity
are taken into account. Their system’s final states included transfor-
mations of retrograde to prograde motion and vice versa, a decay of
mutual inclination and rapid circularization of the inner planetary
orbit as well as tidally induced migration. As more detailed tidal
interaction models require knowledge of the stellar radii (Eggleton
2006; Correia et al. 2011), the model dependence of radii for M
dwarfs adds another source of uncertainty, see e.g. Muirhead et al.
(2012).

The lack of accurate analytical tools to study the influence of tidal
interactions in planar S-type configurations as well as the wealth
of possible final states depending on the system’s initial conditions
put a detailed analysis of the planet–binary system’s tidal evolution
beyond the scope of this work.

8 SU M M A RY

Applying the analytic methods presented in Eggl et al. (2012a,
EG12), we have shown that 17 out of 19 binary-star systems with
well-determined stellar and orbital parameters close to the Solar
system allow for dynamically stable Earth-like planets in circum-
stellar HZs. Four of these habitable systems feature F, three feature
G, six feature K and nine feature M class stars. Not surprisingly, M–
M binary constellations offer the best chances for detecting planets
in HZs via RV observations. However, determining habitability in
M star doublets may require additional considerations such as tol-
erable stellar X-ray and EUV fluxes (Lammer et al. 2011) or the
system’s potential for tidally locking the planet to its host star (see
Section 7). Habitable planets in systems featuring G-type stars have
RV amplitudes comparable to the ones found for α Centauri AB
(Guedes et al. 2008; Eggl et al. 2012a). The systems HIP 14699,
30920, 106972, 114922 or 116132 would be promising candidates
to search for terrestrial planets in their HZs, as they offer best case
RV semi-amplitudes comparable to α Centauri B b (Dumusque et al.
2012). Four of the 17 systems would allow for transiting planets in
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HZs, which could be detected using current technology. Their mid-
TDs were estimated to lie between 44 and 369 ppm with planetary
periods ranging from 235 to 476 d. AM signal amplitudes for Earth-
like planets in all the investigated systems’ HZs are, in contrast, well
below 1 µas. Therefore, dedicated missions such as NEAT (Malbet
et al. 2012) will be required in order to detect habitable worlds in
binary stars via astrometry. A sample of 19 systems does not of-
fer the possibility to construct a reasonable statistical analysis on
the number of potentially habitable binary-star systems in the so-
lar neighbourhood. More precise data on spectral types and orbital
elements of nearby double stars are required in this respect. Nev-
ertheless, our findings indicate that including binary-star systems
with 1 < ab < 100 in observational campaigns has the potential to
enhance our chances of finding habitable worlds.
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Roell T., Neuhäuser R., Seifahrt A., Mugrauer M., 2012, A&A, 542, A92
Salaris M., Cassisi S., 2005, Evolution of Stars and Stellar Populations.

Wiley-VCH, Berlin
Schneider J., Dedieu C., Le Sidaner P., Savalle R., Zolotukhin I., 2011,

A&A, 532, A79
Szebehely V., McKenzie R., 1977, AJ, 82, 79
Thebault P., 2011, Celest. Mech. Dynamical Astron., 111, 29
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A P P E N D I X A : M A X I M U M A N D R M S SI G NA L
AMPLI TUDES

Following Beaugé et al. (2007) and Eggl et al. (2012a), the RV
amplitude a planet causes on its host star is given by

RV =
√

Gm1 sin I√
m0 + m1

e cos ω + cos(f + ω)√
a(1 − e2)

, (A1)
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where G denotes the gravitational constant, and m0 and m1 are the
host star’s and planet’s masses. The quantities a, e, I and ω denote
the planet’s semimajor axis, eccentricity, the system’s inclination
to the plane of the sky and the planet’s argument of pericentre,
respectively. The planet’s true anomaly is represented by f. We can
write the maximum possible RV amplitude caused by a terrestrial
planet in a circumstellar orbit around one binary component as
follows:

max RV =
√
G m1 sin I√
m0 + m1

(1 + emax)√
a[1 − (emax)2]

. (A2)

The maximum possible eccentricity the planet can acquire due to
gravitational interaction with the double star is denoted by emax

(Eggl et al. 2012b). Expressions for the rms values of the RV signal
are given as follows (Eggl et al. 2012a):

rms RV = 1

2π

[
2π�

0

RV2dMdω

]1/2

=
√
G m1| sin I |√

2a(m0 + m1)
. (A3)

In a similar manner we can use the formalism applied in Pourbaix
(2002) to determine maximum AM signal strengths:

max AM = μa(1 + emax)

d
, (A4)

where d is the observer’s distance to the observed system, and μ =
m1/(m0 + m1) is the planet-host-star system’s mass ratio. The AM
rms amplitudes are given by

rms AM = μa

2d

[
3 + 9

2
〈e2〉 +

(
1 + 3

2
〈e2〉

)
cos(2I )

]1/2

. (A5)

Here, 〈e2〉 is the averaged squared planetary eccentricity. An analytic
expression for 〈e2〉 can be found in Georgakarakos (2003, 2005).
For a detailed derivation of all rms and maximum signal amplitudes,
see Eggl et al. (2012a).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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4. CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS IN
THE SOLAR NEIGHBORHOOD
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Chapter 5

Discussion

In chapter 2 an analytic framework to efficiently characterize circumstellar HZs in binary stars
has been developed. Analytic estimates for radial velocity, astrometric as well as transit photo-
metric fingerprints of Earth-like planets in such environments were given in chapters 3 & 4. In
this chapter, the significance and influence of approximations and prerequisites regarding the
presented methodologies are reviewed in a more detailed fashion.

5.1 Analytic Insolation Estimates

A correct modeling of planetary insolation is crucial for the analytic determination of HZs in
binary star systems as presented in chapter 2. Throughout this work, analytical descriptions of
the evolution of planetary orbits in hierarchical triple systems have been applied to construct
insolation estimates. Hereby, the planet’s maximum and average square eccentricities were of
particular interest. In order to establish these quantities, analytical approximations based on
Georgakarakos’ method were heavily relied on. While the implementation of the formulae for
emaxp (chapter 2, appendix B) and 〈e2p〉 (chapter 1, appendix 1.A) is straight forward, the sheer
number of terms involved might provoke the question, whether it is truly necessary to use such
advanced estimates? Perhaps, simpler models would suffice as well? This issue was discussed
partly in section 1.3.5, where it was shown that the planet’s eccentricity evolution in close binary
star systems is not well represented by secular approaches alone. Nevertheless, it remains to be
shown that the use of less accurate techniques to determine planetary eccentricities does indeed
have a noticeable influence on the predicted planetary insolation patterns. Therefore, we will
compare time dependent planetary insolation curves established using the relatively simple
secular perturbation equations by Heppenheimer (1978) with results based on Georgakarakos’
method. Numerical simulation results will also be considered.

Neglecting variations in stellar luminosities (dL1,2/dt = 0) the momentary insolation is
determined by the total radiation arriving at the planet’s upper atmosphere

Stot(t) =
L1

δ(t)2
+

L2

∆(t)2
, (5.1)

where δ = r1 = ‖r1‖ and ∆ = ‖r2 − r1‖ are the time dependent distances of the planet to its
host and secondary star respectively, see also Figure 1.9. In order to simplify the construction
of analytical insolation models, we will restrict ourselves to coplanar systems. We then can
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express equation (5.1) in terms of Keplerian orbital elements as follows

Stot =
L1

δ2
+
L2

∆2
= L1r

−2
1 + L2(r21 + r22 − 2r1r2 cos Ψ)−1, (5.2)

where we insert

r1 =
ap(1− e2p)

1 + ep cos fp
, r2 =

ab(1− e2b)
1 + eb cos fb

, Ψ = $p + fp − fb. (5.3)

Here, ap and ab are the planet’s and the binary’s semimajor axes, ep and eb are the corresponding
eccentricities and fp and fb denote the planetary and binary true anomalies, respectively. The
planetary longitude of pericenter is represented by $p, and we have assumed, without loss of
generality, that the binary’s longitude of pericenter $b is initially zero. As we are interested in
systems hosting Earth-like planets, we will neglect the planet’s perturbative effect on the orbit
of the binary. From perturbation theory we also know that the planetary semimajor axis stays
constant with time, while the planet’s eccentricity does not; see, for instance, section 1.3.4. In
short we assume

dap
dt

=
dab
dt

=
deb
dt

=
d$b

dt
= 0.

In contrast, ep, $p as well as the true anomalies fp and fb remain functions of time. Fortunately,
explicit expressions exist for all these quantities. The true anomalies can be transformed into
functions of time via the equation of the center, see e.g. chapter 3, appendix A. Simple secular
evolution equations for the orbit of a massless particle in an S-Type binary star system can
be found for instance in Heppenheimer (1978). Using an expansion of the disturbing function
in the R3BP based on Kaula’s approach Heppenheimer derived the following time evolution
equations

ep(t) =
5

2

ap
ab

eb
1− e2b

| sin [
u

2
(t− t0)]| tan$p(t) =

− sin [u (t− t0)]

1− cos [u (t− t0)]
(5.4)

with

u =
3

4
G1/2 m2

m
1/2
0

a
3/2
p

a3b
(1− e2b)−3/2.

Here, G is the gravitational constant, m0 and m2 are the respective masses of primary and sec-
ondary, and the planet’s mass is neglected (m1 = 0). Furthermore, the planetary eccentricity’s
secular frequency is represented by the symbol u, and it is assumed that ep(0) = $p(0) = 0.
Analytical estimates for emaxp and 〈e2p〉 are readily derived from equations (5.4)

emaxp =
5

2

ap
ab

eb
1− e2b

〈e2p〉 =
u

2π

∫ 2π/u

0

ep(t)dt =
25

8

[
ap
ab

eb
1− e2b

]2
(5.5)

Inserting the planet’s orbit evolution equations (5.4) into the total insolation estimates (5.2-5.3)
and using the equation of the center up to the fourth order in eccentricities (chapter 3, appendix
A) to exchange true for mean anomalies we arrive at a time-dependent analytic description of
the planetary insolation based on Heppenheimer’s estimates.

Insolation evolution estimates resulting from Georgakarakos’ method are derived in a similar
manner, where we replace Heppenheimer’s expressions with Georgakarakos’ functions ep(t) =
‖e1‖(t) and $p(t) as given in appendix 1.A. Using Everhart’s Gauss Radau integrator
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Figure 5.1: Total planetary insolation (Stot) and eccentricity (ep) evolution in four G2V-G2V binary
star systems with semimajor axes of ab = 20 au and different binary eccentricities (eb). The planet
was started on a circular orbit with a semimajor axis of ap = 1 au. Numerical simulation results (top)
are compared to analytical estimates using time evolution equations for the planetary eccentricity and
longitude of pericenter by Georgakarakos (2003) (mid) and Heppenheimer (1978) (bottom). See also
Table 5.1.
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Psec(Stot) [Pb] eb = 0.1 eb = 0.3 eb = 0.5 eb = 0.7
Simulation 152.9 132.6 94.6 44.9
Georgakarakos 154.4 134.2 96.6 48.4
Heppenheimer 166.1 146.4 109.5 61.4

Table 5.1: Secular periods (Psec) of the total planetary insolation Stot for different binary eccentricities
eb in G2V-G2V S-Type systems with ab = 20 au. The planet has a semimajor axis of 1 au. Results from
numerical insolation simulations are compared to analytic period estimates by Georgakarakos (2003)
and Heppenheimer (1978), see Figure 5.1. All secular periods are given in units of binary periods
Pb ≈ 23100.9 D ≈ 63.25 yrs. The secular periods for the numerically simulated insolation curves were
derived using a simplex based non-linear least squares fit [O(t) = a| sin(bt)|] of the corresponding
planetary eccentricity signal (Nelder & Mead 1965).

(Everhart 1974) as well as a Lie Series based extrapolation method (Eggl & Dvorak 2010,
Hanslmeier & Dvorak 1984) to solve the equations of motion for the binary star and the planet
numerically, it is also possible to directly calculate the evolution of the total radiation according
to equation (5.1). The resulting insolation curves for a planet with a semimajor axis of 1 au
in G2V-G2V S-Type binary star systems are presented in Figure 5.1. Similarly, Figure 3 in
chapter 2 shows the insolation on a planet started at the inner edge of the KHZ. Both figures
illustrate the correlation between planetary eccentricity and insolation. Figure 5.1 also con-
tains analytically derived insolation curves based on Georgakarakos’ as well as Heppenheimer’s
orbit evolution equations. Comparing the results produced by the three different techniques,
one can clearly see that the estimates utilizing Georgakarakos’ method are vastly superior to
Heppenheimer’s simple secular approach. When the planet’s orbit is subjected to large per-
turbations caused by a binary star on a highly eccentric orbit, insolation amplitudes resulting
from Heppenheimer’s model overestimate numerical simulation values considerably. In con-
trast, Georgakarakos’ evolution equations produce insolation amplitudes that remain very close
to the numerical ones. However, both analytical approaches show significant deviations in the
secular period of ep, see Table 5.1. At least Georgakarakos’ estimates prove to be relatively
reliable up to binary eccentricities of eb = 0.5, whereas results based on Heppenheimer’s method
overestimate the period even for eb = 0.1. Noticing the weak performance of Heppenheimer’s
method in this respect, attempts have been made to correct the secular frequency using semi-
analytical approaches (Thébault et al. 2006). Giuppone et al. (2011a) even proposed amplitude
adjustments based on introducing numerically derived correction terms. While these attempts
have been successful in reducing prediction errors for the very model systems they were derived
from, the overall performance of the corrected equations is poor compared to Georgakarakos’
estimates, especially regarding planetary eccentricity amplitudes. Figure 5.2 displays such a
comparison between different approaches to calculating maximum amplitudes of planetary ec-
centricities (emaxp ). Here, the relative deviation of emaxp with respect to numerical simulations
is shown as a function of planetary semimajor axis and binary eccentricity. S-Type systems
with different stellar constituents having mass ratios (µ = m2/(m0 +m2)) that range between
µ ' 0.3 to µ ' 0.6 (see chapter 2, section 2) and binary semimajor axes between 10 and 30 au
are investigated. Interestingly, the corrected emaxp estimates by Giuppone et al. (2011a) work
slightly better than the analytical emaxp equations presented in chapter 2 in a parameter region
that resembles γ Cephei (ab ' 20 au, eb ' 0.4) in spite of the different mass ratio of the investi-
gated G2V-F0V system, see Figure 5.2, top panel, second graph. However, the emaxp estimates
established in chapter 2 based on Georgakarakos’ method, show a convincing correspondence
to numerical simulation results over the entire parameter space. The only major discrepancies
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Figure 5.2: Analytical estimates for the maximum planetary eccentricity in different binary star-planet
configurations are compared to numerical simulation values. Deviations of the analytical estimates
(eestmax) from numerical results (enum

max ) are color-coded (log10 |[eestmax − enum
max ]/enum

max |). Each panel shows
the discrepancy between analytical and numerical maximum eccentricity estimates as a function of
planetary semimajor axis and binary eccentricity. Blue regions denote good correspondence between
numerical and analytical results, whereas red zones show deviations up to 100% compared to the
numerical value. The purple zones denote regions of orbital instability (Holman & Wiegert 1999, Pilat-
Lohinger & Dvorak 2002). The performance of the analytic expression for emax

p presented in chapter 2,
appendix B (left column) is compared to semianalytic results following Giuppone et al. (2011a) (mid
column), as well as to the secular solution by Heppenheimer (1978) (right column). The top panel
represents planetary eccentricity deviations in a G2V-F0V binary star system with ab = 20 au, the mid
and bottom panels show results for G2V-G2V systems with ab = 10 au and G2V-M0V systems with
ab = 30 au, respectively. The planet orbits the Sun-like star in all cases.

seem to appear near orbital instability limits where resonances become more potent, as well as
in G2V-M0V systems with small planetary semimajor axes as depicted in the bottom panel of
Figure 5.2. Both of these issues are expected. First, the influence of resonances was not taken
into account in any of the analytical or semi-analytical emaxp estimates. Second, when injected
planetary eccentricities become very small, as is the case for G2V-M0V systems with ap < 0.8
au, numerical round-off error starts to play a more significant role in this kind of comparison.
Therefore, all methods appear to perform similarly poorly in such areas.
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5. DISCUSSION

Finally, we shall see whether the varying quality of planetary eccentricity estimates affects
HZ classifications. Following the method presented in chapter 2, PHZ, EHZ and AHZ in G2V-
G2V binary star systems are constructed using eccentricity estimates based on Georgakarakos’
and Heppenheimer’s formulae for emaxp and 〈e2p〉. The results are presented in Figure 5.3.
The global classification pattern remains the same for both methods, but visible differences
occur near the outer edges of the PHZ, EHZ and AHZ. Heppenheimer’s PHZ extends further
than Georgakarakos’, whereas the opposite is true for the AHZs. Hence, differences in HZ
classification do arise when the more precise estimates by Georgakarakos are exchanged with
Heppenheimer’s.

Georgakarakos Heppenheimer
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Figure 5.3: Two habitability maps of G2V-G2V S-Type systems with semimajor axes of ab = 10 au
are shown. The maps were constructed using analytic estimates for emax

p and 〈e2p〉 based on chapter
2, appendix B and Georgakarakos (2005) (left) as well as Heppenheimer (1978) (right). Red zones are
uninhabitable due to excessive or insufficient insolation. Yellow regions denote AHZs, EHZs are colored
green and blue zones represent configurations supporting permanent habitability (PHZs). Purple zones
denote regions of orbital instability (Holman & Wiegert 1999, Pilat-Lohinger & Dvorak 2002), see also
Figure 5 in chapter 2. Around aplanet ' 1.65 au visible differences occur especially regarding the PHZ
and AHZ borders. The black vertical lines denote KHZ borders.

Concerning the initial question of whether the choice of the analytical method describing
the planet’s orbit evolution matters for insolation estimates, we can summarize that there are
noticeable differences between simpler and more advanced methodologies. Modified equations
based on Heppenheimer’s secular approach might work for a limited parameter region, but in
order to cover all of the binary-planet systems discussed in this work with reasonable accuracy,
Georgakarakos’ estimates are required.

5.2 Insolation Averaging

As pointed out in chapter 2, the calculation of both, EHZs and AHZs requires averaging pro-
cedures with respect to planetary insolation. Time averaging is generally a non trivial task in
orbital dynamics. Yet, Keplerian orbits are well studied in this regard, so that analytic averages
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5.2 Insolation Averaging

are readily available. Equation (5) in chapter 2 shows that in a 2BP with closed orbits the time
average of the host star’s insolation on the planet, 〈S1〉t, is given by

〈S1〉t =
L1np
hp

. (5.6)

where L1 is the host star’s luminosity, np and hp are the planet’s mean motion and angular
momentum, respectively. Equation (5.6) is perfectly valid for a fixed orbit of a planet around a
host star with constant luminosity, but difficulties arise when the planet’s motion is perturbed
by an additional massive body. Fortunately, secular perturbation theory can be invoked to
tell us that the planetary semimajor axis will stay practically constant in an S-Type binary
configuration. This was pointed out in chapters 1 and 2. In contrast, the planet’s eccentricity
varies with time and hp will no longer be fixed. Expressing the planet’s eccentricity as a function
of time and subsequently performing an average via direct integration is always difficult and
sometimes even impossible. It is, therefore, necessary to find more subtle ways to include
information on orbital variability into averages. Applying the methodology proposed in chapter
2, appendix A, equation (7), one could make the following attempt to account for a planet’s
varying eccentricity in insolation estimates

〈S1〉t =

〈
L1np
hp

〉

t

≈ L1

a2p(1− 〈e2p〉)1/2
. (5.7)

where the quantities ap and ep are the planetary semimajor axis and eccentricity. Equation
(5.7) suggests implicitly that there is no difference between the average insolation a planet
receives on its perturbed orbit and the insolation another planet encounters when moving on a
virtual orbit with an average (squared) eccentricity 〈e2p〉.

In chapter 2, equation (7), however, another approach has been used to calculate the planet’s
average insolation. Here, the planetary equivalence radius (r), as introduced in chapter 2.6, has
been used

〈S1〉t ≈
L1

r2
=

L1

a2p(1− 〈e2p〉)2
, (5.8)

with r = ap(1− 〈e2p〉). In equation (5.8) it is assumed that

〈
1

δ2

〉
≈ 1

〈δ〉2 ≈
1

r2
, (5.9)

where δ denotes the instantaneous distance of the planet to its host star and δ and r are always
greater than zero. Obviously, equation (5.9) requires the variance of δ to be small, since it was
assumed that 〈δ〉2 ≈ 〈δ2〉 which is only true when σ2 = 〈δ2〉 − 〈δ〉2 ≈ 0. Furthermore, we have
〈δ〉2 ≈ r2. This makes sense, since the equivalence radius r is comparable to the two-body
mean distance averaged over the mean anomaly

〈δ〉M = ap(1− e2p/2) ' r for ep � 1 and σ2 ≈ 0. (5.10)

Given all the approximations involved, both estimates for 〈S1〉t presented in equations (5.7)
and (5.8) can be considered to be rather crude. More importantly, a difference in the exponent
of (1−〈e2p〉) becomes apparent when equations (5.7) and (5.8) are compared. Consequently, one
might ask, why one approximation was chosen over the other in equations (7) and (A7) of chap-
ter 2? And why was the equivalence radius distilled from equation (5.8) with r + ap(1− 〈e2p〉)

81



5. DISCUSSION

r = ap(1− 〈e2p〉)1/4 r = ap(1− 〈e2p〉/2)
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Figure 5.4: Habitability map zooms on the outer HZ border of G2V-F0V S-Type binary star systems
with a mass ratios µ ' 0.57 and binary semimajor axes of ab = 10 au are shown. Results gained by
applying different analytical expressions for planetary equivalence radii (r) (top) are compared to the
published analytical method as defined in chapter 2 (bottom, left), as well as to numerical calculations
(bottom, right). The analytic form of the equivalence radii for the second star (R) is consistent with
the planet’s. The color coding corresponds to Figure 5.3.

instead of r + ap(1− 〈e2p〉)1/4 - which would have been a consequence of equation (5.8)? Could
r + 〈δ〉M ≈ ap(1− 〈e2p〉/2) not could be another option?

In short, the equivalence radii for the planet (r) and the second star (R) were chosen to
best represent numerical simulation data. In order to illustrate this, four habitability maps of
G2V-F0V binary star systems with various eccentricities are shown in Figure 5.4, all having
a semimajor axis of 10 au.1 The planet was started near the outer edge of the G star’s KHZ
in all cases. The top panels were generated applying alternative definitions of the equivalence
radii r and R. Results from the nominal analytic method as proposed in chapter 2 using
r = ap(1−〈e2p〉) are compared to numerical simulation outcomes in the bottom panels of Figure

1For a description of the color coding, see Figure 5.3.
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5.2 Insolation Averaging

5.4. Evidently, the analytical approach taken in equation (5.8) using the nominal equivalence
radius r = ap(1− 〈e2p〉) tends to represent the numerical outcomes most faithfully. Especially
the curvature of the AHZ towards the second star is quite pronounced in the numerical results.
A similar trend could be identified in all the cases investigated in chapter 2. Since this feature
is best expressed in the lower left panel of Figure 5.4, the equivalence radius r = ap(1 − 〈e2p〉)
was the preferred choice.

Of course, taking numerical results as a reference for choosing analytical models requires
the identification and circumnavigation of potential pitfalls. One such trap has already been
identified in chapter 2, section 7. Using semi-analytical estimates, it could be shown that the
numerically computed PHZ overestimated the true borders for permanent habitability. This
over-extension of the PHZ in numerical simulations is most probably due to a combination
of low time resolution in the discrete integration output intervals and the finite integration
time span that would not permit a lot of opportunities to reach extreme configurations. It
is, therefore, likely that the actual extremum configurations were never exactly hit during the
simulations. Test calculations featuring a higher time resolution indicated the correctness of
this hypothesis.
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Figure 5.5: Results of different analytic and semi-analytic approaches to calculate the outer AHZ
border in a G2V-F0V S-Type binary star system (left). Similar curves are drawn on top of a numerically
computed habitability map (right). The numerically determined AHZ is presented in yellow color. The
remaining colors are explained in Figure 5.3.

In order to see, whether the differences in numerically and analytically determined AHZs
occurring in Figure 5.4 are caused by similar shortcomings in the numerical simulations or
by deficits in the analytical modeling, we will now attempt to construct a semi-analytical ap-
proach to this problem. Following the path established in the previous section, we use equations
(5.1-5.4), where we replace Heppenheimer’s eccentricity and longitude of pericenter evolution
equations with Georgakarakos’ estimates (appendix 1.A), in order to construct the time de-
pendent analytical insolation curve Stot(t). The planet’s and binary stars’ orbital elements at
t = t0 serve as initial conditions, so do the system’s masses. The actual expression for Stot(t)
consists of many hundred terms, and will not be given explicitly here. However, for a planet
started at 1 au in a G2V-G2V binary with ab = 20 au, the resulting insolation patterns are
presented in Figure 5.1 (left column, mid graph). The averaging process then consists of an
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integration over the longest occurring period in the system (L)

〈Stot〉t =
1

L

∫ L

0

Stot(t)dt, (5.11)

We will assume that L corresponds to the planetary eccentricity’s secular period L = 2πdt(Bdτ)−1,
see appendix 1.A. Given the complexity of the expression for Stot(t), a direct integration is out
of the question. After all, if such an integration was feasible, there would have been no need
to introduce approximations (5.6-5.10) in the first place. Abandoning the goal to rely solely on
analytics, we can approximate the integration in equation (5.11) by a summation of discretely
sampled insolation data points so that

〈Stot〉t =
1

L

∫ L

0

Stot(t)dt ≈
1

N

N∑

j=0

Stot(tj). (5.12)

Here, N denotes the number of sample points and tj = t0 + jL/N . We can achieve semi-
analytical estimates for the planetary average insolation by sampling the function Stot and
evaluating the sum in equation (5.12). In order to calculate the AHZ boundaries for a given
system, the Newton-Raphson method is applied to numerically solve the equation

〈Seff,tot〉t − 1 = 0

for ap while keeping all the remaining parameters {eb, ab, L1, L2,m0,m1,m2, X1, X2} constant.
Note, that the only difference between 〈Stot〉t and 〈Seff,tot〉t is the normalization of the indi-
vidual stellar contributions with respect to Kasting’s effective radiation limits (X1 and X2),
see chapter 2, sections 6.2 and 6.3. Outer AHZ borders for G2V-F0V S-Type systems with
ab = 10 au are presented in Figure 5.5. Here, results from the analytical, semi-analytical and
numerical approaches discussed so far are compared. The semi-analytical solution follows a
path between two analytically derived curves, namely the ones that were generated using the
nominal equivalence radius as defined in chapter 2, r + ap(1 − 〈e2p〉), and the time averaged
distance r + ap(1 − 〈e2p〉/2). For higher binary eccentricities, the semianalytic solution con-
verges towards the estimates containing the time averaged distance. Since most of the relevant
dynamics has been incorporated in the semi-analytic approach, the consistency of the semian-
alytic and analytic results suggests that equivalence orbits are a suitable tool for calculating
averaged insolation values.

Yet, there still is a relatively large discrepancy between those results and the numerical
solutions for systems exhibiting strong perturbations (Figure 5.5, right). The simplifications
performed to find analytical AHZ estimates, e.g. putting both the planet and the secondary on
circular orbits with modified angular momenta, are not to be blamed for the large deviations,
as the correspondence between semi-analytical and analytical results is quite satisfactory. Con-
sequently, other explanations have to be explored. The following reasons for the discrepancy
between semi-analytical and numerical results seem possible:

• AHZ estimates are sensitive to the averaging time span,

• AHZ estimates are influenced by the simulation’s time resolution just like PHZs,

• the dynamical model incorporated in the semi-analytical approach is not comprehensive
enough to deal with strong perturbations.

Let us discuss these propositions point by point. Since the planetary eccentricity is very impor-
tant for insolation, it is not unreasonable to assume that imprecise estimates of the associated

84



5.2 Insolation Averaging

Analytics Analytics

 0

 0.05

 0.1

 0.15

 0.2

 0  10  20  30  40  50  60

e
p

binary periods 

ap=1 au

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  10  20  30  40  50  60

S
to

t/
(1

3
6

0
 W

m
-2

)

binary periods 

Numerics Numerics

 0

 0.05

 0.1

 0.15

 0.2

 0  10  20  30  40  50  60

e
p

binary periods 

ap=1 au

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  10  20  30  40  50  60

S
to

t/
(1

3
6

0
 W

m
-2

)

binary periods 

Figure 5.6: Averages of analytical (top) and numerical (bottom) planetary eccentricity (ep) and
total insolation (Stot) estimates over different time spans in a G2V-G2V binary with ab = 20 au
and eb = 0.7. The colored arrows indicate values for averages over time intervals delimited by the
corresponding vertical lines. Eccentricity and insolation data has been sampled identically for all
graphs. Misjudging the secular period can have a visible impact on planet’s average eccentricity (left).
Insolation averages are, in contrast, practically unaffected by this problem (right). Even Georgakarakos’
evolution equations do not contain all dynamical effects, e.g. nonlinear variations in the planet’s mean
anomaly. Therefore, differences in insolation averages as well as in the secular periods occur between
analytical and numerical results.
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Figure 5.7: Time evolution of planetary eccentricity (ep, left) and effective insolation (Seff,tot, right).
The planet orbits the G2V component of a close G2V-F0V system with µ ' 0.57, ab = 10 au and
eb = 0.2 near the outer edge of the AHZ. The system is similar to the ones discussed in Figures 5.4
and 5.5. Analytical predictions for eccentricity and insolation variations deviate significantly from their
numerical reference values. This has a substantial effect on insolation averages, which are represented
by the horizontal, dashed lines in the right panel. For a planetary semimajor axis of ap = 1.77 au,
analytical estimates would classify the orbit as non-habitable, whereas numerical predictions would
place it within the AHZ.

secular period might lead to averaging problems. As we have seen in sections 1.3.5 and 5.1,
there are certain issues in this respect. The left column in Figure 5.6 contains colored arrows
that represent averages of the underlying eccentricity curve over different time spans. One can
clearly see that the choice of the averaging period has a noticeable influence on 〈e〉t. As shown
in the right panels of Figure 5.6, however, this effect is negligible for 〈Stot〉t . Even if the secular
period is gravely misjudged, insolation averages do not differ much.

Numerical insolation averages are not very sensitive to time resolution issues, either. The av-
erage insolation values of Figure 5.6 were recovered with a precision of 10−5 even for resolutions
two orders of magnitude below the ones used in the nominal calculations.

This leaves us with the third option, namely that the dynamical model used in Geor-
gakarakos’ eccentricity evolution equations might not be elaborate enough to reconstruct inso-
lation patterns faithfully in the case of strongly perturbed planetary orbits. A first hint that
this might indeed be the case can be gathered from a comparison of numerical and analytical
insolation curves in Figure 5.6. The additional patterns occurring in the numerical data are
partly due to nonlinear variations in the planet’s mean anomaly. Since our analytical insolation
model contains the assumption that dap/dt = 0 (see section 5.1), the corresponding planetary
mean motion stays constant. The corresponding mean anomaly can, thus, only change linearly
with time. As a consequence, the analytical and numerical average insolation values cannot
perfectly coincide. The (semi-)analytically1 derived average insolation for a planet at 1 au in
a G2V-G2V S-Type binary with ab = 20 au amounts to 1372 Wm−2, whereas the numerical

1Recall at this point that the insolation estimates are fully analytic, but the calculation of the insolation averages
requires numerical intervention, 7 see equation (5.12).
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Figure 5.8: Left: Differences in simulated planetary insolation due to the choice of numerical inte-
grators for the same G2V-F0V system that is presented in Figure 5.7. The curves denote insolation
differences between Gauss Radau and Lie Series (blue), Gauss Radau and Yoshida’s 8th order sym-
plectic scheme (green) and Lie Series and Yoshida’s scheme (red). The step size for the symplectic
algorithm is τ = 1D; Gauss Radau and Lie Series algorithms support an adaptive step size. For our
purpose, the methods are giving practically identical results. At closer inspection, however, the non-
symplectic, adaptive schemes (Gauss Radau and Lie Series) show a high degree of correspondence,
whereas the deviations from symplectic results are more pronounced. Right: The integrators’ different
behavior regarding the conservation of the system’s total energy (E) is responsible for the discrepancies
in insolation predictions. See section 5.2 for details.

result is 1398 Wm−2. This discrepancy grows in unison with the second star’s luminosity as well
as with its potential to influence the planet’s orbit. Such considerations certainly play a role
for the G2V-F0V systems presented in Figure 5.5, but can the associated deviations become
large enough to cause AHZ classification differences?

Figure 5.7 shows the insolation and eccentricity evolution of a planet in a G2V-F0V bi-
nary - planet system which has been classified as non habitable by analytic and semian-
alytic predictions. Numerical simulation results suggest, however, that the planet is still
within the AHZ. The discrepancies between analytically and numerically generated insolation
curves are, in fact, large enough to cause a substantial difference in the average values. With
〈Seff,tot〉anat = 0.99 and 〈Seff,tot〉numt = 1.05 the same system would indeed be classified differ-
ently by our (semi-)analytical and numerical approaches, see chapter 2, section 6.2. Discovering
discrepancies is one thing, but identifying whether the analytical or the numerical solution lies
closer to the truth requires a little extra work.

So far we have assumed that the numerical insolation curves are the correct ones, whereas
the analytical curves are considered to be only approximations. In order to confirm that this
is indeed the case, we have to be able to reproduce the numerical insolation results gained
via Everhart’s Gauss Radau method (Everhart 1974) using other numerical approaches. We,
therefore, chose another variable step-size integrator based on Lie Series (Eggl & Dvorak 2010),
as well as an 8th order symplectic method by Yoshida (1990) based on potential and kinetic
energy splitting to validate our numerical results.
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Figure 5.8 shows that the numerical insolation results can be reproduced with a high degree
of accuracy suggesting that the previous numerical results are indeed close to the true solution.
The main discrepancies between the three integrator results are due to the different energy
conservation behavior of the three numerical integration methods. In spite of the fact that the
8th order symplectic integrator shows no secular increase in the local energy error, it jumps
quickly to its predestined local deviation of |E/E0| ≈ 10−12. This is a consequence of the
fact that a nearby Hamiltonian is solved instead of the actual one (e.g. Yoshida 1993). The
Lie Series algorithm, in contrast, exhibits a secular increase in energy error, but due to its
capacity to choose the integration step size adaptively, the overall error remains below the
symplectic method on short timescales. Unfortunately, energy preservation is not an apriori
feature of Everhart’s algorithm, either. It can, however, be achieved fairly easily by requiring the
convergence of the polynomial fitting to machine precision during each individual integration
step. The near flawless energy conservation up to accumulated round-off errors exhibited by
the Gauss Radau method in the right panel of Figure 5.8 supports this claim.

In order to summarize the main points of this section, let us briefly recall previous results
regarding the over-extent of numerically generated PHZs. Using a combination of numerically
evaluated emaxp values and analytically derived extremum conditions, it could be shown that
the purely numerical predictions were overestimating the actual borders of the PHZs. In con-
trast, here the numerical AHZ estimates seem to be more trustworthy than the analytical and
semi-analytical predictions. This underlines the importance of a multifaceted approach to the
problem of HZ determination in binary star systems featuring both analytical and numerical
aspects.

5.3 Mutual Inclination

The analytical method used to estimate the extent of circumstellar HZs developed in chapter 2
assumes a coplanar system. In other words, the planet is thought to move in the same orbital
plane as the binary star. However, it was claimed in chapter 4 that the coplanar solution can also
be used as an approximation for systems with low mutual inclination. In order to confirm the
validity of this statement, let us briefly study the changes of the HZs with planetary inclination.
For this purpose we assume an Earth-like planet which orbits one component of a G2V-G2V
binary with ab = 10 au. We then alter the inclination of planet’s orbital plane with respect to
the binary’s. Since the analytic determination of HZs in mutually inclined systems goes beyond
the scope of this work, our investigation will be conducted numerically using the Gauss Radau
method presented in the previous section. Preliminary results are shown in Figure 5.9.

The changes in the HZs up to the onset of the Kozai-Lidov dynamical regime where i ≈ 39◦

(Kozai 1962, Lidov 1962) are very small. Thus, the analytic method to determine HZs intro-
duced in chapter 2 can be expected to work reasonably well for low mutual inclination, as long
as i � 38◦. However, different dynamical as well as geometrical aspects become relevant in
such configurations.

One can see, for instance, that the asymmetry in the PHZ borders with regard to small
and large planetary semimajor axes decreases with mutual inclination. This is expected, since
that asymmetry is due to the direct radiative contribution of the second star. The maximum
distance between the planet and the secondary tends to increase with growing mutual inclination
and, thus, its direct radiative influence on the planet is reduced. In contrast, the minimum
and maximum planetary distances to the host star remain independent of the planet’s orbital
inclination. As a consequence, the inner PHZ borders remain practically unchanged up to
i ≈ 38◦. Beyond i ≈ 50◦, the PHZ and EHZ tend to vanish leaving only AHZs. This seems
reasonable given the well known coupling between inclination and eccentricity in the Kozai-
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Figure 5.9: Habitability maps for planets on inclined orbits in G2V-G2V binary star systems with
ab = 10 au. The color coding is similar to Figure 5.3. The black curved line represents orbital
stability limits by Mardling & Aarseth (2001). Compared to coplanar classifications, only little change
is noticeable up to the Kozai-Lidov dynamical regime where i ≈ 39◦ (Kozai 1962, Lidov 1962). For
higher mutual inclination (i) PHZs and EHZs vanish. See section 5.3 for details.
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Lidov regime. Nevertheless, those results should be considered preliminary until they can be
validated with analytical models.

Orbital stability is another interesting aspect that has to be considered carefully in mutually
inclined systems. Strictly speaking, the purple regions of orbital instability shown in the graphs
of Figure 5.9 are only valid for the coplanar case, since they were calculated using the fit
function by Holman & Wiegert (1999). While it seems counter-intuitive to apply estimates
for coplanar configurations to mutually inclined systems, we can justify this with results by
Harrington (1972). He found the stability limits of S-Type systems to be basically independent
of mutual inclination, except for a small region of instability around i = 90◦. In contrast,
the stability criterion by Mardling & Aarseth (2001) based on chaotic orbital energy exchange
(equation (1.7)) predicts a weak increase of stability with mutual inclination. The estimates
by Mardling & Aarseth (2001) are represented by the black curves in Figure 5.9. One can see
that those stability limits are more conservative than the ones by Holman & Wiegert (1999)
for coplanar configurations, but both stability criteria tend to produce similar results for high
mutual inclinations. In fact, the small region of orbital instability around i = 90◦ predicted
by Harrington (1972), but not taken into account by Mardling & Aarseth (2001), might be
visible in Figure 5.9 (bottom right). Close to a mutual inclination of i = 90◦ not even zones
of average habitability remain in this system, which could indicate complete orbital instability.
Maximum planetary eccentricity values around 1 for most of the corresponding orbits support
this notion. The remaining yellow AHZ bands are merely numerical residuals. Of course, this
sort of orbital instability is thought to be a property of hierarchical triple systems specifically.
A similar configuration that could - in theory - possess habitable worlds is the well known
Sitnikov problem (Sitnikov 1960). The intriguing interplay between regular and chaotic motion
in Sitnikov configurations (Kovács & Érdi 2009, Soulis et al. 2007, and references therein)
might merit a - perhaps somewhat academic - investigation into possible habitable worlds in
such configurations. Such research, however, lies beyond the scope of this work.

The previous example suggests that a small mutual inclination between planetary and binary
orbits does not influence planetary habitability considerably. This is in agreement with well
known results concerning classical hierarchical triple systems, where radical changes in the
dynamical behavior are only expected close to resonances and near the boundary to the Kozai
regime (e.g. Krymolowski & Mazeh 1999, Libert & Delsate 2012).

Yet, mutually inclined systems are not only interesting with respect to habitability. Also,
the detectability of terrestrial exoplanets in binary star systems can be influenced by the well
known eccentricity - inclination coupling

Hp

Lp
=
√

1− e2p cos ip = const, (5.13)

where Hp and Lp are the planet’s Delaunay elements as defined in section 1.3.4, and ep and ip
the planetary eccentricity and inclination respectively. Relation (5.13) is a direct consequence
of total angular momentum conservation when we assume that the planet’s influence on the
binary’s angular momentum is negligible (Ḣb ' 0). It is easily seen that, given the right initial
conditions, high planetary eccentricities are possible in mutually inclined configurations. Those
can boost the chances of a planet’s detection as was pointed out in chapter 3. Furthermore,
in a series of articles Schneider (1994), Schneider & Chevreton (1990) and Schneider & Doyle
(1995) concluded that the transit probability for planets on P-Type orbits increases drastically
with mutual inclination due to the additional precession of the planet’s ascending node. In
S-Type systems, however, the timescale for nodal-precession ranges between tens and several
hundreds of binary periods, where most of the periods for the systems investigated in this work
span decades. Thus, a continuous observation over hundreds of years would be required in order
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5.4 Retrograde Planetary Motion

to benefit from elevated transit probabilities due to the precession of nodes. For this reason,
the advantageous effects of mutual inclination were not considered in our transit probability
estimates established in chapter 3.

5.4 Retrograde Planetary Motion
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Figure 5.10: Numerical simulation results regarding planetary insolation (top) and eccentricity (bot-
tom) evolution in G2V-G2V S-Type binary star systems (ab = 20 au) with different eccentricities
(eb = 0.1, 0.3, 0.5, 0.7) for prograde and retrograde planetary motion. The Earth-sized planet was
started on a circular orbit with a semimajor axis of ap = 1 au. Retrograde amplitudes as well as the
corresponding secular periods (right) are considerably larger than their prograde counterparts (left).
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5. DISCUSSION

Roughly a quarter of the so-called ”hot Jupiter” population1 orbit their host stars in a
retrograde fashion, i.e. opposite to the stars’ own direction of rotation (Triaud et al. 2010).
Recent studies consider a dynamically induced spin-flip of planetary orbits in mutually inclined
hierarchical systems to be a possible cause for creating such configurations (Correia et al. 2011,
Naoz et al. 2012a). Whether such mechanisms could indeed produce anti-aligned orbits of
terrestrial planets in HZs has to be studied more carefully. Nevertheless, it is interesting to
briefly tackle the possible consequences of retrograde (coplanar) motion for a terrestrial planet’s
insolation and eccentricity evolution. Figure 5.10 contains results of such an investigation.
Retrograde and prograde planetary orbits in G2V-G2V S-Type binary star systems with various
eccentricities are compared with respect to planetary insolation and eccentricity evolution. The
differences in amplitudes and secular periods are considerable, which suggests that modifications
in the analytical method to determine HZs would be required to account for retrograde planetary
motion. Despite the fact that retrograde orbits are generally considered to be more favorable in
terms of orbital stability, see e.g. Dvorak (1997), Valtonen & Karttunen (2006) and references
therein, it is most likely that the increased eccentricity and insolation amplitudes would shrink
the HZs in binary stars systems considerably. Further investigations are necessary to determine
the exact consequences of retrograde planetary motion for habitability in S-Type binary star
systems.

5.5 Initial Planetary Eccentricity

At this point it has become very clear that the planet’s eccentricity evolution plays a crucial
role in the determination of a system’s potential habitability. Up to now, it was assumed
that the planet was on an initially circular orbit after its formation. While this assumption
seems reasonable from an astrophysical point of view, it is also a necessary prerequisite for
estimates based on Georgakarakos’ method to produce correct results. Conversely, should a
discovered planet’s orbit exhibit a substantial initial eccentricity, then it is likely that the HZ
estimates presented in chapter 2 will produce inaccurate results. In order to quantify the
term ”substantial initial eccentricity”, test calculations featuring a telluric planet with different
initial eccentricities in a G2V-G2V binary with ab = 10 au and eb = 0.5 were performed. Once
more, Everhart’s Gauss Radau integrator (Everhart 1974) was used to solve the corresponding
equations of motion numerically. The left panel in Figure 5.11 shows simulation results where
the planet was started in phase with the second star, i.e. their mean longitudes Lp and Lb
coincided, whereas the right panel presents calculations that were performed with the planet
being started in opposition to the second star (Lp = 0◦, Lb = 180◦). All of the eccentricity
curves exhibit secular and short-periodic modulation. While the amplitudes of these oscillations
tend to increase with initial eccentricity, a remarkable break in this trend can be found for
initial eccentricities around 0.1. Here, the amplitude of modulation decreases significantly even
compared to the trajectories started with zero initial eccentricity. This behavior is expected
and can be explained using the concept of ”free” and ”forced” eccentricity components, see e.g.
Murray & Dermott (2000). Planets started with ep = 0.1 are closer to the forced eccentricity
components and have, therefore, smaller ”free” oscillations. The further the gap between initial
and ”forced” eccentricity, the larger the ”free” component becomes. Thus, our analytic HZ
estimates developed in chapter 2 are strictly valid only for planets on initially circular orbits.
For small initial eccentricities, however, the analytic AHZ borders can still serve as conservative
estimates.

1Hot Jupiters are Jovian extrasolar planets orbiting very close to their host star.
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Figure 5.11: Planetary eccentricity evolution in a G2V-G2V binary with ab = 10 au and eb = 0.5.
The colored curves represent solutions for different initial eccentricities of the planet. The planet and
binary are started at equal phase (left), and at opposite phase (right). The remaining initial conditions
are presented in Table 1.1 (system a).

5.6 General Relativity and R3BP Approximations

The omission of general relativity (GR) in our method might constitute another potential issue.
It is well known that the additional pericenter drift introduced by GR generally leads to smaller
eccentricities in hierarchical triples (e.g. Blaes et al. 2002, Fabrycky & Tremaine 2007, Naoz
et al. 2012b, Soffel 1989). Also, the semimajor axes of the individual orbits are affected. Yet,
GR was not included in our dynamical models used to determine HZs in binary star systems,
because relativistic effects in S-Type configurations are generally considered to be negligible.
It remains to be shown, however, that this is indeed the case for the systems investigated in
chapter 4.

Planets around HIP 30920 B have to be very close to their host star in order to be habitable,
whereas the PHZ in HIP 84425 reaches right up to the system’s stability limit, see Figure 1
in chapter 4. In order to test the influence of GR on these two systems, the corresponding
Einstein-Infeld-Hoffman (EIH) equations are solved numerically, and the planetary eccentricity
and pericenter evolution are compared to the corresponding Newtonian reference curves. Figure
5.12 shows the evolution of planetary orbital elements for the systems HIP 30920 and HIP 84425
at different levels of approximation. Results from R3BP approaches (mp = 0) are presented
together with full 3BP (mp 6= 0) solutions, both with and without taking GR into account. The
reference model is the one applied in our analytical HZ estimates, namely the Newtonian 3BP,
and the planets were started at ap = 0.027 au and ap = 0.834 au for HIP 30920 and HIP 84425,
respectively. The top panel of Figure 5.12 shows the deviation of planetary semimajor axes
relative to their initial values (∆ap = ap − ap0). The mid and bottom panels of the left column
compare orbital element evolution curves for planetary eccentricities (ep) and longitudes of
pericenter ($p) in the HIP 30920 system directly. In the right column the line corresponding to
the reference model is given together with deviation curves for HIP 84425. Deviation curves were
generated by subtracting the reference signal from the other results, e.g. ∆ep = eEIHp − erefp .
The numerical predictions for emaxp in HIP 84425 are represented by the colored horizontal lines
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Figure 5.12: Evolution of planetary orbital elements for two systems discussed in chapter 4 which
are likely to be affected by general relativity. Results of four different dynamical models are compared.
See section 5.6 for details.
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Figure 5.13: Same as Figure 5.12 but for the binaries’ semimajor axes (ab) and eccentricities (eb)
instead of the planet’s. The deviations in ab and eb are normalized with regard to the respective initial
values (ab0, eb0). Relativistic effects are negligible compared to three body perturbations. See text for
details.

close to ep = 0.22 in the center right graph of Figure 5.12.
For habitable planets experiencing weak external perturbations - as would be the case in the

HIP 30920 system - the semimajor axis (ap) remains practically constant. This is important,
since da/dt = 0 is an essential requirement for our HZ estimates to be applicable. As expected
for Earth-sized planets, the massless and massive solutions basically coincide for HIP 30920.
Visible differences between GR and Newtonian models occur in HIP 30920, but the fact that our
analytically derived emaxp (chapter 2, appendix B) overestimates the actual EIH eccentricities
slightly only causes our HZ boundaries to be more conservative than necessary. This close to
the host star, also tidal effects should be included in the planet’s orbit evolution equations. The
effects of tides on the orbit, however, cannot be decoupled from the evolution of the planet’s
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rotation and obliquity (see e.g. chapter 4, section 7) which would in turn influence the planetary
atmosphere. Thus, a study on combined atmospheric and dynamic effects would be required to
produce reasonable results. Such a study goes beyond the scope of this thesis. We will, therefore,
not commit halfhearted attempts to include tidal effects in our current investigations.

The strong stellar perturbations encountered by a planet in HIP 84425 lead to deviations
up to 6% in ap with respect to the initial value ap0. The middle graph in the right column of
Figure 5.12 shows that the analytic emaxp estimates can no longer account for the brief spikes
in planetary eccentricity. Hence, our values for the PHZ so close to the border of orbital
instability might be too optimistic. This is a consequence of Newtonian physics, though, as
the perturbations due to the secondary are dominating the planetary dynamics. All numerical
predictions for emaxp are practically identical (emaxp = 0.2245± 0.0005) but roughly 20% higher
than our analytical value (emaxp = 0.1768), cf. the horizontal lines in the right center panel of
Figure 5.12. A clear sign of the dynamical unrest in this configuration is mirrored in the fact
that the different solutions start to diverge rapidly with time. This can be seen in the mixing of
the deviation curves in the ep and $p graphs for HIP 84425 towards the end of the simulation.
Interestingly, for ep and $p the EIH solution seem to agree longer with the reference curves
than the restricted models. This suggests that it is more important to include the planet’s mass
than GR, if the gravitational interaction between the planet and the second star grows strong.

Of course, GR will also affect the orbits of the binaries HIP 30920AB and HIP 84425AB
themselves. Results regarding those changes are presented in Figure 5.13. In the relativistic
R3BP (EIHmp = 0), there are small deviations from the initial orbits in both binaries that
are solely attributable to GR. Yet, the dominating changes in orbits of the binaries HIP 30920
and HIP 84425 are due to the gravitational interactions with the habitable Earth-mass planet.

In summary, we find that the analytic emaxp estimates for both systems HIP 30920 and HIP
84425 seem to be off by about 15-20%. GR is mainly responsible for model discrepancies in
HIP 30920, whereas the second star’s gravitational interplay with the planet outweighs the
additional influence of GR in HIP 84425. The consequences for the PHZ in HIP 30920 remain
small, since ep is very low and ap does not change significantly with time. In contrast, the
strong gravitational interactions in HIP 84425 will reduce the PHZ by roughly 10%. These
results suggest, that the quality of HZ estimates would benefit more from improved estimates
regarding strongly perturbed Newtonian systems than from an incorporation of GR.

5.7 Planetary Atmospheric Models

Many recent studies on planetary habitability make use of LEBMs and GCMs in order to be able
to study the time dependent climate forcing such as encountered by planets on eccentric orbits
(e.g. Dressing et al. 2010, Forgan 2012, Kite et al. 2011, Williams & Pollard 2002, and references
therein). Since the coupled time variation of the planet’s insolation and eccentricity have been
identified as key-parameters for habitability in this work, the question arises why an RBM was
chosen over LEBMs or GCMs in order to study habitable zones in binary star systems? Would
it not have been wiser to select a spatially-resolved and time-dependent atmospheric model, as
was done by Forgan (2012), instead of using a globally averaged one? In this section we will
discuss why RBMs are better suited for our purpose.

As pointed out in section 1.2.3, estimating the impact of stellar radiation onto a planet’s
atmosphere is not a trivial task. One reason for KHZs to have become so popular is the ability
of Kasting et al. (1993) to condense the complex effects of atmospheric processes on Earth’s
climate into a single parameter, namely Seff . Such Seff values are precomputed, so that a
simple relation for the extent of KHZs can be derived, see equation (1.1).
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5.7 Planetary Atmospheric Models

The second reason for the widespread use of Kasting’s method is the constancy of KHZs up
to stellar evolutionary timescales. This, however, is based on a common misconception, namely
that KHZs are independent of planetary motion (e.g. Kane & Gelino 2012). While allowing for a
straight forward construction of HZs around other stars by simply drawing a constant spherical
shell around potential targets, this assumption is basically wrong. The extent of HZs generally
depends on planetary motion as was shown in chapter 2. Only for planets on circular orbits
around single stars can the KHZ be considered to remain constant on dynamical timescales.

Consequently, we aimed to construct a framework for HZs that retains all the popular
qualities of Kasting’s approach while still accounting for the dynamical changes in a planet’s
orbit

• In order for the new framework to be readily applicable, it should either be fully analytical
or rely on precomputed values. The use of resource demanding numerical simulations in
order to calculate individual HZs should be avoided.

• Since planetary orbit variations are non-negligible in binary star systems, the method
should incorporate information on the variability of planetary insolation. On the other
hand, for HZs to remain constant up to stellar evolution timescales time dependencies
such as pulsating borders have to be avoided.

Precomputed Seff values are readily available for RBMs (Kasting et al. 1993, Kopparapu et al.
2013, Underwood et al. 2003). The fact that those values were derived using a globally averaged
insolation allows us to treat the planet in a point-mass approximation without having to ac-
count for the evolution of additional properties of the system like planetary spin, obliquity and
insolation direction. Thus, the problem of determining HZs for binary stars reduces to finding
ways to incorporate the three-body dynamics into our HZ model. This has been accomplished
by introducing PHZs, EHZs and AHZs, which fulfill the requirement of remaining constant on
dynamical timescales while accounting for a planetary orbit’s variability. Details on this process
can be found in chapter 2. The beauty of being able to treat the dynamical and atmospheric
parts individually lies in the fact that it makes an analytic treatment of the problem possible.
Hence, when updated Seff values become available, they can be incorporated instantly without
rerunning a large set of numerical simulations. Kopparapu et al. (2013), for instance, provided
new sets of Seff values for HZ borders around main sequence stars. Applying the analytical
methods presented in chapters 2 and 3, updated HZs for all the systems presented in chapter
4 could be obtained in a matter of seconds. The impact of the new Seff values on previous
HZ border estimates is discussed in Table 5.2. A visualization of the systems’ newly derived
HZs is provided in Figure 5.14 and a table containing all updated borders and observables is
given in appendix 5.A. Updates for the α Centauri system are included in those tables [HIP
71681(83), (Perryman et al. 1997)]. The changes in most HZ borders stay below 20-25%. Yet,
a significant shift of 75% occurs for the system HIP 58001 that contains an A-class star. This
discrepancy is due to the fact that the equations determining Seff in Kopparapu et al. (2013)
are of fourth order in stellar effective temperature (Teff ), whereas the estimates by Underwood
et al. (2003) applied previously depend only quadratically on Teff . As neither author included
A-class stars explicitly in their calculations, extrapolations of different order in Teff are bound
to produce diverging results. The lack of consistent Seff values for spectral types younger
than F is one of the reasons for excluding binary stars containing hot components in our HZ
studies. A similar effect can be observed for the system HIP 101916 which contains G and K
sub-giants. Obviously such systems have to be studied more carefully in the future. While two
more systems lose their PHZs to orbital instability, the global picture presented in chapter 4
remains largely unaffected by the new Seff values.
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Figure 5.14: Updated HZs for selected binary star systems in the solar neighborhood. The systems
are ordered by their respective Hipparchos catalog number (HIP). Since the binary stars’ eccentricities
are well known, the corresponding habitability maps become pure functions of the semimajor axis
of a potential terrestrial planet (ap) orbiting the more massive star (S-Type A) or the less massive
companion (S-Type B). If a planet is discovered in red regions it will be uninhabitable due to excessive
or insufficient insolation. Critical insolation limits (maximum and runaway greenhouse) were chosen
after Kopparapu et al. (2013). In contrast, blue regions denote zones of permanent habitability (PHZs),
green zones represent EHZs, and AHZs are drawn in yellow color. Purple stripes denote planetary
semimajor axes that would lead to dynamical instability (Holman & Wiegert 1999). The black bars
represent KHZ limits. See also Figure 1 in chapter 4. The α Centauri system [HIP 71681(83)] has been
added to this list. The exact values for the new HZ borders can be found in appendix 5.A. For details
see section 5.7.

So far, only the benefits of using RBMs have been pointed out. There are, of course,
disadvantages of RBMs compared to temporally and spatially resolved atmospheric models.
Resonance effects between climate and orbital forcing cannot be accounted for (Dressing et al.
2010). An averaging over global temperatures will also destroy information on potentially hab-
itable temperate zones at high latitudes. Thus, estimates on fractional habitability (e.g. Forgan
2012, Spiegel et al. 2008) become inaccessible. Furthermore, RBMs contain many implicit as-
sumptions on a planet’s rotation rate and the energy distribution within the atmosphere which
make them poor tools to study tidal lock states (Kite et al. 2011). So, why not use LEBMs
and GCMs?

Unfortunately, there are also difficulties associated with spatially and temporally resolved
models. First, while not impossible, it is hard to generate meaningful Seff values, as many
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more parameters will influence the results. Effective insolation values would then have to
become functions of obliquities, ocean and landmass distribution, atmospheric energy diffusion
constants, etc. Given the dynamic nature of atmospheric behavior it would be difficult to justify
smooth interpolation functions since they would annihilate the desired information on resonant
or chaotic effects for given initial conditions. A much more severe issue, however, is the need
for self-consistent modeling. For LEBMs and GCMs this means that the planet’s spin rate, its
obliquity as well as its orbital evolution in a binary star system have to be modeled together
with the planet’s atmospheric dynamics and energy transport. Such a large and intertwined
system of equations will not easily permit analytic solutions. Even numerical modeling of
such systems is difficult, since the changes of the dynamical parameters happen on different
timescales. Consequently, computational feasibility becomes a limiting factor.

Forgan (2012) has attempted to use an LEBM to study habitability in the α Centauri system.
He modified the orbital-longitude and solar declination in his model to account for the light
of both stars coming from different directions. He also considered mutual stellar occultations.
However, different insolation directions can enhance or reduce temperature gradients between a
planet’s day and night side. This information is partly1 lost in LEBMs due to the longitudinal
averaging. Most importantly, however, Forgan (2012) could not evolve the planetary orbit
and spin self consistently. Instead, he used orbits with fixed eccentricities and obliquities.
Arguably, the timescales for atmospheric settling can be much shorter than the timescales of
eccentricity and obliquity variation. In the case of α Centauri however, the settling time of
1000 yrs corresponds to 15 binary orbits. During this time the planet’s eccentricity grows from
0 to ∼ 0.05 causing an insolation boost of at least 10% during settling time. Whether such
changes in insolation would alter Forgan’s results drastically can only be speculated upon. In
any case, this example shows that self-consistent evolution of a planet’s orbit and spin should
be considered in time resolved investigations.

Even if all computational obstacles could be overcome, the question remains as what to do
with a relatively small number of simulation results? Scanning the parameter space of all likely
initial and boundary values via numerical simulations is currently unthinkable. Therefore, the
potential merits of using LEBMs and GCMs for a quick determination of HZs in binary star
systems seem limited. The study of specific systems could, of course, benefit from advanced
models which can reproduce more than averaged quantities. Selsis et al. (2011), for instance,
use spatially resolved models to investigate the behavior of likely observables for exoplanet
characterization. Yet, considering all options, RBMs seem to be best suited for the purpose of
this work.

1The actual loss of information on stellar insolation direction depends on the planet’s obliquity.
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HIP ID ab eb S-Type acrit ∆iA ∆iE ∆iP ∆oP ∆oE ∆oA class

14669 8.96 0.14
A 2.29 5 5 5 10 6 6 M2
B 1.81 6 3 3 12 6 6 M4

30920 4.29 0.37
A 0.87 6 - 6 - - - M4V
B 0.47 - - - - - - M5.5V

31711 42.72 0.34
A 8.35 3 3 3 18 18 17 G2V
B 5.85 5 5 5 9 9 9 K7Ve

44248 10.38 0.15
A 2.69 - - - 25 22 21 F3V
B 1.97 3 4 4 18 15 15 K0V

45343 97.16 0.28
A 17.93 4 4 4 12 12 12 M0V
B 17.70 4 4 6 12 12 12 M0V

51986 9.88 0.75
A 0.54 - - - - - - F4IV
B 0.45 - - - - - - F3

58001 11.73 0.30
A 2.83 - - - - - - A0Ve
B 1.33 - - 6 71 77 58 K2V

64241 11.78 0.50
A 1.46 - - - - - 8 F5V
B 1.34 - - - 9 20 20 F6V

64797 89.20 0.12
A 23.21 3 3 4 15 15 15 K1V
B 18.56 4 4 4 12 12 12 M1V

66492 46.95 0.61
A 4.29 4 6 5 12 9 9 M0.5
B 3.83 4 7 5 9 9 9 M1.5

67422 32.67 0.45
A 4.50 4 4 3 12 12 12 K4V
B 4.21 4 4 5 12 10 10 K6V

71681(83) 23.40 0.52
A 2.76 3 3 3 19 18 17 G2V
B 2.51 4 3 4 17 14 16 K1V

84425 7.73 0.49
A 1.02 - - - - - - F7V
B 0.84 - - - 5 18 17 G2V

84720 91.62 0.78
A 4.28 3 3 3 16 17 17 G8V
B 3.36 6 4 4 13 13 8 M0V

87895 2.37 0.41
A 0.37 - - - - - - G2V
B 0.31 - - - - - - K2V

93825 32.73 0.32
A 5.62 3 3 3 19 19 19 F8V
B 5.57 3 3 3 19 19 18 F8V

101916 15.66 0.80
A 0.75 - - - - - - G1IV
B 0.38 - - 46 65 12 12 K2IV

106972 5.30 0.29
A 1.03 5 5 5 9 9 9 M2
B 0.87 6 6 6 5 11 6 M4

114922 6.74 0.44
A 0.90 6 7 5 12 13 8 M1
B 0.92 4 6 4 11 11 7 M2

116132 42.48 0.20
A 10.62 6 6 6 6 6 6 M4
B 7.09 7 7 7 - - - M5

[au] [au] [%] [%] [%] [%] [%] [%]

Table 5.2: Differences in HZ borders caused by the switch from Seff estimates by Underwood et al.
(2003) to values published in Kopparapu et al. (2013) are presented. The systems are ordered by their
Hipparchos catalog numbers (HIP ID) (Perryman et al. 1997). Binary star semimajor axes (ab) and
eccentricities (eb) are given together with the critical semimajor axis (acrit) for orbital stability (Holman
& Wiegert 1999) and the spectral class of the respective star (last column). The ∆i{A,E,P} values
denote the deviation of inner AHZ, EHZ and PHZ borders, and ∆o{A,E,P} are the corresponding
values for the outer borders’ shift. Most of the HZ shifts caused by the exchange of Seff values remain
below 25%. The hotter stars are generally more affected. However, for HIP 85001 containing an A-class
star, a much larger discrepancy was found. This is also the case for the sub-giant system HIP 101916.
See section 5.7 for details.
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5.A Updated HZ Borders for Nearby Binary Stars

An updated listing of HZ borders and detectability thresholds for terrestrial planets in binary
star systems closer than 30 pc is presented. The original data can be found in chapter 4, Table
2. Column three represents the critical semimajor axes (acrit [au]) for orbital stability (Holman
& Wiegert 1999). Updated borders for the HZs ([au]) using the Seff values by Kopparapu
et al. (2013) are presented in columns 4 to 9. Additionally, rms radial velocity (RV [cm/s])
and astrometric (AM [µas]) signatures of terrestrial planets have been re-evaluated at the HZ
borders. The conditions required for a planet to be within the Averaged (AHZ), Extended
(EHZ) and Permanently (PHZ) Habitable Zone are discussed in chapter 2. Fields containing
dashes (-) represent cases where a given HZ border lies beyond the critical semimajor axis acrit.
Such systems would not be dynamically stable. Question marks occur in some boundaries, for
instance in those of the HIP 30920 and 84425 systems, because it was shown in section 5.6 that
the analytic dynamical modeling becomes unreliable, if the planet orbits near the stability limit
or very close to its host-star (we neglected tidal forces).

HIP ID star acrit inner AHZ inner EHZ inner PHZ outer PHZ outer EHZ outer AHZ

14669

A (M2) 2.287

0.332 0.334 0.338 0.618 0.626 0.634 HZ
21.18 21.12 21.00 15.69 15.60 15.50 max RV
14.78 14.74 14.65 10.84 10.77 10.70 rms RV
0.116 0.117 0.119 0.219 0.222 0.225 max AM
0.082 0.082 0.083 0.152 0.154 0.156 rms AM

B (M4) 1.806

0.175 0.175 0.177 0.331 0.335 0.337 HZ
34.69 34.69 34.49 25.37 25.22 25.15 max RV
24.36 24.36 24.22 17.71 17.61 17.55 rms RV
0.087 0.087 0.088 0.166 0.168 0.169 max AM
0.062 0.062 0.062 0.117 0.118 0.119 rms AM

30920

A (M4V) 0.865

0.092 0.094 0.094 0.170 0.174 0.178 HZ
50.84 50.32 50.32 38.10 37.69 37.30 max RV
35.14 34.76 34.76 25.84 25.54 25.25 rms RV
0.310 0.317 0.317 0.584 0.598 0.612 max AM
0.252 0.257 0.257 0.466 0.477 0.488 rms AM

B (M5.5V) 0.470

0.028? 0.028? 0.028? 0.054 0.054 0.054 HZ
154.95 154.95 154.95 111.89 111.89 111.89 max RV
108.82 108.82 108.82 78.08 78.08 78.08 rms RV
0.264 0.264 0.264 0.516 0.516 0.516 max AM
0.218 0.218 0.218 0.424 0.424 0.424 rms AM

31711

A (G2V) 8.351

1.035 1.047 1.059 1.741 1.773 1.809 HZ
8.94 8.89 8.84 7.00 6.94 6.87 max RV
6.18 6.14 6.11 4.76 4.72 4.67 rms RV
0.146 0.148 0.150 0.250 0.254 0.260 max AM
0.101 0.103 0.104 0.171 0.174 0.177 rms AM

B (K7Ve) 5.848

0.350 0.350 0.352 0.642 0.646 0.650 HZ
20.29 20.29 20.24 15.08 15.04 14.99 max RV
14.24 14.24 14.20 10.52 10.48 10.45 rms RV
0.088 0.088 0.088 0.162 0.163 0.164 max AM
0.062 0.062 0.062 0.113 0.114 0.114 rms AM

44248

A (F3V) 2.686

1.913 1.971 2.117 2.686? 2.686? 2.686? HZ
4.44 4.39 4.28 - - - max RV
2.90 2.85 2.75 - - - rms RV
0.272 0.281 0.305 - - 0.000 max AM
0.213 0.220 0.236 - - - rms AM

B (K0V) 1.967

0.820 0.830 0.856 1.386 1.472 1.512 HZ
8.19 8.14 8.03 6.50 6.35 6.29 max RV
5.61 5.58 5.50 4.32 4.19 4.13 rms RV
0.179 0.181 0.187 0.312 0.333 0.343 max AM
0.147 0.149 0.154 0.249 0.264 0.272 rms AM

45343

A (M0V) 17.932

0.288 0.290 0.290 0.540 0.540 0.542 HZ
8.41 8.38 8.38 6.15 6.15 6.14 max RV
5.93 5.91 5.91 4.33 4.33 4.32 rms RV
0.290 0.292 0.292 0.545 0.545 0.547 max AM
0.280 0.282 0.282 0.525 0.525 0.527 rms AM

B (M0V) 17.698

0.276 0.278 0.278 0.518 0.518 0.520 HZ
8.67 8.64 8.64 6.34 6.34 6.33 max RV
6.12 6.10 6.10 4.47 4.47 4.46 rms RV
0.284 0.286 0.286 0.534 0.534 0.536 max AM
0.274 0.276 0.276 0.515 0.515 0.517 rms AM

51986
A (F4IV) 0.545 - - - - - - HZ
B (F3) 0.448 - - - - - - HZ

58001
A (A0Ve) 2.828 - - - - - - HZ

B (K2V) 1.331

1.013 1.147 1.331? 1.331? 1.331? 1.331? HZ
8.47 8.09 - - - - max RV
5.55 5.21 - - - - rms RV
0.164 0.188 - - - - max AM
0.127 0.144 - - - - rms AM

64241
A (F5V) 1.465 - - - - - - HZ

B (F6V) 1.339

1.200 1.274 1.339? 1.339? 1.339? 1.339? HZ
9.20 9.05 - - - - max RV
5.53 5.37 - - - - rms RV
0.213 0.229 - - - - max AM
0.130 0.139 - - - - rms AM
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HIP ID star acrit inner AHZ inner EHZ inner PHZ outer PHZ outer EHZ outer AHZ

64797

A (K1V) 23.212

0.538 0.538 0.538 0.958 0.958 0.960 HZ
14.49 14.49 14.49 10.88 10.88 10.86 max RV
10.23 10.23 10.23 7.67 7.67 7.66 rms RV
0.204 0.204 0.204 0.364 0.364 0.365 max AM
0.144 0.144 0.144 0.257 0.257 0.258 rms AM

B (M1V) 18.564

0.287 0.287 0.287 0.541 0.541 0.543 HZ
23.46 23.46 23.46 17.10 17.10 17.07 max RV
16.57 16.57 16.57 12.07 12.07 12.05 rms RV
0.152 0.152 0.152 0.287 0.287 0.288 max AM
0.108 0.108 0.108 0.203 0.203 0.204 rms AM

66492

A (M0.5) 4.289

0.371 0.375 0.379 0.675 0.687 0.699 HZ
11.68 11.62 11.57 8.80 8.72 8.65 max RV
8.11 8.06 8.02 6.01 5.96 5.91 rms RV
0.088 0.089 0.090 0.163 0.166 0.169 max AM
0.079 0.080 0.081 0.143 0.146 0.149 rms AM

B (M1.5) 3.835

0.248 0.250 0.252 0.460 0.466 0.470 HZ
15.73 15.67 15.60 11.67 11.60 11.55 max RV
10.98 10.94 10.89 8.06 8.01 7.97 rms RV
0.072 0.072 0.073 0.135 0.137 0.138 max AM
0.064 0.065 0.065 0.120 0.121 0.122 rms AM

67422

A (K4V) 4.503

0.546 0.552 0.558 0.954 0.972 0.992 HZ
10.86 10.80 10.74 8.35 8.28 8.20 max RV
7.50 7.46 7.42 5.68 5.62 5.57 rms RV
0.175 0.177 0.179 0.311 0.317 0.323 max AM
0.146 0.148 0.149 0.255 0.260 0.265 rms AM

B (K6V) 4.212

0.440 0.444 0.450 0.788 0.802 0.814 HZ
12.74 12.68 12.60 9.65 9.58 9.51 max RV
8.84 8.80 8.74 6.61 6.55 6.50 rms RV
0.157 0.158 0.161 0.285 0.290 0.295 max AM
0.132 0.133 0.135 0.236 0.240 0.244 rms AM

71681(83)

A (G2V) 2.763

1.207 1.257 1.329 1.861 1.993 2.123 HZ
8.39 8.25 8.06 7.07 6.90 6.75 max RV
5.45 5.34 5.19 4.39 4.24 4.11 rms RV
2.691 2.811 2.986 4.319 4.665 5.011 max AM
1.788 1.863 1.970 2.764 2.961 3.156 rms AM

B (K1V) 2.508

0.716 0.734 0.758 1.170 1.226 1.276 HZ
11.46 11.33 11.17 9.24 9.06 8.91 max RV
7.69 7.60 7.48 6.02 5.88 5.76 rms RV
1.830 1.878 1.943 3.077 3.236 3.378 max AM
1.253 1.285 1.327 2.050 2.149 2.237 rms AM

84425
A (F7V) 1.024 - - - - - - HZ

B (G2V) 0.835

0.752 0.794 0.835? 0.835? 0.835? 0.835? HZ
11.86 11.68 - - - - max RV
7.19 7.00 - - - - rms RV
0.100 0.106 - - - - max AM
0.067 0.071 - - - - rms AM

84720

A (G8V) 4.275

0.620 0.632 0.642 1.034 1.060 1.092 HZ
7.79 7.72 7.66 6.16 6.09 6.01 max RV
5.33 5.28 5.24 4.13 4.07 4.01 rms RV
0.279 0.285 0.290 0.476 0.488 0.504 max AM
0.247 0.251 0.255 0.412 0.422 0.435 rms AM

B (M0V) 3.364

0.264 0.266 0.268 0.484 0.490 0.498 HZ
14.77 14.71 14.66 11.03 10.97 10.88 max RV
10.29 10.26 10.22 7.60 7.56 7.49 rms RV
0.186 0.187 0.189 0.344 0.349 0.355 max AM
0.167 0.168 0.169 0.306 0.310 0.315 rms AM

87895
A (G2V) 0.371 - - - - - - HZ
B (K2V) 0.312 - - - - - - HZ

93825

A (F8V) 5.623

1.527 1.555 1.593 2.487 2.575 2.657 HZ
3.43 3.40 3.36 2.75 2.71 2.67 max RV
2.33 2.31 2.28 1.83 1.79 1.77 rms RV
0.221 0.225 0.231 0.368 0.382 0.395 max AM
0.198 0.202 0.207 0.323 0.335 0.346 rms AM

B (F8V) 5.575

1.484 1.512 1.548 2.422 2.508 2.584 HZ
3.50 3.47 3.43 2.80 2.76 2.73 max RV
2.38 2.36 2.33 1.86 1.83 1.80 rms RV
0.217 0.222 0.227 0.363 0.377 0.389 max AM
0.196 0.199 0.204 0.319 0.331 0.341 rms AM

101916
A (G1IV) 0.754 - - - - - - HZ

B (K2IV) 0.381

0.179 0.183 0.381? 0.381? 0.381? 0.381? HZ
35.75 35.40 - - - - max RV
23.83 23.57 - - - - rms RV
0.052 0.053 - - - - max AM
0.036 0.037 - - - - rms AM

106972

A (M2) 1.034

0.350 0.358 0.368 0.616 0.646 0.674 HZ
19.98 19.78 19.53 15.65 15.36 15.11 max RV
13.43 13.28 13.10 10.12 9.88 9.68 rms RV
0.080 0.082 0.085 0.146 0.154 0.162 max AM
0.057 0.059 0.060 0.101 0.106 0.111 rms AM

B (M4) 0.865

0.195 0.199 0.201 0.357 0.369 0.377 HZ
30.20 29.91 29.77 22.83 22.49 22.28 max RV
20.76 20.55 20.44 15.34 15.09 14.92 rms RV
0.058 0.059 0.060 0.109 0.113 0.115 max AM
0.042 0.043 0.044 0.078 0.080 0.082 rms AM

114922

A (M1) 0.897

0.262 0.268 0.276 0.454 0.476 0.496 HZ
23.58 23.34 23.04 18.55 18.19 17.89 max RV
15.85 15.67 15.45 12.04 11.76 11.52 rms RV
0.055 0.056 0.058 0.099 0.104 0.109 max AM
0.041 0.042 0.043 0.071 0.074 0.077 rms AM

B (M2) 0.924

0.290 0.298 0.308 0.502 0.530 0.554 HZ
21.97 21.70 21.39 17.35 16.98 16.68 max RV
14.69 14.49 14.25 11.16 10.87 10.63 rms RV
0.058 0.060 0.062 0.105 0.111 0.116 max AM
0.043 0.044 0.046 0.074 0.079 0.082 rms AM

116132

A (M4) 10.619

0.171 0.171 0.171 0.327 0.327 0.327 HZ
29.63 29.63 29.63 21.46 21.46 21.46 max RV
20.91 20.91 20.91 15.12 15.12 15.12 rms RV
0.221 0.221 0.221 0.423 0.423 0.423 max AM
0.178 0.178 0.178 0.340 0.340 0.340 rms AM

B (M5) 7.091

0.083 0.083 0.083 0.159 0.159 0.159 HZ
58.31 58.31 58.31 42.16 42.16 42.16 max RV
41.19 41.19 41.19 29.76 29.76 29.76 rms RV
0.202 0.202 0.202 0.387 0.387 0.387 max AM
0.163 0.163 0.163 0.312 0.312 0.312 rms AM
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Chapter 6

The Road Ahead

The previous sections have shown that there is still room for improvement of the analytical HZ
determination method presented in chapter 2. A comprehensive investigation of HZs in mutually
inclined systems (see section 5.3) will be one of our next steps. Analytic eccentricity estimates
for mutually inclined hierarchical triple systems are available in literature (e.g. Krymolowski
& Mazeh 1999, Naoz et al. 2012a). Those include, however, only secular approximations that
do not account for short periodic terms. Whether the inclusion of short periods in analytic
eccentricity and inclination estimates for mutually inclined systems is absolutely necessary
will have to be checked very carefully given the considerable analytic effort such an endeavor
would require. The extension of our model to three dimensions will also make the analytic
determination of minimum and maximum insolation conditions more challenging. All these
points considered, it will not be a trivial task to generate HZ estimates for mutually inclined
systems that are of equal quality as the ones presented for the coplanar case. We consider it to
be a worthwhile goal, though.

Given the discovery of more and more circumbinary planets in the wake of the Kepler
mission (e.g. Welsh et al. 2012), the application of the PHZ, EHZ and AHZ classification
system to P-Type configurations may become another potentially important contribution to HZ
research. Preliminary studies show that changes in the planet’s eccentricity play a crucial role
for planetary insolation in P-Type as well as in S-Type systems. Numerical evidence supporting
this claim is presented in Figure 6.1. Short period terms also seem important for circumbinary
planetary eccentricities (right panel of Figure 6.1), especially since relatively small changes in
a planet’s eccentricity are sufficient to change a circumbinary planet’s insolation drastically,
cf. Figure 3 in chapter 2 and Figure 6.1. Yet, planetary eccentricity variations are completely
ignored in current studies (e.g. Kane & Hinkel 2012).

If a given P-Type system can be modeled as a hierarchical triple configuration with ini-
tially circular binary and planetary orbits, Georgakarakos (2009) provides expressions for the
evolution of the outer - in this case the planetary - eccentricity vector. His estimates are
again based on a combination of secular solutions and short period terms acquired from a
Legendre-expansion of the outer Laplace-Runge-Lenz vector. A similar approach was discussed
in appendix 1.A for the eccentricity vector of the inner orbit.

The expressions in Georgakarakos (2009) allow us to construct analytical PHZ estimates for
P-Type systems on initially circular orbits following the methodology presented in chapter 2.
In order to derive the planet’s maximum eccentricity (emaxp ) we consider the case where all
the short periodic and secular oscillations of the outer eccentricity vector interfere construc-
tively. Assuming furthermore that constructive interference may happen at moments when the
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Figure 6.1: Effective insolation (left) and eccentricity (right) evolution of an Earth-like planet in
P-Type orbit around three G2V-G2V binaries with different eccentricities (eb) and a semimajor axis
of ab = 0.3 au. The coupling between planetary eccentricity and effective insolation can clearly be
identified.

eccentricity vector has no ”y”-component, we can use equation (4) in Georgakarakos (2009) to
calculate

emaxp =
m0m1

(m0 +m1)4/3M2/3X4/3

[
3

4
+

1

X

(
3

16
+

21

16

)]
+ esecp , (6.1)

where m0 and m1 are the masses of the primary and secondary, M is the total mass of the
system and X is the system’s period ratio, see appendix 1.A. The secular eccentricity amplitude
(esecp ) can be estimated from the fact that the initial planetary eccentricity at t = 0 vanishes,
whereas the short period contribution (espp ) does not. Therefore, we have

esecp ' −espp for t = 0. (6.2)

Using the short period contributions of equations (4) and (5) in Georgakarakos (2009) at t = 0
we find

|esecp | ' |espp |t=0 =
3

16

m0m1(113− 64X + 16X2)1/2

(m0 +m1)4/3M2/3X7/3
. (6.3)

Combining the short period and secular eccentricity amplitudes finally results in

emaxp =
3

16

m0m1

[
8 + 4X + (113− 64X + 16X2)1/2

]

(m0 +m1)4/3M2/3X7/3
. (6.4)

Please note that this estimate is only valid in P-Type systems where the binary’s and the
planet’s orbit are initially circular. Preliminary results on the performance of the analytic emaxp

estimate of equation (6.4) are presented in Figure 6.2 (top left panel).
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Figure 6.2: Eccentricity and semimajor axis evolution in P-Type systems consisting of three G2V-G2V
binaries orbited by an Earth-like planet. The systems’ orbital evolution is investigated in a Newtonian
model. All bodies were started on coplanar circular orbits. Top left: Planetary eccentricity (ep)
evolution for three different P-Type configurations. The horizontal lines represent analytical maximum
eccentricity estimates (emax

p ), see equation (6.4). The coloring indicates the corresponding (ep, emax
p )

pairs. Top right: Deviation of the planetary semimajor axes (ap) from their initial values (ap0), where
∆ap = |ap−ap0|. Changes in ap remain below 5% in all cases. Bottom: In all three systems, the binary
stars’ orbits do not vary significantly.

Having analytical estimates for the planet’s eccentricity at our disposal, formulae for P-
Type PHZs can be constructed. We, therefore, have to identify those binary-planet configura-
tions that produce extreme planetary insolation conditions. Let us consider Figure 6.3. Even
though the shortest distance between one star and the planet (δ) is clearly attributable to
configuration II (Figure 6.3, right), one might wonder, whether the contribution of second star
in configuration I (Figure 6.3, left) could make up for the increased distance between the planet
and first star? In other words, is there any planetary pericenter distance q = ap(1 − emaxp )
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Insolation configuration I Insolation configuration II

a b

q

δ

a b δ

q

Figure 6.3: Two possible insolation configurations in P-Type binary-planet systems. The binary
is represented by the big filled circles, whereas the planet is shown as a smaller black disc. The
planet’s pericenter distance in Jacobian coordinates is named q, δ is the planet’s distance to one binary
component, and ab represents the binary’s semimajor axis. If the orbit of the binary is circular and
q > ab, then configuration II always yields the maximum planetary insolation, see equations (6.5-6.7).

where configuration I offers higher insolation values than configuration II?
As our emaxp are only valid for binaries on circular orbits, we will restrict ourselves to such

cases.
Should the binary consist of stars with different luminosities, maximum planetary insolation

values will be achieved when the distance to the more luminous1 star is shortest. Hence, con-
figuration II will yield the highest and lowest possible insolation values depending on whether
the planet is closest to or farthest from the more luminous star. In reality this is not exactly
true, of course, since stellar occultation would split and shift the insolation maximum slightly to
configurations where the second star is (partly) visible from a planetary perspective. However,
for stellar separations much larger than the stars’ radii (ab � R?), such shifts are negligi-
ble. Accepting this condition as a prerequisite, we neglect occultation effects in our following
considerations.

Should both stars have the same luminosity (L1 = L2 = L), one could try to find a relation
between q and ab for the limit case SItot = SIItot, i.e. the total planetary insolation in configuration
I equals the total insolation in configuration II. If such a pair (q, ab) exists, a unique maximum
insolation configuration cannot be identified. Let us, therefore, investigate, whether there are
values for q and ab which would allow for SItot = SIItot. Simple geometric considerations lead to

SItot =
2L

a2b + q2
= SIItot =

L

(q − ab)2
+

L

(q + ab)2
(6.5)

Solving equation (6.5) for q one finds

q =
1

3
(1 + 2ab)−

1− 8ab + a2b
3A(ab)

− A(ab)

3
(6.6)

where A(ab) = (−1 + 12ab + 15a2b + 28a3b + 33/2
√
−3a2b + 32a3b + 26a4b + 32a5b + 29a6b)

1/3. Since
we also require orbital stability for our P-Type systems, we must have q ≥ 2.37ab. This
conservative limit corresponds to a planet on an UCO assuming that eb = 0, see equation (1.6).
However, trying to solve

2.37ab =
1

3
(1 + 2ab)−

1− 8ab + a2b
3A(ab)

− A(ab)

3
(6.7)

1Please note that it is, in fact, the effective luminosity that is referred to here, i.e. the star’s luminosity
normalized with respect to the corresponding effective insolation values.
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only results in values ab ≤ 0. In other words, there is no positive binary semimajor axes in
a P-Type system where configuration I would cause a higher insolation on a planet than con-
figuration II. Hence, we can conclude that configuration II (Figure 6.3, right) always produces
the maximum planetary insolation. In analogy to S-Type systems (chapter 2), we can, there-
fore, formulate maximum and minimum insolation conditions for PHZs in P-Type systems with
initially circular orbits.

The maximum insolation condition for the PHZ reads

1 ≥ max
(
L1

A1
(q ∓ ab)−2 +

L2

A2
(q ± ab)−2

)
, (6.8)

and the minimum insolation condition is

1 ≤ min
(
L1

B1
(Q2 + a2b)

−1 +
L2

B2
(Q2 + a2b)

−1,
L1

B1
(Q∓ ab)−2 +

L2

B2
(Q± ab)−2

)
. (6.9)

where q = ap(1− emaxp ), Q = ap(1 + emaxp ) and A1,2 and B1,2 are the effective insolation limits
for the inner and outer borders of the KHZ, see chapter 2. More recent effective insolation
limits can be found in Kopparapu et al. (2013). In the derivation of equations (6.4), (6.8) and
(6.9) we have assumed that the planet’s influence on the binary’s orbit is negligible, and that
the planet’s semimajor axis remains constant. Figure 6.2 shows that this is the case, at least
for the three G2V-G2V systems investigated therein. While it seems straight forward to follow
the recipe presented in chapter 2 from this point on, i.e. to derive analytic expressions for AHZ
and EHZ boundaries, one should keep in mind that non Newtonian dynamical aspects have to
be taken more seriously, when binary stars with ab < 1 au are studied. Neglecting tidal and
GR interactions may be permissible for hierarchical triples exhibiting reasonable separations,
but in the case of two stars packed within 1 au, such effects become important (Eggleton 2006).
It is, therefore, very likely that tidal effects and GR have to be included in any analytical HZ
classification framework.

A preliminary PHZ, EHZ and AHZ classification of planetary P-Type orbits around F0V-
F0V and G2V-G2V binary stars without accounting for tidal effects or GR will not provide
reliable HZ border estimates, but interesting first insights can be gained. As mentioned earlier,
the planet does not have a significant influence on the double star’s orbit (Figure 6.2, bottom).
Also, the injected planetary eccentricities appear to remain low if all orbits are initially circular
(Figure 6.2, top left panel). Nevertheless, a considerable shrinkage of the PHZ with growing
binary semimajor axes can be observed (Figure 6.4). The semi-analytical PHZ results (blue)
are in good correspondence with the analytically derived PHZs. The latter are delimited by
the white dashed and dotted lines in Figure 6.4. Similar to S-Type systems, the AHZ and
EHZ correspond better to the commonly applied KHZ estimates. The AHZ also extends a bit
further than single-source KHZ limits would predict. While no analytical estimates are available
for P-Type systems on eccentric orbits, numerical investigations suggest a negative correlation
between the PHZs’ extent and binary’s eccentricity as well, see e.g. Figure 1.8.

It is clear, however, that extensive analytical as well as numerical studies will be necessary
to confirm these preliminary results. Whether the incorporation of GR and stellar tides into
HZ models will change our preliminary findings drastically remains to be seen.

Apart from binary star systems, there are other scenarios where the analytical estimates
derived in this work could come in handy. Our analytic HZ estimates are applicable to extrasolar
Sun-Jupiter-Earth systems, for instance. In fact, our HZ classification framework can be easily
modified to such cases. One simply neglects the luminosity of the ”secondary” (L2 = 0) while
retaining its gravitational influence on the planet. Since Georgakarakos’ eccentricity estimates
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were tested to be valid for a large range of mass ratios, no alterations in the analytical estimates
should be necessary.

Ultimately, it can be imagined to expand our analytical description of planetary insolation
to include more than three bodies. Providing a self-consistent evolution of a planet’s orbit,
its spin and its obliquity could be another worthy goal. The latter has already been studied
semi-analytically by Correia et al. (2011). Similar analytic results could then serve as input for
LEBMs or GCMs and allow for a self-consistent treatment of planetary atmospheres in binary
star systems.
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Figure 6.4: Habitability maps of two coplanar P-Type systems, where an Earth-like circumbinary
planet orbits two F0V stars (left) and two G2V stars (right), respectively. Instead of investigating the
influence of the binary’s eccentricity on habitability, a correlation between initial binary and planetary
semimajor axes is presented. The orbital elements are given in a Jacobian reference frame. All bodies
have been started on circular orbits, but the planetary and binary orbits were free to evolve thereafter.
The color coding is similar to Figure 5.3, except for the borders of orbital stability (purple) which have
been calculated following Dvorak (1986). The purple striped area represents UCOs, the solid purple
region LCOs, see section 1.3.1. The black vertical lines indicate KHZ limits for a single radiation source
at the binary’s barycenter. PHZs (blue) have been calculated semi-analytically, where numerically
evaluated planetary eccentricities were inserted in equations (6.8) and (6.9). EHZ (green) and AHZ
(yellow) have been calculated numerically. The white dotted lines represent analytically derived PHZ
borders, where equation (6.4) was used. There is a pronounced dependency of P-Type HZs on the
binary’s initial semimajor axis.
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Chapter 7

Summary & Conclusions

Given the large number of nearby stars that are members of binary and multiple star systems
(Duquennoy & Mayor 1991, Raghavan et al. 2010) it is not unreasonable to think that some of
them host Earth-like planets. This notion is supported by the recent discovery of a terrestrial
planet in one of our galactic neighborhood’s binary stars, α Centauri AB (Dumusque et al.
2012). Whether such telluric planets can form in regions that would permit liquid water on
their surface is a hotly debated question in astrophysics (e.g. Thebault 2011) which, ultimately,
can be answered by observational evidence alone. Yet, in order to find habitable worlds in
double star systems, one must first know where to look for them.

We tackled this issue by investigating the processes that govern planetary habitability in
binary star systems. Reproducing results by Harrington (1977) we found that planets in binary
star systems face large variations in insolation. In chapter 2 we were able to show, however,
that most of the planetary insolation changes commonly attributed to the second star (e.g.
Harrington 1977) are, in fact, due to a gravity-induced deformation of the planet’s orbit. The
forced changes in planetary eccentricity cause noticeable differences in the distance between the
planet and its host star, which, in turn, affect planetary insolation. The additional radiative
contribution of the second star will only become equally important, if the planet orbits a
host star considerably less luminous than the other binary component (chapter 2, Figure 2).
Abandoning the anthropocentric view that habitable worlds should have a nearly constant
stellar energy input comparable to the Earth’s, we constructed analytical estimates for the
maximum and average planetary insolation (sections 2.6, 5.1 and 5.2). Hereby, we used results
from state-of-the-art perturbation theory (section 1.3.5).

Apart from stellar radiation atmospheric processes can have a decisive influence on a planet’s
habitability (section 1.2.3). In order to account for the effects of a planet’s atmosphere, we
used the precomputed RBM results by Kopparapu et al. (2013), Underwood et al. (2003) and
Kasting et al. (1993). Combining our analytical insolation estimates with the RBM based
effective insolation limits allowed us to introduce three kinds of habitable regions: the PHZ, the
EHZ and the AHZ (section 2.5). The PHZ permits permanent habitability, whereas planets in
EHZ and AHZ may venture beyond habitable insolation limits to a certain extent. Each planet
within the EHZ and AHZ receives an average amount of radiation that could sustain liquid
water on its surface. The EHZ requires additionally that most of the planet’s orbit remains
within areas that permit habitable insolation conditions. This extended classification is capable
of taking the dynamical variations in planetary orbits into account while retaining important
traits of Kasting’s original HZ, such as the time invariance up to stellar evolution timescales
(section 5.7). While it is possible to derive analytic expressions for calculating PHZs, EHZs
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and AHZs on a mathematical basis alone, we found that a combined approach using analytical
and numerical tools yields the most reliable models (section 5.2).

After studying the consequences of relaxing certain assumptions that were made during
the construction of our analytical HZ determination model (sections 5.3-5.6) we applied our
classification scheme to fictitious binary star systems.

Consequent results showed that the circumstellar PHZ tends to shrink considerably with
growing binary eccentricity, whereas the AHZ expands slightly towards the second star (chapter
2, Figures 6 and 7). On the one hand this means that the region where a planet receives the
”right amount” of radiation throughout its existence is fairly small given an eccentric orbit of
the binary star. On the other hand, if Williams & Pollard (2002) are correct and the planet’s
atmosphere can act as a temperature buffer over months, even average insolation levels might
suffice to keep a planet habitable. Then, double stars would offer a greater potential for hosting
habitable worlds than single stars. Once again, observational data is required to test these
hypotheses.

We, therefore, proceeded to investigate, whether habitable planets in binary star systems can
be detected using current observational facilities (chapter 3). To be more precise, we used our
previous results to derive analytical estimates for a habitable planet’s RV and AM signatures
as well as TPs and TDs. Considering α Centauri a likely candidate for future observations, we
investigated similar binary stars featuring Sun-like components and found that the gravitative
interaction between a double star and a planet can actually boost the chances for a planet’s
discovery. Yet, transit photometry seems to be the only method that is currently capable of
detecting Earth-like planets in HZs around Sun-like stars (chapter 3). Unfortunately, a discovery
of additional habitable planets around α Centauri B by tracking changes in the orbit of the
already known planet α Cen Bb will be difficult (chapter 3, section 5.3). Hence, we broadened
our search for potential observational targets to include binary star systems of other spectral
types within a distance of 30 pc from our Solar System (chapter 4). Using the WDC data, we
selected systems with well known orbital parameters, calculated the extent of their HZs and
determined RV and AM signatures, as well as TPs and TDs of possible habitable planets. Most
of the systems were found to be capable of harboring habitable worlds, even after updating
the effective insolation estimates following Kopparapu et al. (2013) (section 5.7 and appendix
5.A). Except for M-class binaries where habitable planets could be on the brink of detectability
via RV measurements, transit photometry again seems to be the most promising method to
detect Earth-sized planetary candidates at the moment. Given the emphasis put on transit
photometry missions such as CoRoT, Kepler, TESS and CHEOPS1 by ESA as well as NASA,
the two space agencies may have drawn a similar conclusion.

Finally, we discussed preliminary findings for P-Type configurations and summarized po-
tential future applications of the HZ classification method to mutually inclined S-Type and
Sun-Jupiter-Earth systems in chapter 6.

1http://cheops.unibe.ch/, retrieved 11.02.2013
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Errata

Chapter 4, Table 2: The first sentence in the caption should read: ”Critical semi-
major axis [acrit (au), column 3] for orbital stability and borders for the HZs
[(au), columns 4–9] as measured for the respective host stars A & B are given
for 19 binary-star systems in the solar neighbourhood.”.

Chapter 4, p. 3110: The second senctence in the right column should read: ”With
RV signal amplitudes of ≈ 5 − 12 cm s−1 for potentially habitable planets in
systems containing Sun-like G stars (HIP 31711 & 84425), our estimates are
comparable to those for α Centauri presented in Eggl et al. (2012a) and Guedes
et al. (2008).”
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Abstract

This thesis contains an analytic framework to determine circumstellar habitable
zones in binary star systems. The influence of a second star on a terrestrial planet’s
capacity to host liquid water on its surface is studied in detail. Assuming that the
telluric planet orbits one component of a stellar binary (S-Type system) where all
three bodies share the same orbital plane, it can be shown that long term habit-
ability in such environments is possible in spite of the strong gravitational forcing
and the additional stellar radiation. Thereby, the gravitationally induced changes of
the planet’s eccentricity constitute the dominating effect that determines the orbital
limits for permanent habitability. For planets on non-circular orbits, the well known
habitable zone boundaries by Kasting et al. (1993), Underwood et al. (2003), Selsis
et al. (2007) and recently Kopparapu et al. (2013) used in most current studies are
only valid in an average sense. In order to take the considerable variability of a
planet’s orbit in a binary star system into account, a new methodology to classify
planetary habitability had to be developed. Therefore, the concepts of a perma-
nently habitable zones (PHZ), extended habitable zones (EHZ) and average habit-
able zones (AHZ) were introduced. The PHZ denotes circumstellar regions where
planets will remain within habitable insolation limits regardless of the dynamical
evolution of their orbits. The EHZ corresponds to areas in which the planet will leave
the habitable zone from time to time, yet, insolation conditions permit habitability
along most of the planet’s track. Planets that orbit their stars within AHZs may
spend a substantial amount of time outside habitable regions as long as the average
insolation still permits liquid water on the planet’s surface. This classification is not
only universally applicable to planets on eccentric orbits, it also retains information
on the variability of planetary insolation conditions while providing estimates that
are valid up to geological and even stellar evolutionary timescales, if the planet’s at-
mospheric conditions are known. It was found that the analytic methods developed
in this thesis are applicable to binary star systems without restrictions to planetary
masses or climate models as long as corresponding effective insolation values (Seff )
are available. Strong perturbations near resonances, regions of orbital instability,
other gravitationally active bodies, or drastic changes in the planet’s atmospheric
behavior, such as capture into tidal lock states can, however, reduce the quality of
the presented estimates.

Applying the new classification scheme to binary stars in the solar neighborhood we
could show that a large percentage of the investigated systems are capable of hosting
habitable worlds. Further results do not only suggest that terrestrial planets can
be habitable in nearby binary star systems, they might even be easier to spot than
Earth-twins orbiting single stars. Gravitational interactions with the double star
tend to increase planetary radial velocity signatures, astrometric signal amplitudes
and transit probabilities, thus improving the chances for a planet’s detection.

The discovery of an Earth-sized planet around α Centauri B (Dumusque et al. 2012)
has shown that a confirmation of the existence of habitable worlds in binary stars
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is on the brink of technical feasibility. Given the large number of stellar multiple
systems, an efficient identification of potentially interesting systems is required to
optimize target selection. The methodology proposed in this thesis can serve as
a quick and reliable tool to determine binary star systems capable of sustaining
habitable planets.
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Zusammenfassung

Die vorliegende Dissertation hatte die Entwicklung eines analytischen Verfahrens
zum Ziel, das es ermöglicht die Bewohnbarkeit erdähnlicher Planeten auf zirkumstel-
laren Bahnen in Binärsternsystemen effizient zu untersuchen und zu kategorisieren.
In diesem Rahmen konnte gezeigt werden, dass die Existenz habitabler Planeten in
derartigen Konfigurationen trotz starker, gravitativer Wechselwirkungen sowie der
zusätzlichen Einstrahlung durch den zweiten Stern möglich ist. Die in gängiger Lit-
eratur meist verwendeten Grenzen für Habitable Zonen nach Kasting et al. (1993),
Kopparapu et al. (2013), Selsis et al. (2007) und Underwood et al. (2003) bleiben
besten Falls im Mittel gültig. Tatsächlich bedurfte es einer Neukategorisierung hab-
itabler Zonen bei der darauf zu achten war, dass der Planet trotz gravitations-
bedingter Bahnänderungen, immer, oder zumindest zu einem großen Prozentsatz,
innerhalb zumutbarer Einstrahlungsniveaus verbleibt. Die entsprechenden Param-
eterbereiche wurden in Zonen permanenter Habitabilität (PHZ) und erweiterter
Habitabilität (EHZ) unterteilt. Geht man von zeitgemittelten Einstrahlungslimits
aus (AHZ) so werden die klassischen Grenzen nach Kasting reproduziert.

Eine Anwendung dieses Klassifikationsschemas auf nahe Doppelsternsysteme ergab,
dass ein hoher Prozentsatz habitable Planeten um zumindest eine Doppelsternkom-
ponente zulässt. Weiters war es möglich durch analytisch-dynamische Abschätzun-
gen zu zeigen, dass erdähnliche, bewohnbare Planeten in Doppelsternen leichter
auffindbar sein können als deren Pendants um Einzelsterne. Diese Effekte folgen
aus der gravitativen Einwirkung des zweiten Sterns auf die vom Planeten induzierte
Radialgeschwindigkeit, die astrometrische Signalstärke, sowie die planetare Transit-
wahrscheinlichkeit. Das hier präsentierte analytische Verfahren ist - unabhängig von
der Masse des Planeten - auf Binärstern-Planetensysteme mit geringer gegenseitiger
Bahnneigung anwendbar, solange verlässliche Effektivstrahlungswerte (Seff ) für die
jeweiligen planetaren Atmosphären verfügbar sind. Befinden sich weitere Plan-
eten im Doppelsternsystem, so muss eine gesonderte Überprüfung die Gültigkeit
der präsentierten Methodik belegen.

Die Entdeckung eines erdähnlichen Planeten in unserem Nachbar-Doppelstern α
Centauri AB (Dumusque et al. 2012) zeigt, dass die Erforschung habitabler Plan-
eten in Binärsternsystemen ein zukunftsträchtiges Gebiet darstellt. Bedenkt man
die enorme Anzahl an Doppelsternsystemen in der galaktischen Umgebung, so ist es
nicht unwahrscheinlich, dass erdähnliche, bewohnbare Planeten in solchen Konfigu-
rationen gefunden werden. Die in dieser Arbeit entwickelten Methoden zur Auffind-
ung viel versprechender Systeme könnten wesentlich zu derartigen Entdeckungen
beitragen.
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