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1. Introduction

The aim of this thesis is to compare the theory of Lubin-Tate mod-

ules, which describe rami�ed abelian extensions of local �elds, to the

theory of elliptic curves with complex multiplication, which also can

be used to generate abelian extensions of (global) imaginary quadratic

�elds, and thereby establish a more explicit understanding of class �eld

theory.

Lubin-Tate modules are a generalization of the local version of the

Theorem of Kronecker-Weber (Thm. 62), which says that any �nite

abelian extension of Qp is contained in a �eld Qp(ζ) for some root of

unity ζ. The existence theorem (Thm. 59) of local class �eld theory

tells us that there is a one-to-one inclusion reversing correspondence

between the �nite abelian extensions L of the local �eldK and the open

subgroups of �nite index in the group K∗ via the map L 7→ NL/K(L∗).

The structure of K∗ is given by K∗ = 〈π〉 × U (cf. Prop. 50) where π

is an arbitrary prime in the valuation ring OK and U := O∗K the group

of units of OK . Hence, every open subgroup of �nite index contains

a subgroup Gf,k(π) of the form 〈πf〉 × U (k) for some f, k ∈ N where

U (k) = {x ∈ U : x ≡ 1 mod pkK} and π is some prime in OK , which

is not uniquely determined (for example one can replace π by πu for

any u ∈ U (k)). While the subgroups Gf,0(π) correspond to unrami�ed

extensions Kf , which do not depend on the prime π chosen and can be

obtained easily by adjoining certain roots of unity (cf. Thm. 35), the

groupsG1,k(π) correspond to totally rami�ed extensionsKπ,k which can

be described explicitly by adjoining πk division points of some Lubin-

Tate module w.r.t. π (cf. Ch 3.2). The product Kf,k(π) of these two

extensions Kf and Kπ,k then corresponds to the subgroup Gf,k(π) of

K∗ and in this case we call π a �Lubin-Tate prime element� of Kf,k(π).

In total we get that every �nite abelian extension is only contained in

such a �eld Kf,k(π), that can be described explicitly via Lubin-Tate

modules.

For imaginary quadratic �elds (i.e. �elds of the form K = Q(
√
d)

with d squarefree and d < 0) there is a global way to construct abelian

extensions explicitly (cf. [9, Ch 2]): For the ring of integers OK ofK we

take an elliptic curve Ẽ over C with endomorphism ring End(Ẽ) = OK
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(i.e. E has complex multiplication; cf. Ch. 4.3) and determine its j-

invariant j(Ẽ). Then one can show (cf. [9, Ch 2 Thm 4.3]) that the �eld

K(j(Ẽ)) is the Hilbert class �eld of K (i.e. the maximal extension that

is unrami�ed in all prime ideals of OK) and that we can construct an

isomorphic elliptic curve E (i.e. with the same j-invariant but di�erent

Weierstrass equation) which is de�ned overK(j(Ẽ)). Now the maximal

abelian extension of K can be obtained by adjoining the torsion points

of E to K(j(E)) (cf. [9, Ch 2 Kor 5.7]).

To examine the connection between these two methods that yield

abelian extensions more explicitly we consider the imaginary quadratic

�eld K = Q(i). A suitable elliptic curve E with End(E) ∼= Z[i] is

given by the equation y2 = x3 + x, which has j-invariant j(E) = 1728

and is de�ned over Q(i). Its division points, which generate abelian

extensionsK[n]/Q(i), can be described as roots of the so called division

polynomials for E (see Ch. 5.2). If we want to compare these extensions

K[n]/Q(i) with Lubin-Tate extensions we have to look at those primes

where K[n]/Q(i) rami�es. This can be done via the Criterion of Néron-

Ogg-Shafarevic (see 5.3). Now if p is a prime that rami�es in K[n] and

P is a prime in K[n] lying over p then we want to �nd whether there is

a Lubin-Tate prime element π of Q(i)p and f, k ∈ N such that K[n]P

corresponds to the subgroup Gf,k(π) of Q(i)∗p. As a �rst step to this

end we need to �nd the rami�cation index e and the residue class �eld

degree f of the extension K[n]P/Q(i)p. This limits us to 3- and 4-

divison points because there is no general way to determine the values

e and f explicitly by just knowing the �eld extension via a minimal

polynomial. For n = 3, 4 however one can describe generators for the

extensions K[n]/Q(i) explicitly and hence one can obtain the needed

rami�cation indices, residue class �eld degrees and the generators of

the prime ideals P via calculating generators of the rings of integers

of these extensions and Kummer's theorem (cf. Thm. 114). If K[n]P

corresponds to some Gf,k(π) then the value f has to be the residue

class �eld degree and for k and the rami�cation index e we have the

relation e = [U : U (k)]. When we have determined the indices f, k we

use the theory of Lubin-Tate modules to �nd out whether a suitable

Lubin-Tate prime element π exists (i.e. whether N(K[n]∗P) = Gf,k(π)

for some π ∈ Q(i)p).
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We summarize our results as follows: We get that there are 3 pairs

(n, p) where the extension K[n]P/Q(i)p rami�es: (3, (3)), (3, (1 + i))

and (4, (1 + i)). While for (n, p) = (3, (3)) the extension K[3]P/Q(i)p

corresponds to the subgroup G1,1(π), where π = −3 (i.e. the exten-

sion is a Lubin-Tate extension), for (n, p) = (3, (1 + i)), (4, (1 + i)) the

subgroups NK[n]P/Q(i)pK[n]∗P of Q(i)∗p are not of the form Gf,k(π). The

residue class �eld degree f and the rami�cation index e of these exten-

sions would suggest that the subgroups would be of the form G2,3(π)

for n = 3 resp. G1,2(π) for n = 4 but there does not exist any suitable

prime π in either case. (cf. Ch. 5.5).

The fact that not all the rami�ed extensions K[n]p are Lubin-Tate

extensions does not suggest that there is any easy connection between

those two methods that generate maximal abelian extensions. Unfor-

tunately the number of results we could calculate here is not large

enough to specify this statement any further and the methods used

in this paper to obtain the necessary rami�cation data are not easily

generalizable to extensions of higher degrees.

I would like to express my gratitude to my supervisor Professor

Joachim Mahnkopf, for his constant support on this thesis.
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2. Local Fields

This chapter is a brief summary of the de�nitions and results needed

for the notion of a local �eld and its structure. For a more detailed

introduction with proofs see [5, �23-25] or [7, Ch 2].

2.1. Absolute values and valuations. In analogy to norms in vector

spaces we de�ne the notion of an absolute value for �elds K in the

following way:

De�nition 1. Let K be a �eld. A map | · | : K → R+
0 is called absolute

value on K if the following conditions are satis�ed1:

(i) ∀a ∈ K : |a| = 0⇔ a = 0

(ii) ∀a, b ∈ K : |ab| = |a| · |b|
(iii) ∀a, b ∈ K : |a+ b| ≤ |a|+ |b| (triangular inequality).

Axiom (ii) of the above de�nition implies that |·| is a homomorphism

from the multiplicative group K∗ to the multiplicative group R+. The

image of this homomorphism is called the value group of | · |.

Example 2. On C (and every sub�eld of C) there is the usual absolute
value which we denote by | · |∞.

Example 3. If | · | is an absolute value on a �eld L and K a sub�eld

of L. Then by restriction we get an absolute value on K which we also

denote by | · |.

Example 4. For every �eld K there is the trivial absolute value given

by

|x| =

1 x 6= 0

0 x = 0
.

Conversely since R+ is torsion free every torsion element of K has

to have absolute value 1. Especially every �nite �eld has no nontrivial

absolute value.

Example 5. If |·| is an absolute value on K and ρ ∈ R with 0 < ρ ≤ 1.

Then | · |ρ is also an absolute value on K.2

1We write R+ for the set of positive real numbers and R+
0 for the set of non-negative

real numbers.
2In fact in most cases | · |ρ is an absolute value for all ρ > 0. Cf. Prop. 11(iv)
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Example 6. Let K ⊂ C be an algebraic �eld extension of Q and

σ ∈ Gal(K/Q) then | · |σ given by |x|σ = |σ(x)|∞ (where | · |∞ is the

restriction of the usual absolute value | · |∞ on C) is an absolute value

on K, which in general di�ers from | · |∞ on K.

Example 7. Let p be a prime and for x ∈ Q∗ let νp(x) denote the

exponent of p in the prime factorization of x. Then de�ne an absolute

value on Q by |x|p =

p−νp(x) x ∈ Q∗

0 x = 0
. One calls | · |p the p-adic

absolute value on Q.

Like norms an absolute value | · | on a �eld K de�nes a metric and

hence a topology on K. In particular we have the notions of conver-

gence, Cauchy-sequences, open sets, continuity, etc. on K. For ex-

ample one can easily verify that addition and multiplication and their

inversions on K become continuous functions on K and therefore K

becomes a topological �eld.

De�nition 8. Two absolute values | · |1, | · |2 are called equivalent

(| · |1 ∼ | · |2) if they induce the same notions of convergence (i.e. every

null-sequence of | · |1 is a null-sequence of | · |2 and vice versa).

One has the following criterion for equivalence of absolute values:

Proposition 9. (cf. [5, �23 p.56f]) For nontrivial absolute values | · |1
and | · |2 on a �eld K there are equivalent:

(i) | · |1 ∼ | · |2.
(ii) There exists ρ ∈ R+such that | · |1 = | · |ρ2.
(iii) For any x ∈ K we have |x|1 < 1 implies |x|2 < 1.

One can distinguish between two di�erent important types of abso-

lute values:

De�nition 10. An absolute value |·| on a �eldK is called archimedean

if the set {|n| = |n · 1K | : n ∈ N} ⊂ R is unbounded. Otherwise | · | is
called non-archimedean.

Non-archimedean absolute values have some important properties

given in the following proposition.

Proposition 11. (cf. [5, �23 p.58]) Let | · | be an absolute value on a

�eld K. Then the following statements are equivalent:
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(i) |n| ≤ 1 for every n ∈ N.
(ii) | · | is non-archimedean.

(iii) | · | ful�lls the strong triangular inequality:

∀a, b ∈ K : |a+ b| ≤ max(|a|, |b|).

(For |a| 6= |b| we even get |a+ b| = max(|a|, |b|).)
(iv) For every real number ρ > 0 we have that | · |ρ is an absolute

value on K.

For the �eldQ there are only those absolute values already mentioned

above.

Theorem 12. (cf. [5, �23 p.59]) Every non-trivial absolute value on

Q is either equivalent to some p-adic absolute value | · |p or to the usual

archimedean absolute value | · |∞.

Now we can de�ne the important notions of valuation ring, valuation

ideal and residue class �eld which are fundamental for the de�nition of

local �elds.

De�nition 13. Let | · | be a non-archimedean absolute value on a �eld

K.

(i) The set R := {x ∈ K : |x| ≤ 1} is a local ring with K = Quot(R)

called the valuation ring of K w.r.t. | · |.
(ii) p := {x ∈ K : |x| < 1} is the maximal ideal in R called the

valuation ideal of K w.r.t. | · |.
(iii) κ := R/p is hence a �eld and is called the residue class �eld of

K w.r.t. | · |.

Example 14. For | · |p on Q the valuation ring is given by R = Z(p) :=

{a
b
∈ Q : a, b ∈ Z, p - b}. The valuation ideal is the principal ideal pR

of R and the residue class �eld is canonically isomorphic to the �eld

Fp.

For non-archimedean absolute values it is sometimes useful to change

from the multiplicative function | · | to an additive function.

De�nition 15. Let K be a �eld. A valuation on K is a map ν : K →
R ∪ {∞} with the following properties:

(i) ν(a) =∞⇐⇒ a = 0 .
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(ii) ∀a, b ∈ K : ν(ab) = ν(a) + ν(b).

(iii) ∀a, b ∈ K : ν(a+ b) ≥ min{ν(a), ν(b)}.
The Image of K∗ under ν is a subgroup of the additive group of R and

is called the value group of ν.

If ν is a valuation on K one gets a non-archimedean absolute value

by setting |x| = cν(x) for some real number 0 < c < 1. If we use a

di�erent c we get an equivalent absolute value. Conversely: Given a

non-archimedean absolute value | · | and a real number 0 < c < 1 one

gets a valuation by setting ν(x) = logc |x| for x 6= 0 and ν(0) =∞.

Example 16. For any prime p the exponent map νp given in the de�-

nition of | · |p de�nes a valuation on Q with value group Z.

2.2. Completions of absolute values. Like the real numbers, local

�elds will be complete:

De�nition 17. Let | · | be an absolute value on K. Then K is called

complete w.r.t. | · | if every Cauchy-sequence in K converges to some

element in K.

To obtain a complete �eld one starts with some �eld K and an

absolute value | · |. Then one �adds� some elements to K so that K

becomes complete:

De�nition 18. Let | · | be an absolute value on K. Then a �eld

extension K̂ of K with absolute value ˆ| · | is called completion of K if

the following conditions are satis�ed:

(i) ˆ| · | is an extension of | · | (i.e.: ˆ| · | restricts on K to | · |).
(ii) K is dense in K̂ w.r.t. ˆ| · |.
(iii) K̂ is complete w.r.t. ˆ| · |.

Theorem 19. (cf. [5, �23 p.63�]) Up to isometric K-isomorphism

there is exactly one completion K̂ of K w.r.t. | · |.

Example 20. The �eld R is de�ned to be the completion of Q w.r.t.

the usual absolute value | · |∞ on Q.

Similarly we can de�ne the �eld of p-adic numbers:

De�nition 21. Let p be a prime.
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(a) By Qp we denote the completion of Q with respect to | · |p and
call it the �eld of p-adic numbers.

(b) By Zp we denote the valuation ring of Qp and call it the ring of

p-adic integers.

An explicit description of the elements of Qp is given in the following

proposition.

Proposition 22. (cf. [5, �23 p.68f]) For every x ∈ Qp there is a unique

representation given by

x =
∑
−∞�k

xkp
k where xk ∈ {0, 1, . . . , p− 1}

and its valuation is given by νp(x) = min{k ∈ Z : xk 6= 0}.

Because of the uniqueness of K̂ we can write |·| for the absolute values
of both K and K̂. We have the following proposition for completions

of �elds w.r.t. non-archimedean absolute values:

Proposition 23. (cf. [5, �23 p.66f]) Let K̂ be the completion of the

�eld K w.r.t. a non-archimedean absolute value | · |. Then K and K̂

have got the same value group and canonically isomorphic residue class

�elds.

Proposition 24. (cf. [5, �23 p.76f]) Let L/K be a �nite �eld extension

and | · | an absolute value on K such that K is complete w.r.t. | · |.
Then there is exactly one absolute value | · |′ on L that extends | · |.
Additionally L is complete w.r.t. | · |′.

If | · | is an archimedean absolute value on K, then char(K) = 0 and

hence we can see Q as a sub�eld of K. Then | · | is equivalent to | · |∞
on Q (cf. Thm.12). If K is now complete w.r.t. | · | then we can see R
as a sub�eld of K (cf. Ex.20). As one can show K has to be algebraic

over R and hence we get the theorem of Ostrowski:

Theorem 25. (Theorem of Ostrowski) (cf. [5, �23 p.72])

(a) Let K be a complete �eld w.r.t. an archimedean absolute value

| · |. Then K ∼= R or K ∼= C and | · | is equivalent to the usual absolute

value | · |∞.
(b) IfK is an arbitrary (not necessarily complete) �eld with archimedean

absolute value | · | then K is isomorphic to a sub�eld of C and | · | is
equivalent to the restriction of the usual absolute value | · |∞ on C.
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2.3. Residue class degree, rami�cation index and discrete val-

uations. In the following let L/K be a �eld extension and | · | a non-

archimedean absolute value on L. Let A resp. R denote the valuation

rings, P resp. p the valuation ideals and λ = A/P resp. κ = R/p

the residue class �elds of L resp. K. Since R ∩ P = p the natural

homomorphism R/p → A/P is injective and hence we can see κ as a

sub�eld of λ.

De�nition 26. (a) The degree f = f(L/K) = [λ : κ] is called the

residue class degree of L/K.

(b) The index e = e(L/K) = [|L∗| : |K∗|] is called the rami�cation

index of L/K.

Residue class degree and rami�cation index have the following prop-

erties:

Proposition 27. (cf. [5, �24 p.89f]) (a) Let M be an intermediate

�eld in L/K. Then

f(L/K) = f(L/M)f(M/K)

and

e(L/K) = e(L/M)e(M/K).

(b) Let L̂ be the completion of L and K̂ the completion of K embedded

in L̂. Then

f(L̂/K̂) = f(L/K)

and

e(L̂/K̂) = e(L/K).

(c) If L/K is �nite then [L̂ : K̂] ≤ [L : K].

De�nition 28. An absolute value | · | of a �eld K is called discrete if

|K∗| is a nontrivial discrete subgroup of R+.

In the following we will discuss discrete absolute values only. Those

have the following properties:

Proposition 29. (cf. [5, �24 p.91f]) Let |·| be a discrete absolute value

on K.

(a) The absolute value | · | is non-archimedean since otherwise Q
would be a sub�eld of K whose value group |Q∗| is always dense in R+.



12

(b) Since every nontrivial discrete subgroup of R+ is cyclic there is

some 0 < c < 1 such that |K∗| = {cn : n ∈ Z}. We can now de�ne a

valuation on K with value group Z by ν(x) = logc|x|. This valuation

is called the normalized valuation on K w.r.t | · |. We can now choose

an arbitrary element π ∈ K with ν(π) = 1 and call it a prime element

of K. Now every element x ∈ K∗ can be uniquely written in the form

x = πnu

for some n ∈ Z and u ∈ R∗ (i.e. ν(u) = 0). Therefore R is a principal

ideal domain and all its nontrivial ideals are given by (πk) with k ∈ N.
(c) Let L/K be a �eld extension with e(L/K) �nite. Then the ab-

solute value on L is discrete if and only if the absolute value on K is

discrete.

Let K be complete w.r.t. a discrete absolute value. If we �x π ∈ K
prime and some system S ⊂ K of representatives of elements in κ with

0 ∈ S every x ∈ K has the unique representation

x =
∑
−∞�k

xkπ
k

with xk ∈ S.

Example 30. For the �eld Qp and S = {0, 1, . . . , p − 1} ⊂ Z this

representation becomes the representation given above.

Example 31. Let F be a �eld and F (X) be the �eld of rational func-

tions over F . For every polynomial 0 6= f ∈ F [X] de�ne ν(f) = deg(f).

(Hence X ∈ F [X] is prime.) Then ν can uniquely be expanded to a

normalized valuation on F (X). Completion of F (X) w.r.t. this valua-

tion gives the �eld F ((X)) of formal Laurent series over F . An element

f ∈ F ((X)) can then uniquely be written as

f =
∑
−∞�k

akX
k

where ak ∈ F .

For discrete valuations on complete �elds we now get a connection

between the residue class degree and the rami�cation index by the

following theorem:



13

Theorem 32. (cf. [5, �24 p.94]) Let L/K be a �eld extension. Let | · |
be a discrete absolute value on both L and K and let K (and hence also

L) be complete w.r.t. | · |. If both e(L/K) and f(L/K) are �nite then

L/K is �nite and for its degree n = [L : K] we have

n = e(L/K)f(L/K).

2.4. Unrami�ed and totally rami�ed extensions.

De�nition 33. Let L/K be a �nite �eld extension with an absolute

value | · | on L. Let L̂ resp. K̂ be completions of L resp. K w.r.t. | · |
such that K̂ ⊆ L̂. We call L/K unrami�ed if

[L̂ : K̂] = [λ : κ]

and λ/κ is separable, where λ resp. κ are the residue class �elds of L̂

resp. K̂.

If the absolute value | · | on K is discrete then this de�nition becomes

equivalent to e(L/K) = 1 and λ/κ separable.

If K is complete we have the following theorem:

Theorem 34. (cf. [5, �24 p.95�]) Let K be a complete �eld w.r.t. the

non-archimedean absolute value | · | and let K̄ be an algebraic closure

of K.

(a) The residue class �eld κ̄ of K̄ is an algebraic closure of the residue

class �eld κ of K.

(b) For every �nite extension λ/κ there is a unique extension L/K

(which is unrami�ed) in K̄/K such that λ is the residue class �eld of

L and [L : K] = [λ : κ].

(c) The function that maps every intermediate �eld of K̄/K onto its

residue class �eld, gives a bijection from the set of all �nite unrami�ed

extensions L/K onto the set of all �nite separable extensions λ/κ which

respects inclusion.

(d) For every �nite extension L/K there is a maximal unrami�ed

subextension M/K. If for the residue class �elds λ resp. κ of L resp.

K the extensionλ/κ is separable then λ is also the residue class �eld of

M and [M : K] = [λ : κ].

(e) If L/K is unrami�ed then L/K is a Galois extension if and only if

λ/κ is. In this case there is a natural isomorphism Gal(L/K)→̃Gal(λ/κ)

between the corresponding Galois groups.
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If the residue class �eld κ of K is �nite one can use this theorem to

get information about the unrami�ed extensions of K:

Theorem 35. (cf. [5, �24 p.97f]) Let K be a complete �eld w.r.t. the

non-archimedean absolute value | · | such that the residue class �eld κ

of K is a �nite �eld with q elements.

(a) For every n ∈ N there is exactly one unrami�ed extension of

K with degree n. It is the extension K(ζ)/K where ζ is a primitive

(qn − 1)-th root of unity.

(b) Let m ∈ N be relatively prime to p := char(κ) and let ζm denote

a primitive m-th root of unity. Then the extension K(ζm)/K is un-

rami�ed and its degree is the smallest n ∈ N such that m | (qn− 1). In

particular the group Wp′(K) of roots of unity in K with order relatively

prime to p is isomorphic to κ∗.

(c) Every �nite unrami�ed extension L/K is a cyclic Galois ex-

tension and in its Galois group there is exactly one element ϕL/K ∈
Gal(L/K) that maps to the Frobenius automorphism x 7→ xq in Gal(λ/κ).

Hence we also call ϕL/K the Frobenius automorphism of L/K.

Proof. (Sketch) (a) Since for the �nite �eld κ ∼= Fq there is exactly one

�eld extension λ ∼= Fqn of degree n (which is also separable) there is

exactly one unrami�ed extension of K of degree n. The multiplicative

group λ∗ is cyclic of degree qn − 1 and so λ = κ(ζ ′) where ζ ′ is a

primitive (qn − 1)-th root of unity. One can show that in every �eld

extension L̃ of K with a residue class �eld containing ζ ′ there is some

(qn−1)-th rootζ in L̃ which reduces to ζ ′ (and hence is also primitive).

So L = K(ζ) is the smallest �eld extension of K with residue class �eld

λ and is therefore unrami�ed.

(b) Since K(ζm) ⊆ K(ζ) (ζ as in (a)), the residue class �eld of K(ζm)

is contained in λ. Since ζm is a power of ζ, the root ζm reduces to a

primitivem-th root of unity. So the residue class �eld of K(ζm) is equal

to λ and K(ζm) = K(ζ). For λ = κ one gets the structure of Wp′(K).

(c) Since λ/κ is cyclic so is L/K and we can de�ne the Frobenius

automorphism ϕL/K on L/K. �

Example 36. The �eld Qp ful�lls the conditions of the theorem. The

unrami�ed extension of Qp of degree n is the extension Qp(ζ)/Qp where

ζ is a primitive pn − 1-th root of unity. Its Frobenius automorphism
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ϕ is given by ϕ(ζ) = ζp. The group Wp′(Qp) is the group of p − 1-th

roots of unity and is isomorphic to F∗p.

De�nition 37. An extension L/K of �elds with non-archimedean ab-

solute values is called totally rami�ed if e(L/K) = [L : K].

De�nition 38. Let | · | be a discrete absolute value on K and ν its

normalized valuation. A monic polynomial f = Xd +
∑d−1

i=0 aiX
i ∈

K[X] is called an Eisenstein polynomial if ν(ai) ≥ 1 = ν(a0).

Proposition 39. (cf. [5, �24 p.98f]) Let |·| be a discrete absolute value

on K and ν its normalized valuation.

(a) Let f ∈ K[X] be an Eisenstein polynomial of degree d and Π ∈
K̄ a zero of f . Then there is exactly one continuation of | · | onto
L = K(Π)3 and L/K is totally rami�ed of degree d. Furthermore f is

irreducible and Π is prime in L.

(b) If conversely L/K is a totally rami�ed extension of K then L =

K(Π) for any prime Π of L and the minimal polynomial of Π is an

Eisenstein polynomial.

Example 40. Let ζ be a pk-th root of unity (k ≥ 1). Then the

extension Qp(ζ)/Qp is totally rami�ed of degree (p− 1)pk−1 and ζ − 1

is prime in Qp(ζ) with Eisenstein polynomial f(X) = g(X + 1) where

g(X) = Xpk−1
Xpk−1−1

is the minimal polynomial of ζ.

2.5. The de�nition and the list of local �elds. The shortest de�-

nition of a local �eld is the following:

De�nition 41. A �eld K that is locally compact4 w.r.t. a nontrivial

absolute value | · | is called a local �eld.

If K is a local �eld and {an}n∈N is a Cauchy sequence then almost

all terms an lie in a compact set and hence the sequence is convergent.

So K is complete. If now | · | is archimedean then K ∼= R or K ∼= C
and | · | ∼ | · |∞.5 If | · | is non-archimedean then we have the following

proposition:

3Contrary to Prop. 48 the �eld K need not be complete here.
4I.e. every x ∈ K has a compact neighborhood.
5Cf. Thm. 25.
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Proposition 42. (cf. [5, �25 p.114]) (a) Let K be a local �eld w.r.t.

a non-archimedean absolute value | · | then
(i) K is complete.

(ii) The absolute value | · | is discrete.
(iii) The residue class �eld κ of K is �nite.

(b) Conversely if | · | is an absolute value on K such that (i)-(iii) are

satis�ed then K is a local �eld w.r.t. | · |.

The conditions (i)-(iii) in the above proposition are rather strong

and allow us to list all possible local �elds.

Theorem 43. (cf. [5, �25 p.115]) Let K be a local �eld. Then K

isomorphic to one of the following �elds

(a) R or C (in the archimedean case).

(b) A �nite extension of a p-adic number �eld Qp (in the non-

archimedean case and char(K) = 0).

(c) The �eld Fq((X)) of formal Laurent series over the �nite �eld Fq
for some prime power q (in the non-archimedean case and char(K) 6=
0).6

We now de�ne another kind of �eld which is closely related to local

�elds.

De�nition 44. The following �elds are called global �elds :

(a) algebraic number �elds (i.e. the �nite extensions of Q).
(b) function �elds in one variable over a �nite �eld (i.e. �nite exten-

sions of Fp(X).

Theorem 45. (cf. [5, �25 p.117�]) The local �elds are the completions

of global �elds w.r.t. non-trivial absolute values.

2.6. Rami�cation and solubility of local �eld extensions. We

can use the notion of rami�cation in local �eld extensions to show that

their Galois groups are always solvable. At �rst we de�ne tame and

wild rami�cation.

De�nition 46. Let L/K be an extension of non-archimedean local

�elds. Then L/K is called tamely rami�ed if e(L/K) is relatively prime

to p = char(κ). Otherwise L/K is called wildly rami�ed.

6Any �nite extension K of Fq((X)) is also a local �eld with K ∼= Fqk((Y )) for some
k ∈ N and Y ∈ K prime. Cf. [5, �25 p.115]
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Tamely rami�ed extensions are easy to understand.

Proposition 47. (cf. [5, �25 p.120f]) Let L/K be a totally and tamely

rami�ed extension of non-archimedean local �elds of degree e. Fix a

prime π ∈ K. Then there is some (q − 1)-th root of unity ζ (where

q = |κ|) such that for the prime π0 = ζπ ∈ K we have L = K( e
√
π0).

If additionally L/K is Galois then e | (q − 1) and Gal(L/K) is cyclic.

Furthermore one has:

Proposition 48. (cf. [5, �25 p.121]) Let L/K be a totally rami�ed

extension of non-archimedean local �elds. Then there is a unique max-

imal tamely rami�ed subextension T/K of L/K.

Hence for a �nite extension L/K of local �elds we have two important

intermediate �elds. The maximal unrami�ed subextension M/K of

L/K (cf. Thm.34(d)) and the maximal tamely rami�ed extension T/M

of L/M (cf. Prop.48).
L

|
T

|
M

|
K

If now L/K is Galois then Gal(M/K) is cyclic (cf. Thm.35(c)) and

Gal(T/M) is cyclic (cf. Prop.47). The extension L/T has no tamely

rami�ed subextension and hence is of degree pr for some r ∈ N. So its

Galois group Gal(L/T ) is a p-group and therefore solvable. Hence in

the series of normal subgroups

Gal(L/K) D Gal(L/M) D Gal(L/T ) D 1

all the factors are solvable groups. So we have the following theorem:

Theorem 49. (cf. [5, �25 p.121]) Let L/K be a Galois extension of

local �elds. Then Gal(L/K) is solvable.

2.7. The multiplicative group of local �elds. Let K be a non-

archimedean local �eld and let q = pr = |κ| be the order of its residue
class �eld. Denote by Wm = {ζ ∈ K : ζm = 1} the group of roots
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of unity of order m in K by U = R∗ the units of its valuation ring R

and by U (n) = 1 + pn the balls around 1 with radius p−n. Then the

following proposition describes the multiplicative structure of K.

Proposition 50. (cf. [5, �25 p.124]) Let π ∈ K be a prime. Then we

have

K∗ ∼= 〈π〉 × U = 〈π〉 ×Wq−1 × U (1)

as topological groups. Additionally we have Wq−1 = W ′ where W ′ =

{ζ ∈ K : ζn = 1 mit (n, p) = 1} is the group of roots of unity in K

with order relatively prime to p. We have the isomorphy

U/U (1) ∼= Wq−1 ∼= κ∗

and for every n ≥ 1

U (n)/U (n+1) ∼= κ.

We want to �nd out a little bit more about the structure of U (1).

Proposition 51. (cf. [5, �25 p.126f]) Let a ∈ U (1) and x ∈ Zp. For

every sequence of integers (xn)n∈N with x = limn→∞ xn the sequence

(axn)n∈N is convergent in K. If we de�ne

ax := lim
n→∞

axn ,

then U (1) gets a Zp-module structure via the map (x, a) 7→ ax.

Proof. Let b ∈ U (n). Then we have bp ∈ U (n+1) and hence for any z ∈ Z
we get bz ∈ U (n+νp(z)). So if {zn}n is a p-adic nullsequence and a ∈ U (1)

then

lim
n→∞

azn = 1.

If now {xn}nis a p-adic Cauchy sequence in Z convergent to x ∈ Zp,
then

lim
n→∞

axn+1 − axn = lim
n→∞

axn(axn+1−xn − 1) = 0.

Hence {axn}n is a Cauchy sequence and therefore convergent in K.

Since U (1) is closed we get

lim
n→∞

axn ∈ U (1).

If {yn} is another p-adic Cauchy sequence converging to x, then

lim
n→∞

ayn − axn = lim
n→∞

axn(ayn−xn − 1) = 0.
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So ax is well de�ned and one can easily check that the map (x, a) 7→ ax

makes U (1) a Zp-module. �

For char(K) = 0 one can show a little bit more:

Theorem 52. (cf. [5, �25 p.130f]) Let char(K) = 0, n = [K : Qp] and

Wp∞ = {ζ ∈ K : ζp
k

= 1 for some k ∈ N}. Then Wp∞ is �nite and we

have

U (1) ∼= Wp∞ × Znp
as Zp-modules.

Example 53. For K = Qp one can describe the multiplicative group

in the following way:

If p 6= 2 then the multiplicative group of Qpis given by

Q∗p = 〈p〉 ×Wp−1 × U (1)

where

U (1) = (1 + p)Zp .

So every element a ∈ Q∗p can uniquely be written as

a = pnζ(1 + p)x

with n ∈ Z, ζ ∈ Wp−1 and x ∈ Zp.
If p = 2 then U (1) = U and so

Q∗2 = 〈2〉 × U (1) = 〈2〉 × {±1} × U (2)

where

U (2) = (1 + 4)Z2 = 5Z2 .

Every element a ∈ Q∗2 can uniquely be written as

a = 2nε5x

where n ∈ Z, ε ∈ {±1} and x ∈ Z2.
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3. Local Class Field Theory

This chapter starts with the main results of local class �eld theory

and then gives an introduction into Lubin-Tate modules, a tool to

describe local class �eld theory explicitly. For more details and proofs

see [7, Ch 4-5] or [2, Ch 7].

3.1. The local reciprocity law and the norm residue symbol.

Class �eld theory studies �eld extensions with abelian Galois groups.

So we de�ne:

De�nition 54. (a) Let K be a �eld then denote by Kab the maximal

abelian extension of K.

(b) Let L/K be a �eld extension then denote by Gal(L/K)ab =

Gal((Kab ∩ L)/K) the Galois group of the maximal abelian subexten-

sion of L/K.

For an extension of local �elds its maximal abelian subextension is

described in the so called local reciprocity law, which is a strong result

in local class �eld theory that can be proved with the modern theory

of Galois cohomology.

Theorem 55. (Local reciprocity law) (cf. [7, Ch 5 Thm 1.3]) Let L/K

be a �nite Galois extension of local �elds. Then there is a canonical

homomorphism

(·, L/K) : K∗ → Gal(L/K)ab

called the norm residue symbol. It is surjective and its kernel is NL/KL
∗.

For archimedean local �elds there is only a single nontrivial norm

residue symbol:

Example 56. For the �eld extension C/R of local �elds the norm

residue symbol is given by

(α,C/R) =

id α > 0

σ α < 0

where id, σ ∈ Gal(C/R) are the identity map and the complex conju-

gation respectively.

In the non-archimedean case the norm residue symbol is much more

di�cult to understand. For unrami�ed extensions however the norm
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residue symbol can be computed explicitly in terms of its Frobenius

element.

Proposition 57. (cf. [7, Ch 4 Thm 6.5]) Let L/K be an unrami�ed

extension of non-archimedean local �elds of degree n and let ϕ = ϕL/K

be the Frobenius element in Gal(L/K). Then for α ∈ K∗ we have that

(α,L/K) = ϕν(α).

In the special case of the totally rami�ed extension Qp(ζpn)/Qp one

can compute the norm residue symbol with transcendental methods.

Theorem 58. (cf. [7, Ch 5 Thm 2.4]) Let a = upνp(a) ∈ Q∗p. Then

(a,Qp(ζpn)/Qp) = σ

where σ ∈ Gal(Qp(ζpn)/Qp) is given by σ(ζpn) = ζu
−1

pn .

Now we want to use the local reciprocity law to �nd the maximal

abelian extension Kab of an arbitrary local �eld K.

Theorem 59. (existence theorem) (cf. [7, Ch 5 Thm 1.4]) Let K

be a local �eld. Then the map L 7→ NL = NL/KL
∗ gives a one-one

correspondence between �nite abelian �eld extensions of K and the open

subgroups of �nite index in K∗. Furthermore we have

L1 ⊆ L2 ⇐⇒ NL1 ⊇ NL2 , NL1L2 = NL1 ∩NL2 , NL1∩L2 = NL1NL2 .

Hence �nding abelian extensions of K is equivalent to �nding open

subgroups of K∗ with �nite index. The �eld corresponding to some

subgroup N ≤ K∗ is called the class �eld of N . From Prop. 50 we

know that

K∗ ∼= 〈π〉 × U.

So every open subgroup with �nite index contains a subgroup of the

form 〈πf〉×U (n) for some f, n ∈ N which is also open and of �nite index.

Therefore every �nite abelian extension L/K is contained in the class

�eld of such a group 〈πf〉×U (n). Hence those class �elds are important

and to obtain them we will �rst determine those corresponding to 〈πf〉×
U . We need the following theorem:

Theorem 60. (cf. [7, Ch 5 Thm 1.7]) Let L/K be an abelian extension

of local �elds then

(i) L/K is unrami�ed if and only if U ⊆ NL/K(L∗).
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(ii) L/K is tamely rami�ed if and only if U (1) ⊆ NL/K(L∗).

Hence the unrami�ed extension L/K of order f corresponds to the

group 〈πf〉×U . The class �elds of 〈π〉×U (n) can be obtained explicitly

by Lubin-Tate modules which are a direct generalization of the case

K = Qp that we will discuss now.

Example 61. For K = Qp the class �eld to 〈p〉 × U (n) is given by

L = Qp(ζpn) and the class �eld to 〈pf〉 × U is given by the unique

unrami�ed extension of degree f (i.e. L = Qp(ζpf−1)). So the maximal

abelian extension of Qp is given by Qab
p = Qp({ζn : n ∈ N}). This is

the local version of the famous Kronecker-Weber theorem.

Theorem 62. (Kronecker-Weber) (cf. [7, Ch 5 Thm 1.10]) The max-

imal abelian extension Qab of Q is given by

Qab = Q({ζn : n ∈ N}).

3.2. Formal groups and Lubin-Tate modules. In order to use lo-

cal class �eld theory to �nd the maximal abelian extensions of arbitrary

local �elds we will introduce the notion of formal groups and Lubin-

Tate modules.

De�nition 63. (a) A one dimensional commutative formal group over

a ring R is a formal power series F (X, Y ) ∈ R[[X, Y ]] such that

(i) F (X, Y ) ≡ X + Y mod deg 2

(ii) F (X, Y ) = F (Y,X)

(iii) F (F (X, Y ), Z) = F (X,F (Y, Z))

(b) Let F and G be formal groups over R. Then a formal group

homomorphism f : F → G is a power series f ∈ R[[X]] such that

f(F (X, Y )) = G(f(X), f(Y )).

Example 64. Let R be an arbitrary ring. Then

Ga(X, Y ) = X + Y

and

Gm = X + Y +XY

are formal groups over R called additive and multiplicative formal group

respectively.
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The power series

f(X) = log(X + 1) =
∞∑
n=1

(−1)n+1X
n

n

is a formal group isomorphism

f : Gm→̃Ga

with inverse

f−1(X) = eX − 1 =
∞∑
n=1

Xn

n!
.

Theorem 65. (cf. [7, Ch 5 Thm 4.3]) Let F be a formal group over

R. The set EndR(F ) of all homomorphisms from F into itself form a

ring whose addition and multiplication are given by

(f +F g)(X) = F (f(X), g(X))

and

f ◦ g(X) = f(g(X)).

De�nition 66. (a) A formal R-module is a formal group F over R

together with a ring homomorphism

[·]F : R→ EndR(F )

such that for a ∈ R we have [a]F (X) ≡ aX mod deg 2.

(b) Let F and G be formal R-modules. Then a homomorphism of

formal R-modules is a formal group homomorphism f : F → G such

that for any a ∈ R

f([a]F (X)) = [a]G(f(X)).

Now let R be a valuation ring of a local �eld K. Then we can de�ne

Lubin-Tate modules as follows:

De�nition 67. A Lubin-Tate module over R w.r.t. the prime element

π ∈ R is a formal R-module F such that

[π]F ≡ Xq mod π

where q is the number of elements of the residue class �eld of K.
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Example 68. The formal group Gm is a Zp-module with the multipli-

cation given by

[a]Gm(X) = (X + 1)a − 1 =
∞∑
k=1

(
a

k

)
Xk.

It is a Lubin-Tate module w.r.t. p because

[p]Gm(X) = (X + 1)p − 1 ≡ Xp mod p.

Concerning existence and uniqueness of Lubin-Tate modules on ar-

bitrary local �elds K we have the following theorem.

Theorem 69. (cf. [7, Ch 5 Thm 4.6]) Let π ∈ R be a prime.

(a) Let e ∈ R[[X]] be a formal power series such that

e(X) ≡ πX mod deg 2

and

e(X) ≡ Xqmod π.

Then there is a uniquely determined Lubin-Tate module F = Fe such

that [π]F = e.

(b) Two Lubin-Tate modules w.r.t. π are isomorphic as formal R-

modules.

Now we will use Lubin-Tate modules to generalize the Kronecker-

Weber theorem. At �rst we will construct actual R-modules from our

Lubin-Tate modules. Therefore denote by p̄ be the maximal ideal in

the algebraic closure K̄ of K.

Proposition 70. (cf. [7, Ch 5 Thm 5.1]) (a) Let F be a formal R-

module. Then for x, y ∈ p̄ and a ∈ R the operations

x+F y = F (x, y) and a · x = [a]F (x)

make p̄ into an R-module in the usual sense. We denote this module

by p̄F .

(b) If f : F → G is a homomorphism of formal R-modules then

f : p̄F → p̄G is a homomorphism of R-modules.

De�nition 71. (a) If F is a Lubin-Tate module over R w.r.t. π then

we de�ne by

F (n) = {λ ∈ p̄F : [πn]F (λ) = 0} = ker([πn]F )
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the group of πn division points which is also an R-submodule of p̄F .

(b) De�ne the �eld of πn division points (or the Lubin-Tate extension

Ln/K w.r.t. π of degree n) Ln = K(F (n)) as the �eld obtained by

adjoining the πn division points to K.

One can show that the Lubin-Tate extensions Ln/K only depend on

π and not on the Lubin-Tate module F chosen.

Example 72. For R = Zp and F = Gm over R we have

[pn]Gm(X) = (X + 1)p
n − 1.

So Gm(n) = {ζkpn − 1 : 0 ≤ k ≤ pn − 1} and hence Ln = Qp(ζpn).

To generalize this example to arbitrary local �elds we need to �nd

out more about the structure of F (n). Clearly F (n) is an R-module

and hence EndRF (n) is also an R module.

Theorem 73. (cf. [7, Ch 5 Thm 5.2]) The group F (n) of πn division

points is a free R/πnR module of rank 1.

Proof. An isomorphism f : F → G of Lubin-Tate modules induces

isomorphisms f : p̄F → p̄G and f : F (n) → G(n) of R-modules. Since

all Lubin-Tate modules w.r.t. π are isomorphic we can choose F = Fe,

where e(X) = Xq + πX (cf. Thm.69). Then F (n) are the qn zeros of

the polynomial en = e◦ · · · ◦e which can be shown to be separable. For

λn ∈ F (n)\F (n− 1) the map

Λn : R→ F (n)

a 7→ [a]F (λn)

is a homomorphism of R-modules with kernel ker(Λn) = πnR. It

induces an isomorphism R/πnR→̃F (n) since both sides have order qn.

�

Corollary 74. (cf. [7, Ch 5 Cor 5.3]) The map a 7→ [a]F induces

isomorphisms

R/πnR→̃EndR(F (n))

and

U/U (n)→̃AutR(F (n)).



26

Theorem 75. (cf. [7, Ch 5 Thm 5.4]) Let Ln/K be a Lubin-Tate

extension w.r.t. a prime π ∈ K and let F be a corresponding Lubin-

Tate module s.t. e(X) := [π]F (X) is a polynomial of degree q (where

q is the degree of the residue class �eld of K). Then Ln/K is totally

rami�ed of degree qn−1(q− 1) (where q is the number of elements of κ)

with Galois group

Gal(Ln/K) ∼= AutR(F (n)) ∼= U/U (n).

So for any σ ∈ Gal(Ln/K) there is a unique class u mod U (n) such

that

∀λ ∈ F (n) : σ(λ) = [u]F (λ).

Let λn ∈ F (n)\F (n− 1). Then λn is prime in Ln and

φn(X) =
en(X)

en−1(X)

is its minimal polynomial. In particular we have Ln = K(λn).

Proof. For

e(X) = [π]F (X) = Xq + π(aq−1X
q−1 + · · ·+ a2X

2) + πX

we see that

φn(X) =
en(X)

en−1(X)
= en−1(X)q−1+π(aq−1en−1(X)q−2+· · ·+a2en−1(X))+π

is an Eisenstein polynomial (and hence irreducible) of degree (q −
1)qn−1. Clearly λn is a zero of en(X) but not of en−1(X) and hence

φn(X) is the minimal polynomial of λn and Ln = K(λn)/K is totally

rami�ed. Now every σ ∈ Gal(Ln/K) induces an R-module automor-

phism on F (n). So we get a homomorphism of R-modules

Φ : Gal(Ln/K)→ AutR(F (n)).

This homomorphism Φ is injective because Ln = K(F (n)) and surjec-

tive because

|Gal(Ln/K)| ≥ [K(λn) : K] = qn−1(q − 1) = |U/U (n)| = |AutR(F (n))|.

�

As a generalization of the explicit description of the norm residue

symbol of Qp(ζpn)/Qp we get an explicit formula for the norm residue

symbol of Lubin-Tate extensions by the following theorem.
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Theorem 76. (cf. [7, Ch 5 Thm 5.5]) Let Ln/K be a Lubin-Tate

extension w.r.t. π and a = uπνK(a) ∈ K∗. Then

(a, Ln/K) = σ

where σ ∈ Gal(Ln/K) is given by σ(λ) = [u−1]F (λ).

Corollary 77. (cf. [7, Ch 5 Cor 5.6]) The �eld Ln/K of the πn division

points is the class �eld to the group 〈π〉 × U (n) ⊆ K∗.

For the maximal abelian extension Kab/K we get the following ana-

logue to the local Kronecker-Weber theorem:

Corollary 78. (cf. [7, Ch 5 Cor 5.7]) Let K be a nonarchimedean local

�eld, K̃ its maximal unrami�ed extension and Lπ =
⋃
n∈N Ln the union

of the Lubin-Tate extensions of K w.r.t. some prime π ∈ K. Then

Kab = K̃Lπ.
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4. Elliptic Curves and Complex Multiplication

This chapter contains the basic theory on elliptic curves and complex

multiplication. It is based on [10, Ch 3], [11, Ch 6] and [4, Ch 12].

4.1. Basic facts about elliptic curves.

De�nition 79. An elliptic curve de�ned overK is a pair (E,O), where

E/K is a nonsingular projective variety over K of dimension one and

of genus one and O ∈ E(K) a K-rational point (called the origin of

E).

This de�nition is very abstract. To work with elliptic curves we will

use the following proposition. It says that any elliptic curve can be

described by the so called Weierstrass equation.

Proposition 80. (cf. [10, Ch 3 Prop 3.1]) Let E be an elliptic curve

de�ned over K.

(a) There exist functions x, y ∈ K(E) such that the map

ϕ : E(K)→ P2(K)

P 7→

(x(P ) : y(P ) : 1) P 6= O

(0 : 1 : 0) P = O

is an isomorphism of E/K onto a smooth curve given by an a�ne

Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with coe�cients a1, . . . , a6 ∈ K and satisfying ϕ(O) = [0 : 1 : 0]. The

functions x, y ∈ K(E) are called Weierstrass coordinates of E.

(b) Any two Weierstrass equations for E as in (a) are related by a

linear change of variables of the form

X = u2X ′ + r Y = u3Y ′ + su2X ′ + t

with u ∈ K∗ and r, s, t ∈ K.

(c) Conversely every smooth cubic curve given by a Weierstrass equa-

tion with coe�cients in K is an elliptic curve de�ned over K with base

point O = [0 : 1 : 0].

So any elliptic curve is isomorphic to a smooth cubic curve with an

in�ection point in O = [0 : 1 : 0]. Hence if we speak of an elliptic curve
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over K in the following we will always �x a corresponding Weierstrass

equation with coe�cients in K to describe the curve.

If char(K) 6= 2 then one can simplify the equation by the substitu-

tion

X = x′, Y = y′ − a1x+ a3
2

,

which gives the equation

E : (y′)2 = (x′)3 +
b2
4

(x′)2 +
b4
2
x′ +

b6
4

with

b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6.

If char(K) 6= 2, 3 one can simplify the equation even further by setting

x′ = x′′ − b2
12
, y′ = y′′.

This gives the equation

E : (y′′)2 = (x′′)3 − c4
48
x′′ − c6

864

with

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6.

Furthermore we de�ne the quantities

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where ∆ is called the discriminant of E and for ∆ 6= 0 de�ne the so

called j-invariant of E by

j =
c34
∆
.

They satisfy the following relations:

4b8 = b2b6 − b24

and

123∆ = c34 − c26.

Note that all the quantities b2, b4, b6, c4, c6,∆, j can also be de�ned (and

will be used) for char(K) = 2, 3.

The next proposition shows the importance of these quantities.
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Proposition 81. (cf. [10, Ch 3 Prop 1.4]) (a) A curve E given by

a Weierstrass equation is singular if and only if ∆ = 0. (I.e. for an

elliptic curve we always have ∆ 6= 0.)

(b) Two elliptic curves de�ned over K are isomorphic over K if and

only if they have the same j-invariant.

(c) For any j0 ∈ K there is an elliptic curve de�ned over K(j0)

whose j-invariant is equal to j0.

4.2. Addition on elliptic curves and E(C) as complex Lie group.

Let (E,O) be an elliptic curve de�ned over K. Then by Bézout's

Theorem ([3, Ch 8.7 Thm 10]) any line L ⊂ P2 intersects E at exactly

three points (with multiplicity) in P2(K). So we can de�ne an addition

on E(K) by the following:

De�nition 82. Let P,Q ∈ E(K). Then the line through P and Q

intersects E in a third point R ∈ E(K) and the line through this point

R and the origin O intersects in a point S ∈ E(K), which we de�ne to

be the sum of P and Q. We write S = P +Q.

One can now show that E(K) endowed with this addition forms

an abelian group (i.e. a Z-module) with neutral element O. In fact,

except of associativity all the properties are immediate consequences

of the de�nition. A proof for associativity using the Riemann-Roch

theorem is given in [10, Ch 3 Prop 3.4e].

The addition on E can also be described explicitly in coordinates.

The coordinates of P + Q are then given by rational functions in the

coordinates of P and Q (i.e. addition is a morphism of K-varieties on

E). Hence the complex points E(C) of E form a complex Lie group.

One can show that this Lie group E(C) is isomorphic to a complex

torus C/Λ with the induced addition from C where Λ = {n1ω1+n2ω2 ∈
C|n1, n2 ∈ Z} is a lattice with ω1, ω2 ∈ C linear independent complex

numbers over R. We have even more: every rational function on E(C)

corresponds bijectively to a meromorphic function f ∈ C(Λ) on the

Riemann surface C/Λ. Those meromorphic functions are called elliptic

functions.

From the theory of elliptic functions (for example see [10, Ch 6])

one has that C(Λ) = C(p, p′) where p = p(z,Λ) ∈ C(Λ) is the so

called Weierstrass-p-function of the lattice Λ. This function p satis�es
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a di�erential equation

(p′)2 = 4p3 − g2p− g3.

The elliptic curve de�ned by this equation is then isomorphic (in the

sense of isogenies, which is de�ned below) to the elliptic curve E that

we started with.

All in all we have the following theorem:

Theorem 83. (cf. [10, Ch 6 Cor 5.1.1]) Let E/C be an elliptic curve.

Then there exists a lattice

Λ ⊂ C

unique up to homothety (i.e. Λ1 ∼ Λ2 ⇔ ∃α ∈ C∗ : Λ1 = αΛ2) and a

complex analytic isomorphism

φ : C/Λ→ E(C) ⊂ P2(C)

z 7→

(p(z,Λ) : p′(z,Λ) : 1) z 6= 0

(0 : 1 : 0) z = 0

of complex Lie groups.

4.3. Isogenies and complex multiplication. Next we de�ne the

homomorphisms between elliptic curves.

De�nition 84. Let E1 and E2 be elliptic curves over K. A morphism

φ : E1 → E2 of algebraicK-varieties with φ(O) = O is called an isogeny

from E1 to E2. We write φ ∈ Hom(E1, E2).

Theorem 85. (cf. [10, Ch 3 Thm 4.8]) Let E1, E2 be elliptic curves

over K, φ : E1 → E2 an isogeny and P,Q ∈ E1. Then

φ(P +Q) = φ(P ) + φ(Q).

Hence an isogeny is also a homomorphism of abelian groups. Since

addition on elliptic curves is a morphism de�ned over K the sum of two

isogenies is again an isogeny. ThereforeHom(E1, E2) is a Z-module and

End(E) = Hom(E,E) forms a ring called the ring of endomorphisms

on E.

De�nition 86. For any m ∈ Z we can de�ne the multiplication-by-m

isogeny, denoted by [m] : E → E, in the natural way ([m] = m · id).
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Proposition 87. (cf. [10, Ch 3 Thm 4.2]) (a) Let E be an elliptic

curve over K and m ∈ Z\{0}. Then [m] 6= [0].

(b) Let E1, E2 be elliptic curves. Then Hom(E1, E2) is a torsion free

Z-module.

(c) The ring End(E) is an integral domain and has characteristic 0.

In most cases one has End(E) ∼= Z. But for us the other case is

important.

De�nition 88. Let E be an elliptic curve over K. We say that E has

complex multiplication (CM) if End(E) 6∼= Z.

Example 89. The elliptic curve E/C given by the equation y2 = x3+x

has complex multiplication. For example the map

φ(x, y) = (−x, iy)

is an isogeny with φ2 = [−1] and hence End(E) 6∼= Z. So E has complex

multiplication.

If E is an elliptic curve over C then End(E) must be an order in an

algebraic number �eld. More precisely we have the following proposi-

tion:

Proposition 90. (cf. [4, Ch 12 Thm 4.7]) Let E be an elliptic curve

over C with E(C) ∼= C/Λτ (where Λτ = Z + τZ ⊂ C, τ ∈ C\R). Then
End(E) is commutative. The curve E has complex multiplication if

and only if τ is an imaginary quadratic number. In this case End(E)

is an order in the algebraic number �eld Q(τ).

Corollary 91. For the elliptic curve E : y2 = x3+x the endomorphism

ring is isomorphic to the Gaussian integers Z[i].

For arbitrary �elds K the situation is slightly more di�cult:

Theorem 92. (cf. [10, Ch 3 Cor 9.4]) Let E be an elliptic curve over

a �eld K. Then End(E) is isomorphic to either Z, an order in an

imaginary quadratic �eld or an order7 in a quaternion algebra over Q.
If char(K) = 0 then only the �rst two are possible (i.e. End(E) is

commutative).

7An order R of a �nitely generated Q-algebra K is a subring R ⊂ K such that R is
�nitely generated as a Z-module which satis�es R⊗Q = K.



33

4.4. Division points and Galois actions.

De�nition 93. Let E/K be an elliptic curve and n ∈ N. We de�ne

E[n] = {P ∈ P2(K) : [n]P = O} to be the n-division points of E.

If E is an elliptic curve over C then E(C) ∼= C/Λ for some lattice Λ.

Hence E[n] ∼= (Z/nZ)⊕ (Z/nZ).

Obviously the endomorphism ring End(E) acts on the n-division

points E[n]. By choosing generators of P1 and P2 of E[n] we get the

following proposition:

Proposition 94. Let E/K be an elliptic curve and n ∈ N. Then there

is a homomorphism

τ : End(E)→M2(Z/nZ).

De�nition 95. Let E be an elliptic curve over Q. We de�ne the �eld

of de�nition of E[n] over Q as Q(E[n]) = Q(x1, y1, . . . , xn2−1, yn2−1)

where (x1 : y1 : 1), . . . , (xn2−1 : yn2−1 : 1), (0 : 1 : 0) are the n-division

points of E.

The �eld Q(E[n]) has some neat properties:

Proposition 96. (cf. [11, Ch 6.2 p.189]) Let E be an elliptic curve

over Q.
(a) Let P = (x, y) ∈ E[n] be an n-division point. Then x and y are

algebraic over Q.
(b) The �eld of de�nition Q(E[n]) is a �nite Galois extension of Q.

Now we will examine what Galois actions do with points on elliptic

curves.

De�nition 97. Let K/Q be a Galois extension and E be an elliptic

curve de�ned over Q. Then for P ∈ E(K) and σ ∈ Gal(K/Q) de�ne

σ(P ) =

(σ(x), σ(y)) P = (x, y) 6= O

O P = O
.

Proposition 98. (cf. [11, Ch 6.2 p.186]) Let E be an elliptic curve

over Q and let K/Q be a Galois extension. Then

(a) E(K) is a subgroup of E(C).

(b) For σ ∈ Gal(K/Q) and P ∈ E(K) we have σ(P ) ∈ E(K).
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(c) For all P ∈ E(K) and all σ ∈ Gal(K/Q) we have

σ(P +Q) = σ(P ) + σ(Q).

So the Galois group Gal(K/Q) acts on the abelian group E(K) (i.e.

E(K) is a Gal(K/Q)-module) and for K ⊇ Q(E[n]) we have that

Gal(K/Q) acts on E[n]. Similarly to Prop.94 we can describe this

action explicitly via two generators P1 and P2 of E[n]. By looking at

the kernel of this action one can now show the following theorem.

Theorem 99. (cf. [11, Ch 6.3 p.196]) Let E be an elliptic curve over

Q and n ≥ 2 an integer. Then there is an injective homomorphism

ρn : Gal(Q(E[n])/Q)→ GL2(Z/nZ).
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5. Abelian Extensions of Q(i) and Ramification of Prime

Ideals in these Extensions

In this chapter we will start by showing how abelian extensions of

Q(i) can be obtained by adjoining division points of a certain elliptic

curve E. (We mainly follow the treatment in [11, Ch 6]. A more general

(but less explicit) approach with arbitrary quadratic �eld extensions

can be found in [9, Ch 2]) . Then we will study the rami�cation of

prime ideals in some of these extensions. Finally we will localize these

extensions at their rami�ed primes and try to �nd their norm groups

via a suitable Lubin-Tate prime element.

5.1. Abelian extensions of Q(i). The elliptic curve E that we will

use in the remainder of this paper is given by:

E : y2 = x3 + x.

It has the endomorphism ring End(E) ∼= Z[φ] ∼= Z[i] (see Cor. 91),

where φ is given by

φ : E(C)→ E(C)

(x, y) 7→ (−x, iy).

Now let K[n] := Q(i)(E[n]) be the �eld generated by i and the

coordinates of the n-division points of E. If we �x generators P1 and

P2 of E[n] ∼= (Z/nZ)2 then by using Prop. 94 and Thm. 99 we see

that both φ and the elements of Gal(K[n]/Q) can be represented as

elements of GL2(Z/nZ) acting on E[n] and we can identify φ and the

elements of Gal(K[n]/Q) with such matrices.

We then have the following lemma:

Lemma 100. (cf. [11, Ch 6 p.206�]) The matrix φ is not a scalar

matrix modulo l for all primes l dividing n. I.e. for φ =

(
a b

c d

)
at

least one of the following conditions is true:

(i) b 6≡ 0(mod l);

(ii) c 6≡ 0(mod l);

(iii) a 6≡ d(mod l).

Now we can use another lemma for φ:
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Lemma 101. (cf. [11, Ch 6 p.208�]) Let A ∈ GL2(Z/nZ) be a matrix

that is not a scalar matrix modulo l for any prime l dividing n. Then

the subgroup

G = {B ∈ GL2(Z/nZ) : AB = BA} ≤ GL2(Z/nZ)

is abelian.

This lemma now allows us to prove the following theorem:

Theorem 102. (cf. [11, Ch 6 p.205�]) The extension K[n]/Q(i) is

abelian.

Proof. For σ ∈ Gal(Kn/Q(i)) we have:

σ(φ(x, y)) = σ(−x, iy) = (−σ(x), σ(i)σ(y)) = (−σ(x), iσ(y))

and

φ(σ(x, y)) = φ(σ(x), σ(y)) = (−σ(x), iσ(y)).

Hence σ commutes with φ and by Lemma 101 the extension Kn/Q(i)

is abelian. �

Conversely one can show that the maximal abelian extension of Q(i)

is in fact given by
∏

n∈NK[n]/Q(i) (cf. [9, Ch 2 �5]). Our goal is now

to describe these abelian extensions as explicitly as possible with focus

on rami�cations of prime ideals.

5.2. Division polynomials. First we want to �nd an explicit alge-

braic description of the n-division points E[n]. This can be done via

the so called division polynomials (cf. [10, Ch 3 Ex 7] and [4, Ch 13.9]):

De�nition 103. Let E/K be an elliptic curve given in short Weier-

strass form E : y2 = x3 + Ax+B. We de�ne the division polynomials

ψn ∈ Z[A,B, x, y] recursively by the following:

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx− A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− A2 − 8B2)
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and

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψn+1 n ≥ 2

ψ2n =
ψn
2y

(ψn+2ψ
2
n−1 − ψn−2ψ2

n+1) n ≥ 3.

Proposition 104. Let E/K be an elliptic curve as in the de�nition

above. Then the set of points P = (x, y) ∈ E(K) for which ψn vanishes

are exactly the set of n-division points E[n] without the point O at

in�nity.

Proof. (Sketch) By using the explicit addition formula on E one can

show with induction that the multiplication-by-n maps [n] are given

by

[n](x, y) =

(
φn(x, y)

ψn(x, y)2
,
ωn(x, y)

ψn(x, y)3

)
,

where φn, ωn ∈ K[x, y] are polynomials in two variables that are rela-

tively prime to ψn. Hence the points P ∈ E(K) for which ψn(P ) = 0

are exactly the n-division points of E. �

So the n-division polynomial characterizes the n-division points.

Example 105. For our elliptic curve E : y2 = x3 + x we get

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6x2 − 1

ψ4 = 4y(x6 + 5x4 − 5x− 1)
...

5.3. The criterion of Néron-Ogg-Shafarevic. To gain results about

rami�cation of prime ideals we will need some theory about elliptic

curves over local �elds.

In the following let K be a local �eld with valuation ν, valuation

ring R and residue class �eld κ. Let E/K be an elliptic curve with

Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Then for every u ∈ K the substitution (x, y) 7→ (u−2x, u−3y) leads to

a new equation where ai is replaced by uiai. Hence there is always a
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Weierstrass equation such that all coe�cients lie in R. Then among all

those Weierstrass equations there has to be one with minimal discrim-

inant ∆ in the following sense:

De�nition 106. Let E/K be an elliptic curve. A Weierstrass equation

E : y2+a1xy+a3y = x3+a2x
2+a4x+a6 is called a minimal Weierstrass

equation for E if ν(∆) is minimized subject to the condition that all

its coe�cients a1, a2, a3, a4, a6 lie in R.

There is a su�cient condition for minimality that is rather easy to

check: If ai ∈ R and ν(∆) < 12 then E is minimal (c.f. [10, Ch 7 Rem

1.1]). Now we de�ne good reduction on elliptic curves that allows us

to state the criterion of Néron-Ogg-Shavarevich which tells us that in

most cases the m-division points generate a nonrami�ed extension.

De�nition 107. Let E be an elliptic curve over a local �eld K and

let Ẽ be the reduction modulo the maximal ideal p in R of a minimal

Weierstrass equation of E. Then we say that E has good reduction if

the curve Ẽ/κ is nonsingular.

Theorem 108. (Criterion of Néron-Ogg-Shafarevich, cf. [10, Ch 7

Thm 7.1]) Let E be an elliptic curve over a local �eld K and let κ be

the residue class �eld of K. Then the following are equivalent:

(a) The elliptic curve E/K has good reduction.

(b) The set ofm-division points E[m] (i.e. the extensionK(E[m])/K)

is unrami�ed for all integers m ∈ N which are relatively prime to

char(κ).

Example 109. Let p be a prime ideal in K = Q(i), Kp the corre-

sponding local �eld and κp the residue class �eld. If we look at our

elliptic curve

E : y2 = x3 + x

over Kp we get that ∆ = (1 + i)12 = −64. Using Prop. 81 we get

that for char(κp) 6= 2 (i.e p 6= (1 + i)) the curve Ẽ is nonsingular and

the criterion tells us that the extensions K[n] = Q(i)(E[n])/Q(i) are

unrami�ed at p for all n ∈ N which are relatively prime to char(κp).

For p = (1 + i) however Ẽ is singular and we will see below that K[3]

is indeed rami�ed at p although 3 - char(κp).
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5.4. Rami�cation of primes in the extension Q(i)(E[n])/Q(i).

Using the results above we will now explicitly determine the rami�ca-

tion of primes in the extension K[n] = Q(i)(E[n])/Q(i) for n = 2, 3, 4,

where E : y2 = x3 + x is the elliptic curve studied above.

To do so we �rst recall the structure of the prime ideals in Z[i] = OQ(i)

�rst:

Proposition 110. (cf. [7, Ch 1 Thm 1.4]) Let p be a prime in Z and

R = Z[i]. If

(i) p = 2 then (p)R = (1 + i)2 (we say p = 2 is rami�ed) and

R/(1 + i) ∼= F2),

(ii) p ≡ 1 mod 4 then there are a, b ∈ N with a2 + b2 = p and hence

(p)R = (a+bi)(a−bi) (we say p splits) and R/(a+bi) ∼= R/(a−bi) ∼= Fp,
(iii) p ≡ 3 mod 4 then (p) remains prime in R. I.e. (p)R = (p) (we

say p remains inert) and R/(p) ∼= Fp2.

5.4.1. The case n = 2: This case is fairly easy: The 2-division points

are given by (0, 0), (i, 0), (−i, 0), O. All of their coordinates lie in Q(i)

and so the extension K[2]/Q(i) is trivial and therefore unrami�ed.

5.4.2. The case n = 3:

Proposition 111. The 3-division points of

E : y2 = x3 + x

are given by

E[3] = {O, (α,±β), (−α,±iβ),

((2 +
√

3)iα,±β 1 +
√

3

2
(1− i)),

(−(2 +
√

3)iα,±β 1 +
√

3

2
(1 + i))}

where α =
√

2√
3
− 1 and β =

√
2√
3
α.8

Proof. By Ex.105 the x-coordinates of the 3-division points (except O)

are given by the zeros of

ψ3 = 3x4 + 6x2 − 1.

8Here and in the following we stick to the following rule: If we write
√
a resp. a

1
n

we always have a ∈ R+ and we always mean the unique positive real root of T 2− a
resp. Tn − a.
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By a simple calculation we get the roots α,−α, (2+
√

3)iα,−(2+
√

3)iα.

Plugging those into the equation of E one gets the points given in the

proposition. �

Since
√

3 = 3(α2+1)
2
∈ Q(i)(α) we haveK[3] = Q(i)(E[3]) = Q(i)(α, β).

To study K[3] we will study the following tower of �eld extensions:

N = M(β) = K[3]

|
M = L(α)

|
L = Q(ζ) = Q(i,

√
3)

|
Q(i)(
|
Q

)

where ζ = ζ12 = e
πi
6 =

√
3+i
2

.9 Then [L : Q(i)] = [M : L] = [N : M ] = 2

and we can study these extensions individually.

Now we will look at the rami�cation of prime ideals in the extension

N/Q(i). Doing so we use the following notation: If p is a prime ideal

in Q(i) and F/Q(i) is a �eld extension we denote by pF a prime ideal

in OF lying over p.

The case p 6= (3), (1 + i):

Proposition 112. Let p 6= (3), (1 + i) be a prime ideal in Q(i) and

pN be an ideal in N lying over p. Then the extension NpN/Q(i)p is

unrami�ed.

Proof. By the theorem of Néron-Ogg-Shavarevich (Thm. 108) the

primes p that can ramify are only those with bad reduction and those

for which κp divides n = 3. Since E only has bad reduction at p = (1+i)

(see Ex. 109) and char(κp) = 3 only if p = (3) the extension N/Q(i)

is unrami�ed in all other cases. �

The case p = (3):

9In the following ζ = ζ12 unless stated otherwise.
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Theorem 113. At p = (3) the extension N/Q(i) is totally rami�ed.

I.e. there is a unique prime ideal pN ⊂ ON such that p8N = (3),

e(NpN/Q(i)(3)) = 8 and f(NpN/Q(i)(3)) = 1.

Proof. De�ne ν3 to be an arbitrary extension of the valuation of (3) in

Q(i) onto N (with ν3(3) = 1). Then

ν3(β) = ν3

(√
2√
3
α

)

=
1

2
ν3

(
2√
3

)
+

1

2
ν3(α)

= −1

4
+

1

2
ν3

(√
2√
3
− 1

)

= −1

4
− 1

8
= −3

8
.

Hence 8 | e(NpN/Q(i)(3)) for some prime ideal pN . Since 8 = [N :

Q(i)] ≥ [NpN : Q(i)(3)] ≥ 8 we get what is claimed. �

The case p = (1 + i): We will need the following theorem of Kummer:

Theorem 114. (Kummer, cf. [1, Ch 3.App, Kummer's Thm]) Let

L/K be an extension of algebraic number �elds. Let θ ∈ OL such that

OL = OK [θ] and let q ∈ OK [T ] be its minimal polynomial over K. Now

�x a prime ideal pK in OK. Denote by res(q, p) the polynomial obtained

by reducing q modulo pK (i.e. q as a polynomial in κ[T ], where κ is

the residue class �eld of Kp). If

res(q, pK) =
t∏

j=1

g
ej
j

is the factorization of res(q, p) into irreducible polynomials gj which

have degree fj, then there are polynomials Gj ∈ OK [T ] with res(Gj, p) =

gjsuch that

pKOL =
r∏
j=1

(pK , Gj(θ))
ej

with the fj to be the respective residue class �eld degrees.

Now we can determine the rami�cation at p = (1 + i):
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Theorem 115. Let pN be a prime ideal in N lying over (1 + i). Then

the extension NpN/Q(i)(1+i) is rami�ed with e(NpN/Q(i)(1+i)) = 4 and

f(NpN/Q(i)(1+i)) = 2.

To prove this theorem we will determine the rami�cation of p = (1+i)

in each extension in the �eld tower N/M/L/Q(i) separately. Since all

these extensions have degree two we can hope that there is always a

generator θ of the ring of integers which we need to use Kummer's

theorem. So the main part that remains is to �nd such a generator for

every extension.

For the extension L/Q(i) this is rather easy because L = Q(ζ12) is a

cyclotomic �eld and one can use the following lemma:

Lemma 116. (cf. [7, Ch 1 Prop 10.2]) Let n be a natural number and

L = Q(ζn) the corresponding cyclotomic �eld. (I.e. ζn is a primitive

n-th root of unity.) Then the ring of integers has a Z-basis given by

1, ζn, . . . , ζ
ϕ(n)−1
n . I.e.

OL = Z⊕ ζnZ⊕ · · · ⊕ ζϕ(n)−1n Z = Z[ζn].

In our case this means

Lemma 117. For L = Q(ζ12) we have

OL = Z[ζ12] ∼= Z[T ]/(T 4 − T 2 + 1).

Now we can prove the �rst step of the theorem.

Lemma 118. The extension L/Q(i) is inert in (1 + i). I.e. pL =

(1 + i)OL is the unique prime ideal in L lying over (1 + i) and we have

e(L(1+i)/Q(i)(1+i)) = 1

and

f(L(1+i)/Q(i)(1+i)) = 2.

Proof. By Lemma 116 we have

OL = Z[ζ] = Z[i][ζ]
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and since

ζ2 =
1

2
(1 +

√
3i)

= i
1

2
(
√

3 + i)− 1

= iζ − 1

the minimal polynomial of ζ over Z[i] is given by

mipo(ζ,Q(i)) = T 2 − iT − 1.

After reducing it modulo (1 + i) (i.e. reducing it to the residue class

�eld κ ∼= F2 of Q(i)(1+i) we get

res(mipo(ζ,Q(i)), (1 + i)) = T 2 + T + 1 ∈ κ[T ],

which is irreducible. So by Kummer's theorem (Thm 114) the prime

(1 + i) is purely inert in L and we have e(L(1+i)/Q(i)(1+i)) = 1 and

f(L(1+i)/Q(i)(1+i)) = 2. �

Corollary 119. The residue class �eld λ of L(1+i) is isomorphic to

F4 and ζ∗ := res(ζ) is a generator of the multiplicative group λ∗ (i.e.

ζ∗ 6= 0, 1).

Proof. Let κ ∼= F2 be the residue class �eld of Q(i)(1+i). By Lemma

118 we have [λ : κ] = 2 and by its proof we have

res(mipo(ζ,Q(i)), (1 + i)) = T 2 + T + 1.

Hence ζ∗ = res(ζ) /∈ κ and therefore has to be a generator of λ∗. �

Next we are looking at the extension M/L. To �nd an OL-basis of

OM we multiply α by an element of L such that the result w becomes

integral:

By Prop. 111 we have

α =

√
2√
3
− 1 = (2−

√
3)

1
2 3−

1
4 .

Since 2−
√

3 = 1
2
(4− 2

√
3) = 1

2
(
√

3− 1)2 we get

α = (2−
√

3)
1
2 3−

1
4 = (

√
3− 1)2−

1
2 3−

1
4 =

(
√

3− 1)

2
√

3
2

1
2 3

1
4 .
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We know that ζ8 = e
iπ
4 = 2−

1
2 (1 + i). Hence 2

1
2 = 1+i

ζ8
= (1 + i)ζ78 =

−(1 + i)ζ38 . We get

α =
(
√

3− 1)

2
√

3
2

1
2 3

1
4 = −(

√
3− 1)(1 + i)

2
√

3
ζ383

1
4 = −(

√
3− 1)(1 + i)

2
√

3
w

with w = ζ383
1
4 ∈M .

Lemma 120. The element w = ζ383
1
4 ∈M has the following properties:

(i) M = L(w) = L⊕ Lw.
(ii) w2 = 1− 2ζ2(ζ = ζ12).

(iii) mipo(w,L) = T 2 − (1− 2ζ2).

(iv) For id 6= σ ∈ Gal(M/L) we have σ(w) = −w.
(v) mipo(w,Q) = T 4 + 3.

(vi) w ∈ OM .

Proof. (i) Since M = L(α) and α
w

= − (
√
3−1)(1+i)
2
√
3

∈ L we get M =

L(w).

(ii) w2 = ζ683
1
2 = −i

√
3 = 1− 2ζ2.

(iii) Since w 6∈ L the claim is a direct consequence of (ii).

(iv) Follows directly from (iii) and 0 = TrM/L(w) = w + σ(w).

(v) T 4 + 3 is irreducible over Q and w4 + 3 = 0.

(vi) w ∈ OM is an immediate consequence of (v). �

So we have

M = L⊕ Lw = (Q + ζQ + ζ2Q + ζ3Q)⊕ (Q + ζQ + ζ2Q + ζ3Q)w

and we can represent the elements ofM as 8-tupels of rational numbers.

To �nd out which of them are integral over OL we will compute their

minimal polynomials over L. By doing that we get the following lemma:

Lemma 121. As an additive group the quotient OM/OL[w] is isomor-

phic to (Z/2Z)2. The residue classes are represented by the elements

0, θM , θ
′
M , θ

′′
M given by

θM =
1

2
(1 + ζ + ζ2)(1 + w),

θ
′

M =
1

2
(ζ + ζ2 + ζ3)(1 + w)

and

θ
′′

M =
1

2
(1 + ζ3)(1 + w).
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Proof. Let x = A+Bw be an arbitrary element in M where

A = a1 + a2ζ + a3ζ
2 + a4ζ

3

and

B = a5 + a6ζ + a7ζ
2 + a8ζ

3

lie in L. Since σ(x) = σ(A + Bw) = A− Bw the minimal polynomial

of x over L is given by

mipo(x, L) = T 2 − 2AT + (A2 −B2w2).

Because x is integral inM if and only if x is integral over OL
10, we have

that x ∈ OM if and only if 2A,A2 −B2w2 ∈ OL. So assuming x ∈ OM

we get A ∈ 1
2
OL as a necessary condition. Additionally A2−B2w2 ∈ OL

or equivalently: for every prime ideal pL in OL the valuation νpL(A2 −
B2w2) is nonnegative.11

Since 2A ∈ OL we have

νpL(A) ≥

−2 pL = (1 + i)

0 pL 6= (1 + i)
.

By Thm. 113 there is a unique prime ideal pL,3 in L lying over p = (3).

Since mipo(w,Q) = T 4 + 3 we have

νpL(w2) =

1 pL = pL,3

0 pL 6= pL,3
.

Hence we obtain

νpL(B) ≥


−2 pL = (1 + i)

−1
2

pL = pL,3

0 pL 6= (1 + i), pL,3

and since B ∈ L and νpL,3(L
∗) = Z we can conclude that νpL,3(B) ≥ 0

and hence B ∈ 1
2
OL. Therefore a1, . . . , a8 ∈ 1

2
Z.

Since for a1, . . . , a8 ∈ Z we have that x ∈ OL[w] ⊂ OM all we have

to do is check whether x ∈ OM (i.e. whether A2 − B2w2 ∈ OL) for

10Cf. [7, Thm 2.4 Ch 1]
11Here and in the following for a prime ideal p in a ring R the symbol νp denotes
the normalized valuation on Rp.
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(a1, . . . , a8) ∈ {0, 12}
8. Checking these 28 = 256 cases12 we get that

x ∈ OM if and only if

x ≡ 0, θM , θ
′

M , θ
′′

M mod OL + wOL,

where

θM =
1

2
(1 + ζ + ζ2)(1 + w),

θ
′

M =
1

2
(ζ + ζ2 + ζ3)(1 + w)

and

θ
′′

M =
1

2
(1 + ζ3)(1 + w).

�

We will now compute the minimal polynomial of θM over L directly.

So we will immediately see that in fact θM ∈ OM . (Analogously one

could compute the minimal polynomials of θ
′
M and θ

′′
M to see that they

are also integral.)

Lemma 122. The minimal polynomial of θM = 1
2
(1 + ζ + ζ2)(1 + w)

over L is given by

mipo(θM , L) = T 2 − (1 + ζ + ζ2)T + (−2− ζ + 2ζ2 + 2ζ3).

Proof. Let σ ∈ Gal(M/L) be the nontrivial Galois automorphism of

M/L. Since mipo(w,L) = T 2 − (1− 2ζ2) we have σ(w) = −w. So

σ(θM) = σ(
1

2
(1 + ζ + ζ2)(1 + w)) =

1

2
(1 + ζ + ζ2)(1− w).

Hence

TrM/L(θM) = θM + σ(θM) = 1 + ζ + ζ2.

Furthermore we have13

NM/L(θM) = θMσ(θM)

=
1

4
(1 + ζ + ζ2)2(1− w2)

=
1

4
(1 + ζ + ζ2)22ζ2

= −2− ζ + 2ζ2 + 2ζ3.

12The function FindInteger, which I wrote in Mathematica (see the Appendix),
gives the solutions listed here.
13Here we use w2 = 1 − 2ζ2 (Lemma 120(ii)). In the last computation we use the
function NormalPoly, which I wrote in Mathematica (see the Appendix).
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So

mipo(θM , L) = T 2 − (1 + ζ + ζ2)T + (−2− ζ + 2ζ2 + 2ζ3).

�

Lemma 123. The ring of integers OM of M is given by

OM = OL[θM ].

Proof. By construction of θM we have that θM ∈ OM . So we have

to show that OM ⊆ OL[θM ]. By the calculation above we know that

OM = OL[w, θM , θ
′
M , θ

′′
M ]. So we have to show that w, θ

′
M , θ

′′
M ∈ OL[θM ].

Since

θM =
1

2
(1 + ζ + ζ2)(1 + w)

we have that

w =
2θM

1 + ζ + ζ2
− 1.

By inverting14 the term 1 + ζ + ζ2, we get that

w = (2− ζ − ζ2 + ζ3)θM − 1 ∈ OL[θM ].

We have that

θ
′

M =
1

2
(ζ + ζ2 + ζ3)(1 + w)

=
1

2
ζ(1 + ζ + ζ2)(1 + w)

= ζθM ∈ OL[θM ].

And since

θ
′′

M ≡ θ
′

M + θM mod OL[w]

we have

θ
′′

M ∈ OL[θM ].

Hence OM = OL[θM ]. �

To determine the decomposition of pL in OM by Kummer's Theorem

all we have to do now is to reduce the minimal polynomial of θM over

L modulo (1+ i). Since ζ reduces to ζ∗, a generator of the residue class

14I used the function InvertPoly (see the Appendix), which inverts elements of L
polynomial in ζ.



48

�eld that has order 4 (see Lemma 118) we get

res(1 + ζ + ζ2, (1 + i)) = 1 + ζ∗ + (ζ∗)2 = 0

and since res(2, (1 + i)) = 0 we have

res(−2− ζ + 2ζ2 + 2ζ3, (1 + i)) = ζ∗.

So we get

res(mipo(θM , L), (1 + i)) = T 2 − ζ∗ = (T − (ζ∗)2)2.

So by Kummer's theorem (Thm. 114) we get the following lemma:

Lemma 124. The extension M/L is totally rami�ed in (1 + i):

e(MpM/L(1+i)) = 2

and

f(MpM/L(1+i)) = 1.

where pM = (1 + i, θM − ζ2) is the unique prime ideal in OM lying over

(1 + i).

In a very similar manner one can now repeat this calculation for

N/M :

By Prop. 111 we have

β =

√
2√
3
α = (

√
3− 1)

1
2 2

1
4 3−

3
8

=
1√
3

(
√

3− 1)
1
2 2

1
4 3

1
8 .
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We calculate:15

((
√

3− 1)
1
2 2

1
4 3

1
8 )2 = (

√
3− 1)

√
2 · 3

1
4

= (
√

3− 1)
√

2ζ−38 w

= (
√

3− 1)
√

2ζ58w

= (
√

3− 1)2
1
2
− 5

2 (1 + i)5w

=
1

4
(−1 + 2ζ − ζ3)(1 + ζ3)5((2− ζ − ζ2 + ζ3)θM − 1)

= (−2 + 2ζ + 2ζ2 − 2ζ3) + (4− 2ζ − 6ζ2 + 6ζ3)θM .

Since all the coe�cients are divisible by 2 we can divide (
√

3−1)
1
2 2

1
4 3

1
8

by (1 + i) and still get an integer. We write

β =
1√
3

(
√

3− 1)
1
2 2

1
4 3

1
8

=
(1 + i)√

3

(
√

3− 1)
1
2 2

1
4 3

1
8

(1 + i)

=
(1 + i)√

3
v

with v = (
√
3−1)

1
2 2

1
4 3

1
8

(1+i)
.

Lemma 125. The element v = (
√
3−1)

1
2 2

1
4 3

1
8

(1+i)
∈ N has the following

properties:

(i) N = M(v) = M ⊕Mv.

(ii) v2 = (ζ − ζ2) + (2− 3ζ + ζ2 + ζ3)θM .

(iii) mipo(v,M) = T 2 − ((ζ − ζ2) + (2− 3ζ + ζ2 + ζ3)θM).

(iv) For id 6= σ ∈ Gal(N/M) we have σ(v) = −v.
(v) mipo(v,Q) = T 8 − 6T 4 − 3.

(vi) v ∈ ON .

Proof. (i) Since N = M(β) and β
v

= 1+i√
3
∈M we get N = M(w).

15Here we use the following identities: ζ8 = 2−
1
2 (1 + i); i = ζ3;

√
3 = 2ζ − ζ3 (all

of those can be veri�ed easily on the unit circle); w = ζ383
1
4 (as in Lemma 120);and

w = (2 − ζ − ζ2 + ζ3)θM − 1 (by the proof of Lemma 123). The last step in the
calculation is a bit tedious and can be done via the function TNormalPoly (see the
Appendix).
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(ii) By the calculation above we have16

v2 =
(
√

3− 1)
√

2 · 3 1
4

(1 + i)2

=
1

2i
(
√

3− 1)
√

2 · 3
1
4

= −ζ
3

2
((−2 + 2ζ + 2ζ2 − 2ζ3) + (4− 2ζ − 6ζ2 + 6ζ3)θM)

= (ζ − ζ2) + (2− 3ζ + ζ2 + ζ3)θM

(iii) Since v /∈M the claim is a direct consequence of (ii).

(iv) Follows directly from (iii) and 0 = TrN/M(v) = v + σ(v).

(v) Since

v4 =
(
√

3− 1)22
√

3

(1 + i)4

=
(4− 2

√
3)2
√

3

−4

= 3− 2
√

3

and

v8 = (3− 2
√

3)2

= 21− 12
√

3

we get

v8 − 6v4 − 3 = 0.

Now the polynomial T 8 − 6T 4 − 3 is irreducible over Q and hence it is

the minimal polynomial of v.

(vi) v ∈ ON is an immediate consequence of (v). �

Again OM [v] ⊂ ON and N = M ⊕Mv. To �nd ON we will again

compute the minimal polynomial of an element in N over M .

Lemma 126. As an additive group the quotient ON/OM [v] is isomor-

phic to (Z/2Z)2. The residue classes are represented by the elements

0, θN , θ
′
N , θ

′′
N given by

θN =
1

2
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))(1 + v),

16Again the last computation can be done using TNormalPoly (see the Appendix).
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θ
′

N =
1

2
((ζ + ζ2 + ζ3) + θM(1 + ζ3))(1 + v)

and

θ
′′

N =
1

2
((1 + ζ3) + θM(1 + ζ + ζ2))(1 + v)

Proof. Let y = A+Bv be an arbitrary element in N where

A = (a1 + a2ζ + a3ζ
2 + a4ζ

3) + (a5 + a6ζ + a7ζ
2 + a8ζ

3)θM

and

B = (a9 + a10ζ + a11ζ
2 + a12ζ

3) + (a13 + a14ζ + a15ζ
2 + a16ζ

3)θM

are elements of M . Then its minimal polynomial mipo(y,M) is given

by

mipo(y,M) = T 2 − 2AT + (A2 −B2v2).

So y ∈ ON if and only if 2A,A2−B2v2 ∈ OM . Looking at the valuations

over prime ideals pM in OM we get

νpM (A2 −B2v2) ≥ 0.

Since 2A ∈ OM and (2) = p4M,2 (see Lemma 124) we have

νpM (A) ≥

−4 pM = pM,2

0 pM 6= pM,2

and we know that since mipo(v,Q) = T 8− 6T 4− 3 and (3) = p4M,3 (see

Thm. 113) we get

νpM (v2) =

1 pM = pM,3

0 pM 6= pM,3

.

Hence

νpM (B) ≥


−4 pM = pM,2

−1
2

pM = pM,3

0 pM 6= pM,2, pM,3

and since νpM,3(M
∗) = Z and therefor νpM,3(B) ≥ 0 we get B ∈ 1

2
OM .

Hence a1, . . . , a16 ∈ 1
2
Z.
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Again by checking17 whether y ∈ ON for (a1, . . . , a16) ∈ {0, 12}
16 we

get that y ∈ ON if and only if

y ≡ 0, θN , θ
′

N , θ
′′

N mod OM + vOM ,

where

θN =
1

2
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))(1 + v),

θ
′

N =
1

2
((ζ + ζ2 + ζ3) + θM(1 + ζ3))(1 + v)

and

θ
′′

N =
1

2
((1 + ζ3) + θM(1 + ζ + ζ2))(1 + v).

�

Lemma 127. The minimal polynomial of θN over M is given by

mipo(θN ,M) = T 2 − ((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))T +

((4 + 6ζ + 3ζ2 − ζ3) + θM(−3 + 5ζ2 + 5ζ3)).

Proof. Let σ ∈ Gal(N/M) be the nontrivial Galois homomorphism of

N/M . Since mipo(v,M) = T 2 − ((ζ − ζ2) + (2 + 3ζ + ζ2 + ζ3)θM) we

have σ(v) = −v. So

σ(θN) = σ(
1

2
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))(1 + v))

=
1

2
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))(1− v).

Hence

TrN/M(θN) = θN + σ(θN)

= (1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3)

17Similar to Lemma 121 I used the function TFindInteger (see the Appendix) to
get these solutions.
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and18

NN/M(θN) = θNσ(θN)

=
1

4
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))2(1− v2)

=
1

4
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))2((1− ζ + ζ2) +

θM(−2 + 3ζ − ζ2 − ζ3)

= (4 + 6ζ + 3ζ2 − ζ3) + θM(−3 + 5ζ2 + 5ζ3)

So

mipo(θN ,M) = T 2 − ((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))T +

((4 + 6ζ + 3ζ2 − ζ3) + θM(−3 + 5ζ2 + 5ζ3)).

�

Lemma 128. The ring of integers ON of N is given by

ON = OM [θN ].

Proof. By construction θN ∈ ON . So we have to show that ON ⊆
OM [θN ]. By the calculation above we know thatON = OM [v, θN , θ

′
N , θ

′′
N ].

So we have to show that v, θ
′
N , θ

′′
N ∈ OM [θN ].

Since

θN =
1

2
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))(1 + v)

we have that

v =
2θN

(1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3)
− 1.

By inverting19 the term (1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3) we get

v = ((2− 2ζ − ζ2 + ζ3) + θM(−ζ + 2ζ2 − ζ3))θN − 1 ∈ OM [θN ].

We have that

18Here we use v2 = (ζ − ζ2) + θM (2− 3ζ + ζ2 + ζ3) (see Lemma 125(ii). In the last
computation we use the function TNormalPoly (see the Appendix).
19Here I used the function TInvertPoly (see the Appendix).
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θ
′

N =
1

2
((ζ + ζ2 + ζ3) + θM(1 + ζ3))(1 + v)

= ζ · 1

2
((1 + ζ + ζ2) + θM(ζ + ζ2 + ζ3))(1 + v) + θM(1− ζ2)(1 + v)

= ζθN + θM(1− ζ2)(1 + v) ∈ OM [θN ]

and since

θ
′′

N ≡ θ
′

N + θN mod OM [v]

we have

θ
′′

N ∈ OM [θN ].

Hence ON = OM [θN ]. �

Now we will reduce the minimal polynomial of θN overM modulo pM
to use Kummer's theorem. Using res(ζ, pM) = ζ∗ and res(θM , pM) =

(ζ∗)2 we get

res(1 + ζ + ζ2 + θM(ζ + ζ2 + ζ3), pM

= res((1 + ζ + ζ2)(1 + θMζ), pM

= (1 + ζ∗ + (ζ∗)2)(1 + (ζ∗)3)

= 0

and

res((4 + 6ζ + 3ζ2 − ζ3) + θM(−3 + 5ζ2 + 5ζ3), pM,2)

= ((ζ∗)2 + (ζ∗)3) + (ζ∗)2(1 + (ζ∗)2 + (ζ∗)3

= 1 + ζ∗ + (ζ∗)2

= 0.

So we get

res(mipo(θN ,M), pM) = T 2.

So by Kummer's theorem (Thm. 114) we get the following lemma:

Lemma 129. The extension N/M is totally rami�ed in pM :

e(NpN/MpM ) = 2

and

f(NpN/MpM ) = 1.



55

where pN = (1 + i, θM − ζ2, θN) is the unique prime ideal in ON lying

over pM .

Combining Lemma 118, Lemma 124 and Lemma 129 we have proved

Thm 115. I.e. we have that e(NpN/Q(i)(1+i)) = 4 and f(NpN/Q(i)(1+i)) =

2.

5.4.3. The case n = 4:

Proposition 130. The 4-division points of

E : y2 = x3 + x

are given by

E[4] = {O, (0, 0), (±i, 0), (1,±
√

2), (−1,±i
√

2),

(i(
√

2 + 1),±(1− i)(
√

2 + 1)),

(i(
√

2− 1),±(1 + i)(
√

2− 1)),

(−i(
√

2− 1),±(1− i)(
√

2− 1)),

(−i(
√

2 + 1),±(1 + i)(
√

2 + 1))}.

Proof. By Ex.105 the 4-division points (except O) are given by the

zeros of

ψ4 = 4y(x6 + 5x4 − 5x2 − 1).

The points where y = 0 are the 2-division points (0, 0), (i, 0), (−i, 0).

The zeros of x6 + 5x4 − 5x2 − 1 can be computed by the substitution

x′ = x2. We have

(x′)3 + 5(x′)2 − 5x′ − 1 = (x′ − 1)((x′)2 + 6x′ + 1)

= (x′ − 1)(x′ + 3 + 2
√

2)(x′ + 3− 2
√

2).

So x′ ∈ {1,−3 + 2
√

2,−3 − 2
√

2} and hence x ∈ {±1,±i(
√

2 −
1),±i(

√
2 + 1)}. Plugging those into the equation of E one gets the

remaining points given in the proposition. �

Hence the �eld K[4] is given by

K[4] = Q(i,
√

2) = Q(ζ8),

where ζ8 = e
πi
4 .

Similar to Prop 112 we have the following proposition:
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Proposition 131. Let p 6= (1 + i) be a prime ideal in Q(i) and P

be an ideal in K[4] lying over p. Then the extension K[4]P/Q(i)p is

unrami�ed.

Proof. By the theorem of Néron-Ogg-Shavarevich (Thm. 108) the

primes p that can ramify are only those with bad reduction and those

for which κp divides n = 4. Since E only has bad reduction at p = (1+i)

(see Ex. 109) and char(κp) = 2 only if p = (1 + i) the extension is

unrami�ed in all other cases. �

Theorem 132. The extension K[4]/Q(i) is rami�ed at (1 + i):

e(K[4]P/Q(i)(1+i)) = 2

and

f(K[4]P/Q(i)(1+i)) = 1

for the prime ideal P = (1 + i, ζ8 − 1) in K[4].

Proof. By Lemma 116 we have

OK[4] = Z[ζ8] = Z[i][ζ8]

and the minimal polynomial of ζ8 in Z[i] is given by

mipo(ζ8,Q(i)) = T 2 − i.

After reducing it modulo (1 + i) we get

res(mipo(ζ8,Q(i)), (1 + i)) = T 2 − 1 = (T − 1)2.

So by Kummer's theorem (Thm. 114) there is a primeP = (1+i, ζ8−1)

such that P2 = (1 + i) i.e. (1 + i) is rami�ed in K[4] and we have

e(K[4]P/Q(i)(1+i)) = 2 and f(K[4]P/Q(i)(1+i)) = 1. �

So p = (1 + i) is totally rami�ed in K[4] and all other primes are

unrami�ed.

5.5. Lubin-Tate prime elements. Now that we have computed the

rami�cations of K[n] for n = 3, 4 we can localize at their rami�ed

prime ideals. We will then compute corresponding Lubin-Tate prime

elements or prove that they do not exist.

5.5.1. The case n = 3 and p = (1 + i).
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Theorem 133. Let Ñ/K̃ be the �eld extension K[3]pK[3]
/Q(i)(1+i).

Then there is no prime π in OK̃ such that

NÑ/K̃(Ñ) = 〈πf〉 × U (n)

for any f, n ∈ N.

Proof. The �eld L̃ = L(1+i) (where L = Q(ζ) as in Lemma 117) is

unrami�ed of degree 2 over K̃ (see Lemma 118) and hence (cf. Thm.

60)

NL̃/K̃(L̃∗) = 〈π2〉 × U

for an arbitrary prime π ∈ OK̃ . By Thm. 59 and since Ñ/L̃ is totally

rami�ed of degree 4 (see Thm. 115) we know that NÑ/K̃(Ñ∗) is a

subgroup of 〈π2〉 × U of index 4. So if NÑ/K̃(Ñ∗) is of the form

NÑ/K̃(Ñ∗) = 〈π2〉 × U (n)

for some prime π ∈ OK̃ and n ∈ N we would have n = 3, since

[U (k) : U (k+1)] = 2 (cf. Prop. 50).

Now let ν be the normalized valuation on Ñ . The prime ideals

pK̃ = pL̃ = (1 + i), pM̃ = (1 + i, θM − ζ2)and pÑ = (1 + i, θM − ζ2, θN)

(cf. Lemma 118, 124 and 129) are related by

pK̃ = pL̃ = p2
M̃

= p4
Ñ
.

Hence ν(1 + i) = 4, ν(θM − ζ2) = 2 and ν(θN) = 1. So θN is a prime

element in Ñ and we compute the norm of this element θN ∈ Ñ :20

NÑ/K̃(θN) = NN/K(θN)

= NM/K((4 + 6ζ + 3ζ2 − ζ3) + θM(−3 + 5ζ2 + 5ζ3))

= NL/K((4 + 6ζ + 3ζ2 − ζ3)2 +

(4 + 6ζ + 3ζ2 − ζ3)(−3 + 5ζ2 + 5ζ3)TrM/L(θM) +

(−3 + 5ζ2 + 5ζ3)2NM/L(θM))

= NL/K((4 + 6ζ + 3ζ2 − ζ3)2 +

(4 + 6ζ + 3ζ2 − ζ3)(−3 + 5ζ2 + 5ζ3)(1 + ζ + ζ2) +

(−3 + 5ζ2 + 5ζ3)2(−2− ζ + 2ζ2 + 2ζ3))

20Here we use Lemma 127, Lemma 122 and the function NormalPoly (see the
Appendix).
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= NL/K(19 + 22ζ − 11ζ3)

= (19 + 22ζ − 11ζ3)(19 + 22ζ5 − 11ζ3)

= −2.

Now suppose NÑ/K̃(Ñ∗) = 〈π2〉 ×U (3). Then −2 ∈ 〈π2〉 ×U (3), hence,

−2 = π2u for some u ∈ U (3) and so −π2

2
= u−1 ∈ U (3). Since π ∈

(1+ i)\(1+ i)2 we have π = a+bi with a, b ∈ Z2 and a ≡ b ≡ 1 mod 2.

Since u−1 ≡ 1 mod (1 + i)3 we obtain

−π
2

2
= −a

2 − b2 + 2abi

2

= −a
2 − b2

2
− abi ≡ 1 mod (1 + i)3.

On the other hand

−a
2 − b2

2
− abi ≡ −i mod (2)

and since −i ≡ 1 mod (2) would imply that 1 + i ≡ 0 mod (2) we get

−π
2

2
6≡ 1 mod (2)

and so

−π
2

2
6≡ 1 mod (1 + i)3

which is a contradiction.21 �

The theorem above suggests that there is no real connection between

division points of elliptic curves and division points of Lubin-Tate mod-

ules apart from the fact that both generate abelian extensions.

5.5.2. The case n = 3 and p = (3).

Theorem 134. The �eld extension N̂/K̂ := K[3]pK[3]
/Q(i)(3) is totally

and tamely rami�ed with degree 8. Its norm group is given by

NN̂/K̂(N̂∗) = 〈π〉 × U (1),

where π = −3 is prime in OK̂.

Proof. Because of Thm. 113 the �eld extension N̂/K̂ is totally rami�ed

and has degree 8. Therefore it is also tamely rami�ed.

21Note that this proof did not show that there is no prime π such that
NÑ/K̃(Ñ)〈πf 〉 × U ′

for some f ∈ N and some subgroup U
′
of U . The question

whether this is the case remains open in this proof.
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Let v ∈ N be as in Lemma 125. Then by Lemma 125(v) the minimal

polynomial of v over Q is given by

mipo(v,Q) = T 8 − 6T 4 − 3.

Since 3 is prime in K̂ this is also an Eisenstein polynomial over K̂ and

therefor irreducible. Hence

8 ≤ [K̂(v) : K̂] ≤ [N̂ : K̂] = 8

and so

N̂ = K̂(v).

Now let π = −3, which is a prime in K̂, and F be the uniquely

determined Lubin-Tate module such that [π]F = T · mipo(v, K̂) =

T 9− 6T 5− 3T (which exists by Thm. 69). Then for the corresponding

Lubin-Tate extension L1 of degree 1 we get

L1 = K̂(F (1))

= K̂(ker([π]F ))

⊇ K̂(v) = N̂ .

Since [L1 : K̂] = |U : U (1)| = 8 we get

L1 = N̂ .

�

Hence the �eld K[3](3) generated by the 3-division points is a Lubin-

Tate extension of Q(i)(3).

5.5.3. The case n = 4 and p = (1 + i).

Theorem 135. The �eld extension Ẽ/K̃ := K[4]P/Q(i)(1+i) is wildly

rami�ed with degree 2. Additionally there is no prime π in OK̃ such

that

NẼ/K̃(Ẽ∗) = 〈πf〉 × U (n)

for any f, n ∈ N.

Proof. By Thm. 132 the �eld extension Ẽ/K̃ is totally rami�ed with

degree 2 and therefore is wildly rami�ed.
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If now NẼ/K̃(Ẽ∗) was of the form

〈πf〉 × U (n)

for some f, n ∈ N then f = 1 and n = 2 (cf. Thm. 60).

But we have

NẼ/K̃(ζ8) = ζ8ζ
5
8 = −i /∈ U (2)

which contradicts the above.22 �

22As in the proof of Thm. 133 we did not show that there is no prime π such that
NÑ/K̃(Ñ)〈πf 〉 × U ′

for some f ∈ N and some subgroup U
′
of U .
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6. Summary and conclusion

This chapter should give a short summary and an interpretation of

the results of chapter 5.

6.1. Summary of the results. We adjoined 3- and 4-division points

of the elliptic curve

y2 = x3 + x

to the �eld Q(i) to get abelian extensions of Q(i) given by

K[3] = Q(i)(α, β)

with

α =

√
2√
3
− 1, β =

√
2√
3
α

and

K[4] = Q(i)(
√

2) = Q(ζ8).

6.1.1. The case n = 3: We described the �eld K[3] with the following

tower of �eld extensions and their corresponding rings of integers:

K[3] = N = M(β) ON = OM [θN ]

| |
M = L(α) OM = OL[θM ]

| |
L = Q(ζ) OL = Z[ζ]

| |
Q(i) Z[i](
|
Q

) (
|
Z

)
Then we determined the rami�cation of the extension K[3]/Q(i).

The case n = 3, p = (1 + i). Here we got the following picture:
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N = M(β) pN,2 = (1 + i, θM − ζ2, θN)

| | e(NpN,2/MpM,2) = 2

M = L(α) pM,2 = (1 + i, θM − ζ2)
| | e(MpM,2/L(1+i)) = 2

L = Q(ζ) (1 + i)

| | f(L(1+i)/Q(i)(1+i)) = 2

Q(i) (1 + i)(
|
Q

)
|
2

e(Q(i)(1+i)/Q2) = 2

and we determined that for the localized extension Ñ/K̃ = K[3]pK[3],2
/Q(i)(1+i)

there is no prime π ∈ OK̃ such that

NÑ/K̃(Ñ) = 〈πf〉 × U (n)

for any f, n ∈ N and U (n) = {x ∈ OK̃ : x ≡ 1 mod (1 + i)n}.

The case n = 3, p = (3). Here we got:

N = M(β) pN,3

| | e(NpN,3/MpM,3) = 2

M = L(α) pM,3

| | e(MpM,3/LpL,3) = 2

L = Q(ζ) pL,3

| | e(LpL,3/Q(i)(3)) = 2

Q(i) (3)(
|
Q

)
|
3

f(Q(i)(3)/Q3) = 2

Additionally we had thatNpN,3 is the Lubin-Tate extension L1 ofQ(i)(3)

w.r.t. π = −3 ∈ Q(i)(3).

The case n = 3, p 6= (1 + i), (3). Here the criterion of Néron-Ogg-

Shafarevic told us that the extension K[3]/Q(i) is always unrami�ed

at p.

6.1.2. The case n = 4. This case was much easier because the rings

of integer were easy to determine and there is only one rami�ed prime

ideal:
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K[4] = Q(ζ8) OK[4] = Z[ζ8]

| |
Q(i) Z[i](
|
Q

) (
|
Z

)
The case n = 4, p = (1 + i). At p = (1 + i) we got:

K[4] = Q(ζ8) pK[4],2 = (1 + i, ζ8 − 1)

| | e(K[4]pK[4],2
/Q2) = 2

Q(i) (1 + i)(
|
Q

)
|
2

e(Q(i)(1+i)/Q2) = 2

Furthermore we found that for the localized extension Ẽ/K̃ = K[4]p/Q(i)(1+i)

there is no prime π ∈ OK̃ such that

NẼ/K̃(Ẽ∗) = 〈π〉 × U (n)

for any f, n ∈ N.

The case n = 4, p 6= (1 + i). Again the criterion of Néron-Ogg-

Shafarevic guaranteed that any other prime ideal p 6= (1 + i) is un-

rami�ed.

6.2. Conclusion. In summary these few examples do not indicate that

there is an easy connection between division points of elliptic curves

with complex multiplication and the division points of Lubin-Tate mod-

ules, apart from the fact that they both generate abelian extensions.

It would be nice to have a much larger �database� of results about the

rami�cations of primes in extensions obtained by elliptic curves with

complex multiplication but it is not possible (at least not easily) to

generalize the methods used here to obtain the necessary rami�cation

data for n-division points with n ≥ 5.
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Appendix: Mathematica Listing

This appendix contains the Mathematica code I used to determine

the generators of the abelian extensions computed in Chapter 5.4.2. It

mostly contains functions that simplify calculations in the �elds L and

M de�ned in that chapter.

In fact most (simple) calculations in that chapter were made using

these functions.

The only calculation that could not be done easily by hand however

is the determination of the generators θM , θ
′
M , θ

′′
M resp. θN , θ

′
N , θ

′′
N of

the rings of integers OM resp. ON used in Lemma 123 resp. Lemma

128.



Integralbasis.nb

written by Jakob Preininger

This notebook provides functions to work in the fields L and M and calculates integral bases for both O_M and O_N which
are used in section 5.4.2

Functions to work in L

The following functions are written to work with the field L = Q(z), where z = zeta = e^(2 Pi*I/12) is the primitive 12 th root
of unity, as Q - vectorspace in the basis B = {1, z, z^2, z^3}, which is also a Z - basis of the ring of integers of L.

PolyToList
In : a rational polynomial f in the variable z
Out : the list of coefficients of f

PolyToList@f_D := CoefficientList@f, zD;

ListToPoly
In : a list l of rationals
Out : the polynomial with variable z with coefficients given in l

ListToPoly@l_D := Module@8erg = 0, i<,
For@i = 0, i < Length@lD, i++,

erg += l@@i + 1DD z^i;D;
erg

D;

PowerList
In : a natural number n
Out : the list of powers of z = e^(2 Pi*I/12) in the basis B with size n

PowerList@n_D :=

Module@8erg = 8<, i<,
For@i = 0, i < n, i++,

Switch@Mod@i, 12D,
0, AppendTo@erg, 1D,
1, AppendTo@erg, zD,
2, AppendTo@erg, z^2D,
3, AppendTo@erg, z^3D,
4, AppendTo@erg, z^2 - 1D,
5, AppendTo@erg, z^3 - zD,
6, AppendTo@erg, -1D,
7, AppendTo@erg, -zD,
8, AppendTo@erg, -z^2D,
9, AppendTo@erg, -z^3D,
10, AppendTo@erg, 1 - z^2D,
11, AppendTo@erg, z - z^3DD;

D;
erg

D;

NormalListToPoly
In : a list l of rationals
Out : the evaluation of the polynomial with coefficients l in z written in the basis B
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NormalListToPoly@l_D :=

l.PowerList@Length@lDD;

NormalList
In : a list l of rationals
Out : the evaluation of the polynomial with coefficients l in z written as a coefficient list in the basis B

NormalList@l_D :=

Module@8i, erg = PolyToList@NormalListToPoly@lDD<,
For@i = Length@ergD, i < 4, i++, AppendTo@erg, 0D;D;
erg

D;

NormalPoly
In : a rational polynomial f in the variable z
Out : the evaluation of the polynomial f in z written in the basis B

NormalPoly@f_D :=

NormalListToPoly@PolyToList@fDD;

NormalPolyToList
In : a rational polynomial f in the variable z
Out : the evaluation of the polynomial f in z written as coefficient list in the basis B

NormalPolyToList@f_D :=

NormalList@PolyToList@fDD;

InvertPoly
In: A rational polynomial poly in z.
Out: The inverse of poly in L

InvertPoly@poly_D :=

Module@8sol<,
sol = Solve@

NormalPolyToList@poly Ha + b z + c z^2 + d z^3LD � NormalPolyToList@1D, 8a, b, c, d<D;
First@a + b z + c z^2 + d z^3 �. solD

D;

A
In: rational numbers a, b, c, d
Out: the polynomial a+bz+cz^2+dz^3 in z.

A@a_, b_, c_, d_D := a + b z + c z^2 + d z^3;

B
In : rational numbers e, f, g, h
Out : the polynomial e + fz + gz^2 + hz^3 in z.

B@e_, f_, g_, h_D := e + f z + g z^2 + h z^3;

Q
In : rational numbers a, b, c, d, e, f, g, h and a rational polynomial qw in z (an element in L)
Out : the constant coefficient in the minimal polynomial of an element (a + bz + cz^2 + dz^3) + q (e + fz + gz^2 +

hz^3) in M = L(q), where q^2 = qw

Q@a_, b_, c_, d_, e_, f_, g_, h_, qw_D :=

NormalPolyToList@A@a, b, c, dD^2 - qw B@e, f, g, hD^2D;

FindInteger
In : a rational polynomial qw in z (an element in L)
Out : the list of all integral elements in M = L(w) mod Z[z, w], where w^2 = qw written as 8 - tupels {a, b, c, d, e, f,

g, h} that one has to read as: a + bz + cz^2 + dz^3 + w(e + fz + gz^2 + hz^3) 

2   integralbasis.nb
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FindInteger
In : a rational polynomial qw in z (an element in L)
Out : the list of all integral elements in M = L(w) mod Z[z, w], where w^2 = qw written as 8 - tupels {a, b, c, d, e, f,

g, h} that one has to read as: a + bz + cz^2 + dz^3 + w(e + fz + gz^2 + hz^3) 

FindInteger@qw_D :=

Module@8a, b, c, d, e, f, g, h, z, erg = 8<<,
For@a = 0, a < 1, a += 1 � 2,

For@b = 0, b < 1, b += 1 � 2,

For@c = 0, c < 1, c += 1 � 2,

For@d = 0, d < 1, d += 1 � 2,

For@e = 0, e < 1, e += 1 � 2,

For@f = 0, f < 1, f += 1 � 2,

For@g = 0, g < 1, g += 1 � 2,

For@h = 0, h < 1, h += 1 � 2,

If@Mod@Q@a, b, c, d, e, f, g, h, qwD, 1D � 80, 0, 0, 0<,
AppendTo@erg, 8a, b, c, d, e, f, g, h<DD;

D;
D;

D;
D;

D;
D;

D;
D;
erg

D;

Functions in M

The following functions are written to work with the field M = Q(z,t), where z = e^(2 Pi*I/12) is the primitive 12 th root of
unity and t = theta_M, as Q-vectorspace in the basis C = {1, z, z^2, z^3, t, tz, tz^2, tz^3}, which is also a Z - basis of the ring
of integers of M (see section 5.4.2)

TPolyToList
In : a polynomial f in the variables t, z
Out : the list of coefficients of f

TPolyToList@f_D := CoefficientList@f, 8t, z<D;

TListToPoly
In : a list l of lists of rationals
Out : the polynomial with variables t, z with coefficients given in l

TListToPoly@l_D := Module@8erg = 0, i, j<,
For@i = 0, i < Length@lD, i++,

For@j = 0, j < Length@l@@i + 1DDD, j++,

erg += l@@i + 1DD@@j + 1DD t^i z^j;

D;
D;
erg

D;

TPowerList
In : a natural number n
Out : the list of powers of t of length n written in the basis C

integralbasis.nb  3
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TPowerList@n_D :=

Module@8erg = 8<, i<,
For@i = 0, i < n, i++,

If@i ³ 2, AppendTo@erg, HH2 + z - 2 z^2 - 2 z^3L + t H1 + z + z^2LL t^Hi - 2LD,
If @i == 1, AppendTo@erg, tD, AppendTo@erg, 1D;D;D;

D;
erg

D;

TReduce
In : a rational polynomial f in the variables t, z
Out : the polynomial f evaluated in t and z written as a polynomial that is linear in t (but not yet normalized in z)

TReduce@f_D :=

Module@8erg = f, l<,
For@l = Length@CoefficientList@f, tDD, l > 2, l--,

erg = TPowerList@lD.CoefficientList@erg, tD;
D;
erg

D;

TNormalPolyToList
In : a rational polynomial f in the variables t, z
Out : the polynomial f evaluated in t and z written as a list in the form {{a, b, c, d}, {e, f, g, h}} = (a + bz + cz^2 +

dz^3) + t(e + fz + gz^2 + hz^3)

TNormalPolyToList@f_D :=

Module@8erg = 8<, zw = TPolyToList@TReduce@fDD, i<,
For@i = 0, i < 2, i++,

If@Length@zwD £ i, AppendTo@zw, 8<DD;
AppendTo@erg, NormalList@zw@@i + 1DDDD;

D;
erg

D;

TNormalList
In : a list l of lists of rationals
Out : the polynomial with coefficients in l evaluated in t and z written as a list in the form {{a, b, c, d}, {e, f, g, h}} =

(a + bz + cz^2 + dz^3) + t(e + fz + gz^2 + hz^3)

TNormalList@l_D :=

TNormalPolyToList@TListToPoly@lDD;

TNormalPoly
In : a rational polynomial f in the variables t, z
Out : the polynomial f evaluated in t and z in the form (a + bz + cz^2 + dz^3) + t(e + fz + gz^2 + hz^3)

TNormalPoly@f_D :=

TListToPoly@TNormalPolyToList@fDD;

TNormalListToPoly
In : a list l of lists of rationals
Out : the polynomial with coefficients in l evaluated in t and z written as a list in the form {{a, b, c, d}, {e, f, g, h}} =

(a + bz + cz^2 + dz^3) + t(e + fz + gz^2 + hz^3)

TNormalListToPoly@l_D :=

TListToPoly@TNormalList@lDD;

TInvertPoly
In : A rational polynomial poly in z and t.

   Out : The inverse of poly in M
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TInvertPoly
In : A rational polynomial poly in z and t.

   Out : The inverse of poly in M

TInvertPoly@poly_D :=

Module@8sol<,
sol = Solve@TNormalPolyToList@poly HHa + b z + c z^2 + d z^3L + t He + f z + g z^2 + h z^3LLD �

TNormalPolyToList@1D, 8a, b, c, d, e, f, g, h<D;
First@Ha + b z + c z^2 + d z^3L + t He + f z + g z^2 + h z^3L �. solD

D

TA
In: rational numbers a, b, c, ..., h
Out: The polynomial (a + bz + cz^2 + dz^3) + t(e + fz + gz^2 + hz^3) in z and t.

TA@a_, b_, c_, d_, e_, f_, g_, h_D := a + b z + c z^2 + d z^3 + t He + f z + g z^2 + h z^3L;

TB
In: rational numbers i, j, k, ..., p
Out: The polynomial (i + jz + kz^2 + lz^3) + t(m + nz + oz^2 + pz^3) in z and t.

TB@i_, j_, k_, l_, m_, n_, o_, p_D := i + j z + k z^2 + l z^3 + t Hm + n z + o z^2 + p z^3L;

TQ
In : rational numbers a, b, c, ..., p and a rational polynomial qv in t and z (an element in M)
Out : the constant coefficient in the minimal polynomial of an element (a + bz + cz^2 + dz^3) + t(e + fz + gz^2 +

hz^3) + v((i + jz + kz^2 + lz^3) + t(m + nz + oz^2 + pz^3)) in N = M(v), where v^2 = qv

TQ@a_, b_, c_, d_, e_, f_, g_, h_, i_, j_, k_, l_, m_, n_, o_, p_, qv_D :=

TNormalPolyToList@TA@a, b, c, d, e, f, g, hD^2 - qv TB@i, j, k, l, m, n, o, pD^2D;

FindInteger
In : a rational polynomial qv in t and z (an element in M)
Out : the list of all integral elements in N = M (v) mod Z[z, t, v], where v^2 = qv written as 16 - tupels {a, b, c, ..., p} = (a +
bz + cz^2 + dz^3) + t(e + fz + gz^2 + hz^3) + v((i + jz + kz^2 + lz^3) + t (m + nz + oz^2 + pz^3))
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TFindInteger@qv_D :=

Module@8a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, erg = 8<<,
For@a = 0, a < 1, a += 1 � 2,

For@b = 0, b < 1, b += 1 � 2,

For@c = 0, c < 1, c += 1 � 2,

For@d = 0, d < 1, d += 1 � 2,

For@e = 0, e < 1, e += 1 � 2,

For@f = 0, f < 1, f += 1 � 2,

For@g = 0, g < 1, g += 1 � 2,

For@h = 0, h < 1, h += 1 � 2,

For@i = 0, i < 1, i += 1 � 2,

For@j = 0, j < 1, j += 1 � 2,

For@k = 0, k < 1, k += 1 � 2,

For@l = 0, l < 1, l += 1 � 2,

For@m = 0, m < 1, m += 1 � 2,

For@n = 0, n < 1, n += 1 � 2,

For@o = 0, o < 1, o += 1 � 2,

For@p = 0, p < 1, p += 1 � 2,

If@Mod@TQ@a, b, c, d, e, f, g, h, i, j, k, l, m, n, o,

p, qvD, 1D � 880, 0, 0, 0<, 80, 0, 0, 0<<,
AppendTo@erg, 8a, b, c, d, e, f, g,

h, i, j, k, l, m, n, o, p<DD;
D;

D;
D;

D;
D;

D;
D;

D;
D;

D;
D;

D;
D;

D;
D;

D;
erg

D;

The results

In Lemma 121 we need to find integral elements of M mod O_L[w]. Since w^2=1-2z^2 the following function gives the
solutions:

FindInteger@1 - 2 z^2D

:80, 0, 0, 0, 0, 0, 0, 0<, :0,
1

2
,
1

2
,
1

2
, 0,

1

2
,
1

2
,
1

2
>,

:
1

2
, 0, 0,

1

2
,
1

2
, 0, 0,

1

2
>, :

1

2
,
1

2
,
1

2
, 0,

1

2
,
1

2
,
1

2
, 0>>

So theta_M = 1/2(1 + z + z^2)(1+w), theta_M' =1/2(z+z^2+z^3)(1+w) and theta_M''=1/2(1+z^3)(1+w).

In Lemma 122 we compute the norm of theta_M in L:
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Expand@NormalPoly@1 � 4 H1 + z + z^2L^2 2 z^2DD

-2 - z + 2 z2 + 2 z3

So N_M/L(theta_M) = -2-z+2z^2+2z^3.

In Lemma 123 we need to invert 1+z+z^2:

InvertPoly@1 + z + z^2D

1 -

z

2
-

z2

2
+

z3

2

So 2/(1+z+z^2)=2-z-z^2+z^3.

In Lemma 124 we compute 1/4(-1+2z-z^3)(1+z^3)^5((2-z-z^2+z^3)t-1):

TNormalPoly@1 � 4 H-1 + 2 z - z^3L H1 + z^3L^5 HH2 - z - z^2 + z^3L t - 1LD

-2 + 4 t + 2 z - 2 t z + 2 z2 - 6 t z2 - 2 z3 + 6 t z3

So 1/4(-1+2z-z^3)(1+z^3)^5((2-z-z^2+z^3)t-1) = (-2+2z+2z^2-2z^3)+t(4-2z-6z^2+6z^3).

In Lemma 125 we need to simplify -z^3/2((-2+2z+2z^2-2z^3)+t(4-2z-6z^2+6z^3):

TNormalPoly@-z^3 � 2 HH-2 + 2 z + 2 z^2 - 2 z^3L + t H4 - 2 z - 6 z^2 + 6 z^3LLD

2 t + z - 3 t z - z2 + t z2 + t z3

So -z^3/2((-2+2z+2z^2-2z^3)+t(4-2z-6z^2+6z^3) = (z-z^2)+t(2-3z+z^2+z^3).

In Lemma 126 we need to find integral elements of N mod O_M[v]. Since v^2=(z-z^2)+t(2-3z+z^2+z^3)  the following
function gives the solutions:

TFindInteger@z - z^2 + t H2 - 3 z + z^2 + z^3LD

:80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

:0,
1

2
,
1

2
,
1

2
,
1

2
, 0, 0,

1

2
, 0,

1

2
,
1

2
,
1

2
,
1

2
, 0, 0,

1

2
>,

:
1

2
, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
, 0,

1

2
, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
, 0>,

:
1

2
,
1

2
,
1

2
, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
, 0, 0,

1

2
,
1

2
,
1

2
>>

So  theta_N  =  1/2((1  +  z  +  z^2)+t(z+z^2+z^3))(1+v),  theta_N'  =1/2((z+z^2+z^3)+t(1+z^3))(1+v)  and
theta_N''=1/2((1+z^3)+t(1+z+z^2))(1+v).

In Lemma 127 we need to compute the norm of theta_N in M:

TNormalPoly@1 � 4 HH1 + z + z^2L + t Hz + z^2 + z^3LL^2 HH1 - z + z^2L + t H-2 + 3 z - z^2 - z^3LLD

4 - 3 t + 6 z + 3 z2 + 5 t z2 - z3 + 5 t z3

So N_N/M(theta_N) = (4+6z+3z^2-z^3)+t(-3+5z^2+5z^3)

In Lemma 128 we need to invert (1+z+z^2)+t(z+z^2+z^3):

TInvertPoly@H1 + z + z^2L + t Hz + z^2 + z^3LD

1 - z -

z2

2
+

z3

2
+ t -

z

2
+ z2 -

z3

2

So 2/((1+z+z^2)+t(z+z^2+z^3)) = (2-2z-z^2+z^3)+t(-z+2z^2-z^3).
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So 2/((1+z+z^2)+t(z+z^2+z^3)) = (2-2z-z^2+z^3)+t(-z+2z^2-z^3).

In Theorem 133 we need to compute the Norm of theta_N in the extension N/K:

Simplify@
NormalPoly@H4 + 6 z + 3 z^2 - z^3L^2 + H4 + 6 z + 3 z^2 - z^3L H-3 + 5 z^2 + 5 z^3L H1 + z + z^2L +

H-3 + 5 z^2 + 5 z^3L^2 H-2 - z + 2 z^2 + 2 z^3LDD

19 + 22 z - 11 z3

Simplify@NormalPoly@H19 + 22 z - 11 z^3L H19 + 22 z^5 - 11 z^3LDD

-2

So N_N/K(theta_N) = -2.
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Abstract

The aim of this thesis is to compare the theory of Lubin-Tate mod-

ules, which describe rami�ed abelian extensions of local �elds, to the

theory of elliptic curves with complex multiplication, which also can be

used to generate abelian extensions of imaginary quadratic �elds, and

thereby establish a more explicit understanding of class �eld theory.

After a short introduction in Chapter one we start with a brief review

of the theory of local �elds in Chapter two. We de�ne the notion of

an absolute value on a �eld and of a completion of a �eld with respect

to such an absolute value. Additionally we introduce residue class

degree and rami�cation index on such �elds and state some of their

basic properties. Then we de�ne local �elds and present some some

results about the solvabilty of Galois extensions of local �elds and the

structure of the multiplicative group of such �elds.

In Chapter three we give a short summary of local class �eld theory.

In particular we deal with the local reciprocity law and the existence

theorem, which give a one-to-one correspondence between �nite abelian

extensions of a local �eld K and the open subgroups of �nite index in

the group K∗. Furthermore we introduce formal groups and the theory

of Lubin-Tate modules.

Chapter four is dedicated to the theory of elliptic curves and its

structure as abelian groups which leads to the notion of complex mul-

tiplication.

In Chapter �ve, the main part of this thesis, we pick the elliptic curve

y2 = x3+x, which has complex multiplication, and compute its division

points. Then we use these division points to generate abelian exten-

sions of Q(i) and the criterion of Néron-Ogg-Shafarevic to determine

which primes of Q(i) possibly ramify in these extensions and compute

the corresponding rami�cation indices and residue class degrees, which

we use to determine whether the localized extensions are Lubin-Tate

extensions.

Finally Chapter six summarizes the results from Chapter �ve. The

Appendix contains the Mathematica code used to do some computa-

tions in Chapter �ve.
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Zusammenfassung

Ziel dieser Arbeit ist es die Theorie der Lubin-Tate Moduln, die

verzweigte abelsche Erweiterungen lokaler Körper untersucht, mit der

Theorie der elliptischen Kurven mit komplexer Multiplikation, die eben-

falls zur Erzeugung abelscher Erweiterungen von imaginär-quadratischen

Zahlkörpern verwendet werden kann, zu vergleichen und dabei ein ex-

plizitäres Verständnis für Klassenkörpertheorie zu erhalten.

Nach einer kurzen Einleitung in Kapitel eins beginnen wir in Kapi-

tel zwei mit einer kurzen Wiederholung der Theorie lokaler Körper.

Wir de�nieren den Begri� eines Absolutbetrages auf einem Körper und

einer Vervollständigung eines Körpers bezüglich eines solchen Betrages.

Weiters führen wir Restklassengrad und Verzweigungsindex auf derar-

tigen Körpern ein und stellen einige ihrer wichtigen Eigenschaften fest.

Danach de�nieren wir lokale Körper und präsentieren einige Resultate

über die Au�ösbarkeit von Galoiserweiterungen lokaler Körper und die

Struktur der multiplikativen Gruppe solcher Körper.

In Kapitel drei geben wir eine Zusammenfassung lokaler Klassenkör-

pertheorie. Im speziellen beschäftigen wir uns mit dem lokalen Reziproz-

itätsgesetz und dem Existenzsatz, der uns eine bijektive Korrespon-

denz zwischen endlichen abelschen Erweiterungen eines lokalen Kör-

pers K und den o�enen Untergruppen endlichen Indexes der Gruppe

K∗herstellt. Desweiteren führen wir den Begri� der formalen Gruppe

und der daraus entstehenden Theorie der Lubin-Tate Moduln ein.

Kapitel vier beschäftigt sich mit der Theorie elliptischer Kurven,

speziell mit der abelschen Gruppenstruktur auf diesen die uns zum

Begri� der komplexen Multiplikation führt.

In Kapitel fünf, dem Hauptteil der Arbeit, wählen wir die elliptis-

che Kurve y2 = x3 + x, die komplexe Multiplikation hat, und berech-

nen ihre Teilungspunkte. Dann nutzen wir diese Teilungspunkte um

abelsche Erweiterungen von Q(i) zu konstruieren und das Kriterium

von Néron-Ogg-Shafarevic um zu bestimmen welche Primideale von

Q(i) in diesen Erweiterung verzweigt sein können. Danach berechnen

wir Verzweigungsindizes und Restklassengrade dieser Primideale und

bestimmen damit ob die bezüglich dieser Primideale lokalisierten Er-

weiterungen Lubin-Tate Erweiterungen.
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Schlieÿlich fassen wir in Kapitel sechs die Resultate aus Kapitel fünf

zusammen. Desweiteren �ndet man im Anhang den Mathematica-Code

der für einige Berechnungen in Kapitel fünf verwendet wurde.
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