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1 INTRODUCTION

1. Introduction

Water plays a central role in our life. A lot of organisms consist largely of water and the earth
itself exhibits immense water reservoirs. Therefore it is reasonable that water is a object of
research. But many properties of water are still not fully understood, although this molecule
might seem at first sight very simple. Water has one of the most complex phase diagrams: In
comparison to other liquids water exhibits several anomalies in the liquid state. It can crystal-
lize into 15 different phases and even amorphous solid phases are known. Even more difficult
situations arise, if one studies small and smallest molecule accumulations instead of bulk sys-
tems. While bulk water can be studied relatively easily and many theories focus on that, more
attention must be payed to the analysis of such micro- and nanosystems. Chemical reactions at
the interface of ocean-spray aerosols underline the relevance of water nanoclusters.1 It is par-
ticularly necessary, too, because it seems that small waterclusters play an important role in our
atmosphere and in interstellar media.2,3 At mesospheric conditions (temperatures about 120 K)
crystalline phases of water such as hexagonal ice Ih or cubic ice Ic can form beside amorphous
water without crystalline order.2 It is an interesting and timely question, which phase is the
stable one for nanoclusters and knowledge about mechanisms of nucleation and growth of
nanoparticles is of importance, especially what influence the hydrogen-bonds of water have
in the core of the cluster as well as on its surface. Ostwald’s step rule is often assumed to be
valid for waterclusters under these conditions.2,4 It states, that the thermodynamically stable
phase does not necessarily form directly from an unstable state. Instead initial formation of
metastable phases takes place, because these offer a lower free energy barrier to the original
phase and resemble it more closely.

The direct approach via experiments often turns out to be challenging. Especially the deter-
mination of the actual size of the generated clusters is a non-trivial problem. Nevertheless
substantial efforts are made both in theory and in experiment, covering research on the whole
range of sizes of nanoclusters. In this respect structural evolution as a function of cluster size
is of particular interest.5 There is a series of theoretical and experimental studies, which focus
on cluster sizes of 2 to 10 water molecules. They look for global minima in the potential
energy and analyze melting behavior employing electronic structure techniques and a variety
of analytical potentials.6,7 For instance, for water clusters consisting of 6 molecules several
two- or three-dimensional structures are predicted to have almost the same low energy. In
fact, in experiments a cage-form7, a ring-form8 and a book-form9 have been detected until to-
day. Considering only such a small number of molecules one is not able to speak about liquid
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1 INTRODUCTION

or crystalline phases. A phase is crystalline if there are periodic structures of atoms in the
three-dimensional space and for that a significantly larger number of molecules is needed. For
example, water ices Ih and Ic consist of an almost perfect tetrahedral network, in which each
oxygen is coordinated by four hydrogen-bonds. But even if clusters consist of tens to hundreds
molecules, it emerges that these clusters do not necessarily crystallize at low temperatures, but
transform into amorphous ice phases.5 Reason for that are the surface effects of clusters: in
case of a crystalline cluster (supposed it has a spherical-like shape rather than a perfect crystal
geometry), water molecules lying on the surface have unbonded hydrogens, which strongly
contribute to the energy because of electrostatic repulsion.5 In turn they arrange themselves
to build more hydrogen-bonds, which is at the cost of the crystal geometry. Below a critical
molecule number hence a crystalline water cluster transforms completely into an amorphous
structure. But even at larger system sizes the amorphous character on the surface of the clus-
ters can still be observed.5

Experimental studies with electron diffraction showed that the onset of crystallization is at
cluster sizes of about 200-1000 molecules.10 This quite inaccurate statement underlines again
the difficulty of generating clusters of certain sizes in experiment and to measure them. Two
distinct procedures have proved themselves to generate different cluster sizes: generation by
expansion beams11 or by collisional cooling in cluster cells12.5 With different experimental
set-ups (pressure, temperature,...) the cluster size distribution can be controlled. The actual
size of one cluster can then be estimated reactively by, for example, the following methods:
an additional sodium atom can be attached, which allows to photoionize the cluster and to
separate its mass subsequently with mass spectroscopy.13 Another technique is to cover the
cluster with a very thin layer of CF4 and to measure the infrared band intensities for that ad-
sorbed monolayer.12 IR-spectroscopy can then be applied to measure the OH-stretch of the
cluster and in this way the quality of hydrogen-bonds: crystalline water exhibits a lower lying
absorption peak in the spectrum than amorphous phases.13 Using this technique, Pradzynski
and co-workers were able to identify crystallization at the core of clusters starting from sizes
of about 275 particles. The degree of crystallization grows with increasing cluster sizes. Fur-
thermore, electron diffraction patterns give rise to the assumption that cubic ice Ic is present
within the cluster rather than hexagonal ice Ih, the thermodynamically stable state for bulk
water at these conditions.10

In this work, I study some aspects of ice nucleation using computer simulations. The advan-
tage of computer simulations is the easy feasibility of certain cluster sizes as well as the analy-
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1 INTRODUCTION

sis of molecular structures. The disadvantage is the oversimplification of real water molecules
and their interactions and, of course, the limited simulation time. In the first chapter the theo-
retical background of nucleation is discussed, which is known as Classical Nucleation Theory.
Originally designed for the description of droplet condensation from supercooled vapors, it
can be applied with some extensions for liquid-solid interfaces, too. Because nucleation is an
activated process, there is a free energy barrier separating the liquid and solid phases. Usu-
ally this barrier can be derived by the so-called Capillarity Approximation of the nucleation
theory. After explaining the computational methods and some statistical analysis methods, a
proper water model is chosen. This model called TIP4P2005, describes the water molecule as
rigid body with four interaction sites. Some aspects of ice Ih and ice Ic are discussed in the
subsequent section. The practical part of this work firstly consists of elaboration of proper
order parameters, which can distinguish between solid and liquid molecules. The chosen or-
der parameter goes back to ten Wolde and Frenkel, who use spherical harmonics to determine
the largest crystalline cluster within the droplet. To study the stability of ice phases in water
clusters consisting of 216 and 432 molecules, I run constant temperature molecular dynamic
simulations in order to estimate the temperature range, at which crystalline structures begin
to melt. Furthermore, I use the umbrella sampling technique to investigate the free energy
landscape as function of the order parameter, especially to determine the free energy barrier,
which is then compared to the barrier predicted by the nucleation theory.

3



2 NUCLEATION THEORY

2. Nucleation Theory

Most liquids and vapors can be undercooled and superheated, respectively. If that happens,
the liquid or vapor will become metastable. If the temperature is decreased, or in the case of
superheating increased, furthermore, the system will become unstable. Metastable and unsta-
ble liquids relax into the stable equilibrium by different mechanisms of new phase formation.
On the one hand unstable liquids reach equilibrium by the so-called spinodal decomposition.14

In this regime there is no free energy barrier the system must overcome, the transition occurs
spontaneously. This happens by density fluctuations of small amplitude, but at least of a crit-
ical wavelength. Since this work does not deal with unstable liquids spinodal decomposition
is not discussed here in detail. So on the other hand the transition of metastable liquids to-
wards stability is of more interest. Here the mechanism is called nucleation. Small embryos
of the stable phase are formed within the system. While smaller embryos dissolve back into
the metastable phase, larger ones, i.e. those which reach a critical size and are therefore called
critical nuclei or critical clusters, grow spontaneously towards the stable phase. So also this
happens by density fluctuations, but different to spinodal decomposition, here the system relax
by the activated growth of localized fluctuations.14 This is an activated process and the sys-
tem must overcome a free energy barrier in order to form embryos of sufficient size. For this
reason superheating and undercooling can occur, because in order to form a critical embryo
work must be performed. One can differentiate furthermore: If the system has suspended and
dissolved impurities, or imperfectly wetted solid boundaries, heterogeneous nucleation can
happen.14 This means, that these impurities and surfaces provide preferential sites for nucle-
ation and embryos will be formed there. If no such nucleation agents exist, homogeneous
nucleation will become the fundamental mechanism.
The goal of nucleation theories is to quantify the net rate at which embryos grow to a critical
size. This knowledge is important for any investigation of metastable liquids, because such
systems can only be studied in time scales, which are small compared to the typical time scale
of nucleation.14

In Sections 2.1 and 2.2, I will first introduce the Classical Nucleation Theory (CNT) in com-
bination with the Capillarity Approximation. In order to calculate the nucleation rate, here
it is necessary to compute the free energy of embryo formation, which is written as a func-
tion of the embryo radius. This theory makes some assumptions, especially the embryo of
the new phase having the same properties as a bulk system. These estimations cause in some
experimental cases the breakdown of CNT.15 Critical reconsideration leads to more accurate
approaches like the Kinetic Nucleation Theory.16 Originally CNT was designed for the de-
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2 NUCLEATION THEORY

scription of droplet condensation from supercooled vapors. With some extensions it can also
be applied for liquid-solid interfaces.17 In Sec. 2.3 I will discuss some changes in that case.
A more microscopic consideration would be the Classical Density Functional Theory. Instead
of the radius, the free energy in this theory is written as a functional of the density profile,
whose minima determine the thermodynamically stable states. For this approach I refer to the
literature.18

2.1. Classical Nucleation Theory

First, I consider condensation of a liquid droplet from the metastable vapor. As mentioned
before, classical nucleation theory deals with the determination of the net rate of forming a
critical cluster. To do this, one considers the rate J(n), at which a (n − 1)-cluster becomes a n-
cluster. This rate is given by the difference between the rate, at which a cluster containing n−1
molecules gets a new single molecule by condensation and the rate, at which this n-cluster is
destroyed by loosing a single molecule to become a (n − 1)-cluster,

J(n) = f (n − 1)k+n−1A(n − 1) − f (n)k−n A(n). (2.1)

Here f (n − 1) and f (n) are the concentrations of (n − 1)- and n-clusters in a system of a
certain volume V and A(n) and A(n − 1) are their respective surface areas. k+n−1 is the flux
per unit time and area of single molecules arriving at a (n − 1)-cluster, while k−n is the flux
of single molecules leaving a n-cluster. Though it is easy to get k+n−1 from the kinetic theory
of gases, it is hard to find an independent way to calculate k−n . To circumvent this problem,
CNT makes an important assumption: the so-called Constrained Equilibrium Hypothesis says
that an equilibrium distribution of clusters feq can be established and because of microscopic
reversibility one can write

feq(n − 1)k+A(n − 1) = feq(n)k−A(n), (2.2)

where it is assumed, that k− and k+ are independent of the embryo size. Because now one can
solve Equ. (2.2) for k− and substitute it into Equ. (2.1), one gets

J(n) = feq(n − 1)k+A(n − 1)
[

f (n − 1)
feq(n − 1)

− f (n)
feq(n)

]
. (2.3)
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2 NUCLEATION THEORY

The constrained equilibrium hypothesis, which affects the calculation of k−, transforms the
CNT into a thermodynamic theory, though it should be a kinetic one. This this approximation
is of course questionable, because nucleation is a non-equilibrium process inherently. As
mentioned before this is a point, which is reflected by kinetic theories.
Equation (2.1) leads to an expression for the time dependence of the embryo distribution:

∂ f (n, t)
∂t

= J(n) − J(n + 1). (2.4)

The next assumption CNT makes is that the population of n-clusters does not depend on time,
i.e. that “steady states” exist. In other words this means that the lag time, the required time for
reaching the steady state, is of a smaller magnitude than the time of measurement. Analytical
expressions for the lag time were determined for example by Shneidman and Weinberg.19 So
if ∂ f /∂t = 0, J becomes independent of n and after rearranging Equ. (2.3) one gets

J
k+ feq(n − 1)A(n − 1)

=
f (n − 1)

feq(n − 1)
− f (n)

feq(n)
. (2.5)

At this point the flux J is termed as the nucleation rate. Now summing from n = 2 to n = Ω,
where Ω is a large but undefined number, yields the expression

J =
f (1)

feq(1) −
f (Ω+1)

feq(Ω+1)∑Ω
n=1

1
k+ feq(n)A(n)

=
1∑Ω

n=1
1

k+ feq(n)A(n)

. (2.6)

To derive the second equality it is used that the metastable phase consists mostly of sin-
gle monomers, so the actual embryo distribution f (1) and the equilibrium distribution feq(1)
should be equal. Besides, for a large Ω the actual distribution f (Ω) should vanish, because
otherwise the new phase already would be present. Equ. (2.6) shows that the nucleation
rate depends on the equilibrium embryo distribution. It follows from the thermodynamics of
fluctuations that this quantity is proportional to the exponential of the free energy:20

feq(n) ∝ exp
[
−∆G(n)

kBT

]
. (2.7)

In the literature the quantity Nn is often referred as the total number of embryos consisting of
n particles, instead of the concentration feq(n), i.e. Nn/V = feq(n). Since there is no work for
forming a single molecule embryo, the proportional constant should be the total number N of
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2 NUCLEATION THEORY

particles in the metastable system14:

Nn = N exp
[
−∆G(n)

kBT

]
. (2.8)

A fundamental rather than heuristic derivation of this equation is given in the appendix A of
this work. There Nn is derived starting with the partition function of the canonical ensemble.
Once we have determined ∆G (see the following section), we can substitute the equilibrium
embryo distribution in Equ. 2.6. Besides it is common to exchange the sum for an integral,
where the lower boundary is far below the critical size n∗ of the nucleus and the upper bound-
ary is far above it.

J = k+
N
V


n>>n∗∫

n<<n∗

exp
(
∆G(n)
kBT

)
1

A(n)
dn


−1

(2.9)

Since the exponential in this equation is sharply peaked at n∗ as we will also see in the next
section, we can expand ∆G up to the second order, in which the first order vanishes because
of the maximum condition, i.e. ∆G′(n∗) = 0.

∆G(n) ≈ ∆G(n∗) + ∆G′(n∗)(n − n∗) +
1
2
∆G′′(n∗)(n − n∗)2. (2.10)

In addition, the limits can be extended because of the sharpness of the integrand. The homo-
geneous nucleation rate then becomes

J = k+
N
V

A(n∗) exp
[
−∆G(n∗)

kBT

]

×


∞∫
−∞

exp
{
− 1

2kBT
[−∆G′′(n∗)

]
(n − n∗)2

}
dn

 .
(2.11)

Finally the integral can be evaluated. Its value is named Zeldovich factor21 and it is denoted
by Z,

J =
{

k+A(n∗)
V

}
√
−∆G′′(n∗)

2πkBT


{

N exp
[
−∆G(n∗)

kBT

]}
= j(n∗) × Z × Nn∗ .

(2.12)

Beside the already mentioned Zeldovich factor Z, the final result consists of two other terms.
The first one, j(n∗), can be seen as the rate, at which single particles arrive the critical cluster.
The second one, Nn∗ , is the equilibrium number of embryos with critical size. So the Zeldovich

7



2 NUCLEATION THEORY

factor represents a correction in relation to the fact, that the number of critical nuclei differs
from the equilibrium value.14

2.2. Capillarity Approximation

The aim of Capillarity Approximation is to get an expression for the free energy ∆G, which is
identified with the minimal work of forming a cluster. The approximation consists of assuming
small clusters to have the same properties as the bulk material. One can show14 that the
minimal work ∆Gmin to form a cluster consisting of n particles by homogeneous nucleation is
determined by

∆Gmin = σA + (P − P′)V ′ + n[µ′(T, P′) − µ(T, P)], (2.13)

where σ is the surface tension and A is the respective surface of the cluster. P and µ are the
pressure and the chemical potential of the bulk system, while P′ and µ′ are the corresponding
quantities of the cluster, which has a volume V ′. Beside on the pressures the chemical poten-
tials µ and µ′ depend also on the temperature T .
In the case of heterogeneous nucleation one has to add further terms to Equ. (2.13). If for
example nucleation occurs through the presence of a solid wall denoted by the subscript w,
the equation for the minimal work will read

∆Gmin = σαβAαβ + (σwβ − σαw)Aβw + (P − P′)V ′ + n[µ′(T, P′) − µ(T, P)], (2.14)

where α and β are the particular phases of the transition α→ β and σαβ,σwβ,σαw, Aαβ and Aβw
are the appropriate surface tensions and interfaces.
If crystalline clusters grow from the liquid, certain polyhedra would arise depending on what
substances are studied. Because there are several surface areas on such a polyhedron and their
respective surface tension can differ, one actually has to sum over these terms:

∆Gmin =
∑

i

σiAi + (P − P′)V ′ + n[µ′(T, P′) − µ(T, P)]. (2.15)

Here, the index i numbers the facets of the polyhedron with their corresponding surface ten-
sions σi and their surface areas Ai. However, in the Capillarity Approximation the idea is to
assume, that the embryo has the same physical properties as the bulk metastable phase. In
particular, this means that the surface tension of the critical nucleus equals the surface tension
of a flat interface. Besides it is assumed that the nucleus has a spherical shape, so one does not
have to account the various facets of a crystal. If we further treat the embryo as incompressible
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2 NUCLEATION THEORY

we can write
µ′(T, P′) = µ′(T, P) − v′(P − P′). (2.16)

Here, v′ is the volume per particle of the cluster. Substituting this expression into Equ. (2.13)
yields

∆Gmin = σA + n∆µ, (2.17)

where ∆µ is the difference in the chemical potentials of the metastable and stable phase at bulk
conditions T and P. Besides ∆µ is a negative quantity. So at this point one can see that the
work is determined by two terms, which compete against each another. On the one hand there
is the positive surface term ∆GA = σA. The larger it becomes, the more work must performed
against it. So large interfaces are more unfavorable than smaller ones. This way the assump-
tion of a spherical shape of the nucleus is justified, because a sphere has a minimal surface.
On the other hand the volume term ∆GV′ = n∆µ (the particle number n is proportional to the
volume V ′) becomes more negative with growing embryo. At the transition of a metastable
phase towards a stable one there should be a maximum of the resulting formation work. Ex-
actly this maximum is the barrier the system must overcome and the size of the nucleus at
the maximum is identified with the critical size. Embryos which are smaller than the critical
size will shrink spontaneously to dissolve in the metastable phase, while embryos which are
larger will further grow to transform the hole system into the stable phase. To illustrate this
further let us write Equ. (2.17) in terms of the particle number n of the embryo and its radius
r, respectively. The number of particles on the surface of the embryo are proportional to n2/3

and the surface itself is proportional to r2. The volume of the embryo is proportional to n and
to r3. With the proportional constants a, b, c and d one can write

∆Gmin = an2/3 − bn = cr2 − dr3. (2.18)

In Fig. 2.1 ∆Gmin is shown in dependence of r. This function has its maximum at

n∗ =
(
2a
3b

)3

=
32π

3

[
(v′)2/3σ

−∆µ

]3

, (2.19)

r∗ =
2c
3d
=

2σv′

−∆µ . (2.20)

The height of the maximum is then given by

∆G∗ =
4a3

27b2 =
16π

3

[
v′σ3/2

−∆µ

]2

. (2.21)
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∆Gmin

rr∗

∆G∗

∆GA = σ4πr2

∆GV′ =
∆µ

v′
4
3πr

3

∆G = ∆GA + ∆GV′

Figure 2.1: Work ∆Gmin of nucleus formation as a function of nucleus size

2.3. Nucleation Rate in Condensed Systems

In the above sections it was assumed that the particles of the metastable phase can diffuse
freely to the surface of the critical nucleus. This fact changes for an undercooled liquid,
because the diffusion across the solid-liquid interface is affiliated with a second activation
energy barrier. The solid and liquid phase differ not only in the density, but also in the degree
of order. This affects the calculation of the forward and backward rate constants k+n and k−n ,
for which Reaction Rate Theory can be used.17 The nucleation rate can then be written in the
following form22:

J = D× Z × N
V

exp
[
−∆G(n∗)

kBT

]
. (2.22)

D is the size diffusion of nuclei, for which Turnbull and Fisher23 derived the expression

D = i∗
kBT

h
exp

[
− E

kBT

]
, (2.23)

where i∗ = 4n2/3
∗ is the number of molecules at the surface of the cluster, and E is the afore-

mentioned activation energy of crossing the liquid-solid interface. kBT
h with the Plank constant

h is the molecular vibration frequency at the crystal surface. It is often assumed, that several
rate processes such as viscous flow or self diffusion have the same activation mechanism, i.e.
that the jump frequency at the interface is essentially the same as the jump frequency for bulk
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diffusion or viscous flow. That wayD can also be written as

D = 24Dn2/3
∗

l2 =
4n2/3
∗ kBT

3πd3
0η
, (2.24)

where D is the self diffusion constant, l is the characteristic diffusion length, d0 is the effective
molecule diameter and η is the liquid viscosity. Furthermore, if one considers an undercooled
liquid at temperature T , where the equilibrium temperature (melting temperature) is Tm > T ,
one can expand in Equ. (2.17) the chemical potentials in the solid and liquid phases about
their equilibrium values at the melting temperature Tm and the pressure P. Differentiation and
solving for the radius r gives

r∗ =
2σvsTm

∆T∆h
, (2.25)

where ∆h is the heat of fusion, vs is the solid volume per molecule and ∆T is Tm − T . The
minimal work associated with forming of such an embryo of radius r∗ is then

∆G∗

kBT
=

16π
3
∆s
kB

[
σ(vs)2/3

∆h

]3 T 3
m

T (Tm − T )2 . (2.26)

If one substitutes this into Equ. (2.22) and differentiates with respect to T , one will get an
expression for maximizing the nucleation rate:

[1 − θ(Jmax)]3

5 − 3θ(Jmax)
=

16π
3
∆h
E

[
σ(vs)2/3

∆h

]3

, (2.27)

where θ(Jmax) = T (Jmax)/Tm. This maximum of the nucleation rate can be interpreted as fol-
lows: with increasing undercooling the critical size of embryos becomes smaller and the free
energy barrier becomes lower. Thus the nucleation rate has a sharp rise. But with further un-
dercooling the mobility of the particles strongly decreases and so does D. Since the nucleation
rate in condensed systems is related to D via Equ. (2.22) and Equ. (2.24), J decreases, too.
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3 COMPUTATIONAL METHODS

3. Computational Methods

Computer simulations become important whenever a problem is analytically unsolvable, be-
cause it is too complicated or the solution of the equations, which describe the problem, cannot
be expressed in a closed form. Unfortunately this is the case in most problems of nature. They
also are a functional instrument if experimental conditions are hard to realize, for example
very high temperatures or pressures, or just like in this work, a nano-sized system. A com-
mon application of computer simulations is the prediction of properties of a material.24 In this
context on the one hand their results can be compared with experiments to test if the underly-
ing model is appropriate. On the other hand comparison with the properties predicted by the
underlying theory can show us if the theory is possibly flawed. In this chapter I will give an
overview of some computational methods in simulating molecular systems. All these meth-
ods are applied in this work. Beside basic algorithms like molecular dynamics (MD) or Monte
Carlo methods, some advanced techniques are required like umbrella sampling. This is due
to the fact that I study a phase transition, which is an activated process. With straightforward
MD it would take too much time to observe even only one of such a transition.
Already here I want to refer what programs and program packages I use:

• to calculate the dynamics of the system I use the package GROMACS.25 In this pack-
age a MD program with very high performance is offered, which can be run on single
processors as well as on parallel machines.

• the umbrella sampling code is a slightly modified version of the program by Andreas
Singraber. In this code a replica exchange method is implemented, too. The windows
can be simulated in parallel on different cores.

• to analyze the data from the umbrella sampling, I use the WHAM routine by Alan
Grossfield.26

3.1. Molecular Dynamics

3.1.1. Potential

To simulate the motion of atoms or molecules for a certain time t one can use Molecular
Dynamics (MD). From knowledge of the positions and velocities of the particles, Newton’s

12
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equations of motion (3.1) and (3.2) can be integrated simultaneously for each particle:

ṙi(t) = vi(t), (3.1)

v̇i(t) =
Fi(t)
mi
= − 1

mi
∇U(t), (3.2)

where ri is the position of particle i, vi is its velocity and mi is its mass. For determination of
the forces Fi a potential U(rN) is required, which is dependent of the particle coordinates. In
many cases it is sufficient to use classical empirical potentials.24 One distinguishes between
bonded forces, which correspond to chemical bonds, and non-bonded forces, the forces due
to van der Waals and electrostatic interaction. Most empirical models take advantage of pair
potentials, i.e. each pair of particles contributes to the total energy. Furthermore an empirical
potential model usually has free parameters such as partial charges or bond lengths. Through
adjustment to experimental data one determines these parameters and gets an appropriate po-
tential model for the particles in the studied system. In this work I use such an empirical
potential for water, which is named TIP4P2005

27 and is further described in Chapter 4. Some-
times it is possible to gather several particles into groups and to treat them as one pseudo-atom
with an own potential. Such a coarse-graining approach for water is used in the mW model.28

If one is interested in a more accurate potential, which is rather based on theory than on empir-
ical fitting, one has to use quantum instead of classical mechanics. The Schrödinger equation
has to be solved in order to get the electronic structure of the system. Such methods are called
ab-initio methods. Such calculations can be done with Density Functional Theory (DFT)29, in
which the ground state of the potential is assumed to be fully determined by the electron den-
sity. Although this method also uses approximations, it gives much more information about
the system, for instance the density of electronic states. Unfortunately, the computational cost
is much higher than in classical molecular dynamics.

3.1.2. Integration of the equations of motion

To solve Newton’s equations of motion (3.1) and (3.2) the time must be discretized into small
time steps ∆t. With knowledge of the positions and velocities at a certain time t, one wants to
compute these quantities at a time t + ∆t. To do so, one formally integrates both sites of Equ.
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(3.1) and (3.2):

t+∆t∫
t

dt′ ṙi =

t+∆t∫
t

dt′vi(t′),

t+∆t∫
t

dt′v̇i =

t+∆t∫
t

dt′
Fi(t′)

mi
. (3.3)

While the integral before the equal sign can easily be calculated, the integrand after the equal
sign must be approximated by a Taylor expansion, because it is time dependent itself:

ri(t + ∆t) − ri(t) =

t+∆t∫
t

dt′
∞∑

k=0

(t′ − t)k

k!

(
dk

dtk vi

)
t
,

vi(t + ∆t) − vi(t) =

t+∆t∫
t

dt′
∞∑

k=0

(t′ − t)k

k!

(
dk

dtk Fi/mi

)
t
. (3.4)

After solving the remaining integral and rearrangement one gets

ri(t + ∆t) = ri(t) +
∞∑

k=1

∆tk

k!

(
dk−1

dtk−1 vi

)
t
,

vi(t + ∆t) = vi(t) +
∞∑

k=1

∆tk

k!

(
dk−1

dtk−1 Fi/mi

)
t
. (3.5)

The so-called Velocity Verlet algorithm30, which I use in my MD simulations, solves these
equations up to the second order:

ri(t + ∆t) = ri(t) + ∆t vi(t) + ∆t2 Fi(t)
2mi
, (3.6)

vi(t + ∆t) = vi(t) + ∆t
1

2mi
[Fi(t) + Fi(t + ∆t)] . (3.7)

The choice of the time step plays an important role: if it is too small, the simulation of long
time scales will take too much time, because many time steps are necessary. If it is too large,
conservation of the energy will degrade, because rounding errors will build up. Another im-
portant feature of the Velocity Verlet algorithm is the symmetry of time. This means, that if
one chooses a negative time step, one will get older configurations of the system. Thus the
trajectory is reversible.
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3.1.3. Molecular Dynamics in the Canonical Ensemble

As mentioned before, the original Velocity Verlet algorithm conserves the total energy with
high accuracy. This situation is given in the (N,V, E)-ensemble, also called microcanonical en-
semble, in which the temperature fluctuates. In usual experiments it is the other way around,
the total energy fluctuates and the temperature is constant. Thus the (N,V,T )- or canonical
ensemble is the correct description. If a computer simulation should be at constant tempera-
ture, a thermostat must be added. The idea of the Nosé - Hoover thermostat31, which is used
in my constant temperature simulations, is the following: because on average the velocities
are related to the temperature via the kinetic energy,

Ekin =

N∑
i

1
2

miv2
i =

3
2

NkBT, (3.8)

where the sum goes over all N particles, an additional term with a free parameter ζ appears in
the differential equation for the velocities. A third differential equation evolves this parameter
in time so that the positions and velocities are canonically distributed and the kinetic energy
conforms to the reference value (3/2)NkBT ,

ṙi = vi (3.9)

v̇i = Fi/mi − ζvi (3.10)

ζ̇ =
1
τ2

∑N
i miv2

i

3NkBT
− 1

 . (3.11)

In the last equation a new parameter τ with the dimension of time appears, which is termed
relaxation time of the thermostat. It should be chosen carefully and in any case smaller than
the simulation time to ensure the thermostat to be effective. On the other hand it should be
larger than the typical relaxation times of the system to avoid a too large perturbation of the
equations of motion.

3.1.4. Constraints

Because in the studied system there are fixed bond lengths and bond angles like the O-H
distance and the H-O-H angle, constraints must be introduced. The constraints, which must
be fulfilled by the equations of motion, can be expressed as

σk(r1...rN) = 0, (3.12)
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with k = 1...K, where K is the total number of constraints. Each constraint can depend on the
coordinates of all particles in the system. This way, the constraint σ = 1

2 [(rα − rβ)2 − d2] = 0
defines the distance d between two atoms α and β. By using the method of the Lagrange
multipliers the equation of motion for a certain particle i becomes

mi r̈i = Fi −
K∑

k=1

λk
∂σk

∂ri
(3.13)

= Fi + Gi, (3.14)

where λk is the Lagrange multiplier of the k-th constraint and the sum in Equ. (3.13) can be
interpreted as constraint force Gi. Constraint forces do not change the total energy, because
they perform no work. After integrating both sides of Equ. (3.13) twice in time, the position
ri(t + ∆t) can be written as

ri(t + ∆t) = r̂i(t + ∆t) − ∆t2

mi

K∑
k=1

λk
∂σk

∂ri
. (3.15)

Here the unconstrained position is expressed by r̂i(t+∆t). To enforce the constraint one claims
that σk(t + ∆t) = 0 and therefore one has to solve a system of non-linear equations for the λk.
For the special case of three constraints, which is given at a water molecule, this system can
be solved in an efficient way and analytically by the SETTLE algorithm.32 This algorithm is
also implemented in the GROMACS package and I use it in my MD simulations.

3.2. Monte Carlo Methods

3.2.1. Metropolis Monte Carlo

These techniques are called Monte Carlo methods (MC), which solve problems by the use of
random numbers. One of the most important features is the sampling of probability distri-
butions. The Metropolis Monte Carlo algorithm achieves this by so-called random walks.33

Based on a starting point x a trial move is performed into the neighborhood x + ∆x. Here the
direction and amount of the displacement ∆x is chosen randomly, but cannot exceed a certain
maximum amount. If the probability f (x + ∆x) of the new point is higher than the one of the
old point f (x), the trial move is accepted. x + ∆x then becomes the new starting point and
the procedure continues. Otherwise, the trial move is accepted only with a probability f (x+∆x)

f (x) .
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The acceptance rule can be simply expressed by the formula

Pacc(x→ x + ∆x) = min
(
1,

f (x + ∆x)
f (x)

)
. (3.16)

The minimum function min(x, y) returns the smaller one of its arguments. The acceptance
probability can be controlled by the maximum amount of displacement ∆x. It should be about
20% - 70%. It is important that rejected moves also count as moves, i.e. the number of
occurrences of the old point is increased. If the number of the random walk steps is large
enough, the Metropolis Monte Carlo algorithm will sample the probability distribution f (x) in
a satisfactory way.
The algorithm can be transferred to the problem of molecular systems. For example, the
canonical probability distribution is given by

f (rN , pN) =
exp[−βH(rN , pN)]!

drNdpN exp[−βH(rN , pN)]
, (3.17)

where rN and pN are the positions and momenta of all N particles and H is the Hamiltonian
of the system, which correspondents to the total energy. A trial move consists of the random
choice of one particle i and its displacement in space. Since the momenta of the particles are
not considered, the acceptance probability of such a move is given by

Pacc(rold
i → rnew

i ) = min
(
1, exp[−β∆U]

)
, (3.18)

where ∆U = ∆U(rnew)−∆U(rold) is the difference of the potential energies of the old and new
configuration. In many cases this difference can easily be calculated, because the potential
energy depends only on the particle positions and consists of pair contributions, of which most
stay unchanged. After N trial single particle moves a MC step is finished and can be repeated.
In the canonical ensemble the expectation value of a quantity A, which is only dependent on
the particle positions, is given by

⟨A(rN)⟩ = 1
Z

∫
drN exp[−βU(rN)]A(rN), (3.19)

where Z =
∫

drN exp[−βU(rN)] is the partition function, which normalizes the distribution.
For a correctly sampled canonical distribution this expectation value can written as average
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value over all MC steps M:

⟨A(rN)⟩ ≈ Ā =
1
M

M∑
i=1

A(r(i)
1 , ..., r

(i)
N ). (3.20)

The error of such a mean value would be proportional to the square root of the number of
measurements M, if the correlation between successive states vanished. But since new states
are created by old ones through only small displacements this is not true. Thus one alternative
is to wedge the sample, i.e. to evaluate for example only every tenth or twentieth step of the
sampling. Although then the sample is smaller, the correlation within the sample is reduced.

3.2.2. Hybrid Monte Carlo

Another alternative to reduce the correlation within the sample is to use the Hybrid Monte
Carlo algorithm (HMC).34. Instead of randomly choosing a particle and displacing it, the
whole system is evolved according to MD. So at each HMC step the following happens: at first
all particles are assigned a velocity at random according to a Gauß distribution corresponding
to the simulated temperature. Then a trajectory is generated for several timesteps. After finish-
ing the MD simulation the difference of total energy is determined. Now the same acceptance
rule as above (Equ. (3.18) ) is applied. The acceptance probability can be controlled by the
size of the timestep, where large timesteps imply smaller acceptance probabilities. This way
new, independent configurations are created effectively.

3.3. Umbrella Sampling

As described in Chapter 2 the transition of a metastable to a stable phase occurs very quickly
and most of the time the system resides in one of the two states. This means, that the probabil-
ity of a transition state is very low. Even if a conventional MC or MD simulation show such a
transition, the statistics will be too poor to evaluate thermodynamic properties. Unfortunately
it is the transition state, which is of interest, and we want to study especially this region of
phase space. One way out is the use of Umbrella Sampling.35 With the aid of this method
the system is forced to move and stay in the phase space region of interest by introducing a
biasing potential. This bias potential can be realized by a harmonic function V(Φ):

V(Φ(rN)) =
1
2

kΦ(Φ(rN) − Φ0)2, (3.21)
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whereΦ is the order parameter, which describes the phase transition,Φ0 is the umbrella centre,
around which Φ should be sampled, and kΦ is the umbrella spring constant. By an appropriate
choice of kΦ one controls the narrowness around the umbrella centre. In practice one un-
dertakes several simulations with different umbrella windows. In each window one tries to
sample over a certain width in order to cover the whole order parameter range without using
too much windows. Nevertheless the distributions of the order parameter of neighboring win-
dows should overlap, so that good statistics of each value of Φ are given.
The bias potential can be added to the normal potential U of the system, U′ = U + V . This
way a kind of weight function W = e−βV appears when calculating the expectation value of
A(rN) in the biased ensemble (denoted with the subscript W) :

⟨A(rN)⟩W =
∫

drN exp[−βU′(rN)]A(rN)∫
drN exp[−βU′(rN)]

=

∫
drN exp[−βU]W(rN)A∫
drN exp[−βU]W(rN)

. (3.22)

The expectation value of the unbiased canonical ensemble is related to the biased one via

⟨A(rN)⟩NTV =

∫
drN exp[−βU(rN)]A(rN)∫

drN exp[−βU(rN)]

=

∫
drN exp[−βU]W(rN)AW(rN)−1∫
drN exp[−βU]W(rN)W(rN)−1

=
⟨A/W(rN)⟩W
⟨1/W(rN)⟩W

. (3.23)

An important application of umbrella sampling is the determination of the free energy as
function of the order parameter. It can be shown - I demonstrated it in Chapter 2 in the special
case of the cluster size n as order parameter - that the free energy ∆F is related to the order
parameter via

β∆F(Φ) = − ln[P(Φ)]. (3.24)

The probability P(Φ), i.e. the probability, that the system assumes a configuration rN with
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order parameter Φ can be expressed by

P(Φ) = ⟨δ(Φ − Φ(rN))⟩

=
⟨eβV(Φ)δ(Φ − Φ(rN))⟩W

⟨eβV(Φ)⟩W

=
eβV(Φ)⟨δ(Φ − Φ(rN))⟩W

⟨eβV(Φ)⟩W
. (3.25)

Here δ(Φ−Φ(rN) is the Dirac delta-distribution and Equ. (3.23) is used. It is interesting to see
that, while the numerator can easily be determined from the histogram of Φ obtained in the
simulation, the denominator does not have to be calculated. If one considers two neighboring
windows with umbrella centers Φ1 and Φ2 but overlapping Φ-distributions, one can write

P(Φ) =
eβV1(Φ)⟨δ(Φ − Φ(rN))⟩W1

⟨eβV1(Φ)⟩W1

=
eβV2(Φ)⟨δ(Φ − Φ(rN))⟩W2

⟨eβV2(Φ)⟩W2

. (3.26)

After taking the logarithm at both sides in rearranging one gets

βV1(Φ) + ln(⟨δ(Φ − Φ(rN))⟩W1) − βV2(Φ) − ln(⟨δ(Φ − Φ(rN))⟩W2) =

ln(⟨eβV1(Φ)⟩W1) − ln(⟨eβV2(Φ)⟩W2). (3.27)

The right hand site of this equation is constant with respect to Φ. Thus measuring F(Φ) in
the two different windows, i.e. with different umbrella potentials, leads to constantly shifted
results (see also in Fig. 3.1 ). The easiest way to make the free energy function continuously
is simply by shifting these parts one upon the other. So the free energy in window i can be
calculated by

β∆Fi(Φ) = −βVi − ln(⟨δ(Φ − Φ(rN))⟩Wi) + bi, (3.28)

where bi is the shifting constant. The histogram of the sampledΦ is close to a Gauß-distribution.
Its center usually is slightly right or left of the umbrella centre of the biasing potential. After
taking the logarithm, as prescribed by Equ. (3.28), the quadratic term roughly cancels with the
quadric term of the bias potential. So in each window the remaining contribution to the free
energy is roughly linear in Φ. Whether the free energy increases or decreases with Φ depends
on the relative position of the quadratic curves. Generally it is possible to compose each small
linear segment of the free energy by adjusting bi in order to get the whole free energy land-
scape as function of the entire order parameter range. In Fig. 3.1 one can see the schematic
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Figure 3.1: Schematic evaluation of the free energy in two neighboring windows. As order
parameter the largest clustersize n is used. The black dashed lines represent the
umbrella potentials around the values n = 85 and n = 95. The red solid lines are
the logarithms of the Φ-histograms in these windows. Adding the red and black
curves leads to the linear blue lines, which finally represent the free energies. One
can see, that the free energies differ approximately by a constant in the overlapping
region.

evaluation of the free energy in two neighboring windows as described here.

3.4. Replica Exchange

Replica exchange36is also known as parallel tempering. The main idea is to simulate several
copies of the same system at different temperatures in parallel and to allow the exchange of
configurations between them in order to enhance the sampling. If the energy landscape of a
system has multiple minima, it can be trapped in one of them for a longer time. This way the
phase space is not covered completely and the sampling is poor. One way out is to allow the
system once in a while to swap its configuration with a system of higher temperature in order
to overcome energy barriers. The different temperatures do not need to correspond with real
physical temperatures. In the present case the different windows of the order parameter Φ, as
described in the previous section, represent the replicas. Replica exchange only takes place
between neighboring windows with overlapping Φ-distributions. The frequency of swapping
attempts is chosen in such a way that the system can equilibrate between two attempts. The ac-
ceptance rule for such swapping attempts follows the Metropolis algorithm. Once a swapping
attempt between the configurations i and j is performed, the energy before (Vold) and after
the change (Vnew) is computed. Because I use the configurations of the umbrella sampling
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windows as replicas, the energy V is based on the bias potential of the particular window:

Vold =
1
2

ki(Φi − Φ0,i)2 +
1
2

k j(Φ j − Φ0, j)2 (3.29)

Vnew =
1
2

ki(Φ j − Φ0,i)2 +
1
2

k j(Φi − Φ0, j)2 (3.30)

The acceptance probability of the exchange is then given by

Pacc(i↔ j) = min
(
1, exp[−β(Vnew − Vold)]

)
. (3.31)

In Fig. 3.2 an example of replica exchange paths is shown. One can see that in principle it is
possible to have, for instance, an original window 0 configuration after some swapping moves
in window 10 and vice versa. Hence more configurations can be sampled in the phase space.

3.5. Weighted Histogram Analysis Method

We have seen that the free energy in each umbrella sampling window is determined up to a
constant bi. As said before, it is generally possible to adjust every segment to make the free
energy continuous. But this method can cause some practical problems if the free energies in
overlapping regions of neighboring windows are not exactly parallel. This is why I use the
weighted histogram analysis method (WHAM).37 To explain this technique in a clear way let
us rename some quantities of Equ.(3.25).

⟨δ(Φ − Φ j)⟩Wi =
ni j

Ni
,

e−βVi(Φ j) = ci j,

⟨eβVi⟩ = eβbi = fi. (3.32)

In the first line the order parameter Φ has been discretized into j bins. In the i-th simulation,
ni j is the number of counts in the histogram bin associated with Φ j. N j is the total number of
samples in the i-th simulation. This way the fraction ni j/Ni is the biased probability of bin j.
In the last line one can see again how the denominator of Equ. (3.25) is related to the shifting
constant bi. With this abbreviated notation, an estimation for the unbiased probability Pi j can
be written as

Pi j =
ni j

Nici j fi
. (3.33)

22



3 COMPUTATIONAL METHODS

 0

 2

 4

 6

 8

 10

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06

um
br

el
la

 w
in

do
w

s

HMC moves

Figure 3.2: Process of successful swapping attempts in an umbrella sampling simulation
with replica exchange. As order parameter the size n of the largest crystalline
cluster within the system is used. The umbrella centers are located at n =
5, 10, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105. Different colors denote configurations
from different original windows (red line: window 0 with n0 = 5, green line: win-
dow 5 with n0 = 55, blue line: window 10 with n0 = 105). This diagram was
generated by an umbrella sampling simulation with 216 water molecules at 180 K
and 3.8 ·106 HMC steps.
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The real unbiased probability for bin j is defined as the sum over these estimates of each
simulation with certain weight factors wi:

P0(Φ j) =
sim∑

i

wiPi j. (3.34)

The idea is now to choose the weights in such a way that the variance of P0(Φ j) gets mini-
mized. Considering the number of counts in bin j to be Poisson distributed, this variance can
be written as

var
[
P0(Φ j)

]
=

sim∑
i

w2
i var

[
Pi j

]
=

sim∑
i

w2
i var

[
ni j

]
N2

i c2
i j f 2

i

=

sim∑
i

w2
i P0(Φ j)
Nici j fi

. (3.35)

Minimizing this expression with respect to wi and with the constraint
∑sim

i wi = 1 one gets the
following condition for the optimal wi’s, which can be substituted in Equ.(3.34):

wi =
Nici j fi∑sim

k Nkck j fk
. (3.36)

At last the unbiased probability for the order parameter Φ j is given by

P0(Φ j) =
∑sim

i ni j∑sim
i Nici j fi

, (3.37)

where P0(Φ j) is still dependent of fi, which is unknown yet. But in Equ. 3.33 one recognizes,
that fi must fulfill the function of a normalization constant, since

∑bins
j ni j/Ni = 1. This can be

achieved by setting f −1
i =

∑bins
j ci jPi j. Because Pi j itself is the estimation of P0(Φ j) one can

finally write

f −1
i =

bins∑
j

ci jP0(Φ j). (3.38)

The last two equations (3.37) and (3.38) are known as the WHAM equations. They are a sys-
tem of sim + bins nonlinear equations, which must be solved iteratively until self-consistency
is reached. Getting the right unbiased probabilities and shifting factors one can calculate the
free energy via Equ. (3.24).
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4. Model Definition

There are several different potential models, which were developed to reproduce the properties
of water. Results of the simulation with each particular model should be in accord with exper-
imental reports, for example the phase diagram, the pair distribution function or the dielectric
constant. In addition, the model should be as simple as possible for reasons of computational
cost.
I decided on the TIP4P2005 model, because it has several advantages and it reproduces those
properties very well, which are important in this work27,38. The TIP4P2005 model is a repara-
metrization of the TIP4P model, i.e., it uses four sites of interaction. The water molecule is
considered as rigid. Both the oxygen-hydrogen distances and the angle spanned by the two
oxygen-hydrogen bonds, are fixed. They have a value of dOH = 0.9572 Å and ∡(HOH) =
104.52◦ respectively, and are geared to the experimental results of an isolated molecule.39 The
fourth site M is coplanar with the molecule and lies on the bisector of the (HOH)-angle with
distance dOM = 0.1546 Å from the oxygen. Molecules interact via two kinds of pair poten-
tials. On the one hand there is a Lennard-Jones potential, whose center is the oxygen. It has
the form

uLJ = 4ϵ[(σ/rOO)12 − (σ/rOO)6], (4.1)

where rOO is the distance between the two oxygens of the interacting molecules, σ = 3.1589 Å
is the location of the zero-value of the potential and ϵ/kB =93.2 K is its depth (kB is the
Boltzmann constant). On the other hand, two molecules interact via a Coulomb-potential, too.
It has the form

uCl =
e2

4πϵ0

∑
a,b

qaqb

rab
, (4.2)

where e is the charge of an electron, ϵ0 is the permittivity of vacuum and a, b are the indices
of the charged centers of the molecule. They are located on the hydrogens with a magnitude
of qH = 0.5564 e and on the M-site with an amount of qM = −2qH. The parameters σ, ϵ, qH

and dOM were determined by nonlinear fits to the following properties:

• temperature at maximal density Tmd

• enthalpy of vaporization ∆νH

• densities of liquid water at ambient conditions

• density of ice II at 123 K and 0 MPa

• density of ice V at 223 K and 530 MPa
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4 MODEL DEFINITION

• range of temperatures at which ice III is the thermodynamic stable phase at 300 MPa

Here is a brief summary, why the authors of the TIP4P2005-model think that these properties
are important:27 While 3-site models like TIP3P or SPC/E describe the phase diagram only
in an unsatisfactory way because they overstabilize ice II (this is probably a consequence
of the negative charge located at the oxygen site), 4-site models achieve better results. To
improve this situation with ice II further, it is convenient to adjust the fit parameters especially
to the experimental results of the densities of ice II and ice V, which is nearby in the phase
diagram. For this reason the authors also show that it is advisable to take account of the
area of stable ice III, too.40 In this way not only the area of stable ice II shrinks, but also ice Ih
becomes the most stable phase at ambient conditions, which is in agreement with experimental
observation. By the way, the temperature of maximal density, Tmd, plays an important role,
because it is closely related to the melting temperature Tm and the enthalpy of vaporization
∆νH. Because it is impossible to find a set of fit parameters that give simultaneously good
results for both of these quantities, the proper approximation of Tmd of a model will provide
a good balance between the deviation of Tm, which is always too low, and ∆νH, which is
too large in TIP4P-like models. The results of the adjustment of the potential parameters are
collected in Table 4.1. For comparison, the parameters of the original TIP4P and of the SPC/E
model are included, too. Table 4.2 shows the dipole and quadrupole moments of these models.
The dipole moments are always too large, because it is necessary to implement the induced
polarization in an averaged way into the model. This is the price of using a rigid geometry
and pair interaction. If one compares gas phases with condensed phases (which is not the case
in this work), one has to add a correction term for the so-called self energy.41 The correction
term takes account of the fact that in the gas phase the molecules can move freely and are not
electrically induced by others. If µi is the dipole moment of the model molecule, µg is the
dipole moment of a gas molecule and α is the polarizability of water, the correction term is

∆upol = (µi − µg)2/2α. (4.3)

The quadrupole moments of these rigid, unpolarizable models are lower than of isolated
molecules. But an improvement of these values could lead to an improvement of the prop-
erties as several studies with polarizable models had shown.42,43.
In comparison with other rigid models the results of TIP4P2005 are very good. For example the
phase diagram, whose reproduction is an essential test of every model, is in good agreement
with experiment (except of a shift in the T −P plane). This can be seen in Fig. 4.1. In contrast
the phase diagram of TIP3P is shown in Fig. 4.2. As mentioned before, there is a large area of
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stable ice II while other ice phases seem not to be stable.

dOH ∡ (HOH) σ ϵ/kB qh dOM

[Å] [deg] [Å] [K] [e] [Å]

SPC/E 1.0 109.47 3.1656 78.20 0.4238 0
TIP4P 0.9572 104.52 3.1540 78.02 0.52 0.15

TIP4P2005 0.9572 104.52 3.1589 93.20 0.5564 0.1546

Table 4.1: Parameters of SPC/E (Ref.(41)), TIP4P (Ref. (44)) and TIP4P2005 (Ref. (27)) . dOH

and ∡ (HOH) are given parameters. The other parameters are adjusted by nonlinear
fits on the experimental results. The charges are in units of the elementary charge.

µ Qxx Qyy Qzz

[D] [DÅ] [DÅ] [DÅ]

SPC/E 2.350 2.19 -1.88 -0.30
TIP4P 2.177 2.20 -2.09 -0.11

TIP4P2005 2.305 2.36 -2.23 -0.13
Gas (expt.) 1.850 2.63 -2.50 -0.13

Table 4.2: Dipole moment µ and quadrupole moment Q of SPC/E, TIP4P and TIP4P2005 in
comparison with the experimental values. When Q is calculated, the x- and z-axes
are in the plane of the molecule, the z-axis lies on the C2-symmetry axis. The origin
is the center of mass of the molecule.
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4 MODEL DEFINITION

Figure 4.1: Phase diagram of the TIP4P2005 model. Stars represent experimental values while
solid lines are simulation results. The graphic is taken from Ref. (27)

.

in ref. 97). In fact, the simulation results agree much better with the new reported
data of Fortes et al., reinforcing the idea that the value reported by Kamb is prob-
ably incorrect.
According to the results of Fig. 3, we assign 3 points to the performance of TIP4P/

2005, 2 points to TIP4P, 1 point to TIP5P and 0 points to TIP3P (the low score of
TIP3P is due to the fact that several ices melt well below their experimental melting
temperatures so that this model is not useful to study the behaviour of the solid
phases of water).

4. Phase diagram calculations

The phase diagram of TIP4P, SPC/E and TIP4P/2005 has been determined in
previous work.34,36,52,100 The phase diagram for TIP3P has not been determined so
far. In this work we have used Hamiltonian Gibbs–Duhem integration to compute
it and to complete the previous calculations for TIP5P. The results are presented in
Fig. 4. The predictions of TIP3P and TIP5P are quite poor. Ice Ih is thermodynam-
ically stable only at negative pressures. The stable phase at the normal melting point
for both models is ice II. This surprising result has been confirmed recently by

Fig. 4 Phase diagram as obtained in this work for TIP3P and TIP5P. Symbols: experimental
phase diagram, lines: computed phase diagram. Top: results for the TIP3P model, bottom:
results for the TIP5P model.
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Figure 4.2: Phase diagram of the TIP3P model. Stars represent experimental values while
solid lines are simulation results. The graphic is taken from Ref. (38)
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5. Ice Configurations

In this chapter I want to give some information about the structure of hexagonal ice Ih and
cubic ice Ic and the routine, which I use to build a spherical cluster of these two ice configu-
rations. Both ice configurations consists of tetrahedral networks, meaning that each molecule
is at the center of a tetrahedron and hydrogen bonded to its four nearest neighbors.45

5.1. Ice Ih

The unit cell of hexagonal ice consists of four molecules and has symmetry P63/mmc having
lattice parameters a = 4.5181 Å, c = 7.3560 Å (90◦, 90◦, 120◦, see Fig. 5.1).46 So, the cell
vectors can be written as follows, where X, Y and Z are the cartesian unit vectors:

A1 =
1
2

aX −
√

3
2

aY

A2 =
1
2

aX +
√

3
2

aY

A3 = cZ (5.1)

Along the c-axis the crystal can be seen as sheets lying on top of each other. This sheets
contain hexagonal rings in the chair-form, consisting of six H-bonded water molecules. There
are also hexagonal rings parallel to the c-axis, but these ones have the boat-form.45 This way
each molecule has three bonds in a staggered arrangement to its neighbors in the plane of the
chair-rings and one eclipsed bond to a molecule of a neighboring sheet along the c-axis. The
exact positions of the four oxygen atoms can be written in terms of the cell vectors,

B1 =
1
3

A1 +
2
3

A2 B2 =
2
3

A1 +
1
3

A2 +
1
2

A3

B3 =
1
3

A1 +
2
3

A2 + uA3 B4 =
2
3

A1 +
1
3

A2 + (
1
2
+ u)A3, (5.2)

where u is defined by the condition that each O-atom has the same distance to its neighbors.
Hence one gets an expression for this parameter, u = 1

4 +
a2

3c2 . With these definitions the nearest
neighbor distance is about 2.8 Å. Fig. 5.1 shows the unit cell of ice Ih. It should be noted
that, whereas only proton ordered molecules are shown in the picture, in reality there is proton
disorder and the H-bonds are distributed at random.
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*

*
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*

c

a
a

120°

. .

Figure 5.1: Unit cell of ice Ih. Molecules, which belong to the cell, are marked with a star.
Note, that the structure is proton ordered, whereas ice Ih is proton disordered in
reality.

5.2. Ice Ic

Ice Ic has a cubic unit cell with lattice constant c = 6.358 Å (90◦, 90◦, 90◦) and the symme-
try group Fd3m.46 There are eight oxygen atoms in the unit cell, which have the diamond
structure:

B1 =
1
4

X +
1
4

Y +
1
4

Z B2 =
3
4

X +
3
4

Y +
1
4

Z

B3 =
1
2

X +
1
2

Z B4 = X +
1
2

Y +
1
2

Z

B5 =
1
4

X +
3
4

Y +
3
4

Z B6 =
3
4

X +
1
4

Y +
3
4

Z

B7 =
1
2

X +
1
2

Y + Z B8 = X + Z (5.3)

In contrast to ice Ih all four hydrogen bonds are staggered, which leads to six-membered rings
in chair form in any of the tetrahedrally arranged planes. The nearest neighbor distance is
about 2.8 Å like in ice Ih. In Fig. 5.2 the unit cell of ice Ic is shown, again in a proton ordered
version, whereas in reality it is proton disordered.
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Figure 5.2: Unit cell of ice Ic. Molecules belonging to the cell are marked with a star. Note,
that the structure is proton ordered, whereas ice Ic is proton disordered in reality.

5.3. Algorithm for Ice Generation

To generate disordered ice Ih and ice Ic for the subsequent simulations, I follow the guidelines
of Ref. (47): A periodic lattice of the desired structure (Ic or Ih) of oxygen atoms is built. Even
if there is no proton order in ice, each molecule must fulfill the so-called ice-rule. This means
that each oxygen must have exactly two chemical bonded hydrogens, while there are other
two hydrogens, which are hydrogen bonded. So a hydrogen atom is set between each two
neighboring oxygens at one of the two allowed sites at random to built a chemical bond with
the particular oxygen. Because in this stage an oxygen can have up to four chemical bonds,
a Monte Carlo (MC) algorithm is applied to correct the hydrogen configuration according to
the ice-rule: At each MC step an oxygen-oxygen axis is picked at random and the hydrogen
sitting on that axis is shifted with a certain probability. Denoting the chemical coordination of
the two oxygens with ci and c j, the hydrogen is shifted with probability 1 towards the other
oxygen, if the difference of coordination, |ci−c j|, decrease. If there is no change, the probabil-
ity is 0,5. Otherwise the shifting is rejected. This procedure repeats until each oxygen has only
two chemical bonds, i.e. ci = 2. To get a spherical cluster of the ice configuration, I simply
cut a sphere of sufficient size out of this structure. However, the resulting ice droplet is not
a realistic one, because dangling surface atoms can lead to a strong electrostatic interaction.
These surface atoms should recombine in a subsequent MD simulation with energy minimiza-
tion. Besides, the H-O-H angle of a water molecule, which is placed into the lattice by this
algorithm, is 109.47◦, the perfect tetrahedral angle. But the angle of the TIP4P2005 model of
water is 104.52◦. This discrepancy also should be corrected after a few steps by the algorithm
of the MD program handling the constraints.

31
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6. Determination of the Order Parameter

6.1. Size of the Largest Cluster

As mentioned above it is necessary to introduce an order parameter Φ to describe the states,
between which a transition occurs. If this transition is an activated process, there is a free
energy barrier, which can be expressed by

∆G(Φ) = −kBT ln[P(Φ)], (6.1)

where P(Φ) is the probability to find the order parameter around the given value Φ. One has to
distinguish between local and global order parameters. Global order parameters only measure
the overall degree of crystallinity in the system, i.e. how much of the new phase is present
in the system, but not how it is distributed in space. Local order parameters are able to iden-
tify regions of more or less structural order by inspection of the environment of each particle.
There are some disadvantages in using global order parameters in nucleation studies:
First of all one has to consider the question, whether one large cluster of the new phase is
forming within the system or many smaller ones comprising the same number of particles. As
usually assumed, it is more favorable with respect of the free energy to build only one clus-
ter, because then the surface area is smaller. But in fact, as ten Wolde showed,48 the entropy
can play an important role as it increases with an increasing number of nuclei. This entropy
contribution competes with the interfacial free energy and at an early stage of the nucleation
process the entropic term is larger. However, ten Wolde also showed that the entropic break-up
into smaller nuclei is dependent on the system size. Hence it is possible that a, with respect
to CNT, post-critical cluster may still be precritical for entropic reasons. Global measure of
crystallinity effectively induces the entropic break-up and is for this reason inappropriate when
comparing the results to CNT.49

Secondly, because of the underlying activated process, in computer simulations nucleation
must be driven by use of the order parameter. Reinhardt and coworkers pointed out that when
driving the nucleation process by global order parameters the pathways show an unphysical
behavior.49 Especially if the lowest free energy path is dynamically slow, a faster pathway, but
perhaps one with a higher free energy, will be observed, because its barrier is negated by the
rare event method. This is due to the fact that by using global order parameters a single par-
ticle can be influenced by solid clusters, which are far away, even though such an long-range
interaction is unnatural.
In CNT the free energy barrier is a function of the cluster size distribution Nn. Hence using
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6 DETERMINATION OF THE ORDER PARAMETER

a similar order parameter is an obvious advantage if one wants to compare results with CNT.
I decided to use the size n of the largest crystalline cluster within the system as suggested by
ten Wolde and Frenkel.50 Because one is able to decide for each particle whether it belongs
to a solid cluster or not, this order parameter is local in its nature. In an umbrella sampling
scheme it is possible to control the size of one cluster directly and to sample all cluster sizes
with equal accuracy.50 To take into account only the largest cluster is in agreement with the
cluster size distribution in CNT. It is justified by the fact that cluster building is a rare event
and the cluster size distribution Nn can be approximated as the probability pn(1) to find only
one n-cluster in the system (see also appendix A).
Of course, first we need a proper criterion to distinguish between solid- and liquid-like parti-
cles. So in the next section I give some ideas to identify the structural order of a system. While
CNT provides an expression for the work of embryo formation based on the assumption that
the embryo has the same properties as the bulk system, the following determination takes
a microscopic and more fundamental view on the system.14,51,52 Furthermore this derivation
does not need any estimation about the macroscopic properties of the embryo. This approach
is very suitable for computer implementation due to the fact that in a computer simulation the
exact positions and velocities of all particles are known at all times.

6.2. Structural Order Parameters

Several approaches exist to distinguish ordered crystal structures from disordered liquid struc-
tures or gas phases. Methods strongly depend on the studied substances, since for example
their solid phases can have different crystal structures. It also depends whether the system
is finite or bulk, because in the case of a finite system, particles on the surface maybe must
treated in a different way. For this reasons I discuss the cluster criterion already here in a
very concrete manner, namely for a nano-sized water/ice system. Under ambient conditions
water crystallizes in an ice Ih structure. But it is often found that also ice Ic is formed in finite
systems. Both structures build tetrahedral networks, in which the oxygen atoms form with
their four neighboring oxygens an angle of approximately 109◦. The order parameter qt takes
advantage of this feature53–55:

qt(k) = 1 − 3
8

3∑
i=1

4∑
j=i+1

(
cos θik j +

1
3

)2

. (6.2)

33



6 DETERMINATION OF THE ORDER PARAMETER

Here k indicates the index of the central oxygen, i and j are the indices of two of the neigh-
boring oxygens. This order parameter is normalized in such a way that it results in a value
of qt(k) = 1 for perfect tetrahedral configurations, while its expectation value ⟨qt(k)⟩ vanishes
for gas-like configurations. In bulk systems this order parameter can be used to distinguish ice
and liquid water.55,56 However, it breaks down at differentiation of ice and LDA-glass, because
of a too strong overlap of its distribution function.56 Unfortunately cluster with LDA structure
arise just when liquid water is cooled, i.e. angles of 109◦ build without forming an ice struc-
ture. A second disadvantage is the requirement of the positions of four neighbors. For the
nanodroplet studied here approximately 2/3 of the molecules are situated on the surface and
hence do not have four neighboring molecules. Therefore one would have to omit the larger
part in the calculation.

In ice, however, the tetrahedral structure is well defined, whereas in water or LDA structures it
occurs randomly. This is used by the following method, which goes back to Steinhardt et al..57

Local orientational bond order parameters ql(k) are defined for each molecule, whose 2l + 1
complex components are given by

qlm(k) =
1

Nnb(k)

Nnb(k)∑
j=1

Yl,m(r̂k j), (6.3)

where k and j are molecule indices and Nnb is the number of neighboring molecules.
Yl,m(θk jϕk j) = Yl,m(r̂k j) is the spherical harmonic for the radial unit vector r̂k j between molecule
k and j. The question whether a molecule is a neighbor of another is mostly answered by
the specification of a cutoff radius. Many authors use this order parameter in its rotational
invariant forms and with a specific variable l, also for studying water55:

ql(k) =

√√
4π

2l + 1

l∑
m=−l

|qlm(k)|2 (6.4)

and

wl(k) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

 qlm1(k)qlm2(k)qlm3(k)

(
l∑

m=−l
|qlm(k)|2

)3/2 , (6.5)

where the term in the large parentheses is the Wigner-3j symbol. It was noted, that averaged
local bond order parameters give an even more accurate determination of crystal structures.58

34



6 DETERMINATION OF THE ORDER PARAMETER

Thereby one averages over the local orientational order vector qlm(k) of particle k and its
surrounding particles.

q̃lm(k) =
1

Ñb(k)

Ñb(k)∑
n=0

qlm(n). (6.6)

The sum runs over all neighbors of particle k plus the particle k itself. The rotational invari-
ant expressions are then calculated with this q̃lm(k). This way not only the first shell around
particle k is considered, but also the second, and the accuracy of distinction of different struc-
tures is increased. On that score q̃lm(k) is a similar order parameter like the normalized dot
product al(k, j) between each pair of neighboring molecules. al(k, j) is a measure for the simi-
larity of the environment of the particular molecules and has defined values for special crystal
structures. For disordered systems one obtains a wide distribution of values:59

al(k, j) =
ql(k) · ql( j)
|ql(k)||ql( j)| (6.7)

=

∑l
m=−l qlm(k)q∗lm( j)(∑l

m=−l qlm(k)q∗lm( j)
)1/2 (∑l

m=−l qlm( j)q∗lm(k)
)1/2 . (6.8)

Stared arguments indicate complex conjugate values.

6.3. The Solid Cluster Criterion

In the following I use a modified version of an algorithm by Reinhardt et al. to distinguish
solid TIP4P2005 water particles from liquid ones.49 This algorithm goes back to Moore et al.,
who applied it with slightly different parameters on an one-atom representation of water (mW
model).56 The algorithm uses Equ. (6.3) with a cutoff radius of 3.2 Å to identify neighbor-
ing molecules. This distance is the first minimum in the pair distribution function for the
TIP4P2005 model, based on the oxygen-oxygen distance.27,60 (Reinhardt et al. use a cutoff ra-
dius of 3.5 Å.) Now one has to decide, which value of l is the best for applying Equ. (6.8).
Moore and coworkers tested different values for l and found the best results for distinction of
liquid and solid water at l = 3 and l = 456 (but also l = 6 can be found at the literature)61 .
Therefore, they chose l = 3 because it involves the least number of calculations. In Fig. 6.1
one can see the probability distribution of a3(k, j) for bulk systems. For these diagrams MD
simulations in the canonical assemble were executed in a rectangular box with periodic bound-
ary conditions. The electrostatic interaction was realized with Particle Mesh Ewald (PME) and
the temperature was regulated with a Nosé-Hoover thermostat. For the distribution of ice Ic, I
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simulated 10 ns with 216 molecules at 100 K and every 100 ps I extracted a configuration. For
ice Ih, I used 432 molecules, apart from that I proceeded with the same parameters. Liquid
water was first produced by melting an ice Ic configuration at 320 K. Furthermore 300 con-
figurations contribute to the statistics here. Indeed the diagram shows a wide range of values
for liquid water, while there are accurate peaks for ices Ic and Ih. Ice Ic has only one sharp
peak at about a3 = −1. This is because all oxygens in ice Ic have a staggered arrangement
of intermolecular bonds with respect to their four neighbors. The difference to ice Ih is that
there are only three staggered bonds and one, which is parallel to Ih c-axis, is eclipsed. That
eclipsed bond corresponds to the peak at around a3 = −0.11.
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Figure 6.1: Probability distribution of a3(k, j) for liquid water (blue), ice Ic (red) and ice Ih
(green). Note that the y-scale is logarithmic. Also note, that these are the proba-
bility distributions of bulk systems.

On this basis Reinhardt et al. classify each molecule according to its orientation with respect
to its neighbors:49 A molecule will belong to an ice phase, if it has at least three neighbors
with a staggered or with an eclipsed bond. If two molecules have such a bond, they are called
connected. To allow fluctuations, a value of a3 < −0.825 is counted as a staggered bond. An
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eclipsed bond is established if −0.23 < a3 < 0.01:

nconnections(i) =
Nneighs(i)∑

j=1

Γ(a3(i, j)) ≥ 3 (6.9)

where

Γ(x) =

 1 if [(x < −0.825) ∨ (−0.23 < x < 0.01)],
0 otherwise.

(6.10)

Again, the distribution of a3 in Fig. 6.1 is for the bulk system. Because in a finite system the
surface molecules are not fully bonded they are able to move and rotate more freely. This is
the reason, why the distribution of a3 for finite systems (see Fig. 6.2) does not have such sharp
peaks. Here 216 molecules were arranged in a spherical shape and in the particular structure.
MD simulations were executed for ice at 50 K and for water at 200 K. In each case altogether
5000 configurations were used for the statistics, extracted in 2 ps steps. One can see that there
is still a much higher probability at around a3 = −1 and, for ice Ih, a peak at a3 = −0.11 is vis-
ible. So I decided to apply the same criteria as explained above to distinguish solid and liquid
particles, with one exception: Because of having a finite system with many molecules located
on the surface (or on the surface of a solid embryo), one needs a weaker criterion to count
them as a solid molecule as well. So I decided to also count molecules as solid like, which
have only two connections, but at least one neighbor with three connections. All molecules,
which do not satisfy these criteria belong to a liquid or amorphous phase.
Once one has identified all molecules to be solid or liquid, it is easy to assign them to different
clusters: If two solid-like molecules are neighbored, they belong to the same solid cluster.

With this choice I analyzed the above mentioned clusters consisting of 216 water molecules.
For the statistics the same configurations were used as for Fig.6.2. In Fig. 6.3 one can see the
average composition of molecules within the clusters. Altogether about 55% of the molecules
of an ice cluster at 50 K are detected as belonging to ice. Even if that ratio does not seem
to be very high, one has to keep in mind, that about 2/3 of the molecules are located at the
surface and can move more freely. Thus, these molecules have to be counted as liquid and
form a liquid layer around the cluster. Without the weaker criterion (only two bonds, but at
least one neighbor with minimum three bonds) only about 40% of an ice cluster is identified
as ice. Each of the surface molecules must be treated as liquid and it would be impossible to
figure out, if nucleation occurs on the surface. At 200 K almost all molecules are identified
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Figure 6.2: a3(k, j) - probability distribution of the 216 molecules containing nanodroplet for
liquid water (blue), ice Ic (red) and ice Ih (green).

as amorphous, but about 9% are detected as 2- or 3-coordinated molecules. It seems, that
the cluster is completely melted already and only random molecules are identified as solid
(see also Fig. 6.5). This could be due to the fact that liquid water forms similar tetrahedral
networks as ice.
In Fig. 6.4 a typical snapshot of an ice Ic cluster is shown. Indeed all inner molecules are
identified as ice molecules, while some molecules at the very surface are liquid molecules.
Nevertheless there exist some solid molecules at the surface, which is an evidence, that the
weaker criterion works. For an ice Ih cluster there is a similar outcome.
At next I analyzed whether the order parameter, i.e. the largest crystalline cluster size within
the droplet, can distinguish between systems at clearly separated temperatures. For this pur-
pose I undertook a MD simulation at 130 K and another one at 200 K. Both simulations started
with an ice Ic configuration and ran for 10 ns. The time evolution is shown at Fig. (6.5). On
the one hand at 200 K the crystalline cluster shrinks within a time of 500 ps. Then the largest
crystalline cluster size fluctuates about a value of 6. A snapshot of such a droplet shows, that
only few molecules are identified as solid, but no structural order is visible. On the other
side at 130 K, though the crystalline cluster also melts, the inner region of the droplet stays
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Figure 6.3: Statistics of the composition of a cluster consisting of 216 molecules. 4-
coordinated molecules build four staggered bonds or three staggered bonds and
one eclipsed, respectively. They can be seen as true ice Ic or ice Ih molecules.
3-coordinated molecules only have three bonds and 2-coordinated ones have two,
but at least one neighbor with minimum three bonds. All others are liquid or amor-
phous molecules, respectively.

crystalline and the order parameter fluctuates around a value of 80. There is no overlap of the
order parameter at these two temperatures and it seems that the largest crystalline cluster size
is a proper way to distinguish these systems.

To conclude this section I give a brief summary of the solid cluster criterion:

• Two molecules are neighbored, if their distance rO−O < 3.2 Å.

• If two neighbored molecules have a staggered or an eclipsed bond, they are connected.
This can be measured using the normalized dot product a3(i, j).

• If a molecule has at least three connections, it is solid.

• If it has only two connections, it might be solid as well if it has at least one neighbor
with three connections. This way also surface molecules can be identified as solid like.

• All other molecules are liquid.
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Figure 6.4: Snapshot of an ice Ic droplet. Red molecules are identified as solid with aid of
the criterion provided by Reinhardt et al., i.e. these molecules have at least three
connections. White molecules are defined as solid surface molecules, having only
two connections, but at least one neighbor with three connections. Blue molecules
must be treated as liquid.
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Figure 6.5: Time evolution of a 216-molecule cluster at 130 K (blue line) and 200 K (red line).
Red balls in the snapshots represent the liquid oxygens, while blue ones represent
the ice like oxygens. Dotted lines represent the hydrogen bonds.

41



7 IDENTIFYING OF THE MELTING POINT

7. Identifying of the Melting Point

7.1. Methods

In the thermodynamic limit and at normal pressure ice melts at about 273 K.62 One can see in
Fig. 4.1 that the phase diagram of the TIP4P2005 model differs from experiment in a shift to
lower temperatures and higher pressures. So also the melting temperature Tm of ice Ih ( which
is the thermodynamic most stable phase ) is lower, at about 252.1 K27.
Furthermore the melting point depends on the system size. In finite systems the curved surface
is leading to the Gibbs-Thomson effect63. The positive interfacial energy σ between liquid and
solid phase is responsible for small particles having an increased vapor pressure and thus also
a decreased melting temperature. For spherical particles this can be derived from Equ. 2.25
after rearranging. Note, that the names of the variables change here: Tm must identified with
the bulk melting temperature T bulk

m and T with the melting temperature Tm(R) of the spherical
cluster. It leads to the Gibbs-Thomson relation:

∆Tm(R) = T bulk
m − Tm(R) = T bulk

m
2σ
∆hρsR

. (7.1)

R is the radius of the droplet, σ is the solid-liquid interface energy, ∆h is the bulk enthalpy of
fusion and ρs is the density of the solid. The Gibbs-Thomson equation can also be written in
a simplified version:

Tm(R) = T bulk
m − KGT

R − d
, (7.2)

where KGT is the Gibbs-Thomson constant, which has different values for different liquids
and different geometries. In this equation the parameter d is used to include the fact that a
pre-melted layer with thickness d is formed around the crystal, which is in accordance with
the impossibility to identify the outer molecules as solid as mentioned in Sec. 6.3, because
they re-arrange themselves in order to build more hydrogen bonds.
In a recent work C. Johnston and V. Molinero studied the system size dependence of the melt-
ing point for the mW water model4. They melted spherical ice cluster consisting of 13824,
4235, 2149, 915, 417 and 159 molecules and fitted the resulting melting temperatures, which
they identified as the inflection point in the fraction of ice versus temperature, with Equ. 7.2
(see Fig. 7.1). Thus the Gibbs-Thomson constant was calculated as KGT = (82 ± 5) K nm and
the thickness of the pre-melted layer as d = (0.26 ± 0.05) nm. Adopting the Gibbs-Thomson
relation with these parameters to a droplet with R = 1.1 nm, which is approximately the radius
for 216 molecules, one gets a melting temperature of Tm = 176 K. Of course this value is only
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7 IDENTIFYING OF THE MELTING POINT

a rough estimation, because already the melting temperature of the bulk system in mW model
is different (274 K) than in TIP4P2005 model, but it can used for a first orientation.
Another way to determine the melting temperature of nano-sized water droplets was used
by D. Pan and coworkers64. They melted nano-crystals of different sizes with TIP4P model,
which is very similar to TIP4P2005, and observed a jump in the potential energy once the crys-
tal was melted. This jump reflects a first-order phase transition, because according to the
Ehrenfest classification, such a transition exhibits a discontinuity in a first derivative of the
free energy, as for example the potential energy. The temperature at which this jump occurred
was identified as the melting temperature. Also they confirmed the Gibbs-Thomson relation
with slightly different constants. It should be noted, that the jump also occurs when a liquid
cluster is frozen. Because the crystallization is a first-order phase transition a hysteresis can
appear, which means that there are metastable phases which cause the freezing temperature to
be lower than the melting temperature.
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Figure 7.1: Melting temperatures in dependence of system size. Data (red) are from Ref. (4).
KGT = (82 ± 5) K nm and d = (0.26 ± 0.05) nm are calculated from least squared
fit (green) via Gibbs-Thomson Equ. (7.2). T bulk

m = 274 K for the mW model.
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7 IDENTIFYING OF THE MELTING POINT

7.2. Caloric Curve and Largest Crystalline Cluster

To determine the melting point of a water droplets consisting of 216 and 432 molecules with
the TIP4P2005 model I follow the above ideas. I monitor the potential energy while simulat-
ing an ice crystal at different temperatures and calculate the fraction of ice within the cluster.
While the fraction of ice-like molecules could be a proper indication of melting, but instead
I use the above mentioned order parameter, namely the largest crystalline cluster within the
droplet. In fact, this is a very similar quantity.
For this purpose I undertook several MD simulations at constant temperature, starting both
with ice Ic and ice Ih, and equilibrated the systems at temperatures from 100 K up to 200 K
in steps of 10 K. Depending on the temperature, it can last differently long until the system
is equilibrated. Indications for an imperfect equilibration can be fluctuations of the potential
energy as well as of the order parameter. As time step I used dt = 2 fs, the time constant for
the Nosé-Hoover thermostat was τ = 20 ps. Furthermore the cut-off radius for both electro-
static and van-der-Waals forces was rcut = ∞. To circumvent the problem of flying ice cubes
(the energy of high-frequency modes is drained into low-frequency modes, which means that
the thermal motion within a system is frozen while the center of mass gets translational and
rotational energy, which is an artifact of numerical integration and violates the principle of
equipartition of energy),65 I removed the translational and rotational energy of the center of
mass every 100 time steps. This should be rarely enough to let the physical movement of the
system undisturbed. I calculated the potential energy every 100 timesteps (0.2 ps) and saved
the actual configuration, i.e. positions and velocities of the molecules, every 1000 time steps
(2 ps). With these data it was possible to determine the average values of the potential energy
and of the largest crystalline cluster within the whole time range and to give an approximation
of error via the standard deviation.
In Figs. 7.2 and 7.3 the time evolution of the order parameter at selected temperatures is
shown, starting both with ice Ic and ice Ih configurations. The common ground of both dia-
grams is that at 130 K the crystalline core of the cluster stays stable at about 60-70 molecules.
Besides, at temperatures above 150 K the crystalline part shrinks rapidly and the whole droplet
can be seen as amorphous. On the one hand the crystallinity of ice Ic at 140 K-150 K conserves
for about 150 ns, but finally solid clusters dissolve, too. On the other hand at ice Ih these solid
clusters fluctuate, but stay alive at about 20-40 molecules, at least in the observed time range of
250 ns. It seems that solid and liquid phases are not well separated and the transition in respect
to the temperature is quite undefined. Actually, this is a well-known fact for finite systems.
The melting transition does not occur at one certain temperature, but within a temperature
range and generally, the smaller the system is, the broader is this range.6
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7 IDENTIFYING OF THE MELTING POINT

The results of the order parameter and potential energy calculations for an original ice Ic clus-
ter are collected in Fig.7.4. The potential energy is quite linear from 100 K to 140 K with a
slowly increasing slope. At about 150 K a discontinuity shows up and the potential energy
becomes linear with temperature again in the range of 160 K to 200 K, but with an enhanced
slope. This linearity of potential energy around the melting point and its abrupt increase at the
melting temperature can be confirmed by other, both experimental and computational works
about nano-clusters of water.6,64,66 There is a small discrepancy on the fact that at 150 K, where
the jump in the potential energy occurs, the order parameter already has reached its minimum
value. Actually one would expect that the jump in the potential energy occurs at the same
time as the crystallinity within the cluster vanishes. Perhaps it can be explained thereby that,
though no larger crystalline cluster can be formed at 140 K, there are still solid-like bonds in
the system, which will be destroyed at higher temperatures. This in turn leads to the observed
discontinuity of the potential energy. Even if it is not possible to define the melting tempera-
ture precisely because of the above mentioned finite size effects, the observed data, especially
the developing of the order parameter, suggest that the melting of the ice Ic cluster occurs at
about (140 ± 10) K.
In Fig.7.5 the same dependence on temperature is shown for an original ice Ih cluster. While
the caloric curve is almost identical to that of the ice Ic cluster, the transition from larger crys-
talline clusters to an amorphous structure is smeared out. At 150 K there is still a crystalline
core, even if it consists of only about 25 molecules. Anyway, to estimate the melting temper-
ature I fitted the data with the following function, which describes a two-state transition:

g(T ) =
A

1 + exp(−B · (T −C))
+ D. (7.3)

In this equation T is the temperature, A, B, C and D are fit parameters and especially C is
the inflection point of the function. The temperature at this inflection point can be interpreted
as melting temperature and it shows that it is very close to 140 K, too. So I am able to give
the same approximation for the melting temperature as for ice Ic. It is remarkable that one
can clearly see in this diagram the stronger increase of the potential energy once the order
parameter has reached its minimum value. This is also an evidence of observing the melting
transition.
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Figure 7.2: Time evolution of the order parameter at selected temperatures for a starting ice Ic
configuration. At 170 K the system is evolved until 100 ns, because it already can
be seen as equilibrated. Due to the same reason, I evolved the system at 160 K and
150 K for 200 ns
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Figure 7.3: Time evolution of the order parameter at selected temperatures for a starting ice Ih
configuration. At 160 K and 170 K I evolved the system for 150 ns, because then
it already can be seen as equilibrated.
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Figure 7.4: Potential energy per molecule and largest crystalline cluster of an original ice Ic
droplet as function of temperature. Note that the error bars of the potential energy
are mostly smaller than the data-symbols. The lines are just guides for the eyes to
demonstrate the linearity. At 140 K I plotted two data points of the order parameter,
because there was a crystalline core in the system as long as about 150 ns before it
finally shrank to about 15 molecules.
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Figure 7.5: Potential energy per molecule and largest crystalline cluster of an original ice Ih
droplet as function of temperature. Note that the error bars of the potential energy
are mostly smaller than the data-symbols. The lines are just guides for the eyes
to demonstrate the linearity. The dotted line in the plot of the order parameter is
calculated using Equ. 7.3 to get an inflection point.
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In a third set of MD-simulations I analyzed the same quantities for an larger water cluster
with 432 molecules, starting with ice Ih configurations. In Fig.7.6 the time evolution of the
order parameter at selected temperatures is shown. This time one can see a clear separation
of stable and unstable arrangements at a given temperature. While from 120 K-160 K the
system equilibrates with a stable crystalline core of over 150 molecules, this crystalline core
completely vanishes at higher temperatures within 20 ns - 120 ns. This confirms again the
above statement that finite size effects become more and more irrelevant with larger systems
and the melting point can be defined more precisely. It also underlines that there must be a
minimal size of the crystalline core, here about 150 molecules, to establish a stable equilibrium
of the solid and the liquid phase. Fig.7.7 shows the potential energy and the order parameter
as function of temperature for such larger systems. For comparison the potential energy of
a 216-molecules system is also plotted. Obviously the potential energy per molecule of the
larger system lies lower than that of the smaller one. That is again because of the finite size
effects and the ratio of surface and volume, which decrease with increasing system size with
inverse radius. In other words, inner lying molecules of large systems feel more attractive
forces because they are surrounded by more molecules than in smaller systems. Apart from
that, there is again a linear relation between potential energy and temperature and the slopes
are quite parallel to them of the 216-molecules system. Unfortunately it is not visible that the
jump of the potential energy occurs at higher temperatures, what we would expect actually.
But on the basis of the order parameter one is able to identify the melting transition at about
(165 ± 5) K. So the trend of the Gibbs-Thomson equation 7.2 can be confirmed, i.e. the
larger the systems are the higher is the melting temperature and it finally converges to the bulk
melting temperature at about 273 K.
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configuration with 432 molecules.
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Figure 7.7: Potential energy per molecule and largest crystalline cluster of an original ice Ih
droplet with 432 molecules as function of temperature. Note that the error bars
of the potential energy are mostly smaller than the data-symbols. The lines are
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curve of the 216-molecules system is added. The melting temperature seems to be
defined more accurately and the transition occurs at higher temperatures than in
Figs. 7.4 and 7.5.
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8. Calculation of the Free Energy Barrier

8.1. Details of Umbrella Sampling with 216 molecules

For the umbrella sampling simulations with 216 molecules I studied the order parameter range
from n = 0 to about n = 110. I divided this range into 11 windows, where the centers of the
windows are located at n = 5, 15, 25, ..., 95, 105. The starting configuration for each window
were selected by melting an ice cluster and picking a configuration with the appropriate solid
cluster size out of this trajectory. The spring constant of the bias potential was chosen to be
κ = 0.05 kJ/mol, so the overlaps of the biased probability distributions were large enough. For
the dynamics I used the MD package GROMACS25. At each call of the MD program a small
trajectory consisting of 10 steps with a time step of 3 fs to 4 fs was calculated, depending on
temperature and number of window. The particular choice is to ensure that the acceptance
probability of the HMC moves is between 20% and 70%. For high temperatures and window
numbers this cannot be achieved always and the probability falls down to about 10%. Replica
exchange was enabled on average every 100 HMC moves. Mostly the acceptance of replica
exchange attempts reaches a value between 10% and 20%, again depending on temperature
and window. Altogether umbrella sampling simulations for 8 different temperatures were
executed, starting at 110 K, increasing in 10 K steps until reaching 180 K. Each simulation
consists of at least 3.5 × 106 HMC moves. After every HMC move the resulting information,
especially the order parameter of the actual configuration was written down in a log-file to
be able to build the biased histogram of the largest crystalline cluster size. With the help of
these histograms and Equ.(3.28) the free energy in each window can then be computed up to
a constant. These shifting constants were determined with WHAM26, getting the free energy
landscape with respect of the order parameter.

8.2. Results

In Fig. (8.1) and Fig. (8.2) the results of the free energy calculations are shown. At the
temperatures 180 K to 160 K there exists only one minimum at n ≈ 6, which can be interpreted
as liquid state. This is consistent with the results of the molecular dynamic simulations, which
already showed that at these temperatures a crystalline cluster melts and that the value of the
order parameter fluctuates around n = 6. In Fig.(8.3) one can see that the distribution of the
order parameter in the MD simulation at 180 K agrees very well with the unbiased distribution
of US simulations at the same temperature. This can be interpreted as evidence that the free
energy in this range of temperatures is described correctly, because both simulation methods
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give the same results. The minimum of the free energy is the more accurate, the higher the
temperatures are and the free energy increases faster for larger n. At 150 K one can see a
second minimum arising. The free energy barrier between these minima is still very small
and the liquid state represents the global minimum. Nevertheless, this new minimum could
originate from a crystalline core conserved at 150 K for a long time, which is confirmed by
the MD simulation.
The free energy curves for the temperatures 140 K to 110 K offer the picture that there is
one solid stable state. The crystalline core consists of about n = 60 molecules at 110 K and
decreases slowly at higher temperatures, reaching a size of n = 40 at 140 K. This crystalline
state is separated from the liquid state by a energy barrier at about n = 20. The free energy
difference between both states is about 5kBT at 110 K whereas it shrinks to about 1kBT at
140 K.
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Figure 8.1: Free energy curves for four high temperatures (180 K - 150 K). As above n is the
largest crystalline cluster size.
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Figure 8.2: Free energy curves for four low temperatures (140 K - 110 K). As above n is the
largest crystalline cluster size.

8.3. Problems and Proposals for Solution

Though the result qualitatively fits with the results of the MD simulation - until 140 K a crys-
talline core is conserved - they must be critically questioned. Especially the height of the
energy barrier seems to be too small. Because if the height is correct, then one should see a
phase transition relatively often. Particularly the transition from the liquid to the solid state
should be easy to realize, because the energy barrier on this site only amounts maximal 1kBT ,
which corresponds to the size of thermal fluctuations. However, I never observed such a tran-
sition in a MD simulation starting at an amorphous phase. Even in the US simulations, where
a quasi-transition is possible via the replica exchange mechanism, the transition is not ob-
served. Instead of this, configurations of low and high lying windows mainly remain among
themselves (see also Fig.(8.4)). For this sampling problem there could be several reasons:
First of all, the dynamics at low temperatures are very slow. At low temperatures, molecules
hardly can rearrange themselves and are so to speak frozen, even if they do not appear crys-
talline order. A measure for that is the self-diffusion constant. It can be determined from

lim
t→∞
⟨||ri(t) − ri(0)||2⟩ = 6Dt, (8.1)
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where ⟨||ri(t) − ri(0)||2⟩ is the mean square displacement of particle i at time t. This expression
is proportional to t and the self-diffusion constant D can be determined from its slope. For its
calculation I cooled down liquid configurations to the particular temperature and measured the
mean square displacement over 10 ns. The configurations did not crystallize. The results are
shown in Tab.(8.1). In the considered temperature range the self-diffusion constants already
differ by a factor 102. In comparison to the bulk value at 278 K, thus slightly above the
melting temperature of bulk water, the value at 180 K lies lower by a further factor 103. So the
movement of the molecules at low temperatures indeed is very reduced. Liquid configurations
cannot completely rearrange themselves to build crystalline networks, at least at the considered
timescale. This means that the slow dynamics prevent the crystallization, even if the energy
barrier is low. Accordingly, the kinetic pre-factor in the equation for the nucleation rate must
be very small. Looking at the replica exchange moves of the US simulation this assumption
is confirmed. In Fig.(8.4) the replica exchange moves of window 0 (n0 = 5) and window
10 (n0 = 105) are shown. On the one hand there are accepted exchange moves also for low
temperatures. But on the other hand a for example original window 0 configuration stays
at lower window numbers and never climbs up to higher order parameters. This behavior
improves upon increasing temperature and at 180 K there is quite good intermixing, at least
after a sufficiently large number of HMC moves. Unfortunately at this temperature a solid
phase is not stable anymore.

120 K 140 K 160 K 180 K bulk 278 K

(3 ± 2) × 10−5 (4 ± 1) × 10−4 (4 ± 1) × 10−4 (5 ± 2) × 10−3 1.27

Table 8.1: Selfdiffusion coefficients (in 109D m2/s) at different temperatures. The bulk value
for the TIP4P2005 model at 278 K is cited by Ref.(27). It is very close to the experi-
mental value of 1.313 × 10−9 m2/s at the same temperature. The values of the finite
system are calculated by a linear fit over 10 ns of a MD simulation.

Secondly, the missing observation of the transition could also have the cause that the order
parameter is not a good reaction coordinate. This means that there is a further coordinate
being orthogonal to the original order parameter that must be considered, too. This situation
is illustrated in Fig.(8.5). The order parameter n separates both minima of the free energy, but
the reaction from state A to state B must be described with a second parameter q. On the one
side the US simulation can force the system to move along the n-axis, but on the other side
the actual transition also requires a shift on the q-axis, for which a further energy barrier must
be overcome. Thus the overall barrier of the reaction between liquid and solid phase would be
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larger.
But also if n is a suitable reaction coordinate in general, there could be difficulties in some
cases as one can also see in Fig. 8.5. The position of the free energy minima with respect
to the order parameter defines stable and metastable states in an unique way, but such states
normally possess attractive basins. It means, if the system is close to a stable state, it will reach
this state in the near future with a large probability. But if these basins do overlap, the energy
barrier cannot determined correctly. To test this, I evaluated the biased histograms for each
window separately using Equ. (3.28), instead of calculating the global energy function with
WHAM. As mentioned above the curves of successive windows should roughly be parallel,
because F(n) of different windows differs only by a constant. As one can see in Fig.(8.6)
this is true in most of the windows. But indeed, at temperatures, at which a maximum in
the free energy is formed (110 K-150 K), the free energy curves of the relevant windows are
non-parallel. This is evidence of the above assumption and shows that the height of the free
energy barrier has not been calculated correctly. Though both minima give information about
the coexistence of liquid and solid state, nothing can be said about the height of the barrier
and consequently also nothing about which of both states is the stable or metastable one,
respectively.
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n

q

Figure 8.5: Possible free energy landscape as function of two order parameters n and q. A
and B are two stable regions with attractive basins around them (dark blue area).
Instead of moving along the right reaction path (red arrow), the US technique
samples just along the n-axis, i.e. the largest crystalline cluster size (black arrows).
Consider also the possible overlap of attractive basins with respect to n.
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Figure 8.6: Free energy in each window at all studied temperatures. For a clear view, the free
energy values of the particular temperatures are shifted on top of each other. The
critical overlaps are marked with red circles.
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8 CALCULATION OF THE FREE ENERGY BARRIER

Hence there are two separate problems in the calculation of the free energy. The first is related
to the slow dynamics, which cause a bad intermixing of the windows in the replica exchange
mechanism. The second is the improper choice of the order parameter, because the two stable
phases are too close to each other which effects the overlap of their basins. In the first case
one could improve the dynamics with parallel tempering not only in the different windows of
the order parameter, but also in temperature as described in chapter 3. This is exactly what E.
Mendez-Villuendas did for the free energy calculation in the freezing of gold nano-clusters.67

Running the windows in parallel at different temperatures swapping attempts between them
are accepted with probability

Pacc(i↔ j) = min
(
1, exp[(βi − β j)(Ei − E j)]

)
. (8.2)

Ei is the energy of the cluster simulated at temperature Ti whereas E j is the energy of the
cluster simulated at temperature T j. One could also think of particular Monte Carlo moves to
accelerate the sampling rate of the simulation.
The second problem could be solved either by choosing a better order parameter, which de-
scribes the reaction in better way, or by keeping the old order parameter and doing multidi-
mensional umbrella sampling, i.e. also in an orthogonal direction as illustrated in Fig. 8.5.
For example, Reinhardt et al. found out in their studies concerning crystallization of TIP4P2005

bulk water that molecules partially build chains, which increase the order parameter, but in-
hibit the crystallization of the entire system. In order to force the whole system to crystallize,
they modified their order parameter in such a way that they did not count chain molecules as
belonging to the solid cluster.49 Unfortunately I do not monitor such chains, so this improve-
ment of the order parameter is not suitable for my problem. But maybe it must be ensured that
the crystalline cluster remains quite compact.

8.4. Details of Umbrella Sampling with 432 molecules

For the system with 432 molecules I studied the temperature range from 120 K-180 K. The
setup of the US simulation consists of 32 windows, whose centers are located at n = 5, 15, 25,
35, 45, 50, 55, 60, ..., 165, 175, 185, 195. Again, the start configurations originate from a MD
melting trajectory of ice Ic. I decided to choose smaller windows in the middle of this range
(∆n0 = 5) because the barrier is expected to occur in this section and I wanted to produce a
better sampling there. Because the centers of the first five and last four windows are wider
apart (∆n0 = 10), I gave these windows a weaker umbrella constant κ = 0.1 kJ/mol to ensure
that there is a sufficient overlap of the distribution functions. The umbrella constants of the
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other windows are κ = 0.25 kJ/mol. The dynamics are chosen with a timestep of 2 fs and each
HMC move consists of 10 MD steps with subsequent acceptance test. This acceptance ratio
is between 20% and 60%, whereby the lower boundary is reached, if the free energy curve
has a large absolute slope. Replica exchange attempts take place every 300 HMC moves on
average. Such attempts are accepted with a probability of 10-15%, but at 120 K and 130 K
it can fall down under 10%. Again, this is due to the fact that at these low temperatures
configurations cannot rearrange themselves sufficiently fast in order to climb up or down the
umbrella windows. At each temperature an US run has 1.7 × 106 HMC moves, except for
150 K-170 K, where 2.7 × 106 HMC moves are used.

8.5. Results and Discussion

In Fig. 8.7 one sees the biased probability distribution at temperature 150 K and, resulting
from that, the free energies for each window. In this larger system, the curves Fi(n) are quite
parallel for successive windows. Probably this might be because of the wider distance of the
solid and the liquid state and because their basins do not overlap. To this end n is a good order
parameter. There is a similar outcome for other temperatures.
The results of the free energy calculation with 432 molecules according to WHAM are shown
in Fig. 8.8. The height and the location of the barrier in dependence on temperature is listed in
Tab. 8.2. Concerning this matter, no trend is observable, the barrier is at about n = 70 and its
height lies between 6 − 7kBT . For higher temperatures the crystalline phase is slightly shifted
towards smaller n. For lower temperatures one can see that a further metastable state formes
at about n = 170.

T [K] n∗ ∆G(n∗) [kBT ] P(solid)

120 66 6.62 0.357
130 71 6.19 0.167
140 75 6.65 0.062
150 70 6.16 0.061
160 68 6.64 0.032
170 69 6.62 0.016
180 - - -

Table 8.2: Location n∗ and height ∆G of the free energy barrier. Probability P for the solid
state.
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It turns out that the liquid state, i.e. the state with an order parameter of n ≈ 9 has the lowest
lying free energy at all temperatures. At 180 K it even is the only minimum in the free energy
landscape. However, this minimum is quite narrow. To identify the phase equilibrium it is
necessary to integrate P(n) over the stable regions in order to get the total probability of the
solid and liquid state, respectively.

P(liquid) =

n∗∫
0

p(n)dq

P(solid) =

N∫
n∗

p(n)dq. (8.3)

The results are collected in Tab. 8.2 as well and it turns out that the equilibrium between the
two phases, i.e. where P(solid) = P(liquid) = 0, 5, is not even reached at 120 K. Accordingly,
the melting temperature would be below 120 K. To determine the temperature, at which the
equilibrium appears, one can make the following approach. At the melting point the free
energy is approximated by expanding about Tm up to O(∆T ).68:

∆F =
∆H
Tm

(T − Tm), (8.4)

where ∆H is the enthalpy of fusion. Because P(solid)
P(liquid) = exp[−β∆F] and in addition P(solid) +

P(liquid) = 1, the probability of the solid phase can be expressed as:

P(solid) =
1

1 + exp( ∆h
kBTm

(T−Tm)
T )
. (8.5)

In Fig. 8.9, P(solid) was fitted with Equ.(8.6). P(solid) = 0, 5 is reached at a temperature
of about 115 K. This temperature corresponds to the inflection point of the fit function. A
further fit parameter is ∆H, the enthalpy of fusion. It turns out that ∆H/N = 0.03 kJ/mol,
which is more than a factor 102 smaller than the corresponding bulk value for the TIP4P2005

model ((∆H/N)bulk = 4.857 kJ/mol).38 Because of the finite size effects the transition is not
sharp, but smeared out. Challa et al. give an approximation for the transition region, which
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can be expressed as68

∆T =
4kBT 2

m

∆H
. (8.6)

Using this approximation gives ∆T = 34 K, which means that the melting point can be esti-
mated to be (115 ± 17)K. This temperature seems to be very low considering that the melting
is observed in the MD simulation not until 170 K, which is outside of the melting point un-
certainty. Johnston et al. determined the melting point of a 417 molecule cluster with the
mW-model to be (205 ± 3)K, which is higher than almost 80%. Nevertheless, one has to keep
in mind that this result was not based on a free energy calculation and even the bulk melting
temperature is higher in this model (T bulk

m (mW) = 274 K). So one simple reason for seeing
the crystal being stable up to 170 K in the MD simulation could be the relatively high energy
barrier in combination with the wide minimum in the energy landscape. This leads to observ-
ing the melting process above and the crystallization process below the equilibrium transition
temperature. Besides, it must be noted once more that at these low temperatures the molecules
are quite immobile even without being in a crystalline structure. Because of the slow dynamics
one probably has to wait a very long time until the crystal begins to melt. Probably this is also
the reason why there again are problems with the replica exchange. Though the acceptance
lies at 10-15%, a complete intermixing of the replicas does not take place. Parallel tempering
in temperature could lead here to an improvement, as well.
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9 CONCLUSION

9. Conclusion

Based on local orientational bond order parameters it was possible to identify solid- and liquid-
like molecules within water clusters. The largest crystalline cluster within the system corre-
sponds with CNT, which provides a mechanism for nucleation in terms of the size of the
nucleated embryo.
Analyzing ice clusters, it turns out that on the one hand a crystalline core is conserved, but
on the other hand there is a amorphous surface, which is formed because of the rearranging
of surface molecules in order to form more hydrogen bonds. This is at the cost of the crystal
geometry.
Carrying out MD simulations at constant temperature, I was able to estimate the temperature,
at which ice clusters, consisting of 216 and 432 molecules, melt. The larger cluster melts at
higher temperatures, confirming qualitatively the Gibbs-Thomson relation.
Umbrella sampling simulations at different temperatures were used to determine the free en-
ergy barrier predicted by CNT and to analyze the stability of ice phases. Unfortunately this
method breaks down for small water clusters because the order parameter cannot distinguish
between the stable phases in a proper way. For a larger cluster the free energy barrier was able
to be calculated. Hence it was possible to find the temperature of phase equilibrium.
The principal difficulty in the umbrella sampling simulation was the realization of the replica
exchange moves. This behavior must be improved by parallel tempering in temperature in
order to overcome local minima in the energy landscape.
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A FREE ENERGY BARRIER:
DERIVATION VIA THE PARTITION FUNCTION

A. Free Energy Barrier:

Derivation via the Partition Function

To get an expression for the free energy, I start with the partition function of the (N,V, T )-
ensemble, i.e. the canonical ensemble. Such a derivation can also be found in works of
Reiss et al.52 and Mendez-Villuandes.51 Instead of the Gibbs free energy ∆G(n), which is the
potential of the (N, P,T )-ensemble, this determines the Helmholtz free energy ∆F(n).
The canonical partition function for a system containing N particles in a volume V at temper-
ature T is given by

Q(N,V,T ) =
1

Λ3N N!

∫
drN exp

[
− βU(rN)

]
, (A.1)

where β = 1/kBT and Λ = h/(2πmkBT )1/2 is the de Broglie wavelength, in which h is the
Planck constant and m is the mass of a single particle. U(rN) is the potential energy, which is
dependent of the coordinates r of all particles.
Once a proper criterion to identify particles within the cluster is known and one has detected
a cluster of n particles, one can define weight functions as follows:

δn(rn) =

 1 if all n particles belong to the embryo,
0 otherwise.

(A.2)

δr(rn) =

 1 if no other particle belongs to the embryo,
0 otherwise.

(A.3)

These special delta functions are connected via the following relation:

δr(rn) =
N∏

i=n+1

[1 − δn+1(rn, ri)]. (A.4)

The partition function of a system containing at least one n-cluster is then given by

Qn(N,V,T ) =
1
Λ3nn!

1
Λ3(N−n)(N − n)!

×
∫

drnδnδr exp
[
− β[Un(rn) + Uσ(rn, rN−n)]

]
×

∫
dr(N−n) exp

[
− βUN−n(rN−n)

]
,

(A.5)

where Un, Uσ and UN−n are the potential energy within the n-cluster, the interaction energy
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between particles in the cluster and the remaining N − n outer particles and the potential
energy of the outer particles, respectively. There is one simplification in this formula, because
the latter potential energy should be dependent on the location of the cluster within the system.
This dependence can be ignored for macroscopic systems and short range forces.52 Now one
can incorporate the weight function into Un and Uσ, respectively:

U′n = Un − kBT ln[δn],

U′σ = Uσ − kBT ln[δr].
(A.6)

Furthermore one can substitute one integration variable rn for the center-of-mass R of the
cluster:

R =
∑n

i=1 ri

n
,

dr1...drn = n3dRdr′1...dr′n−1.

(A.7)

Primed coordinates are relative to the center-of-mass while unprimed coordinates denote a
fixed laboratory system. So the partition function becomes

Qn(N,V,T ) =
n3

Λ3nn!
1

Λ3(N−n)(N − n)!

×
∫

dR
∫

dr′n−1 exp
[
− β[U′n(r′n) + U′σ(r′n−1, r′N−n)]

]
×

∫
dr′(N−n) exp

[
− βUN−n(r′N−n)

]
.

(A.8)

Considering a decoupled system, i.e. without interaction between n-cluster and remaining
N − n particles, the following two probability densities can be introduced:

Φ0
N−n =

exp
[
− βU′N−n

]
∫

dr′N−n exp
[
− βU′N−n

] . (A.9)

Φ0
n =

exp
[
− βU′n

]
∫

dR
∫

dr′n−1 exp
[
− βU′n

] . (A.10)

The two correspondent partition functions would be

Q(N − n,V,T ) =
1

Λ3(N−n)(N − n)!

∫
dr′(N−n) exp

[
− βUN−n

]
(A.11)
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for the remaining N − n particles and

q∗n(V,T ) =
1
Λ3

n

∫
dR

∫
dr′n−1 n3/2

Λ3(n−1)n!
exp

[
− βU′n

]
=

V
Λ3

n

∫
dr′n−1 n3/2

Λ3(n−1)n!
exp

[
− βU′n

] (A.12)

for the decoupled n-cluster, where Λ3
n = h/(2πnmkBT )1/2. Using Equ. A.9 through Equ. A.12

in Equ. A.8 gives

Qn(N,V,T ) =Q(N − n,V, T ) q∗n(V,T )

×
∫

dR
∫

dr′n−1
∫

dr′N−n
Φ0

n exp
[
− βUσ

]
Φ0

N−n

=Q(N − n,V, T ) q∗n(V,T ) ⟨e−βUσ⟩0
=Q(N − n,V, T ) qn(V,T ),

(A.13)

where the average ⟨·⟩0 is taken in the decoupled system. The partition function qn(V, T ) of the
cluster now includes its interaction with the outer particles by the factor ⟨e−βUσ⟩0. Furthermore
it can be written as

qn(V,T ) = q∗n(V,T ) ⟨e−βUσ⟩0

=
V
Λ3

n

∫
dr′n−1 n3/2

Λ3(n−1)n!
exp

[
− βU′n

]
⟨e−βUσ⟩0

= N
v
Λ3

n
qinternal

n

= Nqn(v, T ),

(A.14)

where the integration over R gives V , v = V/N is the volume per particle and qinternal
n is the

partition function of the cluster without regard of its possibility of translation within the sys-
tem. The latter is expressed by the factor ṽ/λ3

n. The probability to find at least one n-cluster in
a canonical system can then be written as

Πn =
Qn(N,V,T )
Q(N,V,T )

=
Qn(N − n,V,T )qn(V, T )

Q(N,V,T )

= qn(V,T )eβnµ.
(A.15)

The factor eβnµ, where µ is the chemical potential of a particle in the remaining system, arises
by the fact, that the statistical mechanics of the canonical ensemble is linked to thermodynam-
ics by the relation Q(N,V, T ) = e−βF and the derivation dF/dN = µ. So nµ is the part of the
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free energy the system would have, if the n particles were “soluted” in the remaining system
instead of arranged in the cluster.
Since the formation of a cluster is a rare event, the probability Πn to find at least one cluster
can approximated with

Πn = pn(1) + pn(2) + ... ≈ pn(1), (A.16)

where pn(i) is the probability to find exactly i n-cluster. This approximation is based on the fact
that the formation of the clusters is uncorrelated and hence pn(i) ≈ [pn(1)]i. Thus it is allowed
to neglect higher order terms. By the same reason the average number Nn of n-clusters can be
approximated:

Nn = pn(1) + 2pn(2) + 3pn(3) + ... ≈ pn(1) = Πn. (A.17)

Finally, one gets Equ. 2.8 ( with ∆F instead of ∆G), again by the relation qn(v,T ) = e−β fn(v):

Nn = qn(V,T )eβnµ

= Nqn(v,T )eβnµ

= N exp
[
− β[ fn(v) − nµ]

]
= N exp

[
−β

(
− ln[v/Λ3

n]
β

+ f internal
n − nµ

)]
= N exp

[−β∆F
]
.

(A.18)

It should be noted that the contribution from translational free energy is also included in ∆F.
This contribution can be identified with the term − ln[v/Λ3

n]
β

.52 Beside the translational degrees of
freedom, also rotational degrees of freedom should appear, if they are regarded at the partition
function. It was pointed out,69–71 that such additional contributions to the free energy are ne-
glected in CNT, although their contribution is considerable. Furthermore f internal

n corresponds
with the partition function qinternal

n and therefore denotes the free energy inside the cluster. So
actually the quantity Nn/N = Pn, which is named the “intensive probability”50 and which is
directly accessible by computer simulations, is related to the free energy via

Nn/N = Pn = exp
[
− β∆F

]
,

∆F = −kBT ln
[
Pn

]
.

(A.19)
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Software

Here is a list of the software, which was used for programming, simulation, data analysis and
creating figures:

• GCC - version 4.4.7
The GNU Compiler Collection
http://gcc.gnu.org

• GROMACS - version 4.5.5
Package for molecular dynamic simulations and data analysis
http://www.gromacs.org

• WHAM - version 2.0.7
Implementation of the weighted histogram analysis method by A. Grossfield
http://membrane.urmc.rochester.edu/content/wham

• ReExUS
Umbrella sampling code with replica exchange by Andreas Singraber

• gnuplot - version 4.2
Command-line driven graphing utility
http://www.gnuplot.info

• Inkscape - version 0.48.4
Vector graphics editor
http://www.inkscape.org

• VMD - version 1.9.1
Molecular visualization program
http://www.ks.uiuc.edu
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Zusammenfassung

Nano-Wassercluster bestehend aus einigen hundert bis tausend Molekülen spielen eine wich-
tige Rolle in unsere Atmosphäre und im interstellaren Raum. Unter mesosphärischen Bedin-
gungen können sich neben amorphen Phasen, die keine kristalline Ordnung aufweisen, auch
kristalline Phasen, wie hexagonales oder kubisches Eis, ausbilden. Es ist eine interessante
und aktuelle Frage, welche der Phasen unter diesen Bedingungen die stabilste ist. Das Wissen
über den Mechanismus der Eis-Nukleation und über das Wachstum von Nanoteilchen hat gro-
ße Bedeutung in der Forschung. Vor allem die Rolle, die die Wasserstoffbindungen sowohl im
Inneren, als auch an der Oberfläche des Clusters dabei spielen, muss näher beleuchtet werden.
Ab welcher Clustergröße sich überhaupt kristalline Strukturen ausbilden können ist ein weite-
rer Forschungsgegenstand.
In dieser Arbeit beschäftige ich mich mit einigen Aspekten der Eis-Nukleation mit Hilfe von
Computer-Simulationen. Im ersten Kapitel wird der theoretische Hintergrund der Nukleation
diskutiert, welcher als Klassische Nukleationstheorie bekannt ist. Ursprünglich wurde diese
Theorie entworfen, um die Kondensation im unterkühlten Dampf zu beschrieben. Mit eini-
gen Erweiterungen kann sie aber auch auf den flüssig-fest Übergang angewendet werden. Da
Nukleation ein Aktivierungsprozess ist, gibt es eine Barriere in der freien Energie, die über-
wunden werden muss, damit der Phasenübergang stattfindet. Ein mathematischer Ausdruck
für diese Barriere kann mit Hilfe der sogenannten Kapillaritätsapproximation abgeleitet wer-
den. Nachdem die verwendeten Simulations- und Analysemethoden erklärt werden, wird ein
geeignetes Wassermodell gewählt. Das TIP4P2005 Modell beschreibt ein Wassermolekül als
starren Körper mit vier Wechselwirkungszentren. Einige Aspekte von hexagonalem bezie-
hungsweise kubischem Eis werden im nachfolgenden Kapitel diskutiert. Der praktische Teil
dieser Arbeit besteht zunächst in der Ausarbeitung eines geeigneten Ordnungsparameters, der
in der Lage ist zwischen festen und flüssigen Molekülen zu unterscheiden. Der gewählte Ord-
nungsparameter geht zurück auf ten Wolde und Frenkel, die zur Bestimmung des größten
kristallinen Kerns innerhalb des Clusters Kugelflächenfunktionen verwenden. Um die Stabi-
lität von Eisphasen in einem Cluster bestehend aus 216 und 432 Molekülen zu untersuchen,
werden Molekular-Dynamik Simulationen bei konstanter Temperatur durchgeführt. Dadurch
ist es möglich den Temperaturbereich zu schätzen, bei dem kristalline Strukturen zu schmel-
zen beginnen. Außerdem verwende ich die Umbrella-Sampling-Methode, um die Landschaft
der freien Energie in Abhängigkeit des Ordnungsparameters zu ermitteln und vor allem die
Barriere der freien Energie zu bestimmen, die von der Nukleationstheorie vorhergesagt wird.
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