




Abstract

The fate of a cell is determined by the set of expressed proteins which governs its
phenotype and all metabolic processes. Since quantification of the present protein
spectrum turned out to be rather difficult, the transcriptome, the set of all expressed
genes, is monitored instead.

RNA Sequencing (RNA-Seq) constitutes the state-of-the-art technology for large-
scale gene expression screens. The output from the sequencing machine are short
sequence tags, so-called reads, currently in the order of 108. By identifying the gene
from which each read originates and by counting the number of reads per gene, we
obtain an estimate for the underlying gene abundance. In contrast to former tech-
nologies, interrogation of gene expression is not restricted to already known genes.
Thus, an uninformed view on the present transcriptome is achieved. Moreover, the
obtained resolution is at the finest possible level - at the base pair level.

RNA-Seq arose at about eight years ago, since then the library preparation protocols
in the wet-lab as well as the subsequent analysis workflows have been continuously
improved. Yet, the unprecedented amount of data as produced by RNA-Seq is its
boon and bane. In-depth analysis is often hindered by the overwhelming mass of
data. In fact it frequently happens that the data is merely wrapped up into summary
statistics to be able to handle it at all. Thus, while the standard workflow of RNA-
Seq is already well established, a detailed analysis remains a challenging task as a
consequence of a shortcoming of methods to do so.

Here we deliberately enter the wealth of data and stress the point of not neglecting
the valuable resolution of RNA-Seq which is reflected in the per-base coverage, the
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number of reads per position of a given gene. While typically all RNA-Seq anal-
ysis is centered on the read counts, we argue not be oblivious of the information
contained in the coverage patterns. We contribute a method how to evaluate these
patterns by consulting a classical measure, namely the Fractal Dimension. We link
the roughness of a coverage graph to its reliability and are thus able to pinpoint sus-
picious coverage patterns and, as a consequence, unravel its causes being pitfalls
while library preparation or analysis.

Additionally, we address the question of the necessary as well as sufficient sequenc-
ing depth in order to detect all expressed genes. While the typical aim of the vast
majority of global gene expression studies lies in the gene-wise inference of differ-
ential expression we propose a global perspective upon the sequencing data. We
consider the data as a sampling process (number of reads per gene\position) which
may be modeled by sampling formulas originating in the field of population ge-
netics. These sampling formulas allow us to realistically capture the distribution
of reads within and between genes which is of immediate benefit for simulation
tools. Moreover, we are even in the position of making valid predictions about the
expected number of newly detected genes given a certain amount of sequencing
reads. Carrying this question to the extreme results in the exploration of the bound-
aries of the respective underlying transcriptome. Since the repertoire of expressed
genes is far from being static and depends on the specific biological set-up such
as organism, tissue, cell type and developmental state this question is of particular
interest.

Parts of this thesis have been published in the following article:

i) S. Tauber and A. von Haeseler (2013) Exploring the Sampling Universe of
RNA-Seq. Statistical Applications in Genetics and Molecular Biology, 12(2),
175–188.

In preparation:
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i) S. Tauber and A. von Haeseler
FractalQC: A Bioconductor Package for Quality Control of RNA-Seq Cov-
erage Patterns by Means of the Fractal Dimension.



Zusammenfassung

Das Schicksal einer Zelle wird von der Menge aller exprimierten Proteine bestimmt,
die wiederum für den Phänotyp der Zelle und für alle metabolischen Prozesse ver-
antwortlich ist. Da sich die Quantifizierung aller exprimierten Proteine als außeror-
dentlich schwierig erwiesen hat, wird stattdessen das Transkriptom, die Menge aller
exprimierten Gene, zur Untersuchung herangezogen.

RNA Sequenzierung (RNA-Seq) stellt die modernste Technologie für großangelegte
Untersuchungen von Genexpression dar. Der Sequenzierer gibt kurze Sequen-
zstücke aus, sogenannte ’reads’, momentan circa 108 reads pro Sequenzierung.
Indem man das Gen, von dem der jeweilige read stammt, identifiziert und dann
die Anzahl der reads pro Gen aufsummiert, erhält man eine Approximation der
zugrunde liegenden Genexpression. Im Vergleich zu älteren Technologien können
nicht nur schon bekannte Gene abgefragt werden. Im Gegenteil, RNA-Seq benötigt
keinerlei Vorwissen über die Struktur der jeweils vorliegenden Gene. Weiters ist
die realisierte Auflösung von RNA-Seq bestmöglich - am Basenpaar-Level.

Die Anfänge der RNA-Seq Technologie liegen circa acht Jahre zurück, seitdem
haben sich sowohl die Protokolle im Nasslabor als auch die Analysen kontinuier-
lich weiterentwickelt und verbessert. Die Menge an Daten, die von RNA-Seq
tagtäglich produziert wird, ist ohne Präzedenzfall und sowohl von Vor- als auch
von Nachteil. Detaillierte Analysen werden oft durch die überwältigende Masse an
Daten erschwert. Tatsächlich werden die Daten häufig in statistischen Maßzahlen
zusammengefasst, um sie überhaupt handhaben zu können. Während die Standard-
Analyse von RNA-Seq Daten schon sehr gut etabliert ist, bleibt eine tiefgehende
Analyse eine Herausforderung, da es noch an passenden Methoden fehlt.
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Wir möchten dezidiert die Masse der Daten ausnutzen und betonen daher die Wichtig-
keit, die von RNA-Seq gebotene wertvolle Auflösung nicht zu ignorieren. Diese
Auflösung spiegelt sich wieder in der sogenannten ’per-base coverage’, der Anzahl
der reads pro Basenpaar. Während eine gewöhnliche RNA-Seq Analyse auf der
Anzahl der reads pro Gen aufbaut, betonen wir, wie wichtig es ist, die Information
des ’Coverage Pattern’ nicht zu vernachlässigen. Wir haben eine Methode entwick-
elt, mit der solche Coverage Pattern bewertet werden können und zwar anhand der
Fraktalen Dimension. Wir zeigen, dass es eine Verbindung zwischen dem Graphen
des Coverage Pattern und seiner Vertrauenswürdigkeit gibt. Infolgedessen sind wir
in der Lage, fragwürdige Coverage Pattern und mögliche Gründe, die sowohl im
Nasslabor also auch in der Analyse liegen können, zu identifizieren.

Weiters widmen wir uns der Frage der notwendigen als auch hinreichenden Sequen-
ziertiefe, um alle exprimierten Gene zu detektieren. Die meisten Genexpressions-
Studien sind an der Quantifizierung der differenziellen Genexpression interessiert.
Im Vergleich dazu schlagen wir eine globale Sichtweise der Dinge vor. Wir fassen
die Daten als eine Stichprobe auf (Anzahl der reads pro Gen\Position) und charak-
terisieren den zugrunde liegenden Prozess mittels Formeln, die aus der Population-
sgenetik kommen. Dies ermöglicht uns realistisch die Verteilung von reads inner-
halb von und auch zwischen Genen zu modellieren. Der Nutzen dieser Methode für
Simulationszwecke ist sofort ersichtlich. Darüber hinaus sind wir sogar in der Lage,
Prognosen über die Anzahl der zu erwartenden, neu detektierten Gene zu machen,
gegeben einer bestimmten Menge an reads. Treibt man diese Fragestellung zum
Äußersten, dann führt das zur Erforschung der Grenzen des jeweils vorliegenden
Transkriptoms. Das Repertoire an exprimierten Genen ist sicherlich nicht statisch
und hängt von den spezifischen biologischen Gegebenheiten wie zum Beispiel Or-
ganismus, Gewebe, Zelltyp und Entwicklungsstatus ab. Daher ist diese Fragestel-
lung von besonderem Interesse.

Teile dieser Arbeit wurden in dem folgenden Artikel publiziert:
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i) S. Tauber and A. von Haeseler (2013) Exploring the Sampling Universe of
RNA-Seq. Statistical Applications in Genetics and Molecular Biology, 12(2),
175–188.

In Vorbereitung:

i) S. Tauber and A. von Haeseler
FractalQC: A Bioconductor Package for Quality Control of RNA-Seq Cov-
erage Patterns by Means of the Fractal Dimension.
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Chapter 1

Introduction

1.1 Background

All organisms on earth1 carry their genetic information in the form of Deoxyri-
bonucleic acid (DNA). Its structure, the double helix, arises from two complemen-
tary strands consisting of four nucleotides: adenine, thymine, guanine and cytosine.
Hydrogen bonds link the matching nucleotides, adenines always pairs with thymine
and guanine with cytosine. Any kind of catalytic activity can only take place uni-
directional, from the 5’-end to the 3’-end. Information is passed on from the DNA
by (i) transcription into messenger Ribonucleic acid (mRNA) and, subsequently,
(ii) translation into proteins. This process, DNA → RNA → proteins, is known as
being one part of the Central Dogma of Molecular Biology (Crick, 1970).

However, not the entire DNA is transcribed. Genes constitute that part of the DNA
containing genetic information responsible for a specific trait or characteristic of
the respective cell. Transcription starts with synthesizing the mRNA from a gene
present on the DNA. The resulting pre-mRNA consists of one or more exons pos-
sibly interrupted by noncoding introns. In the following the pre-mRNA undergoes
multiple processing steps amongst which noncoding introns are excised. Yet, mul-
tiple options exist regarding the inclusion or exclusion of exons and\or introns.
The splicing apparatus controls the admissible exon compositions of mRNAs which
may arise from the very same gene, so-called isoforms. Additionally, a nucleotide

1besides one exception, RNA-viruses carry their genetic information in the form of RNA
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stretch of about 200 adenines is added at the 3’-end (’poly-A tail’) for stability
reasons. Eventually the mature mRNA may be translated into its corresponding
protein. The set of expressed proteins together with all functional RNAs in a cell
governs all metabolic processes and drives the phenotype of the cell (Gardner et al.,
1991).

As quantification of the present protein spectrum of a given cell remains to be dif-
ficult, the repertoire of expressed genes is monitored instead. The qualitative and
quantitative comparison of the mRNA levels between multiple biological sources is
the main objective of gene expression studies. Before the advent of high throughput
technologies, this question could only be addressed gene-wise by means of quanti-
tative real-time polymerase chain reaction (PCR). Microarrays, and more recently
Next Generation Sequencing (NGS) technologies made genome-wide expression
screens possible. NGS permits multifaceted applications such as complete genome-
resequencing, tracking protein-nucleic acid interactions by means of ChIP-Seq or
sequencing of metagenomic samples. See Shendure and Ji (2008) for an overview
of applications of NGS technologies. Here we will concentrate on RNA sequenc-
ing (RNA-Seq) which aims to quantify all expressed mRNAs in a given biological
sample.

1.2 Micoarrays vs RNA-Seq

Both Microarrays as well as RNA-Seq are high-throughput technologies meaning
that the expression of thousands of genes can be measured at the same time. While
in the last decade of the past century Microarrays initiated the paradigm shift from
gene-wise to global expression screens, RNA-Seq took over as state-of-the-art tech-
nology beginning in about 2005.
In fact, Microarrays and RNA-Seq differ substantially regarding the underlying
technology yet we would like to lay the focus on the most important differences
in the resulting data. By doing so the superiority of RNA-Seq over Microarrays
is immediately comprehensible. First, Microarrays only yield relative measures of
the expression levels while RNA-Seq returns absolute values in the form of count
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data. Secondly, Microarrays are restricted to the interrogation of the set of already
known genes. In contrast, RNA-Seq permits an uninformed view of the RNA ex-
pression landscape. Both technologies output an unprecedented amount of data.
The production of large and many data is even more accelerated for RNA-Seq since
this technology gets more inexpensive and, simultaneously, increases its throughput
substantially every year.

1.3 NGS Technologies

Several NGS technologies are available, the most prominent include SOLiD from
Life Technologies\Applied Biosystems, Roche’s 454 technology, the Genome An-
alyzer and the HiSeq System from Illumina and Ion Torrent from Life Technologies
(Metzker, 2010). While these technologies pursue their specific proprietary library
preparation and sequencing protocol, the resulting data structure is similar. Thus
methods developed on data originating from one technology can be easily trans-
ferred. Here, we mainly work with data from the Illumina technology (Bentley et
al., 2009) being one of the most popular technologies.

1.3.1 Library Preparation for RNA-Seq

Library preparation refers to the protocol in the wet-lab, starting with the extrac-
tion of the RNA from the biological sample to the submission of the sample to the
sequencing machine. Here we will briefly describe the individual steps of the stan-
dard Illumina Protocol (TruSeq Illumina, 2012). This knowledge is immanent to
understand possibly occurring biases in the data due to the library preparation.

Extraction RNA, typically the poly-A mRNA, is extracted. The restriction to poly-
A mRNA is not severe since nearly all protein coding genes2 in eukaryotes
exhibit a poly-A tail (Proudfoot et al., 2002).

2besides some histone genes
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Fragmentation Since the average length of a gene exceeds the capacity of the se-
quencing machine, the mRNA is sheared into smaller fragments. The default
fragmentation method of Illumina is using divalent cations under elevated
temperatures. Other fragmentation methods include sonication (breaking of
the RNA by means of the vibrations of ultrasonic waves), nebulization (com-
pressed air or nitrogen forces the RNA to break) or random enzymatic diges-
tion (the mRNA is cut by the collaboration of two enzymes, one marking the
position where then the other enzyme cuts).

First and second strand synthesis Since mRNA is highly unstable by nature con-
version to DNA is necessary. The start site of the synthesis is determined
by a short nucleotide sequence, a so-called primer. In this protocol priming
of the RNA fragments is done with random hexamers (nucleotide sequences
of length 6), finally double-stranded complementary DNA (dscDNA) is ob-
tained.

Adapter ligation Subsequent sequencing requires the immobilization of the sequenc-
ing templates on the so-called flow cell, a planar surface with a dense lawn
of oligonucleotides. In order to capacitate the dscDNA to bind onto the flow
cell, short DNA sequences (adapters) are ligated to both ends of the dscDNA.

Enrichment Amplification via PCR of all admissible fragments (fragments with at-
tached adapters) in order to increase the amount of DNA in the library in
general.

Preparation for sequencing Finally the dscDNA is denatured and diluted before
the actual sequencing starts.

We refrain from giving a detailed description of the sequencing process itself since
this knowledge is not required for the understanding of the presented work here.
Metzker (2010) gives an excellent overview on this topic.



1.3 NGS Technologies 5

Up to 8 different biological samples can be sequenced simultaneously since a flow
cell contains 8 compartments (’lanes’). The typical sequencing yield per lane is
about 100−200×106 single-end reads per lane, the read length may vary between
50−150bp. Each read refers to one fragment of a mRNA in the original biological
sample. In the case of single-end sequencing each fragment is just sequenced from
one end whereas paired-end sequencing delivers two reads per fragment, one from
each end. Since RNA-Seq still results in substantial costs efforts have been made
to exploit the sequencing yield more efficient. This has been achieved by multi-
plexing which permits sequencing of multiple biological samples in one lane of the
flow cell. Each biological sample is tagged with a so-called barcode which allows
subsequent distinction. The seemingly disadvantage of a lower obtained sequenc-
ing yield per biological sample frequently vanishes as not all studies require ultra
deep sequencing.
Besides from the raw sequence data quality scores for each sequenced base are
available indicating the reliability of the base calling. More precisely, the quality
values give information on how probable the specific nucleotide has been identified
correctly.

1.3.2 Sampling Process

The sequencing process can actually be regarded as sampling process. The original
biological sample contains a certain number of mRNAs present at various expres-
sion levels. Each mRNA is then subjected to multiple processing steps such as
fragmentation, amplification or priming in the course of the library preparation pro-
tocol. The final outcome of the sequencing machine consists of sequencing reads
whereas each read refers to one fragment. Typically the number of obtained se-
quencing reads is limited by the throughput of the underlying sequencing technol-
ogy and not due to exhaustion of the biological sample. Thus the reads represent a
subsample of the original amount of input mRNA.
In order to provide some intuition for this sampling process and its orders of mag-
nitude we track the absolute number of molecules at different stages of the library
preparation protocol. Since the amount of input mRNA is known and by assuming
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an average mRNA length of 1200 bp (Mus Musculus, numbers extracted from En-
sembl (Flicek et al., 2013)) we can compute the number of molecules in the initial
biological sample. Calculation works by converting the amount of mRNA given
in grams into moles, being the standard measurement unit. This is achieved by di-
viding the amount of mRNA by the molecular weight of each nucleotide (∼ 330
pg/pmol) times the expected length of the RNA, and accounting for scaling differ-
ences. The absolute number of molecules is easily extracted from the number of
moles by multiplication with Avogadro’s number (∼ 6.022×1023). See Appendix
A for a detailed derivation.
Moreover, the concentration of the sample is measured multiple times throughout
the library preparation, enabling us to calculate the number of molecules at these
stages as well (see Table 1.1). Given a final sequencing yield of about 100× 106

reads, only 0.06% of the original input amount or, respectively, 0.002% of the sam-
ple after library preparation is sequenced. The decrease in sequencing percentage
(from 0.06% to 0.002%) can be explained by the fact that the mRNAs are frag-
mented and subsequently amplified in the course of the library preparation. Thus
the original mRNA content is ’blown up’. Additionally, we have to note that is
more appropriate to compare the sequencing yield to the number of molecules after
library preparation since the mRNA is already fragmented at this stage. Thus the
size of the molecules should be comparable.

Given these numbers it is quite surprising that sequencing delivers a representative
picture of the underlying set of expressed genes most of the time. The reliability
of our calculation is supported by McIntyre et al. (2011) who conducted a similar
study resulting in comparable orders of magnitude for the number of molecules.
Yet, comparison to Microarrays as well to quantitative real-time PCR confirms the
convincing performance of NGS (Bullard et al., 2010, Mortazavi et al., 2008, Mar-
ioni et al., 2008).
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stage of library preparation protocol number of molecules [1012]

input amount 1.5×1011[0.15]
after library preparation 3.6×1012[3.6]

flow cell load 5.1×108[0.00051]
sequencing yield 100×106[0.0001]

Table 1.1: Number of molecules (fragments of mRNA) throughout the library preparation. To facil-
itate the comparison of orders of magnitude numbers in square brackets are on the scale
of 1012.

1.4 RNA-Seq Analysis Workflow

The overall goal of RNA-Seq experiments is the comparison of expression levels
between genes and conditions. Thus, once the raw sequencing reads are obtained
from the sequencing machine several preprocessing steps are necessary to provide
the data in appropriate form for subsequent analyses.

Mapping The sequencing reads are mapped to the genome and/or to the transcrip-
tome in order to recover their origin. A variety of mapping software is avail-
able, see Lindner and Friedel (2012) for a recent review focusing on RNA-Seq
data. Software development happens at rapid pace resulting in faster align-
ments of more and more reads. Yet, two decisions remain to be taken by the
user: How many differences such as substitutions, insertions and deletions
are to be sensibly allowed. The number of admissible differences depends
on the error rate of the underlying sequencing technology and on the ex-
pected genomic divergence of the underlying biological sample to the refer-
ence. Secondly, how to deal with reads that cannot be placed unambiguously.
No general rule is yet established.
Besides mapping the reads to a reference sequence, assembly of the reads
depicts another possibility for transcriptome reconstruction (Garber et al.,
2011). In general, RNA-Seq assembly is clearly preferable as it allows an
uninformed view on the mRNA spectrum. However, Schliesky et al. (2012)
emphasize that current RNA-Seq assemblies not yet achieve satisfying results
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in terms of accurate representation of the transcriptome. Therefore and since
all data processed in this Thesis relies on reference based mapping we refrain
from expanding upon transcriptome assembly.

Summarization Determination of the expression levels depends on (i) the entity per
which expression shall be calculated such as exon, isoform or gene, (ii) the
chosen summary statistic to represent the respective expression. Typically the
sum of reads per entity is chosen. Summarization constitutes by no means a
trivial part in the analysis workflow. Cases such as reads mapping to exons
shared by multiple isoforms, or reads mapping to genes annotated at the same
genomic coordinates but opposite strands are treated inconsistently in differ-
ent studies. In any case, the summarization step results in a count table which
constitutes the fundamental basis for all subsequent analyses. Typically dif-
ferent experimental conditions are displayed in separate columns whereas the
entity over which summarization has taken place (e.g. genes) is listed in the
rows. While the impact of the summarization method on the count table is
immense it was observed that methods development neglects the summariza-
tion step (Oshlack et al., 2010).

Normalization Within-lane as well as between-lane normalization is necessary in
order to enable valid comparison of expression levels between genes, and,
respectively, between conditions. Given two equally expressed genes, the
longer gene always yields more sequencing reads as as consequence of the
library preparation protocol. Thus normalization for gene length is required.
The need for between-lane normalization results from the fact that lanes of a
flow cell typically differ in their sequencing yield (Bullard et al., 2010). As a
consequence, it may happen that equally expressed genes have different read
counts when originating from lanes with a substantial discrepancy in the se-
quencing depth.

Differential expression inference Finally, having the summarized, normalized ex-
pression values per entity of interest at hand, the null hypothesis of no differ-
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ential expression is tested. The Poisson or the Negative Binomial distribution
is typically adopted to model RNA-Seq count data. Multiple methods are
available amongst which baySeq (Hardcastle and Kelly, 2010), edgeR(Robinson
et al., 2009) and DESeq (Anders and Huber, 2010) are the most prominent
(Kvam et al., 2012). The major challenge lies here in the fact that typically
- if at all - a very low number of replicates per condition is available. Addi-
tionally the nature of the experimental design is massively parallel since the
null hypothesis of no differential expression is tested for each gene.

1.5 Bias Overview

Here we would like to give a concise description of potential occurring biases lead-
ing to a distorted distribution of reads within and between genes. In contrast to
former beliefs that a technology based on actual counting of the mRNA fragments
does not exhibit a need for ’sophisticated normalization’ (Wang et al., 2009) it is
now evident that RNA-Seq data suffers from a conglomerate of different biases, see
Ross et al. (2013) for a most recent review.

We distinguish two main bias sources - either the library preparation protocol or the
subsequent analysis. Library preparation protocols as well as the following anal-
yses are not static. Best practice guides for the library preparation protocols are
available, similarly automated analysis pipelines are already offered. Yet, each de-
cision comes along with its consequences and thus it is indispensable to know about
the causal relationship between individual processing steps and subsequent patterns
in the data. Figure 1.1 gives an overview of the RNA-Seq workflow, possibly oc-
curring biases and where these biases enter the analysis workflow.

Biases originating from the library preparation protocol:

Amplification and GC content bias It is well known that the enrichment step is the
primary source of base-composition bias (Aird et al., 2011, Oyola et al.,
2012). Specifically, the underrepresentation of GC rich and poor regions is
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Figure 1.1: RNA-Seq workflow: Multiple biases may distort the composition of the biological sam-
ple before even entering the sequencing machine. Reads and corresponding quality val-
ues are obtained by application of the so-called base-caller from the raw image data.
Subsequently mapping of the reads, summarization per entity of interest, normalization
and, eventually, testing for differential expression takes place.
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most likely linked to the PCR (Benjamini et al., 2012).

Priming method Typically first strand synthesis is primed with random hexamers.
Yet, it has been shown that random hexamers, despite the name, tend to prefer
certain sequences and thus lead to a distorted nucleotide composition in the
resulting reads (Hansen et al., 2010).

Fragmentation method The default fragmentation method of Illumina is by using
divalent cations under elevated temperatures. Other prominent fragmentation
methods include nebulization and sonication which are known to perform
differently on the body of the gene in contrast to the 5’ or 3’ end (Wang et
al., 2009). This finding is supported by the work from Tauber and von Hae-
seler (2013) who compared three fragmentation methods, namely nebuliza-
tion, sonication and random enzymatic digestion, in respect to the resulting
coverage. They came to the conclusion that all methods are far from produc-
ing uniformly distributed fragments along the gene.

Sampling bias It may happen that very few genes collect the majority of the reads.
These so-called key players then hinder the detection of the remaining, lowly
expressed genes, by their dominance in the sequencing sample (Bullard et al.,
2010).

Biases originating from the analysis workflow:

Summarization method Given two genes annotated at the same genomic coordi-
nates but opposite strands and a read mapping to this location, it may occur
that this read cannot be assigned unambiguously unless it brings along strand
information. Similarly, reads that map to exons shared by multiple isoforms
can be summarized on the isoform-level only by the aid of model-based meth-
ods. Thus, the summarization method may lead to wrongly assigned or, even
discarded reads.
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Mapping strategy Reads may contain sequencing errors and, additionally, may ex-
hibit a certain genomic divergence to the reference. Therefore and since all
alignment algorithms incorporate some amount of heuristics, it may happen
that reads are assigned to the wrong position on the genome.



Chapter 2

Main Contributions of this Thesis

We have introduced the state-of-the-art technology for global gene expression screens,
namely RNA-Seq together with its workflow in the wet-lab as well as the sub-
sequent analysis pipeline. Additionally, we have elaborated on the different bias
sources distorting the relationship of the genuine mRNA abundances and measured
expression levels.
A wealth of methods already exists for each step of the standard RNA-Seq analy-
sis workflow (Garber et al., 2011, Kvam et al., 2012, Lindner and Friedel, 2012)
including bias correction (Ross et al., 2013). Due to the overwhelming amount of
data produced by RNA-Seq speed is one of the top criteria for evaluating mapping
software as well as subsequent processing methods. However, we believe that new
knowledge may only arise from an in-depth analysis. Taken decisions within the
analysis workflow must be challenged in the light of biological sensibility and sta-
tistical validity.

Thus we deliberately refrain from contributing another method to the already well
filled software pool of mapping programs, normalization methods or models for
differential expression inference. In this Thesis, we aim for breaking new ground
by enlightening aspects of the analysis pipeline which have been neglected so far
and by introducing a completely different point of view upon the sequencing data.

13
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2.1 Exploration and Quality Control of Coverage Pat-
terns

RNA-Seq analysis is centered around the count table. Mapping of the reads as well
as summarization are merely a means to obtain this count table. The initial research
question of the majority of global gene expression screens is to detect differential
expression, a hypothesis which again bases on the count table. Yet, we note that the
count table is actually a summary statistics, the sum of reads per entity of interest
such as gene or exon.

Here we advocate not to neglect the unprecedented resolution of RNA-Seq which
is reflected in the per-base coverage, the number of reads mapping to each base.
By restricting the analysis to the count table rather than integrating the underly-
ing coverage pattern valuable information is discarded. Since visual comparison
of thousands of pattern is not feasible, we contribute a method to evaluate these
patterns by means of the Fractal Dimension (FD).
While the FD has a long tradition in the context of self-similar objects we mainly
focus on its property as measurement for the roughness of the underlying graph
(Gneiting et al., 2012). We link the reliability of a coverage graph to its roughness
which in turn can be evaluated by the FD. By doing so we unravel pitfalls while
the library preparation and the subsequent analysis. We developed an R package
(R-Project, 2013), namely FractalQC, to make this method publicly available.

2.2 The Sampling Process of RNA-Seq

Being aware of the conglomerate of biases RNA-Seq data is exposed to, rather than
trying to account for each bias individually, we adopt a more pragmatic and global
point of view.
We take the data as it comes along and regard it as sampling process which either
takes place on the gene level (number of reads starting at each position of a gene)
or on the transcriptome level (number of reads per gene). It turns out that these
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sampling processes can be very well characterized by means of sampling formu-
las derived in the field of population genetics. Yet, they naturally fit the needs of
current RNA-Seq data. Specifically, we use the Pitman Sampling Formula (PSF)
(Pitman, 1995) which is a generalization of the well-known Ewens Sampling For-
mula (Ewens, 1972).
By means of the PSF we investigate whether the theoretical expectation of uniform
coverage holds and how any deviation from uniformity can be evaluated. Addition-
ally, by exploiting the urn representation of the PSF, the so-called Hoppe Urn, we
can realistically simulate the distribution of reads within and between genes.

Notably, the PSF even enables us to quantify the absolute number of expressed -
and yet undetected - genes. This is of particular interest since the set of expressed
genes is highly variable and changes in dependence on the underlying organism, tis-
sue and developmental state. More precisely, given a pilot sequencing experiment
yielding a certain number of expressed genes, we address the question how many
more expressed genes will be detected when sequencing another sample. Carrying
this question to the extreme results in exploration of the boundaries of the respec-
tive transcriptome which are driven by the properties of the underlying biological
sample. The benefit is of immediate practical value since knowledge about the nec-
essary as well as sufficient sequencing depth in order to detect all expressed genes
is crucial for a realistic experimental design.
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FractalQC: Exploration and

Quality Control of Coverage

Patterns

3.1 Introduction

The advent of next generation sequencing (NGS) technologies (Metzker, 2010) has
turned RNA-Seq into the state-of-the-art protocol for global gene expression profil-
ing. The initial research question of the vast majority of RNA-Seq experiments is
comparison of RNA expression levels of two or more biological sources. Therefore
the standard workflow of a RNA-Seq experiment involves mapping of the reads,
summarization of the reads per entity of interest (e.g. gene, exon or coding region),
normalization and, eventually, testing for differential expression. Thus, all statisti-
cal analyses for differential expression inference base on the count table containing
the number of reads per entity. By doing so, important aspects of NGS technologies,
namely the unprecedented and discrete resolution which is partially reflected in the
per base coverage and, respectively, in the overall coverage pattern, is neglected.
While numerous tools exist for explorative quality control of the coverage pattern
per gene (DeLuca et al., 2012, Wang et al., 2012, Garcı́a-Alcalde et al., 2012), no
methodical approach is available to extract the information contained in the cover-
age pattern. Typically, the per base coverage only enters the differential expression
analysis in terms of a kind of summary statistic - as read counts.

16
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Similarly do other NGS analysis methods such as structural variation discovery,
copy number variation detection (Alkan et al., 2011) or SNP calling (Nielsen et
al., 2011) just rely on the per base coverage and do not integrate the knowledge of
the overall coverage pattern in the analysis. Recently Lindner et al. (2013) demon-
strated how valuable it may be to exploit the overall coverage more thoroughly.
They fit mixtures of probability distributions to the so-called genomic coverage
profile which is essentially a histogram over all per-base coverages. By doing so
they are able to distinguish different contributors in a metagenomic sample.

In this work, we argue not be oblivious of the information contained in the coverage
pattern of each gene, or more precisely, each isoform. In theory one would expect
uniform coverage along the isoform resulting in a rectangular shape of the coverage
regardless of the expression level of the underlying isoform. Yet, the observed cov-
erage patterns may deviate greatly from this ideal due to the fact that the sequencing
procedure is typically not exhaustive, meaning that not all mRNAs present in the
biological sample get sequenced. Secondly the sequencing protocol itself may in-
troduce several biases. Well known examples of induced biases include that random
hexamer priming leads to a distorted nucleotide composition of the reads (Hansen
et al., 2010) or that either GC-poor as well as GC-rich genomic regions tend to
have underrepresented read counts (Benjamini et al., 2012). Besides non-uniform
coverage originating from pitfalls of the sequencing protocol, the individual anal-
ysis steps may also introduce peculiar coverage patterns. Isolated stacks of reads
might be caused by the mapping procedure (e.g. many reads are trimmed and as a
consequence collectively assigned to the wrong position on the genome). Outdated
annotation might lead to a sharp drop in the coverage e.g. due to a previously un-
known alternative splicing event.
We contribute a method to explore and evaluate these patterns by means of the frac-
tal dimension (FD). The FD has a long tradition with respect to the analysis of time
series or transect data (Mandelbrot, 1982). Besides being a popular metric to quan-
tify the roughness of a graph, the FD can even be linked to the variogram function
if the underlying process is Gaussian (Gneiting et al., 2012). In this work, we ex-
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ploit the fact that the FD can distinguish different shapes of the coverage graph and
therefore enables us to identify all kinds of peculiar coverage patterns.

There are few other tools which also work on coverage patterns in the context of
RNA-Seq. rnaSeqMap (Okoniewski et al., 2011) inspects coverage profiles in order
to detect differential expression given comparable read counts. In order to do so,
they introduce several normalization and difference measures for pair-wise compar-
ison of coverage shapes. rnaSeqMap suffers from the fact that the performance of
all presented difference measures depends on the underlying shape of the coverage.
Furthermore the difference measures do not have a predictable range of values and
thus are difficult to evaluate and interpret. ReadSpy (Hower et al., 2012) addresses
the question whether reads are uniformly distributed within genes. By represen-
tation of the mapped reads as combination of their left-end mapping position and
the corresponding fragment length, the sequencing process can be regarded as a
two-dimensional Poisson process. Within this framework testing for uniform distri-
bution of the reads is then realized by a χ2-statistic. While ReadSpy is theoretically
appealing, it is of limited practical use as typically even ’good coverage’ patterns
are far from being truly uniform. Additionally, ReadSpy needs paired end informa-
tion and is therefore restricted to such data.

We introduce FractalQC, an application aiming for identification of peculiar cover-
age patterns. In contrast to the above-mentioned methods FractalQC does neither
only ask the binary question of uniform vs not uniform coverage nor does it con-
centrate on the identification of alternative splicing events. FractalQC processes
mapped reads (bam files) and generates an extensive report pointing out isoforms
with interesting coverage patterns. Besides calculation of the FD and the area under
the curve (AUC) for detection of those, FractalQC offers an extensive visualization
of the coverage patterns garnished with meta-information like exon-intron structure
and links to the corresponding entries in the annotation databases. Not only the
entire set of known isoforms can be processed, also restriction to a subset such as
genes e.g. involved in a specific pathway may be processed. Since the FD always
ranges between 1 and 2 for one-dimensional data FD values are directly comparable
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between experiments.
Thus FractalQC makes the analysis more transparent by generating explanations
for peculiar coverage patterns originating from mapping artefacts, outdated anno-
tation or issues of the summarization method. In addition, the performance of se-
quencing protocols in terms of evenness of coverage can be assessed by comparing
the FD values for all isoforms across samples.

3.2 Material and Methods

The Fractal Dimension

The topological dimension of euclidean objects such as lines, surfaces and spheres
is intuitively assigned as 1, 2 and 3. In this context, the dimension can be under-
stood as the number of necessary coordinate axes to describe the underlying object.
Yet, in nature, such ideal platonic objects are typically not observed but more com-
plex and messy shapes are encountered. Mandelbrot (1982) introduced the FD as
means to characterize irregular shapes where the integer-valued topological dimen-
sion fails to capture the complexity of the underlying shape.
Figure 3.1, containing simulated time series data, exemplifies this situation. Both
panels show a Gaussian sample path but differ in the respective exponent of the co-
variance function. We observe that a smooth sample path results in a small FD (1.08
in Figure 3.1a) whereas a rougher sample path yields a higher FD (1.88 in Figure
3.1b). Additional intuition may be provided by the Gaussian Matérn process. This
process is particular suited to demonstrate the relation of the FD to the appearance
of the graph since the FD is here increasing linearly from 1 to 2 (Figure 3.2).
Figure 3.1 and 3.2 illustrate that graphs of one-dimensional profiles may differ
substantially, possible graph structures range from smooth to space-filling curves.
These properties of the graph are missed by the topological dimension that equals
to one for all shown sample paths. In contrast, the FD evaluates the roughness of
the graph and, given one-dimensional profiles, always ranges between 1 and 2. The
larger the FD the rougher, the more space-filling the graph. While historically the
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Figure 3.1: Gaussian sample paths of length 1000 from the powered exponential family. The covari-
ance function is given by σ(t)= exp(−t)α whereas α ∈ (0,2]. The value of α determines
the extent of space-filling of the curve, α = 1.9 in (a) and α = 0.2 in (b).

FD has been applied most prominently in the context of self-similar objects, we fol-
low Gneiting et al. (2012) and emphasize that the FD can also be merely regarded
as means to assess the roughness of a graph.

Calculation of the Fractal Dimension

Here we concentrate on data of the following form

X = {(t,Xt) ∈ R×R : t ∈ T ⊂ R} ⊂ R2

where X is the graph of a one-dimensional profile, such as a time series, or, in our
context, the per base coverage pattern. The observation take place at T ⊂R and are
typically equally spaced. In the case of coverage data t = 1,2, . . . ,n whereas n is
the length of the isoform.
The FD is usually defined as the Hausdorff dimension (Falconer, 1990). As this
definition is rather abstract we refrain from presenting it here, instead we provide
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Figure 3.2: Sample path from a Gaussian Matérn process, FD varies linearly from 1 to 2 throughout
time.

some intuition. When measuring the length of a one-dimensional object, the size of
the ruler determines the actual length. This fact is best understood when thinking of
a coast line whose length is typically not straightforward to determine. Therefore
there is an implicit relationship between scale (size of the ruler) and length. Let
N(ε) be the number of squares with edge length ε necessary to cover the graph of a
straight line. If the edge length is halved the number of squares necessary to cover
the graph will double (see Figure 3.3a for an illustration). Hence the number of
squares N(ε) is related to the edge length ε by the following power-law: N(ε) ∝ 1

ε1 .
The relationship is here linear because we have chosen a trivial example - a straight
line living in the euclidean space. The FD is now exactly this exponent when the
edge length ε goes to 0.

FD = lim
ε→0

− logN(ε)
logε

, FD ∈ [1,2)

Figure 3.3b shows an example where the exponent is greater than 1.
A smooth, differentiable curve has topological and fractal dimension of one (Gneit-
ing et al., 2012). However, the FD may also exceed the topological dimension. The
rougher and the more space-filling the graph the greater the FD. See Figure 3.1 for
two extreme cases whereas the FD equals to 1.08 in (a) and to 1.88 in (b).

Multiple methods exist for calculating the FD, see Gneiting et al. (2012) for a recent
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Method Property Scale Scaling Law Regime

Boxcount
number of boxes: box width:

N(ε)∝ ε−FD ε → 0
N(ε) ε

Madogram
variation estimator: lag:

V̂ (l)∝ l2−FD l → 0
V̂ (l) l

Table 3.1: Methods for calculating the FD

Figure 3.3: Covering with squares of decreasing edge length ε of (a) a straight line and (b) a rougher
profile. Whereas N(ε) ∝ ε−1 in (a), the number of squares necessary to cover the graph
increases significantly in (b) for ε → 0.
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review. All methods coincide with picking up the relationship of scale and length
while both scale and length may also be interpreted in a broader context. While
box-counting is probably the best known method and works as mentioned above
we focus on the ’madogram’ method. It has been shown that this method is the
most suitable choice when the underlying process is not Gaussian. Table 3.1 gives
an comparison of the box-count and the madogram method. In contrast to box-
counting, the madogram method uses a variation estimator V̂ (l) which basically
sums up increments of lag l:

V̂ (l) =
1

2(n− l)

n

∑
i=l+1

|Xi −Xi−l|

We follow Gneiting et al. (2012) and just consider lags equal to 1 and 2. It has been
shown that this choice minimizes the bias of the variation estimator given a Gaus-
sian process. Additionally, it makes intuitively sense to regard the smallest scales
as most important as the power-laws hold in the limit. The FD is then obtained by
calculating the slope of the log-log plot of V̂ (l) and l. See Figure 3.4 for a demon-
stration.

Here, we have to note that these power laws hold in the limit - for ε or, respectively,
l → 0. Yet, given real data, we have to deal with a limited resolution. In the case of
genomic data the finest resolution possible is on the per base level.

Application of the FD to RNA-Seq data

In this work, we aim for identification of interesting coverage patterns. Since RNA-
Seq does not yield only read counts per isoform but also resolution on the per-base
level, the individual coverage pattern per isoform can be easily computed from the
alignment of the reads. The coverage pattern of an isoform is basically an integer
vector containing the number of reads mapping to each base of the isoform. The
FD is calculated from the coverage patterns and allows immediate evaluation of
its reliability. If the sequencing process and the used sequencing protocols were
technically impeccable reads should be distributed uniformly within isoforms and
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Figure 3.4: Estimation of the FD via the madogram method of the data shown in Figure 3.1a in
(a) and, respectively, Figure 3.1b in (b). The considered lags are 1 and 2. The FD is
calculated by 2 minus the slope of the linear regression.

coverage patterns would only differ in terms of expression level. Yet, given the
constraints of current sequencing technologies, coverage patterns may deviate sub-
stantially from this ideal. However, exactly those non-uniform coverage patterns
carry important information about the sequencing process and the subsequent anal-
ysis and may reveal possible pitfalls of the sequencing process or consequences of
individual steps of the statistical data analysis.

Figure 3.5a shows a schematic coverage pattern that is typically regarded as reli-
able. The isoform is covered by reads at about the same level throughout the entire
length. Increase and decrease of the coverage at both 5’ and 3’ end is as expected
and induced by the sequencing protocol. In contrast, Figure 3.5b and Figure 3.5c
depict coverage patterns calling for attention by their peculiar shape. Figure 3.5b
might stem from a previously unknown splice event while Figure 3.5c indicates a
severe mapping artefact. We recall that the FD equals 1 for a smooth, differentiable
curve and is greater than 1 the rougher the graph. Since a ’good’ coverage pattern
is reflected in a rough graph it will be rated with a high FD. In contrast, any kind
of sharp change in the coverage or regions with a coverage of 0 will lead to a more
discrete and, as a consequence, smoother coverage profile, resulting in a low FD.
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Thus the FD naturally pinpoints those patterns that are too smooth than expected
given current state-of-the-art sequencing technologies.

While being unlikely, it may happen that coverage patterns such as in Figure 3.5d
are observed. This typically occurs when the underlying isoform collects a very
pronounced amount of reads and thus accomplishes such a smooth coverage. In
this case the FD fails by rating this coverage pattern, being a perfectly smooth
curve, with 1. Therefore we introduce, besides the FD, another score, namely the
area under the curve (AUC). The AUC calculates the percentage of area covered by
the underlying coverage pattern in relation to what could be covered given the data.
More precisely, the AUC is the area of the coverage divided by the length of the
isoform times the maximum of the observed coverage.
Finally, isoforms are ranked according to a score, namely SFDA, that is composed
as follows:

SFDA = 3× rk(FD)+1× rk(AUC)

whereas rk is the rank (the ordinal number of each value when sorted in increasing
order). The weights of the FD and, respectively, the AUC part have been optimized
empirically. A low score indicates an interesting pattern. Isoforms with a low FD
get a low score. Possible ’false positives’ such as Figure 3.5d are downweighted by
the AUC part (see Figure 3.5d and 3.5e for an illustration).

Features of FractalQC

FractalQC processes aligned reads in bam format (Li et al., 2009). Single as well
as paired-end libraries are admissible. FractalQC is launched with one single com-
mand in the R console specifying the bam file of interest and all necessary argu-
ments such as organism, single\paired-end libraries, strand-specificity, number of
bins, number of figures per bin and potential restriction to a subset of isoforms (all
options are explained in the following paragraphs). Eventually, a HTML report is
created containing visual representation of all putative interesting coverage patterns
as indicated by the score SFDA. See Figure 3.6 for an overview of the FractalQC

application.
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Figure 3.5: Schematic coverage patterns: 1000 reads of length 100 are (a) uniformly distributed
along an isoform of length 1000. (b) reflects an alternative splicing event whereas (c)
indicates a mapping artefact. The FD is similar in (d) and (e), such cases are filtered out
by taking the area under the curve into account.
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Choosing the Reference

FractalQC allows alignments to either genome or transcriptome. When mapping
against the genome, any currently available mapping software may be used to out-
put the bam file. However, mapping to the transcriptome is not that straight forward
due to the difficulty where to correctly place reads that align to exons shared by
multiple isoforms. Here, we advocate the use of eXpress (Roberts and Pachter,
2012), a software for probabilistic assignment of ambiguously mapping reads. The
input for eXpress is a bam file containing all admissible alignments for all known
isoforms of the organisms of interest. eXpress then outputs, besides many other fea-
tures, a single alignment for each read sampled at random based on the alignment
likelihoods calculated by eXpress.
Both reference choices are not satisfying. When mapping against the genome reads
that can be allocated unambiguously to a certain exon might get excluded later on
in the summarization step when this exon is shared by multiple isoforms. In con-
trast, alignment to the transcriptome via eXpress always includes a modeling step
and thus the exported alignments are just as inferred by the model.
In general, FractalQC is currently restricted to organisms whose annotation is avail-
able in Ensembl (Flicek et al., 2013).
The FD is calculated on basis of the coding sequence of each isoform rather than
over the entire genomic range. Including introns would add another, non-necessary,
layer of complexity and hinder quick interpretations of the coverage pattern. There-
fore we opt for using the coding sequence.

Strand Specificity

FractalQC can handle non strand-specific data as well as strand-specific data. In
the former case reads contribute to the coverage pattern of the isoform they have
been assigned to according to the mapping coordinates - regardless if the strand
matches. Given a strand-specific library and alignment to the genome, FractalQC

applies the following procedure as typically it is not known which strand has been
sequenced. FractalQC checks if more than 80% of the reads are captured in known



28 Chapter 3 FractalQC: Exploration and Quality Control of Coverage Patterns

gene models. If not, the strand tag is flipped for all reads. Again, the number of
reads captured in known gene models is calculated. If this number is greater than
80% it is taken as granted that the strand of the reads should be flipped and the
strand tag is thus treated accordingly. If the number of reads captured is still low,
a warning is issued and decision upon strand flipping is based on which option
delivers more captured reads.
If a strand-specific library is mapped to the transcriptome the procedure is slightly
different. As mRNA sequences are typically stored in 5’ to 3’ direction in the
databases all reads should have the same orientation - as either the coding or the
non-coding strand has been sequenced. Thus FractalQC considers the strand of the
majority of the reads as the correct strand and omits all other reads. eXpress also
offers to take care of this issue by setting the appropriate option.

Selection of Isoforms

FractalQC uses all known isoforms by default. To facilitate the interpretation of
the results isoforms are binned according to their read counts. Equal-sized quantile
bins with a step size of 10% are chosen. Thus the 10th bin contains those isoform
with read counts greater than the 90% quantile of the overall read count distribution.
See Figure B.2 for a visualization. This allows to go through interesting patterns
conditioned on the read counts. The incentive for binning is to make those isoforms
with high reads counts and low FD more accessible as exactly those key players
are prone to lead to wrong interpretations or hypotheses. For each read count bin
isoforms are then ranked according to the score SFDA.
However, the analysis can also be performed on a subset of isoforms such as all
isoforms involved in a specific pathway. In this case no binning takes place, all
isoforms are ranked according to the score SFDA.

Output

FractalQC automatically creates a directory in the current path containing an ex-
tensive HTML report, a csv file and a parameter file. The HTML report comprises
three sections. First several summary statistics are presented such as a histogram of
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the read counts and a figure showing the percentage of isoforms versus percentage
of captured reads. Secondly, as the read counts are processed in equal-sized quan-
tile bins, the bins are visualized within the overall read count distribution to give an
intuition for the absolute read count values. Finally, coverage patterns for each read
count bins are presented, ordered according to the score SFDA. Coverage patterns
are always displayed over the coding region, regardless of the respective mapping
procedure. The user can determine which bins and how many figures for each bin
are presented. Meta-information such as exon boundaries, associated gene name
and chromosome location is incorporated into each figure. Besides, each coverage
pattern figure is garnished with a link to the corresponding entry in the ENSEMBL
database.
Additionally, a csv file is available containing the read counts and corresponding
FD values. Finally, a parameter-file contains status and warning messages created
during the analysis. Screenshots of the HTML report are provided in Appendix B.

Availability

FractalQC is available as R package (R-Project, 2013) from the author and submit-
ted soon to Bioconductor (Gentleman et al., 2004).
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Figure 3.6: Overview of the workflow of FractalQC and the required preprocessing. A: Preparing
the RNA-Seq data for FractalQC: Mapping of the reads to either genome or transcrip-
tome. In the latter case FractalQC advocates the use of eXpress which needs as input
a bam file containing the alignment of all reads versus all known isoforms. The op-
tion ’–output-align-samp’ urges eXpress to output one single alignment for each read
proportional to the likelihoods as calculated by the method. This bam files serves then
as input for FractalQC. B: Workflow of FractalQC. Bam files are read in, read counts
and coverage patterns for all isoforms present in the current annotation are computed.
The analysis may be restricted to a predefined set of genes. If strand-specific data is
submitted strand information of the mapped reads is cross-checked with the annotation.
Eventually, FD, AUC and the final score SFDA is calculated for all isoforms. Isoforms
are ranked according to increasing SFDA. A HTML report is created in the working
directory. Additionally, a csv files containing isoform IDs, FD, AUC and SFDA is ex-
ported facilitating further processing of the scores. The parameter file lists all occurring
warning and status messages of the analysis.
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3.3 Results

Case study 1: Duplication rates correlate with overall FD levels

To demonstrate the functionality of FractalQC we process a subset of data from
Risso et al. (2011). Strand-specific RNA-Seq libraries were prepared from Sac-

charomyces cerevisiae growing in three different media. We select two biological
replicates for each medium, Table 3.2 gives an overview of the experimental design
together with some mapping statistics. Reads were mapped with Bowtie 0.12.9
(Langmead et al., 2009), only uniquely mapping reads were allowed. Isoforms
were retained where (i) read counts are greater than the 10% quantile of the read
count distribution of the respective lane, and, (ii) when the isoform may be covered
throughout its entire length at least theoretically. More precisely, read counts times
read length must be greater than the isoform length. Subsequently read counts and
FD were calculated for all isoforms.

Figure 3.7 shows the overall FD as well as the read count distribution for the six li-
braries. The read counts reflect the number of mapped reads. Since G2 and G3 have
the overall highest read counts it is legitimate to assume that these two libraries also
come along with more balanced coverage patterns. The rational is as follows: the
more reads the less probable it is to observe gaps in the per base coverage pattern
unless these gaps are due to some systematic error. Thus we expect that G2 and G3
exhibit rougher coverage patterns (compare to Figure 3.5a) resulting in a higher FD.
Yet, we do observe a different picture as shown in Figure 3.7b. When inspecting
the data more closely it turns out that all samples have a high duplication rate, in
particular G2 and G3. Note that the term ’duplication’ may be misleading since it
is actually referring to not only doubling but any level of replication. Yet, this term
has been established (DeLuca et al., 2012, FastQC, 2013). Picard (Picard-Tools,
2013) was used to quantify the level of duplication. To be precise, duplication is
here understood in respect to the 5’ mapping coordinates of the reads together with
its orientation. In both Y1 and Y2 74% of all reads are marked as duplicates, 71,
respectively 70% in D2 and D7. In contrast, G2 and G3 contain 94 and 95% of
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Library Name Medium
# reads # mapped reads
[106] [106]

Y1 rich 3.6 1.8
Y2 rich 4.1 2.1
D2 minimal 15.4 3.3
D7 minimal 15 2.9
G2 Glycerol 8.4 5.7
G3 Glycerol 8.2 5.7

Table 3.2: Overview of yeast dataset from Risso et al. (2011)

duplicated reads. A certain level of replication is expected in RNA-Seq data ei-
ther due to low-complexity input samples or, due to the fact that typically very few
genes collect the majority of the reads. These big players will then naturally cause
a certain level of duplication. Still, such high percentages as in G2 and G3 are re-
markable. Therefore we suspect that the overall lower FD levels in G2 and G3 are
caused by the high duplication rates of these libraries leading to a more discrete
coverage pattern.

In summary, we conclude that the FD is able to indicate quality issues of sequencing
samples by comparing read counts and FD values. One major advantage of the FD
lies in the fact that it does not rely on ad-hoc thresholds calibrated on the individual
data set. As a consequence multiple samples are easily compared as the FD always
ranges between 1 and 2 for one-dimensional profiles.

Identification of interesting coverage patterns

Here we want to exemplify the use of the FD as means to uncover pitfalls while
sequencing or processing of the data. TDH3 is identified as interesting candidate
by filtering for low variance read counts and low variance FD over all six libraries.
We observe that the coverage patterns look very similar for all investigated sam-
ples, see Figure 3.8. In particular, zero coverage regions are consistent between
samples. This indicates any kind of systematic error occurring either while the se-
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Figure 3.7: Read count distribution (a) and FD distribution (b) of two biological replicates for each
medium. The higher the FD the more space-filling, the better the coverage graph.

quencing process or in the analysis afterwards. When checking the annotation of
TDH3 we realize that there is another gene, namely TDH2, with nearly identical
nucleotide sequence (96% identity). Therefore we reason that these zero coverage
regions are a consequence of the mapping strategy - ambiguously mapping reads
are discarded. Thus, we conclude that the read counts for TDH3 as well as TDH2
are heavily under-estimated. Depending on the underlying research question, it may
be advisable to, rather than mapping the reads to the genome, use the transcriptome
as reference. Software such as eXpress (Roberts and Pachter, 2012) may then be
used to infer the most probable origin of reads mapping to multiple region on the
genome.
Another example is presented in Figure 3.9. RRP42 is selected by filtering for low
variance read counts and, in contrast to the former example, for highly variable
FD. RRP42 seems to be weakly but consistently expressed over all samples. Yet,
we do observe a striking difference in the distribution of the reads over the length
of the isoform. Given the expression level and the read length of 36bp coverage
patterns look reasonably good for the first four libraries. However, G2 and G3
exhibit a much more discrete coverage graph. This might be explained by the higher
duplication rates of these libraries.
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Figure 3.8: TDH3: comparable read counts and FD.
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Figure 3.9: RRP42: comparable read counts but varying FD. While the absolute variance of the FD
values may not appear particularly high, the overall range of the FD must be taken into
account as shown in Figure 3.7b.
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Case study 2: Comparison to ReadSpy

ReadSpy (Hower et al., 2012) is a tool that aims for quantification of the uniformity
of mapped reads. Given paired-end RNA-Seq data, mapped reads are represented
by their left-end mapping coordinate and the length of the fragments in R2. This
point set then forms a two-dimensional Poisson Process. The independence prop-
erty of the Poisson Process is exploited as follows: Testing for uniformity is con-
ducted stepwise by first splitting the two-dimensional data set into horizontal strips.
Each horizontal strip is then partitioned into several subintervals. A χ2-statistic is
used to test the null hypothesis of uniformity by calculating it for all subintervals
within each horizontal strip and subsequently taking the sum over all horizontal
stripes. Naturally the width of horizontal strips and the subintervals drive the test-
statistic. Hower et al. (2012) recommend the following choice: each horizontal strip
shall contain at least 200 data points which is then partitioned into 20 subintervals.
Finally a p-value is computed indicating whether reads are uniformly distributed.

Hower et al. (2012) benchmarked their method on data from Levin et al. (2010).
This data set consists of several strand-specific yeast RNA-Seq libraries differing
in the respective library preparation. In the original paper Levin et al. (2010) aimed
for a comprehensive comparison of these protocols in terms of several criteria such
as library complexity, strand specificity and evenness and continuity of coverage
among others. One method, namely the dUTP protocol, gave the overall best per-
formance, also for the criteria of evenness and continuity of coverage.

Hower and colleagues re-evaluated this dataset, focusing on genes with more than
200 reads. eXpress (Roberts and Pachter, 2012) was used to map reads against the
yeast transcriptome. dUTP was again confirmed as being the superior method as
the overall p-value range is elevated in dUTP in comparison to the other library
preparations (Table 3.3). Yet, when inspecting the p-values more closely, it turns
out that the null hypothesis of uniformity of reads is not rejected (p-value ≥ 0.05)
for only 2% or even less of all investigated genes. While this result is absolutely
plausible it indicates that such a rigorous mathematical approach might not be the
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Quantile
50% 95%

Control 8.1×10−15 1.4×10−3

Control dT 7.4×10−20 3.1×10−4

dUTP 1.1×10−12 6.2×10−3

dUTP dt 1.8×10−24 2.4×10−5

Hybrid 7.4×10−75 8.8×10−15

NNSR 2.7×10−211 5.4×10−42

NNSR noactD 1.4×10−108 4.6×10−24

Table 3.3: Overview of the p-value distribution (based on ∼ 1500 genes) as output from ReadSpy.

most sensible way to look at such data.

We used our method, FractalQC, to re-evaluate the data once more. The FD is
calculated for all genes as selected and preprocessed by ReadSpy in order to stay
as consistent as possible. Figure 3.10 shows a comparative boxplot of the FD lev-
els of the used libraries. We observe that dUTP together with the Control library
exhibit the highest FD values. Therefore, as a high FD stands for a rough, non-
discrete coverage pattern, we agree with the previous drawn conclusion of the good
performance of dUTP.
While ReadSpy as well as FractalQC share the same overall conclusion Figure 3.11
illustrates the difference in outcomes and interpretation when looking at individual
coverage patterns. Since both genes get assigned a p-value much smaller than 0.05
the null hypothesis of uniformity of reads is rejected. Yet, we do observe a striking
difference in the coverage patterns. While reads are not uniformly distributed from
a mathematical point of view, the coverage pattern displayed in Figure 3.11a is still
satisfying from a practical perspective. In contrast, Figure 3.11b indeed indicates
some kind of pitfall while sequencing or processing.
In summary, we have to emphasize that ReadSpy and FractalQC are not exactly
comparable since ReadSpy concentrates on the quantification of uniformity of reads.
Instead, FractalQC aims for a broader quality control of coverage profiles. Even
though both methods come to the same overall conclusion, FractalQC addresses
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Figure 3.11: Two coverage patterns from the dUTP library. When computing the scores SFDA for
this library, (a) can be found on rank 1418 (from 1464 genes), (b) is on rank 1. In
contrast, ReadSpy is unable to detect these differences, both coverage patterns have a
p-value < 0.05 implying rejection of the null hypothesis of uniform coverage.
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Protocol Reference Strand specific
# reads # mapped reads
[106] [106]

RNA Ligation Genome yes 24.5 13.2
RNA Ligation Transcriptome yes 24.5 15.12

Table 3.4: Overview of the strand-specific RNA Ligation yeast library from Levin et al. (2010)

the needs of RNA-Seq coverage data while less exact more realistic.

Case study 3: Further applications of FractalQC

In order to illustrate the versatility of FractalQC in more detail, one single-end li-
brary from Levin et al. (2010) is chosen, namely RNA Ligation, and processed.
Reads are mapped with Bowtie 0.12.9 (Langmead et al., 2009), only uniquely map-
ping reads are considered. This restriction to unambiguously mapping reads is a
popular strategy when mapping data to the genome. Therefore we follow this ap-
proach in order to mimic standard analyses. See Table 3.4 for an overview of the
data.

Choosing the appropriate reference

First, we compare coverage profiles when mapping the data to the genome or to
the transcriptome. In the latter case eXpress (Roberts and Pachter, 2012) takes care
of handling multi-mapping reads. RPL7A, a protein component of the large 60S
ribosomal subunit, is located on chromosome VII with a coding length of 735bp
distributed among three exons of length 11, 94 and 630. This particular isoform,
RPL7A, calls our interest due to its low FD and rather high read counts.
We observe a prominent peak in the second exon when mapping the data to the
genome (Figure 3.12a). The zero coverage stretch is most probable due to the fact
that RPL7A is nearly identical to RPL7B (97% sequence identity). Difference in
nucleotide content between the two isoforms can only be found at the very begin-
ning and end of the isoform. Since we discard ambiguously mapping reads regions
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with highly similar sequences between isoforms will obtain zero coverage.
Given this data we are not able to tell whether the second exon is indeed more ex-
pressed than the other two exons or, alternatively, if this peak will actually disappear
when reads mapping to multiple isoforms are considered. In order to check this hy-
pothesis we map the data to the transcriptome and rely on the model of eXpress

to distribute multi-mapping reads. Figure 3.12b shows the corresponding coverage
pattern. We observe that while the zero coverage regions gets filled up as antic-
ipated the high coverage peak of the second exon remains present. These results
leave room for multiple interpretations: (i) it may be that the second exon is indeed
higher expressed indicating some kind of previously unknown alternative splicing
event, (ii) even eXpress does not manage to handle the situation correctly when hav-
ing to deal with two isoforms exhibiting such similar sequence content, (iii) the peak
may also arise from a bias such as induced by the fragmentation method. Typically
the RNA is fragmented into smaller pieces before being subjected to sequencing.
Commonly used fragmentation methods include enzymatic digestion, nebulization,
sonication or fragmentation using divalent cations under elevated temperatures. The
latter is applied in the RNA Ligation library we are dealing with. Yet, it has been
reported that this fragmentation method tends to over-fragmentation due to its fast
reaction rate (Kumar et al., 2013). In general, each method comes along with its
specific preferences for breaking points within the RNA. Hence, the region around
the start of the second exon may appear particular attractive for the applied frag-
mentation method and is therefore over-represented in the sequencing sample.
Any kind of definite answer will require in-depth check-up on the used sequencing
protocol and\or knowledge about the splicing apparatus of Saccharomyces cere-

visiae.

The merit of strand-specific libraries

Here we compare coverage profiles when mapping the data to the genome and then,
while the summarization step, treat the data as being either strand-specific or igno-
rant of strand information. We exemplify the advantages of strand-specific libraries
by means of the SSB1 isoform. SSB1 is a cytoplasmic ATPase, located on the
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Figure 3.12: Assessing the coverage profile of RPL7A when mapping the data (a) to the genome or,
respectively, (b) to the transcriptome. Red dashed lines indicate exon boundaries.

forward strand of chromosome IV, the coding length is 1842bp. The corresponding
strand-specific coverage pattern is shown in Figure 3.13a. While the read counts are
pretty high zero coverage regions indicate some mapping issue. Indeed, when do-
ing some check-up on SSB1, we note that SSB2 exhibits 98% sequence similarity.
As we pursue a mapping strategy of retaining only those reads that map unambigu-
ously, all reads mapping to these identical regions will get lost.

Once the reads are mapped a summarization step follows in order to quantify the
expression level per entity of interest such as exon, isoform or gene. Typically
the counting of the number of reads per gene relies on the mapping coordinates
and the strand information. When no strand information is available assignment is
restricted to the information contained in the mapping coordinates. It might occur
that genes have the same or very similar genomic coordinates but only differ in their
orientation, one gene is located on the forward strand while the other is present on
the reverse strand. In this case, given a library which is not strand-specific, reads
that map to these regions do not get considered in the summarization step, as it is
not clear to which gene they belong to. In contrast, having a strand-specific library
at hand, reads can be unambiguously assigned to the correct gene. See Figure 3.14



3.3 Results 41

0 500 1000 1500

0
20

00
40

00
60

00

Counts = 27254, FD = 1.04

co
ve

ra
ge

(a)

0 500 1000 1500

0
20

00
40

00
60

00

Counts = 9641, FD = 1.04

co
ve

ra
ge

(b)

Figure 3.13: Coverage pattern of SSB1 when the library is regarded as (a) strand-specific or, respec-
tively, (b) not strand-specific.

for an visualization.

Coming back to our example, we observe that SSB1 has the same coverage pattern
but much less read counts when treating the data as not strand-specific (see Figure
3.13b). It is not surprising that the coverage patterns are equal since the mapping
procedure is identical. Yet, there is a subtle differences between the two graphs: in
Figure 3.13a the per-base coverage of the forward strand is depicted whereas Figure
3.13b shows the per-base coverage pattern of both strands collapsed. The difference
in read counts is explained by the fact that the gene YDL228C is annotated on the
opposite strand of SSB1. 98% of the coding region of YDL2882 is overlapped by
SSB1 which then continues by about 1200bp. YDL2882 is described as ’dubious
open reading frame’ in Ensembl indicating a questionable annotation. Thus, if the
underlying sequencing library is not strand-specific, reads that map to the genomic
region shared by SSB1 and YDL228C will be lost.

In summary, we can conclude that the advantage of strand-specific libraries is strik-
ing. FractalQC facilitates the evaluation of the effect of different analysis steps
such as mapping or summarization.
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Figure 3.14: Gene A and B are sharing overlapping genomic coordinates and are placed on opposite
strands. Arrows stand for different reads whereas the arrowheads indicate the orien-
tation of the reads. Read 1, 3 and 4 are derived from strand-specific libraries and can
thus be assigned unambiguously. In contrast, Read 2 does not bring along strand infor-
mation and could therefore belong to either of the genes. As no definite assignment is
possible Read 2 is discarded.

Sequence quality and mapping artefacts

The last use-case concerns the effect of the sequence quality on the mapping. When
sequencing a biological sample, the sequencing machine, respectively the base-
caller, provides a confidence measure for each called base. These sequence quality
values (Q) give information about the accuracy of the base-caller. The range of Q

depends on the underlying sequencing technology and even on the version of the
used sequencing pipeline. In the case of our data, Q may vary from 0 to 40 (Illumina
, 2013). Q =−10log10(e) holds whereas e stands for the inferred error probability
of the base caller. Thus a Q value of 10 corresponds to a base calling accuracy of
90%, a Q value of 20 to 99%, a Q value of 30 to 99.9% and, eventually, a Q value
of 40 to 99.99% accuracy.

ADH2 provided the incentive for closer inspection as it has a low FD paired with
high read counts. Motivated by the zero coverage stretches we immediately include
ADH1 in the analysis as well. Both genes have a coding region of length 1047bp
and exhibit 89% of sequence identity. The left panel in Figure 3.15a shows the cor-
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responding coverage patterns when mapping the data to the genome and, respec-
tively, to the transcriptome (Figure 3.15b). We observe that ADH1 collects a high
amount of reads while ADH2 is much less expressed. Additionally, the expression
of ADH2 is concentrated on two peaks (at 200 and 400 bp) while the remaining
coverage is close or equal to zero. When mapping the data to the transcriptome the
coverage patterns look basically the same.

As a consequence the question regarding the reliability of the coverage pattern and
the read counts of ADH2 arises. Multiple hypotheses are available: (i) while being
unlikely, it might be that this peculiar coverage pattern is derived from a previously
unknown splicing event, (ii) alternatively, ADH2 is just expressed at a very low
level and all reads contributing to these two peaks are wrongly assigned. The latter
assumption is supported by the fact that 70% of the coding region of ADH2 has
a coverage of at least 1. Additionally, when inspecting the alignment statistics
of ADH2 we realize that 54% of the reads map with more than 3 mismatches.
In contrast, when computing this alignment statistic over all mapped reads in our
sequencing sample, only 25% exhibit more than 3 mismatches. According to the
alignment policy of Bowtie (Langmead et al., 2009), a high number of mismatches
is only to be explained with overall very low quality values. This is due to the fact
that Bowtie limits the number of mismatches in the so-called seed - the first 28 bases
- to 2 by default. Additional mismatches are only admissible when the sum of the
quality values of the mismatches remains smaller than 70. This goes hand in hand
with the observation that the overall quality values drop significantly towards the
end of the reads. Specifically, the median of the quality values ranges from 33 at the
5’ end of the reads to 4 at the 3’ end of the reads. Thus we conclude that these peaks
of ADH2 are not a genuine reflection of the underlying expression level. Instead
we suspect that the majority of the reads mapping to ADH2 is placed wrongly. Yet,
the height of the peaks can not be fully explained by the mapping statistics. There
is still a substantial amount of reads, 46% , mapping with a decent number (≤ 2)
of mismatches to ADH2. Therefore we suspect that another kind of bias such as
amplification bias plays a role. In summary, we hypothesize that ADH2 is indeed
expressed but at a very low level.
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Figure 3.15: Coverage patterns of ADH1 and ADH2 when mapping (a) to the genome or, respec-
tively, (b) to the transcriptome. Please note that the presumably zero coverage stretches
of ADH2 are an effect of the scaling, typically the coverage ranges between 0 and 5 in
these regions.

3.4 Discussion

Even though RNA-Seq is the state-of-the-art technology for large scale expression
profiling the amount of produced data is while already anticipated still overwhelm-
ing. Automated pipelines for data-analysis are implemented by large sequencing
centers and bioinformatics service facilities in order to speed up the analysis work-
flow. Yet, we believe that an in-depth analysis of RNA-Seq data still requires a
substantial hands-on part. As a standard analysis will not generate new knowledge
it is crucial to establish a deeper understanding of the data and, in particular, how
certain decisions within the analysis influence the outcome of the experiment.

We developed a Bioconductor package, FractalQC, dedicated to fill this gap be-
tween large scale data and detailed analysis. The amount of information that is
missed when considering read counts being only a summary statistic of the aligned
reads is immense. Anscombe’s quartet (Anscombe, 1973) nicely pinpoints this
problem. While all four data sets have the same summary statistics such as mean
or variance the underlying data structure is completely different as shown in Fig-
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Figure 3.16: Anscombe’s quartet. The mean is equal to 7.5, the variance equals 4.1 for all four data
sets. These summary statistics do not fully capture the properties of the individual data
sets as demonstrated in the different graphs.

ure 3.16. The analogy to RNA-Seq data can be immediately drawn. Even if reads
counts are exactly equal, the underlying coverage pattern may be completely dif-
ferent and thus even lead to a re-interpretation of the respective read counts. As a
visual assessment of thousands of coverage patterns is not feasible, FractalQC of-
fers a way to evaluate the shape of these coverage patterns by means of the Fractal
Dimension.

Given a perfect world scenario we have a theoretical expectation of uniform cov-
erage. Any deviation from this uniformity indicates the presence of some bias.
Biases may stem from either the library preparation protocol or from the analysis
thereafter. Developing such a protocol is a non-trivial task and thus typically one
contents himself with currently available library preparation protocols and its inher-
ent biases such as random hexamer bias or fragmentation method bias. Albeit, the
data analysis part provides plenty of easily realized options to circumvent biases or
at least minimize its effects.
FractalQC pinpoints those coverage patterns calling for attention due to their too
discrete shape. By comparing FractalQC reports from several analysis strategies
such as different references while the mapping step or different summarization
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methods the reasons for suspicious patterns may be uncovered. While FractalQC

lists interesting candidates it can not take over the subsequent ’detective’ work.
Since the discrete resolution is one of the major advantages of RNA-Seq over Mi-
croarrays we are convinced that it is worth to invest some time to decipher these
coverage patterns. Genes with a very pronounced signal, the so-called key players,
can already be identified by microarrys or even by eye. In contrast, RNA-Seq of-
fers the detection of finer nuances of gene expression and FractalQC supports this
approach.

Besides quality control of individual samples also multiple samples can be easily
compared. The FD always ranges between 1 and 2 for coverage profiles and is
therefore directly comparable between experiments. This property makes it also
particular attractive for benchmarking experiments such as in the study from Levin
et al. (2010) where several strand-specific protocols are compared in terms of the
resulting coverage.

FractalQC is offered as a package for the Bioconductor Suite (Gentleman et al.,
2004) which is a popular collection of functionality for genomic analyses. The
complete analysis workflow of RNA-Seq data can be performed within Bioconduc-
tor. In particular, the two most prominent models for inferring differential expres-
sion, edgeR (Robinson et al., 2009) and DEseq (Anders and Huber, 2010), are also
part of the Bioconductor Suite. Since FractalQC is placed between mapping and
differential expression inference in the analysis workflow we feel that FractalQC

fits well within this environment.

Plans for further development include the use of the FD as weights in the model
when testing for differential expression. By incorporating the reliability of the cov-
erage pattern into the differential expression inference we expect to decrease the
Type 1 error when testing the null-hypothesis of no differential expression. Addi-
tionally, we plan to extend the standard output of FractalQC in order to allow for
more flexible post-processing.
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Overall, we are convinced that FractalQC fills an important gap in current data
analysis of RNA-Seq data. By making the information contained in the coverage
patterns more accessible and by offering an intuitive metric for evaluation of those,
we believe that FractalQC makes the entire analysis much more transparent and
thus creates new insights how a optimal analysis workflow might look like.



Chapter 4

Exploring the Sampling Universe

of RNA-Seq

4.1 Introduction

RNA-sequencing presents itself meanwhile as a well established technology and
depicts a standard choice for investigation of the transcriptomic landscape. In prin-
ciple the entire analysis workflow is already known and readily available (Garber
et al., 2011) while as usual there is no agreement upon the ’analysis gold stan-
dard’ (Oshlack et al., 2010, Ozsolak and Milos, 2011). A typical analysis pipeline
comprises at least the following steps: mapping of the reads, summarization of the
reads per adopted gene model, normalization and, eventually, testing for differen-
tial expression. Yet, the effective sampling universe, meaning the precise number
and structure of genes present in the specific sample, remains unknown. Multiple
methods exist to infer the most probable set of expressed genes or isoforms - either
already known or newly discovered - given the alignment of the reads (Richard et
al., 2010, Trapnell et al., 2010).
Here we are not interested in transcriptome reconstruction in terms of identifying
all present known or novel splice forms of a given gene. Instead we want to know
how much of the transcriptomic landscape is captured by the respective sequencing
experiment. Tarazona et al. (2011) asked a similar question: How many reads are
necessary to detach the power of detecting differential expression from the achieved
sequencing depth. Blencowe et al. (2009) investigated how many reads would be

48
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necessary to catch approximately 95% of all expressed transcripts in a human cell
line (700 million reads). Both papers target the fundamental issue of defining the
necessary as well as sufficient sequencing depth for the accurate detection of all
expressed genes.
Back in 1988 Lander and Waterman already investigated this topic focusing on ge-
nomic mapping by fingerprinting data. They presented several still widely used
formulas for the expected number of contigs given a certain number of fragments.

Making statements about the required sequencing depth requires a thorough mod-
eling of the RNA-Seq process itself. We suggest the use of sampling formulas
originating in the field of population genetics and which can be easily understood
within the concept of species sampling. Given a random sample of animals out
of a (potentially unknown) number of distinct species we obtain a frequency table
which indicates how often each species is drawn. The well-known Ewens Sampling
Formula (Ewens, 1972) gives the probability of observing a certain frequency pat-
tern. In the sequencing context animals can be regarded as reads while species can
either be interpreted as genes or positions of an individual gene. In the former case
the sampling process of interest is the number of reads per gene model while in
the latter case the sampling process takes place on the gene level - number of reads
starting at each position of a given gene.

We will characterize these sampling processes by the Pitman Sampling Formula
(Pitman, 1995), a generalization of the well-known Ewens Sampling Formula. By
doing so we have two parameters at hand which capture the sampling process thor-
oughly and therefore allow us to realistically simulate RNA-Seq data. Moreover, the
parameters of the PSF can be readily used in the context of benchmarking sequenc-
ing protocols (e.g., comparison of fragmentation methods, evenness of coverage).
As the set of expressed genes typically depends on organism, tissue type, cell type
and developmental status the transcriptomic landscape varies from sample to sam-
ple. We contribute a method to explore the boundaries of the respective gene uni-
verse by providing an estimate for the size of the underlying gene universe. Based
on these findings we evaluate an estimator for the number of newly detected genes
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in an additional sequencing sample.
One main advantage of our method is that it merely relies on the observed read
counts. While the central dogma of RNA-Seq is that the number of reads per
gene reflect the true gene abundances, multiple factors may distort this relation-
ship. Genes come along with different lengths and expression levels. Additionally
physical properties like sequence decomposition or CG content attracts different
kind of biases like PCR amplification or fragmentation bias. However, in this work
we do not want to disentangle the individual effects of each bias on the sampling
(Griebel et al., 2012) but exploit the observed frequency pattern as it comes.

4.2 Methodology

Note that from now on the term gene is used as synonym for any kind of expression
entity like transcript, coding region or exon.

4.2.1 Motivation

The typical use-case for RNA-Seq is differential expression inference. The RNA-
fraction of interest (e.g., mRNA or microRNAs) is extracted from multiple bio-
logical samples which differ in some kind of treatment or condition. Subsequent
steps of a standard sequencing protocol include fragmentation, reverse transcrip-
tion into double-stranded cDNA, amplification and, eventually, sequencing (Shen-
dure and Ji, 2008). The resulting sequencing reads are mapped to a reference and
summarized per gene (Garber et al., 2011). By doing so, a count table is obtained
which contains the number of reads mapped to each gene for each condition. To
account for different library sizes and gene length a normalization step is necessary
(Bullard et al., 2010). Eventually the null hypothesis of no differential expression
is tested gene-wise. The major challenges within differential expression inference
include finding dispersion estimates as unbiased as possible and choosing an ap-
propriate test-statistic given the commonly used small number of replicates (Smyth
and Robinson, 2008).
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Here, we adopt a more global perspective. We investigate the overall observed
count frequency spectrum which is either given by the number of reads per gene
or, one level beneath, by the number of reads starting at each position of a gene
(not to be mistaken with the per base coverage). By doing so we aim to answer the
following questions:

i) Can we realistically simulate the distribution of reads within or between
genes, respectively?

ii) Are reads uniformly distributed within genes and how can any deviation from
this uniformity be evaluated?

iii) Assuming that we capture the sampling process, can we extrapolate to ad-
ditional future sequencing experiments? How many more genes will be de-
tected if more reads are sequenced?

4.2.2 Hoppe Urn

The allocation of reads to either (i) positions of a gene or (ii) genes in general can
be intuitively described by an urn model (Hoppe, 1984). Consider an urn which
contains in the beginning just one black ball, the mutator, with weight θ . The urn
rules are as follows (Zabell, 1992): If the color of the drawn ball is

black then the black ball is put back into the urn together with two additional
balls: one black ball with weight σ and one ball with a new color with
weight 1−σ .

colored then the colored ball is put back into the urn and exactly one ball of
the same color with unit weight is added.

Thus the probability of observing a new color (drawing the black ball) equals to
θ+kσ
θ+n . k specifies the number of observed distinct colors when n balls have already

been drawn. The probability of re-observing the j-th color equals to n j−σ
θ+n whereas

n j is the number of balls with color j.
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Hoppe Urn in the RNA-Seq context

Each ball can be regarded as a sequencing read. The color of the ball codes the
origin of the read, either a specific gene or the starting position of the read within
a given gene. The black balls are not counted, they are merely a means to generate
new instances. An urn with n colored balls corresponds to a sequencing experiment
yielding n reads.

So far nothing has been said about the size of the urn. Of course, in theory, one
could imagine an infinite sampling universe while in reality the number of sequenc-
ing reads is restricted by the underlying sequencing technology. Depending if the
sampling takes place from a finite or infinite sampling universe, two cases for the
domains of θ and σ can be distinguished (Pitman, 2006).

Infinite number of colors 0 ≤ σ < 1, θ >−σ
Finite number of colors σ < 0, θ = m|σ | for some m ∈ N. In this case the prob-

ability of observing a new color θ+kσ
θ+n tends to zero for

k → m. Hence m can be understood as the maximum
number of colors that is available in the sampling pool.

In the RNA-Seq context, m can be interpreted as (i) the length of the gene as this
is the maximum number of positions that is available as starting point for reads
mapping to this gene or (ii) the total number of genes that could be theoretically
expressed in the sample (e.g., all known protein coding genes, all known microR-
NAs).
The urn parameters θ and σ allow for a sensible interpretation:

θ is responsible for creating new instances: reads that belong either to a
previously unobserved gene or to a position of a gene where so far no
read has started. The higher θ the more genes or starting positions within
a gene will be observed. Therefore we call θ the innovation rate.
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σ is slightly more subtle to interpret. If σ is very large in comparison to n j

- the number of balls with color j - then n j becomes negligible. In this
case all observed colors are about equally likely to be drawn again. For
this reason we call σ the equilibrium rate.
We recall that σ < 0 for an finite sampling universe. In this case σ pro-
vides additional information which can be illustrated as follows. Let us
consider the observed read counts per gene. Here we are actually sam-
pling from a multinomial distribution with unknown probability vector.
The probability vector represents the abundance of each gene in respect
to the sample that has been sequenced and naturally sums up to 1. If one
gene would account for 50% of the reads then the associated probability
of this gene would be 0.5. The probability vector is distributed as sam-
pled from a symmetric Dirichlet distribution with m parameters equal to
|σ | (Pitman, 2006).
The symmetric Dirichlet distribution offers an intuitive interpretation of
σ and is illustrated in Figure 4.1. In this toy example reads are sampled
from a sampling universe of size 10. Hence, m, the maximum number of
genes that can be drawn equals 10. If |σ | is much smaller than one few
genes capture most of the read counts. In the specific example shown in
Figure 4.1 (left panel) only 7 genes are detected (k = 7). Gene number
4,7 and 8 are not represented by any read while being theoretically avail-
able in the sampling universe. The greater |σ | the more balanced are the
counts among the genes.
If the frequency vector of interest is the number of reads starting at each
position of a given gene, σ can be used to assess to which extent the
assumption of uniform coverage holds. In this case Figure 4.1 can be un-
derstood as the contiguous positions of a given gene. The height of the
bars indicates how many reads start at each position of the gene.
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Figure 4.1: Random samples from a symmetric m-dimensional Dirichlet distribution with different
values for the equilibrium rate σ . Each bar represents the abundance of a gene, 10 genes
are available in the sampling pool.

4.2.3 Pitman Sampling Formula (PSF)

The Hoppe Urn is in fact just the urn representation of the PSF. Consider a random
exchangeable partition which is defined as follows:
A partition of a positive integer n is an unordered collection of positive numbers
with sum n (Pitman, 1995). The partition can be coded either by its

frequency vector n j: whereas n j is the number of balls with color j, ∑n j = n

or
occupancy vector a j: whereas a j is the number of colors with j drawn balls,

∑ ja j = n.

The partition is exchangeable in the sense that its probability does not depend on
the colors itself but just on the induced frequency or occupancy vector.

The PSF (Pitman, 1995) gives the probability distribution for observing a certain
partition of n determined by its occupancy vector An and the number of distinctly
observed colors Kn.

Pr[Kn = k,An = an] = n!

k−1
∏
i=1

(θ + iσ)

(θ +1)n−1

n

∏
j=1

(1−σ)
a j
j−1

j!a ja j!
(4.1)
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where an = (a1, . . . ,an) and (x)l = x(x+1) . . .(x+ l −1) is the ascending factorial
with (x)0 ≡ 1.
Estimators for θ and σ can be obtained by empirical Maximum Likelihood of Equa-
tion 1.

PSF in the RNA-Seq context

Here the frequency vector is either given by the number of reads starting at each
position of a gene or, by the number of reads per gene. Consequently the occupancy
vector is the number of positions where j reads start or the number of genes with
j counts ( j = 1,2, ...). The higher θ , the innovation rate, the more positions of a
gene will be used as starting points or the more genes will be covered by at least
one read.
As we assume a random, exchangeable partition we loose the identifiability of the
reads. This basically means that we cannot name which position\gene is how abun-
dant. We just know the overall count frequency spectrum.

Number of Expected Genes in An Additional Sample

The PSF can be obtained by two different approaches. If a random exchange-
able partition is constructed according to the Hoppe Urn rules, the PSF gives the
probability of observing a certain partition (Pitman, 1995). Alternatively we may
adopt a Bayesian point of view. The sequencing reads form an exchangeable se-
quence (Xt)t≥1 that can be modeled by a hierarchical model according to de Finetti’s
representation theorem (Lijoi et al., 2008). Here the Xt’s state a random sample
from an unknown discrete probability distribution P̃. The Poisson-Dirichlet pro-
cess PD(σ ,θ) is adopted as a suitable prior distribution.

Xi|P̃
iid∼ P̃

P̃|(θ ,σ) ∼PD(σ ,θ) (4.2)
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By doing so the induced probability distribution by Equation 2 for a certain parti-
tion equals the PSF.

Let us consider a pilot sequencing experiment with n reads and Kn detected genes.
Favaro et al. (2009) derived an estimator for E[K(n)

s |Kn = k], the expected number
of newly detected genes in an additional sequencing sample of size s.
The parameters θ and σ are estimated by maximizing the PSF based on the ob-
served data (empirical Maximum Likelihood). Then the expected number of addi-
tionally discovered genes when sequencing an additional sample of s reads equals
to

E[K(n)
s |Kn = k] = (k+

θ
σ
)

{
(θ +n+σ)s

(θ +n)s
−1

}
(4.3)

We have to note that the above-mentioned formula only holds for the infinite sam-
pling universe (0 ≤ σ < 1), in the finite sampling universe it can only be understood
as approximation.

4.2.4 Availability

R-Code (R-Project, 2013) for all above-mentioned methods is available at
https://github.com/StefanieTauber/PSF Hoppe and is partly based on code
from Durden and Dong (2009).

4.3 Applications

4.3.1 Distribution of Reads within Genes

It is well known that reads are not uniformly distributed over the length of a gene
due to a mixture of positional and sequence specific biases (Wang et al., 2009,
Roberts et al., 2011, Hansen et al., 2010). The allocation of reads is either sim-
ulated as uniformly distributed (Huang, 2012, McElroy et al., 2012) or more pre-
cisely modeled within a complex model framework (Griebel et al., 2012, Li et al.,
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Figure 4.2: Relationship between number of starting points of real and simulated data assuming a
uniform distribution (a) or the PSF (b). Each circle represents a gene. The rug plot on
the x-axis indicates the density of the data.

2010). For instance, Griebel et al. (2012) apply models motivated by the biochemi-
cal properties of the respective fragmentation method (e.g. position weight matrices
are used to model the sequence selectivity for the enzymatic digestion method).

The PSF allows us to capture this sampling process accurately by means of just two
parameters, θ and σ , while avoiding to take into account each bias individually.
Once estimates of the parameters have been obtained via Maximum Likelihood a
Hoppe Urn can be started to realistically simulate the occupancy pattern of a gene.
As we are sampling from a finite universe and therefore θ = m|σ | holds, just one
parameter, e.g. θ , needs to be estimated. m is here the respective gene length. The
Hoppe Urn returns, given n reads to place, (i) the number of distinct SPs and (ii)
the occupancy of each position by SPs.

We demonstrate the use of the Hoppe Urn on yeast data from Levin et al. (2010)
(Accession number: SRR059162). Reads were mapped with BWA 0.6.1. (Li and
Durbin, 2009) against the genome (Ensembl, Release 66). Only uniquely mapping
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reads were retained. For each gene we count the number of positions used as SPs.
Subsequently we simulate for each gene the number of SPs if reads were uniformly
distributed along the gene, and, respectively, when distributed according to the PSF.
Figure 4.2 shows that the higher the read counts the more the uniformly distributed
data deviates from the observed data, whereas the Hoppe Urn performs well through-
out the entire range of read counts. Even when θ is estimated over all genes the
deviation from the observed values remains moderate (data not shown). The worse
performance of the uniformly distributed data is due to the inherent characteris-
tics of different sequencing protocols which impede real uniform coverage. These
biases regardless how they are exactly composed, are captured by the Hoppe Urn.
Different mapping programs result in similar parameter estimates (data not shown).
However, different sequencing protocols and technologies will lead to diverse esti-
mates for the innovation rate.

The merit of this simulation is two-fold: First we now have a method available, the
Hoppe Urn together with the PSF, which can be integrated into current RNA-Seq
simulation pipelines to improve the quality of the simulation. Once typical parame-
ter estimates are known for the experimental design of interest (organism, sequenc-
ing technology, mapping program) the number of distinct SPs and their occupancy
can be realistically simulated by the Hoppe Urn. However, due to the exchange-
ability property of the PSF we do not know how these SPs are distributed along
the gene. Secondly, and even more important, it is shown that the PSF accurately
captures the sequencing process without bringing along a multitude of assumptions
and parameters to estimate.

4.3.2 Comparison of Fragmentation Methods

Knierim et al. (2011) have recently evaluated three fragmentation methods (nebu-
lization, sonication and random enzymatic digestion) for sequencing data in terms
of coverage, resulting fragment length and sequence quality. Both nebulization and
sonication state mechanical fragmentation methods, in the first case the DNA is
broken by the force of compressed air or nitrogen whereas sonication relies on the
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vibrations of ultrasonic waves. They used the 454 platform to do DNA sequencing
of the LPRR4 gene which comprises roughly 40kb on chromosome 1. 8 overlapping
fragments of sizes ranging from 1 to 9 kb are equimolarly pooled and sequenced,
3 technical replicates for each fragmentation method. The overall conclusion was
that no method was superior over the others regarding the up-mentioned criteria.

We are now revisiting this data to have a closer look at the fragmentation behaviour
of each method. Bam files were obtained directly from the authors. Again, as we
are sampling from a finite universe, just one parameter remains to be estimated. m,
being the size of the sampling universe, is in this case the length of the individual
fragments. Longer fragments will naturally have higher read counts and therefore
also a higher innovation rate. However as all three fragmentation methods have
about the same sequencing yield θ remains comparable between protocols. When
contrasting the read counts for each fragment and replicate with the corresponding
estimated θ we clearly see that the random enzymatic digestion method has the
overall highest innovation rate (Figure 4.3). Although nebulization and sonication
constitute prominent mechanical fragmentation methods the random enzymatic di-
gestion method does deliver more random breaking points. It is indeed known that
nebulization and sonication might perform different on the body of the gene in con-
trast to the 5’ or 3’ end (Wang et al., 2009).

The PSF provides additional information: the equilibrium rate, |σ |, is between 0
and 1 for all samples but for the random enzymatic digestion method most closely
to 1 (median of |σ | over all fragments and replicates: 0.52 (enzymatic digestion),
0.4 (sonication) and 0.38 (nebulization)). This can be interpreted the following
way: All three methods are still far from using all available positions. However,
in comparison, the random enzymatic digestion method shows the most balanced
behaviour (compare to Figure 4.1, center panel).
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Figure 4.3: Linear regression for estimates of the innovation rate for three fragmentation methods.
Each circle represents one fragment (8 fragments with 3 technical replicates each).

4.3.3 Comparison of Strand Specific Protocols

Levin et al. (2010) assessed several strand specific protocols on yeast data and com-
pared them in terms of six criteria: library complexity, strand specificity, evenness
and continuity of coverage at annotated transcripts, performance at 5’ and 3’ ends,
and eventually, performance in expression profiling. In order to avoid library size
effects the same amount of reads was sampled for each protocol and up-mentioned
criteria were only evaluated on these subsets.
Here, we want to reconsider the third criterion, evenness and continuity of coverage
from the PSF point of view.

Levin et al. (2010) calculated the average coefficient of variation of gene coverage
for the top 50% expressed genes to assess evenness of coverage. The continuity of
coverage was checked in two ways: First, they counted the number of stretches for
each transcript that are covered by reads whereas a stretch is discontinued when at
least 5 contiguous bases have a coverage of 0. Subsequently the average of these
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Protocol Accession Number Protocol Accession Number

RNA Ligation SRR059162 3’ split adaptor SRR014386
SRR059163 SRR059167

Illumina RNA Ligation
SRR059164

SMART
SRR059168

SRR059169 published dUTP SRR014850
Hybrid

SRR059170 NNSR SRR059171
dUTP SRR059176 Control SRR059178

Table 4.1: Accession numbers for the used libraries from Levin et al. (2010)

numbers over all transcripts was computed and weighted by the respective expres-
sion of the transcript. Secondly, the previously sampled subsets of all libraries are
pooled, the number of bases per transcript with a coverage of 0 was calculated for
each protocol and contrasted to the fraction of total reads. Two protocols, namely
the 3’split adaptor and the published dUTP protocol perform best within this cri-
terion of evenness and continuity of coverage whereas the latter one, the dUTP
protocol, even turned out as the protocol performing consistently well throughout
all criteria.
We note that several ad-hoc thresholds were introduced in order to evaluate the
quality of the coverage. These thresholds range from the sampling from the reads
to avoid library size effects, the decision to just use the top 50% expressed genes
to check for the evenness of the coverage to the definition of a break in the cover-
age. These experiment specific thresholds make it hard to compare results between
studies as each study comes along with its own set of suitable ad-hoc thresholds.
Therefore we suggest to use the PSF which enables us to assess the data as it comes
along.
To this end, the innovation rate is estimated for each gene and for each library. Ac-
cession numbers are as specified in Table 4.1, reads were mapped with BWA 0.6.1.
(Li and Durbin, 2009) against the genome (Ensembl, Release 66). Only uniquely
mapping reads were retained.

Here we are especially interested how evenly positions of a gene are occupied by
reads. As we are sampling from a finite universe (each gene has a finite length) the
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equilibrium rate |σ | provides exactly this information. All data is used, no thresh-
olds on expression levels are imposed. The range of |σ | for different protocols is
depicted in Figure 4.4. Protocols are ordered increasingly according to the number
of reads captured in gene models. If the equilibrium rate is approximately 1 all
bases of a gene show a balanced occupation behaviour. The greater |σ | the more
saturated is the occupation. Our analysis shows that the published dUTP and the
3’split adaptor protocol succeed. Importantly, no correlation between the number
of counts and the equilibrium rate can be noted. Thus, we do not need any subsam-
pling in order to asses the evenness of coverage by the PSF.
All together, the PSF allows us to assess the quality of the coverage in a very intu-
itive way. No subsetting or thresholding is required, comparison between different
studies is possible.

Illumina RNA ligation

Control

dUTP

RNA ligation

NNSR

Hybrid

Published dUTP

3’ split adaptor

SMART

0 1 2 3 4

|σ|
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11.9 × 106
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3.2 × 106
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∑
counts

=

Figure 4.4: Estimation of the equilibrium rate σ for different sequencing protocols. The sum of
counts specifies the number of mapped reads. The red line marks the case |σ | = 1
where the occupation probabilities for all positions are uniformly distributed. Compare
to Figure 4.1 for better understanding of the equilibrium rate.
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4.3.4 Size of Gene Universe

Considering a sampling process on the gene level, two questions are of special in-
terest: (i) How many more genes will be detected if more reads are sequenced? (ii)
What is the extent of the transcriptomic landscape present, yet maybe undetected,
in the respective sequencing sample?
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Figure 4.5: Estimated number of transcribed genes in different biological samples. The solid lines
specify the number of known protein coding genes for mouse, yeast and human. In
contrast, m̂ is the estimated size of the gene universe (+). k (◦) specifies the number of
detected genes in the underlying sample.

The PSF is parameterised by the innovation rate θ and the equilibrium rate σ which
gives information how balanced reads are distributed among genes. As we are sam-
pling from a finite sampling universe, θ = m|σ | holds where m is the unknown
number of genes present in the sequencing sample. The number of protein cod-
ing genes is a conservative upper bound for m (assuming a well-known organism
whose transcriptome has been sufficiently described). Alternatively we can esti-
mate m from the data by parameterising the PSF not by θ and σ but instead by θ
and m. The advantage of not estimating θ and σ but instead θ and m is given by
the fact that in the latter case we do not need to plug in an estimate for m.
We assess our estimate for the extent of the gene universe, m̂, for several publicly
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available data sets comprising different organisms and tissues (Table 4.2, data pre-
processing as in section 3.3).
Figure 4.5 shows the corresponding estimates together with k - the number of genes
detected in the sequencing sample. We observe that - as expected - different tissues
come along with different m̂. We note that more reads do not automatically lead to
a higher number of detected genes and do also not blow up m̂.

There are now two estimates available for m, the number of transcribed genes in
the sequencing sample: (i) the number of protein coding genes and (ii) m̂ estimated
from the data using the re-parametrised PSF. These estimates can now be compared
and evaluated in correspondence with the expected number of newly detected genes
in an additional sequencing sample. Favaro et al. (2009) have derived this closed
estimate (Eq. 3) under the two-parameter Poisson-Dirichlet model. They focus on
an infinite sampling universe and demonstrate the usability of their findings on EST
data. Here, we will use Equation 3 to assess the performance of m̂ (Figure 4.6a).
The human brain data set is taken for illustration. Random samples are drawn
repetitively from the original set of reads. Sample sizes range from 5 to 95% of the
original sample. These subsamples mimic pilot sequencing experiments whereas
the remaining rest of the reads is consequently a second, follow-up sequencing
experiment. The innovation rate is estimated for each pilot experiment and the
equilibrium rate is computed from θ = m|σ |.
Equation 3 delivers K̂new

cons - the number of expected newly detected genes when
sampling the remaining rest of the original sample. Note that K̂new

cons uses the number
of protein coding genes as approximation for m (therefore ’cons’ for conservative)
whereas K̂new

m̂ is derived by using m̂. These two estimates are then compared to
Kobs - the observed number of newly detected genes. We see that K̂new

m̂ is always
closer to Kobs than K̂new

cons. Interestingly, both K̂new
cons and K̂new

m̂ overestimate the true
value. This is due to the fact that in the finite sampling universe case Equation 3
is mainly driven by m. The more m is overestimated the more K̂new is overesti-
mated. Unfortunately the count distribution is very often rather sparse meaning that
few genes collect the majority of the reads. This hinders an optimal estimation of m.
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Figure 4.6: Predicted number of newly detected genes in a follow up experiment (a) as a function of
the proportion of reads obtained in the pilot experiment compared to the number of reads
in pilot and follow up experiment. Plotting symbols depict the median of 100 random
samples. (b) for different tissues, where the follow up experiment has the same sample
size as the pilot. Plotting symbols depict the median of 500 random samples. Kobs is
the observed number of newly detected genes when sampling the remaining rest of the
sequencing sample. K̂new

cons is the number of newly detected genes when using the number
of known protein coding genes as the size of the sampling universe. K̂new

m̂ uses m̂ as size
of the sampling universe.

Additionally, one has to keep in mind that each random subsample has its own k,
number of detected genes, and its specific frequency vector. Depending on the un-
derlying sample some genes might be over- or underestimated in their abundance.
This, of course, will also influence the performance of the estimator. To summarize,
even for very small sizes of the pilot experiment, the prediction of newly detected
genes deviates only moderately from the observed values. This information should
be enough to take a considerate decision if further sequencing is necessary and sen-
sible.

Finally we present K̂new
cons and K̂new

m̂ for a selection of datasets comprising different
organisms and tissues (Figure 4.6b, Table 4.2). Again we divide the original set
of reads into two parts in order to be have a ’true’ value for the number of newly
detected genes at hand. Subsequently θ is estimated for a random subsample com-
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Figure 4.7: Adaption of the innovation rate θ to the sample size.

prising 50% of the original data, this procedure is conducted 500 times. In the
following K̂new

cons and K̂new
m̂ is computed for each random subsample. We observe that

K̂new
m̂ is always closer to the true observed value than K̂new

cons. We further note that
the improvement of K̂new

m̂ over K̂new
cons as well as the overall performance of both es-

timates varies from dataset to dataset. The respective underlying count distribution
heavily influences the quality of the estimates. The more sparse the count distribu-
tion the more difficult it is to get reliable estimates for θ and m.

To facilitate the intuition for the interpretation of θ Figure 4.7 shows the range of
the innovation rate for different sample sizes (same data as in Figure 4.6a). We
observe that θ gets smaller the larger the size of the random subsample. This shall
not be mistaken with the impression that θ gets closer to the ”true” θ the larger the
sample size. θ , being the innovation rate, must get smaller for an increased sample
size because the probability to detect a new gene declines. Hence there is no fixed
true innovation rate for all sample sizes, rather θ adapts to the respective sample
size.



4.4 Discussion 67

Paper Organism Tissue Accession Number

Levin et al. (2010) Saccharomyces cerevisiae - SRR059162
SRR006489

Mortazavi et al. (2008) Mus musculus brain SRR001356
SRR001357

Shen et al. (2012) Mus musculus intestine SRX113073
breast SRX003922
brain SRX003920

Wang et al. (2008) Homo sapiens
colon SRX003931
testes SRX003933

Human BodyMap Data (2011) Homo sapiens liver ERR030895

Table 4.2: Accession numbers for the used sequencing libraries

4.4 Discussion

4.4.1 Characteristics of RNA-Seq Data

While RNA-Seq data basically constitutes count data and thus statistical methods
to address such data are widely available and well established, the analysis of se-
quencing data remains challenging. RNA-Seq data is the result of a complex man-
ufacturing process bringing along a strong need for data preprocessing. Numerous
papers (Hansen et al., 2010, Robinson and Oshlack, 2010, Schwartz et al., 2011)
are devoted to these issues and propose multifaceted methods for normalization for
library size, GC bias and fragment length bias. Other papers concentrate on what
kind of underlying distribution is most suitable for testing for differential expression
(Robinson and Smyth, 2007, Wang et al., 2010, Anders and Huber, 2010). Here,
in this work, we approach RNA-Seq data from a different angle. We do not aim
to deliver another method for normalization or bias correction. Being aware that
RNA-Seq data is the result of a conglomerate of experimental conditions we sug-
gest the following working-attitude: given the data as it comes along (i) how can
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we characterize the data (ii) what can we tell about future experiments under the
same experimental conditions.

4.4.2 Characterization of RNA-Seq Data

We propagate the use of sampling formulas which are well known in the field of
population genetics, namely the Pitman Sampling Formula which states a gener-
alization of the Ewens Sampling Formula. The PSF operates on the most basis
properties of RNA-Seq data: how many reads have been sequenced, how many
genes have been detected and how even reads are distributed among genes. On the
basis of these features the PSF provides two parameters that characterize the sam-
pling process. θ can be regarded as the innovation rate whereas σ indicates how
balanced reads are distributed among genes. The sampling formula cannot only be
applied on the transcriptome level which summarizes reads per gene but also on the
gene level. In this case the number of reads starting at each position of a gene are
counted. In both cases the PSF characterizes the occupancy pattern of genes, and
respectively, positions.

4.4.3 Benefits of PSF

The Pitman Sampling Formula offers several valuable applications.

• Once typical parameter values are obtained a Hoppe Urn can be integrated
in existing simulation pipelines. The Hoppe Urn realistically simulates occu-
pancy pattern, either on the gene or on the transcriptome level. In the former
case the Hoppe Urn replaces the unsatisfying uniform distribution of reads
along a gene whereas in the latter case typical occupancy pattern of the re-
spective gene universe can be reproduced.

• The parameters of the PSF together with their practical interpretation enable
direct comparison and evaluation of fragmentation methods or sequencing
protocols in general with respect to coverage behaviour.
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• Most importantly, the PSF provides an estimate for the size of the underly-
ing gene universe as well as an estimate for the expected number of newly
detected genes when sequencing an additional sample.

We advertise the fact that we do not put any thresholds on the data. Yet, we admit
that we cannot tell what exactly one count per gene effectively means. Being de-
prived of a general valid threshold value we prefer to process all data and allowing
thus the user to apply is own criteria in the very end of the analysis.

The PSF operates on raw, absolute counts. Therefore we have focused so far on
summarization on gene level. Obviously it would be very interesting to extend the
application of the PSF to the level of splice variants. The main issue here lies in
the fact that the absolute assignment of reads to one specific splice variant is by
no means trivial. Yet, Roberts and Pachter (2012) recently introduced the software
eXpress which outputs hard assignments of counts on isoform level based on like-
lihoods. Application of the PSF on the splice variant level is subject to current
research.
To sum up, we report the application of well known sampling formulas to state-of-
art sequencing data. To us it is especially intriguing that these sampling formula
have been around for decades and yet naturally fit the needs and characteristics of
sequencing data. However, we also note that further work is necessary to further
support the suitability of the PSF. We have not yet addressed any goodness of fit
statistics, that are required to recognize the limitations of our approach. Such topics
will be addressed in future work.



Chapter 5

Summary and Outlook

Since RNA-Seq is a relatively new technology for global gene expression screens
major challenges are still present within the analysis workflow. Here, we contribute
methods targeting parts of the workflow which have been neglected so far and, re-
spectively, suggest an alternative view on the sequencing data itself.

First, we point out that any RNA-Seq analysis concentrating on reads counts being
only a summary statistics of the underlying coverage pattern results in a loss of
information. We show that coverage patterns give evidence about possibly occur-
ring pitfalls during library preparation or subsequent analyses. In order to identify
suspicious coverage patterns we develop as score, SFDA, integrating the Fractal Di-
mension as well as the area under the curve of a coverage pattern. Coverage patterns
are ranked according to their SFDA and a low score urges for closer inspection. The
developed method is realized in fractalQC, an R package. In summary, by mak-
ing the coverage information more accessible and by offering a method to evaluate
these patterns, we achieve an increased awareness of the consequences of individ-
ual decisions and, respectively, even reconsideration of certain analysis strategies.

Besides the FD, other measures to explore the shape of coverage patterns are con-
ceivable. The Hurst Exponent (HE), widely known in the context of financial mar-
kets, is one possibility. The HE is used to determine long range dependencies in
time series analysis (Taqqu, 1995). Thus a graph may be either classified as persis-
tent (an increase is prone to be followed by an increase and similarly for a decrease),
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antipersistent (an increase is likely to be followed by a decrease and vice versa) or,
no specific trend can be observed. Similarly to the FD, a variety of methods is avail-
able to compute the Hurst Exponent. The most popular and classical method is the
R/S (rescaled adjusted range) statistic (Taqqu, 1995):

Let X = {Xi, i ≥ 1} be a time series with partial sum Y (n) = ∑n
i=1 Xi and sample

variance S2(n) := (1/n)∑n
i=1(Xi −Xn)

2. The R/S statistic is then given by:

R
S

(
n
)

:=
1

S(n)

[
max

0≤t≤n

(
Y (t)− t

n
Y (n)

)
− min

0≤t≤n

(
Y (t)− t

n
Y (n)

)]

As the FD the HE follows a power-law: R
S (n)∝ nHE for n → ∞ (Taqqu, 1995). The

HE ranges between 0 and 1. A HE of about 0.5 indicates random behavior while a
HE greater than 0.5 points towards a persistent trend. Finally, a HE smaller than 0.5
identifies an antipersistent pattern. See Figure 5.1 for two coverage patterns with
similar FD but different HE.
Thus, depending on the value of the Hurst Exponent trends in the coverage pat-
tern may be determined. Notably, the FD and the HE may be linked as follows:
FD+HE = d + 1 where d is the topological dimension of the underlying object.
This depicts an association which also makes intuitively sense: a space-filling curve
goes hand in hand with an antipersistent trend whereas a smooth curve reflects a
persistent trend. Yet, this relationship only holds for self-affine processes such as
fractional Gaussian Noise or fractional Brownian Motion. Gneiting and Schlather
(2004) show that FD and HE are in fact decoupled for a variety of stochastic mod-
els. Therefore, calculation of the HE in addition to the FD may provide additional
knowledge.
Possible applications include benchmarks of different library preparation protocols
in respect to the resulting coverage. Preliminary results show that while the HE
works well as means to discover trends the FD is easier to link to subsequent mean-
ingful interpretation. However, further studies are required to examine the benefit
of the HE within the context of RNA-Seq analysis.
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Figure 5.1: Two coverage patterns with different HE indicating a persistent trend in (a) and antiper-
sistent in (b). In both cases the FD is about 1.03, the read counts equal to 7094 in (a) and
to 26 in (b). Data is taken from Levin et al. (2010).

Additionally, motivated by Microarray analysis, we plan to use the FD as weights in
the RNA-Seq analysis. The Microarray technology is based on hybridization of flu-
orescently labeled nucleotide probes to oligonucleotides fixed on a planar surface.
Each probe on the Microarray serves as a representative for a gene. Gene expression
abundance is then proportional to the fluorescent intensity when imaging the Mi-
croarray with a scanner (Schena, 1998). Morphological properties such as diameter,
area or ratio of foreground to background intensities are recorded for each probe on
the Microarrray (Smyth and Speed, 2003). An uneven area or a small foreground to
background ratio indicates quality issues of the respective probe. This knowledge
is exploited by turning these morphological properties into weights whereas unreli-
able morphological features are reflected in a small weight. In the following, these
weights may be incorporated in normalization methods (Smyth and Speed, 2003) or
even in the differential expression analysis to individually downweight unreliable
genes (Smyth, 2004). Along these lines, we are convinced that incorporating the
FD as weights in the RNA-Seq analysis is promising. In particular, the FD may be
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exploited as a scaling factor in the normalization step. In order to ultimately verify
this approach comparison to benchmark data such as quantitative real-time PCR
data will be necessary.

Apart from exploiting the information contained in the coverage patterns we pro-
pose a fresh view upon sequencing data. Rather than adopting a gene-wise per-
spective we opt for a global point of view on sequencing data. We take the data as
it comes along, genuine mRNA abundances distorted by a conglomerate of biases
and model it. The advantage of this pragmatic approach is that we are able to make
valid predictions for data suffering from the very same technological constraints.
This is of particular interest since the majority of RNA-Seq simulation programs
bases on unrealistic assumptions such as uniform distribution of reads within genes.

We differ between two sampling processes given either by the number of reads start-
ing at each position of a gene or by the number of reads per gene. Both processes
can be captured by the Pitman Sampling Formula.

We have demonstrated the use of the PSF as means to evaluate the evenness of
coverage. Additionally, distribution of reads within genes may be realistically sim-
ulated by the Hoppe Urn. This is of particular use for benchmarking mapping
programs.

While the PSF works for a large variety of examples, a still open question is whether
one can determine a relationship between characteristic features of a gene and its
innovation rate θ . We suspect that certain genes bring along a certain θ due to their
properties e.g. GC content or overall nucleotide composition. If this were true we
could use θ to categorize genes which would impact future analyses. This is subject
to current research.

Additionally, since summarization on the isoform level remains a challenging task
method development for differential expression inference acted accordingly result-
ing in a model on the exon level (Anders et al., 2012). Thus, it may be of particular
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interest to extend the application of the PSF to the exon-level, so modeling the num-
ber of reads per exon.

Eventually, the PSF may be applicable in the course of the analysis of non-model
organisms where the size of the transcriptome is yet not known.
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Wachtel,M., Morzy,T., Schäfer,B. and Schlapbach,R. (2011) Preferred analysis
methods for single genomic regions in RNA sequencing revealed by processing
the shape of coverage. Nucleic Acids Res., 40(9), e63.

Oshlack,A., Robinson,M.D. and Young,M.D. (2010) From RNA-seq reads to dif-
ferential expression results. Genome Biol., 11, 220.

Oyola,S.O., Otto,T.D., Gu,Y., Maslen,G., Manske,M., Campino,S., Turner,D.J.,
MacInnis,B., Kwiatkowski,D.P., Swerdlow,H.P. and Quail, M.A. (2012) Opti-
mizing illumina next-generation sequencing library preparation for extremely at-
biased genomes. BMC Genomics, 13, 1.

Ozsolak,F. and Milos, P.M. (2011) RNA sequencing: advances, challenges and op-
portunities. Nat. Rev. Genet., 12, 87–98.

Picard-Tools 1.92. (2013) http://picard.sourceforge.net/.



88 Bibliography

Pitman,J. (1995) Exchangeable and partially exchangeable random partitions.
Probab. Theory Relat. Fields, 102, 145–158.

Pitman,J. (2006) Combinatorial Stochastic Processes. Springer, Berlin, Germany.

Proudfoot,N.J., Furger,A. and Dye,M.J. (2002) Integrating mRNA Processing with
Transcription. Cell, 108, 501–512.

R-Development-Core-Team (2013) R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing. Vienna, Austria.

Richard,H., Schulz,M.H., Sultan,M., Nürnberger,A., Schrinner,S., Balzereit,D.,
Dagand,E., Rasche,A., Lehrach,H., Vingron,M., Haas, S.A. and Yaspo,M. (2010)
Prediction of alternative isoforms from exon expression levels in RNA-Seq ex-
periments. Nucleic Acids Res., 38, e112.

Risso,D., Schwartz,K., Sherlock,G. and Dudoit,S. (2011) GC-Content Normaliza-
tion for RNA-Seq Data. BMC Bioinformatics, 12, 480.

Roberts,A. and Pachter,L. (2012) Streaming fragment assignment for real-time
analysis of sequencing experiments. Nat. Methods, 10, 71–73.

Roberts,A., Trapnell,C., Donagehey,J., Rinn,J.L. and Pachter,L. (2011) Improving
RNA-Seq expression estimates by correcting for fragment bias. Genome Biol.,
12, R22.

Robinson,M.D., McCarthy,D.J. and Smyth,G.K. (2012) edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics, 26(1), 139–140.

Robinson,M.D. and Smyth,G.K. (2007) Moderated statistical tests for assessing dif-
ferences in tag abundance. Bioinformatics, 23, 2881–2887.

Robinson,M.D. and Oshlack,A. (2010) A scaling normalization method for differ-
ential expression analysis of RNA-seq data. Genome Biol., 11, R25.



Bibliography 89

Ross,M.G., Russ,C., Costello,M., Hollinger,A., Lennon,N.J., Hegarty,R., Nus-
baum,C. and Jaffe,D.B. (2013) Characterizing and measuring bias in sequence
data. Genome Biol., 14, R51.

Schena,M., Heller,R.A., Theriault,T.P, Konrad,K., Lachenmeier,E. and Davis,R.W.
(1998) Microarrays: biotechnology’s discovery platform for functional ge-
nomics. Trends in Biotechnol., 16(7), 301–306.

Schliesky,S., Gowik,U., Weber,A.P.M. and Bräutigam,A. (2012) RNA-Seq Assem-
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Appendix A

Supplementary Material to

Chapter 1

The input amount of mRNA is typically 100ng in about 50µL. This equals to
1× 105pg in 50µL. Since the average molecular weight per nucleotide is about
330pg/pmol and the average mRNA length is about 1200bp, 1×105/(1200∗330)=
0.25 pmoles are in 50µL. Multiplication with Avogadro’s number (∼ 6.022×1023)
that is the number of molecules per mole yields the final number of molecules
(0.25×10−12 ×6.022×1023 = 1.5×1011).

A typical library concentration is about 30µL of a 200nM solution. Note that
the Molar concentration M is always specified per Liter. Therefore the number
of pmoles is about 6: 200nM = 2 × 105pM, and accounting for the volume of
30µL: 2×105 pmoles/L = 2×105 pmoles/106µL, and thus (2×105/106)×30 = 6
pmoles. Multiplication with Avogadro’s number yields 3.6× 1012 (6× 10−12 ×
6.022×1023).
The same calculation holds for the concentration measured when loading the sam-
ple onto the flow cell (120µL of a 7pM solution).
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Figure B.1: Summary statistics of the aligned read data. The left most panel shows an histogram
of the log2 transformed read counts. A smooth density estimation is depicted in the
middle. Finally, the third figure serves for providing some intuition how evenly reads
are distributed between isoforms. Typically few genes collect the majority of the reads
in RNA-Seq data.

Figure B.2: Isoforms are split into equal sized read count bins. In order to facilitate the interpretation
of the absolute read count values, the bins are displayed within the overall read count
distribution.
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Figure B.3: Typical coverage graph in the HTML report of FractalQC. The length of the isoform is
displayed on the x-axis while the per-base coverage pattern is shown on the y-axis. Read
count information is given in the title. Upon clicking on the gene ID the corresponding
entry in the ENSEMBL database is opened in the web browser (see Figure B.4). Red
dashed lines indicate exon boundaries as annotated in the databases.

Figure B.4: Database entry for a specific isoform.


