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Introduction

The present dissertation contains three essays aimed at studying the relevance

of so-called stochastic unit-root (STUR) models as introduced in Granger and

Swanson (1997) for economics. What makes a certain statistical model rel-

evant for modeling economic data? In fact, this depends on the data. To

reformulate the question: Do we believe that real economic data are gener-

ated by the underlying statistical process? The usual way to answer such

questions is to rely on the results of statistical testing devices prepared to dis-

criminate between different model classes. That is, we check whether adequate

hypothesis tests are available.

In economics it is common sense that lots of time series have a nonstationary

nature. Trending behavior either following deterministic or stochastic pat-

terns, seasonal cycles or changing volatilities are observed in various economic

areas. Traditionally, nonstationary behavior resulting in a stochastic trend is

captured by fixed-coefficient unit-root processes. Several tests have been devel-

oped to distinguish that kind of nonstationary processes from stationary ones.

Particularly, fixed-coefficient unit-root processes can be differenced to station-

arity. In contrast, stochastic unit-root processes are unit-root processes driven

by random coefficients allowing for changes between stationary and explosive
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Introduction

regimes. Thus, they are nonstationary, though not difference-stationary. As

conventional cointegration and error-correction techniques assume difference

stationarity, the presence of STUR processes may have serious consequences.

The special case where the STUR model in Granger and Swanson (1997) has

a coefficient mean equal to one is known as a stochastic unit root. In what

follows, STUR models or STUR processes having a stochastic unit root are

referred to as such explicitly.

Certain fixed-coefficient models are nested in the STUR model. This is where

the first essay comes in. There, a new test of the null hypothesis of a unit

root is introduced to distinguish stochastic unit-root models from conven-

tional time series models. The test is based on a deviance statistic calculated

from pseudo-likelihood functions. Under the alternative hypothesis stochas-

tic unit-root models as well as stationary models are allowed. The asymptotic

distribution of the test statistic is derived and critical values are retrieved from

the empirical distribution function. Size and power simulations are presented

to assess the performance of the new STUR test against previously developed

competitors. Competing tests also assume a unit root under the null hypoth-

esis. Whether they have power against stochastic unit-root processes and/or

stationary processes is studied in detail. Finally, the STUR test and its com-

petitors are applied to unemployment rates of ten countries. Some evidence

is provided in favor of nonstationary processes for most of the countries. For

some countries STUR seems to be an attractive option.

In course of the second essay we fit STUR models to unemployment rates to

evaluate the results of the tests concerning STUR alternatives. Whether it is

reasonable from an economic point of view to model unemployment rates using

STUR is discussed as well. Different estimation techniques are considered. As

12



the coefficient process is unobserved, we apply a Bayesian procedure which

allows us not only to estimate the STUR parameters but also to simulate the

distribution of the coefficient process. Looking at the coefficient distribution

enables us to measure how close the STUR model comes to a fixed-coefficient

model. All STUR estimates are significantly different from zero. Coefficient

distributions are in line with the test results for six out of ten countries in favor

of nonstationary models. For four of them STUR models are suggested. The

Bayesian procedure applied is very time-consuming. An alternative estimator

to obtain estimates of coefficient mean and variance is successfully evaluated

in simulations.

Testing for the null hypothesis of a unit root in unemployent rates using tests

having power against STUR processes serves as a first indicator whether STUR

might be a relevant model. Fitting STUR models to the respective unemploy-

ment rates using Bayesian techniques we get a more sophisticated picture of

relevance. However, after testing for STUR models as well as fitting them

there are still ambiguous decisions left for certain countries. Thus, in the third

essay, the parameters of competing models are estimated for each country.

The fitted equations are then used to generate a large number of replications

to which we apply the different test statistics again. That is, we simulate the

empirical distribution functions of the test statistics to draw final conclusions.

The results of estimations and simulations correspond to the test results con-

cerning the rejection of the null hypothesis. For six out of ten countries STUR

is the model of choice.

To gain a more differentiated idea of which process is relevant under the al-

ternative we calculate conditional mean forecasts. Unfortunately, the random

walk model is the winner of the forecast competition. The STUR model per-
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Introduction

forms poorly on average, however, showing some strength for certain countries.

As the stationary model performs bad as well, forecasting seems not to be ad-

equate to discriminate between different alternatives of the unit-root tests

considered. Unfortunately, forecast results do not correspond to test results.

For most countries and different forecast horizons using forecast combinations

does not result in better forecasts. Cumulative forecast errors show strong

similarities among the rival models. We may conlude that STUR models even

if found in the data are not good forecast models at all. Further evidence is

provided in 1-step forecasts from simulated data.

To sum up, STUR is a relevant model for economics. Nonstationary economic

data at the frontier between stationarity and difference-stationarity can be

modeled in a more sophisticated way. To test whether STUR is relevant to

model a certain economic time series, a new test is introduced having power

against stationary as well as STUR processes competing successfully against

different adequate tests. Estimation by Bayesian techniques is very time-

consuming and thus calls for alternative procedures to make STUR models

more attractive to applied economists. Results from testing and estimating

including simulation experiments confirm the relevance of STUR models for

unemployment rates. Except for forecasting, where STUR performs worse

even if the data are generated by STUR, results of the present dissertation

provide evidence for the relevance of STUR models in economics.

14



1 Testing for Unit Roots Using the

AR-ARCH Structure of STUR

Models

1.1 Introduction

Unit-root tests as presented by Dickey and Fuller (1979) and Said and Dickey

(1984) test for the null hypothesis of a unit root versus the alternative of a

stationary autoregressive process where the coefficients of the autoregressive

terms are assumed to be constant over time. We refer to fixed-coefficient pro-

cesses. Particularly, fixed unit-root processes like the random walk can be dif-

ferenced to stationarity. Granger and Swanson (1997) introduce the class of so-

called stochastic unit-root (STUR) processes which do not share this feature,

i.e. they are nonstationary, though not difference-stationary. More general,

STUR models have random coefficients allowing for a change between station-

ary and explosive regimes with the mean of the coefficient of the autoregressive

term equal to one in case of a stochastic unit root. Furthermore, the coefficient

process may be correlated over time. As the coefficient is drawn from a contin-

Not submitted.
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1 Testing for Unit Roots Using the AR-ARCH Structure of STUR Models

uous distribution, the probability of the occurence of a unit root at a certain

point in time is equal to zero. In presence of STUR alternatives, Granger and

Swanson (1997) report a weak power performance of the Dickey-Fuller (DF)

and augmented Dickey-Fuller (ADF) unit-root tests. So they apply the score

test by Leybourne et al. (1996) of the null hypothesis of a fixed unit root versus

the alternative of a stochastic unit root. The Leybourne-McCabe-Tremayne

(LMT) test really has power against STUR processes, however it substantially

drops down with decreasing coefficient variances. As the DF test, it can be

augmented by lagged differences. We refer to the augmented LMT (ALMT)

test. In addition, it assumes any kind of unit root to be present. Consequently,

the LMT test is not expected to have power against stationary alternatives.

We suggest a new likelihood-ratio-type test of the null of a fixed unit root

which has power against stationary alternatives as the DF test, against STUR

alternatives as the LMT test and it also outperforms the latter in case of

small coefficient variation. The setup derives from the STUR model nesting

stationary as well as fixed and stochastic unit-root processes. In section 1.2,

we introduce the STUR model by Granger and Swanson (1997) which may be

represented by an autoregressive model of order one (AR(1)) with autoregres-

sive conditional heteroskedastic errors of order one (ARCH(1)) as initiated by

Tsay (1987). To test for the reduction to a random walk in AR(1)-ARCH(1)

models, Klüppelberg et al. (2002) provide a theorem to obtain the asymptotic

distribution of the deviance statistic. We discuss the present testing problem

in Section 1.3, define the test statistic and derive its limiting distribution by

verifying the assumptions of Lemma B.1 in Klüppelberg et al. (2002). To eval-

uate the characteristics of the test, we provide some Monte Carlo evidence in

Section 1.4 where we calculate critical values and compare the size and power
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1.2 STUR Model

performance of the STUR test to the DF/ADF test and the LMT/ALMT

test. In Section 1.5 we apply the test to unemployment rates and compare the

results to DF and LMT. Finally, we may draw some conclusions.

1.2 STUR Model

The test is based on the stochastic unit-root (STUR) model introduced by

Granger and Swanson (1997) where the coefficient mean is not restricted to

one. There, a series xt is generated by

xt = atxt−1 + εt (1.1)

where εt is independent identically distributed (i.i.d.) with mean zero and

variance σ2ε and at follows a random coefficient process

at = eαt (1.2)

where αt is normally distributed with mean m, variance σ2α and finite power

spectrum gα(ω).

The coefficient process is allowed to be correlated over time according to the

stationary AR(1) process with intercept

αt = µ+ ραt−1 + ηt (1.3)

where |ρ| < 1 and ηt is independent normally distributed with mean zero and

variance σ2η and thus, m = µ/(1 − ρ) and σ2α = σ2η/(1 − ρ2). Moreover, ηt is

assumed to be independent of εt. Consequently, the random coefficient at is

17



1 Testing for Unit Roots Using the AR-ARCH Structure of STUR Models

log-normally distributed with mean

E[at] = em+σ2
α/2 (1.4)

and variance

V ar[at] = (eσ
2
α − 1)e2m+σ2

α . (1.5)

The random coefficient process at may also be considered as a random variable

fluctuating around a constant mean. This is implemented by substituting the

infinite-order Taylor-series approximation of at around m+ σ2α/2

at = E[at] + E[at]

∞
∑

i=1

(αt − lnE[at])
i

i!
(1.6)

for at in equation (1.1), to obtain

xt = φxt−1 + ut (1.7)

where φ = E[at] and ut = btxt−1 + εt with

bt = E[at]

∞
∑

i=1

(αt − lnE[at])
i

i!
. (1.8)

Approximating at by Taylor series should work reasonably well for moderate

coefficient variances. In equation (1.7), the mean of xt conditional on xt−1 is

18



1.2 STUR Model

given by

E[xt|xt−1] = φxt−1 + E[ut|xt−1]

= φxt−1 +E[bt|xt−1]xt−1 + E[εt|xt−1]

= φxt−1 +E[bt]xt−1 + E[εt]

= φxt−1 (1.9)

where bt does not depend on xt−1, having unconditional mean E[bt] = 0 to be

checked from equations (1.6) and (1.8) for all E[at] > 0 and εt is i.i.d. with

mean zero. The variance of xt conditional on xt−1 is calculated from

V ar[xt|xt−1] = V ar[ut|xt−1]

= V ar[bt|xt−1]x
2
t−1 + V ar[εt|xt−1]

= V ar[bt]x
2
t−1 + V ar[εt]

= V ar[at]x
2
t−1 + σ2ε (1.10)

as bt does not depend on xt−1, εt is i.i.d. with variance σ2ε and independent of

ηt which is driving the coefficient process and from equations (1.6) and (1.8),

we have V ar[bt] = V ar[at]. In fact, the STUR process in equation (1.1) may be

well represented in first and second conditional moment by the fixed-coefficient

AR(1) model with errors generated by an ARCH(1) model in equation (1.7)

within some neighborhood of the mean of at. As in Tsay (1987), studying

more general random coefficient models with independent coefficients, we may

derive moment equivalence between an AR-ARCH model and the random

coefficient model with correlated coefficients in equation (1.1).

Several models are nested in the STUR model and therefore in the AR(1)-

19



1 Testing for Unit Roots Using the AR-ARCH Structure of STUR Models

ARCH(1) model as well. For σ2α = 0, the STUR model may reduce to a

stationary AR(1) (m < 0) or a random walk (m = 0) model with a fixed unit

root at = 1 for all t while for σ2α > 0 and m = −σ2α/2, we obtain a so-called

stochastic unit root with E[at] = 1. And one may also think of less explosive

random coefficient processes with σ2α > 0 and m < −σ2α/2. Correspondingly,

from equations (1.6) and (1.8) we have for σ2α = 0 that at = E[at] for all t

and thus bt = 0. That is, conditional heteroskedasticity vanishes in this case

and we obtain a stationary or a difference-stationary AR(1) process according

to the value of φ = E[at]. Clearly, E[at] = em+σ2
α/2 in the STUR process is

restricted to positive numbers whereas φ in the AR(1)-ARCH(1) process is

not. As a consequence, oscillating data cannot be modeled by STUR.

1.3 AR-ARCH Test

We may now reformulate equation (1.7) by using the conditional variance of

xt in equation (1.10) to obtain the following AR(1)-ARCH(1) model with true

parameter values indicated by subscript 0

xt = φ0xt−1 + σt,0et (1.11)

for t = 1, . . . , n where x0 = 0, et is i.i.d. with mean zero, variance one and

finite eight moment, moments of et are denoted µk of order k = 3, 4, 5, 6, 8,

respectively, σt,0 =
√

β0 + λ0x2t−1 with β0 = σ2ε and λ0 = V ar[at]. Note

that the ARCH part is driven by previous observations as introduced in Weiss

(1984) rather than by previous innovations. et denotes the value of êt =

(xt − eᾱxt−1)/σt when the parameters take their true values. Particularly, for

20



1.3 AR-ARCH Test

the autoregressive coefficient we have

φ0 = E[at] = eᾱ0 (1.12)

where ᾱ0 = m+σ2α/2 is defined as the value of α0 associated with the mean of

at. The vector of parameters θ = (ᾱ, β, λ)′ assumes its values in the parameter

space Θ = (−∞,∞)× (0,∞)× [0,∞). To test for a unit root, we consider the

following null hypothesis

H0 : θ0 ∈ Θ0 := {0} × (0,∞) × {0} (1.13)

i.e. ᾱ0 = 0 (φ0 = 1), β0 > 0, λ0 = 0 where the process in equation (1.11)

reduces to a mean-zero random walk. Under the alternative hypothesis

H1 : θ0 ∈ Θ1 := (−∞,∞)× (0,∞) × [0,∞)\Θ0 (1.14)

i.e. ᾱ0 ∈ R (φ0 > 0), β0 > 0, λ0 ≥ 0, remaining processes nested in the STUR

model as discussed in Section 1.2 may occur. Thus, a test of H0 against

H1 is expected to have power against i.a. stationary AR(1) and STUR with

stochastic unit root. We suggest a pseudo-likelihood ratio test using the de-

viance statistic

dn := −2
[

Ln(θ̂n,0)− Ln(θ̂n,1)
]

(1.15)

where Ln(θ̂n,0) and Ln(θ̂n,1) denote the maximum values of the log-pseudo-

likelihood functions conditional on x0 under the null and under the alter-

native, respectively. Klüppelberg et al. (2002) prove the existence of maxi-

mizers θ̂n,0 in Θ0 and θ̂n,1 in Θ1 of the log-pseudo-likelihood functions with
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1 Testing for Unit Roots Using the AR-ARCH Structure of STUR Models

probability approaching one as n → ∞. The resulting estimators are con-

sistent for θ0. Furthermore, in their Lemma B.1 they provide a rather gen-

eral theorem to derive the limiting distribution of a certain deviance statis-

tic which is illustrated by testing for the reduction of an AR(1)-ARCH(1)

model to a random walk. There, Klüppelberg et al. (2002) assume with

H1 : θ0 ∈ Θ1′ := (−∞,∞) × (0,∞) × [0,∞) where θ0 = (φ0, β0, λ0)
′ a differ-

ent alternative hypothesis. The theorem may be reduced to Lemma 1 where

Sn(θ0) and Fn(θ0) are the vector of the positive first and the matrix of the

negative second derivatives evaluated at the true values of parameters, M1/2

denotes the left Cholesky square root of a positive definite matrix M , OP (1)

and oP (1) indicate random variables bounded in probability and converging

to zero in probability, respectively, as n→ ∞. Klüppelberg et al. (2002) refer

to the neighborhood of θ0 defined by

Nn(A) = {θ : (θ − θ0)
′Gn(θ − θ0) ≤ A2} (1.16)

where Gn is a positive definite scaling matrix for n ≥ 1 and A > 0.

Lemma 1. First, suppose there is a deterministic, diagonal, non-singular

matrix Gn with minimum eigenvalue λmin(Gn) → ∞ as n→ ∞ such that

G−1/2
n F1/2

n (θ0) = Yn + oP (1) (1.17)

where Yn is a lower triangular matrix with positive diagonal elements and

non-diagonal elements being zero in the first column. Second, suppose that

[

G−1/2
n Sn(θ0), Yn

]

D→ (S, Y ) (1.18)

as n→ ∞ for some almost surely (a.s.) finite random vector S and a.s. finite,
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1.3 AR-ARCH Test

nonsingular matrix Y . Particularly, joint convergence is required. And third,

suppose that

sup
θ∈Nn(A)

∣

∣

∣
G−1/2

n [Fn(θ)−Fn(θ0)]G
−1/2
n

∣

∣

∣

P→ 0 (1.19)

as n → ∞ for each A > 0. Then, there exist pseudo-maximum-likelihood

estimators θ̂n,0 and θ̂n,1 uniquely maximizing Ln(θ) on Nn(A)∩Θ0 and Nn(A)∩

Θ1, respectively, for each A > 0, on an event with probability approaching one

as n → ∞ and A → ∞. The resulting estimators are consistent for θ0.

Furthermore, it holds that

F−1/2
n (θ0)Sn(θ0)

D→ Y −1S =: Z (1.20)

for a finite random vector Z = (Z1, Z2, Z3)′ and

dn = −2
[

Ln(θ̂n,0)− Ln(θ̂n,1)
]

D→ (Z1)2 + (Z3)21(Z3 ≥ 0). (1.21)

as n→ ∞ where 1 denotes the indicator function.

Proof of Lemma 1. See Klüppelberg et al. (2002) for the proof and a discussion

of the catalogue of assumptions.

As a result, we may derive the limiting distribution of the test statistic in

equation (1.15) applied to the model in equations (1.11) and (1.12) under the

testing problem in (1.13) and (1.14) by verifying assumptions (1.17), (1.18),

and (1.19). Subsequently, the matrices of derivatives are scaled by

Gn = diag(n2, n, n3) (1.22)
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1 Testing for Unit Roots Using the AR-ARCH Structure of STUR Models

to allow for convergence. To verify assumption (1.17), Lemma 2 will be useful:

Lemma 2. We suppose that

1

n5/2

n
∑

t=1

x3t−1et
P→ 0, (1.23)

1

n2

n
∑

t=1

x2t−1(e
2
t − 1)

P→ 0, (1.24)

1

n3

n
∑

t=1

x4t−1(e
2
t − 1)

P→ 0 (1.25)

as n→ ∞. Then, the symmetric matrix G
−1/2
n Fn(θ0)G

−1/2
n has the asymptotic

representation

G−1/2
n Fn(θ0)G

−1/2
n

=













1
β0n2

∑n
t=1 x

2
t−1 0 0

1
2β2

0

1
2β2

0n
2

∑n
t=1 x

2
t−1

1
2β2

0n
3

∑n
t=1 x

4
t−1













+ oP (1). (1.26)

Proof of Lemma 2. Sn(θ) = [Si
n(θ)] and Fn(θ) = [F ij

n (θ)] denote the vector of

positive first and the matrix of negative second partial derivatives, respectively,

of the log-likelihood function conditional on x0 which is equal to

Ln(θ) = −1

2

n
∑

t=1

ln(σ2t )−
1

2

n
∑

t=1

ê2t −
1

2
(n− 1) ln(2π) (1.27)
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where

σ2t = β + λx2t−1 (1.28)

does not depend on ᾱ and

êt =
xt − eᾱxt−1

σt
. (1.29)

In calculating the first and second derivatives of Ln(θ) with respect to the

parameters ᾱ, β, and λ, we use the following expressions:

∂σ2t
∂β

= 1,
∂σ2t
∂λ

= x2t−1 (1.30)

and

∂ê2t
∂ᾱ

= −2eᾱxt−1êt
σt

,
∂ê2t
∂β

= − ê2t
σ2t

∂σ2t
∂β

,
∂ê2t
∂λ

= − ê2t
σ2t

∂σ2t
∂λ

(1.31)

resulting from equations (1.28) and (1.29), respectively. Then, we get for the

first partial derivatives

S1
n =

∂Ln

∂ᾱ
= −1

2

n
∑

t=1

∂ê2t
∂ᾱ

=

n
∑

t=1

eᾱxt−1êt
σt

, (1.32)

S2
n =

∂Ln

∂β
= −1

2

n
∑

t=1

1

σ2t

∂σ2t
∂β

− 1

2

n
∑

t=1

∂ê2t
∂β

=
1

2

n
∑

t=1

ê2t − 1

σ2t
, (1.33)

S3
n =

∂Ln

∂λ
= −1

2

n
∑

t=1

1

σ2t

∂σ2t
∂λ

− 1

2

n
∑

t=1

∂ê2t
∂λ

=
1

2

n
∑

t=1

ê2t − 1

σ2t
x2t−1 (1.34)
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and thus for the negative second partial derivatives

F11
n = −∂

2Ln

∂ᾱ2
= −

n
∑

t=1

xt−1

σt

[

eᾱêt + eᾱ
1

2

(

ê2t
)−1/2 ∂ ê2t

∂ᾱ

]

=
n
∑

t=1

eᾱxt−1

σt

[

eᾱxt−1

σt
− êt

]

, (1.35)

F12
n = F21

n = − ∂2Ln

∂ᾱ∂β
= −1

2

n
∑

t=1

1

σ2t

∂ê2t
∂ᾱ

=

n
∑

t=1

eᾱxt−1êt
σ3t

, (1.36)

F13
n = F31

n = − ∂2Ln

∂ᾱ∂λ
= −1

2

n
∑

t=1

x2t−1

σ2t

∂ê2t
∂ᾱ

=

n
∑

t=1

eᾱx3t−1êt

σ3t
, (1.37)

F22
n = −∂

2Ln

∂β2
= −1

2

n
∑

t=1

∂ê2t
∂β σ

2
t −

∂σ2
t

∂β (ê2t − 1)

σ4t

=
1

2

n
∑

t=1

2ê2t − 1

σ4t
, (1.38)

F23
n = F32

n = − ∂2Ln

∂β∂λ
= −1

2

n
∑

t=1

∂ê2t
∂λ σ

2
t −

∂σ2
t

∂λ (ê2t − 1)

σ4t

=
1

2

n
∑

t=1

x2t−1

2ê2t − 1

σ4t
, (1.39)
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F33
n = −∂

2Ln

∂λ2
= −1

2

n
∑

t=1

x2t−1

∂ê2t
∂λ σ

2
t −

∂σ2
t

∂λ (ê2t − 1)

σ4t

=
1

2

n
∑

t=1

x4t−1

2ê2t − 1

σ4t
. (1.40)

By pre- and post-multiplying Fn(θ) evaluated at θ0 by Gn given in equa-

tion (1.22), we obtain the symmetric matrix

G−1/2
n Fn(θ0)G

−1/2
n

=













F11
n (θ0)
n2

F12
n (θ0)

n3/2

F13
n (θ0)

n5/2

F22
n (θ0)
n

F23
n (θ0)
n2

F33
n (θ0)
n3













(1.41)

from where we show equation (1.26) element by element. For θ0 = (0, β0, 0)
′,

we have

F11
n (θ0)

n2
=

1

β0n2

n
∑

t=1

x2t−1 −
1√
β0n2

n
∑

t=1

xt−1et (1.42)

where −β−1/2
0 n−1

∑n
t=1 xt−1et weakly converges to −[W 2(1) − 1]/2 by the

functional central limit theorem with W (1) a standard Brownian motion with

variance one (Phillips, 1987). The mean of −β−1/2
0 n−2

∑n
t=1 xt−1et is equal to

zero. As W (1) ∼ N(0, 1) and hence W 2(1) ∼ χ2(1), the variance converges to

zero as n → ∞, i.e. −β−1/2
0 n−2

∑n
t=1 xt−1et converges to zero in probability

and we arrive at

F11
n (θ0)

n2
=

1

β0n2

n
∑

t=1

x2t−1 + oP (1). (1.43)
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By the same arguments, we derive

F12
n (θ0)

n3/2
=

1

β
3/2
0 n3/2

n
∑

t=1

xt−1et (1.44)

where β
−3/2
0 n−1

∑n
t=1 xt−1et weakly converges to β−1

0 [W 2(1) − 1]/2 by the

functional central limit theorem. Again, the mean of β
−3/2
0 n−3/2

∑n
t=1 xt−1et

is equal to zero and the variance converges zero as n → ∞, i.e.

β
−3/2
0 n−3/2

∑n
t=1 xt−1et converges to zero in probability resulting in

F12
n (θ0)

n3/2
= 0 + oP (1). (1.45)

Now, by assumption (1.23) we see that

F13
n (θ0)

n5/2
=

1

β
3/2
0 n5/2

n
∑

t=1

x3t−1et

= 0 + oP (1). (1.46)

Then, we deduce

F22
n (θ0)

n
=

1

β20n

n
∑

t=1

e2t −
1

2β20

=
1

2β20
+

(

1

β20n

n
∑

t=1

e2t −
1

β20

)

=
1

2β20
+ oP (1) (1.47)

as the term in parentheses converges to zero in probability by the weak law of
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large numbers. By using assumption (1.24), we obtain

F23
n (θ0)

n2
=

1

β20n
2

n
∑

t=1

x2t−1e
2
t −

1

2β20n
2

n
∑

t=1

x2t−1

=
1

2β20n
2

n
∑

t=1

x2t−1 +
1

β20n
2

n
∑

t=1

x2t−1e
2
t −

1

β20n
2

n
∑

t=1

x2t−1

=
1

2β20n
2

n
∑

t=1

x2t−1 +
1

β20n
2

n
∑

t=1

x2t−1(e
2
t − 1)

=
1

2β20n
2

n
∑

t=1

x2t−1 + oP (1). (1.48)

Finally, by assumption (1.25) we end up with

F33
n (θ0)

n3
=

1

β20n
3

n
∑

t=1

x4t−1e
2
t −

1

2β20n
3

n
∑

t=1

x4t−1

=
1

2β20n
3

n
∑

t=1

x4t−1 +
1

β20n
3

n
∑

t=1

x4t−1e
2
t −

1

β20n
3

n
∑

t=1

x4t−1

=
1

2β20n
3

n
∑

t=1

x4t−1 +
1

β20n
3

n
∑

t=1

x4t−1(e
2
t − 1)

=
1

2β20n
3

n
∑

t=1

x4t−1 + oP (1) (1.49)

and Lemma 2 is proved.

We are now ready to state Theorem 1 and prove it by verifying assump-

tions (1.17), (1.18), and (1.19):

Theorem 1. Suppose xt satisfies the model outlined in (1.11) and (1.12).

Then, under the null hypothesis (1.13) the following convergence result holds

dn
D→
(

Z1
)2

+
(

Z3
)2
1

(

Z3 ≥ 0
)

(1.50)
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as n→ ∞ where

Z1 =
1
2

[

W 1
2 (1)

]2 − 1
2

√

∫ 1
0

[

W 1
2 (s)

]2
ds

(1.51)

and

Z3 =
1

√
2

√

∫ 1
0

[

W 1
2 (s)

]4
ds−

[

∫ 1
0

[

W 1
2 (s)

]2
ds
]2

×
{

µ3

∫ 1

0

[

W 1
2 (s)

]2
dW 1

2 (s) +
√

µ4 − µ23 − 1

∫ 1

0

[

W 1
2 (s)

]2
dW 2

2 (s)

−
∫ 1

0

[

W 1
2 (s)

]2
ds

[

µ3W
1
2 (1) +

√

µ4 − µ23 − 1W 2
2 (1)

]}

. (1.52)

with W2(s) = [W 1
2 (s),W

2
2 (s)]

′ standard Brownian motion in two dimensions.

Note that the asymptotic distribution of dn depends on the third and fourth

moment of et, namely µ3 and µ4, which have to be estimated in advance.

Furthermore, dn in the model (1.11) and (1.12) converges under the same

testing problem to the same distribution as the deviance statistic in xt =

φ0xt−1 + σt,0et where φ0 ∈ R as derived in Klüppelberg et al. (2002). At

the same time, the specification φ0 = eᾱ0 solves the problem where φ0 is

restricted to the interval (0,∞). Then there exists a cone CΘ0 (CΘ1) with

vertex at θ0 ∈ Θ0 (θ0 ∈ Θ1) coinciding with Θ0 (Θ1) on the neigborhood

Nn(A) of θ0 which is required in the proof of Lemma B.1 in Klüppelberg et

al. (2002).

Proof of Theorem 1. By showing assumptions (1.23), (1.24), and (1.25) of

Lemma 2 to hold, we prepare the verification of assumption (1.17). So for
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equation (1.23), we have

1

n5/2

n
∑

t=1

x3t−1et =
1√
n
√
n

n
∑

t=1

x3t−1et

n3/2
(1.53)

where x3t−1et for t = 1, . . . , n form a martingale difference sequence (m.d.s.).

That is,

E[x3t−1et|x3t−2et−1, . . . , x
3
0e1]

= E[x3t−1|x3t−2et−1, . . . , x
3
0e1]E[et]

= 0 (1.54)

and as E[x3t−1et] = 0 and E[e2t ] = 1, for the variance

V ar[x3t−1et] = E[x6t−1e
2
t ]− E2[x3t−1et]

= E[x6t−1]. (1.55)

Under the null hypothesis, xt−1 is a random walk, i.e. a cumulative sum of

i.i.d. mean zero random variables
√
β0ei

E[x6t−1] = E





(

t−1
∑

i=1

√

β0ei

)6




= β30E





∑

i 6=j 6=k

e2i e
2
je

2
k



+ β30E





∑

i 6=j

e2i e
4
j





+ β30E





∑

i 6=j

e3i e
3
j



+ β30E

[

∑

i

e6i

]

= β30
∑

i 6=j 6=k

E[e2i ]E[e2j ]E[e2k] + β30
∑

i 6=j

E[e2i ]E[e4j ]

+ β30
∑

i 6=j

E[e3i ]E[e3j ] + β30
∑

i

E[e6i ] (1.56)
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and by the multinomial theorem we obtain

E[x6t−1] = β30

(

6

2, 2, 2, 0, . . . , 0

)(

t− 1

3

)

· 1

+ β30

(

6

2, 4, 0, . . . , 0

)(

t− 1

1

)(

t− 2

1

)

µ4

+ β30

(

6

3, 3, 0, . . . , 0

)(

t− 1

2

)

µ23

+ β30

(

6

6, 0, . . . , 0

)(

t− 1

1

)

µ6

= 15β30 (t− 1)(t− 2)(t− 3) + 15β30 (t− 1)(t− 2)µ4

+ 10β30 (t− 1)(t− 2)µ23 + β30(t− 1)µ6. (1.57)

Thus, the variance of x3t−1et is growing at the rate t
3. As a consequence, scaling

by n3/2 may result in a finite variance. We apply the functional central limit

theorem for martingale difference sequences (Billingsley, 1968, 206), to obtain

1√
n

n
∑

t=1

x3t−1et

n3/2
D→ N

(

0, V ar

[

x3t−1et

n3/2

])

(1.58)

and thus

1√
n
√
n

n
∑

t=1

x3t−1et

n3/2
P→ 0. (1.59)

Next, we verify assumption (1.24)

1

n2

n
∑

t=1

x2t−1(e
2
t − 1) =

1√
n
√
n

n
∑

t=1

x2t−1(e
2
t − 1)

n
(1.60)
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where now x2t−1(e
2
t − 1) for t = 1, . . . , n is a m.d.s. as

E[x2t−1(e
2
t − 1)|x2t−2(e

2
t−1 − 1), . . . , x20(e

2
1 − 1)]

= E[x2t−1|x2t−2(e
2
t−1 − 1), . . . , x20(e

2
1 − 1)]E[e2t − 1]

= 0 (1.61)

and as E[x2t−1(e
2
t − 1)] = 0 and E[e2t ] = 1, for the variance

V ar[x2t−1(e
2
t − 1)] = E[x4t−1(e

2
t − 1)2]− E2[x2t−1(e

2
t − 1)]

= E[x4t−1]E[(e2t − 1)2]

= E[x4t−1]E[e4t − 2e2t + 1]

= (µ4 − 1)E[x4t−1]. (1.62)

Again, under the null hypothesis we have a cumulative sum of i.i.d. mean zero

random variables
√
β0ei

E[x4t−1] = E





(

t−1
∑

i=1

β
1/2
0 ei

)4




= β20E





∑

i 6=j

e2i e
2
j



+ β20E

[

∑

i

e4i

]

= β20
∑

i 6=j

E[e2i ]E[e2j ] + β20
∑

i

E[e4i ] (1.63)

where we obtain by the multinomial theorem

E[x4t−1] = β20

(

4

2, 2, 0, . . . , 0

)(

t− 1

2

)

1 + β20

(

4

4, 0 . . . , 0

)(

t− 1

1

)

µ4

= 3β20(t− 1)(t− 2) + β20(t− 1)µ4. (1.64)
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That is, the variance of x2t−1(e
2
t −1) is growing at the rate t2 and we may scale

by n. Applying the functional central limit theorem for martingale difference

sequences results in

1√
n

n
∑

t=1

x2t−1(e
2
t − 1)

n
D→ N

(

0, V ar

[

x2t−1(e
2
t − 1)

n

])

(1.65)

and therefore,

1√
n
√
n

n
∑

t=1

x2t−1(e
2
t − 1)

n

P→ 0. (1.66)

Finally, we show that assumption (1.25) is satisfied

1

n3

n
∑

t=1

x4t−1(e
2
t − 1) =

1√
n
√
n

n
∑

t=1

x4t−1(e
2
t − 1)

n2
(1.67)

where x4t−1(e
2
t − 1) for t = 1, . . . , n is a m.d.s. as

E[x4t−1(e
2
t − 1)|x4t−2(e

2
t−1 − 1), . . . , x40(e

2
1 − 1)]

= E[x4t−1|x4t−2(e
2
t−1 − 1), . . . , x40(e

2
1 − 1)]E[e2t − 1]

= 0 (1.68)

and as E[x4t−1(e
2
t − 1)] = 0 and E[e2t ] = 1, for the variance

V ar[x4t−1(e
2
t − 1)] = E[x8t−1(e

2
t − 1)2]− E2[x4t−1(e

2
t − 1)]

= E[x8t−1]E[(e2t − 1)2]

= E[x8t−1]E[e4t − 2e2t + 1]

= (µ4 − 1)E[x8t−1]. (1.69)
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For the mean of x8t−1 under the null, we derive

E[x8t−1] = E





(

t−1
∑

i=1

√

β0ei

)8




= β40E





∑

i 6=j 6=k 6=l

e2i e
2
je

2
ke

2
l



+ β40E





∑

i 6=j 6=k

e2i e
2
je

4
k





+ β40E





∑

i 6=j 6=k

e2i e
3
je

3
k



+ β40E





∑

i 6=j

e2i e
6
j





+ β40E





∑

i 6=j

e3i e
5
j



+ β40E





∑

i 6=j

e4i e
4
j





+ β40E

[

∑

i

e8i

]

= β40
∑

i 6=j 6=k 6=l

E[e2i ]E[e2j ]E[e2k]E[e2l ] + β40
∑

i 6=j 6=k

E[e2i ]E[e2j ]E[e4k]

+ β40
∑

i 6=j 6=k

E[e2i ]E[e3j ]E[e3k] + β40
∑

i 6=j

E[e2i ]E[e6j ]

+ β40
∑

i 6=j

E[e3i ]E[e5j ] + β40
∑

i 6=j

E[e4i ]E[e4j ]

+ β40
∑

i

E[e8i ] (1.70)

35



1 Testing for Unit Roots Using the AR-ARCH Structure of STUR Models

and we obtain by the multinomial theorem

E[x8t−1] = β40

(

8

2, 2, 2, 2, 0, . . . , 0

)(

t− 1

4

)

· 1

+ β40

(

8

2, 2, 4, 0 . . . , 0

)(

t− 1

2

)(

t− 3

1

)

µ4

+ β40

(

8

2, 3, 3, 0 . . . , 0

)(

t− 1

2

)(

t− 3

1

)

µ23

+ β40

(

8

2, 6, 0 . . . , 0

)(

t− 1

1

)(

t− 2

1

)

µ6

+ β40

(

8

3, 5, 0 . . . , 0

)(

t− 1

1

)(

t− 2

1

)

µ3µ5

+ β40

(

8

4, 4, 0 . . . , 0

)(

t− 1

2

)

µ24

+ β40

(

8

8, 0 . . . , 0

)(

t− 1

1

)

µ8

= 105β40 (t− 1)(t− 2)(t− 3)(t− 4) · 1

+ 210β40 (t− 1)(t− 2)(t− 3)µ4

+ 280β40 (t− 1)(t− 2)(t− 3)µ23

+ 28β40 (t− 1)(t− 2)µ6

+ 56β40 (t− 1)(t− 2)µ3µ5

+ 35β40 (t− 1)(t− 2)µ24

+ (t− 1)β40µ8. (1.71)

Consequently, the variance of x4t−1(e
2
t − 1) is growing at the rate t4 and we

may scale by n2 to make the functional central limit theorem for martingale

difference sequences applicable, yielding

1√
n

n
∑

t=1

x4t−1(e
2
t − 1)

n2
D→ N

(

0, V ar

[

x4t−1(e
2
t − 1)

n2

])

(1.72)
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and thus

1√
n
√
n

n
∑

t=1

x4t−1(e
2
t − 1)

n2
P→ 0. (1.73)

That is, by Lemma 2 the following representation holds

G−1/2
n Fn(θ0)G

−1/2
n

=













1
β0n2

∑n
t=1 x

2
t−1 0 0

1
2β2

0

1
2β2

0n
2

∑n
t=1 x

2
t−1

1
2β2

0n
3

∑n
t=1 x

4
t−1













+ oP (1) (1.74)

where we may take the Cholesky square root to obtain

G−1/2
n F1/2

n (θ0) = Yn + oP (1) (1.75)

with Yn = [Y ij
n ] having the only non-zero elements

Y 11
n =

√

√

√

√

1

β0n2

n
∑

t=1

x2t−1, (1.76)

Y 22
n =

1√
2β0

, (1.77)

Y 32
n =

1√
2β0n2

n
∑

t=1

x2t−1, (1.78)

Y 33
n =

√

√

√

√

1

2β20n
3

n
∑

t=1

x4t−1 −
(

1√
2β0n2

n
∑

t=1

x2t−1

)2

. (1.79)
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Obviously, Yn is a lower triangular matrix with positive diagonal elements

and non-diagonal elements equal to zero in the first column, hence, assump-

tion (1.17) is verified. From equations (1.76) to (1.79) and

G−1/2
n Sn(θ0) =













1√
β0n

∑n
t=1 xt−1et

1
2β0

√
n

∑n
t=1(e

2
t − 1)

1
2β0n3/2

∑n
t=1(e

2
t − 1)x2t−1













(1.80)

we see that we have to find the joint limiting distribution of

(

1

n2

n
∑

t=1

x2t−1,
1

n3

n
∑

t=1

x4t−1,

1

n

n
∑

t=1

xt−1et,
1√
n

n
∑

t=1

(e2t − 1),
1

n3/2

n
∑

t=1

(e2t − 1)x2t−1

)

(1.81)

implying the weak convergence of [G
−1/2
n Sn(θ0), Yn] as required in assumption

(1.18). Alternatively, we may write equation (1.80) as

G−1/2
n Sn(θ0) =

n
∑

t=1

AtnBtn (1.82)

where

Atn =
[

Aij
tn

]

=













xt−1√
β0

√
n

0

0 1
2β0

0
x2
t−1

2β0n













, Btn =







et√
n

e2t−1√
n






. (1.83)

We define the continuous-time processes

An(s) = A⌊ns⌋,n Bn(s) =

⌊ns⌋
∑

t=1

Btn (1.84)

where ⌊·⌋ denotes the integer part and s ∈ [1/n, 1]. Consequently, equa-
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tion (1.82) may be represented by

G−1/2
n Sn(θ0) =

∫ 1+1/n

1/n
An(s)dBn(s)

=

∫ 1

0
An

(

s+
1

n

)

dBn

(

s+
1

n

)

(1.85)

while the respective elements of Yn can be written as

1

β0n2

n
∑

t=1

x2t−1 =

∫ 1+1/n

1/n

[

A11
n (s)

]2
ds

=

∫ 1

0

[

A11
n

(

s+
1

n

)]2

d

(

s+
1

n

)

=

∫ 1

0

[

A11
n

(

s+
1

n

)]2

ds, (1.86)

1

β20n
3

n
∑

t=1

x4t−1 =

∫ 1+1/n

1/n

[

A11
n (s)

]4
ds

=

∫ 1

0

[

A11
n

(

s+
1

n

)]4

d

(

s+
1

n

)

=

∫ 1

0

[

A11
n

(

s+
1

n

)]4

ds (1.87)

and thus joint convergence in (1.81) is implied by joint convergence of the ele-

ments in equation (1.80) which results from the application of Theorem 2.2 and

Remark 2.3 in Kurtz and Protter (1991) adapted to this case as summarized

in Lemma 3. Note that joint convergence of (An(s+1/n), Bn(s+1/n)) implies

joint convergence of (An(s), Bn(s)) and so we may skip 1/n in asymptotics.

Lemma 3. For each n, let (An, Bn) be an {Hn
s }-adapted process with sam-

ple paths in D
M

3×2×R2 [0, 1] where M3×2 denotes the set of real-valued 3 × 2

matrices and let Bn be an {Hn
s }-semimartingale. Fix δ ∈ (0,∞] and define
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Bδ
n = Bn − Jδ(Bn) where

Jδ(Bn)(s) =
∑

r≤s

( |Bn(r)−Bn(r−)| − δ

|Bn(r)−Bn(r−)|

)+

[Bn(r)−Bn(r−)]. (1.88)

with Bn(r−) = limq↑r Bn(q) the left-hand limit at r. Let Bδ
n = M δ

n +N δ
n be a

decomposition of Bδ
n with M δ

n an {Hn
s }-local martingale and N δ

n a process with

finite variation. First, suppose that Ts(N
δ
n) is stochastically bounded for each

s > 0 where Ts(·) denotes total variation and second, suppose that for each

c > 0, supnE[(M δ
n(s ∧ τ cn))

2 + Ts∧τcn(A
δ
n)] < ∞ where {τ cn} is a sequence of

stopping times and s ∧ τ cn = min(s, τ cn). If (An, Bn)
D→ (A,B) in the Skorohod

topology on D
M

3×2×R2 [0, 1], then (An, Bn,
∫ 1
0 AndBn)

D→ (A,B,
∫ 1
0 AdB) in the

Skorohod topology on D
M

3×2×R2×R3 [0, 1].

Proof of Lemma 3. See Kurtz and Protter (1991) for the proof and a discus-

sion of alternative assumptions.

As |Bn(r) − B(r−)| is finite for all r ∈ [1/n, 1], we choose δ = ∞ to obtain

Jδ(Bn)(s) = 0 for all s ∈ [1/n, 1]. Thus, Bδ
n = Bn which is a right-continuous

martingale with left-hand limits, i.e. a càdlàg martingale and hence also an

{Hn
s }-local martingale (see e.g. Protter, 2005, 37) and we have Bδ

n =M δ
n and

N δ
n = 0. Clearly, Ts(0) is stochastically bounded for all s ∈ [1/n, 1]. Finally,

as

E

[

(

M δ
n(s)

)2
]

= E
[

B2
n(s)

]

=

⌊ns⌋
∑

t=1







1
n

µ4−1
n






<∞ (1.89)
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for all s ∈ [1/n, 1] and all n we have

sup
n
E

[

(

M δ
n(s ∧ τ cn)

)2
+ Ts∧τcn(N

δ
n)

]

<∞ (1.90)

for all c > 0 and Lemma 3 applies, if (An, Bn)
D→ (A,B) in the Skorohod

topology on D
M

3×2×R2 [0, 1]. As xt−1 =
√
β0
∑t−1

k=1 ek, joint convergence of An

and Bn is implied by joint convergence of the elements of Bn. That is, we ask

for the joint distribution of





1√
n

⌊ns⌋
∑

t=1

et,
1√
n

⌊ns⌋
∑

t=1

(e2t − 1)



 (1.91)

in D2[0, 1]. We define the linear combination of the summands in (1.91)

yt = u1et + u2(e
2
t − 1) (1.92)

where u = (u1, u2)
′ ∈ R2 and u 6= 0. As yt is an ergodic, stationary sequence

of square-integrable martingale differences, by Theorem 7.5 in Durrett (1991,

375) we have

1√
n

⌊ns⌋
∑

t=1

y2t = u1
1√
n

⌊ns⌋
∑

t=1

et + u2
1√
n

⌊ns⌋
∑

t=1

(e2t − 1)
D→ σyW (s) (1.93)
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where

σ2y =
1

n

n
∑

t=1

E
[

y2t |Ht−1

]

=
1

n

n
∑

t=1

E
[

u21e
2
t + 2u1u2et(e

2
t − 1) + u22(e

2
t − 1)2

]

=
1

n

n
∑

t=1

[

u21 + 2u1u2µ3 + u22(µ4 − 1)
]

= u21 + 2u1u2µ3 + u22(µ4 − 1)

= u′M2u (1.94)

with

M2 =







1 µ3

µ3 µ4 − 1






(1.95)

andW (s) standard Brownian motion. That is, an arbitrary linear combination

of the elements in (1.91) is normally distributed with mean zero and variance

σ2ys and therefore the vector in (1.91) is multivariate normally distributed

with mean vector zero and variance matrix M2s or alternatively, Bn(s) has

the asymptotic distribution of M
1/2
2 W2(s) where W2(s) = [W 1

2 (s),W
2
2 (s)]

′

is standard Brownian motion in two dimensions. Consequently, as xt−1 =

√
β0
∑⌊ns⌋−1

k=1 ek for t/n ≤ s < (t+ 1)/n

A11
n (s) =

xt−1√
β0

√
n
=

1√
n

⌊ns⌋−1
∑

k=1

ek
D→W 1

2 (s) (1.96)
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and then by the continuous mapping theorem

A32
n (s) =

x2t−1

2β0n
=

1

2





1√
n

⌊ns⌋−1
∑

k=1

ek





2

D→ 1

2

[

W 1
2 (s)

]2
. (1.97)

Indeed, (An, Bn)
D→ (A,B) and we may apply Lemma 3 to obtain the joint

limiting distribution of (An, Bn,
∫ 1
0 AndBn) where G

−1/2
n Sn(θ0) converges in

distribution to

S =

∫ 1

0
A(s)dB(s) =

∫ 1

0
A(s)M

1/2
2 dW2(s)

=













∫ 1
0 W

1
2 (s)dW

1
2 (s)

µ3

2β0

∫ 1
0 dW

1
2 (s) +

√
µ4−µ2

3−1

2β0

∫ 1
0 dW

2
2 (s)

µ3

2

∫ 1
0

[

W 1
2 (s)

]2
dW 1

2 (s) +

√
µ4−µ2

3−1

2

∫ 1
0

[

W 1
2 (s)

]2
dW 2

2 (s)













=













∫ 1
0 W

1
2 (s)dW

1
2 (s)

µ3

2β0
W 1

2 (1) +

√
µ4−µ2

3−1

2β0
W 2

2 (1)

µ3

2

∫ 1
0

[

W 1
2 (s)

]2
dW 1

2 (s) +

√
µ4−µ2

3−1

2

∫ 1
0

[

W 1
2 (s)

]2
dW 2

2 (s)













. (1.98)

as n → ∞. Finally, from equations (1.76), (1.78), (1.79), (1.86), (1.87),

and (1.96) we see that Y 11
n , Y 32

n , and Y 33
n converge in distribution to

Y 11 =

√

∫ 1

0

[

W 1
2 (s)

]2
ds (1.99)

Y 32 =
1√
2

∫ 1

0

[

W 1
2 (s)

]2
ds (1.100)

Y 33 =

√

1

2

∫ 1

0

[

W 1
2 (s)

]4
ds− 1

2

[∫ 1

0

[

W 1
2 (s)

]2
ds

]2

, (1.101)
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respectively and hence, Yn weakly converges to

Y =













√
J2 0 0

0 1√
2β0

0

0 1√
2
J2

√

1
2

(

J4 − J2
2

)













(1.102)

where Jk =
∫ 1
0

[

W 1
2 (s)

]k
ds. We have shown that [G

−1/2
n Sn(θ0), Yn] jointly

converge to (S, Y ) as n → ∞ where S and Y are given above and therefore,

assumption (1.18) of Lemma 1 is verified. Finally, to show that assump-

tion (1.19) is satisfied we require several partial results concerning conver-

gence and stochastic boundedness which are derived in advance. In assump-

tion (1.19), the supremum is taken over θ ∈ Nn(A) where from equation (1.16)

for the neigborhood

Nn(A) = {θ : ᾱ2n2 + (β − β0)
2n+ λ2n3 ≤ A2} (1.103)

with A > 0. Hence, ᾱ2n2 ≤ A2, (β − β0)
2n ≤ A2, and λ2n3 ≤ A2 implying

|ᾱ| ≤ A/n, |β − β0| ≤ A/
√
n, and λ ≤ A/n3/2, respectively. Translated

into Landau notation, we have ᾱ = OP (1/n), β − β0 = OP (1/
√
n), and λ =

OP (1/n
3/2). We choose n large enough such that A/

√
n ≤ β0/2. Then,

|β−β0| ≤ A/
√
n implying β−β0 ≥ −A/√n results in β ≥ β0/2. As σ

2
t = β+

λx2t−1 ≥ β, we obtain σ2t ≥ β0/2. The variances of xt−1, x
2
t−1, x

3
t−1, and x

4
t−1

are growing at the rates t, t2, t3, and t4, respectively. Consequently, xt−1, x
2
t−1,

x3t−1, and x4t−1 are bounded in probability with max1≤t≤n |xt−1| = OP (
√
n),

max1≤t≤n x
2
t−1 = OP (n), max1≤t≤n |x3t−1| = OP (n

3/2), and max1≤t≤n x
4
t−1 =
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OP (n
2). Furthermore,

σ2t − β0 = β − β0 + λx2t−1

= OP

(

1√
n

)

+OP

(

1

n3/2

)

OP (n)

= OP

(

1√
n

)

= oP (1) (1.104)

implying σ4t −β20 = oP (1) and σ
6
t −β30 = oP (1) by the rules of limit calculation

and we also use

β − e2ᾱβ0 = β0 − e2ᾱβ0 + β − β0

=
(

1− e2ᾱ
)

β0 + (β − β0)

= OP (1− C1/n) +OP (1/
√
n)

= oP (1) (1.105)

where C > 0 does not depend on n and ᾱ = OP (1/n) to derive

σ2t − e2ᾱβ0 = β − e2ᾱβ0 + λx2t−1

= oP (1) +OP

(

1

n3/2

)

OP (n)

= oP (1) +OP

(

1√
n

)

= oP (1). (1.106)

By the same reasoning, we obtain β − eᾱβ0 = oP (1), β − eᾱ/2β0 = oP (1),

β − eᾱ/3β0 = oP (1), and β − e2ᾱ/3β0 = oP (1) and then σ2t − eᾱβ0 = oP (1)

implying σ4t − e2ᾱβ20 = oP (1) by the rules of limit calculation, σ4t − eᾱβ20 =

oP (1), σ
6
t −eᾱβ30 = oP (1), and σ

6
t −e2ᾱβ30 = oP (1), respectively. The argument
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of the supremum in assumption (1.19) is a symmetric matrix equal to

∣

∣

∣G−1/2
n [Fn(θ)−Fn(θ0)]G

−1/2
n

∣

∣

∣

=













|F11
n (θ)−F11

n (θ0)|
n2

|F12
n (θ)−F12

n (θ0)|
n2

|F13
n (θ)−F13

n (θ0)|
n2

|F21
n (θ)−F21

n (θ0)|
n2

|F22
n (θ)−F22

n (θ0)|
n2

|F33
n (θ)−F33

n (θ0)|
n3













(1.107)

where we calculate the limit element by element. So for the (1, 1) element, we

have

1

n2

∣

∣F11
n (θ)−F11

n (θ0)
∣

∣

=
1

n2

∣

∣

∣

∣

∣

n
∑

t=1

(

e2ᾱ

σ2t
− 1

β0

)

x2t−1 +

n
∑

t=1

(

et√
β0

− eᾱêt
σt

)

xt−1

∣

∣

∣

∣

∣

≤ 1

n2

n
∑

t=1

∣

∣

∣

∣

e2ᾱ

σ2t
− 1

β0

∣

∣

∣

∣

∣

∣x2t−1

∣

∣+
1

n2

n
∑

t=1

∣

∣

∣

∣

et√
β0

− eᾱêt
σt

∣

∣

∣

∣

|xt−1| (1.108)

where in the first sum

∣

∣

∣

∣

e2ᾱ

σ2t
− 1

β0

∣

∣

∣

∣

=

∣

∣e2ᾱβ0 − σ2t
∣

∣

σ2t β0

≤ 2
∣

∣e2ᾱβ0 − σ2t
∣

∣

β20
= oP (1) (1.109)
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uniformly in 1 ≤ t ≤ n and in the second sum

∣

∣

∣

∣

et√
β0

− eᾱêt
σt

∣

∣

∣

∣

=

∣

∣σtet −
√
β0e

ᾱêt
∣

∣

√
β0σt

=

∣

∣σ2t
√
β0et − β0e

ᾱσtêt
∣

∣

β0σ2t

=

∣

∣σ2t (xt − xt−1)− β0e
ᾱ(xt − eᾱxt−1)

∣

∣

β0σ2t

=

∣

∣(σ2t − β0e
ᾱ)xt + (β0e

2ᾱ − σ2t )xt−1

∣

∣

β0σ2t

≤
∣

∣σ2t − β0e
ᾱ
∣

∣

β0σ
2
t

|xt|+
∣

∣β0e
2ᾱ − σ2t

∣

∣

β0σ
2
t

|xt−1|

≤ 2
∣

∣σ2t − β0e
ᾱ
∣

∣

β20
|xt|+

2
∣

∣β0e
2ᾱ − σ2t

∣

∣

β20
|xt−1| = oP (

√
n) (1.110)

uniformly in 1 ≤ t ≤ n. Therefore, we obtain

1

n2

∣

∣F11
n (θ)−F11

n (θ0)
∣

∣ ≤ 1

n
OP (1) +

1

n
OP (1) = oP (1) (1.111)

and move on to the (1, 2) element

1

n3/2

∣

∣F12
n (θ)−F12

n (θ0)
∣

∣

=
1

n3/2

∣

∣

∣

∣

∣

n
∑

t=1

(

eᾱêt
σ3t

− et

β
3/2
0

)

xt−1

∣

∣

∣

∣

∣

≤ 1

n3/2

n
∑

t=1

∣

∣

∣

∣

∣

eᾱêt
σ3t

− et

β
3/2
0

∣

∣

∣

∣

∣

|xt−1| (1.112)
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where

∣

∣

∣

∣

∣

eᾱêt
σ3t

− et

β
3/2
0

∣

∣

∣

∣

∣

=

∣

∣

∣β
3/2
0 eᾱêt − σ3t et

∣

∣

∣

σ3t β
3/2
0

=

∣

∣β20e
ᾱσtêt − σ4t

√
β0et

∣

∣

σ4t β
2
0

=

∣

∣β20e
ᾱ(xt − eᾱxt−1)− σ4t (xt − xt−1)
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uniformly in 1 ≤ t ≤ n and thus
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For the (1, 3) element, we have
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and the result follows immediately
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OP (1) = oP (1) (1.116)
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by using equation (1.113). The (2, 2) element is equal to
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where in the first sum
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uniformly in 1 ≤ t ≤ n where in the penultimate row, we utilize some

information about the convergence rates of the numerators, starting with

σ2t = β0 + OP (1/
√
n) from equation (1.104). Raising both sides to the

third power yields σ6t − β30 = OP (1/
√
n). σ6t − eᾱβ30 = oP (1) is calcu-

lated using β − eᾱ/3β0 = oP (1) as in the similar case elaborated in equa-

tions (1.105) and (1.106). For all C, there exists some n′ such that for all
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n ≥ n′, β − β0 converges more slowly to zero than the exponential part, i.e.

β − eᾱ/3β0 = OP (1/
√
n). That is, |1/√n| > |1 − C1/n| holds for all values of

C > 0 from a certain n′ on. By the same reasoning, β30e
2ᾱ − σ6t = OP (1/

√
n).

And in the second sum
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uniformly in 1 ≤ t ≤ n and therefore
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Then, we have for the (2, 3) element
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where we make use of equations (1.118) and (1.119). And finally, for the (3, 3)
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where we apply the results of equations (1.118) and (1.119) again such that

assumption (1.19) of Lemma 1 is verified. We may now apply Lemma 1 to

prove Theorem 1 by pre-multiplying S = (S1, S2, S3)′ in equation (1.98) by

the inverse of Y in equation (1.102)
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By the conclusion in (1.21), we see that
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as n→ ∞ where
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by using Itô’s formula in the numerator and
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after some cancellations and the proof of Theorem 1 is completed.

1.4 Size and Power Simulations

To evaluate the finite-sample performance of the test statistic in (1.15), we

calculate critical values and run some size and power experiments. Starting

values for ᾱ are obtained by regressing observations xt on xt−1 without in-

tercept and taking the log of the least squares estimate. Then we regress

the squared residuals from the first regression on an intercept and x2t−1 and

save the respective least squares estimates, β̂ and λ̂, as starting values for β

and λ. We substitute 10−6 for non-positive estimates of eᾱ, β, and λ. Val-

ues of β and λ are restricted to (0,∞) and [0,∞), respectively. That is, we
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simulate 100000 series of the null model of a random walk generated by the

cumulative sum of independent N(0, 1) random variables for each sample size

n = 50, 100, 250, 500, 1000 and estimate the critical values from the empiri-

cal distribution function. For comparison, we provide estimates from 100000

replications of the asymptotic quantiles derived from the limiting distribution

in (1.50) to (1.52) where we assume et ∼ N(0, 1), i.e. µ3 = 0 and µ4 = 3. Then

we make use of the following discrete-time approximation

W i
2(s) ≈

1√
n

⌊ns⌋
∑

t=1

eit (1.127)

for i = 1, 2 and n = 100000 where the independent N(0, 1) random variables

e1t and e2t are assumed to be mutually independent. Integrals over and with

respect to Brownian motion are approximated by Riemann sums

∫ 1

0

[

W 1
2 (s)
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n
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W 1
2 (s)
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for j = 2, 4 and

∫ 1

0

[

W 1
2 (s)

]2
dW 2

2 (s) ≈
1−1/n
∑

s=0

[

W 1
2 (s)

]2
∆FW

2
2 (s) (1.129)

where ∆F denotes forward differences. Table 1.1 presents the critical values

corresponding to the 10%, 5%, and 1% level of significance for each sample

size. The suggested procedure to receive starting values works quite well in

case of a random walk. To ensure the global maximum of the log-pseudo-

likelihood to be found in the size and power simulations below, we consider

a more expensive approach where each sample is estimated five times. In a

first run, the least squares estimates from above, β̂ and λ̂, serve as starting

values. In the course of the next four runs, we draw initial values for β and
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Significance level
n 10% 5% 1%

50 3.604 4.866 7.859
100 3.680 4.989 7.955
250 3.814 5.109 8.150
500 3.854 5.144 8.218
1000 3.939 5.243 8.379
∞ 4.043 5.388 8.605

Table 1.1: Critical values.

λ from LN(log(β̂), 100) and LN(log(λ̂), 100), respectively, where the medians

of the log-normal distributions correspond to the least squares estimates. The

same initial value of β is used in estimation under the null and under the

alternative. As eᾱ is consistently estimated by least squares, the respective

starting values are used in all five runs. The procedure is quite time-consuming

but worthwhile, so we limit the number of replications to 1000. Again, β and

λ are restricted to (0,∞) and [0,∞), respectively. As the critical values of the

STUR test for sample sizes 50 to 1000 are very close to each other, we restrict

our experiments to the sample size 250 and use the same critical values at the

5% level as Granger and Swanson (1997) for the DF/ADF and LMT/ALMT

test, namely −1.95 and 0.168, respectively. For the STUR test, the 95%

quantile is given in Table 1.1. We start with the size experiments where we

compare the results of five different test statistics. Like Granger and Swanson

(1997), we consider DF and ADF test of the null of a fixed unit root versus a

stationary alternative using the t-statistic of ψ of the regression

∆xt = ψxt−1 +

p′
∑

i=1

ϕi∆xt−i + ǫt (1.130)

where the number of lagged differences p′ = ⌊12(n/100)0.25⌋ − 1 is selected

according to Schwert (1989) with p′ = 0 in the DF test. We also apply LMT
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and ALMT test of the null of a fixed versus the alternative of a stochastic unit

root given by the statistic

Ẑn =
1

n3/2σ̂2ǫ κ̂
2

n
∑

t=p′′+3





t−1
∑

j=p′′+2

ǫ̂j





2

(

ǫ̂2j − σ̂2ǫ
)

(1.131)

obtained from

∆xt = γ0 + γ1t+

p′′
∑

i=1

ϕi∆xt−i + ǫt (1.132)

where σ̂2ǫ = (1/n)
∑n

t=p′′+2 ǫ̂
2
t and κ̂2 = (1/n)

∑n
t=p′′+2(ǫ̂

2
t − σ̂2ǫ )

2 with p′′ = 0

in the LMT test. As suggested by Leybourne et al. (1996), we include p′′ = 5

lagged differences in the ALMT test. Then we simulate 1000 series of length

250 of an ARIMA(0,1,1) process

xt = xt−1 + et + θet−1 (1.133)

with θ = −0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8 and et ∼ N(0, 1). Rejection

frequencies are summarized in Table 1.2. In case of strong positive correlation,

θ
Test -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

DF 0.951 0.618 0.306 0.137 0.046 0.012 0.011 0.005 0.008
ADF 0.046 0.033 0.051 0.043 0.049 0.038 0.053 0.045 0.039
LMT 0 0 0.003 0.031 0.06 0.083 0.148 0.163 0.168
ALMT 0.011 0.062 0.083 0.093 0.083 0.075 0.076 0.075 0.074
STUR 0.935 0.57 0.281 0.108 0.053 0.045 0.076 0.08 0.077

Table 1.2: Size in presence of serial correlation.

i.e. a negative MA coefficient of large modulus, DF and STUR strongly over-

reject the null hypothesis whereas the LMT test performs weakly in presence

of negative correlation. Using lagged differences in the ADF and ALMT test
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works to shift the empirical sizes close to their nominal values. For θ = 0,

rejection frequencies of all tests are almost equal to 5% except for ALMT

where the nominal size is exceeded by about two percentage points. Although

Leybourne et al. (1996) show in their Theorem 1 that the limiting distribution

of Ẑn is not affected by the number of lagged differences, severe differences

in critical values may appear in finite samples. To illustrate this, we simulate

critical values for 250 observations by generating 10000 replications, yielding

95% quantiles for LMT and ALMT with p′′ = 5 of 0.178 and 0.204, respec-

tively. Thus, the size of ALMT in Table 1.2 is overestimated with the critical

value of 0.168 too low. Accounting for this effect, the nominal size of the

ALMT test can be preserved. Next, we may study the absolute and relative

power performance of the STUR test where we compare the results of three

different test statistics. As the STUR test lacks the opportunity of augment-

ing, we skip this step here for reasons of comparison and report results for DF

and LMT test only. First, we simulate 1000 series of length 350 of a stationary

AR(1) process without intercept

xt = φxt−1 + et (1.134)

where φ = 0.8, 0.9, 0.95, 0.975, 0.99, 0.995, σt = 1 for all t, and et independent

N(0, 1) errors in equation (1.11) and drop the first 100. Results are shown

in Table 1.3. The STUR test really competes with the DF test for φ ≤ 0.9,

φ
Test 0.8 0.9 0.95 0.975 0.99 0.995

DF 1 1 0.911 0.497 0.183 0.101
LMT 0 0.002 0.01 0.046 0.049 0.061
STUR 1 1 0.782 0.341 0.131 0.083

Table 1.3: Power against stationary alternatives.
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showing moderate relative declines for coefficient values close to the unit root.

Clearly, as the LMT test assumes any kind of unit root both under the null

as under the alternative, we are not surprised by its weak performance. Next,

we may study the power against STUR processes with a stochastic unit root,

i.e. we consider the model class outlined in equations (1.1) to (1.3) with the

mean of at equal to one. 1000 series of length 250 are simulated where we

choose ρ = 0.6, σ2η = 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, and σ2ε = 100σ2η as in

Granger and Swanson (1997), the intercept µ of the coefficient process αt is set

such that E[at] = 1. Obviously, the STUR test has power against stochastic

σ2η
Test 0.00001 0.0001 0.001 0.01 0.1 1

DF 0.042 0.048 0.042 0.114 0.967 0.991
LMT 0.051 0.06 0.161 0.644 0.928 0.862
STUR 0.045 0.055 0.308 0.971 1 1

Table 1.4: Power against STUR processes with E[at] = 1.

unit root processes. As ρ = const., an increase in σ2η implies an increase in

σ2α and thus in V ar[at] = (eσ
2
α − 1)E2[at] where E[at] = 1. So more frequent

rejections are related to stronger coefficient variation. The AR-ARCH test

outperforms DF and LMT for all values of σ2η . Increasing the sample size to

500 strongly improves the power performance of LMT and STUR resulting in

rejection frequencies for σ2η = 0.001 of 0.331 and 0.692, respectively. STUR

processes allow for both stationary and explosive regimes. Particularly, the

probability of a unit root (at = 1 for a certain t) is equal to zero. This is

true for STUR processes with E[at] = 1 (stochastic unit root) as well as for

STUR processes with E[at] < 1. So we repeat the experiments summarized

in Table 1.4 for the case where E[at] = 0.99. The results in Table 1.5 come

quite close to those in Table 1.4 with some improvements in DF. It seems to

be more illustrating to compare the results with Table 1.3, column 6 where
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σ2η
Test 0.00001 0.0001 0.001 0.01 0.1 1

DF 0.167 0.134 0.155 0.246 0.972 0.998
LMT 0.064 0.037 0.113 0.561 0.916 0.863
STUR 0.112 0.088 0.217 0.948 1 1

Table 1.5: Power against STUR processes with E[at] = 0.99.

φ = 0.99 but σ2η = 0. In the STUR simulations σ2ε = 100σ2η is scaled whereas

in the stationary series with σ2ε = 1 it is not. That is, given power is non-

sensitive to scaling in near unit-root cases sufficient coefficient variation may

increase the rejection performance. Finally, we study the sensitivity of power

results with respect to the parameter of coefficient correlation ρ. For this

purpose, we fix σ2η = 0.001 and assume ρ = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99.

Therefore, as ρ increases σ2α = σ2η/(1 − ρ2) increases as well and V ar[at] goes

up. Again, a stronger coefficient variation results in higher power as reported

in Table 1.6. The variance of at is a function in σ2α and thus in ρ2, so the

ρ
Test 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99

DF 0.054 0.059 0.063 0.05 0.064 0.063 0.096 0.492
LMT 0.113 0.114 0.131 0.159 0.253 0.395 0.529 0.849
STUR 0.218 0.226 0.267 0.315 0.512 0.73 0.904 1

Table 1.6: Power against STUR processes with different degrees of coefficient
correlation.

rejection frequencies in Table 1.6 are symmetric around ρ = 0.

1.5 Application

We apply the new unit-root test to survey-based, seasonally-adjusted, monthly

data on unemployment rates of 10 countries provided by the OECD: Australia,
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Brazil, Canada, Chile, Finland, Japan, Mexico, Sweden, UK, and US. We test

for the null of a unit root in 250 demeaned observations ranging from May

1989 to February 2010 and report the results of DF, LMT, and STUR in

Table 1.7. Autocorrelation and partial autocorrelation functions of the most

unemployment series call for AR(1) models. To find the global maximum

of the log-pseudo-likelihood function, we use starting values produced by the

same procedure as in the size and power simulations above for different values

of the variance parameters of the log-normal distributions. Critical values

at the 1%, 5%, 10% level are equal to −2.58, −1.95, −1.62 for DF (Fuller,

1976, 373), 0.289, 0.168, 0.122 for LMT (Granger and Swanson, 1997), and

8.150, 5.109, 3.814 for STUR (see Table 1.1), respectively. Assuming now

Country DF LMT STUR

Australia −0.617 0.303∗∗∗ 0.382
Brazil −2.279∗∗ 0.008 5.159∗∗

Canada −1.023 0.904∗∗∗ 6.472∗∗

Chile −2.063∗∗ 0.018 4.237∗

Finland −2.355∗∗ 6.032∗∗∗ 10.577∗∗∗

Japan −1.088 0.092 1.185
Mexico −1.816∗ 0.610∗∗∗ 15.288∗∗∗

Sweden −1.906∗ 0.280∗∗ 3.623
UK −0.254 −0.040 0.065
US 1.589 0.113 8.809∗∗∗
∗, ∗∗, ∗∗∗ denotes significance at the 10%, 5%, 1% level.

Table 1.7: Unit-root tests.

that the data are generated by a stochastic process considered in Section 1.4

except for some variance scaling, we make use of the following simulation

results: Given that unemployment is well represented by an ARIMA(0,1,1)

process with negative MA coefficient or an AR(1) process, a rejection by the

DF test may correspond to a rejection by the STUR test and vice versa. By

the same reasoning, if unemployment is generated by a STUR process and
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the LMT test rejects the null, the STUR test may reject as well. Thus, the

results in Table 1.7 might provide some evidence in favor of the random walk

hypothesis for Australia, Chile, Japan, Sweden, and the UK, however, for

Canada, Finland, Mexico, and the US, STUR seems to be an appropriate

model. Particularly for Finland, Mexico, and the US, the null is strongly

rejected by the STUR test, in case of Finland and Mexico this is also supported

by LMT. By estimating ARIMA(0,1,1), we find that this model also applies

to the Canadian data with a positive MA coefficient whereas for Australia,

Mexico, and Sweden obtaining negative MA coefficients, we may abstain from

ARIMA(0,1,1). To model Brazilian unemployment, either ARIMA(0,1,1) with

a negative MA coefficient or AR(1) can be possible alternatives. Clearly, the

simulations in Section 1.4 are based on a great many of replications, so this

interpretation of the test results in Table 1.7 must be handled with care.

A more reliable analysis requires fitting the respective models to the data,

generating a large number of replications based on these models and simulating

the distributions of the individual test statistics.

1.6 Conclusions

This work considers a new unit-root test based on the pseudo-likelihood ra-

tio statistic of an AR(1)-ARCH(1) model under the null of a random walk.

Under the alternative, the autoregressive coefficient is restricted to positive

values whereas the remaining parameters are completely flexible. The lim-

iting distribution is derived and depends on the third and fourth moments

of the i.i.d. errors. So critical values have to be simulated according to the

moments estimated in advance. Klüppelberg et al. (2002) note that the high
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quantiles are strongly affected by the peaks of the series, as the resulting dis-

tribution is a heavy-tailed. Rather than to estimate critical values directly

from the empirical distribution function, they suggest to use methods offered

by extreme value theory and refer to Borkovec (2000). Due to the strong

sensitivity to starting values, finding the maximum of the pseudo-likelihood

function is quite time-consuming. Using consistent estimates obtained from

an alternative procedure to initialize the algorithm may shorten the operat-

ing time substantially. That is, new methods in estimating AR(1)-ARCH(1)

models are welcome.

Monte Carlo experiments provide evidence that the STUR test has power

against stationary AR(1) processes and comes quite close to the performance

of the DF test. However, as in the DF test, in presence of serial correlation its

nominal size cannot be maintained. Future work may consider a test statistic

allowing for more general STUR models concerning a higher lag order as well

as dependent errors. The STUR test has strong power against STUR alter-

natives compared to the LMT test. It does not assume any kind of unit root

to be present in the data-generating process which seems to be more realistic,

particularly, as STUR models with coefficient mean equal to one do not dif-

fer qualitatively from those with coefficient mean less than one. In near-unit

root cases, some coefficient variation may suffice to reject the random walk.

Applying the ALMT test with five lagged differences, we report some overre-

jection and recommend to simulate separate critical values for each lag order.

Otherwise, the null is rejected too often. In general, the power performance

improves with the degree of coefficient variation, either driven directly or by

coefficient correlation.

To sum up, we have constructed a new unit-root test which outperforms the
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1 Testing for Unit Roots Using the AR-ARCH Structure of STUR Models

LMT test in presence of STUR alternatives, especially in case of small co-

efficient variation, and it also has power against stationary processes as the

conventional unit-root tests. A final application of DF, LMT, and STUR test

to unemployment rates provides some evidence that the majority of the series

is generated by nonstationary processes. For some of them, the STUR process

seems to be an attractive alternative to the random walk.
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2 Fitting STUR Models to

Unemployment – Evaluation of a

new Unit-Root Test

2.1 Introduction

In the present study, a new unit-root test having power against so-called

stochastic unit-root (STUR) models introduced in Holl (2013a) is evaluated.

For this reason, STUR models are fitted to ten series of unemployment rates

tested in Holl (2013a) to look whether the results of the estimations corre-

spond to the decisions of the test. We estimate the STUR model presented in

Granger and Swanson (1997)

ut = atut−1 + εt (2.1)

where at = eαt and

αt = µ+ ραt−1 + ηt (2.2)

Not submitted.
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2 Fitting STUR Models to Unemployment

with |ρ| < 1, εt ∼ N(0, σ2ε ), ηt ∼ N(0, σ2η) and ηt independent of εt. That is,

at follows a log-normal distribution with mean

E[at] = em+σ2
α/2 (2.3)

and variance

V ar[at] = (eσ
2
α − 1)e2m+σ2

α (2.4)

where m = µ/(1 − ρ) and σ2α = σ2η/(1 − ρ2). To estimate the parameters in

equations (2.1) and (2.2), Granger and Swanson (1997) consider two strate-

gies: approximate maximum likelihood (AML) as discussed in Guyton et al.

(1986) and approximate minimum sum squares (AMSS). Only AML performs

successful in simulations under certain conditions. Effects resulting from a ran-

domization parameter in use are not that clear. Estimates are fairly imprecise

for smaller values of σ2η . For both AML and AMSS asymptotic behavior is still

unsolved. In course of the present paper, STUR models are fitted to unem-

ployment rates. Problems arise as the coefficient process is unobserved. Thus,

we apply the Bayesian approach developed in Jones and Marriott (1999) to

overcome that issue. In particular, Bayesian estimation allows for simulation

of the distribution of the coefficient process. That is, on the one hand a STUR

model can be fitted and on the other hand its ‘distance’ to a stationary AR(1)

or random walk model can be evaluated by studying the resulting coefficient

distribution in terms of e.g. mean, variance and symmetry.

The stochastic unit-root (STUR) model introduced by Granger and Swanson

(1997) considers the autoregressive model of order one (AR(1)) where the co-

efficient is allowed to vary around a constant mean. That is, the resulting
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2.2 Motivation

process may behave stationary for some periods and explosive for others. In

case of a stochastic unit root, the respective coefficient mean is equal to one.

Compared to a fixed unit-root process where the first differences are stationary,

a STUR process having a stochastic unit root cannot be differenced to sta-

tionarity. However, conventional cointegration and error-correction techniques

rely on the assumption of difference stationarity, calling for being careful in

advance.

In Section 2.2, the relevance of STUR models in economics is motivated using

the example of unemployment rates. Then, in Section 2.3, we have a look

at the unit-root test results on unemployment rates reported in Holl (2013a).

There, a new test of the null hypothesis of a unit root is introduced which

i.a. has power against STUR models. To evaluate the results, we fit STUR

models to the unemployment series by using Bayesian techniques discussed in

Section 2.4. Diagnostics used to ensure convergence are introduced in Sec-

tion 2.5. Estimation results are presented in Section 2.6. As the Bayesian

procedure is quite time-consuming, we consider an alternative rough estima-

tor in Section 2.7. Finally, we may draw some conclusions on whether STUR

is adequate to model unemployment rates.

2.2 Motivation

Unfortunately, there is little economic theory resulting in fixed unit-root pro-

cesses or STUR processes with a stochastic unit root. Granger and Swanson

(1997) refer to Hall (1978) who is testing the life cycle-permanent income hy-

pothesis by using the regression ct = λtct−1 + εt where λt = λ is a function

of the rate of subjective time preference, the real rate of interest and the
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2 Fitting STUR Models to Unemployment

elasticity of marginal utility which are assumed constant over time. λ = 1

is associated with a fixed unit root corresponding to the life cycle-permanent

income hypothesis. In contrast, by allowing the real rate of interest to change

over time such that λt is varying around a mean equal to one, a stochastic

unit root will appear.

To discriminate between the natural-rate and the hysteresis hypothesis in un-

employment, Phelps and Zoega (1998) discuss the estimation of the regression

ut = u∗t (Sj) + β[ut−1 − u∗t (Sj)] + εt(Sj) (2.5)

where Sj denotes different states of the world corresponding to aggregate sup-

ply, 0 ≤ β ≤ 1 serves as a measure of persistence and εt is independent and

identically distributed (i.i.d.) with mean 0 and variance σ2ε(Sj). For β < 1,

unemployment is stationary around its respective means u∗t (Sj), for β = 1

unemployment follows a random walk, the intercept term vanishes. Explosive

regimes where β > 1 are excluded a priori. We either have to opt for a sta-

tionary or a difference-stationary regime and nothing in between. However,

given that the natural rate of unemployment depends on past unemployment

rather than on different states of the world, such that

u∗t = φ0 + φ1ut−1 (2.6)

we obtain

ut = (1− β)φ0 + [(1− β)φ1 + β]ut−1 + εt (2.7)

by substituting the right-hand side of equation (2.6) for u∗t (Sj) in equa-
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tion (2.5) and therefore β, the measure of persistence, is not identified any-

more.

Alternatively, we may depart from the accelerationist Phillips curve as sup-

ported by Friedman (1968)

πt = πt−1 + γ(ut − u∗). (2.8)

where u∗ is determined by supply-side factors. In contrast to Friedman, we

allow the natural rate of unemployment to depend on past unemployment and

thus on aggregate demand too which is transmitted by a certain hysteresis

mechanism

u∗t = st + atut−1 (2.9)

where changes due to aggregate supply and/or a more sophisticated demand

structure are caught by st and may vary over time as well. Ball (2009),

thoroughly studying the empirics of unemployment and its natural rate, notes

that changes in u sometimes cause changes in u∗ and sometimes do not. He

describes the hysteresis mechanism as one depending on the past history of u∗

and the length of time that u is pushed away from u∗. To somehow capture

this behavior, we allow for a random coefficient at which may be correlated

over time. By substituting u∗t in equation (2.9) for u∗ in equation (2.8), we

obtain

ut = atut−1 + εt (2.10)
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2 Fitting STUR Models to Unemployment

assuming

εt =
πt − πt−1

γ
+ st (2.11)

to be i.i.d.(0, σ2ε ) such that the STUR model by Granger and Swanson (1997)

can be applied. To gain some knowledge about the supply-side influences on

the natural rate, the residuals of the STUR model can be studied afterwards.

STURmodels allow for stationary and explosive regimes (and the random walk

in between) corresponding to the random autoregressive coefficient which may

be correlated over time. That is, apart from the natural rate itself regimes are

path-dependent.

2.3 Unit-Root Tests

We consider the results of the tests for the null of a unit root in 250 de-

meaned observations ranging from May 1989 to February 2010 presented in

Holl (2013a). Test statistics from Dickey and Fuller (1979) (DF), Leybourne

et al. (1996) (LMT), and Holl (2013a) (STUR) are calculated for survey-

based, seasonally-adjusted, monthly data on unemployment rates for Aus-

tralia, Brazil, Canada, Chile, Finland, Japan, Mexico, Sweden, UK, and US.

DF, LMT, and STUR all share the same null hypothesis of a fixed unit root.

DF and LMT test against a stationary alternative and a stochastic unit root,

respectively. The STUR test, however, based on the model given in equa-

tions (2.1) and (2.2) allows for both under the alternative. Under the null

hypothesis of a random walk, µ = 0 and σ2η = 0 and thus at is constant

and equal to one. µ < 0 and σ2η = 0 represents a stationary AR(1) model.

m+σ2α/2 = 0 and σ2η > 0 is associated with a stochastic unit root correspond-
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ing to E[at] = 1. Furthermore, the test has power against processes generated

by parameter values m + σ2α/2 < 0 and σ2η > 0. Results of DF, LMT, and

STUR are reported in Table 2.1. The STUR test rejects the null of a unit

Country DF LMT STUR

Australia −0.617 0.303∗∗∗ 0.382
Brazil −2.279∗∗ 0.008 5.159∗∗

Canada −1.023 0.904∗∗∗ 6.472∗∗

Chile −2.063∗∗ 0.018 4.237∗

Finland −2.355∗∗ 6.032∗∗∗ 10.577∗∗∗

Japan −1.088 0.092 1.185
Mexico −1.816∗ 0.610∗∗∗ 15.288∗∗∗

Sweden −1.906∗ 0.280∗∗ 3.623
UK −0.254 −0.040 0.065
US 1.589 0.113 8.809∗∗∗
∗, ∗∗, ∗∗∗ denotes significance at the 10%, 5%, 1% level.

Table 2.1: Unit-root tests.

root for Brazil, Canada, Finland, Mexico, and the US at least at the 5% level

of significance. Particularly for Canada, Finland, and Mexico, the LMT test

agrees with the STUR decision. According to simulations based on a great

many of replications in Holl (2013a), rejection by the STUR test in presence

of an ARIMA(0,1,1) process with negative MA coefficient or an AR(1) pro-

cess may correspond to rejection by DF and vice versa. Given that the true

process is STUR and the LMT test rejects the null, the STUR test may reject

as well. Thus, to evaluate the results in Table 2.1, we fit STUR models to the

respective series to decide whether a certain test may have rejected the null or

not. Stationary AR(1) and the random walk are nested in STUR. Estimated

coefficient variances close to zero indicate so-called fixed-coefficient processes.
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2.4 Bayesian Estimation

Parameters of the STUR model by Granger and Swanson (1997) as presented

in equations (2.1) and (2.2) are now estimated using Markov chain Monte

Carlo techniques. The vector of the parameters of interest is equal to

θ = (m,ρ, hε, hη)
′ (2.12)

where m = µ/(1 − ρ) is the mean of αt, hε = 1/σ2ε and hη = 1/σ2η represent

the respective error precisions. The vector including αt, t = 1, . . . , n is treated

as a vector of parameters as well.

Now the posterior densities given the data u and conditional on u1 and α1

can be calculated where we mainly follow Jones and Marriott (1999) except

for the prior specification. Corresponding to Yang and Leon-Gonzalez (2010),

we assume the parameters in equation (2.12) to be independent of each other

such that

p(θ) = p(m)p(ρ)p(hε)p(hη) (2.13)

where p(·) denotes the probability density function of the respective random

variable. In general, notation is due to Koop (2003). By using Bayes’ rule, we

obtain

p(θ, α|u) = p(m|θ−m, α, u)p(θ−m, α, u)

p(u)
=
p(u|α, θ)p(α|α−t, θ)p(θ)

p(u)
(2.14)

with u = (u1, u2, . . . , un)
′, α = (α1, α2, . . . , αn)

′ and thus α−t =

(α1, . . . , αt−1, αt+1, . . . , αn)
′ for a certain t, θ−m = (ρ, hε, hη)

′. The posterior
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density of m results in

p(m|θ−m, α, u) =
p(u|α, θ)p(α|α−t, θ)p(θ)

p(θ−m, α, u)

=
p(u|α, θ)p(α|α−t, θ)p(m)p(θ−m)

p(u|α, θ−m)p(α, θ−m)

∝ p(α|α−t, θ)p(m) (2.15)

as m is independent of θ−m, p(u|α, θ) = p(u|α, θ−m) and θ−m and α are given.

Analogous to equation (2.14),

p(θ, α|u) = p(ρ|θ−ρ, α, u)p(θ−ρ, α, u)

p(u)
=
p(u|α, θ)p(α|α−t, θ)p(θ)

p(u)
(2.16)

where θ−ρ = (m,hε, hη)
′. Hence, for the posterior of ρ we obtain

p(ρ|θ−ρ, α, u) =
p(u|α, θ)p(α|α−t, θ)p(θ)

p(θ−ρ, α, u)

=
p(u|α, θ)p(α|α−t, θ)p(ρ)p(θ−ρ)

p(u|α, θ−ρ)p(α, θ−ρ)

∝ p(α|α−t, θ)p(ρ) (2.17)

as ρ is independent of θ−ρ, p(u|α, θ) = p(u|α, θ−ρ) and θ−ρ and α are given.

We turn now to the calculation of the posterior densities of the error precisions

where

p(θ, α|u) = p(hε|θ−hε , α, u)p(θ−hε , α, u)

p(u)
=
p(u|α, θ)p(α, θ)

p(u)
(2.18)
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with θ−hε = (m,ρ, hη)
′ and thus

p(hε|θ−hε , α, u) =
p(u|α, θ)p(α, θ)
p(θ−hε , α, u)

=
p(u|α, θ)p(α, hε, θ−hε)

p(θ−hε , α, u)

=
p(u|α, θ)p(α, θ−hε |hε)p(hε)

p(θ−hε, α, u)

∝ p(u|α, θ)p(hε) (2.19)

as θ−hε , α and u are given. The posterior of hη derives from

p(θ, α|u) = p(hη |θ−hη , α, u)p(θ−hη , α, u)

p(u)
=
p(u|α, θ)p(α|α−t, θ)p(θ)

p(u)
(2.20)

with θ−hη = (m,ρ, hε)
′ and is equal to

p(hη |θ−hη , α, u) =
p(u|α, θ)p(α|α−t, θ)p(θ)

p(θ−hη , α, u)

=
p(u|α, θ)p(α|α−t, θ)p(hη)p(θ−hη)

p(u|α, θ−hη)p(α, θ−hη )

∝ p(α|α−t, θ)p(hη) (2.21)

as hη is independent of θ−hη , p(u|α, θ) = p(u|α, θ−hη ) and θ−hη and α are

given. And finally, the posterior of a certain αt may be calculated from

p(θ, α|u) = p(αt|θ, α−t, u)p(θ, α−t, u)

p(u)
=
p(u|α, θ)p(α, θ)

p(u)
(2.22)
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and results in

p(αt|θ, α−t, u) =
p(u|α, θ)p(α, θ)
p(θ, α−t, u)

=
p(u|α, θ)p(α|α−t, θ)p(θ)

p(θ, α−t, u)

∝ p(u|α, θ)p(α|α−t, θ) (2.23)

as θ, α−t and u are given. To calculate the full conditional densities in equa-

tions (2.15), (2.17), (2.19), (2.21), and (2.23), expressions for p(α|α−t, θ),

p(u|α, θ), and the prior densities of m, ρ, hε, and hη are required. As

ηt ∼ N(0, σ2η) and εt ∼ N(0, σ2ε ), the conditional density of αt is equal to

p(αt|αt−1, θ) =
1

√

2πσ2η

e
− 1

2

[αt−(µ+ραt−1)]
2

σ2
η

=
1

√

2πσ2η

e
− 1

2

[(αt−m)−ρ(αt−1−m)]2

σ2
η (2.24)

as µ = m(1− ρ) and the conditional density of ut results in

p(ut|αt, ut−1, θ) =
1

√

2πσ2ε
e
− 1

2

(ut−eαtut−1)
2

σ2
ε . (2.25)

By using equations (2.24) and (2.25), p(α|α−t, θ) and p(u|α, θ) can be ex-

pressed as products of Gaussian densities such that

p(α|α−t, θ) =

n
∏

t=2

p(αt|α−t, θ)

=
1

(√

2πσ2η

)n−1 e
− 1

2σ2
η

∑n
t=2[(αt−m)−ρ(αt−1−m)]2

(2.26)
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and

p(u|α, θ) =
n
∏

t=2

p(ut|αt, ut−1, θ)

=
1

(

√

2πσ2ε

)n−1 e
− 1

2σ2
ε

∑n
t=2(ut−eαtut−1)2

. (2.27)

Next, normal prior densities for m and ρ are specified, N(µ
m
, V m) and

N(µ
ρ
, V ρ) over |ρ| < 1, respectively, thus

p(m) =
1

√

2πV m

e
− (m−µ

m
)2

2V m (2.28)

and

p(ρ) =
1

C
√

2πV ρ

e
−

(ρ−µ
ρ
)2

2V ρ (2.29)

where |ρ| < 1, C denotes the normalizing constant over the restricted re-

gion. We choose Gamma prior densities for hε and hη, Gamma(αε, βε
) and

Gamma(αη, βη
), respectively, that is

p(hε) =
1

βαε
ε
Γ(αε)

h
αε−1
ε e

− hε
β
ε (2.30)

and

p(hη) =
1

βαη
η
Γ(αη)

h
αη−1
η e

− hη
β
η . (2.31)

Now the full conditional densities of m, ρ, hε, hη , and αt can be calculated.
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From equations (2.15), (2.26), and (2.28) follows

p(m|θ−m, α, u) ∝
1

(√

2πσ2η

)n−1 e
− 1

2σ2
η

∑n
t=2[(αt−m)−ρ(αt−1−m)]2 1

√

2πV m

e
− (m−µ

m
)2

2V m

∝ e
− 1

2σ2
η

∑n
t=2[(αt−m)−ρ(αt−1−m)]2

e
− (m−µ

m
)2

2V m

= e
− 1

2σ2
η

∑n
t=2[(αt−ραt−1)−m(1−ρ)]2

e
−m2

−2mµ
m

+µ2
m

2V m

hη
hη

= e−
hη
2

∑n
t=2[m(1−ρ)−(αt−ραt−1)]2e

−hη
2

m2
−2mµ

m
+µ2

m
hηV m

= e−
hη
2

∑n
t=2[m

2(1−ρ)2−2m(1−ρ)(αt−ραt−1)+(αt−ραt−1)2]

×e
−hη

2

(

m2

hηV m
− 2mµ

m
hηV m

+
µ2
m

hηV m

)

= e−
hη
2 [m

2(n−1)(1−ρ)2−2m(1−ρ)
∑n

t=2(αt−ραt−1)+
∑n

t=2(αt−ραt−1)2]

×e
−hη

2

(

m2

hηV m
− 2mµ

m
hηV m

+
µ2
m

hηV m

)

= e
−hη

2

{

m2
[

(n−1)(1−ρ)2+ 1
hηV m

]

−2m
[

(1−ρ)
∑n

t=2(αt−ραt−1)+
µ
m

hηV m

]}

×e
−hη

2

[

∑n
t=2(αt−ραt−1)2+

µ2
m

hηV m

]

∝ e
−hη

2

{

m2
[

(n−1)(1−ρ)2+ 1
hηV m

]

−2m
[

(1−ρ)
∑n

t=2(αt−ραt−1)+
µ
m

hηV m

]}

= e
− 1

2

(

m2

V m
−2m

µm
V m

)

(2.32)

where

V m =
1

hη

[

(n− 1)(1 − ρ)2 + 1
hηV m

] (2.33)

and

µm =
(1− ρ)

∑n
t=2(αt − ραt−1) +

µ
m

hηV m

(n− 1)(1 − ρ)2 + 1
hηV m

(2.34)
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are the variance and the mean of the normal full conditional distribution of

m, respectively. From equations (2.17), (2.26), and (2.29) follows

p(ρ|θ−ρ,α,u) ∝
1

(√

2πσ2η

)n−1 e
− 1

2σ2
η

∑n
t=2[(αt−m)−ρ(αt−1−m)]2

× 1

C
√

2πV ρ

e
−

(ρ−µ
ρ
)2

2V ρ
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where
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and
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V ρ

(2.37)

are the variance and the mean of the normal full conditional distribution of ρ,
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respectively. Combining equations (2.17), (2.26), and (2.29), results in
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t=2(ut − eαtut−1)2
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are the shape and the scale parameter of the Gamma full conditional distri-

bution of hε, respectively. Equations (2.21), (2.26), and (2.31) are used to

derive

p(hη |θ−hη , α, u) ∝
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where

αη = αη +
n− 1

2
(2.42)

and

βη =
1

1
β
η

+ 1
2

∑n
t=2[(αt −m)− ρ(αt−1 −m)]2

(2.43)

are the shape and the scale parameter of the Gamma full conditional distribu-

tion of hη, respectively. And finally, from equations (2.23), (2.26), and (2.27),

the following result can be calculated
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where for t = 2, . . . , n− 1
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and for t = n

p(αt|θ, α−t, u) ∝ e
−hεu

2
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2
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ut−1

)2

e−
hη
2
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2
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Results from equations 2.45 and 2.46 are equal except for the terms in the

exponents of the second exponential functions and can be expressed by one

equation

p(αt|θ, α−t, u) ∝ e
−hεu

2
t−1
2

(

eαt− ut
ut−1

)2

e−
hη
2
[α2

tϑ−2αtτ ] (2.47)

with ϑ = 1+ρ2 and τ = m(1−ρ)2+ρ(αt−1+αt+1) for t = 2, . . . , n−1 and ϑ = 1

and τ = m(1− ρ) + ραt−1 for t = n. Now the Gibbs sampler can be applied.

The variables m and ρ as well as hε and hη may be easily drawn from normal

and Gamma distributions, respectively. In case of αt, there is no standard

density function available. As suggested in Yang and Leon-Gonzalez (2010),

we use Independent Chain Metropolis-Hastings steps to sample αt where we

take candidate draws from the t-distribution with one degree of freedom. We

assume the same prior parameter values as Yang and Leon-Gonzalez (2010),

summarized in Table 2.2.
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2.5 Diagnostics

To test for the separate null hypotheses of m = 0, ρ = 0, σ2η = 0, and

σ2ε = 0, we make use of a central limit theorem addressing a function g of the

parameters of interest θ given the data u implying

1

NSE1
{ĝS1 − E[g(θ)|u]} → N(0, 1) (2.48)

as S1 goes to infinity where ĝS1 estimates g(θ|u) by averaging over S1 obser-

vations of the Markov chain. NSE1 denotes the numerical standard error of

ĝS1 and is equal to
√

f1(0)/
√
S1 where f1(0) is the spectrum at frequency zero

(see e.g. Koop, 2003, 65).

After running 100000 cycles, we drop the first S0 = 10000 observations to

ensure starting values have no effect anymore. The remaining S1 = 90000 are

used for estimation. Convergence is monitored by the convergence diagnostic

(CD) introduced in Geweke (1992). That is, we test for the null hypothesis of

equal means in the first 10% and the last 50% of the Markov chain by using

the following test statistic

CD =
ĝSA

− ĝSC

NSEA +NSEC
→ N(0, 1) (2.49)

as S1 goes to infinity where g is a function of the parameters of interest θ.

ĝSA
and ĝSC

are estimates of g corresponding to the first SA and the last SC

observations, respectively, with SA = 9000 and SC = 45000 in the present case.

Estimates are calculated as unweighted averages from the respective draws.

NSEA =
√

fA(0)/
√
SA and NSEC =

√

fC(0)/
√
SC denote the numerical

standard errors of ĝSA
and ĝSC

, respectively, where the variances are estimated
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2 Fitting STUR Models to Unemployment

by fA(0) and fC(0), that is by the spectra at frequency zero to take account

of serial correlation.

Parameter Selected Prior Values

m µ
m

= ln(0.9) V m = 0.01

ρ µ
ρ
= 1 V ρ = 0.1

hη αη = 1.5 β
η
= 2.5

hε αε = 1.1 β
ε
= 0.2

Table 2.2: Selected prior parameter values.

2.6 Results

Results for m, ρ, σ2η , and σ2ε are reported in Table 2.3. The parameters of

interest are estimated by the sample means of the respective Markov chains

after discarding the first S0 = 10000 cycles. To account for serial correlation,

numerical standard errors given in parenthesis are calculated using the spec-

trum at frequency zero f1(0). Estimates for all countries and all parameters

based on S1 = 90000 observations are significantly different from zero at any

reasonable level. As αt in equation (2.2) is normally distributed with mean

m and variance σ2α = σ2η/(1 − ρ2), at in equation (2.1) follows the log-normal

distribution with mean

E[at] = em+σ2
α/2 (2.50)

and variance

V ar[at] =
(

eσ
2
α − 1

)

e2m+σ2
α . (2.51)
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2.6 Results

By using the estimates for m, ρ, and σ2η , estimates of the mean and the

variance of the autoregressive coefficient can be derived, reported in columns

6 and 7 of Table 2.3. Obviously, the countries can be divided into two groups

corresponding to the size of V ar[at]. Australia, Canada, Finland, Japan,

and UK showing moderate dispersion and a coefficient mean close to one are

natural candidates either for a random walk or a STURmodel with a stochastic

unit root. For Swedish unemployment, a small coefficient variance is estimated

as well with a coefficient mean probably smaller than one. Thus, AR(1) or

STUR with a coefficient mean smaller than one are the relevant models. Brazil,

Chile, and Mexico seem to be well represented by STUR models, again with

a coefficient mean smaller than one. For the US, a STUR model with a

stochastic unit root might be an adequate decision. Alternatively, we may

Country m ρ σ2
η σ2

ε E[at] V ar[at]

Australia −0.01607∗∗∗ 0.21384∗∗∗ 0.01407∗∗∗ 0.08496∗∗∗ 0.99134 0.01460
(0.00033) (0.00328) (0.00004) (0.00010)

Brazil −0.06626∗∗∗ 0.38013∗∗∗ 0.02665∗∗∗ 0.24202∗∗∗ 0.95058 0.02860
(0.00086) (0.00535) (0.00015) (0.00029)

Canada −0.02377∗∗∗ 0.23436∗∗∗ 0.01663∗∗∗ 0.08555∗∗∗ 0.98514 0.01723
(0.00035) (0.00358) (0.00005) (0.00008)

Chile −0.06097∗∗∗ 0.55116∗∗∗ 0.02997∗∗∗ 0.17982∗∗∗ 0.96132 0.04065
(0.00091) (0.00248) (0.00015) (0.00022)

Finland −0.02168∗∗∗ 0.60667∗∗∗ 0.00938∗∗∗ 0.07759∗∗∗ 0.98584 0.01453
(0.00050) (0.00292) (0.00002) (0.00014)

Japan −0.02764∗∗∗ 0.23024∗∗∗ 0.01705∗∗∗ 0.06241∗∗∗ 0.98153 0.01750
(0.00053) (0.00309) (0.00006) (0.00006)

Mexico −0.07218∗∗∗ 0.32661∗∗∗ 0.03459∗∗∗ 0.10623∗∗∗ 0.94855 0.03552
(0.00106) (0.00584) (0.00020) (0.00006)

Sweden −0.04316∗∗∗ 0.17146∗∗∗ 0.02050∗∗∗ 0.18763∗∗∗ 0.96792 0.02000
(0.00050) (0.00501) (0.00008) (0.00015)

UK −0.01265∗∗∗ 0.27300∗∗∗ 0.01175∗∗∗ 0.06552∗∗∗ 0.99372 0.01262
(0.00038) (0.00334) (0.00004) (0.00009)

US −0.01682∗∗∗ 0.36532∗∗∗ 0.01902∗∗∗ 0.06886∗∗∗ 0.99418 0.02193
(0.00069) (0.00429) (0.00008) (0.00007)

∗, ∗∗, ∗∗∗ denotes significance at the 10%, 5%, 1% level.

Table 2.3: Bayesian estimates of the STUR model.

sample 10000 values of both m, ρ and σ2η from the simulated distributions and

estimate the density of E[at]. Density plots related to the degree of dispersion
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2 Fitting STUR Models to Unemployment

are displayed in Figures 2.1 and 2.2, respectively. Clearly, the variance of at

transmits to the variance of the mean of at. To control for convergence, CD

statistics for all countries and parameters are calculated. The null hypothesis

of sufficient convergence is not rejected at the 5% level of significance for

any case. In three cases, the null is rejected at the 10% level. Finally, we

Country m ρ σ2η σ2ε
Australia -0.16471 1.65892∗ -0.32284 -0.14614
Brazil -1.08425 0.37573 -0.43591 0.73211
Canada 1.65123∗ -0.53225 0.89991 0.47659
Chile -0.67347 -0.89615 -1.08460 0.50517
Finland 0.02720 0.17438 0.29621 0.83479
Japan -0.50476 0.30368 0.73794 0.11676
Mexico -0.59307 0.81786 -0.32016 -0.40073
Sweden -1.41864 1.74546∗ 0.07555 -0.65490
UK -0.62134 0.19063 -0.14414 0.58342
US 1.55418 -0.42295 1.13313 1.44847
∗, ∗∗, ∗∗∗ denotes significance at the 10%, 5%, 1% level.

Table 2.4: CD statistics.

have a look at the residuals associated with some realizations of the coefficient

process αt. The Jarque-Bera test of the null hypothesis of normally distributed

random variables rejects in many cases. Positive serial correlation is regularly

present. Consider the situation where the errors follow an AR(1) process

without intercept, that is

εt = φεt−1 + νt (2.52)

with φ > 0 and νt ∼ N(0, σ2ν). Using equation (2.52) and substituting ut−1 −

at−1ut−2 for εt−1, it follows from equation (2.1) that

ut = (φ+ at)ut−1 − φat−1ut−2 + νt (2.53)
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Figure 2.1: Density estimates of E[at] with small variances.
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Figure 2.2: Density estimates of E[at] with large variances.
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and thus the mean of at in the STUR model is overestimated by the correlation

of the errors over time. But note that another hysteresis effect enters one lag

behind which is strictly negative. Particularly, it does not suffice to enter fixed-

coefficient autoregressive terms of higher order to tackle serial correlation.

Again we have to allow for random coefficients which makes the Metropolis-

Hastings procedure grow enormously.

2.7 Alternative Estimation

To summarize, the Bayesian procedure elaborated in Section 2.4 is a very time-

consuming one, thus to allow for extensive simulation experiments, faster al-

ternative methods are in demand. The STUR test introduced in Holl (2013a)

is based on an AR(1) model with autoregressive conditional heteroskedastic

errors of order one (ARCH(1)) which is equivalent in first and second condi-

tional moment to the STUR model in equations (2.1) and (2.2) given that the

coefficient process at is approximated by an infinite-order Taylor series around

its mean E[at]. That is, to obtain rough estimators for E[at], V ar[at] and σ
2
ε ,

as suggested in Klüppelberg et al. (2002), it seems conceivable to maximize

the log-pseudo-likelihood function (conditional on x0) of the AR(1)-ARCH(1)

model

xt = ϕxt−1 + σtet (2.54)

for t = 1, . . . , n where et follows a standardized normal distribution and de-

notes the value of êt = (xt − em+σ2
α/2xt−1)/σt when the parameters take their

true values, ϕ = E[at], σt =
√

β + λx2t−1 with β = σ2ε and λ = V ar[at]. The

ARCH part is driven by previous observations as introduced in Weiss (1984)
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rather than by previous innovations. See Holl (2013a) for details, particularly

on the specific form of the log-pseudo-likelihood function.

As in Granger and Swanson (1997), we suggest to use an approximate method

and check its accuracy by simulations. The procedure described above is

restricted to provide estimates for E[at], V ar[at] and σ2ε which suffices, for

instance, to calculate one-step forecasts by conditional means. Especially, in

case that at is not correlated over time, i.e. ρ = 0, one can derive any h-step

forecast by conditional means with these estimates. For every country 1000

replications of a STUR process are generated according to the estimates in Ta-

ble 2.3. Then, for each replication the log-pseudo-likelihood of the correspond-

ing AR(1)-ARCH(1) model is maximized to obtain the parameter estimates.

Average parameter estimates and standard errors in parentheses are shown in

Table 2.5 and can be compared to the Bayesian estimates in Table 2.3. For

a great many of replications, this new estimator provides really satisfying re-

sults. Thus it seems to be worth studying its theoretical characteristics which

we may leave to a future project.

2.8 Conclusions

In the present paper, hysteresis in unemployment is revisited. Ball (2009)

defines hysteresis as the behavior of unemployment depending on the past

history of its natural rate and the length of time that it is pushed away from it.

This is to some extent reflected in the STUR model by Granger and Swanson

(1997). We make use of a new unit-root test introduced in Holl (2013a) which

has power against STUR processes. Moreover, a process generated by a STUR

model cannot be differenced to stationarity and therefore the results may affect
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Country E[at] V ar[at] σ2ε
Australia 0.98743 0.01388 0.08668

(0.01765) (0.00497) (0.01399)
Brazil 0.95597 0.02731 0.24480

(0.02596) (0.01044) (0.03264)
Canada 0.98089 0.01647 0.08654

(0.02046) (0.00617) (0.01219)
Chile 0.98069 0.04119 0.18138

(0.02829) (0.01254) (0.02429)
Finland 0.98985 0.01385 0.08416

(0.01786) (0.00370) (0.09733)
Japan 0.97779 0.01649 0.06360

(0.02016) (0.00634) (0.00951)
Mexico 0.95371 0.03416 0.10734

(0.02894) (0.01303) (0.01448)
Sweden 0.96504 0.01862 0.18942

(0.02099) (0.00681) (0.02422)
UK 0.99132 0.01210 0.06653

(0.01673) (0.00439) (0.00996)
US 0.99477 0.02113 0.06979

(0.01955) (0.00570) (0.01117)

Table 2.5: Alternative estimates of the STUR model.

methods beyond the univariate analysis, especially, the cointegration analysis.

To evaluate the results of the test, we estimate STUR models by Bayesian

techniques. As the stationary AR(1) and the random walk model are nested in

the STUR model, we gain some broad insight into the test results and why the

decisions have come up by simulating the mean of the random autoregressive

coefficient.

To sum up, all STUR estimates are significantly different from zero. For

Brazil, Canada, Chile, Finland, Mexico, and the US the null hypothesis of a

unit root in unemployment is rejected at least at the 10% level of significance.

In case of Brazil, Chile, Mexico, and the US, this result seems to be due to the

large variance of the autoregressive coefficient. For the US, we may actually
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assume a stochastic unit root. Brazil, Chile, and Mexico are more frequently

represented by stationary regimes associated with smaller coefficient means.

Particularly, for the UK and Japan a random walk is suggested, as no test

in Table 2.1 rejects the null. Furthermore, the Bayesian procedure results in

small coefficient variances around the unit mean. The test results for Australia,

Canada, Finland, and Sweden cannot be interpreted that easily.

We recommend to generate a large number of replications from competing

models fitted to the data. Simulating the distributions of the test statistics

may help to draw final conclusions. Evaluating predictive accuracy of the

STUR model when compared to competing models can shed light on that

issue as well. To do so, one can use an alternative estimation method based on

maximizing the log-pseudo-likelihood using conditional mean and conditional

variance of the STUR model which is much less time-consuming than the

Bayesian technique. Simulation results are quite promising.
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3 Forecasting Unemployment Using

STUR Models – Evaluation of a

new Unit-Root Test

3.1 Introduction

To evaluate the results of the tests of the null hypothesis of a random walk

in OECD unemployment rates for ten countries in Holl (2013a), we gener-

ate a great many of replications of artificial data and derive the empirical

distribution functions of the test statistics in use. Particularly, we calculate

rejection frequencies for models considered in Holl (2013a) for each test and

each country.

In Holl (2013a), test statistics from Dickey and Fuller (1979) (DF), Leybourne

et al. (1996) (LMT), and Holl (2013a) (STUR) are calculated where LMT and

STUR have power against stochastic unit-root (STUR) processes as defined

in Granger and Swanson (1997). DF and STUR have power against AR(1),

however, both tend to overreject in presence of a unit root with positive serial

Not submitted.
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correlation. In contrast, LMT overrejects in presence of negative serial corre-

lation. Thus, we consider four competing models which may have generated

the real data, namely, the random walk, the AR(1), the ARIMA(0,1,1), and

the STUR model. In simulations, we also make use of the augmented version

of DF (ADF) which adresses the issue of positive serial correlation.

By evaluating the results of all tests, we decide which model is most likely to

have generated the real data for each country individually. Then we confront

the results with different forecast situations and look whether the preferred

models of the unit-root tests correspond to good forecasts measured by mean

squared forecast error. Plotting cumulative forecast errors for different coun-

tries and horizons illustrates potential systematic distortions resulting from a

STUR model compared to its competitors. In an extended variety of com-

bined forecasts, we allow different models to contribute different parts to a

performant forecast.

We summarize the results of the unit-root tests in Holl (2013a) in Section 3.2.

In Section 3.3, the respective models are introduced and the simulation pro-

cedure is explained. Size and power estimates resulting from the simulations

are discussed. Forecasts by conditional means of the models presented in

Section 3.3 are calculated in Section 3.4 for different forecast horizons. Fore-

cast combinations resulting from different weighting methods are considered

in Section 3.5. Whether STUR models are good 1-step forecast models at all,

is checked by simulations elaborated in Section 3.7. And finally, in Section 3.8

we may draw some conclusions.

92



3.2 Unit-Root Tests

3.2 Unit-Root Tests

In Holl (2013a), results of the tests for the null of a unit root in 250 de-

meaned observations ranging from May 1989 to February 2010 are presented.

DF, LMT, and STUR statistics are calculated for survey-based, seasonally-

adjusted, monthly data on unemployment rates for the following countries:

Australia, Brazil, Canada, Chile, Finland, Japan, Mexico, Sweden, UK, and

US. There, the following test statistics are used:

1. Dickey-Fuller and Augmented Dickey-Fuller test:

The null of a fixed unit root versus a stationary alternative is tested

using the t-statistic of ψ of the regression

∆ut = ψut−1 +

p′
∑

i=1

ϕi∆ut−i + ǫt. (3.1)

with p′ = 0 in Holl (2013a). For size and power simulations, we also cal-

culate the augmented version of DF (ADF) where the number of lagged

differences is chosen according to Akaike information criterion (AIC)

with the maximum number p′max = ⌊12(n/100)0.25⌋ − 1 as suggested in

Schwert (1989). Critical values at the 1%, 5%, 10% level from Fuller

(1976, 373) are equal to −2.58, −1.95, −1.62.

2. Leybourne-McCabe-Tremayne test:

Further, the LMT test of the null of a fixed versus the alternative of a

stochastic unit root given by the statistic

Ẑn =
1

n3/2σ̂2ǫ κ̂
2

n
∑

t=3





t−1
∑

j=2

ǫ̂j





2

(

ǫ̂2j − σ̂2ǫ
)

(3.2)
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3 Forecasting Unemployment Using STUR Models

obtained from

∆ut = γ0 + γ1t+ ǫt (3.3)

where σ̂2ǫ = (1/n)
∑n

t=2 ǫ̂
2
t and κ̂2 = (1/n)

∑n
t=2(ǫ̂

2
t − σ̂2ǫ )

2 is applied.

Critical Values at the 1%, 5%, 10% level are equal to 0.289, 0.168, 0.122

(Granger and Swanson, 1997).

3. STUR test:

Finally, the pseudo-likelihood ratio test introduced in Holl (2013a) for

the null of a random walk versus alternatives nested in a STUR model

is calculated using the deviance statistic

dn = −2
[

Ln( ˆ̄αn,0, β̂n,0, λ̂n,0)− Ln( ˆ̄αn,1, β̂n,1, λ̂n,1)
]

(3.4)

where Ln( ˆ̄αn,0, β̂n,0, λ̂n,0) and Ln( ˆ̄αn,1, β̂n,1, λ̂n,1) denote the maximum

values of the log-pseudo-likelihood functions conditional on u0 using con-

ditional means and conditional variances of ut under the null and under

the alternative, respectively, where ut is given by

ut = eᾱut−1 +
√

β + λu2t−1ǫt. (3.5)

Under the null hypothesis, we have ᾱ = 0, β > 0, and λ = 0 whereas

under the alternative hypothesis, ᾱ ∈ R, β > 0, and λ ≥ 0. Critical

values at the 1%, 5%, 10% level from Holl (2013a) are equal to 8.150,

5.109, 3.814.
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Country DF ADF p′ LMT STUR

Australia −0.617 −0.900 13 0.303∗∗∗ 0.382

Brazil −2.279∗∗ −2.341∗∗ 7 0.008 5.159∗∗

Canada −1.023 −1.766∗ 5 0.904∗∗∗ 6.472∗∗

Chile −2.063∗∗ −2.337∗∗ 14 0.018 4.237∗

Finland −2.355∗∗ −2.539∗∗ 14 6.032∗∗∗ 10.577∗∗∗

Japan −1.088 −1.388 5 0.092 1.185

Mexico −1.816∗ −2.728∗∗∗ 6 0.610∗∗∗ 15.288∗∗∗

Sweden −1.906∗ −2.087∗∗ 5 0.280∗∗ 3.623

UK −0.254 −1.517 6 −0.040 0.065

US 1.589 −3.130∗∗∗ 7 0.113 8.809∗∗∗

∗, ∗∗, ∗∗∗: significant at the 10%, 5%, 1% level.

Table 3.1: Unit-root tests.

From Table 3.1 we see that the STUR test rejects the null of a unit root

for Brazil, Canada, Finland, Mexico and the US at least at the 5% level of

significance. For Canada, Finland, and Mexico, the LMT test corresponds to

the STUR decision. ADF results and numbers of lagged differences p′ are now

added for simulations.

3.3 Size and Power Simulations

In this section, the parameters of the models considered in Holl (2013a) are

estimated. By using estimates and, where necessary, starting values of the real

series, artificial series of unemployment rates are generated for each model and

each country.

In particular, the following models are estimated:
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3 Forecasting Unemployment Using STUR Models

1. Random walk or ARIMA(0,1,0) model:

ut = ut−1 + εt (3.6)

where εt is white noise. To calculate size estimates, random walks have

to be simulated as the random walk forms the null hypothesis of all four

tests. V ar[εt] = σ2ε is estimated by a Kalman filter.

2. ARIMA(0,1,1) model:

ut = ut−1 + εt + θεt−1 (3.7)

with εt white noise. θ > 0 and θ < 0 correspond to negative and positive

serial correlation of the errors, respectively. This process is taken account

of as all tests have an issue with reaching the nominal size in case the true

process is a random walk with serially correlated errors. θ is estimated

by maximum likelihood via a state-space representation; V ar[εt] = σ2ε is

again estimated by a Kalman filter.

3. AR(1) model:

ut = aut−1 + εt (3.8)

with a a constant over time and εt white noise. This is one of the two

main competing processes under the alternatives of DF/ADF and STUR

test. LMT does not have power against AR(1) even from a theoretical
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3.3 Size and Power Simulations

point of view (Holl, 2013a). Parameters a and V ar[εt] = σ2ε are esti-

mated by ordinary least squares.

4. STUR model:

ut = atut−1 + εt (3.9)

where at = eαt and

αt = µ+ ραt−1 + ηt (3.10)

with |ρ| < 1, εt ∼ N(0, σ2ε ), ηt ∼ N(0, σ2η) and ηt independent of εt. As

a consequence, αt is normally distributed with mean m = µ/(1− ρ) and

variance σ2α = σ2η/(1 − ρ2). Thus, at = eαt is lognormally distributed

with mean

E[at] = em+σ2
α/2. (3.11)

DF/ADF, LMT as well as STUR test allow for a STUR process under the

alternative. Parameters µ, ρ, σ2η and σ2ε are estimated in Holl (2013b) by

means of a Bayesian procedure suggested in Jones and Marriott (1999).

Parameter estimates for all four models using 250 observations are shown

in Table 3.2 with standard errors in parentheses (numerical standard errors

for the Bayesian estimates). For STUR, all estimates are significant at the

1% level. Please note, that these results are based on a Bayesian procedure

and cannot be compared to the results of frequentist’s methods which have

been used for random walk, ARIMA(0,1,1) and AR(1). The autoregressive
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Country RW ARIMA(0,1,1) AR(1) STUR

σ2ε θ σ2ε a σ2ε m ρ σ2η σ2ε

Australia 0.03538 −0.07502 0.03510 0.99611∗∗∗ 0.03533 −0.01607∗∗∗ 0.21384∗∗∗ 0.01407∗∗∗ 0.08496∗∗∗

(0.05230) (0.00629) (0.00033) (0.00328) (0.00004) (0.00010)

Brazil 0.21972 −0.09908∗ 0.21739 0.96666∗∗∗ 0.21521 −0.06626∗∗∗ 0.38013∗∗∗ 0.02665∗∗∗ 0.24202∗∗∗

(0.05982) (0.01460) (0.00086) (0.00535) (0.00015) (0.00029)

Canada 0.04181 0.05493 0.04168 0.99183∗∗∗ 0.04163 −0.02377∗∗∗ 0.23436∗∗∗ 0.01663∗∗∗ 0.08555∗∗∗

(0.06476) (0.00797) (0.00035) (0.00358) (0.00005) (0.00008)

Chile 0.17719 0.41134∗∗∗ 0.13306 0.96591∗∗∗ 0.17420 −0.06097∗∗∗ 0.55116∗∗∗ 0.02997∗∗∗ 0.17982∗∗∗

(0.04093) (0.01649) (0.00091) (0.00248) (0.00015) (0.00022)

Finland 0.03843 0.70336∗∗∗ 0.01828 0.99202∗∗∗ 0.03759 −0.02168∗∗∗ 0.60667∗∗∗ 0.00938∗∗∗ 0.07759∗∗∗

(0.03654) (0.00338) (0.00050) (0.00292) (0.00002) (0.00014)

Japan 0.01285 −0.04271 0.01283 0.99287∗∗∗ 0.01279 −0.02764∗∗∗ 0.23024∗∗∗ 0.01705∗∗∗ 0.06241∗∗∗

(0.06946) (0.00654) (0.00053) (0.00309) (0.00006) (0.00006)

Mexico 0.07506 −0.18729∗∗∗ 0.07198 0.97015∗∗∗ 0.07408 −0.07218∗∗∗ 0.32661∗∗∗ 0.03459∗∗∗ 0.10623∗∗∗

(0.05534) (0.01641) (0.00106) (0.00584) (0.00020) (0.00006)

Sweden 0.14414 −0.20035∗∗∗ 0.13777 0.97773∗∗∗ 0.14205 −0.04316∗∗∗ 0.17146∗∗∗ 0.02050∗∗∗ 0.18763∗∗∗

(0.05627) (0.01166) (0.00050) (0.00501) (0.00008) (0.00015)

UK 0.01100 0.31585∗∗∗ 0.00937 0.99905∗∗∗ 0.01100 −0.01265∗∗∗ 0.27300∗∗∗ 0.01175∗∗∗ 0.06552∗∗∗

(0.04732) (0.00372) (0.00038) (0.00334) (0.00004) (0.00009)

US 0.02438 0.09838∗ 0.02402 1.01233∗∗∗ 0.02413 −0.01682∗∗∗ 0.36532∗∗∗ 0.01902∗∗∗ 0.06886∗∗∗

(0.05165) (0.00774) (0.00069) (0.00429) (0.00008) (0.00007)
∗, ∗∗, ∗∗∗ denotes significance at the 10%, 5%, 1% level.

Table 3.2: Parameter estimates.
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3.3 Size and Power Simulations

coefficients as well are significant at the 1% level for all countries. Clearly, the

US coefficient estimate larger than one corresponds to an explosive process

which is not plausible at least in the long run. However, as the STUR model

allows for explosive regimes as well, the explosive AR(1) model is also used in

simulations for the US data. Estimating an ARIMA(0,1,1) model reveals very

nonhomogeneous patterns of serial correlation where we have moving-average

coefficients significant at the 1% level for Chile, Finland, Mexico, Sweden and

UK. Among these countries, only for Mexico and Sweden, there is a negative

moving-average coefficient associated with positive serial correlation.

By running DF, ADF, LMT and STUR test on series generated according to

the models fitted to the real data, size and power performance are evaluated.

The optimum number of lagged differences for ADF, p′, is selected for the real

series of each country and kept the same for every replication (see Table 3.1).

For each model, 250 observations are generated. 1000 series of a random walk

are simulated using the starting value of the real series for each country to

obtain size estimates. Errors are drawn from a normal distribution with mean

zero and variance σ2ε as shown in the second column of Table 3.2. To assess the

extent of deviation from nominal size in case of a violated error assumption,

1000 series of an ARIMA(0,1,1) process are generated, again using the starting

value of the real series, drawing errors εt from N(0, σ2ε ) where σ
2
ε can be found

in column 4 of Table 3.2. Power estimates are calculated for AR(1) and STUR

process. For AR(1) 1000 series are generated where the first 100 observations

of each series are dropped to obtain stationary series. This works for all

countries except for the US where the autoregressive coefficient is larger than

one. Errors follow an N(0, σ2ε ) distribution. Estimates are retrieved from

columns 5 and 6 in Table 3.2. And finally, for STUR 1000 series are generated
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3 Forecasting Unemployment Using STUR Models

using the starting values of the real series of unemployment rates. Necessary

parameter estimates are presented in the last four columns of Table 3.2.

The results of the size and power simulations are shown in Table 3.3. We may

discuss the results for each country individually. For Australia, only LMT re-

jects the null hypothesis of a unit root, however at the 1% level of significance.

On the one hand, if the true process were ARIMA(0,1,0), ARIMA(0,1,1) or

AR(1), LMT should not reject. But on the other hand, if it were STUR, the

STUR test, should reject as well. Thus, we may conclude that the LMT test

rejects for different reasons. In case of Brazilian unemployment rates, DF,

ADF and STUR reject at the 5% level of significance. Therefore, AR(1) and

STUR seem to be feasible processes. For Canada, LMT and STUR come to

a clear decision, i.e. the STUR model. We may exclude AR(1), as the DF

test does not reject the null at any reasonable level. Chilean unemployment

rates might be adequately represented either by an AR(1) or a STUR model.

In case of Finland, all tests reject the null, especially LMT and STUR test

at the 1% level of significance, therefore, we may expect STUR to be the

adequate model. No test rejects, for the first time in this study, when ap-

plied to Japanese data. As a consequence, random walk and ARIMA(0,1,1)

are the potential models. The negative moving-average coefficient associated

with positive serial correlation in the third column of Table 3.2 is not sig-

nificant at any reasonable level. For Mexico, the STUR model seems to be

reasonable, particularly supported by LMT and STUR test. Sweden displays

a similar-ambiguous pattern as Australia. Given that the underlying process

were ARIMA(0,1,0) or ARIMA(0,1,1), DF and LMT should not reject the null.

As LMT actually has no power against AR(1), we dismiss this process. If the

true process were STUR, the STUR test should reject the null hypothesis.
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Country RW ARIMA(0,1,1) AR(1) STUR

DF ADF LMT STUR DF ADF LMT STUR DF ADF LMT STUR DF ADF LMT STUR

Australia 0.053 0.053 0.063 0.054 0.069 0.050 0.038 0.060 0.083 0.080 0.046 0.068 0.176 0.175 0.692 0.965

Brazil 0.060 0.054 0.052 0.051 0.067 0.066 0.046 0.053 0.664 0.547 0.024 0.484 0.753 0.815 0.585 1.000

Canada 0.062 0.057 0.041 0.057 0.044 0.053 0.076 0.053 0.144 0.135 0.054 0.103 0.258 0.310 0.679 0.970

Chile 0.039 0.034 0.050 0.046 0.005 0.035 0.146 0.073 0.661 0.436 0.025 0.477 0.360 0.549 0.887 1.000

Finland 0.053 0.059 0.041 0.063 0.089 0.051 0.167 0.164 0.143 0.123 0.061 0.106 0.304 0.354 0.768 1.000

Japan 0.051 0.058 0.065 0.058 0.056 0.057 0.048 0.060 0.136 0.120 0.065 0.083 0.358 0.414 0.651 0.984

Mexico 0.043 0.039 0.052 0.050 0.125 0.045 0.016 0.102 0.576 0.489 0.026 0.410 0.756 0.806 0.704 0.998

Sweden 0.048 0.045 0.051 0.053 0.068 0.046 0.016 0.065 0.418 0.364 0.038 0.286 0.742 0.703 0.473 0.998

UK 0.053 0.050 0.059 0.049 0.015 0.047 0.119 0.070 0.060 0.062 0.053 0.046 0.133 0.157 0.688 0.943

US 0.051 0.045 0.050 0.046 0.028 0.038 0.080 0.044 0.001 0.000 0.079 0.955 0.132 0.251 0.821 0.996

Table 3.3: Size and power estimates.
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For the UK data, results are quite similar to the Japanese one’s, random walk

and ARIMA(0,1,1) are the preferred models. In contrast, the moving-average

coefficient which is strongly significant has a positive sign for this country and

is thus related to negative serial correlation. Finally, for the US the STUR

test rejects the null at the 1% level of significance, hence AR(1) and STUR

model come into consideration. As the autoregressive coefficient of AR(1) is

larger than one, the fitted model is an explosive one where DF has no power

against it.

Interpretations of the size and power estimates are summarized in Table 3.4.

Apparently, for six out of ten countries STUR may be an adequate model,

namely for Brazil, Canada, Chile, Finland, Mexico and the US. The stationary

AR(1) model only works for Brazil and Chile, the difference-stationary models

do so for Japan and the UK. To check whether those decisions hold in the

context of forecasting, out-of-sample forecasts resulting from the respective

models are calculated as part of the next section.
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Country RW ARIMA(0,1,1) AR(1) STUR

Australia 2 2 2 2

Brazil 2 2 2� 2�

Canada 2 2 2 2�

Chile 2 2 2� 2�

Finland 2 2 2 2�

Japan 2� 2� 2 2

Mexico 2 2 2 2�

Sweden 2 2 2 2

UK 2� 2� 2 2

US 2 2 2� 2�

Table 3.4: Potential models.

3.4 Forecasts by Conditional Means

Unit-root tests in Section 3.2 and estimations in Section 3.3 are based on 250

demeaned observations ranging from May 1989 to February 2010. Conditional

means of the fitted models are now used to determine h-step forecasts, h =

{1, 3, 12}, for the periods March 2010 to November 2011, May 2010 to Novem-

ber 2011 and February 2011 to November 2011, respectively, corresponding

to numbers of predicted observations of 21, 19 and 10. That is, we consider

one-month-ahead, one-quarter-ahead and one-year-ahead forecasts conditional

on the information known in period t − 1, denoted ût−1(1) := Ê[ut|It−1],

ût−1(3) := Ê[ut+2|It−1] and ût−1(12) := Ê[ut+11|It−1], respectively, where

It−1 contains the information cumulated up to period t− 1; the hat above the

expectations operator indicates that estimates are substituted for unknown

parameters and variables. As the Bayesian procedure to estimate STUR mod-

els applied in Holl (2013b) is a very time-consuming one, in a first scenario
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3 Forecasting Unemployment Using STUR Models

STUR models are not estimated for each and every information set. Thus, we

assume parameters to be fixed and equal to the parameters associated with

the first 250 observations estimated from 100000 observations of a Markov

chain where the first 10000 are dropped as in Holl (2013b). To ensure a fair

forecast competition, the same holds for parameter estimates of random walk,

ARIMA(0,1,1) and AR(1). Let’s go through the individual forecasting models:

1. Random walk or ARIMA(0,1,0) model:

ut+h−1 = ut+h−2 + εt+h−1 (3.12)

is to be forecast where we obtain by repeated substitution

ût−1(h) = E[ut+h−1|It−1] = ut−1. (3.13)

2. ARIMA(0,1,1) model:

ut+h−1 = ut+h−2 + εt+h−1 + θεt+h−2 (3.14)

is required which is equal to equation (3.12) except for the correlated

error term. In period t− 1, εt−1 already exists but cannot be observed

and thus has to be estimated. Again, by repeated substitution we find

E[ut+h−1|It−1] = ut−1 + θεt−1 (3.15)
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3.4 Forecasts by Conditional Means

where θ and εt−1 are unobserved and therefore have to be replaced by

estimates. Particularly, εt−1 is estimated by a Kalman filter. And we

obtain

ût−1(h) = ut−1 + θ̂ε̂t−1. (3.16)

As we want to keep the estimated parts constant, θ̂ε̂t−1 from ût−1(h)

where t − 1 = 250 is stored to be added up to any ut−1 related to

an information set It−1 with t − 1 ∈ {251, 252, . . . , 270}. Particularly,

forecasts from ARIMA(0,1,1) correspond to model-free forecasts from

single exponential smoothing where the smoothing parameter is equal

to 1+ θ. However, the smoothing parameter is restricted to the interval

(0, 1) and thus this holds only for −1 > θ < 0 which is associated with

positive serial correlation.

3. AR(1) model:

ut+h−1 = aut+h−2 + εt+h−1 (3.17)

is the variable to be estimated. Substituting repeatedly and taking con-

ditional means results in

E[ut+h−1|It−1] = ahut−1 (3.18)
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3 Forecasting Unemployment Using STUR Models

where the estimate â is substituted for the unknown parameter a to

obtain

ût−1(h) = âhut−1. (3.19)

4. STUR model:

Last but not least, the h-step forecast from a STUR model is derived.

Quite similar to the AR(1) model ut+h−1 amounts to

ut+h−1 = at+h−1ut+h−2 + εt+h−1 (3.20)

where now the autoregressive coefficient is not constant over time any

more. By repeated substitution, we obtain

ut+h−1 = at+h−1at+h−2 . . . atut−1

+εt+h−1

+at+h−1εt+h−2

+at+h−1at+h−2εt+h−3

...

+at+h−1at+h−2 . . . at+1εt (3.21)
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where we may take conditional expectations of equation (3.21) to obtain

ût−1(h) = E[ut+h−1|It−1] = E[at+h−1at+h−2 . . . atut−1|It−1]

+E[εt+h−1|It−1]

+E[at+h−1εt+h−2|It−1]

+E[at+h−1at+h−2εt+h−3|It−1]

...

+E[at+h−1at+h−2 . . . at+1εt|It−1] (3.22)

αt given in equation 3.10 follows a stationary AR(1) process and thus

has an infinite-order moving-average representation

αt =
µ

1− ρ
+

∞
∑

j=0

ρjηt−j (3.23)

and therefore, at = eαt is a function of ηt−j for j = 0, 1, 2, . . . Moreover,

εt ∼ N(0, σ2ε ), ηt is assumed to be independent of εt and ut−1 is known

and thus non-random. Hence, equation (3.22) reduces to

E[ut+h−1|It−1] = E[at+h−1at+h−2 . . . at|It−1]ut−1 (3.24)

where information up to period t − 1 does not simplify calculating the

mean of the term at+h−1at+h−2 . . . at, so we may look for its uncondi-

tional mean. As at = eαt , at+h−1at+h−2 . . . at can be written as

at+h−1at+h−2 . . . at = eSαt (h) (3.25)

where Sαt(h) =
∑h−1

i=0 αt+i with Sαt(0) = 0 by definition. αt is normally

distributed with mean m and variance σ2α. As α = (α1, α2, . . . , αt)
′ may
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3 Forecasting Unemployment Using STUR Models

be represented by a linear transformation of a vector of independent

standardized normal variables corresponding to Wold decomposition, it

is multivariate normally distributed. Sαt(h) as a sum of h multivariate

normally distributed random variables is normally distributed as well.

For its mean it holds that

E[Sαt(h)] = hm (3.26)

and for its variance, we have to take account of the correlation between

the random variables. The variance of a sum of correlated random vari-

ables is equal to the sum of covariances between every two individual

random variables

V ar

[

n
∑

i=1

Xi

]

=
n
∑

i=1

n
∑

j=1

Cov[Xi,Xj ] (3.27)

where V ar[Xi] = Cov[Xi,Xj ] for i = j and Cov[Xi,Xj ] = Cov[Xj ,Xi].

Considering the h random variables αt, αt+1, . . . , αt+h−1, there are h− 1

pairs having a distance of one period, h− 2 pairs with a distance of two,

and so on, with finally one pair having a distance of h−1. Furthermore,

we may substitute Corr[Xi,Xj ]
√

V ar[Xi]
√

V ar[Xj] for Cov[Xi,Xj ] to

obtain the variance of Sαt(h)

V ar[Sαt(h)] = hσ2α + 2σ2α

h−1
∑

r=1

(h− r)ρα(r) (3.28)

as V ar[at+h−1] = V ar[at+h−2] = . . . = V ar[at] = σ2α and where ρα(r) de-

notes the correlation between random variables facing a distance in time

equal to r. For the autoregressive model of order one in equation (3.10),

ρα(r) = ρr. That is, Sαt(h) is normally distributed with mean E[Sαt(h)]
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and variance V ar[Sαt(h)] given in equations (3.26) and (3.28). Thus,

eSαt (h) in equation (3.25) is log-normally distributed with mean

E
[

eSαt (h)
]

= eE[Sαt (h)]+
1
2
V ar[Sαt (h)] (3.29)

and therefore the h-step forecast in equation (3.24) results in

E[ut+h−1|It−1] = ehm+
σ2
α
2 [h+2

∑h−1
r=1 (h−r)ρr]ut−1 (3.30)

where σ2α = σ2η/(1 − ρ); estimates for m, σ2η and ρ are provided in

Table 3.2.

We are now ready to evaluate predictive accuracy of the different forecasting

models. Please note, that the unit-root tests in Section 3.2 as well as the

estimations in Section 3.3 are applied to demeaned data. That is, the mean

of the first 250 observations is subtracted from every single observation 1 to

250. Demeaning the data using the mean of all 271 observations would imply

adding future information to the respective information set It−1. Anyway,

the last 21 observations have to be demeaned as well and so we continue

subtracting the mean related to observations 1 to 250 from observations 251

to 271. Particularly, this procedure corresponds to our practice of using fixed

parameters for periods 251 to 271.

Finally, before we switch over to the results of forecast evaluation, the measure

of predictive accuracy is introduced. Mean squared forecast errors defined by

MSFE =
1

nf

271−h+1
∑

t=251

[ut+h−1 − ût−1(h)]
2 (3.31)
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3 Forecasting Unemployment Using STUR Models

are used where nf = 20 − h + 2 denotes the number of forecast observations

to be evaluated which, in this study, is equal to the total number of forecast

observations, i.e. nf = 21, 19, 10 for 1-step, 3-step, 12-step forecasts, respec-

tively.
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3.4 Forecasts by Conditional Means

Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.01667 2 0.01664 1 0.01672 3 0.01692 4

Brazil 0.03286 1 0.03960 2 0.06693 3 0.09421 4

Canada 0.01381 2 0.01349 1 0.01394 3 0.01409 4

Chile 0.07000 3 0.08130 4 0.06962 1 0.06969 2

Finland 0.01048 1 0.01268 3 0.01231 2 0.01399 4

Japan 0.03048 3 0.03050 4 0.03007 2 0.02966 1

Mexico 0.05619 1 0.05882 3 0.05712 2 0.06105 4

Sweden 0.09381 4 0.09293 3 0.08666 2 0.08492 1

UK 0.01048 1 0.01167 4 0.01052 2 0.01079 3

US 0.02952 2 0.02981 3 0.03608 4 0.02785 1

Rank Sum 20 28 24 28

Table 3.5: MSFE for 1-step forecasts.

Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.02421 2 0.02400 1 0.02521 3 0.02631 4

Brazil 0.07316 1 0.08699 2 0.32017 3 0.40163 4

Canada 0.04842 2 0.04714 1 0.05047 3 0.05150 4

Chile 0.25789 3 0.27995 4 0.25045 1 0.25195 2

Finland 0.04526 1 0.05050 2 0.05920 4 0.05623 3

Japan 0.04842 3 0.04854 4 0.04402 2 0.04029 1

Mexico 0.12263 1 0.12904 3 0.12501 2 0.13846 4

Sweden 0.10105 4 0.09825 3 0.05030 2 0.04263 1

UK 0.04684 1 0.05005 4 0.04723 2 0.04844 3

US 0.09053 1 0.09139 2 0.15356 4 0.09224 3

Rank Sum 19 26 26 29

Table 3.6: MSFE for 3-step forecasts.
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3 Forecasting Unemployment Using STUR Models

Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.07200 2 0.07042 1 0.09843 3 0.10889 4

Brazil 0.64500 1 0.69769 2 3.50238 3 3.52547 4

Canada 0.35400 2 0.34821 1 0.37675 3 0.38211 4

Chile 1.08200 2 1.17281 4 1.12248 3 1.08079 1

Finland 0.32600 2 0.34288 3 0.49175 4 0.25617 1

Japan 0.34000 3 0.34062 4 0.23413 2 0.16052 1

Mexico 0.08400 1 0.09484 2 0.27031 3 0.35188 4

Sweden 0.97200 4 0.96021 3 0.18347 2 0.10353 1

UK 0.13000 1 0.13776 3 0.13404 2 0.13917 4

US 0.47900 1 0.48280 2 1.69838 4 0.87347 3

Rank Sum 19 25 29 27

Table 3.7: MSFE for 12-step forecasts.

Let’s start with mean squared forecast errors calculated for one-month-ahead

forecasts. Results are presented in Table 3.5. Ranks for each country are

given next to mean squared forecast errors where 1 corresponds to the small-

est MSFE. For Japan, Sweden and the US, the STUR model performs best.

Particularly, in case of Japan, we are somewhat surprised given the results

from unit-root testing where a fixed-coefficient difference-stationary model is

suggested (see Table 3.4). There, for the US AR(1) and STUR are recom-

mended where now forecasting strongly prefers STUR. Moreover, the ambigu-

ous situations for Sweden and Australia are now decided in favor of STUR

and ARIMA(0,1,1), respectively. The best forecasts for Brazil, Finland, Mex-

ico and the UK are calculated from a random walk model which was only

expected for the UK. For Canada, ARIMA(0,1,1) wins the contest, again some-

what surprising. Especially for Chile, expecting AR(1) or STUR model to be

adequate, forecasting reveals a consistent result.
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3.4 Forecasts by Conditional Means

In one-quarter-ahead forecasts, summarized in Table 3.6, STUR performs best

for Japan and Sweden as in one-month-ahead forecasts. However, now the US

data are better forecast by random walk as well as the Brazilian, Finnish, Mex-

ican and UK data. Again, ARIMA(0,1,1) seems to be adequate for Australia

and Canada and AR(1) still works for Chile.

Finally, mean squared forecast errors corresponding to one-year-ahead fore-

casts are presented in Table 3.7. The STUR model generates the best forecasts

for Chile, Finland, Japan and Sweden showing up with a great performance

especially for the latter three countries. Quite similarly, the random walk

model performs best for Brazil, Mexico, UK and US. ARIMA(0,1,1) is still

limited to Australian and Canadian unemployment rates and AR(1) does not

succeed in providing best forecasts for any country any more.

Preparing these forecasts, all 271 observations have been demeaned by the

mean of the first 250 observations implying the assumption of a constant mean

over the whole sample. Assume, for instance, that the mean of observations

251 to 271 is underestimated by the mean of the first 250 observations. That

is, the mean after observation 250 could increase in time or shift to a higher

level. Then, forecasts generated from the AR(1) model based on observations 1

to 250 are going to underestimate observations 251 to 271. In case of trending

or shifting means the nonstationary models are likely to be favored over the

stationary one. To overcome this difficulty, we may demean the observations

of a certain information set It−1 using the mean of all observations up to t−1.

Summing up, u1, u2, . . . , ut−1 are demeaned by

ūt−1 =
1

t− 1

t−1
∑

i=1

ui (3.32)
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3 Forecasting Unemployment Using STUR Models

for t = 251, . . . , 271. By this procedure, no future information is used in

forecasting and, in particular, no present information appearing in realized

series of unemployment rates is destroyed. Mean squared forecast errors from

forecasts using data demeaned in such a way are presented in Tables 3.8, 3.9

and 3.10.

What are now the consequences of different demeaning? For 1-step forecasts

using ARIMA(0,1,1), the rank of Australia changes from 1 to 4, but note that

the mean squared forecast errors of all models are very close to each other.

Using AR(1), the rank of Australia changes from 3 to 1. If 1-step forecasts are

generated by the STUR model and applied to the data demeaned by changing

means, its relative performance improves associated with rank 3 rather than

rank 4. In case of 3-step forecasts, the random walk model now seems to be

more appropriate for Australia, the rank is 1 instead of 2. However, forecast

performance of Mexico becomes worse with rank equal to 2 being 1 before.

The same holds for Mexico using ARIMA(0,1,1) as well as for Australia with

ranks changing from 3 to 4 and 1 to 2, respectively. Mexico improves from

rank 2 to 1 when using the AR(1) model and from rank 4 to 3 when using the

STURmodel. Doing 12-step forecasts, ranks are not assigned in a different way

from Table 3.7. As we would like to address the forecast performance of the

AR(1) model, two results have to be emphasized again. For a forecast horizon

equal to one, performance for Australia improves, for a horizon equal to 3,

performance for Mexico improves. In both cases, the STUR model benefits

from new demeaning as well. Maybe this points to the need for a separate

handling of level shifts when using STUR models.
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Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.01658 2 0.01663 4 0.01653 1 0.01661 3

Brazil 0.03071 1 0.03650 2 0.05965 3 0.08365 4

Canada 0.01366 2 0.01336 1 0.01377 3 0.01389 4

Chile 0.06961 3 0.08065 4 0.06900 1 0.06903 2

Finland 0.00968 1 0.01169 3 0.01126 2 0.01274 4

Japan 0.03049 3 0.03052 4 0.03005 2 0.02956 1

Mexico 0.05601 1 0.05928 3 0.05618 2 0.05933 4

Sweden 0.09474 4 0.09377 3 0.08695 2 0.08483 1

UK 0.01028 1 0.01130 4 0.01030 2 0.01051 3

US 0.03081 2 0.03117 3 0.03818 4 0.02865 1

Rank Sum 20 31 22 27

Table 3.8: MSFE for 1-step forecasts allowing for changing means.

Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.02360 1 0.02363 2 0.02378 3 0.02433 4

Brazil 0.05978 1 0.07075 2 0.26679 3 0.33797 4

Canada 0.04690 2 0.04568 1 0.04871 3 0.04963 4

Chile 0.25555 3 0.27677 4 0.24648 1 0.24876 2

Finland 0.03916 1 0.04380 2 0.05106 4 0.04850 3

Japan 0.05037 3 0.05050 4 0.04567 2 0.04153 1

Mexico 0.12368 2 0.13204 4 0.11992 1 0.13013 3

Sweden 0.11220 4 0.10912 3 0.05577 2 0.04579 1

UK 0.04493 1 0.04765 4 0.04522 2 0.04615 3

US 0.10379 1 0.10489 2 0.17496 4 0.10586 3

Rank Sum 19 28 25 28

Table 3.9: MSFE for 3-step forecasts allowing for changing means.
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Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.05529 2 0.05468 1 0.06840 3 0.07476 4

Brazil 0.42192 1 0.46301 2 2.84286 3 2.86325 4

Canada 0.32609 2 0.32057 1 0.34712 3 0.35209 4

Chile 1.02669 2 1.11399 4 1.05757 3 1.02665 1

Finland 0.24401 2 0.25853 3 0.38542 4 0.18602 1

Japan 0.39008 3 0.39076 4 0.27710 2 0.19675 1

Mexico 0.10121 1 0.11982 2 0.20165 3 0.26769 4

Sweden 1.14071 4 1.12783 3 0.25685 2 0.15179 1

UK 0.11462 1 0.12050 3 0.11746 2 0.12115 4

US 0.71076 1 0.71549 2 2.09820 4 1.17589 3

Rank Sum 19 25 29 27

Table 3.10: MSFE for 12-step forecasts allowing for changing means.

Finally, parameter estimates are calculated for each information set with

STUR estimates obtained from 10000 rather than from 100000 cycles of the

Markov chain Monte Carlo procedure. Again, the first 10% of the observations

are dropped. For random walk, ARIMA(0,1,1) and AR(1) this corresponds to

a more efficient use of information which holds for STUR too. STUR however

is now accompanied by an additional estimation error resulting from possibly

insufficient convergence in Bayesian estimation. The standard-normally dis-

tributed convergence diagnostic (CD) introduced in Geweke (1992) which is

used to ensure convergence ranges from -7.665 to 5.317. Means corresponding

to the information sets at hand are subtracted from the observations before

estimating. Thus, results can be compared to the changing-means scenario

above. Mean sqared forecast errors are presented in Tables 3.11 to 3.13.

The forecast performance of ARIMA(0,1,1) strongly improves and is respon-

sible for most of the rank adjustments occuring to the competing models.
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3.4 Forecasts by Conditional Means

Calculating separate forecasts for every information set affects the medium-

run and long-run performance of STUR. One-quarter-ahead forecasts from the

STUR model are now superior for the US. For Brazil and UK, one-year-ahead

forecasts improve, however starting from a weak initial position. In the long

run, STUR seems to outperform AR(1) which is indicated by a rank sum equal

to 26 for STUR compared to 33 for AR(1).
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Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.01658 2 0.01616 1 0.01659 3 0.01689 4

Brazil 0.03071 1 0.03180 2 0.05338 3 0.07488 4

Canada 0.01366 2 0.01352 1 0.01377 3 0.01383 4

Chile 0.06961 3 0.07623 4 0.06906 1 0.06943 2

Finland 0.00968 1 0.01168 3 0.01119 2 0.01224 4

Japan 0.03049 4 0.03048 3 0.03007 2 0.02968 1

Mexico 0.05601 2 0.05424 1 0.05654 3 0.05836 4

Sweden 0.09474 4 0.08073 1 0.08714 3 0.08470 2

UK 0.01028 1 0.01079 4 0.01031 2 0.01047 3

US 0.03081 3 0.03010 2 0.03467 4 0.02873 1

Rank Sum 23 22 26 29

Table 3.11: MSFE for 1-step forecasts with adjusted estimates.

Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.02360 2 0.02304 1 0.02400 3 0.02419 4

Brazil 0.05978 1 0.06186 2 0.22630 3 0.28848 4

Canada 0.04690 1 0.04704 2 0.04870 3 0.04920 4

Chile 0.25555 3 0.26048 4 0.24691 1 0.24751 2

Finland 0.03916 2 0.03722 1 0.05057 4 0.04547 3

Japan 0.05037 4 0.05006 3 0.04579 2 0.04148 1

Mexico 0.12368 4 0.11572 1 0.12183 2 0.12233 3

Sweden 0.11220 3 0.11575 4 0.05448 2 0.04423 1

UK 0.04493 2 0.04149 1 0.04535 3 0.04588 4

US 0.10379 2 0.10465 3 0.14723 4 0.09218 1

Rank Sum 24 22 27 27

Table 3.12: MSFE for 3-step forecasts with adjusted estimates.
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Country RW ARIMA(0,1,1) AR(1) STUR

Australia 0.05529 2 0.05329 1 0.06947 3 0.07640 4

Brazil 0.42192 1 0.43794 2 2.61985 4 2.35464 3

Canada 0.32609 2 0.32397 1 0.34705 3 0.34810 4

Chile 1.02669 3 0.96364 1 1.05940 4 1.02239 2

Finland 0.24401 3 0.23042 2 0.38142 4 0.15998 1

Japan 0.39008 4 0.38934 3 0.28649 2 0.18445 1

Mexico 0.10121 2 0.09113 1 0.18543 3 0.21055 4

Sweden 1.14071 3 1.16120 4 0.24345 2 0.10908 1

UK 0.11462 2 0.11369 1 0.11871 4 0.11673 3

US 0.71076 1 0.71612 2 1.74998 4 0.74617 3

Rank Sum 23 18 33 26

Table 3.13: MSFE for 12-step forecasts with adjusted estimates.

3.5 Forecast Combinations

We evaluate the results from combined forecasts, again starting with the sce-

nario where the estimates for observations 1 to 250 are kept constant over the

forecast period. As constant estimates bring multicollinearity into the design

matrix consisting of the forecast values, combination strategies based on re-

gression techniques cannot be applied. Thus, models are arranged in three

different groups, namely a group made up of all models, a constant-coefficient

group containing random walk, ARIMA(0,1,1) and AR(1) and a nonstation-

ary group consisting of random walk, ARIMA(0,1,1) and STUR. For AR(1)

applied to US data, an explosive model is suggested which is treated as part of

the constant-coefficient group like the stationary models. Combined forecasts

with weights resulting from inverse mean sqared forecast errors are considered.

Mean squared forecast errors correspond to the evaluation periods predicting
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observations 230 to 250 for 1-step, 232 to 250 for 3-step and 241 to 250 for

12-step forecasts. Parameters are estimated for observations 1 to 229 and

again kept constant over the whole evaluation period. Group forecasts using

inverse-MSFE weights are calculated for data demeaned by updated means

with results presented in Tables 3.14 to 3.16 where ranks are given next to

mean squared forecast errors and overall ranks, i.e. compared to all single and

combined forecasts, in parentheses.

Using an weighted average of forecasts generated by each individual model re-

sults in one-month-ahead combined forecasts for Australia, Chile, Japan, Mex-

ico, Sweden and the UK outperforming the competing forecast combinations.

However, when this is compared to the individual forecasts it is only supe-

rior for Australia and Mexico. The group consisting of nonstationary models

performs quite similarly. In this case, the rank sum is a bit misleading given

that some mean squared forecast errors of both groups are very close to each

other. Compared to individual forecasts, this combination is not superior for

any country. Particularly, disregarding STUR seems to affect the performance

of the constant-coefficient combination negatively whereas ignoring AR(1) for

the nonstationary combination has not the same effect.

In one-quarter-ahead forecasts, rank sums approximate to each other. For

Australia and Mexico the constant-coefficient combination and the combina-

tion including all models, respectively, are able to outperform the individual

forecasts.

Considering one-year-ahead forecasts, for the first time the all-together com-

bination is showing up with some deficits. Either ignoring STUR or ignoring

AR(1) improves performance, suggesting that the difference-stationary models
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are more adequate to forecast at this horizon. For Mexico the combination

made up of nonstationary models succeeds even when compared to individual

forecasts.

Finally, combined forecasts are calculated using regularly updated parameter

estimates for every information set. Weights are obtained from three differ-

ent procedures. First, following Granger and Ramanathan (1984) we regress

realized values on values of different forecasts without an intercept. Parame-

ters are estimated by ordinary least squares. Fitted values serve as combined

forecasts. Second, we make us of the forecast encompassing test introduced in

Harvey and Newbold (2000) where the forecast error

êt(h) = ut − ût−h(h) (3.33)

for a certain model is regressed on its differences to the forecast errors resulting

from the competing models. That is, following regressions are estimated

ê
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(4)
t − ê
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where the symbol indicating function of h is omitted for convenience, super-

scripts (1), (2), (3) and (4) denote random walk, ARIMA(0,1,1), AR(1) and

STUR model, respectively. A certain model m is said to forecast-encompass

its rivals if the F-statistic of the regression with dependent variable ê
(m)
t is

not significant at a specific level. The combined forecast results from an un-

weighted average of forecasts from all forecast-encompassing models. In case
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3 Forecasting Unemployment Using STUR Models

that there are no such forecast-encompassing models, an unweighted average

over all models is calculated. And third, combined forecasts are obtained with

weights corresponding to inverse mean squared forecast errors. Results are

shown in Tables 3.17, 3.18 and 3.19 where rank averages are associated with

ties.
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Country all together const. coeff. nonstationary

Australia 0.01653 1 (1) 0.01655 3 (4) 0.01653 2 (2)

Brazil 0.04709 3 (5) 0.03960 1 (3) 0.04359 2 (4)

Canada 0.01364 3 (4) 0.01358 1 (2) 0.01361 2 (3)

Chile 0.07163 1 (4) 0.07256 3 (6) 0.07255 2 (5)

Finland 0.01137 2 (4) 0.01097 1 (2) 0.01140 3 (5)

Japan 0.03009 1 (3) 0.03034 3 (5) 0.03011 2 (4)

Mexico 0.05507 1 (1) 0.05550 3 (3) 0.05512 2 (2)

Sweden 0.08938 1 (3) 0.09142 3 (5) 0.09031 2 (4)

UK 0.01058 1 (4) 0.01060 2 (5) 0.01068 3 (6)

US 0.03181 2 (5) 0.03293 3 (6) 0.03021 1 (2)

Rank Sum 16 (34) 23 (41) 21 (37)

Table 3.14: MSFE for 1-step combined forecasts allowing for changing means.

Country all together const. coeff. nonstationary

Australia 0.02359 3 (3) 0.02354 1 (1) 0.02356 2 (2)

Brazil 0.13363 3 (5) 0.09995 1 (3) 0.10651 2 (4)

Canada 0.04767 3 (5) 0.04706 1 (3) 0.04734 2 (4)

Chile 0.25561 1 (4) 0.25796 2 (5) 0.25962 3 (6)

Finland 0.04556 3 (5) 0.04468 2 (4) 0.04372 1 (2)

Japan 0.04666 1 (3) 0.04873 3 (5) 0.04700 2 (4)

Mexico 0.11604 1 (1) 0.11891 3 (3) 0.11774 2 (2)

Sweden 0.07827 1 (3) 0.09083 3 (5) 0.08680 2 (4)

UK 0.04597 2 (4) 0.04592 1 (3) 0.04623 3 (6)

US 0.11893 2 (5) 0.12283 3 (6) 0.10476 1 (2)

Rank Sum 20 (38) 20 (38) 20 (36)

Table 3.15: MSFE for 3-step combined forecasts allowing for changing means.
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Country all together const. coeff. nonstationary

Australia 0.06142 3 (5) 0.05803 1 (3) 0.05961 2 (4)

Brazil 0.92067 3 (5) 0.68463 1 (3) 0.71151 2 (4)

Canada 0.33681 3 (5) 0.33146 1 (3) 0.33330 2 (4)

Chile 1.05164 1 (3) 1.06104 3 (6) 1.05654 2 (4)

Finland 0.27569 2 (5) 0.29892 3 (6) 0.23269 1 (2)

Japan 0.31004 1 (3) 0.35118 3 (5) 0.32138 2 (4)

Mexico 0.07890 3 (3) 0.07550 2 (2) 0.07464 1 (1)

Sweden 0.59934 1 (3) 0.79547 3 (5) 0.73756 2 (4)

UK 0.11837 2 (4) 0.11750 1 (3) 0.11867 3 (5)

US 1.09793 3 (5) 1.07479 2 (4) 0.84319 1 (3)

Rank Sum 22 (41) 20 (40) 18 (35)

Table 3.16: MSFE for 12-step combined forecasts allowing for changing means.
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Country by regression by encompassing by MSFE

Australia 0.03413 3 (7) 0.01650 1 (2) 0.01650 2 (3)

Brazil 0.89896 3 (7) 0.04336 2 (4) 0.04239 1 (3)

Canada 0.13034 3 (7) 0.01367 1 (3) 0.01367 2 (4)

Chile 0.08804 3 (7) 0.06877 1 (1) 0.06879 2 (2)

Finland 0.02162 3 (7) 0.00999 2 (3) 0.00981 1 (2)

Japan 0.07005 3 (7) 0.03011 2 (4) 0.03010 1 (3)

Mexico 0.10699 3 (7) 0.05493 2 (3) 0.05487 1 (2)

Sweden 0.29765 3 (7) 0.08504 2 (4) 0.08487 1 (3)

UK 0.01673 3 (7) 0.01079 2 (5.5) 0.01026 1 (1)

US 0.36190 3 (7) 0.03071 1 (3) 0.03079 2 (4)

Rank Sum 30 (70) 16 (32.5) 14 (27)

Table 3.17: MSFE for 1-step combined forecasts with adjusted estimates.

Country by regression by encompassing by MSFE

Australia 0.02879 3 (7) 0.02419 2 (5.5) 0.02349 1 (2)

Brazil 0.42992 3 (7) 0.13240 2 (4) 0.11761 1 (3)

Canada 0.57642 3 (7) 0.04788 1 (3) 0.04792 2 (4)

Chile 0.47212 3 (7) 0.24908 2 (4) 0.24904 1 (3)

Finland 0.15689 3 (7) 0.04159 2 (4) 0.04147 1 (3)

Japan 0.36412 3 (7) 0.04652 1 (3) 0.04653 2 (4)

Mexico 0.13637 3 (7) 0.11930 2 (3) 0.11436 1 (1)

Sweden 0.62576 3 (7) 0.11307 2 (5) 0.07697 1 (3)

UK 0.09040 3 (7) 0.04420 2 (3) 0.04408 1 (2)

US 3.67489 3 (7) 0.11022 1 (4) 0.11041 2 (5)

Rank Sum 30 (70) 17 (38.5) 13 (30)

Table 3.18: MSFE for 3-step combined forecasts with adjusted estimates.
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Country by regression by encompassing by MSFE

Australia 0.07243 3 (6) 0.06131 1 (3) 0.06237 2 (4)

Brazil 69.16982 3 (7) 0.42985 1 (2) 0.83081 2 (4)

Canada 0.68371 3 (7) 0.33604 1 (3) 0.33694 2 (4)

Chile 12.08243 3 (7) 1.00945 1 (2) 1.01081 2 (3)

Finland 2.46186 3 (7) 0.24487 1 (4) 0.25616 2 (5)

Japan 3.76799 3 (7) 0.30521 1 (3) 0.30786 2 (4)

Mexico 67.33295 3 (7) 0.07933 2 (2) 0.07483 1 (1)

Sweden 208.68746 3 (7) 0.52939 1 (3) 0.56822 2 (4)

UK 2.89242 3 (7) 0.11564 2 (4) 0.11562 1 (3)

US 23.27379 3 (7) 0.74617 1 (3) 0.93055 2 (5)

Rank Sum 30 (69) 12 (29.5) 18 (37)

Table 3.19: MSFE for 12-step combined forecasts with adjusted estimates.

Obviously, obtaining weights by an unconstrained, homogeneous regression

equation is not an adequate technique at all. Note that the estimates used

to calculate the combined forecasts are in fact not weights, as they are not

restricted to positive values summing up to one. Using combinations made

up of forecast-encompassing models works, particularly, at the long horizon.

There, for the US STUR is encompassing all rival models; for Brazil, the

difference-stationary models are encompassing. At the medium horizon, the

STUR model is forecast-encompassing for Australia; for Mexico and Sweden,

ARIMA(0,1,0) and ARIMA(0,1,1) are used exclusively in combinations. Fi-

nally, at the short horizon, for the UK ARIMA(0,1,1) is the only model used

in forecasting corresponding to the results of the forecast-encompassing test.

For the remaining situations, there are no encompassing models. Deriving

weights from inverse mean squared forecast errors performs quite similarly

with some more strength at the short and medium horizon. In many cases,

combining does not succeed in generating a superior forecast when compared
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to certain individual forecasts. Particularly, combined forecasts are affected by

additional estimation errors resulting from weights identification. Given that

there are strong similarities among the rival models, forecast combinations

cannot merge complementary characteristics for what they are actually used

for. Similarities among the rival models are studied by means of cumulative

forecast errors as part of the next section.

3.6 Cumulative Forecast Errors

Alternatively, to compare forecasts from rival models and to check whether

certain models systematically under- or overestimate the realized values in

finite samples, cumulative forecast errors can be evaluated. We consider the

cumulative sum of forecast errors as defined by

CSFEi =
i
∑

t=251

[ut+h−1 − ût−1(h)] (3.38)

for i = 251, 252, . . . , 271− h+ 1 where the number of forecast observations to

be evaluated is equal to nf = 21, 19, 10 for 1-step, 3-step, 12-step forecasts,

respectively, as already used for the mean squared forecast error. Cumulative

forecast errors of the four competitors are plotted for each country over the

whole forecast period. Results are presented in Figures 3.1 to 3.6 where ran-

dom walk, ARIMA(0,1,1), AR(1) and STUR are marked with circles, triangles,

crosses and squares, respectively.

A good forecast is associated with cumulative forecast errors around zero, with

small variation and no trends in deviating. In case of 1-step forecasts, except

for Mexico and the UK, there is some tendency in forecast values to be too
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low when compared to realized values. For Australia, Brazil, Canada and

Mexico, random walk and ARIMA(0,1,1) work best; for Japan, Sweden and

the US, STUR is the winner whereas for Chile and Finland, ARIMA(0,1,1)

has definitely the lowest sum of cumulative forecast errors in absolute value.

For the UK, all models are very close to each other. In many cases this

corresponds to the results of mean squared forecast errors in Tables 3.5, 3.8

and 3.11. Conflicting situations are related to ARIMA(0,1,1) for Chile and

Finland.

Cumulative sums of forecast errors of 3-step forecasts show up with tendencies

to under- or overforecast quite similar to the situation with 1-step forecasts.

Except for Mexico and the UK, underestimation is present. Superior models

are distributed as before. This is in line with mean squared forecast errors

in Tables 3.6, 3.9 and 3.12, except for some cases with ARIMA(0,1,1). Cu-

mulative forecast errors coincide with the results from mean squared forecast

errors for the US STUR model in Table 3.12 where estimates are updated for

every information set.

For 12-step forecasts of US unemployment rates now random walk and

ARIMA(0,1,1) perform best; for Finland, the STUR model is superior. Over-

all patterns look very similar to before, also when compared to mean squared

forecast errors in Tables 3.7, 3.10 and 3.13. Obviously, the stationary AR(1)

model does not play any role from the perspective of cumulative forecast errors.

However, measured by mean squared forecast errors AR(1) has its benefits,

especially at shorter forecast horizons which may be due to less larger forecast

errors resulting from dampening AR(1) forecasts applied to constrained data

like unemployment rates.
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3.7 Forecasts from Simulated Data

For some countries, the forecast results from Section 3.4 suggest that the

STUR model is not a great forecast model at all. To check this impression,

we may generate 1000 replications of a STUR process with 271 observations

corresponding to the estimates presented in Table 3.2 for each country. 1-

step forecasts are calculated for the last 21 observations with new estimates

for every information set. As the Bayesian procedure applied to obtain the

estimates in Table 3.2 is a very expensive one, we make use of the alternative

estimators suggested in Klüppelberg et al. (2002) which are based on maxi-

mizing the log-pseudo-likelihood of realizations of independent normal random

variables having mean and variance equal to conditional mean and conditional

variance, respectively, of the STUR model given in equations (3.9) and (3.10).

Simulations in Holl (2013b) where this method is used are quite promising.

Forecast models are ranked according to mean squared forecast errors. Rank

distributions and rank sums (RS) are shown in Table 3.20.

To sum up, the STUR model is more adequate than random walk or

ARIMA(0,1,1) to forecast realizations generated by a STUR model. However,

AR(1) strongly outperforms STUR at this forecast horizon for all countries

which corresponds to the results in Tables 3.5, 3.8 and 3.11.
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Figure 3.1: Cumulative forecast errors for 1-step forecasts (1/2).
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Figure 3.2: Cumulative forecast errors for 1-step forecasts (2/2).
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Figure 3.3: Cumulative forecast errors for 3-step forecasts (1/2).
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Figure 3.4: Cumulative forecast errors for 3-step forecasts (2/2).
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Figure 3.5: Cumulative forecast errors for 12-step forecasts (1/2).
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Figure 3.6: Cumulative forecast errors for 12-step forecasts (2/2).
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RW ARIMA(0,1,1) AR(1) STUR

Country 1 2 3 4 RS 1 2 3 4 RS 1 2 3 4 RS 1 2 3 4 RS

Australia 146 237 398 219 2690 238 146 196 420 2798 515 146 111 228 2052 101 471 295 133 2460

Brazil 103 132 482 283 2945 149 90 240 521 3133 484 295 95 126 1863 264 483 183 70 2059

Canada 138 217 397 248 2755 219 132 208 441 2871 522 166 101 211 2001 121 485 294 100 2373

Chile 110 250 479 161 2691 179 78 144 599 3163 503 254 110 133 1873 208 418 267 107 2273

Finland 179 242 446 133 2533 231 71 94 604 3071 406 272 163 159 2075 184 415 297 104 2321

Japan 123 212 421 244 2786 216 101 214 469 2936 523 158 97 222 2018 138 529 268 65 2260

Mexico 90 108 517 285 2997 114 92 254 540 3220 546 255 72 127 1780 250 545 157 48 2003

Sweden 118 130 435 317 2951 157 98 276 469 3057 513 232 97 158 1900 212 540 192 56 2092

UK 149 269 378 204 2637 249 115 185 451 2838 481 182 130 207 2063 121 434 307 138 2462

US 131 381 361 127 2484 241 108 148 503 2913 507 143 138 212 2055 121 368 353 158 2548

Total Sum 1287 2178 4314 2221 27469 1993 1031 1959 5017 30000 5000 2103 1114 1783 19680 1720 4688 2613 979 22851

Table 3.20: Ranks for 1-step forecasts from simulated data.
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3.8 Conclusions

The present study tackles the question whether STUR models can be used to

forecast unemployment rates adequately. In a broader sense, this addresses

the question whether unemployment rates can be modelled appropriately by

STUR. Unfortunately, this cannot be answered unambiguously. The object of

research is discussed from three different perspectives. Unit-root test results

presented in Holl (2013a) are confronted with estimation results concerning

the STUR model as done in Holl (2013b) and concerning some standard time

series models as done in course of the present paper. Parameter estimates

are used to generate a great many of replications to obtain size and power

estimates. The models involved are used to calculate out-of-sample forecasts

by conditional means.

Unit-root tests prepared to have power against STUR processes reject the null

hypothesis of a unit root for five out of ten countries at least at the 5% level of

significance. Particularly, only for Japan and the UK, there is no test rejecting

the null at this level. As a consequence, we could expect processes different

from a random walk to be appropriate for the majority of countries.

Fitting AR(1) and STUR model to each series reveals strongly significant

estimates in line with the test results. Simulations support the case for a

difference-stationary model merely for Japan and the UK. There, the STUR

model is suggested for six out of ten countries. After extracting in-sample

information, the rejection of the null hypothesis in unit-root testing seems

quite reasonable, however the reason why the null is rejected is left unclear.

Thus we consult the forecast performance of each model which may shed some

light on that issue.
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On average, i.e. over all countries, the random walk model performs best,

measured by rank sums. In particular, this holds independent of the forecast

horizon selected (see Tables 3.5 to 3.7, 3.8 to 3.10 and 3.11 to 3.13). STUR

shows up with a rather weak performance on average associated with a strong

dispersion. That is, there are series where the STUR model performs great and

series where it performs poorly. The poor results seem to be more stable over

different forecast horizons. STUR tends to have some slight advantages in the

long run. However, the AR(1) model performs bad as well, particularly at a

longer forecast horizon. Forecasts generated from the stationary AR(1) model

are not that excellent for hardly any country. Adjusting the demeaning proce-

dure for a changing mean somewhat positively affects the results of AR(1) and

STUR at the shorter forecast horizons. Consistent recommendations resulting

both from testing and forecasting are obtained for the UK with a random walk

and for Chile where STUR or maybe AR(1) seem to be appropriate models.

By arranging combined forecasts a further phenomenon becomes evident.

There are only a few cases where a combined forecast outperforms the best

individual one. Ignoring either AR(1) or STUR at the short horizon is costly

whereas at the long horizon it makes sense – on average (see Tables 3.14

to 3.16). Obtaining weights by forecast encompassing tests has its benefits

at the medium and long horizon whereas using inverse mean squared fore-

cast errors in weighting performs better at the short and medium horizon (see

Tables 3.17 to 3.19).

Plotting cumulative forecast errors provides evidence concerning somewhat

strong similarities among the rival models. From that perspective, AR(1) is

not superior at any forecast horizon which is not in line with the results from

mean squared forecast errors. Conflicts between cumulative forecast errors
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and mean squared forecast errors also arise associated with ARIMA(0,1,1).

Finally, the question is raised whether STUR models are good forecast models

at all. That is, given that the data are generated by a STUR model, does it

outperform the rival models in forecasting. Results for 1-step forecasts applied

to simulated data are rather discouraging. STUR can only outrival random

walk and ARIMA(0,1,1) (see Table 3.20).

Clearly, forecaster’s perspective focuses on predicting unemployment rates of

individual countries. The present study says that there is no single model

adequate to represent unemployment rates of all countries. Furthermore, test-

ing considers in-sample behavior which need not and in most cases does not

coincide with out-of-sample behavior. As the future of unemployment rates is

difficult to forecast per se, the respective forecast horizon matters. We may

expect different things for the next month than for the next year, not only

from a quantitative point of view. In the context of forecasting, the STUR

model extends our opportunities to form expectations concerning the future.

Sometimes it succeeds.

139





Bibliography

Ball, L. M., 2009, Hysteresis in unemployment: old and new evidence. NBER

Working Paper 14818.

Billingsley, P., 1968, Convergence of probability measures. Wiley, New York.

Borkovec, M., 2000, Extremal behavior of the autoregressive process with

ARCH(1) errors. Stochastic Processes and their Applications 85/2, 189–

207.

Dickey, D. A. and W. A. Fuller, 1979, Distribution of the estimators for au-

toregressive time series with a unit root. Journal of the American Statistical

Association 74, 427–431.

Durrett, R., 1991, Probability: theory and examples. Wadsworth &

Brooks/Cole, Pacific Grove, California.

Friedman, M., 1968, The role of monetary policy. American Economic Review

58/1, 1–17

Fuller, W. A., 1976, Introduction to statistical time series. Wiley, New York.

Geweke, J., 1992, Evaluating the accuracy of sampling-based approaches to

the calculation of posterior moments. Bayesian Statistics 4, 169–193.

Granger, C. W. J. and R. Ramanathan, 1984, Improved methods of combining

forecasts. Journal of Forecasting 3/2, 197–204.

Granger, C. W. J. and N. R. Swanson, 1997, An introduction to stochastic

unit-root processes. Journal of Econometrics 80, 35–62.

Guyton, D. A., N.-F. Zhang and R. V. Foutz, 1986, A random parameter

process for modeling and forecasting time series. Journal of Time Series

Analysis 7/2, 105–115.

141



Bibliography

Hall, R. E., 1978, Stochastic implications of the life cycle-permanent income

hypothesis: theory and evidence. Journal of Political Economy 86/6, 971–

987.

Harvey, D. and P. Newbold, 2000, Tests for multiple forecast encompassing.

Journal of Applied Econometrics 15/5, 471–482.

Holl, J., 2013a, Testing for unit roots using the AR-ARCH structure of STUR

models. Available on request.

Holl, J., 2013b, Fitting STUR Models to Unemployment – Evaluation of a

new Unit-Root Test. Available on request.

Jones, C. R. and J. M. Marriott, A Bayesian analysis of stochastic unit root

models. Bayesian Statistics 6, 785–794.
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Abstract

The dissertation at hand consists of three essays focussing on so-called stochas-

tic unit-root (STUR) models in economics. A test of the null hypothesis of

a unit root in an autoregressive model of order one (AR(1)) against alterna-

tives nested in a STUR model is introduced. STUR models allow for changes

between stationary and explosive regimes. The pseudo-likelihood ratio test

is based on the equivalence in first and second conditional moment of STUR

models and AR(1) models with errors from an autoregressive conditional het-

eroskedastic model of order one. Asymptotics are derived and critical values

simulated. Monte Carlo experiments show that the test really has power

against stationary and STUR alternatives. An application to unemployment

rates of ten countries is provided. To evaluate the decisions of unit-root tests

having power against STUR processes, STUR models are fitted to the unem-

ployment rates by using Bayesian techniques. The Bayesian procedure in use

allows to assess the deviation of STUR models from standard fixed-coefficient

time series models. Parameter estimates show up strongly significant for all

countries. As the Bayesian method is a very time-consuming one, an alterna-

tive procedure is studied in simulations. The application of STUR models to

unemployment rates is motivated from an economic point of view. Forecasts

of the unemployment rates generated from STUR models are evaluated. Unit-

root test results on original and simulated data are confronted with 1-step,

3-step and 12-step forecast results where STUR is compared to three stan-

dard time series models. Additionally, combined forecasts are calculated. The

question whether STUR is a good forecast model at all is addressed. Testing

and forecasting do not coincide for every country. However, the discussion

suggests that STUR is relevant for certain countries and should be considered

a real alternative.
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Zusammenfassung

Die vorliegende Dissertation besteht aus drei Essays, die von sogenannten

stochastischen Einheitswurzel-(STUR-)Modellen in der Volkswirtschaftslehre

handeln. Ein Test der Nullhypothese einer Einheitswurzel in einem autore-

gressiven Modell erster Ordnung (AR(1)) gegen Alternativen, die in einem

STUR-Modell eingebettet sind, wird vorgestellt. STUR-Modelle ermöglichen

den Wechsel zwischen stationären und explosiven Regimen. Der Pseudo-

Likelihood-Quotienten-Test basiert auf der Äquivalenz der ersten und zweiten

bedingten Momente von STUR-Modellen und AR(1)-Modellen mit Störtermen

eines autoregressiven bedingt heteroskedastischen Modells erster Ordnung. Die

asymptotische Verteilung wird hergeleitet und kritische Werte werden simu-

liert. Monte-Carlo-Experimente zeigen, dass der Test tatsächlich Teststärke

gegen stationäre und STUR-Alternativen besitzt. Der Test wird auf die Ar-

beitslosenquoten von zehn Staaten angewandt. Unter Verwendung Bayesiani-

scher Methoden werden STUR-Modelle für diese Arbeitslosenquoten gefittet,

um die Entscheidungen von Einheitswurzel-Tests, die Teststärke gegen STUR-

Prozesse besitzen, zu evaluieren. Das Bayesianische Verfahren ermöglicht die

Einschätzung der Abweichung der STUR-Modelle von gewöhnlichen Zeitrei-

henmodellen mit konstanten Koeffizienten. Die geschätzten Werte für die Pa-

rameter sind hoch signifikant für alle Staaten. Da das Bayesianische Ver-

fahren sehr zeitaufwendig ist, wird ein alternatives Verfahren in Simulatio-

nen getestet. Die Anwendung der STUR-Modelle auf Arbeitslosenquoten wird

aus einer ökonomischen Perspektive motiviert. Prognosen der Arbeitslosen-

quoten, die sich aus STUR-Modellen errechnen, werden evaluiert. Resulta-

te der Einheitswurzel-Tests angewandt auf reale und simulierte Daten wer-

den den Resultaten von 1-Schritt-, 3-Schritt und 12-Schritt-Prognosen ge-

genübergestellt; STUR wird dabei mit drei gewöhnlichen Zeitreihenmodellen

verglichen. Darüberhinaus werden kombinierte Prognosen berechnet. Die Fra-
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Zusammenfassung

ge, ob STUR überhaupt ein gutes Prognosemodell ist, wird erörtert. Test

und Prognose führen nicht für jeden Staat zum selben Ergebnis, jedoch für

bestimmte Staaten ist STUR ein relevantes Modell und sollte als echte Alter-

native betrachtet werden.
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