

MASTERARBEIT

Titel der Masterarbeit

„De-novo enzyme design for olefin metathesis“

verfasst von

Michael Gastegger BSc

angestrebter akademischer Grad

Master of Science (MSc)

Wien, 2013

Studienkennzahl lt. Studienblatt: A 066 862

Studienrichtung lt. Studienblatt: Masterstudium Chemie

Betreut von: Univ.-Prof. Dr. Leticia González Herrero

A B S T R A C T

One of the most tantalizing challenges in computational chemistry
and bioinformatics is the design of artificial enzymes, tailored specif-
ically to catalyse any desired chemical transformation. The goal of
this thesis was the de-novo computational design of a metalloenzyme
capable of catalysing the ring closing metathesis of diallylether, a
reaction with no natural counterpart. The “inside-out” enzyme design
protocol was employed for this task, where a theoretically engineered
novel active site is introduced into the scaffold of an existing pro-
tein. The active site was modelled after motifs present in the popular
second generation Grubbs ruthenium-based metathesis catalyst. In
order to efficiently search for active site configurations with high cat-
alytic activity, a genetic algorithm was newly implemented, combining
high throughput quantum-chemical computations on DFT-level with a
stochastic optimisation procedure. The Rosetta suite of programs was
then used to screen a database of protein crystal structures for scaf-
folds where these model active sites could be realized and to optimise
catalytic interactions via a subsequent step of sequence design. This
procedure resulted in four promising designed metalloenzymes, based
on the protein scaffolds with the Protein Data Bank IDs 1JQ5, 3E3P,
1O8V and 3C9U. To assess the metathesis activity of these designs,
they will be expressed and characterized experimentally by the group
of Prof. Dr. C. Becker (University of Vienna).

i

A B S T R A C T

Die Entwicklung von Enzymen mit neuartiger Funktionalität ist
eines der vielversprechendsten Anwendungsgebiete von computer-
gestützten bioinformatischen und quantenchemischen Methoden. Im
Rahmen dieser Masterarbeit wurde ein Metalloenzym entwickelt,
welches die Ringschlussmetathese von Diallylether katalysiert, eine
in der Natur unbekannte Reaktion. Der Designvorgang wurde ent-
sprechend dem “inside-out” Protokoll für de-novo Enzym-Design
gestaltet, welches vorsieht, ein neuartiges reaktives Zentrum in das
Grundgerüst eines bereits bekannten Proteins einzubringen. Die Mod-
ellierung eines Reaktionszentrums für Metathese erfolgte am Beispiel
des hochaktiven, rutheniumbasierten Grubbs-Katalysators der zweiten
Generation. Um eine effiziente Suche nach katalysefördernden Reak-
tionszentrumsmodellen zu gewährleisten, wurde ein stochastischer
Optimierungsalgorithmus in der Form eines genetischen Algorithmus
entwickelt, welcher quantenchemische Berechnungen auf DFT-Basis
als Selektionskriterium verwendet. Anschließend wurde das Rosetta-
Programmpaket benutzt, um eine Datenbank von Proteinkristallstruk-
turen nach für die Unterbringung der Modellgeometrien geeigneten
Proteingerüsten zu durchsuchen und um die katalytischen Wechsel-
wirkungen dieser neu eingeführten aktiven Zentren mittels Sequenz-
design zu optimieren. Die Anwendung dieser Prozedur führte zum
Neudesign vier vielversprechender Metalloenzyme auf Basis der Pro-
teine mit den Proteindatenbank IDs 1JQ5, 3E3P, 1O8V und 3C9U.
Um diese Designs auf ihre Metatheseaktivität hin zu untersuchen,
wird ihre experimentelle Exprimierung und Charakterisierung in der
Gruppe von Univ.-Prof. Dr. C. Becker (Universität Wien) erfolgen.

ii

C O N T E N T S

abstract i

frequently used acronyms v

list of symbols vi

1 introduction 1

2 on de-novo enzyme design 5

2.1 Inside-out Approach 5

3 on olefin metathesis 9

3.1 Olefin Metathesis Catalysts 9

3.2 Mechanism 10

3.3 The Model Reaction 11

4 theoretical background 13

4.1 The Schrödinger Equation 13

4.2 Born–Oppenheimer Approximation 14

4.3 Density Functional Theory 14

4.3.1 Hohenberg–Kohn Theorems 15

4.3.2 Kohn–Sham Equations 15

4.3.3 Exchange-Correlation Functionals 16

4.3.4 Resolution of Identity 18

4.3.5 Dispersion Correction 19

4.3.6 Advantages and Shortcomings of DFT 21

4.4 Molecular Properties 22

4.4.1 Equilibrium Structures and Transition States 23

4.4.2 Normal Mode Analysis 23

4.4.3 Thermodynamic Properties 25

4.5 Genetic Algorithms 27

4.5.1 Selection 29

4.5.2 Recombination 29

4.5.3 Mutation 30

4.5.4 Replacement 30

4.5.5 Advantages and Disadvantages of Genetic Al-
gorithms 30

4.6 Geometric Hashing 30

5 computational methods 35

5.1 Quantum Chemistry Methods 35

5.1.1 Choice of Functional and Basis Set 35

5.1.2 Geometry Optimisation and Transition State Lo-
cation 36

5.1.3 Thermochemical Properties 36

5.2 Implementation of the Genetic Algorithm 36

5.2.1 General Algorithm Structure 37

5.2.2 Population Representation 37

5.2.3 Initialization 37

iii

5.2.4 Genetic Operators 39

5.2.5 Fitness Evaluation 40

5.3 Enzyme Design 41

5.3.1 Matching 41

5.3.2 Enzyme Design 43

6 results 45

6.1 Computations on the 2nd Generation Grubbs Cata-
lyst 45

6.1.1 The Catalytic Cycle 46

6.1.2 Geometries of Stationary Points and Transition
States 47

6.1.3 Free Energy Curve of the 2nd Generation Grubbs
Catalyst 51

6.2 Amino Acid Alternatives to the Carbene Ligand 52

6.2.1 Candidates for Alternative Ligands 52

6.2.2 Free Energy Profiles of the Amino Acid Cata-
lysts 53

6.3 Theozyme Motifs 55

6.3.1 Exploratory Search 55

6.3.2 Common Motifs 55

6.3.3 The Proto-Theozyme 59

6.4 The First Theozyme 60

6.4.1 Geometry of the First Theozyme 60

6.4.2 The Quest for a cheaper Fitness Function 61

6.5 The Theozymes from the Steady-State Algorithm 62

6.5.1 Algorithm Parameters 63

6.5.2 Fitness Evolution 63

6.5.3 Theozyme Geometries 64

6.6 The Search for Protein Scaffolds 66

6.6.1 Primary Matching 66

6.6.2 Secondary Matching 67

6.6.3 Distribution of Matches 68

6.7 Enzyme Design 68

6.7.1 Design Parameters 69

6.7.2 Design Runs 70

6.8 Designed Enzymes 71

6.8.1 Enzyme based on the Scaffold 1JQ5 71

6.8.2 Enzyme based on the Scaffold 3E3P 73

6.8.3 Enzyme based on the Scaffold 1O8V 76

6.8.4 Enzyme based on the Scaffold 3C9U 79

6.9 Comparison of the Designs 82

7 summary 85

8 outlook 87

a appendix 89

a.1 Enzyme Design Parameters and Setting 89

a.2 Source Code of the Steady-State Genetic Algorithm 90

bibliography 121

acknowledgements 135

iv

F R E Q U E N T LY U S E D A C R O N Y M S

ATP Adenosine-triphosphate
CATH Class architecture topology homologous superfamily
DFT Density functional theory
GGA General gradient approximation
HF Hartree–Fock
LSDA Local spin density approximation
MARI-J Multipole accelerated resolution of identity
MD Molecular dynamics
NAD+ Nicotinamide Adenine Dinucleotide
PDB Protein data bank
PES Potential energy surface
QM/MM Quantum mechanics/molecular mechanics
RCM Ring closing metathesis
RI Resolution of identity
TD-DFT Time-Dependant Density Functional Theory

v

L I S T O F S Y M B O L S

∇ Nabla operator

M Nuclear mass

Z Nuclear charge

N Number of nuclei

n Number of electrons

R Nuclear coordinates

RA Coordinate of nucleus A

r Electronic coordinates

ri Coordinate of electron i

RAB Internuclear distance

rAi Nucleus-electron distance

rij Interelectron distance

Etotal Total energy

Eel Electronic energy

|Ψ〉 Wavefunction

|Ψnu〉 Nuclear wavefunction

|Ψel〉 Electronic wavefunction

Ĥ Quantum mechanic Hamiltonian operator

Ĥel Electronic Hamiltonian operator

T̂el Kinetic energy operator of the electrons

T̂nu Kinetic energy operator of the nuclei

V̂el,el Interelectronic potential energy operator

V̂nu,nu Internuclear potential energy operator

V̂nu,el Nuclei-electrons potential energy operator

γ Local spin density approximation scaling factor

a,b,c Fitting parameters for hybrid and double hybrid
functionals

ρ Electron density

ρtr Trial electron density

τ Kinetic energy density

εKS Eigenvalue of one-electron Kohn–Sham operator

ĥKS One-electron Kohn–Sham operator

|χKS〉 Kohn–Sham orbital

E0 Ground-state electronic energy

Exc Exchange-correlation energy

EDFT
xc Density functional theory exchange-correlation

energy

ELSDA
x Local spin density approximation exchange

energy

vi

EGGA
x General gradient approximation exchange energy

EGGA
c General gradient approximation correlation

energy

EHF
x Hartree–Fock exchange energy

EPT2

c Second order perturbation theory correlation
energy

EB88

x Exchange energy of B88 functional

EVWN
c Correlation energy of VWN functional

ELYP
c Correlation energy of LYP functional

EB3LYP
xc Exchange-correlation energy of the B3LYP

functional

Ē Electronic energy functional

Ēxc Exchange-correlation energy functional

Ēx Exchange functional

Ēc Correlation functional

ĒLSDA
xc Local spin density approximation

exchange-correlation functional

ĒGGA
xc General gradient approximation

exchange-correlation functional

T̄ Electronic kinetic energy functional

T̄ni Kinetic energy functional of noninteracting
electrons

V̄nu,el Nuclei-electrons potential energy functional

V̄el,el Interelectronic potential energy functional

∆T̄ Correction for electron interaction

∆V̄el,el Correction for nonclassical electron repulsion

NBF Number of basis functions used to represent the
Kohn–Sham orbitals

NAUX Number of atom-centered auxiliary basis
functions used for fitting the electron density

D Density matrix

Dab Element of the density matrix

c Coefficients vector of atom-centered auxiliary
basis functions

cα atom-centered auxiliary basis function coefficient

J Coulomb contribution to electronic energy

Φ Atom centered basis functions representing the
Kohn–Sham orbitals

φ Atom-centered auxiliary basis function used for
fitting the electron density

ρ̃ Approximated electron density

(ab|cd) Four centered Coulomb integral in chemists
notation

αA Polarizability of fragment A

C Dispersion coefficient

s Scaling parameter for dispersion correction

vii

ω Vibrational frequency

fdamp Damping function

ψ Dispersion integration kernel

Edisp Energy contribution due to dispersion effects

EKS
xc Kohn–Sham exchange-correlation energy

EAPW
disp Atom pairwise dispersion energy

ENL
c Non-local correlation energy

H Hessian matrix of second derivatives

HAB Hessian matrix element

h Planck’s constant

h̄ Planck’s reduced constant

ν Vibrational quantum number

θ Coupled mass weighted spatial coordinates

θA Coupled mass weighted spatial coordinate of
nucleus A

Θ Decoupled mass weighted spatial coordinates

ΘA Decoupled mass weighted spatial coordinate of
nucleus A

K Transformation matrix

KAB Element of the transformation matrix

H Diagonalised Hessian matrix

HAB Element of the diagonalised Hessian matrix

Vpot Potential energy

ε Dielectric constant

kB Boltzmann’s constant

NA Avogadro’s constant

R Universal gas constant

I Molecular moment of inertia

IA, IB, IC Principal moments of inertia

Npart Number of particles

M Molecular mass

P Pressure

P0 Standard pressure of 1 atm

s Spin multiplicity

σ Rotational symmetry number

T Temperature

V Volume

ϕ System state

Eφ Energy of system state

G Gibbs free energy

H Enthalpy

S Entropy

Sel Electronic contribution to entropy

Strans Translational contribution to entropy

viii

Slinear
rot Entropy contribution of a linear rotor

Srot Rotational contribution to entropy

Svib Vibrational contribution to entropy

U Total internal energy

U0 Internal energy at zero Kelvin

Uel Electronic internal energy

Utrans Translational internal energy

Ulinear
rot Rotational internal energy of linear rotor

Urot Rotational internal energy

Uvib Vibrational internal energy

Q Partition function of system

q Molecular partition function

qel Electronic molecular partition function

qtrans Translational molecular partition function

qrot Rotational molecular partition function

qvib Vibrational molecular partition function

c1, c2, c3, c4 Cutoff radii of enzyme design procedure

dt Offset for tournament size interpolation

ffit Fitness function

gsize Number of genes in steady-state genome

gmin Minimum number of genes in generational
genome

gmax Maximal number of genes in generational
genome

k Genomes substituted by steady-state replacement

kt Linear slope for tournament size interpolation

neval Number of fitness evaluations

nnew Number of new genomes

noff Number of offspring

ntour Tournament size

pcurr Current population size

pmax Maximal population size

rcx Crossover rate

rmut Mutation rate

rrand Random number

rrec Recombination rate

tcrit Genetic operation threshold

Fmin Minimum fitness of current population

Fmax Maximal fitness of current population

Favg Average fitness of current population

GTS Gibbs free energy of transition state

Greact Gibbs free energy of reactants

ix

1
I N T R O D U C T I O N

The processes underlying life at the smallest level are an intricate
network of chemical transformations, be it the digestion of food, the
replication of DNA or even visual perception. Most of the reactions
associated with these processes are too slow to sustain the respective
functions under normal conditions, calling for the aid of some kind
of catalyst. Nature has provided those in the form of enzymes, a
wide range of peptide or even RNA complexes, exhibiting many
fascinating traits.1 These biocatalysts accelerate the rates of chemical
transformations by lowering the reaction barrier through favourable
interactions with the participating substrates.2 Moreover, three billion
years of continuous evolution have transformed enzymes into true
chemical powerhouses. Some of them accelerate the turnover rates
of reactions to the point, where diffusion of the substrates becomes
the rate determining step.3 Additionally, almost all of them exhibit
an astonishing specificity and selectivity towards certain reactions
and substrates, both traits which are rarely found to this extent in
synthetically prepared catalysts.4

Owing to these features, enzymes are also utilized in several differ-
ent processes in industry and research5, ranging from the preparation
of food to the synthesis of drugs. For these applications, nature al-
ready provides a large amount of enzyme catalysed reactions, but
human inventiveness and serendipity has lead to the discovery of a
plethora of novel chemical transformations unknown in nature, further
augmenting the set of possible chemical transformations. The success-
ful creation of artificial enzymes capable of catalysing all these new
reactions, while still exhibiting the excellent reactivity and specificity
of natural enzymes, would open up a wide range of possibilities, be it
in chemical synthesis, medicine or industrial applications.

In fact, this dream is on the verge of coming true. Different ap-
proaches for designing enzymes with new functionalities have been
developed in the last decades: directed evolution6, catalytic antibod-
ies7, host-guest chemistry8 and many more. With new insights into
the structure and mechanism of enzymes, the advent of more and
more powerful computers and advances in bioinformatics and compu-
tational chemistry, computational enzyme design has been established
as a promising technique for the creation of artificial enzymes. For
good reviews on this topic, see References 9 and 10.

The roots of computational enzyme design can be traced back to
the manipulation of amphipathic α-helices, resulting in the creation
of novel enzymes such as “Helichrome“11 and HP-7.12 Although the
design process of these molecules involved no computational mod-
els, they provided valuable insights into general sequence-structure
relationships. One of the first examples of targeted structure design in-
corporating computations was the application of symmetry operations
to an ideal α-helix, using retrostructural analysis as guidance13, which
lead to the creation of the duo ferro (DF) series of metalloenzymes.14,15

1

2 introduction

The DF proteins helped to demonstrate the viability of simulations
for elucidating and predicting relations between sequence, structure
and reactivity.16 While the use of well defined α-helix elements limits
the structural and chemical diversity, it allows to bypass the inverse
folding problem. An alternative strategy is to craft novel active sites
onto the scaffolds of existing proteins. Early examples of this ap-
proach are the metallazymes created with the Metal Search

17,18

and Dezymer
19 programs and the protozyme design (PZD) series of

non-metal enzymes.20 In the latter case, a composite sidechain was
introduced at a suitable protein backbone location and the conforma-
tions of this moiety and adjacent sidechains optimized with Dead End
Elimination.21 structural and in turn often chemical diversity. The
creation of structurally diverse enzyme scaffolds through computa-
tional means alone is unfortunately hampered by the inverse folding
problem. An alternative, more manageable strategy, is to craft active
sites incorporating novel functionalities onto the scaffolds of existing
proteins. Early examples of this approach are the metallazymes cre-
ated with the Metal Search and Dezymer programs and the PZD
series of non-metal enzymes. In the latter case, a protein backbone
was screened for positions capable of accommodating a composite
sidechain composed of the catalytic amino acid and the substrate. To
optimize the conformations of this moiety and adjacent sidechains, the
Dead End Elimination algorithm was used. The approach employed
for the PZD enzymes can be seen as a precursor for the ”inside-out“
design protocol by the groups of Baker and Houk10,22, implemented
in the Rosetta suite of programs23 for computational protein design.
This strategy uses a geometric hashing algorithm to search a set of
protein crystal structures for locations, where a model active site,
generated by quantum-chemical methods, can be introduced. The
resulting structures are then subjected to sequence/structure design
in order to stabilize catalytic interactions. The inside-out methodology
has already been applied successfully on several occasions, such as the
de-novo design of retro-aldol enzymes24, enzymes catalysing Kemp-
elimination25 and Diels–Alder enzymes26, as well as the redesign of a
zinc metalloenzyme for hydrolysis.27 These successes reported for the
computational de-novo design of enzymes prove the viability of this
method.

The objective of this thesis is to apply this inside-out design protocol
to the computational de-novo design of a metallazyme catalysing an
olefin metathesis reaction. This approach was chosen because of its
relative robustness and reliability, as demonstrated by the examples
given above.

The creation of a model of the active site, a so called “theozyme”28, is
guided by a motif commonly found in enzymes and first suggested by
Pauling in 1946

29, where the reaction barrier is lowered by favourable
interactions of the transition state with the protein residues. This
concept is used in this work to arrive at well-suited protein structures.
In order to efficiently search for beneficial geometry arrangements, a
genetic algorithm was newly developed, combining high throughput
quantum chemistry methods and efficient metaheuristic optimisation
algorithms.30

introduction 3

Figure 1.1: Olefin metathesis reaction. The exchange of the alkene moieties
formally leads to the formation of two new double bonds.

In the second stage of the work, the Rosetta suite of programs
by Baker and coworkers is used to incorporate the theozyme into
the scaffold of an existing protein. To this goal, a geometric hashing
algorithm is utilized to efficiently search a database of protein crystal
structures for locations, where the novel active site residues can be
introduced without impacting the overall conformation of the scaffold.

The modified scaffolds are then subjected to a sequence-design
procedure, in order to tailor the novel active sites complementary to
the substrate and stabilize the catalytic interactions. Finished designs
are evaluated according to the retention of the catalytic geometry and
quality of the catalytic interactions.

The target reaction in this thesis, olefin metathesis, is a formal redis-
tribution of alkene fragments and thus one of the few organic reactions
capable of creating new carbon bonds (Figure 1.1). Its overall efficiency
and lack of undesired byproducts in combination with the advent of
well-defined catalysts has increased the popularity of metathesis over
the last decades31, leading to a variety of applications in industry32

and organic synthesis33, as for example the shell higher olefins pro-
cess, cross metathesis (CM), ring-opening metathesis polymerization
(ROMP) and ring-closing metathesis (RCM). These properties and
the fact that there is no analogous reaction in nature, make olefin
metathesis the perfect target for introducing a novel functionality into
an enzyme.

This thesis is conducted in the framework of a cooperation between
two theoretical groups. The design of the active site was done in the
quantum chemistry group of Univ.-Prof. Dr. L. González and guided
by Dr. P. Marquetand. The search for adequate scaffolds and the sub-
sequent sequence design was carried out in the bioinformatics group
of Univ.-Prof. Dr. I. Hofacker with the help of Dr. C. Flamm, who
also initiated the project. The most promising enzyme designs will be
synthesized and characterized with regards to their functionality by
the experimental group of Univ.-Prof. Dr. C. F. W. Becker.

2
O N D E - N O V O E N Z Y M E D E S I G N

The promise of creating artificial enzymes with attributes similar
to their natural counterparts, but at the same time bearing novel
functionalities is tantalizing. This would allow for the specific design
of new molecular species, capable of catalysing every possible chemical
reaction under “green“ conditions – mild, aqueous environments
– while exhibiting unprecedented reaction speed, proficiency and
selectivity.

Unfortunately enzyme catalysis is a highly complex interplay of a
wide range of different effects. The observed rate enhancement and
selectivity of enzymatic reactions is the result of a combination of sev-
eral fine tuned interactions between the substrate, the active site and
the protein scaffold as a whole. Active sites exhibit a geometry highly
complementary to the transition state of the substrate, stabilizing it
through electrostatic, covalent or steric interactions.29,34 Furthermore,
reactants are often preorganized before catalysis35, while second shell
interactions lead to a fine tuning of the reaction energy landscape36,
inextricably coupling the active site to the outer regions of the enzyme.
Some enzymes also exhibit allosteric effects, dynamically changing
their conformations allowing for a further refinement of the enzymatic
process. This intricate network of interactions renders the de-novo
design of enzymes a formidable task.

To alleviate the encountered problems, different approaches are
employed, including directed evolution6, catalytic antibodies7, host-
guest chemistry8, supramolecular chemistry8, protein engineering37

and many more. The one focused on here is computational enzyme
design. This relatively young field of research has profited much from
recent developments in hardware, new insights in bioinformatics and
the enzymatic workings, as well as the advent of high throughput
methods in quantum chemistry and has thus been established as a
promising method in de-novo enzyme design. Of special interest is
a variant of computational enzyme design pioneered by the groups
of Baker and Houk, the so called inside-out design protocol, which
has proven to be a reliable method of introducing new functionality
into enzymes and will be discussed in more detail. For a good review
on the inside-out methodology and enzyme design in general, see
reference 10.

2.1 inside-out approach

Creating an entire enzyme from scratch would introduce the need of
solving the inverse folding problem, the prediction of stable tertiary
structures associated with certain amino acid sequences. Since protein
structure prediction has to explore a vast combinatorial structure
space, it requires immense computational resources and has thus far
only been applied successfully in limited number of cases.

5

6 on de-novo enzyme design

The reverse folding problem can be avoided by crafting novel active
sites onto the scaffolds of already existing peptides.22 As at least one
sequence of amino acids folding into the required tertiary conforma-
tion is already known, extensive structure prediction is not required.
Based on this observation, the design process can be separated into
different stages, depicted schematically in Figure 2.1.

Stage 1 Theozyme

Stage 2 Match Scaffolds

Stage 3
Optimize

Catalytic Contacts

Sequence
Design

Constrained
Optimisation

Stage 5
Unconstrained
Optimisation

Stage 6
Ranking

of
Designs

n
tim

es

Stage 4

Figure 2.1: Different stages invoked during the inside-out design process,
starting from the theozyme and a library of peptide scaffolds.

As a starting point for inside-out enzyme design serves a ”theoret-
ical enzyme“, a so-called theozyme.28 The theozyme consists of the
transition state structure of the reaction to be modelled, surrounded
by an array of stabilizing amino acid residues. For the nomenclature
used throughout this thesis, see Figure 2.2.

This theozyme is typically generated using quantum chemistry cal-
culations with the aim of optimising the interactions between the tran-
sition state and the protein by the geometrically favourable placement
of different functional amino acid groups (see Figure 2.1, Stage 1).

The next step is the screening of existing protein scaffolds for back-
bone sites capable of accommodating the three-dimensional arrange-
ment of amino acid residues in the theozyme (Stage 2). A rotamer
library of possible conformations of the catalytic residues is generated
and matched against a library of crystal structures of existing pro-
teins. This screening can be done in an efficient manner by utilizing a
geometric hashing algorithm.22 Since the exact theozyme geometry

2.1 inside-out approach 7

A
B

C

M

A
B

C

D

Figure 2.2: The left side shows the conventional classification used in enzyme
design. The protein scaffold compromises the catalytic sidechains
(B) and the remaining protein (A). The catalytic residues (B) and
the part of A closest to the cavity form the active site capable
of accommodating the substrate (C). The combination of sub-
strate and catalytic residues is the theozyme. In order to provide
a description for the theozymes encountered in this thesis, the
scheme was augmented. The active site now bears a metal moi-
ety (D), which will be referred to as the minimal catalyst. In
this case the theozyme consists of the catalytic residues (B), the
minimal catalyst (D) and the substrate (C). The combination of
only the minimal catalyst and the substrate will be called the
metal-substrate complex.

produces matches only in the rarest cases, tolerance values are usually
assigned to the internal coordinates representing the catalytic contacts.

Once a match is found, the associated sequence structure pair is
subjected to an optimisation procedure. First, the catalytic contacts
between protein scaffold and substrate are optimised (Stage 3). Af-
terwards alternating steps of side-chain sampling and structure op-
timisation are applied in an iterative manner under retention of the
catalytic restraints (Stage 4). This is then followed by an unconstrained
minimisation cycle in order to check the integrity of the obtained
artificial enzyme (Stage 5).

In a last step the obtained designs can be ranked according to
different criteria (Stage 6), representing their capability of stabilizing
the transition state. Typical descriptors are energy, ligand binding
scores and active site geometry, but it is also possible to use molecular
dynamic simulations for more detailed assessments.38

The power of the inside-out enzyme design protocol lies in its
relative simplicity and efficiency, resulting in a robust methodology.
It has in fact been employed successfully in several cases such as the
de-novo design of an enzyme catalysing a Kemp elimination reaction25,
and many more.24,26,27,39 This attests to the feasibility of the approach,
despite the use of several approximations.

3
O N O L E F I N M E TAT H E S I S

Known since the middle of the last century, olefin metathesis has
undergone a major renaissance recently. As this reaction describes a
metal-catalysed rearrangement of olefinic double bonds (Figure 3.1),
it is one of the few organic methods capable of forming covalent
carbon-carbon bonds. Because of this ability, olefin metathesis has
found widespread use in total synthesis and polymer chemistry.33

Examples for different applications of this reaction include acyclic
diene metathesis, cross metathesis, ring-opening metathesis polymer-
ization and ring-closing metathesis.

Figure 3.1: Olefin metathesis reaction. The exchange of the alkene moieties
formally leads to the formation of two new double bonds.

3.1 olefin metathesis catalysts

One important reason for the rapid increase in popularity of olefin
metathesis was the discovery of well-defined catalysts. These are
typically transition metal complexes carrying an alkylidene moiety.
Amongst the most prominent representatives of metathesis catalysts
are Schrock-alkylidenes40 and the so called Grubbs-type catalysts
(Figure 3.2). The Grubbs-type catalysts are commonly further classified
into first-41 and second-generation complexes42, of which the latter
will be in the focus of this thesis.

(a) (b) (c)

Figure 3.2: Different catalysts facilitating olefin metathesis: The Schrock-
alkylidene (a) and first-generation Grubbs (b) as well as second-
generation Grubbs-type (c) catalysts.

Grubbs-type catalysts are ruthenium-based and exhibit improved
stability towards environmental influences and tolerance towards dif-
ferent functional groups when compared to other catalysts, making
them the standard choices for olefin metathesis reactions in synthe-
sis.43

9

10 on olefin metathesis

The first-generation of Grubbs catalyst carries two bulky phosphine
ligands, typically cyclohexyl-phosphine, and a benzylidene group.
The second generation of catalysts improve upon the first-generation
Grubbs catalysts by replacing one of the phosphine ligands with
a N-heterocyclic carbene species with mesityl groups, thus greatly
increasing the activity and functional group tolerance by virtue of
beneficial steric and electronic effects.43–45

3.2 mechanism

A reasonable mechanism of olefin metathesis was first proposed by
Herisson and Chauvin in 1970

46 and is thought to proceed via a series
of formal [2+2] cycloadditions followed by cycloreversions. Extensive
theoretical and experimental studies accompanying the rise in popu-
larity of the olefin metathesis reaction have helped to further elucidate
certain aspects of the reaction pathway.

Figure 3.3: General mechanism of the olefin metathesis reaction for the
Grubbs-type catalysts. The reaction cycle starts with the dis-
sociation of the phosphine ligand from the initial catalyst (a). The
main ligand and the chlorines are omitted for reasons of clarity

In case of the Grubbs-type catalysts (see Figure 3.3 for a full reaction
cycle), the first step of the reaction is now commonly accepted to be the
dissociation of a phosphine ligand (a), leading to a 14-electron species
(b).47,48 Next, the olefin coordinates trans to the ruthenium atom,
resulting in a 16-electron π-complex (c).49 The metathesis reaction
then proceeds by insertion of the olefin into the metal-alkylidene
bond, forming a metallacycle intermediate (d), thus resembling a [2+2]
cycloaddition. In a final step the ruthenacycle undergoes ring opening
and transforms into the products (f) via a second π-complex (e) and
dissociation of the newly formed olefin-fragment.49,50 This last step
is generally favoured for entropic reasons. Repetition of these steps
(g-i) yields the methylidene analogue of the initial active catalyst, as
well as the final product and constitutes a full metathesis cycle. In

3.3 the model reaction 11

the case of ring-closing metathesis, the olefinic substrate bears two
double bond moieties. The initial reaction proceeds normally, yielding
the reactant-alkylidene complex. The subsequent steps, however,
involve an intramolecular cycloaddition and cycloreversion, leading
to the formation of a cyclic product, hence the reactions name (for an
example see Figure 6.2).

The rate limiting step depends on the type of the catalyst and
is usually either the initial dissociation of one phosphine ligand or
the ring-closure.49,51 The influence of the final transition state on
the whole reaction profile is even more prominent in ring-closing
metathesis, since the resulting species is subject to considerable ring
strain effects.52,53

3.3 the model reaction

The ultimate goal of this work is the development of an enzyme
bearing a novel functionality. Olefin metathesis, and especially ring-
closing metathesis are excellent target reactions, due to several reasons.

As mentioned above, the ability to form new carbon bonds makes
this reaction a valuable tool for synthesis. The incorporation into
a peptide scaffold would furthermore allow olefin metathesis to be
carried out in aqueous environment, a property highly sought after
in metathesis catalysts. In addition, no reaction resembling olefin
metathesis is known in nature, rendering it indeed a novel functional-
ity.

Because of these traits, the RCM of diallylether (Figure 3.4) was
chosen as the model reaction for the de-novo enzyme design.

O
OCatalyst/Enzyme

+

Figure 3.4: Ring-closing metathesis of diallylether forming dihydrofurane
and ethene.

An advantage of this RCM is the formation of ethene, driving the
reaction towards the products through the associated increase in en-
tropy. Diallylether was chosen as a substrate due to its water solubility
and size. The length of the molecule allows for the formation of a
5-membered ring, the smallest ring RCM is capable of creating. Since
5-membered rings have been shown to preferably adopt an envelope
conformation during RCM52, an intensive sampling of conformation
space, as would be required for the different stereoisomers of larger
rings, is not necessary. The lack of superfluous functional groups
also makes it easier to assess the individual influences of the moieties
present in the ether. One last benefit of using a substrate of smaller
size is the saving in computational time, especially for larger systems,
like the ether-catalyst complex. While the methods based on density
functional theory (DFT) used in this study are quite efficient when
compared to other quantum-mechanical methods, their scaling of
O(N3) with the number of atoms can lead to significant reductions in
computational effort for only small reductions in system size.

4
T H E O R E T I C A L B A C K G R O U N D

The following chapter is meant to give an overview over the theoretical
aspects underpinning this work. A short summary of the Schrödinger
equation and the Born–Oppenheimer approximation will be provided,
followed by a discussion of DFT. Geometry optimisation, normal
mode analysis and computation of thermodynamic properties will be
reviewed. Afterwards an introduction to genetic algorithms will be
given. The final topic will be geometric hashing algorithms.

4.1 the schrödinger equation

At the core of non-relativistic, nonadiabatic quantum mechanics lies
the Schrödinger equation, proposed by Erwin Schrödinger in 1927.54–56

In its time-independent form

Ĥ(R, r) |Ψ(R, r)〉 = Etotal |Ψ(R, r)〉 , (4.1.1)

it describes the stationary states represented by the wavefunction
|Ψ(R, r)〉 of a quantum mechanical system. Etotal is the total energy
of the respective state and Ĥ(R, r) is the quantum-mechanical Hamil-
tonian. This operator represents the interactions of the nuclei and
electrons and thus depends on nuclear and electronic coordinates R
and r. It is composed of the terms

Ĥ(R, r) = T̂el(r)+ T̂nu(R)+ V̂el,el(r)+ V̂nu,el(R, r)+ V̂nu,nu(R), (4.1.2)

where T̂el(r) and T̂nu(R) are the electronic and nuclear kinetic energies,
V̂el,el(r) and V̂nu,nu(R) account for the electron and nuclear Coulomb
repulsions and V̂nu,el(R, r) describe the interactions between nuclei
and electrons.

For a molecule with n electrons and N nuclei the contributions of
the kinetic energies to the overall Hamiltonian in atomic units can be
written as

T̂el(r) = −
n

∑
i=1

1
2
∇2

i , (4.1.3)

T̂nu(R) = −
N

∑
A=1

1
2MA

∇2
A, (4.1.4)

where MA is the mass of nucleus A. The potential energy terms can
be expressed as

V̂el,el(r) =
n

∑
i=1

n

∑
j>i

1
rij

, (4.1.5)

V̂nu,nu(R) =
N

∑
A=1

N

∑
B>A

ZAZB

RAB
, (4.1.6)

V̂nu,el(R, r) = −
N

∑
A=1

n

∑
i=1

ZA

rAi
, (4.1.7)

13

14 theoretical background

where rij = |ri − rj| is the interelectronic distance, RAB = |RA − RB|
the internuclear distance and rAi = |RA − ri| the distance between
nucleus A and electron i.

4.2 born–oppenheimer approximation

Solving equation 4.1.1 for molecules poses an insurmountable obstacle.
It constitutes a many-body-problem and thus lacks analytical solutions
for systems containing more than two particles.

To overcome this hurdle, Born and Oppenheimer introduced an
approximation in 1927, which allows for the separate treatment of
nuclei and electrons.57 Because of their smaller mass, electrons are
much faster than nuclei. Therefore, electrons can be considered as
moving in the field of the stationary nuclei. The wavefunction of the
system can then be written as

|Ψ(R, r)〉 = |Ψnu(R)〉 |Ψel(r; R)〉 , (4.2.1)

where |Ψnu(R)〉 is the nuclear wavefunction and |Ψel(r; R)〉 the elec-
tronic wavefunction depending parametrically on the nuclear coordi-
nates R. Since quantum chemistry is mainly concerned with electronic
properties, the nuclear kinetic energy terms can be omitted leading to
the electronic Schrödinger equation in the form(

Ĥel(r; R) + V̂nu,nu(R)
)
|Ψel(r; R)〉 = Eel |Ψel(r; R)〉 . (4.2.2)

V̂nu,nu(R) is a constant for a given set of nuclear coordinates and Eel
is the effective potential energy of electrons moving in the field of the
fixed nuclei. The multidimensional surface spanned by the values
of Eel obtained for different nuclear positions is called the potential
energy surface (PES), an important concept in theoretical chemistry.
The electronic Hamiltonian Ĥel(r; R) is given by the relation

Ĥel(r; R) = −
n

∑
i=1

1
2
∇2

i +
n

∑
i=1

n

∑
j>i

1
rij
−

N

∑
A=1

n

∑
i=1

ZA

rAi
. (4.2.3)

The ab initio methods, like Hartree–Fock-theory58, are based on equa-
tion 4.2.2 and try to derive solutions of increasing quality for the
electronic problem.

4.3 density functional theory

A drawback of the wavefunction is its lack of a direct physical interpre-
tation. Furthermore, it depends on 3N spatial and N spin coordinates
and thus contains more information than strictly needed for the treat-
ment of a system. This situation has motivated the search for an
alternative function involving fewer variables, preferably based on a
physical observable, which allows for the computation of the energy
and other molecular properties.

Equation 4.2.3 shows the dependence of the electronic Hamiltonian
on only the nuclear coordinates, atomic numbers and the total number
of electrons. A suitable observable is therefore the electron probability
density ρ(r), a function of only three spatial variables. For a given ρ(r),

4.3 density functional theory 15

it should then be possible to derive the energy and other properties
of the electronic state associated with this density. The required
formalism is provided by DFT.

4.3.1 Hohenberg–Kohn Theorems

A rigorous foundation for DFT was provided by Hohenberg and Kohn
in 1964 with the so-called Hohenberg–Kohn theorems.59

According to the existence theorem, the ground-state electron den-
sity is uniquely related to the external potential of the nuclei and thus
defines the Hamiltonian, the wavefunction and all other molecular
properties. The ground-state electronic energy E0 and other quantities
can then be expressed as functionals of the electron density ρ(r):

E0 = Ē[ρ(r)] = T̄[ρ(r)] + V̄nu,el[ρ(r)] + V̄el,el[ρ(r)]. (4.3.1)

The terms on the right hand side refer to the kinetic energy and
the interaction potentials between nuclei and electrons and between
electrons (compare to equation 4.1.2).

The Hohenberg–Kohn variational theorem states that the density
obeys a variational principle. This infers, that every trial electron
density ρtr(r) yields an energy equal to or above the exact ground
state energy

T̄[ρtr(r)] + V̄nu,el[ρtr(r)] + V̄el,el[ρtr(r)] ≥ Ē[ρ(r)] = E0. (4.3.2)

This relation would allow for a systematic improvement of the energy.
Unfortunately it only holds for the exact functional Ē[ρ(r)], a problem
of DFT which will be discussed later on.

4.3.2 Kohn–Sham Equations

Despite their importance, the Hohenberg–Kohn theorems give no
directions as how to compute the ground state energy E0 or how
to derive the density without knowledge of the wavefunction. An
important step towards the practical application of density functional
theory was therefore undertaken by the introduction of the Kohn–
Sham formalism in 1965.60

By assuming a fictitious system of non interacting electrons with
the same ground state density as the real system of interest, one can
split the energy functional:

Ē[ρ(r)] =T̄ni[ρ(r)] + V̄nu,el[ρ(r)] + V̄el,el[ρ(r)]

+ ∆T̄[ρ(r)] + ∆V̄el,el[ρ(r)],
(4.3.3)

where T̄ni[ρ(r)] is the kinetic energy of the non-interacting electrons
and the last two terms are corrections due to the interacting nature
of electrons and non-classical electron-electron repulsion. The kinetic
energy can now be computed by taking the sum over the individual
electronic contributions. After expressing the density as Kohn–Sham
orbitals χKS according to

ρ(r) =
n

∑
i=1
|χKS

i 〉 〈χKS
i | , (4.3.4)

16 theoretical background

equation 4.3.3 can be rewritten for a system of n electrons and N
nuclei as

Ē[ρ(r)] =− 1
2

n

∑
i=1

〈
χKS

i

∣∣∣∇2
i

∣∣∣χKS
i

〉
−

N

∑
A=1

ZA

RA

∫
ρ(r)
RA

dr

+
1
2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′ + Ēxc[ρ(r)].

(4.3.5)

The last two correction terms in equation 4.3.3 have been contracted
into Ēxc[ρ(r)], the so-called exchange-correlation functional. Electron
exchange describes a quantum-mechanical repulsive interaction aris-
ing due to the fermionic nature of electrons, while electron correlation
is the dependency of one electron’s probability density on the prob-
ability densities of all other electrons in the system and vice versa.
The Kohn–Sham orbitals are found by solving the pseudo-eigenvalue
equations

ĥKS
i |χKS

i 〉 = εKS
i |χKS

i 〉 , (4.3.6)

where the one-electron Kohn–Sham operator satisfies

ĥKS
i = −1

2
∇2

i −
N

∑
A=1

ZA

riA
+
∫

ρ(r′)
|ri − r′|dr′ +

∂Ēxc[ρ(r)]
∂ρ(r)

. (4.3.7)

Applying this formalism, the ground-state energy can be computed in
a self-consistent field procedure.

Because Kohn–Sham theory involves no approximations, equation
4.3.5 yields exact ground state energies, provided the correct exchange-
correlation functional is known. As this is unfortunately not the
case, great endeavours are undertaken to find functions that allow
reasonable approximations of Ēxc[ρ(r)].

4.3.3 Exchange-Correlation Functionals

Since Ēxc not only has to account for quantum mechanical electron
exchange and correlation, but also for the difference in the kinetic
energy of an interacting system, it is no trivial task to derive a suitable
approximation.

Different approaches to this end have resulted in various expressions
for the exchange-correlation functional. Perdew suggested grouping
them in the form of a ladder, where each rung improves upon the
former one in complexity, sophistication and, in general, accuracy.61

A description of the individual “rungs” is provided in this section.

Local Spin Density Approximation

Local Density Approximation (LDA) and its open-shell analogue Local
Spin Density Approximation (LSDA) are based on the analysis of the
uniform electron gas. The term “local” indicates the dependence of
Ēxc at a given position on only the local electron density.

The exchange energy of an uniform electron gas can be derived
exactly and is given by

Ēx[ρ(r)] = −
9
8

(
3
π

) 1
3

γ
∫∫∫

ρ
4
3 (r)dr, (4.3.8)

4.3 density functional theory 17

where γ is a parameter varying for different approaches.62,63

For the correlation part, no analytical solution based on the uniform
electron gas exists. Correlation functionals are therefore usually con-
structed by fitting to computed densities of the uniform electron gas.
A popular example is the VWN correlation functional by Vosko, Wilk
and Nusair64, obtained by fitting to data derived via quantum Monte
Carlo methods.

General Gradient Approximation

As the electron density of a molecule is by no means spatially uniform,
the LSDA approach is heavily limited in its applicability. A way to
improve upon LSDA is making Ēxc not only depend on the local
density, but also on the change in density. This is facilitated by using
a Taylor-expansion-like formalism and including the gradient of the
density into the functional.

The resulting model is called the generalized gradient approxima-
tion (GGA). The new term is typically treated as a correction to a
LSDA functional in the form

ĒGGA
xc [ρ(r)] = ĒLSDA

xc [ρ(r)] + ∆Ēxc

[
|∇ρ(r)|
ρ

4
3 (r)

]
. (4.3.9)

Most GGA functionals incorporate empiric parameters.
Examples for exchange functionals include Becke’s B88 functional65

and the parameter-free PBE functional of Perdew, Burke and Ernz-
erhof.66 Popular correlation GGA functionals are P86 by Perdew67,
PW91 by Perdew and Wang68 and the LYP functional by Lee, Yang
and Parr69, derived from the Colle–Salvetti formula. In contrast to
other GGA functionals LYP does not compute a correction to the
LSDA expression, but the total correlation energy. For practical use
exchange and correlation GGA-functionals are combined. This leads
to functionals like BP86, using the B88 exchange and P86 correlation
terms.

meta-GGA

Given the Taylor-expansion-like nature of equation 4.3.9, one might
further enhance the GGA-formalism by including the Laplacian of the
electron density.

This approach is usually referred to as meta-GGA, since it goes
beyond the normal gradient approximation. However, numerically
stable computations of the Laplacian are quite demanding. An alter-
native is to incorporate a dependence on the kinetic energy density τ

into the exchange correlation functional, defined as

τ(r) =
1
2

occ.

∑
i
|∇χKS

i (r)|2, (4.3.10)

where the index i runs over all occupied Kohn–Sham orbitals χKS
i (r).

Examples for meta-GGA functionals are B95
70 and TPSS.71

18 theoretical background

Hybrid Functionals

The next step towards an accurate expression of Exc is the partial
inclusion of exact, nonlocal exchange, as computed by the Hartree–
Fock (HF) method. These functionals have the general form of

Exc = (1− a)EDFT
xc + aEHF

x , (4.3.11)

where a is an empirical constant regulating the admixture of exact
HF-exchange.

Introducing more parameters and extensive fitting to experimental
and computational data has lead to a wide range of so called hybrid
functionals. One of the most popular representatives is the B3LYP
method72 defined as

EB3LYP
xc = (1− a)ELSDA

x + aEHF
x + bEB88

x

+(1− c)EVWN
c + cELYP

c .
(4.3.12)

The parameters a, b and c were optimized to a = 0.20, b = 0.72 and
c = 0.81 by fitting to empirical data. Other examples for hybrid
functionals are PBE0

73 and TPSSh.74

Double Hybrid Functionals

The highest rung of Perdew’s ladder is reached by introducing part of
the exact correlation energy as an extension to the hybrid functional
formalism. These so-called double hybrid functionals are defined as

Exc = (1− a)EGGA
x + aEHF

x + bEGGA
c + (1− b)EPT2

c , (4.3.13)

where EPT2

c is the correlation contribution computed by second order
perturbation theory. An example for double hybrid functionals is the
B2PLYP functional of Grimme.75

4.3.4 Resolution of Identity

Despite its ultimately approximate nature, DFT is amongst the most
popular electronic structure methods. One of the main reasons is effi-
ciency, as attested by a scaling behaviour of O(N3). When compared
to typical scalings of ab initio methods ranging from O(N4) to O(N7),
DFT allows for the treatment of much larger systems at acceptable
accuracy.

An additional increase in computation speed can be gained by
utilizing the resolution of identity approach or RI-J, first introduced
by Almlöf et al.76 and further refined by Ahlrichs and coworkers.77

The bottlenecks in equation 4.3.5 are the evaluation of the exchange
correlation functional and the Coulomb term

J =
∫∫

ρ(r)ρ(r′)
|r− r′| drdr′. (4.3.14)

Exc can be treated efficiently using numerical quadratures, which
leaves J as the dominating term.

Due to the representation of the Kohn–Sham orbitals in NBF atom-
centered basis functions Φ:

ρ(r) =
NBF

∑
a=1

NBF

∑
b=1

DabΦa(r)Φb(r), (4.3.15)

4.3 density functional theory 19

where D is the density matrix, the evaluation of J gives rise to four-
center two-electron repulsion integrals. The cost of resolving these
integrals in dependence on the number of basis functions grows with
the fourth power.

The resolution of identity approximation is based on the observation,
that describing ρ(r) in terms of equation 4.3.15 holds an surplus of
information. It is therefore possible to approximate the density by a
linear combination of NAUX atom-centered auxiliary basis functions φ:

ρ(r) ' ρ̃(r) =
NAUX

∑
α=1

cαφα(r). (4.3.16)

The coefficients cα are obtained by a fitting procedure according to∫∫
δρ(r)δρ(r′)
|r− r′| drdr′ = min., (4.3.17)

where δρ(r) = ρ(r)− ρ̃(r). Using the chemists notation to represent
the integrals58, it can be shown that expression 4.3.17 leads to a
replacement of the four center integrals by a system of linear equations
consisting of only two- and three centered integrals,

(ab|cd) =
NAUX

∑
αβ

(ab|α)(α|β)−1(β|cd). (4.3.18)

This representation resembles the resolution of identity in Hilbert
space, hence the method’s name. Employing this approach leads to
a 10-fold saving in computation time, while introducing only minor
errors because of the finite auxiliary basis set.77

An extension of RI-J is the multipole accelerated resolution of iden-
tity method, for short MARI-J, developed by Ahlrichs and cowork-
ers.78 Here the Coulomb interactions are partitioned into near- and
far-field terms. The near field part is then evaluated via RI-J, while
the far-field contribution is treated using multipole expansions. For
large systems, this separate treatment can lead to an additional saving
in CPU-time of a factor of 6.5 compared to traditional RI-J.78

4.3.5 Dispersion Correction

One major shortcoming of DFT caused by the approximation of the
exchange-correlation term is the neglect of long range electron-electron
correlation. This omission results in the inability of standard function-
als to correctly account for dispersion effects. Typical examples are
the van-der-Waals (vdW) bound ground states of noble gas dimers
and the benzene dimer, which DFT fails to locate.79

Since the magnitude of dispersion interactions can easily outrank
all other interactions especially in larger biological and chemical com-
pounds or complexes, an accurate description is necessary. This need
has lead to the development of several dispersion correction schemes
over the past few years. Most employ the general strategy

Exc = EKS
xc + Edisp, (4.3.19)

where the dispersion term Edisp is added to the Kohn–Sham energy
in a post SCF manner. They can be grouped into three classes: atom

20 theoretical background

pairwise additive schemes, charge density dependent approaches and
extensive parametrization.

Atom pairwise (APW) additive schemes are based on the approxima-
tion that dispersion can be expressed as additive atom pair interactions.
These corrections are dependent on the distance RAB between the two
atoms A and B. They typically contain a 1/R6

AB term resembling
dipole-dipole interactions and sometimes terms of higher power:

EAPW
disp = − ∑

A>B
∑

n=6(8,10)
sn

CAB
n

Rn
AB

fdamp(RAB), (4.3.20)

where sn is a fitted scaling parameter, CAB
n are the dispersion coeffi-

cients and fdamp(RAB) is a damping function employed to switch off
the dispersion correction for regions where it is sufficiently described
by the functional. The main differences of the various atom pairwise
additive corrections are the choice of the damping function and the
way the dispersion coefficients are obtained.

An early scheme is DFT-D2 by Grimme80 which uses tabulated
values for CAA

n and computes CAB
n as the geometric mean.

More advanced solutions introduce a system dependence of the
dispersion coefficients. The DFT-D3 approach81 interpolates CAB

n
between different hybridizations according to the system geometry. In
this case, the pure dispersion coefficients were computed using the
Casimir–Polder relation82

CAB
n =

3
π

∫ inf

0
αA(iω)αB(iω)dω. (4.3.21)

The fragment polarizabilities α were obtained from time-dependent
DFT (TD-DFT) calculations.

Another approach termed DFT+vdW83 also derives Cn by the
Casimir–Polder relation with TD-DFT results as a basis. To account
for system dependence, the coefficients are then modified utilizing the
Hirshfeld partitioned volume of the bound and free atom.

The exchange dipole moment scheme XDM by Becke and John-
son84–86 employs second-order perturbation theory to compute the
coefficients from the dipole moment between an electron and its ex-
change hole. The terms of higher order also incorporate the quadrupole
and octopole moments. Like DFT+vdW, this scheme makes use of
Hirshfeld partitioning. In this case, fdamp(RAB) is the rational Becke-
Johnson (BJ) damping function.

Steinmann and Corminboeuf87 improve upon the XDM correction
by switching to the damping function of Tang and Toennies.88 This
function introduces an additional dependence on the electron density.
The coefficients are still obtained in a similar way, but make use of
a computationally more efficient GGA-like formalism. The resulting
approach is called dDsC.

While all aforementioned corrections are atom pair dependent, the
DFT-NL method of Vydrov and van Voorhis89 computes the dispersion
interaction directly from the electron charge density. The non-local
(NL) correlation energy is obtained via

ENL
c =

1
2

∫∫
ρ(r)ψ(r, r′)ρ(r′)drdr′, (4.3.22)

4.3 density functional theory 21

where ψ(r, r′) is an integration kernel accounting for the correct 1/R6

asymptotic behaviour.
The last type of dispersion correction discussed is the Minnesota

class of functionals M0X by Zhao and Truhlar, where 0X stands for
the year of development.90 More than 30 parameters are employed
in these type of functionals and extensive fitting to a training set
composed of mainly non-covalent interactions allows for the recovery
of a major fraction of the short-range correlation.

Exhaustive studies undertaken during the last years have shown the
applicability of treating dispersion interactions in DFT with semiem-
pirical corrections.79,87,91–93 Most benchmark results for van-der-Waals
compounds compare favourable to higher-level ab-initio methods. All
of the introduced methods perform reasonably well and in some cases
complement each other.

While DFT-D2 sometimes provides astonishingly accurate results
due to error cancellation, the DFT-D3 method can be seen as an im-
portant improvement. Both DFT-D3 and DFT-NL yield similar results,
with a slight tendency to overbinding in some cases. DFT-D3 has a bet-
ter accuracy to computational cost ratio, as the evaluation of integral
4.3.22 introduces an overhead of approximately 50%. However, due to
its direct dependency on the density, DFT-NL has an advantage when
dealing with complicated electronic structures (e.g. metals), where the
use of DFT-D3 is inherently limited. The DFT+vdW approximation
is slightly less accurate and encounters serious problems when faced
with many-body dispersion interactions. The performance of Becke’s
XDM method is similar, but both schemes are readily expandable to
deal with anisotropic and polarizable systems. The DFT-dDsC correc-
tion of Steinmann and Corminboeuf is a serious improvement over
XDM and excels at treating intramolecular dispersion interactions.
The heavily parametrized functionals of Truhlar and Zhao provide
viable results in most cases, especially for compounds similar to the
training set, yet fail to correctly account for long-range dispersion
effects.

4.3.6 Advantages and Shortcomings of DFT

The previous section dealt with the problem of DFT when faced with
dispersion type interactions. While this is one of the best-known
failures, other pathological cases due to limitations of the Kohn–Sham
formalism or modern functionals exist.

Since the Kohn–Sham formalism essentially enforces a single deter-
minant treatment, problems arise when dealing with multi-referential
systems. This shortcoming may manifest itself in the inability to cor-
rectly predict the relative energies of triplet and singlet states.94 While
this issue can sometimes be amended by resorting to an unrestricted
form of the Kohn–Sham procedure, great care has to be taken as this
approach is also prone to errors.

Another drawback of DFT is “overdelocalization”, an effect rooted
in the inaccurate treatment of corrections to classical self-interaction
energies. This leads to the tendency of overstabilizing systems with
high delocalization effects and can result in erroneous predictions of
some transition state geometries.95–98

22 theoretical background

The use of the electron density instead of a wavefunction approach
can also be detrimental in some cases. Examples are dynamics, which
depend on matrix elements between different wavefunctions. The lack
of phases also leads to major issues when multistate resonance and
interference effects are encountered. Additionally there is no concise
way to derive a formalism in DFT as how excited states are to be
described. A possible approach is to use time-dependant electron
densities, as in TD-DFT.99 Unfortunately the theoretical foundations
of TD-DFT are not as methodologically sound as classical Kohn–Sham
formalism.100 Moreover, while the wavefunction formalism provides
a wide range of well defined operators, only a few generic property
functionals are known for DFT. This fact can be considered a major
shortcoming as it enforces an approximate treatment of the exchange-
correlation functional.

The lack of an exact exchange-correlation term poses a fundamental
problem in DFT as – despite sophisticated schemes to emulate Exc

exactly – it remains an approximate method in the end. Furthermore,
there is no protocol to systematically improve the quality of the ap-
proximation as is the case for ab initio methods. This deficit has given
rise to several different models, which in turn lead to the creation of
a variety of functionals. Since those often differ dramatically in their
applicability and accuracy for different chemical systems, DFT should
not be treated as a black-box method. Fortunately, a lot of benchmark
studies are available, alleviating the choice of a suitable functional for
the problem at hand.

Despite all these shortcomings, DFT has been established as an
important method in electronic structure theory. It often yields results
comparable to higher-level ab initio methods, but at only a fraction
of the computational cost. The O(N3) scaling of DFT enables the
treatment of much larger systems reasonable times. This efficiency is
especially valuable for biochemical problems, as the typical system
size encountered is often inhibitive to a treatment at the ab initio level.
An additional speed-up is gained when the RI approximation is em-
ployed, making DFT feasible for the use in high-throughput screening.
Recently, linear scaling implementations for computations on systems
of biological scale have been developed.101 It is also worth mentioning,
that DFT is not restrained to the use of Gaussian-type orbitals and
may employ Slater-type orbitals102 or plane waves instead.103 This
liberty in the choice of basis functions can sometimes prove advanta-
geous from a computational perspective. DFT also exhibits a faster
convergence in regard to the size of the basis set used, often reaching
maximum accuracy with basis sets several times smaller than required
for ab initio methods.104

To summarize, DFT is a valuable tool for computational chemistry,
but care should be taken to avoid the aforementioned pitfalls.

4.4 molecular properties

DFT is a method to compute one point of the PES at a fixed geometry.
Yet, most of the time the interest lies in special points of the PES, the
geometries of local minima and transition states. In order to locate
these extrema, several algorithms have been developed facilitating

4.4 molecular properties 23

geometry optimisation. Of similar importance are spectral properties,
such as vibrational frequencies, as well as thermochemical properties,
which can also be derived from a molecular geometry.

4.4.1 Equilibrium Structures and Transition States

As real molecules oscillate around their equilibrium structures, lo-
cating minimum energy geometries is crucial for the description of
ground state and experimental properties. Since these structures are
characterized by minima on the PES, geometry optimisation is intrin-
sically a mathematical problem of finding the next local minimum.
Detailed knowledge of the PES would make this an easy task, but the
computational cost renders an extensive computation for even small
molecules impossible. Instead local properties of the PES are utilized.
For an overview of the methods introduced here, see reference 105.

Gradient-based methods essentially follow the negative gradient in
the direction of greatest downward slope in energy and thus are able to
locate the nearest local minimum. These methods are usually referred
to as steepest-descent methods. A major problem of optimisation
algorithms based solely on the gradient is their slow convergence.

More sophisticated methods, such as the Newton-Raphson method,
also consider the PES curvature in the search for local minima. By
expanding the PES in a Taylor-series, truncating after the quadratic
term and applying the condition that all first derivatives in a stationary
point be zero, one arrives at the equation

Rk+1 = Rk −H−1
k ∇k, (4.4.1)

where ∇k is the gradient of the nuclear coordinates at point k and
H−1

k is the inverse of the Hessian matrix of second derivatives at the
same point. Unfortunately, the computation of the Hessian and its
inversion are computationally expensive, so it is usually updated in
an approximate way, using data obtained in previous points, instead
of being recomputed every step. These methods are then called quasi-
Newton methods.

Other critical points of interest on the PES are transition states,
which connect two minimum energy structures and thus give impor-
tant information on properties of the associated reaction. Transition
states can be described as saddle points, where the gradient of all
coordinates but the reaction coordinate is zero. Because of this prop-
erty it is often difficult to locate the correct transition state connecting
two molecules and several different methods exist to this end. Syn-
chronous transit methods try to find the transition state by evaluating
intermediate structures along a shortest path connecting two minima.
Eigenvalue following algorithms maximise the energy in respect to
one particular coordinate, while minimizing it in respect to all others.
If the specified coordinate represents the normal mode describing the
reaction, the correct transition state was found.

4.4.2 Normal Mode Analysis

Due to the quantum mechanical nature of the nuclei, real molecules
are never found frozen at their respective equilibrium geometry, but

24 theoretical background

in constant motion, as dictated by the uncertainty principle. Nor-
mal mode analysis provides a method to compute these molecular
vibrations and in turn makes it possible to obtain infrared spectra,
derive thermochemical properties and identify transition states and
minimum energy geometries. A detailed description of the associated
formalism is given in reference 105.

Within the Born–Oppenheimer approximation nuclei can be thought
of as moving in the potential of the PES. At a local minimum, this
potential function can be expanded in a Taylor series. Truncation
after the third term of the expansion leads to the harmonic oscillator
approximation

Vpot(R) =Vpot(Req) +
3N

∑
A=1

(RA − RA,eq)

(
∂Vpot

∂RA

)
R=Req

+
1
2!

3N

∑
A=1

3N

∑
B=1

(RA − RA,eq)(RB − RB,eq)

(
∂2Vpot

∂RARB

)
R=Req

.

(4.4.2)

The first term is a constant, the second term vanishes at an energy
minimum, leaving only the third term depending on the Hessian
matrix. Because of the difficulties arising when dealing with Cartesian
coordinates, it is advantageous to introduce mass-weighted spatial
coordinates θA =

√
MA(RA − RA,eq). Equation 4.4.2 can then be

expressed as

Vpot =
1
2

3N

∑
A=1

3N

∑
B=1

HABθAθB. (4.4.3)

By diagonalizing the the Hessian matrix in equation 4.4.3, the function
depending on 3N nuclear coordinates can essentially be decoupled
into 3N eigenvector equations depending on just one coordinate

ΘA =
3N

∑
B=1

KABθA. (4.4.4)

In other words, equation 4.4.3 can be transformed to

Vpot =
1
2

3N

∑
A=1

HAAΘ2
A, (4.4.5)

where H is the diagonalized Hessian matrix. The frequencies are then
given by

ωA =
√

HAA, (4.4.6)

and the vibrational energy can be computed according to

E =
3N

∑
A=1

h̄ωA

(
νA +

1
2

)
, (4.4.7)

where νA is the vibrational quantum number. Using the transforma-
tion matrix K obtained in equation 4.4.4, the normal mode coordinates
Θ can be transformed back into their Cartesian equivalents R, allowing
for a Cartesian description and visualisation of the vibrations.

4.4 molecular properties 25

Certain care has to be taken when working with properties derived
from normal mode analysis. The use of the harmonic approximation
introduces intrinsic errors, like the inability to account for bond disso-
ciation and false predictions when working with geometries displaced
from the minimum energy structure. This effect is further amplified by
the fact that the gradient in equation 4.4.2 only vanishes at stationary
points of the PES.

4.4.3 Thermodynamic Properties

Experiments usually do not deal with individual molecules, but with
large ensembles governed by the laws of thermodynamics. Thus great
interest lies in the derivation of ensemble thermochemical properties,
like enthalpy H, entropy S or free energy G, from the previously
computed single molecule potential energies. Entropic contributions
to the energy are of special importance in rearrangements involving
dissociations and associations of substrates, as is the case for the
metathesis reaction, or reactions exhibiting a prearrangement of re-
actants, a common feature in enzymatic transformations. The free
energy is therefore a well-suited descriptor for characterizing this kind
of chemical reactions. For a more detailed discussion of the topic and
derivation of the formalism, see reference 106.

As discussed beforehand, the nuclei are subject to quantum me-
chanical oscillations, where a certain energy is associated with each
vibrational mode. Using the relation 4.4.7 and summing the energies
of all molecular vibrations gives the the zero-point vibrational energy
(ZPVE). This in turn leads to an expression for the internal energy U0

of a molecule at absolute zero, which can be written as

U0 = Eel +
modes

∑
κ=1

1
2

hωκ, (4.4.8)

where Eel is the electronic energy. Based on this formula, it is then
possible to derive further properties by applying the rules of statistical
thermodynamics.

Assuming a canonical ensemble, the system is characterized by its
partition function

Q(Npart, V, T) = ∑
ϕ=1

e−Eϕ(Npart,V)/kBT, (4.4.9)

where ϕ indicates all possible system states with the corresponding
energy Eϕ, kB is the Boltzmann constant and T the temperature Npart

is the total number of particles, which is in general chosen to be Avo-
gadro’s constant NA and V is the volume occupied by the ensemble.
By introducing the assumption of the ensemble being an ideal gas,
it is possible to reduce the problem to finding the molecular parti-
tion function, which can be separated into electronic, translational,
rotational and vibrational terms, leading to the expression

q(V, T) = qel(T)qtrans(V, T)qrot(T)qvib(T). (4.4.10)

Thus the different contributions to the molecular partition function
and in turn to the internal energy, as well as to the entropy, can be
computed individually.

26 theoretical background

Electronic Contributions

Provided the energetic separation of the ground state and the next
excited state is high enough and introducing the convention of defin-
ing Eelec as the relative zero of energy in equation 4.4.8, the electronic
partition function can be greatly simplified. The electronic component
of U is reduced to

Uel = 0 (4.4.11)

and the electronic contribution to the entropy computes as

Sel = Rln(2s+ 1), (4.4.12)

where R is the universal gas constant and s is the spin multiplicity.

Translational Contributions

The translational partition function is obtained by treating the molecule
as a particle in a three dimensional box. The translational contributions
to U and S are then given by

Utrans =
3
2

RT (4.4.13)

and

Strans = R

ln

(2πMkBT
h

) 3
2 RT

P0

+
3
2

 , (4.4.14)

whereM is the molecular mass and the pressure is usually set to be
P0 = 1 atm, in order to be able to compare different thermodynamic
results.

Rotational Contributions

Regarding the rotational contributions, a distinction must be made
for linear and non-linear molecules. In the linear case, the rotational
components of the inner energy and entropy can be formulated as

Ulinear
rot = RT (4.4.15)

and

Slinear
rot = R

[
ln
(

8π2 IkBT
σh2

)
+ 1
]

, (4.4.16)

where I is the molecular moment of inertia and σ a rotational symme-
try number.

For a non-linear molecule a quantum mechanical approximation to
the classical rigid-rotor problem has to be applied and gives

Urot =
3
2

RT (4.4.17)

for U and

Srot = R

ln

√π IA IB IC

σ

(
8π2kBT

h2

) 3
2
+

3
2

 (4.4.18)

for the entropy, with IA, IB and IC being the principal moments of
inertia.

4.5 genetic algorithms 27

Vibrational Contributions

The vibrational partition function can be expressed as a sum of the
individual modes. Approximating the modes as quantum mechani-
cal harmonic oscillators allows further simplifications. Provided the
vibrational frequencies are known, the vibrational components of U
and S can be computed according to the equations

Uvib = R
modes

∑
κ=1

hωκ

kB(ehωκ/kBT − 1)
(4.4.19)

and

Svib = R
modes

∑
κ=1

[
hωκ

kBT(ehωκ/kBT − 1)
− ln

(
1− e−hωκ/kBT

)]
. (4.4.20)

Free Energy

Having derived the contributions to U and S in such a manner, it is
possible to calculate the total inner energy according to

U = U0 + Uel + Utrans + Urot + Uvib. (4.4.21)

The enthalpy may be written as

H = U + PV. (4.4.22)

The free energy of the molecule can then be obtained using relation

G = H − TS, (4.4.23)

where S is simply the sum of the different contributions to the entropy.

Caveats

Unfortunately using this formalism to characterize the thermochemi-
cal properties exhibits pathological behaviour when confronted with
vibrational modes of low frequency. While this effect is minor with
regards to the internal energy and in turn the enthalpy, as every indi-
vidual frequency contributes only a factor of RT, it greatly affects the
molecular entropy and thus the free energy of the system. The reason
for this deficiency can be found by examining the second term of equa-
tion 4.4.20, which approaches infinity as the corresponding frequency
reaches zero. This trend can result in very large errors to the entropy
for even minor errors in low frequencies. Since the harmonic oscilla-
tor approximation is typically poor for these low frequency modes,
great care has to be taken when dealing with entropic properties of
a molecule exhibiting low frequency vibrations. Typical examples
are torsions around single bonds with only small barriers, commonly
referred to as free or hindered rotors. For a detailed discussion see
reference 105.

4.5 genetic algorithms

While classical deterministic optimisation algorithms are an important
tool for finding the extrema of functions, they quickly become in-
tractable when faced with search spaces of high dimensionality. More-
over there is no guarantee to locate the global optimum if additional

28 theoretical background

local minima are present, as the classic optimisation procedures tend
to converge towards the nearest extremal point. In the last decades
metaheuristic search algorithms have been established as valuable
tools for dealing with this type of problems. One prominent class
of stochastic optimisation methods are genetic algorithms, modelled
after the mechanisms of Darwinian evolution.30

In genetic algorithms, candidate solutions to a problem are repre-
sented by a genome. This genome consists of individual genes, which
describe certain aspects of the solution. Since this kind of search
method is inspired by natural selection, a measure for the fitness of a
potential solution has to be provided in the form of the so-called fitness
function. This function maps a real value representing the quantity
to be optimized, usually referred to as fitness, to every candidate’s
genome. Genetic algorithms then operate on a set of potential solu-
tions, the population, subjecting their respective genomes to genetic
operations such as recombination, mutation and selection with the aim
of continuous improvement towards a global optimum. The candidate
solutions are also called individuals in the context of population.

A typical example for a genetic algorithm consists of the following
steps (Figure 4.1):

initialization: An initial set of random solutions spanning the
relevant search space is created.

evaluation: The fitness of individual genomes is evaluated accord-
ing to the fitness function.

selection: Based on the relative fitness, candidate solutions are
chosen for genetic operations and extinction events, introducing
the notion of survival of the fittest into the genetic algorithm.

recombination: The genomes of two or more promising solutions
are recombined in the hope of arriving at offspring solutions of
higher fitness by a favourable mixing of beneficial traits.

mutation: The mutation operator modifies a single solution by ma-
nipulation of individual genes. This is equivalent to performing
a local search near the original candidate solution.

replacement : Certain individuals of the original population are
replaced by the offspring solutions or entirely new genomes.
Different schemes exist to this end.

Starting with a re-assessment of the fitness, the above steps are then
repeated until a desired terminating criterium is met.

The greatest difficulty in implementing a genetic algorithm usually
lies in the efficient balancing of exploration and exploitation. While
global search due to the diversity of the population allows for an
efficient sampling of the entire fitness landscape, it can hinder the
convergence towards a common solution. Local optimisation on the
other hand guarantees convergence, but is in danger of getting stuck
in a local minimum. Because of this, several different schemes for the
genetic operations used in a genetic algorithm have been developed.

Examples for the different genetic operators commonly used and a
summary on the advantages and disadvantages of genetic algorithms
will be given in the following sections.

4.5 genetic algorithms 29

Initialize Population

Evaluation

Criterium
met?

Next Generation

No
Recombination

Mutation

Replacement

Finished

Yes

Figure 4.1: General operation scheme of a genetic algorithm.

4.5.1 Selection

The main requirement of selection operators is to introduce enough
selection pressure to drive evolution of the system towards an opti-
mum, while avoiding premature convergence. These operators can be
grouped into two main classes.

As the name suggests, fitness proportionate selection draws direct
information from the fitness of each individual when selecting poten-
tial candidates. Typical examples are roulette wheel selection30,107 and
stochastic universal sampling.108

Ordinal selection methods derive the selection criteria from the
relative ordering of each candidate with respect to its fitness. A
popular ordinal selection method is tournament selection107, where
genomes are chosen randomly to participate in tournaments of a
predefined size. The fittest individual is then chosen as the winner of
each tournament.

4.5.2 Recombination

As mentioned above, the recombination procedure is the main driving
force in exploring the search space at a global level. Because of its
importance a wide range of different approaches have emerged, many
of which are tailored to specific problems.107,109

In general, two individuals are selected by one of the aforemen-
tioned procedures and will be subjected to a recombination event
according to a recombination rate rrec. A random number rrand is then
drawn from a uniform distribution. If rrand ≤ rrec recombination will
take place, otherwise the children are chosen to be identical copies of
the parents. Two basic recombination schemes exist.

In a n-point crossover, n crossover sites in the genome are selected
at random. The genes in each candidate are then exchanged according
to the chosen sites.

An alternative is uniform crossover110, where each gene is chosen
for recombination individually and the respective bits are switched
according to a crossover rate rcx.

30 theoretical background

4.5.3 Mutation

Mutation operators are important for local exploration of the fitness
landscape, as well as the introduction of new genetic motifs. This
provides a mechanism against population stagnation.

A common example for a mutation strategy is the bit-flip mutation.
Here each bit constituting the genome of a selected individual is
flipped to its counterpart with a probability rmut, also called the
mutation rate.

4.5.4 Replacement

The offspring genomes created during recombination and mutation
have then to be reintroduced into the original population. It is gen-
erally assumed, that the newly generated individuals improve upon
the solutions of the previous generation. Several methods exist for
updating the population.

The delete-all scheme completely replaces the old population by the
created offspring.

Steady state replacement is a deletion method and substitutes only
a certain number k of old members by new genomes. It introduces
flexibility by the choice of k and the selection procedure used to
determine the individuals to be replaced.

4.5.5 Advantages and Disadvantages of Genetic Algorithms

The main feature of genetic algorithms is their ability to deal with
optimisation problems with high search-space complexity and tailored
objective functions. Since this class of algorithms does not require
detailed a priori knowledge of the fitness landscape or the form of
the fitness function, they possess great generality.111–113 This trait is
attested by their successful application in a wide range of different
research fields. In addition, they offer means of locating the global
optimum despite the presence of local extrema.

A drawback of genetic algorithms is their use of several different
parameters, like the population size, the crossover rate, the mutation
rate, etc. In most cases only rules of thumb exist for the choice of
these parameters and the whole process is essentially a trial-and-error
procedure. A suboptimal set of parameters can in turn severely restrict
the utility of the algorithm employed. Nevertheless, the last years have
seen the development of several subclasses of genetic algorithms allevi-
ating parts of this problem by subjecting the parameters to Darwinian
evolution too.114–119

4.6 geometric hashing

Initially developed for the recognition of geometric features in com-
puter vision, geometric hashing is now used in several other areas,
e.g. medicinal chemistry and molecular biology. This increase in
popularity is due to the efficiency of the method and its low polyno-
mial scaling. For a good review on geometric hashing and further
information, see Ref. 120 and references within.

4.6 geometric hashing 31

The goal of geometric hashing is the identification of a shape on
the basis of its unique combination of individual geometric features.
The geometric hashing process can essentially be separated into two
phases.

In the preprocessing phase, a database of the shapes to be recognized
is created. To this end, the geometric features (e.g. points, edges,. . .)
are extracted (Figure 4.2).

A

B

D C

Figure 4.2: In the first step of the preprocessing phase, the features of a shape
are extracted. In this two-dimensional case, the points A, B, C
and D are sufficient.

A subset of these features is then used to define a new basis, as
demonstrated in Figure 4.3.

x’

y’

A

B

D C

(-1,0)

(1,0)

(0,-1)

(0,1)

Figure 4.3: The two points A and B are used to establish a basis for a new
reference coordinate system.

The coordinates of the remaining features, e.g. points, relative to the
basis are computed. In order to make recognition robust to noisy data,
the coordinates are usually not computed exactly but rather discretised
on a grid (Figure 4.4). These discretised coordinates associated with a
geometric feature, are called a “key“. Based on these keys, a special
two-column table is constructed, where every key is stored in the first
column of a row and used to access the field in the second column of
the same row, which is often referred to as an ”entry“. In this entry,
the basis used to compute the feature and, if more shapes are present,
an index for the shape, are stored. The discrete coordinates/keys
constituting every basis are not stored in the table, as they are always

32 theoretical background

set to the same values (-1,0 and 0,1). Their entries would thus hold all
the bases which is of little use if shapes are to be distinguished. This
process of generating relative discretised coordinates and using them
as a key to store information about the associated basis in the table
is then repeated for every possible basis. If a key already exists, the
new basis is simply appended to the data already present in the entry
specified by the key (Table 4.1).

x’

y’

A

B

D C

(-1,0)

(1,0)

(0,-1)

(0,1)

(-1.5,1.5)
(-0.5,2)

x’

y’

(0,-1)

(0,1)

A

B

D C

(1,0)

(1.5,2)

(-1,0) (-1.5,1.5)

Figure 4.4: On the left, the coordinates of the remaining points C and D are
computed relative to the coordinate system formed by A and B.
The right side shows the same process for the basis DA and the
points B and C. In order to reduce errors due to noise in the input
data, the coordinates are discretised, in both cases using a grid
of spacing 0.5. The coordinates are then rounded down to the
values of the nearest grid points.

This data-storage process is termed hashing and the resulting table
is referred to as a hash table. Since the discretisation of the coordinates
leads to coordinates within a certain range being grouped together,
the table entries are also called hash bins.

Table 4.1: A hash-table containing a selection of discretised relative coor-
dinates/keys in the first column and the associated bases, as
computed for the sample shape, in the respective entries of the
second column. The introduction of discretised coordinates leads
to multiple bases being assigned to a single hash-bin.

Coordinates/Keys Basis

(-1.5,1.5) AB, DA
(-0.5,2.0) AB
(1.0,1.0) BC
(-0.5,1.0) BC
(-1.0,4.0) CD
(1.5,2.0) CD, DA

...
...

To identify an unknown shape in the recognition phase, its geo-
metric features are extracted. After choosing a basis, the relative

4.6 geometric hashing 33

coordinates of the remaining points are calculated and discretised as
before (Figure 4.5).

A’

B’

D’

C’

Figure 4.5: An unknown shape. In order to determine the orientation which
exhibits the greatest similarity to the previous shape shown in
Figure 4.2, its geometric features are extracted. In the same man-
ner as above, the discretised relative coordinates are calculated
with respect to different bases. For this example only two bases
were used: A’B’ leading to the coordinates/keys (-1.5,1.5) and
(-0.5,2.0), as well as B’C’ with the coordinates/keys (1.0,0.5) and
(-0.5,1.5).

For every basis used in the computation of the discretised relative
coordinates, the coordinates/keys are used to access the corresponding
hash-table entries. A counter is then incremented for every base
present in the bin. As an example, the process was carried out for
the coordinates/keys of the shape in Figure 4.5 relative to the bases
A’B’ and B’C’. For the basis A’B’, the hash table entry indexed by the
key (-1.5,1.5) holds the bases AB and DA of the original shape, whose
counters are then increased by one each. The same process is repeated
for the remaining point and the coordinates/keys of the basis B’C’.
Plotting the values of the counters for every basis of the original shape
for each basis A’B’ and B’C’ of the new shape, two histograms are
obtained (Figure 4.6).

AB

2

BC

0

CD

0

DA

1

AB

0

BC

0

CD

0

DA

0

(a) (b)

Figure 4.6: Sample histogram obtained for the hash-table 4.1 and the relative
coordinates of the bases A’B’ (a) and B’C’ (b), extracted from the
unknown shape.

The bases whose counters surpass a certain threshold of votes
constitute the potential matches. These hits are then subjected to a
more fine-grained recognition procedure. In the case of the example
used in this chapter, the best match between orientations is identified
for the orientations relative to basis AB in the original shape and basis
A’B’ in the unknown shape (Figure 4.7). This is the combination of

34 theoretical background

bases with the highest count of two, all other combinations possess
counts of zero or one.

A B

D

C

A’ B’

D’ C’

(a) (b)

Figure 4.7: The histogram in Figure 4.6 shows, that the geometric hashing
procedure correctly identifies the orientation of the new shape (b)
along the basis A’B’ to be the most similar to an orientation of
the original shape (a) relative to the basis AB.

This protocol can be easily adopted for different shapes, by substitut-
ing the bases by their respective basis-shape combinations in order to
discriminate between shapes, like e.g. the one given in Figure 4.2 and
a circle with the same points A,B,C and D, on basis of their geometric
features.

The strength of geometric hashing lies in its ability to recognize
shapes even in cases where they have undergone transformations, like
translation or rotation, or when only partial information is available.

5
C O M P U TAT I O N A L M E T H O D S

In this chapter, the different methods employed during the course of
this work will be specified. Due to the nature of the research, it is
feasible to subdivide this chapter into three parts, with the following
sections dealing in turn with the quantum chemistry methods, the
genetic algorithm and the enzyme design utilities.

5.1 quantum chemistry methods

As the size of the studied systems renders wavefunction-based ap-
proaches impractical and an efficient and robust method is required for
high throughput screening in the framework of a genetic algorithm,
DFT was used for electronic structure computations. This choice
is supported by the good agreement of computational and experi-
mental observations reported by several DFT studies on Grubbs-type
ruthenium complexes and transition metal complexes in general.49,50

Moreover, DFT profits from a significant speed-up in terms of com-
putation time when the RI-approximation is employed. The nature
of the complexes studied also permits a closed-shell treatment, since
they are known to adopt low-spin configurations121, allowing several
of the limitations of DFT to be bypassed (see end of section 4.3). As
all reactions are thought to take place inside of peptide cavities, which
are commonly accepted to possess relatively low dielectric constants
(ε ∼ 3-6) compared to water (ε ∼ 80)122, it is furthermore admissible
to neglect solvent effects.123

All computations were either performed with Gaussian09
124 or

Turbomole-6.4.125

5.1.1 Choice of Functional and Basis Set

The utilized functionals were B3LYP72 as implemented in Gaussian
124

and BP86
62–65,67 as provided by the Turbomole suite of programs.125

The B3LYP hybrid functional was chosen for its general applicability
for a wide range of different chemical species, whereas the GGA
BP86 provides excellent computational efficiency since it can make
full use of Turbomole’s RI-formalism and avoids the costly evaluation
of Hartree–Fock exchange. Both functionals were augmented with
empirical dispersion corrections to account for noncovalent attractive
interactions present in this class of complexes, which DFT fails to
predict correctly.121,126 The Grimme dispersion corrections D2 and D3

were used for B3LYP and BP86, respectively.
In case of B3LYP the 6-31G* Pople basis set127,128 was used on all non-

metal atoms, as it usually gives the best results due to its use during the
parametrisation of the functional. BP86 computations were carried out
with the def2-SV(P) basis set of Ahlrichs and coworkers129 in the form
implemented in Turbomole. In both cases, the Stuttgart relativistic
effective core potential (ECP) was used for the central ruthenium atom

35

36 computational methods

of the complexes.130 If not stated otherwise explicitly, the combinations
of B3LYP-D2/6-31G*/ECP and BP86-D3/def2-SV(P)/ECP+MARI-J
will be simply referred to as B3LYP and BP86 henceforth.

5.1.2 Geometry Optimisation and Transition State Location

Geometry optimisations were carried out using both functionals in
tandem. In order to speed up the process, the starting geometry was
preoptimized in Turbomole with BP86 and the multipole-accelerated
RI-approximation (MARI-J).131 The resulting structure was then sub-
jected to a final optimisation in Gaussian with B3LYP. Computa-
tional results obtained during a later stage of the thesis demonstrated,
that BP86 alone is sufficiently accurate for the problem at hand (Sec-
tion 6.4.2). In both cases, the standard optimisation algorithms as well
as the default grids and convergence criteria of the programs were
used.

Transition states connecting neighbouring geometries were located
with the QST2 protocol132 of Gaussian, which employs the syn-
chronous Transit-Guided Quasi-Newton method developed by Schlegel
and coworkers. Alternatively, the eigenvalue-following algorithms
of Turbomole and Gaussian were used to locate the transition state
with BP86 and further refine the results on B3LYP-level.

Both ground state structures and transition states were character-
ized by frequency analyses in Gaussian or Turbomole respectively,
employing the standard quantum-harmonic oscillator approximation.

5.1.3 Thermochemical Properties

Thermochemical properties like the free energy of the respective sys-
tems were obtained with the standard formalism introduced in sec-
tion 4.4.3 as implemented in both programs. All formulae were evalu-
ated at temperatures of 298.15 K and pressures of 1 atm.

5.2 implementation of the genetic algorithm

To arrive at active enzymes, theozymes with favourable reaction pro-
files are needed. Applying Pauling’s postulate about the complemen-
tarity of the active site and the transition state representing the reac-
tion29, the problem can be reduced to finding the optimal placement
and combination of amino acid residues, which lower the reaction
barrier by stabilizing the theozyme. This problem is of combinatorial
nature and thus lends itself to a stochastic optimisation approach.
To this end, a genetic algorithm was developed over the course of
the thesis. It was written in Python

133, a programming language
providing many useful utilities for scientific computing. The initial
algorithm employed a classical generational approach, but insights
obtained during the course of the work also lead to the creation of a
steady-state variant. The details of implementation will be discussed
in the following paragraphs and fundamental differences between the
versions will be highlighted.

5.2 implementation of the genetic algorithm 37

5.2.1 General Algorithm Structure

The generational genetic algorithm on the one hand follows the stan-
dard model depicted in Figure 4.1 and genetic operations are only
initiated, when the fitness evaluation of every member constituting
the current population has finished.

The steady-state implementation on the other hand constantly feeds
completely evaluated genomes into the population and genetic opera-
tions occur every time a certain threshold is reached. This convention
leads to an initial period of saturation, where the algorithm only oper-
ates on a subset of the population until the maximal population size
is reached. A schematic of the steady-state genetic algorithm is shown
in Figure 5.1, the source code can be found in Appendix A.2.

Advantage of the latter procedure is the ability to deal with the
greatly varying calculation times encountered during the fitness evalu-
ations, which can cause significant delays in the generational approach
and lead to a suboptimal use of the available computational resources.

Both algorithms continue to operate until a certain stopping criterion
is reached, in this special case the number of fitness evaluations neval.

5.2.2 Population Representation

Central to every evolutionary algorithm is the genetic representation
of the individuals constituting the population. In this case a real coded
representation was chosen, making use of real numbers instead of
the bitstrings of zeroes and ones traditionally employed for genome
encoding. Since the theozyme consists of a fixed central template, the
metal-substrate complex, and only the arrangement and identity of
the catalytic amino acid residues vary, the genome of an individual
was defined to consist of a list of the residues present, as well as the
associated atom types and Cartesian coordinates.

In order to increase efficiency and still be able to capture essential
interactions, the residue templates were truncated at the Cβ atoms of
the amino acids. Theoretical studies show that this method is able
to describe enzyme active sites with reasonable accuracy.123 All 21

eukaryotic proteinogenic amino acids (Figure 5.2), with the exception
of glycine, alanine and proline, were present in the residue library, as
well as the different protonated states of histidine and cysteine.134

5.2.3 Initialization

For every individual in the initial population of size pmax, a certain
number of residues were chosen according to a uniform random dis-
tribution. Due to the different structure of the crossover and mutation
operators, a fixed value (gsize) was employed in the steady state al-
gorithm, while the amount of residues per genome was allowed to
vary within certain limits (gmin, gmax) in the generational approach.
Spatial placement was restricted uniformly to the regions around the
central template and collisions were avoided. Rotational freedom was
sampled using the Marsaglia scheme135 under the constraint that the
positions leading to the backbone of the protein face away from the
central template.

38 computational methods

Initialisation

genomes = empty
while # genomes < pmax, create genome:

1. choose gsize amino acids at random
2. read in template geometries for amino acids
3. translate and rotate every residue at random
4. if no collisions: add genome to genomes

Evaluation

for every genome:
1. optimise theozyme with TS template frozen
2. compute GTS

3. use optimised residue arrangement from first ge-
ometry in combination with reactant template

4. optimise geometry with template and Cβ frozen
5. compute Greact

6. ffit(genome) = |GTS −Greact|

pcurr = pmax?

Replacement

get min(ffit) from population
if ffit(finished) ≥ min(ffit):

replace genome with min(ffit)
with newly finished genome

Population Pool

New Genome

while True:
1. choose gsize amino acids at random
2. read in template geometries for amino acids
3. translate and rotate every residue at random
4. if no collisions: return new genome

Mutation

choose genome at random from current population
while counter < 1000:

for every gene in genome:
if random[0,1) < rmut:

choose random amino acid and exchange
amino acid specified by gene by new one,
while keeping orientation and placement

if no collision:
stop

else:
counter += 1

Selection

parents = empty
while # parents < 2:

1. choose ntour genomes at random
from current population

2. add fittest genome of chosen to
parents

Recombination

offspring = empty
while # offspring < noff:

for every gene in parent genomes:
if random[0,1) < rcx:

switch genes
if no collisions:

add new genome to offspring

if genome finished

Yes

No

if
av

ai
la

bl
e

co
re

s
≥

4

Figure 5.1: Workflow of the steady-state genetic algorithm used to search
for theozymes. In this case genetic operations were carried out
every time the evaluation of a genome finished and at least four
of the processors designated for evaluation were available. This
criterium was chosen in order to keep the number of evaluations
approximately constant, as the genetic operations generate four
new genomes in total (one new genome, one mutant and two
offspring genomes).

5.2 implementation of the genetic algorithm 39

Figure 5.2: The 21 proteinogenic amino acids found in eukaryotic organisms.
The standard three letter abbreviations are given in parentheses.

5.2.4 Genetic Operators

As stated in section 4.5, the genetic operators serve to globally explore
or locally exploit the search space. These two modes of operation
have to be balanced in order to avoid premature convergence to
suboptimal solutions. It is therefore advantageous to tailor some
operators specifically to the problem at hand.

Selection

In both versions of the genetic algorithm, tournament selection was
chosen because of its robustness and the possibility to adjust selection
pressure by varying the tournament size ntour. This parameter was
set to be constant in the generational variant, whereas in the steady
state version it depended on the current population size pcurr, in order
to account for the initial saturation period. It was modelled to vary
linearly between a maximum and minimum value depending on the
individuals in the current population pool, according to the relation:

ntour = rint(kt pcurr + dt), (5.2.1)

40 computational methods

where rint rounds to the next integer. The values for kt = 0.14 and
dt = 1.4 were obtained by linearly interpolating between a tournament
size ntour = 2 for pcurr = 4 and a tournament size of ntour = 10 for a
population of 60 individuals.

Recombination

The crossover between two parent genomes was facilitated by a modi-
fied uniform crossover operator in both cases, where one residue with
all associated atom types and coordinates was treated as a single bit.
For every residue present in both genomes a check was made against
a predetermined crossover rate rcx and if the check succeeded, the two
“bits” were exchanged. The process was repeated in the case collisions
were present in the offspring geometries until the desired number of
offspring genomes noff was created.

Mutation

Mutation was carried out by replacing one residue of a selected
genome by a random amino acid, while keeping the overall position
and orientation. To conserve orientation, the unit quaternions repre-
senting the rotation of the residue relative to the template are com-
puted by a least-squares fitting procedure.136,137 Using these quater-
nions, a rotation matrix is then generated and applied to the coordi-
nates of the mutant amino acid. The affected residues are chosen by
checking a uniform random number against a predefined mutation
rate rmut. In the generational implementation every individual was
subjected to this procedure, the steady state variant on the other hand
selected one genome of the population at random. The mutation rate
was deterministic in both cases and modelled after the relation

rmut =
1

(pcurr + 1)
. (5.2.2)

In order to ensure the integrity of the mutants, collision checks were
carried out and the process was repeated until a valid geometry was
obtained or an internal threshold reached.

Replacement

Both algorithms made use of an extinctive replacement scheme, sub-
stituting the individuals with the worst fitness values by the newly
generated offspring and mutants every generation. In order to ensure
genetic diversity, a number of new genomes nnew is also introduced
during this step.

5.2.5 Fitness Evaluation

The fitness of every individual is calculated as an absolute difference
between the free energies of a stationary state and the subsequent
transition state. Thus, this fitness essentially corresponds to an activa-
tion barrier. The free energy G is chosen as the energy descriptor, as

5.3 enzyme design 41

metathesis reactions are typically subject to substantial entropic con-
tributions.52,53 The two single point evaluations of G are performed
by external programs.

For the first computation the transition state is used as the central
template. The catalytic residues are placed as specified in the genome.
The geometry is then optimised with only the template constrained
and the free energy is computed afterwards.

For the second point, the optimised amino acid placements of the
first geometry are kept, but the central species is exchanged for a tem-
plate resembling the reactant. Keeping the Cβ atoms of the residues
and the central complex fixed, the geometry is once again optimised.
Based on the final structure, G is computed.

Selection pressure was thus applied by means of the genetic algo-
rithm towards a minimisation of every individuals fitness, i.e. to lower
the required energy of activation. The absolute value was chosen in
order to avoid overstabilisation of the metallacycle intermediate and
provide a relatively smooth reaction profile.

One of the major differences between the generational and steady
state version of the algorithm, are the quantum chemical methods
and programs employed during fitness assessment. The generational
approach makes use of the combination of Gaussian and Turbomole

described in 5.1.2 for geometry optimisation and computes the free
energy on the B3LYP level using Gaussian.

Requirement for a speed-up of the process and results validating
the use of BP86 for geometries (see 6.4.2), energies and vibrational
frequencies47,138–141 for transition metal complexes, lead to the im-
plementation of an alternative fitness evaluation for the steady-state
algorithm. In this case, all calculations and optimisations are carried
out on the BP86 level using Turbomole, making full use of the RI
procedure and the programs efficiency.

The communication between the genetic algorithm and the external
programs Gaussian and Turbomole was fashioned after a master-
slave model, where a central process (master) controls several sub-
processes (slaves) performing individual tasks. In order to parallelize
the procedure and to make optimal use of the local computational
infrastructure, one core was used for the fitness evaluation of every
separate genome.

5.3 enzyme design

After a theozyme was obtained, protein scaffolds were screened for
sites capable of accommodating the designed geometry. Finally, the
sequence of a potential match was redesigned to optimize catalytic
interactions. Both tasks were carried out with the Rosetta3 suite of
programs developed by Baker and coworkers.23

5.3.1 Matching

Rosetta employs a matching algorithm based on geometric hashing to
search for scaffold candidates. In order to perform a search, a pdb-file
of the scaffold, a pos-file listing the accessible backbone positions, a
parameter file of the metal-substrate complex and a cst-file specifying

42 computational methods

the geometric constraints of the theozyme are needed. These topics
will be discussed in the following sections.

Scaffold Library

The scaffolds were obtained from the RCSB protein database142 ac-
cording to several criteria: X-ray resolution better than 2 Å, reported
expression in E. coli to alleviate synthesis, structural diversity and no
identical sequences. To ensure the use of different protein topologies,
representatives of every major CATH143-architecture domain (Class
Architecture Togpology Homologous superfamily) were chosen (Ta-
ble 5.1). The criteria specified above resulted in a library of 5458

scaffolds.

Table 5.1: Major CATH-architectures present in the scaffold library.

CATH-classifier Description

1.10 Orthogonal Bundle
2.40 Beta Barrel
2.60 Sandwich
3.10 Roll
3.20 Alpha-Beta Barrel
3.30 2-layer Sandwich
3.40 3-layer Sandwich
3.90 Alpha-Beta Complex

Accessible Backbone Positions

Accessible backbone positions of the protein scaffolds were located
with the Rosetta-holes algorithm.144 Only cavities with a volume
larger than 30 Å3 were considered. To provide sufficient shielding
of potential active sites from environmental influences, while still
allowing substrate coordination, protein pockets accessible by probes
with a radius greater than 5 Å were pruned by the algorithm.

Geometric Constraint File

The constraint file essentially is a reduced representation of the
theozyme geometry, where every catalytic interaction between a
sidechain and the metal-substrate complex is described by a set of
internal coordinates.

Every residue is represented by an entry in block form. This entry
contains two triplets of atoms, required for the definition of the inter-
nal coordinates. One triplet of atoms describes the catalytic sidechain,
the other one represents the metal-substrate complex. The coordinates
themselves encompass the distance, two angles and three dihedrals,
and describe the geometric relation between the metal-substrate com-
plex and the catalytic amino acid. Since it is unlikely to find a protein
site capable of accommodating the exact theozyme geometry, tolerance
values for the sampling of the internal coordinates are assigned in the
constraint file.

5.3 enzyme design 43

It is also possible to choose between two matching algorithms: the
classic Rosetta-match algorithm and a secondary matching algo-
rithm. While the classic algorithm allows to enforce exact enzymatic
constraints, the secondary algorithm is advantageous for softer restric-
tions.22

5.3.2 Enzyme Design

An enzyme design procedure was then applied to the matches in order
to tailor the shape of their active sites to complement the substrate
geometry and stabilize the arrangement of catalytic sidechains. The
Rosetta Enzyme Design utility was used for this task. The design
process can be split into several parts: optimisation of the catalytic
interactions, sequence design and a final repacking to asses enzyme
quality.

Optimisation of Catalytic Interactions

In an initial step, the residues in vicinity of the metal-substrate com-
plex were grouped into the categories “catalytic”, “designable” and
“repackable” according to four specified cutoff-radii. Catalytic residues
define the theozymatic interactions and were not subjected to sequence
design. Designable residues were allowed to mutate during the se-
quence design steps. Repackable residues remained unchanged, but
were subject to the optimisation step invoked during each design cycle,
along with the other two residue classes.

Every designable and repackable residue was then mutated into
alanine to arrive at a minimal active site consisting only of the metal-
substrate complex and the catalytic residues. The resulting geometry
was optimised with the steepest descent method on a force field level
under retention of the theozymatic constraints, in order to move the
metal-substrate complex into the position providing the best catalytic
interactions. For information on the general composition of the force
field employed by Rosetta and a discussion of its individual terms,
see Ref. 22 and references within.

Sequence Design

In the next phase, the restored active site was subjected to a series
of alternating steps of sequence design and constrained energy min-
imisations to arrive at an optimal sequence folding into the required
tertiary structure, while stabilizing the catalytic sidechains.

During sequence design steps designable residues were mutated
with the Rosetta Monte Carlo algorithm.145

As an alternative to the default force field, a variant with shorter
van-der-Waals distances can be used. The discretion in the sampling
of dihedral angles, introduced by the rotamer library employed by
Rosetta, can lead to potentially good conformations being rejected by
the Monte-Carlo algorithm, as only a small divergence from an optimal
angle may result in suboptimal energy scores. The soft-repulsive force
field variant overcomes this problem by allowing small deviations
from the ideal angles, leading to the acceptance of more conformers
and often resulting in a better overall side-chain packing.146

44 computational methods

In the following minimisations step, the active site geometry was
once again subjected to constrained geometry optimisation.

Unconstrained Repacking

In a last step, the constraints of the theozyme were lifted and the active
site geometry optimised. If the theozyme geometry was retained, the
design procedure was considered successful.

6
R E S U LT S

The following chapter presents the results obtained in this work. The
de-novo design process culminating in the creation of an enzyme with
novel functionality will be broken down into its elementary steps and
each topic will be treated individually.

Starting with preliminary computations on the model system, the
steps leading up to the final theozymes will be detailed. This will be
followed by accounts on the search for adequate protein-scaffolds and
the redesign procedure. Finally the most promising candidates for
de-novo enzymes will be presented and their sequential and structural
features discussed.

6.1 computations on the 2nd generation grubbs catalyst

The successful design of a theozyme requires extensive knowledge on
the energy profile of the reaction to be promoted. The identification of
important intermediates and transitions states, as well as the rate lim-
iting steps, allows to address the issue of fine-tuning and optimising
performance of the future active site.

To this end, a full cycle of the model compound undergoing RCM
in presence of a standard metathesis catalyst, (tricyclohexylphosphine)
(1,3-dimesityl-4,5-dihydoimidazol-2-ylidene) methylidene ruthenium
dichloride (Figure 6.1) was studied. The choice of a second-generation
Grubbs catalyst was due to the overall popularity and the favourable
catalytic properties of this class of ruthenium complexes (see section
6.1). It was further assumed that the catalyst had already undergone
the initial dissociation step of the phosphine ligand and activation
cycle, leading to the active methylidene species.

Figure 6.1: Second generation Grubbs catalyst in its methylidene form.

45

46 results

6.1.1 The Catalytic Cycle

Based on the reaction mechanism highlighted in section 3.2, it was
possible to construct a scheme of the RCM reaction and the species
encountered along the reaction path.

Previous computational studies on similar systems show that the
encountered π-complexes are stable intermediates.49,51 As depicted in
Figure 3.3, these π-complexes can be separated into two groups, those
anteceding the metallacycle and those succeeding the metallacycle.
For the first class, there is proof, that a first transition state leading to
the formation of the π-complex is barrierfree or possesses a negligible
barrier when compared to the second transition state describing the
ruthenacycle formation, which typically is one of the rate determining
steps of RCM.49–51 Since this second transition state contributes the
most to the overall energetics of the RCM reaction, the π-complex and
the first transition state associated with its formation can be neglected.
The same holds true for the second class, where the reaction profile
is dominated by contributions of the third transition state describing
the ring opening of the metallacyclobutane, whereas the energetic
influences of the π-complex and the fourth transition state mediating
olefin dissociation are negligible in comparison.

During a whole catalytic cycle of RCM leading up to the restoration
of the initial active catalyst, four π-complexes, two of each class, are
encountered, resulting in a total of eight species (four transition states
describing olefin coordination or dissociation and four π-complexes)
which play only a minor role in the energetics of the reaction.

Based on these observations, the π-complexes and the transition
states describing olefin coordination and dissociation were omitted
in the analysis of the RCM reaction. This simplification helped to
limit the computational expense of evaluating the energy profile and
was especially helpful in the high throughput screening process. The
resulting scheme is depicted in Figure 6.2.

Throughout the course of this chapter, the nomenclature listed in
Table 6.1 and partly shown in Figure 6.2 will be adopted for the
different transition states and stationary points.

Table 6.1: Labels used to refer to the different stages of the RCM reaction.

Label Description

C1E Active methylidene complex and diallylether reactant
C1T1 Transition state leading to the first metallacycle
C1M First metallacyclobutane intermediate
C1T2 Cleavage of the first metallacycle
C1P Intermediate products of the first metathesis reaction
C2T1 Formation of the second metallacyclobutane
C2M Second metallacycle intermediate
C2T2 Second metallacycle cleavage
C2P Final dihydrofurane product and restored catalyst

6.1 computations on the 2nd generation grubbs catalyst 47

Ru

Ru

O

Ru

O

Ru

O

Ru

O

Ru

O

O

Ru

O

Ru

O

O

Diallylether

C1T1

C1E

C1M

C1T2

C1P

C2T1

C2M

C2T2

Dihydrofurane

Ethene

Figure 6.2: The catalytic cycle of one full turnover of the substrate under-
going RCM. Due to the minor influence of π-complexes and
transition states mediating olefin coordination and dissociation,
these species were neglected in the treatment of the reaction. For
sake of clarity the main ligand and both chlorines were omitted.

6.1.2 Geometries of Stationary Points and Transition States

Geometries of stationary points (C1E, C1M, C1P, C2M, C2P) were op-
timised with B3LYP. Connecting transition states (C1T1, C1T2, C2T1,
C2T2) were located using the Gaussian QST2 protocol.132 Minima as
well as saddle points were characterized via frequency analysis. For a
detailed description of the employed methods refer to section 5.1.

The optimal geometry of the initial active complex without the
substrate (Figure 6.3) shows the hydrogen atoms of the methylidene
moiety to be perpendicular to the plane spanned by the chlorine atoms
and the methylidene carbon atom. This rearrangement compared to
the planar conformation in the undissociated complex (Figure 6.1),
is due to the absence of the steric pressure exerted by the bulky
phosphine-ligand. The presence of the mesityl groups keeps the N-
heterocyclic-carbene-ligand in-plane with the Ru-methylidene bond.

Figure 6.3: Active Grubbs-catalyst C1E in its methylidene form after dissoci-
ation of the phosphine ligand.

48 results

Figure 6.4 depicts the transition state C1T1 leading to the formation
of the first metallacycle. The complex adopts a distorted square-
pyramidal geometry after substrate coordination. The methylidene
bond and the ether double bond are arranged parallel to each other,
thus maximising interactions. Catalyst and diallylether adopt an
almost planar arrangement, already strongly resembling the metalla-
cycle.

Figure 6.4: Transition state C1T1 mediating the formation of the first
ruthenacycle through insertion of one terminal ether double bond
into the ruthenium-methylidene bond.

The resulting metallacyclobutane intermediate C1M retains this
planar arrangement (Figure 6.5). Compared to the angle of 148°
between both chlorine ligands in the initial catalyst, the chlorines adopt
an angle of approximately 180° in this case, bisecting the ruthenacycle
plane.

Figure 6.5: First metallacyclobutane intermediate C1M encountered during
the RCM reaction.

Cleavage of the metallacycle proceeds via the transition state C1T2
(Figure 6.6), exhibiting a geometry similar to C1T1 (Figure 6.4).

6.1 computations on the 2nd generation grubbs catalyst 49

Figure 6.6: Transition state C1T2 leading to the opening of the
metallacyclobutane-ring.

The products of the first metathesis cycle are ethene and the com-
plex C1P, resembling the initial catalyst, albeit with the alkylidene
functionalities exchanged (Figure 6.7). The Ru-C bond once again
adapts a conformation coplanar to the carbene.

Figure 6.7: Product C1P of the first metathesis turnover carrying the ether-
alkylidene analogon.

Figure 6.8: Transition state C2T1 mediating the ring-closure of the second
metallacyclobutane species. The transition state geometry already
anticipates the forming 5-membered ring in envelope conforma-
tion.

50 results

Formation of the second ruthenacycle is facilitated by the transition
state C2T1, as shown in Figure 6.8. As before, the arrangement of
the bonds involved in the reaction is highly planar, but the plane is
slightly twisted relative to the N-heterocyclic-carbene-ligand. This is
due to the transition already anticipating the envelope conformation
of the forming 5-membered ring.

The resulting metallacycle C2M is very similar to C2T1 in its overall
appearance (Figure6.9). The 5-membered ring has now fully adopted
its envelope conformation.

Figure 6.9: Second metallacyclobutane intermediate C2M already showing
the 5-membered ring.

During the opening of the metallacycle facilitated by the transition
state C2T2, the future dihydrofurane can be seen adopting its preferred
planar geometry (Figure 6.10).

Figure 6.10: Transition state C2T2 mediating the cleavage of the second met-
allacycle.

In the last step, dihydrofurane dissociates from the catalytic complex,
which is restored to its initial form C1E, thus closing the RCM cycle.

The found geometries strongly resemble the ones reported by previ-
ous experimental and theoretical studies on similar systems.49,50,52,121

6.1 computations on the 2nd generation grubbs catalyst 51

6.1.3 Free Energy Curve of the 2nd Generation Grubbs Catalyst

An energy profile of the reaction was compiled based on the obtained
structures. In order to account for entropic and thermochemical effects
important for the RCM reaction, the free energy computed with B3LYP
was used to describe the reaction profile.

Figure 6.11 shows the free energy barriers of the different species
encountered along the reaction coordinate relative to the energy of
system consisting of the active complex and the reactant.

∆
G

[k
ca

lm
ol
−

1]

0.0

11.9

3.4

8.1

2.1 1.7
0.2

9.8

-5.2

Figure 6.11: Free energy curve of one RCM catalysis cycle.

Several observations can be made regarding the free energy land-
scape of the RCM reaction:

• The metallacycles C1M and C2M appear as intermediates rather
than transition states, which is in agreement with recent compu-
tational results49,50 and experimental findings.51,147

• The transition states either leading to or from the metallacy-
clobutane are usually accepted to be the rate limiting steps of
the metathesis reaction. The relatively high energy barriers com-
puted for ring cleavage and formation in the model system are
in good agreement with this observation. A notable exception
is the C2T1 transition state, which lies significantly lower in
energy than its analogon C1T1. This dramatic difference can be
explained by considering entropic effects. The transition state
C1T1 on the one hand describes the coordination of the ether to
the complex, a step which leads to a significant decrease in the
system’s entropy. C2T1 on the other hand constitutes an intra-
molecular reaction and the disadvantageous entropic influence
is diminished.

• Thermodynamic reasoning also serves to elucidate the difference
in energy between C1T1 and C1T2, since the opening of the
ruthenacycle associated with C1T2 is favoured because of an
increase in entropy. However, this argument fails when applied
to the second cycle transition states, as C2T1 lies lower in energy
than C2T2. The relative height of the barrier associated with

52 results

C2T2 is the consequence of the developing ring strain during
the formation of the 5-membered dihydrofurane.

According to the computational results, the rate determining step
of the RCM reaction with diallylether as substrate is either C1T1
or C2T2, i.e. the formation of the initial metallacycle or of the 5-
membered product.49,51 Although C1T1 exhibits a higher activation
barrier compared to C2T2, the difference of 2.3 kcal mol−1 is of the
same magnitude as potential errors introduced by intrinsic limitations
to the quantum chemical methods employed. The free energy curve
alone therefore provides no reliable criterium to discern which one of
the two steps truly is rate-limiting.

A comparison with calculations done on the all-carbon analogue of
the substrate shows a significantly lower insertion barrier, but only
small deviations regarding the final ring-opening step.52 Experimental
studies report good reactivity and conversion rates for the pure carbon
substrate under standard metathesis conditions, whereas diallylether
requires increased temperatures and prolonged reaction time and
only incomplete conversion is achieved.148 The logical consequence
of combining these two findings suggests, that the initial metalla-
cycle formation C1T1 is indeed the rate-limiting step of the overall
RCM reaction. A possible reason for the increased barrier height is a
destabilizing electronic influence exerted by the ether oxygen atom.

The free energy barrier of C1T1 was thus chosen to be the main
target of the stochastic optimisation procedure of the genetic algorithm
and the fitness function was modelled accordingly (recall section 5.2.5).

6.2 amino acid alternatives to the carbene ligand

One of the issues remaining to be addressed before starting the au-
tomated theozyme design process is how to attach the ruthenium
moiety to a protein. The previous computations were performed with
the active variant of the second-generation Grubbs catalyst bearing a
heterocyclic carbene. Albeit possible in principle, it is challenging to
incorporate carbene-moieties into a protein scaffold. A more natural
approach would be to exchange the ligand by an amino acid residue if
possible, which would also greatly simplify future synthesis attempts.

6.2.1 Candidates for Alternative Ligands

To search for possible alternatives to a carbene ligand, free energy
calculations of the reaction curve were performed for several amino-
acid-substituted versions of the complex. To allow coordination to the
ruthenium atom, the potential candidates were required to contain a
heteroatom. Positively charged residues were dropped early during
the screening process, as they tended to coordinate to the chlorine
atoms instead of the metal center. In a similar manner, aromatic amino
acids forming a possible η-6 complex were neglected due to observed
instabilities.

These criteria reduced the list of amino acid complexes to be exam-
ined to the six compounds shown in Figure 6.12. They can be grouped
into three main classes: coordination via a nitrogen atom (histidine),

6.2 amino acid alternatives to the carbene ligand 53

coordination via sulphur (methionine, cysteine) and coordination via
oxygen (threonine, tyrosine and aspartic acid).

Figure 6.12: Amino acid complexes studied as potential alternatives to the
N-heterocyclic-carbene-catalyst.

6.2.2 Free Energy Profiles of the Amino Acid Catalysts

Geometry optimisations and free energy computations were carried
out according to the standard B3LYP protocol defined in section 5.1.
The resulting energy curves can be found in Figure 6.13 and the
associated values are given in Table 6.2.

-18.0

-16.0

-14.0
-12.0

-10.0
-8.0

-6.0

-4.0
-2.0

0.0

2.0

4.0
6.0

8.0

10.0

∆
G

[k
ca

lm
ol
−

1]

C1E C1T1 C1M C1T2 C1P C2T1 C2M C2T2 C2P

His Cys Met Thr Tyr Asp

Figure 6.13: Free energy profiles obtained for the amino acid carrying cata-
lysts.

Two different trends are noticeable. Fist of all, the oxygen coor-
dinated ligands – threonine, tyrosine and aspartic acid – seem to
overstabilize the metallacycle intermediates. This property could lead
to the reaction becoming trapped at the stage of the ruthenacycle
species, as the depth of the associated wells on the free energy surface
makes further chemical transformations unlikely, rendering this group
of amino acid ligands unsuitable for catalysis.

The second trend is that the other ligands – histidine, methionine
and cysteine – compare very favourable to the N-heterocyclic carbene
ligand of the original second-generation Grubbs catalyst (section 6.1),
as the general properties of the reaction profile follow the trends dis-

54 results

Table 6.2: Free energies of the amino acid bearing complexes.

∆G [kcal mol−1]

Species His Met Cys Tyr Thr Asp

C1E 0.00 0.00 0.00 0.00 0.00 0.00

C1T1 6.97 9.27 6.23 -2.47 -5.42 0.22

C1M -1.76 0.72 -1.43 -11.46 -14.65 -8.13

C1T2 2.49 3.07 -0.30 -9.50 -11.77 –
C1P 0.66 1.62 0.68 -0.26 -1.60 –
C2T1 -3.79 -1.84 -4.24 -14.45 -17.52 –
C2M -5.15 -2.39 -4.54 -15.06 -18.07 -12.11

C2T2 4.94 5.85 4.28 -5.38 -8.42 –
C2P -5.24 -5.24 -5.24 -5.24 -5.24 –

cussed in section 6.1.3 and the curves almost coincide with the one
obtained for the original complex. Some of the barriers actually lie
even lower in energy. While these observation seems to favour the
amino acid ligands over the native carbene, no active metathesis cata-
lysts of such a form have yet been reported in literature. One QSAR
study assessing various compounds with respect to their feasibility as
olefin metathesis catalysts explores similar compounds and attributes
only subpar activity to the related complexes.149 Unfortunately, a
direct comparison of the results is not possible as the measure of
productivity used in the study includes the dissociation barrier of the
phosphine ligand not investigated in this work.

Taking into account these observations, it is prudent to assume that
the obtained energy profiles are at least to a certain extent distorted
due to the following computational effects:

• The accuracy of the functional and the basis set size are limited.

• No corrections for the basis set superposition error were em-
ployed.

• Only one low energy conformation of the amino acid ligands
was sampled in each case.

• There are inherent problems when computing the free energy of
compounds with low frequency modes (see section 4.4.3).

These effects could indeed shift the activation barriers to higher ener-
gies, making the associated reaction steps less favourable.

Nevertheless, despite all the caveats, a substitution of the carbene
ligand by either methionine, histidine or cysteine seems viable for
the approach pursued in this work. The general form of the reaction
profile is promising and it can be expected to improve significantly,
since the initial amino-acid-bearing complex only serves as a starting
point for further stochastic optimisation in the framework of the
genetic algorithm.

6.3 theozyme motifs 55

6.3 theozyme motifs

Based on the insights gained in the previous sections, exploratory runs
with the generational algorithm were performed to help to identify
common motifs introducing beneficial interactions.

6.3.1 Exploratory Search

In order to perform a quick assessment of potential theozyme com-
positions, the genetic algorithm was used in a mode of operation
resembling Monte-Carlo search strategies. Only one generation with a
representative population size pmax of 60 individuals was computed
(see section 5.2). All 21 eukaryotic proteinogenic amino acid residues
(see Figure 5.2), with the exception of glycine, alanine and proline,
were allowed during genome creation and the size of individual
genomes was limited to between gmin = 4 and gmax = 6 amino acids.
The resulting theozymes with the best fitness values were subjected to
further analysis.

Three different central templates were used for the runs:

• The methionine complex.

• The histidine complex.

• A minimal complex stripped of one chlorine and the main ligand,
to study the effect of chlorine substitution by negatively charged
amino acid residues.

The cysteine-substituted complex was not used, as it provides less
steric constraint when compared to the alternatives and could give
rise to complications during later synthesis attempts.

A total of four runs was performed, one for each amino acid catalyst
and two for the minimal template.

6.3.2 Common Motifs

Out of the 240 generated theozyme candidates, only the four most
promising with regards to common beneficial interactions will be
discussed here. A list of the compounds and their respective amino
acid composition is given in Table 6.3. In the following sections, the
beneficial catalytic motifs associated with these theozymes will be
introduced.

Table 6.3: Main representatives of recurring structural motifs. The template
name is composed of the three letter code of the main amino acid
ligand (Figure 5.2), the generation (GX) and the index number of
the individual’s genome in the current generation (IXX).

Template Theozyme Residues

Histidine his_G1_I25 Arg Thr Gln

Methionine
met_G1_I55 Phe
met_G1_I57 Glu Gln Ile

Minimal nt2_G1_I16 Met Asp

56 results

Coordination of Chlorines

A recurring structural feature observed in the resulting geometries,
was the coordination of at least one of the chlorine atoms by a polar
amino acid. An excellent example is his_G1_I25 (Figure 6.14), where
one of the chlorines forms a hydrogen bond to glutamine, which in
turn possesses a hydrogen bond to the neighboured arginine residue.
The same phenomenon is exhibited by the other chlorine. Here, a
threonine forms a small hydrogen bond network with the main ligand
histidine and the chlorine.

Figure 6.14: his_G1_I25 geometry showing favourable coordination of both
chlorine atoms by the polar amino acids glutamine and threo-
nine.

A similar arrangement is found in the methionine complex met_G1_I57,
shown in Figure 6.15. In this case the polar glutamine coordinates one
of the chlorines and the substrate simultaneously.

Figure 6.15: Complex met_G1_I57 exhibiting interactions between the chlo-
rine and the glutamine residue.

6.3 theozyme motifs 57

With regards to energetics, both complexes show the desired sta-
bilisation of the transition state leading to very favourable insertion
barriers (Figure 6.16). Inspection of the subsequent steps also show
an overstabilisation of the metallacycle resulting in an increase in the
energy required for the formation of the final products. It should
be noted, that no stochastic optimisation has taken place during the
exploratory runs, leading to only suboptimal reaction profiles, which
nevertheless exhibit the desired traits.

11.9

3.4

8.1

2.1
0.00

-6.92

-24.73

∆
G

[k
ca

lm
ol
−

1]

-8.55

-23.01

–13.33

-5.46

C1E C1T1 C1M C1T2 C1P

met_G1_I57 his_G1_I25 Second generation Grubbs

Figure 6.16: Differences in free energy for the chlorine coordinated com-
plexes, computed for the first metathesis cycle. The energies
obtained for the second-generation Grubbs catalyst were added
for comparison.

Stabilisation of Double Bonds

Another regular motif found is the stabilisation of one of the sub-
strate double bonds via an aromatic residue. A good example is the
placement of phenylalanine in the methionine complex met_G1_I55

(Figure 6.17).

Figure 6.17: The coordination of the ether double bond before insertion is
easily visible in met_G1_I55.

58 results

A potential positive side-effect of this kind of interaction is the
prearrangement of the substrate for the insertion steps occurring in
both metathesis cycles. This is known to be one of the main strategies
employed by native enzymes (see chapter 2) and might thus exert a
beneficial influence on the overall reaction profile (Figure 6.18).

0.00

-9.03

-16.65

-8.00
-9.54

∆
G

[k
ca

lm
ol
−

1]

C1E C1T1 C1M C1T2 C1P

met_G1_I55

Figure 6.18: Sample of the free energy profile for the metathesis reaction
promoted by met_G1_I55

Chlorine Replacement

Although possible in principle, chlorine substitution by negative
residues proved to have a negative effect on the reaction cycle. A
characteristic example is nt2_G1_I16 (Figure 6.19), that shows the
preferred conformation of aspartic acid groups when coordinating to
the central template. While this arrangement seems sensible at a first
glance, it strongly inhibits the cleavage of the ruthenacycle intermedi-
ate. This effect is caused by the distortion of the favoured geometry
of the forming alkylidene due to the building of considerable steric
pressure.

Figure 6.19: The geometry of nt2_G1_I16 shows a substitution of one chlorine
by an aspartic acid residue. This arrangement strongly inhibits
the formation of the ruthenacycle opening.

6.3 theozyme motifs 59

The associated free energy curve of nt2_G1_I16 is depicted in Fig-
ure 6.20. The steric influence of the aspartic acid group can be seen
clearly for the transition step C1T2, for which the barrier height is
greatly increased, when compared to the previous examples.

0.00

-13.56

-14.78

0.57 0.68

∆
G

[k
ca

lm
ol
−

1]
C1E C1T1 C1M C1T2 C1P

Figure 6.20: Free energy profile of nt2_G1_I16 showing the inhibition of the
metallacycle cleavage by the aspartic acid residue.

The Main Ligand

Given the observations described above, the choice of a main ligand
has essentially been narrowed down to histidine or methionine. Due to
the stochastic nature of the method, the results of the genetic algorithm
screening do not provide a decision basis in this case.

Fortunately, simple considerations regarding the pKa of the involved
amino acid side chains provide a general guideline. The imidazole
moiety of histidine possesses a pKa of approximately 6. At physiologi-
cal pH-levels, as typically encountered in protein environments, this
property can lead to rapid switches between the neutral and proto-
nated state based on only small fluctuations of the pH. The presence
of a positively charged main ligand would in turn negatively influence
the overall reaction (see section 6.2.1).

This problem is not encountered with methionine, making it the
better choice for the main ligand.

6.3.3 The Proto-Theozyme

With the insights gained from the exploratory runs of the genetic
algorithm, a model of the theozyme was constructed. This model
combined the following beneficial motifs:

• Methionine constitutes the main ligand

• Coordination of the chlorine atoms by a polar amino acid (serine,
threonine, arginine, glutamine)

• Coordination of the double bonds by phenylalanine

This general arrangement of amino acids was used as a starting
point for further exploratory runs and genetic optimisations.

60 results

6.4 the first theozyme

Based on this theozyme model, an exploratory stochastic search of the
potential amino acid arrangements and combinations was performed.

Similar to the examples above, a population size of 60 genomes
was used and no stochastic optimisation took place. The metathesis
catalyst without main ligand but both chlorines present served as a
central template. Amino acids in the vicinity of the chlorines were con-
strained to the polar residues. The main ligand of the ruthenium atom
was set to be methionine and the placement of a phenylalanine near
the coordinated olefinic double bond was required during geometry
creation.

An important difference to the previous searches is the use of the
Grimme D3 dispersion correction to augment the B3LYP computations
performed with Gaussian, instead of the D2 correction employed
until now. The D3 correction was introduced in a new revision of
Gaussian, which became available during the course of this work.
As described in section 4.3.5, D3 usually improves upon D2 and it
was thus used as the standard dispersion correction for Gaussian

computations from this point onwards.

6.4.1 Geometry of the First Theozyme

Among several geometries with suboptimal activation barriers, a com-
plex with an a insertion energy of 3.60 kcal mol−1 was obtained (Fig-
ure 6.21). The complex G1_I38 exhibits all of the desired traits. Both
chlorines are coordinated by either threonine or serine. The methion-
ine ligand adopts a conformation almost perpendicular to the chlorine
axis, while the phenylalanine is placed in a manner strongly resem-
bling met_G1_I55.

Figure 6.21: Theozyme G1_I38 found with the stochastic screening process.

The free energy profile of the RCM reaction catalysed by G1_I38 is
given in Figure 6.22.

6.4 the first theozyme 61

C1E C1T1 C1M C1T2 C1P C2T1 C2M C2T2 C2P

11.9

3.4

8.1

2.1 1.7

0.2

9.8

-5.2

∆
G

[k
ca

lm
ol
−

1]

0.00

3.60

-5.11

-1.76

5.64

-3.51

-5.75

8.57

-2.46

G1_I38 Second generation Grubbs

Figure 6.22: Free energy profiles of the metathesis reactions catalysed by
G1_I38 and the original second-generation Grubbs methylidene
catalyst. In both cases, the Grimme D3 dispersion correction
is used instead of D2 in order to augment the standard B3LYP
procedure.

The reaction energetics compare favourably to those of the initial
second-generation Grubbs catalyst. The activation barrier for the for-
mation of the first metallacyclobutane is significantly lowered, which
is a good confirmation of the choice of catalytic motifs. Another
positive aspect is the increased destabilisation of the ruthenacycle
intermediate in contrast to e.g. met_G1_I55, since this reduces the risk
of the reaction terminating at the ruthenacycle stage.

The transition state facilitating the metallacycle cleavage on the one
hand is almost unchanged compared to the model reaction, which
can be attributed to the type of fitness function employed (see sec-
tion 5.2.5). The intermediate and final product stages on the other
hand are slightly destabilized, changing the reaction profile in a dis-
advantageous manner.

It should be stressed once again, that this complex was obtained in
a stochastic manner without any genetic optimisation process taking
place. It is thus reasonable to assume that it only constitutes a local
minimum of the search space and, while the reaction profile is already
promising, room for improvements still exists.

6.4.2 The Quest for a cheaper Fitness Function

While suitable for exploratory search, the generational algorithm
employed proved to be extremely impractical with regards to optimi-
sation, as the periods of idle time due to the differing durations of the
evaluation process led to a suboptimal use of computational resources
(see discussion in section 5.2). Therefore, the switch to the steady state
model improved the usage of computational resources.

Another way to increase efficiency is to introduce a cheaper fitness
function. The easiest solution to save time is to replace the hybrid
functional B3LYP, which requires the costly evaluation of Hartree–Fock
exchange, with a GGA functional. This change in functional further-

62 results

more allows to make use of the RI approximation (see section 4.3.4),
resulting in an additional speed-up of the process.

One problem associated with a change of functionals is a potential
reduction in accuracy, as the performance of different functionals can
vary greatly depending on the chemical system treated. However, the
good results reported for computations on transition metal complexes
using the BP86 functional47,138–141 strongly support the application of
this approach.

In order to assess the viability of the BP86 functional for the prob-
lem at hand, computations were carried out on the geometries of
theozyme G1_I38 using this functional and the results compared to
the B3LYP-D3 reaction profile discussed in the previous section. After
an optimisation with the BP86 approach described in section 5.1.1, the
free energies were computed. The calculations were performed with
Turbomole. The comparison of the results to the free energy profile
of G1_I38 can be found in Figure 6.23.

C1E C1T1 C1M C1T2 C1P C2T1 C2M C2T2 C2P

∆
G

[k
ca

lm
ol
−

1]

0.00

3.60

-5.11

-1.76

5.64

-3.51

-5.75

8.57

-2.46
0.00

3.04

-6.97

-3.08

7.94

-3.89

-10.63

2.12

-3.91

B3LYP-D3 BP86-D3

Figure 6.23: Comparison of the reaction curves obtained for the G1_I38

theozyme using the BP86 and B3LYP functionals.

For the first metathesis cycle, the results obtained for BP86 are very
close to the B3LYP ones. A deviation from this trend is found for the
second metallacycle and its cleavage. While this deviation from the
B3LYP functional might be interpreted as an error of the BP86 GGA
functional, several benchmark studies on transition metal complexes
suggest otherwise. These studies report an excellent accuracy of the
BP86 functional for geometries, energies and vibrational frequencies
for this special class of compounds, whereas the accuracy of B3LYP is
often only mediocre in comparison.47,138–141 The switch to a cheaper
fitness function employing the BP86 functional therefore not only
leads to a tremendous gain in efficiency, but might additionally even
improve the quality of the results.

6.5 the theozymes from the steady-state algorithm

To obtain a set of suitable theozymes which can be used in the subse-
quent matching and enzyme design procedure, the steady state genetic

6.5 the theozymes from the steady-state algorithm 63

algorithm was employed. The use of a steady state mode of operation
together with a more efficient fitness function allows to carry out the
task of global optimisation neglected in the previous search runs.

6.5.1 Algorithm Parameters

The previously determined theozyme motifs, like e.g. the coordination
of the chorines by polar amino acids (see section 6.3.3), were used in
the creation of the different individuals. Parameter settings employed
during the steady state run can be found in Table 6.4, a detailed
discussion of each parameter is given in section 5.2.

Table 6.4: Set of parameters employed for the steady state genetic algorithm.

Parameter Value Description

pmax 60 Maximal population size
gsize 4 Number of genes in genome
tcrit 4 Genetic operations threshold
neval 300 Number of evaluations
ntour f (pcurr) Tournament size
noff 2 Number of offspring
nnew 1 New species
rcx 0.4 Crossover rate
rmut f (pcurr) Mutation rate

6.5.2 Fitness Evolution

The optimisation progress was monitored with the help of three vari-
ables, the average fitness Favg, the minimum fitness Fmin and the
maximal fitness Fmax of the population. Since the fitness measure
essentially resembles the activation barrier of the complex, smaller
fitness values represent better solutions to the problem at hand and a
steady decrease of the overall fitness is desired.

This definition might seem counterintuitive, however, it allows for
the direct interpretation of the fitness of every individual as the free
energy in kcal mol−1 needed for the formation of the first ruthenacycle.
To facilitate interpretation of the results, no scaling of the fitness values
derived from quantum-chemical computations took place. As a result
of introducing this convention, the replacement operator in Figure 5.1
now uses the minimum function instead of the maximum function
and the tournament selection operator chooses the least fit genome.

The variables Favg, Fmin and Fmax, used for monitoring the stochastic
optimisation process, were computed after every finished evaluation
of an individual. Favg is the average fitness of the current population,
calculated as the sum of fitnesses over every individual currently
present in the population pool, divided by the size of the population
pcurr. This value helps to monitor the overall progress of the stochastic
optimisation procedure. The variable Fmin essentially measures how
efficiently good solutions are generated, as it describes the fittest

64 results

solution, whereas Fmax represents the worst individual and provides
insights with regards to the selection procedure and selection pressure,
as it allows to discern how fast the worst results are filtered out.

The evolution of Favg, Fmin and Fmax during the algorithm run is
shown in Figure 6.24. The number of evaluations neval serves as a
measure for the elapsed time.

2

4

6

8

10|∆
G
|[

kc
al

m
ol
−

1]
20

15

25

neval

Favg Fmax Fmin

Figure 6.24: Change of the average fitness Favg, the minimum fitness Fmin
and the maximal fitness Fmax over the course of the genetic
algorithm run. The number of evaluations done neval serves as
a time measure. The fitness values can be interpreted as the
absolute of the activation barrier ∆G in kcal mol−1.

The curves Favg and Fmax show an initial saturation period of the
population until the maximum population size pmax is reached. The
introduction of individuals with suboptimal fitness into the grow-
ing population pool during this phase, leads to an increase in both
variables. Once a particularly bad individual is introduced into the
population, Favg and Fmax remain approximately constant, as no ex-
tinctive selection takes place yet. This phase is important, as the
relatively low selection pressure allows for the exploration of the fit-
ness landscape, thus counteracting the premature convergence to a
local optimum.

As soon as pmax is reached, the extinctive replacement procedure as
well as the growing tournament size adjust the selection pressure and
the system begins to improve towards solutions of better quality.

The curve Fmin shows, that very fit individuals were already intro-
duced in the early stages of the genetic algorithm. This effect can
be expected to exert a positive influence on crossover operations, as
these fit individuals provide good genetic material for the offspring
generated.

These observations attest the validity of the stochastic optimisation
approach adopted in this work to screen for feasible theozymes.

6.5.3 Theozyme Geometries

The detailed discussion of all 300 theozymes yielded by the steady
state search will be omitted at this point, as the essential features of
the solutions can be showcased with the help of only two examples.

6.5 the theozymes from the steady-state algorithm 65

The sample geometries I015 and I279 are depicted in Figure 6.25.
The numbers indicate the evaluation cycle during which the structures
were produced, meaning that I015 was created at the beginning and
I279 almost at the end of the steady state genetic algorithm run.

(a) (b)

Figure 6.25: Theozymes I015 (a) and I279 (b) generated by the genetic algo-
rithm.

The BP86 free energies of activation are 1.6 kcal mol−1 for the com-
plex I015 and 2.1 kcal mol−1 for I279. These barrier heights have im-
proved dramatically compared to the native catalyst (11.9 kcal mol−1)
and moderately compared to the theozyme obtained through stochas-
tic sampling (3.0 kcal mol−1), demonstrating the power of the stochastic
optimisation approach taken in this work. Although care should be
taken when comparing directly to the values obtained for the model
reaction, because different methods were used, the overall trend is
readily noticeable.

While both theozymes exhibit the desired combination of motifs de-
fined in section 6.3, there are nevertheless several marked differences.
Regarding the amino acid composition, asparagine and threonine form
hydrogen bonds to the chlorines in I015, while in I279 the chlorines
are coordinated by threonine and serine. The greatest deviation lies in
the orientation of the catalytic residues. The hydrogen bond donors in
I015 point in the direction of the methylidene bond in case of threonine
and of the sulphur-ruthenium bond in case of the arginine. In I279

however, both donors are placed on the other side of the complex,
oriented in the direction of the diallylether. A similar observation is
made for the phenylalanines. The arrangement of the aromatic ring is
almost mirrored through the plane of the forming ruthenacycle when
comparing the two theozymes. The methionine ligand is coplanar to
the methylidene bond in I015, while in I279 it is perpendicular to it,
with the Cβ atom facing upwards.

The difference in the observed geometries suggests that the stochas-
tic optimisation procedure has not converged to a global optimum and
the theozymes obtained probably only represent local solutions, albeit
good ones. This conclusion is supported by the fitness progress shown
in Figure 6.24, where the graphs still exhibit a perceivable slope at the
last timestep. Longer run times would be required for the algorithm

66 results

to converge in accordance with the fact that the free energy fitness
landscape is very rugged.

The diversity of the different theozyme geometries however is not
necessarily a problem, on the contrary: it increases the likelihood
of finding a suitable scaffold to accommodate the active sites in the
following matching procedure, as will be seen in the following section.

6.6 the search for protein scaffolds

With the optimized theozymes at hand, the next step of the enzyme
design procedure is the screening for protein scaffolds onto which the
catalytic residues of the theozymes can be crafted.

Out of the theozymes obtained with the steady state genetic algo-
rithm, the most promising ones with respect to geometry and fitness
were chosen for the matching process. The theozyme G1_I38 yielded
by the stochastic search was also included. The set of theozymes, their
activation barriers and their composition are summarized in Table 6.5.
Only the hydrogen-bond donating residues are listed, as the others
remain the same for every catalyst (see also Figure 6.25).

Table 6.5: Theozymes used in the matching procedure, with the associated
free energy of activation in kcal mol−1 and a list of the hydrogen
bond donors.

Theozyme ∆G Residues

G1_I38 3.0 Thr Ser
I004 1.2 Thr Asn
I015 1.6 Thr Asn
I156 1.8 Thr Asn
I159 1.2 Thr Ser
I192 0.7 Thr Thr
I279 2.1 Thr Ser

6.6.1 Primary Matching

Initial searches for proteins with suitable backbone conformations
were undertaken using the primary matching algorithm of Rosetta

and the scaffold library introduced in section 5.3.
As the theozymes contain four catalytic residues, four constraints

need to be specified in the cst-file required for the matching process.
In case of the primary matching algorithm, every residue is hashed
independently. An example for an entry in the geometric constraint
file is given in Figure 6.26.

The first two blocks bearing the TEMPLATE keyword specify the
substrate and residue involved in the catalytic contact, as well as three
atoms each. The atoms define the internal coordinates determining
the relative positioning of amino acid and substrate to each other.

These are specified in the CONSTRAINT block. The first column
holds a description of the coordinate (see Figure 6.27) followed by the
respective value. The third column is the tolerance within which the

6.6 the search for protein scaffolds 67

CST::BEGIN
TEMPLATE:: ATOM_MAP: 1 atom_name: FE1 C2 C3
TEMPLATE:: ATOM_MAP: 1 residue3: THZ

TEMPLATE:: ATOM_MAP: 2 atom_name: SD CG CB
TEMPLATE:: ATOM_MAP: 2 residue3: MET

CONSTRAINT:: distanceAB: 2.34 0.1 100.0 1 0
CONSTRAINT:: angle_A: 178.06 2.0 50.0 360. 1
CONSTRAINT:: angle_B: 111.47 2.0 50.0 360. 1
CONSTRAINT:: torsion_A: -100.71 5.0 60.0 360. 2
CONSTRAINT:: torsion_AB: -27.50 8.0 0.0 360. 2
CONSTRAINT:: torsion_B: 100.41 5.0 60.0 360. 2
CST::END

Figure 6.26: Entry of the geometric constraint file showing the block specify-
ing the positioning of the main methionine ligand.

coordinate will be sampled. The fourth column holds a penalty for
later force field evaluations, while the fifth entry gives information
on the nature of the bond in case of distanceAB or on the periodicity
of the constraint for the rest. The last field indicates how often the
coordinate is to be sampled.

distanceAB

angle_A

angle_B

torsion_A

torsion_B

torsion_ABA

B

Figure 6.27: Internal coordinate notation used in the Rosetta constraint file.

Use of the primary algorithm is usually advantageous in situations
for which the geometry of the active site is well defined, such as in
this case.

Unfortunately, no matches were obtained using this search mode.
This result was to be expected, since a shortcoming of the primary
matching protocol is a decrease in the likelihood of finding a match
for every additional constraint given.

6.6.2 Secondary Matching

A secondary matching algorithm exists as an alternative to the primary
one. In this case, the residue rotamer is not sampled from all accessible
backbone positions and the associated theozyme placement checked
for matches with previous placements. Instead, the residue rotamer
is “grown” relative to a previously obtained theozyme placement
and its Cα atom is checked for possible matches within the accessible
backbone positions.150 This approach allows for a more tolerant sam-
pling procedure, as not all six internal coordinates have to be specified
explicitly and is usually used for interactions not clearly defined.

Due to the catalytic contact formed by the phenylalanine residue
being the least rigid one, secondary matching was used to sample
this interaction. The remaining catalytic contacts were still treated

68 results

with the standard algorithm. The problem of resulting suboptimal
orientations of phenylalanine could then be addressed during the
following sequence design stage.

This change in strategy produced several matches for the different
theozymes, distributed over a range of protein scaffolds (Table 6.6).

Table 6.6: Matches found during screening. The PDB-codes of the scaffold
proteins are listed for each theozyme.

Theozyme Scaffolds

G1_I38 -
I004 2R9P 2CZD
I015 3IXB 2WIW 1U00 3C9U 1PJ5

1JQ5 3E3P
I156 1R7A 2WIW 1U00 1N1S 2J8G

3GBX 3CB9 2P5Y 2AGS 1N1Y
1GBJ 1GPQ 1X1R 3KKQ 3IXF

I159 1AB0 1LIC 1LID 1LQA 2Q91
3C1V

I192 3CNV
I279 1O8V

6.6.3 Distribution of Matches

Although different theozymes can sometimes be accommodated by the
same scaffold, as seen in Table 6.6, these “overlaps” are sparse. This
supports the conclusion reached at the end of section 6.5: A diverse set
of theozyme geometries is indeed beneficial for the matching process.

The distribution of matches, given in Table 6.7, suggests an affinity
of theozymes for certain CATH143-architectures (see section 5.3.1 and
Table 5.1 for a more detailed explanation). I015, for example, produces
three matches in the 2- and 3-layer sandwiches (3.30, 3.40) and zero to
one for the remaining scaffolds. Whether this preferences are due to
recurring geometric motifs of the proteins capable of hosting the novel
active site or just random effects cannot be discerned clearly with the
amount of data at hand.

Nevertheless, a correlation between theozyme and scaffold geometry
is undeniable. Some of the theozymes exhibit residue arrangements
more readily accommodated by peptide scaffolds, like I156, which
produces 17 matches in different proteins. Others possess a structure
that proves disadvantageous in the screening process. In case of
G1_I38, the failure to find suitable scaffolds can be attributed to the
spatial proximity of the non-aromatic residues’ Cβ atoms (Figure 6.21),
requiring a very peculiar backbone conformation of the scaffold.

6.7 enzyme design

The final step in the creation of a novel enzyme is a fine tuning of
the matches via sequence design. This procedure is done in order
to provide optimal geometries and environments for the active site

6.7 enzyme design 69

Table 6.7: Matches grouped by theozyme (columns) and CATH architecture
identifiers of the scaffolds (rows), introduced in Table 5.1. The
number in a field indicates, how many matches were found by
Rosetta-match for this particular scaffold/theozyme combination.
A dash means no matches were found.

G1_I38 I004 I015 I156 I159 I192 I279

1.10 - - 1 1 2 - -
2.40 - 1 1 1 3 - 1

2.60 - - 1 4 - - -
3.10 - - - - - - -
3.20 - 1 - 2 1 - -
3.30 - - 3 - - - -
3.40 - - 3 6 - 1 -
3.90 - - 1 3 - - -

Sum 0 2 10 17 6 1 1

and to increase the likelihood of the protein scaffold folding into the
desired three-dimensional arrangement.

6.7.1 Design Parameters

The enzyme design utility provided by Rosetta requires the specifica-
tion of several parameters. These parameters are the four cutoff radii,
the number of sequence design cycles, the ligand packing weight and
whether to use the soft force field or not.

The cutoff radii are used to identify the residues allowed to mutate
during the sequence design procedure (see section 5.3.2). The number
of sequence design cycles specifies, how many iterations of alternat-
ing sequence design and energy minimisation are performed. The
ligand packing weight is a factor for scaling the relative importance
of substrate-protein interactions versus protein-protein interactions.
The soft force field uses an alternative repulsive potential compared
to the standard Rosetta force field and is discussed in section 5.3.2.
For a more detailed explanation of the different parameters, see ap-
pendix A.1.

As the inside-out protocol and the Rosetta suite of programs are
relatively young, no general rationale for setting these parameters
exists yet. The influence of the cutoff radii on the design procedure is
readily apparent: The more generous the values used, the more muta-
tions will be present in the protein and vice versa. Since the presence
of too many mutations may exert a disadvantageous influence on the
folding behaviour of the scaffold and in turn its tertiary structure, it is
normally better to choose conservative cutoff radii. Switching on the
soft repulsive force field is usually beneficial, as it allows certain limi-
tations of the traditional energy function to be overcome and may in
turn lead to a better packing of the active site residues. Unfortunately,
no guidelines exist for the ligand packer weight and the number of
design cycles and optimal values are commonly found by trial and
error. Standard values recommended by the Baker group are 6.0, 8.0,

70 results

10.0 and 12.0 Å for the cutoff radii, 4 cycles of sequence design and a
ligand packer weight of 1.6.150

Different settings for the cutoff radii were tried in this study and
the best results were obtained for cutoff radii almost identical to the
ones suggested above, but with the first two radii (c1 and c2) reduced
to slightly smaller values. The designs 3E3P and 3C9U (see below)
were found using the radii c1 = 4.0 Å and c2 = 6.0 Å, while the
other two designs 1O8V and 1JQ5 (see below) were obtained with
c1 = 5.0 Å and c2 = 6.0 Å. This choice was made with regard to the
experimental expression of the final designs, as it reduces the number
of mutations which have to be introduced into the existing proteins.
The soft repulsive force field was used in all cases as it provides better
sidechain packing (see section 5.3.2). Since the last unconstrained
repack step automatically uses the default Rosetta force field instead
of the soft repulsive one, the number of cycles was increased by one in
order perform four full cycles of sequence design with the alternative
force field.

6.7.2 Design Runs

The Monte-Carlo algorithm involved in the enzyme design stage is
stochastic in its nature. Random choices regarding residue mutations
and conformation sampling will be made during every individual run
of the enzyme design program, yielding different results even if exactly
the same initial conditions are used. It is therefore possible, that
a certain theozyme-scaffold combination, obtained in the matching
process, can result in a promising design in one case and only yield
a suboptimal geometry in the other. In order to increase the chance
of obtaining good enzyme designs, a large number of runs has to be
performed. Here, 20 enzyme design runs were performed for every
single one of the 32 theozyme-scaffold combinations listed in Table 6.6,
resulting in a total of 640 different potential designs. The best of these
enzyme designs, were then identified according to several criteria.

The scoring function provided by Rosetta served as a general guide-
line, with the caveat that an iron atom had to be used instead of the
central ruthenium atom for force field energies, as the Rosetta force
field is not parametrized for ruthenium. The distance between the chlo-
rines and hydrogen bond donors was utilized as a criterion to filter out
suboptimal designs. Designs with hydrogen-bond lengths significantly
longer than the optimal length obtained through quantum-chemical
calculations (∼ 2.3 Å) were omitted during the later evaluation stages,
as these designs are unlikely to exhibit the required coordination of
the chlorine atoms. In a final visual inspection of the protein, the over-
all quality of the active site was assessed, using geometric reasoning
and chemical intuition. The overall placement and accessibility of the
active site was investigated, as well as the arrangement and orienta-
tion of the substrate and catalytic residues. Additional interactions
between the substrate and adjacent residues were also considered.
This procedure lead to the identification of four potential designs.

6.8 designed enzymes 71

6.8 designed enzymes

The following section introduces the four enzymes yielded by the
design procedure. The relative placement of the theozymes in the
scaffolds, as well as the nature of the mutations will be discussed. A
short overview will be given regarding the native function and active
site configurations of the wild-type proteins. Throughout this section
the naming scheme of the PDB database will be adopted, where every
protein is identified by a four letter ID consisting of a digit, followed
by three alphanumeric characters.

6.8.1 Enzyme based on the Scaffold 1JQ5

The following enzyme design was obtained by the introduction of
the theozyme I015 into the scaffold of 1JQ5 (Figure 6.28). The native
protein is the glycerol dehydrogenase of Bacillus stearothermophilus,
a thermophile bacterium. Its role is the oxidation of glycerol to di-
hydroacetone with the help of the coenzyme nicotinamide adenine
dinucleotide (NAD+), serving as an alternative source of metabolic
energy in anaerobic environments.151

Figure 6.28: The designed enzyme combining the theozyme I015 and the pro-
tein scaffold 1JQ5. The catalytic residues and the metal-substrate
complex are shown in red, auxiliary mutations introduced by
the sequence-design procedure are shown in green. The new
active site is located in the cleft formed by the α-helical domain
on the left and the β-sheet domain on the right.

The enzymatic structure can be divided into two domains separated
by a cleft, which is at the same time the location of the active site and
NAD+ binding. The first domain consists of a β-sheet framed by four
α-helices and a single β-strand. The second domain is a helical bundle
of 14 α-helices. Buried in the cleft lies the active site constituted of a
zinc atom coordinated by the residues Asp173, His256 and His274. The

72 results

protein is currently believed to adopt a homooctameric conformation
in solution.152

To accommodate the novel theozyme, a total of 9 mutations was
introduced during the design procedure (Table 6.8).

Table 6.8: Mutations of the scaffold 1JQ5 introduced by Rosetta.

Pos Nat → Mut

95 Gly → Met
96 Gly → Asn
97 Lys → Asn

121 Ser → Thr
122 Thr → Asp
166 Leu → Trp
270 His → Leu
271 His → Thr
273 Thr → Phe

Figure 6.29: Close-up of theozyme I015 as it was crafted onto scaffold 1JQ5.
Thr121 is located on a turn of medium length (10 residues), intro-
ducing uncertainty in the final arrangement of this amino acid.
Phe273 adopts a conformation which may lower its beneficial
influence on the RCM reaction.

The active site of the designed enzyme (Figure 6.29) lies in the NAD+
binding pocket of the wild-type, which undergoes major changes,
whereas the zinc binding site (Asp173, His256 and His274) remains
unmodified. The residues Gly96 and Lys97 originally bind the NAD+
via their backbone nitrogens and are both replaced by asparagines,
which can potentially coordinate one of the chlorine atoms in the
novel enzyme. The other hydrogen bond donor is introduced via a
mutation of Ser121 to threonine. The serine sidechain coordinates
to the NAD+ pyrophosphate oxygen atom in the native binding site.
The amino acid Gly95, part of a glycine-rich turn (residues 94-96),
gives way to the main methionine ligand of the ruthenium atom.

6.8 designed enzymes 73

Thr273 is modified to provide the phenylalanine sidechain Phe273 for
ether coordination. Unfortunately, Phe273 adopts a disadvantageous
orientation when compared to the original theozyme I015 (Figure 6.25).
Due to the backbone orientation of the phenylalanine residue, the
suboptimal conformation cannot be amended through rearrangement.
The change of Leu166 to tryptophane might additionally stabilize
Phe273 through steric interactions. While the suboptimal orientation
of Phe273 might have an negative effect on catalytic activity, this design
was nevertheless considered, as the combination of all mutations
results in an excellent positioning of the novel active site in the cleft
between the two protein domains (Figure 6.30). Since this is also
the location of the NAD+ binding pocket in the wild-type, it can be
expected to provide a good balance between accessibility and shielding
at the same time, compensating for some of the shortcomings of the
design. The remaining mutations seem to play only a minor role.

Figure 6.30: Solvent-accessible surface (SAS) of the modified protein scaffold
1JQ5. The diallylether substrate (red) is easily accommodated
by the cleft, which provides substantial shielding from environ-
mental influences.

The bulk of the important catalytic contacts of the theozyme is situ-
ated on well-preserved structural motifs, which are also described well
by the Rosetta algorithm.153 The only exception is Thr121. The turn
bearing this residue connects two β-strands and is of considerable
length (residues 118-128). It may thus be subject to major confor-
mational changes during the protein folding process, weakening or
even destroying the hydrogen bond to the chlorine atom. However,
this rearrangement does not necessarily have to take place and the
potential risk is easily offset by the excellent location of the active site.

6.8.2 Enzyme based on the Scaffold 3E3P

This enzyme is a combination of the scaffold 3E3P and the theozyme
I015 (Figure 6.31). The native protein is the glycogen synthase kinase-3

74 results

of Leishmania major and uses the coenzyme adenosine-triphosphate
(ATP).154 This protozoa is one of the pathogens associated with the
parasitic disease leishmaniasis, making the protein a primary target
for anti-parasitic drugs.

The 353 residues of the wild-type protein form two domains, a motif
encountered on a regular basis in kinase enzymes.155 A β-sheet framed
by two α-helices constitute one domain, the other one is formed by
a bundle of 17 α-helices. The native active site and the ATP-binding
site are located in the fold formed by the two domains. A glycine rich
loop serves as a kind of lid.

Figure 6.31: Protein scaffold 3E3P bearing theozyme I015. The novel active
site (red) and the mutations introduced by Rosetta (green) are
all situated on or near the β-sheet of the right domain. The
α-helical domain is shown on the left.

The mutations introduced by Rosetta in order to accommodate the
theozyme are listed in Table 6.9.

Table 6.9: Mutations of the 3E3P-scaffold in the designed enzyme.

Pos Nat → Mut

53 Gln → Thr
58 Arg → Phe
59 Asn → Ser
84 Tyr → Asn
96 Leu → Met

6.8 designed enzymes 75

Figure 6.32: Novel active site of the 3E3P mutant based on theozyme I015.
The catalytic sidechain Met96 is located directly on an α-helix,
while the remaining residues are situated in close vicinity of
highly preserved motifs. The suboptimal conformation of Phe58

relative to the coordinated ether double bond can be amended
through orientation.

Unlike 1JQ5, the theozyme is crafted onto the β-sheet of the first
domain (Figure 6.32), far off the native active site and almost opposite
to the glycine rich loop, leaving the native active site completely in-
tact. While the conservation of the wild-type catalytic center should
exert no negative influence on the catalytic activity of the design, the
increased accessibility accompanying the change in location might be
a problem. Out of the mutated residues, three are located directly on
the β-sheet, one on each separate strand. These residues are Met96,
the main ruthenium ligand, and Thr53 and Asn84, the two residues
coordinating the chlorines. The phenylalanine Phe58 facilitating the
ether arrangement is introduced at the position of Arg58. This pheny-
lalanine sidechain can be seen adopting a suboptimal arrangement
when compared to the original theozyme, but the spatial orientation of
its Cα-Cβ bond allows switching to the optimal conformation at least
in principle. It is situated on the turn connecting the β-sheet to one
of the framing α-helices, along with the last mutated residue Ser58.
This location is close to the end of the α-helix and should therefore be
subject to only minor conformational changes.

The placement of the catalytic mutations on highly preserved pro-
tein motifs – such as the β-sheets – in general, should prove beneficial,
as they are more likely to keep their native tertiary structure.

As stated above, the overall location of the novel active site (Fig-
ure 6.33) has both advantageous and disadvantageous. On the one
hand, it lies completely open, which would facilitate the introduction
of the ruthenium-alkylidene, as well as the association of the dial-
lylether. On the other hand, this accessibility might also introduce
disadvantageous interactions with environmental influences, such as
solvent molecules.

76 results

Figure 6.33: SAS of the scaffold 3E3P with the substrate shown in red. The
relative exposure of the novel active site is easily noticeable.

Moreover, only a relatively small part of the protein is required
for catalytic action, the other domain remains completely unused
(Figure 6.31), as opposed to the native enzyme, where residues from
both domains contribute to the active site situated in the inter-domain
cleft. While it would be possible to sever the linker (residues 102 to
106) between the domains and only utilize the theozyme bearing part
of the protein, it is difficult to predict to what extent the missing of the
helical domain would influence the three dimensional structure of the
fragment. Removing this domain could for example lead to distortions
in the novel active site, destroying its catalytic geometry. Molecular
mechanics and dynamics studies would be required to address this
problem.

6.8.3 Enzyme based on the Scaffold 1O8V

The combination of theozyme I279 and the protein 1O8V yielded
another promising candidate. The scaffold is the fatty-acid-binding
protein 1 of Echinococcus granulosus, the dog tapeworm and cause of
the echinococcal disease.156 It differs from the other proteins insofar,
as it possesses no inherent catalytic activity. Research points to a role
as a transport-protein for lipids, as the parasitic organism is incapable
of synthesising most of its required lipids on its own.

This peculiar function is reflected in the form of the protein. Two
β-sheets form a barrel-like structure, consisting of 10 strands in total.
The first strand exhibits a slight kink, allowing it to participate in both
sheets. Strands 4 and 5 are separated by an inter-strand gap filled
by highly ordered water molecules. The barrel is topped at one end
by two α-helices, a region that is commonly accepted to be the entry
point for the fatty-acids. The opposite end of the barrel, which is
closed by a short 310-helix (a secondary structure motif similar to an

6.8 designed enzymes 77

Figure 6.34: The protein scaffold 1O8V bearing the novel active site I279

(red). Additional mutations are coloured green. The barrel-like
form of the scaffold is readily noticeable. On the left side of the
protein, the two α-helices forming the entry portal to the native
fatty-acid binding site can be recognized. The new active site is
introduced on the other end of the barrel.

Table 6.10: Mutations required for the scaffold 1O8V to bear the theozyme
functionality.

Pos Nat → Mut

4 Phe → Tyr
50 Tyr → Met
52 Met → Ser
63 Cys → Ser
64 Ser → Glu
65 Phe → Gly
85 Ile → Thr
92 Met → Ala
94 His → Phe

α-helix but with three residues per turn instead of four), possesses no
known purpose in the wild type. Buried in the cavity near the two
α-helices, lies the Arg107-Tyr129-Arg127 triad, responsible for binding
the carboxylate-group of the fatty acid. One other important motif
is the presence of a “structural” water molecule, forming hydrogen
bonds to the carbonyl oxygens of Lys66 and Glu69, as well as the
amide nitrogen of Ile85. A final point of note is the oxidation state
of Cys63, which is oxidised to its sulfenic acid analogon S-hydroxy
cysteine. It is not clear whether this motif is inherent to the peptide
scaffold or just an artefact due to the expression of the protein in
Escherichia coli. The oxidation has no effect on the binding if the
fatty-acids in the wild-type.

78 results

In this case, 9 mutations are performed by Rosetta to accommodate
the theozyme I279 into the scaffold (Table 6.10).

Figure 6.35: The novel active site based on theozyme I279 as introduced
into scaffold 1O8V. The geometric arrangement of the catalytic
sidechains should be subject to only minor conformational
changes, as all residues are located on highly preserved β-sheets.
Phe94 can be seen adopting a suboptimal arrangement, but the
orientation of its Cα-Cβ axis allows for rotation into the right
conformation.

The theozyme is introduced inside the barrel region, opposite to
the native portal site (Figure 6.35). Tyr50 is mutated to methionine, in
order to serve as the main ligand for the ruthenium atom. To satisfy
coordination of the ether double bond, phenylalanine replaces histi-
dine at residue 50. Although it does not adopt the optimal orientation,
this is only a minor drawback for the same reasons as in the case of
design 3E3P. Ser52 acts as one of the chlorine ligands, the other is
threonine at position of Ile85. As mentioned above, this residue is
originally involved in coordination of the “structural” water. However,
since the interaction partner of the water is the backbone amide nitro-
gen of Ile85 and not the sidechain, a change in the sidechain should
have negligible influence on the structural integrity of this motif. The
remaining mutations are of a more cosmetic nature. Substitution of
Phe65 for a glycine creates space to accommodate the ruthenium atom.
Mutation of Met92 to alanine minimises steric clashes between protein
and substrate in a similar manner. Introduction of a tyrosine residue
in place of Phe4 on the 310-helix may serve to stabilize the overall
geometry of the barrel end, as it is perfectly positioned to form a
hydrogen bond to the backbone carbonyl group of Val91. Orientation
and placement of the mutated Ser63 suggests, that it might serve
as an additional hydrogen-bond donor for the chlorine coordinated
by Ser52. Residue Ser64 changes to a glutamic acid group facing
outwards, a common motif in the barrel surface and beneficial for
the water solubility of the protein. Finally the S-hydroxy cysteine at
position 63 is exchanged for serine. The native residue does not seem
to have a major influence on the tertiary structure of the scaffold and
the same is to be expected from the mutation.

6.8 designed enzymes 79

It should also be noted that the fatty-acid binding site remains
almost unchanged, apart from a repacking of Arg107 to accommodate
the theozyme, as the novel active site is introduced at the opposite
end of the barrel.

As almost all mutations, especially the ones constituting the new
catalytic site, are located on β-sheets, the structure of the designed
enzyme is well defined and the correct three-dimensional geometry
should be adopted during the folding process.

A problem with this design might be the overall form of the protein
and the location of the active site, which are quite unusual for enzymes.
This property could, however, also work in favour of the designed
enzyme, as the scaffold interior provides a hydrophobic environment,
optimal for metathesis reactions.

(a) (b)

Figure 6.36: SAS plots of the 1O8V-mutant. Image (a) shows the native fatty-
acid portal site, while (b) shows the other end of the barrel,
where the novel active site is situated. This active center is
shielded completely by the protein, which might lead to issues
regarding substrate association. Here the 310-helix (orange) is
shown transparent in order to provide a view of the coordinated
substrate.

There is also the issue of accessibility, as the active site is buried
within one end of the barrel and the wild-type portal region is located
on the opposite side (Figure 6.36). Whether the substrate can enter the
enzyme on this alternative entry site remains to be seen.

6.8.4 Enzyme based on the Scaffold 3C9U

This designed enzyme is composed of the I015 theozyme and the
protein scaffold of 3C9U (Figure 6.37). The wild type protein is the
thiamin monophosphate kinase of Aquifex aeolicus, a thermophilic bac-
terium.157 It originally catalyses the ATP-dependent phosphorylation
of thiamin monophosphate.

The enzyme forms a homodimer, with two β-sheets as the interface,
shown in Figure 6.38. This interface region is mainly stabilized by
hydrophobic interactions of the involved residues.

The structure of the 309 residue monomer can be divided into
two α/β-folds, separated by a cleft bearing the binding site of the
substrates as well as the catalytic center. An important motif of

80 results

Figure 6.37: Mutant of scaffold 3C9U with theozyme I015 shown in red.
Stabilizing mutations introduced by Rosetta are shown in green.
The novel active site is located in the inter-domain gap.

the original enzyme are five magnesium atoms situated in this cleft,
typically coordinated by aspartate residues. Three of the metal atoms
form a cluster and play a role in substrate coordination, while the
other two are involved in the phosphorylation reaction.

A total of five mutations during the sequence design procedure lead
to the mutant variant capable of hosting the theozyme, presented here.
The list of mutations is given in Table 6.11.

Table 6.11: Mutations required to accommodate theozyme I015 into the pro-
tein scaffold 3C9U.

Pos Nat → Mut

209 Ser → Asn
210 Asp → Met
214 Ala → Leu
215 Asp → Thr
218 His → Phe

The theozyme is introduced at the location of the active site in the
wild-type (Figure 6.39). Out of the mutated residues, Ser209 and
Asp210 are of immediate importance for the native active site. Ser209

forms a hydrogen bond to the β-phosphate group of the reactant thi-
amin pyrophosphate, while Asp210 coordinates one of the magnesium
atoms involved in substrate binding. In the designed enzyme Ser209

was replaced by asparagine, which coordinates one of the chlorines
of the central complex. Asp210 was mutated to a methionine residue,
the main ligand of the ruthenium atom. This leads to the ruthenium

6.8 designed enzymes 81

Figure 6.38: Homodimer formed by two monomers of 3C9U (red and blue).
The interface region consisting of two β-sheets can be seen in
the center of the dimer.

atom adopting a position approximately 4 Å from the magnesium
cluster of the wild type, effectively replacing one of the magnesium
atoms involved in the phosphorylation reaction. This placement is
likely to work in favour of the design, as the local environment, which
is still similar to the native magnesium binding site, should promote
coordination of the ruthenium moiety. The geometry of the remaining
four metal binding sites remains essentially unchanged by the design
procedure, but the binding of magnesium atoms should be inhibited,
due to steric and electronic effects exerted by the sidechain Ser209,
introduced in close vicinity to the native magnesium coordination
sites. Both mutations are located on the turn connecting β-strand
β7 to the α-helix α8 (for the nomenclature adopted here, see refer-
ence 157). These motifs are well-preserved and should therefore not
be subject to significant conformational changes during the folding
process, stabilizing the theozyme geometry. The helix α8 is also the
region where the rest of the mutations are situated. Substitution of
Asp215 to threonine allows coordination of the second chlorine. The
phenylalanine required for double bond stabilisation is introduced at
the location of His218. The mutation of residue 214 from alanine to
leucine helps to improve the packing of the amino acid residues in its
vicinity. Of interest is also the positioning of the unmutated residue
Phe9, which would allow for the additional coordination of one of the
terminal ether-double bonds.

The placement of the theozyme in the original active site should
prove beneficial for the binding of the diallylether-substrate, as the
good accessibility of the native scaffold is preserved (Figure 6.40).

Moreover, all mutations take place in regions usually well described
by the Rosetta-algorithm.153 The backbone of the α8-helix can be
expected to retain its conformation even with the designed residues
present. The same holds for the turn bearing the two remaining

82 results

Figure 6.39: Close up of the novel active site based on I015 in the 3C9U
scaffold. The chlorines are coordinated by Thr215 and Asn209,
while Met210 provides the main ruthenium ligand. Both Phe218

and Thr215 are situated on the same α-helix, a motif that should
help to stabilize their steric arrangement. The same is the case
for Asn209 and Met210, which are located on a short turn con-
necting a β-sheet to a helix.

catalytic amino acids, as it is composed of only three residues and
thus possesses only a very limited degree of conformational freedom.

One last note regarding the formation of the dimer: Since the
dimerisation of two monomers is usually facilitated by hydrophobic
interactions, mutations in the interface region could lead to a destabil-
isation of the protein-complex. This is fortunately not the case for this
particular design and the monomers can thus be expected to dimerise.

6.9 comparison of the designs

Out of the four designs, 1JQ5 seems to be the most unfavourable. This
is because the unfortunate positioning of the hydrogen bond donor
threonine on a turn introduces great uncertainty in the final theozyme
geometry. There is also the issue of the phenylalanine orientation. The
main advantage of the protein is the accessibility of the active site,
which is probably unparalleled by the other de-novo enzymes.

The active site in 3E3P is situated far away from the one of the native
enzyme. While this placement might not be inauspicious by itself, it
leads to exposure of the central ruthenium complex, which might be a
disadvantage. Another problem is the twisted phenylalanine ligand.
However, as noted before, the increased accessibility is not necessarily
only a negative trait and the orientation of Phe58 can easily change.

The greatest drawback of design 1O8V is probably the missing
enzymatic activity of the wild-type. This makes it hard to discern
whether the protein is even capable of bearing a catalytic site. The
accessibility is only a minor potential problem, as fatty acids seem

6.9 comparison of the designs 83

Figure 6.40: SAS of the 3C9U mutant. The scaffold geometry provides good
shielding from environmental influences, while still allowing
access of the substrate (red).

to be capable of penetrating deep into the protein. The case of the
suboptimally arranged phenylalanine is similar to the one in 3E3P. The
great advantage of the mutant 1O8V is its geometry. Every catalytic
residue is positioned on a highly conserved structural motif. Moreover,
the general makeup of the whole protein suggests, that it will very
likely fold into the required tertiary structure. The form of a barrel
additionally provides a very unique environment for the enzymatic
reaction, a trait not found in the other designs.

The design 3C9U seems to combine several good traits of the other
de-novo enzymes. The theozyme geometry is very close to optimal
and all catalytic residues reside on the backbones of highly preserved
structural motifs, as is the case for 1O8V. The active site location in
the inter-domain cleft, similar to 1JQ5, is also highly desirable.

The combination of all these traits makes 3C9U probably the most
promising one of all the obtained enzymes.

While the created enzymes show potential, it is prudent to remem-
ber that all results presented here are ultimately theoretical in nature.
This means approximations and simplifications were involved in their
derivation and certain aspects were simply neglected. The reason
is the extreme complexity of enzymatic systems, which makes a de-
tailed modelling of all the interactions and effects an impossible task.
Whether the designs are capable of catalysing olefin metathesis in
reality can only be ascertained through experiment.

7
S U M M A RY

The aim of this thesis was the computational de-novo design of a metal-
loenzyme capable of catalysing the olefin RCM reaction of diallylether.
To this end the inside-out design protocol22 was applied.

A genetic algorithm was newly developed for the creation of dif-
ferent theozymes, combining high-throughput DFT computations for
fitness evaluation with a stochastic optimisation procedure. This ap-
proach was able to generate active site templates with significantly
lowered activation energies of the RCM reaction, even when compared
to highly active conventional metathesis catalysts, making the algo-
rithm an extremely valuable tool in the creation of novel active site
geometries. As an additional feature, the algorithm exhibits the typical
robustness of this class of evolutionary algorithms, requiring almost
no information on the reaction to be modelled, as opposed to the
classical approach to theozyme creation, which makes excessive use
of chemical intuition. This property allows to augment the standard
inside-out protocol with the genetic algorithm, thus closing in on an
universal black-box procedure for de-novo enzyme design.

In a subsequent step, the matching procedure of the Rosetta pro-
gram package was used to search a protein scaffold library for sites
capable of accommodating the theozymes obtained with the genetic
algorithm. The resulting “raw” matches were then subjected to several
cycles of sequence design in order to optimise the catalytic interac-
tions and substrate binding. Out of the 640 potential designs obtained
in this way, the best were chosen according to geometric and chem-
ical criteria. This procedure culminated in the de-novo design of 4

promising metalloenzymes on the basis of the protein scaffolds 1JQ5,
3E3P, 1O8V and 3C9U. All of these designs exhibit the traits associ-
ated with highly active metathesis catalysts, as derived earlier in this
work by quantum chemistry. The most likely candidate for an active
enzyme is the design based on 3C9U, due to the excellent geometry
and positioning of its active site. While the created enzymes seem
promising, it is prudent to remember that all results presented here
are ultimately theoretical in nature. This means approximations and
simplifications were involved in their derivation. The reason is the
extreme complexity of enzymatic systems, which makes a detailed
modelling of all the interactions and effects a very challenging task.
Whether the designs are capable of catalysing olefin metathesis in
reality can only be ascertained through experiments, which will be
carried out by the group of Univ.-Prof. Dr. C. Becker.

If metathesis activity of these enzyme designs were to be confirmed
by experiment, exciting new possibilities would open up in industrial
applications, green chemistry and organic synthesis. With these ad-
vances at hand, goals such as the catalysis of reactions under mild
conditions, the cheap mass synthesis of drugs and the disclosure of
novel reaction pathways and materials, will be easier to reach in the
future.

85

8
O U T L O O K

As stated in the introduction, the computational de-novo design of
enzymes is a relatively young field of research. Due to the intrinsic
complexity of enzymatic systems and reactions, current approaches
to enzyme design involve a multitude of approximations in order to
render the task possible at all, leaving room for many improvements,
targeting either the designed enzymes themselves or the protocol and
methods employed in their creation.

The information gained through the experimental expression and
characterisation of the four designed enzymes (1JQ5, 3E3P, 1O8V and
3C9U) with regards to their metathesis activities and crystal structures
can be utilized to enhance even only minor metathesis activity possibly
present in any of the designs, leading to more reactive enzymes. One
potential – purely experimental – method to this end is directed
evolution6, where steps of mutation and screening for enzymes with
increased activity are alternated in vitro. This approach is a powerful
tool to enhance enzyme reactivity, as demonstrated in the design of
the Kemp eliminase enzymes.25 From a theoretical side, molecular
dynamics (MD) simulations, as well as quantum mechanics/molecular
mechanics (QM/MM) computations on the crystal structures of the
four designs could provide detailed insights into the geometry of
the newly introduced active sites and the dynamic behaviour of the
protein scaffolds, which could in turn be used to tweak the designs. It
is also possible to combine theoretical and experimental approaches in
order to enhance the designed enzymes by applying iterative cycles of
experimental expression and theoretical analysis, utilizing molecular
dynamics MD studies in a manner similar to the protocol described in
reference 158, where X-ray crystallography and MD data are used to
continuously improve upon previous designs.

In addition to these refinements based on experimental results,
several improvements can be made to each of the three different stages
of the inside-out design protocol.

The genetic algorithm facilitating theozyme creation, for example,
can be enhanced by modifying the fitness evaluation procedure, as
currently just one reaction barrier of the RCM reaction is considered.
The algorithm is therefore only capable of optimising a small part of
the total reaction landscape. Introducing a composite fitness function
incorporating several reaction barriers or switching to a multi-objective
optimisation procedure159 would allow a more fine-tuned engineering
of the reaction profile. However, even with a refined modelling of the
fitness landscape, the performance of the stochastic optimisation still
depends on the quality of the quantum chemical computations. While
the DFT method used in this work allows for an efficient evaluation of
the RCM energy barriers, there are several limitations to the accuracy
of this method (see section 4.3.6). Potential alternatives are recently
developed computational approaches based on ab initio principles,
such as the domain-based local pair natural orbital-coupled-cluster

87

88 outlook

method160 and the density matrix renormalisation group method.161

These electronic structure methods would also profit from a proce-
dure often used for genetic algorithms involving expensive fitness
functions, the so-called fitness approximation.162 In this approach,
a cheap fitness function, e.g. based on QSAR studies149 or artificial
neural networks163, is used to screen the potential solutions for the
most promising candidates, which are then evaluated using the more
expensive but accurate fitness evaluation protocol. To further improve
the quality of fitness computations, QM/MM energy calculations
could be performed during this stage, thus recovering the electrostatic
influences exerted by the protein environment and second shell amino
acids, which are currently ignored. The coupling of fitness evaluation
and the matching process required to obtain the scaffolds necessary for
such a QM/MM treatment could at the same time provide measures,
how well the geometry of an energetically feasible theozyme can be
accommodated by a protein scaffold – e.g. the number of matches
found for a particular theozyme –, which can then be incorporated in
the computation of its fitness.

Regarding the matching procedure, one potential improvement
would be the introduction of backbone flexibility during the matching
process, since protein scaffolds are no rigid entities.164,165

In the case of the sequence design stage of the inside-out protocol,
one important issue to address is, whether the metal moiety and
the substrate will coordinate to the newly designed active site or if
there are concurring binding sites. This potential shortcoming of
designed enzymes could be amended by actively applying a negative
design procedure, aimed to systematically destabilize these alternative
binding sites, thus increasing the likelihood of the cofactor and the
substrate binding in the desired way.166 This negative design approach,
along with the general sequence design procedure could both profit
tremendously by switching from the stochastic Monte-Carlo approach
to deterministic dead end elimination21, leading to enhanced reliability
and reproducibility of the sequence/structure optimisation process.
Unfortunately, the presence of a minimum energy sequence provides
no measure for the reactivity of the design. Therefore, the introduction
of reliable protocols to discern between potentially active and inactive
designs would also be of advantage. MD studies have been shown to
be of great help for assessing the quality of the designed active sites,
as they allow to observe the integrity of the theozyme geometry with
respect to the motions of the protein scaffold.38

All the improvements suggested above are only a few examples of
potential upgrades to the inside-out design protocol. Unfortunately,
this approach itself is essentially limited in the novel chemistry it can
produce, as it relies on existing protein scaffolds as building blocks.
And while an incredible amount of diverse proteins exists, it is unlikely
that a matching scaffold will be found for every potential theozyme.
The ultimate goal of computational de-novo enzyme is the complete
design of a protein scaffold with novel catalytic activity. This task
is indeed formidable, as the inverse folding problem is one of the
great unresolved issues of structural biology and although promising
results are reported occasionally153, the research on this topic is still
in its infancy.

A
A P P E N D I X

a.1 enzyme design parameters and setting

In this section the different parameters and settings used by Rosetta

during the final sequence design procedure (see section 5.3) will be
discussed. A sample input file is given in Figure A.1. For a detailed
explanation of the different parameters on the basis of an example
design procedure, see reference 150.

-extra_res_fa THZ.params
-enzdes::cstfile I004.cst
-enzdes::detect_design_interface
-enzdes:cut1 6.0
-enzdes:cut2 8.0
-enzdes:cut3 10.0
-enzdes:cut4 12.0
-enzdes:cst_opt
-enzdes:bb_min
-enzdes:chi_min
-enzdes:cst_design
-enzdes:design_min_cycles 4
-enzdes:lig_packer_weight 1.60
-packing:soft_rep_design
-enzdes:cst_min
-enzdes:bb_min
-enzdes:chi_min
-packing:ex1
-packing:ex2
-packing:use_input_sc
-packing:linmem_ig 10
-enzdes:cst_min
-enzdes:bb_min
-enzdes:chi_min
-packing:ex1
-packing:ex2
-packing:use_input_sc
-out:file:o ranking.log

Figure A.1: Example input file used for Rosetta during the final enzyme
design stage.

The first two entries serve to specify the parameter file of the central
substrate (THZ.params) and the theozymatic constraint file, in this case
for geometry I004 (I004.cst).

In order to specify which residues are to be designed or optimised
by the algorithm, the amino acids in vicinity of the active site have to
be grouped into the categories catalytic, designable and repackable.
This is facilitated by the detect_design_interface command using
the four cutoff radii cut1-4 given in the subsequent lines. Residues
with their Cα within cut_1 or within cut_2 and their Cβ closer to

89

90 appendix

the substrate are set to be designable. In a same way, the repack-
able residues are chosen according to cut3 and cut_4. The catalytic
residues are read in from the geometric constraint file.

The initial optimisation of the minimal active site is invoked with
cst_opt. The keywords bb_min and chi_min allow for backbone flexi-
bility and small changes in the dihedral angles of the catalytic residues
during energy minimisation.
cst_design starts the iterative sequence design procedure. The num-

ber of cycles is given by design_min_cycles. The relative importance
of substrate-protein interactions versus protein-protein interactions
can be scaled via lig_packer_weight. The keyword soft_rep_design
activates the use of an alternative force field making use of a shorter
van-der-Waals repulsive term, which allows for a more fine-grained
sampling of conformation space. The optimisation following each
sequence design step is invoked by cst_min.

The use of ex1, ex2 and use_input_sc is optional, but it improves
the behaviour of the algorithm when sampling the amino acid sidechain
rotamers. The option linmem_ig helps to improve memory require-
ments and performance during the design stage.

The final unconstrained optimisation is invoked automatically once
the sequence design cycles have finished. It makes use of several
keywords already encountered in the previous steps. The last line of
the input specifies the file to which the different ranking criteria are
written.

a.2 source code of the steady-state genetic algorithm

This section contains the source code for the steady-state genetic al-
gorithm used in the creation of the RCM theozymes. In order to
increase the efficiency of arithmetic and array operations, the Numeri-
cal Python (numpy) package167 was used. The source code is given in
Listing 1.

Listing 1: Source code of the steady-state genetic algorithm used for the
creation and optimisation of theozymes.

#!/usr/bin/python -uvd

import numpy as np
from numpy import *
import datetime
from random import choice
import subprocess
import fileinput
import multiprocessing
from multiprocessing import Process , Manager , Queue
import pickle
import copy
import os
import sys

###
Alternate take on the genetic algorithm using
a steady state implementation , since this helps
to keep idle time a minimum
###

#**

A.2 source code of the steady-state genetic algorithm 91

GLOBAL VARIABLES
#**

#----------Processors --------------
nproc = 4 # use nproc cores for

population creation

#------------Paths -----------------
Get current working directory:
WDIR = os.getcwd ()
Build necessary paths:
scr_path = WDIR + ’/scripts/’ # scripts
lib_path = WDIR + ’/res_lib/’ # molecule residues and

templates
Build output paths:
out_path = WDIR + ’/tt_geometries/’ # initial geometries
qm_path = WDIR + ’/tt_qm_comp/’ # repository for QM

computations
log_path = WDIR + ’/tt_log_files/’ # holds logs

#-------Geometry Creation ---------
coll_limit = 4 # maximum of sqrt 4

Angstrom between residues
lim_orient = 0.5*pi # allowed backbone

orientation
Cylinder from which coordinates are to be sampled (center

atom lies as origin):
h_cyl_up = 6.0
h_cyl_lo = 7.0
r_min = 3.0
r_max = 7.0

#---------Genome Creation ----------
length of alleles:
al_min = 1
al_max = 2
core -templates used:
template_a = ’nolig_template_a ’ # geometry of first

point
template_b = ’nolig_template_b ’ # second point

geometry
list of residues to be chosen from:
#l_resid = [’arg ’, ’asn ’, ’asp ’, ’cys ’, ’gln ’, ’glu ’, ’his

’, ’ile ’, ’leu ’, ’lys ’, ’met ’, ’phe ’, ’ser ’, ’thr ’, ’
trp ’, ’tyr ’, ’val ’, ’sec ’, ’hsp ’, ’hse ’, ’cyt’]

l_resid = [’gln’, ’asn’, ’met’, ’phe’, ’ser’, ’thr’]

#------Population Parameters -------
no_eval = 500 # maximum number of

fitness evaluations to be performed
species_id = 300 # index to keep track of

each individual
popsize = 60 # population size
p_threshold = 4 # minimal population size

, before genetic operators are applied
CR = 0.4 # crossover -rate
n_sel = 2 # number of parents used

for crossover
n_offspring = 2 # offspring created by

mating
tournament_size = 4 # size of tournament for

selection , larger values bias towards the fittest
individual

92 appendix

new_species = 1 # species generated anew
each cycle

#--------Restart Parameters --------
is_restart = 1 # logical operator if

restart from specified folder is to be done
restart_log = ’2013 -07 -07 -23:12. bin’ # binary log -file used

for restart

#----------QM Parameters -----------
qm_queue = ’lead.q’ # Queue used for

computations
qm_max = popsize # maximum of jobs in

queue at the same time , for convenience set to popsize
free_min = 4 # minimum amount of free

slots in queue before genetic operations are applied

Unfreeze last n atoms of the template:
unfreeze_a = 12 # first template
unfreeze_b = 5 # second template

#---------To Be Initialized --------
charge = {} # will hold charges
res_size = {} # will hold size of

residues
is_comp = {} # check if individual was

already evaluated
to_comp = {} # individuals to be

evaluated
pivots = {} # dictionary holding

pivot carbon positions based on first geometry
elegible = {} # individuals elegible

for selection
comp_time = {} # time required for

evaluation of individual
population = [] # will hold the members

currently in the population
fitness = {} # dictionary containing

the computed fitness values
dead = [] # list of all individuals

which died during evaluation
restart_points = {} # dictionary holding the

current progress of every computation

#**
FUNCTIONS
#**

#===
Initialisation
#===

#---------------------------------------
Initialize charge and residue size;
for this the second line of the xyz
files needs to be of the format:
"Charge= <CHARGE >"
#---------------------------------------
def init_charge_size ():

g l o b a l charge
g l o b a l res_size
files = [f f o r f in os.listdir(lib_path) i f os.path.

isfile(lib_path + f)]

A.2 source code of the steady-state genetic algorithm 93

f o r f in files:
name = f[:-4] # remove

.xyz
lines = open(lib_path + f, ’r’).readlines ()
t r y :

r_size = i n t (lines [0]) # get
size

e x c e p t :
p r i n t "File␣%s␣is␣no␣xyz -file." % f
exit()

t r y :
r_charge = i n t (lines [1]. split ()[1]) # get

charge
e x c e p t :

p r i n t ’’’In␣order␣to␣read␣in␣the␣charges␣
automatically ,␣the␣second␣line␣of

the␣xyz -file␣%s␣needs␣to␣be␣of␣the␣format:
Charge=␣<CHARGE >. ’’’ % f

exit()
update the dictionaries:
res_size[name] = r_size
charge[name] = r_charge

#===
Input and Output
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Read coordinates from xyz -file and
return the number of atoms , a vector
holding the atom types and an 3*n
array holding the coordinates in
angstrom.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def read_coords(filename):

t r y :
f i l e = open(filename , ’r’).readlines ()

e x c e p t :
p r i n t "File␣%s␣opened␣for␣reading␣does␣not␣exist."

%filename
exit()

natoms = i n t (f i l e .pop(0)) # read
number of atoms

scrap = f i l e .pop(0) # skip
line holding the charge

initialize the arrays:
atype = empty((natoms), dtype=’a2’)
geom = empty((natoms , 3), dtype=’f8’)
read in atom types and coordinates:
f o r i in range(natoms):

columns = f i l e [i]. split()
atype[i] = columns [0]; geom[i]=[f l o a t (columns [1]

), f l o a t (columns [2]), f l o a t (columns [3])]
r e t u r n natoms , atype , geom

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create and write xyz -file from atom -
types and coordinates
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def write_xyz(natoms , atype , geom , filename):

outfile = open(filename , ’w’)
outfile.write("%s\n" % natoms)
outfile.write("\n")

94 appendix

f o r i in range(natoms):
outfile.write(’%s\t%10.7f\t%10.7f\t%10.7f\n’ %(

atype[i], geom[i,0], geom[i,1], geom[i,2]))
outfile.close()

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create xyz -file directly from genome
for a single species
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def write_species(species , population):

filename = out_path + species + ’.xyz’
natoms , atype , as_geom = cat_geom(population[species

][0], population[species][1], population[species
][2])

write_xyz(natoms , atype , as_geom , filename)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Print a list of individuals (l_indi)
and their residue sequences
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def print_genome(l_indi , canditates):

p r i n t ’␣␣␣␣Name\t\t␣Residues ’
p r i n t ’␣␣--------------------------------------’
f o r individual in l_indi:

p r i n t ’␣␣␣%s\t\t%s’ %(individual , ’␣’.join(
canditates[individual][0]))

p r i n t ’␣␣--------------------------------------’
p r i n t ’’

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Print fitness of a list of
individuals
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def print_fitness(l_indi):

p r i n t ’␣Current␣fitness:’
p r i n t ’␣␣␣␣Name\t\t␣Fitness ’
p r i n t ’␣␣--------------------------------------’
f o r individual in l_indi:

p r i n t ’␣␣␣%s\t\t%.3f’ %(individual , fitness[
individual])

p r i n t ’␣␣--------------------------------------’
p r i n t ’’

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Test directories for existence and
create if neccessary; print used
directories to stdtout
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def print_folders ():
p r i n t ’’
i f not os.path.exists(scr_path):

p r i n t ’␣Directory␣holding␣scripts␣could␣not␣be␣
found.’

exit()
e l s e :

p r i n t ’’’␣Scripts␣and␣define␣template␣will␣be␣taken
␣from:

␣␣␣%s’’’ % scr_path
i f not os.path.exists(lib_path):

p r i n t ’␣Directory␣containing␣residue␣geometries␣was
␣not␣found.’

exit()
e l s e :

A.2 source code of the steady-state genetic algorithm 95

p r i n t ’’’␣Residue␣geometries␣will␣be␣read␣in␣from:
␣␣␣%s’’’ % lib_path

i f not os.path.exists(qm_path):
os.makedirs(qm_path)

p r i n t ’’’␣QM␣results␣will␣be␣written␣to:
␣␣␣%s’’’ % qm_path

i f not os.path.exists(out_path):
os.makedirs(out_path)

p r i n t ’’’␣Generated␣geometries␣will␣be␣written␣to:
␣␣␣%s’’’ % out_path

i f not os.path.exists(log_path):
os.makedirs(log_path)

p r i n t ’’’␣Log␣files␣will␣be␣written␣to:
␣␣␣␣%s’’’ % log_path

p r i n t ’’

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Print those individuals to be
evaluated in this cycle
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def print_evaluate(l_evaluate):

p r i n t ’\n␣Structures␣to␣be␣evaluated:’
counter = 1
f o r key in l_evaluate:

p r i n t ’␣’ + key + ’\t’,
i f counter %5 == 0:

p r i n t ’\n’,
counter += 1

p r i n t ’’

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Print list in a nice way
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def print_list(l i s t):

counter = 1
f o r key in l i s t :

p r i n t ’␣’ + key + ’\t’,
i f counter %4 == 0:

p r i n t ’\n’,
counter += 1

p r i n t ’’

#===
GEOMETRY CREATION
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rotate residue geometry array by
quaternions q passed as vector
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def rotate_res_rev(q, res_geom):

q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]
roma = empty((3,3)) #

initialize rotation matrix
Create rotation matrix from quaternions:
roma [0] = [1-2*q2*q2 -2*q3*q3 , 2*q1*q2 -2*q0*q3 , 2*q1*q3

+2*q0*q2]
roma [1] = [2*q2*q1+2*q0*q3 , 1-2*q3*q3 -2*q1*q1 , 2*q2*q3

-2*q0*q1]
roma [2] = [2*q3*q1 -2*q0*q2 , 2*q3*q2+2*q0*q1 , 1-2*q1*q1

-2*q2*q2]
roma = np.transpose(roma) #

transpose because of array structure

96 appendix

res_geom = dot(res_geom , roma) # perform
rotation

r e t u r n res_geom

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Translate residue geometry by a
displacement vector dr
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def translate_res(dr, res_geom):

dx = dr[0]; dy = dr[1]; dz = dr[2]
res_geom [:,0] += dx
res_geom [:,1] += dy
res_geom [:,2] += dz
r e t u r n res_geom

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Perform brute force collision check
on growing temporary structure. The
minimum allowed distance is specified
by coll_limit , 1 is returned if
collision is detected; since this is
done residue -wise it is more
efficient than a collision check for
a finished geometry
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def res_coll_brute_force(res_geom , tmp_geom):

range_i = range(len (res_geom))
range_j = range(len (tmp_geom))
f o r i in range_i:

f o r j in range_j:
diff = res_geom[i] - tmp_geom[j] # compute

connecting vector
diff_sq = dot(diff , diff) # compute

distance
i f diff_sq < coll_limit: # perform

check
r e t u r n 1, tmp_geom

r e t u r n 0, tmp_geom

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An alternative collision check is
needed for offspring and mutations ,
where the geometries are not created
from scratch
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def off_coll_brute_force(geom_list):

tmp_geom = coll_geom
f o r geom in geom_list:

range_i = range(len (geom))
range_j = range(len (tmp_geom))
f o r i in range_i:

f o r j in range_j:
diff = geom[i] - tmp_geom[j]
diff_sq = dot(diff , diff)
i f diff_sq < coll_limit:

r e t u r n 1
tmp_geom = row_stack((tmp_geom , geom))

r e t u r n 0

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Yet another collision check where one
can vary the minimum distance between
atoms; needed for offspring , since
the normal collision check can get

A.2 source code of the steady-state genetic algorithm 97

(and will get) stuck because of the
compact geometries
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def child_coll_brute_force(geom_list , coll_thres):

tmp_geom = coll_geom
f o r geom in geom_list:

range_i = range(len (geom))
range_j = range(len (tmp_geom))
f o r i in range_i:

f o r j in range_j:
diff = geom[i] - tmp_geom[j]
diff_sq = dot(diff , diff)
i f diff_sq < coll_thres:

r e t u r n 1
tmp_geom = row_stack((tmp_geom , geom))

r e t u r n 0

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check if the side -chain is oriented
away from the central atom , since
this would not result in a sensible
geometry; for this the angle between
the translation vector and the vecor
from the pivot carbon to the origin
is computed; if it is smaller than
lim_orient 1 is returned.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def res_orientation(res , coords , res_geom):

v_trans = coords # coords
holds the translation vector

v_orient = res_geom [0] - v_trans # compute
other vector , first atom in

geometry
is
assumed
to be

the
pivot
carbon

compute the angle
theta = np.arccos(dot(v_trans , v_orient) / (linalg

.norm(v_trans) * linalg.norm(v_orient)))
i f theta > lim_orient: # if

threshold is reached , 1 is returned
r e t u r n 1

r e t u r n 0

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sample random coordinates in a
cylinder around the central atom
specified by r_min , r_max , h_cyl_lo
and h_cyl_up.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def create_coords ():

phi=random.uniform(-pi , pi)
r = random.uniform(r_min , r_max)
z = random.uniform(-1*h_cyl_lo , h_cyl_up)
y = r*math.sin(phi)
x = r*math.cos(phi)
r e t u r n [x, y, z]

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create a biased set of coordinates ,
where the first residue is positioned

98 appendix

above the central ruthenium , the
second and third amino acids are
placed (at least in theory) near the
chlorine atoms , and the fourth
residue is placed beneath the complex
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def create_coords_bias(index):

if it is the first amino acid , put it on top of
complex

i f index == 0:
phi=random.uniform(-pi , pi)
r = random.uniform(0, 3)
z = random.uniform(3, h_cyl_up *0.7)

if it is the second , place it near the missing
chlorine

e l i f index == 1:
phi=random.uniform(-pi*0.2 , pi*0.2)
r = random.uniform(r_min , r_max)
z = random.uniform(-0.3* h_cyl_lo , h_cyl_up *0.3)

if it is the second , place it opposite
e l i f index == 2:

phi=random.uniform(-pi*0.2 + pi , pi*0.2 + pi)
r = random.uniform(r_min , r_max)
z = random.uniform(-0.3* h_cyl_lo , h_cyl_up *0.3)

phe below
e l i f index == 3:

phi=random.uniform(-pi , pi)
r = random.uniform(0, 3)
z = random.uniform(3, h_cyl_lo *-1.2)

else place it at random
e l s e :

phi=random.uniform(-pi , pi)
r = random.uniform(r_min , r_max)
z = random.uniform(-1*h_cyl_lo , h_cyl_up)

y = r*math.sin(phi)
x = r*math.cos(phi)
r e t u r n [x, y, z]

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sample unit quaternions according to
the scheme by Marsaglia.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def create_quat ():

while True:
x1 = random.uniform(-1, 1)
y1 = random.uniform(-1, 1)
s1 = x1*x1 + y1*y1
i f s1 < 1:

break
while True:

x2 = random.uniform(-1, 1)
y2 = random.uniform(-1, 1)
s2 = x2*x2 + y2*y2
i f s2 < 1:

break
q0 = x1; q1 = y1; q2 = x2*math.sqrt((1 - s1)/s2);

q3 = y2*math.sqrt((1 - s1)/s2)
norm = math.sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3)
q0 = q0/norm; q1 = q1/norm; q2 = q2/norm; q3 = q3/norm

normalize the quaternions
r e t u r n [q0 , q1, q2, q3]

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Read the residue coordinates from

A.2 source code of the steady-state genetic algorithm 99

library and perform translation
and rotation.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def build_res_geom(resname , dr, q):

res_lib = lib_path + resname + ’.xyz’
natoms , atype , res_geom , = read_coords(res_lib)

read in coordinates from file
res_geom = rotate_res_rev(q, res_geom)

rotate by q
res_geom = translate_res(dr , res_geom)

translate by dr
r e t u r n natoms , atype , res_geom

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Concatenate the geometries of the
residues and the templates to a
valid active site; sequence is a
list of the residues , l_atype and
l_geom hold the different atom
types and geometries.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def cat_geom(sequence , l_atype , l_geom):

natoms , atype , as_geom = read_coords(lib_path +
template_a + ’.xyz’)

rescount = 1
f o r res , ratype , res_geom in zip (sequence , l_atype ,

l_geom):
combine everything:
atype = hstack((atype , ratype))
as_geom = row_stack((as_geom , res_geom))
natoms = natoms + res_size[res]
rescount += 1

r e t u r n natoms , atype , as_geom

#===
POPULATION CREATION
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create a canditate set of <individuals >
individuals using nproc cores;
the indexing is done using a global
variable species_id
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def ppopulate(individuals):

g l o b a l species_id
species = []
initialize population:
f o r i in xrange(individuals):

species_id += 1 #
keep track of individual IDs

species.append("I%03d" % species_id) #
generate the name

scheme to split processor load equally:
b = 0; chunks = [] #

chunks holds the pieces for very processor
f o r i in range(nproc):

quotient , remainder = divmod(individuals - i,
nproc)

a = b; b = b + quotient + (remainder != 0) #
expression in brackets 1 if true and zero if

false

100 appendix

chunks.append(species[a:b]) #
split population accordingly

start parallel computation:
canditates = {} #

will hold canditates
subprocs = [] #

repository to keep track of subprocesses
queue = Queue () #

queue object used for computation
start genome generation using the create_genome

function:
f o r i in range(nproc):

r_seed = i * (individuals + 1)
subproc = multiprocessing.Process(target=

create_genom , args=(queue , chunks[i], r_seed)
)

subprocs.append(subproc)
subproc.start()

f o r i in range(nproc): #
retrieve results from the queue
canditates.update(queue.get())

f o r indi in canditates:
is_comp[indi] = ’0’ #

tag structure as not validated yet
f o r subproc in subprocs: #

wrap all the processes up
subproc.join()

p r i n t "␣Geometry␣creation␣finished ..."
r e t u r n canditates

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Use a queue object and a list of
individuals to create a valid active
site geometry; rand_seed holds seed
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def create_genom(queue , individuums , rand_seed):

np.random.seed(rand_seed) #
seed rng for additional diversity

rstate = np.random.get_state ()
cand_chunk = {}

will hold part of canditates computed by the
function

f o r indi in individuums:
np.random.set_state(rstate)
no_alleles = np.random.random_integers(al_min ,

al_max) # generate genome size
sequence = [choice(l_resid) for i in range(

no_alleles)] # generate sequence from residues
in l_resid

sequence = [’met’, choice([’asn’, ’gln’, ’thr’,
’ser’]), choice([’asn’, ’gln’, ’thr’, ’ser’
]), ’phe’] # <= BIASED SEQUENCE

tmp_geom = coll_geom

geomertry to be checked against (central
template)

l_atype = []; l_geom = []; l_coords = []
list of atom

types , geometries and displacements
f o r res in sequence:

i_res = sequence.index(res)
for

coords (BIASED)
while True:

A.2 source code of the steady-state genetic algorithm 101

coords = create_coords ()
#

use zylider with z oriented template
coords = create_coords_bias(i_res)

<= BIASED
COORDINATES

quaternions = create_quat ()
get

rotation
natoms , atype , res_geom = build_res_geom(

res , coords , quaternions) #
build residue geometry from
displacement and rotation

check if generated geometries are valid:
i f res_orientation(res , coords , res_geom)

== 0: # 1)
check for orientation
coll , tmp_geom = res_coll_brute_force(

res_geom , tmp_geom) #
retrieve results of collision check

i f coll == 0:

2) check for collisions
tmp_geom = row_stack((tmp_geom ,

res_geom))
updat

list of coordinates to be
checked against

l_atype.append(atype); l_geom.
append(res_geom); l_coords.
append(coords) # update
genome

break
cand_chunk.update({ indi : [sequence , l_atype ,

l_geom] }) # update canditates
rstate = np.random.get_state ()

reseed
rng (maybe counterproductive)

f o r species in cand_chunk:
write_species(species , cand_chunk)

write
geometry to output -folder

queue.put(cand_chunk)
#

put results in queue

#===
RESTART
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Initialize a restart from binary log;
important containers (e.g. list of
canditates , fitnesses etc.) are
imported and the status of the
previously running computations is
checked and saved in the dictionary
’restart_points ’
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def restart(restart_log):

g l o b a l fitness
g l o b a l is_comp
g l o b a l population

102 appendix

g l o b a l restart_points
g l o b a l species_id
g l o b a l evals
t r y :

log_file = open(log_path + restart_log , ’r+b’)
open log -file

e x c e p t :
p r i n t "␣Log -file␣%s␣for␣restart␣could␣not␣be␣found.

" % restart_log
exit()

t r y :
canditates , population , fitness , evals , species_id

= pickle.load(log_file) # extract pickled
objects

e x c e p t :
p r i n t "␣Binary␣file␣%s␣corrupted ,␣data␣could␣not␣be

␣loaded." % restart_log
exit()

log_file.close()
f o r individual in canditates.keys():

restart_point = 0
i f os.path.exists(qm_path + individual + ’/tm_1/

control ’): # check if define
was run
restart_point += 1

i f os.path.exists(qm_path + individual + ’/tm_1/
GEO_OPT_CONVERGED ’): # check if first
optimisation was run
restart_point += 1

i f os.path.exists(qm_path + individual + ’/tm_2/
control ’): # check for first
frequency job
restart_point += 1

i f os.path.exists(qm_path + individual + ’/tm_2/
GEO_OPT_CONVERGED ’): # check for
second optimisation
restart_point += 1

i f individual in population:

if individual is in the population ,
is_comp[individual] = ’1’

all computations have been performed
already

pass
e l s e :

restart_points[individual] = restart_point
create

dictionary of computation progress
is_comp[individual] = ’0’

p r i n t "␣Initialization␣from␣%s␣finished." % restart_log
r e t u r n canditates

#===
STEADY STATE
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Main steady state function; after
initialisation , jobs are checked for
completion continuously and if a
certain threshold is reached , genetic
operations are performed and the

A.2 source code of the steady-state genetic algorithm 103

obtained individuals sent to the
queue for fitness evaluation until
a certail amount (no_eval) of
evaluations was performed
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def run_steady_state(individuals , no_eval):

g l o b a l fitness
g l o b a l is_comp
g l o b a l population
g l o b a l to_comp
g l o b a l pivots
g l o b a l comp_processes # for easy

termination
g l o b a l free_min
g l o b a l new_species
g l o b a l restart_points
g l o b a l evals
#-------------------------------------
Initialize everything
#-------------------------------------
p r i n t "␣Initializing␣queue␣and␣creating␣geometries."
evals = 0 # set

evaluations to zero
manager = multiprocessing.Manager () # create

manager object used to govern the shared list
dead = manager. l i s t () # create

shared list
comp_processes = {} #

dictionary which will hold all currently running
processes

comp_queue = multiprocessing.Queue () #
initialize the queue which will handle the parallel
data processing

#-------------------------------------
Start normal initialisation:
#-------------------------------------
i f is_restart == 0:

canditates = ppopulate(individuals) #
initialize the population

print_genome(canditates , canditates) # print
genome of canditates

print_evaluate(canditates) # print
structures to be evaluated

p r i n t "␣Starting␣steady -state␣evaluation."
f o r individual in canditates:

to_comp[individual], pivots[individual] =
get_charge_pivot(individual , canditates)

get the charge and the pivot
carbons

comp_proc = multiprocessing.Process(target =
comp_tm , args = (comp_queue , individual ,
dead)) # create the evaluation process

comp_processes[individual] = comp_proc

register the process
comp_proc.start ()

and start it
#-------------------------------------
Restart form binary log -file:
#-------------------------------------
e l i f is_restart == 1:

p r i n t "␣Restarting␣computations␣from␣%s." %
restart_log

104 appendix

canditates = restart(restart_log) # build
data structures from log and check for
computation progress

print_evaluate(restart_points) # print
structures to be reevaluated

p r i n t "␣Starting␣steady -state␣reevaluation."
f o r individual in restart_points: # restart

the computations , using special master
function ’comp_restart ’
to_comp[individual], pivots[individual] =

get_charge_pivot(individual , canditates)
comp_proc = multiprocessing.Process(target =

comp_restart , args = (comp_queue ,
individual , dead))

comp_processes[individual] = comp_proc
comp_proc.start ()

running = len (comp_processes) # get the
number of currently running evaluatiuons

#-------------------------------------
Keep continous flow running
#-------------------------------------
while evals < no_eval: #

will finish after no_eval computations
finished = [] #

will processes finished this turn
f o r i in xrange(qm_max): #

check if processes finished since last turn
t r y :

individual = comp_queue.get(True , 5) #
try to retrieve values from queue , if

nothing is to be gained , stop after one
second

finished.append(individual) #
collect finished processes

comp_processes[individual].join() #
wrap them up

del comp_processes[individual] #
and unregister them

e x c e p t :
pass

running = len (comp_processes) #
get number of processes still running

p r i n t "\n␣~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
p r i n t "␣␣␣␣CHECK␣%s␣␣␣␣" %(datetime.datetime.now()

.strftime("%Y-%m-%d␣%H:%M"))
p r i n t "␣~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
p r i n t "␣Evaluations␣done␣so␣far:␣%d" % evals
p r i n t "␣Computations␣running:␣␣␣␣%d" % running
i f len (dead) > 0:

p r i n t "\n␣++++++++␣In␣memoriam␣+++++++"
print_list(dead)
p r i n t "␣++++++++++++++++++++++++++++"

f o r individual in finished:
evals += 1 #

update number of evaluations
i f individual in dead:

del canditates[individual] #
remove failed evaluations from the

candidates
del is_comp[individual] #

and from the computation list
e l i f individual not in dead: #

check if individual finished computations
successfully

A.2 source code of the steady-state genetic algorithm 105

population.append(individual) #
add to population

canditates = update_genome(canditates ,
individual) # update the genome with
optimized coordinates

update_fitness(individual , 1, 2)
fit_penalty(individual , canditates) #

incur penalty if oxygen coordinates to
ruthenium

i f individual in dead: #
check if fitness computation succeeded

del canditates[individual] #
remove failed evaluations from the
candidates

del is_comp[individual] #
and from the computation list

e l s e :
is_comp[individual] = ’1’ #

mark individual as evaluated
i f len (finished) > 0:

write_log(canditates) #
write the log files

#-------------------------------------
If threshold is reached , process
population
#-------------------------------------
i f len (finished) > 0 and len (population) >=

p_threshold: # wait until a job is completed
and the population has a certain size
print_genome(population , canditates) #

print genomes of current population
print_fitness(population) #

print fitness of population
running = len (comp_processes) #

get running processes
free_slots = qm_max - running #

get free queue slots (SGE queue not python)
#-------------------------------------
If there are enough slots , do
genetic operations
#-------------------------------------
i f free_slots >= free_min:

p r i n t "␣******************************"
p r i n t "␣*␣␣␣␣␣THRESHOLD␣REACHED␣␣␣␣␣␣*"
p r i n t "␣******************************"
p r i n t "␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣"
p r i n t "␣Starting␣genetic␣operations ...\n"
p r i n t "␣Unleashing␣romantic␣music ..."
tournament_size = i n t (rint(len (

population) * 0.14 + 1.4)) #
compute tournament size based on
population size; linear fit is used

p r i n t "␣Using␣tournaments␣of␣size␣%d␣for␣
parent␣selection." % tournament_size

canditates , children = mate(n_offspring ,
canditates) # create children
through crossover

p r i n t "\n␣Found␣a␣bar␣of␣Californium."
canditates , mutant , mutated = mutate(

canditates) # create a mutant
, return 0 if function failed

#-------------------------------------
if no mutant could be created ,
generate additional new species

106 appendix

#-------------------------------------
p r i n t "\n␣Launching␣an␣expedition ..."
i f mutated == 0:

mutants = []

needs to be emptied to avoid key
clashes

new_cand = ppopulate(new_species + 1)
create

completely new species
e l s e :

mutants = [mutant]

create list of mutants
new_cand = ppopulate(new_species)

create
completely new species

p r i n t "␣%d␣new␣species␣discovered." % len (
new_cand)

canditates.update(new_cand)
update

canditates with new geometry
#-------------------------------------
Send new geometries to queue for
evaluation and print information
#-------------------------------------
to_evaluate = children + mutants + [cand

f o r cand in new_cand] # build a list
of those to be evaluated

print_evaluate(to_evaluate)
print

them out
p r i n t "␣Sending␣jobs␣to␣queue.\n"
f o r individual in to_evaluate:

register
them for computation
to_comp[individual], pivots[individual]

= get_charge_pivot(individual ,
canditates) # get charge ,
pivot carbons

comp_proc = multiprocessing.Process(
target = comp_tm , args = (
comp_queue , individual , dead)) #
create process

comp_processes[individual] = comp_proc

register it
comp_proc.start ()

and start
#-------------------------------------
Reduce the population size by
removing the most unfit individuals
if it grows too large
#-------------------------------------
while len (population) > individuals:

ssentif = {}
f o r indi in population:

ssentif[indi] = fitness[indi]
to_cull = max(ssentif , key = ssentif.

get)
population.remove(to_cull)
p r i n t "␣Population␣too␣large ,␣removing␣

suspicous␣subject␣%s." % to_cull

A.2 source code of the steady-state genetic algorithm 107

ssentif = {}
f o r indi in population:

ssentif[indi] = fitness[indi]
p r i n t "␣Average␣fitness:␣␣%f" %(sum(

ssentif.values ()) / len (ssentif))
give information

about average fitness
p r i n t "␣Minimum␣fitness:␣␣%f" %(min(

ssentif.values ()))
#

give information about minimum fitness
p r i n t "␣Maximum␣fitness:␣␣%f" %(max(

ssentif.values ()))
#

give information about maximum fitness
print_genome(population , canditates)
print_fitness(population)
f o r indi in comp_processes:

comp_processes[indi]. terminate ()

#===
POPULATION OPERATORS
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Select n_sel parents for reproduction
and produce n_offspring children by
crossover
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def mate(n_offspring , canditates):

g l o b a l species_id
children = []
offsp = 0
while offsp < n_offspring:

mates = tournament_select(n_sel)
#

use tournament selection to choose parents
childa , childb = crossover(canditates[mates [0]],

canditates[mates [1]]) # do crossover
childa , childb = crossover_single_point(canditates

[mates [0]], canditates[mates [1]]) # do
alternative crossover routine

i f child_coll_brute_force(childa [2], 0.04) == 0:
check if children

are geometrically feasible
species_id += 1

keep track of individual IDs
name = "I%03d" % species_id

generate the name
canditates[name] = childa
children.append(name), childa , name
is_comp[name] = ’0’

needs to be evaluated
p r i n t len (childa)
write_species(name , canditates)
offsp += 1

same process for other child , for odd numbers of
children see if number of offspring is already
reached.

108 appendix

i f offsp < n_offspring and child_coll_brute_force(
childb [2], 1.0) == 0:
species_id += 1

keep track of individual IDs
name = "I%03d" % species_id

generate the name
canditates[name] = childb
p r i n t len (childb), childb , name
children.append(name)
is_comp[name] = ’0’

needs to be evaluated
write_species(name , canditates)
offsp +=1

p r i n t "␣%s␣followed␣the␣call␣of␣nature␣and␣gave␣birth␣
to␣%s." %("␣and␣".join(mates), "␣and␣".join(
children))

r e t u r n canditates , children

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Take the genomes of two parents and
perform a crossover routine designed
for genomes of different size;
CR is the crossover rate
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def crossover(genome_1 , genome_2):

genome_1 = copy.deepcopy(genome_1)
genome_2 = copy.deepcopy(genome_2)
size_1 = len (genome_1 [0]); size_2 = len (genome_2 [0]

)
indices_1 = range(size_1); indices_2 = range(size_2

)
child_1 = [[] ,[] ,[]]
child_2 = [[] ,[] ,[]]
i t e r = min(size_1 , size_2)
f o r i in range(i t e r):

allele_1 = choice(indices_1); allele_2 = choice(
indices_2)

i f np.random.sample () >= CR:
no crossover happens:
child_1 [0]. append(genome_1 [0][allele_1])
child_1 [1]. append(genome_1 [1][allele_1])
child_1 [2]. append(genome_1 [2][allele_1])
child_2 [0]. append(genome_2 [0][allele_2])
child_2 [1]. append(genome_2 [1][allele_2])
child_2 [2]. append(genome_2 [2][allele_2])

e l s e :
crossover happens:
child_1 [0]. append(genome_2 [0][allele_2])
child_1 [1]. append(genome_2 [1][allele_2])
child_1 [2]. append(genome_2 [2][allele_2])
child_2 [0]. append(genome_1 [0][allele_1])
child_2 [1]. append(genome_1 [1][allele_1])
child_2 [2]. append(genome_1 [2][allele_1])

indices_1.remove(allele_1); indices_2.remove(
allele_2)

distribute remaining alleles for genomes of different
size , original distribution is favored if

crossoverrate CR is low
i f indices_1 > indices_2:

i f np.random.sample () >= CR:
f o r index in indices_1:

A.2 source code of the steady-state genetic algorithm 109

child_1 [0]. append(genome_1 [0][index])
child_1 [1]. append(genome_1 [1][index])
child_1 [2]. append(genome_1 [2][index])

e l s e :
f o r index in indices_1:

child_2 [0]. append(genome_1 [0][index])
child_2 [1]. append(genome_1 [1][index])
child_2 [2]. append(genome_1 [2][index])

e l s e :
i f np.random.sample () >= CR:

f o r index in indices_2:
child_2 [0]. append(genome_2 [0][index])
child_2 [1]. append(genome_2 [1][index])
child_2 [2]. append(genome_2 [2][index])

e l s e :
f o r index in indices_2:

child_1 [0]. append(genome_2 [0][index])
child_1 [1]. append(genome_2 [1][index])
child_1 [2]. append(genome_2 [2][index])

r e t u r n child_1 , child_2

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alternative crossover routine for
heavily biased genomes , crossover
preserves order of residues
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def crossover_single_point(genome_1 , genome_2):

size_1 = len (genome_1 [0]); size_2 = len (genome_2 [0]
)

child_1 = [[] ,[] ,[]]
child_2 = [[] ,[] ,[]]
i t e r = min(size_1 , size_2)
f o r i in xrange(i t e r):

i f np.random.sample () <= CR:
crossover happens:
child_1 [0]. append(genome_2 [0][i])
child_1 [1]. append(genome_2 [1][i])
child_1 [2]. append(genome_2 [2][i])
child_2 [0]. append(genome_1 [0][i])
child_2 [1]. append(genome_1 [1][i])
child_2 [2]. append(genome_1 [2][i])

e l s e :
no crossover happens:
child_1 [0]. append(genome_1 [0][i])
child_1 [1]. append(genome_1 [1][i])
child_1 [2]. append(genome_1 [2][i])
child_2 [0]. append(genome_2 [0][i])
child_2 [1]. append(genome_2 [1][i])
child_2 [2]. append(genome_2 [2][i])

r e t u r n child_1 , child_2

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tournament selection to select mates;
selection pressure can be adjusted
via tournament_size; clones of the
parents are possible
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def tournament_select(n_sel):

mates = []
while len (mates) < n_sel:

canditates = {}
while len (canditates) < tournament_size:

canditate = choice(population)
i f canditate not in canditates:

110 appendix

canditates[canditate] = fitness[canditate]
winner = min(canditates , key = canditates.get)
mates.append(winner)

r e t u r n mates

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mutation routine , using a population
size dependant mutation rate;
mutation occurs through residue
exchange , where the position and
orientation in the original genome
is kept
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def mutate(canditates):

g l o b a l population
g l o b a l species_id
mutation_rate = 1.0 / (len (population) + 1)

since population size changes with
time , deterministic mutation can be implemented in
this way

p r i n t "␣Current␣mutation␣rate:␣␣␣%f" % mutation_rate
mutant = choice(population)

choose
individual used as template for mutant creation

species_id += 1
#

increment id for naming
name = "I%03d" % species_id
canditates[name] = copy.deepcopy(canditates[mutant])

generate new entry in canditates for
future mutant

counter = 0
while True:

mutated = 0

set unmutated flag
f o r i in range(len (canditates[name][0])):

i f np.random.rand() < mutation_rate:
check if mutation

occured
if it did , exchange residues
canditates[name][0][i], canditates[name

][1][i], canditates[name][2][i] =
res_exchange(canditates[mutant][0][i],
canditates[mutant][1][i], canditates[

mutant][2][i])
mutated = 1

i f mutated == 1:
do

collision check to see if new geometry is
feasible
collc = off_coll_brute_force(canditates[name

][2])
i f collc == 0:

p r i n t ’␣%s␣produces␣a␣mutant␣%s.’ %(mutant
, name)

is_comp[name] = ’0’
set as

unevaluated
write_species(name , canditates)

write geometry
break

A.2 source code of the steady-state genetic algorithm 111

if to many iterations would be required , skip
mutation and create additional new

individual
e l i f counter > 1000:

species_id -= 1
reset

counter for naming
mutated = 0
p r i n t ’␣%s␣avoided␣the␣radioactive␣waste.’

% mutant
break

counter += 1
r e t u r n canditates , name , mutated

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mutation is carried out through the
exchange of single residues , while
trying to preserve the original
position and orientation
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def res_exchange(res , a_list , res_geom):

res_geom , dr = center_geom(res_geom)
compute the

translation
new_res = choice(l_resid)

choose new
residue

natoms , na_list , new_res_geom = read_coords(lib_path +
new_res + ’.xyz’) # read in geometry from

library
q = get_quat(res_geom [0,:], new_res_geom [0,:])

get quaternions for orientation
rotate and translate
new_res_geom = rotate_res_rev(q, new_res_geom)
new_res_geom = translate_res(dr , new_res_geom)
r e t u r n new_res , na_list , new_res_geom

#===
GEOMETRY ANALYSIS OF OUTPUT
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Compute the quaternions neccessary to
transform vector a to vector b; used
in the res_exchange function
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_quat(v_a , v_b):

v_a = v_a / linalg.norm(v_a); v_b = v_b / linalg.
norm(v_b) # compute unit vectors

n_ab = np.cross(v_b , v_a)
get the

normal vector
n_ab = n_ab / linalg.norm(n_ab)
theta = np.arccos(dot(v_a , v_b))

compute angle
between vectors

theta = theta * 0.5
q0 = np.cos(theta); qr = np.sin(theta) * n_ab

get the unit quaternions
q = hstack((q0 , qr))
q = q / linalg.norm(q)
r e t u r n q

112 appendix

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Read in optimized geometries and
split them according to the amino
acid residues used during creation
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def read_split(filename , genome):

natoms , atype , geom = read_coords(filename)
read in data from geometry

file
geom = geom[res_size[template_a]:]
atype = atype[res_size[template_a]:]
gen_geoms = []

#
create list of arrays with residue geometries

atom_types = []
split accordingly
f o r res in genome [0]:

res_geom = geom[: res_size[res]]
atypes = atype[: res_size[res]]
geom = geom[res_size[res]:]
atype = atype[res_size[res]:]
atom_types.append(atypes)
gen_geoms.append(res_geom)

r e t u r n atom_types , gen_geoms

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Compute the translation of the
geometric center from the origin;
used in the res_exchange function
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def center_geom(geom):

x_sum , y_sum , z_sum = geom.sum(axis =0)
res_len = len (geom)
dx = x_sum / res_len
dy = y_sum / res_len
dz = z_sum / res_len
geom [:,0] -= dx
geom [:,1] -= dy
geom [:,2] -= dz
r e t u r n geom , [dx , dy , dz]

#===
LOG -FILES
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create a textual logfile holding the
python constructs , as well as a
pickle binary object for easier
recovery
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def write_log(canditates):

filename = datetime.datetime.now().strftime("%Y-%m-%d-%
H:%M") # use current time and date as unique
filename

log_file = open(log_path + filename + ’.log’, ’w’)
log_file.write(’canditates ’ + ’\n’) #

write canditates , fitness , is_comp and population
to text file

log_file.write(s t r (canditates) + ’\n’)
log_file.write(’fitness :\n’)
log_file.write(s t r (fitness) + ’\n’)
log_file.write(’is_comp :\n’)

A.2 source code of the steady-state genetic algorithm 113

log_file.write(s t r (is_comp) + ’\n’)
log_file.write(’population :\n’)
log_file.write(s t r (population) + ’\n’)
log_file.close()
pop_file = open(log_path + filename + ’.bin’, ’wb’)

do the same in the form of a binary
pickle file

pickle.dump((canditates , population , fitness , evals ,
species_id), pop_file)

pop_file.close()
p r i n t ’␣Log␣and␣binary␣file␣%s␣written .\n’ %filename

#===
GENERAL QUANTUM CHEMISTRY INTERFACE
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Master function combining all steps
of the Turbomole computations
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def comp_tm(queue , individual , dead):

evaluate TS state:
prep_dir(individual)
prep_tm(individual , 1, template_a , dead)
tm_opt(individual , 1, dead)
tm_freq(individual , 1, dead)
follow_build(individual , template_b , 2, dead)
evaluate educt:
prep_tm(individual , 2, template_b , dead)
tm_opt(individual , 2, dead)
tm_freq(individual , 2, dead)
queue.put(individual)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Master function for restart from log;
continues after last successfull step
as specified in restart_points
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def comp_restart(queue , individual , dead):

i f restart_points[individual] <= 1: #
try to restart first optimisation
tm_opt(individual , 1, dead)

i f restart_points[individual] <= 2: #
begin with first frequency analysis
tm_freq(individual , 1, dead)
follow_build(individual , template_b , 2, dead)
prep_tm(individual , 2, template_b , dead)

i f restart_points[individual] <= 3: #
restart second optimisation
tm_opt(individual , 2, dead)

i f restart_points[individual] <= 4: #
second frequency analysis
tm_freq(individual , 2, dead)

queue.put(individual)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Prepare folders in QM -directory and
copy unrefined geometries
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def prep_dir(individual):

d i r = qm_path + individual
i f not os.path.exists(d i r):

114 appendix

os.makedirs(d i r)

create directory if it does not already exist
xyz_geom = out_path + individual + ’.xyz’
cp_geom = subprocess.Popen([’cp’, xyz_geom , d i r + ’/’

+ individual + ’.xyz’]) # Copy geometries to
target folder

cp_geom.wait()

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Get charge on geometry and positions
of pivot carbons in the coordinates
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_charge_pivot(individual , canditates):

netto_charge = charge[template_a]
initialize with charge of

central template
cum_sum = res_size[template_a]

cumulative sum needed
for pivot computation

pivot = []
#

list will hold pivot positions
f o r res in canditates[individual][0]:

netto_charge = netto_charge + charge[res]
add residue charge

pivot.append(cum_sum + 1)
update pivot list

cum_sum = cum_sum + res_size[res]
r e t u r n netto_charge , pivot

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Read out optimized geometry and
update canditates
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def update_genome(canditates , individual):

d i r = qm_path + individual
atypes , geoms = read_split(d i r + ’/tm_1/topt.xyz’,

canditates[individual])
canditates[individual][1] = atypes
canditates[individual][2] = geoms
r e t u r n canditates

#===
TURBOMOLE
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Prepare everything for subsequent
Turbomole computation on point n;
if n is 1, the whole geometry is
optimized , else the pivot carbons
of the amino acids will be frozen.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def prep_tm(individual , point , template , dead):

i f individual in dead:
this construct is used in order
r e t u r n

to stop computation if error is encountered
d i r = qm_path
target = qm_path + individual + ’/’ + ’tm_’ + s t r (

point)
i f not os.path.exists(target):

A.2 source code of the steady-state genetic algorithm 115

os.makedirs(target)
os.chdir(target)
coord_file = open(’coords.tmp’, ’w’)

open temporary coord file to write to
i f point == 1:

proc = subprocess.Popen([’x2t’, ’../’ +
individual + ’.xyz’], stdout = coord_file) #
transform coordinates and write them to file ,
don’t forget , we are in subfolder

e l s e :
geom_file = ’tm4tm’
proc = subprocess.Popen([’x2t’, geom_file],

stdout = coord_file) #
transform coordinates and write them to file ,
don’t forget , we are in subfolder

proc.wait()
wait

until finished
coord_file = open(’coords.tmp’, ’r’)

open for reading
tm_freeze(coord_file , individual , point , template)

freeze the appropriate coordinates
coord_file.close ()

close file
proc = subprocess.Popen([scr_path + ’prep_define ’,

s t r (to_comp[individual]), scr_path], stdout =
subprocess.PIPE , stderr = subprocess.STDOUT) #
script uses sed to prepare define input

proc.wait()
error = 0
def_log = open(target + ’/define.log’).readlines ()
f o r line in def_log:

i f ’abnormally ’ in line:
error = 1

i f error == 1:
p r i n t ’␣define␣for␣%s␣finished␣unsuccessfully ’ %

individual
sys.stdout.flush()
dead.append(individual)

e l s e :
p r i n t ’␣define␣for␣%s␣finished␣successfully ’ %

individual
sys.stdout.flush()

additional control modifications
f o r line in fileinput.FileInput(target + ’/control ’,

inplace = 1):
i f line.startswith(’$end’):

p r i n t ’$maxcor␣2000’
increase

memeory for frequency analysis
p r i n t line.rstrip ()

e l i f line.startswith(’$scfdump ’):
pass

e l s e :
p r i n t line.rstrip ()

os.chdir(d i r)
change to

parent directory

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Freeze coordinates depending on point
in evaluation procedure using
coord_file as template; first point:

116 appendix

only central template is frozen;
else pivot carbons are frozen too
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def tm_freeze(coord_file , individual , point , template):

i f point == 1:
unfreeze = unfreeze_a

unfreeze
certain parts of template

e l s e :
unfreeze = unfreeze_b

counter = 1
#

counter to keep track of frozen atoms
temp = open(’coords ’, ’w’)

open final coordinate
file for writing

diff = res_size[template_a] - res_size[template]
f o r line in coord_file:

line = line.strip()
strip to get

rid of newlines
i f counter > 1 and counter <= (res_size[template]

+ 1 - unfreeze): # add f to freeze template (
beware , file starts with $coord)
line = line + ’␣f’

If computation but the first , freeze amino acid
pivot points

e l i f point != 1 and counter + diff - 1 in pivots[
individual]:
line = line + ’␣f’

counter += 1
temp.write(line + ’\n’)

temp.close ()

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Submit Turbomole jobs to specified
queue; in order to speed up
conversion , an analytical hessian is
computed before the optimisation
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def tm_opt(individual , point , dead):

i f individual in dead:
r e t u r n

d i r = qm_path + individual
target = d i r + ’/tm_’ + s t r (point)
os.chdir(target)
generate TURBOMOLE script for job submission:
script_t = ’’’#!/bin/bash

#
#$␣-cwd
#$␣-q␣%s
#$␣-S␣/bin/bash
#$␣-N␣%s
#$␣-sync␣y
#$␣-r␣n
#
export␣INPDIR=$SGE_O_WORKDIR
export␣TURBOTMPDIR=$TMPDIR
export␣QSUB_WORKDIR=$TMPDIR
cp␣$INPDIR /*␣$TMPDIR
cd␣$TMPDIR
jobex␣-ri␣-c␣50␣ >&␣jobex.log
grep␣-v␣"hssupdate"␣control␣>␣control.tmp
mv␣control.tmp␣control

A.2 source code of the steady-state genetic algorithm 117

aoforce␣>␣aoforce.out
jobex␣-ri␣-c␣3000␣>␣jobex.log
cp␣-f␣$TMPDIR /*␣$INPDIR
rm␣-rf␣$TMPDIR ’’’ % (qm_queue , ’tm_o’ + s t r (point) + ’_’

+ individual) # Create script for qsub
#-------------------------------------
The sync keyword is used to keep
track of queue operations; the
optimisation starts with 50 steps
of steepest descent , then computes
an analytical hessian and proceeds
with the default optimisation
routine
#-------------------------------------
script = open(’tm_submit.sh’, ’w’)

write script to file
script.write(script_t)
script.close()
execute script and submit job
comp = subprocess.Popen([’qsub’, ’./ tm_submit.sh’],

stderr = subprocess.STDOUT , stdout = subprocess.
PIPE) # submit job to queue

p r i n t ’␣TURBOMOLE␣job␣%s␣(point␣%d)␣submitted␣to␣%s’ %(
individual , point , qm_queue)

sys.stdout.flush()
comp.wait()

#
wait for its completion

p r i n t ’␣TURBOMOLE␣optimization␣of␣%s␣(point␣%d)␣
finished.’ %(individual , point)

sys.stdout.flush()
os.chdir(d i r)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check if computation finished
successfully and follow up with
frequency analysis for fitness
evaluation
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def tm_freq(individual , point , dead):

i f individual in dead:
r e t u r n

d i r = qm_path + individual
target = d i r + ’/tm_’ + s t r (point)
os.chdir(target)
Check if tm computations ended successfully (assumes

’not.converged ’ as indicator)
i f os.path.exists(’diis_errvec ’):

p r i n t ’␣SCF␣convergence␣problem␣in␣calculation␣of␣%
s␣(point␣%d)’ %(individual , point)

sys.stdout.flush ()
dead.append(individual)

Check if optimisation converged:
e l i f os.path.exists(’GEO_OPT_FAILED ’):

p r i n t ’␣Geometry␣optimisation␣of␣%s␣(point␣%d)␣not␣
converged ’ %(individual , point)

sys.stdout.flush ()
dead.append(individual)

e l s e :
convert = subprocess.Popen([scr_path + ’/

tm_extract.sh’]) # external script uses head ,
tail and awk to extract geometry

convert.wait()
generate turbomole script for frequency analysis

118 appendix

script_t = ’’’#!/bin/bash
#
#$␣-cwd
#$␣-q␣%s
#$␣-S␣/bin/bash
#$␣-N␣%s
#$␣-sync␣y
#$␣-r␣n
#
export␣INPDIR=$SGE_O_WORKDIR
export␣TURBOTMPDIR=$TMPDIR
export␣QSUB_WORKDIR=$TMPDIR
cp␣$INPDIR /*␣$TMPDIR
cd␣$TMPDIR
aoforce␣>␣aoforce.out
cp␣-f␣$TMPDIR /*␣$INPDIR
rm␣-rf␣$TMPDIR ’’’ % (qm_queue , ’tm_f’ + s t r (point) + ’_’

+ individual) # Create script for qsub
script = open(’tm_freq_submit.sh’, ’w’)

write script to file
script.write(script_t)
script.close()
execute script and submitt job
comp = subprocess.Popen([’qsub’, ’./

tm_freq_submit.sh’], stderr = subprocess.
STDOUT , stdout = subprocess.PIPE) # submit job
to queue

p r i n t ’␣TURBOMOLE␣frequency␣analysis␣of␣␣%s␣(point␣
%d)␣submitted␣to␣%s’ %(individual , point ,
qm_queue)

sys.stdout.flush()
comp.wait()

#
wait for its completion

p r i n t ’␣TURBOMOLE␣frequency␣analysis␣of␣%s␣(point␣%
d)␣finished.’ %(individual , point)

sys.stdout.flush()
os.chdir(d i r) # change back

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Prepare geometry for the follow up
computations based on optimized one
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def follow_build(individual , template , point , dead):

i f individual in dead:
r e t u r n

d i r = qm_path + individual
target = d i r + ’/tm_’ + s t r (point)
i f not os.path.exists(target):

os.makedirs(target)
os.chdir(target)
out_file = open(’tm4tm’, ’w’)
f i l e =open(lib_path + template + ’.xyz’, ’r’).

readlines () # open geometry of second teplate
natoms = i n t (f i l e .pop(0))

read #atoms
scrap = f i l e .pop(0)

skip
charge

tm_opt = open(d i r + ’/tm_1/topt.xyz’, ’r’).readlines
()

f o r i in xrange(res_size[template_a] + 2):
+2 for reading xyz file

A.2 source code of the steady-state genetic algorithm 119

scrap = tm_opt.pop(0)
delete

lines containing template a geometry
natoms = natoms + len (tm_opt)
write new xyz file
out_file.write(s t r (natoms) + ’\n’ + ’\n’)
f o r line in f i l e :

out_file.write(line)
write

geometry to file
f o r line in tm_opt:

out_file.write(line)
out_file.close()
p r i n t "␣Created␣follow␣up␣geometry␣for␣%s." %

individual
os.chdir(d i r)

#===
FITNESS EVALUATION
#===

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Calculate the fitness (deltaG in
kJ/mol) and update global fitness
dictionary; the absolute value of
the barrier is used , to avoid
falling into sinks
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def update_fitness(individual , point_1 , point_2):

g l o b a l fitness
i f individual in dead:

r e t u r n 1
pg_1 = get_energy_point_n(individual , point_1)
pg_2 = get_energy_point_n(individual , point_2)
i f pg_1 == "FAILED" or pg_2 == "FAILED":

dead.append(individual)
p r i n t "␣Fitness␣evaluation␣of␣%s␣failed." %

individual
e l s e :

fitness[individual] = abs(get_energy_point_n(
individual , point_1) - (get_energy_point_n(
individual , point_2) - 812533.708620335)) #
last term is energy of ether

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If oxygen coordinates to ruthenium
a penalty is introduced; assumes Ru
is at the origin
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def fit_penalty(individual , canditates):

g l o b a l fitness
is_penal = 0

#
logical operator if penalty is to be applied

pos_o = []
f o r i in xrange(len (canditates[individual][1])):

f o r j in xrange(len (canditates[individual][1][i]
)):
i f canditates[individual][1][i][j] == "O":

pos_o.append((i,j))
get

positions of all oxygen atoms
f o r ox in pos_o:

120 appendix

i, j = ox
vector = canditates[individual][2][i][j]
diff_sq = dot(vector , vector)
i f diff_sq <= 6.25:

allow a
minimum distance of 2.5 Angstrom
is_penal = 1

i f is_penal == 1:
fitness[individual] += 42

add penalty

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Compute the free energy on one point;
units are kJ/mol
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_energy_point_n(individual , point):

d i r = qm_path + individual
target = d i r + ’/tm_’ + s t r (point)
os.chdir(target)
os.system("freeh␣<␣%s␣>␣freeh.out" % (scr_path + ’

freeh.in’))
t r y :

freeh_p = open(target + ’/freeh.out’).readlines ()
ener_f = open(target + ’/energy ’).readlines ()

e x c e p t :
r e t u r n "FAILED"

f o r i in xrange(len (freeh_p)):
i f "ln(qtrans)␣ln(qrot)␣ln(qvib)" in freeh_p[i]:

free_en = f l o a t (freeh_p[i+3]. split()[5])
t r y :

ener = f l o a t (ener_f [-2]. split()[1])
energy_point = ener * 2625.49962 + free_en

e x c e p t :
r e t u r n "FAILED"

os.chdir(d i r)
r e t u r n energy_point

#**
MAIN PROGRAM
#**

i f __name__ == "__main__":

cctoms , ccatype , coll_geom = read_coords(lib_path +
template_a + ’.xyz’)

print_folders ()
init_charge_size ()
t r y :

run_steady_state(popsize , no_eval)
e x c e p t (KeyboardInterrupt , SystemExit):

f o r individual in comp_processes:
comp_processes[individual]. terminate ()

r a i s e
p r i n t "Goodbye"

B I B L I O G R A P H Y

[1] J. M. Berg, J. L. Tymoczko, L. Stryer: Biochemistry. New York: W.
H. Freeman, 5th edition (2002).

[2] S. J. Benkovic, S. Hammes-Schiffer: A Perspective on Enzyme
Catalysis. Science, 301(5637), 1196–1202 (2003).

[3] R. Wolfenden, M. J. Snider: The Depth of Chemical Time and the
Power of Enzymes as Catalysts. Acc. Chem. Res., 34(12), 938–945

(2001).

[4] L. Hedstrom: Enzyme Specificity and Selectivity. John Wiley &
Sons, Ltd (2001).

[5] J. B. Beilen, Z. Li: Enzyme technology: an overview. Curr. Opin.
Chem. Biol., 13(4), 338–344 (2002).

[6] C. Jäckel, P. Kast, D. Hilvert: Protein Design by Directed Evolu-
tion. Annu Rev Biophys, 37(1), 153–173 (2008).

[7] D. Hilvert: Critical analysis of antibody catalysis. Annu. Rev.
Biochem., 69, 751–793 (2000).

[8] K. N. Houk, A. G. Leach, S. P. Kim, X. Zhang:
Bindungsaffinitäten von Wirt-Gast-, Protein-Ligand- und
Protein-Übergangszustands-Komplexen. Angew. Chem. Int. Ed.,
115(40), 5020–5046 (2003).

[9] V. Nanda, R. L. Koder: Designing artificial enzymes by intuition
and computation. Nat Chem, 2(1), 15–24 (2010).

[10] G. Kiss, N. Çelebi Ölçüm, R. Moretti, D. Baker, K. N. Houk:
Computational Enzyme Design. Angew. Chem. Int. Ed., 52(22),
5700–5725 (2013).

[11] T. Sasaki, E. T. Kaiser: Helichrome: synthesis and enzymic
activity of a designed hemeprotein. J. Am. Chem. Soc., 111(1),
380–381 (1989).

[12] R. L. Koder, J. L. R. Anderson, L. A. Solomon, K. S. Reddy, C. C.
Moser, P. L. Dutton: Design and engineering of an O2 transport
protein. Nature, 458(7236), 305–309 (2009).

[13] A. Lombardi, C. M. Summa, S. Geremia, L. Randaccio, V. Pavone,
W. F. DeGrado: Retrostructural analysis of metalloproteins: Ap-
plication to the design of a minimal model for diiron proteins.
PNAS, 97(12), 6298–6305 (2000).

[14] C. M. Summa, A. Lombardi, M. Lewis, W. F. DeGrado: Tertiary
templates for the design of diiron proteins. Curr. Opin. Chem.
Biol., 9(4), 500–508 (1999).

121

122 Bibliography

[15] L. Di Costanzo, H. Wade, S. Geremia, L. Randaccio, V. Pavone,
W. F. DeGrado, A. Lombardi: Toward the de Novo Design of
a Catalytically Active Helix Bundle: A Substrate-Accessible
Carboxylate-Bridged Dinuclear Metal Center. J. Am. Chem. Soc.,
123(51), 12749–12757 (2001).

[16] G. A. Papoian, W. F. DeGrado, M. L. Klein: Probing the Configu-
rational Space of a Metalloprotein Core: An ab Initio Molecular
Dynamics Study of Duo Ferro 1 Binuclear Zn Cofactor. J. Am.
Chem. Soc., 125(2), 560–569 (2003).

[17] M. Klemba, K. H. Gardner, S. Marino, N. D. Clarke, L. Regan:
Novel metal-binding proteins by design. Nat Struct Mol Biol, 2(5),
368–373 (1995).

[18] L. Regan, N. D. Clarke: A tetrahedral zinc(II)-binding site intro-
duced into a designed protein. Biochemistry, 29(49), 10878–10883

(1990).

[19] H. W. Hellinga, F. M. Richards: Construction of new ligand
binding sites in proteins of known structure: I. computer-aided
modeling of sites with pre-defined geometry. Journal of Molecular
Biology, 222(3), 763–785 (1991).

[20] D. N. Bolon, S. L. Mayo: Enzyme-like proteins by computational
design. PNAS, 98(25), 14274–14279 (2001).

[21] J. Desmet, M. D. Maeyer, B. Hazes, I. Lasters: The dead-end
elimination theorem and its use in protein side-chain positioning.
Nature, 356(6369), 539–542 (1992).

[22] A. Zanghellini, L. Jiang, A. M. Wollacott, G. Cheng, J. Meiler,
E. A. Althoff, D. Röthlisberger, D. Baker: New algorithms and
an in silico benchmark for computational enzyme design. Protein
Sci., 15(12), 2785–2794 (2006).

[23] A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, J. Thompson,
R. Jacak, K. Kaufman, P. D. Renfrew, C. A. Smith, W. Sheffler,
I. W. Davis, S. Cooper, A. Treuille, D. J. Mandell, F. Richter,
Y.-E. A. Ban, S. J. Fleishman, J. E. Corn, D. E. Kim, S. Lyskov,
M. Berrondo, S. Mentzer, Z. Popović, J. J. Havranek, J. Karan-
icolas, R. Das, J. Meiler, T. Kortemme, J. J. Gray, B. Kuhlman,
D. Baker, P. Bradley: ROSETTA3: an object-oriented software
suite for the simulation and design of macromolecules. Meth.
Enzymol., 487, 545–574 (2011).

[24] L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. Röthlisberger,
A. Zanghellini, J. L. Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas,
D. Hilvert, K. N. Houk, B. L. Stoddard, D. Baker: De Novo Com-
putational Design of Retro-Aldol Enzymes. Science, 319(5868),
1387–1391 (2008).

[25] D. Röthlisberger, O. Khersonsky, A. M. Wollacott, L. Jiang,
J. DeChancie, J. Betker, J. L. Gallaher, E. A. Althoff,
A. Zanghellini, O. Dym, S. Albeck, K. N. Houk, D. S. Tawfik,
D. Baker: Kemp elimination catalysts by computational enzyme
design. Nature, 453(7192), 190–195 (2008).

Bibliography 123

[26] J. B. Siegel, A. Zanghellini, H. M. Lovick, G. Kiss, A. R. Lambert,
J. L. St Clair, J. L. Gallaher, D. Hilvert, M. H. Gelb, B. L. Stoddard,
K. N. Houk, F. E. Michael, D. Baker: Computational design of
an enzyme catalyst for a stereoselective bimolecular Diels-Alder
reaction. Science, 329(5989), 309–313 (2010).

[27] S. D. Khare, Y. Kipnis, P. J. Greisen, R. Takeuchi, Y. Ashani,
M. Goldsmith, Y. Song, J. L. Gallaher, I. Silman, H. Leader, J. L.
Sussman, B. L. Stoddard, D. S. Tawfik, D. Baker: Computational
redesign of a mononuclear zinc metalloenzyme for organophos-
phate hydrolysis. Nat Chem Biol, 8(3), 294–300 (2012).

[28] D. J. Tantillo, C. Jiangang, K. N. Houk: Theozymes and com-
puzymes: theoretical models for biological catalysis. Curr. Opin.
Chem. Biol., 2(6), 743–750 (1998).

[29] L. Pauling: Molecular Architecture and Biological Reactions.
Chem. Eng. News, 24(10), 1375–1377 (1946).

[30] J. H. Holland: Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial
intelligence. University of Michigan Press (1975).

[31] R. H. Grubbs: Olefin metathesis. Tetrahedron, 60(34), 7117–7140

(2004).

[32] J. Mol: Industrial applications of olefin metathesis. J. Mol. Catal.,
213(1), 39–45 (2004).

[33] K. C. Nicolaou, P. G. Bulger, D. Sarlah: Metathesis Reactions in
Total Synthesis. Angew. Chem. Int. Ed., 44(29), 4490–4527 (2005).

[34] D. E. Koshland: Application of a Theory of Enzyme Specificity
to Protein Synthesis. Proc Natl Acad Sci USA, 44(2), 98–104 (1958).

[35] A. Warshel: Electrostatic Origin of the Catalytic Power of En-
zymes and the Role of Preorganized Active Sites. J. Biol. Chem.,
273(42), 27035–27038 (1998).

[36] X. Zhang, K. N. Houk: Why Enzymes Are Proficient Catalysts:
Beyond the Pauling Paradigm. Acc. Chem. Res., 38(5), 379–385

(2005).

[37] T. Drepper, T. Eggert, W. Hummel, C. Leggewie, M. Pohl, F. Rose-
nau, S. Wilhelm, K.-E. Jaeger: Novel biocatalysts for white
biotechnology. Biotechnol. J., 1(7-8), 777–786 (2006).

[38] G. Kiss, D. Röthlisberger, D. Baker, K. N. Houk: Evaluation and
ranking of enzyme designs. Protein Sci., 19(9), 1760–1773 (2010).

[39] X. Zhang, J. DeChancie, H. Gunaydin, A. B. Chowdry, F. R.
Clemente, Smith, T. M. Handel, K. N. Houk: Quantum Mechan-
ical Design of Enzyme Active Sites. J. Org. Chem., 73(3), 889–899

(2008).

[40] A. H. Hoveyda, R. R. Schrock: Catalytic Asymmetric Olefin
Metathesis. Chem. Eur. J., 7(5), 945–950 (2001).

124 Bibliography

[41] P. Schwab, R. H. Grubbs, J. W. Ziller: Synthesis and Applications
of RuCl2(CHR’)(PR3)2: The Influence of the Alkylidene Moiety
on Metathesis Activity. J. Am. Chem. Soc., 118(1), 100–110 (1996).

[42] J. P. Morgan, R. H. Grubbs: In Situ Preparation of a Highly
Active N-Heterocyclic Carbene-Coordinated Olefin Metathesis
Catalyst. Org. Lett., 2(20), 3153–3155 (2000).

[43] T. M. Trnka, R. H. Grubbs: The Development of L2X2RuCHR
Olefin Metathesis Catalysts: An Organometallic Success Story.
Acc. Chem. Res., 34(1), 18–29 (2001).

[44] C. Adlhart, P. Chen: Comparing Intrinsic Reactivities of the
First- and Second-Generation Ruthenium Metathesis Catalysts
in the Gas Phase. Helv. Cim. Acta, 86(4), 941–949 (2003).

[45] A. Correa, L. Cavallo: The Elusive Mechanism of Olefin Metathe-
sis Promoted by (NHC)Ru-Based Catalysts: A Trade between
Steric, Electronic, and Solvent Effects. J. Am. Chem. Soc., 128(41),
13352–13353 (2006).

[46] J. L. Hérisson, Y. Chauvin: Catalyse de transformation des
oléfines par les complexes du tungstène. II. Télomérisation des
oléfines cycliques en présence d’oléfines acycliques. Makromol.
Chem., 141(1), 161–176 (1971).

[47] S. F. Vyboishchikov, M. Bühl, W. Thiel: Mechanism of Olefin
Metathesis with Catalysis by Ruthenium Carbene Complexes:
Density Functional Studies on Model Systems. Chem. Eur. J.,
8(17), 3962–3975 (2002).

[48] M. S. Sanford, J. A. Love, R. H. Grubbs: Mechanism and activ-
ity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc.,
123(27), 6543–6554 (2001).

[49] C. Adlhart, P. Chen: Mechanism and Activity of Ruthenium
Olefin Metathesis Catalysts: The Role of Ligands and Substrates
from a Theoretical Perspective. J. Am. Chem. Soc., 126(11), 3496–
3510 (2004).

[50] L. Cavallo: Mechanism of Ruthenium-Catalyzed Olefin Metathe-
sis Reactions from a Theoretical Perspective. J. Am. Chem. Soc.,
124(30), 8965–8973 (2002).

[51] S. Torker, D. Merki, P. Chen: Gas-Phase Thermochemistry of
Ruthenium Carbene Metathesis Catalysts. J. Am. Chem. Soc.,
130(14), 4808–4814 (2008).

[52] I. H. Hillier, S. Pandian, J. M. Percy, M. A. Vincent: Mapping the
potential energy surfaces for ring-closing metathesis reactions of
prototypical dienes by electronic structure calculations. Dalton
Trans., 40(5), 1061–1072 (2011).

[53] S. F. Vyboishchikov, W. Thiel: Ring-Closing Olefin Metathe-
sis on Ruthenium Carbene Complexes: Model DFT Study of
Stereochemistry. Chem. Eur. J., 11(13), 3921–3935 (2005).

Bibliography 125

[54] E. Schrödinger: Quantisierung als Eigenwertproblem. Ann.
Physik, 384(4), 361–376 (1926).

[55] E. Schrödinger: Quantisierung als Eigenwertproblem. Ann.
Physik, 384(6), 489–527 (1926).

[56] E. Schrödinger: Quantisierung als Eigenwertproblem. Ann.
Physik, 386(18), 109–139 (1926).

[57] M. Born, R. Oppenheimer: Zur Quantentheorie der Molekeln.
Ann. Physik, 389(20), 457–484 (1927).

[58] A. Szabo, N. S. Ostlund: Modern Quantum Chemistry: Introduction
to Advanced Electronic Structure Theory (Dover Books on Chemistry).
Dover Publications, New edition edition (1996).

[59] P. Hohenberg, W. Kohn: Inhomogeneous Electron Gas. Phys.
Rev., 136(3B), B864–B871 (1964).

[60] W. Kohn, L. J. Sham: Self-Consistent Equations Including Ex-
change and Correlation Effects. Phys. Rev., 140(4A), A1133–
A1138 (1965).

[61] J. P. Perdew, K. Schmidt: Jacob’s ladder of density functional
approximations for the exchange-correlation energy. AIP Conf.
Proc., 577(1), 1–20 (2001).

[62] J. C. Slater: A Simplification of the Hartree-Fock Method. Phys.
Rev., 81(3), 385–390 (1951).

[63] P. A. M. Dirac: Quantum Mechanics of Many-Electron Systems.
Proc. R. Soc. Lond. A, 123(792), 714–733 (1929).

[64] S. H. Vosko, L. Wilk, M. Nusair: Accurate spin-dependent elec-
tron liquid correlation energies for local spin density calcula-
tions: a critical analysis. Can. J. Phys., 58(8), 1200–1211 (1980).

[65] A. D. Becke: Density-functional exchange-energy approximation
with correct asymptotic behavior. Phys. Rev. A, 38(6), 3098–3100

(1988).

[66] J. P. Perdew, K. Burke, M. Ernzerhof: Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett., 77(18), 3865–3868

(1996).

[67] J. P. Perdew: Density-functional approximation for the corre-
lation energy of the inhomogeneous electron gas. Phys. Rev. B,
33(12), 8822–8824 (1986).

[68] J. P. Perdew, Y. Wang: Accurate and simple analytic representa-
tion of the electron-gas correlation energy. Phys. Rev. B, 45(23),
13244–13249 (1992).

[69] C. Lee, W. Yang, R. G. Parr: Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron
density. Phys. Rev. B, 37(2), 785–789 (1988).

126 Bibliography

[70] A. D. Becke: Density-functional thermochemistry. IV. A new
dynamical correlation functional and implications for exact-
exchange mixing. J. Chem. Phys, 104(3), 1040 (1996).

[71] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria: Climbing the
Density Functional Ladder: Nonempirical Meta–Generalized
Gradient Approximation Designed for Molecules and Solids.
Phys. Rev. Lett., 91(14), 146401 (2003).

[72] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch:
Ab Initio Calculation of Vibrational Absorption and Circular
Dichroism Spectra Using Density Functional Force Fields. J. Phys.
Chem., 98(45), 11623–11627 (1994).

[73] J. P. Perdew, M. Ernzerhof, K. Burke: Rationale for mixing exact
exchange with density functional approximations. J. Chem. Phys.,
105(22), 9982–9985 (1996).

[74] V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew: Comparative
assessment of a new nonempirical density functional: Molecules
and hydrogen-bonded complexes. J. Chem. Phys., 119(23), 12129–
12137 (2003).

[75] S. Grimme: Semiempirical hybrid density functional with per-
turbative second-order correlation. J. Chem. Phys., 124(3), 034108–
034108–16 (2006).

[76] O. Vahtras, J. Almlöf, M. Feyereisen: Integral approximations
for LCAO-SCF calculations. Chem. Phys. Lett., 213(5–6), 514–518

(1993).

[77] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs: Auxil-
iary basis sets to approximate Coulomb potentials. Chem. Phys.
Lett., 240(4), 283–290 (1995).

[78] M. Sierka, A. Hogekamp, R. Ahlrichs: Fast evaluation of the
Coulomb potential for electron densities using multipole acceler-
ated resolution of identity approximation. J. Phys. Chem., 118(20),
9136–9148 (2003).

[79] S. Grimme: Density functional theory with London dispersion
corrections. WIREs Comput. Mol. Sci., 1(2), 211–228 (2011).

[80] S. Grimme: Semiempirical GGA-type density functional con-
structed with a long-range dispersion correction. J. Comput.
Chem., 27(15), 1787–1799 (2006).

[81] S. Grimme, J. Antony, S. Ehrlich, H. Krieg: A consistent and
accurate ab initio parametrization of density functional disper-
sion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.,
132(15), 154104 (2010).

[82] H. B. G. Casimir, D. Polder: The Influence of Retardation on the
London-van der Waals Forces. Phys. Rev., 73(4), 360–372 (1948).

[83] A. Tkatchenko, M. Scheffler: Accurate Molecular Van Der Waals
Interactions from Ground-State Electron Density and Free-Atom
Reference Data. Phys. Rev. Lett., 102(7), 073005 (2009).

Bibliography 127

[84] A. D. Becke, E. R. Johnson: Exchange-hole dipole moment and
the dispersion interaction. J. Chem. Phys., 122(15), 154104–154104–
5 (2005).

[85] E. R. Johnson, A. D. Becke: A post-Hartree–Fock model of inter-
molecular interactions. J. Chem. Phys., 123(2), 024101–024101–7

(2005).

[86] E. R. Johnson, A. D. Becke: A post-Hartree-Fock model of inter-
molecular interactions: Inclusion of higher-order corrections. J.
Chem. Phys., 124(17), 174104–174104–9 (2006).

[87] S. N. Steinmann, C. Corminboeuf: A Density Dependent Disper-
sion Correction. CHIMIA, 65(4), 240–244 (2011).

[88] K. T. Tang, J. P. Toennies: An improved simple model for the
van der Waals potential based on universal damping functions
for the dispersion coefficients. J. Chem. Phys., 80(8), 3726–3741

(1984).

[89] O. A. Vydrov, T. Van Voorhis: Nonlocal van der Waals density
functional: The simpler the better. J. Chem. Phys., 133(24), 244103–
244103–9 (2010).

[90] Y. Zhao, D. G. Truhlar: Density Functionals with Broad Applica-
bility in Chemistry. Acc. Chem. Res., 41(2), 157–167 (2008).

[91] J. Klimeš, A. Michaelides: Perspective: Advances and challenges
in treating van der Waals dispersion forces in density functional
theory. J. Chem. Phys., 137(12), 120901–120901–12 (2012).

[92] T. Risthaus, S. Grimme: Benchmarking of London Dispersion-
Accounting Density Functional Theory Methods on Very Large
Molecular Complexes. J. Chem. Theory Comput., 9(3), 1580–1591

(2013).

[93] W. Hujo, S. Grimme: Performance of Non-Local and Atom-
Pairwise Dispersion Corrections to DFT for Structural Parame-
ters of Molecules with Noncovalent Interactions. J. Chem. Theory
Comput., 9(1), 308–315 (2013).

[94] W. T. G. Johnson, M. B. Sullivan, C. J. Cramer: meta and para
substitution effects on the electronic state energies and ring-
expansion reactivities of phenylnitrenes. Int. J. Quantum Chem.,
85(4-5), 492–508 (2001).

[95] G. A. Jones, M. N. Paddon-Row, M. S. Sherburn, C. I. Turner: On
the Endo/Exo Stereoselectivity of Intramolecular Diels–Alder
Reactions of Hexadienylacrylates: An Interesting Failure of
Density Functional Theory. Org. Lett., 4(22), 3789–3792 (2002).

[96] C. J. Cramer, S. E. Barrows: Quantum Chemical Characterization
of Cycloaddition Reactions between the Hydroxyallyl Cation
and Dienes of Varying Nucleophilicity. J. Org. Chem., 63(16),
5523–5532 (1998).

128 Bibliography

[97] C. Ho Choi, M. Kertesz, A. Karpfen: The effects of electron
correlation on the degree of bond alternation and electronic
structure of oligomers of polyacetylene. J. Chem. Phys., 107(17),
6712 (1997).

[98] J. Gräfenstein, E. Kraka, D. Cremer: The impact of the self-
interaction error on the density functional theory description
of dissociating radical cations: Ionic and covalent dissociation
limits. J. Chem. Phys., 120(2), 524 (2004).

[99] E. Runge, E. K. U. Gross: Density-Functional Theory for Time-
Dependent Systems. Phys. Rev. Lett., 52(12), 997–1000 (1984).

[100] J. Schirmer, A. Dreuw: Critique of the foundations of time-
dependent density-functional theory. Phys. Rev. A, 75(2), 022513

(2007).

[101] C. F. Guerra, J. G. Snijders, G. t. Velde, E. J. Baerends: Towards
an order-N DFT method. Theor. Chem. Acc., 99(6), 391–403 (1998).

[102] M. A. Watson, N. C. Handy, A. J. Cohen: Density functional
calculations, using Slater basis sets, with exact exchange. J. Chem.
Phys., 119(13), 6475 (2003).

[103] J. Paier, R. Hirschl, M. Marsman, G. Kresse: The
Perdew–Burke–Ernzerhof exchange-correlation functional ap-
plied to the G2-1 test set using a plane-wave basis set. J. Chem.
Phys., 122(23), 234102 (2005).

[104] A. D. Boese, J. M. L. Martin, N. C. Handy: The role of the basis
set: Assessing density functional theory. J. Chem. Phys., 119(6),
3005 (2003).

[105] C. J. Cramer: Essentials of Computational Chemistry: Theories and
Models. Wiley, Second edition (2005).

[106] McQuarrie, D. Allan: Statistical Mechanics. University Science
Books (2000).

[107] D. E. Goldberg: Genetic algorithms in search, optimization, and
machine learning. 2, Addison-Wesley, Reading, MA (1989).

[108] J. E. Baker: Adaptive Selection Methods for Genetic Algorithms.
In Proceedings of the 1st International Conference on Genetic Algo-
rithms, 101–111, L. Erlbaum Associates Inc., Hillsdale, NJ, USA
(1985).

[109] L. B. Booker, D. B. Fogel, D. Whitley, P. J. Angeline, A. E. Eiben:
Recombination. In T. Bäck, D. B. Fogel, Z. Michalewicz (editors),
Evolutionary Computation 1 Basic Algorithms and Operators, chap-
ter 33, 256–307, Institute of Physics Publishing, Bristol (2000).

[110] G. Syswerda: Uniform Crossover in Genetic Algorithms. In
Proceedings of the 3rd International Conference on Genetic Algorithms,
2–9, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1989).

Bibliography 129

[111] M. C. Durrant: The Use of Quantum Molecular Calculations to
Guide a Genetic Algorithm: A Way to Search for New Chemistry.
Chem. Eur. J., 13(12), 3406–3413 (2007).

[112] J. Zhang, H. Chung, W. Lo: Pseudocoevolutionary genetic algo-
rithms for power electronic circuits optimization. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 36(4), 590–598 (2006).

[113] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart,
R. K. Belew, A. J. Olson: Automated docking using a Lamarckian
genetic algorithm and an empirical binding free energy function.
J. Comput. Chem., 19(14), 1639–1662 (1998).

[114] J. E. Baker: Adaptive Selection Methods for Genetic Algorithms.
In Proceedings of the 1st International Conference on Genetic Algo-
rithms, 101–111, L. Erlbaum Associates Inc., Hillsdale, NJ, USA
(1985).

[115] T. Bäck, M. Schütz: Intelligent mutation rate control in canonical
genetic algorithms. In Z. W. Raś, M. Michalewicz (editors), Foun-
dations of Intelligent Systems, number 1079 in Lecture Notes in
Computer Science, 158–167, Springer Berlin Heidelberg (1996).

[116] J. E. Smith: Self adaptation in evolutionary algorithms. PHD thesis,
University of the West of England (1998).

[117] T. Bäck: Self-Adaptation in Genetic Algorithms. In Proceedings of
the First European Conference on Artificial Life, 263–271, MIT Press
(1992).

[118] K. Deb, H.-G. Beyer: Self-Adaptation in Real-Parameter Genetic
Algorithms with Simulated Binary Crossover. In GECCO-99:
Proceedings of the Genetic and Evolutionary Computation Conference,
172–179, Morgan Kaufmann (1999).

[119] J. Smith, T. Fogarty: Self adaptation of mutation rates in a
steady state genetic algorithm. In Proceedings of IEEE International
Conference on Evolutionary Computation, 1996, 318–323 (1996).

[120] H. Wolfson, I. Rigoutsos: Geometric hashing: an overview. Com-
putational Science Engineering, IEEE, 4(4), 10–21 (1997).

[121] A. C. Tsipis, A. G. Orpen, J. N. Harvey: Substituent effects and
the mechanism of alkene metathesis catalyzed by ruthenium
dichloride catalysts. Dalton Trans., (17), 2849–2858 (2005).

[122] T. Simonson, C. L. Brooks: Charge Screening and the Dielectric
Constant of Proteins: Insights from Molecular Dynamics. J. Am.
Chem. Soc., 118(35), 8452–8458 (1996).

[123] J. DeChancie, F. R. Clemente, A. J. Smith, H. Gunaydin, Y.-L.
Zhao, X. Zhang, K. Houk: How similar are enzyme active site
geometries derived from quantum mechanical theozymes to
crystal structures of enzyme-inhibitor complexes? Implications
for enzyme design. Protein Sci, 16(9), 1851–1866 (2007).

130 Bibliography

[124] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Naka-
jima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery,
Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Broth-
ers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Sal-
vador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox: Gaussian 09

Revision D.01. Gaussian Inc. Wallingford CT 2009.

[125] TURBOMOLE V6.5 2013, a development of University of Karl-
sruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007,
TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.com.

[126] Y. Zhao, D. G. Truhlar: Attractive Noncovalent Interactions in
the Mechanism of Grubbs Second-Generation Ru Catalysts for
Olefin Metathesis. Org. Lett., 9(10), 1967–1970 (2007).

[127] M. M. Francl: Self-consistent molecular orbital methods. XXIII.
a polarization-type basis set for second-row elements. J. Chem.
Phys., 77(7), 3654 (1982).

[128] P. C. Hariharan, J. A. Pople: The influence of polarization func-
tions on molecular orbital hydrogenation energies. Theoret. Chim.
Acta, 28(3), 213–222 (1973).

[129] F. Weigend, R. Ahlrichs: Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for h to
rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys.,
7(18), 3297–3305 (2005).

[130] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß: Energy-
adjusted ab initio pseudopotentials for the second and third row
transition elements. Theoret. Chim. Acta, 77(2), 123–141 (1990).

[131] M. Sierka, A. Hogekamp, R. Ahlrichs: Fast evaluation of the
coulomb potential for electron densities using multipole acceler-
ated resolution of identity approximation. J. Phys. Chem., 118(20),
9136–9148 (2003).

[132] C. Peng, H. B. Schlegel: Combining Synchronous Transit and
Quasi-Newton Methods to Find Transition States. Chem. Eur. J.,
33, 449 (1993).

[133] G. van Rossum, F. L. Drake (eds): Python reference
manual. PythonLabs, Virginia, USA, 2001; Available at
http://www.python.org.

Bibliography 131

[134] D. L. Nelson, M. M. Cox: Lehninger Principles of Biochemistry.
Springer, fourth edition (2004).

[135] G. Marsaglia: Choosing a Point from the Surface of a Sphere.
Ann. Math. Stat., 43(2), 645–646 (1972).

[136] B. K. P. Horn: Closed-form solution of absolute orientation using
unit quaternions. J. Opt. Soc. Am. A, 4(4), 629–642 (1987).

[137] C. F. Karney: Quaternions in molecular modeling. Journal of
Molecular Graphics and Modelling, 25(5), 595–604 (2007).

[138] Y. Minenkov, Å. Singstad, G. Occhipinti, V. R. Jensen: The accu-
racy of DFT-optimized geometries of functional transition metal
compounds: a validation study of catalysts for olefin metathesis
and other reactions in the homogeneous phase. Dalton Trans.,
41(18), 5526–5541 (2012).

[139] M. P. Waller, H. Braun, N. Hojdis, M. Bühl: Geometries
of Second-Row Transition-Metal Complexes from Density-
Functional Theory. J. Chem. Theory Comput., 3(6), 2234–2242

(2007).

[140] T. Ziegler: Approximate density functional theory as a practical
tool in molecular energetics and dynamics. Chem. Rev., 91(5),
651–667 (1991).

[141] V. Jonas, W. Thiel: Theoretical study of the vibrational spectra of
the transition metal carbonyls M(CO)6 [M=Cr, Mo, W], M(CO)5

[M=Fe, Ru, Os], and M(CO)4 [M=Ni, Pd, Pt]. J. Chem. Phys.,
102(21), 8474 (1995).

[142] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, P. E. Bourne: The Protein Data
Bank. Nucl. Acids Res., 28(1), 235–242 (2000), www.rcsb.org.

[143] C. Orengo, A. Michie, S. Jones, D. Jones, M. Swindells, J. Thorn-
ton: CATH – a hierarchic classification of protein domain struc-
tures. Structure, 5(8), 1093–1109 (1997).

[144] W. Sheffler, D. Baker: RosettaHoles: rapid assessment of protein
core packing for structure prediction, refinement, design, and
validation. Protein Sci, 18(1), 229–239 (2009).

[145] B. Kuhlman, D. Baker: Native protein sequences are close to
optimal for their structures. Proc. Natl. Acad. Sci, 97(19), 10383–
10388 (2000).

[146] G. Dantas, C. Corrent, S. L. Reichow, J. J. Havranek, Z. M. Eletr,
N. G. Isern, B. Kuhlman, G. Varani, E. A. Merritt, D. Baker: High-
resolution structural and thermodynamic analysis of extreme
stabilization of human procarboxypeptidase by computational
protein design. J. Mol. Biol., 366(4), 1209–1221 (2007).

[147] E. F. v. d. Eide, W. E. Piers: Mechanistic insights into the
ruthenium-catalysed diene ring-closing metathesis reaction. Nat.
Chem., 2(7), 571–576 (2010).

132 Bibliography

[148] V. Polshettiwar, R. S. Varma: Olefin Ring Closing Metathesis
and Hydrosilylation Reaction in Aqueous Medium by Grubbs
Second Generation Ruthenium Catalyst. J. Org. Chem., 73(18),
7417–7419 (2008).

[149] G. Occhipinti, H.-R. Bjørsvik, V. R. Jensen: Quantitative
Structure-Activity Relationships of Ruthenium Catalysts for
Olefin Metathesis. J. Am. Chem. Soc., 128(21), 6952–6964 (2006).

[150] F. Richter, A. Leaver-Fay, S. D. Khare, S. Bjelic, D. Baker: De
Novo Enzyme Design Using Rosetta3. PLoS ONE, 6(5), e19230

(2011).

[151] S. N. Ruzheinikov, J. Burke, S. Sedelnikova, P. J. Baker, R. Taylor,
P. A. Bullough, N. M. Muir, M. G. Gore, D. W. Rice: Glycerol
Dehydrogenase: Structure, Specificity, and Mechanism of a
Family III Polyol Dehydrogenase. Structure, 9(9), 789–802 (2001).

[152] J. Burke, S. N. Ruzheinikov, S. Sedelnikova, P. J. Baker,
D. Holmes, N. M. Muir, M. G. Gore, D. W. Rice: Purification,
crystallization and quaternary structure analysis of a glycerol
dehydrogenase S305C mutant from Bacillus stearothermophilus.
Acta Crystallogr. Sect. D, 57(1), 165–167 (2001).

[153] B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard,
D. Baker: Design of a Novel Globular Protein Fold with Atomic-
Level Accuracy. Science, 302(5649), 1364–1368 (2003).

[154] K. K. Ojo, T. L. Arakaki, A. J. Napuli, K. K. Inampudi, K. R.
Keyloun, L. Zhang, W. G. Hol, C. L. Verlinde, E. A. Merritt,
W. C. Van Voorhis: Structure determination of glycogen syn-
thase kinase-3 from leishmania major and comparative inhibitor
structure-activity relationships with trypanosoma brucei GSK-3.
Mol. Biochem. Parasit., 176(2), 98–108 (2011).

[155] G. Scapin: Structural biology in drug design: selective protein
kinase inhibitors. Drug Discov. Today, 7(11), 601–611 (2002).

[156] E. Jakobsson, G. Alvite, T. Bergfors, A. Esteves, G. J. Kleywegt:
The crystal structure of Echinococcus granulosus fatty-acid-
binding protein 1. BBA - Proteins Proteom, 1649(1), 40–50 (2003).

[157] K. M. McCulloch, C. Kinsland, T. P. Begley, S. E. Ealick: Struc-
tural Studies of Thiamin Monophosphate Kinase in Complex
with Substrates and Products. Biochemistry, 47(12), 3810–3821

(2008).

[158] H. K. Privett, G. Kiss, T. M. Lee, R. Blomberg, R. A. Chica, L. M.
Thomas, D. Hilvert, K. N. Houk, S. L. Mayo: Iterative approach
to computational enzyme design. PNAS (2012).

[159] T. Murata, H. Ishibuchi: MOGA: multi-objective genetic algo-
rithms. In , IEEE International Conference on Evolutionary Compu-
tation, 1995, volume 1, 289– (1995).

[160] C. Riplinger, F. Neese: An efficient and near linear scaling pair
natural orbital based local coupled cluster method. J. Chem. Phys.,
138(3), 034106 (2013).

[161] K. H. Marti, M. Reiher: New electron correlation theories for
transition metal chemistry. Phys. Chem. Chem. Phys., 13(15), 6750–
6759 (2011).

[162] Y. Jin: A comprehensive survey of fitness approximation in
evolutionary computation. Soft Computing, 9(1), 3–12 (2005).

[163] J. Behler, M. Parrinello: Generalized Neural-Network Represen-
tation of High-Dimensional Potential-Energy Surfaces. Phys. Rev.
Lett., 98(14), 146401 (2007).

[164] J. R. Desjarlais, T. M. Handel: Side-chain and backbone flexibility
in protein core design. J. Mol. Biol., 290(1), 305–318 (1999).

[165] J. J. Havranek, D. Baker: Motif-directed flexible backbone design
of functional interactions. Protein Sci., 18(6), 1293–1305 (2009).

[166] J. J. Havranek, P. B. Harbury: Automated design of specificity in
molecular recognition. Nat Struct Mol Biol, 10(1), 45–52 (2003).

[167] T. E. Oliphant: Python for Scientific Computing. Comput. Sci.
Eng., 9(3), 10–20 (2007).

133

A C K N O W L E D G E M E N T S

The content of this master thesis was developed in the quantum
chemistry group of Prof. Leticia González and the bioinformatics
group of Prof. Ivo Hofacker at the Institut für Theoretische Chemie of
the University of Vienna from February 2013 to November 2013.

First and foremost I offer my sincerest gratitude to Prof. Leticia
González. Not only did she give me the opportunity to work in her
group, as well as provide continuous guidance and support, but she
also sparked my interest in theoretical chemistry with her quantum
chemistry course.

This thesis would not have been possible without the aid of Dr.
Philipp Marquetand. The helpful and inspiring discussions with him
guided my progress and he never ran out of answers and patience
when faced with my numerous questions. Moreover, his efficient and
extensive proofreading played a major role in the fast convergence of
my thesis to its final form.

The project in its entirety is the brainchild of Dr. Christoph Flamm,
who introduced me to this exciting research topic encompassing vari-
ous computational fields and who also was the main supporter of my
bioinformatic endeavours.

Prof. Christian Becker and Dr. Aleksandr Kravchuk offered valuable
advice based on their substantial practical experience, which proved
to be extremely helpful in the enzyme design process. I am also very
grateful for their willingness to embark on the task of synthesising the
enzymes designed in this thesis.

The devotion of Dr. Markus Oppel and Jackie Klaura to their task
of maintaining our systems allowed me to pursue my work without
interruptions, as they kept my mind free of computational worries of
the non quantum-chemical kind.

My office mates Leon Freitag, Sebastian May and Clemens Rauer
provided me with many a fruitful discussion. Along with Federico
Latorre, Rana Obaid, Martin Richter, Christoph Bauer, Dr. Daniel
Kinzel, Edith Steinwidder, Dr. Juan Jose Nogueira Perez, Dr. Matthias
Ruckenbauer, Kathrine Baumann and David Ferro, they are also re-
sponsible for creating a working atmosphere so enjoyable, I forgot I
was at work at all.

And last but not least I want to thank my family and my friends
for their patience and their continuous support not only during this
thesis, but during the whole of my chemistry studies.

135

Curriculum Vitae
Personal data

Last name: Gastegger
First name: Michael
Address: Institute of Theoretical Chemistry

Währinger Str. 17, 1090 Vienna, Austria
Birth date/place: July 24, 1988, Lilienfeld
Nationality: Austrian

Academic career

2/2013 - 11/2013 Master thesis in the group of Prof. Dr. L. González
Title: De-novo enzyme design for olefin metathesis

10/2011-
09/2013

Master studies in Chemistry, University of Vienna

06/2011 Bachelor thesis in the Group of Prof. Dr. L. Brecker
Title: Isolation und Strukturaufklärung von Natur-
stoffen aus Palicourea padifolia

2007-2011 Bachelor studies in Chemistry, University of Vienna
06/2006 Matura, Bundesrealgymnasium Lilenfeld

Further qualifications

Language skills German (mother tongue)
English (fluent)

136

	Abstract
	Contents

	Frequently Used Acronyms
	List of Symbols
	Introduction
	On de-novo Enzyme Design
	Inside-out Approach

	On Olefin Metathesis
	Olefin Metathesis Catalysts
	Mechanism
	The Model Reaction

	Theoretical Background
	The Schrödinger Equation
	Born–Oppenheimer Approximation
	Density Functional Theory
	Hohenberg–Kohn Theorems
	Kohn–Sham Equations
	Exchange-Correlation Functionals
	Resolution of Identity
	Dispersion Correction
	Advantages and Shortcomings of DFT

	Molecular Properties
	Equilibrium Structures and Transition States
	Normal Mode Analysis
	Thermodynamic Properties

	Genetic Algorithms
	Selection
	Recombination
	Mutation
	Replacement
	Advantages and Disadvantages of Genetic Algorithms

	Geometric Hashing

	Computational Methods
	Quantum Chemistry Methods
	Choice of Functional and Basis Set
	Geometry Optimisation and Transition State Location
	Thermochemical Properties

	Implementation of the Genetic Algorithm
	General Algorithm Structure
	Population Representation
	Initialization
	Genetic Operators
	Fitness Evaluation

	Enzyme Design
	Matching
	Enzyme Design

	Results
	Computations on the 2nd Generation Grubbs Catalyst
	The Catalytic Cycle
	Geometries of Stationary Points and Transition States
	Free Energy Curve of the 2nd Generation Grubbs Catalyst

	Amino Acid Alternatives to the Carbene Ligand
	Candidates for Alternative Ligands
	Free Energy Profiles of the Amino Acid Catalysts

	Theozyme Motifs
	Exploratory Search
	Common Motifs
	The Proto-Theozyme

	The First Theozyme
	Geometry of the First Theozyme
	The Quest for a cheaper Fitness Function

	The Theozymes from the Steady-State Algorithm
	Algorithm Parameters
	Fitness Evolution
	Theozyme Geometries

	The Search for Protein Scaffolds
	Primary Matching
	Secondary Matching
	Distribution of Matches

	Enzyme Design
	Design Parameters
	Design Runs

	Designed Enzymes
	Enzyme based on the Scaffold 1JQ5
	Enzyme based on the Scaffold 3E3P
	Enzyme based on the Scaffold 1O8V
	Enzyme based on the Scaffold 3C9U

	Comparison of the Designs

	Summary
	Outlook
	Appendix
	Enzyme Design Parameters and Setting
	Source Code of the Steady-State Genetic Algorithm

	Bibliography
	Acknowledgements

