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Abstract

The aim of this master thesis is to discuss the mathematical setting for
the Standard Model Lagrangian within the framework of principal bundles,
principal connections and associated bundles. The formalism developed here
allows to state the Lagrangian density for classical fields over a curved space-
time equipped with a spin structure. Applied to standard Minkowski space
it yields the usual Standard Model Lagrangian. The main part of this thesis
focuses on the construction of kinetic terms for fermionic fields and how to
model them with spinor bundles. The latter are irreducible complex Clifford
bundle modules. We construct a Dirac operator on them and discuss the ex-
istence of invariant forms. Therefore we study Spin, ; invariant sesquilinear
forms on a complex spinor space of dimension r + s = 2k.

Zusammenfassung

Das Ziel dieser Masterarbeit ist eine Ausarbeitung des mathematischen Rah-
mens fiir die Standard Modell Lagrange-Dichte mithilfe von Prinzipalbiin-
deln, Prinzipalbiindelzusammenhingen und assoziierten Vektorbiindeln. Der
entwickelte Formalismus erlaubt es, die Langrangedichte fiir klassische Felder
iiber gekriimmten Raumzeiten ausgestattet mit einer Spinstruktur zu formu-
lieren. Angewandt auf den Minkowski-Raum ergibt er die iibliche Standard
Modell Lagrange-Funktion. Ein grofser Teil der Arbeit beschiftigt sich mit
der Konstruktion von kinetischen Termen fiir fermionische Felder und wie
man diese mit Spinor-Biindel modelliert. Letztere sind irreduzible komplexe
Clifford-Biindel-Moduln und auf ihnen wird ein Dirac-Operator konstruiert.
Zu diesem Zweck werden Spin, ; invariante Sesquilinearformen auf einem
komplexen Spinorraum der Dimension r + s = 2k untersucht.
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Introduction

0.1 Motivation

The Standard Model of particle physics is an integral part of the present-
day physical understanding of the world we live in. Developed throughout the
mid till late 20th century it is without doubt the most successful of quantum
field theories. It describes three of the four known fundamental forces with
high accuracy. Together with Einstein’s general theory of relativity, which
describes gravity, they constitute the foundations of our current world view.
Although lacking proven mathematical consistency and leaving some unex-
plained phenomena, it is believed by many physicists that it will be the basis
of further development of physics.

The core of a Quantum Field Theory like the Standard Model is the so
called Lagrangian, a simple function from which the dynamics of the en-
tire system can be derived. Usually it is stated in a coordinate dependent
form best suited for subsequent calculations and physical understanding. The
mathematical frame work for the Standard Model Lagrangian is to formulate
it as a “Yang—Mills theory” which is a general variant of gauge theory.
The aim of this work is to discuss the mathematical framework. We discuss
a more general formalism than neccessary for the Standard Model: We allow
curved space times and generalize many things to arbitrary (or at last even)
dimensions.

In the first chapter we introduce the general concepts for constructing
such a mathematical framework. In the second chapter we discuss the con-
struction of terms that appear in the Standard Model Lagrangian in a general
context. In chapter three we verify that applied to the Standard Model and
expressed in coordinates these terms match the Standard Model Lagrangian
of particle physics, which can be found in the appendix.
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0.2 The Standard Model Lagrangian

To motivate the definitions in the upcoming chapters we give a short and
informal review of the Standard Model Lagrangian in the to be developed
formalism.

Let X be a spacetime, i.e. a smooth semi Riemannian manifold of signa-
ture (1,3). Let it be equipped with a spin structure Spin; 3 < S(X) — X.
The Standard Model has U := U(1) x SU(2) x SU(3) as internal symmetry
group, which is modeled by a (trivial) principal bundle U(X) over X. This
bundle is spliced with S(X) to a Spin; 3 xU principal bundle.

Central to the Standard Model is a unitary representation p : U —
GL(V) which decomposes into irreducible parts p1 @ p2 -+ @® p,. Each irre-
ducible representation appears exactly three times. This corresponds to the
experimental fact that there are three generation of fermions. Furthermore
there is a complex representation Aj3 : Spin; 3 — GL(S) which is the re-
striction of an irreducible complex Clifford algebra representation Spin; 3 C
Cly,3 — End(S) on a four dimensional space called Spinor space. This repre-
sentation will split into two inequivalent irreducible parts Ay 3 = Ai3 BAT ;.

We obtain a representation of the full symmetry group by Af:,) X p.

Classical fermionic fields are described as sections ¢ = 11 ® - - - ® 1, of
the corresponding associated bundle E* = E @ --- @ E;f. In the Standard
Model there is a scalar field called Higgs field. It is described as a section ¢ of
the associated bundle E to a trivial representation of Spin, 3 and a unitary

representation p : U — GL(V'). The so called gauge fields are described as
principal connection w on the principal bundle U(X).

The classical Standard Model Lagrangian is then a functional:

L(w,,6) = /X L(w,1,6)(x) vol(z)

where the Lagrange density £ is an element of C*°(X). We can decompose
it into a sum of typical terms:

First there are the Yang Mills terms which depend solely on the principal
connection w. Kach w has a corresponding curvature form 2 which can be
interpreted as section of the bundle A?(T*X)® (U(X) x aqg). With multiples
of the Killing forms of the u(1), su(2) and su(3) parts in the Lie algebra
and the metric on X we can construct a bilinear form b = by + by + b3
on that bundle. We are free to choose any multiples of the Killing forms
on each part of the Lie algebra and thus obtains three coupling constants
g1, 92 and g3 € R. This leads to a term
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w > b(2, Q) = g1b1 (21, Q1) + g2ba (22, Q2) + g3b3(£23, 23)

in the Standard Model Lagrangian density.

Next consider the kinetic terms. These depend on both the sections of the
associated bundles and on the connection forms. The associated bundle E to
the representation A x p splits into E = E+ @ E~, therefore the fermionic
fields can be embedded into the sections of F. Since A is the restriction of
a Clifford algebra representation we have an action of the Clifford bundle
Cl(X) on E = ET @ E~. The principal connection w and the Levi-Civita
connection on S(X) induce a vector bundle connection V* on the associated
bundle F. The last two facts will allow us to define a Dirac operator D on
E, which restricts to a map D : ET — E~. Furthermore we will construct
a Spiny 3 invariant Hermitian product on the spinor space S which with
respect to the splitting S = ST + S~ can be written as a sum of invariant
sesquilinear pairings h1 : ST xS~ — Cand hy : S~ x ST — C. Together with
the invariant Hermitian forms of the unitary representation p this pairings
will lift to sesquilinear pairings hy : E* x E= — C and hy : E~ x ET — C.
With this we obtain a term:

(wa ¢) = h (1% D+¢)

To make it real we add the complex conjugate to it. This yields the kinetic
term of the fermionic fields in the Lagrangian density. The Higgs field ¢ has
a different type of kinetic term which is conceptionally similar to the Yang
Mills terms. With the metric of X and the invariant Hermitian form of the
unitary representation on V we obtain a Hermitian form A on the complex
vector bundle E ® T*X. We define:

(¢,w) = V¥6 = h(V*¢, V¥0)
and obtain the kinetic term of the Higgs field in the Lagrangian density.

The last classes of terms are the polynomial terms. They solely depend on
the sections of the associated vector bundles. We will construct Spin; 3 xU
invariant multilinear forms ¢;; : V; x V x V; — C for some i, j. These give

rise to multilinear maps ¢;; on the sections of the corresponding associated
bundles. We define:

(i, @ 1b5) = (is &, 05) = miqij (i, @, ;)
where m;; € C are elements of a mass matrix which are parameters of the

Standard Model. Adding the complex conjugates to these terms results in
the Yukawa terms in the Standard Model. They are the basis of the Higgs
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mechanism.

There is another polynomial term in the Standard model, depending
solely on the Higgs field. The invariant Hermitian form of the unitary rep-
resentation on V yields a Hermitian form s on the corresponding associated
bundle. With this we arrive at:

2

6= —mi(q(6) — 5/ (2¢%)

as term in the Lagrangian density. Here my and c are real parameters of the
Standard Model named Higgs mass and Higgs vacuum expectation value.
The whole term is named Higgs mass term.



Chapter 1

Important concepts

In this chapter the central concepts needed to formulate the Standard Model
Lagrangian are discussed.

1.1 Lie groups

We begin with basic facts about Lie groups and algebras. However, before
we give their definition we try to informally motivate the use of symmetry
groups in physics: In physical models often a reference frame or basis has
to be chosen, with respect to which a physical process is described. Each
frame is a priori on equal footing, but often certain frames are better suited
for calculations than others. In more involved theories it is often necessary
to use frames where expressions are not too complicated.

Let V be a finite dimensional vector space over a field K. If we want to
do calculations and not only abstractly add vectors we need to choose an
ordered basis {e;}, called a frame. With respect to this basis each vector can
be described with coordinates: v = vie;

We can think of a frame as an isomorphism of K-vector spaces from
K™, called coordinate vector space, to V. This correspondence is one-to-
one. Choosing another basis yields a different isomorphism. When switching
between two different bases, this induces an automorphism of the coordinate
vector space. On the other hand each automorphism of the coordinate vector
space induces a new coordinate isomorphism. We obtain:

Proposition 1.1.1 Let V be a vector space. The set of frames can be iden-
tified with the set of isomorphisms from a fized coordinate vector space Vy to
V. The automorphism group of Vo then acts freely and transitively from the
right on the set of all frames.

This construction can be extended to an arbitrary category, for instance
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real vector spaces with an inner product of a certain signature. The process
of picking a basis to describe a physical problem corresponds to choosing a
coordinate isomorphism. Two different frames are linked by an element of the
automorphism group. If we would choose a specific coordinate isomorphism,
all of them can be identified with an element of the automorphism group.
This identification, however, depends on an arbitrary choice.

1.1.1 Definition

For many objects of interest the automorphism group, often called structure
group, is a Lie group. In this work the following standard definition is used
|[EF'H]:

Definition A Lie group is a smooth real manifold which is endowed with a
compatible structure of a group:

e The group multiplication G x G — G is smooth.
e The group inversion G — G is smooth.

Definition A Lie algebra is a vector space with a skew-symmetric bilinear
map [, | : g x g — g satisfying the Jacobi identity:

[X7 [Yv Z]] + [Yv [ZvXH + [Zv [X7YH =0

The tangent space at the identity TG, of a Lie group G can be canonically
endowed with the structure of a Lie Algebra g: For g € G let L, denote
the left multiplication G — G. A vector field V is said to be left invariant
if LyV =V for all g in G. It can be shown that left invariant vector fields
are closed under the Lie bracket [, | and that the evaluation at e provides
an isomorphism to the tangent space at e. More explicitly, if v,w in TG,
there exist unique left invariant vector fields V, W such that V(e) = v and
W (e) = w. Then define [v,w] := [V, W](e).

The theory of Lie groups and their connection to Lie algebras is very
profound. A comprehensive modern book on that subject is [FH|. It can
be shown with the so called Baker-Campbell-Hausdorff formula that it is
possible to express the group multiplication locally in terms of the Lie algebra
and bracket. For this reason Lie algebras, which are easier to investigate due
to their linear structure, play a prominent role in the representation theory
of Lie groups.

1.1.2 Important examples of Lie groups

A basic example of a Lie group is the general linear group GL,(R) of in-
vertible n x n matrices. This is an open subset of the vector space of all
n x n matrices M, (R) and its manifold structure is obtained in the obvious
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way where we take the matrix entries as coordinates. It is clear that the
multiplication map is differentiable. It follows from Cramer’s formula that
the inversion is as well. The automorphism group of any real n-dimensional
vector space GL(V) is a Lie group: By choosing a basis we obtain a manifold
structure(which is the same for all bases) and a Lie group isomorphism to
GL,(R).

The tangent space at the identity of GL,(R) can be identified with
M, (R), the space of all n x n-matrices. It can be shown that upon this
identification the Lie algebra bracket is given by the commutator of the ma-
trices. Hence for a matrix Lie group the Lie algebra can be identified with a
subspace of M, (R) with the commutator as bracket.

Many important Lie groups are isomorphic to subgroups of GL,,(R). This
implies that they can be interpreted as matrix Lie groups. They can often
be described as subgroups preserving some structure on R™. This can be for
example the volume element. In this case we obtain the Lie group SL,R, the
group of n X n-matrices with determinant 1. We of course have to verify that
this is a submanifold, which can be done by applying the implicit function
theorem to the defining function det(A) — 1 = 0.

In the Standard Model a certain kind of Lie groups play a central role, the
unitary groups U(n). First recall some definitions to avoid inconsistence
due to notation:

Definition Let V and W be a finite dimensional complex vector spaces. A
map

p:VxW—=C

is called sesquilinear if it is conjugate linear in the first argument and linear
in the second. A sesquilinear form

S:VxV-=C
is called Hermitian if
S(v,w) = S(w,v) Yo,w eV
and skew Hermitian if
S(w,w) = —-S(w,v) Yv,weV

A Hermitian form h on V is called inner product if it is positive definite,
le.

h(v,v) >0
for all v € V with equality only for v = 0.
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Then we can define:

Definition Let V be a finite dimensional complex vector space endowed
with an inner product h. The unitary group U(V') is the group of all auto-
morphisms of V' which preserve h, i.e.

UV):={9g€GL(V):g"h=h}

If we choose C™ as vector space with the standard Hermitian inner prod-
uct H(v,w) = o' - w, U(C") is isomorphic to the group of n x n complex
matrices A satisfying A” A = 1. From this it can be deduced from the implicit
function theorem (see |[FH| that this group can be embedded as a compact
real submanifold of dimension n? into the real manifold GL,,(C) C GLa,(R).
Since it is also a subgroup this group is a Lie group. By the usual convention
U(C™) is denoted by U(n). Each finite dimensional vector space V with in-
ner product is isomorphic to C™ endowed with the standard Hermitian inner
product. Thus all unitary groups are isomorphic to a U(n). The standard
complex representation U(n) — GL,(C) where each matrix is represented
by itself is called the standard representation.

Definition The special unitary group SU(n) is the subgroup of U(n)
formed by matrices of determinant 1.

With the implicit function theorem and the defining property det(A) —
1 = 0 we obtain that SU(n) is a real submanifold of U(n) of dimension n? —1
and hence also a Lie group. Again we have a standard representation where
each matrix in SU(n) is simply represented by itself.

Via differentiating the defining property it can be shown that the Lie
algebra of U(n) only contains skew Hermitian matrices. For reasons of
dimensions this has to be the whole Lie algebra u(n). Differentiating the
defining property of SU(n) implies that the matrices in its Lie algebra are
traceless. Again for reasons of dimension the Lie algebra su(n) is exactly the
space of traceless skew Hermitian matrices.

Another kind of Lie groups that appears in this work are the indefinite
orthogonal groups:

Definition Let V be a finite dimensional vector space endowed with a non-
degenerate, symmetric bilinear form g. The orthogonal group O(V,q) is
defined to be the group of all automorphisms of V' that preserve the quadratic
form, i.e.:

O(V,q) :=={9 € GL(V) : g"¢ = q}
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Let R™® denote the standard r + s dimensional vector space with the
standard bilinear form of signature (r, s):

QT,S(X> V) =21y1 + ..o+ Tl — Trg1Yrt1 — - - — TppsYris

We define O(r, s) := O(R"™®). Via the standard basis of R™® we obtain a
isomorphism of O(r, s) to the group of all matrices M that satisfy M nM =
7, where
n = diag(1, - ,1,—1,---,—1).
S— —m—

7 S

By using the implicit function theorem it can be shown that O(r,s) is a
n(n — 1)/2 dimensional Lie group. Since by Sylvester’s law of inertia sym-
metric bilinear forms can always be diagonalized, all indefinite orthogonal
groups are isomorphic to a O(R™®). Hence they are a Lie group.

We again have the subgroup consisting of elements with determinant 1:
SO(V,q) :={g € O(V,q) : det(g) = 1}

which is called indefinite special orthogonal group. Accordingly we de-
fine SO(r,s) := SO(R"™®). It can be shown by using the implicit function
theorem that this is a Lie group(see |[FH|). In the next section we will dis-
cuss some topological properties of O(r, s) and SO(r, s).

1.1.3 Lie group representations

Definition A representation of a Lie group G is a Lie group homomorphism
from G into GL(V'), the automorphism group of a vector space; i.e. a smooth
group homomorphism.

Definition A representation of a Lie Algebra g is a Lie algebra homomor-
phism from g into gl(V'), the endomorphism group of a vector space; i.e. a
linear map that preserves Lie brackets.

Differentiating Lie group homomorphisms at the identity and the so
called exponential map yield the following theorem: (see [FH|, page 119 for
a proof)

Theorem 1.1.2 ([FH|, page 109) If G and H are Lie groups with G con-
nected and simply connected, the Lie group homomorphism G — H are in
one-to-one correspondence with Lie algebra homomorphisms of the associated
Lie algebras.

Corollary 1.1.3 (|[FH], page 109) This implies in particular that repre-
sentations of a connected and simply connected Lie Group are in one-to-one
correspondence with representations of its Lie algebra.
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A Lie group has a canonical representation of its Lie algebra, the so called
adjoint action: First let G act on itself via conjugation:

conj : G — Aut(G), conjy(h) = ghg™* (1.1)

This action is smooth and conj,(e) = e, so differentiating conj, at the neutral
element maps g isomorphically to g. This map is denoted:

Adg:g—9g (1.2)

Because conj,, = conj, o conj, differentiating yields Adg, = Adgo Adp. So
the mapping g — Ad, is a representation, the so called adjoint represen-
tation of G. It can be shown that Ad, is an automorphism of the Lie algebra
g, i.e. [z,y] = [Ady(z),Ady(y)] for all z,y € g. Notice that for matrix Lie
groups and the canonical identification of their Lie algebras with matrices

Ady(h) =ghg™' VgeG,heg

where the right-hand side connotation is matrix multiplication.
We can differentiate Ad : G — Aut(g) at the identity to obtain a map:

ad : g — der(g) (1.3)

It can be shown that ad(z)(y) = [z,y] for all z,y € g(see [FH|), and this
is another common way to define the Lie bracket on the tangent space at the
identity of a Lie group.

1.2 Spacetime

In this section we introduce the concept of spacetime manifolds. We begin
with dimension four, which is most important in physics, and then generalize
to arbitrary dimension. First introduce the concept of a Minkowski vector
space:

Definition A Minkowski vector space is a four-dimensional real vector space
with a non-degenerate, symmetric bilinear form with signature (1,3) =
(+,— =)

This definition was introduced by Minkowski in order to describe the math-
ematical structure of special relativity. Elements of a Minkowski space are
often called events or fourvectors. Choosing a basis, or equivalently
an isomorphism to coordinate vector space RY3 yields 4 coordinates for each
event: (zg,x1,22,23) Beginning with the index 0 is a widespread and gen-
erally accepted notation in physics. There zq is regarded as time coordi-
nate and the other three components (x1,x2,x3) as space coordinates. The

'In mathematics and general relativity often also the signature (3, 1) is used



1. Important concepts 7

automorphism group of the Minkowski spacetime, O(1,3), is the so called
Lorentz group. This is perhaps the most important and prominent group
in 20th century physics and plays a central role in this work. There are a
lot of books about Minkowski space and its prominent role in Mathematical
physics, |SU| or [N2] offer a good introduction.

1.2.1 Spacetime manifolds

Within the framework of Minkowski space we can not describe gravitational
effects. Gravitation seems to curve the worldlines of particles independent
of their inner constitution like their charge or mass. Minkowski space alone
does not allow such natural “grooves”. Einsteins made the observation that
at least locally every point has a neighborhood that looks like Minkowski
space. The natural question is now “How small?”. The answer expressed in
turn of the century mathematical terminology is we need an “infinitesimal
neighborhood” to make this statement exact. This allows to give a modern
definition: [N2|

Definition A spacetime is a 4-dimensional smooth manifold X with a
semi-Riemannian metric g of index (1, 3), called a Lorentz mectric. Thus,
for each & € X the tangent space in z is isomorphic to R13.

Smooth 4-manifolds are a rich subject, and many of them admit a Lorentzian
metricE] There are physical restrictions of which spacetime manifolds are of
real physical significance. For example, compact spacetime manifolds always
admit closed timelike curves(curves with always timelike tangent vectors,
i.e. vectors v with g(v,v) > 0)[N1]. This would have some bizarre physical
interpretations, so compact spacetimes are usually disregarded. Another im-
portant restriction follows shortly, when we have the right tools to state it.
The Minkoswki space R itself can be regarded as spacetime manifold. The
underlying manifold is of course R* and all its tangent spaces can be canon-
ically identified with R'3 and inherit the Minkowski product. In standard
coordinates the metric tensor is obviously constant and hence the curvature
tensor of R3 vanishes.

Minkowski space plays a central role in the concept of spacetime mani-
folds. For each point on a spacetime manifold the tangent space is isomor-
phic to RY3. This isomorphism is not unique. A coordinate isomorphism into
R'3 has to be picked to locally describe things such as the momentum of a
particle. Choosing another basis corresponds to applying an element of the
automorphism group of RY3.

2Many here means all non compact ones and all compact ones with Euler characteristic
0, see O]
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1.2.2 Lorentz group

As already mentioned in (1.2)), the Lorentz group is defined in the following
way':

Definition The Lorentz group is the indefinite orthogonal group O(1, 3), i.e.
the group of all invertible linear maps R13 — R'3 that preserve the bilinear
form. An element of the Lorentz group is called a Lorentz transformation.

Next we discuss some basic topological properties of the indefinite or-
thogonal groups O(r,s)(1.1.2). A central observation is that the polar de-
composition of O(r,s) C GL,(C) gives rise to a homotopy equivalence

O(r,s) — O(r) x O(s).

See (|K]|, proposition 1.143) for details. It is a classical result that SO(n) is
connected and for n > 3 the fundamental group is m1(SO(n)) = Za(see [K],
proposition 1.136). We can deduce the following facts:

e For r, s # 0 the group SO(r, s) has exactly two connected components.
e For r,s # 0 the group O(r,s) has four connected components and
m0(O(r, 8)) = Za x Zs is the Klein four-group.
e For s > 3 the fundamental group of SO°(1,5) = 0°(1, s) is 71 (SO’(1, 5)) =
L
Thus the Lorentz group O(1, 3) has four connected components and the fun-
damental group of its connected component O°(1,3) is Zs.

In physics usually a time ordering is needed: If there are two events in
Minkowski space which are separated by a non space-like vector(i.e. a vector
such that b(v,v) > 0) then all observers have to agree upon which event
happened first, i.e. has a smaller time coordinate. It is also a physical fact
that admissible bases are always linked by an orientation preserving Lorentz
transformation, that is a transformation with determinant one. With the
above homotopy equivalence it can be shown that all time and orientation
preserving Lorentz transformations are exactly the connected component of
the Lorentz group, SO°(1,3).

This means that the underlying space is still Minkowski space, but we
have to restrict the automorphism group. We can take care of this by adding
more structure to Minkowski space, so that the automorphism group will
shrink to SO°(1,3). To describe this structure a closer look at timelike vec-
tors(vectors v with b(v,v) > 0) is needed. The set containing all of them
decomposes into two connected components, which is best shown in coordi-
nates where this sets correspond to xg > 0 and xy < 0.
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Definition Time oriented and oriented Minkowski space is a four di-
mensional real vector space with a non-degenerate, symmetric bilinear form
with signature (4, —, —, —) and additionally a fixed orientation as well as a
fixed time orientation. Time orientation corresponds to assigning to one of
the connected components of timelike vectors the label “future directed”
and to the other the label “past directed”

It can be easily verified that the automorphism group of time oriented
and oriented Minkowski space is the connected component of the Lorentz
group SO°(1, 3).

Now we are ready to introduce the concept of a timeoriented space-
time manifold. We want to have a spacetime manifold where each tangent
space additionally has the structure of a time oriented Minkowski space. This
time orientation should of course be smooth. As with orientation there are
various equivalent ways to define this. We will describe the smooth structure
with smooth timelike vector fields:

Definition A time orientatable spacetime is a spacetime X where the
two connected components of timelike vectors in each tangent space can be
labeled future and past directed in a way such that the following holds:

Let V' be an arbitrary smooth local timelike vector field defined over a co-
ordinate neighborhood U C X, i.e. g,(V)p,V,) > 0 for each p € U. Then V
is either future or past directed, that means V), is future directed for each
p € U or V), is past directed for each p € U.

A spacetime X equipped with such a labelling is called time oriented.

It is easily verified that on each connected component of a time orientable
manifold exactly two time orientations exist, and one is just the reverse of
the other. In the next section after introducing some useful concepts a more
convenient definition of time orientation is given.

Thus we have two non trivial conditions for a spacetime allowing us
to rule out “unphysical” behavior, namely the well known orientation and
the time orientation. A third one will follow shortly from the fact that not
S0Y(1, 3) is the right automorphism group, but its double cover. To formu-
late and understand this third restriction the right framework is discussed
in the next section.

We can easily generalize the concept of a spacetime to each dimension. It
is then defined as a smooth n-dimensional manifold with a semi-Riemannian
metric of signature (1, s). Everything generalizes straightforward. Here the
group of orientation and time orientation preserving automorphisms of R
is the connected component SO(1,5)? of O(1,s). By the topological facts
discussed above the fundamental group of it is 71 (SO(1, s)?) = Zo.
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1.3 Principal bundles

In this section another important concept to formulate the Standard Model
Lagrangian in a geometrical way is introduced, the formalism of principal
bundles. The definitions and notation will follow [N2].

1.3.1 Definition

Definition Let X be a differentiable manifold and G a Lie group. A smooth
principal bundle over X with structure group G consists of a differentiable
manifold P, a smooth map P : P — X onto X and a smooth right action

U:PXG_>Pv U<p7g):pg

such that the following two conditions are satisfied:

e o preserves the fibers of P, i.e. P(p-g) = P(p) for all p € P and all
ged

e Local triviality: For each x € X there exists an open set V in X
containing ¢ and a diffeomorphism ¥ : P~1(V) — V x G of the form

U(p) = (P(p), ¥(p)), where ¢ : P~H(V) — G satisfies 1)(p-g) = ¥(p) g
for all p € P~1(V) and all g € G.

The pair (V,¥) is called a local trivialization of the G-bundle and a
family of local trivializations {V}, ¥;};es such that the V; s cover X is called
a trivializing cover or principal bundle atlas. A principal bundle will be

denoted by G — P LNy'S

The Cartesian product U x G gives rise to a principle bundle structure
called a trivial bundle. Every principal bundle is isomorphic to a trivial
bundle via a trivialization. But this trivialization is not unique because there
is no distinct element in a fiber of a principal bundle. Every element is treated
equally.

1.3.2 Connections

Connections on principal bundles will turn out to be an essential object in
physical gauge field theories such as the Standard Model and will describe
the interaction of “forces” and “matter” in their Lagrangian. The fibers over
a point z, P~1(x) give rise to the concept of ’vertical’ in a bundle:

Definition Let G < P 2 X be a principal bundle and p be a point of P.
Then by applying the right action ¢ : G — P we obtain a diffeomorphism
from G to the fiber containing p. By differentiating the right action we obtain
a linear isomorphism from the Lie algebra g of G to a subspace of the tangent
space Tp(P). This subspace is called vertical subspace Vert,(P) C T,(P).
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The vertical subspace is exactly the kernel of the derivative of the pro-
jection map P:
Vert, (P) = ker(TP),

All vertical subspaces together Vert(P) := ker(TP) C TP span a subbundle
called vertical bundle of the tangent bundle.

FEach A € g gives rise to a vector field A# on P via the differential of the
map op(g) = p- g at the neutral element e:

AF(p) = (Toy)e(4) = & (0~ exp(t4))i=o

These fundamental vector fields span the vertical bundle.

Then we introduce the following concept:

Definition A (principal) connection form on a principal bundle G —
P 2y X with action o is a smooth g-valued 1-form w on P which satisfies
L. (0g)'w=Ad,1owforall ge G
2. w(A#) = Aforall Ain g

Given a connection form we can immediately define the horizontal sub-
space Hor,(P) of T,(p) by

Hor,(P) = {v € T,(P) : wy(v) =0}

All horizontal subspaces together span a subbundle of the tangent bundle,
the horizontal bundle. We can prove that the tangent bundle is the direct
sum of a horizontal and the vertical bundle, i.e.:

T,(P) = Hor,(P) @ Vert,(P) Vpe P

Proof Suppose v is in Vert,(P) N Hor,(P). By identifying the vertical sub-
space with the Lie algebra of G the tangent vector v would be the A% (p)
for a A € g. But then wy(v) = w,(A#(p)) = A by (2) Therefore by
definition of the horizontal subspace v = 0, thus the two subspaces have a
trivial intersection. The dimension of Hory,(P) by its definition as Kernel of
a linear map is the dimension of 7),(P) minus the dimension of Vert,(P), so
dim T, (P) =dim Vert,(P) + dim Hor,(P). [

The horizontal subspace is invariant under the action of G on P in the
following sense:

(T'og)p Hory(P) = Horp.q(P)
which follows from ([1.3.2))(1).
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Remark The horizontal subbundle is a distribution on the manifold P be-
cause it is defined as the kernel of a smooth form. This process can be
reversed, it can be shown that every distribution D on P that satisfies
T,(P) = D(p) ® Vert, P and (T'oy)pDp(p) = Dp.g(P) gives rise to a con-
nection form w on P where Hor,(P) = D(p) by using the connection to
project onto the vertical subspace. We could equally well use the distribu-
tion picture to define connections and this gives a more intuitively accessible
method of relating to a connection form. See [N1] for details. But for further
use in this work the given definition is better suited.

1.3.3 Curvature

Next we define the curvature of a connection form. Let d denote the usual
exterior derivative.

Definition Let w be a connection form on a smooth principal bundle G <

P 2, X. Then the curvature Q € A%(P,g) is defined to be the horizontal
part of the exterior derivative of w:

Qp(v,w) := (dw)p(v, w) (1.4)

The curvature form is bilinear, skew symmetric and smooth. How to fill
this definition with life and give intuitive interpretations(obstruction to flat-
ness, parallel transport along closed curves...) can be found in |[N1].

Our definition of curvature(1.3.3) is, although short, not very suited for
calculations. To this end we first need the following definition:

[w, w]p(v, w) = [wp(v), wp(w)] Yv,w € Ty(P) (1.5)

Because of the skew symmetry of the Lie bracket [w,w] is a g valued exterior
two form. Now the way to the famous Cartan Structure Equation is
paved:

Proposition 1.3.1 Let Q be the curvature form of w as in (1.3.3). Then:
Q= dw+ [w,w] (1.6)

We can use the obvious skew symmetry of both sides, fix a p € P and
v,w € T,(P) and decompose them in vertical and horizontal parts to reduce
the proof to the following cases:

1. v and w both horizontal

2. v and w both vertical

3. v vertical and w horizontal

For the full proof with all details see [N2].
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1.4 Associated bundles

In this section another concept central to the formulation of the Standard
Model Lagrangian is be introduced, the so called associated bundle. Let
G — P 2 X be a smooth principal G-bundle with right action o. Let V'
be a finite dimensional vector space with a smooth representation of G. This
defines a smooth left action of G on P x V:

((p.v).g) = (p-g7 "9 v)

We use the same dot to indicate all actions of G. It will be clear from
the context which one to use. The orbits of this action induce an equivalence
relation on P x V. We denote the equivalence class of (p,g) as [p,g]. Let
P xa V be the set of equivalence classes and give it the quotient topology
determined by the quotient map O.

Now we can define a projection mapping

Pa:PxgV =X, Pallp,v]) =P

This is well defined, because the right action on the principal bundle is fiber
preserving. For z € X and p € P such that P(p) = x the fiber above z € X,
Pl (z), is given by the set {[p,v] : v € V} because G acts transitively on
the fibers of P.

Now we fix a 2, € X and let (U, V) be a trivialization of P containing
xg. There is a canonical associated cross section s given by:

With this we define a map:

Q:UxV = PHU), &(z,0)=[s(z),v]

which is continuous since it is the composition of continuous maps. By using
that the right action acts freely and transitively we conclude that ® has an
inverse:

TP HU) = UV, ¥(s(z),v] = (z,v)

To show that U is continuous, we observe that ¥ o Q is given by (p,v) —
[p,v] = (P(p),g - v) for a certain g. This shows that ® = U~ and ¥ are
homeomorphisms.

This shows that the structure (P xg V, X, Pg, V) is a locally trivial vec-
tor bundle with the same trivializing neighborhoods as the original principal
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bundle. To verify that it can be equipped with a unique differentiable struc-
ture such that the projection Pg is smooth and each W is a diffeomorphism
it is enough to show that the 'coordinate change’ maps

oUW (U;NU) x V= (U;NU) x V

are diffeomorphisms. A direct calculation shows that in fact

U, o ‘i!j_l(x,v) = (z, gji(z) - v)

where g;; is the unique smooth transition function of the original pincipal
bundle: U; N U; — G such that s;j(z) = s:(¥) - gij(a) -

Because the action on the vector space is smooth we are finished. This leads
to the following definition:

Definition (P xgV,X,Pg,V) is a smooth vector bundle, the so called
associated bundle. The trivializing neighborhoods of X of the initial prin-
cipal bundle are again trivializing neighborhoods so we can take these as
trivializing cover. The transition functions are given by the action on V of
the corresponding original transition functions. The fibers are now isomor-
phic to V.

Remark The same construction of surgically replacing fibers can be done
with any manifold F' on which G acts smoothly on the left. The process is
exactly the same, just literally replace V with F'. In this work we only need
the concept of associated vector bundles.

If the representation of G on V is denoted by p and the original principal
bundle by P, we denote the associated vector bundle by:

P, Px,V—X

An important example of an associated bundle is the vector bundle associated
to the adjoint representation Ad : G — GL(g) of a principal bundle G —

P P X. This bundle P X ad @ is called the adjoint bundle and we denoted
it by Ad P.

1.4.1 Frame bundles

Given a finite dimensional vector bundle 7 : £ — X we can use all frames
for all fibers to construct a principal bundle. Recall from that a frame
is an ordered basis or, equivalently an isomorphism from coordinate vector
space K™. We give an outline of this process. Let L(E), denote the set of
all frames for a fiber over x € X(interpreted as vector space) and define:
L(E) = U ex L(E),. We have a projection map:
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Pr:L(E)— X, Prlp)=uxzforpe L(E),

The automorphism group of the coordinate vector space K" is the general
linear group GL,(K). By we obtain a transitive and free right action
on L(FE);. This induces an action on L(F) which is fiber preserving. The
objective now is to provide L(E) with a topology and manifold structure
such that

GL,(K) — L(E) 2% M

is a smooth principal GL, (K) bundle over M, called the (linear) frame
bundle of X. To do so, we fix a zg in M. Let U be a trivializing neighbor-
hood of zg in E with trivializing map v : 7~ 1(U) — U x K™, which gives
for each point x in U an isomorphism 1/;1, from K™ to the fiber over z.

Each frame in L(FE), is an isomorphism p from K™ to the fiber as well,
so there is a unique automorphism gy (p) of K"(an element of G L, (K) such
that p = 1, o gy (p) This gives rise to a map

¢ PLHU) = U x GLy(K) : (p) = (PL(p), 95(p))

These v will become the trivializing maps of L(FE). We see that 1 is bijective.
We can now use the topology on U and on GL,(K) to induce a topology
on L(E): A subset U of L(E) is declared to be open if and only if for each
trivialization (U, ) ¥(U NP1 (U)) is open in U x GL,(K). Tt is easily ver-
ified that this really is a topology on L(F) and makes P, a continuous map.

Next we show how L(E) can be made a topological manifold: To obtain
charts, we need to show that the trivializations 1 are homeomorphisms
or, equivalently, continuous and open. For the latter, let W be an open set
in P, 1(U). Because Py '(U) is open in L(E), W is also open in L(E). By
the definition of the topology on L(E), (W NP. (U)) = (W) is open in
U x GL,(K) which shows that each trivialization is open.

To show continuity of ¥, let (U, 1) and (V, p) be two trivializations with
UNV # 0. Then take a closer look at:

Yop L (UNV) X GLy(K) = (UNV) x GL,(K)

By definition of ¢ and p each p in PZI(U N V) can be expressed as p =
Yz 0 gy(p) and p = py o g,(p). From this it can be deduced that gy(p) =
Ve 0 fy 0 gp(p). It follows that 1 o p~L(z,g) is (2,9,  © o g) which is
composition of smooth maps and hence a diffeomorphism. E]

3Observe that the map 1/;1_1 o pz is an element of GL,(K) and corresponds to the
transition map of the original trivializations of the bundle E
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Now the continuity of ¢ can be proven. Let Z be an open set in U X
GL,(K). We have to show that 1y~1(Z) is open in L(E). By definition of the
topology on L(FE) this is exactly the case if for each trivialization (V, p) the
set p(v "1 (Z) NP, (V)) is open in U x GL,(K). A brief calculation shows
that:

p(™HZ)NPLHV)) = (poy™ ) Z N (U x GLy(K)

which is open because as just shown po~! is a diffeomorphism. This shows
that 1 is continuous. By the above it is also open and hence a homeomor-
phism.

It is not hard to verify that L(E) is Hausdorff. Together with the fact
that the trivializations are homeomorphisms this makes L(F) a topological
manifold. Its dimension is m + n?, where m denotes the rank of the vec-
tor bundle E. How to define a smooth structure on it is clear by the above
observation that the trivialization changes are diffeomorphisms. Within triv-
ializations it can be shown that Pr, as well as the right action are smooth. It
follows from the definition of the trivializations that they respect the right
action. Eventually we arrive at the following result:

Proposition 1.4.1 Given a finite dimensional vector bundle E of rank n,
the (linear) frame bundle as constructed above is a principal bundle GL,(K) —

L(E) Pr, x. A trivializing cover of E s again a trivializing cover.

An important example of a frame bundle is the associated frame bundle
to the tangent bundle of a smooth manifold X, we denote it by L(X).

Given a smooth vector bundle E we can construct its linear frame bun-
dle L(F) and subsequently the associated bundle to L(F) via the natural
representation of GL,,(K) on K™. Due to the construction of associated bun-
dles they are a quotient of L(E) x K™. More specifically, an element in the
associated bundle is the orbit of the action of GL,(K) on L(X) x K™

[p,v] ={(p-97",9-v): g € GL,(K)} (1.7)

With the interpretation of p as an isomorphism from K" to the fiber in F
over Pr(p) and observing that the map

w: L(E) x K" — E,w(p,v) = p(v)
is constant on the orbits ([1.7) we see that w factors to a map
Q: L(E) XGLn(K) K'—s FE

This map is fiber preserving and linear. By trivializations it can be shown
that it is also a diffeomorphism. Thus we obtain an isomorphism of smooth



1. Important concepts 17

vector bundles over X.

This shows how closely related these two constructions are. All vector
bundles of rank n are isomorphic to a vector bundle associated to a principal
GL,(K) bundle.

1.4.2 Orthonormal frame bundles

Let 7 : E' — M be a vector bundle carrying additional structure on its
fibers in such a way that the automorphism group of a typical fiber %4
can be interpreted as a Lie subgroup of GL(V/). Then we can carry out a
construction similar to the frame bundle construction . Let F(E'), be
the set of all frames for a fiber over € M, i.e. all isomorphisms of V' to the
fiber over . Then define F(E') = Usex F(E'),, and the natural projection
map Pr : F(E') = X,Pp(p) = = for p € F(E'),. Then we can exactly
repeat the linear frame bundle construction to obtain a principal bundle
called associated frame bundle. An exact formulation of this concept will
not be given. We rather look at some explicit examples:

e Let X be a semi-Riemannian manifold of signature (p,q). For each
r € M exists a neighborhood such that the tangent bundle TM can
be trivialized via an orthonormal frame. Thus it can be interpreted
as vector bundle with typical fiber RPY. The orthonormal frame
bundle is the O(p, ¢) bundle we obtain by repeating the construction of
the linear frame bundle for orthonormal frames of the tangent bundle.
This principal bundle will be denoted as:

O(p, q) = O(p, q)(X) L& X (1.8)

e Let X be an oriented and time oriented spacetime as defined in .As
above its tangent bundle can be interpreted as a vector bundle where
the fibers are isomorphic to oriented and time-oriented Minkowski
space. Its automorphism group is the connected component of the
Lorentz group SO°(1, 3). Repeating the construction of the linear frame
bundle for orthonormal, oriented and time oriented frames yields the
principal bundle:

SO°(1,3) — L£(X) 25 X (1.9)

The latter bundle called oriented, time oriented orthonormal frame
bundle will turn out to be a core part for the formulation of the Standard
model.

Another application of the associated bundle and frame bundle concept
is a description of time orientation and space orientation of spacetimes.
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The pseudo orthogonal group O(p, q) allows two important homomorphisms
into Zs: The so called space orientation character o4 and the time orientation
character o_. These characters map the respective orientation preserving
elements in O(p,q) to 1 and the respective orientation flipping elements to
-1. Given a semi Riemannian manifold X and its frame bundle O, 4(X), we
can construct the following associated bundles:

O(p, q) X0, Zo (1.10)
O(p,q) Xo_ Z2 (1.11)

These are called space orientation bundle and time orientation bun-
dle. A global section of these bundles is called space orientation or time
orientation of the semi Riemannian manifold X. If such a space or time ori-
entation exists, which means that the bundle has a global trivialization, X is
called space respectively time orientable. For a Lorentzian manifold (p = 1)
the previously defined time orientation of a spacetime is seen to co-
incide with this more general concept: We could equally well construct the
time orientation bundle by letting the frame bundle act on the set of con-
nected components of timelike vectors. Then a continuous choice of such a
connected component corresponds to a section of the time orientation bundle.

Remark Let us reflect upon the physical interpretations of the concepts
of this section: The associated frame bundle construction takes all possible
frames in each tangent space of spacetime and groups them into one object,
the associated frame bundle. If a physicist wants to describe a process hap-
pening in a neighborhood of a point, he has to pick a frame in each point,
which is a smooth section of the associated bundle or equivalently a local
trivialization. Of course he also needs now a formalism to describe objects.
This will turn out to be sections of associated bundles to the frame bundle,
so basically vectors which transform in a certain way under a basis change.

1.4.3 Tensorial forms

In this section a certain kind of vector valued forms on principal bundles,
the so called tensorial forms are introduced. The notation and proofs follow
IN2].

Definition Let G < P 25 X be a principal bundle with right action o.
Let V be a vector space and p : G — GL(V') be a representation of G on V,

denoted by (p(g))(v) =g - v.
A V-valued k-form ¢ on P is

¢ pseudotensorial of type p if and only if the following equation holds

orp=g9" ¢ VgeG (1.12)
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e tensorial of type p if and only if it is pseudotensorial of type p
and horizontal in the sense that ¢,(vi,---,vg) = 0 if one of the
vi, -, v, € Tp(P) is verticalﬁ A 0-form is taken to be vacuously hori-
zontal. The set of all V-valued k-forms on P that are tensorial of type
p provided with the obvious real vector space structure will be denoted
by AK(P,V)

That pseudotensorial forms are a larger class than tensorial ones can be
seen by a connection form w: By its definition it is a pseudotensorial
form of type Ad, but not tensorial(indeed the kernel of w, is Hor,(P) and
not Vert,(P)).

Lemma 1.4.2 Let G — P 2 X be a principal bundle and ¢ a pseudoten-
sorial form of type p with the same notations as above. Then the exterior
derivative do is also pseudotensorial of type p

Proof With the facts that d is a natural transformation and that the action
of g on V is linear we obtain:

o5(dp) = d(og) =d(g™" - ¢) =g " - do
|

So d is a differential operator on pseudotensorial forms. To get a similar
differential operator on tensorial forms, we need a principal connection on

G‘—)PQX:

Lemma 1.4.3 Let G — P 2 X be a principal bundle with a principal
connection form w and T a pseudotensorial form of type p with the same
notation as above. Then the V-valued k-form 7 on P defined by

T}f](vl,-~- ,’Uk):Tp(’U{{,-" ,v,f) (1.13)
is tensorial of type p. Here v is the horizontal part of v € T,(P) determined
by the connection form w.

Proof The defined 77 is a smooth V-valued k-form: It is skew-symmetric,
C®-linear and as composition of smooth projections and a smooth form
smooth. We see directly from the definition that 77 is horizontal. To show
that 77 is pseudotensioral we use the fact that the action of G' on tangent
vectors via the differential of o respects the splitting in horizontal and vertical
parts:

(Tag)p(v)! = (Tog)p(v") Yg € G,p € Pv € Ty(P) (1.14)

4Note that we do not need a connection to define horizontal.
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This follows from observing that (7'0,), maps vertical vectors to vertical ones
and (Toy), maps horizontal vectors to horizontal ones. The latter follows di-
rectly from the invariance of the horizontal space. Because the splitting of
a tangent vector in its horizontal and vertical part is unique we obtain .

Let v denote the k arguments vy, ,v; of 7. With this we get the
following;:

(U;TH)p(V) = Tﬁg«TUg)pV) = Tp-g(((TUg)pV)H)

H -1 H -1 _H
=(ogm)p(v?) =g~ p(v') =g -7, (V)
This shows that 77 is also pseudotensorial, hence it is tensorial. |

We obtain a covariant exterior derivative on pseudotensorial forms:

Proposition 1.4.4 Let G — P P X bea principal bundle with a connec-
tion form w and ¢ a pseudotensorial k-form of type p in the same notation
as above. Then the covariant exterior derivative d“¢ of ¢, defined by

(dw(b)]?(vl? T 7vk+1) = (d¢)5(01, T 77}k+1) = (d(b)P(’U{I? e 7’UI?+1) (115)

is a tensorial (k + 1)-form of type p. In particular,
w . Ak k+1
& AS(P,V) = AU V) (1.16)

A principal connection form on a principal bundle gives rise to a canonical
covariant derivative on tensorial forms. We have already seen an example
of an action of a covariant derivative: The curvature form (2 is the
covariant exterior derivative of the connection form (Q = d“w). As with the
curvature in its original definition, the definition above is inconvenient form
for calculations. But if viewed as operator on tensorial forms A’;(P, V) —
A’I;H(P7 V') there is again a useful equation similar to the Cartan structure
equation, which is given below. First w define the following product of forms:

Definition Let p be a smooth representation of a Lie group G on a vector
space V. Then consider the Lie algebra homomorphism p’ : g — gl(V)
obtained by differentiating the Lie group homomorphism p : G — GL(V).
The result is a bilinear map:

g(V)xV 5V, (Aw) s A-v=p(A)(v) (1.17)

We then define a product A for g-valued k-forms o and V-valued 1-forms (:

1

a APy, vpyr) = T D (=D a(vp), V() BWo(er1y s Vo))

0€SK41

where we sum over all permutations in Sy
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With this we can write down the following form of the covariant deriva-
tive:

Proposition 1.4.5 Let G — P P X bea principal bundle with a principal
connection form w and ¢ o tensorial k-form of type p in the same notation
as above. Then the following equation holds:

¢ =dp+w A ¢

The proof is analogous to the proof of the Cartan structure equation(1.3.1]).
We fix a p € P and vy...v541 € Tp(P) and decompose them in vertical
and horizontal parts. By using the multilinearity the proof reduces to the
following cases:

1. Each vy, -+ ,vgy1 is horizontal.
2. Two or more of vy, ..., vy are vertical.
3. Precisely one of vy, ..., vy is vertical and the rest horizontal.

The first two cases are trivial, the third requires some work. The full proof
can be found in |[N2].

Next we state and prove a fact that is central for this thesis: Tensorial
forms correspond to forms on the base manifold with values in an associated
bundle.

Theorem 1.4.6 Let G — P 25 X be a principal bundle with a connec-
tion form w and let p : G — GL(V) be a representation of the structure
group G on a finite dimensional vector space. Then there exists a canonical
linear isomorphism from the space of tensorial k-forms of type p, A’;(P, V)
to the space of k-forms on X with values in the associated bundle P x,V,
AFX,Px,V)=T(NT*X @ P x, V).

Proof First recall that each p in P induces a linear isomorphism of V' with
the fiber over x = P(p) in the principal bundle by:

p:V = (Px,V), pv)=I[p,]

Now define a map
L AN(PV) = AF(X P x, V)

by pointwise defining:
L(T)m(’l)l,-”?}k) = [.f,’]’j(lfl,“- ,ka)] (1.18)

where Z € P is an arbitrary element in the fiber over x: P~!(x) and v; are
tangent vectors in Z such that (TP)z(0;) = v;
We have to show that ¢ is well defined. This is seen by noting that:
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o (TP)z(0;) = v; and (TP)z(0;) = v; implies that 0; = v; + h, where h
is vertical.
o Tig(Tog(v1), -, Tog(vy)) = (9*0)z(v1, -+, G)) = g~ 7a(v, -+, 0)
by using that 7 is tensorial.
Thus [Z, 75(v1, -+ ,Uk)] = [#,72(01, -+, Uk)] and ¢, is well defined. By using
charts we can see that it depends smoothly on x, so we obtain an element
u(1) in A¥(X, P x, V). The map ¢ is linear.

Now define a map:
ki AF(X,Px,V)— AN(P V)
by defining pointwise:

K(Q)p(U1, -+ U1) 1= p " 0 ga(v1, - vy) (1.19)

where as above TP(0;) = v; and P(p) = x. The map k. is well defined,
linear and depends smoothly on x. Therefore we obtain a linear map x into
the V-valued k-forms on P. It is left to prove that x(¢) is tensorial, which
follows from:

G K(D)p(v1, -+ v) =K(P)pg(Togv1, - Togiy) =
=(p-9) o gu(vr,---vr) = g7 K(B)p(v1, -+ vr)

It is horizontal since for vertical ; the projection v; = TP(v;) is 0.
The two constructions are inverse to each other, which can directly be verified
from their pointwise definitions.(({1.18) and (1.19)) |

Given a section of the principal bundle P, the above map ¢ : A’;(P, V) —
A¥(X, P x, V) can be written in the following form:

Proposition 1.4.7 Let s : X — P be a section of the principal bundle P
and T be a tensorial k-form on P. Then the above map v : A];(P, V) —

A¥(X, P x, V) is given by:
U(T)z(v1, .. vK) = [s(x), (s"T)z(v1, ... V)] (1.20)
Proof By the definition of the pullback:
(8"T)z(v1, .. vk) = To(z)((T8)zv1, - -, (T'8)20n)
But P os =id, thus

(TP)S(x) ((T's)zvi) = vs

This shows that the right-hand side of ((1.20) can be chosen in the definition
of ¢+ in (|1.18)). |



1. Important concepts 23

A special case of identification (1.4.6) is the case k = 0. The theorem
then allows us to identify smooth sections of an associated bundle P x, V'
with equivariant functions P — V. Here a function f : P — V is called

equivariant if f(p-g) = p(g~1)f(p) for all g in G.
One also has now a means of defining a covariant exterior derivative for
associated bundle valued forms:

Proposition 1.4.8 Let G — P P X bea principal bundle with a connec-
tion form w and let p : G — GL(V) be a representation of the structure
group G on a finite dimensional vector space. Then w induces a canonical
exterior derivative on the associated bundle P X,V valued forms:

VY AMX, P x, V) = AFTHX P x, V)

Proof Use ([1.4.6) and the covariant exterior derivative d*: (1.4.4)) to obtain

a map:

1 w L
VAR, P x, V) 2 AR(P V) B AR (P V) 2 AMU(X, P X, V)
|

It turns out that this canonical exterior derivative in fact is a vector bun-
dle connection, as already indicated by the notation:

For k£ = 0 we obtain a map
VY T(Px,V)=>T(T"X®Px,V) (1.21)
We can verify by direct calculation using and the explicit isomor-
phism that this operator also fulfills the Leibnitz rule:
V¥ (fo)=V“f+o®df

for all smooth functions f on X and sections o of P x, V. Therefore V¥ is
indeed a vector bundle connection.

Remark If G = GI(V) and the representation p is infinitesimaly effective,
ie. Tpe : g — gl(V) is injective, each vector bundle connection V on P x,V
gives rise to a principal connection on P and the two constructions are inverse
to each other(See [M|, theorem 19.9).

The induced vector bundle connection V¥ has a property which is useful
later on:
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Proposition 1.4.9 Let G — P e X bea principal bundle equipped with
a connection form w and let p1 : G — GL(V) and py : G — GL(W) be
representations of the structure group G on finite-dimensional vector spaces
V and W. Furthermore let ¢ : V — W be an equivariant map, i.e.:

popi(g) =p2(9)o¢p YgeG

Then:

o The equivariant map ¢ : V. — W induces a vector bundle homomor-
phism on the associated bundles:

¢:T(Px, V)=>T(Px, W)
e For such a qg
V4 (95) = ¢(Vs) (1.22)

for all vector fields X in I'(T'M) and all sections s of P x,, V

Proof Let s be a section of P x, V. By the above theorem (1.4.6) this
corresponds to a tensorial O-form on P with values in V. Let us denote this
map P — V again by s. We then define a map:

S

5:PSVEAW, s=¢os

Since ¢ is equivariant, § is also tensorial and therefore corresponds to a
section of P x,, V' which we also denote by 5. This map is C*°(X) linear
and thus yields the desired vector bundle homomorphism:

G:T(Px, V)= T(Px, W), s—3

To prove the second point it is sufficient to show that the corresponding
tensorial forms of both sides in agree. Let X be a vector field on P
such that TP(X) = X. Then the left-hand side is given in terms of tensorial
forms by:

(@(¢05)(X) = d(¢0s)(XT) = po(ds)(X)

In the last step we used that d(¢ o s) = ¢ o ds, which holds because ¢ is a
linear map. The right-hand side in terms of tensorial forms becomes:

¢ o (d°s)(X) = ¢ o (ds)(X")

Hence both side of (1.22) agree. |}
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Coordinate formula

Here an explicit coordinate formula for the induced covariant derivative V¢

is calculated. Let G < P 2 X be a principal bundle equipped with a
connection form w and an associated bundle P x, V. Then, as above, there
exists a vector bundle connection V¥ on P x, V which we express in local
coordinates.

Let U be a coordinate neighborhood of a point x € X with coordinate
functions (z1,...2n) : U - W C R" and s : R" — U — P be a local
section(with respect to the coordinates) of the principal bundle. Then we
can interpret a section o : W — P x, V as a map:

o:W = Px,V, o(x)=][s(x),v(x)]

where v is a map from W to the vector space V. Given a fixed section of the
principal bundle s(x), we can describe a section of the associated bundle via
v: W — V. The aim is to express V¥ in terms of the section s, the map v
and the coordinate one forms dz’.

To this end we advance in the following way: Let ¢ denote the tensorial
0-form that corresponds to o. It is a equivariant map P~1(W) — V. From

equation we now that:
Veo=ds+wh G
Now express this in coordinates, where we use that the section s gives rise to
a local trivialization W x G of P. Let (y1,...y;) be coordinate functions of a
neighborhood of the identity in G with g(0) = e. Then we obtain coordinate
functions (x1,...2n,y1...y;) of a neighborhood N of s(x). Next we want to
state & : P~1(W) — V with respect to these coordinates. Let p € W be of
the form s(z1,...2n) - 9(y1,...y1) = s(x) - g(y) It follows from the explicit
isomorphism that:
&p :p_l 00y = g(Y) : U(X)

For the exterior derivative term we obtain:

l n
- 0 i 0 .
oy = =—g(y) - v(x) dy' + Y g(y) - 5 —v(x) da
e j=1 9z

Subsequently we translate this expression back into an associated bundle
valued one form via the explicit isomorphism ¢. We are interested in the
coeflicients with respect to the coordinate one forms dx*:

- 0

U(d&), = U(ddp)x(0x;) = [s(x), db ) (0a,)] = [s(x), %U(X)]
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where we have used that in our coordinates 0x; on P is a vertical lift of dx;
on X. This yields the desired expression for the first term. The second is
calculated analogously. First we obtain:

(wA &), =w(xy) g(y) v(x)

where ZZ"Jrll widx® is the coordinate expression of w. Therefore:

Uw A G)y = [s(2), (W A §)5(2)(05,)] = [s(2), 0 (x) - v(x)]

where w;(x) = w;(x,0) = w;(s(x)). Note that w;(x) depends on the
local cross section s. By its definition w;(x) = wy(x)((1's)z(0;)), and by the
definition of the pullback this is (s*w),(0x;) = ($*w)x;

We arrive at the following result:

Proposition 1.4.10 With the notation as above the following identity holds:

(70 = D150, (5 + (i) - 0] o’

=1

1.4.4 Spliced bundles

When construction the Standard Model Lagrangian we will be in the follow-
ing situation: Given two principal bundles over the same space X we want
to “splice” them together into a single bundle. Consider the two bundles over
a given space X:

G P2 X

Gy — Py &> X
The total space of the spliced bundle is given by:
Pro Py ={(p1,p2} € P X P2 : P1(p1) = Pa(p2)}
which is a smooth submanifold of P; X Pa. One can define the projection:

Pi2(p1,p2) : PioPa— X, Pia(p1,p2) = Pi(p1) = Pa(p2)

which is a smooth map. We obtain a smooth right action of G; x G5 on
P1 o Py by:

(p1,p2) - (91,92) = (p1- 91, P2 - G2)

In total this gives a smooth principal G; x G5 bundle over X, the spliced
bundle:



1. Important concepts 27

G1XG2‘—>P10P2&>X

We have projection maps 7 : Py o P, — Py and my : Py o P, — P; given
by mi(p1,p2) := p; for i = 1,2. We can use them to lift connections from P;
and P,. Observe that the Lie algebra of G; x G5 is a direct sum gy @ go.
Given a connection w1 on P; we can therefore pull it back to a g1 ® g2 valued
form 7w by identifying g; with g; x 0 in g1 @ g2. Given a connection wy
on P, we analogously obtain a g1 @ g2 valued form mjws. This leads to the
following:

Proposition 1.4.11 The form mjwi +m5wy defined above is a principal con-
nection on Plo : PLo Py -+ X

Proof First we show that mfw; is pseudotensorial(l.4.3) of type Ad. Here
g1 denotes both the action of g; on the spliced bundle P; o P, and on Pj,
the dot denotes the adjoint action on the Lie algebra valued forms.

(91,92) miwr = (710 (g1, 92)) w1 = (g1 0 m1)*wy
=migiwr = 1oyt - wi) = (91,92) - (Tiw)

The same argument yields that w5ws is pseudotensorial, and therefore mjwi +
Tawa as well.

Next we observe what 7w gives on vertical vectors ToP1:P2) (A}, Ay),
where (A1, Az) denotes an element in g; @ go and a(pl’m)(gl,gg) is given by

(p1,p2) - (91,92)-

(ﬂ-fwl)(Plva)((Ta(pl,pz))e(Alﬂ AQ)) = (wl)pl((Tﬂ—l)(pl,pg))(Ta(pl,pg))e(Alv AQ)) =
(wl)pl((TUpl)eAl) =4

where the last line is interpreted as an embedding of g1 in g; @ go as above.
In combination with the same calculation for m3w this yields:

(Tiwi + T3wa) (py po) (TTPP2) (A1, As)) = (A', A?)

Hence mjw; + mswe also fulfills the second condition of being a principal
connection. |j

This construction allows us to splice principal bundles with given connections
into one principal bundle with an attached connection. The above construc-
tions generalize to any finite number of bundles.

Let p1 : G — GL(Vy) and ps : Go — GL(V2) be two finite dimensional
representations of (G1 and G5 on two vector spaces Vi and V5 over the same
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field. We want to associate a bundle to the spliced bundle P;oPs via these two
representations. This is achieved by linearly extending the action of G; x Ga
given by p; X pa on Vi x V5 to a representation:

p1 X p2: G1 X Go — GL(V) ® Va)
Thus there is an associated bundle:
Py o Py X(p,xpy) (V1 @ V2)
This bundle can be understood in the following way:

Proposition 1.4.12 There is a canonical isomorphism:

Proof This isomorphism is constructed fiberwise. Let x be in X and (p1, p2)
be an element in the fiber of Pj o P5. Let o} and 02 be elements of (Py X, V})
resp. (P2 Xp, V) in the fiber over . Then there exist unique v € V; and
w € Va such that ol = [p1,v] and 02 = [p2, w]. Then we can define a map:

Ly - (Pl X p1 Vl)x X (PQ X po Vg)x — (P1 o Py X (p1%p2) (V1 X VQ))x :
[plav] X [p?zw] — [(ppr)aU ®w] (123)

Changing (p1, p2) to another point in the fiber over x does not affect this map
and it is linear in both components. Because of the universal property of the
tensor product ¢, extends to the tensor product ((Py X, V1) ® (P2 X p, V2)) -
By observing how it behaves on a basis it can be deduced that this is a
fiberwise isomorphism. By choosing a local section s(x) = (p1(z), p2(z)) of
Py o P, we can verify that ¢, depends smoothly on z. |}

Now let wy be a principal connection on P; and ws be a prinicpal connec-
tion on P». As above we obtain a principal connection 7wy + Tywa
on P o P». With (1.21)) we get vector bundle connections V¥! on E; :=
(P1 X p1 Vl), V“2 on E2 = (PQ X po Vg) and vleer on E1 X E2 = (Pl (¢}
Py X (p1xp5) (V1 @ V2))

Via the coordinate form of V¥1 %2 the following result can be shown:

Proposition 1.4.13 With the notation as above the following equation holds
for all sections o of (P1 x,, Vi) and e of (P X, V2):
VIt (g @ e) = (Vo) @ e+ o @ (V¥2%e)

Therefore V¥11%2 s the canonical tensor product connection of V! and
vz,
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1.5 Spin structure

1.5.1 Clifford algebras

In section (1.2.2) the connected component of the Lorentz group SO(1, 3)°

is established as the structure group which links admissible frames. With an

underlying space time manifold X modelling gravity we obtain as described
L

above (|1.9) a principal bundle SO(1,3)? — £(X) PL, X as central object.
But as already mentioned we need more structure to describe the Standard
Model Lagrangian. The fermionic fields do not transform via a representation
of SO(1,3)°, but via a representation of its universal cover. In this section we
show how this universal cover is embedded in the so called Clifford algebra
of R3. The notation and presentation follows |[LM].

Definition Let V be a finite dimensional vector space over a field k with
characteristic # 2 and ¢ be a quadratic form on V. Let

T(V) = f: ® v (1.24)
1=0

denote the tensor algebra of V. Define Z, to be the ideal in V generated by
all elements of the form v®wv —q(v)1P|for v € V. Then the Clifford algebra
Cl(V,q) associated to V and q is an associative algebra with unit defined as:

CUV.q) = T(V)/Z, (1.25)

It can be shown(|LM]) that the map from V in CI(V,q) which is de-
termined by the embedding of V in T (V) is injective. This gives a natural
embedding V' C CI(V, q). We see that the Clifford algebra is generated by
the vector space V subject to the relation

v-v=q(v). (1.26)
‘This results in the following universal characterization of a Clifford algebra:

Proposition 1.5.1 (JLM]|, Proposition 1.1) Let f : V — A be a lin-
ear map from a k-vector space V with quadratic form q into an associative
k-algebra with unit, such that f(v) - f(v) = q(v)1 for all v € V. Then f

extends uniquely to a k-algebra homomorphism f : ClL(V,q) — A. The alge-
bra Cl(V,q) is the up to isomorphism unique associative k-algebra with this

property.

In mathematical literature, for instance |[LM]|, often v ® v + q(v) is used, but both
definitions are common.
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The discussion above shows that CI(V, q) has this universal property: Any
linear map f : V — A extends to a unique algebra homomorphism 7 (V) —
A which is 0 on the ideal and therefore descends to CI(V, q). Objects defined
by an universal property are always unique up to canonical isomorphism.

A Clifford algebra has an important natural splitting. In order to de-
fine it we observe that by the universal property of the Clifford algebra the
map a(v) = —v on V uniquely extends to a automorphism f : CI(V,q) —
Cl(V,q). It can readily be verified that f is an involution because f is. This
follows from the following fact: Let g and h be two automorphisms of V
which preserve the quadratic form g(i-e. in O(V)). Then by the universal
property we obtain g o goh = Goh. The eigenspaces of f to +1 and -1 now give
a decomposition:

Cl(V,q) = CI°(V,q) ® CI*(V,q)

where C1*(V, q) denotes the eigenspace to (—1)! of . Furthermore a(v-w) =
a(v) - a(w) holds for all v,w € CI(V,q). Thus a : Cl(V,q) — CI(V,q) is an
automorphism. By applying the above argument we additionally obtain a
group homomorphism: O(V, q) — Aut(Cl).

A Clifford algebra has a natural filtration. This structure comes from

the filtration 7° C T2 C ... C T(V) of the tensor algebra, defined by
T =Y., Q°V. We have T" ® T* C T'* for all r,s. We set F' =
mq(T?) to obtain a filtration F* ¢ F! ¢ F2... C CI(V,q), which has the
property that F" - F5 C F"T¢ for all r,s. With this structure CI(V,q) is a
filtered algebra. It follows that the multiplication map descends to a map:
(FrJFr=Y x (Fs)Fs=Y) — (Fr+s/Fr+s=1) for all r,s. With this approach
we arrive at the associated graded algebra @, (F"/F 1)
It can be shown that the associated graded algebra of CI(V,q) is naturally
isomorphic to the exterior algebra A*V. This follows from the fact that by
multiplication in CI(V,q) is skew in the highest order terms with
respect to the filtration. This leads to an important isomorphism:

Proposition 1.5.2 (JLM|, Proposition 1.3) There is a canonical vector
space tsomorphism:

A* = CUV,q)
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compatible with the filtrations.

Proof Define a map
1 .
frVx o xV—=CUV.q), [f(ur,...,v)= gZSlgn(U)vau) Vo (r)

where we take the sum over all elements o of the symmetric group. Then f
descends to a linear map f : A"V — Cl(V,q). By applying the associated
graded algebra structure of CI(V,q) it can be shown that for r = 0,...n f
is injective and the direct sum of these maps is an isomorphism. See |[LM])
for details.

With this isomorphism we obtain that for a n-dimensional vector space
V with quadratic form ¢ the vector space dimension of the CI(V, q) is 2™. If
we have a g-orthogonal basis e, ea, - -+ , e, of V, then the isomorphism shows
that the products of the form e;, - e;, - - - e;, with 41 <y < ---ij are a basis
of Cl(V,q).

1.5.2 The groups Pin and Spin
Next we define the subset of units in the Clifford algebra:

Cl*(V,q) ={¢p€Cl(V,q): Ip L € Cl(V,q) : ¢ 'p=g¢p ' =1}

With the multiplicative structure of the Clifford algebra this is a group. It
contains all elements v € V' with ¢(v) # 0, since the inverse of v is given by
q(vv y- We define the following two subgroups of Cr*(V,q):

Definition

e Pin(V,q) :={v1...v|v; € V,q(vj) = £1 Vj}
o Spin(V,q) := Pin(V,q) N CI°(V, q)

There is a representation of Pin(V,q) on GL(V) where unit vectors v € V
act via a reflection on a hyperplane normal to v:

Definition
Ad: Pin — GL(V), Ady(v) := a(¢)vs™" (1.27)

That EZ% really is an element in GL(V') will be explained in the next propo-
sition. Since « is an automorphism of the Clifford algebra, this modified
adjoint representation is a representation.

_v_

g(vy We can verify the following equation:

By using that v=! =
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Proposition 1.5.3 Letv € V C CI(V,q) be an element with g(v) # 0. Then
q(v,w)

q(v)
where the action of Ad is extended to all v € V with q(v) #0

Yw eV

Ady(w) = a(v)wo™ = w — 2

An immediate consequence of this is that Ad, is an element in GL(V) which
preserves the quadratic form, i.e. an element of the orthogonal group O(V').

From now on let the underlying field be R or C and ¢ be non degenerate.
By restricting Ad we obtain a representation Pin(V,q) — O(V, ¢q), since Ad,
for v € V with g(v) # 0 is in O(V,q) and Pin is by definition generated
by such elements. In the following we discuss the kernel and image of this
representation.

Theorem 1.5.4 (Cartan-Dieudonné) Let q be a non-degenerate quadratic
form on a finite dimensional vector space V.. Then every element g € O(V, q)
can be written as a product of r reflections where r < dim(V)

g = pPvy ©° 0 Pu, (1.28)

A proof by induction for the dimension can be found in |G].

Since over R and C all reflection vectors can be normalized to length +1
the representation Ad of Pin contains all reflections. Hence the representa-
tion is surjective. Another important property is that reflections have deter-
minant -1. This follows because the orthogonal hyperplane to the reflection
vector is an eigenspace to 1, while the reflection vector is an eigenvector to -1.

__ Since Spin is generated by an even number of reflections representation
Ad of Pin restricts to a representation: Ad : Spin(V,q) — SO(V,q). The
above theorem of Cartan-Dieudonné ensures that this representation is sur-
jective.

The question regarding the kernel of our representations Ad requires
a more elaborate discussion. Because of equation(l.27)) it contains +1 €
Spin(V,q) C Pin(V, ¢). This is actually the full kernel. See [LM] for details.

In combination the staements above yield the following:

Theorem 1.5.5 (JLM|, Theorem 2.9.) LetV be a finite dimensional vec-
tor space over R or C and q be a non-degenerate quadratic form on V. Then
there are short exact sequences:

1 — Zy —Pin(V,q) 2% O(V,q) — 1

1 — Zs — Spin(V, q) Ad, SO(V,q) — 1
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For this work the real case is of special interest. We introduce some no-
tation for brevity. We preveously defined: O(r, s) = O(R™*) and SO(r, s) =
SO(R™*). For simplicity we introduce the notation Pin, ¢ := Pin(R™*) and
Spin,. ; := Spin(R™*). We suppress the second index if it is zero, so for ex-
ample Spin,, = Spin,,

With the topological facts about the indefinite orthogonal groups we
discussed earlier (1.2.2)) we arrive at the following corollary of the above
theorem (|1.5.5)):

Corollary 1.5.6 (JLM]|, Theorem 2.10) There are short exact sequences

1 — Zs — Spin,. Spin, SO(r) — 1
1 — Zy — Spin{ , 2% S00(1,5) — 1

These sequences represent the universal covering homomorphisms of the groups
on the right-hand side for all r;s > 3. In this context the map Ad is from
now on denoted by Spin.

Proof We have to show that the coverings are non trivial. Since the kernel
in each case is {1, —1} it is enough to join -1 to 1 by a path. To this end
we choose orthogonal vectors ey, e with g(e1) = g(e2) = £1. Then ~(t) =
+ cos(2t) + ejegsin(2t) = (eg cos(t) + ez sin(t))(eg sin(t) — eg cos(t)) is such
a path. |}

1.5.3 Spin manifolds

From now on Spin, ; denotes the connected component Spings. Recall
from (1.9) that each oriented and time oriented spacetime manifold X has

a corresponding bundle SO(1,5)? — L(X) PLy X. Our aim is to lift this
bundle for s > 3 to one with structure group Spin,; ,, the double cover of
SO(1, 5)°. Consequently we require a bundle

Spin, , — S(X) 2% x (1.29)

and a map from S(X) to £(X) that, restricted to fibers, is the covering map
Spin:

Definition A spin structure for X consists of a principal Spin; ,-bundle

over X (1.29) and a map
A S(X) - L(X) (1.30)

such that
Pr(A\p)) = Ps(p)
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and
A(p - g) = Mp) - Spin(g)

Therefore the following diagram commutes:

S(X) x Spiny g S(X) X
AxSpin A idx
Lx x S0(1,s)° — LX) ——— X
L

After orientation and time orientation we encounter the third condition for a
spacetime that rules out “unphysical” behavior: Not every oriented and time
oriented spacetime X admits a spin structure. However, it is required to
describe fundamental fermions. Therefore spacetime manifolds without spin
structure are dismissed. The question whether X allows a spin structure
is a purely topological one. In [N2| it is shown that the vanishing of the
“second Stiefel-Whitney class” of X, which is a certain Cech cohomology
class wo(X) € H?(X;Zsy), is a necessary and sufficient condition for the
existence of a spin structure on X.

1.5.4 Levi-Civita connection and its lift

It is a basic result in Riemannian geometry that on the tangent bundle of a
semi-Riemannian manifold exists a unique torsion free metric connection. In
our context this translates to(see [M]):

Proposition 1.5.7 Let (X, g) be a semi-Riemannian manifold and let SO(r, s)(X)
denote its oriented tangent frame bundle. Then there erists an unique princi-

pal connection on SO(r, s)(X) with the property that its torsion tensor van-

ishes identically. This connection s called the Levi- Civita connection.

The Levi-Civita connection is a important tool in general relativity and
plays a role in the formulation of the standard model over curved spacetimes.
On spacetimes with spin structure it can be lifted in the obvious way. Each
connection on the oriented tangent frame bundle can be lifted:

Proposition 1.5.8 Let X be spacetime with spin structure A : S(X) —
L(X), see (1.5.3). Let w be a principal connection on L(X). Then \w is a

principal connection on S(X).

Proof First we show that \*w is pseudotensorial. Let g and Spin(g) denote
the right action of g on S(X) resp. Spin(g) € SO(1,s) on L(X).

g N (w) = (Ao g)'w = (Spin(g) o \)*w
= A" Spin(g)*w = A*(Spin(g) " -w) =g - (N'w)
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Then we observe how A*w acts on vertical vectors. Let oP(g) = p - g denote
the action of the groups in a point p of the bundles. By differentiating the
covering map Spin : Spin; ; — SO(1, 5)° we otain a canonical isomorphism
of the Lie algebras of these groups. Let A denote an arbitrary element in this
Lie algebra. Then:

()\*a))p«TUp)eA) = a))\(p)((T/\)p(Tgp)eA) — CU)\(p)<(T(/\ o Up))eA> _
Wrp) (Torp))ed) = A

This shows that A\*w fulfills both required properties of a principal connection
and the proof is complete.

So every principal connection on £(X) can be lifted to a connection on S(X).
In particular we have:

Corollary 1.5.9 The Levi- Civita connection can be uniquely lifted to o con-
nection on S(X).

1.5.5 Representations of Clifford algebras

This subsection discusses the construction of certain representations of the
Spin and Pin groups central to this work. As seen above they can be identi-
fied with subgroups of the Clifford algebra. Therefore we begin to construct
representations of Clifford algebras which later give rise to representations
of the Spin group.

Definition (|LM], definition 5.1) Let V' be a vector space over a field k and
q be a quadratic form on V. Let K O k be a field containing k. Then a K-
representation of the Clifford algebra CI(V, q) is a k-algebra homomorphism

p:Cl(V,q) — Homg (W)

into the algebra of linear transformations of a finite dimensional vector space
W over K. The space W is called a CI(V, q) module over K, or a Clifford
module.

For us the cases K=R or C are interesting. A complex vector vector space W
can be regarded as real vector space V with a real linear map J : W — W
such that J? = —1. Consequently a complex representation of a real Clifford
algebra is a real representation p that commutes with J.

We mainly consider complex representations of real Clifford algebras.
Note that any such representation automatically extends to a representation
of Cl, s ®r C, the complexification of the Clifford algebra. By using the uni-
versal property this algebra is easily seen to be isomorphic to the Clifford
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algebra CI(C""% ¢ @ C) of the complexified quadratic form. But on C" all
non-degenerate quadratic forms are equivalent, thus this algebra is isomor-
phic to Cl,, := CI(C™, qc) where gc is the standard quadratic form on C". On
the other hand any representation of Cl,, restricts to a complex representa-
tion of Cl, s This shows that it is sufficent to study complex representations
of Cl,, to investigate which complex representations of Cl, s can occur. We
start with the former and it is useful to describe Cl,, as matrix algebras.

One efficient way of doing so(see [LM] for details) is to show that Cly =
C & C and Cly = C(2) where C(2) denotes the algebra of 2 x 2 complex
matrices. Then by directly defining a map we can produce an isomorphism:

(Cln+2 = (Cln Qc CZQ
By induction this proves the following important result:

Proposition 1.5.10 There are isomorphisms of algebras
Cly = C(2F) (1.31)
Clagy1 = C(2F) @ C(27) (1.32)
Therfore all Clifford algebras of complex vector spaces with non degenerate
forms are seen to be isomorphic to complex matrix algebras or the direct sum
of two. A similar statement holds for the real indefinite Clifford algebras.
However, in that case real, complex and quaternionic matrix algebras can
appear(see [LM]). In this work we focus on Clg,. A direct construction of

such an isomorphism is given. This approach follows [BW| At first define the
following complex 2 X 2 matrices:

10 , (1 0
o 1) o b))
0 1 0 i
(i) e (8 )

P=1T%  -91'9P®1®---®1 (1.33)
Ri=1® - ®1Q¥1® - -®1 (1.34)

With this define:

where the operation ® denotes the usual tensor product of matrices. It is no
longer important to distinguish between Ps and (Js. We will refer to each of
them with the symbol P;, where the index ranges from ¢ = 1 to ¢ = 2k. A
simple calculation shows that the following relations hold:

P’=1 fori=1,2,...,2k (1.35)
P;P; = —P;P; for all pairs i # j (1.36)
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By counting dimensions we see that the P; act on €2 and subsequently the
complex algebra A generated by the P; is a subalgebra of the 2% x 2¥ complex
matrix algebra. By observing how the P; acts on the standard basis vectors
we can verify that A is the full matrix algebra. Applying the universal prop-
erty we obtain a C-algebra homomorphism from CI(2k) — A. Since they
have the same dimension as complex vector spaces this is a isomorphism.
This constitutes a direct proof of the first part of and we have direct
access to such an isomorphism.

Next we state some further basic facts concerning representations of Clif-
ford algebras.

[LM], page 31 Let V, ¢,k C K be as in definition |1.5.5]

e A K-representation p : Cl(V,q) — Hompg (W, W) is said to be re-
ducible if the vector space W can be written as a non-trivial direct
sum W = Wy & W5 such that each W; for ¢ = 1,2 is invariant under
p(¢) for all ¢ € CU(V,q).

e A representation is called irreducible if it is not reducible.

e Two representations p; : CI(V, q) = Homg (Wj; W;) for j=1,2 are said
to be equivalent if there exists a K-linear isomorphism E : W, — Wa
such that E o p1(¢) o E~1 = pa(¢) for all ¢ € CI(V,q).

Remark Usually representations are called “irreducible” if there are no
proper invariant subspaces. Since C1(V, q) is the algebra of a finite group(the
reader is referred to [LM]|, Proposition 5.4) the two concepts are equivalent.

It follows directly from the definition above that every representation of
a Clifford algebra can be decomposed into a direct sum of irreducible ones:
If a representation is not irreducible we can decompose it further. Because
of the finite dimension of the representation this process must stop at some
point. Thus we are interested in irreducible representations. In our case we
work with matrix algebras where the representation theory is particularly
simple:

Theorem 1.5.11 (JLM], 5.6.) Let K = R or C and denote by K(n) the
ring of n x n K-matrices. Then the natural representation p of K(n) on the
vector space K™ is up to equivalence the only irreducible K-representation of

Proof This follows from the classical fact that the algebras K (n) are simple
and simple algebras only have one irreducible representation up to equiva-
lence. (|L])

Applied to the even dimensional complex Clifford algebras this yields
corollary:
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Corollary 1.5.12

o All irreducible complex representations of Clag are equivalent.

o All irreducible complex representations of the real Clifford algebra Cl, g
with r + s even are equivalent.

Thus we obtain a complete classification of all representations of Clyg up
to equivalence and we also have explicitly constructed such a representation.
Next we restrict it to a Spin-representation.

1.5.6 Spin representations

Recall the following canonical embeddings:
Spin, , C CI), C Cl), , C Clyys

Thus each complex representation of Cl,; gives rise to a complex represen-
tation of Spin, ;. Reducible representations restrict to reducible ones, thus
we start with irreducible representations of Cl,4s. For r + s = 2k even we
know that up to equivalence there is only one complex representation of
Cl, 4. This representation acts on a 2¥ dimensional complex vector space S.
So we can define:

Definition Let r+s = 2k. The complex spinor representation of Spin,.
is the equivalence class of the representation

Ay Spin, ¢ — GLc(S)

given by restricting an irreducible complex representation Clo, — Home (S, S).
The 2¥ dimensional complex vector space S is called spinor space.

If we had restricted to representations of Pinj 3 then this representation
would be irreducible since Pin; 3 contains an additive basis of Cl, . For A,
it is not possible to apply such an argument and we will show that in fact A
decomposes into two inequivalent irreducible representations.

To do so we first introduce the so called complex (oriented) volume
element in Cly;. Choose an orientation on C?* and let eq,...,eq, be any
positively oriented orthonormal basis. Then the associated volume element
is defined to be the product:

w=1ire - egp (1.37)
This definition is independent of the choice of the orthonormal basis since
for any other positively oriented orthonormal basis € = g-e with g € Og(C)
the identity €; ... éq, = det(g)er - - - egr = €7 - - - €9y holds.
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A direct calculation shows that w anticommutes with every element v €
C?* C Cly, and that its square is 1:

w=—-wv YveV (1.38)
wi=1 (1.39)

Next let ¢ : Clop — Homge(S, S) be an irreducible complex representation
on a vector space S. Then the two above statements also hold for ¢(w). Thus
we define two projection operators:

7+ € Home(S, S) : %(1 + 6(w)) (1.40)

This yields a direct sum decomposition S = ST & S~. Note that ST and
S~ are the eigenspaces to 1 respectively -1 of ¢(w). Since w commutes with
each element in the even subalgebra CI, , ¢(w) and hence 7& commute with
the action of CI9,. This shows that the spaces ST and S~ are CIY invariant.
Since the spin group sits inside CI%, we have shown the following:

Proposition 1.5.13 With the above projections a complex spinor represen-
tation Agy : Spin, ; — GLc(S) into a spinor space S decomposes into two
representations:

Aop = AT, @ A,

These representations are called chiral representations or half spin repre-
sentations.

Note that the chiral representations are defined via spinor representations,
so the left and right representations are inherently linked by this.
Next we take a look at the realization of these representations via the

Weyl-Brauer matrices.(|1.33). First observe by a short calculation that the
volume element in this representation of Clyg is given by:

p(w) =i*d(er) - plegr) = "I P = (1)1 ®...01 =
(-1)° <(1J _01) ®...® <(1) _01> (1.41)

where s € N depends on k, but the factor (—1)® is not of relevance, as the
sign of w can be changed by choosing a different orientation. We directly ob-
serve that the eigenspaces of ¢(w) to 1 and -1 are each of dimension 2(F~1).
Thus A;tk are each 2(*~1 dimensional representations. But they can not be
equivalent, which the following short argument shows:

The real vector space R™® inside Clg; contains elements of the form
iT(j)ej, where ") with r(j) € N is a phase factor that depends on the
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signature of the bilinear form and j runs from 1 to 2k. Now Spin, ,, by
definition, contains even products of such elements. In particular a scalar
multiple cw of w. But ¢(cw) = cé(w) and that shows that AJ (cw) = cl,
while AJ, (cw) = —cl. So these representations are inequivalent, as scalar
multiples of the identity are invariant under equivalence transformations.

We can also show that the chiral representations are irreducible. To
this end we need the following fact: The map f : C* — CI0 41 given by
f(e;) = ient1€; where the e; denote the standard basis has the property that
f(v)? = q(v). Therefore by the universal property f extends to an
algebra homomorphism f . Checking on a linear basis shows that this is in
fact an isomorphism:

f:cl, >cl,,

The chiral representations Aﬁfs are restrictions of representations of CI9,
Clop—1. But as mentioned above it can be shown that Clop_q
C(2FN@C(2%71), so Cly,_1 has two equivalence classes of irreducible 2¢~1-
dimensional representations. By reasons of dimension (Clgk is irreducibly rep-
resented on ST and S~. Since Spin,. ; contains an additive basis of Ci3,, the
chiral representations Afs are also irreducible.

1R

For the construction of kinetic terms we will need Spin, ; invariant Her-
mitian forms on the spinor space. To understand if there are any and how
to construct them, some basic representation theory is needed.

Definition Let p : G — GL(V) be a representation of a group. Then
there exists an unique representation p* : G — GL(V*) on the dual V* =
hom(V, C) of V' which respects the natural pairing(denoted by (, )):

(" (9)(v"), p(g)(v)) = (v*,v)

for all gin G, vin V and v* in V*. In other words the dual representation
is defined by:

p(g)=plg )V >V

Given a basis of V' and thereby of V* by choosing the dual basis we can
verify that the matrix representation of p*(g) with respect to the latter basis
is the transposed inverse of the matrix representation of p(g) with respect
to the first basis.

Definition Let p : G — GL(V) be a complex representation of a group.
Let V be the complex conjugate vector space of V; this is the vector space
consisting of all elements {v : v € V'} with addition and scalar multiplication
in such a way that the map C' : V — V,C(v) = ¥ is antilinear. Then there
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exists a unique representation p : G — GL(V) that makes the following
diagram commutative:

e p(9) v

c c

p(9)

This complex conjugate representation is given by:

plg)-v=plg)-v

Note that since C' is antilinear a representation need not be isomorphic to its
complex conjugate representation. Given a basis of V and thereby of V (via
(') we can verify that the matrix representation of p(g) with respect to the
latter basis is the complex conjugate of the matrix representation of p(g)
with respect to the first basis. Notice that the complex conjugates of two
equivalent representations are still equivalent, and the same statement holds
for the dual representations.

1.5.7 Spin invariant forms

Here we discuss sesquilinear forms on a spinor space. Let S be a spinor space,
i.e. we have an irreducible complex representation Clor, — Homg (S, S). Re-
call that we have an embedding of R™* C C2k < Cl,, and thus by the universal
property of the Clifford algebra an embedding CI(R™*) in Cl,, which gives
rise to the spinor representation A, : Spin, ; — GLc(S). Next we investi-
gate Spin, ; invariant forms on S.

Begin by defining the Clifford group. This is the finite group F,, C Ci,
generated by the standard orthonormal basis (e, ez ..., e,) of C". Choose an
inner product on S and average it over the finite group F,,. Thus we obtain
a F, invariant inner product hg = (, ) on S. In particular:

<€il‘,€z‘y> = <$,y> V»Tay €S
It follows that all e; are Hermitian, i.e.:
<62‘CC,y> = <CC, e@y> VJ%?J €S

Next we construct a Spin, ¢ invariant Hermitian form based on ho. Let
(1,62 ,€,) denote the standard orthonormal basis of R™*. The above
embedding R™® — C" restricts to:
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PN B for1<j<r
4 iej forr+1<j<n

Note that the factor ¢ makes €; = ie; skew Hermitian. The inner product hg
is in general not Spin, ; invariant. Therefore we modify it:

h:SxS—C, h(x,y):=ho(x,By) (1.42)

where
r(r—1)

B:’L( P} )61'62"“€r.

A short calculation shows that B is Hermitian and invertible. Thus h is a non
degenerate Hermitian form. Furthermore for r even B anticommutes with e;
for 1 < j < r and commutes with e; for r +1 < j < n, and vice versa for r
odd. With this we are able to prove:

Proposition 1.5.14 The Hermitian form h is invariant under the con-
nected component of the spin group Spin, , i.e. g*h = h for all g € Spin, .

7,87

Proof We verifiy this by direct calculation. Let v = v7 €j be in R™* and z,y
in S. We obtain:

h(vx,y) = Z ho(v'é;x, By)

j=1
= Z ho(z,v7é; By) + Z ho(z, —v7€; By)
j=1 j=r+1
= (=1)""' Y ho(z, Bo'ejy) = (=1)"* ' ho(x, Buy) = (=1)" ' h(z, vy)
j=1

So Clifford multiplication is skew up to a possible sign depending on r. It
follows that:

h(vz,vy) = (1) h(z,voy) = (=1)"q(v)h(z,y)

The entire spin group is by definition (1.5.2)) generated by elements of
the form vw where g(v) = £1 and ¢(w) = £1. We obtain:

h(vwz, vwy) = q(v)q(w)h(z,y)
We can verify that for the connected component Spin, ; of the spin group
always ¢q(v) = g(w): The tensor algebra 7 (V) has an involution, given on
pure tensors by the reversal of order: v1 ® --- ® v; = v; ® - - - ® v1 This map
preserves the ideal and so descends to an antiautomorphism:

() : CUV,q) = CUV,q)
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With this we define a smooth map:
Spin, , C Cls — {£1} CR, v v'v

On the connected component this map has to be constant, which shows that
for vw € Spin, ¢ q(v) = q(w). Thus h is in fact invariant under Spin,. ;. [

Note that since h is Hermitian h(x,z) is real for all x in S. But h does
not need to be an inner product(positive definite), only in the case r = 0
when B is the identity. This means that the spinor representation of Spin,,
is an unitary representation. The existence of such an invariant Hermitian
product can also be deduced from the compactness of Spin,,. For ;s > 1 on
the other hand Spin, ; is not compact which implies that there can be no
faithful finite dimensional unitary representations.

Next investigate how the Hermitian form looks like with regard to the
splitting of S = S* @ S~ for dimension r + s = 2k = n. By definition (1.5.7)
B is in CI° if 7 is even and in CI' if 7 is odd. So in the first case B maps
from ST to S* and S~ to S~ whereas in the second case its restriction
to ST has its image in S~ and vice versa. Furthermore a short calculation
shows that the volume element 1} w = ifey -+ -eq is Hermitian with
respect to hg, i.e. ho(x,wy) = ho(wz,y), so the eigenspaces S* of w to +1
are hg-orthogonal. Thus for r even they are additionaly h orthogonal:

h(azJr +a,yt + y )= h0(3:+ +27, Byt + By™) =
ho(z*, By*) 4+ ho(z~, By~ ) = h(z",y") + h(z",y")

where x = 27 + 2~ denotes the canonical splitting of € S into chiral parts.
Note that h restricts to two invariant Hermitian forms h = h4 + h— on the
chiral spinor spaces S¥.

If r is odd, which is our main interest, we have:

h(vt +v 7wt +w™) =h(vT,w™) +h(v",wh) (1.43)

Notice that the sesquilinear forms hi(v,w) = h(vt,w™) and ha(v,w) =
h(v™,w*) are also Spin,. ; invariant. However, they are not Hermitian since

hi(v,w) = h(vt,w™) = h(w™,v") = ha(w, )
ho(v,w) = hy(w,v)

In fact linear combinations of the form ahi+ahs and i8h; —iBhs for a, B € R
are Hermitian.
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Next we discuss "how many’ invariant Hermitian forms exist on the spinor
space. First we note that the invariant sesquilinear forms on a vector space
V' span a complex vector space, and the invariant Hermitian forms a real
vector space. A sesquilinear form can be regarded as a complex bilinear
map: V x V — C. And by the universal property such maps are in one to
one correspondence with complex linear maps s : V ® V — C. Equivalently
each sesquilinear form can be regarded as a linear map:

h:V —>V*

To be invariant under a representation p of a group G on V means that the
following diagram commutes for all g € G:

1% 1%
p(9) p*(9)
174 %

Maps that commute with an action of a group are called equivariant.
For a spinor space of even dimension S = S* @ S~ and the above introduced
invariant Spin, ; invariant Hermitian form h = h; + h2 we obtain for 7 odd
Spin,. ; equivariant linear maps:

h1 :S+ — F*
hy :S~ — St
Since h is non degenerate these maps hj and hg are invertible. Assume

that hy is another Spin,. ¢ invariant map: S* — S=". This gives rise to the
following commuting diagram:

gt g Mg
AT_,S(g) A:,s(g) A'r,s (g)
o — S St
hy hy

In general the composition of equivariant maps is again equivariant. So
hiloh is a Spin, ; equivariant map ST — S7. Since ST is irreducible
we can apply a part of Schur’s lemma ([FH|) which states that such an
equivariant automorphism has to be a scalar multiple of the identity A1 for
X € C. Tt follows that hy = Ah;. A analogous argument shows that all Spin,. ,
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equivariant maps ST — S+ have to be scalar multiples of hs.

Assume that we have an equivariant map:
hy: ST — S+

Composing with h;l : ST° — S~ we obtain an equivariant map ST — S~
Such a map yields a equivalence of the representations A:,fs and A, but
above we proved that this representations are inequivalent. Thus h3 has to
be trivial. In an analogous way we can verify that each equivariant map

he: S~ — S has to be trivial.

By putting the previous results together we obtain the following result:

Proposition 1.5.15 Let n = 2k = r + s be even and r odd. Then each
Spin, ; invariant sesquilinear form h : S x S — C on the compler spinor
space S can be written as complex linear combination of h1 and ho .
Thus the complex dimension of Spin, ¢ invariant sesquilinear forms on the
spinor space s 2.

S

Proof Let h be such an invariant sesquilinear form, i.e. an equivariant map:

*

s:ST@S 5 SteS =St oS5
We can decompose s into s = s1 4+ S2 + S3 + sS4, where
s1: 8T Ny $9: 857 Ny
sg: 8T — St S4: 87 -5
With the above results, s3 and s4 have to be 0 whereas s; and ss have to be

scalar multiples of hq and hs. |

Corollary 1.5.16 Let n = 2k = r + s be even and r odd. Then the di-
mension of the real vector space of Spin, ; invariant Hermitian forms on the
complex spinor space S is 2. Fach Hermitian form can be written as linear
combination of hy + hy and th, — ths.

Proof Note that each invariant sesquilinear form can uniquely be written as
direct sum of an invariant Hermitian and an invariant skew Hermitian form

by

(o, w) = 5(h(,w) + R, 0)) + 5 (h(v,w) — Fw, )

Furthermore we obtain a real vector space isomorphism from the invariant
Hermitian forms to the invariant skew Hermitian forms by a(h)(v,w) =
ih(v,w). Thus the dimension of the real vector space of Spin, ; invariant
Hermitian forms on the complex spinor space is 2. We arrive at the conclusion

that the above linear independent Hermitian forms span this space. |}
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An analogous argument shows that in case of r odd the space of invariant
Hermitian forms is again 2. All invariant sesquilinear forms and Hermitian
forms can be written as complex or real linear combinations of Ay and h_.
In this work we are mainly interested in r odd because for spacetimes we
have r = 1.

1.5.8 Clifford and spinor bundles

In this section the concepts of Clifford and spinor bundles will be introduced
where we will use the notation and approach of |[LM]. Recall from (1.4)
the construction of an associated vector bundle. Now use that orthogonal
transformations of R™® with the universal property of the Clifford algebra
uniquely extend to automorphisms of the Clifford algebra. This leads
to a representation:

cl(prs) : SO(r,s) = Aut(CI(R"?)). (1.44)

Let X be a spacetime with a spin structure with corresponding principal
Spin,. ;-bundle S(X). Via the spin homomorphism cl(p;,s) extends to a repre-
sentation of Spin, ;. This allows us to define the following associated bundle:

Definition

CUX) = S(X) Xap, ) CLR™) (1.45)

P?",-S)

It is evident that CI(X) is in fact a bundle of Clifford algebras over X
since cl(pys) is an algebra homomorphism. Thus each fiber is isomorphic to
a Clifford algebra. Note that the Clifford bundle can also be defined when
there is no spin structure on X: The representation of Spin, , results from a
representation of SO(r, s) and there the transition functions of CI(X) can be
interpreted to actually take values in SO(r, s), which leads to the following
canonical isomorphism:

CUX) = SO(r, 5)(X) X

Thus the Clifford bundle can be interpreted as an associated bundle to the
frame bundle of positively oriented orthonormal frames. This exists for every
oriented semi-Riemannian manifold.

pr.s) CUR™) (1.46)

This leads to an alternative description of the Clifford bundle: The tan-
gent bundle of a semi-Riemannian manifold is a bundle where the fibers
are equipped with a bilinear form g or equivalently, a quadratic form g. We
can show(what is not done here, but consult [LM]) that in fact the Clifford
bundle can be defined as the following quotient bundle:

Cl(X) = (i ® TX)/I(TX) (1.47)
1=0
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where I(TX) is the bundle whichs fiber over € X is the two-sided ideal in
Y20 Q' TX, generated by elements v @ v — q(v)? for v € TX,.

Via the fiberwise embedding of TX, in CI(X) we obtain an injective map
from T'X into Cl(X).

Definition Let X be a spacetime with a spin structure S(X) as above. Let
M be a Clifford module for CI(R"*). By restricting to the Spin, ; C CI(R™?),
we obtain a representation p of Spin, . This allows us to define the following
bundle:

Spin(X) = S(X) x, M (1.48)

A bundle of this form is a spinor bundle

Finally we arive at the following central proposition:

Proposition 1.5.17 Let Spin(X) be a spinor bundle. Then Spin(X) is a
bundle of modules over the bundle of algebras Cl(X). In particular the sec-

tions of the spinor bundle are a module over the sections of the Clifford
bundle.

Proof Recall from l) that the representation of Spin, ,, with respect to
which the Clifford bundle was constructed, arises from an action of SO(r, s)
on the Clifford algebra CI(R"*®). But such algebra automorphisms can be
described directly. Recall from the following representation of Spin, :

Ad : Spin, ; — Aut(CI(R™®)), Ady(¢) = gpg™"

By equation (1.5.3) it can be seen that Ad, and cl(p,s)(g) induce the same
action on V' C CI(R™) and since both are algebra automorphisms they
coincide on the entire Clifford algebra. It follows that:

Cl(X) = S(X) xaq CUR™)

Now observe that the diagram

CIR™) x M —F*—> M

Pg Pg
ClR"™) x M M
given by
(¢, m) (¢m)

(99971, gm) ——— (g¢m)
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commutes. It follows that the induced map CI(R™*) ® M — M is Spin, g
equivariant. By proposition (1.4.9)) such an equivariant map gives rise to a
vector bundle homomorphism:

p: Cl(X) ® Spin(X) — Spin(X) (1.49)
which is seen to have the desired properties.

Two spinor bundles S1(X) and S3(X) are called equivalent if they are
equivalent as bundles of CI(X) modules. A spinor bundle is called irre-
ducible if it does not split up in a direct sum of CI(X) modules. From
the earlier derived results of dimension and number of equivalence classes of
Clifford modules we can deduce that on connected X the same results hold
for Spinor bundles.

A Clifford bundle C1(X) is defined as an associated bundle to the Spin,. ,
principal bundle S(X). Recall from that a given principal connection
on S(X) gives rise to a covariant derivative on associated bundles. So given
a principal connection w on S(X) we obtain a vector bundle connection V
on the Clifford bundle. This connection has the following property:

Proposition 1.5.18 (JLM], proposition 4.8) The covariant derivative V
on CU(X) acts as a derivation on the algebra of sections:

V(g -9)=(Ve) -+ ¢- (Vi) (1.50)

for any two sections ¢ and ¢ of Cl(X). Furthermore on the subbundle TX C
CU(X) the covariant derivative agrees with the usual covariant derivative, i.e.
the derivative induced by the representation p, s on R™*.

Proof Clifford multiplication yields a map
CI(R"?) @ CI(R"®) — CI(R"*)

which is Spin, ; equivariant since it acts on CI(R™*) via conjugation. So by
proposition (|1.4.9) we obtain a corresponding vector bundle homomorphism:

m: Cl(X)®Cl(X) = Cl(X)

which is the Clifford multiplication on the Clifford bundle. The second part
of tells us that mo Vy (¢ ® 1) = Vy (¢ - 1) for all vector fields Y and
sections ¢, of CI(X). Via proposition this directly yields equation
(11.50).

Spin, ; acts on R™ C CI(R™*) via p,s and the tangent bundle TX can
be regarded as associated bundle S(X) x,, , R™®. This shows the second
assertion.
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Next let Spin(X) be a spinor bundle defined as above. Again this is
an associated bundle to S(X). Given a connection w on S(X) we obtain a
connection V on Spin(X). With respect to the above introduced action of
sections of the Clifford bundle on a spinor bundle we arrive at the following:

Proposition 1.5.19 (JLM], proposition 4.11) The covariant derivative
V on Spin(X) acts as a derivation with respect to the module structure over
Cl(X), i.e.:

V(ig-0)=(Vo)- o0+ ¢- (Vo) (1.51)

for any section ¢ of Cl(X) and any section o of Spin(X).

Proof The proof is essentially analogous to (1.5.9)). Recall the Clifford mul-
tiplication map (1.49):

p: Cl(X) ® Spin(X) — Spin(X)

which is induced by an equivariant map CI(R™*) x M — M. Then we again
use proposition (1.4.9). |

We are now in a position to define an important class of complex spinor
bundles:

Definition Let X be a connected oriented and time oriented semi Rieman-
nian manifold of signature (1,s) where 1 + s = 2k is even. Assume that X
is equipped with a spin structure. In this dimension there exists, as shown
above, an unique up to equivalence irreducible complex Clifford module of
complex dimension 2*. The complex spinor bundle which originates from this
module is the Dirac spinor bundle D(X).

Here we show that as above we can split D into a direct sum of CI°(X)
modules. Since X is oriented, we can choose an orientation and define a
global section of Cl(X,C) by setting at each point z € X:

w=1"er e (1.52)

for any positively oriented orthonormal basis {e1, ..., €2, }. In each fiber this
is exactly the volume element we defined above. We can now use the 4+1 and
—1 eigenbundles to obtain the desired direct sum splitting:

D(X)=D(X)"@oD(X)"~ (1.53)

These bundles can be written as an associated bundle: Let Afs denote the
two complex chiral representations of Spin, ;. Then there is a canonical vector
bundle isomorphism:

D(X)* 2 5(X) xp+ S*
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Now assume that there is a given unit section e of the tangent bundle, i.e.
a map: e : X — TX such that ||e(z)|| = 1 for each x. In our setting such a
section always exists, the time orientability of X ensures that. Observe that
w anticommutes with e: we = —ew. Thus multiplication by e swaps the +1
and —1 eigenbundles of w. We obtain bundle maps:

pe :DX)T = D(X)", pelo)=c-o
pe :D(X)” = D(X)", pelo)=e-o

Since e - e = 1 it is clear that these maps are in fact isomorphisms.

1.5.9 The Dirac operator

Next we define an important first-order differential operator.

Definition Let X be a semi Riemannian manifold with Clifford bundle
Cl(X) D TX and let S be any bundle of left modules over Cl1(X). Assume
that S is furnished with a connection V. Then we can define the following
operator:

D:T(X,8) LT(X,T"X ®8) S T(X,TX ® 5) 5 I(X,S)

Here the isomorphism T'X = T*X induced by the metric is used and c
denotes the canonical map TX ® S — S induced by the Clifford module
multiplication. This operator D : I'(S) — I'(S) is the Dirac operator.

Let us express the Dirac operator in orthonormal coordinates. For z € X
let (e1,...,e,) denote a local orthonormal frame of TX. Let o be a section of
S. The covariant derivative of o is given in coordinates by: Y. ;' ® V.,0,
where e’ denotes the dual coframe to e;. By the definition of the Dirac
operator we have to apply the canonical sharp isomorphism §: T*X — TX
to €', and we obtain that f(e’) = ¢(e;)e;. Then, according to the above
definition, we have to apply the Clifford multiplication. Thus we obtain:

n
Do = Zq(ei)ei Ve, 0 (1.54)
i=1
which is the expression of the Dirac operator with respect to a local or-
thonormal frame.

Now apply the Dirac operator to spinor bundles. In this setting we have a
space time X with spin structure S(X), an associated spinor bundle Spin(X)
and the canonical Clifford bundle CI(X). By (1.5.9) we have a Riemannian
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connection form w on S(X), and by (1.5.9) and (L.5.19) we obtain an al-
gebra connection V on CI(X) and a connection V on Spin(X) which re-
spects the Clifford module structure. We can now define the Dirac operator
['(Spin(X)) — T'(Spin(X)). The same construction for irreducible spinor
bundles of Riemannian manifolds leads to the so called Atiyah-Singer op-
erator, a fundamental operator in spin geometry. However, we are interested
in the semi Riemannian case.

In particular we can carry out this construction for an irreducible complex
spinor bundle, the Dirac spinor bundle D(X). We obtain a Dirac operator:

D :T(D(X)) - T'(D(X)) (1.55)

Next we investigate how the Dirac operator behaves with respect to the
splitting: D(X) = D(X)"T @ D(X) ™. First observe that the volume element
w is parallel with respect to the Clifford algebra connection. To prove this,
choose a local orthonormal tangent frame field (eq, ..., ey,) so that (Ve;), =0
for all j. Since the associated derivation on the Clifford bundle is an algebra
derivation and coincides with the usual covariant derivative on T'X we obtain

Vw=V(e1---en) =(Ver)ea---en+...+e1---€,-1Ve, =0  (1.56)

so w is indeed parallel. We can prove that V preserves D(X)*. This follows
from these bundles being characterized as +1 eigenbundles of the module
action of w on D. Let ¢ be a section in DT:

Vo=V(w-0)=w- (Vo)

Thus Vo is also in the +1 eigenbundle of w, and an analogous argument
holds for the —1 eigenbundle. The full Dirac operator D is a composition of
the covariant derivative and the Clifford multiplication of T'X. The latter op-
eration anticommutes with w, therefore it swaps the +1 and —1 eigenbundle
of w. We arrive at the following result:

Proposition 1.5.20 A Dirac operator D on a Dirac spinor bundle D =
DT @D~ has the form:
D=D"+D"

where

Dt :T(D") - T(D")
D™ :T(D7) - TI'(D")

The next goal is to lift the Spin, ; invariant sesquilinear products introduced
in (1.43) to products on the Dirac spinor bundle. Recall from (1.5.8]) that
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this bundle was defined as associated bundle to the principal Spin; ; bundle
S(X) via the complex spinor representation:

D(X) = S(X) xa,. S

Recall from (1.5.14) that there exists a A invariant Hermitian form h on
S. It can be interpreted as equivariant linear map S — S*. By proposition
(1.4.9] this gives rise to a vector bundle homomorphism:

*

D(X) = S(X) xa,, 8 = S(X) xx— S = D(X)
This corresponds to a map:
h:T(D(X)) xT'(D(X)) = C*(X,C)

which is C*°(X,C) antilinear in the first component and C*°(X,C) linear
in the second. An analogous argument holds in a more general situation, we
arrive at the following:

Proposition 1.5.21 Let G — P Py X be a principal bundle, let p : G —
GL(V) be a complex representation of the structure group, E = P x,V the
associated bundle and h a p-invariant sesquilinear form on V. Via the above
construction we then can lift h to a bilinear map:

h:T(E) x T(E) — C®(X,C)

which 1s C* (X, C) antilinear in the first component and C*°(X,C) linear in
the second. This is called a sesquilinear form on E.

If h is Hermitian the lifted map is Hermitian as well, i.e. h(o1,02) = h(o2,01)
for all sections 01,09 of E.

In particular we can lift hA to a Hermitian form on D(X). Recall the
splitting of h(v,w) = hy(vT,w™) + ha(v™,w™) for all v,w € S. This yields
a decomposition of the form on the Dirac spinor bundle h = hy + ho where
h1 and hg can be interpreted as maps:

hi:T(DT) x (D7) = C*(X,C) (1.57)
he :T(D7) x [(D') — C*(X,C) (1.58)
Both are antilinear in the first component and linear in the second. By

(1.5.15) each sesquilinear form on D can be written as a C*°(X,C) lin-

ear combination of them.

Lifted sesquilinear forms on associated bundles which come from an in-
variant sesquilinear form on a vector space are parallel:
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Proposition 1.5.22 With the notation and setting from (1.5.21)) the fol-
lowings holds:

Yh(01,02> = h(VyUl,UQ) + h(Ul, VyUQ)
for allY € TX and 01,09 € T'(E)

Proof The invariant sesquilinear form h on V corresponds to a equivariant
linear map:

h:VeV —C
By proposition ([1.4.9) this corresponds to a vector bundle homomorphism:
h:T(E®E)— C®(X,C)

For sections of 01,09 of E the equation B(al ® 73) = h(o1,02) holds. Using
the second part of (1.4.9) we arrive at:

h(Vy (o1 ® 02)) = Vyh(o1 ® 72)

from which the proposition follows. |}
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Chapter 2

Terms of the Lagrangian

We are ready to write down suitable terms for a Lagrangian. Let X denote
a spacetime. We assume that there is a principal bundle G — P(X) — X,
where G is the symmetry group of the system. Furthermore we have a fi-
nite number of fields ; which are described as sections of associated vector
bundles to P(X). Because of the semi Riemannian structure on this oriented
manifold there exists a canonical volume form vol, with respect to which we
can integrate smooth functions in C*°(X). This volume form is defined as
the unique element A\ in A™(X) such that, for any = in X and any oriented
orthonormal basis (e, ...ey,) for Tx(X), Az(e1,...e,) = 1.

A typical Lagrangian is of the form:

L= /X £(z) vol(z)

Here £(x) denotes the Lagrangian density, which is a smooth function on
X (a element in C*°(X)). It typically depends on a principal connection w
on P(X) and on the fields v;. The Lagrangian is a functional:

Leobeetin) = [ (Lt vn)(a) vol(o)

Quantum field theories in particle physics such as quantum electrody-
namics or the Standard Model are usually formulated in terms of the La-
grangian density £, which is often simply called Lagrangian by physicists.
In the next sections we will write down typical parts of it:

2.1 Kinetic terms

With the developed framework we are ready to write down kinetic terms
in a quantum field theory describing spin % fermions. We begin with a toy
example without any inner symmetries. Let X be of even dimension and be
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equipped with a spin structure, i.e. a principal Spin; ; bundle S(X) with
the properties . Then a fermionic field is described as section 1) of the
agsociated Dirac spinor bundle D. Let h, hq, and hs be the Her-
mitian forms on D introduced in . Let V be the associated connection
on D to the Levi-Civita connection on S(X). This gives rise to the Dirac
operator D on D (L.55). We will use maps of the form I'(D) — C*°(X) to
obtain terms in the Lagrangian density. A kinetic term has to involve the
associated connection. With the tools at our hand we can construct such a
map. First define:

K :T(D) = C®(X,C), ¢ — h(1h, D). (2.1)

Notice how this map behaves with respect to the splitting of D = DT +
D~

Y=yt + o 2D Dyt 4 Dy e by (9, D) + ha(, D)

In particular we have a decomposition K = K! 4 K?, where K' and K?
can be interpreted as maps

K :T(D") = C>(X,C) (2.2)
Ky : (D7) = C®(X,C)

Note that if we started with any sesquilinear form h = ahy + Bhy on D
where a, 5 € C we would have a corresponding splitting K = aK; + K.

An admissible term in the Lagrangian density should be real valued. This
can be achieved by adding the complex conjugate: K=K+K.In physics K
also gains an additional factor i since eventually this gives the 'right’ equa-
tions. But that is beyond the scope of this work, the aim here is to build a
fitting mathematical framework.

After explaining this toy model we write down kinetic terms in a frame-
work which is applied in physics. Additional inner symmetries come into play
and in many relevant gauge theories they are modeled by associated bundles
to principal bundles of unitary groups. The usual way to describe both
the inner symmetries and the spacetime symmetry Spin,  is to splice their
principle bundles to obtain a new principal bundle which has the product
group as structure group.

How does this fit into the framework developed so far? Let as above S(X)
be the principal Spin; ¢ bundle of a spacetime with spin structure and let
U(X) denote a principal bundle of an unitary group. Furthermore assume
that there exists a complex representation p: U — U(V) C GL(V), i.e. V is
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equipped with a positive definite Hermitian form that is invariant under the
representation of U. According to proposition (1.5.21)) we can lift this Her-
mitian form to a Hermitian form on the associated bundle £ := U(X) x, V.

We arrive at an associated bundle (S(X) o U(X)) X (a2, (S ® V). By
proposition ([1.4.12)) it is canonically isomorphic to D ® E. Both bundles
carry Hermitian forms, and there exists a distinguished Hermitian form on
their tensor product due to the following standard result:

Proposition 2.1.1 Let V and W be complex vector bundles with Hermitian
forms hy and hs. There then exists a Hermitian form h on their tensor
product such that:

h(vi @ wi,v2 @ wa) = hi(v1, v2)he(wr, ws)
for all sections vi and vo of V and wy and ws of W

Thus we obtain a Hermitian form k on D ® E. Recall that the Spin in-
variant forr{l h on D s~plits into two sesquilinear forms Ay and ho. This yields
a splitting h = hy + ho.

Furthermore D® E can be made a bundle of left modules over the Clifford
bundle C1(X). This is carried out in the obvious way: For ¢ € I'(Cl(X)), 0 €
['(D) and e € T'(E) the module multiplication is defined by:

¢p-(owe)=(p-0)®e

By linearly extending we obtain a Clifford action on the whole bundle.

Next let us assume that we have a given principal connection w” on the
principal bundle U(X). Furthermore let w® denote the Levi-Civita connec-
tion on S(X). With (1.21)) we obtain vector bundle connections V and V¥
on the associated bundles D and E. Combined they yield a principal connec-
tion on the spliced bundle S(X) o U(X). This in turn gives rise to a vector
bundle connection VETE on the associated bundle D ® E. By proposition
this is the canonical tensor product connection. Thus for all sections
of the form o ® e:

VB E (e @e) = (VEr) @ e+ 0@ (VEe)

We can show that this derivation is a module derivation, i.e. compat-
ible with the Clifford multiplication:

VIE (G- (o@e)) = VI ((¢-0) @e) = (VE(4-0)) @e+(6-0) @ (VFe) =
= (Vo)-(o®e)+¢-(VEo)@e)+¢-(c@(VEe)) = (Vo) (o®e)+¢-(VITE (o@e))
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for all sections of D ® E of the form 0 ® e and ¢ € I'(CIl(X)). By linearly
extending it then holds for all sections of D ® F.

The splitting D = D' @ D~ carries over to a splitting:
DeE=(D"®E)o (D ®E)

The bundle D* ® E is canonically isomorphic to the associated bundle
(S(X) o U(X)) X(a% xp) (S* ® V). So the chiral representations take the

place of the spinor representation, which motivates the following naming:

In physics, fermionic fields are described as sections of D ® E. From now
on we refer to it as fermionic bundle and to the bundles D* ® E as chiral
fermionic bundles.

Via the action of the Clifford bundle on the fermionic bundle we obtain an
action of the complexified Clifford bundle C1(X)®C. Due to the definition of
this action the chiral fermionic bundles can be characterized in the following
way:

Proposition 2.1.2 The chiral fermionic bundles DT @ E are the +1 eigen-
bundles of the action of the volume element w € Cl(X) ® C

The bundle D® F is a Clifford module and carries a connection. Thus by
there exists a Dirac operator D on it. By using that the vector bundle
connection is a Clifford module connection and by repeating the proof that
lead to we obtain that D splits into two parts D™ + D~. These can
be understood as operators:

DT :T(D*®E) -T (D" ®E)

D :T(D ®E)-»T(D"®E)
Starting from this we construct suitable terms for the Lagrangian. Recall
that the Hermitian form h on the fermionic bundle D ® F splits into the

sum of sesqilinear forms h~1 + h~2. With the splitting of the fermionic bundle
into the chiral fermionic bundles these can be interpreted as maps:

hi : (DT ® E) x (D~ ® E) = C®(X,C)
hy :T(D~ ® E) x (D" @ E) = C®(X,C)

which are C*°(X, C) antilinear in the first component and C*°(X,C) linear
in the second.
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With all structures lifted to the spliced bundle and the associated fermionic
bundle we can now write down kinetic terms analogous to before(2.1):

K:T(D®E) = C®(X,C), 1 — h(s), D)

Again we have a splitting K = K; + Ky where K' and K? can be
interpreted as maps

K, :T(DT® E) - C*(X,C)
Ky :T(D” ® E) —» C®(X,C)

By adding their complex conjugates to make the Lagrangian density real we
arrive at kinetic terms for the chiral fermionic bundles.

All kinetic terms in the Standard Model are of this form with one ex-
ception: The kinetic term for the Higgs field. This field is not fermionic, it
transforms trivially under spacetime transformations. This is the defining
property of a scalar. It can be described as section of an associated bundle
(S(X)oU(X)) X1xp (C® V) where 1 denotes the trivial representation and
p is, as before, an unitary representation, i.e. a complex representation that
preserves a Hermitian product on V. We refer to a bundle of this form as
scalar bundle. This associated bundle is by proposition (1.4.12]) canonically
isomorphic to (S(X) x1 C) ® (U(X) x, V). But the first bundle is just the
trivial complex line bundle, thus we obtain an isomorphism:

SX)x1CO)@UX)x,V)=2UX)x,V=~F

To write down a kinetic term lift the Hermitian form h on V as before to a
Hermitian form h : I'(E) x I'(E) — C*°(X,C). Then note that for a semi
Riemannian manifold X the metric gives rise to a symmetric bilinear form

g:T(T*X) x T(T*X) = C=(X).

These two forms can be lifted to a unique Hermitian form on the real
tensor product bundle with the canonical complex structure T*X ® E by the

defining property(2.1.1)) above:

h(vi ® 01,02 ® 02) = g(v1,v2) h(o1,02)

for all sections v1,vy of T*X and 01,09 of E. Given a connection on U(X)
we have an associated connection V on E. We can write down the following
kinetic term:

K:T(E) B T(ETX) M c*x) (2.4)

Since h is Hermitian, terms of the form h (o, o) are real valued for all sections
o € I'(E®T*X). Thus we do not need to add the complex conjugate.
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2.2 Polynomial terms

In this section another class of terms in a typical Lagrangian is discussed.
Contrary to kinetic terms no derivatives are involved in polynomial terms.
There is no dependence on the principal connection at all.

The general setting is the following: Let G be a Lie group, X be a space-
time and P(X) a principal bundle over X with structure group G. Further-
more let p; : G — GL(V;) be a complex representation of G on a vector
space V;, where ¢ = 1,...,n. Then, as in , there are unique complex
conjugate representations p; of G on Vj. Let E; denote the associated bundle
P(X) x,, Vi and E; the complex conjugate associated bundle P(X) x5 V;.
The canonical antilinear map C : V; — V; is equivariant, so analogous to
proposition we obtain a C*°(X, C) antilinear map

Assume now that we have given a G invariant multilinear form
q:Viy x Vig x oo x Vi x Vi x -+ x V; — C (2.5)

where the indices are in {1,---n}. By the universal property of the tensor
product such maps are in one-to-one correspondence with G invariant linear
maps:

:Vy®Vy® @V, @V ®---@V;, —C

Analogous to the lift of invariant Hermitian forms (1.5.21) it can be
shown that ¢ lifts to a C*°(X, C) multilinear map:

q:T(Ey) xT(E;,) x -+ x[(E;,) x(E},) - x'(E;,) — C®(X,C)

Via composition with C' : F; — E’j we obtain a map:

p:T(E;) xT(Ey,) x - xT'(E;,) xT'(E)) x--- xT'(Ej;) — C*(X,C)

By defining p := p 4+ p we arrive at a suitable term p for the Lagrangian
density.

Next we discuss how to construct invariant multilinear forms as in (2.5)).
The group G acts on V;, ® Vi, ® --- @ Vj, ®W ®VTZ via the tensor
product representation. Most of the groups important in physics have the
property that all their representations are completely reducible, i.e. they
are isomorphic to a direct sum of irreducible representations. The following
Lemma is useful:
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Lemma 2.2.1 Let p: G — GL(V) be a complete reducible representation of
group G on a complex vector space V. Then the space of G invariant linear
maps V — C is isomorphic to the space of G invariant vectors in V.

Proof Let VA, AsP---® A, be a decomposition of V' into irreducible
parts. Let p; : G — A; denote the corresponding irreducible representations.
For each G invariant map ¢ : V — C we have the following commuting
diagram:

1%

Al A D DA Vv
(M ®p2DBpm)(9) p !
A Ad - 0Ay —Fp—V—0p—C

for all g € G. We can decompose ¢ = ¢1 + g2 + ... + g where g; is the
restriction of g to A;. The kernel of each ¢; is an invariant subspace. If A; is
not the trivial representation, so of dimension > 2, the kernel is not empty
and due to the irreducibility of A; it has to be A;. Thus ¢; is the 0 map.
Therefore only the parts of ¢ on the trivial representations can be non trivial.
This shows that the space of all invariant maps V — C is isomorphic to the
dual of the space of invariant vectors in V' and hence to the space of invariant
vectorsin V. |}

Note that the isomorphism is not unique. An immediate consequence of this
lemma is:

Proposition 2.2.2 With the notation as above and for completely reducible
representations: The complex vector space of G invariant multilinear maps
Vig X Vig x - oo x Vi, X W - X 7]1 — C s isomorphic to the complex vector
space of G invariant vectors in V;; @ Vi, @ - @V, @ Vi -~ @V,

2.3 Yang Mills terms

The third class of terms in the Lagrangian density only depends on principal
connections. The general context here is: As before let X be a spacetime. Let
G be a Lie group and assume we have a principal bundle P(X) over X with
structure group G. Let w be a principal connection on P(X). Let £ denote
the Lie algebra g valued corresponding curvature form on P(X). By
this is a tensorial two form of type Ad, so with we can interprete €
as a two form on X with values in the associated bundle P(X) X aq g. This
bundle is usually referred to as the adjoint bundle Ad(P). Then €2 can be
interpreted as a section of the real vector bundle A2T*M ® Ad(P)
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Next observe that the semi Riemannian metric g on X gives rise to a
symmetric bilinear form on the two forms A?7T*X: Extend the metric analo-
gously to to a symmetric bilinear form on g : T* X @ T* X — C*°(X)
and then restrict g to A?T*X C (T*X @ T*X).

Given an Ad invariant bilinear form on the Lie algebra g we can lift this
as above to a C*°(X) bilinear form on the sections of Ad(P). Then we can
lift the two symmetric bilinear forms on the sections of A2T*X and Ad P

analogous to (2.1.1)) to a symmetric form:

b:T(A’T*X ® Ad(P)) x I(A’T*X ® Ad(P)) — C™(X)

which is C*°(X) linear in each component. So interpreting €2 as a section of
A’T*X ®(Ad P), by b(Q2, Q) we obtain an element in C*(X). This is a suit-
able Lagrangian density. Note that it only depends on the connection form w.

In the construction above we need an Ad invariant bilinear form on the
Lie algebra g. For many relevant Lie groups such a form can readily be
constructed. Recall from ((1.3) the adjoint representation:

ad : g — End(g), ad(x)(y) = [z,y]

With this we can define the following map for any finite dimensional real Lie
algebra:

B:gxg—R, B(zy)= trace(ad(z) o ad(y))

which is seen to be symmetric and bilinear. This form is commonly known as
Killing form and plays a prominent role in the classification of semi simple
Lie algebras. It has many useful properties, but here we require only that it
is invariant under automorphisms s of the Lie algebra. In our case, with the
Lie algebra derived from a Lie group G, this yields:

B(Ady(z), Adg(y)) = B(z,y)

for all x,y € g and for all ¢ € G. Thus the Killing form is a form with the
desired property of Ad invariance.

In physics the special unitary groups SU(n) as defined in often
appear as symmetry groups. By the identification of the Lie algebra su(n)
with Hermitian skew symmetric trace free matrices and the commutator as
the Lie bracket it can be shown that the following formula for the Killing
form B holds(see (|[FH]), Exercise 14.36):

B(X,Y) = 2ntrace(XY) (2.6)
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for all X,Y € su(n). With this equation the Killing form can be calculated
in a straightforward way. We also have that B(X, X) = —2ntrace(X*X),
where X* denotes the Hermitian conjugate of X. From this it follows that
the Killing form is negative definite on su(n). More generally, there is a
theorem that the Killing form on Lie algebras of semisimple Lie groups is
always non-degenerate. (|[FH]).
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Chapter 3

The Lagrangian of the
Standard Model

With the framework developed in the previous chapters we are ready to
write down the Standard Model Lagrangian in a coordinate independent
way . We then show that expressed in coordinates the introduced terms
match the one used in physics(see appendix. The aim here is to reproduce
the Standard Model Lagrangian in a mathematical exact framework, not to
understand the (physical) meanings of the terms.

3.1 General setting

We begin our discussion with the Minkowski spacetime (1.2) X = R!3 en-
dowed with the canonical structure of a spacetime manifold and a chosen
orientation and time orientation. The tangent bundle TX can be trivialized
globally by using the coordinate vector fields as basis. Thus we have a iso-

morphism TX = (X x R'?). Recall from (1.9) that X has a corresponding
oriented, time oriented orthonormal frame bundle SO%(1,3) < £(X) P X,
The tangent space in each point is canonically isomorphic to R and thus

we have a canonical trivialization of the oriented, timeoriented orthonormal
frame bundle, i.e. there is a isomorphism: £(X) = X x S0°(1,3).

The tangent space at a point (z,g) in £(X) can be written as a direct
sum TX, & (T 51)9' This gives rise to a Lie algebra valued one form wy on
L(X) by defining:

wo(x’g)(v,w) = (Tog1)qw (3.1)
where 04(g2) = g2 - g denotes the right action of Ll on itself. It can directly
be verified that w is a connection one form. Its kernel in (x, g) is TX,. In fact

it can be shown that the torsion tensor of w vanishes. Thus this connection
is the Levi Civita connection.

65



66 3. The Lagrangian of the Standard Model

Furthermore we can construct a Spin structure on X (|1.5.3)). We define
S(X) = X x Spin; 3 and

id x Spin

A:S(X) = (X x Spiny 5) (X x £l) = £(X)

It is obvious that S(X) and X together are a Spin structure.

The inner symmetry group of the Standard Model is the product group
U(l) x SU(2) x SU(3). Let U(X) = X x (U(1) x SU(2) x SU(3)) denote
the trivial principal bundle over X. Note that this is the spliced bundle of
X xU(1), X x SU(2) and X x SU(3). We then splice U(X) with the spin
structure bundle S(X) to obtain the full symmetry bundle:

Spin, 5 xU (1) x SU(2) x SU(3) < (P(X) = S(X) 0 U(X)) — X

Now we are exactly in the situation explained in section ([2.1]). Fermionic
fields are described as sections of associated bundles to P(X), the chiral
fermionic bundles. For their construction we need to describe representations
of the inner symmetry group of the Standard Model.

Moreover the Lagrangian also depends on principal connections, in physics
called gauge fields. Let wq, we and w3 denote principal connections on trivial
U(1), SU(2) and SU(3)-bundles. As in we obtain a principal con-
nection wi +ws+ws on U(X). Splicing again with the Levi-Civita connection
yields a principal connection on the full symmetry bundle P(X).

3.2 The representations of the Standard Model

As mentioned in the previous section fermionic fields in the Standard Model
are described as sections of chiral fermionic bundles, i.e. associated bundles to
(S(X)oU(X)) X (A%, xp) (C2®V) where p : (U(1)xSU(2)xSU(3)) — GL(V)
is a representation of the inner symmetry group. First, we discuss the repre-
sentations appearing in the Standard Model:

Begin with the unitary group U(1). By definition this group consists of all
complex numbers c¢ satisfying ¢c = 1, i.e. the unit circle. Each element in U(1)
can be written as €. In the Standard Model all occuring representations of
U(1) are complex of dimension one and are of the following form:

e .z =0, (3.2)

The parameter Y has to be a multiple of % otherwise this is not a valid
representation. The factor three can be attributed to historical development
and is of no mathematical significance. Such a representation is denoted by
the value of Y and the one dimensional vector space on which it acts by
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Cy. It can be verified that all these representations preserve the standard
Hermitian product on C, thus they are unitary representations.

Next we discuss the representations of SU(2). As mentioned in (1.1.2)
we have the standard representation where each matrix in SU(2) is simply
represented by itself. We denote this representation for reasons of dimension
by 2, and similarly the one dimensional trivial representation by 1. It follows
directly from the definition of SU(2) that 2 preserves the standard Hermitian
product on C2. Furthermore let 2 denote the conjugation representation
of the standard representation given on C? by g — g. These two represen-
tations are equivalent. We can verify this with the following argument: We

deﬁneB—<0 1

1 0) . Then for any complex 2 x 2 matrix g with determinant

BgB~' = (¢")7! (3.3)

However, for all g in SU(2) : g7 = ¢~ !, and therefore B¢B~! = (¢7)~! =
g. Thus the standard representation of SU(2) and its conjugate are equiva-
lent.

At last we discuss representations of SU(3). Again we have the standard
representation which preserves the standard Hermitian product on C3. For
reasons of dimension we will denote it by 3. Analogously to SU(2) we have
the conjugate representation of 3: ¢ — g and we denote it by 3. However,
this time 3 and 3 are not equivalent. Let 1 denote the trivial representation
on C, again for reasons of dimension.

With the notation defined, we are ready to explicitly write down the
representations of fermionic fields in the Standard Model, and additionally
the Higgs field representation:

The Standard Model representations

Name Symbol Spin; 3 SU(3) x SU(2) x U(1)
Left-handed quark Qr AT (3,2, 1)
Right-handed quark(up) UR A~ (3,1, %)
Right-handed quark(down) dr A~ (3,1,-2)
Left-handed lepton Ly, AT (1,2,-1)
Right-handed electron eR A~ (1,1,-2)

Higgs field 0] trivial (1,2,1)

It is an experimental fact that each fermion appears in three generations.
Thus each fermionic field carries a generation index, which we suppress for
the moment. The reason for this is that most of the terms in the Lagrangian
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are identical for all three generations. The Lagrangian density can equiva-
lently be described in terms of the conjugate representations, which corre-
sponds to antiparticles. We will see that conjugation changes left to right and
vice versa. Thus, by conjugating the right-handed fields everything can be
described in terms of left handed fields, which is common in particle physics.

Note that all the above representations are irreducible. This follows from
the fact that, given a product of groups G1 X G, irreducible representations
of G1 and G4 tensor to a irreducible representation of G7 x Go. The rep-
resentations of U(1), SU(2) and SU(3) mentioned above are all irreducible.
Thus their tensor products are as well.

3.3 Gauge terms

The first terms in the Standard Model we explicitly write down are the Yang
Mills terms from the previous Chapter. These only depend on the con-
nections wi, we and ws on the trivial U(1), SU(2) and SU(3) bundles. In
order to write down a Yang Mills term for each of these bundles we need Ad
invariant forms on the Lie algebra of these groups. For SU(2) and SU(3)
these will be scalar multiples of the Killing form.

The Lie algebra u(1) is one dimensional and hence the Lie bracket van-
ishes. Thus the Killing form is the 0 form. It is easily verified that U(1) is
abelian. Therefore the representation Ad is trivial and any symmetric bilinear
form on the Lie algebra u(1) is suitable. Applying the matrix interpretation
u(1) can be seen to be the space of pure imaginary numbers. By using the
element 7 as basis this is canoncially isomorphic to R, and the only symmet-
ric bilinear forms there are multiples of the standard one.

Next we discuss the problem of stating the Yang Mills terms in coordi-
nates. To this end we need the curvature forms €21, {2 and €3 of the principal
connections wi, wo and ws. Therefore we first show how to generally calcu-
late a curvature form €2 in terms of a principal bundle connection w on a
principal bundle G — P — X. The curvature form is identified with an
associated bundle valued 2-form . To express it in coordinates we need a
local cross-section s : U — P, where U is a open subset of X. Then by
this curvature is of the following form:

Q= [s(z), (s*Q),] (3.4)

Our aim is to express F := (s*Q2),, in physics called local field strength
(IN2]), in terms of A := s*w, commonly called the local gauge potential.
We can pull back both sides of the Cartan structure equation by s
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and immediately obtain:

s*Q =ds*w + [s"w, s*w] (3.5)

Assume now that the domain U C X of the cross-section s is also a
coordinate neighborhood for a chart V' with coordinate functions z1,...x,.
Then the local field strength and the local gauge potential can be written in
coordinate form A = A, dx® and F = % agdxadxﬁ, where the A, and F,3
denote G-valued functions on U. Here we have used the Einstein notation,
where an index which appears twice implies summation over all values of

that index. Plugging this into (3.4)) yields:

O = [8(2), (Fap)e)da®da” (3.6)

a<f

A calculation using (3.5 shows that:
Fap = OaAg — 03 Aq + [Aa, Ag] (3.7)

After choosing a local section € can be described in terms of the compo-
nents of A = s*w.

3.3.1 U(1) part

Next we begin to write down the Yang Mills term with respect to coordinates.
We start with the U(1) part. Let b denote a form on its Lie algebra u(1), and
g the symmetric bilinear form on 7% X induced by the metric. Recall from
that we have a symmetric form:

p:T(A’T*X @ (Ad P)) x I(A’T*X @ (Ad P)) — C*°(X)

The Lagrangian density is then given by p(Q,Q). Substituting with (3.6)
vields:

pl5 Sl (Fag)ldada’, 3 35, (Fis)ldade’) =
af 7%

1
4 DO b(Fap, Fao)g(da®, da)g(da?, da’) =
af ~o

122 bFas Fas)g™9™ = 13 D 0(Fap Frog™9™) = 5 D 0(Fap, FP)
aB o aB o af

The notation implicitly introduced in the last line is common in physics.
It is referred to as ’raising an index with the metric’. Next we identify the
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Lie algebra in the canonical way with matrices and think of the Lie alge-
bra valued function F,g as matrix valued. In case of u(1) these are purely
imaginary numbers. Due to the above b is a multiple of the symmetric prod-
uct b(v,w) = 4-9-v-w for all purely imaginary numbers. The factor 9 is
introduced by taking the vector %i as basis vector while the first factor is
conventional. So b = (gl)_zl;, where g; is a real number. Inserting this in we
have:

1,6
Q1,0 — Fob
p(, Q) = 4(9%5 °F )

Here the FEinstein summation convention is used. The constant g; can
not be explained by the Standard Model and is called a coupling constant.
It determines how strong the gauge terms of the Lagrangian density are in
comparison to the interaction terms. In physics it usually absorbed it in the
Lie algebra by defining:

6 6
Bui= —Au;  Bu = —Fu :
H 291 2 H 191 122 (3 8)

The factor 7 enters to make the matrices Hermitian. With this notation
we arrive at:

R 1
p<91791) - _ZB,U,VBMV

This is exactly the Standard Model Lagrangian density, see appendix [A]
Note that equation (3.7]) becomes:

B, = 0,8, — 0,8,

because the Lie bracket vanishes for u(1) and the multiplicative factors cancel
out.

3.3.2 SU(2) part
Repeating the calculation for the U(1) part for the SU(2) part we obtain:

p(Qa, Q) = Zb Fup, FOP)

Interpreting 73 as traceless 2 x 2 matrix valued functions, we can define
on them a form(2.6|) proportional to the Killing form:

b(X,Y) = 2trace(X oY)
Again we use a scalar multiple: b = @i), where go is a nonnegative real

number. Interpreting again F? as traceless skew Hermitian valued functions
we obtain:
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. 1 1 2 2
P ) = 5 (trace((g2) " Fap - (92) 7)) = —(trace(;Fag - - F™)
2 8 192 190

As above we can absorb this factors in the Lie algebra and define:

2 2
W, =—A,; W, =—Fu 3.9
j ngAw 0 192}—# (3.9)

Note that these can be interpreted as 2 x 2 tracefree Hermitian matrix valued
functions. We arrive at:

- 1
p(Q2,Q9) = ~3 trace(W,, WH")

This is a Standard Model Lagrangian term((A]). A calculation shows that
equation (3.7) becomes:

W = 0, W, — 9,W, + %(WHWV — W, W,).

3.3.3 SU(3) part
The SU(3) part is treated in an analogous way to SU(2). Again we choose:

b(X,Y) = 2trace(XY)

as reference bilinear form on su(2) and b = g%l; we obtain:
— 1 B e
P(Qs,Q3) = S (trace(g™ Fag - g~ F*7))

We can once again absorb the factors in the Lie algebra by defining:

1 1
G/‘« = EAH, G,LLI/ = @f‘uy (310)

which are tracefree Hermitian 3 x 3 matrix valued functions. We arrive at

- 1
p(Q3,Q3) = ~5 trace(G,, G") (3.11)
as su(3) term in the Lagrangian density. A calculation shows that equation
(3.7) becomes:
Gu = 0,G, — 0,G, +i9(G,G, — G,G,)

This concludes the treatment of the Yang Mills part of the Standard
Model Lagrangian density.
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3.4 Fermionic kinetic terms

We now write down the kinetic part for a fermionic field in the Standard
Model. Recall that they can be described as sections of chiral fermionic
bundles D* @ E. In kinetic terms the Dirac operator appears. In order to
write it down in coordinates we need an explicit complex representation of
the Clifford algebra Cl; 3 in the 4 x 4-complex matrices. We construct such a
representation via the so called Dirac matrices. First define the following
set of contravariant Dirac matrices:

0010 0 0 01
o [0 001 . o 0o 10
TTl1o0o00]" TTlo —10 0
0100 1 0 00
0 00 —i 01 0
, o 0 i o - 00 —1
T"lo io0o ol T Tl-100 o0
i 00 0 0 10 0

With the definition of the Pauli matrices:

R NN O N e —

. . . . 0 ot
the Dirac matrices can be compactly written in the form: v# = ((}H UO ) .
The covariant matrices are defined as: v, = 17" = {’yo, -, =2, —73}.
For the covariant Dirac matrices the following equation holds:

Py =2

We obtain an embedding of the Minkowski space in the set of 4 x 4
matrices:
L RY 5 End(Ch) : vfe, — vty

where e, denotes the standard basis of R13. We see that ¢(v) - t(v) = q(v),
so by the universal property of the Clifford algebra the embedding
uniquely extends to a map ¢ : Cly 3 — End(C?*). We then extend ¢ further in
the natural way to a algebra homomorphism:

¢ : Cly — End(C*). For dimensional reasons this has to be an isomorphism,
and we have explicitly constructed an irreducible complex Clifford module
for Cly 3. Restricting to Spin; 3 C Cly 3 C Cly we obtain a complex spinor
representation: Ay 3 : Spin; 3 — GL4(C) and C* becomes a spinor space.
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With respect to the canonical isomorphism: SL(2,C) = Spin, 3 it can be
shown that A 3 takes the following form(|N2|):

A173 : SL(2,(C) — GL4((C), Al,S(g) = (g (gTO)—l)

We can immediately extract the splitting into the chiral representations

Af3: On the first two components of C* we have a representation Ai3(g) =

g, and on the last two components Aj3(g) = (g")~'. Thus we expect the

volume element to be diagonal. By definition (|1.37) it is given by:
o , 1 0
W =17 70?Y117217Y3 = Y0122 = 0 —1

The chiral projections %(1 + w) are projections on the first respectively last
two components. We can also write down a Hermitian, Spin, 5 invariant form:

h: (C4 X (C4 — C, h(v, w) = 17T’yow = V1W3 + VW4 + V3W1 + VaWo

Furthermore, as in (1.43)), we have a splitting h = hy +hg into two Spin,
invariant sesquilinear forms:

(vt + o7, 0wt +w™) = hi(vT,wT) + ho(v™,w™)

Note that in coordinates C2 = St and C? = S~ the form h; : C2 x C?2 —» C
is just the standard Hermitian form on C2.

With this explicit description of the spinor representations we are ready
to write down the kintetic terms in coordinates.

3.4.1 The covariant derivative

Let 1 denote a section of a chiral fermionic bundle D* @ E of the the
Standard Model. Then we choose a section s : Rb C U — (S(X)oU(X)) of
which the first component is the element (z, e) with respect to the canonical
identification S(X) = (X x EL) It follows from that the pullback s*wp
of the Levi civita connection wp on S(X) is 0. With respect to such a section
we obtain:

P(x) = [s(x), v(x)] (3.12)

for a unique v : U — (C2 ® V). Note that V is the tensor product of stan-
dard complex vector spaces C's, so via the standard isomorphism we can
interprete v as map from U to C" for some n € N.

The first step in constructing a kinetic term for such a section is applying
the Dirac operator. By equation ([1.54]) we first have to apply the covariant
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derivative Vg, where V denotes the covariant derivative that is associated
to a principal connection w. We calculate this in coordinates according to

([T.4.10):

(Vo 0)(x) = [5(x), (5 + (5wl 0(x))  (313)
I
Let 9
Dy =( + (s"w)u(x))

Oz,
The principal connection w is the sum of the connections of the X xU (1),
X x SU(2), X x SU(3) and S(X) connections wy, we, wy and wy. With

definitions (3.8)), (3.9) and (3.10) we arrive at:

% 1 2 3 191 192 .
(sfwlt=A, + A, + A, = ?BM + TWM + 119G,

where we have used the fact that s*wp vanishes.

For a trivial representation the action of the Lie algebra on a vector
defined via is given by A-v = 0. In the SU(2) and SU(3) parts we
only have standard representations for which the action of the Lie Algebra is
given by matrix multiplication: A, - v = A,v. For the U(1) representations
(3.2) we directly calculate:

d d, .
Ay v = @(CG’A” ‘v) = %(e‘we“‘l“)v =3Y A, (3.14)

Expressing everything in terms of B, W, and G, we can write down D,
for all the gauge terms:

The covariant derivatives
Name Symbol D,
Left-handed quark Qr Op+ B, + W, +igG,
Right-handed quark(up) UR Oy + ?%BM +1i9G,
Right-handed quark(down) dr Oy — 4B, +i9Gy
Left-handed lepton Ly, Oy — "By + W,
Right-handed electron eR Oy — 11 By

3.4.2 Clifford multiplication

The next step in order to obtain the Dirac operator is to carry out the
Clifford multiplication with g(e,)e,. For our chosen cross section s : RL3 —
S(X)oU(X) which is the trivial section on S(X) Clifford multiplication by
the tangent vector 0z, C T Xx C Cly 3 on a section of a fermionic bundle is
given by:

ep - [5(x), v(x)] = [s(x), yuv(x)]
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Note that ¢(0x,)y, = ¥*, thus the Dirac operator on a fermionic bundle is
given by:

D:T(D®E) »T(D®E), Dsx),v(x)]=[s(x),7"D,v(x)]

With respect to the splitting of the fermionic bundle in the chiral fermionic
bundles we arrive at:

D+ I(D*®@E) = T(D” ®E), D[s(x),v(x)] = [s(x), "D, v(x)]

D-T(D ®E)->T(DToE), D [s(x),v(x)] =[sx), "D, v(x]
The kinetic term for a left handed chiral fermionic field is given by (2.2)):

hiz(s(x), v(x)], [s(x), 7" Dyo(x)] = k(v(x), 6" Dyv(x))

where k denotes the invariant Hermitian form on C? ® V. Note that V is a
tensor product of C’s. In every component we have the standard Hermitian
form on €7 and on C? we also have the standard Hermitian form. With the
interpretation of v as map R"3 — C™ we see that k is the standard Hermitian
form on C™ and hence:

k(v(x), 5 D,v(x)) = v(x) 7D,v(x) (3.15)

Thus the kinetic term for a left handed fermionic field is given by:

K:T(D"®E) = C®(X), ([s,v1]) =0’ a"iDyvy, + (c.c.)

where c.c. denotes the complex conjugate. As earlier explained the factor ¢ is
introduced for physical reasons. Completely analogous we obtain for a right
handed fermionic field:

K:T(D”®E) - C®(X), ([s,vg]) =7g' 0"iD,vg + (c.c.)

In physics sections of fermionic bundles are regarded as sections of vec-
tors of operator valued distributions called quantum fields. However, this is
beyond the scope of this work. All the equations for the Standard Model so
far are for ’classical fields’, but in physics we would need it for 'quantum
fields’. Lagrangian densities then are not real functions on the spacetime,
but rather operator valued distributions. The complex conjugate is replaced
by the Hermitian conjugate, and in the above terms the (c.c) is replaced by
(h.c.) and v by v*.
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3.5 Higgs field terms

In the Standard Model there is one field which is different from the others,
the Higgs field. This field is central to the whole Standard Model, as via
the so called Higgs mechanism it gives rise to mass terms for the gauge and
fermionic fields. By the Higgs field is a scalar bundle and described as a
section of the associated bundles to the trivial representation of Spin, 3 and
the (1,2,1) representation of U(1), SU(2) and SU(3).

In the kinetic term for such a scalar bundle is described. We now
write it down in coordinates. With respect to a section s : R13 — S(X) o
U(X), which is trivial on the S(X) component as in we can write a
Higgs field ¢ as:

First we have to calculate its covariant derivative. As in (3.13)) we arrive
at:

(Vo #)(x) = [s(x), Dy (x)]

where

0 . 0 ig ig
D,v = (8—% + (s"w)p)v = (7—+ 713/1 + {WM)U.

Next we write down the full kinetic term in coordinates:

Ko(9:9) = (Y _[s(x), Dyv(0)]da, Y [s(x), Dyv(x0)]da’) =
> glda*, da")h(D,(x), Dv(x)) = Y h(Dyv(x), Dyv(x)g™) =
uv nv

> h(Dyv(x), DFo(x))

The representation (1,2,1) acts on (C®C?®C) = C?, and h is the stan-
dard Hermitian product on the latter space. Using the Einstein convention
we have:

K(¢,¢) = (DMU)TDMU
This is the coordinate form of the Lagrangian density for the Higgs field.

There is another term in the Lagrangian density which solely depends on
the Higgs field, the Higgs mass term. This is a simple polynomial term.
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Notice that the (1,2, 1) representations is a unitary representation, and it is
the standard Hermitian form h on C? = C ® C? ® C which is invariant under
this representation. We can immediately lift this to an invariant form P on
the Higgs bundle. With notations as above we arrive at a polynomial term:

T
Pu(o,0) = P([s(x),v(x)], [s(x), v(x)]) = h(v(x),v(x)) = v(x) v(x)
The Higgs mass term is given by —m2[P(¢, ¢) — %}2/(262), where my, and
c are real parameters of the Standard Model called Higgs mass and Higgs

vacuum expectation value. This is a valid term in the Lagrangian density.
Written down in coordinates we obtain:

62
(T — )%/ (26)

3.6 Yukawa coupling terms

In this section we treat polynomial terms which depend on the Higgs field
and fermionic fields but are independent of the connection. They all are of
similar form: The complex conjugate of a left handed fermionic field, a scalar
Higgs field and a right handed fermionic field appears. In physics such terms
are called Yukawa terms. To construct this polynomial terms we need to find
invariant multilinear forms on the vector spaces of the representations and
their conjugate representations.

To this end we first revisit the representations of Spin; 5 = SL(2,C). For
the chiral fermionic fields we have:

AT3:SL(2,C) = GLy(C) : Af3(9) =g (3.16)
AT 3:SL(2,C) = GLy(C):  Ars(g)=(g")7" (3.17)

)

Now assume we have given sections of the left-handed lepton bundle
(1,2,—1), the scalar Higgs bundle (1,2,1) and the right-handed electron
bundle (1,1, —2). With respect to a section s of the principle bundle we can
write these as:

[s(x), Lr(x)] [s(x),0(x)] [s(x),er(x)]
where
L :RPB 5C?eCeC?eC_ =V,
¢:R¥P 2 CRCRC?RC =V,
eR: RS —>C2®C®C®C—2 =:Vp
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There exists a multilinear form:

b: (VD) x Vyx Ve = C, b, é,er)=LL den (3.18)

A calculation using (3.16]) shows that this is invariant under SL(2,C) x
U(1) x SU(2) x SU(3). The SU(2) group action on ¢ and Ly, cancels out, as
well as the SL(2,C) action on L, and er. By adding the complex conjugate

this gives rise to a admissable term in the Lagrangian. An additional factor

—% where v is the Higgs vacuum expectation value occurs in the Standard

model.

Recall that there are three generations of Leptons. We could write down
such a term for each generation as implicitly done before. However the matter
it is more complicated. We could use right and left handed leptons from
different generations and couple them as in . This “mixing” happens in
the Standard Model and is described by a complex 3 x 3 matrix M€ called
mass matrix. We arrive at the following term in the Lagrangian density:

V2

——TLT¢M86R + (c.c.)
v

where the generation indices are suppressed.

A analogous term exists for the quark fields. Here we have sections of the
left handed quark bundle (3,2, 1), the scalar Higgs bundle (1,2, 1), the right
handed up quark bundle (3,1, 3) and the right handed down quark bundle

(3,1, —%) With respect to a section s of the principle bundle we can write
these as:

[s(x), Q)] [s(x),¢(x)] [s(x), ur(x)] [s(x),dr(x)]
where
Qr R¥P 5 C?eCeC?e C, =V,
¢ RY¥ 5 CRCRC*®Cy =V
up R -5 C2eC?* @ C®Cy = Vi
dp R¥® - C?*eC*w C_z =V
Again we have a multilinear form:
b: (Vi) x Vg x Vi > C. b(@Qu,évdp) = Q1 ¢dr (3.19)
As above this is a invariant under SL(2,C) x U(1) x SU(2) x SU(3) as

a calculation shows: The SU(3) and SL(2,C) parts in @T and dp cancel
out, the SU(2) parts in @T, ¢ and the U(1) terms in all parts as well.
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Analogously to the term for leptons we obtain a term in the Lagrangian
density:

V21
—TQL dMdR + (c.c.)
As above here M? is a complex 3 x 3 mass matrix that describes how differ-
ent generations mix.

When writing down a similar term for up quarks we encounter a prob-
lem. The first candidate @TqbuR is not U(1) invariant. A solution for this

would be to look a the term @T&m, which is U(1) invariant. But now a
new problem occurs, we have two conjugate representations of SU(2) and
these do not cancel out. However, recall from that the conjugate and
standard representation of SU(2) are equivalent: BgB~! = g. With this we
can construct the following invariant multilinear form:

b:VE x Vg x Vi = C,  b(Qr,d,ur) = (B'Qr) ¢dr

where B~! acts on the SU(2) part. The full term in the Lagrangian density
is then described by:

—f(B—lcmTqu“dR + (c.c.)

where M" is a complex 3 X 3 matrix that describes the mixing of the
different generations.

This concludes the treatment of the terms in the Standard Model La-
grangian. We were able to write them down with respect to a section s of
the principal bundle which is the form that appears in particle physics. Re-
call that in physcis quantum fields have to be used. Consequently all complex
conjugations have to be replaced by Hermitian conjugates. Furthermore the
order is important in all terms as operator valued distributions do not have
to commute.
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The full Standard Model
Lagrangian in coordinates
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Standard Model Lagrangian (including neutrino mass terms)
From An Introduction to the Standard Model of Particle Physics, 2nd Edition,
W.N. Cottingham and D. A. Greenwood, Cambridge University Press, Cambridge, 2007,
Extracted by J.A. Shifflett, updated from Particle Data Group tables at pdg.lbl.gov, 28 Mar 2013.

L = 7iBHl,B‘“’ — %tr(Wﬂ,,W“’”) - %tr(GWG”") (U(1), SU(2) and SU(3) gauge terms)
+(vp,€r)d"iD, <ZL> +éro"iDyer + vrotiD,vg + (huc.) (lepton dynamical term)
L

2T o
,% (vp,er) pMCer + erM°d (Zi >} (electron, muon, tauon mass term)

2T _ _
_% (—&1,71) "M vg + oMY ¢T ( VeLL )] (neutrino mass term)
+(ar,dr) D, <Zi ) + uro"iDyug + &Ra“iDudR + (h.c.) (quark dynamical term)

V2, d 7 oyrd7 (UL

- (up,dr) pM*dr + dpM*“d dy (down, strange, bottom mass term)

27 - _ _
7§ (—dp,up) ¢* M ug + ap M pT < uciL )] (up, charmed, top mass term)
+(D, @)D" — mi [pp — v?/2)%/ 207, (Higgs dynamical and mass term) (1)

where (h.c.) means Hermitian conjugate of preceeding terms, ¥ = (h.c.)ih =1 =4*T, and the derivative operators are

ve\_|g Mg 192 vr uL\_ |y g 2y uz,
(1) e ] (). (3 e e B (). ”
Duvr =0 Dyer = [0,~ig: B Dyur = |0, + 2B, viga Dydp = |8,— 91 B, +igG,|d
uVR = OuVR, neR —[ g1 u} €R, pUR = u+T ;Hrl.(/ w|UR, R — uf? u+l.q n| R, (3)
ig ig
D}L¢ = |:8;¢+ 713;1+72W1:| ¢ (4)

¢ is a 2-component complex Higgs field. Since £ is SU(2) gauge invariant, a gauge can be chosen so ¢ has the form

T =(0,v+h)/V2, <¢>T'= (expectation value of ¢) = (0,v)/v2, (5)

where v is a real constant such that L= (0,¢)0" —m?[¢¢ —v?/2)%/2v? is minimized, and h is a residual Higgs field.
B, W, and G, are the gauge boson vector potentials, and W, and G/, are composed of 2x2 and 3 x3 traceless
Hermitian matrices. Their associated field tensors are

B, =0,B,-0,B,, W, =0,W,—-0,W,+ig:(W,W,-W,W,)/2, G,,=0,G,-0,G,+i9(G,G,-G,G,). (6)
The non-matrix A, Z,, VVHi bosons are mixtures of W, and B, components, according to the weak mixing angle 6,,,

A, =Wiusinb, +Bjcosb.,, Zyy=Wi1,€080y, — B, 5inb,,, WJ =W, :I/Vlzu/\/é, (7)
B, =A,cos0,—Z,5in8,, Wit =—Wao,=A,usinby+Z,,cos0,, I/Vlzu:I/Vz*l#:\@W:, 5in0,, = .2315(4). (8)

The fermions include the leptons eg,er,vr, vy, and quarks ug,ur,dgr,dr. They all have implicit 3-component gen-
eration indices, e;=(e, i, 7), vi=(Ve, vy, Vr), ui=(u,c,t), d;=(d, s,b), which contract into the fermion mass matrices

M, My, M, ZV[fj, and implicit 2-component indices which contract into the Pauli matrices,

B R [

The quarks also have implicit 3-component color indices which contract into G,. So £ really has implicit sums
over 3-component generation indices, 2-component Pauli indices, 3-component color indices in the quark terms, and

2-component SU(2) indices in (vr,ér), (ar,dr),(—€r, 1), (—dr,uz), 6, W, (2, (il (em),s (:iLL),zzb.
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Harald Ringbauer
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Austrian
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berg, Germany

M.Sc. in Mathematics, University of Vienna Specializa-
tion "Geometry and Topology" Adviser: Stefan Haller

B.Sc. in Mathematics, University of Vienna Bachelor the-
sis: Spin groups as Double Covers of SO(n) Adviser: Ste-
fan Haller

B.Sc. in Physics, University of Vienna Bachelor thesis:
Representation theory of the Lorentz Group Adviser: Jakob
Yngvason

Grammar school: Bundesoberstufenrealgymnasium Mis-
telbach

Work experience

10/2012-02/2013

07-09/2011
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08,2007

Teaching Assistant University of Natural Resources and
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Work placement at Allianz Insurance Group, Program-
ming in Vienna, Austria

GEN-AU Summer School, work placement at Veterinar-
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of Knock-Out Mice

Vienna, 18th August, 2013



Bibliography

[BW]

[N1]

[N2]

[SUJ

Hermann Weyl Richard Brauer. Spinors in n dimensions. American
Journal of Mathematics, 57:425-449, 1935.

Joe Harris William Fulton. Representation Theory. Springer, 1991.

J. H. Garling. Clifford Algebras: An Introduction, volume 78. Cam-
bridge University Press, 2011.

Anthony W. Knapp. Lie Groups Beyond an Introduction.
Birkh&user, second edition edition, 2002.

Serge Lang. Algebra. Addison-Wesley, 1965.

Marie-Louise Michelsohn H. Blaine Lawson. Spin Geometry.
Princeton University Press, 1989.

Peter W. Michor. Topics in Differential Geometry. American Math-
ematical Soc., 2008.

Gregory L. Naber.  The Geometry of Minkowski Spacetime.
Springer-Verlag, 1992.

Gregory L. Naber. Topology, Geometry and Gauge fields: Interac-
tions. Springer, 2000.

B. O‘Neill. Semi-Riemannian Geometry: with Applications to Rel-
ativity. Academic Press, New York, 1983.

Helmuth K. Urbantke Roman U. Sexl. Relativity, Groups, Parti-
cles. SpringerWienNew York, 2001.

85



	Abstract
	Acknowledgements
	Introduction
	Motivation
	The Standard Model Lagrangian

	Important concepts
	Lie groups
	Definition
	Important examples of Lie groups
	Lie group representations

	Spacetime
	Spacetime manifolds
	Lorentz group

	Principal bundles
	Definition
	Connections
	Curvature

	Associated bundles
	Frame bundles
	Orthonormal frame bundles
	Tensorial forms
	Spliced bundles

	Spin structure
	Clifford algebras
	The groups Pin and Spin
	Spin manifolds
	Levi-Civita connection and its lift
	Representations of Clifford algebras
	Spin representations
	Spin invariant forms
	Clifford and spinor bundles
	The Dirac operator


	Terms of the Lagrangian
	Kinetic terms
	Polynomial terms
	Yang Mills terms

	The Lagrangian of the Standard Model
	General setting
	The representations of the Standard Model
	Gauge terms
	U(1) part
	SU(2) part
	SU(3) part

	Fermionic kinetic terms
	The covariant derivative
	Clifford multiplication

	Higgs field terms
	Yukawa coupling terms

	The full Standard Model Lagrangian in coordinates
	Curriculum Vitae
	Bibliography

