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Abstract

The aim of this master thesis is to discuss the mathematical setting for
the Standard Model Lagrangian within the framework of principal bundles,
principal connections and associated bundles. The formalism developed here
allows to state the Lagrangian density for classical �elds over a curved space-
time equipped with a spin structure. Applied to standard Minkowski space
it yields the usual Standard Model Lagrangian. The main part of this thesis
focuses on the construction of kinetic terms for fermionic �elds and how to
model them with spinor bundles. The latter are irreducible complex Cli�ord
bundle modules. We construct a Dirac operator on them and discuss the ex-
istence of invariant forms. Therefore we study Spinr,s invariant sesquilinear
forms on a complex spinor space of dimension r + s = 2k.

Zusammenfassung

Das Ziel dieser Masterarbeit ist eine Ausarbeitung des mathematischen Rah-
mens für die Standard Modell Lagrange-Dichte mithilfe von Prinzipalbün-
deln, Prinzipalbündelzusammenhängen und assoziierten Vektorbündeln. Der
entwickelte Formalismus erlaubt es, die Langrangedichte für klassische Felder
über gekrümmten Raumzeiten ausgestattet mit einer Spinstruktur zu formu-
lieren. Angewandt auf den Minkowski-Raum ergibt er die übliche Standard
Modell Lagrange-Funktion. Ein groÿer Teil der Arbeit beschäftigt sich mit
der Konstruktion von kinetischen Termen für fermionische Felder und wie
man diese mit Spinor-Bündel modelliert. Letztere sind irreduzible komplexe
Cli�ord-Bündel-Moduln und auf ihnen wird ein Dirac-Operator konstruiert.
Zu diesem Zweck werden Spinr,s invariante Sesquilinearformen auf einem
komplexen Spinorraum der Dimension r + s = 2k untersucht.
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Introduction

0.1 Motivation

The Standard Model of particle physics is an integral part of the present-
day physical understanding of the world we live in. Developed throughout the
mid till late 20th century it is without doubt the most successful of quantum
�eld theories. It describes three of the four known fundamental forces with
high accuracy. Together with Einstein's general theory of relativity, which
describes gravity, they constitute the foundations of our current world view.
Although lacking proven mathematical consistency and leaving some unex-
plained phenomena, it is believed by many physicists that it will be the basis
of further development of physics.

The core of a Quantum Field Theory like the Standard Model is the so
called Lagrangian, a simple function from which the dynamics of the en-
tire system can be derived. Usually it is stated in a coordinate dependent
form best suited for subsequent calculations and physical understanding. The
mathematical frame work for the Standard Model Lagrangian is to formulate
it as a �Yang�Mills theory� which is a general variant of gauge theory.
The aim of this work is to discuss the mathematical framework. We discuss
a more general formalism than neccessary for the Standard Model: We allow
curved space times and generalize many things to arbitrary (or at last even)
dimensions.

In the �rst chapter we introduce the general concepts for constructing
such a mathematical framework. In the second chapter we discuss the con-
struction of terms that appear in the Standard Model Lagrangian in a general
context. In chapter three we verify that applied to the Standard Model and
expressed in coordinates these terms match the Standard Model Lagrangian
of particle physics, which can be found in the appendix.

ix



x Introduction

0.2 The Standard Model Lagrangian

To motivate the de�nitions in the upcoming chapters we give a short and
informal review of the Standard Model Lagrangian in the to be developed
formalism.

Let X be a spacetime, i.e. a smooth semi Riemannian manifold of signa-
ture (1, 3). Let it be equipped with a spin structure Spin1,3 ↪→ S(X) → X.
The Standard Model has U := U(1)× SU(2)× SU(3) as internal symmetry
group, which is modeled by a (trivial) principal bundle U(X) over X. This
bundle is spliced with S(X) to a Spin1,3×U principal bundle.

Central to the Standard Model is a unitary representation ρ : U →
GL(V ) which decomposes into irreducible parts ρ1 ⊕ ρ2 · · · ⊕ ρn. Each irre-
ducible representation appears exactly three times. This corresponds to the
experimental fact that there are three generation of fermions. Furthermore
there is a complex representation ∆1,3 : Spin1,3 → GL(S) which is the re-
striction of an irreducible complex Cli�ord algebra representation Spin1,3 ⊂
Cl1,3 → End(S) on a four dimensional space called Spinor space. This repre-
sentation will split into two inequivalent irreducible parts ∆1,3 = ∆+

1,3⊕∆−1,3.
We obtain a representation of the full symmetry group by ∆+

1,3 × ρ.

Classical fermionic �elds are described as sections ψ = ψ1 ⊕ · · · ⊕ ψn of
the corresponding associated bundle E+ = E+

1 ⊕ · · · ⊕E+
n . In the Standard

Model there is a scalar �eld called Higgs �eld. It is described as a section φ of
the associated bundle Ẽ to a trivial representation of Spin1,3 and a unitary
representation ρ̃ : U → GL(Ṽ ). The so called gauge �elds are described as
principal connection ω on the principal bundle U(X).

The classical Standard Model Lagrangian is then a functional:

L(ω, ψ, φ) =

∫

X
L(ω, ψ, φ)(x) vol(x)

where the Lagrange density L is an element of C∞(X). We can decompose
it into a sum of typical terms:

First there are the Yang Mills terms which depend solely on the principal
connection ω. Each ω has a corresponding curvature form Ω which can be
interpreted as section of the bundle Λ2(T ∗X)⊗(U(X)×Adg). With multiples
of the Killing forms of the u(1), su(2) and su(3) parts in the Lie algebra
and the metric on X we can construct a bilinear form b = b1 + b2 + b3
on that bundle. We are free to choose any multiples of the Killing forms
on each part of the Lie algebra and thus obtains three coupling constants
g1, g2 and g3 ∈ R. This leads to a term
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ω 7→ b(Ω,Ω) = g1b1(Ω1,Ω1) + g2b2(Ω2,Ω2) + g3b3(Ω3,Ω3)

in the Standard Model Lagrangian density.

Next consider the kinetic terms. These depend on both the sections of the
associated bundles and on the connection forms. The associated bundle E to
the representation ∆ × ρ splits into E = E+ ⊕ E−, therefore the fermionic
�elds can be embedded into the sections of E. Since ∆ is the restriction of
a Cli�ord algebra representation we have an action of the Cli�ord bundle
Cl(X) on E = E+ ⊕ E−. The principal connection ω and the Levi-Civita
connection on S(X) induce a vector bundle connection ∇ω on the associated
bundle E. The last two facts will allow us to de�ne a Dirac operator D on
E, which restricts to a map D+ : E+ → E−. Furthermore we will construct
a Spin1,3 invariant Hermitian product on the spinor space S which with
respect to the splitting S = S+ + S− can be written as a sum of invariant
sesquilinear pairings h1 : S+×S− → C and h2 : S−×S+ → C. Together with
the invariant Hermitian forms of the unitary representation ρ this pairings
will lift to sesquilinear pairings h1 : E+ × E− → C and h2 : E− × E+ → C.
With this we obtain a term:

(ω, ψ) 7→ h1(ψ,D+ψ)

To make it real we add the complex conjugate to it. This yields the kinetic
term of the fermionic �elds in the Lagrangian density. The Higgs �eld φ has
a di�erent type of kinetic term which is conceptionally similar to the Yang
Mills terms. With the metric of X and the invariant Hermitian form of the
unitary representation on Ṽ we obtain a Hermitian form h̃ on the complex
vector bundle Ẽ ⊗ T ∗X. We de�ne:

(φ, ω) 7→ ∇ωφ 7→ h̃(∇ωφ,∇ωφ)

and obtain the kinetic term of the Higgs �eld in the Lagrangian density.

The last classes of terms are the polynomial terms. They solely depend on
the sections of the associated vector bundles. We will construct Spin1,3×U
invariant multilinear forms qij : Vi × Ṽ × Vj → C for some i, j. These give
rise to multilinear maps qij on the sections of the corresponding associated
bundles. We de�ne:

(ψi, φ, ψj) 7→ (ψi, φ, ψj) 7→ mijqij(ψi, φ, ψj)

where mij ∈ C are elements of a mass matrix which are parameters of the
Standard Model. Adding the complex conjugates to these terms results in
the Yukawa terms in the Standard Model. They are the basis of the Higgs
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mechanism.

There is another polynomial term in the Standard model, depending
solely on the Higgs �eld. The invariant Hermitian form of the unitary rep-
resentation on Ṽ yields a Hermitian form s on the corresponding associated
bundle. With this we arrive at:

φ 7→ −m2
h(q(φ)− c2

2
)2/(2c2)

as term in the Lagrangian density. Here mh and c are real parameters of the
Standard Model named Higgs mass and Higgs vacuum expectation value.
The whole term is named Higgs mass term.



Chapter 1

Important concepts

In this chapter the central concepts needed to formulate the Standard Model
Lagrangian are discussed.

1.1 Lie groups

We begin with basic facts about Lie groups and algebras. However, before
we give their de�nition we try to informally motivate the use of symmetry
groups in physics: In physical models often a reference frame or basis has
to be chosen, with respect to which a physical process is described. Each
frame is a priori on equal footing, but often certain frames are better suited
for calculations than others. In more involved theories it is often necessary
to use frames where expressions are not too complicated.

Let V be a �nite dimensional vector space over a �eld K. If we want to
do calculations and not only abstractly add vectors we need to choose an
ordered basis {ei}, called a frame. With respect to this basis each vector can
be described with coordinates: v = viei

We can think of a frame as an isomorphism of K-vector spaces from
Kn, called coordinate vector space, to V . This correspondence is one-to-
one. Choosing another basis yields a di�erent isomorphism. When switching
between two di�erent bases, this induces an automorphism of the coordinate
vector space. On the other hand each automorphism of the coordinate vector
space induces a new coordinate isomorphism. We obtain:

Proposition 1.1.1 Let V be a vector space. The set of frames can be iden-

ti�ed with the set of isomorphisms from a �xed coordinate vector space V0 to

V . The automorphism group of V0 then acts freely and transitively from the

right on the set of all frames.

This construction can be extended to an arbitrary category, for instance

1



2 1. Important concepts

real vector spaces with an inner product of a certain signature. The process
of picking a basis to describe a physical problem corresponds to choosing a
coordinate isomorphism. Two di�erent frames are linked by an element of the
automorphism group. If we would choose a speci�c coordinate isomorphism,
all of them can be identi�ed with an element of the automorphism group.
This identi�cation, however, depends on an arbitrary choice.

1.1.1 De�nition

For many objects of interest the automorphism group, often called structure
group, is a Lie group. In this work the following standard de�nition is used
[FH]:

De�nition A Lie group is a smooth real manifold which is endowed with a
compatible structure of a group:

� The group multiplication G×G→ G is smooth.
� The group inversion G→ G is smooth.

De�nition A Lie algebra is a vector space with a skew-symmetric bilinear
map [ , ] : g× g→ g satisfying the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

The tangent space at the identity TGe of a Lie group G can be canonically
endowed with the structure of a Lie Algebra g: For g ∈ G let Lg denote
the left multiplication G → G. A vector �eld V is said to be left invariant
if L∗gV = V for all g in G. It can be shown that left invariant vector �elds
are closed under the Lie bracket [ , ] and that the evaluation at e provides
an isomorphism to the tangent space at e. More explicitly, if v, w in TGe
there exist unique left invariant vector �elds V,W such that V (e) = v and
W (e) = w. Then de�ne [v, w] := [V,W ](e).

The theory of Lie groups and their connection to Lie algebras is very
profound. A comprehensive modern book on that subject is [FH]. It can
be shown with the so called Baker-Campbell-Hausdor� formula that it is
possible to express the group multiplication locally in terms of the Lie algebra
and bracket. For this reason Lie algebras, which are easier to investigate due
to their linear structure, play a prominent role in the representation theory
of Lie groups.

1.1.2 Important examples of Lie groups

A basic example of a Lie group is the general linear group GLn(R) of in-
vertible n × n matrices. This is an open subset of the vector space of all
n× n matrices Mn(R) and its manifold structure is obtained in the obvious
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way where we take the matrix entries as coordinates. It is clear that the
multiplication map is di�erentiable. It follows from Cramer's formula that
the inversion is as well. The automorphism group of any real n-dimensional
vector space GL(V ) is a Lie group: By choosing a basis we obtain a manifold
structure(which is the same for all bases) and a Lie group isomorphism to
GLn(R).

The tangent space at the identity of GLn(R) can be identi�ed with
Mn(R), the space of all n × n-matrices. It can be shown that upon this
identi�cation the Lie algebra bracket is given by the commutator of the ma-
trices. Hence for a matrix Lie group the Lie algebra can be identi�ed with a
subspace of Mn(R) with the commutator as bracket.

Many important Lie groups are isomorphic to subgroups of GLn(R). This
implies that they can be interpreted as matrix Lie groups. They can often
be described as subgroups preserving some structure on Rn. This can be for
example the volume element. In this case we obtain the Lie group SLnR, the
group of n×n-matrices with determinant 1. We of course have to verify that
this is a submanifold, which can be done by applying the implicit function
theorem to the de�ning function det(A)− 1 = 0.

In the Standard Model a certain kind of Lie groups play a central role, the
unitary groups U(n). First recall some de�nitions to avoid inconsistence
due to notation:

De�nition Let V and W be a �nite dimensional complex vector spaces. A
map

ρ : V ×W → C

is called sesquilinear if it is conjugate linear in the �rst argument and linear
in the second. A sesquilinear form

S : V × V → C

is called Hermitian if

S(v, w) = S(w, v) ∀v, w ∈ V

and skew Hermitian if

S(v, w) = −S(w, v) ∀v, w ∈ V

A Hermitian form h on V is called inner product if it is positive de�nite,
i.e.:

h(v, v) ≥ 0

for all v ∈ V with equality only for v = 0.
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Then we can de�ne:

De�nition Let V be a �nite dimensional complex vector space endowed
with an inner product h. The unitary group U(V ) is the group of all auto-
morphisms of V which preserve h, i.e.

U(V ) := {g ∈ GL(V ) : g∗h = h}

If we choose Cn as vector space with the standard Hermitian inner prod-
uct H(v, w) = v̄t · w, U(Cn) is isomorphic to the group of n × n complex
matrices A satisfying ĀTA = 1. From this it can be deduced from the implicit
function theorem (see [FH] that this group can be embedded as a compact
real submanifold of dimension n2 into the real manifold GLn(C) ⊂ GL2n(R).
Since it is also a subgroup this group is a Lie group. By the usual convention
U(Cn) is denoted by U(n). Each �nite dimensional vector space V with in-
ner product is isomorphic to Cn endowed with the standard Hermitian inner
product. Thus all unitary groups are isomorphic to a U(n). The standard
complex representation U(n) → GLn(C) where each matrix is represented
by itself is called the standard representation.

De�nition The special unitary group SU(n) is the subgroup of U(n)
formed by matrices of determinant 1.

With the implicit function theorem and the de�ning property det(A) −
1 = 0 we obtain that SU(n) is a real submanifold of U(n) of dimension n2−1
and hence also a Lie group. Again we have a standard representation where
each matrix in SU(n) is simply represented by itself.

Via di�erentiating the de�ning property it can be shown that the Lie
algebra of U(n) only contains skew Hermitian matrices. For reasons of
dimensions this has to be the whole Lie algebra u(n). Di�erentiating the
de�ning property of SU(n) implies that the matrices in its Lie algebra are
traceless. Again for reasons of dimension the Lie algebra su(n) is exactly the
space of traceless skew Hermitian matrices.

Another kind of Lie groups that appears in this work are the inde�nite
orthogonal groups:

De�nition Let V be a �nite dimensional vector space endowed with a non-
degenerate, symmetric bilinear form q. The orthogonal group O(V, q) is
de�ned to be the group of all automorphisms of V that preserve the quadratic
form, i.e.:

O(V, q) := {g ∈ GL(V ) : g∗q = q}
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Let Rr,s denote the standard r + s dimensional vector space with the
standard bilinear form of signature (r, s):

qr,s(x,y) = x1y1 + . . .+ xryr − xr+1yr+1 − . . .− xr+syr+s

We de�ne O(r, s) := O(Rr,s). Via the standard basis of Rr,s we obtain a
isomorphism of O(r, s) to the group of all matricesM that satisfyMT ηM =
η, where

η = diag(1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
s

).

By using the implicit function theorem it can be shown that O(r, s) is a
n(n − 1)/2 dimensional Lie group. Since by Sylvester's law of inertia sym-
metric bilinear forms can always be diagonalized, all inde�nite orthogonal
groups are isomorphic to a O(Rr,s). Hence they are a Lie group.

We again have the subgroup consisting of elements with determinant 1:

SO(V, q) := {g ∈ O(V, q) : det(g) = 1}

which is called inde�nite special orthogonal group. Accordingly we de-
�ne SO(r, s) := SO(Rr,s). It can be shown by using the implicit function
theorem that this is a Lie group(see [FH]). In the next section we will dis-
cuss some topological properties of O(r, s) and SO(r, s).

1.1.3 Lie group representations

De�nition A representation of a Lie group G is a Lie group homomorphism
from G into GL(V ), the automorphism group of a vector space; i.e. a smooth
group homomorphism.

De�nition A representation of a Lie Algebra g is a Lie algebra homomor-
phism from g into gl(V ), the endomorphism group of a vector space; i.e. a
linear map that preserves Lie brackets.

Di�erentiating Lie group homomorphisms at the identity and the so
called exponential map yield the following theorem: (see [FH], page 119 for
a proof)

Theorem 1.1.2 ([FH], page 109) If G and H are Lie groups with G con-

nected and simply connected, the Lie group homomorphism G → H are in

one-to-one correspondence with Lie algebra homomorphisms of the associated

Lie algebras.

Corollary 1.1.3 ([FH], page 109) This implies in particular that repre-

sentations of a connected and simply connected Lie Group are in one-to-one

correspondence with representations of its Lie algebra.
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A Lie group has a canonical representation of its Lie algebra, the so called
adjoint action: First let G act on itself via conjugation:

conj : G→ Aut(G), conjg(h) = ghg−1 (1.1)

This action is smooth and conjg(e) = e, so di�erentiating conjg at the neutral
element maps g isomorphically to g. This map is denoted:

Adg : g→ g (1.2)

Because conjgh = conjg ◦ conjh, di�erentiating yields Adgh = Adg ◦Adh. So
the mapping g → Adg is a representation, the so called adjoint represen-
tation of G. It can be shown that Adg is an automorphism of the Lie algebra
g, i.e. [x, y] = [Adg(x),Adg(y)] for all x, y ∈ g. Notice that for matrix Lie
groups and the canonical identi�cation of their Lie algebras with matrices

Adg(h) = ghg−1 ∀g ∈ G, h ∈ g

where the right-hand side connotation is matrix multiplication.

We can di�erentiate Ad : G→ Aut(g) at the identity to obtain a map:

ad : g→ der(g) (1.3)

It can be shown that ad(x)(y) = [x, y] for all x, y ∈ g(see [FH]), and this
is another common way to de�ne the Lie bracket on the tangent space at the
identity of a Lie group.

1.2 Spacetime

In this section we introduce the concept of spacetime manifolds. We begin
with dimension four, which is most important in physics, and then generalize
to arbitrary dimension. First introduce the concept of a Minkowski vector
space:

De�nition AMinkowski vector space is a four-dimensional real vector space
with a non-degenerate, symmetric bilinear form with signature (1, 3) =
(+,−,−,−).1

This de�nition was introduced by Minkowski in order to describe the math-
ematical structure of special relativity. Elements of a Minkowski space are
often called events or fourvectors. Choosing a basis, or equivalently (1.1.1)
an isomorphism to coordinate vector space R1,3 yields 4 coordinates for each
event: (x0, x1, x2, x3) Beginning with the index 0 is a widespread and gen-
erally accepted notation in physics. There x0 is regarded as time coordi-
nate and the other three components (x1, x2, x3) as space coordinates. The

1In mathematics and general relativity often also the signature (3, 1) is used
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automorphism group of the Minkowski spacetime, O(1, 3), is the so called
Lorentz group. This is perhaps the most important and prominent group
in 20th century physics and plays a central role in this work. There are a
lot of books about Minkowski space and its prominent role in Mathematical
physics, [SU] or [N2] o�er a good introduction.

1.2.1 Spacetime manifolds

Within the framework of Minkowski space we can not describe gravitational
e�ects. Gravitation seems to curve the worldlines of particles independent
of their inner constitution like their charge or mass. Minkowski space alone
does not allow such natural �grooves�. Einsteins made the observation that
at least locally every point has a neighborhood that looks like Minkowski
space. The natural question is now �How small?�. The answer expressed in
turn of the century mathematical terminology is we need an �in�nitesimal
neighborhood� to make this statement exact. This allows to give a modern
de�nition: [N2]

De�nition A spacetime is a 4-dimensional smooth manifold X with a
semi-Riemannian metric g of index (1, 3), called a Lorentz mectric. Thus,
for each x ∈ X the tangent space in x is isomorphic to R1,3.

Smooth 4-manifolds are a rich subject, and many of them admit a Lorentzian
metric.2 There are physical restrictions of which spacetime manifolds are of
real physical signi�cance. For example, compact spacetime manifolds always
admit closed timelike curves(curves with always timelike tangent vectors,
i.e. vectors v with g(v, v) > 0)[N1]. This would have some bizarre physical
interpretations, so compact spacetimes are usually disregarded. Another im-
portant restriction follows shortly, when we have the right tools to state it.
The Minkoswki space R1,3 itself can be regarded as spacetime manifold. The
underlying manifold is of course R4 and all its tangent spaces can be canon-
ically identi�ed with R1,3 and inherit the Minkowski product. In standard
coordinates the metric tensor is obviously constant and hence the curvature
tensor of R1,3 vanishes.

Minkowski space plays a central role in the concept of spacetime mani-
folds. For each point on a spacetime manifold the tangent space is isomor-
phic to R1,3. This isomorphism is not unique. A coordinate isomorphism into
R1,3 has to be picked to locally describe things such as the momentum of a
particle. Choosing another basis corresponds to applying an element of the
automorphism group of R1,3.

2Many here means all non compact ones and all compact ones with Euler characteristic
0, see [O]
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1.2.2 Lorentz group

As already mentioned in (1.2), the Lorentz group is de�ned in the following
way:

De�nition The Lorentz group is the inde�nite orthogonal group O(1, 3), i.e.
the group of all invertible linear maps R1,3 → R1,3 that preserve the bilinear
form. An element of the Lorentz group is called a Lorentz transformation.

Next we discuss some basic topological properties of the inde�nite or-
thogonal groups O(r, s)(1.1.2). A central observation is that the polar de-
composition of O(r, s) ⊂ GLn(C) gives rise to a homotopy equivalence

O(r, s)→ O(r)×O(s).

See ([K], proposition 1.143) for details. It is a classical result that SO(n) is
connected and for n ≥ 3 the fundamental group is π1(SO(n)) ∼= Z2(see [K],
proposition 1.136). We can deduce the following facts:

� For r, s 6= 0 the group SO(r, s) has exactly two connected components.
� For r, s 6= 0 the group O(r, s) has four connected components and
π0(O(r, s)) ∼= Z2 × Z2 is the Klein four-group.

� For s ≥ 3 the fundamental group of SO0(1, s) = O0(1, s) is π1(SO0(1, s)) ∼=
Z2

Thus the Lorentz group O(1, 3) has four connected components and the fun-
damental group of its connected component O0(1, 3) is Z2.

In physics usually a time ordering is needed: If there are two events in
Minkowski space which are separated by a non space-like vector(i.e. a vector
such that b(v, v) > 0) then all observers have to agree upon which event
happened �rst, i.e. has a smaller time coordinate. It is also a physical fact
that admissible bases are always linked by an orientation preserving Lorentz
transformation, that is a transformation with determinant one. With the
above homotopy equivalence it can be shown that all time and orientation
preserving Lorentz transformations are exactly the connected component of
the Lorentz group, SO0(1, 3).

This means that the underlying space is still Minkowski space, but we
have to restrict the automorphism group. We can take care of this by adding
more structure to Minkowski space, so that the automorphism group will
shrink to SO0(1, 3). To describe this structure a closer look at timelike vec-
tors(vectors v with b(v, v) > 0) is needed. The set containing all of them
decomposes into two connected components, which is best shown in coordi-
nates where this sets correspond to x0 > 0 and x0 < 0.
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De�nition Time oriented and oriented Minkowski space is a four di-
mensional real vector space with a non-degenerate, symmetric bilinear form
with signature (+,−,−,−) and additionally a �xed orientation as well as a
�xed time orientation. Time orientation corresponds to assigning to one of
the connected components of timelike vectors the label �future directed�
and to the other the label �past directed�

It can be easily veri�ed that the automorphism group of time oriented
and oriented Minkowski space is the connected component of the Lorentz
group SO0(1, 3).

Now we are ready to introduce the concept of a timeoriented space-
time manifold. We want to have a spacetime manifold where each tangent
space additionally has the structure of a time oriented Minkowski space. This
time orientation should of course be smooth. As with orientation there are
various equivalent ways to de�ne this. We will describe the smooth structure
with smooth timelike vector �elds:

De�nition A time orientatable spacetime is a spacetime X where the
two connected components of timelike vectors in each tangent space can be
labeled future and past directed in a way such that the following holds:
Let V be an arbitrary smooth local timelike vector �eld de�ned over a co-
ordinate neighborhood U ⊆ X, i.e. gp(Vp, Vp) > 0 for each p ∈ U . Then V
is either future or past directed, that means Vp is future directed for each
p ∈ U or Vp is past directed for each p ∈ U .
A spacetime X equipped with such a labelling is called time oriented.

It is easily veri�ed that on each connected component of a time orientable
manifold exactly two time orientations exist, and one is just the reverse of
the other. In the next section after introducing some useful concepts a more
convenient de�nition of time orientation is given.

Thus we have two non trivial conditions for a spacetime allowing us
to rule out �unphysical� behavior, namely the well known orientation and
the time orientation. A third one will follow shortly from the fact that not
SO0(1, 3) is the right automorphism group, but its double cover. To formu-
late and understand this third restriction the right framework is discussed
in the next section.

We can easily generalize the concept of a spacetime to each dimension. It
is then de�ned as a smooth n-dimensional manifold with a semi-Riemannian
metric of signature (1, s). Everything generalizes straightforward. Here the
group of orientation and time orientation preserving automorphisms of R1,s

is the connected component SO(1, s)0 of O(1, s). By the topological facts
discussed above the fundamental group of it is π1(SO(1, s)0) ∼= Z2.
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1.3 Principal bundles

In this section another important concept to formulate the Standard Model
Lagrangian in a geometrical way is introduced, the formalism of principal
bundles. The de�nitions and notation will follow [N2].

1.3.1 De�nition

De�nition LetX be a di�erentiable manifold andG a Lie group. A smooth
principal bundle over X with structure group G consists of a di�erentiable
manifold P , a smooth map P : P → X onto X and a smooth right action

σ : P ×G→ P, σ(p, g) = p · g
such that the following two conditions are satis�ed:

� σ preserves the �bers of P, i.e. P(p · g) = P(p) for all p ∈ P and all
g ∈ G

� Local triviality: For each x ∈ X there exists an open set V in X
containing x0 and a di�eomorphism Ψ : P−1(V )→ V ×G of the form
Ψ(p) = (P(p), ψ(p)), where ψ : P−1(V )→ G satis�es ψ(p ·g) = ψ(p) ·g
for all p ∈ P−1(V ) and all g ∈ G.

The pair (V,Ψ) is called a local trivialization of the G-bundle and a
family of local trivializations {Vj ,Ψj}j∈J such that the Vj s cover X is called
a trivializing cover or principal bundle atlas. A principal bundle will be
denoted by G ↪→ P

P−→ X.

The Cartesian product U × G gives rise to a principle bundle structure
called a trivial bundle. Every principal bundle is isomorphic to a trivial
bundle via a trivialization. But this trivialization is not unique because there
is no distinct element in a �ber of a principal bundle. Every element is treated
equally.

1.3.2 Connections

Connections on principal bundles will turn out to be an essential object in
physical gauge �eld theories such as the Standard Model and will describe
the interaction of �forces� and �matter� in their Lagrangian. The �bers over
a point x, P−1(x) give rise to the concept of 'vertical' in a bundle:

De�nition Let G ↪→ P
P−→ X be a principal bundle and p be a point of P .

Then by applying the right action σ : G → P we obtain a di�eomorphism
from G to the �ber containing p. By di�erentiating the right action we obtain
a linear isomorphism from the Lie algebra g of G to a subspace of the tangent
space Tp(P ). This subspace is called vertical subspace Vertp(P ) ⊂ Tp(P ).
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The vertical subspace is exactly the kernel of the derivative of the pro-
jection map P:

Vertp(P ) = ker(TP)p

All vertical subspaces together Vert(P ) := ker(TP) ⊂ TP span a subbundle
called vertical bundle of the tangent bundle.

Each A ∈ g gives rise to a vector �eld A# on P via the di�erential of the
map σp(g) = p · g at the neutral element e:

A#(p) = (Tσp)e(A) =
d

dt
(p · exp(tA))|t=0

These fundamental vector �elds span the vertical bundle.

Then we introduce the following concept:

De�nition A (principal) connection form on a principal bundle G ↪→
P
P−→ X with action σ is a smooth g-valued 1-form ω on P which satis�es

1. (σg)
∗ω = Adg−1 ◦ ω for all g ∈ G

2. ω(A#) = A for all A in g

Given a connection form we can immediately de�ne the horizontal sub-
space Horp(P ) of Tp(p) by

Horp(P ) = {v ∈ Tp(P ) : ωp(v) = 0}
All horizontal subspaces together span a subbundle of the tangent bundle,
the horizontal bundle. We can prove that the tangent bundle is the direct
sum of a horizontal and the vertical bundle, i.e.:

Tp(P ) = Horp(P )⊕Vertp(P ) ∀p ∈ P

Proof Suppose v is in Vertp(P ) ∩Horp(P ). By identifying the vertical sub-
space with the Lie algebra of G the tangent vector v would be the A#(p)
for a A ∈ g. But then ωp(v) = ωp(A

#(p)) = A by (1.3.2)(2). Therefore by
de�nition of the horizontal subspace v = 0, thus the two subspaces have a
trivial intersection. The dimension of Horp(P ) by its de�nition as Kernel of
a linear map is the dimension of Tp(P ) minus the dimension of Vertp(P ), so
dim Tp(P ) =dim Vertp(P ) + dim Horp(P ).

The horizontal subspace is invariant under the action of G on P in the
following sense:

(Tσg)p Horp(P ) = Horp·g(P )

which follows from (1.3.2)(1).
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Remark The horizontal subbundle is a distribution on the manifold P be-
cause it is de�ned as the kernel of a smooth form. This process can be
reversed, it can be shown that every distribution D on P that satis�es
Tp(P ) = D(p) ⊕ Vertp P and (Tσg)pDp(p) = Dp·g(P ) gives rise to a con-
nection form ω on P where Horp(P ) = D(p) by using the connection to
project onto the vertical subspace. We could equally well use the distribu-
tion picture to de�ne connections and this gives a more intuitively accessible
method of relating to a connection form. See [N1] for details. But for further
use in this work the given de�nition is better suited.

1.3.3 Curvature

Next we de�ne the curvature of a connection form. Let d denote the usual
exterior derivative.

De�nition Let ω be a connection form on a smooth principal bundle G ↪→
P
P−→ X. Then the curvature Ω ∈ Λ2(P, g) is de�ned to be the horizontal

part of the exterior derivative of ω:

Ωp(v, w) := (dω)p(v
H , wH) (1.4)

The curvature form is bilinear, skew symmetric and smooth. How to �ll
this de�nition with life and give intuitive interpretations(obstruction to �at-
ness, parallel transport along closed curves...) can be found in [N1].

Our de�nition of curvature(1.3.3) is, although short, not very suited for
calculations. To this end we �rst need the following de�nition:

[ω, ω]p(v, w) := [ωp(v), ωp(w)] ∀v, w ∈ Tp(P ) (1.5)

Because of the skew symmetry of the Lie bracket [ω, ω] is a g valued exterior
two form. Now the way to the famous Cartan Structure Equation is
paved:

Proposition 1.3.1 Let Ω be the curvature form of ω as in (1.3.3). Then:

Ω = dω + [ω, ω] (1.6)

We can use the obvious skew symmetry of both sides, �x a p ∈ P and
v, w ∈ Tp(P ) and decompose them in vertical and horizontal parts to reduce
the proof to the following cases:

1. v and w both horizontal
2. v and w both vertical
3. v vertical and w horizontal

For the full proof with all details see [N2].
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1.4 Associated bundles

In this section another concept central to the formulation of the Standard
Model Lagrangian is be introduced, the so called associated bundle. Let
G ↪→ P

P−→ X be a smooth principal G-bundle with right action σ. Let V
be a �nite dimensional vector space with a smooth representation of G. This
de�nes a smooth left action of G on P × V :

((p, v), g)→ (p · g−1, g · v)

We use the same dot to indicate all actions of G. It will be clear from
the context which one to use. The orbits of this action induce an equivalence
relation on P × V . We denote the equivalence class of (p, g) as [p, g]. Let
P ×G V be the set of equivalence classes and give it the quotient topology
determined by the quotient map Q.
Now we can de�ne a projection mapping

PG : P ×G V → X, PG([p, v]) = P(p)

This is well de�ned, because the right action on the principal bundle is �ber
preserving. For x ∈ X and p ∈ P such that P(p) = x the �ber above x ∈ X,
P−1
G (x), is given by the set {[p, v] : v ∈ V } because G acts transitively on

the �bers of P .

Now we �x a xo ∈ X and let (U,Ψ) be a trivialization of P containing
x0. There is a canonical associated cross section s given by:

s(x) := Ψ−1(x, e)

With this we de�ne a map:

Φ̃ : U × V → P−1
G (U), Φ̃(x, v) = [s(x), v]

which is continuous since it is the composition of continuous maps. By using
that the right action acts freely and transitively we conclude that Φ̃ has an
inverse:

Ψ̃ : P−1
G (U)→ U × V, Ψ̃([s(x), v] = (x, v)

To show that Ψ̃ is continuous, we observe that Ψ̃◦Q is given by (p, v)→
[p, v] → (P(p), g · v) for a certain g. This shows that Φ̃ = Ψ̃−1 and Ψ̃ are
homeomorphisms.

This shows that the structure (P ×G V,X,PG, V ) is a locally trivial vec-
tor bundle with the same trivializing neighborhoods as the original principal
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bundle. To verify that it can be equipped with a unique di�erentiable struc-
ture such that the projection PG is smooth and each Ψ̃ is a di�eomorphism
it is enough to show that the 'coordinate change' maps

Ψ̃i ◦ Ψ̃−1
j : (Uj ∩ Ui)× V → (Uj ∩ Ui)× V

are di�eomorphisms. A direct calculation shows that in fact

Ψ̃i ◦ Ψ̃−1
j (x, v) = (x, gji(x) · v)

where gji is the unique smooth transition function of the original pincipal
bundle: Uj ∩ Ui → G such that sj(x) = si(x) · gij(x) .
Because the action on the vector space is smooth we are �nished. This leads
to the following de�nition:

De�nition (P ×G V,X,PG, V ) is a smooth vector bundle, the so called
associated bundle. The trivializing neighborhoods of X of the initial prin-
cipal bundle are again trivializing neighborhoods so we can take these as
trivializing cover. The transition functions are given by the action on V of
the corresponding original transition functions. The �bers are now isomor-
phic to V .

Remark The same construction of surgically replacing �bers can be done
with any manifold F on which G acts smoothly on the left. The process is
exactly the same, just literally replace V with F . In this work we only need
the concept of associated vector bundles.

If the representation of G on V is denoted by ρ and the original principal
bundle by P , we denote the associated vector bundle by:

Pρ : P ×ρ V → X

An important example of an associated bundle is the vector bundle associated
to the adjoint representation Ad : G → GL(g) of a principal bundle G ↪→
P
P−→ X. This bundle P ×Ad g is called the adjoint bundle and we denoted

it by Ad P .

1.4.1 Frame bundles

Given a �nite dimensional vector bundle π : E → X we can use all frames
for all �bers to construct a principal bundle. Recall from (1.1.1) that a frame
is an ordered basis or, equivalently an isomorphism from coordinate vector
space Kn. We give an outline of this process. Let L(E)x denote the set of
all frames for a �ber over x ∈ X(interpreted as vector space) and de�ne:
L(E) =

⋃
x∈X L(E)x. We have a projection map:
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PL : L(E)→ X, PL(p) = x for p ∈ L(E)x

The automorphism group of the coordinate vector spaceKn is the general
linear group GLn(K). By (1.1.1) we obtain a transitive and free right action
on L(E)x. This induces an action on L(E) which is �ber preserving. The
objective now is to provide L(E) with a topology and manifold structure
such that

GLn(K)→ L(E)
PL−−→M

is a smooth principal GLn(K) bundle over M , called the (linear) frame
bundle of X. To do so, we �x a x0 in M . Let U be a trivializing neighbor-
hood of x0 in E with trivializing map ψ̃ : π−1(U) → U ×Kn, which gives
for each point x in U an isomorphism ψ̃x from Kn to the �ber over x.

Each frame in L(E)x is an isomorphism p from Kn to the �ber as well,
so there is a unique automorphism gψ(p) of Kn(an element of GLn(K) such
that p = ψ̃x ◦ gψ(p) This gives rise to a map

ψ : P−1
L (U)→ U ×GLn(K) : ψ(p) = (PL(p), gψ(p))

These ψ will become the trivializing maps of L(E). We see that ψ is bijective.
We can now use the topology on U and on GLn(K) to induce a topology
on L(E): A subset U of L(E) is declared to be open if and only if for each
trivialization (U,ψ) ψ(U ∩P−1

L (U)) is open in U ×GLn(K). It is easily ver-
i�ed that this really is a topology on L(E) and makes PL a continuous map.

Next we show how L(E) can be made a topological manifold: To obtain
charts, we need to show that the trivializations ψ are homeomorphisms
or, equivalently, continuous and open. For the latter, let W be an open set
in P−1

L (U). Because P−1
L (U) is open in L(E), W is also open in L(E). By

the de�nition of the topology on L(E), ψ(W ∩ P−1
L (U)) = ψ(W ) is open in

U ×GLn(K) which shows that each trivialization is open.

To show continuity of ψ, let (U,ψ) and (V, ρ) be two trivializations with
U ∩ V 6= ∅. Then take a closer look at:

ψ ◦ ρ−1 : (U ∩ V )×GLn(K)→ (U ∩ V )×GLn(K)

By de�nition of ψ and ρ each p in P−1
L (U ∩ V ) can be expressed as p =

ψ̃x ◦ gψ(p) and p = ρ̃x ◦ gρ(p). From this it can be deduced that gψ(p) =

ψ̃x
−1 ◦ ρ̃x ◦ gρ(p). It follows that ψ ◦ ρ−1(x, g) is (x, ψ̃x

−1 ◦ ρ̃x ◦ g) which is
composition of smooth maps and hence a di�eomorphism. 3.

3Observe that the map ψ̃x
−1 ◦ ρ̃x is an element of GLn(K) and corresponds to the

transition map of the original trivializations of the bundle E
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Now the continuity of ψ can be proven. Let Z be an open set in U ×
GLn(K). We have to show that ψ−1(Z) is open in L(E). By de�nition of the
topology on L(E) this is exactly the case if for each trivialization (V, ρ) the
set ρ(ψ−1(Z) ∩ P−1

L (V )) is open in U ×GLn(K). A brief calculation shows
that:

ρ(ψ−1(Z) ∩ P−1
L (V )) = (ρ ◦ ψ−1)(Z ∩ (U ×GLn(K)

which is open because as just shown ρ◦ψ−1 is a di�eomorphism. This shows
that ψ is continuous. By the above it is also open and hence a homeomor-
phism.

It is not hard to verify that L(E) is Hausdor�. Together with the fact
that the trivializations are homeomorphisms this makes L(E) a topological
manifold. Its dimension is m + n2, where m denotes the rank of the vec-
tor bundle E. How to de�ne a smooth structure on it is clear by the above
observation that the trivialization changes are di�eomorphisms. Within triv-
ializations it can be shown that PL as well as the right action are smooth. It
follows from the de�nition of the trivializations that they respect the right
action. Eventually we arrive at the following result:

Proposition 1.4.1 Given a �nite dimensional vector bundle E of rank n,
the (linear) frame bundle as constructed above is a principal bundle GLn(K) ↪→
L(E)

PL−−→ X. A trivializing cover of E is again a trivializing cover.

An important example of a frame bundle is the associated frame bundle
to the tangent bundle of a smooth manifold X, we denote it by L(X).

Given a smooth vector bundle E we can construct its linear frame bun-
dle L(E) and subsequently the associated bundle to L(E) via the natural
representation of GLn(K) on Kn. Due to the construction of associated bun-
dles they are a quotient of L(E)×Kn. More speci�cally, an element in the
associated bundle is the orbit of the action of GLn(K) on L(X)×Kn:

[p, v] = {(p · g−1, g · v) : g ∈ GLn(K)} (1.7)

With the interpretation of p as an isomorphism from Kn to the �ber in E
over PL(p) and observing that the map

ω : L(E)×Kn → E,ω(p, v) = p(v)

is constant on the orbits (1.7) we see that ω factors to a map

Ω : L(E)×GLn(K) K
n → E

This map is �ber preserving and linear. By trivializations it can be shown
that it is also a di�eomorphism. Thus we obtain an isomorphism of smooth
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vector bundles over X.

This shows how closely related these two constructions are. All vector
bundles of rank n are isomorphic to a vector bundle associated to a principal
GLn(K) bundle.

1.4.2 Orthonormal frame bundles

Let π : E
′ → M be a vector bundle carrying additional structure on its

�bers in such a way that the automorphism group of a typical �ber V
′

can be interpreted as a Lie subgroup of GL(V
′
). Then we can carry out a

construction similar to the frame bundle construction (1.4.1). Let F (E
′
)x be

the set of all frames for a �ber over x ∈M , i.e. all isomorphisms of V
′
to the

�ber over x. Then de�ne F (E
′
) =

⋃
x∈X F (E

′
)x, and the natural projection

map PF : F (E
′
) → X,PF (p) = x for p ∈ F (E

′
)x. Then we can exactly

repeat the linear frame bundle construction to obtain a principal bundle
called associated frame bundle. An exact formulation of this concept will
not be given. We rather look at some explicit examples:

� Let X be a semi-Riemannian manifold of signature (p, q). For each
x ∈ M exists a neighborhood such that the tangent bundle TM can
be trivialized via an orthonormal frame. Thus it can be interpreted
as vector bundle with typical �ber Rp,q. The orthonormal frame
bundle is the O(p, q) bundle we obtain by repeating the construction of
the linear frame bundle for orthonormal frames of the tangent bundle.
This principal bundle will be denoted as:

O(p, q) ↪→ O(p, q)(X)
PL−−→ X (1.8)

� LetX be an oriented and time oriented spacetime as de�ned in (1.2.1).As
above its tangent bundle can be interpreted as a vector bundle where
the �bers are isomorphic to oriented and time-oriented Minkowski
space. Its automorphism group is the connected component of the
Lorentz group SO0(1, 3). Repeating the construction of the linear frame
bundle for orthonormal, oriented and time oriented frames yields the
principal bundle:

SO0(1, 3) ↪→ L(X)
PL−−→ X (1.9)

The latter bundle called oriented, time oriented orthonormal frame
bundle will turn out to be a core part for the formulation of the Standard
model.

Another application of the associated bundle and frame bundle concept
is a description of time orientation and space orientation of spacetimes.
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The pseudo orthogonal group O(p, q) allows two important homomorphisms
into Z2: The so called space orientation character σ+ and the time orientation
character σ−. These characters map the respective orientation preserving
elements in O(p, q) to 1 and the respective orientation �ipping elements to
-1. Given a semi Riemannian manifold X and its frame bundle Op,q(X), we
can construct the following associated bundles:

O(p, q)×σ+ Z2 (1.10)

O(p, q)×σ− Z2 (1.11)

These are called space orientation bundle and time orientation bun-
dle. A global section of these bundles is called space orientation or time
orientation of the semi Riemannian manifold X. If such a space or time ori-
entation exists, which means that the bundle has a global trivialization, X is
called space respectively time orientable. For a Lorentzian manifold (p = 1)
the previously de�ned time orientation(1.2.2) of a spacetime is seen to co-
incide with this more general concept: We could equally well construct the
time orientation bundle by letting the frame bundle act on the set of con-
nected components of timelike vectors. Then a continuous choice of such a
connected component corresponds to a section of the time orientation bundle.

Remark Let us re�ect upon the physical interpretations of the concepts
of this section: The associated frame bundle construction takes all possible
frames in each tangent space of spacetime and groups them into one object,
the associated frame bundle. If a physicist wants to describe a process hap-
pening in a neighborhood of a point, he has to pick a frame in each point,
which is a smooth section of the associated bundle or equivalently a local
trivialization. Of course he also needs now a formalism to describe objects.
This will turn out to be sections of associated bundles to the frame bundle,
so basically vectors which transform in a certain way under a basis change.

1.4.3 Tensorial forms

In this section a certain kind of vector valued forms on principal bundles,
the so called tensorial forms are introduced. The notation and proofs follow
[N2].

De�nition Let G ↪→ P
P−→ X be a principal bundle with right action σ.

Let V be a vector space and ρ : G→ GL(V ) be a representation of G on V ,
denoted by (ρ(g))(v) = g · v.
A V -valued k-form φ on P is

� pseudotensorial of type ρ if and only if the following equation holds

σ∗gφ = g−1 · φ ∀g ∈ G (1.12)
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� tensorial of type ρ if and only if it is pseudotensorial of type ρ
and horizontal in the sense that φp(v1, · · · , vk) = 0 if one of the
v1, · · · , vk ∈ Tp(P ) is vertical.4 A 0-form is taken to be vacuously hori-
zontal. The set of all V -valued k-forms on P that are tensorial of type
ρ provided with the obvious real vector space structure will be denoted
by Λkρ(P, V )

That pseudotensorial forms are a larger class than tensorial ones can be
seen by a connection form ω: By its de�nition (1.3.2) it is a pseudotensorial
form of type Ad, but not tensorial(indeed the kernel of ωp is Horp(P ) and
not Vertp(P )).

Lemma 1.4.2 Let G ↪→ P
P−→ X be a principal bundle and φ a pseudoten-

sorial form of type ρ with the same notations as above. Then the exterior

derivative dφ is also pseudotensorial of type ρ

Proof With the facts that d is a natural transformation and that the action
of g on V is linear we obtain:

σ∗g(dφ) = d(σ∗gφ) = d(g−1 · φ) = g−1 · dφ

So d is a di�erential operator on pseudotensorial forms. To get a similar
di�erential operator on tensorial forms, we need a principal connection on
G ↪→ P

P−→ X:

Lemma 1.4.3 Let G ↪→ P
P−→ X be a principal bundle with a principal

connection form ω and τ a pseudotensorial form of type ρ with the same

notation as above. Then the V -valued k-form τH on P de�ned by

τHp (v1, · · · , vk) = τp(v
H
1 , · · · , vHk ) (1.13)

is tensorial of type ρ. Here vH is the horizontal part of v ∈ Tp(P ) determined

by the connection form ω.

Proof The de�ned τH is a smooth V -valued k-form: It is skew-symmetric,
C∞-linear and as composition of smooth projections and a smooth form
smooth. We see directly from the de�nition that τH is horizontal. To show
that τH is pseudotensioral we use the fact that the action of G on tangent
vectors via the di�erential of σ respects the splitting in horizontal and vertical
parts:

((Tσg)p(v))H = (Tσg)p(v
H) ∀g ∈ G, p ∈ P, v ∈ Tp(P ) (1.14)

4Note that we do not need a connection to de�ne horizontal.



20 1. Important concepts

This follows from observing that (Tσg)p maps vertical vectors to vertical ones
and (Tσg)p maps horizontal vectors to horizontal ones. The latter follows di-
rectly from the invariance of the horizontal space. Because the splitting of
a tangent vector in its horizontal and vertical part is unique we obtain (1.14).

Let v denote the k arguments v1, · · · , vk of τ . With this we get the
following:

(σ∗gτ
H)p(v) = τHp·g((Tσg)pv) = τp·g(((Tσg)pv)H)

= (σ∗gτ)p(v
H) = g−1 · τp(vH) = g−1 · τHp (v)

This shows that τH is also pseudotensorial, hence it is tensorial.

We obtain a covariant exterior derivative on pseudotensorial forms:

Proposition 1.4.4 Let G ↪→ P
P−→ X be a principal bundle with a connec-

tion form ω and φ a pseudotensorial k-form of type ρ in the same notation

as above. Then the covariant exterior derivative dωφ of φ, de�ned by

(dωφ)p(v1, · · · , vk+1) = (dφ)Hp (v1, · · · , vk+1) = (dφ)p(v
H
1 , · · · , vHk+1) (1.15)

is a tensorial (k + 1)-form of type ρ. In particular,

dω : Λkρ(P, V )→ Λk+1
ρ (P, V ) (1.16)

A principal connection form on a principal bundle gives rise to a canonical
covariant derivative on tensorial forms. We have already seen an example
of an action of a covariant derivative: The curvature form Ω (1.3.3) is the
covariant exterior derivative of the connection form (Ω = dωω). As with the
curvature in its original de�nition, the de�nition above is inconvenient form
for calculations. But if viewed as operator on tensorial forms Λkρ(P, V ) →
Λk+1
ρ (P, V ) there is again a useful equation similar to the Cartan structure

equation, which is given below. First w de�ne the following product of forms:

De�nition Let ρ be a smooth representation of a Lie group G on a vector
space V . Then consider the Lie algebra homomorphism ρ′ : g → gl(V )
obtained by di�erentiating the Lie group homomorphism ρ : G → GL(V ).
The result is a bilinear map:

gl(V )× V → V, (A, v) 7→ A · v := ρ′(A)(v) (1.17)

We then de�ne a product ∧̇ for g-valued k-forms α and V-valued l-forms β:

α ∧̇ β(v1, · · · vk+l) :=
1

k!l!

∑

σ∈Sk+l

(−1)sgn(σ)α(vσ(1), · · · vσ(k))·β(vσ(k+1), · · · , vσ(k+l))

where we sum over all permutations in Sk+l
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With this we can write down the following form of the covariant deriva-
tive:

Proposition 1.4.5 Let G ↪→ P
P−→ X be a principal bundle with a principal

connection form ω and φ a tensorial k-form of type ρ in the same notation

as above. Then the following equation holds:

dωφ = dφ+ ω ∧̇ φ

The proof is analogous to the proof of the Cartan structure equation(1.3.1).
We �x a p ∈ P and v1 . . . vk+1 ∈ Tp(P ) and decompose them in vertical
and horizontal parts. By using the multilinearity the proof reduces to the
following cases:

1. Each v1, · · · , vk+1 is horizontal.
2. Two or more of v1, . . . , vk+1 are vertical.
3. Precisely one of v1, . . . , vk+1 is vertical and the rest horizontal.

The �rst two cases are trivial, the third requires some work. The full proof
can be found in [N2].

Next we state and prove a fact that is central for this thesis: Tensorial
forms correspond to forms on the base manifold with values in an associated
bundle.

Theorem 1.4.6 Let G ↪→ P
P−→ X be a principal bundle with a connec-

tion form ω and let ρ : G → GL(V ) be a representation of the structure

group G on a �nite dimensional vector space. Then there exists a canonical

linear isomorphism from the space of tensorial k-forms of type ρ, Λkρ(P, V )
to the space of k-forms on X with values in the associated bundle P ×ρ V ,
Λk(X,P ×ρ V ) = Γ(ΛqT ∗X ⊗ P ×ρ V ).

Proof First recall that each p in P induces a linear isomorphism of V with
the �ber over x = P(p) in the principal bundle by:

p : V → (P ×ρ V )x, p(v) = [p, v]

Now de�ne a map
ι : Λkρ(P, V )→ Λk(X,P ×ρ V )

by pointwise de�ning:

ι(τ)x(v1, · · · vk) := [x̃, τx̃(ṽ1, · · · , ṽk)] (1.18)

where x̃ ∈ P is an arbitrary element in the �ber over x: P−1(x) and ṽi are
tangent vectors in x̃ such that (TP)x̃(ṽi) = vi
We have to show that ι is well de�ned. This is seen by noting that:
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� (TP)x̃(ṽi) = vi and (TP)x̃( ˜̃vi) = vi implies that ṽi = ˜̃vi + h, where h
is vertical.

� τx̃·g(Tσg(ṽ1), · · · , Tσg(ṽk)) = (g∗σ)x̃(ṽ1, · · · , ṽk)) = g−1τx̃(ṽ1, · · · , ṽk)
by using that τ is tensorial.

Thus [˜̃x, τ˜̃x( ˜̃v1, · · · , ˜̃vk)] = [x̃, τx̃(ṽ1, · · · , ṽk)] and ιx is well de�ned. By using
charts we can see that it depends smoothly on x, so we obtain an element
ι(τ) in Λk(X,P ×ρ V ). The map ι is linear.

Now de�ne a map:

κ : Λk(X,P ×ρ V )→ Λkρ(P, V )

by de�ning pointwise:

κ(φ)p(ṽ1, · · · ṽk) := p−1 ◦ φx(v1, · · · vk) (1.19)

where as above TP(ṽi) = vi and P(p) = x. The map κx is well de�ned,
linear and depends smoothly on x. Therefore we obtain a linear map κ into
the V -valued k-forms on P . It is left to prove that κ(φ) is tensorial, which
follows from:

g∗κ(φ)p(v1, · · · vk) =κ(φ)p·g(Tσgṽ1, · · ·Tσgṽk) =

=(p · g)−1 ◦ φx(v1, · · · vk) = g−1 · κ(φ)p(v1, · · · vk)

It is horizontal since for vertical ṽi the projection vi = TP(ṽi) is 0.
The two constructions are inverse to each other, which can directly be veri�ed
from their pointwise de�nitions.((1.18) and (1.19))

Given a section of the principal bundle P , the above map ι : Λkρ(P, V )→
Λk(X,P ×ρ V ) can be written in the following form:

Proposition 1.4.7 Let s : X → P be a section of the principal bundle P
and τ be a tensorial k-form on P . Then the above map ι : Λkρ(P, V ) →
Λk(X,P ×ρ V ) is given by:

ι(τ)x(v1, . . . vk) = [s(x), (s∗τ)x(v1, . . . vk)] (1.20)

Proof By the de�nition of the pullback:

(s∗τ)x(v1, . . . vk) = τs(x)((Ts)xv1, . . . , (Ts)xvn)

But P ◦ s = id, thus

(TP)s(x)((Ts)xvi) = vi

This shows that the right-hand side of (1.20) can be chosen in the de�nition
of ι in (1.18).
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A special case of identi�cation (1.4.6) is the case k = 0. The theorem
then allows us to identify smooth sections of an associated bundle P ×ρ V
with equivariant functions P → V . Here a function f : P → V is called
equivariant if f(p · g) = ρ(g−1)f(p) for all g in G.

One also has now a means of de�ning a covariant exterior derivative for
associated bundle valued forms:

Proposition 1.4.8 Let G ↪→ P
P−→ X be a principal bundle with a connec-

tion form ω and let ρ : G → GL(V ) be a representation of the structure

group G on a �nite dimensional vector space. Then ω induces a canonical

exterior derivative on the associated bundle P ×ρ V valued forms:

∇ω : Λk(X,P ×ρ V )→ Λk+1(X,P ×ρ V )

Proof Use (1.4.6) and the covariant exterior derivative dω: (1.4.4) to obtain
a map:

∇ω : Λk(X,P ×ρ V )
ι−1

∼= Λkρ(P, V )
dω→ Λk+1

ρ (P, V )
ι∼= Λk+1(X,P ×ρ V )

It turns out that this canonical exterior derivative in fact is a vector bun-
dle connection, as already indicated by the notation:

For k = 0 we obtain a map

∇ω : Γ(P ×ρ V )→ Γ(T ∗X ⊗ P ×ρ V ) (1.21)

We can verify by direct calculation using (1.4.5) and the explicit isomor-
phism (1.4.6) that this operator also ful�lls the Leibnitz rule:

∇ω(fσ) = ∇ωf + σ ⊗ df
for all smooth functions f on X and sections σ of P ×ρ V . Therefore ∇ω is
indeed a vector bundle connection.

Remark If G = Gl(V ) and the representation ρ is in�nitesimaly e�ective,
i.e. Tρe : g→ gl(V ) is injective, each vector bundle connection ∇ on P ×ρ V
gives rise to a principal connection on P and the two constructions are inverse
to each other(See [M], theorem 19.9).

The induced vector bundle connection ∇ω has a property which is useful
later on:
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Proposition 1.4.9 Let G ↪→ P
P−→ X be a principal bundle equipped with

a connection form ω and let ρ1 : G → GL(V ) and ρ2 : G → GL(W ) be

representations of the structure group G on �nite-dimensional vector spaces

V and W . Furthermore let φ : V →W be an equivariant map, i.e.:

φ ◦ ρ1(g) = ρ2(g) ◦ φ ∀g ∈ G

Then:

� The equivariant map φ : V → W induces a vector bundle homomor-

phism on the associated bundles:

φ̃ : Γ(P ×ρ1 V )→ Γ(P ×ρ2 W )

� For such a φ̃:

∇ωX(φ̃s) = φ̃(∇ωXs) (1.22)

for all vector �elds X in Γ(TM) and all sections s of P ×ρ1 V

Proof Let s be a section of P ×ρ1 V . By the above theorem (1.4.6) this
corresponds to a tensorial 0-form on P with values in V . Let us denote this
map P → V again by s. We then de�ne a map:

s̃ : P
s−→ V

φ−→W, s̃ = φ ◦ s

Since φ is equivariant, s̃ is also tensorial and therefore corresponds to a
section of P ×ρ2 V which we also denote by s̃. This map is C∞(X) linear
and thus yields the desired vector bundle homomorphism:

φ̃ : Γ(P ×ρ1 V )→ Γ(P ×ρ2 W ), s 7→ s̃

To prove the second point it is su�cient to show that the corresponding
tensorial forms of both sides in (1.22) agree. Let X̃ be a vector �eld on P
such that TP(X̃) = X. Then the left-hand side is given in terms of tensorial
forms by:

(dω(φ ◦ s))(X̃) = d(φ ◦ s)(X̃H) = φ ◦ (ds)(X̃H)

In the last step we used that d(φ ◦ s) = φ ◦ ds, which holds because φ is a
linear map. The right-hand side in terms of tensorial forms becomes:

φ ◦ (dωs)(X̃) = φ ◦ (ds)(X̃H)

Hence both side of (1.22) agree.
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Coordinate formula

Here an explicit coordinate formula for the induced covariant derivative ∇ω
is calculated. Let G ↪→ P

P−→ X be a principal bundle equipped with a
connection form ω and an associated bundle P ×ρ V . Then, as above, there
exists a vector bundle connection ∇ω on P ×ρ V which we express in local
coordinates.

Let U be a coordinate neighborhood of a point x ∈ X with coordinate
functions (x1, . . . xn) : U → W ⊂ Rn and s : Rn → U → P be a local
section(with respect to the coordinates) of the principal bundle. Then we
can interpret a section σ : W → P ×ρ V as a map:

σ : W → P ×ρ V, σ(x) = [s(x), v(x)]

where v is a map from W to the vector space V . Given a �xed section of the
principal bundle s(x), we can describe a section of the associated bundle via
v : W → V . The aim is to express ∇ω in terms of the section s, the map v
and the coordinate one forms dxi.

To this end we advance in the following way: Let σ̃ denote the tensorial
0-form that corresponds to σ. It is a equivariant map P−1(W ) → V . From
equation (1.4.5) we now that:

∇̃ωσ = dσ̃ + ω ∧̇ σ̃
Now express this in coordinates, where we use that the section s gives rise to
a local trivialization W ×G of P . Let (y1, . . . yl) be coordinate functions of a
neighborhood of the identity in G with g(0) = e. Then we obtain coordinate
functions (x1, . . . xn, y1 . . . yl) of a neighborhood N of s(x). Next we want to
state σ̃ : P−1(W ) → V with respect to these coordinates. Let p ∈ W be of
the form s(x1, . . . xn) · g(y1, . . . yl) = s(x) · g(y) It follows from the explicit
isomorphism that:

σ̃p = p−1 ◦ σx = g(y) · v(x)

For the exterior derivative term we obtain:

dσ̃p =

l∑

i=1

∂

∂yi
g(y) · v(x) dyi +

n∑

j=1

g(y) · ∂

∂xj
v(x) dxj

Subsequently we translate this expression back into an associated bundle
valued one form via the explicit isomorphism ι. We are interested in the
coe�cients with respect to the coordinate one forms dxi:

ι(dσ̃)ix = ι(dσ̃p)x(∂xi) = [s(x), dσ̃s(x)(∂̄xi)] = [s(x),
∂

∂xi
v(x)]



26 1. Important concepts

where we have used that in our coordinates ∂xi on P is a vertical lift of ∂xi
on X. This yields the desired expression for the �rst term. The second is
calculated analogously. First we obtain:

(ω ∧̇ σ̃)ip = ωi(x,y) · g(y) · v(x)

where
∑n+l

i=1 ωidx
i is the coordinate expression of ω. Therefore:

ι(ω ∧̇ σ̃)ix = [s(x), (ω ∧̇ σ̃)s(x)(∂̄xi)] = [s(x), ωi(x) · v(x)]

where ωi(x) := ωi(x,0) = ωi(s(x)). Note that ωi(x) depends on the
local cross section s. By its de�nition ωi(x) = ωs(x)((Ts)x(∂xi)), and by the
de�nition of the pullback this is (s∗ω)x(∂xi) = (s∗ω)xi

We arrive at the following result:

Proposition 1.4.10 With the notation as above the following identity holds:

(∇ω(σ))x =
n∑

i=1

[s(x), (
∂

∂xi
+ (s∗ω)i(x)) · v(x)] dxi

1.4.4 Spliced bundles

When construction the Standard Model Lagrangian we will be in the follow-
ing situation: Given two principal bundles over the same space X we want
to �splice� them together into a single bundle. Consider the two bundles over
a given space X:

G1 ↪→ P1
P1−→ X

G2 ↪→ P2
P2−→ X

The total space of the spliced bundle is given by:

P1 ◦ P2 = {(p1, p2} ∈ P1 × P2 : P1(p1) = P2(p2)}

which is a smooth submanifold of P1 × P2. One can de�ne the projection:

P12(p1, p2) : P1 ◦ P2 → X, P12(p1, p2) = P1(p1) = P2(p2)

which is a smooth map. We obtain a smooth right action of G1 × G2 on
P1 ◦ P2 by:

(p1, p2) · (g1, g2) = (p1 · g1, p2 · g2)

In total this gives a smooth principal G1 × G2 bundle over X, the spliced
bundle:
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G1 ×G2 ↪→ P1 ◦ P2
P12−−→ X

We have projection maps π1 : P1 ◦ P2 → P1 and π2 : P1 ◦ P2 → P2 given
by πi(p1, p2) := pi for i = 1, 2. We can use them to lift connections from P1

and P2. Observe that the Lie algebra of G1 × G2 is a direct sum g1 ⊕ g2.
Given a connection ω1 on P1 we can therefore pull it back to a g1⊕g2 valued
form π∗1ω1 by identifying g1 with g1 × 0 in g1 ⊕ g2. Given a connection ω2

on P2 we analogously obtain a g1 ⊕ g2 valued form π∗2ω2. This leads to the
following:

Proposition 1.4.11 The form π∗1ω1+π∗2ω2 de�ned above is a principal con-

nection on P12 : P1 ◦ P2 → X

Proof First we show that π∗1ω1 is pseudotensorial(1.4.3) of type Ad. Here
g1 denotes both the action of g1 on the spliced bundle P1 ◦ P2 and on P1,
the dot denotes the adjoint action on the Lie algebra valued forms.

(g1, g2)∗π∗1ω1 = (π1 ◦ (g1, g2))∗ω1 = (g1 ◦ π1)∗ω1

= π∗1g
∗
1ω1 = π∗1(g−1

1 · ω1) = (g1, g2)−1 · (π∗1ω)

The same argument yields that π∗2ω2 is pseudotensorial, and therefore π∗1ω1+
π∗2ω2 as well.

Next we observe what π∗1ω gives on vertical vectors Tσ(p1,p2)(A1, A2),
where (A1, A2) denotes an element in g1 ⊕ g2 and σ(p1,p2)(g1, g2) is given by
(p1, p2) · (g1, g2).

(π∗1ω1)(p1,p2)((Tσ(p1,p2))e(A1, A2)) = (ω1)p1((Tπ1)(p1,p2))(Tσ(p1,p2))e(A1, A2)) =

(ω1)p1((Tσp1)eA1) = A1

where the last line is interpreted as an embedding of g1 in g1 ⊕ g2 as above.
In combination with the same calculation for π∗2ω this yields:

(π∗1ω1 + π∗2ω2)(p1,p2)(Tσ
(p1,p2)
e )(A1, A2)) = (A1, A2)

Hence π∗1ω1 + π∗2ω2 also ful�lls the second condition of being a principal
connection.

This construction allows us to splice principal bundles with given connections
into one principal bundle with an attached connection. The above construc-
tions generalize to any �nite number of bundles.

Let ρ1 : G1 → GL(V1) and ρ2 : G2 → GL(V2) be two �nite dimensional
representations of G1 and G2 on two vector spaces V1 and V2 over the same
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�eld. We want to associate a bundle to the spliced bundle P1◦P2 via these two
representations. This is achieved by linearly extending the action of G1×G2

given by ρ1 × ρ2 on V1 × V2 to a representation:

ρ1 × ρ2 : G1 ×G2 → GL(V1 ⊗ V2)

Thus there is an associated bundle:

P1 ◦ P2 ×(ρ1×ρ2) (V1 ⊗ V2)

This bundle can be understood in the following way:

Proposition 1.4.12 There is a canonical isomorphism:

P1 ◦ P2 ×(ρ1×ρ2) (V1 ⊗ V2) ∼= (P1 ×ρ1 V1)⊗ (P2 ×ρ2 V2)

Proof This isomorphism is constructed �berwise. Let x be in X and (p1, p2)
be an element in the �ber of P1◦P2. Let σ1

x and σ
2
x be elements of (P1×ρ1 V1)

resp. (P2 ×ρ2 V2) in the �ber over x. Then there exist unique v ∈ V1 and
w ∈ V2 such that σ1

x = [p1, v] and σ2
x = [p2, w]. Then we can de�ne a map:

ιx : (P1 ×ρ1 V1)x × (P2 ×ρ2 V2)x → (P1 ◦ P2 ×(ρ1×ρ2) (V1 ⊗ V2))x :

[p1, v]× [p2, w]→ [(p1, p2), v ⊗ w] (1.23)

Changing (p1, p2) to another point in the �ber over x does not a�ect this map
and it is linear in both components. Because of the universal property of the
tensor product ιx extends to the tensor product ((P1×ρ1 V1)⊗ (P2×ρ2 V2))x.
By observing how it behaves on a basis it can be deduced that this is a
�berwise isomorphism. By choosing a local section s(x) = (p1(x), p2(x)) of
P1 ◦ P2 we can verify that ιx depends smoothly on x.

Now let ω1 be a principal connection on P1 and ω2 be a prinicpal connec-
tion on P2. As above (1.4.11) we obtain a principal connection π∗1ω1 + π∗2ω2

on P1 ◦ P2. With (1.21) we get vector bundle connections ∇ω1 on E1 :=
(P1 ×ρ1 V1), ∇ω2 on E2 := (P2 ×ρ2 V2) and ∇ω1+ω2 on E1 ⊗ E2

∼= (P1 ◦
P2 ×(ρ1×ρ2) (V1 ⊗ V2))
Via the coordinate form (1.4.10) of∇ω1+ω2 the following result can be shown:

Proposition 1.4.13 With the notation as above the following equation holds

for all sections σ of (P1 ×ρ1 V1) and e of (P2 ×ρ2 V2):

∇ω1+ω2(σ ⊗ e) = (∇ω1σ)⊗ e+ σ ⊗ (∇ω2e)

Therefore ∇ω1+ω2 is the canonical tensor product connection of ∇ω1 and

∇ω2.
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1.5 Spin structure

1.5.1 Cli�ord algebras

In section (1.2.2) the connected component of the Lorentz group SO(1, 3)0

is established as the structure group which links admissible frames. With an
underlying space time manifold X modelling gravity we obtain as described

above (1.9) a principal bundle SO(1, 3)0 ↪→ L(X)
PL−−→ X as central object.

But as already mentioned we need more structure to describe the Standard
Model Lagrangian. The fermionic �elds do not transform via a representation
of SO(1, 3)0, but via a representation of its universal cover. In this section we
show how this universal cover is embedded in the so called Cli�ord algebra
of R1,3. The notation and presentation follows [LM].

De�nition Let V be a �nite dimensional vector space over a �eld k with
characteristic 6= 2 and q be a quadratic form on V . Let

T (V ) =
∞∑

i=0

i⊗
V (1.24)

denote the tensor algebra of V . De�ne Iq to be the ideal in V generated by
all elements of the form v⊗v−q(v)15 for v ∈ V . Then the Cli�ord algebra
Cl(V, q) associated to V and q is an associative algebra with unit de�ned as:

Cl(V, q) := T (V )/Iq (1.25)

It can be shown([LM]) that the map from V in Cl(V, q) which is de-
termined by the embedding of V in T (V ) is injective. This gives a natural
embedding V ⊂ Cl(V, q). We see that the Cli�ord algebra is generated by
the vector space V subject to the relation

v · v = q(v). (1.26)

This results in the following universal characterization of a Cli�ord algebra:

Proposition 1.5.1 ([LM], Proposition 1.1) Let f : V → A be a lin-

ear map from a k-vector space V with quadratic form q into an associative

k-algebra with unit, such that f(v) · f(v) = q(v)1 for all v ∈ V . Then f
extends uniquely to a k-algebra homomorphism f̃ : Cl(V, q) → A. The alge-

bra Cl(V, q) is the up to isomorphism unique associative k-algebra with this

property.

5In mathematical literature, for instance [LM], often v ⊗ v + q(v) is used, but both
de�nitions are common.
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The discussion above shows that Cl(V, q) has this universal property: Any
linear map f : V → A extends to a unique algebra homomorphism T (V )→
A which is 0 on the ideal and therefore descends to Cl(V, q). Objects de�ned
by an universal property are always unique up to canonical isomorphism.

A Cli�ord algebra has an important natural splitting. In order to de-
�ne it we observe that by the universal property of the Cli�ord algebra the
map α(v) = −v on V uniquely extends to a automorphism f̃ : Cl(V, q) →
Cl(V, q). It can readily be veri�ed that f̃ is an involution because f is. This
follows from the following fact: Let g and h be two automorphisms of V
which preserve the quadratic form q(i.e. in O(V )). Then by the universal
property we obtain g̃ ◦ h = g̃ ◦ h̃. The eigenspaces of f̃ to +1 and -1 now give
a decomposition:

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q)

where Cli(V, q) denotes the eigenspace to (−1)i of α. Furthermore α(v ·w) =
α(v) · α(w) holds for all v, w ∈ Cl(V, q). Thus α : Cl(V, q) → Cl(V, q) is an
automorphism. By applying the above argument we additionally obtain a
group homomorphism: O(V, q)→ Aut(Cl).

A Cli�ord algebra has a natural �ltration. This structure comes from
the �ltration T 0 ⊂ T 2 ⊂ . . . ⊂ T (V ) of the tensor algebra, de�ned by
T r :=

∑
s≤r
⊗s V . We have T r ⊗ T s ⊆ T r+s for all r, s. We set F i =

πq(T i) to obtain a �ltration F0 ⊂ F1 ⊂ F2 . . . ⊂ Cl(V, q), which has the
property that Fr · Fs ⊆ Fr+s for all r, s. With this structure Cl(V, q) is a
�ltered algebra. It follows that the multiplication map descends to a map:
(Fr/Fr−1) × (Fs/Fs−1) → (Fr+s/Fr+s−1) for all r, s. With this approach
we arrive at the associated graded algebra

⊕
r≥0(Fr/Fr−1)

It can be shown that the associated graded algebra of Cl(V, q) is naturally
isomorphic to the exterior algebra Λ∗V . This follows from the fact that by
(1.26) multiplication in Cl(V, q) is skew in the highest order terms with
respect to the �ltration. This leads to an important isomorphism:

Proposition 1.5.2 ([LM], Proposition 1.3) There is a canonical vector

space isomorphism:

Λ∗
∼=−→ Cl(V, q)
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compatible with the �ltrations.

Proof De�ne a map

f : V × · · · × V → Cl(V, q), f(v1, . . . , vr) =
1

r!

∑

σ

sign(σ)vσ(1) . . . vσ(r)

where we take the sum over all elements σ of the symmetric group. Then f
descends to a linear map f̃ : ΛrV → Cl(V, q). By applying the associated
graded algebra structure of Cl(V, q) it can be shown that for r = 0, . . . n f̃
is injective and the direct sum of these maps is an isomorphism. See [LM])
for details.

With this isomorphism we obtain that for a n-dimensional vector space
V with quadratic form q the vector space dimension of the Cl(V, q) is 2n. If
we have a q-orthogonal basis e1, e2, · · · , en of V , then the isomorphism shows
that the products of the form ei1 · ei2 · · · eik with i1 < i2 < · · · ik are a basis
of Cl(V, q).

1.5.2 The groups Pin and Spin

Next we de�ne the subset of units in the Cli�ord algebra:

Cl×(V, q) := {φ ∈ Cl(V, q) : ∃φ−1 ∈ Cl(V, q) : φ−1φ = φφ−1 = 1}

With the multiplicative structure of the Cli�ord algebra this is a group. It
contains all elements v ∈ V with q(v) 6= 0, since the inverse of v is given by
v
q(v) . We de�ne the following two subgroups of Cl×(V, q):

De�nition

� Pin(V, q) := {v1 . . . vr|vj ∈ V, q(vj) = ±1 ∀j}
� Spin(V, q) := Pin(V, q) ∩ Cl0(V, q)

There is a representation of Pin(V, q) on GL(V ) where unit vectors v ∈ V
act via a re�ection on a hyperplane normal to v:

De�nition

Ãd : Pin→ GL(V ), Ãdφ(v) := α(φ)vφ−1 (1.27)

That Ãdφ really is an element in GL(V ) will be explained in the next propo-
sition. Since α is an automorphism of the Cli�ord algebra, this modi�ed
adjoint representation is a representation.

By using that v−1 = v
q(v) we can verify the following equation:
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Proposition 1.5.3 Let v ∈ V ⊂ Cl(V, q) be an element with q(v) 6= 0. Then

Ãdv(w) = α(v)wv−1 = w − 2
q(v, w)

q(v)
v ∀w ∈ V

where the action of Ãd is extended to all v ∈ V with q(v) 6= 0

An immediate consequence of this is that Ãdv is an element in GL(V ) which
preserves the quadratic form, i.e. an element of the orthogonal group O(V ).

From now on let the underlying �eld be R or C and q be non degenerate.
By restricting Ãd we obtain a representation Pin(V, q)→ O(V, q), since Ãdv
for v ∈ V with q(v) 6= 0 is in O(V, q) and Pin is by de�nition generated
by such elements. In the following we discuss the kernel and image of this
representation.

Theorem 1.5.4 (Cartan-Dieudonné) Let q be a non-degenerate quadratic
form on a �nite dimensional vector space V . Then every element g ∈ O(V, q)
can be written as a product of r re�ections where r ≤ dim(V )

g = ρv1 ◦ · · · ◦ ρvr (1.28)

A proof by induction for the dimension can be found in [G].

Since over R and C all re�ection vectors can be normalized to length ±1
the representation Ãd of Pin contains all re�ections. Hence the representa-
tion is surjective. Another important property is that re�ections have deter-
minant -1. This follows because the orthogonal hyperplane to the re�ection
vector is an eigenspace to 1, while the re�ection vector is an eigenvector to -1.

Since Spin is generated by an even number of re�ections representation
Ãd of Pin restricts to a representation: Ãd : Spin(V, q) → SO(V, q). The
above theorem of Cartan-Dieudonné ensures that this representation is sur-
jective.

The question regarding the kernel of our representations Ãd requires
a more elaborate discussion. Because of equation(1.27) it contains ±1 ∈
Spin(V, q) ⊂ Pin(V, q). This is actually the full kernel. See [LM] for details.

In combination the staements above yield the following:

Theorem 1.5.5 ([LM], Theorem 2.9.) Let V be a �nite dimensional vec-

tor space over R or C and q be a non-degenerate quadratic form on V . Then
there are short exact sequences:

1→ Z2 →Pin(V, q)
Ãd−−→ O(V, q)→ 1

1→ Z2 →Spin(V, q)
Ãd−−→ SO(V, q)→ 1
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For this work the real case is of special interest. We introduce some no-
tation for brevity. We preveously de�ned: O(r, s) = O(Rr,s) and SO(r, s) =
SO(Rr,s). For simplicity we introduce the notation Pinr,s := Pin(Rr,s) and
Spinr,s := Spin(Rr,s). We suppress the second index if it is zero, so for ex-
ample Spinn = Spinn,0

With the topological facts about the inde�nite orthogonal groups we
discussed earlier (1.2.2) we arrive at the following corollary of the above
theorem (1.5.5):

Corollary 1.5.6 ([LM], Theorem 2.10) There are short exact sequences

1→ Z2 →Spinr
Spin−−−→ SO(r)→ 1

1→ Z2 →Spin0
1,s

Spin−−−→ SO0(1, s)→ 1

These sequences represent the universal covering homomorphisms of the groups

on the right-hand side for all r, s ≥ 3. In this context the map Ãd is from

now on denoted by Spin.

Proof We have to show that the coverings are non trivial. Since the kernel
in each case is {1,−1} it is enough to join -1 to 1 by a path. To this end
we choose orthogonal vectors e1, e2 with q(e1) = q(e2) = ±1. Then γ(t) =
± cos(2t) + e1e2 sin(2t) = (e1 cos(t) + e2 sin(t))(e2 sin(t) − e1 cos(t)) is such
a path.

1.5.3 Spin manifolds

From now on Spinr,s denotes the connected component Spin0
r,s. Recall

from (1.9) that each oriented and time oriented spacetime manifold X has

a corresponding bundle SO(1, s)0 ↪→ L(X)
PL−−→ X. Our aim is to lift this

bundle for s ≥ 3 to one with structure group Spin1,s, the double cover of
SO(1, s)0. Consequently we require a bundle

Spin1,s ↪→ S(X)
PS−−→ X (1.29)

and a map from S(X) to L(X) that, restricted to �bers, is the covering map
Spin:

De�nition A spin structure for X consists of a principal Spin1,s-bundle
over X (1.29) and a map

λ : S(X)→ L(X) (1.30)

such that
PL(λ(p)) = PS(p)
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and
λ(p · g) = λ(p) · Spin(g)

Therefore the following diagram commutes:

S(X)× Spin1,s
· //

λ×Spin

��

S(X)

λ

��

PS // X

idX

��
LX × SO(1, s)0

·
// L(X)

PL
// X

After orientation and time orientation we encounter the third condition for a
spacetime that rules out �unphysical� behavior: Not every oriented and time
oriented spacetime X admits a spin structure. However, it is required to
describe fundamental fermions. Therefore spacetime manifolds without spin
structure are dismissed. The question whether X allows a spin structure
is a purely topological one. In [N2] it is shown that the vanishing of the
�second Stiefel-Whitney class� of X, which is a certain �ech cohomology
class ω2(X) ∈ Ȟ2(X;Z2), is a necessary and su�cient condition for the
existence of a spin structure on X.

1.5.4 Levi-Civita connection and its lift

It is a basic result in Riemannian geometry that on the tangent bundle of a
semi-Riemannian manifold exists a unique torsion free metric connection. In
our context this translates to(see [M]):

Proposition 1.5.7 Let (X, g) be a semi-Riemannian manifold and let SO(r, s)(X)
denote its oriented tangent frame bundle. Then there exists an unique princi-

pal connection on SO(r, s)(X) with the property that its torsion tensor van-

ishes identically. This connection is called the Levi-Civita connection.

The Levi-Civita connection is a important tool in general relativity and
plays a role in the formulation of the standard model over curved spacetimes.
On spacetimes with spin structure it can be lifted in the obvious way. Each
connection on the oriented tangent frame bundle can be lifted:

Proposition 1.5.8 Let X be spacetime with spin structure λ : S(X) →
L(X), see (1.5.3). Let ω be a principal connection on L(X). Then λ∗ω is a

principal connection on S(X).

Proof First we show that λ∗ω is pseudotensorial. Let g and Spin(g) denote
the right action of g on S(X) resp. Spin(g) ∈ SO(1, s) on L(X).

g∗λ∗(ω) = (λ ◦ g)∗ω = (Spin(g) ◦ λ)∗ω

= λ∗ Spin(g)∗ω = λ∗(Spin(g)−1 · ω) = g−1 · (λ∗ω)
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Then we observe how λ∗ω acts on vertical vectors. Let σp(g) = p · g denote
the action of the groups in a point p of the bundles. By di�erentiating the
covering map Spin : Spin1,s → SO(1, s)0 we otain a canonical isomorphism
of the Lie algebras of these groups. Let A denote an arbitrary element in this
Lie algebra. Then:

(λ∗ω)p((Tσp)eA) = ωλ(p)((Tλ)p(Tσp)eA) = ωλ(p)((T (λ ◦ σp))eA) =

ωλ(p)((Tσλ(p))eA) = A

This shows that λ∗ω ful�lls both required properties of a principal connection
and the proof is complete.

So every principal connection on L(X) can be lifted to a connection on S(X).
In particular we have:

Corollary 1.5.9 The Levi-Civita connection can be uniquely lifted to a con-

nection on S(X).

1.5.5 Representations of Cli�ord algebras

This subsection discusses the construction of certain representations of the
Spin and Pin groups central to this work. As seen above they can be identi-
�ed with subgroups of the Cli�ord algebra. Therefore we begin to construct
representations of Cli�ord algebras which later give rise to representations
of the Spin group.

De�nition ([LM], de�nition 5.1) Let V be a vector space over a �eld k and
q be a quadratic form on V . Let K ⊇ k be a �eld containing k. Then a K-
representation of the Cli�ord algebra Cl(V, q) is a k-algebra homomorphism

ρ : Cl(V, q)→ HomK(W )

into the algebra of linear transformations of a �nite dimensional vector space
W over K. The space W is called a Cl(V, q) module over K, or a Cli�ord
module.

For us the cases K=R or C are interesting. A complex vector vector spaceW
can be regarded as real vector space V with a real linear map J : W → W
such that J2 = −1. Consequently a complex representation of a real Cli�ord
algebra is a real representation ρ that commutes with J .

We mainly consider complex representations of real Cli�ord algebras.
Note that any such representation automatically extends to a representation
of Clr,s⊗R C, the complexi�cation of the Cli�ord algebra. By using the uni-
versal property this algebra is easily seen to be isomorphic to the Cli�ord
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algebra Cl(Cr+s, q ⊗ C) of the complexi�ed quadratic form. But on Cn all
non-degenerate quadratic forms are equivalent, thus this algebra is isomor-
phic to Cln := Cl(Cn, qC) where qC is the standard quadratic form on Cn. On
the other hand any representation of Cln restricts to a complex representa-
tion of Clr,s This shows that it is su�cent to study complex representations
of Cln to investigate which complex representations of Clr,s can occur. We
start with the former and it is useful to describe Cln as matrix algebras.

One e�cient way of doing so(see [LM] for details) is to show that Cl1 ∼=
C ⊕ C and Cl2 ∼= C(2) where C(2) denotes the algebra of 2 × 2 complex
matrices. Then by directly de�ning a map we can produce an isomorphism:

Cln+2
∼= Cln ⊗C Cl2

By induction this proves the following important result:

Proposition 1.5.10 There are isomorphisms of algebras

Cl2k ∼= C(2k) (1.31)

Cl2k+1
∼= C(2k)⊕ C(2k) (1.32)

Therfore all Cli�ord algebras of complex vector spaces with non degenerate
forms are seen to be isomorphic to complex matrix algebras or the direct sum
of two. A similar statement holds for the real inde�nite Cli�ord algebras.
However, in that case real, complex and quaternionic matrix algebras can
appear(see [LM]). In this work we focus on Cl2k. A direct construction of
such an isomorphism is given. This approach follows [BW] At �rst de�ne the
following complex 2× 2 matrices:

1 =

(
1 0
0 1

)
, 1′ =

(
1 0
0 −1

)
,

P =

(
0 1
1 0

)
, Q =

(
0 i
−i 0

)

With this de�ne:

Pi = 1′ ⊗ · · · ⊗ 1′ ⊗ P ⊗ 1⊗ · · · ⊗ 1 (1.33)

Qi = 1′ ⊗ · · · ⊗ 1′ ⊗Q⊗ 1⊗ · · · ⊗ 1 (1.34)

where the operation ⊗ denotes the usual tensor product of matrices. It is no
longer important to distinguish between P s and Qs. We will refer to each of
them with the symbol Pi, where the index ranges from i = 1 to i = 2k. A
simple calculation shows that the following relations hold:

P 2
i = 1 for i = 1, 2, . . . , 2k (1.35)

PiPj = −PjPi for all pairs i 6= j (1.36)
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By counting dimensions we see that the Pi act on C2k and subsequently the
complex algebra A generated by the Pi is a subalgebra of the 2k×2k complex
matrix algebra. By observing how the Pi acts on the standard basis vectors
we can verify that A is the full matrix algebra. Applying the universal prop-
erty we obtain a C-algebra homomorphism from Cl(2k) → A. Since they
have the same dimension as complex vector spaces this is a isomorphism.
This constitutes a direct proof of the �rst part of (1.31) and we have direct
access to such an isomorphism.

Next we state some further basic facts concerning representations of Clif-
ford algebras.

[LM], page 31 Let V, q, k ⊆ K be as in de�nition 1.5.5.

� A K-representation ρ : Cl(V, q) → HomK(W,W ) is said to be re-
ducible if the vector space W can be written as a non-trivial direct
sum W = W1 ⊕W2 such that each Wi for i = 1, 2 is invariant under
ρ(φ) for all φ ∈ Cl(V, q).

� A representation is called irreducible if it is not reducible.
� Two representations ρj : Cl(V, q)→ HomK(Wj ;Wj) for j=1,2 are said
to be equivalent if there exists a K-linear isomorphism E : W1 →W2

such that E ◦ ρ1(φ) ◦ E−1 = ρ2(φ) for all φ ∈ Cl(V, q).

Remark Usually representations are called �irreducible� if there are no
proper invariant subspaces. Since Cl(V, q) is the algebra of a �nite group(the
reader is referred to [LM], Proposition 5.4) the two concepts are equivalent.

It follows directly from the de�nition above that every representation of
a Cli�ord algebra can be decomposed into a direct sum of irreducible ones:
If a representation is not irreducible we can decompose it further. Because
of the �nite dimension of the representation this process must stop at some
point. Thus we are interested in irreducible representations. In our case we
work with matrix algebras where the representation theory is particularly
simple:

Theorem 1.5.11 ([LM], 5.6.) Let K = R or C and denote by K(n) the

ring of n× n K-matrices. Then the natural representation ρ of K(n) on the

vector space Kn is up to equivalence the only irreducible K-representation of

K(n).

Proof This follows from the classical fact that the algebras K(n) are simple
and simple algebras only have one irreducible representation up to equiva-
lence. ([L])

Applied to the even dimensional complex Cli�ord algebras this yields
corollary:
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Corollary 1.5.12

� All irreducible complex representations of Cl2k are equivalent.

� All irreducible complex representations of the real Cli�ord algebra Clr,s
with r + s even are equivalent.

Thus we obtain a complete classi�cation of all representations of Cl2k up
to equivalence and we also have explicitly constructed such a representation.
Next we restrict it to a Spin-representation.

1.5.6 Spin representations

Recall the following canonical embeddings:

Spinr,s ⊂ Cl0r,s ⊂ Cl0r+s ⊂ Clr+s

Thus each complex representation of Clr+s gives rise to a complex represen-
tation of Spinr,s. Reducible representations restrict to reducible ones, thus
we start with irreducible representations of Clr+s. For r + s = 2k even we
know that up to equivalence there is only one complex representation of
Clr+s. This representation acts on a 2k dimensional complex vector space S.
So we can de�ne:

De�nition Let r+s = 2k. The complex spinor representation of Spinr,s
is the equivalence class of the representation

∆r,s : Spinr,s → GLC(S)

given by restricting an irreducible complex representation Cl2k → HomC(S, S).
The 2k dimensional complex vector space S is called spinor space.

If we had restricted to representations of Pin1,3 then this representation
would be irreducible since Pin1,3 contains an additive basis of Clr,s. For λn
it is not possible to apply such an argument and we will show that in fact λ
decomposes into two inequivalent irreducible representations.

To do so we �rst introduce the so called complex (oriented) volume
element in Cl2k. Choose an orientation on C2k and let e1, . . . , e2k be any
positively oriented orthonormal basis. Then the associated volume element
is de�ned to be the product:

ω = ike1 · · · e2k (1.37)

This de�nition is independent of the choice of the orthonormal basis since
for any other positively oriented orthonormal basis ẽ = g · e with g ∈ O2k(C)
the identity ẽ1 . . . ẽ2k = det(g)e1 · · · e2k = e1 · · · e2k holds.
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A direct calculation shows that ω anticommutes with every element v ∈
C2k ⊂ Cl2k and that its square is 1:

vω = −ωv ∀v ∈ V (1.38)

ω2 = 1 (1.39)

Next let φ : Cl2k → HomC(S, S) be an irreducible complex representation
on a vector space S. Then the two above statements also hold for φ(ω). Thus
we de�ne two projection operators:

π± ∈ HomC(S, S) :
1

2
(1± φ(ω)) (1.40)

This yields a direct sum decomposition S = S+ ⊕ S−. Note that S+ and
S− are the eigenspaces to 1 respectively -1 of φ(ω). Since ω commutes with
each element in the even subalgebra Cl02k, φ(ω) and hence π± commute with
the action of Cl02k. This shows that the spaces S+ and S− are Cl0n invariant.
Since the spin group sits inside Cl0n, we have shown the following:

Proposition 1.5.13 With the above projections a complex spinor represen-

tation ∆2k : Spinr,s → GLC(S) into a spinor space S decomposes into two

representations:

∆2k = ∆+
2k ⊕∆−2k

These representations are called chiral representations or half spin repre-

sentations.

Note that the chiral representations are de�ned via spinor representations,
so the left and right representations are inherently linked by this.

Next we take a look at the realization of these representations via the
Weyl-Brauer matrices.(1.33). First observe by a short calculation that the
volume element in this representation of Cl2k is given by:

φ(ω) = ikφ(e1) · · ·φ(e2k) = ikΠ2k
i=1Pi = (−1)s1′ ⊗ 1′ ⊗ . . .⊗ 1′ =

(−1)s
(

1 0
0 −1

)
⊗ . . .⊗

(
1 0
0 −1

)
(1.41)

where s ∈ N depends on k, but the factor (−1)s is not of relevance, as the
sign of ω can be changed by choosing a di�erent orientation. We directly ob-
serve that the eigenspaces of φ(ω) to 1 and -1 are each of dimension 2(k−1).
Thus ∆±2k are each 2(k−1) dimensional representations. But they can not be
equivalent, which the following short argument shows:

The real vector space Rr,s inside Cl2k contains elements of the form
ir(j)ej , where ir(j) with r(j) ∈ N is a phase factor that depends on the
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signature of the bilinear form and j runs from 1 to 2k. Now Spinr,s, by
de�nition, contains even products of such elements. In particular a scalar
multiple cω of ω. But φ(cω) = cφ(ω) and that shows that ∆+

2k(cω) = c1,
while ∆−2k(cω) = −c1. So these representations are inequivalent, as scalar
multiples of the identity are invariant under equivalence transformations.

We can also show that the chiral representations are irreducible. To
this end we need the following fact: The map f : Cn → Cl0n+1 given by
f(ei) = ien+1ei where the ei denote the standard basis has the property that
f(v)2 = q(v). Therefore by the universal property (1.5.1) f extends to an
algebra homomorphism f̃ . Checking on a linear basis shows that this is in
fact an isomorphism:

f̃ : Cln
∼=−→ Cl0n+1

The chiral representations ∆±r,s are restrictions of representations of Cl02k ∼=
Cl2k−1. But as mentioned above (1.31) it can be shown that Cl2k−1

∼=
C(2k−1)⊕C(22k−1), so Cl2k−1 has two equivalence classes of irreducible 2k−1-
dimensional representations. By reasons of dimension Cl02k is irreducibly rep-
resented on S+ and S−. Since Spinr,s contains an additive basis of Cl02k the
chiral representations ∆±r,s are also irreducible.

For the construction of kinetic terms we will need Spinr,s invariant Her-
mitian forms on the spinor space. To understand if there are any and how
to construct them, some basic representation theory is needed.

De�nition Let ρ : G → GL(V ) be a representation of a group. Then
there exists an unique representation ρ∗ : G → GL(V ∗) on the dual V ∗ =
hom(V,C) of V which respects the natural pairing(denoted by 〈 , 〉):

〈ρ∗(g)(v∗), ρ(g)(v)〉 = 〈v∗, v〉
for all g in G, v in V and v∗ in V ∗. In other words the dual representation
is de�ned by:

ρ∗(g) = ρ(g−1)t : V ∗ → V ∗

Given a basis of V and thereby of V ∗ by choosing the dual basis we can
verify that the matrix representation of ρ∗(g) with respect to the latter basis
is the transposed inverse of the matrix representation of ρ(g) with respect
to the �rst basis.

De�nition Let ρ : G → GL(V ) be a complex representation of a group.
Let V̄ be the complex conjugate vector space of V ; this is the vector space
consisting of all elements {v̄ : v ∈ V } with addition and scalar multiplication
in such a way that the map C : V → V̄ , C(v) = v̄ is antilinear. Then there
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exists a unique representation ρ̄ : G → GL(V̄ ) that makes the following
diagram commutative:

V
ρ(g) //

C

��

V

C

��
V̄

ρ̄(g)
// V̄

This complex conjugate representation is given by:

ρ̄(g) · v̄ = ρ(g) · v

Note that since C is antilinear a representation need not be isomorphic to its
complex conjugate representation. Given a basis of V and thereby of V̄ (via
C) we can verify that the matrix representation of ρ̄(g) with respect to the
latter basis is the complex conjugate of the matrix representation of ρ(g)
with respect to the �rst basis. Notice that the complex conjugates of two
equivalent representations are still equivalent, and the same statement holds
for the dual representations.

1.5.7 Spin invariant forms

Here we discuss sesquilinear forms on a spinor space. Let S be a spinor space,
i.e. we have an irreducible complex representation Cl2k → HomC(S, S). Re-
call that we have an embedding of Rr,s ⊂ C2k ⊂ Cln and thus by the universal
property of the Cli�ord algebra an embedding Cl(Rr,s) in Cln which gives
rise to the spinor representation ∆r,s : Spinr,s → GLC(S). Next we investi-
gate Spinr,s invariant forms on S.

Begin by de�ning the Cli�ord group. This is the �nite group Fn ⊂ Cln
generated by the standard orthonormal basis (e1, e2 . . . , en) of Cn. Choose an
inner product on S and average it over the �nite group Fn. Thus we obtain
a Fn invariant inner product h0 = 〈 , 〉 on S. In particular:

〈eix, eiy〉 = 〈x, y〉 ∀x, y ∈ S
It follows that all ei are Hermitian, i.e.:

〈eix, y〉 = 〈x, eiy〉 ∀x, y ∈ S

Next we construct a Spinr,s invariant Hermitian form based on h0. Let
(ẽ1, ẽ2 · · · , ẽn) denote the standard orthonormal basis of Rr,s. The above
embedding Rr,s → Cn restricts to:
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ẽj →
{

ej for 1 ≤ j ≤ r
iej for r + 1 ≤ j ≤ n

Note that the factor i makes ẽj = iej skew Hermitian. The inner product h0

is in general not Spinr,s invariant. Therefore we modify it:

h : S × S → C, h(x, y) := h0(x,By) (1.42)

where
B := i(

r(r−1)
2

)e1 · e2 · · · · er.
A short calculation shows that B is Hermitian and invertible. Thus h is a non
degenerate Hermitian form. Furthermore for r even B anticommutes with ej
for 1 ≤ j ≤ r and commutes with ej for r + 1 ≤ j ≤ n, and vice versa for r
odd. With this we are able to prove:

Proposition 1.5.14 The Hermitian form h is invariant under the con-

nected component of the spin group Spinr,s, i.e. g
∗h = h for all g ∈ Spinr,s.

Proof We veri�y this by direct calculation. Let v = vj ẽj be in Rr,s and x, y
in S. We obtain:

h(vx, y) =

n∑

j=1

h0(vj ẽjx,By)

=
r∑

j=1

h0(x, vj ẽjBy) +
n∑

j=r+1

h0(x,−vj ẽjBy)

= (−1)r+1
n∑

j=1

h0(x,Bvj ẽjy) = (−1)r+1h0(x,Bvy) = (−1)r+1h(x, vy)

So Cli�ord multiplication is skew up to a possible sign depending on r. It
follows that:

h(vx, vy) = (−1)r+1h(x, vvy) = (−1)r+1q(v)h(x, y)

The entire spin group is by de�nition (1.5.2) generated by elements of
the form vw where q(v) = ±1 and q(w) = ±1. We obtain:

h(vwx, vwy) = q(v)q(w)h(x, y)

We can verify that for the connected component Spinr,s of the spin group
always q(v) = q(w): The tensor algebra T (V ) has an involution, given on
pure tensors by the reversal of order: v1 ⊗ · · · ⊗ vj 7→ vj ⊗ · · · ⊗ v1 This map
preserves the ideal and so descends to an antiautomorphism:

( )t : Cl(V, q)→ Cl(V, q)
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With this we de�ne a smooth map:

Spinr,s ⊂ Clr,s → {±1} ⊂ R, v 7→ vtv

On the connected component this map has to be constant, which shows that
for vw ∈ Spinr,s q(v) = q(w). Thus h is in fact invariant under Spinr,s.

Note that since h is Hermitian h(x, x) is real for all x in S. But h does
not need to be an inner product(positive de�nite), only in the case r = 0
when B is the identity. This means that the spinor representation of Spinn
is an unitary representation. The existence of such an invariant Hermitian
product can also be deduced from the compactness of Spinn. For r, s > 1 on
the other hand Spinr,s is not compact which implies that there can be no
faithful �nite dimensional unitary representations.

Next investigate how the Hermitian form looks like with regard to the
splitting of S = S+⊕S− for dimension r+ s = 2k = n. By de�nition (1.5.7)
B is in Cl0 if r is even and in Cl1 if r is odd. So in the �rst case B maps
from S+ to S+ and S− to S− whereas in the second case its restriction
to S+ has its image in S− and vice versa. Furthermore a short calculation
shows that the volume element (1.37) ω = ike1 · · · e2k is Hermitian with
respect to h0, i.e. h0(x, ωy) = h0(ωx, y), so the eigenspaces S± of ω to ±1
are h0-orthogonal. Thus for r even they are additionaly h orthogonal:

h(x+ + x−, y+ + y−) = h0(x+ + x−, By+ +By−) =

h0(x+, By+) + h0(x−, By−) = h(x+, y+) + h(x−, y−)

where x = x+ +x− denotes the canonical splitting of x ∈ S into chiral parts.
Note that h restricts to two invariant Hermitian forms h = h+ + h− on the
chiral spinor spaces S±.

If r is odd, which is our main interest, we have:

h(v+ + v−, w+ + w−) = h(v+, w−) + h(v−, w+) (1.43)

Notice that the sesquilinear forms h1(v, w) = h(v+, w−) and h2(v, w) =
h(v−, w+) are also Spinr,s invariant. However, they are not Hermitian since

h1(v, w) = h(v+, w−) = h(w−, v+) = h2(w, v)

h2(v, w) = h1(w, v)

In fact linear combinations of the form αh1+αh2 and iβh1−iβh2 for α, β ∈ R
are Hermitian.
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Next we discuss 'how many' invariant Hermitian forms exist on the spinor
space. First we note that the invariant sesquilinear forms on a vector space
V span a complex vector space, and the invariant Hermitian forms a real
vector space. A sesquilinear form can be regarded as a complex bilinear
map: V̄ × V → C. And by the universal property such maps are in one to
one correspondence with complex linear maps s : V̄ ⊗ V → C. Equivalently
each sesquilinear form can be regarded as a linear map:

h : V → V̄ ∗

To be invariant under a representation ρ of a group G on V means that the
following diagram commutes for all g ∈ G:

V

ρ(g)

��

h // V̄ ∗

ρ̄∗(g)

��
V

h
// V̄ ∗

Maps that commute with an action of a group are called equivariant.
For a spinor space of even dimension S = S+⊕S− and the above introduced
invariant Spinr,s invariant Hermitian form h = h1 + h2 we obtain for r odd
Spinr,s equivariant linear maps:

h1 :S+ → S−
∗

h2 :S− → S+∗

Since h is non degenerate these maps h1 and h2 are invertible. Assume
that h̃1 is another Spinr,s invariant map: S+ → S−

∗
. This gives rise to the

following commuting diagram:

S+

∆r,s(g)

��

h̃1 // S−
∗

∆̄∗r,s(g)

��

h−1
1 // S+

∆r,s(g)

��
S+

h̃1

// S−
∗

h−1
1

// S+

In general the composition of equivariant maps is again equivariant. So
h−1

1 ◦ h̃1 is a Spinr,s equivariant map S+ → S−. Since S+ is irreducible
we can apply a part of Schur's lemma ([FH]) which states that such an
equivariant automorphism has to be a scalar multiple of the identity λ1 for
λ ∈ C. It follows that h̃1 = λh1. A analogous argument shows that all Spinr,s
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equivariant maps S− → S+∗ have to be scalar multiples of h2.

Assume that we have an equivariant map:

h3 : S+ → S+∗

Composing with h−1
2 : S+∗ → S− we obtain an equivariant map S+ → S−.

Such a map yields a equivalence of the representations ∆+
r,s and ∆−r,s, but

above we proved that this representations are inequivalent. Thus h3 has to
be trivial. In an analogous way we can verify that each equivariant map
h4 : S− → S−

∗
has to be trivial.

By putting the previous results together we obtain the following result:

Proposition 1.5.15 Let n = 2k = r + s be even and r odd. Then each

Spinr,s invariant sesquilinear form h : S × S → C on the complex spinor

space S can be written as complex linear combination of h1 and h2 (1.43).

Thus the complex dimension of Spinr,s invariant sesquilinear forms on the

spinor space is 2.

Proof Let h be such an invariant sesquilinear form, i.e. an equivariant map:

s : S+ ⊕ S− → S+ ⊕ S−∗ ∼= S+∗ ⊕ S−∗

We can decompose s into s = s1 + s2 + s3 + s4, where

s1 : S+ → S−
∗

s2 : S− → S+∗

s3 : S+ → S+∗ s4 : S− → S−
∗

With the above results, s3 and s4 have to be 0 whereas s1 and s2 have to be
scalar multiples of h1 and h2.

Corollary 1.5.16 Let n = 2k = r + s be even and r odd. Then the di-

mension of the real vector space of Spinr,s invariant Hermitian forms on the

complex spinor space S is 2. Each Hermitian form can be written as linear

combination of h1 + h2 and ih1 − ih2.

Proof Note that each invariant sesquilinear form can uniquely be written as
direct sum of an invariant Hermitian and an invariant skew Hermitian form
by

h(v, w) =
1

2
(h(v, w) + h(w, v)) +

1

2
(h(v, w)− h(w, v))

Furthermore we obtain a real vector space isomorphism from the invariant
Hermitian forms to the invariant skew Hermitian forms by α(h)(v, w) =
ih(v, w). Thus the dimension of the real vector space of Spinr,s invariant
Hermitian forms on the complex spinor space is 2. We arrive at the conclusion
that the above linear independent Hermitian forms span this space.
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An analogous argument shows that in case of r odd the space of invariant
Hermitian forms is again 2. All invariant sesquilinear forms and Hermitian
forms can be written as complex or real linear combinations of h+ and h−.
In this work we are mainly interested in r odd because for spacetimes we
have r = 1.

1.5.8 Cli�ord and spinor bundles

In this section the concepts of Cli�ord and spinor bundles will be introduced
where we will use the notation and approach of [LM]. Recall from (1.4)
the construction of an associated vector bundle. Now use that orthogonal
transformations of Rr,s with the universal property of the Cli�ord algebra
(1.5.1) uniquely extend to automorphisms of the Cli�ord algebra. This leads
to a representation:

cl(ρr,s) : SO(r, s)→ Aut(Cl(Rr,s)). (1.44)

Let X be a spacetime with a spin structure with corresponding principal
Spinr,s-bundle S(X). Via the spin homomorphism cl(ρr,s) extends to a repre-
sentation of Spinr,s. This allows us to de�ne the following associated bundle:

De�nition
Cl(X) = S(X)×cl(ρr,s) Cl(Rr,s) (1.45)

It is evident that Cl(X) is in fact a bundle of Cli�ord algebras over X
since cl(ρr,s) is an algebra homomorphism. Thus each �ber is isomorphic to
a Cli�ord algebra. Note that the Cli�ord bundle can also be de�ned when
there is no spin structure on X: The representation of Spinr,s results from a
representation of SO(r, s) and there the transition functions of Cl(X) can be
interpreted to actually take values in SO(r, s), which leads to the following
canonical isomorphism:

Cl(X) ∼= SO(r, s)(X)×cl(ρr,s) Cl(Rr,s) (1.46)

Thus the Cli�ord bundle can be interpreted as an associated bundle to the
frame bundle of positively oriented orthonormal frames. This exists for every
oriented semi-Riemannian manifold.

This leads to an alternative description of the Cli�ord bundle: The tan-
gent bundle of a semi-Riemannian manifold is a bundle where the �bers
are equipped with a bilinear form g or equivalently, a quadratic form q. We
can show(what is not done here, but consult [LM]) that in fact the Cli�ord
bundle can be de�ned as the following quotient bundle:

Cl(X) = (
∞∑

i=0

i⊗
TX)/I(TX) (1.47)
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where I(TX) is the bundle whichs �ber over x ∈ X is the two-sided ideal in∑∞
i=0

⊗i TXx generated by elements v ⊗ v − q(v)2 for v ∈ TXx.
Via the �berwise embedding of TXx in Cl(X) we obtain an injective map
from TX into Cl(X).

De�nition Let X be a spacetime with a spin structure S(X) as above. Let
M be a Cli�ord module for Cl(Rr,s). By restricting to the Spinr,s ⊂ Cl(Rr,s),
we obtain a representation µ of Spinr,s. This allows us to de�ne the following
bundle:

Spin(X) = S(X)×µM (1.48)

A bundle of this form is a spinor bundle

Finally we arive at the following central proposition:

Proposition 1.5.17 Let Spin(X) be a spinor bundle. Then Spin(X) is a

bundle of modules over the bundle of algebras Cl(X). In particular the sec-

tions of the spinor bundle are a module over the sections of the Cli�ord

bundle.

Proof Recall from (1.44) that the representation of Spinr,s, with respect to
which the Cli�ord bundle was constructed, arises from an action of SO(r, s)
on the Cli�ord algebra Cl(Rr,s). But such algebra automorphisms can be
described directly. Recall from (1.27) the following representation of Spinr,s:

Ad : Spinr,s → Aut(Cl(Rr,s)), Adg(φ) = gφg−1

By equation (1.5.3) it can be seen that Adg and cl(ρr,s)(g) induce the same
action on V ⊂ Cl(Rr,s) and since both are algebra automorphisms they
coincide on the entire Cli�ord algebra. It follows that:

Cl(X) = S(X)×Ad Cl(Rr,s)
Now observe that the diagram

Cl(Rr,s)×M µ //

ρg

��

M

ρ′g

��
Cl(Rr,s)×M µ

//M

given by
(φ,m) //

��

(φm)

��
(gφg−1, gm) // (gφm)
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commutes. It follows that the induced map Cl(Rr,s) ⊗M → M is Spinr,s
equivariant. By proposition (1.4.9) such an equivariant map gives rise to a
vector bundle homomorphism:

µ : Cl(X)⊗ Spin(X)→ Spin(X) (1.49)

which is seen to have the desired properties.

Two spinor bundles S1(X) and S2(X) are called equivalent if they are
equivalent as bundles of Cl(X) modules. A spinor bundle is called irre-
ducible if it does not split up in a direct sum of Cl(X) modules. From
the earlier derived results of dimension and number of equivalence classes of
Cli�ord modules we can deduce that on connected X the same results hold
for Spinor bundles.

A Cli�ord bundle Cl(X) is de�ned as an associated bundle to the Spinr,q
principal bundle S(X). Recall from (1.4.8) that a given principal connection
on S(X) gives rise to a covariant derivative on associated bundles. So given
a principal connection ω on S(X) we obtain a vector bundle connection ∇
on the Cli�ord bundle. This connection has the following property:

Proposition 1.5.18 ([LM], proposition 4.8) The covariant derivative ∇
on Cl(X) acts as a derivation on the algebra of sections:

∇(φ · ψ) = (∇φ) · ψ + φ · (∇ψ) (1.50)

for any two sections φ and ψ of Cl(X). Furthermore on the subbundle TX ⊂
Cl(X) the covariant derivative agrees with the usual covariant derivative, i.e.
the derivative induced by the representation ρr,s on Rr,s.

Proof Cli�ord multiplication yields a map

Cl(Rr,s)⊗ Cl(Rr,s)→ Cl(Rr,s)

which is Spinr,s equivariant since it acts on Cl(Rr,s) via conjugation. So by
proposition (1.4.9) we obtain a corresponding vector bundle homomorphism:

m : Cl(X)⊗ Cl(X)→ Cl(X)

which is the Cli�ord multiplication on the Cli�ord bundle. The second part
of (1.4.9) tells us that m ◦∇Y (φ⊗ψ) = ∇Y (φ ·ψ) for all vector �elds Y and
sections φ, ψ of Cl(X). Via proposition (1.4.13) this directly yields equation
(1.50).
Spinr,s acts on Rr,s ⊂ Cl(Rr,s) via ρr,s and the tangent bundle TX can
be regarded as associated bundle S(X) ×ρr,s Rr,s. This shows the second
assertion.
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Next let Spin(X) be a spinor bundle de�ned as above. Again this is
an associated bundle to S(X). Given a connection ω on S(X) we obtain a
connection ∇ on Spin(X). With respect to the above introduced action of
sections of the Cli�ord bundle on a spinor bundle we arrive at the following:

Proposition 1.5.19 ([LM], proposition 4.11) The covariant derivative

∇ on Spin(X) acts as a derivation with respect to the module structure over

Cl(X), i.e.:
∇(φ · σ) = (∇φ) · σ + φ · (∇σ) (1.51)

for any section φ of Cl(X) and any section σ of Spin(X).

Proof The proof is essentially analogous to (1.5.9). Recall the Cli�ord mul-
tiplication map (1.49):

µ : Cl(X)⊗ Spin(X)→ Spin(X)

which is induced by an equivariant map Cl(Rr,s)×M →M . Then we again
use proposition (1.4.9).

We are now in a position to de�ne an important class of complex spinor
bundles:

De�nition Let X be a connected oriented and time oriented semi Rieman-
nian manifold of signature (1, s) where 1 + s = 2k is even. Assume that X
is equipped with a spin structure. In this dimension there exists, as shown
above, an unique up to equivalence irreducible complex Cli�ord module of
complex dimension 2k. The complex spinor bundle which originates from this
module is the Dirac spinor bundle D(X).

Here we show that as above we can split D into a direct sum of Cl0(X)
modules. Since X is oriented, we can choose an orientation and de�ne a
global section of Cl(X,C) by setting at each point x ∈ X:

ω = ime1 · · · e2m (1.52)

for any positively oriented orthonormal basis {e1, . . . , e2m}. In each �ber this
is exactly the volume element we de�ned above. We can now use the +1 and
−1 eigenbundles to obtain the desired direct sum splitting:

D(X) = D(X)+ ⊕D(X)− (1.53)

These bundles can be written as an associated bundle: Let ∆±1,s denote the
two complex chiral representations of Spin1,s. Then there is a canonical vector
bundle isomorphism:

D(X)± ∼= S(X)×∆±1,s
S±
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Now assume that there is a given unit section e of the tangent bundle, i.e.
a map: e : X → TX such that ||e(x)|| = 1 for each x. In our setting such a
section always exists, the time orientability of X ensures that. Observe that
ω anticommutes with e: ωe = −eω. Thus multiplication by e swaps the +1
and −1 eigenbundles of ω. We obtain bundle maps:

µe : D(X)+ → D(X)−, µe(σ) = e · σ
µe : D(X)− → D(X)+, µe(σ) = e · σ

Since e · e = 1 it is clear that these maps are in fact isomorphisms.

1.5.9 The Dirac operator

Next we de�ne an important �rst-order di�erential operator.

De�nition Let X be a semi Riemannian manifold with Cli�ord bundle
Cl(X) ⊃ TX and let S be any bundle of left modules over Cl(X). Assume
that S is furnished with a connection ∇. Then we can de�ne the following
operator:

D : Γ(X,S)
∇−→ Γ(X,T ∗X ⊗ S)

∼=−→ Γ(X,TX ⊗ S)
c−→ Γ(X,S)

Here the isomorphism TX ∼= T ∗X induced by the metric is used and c
denotes the canonical map TX ⊗ S → S induced by the Cli�ord module
multiplication. This operator D : Γ(S)→ Γ(S) is the Dirac operator.

Let us express the Dirac operator in orthonormal coordinates. For x ∈ X
let (e1, . . . , en) denote a local orthonormal frame of TX. Let σ be a section of
S. The covariant derivative of σ is given in coordinates by:

∑n
i=1 e

i ⊗∇eiσ,
where ei denotes the dual coframe to ei. By the de�nition of the Dirac
operator we have to apply the canonical sharp isomorphism ] : T ∗X → TX
to ei, and we obtain that ](ei) = q(ei)ei. Then, according to the above
de�nition, we have to apply the Cli�ord multiplication. Thus we obtain:

Dσ =

n∑

i=1

q(ei)ei · ∇eiσ (1.54)

which is the expression of the Dirac operator with respect to a local or-
thonormal frame.

Now apply the Dirac operator to spinor bundles. In this setting we have a
space time X with spin structure S(X), an associated spinor bundle Spin(X)
and the canonical Cli�ord bundle Cl(X). By (1.5.9) we have a Riemannian
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connection form ω on S(X), and by (1.5.9) and (1.5.19) we obtain an al-
gebra connection ∇ on Cl(X) and a connection ∇ on Spin(X) which re-
spects the Cli�ord module structure. We can now de�ne the Dirac operator
Γ(Spin(X)) → Γ(Spin(X)). The same construction for irreducible spinor
bundles of Riemannian manifolds leads to the so called Atiyah-Singer op-
erator, a fundamental operator in spin geometry. However, we are interested
in the semi Riemannian case.

In particular we can carry out this construction for an irreducible complex
spinor bundle, the Dirac spinor bundle D(X). We obtain a Dirac operator:

D : Γ(D(X))→ Γ(D(X)) (1.55)

Next we investigate how the Dirac operator behaves with respect to the
splitting: D(X) = D(X)+ ⊕D(X)−. First observe that the volume element
ω is parallel with respect to the Cli�ord algebra connection. To prove this,
choose a local orthonormal tangent frame �eld (e1, . . . , en) so that (∇ej)x = 0
for all j. Since the associated derivation on the Cli�ord bundle is an algebra
derivation and coincides with the usual covariant derivative on TX we obtain

∇ω = ∇(e1 · · · en) = (∇e1)e2 · · · en + . . .+ e1 · · · en−1∇en = 0 (1.56)

so ω is indeed parallel. We can prove that ∇ preserves D(X)±. This follows
from these bundles being characterized as ±1 eigenbundles of the module
action of ω on D. Let σ be a section in D+:

∇σ = ∇(ω · σ) = ω · (∇σ)

Thus ∇σ is also in the +1 eigenbundle of ω, and an analogous argument
holds for the −1 eigenbundle. The full Dirac operator D is a composition of
the covariant derivative and the Cli�ord multiplication of TX. The latter op-
eration anticommutes with ω, therefore it swaps the +1 and −1 eigenbundle
of ω. We arrive at the following result:

Proposition 1.5.20 A Dirac operator D on a Dirac spinor bundle D =
D+ ⊕D− has the form:

D = D+ +D−

where

D+ : Γ(D+)→ Γ(D−)

D− : Γ(D−)→ Γ(D+)

The next goal is to lift the Spinr,s invariant sesquilinear products introduced
in (1.43) to products on the Dirac spinor bundle. Recall from (1.5.8) that
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this bundle was de�ned as associated bundle to the principal Spin1,s bundle
S(X) via the complex spinor representation:

D(X) = S(X)×∆1,s S

Recall from (1.5.14) that there exists a ∆1,s invariant Hermitian form h on
S. It can be interpreted as equivariant linear map S → S̄∗. By proposition
(1.4.9 this gives rise to a vector bundle homomorphism:

D(X) = S(X)×∆1,s S → S(X)×∆1,s
∗ S̄∗ = D(X)

∗

This corresponds to a map:

h : Γ(D(X))× Γ(D(X))→ C∞(X,C)

which is C∞(X,C) antilinear in the �rst component and C∞(X,C) linear
in the second. An analogous argument holds in a more general situation, we
arrive at the following:

Proposition 1.5.21 Let G ↪→ P
P−→ X be a principal bundle, let ρ : G →

GL(V ) be a complex representation of the structure group, E = P ×ρ V the

associated bundle and h a ρ-invariant sesquilinear form on V . Via the above

construction we then can lift h to a bilinear map:

h : Γ(E)× Γ(E)→ C∞(X,C)

which is C∞(X,C) antilinear in the �rst component and C∞(X,C) linear in
the second. This is called a sesquilinear form on E.
If h is Hermitian the lifted map is Hermitian as well, i.e. h(σ1, σ2) = h(σ2, σ1)
for all sections σ1, σ2 of E.

In particular we can lift h to a Hermitian form on D(X). Recall the
splitting of h(v, w) = h1(v+, w−) + h2(v−, w+) for all v, w ∈ S. This yields
a decomposition of the form on the Dirac spinor bundle h = h1 + h2 where
h1 and h2 can be interpreted as maps:

h1 : Γ(D+)× Γ(D−)→ C∞(X,C) (1.57)

h2 : Γ(D−)× Γ(D+)→ C∞(X,C) (1.58)

Both are antilinear in the �rst component and linear in the second. By
(1.5.15) each sesquilinear form on D can be written as a C∞(X,C) lin-
ear combination of them.

Lifted sesquilinear forms on associated bundles which come from an in-
variant sesquilinear form on a vector space are parallel:
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Proposition 1.5.22 With the notation and setting from (1.5.21) the fol-

lowings holds:

Y h(σ1, σ2) = h(∇Y σ1, σ2) + h(σ1,∇Y σ2)

for all Y ∈ TX and σ1, σ2 ∈ Γ(E)

Proof The invariant sesquilinear form h on V corresponds to a equivariant
linear map:

h̃ : V ⊗ V̄ → C

By proposition (1.4.9) this corresponds to a vector bundle homomorphism:

h̃ : Γ(E ⊗ Ē)→ C∞(X,C)

For sections of σ1, σ2 of E the equation h̃(σ1 ⊗ σ2) = h(σ1, σ2) holds. Using
the second part of (1.4.9) we arrive at:

h̃(∇Y (σ1 ⊗ σ2)) = ∇Y h̃(σ1 ⊗ σ2)

from which the proposition follows.
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Chapter 2

Terms of the Lagrangian

We are ready to write down suitable terms for a Lagrangian. Let X denote
a spacetime. We assume that there is a principal bundle G ↪→ P (X) → X,
where G is the symmetry group of the system. Furthermore we have a �-
nite number of �elds ψi which are described as sections of associated vector
bundles to P (X). Because of the semi Riemannian structure on this oriented
manifold there exists a canonical volume form vol, with respect to which we
can integrate smooth functions in C∞(X). This volume form is de�ned as
the unique element λ in Λn(X) such that, for any x in X and any oriented
orthonormal basis (e1, . . . en) for Tx(X), λx(e1, . . . en) = 1.

A typical Lagrangian is of the form:

L =

∫

X
L(x) vol(x)

Here L(x) denotes the Lagrangian density, which is a smooth function on
X (a element in C∞(X)). It typically depends on a principal connection ω
on P (X) and on the �elds ψi. The Lagrangian is a functional:

L(ω, ψ1, . . . ψn) =

∫

X
(L(ω, ψ1, . . . ψn))(x) vol(x)

Quantum �eld theories in particle physics such as quantum electrody-
namics or the Standard Model are usually formulated in terms of the La-
grangian density L, which is often simply called Lagrangian by physicists.
In the next sections we will write down typical parts of it:

2.1 Kinetic terms

With the developed framework we are ready to write down kinetic terms
in a quantum �eld theory describing spin 1

2 fermions. We begin with a toy
example without any inner symmetries. Let X be of even dimension and be

55



56 2. Terms of the Lagrangian

equipped with a spin structure, i.e. a principal Spin1,s bundle S(X) with
the properties (1.5.3). Then a fermionic �eld is described as section ψ of the
associated Dirac spinor bundle D. (1.5.8) Let h, h1, and h2 be the Her-
mitian forms on D introduced in (1.57). Let ∇ be the associated connection
on D to the Levi-Civita connection on S(X). This gives rise to the Dirac
operator D on D (1.55). We will use maps of the form Γ(D) → C∞(X) to
obtain terms in the Lagrangian density. A kinetic term has to involve the
associated connection. With the tools at our hand we can construct such a
map. First de�ne:

K : Γ(D)→ C∞(X,C), ψ → h(ψ,Dψ). (2.1)

Notice how this map behaves with respect to the splitting of D = D+ +
D−:

ψ = ψ+ + ψ− 7 D
++D−−−−−−→ D+ψ+ +D−ψ− 7→ h1(ψ+, D+ψ+) + h2(ψ−, D−ψ−)

In particular we have a decomposition K = K1 +K2, where K1 and K2

can be interpreted as maps

K1 : Γ(D+)→ C∞(X,C) (2.2)

K2 : Γ(D−)→ C∞(X,C) (2.3)

Note that if we started with any sesquilinear form h̃ = αh1 + βh2 on D
where α, β ∈ C we would have a corresponding splitting K̃ = αK1 + βK2.

An admissible term in the Lagrangian density should be real valued. This
can be achieved by adding the complex conjugate: K̃ = K+K̄. In physics K
also gains an additional factor i since eventually this gives the 'right' equa-
tions. But that is beyond the scope of this work, the aim here is to build a
�tting mathematical framework.

After explaining this toy model we write down kinetic terms in a frame-
work which is applied in physics. Additional inner symmetries come into play
and in many relevant gauge theories they are modeled by associated bundles
to principal bundles of unitary groups(1.1.2). The usual way to describe both
the inner symmetries and the spacetime symmetry Spin1,s is to splice their
principle bundles to obtain a new principal bundle which has the product
group as structure group.

How does this �t into the framework developed so far? Let as above S(X)
be the principal Spin1,s bundle of a spacetime with spin structure and let
U(X) denote a principal bundle of an unitary group. Furthermore assume
that there exists a complex representation ρ : U → U(V ) ⊂ GL(V ), i.e. V is
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equipped with a positive de�nite Hermitian form that is invariant under the
representation of U . According to proposition (1.5.21) we can lift this Her-
mitian form to a Hermitian form on the associated bundle E := U(X)×ρ V .

We arrive at an associated bundle (S(X) ◦ U(X))×(∆2k×ρ) (S ⊗ V ). By
proposition (1.4.12) it is canonically isomorphic to D ⊗ E. Both bundles
carry Hermitian forms, and there exists a distinguished Hermitian form on
their tensor product due to the following standard result:

Proposition 2.1.1 Let V and W be complex vector bundles with Hermitian

forms h1 and h2. There then exists a Hermitian form h on their tensor

product such that:

h(v1 ⊗ w1, v2 ⊗ w2) = h1(v1, v2)h2(w1, w2)

for all sections v1 and v2 of V and w1 and w2 of W

Thus we obtain a Hermitian form h̃ on D ⊗ E. Recall that the Spin in-
variant form h on D splits into two sesquilinear forms h1 and h2. This yields
a splitting h̃ = h̃1 + h̃2.

FurthermoreD⊗E can be made a bundle of left modules over the Cli�ord
bundle Cl(X). This is carried out in the obvious way: For φ ∈ Γ(Cl(X)), σ ∈
Γ(D) and e ∈ Γ(E) the module multiplication is de�ned by:

φ · (σ ⊗ e) = (φ · σ)⊗ e
By linearly extending we obtain a Cli�ord action on the whole bundle.

Next let us assume that we have a given principal connection ωE on the
principal bundle U(X). Furthermore let ωR denote the Levi-Civita connec-
tion on S(X). With (1.21) we obtain vector bundle connections ∇R and ∇E
on the associated bundles D and E. Combined they yield a principal connec-
tion on the spliced bundle S(X) ◦ U(X). This in turn gives rise to a vector
bundle connection ∇R+E on the associated bundle D ⊗ E. By proposition
(1.4.13) this is the canonical tensor product connection. Thus for all sections
of the form σ ⊗ e:

∇R+E(σ ⊗ e) = (∇Rσ)⊗ e+ σ ⊗ (∇Ee)
We can show that this derivation is a module derivation, i.e. compat-

ible with the Cli�ord multiplication:

∇R+E(φ ·(σ⊗e)) = ∇R+E((φ ·σ)⊗e) = (∇R(φ ·σ))⊗e+(φ ·σ)⊗(∇Ee) =

= (∇φ)·(σ⊗e)+φ·((∇Rσ)⊗e)+φ·(σ⊗(∇Ee)) = (∇φ)(σ⊗e)+φ·(∇R+E(σ⊗e))
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for all sections of D ⊗ E of the form σ ⊗ e and φ ∈ Γ(Cl(X)). By linearly
extending it then holds for all sections of D⊗ E.

The splitting D = D+ ⊕D− carries over to a splitting:

D⊗ E = (D+ ⊗ E)⊕ (D− ⊗ E)

The bundle D± ⊗ E is canonically isomorphic to the associated bundle
(S(X) ◦ U(X)) ×(∆±1,s×ρ) (S± ⊗ V ). So the chiral representations take the
place of the spinor representation, which motivates the following naming:

In physics, fermionic �elds are described as sections of D⊗E. From now
on we refer to it as fermionic bundle and to the bundles D±⊗E as chiral
fermionic bundles.

Via the action of the Cli�ord bundle on the fermionic bundle we obtain an
action of the complexi�ed Cli�ord bundle Cl(X)⊗C. Due to the de�nition of
this action the chiral fermionic bundles can be characterized in the following
way:

Proposition 2.1.2 The chiral fermionic bundles D±⊗E are the ±1 eigen-

bundles of the action of the volume element ω ∈ Cl(X)⊗ C

The bundle D⊗E is a Cli�ord module and carries a connection. Thus by
(1.5.9) there exists a Dirac operator D on it. By using that the vector bundle
connection is a Cli�ord module connection and by repeating the proof that
lead to (1.5.20) we obtain that D̃ splits into two parts D̃+ + D̃−. These can
be understood as operators:

D̃+ : Γ(D+ ⊗ E)→ Γ(D− ⊗ E)

D̃− : Γ(D− ⊗ E)→ Γ(D+ ⊗ E)

Starting from this we construct suitable terms for the Lagrangian. Recall
that the Hermitian form h̃ on the fermionic bundle D ⊗ E splits into the
sum of sesqilinear forms h̃1 + h̃2. With the splitting of the fermionic bundle
into the chiral fermionic bundles these can be interpreted as maps:

h̃1 : Γ(D+ ⊗ E)× Γ(D− ⊗ E)→ C∞(X,C)

h̃2 : Γ(D− ⊗ E)× Γ(D+ ⊗ E)→ C∞(X,C)

which are C∞(X,C) antilinear in the �rst component and C∞(X,C) linear
in the second.
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With all structures lifted to the spliced bundle and the associated fermionic
bundle we can now write down kinetic terms analogous to before(2.1):

K̃ : Γ(D⊗ E)→ C∞(X,C), ψ → h̃(ψ,Dψ)

Again we have a splitting K̃ = K̃1 + K̃2 where K̃1 and K̃2 can be
interpreted as maps

K̃1 : Γ(D+ ⊗ E)→ C∞(X,C)

K̃2 : Γ(D− ⊗ E)→ C∞(X,C)

By adding their complex conjugates to make the Lagrangian density real we
arrive at kinetic terms for the chiral fermionic bundles.

All kinetic terms in the Standard Model are of this form with one ex-
ception: The kinetic term for the Higgs �eld. This �eld is not fermionic, it
transforms trivially under spacetime transformations. This is the de�ning
property of a scalar. It can be described as section of an associated bundle
(S(X) ◦U(X))×1×ρ (C⊗ V ) where 1 denotes the trivial representation and
ρ is, as before, an unitary representation, i.e. a complex representation that
preserves a Hermitian product on V . We refer to a bundle of this form as
scalar bundle. This associated bundle is by proposition (1.4.12) canonically
isomorphic to (S(X) ×1 C) ⊗ (U(X)×ρ V ). But the �rst bundle is just the
trivial complex line bundle, thus we obtain an isomorphism:

(S(X)×1 C)⊗ (U(X)×ρ V ) ∼= U(X)×ρ V =: E

To write down a kinetic term lift the Hermitian form h on V as before to a
Hermitian form h : Γ(E) × Γ(E) → C∞(X,C). Then note that for a semi
Riemannian manifold X the metric gives rise to a symmetric bilinear form
g : Γ(T ∗X)× Γ(T ∗X)→ C∞(X).

These two forms can be lifted to a unique Hermitian form on the real
tensor product bundle with the canonical complex structure T ∗X⊗E by the
de�ning property(2.1.1) above:

h̃(v1 ⊗ σ1, v2 ⊗ σ2) = g(v1, v2) h(σ1, σ2)

for all sections v1, v2 of T ∗X and σ1, σ2 of E. Given a connection on U(X)
we have an associated connection ∇ on E. We can write down the following
kinetic term:

K : Γ(E)
∇−→ Γ(E ⊗ T ∗X)

h̃−→ C∞(X) (2.4)

Since h̃ is Hermitian, terms of the form h̃(σ, σ) are real valued for all sections
σ ∈ Γ(E ⊗ T ∗X). Thus we do not need to add the complex conjugate.
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2.2 Polynomial terms

In this section another class of terms in a typical Lagrangian is discussed.
Contrary to kinetic terms no derivatives are involved in polynomial terms.
There is no dependence on the principal connection at all.

The general setting is the following: Let G be a Lie group, X be a space-
time and P (X) a principal bundle over X with structure group G. Further-
more let ρi : G → GL(Vi) be a complex representation of G on a vector
space Vi, where i = 1, . . . , n. Then, as in (1.5.6), there are unique complex
conjugate representations ρ̄i of G on V̄i. Let Ei denote the associated bundle
P (X) ×ρi Vi and Ēi the complex conjugate associated bundle P (X) ×ρi V̄i.
The canonical antilinear map C : Vi → V̄i is equivariant, so analogous to
proposition (1.4.9) we obtain a C∞(X,C) antilinear map

C : Γ(Ei)→ Γ(Ēi).

Assume now that we have given a G invariant multilinear form

q : Vi1 × Vi2 × · · · × Vik × Vj1 × · · · × Vjl −→ C (2.5)

where the indices are in {1, · · ·n}. By the universal property of the tensor
product such maps are in one-to-one correspondence with G invariant linear
maps:

q : Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vik ⊗ Vj1 ⊗ · · · ⊗ Vjl −→ C

Analogous to the lift of invariant Hermitian forms (1.5.21) it can be
shown that q lifts to a C∞(X,C) multilinear map:

q : Γ(Ei1)× Γ(Ei2)× · · · × Γ(Eik)× Γ(Ej1) · · · × Γ(Ejl) −→ C∞(X,C)

Via composition with C : Ej → Ēj we obtain a map:

p : Γ(Ei1)× Γ(Ei2)× · · · × Γ(Eik)× Γ(Ej1)× · · · × Γ(Ejl) −→ C∞(X,C)

By de�ning p̃ := p+ p we arrive at a suitable term p̃ for the Lagrangian
density.

Next we discuss how to construct invariant multilinear forms as in (2.5).
The group G acts on Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vik ⊗ Vj1 · · · ⊗ Vjl via the tensor
product representation. Most of the groups important in physics have the
property that all their representations are completely reducible, i.e. they
are isomorphic to a direct sum of irreducible representations. The following
Lemma is useful:
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Lemma 2.2.1 Let ρ : G→ GL(V ) be a complete reducible representation of

group G on a complex vector space V . Then the space of G invariant linear

maps V → C is isomorphic to the space of G invariant vectors in V .

Proof Let V ∼= A1⊕A2⊕· · ·⊕Am be a decomposition of V into irreducible
parts. Let ρi : G→ Ai denote the corresponding irreducible representations.
For each G invariant map q : V → C we have the following commuting
diagram:

A1 ⊕A2 ⊕ · · · ⊕Am
∼= //

(ρ1⊕ρ2⊕···⊕ρm)(g)

��

V

ρ

��

q

��
A1 ⊕A2 ⊕ · · · ⊕Am ∼=

// V q
// C

for all g ∈ G. We can decompose q = q1 + q2 + . . . + qm where qj is the
restriction of q to Aj . The kernel of each qj is an invariant subspace. If Aj is
not the trivial representation, so of dimension ≥ 2, the kernel is not empty
and due to the irreducibility of Aj it has to be Aj . Thus qj is the 0 map.
Therefore only the parts of q on the trivial representations can be non trivial.
This shows that the space of all invariant maps V → C is isomorphic to the
dual of the space of invariant vectors in V and hence to the space of invariant
vectors in V .

Note that the isomorphism is not unique. An immediate consequence of this
lemma is:

Proposition 2.2.2 With the notation as above and for completely reducible

representations: The complex vector space of G invariant multilinear maps

Vi1 ×Vi2 × · · · ×Vik ×Vj1 · · · ×Vjl −→ C is isomorphic to the complex vector

space of G invariant vectors in Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vik ⊗ Vj1 · · · ⊗ Vjl

2.3 Yang Mills terms

The third class of terms in the Lagrangian density only depends on principal
connections. The general context here is: As before let X be a spacetime. Let
G be a Lie group and assume we have a principal bundle P (X) over X with
structure group G. Let ω be a principal connection on P (X). Let Ω denote
the Lie algebra g valued corresponding curvature form on P (X). By (1.4.4)
this is a tensorial two form of type Ad, so with (1.4.6) we can interprete Ω
as a two form on X with values in the associated bundle P (X)×Ad g. This
bundle is usually referred to as the adjoint bundle Ad(P ). Then Ω can be
interpreted as a section of the real vector bundle Λ2T ∗M ⊗Ad(P )
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Next observe that the semi Riemannian metric g on X gives rise to a
symmetric bilinear form on the two forms Λ2T ∗X: Extend the metric analo-
gously to (2.1.1) to a symmetric bilinear form on g : T ∗X ⊗T ∗X → C∞(X)
and then restrict g to Λ2T ∗X ⊂ (T ∗X ⊗ T ∗X).

Given an Ad invariant bilinear form on the Lie algebra g we can lift this
as above to a C∞(X) bilinear form on the sections of Ad(P ). Then we can
lift the two symmetric bilinear forms on the sections of Λ2T ∗X and Ad P
analogous to (2.1.1) to a symmetric form:

b : Γ(Λ2T ∗X ⊗Ad(P ))× Γ(Λ2T ∗X ⊗Ad(P ))→ C∞(X)

which is C∞(X) linear in each component. So interpreting Ω as a section of
Λ2T ∗X⊗(Ad P ), by b(Ω,Ω) we obtain an element in C∞(X). This is a suit-
able Lagrangian density. Note that it only depends on the connection form ω.

In the construction above we need an Ad invariant bilinear form on the
Lie algebra g. For many relevant Lie groups such a form can readily be
constructed. Recall from (1.3) the adjoint representation:

ad : g→ End(g), ad(x)(y) = [x, y]

With this we can de�ne the following map for any �nite dimensional real Lie
algebra:

B : g× g→ R, B(x, y) = trace(ad(x) ◦ ad(y))

which is seen to be symmetric and bilinear. This form is commonly known as
Killing form and plays a prominent role in the classi�cation of semi simple
Lie algebras. It has many useful properties, but here we require only that it
is invariant under automorphisms s of the Lie algebra. In our case, with the
Lie algebra derived from a Lie group G, this yields:

B(Adg(x),Adg(y)) = B(x, y)

for all x, y ∈ g and for all g ∈ G. Thus the Killing form is a form with the
desired property of Ad invariance.

In physics the special unitary groups SU(n) as de�ned in (1.1.2) often
appear as symmetry groups. By the identi�cation of the Lie algebra su(n)
with Hermitian skew symmetric trace free matrices and the commutator as
the Lie bracket it can be shown that the following formula for the Killing
form B holds(see ([FH]), Exercise 14.36):

B(X,Y ) = 2n trace(XY ) (2.6)
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for all X,Y ∈ su(n). With this equation the Killing form can be calculated
in a straightforward way. We also have that B(X,X) = −2n trace(X∗X),
where X∗ denotes the Hermitian conjugate of X. From this it follows that
the Killing form is negative de�nite on su(n). More generally, there is a
theorem that the Killing form on Lie algebras of semisimple Lie groups is
always non-degenerate. ([FH]).
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Chapter 3

The Lagrangian of the

Standard Model

With the framework developed in the previous chapters we are ready to
write down the Standard Model Lagrangian in a coordinate independent
way (0.2). We then show that expressed in coordinates the introduced terms
match the one used in physics(see appendix A). The aim here is to reproduce
the Standard Model Lagrangian in a mathematical exact framework, not to
understand the (physical) meanings of the terms.

3.1 General setting

We begin our discussion with the Minkowski spacetime (1.2) X = R1,3 en-
dowed with the canonical structure of a spacetime manifold and a chosen
orientation and time orientation. The tangent bundle TX can be trivialized
globally by using the coordinate vector �elds as basis. Thus we have a iso-
morphism TX ∼= (X × R1,3). Recall from (1.9) that X has a corresponding

oriented, time oriented orthonormal frame bundle SO0(1, 3) ↪→ L(X)
PL−−→ X.

The tangent space in each point is canonically isomorphic to R1,3 and thus
we have a canonical trivialization of the oriented, timeoriented orthonormal
frame bundle, i.e. there is a isomorphism: L(X) ∼= X × SO0(1, 3).

The tangent space at a point (x, g) in L(X) can be written as a direct
sum TXx ⊕ (TL↑+)g. This gives rise to a Lie algebra valued one form ω0 on
L(X) by de�ning:

ω0(x,g)(v, w) := (Tσg−1)gw (3.1)

where σg(g2) = g2 · g denotes the right action of L↑+ on itself. It can directly
be veri�ed that ω is a connection one form. Its kernel in (x, g) is TXx. In fact
it can be shown that the torsion tensor of ω vanishes. Thus this connection
is the Levi Civita connection.

65
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Furthermore we can construct a Spin structure on X (1.5.3). We de�ne
S(X) = X × Spin1,3 and

λ : S(X) = (X × Spin1,3)
id×Spin−−−−−→ (X × L↑+) ∼= L(X)

It is obvious that S(X) and λ together are a Spin structure.

The inner symmetry group of the Standard Model is the product group
U(1) × SU(2) × SU(3). Let U(X) = X × (U(1) × SU(2) × SU(3)) denote
the trivial principal bundle over X. Note that this is the spliced bundle of
X × U(1), X × SU(2) and X × SU(3). We then splice U(X) with the spin
structure bundle S(X) to obtain the full symmetry bundle:

Spin1,3×U(1)× SU(2)× SU(3) ↪→ (P (X) = S(X) ◦ U(X))→ X

Now we are exactly in the situation explained in section (2.1). Fermionic
�elds are described as sections of associated bundles to P (X), the chiral
fermionic bundles. For their construction we need to describe representations
of the inner symmetry group of the Standard Model.

Moreover the Lagrangian also depends on principal connections, in physics
called gauge �elds. Let ω1, ω2 and ω3 denote principal connections on trivial
U(1), SU(2) and SU(3)-bundles. As in (1.4.11) we obtain a principal con-
nection ω1+ω2+ω3 on U(X). Splicing again with the Levi-Civita connection
yields a principal connection on the full symmetry bundle P (X).

3.2 The representations of the Standard Model

As mentioned in the previous section fermionic �elds in the Standard Model
are described as sections of chiral fermionic bundles, i.e. associated bundles to
(S(X)◦U(X))×(∆±1,3×ρ)(C

2⊗V ) where ρ : (U(1)×SU(2)×SU(3))→ GL(V )

is a representation of the inner symmetry group. First, we discuss the repre-
sentations appearing in the Standard Model:

Begin with the unitary groupU(1). By de�nition this group consists of all
complex numbers c satisfying c̄c = 1, i.e. the unit circle. Each element in U(1)
can be written as eiθ. In the Standard Model all occuring representations of
U(1) are complex of dimension one and are of the following form:

eiθ · z = e3iY θz (3.2)

The parameter Y has to be a multiple of 1
3 otherwise this is not a valid

representation. The factor three can be attributed to historical development
and is of no mathematical signi�cance. Such a representation is denoted by
the value of Y and the one dimensional vector space on which it acts by
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CY . It can be veri�ed that all these representations preserve the standard
Hermitian product on C, thus they are unitary representations.

Next we discuss the representations of SU(2). As mentioned in (1.1.2)
we have the standard representation where each matrix in SU(2) is simply
represented by itself. We denote this representation for reasons of dimension
by 2, and similarly the one dimensional trivial representation by 1. It follows
directly from the de�nition of SU(2) that 2 preserves the standard Hermitian
product on C2. Furthermore let 2 denote the conjugation representation
of the standard representation given on C2 by g → ḡ. These two represen-
tations are equivalent. We can verify this with the following argument: We

de�ne B =

(
0 1
−1 0

)
. Then for any complex 2×2 matrix g with determinant

1:

BgB−1 = (gT )−1 (3.3)

However, for all g in SU(2) : ḡT = g−1, and therefore BgB−1 = (gT )−1 =
ḡ. Thus the standard representation of SU(2) and its conjugate are equiva-
lent.

At last we discuss representations of SU(3). Again we have the standard
representation which preserves the standard Hermitian product on C3. For
reasons of dimension we will denote it by 3. Analogously to SU(2) we have
the conjugate representation of 3: g → ḡ and we denote it by 3̄. However,
this time 3 and 3̄ are not equivalent. Let 1 denote the trivial representation
on C, again for reasons of dimension.

With the notation de�ned, we are ready to explicitly write down the
representations of fermionic �elds in the Standard Model, and additionally
the Higgs �eld representation:

The Standard Model representations

Name Symbol Spin1,3 SU(3)× SU(2)× U(1)

Left-handed quark QL ∆+ (3, 2, 1
3)

Right-handed quark(up) uR ∆− (3, 1, 4
3)

Right-handed quark(down) dR ∆− (3, 1,−2
3)

Left-handed lepton LL ∆+ (1, 2,−1)
Right-handed electron eR ∆− (1, 1,−2)

Higgs �eld φ trivial (1, 2, 1)

It is an experimental fact that each fermion appears in three generations.
Thus each fermionic �eld carries a generation index, which we suppress for
the moment. The reason for this is that most of the terms in the Lagrangian
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are identical for all three generations. The Lagrangian density can equiva-
lently be described in terms of the conjugate representations, which corre-
sponds to antiparticles. We will see that conjugation changes left to right and
vice versa. Thus, by conjugating the right-handed �elds everything can be
described in terms of left handed �elds, which is common in particle physics.

Note that all the above representations are irreducible. This follows from
the fact that, given a product of groups G1×G2, irreducible representations
of G1 and G2 tensor to a irreducible representation of G1 × G2. The rep-
resentations of U(1), SU(2) and SU(3) mentioned above are all irreducible.
Thus their tensor products are as well.

3.3 Gauge terms

The �rst terms in the Standard Model we explicitly write down are the Yang
Mills terms from the previous chapter(2.3). These only depend on the con-
nections ω1, ω2 and ω3 on the trivial U(1), SU(2) and SU(3) bundles. In
order to write down a Yang Mills term for each of these bundles we need Ad
invariant forms on the Lie algebra of these groups. For SU(2) and SU(3)
these will be scalar multiples of the Killing form.

The Lie algebra u(1) is one dimensional and hence the Lie bracket van-
ishes. Thus the Killing form is the 0 form. It is easily veri�ed that U(1) is
abelian. Therefore the representation Ad is trivial and any symmetric bilinear
form on the Lie algebra u(1) is suitable. Applying the matrix interpretation
u(1) can be seen to be the space of pure imaginary numbers. By using the
element i as basis this is canoncially isomorphic to R, and the only symmet-
ric bilinear forms there are multiples of the standard one.

Next we discuss the problem of stating the Yang Mills terms in coordi-
nates. To this end we need the curvature forms Ω1, Ω2 and Ω3 of the principal
connections ω1, ω2 and ω3. Therefore we �rst show how to generally calcu-
late a curvature form Ω in terms of a principal bundle connection ω on a
principal bundle G ↪→ P → X. The curvature form is identi�ed with an
associated bundle valued 2-form Ω̃. To express it in coordinates we need a
local cross-section s : U → P , where U is a open subset of X. Then by (1.4.7)
this curvature is of the following form:

Ω̃x = [s(x), (s∗Ω)x] (3.4)

Our aim is to express F := (s∗Ω)x, in physics called local �eld strength
([N2]), in terms of A := s∗ω, commonly called the local gauge potential.
We can pull back both sides of the Cartan structure equation(1.3.1) by s
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and immediately obtain:

s∗Ω = ds∗ω + [s∗ω, s∗ω] (3.5)

Assume now that the domain U ⊂ X of the cross-section s is also a
coordinate neighborhood for a chart V with coordinate functions x1, . . . xn.
Then the local �eld strength and the local gauge potential can be written in
coordinate form A = Aαdxα and F = 1

2Fαβdxαdxβ , where the Aα and Fαβ
denote G-valued functions on U . Here we have used the Einstein notation,
where an index which appears twice implies summation over all values of
that index. Plugging this into (3.4) yields:

Ω̃x =
∑

α<β

[s(x), (Fαβ)x]dxαdxβ (3.6)

A calculation using (3.5) shows that:

Fαβ = ∂αAβ − ∂βAα + [Aα,Aβ] (3.7)

After choosing a local section Ω̃ can be described in terms of the compo-
nents of A = s∗ω.

3.3.1 U(1) part

Next we begin to write down the Yang Mills term with respect to coordinates.
We start with the U(1) part. Let b denote a form on its Lie algebra u(1), and
g the symmetric bilinear form on T ∗X induced by the metric. Recall from
(2.3) that we have a symmetric form:

p : Γ(Λ2T ∗X ⊗ (Ad P ))× Γ(Λ2T ∗X ⊗ (Ad P )) −→ C∞(X)

The Lagrangian density is then given by p(Ω̃, Ω̃). Substituting with (3.6)
yields:

p(
1

2

∑

αβ

[s, (Fαβ)]dxαdxβ,
∑

γδ

1

2
[s, (Fγδ)]dxγdxδ) =

1

4

∑

αβ

∑

γδ

b(Fαβ,Fγδ)g(dxα, dxγ)g(dxβ, dxδ) =

1

4

∑

αβ

∑

γδ

b(Fαβ,Fγδ)gαγgβδ =
1

4

∑

αβ

∑

γδ

b(Fαβ,Fγδgαγgβδ) =
1

4

∑

αβ

b(Fαβ,Fαβ)

The notation implicitly introduced in the last line is common in physics.
It is referred to as 'raising an index with the metric'. Next we identify the
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Lie algebra in the canonical way with matrices and think of the Lie alge-
bra valued function Fαβ as matrix valued. In case of u(1) these are purely
imaginary numbers. Due to the above b is a multiple of the symmetric prod-
uct b̃(v, w) = 4 · 9 · v · w for all purely imaginary numbers. The factor 9 is
introduced by taking the vector 1

3 i as basis vector while the �rst factor is
conventional. So b = (g1)−2b̃, where g1 is a real number. Inserting this in we
have:

p(Ω̃1, Ω̃1) =
1

4
(

6

g1
Fαβ ·

6

g1
Fαβ)

Here the Einstein summation convention is used. The constant g1 can
not be explained by the Standard Model and is called a coupling constant.
It determines how strong the gauge terms of the Lagrangian density are in
comparison to the interaction terms. In physics it usually absorbed it in the
Lie algebra by de�ning:

Bµ :=
6

ig1
Aµ; Bµν :=

6

ig1
Fµν (3.8)

The factor i enters to make the matrices Hermitian. With this notation
we arrive at:

p(Ω̃1, Ω̃1) = −1

4
BµνB

µν

This is exactly the Standard Model Lagrangian density, see appendix A.
Note that equation (3.7) becomes:

Bµν = ∂µBν − ∂νBµ
because the Lie bracket vanishes for u(1) and the multiplicative factors cancel
out.

3.3.2 SU(2) part

Repeating the calculation for the U(1) part for the SU(2) part we obtain:

p(Ω̃2, Ω̃2) =
1

4

∑

αβ

b(Fαβ,Fαβ)

Interpreting Fαβ as traceless 2×2 matrix valued functions, we can de�ne
on them a form(2.6) proportional to the Killing form:

b̃(X,Y ) = 2 trace(X ◦ Y )

Again we use a scalar multiple: b = 1
(g2)2

b̃, where g2 is a nonnegative real

number. Interpreting again Fαβ as traceless skew Hermitian valued functions
we obtain:
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p(Ω̃, Ω̃) =
1

2
(trace((g2)−1Fαβ · (g2)−1Fαβ)) = −1

8
(trace(

2

ig2
Fαβ ·

2

ig2
Fαβ))

As above we can absorb this factors in the Lie algebra and de�ne:

Wµ :=
2

ig2
Aµ; Wµν :=

2

ig2
Fµν (3.9)

Note that these can be interpreted as 2×2 tracefree Hermitian matrix valued
functions. We arrive at:

p(Ω̃2, Ω̃2) = −1

8
trace(WµνW

µν)

This is a Standard Model Lagrangian term(A). A calculation shows that
equation (3.7) becomes:

Wµν = ∂µWν − ∂νWµ +
ig2

2
(WµWν −WνWµ).

3.3.3 SU(3) part

The SU(3) part is treated in an analogous way to SU(2). Again we choose:

b̃(X,Y ) = 2 trace(XY )

as reference bilinear form on su(2) and b = 1
g2
b̃ we obtain:

p(Ω̃3, Ω̃3) =
1

2
(trace(g−1Fαβ · g−1Fαβ))

We can once again absorb the factors in the Lie algebra by de�ning:

Gµ :=
1

ig
Aµ; Gµν :=

1

ig
Fµν (3.10)

which are tracefree Hermitian 3× 3 matrix valued functions. We arrive at

p(Ω̃3, Ω̃3) = −1

2
trace(GµνG

µν) (3.11)

as su(3) term in the Lagrangian density. A calculation shows that equation
(3.7) becomes:

Gµν = ∂µGν − ∂νGµ + ig(GµGν −GνGµ)

This concludes the treatment of the Yang Mills part of the Standard
Model Lagrangian density.
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3.4 Fermionic kinetic terms

We now write down the kinetic part for a fermionic �eld in the Standard
Model. Recall that they can be described as sections of chiral fermionic
bundles D± ⊗ E. In kinetic terms the Dirac operator appears. In order to
write it down in coordinates we need an explicit complex representation of
the Cli�ord algebra Cl1,3 in the 4×4-complex matrices. We construct such a
representation via the so called Dirac matrices. First de�ne the following
set of contravariant Dirac matrices:

γ0 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , γ1 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0




γ2 =




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


 , γ3 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0




With the de�nition of the Pauli matrices:

σµ = [

(
1 0
0 1

)
,

(
1 0
0 1

)
,

(
1 0
0 1

)
,

(
1 0
0 1

)
]; σ̃µ = [σ0,−σ1,−σ2,−σ3]

the Dirac matrices can be compactly written in the form: γµ =

(
0 σµ

σ̃µ 0

)
.

The covariant matrices are de�ned as: γµ = ηµνγ
ν =

{
γ0,−γ1,−γ2,−γ3

}
.

For the covariant Dirac matrices the following equation holds:

γµγν + γνγµ = 2ηµν1

We obtain an embedding of the Minkowski space in the set of 4 × 4
matrices:

ι : R1,3 → End(C4) : vµeµ → vµγµ

where eµ denotes the standard basis of R1,3. We see that ι(v) · ι(v) = q(v),
so by the universal property of the Cli�ord algebra (1.5.1) the embedding
uniquely extends to a map ι : Cl1,3 → End(C4). We then extend ι further in
the natural way to a algebra homomorphism:
ι : Cl4 → End(C4). For dimensional reasons this has to be an isomorphism,
and we have explicitly constructed an irreducible complex Cli�ord module
for Cl1,3. Restricting to Spin1,3 ⊂ Cl1,3 ⊂ Cl4 we obtain a complex spinor
representation: ∆1,3 : Spin1,3 → GL4(C) and C4 becomes a spinor space.
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With respect to the canonical isomorphism: SL(2,C) ∼= Spin1,3 it can be
shown that ∆1,3 takes the following form([N2]):

∆1,3 : SL(2,C)→ GL4(C), ∆1,3(g) =

(
g 0
0 (ḡT )−1

)

We can immediately extract the splitting into the chiral representations
∆±1,3: On the �rst two components of C4 we have a representation ∆+

1,3(g) =

g, and on the last two components ∆−1,3(g) = (ḡT )−1. Thus we expect the
volume element to be diagonal. By de�nition (1.37) it is given by:

ω = i2γ0iγ1iγ2iγ3 = iγ0γ1γ2γ2 =

(
1 0
0 −1

)

The chiral projections 1
2(1± ω) are projections on the �rst respectively last

two components. We can also write down a Hermitian, Spin1,3 invariant form:

h : C4 × C4 → C, h(v, w) = v̄Tγ0w = v̄1w3 + v̄2w4 + v̄3w1 + v̄4w2

Furthermore, as in (1.43), we have a splitting h = h1+h2 into two Spin1,3

invariant sesquilinear forms:

h(v+ + v−, w+ + w−) = h1(v+, w−) + h2(v−, w+)

Note that in coordinates C2 ∼= S+ and C2 ∼= S− the form h1 : C2 ×C2 → C
is just the standard Hermitian form on C2.

With this explicit description of the spinor representations we are ready
to write down the kintetic terms in coordinates.

3.4.1 The covariant derivative

Let ψ denote a section of a chiral fermionic bundle D± ⊗ E of the the
Standard Model. Then we choose a section s : R1,3 ⊂ U → (S(X)◦U(X)) of
which the �rst component is the element (x, e) with respect to the canonical
identi�cation S(X) ∼= (X×L↑+). It follows from (3.1) that the pullback s∗ω0

of the Levi civita connection ω0 on S(X) is 0. With respect to such a section
we obtain:

ψ(x) = [s(x), v(x)] (3.12)

for a unique v : U → (C2 ⊗ V ). Note that V is the tensor product of stan-
dard complex vector spaces Cis, so via the standard isomorphism we can
interprete v as map from U to Cn for some n ∈ N.

The �rst step in constructing a kinetic term for such a section is applying
the Dirac operator. By equation (1.54) we �rst have to apply the covariant
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derivative ∇∂xµ where ∇ denotes the covariant derivative that is associated
to a principal connection ω. We calculate this in coordinates according to
(1.4.10):

(∇∂xµψ)(x) = [s(x), (
∂

∂xµ
+ (s∗ω)µ(x)) · v(x)] (3.13)

Let
Dµ = (

∂

∂xµ
+ (s∗ω)µ(x))

The principal connection ω is the sum of the connections of the X×U(1),
X × SU(2), X × SU(3) and S(X) connections ω1, ω2, ω3 and ω0. With
de�nitions (3.8), (3.9) and (3.10) we arrive at:

(s∗ω)µ = A1
µ +A2

µ +A3
µ =

ig1

6
Bµ +

ig2

2
Wµ + igGµ

where we have used the fact that s∗ω0 vanishes.

For a trivial representation the action of the Lie algebra on a vector
de�ned via (1.17) is given by A · v = 0. In the SU(2) and SU(3) parts we
only have standard representations for which the action of the Lie Algebra is
given by matrix multiplication: Aµ · v = Aµv. For the U(1) representations
(3.2) we directly calculate:

Aµ · v =
d

dθ
(eθAµ · v) =

d

dθ
(e3Y θAµ)v = 3YAµv (3.14)

Expressing everything in terms of Bµ,Wµ and Gµ we can write down Dµ

for all the gauge terms:

The covariant derivatives

Name Symbol Dµ

Left-handed quark QL ∂µ + ig1
6 Bµ + ig2

2 Wµ + igGµ
Right-handed quark(up) uR ∂µ + i2g1

3 Bµ + igGµ
Right-handed quark(down) dR ∂µ − ig1

3 Bµ + igGµ
Left-handed lepton LL ∂µ − ig1

2 Bµ + ig2
2 Wµ

Right-handed electron eR ∂µ − ig1Bµ

3.4.2 Cli�ord multiplication

The next step in order to obtain the Dirac operator is to carry out the
Cli�ord multiplication with q(eµ)eµ. For our chosen cross section s : R1,3 →
S(X) ◦U(X) which is the trivial section on S(X) Cli�ord multiplication by
the tangent vector ∂xµ ⊂ TXx ⊂ Cl1,3 on a section of a fermionic bundle is
given by:

eµ · [s(x), v(x)] = [s(x), γµv(x)]
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Note that q(∂xµ)γµ = γµ, thus the Dirac operator on a fermionic bundle is
given by:

D̃ : Γ(D⊗ E)→ Γ(D⊗ E), D̃[s(x), v(x)] = [s(x), γµDµv(x)]

With respect to the splitting of the fermionic bundle in the chiral fermionic
bundles we arrive at:

D̃+ :Γ(D+ ⊗ E)→ Γ(D− ⊗ E), D̃+[s(x), v(x)] = [s(x), σ̄µDµv(x)]

D̃− :Γ(D− ⊗ E)→ Γ(D+ ⊗ E), D̃−[s(x), v(x)] = [s(x), σµDµv(x]

The kinetic term for a left handed chiral fermionic �eld is given by (2.2):

h̃1x([s(x), v(x)], [s(x), σ̄µDµv(x)] = k(v(x), σ̄µDµv(x))

where k denotes the invariant Hermitian form on C2 ⊗ V . Note that V is a
tensor product of Cis. In every component we have the standard Hermitian
form on Cj and on C2 we also have the standard Hermitian form. With the
interpretation of v as map R1,3 → Cn we see that k is the standard Hermitian
form on Cn and hence:

k(v(x), σ̄µDµv(x)) = v(x)
T
σ̄µDµv(x) (3.15)

Thus the kinetic term for a left handed fermionic �eld is given by:

K : Γ(D+ ⊗ E)→ C∞(X), ([s, vL]) = vL
T σ̄µiDµvL + (c.c.)

where c.c. denotes the complex conjugate. As earlier explained the factor i is
introduced for physical reasons. Completely analogous we obtain for a right
handed fermionic �eld:

K : Γ(D− ⊗ E)→ C∞(X), ([s, vR]) = vR
TσµiDµvR + (c.c.)

In physics sections of fermionic bundles are regarded as sections of vec-
tors of operator valued distributions called quantum �elds. However, this is
beyond the scope of this work. All the equations for the Standard Model so
far are for 'classical �elds', but in physics we would need it for 'quantum
�elds'. Lagrangian densities then are not real functions on the spacetime,
but rather operator valued distributions. The complex conjugate is replaced
by the Hermitian conjugate, and in the above terms the (c.c) is replaced by
(h.c.) and v̄ by v∗.
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3.5 Higgs �eld terms

In the Standard Model there is one �eld which is di�erent from the others,
the Higgs �eld. This �eld is central to the whole Standard Model, as via
the so called Higgs mechanism it gives rise to mass terms for the gauge and
fermionic �elds. By (3.2) the Higgs �eld is a scalar bundle and described as a
section of the associated bundles to the trivial representation of Spin1,3 and
the (1, 2, 1) representation of U(1), SU(2) and SU(3).

In (2.4) the kinetic term for such a scalar bundle is described. We now
write it down in coordinates. With respect to a section s : R1,3 → S(X) ◦
U(X), which is trivial on the S(X) component as in (3.4.1) we can write a
Higgs �eld φ as:

φ(x) = [s(x), v(x)]

First we have to calculate its covariant derivative. As in (3.13) we arrive
at:

(∇∂xµφ)(x) = [s(x), Dµv(x)]

where

Dµv = (
∂

∂xµ
+ (s∗ω)µ)v = (

∂

∂xµ
+
ig1

2
Bµ +

ig2

2
Wµ)v.

Next we write down the full kinetic term in coordinates:

Kx(φ, φ) = h̃x(
∑

µ

[s(x), Dµv(x)]dxµ,
∑

ν

[s(x), Dνv(x)]dxν) =

∑

µν

g(dxµ, dxν)h(Dµv(x), Dνv(x)) =
∑

µν

h(Dµv(x), Dνv(x)gµν) =

∑

µ

h(Dµv(x), Dµv(x))

The representation (1, 2, 1) acts on (C⊗C2⊗C) ∼= C2, and h is the stan-
dard Hermitian product on the latter space. Using the Einstein convention
we have:

K(φ, φ) = (Dµv)TDµv

This is the coordinate form of the Lagrangian density for the Higgs �eld.

There is another term in the Lagrangian density which solely depends on
the Higgs �eld, the Higgs mass term. This is a simple polynomial term.
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Notice that the (1, 2, 1) representations is a unitary representation, and it is
the standard Hermitian form h on C2 ∼= C⊗C2⊗C which is invariant under
this representation. We can immediately lift this to an invariant form P on
the Higgs bundle. With notations as above we arrive at a polynomial term:

Px(φ, φ) = P ([s(x), v(x)], [s(x), v(x)]) = h(v(x), v(x)) = v(x)
T
v(x)

The Higgs mass term is given by −m2
h[P (φ, φ)− c2

2 ]2/(2c2), wheremh and
c are real parameters of the Standard Model called Higgs mass and Higgs
vacuum expectation value. This is a valid term in the Lagrangian density.
Written down in coordinates we obtain:

−m2
h(vT v − c2

2
)2/(2c2)

3.6 Yukawa coupling terms

In this section we treat polynomial terms which depend on the Higgs �eld
and fermionic �elds but are independent of the connection. They all are of
similar form: The complex conjugate of a left handed fermionic �eld, a scalar
Higgs �eld and a right handed fermionic �eld appears. In physics such terms
are called Yukawa terms. To construct this polynomial terms we need to �nd
invariant multilinear forms on the vector spaces of the representations and
their conjugate representations.

To this end we �rst revisit the representations of Spin1,3
∼= SL(2,C). For

the chiral fermionic �elds we have:

∆+
1,3 :SL(2,C)→ GL2(C) : ∆+

1,3(g) = g (3.16)

∆−1,3 :SL(2,C)→ GL2(C) : ∆−1,3(g) = (ḡT )−1 (3.17)

Now assume we have given sections of the left-handed lepton bundle
(1, 2,−1), the scalar Higgs bundle (1, 2, 1) and the right-handed electron
bundle (1, 1,−2). With respect to a section s of the principle bundle we can
write these as:

[s(x), LL(x)] [s(x), φ(x)] [s(x), eR(x)]

where

LL : R1,3 → C2 ⊗ C⊗ C2 ⊗ C−1 =: VL

φ : R1,3 → C⊗ C⊗ C2 ⊗ C1 =: Vφ

eR : R1,3 → C2 ⊗ C⊗ C⊗ C−2 =: VR
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There exists a multilinear form:

b : (VL)× Vφ × VR → C, b(LL, φ, eR) = LL
T
φeR (3.18)

A calculation using (3.16) shows that this is invariant under SL(2,C)×
U(1)×SU(2)×SU(3). The SU(2) group action on φ and LL cancels out, as
well as the SL(2,C) action on LL and eR. By adding the complex conjugate
this gives rise to a admissable term in the Lagrangian. An additional factor
−
√

2
v where v is the Higgs vacuum expectation value occurs in the Standard

model.

Recall that there are three generations of Leptons. We could write down
such a term for each generation as implicitly done before. However the matter
it is more complicated. We could use right and left handed leptons from
di�erent generations and couple them as in (3.19). This �mixing� happens in
the Standard Model and is described by a complex 3 × 3 matrix M e called
mass matrix. We arrive at the following term in the Lagrangian density:

−
√

2

v
LL

T
φM eeR + (c.c.)

where the generation indices are suppressed.

A analogous term exists for the quark �elds. Here we have sections of the
left handed quark bundle (3, 2, 1

3), the scalar Higgs bundle (1, 2, 1), the right
handed up quark bundle (3, 1, 4

3) and the right handed down quark bundle
(3, 1,−2

3). With respect to a section s of the principle bundle we can write
these as:

[s(x), QL(x)] [s(x), φ(x)] [s(x), uR(x)] [s(x), dR(x)]

where

QL :R1,3 → C2 ⊗ C3 ⊗ C2 ⊗ C 1
3

=: VL

φ :R1,3 → C⊗ C⊗ C2 ⊗ C1 =: Vφ

uR :R1,3 → C2 ⊗ C3 ⊗ C⊗ C 4
3

=: VuR

dR :R1,3 → C2 ⊗ C3 ⊗ C− 2
3

=: VdR

Again we have a multilinear form:

b : (VL)× Vφ × VdR → C, b(QL, φ, dR) = QL
T
φdR (3.19)

As above this is a invariant under SL(2,C)× U(1)× SU(2)× SU(3) as
a calculation shows: The SU(3) and SL(2,C) parts in QL

T
and dR cancel

out, the SU(2) parts in QL
T
, φ and the U(1) terms in all parts as well.
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Analogously to the term for leptons we obtain a term in the Lagrangian
density:

−
√

2

v
QL

T
φMddR + (c.c.)

As above here Md is a complex 3× 3 mass matrix that describes how di�er-
ent generations mix.

When writing down a similar term for up quarks we encounter a prob-
lem. The �rst candidate QL

T
φuR is not U(1) invariant. A solution for this

would be to look a the term QL
T
φuR, which is U(1) invariant. But now a

new problem occurs, we have two conjugate representations of SU(2) and
these do not cancel out. However, recall from (3.3) that the conjugate and
standard representation of SU(2) are equivalent: BgB−1 = ḡ. With this we
can construct the following invariant multilinear form:

b : VL × Vφ × VuR → C, b(QL, φ, uR) = (B−1QL)TφdR

where B−1 acts on the SU(2) part. The full term in the Lagrangian density
is then described by:

−
√

2

v
(B−1QL)TφMudR + (c.c.)

where Mu is a complex 3 × 3 matrix that describes the mixing of the
di�erent generations.

This concludes the treatment of the terms in the Standard Model La-
grangian. We were able to write them down with respect to a section s of
the principal bundle which is the form that appears in particle physics. Re-
call that in physcis quantum �elds have to be used. Consequently all complex
conjugations have to be replaced by Hermitian conjugates. Furthermore the
order is important in all terms as operator valued distributions do not have
to commute.
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The full Standard Model

Lagrangian in coordinates
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1

Standard Model Lagrangian (including neutrino mass terms)
From An Introduction to the Standard Model of Particle Physics, 2nd Edition,

W.N. Cottingham and D. A. Greenwood, Cambridge University Press, Cambridge, 2007,
Extracted by J.A. Shifflett, updated from Particle Data Group tables at pdg.lbl.gov, 28 Mar 2013.

L = −1
4
BµνB

µν − 1
8
tr(WµνW

µν) − 1
2
tr(GµνG

µν) (U(1), SU(2) and SU(3) gauge terms)

+(ν̄L, ēL) σ̃µiDµ

(
νL

eL

)
+ ēRσ

µiDµeR + ν̄Rσ
µiDµνR + (h.c.) (lepton dynamical term)

−
√

2

v

[
(ν̄L, ēL)ϕMeeR + ēRM̄

eϕ̄

(
νL

eL

)]
(electron,muon, tauon mass term)

−
√

2

v

[
(−ēL, ν̄L)ϕ∗MννR + ν̄RM̄

νϕT

(
−eL

νL

)]
(neutrino mass term)

+(ūL, d̄L) σ̃µiDµ

(
uL

dL

)
+ ūRσ

µiDµuR + d̄Rσ
µiDµdR + (h.c.) (quark dynamical term)

−
√

2

v

[
(ūL, d̄L)ϕMddR + d̄RM̄

dϕ̄

(
uL

dL

)]
(down, strange, bottom mass term)

−
√

2

v

[
(−d̄L, ūL)ϕ∗MuuR + ūRM̄

uϕT

(
−dL

uL

)]
(up, charmed, top mass term)

+(Dµϕ)Dµϕ−m2
h[ϕ̄ϕ− v2/2]2/2v2. (Higgs dynamical and mass term) (1)

where (h.c.) means Hermitian conjugate of preceeding terms, ψ̄=(h.c.)ψ=ψ† =ψ∗T, and the derivative operators are

Dµ

(
νL

eL

)
=

[
∂µ− ig1

2
Bµ+

ig2
2

Wµ

](
νL

eL

)
, Dµ

(
uL

dL

)
=

[
∂µ+

ig1
6
Bµ+

ig2
2

Wµ+igGµ

](
uL

dL

)
, (2)

DµνR = ∂µνR, DµeR = [∂µ−ig1Bµ] eR, DµuR =

[
∂µ+

i2g1
3
Bµ+igGµ

]
uR, DµdR =

[
∂µ− ig1

3
Bµ+igGµ

]
dR, (3)

Dµϕ =

[
∂µ+

ig1
2
Bµ+

ig2
2

Wµ

]
ϕ. (4)

ϕ is a 2-component complex Higgs field. Since L is SU(2) gauge invariant, a gauge can be chosen so ϕ has the form

ϕT =(0, v + h)/
√

2 , <ϕ>T
0 = (expectation value of ϕ) = (0, v)/

√
2 , (5)

where v is a real constant such that Lϕ =(∂µϕ)∂µϕ−m2
h[ϕ̄ϕ−v2/2]2/2v2 is minimized, and h is a residual Higgs field.

Bµ, Wµ and Gµ are the gauge boson vector potentials, and Wµ and Gµ are composed of 2×2 and 3×3 traceless
Hermitian matrices. Their associated field tensors are

Bµν =∂µBν −∂νBµ, Wµν =∂µWν −∂νWµ+ig2(WµWν −WνWµ)/2, Gµν =∂µGν −∂νGµ+ig(GµGν −GνGµ). (6)

The non-matrix Aµ, Zµ,W
±
µ bosons are mixtures of Wµ and Bµ components, according to the weak mixing angle θw,

Aµ =W11µsinθw+Bµcosθw, Zµ =W11µcosθw−Bµsinθw, W+
µ =W−∗

µ =W12µ/
√

2, (7)

Bµ =Aµcosθw−Zµsinθw, W11µ =−W22µ =Aµsinθw+Zµcosθw, W12µ =W ∗
21µ =

√
2W+

µ , sin2θw = .2315(4). (8)

The fermions include the leptons eR, eL, νR, νL and quarks uR, uL, dR, dL. They all have implicit 3-component gen-
eration indices, ei=(e, µ, τ), νi=(νe, νµ, ντ ), ui=(u, c, t), di=(d, s, b), which contract into the fermion mass matrices
Me

ij,M
ν
ij,M

u
ij,M

d
ij , and implicit 2-component indices which contract into the Pauli matrices,

σµ =

[(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)]
, σ̃µ =[σ0,−σ1,−σ2,−σ3], tr(σi)= 0, σµ† = σµ, tr(σµσν)=2δµν . (9)

The quarks also have implicit 3-component color indices which contract into Gµ. So L really has implicit sums
over 3-component generation indices, 2-component Pauli indices, 3-component color indices in the quark terms, and
2-component SU(2) indices in (ν̄L, ēL), (ūL, d̄L),(−ēL, ν̄L), (−d̄L, ūL), ϕ̄, Wµ, ( νL

eL
), (uL

dL
),(−eL

νL
), (−dL

uL
), ϕ.
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