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1
Introduction

1.1 Introduction I and preliminaries

The subject of decomposing a ring element, specifically a rational integer, into a sum
of elements featuring a particular property is ancient. One of the earliest studies
concerning such decompositions are related to Pythagorean triples. Later on there
arose the question of writing any integer as a sum of two squares - the famous solution
being due to Fermat. Whilst it does not take much mathematical ability to formulate
these problems, the expertise needed to tackle them is tremendous, especially when
the summands are required to have properties related to the notion of primality.

Rather than asking for decompositions of elements into sums of primes or squares
this thesis deals with the topic of additively representing a ring element as sum of
invertible elements of the ring. Clearly, the issue is trivial for rational integers, but
appears to be everything but obvious in other rings.

Plainly because the notion of a ring originated much later than the use of rational
integers in mathematical history, one is not mistaken by suspecting the discipline of
additive unit representations to be young; indeed it goes back to the 1950s, when
Zelinsky [1] proved that every element of an endomorphism ring of a vector space
over a division ring is expressible as sum of two automorphisms. Later, Henriksen
[2] established that no matter the ring, any matrix is 3-good; the terminology k-good
being due to Vámos [3] meaning representable as sum of exactly k units of the matrix
ring. The problem of a ring satisfying that all its elements are additively expressible
as a sum of units of a given length, led to the notion of the unit sum number:
One defines the unit sum number u(S) of a ring S to be

u(S) =


k S is k-good, but not j-good for all j < k with j, k ∈ N
ω S is not k-good for any k ∈ N, but every element is a finite sum of units

∞ there exists an element in S not expressible as a finite sum of units in S

,
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6 CHAPTER 1. INTRODUCTION

where we say the ring S is k-good, if every element of S is k-good.

Investigations about the unit sum number problem for matrix rings quickly led to
the application of matrix normal forms for commutative rings and an interest in certain
types of rings affiliated to these normal forms such as elementary divisor rings and
Hermite rings. Owing to this method, it was proved that the ring of square matrices
over a principal ideal domain possesses unit sum number two, a result stemming from
the Smith normal form for matrix rings over principal ideal domains.

In 1972, Levy [4] was able to obtain an astonishing relation between the unit sum
number of a matrix ring over a Dedekind domain O and its class number hO, exhibiting
the first application of the unit sum number results for matrix rings developed earlier.
For his proof he relied heavily on the work of Steinitz [5] about the structure of finitely
generated modules over Dedekind domains, which is proved by utilising the theory of
projective modules. The matrix-theoretic part is based on the work of Krull [6] about
block matrices.

Still related to matrix rings, but of a very different flavour, is the unit sum number
problem in the case of non-commutative rings. The issue is completely settled in the
case of Artinian rings or, more generally, semilocal rings. The theorem classifying
the behaviour of these rings with respect to their unit sum number is composed
of Zelinsky’s result mentioned above and the renowned Artin-Wedderburn structure
theorem for semisimple rings.

The most natural rings to consider are perhaps the rings of algebraic integers of
number fields, since they constitute the direct generalisation of rational integers. The
case of quadratic number fields was already fully dealt with by Belcher in 1974, later
certain cubic and quartic fields were examined. However, only classes of number
fields featuring a single fundamental unit have been successfully explored thus far.
Though no general method to determine the unit sum number of a ring of algebraic
integers is known, a major break-through was achieved by Jarden and Narkiewicz
[7] in 2005. They proved that a finitely generated integral domain can only have
unit sum number ω or∞. The techniques used are a deep result about the number of
solutions to unit equations by Evertse, Schlickewei and Schmidt [8] based on Schmidt’s
subspace theorem and the classical van der Waerden’s theorem [9] about arithmetic
progressions. Refining the methods by employing Szemerédi’s theorem [10], Jarden
and Narkiewicz demonstrated that the density of

Nn = {x ∈ N|x is k-good in K for some k ≤ n},

where K denotes a number field, is zero in N.
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1.2 Notation and conventions

Rings

As our objective is the study of ring elements being expressible as sums of units,
we require every occurring ring to be associative and unital, i.e. featuring a neutral
multiplicative element. Moreover we require ring homomorphisms S → S′ to map
1S 7→ 1S′ .

As we will encounter commutative and non-commutative rings featuring profoundly
differing theories, we use the symbol R for commutative rings and S whenever the ring
is also allowed to be non-commutative. A ring free of zero-divisors is called a domain,
a commutative domain D will also be referred to as integral domain. In this paper all
occurring principal ideal domains are understood to be commutative. Moreover we
write O or O, whenever we want to indicate that a ring is a Dedekind domain or a
ring of algebraic integers respectively.

Given a ring S, we denote by S∗ its group of units, by Jac(S) we understand the
Jacobson radical of S, i.e. the intersection of all maximal left ideals of S.1

Other than explicitly mentioned we require every ideal to be non-zero. When
working in Dedekind rings we want the notion of ideals also to incorporate fractional
ideals - if we refer to ideals in the ordinary sense, we will speak of integral ideals.
Moreover the ideal class of a non-zero ideal M will be denoted by [M ] = M + PK ,
where PK is the subgroup of principal fractional ideals within the group of all fractional
ideals of some Dedekind domain.

The opposite ring of a ring (S,+, ·) is given by (Sop,+, ◦),
where ∀a, b ∈ Sop : a ◦ b = b · a.

Eventually note that other than in Z the notion of a greatest common divisor
gcd() is only defined up to associated elements, however, this will be negligible in our
calculations.

Matrices

By the size of a matrix we mean the number of its columns and rows m× n; we will
also frequently say a matrix has size n, if it is a square n×n matrix. By Matn(S) we
denote the matrix ring of square matrices of size n over S.

As usual In denotes the identity matrix of size n. We will frequently solely write
I for the identity matrix and 0 for a matrix featuring only zero entries, if the size is
apparent from the context.

1Note that substituting right for left ideals in the definition, does not alter the resulting ideal. See
[11, Theorem 13.8].
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A matrix A with entries from a commutative ring is defined to be singular if
det(A) = 0, else we say A is regular. The notion of a matrix A being unimodu-
lar, being contained in GLn(S) or being a unit in Matn(S) all signify det(A) ∈ S∗,
whence A admits an inverse in Matn(S).

A nilpotent matrix A satisfies the existence of a positive integer k, such that Ak

equals the zero-matrix.

Number fields

A number field is a field K ⊆ C admitting a finite Q-basis. By [K : Q] we denote the
degree of K as a Q-vector space. The ring of algebraic integers affiliated to K will
be denoted by OK . We use TrK() and NK() to symbolise the field trace and norm
respectively. The discriminant of an element x will be symbolised by dK(x), whereas
dK signifies the field discriminant of K.
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1.3 Introduction II

We are interested in the question, whether a ring has the property that each element
is representable as a finite sum of units. Adopting the terminology of Ashraf and
Vámos [3] we call an element x of some ring S k-good, if

∃(ηi)ki=1 ∈ (S∗)k : x =

k∑
i=1

ηi.

We will not use the notion 1-good, as those elements simply correspond to units.
A subset of a ring is called k-good, if all elements within this subset are k-good.
Furthermore we define the unit sum number u(S) to be

u(S) =


k S is k-good, but not j-good for all j < k with j, k ∈ N
ω S is not k-good for any k ∈ N, but every element is a finite sum of units

∞ there exists an element in S not expressible as a finite sum of units in S

.

It is easily shown that the subset Sω := {
∑k

i=1 εi|k ∈ N, εi ∈ S∗} is a subring of S.
In particular u(S) = ∞ ⇔ Sω $ S. Moreover u(S) > 1 for any unital ring S, as
0 ∈ S \ S∗.

Our first objects of examination are fields. The next lemma implicates that for all
fields F , we have F = Fω.

Lemma 1.1. Let F be a field then u(F ) = 2, unless F is isomorphic to the field of
two elements F2. In this case u(F ) = u(F2) = ω.

Proof. If F 6∼= F2, F must contain at least three elements, thus satisfying

∀x ∈ F : ∃y 6= x ∈ F ∗ : x = (x− y) + y and x− y ∈ F ∗.

For F ∼= F2 it is evident that 0 and 1 can not be represented by unit sums of equal
length k ∈ N and thus u(F2) = ω.

Remark 1.2. Note that a ring homomorphism maps units to units: Suppose ε ∈ S∗
and ϕ(ε) = a /∈ S′∗, then 1S′ = ϕ(ε)ϕ(ε−1). Hence ϕ(ε−1) is the inverse of a in S′.

We collect a few general, simple facts about k-good rings, that will be useful later.

Lemma 1.3 ([12, Lemma 1,2]).

(i) A non-trivial ring epimorphism maintains the ring-properties of being k-good or
ω-good.

(ii) Let I be an ideal of a ring S contained in Jac(S). Then x ∈ S is k-good, if
under the canonical epimorphism its image in S

/
I is k-good. The converse also

holds.
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(iii) Let {Si}ri=1 be a finite family of rings, where each Si constitutes a ki-good ring.
Then

∏r
i=1 Si is k-good, where k = max{ki|1 ≤ i ≤ r}.

Proof.

(i) Let ϕ : S → S′ denote a ring epimorphism and b ∈ S′. There exists a ∈ S such
that ϕ(a) = b, which admits a representation a =

∑k
i=1 ηi, where ηi ∈ S∗. Then

ϕ(a) =
∑k

i=1 ϕ(ηi), which is a sum of k units in S′.

(ii) Let ϕ : S → S
/
I denote the canonical epimorphism. For some x ∈ S let x := ϕ(x)

be k-good, i.e. x =
∑k

i=1 ei, where ei ∈ S
/
I
∗
. Since there exist di ∈ S

/
I
∗
, such

that eidi + I = 1 + I, this entails 1− eidi ∈ I ⊆ Jac(S). Hence

1 + (−1)(1− eidi) ∈ S∗,

which shows that the ei’s are in fact units in S.
As y := x−

∑k
i=1 ei ∈ Jac(S), we see that 1+e−1

1 y ∈ S∗ and whence e1 +y ∈ S∗.
This implies that

x = (e1 + y) +

k∑
i=2

ei

is k-good in S.

(iii) Set k = max{ki|1 ≤ i ≤ r}. Take an arbitrary r-tuple (x1, . . . , xr) ∈
∏r
i=1 Si.

Then x′i := xi − (k − ki)1 lies in Si and is therefore ki-good. Thus xi = x′i +∑k
j=ki+1 1 shows that any element xi in the i-th component of

∏r
i=1 Si is also

k-good. Now as all xi are k-good, we finish with

(x1, . . . , xr) =
( k∑
j=1

ε1j , . . . ,
k∑
j=1

εrj
)

=
k∑
j=1

(ε1j , . . . , εrj)

for suitable εij ∈ S∗i - the last term being a sum of k units in
∏r
i=1 Si.

Example 1.4. By listing all rings of order four2, it can be proved that F2 ⊕ F2 :=
F2 ⊕ F2 with componentwise multiplication is the smallest ring possessing an infinite
unit sum number.

Example 1.5. Since Z∗ = {±1}, it is evident that u(Z) = ω. (cf. 6.15)

2See [13].
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1.3.1 Extension of the length of an additive unit representation

Before attending to specific rings, we discuss the possibilities of extending the length
by which an element is expressible as sums of units.

Raphael [14] calls a ring even, if its neutral multiplicative element 1 can be written
as sum of an even number of units - otherwise odd. The definition is equivalent to
demanding the zero element to be representable as sum of an odd number of units.
Note that the smallest odd ring is the field of two elements. We also introduce a
slightly finer distinction namely k-even to indicate the length k needed to express 1.
It is useful to note that for a ring S we have for even k: S∗ is k-good⇔ S is k-even.

Lemma 1.6 (cf. [14]).

(i) The ring-property (k-)even is invariant under non-trivial ring homomorphisms;
particularly for rings S1, . . . , Sn we have

∏n
i=1 Si is even, iff every Si is even.

(ii) Let the ring S1 be k-even. Let S2 be odd or satisfy that 1S2 is j-good for some
j > k, but not `-good for some ` ≤ k. Then Hom(S1, S2) = {0}.

(iii) Let Si be rings satisfying u(Si) = ω, at most one of them not even. Then
u(
∏k
i=1 Si) = ω.

Proof.

(i) Trivial.

(ii) Immediate from (i).

(iii) W.l.o.g. let S1 be odd. We prove the assertion for k = 2, as the argument
is easily extendable to the general case by induction. Both zero elements 0S1

and 0S2 are representable as sums of two units, since 0 = 1− 1. As S2 is even,
there exists an odd number κ, such that the zero element of S2 may be written
as sum of κ units. Now taking an arbitrary (a, b) ∈ S1 × S2 we know that
a =

∑k1
i=1 εi, b =

∑k2
i=1 ηi for some εi ∈ S∗1 , ηi ∈ S∗2 and k1, k2 ∈ N>1. Consider

the two progressions

P1(s) = 2s+ k1 and P2(s, t) = 2s+ κt+ k2.

As P1∩P2 is not empty, we find K being the minimal positive integer in P1∩P2.
The proof is complete by writing

(a, b) =
( k1∑
i=1

εi,

k2∑
i=1

ηi

)
=

K∑
i=1

(εi, ηi)
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for certain units {εi}Ki=k1+1 ⊆ S1, {ηi}Ki=k2+1 ⊆ S2, that fulfil

K∑
i=k1+1

εi = 0S1 and
K∑

i=k2+1

ηi = 0S2 .

Example 1.7. Let D 6= F2 be an integral domain satisfying that 1D is not 2-good and
let K be its field of fractions. Then (ii) of the previous lemma assures Hom(K,D) =
{0}, since K clearly is 2-even (cf. Lemma 1.1).

Remark 1.8.

(i) As seen the beneficial property of an even ring S is, that sums of units may be
”filled up” to increase their length; more precisely an element a =

∑k
i=1 εi ∈ S,

εi ∈ S∗, is n-good for any n ≥ k.

(ii) If the ring is not assumed to be even, there is in general no need for a k-good
element to be j-good for some specific j 6= k: As an example take 1 ∈ F2.
Clearly 1 is 3-good, but neither 2-good or 4-good.

The behaviour of whole rings compared to single elements differs, when it comes to
extensions of the sum length.

Lemma 1.9. Let S be a k-good ring, then S is also n-good for all n ≥ k. In particular
S is either k-even or (k + 1)-even.

Proof. Take an arbitrary x ∈ S. There exist units ε1, . . . , εk in S, such that x =∑k
i=1 εi. Now h :=

∑k−1
i=1 εi is contained in S as well and is therefore k-good. Thus

we see that x = h+ εk is (k + 1)-good. Induction verifies the statement for all n ≥ k.

The second part follows easily: If k is even, then we can write 1 as sum of k units,
thus S is k-even. If k is odd, 1 is also (k + 1)-good, due to the first part. Hence S is
(k + 1)-even.

The property even in the context of rings of algebraic integers will be discussed in
Chapter 6.



2
The unit sum number of matrix rings

Henriksen [2] in 1972 exhibited that a matrix ring Matn(S) over an arbitrary ring S
fulfils u

(
Matn(S)

)
∈ {2, 3}. This result led to new interest in the unit sum number

problem for matrix rings and paved the way for further developments and techniques,
such as the use of specific types of rings and the application of matrix normal forms.

Many of the upcoming proofs demand the usage of block (diagonal) matrices:

Definition 2.1 ([15, Definition 1.1]). Let A1 be an m1 × n1 matrix and A2 be an
m2 × n2 matrix. By the block diagonal sum diag(A1, A2) we mean the so called block
diagonal matrix (

A1 0
0 A2

)
of size (m1 +m2)× (n1 + n2).

It is useful to extend this definition to ”zero-size” matrices, to avoid the consideration
of many special cases later on: For any m× n matrix (aij) we set

diag
(
(aij),0(0×p)

)
=

a11 · · · a1n 0 · · · 0
...

. . .
...

...
. . .

...
am1 · · · amn 0 · · · 0

 ,

symbolising (aij) with p columns appended. By diag
(
(aij),0(p×0)

)
we refer to the

same construct appending p rows instead of columns.

It is convenient to list some basic computational rules.

Remark 2.2.

(i) Let A,B be matrices split up into blocks Aij , Bij :

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
.

13



14 CHAPTER 2. THE UNIT SUM NUMBER OF MATRIX RINGS

Suppose all the blocks are compatible in shape to perform the standard row-
by-column matrix multiplication, then one verifies C = AB, where Cik =∑2

j=1AijBjk. We calculate the first block C11 of the new matrix to clarify,
what is meant by compatible in shape: As C11 = A11B11 + A12B21, we must
have the following sizes of the blocks.

Block Size

A11 i× j
B11 j × k
A12 i× `
B21 `× k

Evidently this rule of calculation is extendable to matrices decomposed into
more than four blocks.

(ii) Let A = diag(A1, . . . , Ar) be a block diagonal sum of square matrices Ai over a
commutative ring, then one calculates with ease det(A) =

∏r
i=1 det(Ai).

(iii) Note that we are using diag() in two ways. On the one hand we want it to
symbolise the block diagonal sum diag(A1, A2). On the other hand, if we are
using a single argument diag(A), we refer to the tuple of entries in the diagonal
of A.

We remark that (i) signifies that as long as the blocks of the matrices (Aij) and (Bij)
are compatible the multiplication equals the standard matrix multiplication with the
elements being matrices themselves.

Definition 2.3. We define two matrices A,B to be equivalent, denoting A ∼ B, if
there exist invertible matrices P,Q such that A = PBQ. Square matrices A and B
are called similar, if A = PBP−1 for some invertible matrix P .

Definition 2.4. As usual by elementary matrix operations on a matrix A over a ring
S we mean either

� a switching of rows (columns). For example(
0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)

switches the first and last row of

(
a b
c d

)
. Evidently the used elementary matrix

is invertible, as it is self-inverse.

� a multiplication of one row (column) by a unit element. For instance(
ε 0
0 1

)(
a b
c d

)
=

(
εa εb
c d

)
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multiplies the first row of

(
a b
c d

)
by a unit ε of S. The elementary matrix is

invertible, as

(
ε−1 0
0 1

)
is its inverse.

� addition of a multiple of a row (column) to another. For example(
1 r
0 1

)(
a b
c d

)
=

(
a+ rc b+ rd
c d

)
adds an r-multiple, r ∈ S, of the last row to the first. The inverse of this

elementary matrix is given by

(
1 −r
0 1

)
.

These operations correspond to left (right) multiplication with unimodular matrices.
In particular applying them to A produces a matrix A′, which lies in the same equiv-
alence class [A]∼ as A does.

2.1 Every matrix is 3-good

Let S denote an arbitrary, unital, not necessarily commutative ring.

Proposition 2.5 ([2, Lemma 1,2]).

(i) Diagonal matrices and nilpotent matrices of size n > 1 over S are 2-good.

(ii) Every A ∈ Matn(S) is the sum of a diagonal matrix and an invertible matrix.

Proof.

(i) Let D = diag(a1, . . . , an), then D = U1 + U2, where

U1 =



a1 0 0 . . . 0 1
1 a2 0 . . . 0 0
0 1 a3 . . . 0 0
...

...
. . .

. . .
...

...
0 0 . . . 1 an−1 0
0 0 0 . . . 1 0


, U2 =



0 0 0 . . . 0 −1
−1 0 0 . . . 0 0
0 −1 0 . . . 0 0
...

...
. . .

. . .
...

...
0 0 . . . −1 0 0
0 0 0 . . . −1 an


.

We show by elementary matrix operations, that U1 is equivalent to the identity
matrix I; First clear out the entry a1 in position (1, 1) by adding a suitable
multiple of the last column. Now successively clear out entries a2, a3, . . . by
adding a suitable multiple of the first, second, etc. column. The matrix, we
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obtain, is of the form 
0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . . 0 0

0 0 . . . 1 0

 .

Clearly multiplication with an appropriate permutation matrix shows that U1 ∼
I and hence U1 is invertible. The procedure to show that U2 ∼ I is of similar
simplicity, yielding that U2 is invertible.

For a nilpotent matrix N it suffices to note that (I − N)−1 =
∑

i≥0N
i, where

only finitely many summands do not vanish, is the inverse of I −N and hence
invertible. Thus N = (I −N) + I yields a decomposition into two units.

(ii) For the second part note that the assertion holds trivially for n = 1 as a =
(a − 1) + 1 for any a ∈ S. Assume the hypothesis holds for matrices of fixed

size n. Any A′ ∈ Matn+1(S) is of the form A′ =

(
A b
c δ

)
with A ∈ Matn(S),

δ ∈ S and b, c vectors of length n over S. Now A = D+U , D being a diagonal
matrix, U an invertible matrix. Define

D′ =

(
D 0
0 δ − 1− cU−1b

)
and U ′ =

(
U b
c 1 + cU−1b

)
so that A′ = D′ + U ′. Let I ∈ Matn(S) be the identity matrix. We need to
prove that U ′ is invertible; define

P =

(
I 0

−cU−1 1

)
and Q =

(
U−1 −U−1b
0 1

)
now PU ′Q equals the identity matrix of Matn+1(S) due to Remark 2.2(i). The
proof is complete by showing that P,Q ∈ GLn+1(S):
For P use the last column to clear out all entries −cU−1, which entails P ∼ I.

For Q use the last row to clear the entries −U−1b to get

(
U−1 0

0 1

)
, its inverse

being

(
U 0
0 1

)
.

The proposition allows us to draw an immediate conclusion:

Corollary 2.6 ([2, Theorem 3]). Let n > 1, then the matrix ring Matn(S) over any
ring S is 3-good.
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For this reason the unit sum number of any matrix ring of size greater one can only
take the values two or three. Observe also that the statement of the corollary does
not imply u

(
Matn(S)

)
= 3, because Matn(S) being 3-good does not hinder it to be

2-good as well. Our next task is to find classes of rings, which induce 2-good matrix
rings.

2.2 Types of rings associated with matrix rings

We introduce some classes of rings useful in dealing with the unit sum number problem
of matrix rings. For the sake of simplicity, we restrict ourselves to the case of unital,
commutative rings R.

Definition 2.7. As we are not necessarily dealing with quadratic matrices, we define
a matrix (aij) of any size to be lower triangular, if aij = 0, whenever i < j. The
definition of upper triangular runs similarly. (aij) is diagonal, if aij = 0, whenever
i 6= j.

� A Bézout ring R is a ring satisfying, that the sum of two principal ideals is again
principal.

� R is called Hermite ring, if every matrix of size greater one over R is equivalent
to a lower triangular matrix.

� Kaplansky [16] calls a ring elementary divisor ring, if every m× n matrix A of
size greater one admits a diagonal reduction: there exists an integer r and a
matrix D = diag(d1, . . . , dr,0(m−r)×(n−r)) with di|di+1, 1 ≤ i ≤ r− 1, such that
A ∼ D.

Remark 2.8. There are numerous results and conditions under which one of the
above type of ring equals another, we can merely present a selection of them here; for
a thorough synopsis the reader shall be pointed to the work of Lam [17, §4].

For an example of a Bézout ring that is not an elementary divisor ring see [18, § 3
and § 4].

We state the two main facts about the dependencies among the classes of rings just
introduced.

Theorem 2.9 ([17, cf. Theorem 4.25]). For a commutative ring R we have the
following chain of implications.

R is a principal ideal domain ⇒ R is an elementary divisor domain ⇒
R is a Hermite domain ⇒ R is a Bézout domain.
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Proof. To prove the first implication we will employ the Smith normal form, Theorem
2.22, which will be treated in the next section.

For the second suppose R is an elementary divisor ring, then R being a Hermite ring is
immediate from the definition, since every diagonal matrix is also a triangular matrix.

To prove that a Hermite ring is a Bézout ring take (b1, b2) ∈ R2. As R is Hermite

∃Q ∈ GL2(R) and ∃d ∈ R such that Q(b1, b2)ᵀ = (0, d)ᵀ.

This shows that d is a linear combination of b1, b2 and hence dR ⊆ b1R + b2R. To
obtain the other inclusion, let (x1, x2)ᵀ be the second column of Q−1, now

(b1, b2)ᵀ = Q−1(0, d)ᵀ = d(x1, x2)ᵀ thus b1R+ b2R ⊆ dR.

Remark 2.10. It is easy to show that a commutative Noetherian Bézout domain
D is in fact a principal ideal domain: Since D is Noetherian every ideal a is finitely
generated; a = (a1, . . . , an) ⊆ D. A repeated application of the defining property,
that the sum of two principal ideals is again principal, implicates the principality of
a. Explicitly (a1, . . . , an) =

∑n
i=1 aiR = aR = (a), for a suitable a ∈ D.

Next we state a result, which provides a sufficient and necessary condition for
a Noetherian integral domain to be a principal ideal domain by means of matrix
decompositions.

Proposition 2.11 ([19, Proposition 3.1 and 3.2]). A Noetherian integral domain D
is a principal ideal domain, iff for all A ∈ Mat2(D) there is an invertible matrix U
and a symmetric matrix S with A = SU .

Proof.

”⇐” Let a, b ∈ D be arbitrary and set A =

(
a 0
b 0

)
. There exists U = (uij)1≤i,j≤2 ∈

GL2(D), such that AU is symmetric. Now(
a 0
b 0

)(
u11 u12

u21 u22

)
=

(
au11 au12

bu11 bu12

)
yields the condition au12 = bu11. Denote ε := det(U) = u11u22 − u12u21 ∈ D∗, then

aε = au11u22 − au12u21 = u11(au22 − bu21),

bε = bu11u22 − bu12u21 = u12(au22 − bu21).

This leads to (au22 − bu21) ⊆ (a, b) ⊆ (au22 − bu21), implying that (a, b) is principal
and we have shown that D is a Bézout domain. Finally Remark 2.10 yields the claim.
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”⇒” For A ∈ Mat2(D) we obtain in view of Theorem 2.9 matrices P,Q ∈ GL2(D),
such that PAQ = D is diagonal. Setting

E =

(
det(P ) 0

0 det(Q)−1

)
one sees that PAQE = DE is still diagonal. Whence

AQE(P−1)ᵀ = P−1(PAQE)(P−1)ᵀ = P−1DE(P−1)ᵀ

is symmetric and by construction det(QE(P−1)ᵀ) = 1, thus invertible.

Remark 2.12. From Proposition 2.5 we conclude, that every matrix over an elemen-
tary divisor ring is the sum of two units. A fortiori by Theorem 2.9 also matrix rings
over principal ideal domains, in particular euclidean domains, have unit sum number
two. Thus apart from attempting to prove the 2-good property directly, we may also
prove that certain rings are elementary divisor rings.

2.3 Matrix normal forms

In the former section we used matrix equivalence to define Hermite rings and ele-
mentary divisor domains. The purpose of normal forms - which exist for both types
of rings - is to uniquely link a matrix to a specific triangular or diagonal matrix by
equivalence. The reader interested in an extensive treatment of integral matrices, i.e.
matrices with coefficients in a principal ideal domain, may find the book of Newman
[20] valuable.

Proposition 2.13 ([16, Theorem 3.5]). A matrix A over a Hermite ring admits a so
called Hermite normal form, which warrants the existence of a unimodular matrix U ,
such that AU is lower triangular.

Proof. At first let A be a 1 × n matrix. For n = 2 the definition of Hermite ring
grants the existence of invertible P,Q such that PAQ = (d 0). If we require Q to be
a 2× 2 matrix, P needs to be a scalar, which may thus be omitted. Now suppose the
assertion holds for 1 × (n − 1) matrices. Let A be a 1 × n matrix over R, we find a
1× (n− 1) matrix B such that A = (a B). Due to the induction hypothesis there is

V ∈ GLn−1(R) satisfying BV = (b 0 . . . 0).

Furthermore there exists W ∈ GL2(R) with (a b)W = (d 0). Putting

U =

(
1 0
0 V

)(
W 0
0 In−2

)
,

we see AU = (d 0 . . . 0) by Remark 2.2(1) .
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To treat the general case let A be an m×n matrix. We find an invertible matrix V,

which reduces the first row: AV =

(
a 0
b C

)
. By induction on m the (m−1)× (n−1)

matrix C gives rise to W ∈ GLn−1(R) with CW lower triangular. Therefore

AV

(
1 0
0 W

)
=

(
a 0
b C

)(
1 0
0 W

)
=

(
a 0
b CW

)
,

which is lower triangular.

Remark 2.14.

� Note that the statement may be rephrased as: A is equivalent to a lower trian-
gular matrix, the left transformation matrix being the identity matrix.

� Concerning the uniqueness of the Hermite normal form, we refer the reader to
[20, Theorem II.3]; the Hermite normal form of a matrix A is unique up to
multiplication by units as long as A is invertible.

We utilise the technique of the proof to obtain more examples of Hermite rings.

Lemma 2.15 ([21, Theorem 3]). Let R be a commutative ring, then R is a Hermite
ring, iff

∀a, b ∈ S : ∃a1, b1, d ∈ R such that a = a1d, b = b1d and (a1, b1) = R. (2.1)

Proof.
”⇐” Let R satisfy condition (2.1). Owing to the proof of Proposition 2.13, it suffices
to demonstrate that every 1×2 matrix

(
a b

)
permits a diagonal reduction. Therefore

choose a1, b1, d, s, t satisfying

a = a1d, b = b1d and sa1 + tb1 = 1.

Put Q =

(
s −b1
t a1

)
, then Q is unimodular and

(
a b

)
Q =

(
d 0

)
.

”⇒” To prove the other direction, let R be a commutative Hermite ring. Let a, b ∈ R
be arbitrary. The definition of Hermite guarantees the existence of an invertible matrix

Q =

(
s −b1
t a1

)
, such that

(
a b

)
Q =

(
d 0

)
for some d ∈ R.

This yields ab1 = ba1, sa + tb = d. Q being unimodular, we deduce sa1 + tb1 = 1.
Now

sa1a+ tb1a = a implies sa1a+ ta1b = a ,

hence a1d = a. Analogously b1d = b, which shows that condition (2.1) is fulfilled.
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As the notion will be useful in the sequel we briefly attend to the notion of a
GCD-domain.

Definition 2.16. An integral domain D is called a GCD-domain, if

∀a, b ∈ D : ∃d ∈ D : d|a ∧ d|b, such that ∀d′ ∈ D : d′|a ∧ d′|b⇒ d′|d.

The element d being uniquely determined up to multiplication by units is then called
the greatest common divisor of a and b, denoted gcd(a, b).

Remark 2.17.

(i) It is not difficult to check that a Bézout integral domain D is a GCD-domain.
In fact take arbitrary a, b ∈ D. There exists d ∈ D such that (a) + (b) = (d),
which implies the existence of r, s ∈ D such that ar+bs = d. On the other hand
(a), (b) ⊆ (d) and hence (d)|(a), (d)|(b), which leads to d|a and d|b. If for any
d′ ∈ D, we have d′|a and d′|b, then there are u, v ∈ D, such that d′u = a and
d′v = b. Substituting we arrive at d′(ur + vs) = d, showing that d′|d and hence
d = gcd(a, b).

(ii) Due to Theorem 2.9 and the latter remark, all principal ideal domains, com-
mutative elementary divisor domains and Hermite integral domains are GCD-
domains.

Proposition 2.18 (cf. [17, Corollary 4.28]). A commutative Bézout domain D is
Hermite.

Proof. We may obtain for all a, b ∈ D elements a′, b′ ∈ D such that

aa′ + bb′ = gcd(a, b) =: d.

There exist a1, b1 satisfying a1d = a and b1d = b, which leads to a′a1 + b′b1 = 1.
Invoking the previous Lemma 2.15 evidences the claim.

Remark 2.19. The question, whether a commutative Bézout domain, i.e. a Hermite
domain, already constitutes an elementary divisor domain has not been answered yet,
though several conditions are known.[22][23][19]

After discussing the Hermite normal form, we finally proceed to the Smith Normal
Form, which we need to settle Theorem 2.9.

We need the following auxiliary

Lemma 2.20 ([20, Corollary II.1] or [24, §21]). Let D denote a Bézout integral
domain. Choose arbitrary b1, . . . , bn ∈ D. There exists a matrix Q with first row
(b1, . . . , bn) and det(Q) = gcd(b1, . . . , bn).
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Proof. The claim is trivial for n = 1. Considering the case n = 2, for b1, b2 ∈ D

we find r, t ∈ D such that gcd(b1, b2) = b1r + b2t. Thus the matrix

(
b1 b2
−t r

)
has

determinant gcd(b1, b2).
Suppose the statement holds for some n − 1. Set dn−1 := gcd(b1, . . . , bn−1), and
dn = gcd(b1, . . . , bn) = gcd(dn−1, bn). We find ρ, σ ∈ D with ρdn−1 − σbn = dn. Let
Dn−1 be a matrix obtained by virtue of the induction hypothesis and set

Dn =


bn

Dn−1 0
...
0

b1σ
dn−1

b2σ
dn−1

· · · bn−1σ
dn−1

ρ

 .

Now Dn has (b1, . . . , bn) as top row. Using Laplace expansion on the last column,
we have

det(Dn) = ρdet(Dn−1) + (−1)n+1bn det(En−1),

where En−1 is the submatrix, that arises from omitting the first row and last column
in Dn. One has

dn−1En−1 =


0 dn−1 0 · · · 0

0 dn−1
...

...
. . . 0

0 dn−1

σ 0 0 · · · 0

Dn−1.

As det(Dn−1) = dn−1 by the induction hypothesis, we compute

dn−1
n−1 det(En−1) = (−1)(n−1)+1σdn−2

n−1 det(Dn−1) = (−1)nσdn−1
n−1,

accordingly det(En−1) = (−1)nσ and det(Dn) = ρdn−1 − σbn = dn ∈ D∗. This
evidences that Dn is unimodular.

Observe that it is just a matter of notation to obtain the result for columns instead
of rows.

Definition 2.21. Let R be a commutative ring, A an m × n matrix over R. A
submatrix of A is any square matrix of A, that results from deleting columns or
rows of A. We define the rank of A to be the size of the largest submatrix with
non-vanishing determinant.
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Finally we have constructed the theoretical framework to prove

Theorem 2.22 ([24, Theorem 26.2]). A matrix over a principal ideal domain D
admits a Smith Normal Form, i.e. a diagonal reduction.1

Proof. Let (aij) be an m × n matrix of rank r. We may assume that (aij) possesses
non-zero elements. As D is in particular a unique factorisation domain, the function
Ω mapping an element to its total number (counting multiplicity) of prime factors is
well-defined. We provide a step-by-step instruction on how to reduce a matrix to its
Smith Normal Form:

(i) Use elementary operations on (aij) to shift an r × r submatrix with non-zero
determinant to the left upper corner.

(ii) If 0 6= a11|a1j for 1 ≤ j ≤ n, set (bij) = (aij) go to step (iv).

(iii) Since D is in particular a commutative Bézout domain, we find kj ∈ D, j ∈
{1, . . . , n}, such that

∑n
j=1 kja1j = gcd(a11, . . . , a1n) =: d. Invoking the former

Lemma 2.20 yields an n× n matrix Q with first column (k1, . . . , kn) and deter-
minant gcd(k1, . . . , kn) = 1.2 Then (bij) := (aij)Q satisfies 0 6= d = b11|b1j for
1 ≤ j ≤ n, as the b1j ’s are linear combinations of the a1j ’s. Furthermore we
have Ω(b11) < Ω(a11).3

(iv) If 0 6= b11|bi1 for 1 ≤ i ≤ m, skip this step, else:
Repeat the previous step with columns and rows interchanged.

(v) Iterate steps (ii) to (iv) until b11 divides all other elements within its column
and row. The procedure terminates as the number of prime factors of b11 are
reduced in every step.

(vi) Apply elementary operations to produce zeros in the column below and the row
beneath b11.

(vii) Use the above steps on the remaining (m − 1) × (n − 1) matrix, leaving the
first row and column unchanged. Inductively we arrive at a matrix A ∼ (aij) of
the form A = diag(d1, . . . , dr,M) for a matrix M of appropriate size. We find
M = 0, since otherwise a non-zero element in M could be permuted to position
(r + 1, r + 1), which would yield a submatrix of size r + 1 with non-vanishing
determinant - contrary to the assumption imposed on the rank.

1The elementary divisors are uniquely determined up to associated elements.
2Let

∑n
j=1 kja1j = d, then there exist rj ∈ D, such that drj = aj . Hence

∑n
j=1 kjdrj = d entailing∑n

j=1 kjrj = 1 and hence gcd(k1, . . . , kn) = 1.
3Evidently Ω(b11) > Ω(a11) is impossible in view of b11 = gcd(a11, . . . , a1n). Suppose thus Ω(b11) =

Ω(a11), then 0 6= b11 = a11 and a11|a1j for 1 ≤ j ≤ n - this would have caused the algorithm to
skip from step (ii) to step (iv).
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(viii) By adding columns one derives

diag(d1, . . . , dr) ∼


d1 0 · · · 0
d2 d2 · · · 0
...

...
. . . 0

dr 0 · · · dr

 .

Owing to Lemma 2.20 we find (cij) ∼ diag(d1, . . . , dr) with c11 = gcd(d1, . . . , dr).

(ix) Repeat the last step for the remaining (r− 1)× (r− 1)-matrix, leaving the first
row and column unchanged, until di|di+1 for 1 ≤ i ≤ r − 1.

Remark 2.23.

(i) Generalisations include (almost) simultaneous transformation of a set of matri-
ces to their Smith Normal Form [25] and relaxation of principal ideal domain
to special Prüfer domains [26]; A ring constitutes a Prüfer domain if there are
no zero-divisors and every ideal is invertible, thus essentially being a Dedekind
domain with the Noetherian condition dropped - or as discussed in Chapter 4 a
semihereditary integral domain.

(ii) For a constructive algorithm computing the Smith Normal Form, where D is a
ring of algebraic integers, see Cohen [27, Algorithm 4.4]. For a discussion of the
non-commutative case see [28].

(iii) The theorem shows that two m×n matrices over a commutative principal ideal
domain are equivalent, if and only if they can be reduced to the same Smith
Normal Form. If we replace the notion of ring by field, the Smith Normal Form
may be multiplied by elementary matrices to derive the form

diag(1, . . . , 1︸ ︷︷ ︸
r-times

,0(m−r)×(n−r)).

The number r of non-vanishing entries, which corresponds to the rank of the
matrix A, is invariant for every equivalence class [A]∼.

2.4 Application of normal forms in module theory

Though not our primary topic we are too close to proving the invariant factor decom-
position for finitely generated modules over principal ideal domains to refrain from
doing so. We chose to skip the canonical procedure of introducing presentations, rela-
tions and generators of finitely generated modules, but instead abbreviate by using



2.4 Application of normal forms in module theory 25

Lemma 2.24 ([29, §20 Lemma 1.1]). Let F be a free module of finite rank n over
some principal ideal domain D. Then every submodule U ⊆ F is free, its rank not
exceeding n.

Proof. Without loss of generality F ∼= Dn. We may use induction on n ≥ 0, the case
n = 0 holds true trivially. Identifying U with its image in Dn consider the module
epimorphism π being the canonical projection of U onto its first component. If π ≡ 0,
then U = ker(π) ⊆ Dn−1 and we are done invoking induction. If π 6≡ 0, π(U) is an
non-zero ideal in D, using that D is a principal ideal domain we have π(U) = aD
for a suitable a ∈ D \ {0}. We find k ∈ U with π(k) = a. For any x ∈ U we may
write π(x) = ba, b ∈ D. Now x = bk + (x − bk), the last summand being contained
in ker(π), we see U = kD + ker(π). A brief calculation evidences kD ∩ ker(π) = {0},
implying that U = kD ⊕ ker(π). By induction hypothesis the claim holds for n − 1.
As ker(π) ⊆ {(0, x2, . . . , xn)|xi ∈ D} injects into Dn−1, ker(π) is free of rank at most
n− 1, say m. We obtain

U = ker(π)⊕ kD ∼= Dm ⊕D ∼= Dm+1.

We are now able to state and prove the invariant factor decomposition, which we
will generalise to Dedekind domains in Chapter 4.

Theorem 2.25 ([29, §21 Theorem 1.1]). Let M be a finitely generated module over a
principal ideal domain D, then

M ∼= Ds ⊕
r⊕
i=1

D/
diD

with non-zero di in D \ D∗ fulfilling di|di+1 for 1 ≤ i ≤ r − 1.

Proof. It is well-known that M ∼= D
n/
U for a submodule U of the free module Dn with

suitable n ∈ N. Using the previous Lemma 2.24, we find a basis a1, . . . ,am of U with
m ≤ n. Denote by A the m× n matrix obtained by taking the ai’s as rows.
The Smith Normal Form guarantees the existence of P ∈ GLm(D), Q ∈ GLn(D) and
k ∈ N, such that

PAQ = diag(d1, . . . , dk,0(m−k)×(n−k)), where di | di+1 for 1 ≤ i ≤ k − 1.

Since U = ADn = A.e1 ⊕ · · · ⊕A.en we calculate

M ∼= D
n/
U = Dn

/
ADn ∼= PDn/

PAQDn ,

the last isomorphy being valid as a multiplication by invertible matrices P,Q merely
constitutes a change of bases. Let r be the number of those di’s, which are not units.
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Then

M ∼= D
n/

diag(d1, . . . , dk,0(m−k)×(n−k))Dn
∼= Dn−k ⊕

r⊕
i=1

D/
diD ,

where the di’s, that are units, do not contribute to the last term, as in this case
Dn/

diDn
∼= 0. The rank of the free part Dn−k stems from the number of zero columns.

Remark 2.26. By setting D = Z the fundamental theorem for finitely generated
abelian groups follows as an immediate corollary.

2.5 Inheritance

A facile yet rewarding approach to the unit sum number problem for matrices is
inheritance with respect to the matrix size; concretely let R be a unital, commutative
ring and suppose u

(
Matn(R)

)
= 2, can the same be deduced for matrix rings of higher

or lower size?
The next results are of utter usefulness to the complete determination of u

(
Matn(R)

)
for all sizes n > 1.

Proposition 2.27 ([2, Theorem 12]). Assume that the set R \R∗ is 2-good, then
u
(

Matn(R)
)

= 2, ∀n > 1.

Proof. Fix n > 1 and take A ∈ Matn(R). Suppose every element on the diagonal of A
is 2-good, then A admits a decomposition into an upper triangular and a lower trian-
gular matrix respectively - both invertible as the diagonal entries are units. Therefore
assume that the number of units on the diagonal is ≥ 1, say r. By elementary row
and column operations we swap a unit to position (1, 1), multiplying appropriately
we can clear out the column below and the row beneath the unit, so that

A ∼

1 0 . . . 0
0

B
...
0

 .

Iterating the process A becomes equivalent to a matrix of the form A′ =

(
Ir 0
0 B

)
,

where B ∈ Matn−r(R) has only 2-good elements for its diagonal entries. If r = n
or n = 2 then Proposition 2.5 yields that A is 2-good. Let n > 2 and r = 1, a
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decomposition of A′ is given by

U =


1 1 0 . . . 0
1 0 b1,2 . . . b1,n
0 0 u2 . . . .
...

...
...

. . .
...

0 0 . . . . un−1

 and V =


0 −1 0 . . . 0
−1 b1,1 0 . . . 0
0 b2,1 v2 . . . .
...

...
...

. . .
...

0 bn−1,1 . . . . vn−1

 ,

where we decomposed the diagonal elements bii = ui + vi, with ui, vi ∈ R∗. Laplace
expansion along the first columns of U and V evidences U, V ∈ GLn(R). Whence we
are left with r ≥ 2. Now Ir = P1 +Q1 due to Proposition 2.5 and B = P2 +Q2 as the
diagonal entries of B are 2-good with Pi, Qi invertible, as discussed at the beginning
of the proof. Finally (

P1 0
0 P2

)
,

(
Q1 0
0 Q2

)
∈ GLn(R),

due to Remark 2.2(ii), which demonstrates that A is 2-good.

Corollary 2.28 ([2, Corollary 14]). If u
(

Matn(R)
)

= 2 for some n ∈ N, then
u
(

Matnk(R)
)

= 2, ∀k ∈ N.

Proof. Apply the prior Proposition 2.27 to Matk
(

Matn(R)
)
.

Proposition 2.29 ([12, Proposition 8]). If m,n > 1, such that

u
(

Matn(R)
)

= u
(

Matm(R)
)

= 2,

then u
(

Matn+m(R)
)

= 2

Proof. Take a matrix M ∈ Matn+m(R) and use a block representation M =

(
A B
C D

)
,

where A ∈ Matn(R), D ∈ Matm(R), the blocks B and C of appropriate size. By
assumption there are A1, A2 ∈ GLn(R) and D1, D2 ∈ GLn(R) such that A = A1 +A2

and D = D1 +D2. Now(
A B
C D

)
=

(
A1 B
0 D1

)
+

(
A2 0
C D2

)
and Laplace expansion shows that the summands are invertible.

Remark 2.30. We conclude the chapter by reviewing the main results regarding the
unit sum number of matrix rings over certain rings.

� In Corollary 2.6 we proved that no matter the ring S, the matrix ring Matn(S) of
size n > 1 is 3-good. Therefore the unit sum number - i.e. the minimal k ∈ N>1

by which every matrix over S may be decomposed into a sum of exactly k
invertible matrices - of a matrix ring is either 2 or 3.
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� A matrix ring over a principal ideal domain has unit sum number 2, as all prin-
cipal ideal domains constitute an elementary divisor domain due to Proposition
2.9.

� Although not apparent from the literature, in view of 2Z + 3Z = Z it is evident
that the results just proved in Corollary 2.28 and Proposition 2.29 lead to:

u
(

Matk(R)
)

= 2 ∀k > 1⇔ u
(

Mat2(R)
)

= u
(

Mat3(R)
)

= 2,

for any commutative ring R.



3
Semilocal rings

A not necessarily commutative ring S is called semilocal, if S
/
Jac(S) is semisimple.1

Recall that an S-module M is semisimple, if it can be written as (direct) sum of
simple modules, i.e. modules featuring solely 0 and M as submodules. The ring S is
then called semisimple, if it is semisimple as an S-module. Note that every Artinian
ring and a fortiori every local ring is semilocal.2 We are able to discuss the unit sum
number problem for semilocal rings exhaustively.

3.0.1 Artin-Wedderburn structure theorem

One of the ingredients needed to settle the unit sum number problem, is the Artin-
Wedderburn structure theorem on semisimple rings, which we will develop in the
sequel. The results and proofs in this section are taken from a lecture course by
Joachim Mahnkopf about representation theory [31].

Proposition 3.1. Let S be a semisimple ring. There are only finitely many isomor-
phism classes of simple S-modules. If {Mα}α∈A denotes a system of representatives
of isomorphism classes of simple S-modules, we have

S ∼=
⊕
α∈A

nαMα :=
⊕
α∈A

nα⊕
i=1

Mα.

Proof. Let M be a simple S-module. First we deduce the existence of minimal left
ideals I1, . . . , Im of S, such that S =

⊕m
i=1 Ii.

As S is semisimple, we have S ∼=
⊕

i∈I Ii, where the Ii ≤ S are simple submodules of
S. We find si ∈ Ii, almost all of them equal to zero, such that 1 =

∑
i∈I si. Suppose

1We do not distinguish between left- and right-semisimple, as one property implies the other.
2cf. [30, (20.3)]

29
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the index set I is infinite, then there is a i0 ∈ I, such that si0 = 0. Choose 0 6= s ∈ Ii0 ,
then

s = s · 1 =
∑
i∈I

ssi =
∑

i∈I\{i0}

ssi.

Thus Ii0 ∩
⊕

i∈I\{i0} Ii 6= {0}, contradicting the directness of
⊕

i∈I Ii and hence I is
finite.

Next we show that, M is isomorphic to one of the Ii. From this we conclude that
{I1, . . . , Im} contains a system of representatives of isomorphism classes of simple S-
modules, finishing the proof.
As M is simple, we find m ∈M , such that < m >= M . Defining as usual Ann(m) =
{s ∈ S : sm = 0}, we find a non-trivial homomorphism

π : S → S
/
Ann(m)

∼=−→M.

Hence

{0} 6= HomS(S,M) = HomS

( m⊕
i=1

Ii,M
)

=
m⊕
i=1

HomS(Ii,M).

We find i0 ∈ {1, . . . ,m} and a non-trivial homomorphism ϕ : Ii0 →M . As Ii0 and M
are simple, ϕ constitutes an isomorphism. As each simple S-module is isomorphic to
one of the ideals I1, . . . , Im, the claim follows.

Next we provide a part of the well-known Schur-Lemma.

Lemma 3.2. The endomorphism ring EndS(M) of a simple S-module M is a division
ring.

Proof. Let 0 6= f ∈ EndS(M). As ker(f) ≤ M and im(f) ≤ M , we can only have
ker(f) = 0 as 0 6= f , showing that f is injective. Analogously im(f) = M , showing
that f is indeed invertible, whence EndS(M) constitutes a division ring.

We collect some rules for calculations with endomorphism rings.

Lemma 3.3. Let S be an arbitrary ring, then

(i) EndS(S) ∼= Sop

(ii) Matn(S)op ∼= Matn(Sop)

Proof.

(i) Consider the following map

θ : Sop → EndS(S) given by s 7→ {θs : m 7→ ms}.



31

Clearly θs ∈ EndS(S), some unproblematic calculations evidence that θ is a
bijective homomorphism of rings.

(ii) Define
µ : Matn(S)op → Matn(Sop) by A 7→ Aᵀ.

It is readily observed that µ fulfils the requirements.

Proposition 3.4 ([32, §8 Lemma 2.7]). Let M be an S-module and E = EndS(M),
then

EndS(nM) ∼= Matn(E) ∀n ∈ N.

Proof. Define Φ : Matn(E) → EndS(nM) via (ϕij) 7→ ϕ, where ϕ : nM → nM is
given by

ϕ(x1, . . . , xn) =
( n∑
j=1

ϕ1j(xj), . . . ,
n∑
j=1

ϕnj(xj)
)
.

By using linearity of the sums within the components, one checks that ϕ is S-linear
and Φ is a homomorphism of rings.

To prove the opposite direction define Ψ : EndS(nM) → Matn(E) via ψ 7→ (ψij),
where the ψij : M →M are given by(

ψ1j(x), . . . , ψnj(x)
)

= ψ(0, . . . , 0, x︸︷︷︸
j-th pos.

, 0, . . . , 0).

Again one checks ψij ∈ EndS(M) with 1 ≤ i, j ≤ n and Ψ is a ring homomorphism.
Finally keeping an account of indices and summation one verifies Ψ = Φ−1.

Clearly, the proposition is a generalisation of the well-known result from linear
algebra, which establishes the isomorphy of linear maps between vector spaces and
matrices over the base field.

Based on Wedderburn’s work [33] in 1907, Artin in 1927 developed the famous
structure theorem for semisimple rings, which serves as a cornerstone in the theory of
non-commutative rings. A comprehensive synopsis may be found in [30].

Theorem 3.5 (Artin-Wedderburn). Let S be a semisimple ring. Then there exist
n1, . . . , nr ∈ N and division rings D1, . . . , Dr such that

S ∼=
r⊕
i=1

Matni(Di).
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Proof. Since S is semisimple we find n1, . . . , nr ∈ N and pairwise non-isomorphic,
simple S-modules Mi ≤ S such that S =

⊕r
i=1 niMi. Setting Di = EndS(Mi),

Lemma 3.2 indicates that Di is a division ring, as Mi is simple. Employing the former
lemmata we compute

Sop ∼= EndS(S)

= EndS

( r⊕
i=1

niMi

)
= HomS

( r⊕
i=1

niMi,
r⊕
i=1

niMi

)
=

⊕
1≤i,j≤r

HomS(niMi, njMj) =
r⊕
i=1

HomS(niMi, niMi)

=
r⊕
i=1

EndS(niMi) ∼=
r⊕
i=1

Matni(Di).

The equality in the third line of the equation holds since for i 6= j the Mi and Mj are
non-isomorphic due to assumption and being simple they warrant HomS(niMi, njMj) =
{0}. Finally

S =

r⊕
i=1

Matni(Di)
op =

r⊕
i=1

Matni(D
op
i ).

As Di is a division ring, so is Dop
i ; this completes the proof.

3.0.2 Main result and Zelinsky’s theorem

The main result of this section is

Theorem 3.6 ([12, Lemma 2]). For a semilocal ring S

(i) u(S) = 2, if there is no factor ring isomorphic to F2.

(ii) u(S) = ω, if there exists exactly one factor isomorphic to F2.

(iii) u(S) =∞, if F2 ⊕ F2 is a factor.

In order to prove the first claim, we use one of the earliest results concerning sums
of units by Zelinsky about matrix rings together with the Artin-Wedderburn structure
theorem on semisimple rings.

For the purpose of proving Theorem 3.6 it suffices to state a simple, finite dimen-
sional version of Zelinsky’s theorem.
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Theorem 3.7 ([1]). Let V be a vector space of dimension n over a division ring D.
Then

u
(

Matn(D)
)

=

{
ω if D = F2 and n = 1

2 else.

Proof. Employing Lemmata 3.3 and 3.4 we have

Matn(D) ∼= Matn(D)op ∼= Matn(Dop)
∼= Matn

(
EndD(D)

) ∼= EndD(nD) ∼= EndD(V ).

Lemma 1.3 (i) assures that EndD(V ) is k-good, if and only if Matn(D) is k-good for
some k ∈ N>1 ∪ {ω}. Hence it suffices to prove the statement for the endomorphism
ring of V over D.

Assume first that D = F2 and n = 1, then also V ∼= F2. Lemma 3.3 yields
EndF2(F2) ∼= F2. Therefore u

(
EndD(V )

)
= u(F2) = ω due to Lemma 1.1, which

evidences the first part of the claim.

For the general case, where D 6= F2 or n 6= 1, take an arbitrary α ∈ EndD(V ).
Choose complements M,N such that V = kerα⊕M and V = imα⊕N . In particular
there exists an isomorphism ϕ : kerα → N . We start by decomposing the identity
map id := id| imα into a sum of two isomorphisms σ and id−σ.

� If the space is one-dimensional σ may be represented as matrix (s), where s is a
single element of D \ {0, 1}. Clearly the exceptional case D = F2 prevents this
choice of (s). (cf. Lemma 1.1)

� If dim(imα) = 2, set id = σ + (id−σ), where σ =

(
1 1
1 0

)
.

� If dim(imα) = 3, set id = σ+(id−σ), where σ =

1 1 1
1 1 0
1 0 0

. By multiplication

with elementary matrices it is easy to show that the matrix corresponding to
(id−σ) can be transformed to the identity matrix and is therefore invertible.

� If dim(imα) > 3 decompose imα into two- and three-dimensional subspaces
and let σ be the direct product of the corresponding two- and three-dimensional
automorphisms.

We acquire σ ∈ AutD(imα) such that (id−σ) ∈ AutD(imα). Consider the follow-
ing mappings

β = ϕ⊕ (σ ◦ α|M ) and γ = −ϕ⊕
(
(id−σ) ◦ α|M

)
in AutD(V ). We obtain β + γ = 0⊕α|M ′ = α and have thus shown that an arbitrary
endomorphism α is 2-good, whence the same applies to EndD(V ).
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Eventually we have gathered enough results to prove the main theorem of the
section.

Proof of Theorem 3.6. Let S be a semilocal ring. Due to Lemma 1.3(ii) proving the
assertions for S

/
Jac(S) suffices. Now S

/
Jac(S) is semisimple. Invoking Theorem 3.5

and adopting its notation, we obtain the representation

S
/
Jac(S)

∼=
r⊕
i=1

Matni(Di).

It is easy to see that

Matni(Di) ∼= F2 if and only if ni = 1 and Di
∼= F2.

3

(i) As F2 is not contained in the representation, Lemma 1.3(iii) together with The-
orem 3.7 yields u

(
S
/
Jac(S)

)
= 2.

(ii) Suppose the representation contains exactly one factor isomorphic to F2, i.e.

S
/
Jac(S)

∼= F2 ⊕
r−1⊕
i=1

Matni(Di).

As every Matni(Di) is 2-good, so is
⊕r−1

i=1 Matni(Di) due to Lemma 1.3(iii).
Consider the projection

ϕ : F2 ⊕
r−1⊕
i=1

Matni(Di)� F2.

If S
/
Jac(S) being the domain of the non-trivial epimorphism ϕ would be k-good

for some k ∈ N, so would F2 - a contradiction to Lemma 1.3(i). On the other
hand clearly every element in S

/
Jac(S) can be expressed as a sum of units, hence

the ring is ω-good.

(iii) The decomposition of S
/
Jac(S) takes the form

(F2 ⊕ F2)⊕
r−2⊕
i=1

Matni(Di) := V ⊕W.

Take an arbitrary x ∈W , then
(
(1, 0), x

)
∈ V ⊕W cannot be expressed as sum

of units in V ⊕W . Thus u
(
S
/
Jac(S)

)
=∞.

3Direction ”⇐” is trivial. For the other direction note that ni cannot be greater one, as in this case
Matni(D) would contain zero-divisors. Clearly Mat1(D) ∼= F2 implies D ∼= F2.
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Connections to the class number

4.1 Formulation of the main result

This chapter is devoted to an astonishing connection between the unit sum number
of matrix rings over Dedekind domains O and the class number hO of O; Vámos and
Wiegand established the following theorem providing more information on the subject
of matrix rings featuring unit sum number 2.

Theorem 4.1 ([15, Thm 4.7]). Let h denote the finite class number of a Dedekind
domain O. Then u

(
Matn(O)

)
= 2 for all n ≥ 2h.

The strength of this result stems from the observation, that the unit sum number
of the matrix rings may implicate a lower bound for the class number: suppose we
would find some n0 ∈ N with u

(
Matn0(O)

)
= 3, then clearly n0

2 < h. Allowedly the
instruments for proving, that a matrix is not representable as a sum of two invertible
matrices are scarce; for a sufficient condition regarding some minor special cases see
[15, Proposition 4.9]. A fully worked example of a matrix ring with unit sum number
3, will be given in Example 4.5 below.

For the rest of the chapter let O denote a Dedekind domain with finite class number
h. Levy [4] calls a matrix A decomposable, if it is equivalent to the block diagonal
sum of two matrices - otherwise indecomposable.

The strategy for proving Theorem 4.1 is to establish the subsequent three results.

Lemma 4.2 ([15, Remark 1.2(2)]). Every matrix is equivalent to a block diagonal
sum of indecomposable matrices.

Proof. Let A be some m×n matrix, if A is indecomposable there is nothing to prove. If
A is decomposable we find A1, A2 of size smaller than A, such that A ∼ diag(A1, A2).
Evidently this process of decomposing terminates as the sizes of the occurring blocks
are reduced in every step.

35
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Secondly we take advantage of a result by Levy introduced in 1972.

Theorem 4.3 ([4, Theorem 2.2]). Let A be an indecomposable m×n matrix over O.
Then both m,n ≤ h.

The theorem was generalised to certain Prüfer domains by Vámos and Wiegand
[15] in 2011 - still we wish to follow the original exposure of Levy, which warrants
more insight into the theory of Dedekind domains, especially the structure of finitely
generated modules over Dedekind domains. Thirdly the afore mentioned authors
found

Proposition 4.4 ([15, Corollary 4.6]). Let B = diag(B1, . . . , Bt) be a block diagonal
sum of size n × n, n ≥ 2. Suppose the number of rows and columns of every Bi is
≤ n/2, then B is the sum of two units.

Putting these results together we arrive at the

Proof of 4.1. Let N 3 n ≥ 2h and A ∈ Matn(O) be arbitrary. Then A is equivalent
to a block diagonal sum, each block size not exceeding h by Theorem 4.3 . Due to the
matrix size the assumptions in the former proposition 4.4 are fulfilled, hence A is the
sum of two units, entailing Matn(O) = 2.

As announced beforehand, we now turn to an example of a Dedekind domain O,
being a ring of algebraic integers, where the unit sum number u

(
Mat2(O)

)
equals

three.

Example 4.5 ([15, Example 4.11] and cf. [12, Proposition 10]). Let O = Z[
√
−5], it

is well-known that the class number of O is 2. Now the previous theorem asserts that

u
(

Matn(O)
)

= 2 for n ≥ 2h = 4.

Whether u
(

Mat3(O)
)

= 2 has not been determined yet, but we are able to derive
u
(

Mat2(O)
)

= 3:
We start by showing that the equation

d = 3r + (2 +
√
−5)t with r, t ∈ O

has no solutions for d ∈ {±1,±2}. Writing r = r1 +
√
−5 r2 and t = t1 +

√
−5 t2 with

ri, ti ∈ Z we find

d = 3(r1 +
√
−5 r2) + (2 +

√
−5)(t1 +

√
−5 t2)

= 3r1 + 2t1 − 5t2 +
√
−5(3r2 + t1 + 2t2),

hence
3r2 + t1 + 2t2 = 0 and 3r1 + 2t1 − 5t2 = d



4.1 Formulation of the main result 37

and we obtain
−(6r2 − 3r1 + 9t2) = d ∈ 3Z,

which yields d /∈ {±1,±2}.
Set d = 3O+(2+

√
−5)O. The calculation just made asserts d 6= O asO∗ = {−1, 1}.

Now suppose d were principal, i.e. we find g ∈ O with 3O+ (2 +
√
−5)O = gO. Then

g | 3 and g | (2 +
√
−5). Clearly g is not associated to 3, as an element associated to

3 does not divide 2 +
√
−5. And as 3 is prime in O , we obtain g ∈ O∗, contradicting

d 6= O.
Let

A =

(
3 0

2 +
√
−5 0

)
and suppose there are (uij) = U, V ∈ GL2(O) admitting A = U + V . Define(

a1 0
a2 0

)
:= U−1A = I + U−1V

and observe that d = a1O + a2O.1 Now

U−1A− I = U−1V =

(
a1 − 1 0
a2 −1

)
is invertible, therefore entailing a1 − 1 ∈ O∗ = {±1}, which leaves a1 ∈ {0, 2}. As
a1 = 2 is ruled out by the calculation above, we must have a1 = 0, implying that d is
a principal ideal - a contradiction showing that A is not 2-good.

4.1.1 The unit sum number of block matrices

Definition 4.6.

(i) A permutation matrix is a square matrix having exactly one neutral element 1
in each row and in each column.

(ii) Let P = (Pij)1≤i,j≤n be a permutation matrix, X = (Xij)1≤i,j≤n a square matrix
of the same size. Define the meeting number to be

m(P,X) := #{(i, j)|Pij 6= 0 ∧Xij 6= 0}.

We say P avoids X, if m(P,X) = 0.

1We see a1 = 3u11 +(2+
√
−5)u12 and a2 = 3u21 +(2+

√
−5)u22, where u11u22−u12u21 = det(U) ∈

O∗. It is evident that a1O + a2O ⊆ d. To see the other inclusion note that (2 +
√
−5)u22, (2 +√

−5)u12 ∈ a1O + a2O, thus also (2 +
√
−5)u11u22 and −(2 +

√
−5)u12u21 lie in a1O + a2O.

This leads to det(U)(2 +
√
−5) ∈ a1O + a2O. Therefore (2 +

√
−5)O ⊆ a1O + a2O. Analogously

3O ⊆ a1O + a2O and hence d ⊆ a1O + a2O.
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The upcoming two lemmata link the block size within a block diagonal sum to the
presentation by two units.

Lemma 4.7 ([15, Lemma 4.3]). Let S be a ring, A ∈ Matn(S) avoiding a permutation
matrix P ∈ Matn(S). Then A is the sum of two invertible matrices over S.

Proof. We will prove the existence of n × n matrices A1, A2, which sum to A, such
that A1 + P,A2 − P ∈ GLn(S).
First assume P is the identity matrix, which entails diag(A) = (0, . . . , 0). Take A1

to be the strict lower triangular part of A, the remaining entries filled with zeros.
Utilizing the same construction on A2 but employing the strict upper part of A,
yields matrices A1, A2 satisfying the condition.
Now let P be an arbitrary n× n permutation matrix. It is not difficult to check that
the assumption of P avoiding A leads to diag(P−1A) = (0, . . . , 0). Thus by the former
case we find A′1, A

′
2 with

A′1 +A′2 = P−1A, such that A′1 + In, A
′
2 − In ∈ GLn(S).

Setting A1 := PA′1 and A2 := PA′2 completes the proof.

Lemma 4.8 ([15, Proposition 4.4]). Let B = diag(B1, . . . , Bt) be an n × n matrix,
the size of each block ≤ n/2. Then there is a permutation matrix P that avoids B.

Proof. Let A be a matrix of size ≤ 3, then the block size is at most one, indicating
that A is a diagonal matrix. Then

P :=

0 0 1
1 0 0
0 1 0


avoids A. Therefore we may assume that n ≥ 4 and t ≥ 2.

The idea of the proof is to develop an algorithm, which starting with an arbitrary
permutation matrix P outputs in every step a new permutation matrix P ′, such that
m(P ′, B) < m(P,B). Thus eventually leading to a permutation matrix avoiding B.
We arrange the proof into three steps.

Preparation:
Choose an arbitrary n × n permutation matrix P , suppose m(P,B) > 0. We find a
pair of indices (i, j) such that Pij 6= 0 and Bij 6= 0. A simultaneous multiplication of
P and B by a permutation matrix does not alter the meeting number, hence we may
assume that (i, j) lies in the first block B1 of size say p×q. This relates to i ≤ p ≤ n/2
and j ≤ q ≤ n/2. Consider the following partitions, where the subindex of each block
indicates its size:
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B =

(
B1p×q 0p×(n−q)

0(n−p)×q A(n−p)×(n−q)

)
, P =

(
P1p×q P2 p×(n−q)

P3(n−p)×q P4(n−p)×(n−q)

)

Sudoku-condition:
Regarding the above partition we prove that some entry of P4 is 1: Suppose P4 has
only zero entries, then P3 needs to contain n− p non-zero elements, all fitting inside
the first q columns of P . In fact these n−p elements even have to fit into the first q−1
columns of P , as the j-th column is already reserved for the non-zero (i, j)-entry. As
the numbers of columns and rows in B1 is less or equal to n/2, we have q − 1 < n/2
and p ≤ n/2 implying q − 1 < n − p. By the Pigeonhole principle there is a column
within the first q−1 columns featuring two non-zero elements - a contradiction to the
definition of a permutation matrix.

Decrement of meeting number :
Now let (r, c), with r > p, c > q, denote the position of the non-zero element of P4,
the existence of which we have just deduced. Let E denote the permutation matrix
that swaps rows i and r and put P ′ = EP . Now P ′ has 1’s in positions (r, j) and
(i, c), but not at positions (r, c) and (i, j). Both positions (r, j) and (i, c) lie in the
0-blocks of B, hence m(P ′, B) < m(P,B).

Proof of Proposition 4.4. The claim follows readily from Lemma 4.7 and Lemma 4.8.

4.2 Modules over Dedekind domains

4.2.1 Projective modules

For the proof of Theorem 4.3 we need to provide the theory of finitely generated and
in particular finitely presented modules over Dedekind domains. Indeed these results
will generalise the endeavours made in Chapter 2 regarding the structure theorem
over principal ideal domains 2.25.

The primary key in obtaining these structure theorems is the fact, that a finitely
generated module over a Dedekind domain is projective; this allows us to employ a
broader technical framework based on the theory of projective modules, which we will
now develop.

In this section let R denote an arbitrary commutative ring.

Definition 4.9 ([34, §4 Definition 3.1]). An R-module P is called projective, if for
arbitrary R-modules A,B and module homomorphisms f, g there exists a module
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homomorphism h turning the following diagram with exact row into a commutative
diagram.

P

f
��

h

��
A

g // B // 0

Proposition 4.10 ([34, §4 Proposition 3.5]). Let {Pi}i∈I be a family of R-modules.
Then

⊕
i∈I Pi is projective, iff every Pi is projective.

Proof. ”⇒” Take an arbitrary P0 ∈ {Pi}i∈I , let g : A → B be an epimorphism,
f0 : P0 → B a module morphism. Furthermore denote by π0 :

⊕
Pi → P0 and

ι0 : P0 →
⊕
Pi the canonical projection and injection respectively. The commutative

diagram ⊕
Pi

γ

��

π0
		

II
ι0

P0

f0
��

A
g // // B

shows the existence of γ and that γ ◦ ι0 may serve as the required homomorphism
from P0 to A.

”⇐” Let f :
⊕
Pi → B and an epimorphism g : A → B be given. Consider the

commutative diagram warranting homomorphisms fi for all i ∈ I as Pi is projective

Pi

ιi
��

fi

��

⊕
Pi

f
��

A
g // // B

Then (xi)i∈I 7→
∑
fi(xi) from

⊕
Pi → A is the required homomorphism.
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It is easy to see, that the notion of projective modules generalises free modules.

Corollary 4.11 ([35, Corollary to Proposition 1.33]). A free R-module F is projective.

Proof. Since F is free, it is isomorphic to a sum of rings R. The last proposition
shows, that it therefore suffices to prove that R is projective. Consider

R

f
��

h

��
A

g // B // 0

with arbitrary R-modules A,B and exact row. Suppose f(1) = b, select an a ∈ A such
that g(a) = b. Then h : R → A defined by x 7→ xa makes the diagram commutative,
showing that R is projective.

Remark 4.12. As we will be needing the universal property of free modules in the
next proposition, we recall:
An R-module F is free with basis X, if for all R-modules M and an arbitrary mapping
f : X →M the latter can be lifted to a R-module morphism f : F →M , making the
following diagram commutative:

F
f

  
X

f //?�

OO

M

(4.1)

Proposition 4.13 ([34, §4 Proposition 3.4], [35, Proposition 1.34 and 1.35]). Let P
be an R-module. The following are equivalent:

(i) P is projective.

(ii) If 0→ A
i−→ B

p−→ P → 0 is a short exact sequence, then B ∼= A⊕ P .

(iii) There exists a free module F and an R-module K such that F ∼= K ⊕ P .

(iv) There exist elements {at}t∈T ⊆ P and homomorphisms {ft}t∈T ⊆ HomR(P,R),
such that every a ∈ P may be written as

a =
∑
t∈T

ft(a)at,

where only finitely many ft(a) 6= 0.
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Proof.
(i)⇒ (ii). Since P is projective, there exists a monomorphism f : P → B turning

P

id
��

f

��
0 // A

i // B
p // P // 0

into a commutative diagram.2 As i(A) ∼= A and f(P ) ∼= A it suffices to show that
B = i(A)⊕ f(P ). Let b ∈ B be arbitrary, then

p
(
b− (f ◦ p)(b)

)
= p(b)− (id ◦ p)(b) = 0

and hence b− (f ◦ p)(b) ∈ ker(p) leading to

b =
(
b− (f ◦ p)(b)

)
+ (f ◦ p)(b) ∈ ker(p) + im(f) ⊆ B.

To see that directness of the sum take b ∈ ker(p) + im(f), then p(b) = 0 and ∃a ∈ P :
f(a) = b. This leads to 0 = p(b) = (p ◦ f)(a) = a, finishing the proof.

(ii)⇒ (iii). Let F be a free R-module with basis P , such that the universal property
(4.1) leads to the commutative diagram

F
f

  
P

id //?�
ι

OO

P

We derive an exact sequence

0→ ker(f)→ F → P → 0.

By (ii) we see F ∼= ker(f)⊕ P .

(iii) ⇒ (iv). Keeping the notation from the last step, let {xt}t∈T ⊆ F be a system
of generators of F . For a ∈ P , we have ι(a) =

∑
t∈T ft(a)xt with suitable ft(a) ∈ R,

the right hand side containing only finitely many non-zero terms. Applying f yields
a =

∑
t∈T ft(a)f(xt) for all a ∈ P . As the ft : P → P are homomorphisms due to

their definition, setting at = f(xt) verifies the claim.

(iv) ⇒ (iii). Denote by {xt}t∈T the generators of some free module F . Define a
homomorphism f : F → P by f(xt) = at. Let the monomorphism g : P → F be
given by a =

∑
t∈T ft(a)at 7→

∑
t∈T ft(a)xt. For any a ∈ P we have

(f ◦ g)(a) = f
(∑
t∈T

ft(a)xt

)
=
∑
t∈T

ft(a)at = a,

2In terms of homological algebra f constitutes a right split of the short exact sequence.
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indicating that the composition P
g−→ F f−→ P equals the identity map. Whence P is

a direct summand of F .

(iii)⇒ (i). Suppose K⊕P ∼= F , where F is free and a fortiori projective by Corollary
4.11. Proposition 4.10 shows that P (and K) must be projective.

Example 4.14. Examples of projective modules may be found in any textbook about
abstract algebra, we give a few outlines

� Clearly every vector space is free and hence projective.

� Set R = Z/
6Z, then R is a free module over itself. As R ∼= Z/

2Z ⊕ Z/
3Z, we

deduce from Proposition 4.13(ii), that Z/
2Z is projective over R. Moreover by

simply comparing the number of elements Z
/
2Z can not be a free R-module. Note

that invoking the Chinese Remainder Theorem on more general rings warrants
a plethora of similar examples.

Recall that an element x ∈ P is said to be torsion, if ∃r ∈ R \ {0} : rx = 0.

Lemma 4.15 ([35, Lemma 1.37 and 1.38]). Let D be an integral domain such that each
of its ideals is projective. Suppose P is a finitely generated, torsion-free D-module,
then it is isomorphic to a finite direct sum of ideals of D.

Proof. Denote by a1, . . . , am a set of generators of P , and let K be the field of fractions
of D. Let y1, . . . , yn be a basis of the finite dimensional K-vector space Ka1 + · · · +
Kam. There exist rij ∈ K such that ai =

∑n
j=1 rijyj . We find an element q ∈ D that

clears out the denominators, i.e qrij ∈ D. In view of

ai =
n∑
j=1

(qrij)
yj
q
∈ Dy1

q
+ · · ·+Dyn

q
:= F

we arrive at
P = Da1 + · · · Dam ⊆ F ,

where F constitutes a free D-module. The rank of F equals n, as the y1
q , . . . ,

yn
q are

K-linearly independent and thus also D-linearly independent.
In the case of F featuring rank 0, there is nothing to prove, since P must be 0.
Suppose thus the claim holds for all D-modules contained in some free D-module of
rank n− 1. Let x1, . . . , xn denote the free generators of F ⊇ P . Denote by Fn−1 the
free D-module generated by x1, . . . , xn−1. Let P 3 x =

∑n
i=1 rixi with ri ∈ D. Then

f : x 7→ rn ∈ HomD(P,D) is well-defined as P is torsion-free. Due to assumption the
ideal im(f) of D in the exact sequence

0→ ker(f)→ P → im(f)→ 0
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is projective, hence by Proposition 4.10 we see P ∼= im(f) ⊕ ker(f). As ker(f) is
contained in Fn−1, the induction hypothesis is applicable, showing that P is a direct
sum of ideals in D.

4.2.2 Structure theorems for modules over Dedekind domains

In this section O denotes a Dedekind domain and K its field of fractions.

Proposition 4.16 ([35, Lemma 1.36]). A non-zero ideal a in an integral domain D
is projective, iff it is invertible.

Proof. Let K denote the field of fractions of D.
”⇒” Assume a is projective, let {at}t∈T ⊆ a and let {ft}t∈T be homomorphisms as in
Proposition 4.13(iv). Take an arbitrary x ∈ a, one has ft(1)x = ft(x) ∈ D, since ft is
D-linear. Therefore ft(1)a ⊆ D and thus

ft(1) ∈ a′ := {α ∈ K|αa ⊆ D}.

We compute

x =
∑
t∈T

ft(x)at = x
n∑
t=1

ft(1)at,

so that 1 =
∑n

t=1 ft(1)at. The transition from a sum over an infinite index set to a
finite sum is justified due to proposition 4.13(iv). This shows D ⊆ aa′ and hence a is
invertible.

”⇐” Suppose aa−1 = D, then we find a1, . . . , an ∈ a and x1, . . . , xn ∈ a−1 such that∑n
t=1 xiai = 1. Take an arbitrary x ∈ a, then

x =
n∑
t=1

xxtat =
n∑
t=1

ft(x)at,

where we set ft(x) = xxt. Now the elements at and homomorphisms ft are as required
by Proposition 4.13(iv), hence a is projective.

The consequent corollary follows directly from the proposition just proved; it opens
the door for treating ideal theoretic problems in Dedekind domains via the theory of
projective modules.

Corollary 4.17. All ideals in a Dedekind domain are projective.

A commutative ring R is called (semi-)hereditary, if all its (finitely generated) mod-
ules are projective over R. The proposition shows that the notions of Dedekind domain
and hereditary integral domain coincide, thus exhibiting another characterisation of
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Dedekind domains via projective modules. Moreover a Prüfer domain is the same as
a semihereditary integral domain.

Definition 4.18. Given a finitely generated O-module M over a Dedekind domain
O, we write T (M) to denote the submodule of M containing all torsion elements of
M .

Theorem 4.19 ([35, Theorem 1.32]). For a finitely generated O-module M , we find
k ∈ N and an ideal d such that M ∼= Ok ⊕ d⊕ T (M).

Proof. Defining M1 = M
/
T (M), we see that M1 is a torsion-free and finitely generated

O-module. As all modules over O are projective by Corollary 4.17, we invoke Lemma
4.15 to write M1 = d1, . . . , dk+1 as a sum of ideals di, i.e projective modules, which
entails by Proposition 4.10, that M1 is projective over O itself. As

0→ T (M)→M →M1 → 0

is exact, Proposition 4.13 shows that

M ∼= T (M) +M1
∼= T (M)⊕

k+1⊕
j=1

dj .

The proof is complete, if we derive the existence of an ideal d, such that
⊕k+1

j=1 dj
∼=

Ok ⊕ d; this fact will be a special case of the next theorem.

The former theorem is due to Steinitz [5] who proved it in 1912 for rings of algebraic
integers. The upcoming theorem, which will play a crucial role in the proof of the
structure theorem for finitely presented modules as well, is eo ipso of high interest as it
provides an alternative method to handle direct sums of ideals in Dedekind domains.

We slide in the auxiliary

Lemma 4.20 ([35, cf. Corollary 6 to Proposition 1.14]). For any two ideals a, b of a
Dedekind domain O, we find an ideal a′ of O satisfying [a′] = [a], such that (a′, b) = O.

Proof. Let a =
∏

pαp be the factorisation of a into prime ideals. Denote by r1, . . . , rn
the prime ideals dividing b and not dividing a. Choose non-zero elements xp ∈ pαp \
pαp+1 for all p dividing a. Finally select a prime ideal p0 not dividing a or b. The
Chinese remainder theorem yields a solution u to the system of congruences with
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pairwise relatively prime moduli:

u ≡ xp (mod pαp+1) ∀p : p|a
u ≡ 1 (mod ri) ∀1 ≤ i ≤ n
u ≡ 0 (mod p0).

Clearly u /∈ pαp+1, but there exists x′p ∈ pαp+1 such that u = xp + x′p ∈ pαp . Thus
pαp ‖uO for each p dividing a, which leads to a|O. We find an ideal c such that

uO = c
∏

pαp = ca.

We observe that p - c, as pαp is the highest power of p in uO. Moreover for 1 ≤ i ≤ n
we have ri - c as ri - uO and additionally c 6= O since p0|c. This shows that c and b
are relatively prime.

Let c =
∏t
i=1 qi

βi be the prime factorisation of c. As c + b = O invoking again
the Chinese remainder theorem, we obtain b ∈ qi

βi \ qiβi+1 (1 ≤ i ≤ t) satisfying
b ≡ 1(mod b). Whence c|bO, i.e. there is an ideal a′ such that ca′ = bO and moreover
1 = b+ (1− b) ∈ bO + b. Thus

O = (bO, b) = (ca′, b) = (a′, b)

and
[a] = [ba] = [(ca′)a] = [(ca)a′] = [ua′] = [a′].

Theorem 4.21 ([35, Theorem 1.39]). Let M1,M2 be torsion-free O-modules, given
by M1 =

⊕m
`=1 a` and M2 =

⊕n
`=1 b`, where a`, b` are ideals of O. Then M1 and M2

are isomorphic as O-modules if and only if

n = m and
[ m∏
`=1

a`

]
=
[ n∏
`=1

b`

]
.

Proof.
”⇐” It suffices to evidence the claim for m = n = 2, as the other cases may be settled
via induction. Lemma 4.20 shows that, we find an ideal a′1 with [a′1] = [a1] such that
a′1 and a2 are relatively prime. As O is projective, the following commutative diagram

0 // a′1 ∩ a2
//

=

a′1 ⊕ a2
// a′1 + a2

//

=

0

0 // a′1a2
// a′1 ⊕ a2

// O // 0
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with exact rows warrants

[a1 ⊕ a2] = [a′1 ⊕ a2] = [O⊕ a′1a2] = [O] + [a′1a2].

The same process yields an ideal b′1 with [b′1] = [b1] such that

[b1 ⊕ b2] = [b′1 ⊕ b2] = [O] + [b′1b2].

From the assumption [a1a2] = [b1b2] we immediately get [a1 ⊕ a2] = [b1 ⊕ b2]. Thus
there exists an 0 6= x ∈ K such that a1 ⊕ a2 = x(b1 ⊕ b2), implying M1

∼= M2.

”⇒” In the commutative diagram

spanK
(
ι1(M1)

)
= Km oo ϕ

∼= // Kn = spanK
(
ι2(M2)

)
Om
) 	

66

On5
U

hh

M1
6 V

hh

� ?

ι1

OO

oo ϕ ∼= //M2

) 	

66

� ?

ι2

OO

the embeddings ι1, ι2 induced by the canonical embeddings depicted in the diagram
as outer arrows, enables the lift of ϕ to a K-morphism ϕ. A comparison of dimensions
yields n = m.

Let us assume that O ⊆ ai, bi for 1 ≤ i ≤ m, this condition poses no restriction: for
an integral ideal ai we find a non-zero x ∈ K, such that O ⊆ xai := a′i, which entails
[ai] = [a′i].

Now denote again by ϕ the isomorphism M1 →M2 and let ϕi = ϕ|ai the restriction
of ϕ to ai. If a, x ∈ ai, we have linearity: ϕi(xa) = xϕi(a). Indeed let x = α

β with
α, β ∈ O, then

βϕi(ax) = βϕi(a
α

β
) = αϕi(a).

Let (ai1, . . . , aim) be the image of 1 under ϕi, where aij ∈ bi for 1 ≤ i, j ≤ m.
Moreover let πj be the projection from M2 onto bj , we compute

m∑
i=1

aijai =
{ m∑
i=1

aijxi|xi ∈ ai

}
=
{
πj

( m∑
i=1

ai1xi, . . . ,
m∑
i=1

aimxi

)
|xi ∈ ai

}
=
{
πj

( m∑
i=1

(ai1, . . . , aim)xi

)
|xi ∈ ai

}
=
{
πj

( m∑
i=1

ϕi(1)xi︸ ︷︷ ︸
ϕi(xi)

)
|xi ∈ ai

}

=
{

(πj ◦ ϕ)
( m∑
i=1

xi

)
|xi ∈ ai

}
= bj for 1 ≤ j ≤ m.
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For some permutation on m letters σ ∈ Sm put Cσ =
∏m
i=1 aσ(i),i. In view of

m∏
j=1

bj =

m∏
j=1

m∑
i=1

aijai

combinatorial considerations lead to the insight that the coefficient of
∏m
i=1 ai is equal

to
∑

σ∈Sm Cσ. Therefore ∑
σ∈Sm

Cσ

m∏
i=1

ai ⊆
m∏
j=1

bj .

In particular, for any σ ∈ Sm and xi ∈ ai we have

sgn(σ) · Cσ
m∏
i=1

xi ∈
m∏
j=1

bj .

Finally ∑
σ∈Sm

m∏
i=1

sgn(σ)Cσxi,

which due to the Leibniz determinant formula equals det(aij)
∏m
i=1 xi, is contained in∏m

j=1 bj .
Repeating the process with M1 and M2 interchanged, we find a matrix (bij)1≤i,j≤m
granting

det(bij)

m∏
j=1

bj ⊆
m∏
i=1

ai.

As in fact these matrices are inverse to each other, we arrive at

m∏
i=1

ai = det(bij)

m∏
j=1

bj .

Remark 4.22. Employing the theorem just established, and broader ideal- and
module-theoretic results [35, §1.3.3] the torsion module in Theorem 4.19 may be fur-
ther decomposed, such that for a finitely generated module M over O, we have

M ∼=
s⊕
j=1

O
/
aj ⊕ d⊕Ok,

for suitable integral ideals a1, . . . , as and some fractional ideal d of O.
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4.3 Indecomposable matrices over Dedekind domains

This section is devoted to the proof of Theorem 4.3, which bounds the size of an inde-
composable matrix by the class number. We begin by introducing finitely presented
modules over Dedekind domains O, which are a special case of finitely generated
modules.

Definition 4.23 ([4, Definition in §1]). Let A be an m×n matrix over a commutative
ring O. A induces an O-module homomorphism ϕ : Om → On via x 7→ xA. Denoting
by MA the image of ϕ in On, i.e. MA is generated by the not necessarily linearly
independent rows of A, we obtain an exact sequence

Om ϕ−→ On � SA := On/
MA
→ 0.

A module SA arising in this way is called finitely presented.

Levy [4] utilised the work of Krull [6] to derive a structure theorem for finitely
presented modules.

Theorem 4.24 ([4, Separated Divisor Theorem]). Let A be an m× n matrix of rank
r over O, then SA takes the form

SA = S(h1, . . . , hr; d)(m×n) :=


⊕r

j=1
O
/
hj
⊕ d⊕On−r−1 if r < n⊕r

j=1
O
/
hj

if r = n ,

where the hj’s are integral ideals and d is a fractional ideal of O. Furthermore

[ r∏
j=1

hj

]
= [d] if r = m (a)

[d] = [O] if r = n or r = 0 (b)

the latter being just a notational convention. Furthermore for given integral ideals hj,
fractional ideal d and positive integers m,n there exists always a matrix A satisfying
SA = S(h1, . . . , hr; d)(m×n).

We take a look at a simple example.

Example 4.25. Setting O = Z, A =

(
2 0
0 3

)
and MA = im(ϕ) ∈ Z2, we derive

SA ∼= Z2/
MA
∼= Z2/

(2, 0)Z + (0, 3)Z ∼= Z/
2Z⊕ Z/

3Z ∼= Z/
6Z.

This calculation shows that the decomposition obtained via the Separated Divisor
Theorem 4.24 is in general not unique.
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In order to utilise the Separated Divisor Theorem to evidence Theorem 4.3, we need
the following result.

Theorem 4.26 ([36]). For a Dedekind domain O let A,B ∈ Matn(O), then A ∼
B ⇔ SA ∼= SB.

The result is essentially due to Levy, who proved it first by taking advantage of
Krull’s work [6]. In the follow-up paper [36] Levy and Robson generalised the state-
ment by using extensive module-theoretic methods.

Lemma 4.27 (Diagonalisation Lemma [4]). Let A be an m× n matrix of rank r and
B a p× q matrix of rank s over O. In view of Theorem 4.24 we write

SA = S(h1, . . . , hr; d) and SB = S(h′1, . . . , h
′
s; d
′).

Then
Sdiag(A,B)

∼= SA ⊕ SB ∼= S(h1, . . . , hr, h
′
1, . . . , h

′
s; dd

′)(m+p)×(n+q).

Proof. Similarly to the proof of Theorem 2.25 we find Mdiag(A,B) = MA ⊕MB, as
these modules are generated by the rows of A and B respectively. We compute

Sdiag(A,B)
∼= On+q/

Mdiag(A,B)
∼= On/

MA
⊕Oq/

MB
∼= SA ⊕ SB.

To evidence the isomorphy for the second term in the claim, we calculate

SA ⊕ SB ∼= S(h1, . . . , hr; d)(m×n) ⊕ S(h′1, . . . , h
′
s; d
′)(p×q)

=

r⊕
i=1

O
/
hi ⊕

s⊕
i=1

O
/
h′i
⊕ d⊕ d′ ⊕On−r−1 ⊕Oq−s−1.

Now Theorem 4.21 shows that d⊕ d′ ∼= O⊕ dd′, hence we arrive at

Sdiag(A,B)
∼= SA ⊕ SB

∼=
r⊕
i=1

O
/
hi ⊕

s⊕
i=1

O
/
h′i
⊕ dd′ ⊕On+q−(r+s)−1

= S(h1, . . . , hr, h
′
1, . . . , h

′
s; dd

′)(m+p)×(n+q).

Lemma 4.28.

(i) Let SA be a finitely presented module induced by a matrix A over O. If SA may
be decomposed into a sum of two non-vanishing finitely presented modules, then
A is decomposable.

(ii) Any m×n matrix A over O inducing a torsion module SA and satisfying m > hO
or n > hO is decomposable.
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Proof.

(i) SA may be decomposed into a sum of two finitely presented modules, none of
them vanishing. Due to the Separated Divisor Theorem 4.24 these two modules
take the form SB and SC for suitable matrices B,C. Thus by the Diagonalisation
Lemma 4.27 we find SA = SB ⊕ SC = Sdiag(B,C). An application of Theorem
4.26 evidences A ∼ diag(B,C).

(ii) Let r be the rank of A. The Separated Divisor Theorem shows that n = r in
the case of SA being a torsion module.

� If n = r > 1, then

SA =
r⊕
i=1

O
/
hi =

r⊕
i=1

S(hi;O)2×1.

Invoking part one of the lemma verifies the claim.

� If n = r = 1, then SA has the form SA = O
/
MA

= O
/
h with some integral

ideal h.

Now m = 1 is impossible due to m > hO ≥ 1 or n > hO ≥ 1

If m = 2, then A = (a, b)ᵀ with a, b ∈ O. As m > hO or n > hO we
must have hO = 1. Thus O constitutes a principal ideal domain and
we may use the Smith Normal Form 2.22 to obtain d ∈ O, such that
A ∼ (d, 0)ᵀ ∼ diag(d,01×0). This shows that A is decomposable.

For m ≥ 2 recall that every ideal in a Dedekind domain is generated by
two elements. Thus O

/
h
∼= O

/
xO + yO for some elements x, y ∈ O. This

shows that
A = (x, y, 0, . . . , 0︸ ︷︷ ︸

(m−2)-times

)ᵀ.

Thus A ∼ diag(x, y,0(m−2)×0).

Lemma 4.29. Let A be a m × n matrix of rank r over O, satisfying m ≥ r + 2 or
n ≥ r + 2. Moreover let m > hO or n > hO. Then A is decomposable, i.e. there exist
two matrices B,C over O, such that A = diag(B,C).

Proof. Due to the prior Lemma 4.28(i) it suffices to show that SA is decomposable
into a sum of two non-vanishing finitely presented modules. We need to consider some
cases separately and will treat them in the following order.
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Case label Condition 1 Condition 2

(i) n ≥ r + 2 m ≥ r + 1
(ii) n ≥ r + 2 m = r

(iii) m ≥ r + 2 n ≥ r + 2
(iv) m ≥ r + 2 n = r + 1
(v) m ≥ r + 2 n = r

Note that we merely stated (iii) for convenience, as it is in fact covered by case (i).

(i) If n ≥ r + 2 and m ≥ r + 1, set p = q = r + 1. By means of the Separated
Divisor Theorem 4.24 we calculate

SA = S(h1, . . . , hr; d)m×n =
r⊕
i=1

O
/
hi ⊕ d⊕On−r−1

=
r⊕
i=1

O
/
hi ⊕ d⊕Oq−r−1 ⊕O⊕On−q−1

= S(h1, . . . , hr; d)p×q ⊕ S(∅;O)(m−p)×(n−q).

None of the ”exceptional cases” in the Separated Divisor Theorem arise and the
second summand does not vanish since n− q = n− r − 1 ≥ 1.

(ii) When n ≥ r + 2 and m = r, the previous decomposition works, if we put p = r
and q = r + 1: The condition (a) of the Separated Divisor Theorem is fulfilled
for the first summand. The second summand does not vanish since as before
n− q = n− r − 1 ≥ 1.

(iv) We dispose of the case m ≥ r + 2 and n = r + 1 through the following decom-
position

SA =
r⊕
i=1

O
/
hi ⊕ d⊕On−r−1 =

r⊕
i=1

O
/
hi ⊕ d

=
r⊕
i=1

O
/
hi ⊕ d⊕O1−1

=S(h1, . . . , hr;O)m×r ⊕ S(∅; d)m×1.

Clearly none of the summands vanishes and the first summand satisfies the
empty part of condition (b) of the Seperated Divisor Theorem.

(v) If m ≥ r + 2 and n = r, the module SA is a torsion module. As m > hO or
n > hO we may invoke Lemma 4.28(ii), which proves the claim.
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Remark 4.30. Note that the use of the assumption m > hO or n > hO in the
previous two Lemmata 4.28(ii) and 4.29 were only necessary to handle torsion modules.
Reviewing the proof of Lemma 4.28 one sees that it would have been sufficient to
demand

m = 2 ∧ n = r = 1⇒ hO = 1.

Proof of Theorem 4.3. Let A be an m× n matrix of rank r. We show that, if m or n
is greater h := hO, then A must be decomposable.
Cases m ≥ r + 2 or n ≥ r + 2 may be disposed of by the former Lemma 4.29.

We are thus left with m,n ∈ {r, r + 1}, which implies r ≥ h. Let SA be given
by SA = S(h1, . . . , hr; d)m×n. Since the proof requires a rather involved case-by-case
analysis, we display the steps of the proof in a diagram. The arrow’s label will indicate
the specific case we are working on.

SA = S(h1, . . . , hr; d)
m,n ∈ {r, r + 1} ⇒ r ≥ h

(A)

uu
(B) ))

Two ideals of the set
{h1, h1h2, . . . , h1 · · · hr}

lie in the same ideal class

No two ideals of the set
{h1, h1h2, . . . , h1 · · · hr}

lie in the same ideal class.
This forces r = h.

(BI)

uu
(BII)

��∃p ≤ r − 1 :
[O] = [h1 · · · hp]

gg

[O] = [h1 · · · hp] with p = r

(BIIi)

ss
(BIIii)

��
[d] = [O]

(BIIi1)

uu

(BIIi2)
��

[d] 6= [O], implying n = r + 1

n = r + 1

OO

n = r ⇒ m = r + 1
implying, that SA is

a torsion module.
Use Lemma 4.28(ii).

(A) Assume first that
[∏u

i=1 hi] =
[∏v

i=1 hi

]
with some u < v. By multiplication

with the inverses we find [O] =
[∏v

i=u+1 hi

]
. After renumbering of the hi we

get

[O] =
[ p∏
i=1

hi

]
with p ≤ r − 1. (4.2)
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Employing the Separated Divisor Theorem 4.24 we compute

SA ∼=
r⊕
i=1

O
/
hi ⊕ d⊕On−r−1

=

p⊕
i=1

O
/
hi ⊕

r⊕
i=p+1

O
/
hi ⊕ d⊕On−r−1

=

p⊕
i=1

O
/
hi ⊕

r⊕
i=p+1

O
/
hi ⊕ d⊕On−p−(r−(p+1)+1)−1

= S(h1, . . . , hp;O)p×p ⊕ S(hp+1, . . . , hr; d)(m−p)×(n−p) (4.3)

=: SB ⊕ SC

for suitable matrices B,C, the existence of which is guaranteed by the Separated
Divisor Theorem. None of the summands vanishes, as n− p ≥

(4.2)
n− r + 1 ≥ 1,

since n ∈ {r, r+ 1}; the same calculations hold true for m. Thus Lemma 4.28(i)
evidences A ∼ diag(B,C)

The special cases of the Separated Divisor Theorem occur, if the number r − p
of ideals hi of the second summand in (4.3) equals m− p or n− p, which implies
r ∈ {m,n}. If r = m, then (a) of the Separated Divisor Theorem applied to A
shows

[d] =
[ r∏
i=1

hi

]
=
[ p∏
i=1

hi

][ r∏
i=p+1

hi

]
=

(4.2)
[O]
[ r∏
i=p+1

hi

]
=
[ r∏
i=p+1

hi

]
,

as demanded for the second term in (4.3).

When r = n, then case (b) of the Separated Divisor Theorem occurs and SA is
a torsion module. We may set [d] = [O] as a notational convention. The second
term of (4.3) becomes

S(hp+1, . . . , hr; d)(m−p)×(r−p) =
r⊕

i=p+1

O
/
hi ⊕ d⊕O−1 ∼=

r⊕
i=p+1

O
/
hi .

Now
⊕r

i=p+1
O
/
hi is not degenerate as p ≤ r − 1, thus the sum in (4.3) is a

decomposition of SA into two modules.

(B) We are left with the case, where no two ideals

h1, h1h2, . . . , h1 · · · hr (4.4)
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lie in the same ideal class. This together with r ≥ h implies r = h. Whence the
ideals in (4.4) constitute a full set of representatives of the ideal class group.

(BI) The case where [h1h2 · · · hp] = [O] for some p ≤ r − 1 can be treated
analogously to (4.2) in case (A).

(BII) In the other case we have [h1h2 · · · hp] = [O], where p = r.

(BIIii) If [d] 6= [O] and [h1 · · · hr] = [O]. The ideal classes are determined
by (4.4). As SA ∼=

⊕r
i=1

O
/
hi ⊕ d ⊕On−r−1 and as d is not principal,

we must have n 6= r implying n = r + 1. Since (4.4) is a full system
of representatives of ideal classes, there exists q ∈ N, such that [d] =
[h1 · · · hq]. Note that q ≤ r − 1, as h1 · · · hr is principal by assumption.
We have r < m , since otherwise [d] = h1 · · · hr = [O] due to (a) of the
Separated Divisor Theorem, which would contradict the assumption
[d] 6= [O]. We review the inequalities we have gathered

q ≤ r − 1 and r < m implying q < m, (4.5)

q + 1 ≤ r < r + 1 = n.

We finish the proof by decomposing

SA ∼=
r⊕
i=1

O
/
hi ⊕ d⊕On−r−1

=

q⊕
i=1

O
/
hi ⊕ d⊕

r⊕
i=q+1

O
/
hi ⊕On−r−1

=

q⊕
i=1

O
/
hi ⊕ d⊕Oq+1−q−1 ⊕

r⊕
i=q+1

O
/
hi ⊕O⊕On−q−1−(r−q)−1

= S(h1, . . . , hq; d)q×(q+1) ⊕ S(hq+1, . . . , hr;O)(m−q)×(n−q−1)

=: SB ⊕ SC ,

for suitable matrices B,C. Due to the inequalities in (4.5) the matrix
C has a positive number of rows and columns. Now Lemma 4.28(i)
implies A ∼ diag(B,C).

(BIIi) Suppose that d is principal, i.e. [d] = [O]. Considering the decomposi-
tion in (A) the second term of (4.3) degenerates to S(∅, d)(m−p)×(n−p) =
S(∅, d)(m−r)×(n−r). We need to treat the cases n = r and n = r + 1
separately.

(BIIi1) If n = r+1, then S(∅, d)(m−r)×(n−r) = d. Hence the second module
in (4.3) does not vanish and the decomposition of (A) is applicable.
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(BIIi2) If n = r, then m = r + 1 follows, as we assumed m > h = r or
n > h = r. As n = r the Separated Divisor Theorem yields that
SA must be a torsion module. Invoking Lemma 4.28(ii) finishes
the proof.



5
Unit Equations

This section prepares the tools necessary for dealing with questions concerning sums
of units. Though we will solely be needing Theorem 5.5 in the progress, we take the
time to survey the modern development of equations with units in a ring as solutions.
Essentially all results are based on effective versions of Schmidt’s subspace theorem
[37] [38], a vast generalisation of the Thue-Siegel-Roth theorem in Diophantine ap-
proximation:

Denote by O the ring of all algebraic integers and let x = (x1, . . . , xn) ∈ Qn. Let
L1, . . . , Ln be linearly independent linear forms with coefficients from O mapping Qn

to C. For every ε > 0 there exist a finite number V1, . . . , Vt of proper linear subspaces
of Qn, such that the set of integer solutions to

|L1(x) · · ·Ln(x)| ≤ ||x||−ε, 0 6= x ∈ Zn (5.1)

is contained in V1, . . . , Vt.

For the most recent development on quantitative results, i.e. effective upper bounds
on the number of subspaces t, see the work of Evertse and Ferretti [39]. The latter
authors also outline a result by Faltings and Wüstholz [40], who proved, that there
exists a single, effectively computable, proper linear subspace of Qn, that contains
almost all solutions to equation (5.1).

Turning to equations, where we require the solutions to be units, we take a top-
down approach starting with a very general equation and successively specialising
it. Let x = (x1, . . . , xn) ∈ Zn, F ⊆ C a field and P` ∈ F [X1, . . . , Xn]. For a` =
(a`1, . . . , a`n) ∈ (F ∗)n, we define ax

` =
∏n
i=1 a

xi
`i . The first type of equation we examine

is a polynomial-exponential one:

k∑
`=1

P`(x)ax
` = 0. (5.2)

57
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A solution x ∈ Zn is called degenerate if

∃I $ {1, . . . , k} :
∑
`∈I

P`(x)ax
` = 0.

Furthermore we say equation (5.2) fulfils the Laurent-restriction, if there are no non-
trivial solutions to

az
1 = · · · = az

k in z ∈ Zn.

Much effort has been made to find effective bounds on the solutions of equation
(5.2). Focusing on integer solutions, we introduce a theorem by Schlickewei and
Schmidt.

Theorem 5.1 ([41, 1.1P]). In the setting of (5.2), let F be an algebraic number field
of degree d and. Define

A =
k∑
`=1

(
n+ δ`
n

)
and B = max(n,A),

where δ` = deg(P`) is the total degree of P`. If (5.2) satisfies the Laurent-restriction,
then the number of non-degenerate solutions x ∈ Zn is bounded by

N(d,B) := 235B3
d6B2

.

Setting the length of the sum k = 2 in equation (5.2) Schmidt et al. [42] were able
to eliminate the dependency on the number field’s degree.

Theorem 5.2 ([42]). The equation

ax = P (x) with x ∈ Zn,

where P ∈ C[X1, . . . , Xn] and a = (a1, . . . , an) ∈ (C∗)n are multiplicatively indepen-
dent has no more than

exp(B9B)

solutions where B =
(

2+deg(P )
2

)
+ 1, deg(P ) > 0.

Next we specialise to a scalar version of (5.2). Consider the equation

k∑
`=1

P`(n)an` = 0 (5.3)

in the scalar unknown n ∈ Z with P` ∈ F [X], a` ∈ F ∗, where F ⊆ C. Note that
equation (5.3) stems in fact from a linear recurrence sequence. In the next result due
to Schmidt [43] the dependencies could again be reduced to the mere dependency on
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the degree of the occurring polynomials. It can be viewed as an effective version of
the Skolem-Mahler-Lech theorem [44] on linear recurrence sequences.

Theorem 5.3 ([43]). Let F = C and assume that aia
−1
j is not a root of unity for

i 6= j. Setting t =
∑k

`=1

(
deg(P`) + 1

)
we have

#{n ∈ Z :
k∑
`=1

P`(n)an` = 0} ≤ exp
(

exp(t3t)
)
.

The bound has recently been lowered to ee
70t

by Amoroso [45, Theorem 1,2].

For the next step of specialisation we take the polynomials P` to be constant;
Evertse, Schlickewei and Schmidt proved

Theorem 5.4 ([8, Inequality (1.18)]). In equation (5.3) let F = C. Let α,a ∈ (C∗)k
and assume that (a.ei)(a.ej)

−1 is not a root of unity for i 6= j, where a.ei is the i-th
component a. We have

|{n ∈ Z : α.an = 0}| ≤ exp(6k3k).

The next theorem can be deduced from the latter, first stated as ineffective version
by Evertse, Györy in [46]. The bound depends on the length of the sum and on a
property of the group, we want the solutions to be contained in.

Theorem 5.5 ([8]). Let Γ be a (discrete) subgroup of (C∗)k of finite rank r. The
equation

α.a = 1 (5.4)

in a ∈ Γ with coefficients α ∈ (C∗)k, has its number of non-degenerate solutions bound
by

Mk = exp
(
6k3k(r + 1)

)
.

For convenience we state a slight generalisation of the previous theorem as a system
of equations.

Corollary 5.6 ([46]). Keep the setting of the former Theorem 5.5 and let A be an
`× k matrix over C∗ and 0 6= v ∈ C`. The number of non-degenerate solutions x ∈ Γ
of

Ax = v

is bounded by exp
(
6k3k(r + 1)

)
.





6
ω-good rings

6.1 Products and even rings

We start with some basic properties and definitions helpful for dealing with products
of ω-good rings. When dealing with sums of units, it is surprising that the notion of
even rings as introduced in Chapter 1 does not seem to transcend Raphael’s work [14],
though it might be interesting to classify rings of algebraic integers with respect to
the even-property. For convenience we extend the definition of even to number fields
K, saying K is k-even, if OK satisfies the property.

Proposition 6.1. The only 2-even quadratic number fields are O−3 and O5. The
representation of 1 by sums of two units is given by

1 =
1

2

(
1−
√
−3
)

+
1

2

(
1 +
√
−3
)

and

1 =
1

2

(
1 +
√

5
)

+
1

2

(
1−
√

5
)
,

1 =
1

2

(
−1 +

√
5
)

+
1

2

(
3−
√

5
)

=
1

2

(
−1−

√
5
)

+
1

2

(
3 +
√

5
)

Proof. We claim, that Od is not 2-even, if d 6≡ 1 (mod 4):
The generic element is of the form a+ b

√
d with a, b ∈ Z. We require

1 = (a+ b
√
d) + (e+ f

√
d),

where both factors are units in Od. A small conversion yields e+f
√
d = (1−a)−b

√
d ∈

O∗d. Considering the norm we conclude from

±1 = a2 − b2d2

= (1− a)2 − b2d2
(6.1)
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that 2a− 1 = 0, which is impossible.

Turning to d ≡ 1 (mod 4), the generic element takes the form a + b1+
√
d

2 with
a, b ∈ Z. Using the same ansatz (6.1) as before we are led to the equations

±1 = N
(
a+ b

1 +
√
d

2

)
=a2 + ab+

1− d
4

b2

= N
(

(1− a)− b 1 +
√
d

2

)
=(1− a)2 − (1− a)b+

1− d
4

b2.

We have 0 = 2a+ b− 1, which shows 2a+ b = 1. As

1 =
∣∣N (a+ b

1 +
√
d

2
)N (1− a− b1 +

√
d

2
)
∣∣

=
∣∣ 1

16

(
(2a+ b− 2)2 − b2d

)(
(2a+ b)2 − b2d

)∣∣,
we see that 1 = 1

16

∣∣(1− b2d)2
∣∣. This implies 1− b2d = ±4, thus b = ±1, d ∈ {−3, 5}.

The problem of finding a, respectively of showing that the solutions are indeed as
claimed, is easily settled.

Remark 6.2. Let K be a number field of even degree k. Let ε ∈ OK have degree k
and suppose

|TrK(ε)| = |NK(ε)| = 1.

Then OK is k-even.

Proof. Note first that an ε of degree smaller k can not have |TrK(ε)| = 1. From the
condition regarding the trace we obtain

±1 = TrK(ε) =
k∑
i=1

εi,

where the εi’s are the conjugates of ε in OK . The condition on the norm of ε implies
that all its conjugates are units as well, whence follows the claim.

Remark 6.3. Anticipating Proposition 6.9 of the next section, we have that O5

and O−3 are not only 2-even but also ω-good. Using the previous computations of
Proposition 6.1 we construct new examples of 2-even rings.

Example 6.4.

(i) Employing Lemma 1.6(i) it is clear, that the extension of a k-even ring is again
k-even. Using this fact it is easy to construct extensions of Q(

√
5) being 2-even:

As the Legendre symbol
(

5
3

)
is equal to −1, we see that 3 is inert in O5, hence

prime. This shows that the polynomial xd − 3 ∈ O5[x] is Eisensteinian for all
d ≥ 2. Therefore a solution cd to the equation xd − 3 = 0 has degree d over
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Q(
√

5). It follows that Q(
√
−5, cd) has degree 2d over Q and is 2-even, where

d ≥ 2 may be chosen arbitrarily.

(ii) Next we derive a result concerning the property even for cyclotomic field. Let
n ∈ N not be a power of 2, denote by p an arbitrary prime factor of n greater
2. Then the n-th cyclotomic field is (p− 1)-even: let ζp denote a primitive p-th
root of unity, then

0 =

p−1∑
i=0

ζi and therefore 1 = −
p−1∑
i=1

ζi.

Thus Q(ζp) is (p− 1)-even, and as Oζp injects into Oζn , we see that the number
field Qζn of degree1 ϕ(n) over Q is also (p− 1)-even.

Definition 6.5. Let O be a ring of algebraic integers with quotient field K. Let
the k-good elements of O be denoted by Σk. We call O active, if O 6= Z and the
inertia degree of all prime ideals dividing (2) = 2O is greater one. In particular this is
fulfilled, if 2 is prime in O. On the other hand, the condition is violated, if (2) splits
in O or (2) is totally ramified in O.

Theorem 6.6. Let O be an active ring of algebraic integers. If O is ω-good, then O
is even.

Proof. Suppose O is ω-good, but O is not even, i.e. odd. Define

u :O → F2

α 7→

{
0 α ∈

⋃
i≥1 Σ2i

1 α ∈
⋃
i≥1 Σ2i−1

,

The map is well-defined: Clearly O is the union of
⋃
i≥1 Σ2i and

⋃
i≥1 Σ2i−1 as O is

ω-good. To see that the union is in fact disjoint, suppose there is α ∈
⋃
i≥1 Σ2i ∩⋃

i≥1 Σ2i−1. Then there exist k ∈ 2N, ` ∈ N\2N and units εi, ηi ∈ O, such that

α =
∑k

i=1 εi =
∑`

i=1 ηi. Now η` =
∑k

i=1 εi −
∑`−1

i=1 ηi is a sum of k + `− 1 ∈ 2N units
contradicting the assumption that O is odd.

It is easy to check that u constitutes a ring homomorphism. Set w := ker(u), then
O/
w
∼= F2, which shows that w is a prime ideal of O lying over the rational prime 2

featuring inertia degree 1 - a contradiction.

1ϕ denotes Euler’s totient function.
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Corollary 6.7. Let d > 0 be a positive, squarefree integer contained in the sequence

an =
5

2

(
(−1)n + 1

)
+ n (n− (−1)n + 3) .

Then Od is even.

Proof. A short calculation evidences that the positive integers an are precisely those
positive integers a fulfilling both of the following properties:

� a+ 4 or a− 4 is a perfect square

� a ≡ 5 (mod 8).

Anticipating Proposition 6.9, we see that d satisfies condition (ii). Hence Od is ω-
good. Moreover it is a basic fact in algebraic number theory that 2 is inert in Od, if
and only if d ≡ 5 (mod 8). Thus Od meets the requirements of Theorem 6.6, proving
that Od is even.

The following corollary gives a sufficient condition for an algebraic ring of integers
O to satisfy u(O) =∞, which also extends to subrings.

Corollary 6.8. Let O be odd and 2 prime in O. Then for any subfield M ⊆ K 6= Q,
we have u(OM ) =∞.

Proof. It is easy to see that the properties odd and 2 being inert are inherited by any
subfield. By the negation of Theorem 6.6 we obtain, that any odd algebraic ring of
integers O, satisfying that 2 is inert in O, in particular implying that O is active, has
unit sum number ∞. Hence follows the claim.

6.2 The unit sum number of number fields of small degree

Before turning to a general result, we observe some completely solved instances of
low-degree number fields. The quadratic case has been investigated by Belcher as
early as 1974.

Proposition 6.9 ([3, Theorem 7], cf. [47, Lemma 1]). Let K = Q(
√
d), d ∈ Z

squarefree. Then the ring of algebraic integers Od is ω-good, if and only if one of the
following conditions hold:

(i) d > 0, d 6≡ 1 (mod 4) and d+ 1 or d− 1 is a perfect square

(ii) d > 0, d ≡ 1 (mod 4) and d+ 4 or d− 4 is a perfect square

(iii) d ∈ {−1,−3}
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Proof. We first attend to the case, where Q(
√
d) is an imaginary quadratic field, i.e.

d < 0. The unit structure of imaginary quadratic number fields is fully determined2:

Od∗ =


{±1,±i} d = −1

{±1,±ζ,±ζ2} d = −3

{±1} else

,

where ζ denotes a third primitive root of unity. It is readily observed that Q(
√
−1)

and Q(
√
−3) are the only ω-good imaginary quadratic extensions of the rationals.

We move on to consider the case d > 0.

”⇐”

(i) Let d 6≡ 1 (mod 4) and d = a2 ± 1 for some a ∈ Z. In this case {1,
√
d}

constitutes an integral basis for Q(
√
d). We have

(−a+
√
d)(a+

√
d) = d− a2 = ±1,

showing that −a +
√
d ∈ O∗d. Thus

√
d = a + (−a +

√
d) is a sum of units, as

a = 1 + · · ·+ 1︸ ︷︷ ︸
a-times

. Therefore u(Q(
√
d)) = ω.

(ii) If d ≡ 1 (mod 4) and d = a2 ± 4 for some a ∈ Z, then a is odd and {1, 1+
√
d

2 }
forms an integral basis. We calculate(a− 1

2
+

1 +
√
d

2

)(a− 1

2
+ 1− 1 +

√
d

2

)
=

1

4
(a2 − d) = ±1,

observing that both factors are contained in Od and are therefore units. As

1 +
√
d

2
=

1− a
2

+

(
a− 1

2
+

1 +
√
d

2

)
,

the first factor being an integer in Z, we see that Q(
√
d) is ω-good.

”⇒”

We have yet to show that for d ∈ N squarefree, not as in (i) or (ii) the unit sum
number of Q(

√
d) is infinite. Given an integral basis {1, δ}, define the additive map

π : Z[δ] 7→ Z
π(r + sδ) = s,

where r, s ∈ Z. Dirichlet’s unit theorem implies that all units of a real quadratic
number field can be written as ±ηk, where η denotes a fundamental unit of Q(

√
d).

2For a proof see [35, Proposition 3.1.8].
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Without loss of generality we may set η = a+ pδ, with p > 0, as −η is a fundamental
unit as well. We find

π(±ηk) = π(±(a+ pδ)k),

which is divisible by p due to the Binomial theorem. Thus π(Oω) ⊆ pZ, where Oω, as
introduced in Chapter 1, denotes the subring of Od containing all ω-good elements.
Suppose now Od is ω-good, then δ ∈ Oω and π(δ) = 1 ∈ pZ, hence p = 1. Therefore
π(η) = 1 and η = a + δ. Clearly η has norm N (η) = ±1. First let d 6≡ 1 (mod 4),
which entails δ =

√
d, then

N (a+ δ) = a2 − d = ±1 as in case (i).

Suppose d ≡ 1 (mod 4) entailing δ = 1+
√
d

2 , then

N (a+ δ) = a2 + a+
1− d

4
= ±1.

As 4a2 + 4a+ 1 = (2a+ 1)2 is a perfect square and we are led to case (ii).

Pure cubic number fields, i.e. fields of the form Q(3
√
d) with d ∈ Z cubefree, have

been examined by Tichy and Ziegler:

Proposition 6.10 ([48, Theorem 2]). Let K = Q(3
√
d) be a pure cubic field, OK is

ω-good, if and only if one of the two cases hold

(i) d is squarefree, d 6≡ ±1 (mod 9) and d+ 1 or d− 1 is a perfect cube

(ii) d = 28.

Further results have been obtained by Filipin, Tichy and Ziegler [49, Theorem 1.1]
for pure quartic complex fields Q(4

√
d), with Z 3 d < 0 and d 6= −4. We remark that

all of these three special cases have in common, that due to Dedekind’s unit theorem
their unit group-rank is equal to one, i.e. there is only one fundamental unit.

There is yet another type of number field, which we easily recognize as being ω-good,
namely cyclotomic fields. The next theorem warrants an integral basis consisting solely
of units.

To facilitate the readability of the proof, we use an auxiliary lemma to settle some
calculations.

Lemma 6.11. Let p > 2 be prime and α ∈ N, then

p−1∑
j=0

(1 + xα)j ≡ xα(p−1) (mod p).
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Proof. Using the Binomial theorem and exchanging the order of summation, we obtain

p−1∑
j=0

(1 + xα)j =

p−1∑
j=0

j∑
k=0

(
j

k

)
xαk =

p−1∑
j=0

( p−1∑
k=0

(
k

j

))
xαj .

Set

χn(j) =
n−1∑
k=0

(
k

j

)
and γn(j) =

n− j
j + 1

(
n

j

)
The proof is complete, if we are able to deduce χn(j) = γn(j) for arbitrary n, j ∈ N0,
as this leads to

χp(j) = γp(j) ≡ δj,p−1 (mod p) for 0 ≤ j ≤ p− 1.

It is easy to observe that χ1 = γ1. Suppose for a fixed n that χn = γn, then

χn+1(j) =
n∑
k=j

(
k

j

)
= γn−1(j) +

(
n

j

)
=
n− j
j + 1

(
n

j

)
+

(
n

j

)
.

Multiplying the following equation by 1
1+j shows that χn+1 = γn+1:

(n− j)
(
n

j

)
+ (1 + j)

(
n

j

)
= (n+ 1)

(
n

j

)
=

(n+ 1)n!

j!(n− j)!
=

=
(n− j + 1)(n+ 1)!

j!(n− j + 1)!
= (n− j + 1)

(
n+ 1

j

)
.

Theorem 6.12 ([35, Theorem 4.27, Theorem 2.20]). Let m ∈ N, ζm an m-th prim-
itive root of unity. Then the m-th cyclotomic field Km = Q(ζm) has an integral

basis {1, ζm, ζ2
m, . . . , ζ

ϕ(m)−1
m }, where ϕ denotes Euler’s totient function. In particular

OQ(ζm) = Z[ζm].3

Proof. We will proof the theorem only for m = pn with some n ∈ N, p prime. Set

Φ(x) = xp
n−1

xpn−1−1
. By virtue of L’Hospital’s rule we evaluate Φ(x) at some points for

later use:

Φ(1) = lim
x→1

xp
n − 1

xpn−1 − 1
= lim

x→1

pnxp
n−1

pn−1xpn−1−1
= p,

furthermore Φ(ζm) = 0. Consider the shifted polynomial Φ̃(x) = Φ(x+ 1).

3A ring of algebraic integers generated by powers of a single element is called monogenic. For a short
introduction see [35, §2.6], for a proof that there are monogenic number fields of every signature
see [50].
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For j ∈ N we have
(1 + x)jp

n−1 ≡ (1 + xp
n−1

)j (mod p),

which is easily evidenced via induction. Thus using geometric series and applying the
former lemma, we get

Φ̃(x) =
(x+ 1)p

n − 1

(x+ 1)pn−1 − 1
≡ (1 + xp

n−1
)p − 1

(1 + xpn−1)− 1

=

p−1∑
j=0

(1 + xp
n−1

)j ≡ xpn−1(p−1) (mod p).

This computation together with Φ̃(0) = Φ(1) = p reveals that Φ̃ is p-Eisensteinian,
hence Φ is irreducible and thus the minimal polynomial of ζm. Regarding the degree
we obtain [K : Q] = pn−1(p− 1) = ϕ(pn) = ϕ(m). Using the well-known formula

dK(ζm) = ±N (Φ′(ζm)), (6.2)

and noting that Φ̃ is the minimal polynomial of ζm − 1, we arrive at dK(ζm) =
dK(ζm − 1). 4

As the conjugates of ζm form a Q-basis ofK, we must have dK |dK(ζm) = dK(ζm−1);
the quotient is called the index of ζm in K. The proof is finished, if we verify that
dK(ζm) equals a power of p and that the index is not divisible by p, whence dK =
dK(ζm). After some calculations one arrives at

Φ′(ζm) =
pn

ζm(ζp
n−1

m − 1)
.

Noting that N (ζm) = Φ(0) = 1 and ζp
n−1

m = ζp is some p-th primitive root of unity,
formula (6.2) warrants

±dK(ζm) =
pnϕ(m)

N (ζp − 1)
.

By transitivity of the norm

NK/Q(ζp − 1) = NQ(ζp)/Q
(
NK/Q(ζp)(ζp − 1)

)
= NQ(ζp)/Q

(
(ζp − 1)ϕ(m)/(p−1)

)
= NQ(ζp)/Q(ζp − 1)p

n−1
.

Now

NQ(ζp)/Q(ζp − 1) =

p−1∏
j=1

(ζjp − 1) = (−1)p−1 lim
x→1

xp − 1

x− 1
= (−1)p−1p,

4Correction in Narkiewicz’s proof: ..ζq − 1 is the root of F..
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hence dK(ζm) equals some power of p as claimed.

Since the minimal polynomial Φ̃(x) = xϕ(m) + aϕ(m)−1x
ϕ(m)−1 + · · ·+ a0 of ζm − 1

is p-Eisensteinian, we have

1

p
(ζm − 1)ϕ(m) ∈ Z and p2 - NK/Q(ζm − 1).

Suppose now the index of dK(ζm − 1) is divisible by p. There exists µ ∈ OK , bi ∈ Z,

such that pµ =
∑ϕ(m)−1

i=0 bi(ζm − 1)i, where not all bi ∈ Z are divisible by p. Letting
j be the minimal index with p - bj , we see

η :=
1

p

ϕ(m)−1∑
i=j

bi(ζm − 1)i = µ− 1

p

j−1∑
i=0

bi(ζm − 1)i ∈ OK .

Whence also β :=
bj
p (ζm − 1)ϕ(m)−1, which is equal to

η(ζm−1)ϕ(m)−j−1− (ζm − 1)ϕ(m)

p

(
bj+1 +bj+2(ζm−1)+ · · ·+bϕ(m)−1(ζm−1)ϕ(m)−j−2

)
is an algebraic integer. This leads to

pϕ(m)NK/Q(β) = NK/Q(pβ) = NK/Q
(
bj(ζm − 1)ϕ(m)−1

)
= b

ϕ(m)
j NK/Q(ζm − 1)ϕ(m)−1,

and p|bj - a contradiction.

Remark 6.13. As we have seen, the integral bases of cyclotomic fields consist of
units. This immediately implies that all cyclotomic fields are ω-good. Clearly much
more effort is needed to prove that a field is ω-good in comparison to proving that it
satisfies the even-property - confer Example 6.4(ii).

6.3 The unit sum number of number fields

The most important result regarding the unit sum number problem for algebraic
number fields is due to Jarden and Narkiewciz. However, no general criteria are
known, whether OK is ω-good or not.

Definition 6.14. An arithmetic progression of length r ∈ N in a commutative ring
R is a sequence {ai}ri=1 ⊆ R, satisfying ai = a1 + id for all i ∈ {2, . . . , r} and a fixed
d ∈ R.



70 CHAPTER 6. ω-GOOD RINGS

Theorem 6.15 ([7, Theorem 1]). In a ring of algebraic integers O every arithmetic
progression of k-good elements, k ∈ N, has finite length. In particular the unit sum
number of an algebraic number field K is either ω or ∞.

Remark 6.16. The theorem leads to an immediate improvement of Proposition 6.9,
as it shows that the identified quadratic, ω-good extensions OK are not only ω-good,
but fulfil u(OK) = ω. Similarly considering Remark 6.13 we deduce that cyclotomic
fields have unit sum number ω.

To proof the theorem we employ Theorem 5.5 and van der Waerden’s theorem on
arithmetic progressions in Z.

6.3.1 Van der Waerden’s theorem

Theorem 6.17 ([9], cf. [51]). We have ∀k, ` ∈ N : ∃n = n(k, `) ∈ N, such that
a partition of {1, . . . , n} into k subsets, guarantees the existence of an arithmetic
progression of length ` within one of these k subsets.

The smallest possible number n(k, l), for which the theorem holds, is called van der
Waerden number. Though still five-fold exponential the best general bound on n(k, `)
is due to Gowers [52, Theorem 18.2], who deduced

n(k, `) ≤ 22k
22

(`+9)

.

A much easier accessible result was given by Berlekamp [53] about 30 years earlier,
who proved for primes t, that n(k, t) ≥ t2t. There also exist exact result for small k.
We provide a table of all exact values known to date:

vdW. number Value Author

n(2,3) 9 Chvátal [54]
n(2,4) 35 Chvátal [54]
n(2,5) 178 Stevens and Shantaram [55]
n(2,6) 1132 Kouril and Paul [56]
n(3,3) 27 Chvátal [54]
n(3,4) 293 Kouril [57]
n(4,3) 76 Beeler and O’Neil [58]

To prove the theorem we rely on an auxiliary lemma, which employs multi-arithmetic
progressions. To simplify notation for j < k ∈ N we write [j, k] to denote the set
{j, j + 1, . . . , k}.
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Lemma 6.18 ([9, Lemma 2.1]). Suppose van der Waerden’s theorem holds for a
certain ` ≥ 2 and ∀k ∈ N. Then for all k,m ∈ N there is N(k,m, `) ∈ N with the
following property: Set ∆ = [1, N(k,m, `)] and let ρ denote an arbitrary surjective
function ρ : ∆→ [1, k]. Then there exists a function

f : [0, `]m → ∆

f(i1, . . . , im) = a+
m∑
ν=1

iνdν

with suitable a ∈ N, dν ∈ N, such that

(ρ ◦ f)(i1, . . . , is, js+1, . . . , jm) = (ρ ◦ f)(0, . . . , 0, js+1, . . . , jm)

for all js+1, . . . , jm, whenever i1, . . . , is ∈ [0, `−1]. For convenience call such functions
m-long.

Proof. We induct on m, in the case of m = 1 setting

N(k, 1, `) = 2n(k, `),

where n(k, `) is the van der Waerden number for k and ` as before.
Let

∆1 = [1, n(k, `)] and ∆2 = [n(k, `) + 1, 2n(k, `)],

hence ∆ = [1, N(k, 1, `)] is their union. Let I ⊆ [1, k] denote the image of ρ|∆1
. As

|I| ≤ k we invoke van der Waerden’s theorem to find t ∈ I such that there exists a
progression a+ id, 0 ≤ i < `, in ρ−1(t) ⊆ ∆1. As a+(`−1)d ≤ n(k, l) and d ≤ n(k, `),
we have a+ `d ∈ ∆. Therefore setting f to be the progression a+ id, 0 ≤ i ≤ ` in ∆,
we find f([0, `− 1]) ⊆ ρ−1(t). Thus ∀i ∈ [0, `− 1] : (ρ ◦ f)(i) = (ρ ◦ f)(0) as required.

Assume now the lemma holds for a certain m. We define

q :=N(k,m, `)

N(k,m+ 1, `) :=2n(kq, `) +N(k,m, `)

∆1 :=[1, 2n(kq, `)]

∆2 :=[2n(kq, `) + 1, N(k,m+ 1, `)],

and hence ∆ = ∆1 ∪∆2 = [1, N(k,m+ 1, `)]. Define an equivalence relation ∼ on ∆1

by

x ∼ y ⇔ ρ(x) = ρ(y)∧
ρ(x+ 1) = ρ(y + 1)∧
...

ρ(x+ q − 1) = ρ(y + q − 1).
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The number of possible equivalence classes of ∼ is kq, since ρ maps to [1, k] and thus
each of the q conditions evaluates to an integer in [1, k]. As by definition |∆1| =
2n(kq, `) van der Waerden’s theorem grants the existence of an arithmetic progression
a + id, 0 ≤ i < `, which is contained in one of the kq equivalence classes of ∼ in ∆1.
Equivalently we may write

a ∼ a+ d ∼ · · · ∼ a+ (`− 1)d.

This and the definition of ∼ warrants the following set of conditions

ρ(a) = ρ(a+ d) = . . . = ρ(a+ (`− 1)d)

ρ(a+ 1) = ρ(a+ d+ 1) = . . . = ρ(a+ (`− 1)d+ 1)

...
...

...

ρ(a+ q − 1) = ρ(a+ d+ q − 1) = . . . = ρ(a+ (`− 1)d+ q − 1) ,

which may be stated as

∀c ∈ [a, a+ q) : ∀i ∈ [0, `) it is true that ρ(c+ id) = ρ(c). (6.3)

As [a, a+ q) ⊆ ∆ has length q = N(k,m, `) the induction hypothesis yields an m-long
function g : [0, `]m → [a, a+ q). Define

f : [0, `]m+1 → ∆

f(i0, . . . , im) = i0d+ g(i1, . . . , im).

For i0, . . . , is < ` and s ∈ N we have

(ρ ◦ f)(i0, i1, . . . , is, js+1, . . . , jm) = ρ
(
i0d+ g(i1, . . . , is, js+1, . . . , jm)

)
= (ρ ◦ g)(i1, . . . , is, js+1, . . . , jm)

= (ρ ◦ g)(0, . . . , 0, js+1, . . . , jm)

= (ρ ◦ f)(0, 0, . . . , 0, js+1, . . . , jm)

for all js+1, . . . , jm, where the conversion from the first line to the second line is valid
due to (6.3).

Proof of 6.17. The theorem holds trivially for arbitrary k and ` = 2, in which case
we could set n = k + 1. Suppose the theorem holds for a certain ` ∈ N. This enables
us to invoke the previous Lemma 6.18. Keeping the notation of the lemma we set
n(k, `+ 1) = N(k, k, `). Given any surjective function ρ : ∆ = [1, n(k, `+ 1)]→ [1, k],
we obtain a k-long function f : [0, `]k → ∆.
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Put
ar = f(0, . . . , 0︸ ︷︷ ︸

r times

, `, . . . , `)︸ ︷︷ ︸
(k−r) times

for all 0 ≤ r ≤ k. Due to the pigeonhole principle we find ar, as such that ρ(ar) =
ρ(as). Without loss of generality let r < s and define

h(i) = f(0, . . . , 0︸ ︷︷ ︸
r times

, i, . . . , i︸ ︷︷ ︸
(s−r) times

, `, . . . , `).︸ ︷︷ ︸
(k−s) times

We obtain for 0 ≤ i < ` that

(ρ ◦ h)(i) = (ρ ◦ f)(0, . . . , 0︸ ︷︷ ︸
r times

, i, . . . , i︸ ︷︷ ︸
(s−r) times

, `, . . . , `)︸ ︷︷ ︸
(k−s) times

=

(ρ ◦ f)(0, . . . , 0︸ ︷︷ ︸
s times

, `, . . . , `)︸ ︷︷ ︸
(k−s) times

= (ρ ◦ h)(0),

as f is k-long. Moreover

(ρ ◦ h)(`) = (ρ ◦ f)(0, . . . , 0︸ ︷︷ ︸
r times

, `, . . . , `)︸ ︷︷ ︸
(k−r) times

= ρ(ar) = ρ(as) =

(ρ ◦ f)(0, . . . , 0︸ ︷︷ ︸
s times

, `, . . . , `)︸ ︷︷ ︸
(k−s) times

= (ρ ◦ h)(0).

Whence there exists t ∈ [1, k] such that h([0, `]) ⊆ ρ−1(t). By definition of the k-long
map f we see

h(i) = f(0, . . . , 0︸ ︷︷ ︸
r times

, i, . . . , i︸ ︷︷ ︸
(s−r) times

, `, . . . , `)︸ ︷︷ ︸
(k−s) times

= a+

r∑
ν=1

0 · dν +

s−r∑
ν=r+1

idν +

k∑
ν=s−r+1

`dν =
(
a+

k∑
ν=s−r+1

`dν
)

+
( s−r∑
ν=r+1

dν
)
i.

Thus we have shown that h(i) is an arithmetic progression of length ` + 1 in ρ−1(t).
As ρ, being a surjective function, induces a partition {ρ−1(1), . . . , ρ−1(k)} of ∆ into
k subsets and ρ was arbitrary, the proof is complete.

6.3.2 Proof of the main theorem

We introduce for a ring R the auxiliary notation Σr ⊆ R, denoting the set of all
elements being representable by a sum of exactly r units.
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Proof of Theorem 6.15. Suppose we could verify the first claim, i.e. for all r ∈ N every
arithmetic progression in Σr ⊆ O is of finite length. This immediately evidences the
second claim showing that O cannot be r-good, since otherwise Σr = O, which does
contain infinite arithmetic progressions.

Using induction we start with r = 1. For this purpose consider aj = a0 + (j − 1)d ∈
O∗ = Σ1, d 6= 0. Due to Dirichlet’s unit theorem O∗ is a finitely generated subgroup of
C∗ as required by Theorem 5.5. The arithmetic progression may be written in the form
aj+1−aj = d and the left hand side interpreted as non-degenerate solutions to equation
(5.4) in Theorem 5.5. Hence we obtain a boundM2 restricting the progression’s length.

Assume the claim holds for an r ∈ N, let M∗r denote a bound for any progression’s
length in Σr. Choose d 6= 0 and set

Ω = {±u ∈ O∗ : d = u+ v, with v ∈ Σs and 1 ≤ s ≤ 2r + 1},

where we require that for u+v written as sum of units no subsum vanishes5. This set
is finite6 again due to Theorem 5.5, thus we put Ω =: {x1, . . . , xT }. Suppose now there
exists an arithmetic progression aj = a0+(j−1)d in Σr+1 of length W := n(T,M∗r +1).

Representing the left hand side of the equation aj+1 − aj = d 6= 0 as sum of units we
find for each 0 ≤ j < W an εj ∈ Ω appearing as summand. Hence for fixed choices of
εj per pair (aj+1, aj) the map

f : {1, . . . ,W} → {1, . . . , T} mapping j 7→ t, if εj = xt,

is well-defined. Now {f−1(t) : 1 ≤ t ≤ T} is a partition of W into T subsets. Van der
Waerden’s theorem yields an arithmetic progression

ji = i0 + (i− 1)h ∈ f−1(t0)

for some 1 ≤ t0 ≤ T having length M∗r + 1. Now bi := aji − xt0 is an arithmetic
progression7 in Σr as by construction xt0 is contained in the representation of aji as
sum of r + 1 units. The length of the progression bi is M∗r + 1, which contradicts the
induction hypothesis.

6.4 Szemerédi’s theorem and density

By using Szemerédi’s theorem [10] a famous, profound generalisation of van der Waer-
den’s theorem and one of the most powerful techniques, when it comes to arithmetic
progressions of rational integers, one finds a description of the density of n-good ele-
ments in O.

5cf. notation of non-degenerate prior to Theorem 5.1
6∑2r+2

i=2 Mi may be used as a bound.
7bi = ai0+(i−1)h − xt0 = a0 + (i0 + (i− 1)h− 1)d− xt0 =

(
d(i0 − h− 1) + a0 − xt0

)
+ (hd)i.
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Theorem 6.19 (Szemerédi’s theorem). For all ε > 0 and all ` ∈ N there exists a
positive integer N = N(`, ε) such that a subset T of N satisfying |T | > εN contains
an arithmetic progression of length `.

We use Szemerédi’s theorem to give another proof of van der Waerden’s theorem
6.17.

Proof of Theorem 6.17. Let k, ` ∈ N be given. For N 3 n ≥ k there exists a subset T
in any partition of [1, n] into k subsets such that |T | ≥ n

k . Choose some ε > 0, and let
N as in Szemerédi’s theorem. Now choose the number n so large that n

k > εN . As
this implies |T | > εN Szemerédi’s theorem guarantees the existence of an arithmetic
progression of length ` in T ⊆ [1, n].

A restatement in terms of density runs as follows:

Corollary 6.20. A subset T ⊆ N of positive density in N, i.e. limn→∞
|T∩[1,n]|

n > 0,
contains arbitrarily long arithmetic progressions.

Proof. As limn→∞
|T∩[1,n]|

n > 0, we find ε > 0, such that |T∩[1,n]|
n > ε for all n ∈ N.

Hence in particular |T ∩ [1, N(`, ε)]| > εN(`, ε) for all ` ∈ N, which due to Szemerédi’s
theorem 6.19 implies that there exist arithmetic progressions in T ⊇ T ∩ [1, N(`, ε)]
of arbitrary length ` ∈ N.

Apart from Szemerédi’s original paper the proofs of Furstenberg [59] and Gowers
[60] are to be highlighted.

We finish the section by stating

Proposition 6.21 ([7, Corollary 6 and Lemma 3]). Fix a number field K and some
n ∈ N. For all n ∈ N the set NN = {x ∈ N|x is k-good in K, for k ≤ n} has zero
density in N.

Proof. Suppose N has positive density, then by Szemerédi’s theorem we find arbitrar-
ily long arithmetic progressions of positive integers with each integer being a sum of
at most n units. Let such an arithmetic progression S = {a+md}Mm=1 be partitioned
into sets

⋃n
i=1 Si, such that an Si contains all i-good elements of S. Moreover set

Ai = {m : a + md ∈ Si} for i ∈ {1, . . . , n}. An application van der Waerden’s the-
orem to the set {1, . . . ,M} =

⋃n
i=1Ai with M sufficiently large, demonstrates that

we can find an arithmetic progression in one of the Ai’s and hence within one of the
Si’s. Its length increases with M , which in turn can be chosen arbitrarily large - a
contradiction to Theorem 6.15.





Abstract

The unit sum number u(S) of a ring S is defined as

u(S) =


k S is k-good, but not j-good for all j < k with j, k ∈ N
ω S is not k-good for any k ∈ N, but every element is a finite sum of units

∞ there exists an element in S not expressible as a finite sum of units in S

,

where we say the ring S is k-good, if every element in S can be written as a sum of
exactly k units in S.

The thesis deals with the major results regarding specific classes of rings aiming
to determine their unit sum number. It is proved that for matrix rings the unit
sum number does not exceed three. The case of non-commutative, semilocal rings
is completely treated by virtue of the Artin-Wedderburn structure theorem. With
respect to Dedekind domains O, we establish a deep result by Vámos and Wiegand
about an astonishing connection between the unit sum number of matrix rings over O
and the class number of O. Hereafter, an account of Jarden and Narkiewicz’s recent
result about algebraic rings of integers is given.

77





Zusammenfassung

Die Einheitensummenzahl u(S) eines Ringes S ist definiert als

u(S) =


k S ist k-gut, aber nicht j-gut für alle j < k mitj, k ∈ N
ω S ist nicht k-good für irgendein k ∈ N,

aber jedes Element ist endliche Summe von Einheiten

∞ es gibt ein Element aus S, das nicht endliche Summe von Einheiten ist

,

wobei der Ring S k-gut genannt wird, falls jedes Element in S als Summe von genau
k Einheiten in S geschrieben werden kann.

Die vorliegende Arbeit beschäftigt sich mit den Hauptresultaten hinsichtlich ge-
wisser Klassen von Ringen in Bezug auf deren Einheitensummenzahl. Es wird gezeigt,
dass Matrizen eine Einheitensummenzahl≤ 3 aufweisen. Der Fall nicht-kommutativer,
semilokaler Ringe wird unter Zuhilfenahme des Struktursatzes von Artin-Wedderburn
vollständig behandelt. Bezüglich Dedekindringen O werden wir ein tiefliegendes Re-
sultat von Vámos and Wiegand über einen überraschenden Zusammenhang zwischen
der Einheitensummenzahl von Matrizenringen über O und der Klassenzahl von O
herstellen. Danach werden wir eine Abhandlung betreffs kürzlich erschienener Ergeb-
nisse von Jarden und Narkiewicz über Ganzheitsringe bearbeiten.
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[54] V. Chvátal. Some unknown van der Waerden numbers. In Combinatorial
Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta.,
1969), pages 31–33. Gordon and Breach, New York, 1970.

[55] R. S. Stevens and R. Shantaram. Computer-generated van der Waerden
partitions. Math. Comp., 32(142):635–636, 1978.

[56] Michal Kouril and Jerome L. Paul. The van der Waerden number W (2, 6) is
1132. Experiment. Math., 17(1):53–61, 2008.

[57] Michal Kouril. Computing the van der waerden number w(3, 4) = 293. Unpub-
lished?, 2012.

[58] Michael D. Beeler and Patrick E. O’Neil. Some new van der Waerden numbers.
Discrete Math., 28(2):135–146, 1979.

[59] Harry Furstenberg. Ergodic behavior of diagonal measures and a theorem of
Szemerédi on arithmetic progressions. J. Analyse Math., 31:204–256, 1977.

[60] W. T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal.,
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