
DISSERTATION

Titel der Dissertation

A Multi-Domain Framework for

Community Building Based on
Data Tagging

Verfasser

Bojan Božić, MSc.

angestrebter akademischer Grad

Doktor der technischen Wissenschaften
(Dr.techn.)

Wien, im Februar 2014

Studienkennzahl lt. Studienblatt: A 786 880

Dissertationsgebiet lt. Studienblatt: Informatik

Betreuer: Ao. Univ.-Prof. MMag. Dr. Werner Winiwarter

For Silvia, Lea, Ema, and Pia.

Acknowledgements

I would like to express my gratitude to my advisor Prof. Werner Winiwarter.
I couldn’t imagine a better person to work with. During the last years he was
very supportive, helpful, and had the right advice to each problem I might
have come up with (hence, really earned the designation advisor). Also I
would like to thank all of my colleagues for their support and many interesting
and helpful discussions. Especially, Gerald Schimak the coordinator of the
TaToo project which made this thesis even possible, Gerhard Dünnebeil who
did a lot of coding and development effort for the time series toolbox, Denis
Havlik who had a first idea for the thesis topic, Sigi Kluckner and Sergiu
Gordea who came up with several interesting discussions and inspirations. I
am grateful to the head of my business unit Andrea Nowak for her support
and the opportunity to take half a year off in order to complete my thesis.

Special thanks to my friends Christian Wagner for mental support and
Franz Knipp who opened his office for me, gave me asylum and hence pro-
vided a constructive, productive, but most of all, peaceful environment for a
lot of hours of writing. I owe my parents in law, Cäcilia and Alois Vukovich,
a debt of gratitude for their mental and social support when they shared
meat and mead and supported my wife during my absences. Thanks to my
sister and brother in law Daria and Andreas Vukovich for helping out when
help was most needed. Great thanks to my parents Verica and Branko Božić
for giving me life and bringing our family to Austria where I’ve got the op-
portunity to build a family on my own. My brother, Andrej Božić, has also
helped out when needed, thanks bro.

Lea, Ema, and Pia, my lovely and beautiful daughters. I am so glad to be
your dad. Thank you for all the positive distractions you caused, for showing
me what life is all about, and keeping me grounded. I love you so much. But
most of all I am thankful to my wife Silvia Božić who was always there for
me and shared with me all lows and highs of a PhD student’s life. Silvia, I
would never had made it if it wasn’t for you. You gave me your selfless love,
passion, support, encouragement, company, and so much more all the way
long. Thank you, I love you!

iii

Abstract

In time series processing there is a gap between resources and information,
and users (domain experts) who need access to this information. The re-
sources are available on the Web, and attempts have been undertaken to
close this gap by using different approaches. However, none of them was to
integrate Semantic Web technologies as a possible solution to the problem.

There are a lot of existing user communities which have interest in certain
information. The communication between the owner of data, who is not able
to provide her data to the appropriate community, and the communities
themselves is actually a big difficulty and needs improvement. As far as
the data owner is not capable of assigning data to interested people, the
community needs to play a proactive role.

Therefore, a technology is needed which enables a community to get to
the information it needs for their research. This is where a multi-domain
framework for community building through tagged data can be a solution
to the problem. The idea is to use meta information for data and have it
evaluated and tagged by groups of users. Relevant information for a user
group can be dispensable for other groups. Semantic annotations have to
be processed here and used to associate groups and data. A multi-domain
framework can be a benefit and provide a cycle of information enrichment
of different domain ontologies in a multi-domain context. The semantic an-
notations can be used for assignment of time series with meta information
about the annotator, the time of the annotation, the region where the an-
notation has been performed, etc. to the appropriate user. Relying on this
information, the time series can be processed, used for filtering, and ana-
lyzed. The results can be used to build groups of users and communities as
well as virtual habitats around specific topics.

Finally, there would be a world of virtual communities with experts for
certain research topics having easy and fast access to relevant information
and possibilities to exchange knowledge and research results.

v

Zusammenfassung

In der Zeitreihenverarbeitung gibt es eine Lücke zwischen den Ressourcen
und Informationen, sowie Benutzern, die Zugriff auf diese Informationen
benötigen. Die Ressourcen sind im Internet verfügbar und es wurden Ver-
suche unternommen diese Lücke durch die Verwendung unterschiedlicher
Technologien zu schließen. Jedoch keine davon war die Integration von Se-
mantic Web Technologien um zu einer Lösung dieses Problems zu gelangen.

Es gibt eine Vielzahl von bestehenden User-Communities, die Interesse an
bestimmten Informationen haben. Die Kommunikation zwischen den Eigentü-
mern von Daten, die nicht in der Lage sind ihre Daten der entsprechenden
Community zur Verfügung zu stellen, und den Benutzern dieser Daten, ist
tatsächlich eine große Schwierigkeit und muss verbessert werden. Da der
Eigentümer der Daten nicht in der Lage ist eine Zuordnung seiner Daten
zu interessierten Gruppen zu treffen, muss die Community selbst eine aktive
Rolle spielen.

Daher wird eine Technologie benötigt, die es ermöglicht, einer wissenschaft-
lichen Community alle benötigten Informationen für ihre Forschung verfügbar
zu machen. Hierbei kann ein Multi-Domain Framework für Community Build-
ing durch Datentagging eine Lösung für das Problem sein. Die Idee ist, Meta-
Informationen für Daten zu verwenden und durch Benutzer auswerten und
taggen zu lassen. Relevante Informationen für eine Benutzergruppe können
für andere Gruppen uninteressant sein. Semantische Annotationen müssen
hier verarbeitet und genutzt werden, damit Gruppen mit den für sie rele-
vanten Daten assoziiert werden können. Ein Multi-Domain Framework kann
hier von Vorteil sein und einen Zyklus von Informationsbereicherung für
Domänenbenutzer in verschiedenen Domänen mit unterschiedlichen Ontolo-
gien und vielsprachigen Kontexten bieten. Die semantischen Annotationen
können verwendet werden um Zeitreihen mit Meta-Informationen über den
Autor, die Zeit der Annotation, die Region in der die Annotation durchgeführt
worden ist etc. dem richtigen Benutzer zuzuordnen. Unter Berücksichtigung
dieser Informationen können Zeitreihen verarbeitet, gefiltert und analysiert
werden. Die Ergebnisse können verwendet werden, um Gruppen von Be-

vii

nutzern und Communities, sowie virtuelle Lebensräume rund um bestimmte
Themen zu erschaffen.

Dies würde eine Welt virtueller Gemeinschaften von Experten für bes-
timmte Forschungsthemen mit einfachem und schnellem Zugriff auf rele-
vante Informationen und Möglichkeiten zum Austausch von Wissen und
Forschungsergebnissen kreieren.

Copyright Notice

I have tried my best to find all copyright owners of images and to collect
their agreement to use the content in this thesis. Should there be a copyright
infringement however, please inform me about it.

ix

Contents

I Introduction and Backgrounds 1

1 Introduction 3
1.1 Motivation . 3

1.1.1 Time Series Processing Problem 3
1.1.2 Semantic Web Problem 4
1.1.3 Community Building Problem 4

1.2 Contributions . 5
1.2.1 Contributions to Time Series Processing 5
1.2.2 Contributions to Semantic Web 6
1.2.3 Contributions to Community Building 6

1.3 Organization of Thesis . 7

2 State of the Art 9
2.1 Time Series Processing . 9

2.1.1 Background . 9
2.1.2 Approaches . 11
2.1.3 Methods . 14
2.1.4 Literature . 16

2.2 Semantic Web . 17
2.2.1 Background . 17
2.2.2 Basic Standards . 19
2.2.3 Vocabularies . 23
2.2.4 Languages . 26
2.2.5 Web Service Standards 28
2.2.6 Other Standards . 31
2.2.7 Semantic Web Frameworks 32
2.2.8 Ontology Editors . 34
2.2.9 Ontology Mapping Tools 37
2.2.10 Reasoners . 38
2.2.11 Browsers . 40
2.2.12 Annotation Tools . 41

i

2.2.13 Other Tools . 42
2.2.14 Literature . 48

2.3 Community Building . 49
2.3.1 Background . 50
2.3.2 Existing Platforms . 51
2.3.3 Literature . 57

II Implementation 59

3 Time Series Processing Language 61
3.1 Time Series Processing Language 61
3.2 Language Specification . 66

3.2.1 letter . 66
3.2.2 digit . 66
3.2.3 integer . 66
3.2.4 float . 67
3.2.5 number . 67
3.2.6 string . 67
3.2.7 stmt . 67
3.2.8 pipe . 68
3.2.9 generator . 68
3.2.10 ts param id list . 68
3.2.11 formal parameter . 69
3.2.12 expression list . 69
3.2.13 assign expression . 69
3.2.14 if expression . 70
3.2.15 logic expression . 70
3.2.16 add expression . 71
3.2.17 mult expression . 72
3.2.18 expression . 72
3.2.19 ts slice . 73
3.2.20 property access . 73
3.2.21 interval . 73
3.2.22 numeric interval . 74
3.2.23 logical interval . 74
3.2.24 time interval . 74
3.2.25 bra . 75
3.2.26 ket . 75
3.2.27 log index expression 75
3.2.28 int with time . 76

3.2.29 time index expression 76

3.2.30 every phrase . 76

3.3 Architecture . 79

3.3.1 Lexer . 81

3.3.2 Parser . 84

3.3.3 Interpreter . 86

3.4 Expressions . 88

3.5 Benchmarks . 93

3.6 Profiling . 100

4 Semantic Framework 103

4.1 Semantic Repository . 106

4.1.1 Implementation . 106

4.1.2 Semantic Repository Benchmarks 108

4.2 Connectors . 110

4.2.1 Connector Interface . 112

4.2.2 Web Site Connector Class 112

4.2.3 RDFa Parser Class . 114

4.2.4 RDFa Parser Stylesheet 117

4.2.5 Harvesting Benchmarks 120

4.3 Ontology Mapping . 123

4.4 Semantic Processing . 131

4.5 User Interaction and Annotation 138

4.5.1 User Interaction . 138

4.5.2 Annotation . 140

4.6 Future Improvements . 142

5 Community Building 143

5.1 Authentication . 145

5.2 Group Generation . 149

5.3 User and Time Series Rating 151

5.4 Sharing of Time Series among Users and User Groups 154

5.5 SPARQL Endpoint . 159

5.6 Reasoning in Community Building 161

5.6.1 Assignment of Users to Groups 162

5.6.2 Suggestions of Time Series to Users 163

5.6.3 Assignment of Time Series to Groups 163

5.6.4 Suggestions of Related Users to Users 164

III Use Cases and Validation 167

6 Validation of Semantic Time Series Processing 169
6.1 Climate Change Twin Regions – Discovery Platform 171

6.1.1 Introduction . 171
6.1.2 Ontology . 173
6.1.3 Use Case . 181

6.2 Anthropogenic Impact and Global Climate Change 192
6.2.1 Introduction . 192
6.2.2 Ontology . 193
6.2.3 Use Case . 202

IV Conclusions 211

7 Conclusions 213
7.1 Results and Contributions . 213
7.2 Future Work and Research . 216

V Bibliography 219

VI Appendix 233

A Time Series Processing Language Specification 235

B RDFa Parsing Stylesheet 239

C Curriculum Vitae 259

List of Figures

2.1 An environmental time series with threshold plotted in R. . . 10
2.2 The extended, 3D Semantic Web layer cake (by Benjamin

Nowack). 18
2.3 Difference of the view on a web document between browsers

(left) and humans (right) [Group et al., 2012]. 21

3.1 Letter. 66
3.2 Digit. 66
3.3 Integer. 67
3.4 Float. 67
3.5 Number. 67
3.6 String. 68
3.7 Statement. 68
3.8 Pipe. 68
3.9 Generator. 69
3.10 Time series parameter id list. 69
3.11 Formal parameter. 69
3.12 Expression list. 70
3.13 Assignment expression. 70
3.14 IF expression. 71
3.15 Logic expression. 72
3.16 Addition expression. 73
3.17 Multiplication expression. 73
3.18 Expression. 74
3.19 Time series slice. 74
3.20 Property access. 75
3.21 Interval. 75
3.22 Numeric interval. 76
3.23 Logical interval. 76
3.24 Time interval. 77
3.25 First part of bracket. 77
3.26 Second part of bracket. 77

v

3.27 Logical index expression. 77
3.28 Integer with time unit. 78
3.29 Time index expression. 78
3.30 Every phrase. 78
3.31 The language processing architecture. 80
3.32 Workflow of a time series processor. 81
3.33 The web service based architecture. 82
3.34 The Semantic Web architecture. 82
3.35 Execution time of representative expressions for the 3 main

classes. 97
3.36 Execution time of the representative class 3 expressions for the

7 subclasses. 99

4.1 UML component diagram of the Semantic Framework. 105
4.2 Typical workflow example for using the semantic repository. . 106
4.3 Visualized results of the benchmark tests. 109
4.4 UML class diagram representing the architecture of the Web

Site Connector component. 111
4.5 Vizualized results of the harvesting benchmark test. 122
4.6 Relation between bridge ontology and domain ontologies. . . . 129
4.7 Bridge ontology for Semantic Time Series Processing (created

in Protégé and visualized in RDF Gravity). 130
4.8 Output of a consistency check of our bridge ontology in Protégé

using Pellet. 137
4.9 Screenshot of the Semantic Time Series Processing web portal. 139
4.10 Window for annotation of semantic time series. 141

5.1 Semantic tagging and building of groups with common interests.144
5.2 The login window of the Semantic Time Series Processing

portlet. 146
5.3 User settings screen which is presented to the user after her

first login. 148
5.4 An example of group suggestions in the Groups menu. 149
5.5 An example of a detailed view for a group (in this case the

group ‘Water’). 150
5.6 User annotation and rating window after selecting a user from

the table in the group overview. 152
5.7 The annotation and rating window for time series. 153
5.8 Overview of the time series data presented as a line chart. . . 153
5.9 SPARQL endpoint of the Semantic Time Series Processing

portal. 160

6.1 Use case of the prototype. 170
6.2 Screenshot of the Climate Twins application [Ungar et al., 2011].172
6.3 Enlarged screenshot of the Climate Twins control panel [Ungar

et al., 2011]. 173
6.4 Building class of the AIT ontology. 174
6.5 Climate class of the AIT ontology. 174
6.6 ClimateAdaptation class of the AIT ontology. 175
6.7 ClimateMitigation class of the AIT ontology. 175
6.8 ClimateModel class of the AIT ontology. 176
6.9 Energy class of the AIT ontology. 176
6.10 MeasureType class of the AIT ontology. 177
6.11 MeteorologicalPhenomena class of the AIT ontology. 177
6.12 PrecipitationValueExpression class of the AIT ontology. . 178
6.13 Reliability class of the AIT ontology. 178
6.14 SpatialExpression class of the AIT ontology. 179
6.15 TemperatureExpression class of the AIT ontology. 179
6.16 TemperatureType class of the AIT ontology. 179
6.17 TemporalExpression class of the AIT ontology. 180
6.18 ThermalProcess class of the AIT ontology. 181
6.19 Weather class of the AIT ontology. 181
6.20 A simplified overview of the most important parts of the on-

tology. 182
6.21 Sample politician user with Climate Twins ontology. 184
6.22 Sample scientist user with Climate Twins ontology. 185
6.23 Sample business manager user with Climate Twins ontology. . 186
6.24 A list of time series with the topics “Climate Change” and

“Air Pollution”. 187
6.25 Screenshot of the Climate Change and Air Pollution groups. . 191
6.26 Screenshot of the SVOD Web portal. 194
6.27 Screenshot of the GENASIS Web portal. 195
6.28 Cancer class of the MU ontology. 196
6.29 BreastCancer class of the MU ontology. 196
6.30 Compound class of the MU ontology. 197
6.31 Data class of the MU ontology. 198
6.32 Disease class of the MU ontology. 199
6.33 EpidemiologicalMeasures class of the MU ontology. 199
6.34 Matrix class of the MU ontology. 201
6.35 ProjectType class of the MU ontology. 201
6.36 Risk class of the MU ontology. 202
6.37 Simplified overview of the MU domain ontology. 203
6.38 Screenshot of filter settings provided by User 1. 207

6.39 Screenshot of the filtering results as they are presented to the
user. 209

List of Tables

2.1 Overview of time series processing approaches. 14
2.2 Overview of time series processing methods. 16
2.3 Overview of basic standards. 24
2.4 Overview of vocabularies. 25
2.5 Overview of languages. 28
2.6 Overview of web service standards. 31
2.7 Overview of other standards. 32
2.8 Overview of Semantic Web frameworks. 34
2.9 Overview of ontology editors. 37
2.10 Overview of ontology mapping tools. 39
2.11 Overview of reasoners. 40
2.12 Overview of browsers. 41
2.13 Overview of annotation tools. 42
2.14 Overview of other tools. 47
2.15 Overview of community building platforms. 58

3.1 General expressions and their meanings. 62
3.2 Demonstration of time series processing results. 65
3.3 Execution time of the time series processing expressions (Part

1). 94
3.4 Execution time of the time series processing expressions (Part

2). 95
3.5 Overview and categorization of class 3 expressions. 98

4.1 Results of the benchmark tests for the semantic repository. . . 110
4.2 Benchmark results for harvesting websites. 121
4.3 Ontology mapping tools overview according to our requirements.125
4.4 Overview of reasoners according to our requirements. 133

ix

Part I

Introduction and Backgrounds

1

Chapter 1

Introduction

Nowadays we are facing an unbelievable amount of information flooding the
World Wide Web. Recent research in the field of Semantic Web technologies
brought us quite far providing an attempt to tackle a lot of problems the
Web introduced during its evolution. However, the Semantic Web approach
is still far away from being the solution to all current problems concerning
the World Wide Web. When we go deeper in potential fields of application
of Semantic Web technologies it gets harder to find the right solution. An
ideal example is time series processing. While facing the problem of bringing
together time series data and their interpretation with the expert user, we
can use methods from the fields of time series processing, Semantic Web, and
community building to close this gap. This thesis combines those three fields
and presents a possible solution to the problem.

1.1 Motivation

The problem this thesis aims to solve is threefold. As already described, the
thesis combines three disciplines of Computer Science, which are Time Series
Processing, Semantic Web, and Community Building. Hence, there are also
three problems, which need to be explained in the following subsections.

1.1.1 Time Series Processing Problem

Time Series Processing has a long tradition in many different scientific areas,
such as computer science, mathematics, economics, etc.

The latest developments in this field are data mining, time series analy-
sis, forecasting of future data, and handling flexible data formats and large
amounts of data.

3

4

Although the combination of state-of-the-art non-linear time series anal-
ysis and prediction techniques, which are based on mathematical models,
and dynamic data mining techniques provide acceptable results, there is cur-
rently no way to perform such tasks without very large computing capacities
(which are of course very expensive as well).

This is where a combination with Semantic Web technologies can make a
significant improvement. By processing time series together with an ontology
for a specific domain, a lot of computational power can be saved, as time
series data can be interpreted dynamically. Furthermore, users are able to
annotate and tag resources. This way they can improve the assignment to
a domain, which results in more efficient time series forecasting. The Time
Series problem and the approach to solve it are described in detail in Chapter
3.

1.1.2 Semantic Web Problem

In the field of Semantic Web development and research work have made a
lot of progress recently. There are a lot of standards, technologies, tools, and
projects, which are very promising or already established. A state of the art
overview of Semantic Web technologies is given in Chapter 2. Furthermore,
new ideas are needed to refresh current developments and to combine Seman-
tic Web with other disciplines, which may take advantage of its technologies.

However, there is still no complete software solution to be used for the
time series processing field of application. In this thesis a Semantic Time
Series Processing Framework is proposed. The framework is based on the
idea of semantic time series processing, and is discussed in detail together
with the concept of semantically-enriched time series in Chapter 4.

1.1.3 Community Building Problem

The problem with Community Building is not bound to the research field
of Web 2.0, which is also called Social Web. The developments in this field
are growing steadily, software solutions are booming, and there is not much
to worry about at the moment. The only point, which could be criticized is
that Community Building technologies are not being used in other fields of
application, where they can make significant contributions.

In this thesis possibilities of using Community Building techniques for
defining groups of interest for different views on semantically-enriched time
series data, as well as categorization of the groups in certain domains, will
be discussed. Chapter 5 deals with the exploitation of Community Building
to solve problems in Time Series Processing and Semantic Web. Use cases

5

for this approach and validation of the findings can be found in Chapter 6,
they also have been published in Božić and Winiwarter [2013b].

1.2 Contributions

As three different fields of Computer Science are dealt with, this thesis de-
livers contributions to three different fields as well. They can be subdivided
into contributions to Time Series Processing, contributions to the Semantic
Web, and contributions to Community Building.

In fact, contributions means that the results of the thesis bring new sci-
entific findings to these fields and generate new ideas, as well as new ways to
tackle problems in the handled areas of research.

To measure and prove the contributions, improvements, and new ideas
accomplished, the previously mentioned prototypes are the method of choice.
Therefore, in this place, the contributions are being explained by means of
the prototypes and the motivation to develop them. Furthermore, validation
of the developed methodology is accomplished by using ontologies from an
FP7 research project.

The contributions to various fields of research are discussed in detail in
Chapter 7 “Conclusions”.

1.2.1 Contributions to Time Series Processing

Regarding Time Series Processing, before the implementation of an own lan-
guage to fulfill this task started, there were thoughts to use already imple-
mented languages and therefore to save time by reusing existing technologies,
instead of developing something new from scratch. The usage of languages
for numerical computations, such as Octave 1, MATLAB 2, or Mathematica3

was considered. However, a decision has been made, not to use anything
already existing, but to implement a new language taking into account all
the specialities and idiosyncrasies of Time Series Processing.

The prototype implemented to prove the contributions to Time Series
Processing is a dynamic, extensible, and easy to use language specifically de-
veloped for the problem of Time Series Processing. It can be extended to use
other languages, as it is modular and therefore more powerful than general
purpose languages for numerical computation. The main contribution to the
field of Time Series Processing is to have an all-in-one solution for all kinds

1http://www.gnu.org/software/octave/
2http://www.mathworks.com/products/matlab/
3http://www.wolfram.com/mathematica/

6

of problems in this area. The input for the language are time series and an
expression, which defines how they should be processed. This is a boundary
to other, general-purpose languages, as they are not able to work with time
series directly. The output is an arbitrary number of time series containing
the results of the calculations, as defined by the expression. An exact de-
scription of the language and its benefits and contributions can be found in
Chapter 3 “Time Series Processing Language”. The requirements analysis
and language specification have also been published in Schimak et al. [2011]
and Božić et al. [2012].

1.2.2 Contributions to Semantic Web

In the field of Semantic Web technologies there are a lot of tools, technolo-
gies, standards, and projects, as Chapter 2 “State of the Art” demonstrates.
However, the problem is that there is no general framework, which can be
used by some client who is willing to enrich her application easily, flexibly,
and quickly by using only one single framework or toolbox from one single
vendor in terms of time series processing.

The Semantic Framework prototype, as a contribution to the Semantic
Web, is therefore implemented to demonstrate how such an architecture could
be accomplished. It consists of a Data Access component for access to a
semantic repository, databases and connectors to other resources; a Semantic
Processor for reasoning and processing of semantically-enriched time series;
an Annotation and Tagging component for handling annotations from users;
and a Semantic Discovery component for discovery of semantic resources,
generally time series, which can be tagged and processed. The application
using the framework to be enriched by Semantic Web technologies, can be
a Web Service, a library, or any kind of stand-alone application. All details
about the prototype and its advantages can be found in Chapter 4 “Semantic
Framework”. The framework description has also been published in Božić
[2011], the ontology mapping and reasoning in Božić and Winiwarter [2013a].

1.2.3 Contributions to Community Building

Community Building can be seen as an additional outcome of the thesis.
The prototype, which provides contributions to Community Building, is a
direct result of the other two prototypes, which means that it contributes
to Community Building based on the functionality which is offered by Time
Series Processing and Semantic Web technologies.

The principle is quite obvious: If one imagines time series as data input
and semantics as enrichment of the data input, as well as users and groups

7

of scientists, which are specifically interested in one certain aspect of the
time series, it is relatively clear that there must be communities of people,
in a so-called domain, which a certain view on a time series is dedicated
to. Therefore, the contribution to Community Building is a semi-automatic
approach to generate communities using a certain, common interest around
semantically-enriched time series. The prototype for Community Building is
simply integrating this approach, which it thereby makes available to the field
of Community Building. The Community Building prototype is introduced
in Chapter 5 “Community Building”. It has also been published in Božić
and Winiwarter [2012] and Božić [2012].

1.3 Organization of Thesis

This introduction, being the first Chapter of the thesis, aims at addressing
a number of problems in three different fields, which this thesis combines,
suggesting a new scientific approach to bring us a step further and refresh the
Semantic Web movement by offering a couple of new ideas to this exciting
research area. It starts with the motivation for writing this thesis, continues
by giving an overview of scientific contributions, and ends with a description
of the organization of the thesis.

The second Chapter “State of the Art” contains an extensive state-of-the-
art analysis of current standards, technologies, tools, and projects. It aims
to provide an as much as possible complete overview of previous work and
to present how far the research in the Semantic Web has come until today.

Chapter 3 “Time Series Processing” sets the stage for the main part
of the thesis by introducing time series; methods of traditional time series
processing; a modern Time Series Processing language, implemented within
the scope of this thesis; and expressions in Time Series Processing defining
current possibilities and weaknesses of Time Series Processing.

The fourth Chapter “Semantic Framework” introduces a new concept of
Time Series Processing. It shows the difference to traditional time series,
how ontologies are used to enrich time series, how tagging and annotation
is performed, and what the technical details and benefits are. Further it
introduces a language to fulfill the complex task of processing Semantic Time
Series. The chapter provides a specification of the language, details about
the implementation, and sample expressions showing the capabilities of the
language.

In Chapter 5 “Community Building” the context of Community Building
is presented which is relevant for the thesis, but also the usage of the Semantic
Framework to enable Community Building, different Community Building

8

methods, use cases, and examples.
Chapter 6 “Validation of Semantic Time Series Processing” shows use

cases based on ontologies developed in TaToo’s validation scenarios “Climate
Change Twin Regions – Discovery Platform” and “Anthropogenic Impact
and Global Climate Change”.

Finally, the last Chapter 7 “Conclusions” provides a summary of the the-
sis’ contributions to research in the fields of Time Series Processing, Semantic
Web, and Community Building, as well as a preview of future research topics
and fields based on the findings of this thesis.

Chapter 2

State of the Art

The first part of the thesis is a thorough state-of-the-art analysis. Therefore,
this chapter provides a background on time series processing, Semantic Web,
and community building; it presents relevant literature in these fields and
lists existing technologies. We remind the reader that this can only be a
snapshot, since technology in computer science is developing rapidly, and
there are a lot of different solutions; therefore, we only claim to list the most
popular standards, methods, tools, and technologies to our best knowledge.
Parts of this chapter have already been published in Božić [2011].

2.1 Time Series Processing

Time series processing is the application of time series analysis in computer
science. This means that time series analysis methods are implemented in
several programming languages and used to perform various calculations with
time series values.

As the problem area is slightly different from the view point of computer
science, compared to mathematics, we concentrate in this section on this
special point of view.

2.1.1 Background

Our understanding of time series is that time series consist of slots. Each
slot has a certain time stamp and a value. Hence, the simplest time series
is a table with two rows, where the first row contains the time stamps and
the second row the values. The intervals between time stamps do not have
to be equally spaced. Additionally, slots, as well as whole time series, can
have certain properties. For time series this means that they are able to

9

10

carry additional information, which is valid for slots and their values, and is
specific for the whole time series. In the case of slots, this means that they
are able to transport more than one value for a certain time stamp.

A simple time series, plotted in R1, is shown in Figure 2.1. It consists of
environmental measurements of a certain hazardous material for the last 20
years. The red line defines the threshold, which, when exceeded, leads to the
fact that the air quality is considered dangerous.

A time series with environmental measurements

Time

V
a

lu
e

1990 1995 2000 2005 2010

0
5

1
0

1
5

Figure 2.1: An environmental time series with threshold plotted in R.

To process time series data, we use certain expressions. For example,
Equation 2.1 shows the processing of a time series with awareness of thresh-
old exceeding. The input is a time series with measurements of ozone concen-
tration in Vienna. The expression defines that the property warning should
be set to “ACTIVE” if the value of 10 ppm (parts per million) is exceeded,
and to “INACTIVE” if the value is within limits.

@Ozone V ienna < warning = “ACTIV E”

if Ozone V ienna[n] > 0.1 ppm

otherwise warning = “INACTIV E” > (2.1)

Another example is shown in Equation 2.2, where the acidity of water
in the Danube is measured. The input time series contains values of the

1http://www.r-project.org

11

measurement. The expression calculates mean values of pollution for one
week. Therefore, the selected time series data lasts from past one week to
the current week, where every week one slot is taken. The result is a time
series of mean values with a constant interval (one value per week).

@Acidity Danube < Acidity Danube[t − 1 week .. t].mean > every 1 week
(2.2)

Finally, Equation 2.3 shows the interconnection of two expressions with
the pipe operator. This means that the two expressions are calculated one
after another, and the output of the first is used as input of the second.

@Time Series < A[n] ∗ 2 > || @Time Series < A[n] / 2 > (2.3)

As we can see from the previous expressions, time series processing can be
very powerful and can help us with processing measurements and deriving
decisions from the results. The processing can take place in real-time by
streaming a time series or with a time series whose data is already complete.
In our approach it does not matter in which domain the processing itself
takes place or from which domain the data originates.

2.1.2 Approaches

As time series contain data, time series analysis means the same as data
analysis. The only difference is that time series data is structured by time.
In the following some of the most popular approaches for analysis of data in
time series are introduced and described.

Forecasting

Machine learning models have started to play a more and more dominant role
in time series processing, especially in the area of forecasting [Ahmed et al.,
2010]. The first approaches emerged when neural network models had been
developed to replace classical statistical models. After that, other models
have been extended as well, such as support vector machines, decision trees,
etc. All of them together are called machine learning models ([Hastie et al.,
2009] and [Alpaydin, 2010]). Theoretical understanding of models has been
developed widely during the last years, and also the validation of models
through examination and performance comparison has been an important
goal. For the user, the important point is to provide less choices, but to

12

increase quality and usefulness of the proposed models, as well as to provide
knowledge about strengths and weaknesses.

In machine learning, especially its large scale studies, most of the research
has been done regarding the classification domain [Caruana and Niculescu-
Mizil, 2006]. Sharda and Patil [1992] have compared neural networks to
ARIMA2 on the M-competition3 time series data. Hill et al. [1996] have
also considered the M-competition data and have compared neural networks
with traditional methods. Swanson and White [1995] have applied their com-
parison to nine US macroeconomic series. Alon et al. [2001] have analyzed
neural networks versus other traditional methods, such as Winters exponen-
tial smoothing4, Box-Jenkins ARIMA, and multivariate regression, on retail
sales data. Callen et al. [1996] have compared neural networks with linear
models for 296 quarterly earnings time series. Zhang et al. [2004] tackle a
common weakness, but with additional variables. Tersvirta et al. [2004] con-
sider neural networks, smooth transition auto-regressions, and linear models
for 47 macroeconomic series. Although not all outcomes of these studies are
clear, generally it can be said that neural networks are able to outperform
classical linear techniques.

Spatial Data Analysis

There are two ways of performing spatial data analysis: the first one is vector-
based and the second one raster-based [Raju, 2005]. For spatial analysis in
time series processing, we need spatial relationships between map features
and attribute data. Spatial analysis has some important tasks for operations,
the most important of them are described in the following list:

• Single layer operations: operate on single data layers and correspond
to queries as well as alterations of data.

• Multi layer operations: operate on multiple layers and manipulate spa-
tial data.

• Topological overlays: are operations for multiple layers. They collect
features from different layers and combine them to form new maps,
provide new features and information, and therefore improve already
existing maps.

2http://people.duke.edu/~rnau/411arim.htm
3http://www.neural-forecasting.com/m-competitions.htm
4http://www.slideshare.net/ForecastIT/forecast-it-5-winters-

exponential-smoothing-4370646

13

• Point pattern analysis: examines and evaluates spatial patterns as well
as point features.

• Network analysis: designed for connected networks and their line fea-
tures, deals with transportation problems or location analysis, e.g.
routing, optimization, path finding, etc.

• Surface analysis: uses spatial distribution of three-dimensional surface
information.

• Grid analysis: processes spatial data in regularly spaced form.

• Fuzzy spatial analysis: fuzzy set theory based. The fuzzy set theory
is a generalized Boolean algebra for situations with gradual transition
zones, which are used for class separation without using conventional
crisp boundaries.

Time Series Analysis

In time series analysis, the main goal is to extract statistics out of one or more
time series on the one hand, and to work with that data on the other hand.
Another important functionality is filtering of time series data. This means
that we want to present only selected parts of time series to the user, or
to provide a certain view (e.g. select some properties which are specifically
relevant to the user) of the data, etc. However, time series processing is
systematic, which means that we apply a specified procedure in order to
extract statistical and mathematical solutions to a problem. This problem
can be bound to time correlation, distribution of observation, transformation
of data, and data selection.

A lot of (maybe even all) data in computer science, but also in other fields
(e.g. medicine, finance, social sciences, etc.) can be modelled as time series.
Here, time series processing can provide approaches to solve the problems.
Lately, a field which is very important in the context of this thesis has become
more and more popular as a field of application in time series analysis, namely
the environmental field.

Overview

Table 2.1 presents an overview of approaches in Time Series Processing. The
approaches are listed in alphabetical order, and their category and purpose
are described.

14

Name Category Purpose

Forecasting Machine learning model Used to calculate future
time series values.

Spatial Data Analysis Data analysis approach Used to analyze spatial
data.

Time Series Analysis Data analysis approach Used to analyze time
bound data.

Table 2.1: Overview of time series processing approaches.

2.1.3 Methods

The methods in time series processing are subdivided into frequency-domain
and time-domain methods. Therefore, at first these two main fields are ex-
plained. Additionally, a description of some of the most popular correlation
and analysis methods is given.

Frequency-Domain Methods

Frequency-domain methods assume that points of interest for users of time
series relate to natural variations, which can be found in most data. This is
often caused by phenomena of interest (biological, physical, or environmen-
tal). Actions like winds or changes of water temperature can cause reactions
of the environment they have an impact on. Therefore, the frequency-domain
methods analyze and extend studies in periodicities by measuring frequent
changes and their impacts.

Time-Domain Methods

For time-domain methods the assumption that correlation between points
in time can be described by the dependence of current and past values is
made. They focus on modeling of future values of time series, which can
be predicted by using current and past values. The starting point is linear
regression of present values on their own past values and on past values of
other time series.

Auto-Correlation

Auto-Correlation is a kind of cross correlation (see below), where the signal
cross-correlates with itself. It describes similarity between functions and the
time separation between them. Auto-correlation is often used in time series
processing to find patterns (e.g periodic signals and noise, etc.).

15

Cross-Correlation

Auto-correlation has the problem that there is a peak at a lag of zero. There-
fore, cross-correlation includes a standardizing factor, which leads to corre-
lation values between -1 and +1. The term cross-correlation refers to the
correlation between two random variables, while the correlation of a vector
is a correlation matrix between the components of that vector.

Spectral Analysis

Spectral analysis partitions periodic variation and therefore influences vari-
ance associated with periodicity of interest. The power spectrum is the
variance profile over frequency. Time- and frequency-domain methodolo-
gies produce often similar answers for long time series, but the performance
is better in the time domain. Sometimes the frequency domain is just more
convenient, but could also be covered in a more efficient way by time domain
methods.

Wavelet Analysis

Wavelet analysis is a rather new trend in time series processing. It helps to
analyze localized variations of power in time series [Torrence and Compo,
1998]. When a time series is divided into time-frequency space, variability
and time dependency can be determined. This analysis method is popular in
geophysics and used there for many different fields of application (e.g. trop-
ical convection, oscillation, temperature prediction, etc.). Wavelet analysis
lacks quantitative results so far, however, it has been regarded as an inter-
esting diversion by many scientists and is able to produce pure qualitative
results. The problem is that wavelet analysis transforms one-dimensional
time series to diffuse two-dimensional images of time-frequency. Therefore a
misconception can be assumed. The solution could be an arbitrary normal-
ization and statistical significance tests.

Overview

Table 2.2 presents an overview of methods in Time Series Processing. The
methods are listed in alphabetical order, and their category and purpose are
described.

16

Name Category Purpose

Auto-Correlation Correlation method Correlates a variable with itself.
Cross-Correlation Correlation method Correlates two random variables.
Frequency-Domain Analysis method Measure frequent changes.
Methods
Spectral Analysis Analysis method Partitions periodic variations.
Time-Domain Analysis method Predictions based on
Methods time changes.
Wavelet Analysis Analysis method Analyzes localized variations.

Table 2.2: Overview of time series processing methods.

2.1.4 Literature

Shumway and Stoffer [2010] offer an exhaustive overview of the current state
of the art in Time Series Processing. Modern techniques in time series anal-
ysis are described, such as categorical time series analysis, the spectral enve-
lope, multivariate spectral methods, long memory series, non-linear models,
longitudinal data analysis, ARCH models, resampling techniques, wavelets,
stochastic volatility, etc.

It is also worth to mention developments like non-linear system identi-
fication and characterization of time series, which depends on appropriate
pre-processing of data. A neural network architecture is used to extract
NLPCs (non-linear principal components) [Rico-Martinez et al., 1996].

The time series modeling approach developed by Lehtokangas et al. [1996]
has a neural network structure with three layers and uses a general autore-
gressive model; Figwer [1997] presents an approach for the simulation of wide-
sense stationary random time series defined by their power spectral density;
and the study of Zhang et al. [2001] presents an experimental evaluation of
neural networks for non-linear time series forecasting.

As Fazlollahi et al. [1997] state, the effectiveness of decision support sys-
tems (DSS) is enhanced through dynamic adaptation of support to the needs
of the decision maker, to problem, and decision context. Chuang and Ya-
dav [1998] developed an integrated conceptual model of an adaptive decision
support system (ADSS).

The state-of-the-art in Semantic Web and Web Mining is developing very
fast. These two research areas are more and more combined together; as a
result, Web Mining is being improved by exploiting semantic structures in the
Web, and its techniques are used for building the Semantic Web [Stumme
et al., 2006]. Therefore, it would improve the situation to use time series
data, which is enriched by semantics, in order to combine these two fields.

17

This means that semantically enriched time series are used to transport data
from Web Mining applications and services to Semantic Web applications
and back.

As time series pattern extraction and processing is a very complex pro-
cess [Yuan and Huang, 2001], it could be simplified by a Service Oriented
Architecture approach for sensor networks (from which time series currently
originate in general). Therefore, the data model would be enriched with
semantic concepts, and complex decision support systems could be imple-
mented [Amato et al., 2010]. Patel-Schneider and Horrocks [2007] show that
the Semantic Web is best realized by using standard logics. This would also
be the case when using semantic time series, as time series processing is
always based on standard logics.

2.2 Semantic Web

Semantic Web is a collective name for standards, technologies, and tools,
which can be used to add meaning to data. The idea behind the Semantic
Web is that information should not be interpreted by intelligent algorithms
or artificial intelligence approaches, but rather be structured beforehand in
a way that it can be processed and used by simple applications or, simply
said, information should be machine-understandable.

2.2.1 Background

The World Wide Web, as we know it and as it nowadays exists, is undergoing
massive changes (at least this is the prediction of experts) [Berners-Lee et al.,
2001]. The future promises an evolution of the current human-readable Web
towards a machine-understandable and meaningful Web which can be pro-
cessed by simple software implementations based on the structure it has. Se-
mantic Web approaches can be used to fulfill this by structuring information
and therefore preparing it for further processing. The biggest (and probably
also only) challenge is to convince the user to provide meta-information and
annotate data she creates or to tag automatically generated data. The Se-
mantic Web is an extension of the Web we use today with the goal to bring
it towards the direction of automated processing of data.

Figure 2.2 shows the structure of Semantic Web technologies5. The tech-
nology stack is an extension of the originally presented (simpler), so-called
layer cake. The linked data pillar represents a selection of Semantic Web
technologies that are used for linked data. The Semantic Web technology

5http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake

18

Figure 2.2: The extended, 3D Semantic Web layer cake (by Benjamin
Nowack).

graphic classifies the technologies into the following categories: web platform,
formats, information exchange, query, models, rules, applications, proof, se-
curity, trust, and logic.

The Semantic Web works with structured information and inference rules,
which it uses to generate new information out of the already existing knowl-
edge. This approach is called reasoning, which accepts that information is
not always complete and that there is not a central instance which controls
all knowledge. The goal remains to model the real world as complete as
possible, but also to take into account that there might be always missing
information. However, it is important to have a language (and logic) to de-
scribe a great complexity of properties and objects and to add additional
vocabularies where needed. The most important standards to fulfill this task
are the eXtensible Markup Language (XML)6 and the Resource Description
Framework (RDF)7. XML allows the user to define her own structure for
her documents and RDF allows to express meaning which is described by
triples (subject – predicate – object) of elementary sentences. All resources
are identified by a Universal Resource Identifier (URI).

6http://www.w3.org/XML/
7http://www.w3.org/RDF/

19

A very important part of the Semantic Web world are ontologies. This
is because information about resources and their relations are modeled and
stored in ontologies. Since more than one ontology can be used by an appli-
cation simultaneously, ontology mapping needs to be implemented. Ontology
mapping is a method to combine multiple ontologies by finding out which
common definitions they have (e.g. same classes with different names). More-
over, ontologies consist of a taxonomy and inference rules. Ontologies can
therefore improve web searching by helping to retrieve pages which refer to
a precise concept and not pages with ambiguous keywords.

While this sounds very powerful so far, it must be noticed that only imple-
mentations of programs which collect content from different kinds of sources,
process information, and exchange results with other software can reveal the
Semantic Web’s real power. Such software programs are called agents. As
the Semantic Web grows, more and more agents are being implemented and
the challenge is to guarantee that agents which are not designed to work
together can communicate from scratch. This is only possible if a unified
language is used. This language is currently on the one hand the Resource
Description Framework Schema (RDFS)8, and on the other hand the Web
Ontology Language (OWL)9 (see next section).

The extensibility of the Semantic Web by simply adding new URIs for
concepts makes it easy for users to create new concepts. The concepts are
enabled by a unifying logical language and progressively linked into the Web.
The structure opens up the knowledge, whose meaning can be analyzed by
software agents.

2.2.2 Basic Standards

In the following, basic standards of the Semantic Web are explained. These
standards are well known in the Semantic Web community and recommenda-
tions of the World Wide Web Consortium. They are the basis for advanced
Semantic Web methodologies such as ontology mapping and reasoning.

Extensible Markup Language (XML)

The Extensible Markup Language10 describes XML documents, which can
be defined by users and contain structured data, and partially the behavior
of software for processing XML documents. XML is a subset of its prede-

8http://www.w3.org/TR/rdf-schema/
9http://www.w3.org/TR/owl-features/

10http://www.w3.org/TR/2008/REC-xml-20081126/

20

cessor Standard Generalized Markup Language (SGML)11. Therefore, XML
documents are also valid SGML documents.

XML documents contain units, which consist of parsed and unparsed
data. Parsed data is markup and character data (CDATA). The markup
defines the document’s layout and logical structure, which can be constrained
by XML elements.

XML documents can be read and accessed by XML processors. XML
processors, in turn, are used by applications which use XML documents as
input and/or output.

XML Schema

XML Schema12 describes valid formats of XML data-sets13. The schema
defines the meaning and purpose of XML elements, i.e. it defines which
elements are allowed at which place in the document, which attributes may be
defined for which elements, how many occurrences of attributes and elements
are allowed, etc.

The first requirement on XML documents is to be “well formed”. This
means that there must not be any syntactic errors in the document definitions
and content. After that, validity checks could be done to find out whether a
document is also “valid”. Validation is only possible if there is some schema
definition against which documents can be checked. In “well formed” doc-
uments there has to be exactly one root element, every sub-element needs
to have start and end tags, and they have to be properly nested. A “valid”
document is “well formed” and needs to conform to certain production rules.

Resource Description Framework (RDF)

The Resource Description Framework (RDF)14 is the basic technology to cre-
ate triples for the Semantic Web [Brickley and Guha, 2000]. Furthermore,
it is the standard to exchange information for machines on, but also off, the
Web. RDF can be expressed in XML and thus uses this standard to de-
scribe resources very often, but the resources themselves are not restricted
to any format. Fields of application are discovery of resources, cataloging
and archiving, in cooperation with intelligent agents, or simply describing
resources and adding machine-readable meta-information. RDF is consid-
ered one of the key technologies to build the “Web of Trust” as well. The

11http://www.w3.org/MarkUp/SGML/
12http://www.w3.org/XML/Schema
13http://lucas.ucs.ed.ac.uk/xml-schema/
14http://www.w3.org/RDF/

21

admission of RDF as a W3C recommendation has led to a wide acceptance
and usage in the Semantic Web community.

Resource Description Framework in attributes (RDFa)

Web sites are interconnected and designed to be human-readable and under-
standable [Group et al., 2012]. Still most of web page developers use HTML
and its elements, which can be interpreted and presented by web browsers.
The links are defined in HTML and can be easily recognized by humans or
web crawlers, but there is no way to find out where a link leads until it
is followed. Therefore, without artificial intelligence techniques there is no
way for machines to interpret web sites and reduce labor for human users,
e.g. automate the search and filtering process or make the presentation for
humans more efficient and compact (increase information density).

Figure 2.3: Difference of the view on a web document between browsers (left)
and humans (right) [Group et al., 2012].

Figure 2.3 shows the difference between the perception of a web site for
a browser and a human user. In HTML the browser has information about
how the content can be visualized, but is not able to recognize the content
itself (which is an easy task for a human user).

If browsers would be in the position to take tags and annotations of web
sites into account, they could present information to users more naturally,
and could show content from different pages on one page as a summary for
users. For example, if a person wants information on a restaurant, she could
retrieve the name of the restaurant, the opening hours, the address (including
a map), and the menu on only one web site. This would require that the
browser is able to interpret all sites it collects information from to be able to
generate such a summary for the user.

22

This is exactly what RDFa15 targets. Through the possibility to add
RDF triples (meta-information) directly in HTML, it allows a semantic web
browser to interpret text on web sites. This is possible for simple pages (e.g.
people’s business cards), but also for complex sites (e.g. content management
systems or social networks).

Resource Description Framework Schema (RDFS)

RDFS is an extension of the Resource Description Framework. It provides
classes and properties for the description of ontologies. Its goal is to structure
web resources in form of triples, which can be stored in a triple store and
retrieved with the query language SPARQL (SPARQL Protocol and RDF
Query Language).

Web Ontology Language (OWL)

The acronym for the Web Ontology Language16 is OWL. This might sound
a little bit strange, since the logical acronym would be WOL, but this “joke”
could be recognized by Winnie-the-Pooh fans. In this cartoon, the owl writes
its name wrong by interchanging O and W. Since the OWL writes WOL, the
acronym for the Web Ontology language is OWL instead of WOL. OWL
is a W3C recommendation and a popular and widely-used standard in the
Semantic Web community [McGuinness and van Harmelen, 2004]. It provides
the means (semantics) for defining triples and therefore enables automatic
processing and integration of information for machines on the Web. The
most commonly used syntax is RDF/XML, which can be easily processed by
Web applications due to its XML background. OWL is an extension of RDF
and a complete ontology engineering language, which is also used to describe
documents on the Web.

In contrast to other standards, OWL fulfills all criteria in order to be a
complete Web Ontology Language:

• XML does not cover information about the meaning of a document.

• XML Schema extends XML by the data type concept and forces a
certain structure on XML documents.

• RDF enables the definition of triples (subject – predicate – object) and
can be used with XML syntax.

15http://www.w3.org/TR/xhtml-rdfa-primer/
16http://www.w3.org/TR/owl-features/

23

• RDF Schema describes hierarchies of attributes and classes and there-
fore extends RDF.

• OWL extends RDF(S) and provides means to describe relations be-
tween classes, equality, cardinality, characteristics and stylization of
attributes and classes, etc.

In order to reduce complexity for unexperienced users, OWL has three
subsets of expressivity: OWL Lite, OWL DL, and OWL Full (OWL Lite ⊂
OWL DL ⊂ OWL Full).

SPARQL Protocol And RDF Query Language (SPARQL)

SPARQL17 is a recursive acronym and stands for SPARQL Protocol and
RDF Query Language. It is important to RDF, because of its ability to re-
trieve RDF data from a knowledge base (RDF triple store). The RDF Data
Access Working Group has developed SPARQL and its use cases and require-
ments [Prud’hommeaux and Seaborne, 2008]. The main task, as defined by
the working group, is the generation of queries and retrieval of results (very
closely related to SQL). The SPARQL Query Results XML Format Specifica-
tion defines a SPARQL SELECT and ASK query format to represent results
in XML.

Overview

Table 2.3 shows an overview of the most popular basic standards in the
Semantic Web area.

2.2.3 Vocabularies

Vocabularies are predefined collections of classes and attributes that provide
a basis for building a domain ontology for a certain task. In the following,
we describe the most popular vocabularies in the Semantic Web.

Dublin Core (DC)

Dublin Core18 was first introduced during a workshop of librarians and com-
puter scientists to improve resource discovery [Weibel et al., 1998]. This was
continued in the so-called Dublin Core Metadata Workshop Series. Dublin
Core’s goals are to make creation and maintenance of resources easier, to

17http://www.w3.org/TR/rdf-sparql-query/
18http://dublincore.org/

24

Name Category Purpose

Extensible Markup Markup language Used to describe
Language (XML) structured data.
XML Schema Markup definition Used to validate

language XML documents.
Resource Description Resource description Used to define triples.
Framework (RDF) language
Resource Description Resource description Used to define triples
Framework in attributes language in HTML.
(RDFa)
Resource Description Resource description Used to define triples.
Framework Schema language
(RDFS)
Web Ontology Resource description Used to define triples.
Language (OWL) language
SPARQL Protocol and RDF query Used to query a
RDF Query Language language knowledge base.

Table 2.3: Overview of basic standards.

understand the semantics, to conform to standards, to enable extensibility,
and to improve interoperability. The Dublin Core vocabulary is maintained
by the Dublin Core Metadata Initiative.

Friend of a Friend (FOAF) Vocabulary

The FOAF19 vocabulary aims to describe the world by using simple web
based ideas [Brickley and Miller, 2010]. Descriptions in FOAF are catego-
rized into properties, which are classes and links. Therefore, FOAF is a
dictionary of terms, where every term is a class or property. The idea is that
other projects provide other classes and other properties, but to link them to
FOAF, so that the modeled world grows a bit every time a new vocabulary
is linked. FOAF is published on the web as RDF/XML or RDFa. It can be
imported into ontologies or web sites to use its classes and properties. In fact,
FOAF tries to build a network of people with published FOAF profiles on
various web sites and in various ontologies. There is no guarantee that such
profiles are not falsified, but the probability that the information is useful
is quite high and the ability to merge documents and combine descriptions
is an interesting approach. The FOAF vocabulary describes people, groups,

19http://www.foaf-project.org/

25

documents, etc.

Simple Knowledge Organization System (SKOS)

SKOS’s20 goal is to provide a framework which can improve machine readabil-
ity, i.e. format knowledge to a structure that can be understood by machines
[Miles et al., 2005]. SKOS is a standard and vocabulary with RDF(S) at-
tributes and classes, which can be used to define knowledge structure and
generate RDF graphs. It supports different kinds of Knowledge Organization
Systems (KOSs), these are vocabularies, taxonomies, glossaries, schemas, etc.

Semantically Interlinked Online Community (SIOC)

SIOC21 tries to improve adoption by community sites and usage with ex-
isting ontologies [Breslin et al., 2006]. The challenge is to reach a critical
mass of users for the SIOC ontology. This could be done by automatically
created properties and easily understandable concepts. Another challenge
is to get users for the ontology by mappings and interfaces to other widely
used ontologies (e.g. DC, FOAF, etc.). Finally, there are open questions like
scalability, update of topics, etc.

Overview

Table 2.4 presents an overview of the most popular vocabularies in the Se-
mantic Web.

Name Category Purpose

Dublin Core (DC) Vocabulary Description of
resources

Friend of a Friend Vocabulary Description of friends
Vocabulary (FOAF) and communities.
Simple Knowledge Vocabulary Define knowledge
Organization System structure.
(SKOS)
Semantically Interlinked Vocabulary Used for community
Online Community sites.
(SIOC)

Table 2.4: Overview of vocabularies.

20http://www.w3.org/2004/02/skos/
21http://sioc-project.org/

26

2.2.4 Languages

The languages subsection describes some popular languages from different
fields of application such as markup, resource description, knowledge repre-
sentation, and query.

Darpa Agent Markup Language (DAML) + Ontology Interface
Layer (OIL)

DAML+OIL22 is the predecessor of RDF and also a semantic markup lan-
guage [van Harmelen et al., 2001]. It is an early W3C standard, before
RDF(S) extended the standard with a richer syntax and more possibilities.
DAML+OIL is based on description logics and includes modeling primitives
like frame-based languages.

Gleaning Resource Descriptions from Dialects of Languages (GRDDL)

XML documents are written in many different languages (“dialects”), e.g.
XHTML, XML, or RDF [Connolly et al., 2007]. GRDDL23 is used to describe
resources from dialects of languages. It is based on existing standards (XML
and RDF) and can be used to extract data from documents. It allows that
documents, defined with their namespaces, include gleanable data. Roughly
speaking, the goal is to understand dialects across different domains.

Knowledge Interchange Format (KIF)

Knowledge Interchange Format (KIF)24 is a language for interchange of
knowledge between different programs [Genesereth et al., 1992]. It is not
intended for interaction with humans, but for different programs, which can
interact with users and other applications. The idea behind it is, that when
a program reads a knowledge base, the information should be represented
according to the problem (i.e. it should be integrated in the GUI of the
program). KIF is then the interchange format between different programs,
which means that a program deals with knowledge and as soon as it wants
to interoperate with another program, it has to convert the data into KIF.
Everything else is done program-internally.

KIF can be compared to Postscript, which is used by text and graphics
programs for interprocess communication, but also for communication with
printers. It is a programmer readable representation and can be understood

22http://www.w3.org/TR/daml+oil-reference
23http://www.w3.org/2004/01/rdxh/spec
24http://logic.stanford.edu/kif/

27

by programs and printers. KIF is not as efficient as specialized knowledge
representation languages, but it is readable by programmers.

Open Knowledge Base Connectivity (OKBC)

Open Knowledge Base Connectivity (OKBC)25 is a protocol which provides
an interface for knowledge representation systems [Chaudhri et al., 1998].
It is layer oriented and enables development of generic tools that operate
on top of knowledge representation systems. Implementations are based on
many common programming languages, such as Java, C, and Common Lisp.
Knowledge bases can be accessed locally or over the network. OKBC ex-
tends languages which support knowledge sharing and focuses on knowledge
representation system operations.

Sesame RDF Query Language (SeRQL)

SeRQL26 is the implementation of requirements from RDF implementers. It
was developed by the SESAME project with the goal to unite the advantages
of already existing RDF query languages [Broekstra and Kampman, 2003]. It
is designed to go beyond experimental query languages, lay the focus on the
design of the language, and take into account syntactic and semantic spec-
ifications. However, SeRQL is not the most popular RDF query language.
SPARQL is by far better known and more widely used.

Semantic Web Rule Language (SWRL)

The Semantic Web Rule Language (SWRL27) is a combination of OWL DL
and OWL Lite, but it contains elements of the Rule Markup language as
well [Horrocks et al., 2004]. Since it contains Horn-like rules, it makes the
combination of Horn-like rules and the OWL knowledge base possible. Its
syntax extends the OWL syntax and the OWL model-theoretic semantics.
The rules which it proposes are body and head (while both consist of at
least one atom) concepts, where rules that hold for the body also must hold
for the head. Empty statements are treated as true. Atoms can be OWL
descriptions, properties, and variables, individuals, or data values. SWRL
supports an XML syntax (like most other languages in the Semantic Web),
or more precisely OWL RDF/XML syntax.

25http://www.ai.sri.com/~okbc/
26http://www.w3.org/Submission/SWSF-SWSL/
27http://www.w3.org/Submission/SWRL/

28

Name Category Purpose

Darpa Agent Markup Markup language Description of
Language Ontology ontologies.
Interface Layer
(DAML+OIL)
Gleaning Resource Resource description Extraction of data
Descriptions from language from documents.
Dialects of Languages
(GRDDL)
Knowledge Interchange Knowledge language Language for inter-
Format (KIF) change of knowledge.
Open Knowledge Base Knowledge represen- Provides interface for
Connectivity tation language knowledge represen-
(OKBC) tation systems.
Sesame RDF Query RDF query Used to query a
Language (SeRQL) language knowledge base.
Semantic Web Rule Web rule Definition of ontologies.
Language (SWRL) language

Table 2.5: Overview of languages.

Overview

Table 2.5 presents an overview of the Semantic Web languages introduced in
this subsection.

2.2.5 Web Service Standards

Web Services are pieces of functionality which are accessible over the Web
[De Bruijn et al., 2006b]. Current technologies such as the Web Service Def-
inition Language (WSDL)28 allow to describe the functionality offered by a
Web Service on a syntactic level. Semantic descriptions of Web Services are
required to automate of tasks, such as discovery, composition, and execu-
tion. Since Semantic Web technology enables this formal description of Web
content, the combination of Semantic Web with Web Services is the natural
next step to be taken. The web service standards subsection describes stan-
dards in the Semantic Web that are directly related to the modeling of web
services.

28http://www.w3.org/TR/wsdl

29

Web Service Modeling Ontology (WSMO)

Web Service Modeling Ontology (WSMO)29 is an ontology for describing as-
pects of Semantic Web services [De Bruijn et al., 2006a]. WSMO is based on
the Web Service Modeling Framework (WSMF), which consists of ontologies,
web service goals, web service descriptions, and mediators. The Web Service
Modeling Ontology provides specifications for semantic web services, which
try to combine Semantic Web and web service technology in order to reach
the possibility of machine-understandability on the web. Such services need
to follow special design principles:

• Web compliance: Usage of URI and namespaces, support of XML and
other W3C recommendations.

• Ontology-basis: Usage of ontologies for resource description and data
interchange.

• Decouplement: Isolated definition of resources.

• Mediation-centrality: Handling of heterogeneities.

• Role separation: Different contexts for different users.

• Description and implementation: Separation of service description and
implementation.

The combination of Semantic Web technologies and web services is often
referred to as Semantic Web Services. In this context, the Web Service
Modeling Ontology WSMO provides a conceptual model for the description
of various aspects of services towards such Semantic Web Services (SWS).

Web Service Modeling Language (WSML)

The Web Service Modeling Language (WSML)30 provides formal syntax and
semantics for the Web Service Modeling Ontology WSMO. It is based on
logical formalisms, such as description logics, first-order logic, and logic pro-
gramming, in order to model so-called Semantic Web Services. The language
has different variants depending on logic formalisms which are: Core, DL,
Flight, Rule, and Full. WSML-Core is an intersection of description logics
and Horn logic. All other variants increase expressiveness towards descrip-
tion logics and logic programming. Finally, WSML-Full unifies both and is
the most expressive WSML variant.

29http://www.w3.org/Submission/WSMO/
30http://www.w3.org/Submission/WSML/

30

WSML supports human-readable syntax, XML and RDF syntax; and
thus supports interoperability with Web and Semantic Web applications.
Furthermore, WSML provides mappings between WSML ontologies and OWL
ontologies. Therefore, it is also interoperable with OWL ontologies through
a common subset of OWL and WSML.

Semantic Web Services Language (SWSL)

SWSL31 is based on logic and used to specify semantic web services [Battle
et al., 2005]. It is a W3C recommendation and includes SWSL-FOL and
SWSL-Rules, two sublanguages which are first order logic (FOL) and rule-
based (Rules). FOL specifies the web service ontology and Rules can be used
for specification or implementation. The Semantic Web Service Ontology
defines domain dependent constructs, which makes SWSL itself independent.

SWSL-FOL as a first-order logic language appears to be more suitable for
specifying ontologies, and SWSL-Rules can be better used for programming.
However, both languages can be used together, SWSL allows to use SWSL-
FOL in SWSL-Rules or vice-versa, since there is a bridge for both of them
written in the other language.

Semantic Annotations for WSDL (SAWSDL)

Semantic Annotations for WSDL (SAWSDL)32 is a standard, which defines
the addition of annotations to WSDL documents (e.g. operations) [Farrell
and Lausen, 2007]. Its attributes are compatible with the WSDL 2.0 exten-
sibility framework. SAWSDL defines how WSDL interfaces and operations
can be annotated and then improves the discovery of a web service in a reg-
istry. Therefore, annotations can be used during discovery and composition.
SAWSDL atributes can be applied to WSDL elements, but also to XML
Schema elements. The annotations refer from a WSDL or XML Schema
to an ontology. These annotations do not depend on the language of the
ontology or other mapping languages.

Overview

Table 2.6 provides an overview of standards from the Semantic Web domain
which are relevant for web service development.

31http://www.w3.org/Submission/SWSF-SWSL/
32http://www.w3.org/2002/ws/sawsdl/

31

Name Category Purpose

Semantic Web Services Web service Specification of
Language language semantic web services.
Web Service Modeling Modeling Language for web
Language language service modeling.
Web Service Modeling Ontology Ontology for web
Ontology service modeling.
Semantic Annotations Annotation Adds annotations to
for WSDL language web services.

Table 2.6: Overview of web service standards.

2.2.6 Other Standards

In the following, we describe other standards which are important for the
Semantic Web community but do not fit in one of our previously introduced
categories.

METHONTOLOGY

METHONTOLOGY33 is a methodology for ontology engineering from scratch
or by the reuse of other ontologies [Fernández-López et al., 1997]. The ontolo-
gies are constructed at the knowledge level. The contents of the framework
are identification of ontology development process, identification of main ac-
tivities, evolving prototypes, the methodology for performing activities, the
outcomes, and the evaluation. These are the steps which need to be per-
formed in order to develop an ontology.

OpenSearch

OpenSearch34 can be used to learn about the public search engine interface
[Clinton et al.]. It provides description documents with URL templates that
indicate how requests should be made. Common search engines can use this
information to add meta-data to their search results in many different content
formats. In general, formats can be used to improve the discovery and usage
of search engines and to syndicate search results.

33http://semanticweb.org/wiki/METHONTOLOGY
34http://www.opensearch.org/Home

32

Rule Interchange Format (RIF)

The Rule Interchange Format (RIF)35 is a standard for rule exchange be-
tween systems in the Semantic Web defined by a working group of the W3C
[Kifer, 2008]. This is a difficult task, since already developed rule systems are
very diverse, especially regarding their syntax and semantics. Some of them
extend each other, other systems are incompatible, etc. This fact makes it
hard to achieve interoperability. The idea is to develop dialects with similar
syntax and semantics, to prevent isolated applications. Dialects could be dy-
namically added if there is enough demand. In fact, other systems should be
able to map their languages to RIF (as dialects) most easily, and interoperate
by finding a common dialect. The format of RIF is XML.

Overview

Other relevant standards in the Semantic Web area are summarized in Table
2.7.

Name Category Purpose

METHONTOLOGY Ontology engineering Used to develop
ontologies.

Open Search Search engine interface Improve search engine
discovery.

Rule Interchange Format Rule exchange Interchange of rules
language and dialects.

Table 2.7: Overview of other standards.

2.2.7 Semantic Web Frameworks

This subsection introduces the most important general frameworks in the
Semantic Web area.

Jena API

Jena36, as an RDF platform, has support for ontologies which is restricted to
formalisms based on RDF [Apache Software Foundation, 2010]. In particular,
this means RDF(S), OWL, and DAML+OIL. In general, Jena provides the

35http://www.w3.org/standards/techs/rif#w3c_all
36http://jena.apache.org/

33

tools for building Semantic Web applications. The main components of the
framework are:

• API for reading and writing of RDF data in different formats (XML,
N-triples, and Turtle),

• ontology API for OWL and RDFS ontologies,

• rule-based inference engine for reasoning in RDF and OWL,

• stores for large numbers of RDF triples,

• query engine for processing SPARQL queries.

SESAME

SESAME37 is an architecture for efficient storage and expressive querying of
large quantities of RDF meta-data [Fensel et al., 2005]. It can be used for
parsing, storing, inferencing, and querying of RDF data. SESAME can be
deployed on top of relational databases, in-memory, file systems, and keyword
indexers, and provides full support of the SPARQL query language and the
most popular RDF file formats such as RDF/XML, Turtle, N-Triples, etc.

OntoStudio

OntoStudio38 is an environment for the development of semantic solutions
and a platform to create knowledge engineering tools [Weiten, 2009]. It
includes a number of functionalities, such as reasoning, text mining, ontology
learning, and management of meta-data. OntoStudio provides design time
support, which means that it concentrates on keeping the time to develop an
ontology at a minimum. It includes additional functionality such as semantic
wrapping and integrating existing data sources.

RDF2Go

RDF2Go39 is a Java library which provides abstract data access methods to
RDF triples stored in a triple store [Schied et al., 2010]. It uses common
adapter classes to access different triple stores. At the moment, RDF2Go
delivers adapter classes for Jena and Sesame and can easily be extended to
other triple stores. Communication between SMW (Semantic Media Wiki)

37http://www.openrdf.org/
38http://www.semafora-systems.com/en/products/ontostudio/
39http://semanticweb.org/wiki/RDF2Go

34

and the triple store connector is done via SPARQL and the SPARUL exten-
sion. Initial Loading of RDF data from SMW into the triple store is triggered
with a SPARUL LOAD command on part of SMW. The connector handles
this event by reading the semantic data directly from SMW’s database tables
due to performance reasons and a missing function for retrieving the wiki’s
semantic data as a whole via HTTP.

Overview

Table 2.8 shows an overview of the Semantic Web Frameworks discussed in
this subsection.

Name Category Purpose

Jena API Semantic Web library Reasoning and knowledge base.
SESAME RDF framework RDF storage and querying.
OntoStudio Semantic development Reasoning, text mining, and

platform ontology learning.
RDF2Go RDF library Access to RDF triple store.

Table 2.8: Overview of Semantic Web frameworks.

2.2.8 Ontology Editors

Ontologies are definitely one of the most important parts in Semantic Web
technologies, and enable semantic interoperability and data integration [Haase
et al., 2008]. Nowadays, they are produced in large numbers and have great
complexity (large RDF and OWL files). Ontologies capture domain knowl-
edge and provide an understanding of the domain for reuse and interoper-
ability [Sure et al., 2002]. However, it is difficult to build ontologies, because
they are still very complex and formal, and require that the developer pos-
sesses a lot of expert knowledge in ontology engineering. The key point is
to enable reuse of ontologies in such a way that it is not necessary to rein-
vent the wheel. In the following, we describe the most widely used ontology
editors.

Protégé

Protégé40 is a free, open-source platform with a growing user community and
a collection of tools for the creation of domain models and knowledge-based

40http://protege.stanford.edu/

35

applications with ontologies [Stanford Center for Biomedical Informatics Re-
search, 2010]. As core functionality, Protégé implements a rich collection
of knowledge-modeling structures and actions, which support the visualiza-
tion and manipulation of ontologies in different formats. Protégé can be
customized to provide domain-friendly support for generation of knowledge
models and data input. Furthermore, it can be enhanced by plug-ins and a
Java-based API and used to create knowledge-based tools and applications.

The Protégé platform supports two main kinds of ontology modeling:

• The Protégé Frames Editor makes it possible for a user to create and to
fill ontologies, which are frame-based and support the Open Knowledge
Base Connectivity (OKBC) protocol. In this model, an ontology con-
sists of a set of classes, which are organized in a hierarchy to represent
concepts of a domain; a set of slots, which are associated to classes and
describe their attributes and relations; and a set of instances of those
classes.

• The Protégé OWL Editor enables users to create ontologies using the
Web Ontology Language (OWL). An OWL ontology can contain de-
scriptions of classes, attributes, and instances. With such an ontology,
the formal OWL semantics specifies how its logical consequences can
be derived. This can be based on one single document or multiple, dis-
tributed documents, which are combined through OWL mechanisms.

NeOn Toolkit

The NeOn toolkit41 is a state-of-the-art integrated modeling environment for
ontology development and modeling. It supports network ontology manage-
ment and collaboration during the ontology engineering process as well as
engineering of contextualized semantic applications. Modern semantic appli-
cations are open and ontologies are not large and monolithic, but small and
dynamic, importing a lot of already popular and well-known general purpose
ontologies. The NeOn Toolkit can be used to produce distributed content
and provides methods for managing heterogeneous content.

OntoEdit

OntoEdit42 as an ontology engineering environment, attempts to solve the
problem of requiring expert knowledge for ontology engineering by combin-
ing ontology development with collaboration and inferencing. The focus is

41http://neon-toolkit.org/wiki/Main_Page
42http://www.semafora-systems.com/en/products/

36

on three main steps in ontology development: specification, refinement, and
evaluation. First, all requirements are collected, then the description is re-
fined in iteration cycles and formalized to a representation language, and
finally the resulting ontology needs to be evaluated according to the specifi-
cation. OntoEdit supports the user in all of these phases.

OntoGen

OntoGen43 is an ontology editor, which is semi-automatic and data-driven
[Fortuna et al., 2007]. It focuses on editing topic ontologies and combines
text mining techniques with an efficient user interface, which enables the user
to spend less time for her workflow and work more efficiently.

The system is able to suggest concepts, relations, and names as well as
to automatically assign instances and visualize them. However, the user can
still control the system and make modifications to the ontology at any time.
The data represents the domain for which the ontology is made. OntoGen
supports automatic extraction of instances and co-occurrences from the data.

SMORE

SMORE (Semantic Markup, Ontology and RDF Editor)44 is a tool which
tries to make knowledge engineering look like web page authoring [Kalyan-
pur et al., 2006a]. It blurs the line between content creation and semantic
annotation, but also supports ontology use, modification, combination, and
extension. SMORE provides built-in support for semantic markup (e.g. a
WYSIWYG editor) and enables the user to create and deploy web pages.
Furthermore, it is able to generate semantic markup, to let users compose
triples (in this case triples are composed of plain natural language), and to
link ontological elements and user-defined terms.

Controlled Language for Ontology Editing (CLOnE)

Using CLOnE, users can design, create, and manage information spaces and
do not need to have much knowledge about XML, RDF, OWL, or other
standards [Funk et al., 2007]. CLOnE’s goal, as a natural language processor,
is to use normal language to specify logical data or semantic knowledge. It is
based on GATE’s (see Subsection 2.2.24) information extraction and natural
language processing, and accepts user input as valid or warns her of errors.

43http://ontogen.ijs.si/
44http://www.mindswap.org/2005/SMORE

37

The parsing is deterministic and, therefore, usual performance measures are
not relevant.

Overview

Table 2.9 presents an overview of the presented ontology editors.

Name Category Purpose

Protégé Ontology editor Ontology development.
NeOn Toolkit Ontology editor Ontology development.
OntoEdit Ontology editor Ontology development.
OntoGen Ontology editor Ontology development.
SMORE Ontology editor Creation of ontologies.
CLOnE Ontology language Use natural language

for logical data.

Table 2.9: Overview of ontology editors.

2.2.9 Ontology Mapping Tools

Semantic mapping between two or more ontologies is needed in order to
make agents and services interoperable [Ehrig and Staab, 2004]. A number
of different approaches and methods for ontology mapping have already been
developed. The main difference between the methods is their effectiveness
and efficiency. The clue is that ontologies become more and more compact
and dynamic (they include a lot of already existing definitions), but there
is no effective ontology mapping method, which is specialized for such a
situation. Important ontology mapping, merging, and management tools are
described in the following.

OntoMap

OntoMap45 is a web site, which provides access to ontologies and mappings
between them [Kiryakov et al., 2001]. It facilitates easy access, understand-
ing, and reuse of resources, and captures most of the semantics from upper-
level models. Currently, OntoMap supports online browsing and export into
DAML+OIL. Important contents of the OntoMap framework are upper-level
ontologies, knowledge representation, concept mapping, and services.

45http://www.ontotext.com/research/ontomap

38

OntoMerge

OntoMerge46 answers subclass queries on merged results effectively [Wang
et al.]. It can answer queries on multiple ontologies and uses ontology merg-
ing for ontology translation. The merge takes place by taking the union of
axioms of the ontologies. To avoid ambiguities, XML namespaces are used.
Also, bridging axioms are added for relations of terms between ontologies.
Demand-driven or data-driven inference can be performed, which means that
forward- and backward-chaining is supported.

PROMPT

The PROMPT47 framework consists of a number of tools like iPrompt (for
ontology merging), AnchorPrompt (for ontology alignment), PromptDiff (for
ontology versioning), PromptFactor (for factoring out complete sub-ontologies),
etc. [Noy and Musen, 2003]. These are all tools for multiple-ontology man-
agement and provide a uniform user interface. The advantages are the follow-
ing: uniform view on tasks in multiple-ontology management, one framework
for all tasks, interactive ontology merging, and correlation discovery between
concepts from different ontologies.

Quick Ontology Mapping (QOM)

QOM is a method, which takes efficiency over effectiveness, and therefore,
addresses exactly the point where ontology mapping tools and approaches
differ. Where other tools try to obtain the best possible results, QOM has
the goal to get results as quickly as possible. The loss of quality is marginal
most of the time but the gain in performance can be quite notable.

Overview

In Table 2.10 the introduced ontology mapping, merging, and management
tools are summarized.

2.2.10 Reasoners

This subsection presents some popular reasoning tools and frameworks.

46http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html
47http://protege.stanford.edu/plugins/prompt/prompt.html

39

Name Category Purpose

OntoMap Ontology mapping tool Mapping of domain ontologies.
OntoMerge Query tool Answering of queries on

multiple ontologies.
PROMPT Ontology management Merging, alignment,

versioning, and factoring.
Quick Ontology Ontology mapping Efficient mapping of ontologies.
Mapping

Table 2.10: Overview of ontology mapping tools.

OWLIM

OWLIM48 is a storage and reasoning infrastructure for ontologies and struc-
tured meta-data [Kiryakov et al., 2005]. It supports a part of OWL, which
is nearly as large as OWL DLP49. OWLIM has native RDF engines and is
implemented in Java. It uses SESAME and Jena, supports RDF(S), OWL 2
RL50, and query evaluation. A large number of research projects use OWLIM,
since it is available under a variety of licenses (OWLIM-Lite, OWLIM-SE,
and OWLIM-Enterprise).

OntoBroker

OntoBroker51 has the following core elements [Decker et al., 1999]:

• Ontologies are the most central part.

• Ontocrawler extracts knowledge from web sites.

• The inference engine exploits formal semantics and enables automatic
reasoning.

• RDF-Maker exploits the inference engine and generates an RDF rep-
resentation.

• The query interface enables interactive formulation of queries.

OntoBroker is a system for extraction, reasoning and generation of meta-
data. The meta-data and ontologies are domain specific and depend on

48http://www.ontotext.com/owlim
49http://www.ontotext.com/rdfs-rules-owl
50http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
51http://www.semafora-systems.com/en/products/ontobroker/

40

specific content. The reasoning service derives information which is specified
in web resources.

Overview

Table 2.11 shows an overview of the presented reasoners.

Name Category Purpose

OWLIM Reasoner & KB Reasoning and knowledge
archiving.

OntoBroker RDF tool RDF extraction, reasoning,
and generation

Table 2.11: Overview of reasoners.

2.2.11 Browsers

The following subsection presents different browsers for various Semantic
Web purposes.

IsaViz

IsaViz52 is a visual browsing tool for RDF models [Telea et al., 2003]. It
uses Jena’s RDF API for reading RDF models and the GraphViz package for
graph layout. Some features are text-based search, copy and paste, model
editing, nodes and arcs editing, textual property browsing, and graph views.
Therefore, IsaViz is a state-of-the-art RDF model browsing tool. The draw-
back is, that it is not easily extensible due to its rigid architecture.

Magpie

Web browsing consists of two tasks: to find the right website and to derive
meaning from the content [Dzbor et al., 2003]. Until now, research focused
on information retrieval or semantic-enabled mechanisms for supporting the
search for web resources. Much less attention has been paid to the second
problem. Therefore, Magpie53, which supports the interpretation of websites,
was developed.

Magpie provides aligned sources of knowledge, which deliver fast access
to important background information about a web resource. It associates an

52http://www.w3.org/2001/11/IsaViz/
53http://projects.kmi.open.ac.uk/magpie/main.html

41

ontology-based, semantic layer automatically to a web resource and allows
relevant services to be called in a standard browser. Hence, Magpie can be
seen as a first step towards a semantic web browser.

Swoop

Swoop54 is a web ontology browser and editor and can be used for OWL on-
tologies [Kalyanpur et al., 2006b]. The UI for Swoop is a browser, which most
users are familiar with and are therefore able to use for ontology creation.
Swoop supports multiple ontologies, various OWL representations, reason-
ing, and open-world semantics. Furthermore, it can perform collaborative
annotation, data markup, ontology refactoring, and debugging. Finally, the
accessibility of Swoop to newbies and expert users makes it interesting for
the design of robust ontology modeling and analysis.

Overview

Table 2.12 summarizes the three presented browsers.

Name Category Purpose

IsaViz RDF browsing tool Graphical visualization of RDF.
Magpie Semantic web browser Background information about

web resources.
Swoop Web ontology browser Creation of ontologies.

Table 2.12: Overview of browsers.

2.2.12 Annotation Tools

This subsection discusses two popular annotation tools.

S-CreaM

S-CreaM stands for Semi-automatic Creation of Metadata and is an annota-
tion framework which aligns conceptual markup with semantic and indicative
tagging [Handschuh et al., 2002]. The framework has the following purposes:

1. Solve the underspecification of automatically produced tagging, which
can be done by discourse representation.

54http://code.google.com/p/swoop/

42

2. Turn semantic tags into conceptual markup.

3. Produce indicative tags for exploitation within a learning cycle.

SemTag

SemTag performs automatic tagging of large corpora [Dill et al., 2003]. It
can be applied to millions of web pages and then automatically generates
disambiguated tags, which are published to the web. As a very large semantic
tagging platform, it demonstrates the viability of bootstrapping a web scale
semantic network and resolves ambiguities in a natural language corpus.

Overview

Table 2.13 shows an overview of the two popular annotation tools.

Name Category Purpose

S-CreaM Annotation framework Automatic tag generation.
SemTag Annotation framework Automatic tag generation.

Table 2.13: Overview of annotation tools.

2.2.13 Other Tools

All other remaining, popular tools which are relevant for the Semantic Web
area are listed in the following.

AeroDAML

AeroDAML is a prototype tool for experimentation with producer side NLP
(Natural Language Processing) applications [Kogut and Holmes, 2001]. It is
a knowledge markup tool, which applies NLP extraction techniques and gen-
erates DAML annotations from web sites automatically. Furthermore, Aero-
DAML links nouns and relationships with classes and properties in DAML
ontologies. In AeroDAML the weakness of DAML, that annotation of web
pages and other resources takes a lot of time, is fixed. The idea is to move
the annotation task from the consumer to the producer site and therefore
increase the motivation to provide annotations, since resource producers are
highly interested in an improved discovery of their resources.

43

CS AKTive Space

CS AKTive Space55 is a Semantic Web application which has geographically
distributed content, diverse ownership, syntactic and semantic heterogene-
ity, and real-world data [Shadbolt et al., 2004]. It provides an information
overview of who is doing what and where in UK university-based computer
science research, and helps users to get a quick overview of the information
space. When a user has found an information space, she has the possibility
to find people’s locations and to contact them. This is especially helpful
when, e.g. organizing workshops. Furthermore, the application fulfills the
following tasks: acquiring content, developing scalable RDF storage, devel-
oping ontologies to mediate heterogeneous data sources, querying facilities,
facilitating knowledge-processing services over the harvested content, and
semantically directing interaction design.

Delicious

Delicious56 is a social bookmarking system, which recently gained a lot of
interest in academia and the rest of the world [Wetzker et al., 2008]. It
has already a large number of users and derives its success from the ability
to centrally store user bookmarks, which the users find somewhere on the
web. This also makes the improvement of services like trend indication,
advanced web search, and automated recommendations possible. Also, a
great amout of user annotations can be gained by such systems to improve
the semantic part of the web. The process as such is called collaborative
tagging. Delicious, due to its early acceptance by users, can help to analyze
the users’ behavior regarding bookmarking.

Esperonto

The Esperonto57 project has the goal to create a bridge between the Semantic
Web and the World Wide Web [Benjamins et al., 2003]. While the current
web is created for human users and therefore can only be interpreted by
humans (HTML is only for the design and presentation of web content), the
Semantic Web claims to be machine-readable and understandable. A lot of
resources, pages, and information is out there in the Web. The problem arises
when this information needs to be processed by computers automatically.
Therefore, Esperonto provides tools and techniques for publishing on the
Semantic Web. This way static and dynamic web pages, but also multimedia

55http://www.aktors.org/technologies/csaktivespace/
56https://delicious.com/
57http://ontoweb-lt.dfki.de/projects/esperonto.htm

44

and multilingual content can be considered. To show how this could work,
Esperonto implements showcases, which can be used as a proof-of-concept.

flickr

Flickr58 is one of many tagging applications, which have been rapidly growing
during the recent few years [Schmitz, 2006]. More and more users are par-
ticipating in tagging applications and communities. Two issues are currently
open for tagging systems: The first one is that their user interfaces are bad
when the vocabulary is hierarchic and closed; the second one is that strict
tree concepts do not reflect usage and intent. The first issue can be fixed by
dynamic ontologies and better user interfaces. The second issue is caused by
models which force users too much in one direction or the other, but can be
solved by using faceted ontologies.

Flickr addresses both issues and enables the user to share and most im-
portantly tag pictures with dynamic ontologies. It also supports tag-based
search, refined search, clustering performance, open vocabularies, etc.

GATE

The General Architecture for Text Engineering (GATE)59 has the following
goals [Cunningham et al., 1996]:

• Support for information transfer between Language Engineering (LE)
modules on the highest possible level.

• Support for integration of modules, which have been developed using
an arbitrary language and on widely-used platforms.

• Support for evaluation and refinement of LE modules, and of systems,
which build upon them having a unified, easy to use graphical interface,
which provides data visualization and corpora management.

According to these goals, GATE provides three main elements to ful-
fill the tasks: GDM, the GATE Document Manager, which is based on the
TRIPSTER Document Manager; CREOLE (Collection of Reusable Object
for Language Engineering), a collection of LE modules, which are integrated
into the system; and GGI (GATE Graphical Interface), a development tool
for LE R & D, which provides an integrated access to services of other com-
ponents; but also visualization and debugging tools.

58http://www.flickr.com/
59http://gate.ac.uk/

45

Haystack

Haystack is a user interface for semantic web applications which lets users
interact with RDF [Quan et al., 2003]. Users are able to manage their doc-
uments, emails, appointments, tasks, etc. The user interface hides RDF in-
terna from the user and shows her a variety of different types of information.
The idea is to acquire users which are not familiar with ontology develop-
ment and description logics. Haystack is built as an extensible platform that
allows new functionality to be easily integrated.

MediaWiki

The technology and idea of wikis is very popular nowadays. They are used to
collaborate and exchange knowledge [Krötzsch et al., 2006]. One important
goal is to organize collected knowledge and share information. MediaWiki60

leverages semantic technologies and therefore improves knowledge and infor-
mation access. MediaWiki is also the extension of traditional wiki syntax by
means of the Semantic Web.

Ontolingua

Ontolingua61 makes it possible to write ontologies in a canonical format with
the goal to facilitate the translation into other representations and reasoning
systems [Gruber, 1992]. This makes maintenance of the ontologies easier,
because the system takes care that it is translated into different required for-
mats. In general, syntax and semantics are based on KIF (Knowledge Inter-
change Format), which is therefore the standard Ontolingua format. Ontolin-
gua extends KIF with standard primitives for defining classes and relations,
organizing knowledge, and creating object-oriented hierarchies. Currently,
besides KIF, Ontolingua translates into LOOM, Epikit, and Algernon.

QuizRDF

QuizRDF is an information-seeking system which combines browsing and
querying RDF annotations with traditional keyword querying [Davies and
Weeks, 2004]. It uses RDF(S) to specify and populate ontologies and RDF
annotations, which are indexed with the text of annotated resources. The
result allows full-text search and RDF queries. QuizRDF enables full ex-
ploitation of Semantic Web technologies in knowledge management as well

60http://www.mediawiki.org/wiki/MediaWiki
61http://www.ksl.stanford.edu/software/ontolingua/

46

as searching and browsing functionality. The idea is to exploit RDF anno-
tations if they are there, but if they are not, still to have a possibility to
provide full-text search.

SOA4All

Service-oriented architectures (SOA) have become very popular during the
last years [Domingue et al., 2008]. The SOA4All project62 has the goal to
provide means and methods for implementing large-scale SOA infrastruc-
tures. In service-oriented architectures, software building blocks are placed
on a base of services. The services are as loosely coupled as possible and
publish their interfaces on the Web in order to be discovered by other ser-
vices. SOAs’ advantages are the increase in flexibility, dynamic reaction to
changes, usage of Web standards, and better interoperability. The vision is
to have a so-called “Service Web” where transparent services can be found
for every possible task. Therefore, it is necessary for software engineers to
follow SOA principles as closely as possible.

Text2Onto

Text2Onto63 is a redesigned and reengineered version of the TextToOnto
system. It is a toolbox for learning from text [Cimiano and Völker, 2005].
The software targets problems which occur in ontology learning: probabilistic
ontology models and data driven change discovery. Ontologies provide shared
understandings of different domains and are key to semantic-driven modeling.
Text2Onto aims to solve the following shortcomings:

• Dependency on specific or proprietary ontology models.

• Interaction with end-users has been neglected.

• Lack of robustness.

• Probabilities for learning structures are needed.

WSMO Studio

WSMO Studio64 is an open source integrated modeling environment for se-
mantic web services [Dimitrov et al., 2007]. It is based on the Web Service

62http://www.soa4all.eu/
63http://code.google.com/p/text2onto/
64http://sourceforge.net/projects/wsmostudio/

47

Modeling Ontology (WSMO) and can be used as Eclipse65 plugin. The goal
is to make semantic web service technology easily usable. The focus should
be set on multiple aspects of semantic web service technology (e.g. service
composition, ontology management, semantic discovery, etc.).

Overview

Table 2.14 shows an overview of the Semantic Web tools described in this
subsection.

Name Category Purpose

AeroDAML Knowledge markup Applying NLP extraction
tool techniques.

CS AKTive Semantic Web Showing who does what and
Space application where in academia in the UK.
Delicious Bookmarking Central storage for

system user bookmarks.
Esperonto Publishing tool Publishing semantic content

on the Web.
flickr Tagging web Publishing and tagging of

application photos.
GATE Text engineering Text engineering technology.
Haystack User interface UI for semantic applications.
MediaWiki Semantic Web wiki Wiki extension with Semantic

Web technology.
Ontolingua Ontology converter Translation of ontologies into

other formats.
QuizRDF Information seeking Browsing and querying of RDF.

system
SOA4All Service-oriented Enabling service-orientation.

architecture
Text2Onto Text learning toolbox Ontology learning problems.
WSMO Studio Integrated modeling Creation of semantic web services.

environment

Table 2.14: Overview of other tools.

65http://www.eclipse.org/

48

2.2.14 Literature

Daconta et al. [2003] provide an overview of the future of Web Services and
Knowledge Management, but also explain how Semantic Web technologies,
like RDF(S), OWL, and SPARQL, build on them, what they exactly are, and
what they aim for now and in the future. XML technologies build the basis
for the Semantic Web. Almendros-Jiménez [2008] investigates an extension
of XQuery for querying RDF documents.

In Hitzler et al. [2008] the focus is set on background knowledge of Seman-
tic Web technologies. The book deals with introductions to RDF(S), OWL,
and SPARQL, but also provides in-depth knowledge about formal semantics,
predicate logic, extensional semantics, and automated inferencing.

Semantic Web technologies are discussed in more detail in Davies et al.
[2000]. The book concentrates on using RDF and OWL combined with XML
to describe the content of Web documents. The idea is to build more intelli-
gent software systems for exploitation of information on the Web. Addition-
ally, the application of Semantic Web technologies to knowledge management
is explained.

A more specialized description of the link between Semantic Web and
Knowledge Management is provided by Davies et al. [2009]. Fundamental
research, tools, and applications in Semantic Web and Knowledge Manage-
ment are introduced, and an insight in current research activities is given.
Additionally, a short summary of the most relevant Semantic Web standards
and tools can be found in Geist et al. [2011] as well.

As a real-world use case, Golbreich et al. [2006] present a method devel-
oped for migrating the Foundational Model of Anatomy (FMA) from its rep-
resentation with frames to its logical representation. Noy and Rubin [2007]’s
Foundational Model of Anatomy (FMA) represents the result of manual and
disciplined modeling.

Implementation details for Semantic Web technologies are presented in
Segaran et al. [2009]. They describe how to implement a reasoner, a semantic
repository, and how to use Semantic Web technologies like RDF, RDFa,
OWL, SPARQL, etc. In general, the use of semantic programming techniques
is introduced to enrich current Web applications.

In Allemang and Hendler [2008] a resource for ontology developers is
provided, which goes beyond the scope of technical standards documents. It
provides information to build up practical knowledge in ontology engineering.
The book explains ontology development techniques for real-world problems,
and provides creative solutions and highly illustrative examples together with
detailed instructions for applications in RDF, RDFS, and OWL, among oth-
ers. Automatic metadata generation may provide a solution to the problem

49

of inconsistent and unreliable metadata describing resources on the Web, as
explained by Jenkins et al. [1999]. The work of Lukasiewicz and Straccia
[2008] shows that ontologies play a crucial role in the development of the
Semantic Web.

Semantic Web technologies and latest developments are described in Ankolekar
et al. [2007]. New tools, technologies and projects are being introduced as
well as attempts undertaken to combine the concepts of Semantic Web and
Web 2.0. Although this development is very positive and should be acknowl-
edged, as it leads us directly to the next generation of the Web, there is still
some place for improvement.

Other developments, such as Tsoft, a graphical interactive analysis soft-
ware package for analysis and processing of time series [Van Camp and Vau-
terin, 2004], and a novel web prototype that enables three activities central
to the Semantic Web visions, namely organizing, sharing and discovering66

[Garcia-Castro et al., 2010], are very interesting extensions of the concepts
discussed here.

A very important technology related to the Semantic Web are web ser-
vices. Gibbins et al. [2004] describe that the web services world consists of
loosely-coupled distributed systems, which use service descriptions to adapt
to changes. Agarwal et al. [2004] explain that the way web services currently
are developed, places them beside rather than within the existing World Wide
Web. High quality domain ontologies are essential for successful employment
of Semantic Web services, as Sabou et al. [2005] describe.

An important topic for building web services and Semantic Web tech-
nologies is security. The results of Shekarpour and Katebi [2010]’s paper are
a review and analysis of well known methods of trust modeling and evalua-
tion. Viinikka et al. [2009] found out that the main use of intrusion detection
systems (IDS) is to detect attacks against information systems and networks.

In our work, the presented Semantic Web technologies can be used not
only to improve time series processing, but also to add community building
functionalities and therefore provide means for structuring data in a way
that the right information can easily be distributed to the right addressees.
The next section presents platforms and approaches which show how the
community building task can be realized.

2.3 Community Building

To overcome distance and lack of time for meeting friends and family in per-
son, nowadays people are spending more and more time online to shop, play,

66http://www.scientifik.info/livingdocument

50

discuss, or spend time on other kinds of online entertainment [Kim, 2000].
The Web is becoming a village with people gathering around communities
with certain common interests. At the same time, this is a great opportunity
for social networks and Web community platforms.

2.3.1 Background

[Kim, 2000] found nine strategies, which characterize successful and sustain-
able communities:

• Define a purpose: Understand why and for whom you build a commu-
nity, then express your vision and design.

• Build gathering places: After defining the purpose, gathering places are
needed for members to start working together.

• Create member profiles: Good member profiles help members to get
to know each other. They improve trust, relationships, and enable
personalized services.

• Design roles: Newcomers need guidance, and more experienced mem-
bers leadership and possibilities to contribute to the community.

• Develop a leadership program: Required to acquire community leaders,
who greet, encourage, teach, answer questions, etc. They are one of
the most important parts of a community.

• Encourage etiquette: Conflicts need to be avoided or at least there has
to be a plan how to deal with them. Therefore, basic rules are needed
to control the behavior of users.

• Promote events: Events are very important for community members to
come together on a regular basis. They also help community members
to develop stable relationships.

• Integrate rituals: Most communities need the possibilities to carry out
rituals to celebrate certain events. This functionality makes it possible
to set up an online culture.

• Facilitate subgroups: For large communities technologies for creating
and managing subgroups are required as well. This can improve mem-
ber loyalty and distinguish the community from its competition.

51

2.3.2 Existing Platforms

Based on the strategies for building successful communities and social net-
works presented in the previous subsection, the following list describes some
of the most popular platforms currently available.

Facebook

Facebook67 and other social network platforms allow their users to present
themselves through profiles, create their own social networks, and connect
with others [Ellison et al., 2007]. In fact, Facebook was originally intended
to connect students of a university to each other (to be more precise, it was
about comparing two students to each other in terms of how good they are
looking). Registered persons can interact with people they already know, or
meet people they don’t know yet. Facebook has the idea that everyone has
his/her own profile and presents himself/herself to the rest of the world. Then
they gather friends, who they may know or not know in real-life, and build
groups of users, so-called social communities, the members of which have the
possibility to post comments on other members’ profiles, join groups with
common interests, and share whatever information about themselves with
others.

The Facebook developer documentation68 provides a lot of functionality
for application developers:

• Core Concepts:

– Social Design: How to use Facebook to create social experience.

– Social Plugins: Provide social experience to users with HTML.

– Open Graph: Map content and user actions, and publish user
activity to timelines.

– Social Channels: integrate social channels and drive growth and
engagement with app, site, or content.

– Login: Connect with users on app or website (JavaScript or mobile
SDKs can be used to speedup registration).

– Graph API: Read and write data to Facebook and have a simple
and consistent view of the social graph.

• Advanced Topics:

67http://www.facebook.com/
68http://developers.facebook.com/docs/

52

– Dialogs: Simple, consistent interface to display dialogs to users.

– FQL: Facebook Query Language enables usage of an SQL-style
interface to query the data exposed by the Graph API.

– Internationalization API: Take advantage of the community trans-
lations framework to translate app or website.

– Payments: Payment system to pay for digital and virtual goods
in games and apps across Facebook.

– Ads API: makes creation and management of ads on Facebook
possible, without using the Facebook Advertising Manager tool.

– Chat API: Integrate Facebook Chat into a Web-based, desktop, or
mobile instant messaging product (connection via Jabber/XMPP
service).

• SDK & Tools:

– JavaScript SDK: Enables access to features of the Graph API and
Dialogs via JavaScript.

– iOS SDK: Provides Facebook Platform support for apps on Apple
mobile devices.

– Android SDK: Provides Facebook Platform support for Android
apps.

– PHP SDK: Provides Facebook Platform support to PHP-based
web apps.

– Tools: Provides tools such as App Dashboard, Graph API Ex-
plorer, App Insights, JavaScript Test Console, etc.

Google+

Google+69 enables users to share content with only selected users [Kairam
et al., 2012]. To achieve this, connected users are organized in so-called
“circles” and when someone publishes content, she can decide which circles
are able to see it. It is possible to create profiles, to connect to friends, family,
and simply known people or to follow topics of interest. Since Google+ is
merged with Hangouts70 the platform can also be used to chat (in text, voice,
or video) with others.

The Google+ Web API71 has the following components:

69https://plus.google.com/
70https://www.google.at/hangouts/
71https://developers.google.com/+/

53

• +1 button: Visitors are able to recommend content or a web site on
Google Search and share it on Google+.

• Badge: Link from a web site to a Google+ profile page and improve-
ment of Google search results.

• Follow button: Button that can be placed on a web site to automatically
follow a Google+ profile.

• Interactive posts: Users can share a site or app and provide a link to
it. For example RSVP (répondez s’il vous plâıt) for an event.

• Share: Meant to use for content that someone wants to share but not
+1.

• Sign-in: OAuth72 token for making API requests on behalf of signed
in users.

• Snippet: Code generation for a page that indicates images and text.

• JavaScript Client API: Access to the Google+ libraries through JavaScript.

• Supported languages: This is the internationalization API, which en-
ables developers to use functionality in different languages.

Diaspora*

Diaspora*73 is an alternative social networking platform. It is completely
open source and developed in Ruby-on-Rails74. The driving idea behind the
project is, that every user is the sole owner of her own data. Therefore,
Diaspora* offers the following functionality:

• Hashtags: Hashtags allow users to label and follow their interests.

• Reshare: Can be applied to posts users want to share with others.

• Mentions: With the @ character users can mention others and can get
their attention.

• Love: By loving something users can show their appreciation to a topic.

72http://oauth.net/
73http://diasporaproject.org/
74http://rubyonrails.org/

54

• Personal profile: Users can share personal information with others via
a profile.

• Aspects: Sharing information with only a certain group of people through
aspects (every connected person belongs to an aspect).

• Host own data: Personal data does not have to be on a central server.
Every user is allowed to host an own server.

MySpace

MySpace75 makes it possible for everyone to quickly build a web page that
represents himself/herself through a profile and to connect with friends who
have profiles on their own [Hinduja and Patchin, 2008]. Additionally, mul-
timedia enhancements, like pictures, video, and audio files can be uploaded
to extend the profiles. The profile pages are a kind of blogs, where users
can post recent news and activities. Users can also leave comments on other
profiles or communicate by personal messages.

Developers can use JavaScript or OSML76 APIs for creating applications
and games for MySpace77. Furthermore, MySpace supports development of
OpenSocial78-based (OpenSocial is a component model for cloud based social
applications) applications.

Twitter

Twitter79 is a social network, which can be used to stay connected to friends,
family, and co-workers through computers and mobile devices [Huberman
et al., 2008]. Twitter allows users to post short messages (maximum 140
characters) which can then be read by any other user. Users can follow
each other and get automatic updates about messages from people they are
following. The links between Twitter users are directed, because if user1
follows user2, this does not automatically mean that user2 follows user1 back.

The Twitter platform APIs80 provide access to Twitter data. Twitter
APIs are constantly developed further and each of them represents a facet of
Twitter. The following list introduces the Twitter APIs:

75https://myspace.com/
76https://sites.google.com/site/opensocialdraft/Home/osml-tags
77http://developer.myspace.com/
78http://opensocial.org/
79http://www.twitter.com/
80https://dev.twitter.com/start

55

• Website API: Enables integration of Twitter into web sites. This means
that web sites can use the “tweet button” to post a tweet through a
web site and the “follow button” to automatically follow the account
represented through the web site.

• Search API: Allows querying for Twitter content. This means finding
tweets by keywords, by mentioned user, or by author user.

• REST API: Access to timelines, status updates, and user information.
For example, through the REST API an application can build a graph
of people whom a certain user is following. Also, tweets can be posted,
retweeted, favorited, replied to, etc.

• Streaming API: Provides data intensive, real-time communication to
data mining or analytics applications. Allows large quantities of key-
words, tracking, geo-tagged tweets, or public user statuses. This can
be done through an HTTP connection.

XING

XING81 is a social networking platform for professional use that offers the
following functionality to its users:

• Contacts: Connect to colleagues and coworkers.

• Jobs & Careers: Find a job or a qualified person for a vacancy.

• Events: Manage seminars, workshops, courses, and conferences.

• Groups: Join or create groups of common interest.

• Companies: Profiles for companies.

• Projects: Find open projects and apply to them as freelancer.

The XING API82 provides a possibility for developers to develop ap-
plications with XING integration and make API calls for profiles of users,
contacts, bookmarks, recommendations, and geolocations. The supported
technologies are REST, OAuth, JSON, and XML.

81http://www.xing.com/
82http://devblog.xing.com/api-2/api-release/

56

LinkedIn

LinkedIn83 can be compared to XING, but it rather targets people from
academia than industry. However, it is a social network and a platform for job
discovery and business opportunities. LinkedIn enables profile management,
contacting other users, and discovery of information. The platform also has
a RESTful API for developers84.

Mendeley

Mendeley85 is an academic social network and document (publication) orga-
nizer. It manages references and helps users to organize research, collabora-
tion in research, and discovery of other research results and publications.

Mendeley provides the following functionality:

• Automatic bibliography generation.

• Online collaboration with peers.

• Import of papers from external resources.

• Discovery of relevant papers.

• Apps for mobile devices to access papers on the go.

Research Gate

ResearchGate is a social networking platform for scientists to improve collab-
oration in science in order to get better scientific results86. In the beginning
of ResearchGate two researchers discovered that working with a peer on the
other side of the world was a quite complicated task. ResearchGate enables
its users to create profiles and present themselves and their work to others,
connect with peers from their global scientific community, and manage their
publications. Furthermore, it makes discovering interesting research papers
and getting fast answers for problems in their work or methodology easier.
Finally, it can be also used as a career center, i.e. to find jobs in academia.

83http://www.linkedin.com/
84http://developer.linkedin.com/rest
85http://www.mendeley.com
86http://www.researchgate.net/aboutus.AboutUs.html

57

Academia.edu

Academia.edu87 is a site where scientists can get in touch with academic
peers88. It uses social networking techniques to allow academics mostly from
universities around the world to make connections by creating profiles and
adding peers. It can be used by students to exchange information about
lectures, by professors to communicate with researchers from similar fields,
or by universities to find qualified personnel. Further, it is very useful to
exchange knowledge with people who are far away or to reconnect with peers
you met at conferences.

Slashdot

Originally, Slashdot89 is a technology news website, but it has developed
a community and goes into the direction of social networks [Kunegis et al.,
2009]. The platform has editors and users who write short articles about news
in the technology sector, and allows other users to comment the articles.
Additionally, it has a “Zoo” feature, which lets users add friends and tag
other users. In contrast to many other social network platforms, Slashdot
allows to rate other users positively and negatively.

Slashdot has several channels like Slashdot BI (Business Intelligence),
Slashdot Cloud, and Slashdot Data Center. Furthermore, it has a popular
Job Center with a lot of vacancies in the technology sector.

Overview

Table 2.15 provides an overview of the most popular community building
platforms. The platforms are listed alphabetically together with their cate-
gories.

2.3.3 Literature

Kim [2000] explains why communities form and grow, and shows how a social
network, a catalyst for community growth, can be made. In this book all the
popular strategies for bringing people in and retaining them are covered.

In the field of aggregation, extraction, and visualization of online social
networks a tool called Flink has been developed, which is able to employ
semantic technology for reasoning about personal information extracted from

87http://academia.edu/
88http://www.killerstartups.com/social-networking/academia-edu-where-

scholars-meet/
89http://slashdot.org/

58

Name Category

Academia.edu Scientific social network
Diaspora Private social network
Facebook Private social network
Google+ Private social network
LinkedIn Business social network (science)
Mendeley Papers management and scientific social network
MySpace Private social network
Research Gate Scientific social network
Slashdot Technology news network
Twitter Social communication network
XING Business social network (industry)

Table 2.15: Overview of community building platforms.

web pages, emails, publication archives, and FOAF90 profiles [Mika, 2005a].
In ontology-based knowledge management, the SEKT91 project produced
very interesting results. Also current issues in social ontologies [Mika and
Gangemi, 2004], and a discussion on the relation between sociability and
semantics [Mika, 2005b] are important and could be of high interest.

To apply such changes or integrate a new technology or concept like this to
the Semantic Web, it is necessary to understand the evolution of the Semantic
Web [Zhou et al., 2010]. One of the steps in the evolution is the attempt
to combine ideas from Social Web and Semantic Web [Gruber, 2007]. This
means that the “collective intelligence” of the Social Web would be a perfect
extension of the “knowledge representation and reasoning” of the Semantic
Web. Here again, the “collective intelligence” such as comments, groups of
friends, or interests could be represented by time series. Comments have
time stamps, a content, and other properties which all also occur in classic
time series. Friends and groups can be related and assigned to time series.
Interests can be used as filters to present only certain parts of a time series.
More details on this topic are presented in Chapter 5 “Community Building”.

90http://www.foaf-project.org
91http://www.sekt-project.com

Part II

Implementation

59

Chapter 3

Time Series Processing
Language

The Time Series Processing Language is a state-of-the-art language for pro-
cessing different kinds of time series. It is implemented in Python and able
to handle a large amount of different operations and calculations on various
time series. Various time series means that the data which is processed can
have different formats, such as numbers, strings, images, video clips, etc.

The language itself is defined by its syntax, which further defines which
expressions for time series processing can be formulated by the language. It
consists of three different components: a lexer, a parser, and an interpreter.

The lexer specifies the syntax of the language and defines which terms and
expressions can be used. The parser is responsible for parsing an expression
according to the rules set in the lexer and for constructing a data structure of
the parsing results. Finally, the interpreter takes the time series and executes
the expressions in the data structure from the parser.

Parts of this chapter have already been published in Božić and Winiwarter
[2012].

3.1 Time Series Processing Language

The language on which this research is based is originally a classical time
series processing language. This means that it is a generic language for
processing time series data.

The language supports homogeneous (with fixed time grids) and hetero-
geneous time series processing. Time series can have very complex data
structures. It is also possible to work with time patterns, time intervals,
and single slots. The complex types of aggregation can be performed with

61

62

predefined, but also with user-defined functions.

Expression Meaning
< [n].sin * 2 + 3 > Calculation is applied to all slots.
A, B < A + 2 * B > Combination of two time series

(aggregation).
< [n] > every 2 hours Projection to a fixed time grid.
< (t .. t-2).mean >

every 1 hour

Sliding mean value.

< [n]->hot if

[n].temperature > 100

otherwise [n]->cold >

Filtering, classification.

Table 3.1: General expressions and their meanings.

Some common example expressions are shown in Table 3.1. The slot
selection is based either on the index ([n] stands for every slot one-by-one
based on the index) or on the time ((t) stands for every slot based on time).
If not every slot is selected, the selection can be also based on a range (e.g.
[n-1 .. n] means from slot n-1 up to the current slot n). The first expression
calculates the sine of the value from each slot, multiplies it by 2 and adds
the value 3. Expression 2 specifies two time series, where each slot of time
series A is added to the doubled value of each slot from time series B. The
usage of a time grid is shown in expression 3, where only the slot default
value is taken every 2 hours and copied to the output time series. Expression
4 calculates a mean value for each slot and the previous two slots, but only
every 1 hour. Finally, the last expression sets the slot default value to “hot”
if the temperature is higher than 100, and to “cold” otherwise. The general
functionality can be consolidated in the following list:

• Arithmetic calculation: Operations such as addition, subtraction,
multiplication and division on time series and slots, e.g.:

< A[n] ∗ 2 + B[n] ∗ ∗ 3 + 2 ∗ 5 > (3.1)

This expression takes two time series (A and B), multiplies all values
of time series A by 2, exponentiates all values of time series B by 3,
multiplies 2 and 5, and adds each resulting value of A to B and to 10.
The result is a new time series with each slot holding a result.

• Time patterns, slot and range selection: The times at which
new values have to be generated can be controlled via a time pattern

63

language, e.g.:

< (t) > every 3 secs (3.2)

The expression takes a time series and returns a new time series with
one value every 3 seconds.

• Conditionals: Conditionals, i.e. expressions where the evaluation
depends on a condition, are not written with if cascades or ternary
operators, but instead individual postfix if clauses are used, e.g.:

< [n] if n.depth < −100 m

or [n] ∗ 0.01 if n.depth > 100 m

or 0 otherwise >

(3.3)

The expression takes a time series and returns a new one with the same
value for each slot if the depth property of the slot is lower than -100
m, the same value multiplied by 0.01 if the depth property is larger
than 100 m, and 0 if the value of the slot is between -100 m and 100
m.

• Slot selection: For slot selection an index is used which is positive
if counted from the first value and negative if counted from the last
value, e.g.:

< [n + 1] > (3.4a)

or

< [n− 1] > (3.4b)

The expressions take a time series and create two new ones with all
slots shifted to the right (3.4a) or to the left (3.4b).

• Aggregation: Slots can also be addressed in groups using a logical
range. This is only used together with aggregations, e.g.:

< [n− 2 .. n].sum > (3.5)

The expression takes a time series and creates a new one with the
sum of all slots beginning with the slot with index n-2 until the slot
at the current position n. Supported aggregations are, for example:
sum (building the sum of values from a given range), prod (building
the product), count (counting all valid values; value 6= None), min

(finding the minimum value), max (finding the maximum value), mean
(calculating a mean value).

64

• Mean calculation: Some aspects of functionality can be generated
by combining other functionality aspects, e.g. mean calculation can be
achieved by combining time patterns and aggregation:

< [n− 1 hour .. n].mean > every 30 minutes (3.6)

The expression takes a time series and returns a new one with hourly
mean values, which has a slot for each half hour mean calculated.

Table 3.2 shows how expressions change time series. It shows input time
series, expressions, and modified time series for the previously explained ex-
ample expressions. The first column contains the time series used as input,
the second column the used expression, and the third column the results of
the Time Series Processor (TSP – see Section 3.3 “Architecture”). Time se-
ries are represented as tables with an identifier at the left of the table. Each
column is a slot of the time series. The first row shows the time stamps and
the second row the values of slots.

65
In

p
u
t

T
im

e
S
e
ri

e
s

E
x
p
re

ss
io

n
O

u
tp

u
t

T
im

e
S
e
ri

e
s

A
00

:0
0:

00
00

:0
0:

01
00

:0
0:

02
0

1
2

<
A
[
n
]

*
2

+
B
[
n
]

*
*

3
+

2
*

5
>

(3
.1

)
R

00
:0

0:
00

00
:0

0:
01

00
:0

0:
02

37
76

13
9

B
00

:0
0:

00
00

:0
0:

01
00

:0
0:

02
3

4
5

A
00

01
02

03
04

05
06

3
1

6
2

0
5

4
<

(
t
)

>
e
v
e
r
y

3
s
e
c
s

(3
.2

)
R

00
03

06
3

2
4

A
00

:0
0:

00
00

:0
0:

01
00

:0
0:

02
-1

50
m

15
0

m
50

m
<

[
n
]

i
f

n
.
d
e
p
t
h

<
-
1
0
0

m
R

00
:0

0:
00

00
:0

0:
01

00
:0

0:
02

-1
50

m
1.

5
m

0
m

o
r

[
n
]

*
0
.
0
1

i
f

n
.
d
e
p
t
h

>
1
0
0

m

o
r

0
o
t
h
e
r
w
i
s
e

>
(3

.3
)

A
00

:0
0:

01
00

:0
0:

02
00

:0
0:

03
0

1
2

<
[
n
+
1
]

>
(3

.4
a)

R
1

00
:0

0:
02

00
:0

0:
03

00
:0

0:
04

1
2

N
on

e

B
00

:0
0:

01
00

:0
0:

02
00

:0
0:

03
3

4
5

<
[
n
-
1
]

>
(3

.4
b
)

R
2

00
:0

0:
00

00
:0

0:
01

00
:0

0:
02

N
on

e
3

4

A
00

:0
0:

00
00

:0
0:

01
00

:0
0:

02
1

2
3

<
[
n
-
2

.
.

n
]
.
s
u
m

>
(3

.5
)

R
00

:0
0:

00
00

:0
0:

01
00

:0
0:

02
1

3
6

A
00

:0
0:

00
00

:1
5:

00
00

:3
0:

00
1

2
3

<
[
n

-
1

h
o
u
r

.
.

n
]
.
m
e
a
n

>
R

00
:0

0:
00

00
:3

0:
00

01
:0

0:
00

0
1.

2
3

→
00

:4
5:

00
01

:0
0:

00
01

:1
5:

00
4

5
6

e
v
e
r
y

3
0

m
i
n
u
t
e
s

(3
.6

)
→

01
:3

0:
00

02
:0

0:
00

4
2.

8

→
01

:3
0:

00
01

:4
5:

00
02

:0
0:

00
2

1
0 T
ab

le
3.

2:
D

em
on

st
ra

ti
on

of
ti

m
e

se
ri

es
p
ro

ce
ss

in
g

re
su

lt
s.

66

The time series processing language has been implemented in the Python
programming language, to guarantee the ease of extensibility and interop-
erability with other programming languages. Therefore it is usable as a
standalone library on major platforms1.

3.2 Language Specification

In the following, we present a formal description of the time series processing
language. The grammar of the language is specified in Extended Backus-
Naur Form (EBNF), and we have added the complete source code to the
appendix (see Appendix A). The presented specification is shown in form of
railroad diagrams from the EBNF grammar according to the specified rules.

3.2.1 letter

The first and simplest rule is a letter, which can be lower or upper case
(Figure 3.1).

Figure 3.1: Letter.

3.2.2 digit

The digit rule matches a digit from 0 to 9 (Figure 3.2).

Figure 3.2: Digit.

3.2.3 integer

The integer rule matches an arbitrary number of digits preceded by an op-
tional minus sign (Figure 3.3).

1Currently Java, .Net, and Python

67

Figure 3.3: Integer.

3.2.4 float

The float rule is matched by two arbitrary numbers of digits separated by a
dot (Figure 3.4).

Figure 3.4: Float.

3.2.5 number

The number rule is matched by an integer or a float (Figure 3.5).

Figure 3.5: Number.

3.2.6 string

A string can be an arbitrarily long combination of letters, digits, and under-
scores (Figure 3.6).

3.2.7 stmt

A statement consists of a time series parameter id list and a pipe (Figure
3.7).

68

Figure 3.6: String.

Figure 3.7: Statement.

3.2.8 pipe

As shown in Figure 3.8, a pipe can be a generator or a pipe and a generator
separated by the pipe operator (|).

Figure 3.8: Pipe.

3.2.9 generator

A generator is matched by the start (<<) and end (>>) operators with an
expression list in between, or by a generator and an every phrase (Figure
3.9).

3.2.10 ts param id list

The time series parameter id list is matched by a formal parameter or another
time series parameter id list followed by a formal parameter (Figure 3.10).

69

Figure 3.9: Generator.

Figure 3.10: Time series parameter id list.

3.2.11 formal parameter

The formal parameter starts with an at sign (@), which is followed by a
letter, and optionally, by an arbitrarily long sequence of letters, digits, and
underscores (Figure 3.11).

Figure 3.11: Formal parameter.

3.2.12 expression list

The expression list can consist of an assignment expression or an expression
list and assignment expression separated by a semicolon (Figure 3.12).

3.2.13 assign expression

There are three ways to match an assignment expression (Figure 3.13): The
easiest one is an if expression. The second possibility is a string (starting

70

Figure 3.12: Expression list.

with a letter, and containing several letters or digits) for the time series id
followed by the copy operator for all properties and an interval. The third
option is an if expression with an assignment operator followed by a string
for the property.

Figure 3.13: Assignment expression.

3.2.14 if expression

The if expression can be a single logic expression or a logic expression followed
by the IF keyword, an if expression, the OTHERWISE keyword, and a second
logic expression (Figure 3.14).

3.2.15 logic expression

A logic expression can be one of the following (Figure 3.15):

71

Figure 3.14: IF expression.

• logic expression AND add expression: a logic expression (containing
logic operators) and an addition expression (containing addition, sub-
traction, or multiplication operators) are combined by the logic and
operator (the true slots are set to 1 and the false slots are set to 0).

• logic expression OR add expression: a logic expression and an addition
expression are combined by a logic or operator.

• logic expression XOR add expression: a logic expression and an addi-
tion expression are combined by a logic exclusive or operator.

• add expression > add expression: two addition expressions are com-
pared by the greater than operator.

• add expression < add expression: two addition expressions are com-
pared by the lower than operator.

• add expression ≥ add expression: two addition expressions are com-
pared by the greater than or equals operator.

• add expression ≤ add expression: two addition expressions are com-
pared by the lower than or equals operator.

• add expression == add expression: two addition expressions are com-
pared by the equals operator.

• add expression ! = add expression: two addition expressions are com-
pared by the not equals operator.

• add expression: one single addition expression

3.2.16 add expression

The addition expression consists of an addition expression and a multiplica-
tion expression combined by a plus sign or a minus sign (for addition and
subtraction), or just a single multiplication expression (Figure 3.16).

72

Figure 3.15: Logic expression.

3.2.17 mult expression

The multiplication expression matches another multiplication expression com-
bined with a general expression by a division or multiplication sign, as well
as a single general expression (Figure 3.17).

3.2.18 expression

A general expression can be one of the following options (Figure 3.18):

• Two expressions combined by a power operator (**).

• An optional minus sign followed by an expression.

• A number.

• A string.

73

Figure 3.16: Addition expression.

Figure 3.17: Multiplication expression.

• A time series slice.

• An if expression in parenthesis.

• A formal parameter followed by an expression in parentheses.

• A simple None (null pointer).

3.2.19 ts slice

A time series slice consists of a property access and interval (Figure 3.19).

3.2.20 property access

As shown in Figure 3.20, the property access can be simply a string (for the
default property) or a string (defining the time series id) followed by a dot
and another string (defining the name of the property).

3.2.21 interval

The interval can be a numeric, logical, or time interval (Figure 3.21).

74

Figure 3.18: Expression.

Figure 3.19: Time series slice.

3.2.22 numeric interval

A numeric interval is an integer in square brackets (Figure 3.22).

3.2.23 logical interval

Figure 3.23 shows that a logical interval is a logical index expression in square
brackets (for a single slot) or two logical index expressions in square brackets
separated by two dots (for a slot range).

3.2.24 time interval

The time interval is defined by a time index expression in square brackets,
where the brackets can be open or closed, or two time index expressions in

75

Figure 3.20: Property access.

Figure 3.21: Interval.

brackets separated by two dots for a time range selection (Figure 3.24).

3.2.25 bra

Defines the starting square bracket, which can be open or closed (Figure
3.25).

3.2.26 ket

Defines the ending square bracket, which can be open or closed (Figure 3.26).

3.2.27 log index expression

The logical index expression can be an i for the current index, an i + integer
for future indices, or i - integer for past indices (Figure 3.27).

76

Figure 3.22: Numeric interval.

Figure 3.23: Logical interval.

3.2.28 int with time

The integer with time is used for every statements to define the time pe-
riod in which a certain expression is executed (Figure 3.28). It consists of
an integer followed by ms (milliseconds), secs (seconds), sec (second), mins
(minutes), min (minute), hours, hour, days, day, weeks, or week.

3.2.29 time index expression

The time index expression is a t for the current point in time, t + integer
with time for future points in time, or t - integer with time for past points
in time (Figure 3.29).

3.2.30 every phrase

As shown in Figure 3.30, the every phrase consists of the every keyword
followed by an integer with time or the every keyword followed by an inte-
ger with time, an @ sign, and another integer with time (for the definition
of a special start point for the measurement, e.g. every 1 minute @ 15

seconds).

77

Figure 3.24: Time interval.

Figure 3.25: First part of bracket.

Figure 3.26: Second part of bracket.

Figure 3.27: Logical index expression.

78

Figure 3.28: Integer with time unit.

Figure 3.29: Time index expression.

Figure 3.30: Every phrase.

79

3.3 Architecture

Before talking about the architecture as a whole, it is first necessary to ex-
plain which kind of time series our language understands. While the language
makes no assumptions about the provenance of a time series, it has the ab-
stract expectation that it is a linear array of chronologically ordered slots.

The time information within the slot may not be just a time stamp (with
a system specific precision). A time duration marks the temporal extension
of the slot. That duration can be positive or negative, depending on whether
the validity of the slot reaches into the future or the past. Slots also have a
logical “time”, which is the index in the series (starting with 0).

The payload in the slot has the form of key/value pairs. Keys are ei-
ther simple identifiers or take the form of qualified names (Qnames – used
to reference particular elements within XML documents) or International-
ized Resource Identifiers (IRIs – the internationalized form of Unified Re-
source Identifiers). Values are either anything of the former or literals such
as strings, integers, floats or application-specific objects such as images and
matrices. They can also be time durations or time patterns.

When slots are combined into a time series, obviously their time stamp
and their signed durations have to be honored. Any temporal overlaps have
to be resolved to arrive at a functional time series, i.e. one which can deliver
one slot for one particular time stamp.

Figure 3.31 shows the architecture of our time series processing language.
The main component is the Time Series Processor (TSP), which coordinates
the whole workflow of time series processing. It triggers the parser and the
interpreter, gathers time series data from a client platform or from a data
source directly, and dynamically loads user-defined extensions. The reason
why we have chosen an interpreter is that the time series need to be processed
not only as a whole, but also in real-time. Therefore, we needed a possibility
to implement a runtime-based interpreter to handle time series “on-the-fly”.

The principle of operation for a time series processor is shown in Figure
3.32. The TSP has an arbitrary number of time series and an expression as
input, it calculates the expression on the input time series and provides an
arbitrary number of output time series as a result.

The workflow of time series processing is that the client platform (Java,
.NET, etc.) pulls data from a data source and provides it to the TSP together
with an expression. The TSP first checks if there are user-defined modules
to load and triggers the parser to parse the expression. After the parser
returns the result in form of a predefined data structure, the TSP delivers
the structure and the time series to the interpreter. The interpreter returns
the result of the processing back to the TSP. The TSP forwards the result

80

Figure 3.31: The language processing architecture.

to the client platform, which delivers it to the data sink.

Apart from the general architecture of the language, there are also a
couple of possible Semantic Web oriented architectures. As the Time Series
Processor is available as a Web Service as well, the language could be used
web-based as shown in Figure 3.33. Here, a client application communicates
with a web service representing the TSP. The client application provides time
series and expressions; the web service communicates with a server, which has
the parser and interpreter deployed, and provides the expression for parsing
and the parsing output together with the time series data to the interpreter.
Optionally, time series data can be saved temporarily in a database2. The
result of the interpreter processing is returned to the web service first, and
then by the web service back to the client application.

Finally, Figure 3.34 presents a possible Semantic Web architecture, with
language extensions for Semantic Web functionality. Again, the central com-
ponent is the TSP. It organizes the communication with the parser and inter-
preter, semantic language extensions, and the data stores. After getting time
series data and expressions, it parses the expression. The parser now needs to
understand the semantics in the expression and uses additionally the seman-
tic processor extension to process the parser output. When new resources

2For performance reasons.

81

Figure 3.32: Workflow of a time series processor.

are needed, it uses the discovery processor (which implements semantic dis-
covery and is used to discover new resources), and, if there is something to
tag, the tagging processor (which is responsible for adding annotations to
resources). For storage of data, an ontology store as well as a Resource De-
scription Framework (RDF) store can be used. The results are interpreted
by the interpreter and returned to the TSP.

The main goal of the system architecture as a whole is to support the
high level of expressiveness and the user-friendly syntax of the language to
facilitate the ease of extensibility and to allow meaningful data models. The
following subsections describe the three main components of the language:
lexer, parser, and interpreter.

3.3.1 Lexer

The task of the lexer is to convert a sequence of characters into a sequence of
tokens, and thereby prepare the lexical expression for further processing in
the parser. The lexer is implemented using the PLY3 Python module. PLY
implements the lex and yacc parsing tools in Python.

Our lexer implementation can be split up into the following parts:

• Token definition: Definition of all reserved keywords and operators.

3http://www.dabeaz.com/ply/

82

Figure 3.33: The web service based architecture.

Figure 3.34: The Semantic Web architecture.

83

• States definition: Definition of possible lexer states (e.g. quote or
comment).

• Ruleset definition: Definition of rule sets (what happens if a keyword
or operator are matched).

The following code snippet shows the definition of tokens:

1 tokens=(’NONE’ , ’STARTGEN’ , ’ENDGEN’ , ’LT ’ , ’GT’ ,
2 ’SQUARE BRA ’ , ’SQUARE KET ’ ,
3 ’ I ’ , ’T ’ ,
4 ’ IF ’ , ’OTHERWISE’ , ’ASSIGN ’ ,
5 ’FLOAT’ , ’INTEGER ’ , ’STRING ’ , ’TS PARAM ID ’ ,
6 ’ TS ID ’ ,
7 ’AND’ , ’OR’ , ’XOR’ , ’PLUS ’ , ’MINUS ’ , ’TIMES ’ ,
8 ’DIVIDE ’ , ’POW’ ,
9 ’EQUALS ’ , ’LTE ’ , ’GTE’ , ’EQ’ , ’NEQ’ ,

10 ’SEMICOLON’ ,
11 ’ROUND BRA’ , ’ROUND KET’ , ’EVERY’ ,
12 ’FUNC OR ACCESS ’ ,
13 ’DOTDOT’ , ’AT’ , ’SERPIPE ’ , ’PROPCOPY’ ,
14 ’INT WITH TIME ’)

Listing 3.1: Definition of tokens.

The tokens specify datatypes such as NONE and STRING; operators such
as LT (<), ASSIGN (=), and SQUARE KET (]); and also keywords such as IF

and EVERY. This is necessary for the lexer to know which expressions can be
used (i.e. how many rulesets will be needed).

The definition of states is for setting the lexer in a special state where
operators and keywords may be interpreted differently (e.g. ignored when
they appear in the comments state). There are two common cases in which
this is necessary:

1. If a section is defined as comment, no interpretation should be made
about the content of the section.

2. If a section is defined as quote (e.g. in string assignment), then key-
words should be ignored and escape sequences should be respected.

The ruleset definition part of the lexer is used to actually generate the
tokens. Every single token has an own defined method in the ruleset part.
The following code snippet shows such a method for a floating point number:

1 de f t FLOAT(t) :
2 r ’ \d+\.\d+([eE][+−]?\d+)? ’
3 t ry :
4 t . va lue = f l o a t (t . va lue)

84

5 except ValueError :
6 pr in t (”Not a v a l i d f l o a t %s ” % t . va lue)
7 t . va lue = 0
8 re turn t

Listing 3.2: Ruleset for floating point numbers.

Listing 3.2 shows the implementation of the t FLOAT method in Python
code. This method is called every time the lexer finds a floating point number
which matches the regular expression ‘\d+\.\d+([eE][+-]?\d+)?’. This is
a decimal number of arbitrary length followed by a dot and another decimal
number of arbitrary length. Optionally, the exponent can be added at the
end of the floating point number. The try block attempts to convert the
string value to a Python float datatype. If this is successful, the value is set.
If the attempt fails, the value is set to 0. Finally, the token is returned.

3.3.2 Parser

For every predefined token combination a parser method is called. The parser
is also implemented by using the Python PLY module and consists of the
following parts:

• Parser definitions: Definition of pipes and generators (basic concepts
for parsing).

• Precedence logic: Definition of precedence rules in expressions.

• Function calls: Calls to functions according to defined token combi-
nations (core parsing functionality).

The parser definitions are responsible to define certain basic parsing con-
cepts. The following listing shows the pipe concept, as defined in the parser
definitions:

1 de f p p i p e s e r i a l (p) :
2 ’ ’ ’ p ipe : p ipe SERPIPE generator ’ ’ ’
3 g e n e r a t o r L i s t=p [1]
4 newGenerator=p [3]
5 g e n e r a t o r L i s t . append (newGenerator)
6 p [0]= g e n e r a t o r L i s t

Listing 3.3: Pipe concept in parser definitions.

In Listing 3.3 the pipe operator is defined. The p pipe serial method
is called every time the parser finds a ‘pipe SERPIPE generator’ token
pattern. Then the pipe token is set as the list of generators and the generator

85

token is appended to the list. The return value of the processing (p[0]) is
set to be the generator list.

The parser looks at defined precedence rules every time it finds shift/re-
duce conflicts. This means that if the parser finds, e.g. ‘expression MINUS
expression’ and the next token would be ‘DIVIDE’, it makes a shift. But if
the operators are defined manually, the parser has a shift conflict. Therefore,
some manually defined operators need to be added to the precedence tuple.

1 precedence = (
2 (’ l e f t ’ , ’ IF ’ , ’OTHERWISE’) ,
3 (’ l e f t ’ , ’GT’) ,
4 (’ r i g h t ’ , ’POW’) ,
5 (’ r i g h t ’ , ’UMINUS ’) ,
6)

Listing 3.4: Nested precedence tuple.

Listing 3.4 shows some operators added to the precedence tuple. The
first element of each nested tuple denotes to which expression the operator
is applied. It can be the left expression, as in ‘IF’, ‘OTHERWISE’, and ‘GT’
(greater than) in our example, or the right expression as in ‘POW’ (power) or
‘UMINUS’ (unary minus). The precedence is ascending from top to bottom,
i.e. ‘IF’ and ‘OTHERWISE’ have the lowest precedence and ‘UMINUS’ the
highest.

The main part of the parser are the function calls. They define the
structure of the parsing tree and generate the output of the parser. In general,
the parser output is a tree of dictionaries (hashes) and lists (arrays) as Python
structure, containing the expression. An example of such a function call
method is the following listing.

1 de f p i f (p) :
2 ’ i f e x p r e s s i o n : l o g i c e x p r e s s i o n IF i f e x p r e s s i o n OTHERWISE

l o g i c e x p r e s s i o n ’
3 trueExpr =p [1]
4 i fExpr =p [3]
5 otherExpr=p [5]
6 p [0] = {AST.TYPE: ’IFOT ’ , ” opera t i on ” : ’ IF ’ , ” cond i t i on ” :

i fExpr , ” t rue ” : trueExpr , ” f a l s e ” : otherExpr}

Listing 3.5: Example function call.

Listing 3.5 shows the ‘IF ... OTHERWISE’ expression function call. It
matches the tokens logic expression IF if expression OTHERWISE logic ex-
pression, which means that there has to be an expression (first logic expression)
which will be executed if the if expression is true; if the if expression is
false, the second logic expression will be executed. In the Python source
code we set trueExpr to the first logic expression (p[1]), ifExpr to the

86

if expression (p[3]) and otherExpr to the second logic expression (p[5]).
After that, we create the corresponding tree structure {AST.TYPE: ‘IFOT’,

‘‘operation’’: ‘if’, ‘‘condition’’: ifExpr, ‘‘true’’: trueExpr,

‘‘false’’: otherExpr}.
As a next step, we will have a deeper look into the tree structure:

1 {
2 ’ g ene ra to r s ’ :
3 [
4 {
5 ’ type ’ : ’ g enera tor ’ ,
6 ’ e x p r e s s i o n s ’ :
7 [
8 (
9 {

10 ’ type ’ : ’ f u n c c a l l ’ ,
11 ’ id ’ : ’ l og ’ ,
12 ’ a r g l i s t ’ : (3 ,)
13 } ,
14 None
15)
16] ,
17 ’ every ’ : None
18 }
19] ,
20 ’ type ’ : ’ stmt ’ ,
21 ’ parameters ’ :
22 {
23 ’A ’ : None
24 }
25 }

Listing 3.6: The output of a parsing process – a dictionary-list-tree structure.

The tree structure in Listing 3.6 shows an expression with a generator,
a type, and a parameter. The generator is of type generator, has an
expression and no every (i.e. no time pattern). The expression is a function
call and has the id log, which means that it is a logarithm function. In the
argument list, it has as value the integer ‘3’. The type of the expression is
stmt (statement), and the only parameter is the time series ‘A’ which is a
null pointer.

3.3.3 Interpreter

After parsing we have a Python dictionary-list-tree structure, as seen above.
This is an efficient representation of the expression that can be used to process
time series. Therefore, the interpreter has the possibility to evaluate this

87

expression on one or more time series (the exact number of time series to be
processed depends on the number of parameters in the expression tree). An
example of the interpreter usage is shown in the following listing.

1 p = par s e r . Parser ()
2

3 as t = p . parse (exp r e s s i on)
4

5 i = i n t e r p r e t e r . I n t e r p r e t e r ()
6

7 r e s u l t = i . eva luate (ast , t i m e S e r i e s)

Listing 3.7: Interpreter usage.

Listing 3.7 clearly shows the workflow of time series processing. There
are exactly 4 steps which need to be run through one by one:

1. Instantiation of a parser object (line 1).

2. Parsing of the expression (the input is a string holding the expression)
by calling the parse() method of the parser object. The return value
is the previously introduced tree structure (line 3).

3. Instantiation of an interpreter object (line 5).

4. Interpreting the expression tree on one or more time series instances
(line 7). The result is one or more new time series, and the parameters
are ast (= expression tree) and timeSeries (a number of time series).

This is the view from the user perspective. This means, all a user has to
do is to parse the expression and to evaluate the result on her time series.
In fact, those two steps can also be done in only one method. Then a user
would only need to pass the expression string together with the time series
to the method and get the resulting time series as return value.

If we go a step deeper and have a look into the evaluate method of the
interpreter, we can see the Python code, which explains the workflow of the
interpreter very well, in the next listing.

1 de f eva luate (s e l f , ast , t s s i n) :
2

3 t s sD i c = t s s i n
4

5 type=ast [AST.TYPE]
6 parameters=as t [” parameters ”]
7 gene ra to r s=as t [” gene ra to r s ”]
8

9 f o r generator in gene ra to r s :

88

10 t sRe su l t = s e l f . constructResultTS (generator , t s sD i c)
11 t sRe su l t = s e l f . i n t e r p r e t e (generator , t s sDic ,
12 t sRe su l t)
13 t s sD i c = {” ” : t sRe su l t }
14

15 re turn t sResu l t

Listing 3.8: Implementation of the evaluate method of the interpreter.

The main method of the interpreter is shown in Listing 3.8. In the eval-
uate method the input time series are saved to the time series dictionary.
The type of expression is set to AST.TYPE (which is stmt – currently the
only supported type). In the next step the parameters and generators are
set. There can be an arbitrary number of parameters (input time series) and
generators (expressions – since it is also possible to pipe, i.e. to provide a
number of expressions which are processed one after the other). For every
generator the resulting time series is constructed, and the result is saved to
the time series after interpreting the generator on the appropriate time series
dictionary. Then the result is saved back to the dictionary and, finally, all
resulting time series are returned to the method caller.

3.4 Expressions

In the following list we present 58 expressions of our time series processing
language which cover the whole functionality and demonstrate how the time
series processor works. Since the expressions, when processed, use all im-
plemented modules and methods, they are used for unit tests, which have a
code coverage of 100 %, as well.

1. @A << XXX >>: Invalid expression – used to test exception handling.

2. @A << A[i] >>: Copy operation, the values of the time series A are
copied to the result time series.

3. @A << A//.*//[i] >>: Copy operation for the whole time series. This
means that not only the primary values (referenced by index [i]) are
copied, but also all properties of the time series.

4. @A << mean(A[t-10min..t]); A//.*//[i] >> every 10 mins: Mean
calculation for 10 minute mean values from current point in time (t) to
10 minutes in the past. Additionally, all properties of the input time
series are copied to the resulting time series.

89

5. @I @A << A[i] >>: Input of two time series and selection of the de-
fault value of the second one.

6. @A @I << A[i] >>: Input of two time series and selection of the de-
fault value of the first one.

7. @A << A[i]*2; A[i]*3 >>: The input time series is processed through
two expressions (separated by a semicolon). In the first one all values
are multiplied by 2 and in the second one all values are multiplied by
3.

8. @A << A[t]*2 >> every 1 sec: The values of the input time series
are multiplied by 2 in a time grid of 1 second (every second the value
is selected and multiplied by 2).

9. @A @B << A[i] + B[i] >>: The default values of time series B are
added to the default values of time series A.

10. @A @B << A[i] - B[i] >>: The default values of time series B are
subtracted from the default values of time series A.

11. @A @B << A[i] * B[i] >>: The default values of time series B are
multiplied by the default values of time series A.

12. @A @B << A[i] / B[i] >>: The default values of time series A are
divided by the default values of time series B.

13. @A @B << A[i] ** B[i] >>: The default values of time series A are
raised to the power of the default values of time series B.

14. @A << A[i+1] >>: Time series A is shifted by one slot to the left.

15. @A << A[i-1] >>: Time series A is shifted by one slot to the right.

16. @A << A[i] * 2 >>: The default value of time series A is multiplied
by 2.

17. @A << A[i] * 0.5 >>: The default value of time series A is multiplied
by 0.5.

18. @A << A[i] + 2 >>: The default value of time series A is increased by
2.

19. @A << A[i] + 2.4 >>: The default value of time series A is increased
by 2.4.

90

20. @A << A[i] ** 2 + 5 >>: The default value of time series A is raised
to the power of 2 and increased by 5.

21. @A << A[i] + "X" >>: The string “X” is concatenated to the default
value of time series A.

22. @A << -A[i] >>: Change the sign of the default value of time series
A.

23. @A << A[2] >>: Select the third slot of time series A (logical index –
numbering starts with 0).

24. @A << mean(A[i-1 .. i]) >>: For every slot of time series A, cal-
culate the mean value of the current slot and the previous slot.

25. @A << max(A[i-1 .. i]) >>: For every slot of time series A, calcu-
late the maximum value of the current slot and the previous slot.

26. @A << min(A[i-1 .. i]) >>: For every slot of time series A, calcu-
late the minimum value of the current slot and the previous slot.

27. @A << mean(A[t .. t + 1 min]) >> every 1 min: For every slot
of time series A in 1 minute interval, calculate the mean value of the
current slot (time index) and all slots one minute in the future.

28. @A << A[t .. t + 1 min].mean >> every 1 min: For every slot of
time series A in 1 minute interval, calculate the mean value of the
current slot (time index) and all slots one minute in the future.

29. @A << mean(A[t .. t + 10 sec]); A//.*//[t..t + 10 sec] >> every

1 sec: For every slot of time series A in 1 second intervals, calculate
the mean value of the current slot and all slots 10 seconds in the future.
Further copy all properties of time series A to the resulting time series.

30. @A << mean(A[t .. t + 1 sec]) >> every 1 sec: For every slot
of time series A in 1 second intervals, calculate the mean value from
the current slot to the slot 1 second in the future including left and
right borders.

31. @A << mean(A]t .. t + 1 sec]) >> every 1 sec: For every slot
of time series A in 1 second intervals, calculate the mean value from
the current slot to the slot 1 second in the future excluding left and
including right border.

91

32. @A << mean(A[t .. t + 1 sec[) >> every 1 sec: For every slot
of time series A in 1 second intervals, calculate the mean value from
the current slot to the slot 1 second in the future including left and
excluding right border.

33. @A << mean(A]t .. t + 1 sec[) >> every 1 sec: For every slot
of time series A in 1 second intervals, calculate the mean value from
the current slot to the slot 1 second in the future excluding left and
right borders.

34. @A @B << A[i] and B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the logical AND operator
and set 1 to the resulting time series if both values are non-zero, and 0
otherwise.

35. @A @B << A[i] or B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the logical OR operator
and set 1 to the resulting time series if at least one of the values is
non-zero, and 0 otherwise.

36. @A @B << A[i] xor B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the logical XOR operator
and set 1 to the resulting time series if one value is non-zero and the
other value zero, and 0 otherwise.

37. @A @B << (A[i] > B[i]) >>: For every slot of time series A and B,
compare the default values of the slots with the greater than operator
and set 1 to the resulting time series if the corresponding value of A is
greater than B, and 0 otherwise.

38. @A @B << A[i] < B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the lower than operator
and set 1 to the resulting time series if the corresponding value of A is
lower than B, and 0 otherwise.

39. @A @B << A[i] >= B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the greater than or equal
operator and set 1 to the resulting time series if the corresponding value
of A is greater than or equals B, and 0 otherwise.

40. @A @B << A[i] <= B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the lower than or equal
operator and set 1 to the resulting time series if the corresponding
value of A is lower than or equals B, and 0 otherwise.

92

41. @A @B << A[i] == B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the equals operator and
set 1 to the resulting time series if the corresponding value of A is equal
to B, and 0 otherwise.

42. @A @B << A[i] != B[i] >>: For every slot of time series A and B,
compare the default values of the slots with the not equal operator and
set 1 to the resulting time series if the corresponding value of A is not
equal to B, and 0 otherwise.

43. @A << A[i] if A[i] >= 3 otherwise 0 >>: For every slot of time
series A, take the slot value if it is greater than or equals 3, otherwise
take 0.

44. @A @B << A[i] if A[i] < B[i] otherwise B[i] >>: For every slot
of time series A and B, take the slot value of A if it is lower than the
value of B, otherwise take B.

45. @A << 1 if (A[i] > 1) otherwise 0 => value:value >>: For ev-
ery slot of time series A, set the property “value:value” to 1 if the
default value is greater than 1, otherwise set the property to 0.

46. @A << A[i]*2 if (A[i] > 2) otherwise A[i]**2 >>: For every slot
of time series A, multiply the default slot value by 2 if it is greater than
2, otherwise raise it to the power of 2.

47. @A @B @C << A[i] + C[i] if B[i] == A[i] otherwise B[i]*C[i]

>>: For every slot of time series A, B, and C, add the value of C to the
value of A if A equals B, otherwise multiply B by C.

48. @A << A[i] if (A[i] > 1) otherwise None >>: For every slot of
time series A, take the default value of A, if it is greater than 1, other-
wise take the null pointer (None in Python).

49. @A << A[i] => mean >>: For every slot of time series A, set the “mean”
property of the slot to the default value.

50. @A << mean(A[i-1 .. i]) => mean >>: For every slot of time series
A, calculate the mean value for the current and previous value and set
it to the “mean” property of the current value.

51. @A << "set" if (A[i] > 10) otherwise "reset" => command >>:
For every slot of time series A, set the property “command” to the
string “set” if the default value of the slot is greater than 10, otherwise
set the value to “reset”.

93

52. @A << A[i]+log(3) => value >>: For every slot in time series A, add
the logarithm of 3 to the default slot value and store it in the “value”
property.

53. @A << log(A[i]) >>: For every slot in time series A, calculate the
logarithm of the default value.

54. @A << A[i] * 2; 10 => value test>>: For every slot of time series
A, multiply the default value by 2 and set the “value test” property to
10.

55. @A << A[i] * 2 >> | << [i] / 2 >>: For every slot of time series
A, multiply the default value by 2, take the resulting time series through
a pipe to the next expression and divide the default slot value by 2.

56. @A << count(A[i]) >>: For every slot of time series A, prepare the
values for counting (i.e. if the value is non-zero and not a null pointer,
set the result to 1, otherwise set to 0).

57. @A << count(A[t]) >> every 1 sec: For every slot of time series A,
prepare the values for counting in 1 second intervals.

58. @A << A[i] if (A[i] > 2) otherwise None >> | << count([i])

>>: For every slot of time series A, take the default slot value if it is
greater than 2, otherwise take None. Put the resulting time series
through the pipe operator to the next expression and count all default
slot values.

3.5 Benchmarks

This section gives an overview of the capabilities of the processor in terms
of performance. We present several tests to see how fast the language can
process time series of different size and expressions of different complexities.
The tests are run on a Quad Core i7 machine with 8 GB main memory.

94

#
C
l.

E
x
p
r
e
ss
io
n

L
e
n
g
th

1
0
0
k

2
0
0
k

3
0
0
k

4
0
0
k

5
0
0
k

6
0
0
k

7
0
0
k

8
0
0
k

9
0
0
k

1
0
0
0
k

1
3

@
A

<
<

A
[i
]
>
>

2
.4
2

4
.8
0

7
.1
9

9
.6
8

1
2
.1
2

1
4
.4
5

1
6
.8
8

1
9
.3
3

2
1
.8
3

2
4
.8
8

2
3

@
A

<
<

A
/
/
.*
/
/
[i
]
>
>

3
.8
2

7
.9
3

1
2
.0
9

1
5
.9
2

1
9
.7
8

2
4
.4
7

2
8
.3
2

3
1
.6
4

3
5
.4
5

3
9
.9
7

3
3

@
A

<
<

m
ea

n
(A

[t
-1
0
m
in
..
t]
);

0
.0
6

0
.1
2

0
.1
9

0
.2
5

0
.3
1

0
.3
8

4
.4
4

4
.6
8

4
.1
8

5
.2
2

A
/
/
.*
/
/
[i
]
>
>

ev
er
y
1
0
m
in
s

4
3

@
B

@
A

<
<

A
[i
]
>
>

2
.2
5

4
.7
2

7
.3
3

9
.4
0

1
2
.4
9

1
4
.2
0

1
6
.4
4

1
9
.7
4

2
1
.2
8

2
3
.8
5

5
3

@
A

@
B

<
<

A
[i
]
>
>

2
.3
5

4
.6
5

7
.0
8

9
.9
5

1
1
.8
4

1
4
.0
7

1
7
.6
1

1
8
.9
4

2
2
.1
6

2
4
.8
0

6
3

@
A

<
<

A
[i
]*
2
;
A
[i
]*
3
>
>

8
.5
3

1
7
.2
3

2
6
.0
6

3
4
.6
0

4
3
.0
9

5
2
.4
0

6
1
.1
9

6
9
.0
3

7
8
.2
4

8
6
.6
5

7
2

@
A

<
<

A
[t
]*
2
>
>

ev
er
y
1
se
c

1
1
.1
1

4
4
.4
0

9
9
.6
1

1
7
6
.9
4

2
7
5
.0
3

3
9
8
.2
6

5
4
2
.4
3

7
0
9
.9
9

8
9
6
.6
6

1
1
0
5
.2
1

8
3

@
A

@
B

<
<

A
[i
]
+

B
[i
]
>
>

6
.6
9

1
3
.3
0

1
9
.9
1

2
6
.6
1

3
3
.2
0

4
0
.0
3

4
8
.0
5

5
3
.9
0

6
1
.4
8

6
7
.0
1

9
3

@
A

@
B

<
<

A
[i
]
-
B
[i
]
>
>

6
.6
1

1
3
.6
2

2
0
.0
0

2
7
.6
0

3
4
.1
8

3
9
.9
0

4
7
.6
0

5
4
.2
6

6
0
.3
0

6
7
.7
6

1
0

3
@
A

@
B

<
<

A
[i
]
*
B
[i
]
>
>

6
.7
3

1
3
.6
0

2
0
.0
8

2
6
.6
0

3
3
.2
3

4
0
.0
2

4
6
.4
2

5
3
.2
4

6
1
.6
3

6
8
.8
4

1
1

3
@
A

@
B

<
<

A
[i
]
/
B
[i
]
>
>

6
.5
8

1
3
.6
2

2
0
.0
7

2
6
.7
3

3
3
.7
4

4
0
.0
4

4
6
.7
7

5
3
.7
9

6
1
.4
4

6
8
.7
2

1
2

3
@
A

@
B

<
<

A
[i
]
*
*
B
[i
]
>
>

6
.6
0

1
3
.3
5

2
0
.0
6

2
6
.8
1

3
3
.8
9

4
0
.0
8

4
6
.8
2

5
3
.7
3

6
1
.3
0

6
6
.8
6

1
3

3
@
A

<
<

A
[i
+
1
]
>
>

2
.2
7

4
.7
1

7
.0
2

9
.4
6

1
1
.8
6

1
4
.0
9

1
7
.1
6

1
8
.9
0

2
2
.1
5

2
4
.7
6

1
4

3
@
A

<
<

A
[i
-1
]
>
>

2
.2
4

4
.7
9

7
.4
1

9
.4
6

1
1
.7
1

1
4
.2
1

1
7
.5
1

1
9
.0
9

2
1
.2
5

2
3
.8
6

1
5

3
@
A

<
<

A
[i
]
*
2
>
>

4
.4
8

9
.2
9

1
3
.7
9

1
8
.9
2

2
3
.6
5

2
8
.4
3

3
2
.1
7

3
6
.7
9

4
1
.6
3

4
6
.1
8

1
6

3
@
A

<
<

A
[i
]
*
0
.5

>
>

4
.7
9

9
.7
4

1
4
.6
6

1
9
.6
6

2
4
.4
3

2
9
.3
1

3
4
.2
3

4
0
.0
4

4
4
.0
4

4
8
.9
4

1
7

3
@
A

<
<

A
[i
]
+

2
>
>

4
.4
9

9
.2
6

1
3
.7
8

1
8
.3
2

2
3
.1
9

2
7
.8
7

3
2
.9
8

3
6
.7
7

4
1
.1
5

4
5
.7
7

1
8

3
@
A

<
<

A
[i
]
+

2
.4

>
>

4
.7
2

9
.7
4

1
4
.5
4

1
9
.4
0

2
4
.2
6

2
9
.7
7

3
3
.8
7

3
8
.6
6

4
3
.6
8

4
9
.3
9

1
9

3
@
A

<
<

A
[i
]
*
*
2
+

5
>
>

7
.2
3

1
4
.7
6

2
2
.6
1

2
9
.8
2

3
7
.4
1

4
4
.4
3

5
2
.6
1

6
0
.0
8

6
6
.4
5

7
4
.2
2

2
0

3
@
A

<
<

-A
[i
]
>
>

3
.7
6

7
.3
0

1
0
.9
7

1
4
.8
6

1
8
.8
2

2
2
.0
7

2
5
.6
3

2
9
.2
8

3
3
.0
5

3
7
.4
3

2
1

3
@
A

<
<

m
ea

n
(A

[i
-1

..
i]
)
>
>

4
.6
7

9
.2
0

1
3
.7
5

1
8
.0
4

2
2
.5
1

2
7
.2
2

3
1
.5
7

3
6
.3
9

4
1
.8
9

4
6
.3
3

2
2

3
@
A

<
<

m
a
x
(A

[i
-1

..
i]
)
>
>

4
.3
4

8
.9
6

1
3
.5
3

1
7
.9
2

2
2
.7
1

2
6
.8
3

3
2
.0
7

3
5
.6
1

4
0
.0
1

4
4
.8
9

2
3

3
@
A

<
<

m
in
(A

[i
-1

..
i]
)
>
>

4
.3
6

8
.8
5

1
3
.3
6

1
8
.3
6

2
2
.9
1

2
6
.6
2

3
2
.0
0

3
5
.4
7

3
9
.8
8

4
4
.6
9

2
4

2
@
A

<
<

m
ea

n
(A

[t
..

t
+

1
se
c]
)
>
>

1
1
.3
7

4
4
.8
4

1
0
0
.3
1

1
7
8
.4
0

2
7
9
.9
7

4
0
2
.9
7

5
4
5
.8
6

7
1
3
.4
4

9
0
3
.9
4

1
0
8
2
.1
1

ev
er
y
1
se
c

2
5

3
@
A

<
<

m
ea

n
(A

[t
..

t+
1
m
in
])

>
>

0
.4
3

1
.7
1

2
.7
6

4
.7
0

7
.0
5

8
.5
5

1
2
.1
6

1
5
.6
3

1
7
.7
5

2
2
.7
7

ev
er
y
1
m
in

2
6

3
@
A

<
<

m
ea

n
(A

[t
-1
m
in

..
t]
)
>
>

0
.5
1

1
.5
3

2
.5
2

4
.6
8

7
.0
2

8
.9
6

1
2
.1
1

1
5
.6
1

1
7
.7
1

2
1
.9
1

ev
er
y
1
m
in

2
7

1
@
A

<
<

m
ea
n
(A

[t
..

t+
1
0
se
c]
);

2
7
.1
8

9
8
.6
2

2
1
3
.7
4

3
6
9
.5
2

5
7
5
.7
4

8
4
4
.0
7

1
1
3
6
.5
1

1
4
6
3
.2
7

1
8
7
5
.2
1

2
2
9
3
.9
9

A
/
/
.*
/
/
[t
..
t+

1
0
se
c]

>
>

ev
er
y
1
se
c

2
8

2
@
A

<
<

m
ea

n
(A

[t
..

t
+

1
se
c]
)
>
>

1
1
.5
7

4
5
.7
3

1
0
1
.3
5

1
8
0
.2
1

2
8
0
.7
6

4
0
2
.7
7

5
5
1
.0
0

7
1
2
.6
4

9
2
8
.5
7

1
1
4
3
.0
3

ev
er
y
1
se
c

T
ab

le
3.

3:
E

x
ec

u
ti

on
ti

m
e

of
th

e
ti

m
e

se
ri

es
p
ro

ce
ss

in
g

ex
p
re

ss
io

n
s

(P
ar

t
1)

.

95
#

C
l.

E
x
p
r
e
ss
io
n

L
e
n
g
th

1
0
0
k

2
0
0
k

3
0
0
k

4
0
0
k

5
0
0
k

6
0
0
k

7
0
0
k

8
0
0
k

9
0
0
k

1
0
0
0
k

2
9

2
@
A

<
<

m
ea

n
(A

]t
..

t
+

1
se
c]
)
>
>

ev
er
y
1
se
c

1
1
.8
1

4
6
.4
6

1
0
4
.3
5

1
8
2
.6
2

2
8
5
.8
0

4
1
1
.2
9

5
5
8
.9
8

7
2
3
.2
2

9
1
4
.7
5

1
0
9
4
.5
7

3
0

2
@
A

<
<

m
ea

n
(A

[t
..

t
+

1
se
c[
)
>
>

ev
er
y
1
se
c

1
1
.3
9

4
4
.7
9

9
9
.7
3

1
7
6
.0
7

2
7
5
.3
9

3
8
9
.4
2

5
2
6
.6
0

6
8
7
.8
5

8
6
8
.3
6

1
0
7
1
.8
0

3
1

2
@
A

<
<

m
ea

n
(A

]t
..

t
+

1
se
c[
)
>
>

ev
er
y
1
se
c

1
1
.1
0

4
3
.5
8

9
7
.2
5

1
7
2
.5
6

2
6
9
.0
2
1

3
8
6
.4
4

5
2
7
.8
7

6
8
7
.7
5

8
6
8
.5
0

1
0
7
3
.4
9

3
2

3
@
A

@
B

<
<

A
[i
]
a
n
d
B
[i
]
>
>

6
.5
9

1
3
.1
7

1
9
.7
3

2
6
.6
9

3
2
.9
0

3
9
.4
1

4
6
.7
2

5
2
.5
4

5
9
.0
4

6
6
.8
2

3
3

3
@
A

@
B

<
<

A
[i
]
o
r
B
[i
]
>
>

6
.4
9

1
3
.3
3

1
9
.7
0

2
6
.2
9

3
3
.3
4

3
9
.4
8

4
6
.7
1

5
2
.4
8

5
9
.2
4

6
6
.0
6

3
4

3
@
A

@
B

<
<

A
[i
]
x
o
r
B
[i
]
>
>

6
.4
8

1
3
.2
1

1
9
.7
7

2
6
.7
7

3
2
.8
9

4
0
.0
2

4
6
.0
0

5
2
.6
8

5
9
.2
5

6
5
.9
1

3
5

3
@
A

@
B

<
<

(A
[i
]
>

B
[i
])

>
>

6
.4
7

1
3
.1
4

2
0
.0
1

2
6
.3
2

3
2
.9
0

3
9
.4
1

4
6
.0
0

5
2
.6
9

5
9
.9
7

6
5
.8
1

3
6

3
@
A

@
B

<
<

A
[i
]
<

B
[i
]
>
>

6
.4
8

1
3
.1
7

2
0
.0
3

2
6
.2
9

3
2
.7
5

3
9
.4
5

4
5
.9
3

5
2
.5
9

6
0
.1
3

6
5
.7
0

3
7

3
@
A

@
B

<
<

A
[i
]
>
=

B
[i
]
>
>

6
.4
6

1
3
.1
3

1
9
.9
5

2
6
.2
4

3
3
.2
6

3
9
.9
8

4
5
.8
9

5
2
.5
6

5
9
.1
8

6
6
.7
5

3
8

3
@
A

@
B

<
<

A
[i
]
<
=

B
[i
]
>
>

6
.4
8

1
3
.1
5

2
0
.0
0

2
6
.3
6

3
2
.8
6

4
0
.0
1

4
6
.0
4

5
3
.3
6

5
9
.1
9

6
6
.6
3

3
9

3
@
A

@
B

<
<

A
[i
]
=
=

B
[i
]
>
>

6
.4
7

1
3
.0
9

1
9
.6
2

2
6
.2
4

3
3
.2
9

3
9
.3
6

4
5
.8
6

5
3
.4
3

5
9
.0
6

6
5
.7
7

4
0

3
@
A

@
B

<
<

A
[i
]
!=

B
[i
]
>
>

6
.6
0

1
3
.1
3

1
9
.9
7

2
6
.3
0

3
2
.8
9

3
9
.3
8

4
5
.9
5

5
2
.6
1

5
9
.9
9

6
5
.8
0

4
1

3
@
A

<
<

A
[i
]
if
A
[i
]
>
=

3
o
th

er
w
is
e
0
>
>

7
.1
5

1
4
.5
1

2
1
.9
9

2
9
.0
6

3
6
.1
7

4
3
.4
7

5
0
.8
1

5
8
.2
1

6
6
.0
5

7
2
.4
3

4
2

3
@
A

@
B

<
<

A
[i
]
if
A
[i
]
<

B
[i
]
o
th

er
w
is
e
B
[i
]
>
>

1
1
.5
2

2
3
.2
7

3
5
.1
3

4
6
.5
3

5
8
.5
8

7
0
.3
1

8
1
.5
0

9
2
.9
5

1
0
4
.4
7

1
1
7
.3
3

4
3

3
@
A

<
<

1
if
(A

[i
]
>

1
)

6
.8
1

1
3
.7
5

2
0
.9
4

2
7
.4
6

3
4
.3
6

4
1
.1
7

4
8
.8
5

5
5
.0
3

6
1
.9
1

6
9
.6
8

o
th

er
w
is
e
0
=
>

v
a
lu
e:
v
a
lu
e
>
>

4
4

3
@
A

<
<

A
[i
]*
2
if
(A

[i
]
>

2
)
o
th

er
w
is
e
A
[i
]*
*
2
>
>

1
2
.3
6

2
4
.9
3

3
7
.7
0

4
9
.9
3

6
2
.2
0

7
5
.3
3

8
7
.3
2

9
9
.8
9

1
1
2
.4
5

1
2
4
.8
5

4
5

3
@
A

@
B

@
C

<
<

A
[i
]
+

C
[i
]
if
B
[i
]
=
=

A
[i
]

1
8
.7
2

3
6
.6
9

5
4
.7
1

7
3
.2
0

8
9
.5
2

1
0
8
.3
3

1
2
4
.2
2

1
4
4
.1
3

1
5
8
.9
2

1
7
7
.1
2

o
th

er
w
is
e
B
[i
]*
C
[i
]
>
>

4
6

3
@
A

<
<

A
[i
]
if
(A

[i
]
>

1
)
o
th

er
w
is
e
N
o
n
e
>
>

6
.5
9

1
3
.1
8

1
9
.8
2

2
6
.3
7

3
3
.7
5

4
0
.1
0

4
6
.6
0

5
3
.2
9

5
9
.3
8

6
6
.9
4

4
7

3
@
A

<
<

A
[i
]
=
>

m
ea

n
>
>

2
.1
8

4
.6
2

6
.9
7

9
.2
9

1
1
.6
0

1
3
.9
5

1
6
.1
9

1
8
.4
2

2
1
.1
4

2
3
.5
1

4
8

3
@
A

<
<

m
ea

n
(A

[i
-1

..
i]
)
=
>

m
ea

n
>
>

4
.4
2

8
.4
8

1
2
.9
0

1
7
.2
2

2
1
.7
5

2
6
.4
0

3
0
.2
8

3
4
.8
8

3
9
.6
4

4
3
.9
9

4
9

3
@
A

<
<

”
se
t”

if
(A

[i
]
>

1
0
)

7
.3
4

1
4
.3
2

2
1
.5
9

2
8
.2
7

3
5
.9
2

4
2
.0
0

4
8
.7
7

5
6
.5
4

6
4
.0
5

7
0
.4
3

o
th

er
w
is
e
”
re
se
t”

=
>

co
m
m
a
n
d
>
>

5
0

3
@
A

<
<

A
[i
]+

lo
g
(3
)
=
>

v
a
lu
e
>
>

6
.6
4

1
3
.2
5

2
0
.2
3

2
7
.0
9

3
3
.8
6

4
0
.3
6

4
7
.8
9

5
4
.9
2

6
1
.6
3

6
8
.2
3

5
1

3
@
A

<
<

lo
g
(A

[i
])

>
>

4
.2
1

8
.5
3

1
2
.6
1

1
6
.7
9

2
0
.9
9

2
5
.2
1

2
9
.6
1

3
4
.6
6

3
9
.5
0

4
1
.9
4

5
2

3
@
A

<
<

A
[i
]
*
2
;
1
0
=
>

v
a
lu
e
te
st

>
>

5
.0
0

9
.9
7

1
5
.0
2

1
9
.9
7

2
5
.4
0

3
0
.6
0

3
4
.3
9

3
9
.2
0

4
4
.2
5

4
8
.7
4

5
3

3
@
A

<
<

A
[i
]
*
2
>
>

|<
<

[i
]
/
2
>
>

9
.3
6

1
8
.7
0

2
8
.2
3

3
6
.7
0

4
6
.7
2

5
6
.1
2

6
5
.8
3

7
3
.7
8

8
4
.3
5

9
3
.4
7

5
4

3
@
A

<
<

co
u
n
t(
A
[i
])

>
>

3
.9
2

8
.1
6

1
2
.2
6

1
6
.3
8

2
0
.4
1

2
4
.3
2

2
8
.6
8

3
2
.6
1

3
6
.6
0

4
0
.6
1

5
5

2
@
A

<
<

co
u
n
t(
A
[t
])

>
>

ev
er
y
1
se
c

1
1
.1
7

4
5
.1
1

1
0
1
.0
8

1
7
7
.5
7

2
7
6
.4
8

3
9
7
.8
1

5
5
2
.2
9

7
1
0
.0
5

8
9
3
.1
7

1
1
0
6
.0
3

5
6

3
@
A

<
<

A
[i
]
if
(A

[i
]
>

2
)
o
th

er
w
is
e
N
o
n
e
>
>

6
.6
8

1
3
.4
5

1
9
.8
7

2
6
.8
5

3
3
.5
0

3
9
.8
4

4
6
.6
8

5
3
.2
5

6
0
.0
9

6
7
.1
0

|<
<

co
u
n
t(

[i
])

>
>

T
ab

le
3.

4:
E

x
ec

u
ti

on
ti

m
e

of
th

e
ti

m
e

se
ri

es
p
ro

ce
ss

in
g

ex
p
re

ss
io

n
s

(P
ar

t
2)

.

96

Tables 3.3 and 3.4 show the results of the benchmark tests. The ex-
pressions have been processed for time series with a raising number of slots
(from 100 000 up to 1 000 000 in steps of 100 000 slots). The result is the
execution time in seconds. We have subdivided the tests into three classes:
class 1 is the most execution time consuming expression (expression num-
ber 27 in Table 3.3), class 2 are expressions with execution times between
1071.80 and 1143.03 seconds for 1 000 000 slots, and class 3 are all other
expressions (which have a clearly smaller execution time). We have picked
one representative per class, which is marked in grey and italic in the table.

Figure 3.35 shows the representatives of the three categories defined in
Tables 3.3 and 3.4. On the y-axis we have the time of execution in seconds
and on the x-axis the number of slots of the time series. The legend shows
the color of the line for the appropriate expression. Expression number 27
has clearly the highest execution time, because it combines several expensive
operations on the input time series: it calculates mean values based on time
range selection, copies all properties of the time series based on time range
selection, and triggers the processing every second. This is an extreme case
and a very rare expression structure. Therefore, the high time consumption
is acceptable. Expression number 55 has an average time consumption, since
it uses time selection and triggers the count function every second. This is a
more common usage of the language but still occurs only in approximately
12% of the cases (based on use case definitions for the language, which are not
subject of this thesis). Most commonly, simple expressions such as expression
number 19 are used. These expressions show linear growth in execution time
and can be processed very quickly (no notable waiting times for the user).
Therefore, the representative expressions show that the scalability of the
language is good enough for time series processing of time series with up to
1 000 000 slots.

Since there is a large number of class 3 expressions, we provide an overview
in Table 3.5 and subdivide them into 7 subclasses to show how they differ.
The representatives are again highlighted in gray and printed in italic. Class
1 is represented by an if expression (number 45) with three input time series
which takes significantly more time than the other expressions. Expression
42 represents class 2 and is an if expression with two input time series.
Expression 6 performs two parallel calculations in one expression (class 3),
expression 36 a comparison between two time series (class 4), and expression
15 performs one calculation on a single time series (class 5). The expressions
1 (simple iteration over slots) and 25 (mean calculation) have a similar time
cost for 1 000 000 slots, but expression 25 scales better, since the significant
growth in time starts at 700 000 slots compared to 500 000 slots for expression
1.

97

●

●

●

●

●

●

●

●

●

●

1e+05 3e+05 5e+05 7e+05 9e+05

0
50

0
10

00
15

00
20

00

● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

Benchmark Tests

Time Series Length

T
im

e
in

 s
ec

on
ds

●

●

●

27: << mean(A[t .. t+10sec]);
A//.*//[t..t+10sec] >> every 1 sec

55: << count(A[t]) >> every 1 sec

19: << A[i] ** 2 + 5 >>

Figure 3.35: Execution time of representative expressions for the 3 main
classes.

Figure 3.36 shows the different representatives of subclasses of class 3 ex-
pressions. The x-axis shows the number of slots and the y-axis the execution
time in seconds. The legend shows the number and expression for each color
in the graph.

98

Cl. Expression 100k 500k 1000k

1 6 @A << A[i] >> 2.42 12.12 24.88
2 5 @A << A//.*//[i] >> 3.82 19.78 39.97
3 7 @A << mean(A[t-10min..t]); A//.*//[i] >> every 10 mins 0.06 0.31 5.22
4 6 @B @A << A[i] >> 2.25 12.49 23.85
5 6 @A @B << A[i] >> 2.35 11.84 24.80
6 3 @A << A[i]*2; A[i]*3 >> 8.53 43.09 86.65
8 4 @A @B << A[i] + B[i] >> 6.69 33.20 67.01
9 4 @A @B << A[i] - B[i] >> 6.61 34.18 67.76
10 4 @A @B << A[i] * B[i] >> 6.73 33.23 68.84
11 4 @A @B << A[i] / B[i] >> 6.58 33.74 68.72
12 4 @A @B << A[i] ** B[i] >> 6.60 33.89 66.86
13 6 @A << A[i+1] >> 2.27 11.86 24.76
14 6 @A << A[i-1] >> 2.24 11.71 23.86
15 5 @A << A[i] * 2 >> 4.48 23.65 46.18
16 5 @A << A[i] * 0.5 >> 4.79 24.43 48.94
17 5 @A << A[i] + 2 >> 4.49 23.19 45.77
18 5 @A << A[i] + 2.4 >> 4.72 24.26 49.39
19 4 @A << A[i] ** 2 + 5 >> 7.23 37.41 74.22
20 5 @A << -A[i] >> 3.76 18.82 37.43
21 5 @A << mean(A[i-1 .. i]) >> 4.67 22.51 46.33
22 5 @A << max(A[i-1 .. i]) >> 4.34 22.71 44.89
23 5 A << min(A[i-1 .. i]) >> 4.36 22.91 44.69
25 7 @A << mean(A[t .. t+1min]) >> 0.43 7.05 22.77
26 7 @A << mean(A[t-1min .. t]) >> 0.51 7.02 21.91
32 4 @A @B << A[i] and B[i] >> 6.59 32.90 66.82
33 4 @A @B << A[i] or B[i] >> 6.49 33.34 66.06
34 4 @A @B << A[i] xor B[i] >> 6.48 32.89 65.91
35 4 @A @B << (A[i] > B[i]) >> 6.47 32.90 65.81
36 4 @A @B << A[i] < B[i] >> 6.48 32.75 65.70
37 4 @A @B << A[i] >= B[i] >> 6.46 33.26 66.75
38 4 @A @B << A[i] <= B[i] >> 6.48 32.86 66.63
39 4 @A @B << A[i] == B[i] >> 6.47 33.29 65.77
40 4 @A @B << A[i] != B[i] >> 6.60 32.89 65.80
41 4 @A << A[i] if A[i] >= 3 otherwise 0 >> 7.15 36.17 72.43
42 2 @A @B << A[i] if A[i] < B[i] otherwise B[i] >> 11.52 58.58 117.33
43 4 @A << 1 if (A[i] > 1) otherwise 0 => value:value >> 6.81 34.36 69.68
44 2 @A << A[i]*2 if (A[i] > 2) otherwise A[i]**2 >> 12.36 62.20 124.85
45 1 @A @B @C << A[i] + C[i] if B[i] == A[i] otherwise B[i]*C[i] >> 18.72 89.52 177.12
46 4 @A << A[i] if (A[i] > 1) otherwise None >> 6.59 33.75 66.94
47 6 @A << A[i] => mean >> 2.18 11.60 23.51
48 5 @A << mean(A[i-1 .. i]) => mean >> 4.42 21.75 43.99
49 4 @A << ”set” if (A[i] > 10) otherwise ”reset” => command >> 7.34 35.92 70.43
50 4 @A << A[i]+log(3) => value >> 6.64 33.86 68.23
51 5 @A << log(A[i]) >> 4.21 20.99 41.94
52 5 @A << A[i] * 2; 10 => value test >> 5.00 25.40 48.74
53 3 @A << A[i] * 2 >> | << [i] / 2 >> 9.36 46.72 93.47
54 5 @A << count(A[i]) >> 3.92 20.41 40.61
56 4 @A << A[i] if (A[i] > 2) otherwise None >> | << count([i]) >> 6.68 33.50 67.10

Table 3.5: Overview and categorization of class 3 expressions.

99

●

●

●

●

●

●

●

●

●

●

1e+05 3e+05 5e+05 7e+05 9e+05

50
10

0
15

0

● ● ● ● ● ●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●
●

● ●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Benchmark Tests

Time Series Length

T
im

e
in

 s
ec

on
ds

●

●

●

●

●

●

●

45: << A[i] + C[i] if B[i] == A[i] otherwise B[i]*C[i] >>
42: << A[i] if A[i] < B[i] otherwise B[i] >>
6: << A[i]*2; A[i]*3 >>
36: < A[i] < B[i] >>
15: < A[i] * 2 >>
1: << A[i] >>
25: << mean(A[t .. t+1min]) >>

Figure 3.36: Execution time of the representative class 3 expressions for the
7 subclasses.

100

3.6 Profiling

The profiling of our implementation helps us to analyze the performance of
time series processing in order to find bottlenecks. We have a look at method
calls and how much execution time they take. Listing 3.9 shows the most
time-consuming methods as generated by the Python cProfiler module which
is part of the Python standard library. The first column shows the number of
calls for the analyzed method, the second column the total time of execution
of the method during the whole process runtime, the third column the time
per call for the method, and the fourth column the name and location of the
method.

1 12229933596 func t i on c a l l s (12229919887 p r i m i t i v e c a l l s) in
7207.406 seconds

2

3 Ordered by : standard name
4

5 n c a l l s tot t ime p e r c a l l f i l ename : l i n e n o (func t i on)
6 1 1 .895 1 .895 Helper . py : 1 2 5 (constructTS)
7 19801980 2 .451 0 .000 Helper . py : 4 8 (get)
8 19801980 6 .836 0 .000 Helper . py : 6 3 (s e t S l o t)
9 1000990 1 .706 0 .000 Helper . py : 6 6 (setValue)

10 19804955 3 .545 0 .000 Helper . py : 7 9 (getTSProperty)
11 39603960 24 .220 0 .000 Helper . py : 9 3 (g e t S l o t)
12 1980 1152.844 0 .582 Helper . py : 9 9 (s l i c e)
13 2000818315 199.572 0 .000 PythonTimeStamp . py : 1 3 (e q)
14 2000818313 910.029 0 .000 PythonTimeStamp . py : 2 7 (l t)
15 101011880 8 .511 0 .000 PythonTimeStamp . py : 3 4 (h a s h)
16 5961783962 401.883 0 .000 PythonTimeStamp . py : 4 3 (a s M i l i s)
17 990 1 .641 0 .002 aggregate s . py : 6 1 (c a l c)
18 1980 30 .009 0 .015 a s t i n t e r p r e t e r . py :300
19 (p h y s i c a l s l i c e)
20 19801980 8 .604 0 .000 u t i l s . py : 1 3 8 (getSlotFromTSAsDic)
21 19801980 26 .897 0 .000 u t i l s . py : 1 4 9 (getS lotAsDic)
22 2000903859 115.956 0 .000 { i s i n s t a n c e }
23 3962 27 .178 0 .007 {method ’ keys ’ o f ’ d i c t ’ o b j e c t s }
24 3961 717.660 0 .181 { so r t ed }

Listing 3.9: Results of profiling the source code of the time series processor
implementation.

According to the profiling results the slice method clearly takes the
most processing time. This is a very clear signal for code optimization since
other time consuming methods like sorted, lt , and asMilis are imported
standard library methods and therefore cannot be improved by the integrator.
Slicing is the procedure in our time series processor which is used to select a
certain range of a time series. It is the implementation of the indexing and

101

time intensive because of the involvement of multiple future or past slots for
every slot in a time series.

Apart from profiling, we also recorded the tracing to see which lines of
code are executed most frequently. For this task we used the Python trace
module. Listing 3.10 shows the results of the most often executed part of
the interpreter. On the right side of the listing, the analyzed line of code is
shown, and on the left side the number of calls to the corresponding line.

1 >>>>>> de f p h y s i c a l s l i c e (s e l f , tsNode , ts , t , l e f t I n f o ,
2 r i g h t I n f o) :
3

4 1980 : l e f t O f f s e t=l e f t I n f o [” o f f s e t ”]
5 1980 : l e f t O f f s e t=u t i l s . normalizeTimeValue (l e f t O f f s e t)
6

7 1980 : r i g h t O f f s e t=r i g h t I n f o [” o f f s e t ”]
8 1980 : r i g h t O f f s e t=u t i l s . normalizeTimeValue (r i g h t O f f s e t)
9

10 1980 : t L e f t=t . a s M i l i s ()+l e f t O f f s e t [0]
11 1980 : tRight=t . a s M i l i s ()+r i g h t O f f s e t [0]
12

13 1980 : t s L e f t=TimeStamp(t L e f t)
14 1980 : t sRight=TimeStamp(tRight)
15

16

17 1980 : t i=TimeInterval (TimeInterval . Openness .CLOSED,
18 t sLe f t , tsRight , TimeInterval . Openness .CLOSED)
19

20 # s l i c i n g o f time s e r i e s implementation
21 1980 : s l i c e=t s . s l i c e (t i)
22

23 1980 : r e s u l t S l i c e =[]
24

25 1980 : nodeType=tsNode [AST.TYPE]
26 1980 : i f nodeType==”PROPCOPY” :
27 990 : valueKey=” temperature ”
28 e l s e :
29 990 : valueKey = u t i l s . getValueKey (tsNode , t s)
30

31 1980 : a l lTS = s l i c e . getTimeStampsArray ()
32

33 19803960: f o r tStamp in al lTS :
34 19801980: s l o t D i c=u t i l s . getSlotFromTSAsDic (tStamp , t s)
35 19801980: r e s u l t S l i c e . append ((tStamp , s l o t D i c))
36

37

38 1980 : l e f tOpennes s=l e f t I n f o [AST.TYPE]
39 1980 : r ightOpenness=r i g h t I n f o [AST.TYPE]
40

102

41 1980 : i f l e f tOpennes s==”OPEN” and l en (r e s u l t S l i c e)>0
42 and r e s u l t S l i c e [0] [0]== t s L e f t :
43 >>>>>> de l r e s u l t S l i c e [0]
44

45 1980 : i f r ightOpenness==”OPEN” and l en (r e s u l t S l i c e)>0
46 and r e s u l t S l i c e [−1][0]== tsRight :
47 >>>>>> de l r e s u l t S l i c e [−1]
48

49 # Remove time stamps
50 19803960: f o r i in xrange (l en (r e s u l t S l i c e)) :
51 19801980: r e s u l t S l i c e [i]= r e s u l t S l i c e [i] [1]
52

53 1980 : re turn (r e s u l t S l i c e , valueKey)

Listing 3.10: Results of tracing for the most frequently used part of the
interpreter.

As we can see, the tracing shows as well that slicing is the most time
consuming part of the source code. With nearly 20 million executions, the
loop for gathering slots from the dictionary and appending result slices, as
well as the loop for removing time stamps from slices shows potential for
optimization. However, this is out of scope of this thesis and therefore will
be covered in future publications.

Chapter 4

Semantic Framework

The Semantic Framework Prototype represents a complete solution for the
implementation of Semantic Web applications. It consists of a set of compo-
nents providing all needed tools to build web services, web portals, libraries,
and applications enriched with Semantic Web technology.

In particular, the functionality of the framework is: Semantic Reposi-
tory and Connectors (Data Access), Ontology Mapping, Semantic Processing
(Reasoning), Annotation, and User Interaction (Web Portal).

The Semantic Repository is responsible for the storage and retrieval of
semantically relevant resources metadata. These are time series metadata
which could originate from any field of science and describe any aspect of a
time series. The role of the Semantic Repository is to load a certain ontology
into the knowledge base, as well as additional triples which represent infor-
mation about time series. It interacts with the Semantic Processor, Ontology
Mapping, and Connectors for loading new data to the store.

The Connectors are components which connect different data sources to
our semantic framework. The most fundamental connector is the Semantic
Repository which provides a connection to a knowledge base by the usage
of specific libraries. Another example is an RDFa connector for collecting
RDFa triples from web sites.

We use Ontology Mapping techniques to connect ontologies from different
domains to each other. This is done by the implementation of a bridge
ontology and enables the dynamic extension of our system with multiple
domain ontologies which makes it possible to improve reasoning and extend
the horizon for time series metadata.

The Semantic Processing component processes annotations and tags. It
gets resources from the Semantic Repository component, associates anno-
tations from the user to these resources, or generates annotations by itself.
The component interacts with the Ontology Mapping component and with

103

104

the Semantic Repository to gain access to underlying data bases.
The Annotation component’s responsibility is to add additional meta

information to discovered Web resources. It can be triggered by the user, who
provides meta information about the resource, or by the Semantic Processor,
in which case the annotation is done automatically. The component interacts
with a web portal, to allow annotations by users, and with the Semantic
Processor, to allow automatic annotations.

User Interaction is implemented via a web portal. This approach allows
us to present the user with customized portlets according to her specific group
affiliation and interests. Furthermore, the portal approach makes resource
discovery and annotation functionality available to the user in a natural and
intuitive way.

Figure 4.1 shows a UML component diagram presenting the architec-
ture of the Semantic Framework. The Semantic Repository retrieves RDF
data from the Connectors and both components belong to the Data Man-
agement package. The Semantic Repository provides the retrieved triples to
the Semantic Processor and Ontology Mapping, which are in the Semantic
Processing package. The Semantic Processor consumes annotations from the
Annotation component. Ontology Mapping and Semantic Processor provide
semantic data to the User Interaction component, which also consumes an-
notations from the Annotation component and belongs together with the
Annotation component to the Visualization package.

Parts of this chapter have already been published in Božić and Winiwarter
[2013a].

105

Semantic Framework

Data Management

Semantic Processing

Visualization

Semantic RepositorySemantic Repository ConnectorConnector

Semantic ProcessorSemantic ProcessorOntology MappingOntology Mapping

User InteractionUser Interaction AnnotationAnnotation

RDF data

retrieved triples

semantic data

tags

tags

Figure 4.1: UML component diagram of the Semantic Framework.

106

4.1 Semantic Repository

The Semantic Repository is implemented by using RDFlib1. RDFlib is a
Python framework for building and managing a knowledge base (comparable
to SESAME or the Jena API). We use a MySQL2 database to make the
knowledge base persistent.

Figure 4.2: Typical workflow example for using the semantic repository.

A typical workflow example for the usage of the semantic repository is
shown in Figure 4.2. The workflow consists of 4 steps which represent the
main functionality of the component. In the first step a new semantic repos-
itory is initialized by calling the constructor of the class, the second step
shows the loading of an ontology with already predefined triples, the third
step represents adding new triples to the repository, and the fourth step closes
the connection. Details of the implementation as well as some performance
tests are presented in the following subsections.

4.1.1 Implementation

Listing 4.1 shows the initialization of the Semantic Repository.

1 de f i n i t (s e l f) :
2 s e l f . s t o r e = plug in . get (’SQLAlchemy ’ , Store)
3 (i d e n t i f i e r = s e l f . i dent)
4 s e l f . g = Graph (s e l f . s to re , i d e n t i f i e r = s e l f . i dent)

1http://code.google.com/p/rdflib/
2http://www.mysql.com/

107

5 s e l f . g . open (s e l f . ur i , c r e a t e = True)

Listing 4.1: Initialization of the Semantic Repository.

To initialize the Semantic Repository (which is implemented as a Python
class), the constructor of the according class is called. At first, the SQLAlchemy
plugin which belongs to RDFlib, is called and generates a store object. In
the next line, this store is used to create a graph which is responsible for the
triple management. Finally, the graph is opened by using the previously set
MySQL URI.

In Listing 4.2 the process of loading an already existing ontology is shown.
The load ontology method simply calls the load method of the graph and
passes the location of the ontology file, as well as a string describing the
format, to it.

1 de f l oad onto l ogy (s e l f , input graph , input format) :
2 s e l f . g . load (input graph , format=input format)

Listing 4.2: Loading an ontology.

A code snippet from the method for adding new triples with data prop-
erties is shown in Listing 4.3. Here, we check which of the supported names-
paces the predicate belongs to and add the triple (which has a literal object)
to the graph. After that, we commit the change and serialize the graph in
N-Triple format.

1 de f a d d d a t a t r i p l e (s e l f , s , p , o) :
2 i f p . s t a r t s w i t h (’ dc : ’) :
3 s e l f . g . add ((s e l f . STSP [s [5 :]] , s e l f .DC[p [3 :]] ,
4 L i t e r a l (o)))
5 s e l f . g . commit ()
6 s e l f . g . s e r i a l i z e (format = ’ nt ’)

Listing 4.3: Add a triple with data property.

Listing 4.4 shows how triples with object properties are added. Here, the
predicate and object are checked to which of the supported namespaces they
belong (if clause has been shortened). The triple is added to the graph which
is then committed and serialized.

1 de f a d d o b j e c t t r i p l e (s e l f , s , p , o) :
2 s = s e l f . STSP [s [5 :]]
3

4 i f p . s t a r t s w i t h (’ dc : ’) :
5 p = s e l f .DC[p [3 :]]
6

7 i f o . s t a r t s w i t h (’ dc : ’) :
8 o = s e l f .DC[o [3 :]]
9

108

10 s e l f . g . add ((s , p , o))
11 s e l f . g . s e r i a l i z e (format = ’ nt ’)
12 s e l f . g . commit ()

Listing 4.4: Add a triple with object property.

The get triples method is shown in Listing 4.5. It passes the SPARQL
query string to the query method of the graph and returns the resulting
graph to the caller.

1 de f g e t t r i p l e s (s e l f , query) :
2 re turn s e l f . g . query (query)

Listing 4.5: Get triples from repository.

The close method in Listing 4.6 is used to destroy the graph and, after
that, to close the connection.

1 de f c l o s e (s e l f) :
2 s e l f . g . des t roy (s e l f . u r i)
3 t ry :
4 s e l f . g . c l o s e ()
5 except :
6 pass

Listing 4.6: Close connection to repository.

The Semantic Repository is responsible for the storage of RDF triples for
semantic time series. We use this component to feed in the ontology, to add
new meta information about time series, and to retrieve time series triples.
For example, a connector gathers an ontology from a web site via RDFa and
passes it to the Semantic Repository which then stores the triples to the
database.

4.1.2 Semantic Repository Benchmarks

Table 4.1 and Figure 4.3 summarize the results of the benchmark tests for
the semantic repository tested on a Quad Core notebook with 8 GB of main
memory. The benchmarks are tested for each relevant method of the reposi-
tory where N represents the number of triples and each other column one of
the called methods. The time has been measured in seconds.

The visualization of the benchmarks tests show that the methods load ontology,
add data triple, and add object triple perform nearly linear as expected,
the reasonable limit for adding new triples at once is around 100,000, while
get triples performs very well up to 100,000 triples.

109

●

●

●

●

●

●

●

●

●

●

●

1000 20000 40000 60000 80000 1e+05

0
10

0
20

0
30

0

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ●

Benchmark Tests − Semantic Repository

N

T
im

e
in

 s
ec

on
ds

●

●

●

●

load_ontology
add_data_triple
add_object_triple
get_triples

Figure 4.3: Visualized results of the benchmark tests.

110

N load add data add object get
ontology triple triple triples

1,000 4.241s 4.407s 4.329s 0.471s
10,000 36.588s 37.980s 37.381s 0.497s
20,000 73.520s 76.238s 74.735s 0.493s
30,000 101.543s 109.259s 112.583s 0.511s
40,000 151.390s 153.371s 151.039s 0.499s
50,000 185.954s 190.788s 192.198s 0.498s
60,000 219.977s 225.573s 226.372s 0.502s
70,000 253.575s 250.861s 257.627s 0.496s
80,000 296.411s 291.349s 263.343s 0.503s
90,000 347.253s 297.775s 307.880s 0.500s

100,000 372.820s 331.760s 327.784s 0.515s

Table 4.1: Results of the benchmark tests for the semantic repository.

4.2 Connectors

Connectors are used to add new triples to our Semantic Repository. This
process is called harvesting. We will show the Web Site Connector, which
extracts RDFa triples from web sites and adds them to the repository, to
demonstrate the principle of connectors. Since web sites do not yet provide
regular RDF data, the Web Site Connector represents a kind of a compro-
mise between HTML scraping and RDF. This means that the RDFa data
is extracted out of HTML code and parsed into RDF triples. The following
declarations explain the implementation of the Web Site Connector.

The Web Site Connector is implemented in Java and consists of the fol-
lowing subcomponents:

• Connector Interface: specifies the harvest method which every connec-
tor needs to implement.

• General Web Site Connector class: reads the list of web sites which
need to be harvested and triggers the harvesting process.

• RDFa Parser class: Opens the stylesheet and implements the methods
which are called every time the web site matches a certain stylesheet
element.

• RDFa Parser stylesheet: Defines the RDFa elements for web sites to be
parsed and integrated into the knowledge base.

111

connector-component

1

1

WebSiteConnector

- resourceURL : URL
- tripleList : ArrayList<String[]>

- websites : ArrayList<String>

- harvestSite() : void
+ harvest() : void
+ getTripleList() : ArrayList<String[]>

�interface�

ConnectorInterface

+ harvest() : void

RDFaParser

- templates : Templates

- propertyURI : String
- subjectURI : String
- objectURI : String
- value : String

+ flushDataProperty(oparser : Object) : bool

+ flushObjectProperty(oparser : Object) : bool

+ setSubjectURI(subjectURI : String) : bool

+ setPropertyURI(propertyURI : String) : bool

+ setObjectURI(objectURI : String) : bool

+ setValue(value : String) : bool

+ parse(in : Reader, base : String) : void

RDFaParser
stylesheet
RDFaParser
stylesheet

Figure 4.4: UML class diagram representing the architecture of the Web Site
Connector component.

112

Figure 4.4 shows the architecture of the Web Site Connector. For clarity
reasons, we illustrated only the most important methods and attributes in
the RDFaParser class representation.

4.2.1 Connector Interface

The Connector interface simply defines the harvesting method which every
single harvester needs to implement in order to be added to the Semantic
Framework and to communicate with the Semantic Repository. Listing 4.7
shows the interface in Java code.

1 pub l i c i n t e r f a c e Connec to r In te r f ace extends S e r i a l i z a b l e {
2 void harves t () throws Harvest ingExcept ion ;
3 }

Listing 4.7: The Connector interface.

4.2.2 Web Site Connector Class

The Web Site Connector class is the main entry point to the connector.
It implements the Connector interface and triggers the harvesting process.
Listing 4.8 shows the constructor of the Web Site connector class which parses
the XML document with a list of web sites to harvest and saves this list to
the websites property of the class.

1 pub l i c WebSiteConnector () throws ParserConf igurat ionExcept ion ,
SAXException , IOException {

2 DocumentBuilderFactory dbf = DocumentBuilderFactory .
3 newInstance () ;
4 DocumentBuilder db = dbf . newDocumentBuilder () ;
5 Document doc = db . parse (new F i l e (” s r c /main/ r e s o u r c e s /

i n p u t w e b s i t e s . xml”)) ;
6 doc . getDocumentElement () . normal ize () ;
7 NodeList s i t e s = doc . getElementsByTagName (” webs i te ”) ;
8 f o r (i n t i = 0 ; i < s i t e s . getLength () ; i++) {
9 Node webs i te = s i t e s . item (i) ;

10 webs i t e s . add (webs i te . getChildNodes () . item (0) .
11 getNodeValue ()) ;
12 }
13 }

Listing 4.8: Constructor of the Web Site Connector.

In Listing 4.9 the implementation of the Connector interface method
harvest is shown. It goes through the list of web sites, checks whether the
URL is valid, and calls the harvest site method which does the harvesting
work.

113

1 @Override
2 pub l i c void harves t () throws Harvest ingExcept ion {
3 f o r (S t r ing u r l : t h i s . webs i t e s) {
4 t ry {
5 t h i s . resourceURL = new URL(u r l) ;
6 }
7 catch (MalformedURLException e) {}
8 h a r v e s t s i t e () ;
9 }

10 }

Listing 4.9: Harvest method implementation.

Most of the logic is implemented in the harvest site method (Listing
4.10 shows the most important code snippets of the method). This method
creates a new parser and overrides the callback methods from the parser
(these are called every time an RDFa triple is found) and adds the triple
(object or data) to the list of triples. In the next step, the parser is started
by passing the reader and URL base, and a new resource object is created
with the resource URL. Finally, the resource is added to the annotation
library (see “User Interaction and Annotation”).

1 p r i v a t e void h a r v e s t s i t e () throws Harvest ingExcept ion {
2 RDFaParser par s e r = new RDFaParser () {
3 @Override
4 pub l i c void reportDataProperty (S t r ing subjectURI , S t r ing
5 subjectNodeID , S t r ing propertyURI , S t r ing value , S t r ing
6 datatype , S t r ing lang)
7 {
8 St r ing [] t r i p l e = new St r ing [3] ;
9 t r i p l e [0] = subjectURI ;

10 t r i p l e [1] = propertyURI ;
11 t r i p l e [2] = value ;
12 WebSiteConnector . t r i p l e l i s t . add (t r i p l e) ;
13 }
14

15 @Override
16 pub l i c void reportObjectProperty (S t r ing subjectURI ,
17 St r ing subjectNodeID , S t r ing propertyURI , S t r ing
18 objectURI , S t r ing objectNodeID) {
19 St r ing [] t r i p l e = new St r ing [3] ;
20 t r i p l e [0] = subjectURI ;
21 t r i p l e [1] = propertyURI ;
22 t r i p l e [2] = objectURI ;
23 WebSiteConnector . t r i p l e l i s t . add (t r i p l e) ;
24 }
25 } ;
26

27 par s e r . parse (reader , base) ;

114

28 BasicResource r e s ou r c e = new BasicResource () ;
29 r e s ou r c e . setURI (t h i s . resourceURL . toS t r i ng ()) ;
30

31 TaggingLibrary t l = new TaggingLibrary (” http :// l o c a l h o s t
:8080/ openrdf−sesame” , ” database ” , ” user ” , ”password”) ;

32 t l . connect () ;
33 t l . addResource (re source , ”en”) ;
34 }

Listing 4.10: Implementation of the harvest site method.

Additionally, there is a method for returning the collected triples as a
String array (see Listing 4.11).

1 pub l i c ArrayList<St r ing []> g e t T r i p l e L i s t () {
2 re turn WebSiteConnector . t r i p l e l i s t ;
3 }

Listing 4.11: Method for returning the list of harvested triples.

4.2.3 RDFa Parser Class

The RDFa parser class is responsible for the initialization of the stylesheet
and for listening to the callback methods. Listing 4.12 shows the parse
method which is the main method of the class. It loads the stylesheet by
loading the XSL file, creates a transformer factory, and sets the parsing
templates. Furthermore, the method creates a transformer instance, sets
the parameters, and transforms the input stream. After this procedure, the
RDFa parser class listens to method calls caused by transformation results.

1 pub l i c void parse (Reader in , S t r ing base) throws IOException ,
TransformerException , Trans formerConf igurat ionExcept ion {

2 i f (RDFaParser . templates == n u l l) {
3 StreamSource source = new StreamSource (t h i s . g e tC la s s () .
4 getClassLoader () . getSystemResource (”RDFaParser . x s l ”) .
5 openStream ()) ;
6 TransformerFactory f a c t o r y = TransformerFactory .
7 newInstance () ;
8 RDFaParser . templates = f a c t o r y . newTemplates (source) ;
9 }

10

11 Transformer t rans fo rmer = RDFaParser . templates .
12 newTransformer () ;
13 t rans fo rmer . setParameter (” par s e r ” , t h i s) ;
14 t rans fo rmer . setParameter (” u r l ” , base) ;
15 t rans fo rmer . trans form (new StreamSource (in) , new StreamResult (

new OutputStream () { pub l i c void wr i t e (i n t b) throws
IOException {}})) ;

115

16 }

Listing 4.12: The parse method.

In Listing 4.13 the flushDataProperty method is presented. The method
is called every time the parser finds an RDFa data property triple. We do not
need certain attributes set at this point, therefore the attributes are all set
to null. The only necessary action here is to call the reportDataProperty

method and pass the RDFa information.

1 pub l i c s t a t i c boolean f lushDataProperty (Object opar se r) {
2 RDFaParser par s e r = (RDFaParser) opar se r ;
3 par s e r . reportDataProperty (par s e r . subjectURI ,
4 par s e r . subjectNodeID , par s e r . propertyURI , par s e r . value ,
5 par s e r . dataType , pa r s e r . language) ;
6 par s e r . propertyURI = n u l l ;
7 par s e r . subjectURI = n u l l ;
8 par s e r . subjectNodeID = n u l l ;
9 par s e r . objectURI = n u l l ;

10 par s e r . objectNodeID = n u l l ;
11 par s e r . va lue = n u l l ;
12 par s e r . dataType = n u l l ;
13 par s e r . language = n u l l ;
14

15 re turn true ;
16 }

Listing 4.13: Method for flushing data property triples.

The method for flushing object property triples is shown in Listing 4.14.
It is called every time the parser finds an RDFa object property triple. We do
not need certain attributes set at this point, therefore the attributes are all set
to null. The only necessary action here is to call the reportObjectProperty
method and pass the RDFa information.

1 pub l i c s t a t i c boolean f lushObjec tProper ty (Object opar se r) {
2 RDFaParser par s e r = (RDFaParser) opar se r ;
3 par s e r . reportObjectProperty (par s e r . subjectURI ,
4 par s e r . subjectNodeID , par s e r . propertyURI ,
5 par s e r . objectURI , pa r s e r . objectNodeID) ;
6 par s e r . propertyURI = n u l l ;
7 par s e r . subjectURI = n u l l ;
8 par s e r . subjectNodeID = n u l l ;
9 par s e r . objectURI = n u l l ;

10 par s e r . objectNodeID = n u l l ;
11 par s e r . va lue = n u l l ;
12 par s e r . dataType = n u l l ;
13 par s e r . language = n u l l ;
14

15 re turn true ;

116

16 }

Listing 4.14: Method for flushing object property triples.

The code in Listing 4.15 shows the reportDataProperty and reportObject

Property methods which are empty in order to be overridden by the con-
nector.

1 pub l i c void reportDataProperty (S t r ing subjectURI , S t r ing
subjectNodeID , S t r ing propertyURI , S t r ing value , S t r ing
dataType , S t r ing lang) {}

2 pub l i c void reportObjectProperty (S t r ing subjectURI , S t r ing
subjectNodeID , S t r ing propertyURI , S t r ing objectURI , S t r ing
objectNodeID) {}

Listing 4.15: Methods for reporting data and object property triples.

The methods in Listing 4.16 are used to set certain attributes which are
parsed. These are the data type, the language, the object node ID, the object
URI, the property URI, the subject node ID, the subject URI, and the value.

1 pub l i c s t a t i c boolean setDataType (Object parser , S t r ing dataType
) {

2 ((RDFaParser) par s e r) . dataType = dataType ;
3 re turn true ;
4 }
5

6 pub l i c s t a t i c boolean setLanguage (Object parser , S t r ing language
) {

7 ((RDFaParser) par s e r) . language = language ;
8 re turn true ;
9 }

10

11 pub l i c s t a t i c boolean setObjectNodeID (Object parser , S t r ing
objectNodeID) {

12 ((RDFaParser) par s e r) . objectNodeID = objectNodeID ;
13 re turn true ;
14 }
15

16 pub l i c s t a t i c boolean setObjectURI (Object parser , S t r ing
objectURI) {

17 ((RDFaParser) par s e r) . objectURI = objectURI ;
18 re turn true ;
19 }
20

21 pub l i c s t a t i c boolean setPropertyURI (Object parser , S t r ing
propertyURI) {

22 ((RDFaParser) par s e r) . propertyURI = propertyURI ;
23 re turn true ;
24 }
25

117

26 pub l i c s t a t i c boolean setSubjectNodeID (Object parser , S t r ing
subjectNodeID) {

27 ((RDFaParser) par s e r) . subjectNodeID = subjectNodeID ;
28 re turn true ;
29 }
30

31 pub l i c s t a t i c boolean setSubjectURI (Object parser , S t r ing
subjectURI) {

32 ((RDFaParser) par s e r) . subjectURI = subjectURI ;
33 re turn true ;
34 }
35

36 pub l i c s t a t i c boolean setValue (Object parser , S t r ing value) {
37 ((RDFaParser) par s e r) . va lue = value ;
38 re turn true ;
39 }

Listing 4.16: Methods for setting the attributes.

4.2.4 RDFa Parser Stylesheet

The most important parts of the used XSL stlyesheet are presented in the
following listings. The whole stlyesheet can be found in the Appendix.

Listing 4.17 shows how RDFa elements are matched. It searches for at-
tribute properties and returns the namespace for an object property. The
template needs to find the right namespace prefix and selects the default
vocabulary.

1 < !−− match RDFa element −−>
2 <template match=” ∗ [a t t r i b u t e : : p r o p e r t y or a t t r i b u t e : : r e l or

a t t r i b u t e : : r e v or a t t r i b u t e : : t y p e o f] ” mode=” rdf2rd fxml ” >
3 < !−− r e tu rn s the namespace f o r an ob j e c t property −−>
4 <template name=” get−re lrev−ns ”>
5 <param name=”qname” />
6 <v a r i a b l e name=” n s p r e f i x ” s e l e c t=” subst r ing−be fo re (t r a n s l a t e

($qname , ’ [] ’ , ’ ’) , ’ : ’) ” />
7 <choose>
8 <when t e s t=” st r ing− l ength ($ n s p r e f i x)>0”>
9 <ca l l− template name=” return−ns ”>

10 <with−param name=”qname” s e l e c t=”$qname”/>
11 </ ca l l− template>
12 </when>
13 < !−− r e tu rn s d e f a u l t v o c i f the p r e d i c a t e i s a r e s e rved value

−−>
14 <otherwi s e>
15 <v a r i a b l e name=” i s− r e s e rved ”>
16 <ca l l− template name=” check−reserved ”>
17 <with−param name=” nonpre f ixed ”>

118

18 <ca l l− template name=” no− leading−colon ”>
19 <with−param name=”name” s e l e c t=”$qname”/>
20 </ ca l l− template>
21 </with−param>
22 </ ca l l− template>
23 </ v a r i a b l e>
24 < i f t e s t=”$ i s− r e s e rved =’ true ’ ”>
25 <value−of s e l e c t=”$ d e f a u l t v o c ” />
26 </ i f>
27 </ otherwi se>
28 </ choose>
29 </ template>

Listing 4.17: Matching an RDFa element.

Listing 4.18 demonstrates the generation of RDF statements. The pa-
rameter names are set to subject, predicate, object, datatype, attribute,
and language; and the namespace and names of the predicate are set. The
main part of the generation is choosing the elements of the statement. The
predicate, subject, language, datatype, and value are selected and the corre-
sponding setter methods of the parser class are called. The datatype could
be not an XML literal, the content could be in an attribute or in the text
nodes of the element, and the datatype could be omitted. The last action is
the call to the flushDataProperty method with a parser object. This has
to be done in order to send the RDF data to the RDFa parser.

1 < !−− generate an RDF statement −−>
2 <template name=” property ” >
3 <param name=” s u b j e c t ” />
4 <param name=” p r e d i c a t e ” />
5 <param name=” ob j e c t ” />
6 <param name=” datatype ” />
7 <param name=” a t t r i b ” />
8 <param name=” language ” />
9

10 < !−− get namespace and name o f the p r e d i c a t e −−>
11 <v a r i a b l e name=” predicate−ns ”>
12 <ca l l− template name=”get−property−ns”>
13 <with−param name=”qname” s e l e c t=”$ s i n g l e−p r e d i c a t e ”/>
14 </ ca l l− template>
15 </ v a r i a b l e>
16

17 <v a r i a b l e name=”predicate−name”>
18 <ca l l− template name=”get−predicate−name”>
19 <with−param name=”qname” s e l e c t=”$ s i n g l e−p r e d i c a t e ”/>
20 </ ca l l− template>
21 </ v a r i a b l e>
22

23 <choose>

119

24 <when t e s t=” st r ing− l ength ($ predicate−ns)>0”>
25 < !−− the re i s a known namespace f o r the p r e d i c a t e −−>
26 <value−of s e l e c t=” java :webs i t e connec to r . RDFaParser .

setPropertyURI ($ parser , $ predicate−name) ”/>
27 <choose>
28 <when t e s t=” starts−with ($ subject , ’ b l ank :nod : ’) ”>
29 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setSubjectNodeID ($ parser , sub s t r i ng−a f t e r ($ subjec t , ’
b lank :node : ’)) ”/>

30 </when>
31 <otherwi s e> <value−of s e l e c t=” java :webs i t e connec to r .

RDFaParser . setSubjectURI ($ parser , $ s u b j e c t) ”/> </ otherwi se>
32 </ choose>
33 < i f t e s t=” st r ing− l ength ($ language)>0”>
34 <value−of s e l e c t=” java :webs i t e connec to r . RDFaParser .

setLanguage ($ parser , $ language) ”/>
35 </ i f>
36 <choose>
37 <when t e s t=”$ datatype =’ h t t p : //www. w3 . org /1999/02/22−

rdf−syntax−ns#XMLLiteral ’ ”>
38 <choose>
39 <when t e s t=”$ a t t r i b =’ true ’ ”> < !−− content i s in an

a t t r i b u t e −−>
40 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setDataType ($ parser , $ datatype) ”/>
41 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setValue ($ parser , normalize−space (s t r i n g ($ ob j e c t))) ”/>
42 </when>
43 <otherwi s e> < !−− content i s in the element and may inc lude

some tags −−>
44 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setDataType ($ parser , $ datatype) ”/>
45 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setValue ($ parser , $ ob j e c t) ”/>
46 </ otherwi s e>
47 </ choose>
48 </when>
49 <when t e s t=” st r ing− l ength ($ datatype)>0”>
50 < !−− the re i s a datatype other than XMLLiteral −−>
51 <value−of s e l e c t=” java :webs i t e connec to r . RDFaParser .

setDataType ($ parser , $ datatype) ”/>
52 <choose>
53 <when t e s t=”$ a t t r i b =’ true ’ ”> < !−− content i s in an

a t t r i b u t e −−>
54 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setValue ($ parser , normalize−space (s t r i n g ($ ob j e c t))) ”/>
55 </when>
56 <otherwi s e> < !−− content i s in the text nodes o f the

element −−>

120

57 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .
setValue ($ parser , $ ob j e c t) ”/>

58 </ otherwi s e>
59 </ choose>
60 </when>
61 <otherwi s e> < !−− the re i s no datatype −−>
62 <choose>
63 <when t e s t=”$ a t t r i b =’ true ’ ”> < !−− content i s in an

a t t r i b u t e −−>
64 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setValue ($ parser , normalize−space (s t r i n g ($ ob j e c t))) ”/>
65 </when>
66 <otherwi s e> < !−− content i s in the text nodes o f the

element −−>
67 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

setValue ($ parser , $ ob j e c t) ”/>
68 </ otherwi s e>
69 </ choose>
70 </ otherwi se>
71 </ choose>
72 </when>
73 </ choose>
74 <value−of s e l e c t=” java :we bs i t e connec to r . RDFaParser .

f lushDataProperty ($ par s e r) ”/>
75 </ template>

Listing 4.18: Generation of an RDF statement.

4.2.5 Harvesting Benchmarks

After explaining the implementation and source code of the component, this
section provides an example of usage of the connector, as well as benchmarks
for harvesting web sites. The Web Site Connector uses an XML file providing
a list of web sites to be harvested. For the benchmark tests we used the web
site of the TaToo project3. A typical use case for the connector consists of
the following steps:

1. Provide a list of web sites to be harvested in the XML file
(input web sites.xml).

2. Create an instance of the WebSiteConnector class.

3. Call the harvest() method.

3http://www.tatoo-fp7.eu/tatooweb/

121

Number of calls Number of har- Time in
to website vested triples milliseconds

100 2,900 62,236
200 5,800 124,739
300 8,700 174,902
400 11,600 228,480
500 14,500 279,981
600 17,400 346,914
700 20,300 393,402
800 23,200 456,925
900 26,100 514,100

1000 29,000 560,990

Table 4.2: Benchmark results for harvesting websites.

4. Collect the results by calling the getTripleList() method (the output
is a two-dimensional matrix representing a list of triples).

Table 4.2 and Figure 4.5 show the results of the harvesting benchmark
tests. The performance for 100 to 1000 websites with up to 29,000 triples is
nearly linear and has a reasonable time consumption of 560,990 milliseconds
for 29,000 triples.

The semantic repository and harvesting components are essential for meta
data management and collection. Therefore, we started by explaining them
and their implementation together with some benchmark tests. The next
step in the framework development is the mapping of different ontologies
as well as reasoning with existing triples to generate new meta data. Since
this is an important issue, the next sections present a thorough analysis of
already existing solutions and explanations of our approach to tackle these
problems.

122

●

●

●

●

●

●

●

●

●

●

100 200 300 400 500 600 700 800 900 1000

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05

Benchmark Tests − Harvesting

N

T
im

e
in

 m
ill

is
ec

on
ds

Figure 4.5: Vizualized results of the harvesting benchmark test.

123

4.3 Ontology Mapping

The main task of ontology mapping is to unite two vocabularies of two on-
tologies, which are related to a certain degree. This means that the expected
output is one common ontology, which contains both vocabularies and has
the whole power of expression. Therefore, the two ontologies need a common
domain of discourse. In our case this common domain is time series pro-
cessing. Furthermore, the related ontologies need to respect mathematical
structure and ontological axioms. They are populated with contents spe-
cific to their community. The mapping is done by assigning symbols of one
ontology to symbols of the other. Alternatively, new relations between the
ontologies can be built. This process is then called ontology alignment.

Our approach for ontology mapping is the usage of a so-called semantic
bridge ontology (SBO). To construct such a bridge ontology, first of all it is
necessary to accumulate information and populate an ontology of mapping
constructs. This means that the first step is to find common items for the
ontologies which need to be mapped. Hereby, existing constructs should be
maintained and exploited, new additional constructs should be minimized,
and the acceptance of general semantic web tools and vocabularies maxi-
mized.

Our workflow for building such a bridge ontology is the following:

1. Analyze the ontologies that should be mapped and find common enti-
ties.

2. Generate a common ontology with time series processing vocabulary.

3. Define mappings and relations between entities of the ontologies.

4. Analyze the resulting ontology and improve efficiency of relations and
links.

Possible relations of two attributes from two ontologies (a1 and a2) are:
a1 is equivalent to a2, a1 includes a2, and a1 is disjoint with a2. In the case
of mapping of local ontologies, which is our point of interest since domain
ontologies are local ontologies, the advantages are the interoperability enable-
ment, highly dynamic and distributed environments and mediation between
distributed data.

We have collected some requirements which are needed to map semantic
time series ontologies and had a look into some popular ontology mapping
tools and frameworks. Table 4.3 presents an overview of the results. There
are three types of ontology mapping frameworks: ontology mapping of a local
and global ontology (global), ontology mapping of two local ontologies (local),

124

and ontology merging and alignment (merging and alignment). Since domain
ontologies are local ontologies the first requirement is that two local ontologies
should be mapped. In our table we called the kind of ontologies which should
be mapped the approach. The next requirement is the technique, which
means how the mapping is being done for source and destination ontologies.
We found out that the best technique for mapping of semantic time series
ontologies would be to use a bridge. Since our ontology mapping should
be visualized to the user and user interaction is required, we need a user
interface as well. Finally, we have the requirement of a service-oriented
architecture, because we want to implement web services which use ontology
mapping technology. In Table 4.3 we used the color red to signalize that a
requirement is not met, the color yellow to signalize that it is only partially
met, and green to signalize that it is fully met.

125
N

a
m

e
A

p
p
ro

a
ch

T
e
ch

n
iq

u
e

U
se

r
S
e
rv

ic
e
-

In
te

rf
a
ce

o
ri

e
n
te

d
C

R
O

S
I

M
ap

p
in

g
S
y
st

em
(C

M
S
)

m
er

gi
n
g

an
d

al
ig

n
m

en
t

co
m

m
an

d
li
n
e

n
o

al
ig

n
m

en
t

C
T

X
M

A
T

C
H

lo
ca

l
lo

gi
ca

l
d
ed

u
ct

io
n

G
U

I
n
o

C
H

IM
A

E
R

A
m

er
gi

n
g

an
d

li
n
gu

is
ti

c
m

at
ch

es
w

eb
G

U
I

ye
s

al
ig

n
m

en
t

F
C

A
-M

er
ge

m
er

gi
n
g

an
d

li
n
gu

is
ti

c
an

al
y
si

s
G

U
I

n
o

al
ig

n
m

en
t

G
L

U
E

lo
ca

l
m

ac
h
in

e
le

ar
n
in

g
n
o

n
o

L
ea

rn
in

g
S
ou

rc
e

D
es

cr
ip

ti
on

(L
S
D

)
gl

ob
al

m
ac

h
in

e
le

ar
n
in

g
n
o

n
o

L
ex

ic
on

-b
as

ed
O

n
to

lo
gy

M
ap

p
in

g
(L

O
M

)
lo

ca
l

le
x
ic

al
si

m
il
ar

it
y

P
ro

lo
g

A
P

I
n
o

M
ed

ia
to

r
E

n
v
ir

on
m

en
t

fo
r

M
u
lt

ip
le

gl
ob

al
n
am

e
eq

u
al

it
y

G
U

I
n
o

In
fo

rm
at

io
n

S
ou

rc
es

(M
O

M
IS

)
O

n
to

lo
gy

M
ap

p
in

g
E

n
h
an

ce
r

(O
M

E
N

)
lo

ca
l

B
ay

es
ia

n
N

et
fr

am
ew

or
k

n
o

O
n
to

lo
gy

M
ap

p
in

g
F

ra
m

ew
or

k
(M

A
F

R
A

)
lo

ca
l

b
ri

d
ge

G
U

I
ye

s
O

n
to

M
or

p
h

m
er

gi
n
g

an
d

p
at

te
rn

m
at

ch
in

g
P

ro
té

gé
p
lu

gi
n

n
o

al
ig

n
m

en
t

P
R

O
M

P
T

m
er

gi
n
g

an
d

h
eu

ri
st

ic
-b

as
ed

an
al

y
ze

r
P

ro
té

gé
p
lu

gi
n

n
o

al
ig

n
m

en
t

Q
u
ic

k
O

n
to

lo
gy

M
ap

p
in

g
(Q

O
M

)
lo

ca
l

d
y
n
am

ic
p
ro

gr
am

m
in

g
to

ol
b

ox
n
o

ap
p
ro

ac
h

S
M

A
R

T
m

er
gi

n
g

an
d

li
n
gu

is
ti

c
si

m
il
ar

it
y

to
ol

n
o

al
ig

n
m

en
t

T
ab

le
4.

3:
O

n
to

lo
gy

m
ap

p
in

g
to

ol
s

ov
er

v
ie

w
ac

co
rd

in
g

to
ou

r
re

q
u
ir

em
en

ts
.

126

We investigated 14 different ontology mapping tools and frameworks. All
of them are popular and widely used in the Semantic Web community, but
also in some fields of application. Our idea was to pick one which covers all
aspects important for our work, and implement a similar approach. Table
4.3 lists all ontology mapping tools we shed a light on in alphabetical order.

• The CROSI 4 project produced a survey on the state-of-the-art of se-
mantic integration systems, a framework for characterizing semantic in-
tegration systems, an architecture for developing semantic integration
systems tuned to ontology mapping systems, and a dedicated ontology
mapping system (CMS - CROSI Mapping System). CMS does not use
a bridge ontology, but merging and alignment techniques. It can be
used via command line or Win32 interface and is not service-oriented.

• CTXMATCH is in principle only an algorithm, but there is also an ap-
plication which implements the algorithm5. However, the contextmatch
application uses a local approach, this means that the mapped ontolo-
gies are both local (domain) ontologies. The used technique is logical
deduction, the application provides a GUI, but is not service-oriented.

• CHIMAERA is a software system for creating and maintaining dis-
tributed ontologies on the web and supports merging multiple ontolo-
gies together and diagnosing individual or multiple ontologies6. The
approach is ontology merging and alignment, to fulfill this task it uses
linguistic matches. Furthermore, CHIMAERA has a web UI and is
service-oriented.

• FCA-Merge7 is a new method for merging ontologies following a bottom-
up approach and offering a global structural description of the merging
process. It performs merging and alignment of ontologies by using lin-
guistic analysis. FCA-Merge has an implementation with a GUI, which
is not service-oriented.

• GLUE 8 is a system that employs learning techniques to semi-automatically
create semantic mappings between ontologies. It uses machine learn-
ing methods for mapping local ontologies. GLUE has no UI and is not
service-oriented.

4http://www.aktors.org/crosi/
5http://sun.aei.polsl.pl/~niedbyk/oaei2006/
6http://www.ksl.stanford.edu/software/chimaera/
7http://disi.unitn.it/~accord/RelatedWork/Matching/FCA01.pdf
8http://homes.cs.washington.edu/~pedrod/papers/hois.pdf

127

• Learning Source Description (LSD)9 applies a machine learning ap-
proach as well; this time only for global and local ontologies. It has no
user interface and is not service-oriented.

• Lexicon-based Ontology Mapping (LOM) is a semi-automatic lexicon-
based ontology mapping tool that supports a human mapping engineer
with a first-cut comparison of ontological terms between the ontologies
to be mapped, based on their lexical similarity10. It is used for local on-
tologies and applies mappings based on lexical similarity. LOM can be
used through a Prolog API and its architecture is not service-oriented.

• Mediator Environment for Multiple Information Sources (MOMIS)11 is
a framework for information extraction and integration from structured
and semi-structured data sources, which is used for mapping of a global
and a local ontology and based on name equality. It has a GUI, but is
not service-oriented.

• Ontology Mapping Enhancer (OMEN)12 is based on a set of meta-rules
that captures the influence of the ontology structure and the existing
matches to match nodes that are neighbours to matched nodes in the
two ontologies. OMEN is used for mapping of local ontologies and
based on a Bayesian Net. From user perspective, it is a non-service-
oriented framework.

• Ontology Mapping Framework (MAFRA)13 allows to create semantic
relations between two (source and target) ontologies, and translate
source ontology instances into target ontology instances. MAFRA ful-
fills all our requirements, since it works on two local (domain) ontolo-
gies, uses the bridge technique, has a graphical user interface and is
service-oriented.

• OntoMorph14 provides a powerful rule language to represent complex
syntactic transformations and a rule interpreter to apply them to ar-
bitrary knowledge representation language expressions. It is used for
merging and alignment of ontologies, based on pattern matching, presents
itself to the user as a Protégé plugin and is not service-oriented.

9http://www.cs.wisc.edu/~anhai/talks/sigmod01-talk.ppt
10http://www.daml.org/tools/#ont_mapping
11http://www.dbgroup.unimo.it/Momis/
12http://link.springer.com/chapter/10.1007\%2F11574620_39
13http://mafra-toolkit.sourceforge.net/
14http://www.isi.edu/~hans/ontomorph/presentation/ontomorph.html

128

• PROMPT 15 allows users to compare versions of an ontology, move
frames between projects, merge two ontologies into one and extract
parts of an ontology. It is developed for merging and alignment of
ontologies, implemented as a heuristic-based analyzer, can be used as
a Protégé plugin and is not service-oriented.

• Quick Ontology Mapping16 is a trade off between efficiency and effec-
tiveness. The approach is to have slightly less quality but therefore
by far more performance. QOM is used to map local ontologies, uses
a dynamic programming approach, provides tools for users and is not
service-oriented.

• SMART 17 is a specialized tool for ontology mapping and alignment,
which uses an algorithm based on a set of ontology merging and align-
ment operations. SMART is based on linguistic similarity and not
service-oriented.

After analyzing all listed technologies and frameworks, we decided that
the MAFRA approach would come very close to meeting our needs. However,
the goal was not to use an already existing framework, but to apply such
an approach for ontology mapping in our own environment. Therefore we
developed our own bridge ontology, which should have a GUI and a service-
oriented architecture for local ontologies.

Our first step for building a bridge ontology was to define all common
classes and properties, which are valid for all possible time series ontologies.
This is then the bridge ontology and can be used as a common interface for
all domain ontologies. Every individual domain ontology needs to inherit
from the bridge ontology, this means that it has to define all classes which
are also defined in the bridge ontology. Therefore, an ontology graph can be
constructed, which has the bridge ontology in the center (see Figure 4.6).

Figure 4.6 shows the relation between a bridge ontology and domain on-
tologies. The idea is that the bridge ontology defines all concepts (classes
and properties) which are common to all domain ontologies. The main part
is about describing the concept of time series. The bridge ontology is the
center point in the ontology architecture and unites all ontologies. This
concept is similar to the picture of ambassadors of different countries and a
translator, who is able to speak all languages and therefore makes interaction

15http://protege.stanford.edu/plugins/prompt/prompt.html
16http://www.scs.carleton.ca/~armyunis/knowledge-managment/papers/QOM-

Quick\%20Ontology\%20Mapping.pdf
17http://protege.stanford.edu/publications/OntologiesAndTools/tsld022.

htm

129

Figure 4.6: Relation between bridge ontology and domain ontologies.

and communication between every single ambassador possible. We call this
concept domain-bridge-domain or ambassador-translator-ambassador com-
munication.

During the mapping approach a domain ontology which defines all classes
and properties from the bridge ontology (same URIs) is created. The ontol-
ogy is extended according to the needs of the domain, new class definitions
with URIs and properties are added, and classes from the bridge ontology
are connected. When the ontology is loaded to the semantic time series
processor, it delivers resulting time series from related domains as well.

The structure of our bridge ontology is illustrated in Figure 4.7. We
developed the bridge ontology in Protégé18 and produced the illustration in
Figure 4.7 with RDF Gravity19. The idea was, as already mentioned, to
collect all common classes and properties of semantic time series and model
them into a bridge ontology, which can then be used to map all domain
ontologies to each other by enforcing the definition of bridge classes in every
domain ontology. Figure 4.7 shows the classes and properties of our bridge
ontology. Classes are shown in blue rectangles with a yellow circle and the
letter “C”, whereas properties are shown in red rectangles with a dark red
triangle and the letter “P”.

The following classes have been defined in the bridge ontology:

• TimeSeries: the TimeSeries class represents one time series in the
system. The time series contains data which is used by a certain domain
user for her specific area of interest.

18http://protege.stanford.edu/
19http://semweb.salzburgresearch.at/apps/rdf-gravity/index.html

130

Figure 4.7: Bridge ontology for Semantic Time Series Processing (created in
Protégé and visualized in RDF Gravity).

• Environmental Time Series: the EnvironmentalTimeSeries class
is a special time series. It represents obviously time series data for the
environmental area (e.g. water quality, air quality, etc.).

• Domain: the Domain class contains the domain of a time series. A
time series can also belong to more than one domain, but it has to
have at least one.

• Topic: the topic of a domain is represented by the Topic class. It
specifies which topic a certain domain belongs to, e.g. “Water Quality”.

• Subject: the Subject class represents a subtopic for a time series (e.g.
if a time series has the topic “Air Quality”, a possible subject could be
“Ozone Concentration”).

• Author: this class represents the Author of a subject.

• Content: the Content class represents a description of the subtopic
(subject).

• Group: this class represents the user group of the domain where the
time series belongs to. In the case of multiple domains, there are also

131

multiple user groups.

• User: the User class represents all users, who are interested in the
time series and belong to the right group.

• Annotation: represents all annotations generated by a group of inter-
est for the time series.

• Slot: the slot is a part of a time series, in fact it is exactly one mea-
surement (which can consist of several properties or values, of course).

• TimeStamp: every slot has exactly one time stamp, which represents
the point in time when the measurement took place.

• Property: a property contains a measurement value and belongs to a
certain slot. While every property belongs to exactly one slot, a slot
can have an arbitrary number of properties.

4.4 Semantic Processing

In our understanding, reasoning is the generation of new RDF triples from
already existing ones. The interesting part for our project is reasoning with
multiple ontologies interrelated with semantic mappings. This means that
we want to reason (or infer new RDF triples) between two domain ontologies
by using the bridge ontology.

Generally, reasoning is based on description logic. Ontologies correspond
to description logic theories (T-boxes) and semantic mappings correspond
to bridge rules. T-boxes contain all necessary information to define the ter-
minology of a domain, so the task of the reasoner then is to find domain
relations and to make interpretations.

To integrate reasoning for semantic time series into our functionality, we
followed the approach not to implement our own reasoner, but to evaluate ex-
isting solutions and pick the best reasoner for our purpose. Our requirements
regarding a reasoner were first of all that it should be free and open source.
The license should be such that we would have no problems when using it
for our system. Furthermore, the reasoner should support OWL-DL, since
our ontologies are implemented using the DL version of OWL. It should have
fair expressivity and use a state-of-the-art algorithm for reasoning. Finally,
the reasoner should have consistency checking and rule support. Table 4.4
shows an overview of reasoners according to our criteria. The meaning of the
cell background colors is the following: green – requirement is met, yellow
– requirement is met only partially or unknown, and red – requirement is

132

not met. For background knowledge and term definitions in reasoning and
description logic, we refer to Baader [2003].

133

N
a
m

e
L

ic
e
n
si

n
g

O
W

L
-

E
x
p
re

ss
iv

it
y

A
lg

o
ri

th
m

C
o
n
si

st
e
n
cy

R
u
le

D
L

ch
e
ck

in
g

su
p
p

o
rt

B
as

eV
IS

or
fr

ee
an

d
cl

os
ed

n
o

R
-e

n
ta

il
m

en
t

ru
le

-b
as

ed
ye

s
ye

s
B

os
sa

m
fr

ee
an

d
cl

os
ed

n
o

-
ru

le
-b

as
ed

-
ye

s
C

y
c

fr
ee

an
d

cl
os

ed
ye

s
H

ig
h
-o

rd
er

fi
rs

t-
or

d
er

ye
s

ye
s

H
o
ol

et
fr

ee
an

d
op

en
ye

s
-

fi
rs

t-
or

d
er

ye
s

ye
s

P
el

le
t

fr
ee

an
d

op
en

ye
s

S
R

O
IQ

(D
)

ta
b
le

au
ye

s
ye

s
K

A
O

N
2

fr
ee

an
d

cl
os

ed
ye

s
S
H

IQ
(D

)
re

so
lu

ti
on

ye
s

ye
s

&
d
at

al
og

R
ac

er
P

ro
n
on

-f
re

e
an

d
cl

os
ed

ye
s

S
H

IQ
(D

-)
ta

b
le

au
ye

s
ye

s
J
en

a
fr

ee
an

d
op

en
n
o

-
ru

le
-b

as
ed

n
o

ye
s

F
aC

T
(+

+
)

fr
ee

an
d

op
en

ye
s

S
R

O
IQ

(D
)

ta
b
le

au
ye

s
n
o

S
w

ee
tR

u
le

s
fr

ee
an

d
op

en
n
o

-
ru

le
-b

as
ed

n
o

ye
s

O
W

L
IM

n
on

-f
re

e
an

d
cl

os
ed

n
o

R
-e

n
ta

il
m

en
t

ru
le

-b
as

ed
ye

s
ye

s
O

n
to

B
ro

ke
r

n
on

-f
re

e
an

d
cl

os
ed

ye
s

S
H

IQ
(D

)
re

so
lu

ti
on

ye
s

ye
s

&
d
at

al
og

H
er

m
iT

fr
ee

an
d

op
en

ye
s

S
H

O
IQ

+
h
y
p

er
ta

b
le

au
ye

s
ye

s

T
ab

le
4.

4:
O

ve
rv

ie
w

of
re

as
on

er
s

ac
co

rd
in

g
to

ou
r

re
q
u
ir

em
en

ts
.

134

We looked into 13 different reasoners and selected one that fitted all our
requirements:

• BaseVISor 20 is a forward-chaining inference engine specialized to han-
dle facts in the form of RDF triples with support for OWL 2 RL and
XML Schema Datatypes, and provides a Java API. It is free, but closed
source and has no OWL-DL support. BaseVISor uses a rule-based al-
gorithm and has consistency checking and rule support.

• Bossam21 is a RETE-based rule inference engine with native support
for reasoning over OWL ontologies, SWRL ontologies, and RuleML
rules. It is free and closed source and has no OWL-DL support. It has
a rule-based algorithm and rule support.

• Cyc22 is a platform with a Java-based inference engine, which is free and
closed source, has OWL-DL support and high-order expressivity. The
reasoner is based on a first-order algorithm with high-order extensions
and has consistency checking and rule support.

• Hoolet23 is an implementation of an OWL-DL reasoner that uses a first
order prover. It is free and open source, has a first-order algorithm,
consistency checking and rule support.

• Pellet24 is an OWL 2 reasoner and provides standard and cutting-
edge reasoning services for OWL ontologies. It supports OWL-DL, is
free and open source, has SROIQ(D) expressivity, a tableau algorithm,
consistency checking and rule support.

• Reasoning in KAON2 25 is implemented by novel algorithms which re-
duce a SHIQ(D) knowledge base to a disjunctive datalog program.
KAON2 is free and closed source and has OWL-DL, consistency check-
ing, and rule support.

• RACER26 stands for Renamed A-box and Concept Expression Rea-
soner, and Racer Pro is the name of the commercial software. It pro-
vides a query language, resource bounded computation, extended sup-
port for OWL-DL, a model-checking facility, and native access from
Java and LISP.

20http://www.vistology.com/basevisor/basevisor.html
21http://bossam.wordpress.com/about-bossam/
22http://www.cyc.com/platform/opencyc
23http://owl.man.ac.uk/hoolet/
24http://clarkparsia.com/pellet/
25http://kaon2.semanticweb.org/
26http://www.racer-systems.com/products/racerpro/

135

• Jena27 is a Java framework for building Semantic Web applications and
has a rule-based inference engine for reasoning with RDF and OWL
data sources. It is free and open source, has no OWL-DL and rule
support, but supports consistency checking. The Jena reasoner uses a
rule-based algorithm.

• FaCT++ is the new generation of the well-known FaCT OWL-DL rea-
soner. FaCT++28 uses the established FaCT algorithms, but with a
different internal architecture. Additionally, FaCT++ is implemented
using C++ in order to create a more efficient software tool, and to
maximize portability.

• SweetRules29 provides translation and interoperability between a vari-
ety of rule and ontology languages, highly scaleable backward and for-
ward inferencing, and merging of rulebases/ontologies. Its rule-based
reasoner is free and open source, has no OWL-DL support and consis-
tency checking, but rule support.

• OWLIM 30 is a family of semantic repositories, but has also its own
reasoner implementation. The reasoner is non-free and closed source,
has no OWL-DL support, is rule-based and has consistency checking
and rule support.

• OntoBroker 31 is a Semantic Web middleware and inference machine for
processing ontologies that supports all of the W3C Semantic Web rec-
ommendations. It has also a reasoner, which is non-free and closed, has
OWL-DL, consistency checking, and rule support, SHIQ(D) expressiv-
ity, and a resolution and datalog algorithm.

• HermiT 32 is a reasoner for ontologies written using the Web Ontology
Language (OWL). It is free and open source, has OWL-DL, consistency
checking and rule support, SHOIQ+ expressivity and is based on a
hypertableau algorithm.

As we can see in Table 4.4, only Pellet and HermiT fully meet our re-
quirements. However, it turned out that Pellet was our reasoner of choice,
since in addition to meeting all our requirements, in contrast to HermiT, it

27http://jena.apache.org/
28http://owl.man.ac.uk/factplusplus/
29http://sweetrules.projects.semwebcentral.org/
30http://www.ontotext.com/owlim
31http://www.semafora-systems.com/en/products/ontostudio/
32http://www.hermit-reasoner.com/

136

is seamlessly integrated into Protégé, which makes its usage very convenient.
To summarize, Pellet provides OWL-DL entailment, supports SROIQ(D) ex-
pressivity for reasoning, uses tableau as reasoning algorithm, has consistency
checking and rule support for SWRL-DL safe rules, and last but not least, it
is free and open source.

In semantic time series reasoning, our approach is not to implement a new
reasoner, but to use Pellet as already existing solution. We also use a bridge
ontology, which we defined manually according to the MAFRA approach.
The reasoner is used to find new inter-domain triples, i.e. new connections
between two domain ontologies. As a next step, we show how Pellet works
on the bridge ontology itself.

Listing 4.19 shows a simplified version of our bridge ontology in Turtle
syntax.

1 @pref ix s t s p : <h t t p : //www. semantic−time−s e r i e s−
2 p r o c e s s i n g . com/ Bridge . owl#> .
3

4 s t sp :T imeSe r i e s s t s p : h a s S u b j e c t s t s p : S u b j e c t ;
5 stsp:hasGroup stsp:Group ;
6 stsp:hasDomain stsp:Domain ;
7 s t s p : h a s S l o t s t s p : S l o t .
8

9 s t s p : S u b j e c t s t sp :hasContent s t sp :Content ;
10 s t sp :hasAuthor stsp :Author .
11

12 stsp:Group s t sp :ha sUse r s t s p : U s e r .
13 s t sp :hasAnnotat ion s t sp :Annotat ion .
14

15 stsp:Domain hst sp :hasTop ic s t sp :Top i c .
16

17 s t s p : S l o t s t s p : t i m e stsp:TimeStamp ;
18 s t s p :p ro p s t sp :Prope r ty .
19

20 s t sp :Prope r ty s t s p : v a l u e x s d : s t r i n g .
21

22 s t sp :Envi ronmenta lTimeSer i e s rd f s : subC la s sO f
23 s t sp :T imeSe r i e s .

Listing 4.19: Simplified bridge ontology.

The Turtle RDF code describes a TimeSeries which has a Subject,
Group, Domain, and several Slots. The Subject is a comment like descrip-
tion by a person and therefore consists of an Author and a Content. A group
of users, which are interested in the time series, is described by the Group

class, which consists of several Users, who create Annotations. The area of
application or field, where the time series thematically belongs to, is described
by the Domain class. The Domain class has also a Topic. Every time series

137

Figure 4.8: Output of a consistency check of our bridge ontology in Protégé
using Pellet.

consists of a number of slots, which hold measurement data and the time
of measurement. All this is represented by the Slot class and its elements
(TimeStamp for the measurement time and Property for the values). Finally,
there is a class for special time series, the EnvironmentalTimeSeries. This
class inherits from the TimeSeries class.

First of all, we tested Pellet’s consistency checking in Protégé 3.5, which
comes with Pellet 1.5.2 preconfigured, on our bridge ontology. Figure 4.8
shows the result of the consistency check. It shows that our bridge ontology
is consistent.

After we were sure that our ontology is consistent, we used the Protégé
Reasoner API to perform reasoning in Listing 4.20.

1 InputStream inputStream = new Fi leInputStream (”
2 SemanticTimeSer iesBridge . rdf−xml . owl”) ;
3

4 OWLModel owlModel = ProtegeOWL .
5 createJenaOWLModelFromInputStream (
6 inputStream) ;
7

8 ReasonerManager reasonerManager =
9 ReasonerManager . g e t In s tance () ;

10

11 ProtegeReasoner r ea sone r = reasonerManager .
12 createProtegeReasoner (owlModel ,
13 ProtegePelletOWLAPIReasoner . c l a s s) ;
14

15 r ea sone r . c lass i fyTaxonomy () ;
16

17 r ea sone r . computeEquivalentConcepts () ;

138

18

19 r ea sone r . computeIncons i stentConcepts () ;
20

21 r ea sone r . computeInferredHierarchy () ;
22

23 r ea sone r . computeIn fer redInd iv idua lTypes () ;

Listing 4.20: Usage of the Reasoner API.

In the first step, we create a new input stream by passing the file name of
our RDF/XML bridge ontology. Then we use the input stream to load the
ontology into an OWLModel by calling the static method on the ProtegeOWL

class. In the next step we create a ReasonerManager object by calling the
singleton method of the class. We create the reasoner by passing the model
and choosing the right reasoner (in our case this is Pellet). After this step
the setup of our reasoner is done. We can start working with it by calling the
classifyTaxonomy() method first and assigning this task to the reasoner.
Finally, we can perform the real reasoning and compute equivalent concepts,
inconsistent concepts, inferred hierarchy, and individual types.

4.5 User Interaction and Annotation

For user interaction we use a web portal which is based on Vaadin33 and
runs on a Tomcat34 7 server. In this subchapter we present the user interface
in general (concentrating on the design and some implementation details)
and the annotation processes through the portal as a showcase of the portal
functionality.

4.5.1 User Interaction

The Semantic Time Series Processing Web Portal is the main entry point for
users to interact with the framework. Figure 4.9 shows a screenshot of the
main window.

33https://vaadin.com/
34http://tomcat.apache.org/

139

F
ig

u
re

4.
9:

S
cr

ee
n
sh

ot
of

th
e

S
em

an
ti

c
T

im
e

S
er

ie
s

P
ro

ce
ss

in
g

w
eb

p
or

ta
l.

140

The functionality of the portal enables the user to load an ontology of
her user group, view a generated graph of the ontology, and select a topic ac-
cording to the ontology. The prototype implementation allows the following
user actions:

1. Load ontology: The first element of the portal is an open file dialog
which enables the user to select an ontology file (in OWL or RDF). The
ontology is loaded via RDFlib and converted into a dot file (Graphviz35

file format).

2. View graph: The dot file is used to generate a graph which is converted
into an image and loaded to the portal.

3. Select topic: Furthermore, the topics defined in the ontology are used
to populate the selection field and can be selected by the user in order
to retrieve time series.

4. Discover time series: Discovered time series are shown in the table
which consists of the name, category, start time, end time, number of
values, and a button to edit the time series.

4.5.2 Annotation

Time series can be annotated by using the “Edit” button in the discovery
table of the portal start page. The annotation window which can be used for
time series annotation is shown in Figure 4.10.

The annotation window provides the following means for annotation time
series to the user:

• User name: Name of the author of the annotation.

• Date: Date of annotation.

• Topic: Topic of annotation which is a subtopic of the selected topic in
the main menu of the portal.

• Rating: The user is able to rate the time series with a value between 0
and 100 by using a slider.

• Description: A detailed description of the annotation (in most of the
cases describing the time series itself in more detail).

35http://www.graphviz.org/

141

Figure 4.10: Window for annotation of semantic time series.

142

4.6 Future Improvements

Despite our efforts and implementations, the semantic time series processing
framework has still room for improvement. For example, the reasoning pro-
cess could be improved by the implementation of a dedicated reasoner which
is able to reason over multiple ontologies and supports real-time reasoning
of created annotations. Further, a semantic discovery component could be
implemented to provide discovery of related resources by a general search
through the Web and automatic harvesting of Web resources and RDF data.
Last but not least, a lot of improvements could be implemented for the graph-
ical elements of the framework. As an example, the graphical representation
of the ontology could be improved to support navigation and direct selection
of resources to be annotated.

Chapter 5

Community Building

Technically, the Community Building functionality is, as well as the Time
Series Processing Language and the Semantic Framework, part of the whole
framework. As it is an important part of the framework, an own prototype
is dedicated to it.

The Community Building prototype evaluates the results of the Semantic
Framework and builds user groups around different topics and resources. It
is also responsible for the rating of resources and the correlation of a resource
and a user group. It interacts with the Semantic Framework to get the results
of semantic processing, and with a web portal to get ratings and to present
the results graphically.

Nowadays, social communities play a very important role in our daily
lives. They make it possible to connect and communicate with people who
share someone’s interests and domains, but also to build groups and to at-
tract other people’s attention to one’s topics. Whereas this is widely spread
for private use, there is no sufficient and satisfactory solution for scientific
communities so far on the web. This is the gap which our language aims to
fill by providing functionality to build social communities based on Semantic
Web and Web 2.0 technologies.

Scientific communities are a special kind of social communities. It is
a very complicated task to build a scientific community or scientific user
group. This is mainly because of some special characteristics of scientific
communities compared to general social communities, such as:

• Networking: The communication between scientists, and building of
networks by meeting new scientists with common interests;

• Document Sharing: Working on publications online, and the ability to
share libraries of publications and papers for a certain topic;

143

144

• Correlation of Research Topics: Linking between fields of research with
certain commonalities, and therefore building new networks and groups
of researchers;

• Organization of Conferences: Organising events, such as conferences
with invitations for speakers, calls for papers, registrations, etc.

To show this concept, Figure 5.1 presents the approach of semantic tag-
ging and building of interest groups. The input of the time series processor
is a time series. Additionally, there are different communities which provide
semantic tagging, and each of them has its own ontology. The time series pro-
cessor uses the ontology together with community-specific tagging to produce
interest groups with time series specific to each group. The result is a num-
ber of time series assigned to each group of scientists with domain-specific
information, which is evaluated and relevant to a specific group.

Figure 5.1: Semantic tagging and building of groups with common interests.

A closer look to the functionality of the language shows us how the com-
munity building is implemented. Regardless of the architecture used1 there is
somewhere an implementation of a web portlet, which provides standard so-
cial web functionality, like creating profiles for scientists, joining groups that
have special interests, connecting to friends, etc. The portlet is connected to
the time series processor in a manner that depends on the architecture. The
processor has access to an RDF store or ontology store to save RDF triples

1Be that a web service, a client-server architecture, or a stand-alone interpreter.

145

representing time series and their connections to a single scientist or group
of scientists. Listing 5.1 Terse RDF Triple Language (Turtle)2 code snippet
shows such a triple.

1 @pref ix r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns\#> .
2 @pref ix cb :
3 <h t t p : //www. community−bu i l d in g . org/22− rdf−syntax−ns\#> .
4

5 cb:t ime−s e r i e s [cb:t ime−stamps ” (0 , 1 , 2 , 3 , 4) ” ; c b : v a l u e s ” (4 ,
3 , 5 , 8 , 1) ”]

6 c b : i n t e r e s t s cb:semanticWebGroup .

Listing 5.1: Example for a triple.

In the code snippet, an rdf and cb prefix are defined (prefixes are much
like namespaces in other languages). After that the code describes an RDF
triple with the subject being a cb:time-series instance, the predicate (or
relation between subject and object) being cb:interests, and the object
being cb:semanticWebGroup, an instance of a group. Additionally, the sub-
ject gets initial data in square brackets for time stamps and values. The
triple specifies that this particular time series interests the group Semantic
Web Group.

The tags are provided by the scientists through the web portal. With
this information (time series, RDF triple, and ontology) the language is able
to extract relevant information (depending on tags the scientist provided)
and deliver the according time series back to the portal and hence make it
available to the scientist.

The following sections describe the integration of community building
techniques into the Web portal of the framework.

5.1 Authentication

In order to access the Semantic Time Series Processing Portal we have im-
plemented a login system based on the Vaadin3 framework. The login screen
can be seen in Figure 5.2. To login to the portal, the user needs to provide
an email address and a password, which she registered previously. This login
data is checked with the database through the Vaadin framework.

The LoginUI class shown in Listing 5.2 represents the main entry point
to the portal. It registers itself as a Vaadin Servlet and uses the predefined
stsp portal theme. Furthermore, it implements the following process:

2https://http://www.w3.org/TeamSubmission/turtle/
3https://vaadin.com/

146

Figure 5.2: The login window of the Semantic Time Series Processing portlet.

1. Initialization of the navigator for the site navigation throughout the
portal.

2. Registering of the LoginView (for the login process) and MainView (for
other user interaction) to the navigator.

3. Checking if the user is already logged in.

4. Navigation to the login view if the user is not logged in yet.

1 @Theme(” s t s p p o r t a l ”)
2 @Title (” Semantic Time S e r i e s Proce s s ing Web Porta l ”)
3 pub l i c c l a s s LoginUI extends UI {
4

5 @WebServlet (va lue = ”/∗” , asyncSupported = true)
6 @VaadinServ letConf igurat ion (productionMode = f a l s e , u i =

LoginUI . c l a s s)
7 pub l i c s t a t i c c l a s s S e r v l e t extends VaadinServ let {}
8

9 @Override
10 protec ted void i n i t (VaadinRequest r eque s t) {
11 new Navigator (th i s , t h i s) ;
12 getNavigator () . addView (LoginView .NAME, LoginView . c l a s s) ;
13 getNavigator () . addView (MainView .NAME, MainView . c l a s s) ;
14 getNavigator () . addViewChangeListener (new ViewChangeListener

() {
15

16 @Override
17 pub l i c boolean beforeViewChange (ViewChangeEvent event) {
18 boolean isLoggedIn = g e t S e s s i o n () . g e tAt t r ibute (” user ”)

!= n u l l ;

147

19 boolean isLoginView = event . getNewView () i n s t a n c e o f
LoginView ;

20

21 i f (! i sLoggedIn && ! isLoginView) {
22 getNavigator () . navigateTo (LoginView .NAME) ;
23 re turn f a l s e ;
24

25 } e l s e i f (i sLoggedIn && isLoginView) {
26 re turn f a l s e ;
27 }
28

29 re turn true ;
30 }
31 }) ;
32 }
33 }

Listing 5.2: Implementation of the login user interface.

After the first login, the user settings screen (Figure 5.3) is presented
to the user. The screen contains the name of the user which she used for
registration as well as an optional picture. The other part of the screen is
loaded dynamically and depends on the uploaded user domain ontology. The
ontology defines not only the domain for a user (which matches in some parts
the domain ontology of time series) but also the position of the user (in terms
of scientific role), the institute, and department. These information is filled
in the text fields of the user settings screen and can be edited by the user
in order to be updated. Furthermore, groups of interest which are found
in the domain ontology can be selected by the user. This triggers a search
for related research topics which can then be selected in the twin column
selection field. After editing all required information, the user can save the
settings and start using the portal.

148

Figure 5.3: User settings screen which is presented to the user after her first
login.

149

5.2 Group Generation

Group Generation functionality provides a means of suggesting groups to a
user who shares her interest regarding time series. The suggestions depend on
the user’s domain ontology and group users by common interests as defined
in the ontology. Users with the same interest triple (e.g. ‘stsp:bozicb
stsp:has interest stsp:Water’ and ‘stsp:alanf stsp:has interest

stsp:Water’) are suggested to be in the same group. Therefore, the portal
presents the user with groups retrieved by the according SPARQL query for
has interest and is in group in the ‘Group’ menu (see Figure 6.25).

Figure 5.4: An example of group suggestions in the Groups menu.

Figure 5.4 shows a user who has 4 group suggestions (Water, Air, Soil,
and Nuclear). The groups represent interests of users and contain not only
users who have common interests, but also time series which correspond to
those interests. The groups menu shows the logos or names of the groups.
Details are only provided after the user clicks on one of the group logos.

The detailed view of a group is shown in Figure 5.5. This view presents
on the one hand a table of users who are members of the group, and on the
other hand, a table of relevant time series for the group.

The table of users defines the following data:

150

Figure 5.5: An example of a detailed view for a group (in this case the group
‘Water’).

• User name4: The full name of the group member.

• Role: The role of the group member within her organization (same as
position).

• Average rating: The average user rating from other users of the group
(defines the relevance and trustworthiness of the user from the view-
point of the group).

An overview of the relevant time series information is presented in the
time series table as follows:

4User names and pictures used for the examples are property of Magnus, Max Bunker
Press, 1969, Source: http://www.munix.it/1-10/1-10.html

151

• Title of the time series: Descriptive name of the time series content.

• Category of the time series: Specific category for the time series within
the topic or group (e.g. topic = water, category = precipitation).

• Average rating: The average rating from users of the group (defines
the relevance of a time series to the group, as well as the quality of the
time series data).

By selecting a user or time series from the table, the user is able to rate
the item or provide additional annotations. This process is explained in detail
in the ‘User and Time Series Rating’ section.

5.3 User and Time Series Rating

In order to find out which relevance certain users and time series in a group
have, we introduce the concept of user and time series rating. For this task
we use a 5-star-rating system enabling every user to rate another user or a
time series from 1 to 5 stars and hence mark the relevance of the user or
time series to the group. In addition to this, we also provide the possibility
to annotate users and time series in the rating window.

Figure 5.6 shows such an annotation and rating window for a sample user.
The window presents an image of the user, her name, position (role within
her organization), and a list of groups the user is member of. Additionally,
there is the possibility to rate the user and to provide a short annotation
(comment about the user).

The annotation and rating window for time series is shown in Figure
5.7. It provides the title of the time series, the topic (which is a high level
category, such as ‘Water’ or ‘Air’), the category (a subdomain of the topic),
and a link to show the details (graph) of the time series. Furthermore, we
have the same options for rating and annotation as we have already seen in
the user example.

Finally, Figure 5.8 shows the window that appears after clicking the
“Show Details” link.

152

Figure 5.6: User annotation and rating window after selecting a user from
the table in the group overview.

153

Figure 5.7: The annotation and rating window for time series.

Figure 5.8: Overview of the time series data presented as a line chart.

154

5.4 Sharing of Time Series among Users and

User Groups

After introducing the user interface elements, this chapter provides an in-
sight on the conceptual backgrounds of the implementation. This means the
relevant parts of the ontology, as well as important RDF triples, which make
it possible to build the end user system.

To fulfill the task of time series sharing the following steps are necessary:

• User definition: definition of important details of a user, such as: name,
position, interests, rating, etc., in order to find the right group (com-
bined with other users with similar interests).

• Time series definition: definition of important information about a
time series for assignment to the right group.

• Rating and relevance definition: ratings by other similar users for users
and time series.

• Unifying user and time series elements in a group: collecting RDF
triples for unifying users and time series in groups.

Therefore, a general ontology needs to be used in order to combine users
and time series in the concept of a group. Listing 5.3 shows the most im-
portant classes of such an ontology as code snippets. The most important
object and data properties for the connection of users and time series are:
according to correlates domains or groups to interests, belongs to domains
or groups to time series, has category categories to time series, has domain

time series to domains, has group users to groups, and has timeseries do-
mains or groups to time series. The most important and most frequently
used classes are: Domain, Group, Interest, TimeSeries, and User.

1 : a c co rd ing to rd f : type owl : ObjectProperty ;
2 r d f s : domain : Domain ,
3 : Group ;
4 r d f s : range : I n t e r e s t .
5

6 : b e l o ng s t o rd f : type owl : ObjectProperty ;
7 r d f s : range : Domain ,
8 : Group ;
9 r d f s : domain : TimeSer ies ;

10 owl : inver s eOf : h a s t i m e s e r i e s .
11

12 : ha s ca tegory rd f : type owl : ObjectProperty ;
13 r d f s : range : Category ;

155

14 r d f s : domain : TimeSer ies ;
15 r d f s : subPropertyOf : has domain .
16

17 : has domain rd f : type owl : ObjectProperty ;
18 r d f s : range : Domain ;
19 r d f s : domain : TimeSer ies .
20

21 : has group rd f : type owl : ObjectProperty ;
22 r d f s : range : Group ;
23 r d f s : domain : User .
24

25 : h a s p o s i t i o n rd f : type owl : ObjectProperty ;
26 r d f s : range : Pos i t i on ;
27 r d f s : domain : User .
28

29 : h a s t i m e s e r i e s rd f : type owl : ObjectProperty ;
30 r d f s : domain : Domain ,
31 : Group ;
32 r d f s : range : TimeSer ies .
33

34 : ha s u s e r rd f : type owl : ObjectProperty ;
35 r d f s : domain : Domain ,
36 : Group ;
37 r d f s : range : User ;
38 owl : inve r seOf : has group .
39

40 : h a s a v e r a g e r a t i n g rd f : type owl : DatatypeProperty ;
41 r d f s : domain : TimeSer ies ,
42 : User ;
43 r d f s : range xsd : double .
44

45 : has name rd f : type owl : DatatypeProperty ;
46 r d f s : domain : Category ,
47 : Domain ,
48 : User ;
49 r d f s : range xsd : s t r i n g .
50

51 : h a s t i t l e rd f : type owl : DatatypeProperty ;
52 r d f s : domain : Group ,
53 : TimeSer ies ;
54 r d f s : range xsd : s t r i n g .
55

56 : Category rd f : type owl : Class ;
57 r d f s : subClassOf : Domain .
58

59 : Domain rd f : type owl : Class .
60 : Group rd f : type owl : Class .
61 : I n t e r e s t rd f : type owl : Class .
62 : Po s i t i on rd f : type owl : Class .

156

63 : TimeSer ies rd f : type owl : Class .
64 : User rd f : type owl : Class .

Listing 5.3: Ontology snippets (classes and properties) for combining users
and time series into groups.

Listing 5.4 shows the most important individuals from the ontology. The
examples show how users are created and assigned to names, positions, rat-
ings, and groups. As a first step some groups, categories, domains, and
interests are created. Then users and time series are defined and assigned to
the interests and domains. This offers us the connection between users and
time series in order to combine users and time series in groups.

1 : a b s t r a c t i o n rd f : type : Category ,
2 owl : NamedIndividual .
3

4 : a i r domain rd f : type : Domain ,
5 owl : NamedIndividual .
6

7 : a i r g r oup rd f : type : Group ,
8 owl : NamedIndividual .
9

10 : a i r i n t e r e s t rd f : type : I n t e r e s t ,
11 owl : NamedIndividual .
12

13 : a l a n f o r d rd f : type : User ,
14 owl : NamedIndividual ;
15 : h a s a v e r a g e r a t i n g ” 3 .0 ”ˆˆ xsd : double ;
16 : has name ”Alan Ford”ˆˆ xsd : s t r i n g ;
17 : h a s p o s i t i o n : p r o f e s s o r ;
18 : has group : water group .
19

20 : a s s i s t a n t p r o f e s s o r rd f : type : Pos i t i on ,
21 owl : NamedIndividual .
22

23 : bob rock rd f : type : User ,
24 owl : NamedIndividual ;
25 : h a s a v e r a g e r a t i n g ” 2 .5 ”ˆˆ xsd : double ;
26 : has name ”Bob Rock”ˆˆ xsd : s t r i n g ;
27 : h a s p o s i t i o n : a s s i s t a n t p r o f e s s o r ;
28 : has group : water group .
29

30 : minuette macon rd f : type : User ,
31 owl : NamedIndividual ;
32 : h a s a v e r a g e r a t i n g ” 5 .0 ”ˆˆ xsd : double ;
33 : has name ” Minuette Macon”ˆˆ xsd : s t r i n g ;
34 : h a s p o s i t i o n : phd student ;
35 : has group : water group .
36

157

37 : nuclear domain rd f : type : Domain ,
38 owl : NamedIndividual .
39

40 : nuc l ear group rd f : type : Group ,
41 owl : NamedIndividual .
42

43 : n u c l e a r i n t e r e s t rd f : type : I n t e r e s t ,
44 owl : NamedIndividual .
45

46 : phd student rd f : type : Pos i t i on ,
47 owl : NamedIndividual .
48

49 : p r e c i p i t a t i o n rd f : type : Category ,
50 owl : NamedIndividual .
51

52 : p r o f e s s o r rd f : type : Po s i t i on ,
53 owl : NamedIndividual .
54

55 : shor tage rd f : type : Category ,
56 owl : NamedIndividual .
57

58 : s i r o l i v e r rd f : type : User ,
59 owl : NamedIndividual ;
60 : h a s a v e r a g e r a t i n g ” 4 .5 ”ˆˆ xsd : double ;
61 : has name ” S i r Ol ive r ”ˆˆ xsd : s t r i n g ;
62 : h a s p o s i t i o n : p r o f e s s o r ;
63 : has group : water group .
64

65 : s o i l doma in rd f : type : Domain ,
66 owl : NamedIndividual .
67

68 : s o i l g r o u p rd f : type : Group ,
69 owl : NamedIndividual .
70

71 : s o i l i n t e r e s t rd f : type : I n t e r e s t ,
72 owl : NamedIndividual .
73

74 : supply rd f : type : Category ,
75 owl : NamedIndividual .
76

77 : t s 1 rd f : type : TimeSer ies ,
78 owl : NamedIndividual ;
79 : h a s a v e r a g e r a t i n g ” 2 .5 ”ˆˆ xsd : double ;
80 : h a s t i t l e
81 ”Water abs t rac t ed f o r the manufactor ing indus t ry ”
82 ˆˆ xsd : s t r i n g ;
83 : ha s ca t egory : a b s t r a c t i o n ;
84 : b e l o ng s t o : water domain ,
85 : water group .

158

86

87 : t s 2 rd f : type : TimeSer ies ,
88 owl : NamedIndividual ;
89 : h a s a v e r a g e r a t i n g ” 3 .0 ”ˆˆ xsd : double ;
90 : h a s t i t l e
91 ”Net f r e shwate r supp l i ed by water supply indus t ry ”
92 ˆˆ xsd : s t r i n g ;
93 : ha s ca t egory : supply ;
94 : b e l o ng s t o : water domain ,
95 : water group .
96

97 : t s 3 rd f : type : TimeSer ies ,
98 owl : NamedIndividual ;
99 : h a s a v e r a g e r a t i n g ” 4 .0 ”ˆˆ xsd : double ;

100 : h a s t i t l e ” P r e c i p i t a t i o n in Croat ia ”ˆˆ xsd : s t r i n g ;
101 : ha s ca t egory : p r e c i p i t a t i o n ;
102 : b e l o ng s t o : water domain ,
103 : water group .
104

105 : t s 4 rd f : type : TimeSer ies ,
106 owl : NamedIndividual ;
107 : h a s a v e r a g e r a t i n g ” 3 .5 ”ˆˆ xsd : double ;
108 : h a s t i t l e
109 ”Water abs t rac t ed f o r pub l i c water supply ”ˆˆ xsd : s t r i n g ;
110 : ha s ca t egory : a b s t r a c t i o n ;
111 : b e l o ng s t o : water domain ,
112 : water group .
113

114 : t s 5 rd f : type : TimeSer ies ,
115 owl : NamedIndividual ;
116 : h a s a v e r a g e r a t i n g ” 5 .0 ”ˆˆ xsd : double ;
117 : h a s t i t l e
118 ” Duration o f water sho r tage s (hours) ”ˆˆ xsd : s t r i n g ;
119 : ha s ca t egory : shor tage ;
120 : b e l o ng s t o : water domain ,
121 : water group .
122

123 : water domain rd f : type : Domain ,
124 owl : NamedIndividual .
125

126 : water group rd f : type : Group ,
127 owl : NamedIndividual .
128

129 : w a t e r i n t e r e s t rd f : type : I n t e r e s t ,
130 owl : NamedIndividual .

Listing 5.4: Ontology snippets (individuals) for combining users and time
series into groups.

The whole process of group definition is implemented through the follow-

159

ing steps:

• Definition of users and time series: RDF triples to define users and
time series, and assign interests and domains to them.

• Reasoning over the ontology: usage of a reasoner to generate groups
which combine users and time series and include ratings.

• Retrieval of groups: usage of SPARQL queries to retrieve users and
time series for a specific group.

• Presentation of groups: the web portal can be used for the presentation
of groups with their users and time series as well as further rating and
annotation.

5.5 SPARQL Endpoint

An additional feature of the framework is a SPARQL endpoint for retrieving
community-related data. The endpoint is implemented by using the Open-
RDF Sesame5 framework and can be used to inspect retrieved individuals
from the knowledge base.

Figure 5.9 shows a screenshot of the SPARQL endpoint. The web inter-
face provides a possibility to the user to define a SPARQL query and retrieve
the results in a list. The text area named “SPARQL query” can be used to
enter the query with one or more variables. After formulating the query, the
user can click the “Query” button in order to have the query executed on
the semantic repository. The result of the query is displayed automatically
in the list under the button as a list of URIs of the resulting instances.

1 F i l e dataDir = new F i l e (”/home/ bojan / stsp−repo /”) ;
2 repo = new Sa i lR epo s i t o ry (new Nat iveStore (dataDir)) ;
3 t ry {
4 repo . i n i t i a l i z e () ;
5 con = repo . getConnect ion () ;
6 F i l e f = new F i l e (”/home/ bojan /Dropbox/Code/ semantic−time−

s e r i e s−p r o c e s s i n g / s t sp . owl”) ;
7 con . add (f , ” http ://www. semanticweb . org / bojan / o n t o l o g i e s

/2013/10/ s t sp#” , RDFFormat .TURTLE) ;
8 } catch (Exception e) {
9 e . pr intStackTrace () ;

10 }
11

12 t ry {

5http://www.openrdf.org/

160

Figure 5.9: SPARQL endpoint of the Semantic Time Series Processing portal.

161

13 TupleQuery tupleQuery = con . prepareTupleQuery (QueryLanguage .
SPARQL, taSPARQL. getValue ()) ;

14 TupleQueryResult r e s u l t = tupleQuery . eva luate () ;
15 whi le (r e s u l t . hasNext ()) {
16 f o r (i n t i = 0 ; i < r e s u l t . getBindingNames () . s i z e () ; i++) {
17 l s R e s u l t . addItem (r e s u l t . next () . getValue (r e s u l t .

getBindingNames () . get (i)) . t oS t r i ng ()) ;
18 }
19 }
20 con . c l o s e () ;
21 repo . shutDown () ;
22 } catch (Exception e) {
23 e . pr intStackTrace () ;
24 }

Listing 5.5: Code snippet of the SPARQL endpoint implementation.

Listing 5.5 shows the main part of the SPARQL endpoint implementation.
We use the directory “stsp-repo” to create a semantic repository by using
the SailRepository class constructor. As a next step, we initialize the
repository and retrieve a connection. To populate the repository we use our
STSP ontology and add it to the repository by calling the add method on the
connection object and defining the ontology file, the main namespace, and
the RDF format. The query is prepared by calling the prepareTupleQuery

method and providing the query language (which is SPARQL in our case)
and the content of the according text area. The retrieved TupleQuery object
is evaluated and the result consists of an object which contains the retrieved
URIs. Finally, the TupleQueryResult object is iterated and the items are
saved to the list by calling the next method as long as the result has further
elements, and adding the elements to the list (considering the number of
variables in the query as well - while loop for the results and for loop for the
variables per result tuple).

5.6 Reasoning in Community Building

The community building part of the Semantic Time Series Processing frame-
work supports (among general reasoning rules) the following reasoning work-
flows:

• Assignment of users to groups: Reasoning over related groups and
assignment of users to highly related groups.

• Suggestions of time series for users: Reasoning over user groups and
their time series, and suggestions to a user for a new time series relation.

162

• Assignment of time series to groups: Reasoning over groups and time
series and assignment of time series to groups.

• Suggestions of related users to users: Reasoning over users, groups,
and time series and suggestions for relations between users.

The following subsections describe the four reasoning scenarios in more
detail through Description Logics (DL). Each scenario consists of a formal
definition, a description of the scenario, and an example.

5.6.1 Assignment of Users to Groups

Our first reasoning example is the assignment of users to groups of interest.
It is defined in terms of description logic in Equation 5.1.

hasUser.Group ≡ hasInterest.User u hasInterest.Group (5.1)

The user is assigned to a group if the user and the group share the same
interest (topic).

In order to automatically assign users to groups, there is a relation be-
tween the Group and the User class. The object property hasInterest has
the domains Group and User and the range Interest. Therefore, through
the definition of the reasoning rule in Equation 5.1 users are automatically
assigned to groups with the same interest.

For example, the group water group and the user alan ford have the
interest water interest. This leads us to the conclusion that the user
alan ford belongs to the group water group (see Listing 5.6).

1 : water group rd f : type : Group .
2 : a l a n f o r d rd f : type : User .
3

4 : water group : h a s I n t e r e s t : w a t e r i n t e r e s t .
5 : a l a n f o r d : h a s I n t e r e s t : w a t e r i n t e r e s t .
6

7 |
8 v
9

10 : water group : hasUser : a l a n f o r d .

Listing 5.6: Reasoning example for assignment of users to groups in Turtle
notation.

163

5.6.2 Suggestions of Time Series to Users

This workflow defines which time series are suggested to a user. The defini-
tion is shown in Equation 5.2.

SuggestedT imeSeries ≡ ≥ 3 ∀hasRating.T imeSeries u
hasGroup.T imeSeries = hasGroup.User

(5.2)

A time series is suggested to a user if the rating of the time series is
greater than or equal to 3 stars and the group of the time series is equal to
the group of the user.

Both, a TimeSeries and a User have the object property hasGroup. An
individual of the type TimeSeries is at the same time an individual of the
type SuggestedTimeSeries as well, if the rating is at least 3 stars (defined
by the hasRating data property) and the Group is the same as the group of
the user of a current session.

For example, the time series ts1 has the rating 4 and belongs to the
group water group. The user alan ford belongs to the group water group

as well. Therefore it can be inferred that the time series could be relevant for
the user and gets the type SuggestedTimeSeries for the session (see Listing
5.7).

1 : t s 1 rd f : type : TimeSer ies .
2 : a l a n f o r d rd f : type : User .
3 : water group rd f : type : Group .
4

5 : t s 1 : hasGroup : water group .
6 : t s 1 : hasRating ”4”ˆˆ xsd : decimal .
7 : a l a n f o r d : hasGroup : water group .
8

9 |
10 v
11

12 : t s 1 rd f : type : SuggestedTimeSer ies .
13 : a l a n f o r d : hasTSSuggestion : t s1 .

Listing 5.7: Reasoning example for suggestion of time series to users in Turtle
notation.

5.6.3 Assignment of Time Series to Groups

The automatic assignment of time series to groups, which depends on the
rating and the user, is presented in Equation 5.3.

hasGroup.(≥ 3 ∀hasRating.T imeSeries) ≡
hasGroup.(rated.(User, T imeSeries) u ∃hasGroup.User)

(5.3)

164

A group of a user is assigned to the time series if the rating of the time
series is at least 3 stars and there exists a user who has rated the time series
in the group.

The data property hasRating of the class TimeSeries needs to have a
value of at least 3 for the time series to become member of a group automat-
ically. Furthermore, there needs to be at least one individual of type User

from the group who has rated the time series.

For example, the time series ts2 has a rating of 4.5. The same time
series is rated by the user bob rock who belongs to the group air group.
This scenario leads us to the conclusion that the time series ts2 should belong
to the group air group as well (see Listing 5.8).

1 : t s 2 rd f : type : TimeSer ies .
2 : bob rock rd f : type : User .
3 : a i r g r oup rd f : type : Group .
4

5 : t s 2 : hasRating ” 4 .5 ”ˆˆ decimal .
6 : bob rock : rated : t s2 .
7 : bob rock : hasGroup : a i r g roup .
8

9 |
10 v
11

12 : t s 2 : hasGroup : a i r g roup .

Listing 5.8: Reasoning example for assignment of time series to groups in
Turtle notation.

5.6.4 Suggestions of Related Users to Users

Equation 5.4 shows the definition of suggestions for users with same interest.

SuggestedUser ≡ hasGroup.User u interestedIn.Interest (5.4)

A user is suggested if she is in the same group and shares the same interest
with the user of the session.

An individual is assigned the type SuggestedUser if she shares the range
of her hasGroup and interestedIn object properties with the considered
individual.

For example, the user bob rock is member of the group air group and is
interested in air interest. This is also the case for the user alan ford

(same interest and group). Therefore, the conclusion can be made that
alan ford is of type SuggestedUser for the user bob rock (see Listing 5.9).

165

1 : bob rock rd f : type : User .
2 : a l a n f o r d rd f : type : User .
3 : a i r g r oup rd f : type : Group .
4 : a i r i n t e r e s t rd f : type : I n t e r e s t .
5

6 : bob rock : hasGroup : a i r g roup .
7 : bob rock : h a s I n t e r e s t : a i r i n t e r e s t .
8 : a l a n f o r d : hasGroup : a i r g roup .
9 : a l a n f o r d : h a s I n t e r e s t : a i r i n t e r e s t .

10

11 |
12 v
13

14 : a l a n f o r d rd f : type : SuggestedUser .
15 : bob rock : hasUserSuggest ion : a l a n f o r d .

Listing 5.9: Reasoning example for suggestion of related users to a user in
Turtle notation.

The next chapter provides more details regarding ontology mapping and
reasoning by validating the functionality in two validation scenarios.

166

Part III

Use Cases and Validation

167

Chapter 6

Validation of Semantic Time
Series Processing

The approach taken in this thesis is best described by the scientific method-
ology used. The chosen methodology is prototyping, hence we build several
prototypes to prove our hypotheses. However, central to our validation ap-
proach and thus to this chapter are two ontologies which have been built
during the TaToo project1.

The prototype provides time series processing, Semantic Web technolo-
gies, and community building functionality. Figure 6.1 presents a typical use
case of the prototype in order to fulfill a common task.

In step 1 the user requests information for his area of interest by using the
Web Portal. The portal forwards the request to the Semantic Processor in
step 2, which does semantic processing with the user’s data, meta data and
request, and asks the Semantic Discovery component for an appropriate Web
resource, based on the resulting semantic information (step 3). In step 4 and
5, the Semantic Discovery component finds the right Web resource and gives
the information back to the Semantic Processor (step 6). The Semantic Pro-
cessor checks the resources in the available databases, and eventually triggers
updates (arrow). After that it delivers the information to the Web Portal
(step 7), which presents the results to the user (step 8). Additionally, the
Semantic Processor forwards meta data about the user and the resource to
the Community Building component, which generates relational dependen-
cies, updates its community affiliation data, and provides this information
to the Web Portal (steps 9 and 10). The arrows show the tagging circle, in
which the user and the Semantic Processor enrich meta data with manual
and automatic annotations.

1http://www.tatoo-fp7.eu/tatooweb/

169

170

Figure 6.1: Use case of the prototype.

In our validation process, the prototype is used in two different valida-
tion scenarios (“Climate Change Twin Regions – Discovery Platform” and
“Anthropogenic Impact and Global Climate Change”) which are described
in detail in the following sections. But before we start with the description
of the use cases, we need to define the most important terms used in the
examples:

• Topic: The topic defines the interest of, e.g. a user. It is intentionally
very abstract because it is meant to describe a large number of users
or resources. The topic can be made more precise by the definition of
a category. Examples for topics are: Water, Air, Soil, Nuclear, etc.

• Category: The category is a subclass of the topic which means that it
defines an interest more precisely. Examples for categories are: Organic
Pollutants, Cryptosporidium, Dissolved Oxygen, etc.

• Group: The group is independent of topics and categories (although a
group can have an arbitrary number of topics and categories), but, for
the ease of the reader, in some examples the topic is used as the name
of a group as well.

171

• Domain: A domain is the concept for an area of interest for a specific
user. The domain is defined by a domain ontology and describes all
needed initial definitions for a user community.

• Rating: The rating is used to assign time series and users to groups.
In order to be assigned to a group, a time series or user needs to have
a rating of at least 3 stars (out of 5). This means that a user or time
series is assigned to a group as soon as the rating exceeds 3, but also
that the user or time series will be deleted from a group if the rating
drops below 3. The number of groups a user or time series can be
assigned to is not limited.

6.1 Climate Change Twin Regions – Discov-

ery Platform

The “Climate Change Twin Regions – Discovery Platform” (short Climate
Twins) has been developed by the Austrian Institute of Technology and used
as a Validation Scenario in the TaToo FP7 project. One of the outputs of
the TaToo project regarding the Climate Twins Validation Scenario was an
ontology which describes the scenario and its meta-data. This ontology is
used as an input for this thesis in order to show how the developed Ontology
Mapping and Reasoning methods can be applied.

6.1.1 Introduction

The Climate Twins application has the goal to show the impact of climate
change and allow adaptation for its users by finding model regions where the
future climate of a certain Point-of-Interest (POI) is similar to the current
climate of another location ([Ungar et al., 2011] and [Schimak et al., 2011]).
These regions are called Climate Twins because they have a similar climate.
The POI region which is subject to changes in the future can provide adap-
tation by knowing what the impacts of the future climate to the region will
be. The tool for the search of Climate Twins regions is implemented as a
web user interface which allows exploration of climate change effects on two
maps. One map shows the source region (POI) and the other map shows the
destination which is at the same time the region after a previously defined
time period having a similar climate to the source region. The climatologi-
cal similarity and its accuracy and validity depend on the used indicators as
well as the defined similarity thresholds. The more indicators are used in the
settings and the narrower the threshold ranges are defined, the less results

172

will be found which match the source region. The used indicators are daily
mean temperature and precipitation, which are the most important indica-
tors for the prediction of climate change. In the TaToo project, tools are
used to improve the accuracy of the search for Climate Twins as well as the
integration of further resources [Rizzoli et al., 2010]. This means that TaToo
tools have enabled the application to add tags, annotate resources, reuse tags
of other users, discover and retrieve further resources for the selected region
(documents, web sites, web services, etc.).

Figure 6.2: Screenshot of the Climate Twins application [Ungar et al., 2011].

Although similarity is based only on precipitation and temperaure, there
is a complex matching method which depends on quantification between data
vectors and provides values which can be combined with other indicators as
well [Božić et al., 2012]. This makes it also possible to differentiate between
more or less similar regions as results of a query. Figure 6.2 shows a screen-
shot of the Climate Twins application. The left map shows the source of
the calculation, which is a location in the Czech Republic. The red-marked
region is the source location for the calculation. The map on the right side
shows all twin regions which have a similar climate compared to the source
region in a different time. Finally, the lower frame enables the user to set all
required parameters for the calculation.

Figure 6.3 shows an enlarged view of the Climate Twins control panel.
Here, the user is able to enter a customized query and to start it in order
to get results presented on the map. On the left side the similarity measure
thresholds and the weighting can be set by using sliders. Time and season

173

Figure 6.3: Enlarged screenshot of the Climate Twins control panel [Ungar
et al., 2011].

can be selected as well together with indicators and the type of similarity
measure. On the right side, the user is presented a box with information
about the used parameters and a legend of the map.

6.1.2 Ontology

The ontology of the Validation Scenario 1 “Climate Twins” (AIT ontology)
is a result of the TaToo project. It has been developed to enrich the data
model of possible applications based on the Climate Twins technology, and
represents single components of the field of application which are represented
as classes of the ontology. The Semantic Web for Earth and Environmental
Terminology (SWEET)2 and the Clean Energy Info Portal (reegle)3 have
been used as a basis for developing the “Climate Twins” domain ontology.
In the following, the single first-level classes of the ontology are described
(in alphabetical order) in detail by presenting the part of the graph which
is related to the class (produced using OWLViz in Protégé) together with a
textual description of the class itself.

The class Building (Figure 6.4) represents an architectural object which
is related to documents (resources) describing it. It is subdivided into the two
specialized classes PassiveBuilding and GreenBuilding which represent
particularly energy-efficient forms of buildings.

A building has the usesEnergy property to define the kind of energy the
building uses (solar, wind, etc.) and the hasThermalProcess property which
defines the thermal process of a building.

The Climate class (Figure 6.5) encompasses the statistics of temperature,
humidity, atmospheric pressure, wind, rainfall, atmospheric particle count,

2http://sweet.jpl.nasa.gov/
3http://www.reegle.info/

174

Figure 6.4: Building class of the AIT ontology.

and other meteorological elemental measurements in a given region over long
periods of time. Climate can be contrasted to weather, which is the present
condition of these same elements and their variations over shorter time pe-
riods. This class is the central class of the ontology and therefore related to
all relevant objects for climate definition (most of all regarding precipitation
and temperature in the first place, but also adaptation and mitigation for
climate changes).

Figure 6.5: Climate class of the AIT ontology.

The class ClimateAdaptation (Figure 6.6) has been introduced in order
to gather RDF triples specifically designed to represent arrangements regard-
ing climate change. Once the user is aware of how the climate in a certain
area will change during a time period, she needs to define which steps need to
be taken in order to prepare (e.g. the architecture of a building) to respond
to these changes.

The ClimateMitigation class (Figure 6.7) has a quite similar purpose
to the ClimateAdaptation class. In fact, it reacts to climate change rather
than trying to prepare adaptations before climate change happens. This
can be done by, e.g. political decisions such as thresholds for emissions of
dangerous materials, etc.

The class ClimateModel (Figure 6.8) defines the used model for climate

175

Figure 6.6: ClimateAdaptation class of the AIT ontology.

Figure 6.7: ClimateMitigation class of the AIT ontology.

predictions. In our case this is the COSMO-CLM4, a regional climate model
which has been developed from a local model of the German Weather Service
by the CLM (Climate Limited-area Modelling) community. This class has
the following subclases:

• PhysicalApproximation: represents the model for approximating
the climate based on physical factors.

• CTModel: defines the Climate Twins model using proportional simi-
larity and Hellinger coefficient.

• Forecast: a model used for making forecasts for a certain region.

The Energy class (Figure 6.9) describes all energy related phenomena.
This concerns not only buildings, but also renewable energy sources which
depend on the climate and can be planned by authorities based on the cal-
culated climate change developments in a certain region. The Energy class
has the following subclasses:

• WindEnergy: describes phenomena related to wind energy.

• SolarEnergy: describes phenomena related to solar enery.

– Sunlight: subclass of SolarEnergy which can be used to define
the amount of sunlight in a specific region.

4http://www.clm-community.eu/index.php?menuid=17

176

Figure 6.8: ClimateModel class of the AIT ontology.

The Energy class is included in the range of the usesEnergy property
which specifies which kind of energy is used by a building.

Figure 6.9: Energy class of the AIT ontology.

The class MeasureType (Figure 6.10) defines the type of measurement,
for instance centimetre, Fahrenheit, etc.

MeteorologicalPhenomena (6.11) is a class for the representation of all
phenomena definitions (e.g. snow, rain, etc.). It defines observations which
are represented through time series and are relevant for prediction of climate
change. The class MeteorologicalPhenomena has the following subclasses:

• Cloud: signalizes clouds as meteorological phenomenon.

• Precipitation: defines the main class for precipitation.

177

Figure 6.10: MeasureType class of the AIT ontology.

– Rain: subclass of precipitation defining rain.

– Snow: subclass of precipitation defining snow.

• Wind: defines wind as meteorological phenomenon.

– WindStorm: subclass of wind (wind exceeding a certain speed).

• Cyclone: defines cyclone as meteorological phenomenon.

– Hurricane: subclass of cyclone (more impact on the environ-
ment).

Figure 6.11: MeteorologicalPhenomena class of the AIT ontology.

The class PrecipitationValueExpression (Figure 6.12) represents de-
tailed precipitation values in a dataset and can be used to filter regions based
on precipitation (exact values or lower and upper thresholds). This class is
the domain in the following properties:

178

• hasExactPrecipitationValue: defines an exact value of precipita-
tion for filtering of regions.

• hasPrecipitationIntervalMax: maximum value of precipitation.

• hasPrecipitationIntervalMin: minimum value of precipitation.

Figure 6.12: PrecipitationValueExpression class of the AIT ontology.

The class Reliability (Figure 6.13) defines how reliable the values are.
The class is in the range of the property producesRealiability which de-
fines the reliability a climate model is able to produce.

Figure 6.13: Reliability class of the AIT ontology.

The class SpatialExpression (Figure 6.14) is a superclass of any spatial
object represented throughout the domain. Furthermore, it is the range of
the property hasSpatialExpression which defines a spatial expression for a
dataset. The subclass CTAppGrids defines which grids of the map are effected
by the expression.

The TemperatureExpression class (Figure 6.15) is a class that represents
temperature in detailed manner. It is part of the following properties:

• hasTemperatureType: defines the type of temperature of the mea-
surement (what was measured).

• hasExactTemperature: defines the value for filtering regions based
on temperature.

179

Figure 6.14: SpatialExpression class of the AIT ontology.

• hasTemperatureIntervalMax: defines the maximum temperature thresh-
old.

• hasTemeperatureIntervalMin: defines the minimum temperature
threshold.

Figure 6.15: TemperatureExpression class of the AIT ontology.

The class TemperatureType (Figure 6.16) represents the source of tem-
perature measurement. It defines the type of the temperature expression and
individuals which can have abbreviations such as: “C” for “Celsius”, “F” for
“Fahrenheit”, etc..

Figure 6.16: TemperatureType class of the AIT ontology.

180

The TemporalExpression class (Figure 6.17) is a superclass of any tem-
poral object represented throughout the domain. Furthermore, it is the range
of the property hasTemporalExpression which defines a temporal expres-
sion for a dataset.

Figure 6.17: TemporalExpression class of the AIT ontology.

The class ThermalProcess (Figure 6.18) represents building insinuation
for annotation purposes. This class is the range of the hasThermalProcess

property which defines the thermal process of a building. The following
subclasses are defined for the class ThermalProcess:

• AirConditioning: thermal process for regulation of air temperature.

– Heating: rising air temperature.

– Cooling: decreasing air temperature.

• SolarShading: reducing warming through prevention of direct solar
radiation.

• BuildingInsinuation: isolation of buildings in order to reduce heat-
ing efforts or loss of warm air.

The Weather class (Figure 6.19) is meant to be used for general annota-
tions where specific climate or other natural phenomena are not required.

Figure 6.20 shows a simplified overview of the most important classes of
the ontology and their properties. As we have already described the class hi-
erarchy of the ontology, we want to use the overview to describe the properties
of the most important classes as well. A building has a thermal process which
defines how the temperature inside the building is regulated (defined by the
hasThermalProcess property) and it uses a certain type of energy (defined
by the usesEnergy property). The climate model used for a certain scenario
has a certain reliability (property producesReliability) and can have a
proportional similarity or Hellinger coefficient (hasProportionalSimilarity

181

Figure 6.18: ThermalProcess class of the AIT ontology.

Figure 6.19: Weather class of the AIT ontology.

and hasHellingerCoefficient). The model can have an observed mete-
orological phenomenon (observedMeteoPhenomena property) and its sub-
class precipitation has a value (hasPrecipitationValue) and measure type
(hasMeasureType). The precipitation value is defined by the precipitation
value expression which has a minimum (hasPrecipitationIntervalMin)
and a maximum (hasPrecipitationIntervalMax) for its interval as well
as the exact value (hasExactPrecipitationValue). Furthermore, the tem-
perature expression is defined by the type (hasTemperatureType), minimum
(hasTemperatureIntervalMin) and maximum (hasTemperatureIntervalMax)
thresholds, and exact temperature (hasExactTemperature).

6.1.3 Use Case

Our use case, which is based on the ontology from TaToo’s Validation Sce-
nario 1 “Climate Change Twin Regions – Discovery Platform”, presents the
generation of groups which unite users and time series sharing the same do-

182

Figure 6.20: A simplified overview of the most important parts of the ontol-
ogy.

main of interest. The following steps describe the workflow of our Climate
Twins Use Case:

1. Definition of users: Creation of sample users from different fields (as
described below) and different interests (required views on the data).

2. Definition of time series: Creation (import) of different time series
from the climate area (related to prediction of climate change).

3. Mapping of user (domain) and time series ontology: Showcase of how
the “Climate Twins” domain ontology is mapped to the bridge ontol-
ogy.

183

4. Reasoning examples: Showcase of how new RDF triples are inferred as
a result of mapping the domain ontology to the bridge.

5. Group generation: Generation of groups with time series and users
sharing similar topics and interests.

Users

The most relevant user types in our Climate Twins Use Case are the follow-
ing:

• Politicians and people working in public authorities who are inter-
ested in public issues linked to (the change of) climate conditions at
a regional or local level. Such issues concern several policy areas like
spatial planning, housing, agriculture and forestry, water and energy
supply, etc.

• Business managers in industries which are climate-sensitive. This ap-
plies to all industries where renewable resources matter much in the
production of their goods (e.g. food production, hydro energy). It
also applies to industries where the climate is an important framework
condition (e.g. tourism, construction).

• Scientists who work in fields of research related to the issues mentioned
above and contribute through the results of their research to climate
adaptations.

• Non-professional users who are only interested in information in trends
and time series data of a certain field.

Example

Our example scenario covers 3 users with different backgrounds. The first
user (see screenshot in Figure 6.21) is a politician. This user works for the
ministry of environment and is interested in time series data about the cli-
mate change. Furthermore, the user loads the Climate Twins ontology as his
domain ontology to the system, which enables him to set “Climate Change”
as his topic of interest. This user needs to get data which supports his
decisions to implement regulations and make investments in certain environ-
mental fields.

The following RDF triples are most relevant for further processing to
generate data of interest for the user (the classes and properties with the
prefix ct - for climate twins - are defined in the domain ontology and the

184

Figure 6.21: Sample politician user with Climate Twins ontology.

individuals – e.g. :user1 – are defined by the Web portal, after creation of
the user):
:user1 rdf:type ct:User .

:user1 ct:hasRole ct:Politician .

ct:Politician ct:hasEmployer ct:Government .

:user1 ct:worksFor ct:MinistryOfEnvironment .

:user1 ct:hasTopic ct:ClimateChange .

The second user (see screenshot in Figure 6.22) is a scientist and works
in the Environmental Modelling department of the University of Graz. The
user is interested in time series data with the topic of “Air Pollution” and
has the Climate Twins ontology as her domain ontology as well. This user
is in search for data for her research and therefore needs time series with a
certain topic.

The following RDF triples are most relevant for the second user:

185

Figure 6.22: Sample scientist user with Climate Twins ontology.

:user2 rdf:type ct:User .

:user2 ct:hasRole ct:Scientist .

ct:Scientist ct:hasEmployer ct:University .

:user2 ct:worksFor ct:EnvironmentalModellingGroup .

:user2 ct:hasTopic ct:AirPollution .

The third user (see screenshot in Figure 6.23) is a business manager from
the Austrian Tourist Agency and works in the Regional Development de-
partment. He is interested in time series with the “Climate Change” topic
in order to plan the infrastructure for tourism in a certain region of interest
(i.e. the region he is responsible for).

The following RDF triples are most relevant for the third user:
:user3 rdf:type ct:User .

:user3 ct:hasRole ct:BusinessManager .

186

Figure 6.23: Sample business manager user with Climate Twins ontology.

ct:BusinessManager ct:hasEmployer ct:Company .

:user3 ct:worksFor ct:RegionalDevelopment .

:user3 ct:hasTopic ct:ClimateChange .

Since these three users have the topics “Climate Change” and “Air Pol-
lution” selected from their domain ontology, they get the list of time series
presented in Figure 6.24 as a result.

The resulting time series are retrieved based on annotations from previous
users or reasoning. In our case the time series are retrieved based on the
annotation of the Topic subclasses ClimateChange and AirPollution. All
time series with these topics are retrieved from the system. This is only the
starting point of the scenario. To experience the real work in the scenario we
need to have a look at the ontology mapping and reasoning processing steps
of our workflow.

As a first step towards group generation, the relevant parts of the domain

187

Figure 6.24: A list of time series with the topics “Climate Change” and “Air
Pollution”.

ontology are mapped to the bridge ontology of our system. Listing 6.1 shows
the merged parts of the two ontologies, where the domain ontology parts are
marked in blue and the bridge ontology parts in red:

1 (1)
2 ct:User owl : sameAs bridge:User .
3 ct:Topic owl : sameAs bridge:Topic .
4

5 (2)
6 ct:Government r d f s : subClassOf bridge:Institution .
7 ct:University r d f s : subClassOf bridge:Institution .
8 ct:Company r d f s : subClassOf bridge:Institution .
9

10 (3)

188

11 ct:Building r d f s : subClassOf bridge:Topic .
12 ct:Energy r d f s : subClassOf bridge:Topic .
13 ct:Weather r d f s : subClassOf bridge:Topic .
14

15 (4)
16 ct:Reliability r d f s : subClassOf bridge:Subject .
17 ct:ClimateAdaptation r d f s : subClassOf bridge:Subject .
18 ct:ClimateMitigation r d f s : subClassOf bridge:Subject .
19

20 (5)
21 ct:TimeSeries owl : sameAs bridge:TimeSeries .
22 ct:TemperatureExpression r d f s : subClassOf bridge:Property .
23 ct:PrecipitationValueExpression r d f s : subClassOf bridge:Property .
24 ct:SpatialExpression r d f s : subClassOf bridge:Property .
25 ct:TemporalExpression r d f s : subClassOf bridge:Property .

Listing 6.1: Mapping of domain ontology and bridge ontology.

In order to better explain the ontology mappings, we have split the
mapped concepts in 5 parts (paragraphs). The first part defines which classes
of the domain ontology are equal to which classes of the bridge ontology. Per
definition of our bridge concept these are all classes with the same name
(i.e. User and Topic in our example). This is the point where alignment
between the bridge and the domain happens. After the statements of part
(1) all individuals of ct:User become individuals of bridge:User (the same
is valid for ct:Topic and bridge:Topic). This has the advantage that it
does not matter whether a user has been defined in a domain ontology or in
the bridge.

Part (2) defines subclasses for a bridge class. In this case the subclasses
are ct:Government, ct:University, and ct:Company and the bridge class
is bridge:Institution. This means that the three classes of the domain
ontology become subclasses of the bridge class. Therefore, every property
of the Institution defined in the bridge ontology is also valid for the special
classes of the domain ontology which enables us to use new kinds of insti-
tutions when we define affiliations of users by using, e.g. the :hasEmployer

property.

In parts (3) and (4) new subclasses for bridge:Topic and bridge:Subject

are defined, which enables a user to be assigned to new topics (interests) and
to create new types of subjects in order to add new resources to a topic.

Finally, part (5) defines the concept of a time series for the Climate Twins
domain ontology. It states that ct:TimeSeries and bridge:TimeSeries

are the same, and defines value expressions from the domain ontology as
properties of a time series.

After the ontology mapping step, the domain and bridge ontologies can

189

be used as one single ontology and form the basis for the reasoning pro-
cess. Therefore, the following rules, which have been defined previously in
Description Logic, need to be applied by a reasoner (Pellet):

• Rule 1 - topic : bridge:Topic |= ∀bridge:hasTopic.user1 t ∀bridge:hasTopic.
user2 t ∀bridge:hasTopic.user3 - Extraction of relevant topics for
users.

• Rule 2 - ts : bridge:TimeSeries |= ∀bridge:hasTopic.topic - Retrieval
of time series with relevant topics and subtopics.

• Rule 3 - bridge:hasTopic.user ≡ bridge:hasTopic.group⇒ (user, group) :
bridge:hasUser - Assignment of users to groups.

• Rule 4 - bridge:hasTopic.ts ≡ bridge:hasTopic.group ⇒ (ts, group) :
bridge:hasT imeSeries - Assignment of time series to groups.

Rule 1 defines the extraction of relevant topics from user definitions. This
means that we look which topics the users who are observed are related to
and collect them in a list. Of course, not only the topics themselves are taken
into account, but also all subtopics (subclasses of the according topic class).

Rule 2 defines retrieval of all time series with relevant topics and subtopics.
This is achieved by generation of SPARQL queries and the application of
them to the knowledge base which in the next step retrieves all IDs of time
series. These IDs can be used in order to retrieve the real time series from
the time series database.

Rule 3 defines the creation of new groups based on extracted user topics
and the assignment of the respective users to these groups. This is done by
simply creating new instances of groups and extending them by triples with
the properties hasTopic (for the topics) and hasUser for the users which
need to be assigned.

Finally, in Rule 4, we also assign the right time series (with the same
topic or subtopic) to the groups.

The application of the reasoning rules to our example use case (as de-
scribed in the steps of the reasoning process) is shown in Listing 6.2. We
have enumerated the single steps according to the previously described defi-
nitions.

1 (1)
2 : user1 ct : hasTopic ct : ClimateChange .
3 : user2 ct : hasTopic ct : A i rPo l l u t i on .
4 : user3 ct : hasTopic ct : ClimateChange .
5

6 |

190

7 v
8

9 ct : ClimateChange , c t : A i rPo l l u t i on
10

11 (2)
12 SELECT ? t i m e s e r i e s
13 WHERE {
14 ? t i m e s e r i e s br idge : hasTopic ct : ClimateChange ,
15 ct : A i rPo l l u t i on .
16 }
17

18 |
19 v
20

21 ts1 , ts2 , ts3 , . . .
22

23 (3)
24 : group1 rd f : type br idge : Group ;
25 br idge : hasTopic ct : ClimateChange ;
26 br idge : hasUser user1 ;
27 br idge : hasUser user2 .
28 : group2 rd f : type br idge : Group ;
29 br idge : hasTopic ct : A i rPo l l u t i on ;
30 br idge : hasUser user2 .
31

32 (4)
33 : group1 br idge : hasTimeSer ies : t s1 . . .
34 : group2 br idge : hasTimeSer ies : t s2 . . .

Listing 6.2: The reasoning process described for the example of the Climate
Twins use case.

Another relevant part of the process is shifting users and time series be-
tween groups based on ratings and annotations. This means that we perform
a periodic check of ratings and annotations of every user and time series. The
check has the goal to evaluate whether a user or time series is in the right
group. This is achieved by investigating which users have provided ratings
and annotations for another user or time series. The critical point is reached
when a user or time series receives a better rating and more annotations
from users of another group, which initiates a shift of the element to the
other group.

Figure 6.25 shows the generated groups with users and time series based
on ontology mapping and reasoning. The “Climate Change” group is at the
top and contains the two users and all time series which are assigned to the
“Climate Change” topic and all its subtopics. The “Air Pollution” group
shows tables with all users and time series assigned to the “Air Pollution”
topic. Initially, all user and time series ratings are set to 2.5 stars in order

191

Figure 6.25: Screenshot of the Climate Change and Air Pollution groups.

192

to have an average rating at the beginning and to avoid movement between
groups too early.

6.2 Anthropogenic Impact and Global Cli-

mate Change

The “Antropogenic Impact and Global Climate Change” platform has been
developed by the Masaryk University in Brno and used as a Validation Sce-
nario in the TaToo FP7 project. One of the outputs of the TaToo project
regarding this Validation Scenario was an ontology which describes the sce-
nario and its meta-data. This ontology is used as an input for this thesis in
order to show how the developed Ontology Mapping and Reasoning methods
can be applied.

6.2.1 Introduction

In order to find which effects pollution has on the human health (i.e. an-
thropogenic impact), air pollution monitoring needs to be combined with
epidemiological data [Rizzoli et al., 2010]. This is only possible when there
are enriched capabilities of data discovery available. The TaToo project has
the goal to provide tools for semantic discovery of resources and hence enable
this combination as well as the enrichment with additional meta-data.

This is exactly the main focus of the validation scenario “Anthropogenic
impact and global climate change”. In fact, it correlates environmental pollu-
tants (POPs – Persistent Organic Pollutants) and their impact on the human
health as well as the transport of environmental pollutants and global cli-
mate change5. The aim is to create a place for researchers, domain experts,
and other decision makers who want to discover new resourcs and to access
knowledge about the correlation in a user-friendly way. The discovery of
resources is not fulfilled by standard search engines but rather by semantic
discovery supported by TaToo tools. The basis for the search is a domain on-
tology which is provided by a user group and defines filters, a definition for an
object of interest, and other relevant concepts for the domain. Furthermore,
new relationships are discovered and created between different domains (e.g.
environmental pollution and tumor epidemiology). This is also needed to
enable the system to use resources from multiple domains.

The validation scenario consists of two web portals which use the devel-
oped domain ontology. The two portals are:

5http://www.tatoo-fp7.eu/tatooweb-d7/about-tatoo/validation-scenarios

193

System for Visualizing of Oncological Data (SVOD)6: This is a Web por-
tal which provides tumor epidemiology data in the Czech Republic7. The
data is free to all users and conforms to the open data initiative of the Czech
Republic. It is based on the Czech National Cancer Registry8 which is man-
aged by the Institute of Health Information and Statistics9. Epidemiological
data in the portal is validated and ranges from 1977 - 2008 which is a unique
data set in Europe.

Figure 6.26 shows a screenshot of the SVOD Web portal. The screenshot
represents a selection window for epidemiological data of a human being.
The user is able to select a region of the human body and browse for time
series data about certain diseases of the observed area among the population
of the Czech Republic.

Global Environmental Assessment Information System (GENASIS)10: This
is a web portal which provides information support for the implementation
of the Stockholm Convention11 on Persistent Organic Pollutants (POPs)12.
The portal is developed in accordance with the objectives of a Single Infor-
mation System of the Environment13 of the Ministry of Environment of the
Czech Republic. It is connected to other data sources and this enables the
assessment of anthropogenic impact on the environment, the ecology, and
human health risks. GENASIS contains data collected by the Research Cen-
tre for Toxic Compounds in the Environment14 of the Masaryk University.
The Web portal offers analytical tools with “statistical” program units for
basic processing of measured environmental data.

Figure 6.27 shows a screenshot of the GENASIS Web portal. The time
series view is selected presenting “Alpha-HCH (air active - gas phase) time
series” data. The data ranges from 1994 to 2012 and shows a typical view
of the GENASIS portal in its role as a data source of compounds time series
data.

6.2.2 Ontology

The ontology of the Validation Scenario 2 “Anthropogenic Impact and Global
Climate Change” (MU ontology) is a result of the TaToo project. It has been

6http://www.svod.cz
7http://www.tatoo-fp7.eu/tatooweb-d7/about-tatoo/validation-scenarios
8http://www.linkos.cz
9http://www.uzis.cz

10http://www.genasis.cz
11http://chm.pops.int
12http://www.tatoo-fp7.eu/tatooweb-d7/about-tatoo/validation-scenarios
13http://www.mzp.cz
14http://www.recetox.muni.cz

194

Figure 6.26: Screenshot of the SVOD Web portal.

195

Figure 6.27: Screenshot of the GENASIS Web portal.

developed to enrich the data model of possible applications in the respective
domain and represents single components of the field of application which are
represented as classes of the ontology. The final version of the ontology uses
the ICD-10 (International Classification of Diseases)15 class hierarchy and
recommended POPs and Matrix taxonomy based on the Stockholm Con-
vention. In the following, the single first-level classes of the ontology are
described in detail by presenting the part of the graph which is related to
the class (produced using OWLViz in Protégé) together with a textual de-
scription of the class itself.

The class Cancer (Figure 6.28) represents cancer diseases and their sub
concepts. It inherits from the class C00 D48 which represents general neo-
plasms. It has the following subclasses:

• SkinCancer: Malignant neoplasms of skin.

• BreastCancer: Malignant neoplasms of breast.

• DigestiveOrgansCancer: Malignant neoplasms of organs (stomach,
colon, liver, etc.).

• HeadNeckCancer: Malignant neoplasms in the neck or head regions
(e.g. brain tumors).

196

Figure 6.28: Cancer class of the MU ontology.

Figure 6.29: BreastCancer class of the MU ontology.

As an example for a specialized cancer class, the class BreastCancer

(Figure 6.29) is shown as a successor not only of the Cancer class, but also of
the class C50 C50 which stands for malignant neoplasm of breast (connective
tissue).

The class Compound (Figure 6.30) represents a “chemical compound”.
Chemical compound is a chemical substance consisting of two or more differ-
ent chemical elements. These elements consist of one type of atom. Common
examples of elements are iron, mercury, lead, etc. The subclasses of the class
are:

• POP: Persistent Organic Pollutant is an organic compound that per-
sists in the environment for a long time (e.g. several years, or even

15http://www.who.int/classifications/icd/en/

197

Figure 6.30: Compound class of the MU ontology.

decades), bioaccumulates, is toxic, and is subject to long-range trans-
port. The class POP is defined to be the same as the class Persistent

OrganicPollutant.

• POC: Organic compound with relevant polarity. The polarity directly
depends on the electronegativity difference between atoms. The class
POC is defined to be the same as the class PolarOrganicCompound.

• ToxicMetal: Metals which culminate a toxic effect on organisms and
life in general. The poisonousness can be a result of forming poisonous
soluble compounds.

• Aldrin: A pesticide which was used to treat seed and soil. It became
notorious as a persistent organic pollutant.

• NaturalToxin: Chemicals which are produced by living organisms.
This means that this kind of toxins are harmless to the organisms
themselves but can have a negative impact on human health.

There is also a large number of subclasses of the presented classes which
represent all the subcategories of the compounds. However, a detailed de-
scription of environmental compounds is not subject of this thesis.

The class Data (Figure 6.31) represents a data source which is a type
of source for (mostly) digitized data: a database; a computer file; a data
stream. Data from such sources is usually formatted and contains a certain
amount of meta-information. It has the following subclasses:

198

Figure 6.31: Data class of the MU ontology.

• Clinical: the result of clinical studies. Achieved through trials and
collection of medical records, etc.

• Trend: data which shows certain trends and is therefore of special
interest for the analysis.

• Biological: data collected from biological sources such as DNA, pop-
ulation, natural toxin concentration, etc.

• SecondaryData: is data which is not related to users of the system
(respectively the web portals of the validation scenario), for example,
data from open data sources of the Czech Republic’s government.

• PrimaryData: in contrast to secondary data, this is personal data of
the system’s users, as well as data entered by users directly.

The Data class represents the measurements in a time series (the values
of single time series slots) which need to be categorized in order to decide
how they should be processed further. These classes are directly related to
the Property class of the bridge ontology. The exact measurements which
correspond to the type of data are therefore saved as values of the property.

The class Disease (Figure 6.32) represents several kinds of diseases which
can be caused by elements of the class Compound and one of its subclasses.
It is equivalent to the class ICD10 Chapter. The previously introduced class
Cancer is a subclass of the class Disease.

The class EpidemiologicalMeasures (Figure 6.33) defines how the ill-
ness of the population should be measured (i.e. which factors contribute to
negative impact on the human health). The following subclasses define the
types of epidemiological measures:

199

Figure 6.32: Disease class of the MU ontology.

Figure 6.33: EpidemiologicalMeasures class of the MU ontology.

1. Incidence: measures the risk of developing a new disease in a certain
period of time.

2. Mortality: measures the number of deaths in a certain population.

3. Prevalence: proportion of a population which has developed a dis-
ease.

The Matrix class (Figure 6.34) represents a matrix - the media, of an-
imated or unanimated nature, where POPs can accumulate. The possible
media is defined as subclasses:

• Foodwebs: define feeding connections in an ecological community (also
known as consumer-resource-system). POPs can be transported through
feeding connections.

200

• HumanMilk: transportation of POPs though human breast milk.

• Plants: transportation through plants (seeds).

• Sediment: transportation through weathering and erosion.

• HumanTissues: transportation through interchange of tissue.

• Air: transportation through air.

• Biofilm: transportation through microorganisms.

• Rainwater: transportation through rain.

• Soil: transportation through dust.

• SurfaceWater: transportation through water (running water).

• Animals: transportation through animals (animal contact, not con-
sumption as in foodwebs).

• UndergroundWater: transportation trough subsoil water.

The class ProjectType (Figure 6.35) describes the type (kind) of a project
together with its topic. The different kinds of a project are:

• ShortTermMonitoring: short observations of an area or population.

• CaseStudy: explanatory analysis of a population.

• Screening: identification of diseases developed by individuals through
tests.

• LongTermMonitoring: long term observations of an area or popula-
tion.

The Risk class (Figure 6.15) represents a possible risk in inter-domain
perspective which can be an ecological risk (if it endangers the environment)
or a human risk (if it directly endangers human beings).

Figure 6.37 shows a simplified overview of the MU ontology. Most of the
defined classes are concentrated around the following “hot spots”:

• Cancer: This is a subclass of the class Disease and serves as the base
class for several kinds of cancer.

• Data: Base class for several types of data, e.g. clinical, trend, biologi-
cal, primary, and secondary.

201

Figure 6.34: Matrix class of the MU ontology.

Figure 6.35: ProjectType class of the MU ontology.

202

Figure 6.36: Risk class of the MU ontology.

• Epidemiology: Base class for mortality, incidence, and prevalence.

• Risk: Different kinds of risks, such as human and ecological risk.

• Compound: Defines the materials which are observed for having an
impact on human health.

• ProjectType: Base class for different types of projects to observe im-
pact on hazardous materials on the human health.

• Matrix: Defines different objects which can be found in the environ-
ment and contribute to the process.

• hasAnnotation: The most important property. Defines annotations
for, e.g. diseases and compounds.

6.2.3 Use Case

Our second use case is based on the ontology from TaToo’s Validation Sce-
nario “Anthropogenic Impact and Global Climate Change”, which demon-
strates the selection of important parts of time series data for different kinds
of users. The following steps describe the workflow of our Antropogenic
Impact and Global Climate Change Use Case:

1. Creation of users with the MU domain ontology: three different user
types (specified below) are created using the MU domain ontology. The
users have different backgrounds, are interested in different parts of the
data, and need different views on their parts of a time series.

203

Figure 6.37: Simplified overview of the MU domain ontology.

204

2. Retrieval of data from the according data sets: The data of the use
case is provided as a catalogue of resources in RDF/XML format16.
Therefore, the data can be accessed by performing SPARQL queries
and using the domain ontology in our Semantic Time Series Processing
framework to provide the right view to the right user.

3. Selection and filtering of data sets depending on user interest: After the
retrieval of resources related to a certain topic, the Web portal provides
a customized view on relevant data parts to every user of the system.
In order to achieve this, the data is filtered according to semantic time
series expressions generated from the user inputs. Finally, the semantic
time series processor is responsible to retrieve the filtered data from the
knowledge base.

Users

The different kinds of users in this use case can be subdivided into the fol-
lowing three categories:

• Scientific users: scientific users are regular users with scientific back-
ground and assumed IT skills. They use the system to discover re-
sources from both domains (POPs, health issues). They will be able
to find resources, find similar resources (having already found some re-
source), compare the resources, and also to find connections between
resources.

• Domain experts: the group of domain experts consists of users who
have some additional functionality compared to scientific users. Do-
main experts can also evaluate resources and assign metadata to the
resources. By the means of these functions they will contribute to the
information enrichment process.

• System administrators: system administrators will be responsible for
organizational and maintenance tasks in order to guarantee proper sys-
tem functionality. This involves also user administration, system set-
tings, problem solving, user support, etc.

Example

The first step in our use case is the creation of users from different groups
(described previously) through our Web portal (see also screenshots of user

16http://ontology.genasis.cz/www/

205

creation in the Climate Twins use case). For demonstration purposes, we
have created one user from each group, which is:

• User1: Role = “Scientific User”, domain ontology = “MU”, topic =
“Epidemiology”.

• User2: Role = “Domain Expert”, domain ontology = “MU”, topic =
“Czech Republic”.

• User3: System Administrator, domain ontology = “MU”, topic =
“none”.

For user 1 and 2 the topics are used to retrieve data of interest. User 3
is presented with a number of administration portlets and is not considered
any further in this use case, since she does not require any special views on
time series data and does not participate in the semantic filtering process.

After creation of the users, our next step is to retrieve URIs of potentially
relevant time series for each user. Listing 6.3 shows the SPARQL query which
is executed for User1.

1 SELECT ? s
2 WHERE {
3 ? s <h t t p : //www. tatoo−fp7 . eu/ tatooweb/ br idge\#Topic> ? t o p i c .
4 FILTER(? t o p i c = <h t t p : // onto logy . g e n a s i s . cz\#epidemio logy>)
5 }

Listing 6.3: SPARQL query for retrieval of resources for user 1 by using the
selected topic.

This query retrieves URIs of resources (a part of them is shown in Listing
6.4) which can further be used to retrieve the time series stored in our time
series data base.

1 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C15
2 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C60
3 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C64
4 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C25
5 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C77
6 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C40
7 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C39
8 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C04
9 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C01

10 h t t p : //www. svod . cz / r epor t . php? lang=en&diag=C53 . . .

Listing 6.4: Part of the list of retrieved URIs for relevant time series.

The same can be done for User 2. The Time Series Processing component
(as described in Chapter 3) has a data access component which interacts with

206

the time series database and uses the URIs as IDs to retrieve the data from
the time series table by using simple SQL statements.

After the data is made available as a whole, a summary table of the re-
trieved time series is shown in the portal and the user can provide selections
in order to filter relevant content of time series. An example of such a se-
lection set is shown in the screenshot of Figure 6.38. The figure shows the
time series filter selection window which is presented to a user for detailed
selection of time series.

The screenshot provides the following information to the user (every part
is separated by a line in the input window):

• Name: Shows the name of the currently selected time series.

• Time Range: Shows the range in which the time series provides values
(depends also on the intervals of values).

• Values: Shows the number of values in the time series.

• Select Time Range: Enables the user to select a time range of interest.
The date and time of the begin and end can be selected.

• Select Property: Enables the user to select the property of time series
slots which is shown. In our case there are two properties which can
be selected (‘Incidence’ and ‘Mortality’).

• Select Minimum Rating: Enables the user to select a minimum rating
from other users of the same group for the time series parts. This
means that only slots and slot ranges are retrieved which have at least
the specified rating by users from the same group.

• Show Annotations: Provides a list of all available annotations of the
time series provided from users of the same group. This is another
option for the user to find out which parts are of particular relevance
to her.

After receiving the user inputs from the time series filtering window,
the framework transforms the selections into semantic time series processing
expressions. The expressions for our example are shown in Listing 6.5.

1 S e l e c t i o n o f the r i g h t time s e r i e s range :
2 C77 < (t s t a r t) . . (tend) > every 1 year
3

4 |
5 v
6

207

Figure 6.38: Screenshot of filter settings provided by User 1.

208

7 S e l e c t i o n o f the r i g h t p rope r ty :
8 C77 < [n] . i n c i d e n c e >
9

10 |
11 v
12

13 S e l e c t i o n o f s l o t rank ings (s l o t s with lower rank ings are s e t to
14 None) :
15 C77 < [n] i f [n] . ranking > ranking otherwi se None >
16

17 |
18 v
19

20 Retr i eve a l l r e l e v a n t annotat ions from the s p e c i f i e d domain:
21 C77 < [n] . getAnnotat ions (group:domain) >

Listing 6.5: Generated semantic time series processing expressions.

These expressions are used to query the time series repository (which
remains in memory after collecting the time series from the database) and
return resulting data to the user.

The final step is the visual presentation of the results to the user. Figure
6.39 shows how the results are presented.

The main part of the figure is the graph of the selected range of time se-
ries. This graph shows exactly the selected range in an appropriate interval
and the selected properties. A property is represented as a line in the graph
(and shown in the legend as well). The title of the graph is equal to the title
of the time series. All available annotations about the selected range are
shown in the right area of the window (user name and text of annotation).
Additionally, at the bottom of the graph, there is an average rating repre-
senting the average user rating for this part of the time series, but also a date
selection field to request further information about a certain time stamp of
the time series data.

209

Figure 6.39: Screenshot of the filtering results as they are presented to the
user.

210

Part IV

Conclusions

211

Chapter 7

Conclusions

In this thesis we present a multi-domain framework for community building
based on data tagging. The framework is defined as a three-way solution
which brings together the disciplines of time series processing, Semantic Web
technologies, and community building.

Time series are broadly used by a lot of domain experts in different fields
(e.g. financial experts interested in special parts of share value time series,
environmental scientists interested in certain air quality measurements in
time series, etc.). Our proposed framework solves the problems of (1) inflex-
ible, tailor-made, and complex solutions which need to be implemented for
every single domain in particular, (2) required effort by domain experts who
need to manually select relevant content and are forced to spend a lot of time
for analyzing tons of data from time series, and (3) lack of means to relate
similar time series and users with common interests or need for shared (and
collaboratively evaluated) relevance of data.

The following subsections describe the results of the thesis which con-
tribute to solve the above-mentioned problems, future work in order to build
a complete software solution, and new research topics which could be ad-
dressed using our proposed solutions.

7.1 Results and Contributions

The results of our work can be subdivided into the following three research
fields:

• Time Series Processing: We provide a formal definition of a dedicated
language for time series processing; the implementation of a runtime
environment for the language including a lexer, parser, and interpreter

213

214

as well as modules for interoperability (Java via Jython and .NET via
IronPython) and addition of customized functions.

• Semantic Web: For the Semantic Web research field, we offer a defini-
tion of Semantic Web extensions of the time series processing concepts.
This includes a definition of semantic time series processing expressions
as well as proposals for tackling the ontology mapping and reasoning
problems.

• Community Building: Regarding community building we have pre-
sented our ideas for building groups of time series and users in order
to satisfy the information need of domain experts and provide methods
for sharing knowledge between users via time series data tagging.

For the time series processing field, we have designed a standardized lan-
guage which is flexible enough to cope with many kinds of time series and
take into account the diversity of clients for data stemming from time series.
The language has been developed at the Austrian Institute of Technology and
is already used in production systems. We used the concepts and provided
a formal definition of the language together with the framework implemen-
tation to be used in different environments and for different users. We also
assembled a complex set of possible time series processing expressions to show
how the language can be used in different scenarios. Finally, we presented
the results of our benchmark tests showing the performance of the language’s
interpreter and profiling, which identified bottlenecks and opportunities for
performance improvements.

In the field of Semantic Web technologies, our aim was not to implement
just another Semantic Web framework or to develop another ontology, but
to introduce a new field of application for Semantic Web technologies. For
the application of our semantic time series concepts, we propose a frame-
work architecture with embedded time series processing. The architecture
consists of a semantic repository which is responsible for the management
of a domain ontology and new triples which are added later by users, other
components, or the reasoner. Additionally, we provide results of benchmark
tests for the semantic repository. Another part of the framework is the con-
nector interface where we also offer a reference implementation in form of
an RDFa parser. The RDFa parser collects triples which are defined in web
sites by using RDFa tags in XHTML. Here, we also present our results in
terms of harvesting web sites in order to show the performance of such a
parser. The ontology mapping component is responsible for finding common
items in domain ontologies, generation of a common time series processing
vocabulary (bridge ontology), definition of mappings and relations between

215

ontologies, and generation of new relations for the resulting ontologies. This
part is complemented by an analysis of techniques, methods, and tools for
ontology mapping. This means that we analyzed the most common and pop-
ular ontology mapping concepts based on our previously defined criteria, and
selected the most appropriate solution for our proposed framework architec-
ture. After describing the selection process, we defined a bridge ontology for
time series processing. The semantic processing component is then respon-
sible for the management and execution of reasoning tasks. We decided not
to implement an own reasoner, but to use an already existing one.

We identified 4 application areas as a contribution to the field of com-
munity building : networking and communication between users, resource
(document) sharing and online collaboration, correlation of common topics
between users and resources, and organization of common events and groups
with common interests. The idea behind the concept is to develop domain
ontologies for certain communities which are combined with time series and
their data in order to generate groups where users and time series share com-
mon topics representing the interests of users from different communities. To
demonstrate the workflow, we implemented a prototype portal which presents
single use cases of the defined functionality. The portal implementation sup-
ports the following functionality: authentication, setup of a specific system
environment for the user, identification of the user community by loading a
domain ontology, group generation functionality, user and time series rating
via an annotation window for user input, detailed view on time series as a
line chart, reasoning to improve the process of group generation by infer-
ring new RDF triples, and a SPARQL endpoint for querying the knowledge
base. Reasoning is defined in the workflows of assignment of users to groups,
suggestions of time series to users, assignment of time series to groups, and
suggestions of related users to other users.

Having described our contributions to the different fields of research,
in summary, our most significant contribution as a whole is the semantic
time series processing framework architecture and prototype. The goal was
to describe a framework which consists of modules for different functional
blocks with the scope of bringing together time series processing and Seman-
tic Web technologies in order to achieve a special way of community build-
ing. The leitmotif of this thesis is the description of the architecture of such a
framework. Additionally, we described single components and functionalities
through examples by using small prototype applications and demonstrations
as well as sample code throughout the thesis.

In order to validate our results, we used real life ontologies which have
been the result of the TaToo FP7 project. The validation scenarios “Climate
Change Twin Regions - Discovery Platform” from the Austrian Institute of

216

Technology and “Anthropogenic Impact and Global Climate Change” from
the Masaryk University in Brno provided domain ontologies for the valida-
tion. We defined two use cases, each for one of the validation scenarios, and
used our concepts to prove the applicability of our approach.

The use case for the AIT validation scenario consisted of the definition
of three different kinds of users (politician, scientist, and business manager)
who all had different interests but the same domain ontology. In the second
step, time series with defined topics from the climate area have been imported
into the system. Then we have shown how the domain ontology and the time
series ontologies were mapped using our bridge ontology. We also provided
reasoning examples to describe how new RDF triples are inferred as a result of
mapping the domain ontology and the bridge ontology. Finally, we presented
the generation of groups with time series and users sharing similar topics and
interests.

In the MU validation scenario use case, we created different (scenario
specific) users who all use the MU domain ontology but are interested in
different parts of time series data. We retrieved time series data by using
the publicly available RDF catalogue from the Masaryk University by using
SPARQL queries to access the right time series and the domain ontology to
generate the right view to the data for every user. Finally, we offer selection
and filtering of the data sets which depend on the interests of a user. This is
done by using generated Semantic Time Series Processing expressions which
are based on the user settings in the portal. We used them to address the
semantic time series processor which, in return, provides us with filtered data
from the knowledge base.

7.2 Future Work and Research

The research done in this thesis proposes solutions to the defined problems,
but also leaves room for improvements of the implementation (since the im-
plemented software is a prototype which can be seen as a proof-of-concept
implementation) and opens the field for new, interesting research questions.

The most important improvements of the implementation, which would
also be needed in order to make the framework ready for use in industry, are:

• Integration of building blocks into one single semantic time series frame-
work: The single components which have been implemented during
this thesis prove the applicability of our ideas as a functional software.
However, this is not a complete framework since the implementation is
still prototypical and should only be used for demonstration purposes.
There is still the need for transformation of the building blocks into

217

components with well-defined interfaces and integration of the indi-
vidual functional blocks into one single framework which can be used
directly by an application. This is a pure engineering task and therefore
not part of this thesis.

• Development of a complete portal (Web portal with user portlets and
stand-alone application): Based on the framework, the next engineer-
ing step would be to build a complete Web portal for users. This portal
should consist of different portlets customized for each possible type of
user. The portal could be implemented in Vaadin1 as the demos in this
thesis, but also (preferably) in a more dynamic environment, e.g. Ruby
on Rails2, Grails3, or Django4. Anyway, it should cover the whole use
case for domain experts from the beginning to the end. This would
be a complete social networking platform for domain experts with the
possibility to load ontologies, directly crawl time series databases, fea-
ture SPARQL endpoints, implement a large-scale knowledge base and
databases for caching of time series data, take care of usability, perfor-
mance, etc.

New challanging research questions are mainly seen in the fields of on-
tology integration, advanced reasoning, and usability studies for time series
processing:

• Integration of commonly used ontologies from other fields: A major
stepping stone for further research is the usage and integration of
popular and broadly used general-purpose ontologies, e.g. Friend-of-a-
Friend, Dublin Core, etc. in the bridge ontology. This would improve
the expressiveness of the bridge ontology and the interoperability with
domain ontologies which use concepts from these general-purpose on-
tologies as well. An easy approach would be to start by using Friend-
of-a-Friend to improve the definition of users and Dublin Core for re-
sources (starting with time series, but also documents and other re-
sources). There is also a general definition of a Semantic Bridge On-
tology (SBO), which has been developed in the Mafra5 project, that
could be combined with our bridge ontology in order to improve inter-
operability. Anyway, there is sufficient room for further research in the
field of interoperability of time series ontologies.

1https://vaadin.com/home
2http://rubyonrails.org/
3http://grails.org/
4https://www.djangoproject.com/
5http://mafra-toolkit.sourceforge.net/

218

• Advanced reasoning algorithms for time series processing: There is a
lot of research dedicated to reasoning in the area of Semantic Web.
Recent research results presented new methods of reasoning and new
approaches of dealing with the structure of OWL ontologies (e.g. justi-
fication, as described in Bail [2013]). Therefore, an interesting starting
point for further research would be advanced reasoning techniques for
semantic time series processing and handling complex time series pro-
cessing ontologies.

• Research about usability of portals for domain experts in time series
processing: Besides improved integration of time series ontologies and
advanced methods for reasoning in semantic time series processing, the
usability for domain experts in general is a topic in need of further
research. For that purpose the organization of workshops with domain
expert users from different sectors with different domain ontologies is
required. Also, the definition and application of experiments based on
different user groups would improve usability. Once the framework and
platform are complete, experiments with domain experts from different
fields as real users can be performed in order to determine usability and
usefulness. This work would be an interesting field study for a social
sciences research project.

Part V

Bibliography

219

221

Bibliography

S. Agarwal, S. Handschuh, and S. Staab. Annotation, composition and in-
vocation of semantic web services. Web Semantics: Science, Services and
Agents on the World Wide Web, 2:31–48, 2004.

N. K. Ahmed, A. F. Atiya, N. El Gayar, and H. El-Shishiny. An empirical
comparison of machine learning models for time series forecasting. Econo-
metric Reviews, 29:594–621, 2010.

D. Allemang and J. Hendler. Semantic Web for the Working Ontologist.
Morgan Kaufmann, Oxford, UK, 1st edition, 2008. ISBN 978-0-123-73556-
0.

J. M. Almendros-Jiménez. An RDF query language based on logic program-
ming. Electronic Notes in Theoretical Computer Science, 200:67–85, 2008.

I. Alon, M. Qi, and R. J. Sadowski. Forecasting aggregate retail sales: A
comparison of artificial neural networks and traditional methods. Journal
of Retailing and Consumer Services, 8(3):147–156, 2001.

E. Alpaydin. Introduction to Machine Learning. MIT Press, 2nd edition,
2010. ISBN 978-0-262-01243-0.

F. Amato, V. Casola, A. Gaglione, and A. Mazzeo. A semantic enriched data
model for sensor network operability. Simulation Modelling Practice and
Theory, (19):1745–1757, October 2010.

A. Ankolekar, M. Krötzsch, T. Tran, and D. Vrandečić. The two cultures:
Mashing up web 2.0 and the semantic web. Web Semantics: Science,
Services and Agents on the World Wide Web, (6):70–75, November 2007.

T. Apache Software Foundation. The jena ontology api. Online
(http://jena.sourceforge.net/ontology/), July 2010.

F. Baader. The description logic handbook: theory, implementation, and
applications. Cambridge university press, 2003.

S. Bail. The Justificatory Structure of OWL Ontologies. PhD thesis, The
University of Manchester, 2013.

S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,
D. Martin, S. McIlraith, D. McGuinness, et al. Semantic web services
language (swsl). W3C Member submission, 9, 2005.

222

R. Benjamins, J. Contreras, A. G. Pérez, H. Uszkoreit, T. Declerck, D. Fensel,
Y. Ding, M. Wooldridge, and V. Tamma. Esperonto application: Service
provision of semantic annotation, aggregation, indexing, and routing of
textual, multimedia and multilingual web content. Proc. of WIAMSI03,
2003.

T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific
American, 284(5):28–37, 2001.

B. Božić. Simulation and modeling of semantically enriched time series. In
Sustaining our Future: Understanding and Living with uncertainty, MOD-
SIM ’11. Modelling and Simulation Society of Australia and New Zealand,
2011. ISBN 978-0-9872143-1-7.

B. Božić and W. Winiwarter. Community building based on semantic time
series. In Proceedings of the 14th International Conference on Infor-
mation Integration and Web-based Applications & Services, iiWAS ’12,
pages 213–222, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1306-
3. doi: 10.1145/2428736.2428770. URL http://doi.acm.org/10.1145/

2428736.2428770.

B. Božić. A multi-domain framework for community building based on data
tagging. In International Semantic Web Conference (2), pages 441–444,
2012.

B. Božić and W. Winiwarter. Ontology mapping and reasoning in semantic
time series processing. In iiWAS, page 443, 2013a.

B. Božić and W. Winiwarter. A showcase of semantic time series processing.
IJWIS, 9(2):117–141, 2013b.

B. Božić, J. Peters-Anders, and G. Schimak. Visualization and filtering of
semantically enriched environmental time series. In Proceedings of Inter-
national Environmental Modelling and Software Society (iEMSs) 2012 In-
ternational Congress on Environmental Modelling and Software Managing
Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany,
2012.

J. G. Breslin, S. Decker, A. Harth, and U. Bojars. Sioc: an approach to con-
nect web-based communities. International Journal of Web Based Com-
munities, 2(2):133–142, 2006.

D. Brickley and R. V. Guha. Resource description framework (RDF) schema
specification 1.0: W3C Candidate Recommendation 27 march 2000. 2000.

223

D. Brickley and L. Miller. Foaf vocabulary specification 0.98. Namespace
Document, 9, 2010.

J. Broekstra and A. Kampman. SeRQL: A second generation RDF query
language. In Proc. SWAD-Europe Workshop on Semantic Web Storage
and Retrieval, pages 13–14, 2003.

J. L. Callen, C. C. Y. Kwan, P. C. Y. Yip, and Y. Yuan. Neural net-
work forecasting of quarterly accounting earnings. International Journal
of Forecasting, 12(4):475–482, 1996.

R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd International Conference
on Machine Learning, pages 161–168, Pittsburgh, 2006.

V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. P. Rice. Open
knowledge base connectivity 2.0. Artificial Intelligence Center of SRI
International and Knowledge Systems Laboratory of Stanford University,
1998.

T.-T. Chuang and S. B. Yadav. The development of an adaptive decision
support system. Decision Support Systems, 24:73–87, 1998.

P. Cimiano and J. Völker. Text2onto. In Natural Language Processing and
Information Systems, pages 227–238. Springer, 2005.

D. Clinton et al. Opensearch 1.1 specification (draft 4). Opensearch.org.

D. Connolly et al. Gleaning resource descriptions from dialects of languages
(grddl). W3C, W3C Recommendation, 11, 2007.

H. Cunningham, Y. Wilks, and R. J. Gaizauskas. GATE: A general archi-
tecture for text engineering. In Proceedings of the 16th Conference on
Computational Linguistics, Copenhagen, Denmark, 1996.

M. C. Daconta, L. J. Obrst, and K. T. Smith. The Semantic Web. Wiley,
Indianapolis, US, 1st edition, 2003. ISBN 978-0-471-43257-9.

J. Davies and R. Weeks. QuizRDF: Search technology for the semantic web.
In System Sciences, 2004. Proceedings of the 37th Annual Hawaii Interna-
tional Conference on. IEEE, 2004.

J. Davies, R. Studer, and P. Warren. Semantic Web Technologies. Wiley,
Chichester, UK, 1st edition, 2000. ISBN 978-0-470-02596-3.

224

J. Davies, M. Grobelnik, and D. Mladenić. Semantic Knowledge Manage-
ment. Springer, Berlin, Germany, edition=1st, isbn=978-3-540-88844-4,
2009.

J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer,
B. König-Ries, J. Kopecky, R. Lara, E. Oren, et al. Web service mod-
eling ontology (WSMO). Interface, 5:1, 2006a.

J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web service model-
ing language WSML: An overview. In The Semantic Web: Research and
Applications, pages 590–604. Springer, 2006b.

S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology
based access to distributed and semi-structured information. Springer, 1999.

S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo,
S. Rajagopalan, A. Tomkins, J. A. Tomlin, et al. Semtag and seeker:
Bootstrapping the semantic web via automated semantic annotation. In
Proceedings of the 12th International Conference on World Wide Web,
pages 178–186. ACM, 2003.

M. Dimitrov, A. Simov, V. Momtchev, and M. Konstantinov. WSMO studio
– a semantic web services modelling environment for WSMO. In The
Semantic Web: Research and Applications, pages 749–758. Springer, 2007.

J. Domingue, D. Fensel, and R. González-Cabero. SOA4All, enabling the
SOA revolution on a world wide scale. In Semantic Computing, 2008
IEEE International Conference on, pages 530–537. IEEE, 2008.

M. Dzbor, J. Domingue, and E. Motta. Magpie – towards a semantic web
browser. In Proceedings of the 2nd International Semantic Web Confer-
ence, Milton Keynes, UK, 2003.

M. Ehrig and S. Staab. QOM – quick ontology mapping. In The Semantic
Web–ISWC 2004, pages 683–697. Springer, 2004.

N. B. Ellison, C. Steinfield, and C. Lampe. The benefits of facebook friends:
Social capital and college students’ use of online social network sites. Jour-
nal of Computer-Mediated Communication, 12(4):1143–1168, 2007.

J. Farrell and H. Lausen. Semantic annotations for WSDL and XML Schema.
W3c recommendation, 28, 2007.

B. Fazlollahi, M. A. Parikh, and S. Verma. Adaptive decision support sys-
tems. Decision Support Systems, 20:297–315, 1997.

225

D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster. Spinning the Se-
mantic Web. Massachusetts Institute of Technology, Cambridge, US, 1st
edition, 2005. ISBN 978-0-262-06232-9.

M. Fernández-López, A. Gómez-Pérez, and N. Juristo. Methontology: From
ontological art towards ontological engineering. 1997.

J. Figwer. A new method of random time-series simulation. Simulation
Practice and Theory, 5:217–234, 1997.

B. Fortuna, M. Grobelnik, and D. Mladenic. Ontogen: Semi-automatic
ontology editor. In M. Smith and G. Salvendy, editors, Human Inter-
face and the Management of Information. Interacting in Information En-
vironments, volume 4558 of Lecture Notes in Computer Science, pages
309–318. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-73353-9. doi:
10.1007/978-3-540-73354-6 34. URL http://dx.doi.org/10.1007/978-

3-540-73354-6_34.

A. Funk, V. Tablan, K. Bontcheva, H. Cunningham, B. Davis, and S. Hand-
schuh. Clone: Controlled language for ontology editing. In The Semantic
Web, pages 142–155. Springer, 2007.

A. Garcia-Castro, A. Labarga, L. Garcia, O. Giraldo, C. Montaña, and J. A.
Bateman. Semantic web and social web heading towards living documents
in the life sciences. Web Semantics: Science, Services and Agents on the
World Wide Web, (8):155–162, April 2010.

A. Geist, C. R. Brunschwig, F. Lachmayer, and G. Schefbeck. Structuring
Legal Semantics. Weblaw, Zurich, Switzerland, 1st edition, 2011. ISBN
978-3-905-74280-0.

M. R. Genesereth, R. E. Fikes, et al. Knowledge interchange format-version
3.0: reference manual. 1992.

N. Gibbins, S. Harris, and N. Shadbolt. Agent-based semantic web services.
Web Semantics: Science, Services and Agents on the World Wide Web, 1:
141–154, 2004.

C. Golbreich, S. Zhang, and O. Bodenreider. The foundational model of
anatomy in OWL: Experience and perspectives. Web Semantics: Science,
Services and Agents on the World Wide Web, 4:181–195, 2006.

W. W. Group et al. RDFa 1.1 primer. W3C working group note, 2012.

226

T. Gruber. Collective knowledge systems: Where the social web meets the
semantic web. Web Semantics: Science, Services and Agents on the World
Wide Web, (6):4–13, December 2007.

T. R. Gruber. Ontolingua: A mechanism to support portable ontologies.
Stanford University, Knowledge Systems Laboratory, 1992.

P. Haase, H. Lewen, R. Studer, D. T. Tran, M. Erdmann, M. d’Aquin, and
E. Motta. The NeOn ontology engineering toolkit. In WWW 2008 Devel-
opers Track, April 2008.

S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM – semi-automatic
creation of metadata. In Knowledge Engineering and Knowledge Manage-
ment: Ontologies and the Semantic Web, pages 358–372. Springer, 2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer, New York, 2nd
edition, 2009. ISBN 978-0-387-84857-0.

T. Hill, M. O’Connor, and W. Remus. Neural network models for time series
forecasts. Management Science, 42(7):1082–1092, 1996.

S. Hinduja and J. W. Patchin. Personal information of adolescents on the
internet: A quantitative content analysis of myspace. Journal of Adoles-
cence, 31(1):125–146, 2008.

P. Hitzler, M. Krötzsch, S. Rudolph, and Y. Sure. Semantic Web. Springer,
Berlin, DE, 1st edition, 2008. ISBN 978-3-540-33993-9.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean,
et al. Swrl: A semantic web rule language combining owl and ruleml. W3C
Member submission, 21:79, 2004.

B. Huberman, D. Romero, and F. Wu. Social networks that matter: Twitter
under the microscope. Available at SSRN 1313405, 2008.

C. Jenkins, M. Jackson, P. Burden, and J. Wallis. Automatic RDF metadata
generation for resource discovery. Computer Networks, 31:1305–1320, 1999.

S. Kairam, M. Brzozowski, D. Huffaker, and E. Chi. Talking in circles:
Selective sharing in Google+. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1065–1074. ACM, 2012.

227

A. Kalyanpur, J. Hendler, B. Parsia, and J. Golbeck. SMORE – semantic
markup, ontology, and RDF editor. Technical report, DTIC Document,
2006a.

A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. Hendler. Swoop: A web
ontology editing browser. Web Semantics: Science, Services and Agents
on the World Wide Web, 4(2):144–153, 2006b.

M. Kifer. Rule interchange format: The framework. In Web reasoning and
rule systems, pages 1–11. Springer, 2008.

A. J. Kim. Community Building on the Web. Peachpit Press, Berkeley, US,
1st edition, 2000. ISBN 978-0-201-87484-6.

A. Kiryakov, K. I. Simov, and M. Dimitrov. OntoMap: Portal for upper-
level ontologies. In Proceedings of the International Conference on Formal
Ontology in Information Systems-Volume 2001, pages 47–58. ACM, 2001.

A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM – a pragmatic semantic
repository for OWL. In Web Information Systems Engineering–WISE 2005
Workshops, pages 182–192. Springer, 2005.

P. Kogut and W. Holmes. AeroDAML: Applying information extraction
to generate DAML annotations from web pages. In First International
Conference on Knowledge Capture, 2001.

M. Krötzsch, D. Vrandečić, and M. Völkel. Semantic mediawiki. In The
Semantic Web-ISWC 2006, pages 935–942. Springer, 2006.

J. Kunegis, A. Lommatzsch, and C. Bauckhage. The slashdot zoo: Mining a
social network with negative edges. In Proceedings of the 18th international
conference on World wide web, pages 741–750. ACM, 2009.

M. Lehtokangas, J. Saarinen, K. Kaski, and P. Huuhtanen. A network of
autoregressive processing units for time series modeling. Applied Mathe-
matics and Computation, 75:151–165, 1996.

T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in
description logics for the semantic web. Web Semantics: Science, Services
and Agents on the World Wide Web, 6:291–308, 2008.

D. L. McGuinness and F. van Harmelen. OWL web ontology language -
overview. Online(http://www.w3.org/TR/owl-features/), February 2004.

228

P. Mika. Flink: Semantic web technology for the extraction and analysis
of social networks. Web Semantics: Science, Services and Agents on the
World Wide Web, (3):211–223, May 2005a.

P. Mika. Social networks and the semantic web: the next challange. IEEE
Intell. Syst., 1(20):82–85, February 2005b.

P. Mika and A. Gangemi. Descriptions of social relations. In Proceedings of
the First Workshop on Friend of a Friend, 2004.

A. Miles, B. Matthews, D. Beckett, D. Brickley, M. Wilson, and N. Rogers.
Skos: A language to describe simple knowledge structures for the web. In
Proceedings of the XTech Conference, Amsterdam, 2005.

N. F. Noy and M. A. Musen. The prompt suite: interactive tools for ontology
merging and mapping. International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

N. F. Noy and D. L. Rubin. Translating the foundational model of anatomy
into OWL. Web Semantics: Science, Services and Agents on the World
Wide Web, 6:133–136, 2007.

P. F. Patel-Schneider and I. Horrocks. A comparison of two modelling
paradigms in the semantic web. Web Semantics: Science, Services and
Agents on the World Wide Web, (5):240–250, September 2007.

E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, January 2008.

D. Quan, D. Huynh, and D. R. Karger. Haystack: A platform for authoring
end user semantic web applications. In The Semantic Web – ISWC 2003,
pages 738–753. Springer, 2003.

P. L. N. Raju. Spatial data analysis. Satellite Remote Sensing and GIS
Applications in Agricultural Meteorology, pages 151–174, 2005.

R. Rico-Martinez, J. S. Anderson, and I. G. Kevrekidis. Self-consistency
in neural network-based NLPC analysis with applications to time-series
processing. Computers and Chemical Engineering, 20:1089–1094, 1996.

A. Rizzoli, G. Schimak, M. Donatelli, J. Hřeb́ıček, G. Avellino, J. Mon,
et al. Tatoo: tagging environmental resources on the web by semantic
annotations. In Proceedings of International Environmental Modelling and
Software Society (iEMSs) 2010 International Congress on Environmental

229

Modelling and Software Modelling for Environments Sake, Fifth Biennial
Meeting, Ottawa, Canada, 2010.

M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt. Learning domain
ontologies for semantic web service descriptions. Web Semantics: Science,
Services and Agents on the World Wide Web, 3:340–365, 2005.

M. Schied, A. Kstlbacher, and C. Wolff. Connecting semantic mediawiki to
different triple stores using rdf2go. In 5th Workshop on Semantic Wikis
Linking Data and People (SemWiki2010), May 2010. URL http://data.

semanticweb.org/workshop/semwiki/2010/paper/main/18.

G. Schimak, B. Božić, A. Kaufmann, J. Peters-Anders, P. Dihé, and T. Pari-
ente Lobo. The tatoo semantic case–requirements, impacts and applica-
tions. Proceedings of the 25th EnviroInfo, pages 832–847, 2011.

P. Schmitz. Inducing ontology from flickr tags. In Collaborative Web Tagging
Workshop at WWW2006, Edinburgh, Scotland, volume 50, 2006.

T. Segaran, C. Evans, and J. Tylor. Programming the Semantic Web.
O’Reilly, Sebastopol, CA, 1st edition, 2009. ISBN 978-0-596-15381-6.

N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and M. Schraefel. CS AKTive
Space, or how we learned to stop worrying and love the semantic web.
Intelligent Systems, IEEE, 19(3):41–47, 2004.

R. Sharda and R. B. Patil. Connectionist approach to time series prediction:
An empirical test. Journal of Intelligent Manufacturing, 3(5):317–323,
1992.

S. Shekarpour and S. D. Katebi. Modeling and evaluation of trust with an
extension in semantic web. Web Semantics: Science, Services and Agents
on the World Wide Web, 8:26–36, 2010.

R. H. Shumway and D. S. Stoffer. Time Series Analysis and its Applications.
Springer, New York, US, 3rd edition, 2010. ISBN 978-1-441-97865-3.

Stanford Center for Biomedical Informatics Research. The Protégé
ontology editor and knowledge acquisition system. Online
(http://protege.stanford.edu/), July 2010.

G. Stumme, A. Hotho, and B. Berendt. Semantic web mining – state of the
art and future directions. Web Semantics: Science, Services and Agents
on the World Wide Web, (4):124–143, February 2006.

230

Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. On-
toedit: Collaborative ontology development for the semantic web. In
I. Horrocks and J. Hendler, editors, The Semantic Web ISWC 2002, vol-
ume 2342 of Lecture Notes in Computer Science, pages 221–235. Springer
Berlin Heidelberg, 2002. ISBN 978-3-540-43760-4. doi: 10.1007/3-540-
48005-6 18. URL http://dx.doi.org/10.1007/3-540-48005-6_18.

N. R. Swanson and H. White. A model-selection approach to assessing the
information in the term structure using linear models and artificial neural
networks. Journal of Business and Economic Statistics, 13(3):265–275,
1995.

A. Telea, F. Frasincar, and G.-J. Houben. Visualisation of RDF(S) – based
information. In Information Visualization, 2003. IV 2003. Proceedings.
Seventh International Conference on, pages 294–299. IEEE, 2003.

T. Tersvirta, D. van Dijk, and M. Medeiros. Linear models, smooth transition
autoregressions, and neural networks for forecasting macroeconomic time
series: A re-examination. Working Paper Series in Economics and Finance
561, Stockholm School of Economics, July 2004. URL http://ideas.

repec.org/p/hhs/hastef/0561.html.

C. Torrence and G. P. Compo. A practical guide to wavelet analysis. Bulletin
of the American Meteorological Society, 79(1):61–78, 1998.

J. Ungar, J. Peters-Anders, and W. Loibl. Climate twins - an attempt to
quantify climatological similarities. In ISESS 2011, Brno (CZ), 06/2011
2011. TaToo Project, TaToo Project. URL http://www.springerlink.

com/content/14722218777588pj/.

M. Van Camp and P. Vauterin. Tsoft: graphical and interactive software for
the analysis of time series and earth tides. Computers and Geosciences,
(31):631–640, November 2004.

F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks. Reference descrip-
tion of the daml+ oil (march 2001) ontology markup language. DAML+
OIL Document, URL http://www. daml. org/2000/12/reference. html,
2001.

J. Viinikka, H. Debar, L. Mé, A. Lehikoinen, and M. Tarvainen. Processing
intrusion detection alert aggregates with time series modeling. Information
Fusion, 10:312–324, 2009.

231

Z. Wang, K. Wang, Y. Jin, and G. Qi. Ontomerge: A system for merging
DL-Lite ontologies.

S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin core metadata for
resource discovery. Internet Engineering Task Force RFC, 2413:222, 1998.

M. Weiten. OntoSTUDIO R© as an ontology engineering environment. In
Semantic Knowledge Management, pages 51–60. Springer, 2009.

R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing social book-
marking systems: A del.icio.us cookbook. In Proceedings of the ECAI
2008 Mining Social Data Workshop, pages 26–30, 2008.

S.-T. Yuan and M.-Z. Huang. A study on time series pattern extraction
and processing for competitive intelligence support. Expert Systems with
Applications, (21):37–51, February 2001.

G. P. Zhang, B. E. Patuwo, and M. Y. Hu. A simulation study of artifi-
cial neural networks for nonlinear time-series forecasting. Computers and
Operations Research, 28:381–396, 2001.

W. Zhang, Q. Cao, and M. J. Schniederjans. Neural network earnings per
share forecasting models: A comparative analysis of alternative models.
Decision Sciences, 35(2):205–237, 2004.

L. Zhou, L. Ding, and T. Finin. How is the semantic web evolving? A
dynamic social network perspective. Computers in Human Behavior, (27):
1294–1302, August 2010.

232

Part VI

Appendix

233

Appendix A

Time Series Processing
Language Specification

The following listing shows the specification of our time series processing
language in Extended Backus-Naur Form (EBNF).

1 l e t t e r : := [a−zA−Z]
2 d i g i t : := [0−9]
3

4 i n t e g e r : := ”−”? d i g i t+
5 f l o a t : := d i g i t+ ” . ” d i g i t+
6 number : := i n t e g e r | f l o a t
7 s t r i n g : := (l e t t e r | d i g i t | ” ”)+
8

9 stmt : := t s p a r a m i d l i s t p ipe
10

11 pipe : := pipe ” | ” generator
12 pipe : := generator
13

14 generato r : := generato r every phrase
15 generato r : := ”<<” e x p r e s s i o n l i s t ”>>”
16

17 t s p a r a m i d l i s t : := formal parameter
18 t s p a r a m i d l i s t : := t s p a r a m i d l i s t , formal parameter
19

20 formal parameter : := ”@” l e t t e r (l e t t e r | d i g i t | ” ”) ∗
21

22 e x p r e s s i o n l i s t : := e x p r e s s i o n l i s t ” ; ” a s s i g n e x p r e s s i o n
23 e x p r e s s i o n l i s t : := a s s i g n e x p r e s s i o n
24

25 a s s i g n e x p r e s s i o n : := i f e x p r e s s i o n ”=>” l e t t e r (l e t t e r | d i g i t)
∗

26 a s s i g n e x p r e s s i o n : := l e t t e r (l e t t e r | d i g i t) ∗ ” // .∗// ” i n t e r v a l
27 a s s i g n e x p r e s s i o n : := i f e x p r e s s i o n

235

236

28

29 i f e x p r e s s i o n : := l o g i c e x p r e s s i o n ”IF” i f e x p r e s s i o n ”
OTHERWISE” l o g i c e x p r e s s i o n

30 i f e x p r e s s i o n : := l o g i c e x p r e s s i o n
31

32 l o g i c e x p r e s s i o n : := l o g i c e x p r e s s i o n ”AND” add expre s s i on
33 l o g i c e x p r e s s i o n : := l o g i c e x p r e s s i o n ”OR” add expre s s i on
34 l o g i c e x p r e s s i o n : := l o g i c e x p r e s s i o n ”XOR” add expre s s i on
35 l o g i c e x p r e s s i o n : := add expre s s i on ”>” add expre s s i on
36 l o g i c e x p r e s s i o n : := add expre s s i on ”<” add expre s s i on
37 l o g i c e x p r e s s i o n : := add expre s s i on ”>=” add expre s s i on
38 l o g i c e x p r e s s i o n : := add expre s s i on ”<=” add expre s s i on
39 l o g i c e x p r e s s i o n : := add expre s s i on ”==” add expre s s i on
40 l o g i c e x p r e s s i o n : := add expre s s i on ”!=” add expre s s i on
41 l o g i c e x p r e s s i o n : := add expre s s i on
42

43 add expre s s i on : := add expre s s i on ”+” mul t expre s s i on
44 add expre s s i on : := add expre s s i on ”−” mul t expre s s i on
45 add expre s s i on : := mul t expre s s i on
46

47 mult expre s s i on : := mul t expre s s i on ”/” exp r e s s i on
48 mult expre s s i on : := mul t expre s s i on ”∗” exp r e s s i on
49 mult expre s s i on : := expr e s s i on
50

51 exp r e s s i on : := expr e s s i on ”∗∗” expr e s s i on
52 exp r e s s i on : := ”−”? expr e s s i on
53 exp r e s s i on : := number
54 exp r e s s i on : := s t r i n g
55 exp r e s s i on : := t s s l i c e
56 exp r e s s i on : := ” (” i f e x p r e s s i o n ”) ”
57 exp r e s s i on : := formal parameter ” (” exp r e s s i on ”) ”
58 exp r e s s i on : := ”None”
59

60 t s s l i c e : := p r o p e r t y a c c e s s i n t e r v a l
61

62 p r o p e r t y a c c e s s : := l e t t e r (l e t t e r | d i g i t | ” ”) ∗
63 | l e t t e r (l e t t e r | d i g i t | ” ”) ∗ ” . ” l e t t e r (

l e t t e r | d i g i t | ” ”) ∗
64

65 i n t e r v a l : := n u m e r i c i n t e r v a l
66 | l o g i c a l i n t e r v a l
67 | t i m e i n t e r v a l
68

69 n u m e r i c i n t e r v a l : := ” [” i n t e g e r ”] ”
70

71 l o g i c a l i n t e r v a l : := ” [” l o g i n d e x e x p r e s s i o n ”] ”
72 l o g i c a l i n t e r v a l : := ” [” l o g i n d e x e x p r e s s i o n ” . . ”

l o g i n d e x e x p r e s s i o n ”] ”
73

237

74 t i m e i n t e r v a l : := bra t i m e i n d e x e x p r e s s i o n ket
75 t i m e i n t e r v a l : := bra t i m e i n d e x e x p r e s s i o n ” [. .] ”

t i m e i n d e x e x p r e s s i o n ket
76

77 bra : := ” [” | ”] ”
78 ket : := ”] ” | ” [”
79

80 l o g i n d e x e x p r e s s i o n : := ” i ”
81 | ” i ” ”+” i n t e g e r
82 | ” i ” ”−” i n t e g e r
83

84 i n t w i t h t i m e : := i n t e g e r (ms | s e c s | s ec | mins | min | hours
| hour | days | day | weeks | week)

85

86 t i m e i n d e x e x p r e s s i o n : := ” t ”
87 | ” t ” ”+” i n t w i t h t i m e
88 | ” t ” ”−” i n t w i t h t i m e
89 every phrase : := ” every ” i n t w i t h t i m e
90 every phrase : := ” every ” i n t w i t h t i m e ”@” i n t w i t h t i m e

238

Appendix B

RDFa Parsing Stylesheet

The following listing shows the XSL definition stylesheet for parsing RDFa
web documents.

1 <?xml v e r s i on=” 1 .0 ” encoding=”UTF−8”?>
2

3 <s t y l e s h e e t
4 xmlns : x s l =” http ://www. w3 . org /1999/XSL/Transform” ve r s i on=”

1 .0 ”
5 xmlns : h =” http ://www. w3 . org /1999/ xhtml”
6 xmlns =” http ://www. w3 . org /1999/XSL/Transform”
7 xmlns : rd f =” http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”
8 xmlns : xalan=” http :// xml . apache . org / xalan ”
9 xmlns : java=” http :// xml . apache . org / xalan / java ”

10 exclude−r e s u l t−p r e f i x e s=” java ” >
11

12 <output indent=” yes ” method=”html” media−type=” a p p l i c a t i o n / rd f+
xml” encoding=”UTF−8” omit−xml−d e c l a r a t i o n=” yes ” />

13

14 <!−− base o f the cur rent HTML doc −−>
15 <v a r i a b l e name=’ html base ’ s e l e c t=”//∗/h : head/h : base [p o s i t i o n ()

=1]/ @href ”/>
16

17 <!−− d e f a u l t HTML vocabulary namespace −−>
18 <v a r i a b l e name=’ d e f a u l t v o c ’ s e l e c t=” ’ http ://www. w3 . org /1999/

xhtml/vocab#’”/>
19

20 <!−− par s e r i n s t anc e −−>
21 <param name=’ par s e r ’ s e l e c t=” ’ ’ ”/>
22

23 <!−− u r l o f the cur rent XHTML page i f provided by the XSLT
engine −−>

24 <param name=’ u r l ’ s e l e c t=” ’ ’ ”/>
25

239

240

26 <!−− t h i s conta in s the URL of the source document whether i t was
provided by the base or as a parameter e . g . http :// example .

org / bla / f i l e . html−−>
27 <v a r i a b l e name=’ t h i s ’ >
28 <choose>
29 <when t e s t=” s t r i ng−l ength ($html base)>0”><value−o f s e l e c t=”

$html base ”/></when>
30 <otherwise><value−o f s e l e c t=” $ur l ”/></otherwise>
31 </choose>
32 </var i ab l e>
33

34 <!−− t h i s l o c a t i o n conta in s the l o c a t i o n the source document e . g
. http :// example . org / bla / −−>

35 <v a r i a b l e name=’ t h i s l o c a t i o n ’ >
36 <c a l l−template name=” get−l o c a t i o n ”><with−param name=” u r l ”

s e l e c t=” $ t h i s ”/></c a l l−template>
37 </var i ab l e>
38

39 <!−− t h i s r o o t conta in s the root l o c a t i o n o f the source document
e . g . http :// example . org / −−>

40 <v a r i a b l e name=’ t h i s r o o t ’ >
41 <c a l l−template name=” get−root ”><with−param name=” u r l ” s e l e c t=”

$ t h i s ”/></c a l l−template>
42 </var i ab l e>
43

44

45 <!−− templates f o r par s ing − − − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − −−>

46

47 <!−−Star t the RDF generat ion−−>
48 <template match=”/”>
49 <rd f :RDF xmlns : rd f =” http ://www. w3 . org /1999/02/22− rdf−syntax−ns#

” >
50 <apply−templates mode=” rdf2rd fxml ” /> <!−− the mode i s used

to ease i n t e g r a t i o n with other XSLT templates −−>
51 </rd f :RDF>
52 </template>
53

54

55 <!−− match RDFa element −−>
56 <template match=” ∗ [a t t r i b u t e : : property or a t t r i b u t e : : r e l or

a t t r i b u t e : : rev or a t t r i b u t e : : typeo f] ” mode=” rd f2rd fxml ” >
57

58 <!−− i d e n t i f y su b j e c t −−>
59 <v a r i a b l e name=” s ub j e c t ”><c a l l−template name=” s u b j e c t ”/></

var i ab l e>
60

61

62 <!−− do we have ob j e c t p r o p e r t i e s ? −−>

241

63 < i f t e s t=” s t r i ng−l ength (@rel)>0 or s t r i ng−l ength (@rev)>0”>
64 <v a r i a b l e name=” ob j e c t ”> <!−− i d e n t i f y the ob j e c t (s) −−>
65 <choose>
66 <when t e s t=” @resource ”>
67 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=” @resource ”/></c a l l−template>
68 </when>
69 <when t e s t=”@href ”>
70 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=”@href ”/></c a l l−template>
71 </when>
72 <when t e s t=” descendant : : ∗ [a t t r i b u t e : : about or a t t r i b u t e : :

s r c or a t t r i b u t e : : typeo f or
73 a t t r i b u t e : : h r e f or a t t r i b u t e : : r e s ou r c e or
74 a t t r i b u t e : : r e l or a t t r i b u t e : : rev or a t t r i b u t e : : property

] ”>
75 <c a l l−template name=” recurse−o b j e c t s ”/>
76 </when>
77 <otherwise>
78 <c a l l−template name=” s e l f −cur i e−or−u r i ”><with−param name

=”node” s e l e c t=” . ”/></c a l l−template>
79 </otherwise>
80 </choose>
81 </var i ab l e>
82

83 <c a l l−template name=” r e l r e v ”>
84 <with−param name=” s u b j e c t ” s e l e c t=” $sub j e c t ”/>
85 <with−param name=” ob j e c t ” s e l e c t=” $ob j e c t ”/>
86 </c a l l−template>
87

88 </ i f >
89

90

91 <!−− do we have data p r o p e r t i e s ? −−>
92 < i f t e s t=” s t r i ng−l ength (@property)>0”>
93

94 <!−− i d e n t i f y language −−>
95 <v a r i a b l e name=” language ” s e l e c t=” s t r i n g (ancestor−or−s e l f

: : ∗ / a t t r i b u t e : : xml : lang [p o s i t i o n () =1]) ” />
96

97 <v a r i a b l e name=”expended−pro”><c a l l−template name=”expand−
ns”><with−param name=”qname” s e l e c t=”@property”/></c a l l−
template></var i ab l e>

98

99 <choose>
100 <when t e s t=”@content”> <!−− the re i s a s p e c i f i c content

−−>
101 <c a l l−template name=” property ”>
102 <with−param name=” s u b j e c t ” s e l e c t =” $sub j e c t ” />

242

103 <with−param name=” ob j e c t ” s e l e c t =”@content” />
104 <with−param name=” datatype ” >
105 <choose>
106 <when t e s t=”@datatype = ’ ’ or not (@datatype) ”></when

> <!−− e n f o r c i n g p l a i n l i t e r a l −−>
107 <otherwise><c a l l−template name=”expand−ns”><with−

param name=”qname” s e l e c t=”@datatype”/></c a l l−template></
otherwise>

108 </choose>
109 </with−param>
110 <with−param name=” p r e d i c a t e ” s e l e c t =”@property”/>
111 <with−param name=” a t t r i b ” s e l e c t =” ’ true ’ ”/>
112 <with−param name=” language ” s e l e c t =” $language ”/>
113 </c a l l−template>
114 </when>
115 <when t e s t=” not (∗) ”> <!−− the re no s p e c i f i c content but

the re are no c h i l d r e n e lements in the content −−>
116 <c a l l−template name=” property ”>
117 <with−param name=” s u b j e c t ” s e l e c t =” $sub j e c t ” />
118 <with−param name=” ob j e c t ” s e l e c t =” . ” />
119 <with−param name=” datatype ”>
120 <choose>
121 <when t e s t=”@datatype = ’ ’ or not (@datatype) ”></when

> <!−− e n f o r c i n g p l a i n l i t e r a l −−>
122 <otherwise><c a l l−template name=”expand−ns”><with−

param name=”qname” s e l e c t=”@datatype”/></c a l l−template></
otherwise>

123 </choose>
124 </with−param>
125 <with−param name=” p r e d i c a t e ” s e l e c t =”@property”/>
126 <with−param name=” a t t r i b ” s e l e c t =” ’ true ’ ”/>
127 <with−param name=” language ” s e l e c t =” $language ”/>
128 </c a l l−template>
129 </when>
130 <otherwise> <!−− the re i s no s p e c i f i c content ; we use the

value o f element −−>
131 <c a l l−template name=” property ”>
132 <with−param name=” s u b j e c t ” s e l e c t =” $sub j e c t ” />
133 <with−param name=” ob j e c t ” s e l e c t =” . ” />
134 <with−param name=” datatype ”>
135 <choose>
136 <when t e s t=”@datatype = ’ ’ or not (@datatype) ”>http

://www. w3 . org /1999/02/22− rdf−syntax−ns#XMLLiteral</when> <!−−
e n f o r c i n g XML l i t e r a l −−>

137 <otherwise><c a l l−template name=”expand−ns”><with−
param name=”qname” s e l e c t=”@datatype”/></c a l l−template></
otherwise>

138 </choose>
139 </with−param>

243

140 <with−param name=” p r e d i c a t e ” s e l e c t =”@property”/>
141 <with−param name=” a t t r i b ” s e l e c t =” ’ f a l s e ’ ”/>
142 <with−param name=” language ” s e l e c t =” $language ”/>
143 </c a l l−template>
144 </otherwise>
145 </choose>
146 </ i f >
147

148 <!−− do we have c l a s s e s ? −−>
149 < i f t e s t=”@typeof ”>
150 <c a l l−template name=” c l a s s ”>
151 <with−param name=” re sou r c e ”><c a l l−template name=” s e l f −

cur i e−or−u r i ”><with−param name=”node” s e l e c t=” . ”/></c a l l−
template></with−param>

152 <with−param name=” c l a s s ” s e l e c t=”@typeof ”/>
153 </c a l l−template>
154 </ i f >
155

156 <apply−templates mode=” rdf2rd fxml ” />
157

158 </template>
159

160

161 <!−− named templates to proce s s URIs and token l i s t s − − − − − −
− −
−−>

162

163 <!−− t oken i z e a s t r i n g us ing space as a d e l i m i t e r −−>
164 <template name=” token i z e ”>
165 <param name=” s t r i n g ” />
166 < i f t e s t=” s t r i ng−l ength ($ s t r i n g)>0”>
167 <choose>
168 <when t e s t=” conta in s ($ s t r ing , ’ ’) ”>
169 <value−o f s e l e c t=” normal ize−space (subst r ing−be f o r e (

$ s t r ing , ’ ’)) ”/>
170 <c a l l−template name=” token i z e ”><with−param name=” s t r i n g ”

s e l e c t=” normal ize−space (subst r ing−a f t e r ($ s t r ing , ’ ’)) ”/></
c a l l−template>

171 </when>
172 <otherwise><value−o f s e l e c t=” $ s t r i n g ”/></otherwise>
173 </choose>
174 </ i f >
175 </template>
176

177 <!−− get f i l e l o c a t i o n from URL −−>
178 <template name=” get−l o c a t i o n ”>
179 <param name=” u r l ” />
180 < i f t e s t=” s t r i ng−l ength ($ur l)>0 and conta in s ($ur l , ’ / ’) ”>

244

181 <value−o f s e l e c t=” concat (subst r ing−be f o r e ($ur l , ’ / ’) , ’ / ’) ”
/>

182 <c a l l−template name=” get−l o c a t i o n ”><with−param name=” u r l ”
s e l e c t=” subst r ing−a f t e r ($ur l , ’ / ’) ”/></c a l l−template>

183 </ i f >
184 </template>
185

186 <!−− get root l o c a t i o n from URL −−>
187 <template name=” get−root ”>
188 <param name=” u r l ” />
189 <choose>
190 <when t e s t=” conta in s ($ur l , ’ / / ’) ”>
191 <value−o f s e l e c t=” concat (subst r ing−be f o r e ($ur l , ’ / / ’) , ’ // ’ ,

subs t r ing−be f o r e (subst r ing−a f t e r ($ur l , ’ / / ’) , ’ / ’) , ’ / ’) ”/>
192 </when>
193 <otherwise>UNKNOWN ROOT</otherwise>
194 </choose>
195 </template>
196

197 <!−− re turn namespace o f a qname −−>
198 <template name=” return−ns” >
199 <param name=”qname” />
200 <v a r i a b l e name=” n s p r e f i x ” s e l e c t=” subst r ing−be f o r e ($qname

, ’ : ’) ” />
201 < i f t e s t=” s t r i ng−l ength ($ n s p r e f i x)>0”> <!−− p r e f i x must be

e x p l i c i t −−>
202 <v a r i a b l e name=”name” s e l e c t=” subst r ing−a f t e r ($qname , ’ : ’) ”

/>
203 <value−o f s e l e c t=” ancestor−or−s e l f : : ∗ / namespace : : ∗ [name ()=

$ n s p r e f i x] [p o s i t i o n () =1]” />
204 </ i f >
205 < i f t e s t=” s t r i ng−l ength ($ n s p r e f i x)=0 and ancestor−or−s e l f

: : ∗ / namespace : : ∗ [name () = ’ ’] [p o s i t i o n () =1]”> <!−− no p r e f i x
−−>

206 <v a r i a b l e name=”name” s e l e c t=” subst r ing−a f t e r ($qname , ’ : ’) ”
/>

207 <value−o f s e l e c t=” ancestor−or−s e l f : : ∗ / namespace : : ∗ [name ()
= ’ ’] [p o s i t i o n () =1]” />

208 </ i f >
209 </template>
210

211

212 <!−− expand namespace o f a qname −−>
213 <template name=”expand−ns” >
214 <param name=”qname” />
215 <v a r i a b l e name=” n s p r e f i x ” s e l e c t=” subst r ing−be f o r e ($qname

, ’ : ’) ” />
216 < i f t e s t=” s t r i ng−l ength ($ n s p r e f i x)>0”> <!−− p r e f i x must be

e x p l i c i t −−>

245

217 <v a r i a b l e name=”name” s e l e c t=” subst r ing−a f t e r ($qname , ’ : ’) ”
/>

218 <v a r i a b l e name=” n s u r i ” s e l e c t=” ancestor−or−s e l f : : ∗ /
namespace : : ∗ [name ()=$ n s p r e f i x] [p o s i t i o n () =1]” />

219 <value−o f s e l e c t=” concat ($ns ur i , $name) ” />
220 </ i f >
221 < i f t e s t=” s t r i ng−l ength ($ n s p r e f i x)=0 and ancestor−or−s e l f

: : ∗ / namespace : : ∗ [name () = ’ ’] [p o s i t i o n () =1]”> <!−− no p r e f i x
−−>

222 <v a r i a b l e name=”name” s e l e c t=” subst r ing−a f t e r ($qname , ’ : ’) ”
/>

223 <v a r i a b l e name=” n s u r i ” s e l e c t=” ancestor−or−s e l f : : ∗ /
namespace : : ∗ [name () = ’ ’] [p o s i t i o n () =1]” />

224 <value−o f s e l e c t=” concat ($ns ur i , $name) ” />
225 </ i f >
226 </template>
227

228 <!−− determines the CURIE / URI o f a node −−>
229 <template name=” s e l f −cur i e−or−u r i ” >
230 <param name=”node” />
231 <choose>
232 <when t e s t=”$node/ a t t r i b u t e : : about”> <!−− we have an about

a t t r i b u t e to extend −−>
233 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=”$node/ a t t r i b u t e : : about”/></c a l l−
template>

234 </when>
235 <when t e s t=”$node/ a t t r i b u t e : : s r c ”> <!−− we have an s r c

a t t r i b u t e to extend −−>
236 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=”$node/ a t t r i b u t e : : s r c ”/></c a l l−
template>

237 </when>
238 <when t e s t=”$node/ a t t r i b u t e : : r e s ou r c e and not ($node/

a t t r i b u t e : : r e l or $node/ a t t r i b u t e : : rev) ”> <!−− e n f o r c i n g the
r e sou r c e as s u b j e c t i f no r e l or rev −−>

239 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param
name=” c u r i e o r u r i ” s e l e c t=”$node/ a t t r i b u t e : : r e s ou r c e ”/></
c a l l−template>

240 </when>
241 <when t e s t=”$node/ a t t r i b u t e : : h r e f and not ($node/ a t t r i b u t e : :

r e l or $node/ a t t r i b u t e : : rev) ”> <!−− e n f o r c i n g the h r e f as
s u b j e c t i f no r e l or rev −−>

242 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param
name=” c u r i e o r u r i ” s e l e c t=”$node/ a t t r i b u t e : : h r e f ”/></c a l l−
template>

243 </when>
244 <when t e s t=”$node/ s e l f : : h : head or $node/ s e l f : : h : body or

$node/ s e l f : : h : html”><value−o f s e l e c t=” $ t h i s ”/></when> <!−−

246

e n f o r c i n g the doc as s u b j e c t −−>
245 <when t e s t=”$node/ a t t r i b u t e : : id ”> <!−− we have an id

a t t r i b u t e to extend −−>
246 <value−o f s e l e c t=” concat ($th i s , ’# ’ , $node/ a t t r i b u t e : : id) ”

/>
247 </when>
248 <otherwise>blank : node:<value−o f s e l e c t=” generate−id ($node) ”

/></otherwise>
249 </choose>
250 </template>
251

252

253 <!−− expand CURIE / URI −−>
254 <template name=”expand−cur i e−or−u r i ” >
255 <param name=” c u r i e o r u r i ” />
256 <choose>
257 <when t e s t=” s t a r t s−with ($ c u r i e o r u r i , ’ [: ’) ”> <!−− we have

a CURIE blank node −−>
258 <value−o f s e l e c t=” concat (’ blank : node : ’ , subs t r ing−a f t e r (

subst r ing−be f o r e ($ c u r i e o r u r i , ’] ’) , ’ [: ’)) ”/>
259 </when>
260 <when t e s t=” s t a r t s−with ($ c u r i e o r u r i , ’ [’) ”> <!−− we have a

CURIE between square bracket s −−>
261 <c a l l−template name=”expand−ns”><with−param name=”qname”

s e l e c t=” subst r ing−a f t e r (subst r ing−be f o r e ($ c u r i e o r u r i , ’] ’)
, ’ [’) ”/></c a l l−template>

262 </when>
263 <when t e s t=” s t a r t s−with ($ c u r i e o r u r i , ’# ’) ”> <!−− we have

an anchor −−>
264 <value−o f s e l e c t=” concat ($th i s , $ c u r i e o r u r i) ” />
265 </when>
266 <when t e s t=” s t r i ng−l ength ($ c u r i e o r u r i)=0”> <!−− empty

anchor means the document i t s e l f −−>
267 <value−o f s e l e c t=” $ t h i s ” />
268 </when>
269 <when t e s t=” not (s t a r t s−with ($ c u r i e o r u r i , ’ [’)) and

conta in s ($ c u r i e o r u r i , ’ : ’) ”> <!−− i t i s a URI −−>
270 <value−o f s e l e c t=” $ c u r i e o r u r i ” />
271 </when>
272 <when t e s t=” not (conta in s ($ c u r i e o r u r i , ’ : / / ’)) and not (

s t a r t s−with ($ c u r i e o r u r i , ’ / ’)) ”> <!−− r e l a t i v e URL −−>
273 <value−o f s e l e c t=” concat ($ t h i s l o c a t i o n , $ c u r i e o r u r i) ” />
274 </when>
275 <when t e s t=” not (conta in s ($ c u r i e o r u r i , ’ : / / ’)) and (s t a r t s−

with ($ c u r i e o r u r i , ’ / ’)) ”> <!−− URL from root domain −−>
276 <value−o f s e l e c t=” concat ($ t h i s r o o t , subst r ing−a f t e r (

$ c u r i e o r u r i , ’ / ’)) ” />
277 </when>
278 <otherwise>UNKNOWN CURIE URI</otherwise>

247

279 </choose>
280 </template>
281

282 <!−− r e tu rn s the f i r s t token in a l i s t separated by spaces −−>
283 <template name=” get−f i r s t −token ”>
284 <param name=” tokens ” />
285 < i f t e s t=” s t r i ng−l ength ($tokens)>0”>
286 <choose>
287 <when t e s t=” conta in s ($tokens , ’ ’) ”>
288 <value−o f s e l e c t=” normal ize−space (subst r ing−be f o r e (

$tokens , ’ ’)) ”/>
289 </when>
290 <otherwise><value−o f s e l e c t=” $tokens ” /></otherwise>
291 </choose>
292 </ i f >
293 </template>
294

295 <!−− r e tu rn s the namespace f o r an ob j e c t property −−>
296 <template name=” get−r e l r e v−ns”>
297 <param name=”qname” />
298 <v a r i a b l e name=” n s p r e f i x ” s e l e c t=” subst r ing−be f o r e (t r a n s l a t e (

$qname , ’ [] ’ , ’ ’) , ’ : ’) ” />
299 <choose>
300 <when t e s t=” s t r i ng−l ength ($ n s p r e f i x)>0”>
301 <c a l l−template name=” return−ns”><with−param name=”qname”

s e l e c t=”$qname”/></c a l l−template>
302 </when>
303 <!−− r e tu rn s d e f a u l t v o c i f the p r e d i c a t e i s a r e s e rved

value −−>
304 <otherwise>
305 <v a r i a b l e name=” i s−r e s e rved ”><c a l l−template name=”check−

r e s e rved ”><with−param name=” nonpre f ixed ”><c a l l−template name=
”no−l ead ing−co lon ”><with−param name=”name” s e l e c t=”$qname”
/></c a l l−template></with−param></c a l l−template></var i ab l e>

306 < i f t e s t=” $ i s−r e s e rved =’ true ’ ”><value−o f s e l e c t=”
$ d e f a u l t v o c ” /></ i f >

307 </otherwise>
308 </choose>
309 </template>
310

311 <!−− r e tu rn s the namespace f o r a data property −−>
312 <template name=” get−property−ns”>
313 <param name=”qname” />
314 <v a r i a b l e name=” n s p r e f i x ” s e l e c t=” subst r ing−be f o r e (t r a n s l a t e (

$qname , ’ [] ’ , ’ ’) , ’ : ’) ” />
315 <choose>
316 <when t e s t=” s t r i ng−l ength ($ n s p r e f i x)>0”>
317 <c a l l−template name=” return−ns”><with−param name=”qname”

s e l e c t=”$qname”/></c a l l−template>

248

318 </when>
319 <!−− r e tu rn s d e f a u l t v o c otherwi se −−>
320 <otherwise><value−o f s e l e c t=” $ d e f a u l t v o c ” /></otherwise>
321 </choose>
322 </template>
323

324 <!−− r e tu rn s the qname f o r a p r e d i c a t e −−>
325 <template name=” get−pred i cate−name”>
326 <param name=”qname” />
327 <v a r i a b l e name=” clean name ” s e l e c t=” t r a n s l a t e ($qname

, ’ [] ’ , ’ ’) ” />
328 <c a l l−template name=”no−l ead ing−co lon ”><with−param name=”

name” s e l e c t=” $clean name ”/></c a l l−template>
329 </template>
330

331 <!−− no l ead ing co lon −−>
332 <template name=”no−l ead ing−co lon ”>
333 <param name=”name” />
334 <choose>
335 <when t e s t=” s t a r t s−with ($name , ’ : ’) ”> <!−− remove l ead ing

co l ons −−>
336 <value−o f s e l e c t=” subst r ing−a f t e r ($name , ’ : ’) ” />
337 </when>
338 <otherwise><value−o f s e l e c t=”$name” /></otherwise>
339 </choose>
340 </template>
341

342 <!−− check i f a p r e d i c a t e i s r e s e rved −−>
343 <template name=”check−r e s e rved ”>
344 <param name=” nonpre f ixed ” />
345 <choose>
346 <when t e s t=” $nonpre f ixed =’ a l t e rna t e ’ or $nonpre f ixed =’

appendix ’ or $nonpre f ixed =’bookmark ’ or $nonpre f ixed =’ c i t e ’ ”>
true</when>

347 <when t e s t=” $nonpre f ixed =’ chapter ’ or $nonpre f ixed =’ contents
’ or $nonpre f ixed =’ copyr ight ’ or $nonpre f ixed =’ f i r s t ’ ”>true</
when>

348 <when t e s t=” $nonpre f ixed =’ g lo s sa ry ’ or $nonpre f ixed =’help ’
or $nonpre f ixed =’ icon ’ or $nonpre f ixed =’ index ’ ”>true</when>

349 <when t e s t=” $nonpre f ixed =’ l a s t ’ or $nonpre f ixed =’ l i c e n s e ’ or
$nonpre f ixed =’meta ’ or $nonpre f ixed =’next ’ ”>true</when>

350 <when t e s t=” $nonpre f ixed =’p3pv1 ’ or $nonpre f ixed =’prev ’ or
$nonpre f ixed =’ ro l e ’ or $nonpre f ixed =’ s e c t i on ’ ”>true</when>

351 <when t e s t=” $nonpre f ixed =’ s t y l e s h e e t ’ or $nonpre f ixed =’
subsect ion ’ or $nonpre f ixed =’ s ta r t ’ or $nonpre f ixed =’top ’ ”>
true</when>

352 <when t e s t=” $nonpre f ixed =’up ’ ”>true</when>
353 <when t e s t=” $nonpre f ixed =’made ’ or $nonpre f ixed =’ prev ious ’

or $nonpre f ixed =’ search ’ ”>true</when> <!−− added because

249

they are f r equent −−>
354 <otherwise>f a l s e </otherwise>
355 </choose>
356 </template>
357

358 <!−− named templates to generate RDF − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − − −−>

359

360 <template name=” r e c u r s i v e−copy”> <!−− f u l l copy −−>
361 <copy><f o r−each s e l e c t=”node () | a t t r i b u t e : : ∗ ”><c a l l−template

name=” re c u r s i v e−copy” /></for−each></copy>
362 </template>
363

364

365 <template name=” s u b j e c t ”> <!−− determines cur rent s u b j e c t −−>
366 <choose>
367

368 <!−− cur rent node i s a meta or a l i n k in the head and with
no about a t t r i b u t e −−>

369 <when t e s t=” (s e l f : : h : l i n k or s e l f : : h : meta) and (ance s to r : :
h : head) and not (a t t r i b u t e : : about) ”>

370 <value−o f s e l e c t=” $ t h i s ”/>
371 </when>
372

373 <!−− an a t t r i b u t e about was s p e c i f i e d on the node −−>
374 <when t e s t=” s e l f : : ∗ / a t t r i b u t e : : about”>
375 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=”@about”/></c a l l−template>
376 </when>
377

378 <!−− an a t t r i b u t e s r c was s p e c i f i e d on the node −−>
379 <when t e s t=” s e l f : : ∗ / a t t r i b u t e : : s r c ”>
380 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=”@src”/></c a l l−template>
381 </when>
382

383

384 <!−− an a t t r i b u t e typeo f was s p e c i f i e d on the node −−>
385 <when t e s t=” s e l f : : ∗ / a t t r i b u t e : : typeo f ”>
386 <c a l l−template name=” s e l f −cur i e−or−u r i ”><with−param name=

”node” s e l e c t=” . ”/></c a l l−template>
387 </when>
388

389 <!−− cur rent node i s a meta or a l i n k in the body and with
no about a t t r i b u t e −−>

390 <when t e s t=” (s e l f : : h : l i n k or s e l f : : h : meta) and not (
ance s to r : : h : head) and not (a t t r i b u t e : : about) ”>

391 <c a l l−template name=” s e l f −cur i e−or−u r i ”><with−param name=”
node” s e l e c t=” parent : : ∗ ”/></c a l l−template>

250

392 </when>
393

394 <!−− an about was s p e c i f i e d on i t s parent or the parent had
a r e l or a rev a t t r i b u t e but no h r e f or an typeo f . −−>

395 <when t e s t=” ance s to r : : ∗ [a t t r i b u t e : : about or a t t r i b u t e : : s r c
or a t t r i b u t e : : typeo f or a t t r i b u t e : : r e s ou r c e or a t t r i b u t e : :
h r e f or a t t r i b u t e : : r e l or a t t r i b u t e : : rev] [p o s i t i o n () =1]”>

396 <v a r i a b l e name=” s e l e c t e d a n c e s t o r ” s e l e c t=” ance s to r : : ∗ [
a t t r i b u t e : : about or a t t r i b u t e : : s r c or a t t r i b u t e : : typeo f or
a t t r i b u t e : : r e s ou r c e or a t t r i b u t e : : h r e f or a t t r i b u t e : : r e l or
a t t r i b u t e : : rev] [p o s i t i o n () =1]”/>

397 <choose>
398 <when t e s t=” $ s e l e c t e d a n c e s t o r [(a t t r i b u t e : : r e l or

a t t r i b u t e : : rev) and not (a t t r i b u t e : : r e s ou r c e or a t t r i b u t e : :
h r e f)] ”>

399 <value−o f s e l e c t=” concat (’ blank : node : INSIDE ’ , generate
−id ($ s e l e c t e d a n c e s t o r)) ”/>

400 </when>
401 <when t e s t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : : about”>
402 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : :
about”/></c a l l−template>

403 </when>
404 <when t e s t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : : s r c ”>
405 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : : s r c
”/></c a l l−template>

406 </when>
407 <when t e s t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : : r e s ou r c e ”>
408 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : :
r e s ou r c e ”/></c a l l−template>

409 </when>
410 <when t e s t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : : h r e f ”>
411 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param

name=” c u r i e o r u r i ” s e l e c t=” $ s e l e c t e d a n c e s t o r / a t t r i b u t e : :
h r e f ”/></c a l l−template>

412 </when>
413 <otherwise>
414 <c a l l−template name=” s e l f −cur i e−or−u r i ”><with−param

name=”node” s e l e c t=” $ s e l e c t e d a n c e s t o r ”/></c a l l−template>
415 </otherwise>
416 </choose>
417 </when>
418

419 <otherwise> <!−− i t must be about the cur rent document −−>
420 <value−o f s e l e c t=” $ t h i s ”/>
421 </otherwise>
422

251

423 </choose>
424 </template>
425

426 <!−− r e c u r s i v e c a l l f o r ob j e c t (s) o f ob j e c t p r o p e r t i e s −−>
427 <template name=” recurse−o b j e c t s ” >
428 <x s l : fo r−each s e l e c t=” c h i l d : : ∗ ”>
429 <choose>
430 <when t e s t=” a t t r i b u t e : : about or a t t r i b u t e : : s r c ”> <!−− the re

i s a known re sou r c e −−>
431 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param name=”

c u r i e o r u r i ” s e l e c t=” a t t r i b u t e : : about | a t t r i b u t e : : s r c ”/></
c a l l−template><text> </text>

432 </when>
433 <when t e s t=” (a t t r i b u t e : : r e s ou r c e or a t t r i b u t e : : h r e f) and (

not (a t t r i b u t e : : r e l or a t t r i b u t e : : rev or a t t r i b u t e : : property)
) ”> <!−− the re i s an incomplet t r i p l e −−>

434 <c a l l−template name=”expand−cur i e−or−u r i ”><with−param name=”
c u r i e o r u r i ” s e l e c t=” a t t r i b u t e : : r e s ou r c e | a t t r i b u t e : : h r e f ”
/></c a l l−template><text> </text>

435 </when>
436 <when t e s t=” a t t r i b u t e : : typeo f and not (a t t r i b u t e : : about) ”>

<!−− the re i s an i m p l i c i t r e s ou r c e −−>
437 <c a l l−template name=” s e l f −cur i e−or−u r i ”><with−param name=”

node” s e l e c t=” . ”/></c a l l−template><text> </text>
438 </when>
439 <when t e s t=” a t t r i b u t e : : r e l or a t t r i b u t e : : rev or a t t r i b u t e : :

property ”> <!−− the re i s an i m p l i c i t r e s ou r c e −−>
440 < i f t e s t=” not (preceding−s i b l i n g : : ∗ [a t t r i b u t e : : r e l or

a t t r i b u t e : : rev or a t t r i b u t e : : property]) ”> <!−− generate the
t r i p l e only once −−>

441 <c a l l−template name=” s u b j e c t ”/><text> </text>
442 </ i f >
443 </when>
444 <otherwise> <!−− nothing at that l e v e l thus con s id e r

c h i l d r e n −−>
445 <c a l l−template name=” recurse−o b j e c t s ”/>
446 </otherwise>
447 </choose>
448 </x s l : fo r−each>
449 </template>
450

451 <!−− generate r e c u r s i v e c a l l f o r mu l t ip l e o b j e c t s in r e l or
rev −−>

452 <template name=” r e l r e v ” >
453 <param name=” s u b j e c t ” />
454 <param name=” ob j e c t ” />
455

456 <!−− t e s t f o r mu l t ip l e p r e d i c a t e s −−>

252

457 <v a r i a b l e name=” s i n g l e−ob j e c t ”><c a l l−template name=” get−
f i r s t −token ”><with−param name=” tokens ” s e l e c t=” $ob j e c t ”/></
c a l l−template></var i ab l e>

458

459 < i f t e s t=” s t r i ng−l ength (@rel)>0”>
460 <c a l l−template name=” r e l a t i o n ”>
461 <with−param name=” s u b j e c t ” s e l e c t =” $sub j e c t ” />
462 <with−param name=” ob j e c t ” s e l e c t =” $ s i ng l e−ob j e c t ” />
463 <with−param name=” p r e d i c a t e ” s e l e c t =” @rel ”/>
464 </c a l l−template>
465 </ i f >
466

467 < i f t e s t=” s t r i ng−l ength (@rev)>0”>
468 <c a l l−template name=” r e l a t i o n ”>
469 <with−param name=” s u b j e c t ” s e l e c t =” $ s i ng l e−ob j e c t ” />
470 <with−param name=” ob j e c t ” s e l e c t =” $sub j e c t ” />
471 <with−param name=” p r e d i c a t e ” s e l e c t =”@rev”/>
472 </c a l l−template>
473 </ i f >
474

475 <!−− r e c u r s i v e c a l l f o r mu l t ip l e p r e d i c a t e s −−>
476 <v a r i a b l e name=” other−o b j e c t s ” s e l e c t=” normal ize−space (

subst r ing−a f t e r ($object , ’ ’)) ” />
477 < i f t e s t=” s t r i ng−l ength ($other−o b j e c t s)>0”>
478 <c a l l−template name=” r e l r e v ”>
479 <with−param name=” s ub j e c t ” s e l e c t=” $sub j e c t ”/>
480 <with−param name=” ob j e c t ” s e l e c t=” $other−o b j e c t s ”/>
481 </c a l l−template>
482 </ i f >
483

484 </template>
485

486

487 <!−− generate an RDF statement f o r a r e l a t i o n −−>
488 <template name=” r e l a t i o n ” >
489 <param name=” s u b j e c t ” />
490 <param name=” p r e d i c a t e ” />
491 <param name=” ob j e c t ” />
492

493 <!−− t e s t f o r mu l t ip l e p r e d i c a t e s −−>
494 <v a r i a b l e name=” s i n g l e−p r e d i c a t e ”><c a l l−template name=” get−

f i r s t −token ”><with−param name=” tokens ” s e l e c t=” $pred i ca t e ”
/></c a l l−template></var i ab l e>

495

496 <!−− get namespace o f the p r e d i c a t e −−>
497 <v a r i a b l e name=” pred i cate−ns”><c a l l−template name=” get−

r e l r e v−ns”><with−param name=”qname” s e l e c t=” $ s in g l e−p r e d i c a t e
”/></c a l l−template></var i ab l e>

498

253

499 <!−− get name o f the p r e d i c a t e −−>
500 <v a r i a b l e name=” pred i cate−name”><c a l l−template name=” get−

pred i cate−name”><with−param name=”qname” s e l e c t=” $ s in g l e−
p r e d i c a t e ”/></c a l l−template></var i ab l e>

501

502 <choose>
503 <when t e s t=” s t r i ng−l ength ($pred icate−ns)>0”> <!−− the re i s

a known namespace f o r the p r e d i c a t e −−>
504 <choose>
505 <when t e s t=” s t a r t s−with ($subject , ’ blank : node : ’) ”><

value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . setSubjectNodeID ($parser ,
subst r ing−a f t e r ($subject , ’ blank : node : ’)) ”/></when>

506 <otherwise><value−o f s e l e c t=” java : eu . ta too fp7 .
corecomponents . webs i t econnector . RDFaParser . setSubjectURI (
$parser , $ sub j e c t) ”/></otherwise>

507 </choose>
508 <!−− get f u l l p r e d i c a t e −−>
509 <v a r i a b l e name=”expanded−p r e d i c a t e ”><c a l l−template name=”

expand−ns”><with−param name=”qname” s e l e c t=” $ s i n g l e−p r e d i c a t e
”/></c a l l−template></var i ab l e>

510 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . setPropertyURI ($parser , $expanded−
p r e d i c a t e) ”/>

511

512 <choose>
513 <when t e s t=” s t a r t s−with ($object , ’ blank : node : ’) ”><value

−o f s e l e c t=” java : eu . ta too fp7 . corecomponents . webs i t econnector .
RDFaParser . setObjectNodeID ($parser , subst r ing−a f t e r ($object , ’
blank : node : ’)) ”/></when>

514 <otherwise><value−o f s e l e c t=” java : eu . ta too fp7 .
corecomponents . webs i t econnector . RDFaParser . setObjectURI (
$parser , $ob j e c t) ”/></otherwise>

515 </choose>
516 </when>
517 <otherwise> <!−− no namespace generate a comment f o r debug

−−>
518 <x s l : comment>No namespace f o r the r e l or rev value ;

could not produce the t r i p l e f o r : <value−o f s e l e c t=” $sub j e c t ”
/> − <value−o f s e l e c t=” $ s i ng l e−p r e d i c a t e ” /> − <value−o f

s e l e c t=” $ob j e c t ” /></x s l : comment>
519 </otherwise>
520 </choose>
521

522 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . f lu shObjec tProper ty ($par se r) ”/>

523

524 <!−− r e c u r s i v e c a l l f o r mu l t ip l e p r e d i c a t e s −−>

254

525 <v a r i a b l e name=” other−p r e d i c a t e s ” s e l e c t=” normal ize−space (
subst r ing−a f t e r ($pred icate , ’ ’)) ” />

526 < i f t e s t=” s t r i ng−l ength ($other−p r e d i c a t e s)>0”>
527 <c a l l−template name=” r e l a t i o n ”>
528 <with−param name=” s ub j e c t ” s e l e c t=” $sub j e c t ”/>
529 <with−param name=” p r e d i c a t e ” s e l e c t=” $other−p r e d i c a t e s ”/>
530 <with−param name=” ob j e c t ” s e l e c t=” $ob j e c t ”/>
531 </c a l l−template>
532 </ i f >
533

534 </template>
535

536

537 <!−− generate an RDF statement f o r a property −−>
538 <template name=” property ” >
539 <param name=” s u b j e c t ” />
540 <param name=” p r e d i c a t e ” />
541 <param name=” ob j e c t ” />
542 <param name=” datatype ” />
543 <param name=” a t t r i b ” /> <!−− i s the content from an

a t t r i b u t e ? t rue / f a l s e −−>
544 <param name=” language ” />
545

546 <!−− t e s t f o r mu l t ip l e p r e d i c a t e s −−>
547 <v a r i a b l e name=” s i n g l e−p r e d i c a t e ”><c a l l−template name=” get−

f i r s t −token ”><with−param name=” tokens ” s e l e c t=” $pred i ca t e ”
/></c a l l−template></var i ab l e>

548

549 <!−− get namespace o f the p r e d i c a t e −−>
550 <v a r i a b l e name=” pred i cate−ns”><c a l l−template name=” get−

property−ns”><with−param name=”qname” s e l e c t=” $ s i n g l e−
p r e d i c a t e ”/></c a l l−template></var i ab l e>

551

552

553 <!−− get name o f the p r e d i c a t e −−>
554 <v a r i a b l e name=” pred i cate−name”><c a l l−template name=” get−

pred i cate−name”><with−param name=”qname” s e l e c t=” $ s i n g l e−
p r e d i c a t e ”/></c a l l−template></var i ab l e>

555

556 <choose>
557 <when t e s t=” s t r i ng−l ength ($pred icate−ns)>0”> <!−− the re i s

a known namespace f o r the p r e d i c a t e −−>
558

559 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . setPropertyURI ($parser , $pred icate
−name) ”/>

560

561 <choose>

255

562 <when t e s t=” s t a r t s−with ($subject , ’ blank : nod : ’) ”><
value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . setSubjectNodeID ($parser ,
subst r ing−a f t e r ($subject , ’ blank : node : ’)) ”/></when>

563 <otherwise><value−o f s e l e c t=” java : eu . ta too fp7 .
corecomponents . webs i t econnector . RDFaParser . setSubjectURI (
$parser , $ sub j e c t) ”/></otherwise>

564 </choose>
565

566 < i f t e s t=” s t r i ng−l ength ($language)>0”><value−o f s e l e c t=”
java : eu . ta too fp7 . corecomponents . webs i t econnector . RDFaParser .
setLanguage ($parser , $ language) ”/></ i f >

567

568 <choose>
569 <when t e s t=” $datatype =’http ://www. w3 . org /1999/02/22−

rdf−syntax−ns#XMLLiteral ’ ”>
570 <choose>
571 <when t e s t=” $ a t t r i b =’ true ’ ”> <!−− content i s in an

a t t r i b u t e −−>
572 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setDataType ($parser , $datatype) ”/>
573 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setValue ($parser , normal ize−space (
s t r i n g ($ob j e c t))) ”/>

574 </when>
575 <otherwise> <!−− content i s in the element and may

inc lude some tags −−>
576 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setDataType ($parser , $datatype) ”/>
577 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setValue ($parser , $ob j e c t) ”/>
578 </otherwise>
579 </choose>
580 </when>
581 <when t e s t=” s t r i ng−l ength ($datatype)>0”>
582 <!−− the re i s a datatype other than XMLLiteral −−>
583 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setDataType ($parser , $datatype) ”/>
584 <choose>
585 <when t e s t=” $ a t t r i b =’ true ’ ”> <!−− content i s in an

a t t r i b u t e −−>
586 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setValue ($parser , normal ize−space (
s t r i n g ($ob j e c t))) ”/>

587 </when>
588 <otherwise> <!−− content i s in the text nodes o f the

element −−>
589 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setValue ($parser , $ob j e c t) ”/>

256

590 </otherwise>
591 </choose>
592 </when>
593 <otherwise> <!−− the re i s no datatype −−>
594 <choose>
595 <when t e s t=” $ a t t r i b =’ true ’ ”> <!−− content i s in an

a t t r i b u t e −−>
596 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setValue ($parser , normal ize−space (
s t r i n g ($ob j e c t))) ”/>

597 </when>
598 <otherwise> <!−− content i s in the text nodes o f the

element −−>
599 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setValue ($parser , $ob j e c t) ”/>
600 </otherwise>
601 </choose>
602 </otherwise>
603 </choose>
604 </when>
605 <otherwise> <!−− generate a comment f o r debug −−>
606 <x s l : comment>Could not produce the t r i p l e f o r : <value−o f

s e l e c t=” $sub j e c t ” /> − <value−o f s e l e c t=” $ s i ng l e−p r e d i c a t e ”
/> − <value−o f s e l e c t=” $ob j e c t ” /></x s l : comment>

607 </otherwise>
608 </choose>
609

610 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . f lushDataProperty ($par se r) ”/>

611

612 <!−− r e c u r s i v e c a l l f o r mu l t ip l e p r e d i c a t e s −−>
613 <v a r i a b l e name=” other−p r e d i c a t e s ” s e l e c t=” normal ize−space (

subst r ing−a f t e r ($pred icate , ’ ’)) ” />
614 < i f t e s t=” s t r i ng−l ength ($other−p r e d i c a t e s)>0”>
615 <c a l l−template name=” property ”>
616 <with−param name=” s ub j e c t ” s e l e c t=” $sub j e c t ”/>
617 <with−param name=” p r e d i c a t e ” s e l e c t=” $other−p r e d i c a t e s ”/>
618 <with−param name=” ob j e c t ” s e l e c t=” $ob j e c t ”/>
619 <with−param name=” datatype ” s e l e c t=” $datatype ”/>
620 <with−param name=” a t t r i b ” s e l e c t=” $ a t t r i b ”/>
621 <with−param name=” language ” s e l e c t=” $language ”/>
622 </c a l l−template>
623 </ i f >
624

625 </template>
626

627 <!−− generate an RDF statement f o r a c l a s s −−>
628 <template name=” c l a s s ” >
629 <param name=” re sou r c e ” />

257

630 <param name=” c l a s s ” />
631

632 <!−− case mu l t ip l e c l a s s e s −−>
633 <v a r i a b l e name=” s i n g l e−c l a s s ”><c a l l−template name=” get−f i r s t

−token ”><with−param name=” tokens ” s e l e c t=” $ c l a s s ”/></c a l l−
template></var i ab l e>

634

635 <!−− get namespace o f the c l a s s −−>
636 <v a r i a b l e name=” c l a s s−ns”><c a l l−template name=” return−ns”><

with−param name=”qname” s e l e c t=” $ s i n g l e−c l a s s ”/></c a l l−
template></var i ab l e>

637

638 < i f t e s t=” s t r i ng−l ength ($c l a s s−ns)>0”> <!−− we have a qname
f o r the c l a s s −−>

639 <v a r i a b l e name=”expended−c l a s s ”><c a l l−template name=”
expand−ns”><with−param name=”qname” s e l e c t=” $ s i n g l e−c l a s s ”
/></c a l l−template></var i ab l e>

640 <choose>
641 <when t e s t=” s t a r t s−with ($resource , ’ blank : node : ’) ”><

value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . setSubjectNodeID ($parser ,
subst r ing−a f t e r ($resource , ’ blank : node : ’)) ”/></when>

642 <otherwise><value−o f s e l e c t=” java : eu . ta too fp7 .
corecomponents . webs i t econnector . RDFaParser . setSubjectURI (
$parser , $ r e sour ce) ”/></otherwise>

643 </choose>
644 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .

webs i t econnector . RDFaParser . setPropertyURI ($parser , ’ http ://
www. w3 . org /1999/02/22− rdf−syntax−ns#type ’) ”/>

645 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . setObjectURI ($parser , $expended−
c l a s s) ”/>

646 <value−o f s e l e c t=” java : eu . ta too fp7 . corecomponents .
webs i t econnector . RDFaParser . f lu shObjec tProper ty ($par se r) ”/>

647 </ i f >
648

649

650 <!−− r e c u r s i v e c a l l f o r mu l t ip l e c l a s s e s −−>
651 <v a r i a b l e name=” other−c l a s s e s ” s e l e c t=” normal ize−space (

subst r ing−a f t e r ($ c l a s s , ’ ’)) ” />
652 < i f t e s t=” s t r i ng−l ength ($other−c l a s s e s)>0”>
653 <c a l l−template name=” c l a s s ”>
654 <with−param name=” re sou r c e ” s e l e c t=” $re source ”/>
655 <with−param name=” c l a s s ” s e l e c t=” $other−c l a s s e s ”/>
656 </c a l l−template>
657 </ i f >
658

659 </template>
660

258

661

662 <!−− i gno r e the r e s t o f the DOM −−>
663 <template match=” text () |@∗ |∗ ” mode=” rd f2rd fxml ”><apply−templates

mode=” rdf2rd fxml ” /></template>
664

665

666 </s t y l e s h e e t >

Appendix C

Curriculum Vitae

Name: Bojan Božić
Address: Wulkahof 10/7, 7064 Oslip, Austria
Contact: bojan.bozic@ait.ac.at, +43 (0)664 2351 800

Education

• Bachelor of Science in Engineering, Information and Communication
Systems and Services
University of Applied Sciences Technikum, Vienna, Austria, June 2007
Concentration: Telecommunication and Internet Technologies

• Master of Science in Engineering, Software Engineering and Multime-
dia
University of Applied Sciences Technikum, Vienna, Austria, June 2008
Concentration: Application Development

• PhD, Doctoral Studies
University of Vienna, Vienna, Austria, current
Concentration: Semantic Web

259

260

Experience

Software Development Engineer January 2005 - March 2009
Philips Speech Recognition Systems, Philips Austria, Vienna, Austria

• Development of different speech recognition editors (TX, Word, RTF)

• Development of a Java/COM and .NET adapter

• Leadership of a technical team

Scientist March 2009 - present
Safety and Security Department, Austrian Institute of Technology

• Development of a multi-domain language for time series processing in
Python

• Development of a sensor web enablement framework

• Leadership of a technical team

• Leadership of a work package and scientific work in a European project
in the field of Semantic Web

Scientific

Talks and Posters

• B. Božić
”The New Time Series Toolbox - Next Generation of Sensor Web and
Time Series Processing”;
Presentation: FOSS4G 2010 - Free Open Source Software for Geospa-
tial, Barcelona; 06.09.2010 - 09.09.2010.

• B. Božić:
”The Time Series Toolbox”;
Poster: European Geosciences Union General Assembly 2010, Vienna,
Austria; 02.05.2010 - 07.05.2010.

• B. Božić:
”Time is on Your Side - Usage of Python in Time Series Processing”;
Poster: PyCon 2010, Atlanta, USA; 19.02.2010 - 21.02.2010.

• T.Bleier, B. Božić:
”Time Series Toolbox”;
Presentation: 52north SWE Workshop, Muenster, Germany; 10.11.2009
- 11.11.2009.

261

• T. Bleier, A. Bonitz, B. Božić, T. Ponweiser:
”The Time Series Toolbox”;
Presentation: FOSS4G 2009 - Free Open Source Software for Geospa-
tial, Sydney, Australia; 21.10.2009.

• T. Bleier, B. Božić, A. Bonitz, R. Barta:
”Jumping Worlds with Python”;
Presentation: EuroPython 2009, Birmingham, UK; 30.06.2009.

Papers

• B. Božić, W. Winiwarter
”Tools for the Support of Semantic Search”;
Paper: in ”Structuring Legal Semantics”, published by Editions We-
blaw, Bern, Switzerland, 2011, ISBN: 978-3-905742-80-0, S. 387 - 399.

• B. Božić
”Simulation and Modeling of Semantically Enriched Time Series”;
Paper: 19th International Congress on Modelling and Simulation, Perth,
Australia; 12.12.2011 - 16.12.2011; in ”Sustaining our Future: Under-
standing and Living with Uncertainty”, Modelling and Simulation So-
ciety of Australia and New Zealand, (2012), ISBN: 978-09872143-1-7;
7 S.

• G. Schimak, B. Božić, A. Kaufmann, J. Peters-Anders, P. Dihé, A.
Rizzoli, T. Lobo, G. Avellino
”The TaToo Semantic Case - Requirements, impacts and applications”;
Paper: EnviroInfo 2011, 25th International Conference Environmental
Informatics, Ispra, Italy; 03.10.2011 - 05.10.2011; in ”Innovations in
Sharing Environmental Observations and Information”, W. Pillmann,
S. Schade, P. Smits (Hrg.); SHAKER Verlag, 2 (2011), ISBN: 978-3-
8440-0451-9; S. 832-847.

• G. Schimak, P. Dihé, T. Pariente, G. Avellino, L. Petronzio, A. Rizzoli,
S. Nešić, B. Božić
”Environmental Information Enrichment - The TaToo Approach”;
Paper: 19th International Congress on Modelling and Simulation, Perth,
Australia; 12.12.2011 - 16.12.2011; in ”Sustaining our Future: Under-
standing and Living with Uncertainty”, Modelling and Simulation So-
ciety of Australia and New Zealand, (2012), ISBN: 978-09872143-1-7;
6 S.

• B. El-Gamil, W. Winiwarter, B. Božić, H. Wahl
”Deep web integrated systems: current achievements and open issues”;

262

Paper: iiWAS2011 - Proceedings of the 13th International Conference
on Information Integration and Web-based Applications and Services,
Ho Chi Minh City, Vietnam; 05.12.2011 - 07.12.2011; in: ”Proceedings
of the 13th International Conference on Information Integration and
Web-based Applications and Services”, (2011), ISBN: 978-1-4503-0784-
0; S. 447 - 450.

• B. Božić, J. Peters-Anders, G. Schimak
”Filtering of Semantically Enriched Environmental Time Series”;
Paper: International Congress on Environmental Modelling and Soft-
ware, Leipzig; 01.07.2012 - 05.07.2012; in: ”Proceedings of the sixth bi-
ennal meeting of the International Environmental Modelling and Soft-
ware Society”, Int. Environmental Modelling and Software Society,
Leipzig (2012), ISBN: 978-88-9035-742-8; S. 2395 - 2402.

• B. Božić, W. Winiwarter
”Community Building Based on Semantic Time Series”;
Paper: International Conference on Information Integration and Web-
based Applications and Services, Bali; 03.12.2012 - 05.12.2012; in:
”Proceedings of the 14th International Conference on Information In-
tegration and Web-based Applications and Services”, Association for
Computing Machinery, New York, (2012), ISBN: 978-1-4503-1306-3; S.
213 - 222.

• B. Božić
”A Multi-Domain Framework for Community Building Based on Data
Tagging”;
Paper: International Semantic Web Conference, Boston; 11.11.2012 -
15.11.2012; in: ”The Semantic Web - ISWC 2012”, Springer, Heidelberg
Berlin (2012), ISBN: 978-3-642-35172-3; S. 441 - 444.

• B. Božić, W. Winiwarter
”Ontology Mapping and Reasoning in Semantic Time Series Process-
ing”;
Paper: International Conference on Information Integration and Web-
based Applications and Services, Vienna; 02.12.2012 - 04.12.2012; in:
”Proceedings of the 15th International Conference on Information In-
tegration and Web-based Applications and Services”, Association for
Computing Machinery, New York, (2013); S. 443 - 452.

Lectures

263

• B. Božić:
”Software Engineering”;
Lecture: University of Applied Sciences Burgenland, Eisenstadt WS
2009/10, WS 2010/11, WS 2011/12, WS 2012/13, WS 2013/14.

• B. Božić:
”System Architectures, Nets, and Web Technologies”;
Exercise: University of Applied Sciences Burgenland, Eisenstadt SS
2010.

• B. Božić:
”Designing Software Systems”;
Lecture: University of Applied Sciences Burgenland, Eisenstadt WS
2010/11, WS 2011/12, WS 2012/13, WS 2013/14.

• B. Božić:
”Applied Project Software Engineering”;
Exercise: University of Applied Sciences Burgenland, Eisenstadt SS
2011, SS 2012.

• B. Božić:
”Applied Project System Architectures, Nets, and Web Technologies”;
Exercise: University of Applied Sciences Burgenland, Eisenstadt SS
2011, SS 2012.

• B. Božić:
”Distributed Systems”;
Exercise: University of Applied Sciences Burgenland, Eisenstadt SS
2012, SS 2014.

Books

• Bleier, T.; Božić, B.; Bumerl-Lexa, R.; Da Costa, A.; Costes, S.;
Iosifescu, I.; Martin, O.; Frysinger, S.; Havlik, D.; Hilbring, D.; Jacques,
P.; Klopfer, M.; Kunz, S.; Kutschera, P.; Lidstone, M.; Middleton, S.E.;
Roberts, Z.; Sabeur, Z.; Schabauer, J.; Schlobinski, S.; Shu, T.; Simo-
nis, I.; Stevenot, B.; Uslnder, T.; Watson, K.; Wittamore, K. :
”SANY - An Open Service Architecture for Sensor Networks”;
Book: SANY Consortium, ISBN 978-3-00-028571-4; 2009.

Projects

• SANY - Sensors Anywhere - IST FP6 Integrated Project

264

• TaToo - Tagging Tool based on a Semantic Discovery Framework - FP7
Project

• Europeana Creative - creative re-use of cultural heritage metadata and
content

