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i. Abstract  

 

 

Network analysis tools belong today among the standard tools in many Geographical 

Information Systems. Their use has expanded into many areas. In hydrology, 

hydrometry, in the frame of river basin management and other closely related fields the 

tools are used for the processing and analysis of river and catchment networks. For 

evaluations such as for example those that have to be made for reporting and planning 

purposes in the context of the EU Water Framework Directive (WFD), there are not 

always sufficiently tuned algorithms created or widely implemented as I could see 

during my work in this field.  

 

This thesis deals with these algorithms that are specially attuned to the problems of the 

WFD. After an introductory theoretical part, where basic concepts are explained and a 

comprehensive explanation of the components of a river network, including the digital 

storage options of network structures is given, there follows a a section which deals 

with the questions regarding digital river networks (including their catchment areas), as 

they are needed for the evaluations for the EU Water framework Directive. Based on the 

conclusions drawn in this section existing GIS tools and algorithms where sought, and it 

was tried to create still missing algorithms. 

 

In a further step algorithms for network processing, the calculation of river systems and 

data aggregation for the used GIS software ArcMap [ARCMAP 2012] using the freely 

available IDE Eclipse [Eclipse 2012] in the form of Java [JAVA SE 6] Add-ins were 

implemented exemplaryly. They should facilitate future work for data preparation and 

analysis in the context of the EU Water framework Directive. Here, particular attention 

was given to achieve runtimes of linear orders, to perform reasonably well with the 

large amounts of data, as they exist in large river networks. The depth-first search 

(DSF) proved to be a particularly suitable approach for the calculations. In a concrete 

example it can even be shown that a new algorithm, based on this DSF approach, 

improves significantly the runtime when compared to an existing tool's algorithm. 
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ii. Zusammenfassung 

 

Netzwerkanalysetools gehören heute zum Standardwerkzeug vieler Geografischer 

Informationssysteme. Ihr Einsatz erstreckt sich über viele Bereiche. Auch in der 

Hydrologie, Hydrometrie und im Rahmen der Einzugsgebietebewirtschaftung sowie 

weiteren verwandten Bereichen bietet sich ihr Einsatz zur Bearbeitung und Analyse von 

Fluss- und Einzugsgebietsnetzwerken an. Für Auswertungen, wie sie z.B. im Umfeld 

der EU-Wasserrahmenrichtlinie benötigt werden, sind allerdings noch nicht ausreichend 

abgestimmte Algorithmen geschaffen oder implementiert worden.  

 

Die vorliegende Dissertation beschäftigt sich mit diesen, auf Fragestellungen der 

Wasserrahmenrichtlinie abgestimmten Algorithmen. Nach einem einleitenden 

theoretischen Teil, in dem grundlegende Begriffe erklärt und eine umfassende 

Erläuterung der Bestandteile eines Fließgewässernetzwerkes inklusive der digitalen 

Speichermöglichkeiten von Netzwerkstrukturen gegeben wird, folgt ein Abschnitt der 

sich mit den Fragestellungen an digitale Flussnetzwerke (inkl. deren Einzugsgebiete), 

wie sie für die Auswertungen für die EU-Wasserrahmenrichtlinie benötigt werden, 

beschäftigt. Anhand der in diesem Abschnitt erstellten Schlussfolgerungen wurde 

gezielt nach bereits existierenden GIS-Werkzeugen und Algorithmen gesucht, bzw. 

versucht fehlende Algorithmen zu ergänzen.  

 

In einem weiteren Schritt wurden exemplarisch Algorithmen zur Netzwerkaufbereitung, 

zur Berechnung von Flussordnungen und zur Datenaggregierung für die verwendete 

GIS-Software ArcMap [ARCMAP 2012] mit Hilfe der frei zur Verfügung stehenden 

Endwicklungsumgebung Eclipse [ECLIPSE 2012] in Form von Java [JAVA SE 6]  

Add-Ins implementiert, welche zukünftige Arbeiten für die Datenaufbereitung und 

Analyse im Umfeld der EU-Wasserrahmenrichtlinie erleichtern sollen. Dabei wurde 

besonders darauf geachtet, möglichst lineare Laufzeiten zu erzielen, um mit den großen 

Datenmengen, wie sie in großen Flussnetzen anfallen, in sinnvoller Zeit Berechnungen 

durchführen zu können. Als besonders geeigneter Ansatz für die Berechnungen zeigte 

sich dabei die Tiefensuche (DSF). Anhand eines konkreten Beispiels kann sogar gezeigt 

werden, dass ein neuer, auf diesem DSF-Ansatz basierender Algorithmus signifikant 

verbesserte Laufzeiten gegenüber einem in ein bestehendes Werkzeug integrierten 

Algorithmus erzielt. 
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0 Introduction 

Water is an important component of life. The more the stress on water grows, the more 

it is necessary to come to its aid. Hydrologists, environmentalists, geomorphologists, 

people in water basin administration, people in flood protection, and many others work 

partly in the field of water protection and need simple tools to prepare and analyse data 

according to their purposes. GIS already offer a bandwidth of tools that can be used to 

serve those purposes. During my work at the Austrian Federal Environment Agency I 

used GIS to provide my colleagues with spatial data in the field of groundwater and 

surface water, to combine different themes and  to calculate new or extract existing 

information. On European level it has also been recognized that GIS is an important 

tool when it comes to analyse and model data. When the WFD (the European Water 

Framework Directive) [WFD 2000] - a framework to ensure good water quality - was 

drafted, GIS was included in Annex I. After it finally was adopted at the end of the year 

2000 (12 December 2000), working groups were formed to discuss the various aspects 

and find common solutions. One of them was the Working Group 3.1 that mainly dealt 

with GIS questions and met regularly in the European Joint Research Centre in Ispra, 

Italy. At a more detailed level, there were special GIS working groups installed for at 

least every big water basin - concerning Austria it was for example the Danube GIS-

group that works in the frame of the International Commission for the Protection of the 

Danube River, or the Rhine GIS-group whose members me(e)t mostly in Koblenz, or 

the Elbe-group - that had to find their own specific solutions to the questions of the 

WFD. Those working groups, whose meetings I could attend several times, deal(t) 

mostly with the preparation of common data concepts, data integration (both on 

semantic level in form of data models and domain values, as well as on spatial level 

when trying to fit together the many different georeferencing systems, scales and 

degrees of generalization) and data preparation. Many steps had to be taken to reach 

common data sets that could be used for EU-wide evaluation of the data, which form 

some of the basics and outcomes of the national River Basin Management Plans. Still, 

some underlying concepts (e.g. on scale and generalization) will have to be followed up 

in more detail in the coming stages of data preparation to enhance data quality and 

comparability. 
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A wide choice of WFD data is closely related to the surface waters. Those surface 

waters are split into individual water bodies for the purposes of the WFD, but in reality 

form a vast network structure. The network's water bodies' data can only be handled 

correctly with simultaneous consideration of the data from linked water bodies.  The 

processing of the surface water networks is therefore an essential part of the work 

performed for the WFD. The GIS analysts can rely on tools for network analysis, which 

serve already many purposes. Tools for the creation of networks exist as well as tools 

for tracing them. For more special questions (e.g. special subject-specific aggregations 

in a network) new tools were created and still have to be created. This is where this 

thesis has its starting point. Even when working with a widely used and extensive GIS-

system the need for more specialised network analysis tools arose during my work on 

WFD-data. Tools provided as extra extensions were used (e.g. ArcHydroTools) and 

own tools were implemented at first with Visual Basic and later with Java to make 

certain data preparation and analysis steps possible. The tools serve their purpose (in the 

sense that they produce the right values), but most of them have a real drawback, they 

are slow. The analysis of some underlying algorithms (or in case of not using an open 

source product, the testing of the tool with data and watching of its progress) showed 

that their runtime was mostly long (quadratic order or even of a higher one). This results 

in disproportionally long processing times.  

 

With respect to these introductory thoughts and findings the main focus of the thesis 

will be on what data preparation and analysis is required to work with surface water 

networks and additional water data that can be combined with these networks and how 

can resulting tools be made quicker than comparable existing tools (created by  are at 

the moment. Thus the main scientific question of the thesis is: 

 

 Which algorithms for the analysis of hydrologic networks are useful and 

necessary and how can they be implemented in an optimized way? 

 

As algorithms are usually combined with data input and output a side question will be: 

 

 Is there a need for special, that is algorithm based, data structures, which have to 

be developed along with the algorithms? 
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Therefore, the following objectives can be derived: 

 

 The finding or creation of algorithms for networks that have a processing time 

of a less than quadratic order. 

 The implementation of these algorithms in a GIS (incl. description and testing). 

 

To limit the large field of network preparation and analysis around the WFD to 

something manageable I limited the data to vector data. To start with what you will not 

find in this thesis (before you will read what is in it) - there will be no handling of the 

question on how to derive the network data from a raster model, nothing about flat 

areas, depressions, burning in rivers1 and so forth.  

 

A further restriction was made in mainly considering surface water. Groundwater will 

only appear marginally. And as it is a very wide and special field there will also not be 

any discharge or runoff modelling 

 

This thesis will concentrate on vector data in hydrology and hydrometry, as they are 

readily available. As an introduction to the matter in chapter 1 and 2, the thesis will 

cover an overview on surface water networks and their catchment areas, including their 

representation. Although Goodchild states that the poor definition of resolution for 

vector data is a strong argument for the use of raster data in rigorous scientific 

research [GOODCHILD 2011], raster data is not a first choice with networks. The 

representation of surface water networks as graphs is with vector data most intuitively, 

as will be shown in chapter 2. From vector data to networks there is only one step that 

includes attributions to define the relation between the lines. Vector data networks are 

easy to trace and they are easy to combine with additional layers. With vector data it is 

easy to incorporate the load of attributes for the WFD or the measures, to get a link to 

the kilometre-wise GIS data available for the large rivers.  

 

In chapter 3 it will be shown how surface water network data (incl. catchments) is used. 

This is achieved by extracting information from scientific articles and books and by 

talking to and working with people of different sciences and administrative bodies. 
                                                
1 To fit the DEM with available vector stream data and to improve the continuity of a derived river 
network, cells of the DEM are lowered (burned in) where an overlaying vector stream segment intersects 
them.  
2 Yes, I know there are some regions in our world where there are more lakes than rivers. C.f. [BRITTON 
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Chapter 4 forms the core of the thesis. This part of the thesis will give an introduction to 

algorithms based on a literature review with emphasis on the orders of runtime and 

show the description and Java implementation for algorithms, both found in literature as 

well as newly created ones, that are all based on the concluding list from chapter 3.  

 

Chapter 5 is the practical part of the thesis where the implementations are tested against 

real data and some outputs are shown. 

 

In chapter 6 I give a résumé and outlook for future work. 

The implementation of the algorithms produces a big amount of code. To make the 

thesis a bit more readable, only the central methods of the code are printed and 

commented on in the main text. The complete Java code can be found on the CD-ROM 

attached to the thesis. 

 

Literature is used in this work. Therefore, literal citations are distinguished from my 

own text as indented paragraphs, or if only a small piece of text it is printed in italic 

letters. Citations were copied out of books and journals as is, any obvious typing errors 

are marked with [!]. In the citations, the commonly used scientific journals cross 

references to other literature, like [1, 6] were omitted, because there are no analogies in 

the current text and it damages the readability of the text.  
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1 The hydrologic network - nature vs. model 

1.1 Hydrologic networks 

In hydrological research, the term "network" can be used for both the connection of the 

drainage system in nature as well as in its digital representation. To avoid confusion I 

use the term surface water network as the synonym for connected surface waters in the 

real world and digital water network and network model for its counterpart in the 

digital and graphical environment.  

 

The first step to find the appropriate terms to use for the elements of a surface water 

network leads to the Water Framework Directive (WFD) [WFD 2000, 327/6] itself. In 

Article 2 the WFD contains many definitions relevant to hydrology, monitoring, 

administration etc. Those found relevant to surface water networks can be found in 

section 1.1.1. 

 

The WFD definitions serve as a starting point for more detailed definitions of the 

elements of surface waters. Section 1.1.2 uses the WFD definitions and tries to make a 

holistic picture of a surface water network, starting with a simple composition of rivers 

and fitting the other elements into the structure one after the other. Thereby trying to 

assess the rise in complexity, each additional element contributes to the network.  

 

Section 1.2 and its subsections are dedicated to the explanation of how the surface water 

network and all its elements can be represented as a model (both analogue as well as 

digital). For this reason a short introduction to graph theory and networks is given and a 

small digression in scale dependency is made. 

1.1.1 WFD definitions 

The Water Framework Directive contains several definitions that are of relevance for 

this thesis and form the basis of the thesis' definitions: 

'Surface water' means inland waters, except groundwater, transitional 
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waters and coastal waters, except in respect of chemical status for which it 
shall also include territorial waters. 

'Inland water' means all standing or flowing water on the surface of the 
land, and all groundwater on the landward side of the baseline from which 
the breadth of territorial waters is measured. 

'River' means a body of inland water flowing for the most part on the 
surface of the land but which may flow underground for part of its course. 

'Lake' means a body of standing inland surface water. 

'Transitional waters' are bodies of surface water in the vicinity of river 
mouths which are partly saline in character as a result of their proximity to 
coastal waters but which are substantially influenced by freshwater flows. 

'Coastal water' means surface water on the landward side of a line, every 
point of which is at a distance of one nautical mile on the seaward side from 
the nearest point of the baseline from which the breadth of territorial waters 
is measured, extending where appropriate up to the outer limit of 
transitional waters. 

'Body of surface water' means a discrete and significant element of surface 
water such as a lake, a reservoir, a stream, river or canal, part of a stream, 
river or canal, a transitional water or a stretch of coastal water.  

 

1.1.2 Elements of a surface water network 

A surface water network consists of several elements of the surface waters (as defined 

in the WFD) that form an uninterrupted connection. Because the WFD is rather general 

and technical in its definitions, this section will have a closer look at the details of the 

surface water network. The International glossary of Hydrology [IGH 2013] has been 

used in this section and its subsection (esp. 1.1.2.5) to find the appropriate terms for the 

different elements of the surface water network. 

 

Rivers form the main component of the surface water network2. Under the term "river" 

we understand a natural watercourse that flows towards the sea or as a tributary towards 

another larger river. There are different synonyms for rivers like stream, waterway, 

watercourse, burn, beck, brook, ditch, rivulet, creek, wash, run, and so on3. The stream 

                                                
2 Yes, I know there are some regions in our world where there are more lakes than rivers. C.f. [BRITTON 
2002] esp. the section about the Finnish coding system 
3 The different types can show the approximate size of a river when used regionally, but they do not offer 
an exact and universal way of classification, because their meaning is different between the regions.  
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flow in rivers depends on precipitation (see Figure 1–1), but only a very small amount 

of the rain (or snow) falls directly into the river. 

 

 

 

 

 

Figure 1–1 Formation of the stream flow in river 

channels (modified after [ZEPP 2002], p. 114) 

 

Portion of the precipitation is intercepted by the vegetation or transpires from its leaves. 

The part of the water reaching the earth's surface becomes either surface runoff, 

infiltrates into the ground or evaporates from the surface. The fraction of the water that 

infiltrates into the ground becomes the subsurface water. Some of it flows more or less 

parallel to the surface as interflow the rest seeps deeper and becomes part of the 

groundwater. Portions of the subsurface water provide the baseflow of the river, which 

is the reason why there is water in a river during dry seasons.  

 

Every river can be divided into river segments. A river segment is a river stretch that 

has no points where another river stretch joins. The starting point of a river segment is 

either a starting point of the river or a point where another river stretch joins. A surface 

water network system ideally has many starting points and one endpoint, towards 

which all the water flows (e.g. the point at the coastline where the river empties into the 

sea). The endpoint of a river segment is either a point where another river stretch joins 

or the surface water networks endpoint.  

  



 8 

  

 

 

 

 

 

Figure 1–2 Simple hydrologic network - To distinguish 

the river segments they are drawn in different colours

 

This ideal simple form of a surface water network works fine for wide parts of the 

earth's surface water networks, but some exceptions/additions will be described in the 

following subchapters. 

1.1.2.1 Divergence, bifurcation, braided river - main reaches vs. 

subordinated reaches 

 

In some parts of a surface water network the flow splits into branches. From one point 

in the network the water can therefore flow in two different directions. This is the case 

with alluvial rivers (which are rivers that have their bed in sediments rather than in 

bedrock and can therefore easily be relocated) in flat areas (like in the headwater 

regions where there are areas of glacial or fluvioglacial deposits; or in areas where fine 

sediments are accumulated like in floodplains). If the "parallel" stretches are not of the 

same size, a main reach (major branch) versus a subordinated reach (minor branch) can 

be distinguished. 

Figure 1–3 Braided river stretch (Source: Austrian Map 3D - Bundesamt für Eich- und 

Vermessungswesen BEV) 
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For the hydrologic network this means that there are parallel river segments. Most of 

them will enclose islands because they usually flow together again some distance 

downstream from the splitting point. Near the estuary mouth some of them will directly 

empty into the sea, meaning that the flow that comes from one river system into the sea 

has to be summed up for all the river mouths of one river system. 

 

Rivers with several branches can grow into rather complex systems, especially when the 

branches receive other rivers before joining the main flow again. 

1.1.2.2 Disappearing and underground rivers  

Some rivers vanish from the earth’s surface, which can happen either through natural 

causes (e.g. sinkholes in karst areas; large sediment areas that form large aquifers with 

no overlaying impermeable layer; draughts) or due to anthropogenic reasons (e.g. 

overbuild rivers or channel rivers underground). Those anthropogenic-modified rivers, 

even if they are underground, cannot be categorized as diffuse groundwater. They 

usually have known flow paths, which mostly surface at some point. Thus, the 

segment(s) underground can be more or less easily retraced. This is possible only in 

some cases with rivers that disappeared because of natural causes. Some underground 

rivers in karst regions (e.g. in the Moravian karst in the Czech Republic) formed big 

cave systems where the river can be used for boating (or at least canyoning4) and 

therefore can also be retraced easily. 

 

 

Figure 1–4 "Disappearing" river. (Source: 

Austrian Map 3D - Bundesamt für Eich- und 

Vermessungswesen BEV) 

 

 

 

 

 

                                                
4 In the U.S.: canyoneering 
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In other karst areas (e.g. the Dachstein area in Austria and in the Slovenian karst) 

tracing methods (either colour, spores or some other radioactive substance) have been 

used to find either the underground flow paths or at least the corresponding points 

where a disappeared river surfaces again, but in some cases it may never be entirely 

clear how those underground drainage systems work, because there is a variation that 

can highly depend on the precipitation input. For Austria, as well as some other 

countries, there exists a database of tracer experiments [TRACER] that can help to find 

the underground links between different parts of the river network. 

 

In case of sediment bed (e.g. gravel and sand bodies in alluvial plains) a disappearing 

river could join the groundwater that in many cases joins the surface water flow 

downstream from its disappearance point in a diffuse way as baseflow. 

 

Concerning the hydrologic network, attention has to be turned to whether the 

underground part forms a retraceable stretch of water, or if at least a link can be made 

from the disappearing point to the point where the water appears again in a fuzzy 

manner, or if there is no connection at all that can be established for sure, thus it is only 

known that the water has to surface somewhere, but it is not clear where. In the Austrian 

River Network for Reporting, which will be used in later chapters such links can be 

found. 

1.1.2.3 Lakes 

Lakes are special items in the surface water network. They can be of different origin, 

whereas the lakes formed in a glacial environment are, seen worldwide, probably as the 

biggest group. But lakes can also form because of tectonic processes, through the 

erosion or accumulation and even because of the wind. Man-made lakes are a further 

category (see 1.1.2.5.). 

Lakes are an area element with zero to many contributing rivers and zero to many 

runoff points and a shoreline, which usually differs from the main current flow. Closed 

lakes (that have no runoff) lose their water either by evaporation or by seepage to the 

groundwater. They form a small surface water system of their own and are not directly 

part of a greater surface water network surrounding them. If there is a contribution to 

the network flow it will be diffuse via the baseflow. 

 



 11 

Figure 1–5 Example of a lake with 

more than one contributing river 

and one outflow (Source: Austrian 

Map 3D - Bundesamt für Eich- und 

Vermessungs-wesen BEV) 

 

 

 

 

 

 

 

1.1.2.4 Wide rivers 

Wide rivers - always dependent on the mapping scale - comparably to lakes form an 

area element. Sometimes only parts of the river show a compound cross section (this is 

where the river is much broader than the average of the river). The main current flow 

line has to be found. River bank and shoreline are the lines where other rivers join in the 

real world and differ considerably from the flow line. 

 

Figure 1–6 Example of 

a wide river, one 

tributary from south 

(Source: Austrian Map 

3D - Bundesamt für 

Eich- und Ver-

messungswesen BEV) 

1.1.2.5 Anthropogenic interventions 

Anthropogenic changes in the environment are omnipresent. Many hydraulic structures 

are already available, and some are yet to be built, to utilize water resources and to help 

to protect against negative effects of water. In the hydrological environment artificial 

watercourses are generated, watercourses are changed, and their flow is modified. The 
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following list shows some of the greater structures that influence the hydrological 

network:  

 Channel: A channel is an artificial watercourse. It either periodically or 

continuously contains moving water or forms a connecting link between two 

natural or artificial bodies of water (c.f. [IGH]). 

 Floodway: A special sort of channel that is used to divert flows from a point 

upstream of a region to a point downstream of this region (c.f. [IGH]). 

 Diversion: Transfer from one watercourse into another (c.f. [IGH]). 

 Weir: A weir is an overflow structure that may be used for controlling the 

upstream water level or for measuring discharge or for both. This is used for 

run-of-the-river hydroelectric power generation or the feeding of millstreams of 

watermills, navigational purposes, fish breeding, recreation, ... (c.f. [IGH, 

BDS]). 

 Dam: A dam is a structure that serves the primary purpose of retaining water. 

There are several types of dams, like arch dams, buttress dams, gravity dams, 

embankment dams, mostly depending on the type of valley (narrow V-shape or 

wide valley types) and the underground (rock or soil) (c.f. [BDS 2013, 

INTERNATIONAL RIVER 2013]). Conventional hydroelectric power stations 

need a dam and reservoir. 

 Barrage: A barrage is a barrier across a river, sometimes with gates. They are 

often used to control and stabilize water flow for irrigation systems. Barrages 

that are built at the mouth of rivers or lagoons to prevent tidal incursions or 

utilize the tidal flow for tidal power are known as tidal barrages.  

 Reservoir: Are water storages either behind dams or as bank-side reservoir 

somewhere along or near the river, where an embankment is used to encircle the 

water withdrawn from the river. Reservoirs can be created for different 

purposes, which are: hydroelectricity, water supply, irrigation, snowmaking, 

recreation, flood control and flow balancing. A special type is the pumped 

storage, which is a storage reservoir for hydroelectricity into which water is 

pumped (sometimes over some distance from watercourses not nearby) (c.f. 

[IGH 2013, BDS 2013]). 

 Crossover: Through canalization of a river it becomes possible that two 

watercourses are crossing each other without having contact. 
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1.1.3 Time variance in flow 

Many headwaters have time varying starting points that depend on the available surface 

runoff, which is strongly influenced by precipitation (see above). Therefore, it is not 

always clear where a river has its starting point or upper segment. 

If one follows a river upstream, the flow becomes less and less, and the straem 

[!] forks into a network of drainage channels which lose themselves perhaps in a 

multitude of small gulleys. Which of these then constitute "first order stream 

segments"? [SCHEIDEGGER 1966] 

If the rainfall is steady and ample, the rivers start at higher altitudes. If there is not 

enough rainfall or none at all, the rivers' variable starting points shift to lower altitudes, 

because it takes more time until enough water is gathered to form a stream. Some 

reaches may fall dry in periods of no precipitation and exist only some time of the year, 

because there is limited baseflow or a highly permeable underground. They are 

therefore called intermittent rivers. Rivers that are potentially perennial are called 

perennial or permanent rivers. Rivers containing alternating stretches of perennial and 

intermittent flow are called interrupted streams. (About stream building c.f. 

[STRAHLER 2006, ZEPP 2002]). 

 

There is variation possible concerning not only the starting point but also in the course 

of a river. Some rivers shift their streambed with time, and depending on the discharge 

the current flow line of a river also can change. (About channel stability c.f. 

[CHORLEY 1984], p. 302 ff.) 

 

For the hydrologic network this means that there is a time factor to be considered.  The 

network's continuity is dependent on the availability of a flow. Consequently in humid 

seasons the network may be considerably longer than in dry seasons. 

1.1.4 Changes in flow direction 

In flat areas changes in flow direction can happen depending on the discharge of the 

main river. This mostly concerns channels or river segments in estuaries or channels in 

the vicinity of big rivers flowing on flat plains. 
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1.2 The representation of the surface water network 

There is a set of issues concerning the crossover of the surface water network to its 

representations (either the analogue form or the hydrological network). The most 

important are: 

a) The representation of the physical elements of the hydrologic network in a model in 

general:  

– The producers of comprehensive data (e.g. the national land survey) already 

have expert knowledge on these representation topics – diffuse boundaries 

around lakes and along rivers have to be considered. 

b) The mapping scale (see 1.2.1) 

c) Complicated parts of the surface water network: 

- Where the catchment of a river segment can only be insufficiently identified 

(c.f. 1.1.2.2) - in these areas the discharge is often split or unclear, which has to 

be considered in a quantitative way in hydrological models. 

- Where there have to be defined virtual flow lines (e.g. through lakes) to create 

a continuous flow pattern. 

- Where there are anthropogenic interventions in the natural course of the rivers 

or the administrative requests of the river basin management, e.g. the 

segmentation of a river at dams, weirs or other river engineering measures. (c.f. 

1.1.2.5) 

d) The time variance in the surface water network - changing starting points in the 

hydrological network have to be considered (c.f. 1.1.3 and 1.1.4) 

1.2.1 Scale dependency 

The representation of the physical surface of the earth has been the topic of 

cartographers for a long time. Although interests have shifted a lot and techniques have 

developed since the beginnings of cartography, there is still the question about scale to 

be answered when planning a map and collecting the data for this map. This is not only 

valid for map data sets but for all spatial data sets in general: 

 

It is clear (and widely accepted ;-) that a representation is not a 1 : 1 copy but can only 

be a model of "reality". Therefore, some kind of generalization is to be expected when 

creating a representation. If we have a closer look to the crossover process between the 



 15 

real world object and its representation, a decision has to be made on the degree of 

detail (c.f. [MULLER 1991], p. 457 seq.), which leads to some introductory questions: 

 What is the size and form of the smallest elements, which must be 

represented? 

 How important is the natural form of the elements? 

 What about locational and attribute accuracy? 

 When is the dataset complete? 

In classical cartography this is the point where discussion about the scale fractions 

between reality and model and the thresholds of perception takes place. Because in a 

map the storage of the information is identical with its visualization - it is the map 

graphic that holds both. "The threshold of perception is the minimum size of a graphic 

element which can be seen with the naked eye under normal 

circumstances."([ROULEAU 1984] p. 104) These minimum sizes are necessary to be 

able to depict the singular element in the texture of a map. Arnberger gave a list of 

threshold values [ARNBERGER 1975]: 

Isolated graphical form Size in mm when form is 
black on white background 

Size in mm when form is 
coloured or on tinted 
background with proper 
differentiation of brightness 
and colour weight 

Line 0.05  0.07 
Double line 
(line/spacing) 

0.05/0.20 0.07/0.20 

Point 0.24 0.30 
Table 1 Minimum sizes for a viewing distance of 25 cm and normal lighting (translated excerpt 

from [ARNBERGER 1975], p. 227) 

The combination of scale and minimum sizes shows explicitly what can be represented 

in a map and what cannot be represented. We can look at this as a sort of best case 

scenario for mapped content, because although these threshold numbers have existed for 

some time there is still the factor "map maker" who may omit information even though 

it would be representable at a certain scale, due to other reasons (e.g. aesthetics, 

economic reasons, ...) and may add important information that is smaller than the 

minimum size (thus displace other information). 

 

In maps the "real world" surface water networks are represented in a discrete way, 

either as an illustration of the centreline, or as an areal illustration. Both types of 
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illustration can occur in one map and are dependent on the size of the real world object 

and the map scale.  

 

 

1:25,000 - River Thaya is 

represented as areal element. 

Smaller rivers can only be 

represented as centrelines. 

 

 Original scale 1:500,000 

enlarged to 1 : 250,000 - River 

Thaya is represented as line. The 

red rectangle shows the extent of 

the 1:25,000 example. Small 

rivers and intermittent rivers are 

omitted. 

Figure 1–7 Example of the differences in the representation of rivers depending on scale. (Source: 

Austrian Map 3D - Bundesamt für Eich- und Vermessungswesen BEV)  

 

Although I was not to happy that a widely known GIS specialist as Michael Goodchild 

uses the ambiguity of the term scale as lead for his articles about scale [GOODCHILD 

2001, GOODCHILD 2011], because this ambiguity simply occurs out of the terms use 

in different professions (cartographer and environmental scientist), which happens a lot 

when people of different professions meet, I agree that the classic cartographic use of 

scale as ratio between real world, and stored data has to be adapted for the GIS 

environment. 
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In the GIS environment the representation of the data is (and this applies to vector data 

even more than to raster data) split in a storage and a visualization part. The separation 

of data storage and data visualization makes it possible to present a data set at a 

different number of scaling ratios between real world and mapped data (sometimes 

disregarding all cartographic principles). When it is not stored with the data (e.g. as 

metadata) then there is usually no information about the detail that is represented in the 

dataset (and this applies again more to vector than to raster data, because the 

information about the first two dimension is explicit in the raster data itself). 

 

To describe detail for digital data the term resolution is often used. The resolution in 

raster case is for the first two dimensions explicit in the size of the raster cells5, and it 

even shows in a map, when a raster dataset is used for scales not appropriate for the 

used map scale (e.g. when one easily can depict the single raster cell in the map). The 

resolution of the third dimension has to be found out from the data description. 

 

The (minimum possible) distance between points is often used to describe the vector 

resolution. But vector-mapped datasets are almost always based on a world-view that 

discretizes the objects. Thus, the more points are set to distinguish an object from its 

surroundings (e.g. a river), the higher its resolution would be.  

 

Unfortunately this often creates the mistaken impression that vector data sets 

have infinitely fine resolution. ([GOODCHILD 2011], p. 6).  

 

It has to be kept in mind that the step to discretize the object - e.g. the shoreline of a 

river - has already taken place and has introduced generalization. Even if the basis of 

the mapping is the reality "Any observation of the physical occurs within the context of 

some model or abstraction" [RAPER 1995].  

 

The idea of fractals gives an additional interesting starting point to thoughts about 

detail. (c.f. [GOODCHILD 1987, KLINKENBERG 1994, MANDELBROT 1967, 

MARITAN 1996, TARBOTON 1988, WHEATCRAFT 1986])  

"One of the most important features of a fractal object is that its "degree of 

irregularity" is independent of scale. A simple example of this is a coastline. 

                                                
5 At least if there never was any downscaling process included in the data lineage. 
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When viewed from space, a coastline appears very irregular, but it appears just 

as irregular at an altitude of 1000 feet. Even when walking along the beach, the 

water meets the sand in a complex irregular pattern that is not a straight line." 

([WHEATCRAFT 1986], p. 568) 

 

If one has a closer look at the ideas that exist around the term "detail" in the scientific 

articles written on fractals, it appears possible to go into infinite detail when mapping 

data. Especially in the 1980s and 1990s articles about fractals concerning measurements 

in hydrology and geomorphology were published and showed that in a world, where 

data can be so easily obtained and combined in a GIS, it is extremely important to keep 

the fractal nature of many natural elements (e.g. rivers) in mind. 

 

Thus, although visual representation is not the first interest of the work with the 

network itself, generalization is an issue, because it influences not only the visual 

appearance and ability to be integrated with other data, the measured lengths and 

comparability of the elements of surface water network, but it can also introduce 

changes in the networks' structure. Scheidegger as far back as 1966 has already stated 

this in connection with stream ordering: 

 
Thus the choice of what is a first order stream segment, in fact, has in reality 

already been made by the map maker. Perhaps, a different map maker would 

have followed the "blue lines" a little farther upstream, through an additional 

fork, and thus the stream ordering should have been different than what was first 

arrived at. Similarly, if the scale of the map is increased (say, from 1: 100,000 to 

1: 10,000), it stands to reason that more tributaries in a river system will 

become visible so that all the stream orders become affected ([SCHEIDEGGER 

1966], p. 57) 

Change the term "map maker" in Scheidegger's statement against "data collector" and 

the scale specifications against specifications of detail, and this statement becomes valid 

for digital and analogue data. Not only the starting points and the number of tributaries 

are different, but also the topology in the surface water network may be changed, e.g. 

because three rivers may come together at the same point in a dataset with low detail, 

which may not be the case in a more detailed version of the data of the same rivers; or 

small connections may be missing in low detail data but are available in high detail. To 

work with stream data on more than one scale (e.g. river basin management vs. 
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management on catchment level) a level of detail approach similarly to the ones used in 

virtual realities is advisable. The generalization has to follow a strict hierarchy based 

procedure that allows a reference from certain low-level river nodes or rivers to high-

level ones to ensure forward and backward compatibility. 

1.2.2 Representation as a digital network 

Network data structures were one of the earliest representations in 
geographic information systems (GIS), and network analysis remains one of 
the most significant and persistent research areas in geographic 
information science. (...) 

Network analysis in GIS rests firmly on the theoretical foundation of the 
mathematical subdisciplines of graph theory and topology. Any graph or 
network (...) consists of a set of vertices and the edges that connect them. 
([CURTIN 2007], p. 103) 

With a closer look at a surface water network, many terms for surface water network 

elements can be mapped directly to the terms of graph theory [the following terms from 

graph theory are based on the works of [AHUJA 1993, BONDY 1976, CHARTRAND 

1977, DIESTEL 2006, KÖNIG 1950, LUCE 1952, WEISSTEIN]. 

 

A graph G is a set V of items (called vertices) connected by a set of edges E. An 

incident function ψ defines which edge ek is associated with which 2-element Subset 

of V. 

V(G) = {v1, v2, ...,vn} 

E(G) = {e1, e2, ...,en} 

𝜓𝜓(𝑒𝑒 ) = vivj ∀v ∈   𝑉𝑉 𝐺𝐺 }  

 

An edge (vi, vj) is usually written as vivj. 

Between the vertices and edges a binary relation is defined (that is called adjacency).  

Whenever two vertices are associated with the same edge they are called adjacent 
vertices, when two edges are associated with the same vertex they are adjacent edges.  

If the graph is undirected, the adjacency relation defined by the edges is symmetric. 

This means that for every pair vivj there also exists a pair vjvi. Otherwise the graph is 

called a directed graph (or oriented graph). 
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Figure 1–8 Line representation of a simple 

surface water network 

 

Figure 1–8 shows a line representation of a simple ideal surface water network. The 

orange dots that represent the beginnings and endpoints of watercourses like sources, 

confluences and river mouth are the graph theoretical vertices. The blue lines that are 

the representation of the watercourses would be graph theoretical representation of 

edges, the arrows indicate a direction. As only the connection of the vertices matters, 

there is no immediate need to make a generalized version of the rivers, as often seen in 

graph representations. 

 

Each set of data (vertices and edges) has its distinct unique values. One edge with 

identical start and end vertex (vi ≡ vj) is called a loop, when the ends differ (vi ≠ vj) this 

is defined as a link. If the graph does not allow loops, adjacency is irreflexive. If a 

sequence of adjacent edges has the same start and end vertex this is called a cycle. A 

graph without cycles is an acyclic graph.  

 

Usually the river water runs in a certain direction (which is downhill). Therefore, edges 

are usually only passed through in one direction. Thus it is a directed graph. Both 

being irreflexive and acyclic should be expected from the surface water network graph.  

 

In a surface water network the used number of vertex pairs is only a small fraction of 

what would be available of pairs, because most of the vertices are adjacent to no more 

than three other vertices - in very rare cases, when there is one confluence of three 

rivers, there may be four vertices connected or in an extensively braided river the 

connection may be even made by up to 4 or 5 vertices. This would be called a sparse 

graph, which is a rather vague definition and can be seen as the opposite of a dense 
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graph that is described as a graph, which uses most of the possible pairs of vertices to 

form its edges. The formal definition of sparse (and dense) graphs can be found in 

[PREISS 2000]: 

A sparse graph   is a graph G=(V, E) in which |E| << O(|V|2).6 

A dense graph    is a graph G=(V, E) in which |E| = O(|V|2). 

 

The following text on graph representations is based on [AHUJA 1993, CHARTRAND 

1977, CORMEN 2011, PREISS 1998, PREISS 1999, SAAKE 2004, TURAU 1996, 

VORNBERGER 2009, ZHAN 1998]. 

  

A node-node adjacency matrix A (also called connection matrix) of a graph G, with its 

edge set E, labels all adjacent vertex pairs vivj  with 1 and all other possible vertex pairs 

with 0.  

 

 

 

 

A is a square matrix with n rows and n columns: O(|V|2). 
  

                                                
6 About O-Notations see 4.1.1.2 Asymptotic notation, which does not only apply to define maximum 
running time but also to define the order of the maximum needed space. 

Aij =
1 (vivj )∈ E

0 otherwise

"
#
$

%$
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 to-nodes 

fro
m

-n
od

es
 

 1 2 3 4 5 6 7 8 9 

1 0 0 1 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 1 

4 0 0 0 0 0 0 0 1 0 

5 0 0 0 0 0 0 1 0 0 

6 0 0 0 0 0 0 1 0 0 

7 0 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 

Table 2 Example of an adjacency matrix for the directed graph in Figure 1–8 

 

It is very easy to discover if a connection exists from vi to vj with node-node adjacency 

matrices. This can be done in constant time. But the matrix is quadratic in size, and 

although most of the connections between vi and vj do not exist because our graph is 

sparse and therefore the matrix is sparse too, it would use a huge amount of disk space. 

 

Other values concerning the network, like costs or capacities, can be added by using a 

similar matrix for each variable. That means that for every additional variable we need 

additional space of O(|V|2). 
 

 

 
 

 
  

Cij =

c(vivj )
0
∞

(vivj )∈ E

i = j
otherwise

#

$
%
%
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 to-nodes 

fro
m

-n
od

es
 

 1 2 3 4 5 6 7 8 9 

1 0 ∞ 250.5 ∞ ∞ ∞ ∞ ∞ ∞ 
2 ∞ 0 307.2 ∞ ∞ ∞ ∞ ∞ ∞ 
3 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 271.5 

4 ∞ ∞ ∞ 0 ∞ ∞ ∞ 278.4 ∞ 
5 ∞ ∞ ∞ ∞ 0 ∞ 194.5 ∞ ∞ 
6 ∞ ∞ ∞ ∞ ∞ 0 189.7 ∞ ∞ 
7 ∞ ∞ ∞ ∞ ∞ ∞ 0 299.5 ∞ 
8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 190.2 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 

Table 3 Example of a cost matrix belonging to the adjacency matrix in Table 2 - the values are the 

costs (in our example we use distances). When there is no connection between two nodes the costs 

are infinitely high. If from-node is equal to-node then one stays in the same location, thus the costs 

are zero.  

Besides the node-node adjacency matrix shown above, it is also possible to create an 

edge-edge adjacency matrix. The edge-edge adjacency matrix (again for directed 

graphs) shows for each edge (from-edge) if its endpoint is the starting point of another 

edge (to-edge). Advantages and disadvantages of edge-edge adjacency matrices are 

comparable with those of node-node adjacency matrices (see above). 

 to-edge 

fro
m

-e
dg

e 

 1 2 3 4 5 6 7 8 

1 0 0 1 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 1 

5 0 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 0 0 

Table 4 Example of an edge-edge adjacency matrix 



 24 

An alternative to an adjacency matrix concerning the data volume is the adjacency list. 

Since the early 1970's adjacency lists have been seen as a way to store the nonzero 

elements of given sparse matrices (c.f. [TEWARSON 1973], p. 4).  

 

A singly-linked list is simply a sequence of dynamically allocated objects, each 

of which refers to its successor in the list. ([PREISS 1998] -

http://www.brpreiss.com/books/opus5/html/page97.html) 

 

In an adjacency list pointers lead to the neighbouring vertices of each vertex. In case of 

a directed graph those are the vertices where the edges that have their starting point at 

this certain vertex end. Need of space for an adjacency list is therefore O(|V| + |E|). Our 

simple example would have one list node for each node except the last one (id number 

9) that directly points at NULL, which is the end of the list.  

Figure 1–9 Example of an adjacency list for the 

directed graph in Figure 1–8  

id  ...unique node id 

idx  ...node index number 

h ...list head 

pn ...pointer to next node 

 

 

The grey parts in Figure 1–9 (and also in Figure 1–10, Figure 1–11, Figure 1–12, and 

Figure 1–14) are added to achieve more clarity. They are not part of the data structure 

itself. 

Additional values can be added to the lists by simply expanding the list structure with 

the necessary fields. This can be done very space-efficiently. We only need O(|E|) extra 

space for each additional variable. 

 

Figure 1–10 Example of an adjacency list 

with additional cost-field (in this case the arc 

length). 

c ... cost 

The other headers are like in Figure 1–

9. 
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In the node-node adjacency list only the connections between the vertices are listed. It 

would also be possible to create an edge-edge adjacency list to show the connections 

between the edges. To establish the connection between the vertices and edges, the data 

can either be saved in an incidence matrix or an incidence list. The incidence matrix of 

a network contains one column for each node of the graph and one row for each edge of 

the graph. The starting nodes (tails) are assigned the value -1. The ending nodes (heads) 

are assigned the value 1.  

 

 

 

 

 

It is easy to determine incoming (e where Ike = 1) and outgoing edges (e where Ike = -1) 

for a node and to determine the number of incoming (= number of 1's in a row) and 

outgoing edges (= number of -1's in a row) at O(|E|). However, the incidence matrix is 

space inefficient. The matrix is of O(|V|*|E|) and sparse because each arc is only 

connected to two vertices. Each column has only two non-zero values (either -1 or 1). 

Thus only 2*|E| values in the matrix are not zero, which makes (|V|*|E|)-2*|E| zero.  

 

 edges 

no
de

s 

 1 2 3 4 5 6 7 8 

1 -1 0 0 0 0 0 0 0 

2 0 -1 0 0 0 0 0 0 

3 1 1 -1 0 0 0 0 0 

4 0 0 0 -1 0 0 0 0 

5 0 0 0 0 -1 0 0 0 

6 0 0 0 0 0 -1 0 0 

7 0 0 0 0 1 1 -1 0 

8 0 0 0 1 0 0 1 -1 

9 0 0 1 0 0 0 0 1 

Table 5 Example of an incidence matrix for the directed graph in Figure 1–8 

 

Additional variables for cost or capacity values can be obtained in creating a separate 

matrix with variables*edges. Its space is of O(|E|) for every variable. 

Ike =
−1
1
0

e = (vivj ),k = i

e = (vivj ),k = j

otherwise

"

#
$
$

%
$
$
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In an incidence list representation edges and their corresponding starting nodes and 

ending nodes are stored. A special version is also known as Forward Star 

Representation. 

 

The Forward Star Representation uses fixed-size arrays that contain the arcs' indices and 

each arc's tail and head (this is the incidence list part of the data structure). From each 

from-node there exists a pointer to the first arc that emanates from the node.  

 

Figure 1–11 Example of a Forward Star 

Representation for the directed graph in Figure 1–8.  

fp ... forward pointer 

a idx ... arc index (edges) 

arc id ... unique arc id (edges) 

tail ... starting node index 

head ... ending node index 

Other headers are like in Figure 1–9. 

  

The Forward Star Representation provides information about the emanating arcs of each 

node. To determine the incoming arcs of a node the Reverse Star Representation can 

be used.  

Figure 1–12 Example of a Reverse Star 

Representation for the directed graph in Figure 1–8. 

rp ... reverse pointer 

 

The other headers are like in Figure 1–11. 

 

 

Additional variables (costs, etc.) can be added after the tail and head fields. Its space is 

of O(|E|) for every variable. 

 

The surface water network can contain braided river stretches, where there can be more 

than one edge between two points on the river stretch. These edges are called multiple 
edges. If the multiple edges are oriented towards the same vertex, as we can expect in 
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downhill flowing rivers, they are parallel edges. In graph theory the graph is called a 

multigraph. 

 

 

 

 

 

 

 

 

 

Figure 1–13 Line representation of a network 

with multiple edges (7 and 10) 

Multiple edges cause problems in the adjacency matrix representation as shown in 

Table 6 (yellow cell). The marked value represents more than one connection between 

vertices. It is possible to show with an adjacency matrix that two vertices are adjacent, 

but it is not possible to show how many connections there are. In an adjacency list the 

problem of multiple edges can be handled better by pointing more than once to an 

adjacent vertex. Even the addition of different values for costs/capacities would not 

cause a problem. 

 to-nodes 

fro
m

-n
od

es
 

 1 2 3 4 5 6 7 8 9 

1 0 0 1 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 1 

3 0 0 0 0 0 0 0 0 1 

4 0 0 0 0 0 0 0 1 0 

5 0 0 0 0 0 0 1 0 0 

6 0 0 0 0 0 0 1 0 0 

7 0 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 

Table 6 Example of an adjacency matrix for the directed graph in Figure 1–13 
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Figure 1–14 Example of an 

adjacency list for the 

directed graph in Figure 1–

13 

 

 edges 

no
de

s 

 1 2 3 4 5 6 7 8 9 10 

1 -1 0 0 0 0 0 0 0 0 0 

2 0 -1 0 0 0 0 0 0 -1 0 

3 1 1 -1 0 0 0 0 0 0 0 

4 0 0 0 -1 0 0 0 0 0 0 

5 0 0 0 0 -1 0 0 0 0 0 

6 0 0 0 0 0 -1 0 0 0 0 

7 0 0 0 0 1 1 -1 0 0 -1 

8 0 0 0 1 0 0 1 -1 0 1 

9 0 1 1 0 0 0 0 1 1 0 

Table 7 Example of an incidence matrix for the directed graph in Figure 1–13 

 

 

Figure 1–15 Example of a forward star 

representation for the directed graph in Figure 1–13. 

Due to branching there is more than one edge per 

node. 

 

 

Figure 1–16 Example of a backward star 

representation for the directed graph in Figure 1–13. 
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In case the surface water network contains crossovers (which has to be verified), it may 

be possible that the graph cannot be drawn in the plane without two edges crossing each 

other. Thus the surface water network could therefore be a nonplanar graph.  Both 

having a nonplanar graph and a multigraph has consequences in graph theory. 

 
If time variances are drawn into conclusion we talk about a dynamic graph. The 

dynamic would influence the data model that makes it possible to derive data sets for 

special cases (like floods or changes in flow direction).  

 

A flow network is a special form of a directed acyclic graph. It has weights on the edges 

that define the flow capacity of the edges, and two kinds of specially marked nodes can 

be distinguished: 

 the sources: vertices with no incoming but one or several outgoing edges 

 the sinks: vertices with no outgoing but several incoming edges 

 

There are many Geographic Information Systems that provide a network model. They 

range from the commercial GIS products to freeware. The finer implementation of the 

network in the GIS system is in some cases made clear, but mostly hidden behind 

interfaces, thus difficult to come by. In general the network in GIS is based on the 

vector geometry. Network junctions are created from the vector geometry nodes. The 

edges themselves with all their vertices or curve functions are relevant for the 

establishing of the topological connection and for the capacity and weight values they 

contribute. In different connectivity tables, which vary in their structure between the 

different GISs, the connection between the nodes, and the nodes and edges, as well as 

between the edges is described. 
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The following example shows the realization of a network model in ESRI ArcGIS SDE 

(source: http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html# 

/na/002n0000007r000000/) 

(Text in italic is the original text from the homepage) 

 GDB_ITEMS — Geometric networks are tracked in here 
 GDB_ITEMTYPES— Stores a value indicating that the object is a geometric network.  
 GDB_ITEMRELATIONSHIPS— stores information on how the network and the feature 

dataset it is in are related. 

Tables in the geodatabase that begin with N_ store information about networks. 

 N_<ID>_PROPS - Contains a summary description of a network's properties, such as 
element counts and maximum EID values.  

 N_<ID>_DESC— table describes the elements of a network. This is a normalized table whose 
row count is equal to the number of junctions and the number of edges in a geometric 
network. Each network element has a unique element identifier EID and the 
ELEMENTTYPE field shows if the network element is a junction (1) or an edge (2) 

The following tables use BLOB-pages to store the information. The detailed 

structure of the data is therefore hidden (BLOBs can store a wide range of formats, 

even executables). 

 N_<ID>_E<#>—Describes network edge weights; # = 2, 3, 4, or 5 
 N_<ID>_EDESC—Describes the edges in a network 
 n_estatus—Describes the status of each edge including its deleted and disabled states 
 N_<ID>_ETOPO—Describes the network edge topology or connectivity 
 N_<ID>_FLODIR—Describes the network flow direction 
 N_<ID>_J<#>—Describes network junction weights; # = 0 or 1 
 N_<ID>_JDESC—Describes the network junctions 
 N_<ID>_JSTATUS—Describes the status of each network junction including its deleted and 

disabled states 
 N_<ID>_JTOPO—Describes the connectivity of junction elements with edge elements 
 N_<ID>_JTOPO2—Describes the connectivity of junction elements with edge elements when 

there are multiple edges connected to a single junction 
 N_<ID>_T<#>*—Describes the weight values of each turn element 
 N_<ID>_TDEFN*—Defines each turn element by listing the edges and junctions that make 

up the turn 
 N_<ID>_TDEFN2*—Overflow table for the turn element definition; for example, if multiple 

edges make up a turn 
 N_<ID>_TDESC*—Describes the turns in a network  
 N _<ID>_TSTATUS*—Describes the status of each network turn, including its deleted and 

disabled states 
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Figure 1–17 ESRI SDE Network Model  

Dashed lines show implicit relationships between columns 
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2 Catchment area and hydrologic network 

2.1 The hydrologic catchment 

The hydrologic catchment (or drainage basin) "is the entire area providing runoff to, 

and sustaining part or all of the streamflow" of a surface water network (c.f. 

[GREGORY 1973], p. 37). Ideally it is an area with one outlet point (for coastal 

catchments it is a coast line) for the surface water runoff. The catchment boundary (or 

drainage divide or watershed divide) is the line that divides the water runoff. It can be 

determined with a topographic map or with a digital elevation model, in finding the 

highest points between two rivers/runoff lines and connecting them to form a polygon. 

 

 

 

Figure 2–1 Watershed indicated in red - Flow direction of the surface water shown with black 

arrows 

The catchment boundary is - comparable to the river segments - strongly influenced by 

its fractal dimension. The more detail it is surveyed in, the longer will be its length, 

which has to be taken into account whenever the perimeter of the catchment is included 

into models (see also [BREYER 1991] and section 3.1.3.2) 
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2.2 The connection between surface water network and catchment 

In the ideal typical connection between surface water network and catchment there is a 

distinct association between the single surface water network element and a catchment 

area. For a simple surface water system this means that a river segment ends usually at 

the point where three (or more) catchments touch - those are (1) the catchment of the 

river segment, (2) the catchment(s) of the other confluence(s) and (3) the catchment 

where both (1 and 2) drain to. In direction of the flow, the areas can be aggregated to 

form one non-overlapping catchment area for a river's drainage system.  

 

 

Figure 2–2 Each segment of the surface water network should have 

exactly one catchment area  

 

 

 

 

 

 

 

2.2.1 Segmented/Overlapping Catchments  

Problematic exceptions of the surface water network have already been mentioned in 

the sections 1.1.2, 1.1.3 and 1.1.4. They have an influence on the definition of the 

watershed divide and can happen in small as well as in large environments. Ideally each 

watershed divide surrounds exactly one catchment area without area overlaps. But when 

there are anthropogenic interventions like crossovers and diversions, or natural causes 

like rivers flowing underground and other rivers forming atop of them, then it can 

happen that a catchment may be segmented in more than one area or overlap with 

catchments of other surface water elements. 

 

In some cases the catchments have to be divided artificially into sub catchments 

because there are anthropogenic structures (weirs, dams, barrages...) for which it is 

desirable to know the catchment area for hydrologic/hydrometric aspects. 
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2.2.2 Groundwater 

The groundwater flow forms the baseflow for many surface waters.  

As the groundwater flows, particularly for small catchments, often cross the 
topographical divides, the surface water divides (overland flow, drainage 
flow) and the groundwater divides in some cases differ significantly. 
[HENRIKSEN 2003] 

 

 

 

 

 

Figure 2–3 Difference between surface 

and groundwater catchment 

 

 

To ignore the groundwater bodies is therefore a strong simplification of the surface 

water catchments. The true area of a catchment would have to be defined in a much 

more complicated procedure than only using a DEM or appropriate map. It would have 

to include geologic and hydrologic factors that would exceed the frame of this thesis. 

 

2.2.3 Floods

In flat areas with only a few meters difference in altitude between drainage divide and 

river bed, a flood can cause temporary changes in catchments, because the drainage 

divide may be overflown, and waters that usually flow separately are joined - and so are 

their catchments. 

  



 35 

2.3 The representation of the catchment 

The catchment is generally understood and therefore represented as areal feature. If we 

stay in the plane it is a common way to use topological functions to check for overlaps 

and gaps in areal features. With a look on the surface water drainage only, topology is 

therefore used to control the area and make sure that there are no uncovered parts and 

no overlaps. Additionally, there will have to be corrections made for those areas that 

cannot be represented in the plane, meaning the cases discussed in the sections 2.2.1, 

2.2.2 and 2.2.3. For those cases we will have to either introduce a third dimension and 

allow the overlap of areas or to accept catchments that consist of more than one part. 

 

The connection between the catchment and the network will be based on the vector 

data's topology. The better the network and the catchment correspond, the easier it is to 

describe their connection based on the topology without need to set manual relations 

between the two levels. The connectivity between the catchments and between 

catchment and surface water network can be derived from their position or represented 

by connectivity tables. 

 

Due to the existence of catchment with no digitally defined flow lines but with a known 

connection to the other catchments, this has to be specially considered when creating a 

data model. As the catchments have connections to each other similar to the rivers, it 

suggests itself to use a similar data representation for their connectivity and create a 

catchment network. This could be done for example in representing the catchment 

polygons with points and the connections with edges, like in a river network or just in 

form of a node adjacency list, as described in 1.2.2. 
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3 Where and how is surface water network data (incl. 

catchments) used? 

Surface water network analysis, which includes the catchments, is not constricted to the 

interests of one science or one administrative body. Many different interest groups in 

the WFD environment seem to deal with surface water networks. This is an attempt to 

address the different groups and find out how surface water networks are used. The 

conclusions at the end of this chapter will serve as a basis to find or formulate expedient 

algorithms for the surface water network and its corresponding catchments. The 

information was compiled from scientific articles and by talking to and working with 

people of different sciences and administrative bodies. 

3.1 Surface water network/catchment uses in earth sciences 

Many of the earth sciences are connected to research of the surface water network. 

Geomorphology as scientific study of the landforms and the processes of landform 

shaping and hydrology as the study of the movement, distribution (quantitative 

hydrology), and water quality (qualitative hydrology) have scientific questions that deal 

with surface water networks and their corresponding catchments. They both use 

hydrography7, which refers amongst others to the mapping or charting of water's 

topographic features. It involves establishing the morphology of rivers, lakes and seas, 

and measurements of the water bodies (lengths, volumes, depths, tides, currents) and the 

regional water balance. Geomorphology and hydrology themselves are practiced within 

other disciplines like physical geography and geology. 

 

"The investigation of drainage network systems would seem to address the 

essential focus of a geographical approach to landform analysis. Drainage 

networks identify organized transport systems in space, and also operate as 

dynamic space-filling systems in temporal landscape evolution. The drainage 

                                                
7 The term hydrography is used differently in different countries, the meaning used in this thesis is rather 
common in Austria and Switzerland. In other countries (e.g. US, Germany,...) some of the defining 
elements of the Austrian meaning of the word "hydrography" would be associated with 
"hydromorphology" (esp. the morphology), or with "hydrology". 
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network defines a drainage basin, and thus provides both a framework for 

integrating spatial elements of the land surface, and also a structure for 

dissecting sampling space into functional areas." ([JARVIS 1977], p. 271) 

 

The scientific interests in surface water networks and their catchments that arise in the 

earth sciences can be grouped as follows (see also [GREGORY 1973], p. 39): 

 The distinct surface water element: length, depth, volume, profile, sinuosity,... 

 The network: shape, topology, drainage density, stream length 

 The network and its relation to the catchment: area tributary to streams 

 The catchment: length, perimeter, shape 

3.1.1 Orders and coding 

This subchapter about river ordering and coding is a recapitulation of different sources, 

mainly [HORTON 1945, SCHEIDEGGER 1965, SCHEIDEGGER 1970, SCHMIDT 

1984, SHREVE 1966, STRAHLER 1957, VERDIN 1999, WIMMER 1994]) 

 

River ordering is a way to examine the distribution of rivers and their tributaries in a 

watershed and to find scientific regularities in these distributions. River ordering was a 

big discussion topic of geographers and geomorphologists in the 1960s and 1970s. 

Although the ordering systems are not on the main research agendas any longer, they 

are still in use as access points to watershed research (besides more interesting topics 

like watershed connectivity).  

 

Horton defined the different orders in connection with the stages in stream 

development. A stream is of first Horton order at the end of the first stage of its 

development, and with every stage gains one order (c.f. [HORTON 1945], p. 239 ff.). 

That means that rivers in the same Horton order are in the same stage of development. 

Because of this, the order numbers serve as the basis for the comparison of different 

fluvial systems. River order computation is a process that has a big topological 

component, which makes networks the ideal tool to calculate them. 

 

The order numbers are always established for a river or river segment (depending on the 

ordering system) and are usually also assigned to the related catchment area. Appendix 

8.1 contains an overview of the prevalent river ordering systems. One of the main 



 38 

differences in the ordering systems is the starting point, which means whether it is top 

down (order number one is at the headwaters) or bottom up (order number one is at the 

estuary).  

 

River coding that is in some variations very close to river ordering (e.g. the Pfafstetter 

system) helps to locate river segments. 

 

A special version of low order rivers (1 and 2 after Horton/Strahler) are the 

adventitious rivers, those connect directly to the main stream even though they are 

usually of a much later stage of the rivers development when the development of the 

river system approaches maturity. The number or the adventitious rivers is therefore of 

interest to the researchers (c.f. [HORTON 1945], p. 342). 

 

The bifurcation ratio Rb  ([HORTON 1945], p. 286) is a parameter that is derived from 

Horton/Strahler orders. Rb conveys how the number of rivers per order decreases with 

increasing order - to put it simply: the higher the order, the lower the number of rivers 

that can be counted for that order. Rb is the factor that gives the decrease of rivers from 

one order to the next higher order. The more elongated a catchment is (compared with 

others of the same size), the higher the average Rb usually is. The Rb is influenced by 

the number of adventitious streams. 

 n ... Number of river segments 

i  ... Order of river segments 

 

 

 number of river segments Rb 

1st order 20  

2nd order 6 3.33 

3rd order 2 3 

4th order 1 2 

sum 29 8.33 

average Rb  2.78 

Table 8 Example for the calculation of the bifurcation ratio 

Rb  = ni
ni+1
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Other factors e.g. growth of area, growth of length per increase of order number are 

calculated analogue to Rb. 

 

3.1.2 Extracting information about distinct surface water elements 

A substantial description of a surface water network in hydrology and geomorphology 

is usually given though the different morphometric variables of the distinct surface 

water elements and the whole surface water network. Those are usually researched in 

relation to the coding.  

 

Most of the parameters used for the description of the rivers and the catchments are 

usually calculated on a plane view. For some questions the relief may have to be taken 

into account. The area tributary to streams, for example, is dependent on the relief. Most 

of the parameters mentioned below will produce different values when calculated with 

the relief (e.g. for the length we then talk about "true" length...) 

 

3.1.2.1 River length and gradient 

The surface water network is dynamic (c.f. 1.1.3 Time variance in flow). Therefore, the 

length of a river can vary. When a starting point, a course and an endpoint is 

ascertained, then the length of a river segment for this certain state of the network can 

be calculated based on its geometry (or if necessary, based on the measures that are 

combined with the segment). All length calculations are strongly influenced by scale 

(c.f. 1.2.1). Thus it is only legitimate to compare length values of geometries created on 

the same scale and with the same method. This will therefore have to be a point for 

further investigations concerning a European-wide dataset of rivers where different 

countries contribute their data. 

 

The length itself is a variable of the network edges' geometry. Involvement of the 

topological part of the network is not necessary to calculate the unique edges lengths 

either in 2D or 3D. In some cases when geometry is not seen as exact enough, the 

length values will be calibrated through survey points along the river and used as 

measures, this being one way to deal with different scales. 
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The edge lengths can be used as costs of a network analysis when calculating special 

length variables, which are: 

 The Path Length: The distance from the downstream end of a segment to 

the network termination point. 

 Longest Flow Path: The path with the greatest length from a certain point 

upstream. 

 Arbolate Sum: The sum of lengths of all segments that flow to the 

downstream end of a segment. This is an aggregation parameter that can be 

refined with flow data to hold the volume of water in a (sub-)system at a 

certain time step. 

 

The length values are often related to other values that are seen as important for 

hydrologic research: 

 River Gradient: Length of a stretch (can be segment length, path length or 

other) related to the difference in height  

 

 
 

... Gi gradient of the stretch i 

... Li length of the stretch i 

... ΔHi difference in height between the starting point and the end point 

 

The gradient can vary in the river, and should be calculable dynamically for arbitrary 

parts of rivers. The gradient is a variable that has a big influence on the flow velocity 

and because of this on the flood hydrograph. 

 Network Density: The arbolate sum related to the catchment area.  

  

 

 

 

 
... Di density of rivers in Catchment i 

... Lij length of the stretch i in catchment j 

... Aj area of catchment j 

 

Dj =
Lij

i=1

n

∑
Aj

Gi =
Li
ΔHi
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3.1.2.2 Shape of the network 

The shape of a network is a combination of topological and geometrical parameters. 

The angle of the confluences is one parameter of the networks' shape description that 

can be calculated based on the networks topology and geometry. Another parameter 

would be the network's overall orientation. 

3.1.3 Variables of the Catchment 

"Morphometric characteristics of drainage basins provide a means for describing the 

hydrological behaviour of a basin."( [BÁRDOSSY 2002], p. 931) 

 
Many articles have been written about meaningful catchment variables (or drainage 

basin variables as they are often called). Gardiner and Park [GARDINER 1978] created 

a thorough review of ideas about catchment up to the publication time of their article. 

The set of problems concerning the meaningfulness of variables and the implications of 

scale (c.f. also 1.2.1) are valid up to this day and are re-assessed in later articles (e.g. 

[BÁRDOSSY 2002]). 

3.1.3.1 Area 

"In hydrology, the drainage area of a basin (...) is needed whenever a member of the 

water balance equation is to be quantified in volume units for the basin as a whole, or 

for parts of it. Thus, uncertainties in the basin area will lead to uncertainties of the 

same order of magnitude in the water balance calculations." ( [BÁRDOSSY 2002],  p. 

933) 

3.1.3.2 Perimeter 

Perimeter P is a problematic parameter, like all other length variables with a fractal 

dimension. Related with the area the perimeter serves as a variable that can be used to 

give some information about the shape of the catchment. 

"Basin perimeters have ever-increasing length as resolution of view increases, 

and as a result, the perimeter measurement employed in calculation of a number 

of morphometric indices has no unique value. If there is no explicit 

compensation for this in experimental design, there is a real potential for 

misinterpretation of results, particularly in studies comparing basins of different 
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size or data sets of basin characteristics obtained from different map sources." 

([BREYER 1991], p.156) 

Breyer and Snow further state that when using the perimeter in shape analysis, it should 

be measured using a coarse resolution that is proportional to the catchments size. Using 

the perimeter of the catchments should therefore always happen with great caution 

when there are different catchment data sources in use. 

3.1.3.3 Length of the catchment 

There are different length variables in catchment research. One very common is the air-

line distance from the confluence point (that is at the lower end of the catchment) to the 

point farthest away on the catchment's boundary. The value usually works very well for 

small catchments, but larger catchments do not always have a straight teardrop form. 

They tend to have bends in their course. This means that the air-line distance line will 

not run along the valley. It could even be possible that the line crosses the catchment 

boundary. Therefore, usually other values are used - like the valley length of the longest 

tributary where the valley is extended to the catchment boundary. 

3.1.3.4 Shape of the catchment 

3.1.3.4.1 Compactness 

Compactness of shapes is calculated as the area of the shape in relation to the area of a 

circle (as the most compact shape). As early as in 1914 Gravelius published a form 

parameter, which he called "Entwicklung der Wasserscheide" (expansion of the 

watershed): 

 

"Ist U km die Länge der Wasserscheide eines Flußgebietes von der Größe f qkm, so 

wird man sie vergleichen mit dem kleinsten Umfang, den diese gegebene Fläche f 

überhaupt haben könnte. Nun ist der Kreis diejenige Figur, welche bei gegebenem 

Flächeninhalt f den kleinsten Umfang u besitzt. Aus f = πr  und u = 2πr findet man 

u = 2 πf. 
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Dieses u kann man also leicht für jedes gegebene Flußgebiet f finden; und es ist dann 

das Verhältnis U:u=e welches interessiert und welches als Entwicklung der 

Wasserscheide bezeichnet wird."8([GRAVELIUS 1914], p. 14) 

 

This parameter is now mostly known as Compactness C ([GREGORY 1973], p. 51, 

[BÁRDOSSY 2002], p. 932): 

 

 

 

 

P ... Perimeter of the catchment 

A ... Area of the catchment 

 

If C = 1, then the catchment would be completely round. The larger C is, the larger is 

the perimeter compared to the catchments size. This can be because the catchment is 

very long and narrow (or broad and short) but also because the catchment is deeply 

jagged. 

 

3.1.3.4.2 Basin Circularity 

A very similar factor was defined in 1953 by Miller. The Basin circularity c is the ratio 

of basin area to the area of circle, having the same perimeter as the basin. 

([BÁRDOSSY 2002], p. 932, [GREGORY 1973], p. 51) 

 

 

 

 

A ... Area of the catchment 

P ...  Perimeter of the catchment  

C ... Compactness 

 

                                                
8 "If U (km) is the length of the watershed of a river system of size f (km2), one will compare it with the 
smallest perimeter this given area f could have. Now the circle is the one figure that has the smallest 
perimeter u of a given area f. From f = πr  and u = 2πr one finds u = 2 πf. 
This u can easily be found for any given river basin f, and it is then the ratio U: u = e which is interesting 
and which is called the expansion of the watershed." 

c = 4πA
P2

=
1
C2

C = P
2 πA
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3.1.3.4.3 Form Factor 

In 1932 Horton created the Form Factor F ([BÁRDOSSY 2002], p. 932, [GREGORY 

1973], p. 51), which is a parameter where he related the catchments' area with the 

square of the catchments' length. Its advantage over the compactness parameter and the 

basin circularity is, that it is not influenced by a fractal dimension, at least when the 

length of the catchment is calculated as a straight line from the catchments mouth to the 

most distant point on the watershed. Horton criticized the compactness ratio for not 

considering the point of the stream outlet, which also applies to the basin circularity. 

 

 

 

A ... Area of the catchment 

L ...  Length of the catchment  

 

If F = 1 then the catchment has a quadratic form. The smaller F becomes, the longer or 

more jagged the catchment is. The main discussion point is how the length of the 

catchment is to be calculated. 

 

3.1.3.4.4 Basin Elongation 

In 1956 Schumm created the basin elongation, a ratio of the diameter of a circle with 

the same area as the basin to the basin length. 

  

 

 

 

A ... Area of the catchment 

L ...  Length of the catchment  

 

3.1.3.4.5 Lemniscate Ratio 

Because the catchment shape is nearly never circular but most times more teardrop like, 

Chorley compares the basin of such a shape with the Lemniscate Ratio K 

F = A
L2

E = 2 A
L π
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([BÁRDOSSY 2002], p. 932, [CHORLEY 1959], p. 341). Before applying K to river 

basins, Chorley used it to describe the shape of Drumlins9. 

 

 

 

 

A ... Area of the catchment 

L ...  Length of the catchment  

3.2 Surface water network/catchment uses in biology and ecology 

3.2.1 Hydromorphology  

Hydromorphology is a very recent term that has been created for the European Union 

Water 

Framework. It originates from soil science but has been given a new and specific 

meaning, which is “the hydrological and geomorphological elements and processes of 

water body systems.”  
"The field of hydromorphology is introduced to respond to the myriad of 

scientific and engineering challenges created by the wide range of natural and 

anthropogenic influences that have literally “morphed” the hydrologic cycle at 

all spatial and temporal scales." ([VOGEL 2011], p. 148) 

 

"Whilst traditionally poorly quantified, the link between physical habitat and 

ecological response in rivers is widely recognised, and is currently rising up 

legislative and policy agendas. In Europe, this is reflected in the Water 

Framework Directive which dictates that ‘hydromorphological’ condition of 

water bodies should be capable of supporting ‘Good Ecological Status’. 

Methods are developed that integrate river system hydrology, geomorphology 

and ecology (and the complex interplay between these three variables)." ([ORR 

2008], p. 32) 

 

                                                
9 A Drumlin is a small hill created by glacial ice impacting glacial sediments. It has the form of a turned 
spoon without handle.  

K =
πL2

4A
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Hydromorphology could therefore be described as geomorphology with a strong 

intertwining with ecology and biology. In ANNEX V the WFD lists the 

hydromorphological elements that are seen as important quality elements for the 

classification of ecological status - the river continuity10 is directly connected with the 

structure of the river network but includes other information like the behaviour of 

species. Others of the listed elements (hydrological regime, quantity of water flow) can 

use the topological and geometrical information represented in the digital surface water 

network. 

3.3 Surface Water network and their corresponding catchments used for 
WFD questions 

The WFD (but also other directives of the EC dealing with surface water, e.g. the EU 

Floods Directive, the EU Flora-Fauna-Habitats and Birds Directives) has a strong 

reporting component. If elements reported have a spatial quality, then they should be 

presented in their spatial context. Thus, all the administrative bodies connected with the 

preparation of the data for reporting about the conditions of surface waters, get (more or 

less intensive) in contact with the surface waters GIS datasets (thus also with the 

network): 

 

1 SURFACE WATERS 
1.1. Characterisation of surface water body types 
Member States shall identify the location and boundaries of bodies of surface 
water and shall carry out an initial characterisation of all such bodies in 
accordance with the following methodology. Member States may group surface 
water bodies together for the purposes of this initial characterisation. 
(i) The surface water bodies within the river basin district shall be identified as 
falling within either one of the following surface water categories − rivers, 
lakes, transitional waters or coastal waters − or as artificial surface water 
bodies or heavily modified surface water bodies. 
(ii) For each surface water category, the relevant surface water bodies within 
the river basin district shall be differentiated according to type. These types are 
those defined using either "system A" or "system B" identified in section 1.2. 
(iii) If system A is used, the surface water bodies within the river basin district 
shall first be differentiated by the relevant ecoregions in accordance with the 
geographical areas identified in section 1.2 and shown on the relevant map in 
Annex XI. The water bodies within each ecoregion shall then be differentiated by 
surface water body types according to the descriptors set out in the tables for 
system A. 

                                                
10 River continuity can be defined for different purposes. The ecological view of continuity is closely 
connected with the ability of different species to migrate along the river.  
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(iv) If system B is used, Member States must achieve at least the same degree of 
differentiation as would be achieved using system A. Accordingly, the surface 
water bodies within the river basin district shall be differentiated into types 
using the values for the obligatory descriptors and such optional descriptors, or 
combinations of descriptors, as are required to ensure that type specific 
biological reference conditions can be reliably derived. 
(v) For artificial and heavily modified surface water bodies the differentiation 
shall be undertaken in accordance with the descriptors for whichever of the 
surface water categories most closely resembles the heavily modified or 
artificial water body concerned. 
(vi) Member States shall submit to the Commission a map or maps (in a GIS 
format) of the geographical location of the types consistent with the degree of 
differentiation required under system A.  [WFD 2000] 

 

Several working groups were/are on the way to achieve the tasks set by the WFD. EU 

working groups and international river basin working groups created guidance papers 

for the national level to coordinate how the tasks have to be fulfilled. National working 

groups and Federal states working groups prepare inputs for guidance papers and 

consolidate the data.  

 

The WFD-guidance papers are at the moment kept at the CIRCABC (Communication 

and Information Resource Centre for Administrations, Businesses and Citizens)-server. 

 No. 9. Implementing the Geographical Information System Elements (GIS) of 

the Water Framework Directive  

 No. 10. Rivers and Lakes - Typology, Reference Conditions and Classification 

Systems  

 No. 22. Updated WISE GIS guidance  

 

These sources give a lot of detailed information on how to deal with surface waters. 

With regard to the surface waters, it is eye-catching that most of the data is presented on 

different levels of detail than it is usually collected. Thus, ways for the aggregation of 

data (e.g. from single catchment level to the level of grouped catchments (100 km2, 500 

km2)) have to be planned and kept in mind.  

 

Another thing that attracts attention is the huge amount of data that has to be collected 

and stored in the spatial context. This cannot happen directly within the digital network 

- because the network would be cut into multiple small pieces by doing so. The 

suggested way by the GIS-Guidance documents to deal with this is the use of dynamic 
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segmentation. The digital network will not only have its geometrical and topological 

information, but it will also be combined with routing information that makes it possible 

to reference a lot of different data onto the network. 

3.4 Surface water networks in river engineering and navigation 

River engineering attempts to understand fluvial geomorphology, implement a physical 

alteration, and maintain public safety. Networks with a medium to high resolution can 

therefore help to gain some insight in the headwaters of the location to be engineered. 

The accumulation of catchment areas above a certain point can for example be used to 

calculate worst-case scenarios for flooding or to give basic information for any kind of 

regulation work. This usually is only possible if the network and catchment model is 

combined with a high resolution DEM and additional data (profiles, rainfall, 

anthropogenic risk locations...). 

 

Engineering works to increase the navigability of rivers only make sense when they are 

undertaken in large rivers with a moderate fall and a high enough discharge in the dry 

seasons. The surface water networks can therefore not only be used to hold data on the 

navigability of rivers, which can be queried accordingly, but they can, in combination 

with other data (river widths, river depths, river profiles, land use, DEM, ...), help to 

estimate the amount of engineering that has to be done (channelization, ...) to reach the 

goals.  

 

3.5 Conclusion on the use of digital surface water networks 

From the different uses of digital surface water networks listed above, the main 

following uses can be derived: 

Ordering and coding: the networks' topology is used to create river ordering, which 

leads to hierarchies in the data set that are used for data comparison as well as 

administrative purposes 

Locating (tracing): the networks' topology is used to easily find locations and 

segments that influence (because they are above) a certain point in the network or that 

are influenced by (because they are beneath) a certain point in the network. 
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Getting information about the network and its elements: network information can 

be based on topology or geometry.  

Getting information on continuity: The network geometry and topology, along with 

information from biology and hydromorpholgy, are used to calculate continuity of the 

river for several purposes (navigation, fish migration, other species migration, and 

flow). 

Accumulating: Along the network data is accumulated. This can be area (catchment 

data), length, flow and dynamically segmented data (counts ...). The continuity of the 

river may have to be kept in mind, as well as the type of connectivity between 

catchments and rivers. 

Relating catchment data to rivers and river data to catchments 
Relate research data to rivers: How to use a network based on natural conditions and 

apply data to it, (e.g. by dynamic segmentation) and still be able to query that network 

in sufficient time. 
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4 Algorithms for the use of digital surface water networks 

4.1 Introduction to Algorithms 

4.1.1 Basics  

(c.f. [CORMEN 2009, DUMKE 2001, KNUTH 1997, KUNZINGER 2002, 

OTTMANN 1998, OTTMANN 2002, SAAKE 2004, SEDGEWICK 2011, 

VORNBERGER 2008]) 

 

The term "algorithm" goes back to the period around 825: Muhammad Ibn Musa Al-

Khwarizmi wrote the book "Kitab al-jabr wa'l-muqabala"("Rules of restoring and 

equating") [KNUTH 1997 S.1]. His name and the Greek "arithmos" for number led to 

the term algorithm. Algorithms exist already since ancient times. Just think of Euclid's 

(around 300 BC) algorithm for finding the greatest common divisor gcd in its 7th Book 

of Elements - an explanation of the individual steps of computing the greatest common 

divisor of two numbers. This is already evidence that the process is more or less 

independent of the computer, which should be used and also independent of the 

programming language. An algorithm is the description of all steps to be executed in 

order for a given problem to be solved. 

Ein Algorithmus ist eine präzise (d.h. in einer festgelegten Sprache 

abgefasste) endliche Beschreibung eines allgemeinen Verfahrens unter 

Verwendung ausführbarer elementarer (Verarbeitungs-)Schritte. ([SAAKE 

2004] S. 16)11 

It is often in the textbooks for algorithms, however, that the term is used only in 

connections with computers12. 

Informally, an algorithm is any well-defined computational procedure that 

                                                
11 An algorithm is a precise (that means composed in a determined language) finite description of a 
general procedure by using executable elementary (processing) steps. 
12 It should be noted that each person is confronted with algorithms outside the computerized world, be it 
by a cooking recipe or by a manual. The intuitive grasp of the concept "algorithm" is therefore usually 
correct, because the concept is familiar. 
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takes some value, or set of values, as input and produces some value, or set 

of values, as output. An algorithm is thus a sequence of computational steps 

that transform the input into the output. ([CORMEN 2001] S.5) 

Algorithms should have the following qualities: 

 Correctness: An algorithm terminates with the correct solution in all possible 

input cases. 

 Determinacy: Different cycles of an algorithm have to produce the same result 

if the instance and conditions stay the same.  

 Definiteness: An algorithm specifies the sequence of events. This means that for 

every point in the procedure there is only one possibility to go further. This 

includes details of each step and including how to handle errors 

 Interpretability: The individual steps must consist of clearly interpretable 

instructions. To avoid language barriers in this steps a formalized language or 

pseudocode is used where the semantic of the step is clearly described. The 

implementation in a certain programming language would follow this 

description. 

 Feasibility: Each step of the procedure must be executable. Wherein the 

execution of the individual steps may happen sequentially or parallel and can be 

controlled by conditions. 

 Finiteness: An algorithm terminates after a finite numbers of steps. 

 Efficiency: The implementation of the algorithm has to happen to such an extent 

that time (running time) and cost (e.g. storage space, processing power ...) issues 

have a well-defined scope. When a large program is to be created, there should 

advance a large portion of the work in the formulation of the problem. Usually 

the problem is split up into small sub-problems, which can then be implemented. 

Since for solution to a problem there often are several approaches, the best 

algorithm for a particular problem has to be chosen. This selection can be a 

complicated process, perhaps involving sophisticated mathematical analysis. 

The selection of the algorithm is essential for the running time of a program and 

has a greater impact in the same, as the computational implementation. 

 

A good algorithm should be the result of optimizing these qualities. In general it will be 

efficiency where much of the time will be invested, at least when the problem is big 
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enough, because we mostly are interested in questions like "How long will it take?" or 

"Will my hard drive be big enough?" or "Why does the process run out of memory?". 

 

4.1.1.1 Time efficiency 

 

In general, an instance of a problem consists of the input (satisfying whatever 

constraints are imposed in the problem statement) needed to compute a solution 

to the problem ([CORMEN 2001], p. 5) 

 

Although the running time of an algorithm increases when the instance increases, the 

rate of increase can differ between two algorithms (even if the outcome may be the 

same). Table 9 shows different increase functions. Taken the rounded up integers of the 

shown values, the numbers give the necessary processing steps for an instance n when 

the running time of an algorithm follows the certain increase function. 

 

Thus for big datasets it becomes very important that the growth of increase functions is 

as small as possible. For big problem sizes it can be stated that those algorithms are the 

fastest which have the slowest growing increase functions. 

 

instance increase functions 

n log2(n) n*log2(n) n2 n3 

1 0.000 0.000 1 1 

10 3.322 33.219 100 1,000 

100 6.644 664.386 10,000 1,000,000 

1000 9.966 9,965.784 1,000,000 1,000,000,000 

10000 13.288 13,2877.124 100,000,000 1,000,000,000,000 

100000 16.610 1,660,964.047 10,000,000,000 1,000,000,000,000,000 

1000000 19.932 19,931,568.569 1,000,000,000,000 1,000,000,000,000,000,000 

Table 9 Comparison of different functions  
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Figure 4–1 shows graphs of some increase functions. Although for the modest input of 

only 100 items, the differences between the functions can clearly be seen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4–1 Graphs of different increase functions  

 

To make the implications even more clear, Table 10 shows how long the processing of 

an input of size n would take with a certain increase function, when we assume that the 

computer performs one trillion13 (1012) instructions per second14. Some cells are not 

even calculable any more with normal spread sheet programs - the red coloured cells are 

all above 1 year. Increase functions like n3, 2n and n! hence should only be "accepted" 

for small input sizes, otherwise the calculation may even take more than a lifetime. 15 

 

                                                
13 This is noted in short scale and would be a billion in long scale (e.g. used in Austria) 
14 Intel Polaris can perform up to 1.82 trillion instructions per second; the Intel Core i7 (Dual Core) 
Arrandale of my 2010 notebook, which I used to write this thesis with, has a maximum performance of 
42170 MIPS (million instructions per second) 
15 To compare this values with the running time of my notebook with the Intel Core i7 (Dual Core) 
Arrandale: n=100.000 with n3-algorithm would have a running time of nearly 7 days,  n=1 mio with n3 
would take 275 years 
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n 

____ 

f(n) 

10 20 30 40 50 100 1000 10000 100000 1000000 

lg2 n 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

n 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 

n lg2 n 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 0.000020 

n2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000100 0.010000 1.000000 

n3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.001000 1.000000 16.666667 11.574074 

2n 0.000000 0.000001 0.001074 1.099512 18.764998 4.0E+10 3.4E+281 >10300 >10300 >10300 

n! 0.000004 28.158588	   8.4E+12 2.6E+28 9.6E+44 3.0E+138 >10300 >10300 >10300 >10300 

 

  seconds 

  minutes 

  days 

  years (with 365 days each) 

Table 10 Times for processing of an input of size n under the assumption that the computer 

performs one trillion (1,000,000,000,000) high level instructions per second (c.f. [KLEINBERG 

2006], p34) 

 

The running time T(n) of algorithms is in most cases also dependent on the quality of 

the input data (e.g. if the data is to be sorted with a sorting procedure then it takes 

usually less time, if the data already has a preliminary sorting, compared to a data set 

that is completely random). This means that two instances of the same size put into one 

and the same algorithm can show different running times. It is therefore not expected 

that an algorithm under different conditions (even with the same problem size) works 

equally well in every case. With mathematical means the worst case (the longest 

running time that can occur - the upper bound of running times), best case (the shortest 

running time - the lower bound) and possibly the average case (the running time one 

finds usually with that kind of data) can be decided.  
 

 

 worst case:  Tworstcase(n)=max(Ti(n)) where i∈{possible running times for algorithm} 

 best case: Tbestcase(n)=min(Ti(n)) where i∈{possible running times for algorithm}

 average case: Taverage(n) =∑(Ti(n)*pi) where i∈{possible running times for algorithm} 

    and p is a probability value 
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4.1.1.2 Asymptotic notation 

 

"The order of growth of the running time of an algorithm (...) gives a simple 

characterization of the algorithm's efficiency and also allows us to compare the 

relative performance of alternative algorithms." ([CORMEN 2001), p. 43) 

 

Sometimes the precise running time of an algorithm can be determined, but it is not 

always possible and sometimes the extra effort is not necessary and not productive (this 

is because the steps in a high level language can be counted, but those steps are split 

into a number of more primitive steps when compiled and their actual number is 

dependent on the architecture used).  Therefore, usually the asymptotic efficiency of an 

algorithm is studied. This means one tries to find a function to which the real runtime 

polynomial approximates when using big input sizes. 

Donald E. Knuth compiled in 1976 [KNUTH 1976] a list of definitions (Ο Omicron, Ω 

Omega, Θ Theta) for the asymptotic analysis that are still valid and used today: 

 

Ο(f(n)) denotes the set of all g(n) such that there exist positive constants c and 

n0 with  g(n)≤ cf(n) for all n≥n0 16 

Ω(f(n)) denotes the set of all g(n) such that there exist positive constants c and 

n0 with g(n)≥cf(n) for all n≥n0. 

Θ(f(n) denotes the set of all g(n) such that there exist positive constants c, c', 

and n0 with cf(n)≤g(n)≤c'f(n) for all n≥n0.  

([KNUTH, 1976], p. 19) 

 

g(n) can be seen as the function describing the actual running time T(n). 

These three numbers he [KNUTH 1976] described further verbally as, 

Ο  "order at most f(n)"  
- "fewer than or the same as" iterations 
- upper bound of f(n) -> there will be at most so many iterations        

 Ω  "order at least f(n)" -   
- "more than or the same as" iterations 
- lower bound of f(n) -> there will be at least so many iterations 

 Θ  "order exactly f(n)"  
- "the same as" iterations. 
- tight bound of f(n) 

 
                                                
16 This means that g grows not faster than f 
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There exist stricter versions of these notations:  
 little o denotes "fewer than" iterations (T(n)=o(f(n)) if and only if for all 

constants c>0, ∃ a constant n0 such that T(n) ≤c*f(n) ∀n≥n0), 
 little ϖ denotes "more than" iterations,  

but they are not as widely used as the big Ο Omicron, big Ω Omega, and big Θ Theta 

numbers. 

 

To put this into practice the first step is to find the dominating term in the running time 

function and omit multiplicative constants17, e.g. T=3n2+5n is therefore O(n2). 

4.1.1.3 Typical upper bounds for running times 

The following overview was compiled using ([KLEINBERG 2006, SEDGEWICK 

2011, VORNBERGER 2009]) 

 

O(1) Time (constant time) is found with algorithms that do not depend on the input 

size. Thus every time the algorithm is executed the number of steps will be the same. 
 public static int countN(int[] n) { 

 return n.length; 

 } 

In the above example the input integer array n can have a different number of items per 

run, but the number of steps will always be 1. 

 

O(log n) Time (logarithmic time) 18 is found with algorithms in which for every 

growth of n (the input size) the problem size gets reduced to log2 n. Such algorithms are 

those in which the problem is divided into two halves and one of the two is selected. 

The question is, how many times can n be divided by 2 until the result is = 1? 
n = 2x <--> x = log2n 

An example for O(log2n) is binary search (e.g. used in StrahlerLanfear.java). 

  

O(n) Time (linear time) is found with algorithms that have a running time being a 

constant factor times the number of input data (e.g. find river segments longer than 

1000 m; compute the maximum of n numbers, merge two sorted lists). 

 

                                                
17 Exponential (e.g. 4n (4n dominates 3n, 3n dominates 2n)) dominates polynomial. If it is polynomial find 
the highest exponent (e.g. n3 dominates n2). Logarithms are dominated by polynomials and exponentials. 
18 Usually the log2 is used. 
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 public static int countN(int[] n) { 

  for(int i = 0; i<n.length;i++){ 

   System.out.println("Value of n at " + i + " is " + n[i]); 

  } 

 } 

In the above example the number of steps is the same as the number of items in the 

input array. 

 

O(n log n) Time (linearithmic time) is typical for algorithms that divide the input in 

two and work recursively and use linear time to merge the outcome - thus typical divide 

and conquer algorithms. (e.g. Mergesort) 

 

Up to here are the time orders we strive to achieve, because they do not grow 

disproportionally high when the input grows. 

 

O(n2) Time (quadratic time) is typical for algorithms that work with pairs in a brute-

force way (e.g. finding the closest pair of points). These algorithms usually contain 

nested loops on the input data. 

 
 for(i=0; i<n;i++){ 

  for(j=0;j<n;j++){ 

   //Here follows what to do in each loop  

   //with the n cases of input data 

   //using the indices i and j 

  } 

 } 

Some of this algorithms with quadratic order can be rewritten to O(n log n) algorithms 

using a more clever way than the brute-force algorithm does (e.g. in sorting the points 

based on their coordinates and only compare those which are close enough. Doing this 

in a recursive way leads to O(n log n)). 

 

O(n3) Time (cubic time) is for example typical for algorithms that do schoolbook 

matrix multiplication, or Gauss-Jordan-elimination for matrix inversion. These 

algorithms usually contain three nested loops of the following sort: 

 
 for(i=0; i<n;i++){ 

  for(j=0;j<n;j++){ 
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   for(k=0;k<n;k++){ 

   //Here follows what to do in each loop  

   //with the n cases of input data 

   //using the indices i, j, and k 

   } 

  } 

 } 

If there are even more nested loops over all the input data, then the algorithm has O(nk) 

where k is the number of nested loops. 

 

O(2n) Time (exponential time) denotes algorithms whose growth will double with each 

additional element in the input data sets (e.g. find the maximum size independent set in 

a graph). 

 

O(n!) Time (factorial time) denotes algorithms whose growth will rise with i for the i-

th additional element.  

 

 n! = 1*2*3*4*5*.......*n 
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4.1.2 The design of algorithms 

 

The ways to design algorithms already fill many books. Searching for the right strategy 

can be time consuming and many times personal preferences for one (known) strategy 

will prevail. Given a problem to be solved there are different strategies to create suiting 

algorithms.   

 

Preiss [PREISS 1999] states the following five strategies: 

 

1. Direct solution strategies  
Brute force algorithms are straightforward approaches directly based on the 

problem statement and definitions. They proceed in a simple and very obvious way. 

Their advantage lies in their simplicity. They are easy to implement, but they rarely 

are time efficient, because they usually do much more work than more clever 

algorithms. For small instances they have usually good enough running times and it 

may not be worth finding a better algorithm. But mostly they are just the yardstick 

for better algorithms, some that are cleverer and therefore more efficient. 

 

Greedy algorithms build up a solution step by step, always choosing the next step 

in a way that for every step it offers the most immediate benefit (c.f. [DASGUPTA 

2008, KLEINBERG 2006]). Once made decisions are never reconsidered. The 

advantage of greedy algorithms is, that they are faster than brute force algorithms, 

but that it is much harder to prove their correctness. Some greedy algorithms only 

prove to be right given certain preconditions (e.g. Dijkstra's shortest path algorithm 

is greedy by weights and has the precondition that all weights have to be positive). 

 

2. Backtracking strategies  
Simple backtracking algorithms try to build a solution to a computational problem 

incrementally. Whenever the algorithm needs to decide between alternatives to the 

next component of the solution, it simply tries all options in a depth-first manner, 

when the solution is not found in one option (i.e. a branch that starts from a node in 

the solution space) it tracks back and tries the next one.  

Branch-and-Bound algorithms are similar to the simple backtracking algorithms but 

use a breadth-first approach. The nodes of the solution space are put in a queue and 

are processed in a first-in-first-out (FIFO) order. If a cost criterion is available, it 
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will be used to decide which node in the queue (the one with the best cost) to 

expand next (this is the "branch" part of the algorithm). The costs will also be used 

to discard those nodes from the queue that are too expensive (this is the "bound" part 

of the algorithm) - thus the solution space becomes smaller and there are less 

solutions to be considered. (c.f. [PREISS 1999]). 
 
 
3. Top-down solution strategies  

Divide-and-Conquer algorithms break the input into ever smaller non overlapping 

parts (usually two) of the same size (that's the divide), solves the problem in each 

part recursively and combines the solutions to the sub-problems into a solution for 

the total problem (that's the conquer part). The divide part usually runs in c*log n 

time. In many cases it is possible to combine the data in c*n steps thus getting an 

overall running time order of O(n log n). A very well-known algorithm using 

Divide-and-Conquer is the merge-sort algorithm. 

 

 

4. Bottom-up solution strategies  
Dynamic-programming is a strategy that breaks the problem into smaller and 

smaller overlapping sub-problems, which are then solved. The small sub-problems 

solutions are then combined into the solutions to larger and larger sub-problems like 

in the divide-and-conquer approach. In contrast to divide-and conquer, the sub-

problems overlap which means that sub-problems share sub-problems (c.f. 

[CORMEN 2009], p. 359). Thus the challenge in dynamic-programming is to 

understand the set of sub-problems and how the sub-problems depend on one 

another ([CORMEN 2009], p. 367). Dynamic-programming avoids to calculate the 

same values over and over again. It first recursively defines the value of an optimal 

solution and then computes the value in a bottom up way. All necessary sub-

solutions are memorized (c.f. [DASGUPTA 2008, KLEINBERG 2006]).  An 

example for a dynamic-programming algorithm is the Bellman-Ford-Moore 

algorithm for computing single-source shortest paths in weighted directed graphs 

(c.f. [BANG-JENSEN 2007], p. 55). 
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5. Randomized strategies  
Based on some probabilistic concept the algorithm decides on what step to take 

next. "Thus the role of randomization is purely internal to the algorithm [...]" 

([KLEINBERG 2006], p.705). 

 

Surprisingly − almost paradoxically − some of the fastest and most clever 

algorithms we have rely on chance: at specified steps they proceed 

according to the outcomes of random coin tosses. These randomized 

algorithms are often very simple and elegant, and their output is correct with 

high probability. ([DASGUPTA 2008] p. 38) 

 

For this thesis different strategies were tried. In a first step the questions out of the 

"Conclusion on the use of digital surface water networks " (see section 3.5) were split 

up in manageable sub-problems. For those a solution was created, if nothing better was 

available already, in a brute-force-way. This algorithm was then tested. The tests with 

the brute-force algorithm usually revealed a lot of "special cases" that had to be 

considered.  

 

Most of the problems in networks demand to visit every arc (or node or catchment) at 

least once. For many of the algorithms eventually the depth first search approach (DFS, 

backtracking) has proved most useful and should therefore be stated in more detail in 

the following. The idea of DFS is not a new one. Since Robert Tarjan’s article 

[TARJAN 1972] it is a widely used concept of traversing graphs. 

 

There are different ways to implement DFS, either with nested recursions or with a 

stack (this is a data sequence where the last data put in, is the first data to take out again 

- LIFO). The recursive way is very elegant, but with very deep trees it can happen that 

the computer’s memory will not suffice, because the recursions are nested in each other 

and are kept in memory. In this case the implementation would have to be made with an 

iterative approach using a stack.  

 

In the following examples the two ways to implement a DFS for directed graphs are 

shown as code stumps in a Java-like pseudocode - the vertices are only visited, but 

nothing happens - the effective code for calculations would have to be put at the places 

where you find a comment "//do something with node". 
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 // ... marks comments - this would be lines that are not executed 

 void ... means that the method does not give anything back to the caller 

 Node ... it is assumed that a class Node exists 

 incomingNodes(Node node) ... it is assumed that a method incomingNodes 

exists  which has a node as parameter and gives back a collection of the upper  

 adjacent Nodes of that node 

 

 

The DFS implementation with nested recursion for Nodes: 
public void DFSNode(Node node) {//method DFSNode 

 //do something with node  

 //get the nodes upstream neighbours 

 node.visited=true 

 if(incomingNodes(node).isEmpty()){ 

 // do something - this is a most upper Node 

 } else { // the node has upstream neighbours 

 // do something 

 // get upstream neighbours and apply 

 foreach(inNode : incomingNodes(node).inNodes){ 

  if(node.visited==false){ 

  Node upperNode = inNode; 

     DFSNode(upperNode); // recursive Call 

  } 

 } 

 } 

 //do something with node 

} 

 

An iterative DFS implementation for Nodes using a stack: 

 
public void DFSNodeIterative(Node node) { 

 //mark the starting node visited 

 node.visited=true 

 // do something with the first node 

 // make new empty stack of type Node 

 Stack<Node> nodeStack = new Stack<Node>(); 

 // push all incoming nodes onto nodeStack 

 nodeStack.push(incomingNodes(node)) 

 // do as long nodeStack is not Empty 

 while(!nodeStack.isEmpty()) { 
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 Node n = nodeStack.pop() //pop node from nodeStack 

 // do something with the node 

 // do for each upstream neighbour 

 foreach(inNode : incomingNodes(n).inNodes){ 

  if(inNode.visited==false){ 

  inNode.visited=true 

  nodeStack.push(inNode) 

  } 

 } 

 } 

} 

 

An implementation to run through the edges would look very similar (recursive 

approach) - the parameter edge is the lowest edge in the network: 

 
public void DFSEdge(Edge edge) {//method DFSNode 

 //do something with edge  

 edge.visited=true 

 //get the from node of the edge 

 fromNode = edge.getFromNode() 

 //get the fromNode's incoming edges 

 upperEdges = fromNode.getIncomingEdges() 

 if(upperEdges.isEmpty()){ 

 // do something - this is a most upper Edge 

 } else { // the edge has upstream neighbours 

 // do something 

 // get upstream neighbours and apply 

 foreach(inEdge : upperEdges){ 

  if(node.visited==false){ 

  Edge upperEdge = inEdge; 

     DFSEdge(upperEdge); // recursive Call 

  } 

 } 

 } 

} 
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4.1.3 Quality management for the algorithms 

4.1.3.1 Verify the correctness of Algorithms 

 

To verify the correctness of an algorithm, the problem has to be understood. An 

algorithm’s correctness can only be assessed in reference to the problem that has to be 

solved. A problem is a collection of problem instances. An algorithm is correct for a 

problem instance if it produces the correct answer for this instance. An algorithm is 

correct for a problem if it is correct for all instances of the problem (e.g. a shortest path 

algorithm is correct if it always (this means for every graph and for every two arbitrarily 

chosen start and end point) computes the right answer). In some algorithms additional 

preconditions concerning the instance have to be stated to be able to guarantee 

correctness.  

 

There are two strategies to verify if an algorithm really solves the problem: 

1. Testing: The algorithm is tested with different input data (different instances of 

the problem). This is a simple approach. Its disadvantage lies in the fact that 

testing can never cover all possible instances of input data. The arising question 

therefore is: "How much testing is enough?"  With testing only it cannot really 

be guaranteed that the algorithm is correct. 

2. Proving: With a formal analysis it has to be proved that the algorithm is correct 

for every possible instance. This guarantees the correctness of the algorithm. 

The disadvantage of proving is the difficulty to find a proof. For very complex 

algorithms the algorithm may have to be split into several sub problems, which 

then have to be proved separately. 

 

To prove the correctness one has to 

... identify the preconditions. What kind of data can be used with the algorithm? 

(E.g. positive values only, values not bigger than X ...) 

...identify the postconditions. What must the output be like? 

...prove that starting from the preconditions and executing the steps in the 

algorithm the postconditions are achieved. 
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To prove recursive algorithms one can either use proof by induction or proof by 

contradiction. 

 

To prove the correctness of iterative algorithms a proof with a loop invariant can 

be made (which is a lot like induction - first prove a base case, then an inductive 

step): A loop invariant is a property that is valid at the beginning (initialization), 

before every loop iteration (maintenance), and at loop termination. 

 

4.1.3.2 Analyse implementation 

"Beware of bugs in the above code; I have only proved it correct, not tried it." 

[Donald E. Knuth (http://www-cs-faculty.stanford.edu/~knuth/faq.html)] 

 

Algorithm idea and implementation are different things. The only way to really test an 

algorithm is via its implementation. Even though in this thesis the algorithms are always 

shown in their implemented Java code form, this may not be the only way to implement 

them. The implementation of an algorithm follows from the algorithm's idea and 

sometimes gives good hints how to make the algorithm better and avoid errors (esp. 

with real data where numerous unexpected cases can occur). The downside of an 

implementation is that it can introduce new errors not based on the algorithm. Thus also 

the different parts of the implementation - e.g. data input, data output, method calls, 

calculations have to be tested thoroughly. To do this it always has to be stated what 

should be the outcome of this part of the implementation. With dummy data (for ideal, 

normal and special cases) many errors can be detected before the implementation is 

tested on big real world data sets. During the work for this thesis a collection of dummy 

data was created for river edges and junctions that helped to test if the implementations 

produced the right output. Figure 4–2 shows an example for testing the correctness of 

implementations when bifurcations in networks exist. After every addition or change to 

an implementation, the implementations were tested with the dummy data. The dummy 

data is available on the CD-ROM in the testgeodatabase.gdb. Only when the 

implementation with the dummy data succeeded the tests were also made with real 

world data. Code that proved to work properly and produced the right output was saved 

in form of code snippets and reused if possible to reduce test times. 
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Figure 4–2 Example for a dummy data set to test braided networks 

 

4.1.4 Data structures for the use with the algorithms 

Algorithms go hand in hand with data structures-schemes for organizing 

data that leave them amenable to efficient processing by an algorithm. 

([SEDGEWICK 2011], pos. 282) 

 

The data modelling should always be seen in context with the algorithms that should 

use the data. The choice of a certain data structure is dependent on the tasks to 

accomplish. Data structures are useful to organize data so that it can be accessed quickly 

and usefully. There are many different abstract data types, which support different sets 

of operations and are suitable for different types of tasks, e.g. lists, sets, stacks, queues, 

heaps, search trees, hash tables, map... or the more specialized ones for networks as 
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already mentioned in sections 1.2 and 2.3. The Java language provides an extensive 

Collections Framework that covers many of the mentioned basic types [JAVA 2012]. 

As the creation of a data structure consumes resources (running time and disk space), it 

may not be smart to create a "best qualified for the task"-data structure but to find a 

(minimal) data structure that supports all the operations needed by the task. On the other 

hand it may be "cheaper" to create a special data structure, when the handling of a more 

general structure causes a very large constant number of steps for an iteration.  

 

What proved to be especially helpful during computation of DSFs were data maps (to 

find out in constant time if a junction/edge/catchment had inflowing elements) and in 

some implementation simple arrays (to define which of the elements in the DSF were 

already visited).   

 

All the used basic data structures have to be calculated from the GIS-dataset (which 

mostly happens in linear time) and happen to exist only during the computation in the 

computers RAM. For this calculations the GIS-dataset must have a data structure that 

allows reading the adjacent features, thus some form of adjacency list (or matrix) must 

exist. That is the case for the used network object model of ArcGIS. The calculations 

output is written into the GIS table (therefore to the hard disk) that is addressed by the 

certain algorithm. 

 

Some of the algorithms make use of special fields in the GIS-dataset (e.g. the 

NEXTDOWNID in the catchments are used for preparing the catchment network).   

4.2 Which Algorithms are necessary/helpful/beneficial for the use with 
water Networks? 

4.2.1 The DRWaterNetworkAddin 

GIS already provide a lot of standard tools to prepare and analyze data. Some of the 

points from the conclusions in chapter 3.5 can easily be handled by standard tools: these 

are "Getting information about the network and its elements" and the points about 

relating data. There are many tools to prepare a network, but in my case those weren't 

sufficient in every detail, therefore the following section holds additional algorithms for 

network preparation. Further sections show examples for ordering and data 
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accumulating. To make the text more readable I put some of the descriptions into the 

Annex 8.2 Supportive Java Add-ins when the implementation does not offer any new 

insights but is just a useful byproduct. 

 

The following section gives a short overview of the algorithms and the Java 

implementations that hold them. To easily use and test them in ArcGIS they are 

prepared as an ArcGIS Add-In called DRWaterNetworkAddin. Eclipse Galileo and 

JDK 1.6 served very well during the development. To use this Add-In a Java Runtime 

Environment JRE6 must be installed. If this is ensured, copy "DRWaterNetworkAddin" 

onto the computer and add the path in the "ArcGIS Add-In Manager Options", if you 

run ArcGIS 10.0. For newer versions of ArcGIS you may have to compile them once 

again (e.g. using Eclipse and the suitable ArcGIS Eclipse Plugin and JDK and install a 

suitable JRE) - in some cases it may be necessary to exchange deprecated 

classes/methods against newer versions. 

 

The assembly of algorithms has a very simple structure: a toolbar (GN Toolbar), which 

is subdivided by using menus, makes the Add-Ins available. 

 

 

Figure 4–3 GN Toolbar 

Prepare:  

 Create and check the HydroID (CheckHydroID.java) 

 Find Multipart Features (Multipart.java) 

Water Network:  

 Calculate From/To Nodes (FromToNode.java) 

 Set Flow Direction (SetFlowDir.java) 

 Calculate Junction Valence (JunctionValence.java) 

 Find circles in the Dataset (FindCircles.java - uses the Kosaraju-Sharir 

algorithm) 

 Find Backflow elements (FindBackflows.java) 

Watersheds: 
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 Create Watershed Network (CreateWatershedNetworkGP.java) 

 Calculate Basin Circularity (CalculateBasinCircularity.java) 

Ordering: 

 Calculate Strahler orders with K. Lanfears algorithm (StrahlerLanfear.java) 

 Calculate Strahler orders with A Gleyzers algorithm (StrahlerGleyzer.java) 

 Calculate Shreve orders (Shreve1.java) 

Accumulation: 

 Accumulate River Data (AccumulateRivers.java) 

 Accumulate Catchment Data (AccumulateCatchment.java) 

 Aggregate Watersheds (array version) (AggregateWatersheds.java) 

 Aggregate Watersheds (in memory recursion) (AggregateWatersheds1.java) 

 Aggregate Watersheds (feature class version)(AggregateWatersheds2.java) 

 

The complete Java source files can be found on the CD in the 

DRWaterNetworkAddin/src/gn_pack folder.  

 

The implementations were made with special view to the Austrian River Network for 

Reporting [AUSTRIAN RIVER NETWORK 2012] thus if there are fieldnames or 

dataset names addressed when reading or writing data, they are from this dataset. I did 

not bother to make those names variable. 

4.2.2 Network preparation 

Network preparation is a major part of working with networks. Many of the network 

algorithms implementations mentioned in the next subchapters only work in a proper 

way if the network has the following properties: 

 Network must be a geometric network - a geometric network can be constructed 

from available river data using the ArcGIS software 

 Network must have flow directions - with nonbraided rivers this can be very 

simply achieved by using GIS software tools (e.g. ArcGIS Utility Network 

tools) and a pour point (sink), with braided rivers a field called FLOWDIR can 

be added to the edges, which will be used by the SetFlowDir.java ArcGIS Java 

Add-In (see 8.2.2). 
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Figure 4–4 Example of flow direction in a 

braided network 

 

 

 Because the OBJECTID, which is the standard unique feature number in 

ArcGIS could be changed, when the database is rebuilt, there exists a field 

HydroID for all the hydrological/hydrographical features in the database 

[AUSTRIAN RIVER NETWORK 2012]. To ensure the uniqueness of the 

HydroID for every data set and facilitate the tracking of changes, the 

CheckHydroID Add-In checks for not unique HydroIDs and archives old 

numbers of features that got a new number because being not unique at first. 

(c.f. 8.2.1). Before calculating a catchment network this Add-In can be used to 

check for ID-errors in the data set.  

 The FromToNode Add-In (see 8.2.3) uses the HydroID to describe from point 

and to point of each edge in the network. The HydroID numbers of the edges 

endpoint are written to its feature table and can be addressed there directly. 

4.2.2.1 Find backflows 

River and catchment networks must not contain circles - they can easily be detected 

in edge data in linear running time using the FindBackflows ArcGIS Java Add-In or 

the FindCircles ArcGIS Java Add-In (see 4.2.2.2.). Based on the generated list of 

circle or backflow elements the value in the flow direction field can be corrected 

and with a new run of the SetFlowDir Add-In for the selected elements the wrong 

directions can be quickly and easily corrected. 
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Figure 4–5 Backflow in the network 

 

 

Figure 4–6 Correction of backflow 

element 

  

FindBackflows.java returns the backflow river segment from every circle. Because the 

backflow segment is usually the segment that has to be corrected, there is no need to 

mark the whole circle (this could for example be done if necessary when backtracking - 

one would have to keep track of the fromNode and add all edges to a stack, then retrieve 

them until the fromNode of the current arc is the same as the from Node of the 

backflow segment). 

 

Data preconditions: 

 Networks pour points 

 River segments with network topology  

 
Detail Description:  

The central method is called "checkForBackflows" and uses a DFS on edges. The trick 

is to mark the branch nodes in the upward phase of the DFS and if the marked nodes are 

hit again in the upward phase they must be circles. When backtracking again the mark 

has to be removed - because otherwise parallel edges will be seen as circles when 

coming to the same node. 
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Pour point: 1 
checkForBackflows(1) //Edge 1 
  visited={1} 
  fromNode=2 
  inflowingArcsPerNode(2)={3} 
  outflowingArcsPerNode(2).size()=2 
  braided={2} 
->checkForBackflows(3) //Edge 3 
      visited={1,3} 
      fromNode=6 
      inflowingArcsPerNode(6)={4} 
      outflowingArcsPerNode(6).size()=1 
      braided={2}  
    -->checkForBackflows(4) //Edge 4 
        visited={1,3,4} 
        fromNode=5 
        inflowingArcsPerNode(5)={5} 
        outflowingArcsPerNode(5).size()=1 
        braided={2}  
        --->checkForBackflows(5) //Edge 5 
           visited={1,3,4,5} 
           fromNode=3 
           inflowingArcsPerNode(3)={2,6} 
outflowingArcsPerNode(3).size()=1 
           braided={2}  

---->checkForBackflows(2) //Edge 2 
           visited={1,2,3,4,5} 
           fromNode=2 
           backflow={2} 
           inflowingArcsPerNode(2)={3} 
          // Edge 3 was already visited 
           outflowingArcsPerNode(3).size()=1 
           braided={2}  
<---- // Edge 2 - no change in braided  
---->checkForBackflows(6) //Edge 6 
           visited={1,2,3,4,5,6} 
           fromNode=4 
           inflowingArcsPerNode(4)={} 
           outflowingArcsPerNode(4).size()=1 
           braided={2} // no change in braided 
<---- // Edge 6 - no change in braided 
<--- // Edge 5 - no change in braided 
<-- // Edge 4 - no change in braided 
<- // Edge 3 - no change in braided 
// Edge 1  
braided={} 
--------------------------------------------------- 
--------------------------------------------------- 
Output: backflow={2} 

 Pour point: 1 
checkForBackflows(1) //Edge 1 
  visited={1} 
  fromNode=2 
  inflowingArcsPerNode(2)={2,3} 
  outflowingArcsPerNode(2).size()=1 
  braided={} 
->checkForBackflows(2) //Edge 2 
      visited={1,2} 
      fromNode=3 
      inflowingArcsPerNode(3)={6} 
      outflowingArcsPerNode(3).size()=2 
      braided={3}  
    -->checkForBackflows(6) //Edge 6 
        visited={1,2,6} 
        fromNode=4 
        inflowingArcsPerNode(4)={ } 
        outflowingArcsPerNode(4).size()=1 
        braided={3}  
<-- // Edge 6 - no change in braided  
<-// Edge 2  
   braided={} 
 ->checkForBackflows(3) //Edge 3 
      visited={1,2,3,6} 
      fromNode=6 
      inflowingArcsPerNode(6)={4} 

      outflowingArcsPerNode(6).size()=1 
      braided={} 
-->checkForBackflows(4) //Edge 4 
        visited={1,2,3,4,6} 
        fromNode=5 
        inflowingArcsPerNode(5)={5} 
        outflowingArcsPerNode(5).size()=1 
        braided={}  
--->checkForBackflows(5) //Edge 5 
           visited={1,2,3,4,5,6} 
           fromNode=3 
           inflowingArcsPerNode(3)={6} 
          // Edge 6 was already visited 
           outflowingArcsPerNode(3).size()=2 
           braided={3}  
<--- // Edge 5  
           braided={}  
<-- // Edge 4 - no change in braided 
<- // Edge 3 - no change in braided 
// Edge 1 - no change in braided 
 
--------------------------------------------------- 
--------------------------------------------------- 
Output: backflow={} 
    
 

Figure 4–7 Find Backflows-examples - arrows to right indicate depth first part- arrows to left 

indicate backtracking  
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The Java-method checkForBackflows reveals the details of the algorithm. 

 
public void checkForBackflows(int ArcID){ 

 visited.put(ArcID, true); //as soon as arc is visited it is marked 

 //get fromNode 

 int fromNode = fromNodePerArc.get(ArcID); 

 //get count of inflowingArcsPerNode 

 int inflowingArcs = inflowingArcsPerNode.get((Integer)fromNode).size(); 

 // define a boolean braidadd  

 boolean braidadd; 

 //use lookup to find out if the from node is a starting point for braids 

 // -if yes try to add it to the global set "braided" 

 // -if it can't be added, because it is already in the set it is a  

 // circle - add it as backflow to the global set "backflow" 

 if(outflowingArcsPerNode.get((Integer)fromNode).size()>1){ 

 braidadd=braided.add(fromNode); 

 if(!braidadd){ 

  //then node was already in the set - thus there is a circle 

  backflow.add(ArcID); 

 } 

 } 

 //An edge can only be part of a circle if it has upper adjacent edges thus 

there  //is no need to consider a base case (most upper edges) 

 if (!(inflowingArcs == 0)){ 

 //if the river with ArcID is no upper arc 

 //get the inflowingArcsPerNode  

 Iterator<Integer> it1; 

 it1=inflowingArcsPerNode.get((Integer)fromNode).iterator(); 

 int arc; 

 //for every inflowingArc do the following: 

 while(it1.hasNext()){ 

  arc = (Integer)it1.next(); 

  //if the arc has never been visited 

  if(!visited.containsKey(arc)){ //only if incoming arc was never 

        //visited it is called again 

  checkForBackflows(arc);   //recursive part       

  } 

 }//while ends 

 }// if ends 

 // when backtracking do not forget to remove the braided entry 

 // otherwise all parallel rivers would be marked as backflows 

 if(braided.contains(fromNode)){ 

 braided.remove(fromNode); // the braided entry is removed 

 } 

 return; 

}  
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Running time:  

The Add-in uses DFS and only visits every arc once. Its running time is therefore 

O(E+V), thus O(n). 

Time Complexity Steps 

O(n) Once visit every edge, thus n is the number of edges  

Space Complexity  

The implementation creates the following maps: inflowingArcsPerNode (number of 

nodes), outflowingArcsPerNode (number of nodes) and fromNodePerArc (number of 

arcs).  

Space complexity is thus O(n). 

 

4.2.2.2 Find circles 

FindCircles.java uses the Kosarju-Sharir algorithm for finding strongly connected 

components as described in detail in [SEDGEWICK 2011]. 

 

"Two vertices v and w are strongly connected if they are mutually reachable: that is, if 

there is a directed path from v to w and a directed path from w to v. A digraph is 

strongly connected if all its vertices are strongly connected to one another." 

([SEDGEWICK 2011], pos. 10348) 

 

Returns a list of junctions of the rivers that form a circle (or cycle as it is also called).  

Data preconditions: 

 Networks pour points 

 River segments with network topology  

 

Detailed Description:  

FindCircles.java creates a directed graph and calls the Kosaraju-Sharir algorithm on it. 

The Kosaraju-Sharir algorithm uses a DSF, with a special numbering of the vertices as 

they appear in the network, instead of using the vertices standard id. It makes use of the 

fact that the transpose graph has the same strongly connected components as the 

original graph (because in a connected component every node is connected to another 
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either directly or via a sequence of other nodes - when reversing the direction does not 

introduce a change in the connection). Proof can be found in [CORMEN 2009]. 

 

The steps of the Kosaraju-Sharir algorithm are the following (c.f. [SEDGEWICK 2011], 

[CORMEN 2009], p. 617): 

1. Make a DFS on the graph and number the vertices in the same order as their recursive 

calls are completed (see Figure 4–8 top).  

2. By reversing the direction of every arc in G construct a new directed graph Greversed. 

3. Perform another DFS on Greversed, start with the vertex that had the highest number 

assigned. Should this DFS not reach all numbered vertices, then choose the highest 

numbered vertex from the remaining vertices and run a DFS (see Figure 4–8 bottom). 

4. Each tree in the resulting spanning forest is a strong component of G. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DFS on the graph (original vertex numbering in 

black) produces a new numbering (brown) 
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DFS on reversed graph: 

- starts at new number 6 (because it is the highest) 

   ⇒ no inflowing arc - thus DFS stops 6 is one 

component 

 

- start at new number 5 (because it is the highest 

after 6 was removed) 

⇒ 5, inflowing arc from node 3 ⇒ inflowing arc 

from node 2 ⇒inflowing arc from node 4 ⇒ node 

5 is already visited  - thus 5, 3, 2, 4 are one 

strongly connected component 

 

- start at new number 1 (because it is the highest 

after the others were removed) ⇒ no more 

inflowing arcs, thus 1 is one component 

Figure 4–8 Example of the progression in the Kosaraju-Sharir algorithm 

Running time:  
The Add-in uses two DFS, which both visit every edge once. Its running time is 

therefore O(V+E). 

 

Time Complexity Steps 

O(V+E) Once run through the original graph from its source node and once 

on the reverse graph.  

 

4.2.3 Tracing rivers and catchments 

Tracing rivers upstream and downstream is already well established in many GIS and 

should therefore only be mentioned here for the sake of completeness. The same 

functions can be used on catchments provided that the catchments have a sort of 

network structure, like the "NextDownID" in the Austrian River Network for Reporting. 

 

In ArcGIS therefore, in addition to the built-in functions of creating geometric networks 

from edges and junctions (as used for the river data) for the catchment data, a catchment 
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network topology has to be established. A simple and permanent way to create a 

catchment network topology is using the catchment centroids as junctions and create a 

topology using information about how the catchments are connected (thus the 

NextDownIDs). CreateWatershedNetworkGP.java (see 8.2.5) uses the available 

NextDownIDs of the Austrian River Network for Reporting and creates centroids for 

the catchment polygons. Between every pair of adjacent centroids19 ,a straight line is 

created and centroids and lines are forged into a Geometric Network using ArcGIS 

geoprocessing tools.  

4.2.4 Calculating stream orders and adventitious streams 

The main characteristics of the stream ordering systems are described in Appendix 8.1 

Stream order systems. The group of stream order systems using the top down approach 

are similar to each other. Algorithms already exist for some (Strahler and Shreve) of 

them and are implemented in other GIS-systems (e.g. the Strahler and Shreve Avenue 

Routines by Duncan Hornby from 2003 which are based on [LANFEAR 1990], or his 

VisualBasic version of the Gleyzer [GLEYZER 2004] algorithm in the RivEX Software 

for ArcGIS 9.3 from 2010 (http://www.rivex.co.uk). Because during writing of this 

theses none were implemented for ArcGIS 10.x., which is used by many contributors to 

the Austrian surface water dataset for reporting as well as to the European river dataset, 

the known algorithms ([LANFEAR 1990, GLEYZER 2004]) are therefore implemented 

as Add-ins for ArcGIS 10.0. 

 

Similar stream orders were tackled with the same approach.  

 

All of the algorithms concerning river ordering more or less have the same 

preconditions: 

 River network topology exists (rivers are connected, ...) 

 Each river segment has to have a unique number 

 The stream order will be written in a certain column for each river segment 

 River segments should be digitized in flow direction or at least flow direction in 

relation to digitized direction has to be known 

                                                
19 Adjacency is derived from the NextDownID. 
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 End points and/or starting points may have to be marked specially (this does 

explicitly not apply for the Lanfear stream ordering algorithm and could also be 

packed in pre-calculation) 

 

The central ordering method in all of the implementations is a DSF based strategy, 

which works straightforward for nonbraided networks. Braiding is the main cause why 

each of those implementations needs an extra method. In this method the braiding is 

addressed, otherwise errors would be introduced. Figure 4–9 shows what would happen 

when braids are not handled. The segment that has Shreve order number 37 should have 

Shreve order number 19 because Shreve order number is the number of all head waters 

above a certain edge, a simple Shreve algorithm would just add up the numbers at every 

junction, which would in this case result in an error. 

 

 

 

 

 

 

 

 

Figure 4–9 Error in Shreve 

ordering if braiding is not 

addressed properly 

 

 

 

For the ordering systems based on a bottom up strategy further information is needed on 

how to distinguish the main rivers from the others: this could be the throughflow or the 

aggregated length or the aggregated area for each river reach. In 4.2.4.3 the strategy to 

implement such a bottom up system is drafted.  
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Adventitious streams do not need to be calculated through a new algorithm, but they 

can for example be calculated in short enough time via a simple spatial query available 

in many GIS20. 

The same is also valid for the bifurcation ratio for certain catchments. The 

implementation of the Gleyzer stream-ordering algorithm also calculates segments that 

can easily be summed up for a catchment using the standard tools provided in a GIS.21 

 

4.2.4.1 Strahler-Algorithms 

4.2.4.1.1 Lanfear's Strahler algorithm  

StrahlerLanfear.java (an Add-In for ArcGIS 10.0) calculates Strahler stream order, and 

is based on the algorithm of Keneth Lanfear  [LANFEAR 1990]. The calculation of the 

stream order is done in an iterative way and the iteration only stops when there are no 

more changes to be made (this is dependent on the number of segments of the longest 

path from headwaters to mouth). 

 

Data preconditions: 

 River segment with a unique id number 

 River segments have a calculated from and to node (e.g. use 8.2.3 

FromToNodes.java) 

 

Running time:  
Lanfear gives as Execution time n*log2n*p, where n is the number of overall segments, 

p is the number of segments in the longest path from headwaters to mouth. 

 

The calculation of the order values is dependent on the already calculated confluences. 

In the worst case (i.e. when the lower parts of the rivers are processed before the 

headwaters) it will take as long as the highest count of segments from one of the 

headwaters to the outlet before all rivers can be calculated. In the best case (i.e. when 

the rivers are topologically sorted from headwater to outlet) it will only take two 
                                                
20 For example select all features with a Strahler number smaller than 1 (or 2 depending on the used 
definition for adventitious streams), and query the output against an intersection with the selection of 
Strahler number > 4. This results in the lowest segments of adventitious streams. 
21 For ArcGIS this would involve the following steps: select the rivers of the catchment to be calculated 
then summarize over order and segment_id. 
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executions to calculate the Strahler numbers, because the upper rivers have already their 

right numbers and the last (in this case the second) execution is only done to make sure 

that nothing has yet to be calculated. 

 

Time Complexity Steps 

constant Initialize document and create the necessary fields and indices 

c1*n Create 2 arrays of river data (first for ID, FromNode, ToNode, 

StrahlerOrder, NodeOrig; second for ToNodes) and fill it with the 

contents of geodatabase river segment attribute table. 

c2*n*log2n Sort arrays using ToNode - Arrays.java uses a tuned quicksort 

adapted from [BENTLEY 1993] 

c3*n*log2n*p Calculate Strahler order for every river (n) * c3 (=number of rivers 

flowing into the segment - this is counted as a constant because 

there are never more than low number of rivers (usually 2, seldom 

3, very seldom more than 3) flowing into a river) - find the 

corresponding node (log2n) - repeat this p times (p) 

c4*n*log2n Sort arrays using ID - Arrays.java uses a tuned quicksort 

c5*n Write the Strahler orders back into the river segment attribute 

table. 

O(n*log2n*p)  

 

Space Complexity 

 

Space for the data array and space for an ArrayList holding the Strahler number and 

node origin for each river flowing into a certain river (- this ArrayList is empty for 

headwaters, for the average confluence it holds two items and in some cases it holds 

three items). The space complexity is of order O(n) 

 

The implementation of Lanfear's Strahler algorithm deals with pseudo nodes and 

braided rivers of a low complexity. Strahler numbers of braided rivers with a high 

complexity (those are braided rivers which very long parallel river segments which 

themselves have other contributing streams and are split again ...) have to be viewed 

with a critical eye. Those zones of high complexity have usually an anthropogenic touch 

and it can be necessary to "clean" the data set beforehand, especially if there are a lot of 
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channels, which should strictly speaking not be ordered (at least when following 

Horton's idea of stream ordering). 

 

4.2.4.1.2 Gleyzer's Strahler algorithm 

StrahlerGleyzer.java (an Add-in for ArcGIS 10.0) calculates Strahler stream order and 

is based on the algorithm of Alexander Gleyzer, Michael Denisyuk, Alon Rimmer, and 

Yigal Salingar [GLEYZER 2004] for braided rivers. It works like a Depth-First Search 

with nested-recursion (see method streamOrdering). The ordering part (getOrder) is 

nearly the same as in Lanfears algorithm. Additionally river segments are calculated, 

without having to implement an extra loop. 

 

The data dictionaries in the algorithm were all implemented as hashMaps, which allow 

getting and putting data in constant time. All but the inflowingArcsPerNode hashMaps 

are purely Integer hashMaps. The inflowingArcsPerNode has a generic type <Integer, 

ArrayList<Integer>> whereas the ArrayList<Integer> is used to hold all the 

inflowingArcs. 

Therefore, in the recursive loop the additional local data dictionary upstreamOrders is 

implemented as an ArrayList, because it again holds data of inflowingArcs. 

 

Data preconditions: 

 Networks pour points 

 River segments with network topology  

 No backflows 

 

Running time: Gleyzer et.al. indicate O(n), where n is the number of overall reachable 

segments (edges). 

Code details of the recursion part reveal that this is right and works for all river 

networks without backflow (that is a circle in the river network or a reflective arc):  

 

(To facilitate readability of the essential part some code is omitted and replaced by) 

The streamOrdering method is called for every pour arc in the network. Only if an arc 

was not called already it will be called via the streamOrdering method. 
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... 
for(int i = 0; i<pourEdgeCount;i++){ 
 pourEdgeFeature=pourSJFeature.getEdgeFeature(i); 
 pourStartArc=(IFeature)pourEdgeFeature; 
 intStreamOrder=streamOrdering(pourStartArc.getOID); //calls the 
      // streamOrdering for every pour arc 
} 
... 
 
 
public int streamOrdering(int ArcID){ 
 visited.put(ArcID,true); // as soon as an arc is visited it's 
visited 
        // status is set true 
... 
 
 //if the arc has never been visited 
 if((visited.get(arc))==false){ 
 upstreamOrder.get(i).add(streamOrdering(arc));//find its order - 0 
 ... 
   
 //if it already has been visited 
 }else{ 
 upstreamOrder.get(i).add(streamOrder.get(arc));//order         -0 
 ... 
 } 
 

Claim 1: streamOrdering is called exactly once for each reachable arc. 

Proof: streamOrdering(e) starts at a pour arc (the arc that has no outflow). It finds all the 

inflowing arcs for this arc and calls streamOrdering for them only if they were not 

visited yet. QED. 

 

Claim 2: The call of getOrder is executed exactly once for each edge.  

Proof: getOrder is called once per execution of streamOrdering. And following claim 1 

the streamOrdering is executed exactly once for each reachable arc. QED. 

 

Therefore, running time of streamOrdering is O(n) . 

 

The initialization of the segment array in this implementation follows the idea, that the 

maximum number of orders in a network is log2 (n+1) or smaller. This is because for 

any node with a certain Strahler number i there must be at least two nodes with a 

Strahler number i - 1, thus four nodes with Strahler number i - 2, eight nodes with 

Strahler number i - 3, etc. - c.f. Figure 4–10 Ideal Structure of Strahler-ordering.  
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Figure 4–10 Ideal Structure of Strahler-ordering. 

 

Thus the minimum number of river segments for an ideal network (which would be a 

binary tree) is 2order - 1. This leads to the conclusion that given a number of rivers the 

possible maximum number of orders is log2 (n+1). This facilitates the usage of an array 

without using too much extra space but with its advantage of its easy handling. 

 

As the implementation of the recursion in Java has a return statement for both the base 

case (all upper arcs with no inflow) and the other cases, the additional river segment 

calculation is made before both return statements and not only as suggested in the 

algorithm pseudo code once at the end. 

Time Complexity Steps 

constant Initialize document and create the necessary fields and indices 

c*n Create hashMaps (visited, streamOrder, fromNodePerArc, 

originatingNode, inflowingArcsPerNode, segments) and fill them 

with data 

c Create and fill segment array 

c*n Calculate Strahler order and river segment number for every river 

c*n Write the Strahler orders and river segment numbers into the river 

segment attribute table. 

O(n)  

Space Complexity  

>12 n Extra space for 6 hashmaps (hashmaps have to be designed large 

enough to avoid to much rehashing, thus for every hashmap a 

small extra amount of space has to be planed). The order of space 

complexity is O(n). 

log2(n+1) Extra space for river segments maximum number per order array - 

thus negligible. 
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The implementation of the Gleyzer's Strahler algorithm deals like the above 

implementation with pseudo nodes and braided rivers of a low complexity. Again the 

Strahler numbers of braided rivers with a high complexity (those are braided rivers 

which very long parallel river segments which themselves have other contributing 

streams and are split again, ...) have to be viewed with a critical eye and it may be 

necessary to "clean" the data set before calculation, especially if there are a lot of 

channels, which should strictly speaking not be ordered (at least not when following 

Horton's idea of stream orders). 

 

Central methods in StrahlerGleyzer.java  
 
public int streamOrdering(int ArcID){ 
 visited.put(ArcID,true); 
 int fromNode = fromNodePerArc.get((Integer)ArcID); 
 get count inflowingArcsPerNode 
 int inflowingArcs =  
   inflowingArcsPerNode.get((Integer)fromNode).size(); 
 if (inflowingArcs == 0){//Base case 
 streamOrder.put((Integer)ArcID, 1); 
 int node = originatingNode.get(ArcID); 
  
 //stream segments 
 if (!(segmentIDsPerOriginatingNode.containsKey(node))){ 
  int j = 0;//because order start with 1, but arrays start at 0 
  segmentID[j]=segmentID[j]+1;//get the segmentID value of the order  
                              //and increase it 
  segmentIDsPerOriginatingNode.put(node, segmentID[j]); 
 } 
 segments.put(ArcID,segmentIDsPerOriginatingNode.get(node)); 
 return 1; 
  
 }else{//if the river with ArcID is no head water 
 //get the inflowingArcsPerNode  
 Iterator<Integer> it1; 
 it1=inflowingArcsPerNode.get((Integer)fromNode).iterator(); 
 int arc; 
 int i=0; 
 ArrayList<ArrayList<Integer>>upstreamOrder=new  
     ArrayList<ArrayList<Integer>>(); 
 //for every inflowingArc do the following: 
 while(it1.hasNext()){ 
  arc = (Integer)it1.next(); 
  //upstreamOrder=new ArrayList<ArrayList<Integer>>(); 
  upstreamOrder.add(new ArrayList<Integer>()); 
  //if the arc has never been visited 
  if((visited.get(arc))==false){ 
  upstreamOrder.get(i).add(streamOrdering(arc));//find its order - 0 
  upstreamOrder.get(i).add(originatingNode.get(arc)); //origin   - 1 
    
  //if it already has been visited 
  }else{ 
  upstreamOrder.get(i).add(streamOrder.get(arc));//order         -0 
  upstreamOrder.get(i).add(originatingNode.get(arc));//origin   -1
   
  } 
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  i=i+1; 
 }//while end 
   
 return  getOrder(upstreamOrder, ArcID); 
 } 
}  
  
public int getOrder(ArrayList<ArrayList<Integer>> upstreamOrder, int  
     ArcID){ 
 int maxOrder=0; 
 int maxOrderCount=0; 
 int order=0; 
 int origin; 
 int maxOrderOrigin=0; 
  
 for(int i = 0;i<upstreamOrder.size();i++){  
 order=upstreamOrder.get(i).get(0); 
 origin=upstreamOrder.get(i).get(1); 
 if(order>maxOrder){ 
  maxOrder=order; 
  maxOrderCount=1; 
  maxOrderOrigin=origin; 
 }else if (order==maxOrder){ 
  if (maxOrderOrigin!=origin){ 
  maxOrderCount=maxOrderCount+1; 
  }  
 }//do nothing if maxOrder less than order  
 } 
  
 if (maxOrderCount > 1){ 
 order=maxOrder+1; 
 streamOrder.put(ArcID, order); 
 originatingNode.put(ArcID, fromNodePerArc.get(ArcID)); 
 }else{ 
 order =maxOrder; 
 streamOrder.put(ArcID, order); 
 originatingNode.put(ArcID, maxOrderOrigin); 
 } 
 // Calculation of the river Segments: if there is no segment Id 
 // from the originatingNode of edge ArcID then add one 
 int node = originatingNode.get(ArcID); 
 if (!(segmentIDsPerOriginatingNode.containsKey(node))){ 
 int j = order - 1;//because order start with 1, but arrays start at 
0 
 segmentID[j]=segmentID[j]+1;//get the segmentID value of the order  
                             //and increase it 
 segmentIDsPerOriginatingNode.put(node, segmentID[j]); 
 } 
 segments.put(ArcID,segmentIDsPerOriginatingNode.get(node)); 
 return streamOrder.get(ArcID); 
 } 
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4.2.4.2 Shreve/Scheidegger/Rzhanitsyn algorithm 

A brute-force-algorithm for calculating Shreve orders would be to visit every node and 

make a DFS to find all the headwater nodes and count them. This would be n* n/2 if we 

assume a perfect binary tree, thus be of O(n2). 

Shreve.java (an Add-in for ArcGIS 10.0) calculates Shreve stream magnitude and is 

based on the recursive algorithm of Gleyzer et.al [GLEYZER 2004].  The 

streamOrdering-method, and the getOrder-method had to be changed to fit Shreve's 

concept [SHREVE 1966]. The approach is quite straightforward for rivers without 

braiding. In this case its runs in O(n). The braiding introduces an extra component into 

the code that makes sure, that every headwater is counted only once. This was 

accomplished using a set approach.  

For every braided river the origin node and all upper braid nodes (these are all those 

nodes where a river is branching out), are saved in a hashMap, and for every branching 

origin node a current count is maintained. If a braiding ends, then this braiding's origin 

node (or nodes) is (are) not added any more to the next down river(s). For the low-land 

reaches of rivers these braiding reaches can become rather complex sets, but seen 

overall they usually involve only a certain portion of the river data set (e.g. in the 

Austrian surface water dataset for reporting there are about 10% rivers branching out, 

only about a third of them is involved in branching sets with more than one branching). 

Thus using a recursive approach is still a quick way to calculate the Shreve numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4–11 Branching schematic 
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Details of calculating Shreve orders: 

In the preprocessing phase the following data maps are created for the edges: 

visited [ArcID]... empty at the beginning - will hold all edges at the end 

streamOrder[ArcID]...initialized with 0 

fromNodePerArc[ArcID]...the FromNode-ID of the edges 

inflowingArcsPerNode[Arc's FromNodeID] ... the list of the inflowing edges 

outflowingArcsPerNode[Arc's FromNodeID] ... the list of the outflowing edges  

Nodes where braiding starts are marked and their outflowing edges are counted: 

 If | outflowingArcsPerNode[Arc's FromNodeID] | > 1, 

 then the count is put in the data map origNodeCnt[Arc's FromNodeID]  

origNode[Arc's FromNodeID] ... the FromNode-ID of the edges  

 

Starting with the pourPoints the streamOrdering method is called once for every edge 

comparable to Gleyzers Strahler algorithm. 

 
public int streamOrdering(int ArcID){ 
 //set visited 
 visited.put(ArcID,true); 
 //get fromNode 
 int fromNode = fromNodePerArc.get((Integer)ArcID); 
 //get count of inflowingArcsPerNode 
 int inflowingArcs = 
inflowingArcsPerNode.get((Integer)fromNode).size(); 
 if (inflowingArcs == 0){//Base case 
 for(int x : outflowingArcsPerNode.get(fromNode)){ 
  streamOrder.put(x, 1); 
  visited.put(x, true); 
 } 
 return 1; 
 }else{//if the river with ArcID is no upper arc 
 //get the inflowingArcsPerNode  
 Iterator<Integer> it1; 
 it1=inflowingArcsPerNode.get((Integer)fromNode).iterator(); 
 int arc; 
 int i=0; 
 ArrayList<ArrayList<Integer>>upstreamOrder=new  
     ArrayList<ArrayList<Integer>>(); 
 //for every inflowingArc do the following: 
 while(it1.hasNext()){ 
  arc = (Integer)it1.next(); 
  upstreamOrder.add(new ArrayList<Integer>()); 
  //if the arc has never been visited 
  if((visited.get(arc))==false){ 
  upstreamOrder.get(i).add(streamOrdering(arc));//find its order - 0 
  upstreamOrder.get(i).add(arc);// arcOID - 1  
  //if it already has been visited 
  }else{ 
  upstreamOrder.get(i).add(streamOrder.get(arc));//order         - 0
  upstreamOrder.get(i).add(arc);// arcOID   - 1 
  } 
  i=i+1; 
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 }//while end 
 return  getOrder(upstreamOrder, ArcID); 
 } 
}  
 
public int getOrder(ArrayList<ArrayList<Integer>> upstreamOrder, int 
ArcID){ 
 int sumOrder=0; 
 int order=0; 
 int upstreamRiver; 
 int fromNode = fromNodePerArc.get(ArcID); 
 int outCount = outflowingArcsPerNode.get(fromNode).size(); 
 int upstreamFromNode=0; 
 int temp; 
 int temp1; 
 int temp2; 
 int temp3; 
 int max=0; 
 //create local HashMaps and sets 
 Set<Integer> tempNodeSet=new HashSet<Integer>(); 
 Set<Integer> unionNodeSet=new HashSet<Integer>(); 
 HashMap<Integer,Integer>nodeSetMapCnt=new 
HashMap<Integer,Integer>(); 
 Set<Integer>nodeSet=new HashSet<Integer>(); 
 HashMap<Integer,Set<Integer>>nodeSetMap=new  
     HashMap<Integer,Set<Integer>>(); 
 HashMap<Integer,Integer>localOrigNodeCnt=new 
HashMap<Integer,Integer>(); 
 
 for(int i=0; i<upstreamOrder.size();i++){ 
 //get the next inflowing upstreamRiver of ArcID 
 order = upstreamOrder.get(i).get(0); 
 upstreamRiver=upstreamOrder.get(i).get(1); 
 sumOrder=sumOrder+order; 
 if(max<order)max=order; 
 upstreamFromNode=fromNodePerArc.get(upstreamRiver);  
 //find out if it is a branching upstreamRiver 
 if(origNode.containsKey(upstreamFromNode)){ 
  //if it is a branching Arc 
  //get its fromNode 
  nodeSet.add(upstreamFromNode); 
  if(!nodeSetMap.containsKey(upstreamFromNode)){ 
  nodeSetMap.put(upstreamFromNode, origNode.get(upstreamFromNode)); 
  localOrigNodeCnt.put(upstreamFromNode, 0); 
  }else{ 
  //if the node is already in the nodeSetMap 
  //then the order has to be corrected 
  sumOrder=sumOrder - streamOrder.get(upstreamRiver); 
  // every time the node appears again - the 
  // nodeCount will have to be reduced by one 
  temp=localOrigNodeCnt.get(upstreamFromNode) + 1; 
  localOrigNodeCnt.put(upstreamFromNode, temp); 
  } 
 }  
 } 
 // if nodeSetMap is empty then there is nothing to do than 
 // to put the streamOrder into the streamOrder Map 
 if(nodeSetMap.isEmpty()){ 
 if(outCount>1){ 
  for(int x : outflowingArcsPerNode.get(fromNode)){ 
  streamOrder.put(x, sumOrder); 
  visited.put(x, true); 
  } 
 }else { 
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  streamOrder.put(ArcID, sumOrder); 
 } 
 return sumOrder; 
 }else{ 
 //if nodeSetMap contains items then there were 
 //branching nodes in the input 
 // localOrigNodeCnt contains up to now only the keys of the from 
 // upper nodes - but all upper keys have as well to be put there 
 // for reasons of orderCnt corrections 
 for(int e:nodeSet){ 
  if(!(localOrigNodeCnt.get(e)==0)){ 
  temp1=localOrigNodeCnt.get(e);//Cnt of the nodes 
  tempNodeSet = origNode.get(e); 
  for(int f:tempNodeSet){ 
   if(localOrigNodeCnt.containsKey(f)){ 
   temp=localOrigNodeCnt.get(f)+ temp1; 
   localOrigNodeCnt.put(f, temp); 
   }else{ 
   localOrigNodeCnt.put(f, temp1); 
   } 
  } 
  }else{ 
  localOrigNodeCnt.remove(e); 
  } 
 } 
 for(Map.Entry<Integer, Set<Integer>> e: nodeSetMap.entrySet()){ 
  upstreamFromNode = e.getKey(); 
  tempNodeSet=e.getValue(); 
  for(int f : tempNodeSet){ 
  if(nodeSetMapCnt.containsKey(f)){ 
   temp=nodeSetMapCnt.get(f) + 1; 
   nodeSetMapCnt.put(f, temp);  
  }else{ 
   nodeSetMapCnt.put(f, 1); 
  } 
  } 
 } 
 // add nodeSet 
 for(int e: nodeSet){ 
  if(nodeSetMapCnt.containsKey(e)){ 
  temp=nodeSetMapCnt.get(e) + 1; 
  nodeSetMapCnt.put(e, temp);  
  }else{ 
  nodeSetMapCnt.put(e, 1); 
  } 
 } 
 // now exists a list of all the upperNodes that are in 
 // the node set lists of other upper Nodes 
 // there are more than one different input 
 // branching nodes 
 // loop over all of them and find 
 // out 
 // 1 - if there is a branching that ends here 
 //      -> count all occurences of a node in the origNode sets 
 //    add the nodeSet at the end 
 // -> compare every count of a node with its origNodeCnt 
 //    if not the same -> node has to be put into the 
 //    origNode set of fromNode 
 // 2 - if there are branching nodes coming up more than once 
 // that are not in the nodeSet (because those orders were already 
 // substracted above! 
 // ->1 
 for(Map.Entry<Integer, Integer> e: nodeSetMapCnt.entrySet()){ 
  upstreamFromNode = e.getKey(); 
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  temp=e.getValue();//Count 
  //find out if it is the next upper branching node 
  // repair sumOrder value - every node must only be used once 
  temp1= temp; 
  // find out if it is one of the next upper branching nodes 
  // - otherwise it may be a nested node 
  for(Map.Entry<Integer,Integer> f: nodeSetMapCnt.entrySet()){ 
  temp3=f.getKey(); 
  if(temp3!=upstreamFromNode){ 
   tempNodeSet=origNode.get(temp3); 
   if(tempNodeSet.contains(upstreamFromNode)){ 
   temp1=temp1-f.getValue()+1; 
   } 
  } 
  } 
  temp1=temp1-1; 
  // only substract it if it is the next upper branching node 
  if(temp1 > 0){ 
  sumOrder=sumOrder-temp1 * 
 streamOrder.get(outflowingArcsPerNode.get(upstreamFromNode).get(0)); 
  } 
  // repair nodeOrigCnt value 
  // first get the nodeOrigCnt 
  if(origNodeCnt.containsKey(upstreamFromNode)){ 
  temp2 = origNodeCnt.get(upstreamFromNode); 
  }else{ 
  temp2 = 1; 
  } 
  if(localOrigNodeCnt.containsKey(upstreamFromNode)){ 
  temp=temp+localOrigNodeCnt.get(upstreamFromNode); 
  } 
  temp1 = temp2 - temp; 
  // node ends: 
  if(temp1==0){ 
  origNodeCnt.put(upstreamFromNode, 0); 
  }else{ 
  unionNodeSet.add(upstreamFromNode); 
  temp1=temp1+outCount; 
  origNodeCnt.put(upstreamFromNode, temp1); 
  } 
 } 
 if(!unionNodeSet.isEmpty()){ 
  origNode.put(fromNode, unionNodeSet); 
  if(unionNodeSet.size()>0){ 
  countall++; 
  } 
  if(unionNodeSet.size()>10){ 
  countGT10++; 
  } 
  if(unionNodeSet.size()>20){ 
  countGT20++; 
  }  
 }  
 } 
 if (sumOrder<max){ 
 sumOrder=max; 
 } 
 //now write the streamOrders 
 if(outCount>1){ 
 for(int x : outflowingArcsPerNode.get(fromNode)){ 
  streamOrder.put(x, sumOrder); 
  visited.put(x, true); 
 } 
 }else { 
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 streamOrder.put(ArcID, sumOrder); 
 } 
 return sumOrder; 
} 
 
//Set Methods 
// setX minus setY 
public static <T> Set<T> difference(Set<T> setX, Set<T> setY){ 
 Set<T>temp=new HashSet<T>(setX); 
 temp.removeAll(setY); 
 return temp; 
} 
//setX contains setY 
public static <T> boolean containedIn(Set<T> setX, Set<T> setY){ 
 return setY.containsAll(setX); 
} 
 

The algorithm produces the Shreve order numbers for planar graphs without circles.  

 

Proof A: nonbraided rivers: 

Recursion base case: if there are no inflowing rivers, the number is set to one, which is 

exactly the count of headwaters for one headwater river. 

Other cases: if there are inflowing rivers their river numbers are summed up and thus 

give the numbers of headwaters. Thus after every calculation of stream orders the 

stream order number is the same as the count of the headwaters. QED 

 

Proof B: braided rivers: 

Recursion base case: if there are no inflowing rivers, the number is set to one, which is 

exactly the count of headwaters for one headwater river. 

Other cases: if there are inflowing rivers their river numbers are summed up. Braided 

rivers may introduce a headwater point twice or even more often and are found out by 

the algorithm. The count of the headwaters is corrected. Thus after every calculation of 

stream orders the stream order number is the same as the count of the headwaters. QED 

 

The only possibility for errors is where the graph violates planarity in areas where 

braiding occurs (in the Austrian surface water dataset for reporting version 8 this occurs 

exactly once).  

To eliminate (most of) the error introduced in these non-planarity cases an additional 

test was introduced that makes sure that it can never happen that the calculated arc has a 

smaller order than the maximum order of the inflowing arcs. 

Claim 1 and 2 are the same as for the Gleyzer algorithm: 



 92 

Claim 1: streamOrdering is called exactly once for each reachable arc. 

Proof: streamOrdering(e) starts at a pour arc (the arc that has no outflow). It finds all the 

inflowing arcs for this arc and calls streamOrdering for them only if they were not 

visited yet. QED. 

 

Claim 2: The call of getOrder is executed exactly once for each edge.  

Proof: getOrder is called once per execution of streamOrdering. And following claim 1 

the streamOrdering is executed exactly once for each reachable arc. QED. 

 

Claim 3: The time complexity of getOrder grows quadratically with the amount of 

nested open braidings. 

Proof: If there is no open braiding getOrder sums up the inflowing arcs and is done. 

If there is open braiding then the braiding nodes are compared with each other in a brute 

force manner (each with each). Thus the number of comparisons is the square of the 

number of open braiding nodes.  

In the worst case there is only one upper node, which together with every following 

node branches out. Their braiding only closes at the last node. This would mean 

((𝑖𝑖 − 1)/2))  nesting-depth thus O(n2) (where i is even because only two 

outflowing arcs would create a new braid) comparisons. QED. 

 

 

 

 

 

 

 

 

 

Figure 4–12 Worst case braiding scenario with maximum nesting 
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As braiding is not the normal case in a river this worst case scenario hardly ever will 

occur on large scale. Thus in the following calculation the number goes in as b.  

 

Time Complexity Steps 

constant Initialize document and create the necessary fields and indices 

c1*n Create hashMaps (visited, streamOrder , fromNodePerArc, 

origNode, inflowingArcsPerNode, outflowingArcsPerNode, 

segments) and fill them with data 

c2*n + c3*b2 Calculate Shreve order for every river segment b is the number of 

open branchings for this river segment. 

c4*n Write the Shreve orders into the river segment attribute table. 

O(n+ b2)  

Space Complexity  

>14 n Extra space for 7 hashmaps (hashmaps have to be designed large 

enough to avoid too much rehashing, thus for every hashmap a 

small extra amount of space has to be planned 

f Extra space for local hashMaps and Sets in the getOrder Method - 

dynamic size - varies from 0 (in the areas where no branching 

occurs to the number of active branching nodes). This number is 

smaller than n. 

The order of space complexity is of O(n). 

In tests with the Austrian surface water dataset the highest factor b was 26 for the 

Danube part of the rivers. From the Danube pour point 35,371 segments could be 

reached, 2,102 were connected with branching, from those only 130 had a nesting larger 

than 10, 26 larger than 20 -> n+b2 is approximately 140,000 * c steps. Whereas a 

quadratic brute force method for calculating all of the rivers would be about 35,3712/2 

steps which is more than 600 mio * c steps. 

 

The algorithm was tested with the data of the three river basins. The output was 

evaluated through calculating the "JunctionValences" (c.f. 8.2.4.) As the Shreve 

numbers hold the number of headwaters above a certain river segment, tracing all the 

junctions of one basin, and reselecting those with a ValenceIn-value of 0, gives back the 

upper nodes for this certain river segment. Their count has to be the same as the Shreve 

number for this segment. 
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The same algorithm can be used to calculate the Scheidegger stream order by 

multiplying the output with 2 and consequential the Rzhanitsyn stream order by taking 

the logarithm on base 2 of the Scheidegger stream numbers - these were added as 

additional calculations to the Shreve.java Add-In, and only change the constant c4. 

4.2.4.3 Pfafstetter algorithm 

Because of a restricted time horizon and some open questions concerning the 

interoperability of Java and ArcObjects a Pfafstetter algorithm could not be 

implemented in Java for this thesis. 

 

Data preconditions:  

 Network pour points 

 Catchment with network topology  

 No backflows/circles 

 The last segment before the pour point must not be braided 

 Value field (accumulationArea - outcome of the AccumulateCatchments 

algorithm) 

Description:  

Steps: 

Preprocessing: 

 Create hashmaps for tracing (compare accumulateCatchments algorithm). 

 Create attributes to hold the Pfafstetter code number for every calculated level. 

 

Main Procedure: 

1. Find the main river  

 Create an empty ArrayList "tributaries" 

 Create a linked list "fourLargest" to hold the four largest tributaries and their 

sizes 

 create a variable "smallest=0" to hold the size of the smallest of the four 

largest tributaries 

 Trace the watershed network from the pour point upwards - if there is more 

than one upper watershed choose the one with the bigger accumulationArea 

value and mark it as main river. Put the other watersheds that are not marked 
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as main in "tributaries" (id, aggregated area. Put the first four watersheds in 

fourLargest and save their smallest size in variable smallest. In the next steps 

compare the watersheds. accumulationArea of the tributary with smallest, if 

it is larger, the watershed in fourLargest with the size=smallest has to be 

deleted, the larger watershed will be appended at the end of "fourLargest". 

Value of "smallest" has to be decided anew. 

2. Determine the 4 largest tributaries and interbasins 

 "fourLargest" holds the largest tributaries. According to their order in the list 

they get the codes 2, 4, 6 and 8.  

 During a new trace from the pour point the values for this Pfafstetter level 

are written to the table. The catchments marked main and all catchments not 

in fourLargest get the Interbasin numbers (1,3,5,7,9) according to their 

position in "tributaries" - from pourPoint to fourLargest(0) they get 

Pfafstetter code 1, between fourLargest(0) and fourLargest(1) they get 

Pfafstetter code 3, between fourLargest(1) and fourLargest(2) they get 

Pfafstetter code 5, between fourLargest(2) and fourLargest(3) they get 

Pfafstetter code 7, and after fourLargest(3) they get Pfafstetter code 9. 

 

3. If there are more levels to be calculated repeat step 1 and 2. 

  

Running time: 
If data preparation (aggregating areas) is not drawn into conclusion, for every 

Pfafstetter level a main river trace and a code application trace has to be made. The 

main river trace does not trace the whole network but only the main rivers. To apply the 

Pfafstetter code a full trace has to be made that visits every catchment exactly once. 

Thus the time complexity depends on the number of catchments and the number of 

main rivers and the hierarchy complexity of the catchment. As the number of main 

rivers is less than the number of all rivers, the calculation of one level means at the 

maximum 2 runs through all rivers, thus 1*c1* n + 1*c2*n steps. The largest trace is 

always as large as the number of catchments, that means a complexity of O(n*l) where 

n is the number of catchments and l is the number of calculated Pfaffstetter levels. l is 

usually beneath 100. 
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4.2.5 Algorithms for accumulating stream and catchment data 

4.2.5.1 Accumulating rivers 

Accumulation algorithms are necessary for the calculation of the arbolate sums (c.f. 

3.1.2.1) for every segment of the river network or for parameters of water quality. The 

main aim is to calculate the value (e.g. sum of lengths of the river segment and all its 

upper segments or sum of some other numerical parameter) for all segments in the river 

network. Parallel rivers have to be kept in mind, because the calculation has to be made 

for all of them with avoidance of recalculating all parts that have already been 

calculated. AccumulateRivers.java uses the network structure of ArcGIS and calculates 

accumulation values for edges (river segments) and network junctions (wells, 

confluences ...) and keeps track of parallel stretches. The algorithm will only run 

properly if the prerequisite that the graph is acyclic is ensured. FindBackflows.java and 

FindCircles.java can both be used to make the corresponding tests.  

 

There exists an Accumulate Attributes-tool from the Arc Hydro Tools [ARCHYDRO 

2013] that fulfills a similar task. The outcome is not exactly the same, because there is a 

small difference in the concepts of accumulation as can be seen in Figure 4–13.  

  
Accumulate Attributes tool (Arc Hydro) AccumulateRivers.java 

Figure 4–13 Differences in the calculation of river accumulation values (blue numbers are the 

source values, black numbers are the accumulation values saved with the edges, brown are the 

accumulation values saved with the junctions) 
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AccumulateRivers.java calculates the values that are valid for the junctions to a field in 

the junctions data set and those valid for the lower endpoint of the river to the edge 

dataset. The Accumulate Attributes-tool of the Arc Hydro Tools only calculates one 

value (comparable to the value in the junctions of the AccumulateRivers.java). 

 

The Accumulate Attributes-tool is most probably of quadratic order because it can be 

seen during processing that for the calculation of the accumulation value of an element 

in the network all upper network elements are traced.   

 

Data preconditions (for AccumulateRivers.java):  

 Network pour points 

 River segments with network topology  

 No backflows/circles 

 The last segment before the pour point must not be braided 

 Value field (measured or counted) 

 

Description: AccumulateRivers.java calculates the accumulated value for rivers and 

junctions and saves it to an output field. The algorithm works based on a DSF with 

nested recursion. For very big datasets it has to be ensured that enough memory is 

available to hold the double values (the summed up river lengths) during the recursion. 

In braided parts the accumulated value holds the sum of all upstream parts. Thus a 

correction has to take place when a braid ends, to not sum up the same value for a 

second (third ...) time. 

 

Central methods of AccumulateRivers.java 

 
public void accumulateValues(int ArcID){ 
 //set visited 
 visited.put(ArcID,true); 
 //get fromNode 
 int fromNode = fromNodePerArc.get(ArcID); 
 //get count of inflowingArcsPerNode 
 int inflowingArcs = inflowingArcsPerNode.get(fromNode).size(); 
 int outCount=outflowingArcsPerNode.get(fromNode).size(); 
 if (inflowingArcs == 0){//Base case 
  accumValueNode.put(fromNode, new Double(0d)); 
  //the arc length is already in the accumValue Map 
 }else{//if the river with ArcID is no upper arc 
  //get the inflowingArcsPerNode  
  Iterator<Integer> it1; 
  it1=inflowingArcsPerNode.get((Integer)fromNode).iterator(); 
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  int arc; 
  double sumValue=0; 
  int upstreamFromNode; 
  int temp; 
  HashSet<Integer>nodeSet=new HashSet<Integer>(); 
  ArrayList<Integer>upstreamRivers=new ArrayList<Integer>(); 
  Map<Integer,Integer>localOrigNodeCnt=new 
HashMap<Integer,Integer>(); 
   
  //for every inflowingArc do the following: 
  while(it1.hasNext()){ 
   arc = (Integer)it1.next(); 
   //if the arc has never been visited 
   if((visited.get(arc))==false){ 
    accumulateValues(arc); 
    upstreamRivers.add(arc); 
   //if it already has been visited 
   }else{ 
    upstreamRivers.add(arc);          
   } 
   sumValue=sumValue+accumValue.get(arc).doubleValue(); 
   upstreamFromNode=fromNodePerArc.get(arc); 
   // check if the origin Node is a braid node - if yes add it 
   // to the nodeSet 
   if(origNode.containsKey(upstreamFromNode)){ 
    if(nodeSet.add(upstreamFromNode)){ 
     localOrigNodeCnt.put(upstreamFromNode, 1); 
    }else{ 
    //There is already the same Node in there    
    // save value to correct the localOrigNodeCnt 
     temp=localOrigNodeCnt.get(upstreamFromNode) + 1; 
     localOrigNodeCnt.put(upstreamFromNode, temp); 
    } 
   } 
  }//while end 
 
  if(!nodeSet.isEmpty()){ 
   sumValue= sumValue + getValue(nodeSet, localOrigNodeCnt, ArcID,  
       fromNode, outCount ); 
  } 
  accumValueNode.put(fromNode, new Double(sumValue)); 
  double arcValue=0; 
  if(outCount>1){ 
   for(int x : outflowingArcsPerNode.get(fromNode)){ 
    arcValue=sumValue+accumValue.get(x).doubleValue(); 
    accumValue.put(x, new Double(arcValue)); 
    visited.put(x, true); 
   } 
  }else { 
   arcValue=sumValue+accumValue.get(ArcID).doubleValue(); 
   accumValue.put(ArcID, new Double(arcValue)); 
  } 
 } 
}  
 
public double getValue(HashSet<Integer> nodeSet, 
Map<Integer,Integer>localOrigNodeCnt, int ArcID, int fromNode, int 
outCount){ 
 double sumValue=0; 
 int upstreamFromNode; 
 int temp; 
 Set<Integer>upstreamOrigins = new HashSet<Integer>(); 
 HashSet<Integer>originsOut = new HashSet<Integer>(); 
 Map<Integer,Integer>nodeCount=new HashMap<Integer,Integer>(); 
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 int factor; 
 for(int f : nodeSet){//circle through all incoming nodes 
  //direct nodes: 
  upstreamFromNode=f; 
  upstreamOrigins=origNode.get(upstreamFromNode); 
  factor=localOrigNodeCnt.get(upstreamFromNode); 
  //upper adjacent nodes: 
  if(nodeCount.containsKey(upstreamFromNode)){ 
   temp=nodeCount.get(upstreamFromNode) + (factor); 
   nodeCount.put(upstreamFromNode,temp); 
  }else{ 
   nodeCount.put(upstreamFromNode, factor); 
  } 
 
  //origin nodes of upper adjacent nodes: 
  if(!upstreamOrigins.isEmpty()){ 
   for(int e : upstreamOrigins){ 
    if(nodeCount.containsKey(e)){ 
     temp=nodeCount.get(e) + (factor); 
     nodeCount.put(e,temp); 
    }else{ 
     nodeCount.put(e, factor); 
    } 
   } 
  } 
 } 
 
 //Now there exists a map nodeCount with all nodes 
 // and their counts 
 // - correct the node counts in origNodeCnt 
 int upstreamOrigin; 
 int cnt; 
 for(Map.Entry<Integer, Integer> entry : nodeCount.entrySet()){ 
  upstreamOrigin=entry.getKey(); 
  cnt=entry.getValue(); 
  temp=0; 
  //find out if branching is still open 
  if(origNodeCnt.containsKey(upstreamOrigin)){ 
   temp=origNodeCnt.get(upstreamOrigin) - cnt; 
  } 
  if(temp==0){//branching ends here 
   origNodeCnt.put(upstreamOrigin, 0); 
   //System.out.println(upstreamOrigin + "ended"); 
  }else{//branching goes on 
   temp=temp+outCount; 
   originsOut.add(upstreamOrigin); 
   origNodeCnt.put(upstreamOrigin, temp); 
  } 
 } 
  
 if(!originsOut.isEmpty()){ 
  origNode.put(fromNode, originsOut); 
 } 
 //System.out.println("origOut"+originsOut); 
 int cor=0; 
 
 //Correct accumulation values  
 // - correct direct nodes that appear more than once 
 for(Map.Entry<Integer, Integer> entry : 
localOrigNodeCnt.entrySet()){ 
  upstreamOrigin=entry.getKey(); 
  cnt=entry.getValue(); 
  if (cnt>1){ 
   factor = cnt-1; 
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   sumValue=sumValue -
(accumValueNode.get(upstreamOrigin).doubleValue()    
   *factor); 
   nodeCount.put(upstreamOrigin, 1); 
   for(int e: origNode.get(upstreamOrigin)){ 
    cor=nodeCount.get(e) - factor; 
    nodeCount.put(e, cor); 
   } 
  } 
 } 
 
 // There may be still upper nodes that are  
 // in the sum more often than once 
 // a) find out their nesting 
 // b) correct nearest node first 
 
 HashMap<Integer,Integer>countCor=new HashMap<Integer,Integer>(); 
 Set<Integer>corSet=new HashSet<Integer>(); 
 while(!nodeCount.isEmpty()){ 
  temp=0; 
  cnt=0; 
 
  //a 
   for(Map.Entry<Integer, Integer> entry : nodeCount.entrySet()){ 
   upstreamOrigin=entry.getKey(); 
   if(temp==0){ 
    temp=upstreamOrigin; 
    cnt=entry.getValue()-1; //minus 1 because one has to be left 
   }else{ 
    if(origNode.get(upstreamOrigin).contains(temp)){ 
     temp=upstreamOrigin; 
     cnt=entry.getValue()-1; //minus 1 because one has to be 
left 
   } 
  } 
 } 
 

 // now the temp-Node is corrected and not needed any longer 
 // remove it from nodeCount map 
 nodeCount.remove(temp); 
 //b: if nearest node has any upper nodes 
 // correct their count 
 if(cnt>0){ 
  sumValue=sumValue-(accumValueNode.get(temp).doubleValue()*cnt); 
  if (origNode.containsKey(temp)){ 
   //reduce upper nested nodes 
   for(int e: origNode.get(temp)){ 
    if(nodeCount.containsKey(e)){ 
     cor=nodeCount.get(e)- cnt; 
     if(cor<1){//happens in very complex braids (with 
crossings) 
      cnt=1-cor; 
     
 sumValue=sumValue+(accumValueNode.get(e).doubleValue())*cnt; 
      nodeCount.put(e, 1); 
      if(!countCor.containsKey(e)){ 
       countCor.put(e,cnt); 
       corSet.addAll(origNode.get(e)); 
      } 
     }else{ 
      nodeCount.put(e, cor); 
     } 
    } 
   }  
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  } 
 }  
 
 //at last correct the Values that were re-added if  
 //they came from nested sets 
 if(!countCor.isEmpty()){ 
  for(Map.Entry<Integer, Integer> entry : countCor.entrySet()){ 
   upstreamOrigin=entry.getKey(); 
   cnt=entry.getValue(); 
   if(corSet.contains(upstreamOrigin)){ 
    sumValue=sumValue - 
     (accumValueNode.get(upstreamOrigin).doubleValue())*cnt; 
   } 
  } 
 } 
 return sumValue; 

} 

 

Running Time 

Time complexity is comparable with the Shreve algorithm. If there are no braided rivers 

time complexity is O(n), only the method accumulateValues is executed and each river 

is visited only once. If the created nodeSet of braided rivers is not empty, then the 

getValue method is called to calculate the correction value. The complexity of the 

getValue method is O(nb
2), where nb is the number of currently open braids.  The more 

complex the braiding, the more open braids exist. 

Time Complexity Steps 

constant Initialize document and create the necessary fields and indices 

c*n Create hashMaps (inflowingArcsPerNode, 

outflowingArcsPerNode, fromNodePerArc,origNodeCnt, 

origNode) and fill them with data 

c1*n (+ c2*nb
2) Fill hashMaps(accumValue, accumValueNode) - if there are no 

braided rivers this has a complexity of O(n) because every node is 

only visited once. If there are braided rivers an extra calculation 

has to be run.  

O(n)  

Space Complexity  

Extra space for 6 hashmaps (hashmaps have to be designed large enough to avoid too 

much rehashing, thus for every hashmap a small extra amount of space has to be 

planned). Space complexity is of order O(n). 
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4.2.5.2 Accumulating catchments 

Comparable to the accumulation of rivers it may also be necessary to calculate 

accumulation parameters for catchments. For the calculation of the catchment 

accumulation first a network has to be created (e.g. with CreateWatershedNetworkGP 

which uses ArcGIS tools to create a network from existing NextDown data) where the 

network junctions represent the catchment centroids.  

AccumulateCatchment.java accumulates the value of a chosen numerical field 

downstream. The accumulation values are therefore only calculated for the centroids 

and not for the network edges. In braided parts the accumulated value holds the sum of 

all upstream parts. Thus a correction has always to take place when a braid ends, to not 

sum up the same value for a second (third...) time.  

 

A similar existing tool would be the Accumulate Attributes-tool from the Arc Hydro 

Tools (Arc Hydro Tools for ArcGIS 10.1, Beta version) already mentioned in 4.2.5.1. 

 

Data preconditions:  

 Catchment centroids with a network topology 

 No backflows/circles 

 There must be only one lowest sub-catchment per catchment (thus if there are 

more than one sub-catchments per catchment that empty into the sea, an 

artificial catchment has to be created that functions as lowest catchment for all 

of them) 

 Value field (measured or counted) 

 

Detail Description: 

Again a DSF strategy proofed to be a quick way to calculate the accumulation of 

catchment values. Compared with the calculation of river accumulation values, the 

catchment accumulation only sums up the values of the centroids (which form the 

network nodes).  

 
public void accumulateValues(int nodeID){ 
 //set visited 
 visited.put(nodeID,true); 
  
 //get upper Nodes 
 if(!upstreamAdjacentNodes.containsKey(nodeID)){ 
  System.out.println("NodeID: " + nodeID + " upper "); 
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  //do nothing because value is already in accumValueNode 
 }else{ //if the node is no upper node 
  //get the upper nodes 
  System.out.println("NodeID: " + nodeID + " ***** "); 
  ArrayList<Integer>upstreamNodes = 
upstreamAdjacentNodes.get(nodeID); 
  double sumValue=accumValueNode.get(nodeID); 
  Map<Integer,Integer>nodeCountMap=new HashMap<Integer,Integer>(); 
  //Set<Integer>upstreamNodeSet; 
  for(int upstreamNodeID : upstreamNodes){ 
   if(!visited.containsKey(upstreamNodeID)){ 
    
    accumulateValues(upstreamNodeID); 
    System.out.println("test2"); 
   } 
   
   //accumulate Values 
   sumValue+=accumValueNode.get(upstreamNodeID); 
   //get braid-node-set of upstream node 
   if(braidNodes.containsKey(upstreamNodeID)){ 
     nodeCountMap=  
      countNodes(braidNodes.get(upstreamNodeID),nodeCountMap); 
   } 
   //if upstreamNode is also a braid node than add it 
   if(downstreamAdjacentNodeCnt.containsKey(upstreamNodeID)){ 
    nodeCountMap=countNodes(upstreamNodeID,nodeCountMap); 
   } 
  }//end for 
  //now have a look at the nodeCountMap  
  //there is only to do something if it is not empty 
  if(!nodeCountMap.isEmpty()){ 
   // get outCount (=number of next Down nodes) 
   int outCount=1; 
   if(downstreamAdjacentNodeCnt.containsKey(nodeID)){ 
    outCount=downstreamAdjacentNodeCnt.get(nodeID); 
   } 
   //adapt downstream adjacent count 
   braidNodes.put(nodeID, updateNodeCounts(outCount, 
nodeCountMap)); 
   //- if there are nodes in the nodeCountMap with a count > 1 
   //the sumValue has to be corrected 
   sumValue = sumValue + correctValue(nodeCountMap); 
  }  
  accumValueNode.put(nodeID, sumValue); 
 } 
}  
 
private double correctValue(Map<Integer,Integer>nodeCountMap){ 
 double correctionValue=0d; 
 Integer upstreamOrigin; 
 int count; 
 int temp=0; 
 //int factor; 
 HashMap<Integer,Integer>countCor=new HashMap<Integer,Integer>(); 
 int tempcnt; 
 Set<Integer>corSet=new HashSet<Integer>(); 
 int cor=0; 
 System.out.println(" Correct Values " + nodeCountMap); 
 while(!nodeCountMap.isEmpty()){ 
  temp=0; 
  count=0; 
  for(Map.Entry<Integer, Integer> entry : nodeCountMap.entrySet()){ 
   upstreamOrigin=entry.getKey(); 
   if(temp==0){ 



 104 

    temp=upstreamOrigin.intValue(); 
    count=entry.getValue()-1; //minus 1 because one has to be 
left 
   }else{//now check if node is next upper node 
    if(braidNodes.containsKey(upstreamOrigin)){ 
     if(braidNodes.get(upstreamOrigin).contains(temp)){ 
      temp=upstreamOrigin.intValue(); 
      count=entry.getValue()-1; //minus 1 because once it has 
to  
               //be counted 
     } 
    } 
   } 
  } 
  // now the temp-Node is corrected and not needed any longer 
  // remove it from nodeCount map 
  nodeCountMap.remove(temp); 
  //b: if nearest node has any upper nodes 
  // correct their count 
  if(count>0){ 
   correctionValue=correctionValue - 
       (accumValueNode.get(temp).doubleValue()*count); 
   if (braidNodes.containsKey(temp)){ 
    //reduce upper nested nodes 
    for(int e: braidNodes.get(temp)){ 
     if(nodeCountMap.containsKey(e)){ 
      cor=nodeCountMap.get(e)- count; 
      if(cor<1){//happens in very complex braids (with 
crossings) 
       count=1-cor; 
       correctionValue=correctionValue+ 
       (accumValueNode.get(e).doubleValue())*count; 
       nodeCountMap.put(e, 1); 
       if(!countCor.containsKey(e)){ 
        countCor.put(e,count); 
        if (braidNodes.containsKey(e)){ 
         corSet.addAll(braidNodes.get(e)); 
        } 
       }else{ 
        //tempcnt=nodeCountMap.get(e)+count; 
        tempcnt=countCor.get(e)+count; 
        countCor.put(e, tempcnt); 
       } 
      }else{ 
       nodeCountMap.put(e, cor); 
      } 
     } 
    }  
   } 
  } 
 } 
 if(!countCor.isEmpty()){ 
  for(Map.Entry<Integer, Integer> entry : countCor.entrySet()){ 
   upstreamOrigin=entry.getKey(); 
   count=entry.getValue(); 
   if(corSet.contains(upstreamOrigin)){ 
    correctionValue=correctionValue - 
     (accumValueNode.get(upstreamOrigin).doubleValue())*count; 
   } 
  } 
 } 
 return correctionValue; 
} 
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/** 
 *  
 * @param nodeSet 
 * @param nodeMap 
 * @return 
 */ 
private Map<Integer, Integer>countNodes(Set<Integer>nodeSet, 
Map<Integer,Integer>nodeMap){ 
 Integer count; 
 for(Integer node:nodeSet){ 
  if(nodeMap.containsKey(node)){ 
   count=nodeMap.get(node)+1; 
   nodeMap.put(node, count); 
  }else{ 
   nodeMap.put(node, 1); 
  } 
 } 
  
 return nodeMap; 
} 
  
 
/** 
 *  
 * @param node 
 * @param nodeMap 
 * @return 
 */ 
private Map<Integer, Integer>countNodes(Integer node, 
Map<Integer,Integer>nodeMap){ 
 Integer count; 
 if(nodeMap.containsKey(node)){ 
  count=nodeMap.get(node)+1; 
  nodeMap.put(node, count); 
 }else{ 
  nodeMap.put(node, 1); 
 } 
 return nodeMap; 
} 
 
 
/** 
 *  
 * @param outCount 
 * @param nodeMap 
 * @return Set<Integer> originsOut  
 */ 
private Set<Integer> updateNodeCounts(Integer outCount, 
Map<Integer,Integer>nodeMap){ 
 Integer upstreamOrigin; 
 int count; 
 int temp; 
 Set<Integer>originsOut = new HashSet<Integer>(); 
 for(Map.Entry<Integer, Integer> entry : nodeMap.entrySet()){ 
  upstreamOrigin=entry.getKey(); 
  count=entry.getValue(); 
  temp=0; 
  //find out if branching is still open 
  temp=downstreamAdjacentNodeCnt.get(upstreamOrigin) - count; 
  if(temp==0){//branching ends here 
   downstreamAdjacentNodeCnt.put(upstreamOrigin, 0); 
   //System.out.println(upstreamOrigin + "ended"); 
  }else{//branching goes on 
   temp=temp+outCount; 
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   originsOut.add(upstreamOrigin); 
   downstreamAdjacentNodeCnt.put(upstreamOrigin, temp); 
  } 
 } 
 return originsOut; 
} 
 
Time Complexity Steps 

constant Initialize document and create the necessary fields and indices 

c*n Create hashMaps (visited, accumValueNode, 

upstreamAdjacentNodes, downstreamAdjacentNodeCnt, 

braidNodes) and fill them with data 

c1*n (+ c2*nb
2) Fill hashMaps(accumValueNode) - if there are no braids in the 

catchment network it has a complexity of O(n) because every node 

is only visited once. If there are braids an extra calculation has to 

be run with a time complexity of (O nb
2) and a large constant c2. 

O(n)  

Space Complexity  

Extra space for 5 hashmaps (hashmaps have to be designed large enough to avoid too 

much rehashing, thus for every hashmap a small extra amount of space has to be 

planed). Order of space complexity is O(n). 

4.2.5.3 Aggregating catchments 

For special questions and for cartographic purposes it is necessary to make a special 

kind of accumulation namely that of geometry of the catchment polygons. This is called 

an aggregation. The AggregatingCatchments.java follows the same idea as the 

algorithm to accumulate catchment values. The starting point is a network where the 

junctions represent the catchment centroid. Via a relationship between the junctions and 

the catchment polygons it is possible to address the related polygons during network 

query and join polygons using topological operations.  

 

AggregatingCatchments.java aggregates the areas of all upstream catchments into a new 

FeatureClass. For every catchment a new polygon is created that embraces all the upper 

watershed polygons. At a last step polygons are sorted by their size and written into a 

new dataset, starting with the biggest. This happens to make sure, that all polygons are 

visible. 

For large catchments this can be a memory intensive progress. 
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Data preconditions:  

1. Catchment centroids and edges with network topology (see 8.2.5) 

2. No backflows/circles (check WatershedNetwork for backflows/circles - see 

4.2.2.1, 4.2.2.2) 

3. No multipart features in the catchments (implementation does not yet deal with 

multipart features) (see therefore 8.2.6) 

 

Description: Despite the resemblance to the AccumulateCatchments algorithm the 

AggregateCatchments algorithm had to be implemented with hindsight to the larger 

data volume caused by the geometry. Thus not all geometry could be kept in memory, 

but classes with already calculated areas were released to free some memory. If the area 

is needed again (which happens in case of bifurcations), then the geometry is called 

from the already created dataset in the geodatabase. 
public void aggregateAreas1(int nodeID) throws AutomationException, 

IOException{ 

 // After 500 polygons save edits 

 countEdits++; 

 if(countEdits>500){ 

  editor.stopEditing(true); 

  editor.startEditing(FCPoly.getWorkspace()); 

  while(editor.getEditState()!= esriEditState.esriStateEditing){ 

   //wait until editing is possible again 

  } 

  countEdits=0; 

 } 

 // If node is visited mark it true 

 visited.put(nodeID,true); 

   

 //Base case - the node is an upper node 

 if(!upstreamAdjacentNodes.containsKey(nodeID)){ 

  try{ 

   IFeature returnFeature = pFCOut.createFeature(); 

  

 returnFeature.setShapeByRef(FCPoly.getFeature(nodeID).getShape()); 

   returnFeature.setValue(2,nodeID); 

   returnFeature.store(); 

   //With every new feature the objectnumber rises by one 

   ++objectnumber; 
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   System.out.println(objectnumber); 

   //To avoid later on a query for the new objectnumber it is put 

   //in a map  

   objectIDMap.put(nodeID,objectnumber); 

  }catch (Exception e){ 

   e.getStackTrace(); 

   System.out.println("Could not store upper feature " + nodeID); 

  } 

 //other cases: the node is not an upper node 

 }else{ 

  try{ 

   //get all upper nodes 

   ArrayList<Integer>upstreamNodes = 

upstreamAdjacentNodes.get(nodeID); 

   // Create an IGeometry as GeometryBag to hold all Polygons 

   IGeometry geomBag = new GeometryBag(); 

   // Set its spatial Reference 

   geomBag.setSpatialReferenceByRef(spatialReference); 

   // QI to a IGeometryCollection for its methods 

   IGeometryCollection geometryColl = 

(IGeometryCollection)geomBag; 

   // addPoly will be every Polygon that  

   IPolygon addPoly; 

   for(int upstreamNodeID : upstreamNodes){ 

    addPoly=null; 

    if(!visited.containsKey(upstreamNodeID)){ 

     //upstreamFeature = FCPoly.getFeature(upstreamNodeID); 

     //upperFeature = aggregateAreas1(upstreamFeature); 

     //IGeometry geom = upperFeature.getShape(); 

     //addPoly = (IPolygon)geom;  

     aggregateAreas1(upstreamNodeID); 

     IGeometry geom = pFCOut.getFeature(objectIDMap.get  

         (upstreamNodeID)).getShape(); 

     addPoly=(IPolygon)geom; 

    }else{ 

     IGeometry geom = pFCOut.getFeature(objectIDMap.get 

        (upstreamNodeID)).getShape(); 

     addPoly=(IPolygon)geom; 

    } 

     

    if (addPoly!=null){ 

     geometryColl.addGeometry(addPoly, null, null) ; 

    }else{ 
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     System.out.println("Could not add polygon to collection"); 

    } 

   }//end for 

    

   IGeometry geom = FCPoly.getFeature(nodeID).getShape(); 

   if(geom instanceof Polygon){ 

    geometryColl.addGeometry(geom, null, null) ; 

   } 

    

   //get final Polygon 

   IPolygon finalPolygon = getFinalPolygon(geometryColl); 

   if(finalPolygon!=null){ 

    if(!finalPolygon.isEmpty()){ 

     IFeature returnFeature = pFCOut.createFeature(); 

     returnFeature.setShapeByRef(finalPolygon); 

     returnFeature.setValue(2,nodeID); 

     returnFeature.store(); 

     objectnumber++; 

     objectIDMap.put(nodeID,objectnumber); 

    } 

   }else{ 

    System.out.println("Could not create new Polygon from  

          inputs"); 

    Thread.sleep(10000); 

   } 

  }catch (Exception e){ 

   e.printStackTrace(); 

   System.out.println(e.getMessage()); 

 

  } 

 

 } 

} 

 

private IPolygon getFinalPolygon(IGeometryCollection geomCollection) 

throws AutomationException, IOException{ 

 try{ 

   

  ITopologicalOperator2 finalPoly=new Polygon(); 

 

  finalPoly.setIsKnownSimple(false); 

  finalPoly.simplify(); 
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  finalPoly.constructUnion((IEnumGeometry)geomCollection); 

   

  return (IPolygon)finalPoly; 

   

   

 }catch(Exception e){ 

  e.printStackTrace(); 

  System.out.println("getFinalPolygon: " + e.getLocalizedMessage()); 

  return null; 

 } 

  

} 

 
 
Time Complexity Steps 

constant Initialize document and create the necessary fields and indices 

c*n Create hashMaps (visited, upstreamAdjacentNodes) and fill them 

with data 

c1*n Calculate new polygons and save them in the output feature class 

in O(n) because every node is only visited once. There is a large 

constant c1 to get the already calculated features from the output, 

which means that, even though it is still linear order, for every 

additional polygon a  fixed number of steps has to be calculated 

that slow down the calculation. 

O(n)  

Space Complexity  

Extra space for hashmaps (hashmaps have to be designed large enough to avoid too 

much rehashing, thus for every hashmap a small extra amount of space has to be 

planned). 

For the output FeatureClass there is more space needed than for the input FeatureClass. 

The amount of space depends on the depth of the catchment hierarchy (the deeper the 

hierarchy the more often the same outer catchment boundary is copied). 

O(n) < order of space complexity < O(n2) 
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5 Examples of use for the algorithms 

The Environment Agency Austria (Umweltbundesamt) was founded in 1985 and 

established and since 2003 maintains the Austrian surface water dataset for reporting for 

the Federal Ministry of Agriculture, Forestry, Environment and Water Management. 

The dataset is a centrally available combination of the nine federal states’ river datasets 

(including the lakes and catchments) and contains the main rivers of the neighboring 

states, which affect the Austrian rivers or are affected by the Austrian rivers (i.e. the 

main incoming and outflowing rivers and the rivers along the country's frontier). In 

combination with a fast amount of hydrological, biological, ecological, geological, and 

administrative information the river dataset for reporting is a potent "tool" to model the 

relationship of surface waters to other areal, linear or point data. 

 

The object oriented data model was specially developed to comply with the needs of 

reporting for the EU WRRL and contains all the rivers with a catchment size of more 

than 10 km2, including their branching out reaches. Lakes are included when larger than 

0.5 km2, catchments must have at least 1 km2. The newest versions (from version 7) 

additionally include smaller rivers as needed for operations done for the EU Floods 

Directive 2007/60/EC22.  

 

To get an impression of the numbers of items in the dataset, version 8 contains: 

>35,000 river segments 

6,225 routes (incl. calibration points) 

> 88,000 route segments (defined on routes) 

> 9,000 river water bodies (defined on routes) 

> 40,000 catchments 

 

The original data model already holds a geometric network for the rivers. The structure 

was slightly adapted for this thesis and can be depicted from Figure 5–1  

                                                
22 The directive requires member states to first carry out a preliminary assessment by 2011 to identify the 
river basins and associated coastal areas at risk of flooding. For such zones flood risk maps have to be 
created by 2013 and flood risk management plans have to be prepared by 2015. c.f. 
http://ec.europa.eu/environment/water/flood_risk/index.htm 
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Figure 5–1 Object model river network 

 

The data was used for testing purposes and provided a valuable means for this work. In 

the following sections some outputs of the calculations are shown. 

 

With the CreateWatershedNetworkGP.java (8.2.5) a similar object structure was created 

from the watersheds (see Figure 5–2 Object model of the watershed network). During 

the calculation also a one-to-one relationship between centroids and watersheds is 

created. 
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Figure 5–2 Object model of the watershed network 

 

The water network gives the possibility to trace watersheds with efficient speed and is 

also necessary to calculate aggregations. At the moment the ideal relationship of one 

river per catchment is not established correctly, in most parts of the network there are 

more catchments than rivers in the reporting system, it is not possible to use the river 

data to trace the watersheds. This can be seen in Figure 5–3. The network structure of 

the watersheds is established using existing next down relationships (this means that 

there exists a field or some fields in the table that hold the unique watershed number(s) 
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of the downstream watershed(s)). Many of the next down values were manually entered 

into the watershed tables; only where the rivers correspond with the watersheds existing 

routines from Arc Hydro Tools could be used to calculate those next down values.  

 

Figure 5–3 Example of the spatial relationship between rivers and watersheds 

The following figure shows part of the established watershed network for the Austrian 

catchments. 

 

Figure 5–4 Example of an established catchment network 
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Strahler (Strahler.java), Shreve, Scheidegger and Rzhanitsyn (Shreve.java) numbers can 

be calculated for the entire Austrian network for reporting in reasonable time (on my 

old laptop neither calculation took longer than 10 min). 

 

Figure 5–5 Strahler numbers 

 

Figure 5–6 Strahler segments 
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Figure 5–7 Shreve numbers 

 

All the accumulation and aggregation algorithms were tested as well. The accumulation 

works for both rivers and catchments and was tested against the output of manual 

samples at many locations of the network - 120 samples at upper, middle and lower 

parts of the network were consistent with the calculated values. The running time of the 

algorithm was compared with those of the Accumulate Attributes-tool of the Arc Hydro 

Tools for all rivers and all of the catchments in the Austrian surface water dataset for 

reporting (for the differences between AccumulateRivers.java and Accumulate 

Attributes from Arc Hydro Tools see also 4.2.5.1) 

 

River accumulation (35371 rivers) 

AccumulateRivers.java Accumulate Attributes (Arc Hydro Tools) 

12 min (4,2% or more than 23 times faster) 284 min (100%) 

Table 11 Time comparison for river data accumulation 

Catchment accumulation (40245 catchments) 

AccumulateCatchments.java Accumulate Attributes (ArcHydroTools) 

15 min (4,8% or more than 20 times faster) 314 min (100%) 

Table 12 Time comparison for catchment data accumulation 
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Both times the runtime of the new tools compared favorably against the runtime of the 

ArcHydro Accumulate Attributes-tool as can be seen in Table 11 and Table 12. It has to 

be stated, that for the calculation of the catchment data there has to be created a 

catchment network once. The calculation took another seven minutes on my laptop.  

 

Figure 5–8 Example of accumulated area at the confluence of the rivers Mur and Mürz.  

The aggregation of geometry is memory consuming and works best with a high 

performance computer, with my old laptop I could easily calculate up to 15,000 

watersheds.  
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Figure 5–9 Example of watershed aggregation in the river Traun catchment. 

Figure 5–9 shows on the left side the original watersheds on the right side the 

aggregated version. After aggregation for every watershed area a complete watershed 

(containing all incoming surface waters) is available. In the example the lake Traunsee 

is highlighted on the left side. On the right side the complete catchment of lake 

Traunsee can be seen. 

 

The different discussion groups for ArcGIS mention a problem that concerns some of 

the used classes. Out of some inexplicable process the program may not be able to 

address the output FeatureClass any longer, even if there is still enough memory 

available. This results in an Automation error, which stops the calculation. On my 

laptop this only happened for catchment sizes larger than about 15,000 catchments but 

not every time at the same catchment, sometimes the dataset could be nearly calculated 

as a whole (best output was 37,000 catchments). 

 

A workaround to this at the moment not solvable problem (because I have no possibility 

to change the basic ArcObjects classes) is to split the dataset in manageable parts of not 

larger than 15,000 and merge them together at the end. 
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6 Summary and future prospects 

Algorithms for river and catchment networks embrace a wide field. In chapter 3 a list 

for algorithms for these kinds of data was compiled. The following chapters were used 

to create implementations of a selection of questions of this compiled list. I tried to 

cover three areas of interest and therefore created/implemented algorithms for 

establishing the necessary basics (like individual flow direction, finding circles and so 

on), for ordering (like the implementation of Strahler algorithms, creation and 

implementation of Shreve algorithm) and for accumulation (creation and 

implementation of accumulation algorithms for river and catchment data) and 

aggregation (creation and implementation of aggregation algorithm for catchment 

geometries).  

 

Some conclusions I could draw from this work are: 

- There are algorithms available to cover parts of the compiled list, like the 

algorithms by Lanfear [LANFEAR 1990] and by Gleyzer [GLEYZER 2004]. 

These had to be implemented for use in GIS.  

 

- Some other numbering algorithms were based on the ideas of Lanfear's 

[LANFEAR 1990] and Gleyzer's [GLEYZER 2004] algorithms and have 

runtimes that are linear for not braided networks. 

 

- For the aggregation of river data and catchment data no algorithms could be 

found in literature, but tools exist to solve these questions (e.g. Arc Hydro 

Tools). Testing these tools gave an idea on how their algorithms work. Taking 

the time for several runs and averaging the output showed that the tools need a 

long time to calculate aggregation values. 

As many of the problems concerning networks are in a way comparable, I tried 

to find a way to make aggregation about as quickly as numbering of rivers. 

Depth first search (already used in the numbering algorithms) proved to be a 

really good starting point for the creation of the network aggregation algorithms 

and guarantees a linear running time (at least for those parts of the diverse 
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network structures that are not braided). In chapter 5, where I present some 

outcomes, Table 11 and Table 12 show that the runtimes of my newly created 

tools, although still long, are much shorter than those of the tool used for 

comparison (river accumulation 23 times faster, catchment accumulation 20 

times faster). 

 

- Java with its collection framework provides many data structures that are 

necessary (esp. map, list, set, hashmap, array). There was no need to create more 

specialised data structures for my own purposes - this only happened when an 

existing algorithm with a specified data structure was implemented (e.g. the 

Kosaraju Sharir algorithm for finding circles in the dataset needed its own 

implementation of an adjacency list). 

 

A big proportion of the runtime of the algorithm is taken up by the preparation 

of the data for the use in the central algorithms that do the numbering or 

aggregating. The data has to be read out from the GIS system to hashmaps and 

arrays after a tool is started. Those hashmaps and arrays are similar for the 

different algorithms, therefore it may be wise for future work to establish them 

permanently in the GIS system instead of calculating the data anew at every run. 

 

- During the implementation of the algorithms a lot of unexpected things 

occurred at the "bridge" between ArcObjects and Java that were not always 

explainable (not even by Java or ArcGIS experts). Thus work with ArcObjects 

did not prove easy and some of the underlying structures may need some 

revision that is not in my hands. 

 

There are still a number of questions I could not pack into an algorithm in the frame of 

this thesis but which I plan to work on in the near future: 

 - An implementation of the Pfafstetter-coding algorithm. 

 - Some work for the aggregation of values on Routes, and definitely 

- Some work in the geometry section, esp. to define and calculate the length of 

catchments (polygon triangulation algorithms offer a linear approach on which 

such a calculation could be based) w 
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 - Finally the algorithms should be made more modular and be transferred to the 

newest GIS version. 
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8 Appendices 

8.1  Stream order systems 

8.1.1 Classic system of stream orders 

 

 
 

Figure 8–1 Classic system of stream orders 

The classic system of stream orders, 

which is based on Gravelius 

[GRAVELIUS 1914], assigns the first 

order to the main river - that is the river 

emptying into the sea. All those rivers 

flowing into the first-order river are 

assigned second order those flowing into 

the second-order rivers become third 

order, etc.  

"Indem wir so dem wasserreichsten der 

beiden obersten Nebenflüsse die 

Eigenschaft des obersten Stücks des 

Hauptflusses oder eigentlichen 

Quellflusses beilegen, schließen wir uns 

den gegenwärtigen physikalischen 

Verhältnissen des Flussnetzes so genau 

als möglich an." 

 ([GRAVELIUS 1914], p. 6)23 

The main river is thus chosen according to the flow conditions. 

A version of this system is used in Austria by the Austrian Lebensministerium 

department of "hydrologic accounting". The rivers Danube and Rhine are thereby first-

order rivers.  

The system’s advantage lies in its clarity; its disadvantage is its neglect of the catchment 

size. A small adventitious river flowing into the first-order stream has order 2 as well as 

a big one. 
                                                
23"In assigning the characteristics of the upper segment of the main river to the contributing headwater 
river with the strongest flow we follow the recent physical conditions of the river network as close as 
possible." 
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8.1.2 Stream orders by Horton 

Figure 8–2 Stream orders by Horton 

 

Robert Elmer Horton, the "father" of some 

important terms in hydrology like "infiltration 

capacity" and "maximum possible rainfall", 

developed a theory for stream numbers that also 

incorporates quantitative aspects. He detailed 

his theory in a paper published in 1945, only a 

month before his death [HORTON 1945]. The 

stream order system by Horton follows the 

hierarchical layout of river basins, but in 

contrary to the classic system the numbering 

starts at the river source. The headwaters (or 

finger-tip channels as Arthur N. Strahler later 

named them) are assigned order one. Second-

order rivers only have first-order rivers as 

tributaries, third-order rivers only first and  

second-order rivers, etc. The strongest tributary in a (sub)system gets its stream order 

assigned from river mouth to source. 

8.1.3 Stream orders by Strahler 

 

Figure 8–3 Stream orders by Strahler 

The concept of stream orders by Strahler 

[STRAHLER 1957] is based on Horton's 

method (c.f. 8.1.2.). Actually it’s the first step 

of the Horton method, but only through 

Strahler it was further distributed. In Strahler's 

method all headwaters get the order one. From 

a junction where two rivers of the same order 

join the order of the downstream river 

(segment) will be raised by one. Otherwise the 

higher of the two river orders that meet at a 

junction will be the new order. 
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Ok ... Order of river k 

 Oi,j ...Order of rivers being confluences to river k 

8.1.4 Stream orders by Rzhanitsyn  

 

 

Only shortly after Horton's and Strahler's 

publications Nickolai Alexandrovich 

developed an analogical concept. 

Rzhanitsyn's [RZHANITSYN 1960] 

approach also considers - compared to 

Strahler - tributaries of lower orders.  

Which means, that also rivers of a lower 

order that flow into a river of a higher order 

generate a rise in the order numbers. 

Rzhanitsyn's concept of stream order is 

logarithmic (based on the logarithm of 2). 

Figure 8–4 Stream orders by Rzhanitsyn 

 

 

 

8.1.5 Stream order by Scheidegger and by Shreve 

 

The approaches by Scheidegger [SCHEIDEGGER 1965] and Shreve [SHREVE 1966] 

resemble each other. They are additive concepts. William L. Graf proposed a similar 

stream ordering system [GRAF 1975]. Like Rzhanitsyn the two methods consider 

tributaries with lower orders. At the rivers confluences the orders are simply summed 

up. The main difference between the two methods is the initial value - for the 

headwaters Shreve uses the order 1, Scheidegger uses order 2. Shreve's orders are 

Ok =Oi +Oj ∀i, j, x ∈ Ν→Oi,Oj ∈ x* lg2

Ok =
Oi +1 ∀i, j Oi =Oj

max(Oi,Oj ) ∀i, j Oi ≠Oj

#
$
%

&%
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therefore always identical to the count of headwaters, Scheidegger's orders are the count 

of headwaters multiplied by 2. The relation of Shreve and Scheidegger orders is always 

2:1. The term magnitude is often used in context with Shreve ordering (esp. when using 

STRAHLER ordering in the same text. e.g. [JARVIS 1977]).  

   

Figure 8–5 Stream orders by Shreve Figure 8–6 Stream orders by Scheidegger 

 

 

Ok =Oi +Oj ∀Oi,Oj → Oi,Oj ≥1                Ok =Oi +Oj ∀Oi,Oj → Oi,Oj ≥ 2  

 

Rzhanitsyn orders are to be generated by logarithmizing Scheidegger orders on the 

logarithmic basis of 2. 

 

8.1.6 Stream order by Ward 

Ward [WARD 1986], a limnologist, combined Strahler's widely used concept with 

those of Shreve.  

 

In the site description that follows, a modification of the stream order 

system (STRAHLER 1957) has been adopted to account for tributaries of a 

lower stream order (which do not increase the stream order designation). 
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For every tributary of lesser order, a superscript is added. If, for example, a 

first-order tributary enters the third-order stream, the designation is "31"; if 

a second-order stream (or two first-order streams) then enters, the 

designation becomes "33". This system essentially combines the widely used 

concept of stream order with the advantages conferred by link magnitude, 

which is the sum of all first-order streams (Shreve 1966). First order 

streams are those shown as permanent streams without tributaries on 7.5 

minute topographic maps (scale 1:24000). [WARD 1986, p.137] 

 

 

 

 

 

 

 

 

 

 

Figure 8–7 Stream orders by Ward 

 

 

8.1.7 Stream order system by Pfafstetter  

The Pfafstetter system [PFAFSTETTER 1989] is a system where, similar to the classic 

system of stream orders (see above 8.1.1), the first-order stream empties into the sea. 

At the heart of a basin's identity are the size and shape of the catchment 
area and channel configuration that produce flow at the outlet. All channel 
reaches have unique direction, and therefore order, and they are arranged 
in a bifurcated network. ([VERDIN 1999], p. 3) 

This system is based upon the topology of the drainage network and the size 
of the surface area drained. Its numbering scheme is self-replicating, 
making it possible to provide identification numbers to the level of the 
smallest sub basins. For a given location it is possible to automatically 
identify all upstream sub basins, all upstream river reaches, or all 
downstream reaches. Additionally to the classic system the size of the 
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tributary (or better the size of its catchment) will be involved in the 
calculation of the order. ([BRITTON 2002], p. 2) 

 

Pfafstetter coding steps 

1. Determine main river 

2. Determine the 4 tributaries with the largest catchment areas (basins). Those get 

the even numbers 2 to 8 

3. The remaining tributaries become interbasins and are coded with the uneven 

numbers 1 to 9, whereas the upper end of the main river (from the number 8 

tributary to the source) is always coded with 9. 

4. Repeat steps 1 to 3 for all the basins and interbasins and add the number as a 

new digit to the right of the existing code. 

 

 

 

 

 

 

 

 

Figure 8–8 Pfafstetter Coding  

The white surrounded areas are the 

catchments of the main stem of this 

Pfafstetter level. Notice: Interbasin 5 is 

composed of main stem catchments and a 

catchment that was not in the list of the four 

largest sub-catchments.  

 

 

 

 

The lowest catchment of a Pfafstetter level is always catchment 1, the highest catchment 

is always coded catchment 9. It may happen that there are not enough catchments 

between the lowest and the highest, thus that there can be free numbers.  
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The advantage of the Pfafstetter system lies in it optimized use of numbers and its easy 

interpretability concerning the location of the rivers in the river system. The 

disadvantage lies in the big number of polygons that have to be calculated to get the 

catchment size.  

 

A modified version of the Pfafstetter system is proposed as the European coding 

system for hydrological features. The hydrological code is composed of different 

segments, which together uniquely identify a hydrological feature. The 

hydrological code consists of 6 hierarchical related items. The first item is a 

character defining the Ocean or Endorheic system. It is followed by one digit 

numbering of the seas into which the Ocean can be subdivided. In the case of 

islands subsequently a sequence number of the island order along the coast is 

defined. The landmasses thus defined can be subdivided at sea outlet level using 

the 5 digit length commencement code. Finally the river system can be coded up 

to the river reach level using the Pfafstetter methodology. ([CIS GD22 2009], p. 

99) 

 

Thus after a 5 digit preceding code that defines the outlet of a stream system Pfafstetter 

coding will be used for all rivers that are reported to the EC. To provide the necessary 

means to create a Pfafstetter coding catchments must be available for all the rivers. 

These catchments form the basis on which can be decided what river has the bigger 

aggregation area. 
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8.2 Supportive Java Add-ins 

The following section lists the ArcGIS Java Add-ins that help preparing the network for 

the use of the algorithms from chapter 4.2 . 

8.2.1 CheckHydroID.java 

Description: 

Calculates for a dataset a field called HydroID. HydroID is a positive and unique 

number > 0. If for example segments were split and have the same HydroID or new 

features have no HydroID this routine calculates it. The original HydroID is written to a 

field HydroIDold. If the original HydroID is null then HydroIDold will be -9999. New 

numbers are larger than all existing ones. CheckHydroID uses methods from the 

ArcObjects class IDataStatistics, namely getUniqueValue, getUniqueValueCount, and 

getMaxiumum. To find the values that are not unique the algorithm uses a HashSet 

(which is described as the best performing Set implementation in Java) and writes their 

OBJECTID into another HashSet, which is used to replace the not unique numbers with 

new ones. 

Data preconditions: 

 Data must allow edits. 

 FeatureClass (river segments, junctions, ...) 

 HydroIDs must be positive integers 

Running time:  

From the ArcObjects API the Time complexity of IDataStatistics methods 

getUniqueValue, getUniqueValueCount, getMaximum is not clear, but most probably it 

is not less efficient than n*log n. This is based on the assumption that the algorithms are 

implemented using modern sorting algorithms (which are O(n * log n)).  

Time Complexity Steps 

O(n*log n) Find out if there are more features than unique values. 

O(n*log n) Build a HashSet and use it to get positive multiple values. 

O(n)+(n*log n) If there are multiple values calculate the new ones. 

O(n)+(n*log n) Once go through the data set and set all negative values to a new 

positive unique number. 

O(n*log n)  
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8.2.2 SetFlowDir.java 

Description: 

Sets the flow direction in a geometric network according to the field FLOWDIR. 

Flowdir = 1 – same as digitized order 

Flowdir = 2 - against digitized order 

Flowdir = 3 - not determined 

All other Flowdir's - uninitialized. 

There are no fields calculated, but the flow direction in the geometric network is 

established. If an arc flows in the wrong direction, either the value in the field 

FLOWDIR has to be adapted or the arc has to be flipped before using SetFlowDir.java 

again. 

Data preconditions: 

 Data must allow edits 

 FeatureClass of river segments with FLOWDIR field. 

 River segments have an existing network topology 

 

Running time:  

O(n). To avoid unnecessary time in very big datasets for already set flow directions, the 

program can also be used on a selection of edges.  

Time Complexity Steps 

O(n) Once run through the dataset, query and apply the FLOWDIR field 

in a constant number of steps for every edge. 

 

8.2.3 FromToNodes.java 

Description: 

Writes for every river segment the from- and to-junction-number into the FeatureClass' 

attribute table. If the junction does not have a valid id, a default value (-9999) will be 

calculated. 

Data preconditions: 

 Data must allow edits. 

 FeatureClass of river segments with a unique id number (in the Add-in this is 

called HydroID) 
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 FeatureClass of river junctions with a unique id number (in the Add-in this is 

called HydroID) 

 River segments have an existing network topology (geometric network) 

 Field FlowDir that indicates whether the river segment is digitized in or against 

flow direction. 

Running time:  
The Add-in once runs through the river dataset and uses the object oriented data 

structure to retrieve values of the from- and to-junction of every river segment. 

 

Time Complexity Steps 

O(n) Once run through the dataset and query the junctions in a constant 

number of steps 

 

8.2.4 JunctionValences.java 

Description: 

Gets for every junction the overall number of rivers attached to the junction (Valence), 

and calculates the number of outflowing rivers (ValenceOut) and the number of 

incoming rivers (ValencIn). 

Data preconditions: 

 Data must allow edits. 

 Network topology (geometric network) 

 Field FlowDir that indicates whether the river segment is digitized in or against 

flow direction. 

Running time:  
The Add-in once runs through the junction dataset and uses the object oriented data 

structure to retrieve and calculate the valence values. The constant factor per run is 

large, because the endpoints of the adjacent edges have to be queried and checked 

against the FlowDir value and the junction’s id. 

 

Time Complexity Steps 

O(n) Once run through the dataset and query the junctions in a constant 

number of steps 
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8.2.5 CreateWatershedNetworkGP.java 

 

Description:  
CreateWatershedNetworkGP.java is a program that converts the watershed polygons 

into centroids using ArcGIS geoprocessing tools (FeatureToPoint, Copy), creates 

straight lines between two centroids if they should be connected (see NextDownIDs). 

From centroids and lines a geometric network is created using the INetworkLoader2 

interface. The necessary relationships between the data sets in the database are 

established, to help the user address the watersheds. 

Data preconditions: 

 Watershed polygons with NextDownID, NextDowID2 (can be empty), 

NextDowID3 (can be empty) and a corresponding HydroID field. 

Running time: 
Running time is not calculable for this Add-In, because there is no information 

available about the running time of the algorithms of the used ArcTools (but the used 

ones are most probably of O(n)) and the INetworkLoader2 interface. Compared with 

other measured times of algorithms with known time complexity it could still be 

possible that the running time is of O(n) but with a large number of constant steps. 

8.2.6 Multipart.java 

Description:  

Finds multipart features in a FeatureClass and selects them. Can be useful as well for 

watershed cleaning routines or to control the geometry of rivers and routes. 

Data preconditions: 

 FeatureClass 

Running time: 

O(n), because once every feature is visited. 

  

Time Complexity Steps 

O(n) Once run through the feature table of the selected dataset and 

query the GeometryCount (this is a field in the ArcObjects' 

IGeometryCollection interface that shows for every feature out of 

how many pieces it is constructed 
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9 CD/ROM 

9.1 License Information and Disclaimer 

Copyright 2014 by Doris Riedl. All Rights Reserved. 

 

The software may be used and copied only under the terms of that license, which are 

described in the following paragraphs. 
 

TRADEMARKS (none of the following products mentioned are provided with this 

CD/ROM, neither can they be claimed from the author): 
Built on Eclipse 

Built for ESRI ArcGIS ArcMap 

Built with ESRI ArcGIS Engine Plug-in 

Built with Java SE 6 

Oracle and Java are registered trademarks of Oracle and/or its affiliates, ArcGIS is a 

registered trademark of ESRI, Eclipse is a product of the Eclipse Foundation. Other 

names may be trademarks of their respective owners. 

 

LICENSE: 
The contents of the CD/ROM is the outcome of academic research. It may be used and 

copied free of charge as is. It shall not be used in any commercial sense or further 

developed without the prior consent of the author.  

 

DISCLAIMER / LIMITATION OF LIABILITY: 
The user acknowledges that the software may not be free from defects and may not 

satisfy all of the user’s needs.  

In no event will Doris Riedl be liable for direct, indirect, incidental or consequential 

damage or damages resulting from loss of use, or loss of anticipated profits resulting 

from any defect in the program.  
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It is therefore strongly recommended to backup the databases before starting to 

use the software. 

9.2 Contents of the CD/ROM 

The CD/ROM contains an ArcGIS Add-In for ArcMap (DRWaterNetworkAddin). In 

the Folder Source the following files are stored for viewing purposes: 

 

StreamOrdering Classes  

Lanfear.java Calculates Strahler numbers with Lanfear 

algorithm. 

Gleyzer.java Calculates Strahler numbers with Gleyzer 

algorithm (for braided rivers), also 

calculates river segments. 

Shreve1.java Calculates Shreve numbers (for braided 

rivers), also calculates Rzhanitsyn 

numbers and Scheidegger numbers. 

Accumulation Classes  

Shreve1.java see above - Shreve numbers are the 

"magnitude" (count) of headwater 

segments. 

AccumulateRivers.java Calculates the accumulative value of an 

arbitrary numerical field for rivers and 

junctions. 

AccumulateCatchments.java Calculates the accumulative value of an 

arbitrary numerical field for ordered 

catchments. 

AggregateCatchments.java, 

AggregateCatchments1.java, 

AggregateCatchments2.java 

Creates aggregated areas flowing into 

selected catchments (there are 3 versions 

that use different approaches to aggregate 

the data: array version, in memory 

recursion, feature class version). 

Supportive Add-in Classes  

SetFlowDir.java Sets the flow direction based on an 
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integer field "flowdir". 

FromToNode.java Adds a field with the from-nodes and to-

nodes to a geometric network edge 

feature class. 

JunctionValences.java Counts the overall cardinality of each 

node as well as its from and to-valence. 

CreateWatershedNetworkGP.java Creates a network from ordered 

catchments based on nextdownID(s). 

FindBackflows.java Returns a list of reachable backflowing 

arcs. 

FindCircles.java Returns a list of circles. 

Helper Classes  

EditorStarter.java Helps to start editing in the right 

workspace and prevents losing data. 

FCFieldChooser.java A dialog to choose a field from a feature 

class. 

 

9.3 Information for the use of the CD/ROM 

The DRWaterNetworkAddin is written for ArcGIS 10.1. Further research is planed 

which may lead to add-ins for newer versions of ArcGIS Software. The information will 

be posted on http://homepage.univie.ac.at/doris.riedl/. 

 

ESRI provides on its ArcGIS Resource Centre a description how to deploy add-ins. 

http://resources.arcgis.com/en/help/arcobjects-java/concepts/engine/index.html - 

/How_to_deploy_your_add_in/0001000006sp000000/ 

In short you may run through the following steps: 

 Copy DRWaterNetworkAddin from the CD/ROM to a location on your 

computer. 

 Open ESRI ArcMap. 

 Open Customize/Add-In Manager ... 

 Choose Options tab 

 With Add Folder ... add the location of your copy of DRWaterNetworkAddin  
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 Choose the option: "Load all Add-Ins without restriction" 

 You may have to restart ArcMap to see DRWaterNetworkAddin in the Add-In 

Manager Add-Ins tab. 

 Open Customize/Customize Mode ... 

 Choose Toolbars tab 

 Check GN Toolbar 

 

Load your data. 

Select the dataset you want to apply a command to and run the command (the 

commands are assigned to different topics and can be found in the drop-down menus). 

If you should choose by mistake a dataset that is not appropriate for the command, the 

program will check the input, before running the calculation part of the command. 
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