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Abstract

In the absence of a centralized goods market and perfect credit markets, precau-
tionary savings, driven by pessimistic expectations, can lead to a lack of aggregate
demand and involuntary unemployment in steady state, whereas optimistic expec-
tations would keep the economy in a steady state with full employment. While the
steady state with full employment is efficient, the steady state with unemployment
is not. Once the economy is in the inefficient steady state, under certain conditions
there is no equilibrium path which leads back to the efficient steady state. This result
was shown by Chamley (2014), assuming that agents face idiosyncratic preference
shocks of a certain probability. I show that this result is robust to changes in the
probability of preference shocks. It holds for nearly all probabilities of these shocks.
In addition, I show that rare preference shocks lead to higher unemployment in the
inefficient steady state than frequent shocks. This is because the higher the proba-
bility of idiosyncratic shocks, the higher the fraction of agents with a high propensity
to consume. A higher fraction of agents with a high propensity to consume leads to
less unemployment in the inefficient steady state.
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1 Introduction

What influence do beliefs have on macroeconomic aggregates? Can pessimistic or opti-
mistic beliefs influence output, unemployment and consumption? These are the ques-
tions that I address in my thesis. More precisely, I focus on the influence of expectations
on precautionary savings and aggregate demand. The intuitive mechanism I examine is
the following: suppose agents in an economy expect that there is a risk of being unem-
ployed. Due to these expectations, agents accumulate precautionary savings to insure
themselves against this risk. Increased savings lead to less consumption, which leads
to a lack of aggregate demand. The lack of aggregate demand causes the expected un-
employment. Thus, pessimistic expectations are self-fulfilling and depress the economy.
This intuition is a very popular way to think about business cycles and depressions.
Arguably, many economists and policy makers have it in mind when they think about
business cycles, particularly since Keynes published his General Theory (1936).

Whether pessimistic expectations are responsible for lower economic activity is a
highly topical question. After the Great Recession we have seen a very slow recovery
in the US and in Europe. Six years after the financial crisis struck, unemployment and
labor market participation have still not returned to pre-crisis levels. During the crisis,
we have seen an increasing demand for precautionary savings and lower consumption.
The Great Depression and Japan’s Lost Decade displayed similar developments. The
mechanism described above could be a reasonable explanation, especially for these types
of long lasting recessions.

My work is a generalization of the paper: “When Demand Creates its Own Supply:
Saving Traps”, by Christophe Chamley (2014). Chamley shows that the mechanism
described earlier is consistent with optimizing behavior of agents with rational expecta-
tions. In order to have involuntary unemployment one has to depart from some of the
standard assumptions of general equilibrium theory. Chamley drops the assumption of a
centralized goods market and instead, he introduces a decentralized trading mechanism
in his model. In addition, he assumes the absence of perfect credit markets. The ab-
sence of these markets is justified by the well-known literature on imperfect information
(Jaffee and Russell 1976; Stiglitz and Weiss 1982; see Clemenz and Ritthaler 1992 for a
survey). A further important element of Chamley’s model are idiosyncratic preference
shocks. An agent affected by a preference shock faces a higher disutility from not con-
suming. Chamley shows the existence of an efficient steady state with full employment
and the existence of a second inefficient steady state with unemployment. Both steady
states are equilibria of the economy. Assuming a specific set of parameter values, he
can show that an equilibrium transition from the efficient to the inefficient steady state
is possible. Once the economy is in the inefficient steady state, there is no equilibrium
path back to full employment, and the economy is caught in a trap. Savings are the
driving force behind the whole mechanism. Whereas pessimistic expectations lead to
convergence towards the inefficient steady state, optimistic expectations do not lead to
convergence back to the efficient steady state. This could explain why some recessions
are very persistent. In order to prove his results, Chamley needs to make specific as-
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sumptions about the probability of the preference shocks in his model. I generalize his
results and show that they hold for most probabilities of idiosyncratic shocks. I show
that Chamley’s results are robust to changes in the probability of preference shocks.
This generalization of the model allows me to analyze which influence the probability
of preference shocks has on equilibrium outcomes in the economy. Whereas the efficient
steady state is not affected by changes in the probability of shocks, unemployment in the
inefficient steady state is. Economies where there is a high probability of idiosyncratic
shocks face less unemployment in the inefficient steady state than economies with rare
shocks. This is true if the respective shocks have the right intensity. A high probabil-
ity of idiosyncratic preference shocks leads to a large fraction of agents affected by the
shock. Agents affected by the shock have a high propensity to consume and if there is a
large fraction of them this stabilizes aggregate demand and leads to less unemployment.
My findings support the “Keynesian” claim that a large fraction of agents with a high
propensity to consume stabilizes recessions.

In order to show that beliefs can have an influence on macroeconomic aggregates, one
has to focus on models with multiple equilibria. The beliefs of agents matter because
rational expectations are not unique and the prevailing equilibrium depends on beliefs.
These models are dynamic versions of coordination games, and as occurs in these games
questions regarding equilibrium selection arise. Equilibria are typically Pareto-rankable
and from a policy perspective there is a role for government interventions in coordinating
beliefs towards the efficient equilibrium. Business cycles can be explained by a collective
shock in agents’ beliefs. These models provide an explanation for long lasting reces-
sions. Economies in such recessions are possibly following a different, Pareto-inferior
equilibrium path as compared to the path in the pre-recession period. Of course the
literature on multiple equilibria in macroeconomics is not new. Cooper (1999) gives a
good overview. Multiple equilibria can arise from all sorts of complementarities. In
my work I focus on complementarities arising from frictions in the trading process. If
one drops the assumption of a central market and a Walrasian auctioneer, one needs to
introduce a decentralized trading mechanism which specifies how trades are organized.
Again, this literature is not new. The idea of involuntary unemployment caused by
frictions in trading was first formalized by Diamond (1982, 1984). In Diamond’s first
paper on this topic (1982) trading frictions are modeled assuming random matching of
agents who directly trade good by good. As it is simpler to find a trading partner when
aggregate productivity is high and a large number of agents are trying to trade, multi-
ple equilibria arise because of thick market effects. Similar results can be obtained by
introducing money into the model as shown by Diamond (1984). As Chamley (2014)
points out, aggregate supply and aggregate demand effects cannot be separated in Dia-
mond’s models. Although Chamley’s work is in Diamond’s tradition he can show that
trading frictions lead to aggregate demand effects due to a precautionary savings motive.
As this is exactly the effect I want to examine, I work on Chamley’s model in my analysis.

In section 2 I introduce Chamley’s model. Section 3 describes the steady state with
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full employment. Section 4 presents the steady state with unemployment. In section
5 I show under which conditions transitions between the two steady states are possible
and under which conditions a savings trap emerges. Section 6 offers a conclusion. The
appendix contains most of the proofs.

2 The Model

2.1 Model Specifications

In the following section I describe the model used by Chamley. Throughout the whole
section I simply replicate his results. Goods and agents live on the unit interval and are
indexed by i ∈ [0, 1). Agents have an overall mass of one. Each agent i produces good
i which he cannot consume himself. Time is discrete. Idiosyncratic preference shocks
are modeled in the following way: each period each agent is randomly assigned to one
of two types which derive different utility from consumption. The type is a random
variable θi,t ∈ {0, 1} that is independently distributed across agents and periods. The
idiosyncratic probability of being the high type (θi,t = 1) is equal to α each period,
whereas the probability of being the low type (θi,t = 0) is 1− α:

P (θi,t = 1) = α,

P (θi,t = 0) = 1− α, α ∈ (0, 1).

As there are infinitely many agents with an overall mass of one, the fraction of high type
agents in each period is equal to α and the fraction of low type agents is equal to 1−α.
The type-assigning process is known by all agents and the type is revealed to each agent
at the beginning of every period. High types derive a higher utility from consumption
than low types. The overall utility of each agent i is the expected discounted sum of per
period utility:

ui,t(xi,t, θi,t) = (1 + θi,tc)xi,t − θi,tc, c > 0, (2.1)

Ui = E[
∞∑
t=0

βtui,t], β ∈ (0, 1). (2.2)

xi,t is the consumption of an agent in a certain period and β is the discount factor. c
is a penalty for not consuming. It only concerns high type agents. In each period each
agent i can produce one unit of a good i at no cost. One can interpret the production
process as agents being self employed and deriving no utility from leisure. The good
is assumed to be indivisible. As there is no centralized market, Chamley introduces
a random matching process between agents. Each agent represents a household with
two heads, a buyer and a seller. In each period a household is randomly matched to
another household where it can buy a consumption good. Equivalently each household is
matched to a customer who can buy the good the household produces. The buyer leaves
the house in the morning if he decides to consume in a certain period. The seller stays
at home and waits for a customer to arrive. It is assumed that the two heads cannot
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communicate during the day which forces them to make a consumption decision without
knowing if they can sell later during the day. Agents meet for a trade not knowing the
type or the amount of bond holdings of their trading partner. I introduce bond holdings
in the next paragraph. Note that because of the indivisibility of the consumption goods,
agents consume an amount of one or zero, xi,t ∈ {0, 1}. The choice variable of an agent
is a binary choice between consuming and not consuming. This leads to a simplification
of the utility function. Both types derive a utility of 1 if they consume, whereas low
types derive a utility of 0 if they do not consume and high types receive a penalty of -c
if they do not consume:

ui,t(xi,t = 1, θi,t = 1) = 1,

ui,t(xi,t = 1, θi,t = 0) = 1,

ui,t(xi,t = 0, θi,t = 1) = −c,
ui,t(xi,t = 0, θi,t = 0) = 0.

Households can save using bonds as the consumption goods are not storable. The
net supply of bonds is zero and bonds can be seen as inside money. The debt of some
agents is the savings of others. There is a credit constraint which can be justified by
standard arguments about imperfect credit markets. The credit limit is assumed to be
one unit of the consumption good. Agents which are at the credit limit at the beginning
of a period cannot consume. Households which cannot sell in a certain period are called
the unemployed.

2.2 Prices

Next I analyze how prices are determined. I only consider equilibria with symmetric
prices across agents, which is reasonable as agents are symmetric. The price of a con-
sumption good in bonds in a certain period is pt for all i. I restrict prices further and
focus on equilibria where prices are constant over time, pt = p for all t. There may be
other equilibria where the price level varies across periods as in the Samuelson model
of overlapping generations (1958). As Chamley points out, these equilibria have already
been extensively studied. He does not consider them and they are not the focus of this
paper either. In the next paragraph I show why p is an equilibrium price for goods in
bonds and can be normalized to 1.
Trades are assumed to be organized as in Green and Zhou (2002): a buyer and a seller
meet and each of them posts a price without bargaining. Suppose all buyers and sellers
post price p. Consider the deviation of one seller. If she posts a lower price she makes
less revenue and she cannot attract additional buyers as she is randomly matched to one
buyer. To post a lower price is a strictly dominated strategy. If she posts a higher price
she will not sell the good as all buyers post price p. To post a higher price is again a
strictly dominated strategy. Now consider the deviation of one buyer. Posting a lower
price is strictly dominated as it would result in not getting the good, whereas posting
a higher price is strictly dominated as she would pay more than needed. Buyers and
sellers posting p is a Nash equilibrium. Trade will occur at price p and I normalize it
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to p = 1, where 1 means one unit of bonds. Upward and downward rigidity of prices
is not assumed, but is a result of the decentralized trading mechanism. The absence
of a centralized market causes price rigidity. Of course it is the rather extreme form of
decentralized trading assumed in the model that causes completely rigid prices.

2.3 The First Best Solution

The first best solution maximizes the utility of each agent in each period. The first best
solution is the maximum of the following function with respect to x:

max
x∈{0,1}

∫ 1

0
αu(x, 1) + (1− α)u(x, 0)di.

αu(x, 1) is the utility of the high type agents, (1− α)u(x, 0) the utility of the low type
agents. It is easy to see that the function is maximized when both low and high types
consume, x = 1. Everybody consumes, therefore everybody can produce and sell and
there is no unemployment. Note that this is the only Pareto-efficient outcome.

2.4 The Distribution of Bond Holdings

Each period has a specific bond distribution. The bond distribution is discrete as all
transactions in the economy are 0 or 1. γk(t) is the fraction of individuals holding an
amount of k bonds in period t. As the credit limit is −1 it follows that k ∈ N0 ∪ {−1}.
From now on I refer to an agent holding the amount of k bonds as an agent in state k.
All fractions γk(t) sum up to one as it is the mass of the entire population:∑

k

γk = 1. (2.3)

The net supply of bonds is zero: ∑
k

γkk = 0. (2.4)

The vector Γ(t) = (γ−1(t), γ0(t), ...) denotes the bond distribution in each period.
Households matched to a non-consuming household do not produce as they cannot

sell. πt denotes the fraction of households not producing, the unemployed. The frac-
tion of households not consuming is equal to the fraction of households not producing.
The fraction of households producing is equal to 1 − πt and is equal to the fraction of
households consuming:

1− πt =

∫
xi,tdi. (2.5)

As the overall mass of households is one and households are randomly assigned to a
customer, 1−πt is the probability that a household is matched to a consuming household.
It is therefore the probability that the household can sell in period t. Equivalently, πt is
the probability that a household cannot sell.
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ki,t denotes the number of bonds household i holds at the beginning of period t. How
are they related to bond holdings at the beginning of the next period? If a household
consumes and cannot sell, its bond holdings decrease by one. If a household does not
consume and cannot sell, or consumes and can sell, its bond holdings stay the same.
If a household does not consume and can sell, its bond holdings increase by one. The
following equation summarizes this behavior:

ki,t+1 =

{
1 + ki,t − xi,t with a probability of 1− πt,
ki,t − xi,t with a probability of πt.

(2.6)

Consumers maximize expected lifetime utility in each period by making a consump-
tion decision. The consumption decision of a household i maximizes the following opti-
mization problem in each period t:

max
xi,τ∈{0,1}

E
∑
τ≥t

βτ−tu(xi,τ , θi,τ ), (2.7)

• for given bond holdings ki,t and type θi,t at the beginning of a period t,

• subject to the evolution of bond holdings according to Equation (2.6) and the
credit constrained ki,t ≥ −1,

• and given perfect foresight on the path of unemployment rates from period t on-
wards, which I denote by π̂t = {πτ}∞τ≥t.

Suppose perfect foresight on the path of unemployment rates π̂t. The consumption func-
tion of an agent in period t, which is the solution of the maximization problem (2.7),
depends only on his state ki,t, his type θi,t and the path of unemployment rates π̂t from
period t onwards. The consumption function xt and the unemployment rate πt in period
t determine the bond distribution in period t+ 1. The bond distribution determines the
consumption function in period t+1, which determines the unemployment rate πt+1. The
path of unemployment rates is deterministic and can be calculated by rational agents if
they know the model. The assumption of perfect foresight is therefore justified.

I can define an equilibrium of the economy as:

Definition 1 A sequence of bond distributions {Γ(t)}∞t=0, a sequence of unemployment
rates π̂t and a consumption function xt = x(kt, θt, π̂

t) is an equilibrium if the bond
distribution fulfills Equation (2.3) and (2.4) in every period and evolves according to
Equation (2.6), if the unemployment rates fulfill Equation (2.5), and if the consumption
function is a solution to the maximization problem (2.7).

2.5 Optimal Household Behavior

Credit-constrained agents cannot consume. The consumption function for kt = −1 is
equal to zero:

xt = x(kt, θt, π̂
t) = 0 if kt = −1 ∀θt and ∀t.
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High type agents always consume if they can. It is easy to see why this is optimal.
Assume a high type agent saves in a certain period. As a consequence, his utility in that
period is −c. The optimal use of the additional unit of savings is to avoid the penalty
c in the future. As he discounts the future, the agent can avoid a discounted c. The
benefit from saving (avoiding −c in the future) is smaller than the cost (−c now) and
therefore the agent does not save. A rigorous proof of this argument can be found in the
appendix of Chamley (2014). The consumption function for θt = 1 and kt ≥ 0 is one:

xt = x(kt, θt, π̂
t) = 1 if θt = 1 and kt ≥ 0 ∀t.

The behavior of low type unconstrained agents is more difficult to analyze.

Define Vk(t) as the utility of an agent with bond holdings k at the end of period t
after all transactions have occurred.

V−1(t) = β[E[u(0, θ)] + πt+1V−1(t+ 1) + (1− πt+1)V0(t+ 1)]

= β[−αc+ πt+1V−1(t+ 1) + (1− πt+1)V0(t+ 1)] (2.8)

The Bellman equation above gives V for a constrained agent. He cannot consume and his
utility in the next period is E[u(0, θ)]. With a probability of πt+1 his bond holdings will
remain at −1 as this is the probability of making no sale. It is therefore the probability
that his expected utility at the end of next period is V−1(t + 1). With a probability of
(1−πt+1) his expected utility is V0(t+1), as this is the probability to sell which increases
his bond holdings. The next Bellman equation refers to unconstrained agents:

Vk(t) = βE[ max
x∈{0,1}

(u(x, θ) + πt+1Vk−x(t+ 1) + (1− πt+1)Vk−x+1(t+ 1))], k ≥ 0. (2.9)

Expectations are taken with regard to θ in period t+ 1.
Consider a low type agent above the credit constraint at the beginning of period t.

He knows his type and has to make a decision. One can calculate his expected utility of
saving at the end of the period t minus his expected utility of consuming at the end of
the period t. I call this variable the marginal utility of saving, ζk(t):

ζk(t) = [πtVk(t) + (1− πt)Vk+1(t)]︸ ︷︷ ︸
expected utility if an agent saves

− [πtVk−1(t) + (1− πt)Vk(t)]︸ ︷︷ ︸
expected utility if an agent consumes

ζk(t) = πt(Vk(t)− Vk−1(t)) + (1− πt)(Vk+1(t)− Vk(t)). (2.10)

It is optimal for low type agents in state k and above the credit constraint (k ≥ 0) to
consume if ζk(t) ≤ 1. To consume gives a utility of one. If saving gives less utility it
is optimal to consume. It is optimal to save if ζk(t) ≥ 1. Any consumption function xt
which is optimal must fulfill these two conditions at any point in time.

One can propose a certain consumption function which leads to a certain behavior
of the economy. If the above conditions are satisfied at each point in time, the proposed
function fulfills the equilibrium conditions and the behavior it produces is an equilibrium
path of the economy. I define two consumption functions and two corresponding regimes
of the economy:
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Definition 2 Consider the following two regimes.
The High Regime: in the high regime, unconstrained low type agents always consume.
The consumption function is equal to

xt = x(kt, θt, π̂
t) = 1 if θt = 0 and kt ≥ 0 ∀t.

The Low Regime: in the low regime, low type agents with zero bond holdings do not con-
sume and low type agents with positive bond holdings always consume. The consumption
function is equal to

xt = x(kt, θt, π̂
t) = 0 if θt = 0 and kt = 0 ∀t,

xt = x(kt, θt, π̂
t) = 1 if θt = 0 and kt ≥ 1 ∀t.

High type agents and credit constrained agents follow the behavior derived above.

If the economy follows one of these two regimes bond holdings never exceed 1: k ∈
{−1, 0, 1}. Γ(t) is the state variable of the economy. It is reduced to

Γ(t) = (γ−1(t), γ0(t), γ1(t)).

Define Bt as the amount of debt in the economy. It is true that Bt = γ−1(t), as agents
in state −1 hold the whole amount of debt. Agents in state 1 hold the whole amount of
savings, as bond holdings do not exceed one. This follows from Equation (2.4). Therefore

γ1(t) = γ−1(t) = Bt. (2.11)

From Equation (2.3) it follows that all fractions of agents sum up to zero. Therefore

γ0(t) = 1− γ−1(t)− γ1(t) = 1− 2γ1(t) = 1− 2Bt. (2.12)

The vector Γ(t) is fully determined by Bt and one can use the scalar Bt instead of the
vector Γ(t) as the state variable of the economy.

3 The High Regime

In the high regime, only agents in state−1 do not consume. As the level of unemployment
is equal to the fraction of agents not consuming

πt = γ−1(t) = Bt. (3.1)

The following list describes how agents move from state to state over time:

• Agents in state −1 at the beginning of period t:
They do not consume. With a probability of πt they do not sell, and as their bond
holdings stay the same they stay in state −1. With a probability of 1−πt they sell,
their bond holdings increase by one and they move to state 0 in the next period.
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• Agents in state 0 at the beginning of period t:
They always consume. With a probability of πt they do not sell and move to state
−1 next period, with a probability of 1− πt they sell and stay in state 0.

• Agents in state 1 at the beginning of period t:
They follow the same behavior as agents in state 0. With a probability of πt they
move to state 0, with a probability of 1− πt they stay in state 1.

What is the unemployment rate next period? It is the fraction of state −1 agents staying
in state −1 plus the fraction of state 0 agents moving to state −1:

πt+1 = γ−1(t)πt + γ0(t)πt. (3.2)

Use (2.11), (2.12) and (3.1) in (3.2) to obtain that

Bt+1 = O(Bt) = B2
t + (1− 2Bt)Bt = Bt(1−Bt). (3.3)

Equation (3.3) describes the dynamic behavior of Bt. The initial debt level in period
0 is B0. 0 ≤ Bt ≤ 1/2, as the net supply of bonds is zero. From Equation (3.3) it follows
that Bt+1 < Bt if Bt ∈ [0, 1/2]. Bt converges as it is strictly decreasing in t and bounded
from below. Omitting the time argument in (3.3) yields the limit of Bt: lim

t→∞
Bt = 0.

Figure 1 provides graphical proof of the dynamic behavior of B. The same dynamic
properties hold for the unemployment rate as πt = Bt.

Figure 1: The Dynamics of B (Chamley 2014)

One can see from Figure 1 that the rate of convergence to the steady state is asymptot-
ically zero. This is because the 45◦ line is a tangent to the graph of O(Bt) at Bt = 0.
Convergence to the steady state is therefore slow.

Result 1 In the high regime, the economy converges to the steady state with zero debt
and zero unemployment. The rate of convergence is asymptotically zero.
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Next I show that the derived behavior of the economy is an equilibrium. The only
part of the equilibrium conditions that remains to be proven is the optimality of the
proposed consumption function for low type agents in state 0 and 1. Given the proposed
consumption function, the Bellman equations are as follows:

V−1(t) = β[−αc+ πt+1V−1(t+ 1) + (1− πt+1)V0(t+ 1)], (3.4)

V0(t) = β[1 + πt+1V−1(t+ 1) + (1− πt+1)V0(t+ 1)], (3.5)

Vk(t) = β[1 + πt+1Vk−1(t+ 1) + (1− πt+1)Vk(t+ 1)], ∀k ≥ 1. (3.6)

I use the marginal utility of saving for low type agents in state 0 and 1, defined in
Equation (2.10), to examine optimality.

ζ0(t) = πt(V0(t)− V−1(t)) + (1− πt)(V1(t)− V0(t))
= πtβ(1 + αc) +

(1− πt)β[πt+1(V0(t+ 1)− V−1(t+ 1)) + (1− πt+1)(V1(t+ 1)− V0(t+ 1))]

ζ0(t) = πtβ(1 + αc) + (1− πt)βζ0(t+ 1) (3.7)

ζ1(t) = πt(V1(t)− V0(t)) + (1− πt)(V2(t)− V1(t))
= πtβ[πt+1(V0(t+ 1)− V−1(t+ 1)) + (1− πt+1)(V1(t+ 1)− V0(t+ 1))] +

(1− πt)β[πt+1(V1(t+ 1)− V0(t+ 1)) + (1− πt+1)(V2(t+ 1)− V1(t+ 1))]

ζ1(t) = πtβζ0(t+ 1) + (1− πt)βζ1(t+ 1) (3.8)

Use πt = Bt in Equation (3.7) to obtain that

ζ0(t) = (1 + αc)βBt + β(1−Bt)ζ0(t+ 1). (3.9)

By repeated iterations of (3.9) it follows that

ζ0(0) = (1 + αc)β[B0 +

∞∑
i=0

(Bi+1β
i+1

i∏
j=0

(1−Bj))]. (3.10)

Use Bt+1 = Bt(1−Bt) to see that ζ0(0) is a function of B0 and c. One can take period
0 as an arbitrary period and define ζ̂0(B, c) as the marginal utility of saving, when the
aggregate debt level is equal to B. One can show that ζ̂0(B, c) is continuous in both
arguments and strictly increasing for B ∈ [0, 1/2] and in c. Proof of this statement can
be found in the appendix of Chamley (2014).

Define c∗ as ζ̂0(1/2, c
∗) = 1. If c ≤ c∗ it holds that ζ0(t, c) ≤ 1 ∀t, as Bt ≤ 1/2 ∀t.

This follows from the monotonic properties of ζ̂0. If c > c∗, there exists a B̂(c) such that
ζ̂0(B̂, c) = 1. It follows that for all B ≤ B̂(c), ζ̂0(B, c) ≤ 1. If B0 ≤ B̂(c) it holds that
ζ0(t, c) ≤ 1 ∀t, as Bt ≤ B0 ∀t. Remember that the proposed consumption function is
optimal if ζ0(t) ≤ 1 ∀t. If c ≤ c∗ the proposed consumption function for agents in state
0 is optimal for any initial level of debt. If c > c∗ the proposed consumption function is
optimal if and only if B0 ≤ B̂(c).
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Bt is decreasing in t and as ζ̂0(B, c) is increasing in B it follows that ζ0(t) is decreas-
ing in t. It is true that ζ0(t) ≥ 0 as all parts in (3.10) are positive. ζ0(t) is decreasing
and has a lower bound, therefore ζ0(t) converges. From Equation (3.10) it follows that
ζ0(t) converges to zero as Bt converges to zero.

Next I have to prove the optimality of the high regime consumption function for
agents in state 1. I deviate from Chamley’s analysis now, as his proof of this point is
not correct. He states that the marginal utility of saving for agents in state 1 fulfills the
following equation (Chamley 2014, p. 662):

ζ1(t) =
βπt

1− β(1− πt)
ζ0(t). (3.11)

I will show that (3.11) should be an inequality instead of an equality. Chamley uses
Equation (3.11) for his proof, nevertheless his results are still correct.

To prove the optimality of the high regime consumption function for agents in state
1 I examine the dynamic behavior of Equation (3.8). I analyze the equation with the
help of two theorems I derived. The proofs are in the appendix.

Theorem 1 Convergent Solutions of Difference Equations:
Consider the difference equation

ζ(t) = v(t) + w(t)ζ(t+ 1) (3.12)

with lim
t→∞

v(t) = v∗ and lim
t→∞

w(t) = w∗. If it also holds that 0 < w(t) < 1, v(t) ≥ 0 and

0 < w∗ < 1, then there exists a unique convergent solution of Equation (3.12) with

lim
t→∞

ζ(t) = ζ∗ = v∗/(1− w∗).

The convergent solution is equal to

ζ(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)
i−1∏
j=t

w(j).

I need this theorem to show that the difference equations I use have a convergent solu-
tion. It provides a formula for the convergent solution and for the respective limit ζ∗.

I use the following notation from now on:

br(t) =
v(t)

1− w(t)
.

One can use this notation for any difference equation of the same form as Equation
(3.12).
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Theorem 2 Monotonicity of Difference Equations:
Consider Equation (3.12). All premises of Theorem 1 are assumed to hold and Equation
(3.12) has a unique convergent solution. Consider only the convergent solution.
a.i) If br(t) > br(t+ 1) ∀t it follows that ζ(t) > ζ(t+ 1) > ζ∗ ∀t.
a.ii) If ζ(t) > ζ(t+ 1) it follows that ζ(t) < br(t).
b.i) If br(t) < br(t+ 1) ∀t it follows that ζ(t) < ζ(t+ 1) < ζ∗ ∀t.
b.ii) If ζ(t) < ζ(t+ 1) it follows that ζ(t) > br(t).

This theorem is very helpful. One can derive the monotonic behavior of the convergent
solution from the monotonic behavior of br. This is helpful as br(t) does not depend
on variables from the next period t+ 1. ζ(t) depends on ζ(t+ 1) which makes a direct
analysis difficult. You will see later that it is this theorem, which allows me to generalize
Chamley’s results.

Consider Equation (3.8):

ζ1(t) = πtβζ0(t+ 1)︸ ︷︷ ︸
v(t)

+ (1− πt)β︸ ︷︷ ︸
w(t)

ζ1(t+ 1).

In order to use Theorem 1 I have to show that the premises hold for Equation (3.8).
I only consider cases where ζ0 fulfills the equilibrium requirements. 0 ≤ ζ0(t) ≤ 1, it
is decreasing in t and it converges to zero. 0 ≤ πt ≤ 0.5, it is decreasing in t and it
also converges to zero. I can use Theorem 1, as v(t) = πtβζ0(t + 1) ≥ 0, lim

t→∞
v(t) = 0,

w(t) = (1 − πt)β > 0, w(t) < 1, lim
t→∞

w(t) = β and β ∈ (0, 1). The premises hold and

Equation (3.8) has a unique convergent solution. I only consider the convergent solution,
as the other solutions are not relevant. Use the definition of br(t) to obtain the following
inequality:

br(t) =
βπtζ0(t+ 1)

1− β(1− πt)
>

βπt+1ζ0(t+ 2)

1− β(1− πt+1)
= br(t+ 1). (3.13)

It is easy to check that the above is true, as ζ0(t) is decreasing t and πt is strictly
decreasing in t. As br(t) > br(t + 1), it follows from Theorem 2 that ζ1(t) is strictly
decreasing in t. Use the monotonicity of ζ0 and ζ1 to derive that

ζ1(t) = πtβζ0(t+ 1) + (1− πt)βζ1(t+ 1) < πtβζ0(t) + (1− πt)βζ1(t).

Move ζ1(t) to the left to obtain that

ζ1(t) <
βπt

1− β(1− πt)︸ ︷︷ ︸
<1

ζ0(t) (3.14)

⇒ ζ1(t) < ζ0(t). (3.15)

Compare (3.14) with Equation (3.11) to see that the formula used by Chamley is not
correct. It should be an inequality instead of an equality.
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As ζ1(t) < ζ0(t) it holds that ζ1(t) ≤ 1 if ζ0(t) ≤ 1. If the consumption function for
agents in state 0 is optimal, the consumption function for agents in state 1 is optimal
and the high regime is an equilibrium. Let me summarize these findings:

Result 2 The high regime is an equilibrium for any initial level of debt if c ≤ c∗ . If
c > c∗there exists a B̂(c) and the high regime is an equilibrium if and only if B0 ≤ B̂(c).

4 The Low Regime

I come back to Chamley’s analysis and examine the behavior and the equilibrium con-
ditions in the low regime. In the low regime, low type agents in state 0 do not consume.
The following list describes how agents move from state to state over time:

• Agents in state −1 at the beginning of period t:
They do not consume. With a probability of πt they do not sell and stay in state
−1. With a probability of 1 − πt they can sell and move to state 0 in the next
period.

• Agents in state 0 at the beginning of period t:
With a probability of απt they move to state −1 in the next period, as this is the
probability that they are of the high type, consume and do not sell.
With a probability of at = (1− α)πt + α(1− πt) they stay in state 0. This is the
probability they are of the high type, consume and make a sale, or that they are
of the low type, do not consume and make no sale. In these two cases their bond
holdings do not change.
With a probability of bt = (1− πt)(1− α) they move to state 1 in the next period
as this is the probability that they are of the low type, do not consume, make a
sale and bond holdings increase by 1.

• Agents in state 1 at the beginning of period t:
They always consume. With a probability of πt they do not sell and move to state
0. With a probability of 1− πt they sell and stay in state 1.

New definitions used above:

at = (1− α)πt + α(1− πt), (4.1)

bt = (1− πt)(1− α). (4.2)

The fraction of agents not consuming, which is the same as the fraction of unemployed
agents, is the fraction of agents in state −1 plus the fraction of low type agents in state
0:

πt = γ−1(t) + (1− α)γ0(t) (4.3)
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Use Equation (2.11) and (2.12) to express the unemployment rate as a function of debt:

πt = 1− α− (1− 2α)Bt (4.4)

Debt in period t+ 1 is the same as the fraction of agents in state 1 in period t+ 1. How
is it related to the period t? The fraction γ1(t+ 1) is the same as the fraction of agents
in state 1 in period t staying in state 1 plus the fraction of agents in state 0 in period t
moving to state 1 in period t+ 1:

Bt+1 = γ1(t+ 1) = btγ0(t) + (1− πt)γ1(1). (4.5)

Use (2.11), (2.12), (4.2) and (4.4) in (4.5) to obtain that

Bt+1 = P (Bt) = −(1− 2α)2B2
t + (1− 2α)2Bt + α(1− α). (4.6)

As the net supply of bonds is zero it holds that 0 ≤ Bt ≤ 1/2. Note that P (B) is
increasing for B ∈ [0, 1/2]. It is true that P (1/2) ≤ 1/4 and P (0) > 0. Therefore there
exists a unique value B∗ ∈ (0, 1/4] s.t. P (B∗) = B∗. It is easy to see that from Figure
2:

Figure 2: The Dynamics of B in the Low Regime (Chamley 2014)

There is an important difference to the dynamic behavior of B in the high regime.
One can see from Figure 2 that the 45◦ line is not a tangent to P (B) in B∗. The rate
of convergence is asymptotically strictly positive. Convergence towards the low regime
steady state is fast.
If B0 < B∗ the sequence Bt is strictly increasing in t and converges to B∗. If B0 > B∗
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it is strictly decreasing and converges to B∗. Omit the time argument in (4.6) to obtain
B∗ as a function of α:

B∗ =
−2α+ 2α2 +

√
α− α2

1− 4α+ 4α2
if α 6= 1/2 (4.7)

α = 1/2 is a special case. If α = 1/2 it is true that P (B) = α(1 − α) = 1/4. For any
initial level of debt B0 it holds that B1 = 1/4. Therefore also B∗ = 1/4. If α = 1/2
convergence to the steady state level of debt takes one period. Figure 3 shows B∗ as a
function of α.
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Figure 3: B∗ as a Function of α

Recall Equation (4.4):
πt = 1− α− (1− 2α)Bt.

Note that if α < 1/2 the unemployment rate decreases if Bt increases t. If α = 1/2,
πt does not depend on debt and if α > 1/2 unemployment increases if debt increases.
What is the intuition behind that? Suppose the economy is in the high regime steady
state with zero debt. A sudden regime switch occurs and all low type agents in state 0
do not consume. At this point in time all agents are in state 0 and the unemployment
rate jumps up to 1− α. Over time Bt increases as some agents accumulate savings and
others become indebted. The fraction of agents in state 0 decreases by 2Bt whereas the
fraction of agents in state −1 increases by Bt. The fraction of agents not consuming
decreases by (1 − α)2Bt, due to the decrease of agents in state 0, and increases by Bt,
due to the increase of agents in state −1. If α < 1/2 the net effect is negative and
unemployment decreases over time. If α = 1/2 the two effects cancel each other out and
unemployment does not change. If α > 1/2 the net effect is positive and unemployment
increases if debt increases.
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I already mentioned that if α = 1/2, πt does not depend on debt. It holds that
πt = π∗ = 1/2 ∀t. This is also true in period 0. Unemployment converges to its steady
state level instantaneously.

Let me summarize the dynamic behavior of πt in the low regime. It follows from
Equation (4.4) and the dynamic behavior of Bt. Remember, Bt is increasing in t if
B0 < B∗ and Bt is decreasing in t if B0 > B∗. Bt converges to B∗.

Result 3 πt shows the following dynamic behavior in the low regime:

• Case 1: If α < 1/2 and B0 < B∗, πt is decreasing in t.

• Case 2: If α > 1/2 and B0 > B∗, πt is decreasing in t.

• Case 3: If α < 1/2 and B0 > B∗, πt is increasing in t.

• Case 4: If α > 1/2 and B0 < B∗, πt is increasing in t.

• Case 5: If α = 1/2, πt is equal to π∗ for any initial B0. πt is constant over time.

In all five cases πt converges to π∗.

Use Equation (4.4) and (4.7) to obtain the steady state level of unemployment as a
function of α:

π∗ =

{
1−α−

√
α−α2

1−2α if α 6= 1/2

1/2 if α = 1/2
(4.8)

Note that π∗ ∈ (0, 1) ∀α ∈ (0, 1). The unemployment rate in the low regime steady state
is always positive. Figure 4 shows π∗ as a function of α:
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Figure 4: π∗ as a Function of α
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The behavior of π∗ is surprising. If the probability α of being a high type is low,
steady state unemployment is high. The fear of ending up as a high type with no
possibility to consume induces low type agents in state 0 to not consume. If the fraction
of low type agents, 1−α, is very large, almost nobody consumes. Only high type agents
in state 0 and agents in state 1 consume, but there are only very few high type agents
in state 0 as α is small. There are also very few agents in state 1. It is very unlikely
to move to state 1 as only low type agents in state 0 who can sell move up to state
1. The probability of selling is very low, so the probability of accumulating savings is
very low. On the other hand it is very likely that agents in state 1 will move to state 0.
They do consume and they only stay in state 1 if they can sell, which is very unlikely.
If the low regime is an equilibrium, and I will show that it is under certain conditions,
a low probability of negative preference shocks can shut down most of the economy.
Remember, this is very inefficient. There are no production costs and the first best
solution is everybody consuming and producing.

On the other hand, a large fraction α of high type agents stabilizes the economy.
It is optimal for them to consume whenever they can. Low type agents, who do not
consume, do not affect the economy that much when α is high, as there are not so many
of them. However, unemployment is always positive in the low regime.

The following result summarizes the behavior of the economy in the low regime.

Result 4 If the low regime is an equilibrium the economy converges to a steady state
with positive debt and unemployment. The rate of convergence is asymptotically strictly
positive. Unemployment in steady state is a decreasing function of α.

In the next subsection I show under which conditions the low regime is an equilibrium.
The part that remains to be proven is the optimality of the consumption function.

4.1 Equilibrium in the Low Regime

The procedure for proving optimality is the same as for the high regime. Given the
proposed consumption function the Bellman equations are as follows:

V−1(t) = β[−αc+ πt+1V−1(t+ 1) + (1− πt+1)V0(t+ 1)], (4.9)

V0(t) = β[α(1 + πt+1V−1(t+ 1) + (1− πt+1)V0(t+ 1))

+(1− α)(πt+1V0(t+ 1) + (1− πt+1)V1(t+ 1))], (4.10)

Vk(t) = β[1 + πt+1Vk−1(t+ 1) + (1− πt+1)Vk(t+ 1)], ∀k ≥ 1. (4.11)
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Use the marginal utility of saving defined in Equation (2.10) to derive ζ0 and ζ1 in the
low regime:

ζ0(t) = πt(V0(t)− V−1(t)) + (1− πt)(V1(t)− V0(t))
= β[πtα+ απt+1πtV−1(t+ 1) + (1− πt+1)πtαV0(t+ 1)

+(1− α)πt+1πtV0(t+ 1) + (1− α)(1− πt+1)πtV1(t+ 1)

+αcπt − πt+1πtV−1(t+ 1)− (1− πt+1)πtV0(t+ 1)

+(1− πt) + (1− πt)πt+1V0(t+ 1) + (1− πt+1)(1− πt)V1(t+ 1)

−(1− πt)α− (1− πt)απt+1V−1(t+ 1)− (1− πt+1)(1− πt)αV0(t+ 1)

−(1− α)(1− πt)πt+1V0(t+ 1)− (1− πt+1)(1− πt)(1− α)V1(t+ 1)]

= β[πtα(1 + c) + (1− πt)(1− α)︸ ︷︷ ︸
bt

]

+β [(1− α)πt + α(1− πt)]︸ ︷︷ ︸
at

[πt+1(V0(t+ 1)− V−1(t+ 1))

+(1− πt+1)(V1(t+ 1)− V0(t+ 1))]

ζ0(t) = β(πtα(1 + c) + bt) + βatζ0(t+ 1) (4.12)

ζ1(t) = πt(V1(t)− V0(t)) + (1− πt)(V2(t)− V1(t))
= β[πt + πt+1πtV0(t+ 1) + πt(1− πt+1)V1(t+ 1)

−απt − απtπt+1V−1(t+ 1)− πtα(1− πt+1)V0(t+ 1)

−(1− α)πtπt+1V0(t+ 1)− (1− α)(1− πt+1)πtV1(t+ 1)

+(1− πt)[1 + πt+1V1(t+ 1) + (1− πt+1)V2(t+ 1)

−1− πt+1V0(t+ 1)− (1− πt+1)V1(t+ 1)]]

= β[πt(1− α) + πtα[πt+1(V0(t+ 1)− V−1(t+ 1))

+(1− πt+1)(V1(t+ 1)− V0(t+ 1))]

+(1− πt)[πt+1V1(t+ 1) + (1− πt+1)V2(t+ 1)

−πt+1V0(t+ 1)− (1− πt+1)V1(t+ 1)]]

ζ1(t) = β(πt(1− α) + πtαζ0(t+ 1)) + β(1− πt)ζ1(t+ 1) (4.13)

The low regime is an equilibrium if the low regime consumption function is optimal. The
low regime consumption function is optimal if and only if ζ0(t) ≥ 1 and ζ1(t) ≤ 1 for all
t.

Following Chamley, I first show under which conditions the steady state is an equi-
librium. One can derive the marginal utility of saving in steady state by omitting the
time argument in (4.12) and (4.13):

ζ∗0 = β
π∗α(1 + c) + b∗

1− βa∗
, (4.14)

ζ∗1 = β
(1− α)π∗ + απ∗ζ∗0

1− β(1− π∗)
, (4.15)
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where

a∗ = lim
t→∞

at = (1− α)π∗ + α(1− π∗),

b∗ = lim
t→∞

bt = (1− π∗)(1− α).

ζ∗0 and ζ∗1 are both linear functions of c and increasing in c. Therefore there exists a
lower bound for c, c s.t. ∀c ≥ c, ζ∗0 (c) ≥ 1. Solve ζ∗0 (c) = 1 for c to obtain c:

c =
1− β
β︸ ︷︷ ︸
ρ

1

π∗α
=

ρ

π∗α
. (4.16)

Equivalently there exists an upper bound for c, c s.t. ∀c ≤ c, ζ∗1 (c) ≤ 1. Solve ζ∗1 (c) = 1
for c to obtain c:

c =
(1− β)(1− αβ + (−1 + 3α)βπ∗)

α2β2π∗2
. (4.17)

As ζ∗1 < ζ∗0 if ζ∗0 ≥ 1 it follows that c < c. Therefore there exists an interval C = (c, c)
s.t. for c ∈ C ζ∗0 > 1 > ζ∗1 . Note that c and c are functions of α and β, as π∗ is a function
of α.

Result 5 Consider the steady state of the low regime with debt equal to B∗ and unem-
ployment equal to π∗:

1. The steady state of the low regime is an equilibrium if c ∈ [c, c].

2. If c ∈ (c, c), there exists an open interval around B∗ s.t. for all B0 in that interval
the consumption function is optimal, the economy is in equilibrium and it converges
to the steady state.

Part 2 holds by the following argument. If c ∈ (c, c) and B0 is close to B∗, it is true
that ζ0(t) > 1 > ζ1(t) as ζ0(t) and ζ1(t) are continuous in B0. The steady state is locally
stable. In the next subsection I show under which conditions the low regime is globally
stable.

4.2 Global Stability of the Low Regime

Chamley shows under which conditions the low regime is globally stable if α = 1/2. I
extend his analysis and show under which conditions the low regime is globally stable
for most α.

I examine under which conditions the low regime consumption function is optimal
outside the steady state. In order to do that I have to show under which conditions
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ζ0(t) ≥ 1 and ζ1(t) ≤ 1 ∀t. I need the following equations from above for my analysis:

Eq. (4.12) revisited: ζ0(t) = β(πtα(1 + c) + bt)︸ ︷︷ ︸
v0(t)

+ βat︸︷︷︸
w0(t)

ζ0(t+ 1)

Eq. (4.13) revisited: ζ1(t) = β(πt(1− α) + πtαζ0(t+ 1))︸ ︷︷ ︸
v1(t)

+β(1− πt)︸ ︷︷ ︸
w1(t)

ζ1(t+ 1)

Eq. (4.1) revisited: at = (1− α)πt + α(1− πt)
Eq. (4.2) revisited: bt = (1− πt)(1− α)

Eq. (4.4) revisited: πt = 1− α− (1− 2α)Bt

I use Theorem 1 to show that Equation (4.12) and (4.13) have a unique convergent
solution. Let me examine the premises of Theorem 1. Note the new definitions of v0(t),
w0(t), v1(t) and w1(t) from above. Define v∗0 as v∗0 = lim

t→∞
v0(t). Define w∗0, v∗1 and

w∗1 equivalently. From Equation (4.4) it follows that πt ∈ (0, 1) as 1/2 ≥ Bt ≥ 0 and
α ∈ (0, 1). Therefore it holds that at ∈ (0, 1) and bt ∈ (0, 1). As β ∈ (0, 1) and c ≥ 0
it follows that v0(t) ≥ 0. It also follows that w0(t) is in (0, 1). v∗0 and w∗0 both exist
and as π∗ ∈ (0, 1) it follows that a∗ ∈ (0, 1) and therefore w∗0 is in (0, 1). Equation
(4.12) fulfills the premises of Theorem 1 and it is true that the equation has a unique
convergent solution equal to

ζ0(t) = v0(t) + lim
s→∞

s−1∑
i=t+1

v0(i)
i−1∏
j=t

w0(j). (4.18)

ζ0(t) denotes the convergent solution. Note that ζ0(t) ≥ 0 as v0(i) and w0(j) are positive
for all i and j. The limit of ζ0(t) for t to infinity is ζ∗0 from Equation (4.14).

Use the definition of at and bt to see that v0(t) and w0(t) are functions of πt, c, α
and β. Use Equation (4.4) to see that πt is a function of α and Bt, which by repeated
iterations of Equation (4.6) is a function of B0 and α. v0(t) and w0(t) are functions
of B0, c, α and β. This holds for all t. Therefore, from Equation (4.18) it follows
that ζ0(t) is a function of B0, c, α and β. I denote ζ0(t) as ζ0(t, c, B0, α, β). To keep
the notation simple I will denote only the arguments I explicitly need in a respective step.

Use the convergent solution ζ0(t) in Equation (4.13) to obtain that v1(t) ≥ 0 and v∗1
exists. It holds that w1(t) ∈ (0, 1), w∗1 exists and w∗1 ∈ (0, 1). The premises of Theorem
1 hold and Equation (4.13) has a unique convergent solution

ζ1(t) = v1(t) + lim
s→∞

s−1∑
i=t+1

v1(i)

i−1∏
j=t

w1(j), (4.19)

which converges to ζ∗1 in Equation (4.15). Due to the analogous arguments as in the
case of ζ0(t), ζ1(t) is a function of c, B0, α and β. Again I will use the simplest notation
in every step. Consider only the convergent solutions denoted by ζ0(t) and ζ1(t) from
now on.
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4.2.1 The Monotonic Behavior of ζ0(t) and ζ1(t)

Next I examine the monotonic behavior of ζ0(t) and ζ1(t) over time with the help of
Theorem 2. Define br0(t) and br1(t) as

br0(t) =
v0(t)

1− w0(t)
,

br1(t) =
v1(t)

1− w1(t)
.

As v0(t) and w0(t) are functions of B0, c, α and β, br0(t) is a function of B0, c, α and
β. Again I will use the simplest notation in every step. The same is true for br1(t).

Theorem 2 says that the monotonic behavior of ζ0(t) is the same as the monotonic
behavior of br0(t). I use the difference br0(t + 1) − br0(t) to examine the monotonic
behavior of br0(t):

br0(t+ 1)− br0(t) =
v0(t+ 1)

1− w0(t+ 1)
− v0(t)

1− w0(t)

=
v0(t+ 1)(1− w0(t))− v0(t)(1− w0(t+ 1))

(1− w0(t))(1− w0(t+ 1))
(4.20)

If the difference is positive for all t, br0(t) is strictly increasing, if it is negative br0(t)
is strictly decreasing. As the two factors in the denominator are positive one can omit
them. They do not influence the sign of the difference. Use the definitions of v0(t), v1(t),
at and bt to obtain that:

v0(t+ 1)(1− w0(t))− v0(t)(1− w0(t+ 1)) =

β(πt+1α(1 + c) + bt+1)(1− βat)− β(πtα(1 + c) + bt)(1− βat+1) =

β[πt+1α(1 + c) + (1− α)(1− πt+1)][1− β[(1− α)πt + α(1− πt)]]
−β[πtα(1 + c) + (1− α)(1− πt)][1− β[(1− α)πt+1 + α(1− πt+1)]] =

β(πt − 2απt − cαπt − βπt + 2αβπt + cα2βπt

−(πt+1 − 2απt+1 − cαπt+1 − βπt+1 + 2αβπt+1 + cα2βπt+1)) =

(πt − πt+1)(1− 2α− cα− β + 2αβ + α2βc)β (4.21)

If br0(t) is decreasing or increasing follows from the sign of (4.21). The sign of (4.21)
follows from the sign of each of its factors. The last factor β is positive. The second
factor is negative if c is large enough:

(1− 2α− β + 2αβ − αc+ α2βc) < 0⇔ c > c̃ =
1− 2α− β + 2αβ

α− α2β

=
(1− 2α)(1− β)

α(1− αβ)
(4.22)

If α > 1/2 it holds that c̃ < 0. As c ≥ 0 by definition, the second factor is always negative
in this case. In order to have global stability, the steady state must be an equilibrium.
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I therefore only consider cases where the steady state is an equilibrium and c ≥ c. If
c > c̃ the second factor in (4.21) is negative for all relevant cases. Use the definition of
π∗ from Equation (4.8) in the definition of c from Equation (4.16) to obtain that

c =
(1− β)

βπ∗α
=

(1− 2α)(1− β)

αβ(1− α−
√
α− α2)

.

Next I prove that c > c̃ if α < 1/2:

c > c̃

⇔
(1− 2α)(1− β)

αβ(1− α−
√
α− α2)

>
(1− 2α)(1− β)

α(1− αβ)

⇔ as (1− 2α), (1− β) and α

are all positive (remember α < 1/2)

1

β(1− α−
√
α− α2)

>
1

1− αβ
⇔ as both denominators are positive

β(1− α−
√
α− α2) < 1− αβ

⇔

β − αβ − β
√
α− α2 < 1− αβ

⇔

β(1−
√
α− α2) < 1 which is true as β and α ∈ (0, 1).

The second factor in (4.21) is negative for all relevant cases. The sign of (4.21) depends
on the monotonic behavior of the unemployment rate. If πt is strictly decreasing in
t, (πt − πt+1) is positive, (4.21) is negative, br0(t) is strictly decreasing in t and from
Theorem 2 it follows that ζ0(t) is strictly decreasing in t. By the same argument ζ0(t)
is strictly increasing in t if πt is strictly increasing in t. ζ0(t) has the same monotonic
behavior as πt.

Next I examine the monotonic behavior of ζ1(t) in the same way. I consider two cases.
In case one ζ0(t) and πt are decreasing in t. In case two ζ0(t) and πt are increasing in t.

Case 1, ζ0(t) and πt are decreasing in t: I will show that in this case also ζ1(t) is
decreasing in t. In order to prove that I have to show that br1(t)− br1(t+ 1) > 0:

br1(t)− br1(t+ 1) > 0

⇔ by def. of br1

v1(t)

1− w1(t)
− v1(t+ 1)

1− w1(t+ 1)
> 0
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⇔
v1(t)(1− w1(t+ 1))− v1(t+ 1)(1− w1(t))

(1− w1(t))(1− w1(t+ 1))
> 0

⇔ as (1− w1(t))(1− w1(t+ 1)) > 0

v1(t)(1− w1(t+ 1))− v1(t+ 1)(1− w1(t)) > 0

⇔ by def. of v1 and w1

β(ζ0(t+ 1)(απt − αβπt + αβπtπt+1)

−ζ0(t+ 2)(απt+1 − αβπt+1 + αβπtπt+1)

+πt(1− α+ αβ − β)− πt+1(1− α+ αβ − β)) > 0

⇔ as β > 0

ζ0(t+ 1)(απt − αβπt + αβπtπt+1)

−ζ0(t+ 2)(απt+1 − αβπt+1 + αβπtπt+1)

+πt(1− α+ αβ − β)− πt+1(1− α+ αβ − β) > 0

⇔ rearranging yields

ζ0(t+ 1)απt (1− β + βπt+1)︸ ︷︷ ︸
>0

−ζ0(t+ 2)απt+1(1− β + βπt)

+(πt − πt+1)(1− α+ αβ − β) > 0

⇐ as ζ0(t+ 1) > ζ0(t+ 2)

ζ0(t+ 2)απt(1− β + βπt+1)

−ζ0(t+ 2)απt+1(1− β + βπt)

+(πt − πt+1)(1− α+ αβ − β) > 0

⇔ rearranging yields

ζ0(t+ 2)α(1− β)(πt − πt+1)

+(πt − πt+1)(1− α)(1− β) > 0

⇔ as πt is decreasing and β < 1

ζ0(t+ 2)α+ (1− α) > 0, which is true.

Of course the correct logical order of the proof is from the last line to the first.

Case 2, ζ0(t) and πt are increasing in t: in this case br1(t)− br1(t+ 1) < 0 and therefore
ζ1(t) is increasing in t. The proof is analogous to the case above.

The marginal utility of saving for low type agents in state 0 and 1 has the same
monotonic behavior as the unemployment rate. This is not surprising. The higher the
unemployment rate, the higher is the marginal utility of saving, as it is more likely
that agents cannot sell. Use Result 3, which summarizes the monotonic behavior of πt
together with the findings of this section to obtain the following result:
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Result 6 ζ0(t) and ζ1(t) are strictly increasing in t if B0 < B∗ and α > 1/2 or B0 > B∗

and α < 1/2. ζ0(t) and ζ1(t) are strictly decreasing in t if B0 < B∗ and α < 1/2 or
B0 > B∗ and α > 1/2.

Next I examine how ζ0(t) and ζ1(t) depend on c. Consider Equation (4.18):

ζ0(t) = v0(t) + lim
s→∞

s−1∑
i=t+1

v0(i)

i−1∏
j=t

w0(j).

Use the definitions of v0(t) and w0(t) to see that ζ0(t) is a continuous and strictly
monotone function of c:

ζ0(t) = (1 + c)βα(πt + lim
s→∞

s−1∑
i=t+1

πi

i−1∏
j=t

w0(j)) + β(bt + lim
s→∞

s−1∑
i=t+1

bi

i−1∏
j=t

w0(j)).

The same can be shown for ζ1(t) in an analogous way.

Result 7 ζ0(t, c) and ζ1(t, c) are strictly increasing and continuous in c.

4.2.2 Global Stability

With the help of Result 6 and 7 I examine the global stability of the low regime. Re-
member, in order to have global stability the consumption function needs to be optimal
at any point in time. The low regime consumption function is optimal if ζ0(t, c) ≥ 1 and
ζ1(t, c) ≤ 1. I consider five distinct cases:

Case 1, α = 1/2: This is also the case which Chamley considers. If α = 1/2 it holds
that πt = π∗ ∀t. Unemployment does not depend on debt in this case. As the only time
dependent variable in the marginal utilities of saving ζ0 and ζ1 is unemployment, it holds
that ζ0(t) = ζ∗0 and ζ1(t) = ζ∗1 for all t. The regime is globally stable if the steady state
is an equilibrium. Debt converges to its steady state level within one period. The steady
state is an equilibrium if c ∈ [c, c]. If α = 1/2 it is true that c = 4ρ and c = 4ρ(3 + 4ρ)
with ρ = (1− β)/β. This follows from Equation (4.16) and (4.17). The low regime is an
equilibrium for any initial level of debt if α = 1/2 and c ∈ [4ρ, 4ρ(3 + 4ρ)]. As ζ0(t) and
ζ1(t) are continuous in α, this result also holds if α is in an open interval around 1/2.
If c is in the open interval (4ρ, 4ρ(3 + 4ρ)) there exists an open interval A around 1/2,
s.t. for all α ∈ A the low regime is an equilibrium for any initial level of debt. However
Chamley does not show how large this open interval is. In the following four cases I
show under which conditions the low regime is globally stable if α 6= 1/2. This allows
me to generalize Chamley’s results and is my main contribution to this model.

Case 2, α < 1/2 and 0 ≤ B0 < B∗: From Result 6 it follows that ζ0(t, c) and ζ1(t, c) are
decreasing in t. Suppose c ∈ [c, c]. The steady state is stable, a minimum condition for
global stability, and ζ∗0 (c) ≥ 1. As ζ0(t, c) is decreasing in t, ζ0(t, c) > 1 ∀t and the low
regime consumption function for low type agents in state 0 is optimal. The same does
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not hold for ζ1(t, c). Suppose c = c. As ζ∗1 (c) = 1 and ζ1(t, c) is strictly decreasing in t
it follows that ζ1(0, c) > 1. The low regime consumption function for low type agents in
state 1 is not optimal for all c ∈ [c, c]. Define c′ as ζ1(0, c

′) = 1. As ζ1(t, c) is decreasing
in t and increasing in c, ζ1(t, c) ≤ 1 for all t and for all c ≤ c′. If c ≤ c′, the low regime
consumption function for low type agents in state 1 is optimal. Note that c′ < c as
ζ1(0, c) > 1, ζ1(0, c

′) = 1 and ζ1(0, c) is strictly increasing in c. But is c′ > c? Only
then there exists an interval [c, c′] s.t. for all c in that interval, the low regime consump-
tion function is optimal for low type agents in state 1 and in state 0. If ζ1(0, c) < 1 it
holds that c′ > c as ζ1(0, c) is strictly increasing in c. Unfortunately ζ1(0, c) cannot be
expressed analytically. In order to show that ζ1(0, c) < 1 I use an analytically solvable
upper bound for ζ1(0, c). From Theorem 2 it follows that ζ1(0, c) < br1(0, c):

ζ1(0, c) < br1(0, c)

use the definition of br1

ζ1(0, c) < β
π0(1− α) + απ0ζ0(1, c)

1− w1(0)

use ζ0(1, c) < br0(1, c) < br0(0, c) from Theorem 2

ζ1(0, c) < β
π0(1− α) + απ0br0(0, c)

1− w1(0)

define the right hand side as Ub(c)

Ub(c) = β
π0(1− α) + απ0br0(0, c)

1− w1(0)

Use the definitions for br0, w1(0), π0 and c to express Ub(c) as a function of α, β and
B0. With the help of Mathematica I can show that the inequality Ub(c) < 1 holds if
α ∈ (0, 1/2), β ∈ (0, 1) and B0 < B∗. As Ub(c) < 1 it holds that ζ1(0, c) < 1 and it
therefore holds that c′ > c.

If B0 < B∗ and α < 1/2 there exists an interval [c, c′] s.t. for all c in that interval
the low regime is an equilibrium. c′ is defined as ζ1(0, c

′, B0, α, β) = 1 and can be ob-
tained numerically for any B0, α and β of interest. Note that c′ depends on B0, α and β.

Case 3, α < 1/2 and 1/2 ≥ B0 > B∗: in this case ζ0(t, c) and ζ1(t, c) are increasing
in t. Suppose c ∈ [c, c], so the steady state is stable. As ζ∗1 (c) ≤ 1 and ζ1(t, c) is increas-
ing in t, ζ1(t, c) < 1 ∀t. Optimality for low type agents in state 1 is fulfilled. Define c′

as ζ0(0, c
′) = 1. If c ≥ c′ optimality for low type agents in state 0 is fulfilled as ζ0(t, c)

is increasing in t and c. Note that c′ > c as ζ0(0, c) < 1, ζ0(0, c
′) = 1 and ζ0(0, c) is

strictly increasing in c. Analogously to case 1, I need to show that c′ < c. c′ < c is
true if ζ0(0, c) > 1. Again there is no analytical expression for ζ0(0, c). From Theorem
2 it follows that ζ0(0, c) > br0(0, c). Use the definition of br0, v0(0), w0(0), π0 and c
to see that br0(0, c) is a function of α, β and B0. Using Mathematica I can show that
br0(0, c) > 1 if α ∈ (0, 1/2), β ∈ (0, 1) and B0 > B∗. Therefore ζ0(0, c) > 1 and it
holds that c′ < c. There exists an interval [c′, c], s.t. for all c in that interval, B0 > B∗

and α < 1/2, the low regime is an equilibrium. c′ can be obtained numerically, solving
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ζ0(0, c
′, B0, α, β) = 1 for any B0, α and β of interest. c′ depends on B0, α and β.

Case 4, α > 1/2 and 0 ≤ B0 < B∗: this case is analogous to case 3 as ζ0(t, c) and
ζ1(t, c) are increasing in t. If c ∈ [c′, c] the consumption function is optimal for agents
in states 1 and 0. c′ is again defined as ζ0(0, c

′) = 1. There is an important difference
to case 3, however. It does not hold that br0(0, c) > 1 for all α ∈ (1/2, 1), β ∈ (0, 1) and
B0 < B∗. br0(0, c) < 1 for some α, β and B0. Therefore I cannot prove that c′ < c in the
same way as in case 3. Note that even if br0(0, c) < 1 for some parameter values, it may
still hold that ζ0(0, c) > 1 for all parameter values, as br0(0, c) < ζ0(0, c). Remember,
one cannot examine the inequality ζ0(0, c) > 1 directly as it has no closed analytical
form. I need an analytically solvable lower bound for ζ0(0, c) to examine if ζ0(0, c) > 1.
br0(0, c) is maybe just a lower bound which is too small. In fact if I approximate ζ0(0, c)
numerically, it is larger than one for all parameter values which I considered. I construct
a larger lower bound in order to show that c′ < c for as many parameter values as
possible. By Equation (4.12), ζ0(t) is equal to

ζ0(t) = v0(t) + w0(t)ζ0(t+ 1). (4.23)

By repeated iterations of (4.23) it follows that

ζ0(t) = v0(t) +

s−1∑
i=t+1

v0(i)

i−1∏
j=t

w0(j) + ζ0(s)

s−1∏
j=t

w0(j), ∀s > t.

For t = 0 this yields

ζ0(0) = v0(0) +

s−1∑
i=1

v0(i)

i−1∏
j=0

w0(j) + ζ0(s)

s−1∏
j=0

w0(j), ∀s ≥ 1.

Use br0(t) < ζ0(t) to obtain that

ζ0(0) > v0(0) +

s−1∑
i=1

v0(i)

i−1∏
j=0

w0(j) + br0(s)

s−1∏
j=0

w0(j)︸ ︷︷ ︸
Lb(s)

, ∀s ≥ 1.

Define the right hand side as Lb(s). It is a lower bound for ζ0(0) depending on s. Lb(s)
has a closed analytical form for every s. The higher s is, the closer Lb(s) is to ζ0(0).
But the higher s is, the more complicated the expression becomes. Use the definition of
v0(t), w0(t), πt and Bt to see that Lb(s) is a function of c, α, β and B0. I denote it by
Lb(s, c, α, β,B0). Consider the following proposition. The proof is in the appendix.

Proposition 1 Let α be in (1/2, 1). If B0 < B′0 it follows that ζ0(t, c, B0) ≤ ζ0(0, c, B′0).
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ζ0(0, c, 0) is the marginal utility of saving in period 0 if initial debt is equal to 0. If
ζ0(0, c, 0) > 1, ζ0(0, c, B0) > 1 for all B0 as ζ0(0, c, B0) is increasing in B0. By the
definition of Lb it holds that ζ0(0, c, 0) > Lb(s, c, α, β, 0). c is a function of α and β and
therefore Lb(s, c, α, β, 0) is reduced to a function of s, α and β. I denote it by Lb′(s, α, β).
I use Mathematica to examine the inequality Lb′(s, α, β) > 1. The largest s the com-
puter can handle is s = 4. Even with this sophisticated lower bound, I cannot show that
Lb′(4, α, β) > 1 for all α. The program gives exact conditions for which the inequality
holds. They are solutions of high order polynomials. However, α < 0.988 is a sufficient
condition for the inequality to hold. This is sufficient for our purposes. If α ∈ (0.5, 0.988)
it holds that Lb′(4, α, β) > 1 and therefore ζ0(0, c, 0) > 1. From Proposition 1 it follows
that ζ0(0, c, B0) > 1 ∀B0 and as ζ0(0, c) is increasing in c, it follows that c′ < c. If
α ∈ (0.5, 0.988) and B0 < B∗, there exists an interval [c′, c], s.t. for all c in the interval,
the low regime is an equilibrium. If α ∈ (0.988, 1) such an interval may exist. It exists
for several cases for which I computed it numerically. However I can not prove analyti-
cally that it exists for all α. This is not so important, as 0.988 is already very close to one.

Case 5, α > 1/2 and 1/2 ≥ B0 > B∗: This case is analogous to case 2 as ζ0(t, c)
and ζ1(t, c) are decreasing in t. If c ∈ [c, c′] the consumption function is optimal for
agents in states 1 and 0. c′ is again defined as ζ1(0, c

′) = 1. Similarly to case 4, it is
again difficult to prove that c′ > c. Remember, if ζ1(0, c) < 1 it follows that c′ > c. In
case 2 I used Ub(c) < 1 to show that ζ1(0, c) < 1. In this case Ub(c) < 1 does not hold for
all α ∈ (1/2, 1), β ∈ (0, 1) and B0 > B∗. Again, if I approximate ζ1(0, c) numerically it
is smaller than one for all parameter values which I considered. A smaller upper bound
than Ub is needed in order to prove c < c′ for as many parameter values as possible.
Analogously to case 4 I rewrite ζ1(0) as:

ζ1(0) = v1(0) +
s−1∑
i=1

v1(i)
i−1∏
j=0

w1(j) + ζ1(s)
s−1∏
j=0

w1(j), ∀s ≥ 1. (4.24)

As ζ1(t) is decreasing in t, from Theorem 2 it follows that ζ1(t) < br1(t). Use the
definition of br1(t) to obtain that:

ζ1(t) < br1(t) =
β((πt(1− α) + πtαζ0(t+ 1))

1− β(1− πt)
.

As ζ0(t) is decreasing, it follows from Theorem 2 that ζ0(t) < br0(t). Substitute ζ0(t+1)
by br0(t+ 1) in the last line above to obtain

ζ1(t) < br1(t) <
β((πt(1− α) + πtαbr0(t+ 1))

1− β(1− πt)
.

Define the right hand side above as Br1(t). It holds that Br1(t) > ζ1(t). Remember the
definition of v1(t):

v1(t) = β(πt(1− α) + πtαζ0(t+ 1)).
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Substitute ζ0(t+ 1) by br0(t+ 1) to obtain that

v1(t) < β(πt(1− α) + πtαbr0(t+ 1)).

Define the right hand side as m1(t). Substitute v1(t) by m1(t) and ζ1(s) by Br1(s) in
Equation (4.24) to obtain that

ζ1(0) < m1(0) +

s−1∑
i=1

m1(i)

i−1∏
j=0

w1(j) +Br1(s)

s−1∏
j=0

w1(j)︸ ︷︷ ︸
Ub2(s)

, ∀s ≥ 1. (4.25)

Define the right hand side as Ub2(s). Ub2(s) is an upper bound of ζ1(t) depending on
s. The higher s is, the closer Ub2(s) is to ζ1(0), but the more complicated it becomes.
Use the definitions of m1, w1, Br1, br0, πt and Bt to see that Ub2(s) is a function of c,
α, β and B0. I denote it by Ub2(s, c, α, β,B0). Consider the following proposition. The
proof is in the appendix.

Proposition 2 Let α be in (1/2, 1) and B0 > B∗. If B0 < B′0 it follows that ζ1(0, c, B0) ≤
ζ1(0, c, B

′
0).

By Proposition 2, it is sufficient to show that ζ1(0, c, B0 = 1/2) < 1. As ζ1 is increasing
in B0 and B0 ≤ 1/2, from ζ1(0, c, 1/2) < 1 it follows that ζ1(0, c, B0) < 1 ∀ B0 > B∗. Ub2
is an upper bound of ζ1(0) and it therefore holds that ζ1(0, c, 1/2) < Ub2(s, c, α, β, 1/2).
As c is a function of α and β, Ub2(s, c, α, β, 1/2) is reduced to a function of s, α and β. I
denote it by Ub′2(s, α, β). I use Mathematica to evaluate the inequality Ub′2(s, α, β) < 1.
The most complex case the computer can handle is s = 3. I obtain the result that for
α ∈ (0.5, 0.983) the inequality holds. Therefore ζ1(0, c, 1/2) < 1 and from Proposition
2 it follows that ζ1(0, c, B0) < 1 ∀B0 > B∗. As ζ1(0, c) is increasing in c, c < c′. If
α ∈ (0.5, 0.983) and B0 > B∗ there exists an interval [c, c′] s.t. for all c in that interval
the low regime is an equilibrium.

Let me summarize the results:

Result 8 The low regime is an equilibrium and converges to π∗ if and only if:

• Case 1: α = 1/2 and c ∈ [4ρ, 4ρ(3 + 4ρ)] for all B0.

• Case 2: 0 ≤ B0 < B∗ , 0 < α < 1/2 and c ∈ C = [c, c′]. C exists, c < c′ < c and
c′ can be obtained numerically by solving ζ1(0, c

′) = 1.

• Case 3: 1/2 ≥ B0 > B∗ , 0 < α < 1/2 and c ∈ C = [c′, c]. C exists, c < c′ < c
and c′ can be obtained numerically by solving ζ0(0, c

′) = 1.

The low regime is an equilibrium and converges to π∗ if but not only if:

• Case 4: 0 ≤ B0 < B∗ , 0.988 > α > 1/2 and c ∈ C = [c′, c]. C exists, c < c′ < c
and c′can be obtained numerically by solving ζ0(0, c

′) = 1.
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• Case 5: 1/2 ≥ B0 > B∗ , 0.983 > α > 1/2 and c ∈ C = [c, c′]. C exists, c < c′ < c
and c′ can be obtained numerically by solving ζ1(0, c

′) = 1.

For all other α, I cannot prove analytically that C exists. However, it exists for several
cases which I computed numerically. Given a special α and β of interest not covered
above, c′ or c′ can be obtained numerically to check whether C exists. If it exists, the
low regime is an equilibrium if and only if c ∈ C.

As c, c, c′ and c′ depend on B0, α and β, C depends on B0, α and β.

5 The Transition Between the High and Low Regime

5.1 From the High to the Low Regime

Suppose we are in the steady state of the high regime. Debt and unemployment are
equal to 0. Define the actual debt level as B0 = 0. Use case 1, case 2 and case 4 from
Result 8 to obtain the following result:

Result 9 If α ∈ (0, 0.988) there exists a respective interval C(α) depending on α, such
that for all c in that interval, there exists an equilibrium path from the high regime steady
state to the low regime steady state.

From Result 2 it follows that there exists a second equilibrium path on which full em-
ployment is maintained forever. Which path the economy follows depends on the expec-
tations of the agents. If all agents expect the full employment equilibrium to continue,
it will continue, but if all agents expect convergence to the unemployment steady state,
there will actually be convergence to the unemployment steady state. Chamley derives
the same result in his paper, but only for α = 1/2 or α close to 1/2. The existence of an
equilibrium path from the high to the low regime steady state does not depend on this
special assumption. The path exists for most α. Chamley’s result is robust to changes
in α. Remember, α is the idiosyncratic probability of a negative preference shock. This
result allows me to compare economies with different probabilities of preference shocks.
Take two economies with different values of α. Suppose c in each of the two economies
is in the respective interval C(α), such that the transition from high to low is an equilib-
rium. The high regime steady state is the same in both economies. The unemployment
rate in the low regime steady state depends on α and is therefore not the same in the
two economies. A very small α has severe consequences if preference shocks have the
right intensity c. It leads to very high levels of unemployment in steady state as you can
see in Figure 4. If α goes to zero, π∗ goes to one. If α is low, the fraction of agents who
consume in the low regime steady state is low. The loss in demand caused by pessimistic
expectations is substantial, which leads to high unemployment rates. On the other hand,
the higher α is, the lower the level of unemployment in steady state. Although prefer-
ence shocks are responsible for the existence of an equilibrium with unemployment in
the first place, a high probability of such shocks leads to less unemployment in steady
state. Remember, saving is very costly for high type agents, which induces them to
consume whenever possible. High type agents have a high propensity to consume. If
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there is a high fraction α of high types, there is a high fraction of agents consuming
in the low regime steady state. The loss in aggregate demand is not so great, and un-
employment, although always positive, is not so high. What is harmful is if there is a
high fraction of agents for whom saving is not very costly. This result supports the well
known ”Keynesian” claim that a high fraction of households with a high propensity to
consume stabilizes recessions. Rare preference shocks can lead to deeper recessions than
frequent preference shocks. Note that the comparison between two such economies is
not ceteris paribus, as the interval C varies with α.

A ceteris paribus comparison is also possible. Consider an economy with a probability
of individual preference shocks equal to α̃. Suppose the economy is in the high regime
steady state. Debt is equal to zero. For all c in a certain interval C(α̃) there exists an
equilibrium path to the low regime steady state. Consider a certain c̃ in the interior of
C(α̃). It holds that ζ0(t) > 1 and ζ1(t) < 1 for all t. ζ0(t) and ζ1(t) are continuous
functions of α. Therefore, holding c̃ constant, there exists an open interval I around α̃
such that for all α in I, ζ0(t) > 1 and ζ1(t) < 1. The equilibrium conditions are still
fulfilled for all α in I. One can compare two economies with the same c̃ and different α,
but both α in I, ceteris paribus. The results from above still hold. Higher values of α
lead to higher steady state unemployment in the low regime. The interval I can be very
large as I will show in the next figure. Figure 5 shows an approximation of C(α) for
different α and a certain β, which I set to β = 0.99. The interval you see in the figure,
which I call CA(α), is not the whole interval C(α), but an approximation I derived with
the help of the upper and lower bounds stated above. It is not possible to draw C(α) as
it has no closed analytical form. CA(α) is a subset of C(α): CA(α) ⊂ C(α). It therefore
holds that the transition is possible for all c in CA(α).

0.2 0.4 0.6 0.8 1.0

Α

0.05
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c

Figure 5: CA as a Correspondence of α
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The correspondence CA(α) is the blue area. The red line shows c̃ = 0.09. As you
can see, c̃ = 0.09 is in CA for a large interval of α. The interval is approximately
I = (0.15, 0.95). Suppose we have two economies. Preference shocks have the same
intensity c̃ = 0.09 in both economies. One economy faces rare shocks of probability
α = 0.15, the other faces frequent shocks of probability α = 0.95. In both economies
there exists an equilibrium path from high to low as c ∈ C(α) respectively. The low
regime steady state in the economy with rare shocks is characterized by a substantially
higher unemployment rate.

5.2 From the Low to the High Regime: Savings Traps

In this section I will show under which conditions a transition from the low to the high
regime is not possible. Suppose therefore the economy started in the steady state of
the high regime. B0 was equal to zero, c fulfills the conditions stated in case 1, 2 or
4 from Result 8, and by a sudden switch in expectations the economy ended up in the
steady state of the low regime. I will now show that under certain conditions there is no
equilibrium path back to the full employment steady state. The economy can be caught
in a savings trap.

From Result 2 it follows that there exists a certain c∗ and B̂, such that for c > c∗

and B0 > B̂ the high regime consumption function is not an equilibrium. Take B∗,
the steady state level of debt in the low regime, as the new B0. I will show that for
such a B0 there exists a cT , s.t. for all c > cT the high regime consumption function
is not optimal. This means that from the steady state of the low regime there exists
no equilibrium path to the full employment steady state. Recall Equation (3.10), the
marginal utility of saving in the high regime. From now on I will use the subscripts H
and L to distinguish between the marginal utility of saving in the high and low regime:

ζH0 (0) = (1 + αc)β[

∞∑
i=0

(Biβ
i
i−1∏
j=0

(1−Bj))].

Note that I use
∏i
j = 1 if i < j.

Recall Equation (3.3), the evolution of debt in the high regime:

Bt+1 = Bt(1−Bt).

By repeated iterations of (3.3) one can express Bt as

Bt = B0

t−1∏
j=0

(1−Bj). (5.1)

Use (5.1) in (3.10) to obtain that

ζH0 (0) = (1 + αc)β[
∞∑
i=0

(B0β
i
i−1∏
j=0

(1−Bj)
i−1∏
j=0

(1−Bj))]
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= (1 + αc)βB0[
∞∑
i=0

(βi
i−1∏
j=0

(1−Bj)2)].

Note that (1−B0) < (1−Bj) ∀j as Bt is decreasing in t in the high regime, and therefore
it follows that

ζH0 (0) > (1 + αc)βB0[

∞∑
i=0

(βi
i−1∏
j=0

(1−B0)
2)]

= (1 + αc)βB0[
∞∑
i=0

(βi(1−B0)
2i)]

=
(1 + αc)βB0

1− β(1−B0)2
. (5.2)

If expression (5.2) is greater than one, ζH0 (0) is greater than one. (5.2) greater than one
is equivalent to:

(1 + αc)βB0

1− β(1−B0)2
> 1

⇔

c >
1− β +B0β −B2

0β

B0αβ︸ ︷︷ ︸
cT

.

Define the last expression as cT . For c > cT it holds that ζH0 (0, c, B0) > 1. If ζH0 (0) > 1,
the high regime consumption function is not optimal. For all c > cT , the high regime
consumption function is not optimal and no equilibrium path from B0 to the full em-
ployment steady state exists.

I consider the following three distinct cases to examine the transition:

Case 1, α = 1/2: this is the case which Chamley also examines. Transition from high to
low is possible if c ∈ [4ρ, 4ρ(3 + 4ρ)], with ρ = (1−β)/β, as shown in Result 8. Chamley
shows that if c ∈ [6 + 8ρ, 4ρ(3 + 4ρ)] the transition from high to low is an equilibrium,
but no equilibrium path back to full employment emerges (Chamley 2014 p. 667). The
interval [6 + 8ρ, 4ρ(3 + 4ρ)] only exists if β < 2/3, as only then 6 + 8ρ < 4ρ(3 + 4ρ).

I can generalize this result slightly. If α = 1/2 it is true that B∗ = 1/4. Set B0 = 1/4 to
obtain cT : cT = 8ρ+3/2. Therefore, a transition back to full employment is not possible
if c ∈ [8ρ + 3/2, 4ρ(3 + 4ρ)]. This interval exists for β < 0.82. I obtain the following
result: if α = 1/2 and β < 0.82 there exists an interval [8ρ+ 3/2, 4ρ(3 + 4ρ)], s.t. for all
c in that interval, there is an equilibrium path from the full employment steady state to
the unemployment steady state, but no equilibrium path back to full employment.
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Case 2, α ∈ (0, 1/2): transition from high to low is possible if c ∈ [c, c′]. Suppose
we are in the low regime steady state. Recall (4.7) to obtain the level of debt B∗(α).
Set B0 = B∗(α) and to obtain cT . cT is a complicated expression depending on α and
β. With the help of Mathematica I can show that cT > c. Remember, an analytical
expression for c is available from Equation (4.16). But is cT < c′? There is no analytical
expression for c′. Remember c′ is defined as ζL1 (0, c′, 0) = 1. If ζL1 (0, cT , 0) < 1 it follows
that cT < c′. I show that ζL1 (0, cT , B0 = 0) < 1 with the help of Ub2 defined in Equa-
tion (4.25), the upper bound for ζL1 I used in case 5 of chapter 4.2.2. Remember that
ζL1 (0, c, B0) < Ub2(s, c, α, β,B0), therefore it holds that ζL1 (0, cT , 0) < Ub2(s, cT , α, β, 0).
I evaluate the inequality Ub2(s, cT , α, β, 0) < 1 with the help of Mathematica. The high-
est s the computer can handle in this case is s = 1. I can show that Ub2(1, cT , α, β, 0) < 1,
if β < 0.78. Therefore cT < c′ if β < 0.78. If α < 1/2 and β < 0.78 there exists an
interval [cT , c

′], s.t. for all c in that interval, there is an equilibrium path from the full
employment steady state to the unemployment steady state, but no equilibrium path
back to full employment.

Case 3, α ∈ (1/2, 0.988): transition from high to low is possible if c ∈ [c′, c]. Com-
pute again cT for B0 = B∗(α). With the help of Mathematica I can show that cT < c if
β < 0.82. Remember that an analytical expression of c is available from Equation (4.17).
If α ∈ (1/2, 0.988) and β < 0.82 there exists an interval [c′, c] ∩ [cT , c], s.t. for all c in
that interval there is an equilibrium path from the full employment steady state to the
unemployment steady state, but no equilibrium path back to full employment.

Let me summarize the three cases:

Result 10 If α ∈ (0, 0.988) and β < 0.78 there exists a respective interval CT (α)
depending on α, such that for all c in that interval there exists an equilibrium path from
the full employment steady state to the unemployment steady state but no equilibrium
path back to the full employment steady state.

I can extend Chamley’s result about the possible existence of savings traps for cases
where α 6= 1/2. Again this shows that his findings are robust. Under certain conditions
precautionary savings are responsible for the existence of an equilibrium path with un-
employment. In addition to that, they can lead to a trap which makes the transition
back to full employment impossible. As I have shown, this is true for nearly all possible
values of α. What is the intuition behind the savings trap? Consider the case where
the economy is in the steady state of the low regime. If the regime changes, low type
agents in state zero consume. Why is this behavior not optimal under certain condi-
tions even though it would bring the economy back to full employment? After a regime
change there are still credit constrained agents in state −1 who cannot consume. The
consumption of state zero agents might not create enough aggregate demand in order to
make consuming optimal for themselves. This is especially true if agents discount the
future. It will take some time to bring debt down, even if all state 0 agents consume.
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During this time there are still some credit constrained agents who are not consuming.
Therefore, in the near future agents in state 0 face the risk of making no sale, moving
to state -1 and receiving the penalty c. If this near future is valuable (β is not to high)
it is not optimal to follow this path, even though it is clear that following the path long
enough would lead back to full employment.

The comparison of economies with different α is the same as in the previous section.
The results of such a comparison are the same. Ceteris paribus comparisons are again
possible among certain α in an open interval. This follows from the same argument as
above.

6 Conclusion

Decentralized markets in the form of a random matching process, imperfect credit mar-
kets and idiosyncratic preference shocks can lead to multiple equilibrium paths of an
economy. One path is characterized by full employment, no aggregate debt and no
precautionary savings. The other path is characterized by equilibrium unemployment,
precautionary savings and debt. If preference shocks have the right intensity there is an
equilibrium path from the full employment to the unemployment steady state, but the
reverse is not true. The economy can shift into the inefficient steady state by a switch in
agents’ expectations. These findings, already shown by Chamley, are robust to changes
in the probability of idiosyncratic shocks. The results are true for almost all possible
probabilities of shocks. Economies where shocks are frequent face less unemployment in
the inefficient steady state than economies where shocks are rare.
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A Appendix

A.1 Convergent Solutions of Difference Equations

Theorem 1 Consider a difference equation of the form

ζ(t) = v(t) + w(t)ζ(t+ 1)

with lim
t→∞

v(t) = v∗ and lim
t→∞

w(t) = w∗. If it holds that 0 < w(t) < 1, v(t) ≥ 0 ∀t and

0 < w∗ < 1, then there exists a unique convergent solution ζ(t) with

lim
t→∞

ζ(t) = ζ∗ = v∗/(1− w∗).

The convergent solution is equal to

ζ(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)
i−1∏
j=t

w(j).

Proof:
Consider the difference equation

ζ(t) = v(t) + w(t)ζ(t+ 1). (A.1)

By repeated iterations of (A.1), ζ(t) is equal to

ζ(t) = v(t) +
s−1∑
i=t+1

v(i)
i−1∏
j=t

w(j) + ζ(s)
s−1∏
j=t

w(j), ∀s > t. (A.2)

The above holds especially for s→∞:

ζ(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)
i−1∏
j=t

w(j) + lim
s→∞

ζ(s)
s−1∏
j=t

w(j). (A.3)

All solutions of (A.1) must fulfill Equation (A.3).

Consider the following guess at a solution:

ζ ′(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j). (A.4)

I will first show that the guess ζ ′(t) exists. This is not clear, as the formula for ζ ′(t)
contains a limit where s goes to infinity. Then I will show that ζ ′(t) converges for t→∞.
Finally I will show that ζ ′(t) fulfills Equation (A.3) and is therefore a solution of the
difference equation (A.1).
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Consider the following set: Vt = {v(i)|i ≥ t}. This set contains all elements of the
sequence v(i) that follow a certain element v(t). The set Vt has an infimum and a supre-
mum, as the sequence v(i) converges. I use the following notation: vsup(t) = supVt and
vinf(t) = inf Vt. Define wsup(t) and winf(t) equivalently for the sequence w(i). Note that
lim
t→∞

vinf(t) = lim
t→∞

vsup(t) = v∗. The equivalent holds for the limit of wsup(t) and winf(t),

which is equal to w∗.

I construct the upper bound for ζ ′(t) with the help of these new definitions:

ζ ′(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j) ≤ vsup(t) + lim
s→∞

s−1∑
i=t+1

vsup(t)

i−1∏
j=t

wsup(t)︸ ︷︷ ︸
v(i) and w(j) replaced by their suprema

= vsup(t)

∞∑
i=0

(wsup(t))i. (A.5)

In the first step above I replaced v(i) and w(j) by the supremum of Vt and Wt respec-
tively. All v(i) and w(j) in the definition of ζ ′(t) are elements of the set Vt and Wt

respectively. If I replace them by their suprema, the new expression is at least as great
as ζ ′(t). In the second step above I simplify the expression. Use the formula for the
limit of the geometric series to obtain that

ζ ′(t) ≤ vsup(t)

∞∑
i=0

(wsup(t))i =
vsup(t)

1− wsup(t)
. (A.6)

I use the derived upper bound to show that ζ ′(t) is well defined and exists. Each
ζ ′(t) = v(t) + lim

s→∞

∑s−1
i=t+1 v(i)

∏i−1
j=t w(j) has an upper bound. The sequence v(t) +∑s−1

i=t+1 v(i)
∏i−1
j=t w(j) is increasing in s, as all v(i) and w(j) are positive. The limit of

this sequence for s→∞ (which is the definition of ζ ′(t)) does therefore exist.

In the next step I calculate the limit lim
t→∞

ζ ′(t) and show that it exists. In order to

do that I construct a lower bound of ζ ′(t) in the same way as I constructed the upper
bound above. I use the defined infima of Vt and Wt instead of the suprema:

ζ ′(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j) ≥ vinf(t) + lim
s→∞

s−1∑
i=t+1

vinf(t)

i−1∏
j=t

winf(t)

= vinf(t)

∞∑
i=0

(winf(t))
i =

vinf(t)

1− winf(t)
. (A.7)

We already know the limit of the upper and lower bound for t→∞. It is the same for
both bounds. I use the sandwich theorem to obtain the limit of ζ ′(t):

vinf(t)

1− winf(t)
≤ ζ ′(t) ≤ vsup(t)

1− wsup(t)
. (A.8)
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Taking t to infinity on both sides yields

lim
t→∞

vinf(t)

1− winf(t)
≤ lim

t→∞
ζ ′(t) ≤ lim

t→∞

vsup(t)

1− wsup(t)

v∗

1− w∗
≤ lim

t→∞
ζ ′(t) ≤ v∗

1− w∗

⇒ lim
t→∞

ζ ′(t) =
v∗

1− w∗
= ζ∗′. (A.9)

The solution guess ζ ′(t) converges. But is it a solution of the difference equation (A.1)?
To show that ζ ′(t) is a solution of (A.1), it is sufficient to show that it fulfills Equation
(A.3). Reconsider Equation (A.3) and the definition of ζ ′(t) from Equation (A.4):

Eq.(A.3) revisited: ζ(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j)︸ ︷︷ ︸
=ζ′(t)

+ lim
s→∞

ζ(s)

s−1∏
j=t

w(j)︸ ︷︷ ︸
=0 for ζ′(t)

,

Eq.(A.4) revisited: ζ ′(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j).

It is easy to see that the guess (A.4) fulfills (A.3) as the first part of (A.3) is the same
as ζ ′(t). The second part of (A.3) evaluated for ζ ′(t) is zero. To see that use the limit
of ζ ′(t) in the second part:

lim
s→∞

ζ ′(s)

s−1∏
j=t

w(j) = ζ∗′
∞∏
j=t

w(j)︸ ︷︷ ︸
=0

= ζ∗′ × 0 = 0, (A.10)

∞∏
j=t

w(j) = 0 as w(j) < 1 ∀j.

It is true that ζ ′(t) is a convergent solution of Equation (A.1). But the Theorem is even
stronger. It says that ζ ′(t) is the unique convergent solution. In the final step I show
the uniqueness of ζ ′(t) by contradiction.

Suppose there exists a convergent solution to Equation (A.1) ζ̂(t), with lim
t→∞

ζ̂(t) = ζ̂∗

and ζ̂(t) 6= ζ ′(t). As ζ̂(t) is a solution of Equation (A.1) it fulfills Equation (A.3):

ζ̂(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j) + lim
s→∞

ζ̂(s)

s−1∏
j=t

w(j).

Use the limit of ζ̂(t) to derive a contradiction:

ζ̂(t) = v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j) + ζ̂∗
∞∏
j=t

w(j)︸ ︷︷ ︸
=0

=v(t) + lim
s→∞

s−1∑
i=t+1

v(i)

i−1∏
j=t

w(j)=ζ ′(t).
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This is a contradiction to ζ̂(t) 6= ζ ′(t). ζ ′(t) as defined in Equation (A.4) is the unique
convergent solution of Equation (A.1).

q.e.d.

A.2 Monotonicity of Difference Equations

Theorem 2 Consider a difference equation of the form

ζ(t) = v(t) + w(t)ζ(t+ 1)

with lim
t→∞

v(t) = v∗, lim
t→∞

w(t) = w∗, 0 < w(t) < 1, v(t) ≥ 0 and 0 < w∗ < 1. Use the

following notation:

br(t) =
v(t)

1− w(t)
.

By Theorem 1 the difference equation has a unique convergent solution ζ(t). Consider
only the convergent solution.
a.i) If br(t) > br(t+ 1) ∀t it follows that ζ(t) > ζ(t+ 1) > ζ∗ ∀t.
a.ii) If ζ(t) > ζ(t+ 1) it follows that ζ(t) < br(t).
b.i) If br(t) < br(t+ 1) ∀t it follows that ζ(t) < ζ(t+ 1) < ζ∗ ∀t.
b.ii) If ζ(t) < ζ(t+ 1) it follows that ζ(t) > br(t).

Proof:

Just consider part a). Part b) follows analogously. I begin with the proof of a.i). I
divide the proof into several steps showing five intermediary results. All premises of the
theorem are assumed to hold throughout the whole proof.

The following relation plays a central role in the proof:

ζ(t) > ζ(t+ 1)⇔ br(t) > ζ(t+ 1). (A.11)

To see that it is true use the definition of br(t) and ζ(t):

ζ(t) > ζ(t+ 1) /use the definition of ζ(t)

v(t) + w(t)ζ(t+ 1) > ζ(t+ 1) /move all ζ(t+ 1) to the right

v(t)

1− w(t)
> ζ(t+ 1) /use the definition of br(t)

br(t) > ζ(t+ 1).

Note that
lim
t→∞

br(t) = ζ∗ and br(t) > ζ∗ ∀t. (A.12)

The first part of (A.12) follows from Theorem 1, which gives the limes of ζ(t):

lim
t→∞

br(t) = lim
t→∞

v(t)

1− w(t)
=

v∗

1− w∗
= ζ∗.
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The second part of (A.12) is true, as br(t) is decreasing in t and converges to ζ∗.

I use (A.11) and (A.12) to prove the following result:

Result A.1 ∀ε > 0 if ζ(t+ 1) ∈ (ζ∗ − ε, ζ∗ + ε), then ζ(t) > ζ∗ − ε.

The result says that if ζ(t + 1) is in an epsilon interval around the limit ζ∗, then the
prior element ζ(t) is greater than the lower bound of that interval.

Proof Result A.1:

Consider two distinct cases. In case 1 ζ(t + 1) is in the lower half of the epsilon in-
terval, in case 2 ζ(t+ 1) is in the upper half.

Case 1: ζ∗ − ε < ζ(t+ 1) ≤ ζ∗

ζ(t+ 1) ≤ ζ∗ /use ζ∗ < br(t) from Relation (A.12)

ζ(t+ 1) < br(t) /use Relation (A.11)

ζ(t+ 1) < ζ(t) /use ζ∗ − ε < ζ(t+ 1)

ζ∗ − ε < ζ(t)

The result holds in case 1. Consider case 2:

Case 2: ζ∗ < ζ(t+ 1) < ζ∗ + ε
Subtract ε from both inequalities to obtain that

ζ∗ − ε < ζ(t+ 1)− ε < ζ∗. (A.13)

Use Relation (A.12) to obtain that

ζ(t+ 1)− ε < ζ∗ < br(t)︸ ︷︷ ︸
from (A.12)

.

Use the definition of br(t) and rearrange to obtain that

ζ(t+ 1)− ε < v(t)

1− w(t)︸ ︷︷ ︸
br(t)

/(1− w(t))

ζ(t+ 1)− w(t)ζ(t+ 1)− ε(1− w(t)) < v(t) /+ w(t)ζ(t+ 1)

ζ(t+ 1)− ε(1− w(t)) < v(t) + w(t)ζ(t+ 1)︸ ︷︷ ︸
ζ(t)

ζ(t+ 1)− ε(1− w(t)) < ζ(t)

It holds that ζ(t+1)−ε < ζ(t+1)−ε(1−w(t)) as (1−w(t)) < 1. Combine this with last
lines above to see that ζ(t+1)−ε < ζ(t). From (A.13) it follows that ζ∗−ε < ζ(t+1)−ε.
Therefore it holds that ζ∗ − ε < ζ(t). The result holds in case 2.
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Result A.2 If ζ(t+ 1) ≥ ζ(t+ 2)⇒ ζ(t) > ζ(t+ 1).

This result is very powerful for inductions. It says that once one finds two elements of
the sequence where ζ(t+1) ≥ ζ(t+2), for the prior element it holds that ζ(t) > ζ(t+1).

Proof Result A.2:

ζ(t+ 1) ≥ ζ(t+ 2) /multiply by w(t+ 1) and add v(t+ 1)

v(t+ 1) + w(t+ 1)ζ(t+ 1) ≥ v(t+ 1) + w(t+ 1)ζ(t+ 2)︸ ︷︷ ︸
ζ(t+1)

v(t+ 1) + w(t+ 1)ζ(t+ 1) ≥ ζ(t+ 1) /move all ζ(t+ 1) to the right

v(t+ 1)

1− w(t+ 1)︸ ︷︷ ︸
br(t+1)

≥ ζ(t+ 1)

br(t+ 1) ≥ ζ(t+ 1) /use br(t) > br(t+ 1)

br(t) > ζ(t+ 1) /use Relation (A.11)

ζ(t) > ζ(t+ 1).

Result A.2 is true.

Result A.1 and A.2 will be helpful to obtain the next result.

Result A.3 ∀ε > 0 ∃tε s.t.
i) ζ(tε) ∈ (ζ∗ − ε, ζ∗ + ε) and ∀t ≥ tε, ζ(t) ∈ (ζ∗ − ε, ζ∗ + ε),
ii) if tε 6= 0 it follows that ζ(tε − 1) ≥ ζ∗ + ε and therefore ζ(tε − 1) > ζ(tε),
iii) ∀t ≤ tε − 1 ζ(t− 1) > ζ(t) and ζ(t) ≥ ζ∗ + ε.

Part i) says that for every epsilon interval around the limit ζ∗ one can find an element of
ζ(t) which I call ζ(tε). This element and all following elements are in the epsilon interval
around ζ∗.

Part ii) says that the prior element ζ(tε − 1) is above the epsilon interval. It follows
that ζ(tε − 1) > ζ(tε). If the epsilon is too large, all elements of ζ(t) are in the epsilon
interval. ζ(tε−1) does not exist in this case as tε = 0. Here, part ii) makes no statement.
However, this case does not concern us as I will use the result later for cases where (tε−1)
exists.

Part iii) makes ii) even stronger. Not only is ζ(tε− 1) > ζ(tε), but all prior elements
are strictly decreasing. You may have already guessed that this follows from Result A.2,
given that ζ(tε− 1) > ζ(tε). Of course iii) holds only if such prior elements exist. Again
this will not bother us later.

Proof Result A.3:

As I am referring to the convergent solution, it is true that

∀ε > 0 ∃t′ε s.t. ∀t ≥ t′ε ζ(t) ∈ (ζ∗ − ε, ζ∗ + ε). (A.14)
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This is merely the definition of a convergent sequence. Let Tε be the set of all these t′ε.
Define tε as the minimum of Tε: tε = minTε. tε exists as there exists at least one t′ε
and Tε is bounded from below by 0. Part i) is true as tε fulfills (A.14). It holds that
ζ(tε − 1) 6∈ (ζ∗ − ε, ζ∗ + ε), otherwise tε would not be the minimum. By means of the
careful definition of tε I find an element of ζ(t) such that this element ζ(tε) is in the
epsilon interval around ζ∗, but the prior element ζ(tε − 1) is not. From Result A.1 it
follows that ζ(tε − 1) > ζ∗ − ε. Combining this with ζ(tε − 1) 6∈ (ζ∗ − ε, ζ∗ + ε) yields
ζ(tε − 1) ≥ ζ∗ + ε. As ζ(tε) ∈ (ζ∗ − ε, ζ∗ + ε) it follows that ζ(tε − 1) > ζ(tε). Part ii) is
true.

Use ζ(tε − 1) > ζ(tε) and Result A.2 to obtain that ζ(tε − 2) > ζ(tε − 1). By
induction it holds that ζ(t − 1) > ζ(t) ∀t ≤ tε − 1. As ζ(tε − 1) ≥ ζ∗ + ε it holds that
ζ(t) ≥ ζ∗ + ε ∀t ≤ tε − 1.

Result A.4 ζ∗ ≤ ζ(t) ∀t.

Proof Result A.4:

I prove Result A.4 by contradiction. Suppose there exists a t0 s.t. ζ(t0) < ζ∗. Therefore
there exists an ε > 0 s.t. ζ(t0) < ζ∗ − ε. By Result A.3 i) there exists a tε s.t. for all
t ≥ tε ζ(t) ∈ (ζ∗−ε, ζ∗+ε). As ζ(t0) is smaller than ζ∗−ε it follows that t0 < tε. From
Result A.3 ii) or iii) it follows that ζ(t0) ≥ ζ∗ + ε. This is a contradiction to ζ(t0) < ζ∗.

Result A.5 ζ∗ < ζ(t) ∀t.

Proof Result A.5:

I prove the result by contradiction. Suppose ∃t0 s.t. ζ(t0) = ζ∗. I have to consider two
cases. In case 1 there exists a t1 > t0 s.t. ζ(t1) > ζ∗. In case 2 ζ(t) = ζ∗ for all t > t0.
I do not have to consider cases where ζ(t) < ζ∗. These cases are ruled out by Result A.4.

Case 1: There exists a t1 > t0 s.t. ζ(t1) > ζ∗. Therefore there exists an ε > 0 s.t.
ζ(t1) > ζ∗+ ε. By Result A.3 i) there exists a tε s.t. for all t ≥ tε ζ(t) ∈ (ζ∗− ε, ζ∗+ ε).
As ζ(t1) is greater than ζ∗ + ε it follows that t1 < tε. As t0 < t1 it is true that t0 < tε.
From Result A.3 ii) or iii) it follows that ζ(t0) ≥ ζ∗ + ε. This is a contradiction to
ζ(t0) = ζ∗.

Case 2: ζ(t) = ζ∗ for all t > t0. Therefore it is true that ζ(t0 + 1) = ζ(t0 + 2).
From Result A.2 it follows that ζ(t0) > ζ(t0 + 1). As ζ(t0 + 1) = ζ∗ it follows that
ζ(t0) > ζ∗. This is a contradiction to ζ(t0) = ζ∗.

I use Result A.5 to prove part a.i) of Theorem 2. Again I use a proof by contradic-
tion. Remember, a.i) says ζ(t) > ζ(t+ 1) ∀t.
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Suppose there exists a t0 s.t. ζ(t0) ≤ ζ(t0+1). By Result A.5 it is true that ζ(t0+1) > ζ∗.
Therefore there exists an ε > 0 s.t. ζ(t0 + 1) > ζ∗ + ε. By Result A.3 i) there exists
a tε s.t. for all t ≥ tε ζ(t) ∈ (ζ∗ − ε, ζ∗ + ε). As ζ(t0 + 1) is greater than ζ∗ + ε it
follows that t0 + 1 < tε and therefore t0 < tε. From Result A.3 ii) or iii) it follows that
ζ(t0) > ζ(t0 + 1) which is a contradiction to ζ(t0) ≤ ζ(t0 + 1).

Part a.ii) which says br(t) > ζ(t) follows easily:

ζ(t) > ζ(t+ 1) /multiply by w(t) and add v(t)

v(t) + w(t)ζ(t) > v(t) + w(t)ζ(t+ 1)︸ ︷︷ ︸
ζ(t)

v(t) + w(t)ζ(t) > ζ(t) /move all ζ(t) to the right

v(t)

1− w(t)︸ ︷︷ ︸
br(t)

> ζ(t)

br(t) > ζ(t).

q.e.d.

A.3 Propositions

Proposition 1 Let α be in (1/2, 1). If B0 < B′0 it follows that ζ0(0, c, B0) ≤ ζ0(0, c, B′0).

Proof:

Recall Equation (4.18):

ζ0(t) =
∞∑
i=t

v0(i)
i−1∏
j=t

w0(j) (A.15)

whereby

v0(t) = β(πtα(1 + c) + bt),

w0(t) = βat.

Note that I use
∏i
j = 1 if i < j.

Use the definitions of at and bt from Equation (4.1) and (4.2) to obtain that

v0(t) = v0(t, πt) = β((2α− 1 + αc)︸ ︷︷ ︸
>0 as α>1/2

πt + 1− α), (A.16)

w0(t) = w0(t, πt) = β(α+ (1− 2α)︸ ︷︷ ︸
<0 as α>1/2

πt). (A.17)
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Recall Equation (4.6), which gives the evolution of debt:

Bt+1 = P (Bt) = −(1− 2α)2B2
t + (1− 2α)2Bt + α(1− α).

Remember, Bt ≤ 1/2 and as P (Bt) is strictly increasing on [0, 1/2],

B0 < B′0 ⇒ Bt < B′t ∀t.

Recall Equation (4.4):

πt = πt(Bt) = 1− α− (1− 2α)Bt.

Use Equation (4.6), (4.4), (A.16), (A.17) and (A.15) to see that ζ0(t) is a function of Bt.
In particular, ζ0(0) is a function of B0.

Define π′t as π′t = πt(B
′
t). Use Equation (4.4) to see that the following statement is

true:

if B0 < B′0 and α > 1/2⇒ Bt < B′t and (1− 2α) < 0⇒ πt < π′t. (A.18)

Note that πt ≤ 1/2 as πt(Bt) is increasing in Bt and Bt ≤ 1/2. Using (A.18) in Equation
(A.16) and (A.17) yields

B0 < B′0 ⇒ v0(t) < v′0(t) and w0(t) > w′0(t),

where I define v′0(t) and w′0(t) as v0(t, π
′
t) and w0(t, π

′
t).

Define f(T1, T2) as

f(T1, T2) =

T2∑
i=T1

v0(i)
i−1∏
j=T1

w0(j).

Use Equation (4.6), (4.4), (A.16) and (A.17) to see that f is a function of BT1 . Take an
arbitrary T2. I will show by induction that f(T1, T2, BT1) < f(T1, T2, B

′
T1

) ∀T1 < T2.
First step: show that f(T2 − 1, T2, BT2−1) < f(T2 − 1, T2, B

′
T2−1):

f(T2 − 1, T2, BT2−1) < f(T2 − 1, T2, B
′
T2−1)

⇔ by the def. of f

v0(T2 − 1) + v0(T2)w0(T2 − 1) < v′0(T2 − 1) + v′0(T2)w
′
0(T2 − 1)

⇐ as v0(T2) < v′0(T2)

v0(T2 − 1) + v′0(T2)w0(T2 − 1) < v′0(T2 − 1) + v′0(T2)w
′
0(T2 − 1)

⇔ v′0(T2) to the left and as w0(T2 − 1) > w′0(T2 − 1)

v′0(T2) <
v′0(T2 − 1)− v0(T2 − 1)

w0(T2 − 1)− w′0(T2 − 1)

⇔ by def. of v0 and w0

v′0(T2) <
β(2α+ αc− 1)(π′T2−1 − πT2−1)
β(2α− 1)(π′T2−1 − πT2−1)
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⇔

v′0(T2) <
2α+ αc− 1

2α− 1
.

v′0(T2) = v0(T2, π
′
T2

) and is a strictly increasing in π′T2 . As the maximum of π′T2 is 1/2,

the maximum of v′0(T2) is v0(T2, π
′
T2

= 1/2) = 1
2β(1 + αc). The last line above is true if

the left hand side below is true:

1

2
β(1 + αc) <

2α+ αc− 1

2α− 1
⇒ v′0(T2) <

2α+ αc− 1

2α− 1
.

It is easy to check that the inequality on the left is true as 1/2 < α < 1, 0 < β < 1 and
c ≥ 0. Therefore f(T2 − 1, T2, BT2−1) < f(T2 − 1, T2, B

′
T2−1) is true.

Step two, suppose f(T1 + 1, T2, BT1+1) < f(T1 + 1, T2, B
′
T1+1) is true. Show that

f(T1, T2, BT1) < f(T1, T2, B
′
T1

) is true:

f(T1, T2, BT1) < f(T1, T2, B
′
T1)

⇔ by def. of f

v0(T1) + f(T1 + 1, T2, BT1+1)w0(T1) < v′0(T1) + f(T1 + 1, T2, B
′
T1+1)w

′
0(T1)

⇐ as f(T1 + 1, T2, BT1+1) < f(T1 + 1, T2, B
′
T1+1)

v0(T1) + f(T1 + 1, T2, B
′
T1+1)w0(T1) < v′0(T1) + f(T1 + 1, T2, B

′
T1+1)w

′
0(T1)

⇔ f to the left and as w0(T1) > w′0(T1)

f(T1 + 1, T2, B
′
T1+1) <

v′0(T1)− v0(T1)
w0(T1)− w′0(T1)

⇔ by def. of v0 and w0

f(T1 + 1, T2, B
′
T1+1) <

β(2α+ αc− 1)(π′T1 − πT1)

β(2α− 1)(π′T1 − πT1)

⇔

f(T1 + 1, T2, B
′
T1+1) <

2α+ αc− 1

2α− 1
.

The maximum of f(T1+1, T2, B
′
T1+1) is f(T1+1, T2, B

′
T1+1 = 1/2) as f(T1+1, T2, B

′
T1+1)

is increasing in B′T1+1 and BT1+1 ≤ 1/2. By the definition of f it holds that
f(T1+1, T2, 1/2) < f(T1+1,∞, 1/2). Use Equation (A.15) and the definition of f to see
that f(T1 + 1,∞, 1/2) = ζ0(T1 + 1, 1/2). By Result 6 ζ0 is decreasing in t, as 1/2 > B∗

and α > 1/2. From Theorem 2 it follows that ζ0(T1 + 1, 1/2) < br0(T1 + 1, 1/2). Use
the definition of br0 to obtain that br0(T1 + 1, 1/2) = (β + αβc)/(2− β). Combining all
these inequalities yields f(T1 + 1, T2, B

′
T1+1) < (β + αβc)/(2− β). If (β + αβc)/(2− β)

fulfills the last line above, f(T1 + 1, T2, B
′
T1+1) also fulfills it:

β + αβc

2− β
<

2α+ αc− 1

2α− 1
⇒ f(T1 + 1, T2, B

′
T1+1) <

2α+ αc− 1

2α− 1
.

51



It is easy to check that the inequality on the left hand side is true. Therefore, if B0 < B′0
it is true that f(T1, T2, BT1) < f(T1, T2, B

′
T1

) for all T2 and for all T1 < T2. Set T1 = t
and take T2 to infinity on both sides to obtain that

f(t,∞, Bt) ≤ f(t,∞, B′t).

Use Equation (A.15) and the definition of f to see that f(t,∞, Bt) = ζ0(t, Bt). Therefore

ζ0(t, Bt) ≤ ζ0(t, B′t). (A.19)

This holds especially for t = 0:

ζ0(0, B0) ≤ ζ0(0, B′0). (A.20)

q.e.d.

Proposition 2 Let α be in (1/2, 1) and B0 > B∗. ζ1(0, c) is a function of the debt in
the initial period B0. If B0 < B′0 it follows that ζ1(0, c, B0) ≤ ζ1(0, c, B′0).

Proof:

Recall Equation (4.19):

ζ1(t) =

∞∑
i=t

v1(i)

i−1∏
j=t

w1(j) (A.21)

whereby

v1(t) = β(πt(1− α) + πtαζ0(t+ 1)), (A.22)

w1(t) = β(1− πt). (A.23)

Use Equation (4.6), (4.4), (A.24), (A.25) and (A.21) to see that ζ1(t) is a function of
Bt. In particular, ζ1(0) is a function of B0. It holds that B∗ < B0 < B′0 and α > 1/2.
From (A.18) it follows that πt < π′t. Define ζ ′0(t + 1) as ζ ′0(t + 1) = ζ0(t + 1, B′t+1). As
B0 < B′0, it follows from (A.19) that ζ0(t+ 1) ≤ ζ ′0(t+ 1). Using these two properties in
Equation (A.24) and (A.25) yields v1(t) < v′1(t) and w1(t) > w′1(t) whereby

v′1(t) = β(π′t(1− α) + π′tαζ
′
0(t+ 1)), (A.24)

w′1(t) = β(1− π′t). (A.25)

As B∗ < B′0, it follows from Result 6 that ζ ′0(t+ 1) < ζ ′0(t).

Define f(T1, T2) as

f(T1, T2) =

T2∑
i=T1

v1(i)
i−1∏
j=T1

w1(j).
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Use Equation (4.6), (4.4), (A.24) and (A.25) to see that f is a function of BT1 . Take an
arbitrary T2. I will show by induction that f(T1, T2, BT1) < f(T1, T2, B

′
T1

), ∀T1 < T2.
First step, show that f(T2 − 1, T2, BT2−1) < f(T2 − 1, T2, B

′
T2−1):

f(T2 − 1, T2, BT2−1) < f(T2 − 1, T2, B
′
T2−1)

⇔
v1(T2 − 1) + v1(T2)w1(T2 − 1) < v′1(T2 − 1) + v′1(T2)w

′
1(T2 − 1)

⇐ as v1(T2) < v′1(T2)

v1(T2 − 1) + v′1(T2)w1(T2 − 1) < v′1(T2 − 1) + v′1(T2)w
′
1(T2 − 1)

⇔ v′1(T2) to the left and as w1(T2 − 1) > w′1(T2 − 1)

v′1(T2) <
v′1(T2 − 1)− v1(T2 − 1)

w1(T2 − 1)− w′1(T2 − 1)

⇔ by def. of v1 and w1

v′1(T2) <
β(1− α)(π′T2−1 − πT2−1)

β(π′T2−1 − πT2−1)
+

+
β(π′T2−1ζ

′
0(T2)− πT2−1ζ0(T2))α

β(π′T2−1 − πT2−1)
⇐ as ζ0(T2) ≤ ζ ′0(T2)

v′1(T2) < (1− α) +
(π′T2−1ζ

′
0(T2)− πT2−1ζ ′0(T2))α
π′T2−1 − πT2−1

⇔
v′1(T2) < (1− α) + αζ ′0(T2)

⇔ by def. of v′1(T2)

βπ′T2(1− α) + βαπ′T2ζ
′
0(T2 + 1) < (1− α) + αζ ′0(T2)

⇐ as βπ′T2 < 1

(1− α) + αζ ′0(T2 + 1) < (1− α) + αζ ′0(T2)

⇔
ζ ′0(T2 + 1) < ζ ′0(T2), which is true.

Therefore f(T2 − 1, T2, BT2−1) < f(T2 − 1, T2, B
′
T2−1) is true.

Step two, suppose f(T1 + 1, T2, BT1+1) < f(T1 + 1, T2, B
′
T1+1) is true. Show that

f(T1, T2, BT1) < f(T1, T2, B
′
T1

) is true:

f(T1, T2, BT1) < f(T1, T2, B
′
T1)

⇔ by def. of f

v1(T1) + f(T1 + 1, T2, BT1+1)w1(T1) < v′1(T1) + f(T1 + 1, T2, B
′
T1+1)w

′
1(T1)
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⇐ as f(T1 + 1, T2, BT1+1) < f(T1 + 1, T2, B
′
T1+1)

v1(T1) + f(T1 + 1, T2, B
′
T1+1)w1(T1) < v′1(T1) + f(T1 + 1, T2, B

′
T1+1)w

′
1(T1)

⇔ as w1(T1) > w′1(T1)

f(T1 + 1, T2, B
′
T1+1) <

v′1(T1)− v1(T1)
w1(T1)− w′1(T1)

⇐ by def. of v1 and w1

and using ζ0(T1 + 1) ≤ ζ ′0(T1 + 1) as above

f(T1 + 1, T2, B
′
T1+1) < (1− α) + αζ ′0(T1 + 1).

By the definition of f it holds that f(T1 + 1, T2, B
′
T1+1) < f(T1 + 1,∞, B′T1+1). Use

Equation (A.21) and the definition of f to see that
f(T1 + 1,∞, B′T1+1) = ζ1(T1 + 1, B′T1+1). As 1/2 > B∗ and α > 1/2, by Result 6 ζ1
is decreasing in t. By Theorem 2 it holds that ζ1(T1 + 1, B′T1+1) < br1(T1 + 1, B′T1+1).
Combine these inequalities to obtain that f(T1 + 1, T2, B

′
T1+1) < br1(T1 + 1, B′T1+1). Let

me continue with the last line above:

f(T1 + 1, T2, B
′
T1+1) < (1− α) + αζ ′0(T1 + 1)

⇐ as f(T1 + 1, T2, B
′
T1+1) < br1(T1 + 1, B′T1+1)

br1(T1 + 1, B′T1+1) < (1− α) + αζ ′0(T1 + 1)

⇔ by def. of br1

β(π′T1+1(1− α) + απ′T1+1ζ
′
0(T1 + 2))

1− β(1− π′T1+1)
< (1− α) + αζ ′0(T1 + 1)

⇐ as the left hand side is increasing in β and β < 1

π′T1+1(1− α) + απ′T1+1ζ
′
0(T1 + 2))

1− (1− π′T1+1)
< (1− α) + αζ ′0(T1 + 1)

⇔
(1− α) + αζ ′0(T1 + 2) < (1− α) + αζ ′0(T1 + 1)

⇔
ζ ′0(T1 + 2) < ζ ′0(T1 + 1), which is true.

Therefore, if B0 < B′0 it is true that f(T1, T2, BT1) < f(T1, T2, B
′
T1

) for all T2 and for all
T1 < T2. Set T1 = t and take T2 to infinity on both sides to obtain that

f(t,∞, Bt) ≤ f(t,∞, B′t).

Use Equation (A.21) and the definition of f to see that f(t,∞, Bt) = ζ1(t, Bt). Therefore

ζ1(t, Bt) ≤ ζ1(t, B′t). (A.26)

This holds especially for t = 0:

ζ1(0, B0) ≤ ζ1(0, B′0). (A.27)

q.e.d.
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Abstract (English)

In the absence of a centralized goods market and perfect credit markets, precautionary
savings, driven by pessimistic expectations, can lead to a lack of aggregate demand and
involuntary unemployment in steady state, whereas optimistic expectations would keep
the economy in a steady state with full employment. While the steady state with full
employment is efficient, the steady state with unemployment is not. Once the economy
is in the inefficient steady state, under certain conditions there is no equilibrium path
which leads back to the efficient steady state. This result was shown by Chamley (2014),
assuming that agents face idiosyncratic preference shocks of a certain probability. I show
that this result is robust to changes in the probability of preference shocks. It holds for
nearly all probabilities of these shocks. In addition, I show that rare preference shocks
lead to higher unemployment in the inefficient steady state than frequent shocks. This
is because the higher the probability of idiosyncratic shocks, the higher the fraction
of agents with a high propensity to consume. A higher fraction of agents with a high
propensity to consume leads to less unemployment in the inefficient steady state.

Abstract (Deutsch)

In einer Ökonomie ohne zentralen Gütermarkt und mit unvollständigen Kreditmärkten
können pessimistische Erwartungen Haushalte dazu bringen Ersparnisse als Rücklage
zu bilden. Dieses Sparverhalten führt zu einem Rückgang an aggregierter Nachfrage,
welcher in letzter Konsequenz Arbeitslosigkeit verursacht. Optimistische Erwartungen
hingegen würden dafür sorgen, dass die Ökonomie in einem Zustand von Vollbeschäftigung
bleibt. Sobald die Ökonomie in einem Steady State mit Arbeitslosigkeit ist, gibt es unter
bestimmten Bedingungen keinen Gleichgewichtspfad mehr zurück zur Vollbeschäftigung.
Diese Ergebnisse wurden von Chamley (2014) in einem Model gezeigt. Haushalte sind in
diesem Model individuellen Schocks in ihren Präferenzen ausgesetzt. Anstatt eines zen-
tralen Marktes nimmt Chamley an, dass Tauschpartner durch einen Zufallsmechanismus
zusammen finden. Allerdings muss er für seinen Beweis eine bestimmte Wahrschein-
lichkeit für Schocks in den Präferenzen annehmen. Ich erweitere in dieser Arbeit Cham-
leys Ergebnis und zeige, dass es für die meisten möglichen Wahrscheinlichkeiten von
Schocks in den Präferenzen gilt. Zusätzlich kann ich zeigen, dass Arbeitslosigkeit im
entsprechenden Steady State umso niedriger ist, je höher die Wahrscheinlichkeit von
Schocks in den Präferenzen ist. Schocks müssen jedoch eine entsprechend der Wahrschein-
lichkeit angemesse Intensität haben. Je wahrscheinlicher Schocks sind, desto höher ist
der Anteil an Haushalten mit einer hohen Konsumneigung. Ein hoher Anteil an Haushal-
ten mit einer hohen Konsumneigung bedingt eine geringere Arbeitslosigkeit im Steady
State.
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