
MASTERARBEIT

Titel der Masterarbeit

“Low regularity geometry on semi-Riemannian manifolds”

verfasst von

Melanie Graf BSc. BSc.

angestrebter akademischer Grad

Master of Science (MSc.)

Wien, 2014

Studienkennzahl lt. Studienblatt: A 066 821
Studienrichtung lt. Studienblatt: Masterstudium Mathematik
Betreuer: ao. Univ.-Prof. MMag. Dr. Michael Kunzinger





Contents

Introduction 3

Chapter 1. Distributions on manifolds 5
1.1. The space of densities 5
1.2. (Tensor-)Distributions 8

Chapter 2. Distributions with support in a hypersurface 11
2.1. Distributions on semi-Riemannian manifolds 11
2.2. Single-layer distributions 15
2.3. Multilayer distributions 16
2.4. Multilayers and distributions supported in a hypersurface 21

Chapter 3. Distributional geometry 23
3.1. Local Sobolev spaces on manifolds 23
3.2. (Tensor-)Distributions on orientable manifolds 27
3.3. Distributional connections 28
3.4. Distributional metrics and scalar curvature 33
3.5. Compatibility with Colombeau theory 37
3.6. Einstein equations in vacuum 45

Chapter 4. Geometry induced on a hypersurface 49
4.1. Normal form and rigging vector fields 49
4.2. The projected connection and the second fundamental form 50
4.3. Geometry on a hypersurface induced by a metric 54
4.4. Nowhere null hypersurfaces 58

Abstract 63

Zusammenfassung 65

Index 67

Bibliography 69

1





Introduction

This thesis is about different aspects of low regularity geometry on semi-Riemannian manifolds
and is roughly split into four chapters. The first chapter offers a brief introduction to the theory
of distributions (in the sense of Laurent Schwartz) on general manifolds which is mainly based on
the book [GKOS01].

In the second chapter we will look at singular objects on a manifold with a smooth semi-Riemannian
metric. The smooth metric allows us to effectively deal with functions (and tensor fields) of the
“lowest” regularity, i.e., distributions. In particular we are interested in studying distributions with
support in a (closed, semi-Riemannian) hypersurface: As a first step we follow [Sta11] to give a
nice description of the pullback of the Dirac delta distribution onto a hypersurface (Thm. 2.2.3)
as a so-called single-layer distribution. Furthermore we derive a jump formula for the exterior
derivative of a function with a jump discontinuity across the hypersurface in terms of single-layer
distributions (Ex. 2.3.9).

Next we want to move on to derivatives of the delta distribution, which is done by defining mul-
tilayer distributions (as in [Wag10], see also (2.3.1)). Following [Wag10] we study their relation-
ship with the delta distribution and derive formulas for their normal derivatives (Thm. 2.3.11) and
multiplication with smooth functions (Thm. 2.3.12). As the final result of the second chapter it is
shown that any distribution with support in a hypersurface can be written as a sum of multilayer
distributions, which is a generalization of the well-known fact that every distribution supported in
a point can be written as a sum of derivatives of delta distributions.

For the third chapter we no longer assume the existence of a smooth semi-Riemannian metric on
our manifold but instead study distributional metrics (or, more generally, distributional geometry).
Such metrics have been studied e.g. in [LM07], [MS93], [GT87] and are of particular interest in
physics, mainly general relativity, especially considering that many physically relevant spacetimes
must be singular by the Penrose-Hawking singularity theorems (see e.g. [Wal84], section 9.5).
However, due to the impossibility of multiplication of distributions it is not possible to deal with
merely distributional metrics in any meaningfull way and we have to assume a certain minimal
regularity like at least local square integrability for a connection (see Prop. 3.3.3) or a specific
Sobolev regularity and non-degeneracy condition for the metric (Prop. 3.4.3). For this reason
there is a short introduction to Sobolev spaces on manifolds in the beginning of the third chapter
including a brief discussion on which Sobolev spaces form algebras with continuous multiplication.

Now the main focus will be the definition of the various curvature quantities and derivation of
jump formulas for them, that is, how the Riemann and Ricci tensor and the scalar curvature look
like for a metric that suffers a jump discontinuity across a hypersurface (see (3.3.11), (3.3.12) and
(3.4.4)). One possible application of those jump formulas to the Einstein field equations is outlined
in section 3.6.

As a mathematical side note we also take a short look at the compatibility of this distributional
approach to generalized geometry and a Colombeau theoretic approach, following the recent paper
[SV09]. We see that both approaches are indeed equivalent for a certain class of distributional
metrics (section 3.5).
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4 INTRODUCTION

Finally, the fourth and last chapter focuses on the geometry induced on a general (i.e. potentially
null) hypersurface by a given connection or metric on our manifold. Again this was done in
[MS93] and more recently by [LM07] and is of interest when studying solutions of the Einstein
field equations, as there are several exact solutions where general hypersurfaces appear, e.g. Gödel’s
universe (where there are no hypersurfaces without boundary that are spacelike everywhere, see
[HE73], section 5.7) or the Kerr solution (the stationary limit surface is timelike everywhere except
at two points, where it is null, see [HE73], section 5.6).
As a substitute for the normal unit vector field (that is only available in the nowhere null case)
we will use a so-called rigging vector field (see Def. 4.1.2). This leads to a projected connection on
the hypersurface and a generalization of the second fundamental form (Def. 4.2.4) and the Gauss
and Codazzi equations ((4.2.7) and (4.2.12)).
If the rigging vector field can be chosen nowhere null (we will show that this is always the case for
a time-oriented Lorentzian manifold), then the inverse of the metric restricted to the hypersurface
can be inverted again to induce a metric (and thus a metric connection) on the hypersurface. In
Prop. 4.3.7 we calculate the difference between this metric connection and the projected connection.
In the end we show that they coincide in the case of a nowhere null hypersurface if we choose the
normal unit vector field as our rigging and that the generalized Gauss and Codazzi equations
reduce to the well-known standard expressions. As always we try to keep things very general by
not assuming smoothness of the connection/metric but just the regularity really needed to make
sense of occurring products and traces.
I would like to thank my advisor, Prof. Michael Kunzinger, for many helpful suggestions and
productive discussions, my parents for always supporting me and Franz Berger for helping me
solve some occuring LATEX problems and proofreading parts of my thesis.



CHAPTER 1

Distributions on manifolds

To begin with we will briefly summarize the most important notations that will be used throughout
this work. As is common in differential geometry all our manifolds will be assumed to be smooth,
Hausdorff and second countable. We will not, however, assume further properties like orientability
or connectedness without explicitly saying so. In general our manifold will be denoted with X,
the letter M will be used for submanifolds of X and E for vector bundles over X. The space of
smooth sections shall be denoted by Γ (X,E), smooth sections with compact support by Γc (X,E)
or D (X,E). The space Γ

(
X,T pqX

)
of (p, q)-tensor fields on X will sometimes be denoted by

T pq (X), vector fields by X (X) and q-forms by Ωq (X). The main source for this chapter will be
[GKOS01].

1.1. The space of densities

Analogous to the definition of distributions on an open subset of Rn the space of distributions on
a manifold X is defined as the dual space of certain smooth ’test objects’. However, if one wants
to preserve the embedding of smoooth functions into distributions via integration, the space of
these test objects has to be the space of compactly supported sections of the volume bundle over
X, rather than D (X) itself, as there is no canonical way of defining

´
X
fφ for f ∈ C∞ (X) and

φ ∈ D(X).1

Before we actually define the volume bundle over a manifold, we will quickly review the cocycle
approach to vector bundles.

Given a vector bundle (E, π,X) with atlas (Uα,Ψα)α∈I (that is Ψα : π−1 (Uα) → Uα × V a fiber
respecting diffeomorphism, Uα ⊂ X a chart domain, V some finite dimensional vector space) one
obtains a family of transition functions ψαβ : Uα∩Uβ → GL (V ) via Ψα◦Ψ−1

β (x, v) = (x, ψαβ (x) v)
which satisfies (since the different charts have to be compatible)

ψαβ · ψβγ = ψαγ on Uα ∩ Uβ ∩ Uγ and(1.1.1)
ψαα = idV on Uα.(1.1.2)

On the other hand, one can show that for any family {ψαβ : Uα ∩ Uβ → GL(V )} (where the Uα
form an open cover of X) satisfying the cocycle conditions (1.1.1) and (1.1.2), there exists a unique
(up to isomorphism) vector bundle (E, π,X) over X having those ψαβ as its transition functions
(for details see [Mic08], 8.3).

This description of vector bundles allows a very elegant definition of the so-called q−volume bundle
via its transition functions.

1Of course defining D′ (X) as the dual space of D (X) is still a valid option, but then the regular objects in D′ (X)
will no longer be smooth functions but sections of the volume bundle instead (this definition is used, for example,
in [Die72]). Further options are also discussed in [GKOS01], chapter 3.1.
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6 1. DISTRIBUTIONS ON MANIFOLDS

Definition 1.1.1 (The q-volume bundle). Let X be a manifold with atlas (Uα, φα)α∈I . Then for
q ∈ R the one-dimensional real vector bundle Volq (X) given by the cocycle

ψαβ : Uα ∩ Uβ → R \ {0} = GL(1,R)

ψαβ(x) =
∣∣∣detD

(
φα ◦ φ−1

β

)
(φβ(x))

∣∣∣−q =
∣∣detD

(
φβ ◦ φ−1

α

)
(φα(x))

∣∣q(1.1.3)

is called the q-volume bundle over X. The space Γ (X,Volq (X)) of smooth sections of Volq (X) is
called the space of q-densities on X.

Remark 1.1.2. Clearly the ψαβ defined in (1.1.3) satisfy (1.1.2) (since φα (Uα) ⊂ Rn and of course
detD (idRn) = 1) and (1.1.1):

ψαβ(x)ψβγ(x) =
∣∣∣det

(
D
(
φα ◦ φ−1

β

)
(φβ(x)) D

(
φβ ◦ φ−1

γ

)
(φγ(x))

)∣∣∣−q =

=
∣∣D (φα ◦ φ−1

γ

)
(φγ(x))

∣∣−q .
Also, if X is an orientable manifold we have Vol1 (X) ∼= ΛnT ∗X (the vector bundle of exterior n-
forms) since both vector bundles have the same transition functions as

∣∣∣detD
(
φα ◦ φ−1

β

)
(φβ(x))

∣∣∣ =

detD
(
φα ◦ φ−1

β

)
(φβ(x)) > 0 for any oriented atlas (Uα, φα)α∈I of X.

We will mostly be dealing with the special case q = 1 and are going to write Vol1 (X) ≡ Vol (X)
as well as speak of the volume bundle and its densities (instead of the 1-volume bundle and 1-
densities). Next, we show that the volume bundles are trivial.

Proposition 1.1.3. The vector bundle Volq (X) is trivial, i.e. there exists a vector bundle iso-
morphism between Volq (X) and X × R.

Proof. Let (Uα,Ψα) be a vector bundle chart for Volq (X). For x ∈ Uα we set sα (x) :=
Ψ−1
α (x, 1), then sα : Uα → Volq (X) is smooth and π ◦ sα (x) = π ◦ Ψ−1

α (x, 1) = pr1 (x, 1) = x,
so sα(x) is in the fiber over x (which we will denote by Fx). Now let χα be a partition of unity
subordinate to the Uα’s and define s : X → Volq (X) by s(x) :=

∑
χα (x) sα (x) (using the vector

space structure on Fx) to obtain an element in Γ (X,Volq (X)).

Next we want to show that s does not become zero anywhere. We will do this by showing that for
any given Uα the function s|Uα is positive (in the sense that pr2 (Ψα(s(x))) > 0 for all x ∈ Uα).
We have

pr2 (Ψα(s(x))) =
∑

{β: x∈Uβ}

χβ(x)pr2 (Ψα (sβ(x))) =
∑

{β: x∈Uβ}

χβ(x)pr2

(
Ψα ◦Ψ−1

β (x, 1)
)

=

=
∑

{β: x∈Uβ}

χβ(x)ψαβ(x) 1 =
∑

{β: x∈Uβ}

χβ(x)
∣∣∣detD

(
φα ◦ φ−1

β

)
(φβ(x))

∣∣∣−q > 0,

as all the terms are non-negative and there has to be at least one β with χβ(x) > 0.

Finally we obtain E ∼= X × R by defining f : X × R → E as f(x, v) := v s(x) and noting that
this commutes with the projections π and pr1, is fiber linear, smooth and bijective, hence a vector
bundle isomorphism. �

One notes, however, that there is no canonical trivialization (we used a partition of unity in the
construction of f).

Given a section µ ∈ Γ (X,Vol (X)) we will denote its local components with respect to a given
vector bundle chart (Uα,Ψα) by µα, i.e.

µα := pr2 ◦Ψα ◦ µ|Uα ∈ C
∞ (Uα) .
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Next we will briefly introduce the concept of integration of densities. The integral of a compactly
supported density µ ∈ Γc (X,Vol (X)) is defined analogous to the integration of an n-form on an
orientable manifold byˆ

X

µ =
∑
α

ˆ
Uα

χαµ :=
∑
α

ˆ
ψα(Uα)

χα
(
ψ−1
α (x)

)
µα
(
ψ−1
α (x)

)
dx

for a given atlas (Uα, ψα) and a subordinate partition of unity χα. That this is indeed well-defined
is also shown completely analogous to the orientable case, thus we will omit the proof (which can
be found in [Mic08], 10.3).
Last but not least we have to define a topology on our densities. We will do this very generally by
equipping the spaces Γ (X,E) and Γc (X,E) for any given vector bundle E over X with suitable
locally convex topologies.

Definition 1.1.4 (Convergence in Γ(X,E)). A net (uι)ι∈I ⊂ Γ (X,E) is said to converge to
u ∈ Γ (X,E) if for all charts (Vα, ψα) of X the net (uι|Vα) converges to u|Vα in Γ (Vα, E), where
we define the topology on Γ (Vα, E) so that the map ψα (together with the corresponding vector
bundle chart Ψα) induces a homeomorphism between Γ (Vα, E) and C∞

(
ψα (Vα) ,RdimE

)
with the

usual locally convex topology (that is uniform convergence of all derivatives on compact subsets)
via u 7→ uα ◦ ψ−1

α .

Proposition 1.1.5. Let E be a vector bundle over X. Then Γ (X,E) is a Fréchet space.

Proof. We will only give a sketch of the proof, further details can be found in [Die72], XVII,
2. First we note that the topology defined above is induced by the seminorms

(1.1.4) ps,m,α (u) =
dimE∑
j=1

p̃s,m,α
(
Ψj
α ◦ u|Vα ◦ ψ

−1
α

)
,

where the p̃s,m,α are chosen to be a (countable and separating) basis of seminorms for C∞ (ψα (Vα)).
Now by second countability X possesses a countable atlas and thus this familiy of seminorms is
countable. Clearly it also separates points, so Γ (X,E) is Hausdorff. Finally completeness follows
in a very straightforward way from completeness of the spaces C∞ (ψα (Vα)). �

Definition 1.1.6 (Topology on Γc(X,E)). The topology on Γc (X,E) is defined to be the inductive
limit topology with respect to the spaces ΓKm (X,E) := {u ∈ Γ (X,E) : suppu ⊂ Km}, where the
Km are to be an exhaustive sequence of compact sets for X. That is a net (uι)ι∈I converges to u
in Γc (X,E) if and only if there exists an m such that

⋃
ι∈I suppuι ∪ suppu ⊂ Km and uι → u in

Γ (X,E). We write
Γc (X,E) = lim−→ΓKm(X,E).

The spaces ΓKm (X,E) are closed subspaces2 of the Frechet space Γ (X,E) and thus themselves
Frechet, which makes Γc (X,E) an (LF)-space.

The following proposition will show that Γc (X,E) is a Montel space, i.e., a barrelled topological
vector space where every closed and bounded set is compact.

Proposition 1.1.7. The space Γc (X,E) is Montel.

Proof. First we show that Γc (X,E) has the Heine-Borel property, i.e., every closed bounded
subset is compact. Let B ⊂ Γc (X,E) be bounded and closed. Then there exists a compact set
K ⊂ X such that B ⊂ ΓK (X,E) is bounded and closed in ΓK (X,E) (by the properties of the
inductive limit topology). Let (uα)α∈I be a net in B ⊂ ΓK (X,E) and choose an atlas of E

2If (um)m≥0 is a sequence in ΓK (X,E) converging to some u ∈ Γ (X,E) then for any chart domain Uα ⊂ X \K
the components uαm satisfy uαm = 0 for all m and thus uα = 0, so u|X\K = 0.
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such that Ui ∩ K 6= ∅ only for finitely many i, which will be called i1, . . . , ik. Clearly the net
ui1α = Ψi1 ◦ uα ◦ψ−1

i1
∈ C∞ (ψi1 (Ui1)) is bounded (because B is) and thus has a convergent subnet

ui1α1
→ ui1 (C∞ (Ω) is a Montel space, see [Edw65], 8.4.7.). Replacing the original net uα with

the subnet uα1 and repeating the process for i2 to ik one obtains a subnet uβ of uα such that uiβ
converges to ui for all i (since uiβ is the constant 0 net for i 6= i1, . . . , ik), which implies uβ → u in
Γ (X,E), thus in ΓK (X,E). Because B is closed one has u ∈ B, showing that B is compact.

Thus Γc (X,E) is a separated barrelled topological vector space (because it is the strict inductive
limit of Frechet spaces) which satisfies the Heine-Borel property, hence Montel. �

Remark 1.1.8. One may replace the net (uα)α∈I in the proof of the above Proposition by a
sequence (un)n∈N because ΓK (X,E) is metrizable.

1.2. (Tensor-)Distributions

Finally we are ready to give the definition of distributions on a manifold.

Definition 1.2.1 (Distributions on a manifold). Let X be a manifold. The space of distributions
on X is defined as

D′ (X) := Γc (X,Vol (X))′ .

More generally, given a vector bundle E over X, one may define E-valued distributions by setting

D′ (X,E) := Γc (X,E∗ ⊗Vol (X))′ ,

where E∗ denotes the dual bundle of E. In particular we obtain the spaces of so-called tensor
distributions

D′T pq (X) ≡ D′
(
X,T pqX

)
= Γc

(
X,T qpX ⊗Vol (X)

)′
as T pqX∗ = T qpX.

If U is an open subset of X, the restriction T |U ∈ D′ (U, E|U ) ≡ D′ (U,E) of T ∈ D′ (X,E)
to U is defined by 〈T |U , φ〉 =

〈
T, φ̃

〉
, where φ̃ ∈ Γc (X,E∗ ⊗Vol (X)) is the extension of φ ∈

Γc
(
U, E|∗U ⊗Vol (U)

)
= Γc (U, E∗|U ⊗ Vol (X)|U ) by zero.

Proposition 1.2.2. With the restriction operation described above D′ (X,E) is a fine sheaf. In
particular if (Uλ)λ∈Λ is an open covering of X one has that

(i) if u, v ∈ D′ (X,E) and u|Uλ = v|Uλ for all λ ∈ Λ then u = v and

(ii) if one has a family (uλ)λ∈Λ of distributions uλ ∈ D′ (Uλ, E) satisfying

uλ|Uλ∩Uµ = uµ|Uλ∩Uµ for all µ, λ ∈ Λ with Uλ ∩ Uµ 6= ∅

then there exists some u ∈ D′ (X,E) with u|Uλ = uλ for all λ ∈ Λ.

The support of a distribution u ∈ D′ (X,E) is defined as the complement of the largest open set
U for which u|U vanishes. The space of E-valued distributions on X with compact support will
be denoted by E ′ (X,E).

Given an atlas (Uα,Ψα) of E it is sometimes useful to identify the space D′ (X,E) of E-valued
distributions with families (Tα)α of distributions Tα =

(
Tα,1, . . . , Tα,n

)
∈ D′ (ψα (Uα))n =

D′ (ψα (Uα) ,Rn) (where n = dim (E∗ ⊗Vol (X)) = dimE) satisfying certain transformation laws.
To make those explicit, let (Ψ, U) be a vector bundle chart of E∗ ⊗ Vol (X) (and (ψ,U) the
corresponding chart on X) and denote by Ψ∗ : Γc (U,E∗ ⊗Vol (X)) → D (ψ (U) ,Rn) the map
T 7→ Ψ ◦ T ◦ ψ−1. Because Ψ∗ is continuous one obtains its adjoint map (Ψ∗)′ : D′ (ψ (U) ,Rn)→
D′ (U,E) by setting

〈
(Ψ∗)′ T, u

〉
:= 〈T,Ψ∗u〉. Now we may state the following proposition (the

proof of which can be found in [GKOS01], p. 235):
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Proposition 1.2.3. The space D′ (X,E) of E-valued distributions on X can be identified with
families (Tα)α of distributions Tα ∈ D′

(
ψα (Uα) ,RdimE

)
that satisfy

((Ψα)∗)
′
Tα =

(
(Ψβ)∗

)′
T β on Uα ∩ Uβ .

There are two more useful identifications presented in [GKOS01], p. 237: First we consider the
bilinear map

β̃ : D′ (X)× Γ (X,E)→ D′ (X,E)(1.2.1) 〈
β̃ (T, z) , φ

〉
:=
〈
T, trE ⊗ idVol(X) (z ⊗ φ)

〉
,

where trE denotes the trace operation on E ⊗ E∗ (we will omit the index E in the future if it is
clear which space is meant). This map induces a linear map β : D′ (X) ⊗ Γ (X,E) → D′ (X,E).
Next we look at

γ : D′ (X)⊗ Γ (X,E)→ LC∞(X) (Γ (X,E∗) ;D′ (X))(1.2.2)
γ (T, z) (x) = tr (z ⊗ x) T.

Theorem 1.2.4. Both β and γ induce C∞ (X)-isomorphisms, i.e.

D′ (X,E) ∼= D′ (X)⊗ Γ (X,E) ∼= LC∞(X) (Γ (X,E∗) ;D′ (X)) .

It is worth noting that the second isomorphism is but a special case of a very general algebraic
result, namely E∗⊗A F ∼= HomA (E,F ) for A−modules E and F , where either E or F is a finitely
generated projective module (see [Bou98], p. 271).

In particular the previous theorem shows that

D′T pq (X) ∼= D′ (X)⊗C∞ T pq (X) ∼= LC∞(X)

((
T 0

1 (X)
)p ⊗ (T 1

0 (X)
)q ;D′ (X)

)
,

thus locally T |Uα ∈ D′
(
Uα, T

p
qX
)
can be written as

T |Uα = (Tα)i1...ipj1...jq
∂i1 ⊗ · · · ⊗ ∂ip ⊗ dxj1 ⊗ · · · ⊗ dxjq

with local coefficients (Tα)i1...ipj1...jq
∈ D′ (Uα).

Similarly to the case of distributions on Rn one has a natural embedding Φ of the spaces Γ (X,E)
into D′ (X,E) via

(1.2.3) 〈Φ(f), φ〉 =
ˆ
X

(trE ⊗ idVol(X))(f ⊗ φ) ∀φ ∈ Γc (X,E∗ ⊗Vol (X)) .

Of course, one may extend this embedding to locally integrable sections of E.

The next two propositions deal with the density of smooth objects in D′ (X,E). First we show
that compactly supported sections are strongly dense (see [Sch66], Theorem XV).

Proposition 1.2.5 (Strong density of compactly supported sections). The space Γc (X,E) of
compactly supported sections is dense in D′ (X,E) with respect to the strong topology.

Proof. First we note that by Proposition 1.1.7 Γc (X,E) is a Montel space, thus reflexive
(see [Edw65], 8.4.7). Now let φ ∈ D′ (X,E) \ Γc (X,E) then, by Hahn-Banach (see [Rud73],
Theorem 3.5) there exists an ω ∈ D′ (X,E)′ = Γc (X,E ⊗Vol (X))′′ = Γc (X,E ⊗Vol (X)) such
that ω (φ) = 〈φ, ω〉 = 1 but ω (g) = 〈g, ω〉 =

´
X
gω = 0 for all g ∈ Γc (X,E) and thus ω ≡ 0, which

is a contradiction. �

A second result concerning the density of smooth objects is obtained by using the local description
of E-valued distributions given in Proposition 1.2.3 and noting that D (Ω) is weakly sequentially
dense in D′ (Ω) for any open subset Ω ⊂ Rn (which follows from a convolution argument):
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Proposition 1.2.6 (Weak sequential density of smooth sections). The space Γ (X,E) of smooth
sections is weakly sequentially dense in D′ (X,E), i.e. for all T ∈ D′ (X,E) there exists a sequence
(Tn)n∈N ⊂ Γ (X,E) such that

〈Tn, φ〉 → 〈T, φ〉 for all φ ∈ Γc (X,E∗ ⊗Vol (X)) .

A detailed proof can be found in [GKOS01], p. 241. Note that this also implies that Γc (X,E) is
weakly sequentially dense in D′ (X,E) since it is weakly sequentially dense in Γ (X,E) (this can
be easily shown by using appropriate cut-off functions). When talking about density of smooth
sections we will generally refer to the result above and not to Proposition 1.2.5. Similarly the
standard topology on D′ (X,E) will be the topology of weak sequential convergence. The above
proposition now allows the unique continuous extension of continuous operators on Γc (X,E) to
D′ (X,E).



CHAPTER 2

Distributions with support in a hypersurface

In this chapter we are going to introduce the concept of single-layer distributions for semi-Riemannian
submanifoldsM ⊂ X and show how the pullback of the delta distribution by a submersion h satis-
fying M = h−1 (0) can be understood as such a single-layer distribution. Next we will move on to
hypersurfaces and define multilayer distributions for which we will derive formulas for multiplica-
tion with smooth functions as well as their normal derivatives. Last we show that each distribution
on X with support in a hypersurface can be written as the sum of such multilayers.

To be able to do this we are going to need some more results about distributions on manifolds
concerning their interaction with the additional structure given by a semi-Riemannian metric
tensor. These will be presented in the next section.

2.1. Distributions on semi-Riemannian manifolds

Given a metric one defines the pointwise norm of an element u ∈ Γ
(
X,T pqX

)
by setting ‖u(p)‖2 :=∣∣ui1...ip+q (p)ui1...ip+q (p)

∣∣ (where indices are lowered/raised by the metric). For (0, q)-tensor fields
one may equivalently express the pointwise norm through ‖ω(p)‖2 :=

∣∣∣(g−1)⊗q (p) (ω (p) , ω(p))
∣∣∣ ,

where(
g−1)⊗q (p) : (TpX∗)⊗q × (TpX∗)⊗q → R

(
v1 ⊗ · · · ⊗ vq, v′1 ⊗ . . . v′q

)
7→

q∏
i=1

g−1(p)(vi, v′i).

One has the following nice relation between the locally convex topology on Γ
(
X,T pqX

)
and the

pointwise norm defined above. This metric allows an alternative description of the topology on
the space of (p, q)−tensor fields:

Proposition 2.1.1. The topology on Γ
(
X,T pqX

)
defined in Def. 1.1.4 is induced by the seminorms

(2.1.1) pK,s(u) := sup
x∈K,l≤s

∥∥∥∇(l)u(x)
∥∥∥ ,

where K ⊂ X is compact and s ∈ N0.

More details regarding this can be found in [CBDMDB82], Section VI. B. 8.

2.1.1. Canonical identification of D′ (X,E) with D (X,E∗)′. For a general manifold X
there is no canonical way of identifying, for instance, the spaces D′ (X) and D (X)′ (as there is
no canonical trivialization of Vol (X), see Prop. 1.1.3). However, given a metric g on X, one may
define a canonical volume density Ω̂g ∈ Γ (X,Vol (X)) via the local representations

(2.1.2) pr2 ◦Ψα ◦ Ω̂g
∣∣∣
Uα
≡ Ω̂αg :=

√∣∣det gαij
∣∣ ∈ C∞ (Uα) ,

where we choose Uα and Ψα so that (Uα,Ψα) is a vector bundle chart and gαij are the local
components of the tensor field g with respect to a corresponding chart (Uα, φα) on the manifold.

Proposition 2.1.2. The local representations Ω̂αg defined in (2.1.2) indeed give a well-defined global
section Ω̂g of Vol (X).

11
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Proof. We have to show that

Ψ−1
α ◦

(
idUα∩Uβ × Ω̂αg

∣∣∣
Uβ

)
= Ω̂g

∣∣∣
Uα∩Uβ

= Ψ−1
β ◦

(
idUα∩Uβ × Ω̂βg

∣∣∣
Uα

)
,

that is
Ω̂αg (p) = ψαβ

(
Ω̂βg (p)

)
=
∣∣detD

(
φβ ◦ φ−1

α

)
(φα(p))

∣∣ Ω̂βg (p)

for all p ∈ Uα ∩ Uβ . If we denote the components of φα by xi and those of φβ by yi, we have

det gαij = det g
(

∂

∂xi
,
∂

∂xj

)
= det g

(∑
k

∂yk

∂xi
∂

∂yk
,
∑
l

∂yl

∂xj
∂

∂yl

)
= det

∑
k,l

∂yk

∂xi
∂yl

∂xj
gβkl.

Now we note that
∑
k,lAkiBklAlj =

∑
k Aki (BA)kj =

(
ATBA

)
ij

and thus obtain for Aij = ∂yi

∂xj

and B = gβ √
|det gα| =

√
|detAT det gβ detA| = |detA|

√
|det gβ |.

But since A(p) = D
(
φβ ◦ φ−1

α

)
(φα(p)) = ψαβ (p) this finishes the proof. �

Remark 2.1.3. On an oriented manifold (of dimension n) we can identify Vol (X) ∼= Ωn (X) and
obtain Ω̂g =

√
|det g| dx1 ∧ · · · ∧ dxn.

Since Ω̂g is nowhere zero, we can use it to identify Vol (X) ∼= X × R (analogous to the proof of
Proposition 1.1.3) and thus C∞ (X) = Γ (X,X × R) ∼= Γ (X,Vol (X)) via φ 7→ φΩ̂g.

So
D′(X,E) = Γc (X,E∗ ⊗Vol (X))′ ∼= Γc (X,E∗ ⊗ (X × R))′ ∼= Γc (X,E∗)′

and, more specifically,
D′
(
X,T pqX

) ∼= Γc
(
X,T qpX

)′
.

This identification will be used implicitly throughout this second chapter and allows us to simplify
some calculations. For instance, the embedding T pq (X) ↪→ D′

(
X,T pqX

)
given in equation (1.2.3)

reduces to

(2.1.3) 〈T, φ〉 ≡
〈

Φ (T ) , φ⊗ Ω̂g
〉

=
ˆ
X

(tr⊗ idVol(X))(T ⊗ φ⊗ Ω̂g) =
ˆ
X

tr (T ⊗ φ) Ω̂g

for T ∈ T pq (X) and φ ∈ D
(
X,T qpX

)
.

2.1.2. Covariant derivatives. Next we will study the extension of covariant derivatives to
distributions. To do so we will need the contraction operators Cab : T pq (X) → T p−1

q−1 (X) given by
Cab (T )i1...ip−1

j1...jq−1
= T

i1...ia−1ria+1...ip
j1...jb−1rjb+1...jq

(where we use the summation convention) and that the trace
operator tr : T pq (X) ⊗ T qp (X) = T p+qp+q (X) → C∞ (X) can be written as a combination of such
contractions (tr = C1

1 ◦ · · · ◦Cpp ◦C
p+1
1 · · · ◦Cp+qq ). It is also worth mentioning that the contraction

operators can of course be continuously extended to Cab : D′
(
X,T pqX

)
→ D′

(
X,T p−1

q−1X
)
.

First recall that if we denote the Levi-Civita connection on X by ∇ and the Christoffel symbols
by Γ, the components of ∇T ∈ T pq+1(X) for T ∈ T pq (X) are given by

(2.1.4) (∇T )i1...ipj1...jqr
= ∂r

(
T
i1...ip
j1...jq

)
+ Γi1rkT

k...ip
j1...jq

+ · · ·+ ΓiprkT
i1...k
j1...jq

−Γkrj1
T
i1...ip
k...jq

− · · ·−ΓkrjqT
i1...ip
j1...k

,

where the Γkij can be computed using the metric:

(2.1.5) Γkij = 1
2 g

km (∂igjm + ∂jgim − ∂mgij) .

Now we are ready to prove the next proposition.
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Proposition 2.1.4. Let (X, g) be a semi-Riemannian manifold with Levi-Civita connection ∇.
Then ∇ : T pq (X)→ T pq+1 (X) can be extended uniquely to a continuous operator ∇ : D′

(
X,T pqX

)
→

D′
(
X,T pq+1X

)
and one has

(2.1.6) 〈∇T, φ〉 = −
〈
T,Cq+1

p+1 (∇φ)
〉

forT ∈ D′
(
X,T pqX

)
, φ ∈ D

(
X,T q+1

p X
)
.

Proof. First let U be a chart domain and T ∈ Γ
(
U, T pq U

)
, φ ∈ D(U, T q+1

p U) with components
T
i1...ip
j1...jq

and φk1...kq+1
l1...lp

, respectively. Then, using (2.1.3) and (2.1.4),

〈∇T, φ〉 =
ˆ
U

tr (∇T ⊗ φ) Ω̂g =
ˆ
Rn

√
|det g|φj1...jqr

i1...ip
∂r

(
T
i1...ip
j1...jq

)
dnx+

+
ˆ
Rn
φ
j1...jqr
i1...ip

(
Γi1rkT

k...ip
j1...jq

+ · · ·+ ΓiprkT
i1...k
j1...jq

− Γkrj1
T
i1...ip
k...jq

− · · · − ΓkrjqT
i1...ip
j1...k

)√
|det g|dnx =

= −
ˆ
Rn

√
|det g|∂r

(
φ
j1...jqr
i1...ip

)
T
i1...ip
j1...jq

dnx−
ˆ
Rn
∂r

(√
|det g|

)
φ
j1...jqr
i1...ip

T
i1...ip
j1...jq

dnx+

+
ˆ
Rn
T
i1...ip
j1...jq

(
Γkri1φ

j1...jqr
k...ip

+ · · ·+ Γkripφ
j1...jqr
i1...k

− Γj1
rkφ

k...jqr
i1...ip

− · · · − Γjqrkφ
j1...kr
i1...ip

)√
|det g|dnx.

To simplify the second integral, we note that 1√
|det g|

∂r
√
|det g| = Γjjr (see Lemma 2.1.5 below).

Collecting everything, one finally obtains

〈∇T, φ〉 = −
ˆ
Rn

√
|det g|T i1...ipj1...jq

(
∂r

(
φ
j1...jqr
i1...ip

)
+ Γjjrφ

j1...jqr
i1...ip

)
dnx+

+
ˆ
Rn

√
|det g|T i1...ipj1...jq

(
Γkri1φ

j1...jqr
k...ip

+ · · ·+ Γkripφ
j1...jqr
i1...k

− Γj1
rkφ

k...jqr
i1...ip

− · · · − Γjqrkφ
j1...kr
i1...ip

)
dnx =

= −
ˆ
Rn

√
|det g|T i1...ipj1...jq

Cq+1
p+1

(
∂ip+1

(
φ
j1...jqjq+1
i1...ip

)
− Γkip+1i1φ

j1...jqjq+1
k...ip

· · · − Γkip+1ipφ
j1...jqjq+1
i1...k

)
+

+
√
|det g|T i1...ipj1...jq

Cq+1
p+1

(
Γjq+1
ip+1k

φ
j1...jqk
i1...ip

+ Γj1
ip+1k

φ
k...jqjq+1
i1...ip

+ · · ·+ Γjqip+1k
φ
j1...kjq+1
i1...ip

)
dnx =

= −
ˆ
U

tr
(
T ⊗ Cq+1

p+1 (∇φ)
)

Ω̂g = −
〈
T,Cq+1

p+1 (∇φ)
〉
.

That this formula also holds true for T ∈ Γ(X,T pqX) follows by using a partition of unity and
writing φ =

∑
j χjφ.

This shows that ∇ : Γ
(
X,T pqX

)
→ Γ

(
X,T pq+1X

)
is continuous (with respect to the topology on

D′
(
X,T pqX

)
), thus existence and uniqueness follows from density of Γ

(
X,T pqX

)
in D′

(
X,T pqX

)
and the extension is given by (2.1.6). �

Lemma 2.1.5. Let (X, g) be a semi-Riemannian manifold. Then

Γjjr = 1√
|det g|

∂r
√
|det g|.

Proof. First we use (2.1.5) to calculate

Γjjr = 1
2g

ij (∂rgij + ∂igjr − ∂jgri) = 1
2g

ij∂rgij = 1
2tr
(
g−1∂rg

)
.

Now, using Jacobi’s formula d
dt detA(t) = tr (adj (A(t))A′(t)) = detA(t) tr

(
A(t)−1A′(t)

)
, one

obtains
1√
|det g|

∂r
√
|det g| = 1

2
1

|det g|∂r |det g| = 1
2

1
det g ∂r det g = Γjjr. �

Corollary 2.1.6. For v ∈ X (X) the unique continuous extension of the map ∇v to D′
(
X,T pqX

)
satisfies

〈∇vT, φ〉 = −
〈
T,Cq+1

p+1∇ (φ⊗ v)
〉

forT ∈ D′
(
X,T pqX

)
, φ ∈ D

(
X,T qpX

)
.
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Proof. For T ∈ T qp (X) we have

〈∇vT, φ〉 =
ˆ
X

tr (∇vT ⊗ φ) Ω̂g =
ˆ
X

tr (∇T ⊗ (φ⊗ v)) Ω̂g = 〈∇T, φ⊗ v〉 .

Now the claim follows immediately from Proposition 2.1.4. �

For T ∈ D′ (U) one can also obtain an analogous formula for the kth-partial derivatives.

Proposition 2.1.7. If U ⊂ X is a chart domain and T ∈ D′ (U), we have〈
∂kj T, φ

〉
= (−1)k

〈
T,

1√
|det g|

∂kj

(
φ
√
|det g|

)〉
, ∀φ ∈ D (U) .

Proof. For T ∈ C∞ (U) we have〈
∂kj T, φ

〉
=
ˆ
Rn
∂kj T φ

√
|det g|dnx = (−1)k

ˆ
Rn
T ∂kj

(
φ
√
|det g|

)
dnx =

= (−1)k
〈
T,

1√
|det g|

∂kj

(
φ
√
|det g|

)〉
.

�

2.1.3. Pullbacks. For semi-Riemannian manifolds X one can define the pullback h∗T ∈
D′ (X) of a distribution T ∈ D′ (Ω) by a submersion h : X → Ω ⊂ Rm completely analogous to
the case of distributions on open subsets of Rn (see [FJ98], Thm. 7.2.2):

〈h∗T, φ〉 := 〈T, φh〉 ∀φ ∈ D (X) ,

with
φh
(
t1, . . . , tm

)
:= ∂m

∂t1 . . . ∂tm

ˆ
{x∈X:hi(x)<ti}

φ(x)Ω̂g ∈ D (Ω) .

We may also use the familiar notation T ◦ h for h∗T , which is justified by the Lemma below.

Lemma 2.1.8. The map h∗ : D′ (Ω)→ D′ (X) is the continuous extension of the pullback of smooth
functions.

Proof. By [FJ98], Thm. 7.2.2 this is true if X is an open subset of Rn. Let (ψ,U) be a chart
in X, φ ∈ D (U) and set Φ := φ ◦ ψ−1 ∈ D (ψ(U)), h := h ◦ ψ−1 : ψ (U) → Ω. Then h is again a
submersion and for T ∈ D (Ω) we have

〈T ◦ h, φ〉 =
ˆ
ψ(U)

√
|det gij |Φ(x)T ◦ h(x)dx =

〈
T ◦ h,

√
|det gij |Φ

〉
Rn

=

=
〈
T,

(√
|det gij |Φ

)
h

〉
Rm

= 〈T, φh〉

because(√
|det gij |Φ

)
h◦ψ−1

(t) = ∂m

∂t1 . . . ∂tm

ˆ
{x∈ψ−1(U):hi(ψ−1(x))<ti}

√
|det gij |Φ(x)dx =

= ∂m

∂t1 . . . ∂tm

ˆ
{y∈U :hi(y)<ti}

φ(y)Ω̂g = φh(t).

This shows that T ◦ h = h∗T in D′ (U) for all chart domains U ⊂ X and thus T ◦ h = h∗T for all
T ∈ D (Ω) and hence for all T ∈ D′ (Ω) by continuity. �
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Note that Lemma 2.1.8 implies that the usual rules of computation remain valid. In particular,
the chain rule holds, i.e.,

∂j (h∗T ) =
m∑
k=1

h∗ (∂kT ) ∂jhk.(2.1.7)

2.2. Single-layer distributions

Definition 2.2.1 (Single-layer distribution). Let M be a closed semi-Riemannian submanifold of
a semi-Riemannian manifold X and T ∈ D′ (M). The single-layer distribution SM (T ) ∈ D′(X) on
M with density T is defined by

〈SM (T ) , φ〉 := 〈T, φ|M 〉 , φ ∈ D (X) .

Remark 2.2.2. The above indeed defines a distribution on X: First, M being closed gives φ|M ∈
D (M) for all φ ∈ D (X), so 〈SM (T ) , φ〉 ∈ R is well-defined. Second, convergence of φα → φ in
D (X) clearly implies φα|M → φ|M in D (M), so SM (T ) is continuous.

The concept of single-layer distributions may be used to give an alternative formula for the pullback
of the Dirac delta distribution on Rm by a smooth submersion h : X → Rm (see [Sta11]):

Theorem 2.2.3. Let X be a semi-Riemannian manifold and h : X → Rm a submersion such that
M := h−1 (0) is a (n−m dimensional) semi-Riemannian submanifold of X. Then

δRm ◦ h = SM

(√
m!
∥∥dh1 ∧ · · · ∧ dhm

∥∥−1
)
.

Proof. By definition of the pullback of a distribution by a submersion

〈δRm ◦ h, φ〉 = 〈δRn , φh〉 = φh(0) =
(

∂m

∂t1 . . . ∂tm

ˆ
{hi(x)<ti}

φ(x)Ω̂g

)∣∣∣∣∣
t=0

.

Now let y ∈ X and choose a neighborhood U of y and a smooth map ψ′ =
(
xm+1, . . . , xn

)
:

U → Rm−n such that ψ :=
(
h1, . . . , hm, ψ′

)
= (x1, . . . , xn) is a chart on U (this is always possible

because h is a submersion). In this chart we have for φ ∈ D (U)

(2.2.1) φh(0) =
(

∂m

∂t1 . . . ∂tm

ˆ
ψ(U)∩{x:xi<ti}

(
φ ◦ ψ−1) (x)

√
|det gij |dx

)∣∣∣∣∣
t=0

=

=
ˆ
{x′:(0,x′)∈ψ(U)}

(
φ ◦ ψ−1) (0, ξ′)

√
|det gij (0, x′)|dx′.

Next, we evaluate 〈SM (f) , φ〉 =
´
M
f φ|M Ω̂g̃ for f ∈ C∞(M ∩ U), where g̃ denotes the induced

metric on M . Clearly, using the chart ψ′ on U ∩M , we have g̃ =
∑n
i,j=m+1 gij |M∩U dxi ⊗ dxj ,

thus for f ∈ C∞ (M ∩ U)

(2.2.2) 〈SM (f) , φ〉 =
ˆ
M∩U

φ|M f Ω̂g̃ =
ˆ
ψ′(M∩U)

f (x′) φ (0, x′)
√
|det ((gij)i,j>m) (0, x′)|dx′.

Finally, on U , we have

(2.2.3)∥∥dh1 ∧ · · · ∧ dhm
∥∥2 =

∥∥dx1 ∧ · · · ∧ dxm
∥∥2 =

∣∣∣(g−1)⊗m (dx1 ∧ · · · ∧ dxm, dx1 ∧ · · · ∧ dxm
)∣∣∣2 =

=

∣∣∣∣∣∣
∑

π,σ∈Sm

sgnπ sgnσ
m∏
j=1

g−1
(
dxπ(j), dxσ(j)

)∣∣∣∣∣∣ = m!
∣∣det(gij)1≤i,j≤m

∣∣ .
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Showing that

(2.2.4) |det ((gij)m<i,j≤n)| =
∣∣det

(
(gij)1≤i,j≤m

)∣∣ ∣∣∣det (gij)1≤i,j≤n

∣∣∣
finishes the proof: Note that this equality implies in particular

∣∣det
(
(gij)1≤i,j≤m

)∣∣ 6= 0 on U be-
cause both det gij and det ((gij)i,j>m) = det g̃ij are non-zero (M andX are both semi-Riemannian),
thus

∥∥dh1 ∧ · · · ∧ dhm
∥∥−1 ∈ C∞ (U). The claim now follows directly from setting

f =
√
m!
∥∥dh1 ∧ · · · ∧ dhm

∥∥−1
∣∣∣
Uy∩M

in (2.2.2), using (2.2.3) and (2.2.4) and comparing the result to (2.2.1).

Equation (2.2.4) holds true for every invertible n × n matrix, a proof can be found in [Sta11],
appendix A.

�

2.3. Multilayer distributions

In the previous chapter we dealt with the concept of single-layer distributions SM (T ) ∈ D′ (X)
for T ∈ D′ (M) on closed semi-Riemannian submanifolds M ⊂ X of arbitrary dimension. To
define multilayer distributions L(k)

M (T ) ∈ D′(X), however, our closed submanifold M has to be a
hypersurface that admits a normal unit vector field1 n ∈ Γ (M, TX|M ), as one sets

(2.3.1)
〈
L

(k)
M (T ), φ

〉
:= (−1)k

〈
T,
(
∇knφ

)
|M
〉
, φ ∈ D (X) .

Note that for v ∈ X(X) the expression ∇vφ(p) only depends on v(p) and thus
(
∇knφ

)
(p) is well-

defined for p ∈ M by taking any extension of n to some open neighborhood of p (a concrete
extension of n will be given in Remark 2.3.7). Also, these multilayers are a generalization of the
single-layer distributions defined before since L(0)

M (T ) = SM (T ). The aim of this section is to
establish formulas for the covariant derivatives of these multilayers, closely following the paper
[Wag10] by P. Wagner.

Remark 2.3.1. The existence of a normal unit vector field to a semi-Riemannian hypersurface is
equivalent to the orientability of the normal bundle since this gives by definition a smooth map
that assigns to each p ∈ M an orientation of {p} × TpM⊥ (see [O’N83], p. 198), i.e., a nonzero
vector in TpM

⊥ which we may normalize to have unit length. If X is orientable this is also
equivalent to orientability of the hypersurface M ⊂ X itself (see [O’N83], p. 189). However, if X
is not orientable this is not sufficient: As an example we may look at the Möbius strip for X and
S1 ⊂ X, where clearly S1 itself is orientable but does not admit a unit normal vector field when
viewed as a hypersurface in the Möbius strip.

Example 2.3.2. Let X = Rn with the standard metric, M = {0}×Rn−1 ∼= Rn−1 and T ∈ D′ (M).
To calculate L(k)

M (T ) let φ = φ1 ⊗ φ̃ ∈ D (X), then

(−1)k
〈
L

(k)
M (T ), φ

〉
=
〈
T,
(
∇knφ

)
|M
〉

=
〈
T,
(
φ

(k)
1 ⊗ φ̃

)
|M
〉

= φ
(k)
1 (0)

〈
T, φ̃

〉
=

= (−1)k
〈
δ(k) ⊗ T, φ

〉
.

By density of D (R)⊗D
(
Rn−1) in D (Rn) we conclude

L
(k)
M (T ) = δ(k) ⊗ T.

Of course it is also possible to define multilayer tensor-distributions.

1A vector field n ∈ Γ
(
M, TX|M

)
is called unit normal vector field for M if n(p) ∈ TpM⊥ for all p ∈ M and

g(n,n) = 1.
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Definition 2.3.3. Let T ∈ D′
(
M, T pqX

∣∣
M

)
. Then〈

L(k)
M (T), φ

〉
:= (−1)k

〈
T,
(
∇knφ

)∣∣
M

〉
, φ ∈ D

(
X,T qpX

)
defines the multilayer (tensor-)distribution of order k with density T as an element of D′

(
X,T pqX

)
.

2.3.1. Introduction of ’canonical’ coordinates. To simplify further calculations involving
multilayer distributions we first introduce special coordinates ψ =

(
x1, . . . , xn

)
around each p ∈

M ⊂ X with the following properties:

(1) The map ψ′ =
(
x2, . . . , xn

)
is a chart around p in M ,

(2) the first coordinate measures the arc length of geodesics orthogonal toM (i.e. x1 (c(t)) =
t |c′ (0)| for all geodesics c with c′ (0) ∈ TM⊥ and g (c′(0),n) ≥ 0)

(3) and n = ∂
∂x1 holds.

To this end, we use the normal exponential map

exp⊥ : NM =
⊔
p∈M

TpM
⊥ → X,

ν 7→ cν (1) .

Similarly to the exponential map itself, exp⊥ is smooth (where it is defined) and the following
holds (proofs can be found in e.g. [O’N83], p.199):

Lemma 2.3.4. Let M ⊂ X be a semi-Riemannian submanifold and p ∈ M . Then there exists a
neighborhood Up ⊂ X of p in X and a neighborhood Ũ of 0p ∈ NM , such that exp⊥ : Ũ → Up is a
diffeomorphism.

Theorem 2.3.5. Let M ⊂ X be a semi-Riemannian submanifold. Then M has a normal neigh-
borhood in X, i.e., a neighborhood that is the diffeomorphic image under exp⊥ of a neighborhood
of {0p| p ∈M} ⊂ NM .

Now, for q ∈ Up as in Lemma 2.3.4 we may set

x1(q) := g
((

exp⊥
)−1 (q),n

)
and, for any fixed chart φ on Up ∩M (w.l.o.g. Up ∩M is a chart domain of M),

ψ′(q) :=
(
φ ◦ π ◦

(
exp⊥

)−1) (q).

Theorem 2.3.6. The map ψ : Up → Rn, q 7→ ψ(q) :=
(
x1(q), ψ′(q)

)
with x1, ψ′ as above is smooth

and has the properties (1) to (3). Furthermore we may shrink Up such that the image of ψ is a
rectangle, i.e., such that ψ(Up) = U × V for some U ⊂ R with 0 ∈ U and V ⊂ Rn−1.

Proof. Clearly, the components of ψ are compositions of smooth maps, thus ψ is itself C∞.
It is easily checked that the inverse of ψ is given by

(
x1, x2, . . . , xn

)
7→ exp⊥

(
x1nφ−1(x2,...,xn)

)
,

which is smooth, making ψ a diffeomorphism. For q ∈ Up ∩M , we have exp⊥ (0q) = q and thus,
taking into account Lemma 2.3.4, ψ′(q) = φ (π (0q)) = φ(q), so ψ′|Up∩M is a chart in M . To show
(2), let ν = |ν|n ∈ TM⊥ and t ∈ R such that cν(t) ∈ Up, then

x1 (cν(t)) = x1 (ctν(1)) = g (tν,n) = t |ν| .

Now let q ∈M ∩ Up. Then, from ψ
(
cnq (t)

)
= (t, φ (q)) one obtains

∂

∂x1

∣∣∣∣
q

= (Tqψ)−1 (e1) = T(0,φ(q))ψ
−1 (e1) = d

dt

∣∣∣∣
0
ψ−1 (t, φ(q)) = d

dt

∣∣∣∣
0
cnq (t) = nq,

and so ∂
∂x1

∣∣
M

= n. �
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Remark 2.3.7. This also shows that for any p ∈M the vector field q 7→ ∂
∂x1

∣∣
q
provides a smooth

extension of n to an open neighborhood Up of p in X. Extending n in this way, one gets n ∈ X (Up).
In fact, this even gives n ∈ X (U) for some open U ⊃M : For two charts (Up, ψ) and

(
Up̃, ψ̃

)
such

that Up and Up̃ are contained in a normal neighborhood of M (in the sense of Thm. 2.3.5) one has(
ψ ◦ ψ̃−1) (x1, . . . , xn

)
= ψ

(
exp⊥

(
x1nφ̃−1(x2,...,xn)

))
=
(
x1,
(
φ ◦ φ̃−1) (x2, . . . , xn)

)
for all

(
x1, . . . , xn

)
∈ ψ̃(Up ∩ Up̃). This implies

e1 = D
(
ψ ◦ ψ̃−1) (ψ̃(q)

)
(e1) = Tqψ

(
Tqψ̃

)−1 (e1)

for all q ∈ Up ∩ Up̃ which proves that ∂
∂x1

∣∣
q

= ∂
∂x̃1

∣∣
q
.

Furthermore since ψ(p) = (0, φ(p)) there exist U ⊂ R with 0 ∈ U and V ⊂ Rn−1 with φ(p) ∈ V
such that U × V ⊂ ψ(Up). Now replacing Up with ψ−1 (U × V ) shows the last claim.

The next proposition shows another nice property of these new coordinates.

Proposition 2.3.8. Let p ∈M and (Up, ψ) be canonical coordinates around p. Then

(2.3.2) g1j = δ1j and g1j = δ1j on Up.

Proof. Clearly (2.3.2) holds on M since ∂1 = n ⊥ ∂k ∈ TM for all k 6= 1. Now letting
q ∈ Up ∩M , we will show that the g1j are constant along the geodesic cnq . First note that

g11(cnq (t)) = g
(
∂1|cnq (t) , ∂1|cnq (t)

)
= g

(
c′nq (t), c

′
nq (t)

)
= g(nq,nq) = 1,

so g11 is indeed constant along cnq . As seen in the proof of Theorem 2.3.6 one has ψ
(
cnq (t)

)
=

(t, φ (q)). Because this is a geodesic we have

(2.3.3) 0 = ψ̈i + Γi11ψ̇
1ψ̇1 = 0 + Γi11 = gim∂1gm1

since by equation (2.1.5)

Γi11 = 1
2 g

im (∂1g1m + ∂1g1m − ∂mg11) = gim∂1gm1

and g11 is constant along cnq . Now multiplying (2.3.3) from the left with gki and summing over i
implies ∂1gk1 = 0, so gk1 is constant along cnq for all k.

Finally, let q ∈ Up be arbitrary, set t := x1 (q) and choose q̃ ∈ Up ∩M such that ψ(q̃) = (0, ψ′ (q))
(note that (0, ψ′(q)) is in the image of ψ since the image is a rectangle), then q = cnq̃ (t) because
ψ
(
cnq̃ (t)

)
=
(
t, ψ′

(
ctnq̃ (1)

))
=
(
x1 (q) , ψ′ (q)

)
since

ψ′
(
cnq̃ (t)

)
=
(
φ ◦ π ◦

(
exp⊥

)−1) (ctnq̃ (1)) = φ ◦ π(tnq̃) = φ (q̃) = ψ′ (q̃) = ψ′ (q)

by the definition of q̃. This finishes the proof of the first equation in (2.3.2). The second one
follows immediately from the first by noting that

δ1j = g1mg
mj = δ1mg

mj = g1j . �

Finally, we will give a nice example showing the usefulness of both multilayer distributions and
canonical coordinates.

Example 2.3.9 (A jump formula). Let us assume that the hypersurface M is given as the zero
set of a smooth submersion h : X → R. We want to derive a formula for the exterior derivative
of a smooth function on X \M with a jump discontinuity along M , that is we want to calculate
d (f ·H ◦ h) where H : R→ R denotes the Heaviside function and f ∈ C∞ (X). On X \M one has
obviously d (f ·H ◦ h)|X\M = (df ·H ◦ h)|X\M .
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Now let U be a neighborhood around some p ∈ M and ψ canonical coordinates on U such that
h ◦ ψ−1 w.l.o.g. maps

(
R+ × Rn−1) ∩ ψ (U) onto R+ (otherwise replace n by −n, i.e., change

the orientation of the normal bundle) and φ ∈ D (U, TU), then (using that div(φ) ◦ ψ−1 =
1√
|det gij |

∂k(φk
√
|det gij |) locally) one obtains by Prop. 2.1.4:

〈d (f ·H ◦ h) , φ〉 = −
〈
f ·H ◦ h,C1

1∇φ
〉

= −
ˆ
ψ(U)

(div(φ) f (H ◦ h)) ◦ ψ−1
√
|det gij |dnx =

= −
ˆ
x1≥0

f ◦ ψ−1 ∂k

(
φk
√
|det gij |

)
dnx =

ˆ
Rn−1

(
f ◦ ψ−1 φ1

√
|det gij |

)∣∣∣∣
x1=0

dn−1x+

+
ˆ
x1≥0

∂k(f ◦ ψ−1)φk
√
|det gij |dnx = 〈SM (f |M η) , φ〉+ 〈df H ◦ h, φ〉 ,

where η ∈ Γ (M, T ∗X|M ) denotes the canonical normal one-form given by η (n) = 1 and η (v) = 0
for v ∈ Γ (M,TM) and the last equality follows from Prop. 2.3.8. Noting that SM (f |M η)|

X\M =
0 shows

(2.3.4) d (f ·H ◦ h) = SM (f |M η) +H ◦ h · df.

2.3.2. Relations between the multilayers L(k)
M (1) and the pullbacks δ(k)◦x1. Now, us-

ing coordinates as described above, we want to derive relations between the multilayer distributions
L(k)

M (1) and the pullbacks δ(k) ◦ x1, generalizing Theorem 2.2.3.

Definition 2.3.10. Let U be an open neighborhood ofM such that n ∈ X (U) (see Remark 2.3.7).
The tensor field W := ∇n ∈ T 1

1 (U) is called the Weingarten map. Its trace shall be denoted by
χ := trW ∈ C∞ (U).

Choosing an open set V such that M ⊂ V ⊂ V ⊂ U (such a V exists because X is metrizable and
thus normal) and a partition of unity subordinate to

{
U,X \ V

}
one may extend χ|V to a smooth

function χ̃ on all of X. This extension can be used to define the product χT for T ∈ D′
(
X,T pqX

)
with suppT ⊂M by 〈χT, φ〉 := 〈χ̃T, φ〉 = 〈T, χ̃φ〉 which is independent of both the choice of V and
the extension χ̃ since 〈T, φ〉 only depends on the values of φ in a neighborhood of suppT . Similarly
one can also define ∇nT := ∇ñT where ñ ∈ X (X) and ñ|V = n|V for some open neighborhood V
of M .

These definitions together with the observation that supp L(k)
M (T) ⊂ M (since for any φ ∈

D (X \M) one has
〈

L(k)
M (T), φ

〉
=
〈
T, ∇knφ

∣∣
M

〉
= 〈T, 0〉 = 0) enable us to state (and prove)

the following theorem.

Theorem 2.3.11. Let (X, g) be a semi-Riemannian manifold and M ⊂ X a semi-Riemannian
hypersurface that admits a normal vector field. Let (U,ψ) be an open neighborhood in X with
canonical coordinates ψ =

(
x1, . . . , xn

)
and set χk := (χ+∇n)k 1. Then the following formulas

hold

∀T ∈ D′
(
M, T pqX

∣∣
M

)
: L(k+1)

M (T) = (∇n + χ) L(k)
M (T)(2.3.5)

L(k)
M (1) = (∂1 + χ)k

(
δ ◦ x1) =

k∑
j=0

(
k

j

)
χk−j

(
δ(j) ◦ x1

)
inD′ (U)(2.3.6)

δ(k) ◦ x1 =
k∑
j=0

(
k

j

)
(−1)k−j L(j)

M

(
χk−j |M

)
inD′ (U) .(2.3.7)
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Proof. To show equation (1.1.3), let φ ∈ D
(
X,T qpX

)
and note that by Corollary 2.1.6〈

∇ñL(k)
M (T), φ

〉
= −

〈
L(k)

M (T), Cq+1
p+1∇ (φ⊗ ñ)

〉
= −

〈
L(k)

M (T), Cq+1
p+1 (φ⊗∇ñ +∇φ⊗ ñ)

〉
=

= −
〈

L(k)
M (T), φ tr∇ñ

〉
−
〈

L(k)
M (T),∇ñφ

〉
= −

〈
χ̃L(k)

M (T), φ
〉

+
〈

L(k+1)
M (T), φ

〉
.

Since ∇nφ = n (φ) = ∂1φ for all φ ∈ D(U) and thus by density for all φ ∈ D′ (U), the first equality
in (2.3.6) now follows directly from Theorem 2.2.3 (with h = x1, ‖dh‖2 = g11 = 1) and (1.1.3):

L(k)
M (1) = (∂1 + χ)k SM (1) = (∂1 + χ)k

(
δ ◦ x1) .

The second equality is shown by induction. Using the chain rule (2.1.7) we have

L(k+1)
M (1) = (∂1 + χ) L(k)

M (1) = (∂1 + χ)
k∑
j=0

(
k

j

)
χk−j

(
δ(j) ◦ x1

)
=

=
k∑
j=0

(
k

j

)
χk+1−j

(
δ(j) ◦ x1

)
+

k∑
j=0

(
k

j

)
χk−j ∂1

(
δ(j) ◦ x1

)
= χk+1

(
δ ◦ x1)+

(
δ(k+1) ◦ x1

)
+

+
k∑
j=1

((
k

j

)
+
(

k

j − 1

))
χk+1−j

(
δ(j) ◦ x1

)
=
k+1∑
j=0

(
k + 1
j

)
χk+1−j

(
δ(j) ◦ x1

)
.

Now let φ ∈ D (U). Then by Corollary 2.1.7〈
δ(k) ◦ x1, φ

〉
=
〈
∂k1
(
δ ◦ x1) , φ〉 = (−1)k

〈
SM (1) , 1√

|det g|
∂k1

(
φ
√
|det g|

)〉
=

= (−1)k
k∑
j=0

(
k

j

)〈
1,
(
∂j1φχk−j

)∣∣∣
M

〉
=
〈

k∑
j=0

(
k

j

)
(−1)k−j L(j)

M

(
χk−j |M

)
, φ

〉
,

where we have used ∂j1
√
|det g| = χj

√
|det g|, which follows immediately from Lemma 2.1.5:

1√
|det g|

∂1
√
|det g| = Γll1 = tr∇∂1 = χ

by induction. �

2.3.3. Normal derivatives and multiplication with smooth functions. It follows from
equation (2.3.5) that∇nL(k)

M (T) = L
(k+1)
M (T ) − χL(k)

M (T), so if we want to better understand the
normal derivatives of multilayers we should study products of the form ψ ·L(k)

M (T) for ψ ∈ C∞ (X)
and T ∈ D′ (M). Considering the simple example X = R and M = {0} it is immediately obvious
that ψ · L(k)

M (T) 6= L(k)
M (ψ|M T) for k ≥ 1 as

ψ · L(1)
M (1) = ψ · δ′ = ψ(0)δ′ − ψ′ (0) δ = L

(1)
M (ψ(0))− SM (ψ′(0)) 6= L

(1)
M (ψ(0)) .

The next theorem is going to show that such a product can always be expressed as a sum of
multilayers.

Theorem 2.3.12. Let ψ ∈ C∞ (X) and T ∈ D′ (M). Then

(2.3.8) ψ · L(k)
M (T) =

k∑
j=0

(−1)j
(
k

j

)
L

(k−j)
M

(
∇jnψ

∣∣
M
T
)
.

Proof. Let φ ∈ D (X), then
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〈
ψ · L(k)

M (T), φ
〉

=
〈

L(k)
M (T), ψφ

〉
= (−1)k

〈
T, ∇kn (ψφ)

∣∣
M

〉
=

=
〈
T,

k∑
j=0

(
k

j

)
(−1)j ∇jnψ

∣∣
M

(−1)k−j ∇k−jn φ
∣∣
M

〉
=

=
k∑
j=0

(−1)j
(
k

j

)〈
∇jnψ

∣∣
M
T, (−1)k−j ∇k−jn φ

∣∣
M

〉
=

k∑
j=0

(−1)j
(
k

j

)〈
L

(k−j)
M

(
∇jnψ

∣∣
M
T
)
, φ
〉
.

Using this together with equation (2.3.5) we obtain the following formula for the normal derivative
of L(k)

M (T):

(2.3.9) ∇nL(k)
M (T) = L

(k+1)
M (T )− χL(k)

M (T) = L
(k+1)
M (T )− χ̃L(k)

M (T) =

= L
(k+1)
M (T )−

k∑
j=0

(−1)j
(
k

j

)
L

(k−j)
M

(
∇jnχ̃

∣∣
M
T
)

= L
(k+1)
M (T )−

k∑
j=0

(−1)j
(
k

j

)
L

(k−j)
M

(
∇jnχ

∣∣
M
T
)
.

�

It is possible to derive somewhat similar expressions for the covariant derivative ∇L(k)
M (T), the

calculations for this can be found in [Wag10]. We will, however, stop here and instead turn our
attention to the relationship between multilayers and distributions supported in hypersurfaces.

2.4. Multilayers and distributions supported in a hypersurface

It is clear from the definition that supp L(k)
M (T) ⊂M for all T ∈ D′ (M). Our goal in this section

is going to be to prove that every T ∈ D′ (X) with suppT ⊂ M can be written as a sum of
multilayers. To do this we will make use of an analogous result for distributions on Rn which is in
some sense a generalization of the well-known fact that every distribution with support in a single
point can be written as a sum of derivatives of delta distributions.

Theorem 2.4.1. Let T ∈ D′ (Rn) with suppT ⊂ {0} × Rk. Then there exist distributions Tq ∈
D′
(
Rk
)
such that

T =
∑

q∈Nn−k0

∂q1
1 . . . ∂

qn−k
n−k Tq,

where
〈
T q, φ

(
x1, x2, . . . , xn

)〉
:=
〈
Tq, φ

(
0, . . . , 0, xn−k+1, . . . , xn

)〉
is called the extension of Tq to

Rn and the sum is locally finite. Furthermore the supports of the Tq are contained in the support
of T , they depend continuously on T and are unique.

A proof of this can be found in [Sch66], Thm. XXVI. Now we will use Proposition 1.2.3 to prove
a version of Thm. 2.4.1 concerning distributions on semi-Riemannian manifolds with support in a
hypersurface.

Theorem 2.4.2. Every distribution T ∈ D′ (X) with support contained in a closed, semi-Riemannian
hypersurface M ⊂ X with unit vector field n admits a unique decomposition as a locally finite sum
of normal derivatives of extensions to X of distributions defined on M :

(2.4.1) T =
∞∑
k=0
∇knT k; Tk ∈ D′ (M) ,

where T k is defined locally via
(
T k
)α := (Tk)α where the index α is used to denote the local

components of a distribution with respect to a chart (Uα, ψα).
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Proof. We show this locally using Theorem 2.4.1 and Proposition 1.2.3. Covering X with
chart domains Uα such that we have canonical coordinates on Uα whenever Uα ∩ M 6= ∅ and
choosing a partition of unity χα subordinate to these chart domains we see that T is equal to
the (locally finite) sum of the χαT ∈ E ′ (Uα) thus it suffices to show (2.4.1) for T ∈ E ′ (Uα) with
suppT ⊂ M ∩ Uα. If Uα ∩M = ∅ this is trivial since T = 0. If Uα ∩M 6= ∅, there exist Tαk ∈
E ′
(
ψα (Uα) ∩

(
{0} × Rn−1)) such that Tα =

∑
k ∂

k
1T

α
k . Defining Tk ∈ E ′ (M) to be the unique

distribution satisfying 〈Tk, φ〉 =
〈
Tαk , φ ◦ ψ−1

α

〉
for φ ∈ D (Uα ∩M) and Tk|M\ψ−1

α (suppTα
k ) = 0

(this is indeed well-defined because φ ◦ ψ−1
α ∈ D

(
ψα (Uα) ∩

(
{0} × Rn−1) \ suppTαk

)
for φ ∈

D
(
(M ∩ Uα) \ ψ−1

α (suppTαk )
)
) we obtain(∑

k

∇knT k

)α
=
∑
k

(
∇knT k

)α =
∑
k

∂k1
(
T k
)α =

∑
k

∂k1T
α
k = Tα

and thus T =
∑
k∇knT k. �

This is not yet exactly what we want to show since in general L(k)
M (T) 6= ∇knT . First we note

that the extension T of T ∈ D′ (M) itself coincides with SM (T ) since we have locally (in normal
coordinates (ψα, Uα)) that

〈
T
α
, φ
(
x1, x2, . . . , xn

)〉
=
〈
Tα, φ

(
0, x2, . . . , xn

)〉
=
〈
Tα, φ|ψα(M∩U)

〉
= 〈SM (T )α , φ〉

for all φ ∈ D (ψα(Uα)). However, the higher derivatives ∇knT = ∇knSM (T ) do no longer coincide
with the multilayers L(k)

M (T) as is obvious from the formulas in the previous chapters. But, using
(2.3.9), one has

∇knSM (T ) = ∇k−1
n

(
L

(1)
M (T )− SM (χ|M T )

)
=

= ∇k−2
n

(
L

(2)
M (T )− 2L(1)

M (χ|M T ) + SM
((
∇nχ+ χ2)∣∣

M
T
))

= ... = L(k)
M (T) +

k−1∑
j=0

L
(j)
M

(
T(j)

)
where the T(j) are distributions on M given by the product of T with some linear combination of
products of χ and its normal derivatives up to order k−1. This now shows that every decomposition
of the form (2.4.1) gives rise to a decomposition T =

∑∞
k=0 L(k)

M (Tk), albeit with different (but
still unique) Tk. Thus we have shown the following:

Corollary 2.4.3. Every T ∈ D′ (X) with suppT ⊂M can uniquely be written as a locally finite
sum of multilayers, i.e.

(2.4.2) T =
∞∑
k=0

L(k)
M (Tk)

with Tk ∈ D′ (M) for all k.



CHAPTER 3

Distributional geometry

In the previous part we studied singular objects and their interaction with the (smooth) geometry
of our manifold, in particular describing the special properties of distributions supported in a
(closed, semi-Riemannian) hypersurface (with a normal unit vector field) and deriving formulas for
the covariant derivative of tensor distributions (see equation (2.1.4)) and the exterior derivative of
a smooth function suffering a jump discontinuity along a hypersurface (Example 2.3.9).

Now we want to study what happens if the geometry (i.e., the metric tensor, connection,...) of
our manifold is itself distributional. This will offer some generalizations, but also some restrictions
of the previous results - for example the concept of multilayer distributions is unavailable because
their definition relies on the trivialization of the volume bundle using the smooth metric and the
existence of a normal unit vector field.

The main goal of this part is to introduce a suitable concept of a distributional metric and derive
necessary regularity conditions for such a metric to give rise to a (distributional) Levi-Civita
connection that allows the definition of a Riemann curvature tensor distribution. Along the way
we will derive some jump formulas concerning discontinuities along a hypersurface which will in
the end allow us to deduce some regularity conditions for a vacuum spacetime, i.e., a distributional
metric satisfying Ric = 0, suffering such a jump discontinuity. We will mainly follow [LM07].

At first, however, we will briefly summarize some important results concerning local Sobolev spaces
on manifolds that will be needed later on.

3.1. Local Sobolev spaces on manifolds

The local Sobolev spaces W k,p
loc (X) (for k ∈ N, 1 ≤ p < ∞) on X are defined as the subspaces

of D′ (X) containing all distributions T ∈ D′ (X) whose local representations Tα ∈ D′ (ψα (Uα))
belong to W k,p

loc (ψα (Uα)) for an atlas {(Uα, ψα)}α, i.e., that satisfy ∂βTα ∈ Lp (Ω) for all β
with |β| ≤ k and Ω ⊂ ψα (Uα) relatively compact or equivalently φTα ∈ W k,p

loc (Rn) for all φ ∈
D (ψα (Uα)). Note that this is well-defined because for bounded open subsets U, V of Rn the
pullback φ∗f of a function f ∈ W k,p (V ) under a diffeomorphism φ : U → V is in W k,p (U) (see
[AF03], Thm. 3.41), so Tα ∈W k,p

loc (ψα (Uα ∩ Uβ)) if and only if T β ∈W k,p
loc (ψβ (Uα ∩ Uβ)).

The topology of W k,p
loc (X) can be described by the (countable) family of seminorms given by

(3.1.1) pβ,α,Ωαm (T ) :=
∥∥∂βTα∥∥

Lp(Ωαm)

where β ∈ Nn0 with |β| ≤ k, the (Uα, ψα) form a (countable) atlas for X and the Ωαm are an
exhaustion of ψα (Uα) by relatively compact sets. The topology induced by these seminorms does
not depend on the choice of the atlas. By countability of the basis of seminorms the W k,p

loc (X)
are metrizable and if X is compact, W k,p

loc (X) is normable (because there exists a finite atlas for
X), however in general there exists no canonical norm, i.e. different choices of the atlas lead to
different (but equivalent) norms.

As for distributions, many of the results concerning (local) Sobolev spaces on open subsets of Rn
carry over to the corresponding function spaces on manifolds, for instance W k,p

loc (X) is a Frechet

23
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space (in particular complete), Hk
loc (X) := W k,2

loc (X) is hilbertizable (for compact X), C∞ (X) and
D (X) are dense in W k,p

loc (X) and so on. For proofs of the first two claims see [CP82], Chapter
2, Thm 2.19. (actually they only deal with the spaces Hk

loc (X) but the proofs for general p ∈ N
are completely analogous); density of C∞ (X) follows easily from density of D (Ω) in W k,p

loc (Ω) for
Ω ⊂ Rn by approximating locally and gluing those approximations together using a partition of
unity, density of D (X) then follows by using appropriate cut-off functions over an exhaustion of
compact sets of X.

It is also worth noting thatW k,p
loc (X) ⊂W k,1

loc (X) (because Lploc (Ω) ⊂ L1
loc (Ω), which is easily seen

using Hölder’s inequality).

Another construction that will be of interest to us later are local Sobolev spaces on manifolds with
boundary and the corresponding (generalizations of the) trace theorems. As a quick reminder we
will now state the exact version of the trace theorem we want to generalize to manifolds.

Theorem 3.1.1 (Trace theorem). Let Rn+ =
{
x ∈ Rn : x1 ≥ 0

}
and k ≥ 1 then the restriction

operator

γ : C
(
Rn+
)
∩W k,p

(
Rn+
)
→ C

(
∂Rn+

)
γ (u) := u|∂u

can be extended uniquely to a bounded operator

γ : W k,p
(
Rn+
)
→W k−1,p (∂Rn+) .

Proof. This follows immediately from collecting some of the results in [AF03]. First we note
that by Theorem 5.21 there exists a bounded extension operator E : W k,p

(
Rn+
)
→ W k,p (Rn).

Next, by the Sobolev embedding theorem 4.12 there exists a trace ι : W k,p (Rn)→W k−1,q (∂Rn+)
for all∞ > q ≥ p if p ≥ n. If p < n then ι exists for p ≤ q ≤ (n−1)p

n−p since either n−p < dim ∂Rn+ =
n − 1, i.e. p > 1, or p = 1. All in all setting γ = ι ◦ E : W k,p

(
Rn+
)
→ W k−1,p (∂Rn+) proves the

theorem. �

Remark 3.1.2. Note that the trace theorem remains true for Ω = Br((0, x′)) ∩ Rn+ (r > 0 and
x′ ∈ Rn−1) instead of Rn+ and ∂Rn+ ∩Br(x′) instead of ∂Rn+ since Rn+ ∼= Ω and ∂Rn+ ∩Br((0, x′)) ∼=
∂Rn+.

In the following the letter X will be used to denote a manifold with boundary and X itself for
X \ ∂X.

Definition 3.1.3 (Local Sobolev spaces onX). A distribution T ∈ D (X) is said to be inW k,p
loc
(
X
)

if T ∈ W k,p
loc (X) and for every chart (Uα, ψα) of X at the boundary and φ ∈ D (ψα (Uα)) one has

φTα ∈W k,p
(
Rn+
)
. The topology is again given by seminorms of the form (3.1.1).

Now we want to generalize Theorem 3.1.1 as illustrated for the spaces Hk
loc
(
X
)
in [CP82], Chapter

2, Cor. 4.5.

Theorem 3.1.4 (Trace at the boundary). The operator γ : C∞
(
X
)
→ C∞ (∂X) of restriction to

∂X uniquely extends to a continuous linear operator γ from W k,p
loc
(
X
)
to W k−1,p

loc (∂X).

Proof. Let (Uα, ψα) be an atlas for X and u ∈ C∞
(
X
)
. Then there is an atlas for ∂X

consisting of charts of the form
(
Uα ∩ ∂X, ψα|Uα∩∂X

)
. W.l.o.g. ψα(Uα) = Br((0, x′)) ∩ Rn+ for

some r > 0 and x′ ∈ Rn−1. Let v = u|∂X ∈ C∞ (∂X) then

vα = v ◦
(
ψα|Uα∩∂X

)−1 = u ◦
(
ψα|Uα∩∂X

)−1 = uα|ψα(Uα∩∂X) = uα|ψα(Uα)∩∂Rn+
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and thus ‖vα‖Wk−1,p(Ωαm∩∂Rn+) ≤ ‖ũα‖Wk,p(Ωαm) for all charts ψα at the boundary for Ωαm =
Br− 1

m
((0, x′)) ∩ Rn+ by Rem. 3.1.2. This shows that γ : C∞

(
X
)
→ C∞ (∂X) is continuous as

an operator from W k,p
loc
(
X
)
to W k−1,p

loc (∂X), so it can be extended to all of W k,p
loc
(
X
)
by density

of C∞
(
X
)
(which will be shown in Prop. 3.1.5 below). �

Proposition 3.1.5. The space of smooth functions C∞
(
X
)
is dense in the local Sobolev spaces

W k,p
loc
(
X
)
.

Proof. We follow the outline given in [CP82], p. 111. First we note that every manifold X
with boundary can be embedded in the so called double of X, which is a smooth manifold without
boundary (for details see e.g. [Mun66], Def. 5.10.) and which we will denote by M .
Next we want to construct a continuous extension operator E′ : W k,p

loc
(
X
)
→W k,p

loc (M): Choosing
a partition of unity χα subordinate to an atlas (Uα, ψα) of M we may define an extension of
u ∈ W k,p

loc
(
X
)
by setting E′u|Uα = u|Uα if Uα ⊂ X, E′u|Uα = 0 if Uα ⊂ M \ X and finally if

Uα ∩ ∂X 6= ∅, we set (E′u)α = E (φuα), where φ ∈ D
(
ψα
(
Uα ∩X

))
is chosen such that φ ≡ 1 on

suppχα ∩X, φ ≡ 0 on
(
ψα
(
Uα ∩X

)
mα

)c
for a suitable mα and E is the extension operator from

the proof of Thm. 3.1.1. Clearly continuity of E implies continuity of E′ since∥∥∂βE (φuα)
∥∥
Lp(Ωαm) =

∥∥∂βE (φuα)
∥∥
Lp(Rn) ≤ C

∥∥∂β (φuα)
∥∥
Lp(Rn+) =

= C
∥∥∂β (φuα)

∥∥
Lp(Ωαm∩Rn+) ≤ Cφ

∥∥∂β (uα)
∥∥
Lp(Ωαm∩Rn+) .

Now let u ∈ W k,p
loc
(
X
)
then there exist uj ∈ C∞ (M) such that uj → Eu in W k,p

loc (M), but then
uj |X̄ ∈ C

∞ (X) and uj |X → u in W k,p
loc
(
X
)
. �

There are of course more general theorems concerning traces (e.g. using fractional Sobolev spaces,
see [AF03], Thm. 7.39) that can be generalized to manifolds in a completely analogous way to the
one shown in Theorem 3.1.4, but the theorem stated here and its generalization to (p, q)-tensor
distributions discussed below is sufficient for our purpose.

Remark 3.1.6. For u ∈ C∞
(
X
)
and v ∈ W k,p

loc
(
X
)
one has γ (uv) = u|∂X γ (v) since approxi-

mating v in W k,p
loc
(
X
)
by a sequence vn of smooth functions gives γ (uv) = limn→∞ (γ (uvn)) =

limn→∞ uvn|∂X = u|∂X γ (v) (note that uvn → uv in W k,p
loc
(
X
)
since u ∈ L∞loc

(
X
)
and thus

γ (uvn)→ uv in W k−1,p
loc (∂X)).

So far we have only looked at Sobolev functions on manifolds. Now we want to generalize our
observations to Sobolev tensor fields. Luckily this does not pose any difficulties. Using the iden-
tification D′ (X,T rsX) ∼= LC∞(X)

((
T 0

1
)r ⊗ (T 1

0
)s ;D′ (X)

)
provided in Theorem 1.2.4 we say that

T ∈ D′ (X,T rsX) is in W k,p
loc (X,T rsX) if and only if T (ω1, . . . , ωr,u1, . . . ,us) ∈ W k,p

loc (X) for all
ωi ∈ T 0

1 (X) and ui ∈ X (X). The topology is induced by the following notion of convergence: A
net Tι converges to T inW k,p

loc (X,T rsX) if Tι (ω1, . . . , ωr,u1, . . . ,us)→ T (ω1, . . . , ωr,u1, . . . ,us) in
W k,p

loc (X) for all ωi ∈ T 0
1 (X) and ui ∈ X (X). This is of course equivalent to the local description:

T ∈ D′ (X,T rsX) is inW k,p
loc (X,T rsX) if and only if all the components (Tα)i of the (vector bundle)

chart representations Tα ∈ D′
(
ψα(Uα),Rnr+s

)
are in W k,p

loc (ψα(Uα)) and of course one may also
characterize convergence locally.

Proposition 3.1.7. Let X be a manifold with boundary. Then there exists a continuous trace
operator γ : W k,p

loc
(
X,T rsX

)
→W k−1,p

loc
(
∂X, T rsX

∣∣
∂X

)
.

Proof. The goal is to use Thm. 3.1.4 to define

(3.1.2) γ (T ) (ω1, . . . , ωr,u1, . . . ,us) := γ (T (ω̃1, . . . , ω̃r, ũ1, . . . , ũs)) ∈ L1
loc (∂X)
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for ωi ∈ Γ
(
∂X, T 0

1X
∣∣
∂X

)
and ui ∈ Γ

(
∂X, T 1

0X
∣∣
∂X

)
with smooth extensions ω̃i ∈ T 0

1
(
X
)
and

ũi ∈ X
(
X
)
. First we show that there exist appropriate extensions ω̃i ∈ T 0

1
(
X
)
and ũi ∈ X

(
X
)
:

Let p ∈ ∂X. By setting f̃ = χ f ◦ ψ|−1
U∩∂X ◦ prRn−1 ◦ ψ ∈ C∞

(
X
)
for a chart (U,ψ) of X

around p (where χ is an appropriate cut-off) we see that we can locally extend smooth functions
f ∈ C∞ (∂X). Now u ∈ Γ

(
∂X, T 1

0X
∣∣
∂X

)
is locally given by u =

∑n
i=2 u

i∂i in adapted coordinates
and setting ũ =

∑n
i=2 ũ

i∂i gives the desired extension around p. Of course the same argument
works for ω ∈ Γ

(
∂X, T 0

1X
∣∣
∂X

)
.

The operator given by (3.1.2) is then obviously continuous but we have to show that it is well-
defined, i.e., independent of the choice of the extensions. W.l.o.g. let T ∈ W k,p

loc
(
X,TX

)
. By

linearity it suffices to show that γ (T (ω̃)) = 0 if ω̃|∂X = 0, which we will do locally. Choose some
chart ψ =

(
x1, . . . , xn

)
at the boundary then ω̃ = ω̃j dx

j and T (ω̃) = ω̃j T
(
dxj
)
and thus Remark

3.1.6 gives γ (T (ω̃)) = ω̃j |∂X γ
(
T
(
dxj
))

= 0. �

We are also going to need some results concerning whether the product of two functions in L∞loc (X)∩
W k,p

loc (X) is again in L∞loc (X) ∩W k,p
loc (X). For this it is obviously sufficient to look at the spaces

L∞loc (Ω) ∩W k,p
loc (Ω) (or L∞ (Ω) ∩W k,p (Ω)) for open balls Ω = Br (x) ⊂ Rn (x ∈ Rn, r > 0). We

will equip Ak,p (Ω) := L∞ (Ω) ∩W k,p (Ω) with the norm ‖f‖Ak,p := ‖f‖∞ + ‖f‖Wk,p such that
both embeddings Ak,p (Ω) ↪→ L∞ (Ω) and Ak,p (Ω) ↪→W k,p (Ω) are continuous. Then the following
holds.

Proposition 3.1.8. Let p ≥ n
k and Ω = Br (x) ⊂ Rn an open ball. Then there exists a constant

K > 0 such that
(
Ak,p (Ω) ,K ‖.‖Ak,p

)
is a Banach algebra with unit (e ≡ 1 ∈ Ak,p (Ω)) and if

either |f | ≥ c for some constant c > 0 almost everywhere then f is invertible in Ak,p (Ω).

Proof. Clearly Ak,p (Ω) is a Banach space, it remains to show the algebra property. For
p > n

k or p = 1 and n = k there exists a K > 0 such that
(
W k,p (Ω) ,K ‖.‖Wk,p

)
is a Banach

algebra (see Thm. 4.39 in [AF03], Ω satisfies the cone condition because balls satisfy the uniform
C∞-regularity condition 4.10) and thus

‖fg‖Ak,p = ‖fg‖∞ + ‖fg‖Wk,p ≤ ‖f‖∞ ‖g‖∞ +K ‖f‖Wk,p ‖g‖Wk,p ≤ (1 +K) ‖f‖Ak,p ‖g‖Ak,p
hence

(
Ak,p (Ω) , (K + 1) ‖.‖Ak,p

)
is a Banach algebra.

Now let p = n
k and p ≥ 2. First we are going to show that the Leibniz rule

(3.1.3) ∂α (fg) =
∑
β≤α

(
α

β

)
∂βf∂α−βg

remains valid for f, g ∈ Ak,p (Ω) and |α| ≤ k. Let fε be a sequence of smooth functions converging to
f in the W k,p-norm (such functions exist by density) then (3.1.3) holds for fεg. We have fεg → fg

in Lp (Ω) (since ‖fεg − fg‖p ≤ ‖g‖∞ ‖fε − f‖p) and thus in D′ (Ω) and ∂α (fεg) → ∂α (fg) in
D′ (Ω). Since Ω is bounded and p ≥ 2 there exists a continuous embedding Lp (Ω) ↪→ L2 (Ω) by
Hölder’s inequality implying

∥∥∂βfε∂α−βg∥∥1 ≤
∥∥∂βfε∥∥2

∥∥∂α−βg∥∥2 ≤ C
∥∥∂βfε∥∥p ∥∥∂α−βg∥∥p and so

∂βfε∂
α−βg → ∂βf∂α−βg in L1 (Ω) (and hence in D′ (Ω)) showing that (3.1.3) holds in D′ (Ω) for

f, g ∈ Ak,p (Ω).

This reduces our task to proving that
∥∥∂βf ∂α−βg∥∥

p
≤ K ‖f‖Ak,p ‖g‖Ak,p for all |α| ≤ k and

β ≤ α. For β = 0 we have ‖f ∂αg‖p ≤ ‖f‖∞ ‖∂αg‖ ≤ ‖f‖Ak,p ‖g‖Ak,p . The same holds for
α− β = 0 so we may assume k− 1 ≥ |β| ≥ 1 and k− 1 ≥ |α− β| ≥ 1 implying n > (k − |β|) p and
n > (k − |α− β|) p. Since

n− (k − |β|) p
n

+ n− (k − |α− β|) p
n

= |α| p
n
≤ kp

n
= 1
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this shows that there exist 1 ≤ r, r′ <∞ with 1
r + 1

r′ = 1 such that

p ≤ rp ≤ np

n− (k − |β|) p and p ≤ r′p ≤ np

n− (k − |α− β|) p .

Now using Hölder’s inequality gives
ˆ

Ω

∣∣∂βf(x) ∂α−βg(x)
∣∣p dx ≤ (ˆ

Ω

∣∣∂βf(x)
∣∣rp dx) 1

r
(ˆ

Ω

∣∣∂α−βg(x)
∣∣r′p dx) 1

r′

=

=
∥∥∂βf∥∥p

rp

∥∥∂α−βg∥∥p
r′p

if ∂βf ∈ Lrp(Ω) and ∂α−βg ∈ Lr
′p(Ω). By the Sobolev embedding Theorem (Thm. 4.12, C in

[AF03]) W k′,p (Ω) ↪→ Lq (Ω) for p ≤ q ≤ np
n−k′p if k′p < n and n − k′p < n. Applying this to q

equal to rp (or r′p) and k′ equal to k − |β| (or k − |α− β|) gives∥∥∂βf∥∥p
rp

∥∥∂α−βg∥∥p
r′p
≤ K

∥∥∂βf∥∥p
Wk−|β|,p

∥∥∂α−βg∥∥p
Wk−|α−β|,p ≤ K ‖f‖

p
Wk,p ‖g‖pWk,p

which shows that indeed ∂βf ∈ Lrp(Ω) and ∂α−βg ∈ Lr′p(Ω) and that∥∥∂βf ∂α−βg∥∥
p
≤ K

∥∥∂βf∥∥
Wk−|β|,p

∥∥∂α−βg∥∥
Wk−|α−β|,p ≤ K ‖f‖Wk,p ‖g‖Wk,p ≤

≤ K ‖f‖Ak,p ‖g‖Ak,p .

Because Ω is bounded the function e given by e(x) = 1 for all x ∈ Ω is in Ak,p (Ω) for any k and p.
Considering invertibility we note that clearly |f | ≥ c implies 1

f ∈ L
∞ (Ω) ⊂ Lp (Ω). Now for smooth

f we can express ∂α
(

1
f

)
(for 1 ≤ |α| ≤ k) as a sum of products of the form K ∂β1f...∂βmf

fj for some
j ∈ N and |βi| ≥ 1 with

∑m
i=1 βi = α. We have ∂β1f1∂

β2f2 . . . ∂
βmfm ∈ Lp(Ω) for fi ∈ Ak,p (Ω)

because it is one of the terms appearing in ∂α (f1f2 . . . fm) and the proof of the algebra property
shows that all those terms belong to Lp (Ω) and so K ∂β1f . . . ∂βmf f j ∈ Lp (Ω) ·L∞ (Ω) ⊂ Lp (Ω).
It only remains to show that the rules of differentiation used to calculate ∂α

(
1
f

)
remain valid

under our weaker regularity assumptions. We already know when the Leibniz rule holds so we only
have to concern ourselves with establishing the chain rule ∂i (F ◦ f) = F ′ ◦f ∂if , where F (x) = 1

xn

(x ∈ R) for some n ∈ N. It is shown in [GT98], Lemma 7.5 that the chain rule holds for F ∈ C1 (R)
with F ′ ∈ L∞ (R) if ∂if is at least locally integrable. Unfortunately, x 7→ 1

xn is not continuous
on R but one can always choose a function F satisfying the above requirements that is equal to
x 7→ 1

xn on R \ (−c, c) implying ∂i
(

1
fn

)
= − 1

f2n ∂i(fn) for all f ∈W k,p (Ω)∩L∞ (Ω) with |f | ≥ c.
In particular this shows that 1

fn ∈ W
1,p (Ω), which means that we may use both the chain rule

and the Leibniz rule to calculate higher order derivatives of 1
f in the usual way. �

3.2. (Tensor-)Distributions on orientable manifolds

It has already been pointed out in Remark 1.1.2 that for an orientable manifold the volume bundle
is isomorphic to the vector bundle of exterior n-forms on TX which implies that Γc (X,Vol (X)) ∼=
Ωnc (X) and thus

D′ (X) ∼= (Ωnc (X))′ .
This description is particularly useful when dealing with Lie derivatives of distributions with respect
to smooth vector fields. We are going to show that, given u ∈ X(X),

(3.2.1) 〈LuT, φ〉 = −〈T, Luφ〉

holds for all T ∈ C∞ (X) and φ ∈ Ωnc (X) and can be used to extend Lu to D′ (X), generalizing
the ’integration by parts formula’ 〈∂ju, φ〉 = −〈u, ∂jφ〉 for distributions on Rn.

There are two important results needed to prove (3.2.1) that both concern k-forms on X, the first
one being Stokes’ theorem.
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Theorem 3.2.1 (Stokes’ Theorem). Let X be a smooth, oriented n-dimensional manifold with
boundary and φ ∈ Ωn−1

c (X). Then ˆ
X

dφ =
ˆ
∂X

φ.

If ∂X = ∅ (i.e. X is a manifold without boundary), then the right-hand side vanishes.

The second one is a relationship between the interior product, Lie derivative and exterior derivative
known as Cartan’s formula.

For u ∈ X (X) the interior product iu of a k-form φ ∈ Ωk (X) is the (k − 1)-form given by

iuφ (v1, . . . ,vk−1) = φ (u,v1, . . . ,vk−1) .

Clearly iuφ has compact support if either φ or u are compactly supported.

Proposition 3.2.2 (Cartan’s formula). For any u ∈ X (X) and φ ∈ Ωk (X),

(3.2.2) Luφ = iu (dφ) + d (iuφ) .

A proof of both Stokes’ theorem and Cartan’s formula may be found in [Lee97], Thm. 14.9 and
Prop. 18.13 respectively. Now we have all the necessary tools to prove (3.2.1).

Theorem 3.2.3. Let X be orientable and u ∈ X (X). Then the Lie derivative Lu : C∞ (X) →
C∞ (X) satisfies

(3.2.3) 〈LuT, φ〉 = −〈T, Luφ〉

for all T ∈ C∞ (X) and φ ∈ Ωnc (X) and Lu can be extended uniquely to D′ (X) by (3.2.3).

Proof. As usual it suffices to show (3.2.3) for T ∈ C∞ (X) which implies continuity of Lu
and the claim then follows by density of C∞ (X). Now let T ∈ C∞ (X), then

〈LuT, φ〉 =
ˆ
X

Lu (T )φ =
ˆ
X

Lu (T · φ)− T · Luφ = −〈T, Luφ〉+
ˆ
X

iu (d (Tφ)) + d (iu (Tφ))

by the derivation property of Lu and Cartan’s formula. Now we note that Tφ ∈ Ωn (X) and thus
d (Tφ) = 0 and apply Stokes’ theorem to the remaining term to obtainˆ

X

iu (d (Tφ)) + d (iu (Tφ)) = 0,

showing (3.2.3). �

Remark 3.2.4. If X is a manifold with (nonempty) boundary and T ∈W 1,p
loc
(
X
)
, then

(3.2.4) 〈T, Luφ〉 = −
ˆ
X

u (T ) φ+
ˆ
∂X

T iuφ.

Note that the right hand side of the equation is well-defined for T ∈W 1,p
loc
(
X
)
because this implies

u (T ) ∈ Lploc (X). For T ∈ C∞
(
X
)
equation (3.2.4) follows as in the proof of Thm. 3.2.3, for

T ∈ W 1,p
loc
(
X
)
it follows by density of smooth functions and continuity of both sides in the W 1,p

loc
topology.

3.3. Distributional connections

We will henceforth assume our manifold X to be orientable (this is necessary because we will need
the results of section 3.2). To start with we will generalize the concept of a smooth connection on
a manifold.
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Definition 3.3.1 (Distributional connection). An operator ∇ : X (X) × X (X) → D′ (X,TX) is
called a distributional connection if it satisfies

∇fu+vw = f ∇uw +∇vw,
∇u (λv + w) = λ∇uv +∇uw and
∇u (f v) = f ∇uv + u(f) v (Leibniz rule)

for all u,v,w ∈ X (X), f ∈ C∞ (X) and λ ∈ R, where ∇uv is the usual notation for ∇ (u,v).

The next proposition shows that analogously to a smooth connection a distributional connection
can be extended to take arbitrary (p, q)−tensor fields as second input.

Proposition 3.3.2. Any distributional connection can be extended to a map ∇ : X (X)×T pq (X)→
D′
(
X,T pqX

)
.

Proof. Just as in the smooth case one first sets ∇uf := u(f) to obtain an operator ∇ :
X (X)× C∞ (X)→ D′ (X). Next, we define ∇ : X (X)× T 0

1 (X)→ D′
(
X,T 0

1X
)
via

(3.3.1) (∇uω) (v) := u (ω (v))− ω (∇uv) ,

which uses the fact that any one-form ω ∈ T 0
1 (X) ∼= LC∞(X) (X (X) ; C∞(X)) can be extended to

ω : D′
(
X,T 1

0X
)
→ D′ (X) via ω (u) := u (ω) for u ∈ D′

(
X,T 1

0X
) ∼= LC∞(X)

(
T 0

1 (X);D′ (X)
)
.

Finally, we set

(∇uT ) (ω1, . . . , ωp,v1, . . . ,vq) := ∇u (T (ω1, . . . , ωp,v1, . . . ,vq))−

−
p∑
i=1

T (ω1, . . . ,∇uωi, . . . , ωp,v1, . . . ,vq)−
q∑
i=1

T (ω1, . . . , ωp,v1, . . . ,∇uvi, . . . ,vq)

for T ∈ T pq (X). �

One major difference between smooth and distributional connections is that while a smooth con-
nection can be extended to a map from D′ (X,TX)×D′ (X,TX) to D′ (X,TX) this is not possible
for a distributional connection. In fact, to be able to, for example, define a Riemann curvature
tensor distribution based on a distributional connection one already has to assume a higher reg-
ularity of the connection itself. To elaborate on this: The problematic parts in the definition
of the Riemann tensor (R(u,v)w = ∇[u,v]w − (∇u∇vw−∇v∇uw)) are the terms of the form
∇u (∇vw). For them to be well-defined the connection has to be extendable to X (X)× Im∇, so
we want to identify a (maximal) suitable subspace E (X,TX) of D′ (X,TX) (where E stands for
some function space) which allows the extension of any connection with values in E (X,TX) to
X (X) × E (X,TX). It turns out that a suitable space E is the space of locally square integrable
sections of TM , i.e. L2

loc (X,TX).

Proposition 3.3.3. Let ∇ be a distributional connection. If ∇uv ∈ L2
loc (X,TX) for all u,v ∈

X (X), there exists an extension ∇ : X (X)×L2
loc (X,TX)→ D′ (X,TX). This extension is given

by

(3.3.2) (∇uv) (ω) = u (ω (v))− v (∇uω) inD′ (X)

for u ∈ X (X) , v ∈ L2
loc (X,TX) and ω ∈ T 0

1 .

In this case ∇ is called an L2
loc-connection and we may also write ∇ ∈ L2

loc (X).

Proof. First one notes that (3.3.2) holds for u,v ∈ X (X). The first term, u (ω (v)), is
well-defined in D′ (X) for v ∈ D′ (X) because ω is smooth and can therefore be extended to take
distributional arguments (as in the proof of Prop. 3.3.2) and u(f) = Lu(f) for smooth functions
which shows that u also can be extended to take distributions as input (see Thm. 3.2.3). The second
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term is a bit more problematic. By (3.3.1) one has ∇uω ∈ E
(
X,T 0

1X
)
for a connection with values

in E (X,TX). The problem of the definition of v (ω̃) for ω̃ ∈ E
(
X,T 0

1X
)
, v ∈ E (X,TX) now

corresponds directly to the question if the product of two functions f, g ∈ E (U) for some open
U ⊂ Rn exists in D′ (U). Observing that this is the case for E = L2

loc (the product of two
L2

loc-functions is in L1
loc ⊂ D′ (U)) proves the theorem. �

Now we may define the distributional Riemann tensor of an L2
loc-connection.

Definition 3.3.4. The distributional Riemann tensor of an L2
loc-connection is the tensor distribu-

tion Riem ∈ D′
(
X,T 1

3X
)
defined by

(3.3.3) Riem (u,v) w := ∇[u,v]w− (∇u∇vw−∇v∇uw) inD′ (X,TX)

for all u,v,w ∈ X (X).

Remark 3.3.5. If ∇ ∈ W k,p
loc (X) for k ≥ 1 and p > n

k (or p = 1 and k ≥ n) then Riem ∈
W k−1,p

loc
(
X,T 1

3X
)
: First note that W k,p

loc (X) ⊂ L2
loc (X) (for p ≥ 2 this follows from Hölder’s in-

equality, for p < 2 from the Sobolev embedding, see [AF03], Thm. 4.12, A). For v ∈W k,p
loc (X,TX)

and smooth u, ω we have u (ω (v)) ∈ W k−1,p
loc (X) and v (∇uω) ∈ W k,p

loc (X) (since W k,p
loc (X) is an

algebra for p > n
k or p = 1 and k ≥ n, see Prop. 3.1.8 or Thm. 4.39 in [AF03]) and thus

∇uv ∈W k−1,p
loc (X,TX) by (3.3.2). This shows that Riem ∈W k−1,p

loc
(
X,T 1

3X
)
.

Based on this we can also define the Ricci curvature tensor distribution (using the extension of the
contraction operation to tensor distributions) as

(3.3.4) Ric := C1
3Riem ∈ D′

(
X,T 0

2X
)
,

where the order of the one-form inputs is done in the conventional way of defining the local
components Riemi

jkl by Riem (∂k, ∂l) ∂j = Riemi
jkl ∂i. In other words, one has locally

(3.3.5) Ric (u,v) = dxj (Riem (u, ∂j) v) ∈ D′ (U)

for u,v ∈ X (U) and, as in the smooth case, (3.3.5) remains true when replacing the ∂j and dxj
with an arbitrary local frame Ej and corresponding dual frame Ej .

3.3.1. A jump formula for distributional connections. One of the most basic types of
singularities is a simple jump discontinuity, so as a next step we want to study the behavior of
∇uv if both ∇ and v suffer a jump discontinuity along a hypersurface M ⊂ X. We will need to
make some further (minor) assumptions about M , namely we want M to split X into two parts,
which will be denoted by X+ and X−, such that X = X+ ∪ X−, X+ ∩ X− = M and X± are
smooth manifolds with boundary ∂X± = M . We will choose the orientation on the boundary M
to be the one induced from X−.

Before going into detail about the regularity assumptions on ∇ and v we will define the Dirac
measure on the hypersurface M as a special 1-form distribution δM on X.

Definition 3.3.6. The Dirac measure δM ∈ D′
(
X,T 0

1X
)
on the hypersurface M is the one-form

distribution given by

(3.3.6) 〈δM (u) , φ〉 =
ˆ
M

j∗ (iuφ) , u ∈ X (X) , φ ∈ Ωn (X) ,

where j∗ : Ωn−1 (X) → Ωn−1 (M) is the pullback induced by the inclusion j : M ↪→ X (we may
omit j∗ in the future for notational simplicity).

Remark 3.3.7. Clearly δM (u) only depends on u|M (if u|M = 0 then also iuφ = C1
1 (u⊗ φ)

and thus j∗ (iuφ) are zero on M) which implies that supp δM ⊂ M . Furthermore δM (u) = 0
if u|M ∈ Γ (M,TM): Let p ∈ M and

(
U,ψ =

(
x1, . . . , xn

))
be coordinates around p adapted
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to the hypersurface1, then ∂
∂xj

∣∣
M
∈ Γ (U ∩M, TM |U∩M ) for j = 2, . . . , n and we can write

u|M =
∑n
j=2 u

j ∂
∂xj

∣∣
M
. Now for φ = f dx1 ∧ · · · ∧ dxn ∈ Ωn (U) one has i∂jφ(v1, . . . ,vn−1) =

f
(
dx1 ∧ · · · ∧ dxn

)
(∂j ,v1, . . . ,vn−1) = 0 for v1, . . . ,vn−1 ∈ Γ (M,TM) and 2 ≤ j ≤ n and thus

δM (∂j) = 0 for j = 2, . . . , n.

At first glance this definition looks rather unwieldy but the following proposition shows that it is
just a generalization of the one-form distribution SM (η) that appeared in the jump formula (2.3.4)
in Example 2.3.9.
Proposition 3.3.8. Let X be an oriented semi-Riemanian manifold and M ⊂ X be a closed semi-
Riemannian hypersurface with the properties described above and let n ∈ Γ

(
M,TM⊥

)
denote the

unit normal vector field on M , then
δM = SM (η) ,

where η ∈ Γ (M, T ∗X|M ) denotes the canonical one-form given by η(n) = 1 and η(v) = 0 for
v ∈ Γ (M,TM).

Proof. First we note that using the definition of SM and taking into account the identifica-
tions (1.2.1) and (1.2.2) one has that

LC∞(X) (X (X) ;D′ (X)) 3 (u 7→ SM (η (u))) = u 7→ η̃ (u) SM (1) ∼= SM (1)⊗ η̃ ∼=
∼= β (SM (1)⊗ η̃) = SM (η) ∈ D′

(
X,T 0

1X
)

for any smooth extension η̃ of η to X, hence showing δM = SM (η) is equivalent to showing

(3.3.7) δM (u) = SM (η(u)) for all u ∈ X (X) .

Also the support of both SM (η) and δM is contained in M so it suffices to show their equality
locally around M . To do this let p ∈ M and (U,ψ) be canonical coordinates around p (see

subsection 2.3.1). Then every φ ∈ Ωnc (U) is equal to φ = f

√∣∣∣det (gij)1≤i,j≤n

∣∣∣ dx1 ∧ · · · ∧ dxn for
a unique f ∈ D (U) (because X is semi-Riemannian and orientable Γc (X,Vol (X)) = Ωnc (X) and
Ω̂g =

√
|det g| dx1∧ · · ·∧dxn is a basis), every u ∈ X (U) can be written as u = ui ∂xi and η = dx1

on U ∩M (because n = ∂
∂x1 in canonical coordinates). Taking into account that the definition of

the single-layer distribution is based on using Ω̂g to identify Γc (X,Vol (X)) and D (X) we have to
show that

(3.3.8) 〈δM (u) , φ〉 = 〈SM (η(u)) , f〉

for all u ∈ X (U) , φ ∈ Ωnc (U). This allows us to calculate

j∗
(
iu
(
dx1 ∧ · · · ∧ dxn

))
= j∗

(
iu
(
dx1) ∧ dx2 ∧ · · · ∧ dxn

)
− j∗

(
dx1 ∧ iu

(
dx2 ∧ · · · ∧ dxn

))
=

= u1∣∣
M
j∗
(
dx2 ∧ · · · ∧ dxn

)
− 0 = η (u) dx2 ∧ · · · ∧ dxn

∣∣
M
.

Thus the left hand side of (3.3.8) becomes
ˆ
M∩U

j∗ (iuφ) =
ˆ
M∩U

f |M

√∣∣∣det
(
gij |M

)
1≤i,j≤n

∣∣∣ η (u) dx2 ∧ · · · ∧ dxn
∣∣
M

=

=
ˆ
M∩U

f |M

√∣∣∣det
(
gij |M

)
2≤i,j≤n

∣∣∣ η (u) dx2 ∧ · · · ∧ dxn
∣∣
M

=
ˆ
M∩U

f |M η (u) Ω̂gM =

= 〈SM (η (u)) , f〉 ,

where we have used that g1j = δ1j (cf. Prop. 2.3.8). �

1Unfortunately we can no longer use the canonical coordinates defined in subsection 2.3.1 as we no longer have a
smooth metric on X. Instead, our standard coordinates (U,ψ) around a point p ∈ M ⊂ X are chosen such that(
U ∩M, ψ|U∩M

)
is a chart in M and ψ (U ∩M) = ψ (U) ∩

(
{0} × Rn−1

)
. We are going to call such coordinates

adapted to the hypersurface.
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To deal with tensor fields that have higher regularity away from the hypersurface we will need some
more notations. For T ∈ D′ (X,T rsX) we say that T ∈ W k,p

loc (X±, T rsX±) if T |X±\M is locally
integrable and can be extended to some T± ∈W k,p

loc (X±, T rsX±) (note that T rsX|p = T rsX
±|p for

all p ∈ X± even at the boundary). For T ∈ L1
loc (X±, T rsX±) we define the regular part of T as

T reg : =
{
T+ onX+

T− onX−
.(3.3.9)

Note that this is a well-defined locally integrable tensor field on all of X that depends only on
T |X\M since M is a set of measure zero in X.

We are now going to assume that ∇ is an L2
loc-connection on X such that ∇ ∈ L2

loc (X±) ∩
W 1,p

loc (X±) (i.e. ∇uv ∈ L2
loc (X±, TX±) ∩W 1,p

loc (X±, TX±) for all u,v ∈ X (X)) for some p ≥ 1.
Then ∇ induces connections ∇± of L2

loc ∩W
1,p
loc regularity on X± and ∇±u v is the vector field in

L2
loc (X±) ∩W 1,p

loc (X±) uniquely determined by

∇±u v
∣∣
X±\M = ∇uv|X±\M for u,v ∈ Γ

(
X±, TX±

)
= Γ

(
X±, TX|X±

)
.

We have (∇uv)± = ∇±u±v± and for u ∈ X (X) and v ∈ X (X)∩W k,p
loc (X±) this is in W k−1,p

loc (X±)
because u (f) ∈W k−1,p

loc (X) if f ∈W k,p
loc (X) and u ∈ X (X) (see the proof of Prop. 3.3.3) and thus

(∇uv)reg is at least Lploc (X).

Given a vector field v ∈ D′ (X,TX) ∩W 1,s
loc (X±, TX|X±) for some ∞ > s ≥ 1 we define its jump

across the hypersurface M by

[v]M := γX+
(
v+)− γX− (v−) ∈ Lsloc (M, TX|M ) ,

where γX± denotes the trace operation from Prop. 3.1.7.

There is one last notation to be introduced before we can state our jump formula: For u ∈ X (X)
the rather intuitive expression [v]M δM (u) is used to denote the distributional vector field on X
defined by

([v]M δM (u)) (ω) := φ 7→
ˆ
M

[v]M (ω|M ) iuφ for ω ∈ Γ
(
X,T 0

1X
)

Similarly [f ]M δM (u) := φ 7→
´
M

[f ]M iuφ for a function f ∈W 1,s
loc (X±) ∩ L2

loc (X).

Theorem 3.3.9 (Jump formula for a singular connection). Let ∇ be an L2
loc-connection satisfying

∇± ∈ L2
loc (X±) ∩W 1,p

loc (X±) for some ∞ > p ≥ 1 and v ∈W 1,s
loc (X±) ∩ L2

loc (X). Then

(3.3.10) ∇uv = (∇uv)reg + [v]M δM (u) for all u ∈ X (X) .

Proof. By Prop. 3.3.3 one has (∇uv) (ω) = u (ω (v))−v (∇uω) for locally square integrable
v and smooth one-forms ω. Now let φ ∈ Ωn (X), then by Thm. 3.2.3 we get

〈u (ω (v)) , φ〉 = −〈ω (v) , Luφ〉 = −
ˆ
X

ω (v)Luφ = −
ˆ
X−

ω
(
v−
)
Luφ−

ˆ
X+

ω
(
v+)Luφ =

=
ˆ
X−

u
(
ω
(
v−
))
φ+
ˆ
X+

u
(
ω
(
v+))φ− ˆ

M

ω
(
γX−

(
v−
))
iuφ+

ˆ
M

ω
(
γX+

(
v+)) iuφ =

=
ˆ
X−

u
(
ω
(
v−
))
φ+
ˆ
X+

u
(
ω
(
v+))φ+ 〈([v]M δM ) (u) (ω), φ〉

using (3.2.4), where the last plus in the second line comes from the fact that we choose the
orientation on M as the orientation on the boundary induced from X− and not from X+. Since
the second term of (3.3.2) is always at least L1

loc (X) one obtains

〈v (∇uω) , φ〉 =
ˆ
X

v (∇uω)φ =
ˆ
X−

v−
(
∇−uω

)
φ+
ˆ
X+

v+ (∇+
uω
)
φ.
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Putting everything together gives

〈(∇uv) (ω), φ〉 =
ˆ
X−

(
u
(
ω
(
v−
))
− v−

(
∇−uω

))
φ+
ˆ
X+

(
u
(
ω
(
v+))− v+ (∇+

uω
))
φ+

+ 〈([v]M δM ) (u) (ω), φ〉 = 〈(∇uv)reg (ω) , φ〉+ 〈([v]M δM ) (u) (ω), φ〉 ,

proving (3.3.10). �

Remark 3.3.10. This formula is actually very similar to the one in Example 2.3.9, just the notation
is a bit different: Let f ·H ◦ h be as in Example 2.3.9 and ∇ be the (smooth) metric connection.
Then (2.3.4) and Prop. 3.3.8 give

∇u (f ·H ◦ h) = d (f ·H ◦ h) (u) = SM (f |M η) (u) +H ◦ h · df (u) =
= f |M δM (u) + (∇u (f ·H ◦ h))reg = [f ·H ◦ h]M δM (u) + (∇u (f ·H ◦ h))reg

.

The previous result allows us to derive jump formulas for both Riemann and Ricci curvature.

Corollary 3.3.11. Let ∇ be an L2
loc-connection on X satisfying ∇± ∈W 1,p

loc (X±) and u,v,w ∈
X (X). Then

(3.3.11) Riem (u,v) w = (Riem (u,v) v)reg − [∇vw]M δM (u) + [∇uw]M δM (v)

and locally

(3.3.12) Ric (u,v) = (Ric (u,v))reg −
[
dxi (∇∂xiv)

]
M
δM (u) +

[
dxj (∇uv)

]
M
δM
(
∂xj
)

for any chart ψ =
(
x1, . . . , xn

)
.

Proof. Clearly ∇uv ∈ L2
loc (X) ∩W 1,p

loc (X±) by the regularity assumptions on ∇. Thus we
may apply Thm. 3.3.9 to the definition of the Riemann tensor to obtain

Riem (u,v) w = ∇[u,v]w− (∇u∇vw−∇v∇uw) = ∇[u,v]w− (∇u∇vw)reg − [∇vw]M δM (u) +
+ (∇v∇uw)reg + [∇uw]M δM (v) = (Riem (u,v) w)reg − [∇vw]M δM (u) + [∇uw]M δM (v) .

The second claim follows immediately from the first using (3.3.5):

Ric (u,v) = dxj (Riem (u, ∂j) v) =
= (Ric (u,v))reg − dxi ([∇∂xiv]M ) δM (u) + dxj ([∇uv]) δM

(
∂xj
)
. �

Note that the non-regular parts of (3.3.10), (3.3.11) and (3.3.12) are supported in the hypersurface
M and are thus only relevant locally around M . Furthermore in coordinates (U,ψ) adapted to the
hypersurface δM

(
∂xj
)

= 0 for j = 2, . . . , n (since in this case ∂xj
∣∣
M
∈ Γ (U ∩M, TM |U∩M )) so

in this case the jump formula for the Ricci tensor reads simply

(3.3.13) Ric (u,v) = (Ric (u,v))reg +
[
dx1 (∇uv)

]
M
δM
(
∂x1)− [dxi (∇∂xiv)

]
M
δM (u) .

3.4. Distributional metrics and scalar curvature

In the following we are going to study distributional metrics on manifolds, in particular we will
determine what regularity is needed for such a metric to give rise to a (distributional) Levi-Civita
connection.

Definition 3.4.1 (Distributional metric). A distributional metric is a tensor distribution g ∈
D′
(
X,T 0

2X
)
that satisfies

g (u,v) = g (v,u) ∀u,v ∈ X (X) and
g (u,v) = 0 ∀v ∈ X (X) =⇒ u = 0,

i.e., that is symmetric and non-degenerate.
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Note that this non-degeneracy requirement is weaker than that for smooth metrics, where one
demands non-degeneracy in every point p ∈ X, because it is not possible to talk about pointwise
properties of tensor distributions. Additionally this definition does not require g to have constant
signature (again this condition can not be formulated in the distributional case). In classical semi-
Riemannian geometry any metric g induces a (unique) Levi-Civita connection ∇ (that is a torsion
free connection satisfying ∇g = 0) via the Koszul formula
(3.4.1)
2g (∇uv,w) = u (g (v,w)) + v (g (w,u))−w (g (u,v))− g (u, [v,w]) + g (v, [w,u]) + g (w, [u,v]) .

We will quickly review the duality between vector fields and one-forms induced by a smooth
metric. Given a vector field u ∈ X (X) one defines u[ ∈ T 0

1 (X) by u[ (v) := g (u,v) for all
v ∈ X (X). Locally u[ is given by

(
u[
)
i

= gij uj . The map [ : X (X)→ T 0
1 (X) is a C∞ (X)−linear

isomorphism whose inverse ] : T 0
1 (X) → X (X) is locally given by

(
ω]
)i = gijωj where gij is the

inverse matrix of gij . Now given u and v the Koszul formula actually only defines the one-form
(∇uv)[, but by the above this immediately also gives the vector field ∇vu and thus the connection
∇ - at least as long as g is smooth.

In the distributional case (3.4.1) and non-degeneracy still implies uniqueness of ∇ (under the
requirements that ∇g = 0 and that ∇ is torsion free) and and shows the existence of a map
∇[ : X (X)×X (X)→ D′

(
X,T 0

1X
)
, however, this does not give existence of ∇ : X (X)×X (X)→

D′
(
X,T 1

0X
)
because [ is no longer an isomorphism. So to give rise to a distributional Levi-Civita

connection a distributional metric must be regular enough for the inverse gij to exist (in the smooth
case this follows from non-degeneracy of g in every point p ∈ X which we do not have if g is merely
distributional) and allow products of the form gijωj for ω ∈ Im∇[. If we furthermore want the
induced connection to be L2

loc the products gijωj have to be in L2
loc (X).

Definition 3.4.2. A locally integrable metric g is said to be uniformly non-degenerate if for any
chart

(
U,ψ =

(
x1, . . . , xn

))
there exists a constant cK > 0 for every compact set K ⊂ U such that∣∣∣∣det

(
g

(
∂

∂xi
,
∂

∂xj

))∣∣∣∣ ≥ cK
almost everywhere on K.

Proposition 3.4.3. Let g be a distributional metric on X. If g ∈ W 1,2
loc (X) ∩ L∞loc (X) and

uniformly non-degenerate, then gij ∈ L∞loc (U) and gij
(
∇[uv

)
j
∈ L2

loc (U) for all u,v ∈ X (X) and
all chart domains U . In this case the local distributional vector fields gij

(
∇[uv

)
j

∂
∂xi define a global

distributional vector field ∇uv ∈ L2
loc
(
X,T 0

1X
)
.

Proof. First we note that for g ∈ W 1,2
loc (X) and u,v,w ∈ X (X) we have that

(
∇[uv

)
(w) ∈

L2
loc (X) since

2
(
∇[uv

)
(w) = u (g (v,w)) + v (g (w,u))−w (g (u,v))− g (u, [v,w])−

− g (v, [w,u]) + g (w, [u,v])

and thus ∇[uv ∈ L2
loc
(
X,T 0

1X
)
. Next we want to determine the regularity of gij : Let K ⊂ U

compact, then uniform non-degeneracy implies that |det gij | ≥ cK almost everywhere on K so
gij = 1

det gijCij (by Cramer’s rule where Cij denotes the matrix of cofactors) almost everywhere
on K, giving gij ∈ L∞loc (U). This shows that gij

(
∇[uv

)
j
∈ L2

loc (U) for all u,v ∈ X (X) and all
chart domains U which cover X. That they are indeed local representations of a global L2

loc-vector
field on X follows in the same way as one shows that local expressions of the form gijωj

∂
∂xi define

a global vector field for smooth metrics and one-forms. �
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We will refer to a metric that satisfies the requirements of Prop. 3.4.3 as Geroch-Traschen- or gt-
regular since metrics with this regularity were first introduced by Geroch and Traschen in [GT87]
(actually they assumed local boundedness of the inverse gij instead of uniform non-degeneracy of
gij but both are equivalent if one already assumes that gij is locally bounded). It is easy to verify
that (as in the smooth case) the connection given by the Koszul formula indeed satisfies ∇g = 0
and T = 0, where T (u,v) := ∇uv−∇vu− [u,v] is the torsion of g.

Lemma 3.4.4. Any gt-regular metric g satisfies

gij ∈W 1,2
loc (U) ∩ L∞loc (U)

for every chart (U,ψ) with U ⊂ K locally compact.

Proof. To show this one first proves that the product of two functions f, g ∈ W 1,2 (Ω) ∩
L∞ (Ω) is again in W 1,2 (Ω) ∩ L∞ (Ω) for any bounded subset Ω ⊂ Rn (unfortunately this case is
in general not going to be covered by Prop. 3.1.8). It is obvious that fg ∈ L∞ (Ω) ⊂ L2 (Ω), to
show ∂k (fg) ∈ L2 (Ω) one uses ∂k (fg) = g∂kf + f∂kg which remains valid for f, g ∈ W 1,2 (Ω) by
the same argument as in Prop. 3.1.8. Since the right hand side is locally square integrable we have
∂k (fg) ∈ L2 (Ω).

Because Cij is merely a linear combination of products of certain entries of the matrix (gij)1≤i,j≤n
the above implies Cij ∈ W 1,2

loc (U) ∩ L∞loc (U). The same holds true for det gij . It remains to show
that 1

f ∈W
1,2 (Ω)∩L∞ (Ω) for f ∈W 1,2 (Ω)∩L∞ (Ω) with |f | ≥ c. Clearly 1

f ∈ L
∞ (Ω) ⊂ L2 (Ω)

and ∂k
(

1
f

)
= −∂kff2 ∈ L∞ (Ω) ·L2 (Ω) ⊂ L2 (Ω) (that this formula holds follows again by the same

argument as in Prop. 3.1.8). �

To summarize, we have so far shown that a sufficiently regular metric induces an L2
loc-connection

which in turn allows the definition of the Riemann and Ricci curvature tensors. Now we want to
investigate if a gt-regular metric allows the definition of the scalar curvature via the usual formula
of R = gij Ric

(
∂xi, ∂xj

)
. At first sight this appears to be problematic because while gij has nice

regularity the Ricci curvature tensor is in general not even L1
loc. However, looking a bit closer one

quickly finds an alternative expression for R in the smooth case which can be directly generalized
to the distributional one as it will only involve products of the form L2

loc · L∞loc ⊂ L2
loc. First one

calculates

(3.4.2) Ric (∂i, ∂j) = dxk (Riem (∂i, ∂k) ∂j) = (∇∂k (∇∂i∂j)−∇∂i (∇∂k∂j))
(
dxk

)
+

+ dxk
(
∇[∂i,∂k]∂j

)
= dxk

(
∇[∂i,∂k]∂j

)
− ∂i

(
dxk (∇∂k∂j)

)
+ (∇∂k∂j)

(
∇∂idxk

)
+

+ ∂k
(
dxk (∇∂i∂j)

)
− (∇∂i∂j)

(
∇∂kdxk

)
using equation (3.3.2) from Prop. 3.3.3. Now for an L2

loc-connection the first, the third and the
fifth term are at least L2

loc and can thus be multiplied with gij ∈ L∞loc (X). Concerning the second
and fourth term we see that for a smooth connection

(3.4.3) gij ∂i
(
dxk (∇∂k∂j)

)
= ∂i

(
gij dxk (∇∂k∂j)

)
− ∂igij dxk (∇∂k∂j)

and that although the left hand side does not make sense for a merely gt-regular metric the right
hand side does since gij ∈W 1,2

loc by Lemma 3.4.4 above. Using (3.4.3) to define gij ∂i
(
dxk (∇∂k∂j)

)
and gij ∂k

(
dxk (∇∂i∂j)

)
gives the following Proposition.

Proposition 3.4.5. Let g be a gt-regular metric on X. Then there exists a well-defined scalar
curvature distribution R. Locally, R is given by

R = gijRic
(
∂xi, ∂xj

)
where the product is to be understood as discussed above.
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Finally we will briefly study how additional regularity of g influences the regularity of ∇.

Proposition 3.4.6. Let g ∈ W k,p
loc
(
X,T 0

2X
)
∩ L∞loc

(
X,T 0

2X
)
with p ≥ n

k be a uniformly non-
degenerate metric on X. Then ∇as in (3.4.1) is a W k−1,p

loc -connection.

Proof. The proof follows the same general steps used in showing that a gt-regular metric
induces an L2

loc-connection and in showing W 1,2
loc -regularity of gij in Lemma 3.4.4. First we note

that by Prop. 3.1.8 W k,p
loc (X) ∩ L∞loc (X) is an algebra so det gij ∈ W k,p

loc (X) ∩ L∞loc (X) and Cij ∈
W k,p

loc (X) ∩ L∞loc (X). Since |det gij | ≥ c (on compact subsets of the given chart domain) we
have that 1

det gij ∈ W k,p
loc (X) ∩ L∞loc (X) (by Prop. 3.1.8) and thus gij ∈ W k,p

loc (X) ∩ L∞loc (X).
Next we use that ∇ can be expressed explicitly in terms of the metric via ∇∂i∂j = Γkij∂k with
Γkij = 1

2g
km
(
∂gjm
∂xi + ∂gim

∂xj −
∂gij
∂xm

)
(which can be shown completely analogous to the smooth case).

This implies that ∇ has the same regularity as Γ, so ∇ ∈ W k−1,p
loc (X) since terms of the form

gkm∂rgij are in W k−1,p
loc (X) (since ∂α

(
gkm∂rgij

)
is a linear combination of terms appearing in

∂α+er
(
gkmgij

)
and those are all in Lploc(X) for |α| ≤ k − 1 by the proof of Prop. 3.1.8). �

Remark 3.4.7. In many cases the L∞loc regularity requirement in the previous proposition is actually
superfluous. For instance, for p > n

k one has W k,p (Ω) ⊂ C (Ω) ⊂ L∞loc (Ω) (by the Sobolev
embedding, see e.g. [AF03] Thm. 4.12) and so g ∈W k,p

loc (X) already implies g ∈ L∞loc (X).

3.4.1. Jump formula for the scalar curvature. We will again consider the situation
outlined in subsection 3.3.1, that is we have a hypersurface M ⊂ X, such that X = X+ ∪ X−
where X± are manifolds with boundary and ∂X± = X+ ∩X− = M . We want to derive a jump
formula for the scalar curvature across the hypersurface similar to the ones for Riemannian and
Ricci curvature given in equations (3.3.11) and (3.3.12).

Proposition 3.4.8. Let g ∈ C
(
X,T 0

2X
)
be a uniformly non-degenerate metric on X such that

g± ∈W 2,p
loc (X±) ∩W 1,2

loc (X±) for some p ≥ n
2 . Then the scalar curvature R is well-defined (i.e. g

is gt-regular) and

(3.4.4) R = Rreg +
[(
gkjdx1 − g1jdxk

) (
∇∂xk∂xj

)]
M
δM
(
∂x1)

for coordinates
(
x1, . . . , xn

)
adapted to the hypersurface (see Footnote 1 on page 31).

Proof. Since g is continuous on X one has g ∈ L∞loc (X). To show that g ∈ W 1,2
loc (X)

we first note that W 2,p
loc (Ω) ⊂ W 1,2

loc (Ω) for p ≥ n
2 and Ω ⊂ Rn: For p ≥ 2 this follows from

Lploc (Ω) ⊂ Lqloc (Ω) for all 1 ≤ q ≤ p which is an easy consequence of Hölder’s inequality. So it only
remains to consider the case 1 ≤ p < 2 which implies n = 1, n = 2 or n = 3. For n = 1 one has
p > n or p = n = 1 and in both cases W 1,p (Ω) ⊂ L2 (Ω) by the Sobolev embedding ([AF03] Thm.
4.12, A). If n = 2 or n = 3, then n

2 ≤ p < 2 ≤ n and p ≤ 2 ≤ 2p
2−p (or p ≤ 2 ≤ 3 = 3

2 3/3− 3
2 ≤

3p
3−p )

and again W 1,p (Ω) ⊂ L2 (Ω) by one of the Sobolev embeddings ([AF03] Thm. 4.12, C).
It remains to show that g ∈ W 1,2

loc (X). To do this, let Ω ⊂ Rn and set Ω+ := Ω ∩ Rn+ and
Ω− := Ω ∩ Rn− and let f ∈ C (Ω) such that f± ∈ W 1,p

loc (Ω±) for some 1 ≤ p ≤ ∞. We are going to
show that ∂if = (∂if)reg ∈ Lploc (Ω) (one notes that this only holds for continuous f , for example
the Heaviside function H ∈ L1

loc (R) satisfies ∂H = δ but (∂H)reg = 0). Let φ ∈ D (Ω), then

− 〈∂if, φ〉 = 〈f, ∂iφ〉 =
ˆ
Rn
f(x)∂iφ(x)dx =

ˆ
Rn+
f+(x) ∂iφ(x)dx+

ˆ
Rn−

f−(x) ∂iφ(x)dx =

= −
ˆ
Rn+
∂if

+(x)φ(x)dx−
ˆ
Rn−1

(
f+φ

)
(0, x′) dx′ −

ˆ
Rn−

∂if
−(x)φ(x)dx+

+
ˆ
Rn−1

(
f−φ

)
(0, x′) dx′ = −

ˆ
Rn+
∂if

+(x)φ(x)dx−
ˆ
Rn−

∂if
−(x)φ(x)dx = −〈(∂if)reg

, φ〉 ,
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where the two integrals over Rn−1 cancel because f+|∂Ω+∩∂Rn+
= f−|∂Ω−∩∂Rn−

by continuity of f .
This shows that g ∈W 1,p

loc (X), which immediately implies gt-regularity of g.

Now we are ready to prove (3.4.4). By the definition of the scalar curvature (see (3.4.2) and (3.4.3))
we have

R = gijRic (∂i, ∂j) = gijdxk
(
∇[∂i,∂k]∂j

)
− ∂i

(
gij dxk (∇∂k∂j)

)
+ ∂ig

ij dxk (∇∂k∂j) +

+ gij (∇∂k∂j)
(
∇∂idxk

)
+ ∂k

(
gij dxk (∇∂i∂j)

)
− ∂kgij dxk (∇∂i∂j)− gij (∇∂i∂j)

(
∇∂kdxk

)
If we look at the regularity of all the terms appearing in this sum, we see that only the second and
fifth term are not at least W 1,2

loc and thus not equal to their regular parts. Looking at the proof
of Thm. 3.3.9, where we derived u (ω (v)) = (u (ω (v)))reg + [ω (v)]M δM (u) for ω ∈ T 0

1 (X) , u ∈
X (X) and v ∈W 1,s

loc (X±, TX±) ∩ L2
loc (X,TX), yields the jump formula

∂i
(
gij dxk (∇∂k∂j)

)
=
(
∂i
(
gij dxk (∇∂k∂j)

))reg +
[
gijdxk (∇∂k∂j)

]
M
δM (∂i)

for the second and fifth term. We obtain

gijRic (∂i, ∂j) = gij (Ric (∂i, ∂j))reg −
[
gijdxk

(
∇∂k∂jxj

)]
M
δM (∂i) +

+
[
gijdxk (∇∂i∂j)

]
M
δM (∂k) = Rreg +

[
gkjdx1 (∇∂k∂j)− g1jdxk (∇∂k∂j)

]
M
δM
(
∂x1) ,

where we used that δM
(
∂xj
)

= 0 for j = 2, . . . , n in adapted coordinates by Remark 3.3.7. �

Remark 3.4.9. One would like to simply use the jump formula (3.3.12) (or (3.3.13) to be more
precise) for the Ricci curvature (we have ∇± ∈W 1,p

loc (X±) by Prop. 3.4.6) to obtain

R = gijRic
(
∂xi, ∂xj

)
= gij

(
Ric

(
∂xi, ∂xj

))reg + gij
[
dx1 (∇∂xi∂xj)]M δM

(
∂x1)−

−gij
[
dxk

(
∇∂xk∂xj

)]
M
δM
(
∂xi
)

= Rreg+
[
gkjdx1 (∇∂xk∂xj)− g1jdxk

(
∇∂xk∂xj

)]
M
δM
(
∂x1) .

Unfortunately this reasoning is a bit problematic because gijRic
(
∂xi, ∂xj

)
is only a convenient

notation for the scalar curvature, the actual definition of R is more complicated (albeit equiv-
alent to this multiplication for smooth metrics). Also the terms gij

[
dx1 (∇∂xi∂xj)]M δM

(
∂x1)

are a priori not well-defined distributions (but are of course to be understood in the sense of[
gijdx1 (∇∂xi∂xj)]M δM

(
∂x1)).

3.5. Compatibility with Colombeau theory

A somewhat different approach to low regularity metrics is provided by Colombeau theory. One of
the main problems in the previous discussions was to make sense of nonlinear operations involving
the metric which necessitated the requirement of at least gt-regularity for g. An alternative way
to deal with those difficulties is to use a nonlinear theory of generalized functions (in the sense
of J.F. Colombeau) instead of classical distribution theory. In this section we will briefly discuss
connections and differences between the two approaches, following [SV09].

To do so we first need to review some of the most basic facts about the special Colombeau algebra
on manifolds, more details can be found in [GKOS01], specifically chapter 1.2 for Rn and chapter
3.2 for the manifold case. Let P(X) be the space of linear differential operators on X. We define
the space EM (X) ⊂ C∞ (X)(0,1) of moderate nets by

EM (X) :=
{

(uε)ε ∈ C∞ (X)(0,1) : ∀ compactK ∀P ∈ P(X)∃N ∈ N : sup
p∈K
|Puε(p)| = O(ε−N )

}
and the space N (X) of negligible nets by

N (X) :=
{

(uε)ε ∈ C∞ (X)(0,1) : ∀ compactK ∀P ∈ P(X)∀m ∈ N : sup
p∈K
|Puε(p)| = O(εm)

}
.
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The special Colombeau algebra is the quotient algebra

G(X) = EM (X)
N (X) .

Alternatively, one may describe G(X) locally: A net (uε)ε ∈ C∞ (X)(0,1) is moderate respectively
negligible if and only if its chart representations (uαε )ε =

(
uε ◦ ψ−1

α

)
ε
∈ C∞ (ψα(Uα))(0,1) are

moderate respectively negligible for every chart (Uα, ψα). So given any u ∈ G(X) we may use this
to define corresponding uα ∈ G(ψα(Uα)) and these uα determine u uniquely which allows us to
identify G(X) with the set of all families (uα)α with uα ∈ G(ψα(Uα)) satisfying

uα|ψα(Uα∩Uβ) = uβ
∣∣
ψβ(Uα∩Uβ) ◦ ψβ ◦ ψ

−1
α

for all α, β with Uα ∩ Uβ 6= ∅ (see [GKOS01], Prop. 3.2.3).

This algebra allows both an embedding σ : C∞(X) → G(X) of smooth functions (σ(f) is the
equivalence class of the constant net (f)ε) and an embedding ι : D′(X) → G(X) of distributions:
For an open subset Ω ⊂ Rn the embedding of distributions is done via convolution with some
ρ ∈ S(Rn) with unit integral that satisfies

´
Rn ρ(x)xαdx = 0 for all |α| ≥ 1. Given such a function

ρ we define ρε(x) := ε−nρ(xε ). If T is a distribution on Rn with compact support we simply set
ι(T ) := [(T ∗ ρε)ε] ∈ G(Rn) and we have ι|C∞c = σ.

For T ∈ D′(X) we choose a (countable) atlas (Uα, ψα), a partition of unity {χα} subordinate to
the Uα and functions ζα ∈ D(Uα) with |ζα| ≤ 1 and ζα ≡ 1 on an open neighborhood of supp (χα)
in Uα and set

(3.5.1) ι(T )ε =
∑
α

ζα ·
((
χα ◦ ψ−1

α Tα
)
∗ ρε

)
◦ ψα,

where Tα ∈ D′ (ψα(Uα)) denotes the chart representation of T , see [GKOS01], Thm. 3.2.10.
Again one has ι|C∞ = σ.

This embedding ι allows us to view distributions as elements in G(X), however, it depends on
the choice of the mollifier ρ and the partition of unity χα. Next we want to try to associate a
distribution to a given generalized function u by taking the distributional limit (which need not
exist) of a representative uε.

Definition 3.5.1. An element u ∈ G(X) is called associated with 0 (denoted by u ≈ 0) if uε → 0
in D′(X) for one (and hence any) representative (uε)ε. Two generalized functions u, v ∈ G(X) are
associated, u ≈ v, if u− v ≈ 0.

This gives an equivalence relation ≈ on G(X) that is strictly weaker than equality (see [GKOS01],
1.2.68 for examples). If u ∈ G(X) with u ≈ ι(T ) for some T ∈ D′(X) we may suppress the
embedding and simply write u ≈ T . Some nice properties of association are listed in [GKOS01],
Prop. 3.2.12 and 3.2.14.

Of course we are also going to need spaces of generalized sections of vector bundles E over X,
which will be denoted by G(X,E) and can be defined analogously to G(X). A more convenient
description for our purposes is, however, given by

G(X,E) = G(X)⊗ Γ (X,E)

or
G(X,E) = LC∞(X) (Γ(X,E∗);G(X)) .

Note that we used the analogous descriptions for D′ (X,E) (see Thm. 1.2.4) quite heavily in the
previous sections. For generalized tensor fields we may simply write Grs (X) instead of G(X,T rsX).
Given a distributional tensor field T ∈ D′ (X,T rsX) we want to define its embedding ι(T ) ∈ Grs (X):
This is done in the same way as for the scalar case. Given a vector bundle atlas (Uα,Ψα) and a
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corresponding manifold atlas (Uα, ψα) we can (by Prop. 1.2.3) identify T with the family of its chart
representations Tα :=

(
(Tα)j1,...,jr

i1,...,is

)
1≤ik,jl≤n

∈ D′
(
ψα(Uα),Rnr+s

)
and define

(
χα ◦ ψ−1

α Tα
)
∗ ρε

componentwise. Then

(3.5.2) ι(T )ε :=
∑
α

ζα ·
((
χα ◦ ψ−1

α Tα
)
∗ ρε

)
◦Ψα,

where the ζα and χα are chosen as in (3.5.1).

Now we are ready to define the concept of a generalized metric in the Colombeau sense.

Definition 3.5.2. A generalized (0, 2)-tensor field g ∈ G0
2(X) is called generalized metric on X if

it is symmetric and det gij ∈ G(Uα) is invertible in G(Uα) for every chart (Uα, ψα).

Remark 3.5.3. Invertibility of det gij in G(Uα) is equivalent to invertibility of det gαij in G(ψα(Uα))
which in turn is equivalent to the following condition (see [GKOS01], Thm. 1.2.5.):

∀ compact K ⊂ ψα(Uα)∃m ∈ N, ε0 > 0 : inf
p∈K
|det gαε | ≥ εm ∀ε < ε0.

Given a generalized metric g we may use the usual formulas on a representative (gε)ε to obtain an
inverse metric g−1 ∈ G2

0(X), a generalized Levi-Civita connection ∇ : X(X)×X (X)→ G1
0(X) and

all the curvature quantities (e.g., the Riemann- and Ricci tensor as well as the scalar curvature).
A natural question to ask is if these operations commute with the embedding ι up to association
for gt-regular metrics (i.e., if ι(g)−1 ≈ g−1, Riem(ι(g)) ≈ Riem(g), . . . ) and, more fundamen-
tally, whether ι(g) even is a generalized metric for any gt-regular and uniformly non-degenerate
distributional metric g.

To proceed we will need to use a mollifier with special properties in the embedding ι:

Definition 3.5.4 (Admissible mollifier). A net (ρε)ε of smooth functions is called admissible if

(1) supp (ρε) ⊂ Bε(0) and
´
ρε(x)dx = 1 for all ε ∈ (0, 1],

(2) it is moderate, i.e., ∀α ∈ Nn∃m ∈ N : supx∈Rn |∂αρε(x)| = O(ε−m),
(3) it has finally vanishing moments, i.e.,

∀j ∈ N∃ε0 ∈ (0, 1] :
ˆ
xαρε(x)dx = 0 for all 1 ≤ |α| ≤ j and all ε ≤ ε0

(4) the negative parts have arbitrarily small L1-norm, i.e.,

∀η > 0∃ε0(η) ∈ (0, 1] :
ˆ
|ρε(x)| dx ≤ 1 + η for all ε ≤ ε0(η)

The existence of such admissible nets is shown in the appendix of [SV09]. It can also be shown
that given an admissible net (ρε)ε one obtains an embedding ιρ : D′(Rn) → G(Rn) through
componentwise convolution and thus ιρ : D′(X) → G(X) via (3.5.1) (although (ρε)ε does not
satisfy the original conditions imposed on the net used in the embedding ι given by (3.5.1) the
relevant properties of ιρ follow analogously - on Rn this is again outlined in the appendix of [SV09],
the generalization to manifolds proceeds in literally the same way as in [GKOS01], Thm. 3.2.10).

Because supp (ρε) ⊂ Bε(0),
´
ρε(x)dx = 1 and ‖ρε‖L1 ≤ C for ε small, ρε is a mollifier and

the embedding ιρ inherits many nice properties from the various convergence theorems regarding
convolutions of the form f ∗ ρε that can be found, e.g., in [Eva98], p. 630 (note that while Evans
uses a special mollifier the proofs only use those three properties).

Proposition 3.5.5. If T ∈ W k,p
loc (X,T rsX) (for some 1 ≤ p < ∞), then ιρ(T )ε ∈ W k,p

loc (X,T rsX)
and ιρ(T )ε → T pointwise almost everywhere and in W k,p

loc (X) as ε→ 0.
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Proof. We know that f ∗ ρε ∈ W k,p
loc (Ω) and f ∗ ρε → f pointwise a.e. and in W k,p

loc (Ω) for
f ∈ W k,p

loc (Ω) with compact support (see [Eva98], p. 630 and use ∂i(f ∗ ρε) = (∂if) ∗ ρε). This
shows that(
ζα ·

((
χα ◦ ψ−1

α Tα
)
∗ ρε

)
◦Ψα

)
◦Ψ−1

α = ζα ◦ψ−1
α ·

((
χα ◦ ψ−1

α Tα
)
∗ ρε

)
→ ζα ◦ψ−1

α · χα ◦ψ−1
α Tα

in W k,p(ψα(Uα),Rnr+s) and thus each term in (3.5.2) converges to ζα · χαT = χαT pointwise a.e.
and inW k,p

loc (X,T rsX) (by one of the equivalent the definitions ofW k,p
loc -convergence of tensor fields,

see section 3.1). Because the sum is locally finite we only have to consider a finite number of terms
for each compact K ⊂ X, proving the claim. �

Corollary 3.5.6. If T ∈W k,p
loc (X,T rsX) (for some 1 ≤ p <∞), then

ιρ(T )ε(u1, . . . ,us, ω1, . . . , ωr)− ιρ(T (u1, . . . ,us, ω1, . . . , ωr))ε → 0

in W k,p
loc (X) for all ω1, . . . , ωr ∈ T 0

1 (X) and u1, . . . ,us ∈ X(X).

Proof. By Prop. 3.5.5 both ιρ(T )ε(u1, . . . ,us, ω1, . . . , ωr) and ιρ(T (u1, . . . ,us, ω1, . . . , ωr))ε
converge to T (u1, . . . ,us, ω1, . . . , ωr) in W k,p

loc (X), so their difference converges to zero. �

Proposition 3.5.7. If T ∈ L∞loc(X,T rsX), then

ιρ(T )ε(u1, . . . ,us, ω1, . . . , ωr)− ιρ(T (u1, . . . ,us, ω1, . . . , ωr))ε → 0

uniformly on compact sets.

Proof. Let ψα = (x1, . . . , xn) be a manifold chart, then

(Tα)j1,...,jr
i1,...,is

=
(
T (∂xi1 , . . . , ∂xis , dxj1 , . . . , dxjr )

)α
for the vector bundle chart Ψα = T rs ψα, thus

T (u1, . . . ,us, ω1, . . . , ωr)α = (Tα)j1,...,jr
i1,...,is

(uα)i1 . . . (uα)is(ωα)j1 . . . (ωα)jr .

Now let Ω ⊂ Rn, f ∈ L∞loc(Ω) with compact support in Ω and g ∈ C∞ (Ω). Then (f ∗ ρε) · g −
(fg) ∗ ρε → 0 uniformly on Ω: We have

((f ∗ ρε) · g − (fg) ∗ ρε) (x) =
ˆ
Rn
f(x− y) (g(x)− g(x− y)) ρε(y)dy ≤

≤ ‖f‖L∞(supp f+Bε(0)) ‖ρε‖L1 sup
y∈Bε(0)

|f(x)− f(x− y)| = C sup
y∈Bε(0)

|g(x)− g(x− y)|

since ‖ρε‖L1 is bounded by the fourth requirement in Def. 3.5.4. Furthermore supp (f ∗ ρε) · g −
(fg) ∗ ρε ⊂ supp f +Bε(0) is a compact subset of Ω for ε small and thus (f ∗ ρε) · g− (fg) ∗ ρε → 0
uniformly by uniform continuity of g on compact subsets.

To illustrate that this proves the claim, let w.l.o.g. T ∈ L∞loc(X,TX). From the above we get that((
χα ◦ ψ−1

α Tα
)
∗ ρε

)j (ωα)j −
(
χα ◦ ψ−1

α

(
(Tα)j(ωα)j

))
∗ ρε → 0 in L∞loc (ψα(Uα)) and thus each

summand appearing in the difference ι(T )ε(ω) − ι(T (ω))ε converges to zero uniformly. Since the
sum is locally finite we immediately obtain that ι(T )ε(ω) − ι(T (ω))ε → 0 uniformly on compact
sets. �

We also get the following result regarding positivity and invertibility of ιρ(f)ε.

Proposition 3.5.8. Let f ∈ L∞loc(X), f > 0 a.e. and locally uniformly bounded, i.e., for every
compact set K ⊂ X there exists a constant CK such that f(x) ≥ CK > 0 a.e. on K. Then for any
admissible mollifier (ρε)ε we have:

(1) The net ιρ(f)ε is locally uniformly bounded, i.e.,

(3.5.3) ∀L ⊂ X compact ∃C ′L∃ε0(L) : ιρ(f)ε(x) ≥ C ′L > 0 ∀x ∈ L, ∀ε ≤ ε0(L)
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(2) If, in addition, f ∈W 1,2
loc (X) then 1

ιρ(f)ε →
1
f in W 1,2

loc for ε→ 0.

Proof. Let L ⊂ X be compact, then ιρ(f)ε|L is a finite sum of terms of the form ζα ·((
χα ◦ ψ−1

α fα
)
∗ ρε

)
◦ ψα and since ζα ·

((
χα ◦ ψ−1

α fα
)
∗ ρε

)
◦ ψα =

((
χα ◦ ψ−1

α fα
)
∗ ρε

)
◦ ψα for

ε small enough it suffices to show (3.5.3) for each term which is in turn equivalent to showing the
estimate for functions f ∈ L∞loc (Rn) , f > 0 with compact support.

Let f be such a function and L,K ⊂ Rn be compact with K° ⊃ L and ε so small that L+Bε(0) ⊂
K. For ρ+

ε := max(ρε, 0) and ρ−ε := −min(ρε, 0) conditions one and four in Def. 3.5.4 give
1 = ‖ρ+

ε ‖L1 − ‖ρ−ε ‖L1 and 1 + η ≥ ‖ρ+
ε ‖L1 + ‖ρ−ε ‖L1 , i.e.,∥∥ρ+
ε

∥∥
L1 ≥ 1 and

∥∥ρ−ε ∥∥L1 ≤
η

2
for ε ≤ ε0(η). Now we may estimate

f ∗ ρε(x) = f ∗
(
ρ+
ε − ρ−ε

)
(x) ≥ f ∗ ρ+

ε (x)−
∥∥f ∗ ρ−ε ∥∥L∞(L) ≥ f ∗ ρ

+
ε (x)− ‖f‖L∞(K)

∥∥ρ−ε ∥∥L1(L)

and using f |K ≥ CK gives f ∗ ρ+
ε (x) ≥ CK

´
ρ+
ε (x)dx = CK ‖ρ+

ε ‖L1 ≥ CK , so altogether

ιρ(f)ε = f ∗ ρε(x) ≥ CK − ‖f‖L∞(K)
η

2 ≥
CK
2

for η small enough, showing (3.5.3).

Regarding the second claim we first note that (3.5.3) shows that ιρ(f)ε is invertible in W 1,2
loc (X) ∩

L∞loc(X) and that ∂j
(

1
f

)
= −∂jff2 (see Lem. 3.4.4). Now the convergence follows from 1

f −
1

ιρ(f)ε =
1

f ιρ(f)ε (ιρ(f)ε − f) → 0 in L2
loc(X) and −∂jff2 + ∂j(ιρ(f)ε)

(ιρ(f)ε)2 = 1
f2 (ιρ(f)ε)2 (∂j(ιρ(f)ε)− ∂jf) → 0 in

L2
loc(X) (since ιρ(f)ε → f inW 1,2

loc (X) by Prop. 3.5.5 and 1
f ιρ(f)ε is essentially bounded on compact

sets for ε small). �

Coming back to the issue of compatibility between distributional geometry and generalized ge-
ometry in the Colombeau sense we will now take a closer look at the determinant of a given
distributional metric g and its embedding ιρ(g).

Proposition 3.5.9. Let g be a gt-regular metric on X. Then

W 1,2
loc (Uα) ∩ L∞loc(Uα) 3 det (ιρ(g)ε)ij → det gij inW 1,2

loc and pointwise a.e

for all chart domains Uα of X. In particular, det(ιρ(g)ij) ≈ det gij.

Proof. Pointwise convergence almost everywhere follows from pointwise a.e. convergence
ιρ(g)ε → g. By Lemma 3.4.4 the space W 1,2

loc (X) ∩ L∞loc(X) is an algebra and the Leibniz rule
holds, so

‖∂i(fg)‖L2 ≤ ‖g‖L2 ‖∂if‖L2 + ‖∂ig‖L2 ‖f‖L2 ≤ ‖g‖W 1,2 ‖f‖W 1,2 ,

showing that multiplication of functions in W 1,2
loc (X) ∩ L∞loc(X) is continuous with respect to the

W 1,2
loc -topology. Since (ιρ(g)ε)ij = ιρ(g)ε(∂xi, ∂xj) ∈ C∞(U) converges to gij = g(∂xi, ∂xj) ∈

W 1,2
loc (U)∩L∞loc(U) in W 1,2

loc (U) (by Prop. 3.5.5) this immediately gives convergence of the determi-
nant in W 1,2

loc (U) (and thus also in D′(U)). �

Next we have to investigate which additional conditions we have to impose on a gt-regular metric g
to ensure that det ιρ(g) is invertible in G(U), i.e., that ιρ(g) is a generalized metric. Unfortunately it
turns out that gt-regularity alone is not sufficient and one needs a more complex stability condition
given in [SV09]:
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Definition 3.5.10 (Stability condition for gt-regular metrics). Let g be a gt-regular metric on X,
U be a chart domain and λ1, . . . , λn be the eigenvalues of (gij)1≤ij≤n. For every compact K ⊂ U

let
µK := min

1≤i≤n
ess inf
x∈K

∣∣λi(x)
∣∣

be the (essential) absolute infimum of the eigenvalues of (gij)1≤i,j≤n on K (where we of course
define ess infx∈K f(x) := ess infy∈ψ(K) f(ψ−1(y))). We call g stable if for every compact K with
K ⊂ U for some chart domain U there exists a tensor field AK ∈ C(U, T 0

2U) such that

(3.5.4) ess sup
x∈K

∣∣gij(x)−AKij (x)
∣∣ ≤ C̃K <

µK
2n

for all 1 ≤ i, j ≤ n.

Lemma 3.5.11. Let f ∈ L∞loc(X), U a relatively compact chart domain and L ⊂ U be compact.
Suppose that there exists a function fL ∈ C(L) such that

∥∥f − fL∥∥
L∞(L) ≤ cL. Then

(3.5.5) ∀ compactK ⊂ Lo ∀σ > 0∃ε0 (K,σ) : ‖f − ιρ(f)ε‖L∞(K) ≤ 2cL + σ ∀ε ≤ ε0(K,σ).

Proof. We have

(3.5.6) ‖f − ιρ(f)ε‖L∞(K) ≤
∥∥f − fL∥∥

L∞(K)+
∥∥fL − ιρ(fL)ε

∥∥
L∞(K)+

∥∥ιρ(fL)ε − ιρ(f)ε
∥∥
L∞(K) .

By the assumption and K ⊂ L the first term is bounded by cL and by an argument similar
to the one in Prop. 3.5.5 (for continuous functions f ∗ ρε → f uniformly on compact sets, see
[Eva98], p. 630) the second term converges to zero from above. We will show show below that∥∥ιρ(fL)ε − ιρ(f)ε

∥∥
L∞(K) → cL for ε→ 0, so altogether

‖f − ιρ(f)ε‖L∞(K) ≤ cL + Fε with Fε → cL,

which shows (3.5.5).
It remains to prove the convergence of the third term in (3.5.6): If we define g := fL − f , then∥∥ιρ(fL)ε − ιρ(f)ε

∥∥
L∞(K) = ‖ιρ(g)ε‖L∞(K) by linearity of ιρ. Now let p ∈ K, then

ιρ(g)ε(p)
(3.5.1)=

∑
α∈I

ζα(p) ·
((
χα ◦ ψ−1

α gα
)
∗ ρε

)
(ψα(p)),

where I := {α : ψα(U) ∩
(
suppχα ◦ ψ−1

α +Bε(0)
)
6= ∅} is finite since U is relatively compact.

Because the sum is finite we have

(3.5.7) |ιρ(g)ε(p)| ≤
ˆ
Bε(0)

∑
α∈I
|ζα(p)|χα(ψ−1

α (ψα(p)− y)) |gα(ψα(p)− y)| |ρε(y)| dy
|ζα|≤1
≤

≤ ‖ρε‖L1 ess sup
y∈Bε(0)

∑
α∈I

∣∣χα(ψ−1
α (ψα(p)− y)) gα(ψα(p)− y)

∣∣ .
Now for y ∈ Bε(0) and ε small enough we have ψα(p)− y ∈ ψα(L) (because p ∈ K and ψα(K) ⊂
ψα(Lo) is compact) and thus

ess sup
y∈Bε(0)

|gα(ψα(p)− y)| ≤ ess sup
x∈L

∣∣fL(x)− f(x)
∣∣ ≤ cL,

so (3.5.7) becomes

|ιρ(g)ε(p)| ≤ ‖ρε‖L1 cL ess sup
y∈Bε(0)

∑
α∈I

χα(ψ−1
α (ψα(p)− y)).

By Def. 3.5.4, (4) we have ‖ρε‖L1 → 1 for ε→ 0 and

ess sup
y∈Bε(0)

∑
α∈I

χα(ψ−1
α (ψα(p)− y))→

∑
α∈I

χα(ψ−1
α (ψα(p)− 0)) = 1

for ε→ 0 by continuity, thus
∥∥ιρ(fL)ε − ιρ(f)ε

∥∥
L∞(K) → cL.
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�

Now we are finally ready to show that ιρ(g) is indeed a generalized metric for any stable, gt-regular
metric g on X.

Proposition 3.5.12. Let g be a stable, gt-regular metric on X and ρ an admissible mollifier.
Then for all chart domains Uα of X and all K ⊂ Uα compact there exists ε′0(K) such that{
‖ιρ(gij)ε‖L∞(K) : ε ≤ ε′0(K)

}
is bounded and for

(3.5.8) ∀ compactK ⊂ Uα∃C ′K∃ε0(K) : |det ιρ(g)ε(x)| ≥ C ′K > 0 ∀x ∈ K,∀ε ≤ ε0(K)

In particular, ιρ(g) ∈ G0
2(X) is a generalized metric.

Proof. It clearly suffices to show that this holds for some compact exhaustion (Km)m∈N of
Uα and since Uα ∼= ψα(Uα) ⊂ Rn we may choose the Km such that Ko

m = Km and ψα(∂Km) has
Lebesgue measure zero which implies that ess supx∈Km f(x) = ess supx∈Ko

m
f(x) = supx∈Ko

m
f(x) =

supx∈Km f(x) (and similarly the essential infimum coincides with the infimum) for any continuous
function f on Uα. Now let K = Km for some m ∈ N and choose L ⊂ Uα compact with K ⊂ Lo.
Then the stability condition (3.5.4) and Lem. 3.5.11 give

‖gij − ιρ(gij)ε‖L∞(K) ≤ 2C̃L + σ,

which shows boundedness of ‖ιρ(gij)ε‖L∞(K) in ε for ε small. Since C̃L < µL
2n we may choose

σ so small that 2C̃L + σ < µL
n , i.e., ‖gij − ιρ(gij)ε‖L∞(K) < µL

n for all 1 ≤ i, j ≤ n and ε

small. For x ∈ K let λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x) be the ordered eigenvalues of g(x) and
let λ1

ε(x) ≥ λ2
ε(x) ≥ · · · ≥ λnε (x) be the ordered eigenvalues of (ιρ(gij)ε)ij (x). Now by Weyl’s

Perturbation Theorem ([Bha02], Cor. III.2.6) we have

max
1≤i≤n

∣∣λi(x)− λiε(x)
∣∣ ≤ ‖g(x)− ιρ(g)ε(x)‖ ≤ ess sup

x∈K
‖g(x)− ιρ(g)ε(x)‖

for a.e. x ∈ K. Since the operator norm on n×n matrices (with respect to the euclidean norm on
Rn) satisfies ‖A‖ ≤ n max1≤i,j≤n |Aij | we get

max
1≤i≤n

∣∣λi(x)− λiε(x)
∣∣ ≤ n max

1≤i,j≤n
‖gij − ιρ(gij)ε‖L∞(K) <

< µL − η ≤ µK − η = min
1≤i≤n

ess inf
x∈K

∣∣λi(x)
∣∣− η

for some small η > 0. So ∣∣λi(x)− λiε(x)
∣∣ < ∣∣λi(x)

∣∣− η for all 1 ≤ i ≤ n
almost everywhere on K for ε small. This shows that the absolute values of all eigenvalues of
(ιρ(gij)ε)ij are greater than η almost everywhere on K and hence

|det ιρ(gij)ε(x)| ≥ inf
x∈K
|det ιρ(gij)ε(x)| = ess inf

x∈K
|det ιρ(gij)ε(x)| ≥ ηn > 0

on K by continuity of ιρ(gij)ε. Now by Prop. 3.5.7 we have that ιρ(gij)ε−(ιρ(g)ε)ij → 0 uniformly
on K and thus det ιρ(gij)ε− det ιρ(g)ε → 0 uniformly on K showing that ‖det ιρ(g)ε‖L∞(K) ≥ C

′
K

for some C ′K and ε small enough.

That ιρ(g) is a generalized metric then follows immediately from Rem. 3.5.3 and the fact that we
can always choose an atlas consisting of relatively compact chart domains. �

As a consequence we obtain the stability of the inverse for stable, gt-regular metrics.

Proposition 3.5.13 (Stability of the inverse). Let g be a stable, gt-regular metric on X and
ρ an admissible mollifier. Then (ιρ(g)ε)−1 ∈ Γ(X,T 2

0X) ∩ W 1,2
loc (X,T 2

0X) for ε small enough
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and for all chart domains Uα of X and all K ⊂ Uα compact there exists ε′0(K) such that{∥∥∥((ιρ(g)ε)−1)ij∥∥∥
L∞(K)

: ε ≤ ε′0(K)
}

is bounded. Furthermore

(ιρ(g)ε)−1 → g−1 inW 1,2
loc (X,T 2

0X) and pointwise a.e.

In particular, (ιρ(g))−1 ≈ g−1.

Proof. Let Uα be a chart domain. Then on Uα the components ιρ(g)ijε =
(
(ιρ(g)ε)−1)ij are

given by ιρ(g)ijε = 1
det ιρ(g)εC

ε
ij (where Cεij denotes the matrix of cofactors) which combined with

(3.5.8) immediately gives local uniform boundedness of ιρ(g)ijε and pointwise convergence almost
everywhere. Now det ιρ(g)ε → det g in W 1,2

loc (Uα) by Prop. 3.5.9 and thus 1
det ιρ(g)ε →

1
det g in W 1,2

loc
by the same argument as in the proof of the second claim of Prop. 3.5.8 (note that 1

det ιρ(g)ε is
bounded on compact sets by (3.5.8) for ε small and 1

det g ∈ L
∞
loc(Uα) by uniform non-degeneracy,

which is exactly what is needed). The claim then follows from continuity of multiplication of
functions in W 1,2

loc (X) ∩ L∞loc(X) with respect to the W 1,2
loc -topology (see Prop. 3.5.9). �

From the stability of the inverse it easily follows that the Christoffel symbols as well as all the
common curvature quantities are stable. Regarding the Christoffel symbols we have:

Corollary 3.5.14 (Stability of the Christoffel symbols). Let g be a stable, gt-regular metric on
X and ρ an admissible mollifier. Then

Γikl [ιρ(g)ε]→ Γikl [g] inL2
loc(Uα)

for all chart domains Uα and so Γikl [ιρ(g)] ≈ Γijk [g].

Proof. This follows immediately from Γikl[g] = 1
2g
im
(
∂gmk
∂xl

+ ∂gml
∂xk
− ∂gkl

∂xm

)
, Prop. 3.5.13,

ιρ(g)ε → g in W 1,2
loc and Lemma 3.5.15 below (taking f = ∂gmk

∂xi and h = gim). �

Lemma 3.5.15. Let Lploc(Ω) 3 fε → f in Lploc for some p and hε ∈ L∞loc(Ω) be locally uniformly
bounded, i.e., for all K ⊂ Ω compact there exists ε′0(K) such that

{
‖hε‖L∞(K) : ε ≤ ε′0(K)

}
is

bounded. If hε → h ∈ L∞loc(Ω) pointwise almost everywhere, then

fεhε → fh in Lploc(Ω).

Proof. Let K ⊂ Ω be compact. We estimate

‖fεhε − fh‖Lp(K) ≤ ‖hε‖L∞(K) ‖fε − f‖Lp(K) + ‖fh− fhε‖Lp(K) .

The first term converges to zero since ‖hε‖L∞(K) ≤ CK for all ε small enough. That the second
term converges to zero as well follows by dominated convergence since fhε → fh pointwise a.e.
and |f(x)hε(x)| ≤ CK |f(x)| on K and f ∈ Lp(K). �

Finally we will investigate the Riemann tensors RiemD′(g) and RiemG(ιρ(g)) induced by g and
ιρ(g) respectively.

Theorem 3.5.16 (Compatibility of the Riemann curvature). Let g be a stable, gt-regular metric
on X and ρ an admissible mollifier. Then

RiemG(ιρ(g))ε → RiemD′(g) inD′
(
X,T 1

3X
)
.

So if we denote the space of all stable, gt-regular metrics on X by D′gt(X,T 0
2X), the following

diagram commutes.
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D′gt
(
X,T 0

2X
)

RiemD′
��

ιρ
// im (ιρ) ⊂ G0

2(X)

RiemG
��

D′
(
X,T 1

3X
)

G1
3(X)≈

oo

Proof. This follows immediately from

Riemi
jkl = ∂lΓikj − ∂kΓilj + ΓilmΓmkj − ΓikmΓmlj

and Cor. 3.5.14 by continuity of ∂ : D′ → D′ and multiplication from L2
loc×L2

loc → L1
loc → D′. �

The same holds for the Ricci curvature an the scalar curvature: Since Ricij = Riemk
ikj we clearly

have RicG(ιρ(g)) ≈ RicD′(g). Regarding the scalar curvature we first rewrite equations (3.4.2) and
(3.4.3) in terms of the Christoffel symbols. Since ∇∂idxk = −Γkimdxm and [∂i, ∂j ] = 0, equation
(3.4.2) becomes

Ricij = −∂iΓkkj + Γmkj∂m(−Γkildxl) + ∂kΓkij −Γmij∂m(−Γkkldxl) = −∂iΓkkj −ΓmkjΓkim + ∂kΓkij + ΓlijΓkkl
and (3.4.3) is equivalent to

gij ∂iΓkkj = ∂i
(
gijΓkkj

)
− (∂igij) Γkkj .

This shows that

R = gij
(
−ΓmkjΓkim + ΓlijΓkkl

)
− ∂i

(
gijΓkkj

)
+ (∂igij) Γkkj + ∂k

(
gijΓkij

)
− (∂kgij) Γkij

and thus RG(ιρ(g))ε → RD′(g) in D′(X) by similar convergence arguments as in the proof of Thm.
3.5.16.

Altogether, this section shows that for stable, gt-regular metrics it does not matter whether we
approach the induced geometry on a manifold from a purely distributional or a Colombeau theoretic
viewpoint.

3.6. Einstein equations in vacuum

After the mathematical side note of the previous section we will use this section to discuss some
applications of the various jump formulas derived in subsection 3.3.1 and 3.4.1. Those jump formu-
las are of particular importance in general relativity where they allow us to deduce certain minimal
regularities of the spacetime metric from the regularities of the stress-energy tensor describing the
density of energy and momentum in our spacetime.

In general relativity the Einstein field equations (EFE) relate the curvature (and thus the smooth
metric) of the spacetime to the stress-energy tensor Tij and are given by

(3.6.1) Ricij −
1
2gijR + gijΛ = 8πG

c4
Tij ,

where c denotes the speed of light in vacuum, G is the gravitational and Λ the cosmological
constant. In vacuum one has Tij = 0 and it is possible to rewrite the Einstein field equations in a
much simpler form, namely

(3.6.2) Ricij − gijΛ = 0.

This is an immediate consequence of the following Proposition.

Proposition 3.6.1. The Einstein field equations (3.6.1) are equivalent to

(3.6.3) Ricij − gijΛ = 8πG
c4

(
Tij −

1
2Tgij

)
,
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where T := gijTij.

Proof. This follows easily from some simple calculations. First we contract (3.6.1) with the
metric gij to obtain

4Λ−R = R − 2R + 4Λ = gijRicij −
1
2g

ijgijR + gijgijΛ = gij
8πG
c4

Tij = 8πG
c4

T,

which immediately gives

Ricij − gijΛ = 8πG
c4

Tij −
1
2gij (4Λ−R) = 8πG

c4

(
Tij −

1
2gijT

)
. �

If one assumes Λ = 02 the EFE in vacuum reduce further to the Ricci flat condition

Ric = 0,

however, in the following discussion we will not need this assumption.
As mentioned very briefly in the beginning of this chapter our goal is to study necessary conditions
for low regularity metrics to satisfy (3.6.2), in particular concerning jumps across a hypersurface.
First we note that (3.6.2) is a well-defined equation for any gt-regular metric (which is not true
for the original equation (3.6.1) since it contains the product gijR of a non-smooth function with
a distribution). In the following let g ∈ C

(
X,T 0

2X
)
be a uniformly non-degenerate metric on X

such that g± ∈W 2,p
loc (X±) for some p ≥ n

2 (as in Prop. 3.4.4), then the induced connection ∇ is an
L2

loc-connection satisfying ∇± ∈W 1,p
loc (X±) and the jump formula (3.3.13) for the Ricci curvature

in coordinates (U,ψ) adapted to the hypersurface holds. Now (3.6.2) gives

(3.6.4)
[
dx1 (∇∂i∂j)

]
M
δM (∂1)−

[
dxk (∇∂k∂j)

]
M
δM (∂i) = gijΛ− (Ricij)reg ∈ L1

loc (U) .

Proposition 3.6.2. Let f ∈ L1
loc (M) and u ∈ X (X) such that u|M /∈ Γ (M,TM). Then the

distribution f δM (u) (given by φ 7→
´
M
f iuφ for φ ∈ Ωn (X), cf. Def. 3.3.6) is in L1

loc (X) if and
only if supp f ∩ supp u|M = ∅, i.e., if and only if fδM (u) = 0.

Proof. Let p ∈M and (U,ψ) be adapted coordinates around p with U relatively compact. By
Rem. 3.3.7 it suffices to show that fδM (∂1) ∈ L1

loc (U) if and only if f = 0 for all f ∈ L1
loc (M ∩ U).

Assume that fδM (∂1) = g ∈ L1
loc (U) but f 6= 0 and choose h ∈ D (U) such that

´
M
f h dx2 ∧ · · · ∧

dxn 6= 0. For φ := h dx1∧· · ·∧dxn ∈ Ωn (U) this implies 〈fδM (∂1) , φ〉 =
´
M
f h dx2∧· · ·∧dxn 6= 0.

Let η̃ε
(
x1, x2, . . . , xn

)
:= ηε (x1), where ηε ∈ C∞ (R) is defined by ηε(x) := η (x/ε) with

η(x) =
{
e
− 1

1−x2 |x| < 1
0 |x| ≥ 1

.

Then ψ∗η̃ε ∈ C∞ (U), ψ∗η̃ε|M = 1
e , ψ∗η̃ε ≤

1
e ∈ L

1 (U) and ψ∗η̃ε → 0 pointwise almost everywhere,
then

0 6= 1
e

ˆ
M

f i∂1φ = 〈f δM (∂1) , ψ∗η̃ε φ〉 =
ˆ
X

g ψ∗η̃ε φ→ 0

by dominated convergence, giving a contradiction. The other direction is obvious. �

This shows that (3.6.4) requires that the singular part of the Ricci curvature vanishes, which is
equivalent to

[
dx1 (∇∂i∂j)

]
M

= 0 for i = 2, . . . , n (because for those i, δM (∂i) = 0) and j = 1, . . . , n
and

∑n
k=2

[
dxk (∇∂k∂j)

]
M

= 0 for all j = 1, . . . , n.
A sufficient condition for the vanishing of the singular part of the Ricci curvature is the vanishing
of the singular part [∇uw]M δM (v) − [∇vw]M δM (u) of the Riemann tensor Riem (u,v) w (as
given by the jump formula (3.3.11)), which is equivalent to [∇uw]M = 0 for all u,w ∈ X (X) with

2Experiments indicate that the actual value is approximately Λ ≈ 1.7 × 10−121 in Planck units, i.e., units where
G = c = ~ = 1 (see [BS11]).
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u|M ∈ Γ (M,TM). We are going to see a little bit later (in Prop. 3.6.5) that those two conditions
are even equivalent under certain additional assumptions (namely the hypersurface being nowhere
null). For now we will study some other equivalent conditions to the vanishing of the singular part
of the Riemann tensor.

Lemma 3.6.3. Let γ : W k,p
loc
(
X
)
→ W k−1,p

loc (∂X) be the trace operator from Thm. 3.1.4, f ∈
W k+1,p

loc
(
X
)
and u ∈ X

(
X
)
such that u|∂X ∈ Γ (∂X, T (∂X)). Then γ (u (f)) = u|∂X (γ (f)). In

particular for f ∈ W 2,p
loc (X±) and 2 ≤ i ≤ n one has ∂i ([f ]M ) = [∂if ]M in coordinates adapted to

the hypersurface M .

Proof. First we consider the case that f ∈ C∞
(
X
)
. Let p ∈ ∂X and (U,ψ) a chart at the

boundary around p, then any u ∈ X
(
X
)
such that u|∂X ∈ Γ (∂X, T (∂X)) can be written as

u =
∑n
i=2 u

i ∂
∂xi and

u (f) (p) =
n∑
i=2

ui (p) Di

(
f ◦ ψ−1) (ψ (p)) =

n∑
i=2

ui (p) Di

(
f ◦ ψ−1∣∣

{0}×Rn−1

)
(ψ (p)) =

=
n∑
i=2

ui (p) Di

(
f |∂X ◦ (ψ|∂X)−1

)
(ψ (p)) = u|∂X (f |∂X) (p) ,

so γ (u (f)) = u (f)|∂X = u|∂X (f |∂X) = u|∂X (γ (f)). Now if f ∈ W k+1,p
loc

(
X
)
we can choose

fε ∈ C∞
(
X
)
such that fε → f in W k+1,p

loc
(
X
)
and thus

γ (u (f)) = lim
ε→0

γ (u (fε)) = lim
ε→0

u|∂X (γ (fε)) = u|∂X (γ (f))

in D′ (∂X). �

Proposition 3.6.4. The following are equivalent:

(1) The singular part of the Riemann tensor vanishes, i.e., [∇uw]M = 0 for all u,w ∈ X (X)
with u|M ∈ Γ (M,TM),

(2) [∂1gij ]M = 0 for i, j = 2, . . . , n in adapted coordinates (U,ψ)
(3) [u (g (v,w))]M = 0 for u,v,w ∈ X (X) such that v|M , w|M ∈ Γ (M,TM).

Proof. To show that the first two statements are equivalent we note that (1) is equivalent
to
[
Γkij ∂k

]
M

=
[
Γkij
]
M
∂k|M = 0 in adapted coordinates for 1 ≤ j ≤ n and 2 ≤ i ≤ n. Now for

2 ≤ i, j ≤ n we have
(3.6.5)[

Γkij
]
M

= 1
2 gkm

∣∣
M

[∂igjm + ∂jgim − ∂mgij ]M = −1
2 gkm

∣∣
M

[∂mgij ]M = −1
2 gk1∣∣

M
[∂1gij ]M ,

where we used Lemma 3.6.3 and continuity of g. This shows that [∂1gij ]M = 0 for all 2 ≤ i, j ≤ n
if and only if

[
Γkij
]
M

= 0 by uniform non-degeneracy of g, proving that (1) implies (2). For
(2) =⇒ (1) note that (again by Lemma 3.6.3) (2) is equivalent to [∂mgij ]M = 0 for all m and
all 2 ≤ i, j ≤ n immediately giving

[
Γkij
]
M

= 0 for 2 ≤ i, j ≤ n by (3.6.5) and that for j ≥ 2,[
Γk1j
]
M

= 1
2 g

km
∣∣
M

[∂1gjm − ∂mg1j ]M = 1
2 g

k1
∣∣
M

[∂1gj1 − ∂1g1j ]M = 0.

That (2) is equivalent to (3) is obvious (again taking into account that [∂mgij ]M = ∂m [gij ]M = 0
for all m 6= 1 and i, j ≥ 2 anyway). �

Our next goal is to show that for nowhere null hypersurfaces the singular part of the Ricci tensor
vanishes if and only if the singular part of the Riemann tensor vanishes. To do so we need the
so-called normal one-form on the hypersurface η defined in section 4.1 below and the vector field
n = η] ∈ W k,p

loc (X,TX) (for g ∈ W k,p
loc (X)) that is metrically equivalent to η (and also introduced

in section 4.1). The hypersurface M is called nowhere null if g(p) (np,np) 6= 0 (or equivalently if
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np /∈ TpM , see Rem. 4.4.2) for all p ∈ M (see Def. 4.4.1). Some additional properties of nowhere
null hypersurfaces will be discussed in section 4.4 but will not be needed here.

Proposition 3.6.5. If the hypersurface M is nowhere null, then the singular part of the Ricci
tensor vanishes if and only if the singular part of the Riemann tensor vanishes.

Proof. That the vanishing of the singular part of the Riemann tensor implies the vanishing
of the singular part of the Ricci tensor is obvious because the Ricci tensor is a contraction of the
Riemann tensor, so it remains to show the other direction.

Since the hypersurface is nowhere null we have g (n,n) 6= 0 onM . Given p ∈M let
(
U,
(
x1, . . . , xn

))
be adapted coordinates around p. Because the ∂

∂xi

∣∣
p
∈ TpM are a basis of TpM for 2 ≤ i ≤ n for

p ∈ M ∩ U and np /∈ TpM (see Rem. 4.4.2) we have that
(
n(dx1)

)
(p) 6= 0 and thus n(dx1) 6= 0

in some neighborhood V of p by continuity of n (clearly n has the same regularity as g). So the
∂1-component of n is non-zero on V , which shows that

{
n, ∂

∂x2 , . . . ,
∂
∂xn

}
forms a basis of TV . Its

dual basis
{
ω(1), . . . , ω(n)} satisfies ω(1)

∣∣
M

= 1
g(n,n)η

∣∣∣
M

(since η(n) = g(n,n) and η|M (u) = 0 for
u ∈ X(M) by definition, see (4.1.1)). Looking at (3.3.12) and replacing the basis {∂1, . . . , ∂n} with{

n, ∂
∂x2 , . . . ,

∂
∂xn

}
and

{
dx1, . . . , dxn

}
with

{
ω(1), . . . , ω(n)} shows that on V the singular part of

the Ricci tensor becomes

Ric(u,v)sing = −
([
ω(1) (∇nv)

]
M

+
n∑
i=2

[
ω(i) (∇∂xiv)

]
M

)
δM (u) +

[
ω(1) (∇uv)

]
M
δM (n)

since δM (∂xj) = 0 for 2 ≤ j ≤ n by Rem. 3.3.7. Now let u,v ∈ X (X) with u|M , v|M ∈ Γ (M,TM),
then δM (u) = 0 and we get

Ric(u,v)sing =
[
ω(1) (∇uv)

]
M
δM (n)

By Prop. 3.6.2 this vanishes if and only if

(3.6.6)
[
ω(1) (∇uv)

]
M

=
[
g(∇uv, (ω(1))])

]
M

= 0.

Using the Koszul formula (3.4.1), continuity of g and that

(3.6.7) [u(g(v,w))]M
Rem. 3.1.6= ω(1)(u)

∣∣∣
M

[n (g (v,w))]M

since [u(g(v,w))]M = 0 for u ∈ X (X) with u|M ∈ X (M) and u− ω(1)(u)n
∣∣
M
∈ X(M), we have

2 [g (∇uv,w)]M
(3.4.1)= [u (g (v,w))]M + [v (g (w,u))]M − [w (g (u,v))]M − [g (u, [v,w])]M

+ [g (v, [w,u])]M + [g (w, [u,v])]M
(3.6.7)= ω(1)(u)

∣∣∣
M

[n (g (v,w))]M + ω(1)(v)
∣∣∣
M

[n (g (w,u))]M

− ω(1)(w)
∣∣∣
M

[n (g (u,v))]M
for all u,v,w ∈ X(X). This gives

2
[
g(∇uv, (ω(1))])

]
M

= ω(1)(u)
∣∣∣
M

[
n
(
g
(

v, (ω(1))]
))]

M
+

+ ω(1)(v)
∣∣∣
M

[
n
(
g((ω(1))],u)

)]
M
− ω(1)((ω(1))])

∣∣∣
M

[n (g (u,v))]M .

Now for u,v ∈ X (X) with u|M , v|M ∈ Γ (M,TM) equation (3.6.6) is equivalent to

[n (g (u,v))]M = 0

since ω(1) (u)
∣∣
M

= ω(1)(v)
∣∣
M

= 0 and ω(1)((ω(1))]) = 1
g(n,n)η( 1

g(n,n)n) = 1
g(n,n) 6= 0 on M . So we

have shown that [w (g (u,v))]M = 0 for all u,v,w ∈ X(X) with u|M , v|M ∈ Γ (M,TM) which is
equivalent to the vanishing of the singular part of the Riemann tensor by Prop. 3.6.4. �



CHAPTER 4

Geometry induced on a hypersurface

In this last part we are going to study how a given L2
loc-connection (or gt-regular metric) on X

can induce a connection (or metric) on a hypersurface M ⊂ X. As in the previous section X

is assumed to be oriented and we further assume that X = X+ ∪ X− where X± are manifolds
with boundary, ∂X± = M (implying that M is oriented and we choose the orientation induced
from X−) and X+ ∩X− = M . In particular we will be studying the difference between null and
non-null hypersurfaces and are going to derive the Gauss and Codazzi equations. We are mainly
going to follow [LM07] and [MS93].

4.1. Normal form and rigging vector fields

First we are going to look at ways in which an (L2
loc-)connection ∇ on X induces a connection on

M . For this we need projection operators (.)q : D′ (M, TX|M )→ D′ (M,TM) for vector fields and
(.)q : D′ (M, T ∗X|M )→ D′ (M,T ∗M) for one-forms. These are defined with the help of a normal
form η ∈ T 0

1 (X) for the hypersurface M , that is a one-form η such that for all p ∈M

(4.1.1) η (u) (p)
{

= 0 u (p) ∈ TpM
6= 0 u (p) /∈ TpM

.

The next proposition shows the existence of such an object (pointwise existence of η|p is of course
obvious, but it is a priori not clear that there exists a smooth object with the desired pointwise
properties).

Proposition 4.1.1. Let X be an orientable manifold and M ⊂ X an orientable hypersurface.
Then there exists a one-form η ∈ T 0

1 (X) satisfying (4.1.1).

Proof. Choose some Riemannian metric g on X, then there exists a normal unit vector field n
onM (by Rem. 2.3.1). Now define η(u) = g(n,u) for u ∈ X(X). Then η ∈ T 0

1 (X) and η(u)(p) = 0
for u(p) ∈ TpM and η(u)(p) 6= 0 for u(p) /∈ TpM since 0 6= n(p) ∈ TpM⊥. �

Note that while (4.1.1) does not determine η completely it does determine η|p for p ∈ M up to a
scalar multiplicative factor σ (p).1

Now there are two different ways to obtain vector fields defined on M from the normal form η.
The first is via metric equivalence of vector fields and one-forms: Given a gt-regular metric g we
can define a normal vector field n ∈ D′ (X,TX) as n := η] (see the beginning of Section 3.4 for
details). Note that the regularity for n will be the same as for the inverse metric gij . The second
does not require a metric and instead uses duality to define so called rigging vector fields `:

Definition 4.1.2 (Rigging vector field). A section ` ∈ Γ (M, TX|M ) is called a rigging vector field
(or simply a rigging) for M if

` (p) /∈ TpM ∀p and η (`) ≡ 1.

1Given two normal one-forms η1 and η2 one hasη1|p = σ (p) η2|p for σ (p) = η1(∂x1)(p)/η2(∂x1)(p).

49
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Note that the second requirement can be easily achieved from the first one by replacing ` with
1
η(`)` (or η with 1

η(`)η). A similar argument as in Prop. 4.1.1 (setting ` = n for any unit normal
vector field with respect to some Riemannian metric g on X) shows that such a rigging vector
field always exists. It is, however, highly non unique: there exist lots of different and linearly
independent riggings (for example adding an arbitrary vector field u ∈ X (M) to any given rigging
` produces a new rigging). So when using such a rigging to define objects on the hypersurface (e.g.
an induced connection, . . . ) we will have to take note on whether these depend on the rigging and
if so, how.

Since dimTpM = n− 1 we may use `p ≡ ` (p) to decompose TpX in a direct sum

(4.1.2) TpX = 〈`p〉 ⊕ TpM,

where 〈`p〉 denotes the vector space generated by `p. This means that we can decompose any
vector field u ∈ Γ (M, TX|M ) (and any distribution u ∈ D′ (M, TX|M )) in a part tangential to
the hypersurface and a part proportional to `, we write

(4.1.3) u = η (u) `+ uq,

where uq ∈ X (M) (or D′ (M,TM), respectively) is called the rigging projection of u (note that uq

depends on the rigging, so we will sometimes write uq
` to highlight this dependence).

The choice of a rigging ` also allows a decomposition of the cotangent space T ∗pX at p ∈M similar
to that of the tangent space given in equation (4.1.2): The main problem here is that T ∗pM is a
priori not a subset of T ∗pX, however, we may identify

T ∗pM
∼=
{
ω ∈ T ∗pX : ω (`) = 0

}
to obtain

(4.1.4) T ∗pX = 〈ηp〉 ⊕ T ∗pM.

Again this allows the decomposition of any one-form ω ∈ D′ (M, T ∗X|M ) as

(4.1.5) ω = ω (`) η + ωq,

where ωq ∈ D′ (M,T ∗M) is called the normal projection of ω. Note that ωq is independent of the
rigging ` since 〈ωq,u〉 = 〈ω,u〉 for u ∈ X (M).

4.2. The projected connection and the second fundamental form

In the following it will be important keep in mind when the vector fields used are in X (M)
and when in X (X). To better distinguish between those two we will from now on generally use
the letters u,v,w for objects in X (M) and x,y, z for X (X) (or ũ, ṽ if we want to specify that
they are extensions of u,v). Similarly we will use ω, θ ∈ Γ

(
M,T 0

1M
)
for one forms on M and

ζ, ξ ∈ Γ
(
X,T 0

1X
)
for one forms on X.

Given a W k,p
loc -connection ∇ on X we can define an operator ∇ : Γ (M, TX|M )× Γ (M, TX|M )→

W k−1,p
loc (M,TM) on M locally via

(4.2.1) (∇uv) (p) := (γ (∇ũṽ))q (p) for u,v ∈ Γ (M, TX|M ) ,

where ũ, ṽ ∈ X (X) such that ũ, ṽ|U∩M = u,v|U∩M for some open U ⊂ X (with p ∈ U) and γ is the
trace operator from Prop. 3.1.7 (to be precise, in the language of subsection 3.3.1, γ (T ) := γ+ (T+)
for T ∈W 1,p

loc (X,T rsX) which is equal to γ− (T−) since they coincide for smooth tensor fields).

Lemma 4.2.1. Let ∇ be a W k,p
loc -connection (for some k ≥ 1) on X. Then the operator ∇ given by

(4.2.1) is well-defined.
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Proof. First we show that there exist appropriate extensions ũ ∈ X (X): By setting f̃ =
χ f ◦ ψ|−1

U∩M ◦ prRn−1 ◦ ψ ∈ C∞ (X) for an adapted chart ψ around p (where χ is an appropriate
cut-off) we see that we can locally extend smooth functions f ∈ C∞ (M). Now u ∈ X (M) is
locally given by u =

∑n
i=2 u

i∂i in adapted coordinates and setting ũ =
∑n
i=2 ũ

i∂i gives the desired
extension around p.

Next we have to check that γ (∇xy) only depends on x|M and y|M for all x,y ∈ X (X). In
coordinates adapted to the hypersurface we have

γ(∇xy) = x
(
yi
)∣∣
M
γ (∂i) + xiyj

∣∣
M
γ
(
∇∂j∂i

)
by the Leibniz rule and C∞ (M)-linearity of the connection operator in the first argument (see
Def. 3.3.1) and Rem. 3.1.6 as well as Lemma 3.6.3. Since x|M ∈ X (M) we have x

(
yi
)∣∣
M

=∑n
i=2 x

i
∣∣
M
∂i
(
yi
)∣∣
M

=
∑n
i=2 x

i
∣∣
M
∂i
(
yi
∣∣
M

)
showing that this also only depends on x|M and

y|M . �

Since X (M) ⊂ Γ (M, TX|M ) we may restrict ∇ to obtain an operator from X (M) × X (M) to
W k−1,p

loc (M,TM) (which we will again denote by ∇). This gives us a connection on M .

Proposition 4.2.2. The operator ∇ : X (M) × X (M) → W k−1,p
loc (M,TM) defines a W k−1,p

loc -
connection on M , the so-called projected connection.

Proof. The required properties, i.e., that ∇ is C∞ (M)−linear in the first and R-linear in
the second argument and satisfies the Leibniz rule follow immediately from those same properties
of ∇ (and Remark 3.1.6). �

Remark 4.2.3. If ∇ is torsion free then the projected connection ∇ is torsion free as well since

∇uv−∇vu = (γ (∇ũṽ−∇ṽũ))q = (γ ([ũ, ṽ]))q = ([ũ, ṽ]|M )q = [u,v]

for all u,v ∈ X (M) by the properties of the Lie bracket on submanifolds. However, even if ∇ is
the Levi-Civita connection for some smooth metric g and the pullback of g is actually a metric on
M the projected connection ∇ need not be the Levi-Civita connection associated with the pullback
metric j∗g on M : Obviously ∇ depends on the choice of the rigging vector field ` and, by (4.1.3)
and (4.2.1),

(4.2.2) g (∇xy, z)|M = g (∇xy|M , z|M ) = g
(

(∇xy|M )q + η (∇xy|M ) `, z|M
)

=

= j∗g
(
∇x|M y|M , z|M

)
+ η (∇xy|M ) g (`, z|M )

for x,y, z ∈ X (X) with restrictions in X (M). So we have

∇u (j∗g) (v,w) = u (g (v,w))−j∗g (∇uv,w)−j∗g (v,∇uw) (4.2.2)= u (g (v,w))− g (∇ũṽ, w̃)|M +
+ η (∇ũṽ|M ) g (`,w)− g (∇ũw̃, ṽ)|M + η (∇ũw̃|M ) g (`,v) = (∇ũg)(ṽ, w̃)|M +

+ η (∇ũṽ|M ) g (`,w) + η (∇ũw̃|M ) g (`,v) ∇g=0= η (∇ũṽ|M ) g (`,w) + η (∇ũw̃|M ) g (`,v)

for all u,v,w ∈ X (M). This shows that ∇ (j∗g) = 0 if g (`,v) = `[(v) = 0 (where `[ = gij`
jdxi)

for all v ∈ X (M) that is if `[ ∝ η|M (since `[(p) 6= 0 it satisfies the conditions (4.1.1) and thus
is proportional to η|M by uniqueness of the normal form up to a scalar multiple). If `[ 6∝ η then
∇ (j∗g) need not be zero since in general ∇ũṽ|M /∈ X(M) even if ũ|M , ṽ|M ∈ X (M) (in some
special cases it may still be zero, e.g., for hyperplanes in Rn with the standard euclidean metric).

Next we introduce the second fundamental form of the hypersurface.
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Definition 4.2.4 (Second fundamental form). Let ∇ be a W k,p
loc - connection (with k ≥ 1) on X.

The second fundamental form on M is the tensor field K ∈W k−1,p
loc

(
M,T 0

2M
)
given by

K (u,v) := γ ((∇ũη) (ṽ))

for u,v ∈ X (M), where ũ, ṽ are (local) extensions of u,v.

That this is well-defined follows from a similar argument to the one in Lemma 4.2.1.

Proposition 4.2.5. The second fundamental form satisfies

(4.2.3) γ (∇ũṽ) = ∇uv−K (u,v) `

for all u,v ∈ X (M) and

(4.2.4) K (u,v)−K (v,u) = η (γ (T (ũ, ṽ))) ,

where T ∈W k,p
loc
(
X,T 0

2X
)
denotes the torsion tensor field given by T (x,y) = ∇xy−∇yx− [x,y].

If ∇ is torsion free then K is symmetric.

Proof. To show (4.2.3) it suffices to show thatK (u,v) = −η (γ (∇ũṽ)) by (4.1.3) and (4.2.1).
We have

(4.2.5) K (u,v) = γ ((∇ũη) (ṽ)) = γ (ũ (η(ṽ)))− γ (η(∇ũṽ)) = 0− η (γ (∇ũṽ))

by Lem. 3.6.3 since u,v ∈ X (M) implies η (ṽ)|M = η (v) = 0.
Concerning (4.2.4) we note that η (γ ([ũ, ṽ])) = η ([u,v]) = 0 since the Lie bracket of two vector
fields in X (M) is well-defined and again in X (M). This and (4.2.5) immediately gives (4.2.4). �

Remark 4.2.6. That the expression η (γ (T (ũ, ṽ))) does not depend on the extensions of u and v is
clear since the left hand side of (4.2.4) does not depend on them. However, there is a more general
way to see that this must be true. For T ∈ Γ

(
X,T 0

sX
)
the pullback tensor field j∗T ∈ Γ

(
M,T 0

sM
)

is defined by
j∗T (v1, . . . ,vs) (p) = T (p) (v1 (p) , . . . ,vs (p))

which is equal to γ (T (ṽ1, . . . , ṽs)) for any (local) extensions ṽ1, . . . ṽs of v1, . . . ,vs. This shows
that the pullback map is continuous with respect to the W k,p

loc -topology on Γ
(
X,T 0

sX
)
and the

W k−1,p
loc -topology on Γ

(
M,T 0

sM
)
for all k ≥ 1 and thus extends to all of W k,p

loc
(
X,T 0

sX
)
. Clearly

one still has that j∗T (v1, . . . ,vs) = γ (T (ṽ1, . . . , ṽs)) for T ∈ W k,p
loc
(
X,T 0

sX
)
and in particular

the right hand side is independent of the chosen extensions.

4.2.1. Gauss and Codazzi equations. Next we want to study the curvature of M . On
the one hand, if ∇ is at least in W 1,2

loc (X), the projected connection ∇ ∈ L2
loc (M) (see (4.2.1) and

Prop. 4.2.2) on M gives rise to a Riemann curvature tensor Riem ∈ D′
(
M,T 1

3M
)
on M .

On the other hand, if ∇ is at least in W k,p
loc (X) for some k ≥ 2 and p > n

k (or p = 1 and k ≥ n), we
can use the Riemann tensor of ∇ on X to obtain γ(Riem) ∈ W k−2,p

loc
(
M, T 1

3X
∣∣
M

)
(since Riem

itself is at least in W k−1,p
loc (X) by Rem. 3.3.5) and by T 0

3X
∣∣
M
⊂ T 0

3M (because TM ⊂ TX|M ) we
may restrict it to get γ(Riem) ∈W k−2,p

loc
(
M,T 0

3M ⊗ T 1
0X
∣∣
M

)
.

Before we can relate these two objects with each other, we have to investigate in which sense an
analogue to (4.2.3) holds for v ∈W k−1,p

loc (M,TM). For ∇ ∈W k,p
loc (X) for some k ≥ 2 and p > n−1

k−1
(or p = 1 and k ≥ n) we may extend ∇ ∈W k−1,p

loc (M) to

∇ : X (M)×W k−1,p
loc (M,TM)→W k−2,p

loc (M,TM)

by setting (∇uv) (ω) = u (v (ω))− v (∇uω) for ω ∈ Γ
(
M,T 0

1M
)
(see Prop. 3.3.3 and Rem. 3.3.5)

and K : X (M)× X (M)→W k−1,p
loc (M) to

K : X (M)×W k−1,p
loc (M,TM)→W k−1,p

loc (M)
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by K
(
u, vi∂i

)
= viK (u, ∂i).

Proposition 4.2.7. Let ∇ ∈ W k,p
loc (X) for some k ≥ 2 and p > n−1

k−1 (or p = 1 and k ≥ n). If
v ∈W k−1,p

loc (M,TM) and there exists a ṽ ∈W k,p
loc (X,TX) such that γ (ṽ) = v then for u ∈ X(M),

(4.2.6) γ (∇ũṽ) = ∇uv−K (u,v) `.

Proof. First we note that p > n−1
k−1 implies also p > n

k (from pk− p > n− 1 one immediately
obtains pk > n since p ≥ 1), so the regularity assumptions on ∇ guarantee that both W k,p

loc (X)
and W k−1,p

loc (M) are algebras (with continuous multiplication) and so if fn → f in W k,p
loc (X) and

g ∈W k,p
loc (X) then ∂ifn → ∂if in W k−1,p

loc (X) and fng → fg in W k,p
loc (X).

Now choose a sequence ṽn ∈ X (X) such that ṽn → ṽ in W k,p
loc (X) and let ũ ∈ X (X). For

every ω ∈ Γ
(
X,T 0

1X
)
the function (∇ũṽn) (ω) = ũ (ṽn (ω)) − ṽn (∇ũω) converges to (∇ũṽ) (ω)

in W k−1,p
loc (X). Thus γ (∇ũṽn) → γ (∇ũṽ) in W k−2,p

loc (M, TX|M ). Looking at the right hand
side of (4.2.6) the same arguments show that ∇uvn → ∇uv in W k−2,p

loc (M) (note that vn =
γ (ṽn) → γ (ṽ) = v in W k−1,p

loc (M)) and K (u,vn) = γ ((∇ũη) (ṽn)) → γ ((∇ũη) (ṽ)) = K (u,v)
in W k−1,p

loc (M), which together with the fact that (4.2.6) holds for smooth v (see (4.2.3)) proves
the proposition. �

Now we are ready to prove the following proposition.

Proposition 4.2.8. Let ∇ ∈W k,p
loc (X) for some k ≥ 2 and p > n−1

k−1 (or p = 1 and k ≥ n). Then

γ(Riem) (u,v) w = Riem (u,v) w +K (v,w) γ
(
∇ũ ˜̀)−K (u,w) γ

(
∇ṽ ˜̀)

+ (∇uK) (v,w) `− (∇vK) (u,w) `(4.2.7)

for all u,v,w ∈ X (M).

Proof. We first calculate

(4.2.8) γ (∇ũ∇ṽw̃) = γ
(
∇ũ
(
∇ṽw̃− η (∇ṽw̃) ˜̀+ η (∇ṽw̃) ˜̀)) =

(4.2.6)= ∇u
(
γ
(
∇ṽw̃− η (∇ṽw̃) ˜̀))−K (u, γ (∇ṽw̃− η (∇ṽw̃) ˜̀)) `+ γ

(
∇ũ
(
η (∇ṽw̃) ˜̀)) =

(4.2.5)=
(4.2.6)

∇u∇vw−K (u,∇vw) `− γ
(
∇ũ
(
−η (∇ṽw̃) ˜̀)) =

(4.2.5)= ∇u∇vw−K (u,∇vw) `− u (K (v,w)) `−K (v,w) γ
(
∇ũ ˜̀) ,

where we used that γ (fg) = γ (f) γ (g) for f, g ∈W k,p
loc (X) (which can be shown by approximating

f and g by smooth functions) and that γ (−η (∇ṽw̃)) = K (v,w) (see (4.2.5)). Now

γ(Riem) (u,v) w = γ (Riem (ũ, ṽ) w̃)
(4.2.8)= −∇u∇vw +K (u,∇vw) `+ u (K (v,w)) `+K (v,w) γ

(
∇ũ ˜̀)

+∇v∇uw−K (v,∇uw) `− v (K (u,w)) `−K (u,w) γ
(
∇ṽ ˜̀)+ γ

(
∇[ũ,ṽ]w̃

)
(4.2.9)=
(4.2.6)

Riem (u,v) w−K ([u,v] ,w) `+ (∇uK) (v,w) `+K (∇uv,w) `

− (∇vK) (u,w) `−K (∇vu,w) `+K (v,w) γ
(
∇ũ ˜̀)−K (u,w) γ

(
∇ṽ ˜̀)

(4.2.10)= Riem (u,v) w +K (v,w) γ
(
∇ũ ˜̀)−K (u,w) γ

(
∇ṽ ˜̀)

+ (∇uK) (v,w) `− (∇vK) (u,w) `,

where we used the fact that

(4.2.9) u (K (v,w))−K (v,∇uw) = (∇uK) (v,w) +K (∇uv,w)
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for the third and

(4.2.10) [u,v] = γ ([ũ, ṽ])q = γ (∇ũṽ)q − γ (∇ṽũ)q = ∇uv−∇vu

by Rem. 4.2.3 for the last equality. �

A somewhat similar formula may be derived for γ (Riem) (u,v) ` (again u,v are assumed to be
in X (M)): Using

γ
(
∇ũ∇ṽ ˜̀) = γ

(
∇ũ
(
∇ṽ ˜̀− η(∇ṽ ˜̀)˜̀+ η(∇ṽ ˜̀)˜̀))

(4.2.6)=
(4.1.3)

∇u (∇v`)−K (u,∇v`) `+ η(γ(∇ṽ ˜̀)) γ(∇ũ ˜̀)) + u(η(γ(∇ṽ ˜̀)))`

(4.2.5)=
(4.2.6)

∇u (∇v`) + η(γ(∇ṽ ˜̀))∇u`+K (u,∇v`) `+ η(γ(∇ṽ ˜̀)) η(γ(∇ũ ˜̀))`

+ u(η(γ(∇ṽ ˜̀)))`(4.2.11)

we obtain

γ (Riem) (u,v) ` = γ
(
∇[ũ,ṽ] ˜̀

)
− γ

(
∇ũ∇ṽ ˜̀)+ γ

(
∇ṽ∇ũ ˜̀)

(4.2.1)=
(4.1.3)

∇[u,v]`+ η
(
γ
(
∇[ũ,ṽ] ˜̀

))
`− γ

(
∇ũ∇ṽ ˜̀)+ γ

(
∇ṽ∇ũ ˜̀)

(4.2.11)= Riem (u,v) `+ η
(
γ
(
∇[ũ,ṽ] ˜̀

))
`− η

(
γ
(
∇ṽ ˜̀))∇u`+ η

(
γ
(
∇ũ ˜̀))∇v`

+
{

v(η(γ(∇ũ ˜̀)))− u(η(γ(∇ṽ ˜̀))) +K (v,∇u`)−K (u,∇v`)
}
`,(4.2.12)

where Riem (u,v) ` is defined in the obvious way, namely

Riem (u,v) ` = ∇[u,v]`− (∇u∇v`−∇v∇u`) .

The equations (4.2.7) and (4.2.12) provide a generalization of the well-known Gauss and Codazzi
equations to general hypersurfaces. We will later see that in the case of non-null hypersurfaces
(4.2.7) reduces to the usual Gauss and Codazzi equations and (4.2.12) becomes equivalent to
(4.2.7).

4.3. Geometry on a hypersurface induced by a metric

In the previous section, where we discussed the projected connection and the second fundamental
form we did not need any metric on X, we only used the connection ∇. Now given a (sufficiently
regular) metric g on X we of course have its Levi-Civita connection ∇ on X and thus get a
projected connection ∇ on M . However, now this is not necessarily the only natural connection
on M associated with ∇.

From now on we will assume that we have a uniformly non-degenerate metric g on X that is at
least of W k+1,p

loc (X)-regularity for some k ≥ 2 and p > n−1
k−1 (or p = 1 and n = k).

Remark 4.3.1. While some of the following results may be true under weaker regularity assump-
tions, the above hypotheses guarantee a number of important things:

(1) The Levi-Civita connection ∇ on X has W k,p
loc (X)-regularity (see Prop. 3.4.6) and all the

results of the previous section hold, in particular ∇ is well-defined and has W k−1,p
loc (M)-

regularity,
(2) the spaces W k+1,p

loc (X) , W k,p
loc (X) , W k,p

loc (M) and W k−1,p
loc (M) are algebras with contin-

uous multiplication (see Prop. 3.1.8),
(3) by the Sobolev embedding ([AF03], Thm. 4.12 A) we have both

W k+1,p
loc (X) ⊂W k,p

loc (X) ↪→ C (X)
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and
W k,p

loc (M) ⊂W k−1,p
loc (M) ↪→ C (M) ,

(4) g is gt-regular (since W k+1,p
loc (X) ⊂W 1,2

loc (X), see Rem. 3.3.5) and
(5) the metric is invertible and satisfies g−1 ∈W k+1,p

loc
(
X,T 2

0X
)
(which follows immediately

from the algebra property of W k+1,p
loc (X), uniform non-degeneracy of g and the charac-

terization of invertible elements in W k+1,p
loc (X)).

Note that the uniform non-degeneracy requirement can be replaced with the usual pointwise non-
degeneracy (clearly uniform non-degeneracy implies pointwise non-degeneracy, the converse follows
from continuity of |det gij | because continuous functions attain their minimum on compact sets).

On X the metric g offers a way to identify W k,p
loc (X,T rsX) and W k,p

loc (X,T srX). This is done using
the C∞ (X)−linear isomorphism

[X : W k,p
loc (X,TX)→W k,p

loc
(
X,T 0

1X
)

x 7→ (y 7→ g(x,y))

and its inverse

]X : W k,p
loc
(
X,T 0

1X
)
→W k,p

loc (X,TX)
ζ 7→

(
ξ 7→ g−1(ζ, ξ)

)
Locally x[X is given by

(
x[X

)
i

= gij xj and ζ]X by
(
ζ]X
)i = gijζj where

(
gij
)

1≤i,j≤n is the matrix
inverse of (gij)1≤i,j≤n. Our next goal will be to define analogous maps on M .

From g we obtain the trace γ (g) ∈ W k,p
loc
(
M, T 0

2X
∣∣
M

)
and, by restriction, a (0, 2)−tensor field

gM ∈ W k,p
loc
(
M,T 0

2M
)
on M . In general gM will not be non-degenerate and thus not provide

a metric on M (the special case where gM actually is a metric on M is treated in section 4.4
below), in particular the matrix

(
(gM )ij

)
1≤i,j≤n−1

= (γ(gij))1≤i,j≤n−1 (for coordinates adapted
to the hypersurface, see footnote 1 on page 31) will not be invertible. Regardless, it still provides
a C∞ (M)-linear map

[M : X (M)→ Γ
(
M,T 0

1M
)

u 7→ (v 7→ γ(g) (u,v)) .

Clearly this definition can be extended to [M : W k−1,p
loc (M,TM)→W k−1,p

loc
(
M,T 0

1M
)
.

While this map does not have an inverse in general, there is a natural way to define a map
]M : Γ

(
M,T 0

1M
)
→ X (M) by using the trace of g−1 ∈ W k+1,p

loc
(
X,T 2

0X
)
. Given a one form

ω ∈ Γ
(
M,T 0

1M
)
we may use the rigging to interpret ω as an element ω′ ∈ Γ

(
M, T 0

1X
∣∣
M

)
via

ω′ (x) := ω (x− η(x)`) for x ∈ Γ (M, TX|M ). With this we can define ]M by

]M : Γ
(
M,T 0

1M
)
→ X (M)

ω 7→
(
θ 7→ γ

(
g−1) (ω′, θ)

)
.

Note that ω]M depends on the rigging since the inclusion map Γ
(
M,T 0

1M
)
→ Γ

(
M, T 0

1X
∣∣
M

)
does.

As was the case for [M we may extend ]M to a map ]M : W k−1,p
loc

(
M,T 0

1M
)
→W k−1,p

loc (M,TM).

In the future we may simply write [, ] for either [X , ]X or [M , ]M if it is clear which one is meant.
We can use this to define the so-called normal vector field n ∈ W k+1,p

loc (X,TX) by n := η]X (this
definition has actually already been mentioned in the paragraph before Def. 4.1.2). Now we are
ready to investigate necessary and sufficient conditions for the degeneracy/non-degeneracy of gM
and γ(g−1)

∣∣
T∗M , where γ(g−1)

∣∣
T∗M ∈W

k,p
loc
(
M,T 2

0M
)
denotes the (2, 0)-tensor field on M given

by γ(g−1)
∣∣
T∗M (ω, η) := γ(g−1)(ω′, η′) (for ω, η ∈ T 0

1 (M)).
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Theorem 4.3.2. The following equivalences hold:

(1) γ (g) is degenerate at p ∈M if and only if np is null (that is iff g(p) (np,np) = 0)
(2) γ

(
g−1)∣∣

T∗M
is degenerate at p ∈M if and only if `p is null (that is iff g(p) (`p, `p) = 0)

Proof. First we observe that it makes sense to talk about pointwise properties since all the
occurring objects are at least continuous by Rem. 4.3.1. To show (1) note that g(p) (np,up) =
ηp (up) = 0 for all up ∈ TpM . Now if np is null we have ηp (np) = 0 and thus np ∈ TpM (by
definition of η one has ηp (xp) 6= 0 for xp /∈ TpM) and gM is degenerate at p. On the other
hand if gM is degenerate at p, then there exists a vector vp ∈ TpM \ {0} ⊂ TpX \ {0} such that
g(p)(vp,up) = 0 for all up ∈ TpM and so v[p

∣∣
TpM

= 0 giving v[p = v[p(`p) ηp (note that v[p(`p) 6= 0
since vp 6= 0). This shows that np = 1

v[p(`p)vp ∈ TpM and thus is a null vector.

The proof of (2) uses a similar argument: We have g−1(p)
(
`[p, ωp

)
= 0 for all ωp ∈ T ∗pM . Now

if `p is null, then 0 = g(p) (`p, `p) = `[p (`p) showing that `[p ∈ T ∗pM and thus γ
(
g−1)∣∣

T∗M
(p)

is degenerate. On the other hand if γ
(
g−1)∣∣

T∗M
is degenerate at p, there exists a form ξp ∈

T ∗pM \ {0} ⊂ T ∗pX \ {0} such that g−1(p)(ξp, ωp) = 0 for all ωp ∈ T ∗pM and so ξ]p = ξ]p(ηp) `p
showing that 0 = g−1(p)(`[p, `[p) = `p(`[p) = `[p(`p) = g(p)(`p, `p) since

(
`[p
)] = `p. �

Remark 4.3.3. In general the operations [ and ] do not commute with the projections (.)q and
(.)q, i.e., (xq)[ 6= (x[)q and (ζq)] 6= (ζ])q for x ∈ Γ(M, TX|M ) and ζ ∈ Γ(M, T 0

1X
∣∣
M

). In fact
(using that xq = x− η(x)`) one has on M(

xq)[ (u) = gM
(
xq,u

)
= g (x,u)− η(x)g(`,u) 6= g (x,u)− g(`,x)g (n,u) =

= x[ (u)− `(x[)η(u) = (x[)q(u),

where we have simply written g instead of γ(g) since the trace is simply the restriction of g to M
by continuity of g. An analogous calculation can be done regarding (ζq)] and (ζ])q. Furthermore,
(nq)[ = −g (n,n)

(
`[
)
q and

(
`[
)
q (nq) = 1− g (n,n) g (`, `):

The first equation follows immediately from the calculation above by replacing x with n and noting
that g(n,u) = η(u) = 0 for all u ∈ X (M). Regarding the second equation we have

(`[)q
(
nq) = `[ (n− η (n) `) = η(`)− g (n,n) `[(`) = 1− g (n,n) g (`, `) .

Theorem 4.3.2 shows that whether gM is degenerate or not solely depends on the given hypersurface
and the metric g on X (since ηp is uniquely determined up to a scalar multiple for all p ∈M), but
whether γ

(
g−1)∣∣

T∗M
is degenerate or not depends on the choice of the rigging.

Proposition 4.3.4. For every p ∈M there exists a rigging ` (depending on p) that is non-null in
a neighborhood of p.

Proof. Choose an arbitrary rigging `. If `p is not null we are finished. If `p is null we can find
a vector field u ∈ X (M) such that g(p)(`p,up) 6= 0 or g(p) (up,up) 6= 0: Otherwise g(p)(xp,xp) = 0
for all xp ∈ TpX (since x = xq + η(x)` for all x ∈ Γ(M, TX|M ) by (4.1.3)) and thus g is zero
in p by the polarization identity, which gives a contradiction to g being a metric on X. Setting
`′ = ` + u we see that g(p)

(
`′p, `

′
p

)
= 2g(p) (`p,up) + g(p) (up,up) which can be assumed to be

non-zero (if 2g (`,u) + g (u,u) = 0 at p one can simply replace u with −u so that both terms have
the same sign). By continuity `′ is non-null in a neighborhood of p. �

Unfortunately it is in general not possible to simply glue these local non-null riggings together
with a partition of unity to obtain a rigging field ` that is non-null everywhere on M since being
non-null at p is not a convex condition, i.e., up + vp may be null even if up and vp are both not
null. However, there is a very important (because physically relevant) special case:
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Proposition 4.3.5. If g is a continuous metric on X and (X, g) is a time-oriented Lorentzian
manifold2 and M ⊂ X a hypersurface, then there exists a rigging ` ∈ Γ(M, TX|M ) such that
g(p)(`p, `p) > 0 and `p is future directed3 for all p ∈M . In particular, ` is nowhere null.

Proof. We first show that there exists a basis of future-directed unit timelike (up ∈ TPX

is called timelike if g(p)(up,up) < 0) vectors for TpX for every p ∈ X: Let e1, . . . , en be an
orthonormal basis for TpX such that e1 is timelike. Then e1, 2e1 + e2, . . . , 2e1 + en are n timelike
and linearly independent vectors in TpX. By normalizing and multiplying with minus one if
necessary we obtain a basis of future-directed unit timelike vectors.

Now let p ∈ M , then TpM ⊂ TpX is a (n − 1)-dimensional subspace of TpX and we may choose
some future directed unit timelike vector up /∈ TpM . If ũp ∈ Γ(M, TX|M ) is any smooth extension
of up there exists a neighborhood Up of p in M such that ũp|Up is still future-directed timelike
(by continuity of g and t). Because M is second countable we may choose a countable subcover
{Ui}i∈N ⊂ {Up : p ∈ M} (so for every i there exists a pi ∈ M such that Ui = Upi). Now let
{χi}i∈N be a partition of unity subordinate to the cover {Ui}i∈N and set

` =
∑
i∈N

χi ũpi.

Then `p is future-directed timelike for all p ∈ M since the (χiũpi) (p) are future-directed timelike
(if they are non-zero because suppχi ⊂ Upi) and the sum of future-directed timelike vectors is
again future directed timelike (see [Nab92], Lemma 1.4.3). �

From now on we are going to assume that a nowhere null rigging vector field ` is given. By Thm.
4.3.2 this implies that γ(g−1)

∣∣
T∗M

∈ W k,p
loc
(
M,T 2

0M
)
is pointwise non-degenerate on all of M

which in turn shows that there is a (0, 2)-tensor field g ∈W k,p
loc
(
M,T 0

2M
)
with

(4.3.1) (gij)1≤i,j≤n−1 =
((
γ(g−1)

∣∣
T∗M

)ij)−1

1≤i,j≤n−1

for all charts (Uα, ψα = (x1, . . . , xn−1)) on M (since the regularity of γ(g−1)
∣∣
T∗M

is high enough,
see also Rem. 4.3.1). Clearly g is also pointwise non-degenerate and symmetric (the inverse of a
symmetric matrix is again symmetric) and thus provides a metric on M .

Definition 4.3.6 (The metric connection on M). The Levi-Civita connection associated with g
is called the metric connection on M and denoted by ∇.

The next proposition will deal with the differences between the metric connection ∇ defined above
and the projected connection ∇ from section 4.2. First we note that both the connections have
W k−1,p

loc (M)-regularity (see Prop. 3.4.6 for ∇ and Rem. 4.3.1 for ∇) and depend on the rigging
vector field `.

Proposition 4.3.7. The operator ∇ is a metric connection on M and while ∇ is torsion free as
well it need not be a metric connection. We have

(4.3.2) ∇ = ∇+ F,

where F ∈W k−1,p
loc

(
M,T 1

2M
)
is defined by

(4.3.3) g (F (u,v),w) := 1
2 {(∇ug) (v,w) + (∇vg) (u,w)− (∇wg) (u,v)} .

2A Lorentzian manifold (i.e. a semi-Riemannian manifold with signature n − 1) is called time orientable if there
exists some smooth vector field t ∈ X(X) such that t is timelike everywhere, i.e., that satisfies g(p)(tp, tp) < 0 for
all p ∈ X (see [Rin09], 10.4.2).
3A timelike vector up ∈ TpX is called future directed if g(p)(up, tp) > 0.
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Proof. That ∇ is torsion free was shown in Remark 4.2.3. It only remains to prove (4.3.2).
This is equivalent to showing

g
(
∇uv,w

)
= g (∇uv,w) + g (F (u,v),w) .

Since ∇ is the Levi-Civita connection associated with g it satisfies the Koszul formula (3.4.1), i.e.,

2g
(
∇uv,w

)
= u (g (v,w)) + v (g (w,u))−w (g (u,v))− g (u, [v,w]) + g (v, [w,u])

+ g (w, [u,v]) .(4.3.4)

By Prop. 4.2.2, we have

u (ḡ(v,w)) = (∇ug) (v,w) + ḡ(v,∇uw) + g(∇uv,w),

so (4.3.4) becomes

2g
(
∇uv,w

)
= (∇ug) (v,w) + (∇vg) (u,w)− (∇wg) (u,v)

+ ḡ(v,∇uw) + ḡ(w,∇vu)− ḡ(u,∇wv) + g(∇uv,w) + g(∇vw,u)− g(∇wu,v)
− g (u, [v,w]) + g (v, [w,u]) + g (w, [u,v])

(4.3.3)= 2g (F (u,v),w) + ḡ(w,∇vu) + g(∇uv,w) + g (w, [u,v])
= 2g (F (u,v),w) + ḡ(w,∇vu)− g(∇uv,w) + 2g(∇uv,w) + g (w, [u,v])
= 2g (F (u,v),w) + 2g(∇uv,w),

where we used several times that the ∇ is torsion free, i.e., that ∇uv−∇vu− [u,v] = 0 (see Rem.
4.2.3). �

4.4. Nowhere null hypersurfaces

Again we assume g ∈ W k+1,p
loc

(
X,T 0

2X
)
(for some k ≥ 2 and p > n−1

k−1 or p = 1 and k = n,
see Rem. 4.3.1). We have shown in Theorem 4.3.2 that γ(g) is a metric on M if and only if
n ∈W k+1,p

loc (X,TX) ⊂ C (X,TX) is nowhere null on M . This leads to the following definition.

Definition 4.4.1 (Nowhere null hypersurfaces). Let g be a continuous metric on X, M ⊂ X a
hypersurface with normal form η and normal vector n = η]. Then M is called nowhere null if
gp (np,np) 6= 0 for every p ∈M .

Remark 4.4.2. By (4.1.1) we have that M being nowhere null is equivalent to n (p) /∈ TpM for
all p ∈M (since gp (np,np) = η(n)(p) 6= 0 iff np /∈ TpM .

As implied by the title of this section we are now going to have a closer look at nowhere null
hypersufaces. Since n is nowhere null we may normalize our normal one form η to satisfy∣∣g−1 (η, η)

∣∣ = |g (n,n)| = 1 on M (the definition of the normal one form only determines η|M
up to a scalar multiple). From now on we will always assume that we have this normalization.
If we define

(4.4.1) ` = sgn(n) γ(n) ∈W k,p
loc (M, TX|M ) ,

where sgn(n) := sgn(g(n,n)) is either constant one or minus one (so ` = ± n|M ), then ` satisfies
all the requirements of a rigging vector field except smoothness (see Def. 4.1.2).
Fortunately this is not a problem since the smoothness assumption on ` was merely convenient, not
necessary. In fact, all results of the previous section still hold for a rigging ` ∈ W k,p

loc (M, TX|M )
that satisfies ` = γ(˜̀) for some ˜̀ ∈ W k+1,p

loc (X,TX). That this regularity is sufficient follows
from the fact that ∇xy ∈ W k−1,p

loc for x smooth and y ∈ W k,p
loc for any W k,p

loc -connection with
k large enough (see Rem. 3.3.5), so in particular ∇x ˜̀ ∈ W k,p

loc (X,TX) for all x ∈ X(X) and
∇u` ∈ W

k−1,p
loc (M, TX|M ) for all u ∈ X(M). Using this and looking, e.g., at (4.2.12) we see that
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the terms of the form ∇u
(
γ(∇ṽ ˜̀)q

)
in Riem (u,v) ` are well-defined since γ

(
∇ṽ ˜̀) ∈W k−1,p

loc (M)
(thus γ

(
∇ṽ ˜̀)q = γ

(
∇ṽ ˜̀) − η

(
γ
(
∇ṽ ˜̀)) ` ∈ W k−1,p

loc (M), as W k−1,p
loc (M) is an algebra) and ∇

is a W k−1,p
loc -connection on M . Similar considerations show that all the arguments used in the

derivation of (4.2.12) and the other results of the previous sections remain valid.

Remark 4.2.3 shows that the following statement holds (since ` ∝ n).

Proposition 4.4.3. The projected connection ∇ is the Levi-Civita connection induced by the metric
gM on M .

Our next goal is to show that the two metrics gM and g =
(
γ(g−1)

∣∣
T∗M

)−1 on M are equal. One
way to do this is to show that [M is the inverse of ]M (implying that the inverse of gM is just
γ(g−1)

∣∣
T∗M

), which will be an immediate consequence of the next lemma.

Lemma 4.4.4. If ` is given by (4.4.1), the operations [ and ] do commute with the projections (.)q
and (.)q, i.e.,

(4.4.2) (xq)[M = (x[X )q for x ∈ Γ (M,TX)

and

(4.4.3) (ζq)]M = (ζ]X )q for ζ ∈ Γ
(
M,T 0

1X
)

(contrary to the general case outlined in Rem. 4.3.3).

Proof. The calculations in Rem. 4.3.3 show that for p ∈M equality of (xq)[(p) and (x[)q(p)
is equivalent to η(x)(p)g(p)(`p,up) = g(p)(`p,xp)g(p) (np,up) for all u ∈ X (M) which is obviously
true for ` ∝ n. Regarding (ζq)] and (ζ])q we calculate

(4.4.4) (ζq)](ω)(p) (4.1.5)=
(
g−1) (p) (ζp − (`(ζ)) (p)ηp, ωp) =

=
(
g−1) (p) (ζp, ωp)− (`(ζ)) (p) γ

(
g−1) (p) (ηp, ωp)

(note that ζq(p) is equal to the ζ ′q(p) appearing in the definition of ]M since `(ζq)(p) = 0) and

(4.4.5) (ζ])q(ω)(p) (4.1.3)=
(
ζ] − η

(
ζ]
)
`
)

(ω)(p) =
= g−1(p)(ζp, ωp)− (`(ω)) (p) g−1(p)(ζp, ηp),

for ω ∈ Γ
(
M,T 0

1M
)
. Obviously (4.4.4) equals (4.4.5) if ` ∝ η]. �

Proposition 4.4.5. If n is nowhere null and ` is as in (4.4.1), then gM = g (where g is the metric
on M defined in (4.3.1)).

Proof. Since gM is a metric [M : X (M)→ Γ
(
M,T 0

1M
)
is an isomorphism hence invertible.

Now every ω ∈ Γ
(
M,T 0

1M
)
can be written as ζq for some ζ ∈ Γ

(
M,T 0

1X
)
(set ζ(x) = ω (x− η(x)`)

for x ∈ Γ (M,TX)) and using Lemma 4.4.4 we obtain ω = ζq =
(
(ζ]X )[X

)
q

(4.4.2)=
(
(ζ]X )q

)[M (4.4.3)=(
(ζq)]M

)[M =
(
ω]M

)[M , so [−1
M (ω) = ω]M . �

Corollary 4.4.6. The projected connection ∇ and the metric connection ∇ coincide.

Proof. This follows from the uniqueness of the Levi-Civita connection: From Def. 4.3.6 we
know that ∇ is the Levi-Civita connection induced by g and by Prop. 4.4.3 it is also the Levi-Civita
connection induced by gM , but since g = gM (by Prop. 4.4.5) ∇ has to be equal to ∇. �

Now we are going to investigate the generalized Gauss and Codazzi equations (4.2.7) and (4.2.12).
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Proposition 4.4.7. Let M ⊂ X is a nowhere null hypersurface and ` = sgn(n) γ(n), then

(4.4.6) γ(g) (γ(Riem) (u,v) w, t) = γ(g) (Riem (u,v) w, t) +
+ sgn(n) {K (v,w)K(u, t)−K (u,w)K(v, t)}

for all u,v,w, t ∈ X(M) and

(4.4.7) γ(g) (γ(Riem) (u,v) w, γ(n)) = (∇uK) (v,w)− (∇vK) (u,w) ,

i.e., the usual Gauss and Codazzi equations.

Proof. Since ∇ is the connection associated with γ(g) (see Prop. 4.4.3) the (1, 3)-tensor field
Riem is the Riemann tensor of the semi-Riemannian submanifold (M,γ(g)). Using

γ(Riem) (u,v) w (4.2.7)= Riem (u,v) w +K (v,w) γ
(
∇ũ ˜̀)−K (u,w) γ

(
∇ṽ ˜̀)+

+ (∇uK) (v,w) `− (∇vK) (u,w) `(4.4.8)

and that

(4.4.9) γ(g)(`, t) (3.1.2)= γ
(
g(˜̀, t̃)

)
∝ γ(g(n, t̃)) = γ(η(t̃)) (3.1.2)= η(t) = 0

for all t ∈ X(M) since ` = sgn(n) γ(n) (see (4.4.1)), we get

(4.4.10) γ(g) (γ(Riem) (u,v) w, t) = γ(g) (Riem (u,v) w, t)−K (u,w) γ(g)
(
γ
(
∇ṽ ˜̀) , t)+

+K (v,w) γ(g)
(
γ
(
∇ũ ˜̀) , t)

for u,v,w, t ∈ X(M). Since

γ(g) (γ (∇ũn) , t) (3.1.2)= γ
(
g(∇ũn, t̃)

) ∇g=0= γ
(
ũ(g(n, t̃))

)
− γ

(
η(∇ũt̃)

)
=

Lem. 3.6.3=
(3.1.2)

u(η(t))− η(γ
(
∇ũt̃

)
) = −η(γ

(
∇ũt̃

)
) (4.2.5)= K (u, t)

and ` = sgn(n) γ(n) (see (4.4.1)) equation (4.4.10) becomes

γ(g) (γ(Riem) (u,v) w, t) = γ(g) (Riem (u,v) w, t) +
+ sgn(n) {K (v,w)K(u, t)−K (u,w)K(v, t)} ,

which is just the usual Gauss equation.

Regarding the Codazzi equation we observe that

(4.4.11) 2γ(g)
(
γ
(
∇ũ ˜̀) , γ(n)

) sgn(n)≡±1=
(3.1.2)

2sgn(n) γ (g (∇ũn,n)) =

= sgn(n) γ (u (g(n,n))− (∇ũg) (n,n)) = 0

on M , that Riem(u,v)w ∈ X (M) and thus

(4.4.12) γ(g) (Riem (u,v) w, γ(n)) = sgn(n) γ(g) (Riem (u,v) w, `) (4.4.9)= 0

and that

(4.4.13) γ(g)(`, γ(n)) = η(n) = 1

(by the same argument as in (4.4.9)). Using this and (4.4.8) gives

γ(g) (Riem (u,v) w, γ(n)) (4.4.13)= γ(g) (Riem (u,v) w, γ(n)) + (∇uK) (v,w)− (∇vK) (u,w) +
+K (v,w) γ(g)

(
γ
(
∇ũ ˜̀) , γ(n)

)
−K (u,w) γ(g)

(
γ
(
∇ṽ ˜̀) , γ(n)

)
(4.4.11)=
(4.4.12)

(∇uK) (v,w)− (∇vK) (u,w) ,
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which shows the Codazzi equation (4.4.7). �

It is easy to see that the other equation (4.2.12) from subsection 4.2.1 for γ (Riem) (u,v) ` does
not provide any additional information:
For u,v,w ∈ X(M) we have

sgn(n) γ(g) (γ (Riem) (u,v) `,w) (4.4.1)=
(3.1.2)

γ (g(Riem(ũ, ṽ)n, w̃)) =

= −γ (g(Riem(ũ, ṽ)w̃,n)) = −γ(g) (γ (Riem) (u,v) w,n)

by one of the symmetries of the Riemann tensor (sometimes called pair-interchange symmetry)
and similarly for w = n /∈ X(M)

sgn(n) γ(g) (γ (Riem) (u,v) `,n) = γ (g(Riem(ũ, ṽ)n,n)) = −γ (g(Riem(ũ, ṽ)n,n)) ,

so γ(g) (γ (Riem) (u,v) `,n) = 0. This shows that γ (Riem) (u,v) ` is uniquely determined by
knowing γ (Riem) (u,v) w for all w ∈ X(M) since γ(g) ∈ W k,p

loc (M, T 0
2X
∣∣
M

) provides an isomor-
phism [ between Γ(M, TX|M ) and Γ(M, T 0

1X
∣∣
M

).





Abstract

This thesis is about different aspects of low regularity geometry on semi-Riemannian manifolds
and is roughly split into four chapters. The first chapter offers a brief introduction to the theory
of distributions (in the sense of Laurent Schwartz) on manifolds.
In the second chapter we look at singular objects on a manifold with a smooth semi-Riemannian
metric. The smooth metric allows us to effectively deal with functions (and tensor fields) of the
“lowest” regularity, i.e., distributions. In particular we are interested in studying distributions with
support in a (semi-Riemannian) hypersurface.
In the third chapter we no longer assume the existence of a smooth semi-Riemannian metric on
our manifold but instead study distributional metrics (or, more generally, distributional geometry).
However, this is rather hopeless without assuming some higher (Sobolev) regularity. For this reason
we have included a short introduction to Sobolev spaces on manifolds in the beginning of the third
chapter. The main focus of this chapter lies on deriving jump formulas for the various curvature
quantities, that is, how the Riemann and Ricci tensor and the scalar curvature look like for a
metric that suffers a jump discontinuity across a hypersurface. Of course the reason why this is of
a particular interest lies in physics, mainly general relativity, where such formulas might find an
application due to the Einstein field equations. As a mathematical side note we also take a short
look at the compatibility of this distributional approach to generalized geometry and a Colombeau
theoretic approach and see that those two are indeed equivalent for a certain class of distributional
metrics.
Finally, the fourth and last chapter focuses on the geometry induced on a general (i.e. potentially
null) hypersurface by a given connection or metric on our manifold. As a substitute for the
normal unit vector field (that is only available in the nowhere null case) one may use a so-called
rigging vector field. This leads to a generalization of the second fundamental form and the Gauss
and Codazzi equations. Finally we show that all our results reduce to the well-known standard
expressions in the case of a nowhere null hypersurface. Again we try to keep things very general by
not assuming smoothness of the connection/metric but just the regularity really needed to make
sense of occurring products and traces.
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Zusammenfassung

Die vorliegende Masterarbeit behandelt verschiedene Aspekte niedrig regulärer Geometrie auf semi-
riemannschen Mannigfaltigkeiten und besteht im Wesentlichen aus vier Kapiteln. Das erste gibt
eine kurze Einführung in die Theorie der Distributionen (im Sinn von Laurent Schwartz) auf
Mannigfaltigkeiten.
Im zweiten Kapitel betrachten wir singuläre Objekte auf einer Mannigfaltigkeit mit einer glatten
semi-riemannschen Metrik. Dies erlaubt es uns, erfolgreich Funktionen (und Tensorfelder) von
“niedrigster” Regularität, d.h., Distributionen, zu behandeln. Insbesondere interessieren wir uns
dabei für Distributionen mit Träger in einer (semi-riemannschen) Hyperfläche.
Im dritten Kapitel nehmen wir nicht mehr an, dass auf unserer Mannigfaltigkeit eine glatte semi-
riemannsche Metrik gegeben ist, sondern beschäftigen uns stattdessen damit, was passiert, wenn
die Metrik selbst distributionell ist. Es stellt sich heraus, dass dies ziemlich aussichtslos ist, wenn
man nicht zumindest etwas bessere Regularität verlangt. Daher beinhaltet dieses Kapitel auch ei-
ne kurze Einführung zu Sobolevräumen auf Mannigfaltigkeiten. Das Hauptaugenmerk des dritten
Kapitels liegt allerdings auf der Herleitung von Sprungformeln für diverse Krümmungsgrößen, d.h.,
darauf, wie Riemann- und Riccitensor sowie die Skalarkrümmmung für eine entlang der Hyperfläche
unstetige Metrik aussehen. Solche Sprungformeln sind zum Beispiel in der Physik, insbesondere in
der allgemeinen Relativitätstheorie, aufgrund der Einsteinschen Feldgleichungen von Bedeuntung.
Als mathematische Randbemerkung betrachten wir auch noch kurz den Zusammenhang zwischen
diesem distributionellen Zugang zu generalisierter Geometrie und einem Colombeau theoretischen
Zugang und zeigen, dass diese Zugänge für eine bestimmte Klasse distributioneller Metriken wirk-
lich äquivalent sind.
Das vierte und letzte Kapitel beschäftigt sich mit der Geometrie, die auf einer allgemeinen Hy-
perfläche durch die Geometrie der gegebenen Mannigfaltigkeit induziert wird. Als Ersatz für das
Normalvektorfeld, das bei nirgends lichtartigen Hyperflächen zur Verfügung steht, kann man ein
so genanntes Riggingvektorfeld verwenden. Dies führt zu einer Verallgemeinerung der zweiten Fun-
damentalform sowie der Gauss- und Codazzi-Gleichungen. Schlussendlich zeigen wir, dass sich alle
unsere Resultate im Fall einer nirgends lichtartigen Hyperfläche wieder auf die wohlbekannten re-
duzieren. Wieder versuchen wir unsere Aussagen so allgemein wie möglich zu halten, indem wir
keine Glattheit sondern nur die für die auftretenden Produkte und Spuren benötigte Regularität
des Zusammenhangs/der Metrik voraussetzen.
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Codazzi equation, 59
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Colombeau theory
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embedding of distributions, 38
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jump formula, 32
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projected connection, 50

coordinates
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covariant, 12
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Lie derivative, 28
normal, 20

Dirac measure on a hypersurface, 30
distributions
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on a manifold, 8
on orientable manifolds, 27
on semi-Riemannian manifolds, 11
single-layer, 15, 19
supported in a hypersurface, 21
tensor distribution, 8

Einstein field equations, 45
in vacuum, 46

Gauss equation, 59
generalized, 53
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on manifolds with boundary, 24
tensor fields, 25

Lorentzian manifold, 57
time-oriented, 57

metric
distributional, 33
generalized metric, 39
gt-regular, 34
stable, 42

moderate net, 38
mollifier
admissible, 39

negligible net, 38
non-degenerate, 33
uniformly, 34

normal exponential map, 17
normal form, 49
normal unit vector field, 16
nowhere null, 47, 58

pullback, 14
of the delta distribution, 15, 19

Ricci tensor, 30
jump formula, 33

Riemann tensor, 30
jump formula, 33
stability, 44

rigging vector field, 49
non-null, 56

scalar curvature, 35
jump formula, 36

second fundamental form, 52
Stokes’ theorem, 27

torsion, 52
trace theorem, 24

volume bundle, 6

Weingarten map, 19
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