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ABSTRACT 

 

Gene regulatory networks (GRN) play an important role in controlling the development and 

maintenance of traits such as body parts, organs, tissues or cell types. Small recurring sub-

graphs, so-called network motifs, have been found in GRN at higher frequencies than in random 

networks, suggesting they could implement biologically relevant functions. Additionally, recent 

studies have implicated that network topology may be involved in the regulation of traits. Based 

on these findings, we investigate whether specific topological patterns can be associated with 

trait regulation.  

We characterize the global and local structure of twelve human cell type-specific GRN and six 

mouse tissue-specific GRN. We also compare their structure and interaction repertoire and 

examine if network motifs co-occur with trait-determining regulators / transcription factors 

(TFs). For this purpose we have developed a new method to reconstruct cell type- and tissue-

specific GRN from predicted TF binding sites in regulatory regions, expression screens (from 

RNA-seq) and binding motif occupancy profiles (from DNaseI-seq / DNaseI footprinting). By 

integrating prediction with different data types, we limit false-positive binding site discovery and 

identify the core active sub-network of each particular trait.  

Our results propose that certain network motifs, especially the feed-forward loop could be 

functional in trait regulation. Furthermore, we show that the interaction repertoire can be used 

to classify GRN with related functions. Our study also highlights areas that would benefit from 

methodical improvement and standards such as TF binding site models and DNaseI footprinting 

algorithms. Finally, the network reconstruction method we developed will be of use for many 

future studies, including dynamical modeling of trait-specific regulation in health and disease. 



KURZFASSUNG  

 

Genregulatorische Netzwerke (GRN) spielen eine wichtige Rolle bei der Kontrolle der 

Entwicklung und bei der stabilen Aufrechterhaltung von Merkmalen, z.B. Körperteilen, Organen, 

Geweben und Zelltypen. Kleine, wiederholt vorkommende Graphen, die Netzwerk-Motive 

genannt werden, sind in GRN im Vergleich zu randomisierten Netzwerken angereichert. Des 

weiteren lassen neuere Studien darauf schließen, dass die Topologie von Netzwerken für die 

Regulation von Merkmalen von Bedeutung sein könnte. 

Hier charakterisieren wir die globale und lokale Struktur von GRN von zwölf humanen Zelltypen 

und sechs Maus-Geweben. Wir vergleichen die Struktur dieser GRN und ihr 

Interaktionsrepertoire, und untersuchen ob Netzwerk-Motive zusammen mit 

merkmalsbestimmenden Regulatoren / Transkriptionsfaktoren (TF) vorkommen. Zu diesem 

Zweck haben wir eine neue Methode zur Rekonstruktion zelltypspezifischer und 

gewebsspezifischer GRN entwickelt, die auf wahrscheinlichkeitsbedingter Voraussage von TF 

Bindungsstellen in regulatorischen Regionen, Expressions-Screens (RNA-seq) und Daten basiert, 

die die Besetzung von Bindungsstellen durch DNA-bindende Proteine beschreiben (DNaseI-seq / 

DNaseI footprinting). Die Integration verschiedener Daten-Typen ermöglicht es uns, falsch-

positive Voraussagen zu gering zu halten und das aktive Sub-Netzwerk eines bestimmten 

Merkmal zu identifizieren. 

Unsere Ergebnisse zeigen, dass spezifische Netzwerk-Motive, darunter besonders der Feed-

forward Loop, eine Funktion bei der Regulation von Merkmalen haben könnte. Außerdem zeigen 

wir, dass das Interaktionsrepertoire von GRN zur funktionellen Klassifikation von verwandten 

GRN herangezogen werden kann. Unsere Studie zeigt weiters Gebiete auf, die von methodischen 

Verfeinerungen und einheitlichen Standards profitieren würden, darunter TF Bindungsstellen-

Modellierung und DNaseI footprinting Algorithmen. Die von uns entwickelte Methode wird 

außerdem für Folgestudien, beispielsweise die dynamische Modellierung der 

Merkmalsregulation in gesunden und in Krankheitsstadien, von Nutzen sein.  
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1 INTRODUCTION 
 

1.1 Outline 

 

In this work we investigate transcription regulatory networks that underlie traits. Our aim is to 

unravel topological design principles within such networks. Determination of the regulatory core 

network of traits is a central question of both developmental and evolutionary biology. Here we 

apply bioinformatic methods to address this question. To introduce the topic, we first outline 

existing knowledge on trait evolution and homology. We then focus on the regulation of gene 

expression as one of the main mechanisms that govern trait development and explain how it can 

be modeled in gene regulatory networks. Finally, we outline the role of our project in this 

context and introduce its detailed objectives.  

 

1.2 Characters and traits 

1.2.1 Definition 

The terms character and trait are used to describe specific, observable, quasi-independent 

features of an organism. They can be described at different levels of organization, from body 

parts, organs and tissues, to cell types. Moreover, the word trait is also used to refer to 

behaviors, and to psychological properties of humans.  

The textbook definitions of the words character and trait differ. While “character” refers in 

general to the abovementioned features, “trait” often refers to specific manifestations of a 

character (i.e. when the character is a human eye, blue and brown eyes would be traits), or to 

the measurements on characters.1 Despite this difference, both terms are frequently used as 

synonyms. Both of them refer to phenotypic features that are subject to selection pressures. In 

this work, we use the words trait and character interchangeably, referring to features rather 

than their variants. 

 

1.2.2 Trait evolution 

The huge variety of organisms and their traits suggests questions about which forces drive this 

diversity, and in particular, what mechanisms underlie the origination of new traits.  

When traits are examined more closely, it becomes apparent that they often serve specific 

functions which are reflected in their morphology and other properties. For example, red blood 

cells of mammals deliver oxygen throughout the body. Their typical bi-concave shape and the 

flexibility of their cell membrane optimize flow of the cell in blood vessels, enable efficient and 

fast diffusion of oxygen and allow them to bend within narrow capillaries. Generally, a trait’s 

presence in a living organism over long evolutionary periods suggests that it is non-detrimental 

and likely to carry a function. This function is relevant in a particular environment the organism 

lives in, therefore traits can acquire new functions, as well as become less useful, or even futile 

under changing environmental conditions. 
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Novel traits, also called evolutionary novelties, are characters without homology to other 

characters, neither within the same organism nor in an ancestor. The line between novelty and 

adaptation is thin however, therefore it is sometimes difficult to define homology rigorously, as 

evidenced by the common debates on which characters present novelties and which are 

adaptations.  

According to one definition, novelties can arise by three different modes: divergence of a 

repeated element, de novo origination, or fusion of ancestral characters.2  

In any of these cases, the establishment of a novel character requires permanent changes at the 

molecular level. The formation of traits is governed by developmental programs, i.e. by sets of 

regulators which control gene expression in a trait-specific spatio-temporal manner. This means 

that the development and maintenance of traits is associated with specific gene regulatory 

networks (GRN) which induce the expression of the appropriate genes and / or repress others. 

Consequently, the emergence of novelties can thus be driven by the modification of ancestral 

gene regulatory networks, by their de novo assembly, or by a combination thereof.3 An emerging 

trait needs to become somewhat independent of the underlying regulatory level in order to 

generate trait-specific variation and thus represent separately evolvable entity. 

The importance of trait-specific GRN for trait evolution is also supported by sequencing studies 

which have shown that the body-patterning genes of complex animal species are surprisingly 

similar. While these findings highlight the historical continuity of genes in developmental 

regulation, they also imply that new traits may often arise by changing the existing gene 

regulation rather than by the invention of new genes and proteins.4 

 

1.2.3 A model of trait evolution: cell types 

The emergence of novel traits and the corresponding changes of regulation have been studied in 

a particular, simple model of trait evolution, namely in cell types. These studies propose that 

ancient cell types are characterized by multi-functionality and state that derived cell types have 

lost functions, or acquired new ones through the modification of ancestral functions, while 

becoming more specialized.5 These changes of functionality are caused by altered gene 

expression, where the confinement of multi-functionality is acquired by the inactivation of 

ancestral regulators, and more specialized functions by the activation of additional regulators. 

The evolution of new cell types is therefore characterized by the segregation and divergence of 

functions. Interestingly, an analogous change can also be seen in differentiation of cell lineages 

during development: Multipotent stem cells give rise to daughter cells with more specialized 

functions and less differentiation potential.  

The aforementioned regulatory changes during cell type evolution suggest that the regulatory 

networks of related cell types should be similar. Similarity can be based on the activity of the 

same or orthologous regulators, or on the similarity of regulatory interactions. Within this work, 

we investigate whether and to what extent regulatory interactions among related cell types are 

shared. 
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1.2.4 Studying homology to elucidate trait evolution 

In order to reconstruct trait evolution, it is necessary to compare different species and 

determine homologous traits. Returning to the example of cell types, some of the morphological 

and functional similarities between cell types may be obvious, but true evolutionary 

relationships are often obscure. Gene expression profiles can aid the classification of 

homologous traits. For example, the comparison of combinations of transcription factors 

involved in photoreceptor development has shed light on eye evolution.6 In this context it is 

preferrable to compare regulatory networks rather than single genes to infer homology. This is 

because inference from single genes may be misleading. Co-option of genes can make analogous 

characters that evolved independently look like homologies when single genes are used to 

classify homology. Conversely, fast-evolving species may lose regulators that are well-conserved 

in candidate homologous traits in other species, making them appear non-homologous.5  

The basic view of homology defines two characters as homologous when they arose through 

modifications of an original feature in a common ancestor. This definition implies some degree 

of morphological correspondence between the derived traits and their predecessors. In the case 

of evolutionary novelties however, this correspondence to ancestral traits does not exist. In this 

context, the term deep homology has been coined to describe “the sharing of the genetic 

regulatory apparatus that is used to build morphologically and phylogenetically disparate animal 

features”.7 This concept applies on the one hand to evolutionary novelties for which the wiring 

of regulatory genes precedes a visible phenotypic trait8 , and on the other hand, to dissimilar 

traits that evolved by the recruitment and modification of the same gene regulatory circuits in a 

new context.  

Deep homology once again highlights the importance of the underlying GRN for trait 

development. The significance of GRN also serves as a basis for the hypothesis of Character 

Identity Networks (ChINs) which states that the essential characteristics of homologous traits are 

regulated by a highly conserved, invariant gene network.9 Systematic investigations of ChINs are 

still missing and only few have been proposed up to this point, such as the regulatory network 

that governs segment polarity in insects. Candidate ChIN genes are trait-specific regulators 

whose importance has been demonstrated by knock-out or induction experiments, for instance 

using transcription factors which induce muscle cell differentiation. 

 

1.3 Gene regulation in eukaryotes 

 

As discussed, insights from trait evolution and development have pointed towards the 

regulation of gene expression as one of the main points of control for trait formation. The 

following sections are therefore devoted to introducing principles of eukaryotic gene regulation 

as well as two of its defining elements, namely transcription factors and regulatory regions. At its 

basis, our GRN modeling approach focuses on these two elements, however we also briefly 

present other mechanisms that impact gene expression and have been implicated in the cell 

type- and tissue- (i.e. trait-) specific regulation. 
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1.3.1 General principles 

The expression of eukaryotic genes is regulated at multiple levels, such as transcription 

initiation, elongation, processing, transport, stability and translation of mRNA.10 Of these 

regulatory mechanisms, transcriptional regulation has received the most attention and is one 

that the best understood. Transcriptional regulation includes modes of control at the level of 

chromatin structure, such as histone modification and nucleosome remodeling, or at the level of 

protein-DNA interaction i.e. the binding of activators or repressors to regulatory elements in the 

DNA.  

Eukaryotic genes are transcribed through the enzymatic action of RNA polymerase II. Prior to 

transcription, general transcription factors need to bind the core promoter which is located 

upstream of the gene and recruit RNA polymerase II to the DNA. The rate of transcription is 

influenced by transcription factors (TFs), proteins which bind regulatory elements in the DNA in 

a sequence-specific manner and thereby either hinder transcription (repressors) or 

enable/enhance it (activators). Unless activating TFs bind, transcription occurs only at a low 

basal level.11 

 

1.3.2 Transcription factors 

Transcription factors are key players in transcriptional regulation. Their molecular structure is 

organized modularly into functional domains: DNA-binding domain, trans-activating domain and 

ligand-binding domain. DNA-binding domains interact physically with short DNA sequences 

(binding motifs) typically of 6-12 bp length. Even though TFs bind specific sequence motifs 

preferentially, certain nucleotides within these motifs can vary much, and binding sites are 

therefore also called degenerate. As the consensus binding motifs of TFs are short matching 

sequences are quite likely to arise by random mutation. While this may serve as an evolutionary 

mechanism for the generation of new potential regulatory protein-DNA interactions, it is unclear 

whether many of the matching sequences are bound by TF in vivo and whether this binding 

constitutes a functional regulatory interaction.14 For this reason, much effort has been invested 

into creating genome-wide maps of functional regulatory regions.  

Besides binding DNA directly, TFs can dimerize or interact with other TFs, bind ligands, cofactors 

or general transcription factors. Usually these types of interactions occur via the ligand-binding 

or trans-activating domains. The joint binding of multiple TFs as well as their interactions with 

other proteins during transcriptional regulation are also referred to as combinatorial control of 

transcription. It is thought that combinatorial control effectively integrates a multitude of signals 

to fine tune expression and “meet the regulatory demand of a higher organism”, while it also 

makes it possible to create complex regulatory patterns for a high number of genes with only a 

small number of regulatory proteins.12 

 

1.3.3 Regulatory elements 

Regulatory elements, i.e. the DNA regions that are bound by TFs, also play a very important role 

in transcriptional regulation. One type, proximal regulatory regions can be found within 

proximity of transcription start sites (TSS) and core promoters. The other type of regulatory 

elements is located distally in regions that are non-adjacent to the gene they regulate. Such 
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regulatory elements / regions include enhancers, silencers, insulators and locus control 

regions.10 Enhancers can increase the rate of transcription of a promoter-containing gene, 

irrespective of their distance or orientation to it. Silencers have an inhibitory effect on 

transcription and otherwise share the properties of enhancers. They can be located both within 

proximal promoter regulatory regions and enhancers but also separately from them.10 

Insulators work as boundary elements which limit transcription to specific regions of the DNA. 

Finally, locus control regions contain multiple of the aforementioned regulatory elements and 

coordinate the joint transcription control of entire loci and gene clusters.  

The action of distally located regulatory elements is conferred through looping of the DNA and 

the interaction of DNA-bound proteins and / or RNA polymerase II which come into special 

proximity through the looping.13  

The distal regulatory elements received less attention until recently, mainly due to the 

methodical difficulties (below)14. Recent studies revealed that distal regulatory regions 

contribute markedly to the combinatorial control of transcription.10 Studies of binding site 

occupancy have even put forward the idea that differential activity of distal enhancers might be 

involved in the development and differentiation of diverse cell types.13  

Despite their importance for transcriptional regulation, study of distal regulatory elements poses 

various challenges. It is easy to estimate the location of proximal regulatory regions through the 

location of protein coding genes. In contrast, distal regulatory elements are harder to identify. 

Additionally, finding their target genes can also be problematic. High throughput chromosome 

conformation capture techniques contribute to elucidating enhancer interactions with other 

genomic locations,15 but genome-wide maps of enhancer-target gene relationships are still 

missing. In this study we thus focus on proximal regulatory regions to model GRN. 

Regulatory elements are often conserved between not too distant species, such as rodents and 

humans. This means that nucleotide sequences in such regions can be highly similar, which is 

also exploited to identify regulatory elements in human DNA. However, it was estimated that a 

considerable proportion of functional binding sites in humans are not functional in rodents.16 

Slight changes in ortholog binding sites of two Drosophila species were shown to affect the 

binding of TFs quantitatively, but little or no effect on gene expression patterns was observed.17 

Still, mutations within regulatory regions and TF binding sites are believed to be the main drivers 

of phenotypic evolution.18 

 

1.3.4 Cell type- and tissue-specific regulation 

1.3.4.1 Gene expression patterns 

As already outlined, the coordinated activity of TFs controls the expression of trait-specific genes 

during development and prompts cell type-specific differentiation or tissue-specific 

developmental programs. Not only development is guided by sets of TFs however, also 

established cell fates are maintained by the activity of TFs. Deregulations of TF activity can 

change gene expression and thereby lead to malfunctions and diseases such as cancer. To 

elucidate which regulatory mechanisms lead to disease, gene expression has been studied in 

great detail and typical patterns have been identified for diverse cancers. Furthermore, patterns 

of gene expression are used in the so-called molecular fingerprinting approach which identifies 



6 

 

homology and functional relatedness between cell types.5 

 

1.3.4.2 Other mechanisms of regulation 

Different other regulatory mechanisms are employed to generate trait- or condition-specific 

gene expression, such as those for cell types and tissues. While some of these mechanisms 

enable or repress transcription, others occur co-transcriptionally or post-transcriptionally. 

An example of tissue- and cell type-specific regulation is the differential binding of TFs to 

alternative binding sites. This can often be explained by differential chromatin accessibility. 

Chromatin can have an open conformation, accessible to the transcription machinery and TFs or 

a closed conformation that inhibits transcription. Accessibility depends on ATP-dependent 

chromatin remodelers, histone modifications, or on methylation of the DNA, which is associated 

with transcriptional repression. Another factor determining differential TF binding is post-

translational modification of the TF, or the cofactor interactions which change the TF’s binding 

affinity.19 Such changes can guide a TF to bind preferentially bind one specific site instead of 

another, even though both have an open chromatin conformation. 

What is more, eukaryotic mRNAs have splice variants that are produced through alternative 

splicing. Alternative splicing is a mode of pre-mRNA processing that occurs co-transcriptionally 

through the enzymatic action of proteins and small nuclear ribonucleic particles (snRNPs) that 

together form the spliceosome complex. During splicing, specific sections of a pre-mRNA 

(introns) are exised or left to remain within the mature mRNA (exons). Some of the exons can be 

skipped or included, some have alternative 3’ or 5’ ends (splice sites) and others are mutually 

exclusive. For certain introns it is also possible to remain within mature transcripts (intron 

retention). Alternative splicing offers a wealth of combinatorial options that is utilized to make 

tissue- and cell type-specific protein isoforms. The specific exon-makeup of a tissue-specific 

protein that was produced through alternative splicing can influence with which other proteins it 

interacts and therefore contributes to tissue-specific function.20 Also the way in which TFs 

modulate transcriptional regulation can be changed by alternative splicing.21 

Another mechanism of condition-specific regulation is the selective expression of miRNAs. 

miRNAs are non-coding, single-stranded RNAs of short length. They bind to specific target 

mRNAs which either hinders their target’s translation or directs it towards degradation. Tissue-

specific expression of miRNAs has been demonstrated along with significant reductions of their 

target’s expression in the respective tissue.22  

 

1.4 Gene regulatory networks (GRN) 

In the following, we introduce gene regulatory networks and explain the basic method how we 

reconstruct them. Then, we then present general principles of two next-generation sequencing -

based methods (RNA-seq and DNaseI-seq) which are applied in our approach for trait-specific 

GRN reconstruction. Finally, we outline some general insights from the study of biological 

networks which also apply to GRN, such as the recurrence of network motifs. 
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1.4.1 General 

Transcription regulatory networks are a subtype of biological networks and are often also 

referred to as gene regulatory networks. Using GRN, the complex process of transcriptional 

regulation can be condensed to a simple and comprehensive model. Molecular mechanisms of 

gene regulation become less important, instead the focus shifts to how signals are processed by 

the wiring of regulators and genes.  

Typically, GRN are depicted as graphs in which the nodes / vertices represent regulators and 

genes, and the edges between nodes represent regulatory interactions. Interactions in GRN are 

usually directed, i.e. have a defined regulator and target and they can be further described with 

weights or interaction types (e.g. activating or inhibitory).   

While the experimental establishment of regulatory interactions via methods such as yeast-one-

hybrid assays or chromatin immunoprecipitation (ChIP) has long been arduous and time-

consuming, more recent high throughput methods and computational prediction tools have 

greatly facilitated this process. Computational prediction cannot replace empirial evidence, but 

it can guide experimental interest towards potential interactions. Even though GRN can be 

constructed more readily now, new challenges arise in the form of spurious and weakly 

supported interactions which have to be managed to keep the error in the network as low as 

possible.  

Furthermore, for many established interactions it is not known whether their regulatory effect is 

activating or inhibitory, yet this information is significant for quantitative modeling of 

information processing within GRN. Examining the interaction type experimentally involves a 

combination of gene expression measurement and protein-DNA binding assays. Besides their 

laboriousness, it is hard to establish the effect of combinatorial control with such methods, 

because various combinations of regulators have to be examined separately. In this work, we 

address this challenge by developing a new computational approach to infer interaction types 

based on the integration of experimental evidence from gene expression and binding motif 

occupancy.  

GRN can be composed solely of regulators, such as TFs, or also include structural genes or other 

genes that are not involved in transcriptional regulation. Other transcriptional regulators, such 

as miRNAs, can also be included, but the identification of their targets relies on prediction. The 

composition and complexity of GRN generally depends on the subject of study and on data 

availability. In this work, we focus on TFs because this allows us to apply a rather straightforward 

model and keep prediction to a minimum. 

 

1.4.2 Construction of GRN 

As already mentioned, the development of genome-wide, NGS-based methods and 

computational tools has spurred GRN reconstruction. Moreover, various databases have been 

established which offer large collections of interactions, derived from systematic interaction 

assays.  

Computational approaches apply mathematical models to infer the most likely GRN from 

expression data, rather than empirically establishing physical interaction. The approach we used 
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in this work is based on genome sequence data and the prediction of TF binding sites (TFBS) in 

regulatory regions, which is also referred to as probabilistic modeling. 

Probabilistic modeling involves prediction of so-called binding motifs in genomic DNA. Binding 

motifs are based on the nucleotide composition of experimentally derived binding sequences. To 

obtain a binding motif, an alignment of these sequences is created first and a position frequency 

matrix (PFM) is constructed. It contains the frequency of each nucleotide at each position in the 

binding site, and serves as the basis for positional weight matrices (PWMs). PWMs reflect the 

likelihood for each nucleotide to arise at a certain position in the binding site. They are used for 

binding motif prediction by comparing the probability of the binding motif arising purely by 

chance based on the background distribution of nucleotides, versus the probability of it being an 

instance of the TFBS described by the probabilities in the PWM. The ratio of likelihoods is log-

transformed and converted to a p-value and motif instances meeting a certain cutoff are used to 

construct the GRN. A motif with a significant p-value stands for an interaction between the 

regulator, which can bind the motif, and the target, in whose regulatory region the motif is 

located. 

 

1.4.3 Reconstruction of trait-specific GRN 

The presence of a predicted binding motif in a regulatory region means that the regulatory 

protein could bind to the given DNA sequence in principle. Consequently, a network generated 

by probabilistic modeling represents the sum of potentially possible interactions. In this work, 

we refer to such general networks as “reference networks”. 

Probabilistic modeling likely has a high rate false-positive of prediction, because binding motifs 

are short and may arise randomly without having true regulatory functions. However, even if 

false-positives are controlled, only a part of the potential interactions from a general reference 

network may be realized in a given cell type or tissue. Therefore, new GRN reconstruction 

approaches are under development. Their focus lies on identifying those interactions that are 

present in specific cell types or tissues. For example, gene expression measurements (e.g. by 

microarrays or RNA-seq) have been applied to extract interactions that are active in specific cell 

types or tissues from a reference network.23,24 In this case, only interactions of those regulators 

that are expressed are included in the trait-specific GRN.  

Furthermore, cell type-specific GRNs were reconstructed de novo from screens of genome-wide 

protein-DNA binding, obtained via DNaseI-seq data.25 In this approach, interactions are assigned 

when a so-called DNaseI footprint overlaps predicted binding motifs.  

As we combine both abovementioned methods and use data from RNA-seq and DNaseI-seq / 

DNaseI footprinting to identify the cell type- and tissue-specific interactions in reference 

networks, we explain the basic principles of these two NGS methods below 

 

1.4.3.1 RNA-seq 

The main idea behind RNA-seq is to measure the abundance of mRNA transcripts to infer 

expression in a quantitative manner. For this purpose, RNA is isolated from the biological sample 

under study, poly-A selected and transcribed into cDNA. From this point on, RNA-seq follows a 
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general next-generation sequencing protocol: cDNA is fragmented and adaptor sequences that 

match universal primers are ligated to the fragments, which can then be amplified by PCR and 

become templates for sequencing. Sequenced reads can be assembled to transcripts or aligned 

to reference genomes, if available. The number of reads per gene is then normalized to account 

for a) the number of reads in the experiment and b) transcript length (as longer transcripts will 

have more reads mapping to them by default). Finally, normalized measures of read abundance 

are used as a proxy to estimate the expression of mRNA.  

One of the major challenges for the alignment of RNA-seq reads to eukaryotic genomes is 

splicing. Genome sequences contain introns, while reads do not, and splice junctions have to be 

inferred within them. Furthermore, reads that map to multiple transcripts with stretches of the 

same intron / exon structure may hinder the quantification of expression on the transcript-level. 

The past few years have brought about the development of specialized mapping tools for 

eukaryotic RNA-seq reads, e.g. Tophat26 and STAR27 which can infer splice junctions. The issue of 

reads that map to multiple transcripts may be resolved in the future with new sequencing 

techniques that produce longer reads that cover whole mRNA molecules (e.g. the Pacific 

Biosciences system28). 

 

1.4.3.2 DNaseI-seq 

DNaseI footprinting as a technique to detect protein-DNA binding preceded the present use in 

the context of next-generation sequencing.29 The novelty of DNaseI-seq consists of subjecting 

DNaseI-cleaved genomic sequences to high-throughput sequencing and footprinting on a 

genome-wide level. The mapping of sequenced reads or their 5’ ends (DNaseI cleavage sites) to 

reference genomes makes it possible to identify so-called DNaseI hypersensitive sites (DHS). DHS 

are sites cleaved preferentially by DNaseI. They contain open chromatin which can also be 

bound by regulatory proteins and are therefore used as markers for functional regulatory 

regions. In addition, it was discovered that short without mapping DNaseI cleavage sites are 

located within DHS. They are enriched for binding motifs of regulatory regions and overlap 

binding sites of TF derived from ChIP-seq experiments.30 For this reason, these short sequences 

are thought to be bound by DNA-binding proteins in vivo and have been termed “DNaseI 

footprints”. Algorithms that detect DNaseI footprints within DNAseI-seq data are therefore used 

to identify binding sites occupied by regulatory proteins in specific conditions. 

 

1.4.4 Properties of biological networks 

1.4.4.1 Global topology 

It has been shown that different networks found in nature share global topological properties. 

The various biological networks (e.g. protein-protein interaction, metabolic, signaling and 

transcriptional regulation networks) exhibit the so-called small world property and scale-

freeness.31 Small world means that a node in the network can be reached from any other node in 

relatively few steps, and scale-freeness refers to the distribution of interactions among the 

nodes. Within a scale-free network, the degree distribution (i.e. the number of interactions per 

node) follows a power-law. In such networks, most of the nodes have a low degree, while a few 

have a very high number of connections and are therefore termed hubs.  
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Scale-freeness distinguishes natural networks from random networks, because the degree 

distribution of the latter is Poissonian and therefore less unequal.31 Generally, scale-freeness is 

interpreted as an evolved property that supports the robustness of biological networks. Because 

of the scarcity of hubs, even when many node perturbations occur, they are unlikely to hit the 

well-connected hubs. Much of the network structure is likely to be preserved upon few node 

deletions. Additionally, gene duplication contributes to the robustness of scale-freeness. As 

proteins / nodes with few interactions make up the majority, they are more likely duplicated 

than hubs. Thereby, the hubs to which they are connected receive even more interactions while 

other nodes remain weakly connected.31 

A further hallmark of biological networks and GRN is modularity. This structural feature refers to 

grouping of nodes into modules, in which nodes are more interconnected within, than with 

nodes outside the module. The members of a module often participate in performing a common 

task or enabling a function. 

Besides being modular, GRN have also been found hierarchically organized. Combining the 

hierarchical with a dynamical perspective, they can be divided into different parts: layers of 

nodes that only react to signals or amplify them without generating impulses themselves, and a 

“dynamical core” which defines the dynamics of the whole network.32 Based on the concept of 

dynamical cores, we identify the core active sub-network in cell type- and tissue-specific GRN. 

 

1.4.4.2 Local topology: Network motifs 

One further property that distinguishes natural networks like GRN from random networks is 

found in their local topology. Certain small sub-graphs are found significantly more frequently in 

natural networks than in random ones. These sub-graphs, also termed network motifs, have 

been observed in diverse types of networks:  gene regulation, neuronal connectivity, food webs, 

electronic circuits and the world wide web.33 The causes of their prevalence in such different 

networks are unclear. While it has been proposed that certain motifs may be suited to perform 

specific functions or are able to produce a range of functionally usable dynamics which may put 

them under positive selection, another explanation for their frequency may be an easy mode of 

generation through node duplication.  

In this work, we investigate the presence of network motifs in the core active sub-networks of 

trait-specific GRN. We also examine whether they co-occur with TFs that are involved in trait 

development which would imply a role for topological patterns in the regulation of traits.  

 

1.5 Objectives of this work 

 

The finding of enriched network motifs has sparked interest in possible functional dynamics of 

these small sub-graphs. It has been demonstrated that different topologies of sub-graphs can 

produce the same dynamical outcome.34 Regulatory dynamics corresponds to a phenotype. 

From the perspective of the phenotypic trait, this finding is interesting because it means that 

even at the level of regulatory interactions (not just synonymous substitution) a degree of 
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change can accumulate without the change in the phenotype. Such a hidden change could lay 

the groundwork for the subsequent development and individualization of a new trait.  

Due to its important role in evolution, trait individualization has also been studied in a 

mathematical model.35 This study has demonstrated that the development of a new trait 

requires a transition state in which both the ancestral and the derived trait are present. Even 

though this means that trait individualization involves a complex and evolutionary costly 

intermediate stage, this cost is biologically more likely than the emergence of a new trait in one 

step, without sharing any qualities of the ancestral state.  

When these two results are regarded together, they suggest a role for regulatory network 

topologies in trait evolution. We therefore asked: “Is there molecular evidence for a role of 

specific topological or dynamical regulation patterns in trait evolution?” 

To address this question, we survey regulatory core networks that underlie traits in 18 

phenotypically distinct samples, 12 human cell types and 6 mouse tissues. We characterize 

global and local network structure, and investigate the occurrence of network motifs in these 

networks.  

With regard to trait-specific regulation, we aim to find out whether regulators that drive trait 

development co-occur with specific topological patterns / network motifs. 

Another question that we aim to clarify is whether GRN from related samples share similar 

structural properties, and whether there are similarities in their interaction repertoire. Given a 

common evolutionary origin and the current findings from cell type evolution it would be 

reasonable to find that related cell types share a higher number of interactions than unrelated 

ones. We want to find out whether the traits can be characterized by the interactions within the 

regulatory core. 

With respect to methodology, we aim to develop an approach that will capture the core active 

sub-network and generate networks with edges that have interaction types. Inhibitory 

interactions in particular are essential in trait development, and an approach that can assign 

interaction types can be valuable for many future applications.  
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2 MATERIALS AND METHODS 
 

In the following we will describe our workflow to generate and analyze cell type- and tissue-

specific gene regulatory networks. Our principal idea was to first construct a reference network 

of all potential TF-TF interactions predicted from the sequence, irrespective of the tissue, cell 

type or differentiation status of the cell, and subsequently to use sample-specific experimental 

data to derive a sub-network that would reflect active regulatory interactions in a specific 

sample.  

In more detail, our approach to generate cell type- and tissue-specific gene regulatory networks 

involved following steps: 

a) construction of reference network based on the prediction of binding motifs in regulatory 

sequences 

b) “mapping” of cell type- or tissue-specific gene expression and binding motif occupancy onto 

the reference network to derive a sample-specific regulatory network 

c) selection of interactions based on a set of defined criteria to find the core active sub-network 

(see below for criteria) 

We then carried out different analyses on the generated active sub-networks to assess their 

specificity in regard to cell type or tissue function and to investigate their topological properties: 

a) functional profiling of TFs participating in the generated networks by gene ontology 

b) comparison of a generated network to a published cell type specific network 

c) structural characterization using global network measures 

d) detection of network motifs 

e) determination of positions of cell type / tissue marker TF relative to network motifs 

We first provide detailed information about the different data types that have been used in this 

study and then move on to explain the different parts of our workflow in detail.  

 

 

2.1 Materials 

 

The construction of the reference network required transcription factor binding site (TFBS) 

models, genomic sequences and annotations. Inference of sample-specific networks was based 

on combining the reference network with next generation sequencing (NGS) data from the 

whole genome transcriptomes (RNA-seq) and regulatory site occupancy screens (DNAseI-seq), as 

schematically depicted in Figure 1. 

 

2.1.1 Genomes 

Genome sequences were downloaded in FASTA format from Ensembl36. The human genome 

release 73 and the mouse genome release 74 were used.  We selected these releases for their 

compatibility with the GENCODE37 annotations used in this study (see list of Ensembl genome 

releases and GENCODE annotations: http://www.gencodegenes.org/releases/). 

http://www.gencodegenes.org/releases/
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2.1.2 Annotations 

Annotations were obtained in gtf-format from GENCODE. We worked with GENCODE release 18 

for human data and with GENCODE release M2 for mouse data to ensure consistency with the 

annotations used for the alignment/mapping of RNA-seq data. 

 

2.1.3 TFBS models 

After evaluating different TFBS database choices, we decided to use Homo Sapiens 

Comprehensive Model Collection (HOCOMOCO)38 because it was open to the public and offered 

a comparatively large set of TFBS models. We obtained TFBS models formatted as probability 

matrices in MEME text format from the HOCOMOCO website on 13.05.2013 (available at: 

(http://autosome.ru/HOCOMOCO 

/download_helper.php?path=download/HOCOMOCOv9_AD_MEME.txt&name=HOCOMOCOv9_

AD_MEME.txt). For the mouse TF-TF interaction reference network, we used the mapping of 

HOCOMOCO TFBS models to mouse TFs provided by the authors of the database (available at: 

http://autosome.ru/HOCOMOCO/download_helper.php?path=download/HOCOMOCOv9_motif

s2UniProt.xlsx&name=HOCOMOCOv9_motifs2UniProt.xlsx). In the following, human TFs will be 

referred to with names written in UPPERCASE (the convention generated by Hugo Gene 

Nomenclature Committee (HGNC), e.g. AHR) and mouse TFs will be written with the first 

character in uppercase (the convention generated by Mouse Genome Informatics (MGI), e.g. 

Ahr).  

 

2.1.4 NGS data 

RNA-seq expression data and DNaseI seq data used in this study were generated in the Human 

and Mouse ENCODE projects39 (see Table 1 for overview of the samples). For both types of data, 

we worked with ready-made alignments whenever possible. A part of the RNA-seq alignments 

from the official ENCODE release were not compatible with the current version of RNA-seq 

analysis tool Cufflinks40 (ver 2.1.1). For these samples, we obtained newly aligned RNA-seq data 

from the authors of original data (available at 

ftp://ftp2.cshl.edu/gingeraslab/tracks/Alex/Important/ENCODE2/BAM/). 

 

 Sample name Description 

DNaseI-seq:  

data 

availability 

RNAseq: 

No. of 

replicates 

H
u

m
an

 c
e

ll 
ty

p
es

 

A549 Epithelial cell line derived from a lung carcinoma tissue. 

(PMID: 175022), "This line was initiated in 1972 by D.J. Giard, 

et al. through explant culture of lung carcinomatous tissue 

from a 58-year-old caucasian male." - ATCC, newly promoted 

to tier 2: not in 2011 analysis 

* 2 

CD20+ B cells from donors RO01778 and RO01794 *** 2 

Hepg2 Hepatocellular carcinoma *** 4 

Hsmm Skeletal muscle myoblasts *** 4 

http://autosome.ru/HOCOMOCO/download_helper.php?path=download/HOCOMOCOv9_AD_MEME.txt&name=HOCOMOCOv9_AD_MEME.txt
http://autosome.ru/HOCOMOCO/download_helper.php?path=download/HOCOMOCOv9_AD_MEME.txt&name=HOCOMOCOv9_AD_MEME.txt
http://autosome.ru/HOCOMOCO/download_helper.php?path=download/HOCOMOCOv9_AD_MEME.txt&name=HOCOMOCOv9_AD_MEME.txt
http://autosome.ru/HOCOMOCO/download_helper.php?path=download/HOCOMOCOv9_motifs2uniprot.xlsx&name=HOCOMOCOv9_motifs2uniprot.xlsx
http://autosome.ru/HOCOMOCO/download_helper.php?path=download/HOCOMOCOv9_motifs2uniprot.xlsx&name=HOCOMOCOv9_motifs2uniprot.xlsx
ftp://ftp2.cshl.edu/gingeraslab/tracks/Alex/Important/ENCODE2/BAM/
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Huvec Umbilical vein endothelial cells * 4 

Imr90 Fetal lung fibroblasts ** 2 

K562 Leukemia, "The continuous cell line K-562 was established by 

Lozzio and Lozzio from the pleural effusion of a 53-year-old 

female with chronic myelogenous leukemia in terminal blast 

crises." – ATCC 

*** 4 

Lhcnm2 Skeletal myoblasts derived from satellite cells from the 

pectoralis major muscle of a 41 year old caucasian heart 

transplant donor, immortalized with lox-hygro-hTERT ("LH"), 

and Cdk4-neo ("CN"), Zhu et al. (2007) in Aging Cell, vol. 6, pp 

515-523 

* 1 

Lhcnm2 Myc 7d / 4d Lhcnm2 cells harvested after myogenic differentiation, see 

http://genome.ucsc.edu/ENCODE/protocols/cell/human/LHC

NM2_Wold_protocol.pdf  

* 1 

Monocd14 Monocytes-CD14+ are CD14-positive cells from human 

leukapheresis production, from donor RO 01746 (draw 1 ID is 

RO 01746, draw 2 ID is RO 01826) 

* 2 

Nhlf Lung fibroblasts *** 4 

SK-N-SH-RA Neuroblastoma cell line, treatment: differentiated with 

retinoic acidi (Biedler, et al. Morphology and Growth, 

Tumorigenicity, and Cytogenetics of Human Neuroblastoma 

Cells in Continuous Culture. Cancer Research 33, 2643-2652, 

November 1973.) 

*** 2 

M
o

u
se

 t
is

su
e

s 

Heart Heart, adult, 8 weeks * 2 

Kidney Heart, adult, 8 weeks * 2 

Liver Heart, adult, 8 weeks * 2 

Lung Heart, adult, 8 weeks * 2 

Thymus Heart, adult, 8 weeks * 2 

Whole Brain Whole brain, embryonic day 14 * 2 

Table 1: Overview of human and mouse samples. *: aligned DNAseI seq reads, **: Neph DGF, ***: both aligned 
DNAseI seq reads & Neph DGF. For all DnaseI samples with aligned reads, only one replicate was available. For human, 
the sample descriptions are taken from ENCODE controlled vocabulary: http://genome.ucsc.edu/cgi-
bin/hgEncodeVocab?type=cell 
Type, for mouse, samples are described according to the sample names in: ftp://ftp2.cshl.edu/gingeraslab/tracks/Alex 
/Important/ ENCODE2/BAM/Mouse_CSHL/ 
 

2.1.4.1 RNA-seq data 

We worked with poly-A-selected paired-end data with 75 bp read length generated on the 

Illumina GAI or GAIIx platform. The human reference for the alignment was hg19, and as an 

annotation GENCODE release 18 was used. The mouse reference for the alignment was mm10, 

the annotation was GENCODE release M2. 

 

 

                                                            
i treatment with retinoic acid induces neuronal-like differentiation in SK-N-SH 

http://genome.ucsc.edu/ENCODE/protocols/cell/human/LHCNM2_Wold_protocol.pdf
http://genome.ucsc.edu/ENCODE/protocols/cell/human/LHCNM2_Wold_protocol.pdf
http://genome.ucsc.edu/ENCODE/protocols/cell/human/LHCNM2_Wold_protocol.pdf
http://genome.ucsc.edu/cgi-bin/hgEncodeVocab?type=cellType
http://genome.ucsc.edu/cgi-bin/hgEncodeVocab?type=cellType
http://genome.ucsc.edu/cgi-bin/hgEncodeVocab?type=cellType
ftp://ftp2.cshl.edu/gingeraslab/tracks/Alex/Important/ ENCODE2/BAM/Mouse_CSHL/
ftp://ftp2.cshl.edu/gingeraslab/tracks/Alex/Important/ ENCODE2/BAM/Mouse_CSHL/
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2.1.4.2 DNaseI-seq data 

DNaseI seq data were obtained as alignments to hg19 for human samples and alignments to 

mm9 for mouse samples. Additional data with ready-made DNaseI footprints identified using the 

digital genomic footprinting (DGF) algorithm were obtained from published data (available at: 

ftp://ftp.ebi. 

ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/footprints/jan20

11/) 

 

2.1.5 Software applications 

Our workflow made use of a number of published programs and applications which we will refer 

to in detail in the Methods. 

 

 

2.2  Methods 

 

Before describing each step of our approach in detail, we give an outline of the whole workflow 

in this section. As already mentioned, we started with the construction of a reference network.  

After selecting a set of TF from the database that was consistent with the annotations used in 

this study (i.e. excluding TF that were not present in the annotations), we derived regulatory 

regions for each TF from the genome. We defined regulatory regions as intronic or intergenic 

sequences inside a +/-5 kb interval around the trancription start sites (TSS; i.e., mRNA start) of a 

TF of interest. In these regions, we scanned for putative TF binding site locations. For each TF 

that had a binding site in another TF’s regulatory region, we made an edge in the reference net. 

Each such edge signifies a potential directed regulatory interaction with the first TF acting as a 

regulator and the second TF as a target (Figure 1).  

 

 
Figure 1: Construction of reference network. For each TF, regulatory regions are inferred on the basis of TSS location 
and intron/exon structure. TFBS locations are then detected in regulatory regions and based on this, the reference 
network is constructed. A directed edge in the reference network represents the presence of a TFBS of the regulator-
TF in one of the regulatory regions of the target TF. 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/footprints/jan2011/
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/footprints/jan2011/
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/footprints/jan2011/
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After creating the reference network, we turned to cell type- or-tissue- (henceforth sample-) 

specific expression (RNA-seq) and TF binding site occupancy (DNaseI-seq) profiles. We estimated 

expression for each of our TF’s protein coding isoforms, and selected those isoforms that met a 

specific expression cutoff. Each TF with at least one protein coding isoform expressed above the 

cutoff was regarded as expressed. 

 

For the DNaseI-seq data, we first detected DNaseI footprints and then intersected footprint 

locations with locations of TF binding sites from the reference network. Thereby we obtained TF 

binding sites that were occupied by their cognate TF in each specific sample.  

 

Using gene expression and the occupied TF binding sites, we derived sample-specific interactions 

from the reference network and assigned interaction types (activation, inhibition) in order to 

generate a sample-specific regulatory network.  

 

We selected the dynamically relevant interactions in each sample-specific regulatory net to 

obtain an active regulatory sub-network. For this purpose, we developed a set of selection 

criteria. Stages of the workflow from reference network to active sub-network are depicted in 

Figure 2. 

 

As a last step, the active regulatory sub-networks for each cell type and tissue under study were 

characterized with respect to network topology, and analyzed with respect to its importance for 

the cell type or tissue function. 
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Figure 2: Steps in the workflow from the reference network to the active sub-network. The reference network is made 
up of predicted interactions (shown in grey). According to the evidence from RNA-seq and DNaseI-seq, distinct rules 
are applied to assign interaction types and weights to the predicted edges (weights shown with different line types). 
Interactions for the active sub-network are chosen using specific selection criteria that filter out dynamically irrelevant 
interactions. 
 

2.2.1 Generation of reference network 

2.2.1.1 Selection of TF set 

Of the 426 TFBS models in the HOCOMOCO database, four models are assigned to more than 

one transcription factor, and 25 transcription factors are assigned two TFBS-models. We 

regarded TFs with shared TFBS-models separately to capture interactions in a 1:1 manner. One 

TFBS model, “ZBTB4!METH”, was excluded from the analysis as our study did not take into 

account DNA methylation states (ZBTB4 had two different TFBS models that captured its affinity 

to unmethylated and methylated binding sites). Another TF, NR2E3 was excluded for lacking 

protein coding isoforms. As a result, we worked with 404 TFs with one or more TFBS-models to 

generate the human reference network.  For generating the mouse reference network, we used 

a mapping of 414 of HOCOMOCO TFBS-models to 393 mouse TFs, provided by the authors of the 

database (see chapter 2.1.3).  

One of these TF, Hoxd4, was excluded because it was not present in the mouse genome 
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annotation applied in this study. Later, we also had to exclude Foxc2, Foxf1, Irf8 and Sox2 after 

analyzing RNA-seq data because their expression estimates were either not usable (marked 

“LOWDATA” in the Cufflinks output, see chapter 2.2.2), or no expression values were provided in 

the Cufflinks output. After these exclusions, we worked with 388 mouse TF with one or more 

TFBS models to generate the mouse reference network.  

 

The TF names were provided in HOCOMOCO as UniProt IDs. To parse genome annotations we 

converted TF names to HGNC symbols (human) or MGI symbol s (mouse) using Ensembl 

Biomart41, UniProt KB42, UniProt ID mapping (available at http://www.UniProt.org/mapping/) 

and MGI (available at http://www.informatics.jax.org/batch). 

 

2.2.1.2 Extraction of regulatory sequences 

We extracted FASTA sequences of regulatory regions from a whole-genome FASTA file using a 

custom-made Perl/Bioperl43 script (extract_reg_regions.pl). Our definition of regulatory regions 

included intronic or intergenic regions inside a +/-5kb cutoff around the TSS (mRNA start) of a TF 

of interest.  

The input of the script is an annotation in gtf-format. In this format, genomic features are 

described in a one-line-per-feature manner. Genomic features, for example exons or coding 

sequences, are described with chromosome number, start and stop coordinates and different 

tags, including name, gene  or transcript type and various identifiers (Ensembl gene/transcript, 

HAVANA gene/transcript etc).  

Before running the extraction script, the annotation was parsed for lines that described genomic 

features of the target TF. This parsed annotation was then supplied to the extraction script. 

Parsing the annotation shortened the runtime of the extraction script, because it made it 

unnecessary to parse the whole annotation file repeatedly while running the script.  

The script’s output is a multi-FASTA file that lists all extracted regulatory regions. The identifier 

of each region includes the name of the transcript from which it was derived and its genomic 

location.  

For the structure of extract_reg_regions.pl see Box 1; the full code of the script can be found in 

supplemental materials. 

TOP section 

 open FASTA genome, parsed annotation, original annotation 

 specify cutoff for regulatory regions 

 create out-, logfile names and filehandles 

 associate each chromosome with its DNA sequence:  

  e.g. chr1 -> “ACGGC...” 

 create TRANSCRIPT SET (protein-coding transcripts of all TF) 

  with transcript name, coordinates, strand, descriptive info 

 

MAIN section 

 for each transcript in TRANSCRIPT SET 

  get start & end coordinates of each exon 

  sort start coordinates ascendingly  

  sort end coordinates ascendingly 

  if (transcript is on +strand) 

   TSS = first start coordinate 

http://www.uniprot.org/mapping/
http://www.informatics.jax.org/batch
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   upper boundary, lower boundary = TSS +/- cutoff 

   remember intron coordinates inside boundaries based on the exon 

   coordinates 

  if (transcript is on –strand) 

   TSS = last end coordinate 

   upper boundary, lower boundary = TSS +/- cutoff   

  remember intron coord. inside boundaries based on exon coord. 

  SUB: print to log: TSS, boundaries, intron coordinates, transcript  

  name and type 

  SUB: get coordinates of intronic/intergenic regions inside boundaries 

  SUB: get sequences with coordinates of intronic/intergenic regions 

  SUB: print FASTA outfile: identifier of transcript + regulatory  

       region sequences 

 

SUBROUTINES 

 get coordinates of intergenic regions inside boundaries { 

  SUB: get exon coordinates 

  SUB: make “exonic stretches” 

  SUB: get intron/intergenic coordinates 

 } 

 get exon coordinates { 

  get coordinates of exons of other genes that fall inside boundaries  

  (from annotation) 

 } 

 make exonic stretches { 

  get coordinates of longest possible exonic stretches by combining exon 

   coordinates and selecting those that make the longest stretch 

 } 

 get intron/intergenic coordinates { 

  get coordinates of seq that fall inside boundaries but not inside  

 exonic stretches (=intronic/intergenic seq) 

 } 

 get sequences based on coordinates { 

  get chr sequence from %Hash “chromosome No.” -> “ACCTGATGAAGGC...” 

  get regulatory regions as subsequences of chr sequence  

  (get complementary sequence if (–strand)) 

 } 

 print FASTA outfile { 

  print “>ID;genomic location\newline” 

  chunk sequences into 80 bp pieces 

  print chunks 

 } 

Box 1: Pseudocode of extract_reg_regions.pl. Genomic coordinates of all TFs’ protein coding transcripts and exons. 
Based on the TSS (mRNA start) of each such transcript, a +/- 5kb interval around the TSS is defined. Introns and 
intergenic regions inside these  boundaries are output as regulatory regions. 
 

2.2.1.3  Binding motif detection in regulatory sequences 

On the extracted regulatory regions in FASTA format we detected putative binding motifs using 

FIMO44 (Find Individual Motif Occurences). To account for the distinct nucleotide composition 

present in the proximity of TSS, we adjusted background frequencies of nucleotides in human (A: 

0.247, C: 0.251, G: 0.254, T: 0.248) and mouse (A: 0.255, C: 0.243, G: 0.246, T: 0.256) according 

to published data45. FIMO was run with default parameters and a p-value threshold of e-5
. 

2.2.1.4 Genomic location of binding motifs 

In the FIMO output, binding motif locations were recorded relative to the start of the regulatory 

sequence. From these coordinates we calculated genomic locations using the coordinates of the 

regulatory regions in the corresponding FASTA header. 
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2.2.1.5 Reference network  

The presence of a TF’s binding motif in the regulatory sequence of a second TF was registered in 

the reference network as an edge. Each edge represents a potential directed regulatory 

interaction between the first TF as a regulator and the second TF as its target. 

 

2.2.2 RNAseq: Expression calls 

Transcript abundance was estimated from aligned RNAseq data using Cufflinks40 (2.1.1). In the 

output of the program, expression estimates were reported in FPKM (Fragments Per Kilobase of 

transcript per Million mapped reads, a measure for paired end sequencing set-ups similar to the 

widely used RPKM (Reads Per Kilobase of transcript per Million mapped reads)). 

 

We first sought to define actively expressed genes through an expression cutoff based on the 

FPKM distribution. Provided a deep enough sequencing, most annotated genes can be observed 

expressed at some level.46  In such a case, the FPKM distribution would have a single peak at 

some point right of the value 0 FPKM and an appropriate cutoff for actively expressed genes 

could be chosen based on the location of the peak. In our samples however, the peak is at 0 

FPKM (chapter 3.2.1, Figure 7), suggesting the samples are not sequenced deeply enough.  

 

As the FPKM distributions in various samples did not point us to where to set an appropriate 

cutoff for expression, we resorted to the published expression cutoff47 of FPKM > 1. We applied 

this cutoff to expression estimates of protein coding isoforms of our target TF. We considered a 

TF gene expressed if any of its protein coding isoform would meet the cutoff. Regarding 

replicates, we considered an isoform/transcript expressed either by decision of majority or, if 

this was impossible, by calculating the mean FPKM over isoforms and deciding upon cutoff. 

 

2.2.1.6 Specific issues with Cufflinks 

In some cases, Cufflinks did not report expression values for certain isoforms that were present 

in the annotation. After manual inspection, we concluded that this happened when a) two 

isoforms had the same intron/exon structure or b) a gene had only one exon and thereby only 

one isoform with the same start/end coordinates as the gene itself. A likely explanation for this 

was that the program resolved this ambiguity by assigning reads that aligned to such regions to 

only one of the two possibilities. Expression was then only estimated for one of the two isoforms 

by Cufflinks, or either the gene or the isoform. As a result of this, certain isoforms were missing 

from the output, leaving in some cases no isoforms to make the decision whether a TF was 

expressed or not. In these cases we decided to evaluate the gene’s expression value to assess a 

TF’s expression. 

 

Furthermore, we filtered out transcripts that were marked with the tag “LOWDATA”. In case of 

TFs where all isoforms were marked in this way, we used the expression estimates of the 

corresponding genes if their status was “OK”.  

 

2.2.3 DNaseI footprinting 

DNaseI seq data were available to us either in the form of aligned reads from a DNaseI seq 

experiment or as already processed, ready-to-use footprints that had been detected by the 
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digital genomic footprinting algorithm (DGF).30 From aligned DNaseI seq reads we detected 

footprints of 6-40bp width with a p-value cutoff of e-3 using the R package DNaseR (1.0.0)48. To 

correct for multiple testing, the Benjamini-Hochberg procedure was used, it is set as the default 

in DNaseR.  

 

2.2.1.7 Evaluation of DNaseI footprinting 

We compared DNaseI footprints derived by the DNaseR algorithm with footprints identified 

using the DGF algorithm. For the comparision, the same DNaseI-seq data sets were used. As the 

algorithms use different criteria to define footprints, we expected shifts in footprint edges and 

searched for footprints that overlapped to different extents (1, 5, 10 bp, exact overlap). We first 

sorted the footprints, which were in bed-format, with BEDOPS49 sort-bed and then overlapped 

using BEDOPS bedmap. For bedmap, we varied the --ovr (overlap) parameter to 1, 5 or 10 or 

replaced it by --exact. 

 

2.2.4 Cell type- and tissue-specific regulatory networks 

After evaluating gene expression and detecting DNaseI footprints, we carried on with generating 

a sample-specific regulatory network and assigning interaction types.  

First, we overlapped DNaseI footprint locations with the putative binding motive locations that 

had been obtained by scanning regulatory regions with FIMO (chapter2.2.1.3).  

Subsequently, we derived the sample-specific regulatory network by “mapping” evidence from 

gene expression and/or DNaseI footprints onto the reference network and assigning interaction 

types. Inferring the sample-specific network and assigning interaction types was carried out 

according to a set of defined rules which will be explained in detail below. 

 

2.2.1.8 Overlapping reference network and DNaseI footprints 

The reference file with the genomic locations of binding motifs and the files containing DNaseI 

footprints were sorted using BEDOPS sort-bed and then overlapped using BEDOPS bedmap. All 

putative binding motifs overlapping a DNaseI footprint by at least 3 bp were considered 

“footprinted”, i.e. bound by their cognate TF.  

 

2.2.1.9 Assigning cell type-/tissue-specific interactions 

We now elaborate the rules that we developed to derive sample-specific networks. We assigned 

different interaction types to the edges in the reference network based on the evidence from 

RNA-seq and DNAseI-seq experiments. Depending on the strength and consistency of evidence 

that supported an interaction, we also assigned weights. We will first describe rules for 

interactions with an expressed TF as a regulator, and then move on to explaining the rules for 

interactions that have unexpressed TFs as regulators. 

 

a) Interactions with expressed regulators 

If the regulating TF of an interaction was expressed, we searched for a “footprinted” binding 

motif of the regulator-TF in the target TF’s regulatory region. If there was a DNaseI footprint on a 

binding motif, this meant that the binding motif had been occupied by a DNA-binding protein in 

situ, likely by its cognate TF. We therefore assigned an interaction with the TF whose binding 

motif was “footprinted” as the regulator and the TF in whose regulatory region the binding motif 
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as the target. If there was no footprint on the regulator TF’s binding motif, we did not assign an 

interaction.  

We regarded the interaction as positive/activating if the target was expressed and as 

negative/inhibiting if the target was not expressed. Since these two interaction types, the 

negative and the positive, are independently supported by the reference network and both 

sources of experimental evidence (expression and DNaseI footprints), we assigned the highest 

weight “A” for these interactions. In the following, the two interaction types will be referred to 

as “A+” or “A-“, for activation or inhibition respectively.  

A schematic depiction of rules involving expressed regulators can be found in Figure 3 A. 

 

b) Interactions with unexpressed regulators 

For edges in the reference network where the regulator was not expressed, we examined all 

binding motifs in the regulatory regions of the target TF for DNaseI footprints. If none of the 

binding motifs was “footprinted”, this meant that none of the other potential regulators from 

the reference network had a regulatory influence on the target. In this case, the absence of the 

regulator could have a regulatory impact on the target.  

 

Depending on the expression of the target we again assigned positive/activating or 

negative/inhibiting interaction types. If the target was expressed, its expression could have been 

influenced by the absence of the suppressing regulator, implying that if the regulator had been 

expressed, the target would not be expressed. The interaction assigned in this case was 

therefore negative/inhibiting. Likewise, if the target was not expressed, its non-expression could 

have been influenced by the absence of the regulator if none of the binding motifs in the 

target’s regulatory region was “footprinted”. In this case, we inferred that if the regulator had 

been expressed, the target would have also been expressed. We therefore assigned a 

positive/activating interaction.  

 

These two types of interaction are supported by less certain evidence than the interactions 

involving expressed regulators that were described above. They are based only on the 

predictions of the reference network and the absence of DNaseI footprints on binding motifs in 

regulatory regions. We therefore assigned a lower weight: “B”. These two interaction types will 

be called “B+” or “B-“ in the following, depending on activation or inhibition.  

 

When we examined reference network edges with unexpressed regulators and found any of the 

binding motifs in the target’s regulatory regions “footprinted”, the influence of the absent 

regulator on the target was even less certain. It was unclear whether the unexpressed regulator 

had an activating, inhibiting or even no regulatory influence at all on the target. In such cases, 

the interaction was solely supported by the predicted edge in the reference network and we 

therefore assigned the lowest weight “P” (for “predicted”).  

For a graphical illustration of the rules for interactions going out from unexpressed regulators, 

please refer to Figure 3 B and Figure 3 C. 
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LEGEND: 
   expressed TF 

   unexpressed TF 

   specific binding motif of regulator footprinted 

   no footprinted binding motifs in regulatory regions 

   footprinted binding motifs present in regulatory region 

3A 

 
 

 

3B 

 
 

 

3C 

 
 

 
Figure 3: Rules for assigning interactions in the sample-specific network and weights for each category. 3A: 
Interactions of the highest weight A are assigned when regulators are expressed and their specific TFBS/binding motif 
in a regulatory region of the targets is footprinted. 3B: Interactions of intermediate weight B are assigned when 
regulators are unexpressed and there are no footprints present on the TFBS/binding motifs in the regulatory regions 
of the target. 3C: Interactions of the lowest weight P are assigned when regulators are unexpressed and unspecific 
TFBS/binding motifs in the regulatory regions of the target are footprinted. The highest weight is A, B is an 
intermediate weight and P (“predicted”) is the lowest weight. 

We implemented the rules described above in a perl script (assign_cell type-

specific_interactions.pl) that used as inputs a list of expressed TF isoforms, the reference 

network and the overlap of the reference network with DNaseI footprints. The output of the 

script included an edgelist (list of interactions), all incoming interactions listed for each TF (node 

outfile) and a file listing expression on the gene-level. For structure of assign_cell type-

specific_interactions.pl see Box 2; the full code of the script can be found in the supplement. 
 

TOP section 

 open mapping file of TF-isoform/-gene name to Ensembl identifier 

 open mapping of HGNC symbols to UniProt IDs 

 open file with genomic locations of binding motifs (reference net) 

  create SET 1: interactions from reference net 

 open file listing expressed isoforms 

  create SET2a: expressed TF 

  create SET2b: unexpressed TF (complete list – expressed TF) 

 open overlap of reference network with DNaseI footprints 

  create: SET3: TF with footprints in regulatory regions (i.e.  

     “footprinted TF”) 

  create SET4: “footprinted” binding motifs/IA 

MAIN section 

 foreach interaction in SET1 

  if (regulator  SET2a) 

   if (target  SET2a) 

    if (interaction  SET4) 

     interaction = A+ 

   if (target  SET2b) 

    if (interaction  “SET4) 

     interaction = A- 

  elsif (regulator  SET2b) 

   if (target  SET2a) 

    if (target  SET3) 

A+ 

A- 

B- 

B+ 

P 

P 
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     interaction = B- 

    else 

     interaction = P 

   elsif (target  SET2b) 

    if (target  SET3) 

     interaction = B+ 

    else 

     interaction = P 

OUTPUT section 

 make edgelist outfile 

 make node outfile 

 make expression outfile 

Box 2: Pseudocode of assign_cell type-specific_interactions.pl. Each interaction from the reference net (SET1) is 
examined. Specifically, the expression of an interaction’s target and regulator are checked, and the presence of 
DNaseI footprints on binding motifs in the regulatory regions of the target is surveyed. For expressed regulators 
(SET2a), it is checked whether their specific binding motif inside the target’s regulatory region is footprinted (SET4). 
Based on the expression of the target (SET2a or SET2b), an activating or inhibiting interaction of the highest weight, A, 
is assigned. For unexpressed regulators (SET2b), the script checks if the target contains any DNaseI footprint in its 
regulatory regions (SET3). If there is none, activating or inhibiting interactions of intermediate weight B are assigned 
according to the target’s expression (SET2a or SET2b). When there are footprints present, interactions are marked as 
“predicted” with the lowest weight P, regardless of the target’s expression state. 
 
 

2.2.5 Active subnet 

In the previous step, we assigned interaction types and generated a sample-specific network. To 

obtain the active sub-network inside this network, we devised a set of selection criteria. The 

rationale behind these criteria is that the active regulatory sub-network is governed by the 

expressed TFs. We therefore aimed to find criteria that would include all interactions and chains 

of interactions that were regulated by or that had a regulatory effect on the expressed TFs. In 

the following, we will present the criteria we developed along with their justification. The 

criteria were: 

a) Exclusion of predicted edges of weight “P” 

We first decided that active subnet edges should be supported by experimental data instead of 

being purely predicted, since both the type of predicted interactions and their validity were 

uncertain. This would reduce the error of the derived active sub-network. 

b) Interaction is regulated by expressed TF 

Given that the active regulatory sub-network is controlled by expressed TFs, including all 

interactions where the regulator was expressed was a self-evident criterion. These interactions, 

described in chapter 2.2.1.9 above, were supported by gene expression data and DNAseI 

footprints on the regulator-TF’s binding motifs in the target-TF’s regulatory regions. Depending 

on the expression state of the target, these interactions can be either positive/activating or 

negative/inhibiting, and their weight is “A” (i.e. this criterion includes all A+/- edges).  

c) Interaction is regulated by unexpressed TFs and targeting expressed TFs 

The above criterion (b) also includes regulatory interactions going out from expressed TFs an 

targeting expressed TFs. To capture entirely all regulatory effects on expressed TFs, we included 

the interactions going out from unexpressed regulator-TFs to expressed target-TFs as targets 

(i.e. all B– edges). 
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The next criteria are concerned with including regulatory interactions exercised indirectly by or 

on expressed TFs. 

d) Interactions between two “first neighbours” 

In criteria (b) and (c), we included interactions in which unexpressed TF participated, either as 

targets or as regulators. These unexpressed TF were special in that that they were direct 

neighbours of expressed TF in the network. We termed them “first neighbours” for this reason, 

and included interactions where both regulator and target were from the set of first neighbours 

in the active sub-network. Interactions between first neighbours either forwarded indirect 

regulatory interactions from or to expressed TFs or they could be part of a dynamically 

interesting network motif that included an expressed TF. (i.e. this criterion included B+ edges 

between selected (first neighbour) TF). 

e) Interaction is part of a dynamically relevant interaction chain 

Next , we tried to find dynamically relevant interactions that were not covered by the criteria we 

defined so far. All interactions left at this point were B+ interactions, i.e. positive / activating 

interactions between two unexpressed TFs. Since we were looking for interactions that were 

indirectly regulating or regulated by expressed TFs, we examined chains of interactions starting 

at the first neighbours of expressed TF.  We found that there were three possible scenarios for 

these chains: 

i) the chain of interactions would start or end with a dead end TF (i.e. no other edges going out 

or coming in into this last TF)  

ii) the chain of interactions would run into a futile, self-contained loop or start inside such a loop 

iii) the chain of interactions that started with a first neighbour would end on a first neighbour at 

some point 

From a dynamic point of view, only the last scenario was interesting. We therefore included only 

those edges that were part of interaction chains as described in iii).  

For a better understanding, we illustrate our approach to finding the active sub-network in 

Figure 4. 
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LEGEND: 

    expressed TF 

    unexpressed TF 

  first neighbour TF  
 (unexpressed direct neighbour  
 of expressed TF 

 

 IA of weight A 

 IA of weight B 

 IA of weight P 

A 
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Figure 4: Deriving the active subnet from the sample-specific network. A: A Sample-specific network with expressed TF 
at the center and unexpressed TF around it, TFs are connected by different interaction types. B: Predicted edges (IA of 
weight P) have been removed from the sample-specific network. Applying criteria a-d as specified above, we included 
edges between expressed TF, from between expressed TF and first neighbours (marked red), and edges between first 
neighbours (coloured in black). A large part of the set of unexpressed TFs has not been explored yet and is coloured 
grey. C: By building interaction chains starting out from the first neighbours, we find dynamically relevant chains 
(circled red), futile loops (circled blue) and dead ends (circled/coloured in green) in the set of unexpressed TF. D: The 
active sub-network contains only interactions that fulfill one of the selection criteria; futile loops, dead ends and their 
vertices are excluded. 

 

We developed an algorithm based on the criteria described here and implemented it in the 

script active_subnet.pl. The script first creates a set of “core” interactions that contains 

interactions between expressed TF, interactions between expressed TF and first neighbours, and 
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interactions between first neighbours. It then iterates through first neighbours and tries to find 

paths that go over unexpressed TF and lead back to the first neighbours again. 

The script takes as an input the edgelist and expression outfile of assign_cell type-

specific_interactions.pl, and as an output, it generates two files in csv-format, one that list all 

nodes and one that lists all edges of the active subnet. Furthermore, it generates a pajek net file 

and a pajek-like file. Pajek is a widely-used file-format that contains two parts. The first part is an 

indexed list of all vertices/nodes of the network (in our case vertices represent TFs and edges 

interactions). The second part lists all edges of the network and each edge is denoted with the 

indexes of the two vertices that are connected by the edge. The pajek-like file generated by the 

script lists not only TFs that are present in the active subnet, but the complete set of TF from this 

study as vertices. This file is later used for normalized network degree clustering (see chapter 

2.2.8.2). For the structure of active_subnet.pl, please refer to Box 3. 

TOP section 

 read edgelist, expression list 

 make SET1: expressed TF from expression list 

 make SET2: interactions (IA) from edgelist 

MAIN section 

 get IA between expressed TF 

 get IA from expressed TF to unexpressed and vice-versa 

  remember IA as “core IA” 

  remember unexpressed TF/targets of A- as “outgoing first neighbours” 

  remember unexpressed TF/regulators of B- as “ingoing first neighbours” 

 get IA between “first neighbours”, remember them in the “core IA” 

 prepare potential chain-IA (weight B+, IA  IA between first neighbours) 

 foreach “outgoing first neighbour” 

  SUB: find chains  

 combine chain and core IA -> active subnet IA 

OUTPUT section 

 make nodes.csv 

 make edges.csv 

 make pajek.net 

 make pajek-like.net for degree clustering 

SUBROUTINES 

find chains for input node { 

 STOP if (input node has no targets/ is a “dead end”)  

 else 

  if (all targets have no targets/are “dead ends”) 

   make input node “dead end” 

  foreach target of input node 

   if (target is “ingoing first neighbour”) 

    remember IA (input node to target) 

    if (SUB: check if all paths walked = TRUE) 

     make input node “first ingoing neighbour” 

   else 

    if (target was already seen before) 

     foreach target of target (“t.of.t”) 

      if (t.of.t is “ingoing first neighbour”) 

       if (SUB: check if all paths walked = TRUE) 

        make target “first ing. Neighbour” 

      else 

       if (all t.of.t seen before) 

        if (SUB: try to break loop = TRUE) 

         remember loop IAs 
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        else 

         remember loop IA for removal 

       unless (t.of.t is “dead end”) 

        remember IA (target -> t.of.t) 

        SUB: find chains for t.of.t 

    else 

     unless (t.of.t is “dead end”) 

      remember IA (target -> t.of.t) 

      SUB: find chains for t.of.t 

 return (remembered IA, IA for removal, dead_ends, first ingoing neighbours) 

} 

check all paths walked { 

 count outgoing IAs which were already remembered 

 count targets that are “dead ends” 

 if (sum of the above = total number of targets) 

  all paths walked = TRUE 

 else 

  all paths walked = FALSE 

} 

try to break loop { 

 foreach target of start of loop 

  if (seen target) 

   SUB: try to break loop(target) 

  else 

   remember loop IA 

 if (remember loop IA != 0) 

  return “TRUE” 

 else  

  return “FALSE” 

} 

Box 3: Pseudocode of active_subnet.pl. This script goes through the interactions of the sample-specific net and 
derives all interactions that are dynamically relevant for expressed TF. It first creates a set of ‘core’ interactions that 
have expressed targets or regulators or both, and interactions that connect “first neighbours” - unexpressed 
regulators or targets of expressed TF. A very important part of the script is a subroutine that searches for chains of 
interactions that start at first neighbours, go along unexpressed TF and end on a first neighbour again, thereby feeding 
back to the core of expressed TF. The full code of active_subnet.pl can be found in the supplement.  
 

2.2.6 Calculation of standard network measures 

Networks were loaded in GEPHI07 beta50 in pajek net format and standard network measures 

were computed using the software’s functions (Avg. degree, network diameter, graph density, 

modularity, avg. path length) 

 
 

2.2.7 Detection of network motifs 

We extracted all edge-describing lines from active subnet pajek-files and removed self-edges to 

prepare the networks for motif detection in MFINDER51. We then detected all 3-node sub-graphs 

significantly more frequent than in 1000 randomized networks with a z-score > 2 and a p-value < 

10-2. We selected the option to report all network motif occurrences along with the TFs present 

inside them (-omem). 
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2.2.8 Comparison of active subnets 

2.2.8.1 Jaccard index of networks based on common edges 

In order to detect similarity between active sub-networks of different samples, we calculated 

the Jaccard index (number of edges present in both samples divided by union of edges from 

both samples). We computed Jaccard indices based on a) all network edges and b) edges 

between TF that were expressed in both samples. Calculations were done in R52 and color-coded 

tables were generated using the “Conditional Formatting” option “Colour Scale” in Microsoft 

Excel.  

 

2.2.8.2 Normalized network degree clustering 

Normalized network degree clustering is a method to assess structural network similarity, but it 

has also been used to cluster TF-TF interaction networks by their function.25 Networks are 

clustered by how similar the degrees of each of their TFs are. For each TF in the network, the 

degree is normalized by dividing it by the number of edges. Normalized degrees are then 

ordered in a vector and the Eudclidean distance between vectors is computed. Networks are 

then clustered according to their distance to one another. We carried out this analysis as 

described in [25Fehler! Textmarke nicht definiert.] using the R packages igraph53 and stats. 

 

2.2.8.3 Multidimensional scaling of networks 

To assess similarity between multiple networks at the level of edges rather than at the level of 

node degrees, we performed metric multidimensional scaling (MDS). For this analysis, we first 

created an overall edge set that comprised the union of all edges from all samples. We then 

observed for each network which edges from the overall set it contained, and removed edges 

that were present in all samples to improve the resolution of the final plot. From these 

observations, we created a binary matrix (0 signified the absence and 1 the presence of an edge) 

and calculated its Euclidean distance. This was then used as an input for the R function 

cmdscale(). We performed MDS in 2D and 3D, making use of the R packages plyr54 and plot3D 

(available at http://cran.r-project.org/web/packages/ 

plot3D/). 

 

2.2.9 Functional enrichment analysis 

We carried out functional enrichment analysis using DAVID55,56 to investigate a) if the TF present 

in active subnets reflected cell type or tissue specificity on a functional level and b) if TFs related 

to cell-type or tissue function were enriched on significant network motifs. We referred to the 

latter as “marker TFs”. In all analyses, only Gene Ontology (GO) terms57 representing Biological 

Processes were examined since they best described cell type or tissue functions. We reported 

GO terms as enriched when they matched following cutoff scores: p-value < 0.1, fold change > 

1.5 and Benjamini ≤ 0.05. 

 

For the background in all functional enrichment analyses we used organism-specific, reviewed 

transcription factors sets which we obtained by querying UniProt KB. We retrieved the data on 

13.2.2014 using the queries (("transcription factor" AND organism:"homo sapiens") AND 

reviewed:yes) and (("transcription factor" AND organism:"mus musculus") AND reviewed:yes). 

http://cran.r-project.org/web/packages/plot3D/
http://cran.r-project.org/web/packages/plot3D/
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2.2.9.1 Functional enrichment in active subnets 

When we assessed whether the TFs present in active subnets reflected cell type or tissue 

function, we first created a set of “specifically expressed” TF. For this purpose, we subtracted 

collectively expressed TFs from the expressed TFs of a target sample and examined the resulting 

specific set for functional enrichment. To obtain collectively expressed TFs, we pooled the 

expressed TFs of all other non-cancer samples without including related samples (i.e. when 

listing Hsmm-specific expressed TFs, we did not include the expressed TF of Lhcnm2 and 

Lhcnm2diff in the collectively expressed genes because all three are muscle cell types). 

 

For mouse samples, we obtained collectively expressed TFs by pooling expression from all other 

tissues, since no disease conditions or closely related tissues were present in this sample group. 

 

2.2.9.2 Functional enrichment in network motifs 

To investigate if ”marker TFs“ related to cell type or tissue function were enriched on network 

motifs, we collected the TFs of each specific network motif which had previously been 

established as significant. From these motif-specific TF sets, we removed all unexpressed TFs and 

carried out functional enrichment analysis on the resulting gene lists. 
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3 RESULTS  

In the following, we present results in an analogous order to the steps in the workflow, starting 

with the reference network, followed by the sample-specific transcriptomes (RNA-seq) and 

regulatory site occupancy screens (DNAseI-seq). We then continue with the characterization of 

sample-specific networks that are generated by combining the reference networks with 

experimental evidence from RNA and DNaseI-seq. Finally, we present the active sub-networks 

that were derived from the sample-specific networks. This chapter thus focuses on the results of 

the different analyses applied to uncover structural properties of the active sub-networks. 

 

3.1 Reference networks 

 

We use the term “reference network” to describe the union of all predicted interactions in any 

tissue or developmental stage. Notably, the reference network will become more fine-grained 

and false-positive predictions will be reduced by adding different evidence types in the next 

steps. 

 

3.1.1 Human reference network 

The human reference network (HRNW) contained 404 human TFs represented by nodes. The 

total number of edges that represent potentially possible interactions between these TFs was 

58,454. This is less than a total predicted from binding motifs (681,952). The edge number is 

derived from the following considerations. 

As previously explained, a direct edge from the regulator to the target was set when a regulator-

TF’s binding motif was predicted in the regulatory regions of a target TF. From our definition of 

regulatory regions (intronic or intergenic regions inside a +/-  5kb interval around the 

transcription start site, TSS) it follows that a regulatory region belongs to a specific transcript, 

namely that transcript from whose specific intron/exon structure it was derived. It follows also 

that the binding motifs and the edges are transcript-specific.   

Because of overlapping isoform-specific regulatory regions or shared TSS of transcripts, the 

detected binding motifs were often redundant, as the same DNA sequence was recognized 

multiple times as a binding motif. Moreover, predicted binding motifs frequently overlapped 

one another due to similar binding affinities of their TFs, and intersections ranged from only a 

few bp to complete overlaps. If entirely overlapping, binding motifs were collapsed into one, 

reducing the total of detected binding motifs to 312,424. 

When the information from binding motifs was projected to the level of interactions, binding 

motifs that represented interactions of the same regulator TF with the same target TF isoforms 

were removed. Through this exclusion, TF to TF isoform interactions were made unique as well. 

Their total, non-redundant number was 234,378. 

In the last step, we mapped interactions from isoforms to TFs to enable a characterization of its 

properties with standard network measures. This mapping reduced the interactions to the above 

mentioned total of 58,454 edges between TFs. For a better overview, we present the different 
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binding motif and edge numbers for HRNW in Table 2. Along with HRNW, we show analogous 

numbers for the mouse reference network (MRNW). 

 HRNW MRNW 

Total number of binding motif detections 681,952 387,812 

Number of binding motifs after removal of entirely 
overlapping motifs 

312,424 214,930 

Number of edges / interactions between TFs and 
TF isoforms 

234,378 128,976 

Number of edges / interactions between TFs  
 (= final edge number in reference networks) 

58,454 49,202 

Table 2: Overview of binding motifs and edge numbers in the human reference network (HRNW) and mouse reference 
network (MRNW). The raw output from  binding motif detection is shown in the top row, the two middle rows show 
numbers after correcting for different types of redundancy (overlapping binding motifs, binding motifs that describe 
the same TF to TF isoforms interaction) , and at the bottom the final edge numbers in HRNW and MRNW are 
presented. 

Along with the node and edge numbers, we have compiled other standard network measures 

that characterize HRNW in Table 2. As a reference, we provide the same measures for a pooled 

network (pooled NW) which we constructed by taking the union of all cell type-specific networks 

published by Neph et al.25 Fehler! Textmarke nicht definiert.For a more similar comparison, we 

also include values for the “reduced” versions of both networks. In this case, we reduced the 

number of nodes to 350 TFs that were present in both data sets and removed all edges that 

were not related to these 350 corresponding TFs. 

 
HRNW Pooled NW 

Reduced 
HRNW 

Reduced 
pooled NW 

MRNW 

Nodes 404 538 350 350 388 

Edges 58,454 47,945 31,275 27,142 49,202 

Avg. degree 289 178 178 155 254 

NW diameter 3 4 3 4 3 

Graph density 0.354 0.166 0.256 0.222 0.328 

Modularity -0.004 -0.003 -0.004 -0.005 -0.004 

Avg. path length 1.6 1.9 1.6 1.8 1.6 

Table 3: Standard network measuresii for: human reference network (HRNW), a pooled network constructed by 
integrating the edges from the published regulatory networks of 41 different human cell types (pooled NW), the 
reduced versions of both networks which contain only TFs found in both data sets and the edges between them 
(reduced HRNW and reduced pooled NW), mouse reference network (MRNW).  

 

As Table 3 shows, HRNW differs from the pooled NW most prominently in the number of nodes 

and edges, the average degree and graph density. Both latter measures can be attributed to the 

higher number of edges and the lower number of nodes in HNRW. When the networks are 

                                                            
ii Explanation of network measures: Average degree: The average number of edges a node has; Network 
diameter: Longest graph distance between any two nodes in the network; Graph density: How close a 
network is to complete. A complete network as all possible edges and a density of 1; Modularity: 
Networks with high modularity have dense connections between the nodes within modules but sparse 
connections between nodes in different modules (source: 
http://en.wikipedia.org/wiki/Modularity_(networks)); Average path length: Average graph distance 
between all pairs of nodes. Unless specified, definitions for network measures were taken from GEPHI 
network analysis software. 
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reduced to corresponding TFs / nodes, all values become more comparable, indicating structural 

similarity. Notably, the networks exhibit low modularity in all cases which is interesting because 

biological networks have been shown to exhibit modularity.58 To explain this, one could argue 

that both networks are not functional units. The pooled NW is a union of several cell type-

specific networks and HRNW is based only on the prediction of TF binding motifs. To extract 

functional units, the experimental interaction data were mapped onto the edges of the 

reference network.  

In order to compare our results with the cell-type specific networks generated by Neph et al, it is 

necessary to explain the methodical differences in generating the two networks. Both studies 

used a +/-5kb interval around TSS to define regulatory regions. However, Neph’s networks were 

the result of a probabilistic modeling approach combined with binding motif occupancy data 

from DNaseI-seq. Therefore, edges in their networks represent the presence of DNaseI 

footprints on predicted binding motifs. On the contrary, edges in HRNW simply represent 

predicted binding motifs. Furthermore, Neph et al did not distinguish binding motifs in introns 

and exons, while we restricted the reference network to motifs located in introns or intergenic 

regions. Finally, the TFBS models from Neph et al were retrieved from the licensed TRANSFAC 

database, while we used models from publicly available HOCOMOCO.  Although 350 TFs in the 

network were shared, different TFBS models could have lead to the detection of other binding 

motif locations, resulting in different interactions (Figure 5). 

 

Figure 5: Venn diagram showing common edges in the reduced human reference network (HRNW) and reduced 
pooled network. 6,918 edges are common to both networks, which is about 22% of the reduced version of HRNW and 
25% of the reduced pooled NW. Even though the same TFs make up the nodes of these two networks, different TFBS 
model databases have been used, resulting in the detection of other binding motif locations / interactions. The 
differences can also be attributed to the restriction of regulatory regions to introns and intergenic regions in HRNW. 
Binding motifs within exons were used to predict interactions in the reduced pooled NW, but not in HRNW. 

From this analysis we expected the two networks not to be identical. However, as visible in 

Table 3, the overall topological features are similar for HRNW and the pooled NW.  

 

3.1.2 Mouse reference network 

Due to the conservation of genomic sequences between the mouse and the human, we 

expected to find a comparable number of edges and similar values for the standard network 

measures in HRNW and the mouse reference network (MRNW). Since the same TFBS models 

were used for the detection of binding motifs, sequence similarity in homologous regulatory 

regions would lead to the detection of conserved binding motifs. Weak conservation of 

sequences in regulatory regions, along with changes of intron/exon structure in the course of 

evolution would however contribute to differences in the detection of motifs.  

6,918 

edges 

reduced 

HRNW 

31,275 

edges 

reduced 

pooled NW 

27,142 

edges 
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Applying the same concept of reference network construction as for HRNW, we found 388 TF 

nodes and 49,202 interactions for MRNW (Table 3). 

To assess the structural similarity between HRNW and MRNW, we first reduced the set of edges 

from HRNW to those which exclusively contained TFs that were present in MRNW. We thereby 

obtained 38,614 HRNW edges that corresponded to MRNW. Of these corresponding edges, 

22,031 (57 %) were also present in MRNW (Figure 6). 

 
Figure 6: Venn diagram showing common edges in HRNW and MRNW. Prior to overlapping the networks, HRNW was 
reduced to those edges that corresponded to the TFs present in MRNW, creating “corresponding” HRNW. 22,031 
edges were present in both networks (57 % of corresponding HRNW, 45% of MRNW). 

As expected, the values of standard network measures and topological features for MRNW and 

HRNW are similar (Tables 2 and 3). 

 

3.2 Identification of expressed TF through RNA-seq  

 

Ready-made alignments that had been mapped to reference genomes with standard tools 

(Tophat26, STAR27) were available for all samples. On these alignments, we applied the widely-

used Cufflinks.40 RNA-seq analysis software. The obtained expression values were normalized 

with respect to transcript length and the number of mapped reads (as Fragments Per Kilobase of 

transcript per Million mapped reads, FPKM). We first examined FPKM distribution, seeking to 

determine an appropriate expression cutoff. We also present the number of genes and TFs 

expressed above the cutoff and document the expression of housekeeping genes. 

 

3.2.1 FPKM distribution 

Since the FPKM distribution followed a similar pattern in all samples, we show the distribution in 

replicate 1 of the human Hsmm (human skeletal muscle myoblasts) sample as an example 

(Figure 7).  
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FPKM distribution for protein coding genes (Hsmm sample, replicate 1) 

  

  
Figure 7: FPKM distribution for protein coding genes in the HSMM sample, replicate 1. The distribution is left-skewed 
with a single peak at 0 FPKM and a long tail to the right. We examined different levels of magnification and found that 
this distribution persisted in all of them.  
 

As visible in Figure 7, it was impossible to choose an expression cutoff that would be justified by 

the distribution of FPKMs. Therefore, we decided to refer to a cutoff from the literature. In 

accordance with a publication that characterized expressed genes in the developmental 

transcriptome of Drosophila melanogaster, we chose a cutoff of FPKM > 1.47  

 

3.2.2 Housekeeping genes are expressed above expression cutoff 

To confirm that our chosen cutoff captured expressed genes, we examined the expression of 

housekeeping genes in each replicate (Table 4 and Table 5). In all cases, housekeeping genes 

were expressed above the cutoff of FPKM > 1. We referred to published lists of housekeeping 

genes for human59 and mouse60.  

 

 

x-scale: 0-500 x-scale: 0-5 

x-scale: 0-0.5 x-scale: 0 - 0.005 
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  Human housekeeping genes 

RAB7A SNRPD3 GPI VPS29 PSMB2 REEP5 CHMP2A EMC7 C1orf43 PSMB4 VCP 
R
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A549 1 103 108 229 101 36 97 110 82 183 216 269 

A549 2 107 80 252 109 39 78 132 111 157 195 206 

Cd20 1 38 44 35 51 10 13 66 12 48 199 55 

Cd20 2 46 93 55 67 11 20 56 11 50 191 51 

HepG2 1 80 121 186 39 23 24 22 46 98 97 84 

HepG2 2 83 85 169 36 24 28 27 61 102 131 96 

HepG2 3 114 62 81 62 26 134 28 64 181 218 89 

HepG2 4 99 60 68 55 22 121 29 56 178 207 100 

Hsmm 1 128 95 143 56 44 44 75 65 107 176 196 

Hsmm 2 155 124 144 48 50 32 84 49 106 190 207 

Hsmm 3 228 267 198 44 63 64 110 41 229 307 169 

Hsmm 4 272 142 88 73 54 51 89 56 164 195 159 

Huvec 1 145 123 139 107 49 69 64 47 77 223 310 

Huvec 2 109 94 121 79 33 48 81 36 71 163 283 

Huvec 3 160 129 72 64 63 98 73 30 171 511 188 

Huvec 4 175 137 87 78 69 89 85 35 172 480 207 

Imr90 1 189 161 170 69 47 45 101 46 122 319 185 

Imr90 2 223 128 175 69 48 75 116 44 125 366 183 

K562 1 137 182 228 97 105 24 79 58 91 265 163 

K562 2 87 75 193 84 60 19 84 33 176 169 98 

K562 3 123 83 53 138 65 46 44 44 151 259 138 

K562 4 89 69 149 107 62 43 47 34 203 248 120 

Lhcnm2 173 92 161 66 46 62 140 57 103 231 223 

Lhcnm2 diff 146 74 118 37 34 74 117 57 120 172 190 

Monocd14 1 132 58 75 122 15 42 123 23 73 174 54 

Monocd14 2 175 89 147 62 24 37 153 17 106 214 45 

Nhlf 1 189 101 164 65 48 41 142 70 91 233 221 

Nhlf 2 165 78 154 68 35 41 108 55 79 171 178 

Nhlf 3 379 127 110 96 47 64 150 61 116 247 186 

Nhlf 4 293 81 98 107 33 62 111 60 114 191 165 

Sknshra 1 146 72 88 48 37 108 132 50 153 337 148 

Sknshra 2 148 56 100 40 35 111 136 44 187 366 171 

Table 4: Expression of human housekeeping genes in FPKM, all replicates across all RNA-seq samples are shown. The 
genes in this compilation had been chosen based on the expression of their exons which have a “geometrical mean 
expression exceeding RPKM = 50”.59 In this study, FPKM was used instead of RPKM as a normalization measure, but 
the measures are similar. In the majority of samples, the value of 50 FPKM is exceeded. In all cases, the expression 
cutoff of FPKM > 1 is met. 
 

  Mouse housekeeping genes 

Puf60 Psmd4 Eif3f Heatr3 Chmp2a Leng8 Rpl37 Rpl38 

R
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Heart 1 34 52 28 11 37 110 126 111 

Heart 2 44 59 40 7 34 147 191 159 

Kidney 1 73 66 46 7 48 230 290 189 

Kidney 2 64 62 51 7 62 111 361 317 

Liver 1 56 75 31 7 42 50 160 134 

Liver 2 60 75 30 7 35 98 151 140 

Lung 1 86 60 56 6 47 599 335 196 

Lung 2 103 56 89 6 39 588 321 222 

Thymus 1 131 86 140 8 27 590 262 198 

Thymus 2 122 95 73 8 31 646 305 212 

Wbrain 1 113 115 36 16 59 191 348 663 

Wbrain 2 84 72 47 13 49 157 283 528 

Table 5: Expression of mouse housekeeping genes in FPKM, all replicates across all RNA-seq samples are shown. The 
genes in this compilation have been chosen based on their expression across 15 different mouse samples.60 For all 
tissues and genes, expression values are higher than the chosen expression cutoff of FPKM > 1.  
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3.2.3 Total number of expressed genes is comparable across samples 

Furthermore, we took notes of the total number of genes expressed above the cutoff (Table 6). 

We examined all replicates to check if there were outliers with a very different total. Since the 

sequencing depth was similar for all samples, we expected the number of expressed genes to be 

relatively constant. For human samples, it varied between 11,000 and 16,000, and for mouse 

samples between 10,000 and 14,000. Even human samples from different cancer cell types and 

cell lines (A549, HepG2, K562,Lhcnm2, Sknshra) were not found to have a strongly variable total 

number of expressed genes. 

Human sample, 
replicate no. 

Number of 
genes above 

FPKM 1 

Human 
sample, 

replicate no. 

Number of 
genes above 

FPKM 1 

 Mouse 
sample, 

replicate no.  

Number of 
genes above 

FPKM 1 

A549 1 13,448 Imr90 1 12,767  Heart 1  12.044 

A549 2 13,244 Imr90 2 12,648  Heart 2  12.214 

Cd20 1 12,816 K562 1  13,153  Kidney 1  13.075 

Cd20 2 13,008 K562 2 14,189  Kidney 2  13.229 

HepG2 1  13,417 K562 3 12,359  Liver 1  10.604 

HepG2 2 13,199 K562 4 12,529  Liver 2  10.857 

HepG2 3 12,828 Lhcnm2 15,584  Lung 1 14,037 

HepG2 4 12,876 Lhcnm2diff 16,024  Lung 2 13,604 

Hsmm 1 13,294 Monocd14 1 11,934  Thymus 1 13,071 

Hsmm 2 13,334 Monocd14 2 11,546  Thymus 2 13,382 

Hsmm 3 13,050 Nhlf 1 13,262  Wbrain 1 13,711 

Hsmm 4 12,778 Nhlf 2  13,116  Wbrain 2 13,655 

Huvec 1 15,998 Nhlf 3 12,902    

Huvec 2 15,757 Nhlf 4 12,757    

Huvec 3 12,761 Sknshra 1 14,575    

Huvec 4 12,947 Sknshra 2 14,591    

Table 6: Total number of genes expressed above the cutoff of FPKM > 1 for each replicate in human and mouse 
samples. When different replicates of the same sample are examined, the number of expressed genes is similar. 
Samples within one organism differ, but there are no outliers with dramatically larger or smaller numbers. 
 

3.2.4 Expression calling on transcription factors 

We assessed the expression of TFs using the expression cutoff described above and applied it to 

all protein coding isoforms of a given TF. We carried out the expression calling of the level of 

isoforms because for many TFs, there were non-protein coding transcript types that had an 

influence on the expression value calculated for the TF gene. However, our main interest was 

the expression of functional, DNA-binding TF proteins. For that reason, we defined TFs as 

expressed when at least one of protein coding isoforms of the given TF was expressed above the 

cutoff. Considering replicates, we defined isoforms as expressed by decision of majority 

wherever possible, and by average expression across replicates in all other cases. 
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Human 
samples 

Number of 
expressed TFs 

Mouse 
samples 

Number of 
expressed TFs 

A549 239 Heart 224 

Cd20 202 Kidney 256 

Hepg2 224 Liver 201 

Hsmm 224 Lung 269 

Huvec 231 Thymus 245 

K562 205 Whole brain 252 

Lhcnm2 215 
  Lhcnm2 diff 221 
  Monocd14 204 
  Nhlf 239 
  Sknshra 242 
  Table 7: Number of expressed TFs in human and mouse samples. Of the 404 possible human TFs, 200-250 were called 

as expressed in human samples. For mouse samples, where 388 TFs were assessed, the number of expressed TFs was 
roughly within the same range. 

For both human and mouse samples, the number of expressed TFs lies approximately within a 

range of 200-250 (Table 7). Among mouse samples, liver has considerably fewer expressed TFs 

than all of the others. The result of the expression calling forms one of the bases for the 

identification of sample-specific interactions and is also critical for the functional enrichment 

analysis which will be carried out on expressed TFs in chapter 3.5.5. 

 

3.3 DNaseI footprinting in DNaseI-seq data 

 

In the following we present the results of DNaseI footprinting carried out in DNaseI-seq data 

from different human cell types and mouse tissues. As we found strong dependency of results 

on the algorithm used to derive footprints from DNaseI, we first report a comparison of 

footprints that have been derived for six human cell types by two different algorithms, DNaseR48 

and DGF61, with DNaseR being the algorithm that was used in this study. Next, we present the 

result of the combination of human reference network (HRNW) and mouse reference network 

(MRNW) with DNaseI footprints from their corresponding cell types and tissues. Finally, we 

compare the number of DNaseI footprints in introns/intergenic regions with their number in 

exons, addressing our model assumption that exons and coding sequences would not contain 

TFBS relevant for the regulation of transcription. 

 

3.3.1 Comparison of DNaseI footprinting results with published DNaseI footprints 

We identified DNaseI footprints across 12 human samples with a p-value cutoff of e-3. In Table 8 

we present an overview of footprints identified for the ENCODE DNaseI seq data sets using the 

DNaseR algorithm and the DGF algorithm.30 We show the number of footprints identified in each 

sample and the percentage of footprints identified by both algorithms. Both algorithms were set 

to detect footprints of a width 6-40 bp. Here, we report footprints detected by both algorithms 

that have an overlap of at least 1, 5 or 10 bp. This is necessary because the algorithms specify 

the edges of footprints upon different criteria and completely overlapping footprints are 

expected to be rare. 
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Number of FP derived 
by DNaseR  
(p-val e-3) 

Number of FP derived 
by DGF  

(FDR 1%) 

% of DGF FP identified by DNaseR 

1 bp 
overlap 

5 bp 
overlap 

10 bp 
overlap 

exact 
overlap 

H
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m
an
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e
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 Cd20 4,750,733 603,190 6.2 6.0 1.5 0.10 

Hepg2 5,191,674 448,678 6.9 6.8 2.0 0.07 

Hsmm 1,244,576 1,668,243 10.5 9.9 3.7 0.06 

K562 6,997,479 498,683 7.2 7.1 1.7 0.11 

Nhlf 1,002,711 1,567,106 10.6 10.2 4.3 0.05 

Sknshra 3,772,166 498,926 6.2 6.1 1.7 0.06 

Table 8: Overview of DNaseI footprints identified in the same data sets by the DNaseR and the DGF algorithms. The 
percentage of footprints detected with both algorithms is shown to the right. Since differences in the algorithms lead 
to shifts in the determination of footprint edges, we report the percentage of overlapping footprints with different 
overlaps: 1, 5 or 10 bp. With an overlap of 1 to 5 bp  6-11% of the footprints identified by DGF area also detected by 
DNaseR. With an overlap o f 10 bp, the value drops to 2-4%. Exact matches range from 0-0.1% across samples. 

The comparison shows that the overall number of detected footprints is different for the two 

algorithms (Table 8). The disparate criteria used to define footprints and the statistical methods 

that control significance (p-value) and multiple testing (false discovery rate, FDR) are likely to 

contribute to the difference. Remarkably, neither of the algorithms detects more footprints in all 

samples (DGF identifies more footprints than DNaseR in Hsmm and Nhlf while DNaseR detects 

more footprints in the other cell types). This could indicate that neither of them is the more 

sensitive one. 

The numbers of footprint detections and their proportion to each other vary. The percentage of 

footprints identified by both algorithms is within the range of 6-11% for 1 and 5 bp overlaps, and 

in the range of 2-4% for 10 bp overlaps across all samples. An extremely small fraction of 

footprints is reported with exactly the same genomic position by the two algorithms, 0-0.1%. For 

those samples where the larger number of footprints was reported by the DGF algorithm, the 

percentage of footprints that were also identified by DNaseR is higher than in other samples. 

 

3.3.2 Combination of DNaseI footprints with reference networks 

In Table 9 we show across all human and mouse samples how many of the predicted binding 

motif locations in the reference networks HRNW and MRNW were matched by DNaseI 

footprints. As mentioned in chapter 2.1.1, there was a total of 681,952 predicted binding motifs 

in HRNW, and for MRNW, 387,812 binding motifs were predicted.  
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Human 
samples 

Number of 
predicted binding 
motifs 
overlapped by FP 

% of predicted 
binding motifs from 
HRNW overlapped 
by FP 

Mouse 
samples 

Number of 
predicted binding 
motifs overlapped 
by FP 

% of predicted 
binding motifs from 
MRNW overlapped 
by FP 

A549 53,808 7.9 Heart 23,006 5.9 

Cd20 58,652 8.6 Kidney 7,817 2.0 

Hepg2 75,592 11.1 Liver 2,265 0.6 

Hsmm 32,907 4.8 Lung 13,257 3.4 

Huvec 51,024 7.5 Thymus 14,330 3.7 

K562 80,550 11.8 Whole brain 10,539 2.7 

Lhcnm2 37,300 5.5 
   Lhcnm2diff 39,131 5.7 
   Monocd14 48,284 7.1 
   Nhlf 38,920 5.7 
   Sknshra 63,155 9.3 
   Table 9: Number of predicted binding motifs from the human and mouse reference network (HRNW and MRNW) that 

overlapped DNaseI footprints. Both reference networks are reduced markedly through overlapping them with 
footprints. 

When combining the evidence from DNaseI footprinting with reference networks, we 

considered predicted binding motifs as overlapped and confirmed by DNaseI footprints when 

they shared at least 3 bp of overlap. This is an established approach which has been previously 

used to characterize binding motif occupancy.25  

Table 9 shows that only a small fraction of the predicted binding motifs coincide with footprints. 

It is likely that many binding motifs with no overlap are false-positive predictions. However, it is 

impossible to distinguish unbound true binding motifs from falsely predicted motifs. To 

approach this problem, we examine the overlap of footprints and predicted binding motifs 

across 12 human cell-types or 6 mouse tissues. This is a first step towards addressing the 

problem, and the sample number should be increased in future work. 

Human 
samples 

Total number of 
detected DNaseI FP 

Mouse 
samples 

Total number of 
detected DNaseI FP 

A549 4.523.642 Heart 4.000.137 

Cd20 4.750.733 Kidney 1.583.736 

Hepg2 5.191.674 Liver 650.990 

Hsmm 1.244.576 Lung 1.688.380 

Huvec 1.971.345 Thymus  1.838.503 

K562 6.997.479 Whole brain 1.832.342 

Lhcnm2 3.376.895 
  Lhcnm2diff 2.968.808 
  Monocd14 2.416.100 
  Nhlf 1.002.711 
  Sknshra 3.772.166 
   Table 10: Overall number of detected DNaseI footprints in human and mouse samples. Mouse heart and liver diverge 

from the other samples in this comparison. When the corresponding counts of footprinted binding motifs are 
examined (Table 9), the same mouse samples stand out, suggesting that the deviations have their origin in the overall 
detection count. 
 

From the comparison of Table 10: Overall number of detected DNaseI footprints in human and 

mouse samples. Mouse heart and liver diverge from the other samples in this comparison. When 

the corresponding counts of footprinted binding motifs are examined (Table 9), the same mouse 

samples stand out and Table 9 we can see some correlation of the overall detection count and 
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the number of predicted binding motifs overlapped by footprints. In human samples, those that 

have most footprinted motifs also have most detected footprints (Hepg2, K562). However, 

Lhcnm2diff has the second lowest number of footprinted motifs even though its overall 

detection number is intermediate. This demonstrates that there is no strict correlation between 

the two measures.  

 

3.3.3 DNaseI footprints in introns / intergenic regions and exons 

In spite of our focus on regulatory regions (excluding exons), we examined the numbers of 

DNaseI footprints and footprints overlapping predicted binding motifs within introns / intergenic 

regions as well as within exons. For this purpose we adjusted the program which we used to 

extract introns and intergenic regions within +/- 5kb around the TSS as regulatory regions 

(chapter 2.2.1.2) to output exons in the same interval. We then compared across exonic and 

intronic / intergenic regulatory regions: the number of DNaseI footprints mapping to regulatory 

regions, their relative number with respect to total regulatory region length, and the number of 

footprints that overlapped binding motifs predicted in regulatory regions (Table 11). 

  Exonic regulatory regions Intronic / intergenic regulatory regions 

Human samples 
 

FP in 
regions 

Relative 
number of FP 

FP overlapping 
predicted binding 

motifs 

FP in 
regions 

Relative 
number of FP 

FP overlapping 
predicted binding 

motifs 

A549 3,834 1 2 19,724 1 7,343 

Cd20 4,659 2 2 23,154 1 8,515 

Hepg2 5,542 2 2 23,196 1 8,881 

Hsmm 2,558 1 0 9,094 0 3,598 

Huvec 3,857 1 0 15,566 1 5,844 

K562 5,470 2 4 32,101 2 10,934 

Lhcnm2 2,629 1 2 14,033 1 4,756 

Lhcnm2diff 2,518 1 1 12,991 1 5,087 

Monocd14 3,172 1 2 13,039 1 5,177 

Nhlf 2,695 1 3 8,471 0 3,576 

Sknshra 4,400 2 0 17,375 1 6,956 

Total length of exonic regulatory regions: 2,708,979 bp 

Total number of predicted binding motif locations in exonic regulatory regions: 56,233 
  Total length of intronic / intergenic regulatory regions: 19,251,465 bp 

    Total number of predicted binding motif locations in intronic/intergenic regulatory regions: 312,424 
 Table 11: Number of DNaseI footprints and footprints that overlap predicted binding motifs in exonic and intronic / 

intergenic regulatory regions. The relative number of DNaseI footprints is comparable for the two types of regulatory 
regions (relative number = FP number divided by total length of regulatory regions, multiplied by 1000). However, 
footprints that overlap predicted binding motifs occur at a much higher frequency in intronic /intergenic regulatory 
regions.  

We see from this comparison that a higher number of footprints map to intronic / intergenic 

regulatory regions compared with exonic regions. From the relative number of footprints, it is 

apparent that this difference is a consequence of the much higher total length of the intronic / 

intergenic regulatory regions. (Relative number of FP = FP number divided by total length of 

regulatory regions, multiplied by 1000).   

Considering only those DNaseI footprints that overlap predicted binding motifs, a difference 

between exons and introns / intergenic regions is maintained. Remarkably, the number of 
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footprints that overlap binding motifs in introns / intergenic regions is on average 1000 fold that 

in exonic regulatory regions. This difference persisted when the total number of predicted 

binding motif locations in each of the groups was taken into account. 

We regarded DNaseI footprints that overlapped predicted binding motifs as markers of binding 

events involved in transcriptional regulation. The data reveals very few actual binding events on 

the predicted binding motifs in exonic regulatory regions.  

 

3.4 Sample-specific networks 

 

For the sample-specific networks, the elements that we described up to this point were 

combined: the reference network, the expression calls from RNA-seq and the binding motif 

occupancy profiles from DNaseI-seq. By integrating these different data types we confirmed 

predicted edges from the reference network, assigned interaction types and provided weights, 

specifically for each cell type / tissue. Our approach made use of the previously applied strategy 

to verify predicted binding motifs by overlapping them with DNaseI footprints25Fehler! 

Textmarke nicht definiert., and furthermore introduced gene expression to enable 

differentiation between activating and inhibiting interactions, applying a set of logical rules. We 

developed these rules on the basis of different scenarios of transcriptional regulation and 

implemented them algorithmically. 

Since our methodology is new, we first recapitulate how interaction types and weights were 

assigned and then present their distribution in the sample-specific networks. As a validation of 

our networks, we confirmed that the cell type-specific network generated for human skeletal 

muscle myoblasts (Hsmm) contains TFs typical for muscle-specific transcription regulation. For 

this purpose, we compared the Hsmm-specific network with a small, well-studied sub-network 

from the literature.  

 

3.4.1 Distribution of weighted interaction types 

From the combination of sample-specific experimental evidence with reference networks, we 

generated specific networks for 12 human cell types and 6 mouse tissues. We developed rules to 

classify interactions into three different weight groups based on the evidence that supported 

them: 

A – highest weight: supported by expression, DNaseI footprints and binding motif prediction 

B – intermediate weight: supported by expression, absence of DNaseI footprints and binding 

motif prediction 

P – lowest weight: supported by prediction from the reference network. 

For all weights and interactions, the model assumption was that if binding motif occupancy is 

confirmed through a DNaseI footprint, the TF related to this binding motif actively regulates the 

TF in whose regulatory region the binding motif is located. From this assumption, following 

conclusions/ rules followed:  
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A) Weight A: For expressed TFs that were regulators in predicted edges, interactions were 

assigned when a binding motif of the regulator in the regulatory region of the target was 

“footprinted” (i.e. overlapped a DNaseI footprint). If the target was expressed, the interaction 

was considered activating and termed +A, if not, the interaction was regarded as an inhibition 

and termed -A.  

B) Weight B: We expected binding motifs belonging to unexpressed, inactive regulators to be 

devoid of DNaseI footprints. When none of the binding motifs in the entire regulatory region of 

their target TF were footprinted, we attributed the regulatory effect to the absence of the 

aforementioned inactive regulator. If the target was expressed, this was regarded as an 

inhibitory interaction and termed -B. Conversely, if both regulator and target were unexpressed, 

the regulator’s action was considered activating and the interaction was called +B.  

C) Weight P: When a regulator-TF was not expressed and any binding motif in the target’s 

regulatory region was footprinted, we assigned an interaction of weight P. In this case it is not 

clear whether there is a regulatory effect or not. The binding motif of the regulator could simply 

be a false-positive prediction, but it could also be true. For true motifs, the sign of the 

interaction is uncertain, because its effect is be overshadowed by a different, expressed 

regulator whose action is confirmed by DNaseI footprints.  

 
Distribution of weighted interaction types in NW Total number of 

interactions in NW +A -A +B -B P 

H
u

m
an

 C
e

ll 
ty

p
e

s 

A549 4,526 2,735 446 0 21,341 29,048 

Cd20 4,029 3,255 83 42 26,665 34,074 

Hepg2 4,903 3,660 50 0 24,227 32,840 

Hsmm 2,966 1,201 1,670 142 22,863 28,842 

Huvec 4,354 1,684 227 0 24,274 30,539 

K562 5,485 3,420 252 0 27,033 36,190 

Lhcnm2 2,823 1,658 1,504 329 24,182 30,496 

Lhcnm2 diff 3,467 1,606 634 274 23,863 29,844 

Monocd14 3,410 2,127 468 0 26,246 32,251 

Nhlf 3,195 1,079 1,659 209 21,221 27,363 

Sknshra 4,138 2,821 133 226 22,836 30,154 

M
o

u
se

 t
is

su
e

s 

Heart 2,860 1,559 594 677 18,153 23,843 

Kidney 1,506 479 1,633 3,023 10,938 17,579 

Liver 359 248 5,649 6,018 10,402 22,676 

Lung 2,509 479 1,290 1,719 11,043 17,040 

Thymus 2,272 869 1,607 1,827 13,407 19,982 

Whole brain 1,387 736 1,493 2,611 12,701 18,928 

Table 12: Distribution of weighted interaction types in human and mouse sample-specific networks. In both mouse 
and human samples, by far the most edges are classified as predicted interactions of the lowest weight P. In all human 
samples, the next most abundant are interactions of weight A, which is the highest. Interactions of intermediate 
weight B are the least abundant. Conversely, in mouse samples weight B interactions are represented more 
prominently. In all but one sample they are more abundant than weight A interactions, and their counts are very high 
in the liver-specific network. 

We see in Table 12 that the weighted interaction types follow a distinct distribution in human 

and mouse sample-specific networks. Weight P is the most frequent by far in both, but in human 
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samples, weight B is the least abundant and counts of weight A are intermediate. This means 

that fewer interactions are regulated by unexpressed TFs than by expressed ones in these 

networks. For mouse samples, this relationship is reverted. Only in the network specific for 

mouse heart, there are more weight A interactions than weight B interactions. What is more, the 

mouse liver-specific network contains an exceedingly high number of both + and -B interactions 

compared to other mouse samples. This means that a very large proportion of interactions has 

unexpressed regulators. 

The comparison in Table 11 suggests that the mouse heart- and liver-specific networks are 

different from all other mouse networks. The aberrations in the liver network can be explained 

when different inputs to its generation are examined: the low numbers of expressed TFs (Table 

7), overall detected DNaseI footprints (Table 10) and footprinted predicted binding motifs 

overlapped (Table 9). Moreover, the small number of occupied / footprinted binding motifs 

could actually have been caused by the low number of expressed TFs, but also other reasons are 

possible. For example, the cause could lie on another level of transcriptional regulation, i.e. an 

interference with a chromatin remodeling pathway, leading to a smaller proportion of active 

chromatin and a decreased accessibility to DNaseI.  

When DNaseI footprints for the mouse heart sample are examined, another deviation from all 

other mouse samples is visible. The high overall detection count (Table 10) and the large number 

of footprinted binding motifs (Table 9) possibly caused the low number of weight B interactions 

in this case. 

When examining the proportion of activating and inhibiting interaction types within one weight 

group, +A interactions are always more abundant than -A. For weight B, a difference between 

human and mouse networks arises: While +B interactions occur more frequently than -B for all 

but one human cell type-specific network, in mouse tissue-specific networks this relationship is 

inverse. This difference is interesting because it could give rise to structural dissimilarity 

between mouse and human active sub-networks (or tissue- and cell type active sub-networks 

respectively) which are derived from the sample-specific networks presented here. 

Another interesting result in Table 11 is the complete absence of -B interactions in some human 

networks. Following the definition of B-, this means that in these samples all expressed TFs that 

were targeted by unexpressed TFs had footprinted binding motifs in their regulatory regions 

occupied by other TFs. Accordingly, all interactions with unexpressed regulators and expressed 

targets were thus classified as interactions of weight P. When we cross-examine how many 

predicted binding motifs were in total overlapped by DNaseI footprints in the samples where -B 

interactions are missing (Table 9), we would expect high overlap counts, but this is not true for 

all samples, e.g. Monocd14. 

When the total number of interactions in sample-specific networks is compared with the 

number of predicted edges in the reference networks (58,454 for HRNW and 49,202 for MRNW, 

Table 3), a large difference becomes apparent. The edges constituting this difference are 

interactions with expressed regulators that have not been confirmed through DNaseI footprints 

on predicted binding motifs. For both human and mouse samples, only around 50% of the edges 

in the reference network form the specific networks. What is more, since interactions of weight 

P are not considered for the generation of active sub-networks, only 10-25% of the edges that 
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were initially predicted are used in the next step. This considerable reduction shows that false-

positive binding motif predictions can be excluded effectively through the integration of 

experimental data. It is possible however, that not all of the excluded interactions are false-

positively predicted, some of them could be functional in other cell types or tissues. 

 

3.4.2 Comparison of Hsmm cell type-specific network with muscle regulatory network 

As a validation for the generated sample-specific networks, we examined the network specific to 

human skeletal muscle myoblasts (Hsmm) in greater detail. For this purpose, we used the 

muscle regulatory network presented in [25] for comparison (Figure 8). In this reference 

network, four muscle-specific TFs, MEF2A, MYF6, MYOG and MYOD interact with each other. All 

four were present and expressed in the Hsmm-specific network, but MYOD was termed MYOD1 

(an official synonym according to UniProt KB62). Yet none of the eight muscle-specific 

interactions in the Figure 8 were present in our network.  

 
Figure 8: Muscle regulatory network redrawn from [7]. All four muscle-specific TFs in this network were present and 
expressed in the human skeletal muscle myoblast (Hsmm) -specific network, but no interactions were recapitulated. 

When the interactions of each of these TF were investigated separately, it became apparent that 

MYF6 had no interactions in which it was the regulator in the Hsmm-specific network. We found 

this true also when we stepped back one level and examined the predicted interactions in 

HRNW. MYF6 was only part of interactions as a target, never as a regulator. This observation 

suggested that the TFBS model used to predict MYF6 binding sites in regulatory regions had a 

very low binding affinity to a diverse set of nucleotide sequences, which made it peculiar.  

Also for the other muscle-specific TFs, MEF2A, MYOG and MYOD1, it was possible that the 

properties of their TFBS models were the cause of the missing interactions. Only two auto-

regulatory feedback loops (for MEF2A and MYOD1) that are present in the reference muscle 

regulatory network were also predicted in HRNW, indicating that the reason for the absent 

interactions lied within the prediction of binding motifs.   

We also investigated if including exons in regulatory regions would lead to the detection of the 

missing muscle-specific binding motifs / interactions. Thereby, we did find the interaction 

between MYOG and MEF2A, but this approach also introduced a spurious interaction between 

MYOD1 and MEF2A which is not present in the muscle regulatory network (Figure 8). 

To further investigate the cell type- and tissue-specificity of the networks we generate, we 

performed functional enrichment analysis by Gene Ontology and examined the similarity of 

networks for related cell-types using different methods. These analyses have been carried out 

on the level of active sub-networks however, and the results can be found in the corresponding 
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chapter (3.5.5). 

 

3.5 Active sub-networks 

 

The aim of this step was to reduce sample-specific networks to subnets that cover all TFs / nodes 

and interactions that are dynamically connected with active / expressed TFs. Here, we provide 

standard network measures for the obtained sub-networks and present the distribution of 

interaction types inside them.  

In subsequent sections we present results of the analyses carried out in active sub-networks. We 

first document enrichment of network motifs and enrichment patterns across samples. Next, 

human active sub-networks are compared in both one to one and one to all manner, to explore 

their diversity and to determine if shared interactions coincide with relatedness among cell-

types. Finally, we address functional enrichment analyses in which we asked whether GO-terms 

related to the biological functions of specific samples were enriched in active subnets, and 

whether a functional enrichment of such GO-terms could be seen on enriched network motifs. 

 

3.5.1 Characterization of active sub-networks using standard network measures 

 

  
A549 Cd20 Hepg2 Hsmm Huvec K562 Lhcnm2 

Lhncnm2 
diff 

Monocd14 Nhlf Sknshra 

Nodes 398 401 401 395 395 395 394 401 388 393 403 

Edges 7.589 7.326 8.563 5.646 6.129 8.905 5.867 5.855 5.539 5.791 7.263 

Avg. degree 38 37 43 29 31 45 30 29 29 29 36 

NW diameter 6 6 5 7 5 5 7 8 5 9 7 

Graph density 0.048 0.046 0.053 0.036 0.039 0.057 0.038 0.037 0.037 0.038 0.045 

Modularity -0.003 -0.002 -0.003 0.28 -0.006 -0.004 0.246 0.151 -0.003 0.295 -0.003 

Avg. path length 2,4 2,7 2,3 3,2 2,5 2,1 3,0 3,1 2,5 3,1 2,7 

Table 13: Standard network measures for human active sub-networks. In the points of nodes and edges, average 
degree, network diameter, graph density and average path length, all networks exhibit similar numbers. Examining 
modularity however, the networks for human skeletal muscle myoblasts (Hsmm), the immortalized cell line of skeletal 
myoblasts (Lhcnm2), the differentiated skeletal myoblast cell line (Lhcnm2diff) and lung fibroblasts (Nhlf) show 
distinctly higher values than the other networks. 

Across almost all network measures, the generated active sub-networks for human cell-types 

appear similar (Table 13). The number of nodes in the networks is comparable to the node 

number in HRNW which means that besides active / expressed TFs, also a considerable 

proportion of inactive / unexpressed TFs whose interactions were selected as dynamically 

relevant are present in the networks (for the number of expressed TFs per sample see Table 7).  

Remarkably, the networks for human cell-types differ in their modularity, despite similarities in 

other measures. Even though modularity is not considered meaningful until it reaches at least 

0.4, networks divide into two distinct groups when modularity is examined. For one group, 

modularity is around zero, while for the other it reaches values between 0.15 and 0.3. We refer 

to this difference again in the section where we discuss the distribution of interaction types 

(chapter 2.7.2). 
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Heart Kidney Liver Lung Thymus 

Whole 
brain 

Nodes 384 376 371 379 381 383 

Edges 5.649 6.296 11.609 5.794 6.392 6.086 

Avg. degree 29 33 63 31 34 32 

NW diameter 6 8 9 7 8 7 

Graph density 0.038 0.045 0.085 0.040 0.044 0.042 

Modularity 0.214 0.263 0.049 0.265 0.333 0.264 

Avg. path length 2,8 2,8 2,7 2,9 2,8 2,9 

Table 14: Standard network measures for mouse active sub-networks. Unlike the networks for human cell types, 
almost all mouse active subnets all exhibit a similar modularity. The subnet constructed for liver stands out from the 
others with a markedly higher edge number and a higher average degree as a result of this. Modularity for the liver 
active sub-network is lower than for all other mouse networks. 

For mouse active sub-networks, standard network measures, including modularity, are similar 

across all but one sample, the liver (Table 14). However, the differences between liver and the 

other samples can be attributed to the distribution of interaction types in the liver-specific 

network which diverges from the distribution in other mouse tissue-specific networks (see Table 

12). 

 

3.5.2 Distribution of weighted interaction types 

We examined the distribution of interaction types in active sub-networks, under consideration 

of their respective selection criteria. The aim of selecting interactions from the sample-specific 

networks was to obtain dynamically relevant interactions of active TFs. We defined “dynamically 

relevant” paths of interactions that involved active TFs, both directly and indirectly over edges 

with inactive TFs. As explained in Methods, in chapter 2.2.5 and Figure 4, we chose interactions 

that had active TFs as targets or regulators, which applies to +A, -A and -B edges. For +B edges, 

which connect two unexpressed TFs, we considered interactions dynamically relevant in two 

cases: 1) when they connected two unexpressed TFs that had other interactions with active TFs 

and 2)  when they were part of chains of interactions which started and ended on active TFs. 

Hence, the counts of interaction types differ between active sub-networks and sample-specific 

networks only for +B edges. Of course, another important difference between active and 

sample-specific networks is the exclusion of weight P edges. They were not considered for the 

selection of dynamically relevant interactions since the experimental evidence that supports 

them is spurious. 
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Distribution of weighted interaction types 
Total number of 

interactions in NW +A -A +B -B 

H
u

m
an

 C
e

ll 
ty

p
e

s 

A549 4.526 2.735 328 (446) 0 7.261 

Cd20 4.029 3.255 0 (83) 42 7.326 

Hepg2 4.903 3.660 0 (50) 0 8.563 

Hsmm 2.966 1.201 1.377 (1.670) 142 4.309 

Huvec 4.354 1.684 91 (227) 0 6.038 

K562 5.485 3.420 0 (252) 0 8.905 

Lhcnm2 2.823 1.658 1.057 (1.504) 329 4.810 

Lhcnm2 diff 3.467 1.606 508 (634) 274 5.347 

Monocd14 3.410 2.127 2 (468) 0 5.537 

Nhlf 3.195 1.079 1.308 (1.659) 209 4.483 

Sknshra 4.138 2.821 78 (133) 226 7.185 

M
o

u
se

 t
is

su
e

s 

Heart 2.860 1.559 553 (594) 677 5.096 

Kidney 1.506 479 1.288 (1.633) 3.023 5.008 

Liver 359 248 4.984 (5.649) 6.018 6.625 

Lung 2.509 479 1.087 (1.290) 1.719 4.707 

Thymus 2.272 869 1.424 (1.607) 1.827 4.968 

Whole brain 1.387 736 1.352 (1.493) 2.611 4.734 

Table 15: Distribution of weighted interaction types in human cell type and mouse tissue active sub-networks. The 
numbers of +A, -A and -B interactions are the same as in sample-specific networks, for +B interactions the counts from 
sample-specific networks are shown in brackets. 

For human cell type active sub-networks, the largest fraction of interactions has weight A, which 

means most edges have regulators that are expressed TFs (Tab. 15). The proportion of weight B 

interactions, which are regulated by unexpressed TFs, differs strongly between human samples. 

While some networks have few or no edges of this weight, in other samples this group makes up 

a considerable proportion of the network. Interestingly, there is a correlation between a large 

fraction of weight B edges and a degree of modularity (Tab. 13). This correlation applies to all 

human active sub-networks with high numbers of both +B and –B edges, namely Hsmm, 

Lhcnm2, Lhcnm2diff and Nhlf. A likely reason for this could be the high number of connections 

between unexpressed TFs on the one side (represented by +B edges) and expressed TFs on the 

other (represented by +A edges), possibly creating a module of unexpressed TFs and one of 

expressed TFs.  

The same explanation could apply to modularity in mouse tissue active sub-networks, where +A 

and +B interaction types are abundant across almost all samples. The comparably low 

modularity of the liver sub-network is paired with the low number of +A interactions in this 

sample.  

In general, we did not expect marked modularity in the active sub-networks, because they 

constitute specific modules themselves, and our results are in line with this hypothesis. 
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The method applied to assess the modularity of networks focuses on finding so-called 

communities. Communities are groups of nodes in which nodes are more connected with each 

other than with nodes outside the group.  Note, that communities with many nodes are not the 

only level at which modularity can be implemented in biological networks. Network motifs, i.e. 

small, recurring sub-graphs of connected nodes, have been implicated in functional network 

dynamics and can also be seen as having the hallmarks of modules, namely the connectedness 

and functionality. In the next section, we therefore move on to elaborate the results of network 

motif detection in active sub-networks. 

 

3.5.3 Network motifs in active sub-networks 

In the following, we report significantly enriched network motifs in active sub-networks of 

human cell types and mouse tissues. The criteria for significant enrichment were p-value < 10-2 

and z-score > 2, and networks were compared to 1000 randomized versions. It should be noted 

that a significant enrichment of network motifs does not imply functionality. Motifs can be 

enriched also because they arise easily and have no detrimental effect.   

 

Network motif ID 

6 

 

12 

 

14 

 

36 

 

38 

 

46 

 

74 

 

78 

 

98 

 

102 

 

108 

 

110 

 

238 

 

H
u

m
an

 c
e

ll 
ty

p
es

 

A549 
    

x 
     

x* 
  

Cd20 
         

x* 
   

Hepg2 
     

x* 
       

Hsmm 
     

x* 
   

x 
  

x 

Huvec 
     

x* 
     

x x 

K562 
     

x* 
      

x 

Lhcnm2 
    

x x 
    

x* x x 

Lhcnm2diff 
     

x* 
    

x x 
 

Monocd14 
    

x x* 
     

x 
 

Nhlf 
    

x x 
    

x* x x 

Sknshra x x 
 

x 
  

x* x 
     

M
o

u
se
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e
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Heart x* x 
 

x 
 

x x 
 

x 
   

x 

Kidney 
    

x* x 
    

x x x 

Liver 
    

x x* 
    

x x x 

Lung 
    

x x* 
    

x x x 

Thymus 
    

x x* 
    

x x x 

Whole brain 
    

x 
    

x x* 
 

x 

Table 16: Significantly enriched network motifs in human cell type- and mouse tissue active sub-networks. The 
network motif with the highest z-score in each sample is marked with an asterix. While a rather clear pattern of 
enrichment arises for mouse tissues (motif IDs 38, 46, 108, 110, 238), in human samples the picture is more diverse. 
For each sample group, one sample shows a distinctly different enrichment pattern: Sknshra (Neuroblastoma cell line, 
differentiated with retinoic acid) in human cell types and heart in mouse tissues.  

The above overview shows that some sub-graphs are enriched in multiple human samples: 

motifs 38, 46, 102, 108, 110 and 238 (Table 16). For mouse tissue active subnets, a distinct 

enrichment pattern consists of motifs 38, 46, 108, 110 and 238. These motifs are enriched also in 
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human cell type networks, but less consistently across cell types and the pattern is met entirely 

only in lung fibroblasts (Nhlf).  

Two of the samples exhibit very different network motifs than all others: Sknshra 

(Neuroblastoma cell line, differentiated with retinoic acid) from the group of cell-type samples 

and heart from the group of tissue samples. The distribution of interaction types in Sknshra and 

heart is slightly different from the general trend in their sample groups (Table 15), but since the 

group is small, it is difficult to state with certainty if this aberration is significant. The mouse 

heart sample has already diverged from other samples in previous analyses but for Sknshra, 

deviations have not been observed so far. , The deviation in Sknshra network motif enrichment 

pattern could be indicative of deregulation, as Sknshra ia a cancer sample.  

If cancer samples (A549, Hepg2, K562, Sknshra) are not considered, the motifs enriched most 

frequently in human and mouse samples are 46, 238 and 110, followed by 38 and 108. 

Interestingly, these five motifs are also enriched in mouse samples. When we examine motifs 

with strongest enrichment (highest z-score) across all samples, the top three motifs are 46, 108 

and 38 (excluding cancer samples again). 

In summary, this analysis provides a small number of candidate network motifs that could be 

central in the regulation of traits. Strikingly, a combination of enriched motifs has been observed 

in the active sub-networks of tissues and to a lesser extent, in the networks of cell-types. This 

combination is consistent with that found in studies of Neph et al on network motifs in human 

cell type regulatory networks.25 

 

3.5.4 Comparison of active sub-networks 

We performed different types of comparisons to assess how diverse the generated active-sub-

networks were. One of the aims was to ascertain whether the consistency of enriched motifs in 

mouse samples arose because the networks were generally similar. Such a finding would explain 

the pattern, but it would also mean that the networks are in fact not tissue-specific. Our 

previous analyses have shown distinct distributions of interaction types, but we have so far not 

assessed what proportion of edges is shared. We expected networks of related samples, e.g. 

different muscle cell types, to be more similar and to share more interactions than unrelated 

samples, due to the underlying developmental regulation. 

Networks were compared in pair wise manner by computing the Jaccard index of two networks 

on the basis of common edges. Moreover, we also carried out one to all comparisons, clustering 

networks based on their normalized network degree and performing multidimensional scaling 

based on common edges. 

 

3.5.4.1 Jaccard index of active sub-networks 

The Jaccard index presented here measures similarity between pairs of networks, based on the 

presence of common interactions. 
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17a 
Human cell type active sub-networks 

A549 Cd20 Hepg2 Hsmm Huvec K562 
Lhcnm

2 
Lhcnm
2 diff 

Monoc
d14 

Nhlf 
Sknshr

a 

A549 1,000 0,207 0,213 0,163 0,206 0,222 0,161 0,185 0,188 0,158 0,213 

Cd20 - 1,000 0,202 0,150 0,203 0,217 0,155 0,190 0,220 0,147 0,202 

Hepg2 - - 1,000 0,162 0,222 0,253 0,150 0,169 0,191 0,158 0,256 

Hsmm - - - 1,000 0,202 0,168 0,169 0,171 0,165 0,231 0,157 

Huvec - - - - 1,000 0,238 0,166 0,190 0,214 0,204 0,220 

K562 - - - - - 1,000 0,160 0,180 0,209 0,159 0,226 

Lhcnm2 - - - - - - 1,000 0,192 0,155 0,155 0,152 

Lhcnm2diff - - - - - - - 1,000 0,191 0,162 0,168 

Monocd14 - - - - - - - - 1,000 0,174 0,189 

Nhlf - - - - - - - - - 1,000 0,158 

Sknshra - - - - - - - - - - 1,000 

 

17b 
Mouse tissue active sub-networks 

Heart Kidney Liver Lung Thymus 
Whole 
brain 

Heart 1,000 0,154 0,099 0,216 0,179 0,142 

Kidney - 1,000 0,245 0,213 0,164 0,150 

Liver - - 1,000 0,152 0,147 0,142 

Lung - - - 1,000 0,225 0,178 

Thymus - - - - 1,000 0,162 

Whole brain - - - - - 1,000 

Table 17a,b: Color-coded tables with Jaccard indices of common edges (16a: human cell type active subnetworks, 16b: 
mouse tissue active sub-networks). Jaccard indices were computed based on shared edges / interactions. Red color 
represents high similarity (with 1 meaning identity) and yellow dissimilarity (with 0 meaning complete disparity). It is 
evident that the generated networks for human cell types or mouse tissues are highly dissimilar. Black borders were 
put around cells in which an increased similarity would be expected due to relatedness. 

From the one to one comparisons it is obvious that the generated networks are very distinct in 

their interaction repertoire (Table 17a,b). The Jaccard index ranges from 0 (dissimilarity) to 1 

(identity). Here, Jaccard indices are low in all network pairs, as signified by the orange color. This 

result supports the cell type and tissue-specificity and excludes that the pattern of network 

motif enrichment presented in 2.7.4 is an artifact caused by highly similar networks.  

However, similarities between related cell types (e.g. Hsmm – human skeletal muscle myoblasts, 

Lhcnm2 – skeletal myoblast cell line, Lhcnm2diff – differentiated skeletal myoblast cell line) are 

not visible in this comparison. The highest Jaccard indices are observed for cancer samples: 

Hepg2 and K562, and Hepg2 and Sknshra, but the values differ only very subtly from the rest.  

 

3.5.4.2 Normalized network degree clustering 
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This analysis visualizes the similarity of networks on a structural level. Networks are clustered 

based on how similar the degree of each of their nodes is. The use of this clustering technique 

for network comparison assumes that regulators have similar numbers of interactions in 

functionally related cell types, which is rather uncertain. 

 

Figure 9: Normalized network degree clustering of human cell type active sub-networks. The clustering divides 
samples into two distinct groups that only partly correlate with functional relatedness. Skeletal myoblast Lhcnm2 is 
clustered together with Lhcnm2diff which is the same cell type that underwent differentiation. The third muscle cell 
type Hsmm is however clustered farther away from them. 

While few related cell types cluster together in this analysis, many other relationships are not 

displayed (Figure 1). For example, it is reasonable that the three muscle cell types Hsmm (human 

skeletal muscle myoblasts), Lhcnm2 (skeletal myoblast cell line) and Lhcnm2diff (differentiated 

Lhcnm2) are present in the same group. The closeness between cancer cell types (A549 – 

epithelial cells from lung carcinoma, Hepg2 – hepatocellular carcinoma, K562 – cell line from 

myelogenous leukemia, Sknshra – neuroblastoma cell line) is interesting because they all 

represent deregulation, even though their origins are diverse. However, the blood cell types 

Cd20 (B-cells) and Monocd14 (moncytes) cluster very far apart. Additionally, the proximity the 

two Lhcnm2 muscle cell types (skeletal muscle myoblast cell line, undifferentiated and 

differentiated) to Monocd14 (monocytes) is unexpected, especially considering that  another 

muscle cell type, Hsmm (human skeletal muscle myoblasts), is located farther away. 

Next, we apply yet another method of network comparison to test the robustness of the 

findings. 

 

3.5.4.3 Multidimensional scaling 

Turning the focus from the overall structure to the level of interactions, we performed metric 

multidimensional scaling (MDS) of the human cell type active subnets based on the presence / 

absence profiles of all possible edges in the human samples. The result of the scaling is 

presented in a plot in which networks with similar interaction profiles lie close and networks 

with little overlap lie distant. We carried out this analysis in two- and three-dimensional space to 

obtain the best resolution. 

We focus on human cell types here, as no considerable similarities were expected between 

mouse samples. 
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Figure 10: Two-dimensional scaling of human cell type active sub-networks. Muscle cell types are within close 
proximity (circled red), indicating that the corresponding networks are more similar to each other than to the rest of 
the analyzed nets. Similarly, Cd20+ B-cells and CD14+ monocytes, both from the hematopoietic cell lineage are 
located near each other (circled green). Cancer cell types Sknshra (Neuroblastoma), K562 (myelogenous leukemia) and 
Hepg2 (hepatocellular carcinoma) are located far from the other samples, suggesting strong deviations. 

The result of the two-dimensional scaling correlates with cell type function to a large extent 

(Figure 10). On the left, the three muscle cell types Hsmm, Lhcnm2 and Lhcnm2diff (human 

skeletal muscle myoblasts, skeletal myoblast cell line, differentiated skeletal myoblast cell line) 

are located within close proximity, while blood cell types Monocd14 and Cd20 (Monocytes and 

B-cells) form a pair closer to the middle. The large distance between healthy cell types and some 

of the cancer cell types indicates that these two groups are very different at the level of 

interactions.  

However, there are also some cases in which proximity does not match functional and 

developmental relatedness. For instance, Hsmm (Human skeletal muscle myoblasts) is in very 

close proximity to Nhlf (lung fibroblasts) and Monocd14 (monocytes) is close to Huvec (umbilical 

vein endothelial cells), even though there is no obvious functional similarity between them. 

Located nearby Monocd14 and Huvec is also the fourth cancer sample, A549 (epithelial cells 

Muscle cell types 

Blood cell types 
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from lung carcinoma), demonstrating that it shares more interactions with the networks of 

healthy samples than with all other cancer cell types that were examined. 

 
Figure 11: Three-dimensional scaling of human cell type active sub-networks. The color-scale represents depth along 
the y-axis. Similar to the 2D plot, functionally similar and related cell types are located close to each other. Biologically 
meaningful correlations persist (Lhcnm2, Skeletal myoblast cell line and Lhcnm2diff, differentiated skeletal myoblast 
cell line; Cd20, B cells and Monocd14, Monocytes), but also some that appear less plausible are still visible (e.g. 
Hsmm, human skeletal muscle myoblasts and Nhlf, lung fibroblasts).  

When the 3D-scaling plot of the human cell type active subnets is examined, the distances and 

proximities between certain samples become even more apparent (Figure 11). Cancer cell types 

are now exclusively located at the borders of the plot (Hepg2 – liver carcinoma, K562 – 

myelogenous leukemia, Sknshra – neuroblastoma cell line), but there is still proximity between 

the cancer sample A549 (epithelium from lung carcinoma) and a healthy sample, Cd20 (B-cells). 

This is a rather unexpected result because the two cell types are unrelated, but still more similar 

in their regulatory repertoire than to other samples. 

Hsmm, Lhcnm2 and Lhcnm2diff (human skeletal muscle myoblasts, skeletal myoblast cell line, 

differentiated skeletal myoblast cell line) still co-locate, but they are in the vicinity of less similar 

cell types like Nhlf (lung fibroblasts) and Huvec (umbilical vein endothelial cells). Remarkably, 

there is almost a complete overlap between Hsmm and Nhlf despite their different function. 

Meanwhile, the relatedness of the blood cell types Cd20 and Monocd14 (Monocytes) is 

highlighted by their colouring (green). 

In summary, separation and clustering of samples in the MDS plots recapitulate unrelatedness 

and relatedness between the cell types rather accurately. This result confirms our hypothesis 

that common interactions in regulatory networks are an indicator for relatedness among 

samples. 
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3.5.5 Analysis of functional specificity  

When the 3D-scaling plot of the human cell type active subnets is examined, the distances and 

proximities between certain samples become even more apparent (Figure 11). Cancer cell types 

are now exclusively located at the borders of the plot, but there is still proximity between the 

cancer sample A549 (epithelium from lung carcinoma) and a healthy sample, Cd20 (B-cells). 

Hsmm, Lhcnm2 and Lhcnm2diff (human skeletal muscle myoblasts, skeletal myoblast cell line, 

differentiated skeletal myoblast cell line) still co-locate, but they are in the vicinity of less similar 

cell types like Nhlf (lung fibroblasts) and Huvec (umbilical vein endothelial cells). Remarkably, 

there is almost a complete overlap between Hsmm and Nhlf despite their different function. 

Meanwhile, the relatedness of the blood cell types Cd20 and Monocd14 (Monocytes) is 

highlighted by their colouring (green). 

In summary, separation and clustering of samples in the MDS plots recapitulate unrelatedness 

and relatedness between the cell types rather accurately. This result confirms our hypothesis 

that common interactions in regulatory networks are an indicator for relatedness among 

samples. 
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3.5.4.4 Functional enrichment in active sub-networks 

 

 
Number of 

genes 
analyzed 

Enrich. 
score 

Biological Process GO terms in annotation cluster  

Rank of 
corresponding 

annotation 
cluster 

H
u

m
an

 c
e

ll 
ty

p
e

s 

A549 
(epithelium from 
lung carcinoma) 

103 1.66 
Gland development, tube development, tissue 
morphogenesis, tube morphogenesis,  
 epithelium development (B 0.068) 

7 

Cd20** 
(B-cells) 

57** 0.58** 
Positive regulation of cytokine biosynthetic process, 
regulation of cytokine biosynthetic process, 
regulation of cytokine production ** 

9** 

Hepg2 
(liver carcinoma) 

89 2.22 
endocrine system development (B 0.11), endocrine 
pancreas development (B 0.14), pancreas 
development (B 0.17), liver development (B 0.69) 

3 

Hsmm (skeletal 
muscle 
myoblasts) 

80 1.59 

muscle organ development, striated muscle tissue 
development (B 0.29), muscle tissue development (B 
0.33), muscle organ development (B 0.68), muscle 
tissue development (B 0.68) 

4 

Huvec 
(umbilical vein 
endothelium) 

91 1.26 
blood vessel development (B 0.54), vascular 
development (B 0.56) , blood vessel morphogenesis 
(B 0.76) 

6 

K562 
(myelogenous 
leukemia) 

52 1.52 
regulation of myeloid cell differentiation (B 0.18), 
regulation of erythrocyte differentiation (B 0.77) 

2 

Lhcnm2 (skeletal 
myoblasts) 

74 1.12 
muscle organ development (B 0.27), striated muscle 
tissue development (B 0.64) , muscle tissue 
development (B 0.69) 

4 

Lhcnm2diff (diff. 
skeletal 
myoblasts) 

79 1.42 

muscle organ development (B 0.12), striated muscle 
tissue development (B 0.64), skeletal muscle organ 
development (B 0.65), skeletal muscle tissue 
development (B 0.65), muscle tissue development (B 
0.68) 

6 

Monocd14 
(monocytes) 

57 1.03 
regulation of myeloid cell differentiation (B 0.21), 
regulation of myeloid leukocyte differentiation (B 
0.52) 

8 

Nhlf  
(lung fibroblasts) 

98 2.20 

tissue morphogenesis, embryonic morphogenesis, 
tube development, branching morphogenesis of a 
tube, morphogenesis of a branching structure,  gland 
development (B 0.11), epithelium development (B 
0.11), lung development (B 0.11), respiratory tube 
development (B 0.11) etc. 

4 

Sknshra (neuro-
blastoma) 

105** 0.97** 

gland development (B 0.07), forebrain development 
(B 0.23), pituitary gland development (B 0.36), 
diencephalon development (B 0.52), regulation of 
ossification (B 0.56)**  

11** 

Table 18: Enrichment of annotation clusters specific to examined human cell-types. The analysis was restricted to 
Biological Process GO terms since they best represent sample function. For all samples except Cd20 (B cells), an 
annotation cluster related to sample-specific functions was found enriched. As for GO terms, we report those 
matching p-value < 0.1, fold change > 1.5 and Benjamini correction ≤ 0.05, unless specified otherwise (e.g. B 0.068 for 
Benjamini correction). 
**not significantly enriched 

The enrichment score (significant at ≥ 1) provided in Table 18 is the geometric mean of all p-

values in the annotation cluster. P-values were calculated using a modified Fisher’s exact test 

and significance was established at a cutoff of p-value < 0.1. When reporting GO terms, we also 

considered fold-change > 1.5 and Benjamini correction for multiple testing ≤ 0.05. For the latter 

however, we also reported GO terms exceeding this cutoff, because Benjamini correction is a 

conservative approach and relying too strictly on it could reduce sensitivity.56 
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As visible in Table 18, annotation clusters that list sample-specific biological processes were 

found enriched for “specifically” expressed TFs in all but two human cell types, namely Cd20 (B 

cells) and Sknshra (neuroblastoma cell line).  

It should be noted that for Cd20 and two other samples, a rather small set of genes reduced the 

power of the analysis. Highest enrichment scores were found for Hepg2 and Nhlf. Interestingly, 

Hepg2 still shows an enrichment of liver-specific GO terms even though the sample represents a 

state of disease where interferences with the normal regulation of gene expression could be 

expected.  

Lower enrichment scores co-occur with a smaller number of TFs used for the analysis, indicating 

that the data becomes more difficult to interpret when fewer input genes are used. An 

exception from this is Sknshra, where a low enrichment score was calculated although the 

largest gene list was used as an input. This may be attributed to a cancerous deregulation of 

gene expression in the sample. 

 
Number of 

genes 
analyzed 

Enrich. 
score 

Biological Process GO terms in annotation cluster  

Rank of 
corresponding 

annotation 
cluster 

M
o

u
se

 t
is

su
e

s 

Heart 75 1.68 

regulation of cardiac muscle growth (B 0.33), 
regulation of cardiac muscle tissue development (B 
0.33), regulation of cardiac muscle cell proliferation (B 
0.33), regulation of organ growth (B 0.35)  

2 

Kidney 108 2.00 
urogenital system development, kidney development 
(B 0.12), metanephros development (B 0.58) 

4 

Liver 52 2.12 
endocrine pancreas development, pancreas 
development (B 0.22), liver development (B 0.34), 
endocrine system development (B 0.52) 

2 

Lung 121 2.21 
tube development (B 0.25), respiratory system 
development (B 0.3), lung development (B 0.34), 
respiratory tube development (B 0.34) 

2 

Thymus 96 1.61 

leukocyte differentiation, hemopoiesis (B 0.25), 
hemopoietic of lymphoid organ development (B 
0.27), immune system development (B 0.33), cell 
activation (B 0.56), lymphocyte differentiation (B 
0.57) etc. 

3 

Whole brain 104 3.81 

forebrain development, endocrine system 
development, pituitary gland development, 
diencephalon development (B 0.052), gland 
development (B 0.16) 

4 

Table 19: Enrichment of annotation clusters specific to examined mouse tissues. As with human samples, the analysis 
was restricted to Biological Process GO terms. For all mouse tissues, a corresponding annotation cluster covering 
sample-specific functions was found enriched. We report those GO terms matching p-value < 0.1, fold change > 1.5 
and Benjamini correction≤ 0.05, unless specified otherwise (e.g. B 0.33 for Benjamini correction). 

Compared with the results for human a trend towards higher enrichment scores is visible for 

mouse samples (Table 19). This picture persists when the ranks of sample-specific annotation 

clusters are examined. While ranks are rather diverse for human cell types, for mouse tissues the 

corresponding annotation clusters are within the Top 4 for all samples.  

As evident from the ranks of the specific annotation clusters, for all samples there were also 

other GO term clusters that were more enriched. In many samples, especially those with high 

ranks, these higher-ranking clusters referred to transcriptional regulation, a function that 
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corresponded to all genes entering the analysis because they were TFs. Conversely, Lower-

ranking annotation clusters, such as the one for Sknshra, were preceded by rather non-specific 

functions (embryonic development, muscle development, reproductive organ development). 

 

3.5.4.5 Functional enrichment in significant network motifs  

Human 

sample 

Network 

motif ID 

Number of 

genes 

analyzed 

Enrich. 

Score 
Biological Process GO terms in annotation cluster 

Rank of 

corresponding 

annotation 

cluster 

A549 

38 

 

236 1.75 

tube development (B 0.12), respiratory system 

development (B 0.46), respiratory tube development 

(B 0.52), lung development (B 0.52) 

13 

108 

 

168 1.49 

tube development (B 0.37), lung development (B 

0.47), respiratory tube development ( B 0.47), 

respiratory system development (B 0.58) 

11 

Hepg2 
46 

 

202 1.40 

pancreas development (B 0.54), endocrine system 

development (B 0.56), endocrine pancreas 

development (B 0.63)  - cluster chosen based on liver 

marker genes (HNF1A, HNF1B, HNF6)63,64 

10 

Huvec 
46 

 

209 1.75 

angiogenesis (B 0.18), blood vessel morphogenesis (B 

0.41), blood vessel development (B 0.41), vasculature 

development (B 0.46) 

10 

K562 

46 

 

197 2.59 

regulation of myeloid cell differentiation, positive 

regulation of myeloid cell differentiation, positive 

regulation of cell differentiation (B 0.22), etc. 

4 

238 

 

72 1.38 

regulation of erythrocyte differentiation (B 0.27), 

regulation of myeloid cell differentiation ( B 0.34), 

positive regulation of erythrocyte differentiation (B 

0.42), etc. 

3 

Monocd14 

38 

 

201 1.57 

positive regulation of myeloid cell differentiation (B 

0.15), regulation of myeloid leukocyte differentiation 

(B 0.47), positive regulation of myeloid leukocyte 

differentiation (B 0.77) 

11 

46 

 

175 2.62 

lymphocyte differentiation, leukocyte differentiation, 

lymphocyte activation, cell activation, leukocyte 

activation, hemopoiesis (B 0.08), myeloid cell 

differentiation (B 0.32), etc. 

6 

Nhlf 

38 

 

231 1.59 

tube development (B 0.22), respiratory tube 

development (B 0.46), lung development (B 0.46), 

respiratory system development (B 0.6) 

12 

46 

 

194 1.74 

tube development (B 0.11), respiratory tube 

development (B 0.44), lung development (B 0.44), 

respiratory system development (B 0.57) 

13 

Table 20: Enrichment of cell type function related annotation clusters on significant network motifs (human samples). 
For 6 of 12 human cell types, we find TFs related to cell type function enriched on certain significant network motifs. 
Notably, motifs 38 (feed-forward loop) and 46 are enriched for marker TFs in diverse cell-types. We report GO terms 
that match following criteria: p-value < 0.1, fold change > 1.5 and Benjamini correction ≤ 0.05, unless specified 
otherwise (e.g. B 0.12 for Benjamini correction). 

This analysis reveals that in various human samples, the marker TFs which characterize the 

development, maintenance and identity of cell types are enriched on significant network motifs 

(Table 20). In five of the cell types examined in this study, this enrichment was not found (Cd20 – 
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B-cells, Hsmm – Human skeletal muscle myoblast, Lhcnm2 – Skeletal muscle myoblast cell line, 

Lhcnm2diff – differentiated Lhcnm2, Sknshra – Neuroblastoma cell line), but in the other six, 

especially motifs 38 and 46 were enriched for marker TFs, indicating that their dynamics could 

play a role in the cell types developmental regulation. For motif 38, the feed-forward loop, it has 

already been shown that it can implement functional dynamics. The dynamics of motif 46 

however remain to be investigated. 

Mouse 
sample 

Network 
motif ID 

Number of 
genes 

analyzed 

Enrich. 
Score 

Biological Process GO terms in annotation 
cluster 

Rank of 
corresponding 

annotation 
cluster 

Heart 

6 

 
218 1.44 

cardiac muscle cell differentiation (B 0.18), 
cardiac cell differentiation (B 0.24), positive 
regulation of cardioblast regulation (B 0.41), etc. 

7 

12 

 
221 1.45 

cardiac muscle cell differentiation (B 0.2), cardiac 
cell differentiation (B 0.26), positive regulation of 
cardioblast regulation (B 0.43), etc. 

7 

36 

 
221 1.45 

cardiac muscle cell differentiation (B 0.2), cardiac 
cell differentiation (B 0.26), positive regulation of 
cardioblast regulation (B 0.43), etc. 

7 

Kidney 

38 

 
228 1.31 

urogenital system development (B 0.16), kidney 
development (B 0.32), ureteric bud development 
(B 0.57), metanephros development (B 0.59) etc. 

14 

46 

 
135 1.01 

ureteric bud development (B 0.87), urogenital 
system development (B 0.87), metanephros 
development (B 0.88), kidney development (B 
0.87) 

7 

Liver 
38 

 
155 1.02 

endocrine pancreas development (B 0.74)  - 
cluster chosen based on liver marker genes 

(HNF1A, HNF1B, HNF6)63,64 

10 

Lung 

38 

 
259 2.86 

respiratory system development (B  0.09), tube 
development (B0.09), lung development (B 0.11), 
respiratory tube development (B 0.11) 

2 

46 

 
173 3.45 

respiratory system development, lung 
development, respiratory tube development, 
tube development (B 0.19) 

2 

110 

 
23 1.56 

respiratory system development (B 0.12), lung 
development (B 0.23) 

2 

Thymus 

38 

 
224 2.25 

leukocyte differentiation, lymphocyte 
differentiation (B 0.06), cell activation (B 0.21), 
immune system development (B 0.2), 
hemopoiesis (B 0.2), etc. 

2 

46 

 
150 1.08 

leukocyte differentiation (B 0.56), hemopoiesis ( 
B 0.59), lymphocyte differentiation (B 0.6), 
leukocyte activation (B 0.67), immune system 
development (B 0.71) etc. 

7 

Whole 
 brain 

38 

 
217 1.80 

forebrain development (B 0.25), pituitary gland 
development (B 0.31), endocrine system 
development (B 0.54), diencephalon 
development (B 0.71), gland development ( B 
0.82) 

5 

Table 21: Enrichment of tissue function related annotation clusters on significant network motifs (mouse samples). 
We find that TFs related to tissue function are enriched on certain significant network motifs in all examined mouse 
samples. In all but one sample, we find motif 38 (feed-forward loop) to enriched for such “marker TFs”. In the majority 
of samples, this is also true for motif 46. This pattern or enrichment resembles the one found in human samples 
(Table 20). GO terms that match p-value < 0.1, fold change > 1.5 and Benjamini correction ≤ 0.05 are reported, unless 
specified otherwise (e.g. B 0.12 for Benjamini correction). 
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For each mouse sample, we find at least one network motif to be enriched for tissue “marker” 

TFs (Table 21). Annotation clusters related to tissue function were found only marginally 

enriched for some motifs (kidney motif 46, liver motif 38, thymus motif 46), but in these cases a 

smaller number of genes was analyzed, possibly lowering the statistical power of the analysis. 

Conversely, for lung motif 110 an average enrichment score was found even though only 23 

genes were analyzed.  

While most of the mouse samples follow a pattern of enrichment with motif 38 and motif 46, 

the heart sample shows a distinct enrichment of network motifs and marker genes inside them. 

In no other sample of this study, motifs 6, 12 and 36 were significant and enriched for tissue-

specific genes. The reason for this deviation could lie in the distribution of interaction types in 

the heart active sub-network, which is quite different from other mouse tissues (Table 15). 

Interestingly, we discovered an enrichment of tissue markers on FFLs (motif 38) in all mouse 

samples where the FFL was called significant. Together with marker gene enrichments on FFLs in 

human samples, these findings emphasize that feed-forward loop dynamics could be involved in 

determining tissue development and identity. 
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4 DISCUSSION 
 

The following sections are devoted to summarizing our findings regarding trait-specific 

functional enrichment on network motifs, discussing results related to the regulatory networks 

we constructed and presenting the importance of our results in the context of other studies. 

Since a large part of our study was devoted to method development, and results critically 

depend on the choice of methods, we also discuss the considerations and decisions that underlie 

our methodology and draw parallels to other studies.  

Key achievements of our work comprise: 

- pilot study in network reconstruction from multiple complementary data types 

- establishment of link between topological motifs, dynamics and trait development 

- establishment of functional trait interpretation based on regulatory interaction repertoire 

- binning of interaction types and first steps towards parameterization of regulatory networks 

Furthermore, our study demonstrates a need for standards in computational algorithms for 

DNaseI footprinting, improvements in TFBS model prediction and a systematic collection of 

experimental data in related conditions (e.g. cell lineages, homologous cell types). 

 

4.1 Active sub-networks 

 

In active sub-networks, we integrated all possible influences of and on the active regulators in 

the network, capturing the union of regulatory effects going out from or imposed on TFs. 

  

4.1.1 Establishing connection between network motifs and functional interpretation of 

regulatory networks 

Within active sub-networks, we studied the enrichment of network motifs, and their importance 

for the regulation of traits. Our analyses show that certain motifs are frequently enriched in 

regulatory networks of different human cell types and mouse tissues (Table 16). There is 

especially strong consistency between tissue samples, of which most exhibit an enrichment of 

motifs 38, 46, 108, 110 and 238 (Figure 12). In cell type samples, these motifs are also often 

enriched.  

Motif 38 (Figure 12) was termed “feed-forward loop” in the literature and already has a strong 

reputation as a functional network motif. It has been studied in dynamic network analysis and 

one of its subtypes, the coherent FFL, has been characterized as a noise filter that passes on 

impulses to targets only upon prolonged input signals.65 While enrichment may indicate 

function, it should be noted that not all network motifs have been examined for potential 

functions, and some have been considered to show enrichment only because they arise easily.  

Interestingly, feed-forward loops in many samples show an enrichment of developmental 

regulators (marker genes) specific to the trait under study, e.g. muscle TFs in a muscle cell type 

(Table 20 and 21). 
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Network motif 46 is also enriched for marker genes in many samples. This motif can be seen as a 

precursor or successor of the FFL, since FFLs can be generated from motif 46 by removing only 

one interaction. Because of sequence-specific binding of TFs, point mutations easily cause a loss 

of an interaction. Furthermore, motif 46 itself can arise easily. Starting with an interaction in 

which the regulator has an auto-regulatory ability, a simple duplication of the gene that encodes 

the regulator would suffice to produce this motif.  This indicates that motif 46 could be 

generated as a non-functional by-product, but an analysis of its potential dynamics would be 

required to shed light on its functionality. This could be implemented in a model of ordinary 

differential equations (ODE). 

 
Figure 12: The 13 possible 3-node sub-graphs that were examined for significant enrichment in active sub-networks. 
The specified IDs correspond to IDs used in Table 15 and in the text. 

Another enriched network motif with a confirmed function is motif 108. It has been shown that 

it can support individualization of two targets regulated by a common signal (S. Widder, 

unpublished work) which is an interesting ability considering cell lineage decisions and 

developmental differentiation in general. However, marker gene enrichment on this motif has 

been found only in one sample, and it was not particularly strong (Table 20). 

For network motifs 6, 12, 36, 110 and 238 marker gene enrichments have been found in single 

samples. Just as for motif 46, their dynamics are unknown so far.  

It is noteworthy that in all cancer samples except Sknshra (neuroblastoma cell line), marker gene 

enrichment was found on network motifs (Table 20). This is an interesting result because 

cancerous cells represent deregulation, i.e. less specific states of cells (perhaps similar to non-

differentiated ones, or partially so). Despite their deregulated state, regulators related to their 

original function are still located within network motifs. This invites speculation that changes in 

regulation in cancer cells pertain to other aspects of regulation, potentially to peripheral 

regulatory networks, while the core aspect remains intact. Such interpretation is plausible, as 

cancer cells are invasive, and thus their regulatory network, even if deregulated, is certainly 

highly functional. 
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4.1.2 Establishing specificity and functional relatedness based on network interactions 

To show that the constructed active sub-networks are specific with regard to cell type or tissue 

function, we examined them using a number of different comparative measures (chapter 3 to 

3.5.4.4).  Analyses were carried out on both edge and node level. 

A calculation of Jaccard indices based on common edges showed high diversity among samples 

in the interaction repertoire (Table 17). This finding confirms that our method is free of biases 

which would make networks generally similar. However, the comparison of Jaccard indices 

shows no similarities between networks of functionally related samples, i.e. various muscle cell 

types. We therefore applied further measures that capture the functional aspects of the 

network, which revealed a clustering of related samples. 

With multidimensional scaling (MDS) we analyzed particularly the interaction structure between 

the TFs and thus used it as a measure to assess functional relatedness between regulatory 

networks. MDS in both two- and three-dimensional space display a more plausible picture of the 

relationships between samples (Figure 10 and 11). Developmentally related cell types appear in 

proximity and cancer samples are located far from healthy ones. Many of cancer samples are 

also immortalized cell lines which are known to exhibit altered gene expression. We did not find 

a different overall number of expressed genes in cancer / cell line samples (Table 6), but for 

many of these samples, the interaction repertoire reflects altered expression and regulation. 

Interestingly, this is not true for the muscle cell line Lhncm2 (skeletal muscle myoblasts) which is 

located closely to Hsmm (human skeletal muscle myoblasts) in the MDS plot.  

In MDS, the presence / absence patterns of edges is used to construct a distance matrix of all 

samples. Thereby, the information of the union of regulatory interactions found within networks 

is exploited to assess similarity.  

It is likely that relatedness is more conserved in regulatory interactions than in the degree of 

nodes (chapter 2.2.8.3 and 2.2.8.2). The reasons for this are two-fold. Firstly, the degree does 

not reflect actual regulatory effects exercised by TFs and can be similar even when regulatory 

effects are different. This means that in NND clustering, the cell types in which regulators 

perform different functions can be erroneously clustered together. Secondly, when trait 

evolution and individualization is considered, derived traits such as related cell types are likely to 

posses much of the regulatory network of their ancestor because they arise through 

modifications of developmental regulation. Another argument in favor of this concept is 

differentiation in cell lineages, which produces related cell types. In cell lineages, differentiation 

occurs in a step-wise manner, with TF being deactivated or additional TFs being activated at 

each step, relative to the preceding stage. As gene expression changes gradually, also regulation 

is modified gradually, and differentiated cells share parts of their regulatory networks with 

precursors. The closer cell types are in lineages, the more regulation they share. 

For these reasons, we argue that MDS is a suitable measure to assess sample-specificity and 

especially useful in investigating relationships between samples. 

Lastly, we examined active sub-networks at the level of nodes. Functional enrichment analysis of 

specifically expressed TFs demonstrated that all but two networks were enriched for marker 

genes associated with cell type or tissue function.  
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In summary, our results underpin the specificity of the generated cell type- and tissue-specific 

active sub-networks and emphasize the validity of our methods. 

  

4.2 Sample-specific networks 

 

At the level of sample-specific networks, we integrate data from complementary methods to 

model cell type- and tissue-specific regulatory interactions. Sample-specific networks form the 

basis for active sub-network construction. 

 

4.2.1 Distribution of interaction types implies advantages of species-specific TFBS models 

The analysis of human and mouse sample-specific networks, shown in Table 12, revealed 

interesting differences between the two sample groups. More precisely, the distribution of 

interaction types has different trends. Human networks tend to contain more weight A 

interactions which require footprinted binding motifs, while in mouse networks, the proportion 

of weight B interactions is larger. In contrast to weight A, weight B interactions require binding 

motifs in regulatory regions to be devoid of DNaseI footprints, because they are assigned to 

unexpressed regulators. Considering that regulatory regions were derived using the same 

technique for both species, it follows that the likely cause for the differing distributions lies 

within DNaseI footprints or binding motifs.  

The DNase-seq footprint counts are comparable between mouse and human samples, in spite of 

a tendency in mouse towards lower overall numbers (Table 10). When the number of binding 

motifs overlapped by footprints is examined (Table 9), it becomes apparent that a smaller 

percentage of predicted motifs are footprinted in mouse samples. This is unexpected. It 

demonstrates that many predicted binding motifs do not correspond to binding events. Since 

there is no reason to expect fewer binding events in the mouse samples, this result could 

indicate that the TFBS models used to predict binding motifs do not fully reflect the binding 

behavior of mouse TFs. In a broader context, this finding suggests that a common practice in 

databases, the use of TFBS models for mapping binding sites of homolog TFs in related species, 

should be reconsidered. Even though TF proteins in related species share structural and 

sequence similarities, their binding affinities can differ, and TFBS models could be refined to 

accommodate these differences.  

 

4.2.2 Interaction types and weights pave the way for studies of network-wide dynamics 

A crucial feature of this work is the introduction of activating and inhibiting interaction types and 

weight groups. This feature makes our approach stand out from other studies that have 

constructed cell type-specific networks or active sub-networks, yet have, only established 

direction of interactions, but not their activating or inhibiting nature. The nature of interaction is 

crucial for many follow-up analyses. For instance, having +/- information is a prerequisite for 

studying a network’s dynamics, and thereby its functional repertoire. Using this evidence, it can 

be traced how information is transmitted in a network and disruptions of transmission can be 

simulated. The weights furthermore enable us to discriminate the likely pathways of information 

transmission from the unlikely ones. Thereby, our methodology provides first steps towards 
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parameterization and quantitative modeling of gene regulatory networks. This could contribute 

to elucidating deregulation in pathological states, help develop interference strategies, or point 

towards potential drug targets. In the present study we do not fully use of the 

activation/inhibition information, but it has many potential purposes in future.  

 

4.3 Methodic choices and considerations 

4.3.1 Reference network 

Our method to generate reference networks has its basis in the approach of Neph et al in [25] in 

two major aspects: 1) probabilistic modeling of TFBS and 2) definition of proximal regulatory 

regions as a +/-5kb interval surrounding the TSS of target TFs. However, we confined regulatory 

regions to introns and intergenic sequences and constructed reference networks not only for 

human, but also for mouse.   

A drawback of the probabilistic modeling approach is the high rate of false-positive TFBS. Since 

binding motifs are short (typically 6-12 bp), they are detected very often. This challenge can be 

addressed by using a strict p-value cutoff, but the cutoff alone cannot control this issue properly. 

For instance, a very strict cutoff might exclude true-positive TFBS with a more unusual 

nucleotide composition. What is more, while TF might have a strong likelihood to bind to a 

sequence, the binding may have no regulatory function in vivo.14 

Methods to discriminate regulatory TFBS from false-positives have therefore focused on 

properties of true regulatory regions. They include phylogenetic footprinting which makes use of 

the conservation of regulatory regions across different species. Another method is the detection 

of TFBS-clusters. So called cis-acting regulatory modules (CRM) have been found to contain 

clusters of binding sites which reflect the cooperative action of TFs.55 Predicted TFBS occurring in 

clusters therefore have a higher probability of being true regulatory TFBS instances, and binding 

motif detection methods have made use of this property. 

We addressed the high false-positive rate of probabilistic modeling by three different measures: 

1) the introduction of DNaseI footprints to identify binding sites occupied in vivo, 2) the use of 

transcriptome data to classify expressed TFs and their interactions, and 3) by focusing on a 

restricted genomic regions in which to detect binding motifs. In this last measure, we only 

considered introns and intergenic regions inside the +/-5kb interval. The assumption here is that 

exons and coding sequences do not contain TFBS relevant for the regulation of transcription. 

This premise is in line with a study by Long et al in which second exon sequences were used to 

establish false-positive cutoff-scores for PWM-based motif prediction, stating that such 

sequences are “believed to have few intrinsic biological relevant cis-regulatory elements“.66 

In this context, we investigated the distribution of DNaseI footprints in intronic / intergenic and 

exonic regulatory regions to examine possible regulatory TF binding events in exons. From the 

overview of footprinted binding motifs in introns and exons in Table 11 we can see that there 

are very few binding events in exons. Possibly, the absence of TF binding in exonic regions still 

has a regulatory impact, but it seems rather unlikely that this applies to all of the predicted 

binding motifs. Moreover, this would suggest an unlikely bias in the mechanisms of 

transcriptional regulation: Within introns / intergenic regions binding of active TF would be the 
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more pronounced mechanism while within exons, the absence of active TF binding would be 

prevalent. For these reasons it is plausible that transcriptional regulation through direct binding 

of TF to exon DNA has only a small, negligible impact. In summary, our results support the 

exclusion of exons from regulatory regions as a model assumption for this study. 

Notably, it has long been believed that coding sequences, which make up a large part of exons, 

do not contain TFBS. Such TFBS would be subject to two different, possibly even competing 

constraints: one to preserve the amino acid sequence and one to preserve the binding sites 

affinity.67  In contrast, recent studies in various species suggest that TF binding can occur inside 

exons and that exons and coding sequences can contain transcriptional 

regulators/enhancers.68,69 The frequency and impact of TFs binding in exons and coding 

sequences is unknown, as most of these studies were not carried out on an genome-wide. Even 

so, these findings should be considered in further work.  

It should be noted that the regulation of transcription in eukaryotes is a complex process that 

integrates many different mechanisms, beyond the one-dimensional models of transcriptional 

regulation we and others have focused on. Besides TF binding in proximal regulatory regions 

which is used here to model gene regulatory networks, it also includes chromatin modification, 

chromosome conformation and distal regulatory regions, TF co-regulators and direct 

interactions between TF proteins. Current efforts concentrate on developing techniques that 

include the regulatory effect of distal regulatory regions and DNA folding, and transcriptional 

regulation is increasingly understood as a process in three-dimensional space.70,71 
 

4.3.2 Expression calling on RNA-seq data 

RNA-seq is a wide-spread tool for transcriptome profiling, however one should keep its 

weaknesses in mind. Many choices are made in conducting the RNASeq analysis, such as choice 

of sequencing depth, read length, the choice of mapping and expression analysis tools, the 

availability and quality of reference genomes and annotations, the choice of gene models, 

expression cutoff; and all of these choices can affect the results.  

In spite of these caveats, the reference genomes and annotations for mouse and human that we 

used here are some of the best studied. To ensure comparability between samples, we used pre-

processed and aligned data from the ENCODE project which has adopted standards and best 

practices for its RNA-seq experiments (e.g. sequencing depth and read length).72 Since 

alternative splicing creates a high diversity of transcripts in eukaryotic transcriptomes, tools that 

can align reads to splice junctions had been applied during mapping. Finally, the expression 

cutoff we used has been applied previously to characterize actively expressed genes. 

 

4.3.3 DNaseI footprinting 

DNaseI-seq and subsequent footprinting promise the identification of occupied regulatory 

binding-sites in a cell-type or even cell-state specific manner. Yet, DNaseI footprinting holds 

experimental and computational challenges. For example, it requires very high sequencing 

depths to detect true DNaseI footprints. The human DNaseI-seq samples in this study applied an 

average sequencing depth of 273 million mapped reads.  
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The software for DNaseI footprinting in large genomes may impose a limitation to the method. 

We used the R-package DNaseR, as the only publicly available software to our knowledge at the 

time. DNaseR relies on the fact that cleavage counts are higher in the regions flanking footprints 

than within footprints. It uses the correlation of two Poisson distributions corresponding to the 

two strand-specific cleavage counts.73 An alternative approach, “digital genomic footprinting” 

(DGF), developed originally for Saccharomyces cerevisiae61 and later adapted for human cells30, 

unfortunately isn’t available in the form of open software.  

At the time the best practice for the validation of footprinting algorithms is the comparison with 

ChIP-seq results from the same biological setting (e.g. the same cell-type). Such comparisons 

have been done for certain DGF-derived footprint data sets, using footprints that matched a 

binding motif models from TRANSFAC or JASPAR. For high-confidence footprints from this 

subset, correlations were found with evolutionary conservation patterns.30 For a sample of four 

transcription factors, high-confidence footprints were shown to correlate with strong ChIP-seq 

signal intensity. This validation is limited however, as ChIP-seq data seta are specific for single 

DNA-binding proteins while DNaseI-seq includes the all DNA-binding events in a sample.  

Since a validation of the DNaseR algorithm was outside the scope of this project, we confined 

ourselves to comparing DNaseR-derived with DGF-derived footprints for all samples where this 

was possible (Table 8). This comparison shows DNaseR reproduces only 6-11% of the footprints 

identified by DGF and accentuates the need for standardizing computational methods in DNaseI 

footprinting. 

 

4.3.4 Sample-specific networks 

The generation of sample-specific networks is a crucial step in the workflow. Firstly, the 

reference network of predicted interactions is confined to those interactions that are supported 

by experimental evidence. When edge numbers in the generated networks are compared with 

the reference network, it becomes evident that a large proportion of the potential predicted 

edges likely bear no biological meaning. In addition to the exclusion of false-positively predicted 

interactions, the networks gain cell type- and tissue-specificity. This is a vital aspect considering 

that the aim of this study is to elucidate the importance of network structure for the regulation 

of traits, such as cell types and tissues. While certain regulatory interactions might be present in 

various tissues, others can be specific to a certain context, i.e. cell type or tissue. Similarly, some 

edges that appear falsely predicted in one context can be functional in another.  

Our approach is not the first to model cell type- and tissue-specific regulatory networks. For 

example, specific networks have recently been constructed by Neph et al25 for 41 human cell 

types and Li et al23 for different human tissues. However, the methodology developed in our 

study has some decisive advantages over other approaches. The combined use of probabilistic 

modeling to predict TF-TF interactions, gene expression profiles from RNA-seq and binding motif 

occupancy from DNaseI-seq makes it possible not only to assign evidence-based interactions, 

but also interaction types and weights. Providing signs for interactions to represent their 

activating or inhibiting nature and weights that prioritize edges with strong experimental 

evidence over less supported edges is an important step towards parameterization and the 

elucidation of network-wide dynamics.  
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The method assumes that the binding of a TF to the DNA has a regulatory effect, and that TFs 

are never just “parked” without an impact on regulation. Consequently, the binding motif 

occupancy profiles derived from DNaseI footprinting show events of actual regulation. Even 

though TF binding is used to predict gene expression74, it is possible that TF binding has no 

function. Since we only examine proximal regulatory regions close to TSS which coincide with 

promoters, we consider the binding events we identified through DNaseI footprinting as reliable. 

The rules developed here to assign interaction types extend the previously applied approaches.  

For interactions of weight A, i.e. interactions with expressed regulators, we followed the idea of 

Neph et al in [25], confirming edges from the reference networks when a footprint overlapped 

the binding motif of the regulator in a target’s regulatory region. We advanced this concept by 

taking into account the expression state of the target to give a “+” or “-“ sign to the interaction.  

For interactions of weight B, we considered the consequence of unexpressed TFs. The absence 

of a TF can have a regulatory effect on gene expression by neutralizing an activation or a 

repression.  However, estimating the effect of a TF’s absence is difficult. In most cases, it is 

overshadowed by other active TFs that bind in regulatory regions and leave footprints. In these 

circumstances, we assigned interactions of weight P and treated the edges as false-positive 

predictions. The only clear regulatory case is when there is no footprinted binding motif, and 

thereby no evidence of regulation through active TFs.  

This methodology does include the possibility of using false-positively predicted binding motifs 

to support weight B interactions, since the binding motifs of their unexpressed regulators are 

not confirmed through DNaseI footprints. But in this case, it is possible that the reason for their 

target’s expression/non-expression lies precisely within the absence of a regulator. Unlike 

weight P edges, there are no active TFs that cause the target’s expression state. Ideally, one 

would examine weight B interactions across a large number of samples, but 12 human and 6 

mouse samples do not allow for a rigorous inspection. With many different biological conditions, 

some interactions could be confirmed, namely in conditions where the former inactive TF would 

be expressed and its binding motif in the target’s regulatory regions was footprinted. Other 

interactions would remain spurious and could eventually be excluded as mere predictions.   

With regard to weight P interactions, it cannot be excluded that they (i.e. the absence of their 

regulators) have a regulatory effect. However, it is unclear whether weight P interactions are 

activating, inhibiting or even false predictions, and the latter is likely from the current point of 

view. Clearly, the targets of weight P interactions are regulated by active TFs, and these 

regulatory interactions are supported by experimental evidence from DNaseI footprinting. It 

follows that using weight P edges would introduce an unknown amount of error, and we 

therefore excluded them from the next step, the generation of active sub-networks.  

Finally, the binding of TFs to DNA is not the only mechanism through which TFs regulate 

transcription. Indirect binding through protein-protein interactions between TFs and the 

recruitment of co-factors are known to affect gene expression. However, including these levels 

of regulation requires more data and would moreover make the model too complex and 

vulnerable.  
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4.3.5 Active sub-network 

The idea of using gene expression to identify parts of regulatory networks that are active in 

specific conditions is not entirely new. Kim et al24, have used differential gene expression to 

detect active sub-networks in distinct areas of Drosophila melanogaster embryos across 

different developmental stages, and investigated “spatiotemporal” network motifs within them. 

In contrast to their work, gene expression calls (presence / absence calls) were used in the 

present study, because distinct cell types and tissues were examined instead of a time course of 

observations of one single sample and its development.  

As our aim is to elucidate structural patterns in regulatory networks that control traits, i.e. their 

development, maintenance and identity, the method developed in this project considers 

interactions between active / expressed TFs, as well as those involving unexpressed TFs. Since 

developmental decisions, e.g. differentiation across cell lineages, frequently rely on the 

repression of regulators that would push development towards an alternative cell fate, including 

inactivated / unexpressed TFs enables us to see the complete picture. Furthermore, their 

interactions, or rather the repression thereof, may be necessary to activate cell type- or tissue-

specific regulators.  

Another important difference from study of Kim et al is our use of DNaseI footprints. This type of 

evidence enabled us to distinguish realized predicted binding site from false-positives and 

thereby reduced the number of spurious edges in active sub-networks considerably. Conversely, 

Kim et al’s regulatory network relied on the manually curated TRANSFAC database.  

Consequently, the active sub-networks generated here are different from the active sub-

networks constructed in Kim et al’s study, even though our aims are certainly related. 

 

4.3.6 Network motif detection 

The method we applied to detect network motifs required a removal of self-edges, i.e. edges for 

which one node is both regulator and target, from the network. This is inconvenient because 

self-edges convey auto-regulatory effects which are known important mechanisms in 

developmental processes that can filter signal from noise.75 Still, the exclusion of self-edges is 

necessary because all network motif detection methods rely on the comparison with 

randomized networks and the established randomization technique for the majority of methods 

is edge-switching. In this technique, the degree (i.e. the number of connections) of each node is 

kept constant while interaction partners are switched. Self-edges do not fit into this paradigm 

because switching a self-edge from one node to another would change their degrees. Due to this 

problem, most methods cannot detect network motifs that contain nodes with self-edges. Only 

recently, a new randomization algorithm that can deal with self-edges has been presented. 76 But 

it has not yet been implemented in a detection software with comparable functionality to 

MFINDER, the one used in this study.  

 

4.3.7 Functional enrichment analysis 

The results of functional enrichment analysis can vary greatly depending on the background that 

is chosen to detect significantly enriched functional annotation terms. Usually, gene lists should 

be compared against the background set of genes from which they were selected.56 In our case, 
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this would have been the union of human TFs or mouse TFs applied in this study. Since these 

sets contain only around 400 genes however, using them as a background did not give enough 

power to detect enriched annotation terms. Applying a species-specific genome-wide 

background of all genes was one of the possible alternatives, and having such a large set of 

genes as a background would have given more significant enrichment scores. We followed a 

more conservative approach instead and used all transcription factor genes of a species as a 

background.  Their functional annotations were reliable, because we included only on reviewed 

transcription factors. 

A further limitation was the number of genes, which were analyzed for functional enrichment. 

Using short lists reduces the statistical power of the test, yet the exclusion of certain genes was 

necessary to ensure that the test was meaningful. For example, when examining functional 

enrichment in active sub-networks, we excluded “collectively” expressed TFs because they likely 

reflect unspecific housekeeping functions. Furthermore, we restricted the enrichment analysis 

on network motifs to expressed TFs because our question was related to active, cell type- and 

tissue-specific regulators and their use of network motif dynamics.  

Finally, the choice of enrichment cutoffs was critical. On the one hand, statistical significance has 

to be ensured, but strict cutoffs, for example for multiple testing correction methods, can also 

limit sensitivity. Because we worked with small gene sets for many of the samples, we reported 

also genes above the Benjamini correction cutoff of ≤ 0.05.  

 

4.4 Scope of the study 

 

In the previous chapters, we have detailed the influence of method choices on the results. From 

this point on, we focus on potential for improving the methodology, and the potential for 

extending the study to address related interesting questions.  

Due to the limited availability of high-quality TFBS models in public databases, and because each 

TF in the network has to be represented by at least one TFBS in the process of modeling the 

reference network, our networks are composed of a relative small number nodes (~ 400 TFs). In 

contrast, the number of confirmed human TFs in the protein reference database UniProt KB 

currently exceeds 1,700. Even though other studies that constructed cell type- and tissue-

specific regulatory networks used TF sets with comparable sizes25,23, it will be interesting to 

expand networks and acquire a more complete picture of the transcriptional regulation 

governed by TFs in the future. The generation of reliable TFBS models describing the potentially 

diverse repertoire of binding sites that a TF recognizes is challenging. While traditional 

experimental techniques produce models that are less likely to detect more degenerate binding 

sites far from the consensus sequence, the new high-throughput techniques typically output 

longer sequences which may contain binding sites of other TFs as well.38 HOCOMOCO, the TFBS 

model database applied in this study, aims at resolving this problem by integrating binding sites 

obtained from both low- and high-throughput experiments. 
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Another potentially important addition to the network would be to incorporate miRNAs and 

their binding interactions. This would be especially interesting In the context of our study, as the 

cell type- and tissue- specific activity of miRNAs has been demonstrated. 

In general, the tools of regulatory network characterization and comparison developed in this 

work present interesting potential for numerous biological questions across varying range of 

samples. 

Among these are questions about the underlying network changes during cell type ontological 

differentiation as well as evolutionary divergence; normal versus pathological state, different 

environmental conditions as well as drug treatments. 

Examining additional tissues and cell types, particularly in a systematic manner along 

developmental stages or cell lineages would enable an investigation of local sub-networks 

around trait-specific developmental and differentiation regulators. Such studies could shed more 

light on how network motifs are applied in decisions of developmental fate. Comparisons of 

homologous cell types and tissues across greater number of species would enable testing the 

hypothesis that the developmental programs underlying homologous characters / traits are 

regulated by highly conserved core gene regulatory networks, so-called Character Identity 

Networks (ChINs).9 It would be very interesting to see if network motifs can be detected in these 

small core networks as well. At present however, our study was limited by the availability of 

complementing RNA-seq and DNaseI-seq data sets, preventing us from addressing homologous 

characters. 

The comparison healthy vs. disease states of the same trait (e.g. an organ) is another application 

that could inform about the pathways involved.  

Large collections of sample-specific networks can also be regarded as different conditions of the 

same general regulatory apparatus and could be used as experimental evidence to improve 

networks. Our current methodology proposes three weight groups, which depend on the 

strength of evidence that underlies an interaction. While interactions with lower weight allow us 

to keep track of indirect effects caused by the absence of regulators, they also leave open the 

possibility of assigning interactions based on falsely-predicted binding sites. This is problematic, 

because false positive predictions occur at a high rate are common in the probabilistic modeling 

approach applied in this study.  Even though we restricted false positives by limiting the 

regulatory regions in which we scanned for putative binding sites, our networks could benefit 

from a more extensive validation of low-weight edges. Monitoring of interactions across 

different conditions would provide more evidence for some interactions, while others could be 

identified as false more reliably. What is more, this investigation could reveal heterogeneity of 

regulation across cell types or tissues.  

Our study also points towards the aspects where improvement may be most needed.  We have 

shown in chapter 3.3.1 that there is currently little agreement between different algorithms that 

produce genome-wide profiles of binding-protein occupancy from DNaseI-seq data. This 

highlights the need for a gold standard in DNaseI footprinting methods. With an established 

standard, future studies building on our work will benefit from more accurate and reliable 
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footprint data generated by improved algorithms. 

 

4.5 The common structure of the dynamical core of traits 

 

One of the main questions of our study was whether common patterns in the core regulatory 

topologies can be detected among phenotypically different samples. The core regulatory 

network is assumed to determine the trait identity, i.e. define its essential characteristics and 

distinguish it from other similar traits. The mechanisms mediating the central importance of this 

network for the trait are development (cell differentiation) and maintenance. At the level of cell 

types and cell lineages, organs and body plans, single genes or small groups of genes from the 

core networks have been determined as marker genes of trait-specific development, e.g. PAX5 in 

B-cell differentiation77 or PDX1, PTF1A, GATA4 and GATA6 in pancreas development78, etc. Using 

methods such as co-expression and knock-out experiments, reporter gene assays and chromatin 

immunoprecipitation (ChIP), the interactions between marker genes have been characterized to 

varying extents, revealing in some cases small gene networks that are necessary for the 

development of a trait.  

Several design principles of the wiring of regulatory interactions that underlie development have 

already been identified. For example, in cell lineage decisions, regulators have been reported to 

inhibit one another’s expression, thereby driving development into mutually-exclusive cell fates 

(so-called cross-antagonism in binary cell-fate decisions79), and to be involved in feed-forward 

cascades that activate further cell type-specific regulators.80  

Individual studies of regulatory circuits that determine the development of organs and body 

parts have also brought about interesting findings. According to a study of developmental 

regulation in the early pancreatic organ niche, a feed-forward loop module consisting of 

transcription factors (TFs) SOX9, FGFR2b and FGF10 is necessary to direct multipotent 

progenitors towards a pancreatic cell fate.81 Two of these TFs (SOX9, FGF10) are indeed 

annotated as involved in development of pancreatic cells (query on 

http://amigo.geneontology.org/amigo/).  

A study that examined the transcriptional regulation underlying sex comb development in 

Drosophila melanogaster found a positive feedback loop between two regulators.82 This finding 

is interesting also in an evolutionary context. The positive feedback loop not only stabilizes the 

expression of regulators in a noisy environment and thereby contributes to robustness, it also 

promotes the evolvability of the sex comb by amplifying the effect of mutations and making 

them visible in the phenotype, allowing for selection to act. 

The positive feedback loop has also been shown to implement irreversible commitment during  

Xenopus oocyte maturation, a model of cell fate induction.83 In this study, the positive feedback 

loop was characterized as a “memory module” which is able to induce permanent changes in the 

cell based on a transient signal. Even though this module acts on the level of cell signaling, this 

finding highlights the functionality of small circuits in developmental decisions. 

The aforementioned design principles in lineage differentiation decisions and the evidences of 

feed-forward and feedback loops in the regulation of individual characters imply that specific 

http://amigo.geneontology.org/amigo/
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topological patterns could generally be involved in trait regulation. In the present study, we have 

addressed this hypothesis by investigating the role of small, recurring sub-graphs (network 

motifs). Our results show that cell type and tissue marker genes are enriched on network motifs 

that occur in the core active regulatory sub-networks and indicate that network motif dynamics 

could be exploited by the regulatory processes that underlie character identity. Since marker 

genes enrich on feed-forward loops across many different cell types and tissues and in two 

different species, it is very likely that its dynamics is involved in trait regulation.  
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5 CONCLUSION & OUTLOOK 
 

Network motifs are common in the dynamical core of phenotypically diverse traits 

In this study, we present a new method to generate cell type- and tissue-specific gene regulatory 

networks (GRNs) and investigate the role of small, recurring sub-graphs (network motifs) in the 

regulation of traits such as cell types and tissues. We applied our workflow to 18 trait-specific 

GRNs from two different species, human and mouse, and for both we find that marker genes, 

i.e. TFs hat have been characterized as important trait-specific regulators, are enriched on 

certain network motifs, especially the feed-forward loop. These results implicate that dynamics 

implemented by network motifs are used in the regulation that underlies trait development, 

maintenance and identity. As our findings stem from traits of different complexity, namely cell-

types and tissues, they also support the hypothesis of common topological patterns involved in 

trait regulation across different hierarchical levels (e.g. cells, organs, body parts). Drawing on this 

result, it would be interesting to investigate network motifs in the regulatory cores of related 

samples, e.g. along cell lineages. This would aid to clarify if and how network motifs contribute 

to the development of new traits. 

 

GRN interaction repertoire recapitulates functional relationships of cell types and tissues 

We systematically compared the GRN of different samples using standard network measures, a 

structural clustering technique (normalized network degree clustering) and two methods based 

on the interaction repertoire, i.e. the union of interactions found in a GRN. Our results show that 

the networks we generated are diverse and exhibit a functional enrichment related to their 

corresponding trait. What is more, multidimensional scaling revealed that the GRN of related 

samples are more alike in their interaction repertoire than unrelated ones. Based on this result, 

we propose multidimensional scaling as a method of functional comparison of GRN.  

 

The integration of complementary data types enables first steps towards GRN 

parameterization 

In order to obtain trait-specific GRN, we combined a reference network obtained by 

computational prediction with experimental data. The use of data from gene expression assays 

and binding motif occupancy profiles allowed us to focus on the active regulatory core of each 

respective trait and to limit false-positive prediction of interactions. Moreover, through the 

integration of these complementary data types, we were able to infer the activating or inhibitory 

nature of interactions. In future work, it will be necessary to systematically compare inferred 

interaction types to database knowledge. Furthermore, systematic screens of interactions in 

large numbers of samples could uncover regulatory diversity. 

 

Our study points towards where methodic improvements are needed 

In various areas, our study highlighted the shortcomings of presently used methods. Firstly, 

interaction type distributions and binding motif occupancy profiles in human and mouse GRN 

demonstrated that predicted binding motifs are found markedly less often occupied in mouse 

GRN. This suggests that the predicted mouse binding sites are inaccurate and implies that GRN 
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modeling could benefit from species-specific TF binding site models. In addition, our project 

uncovered, that DNaseI footprints obtained using two present algorithms differ significantly, 

which emphasizes the need for standard methods in this area. Finally, this work pointed out the 

importance of systematic data acquisition for questions of trait development and evolution.  
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 Abbreviations 

A549 – Epithelial cell line derived from a lung carcinoma tissue 
Cd20 – B cells 
CRM – cis-acting regulatory module 
ChIP – chromatin immunoprecipitation 
DBP – DNA-binding protein 
DGF – digital genomic footprinting 
FDR – false discovery rate 
FFL – feed-forward loop 
FP – footprint 
GRN – gene regulatory network 
Hepg2 – hepatocellular carcinoma 
Hsmm – human skeletal muscle myoblast 
Huvec – umbilical vein endothelial cells 
HRNW – human reference network 
IA – interaction 
K562- cell line from myelogenous leukemia 
Lhcnm2 – skeletal myoblast cell line 
Lhcnm2diff – differentiated skeletal myoblast cell line 
MDS – multidimensional scaling 
Monocd14 – monocytes  
MRNW – mouse reference network 
NGS – next generation sequencing 
Nhlf – lung fibroblasts 
NND – normalized network degree 
NW – network 
ODE – ordinary differential equation 
TF – transcription factor 
TFBS – transcription factor binding site 
Sknshra – neuroblastoma cell line 
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SUPPLEMENTAL MATERIAL 
 
 
extract_reg_regions.pl 
 
#!/usr/bin/perl 
 
use strict; 
use warnings; 
use files; 
 
use Bio::SeqIO; 
use Bio::Seq; 
use Bio::PrimarySeq; 
 
my $open = "<"; 
my $write = ">"; 
my $add = ">>"; 
 
# # top section # # 
# specify parameters, name of fasta-genome and cutoff for regulatory regions 
my $fasta_genome = "Homo_sapiens.GRCh37.73.dna.primary_assembly.fa"; 
my @excluded_chromosomes = ("MT"); # do you want to have tf "SRY" in or not? specify "Y" to exclude chrY 
my $exon_flag = $ARGV[1]; 
my $hard_cutoff = 5000; 

 
#create outfile for fasta sequences of reg regions and log file. different name according to exon flag 
#if exon_flag 1: first exon included in regulatory regions, if exon flag = 0 not included 
my $out_file_regions = "reg_regions/batch" . $ARGV[0]; 
my $log_file_name = $out_file_regions; 
if ($exon_flag == 1) { 
 $out_file_regions .= ".exon.out"; 
 $log_file_name .= ".exon.log"; 
} 
else { 
 $out_file_regions .= ".out"; 
 $log_file_name .= ".log"; 
} 
my $log_fh = files::write_or_open($log_file_name, $write); 
my $out_regions_fh = files::write_or_open($out_file_regions, $write); 
 
# # # FASTA GENOME - make a hash with chromosomes as keys and sequences as values 
 my %chromosome_seqs; 
my $genome_seqio = Bio::SeqIO->new(-file => $fasta_genome, -format => 'Fasta'); 
 
while(my $seq = $genome_seqio->next_seq) { 
 my $id = $seq->display_id; 
 my $description = $seq->description; 
 my $length = $seq->length; 
 
# #  # initialize $check_if_excluded_chromosome. this is a control variable that will exclude specified chromosomes; 1 = exclude, 0 = don't exclude 
 # set control variable for exclusion to 1, if current sequence represents excluded chromosome 

 my $check_if_excluded_chromosome = 0;  
 foreach my $excluded (@excluded_chromosomes) {  
  if ($id eq $excluded) { 
   $check_if_excluded_chromosome = 1; 
  } 
 } 
 # take only sequences that contain the whole chromosome (marked "dna:chromosome"; no supercontigs etc) 
 # take only chromosomes that have not been excluded (see top section) 
 if ($description =~ /dna:chromosome/) {  
  if($check_if_excluded_chromosome == 0) {  
   my $chr_name = "chr" . $id; 
   $chromosome_seqs{$chr_name} = $seq;  
  }      
 } 
} 
 
#open annotation of isoforms of tfoi 



my $annotation_basepath = $ARGV[0] 
my $transcript_annotation = "/scratch/todtova/transcriptome_pipeline/annotations/gencode.v18.annotation.gtf.isoforms.batch". $ARGV[0]; #$annotation_basepath . 
".all_tfoi.isoforms_only";##"/scratch/todtova/transcriptome_pipeline/annotations/test_annotation.isoforms.only";# 
my $transcript_fh = files::write_or_open($transcript_annotation, $open); 
my @transcripts = <$transcript_fh>; 
 
# # # open complete annotation 
my $gencode_file = "/scratch/todtova/transcriptome_pipeline/annotations/gencode.v18.annotation.gtf"; 
my $gencode_fh = files::write_or_open($gencode_file, $open); 
my @gencode = <$gencode_fh>; 
my $gencode_ref = \@gencode; 
 
# # # generate a hash with the transcripts and some descriptive invormation in the key 
my %transcript_hash; 
foreach my $line (@transcripts) { 
 if ($line =~ /;/) { # operate only on annotation lines, not on empty ones (; is delimiter!) 
  my @split_line = split(/\s/, $line); 
  my $iso_id = $split_line[23]; 
  my $chr = $split_line[0]; 
  my $strand = $split_line[6]; 
  my $ENST_tag = $split_line[11]; 
  my $transcript_biotype = $split_line[19]; 
  my $knowledge = $split_line[21]; 
  my $transcript_key = $iso_id . $chr . ";" . $strand . ";" . $ENST_tag . $transcript_biotype . $knowledge; 
  $transcript_hash{$transcript_key} = ""; 

 } 
} 
 
# # # end of top section # # 
 
# # # main # #  
foreach my $transcript (sort keys %transcript_hash) { 
 my ($tss, $lower_boundary, $upper_boundary, $downstream_overhang, $up_or_down_reg_regions, $gene_end); 
 my (@start, @end); 
 my (%introns, %introns_comp); 
 print $log_fh "\n$transcript\n";  
 my @split = split(/\;/, $transcript); 
 chop $split[0]; 
 my $isoform_id; 
 if ($split[0] =~ /([^\"].+)\"$/) { 
  $isoform_id = $1; 
 } 
 my $ENST_tag = $split[3]; 
 my $strand_tf = $split[2]; 
 my $chr_name = $split[1]; 
 my $biotype = $split[4]; 
 #print $transcript, "\n"; 
 if ($biotype eq "\"protein_coding\"") { 
 #   # put all start and end coordinates of a transcript (identified by ENST tag) that are tagged as exons into arrays 
  foreach my $annotation_line (@transcripts) { 
   if ($annotation_line =~ /$ENST_tag/) { 
    my @annotation_split = split(/\t/, $annotation_line); 

    if ($annotation_split[2] eq "exon") { # if the line is tagged as exon, not as CDS etc, put starts and ends into arrays 
     push(@start, $annotation_split[3]); 
     push(@end, $annotation_split[4]); 
    } 
   } 
  } 
   
# #  #   # sort the start and end coordinates in ascending order and find coordinates within the cutoff;  
  # store start -> end in a hash (depending on strandedness %introns or %introns_comp) 
  my @starts = sort {$a<=>$b} @start; 
  my @ends = sort {$a<=>$b} @end; 
  my $scalar_of_ends = scalar(@ends); 
  my $index_of_last_end = $scalar_of_ends -1; 
   
# #  #  # go through the sorted arrays and find intron coordinates (connect exon ends with the start of the next closest exon) 
  for my $count (0..($index_of_last_end-1)) { 
   if ($strand_tf eq "+") { # if on plus strand 



    $tss = $starts[0]; 
    $gene_end = $ends[$index_of_last_end]; 
    $upper_boundary = $tss + $hard_cutoff; 
    $lower_boundary = $tss - $hard_cutoff; 
    unless ($starts[$count+1]-1 > $upper_boundary) { 
     if ($exon_flag != 1) { 
      $introns{($ends[$count]+1)} = ($starts[$count+1]-1); # end coord of exon -> start coord of next exon in hash if they are both smaller 
than upper_boundary 
     } 
     else { 
      if ($count == 0) { 
       $introns{$tss} = ($starts[$count+1]-1); 
      } 
      else { 
       $introns{($ends[$count]+1)} = ($starts[$count+1]-1); 
      } 
     }  
    } 
    if ($starts[$count+1]-1 > $upper_boundary) { 
     if ($exon_flag != 1) { 
      if ($ends[$count]+1 < $upper_boundary) { 
       $introns{($ends[$count]+1)} = $upper_boundary; # end coord of exon-> upper boundary in hash if start coord of next exon 
larger than upper boundary 
      } 
     } 

     else { 
      if ($count == 0) { 
       $introns{$tss} = $upper_boundary; 
      } 
      else { 
       if ($ends[$count]+1 < $upper_boundary) { 
        $introns{($ends[$count]+1)} = $upper_boundary; 
       } 
      } 
     } 
    } 
   } 
   if ($strand_tf eq "-") { # if on minus strand 
    $gene_end = $starts[0]; 
    $tss = $ends[$index_of_last_end]; 
    $upper_boundary = $tss + $hard_cutoff; 
    $lower_boundary = $tss - $hard_cutoff; 
    unless ($ends[$count]+1 < $lower_boundary){         
     if ($exon_flag != 1) { 
      $introns_comp{($ends[$count]+1)} = ($starts[$count+1]-1); 
     } 
     else { 
      if ($count == ($index_of_last_end -1)) { 
       $introns_comp{($ends[$count]+1)} = $tss; 
      } 
      else { 
       $introns_comp{($ends[$count]+1)} = ($starts[$count+1]-1); 

      } 
     }  
    } 
    if ($ends[$count]+1 < $lower_boundary) { 
     if ($exon_flag != 1) { 
      if ($starts[$count+1]-1 > $lower_boundary) { 
       $introns_comp{$lower_boundary} = ($starts[$count+1]-1); 
      } 
     } 
     else { 
      if ($count == ($index_of_last_end -1)) { 
       $introns_comp{$lower_boundary} = $tss; 
      } 
      else { 
       if ($starts[$count+1]-1 > $lower_boundary) { 
        $introns_comp{$lower_boundary} = ($starts[$count+1]-1); 
       } 



      } 
     } 
    } 
   }  
  } 
   
# #  #  # in case that $index_of_last_end = 0, the transcript will not go through the loops above, because there are no 
  # introns to get. upper and lower boundary have to be initiated seperately in this case. 
  if ($index_of_last_end == 0) { 
   if ($strand_tf eq "+") { 
    $tss = $starts[0]; 
    $gene_end = $ends[$index_of_last_end]; 
   } 
   else { 
    $tss = $ends[$index_of_last_end]; 
    $gene_end = $starts[0]; 
   } 
   $upper_boundary = $tss + $hard_cutoff; 
   $lower_boundary = $tss - $hard_cutoff; 
  } 
   
# #  #  # now, once the boundaries are initiated for all transcripts, print to the log fh. 
  # also print the intronic sequences that were retrieved in the loop 2 steps above.  
  print $log_fh "tss & limits: $lower_boundary..$tss..$upper_boundary\ntf_end: $gene_end\n"; 
  unless (!%introns) { 

   print $log_fh "inside gene +\n"; 
   print_from_hash_ref_to_fh(\%introns, \$log_fh); 
  } 
  unless (!%introns_comp) { 
   print $log_fh "inside gene -\n"; 
   print_from_hash_ref_to_fh(\%introns_comp, \$log_fh); 
  } 
   
    my ($introns_down_overhang_ref, $introns_up_overhang_ref, $upstream_introns_ref, $downstream_introns_ref); 
 #  # this part gets regulatory regions in the overhanging regions, if a gene ends before the boundaries 
  if ($strand_tf eq "+" && $upper_boundary > $ends[$index_of_last_end]) { 
   my $upordown = "down"; 
   print $log_fh "overhang +\n"; 
   $introns_down_overhang_ref = up_or_down_reg_regions($upper_boundary, $ends[$index_of_last_end], $chr_name, $upordown, $gencode_ref, \$log_fh); 
   print_from_hash_ref_to_fh($introns_down_overhang_ref, \$log_fh); 
  } 
  if ($strand_tf eq "-" && $lower_boundary < $starts[0]) { 
   my $upordown = "up"; 
   print $log_fh "overhang -\n"; 
   $introns_up_overhang_ref = up_or_down_reg_regions($lower_boundary, $starts[0], $chr_name, $upordown, $gencode_ref, \$log_fh); 
   print_from_hash_ref_to_fh($introns_up_overhang_ref, \$log_fh); 
  } 
  #get regulatory regions up- or downstram from the gene of interest, depending on + or - strand 
  if ($strand_tf eq "+") { 
   my $upordown = "up"; 
   print $log_fh "upstream +\n";   
   $upstream_introns_ref = up_or_down_reg_regions($lower_boundary, $tss, $chr_name, $upordown, $gencode_ref, \$log_fh); 

   print_from_hash_ref_to_fh($upstream_introns_ref, \$log_fh); 
  } 
  if ($strand_tf eq "-") { 
   my $upordown = "down"; 
   print $log_fh "downstream -\n";   
   $downstream_introns_ref = up_or_down_reg_regions($upper_boundary, $tss, $chr_name, $upordown, $gencode_ref, \$log_fh); 
   print_from_hash_ref_to_fh($downstream_introns_ref, \$log_fh); 
  } 
  #get sequences of regulatory regions from fasta genome and print them to the output. 
  my @all_intron_hash_refs = (\%introns, \%introns_comp, $introns_down_overhang_ref, $introns_up_overhang_ref, $upstream_introns_ref, $downstream_introns_ref); 
  foreach my $ref (@all_intron_hash_refs) { 
   unless (!$ref) { 
    my %int_hash = %{$ref}; 
    my $fasta_hash_ref = get_sequences_in_hash($ref, $strand_tf, $chr_name, $isoform_id, \%chromosome_seqs); 
    to_fasta($fasta_hash_ref, \$out_regions_fh); 
   } 
  } 



 } 
} 
# # end of main # #  
 
# # # subroutines # # 
sub get_sequences_in_hash { 
 my ($intron_hash_ref, $strand, $chr_name, $isoform_name, $chr_seqs_ref) = @_; 
 my %introns = %{$intron_hash_ref}; 
 my %chr_seqs = %{$chr_seqs_ref}; 
 my %output_fasta_hash; 
 my $fasta_complete_chr = $chr_seqs{$chr_name}; 
 foreach my $intron_st (keys %introns) { 
  my $name_and_reg_id = $isoform_name . ",$chr_name," . $intron_st . "-" . $introns{$intron_st}; 
  if ($strand eq "+") { 
   my $fasta_subseq = $fasta_complete_chr->subseq($intron_st, $introns{$intron_st}); 
   $output_fasta_hash{$name_and_reg_id} = $fasta_subseq; 
  } 
  if ($strand eq "-") { 
   my $fasta_trunc = $fasta_complete_chr->trunc($intron_st, $introns{$intron_st}); 
   my $reverse_complement = $fasta_trunc->revcom; 
   my $fasta_subseq = $reverse_complement->seq; 
   $output_fasta_hash{$name_and_reg_id} = $fasta_subseq; 
  } 
 } 
 return \%output_fasta_hash;   

} 
sub to_fasta { 
 my ($id_seq_hash_ref, $fh_ref) = @_; 
 my %id_seq_hash_ref = %{$id_seq_hash_ref}; 
 my $fh = ${$fh_ref}; 
 foreach my $id (keys %id_seq_hash_ref) { 
  print $fh ">$id\n"; 
  while (my $chunk = substr($id_seq_hash_ref{$id}, 0, 80, "")) { 
   my $formatted_seq; 
   print $fh $formatted_seq .= "$chunk\n"; 
  } 
 } 
} 
 
sub print_from_hash_ref_to_fh { 
 my ($reg_regions_ref, $fh_ref) = @_; 
 my $fh = ${$fh_ref}; 
 my %reg_regions = %{$reg_regions_ref}; 
 foreach my $reg_region_start (sort keys %reg_regions) { 
  print $fh "$reg_region_start .. $reg_regions{$reg_region_start}\n"; 
 } 
} 
 
sub up_or_down_reg_regions { 
 my ($boundary, $end_of_tfoi, $chr, $upordown, $annotation_ref, $log_ref) = @_;  
  my $exons_ref = get_exon_coordinates($boundary, $end_of_tfoi, $chr, $upordown, $annotation_ref, $log_ref); 
 my %exons = %{$exons_ref};  

  my $stretches_covered_by_exons_ref = make_exon_stretches($boundary, $end_of_tfoi, $upordown, $exons_ref, $log_ref); 
 my %stretches_covered_by_exons = %{$stretches_covered_by_exons_ref};  
  my $introns_ref = get_introns($boundary, $end_of_tfoi, $upordown, $stretches_covered_by_exons_ref, $log_ref); 
 return $introns_ref; 
} 
   
sub get_exon_coordinates { 
 my ($boundary, $end_of_tfoi, $chr, $upordown, $annotation_ref, $log_ref) = @_; 
 my @annotation = @{$annotation_ref}; 
 my %selected_exons; 
 foreach my $line (@annotation) { 
  if ($line =~ /$chr/) { 
   my @split_line = split(/\s/, $line); 
   if ($split_line[2] eq "exon") {  
    my $current_exon_start = $split_line[3];  
    my $current_exon_end = $split_line[4]; 
     



#      # find all exons, regardless if from another gene or another isoform,  
    # whose exon starts or ends falls between the boundary and tf of interest 
    if ($upordown eq "up") { 
     if ($current_exon_end > $boundary) { 
      if ($current_exon_end < $end_of_tfoi) { 
       $selected_exons{$current_exon_start} = $current_exon_end; 
      } 
     } 
     if ($current_exon_start > $boundary) { 
      if ($current_exon_start < $end_of_tfoi) { 
       $selected_exons{$current_exon_start} = $current_exon_end; 
      } 
     } 
    } 
    if ($upordown eq "down") { 
     if ($current_exon_end < $boundary) { # 
      if ($current_exon_end > $end_of_tfoi) { # 
      $selected_exons{$current_exon_start} = $current_exon_end; 
      } 
     } 
     if ($current_exon_start < $boundary) { # 
      if ($current_exon_start > $end_of_tfoi) { # 
       $selected_exons{$current_exon_start} = $current_exon_end; 
      } 
     } 

    } 
   } 
  } 
 } 
 return \%selected_exons; 
} 
   
sub make_exon_stretches { 
 my ($boundary, $end_of_tfoi, $upordown, $exons_ref, $log_ref) = @_; 
 my $log = ${$log_ref}; 
 my %exon_stretches; 
 my %exons = %{$exons_ref}; 
 unless (!%exons) { 
  my $number_of_exons = keys %exons; 
  my $count = 1; 
  my ($current_longest_end, $current_shortest_start); 
  foreach my $exon_start (sort keys %exons) { 
   my ($start, $end); 
   if ($upordown eq "up") { 
    if ($exons{$exon_start} < $end_of_tfoi) { 
     $end = $exons{$exon_start}; 
    } 
    else { 
     $end = $end_of_tfoi; 
    } 
    if ($exon_start < $boundary) { 
     $start = $boundary; 

    } 
    else { 
     $start = $exon_start; 
    } 
   } 
   if ($upordown eq "down") { 
    if ($exon_start > $end_of_tfoi) {# 
     $start = $exon_start;# 
    } 
    else { 
     $start = $end_of_tfoi;# 
    } 
    if ($exons{$exon_start} < $boundary) {# 
     $end = $exons{$exon_start};# 
    } 
    else { 
     $end = $boundary;# 



    } 
   } 
   print $log_fh "mex: $start..$end\n"; 
   if ($count == 1) { 
    $current_longest_end = $end; 
    $current_shortest_start = $start; 
    if ($number_of_exons == 1) { 
     $exon_stretches{$current_shortest_start} = $current_longest_end; 
    } 
   } 
   else { 
    if ($start <= $current_longest_end) { 
     if ($end > $current_longest_end) { 
      $current_longest_end = $end; # old end is assigned new value, exonic sequence is extended 
     } 
     if ($count = $number_of_exons) { 
      $exon_stretches{$current_shortest_start} = $current_longest_end; 
     } 
     } 
     else { 
     $exon_stretches{$current_shortest_start} = $current_longest_end; 
     $current_shortest_start = $start; 
     $current_longest_end = $end; 
     if ($count == $number_of_exons) { 
      $exon_stretches{$current_shortest_start} = $current_longest_end; 

     } 
     }  
   } 
   $count++; 
  } 
 } 
 return \%exon_stretches; 
}  
 
sub get_introns { 
 my ($boundary, $end_of_tfoi, $upordown, $exon_stretches_ref, $log_ref) = @_;  
 my $log = ${$log_ref}; 
 if ($upordown eq "down") { 
  my $old_boundary = $boundary; 
  $boundary = $end_of_tfoi; 
  $end_of_tfoi = $old_boundary; 
 } 
 my %stretches_covered_by_exons = %{$exon_stretches_ref}; 
 my ($intron_start, $intron_end); 
 my $counter = 1; 
 my %intron_stretches; 
 my $number_of_exonic_stretches = keys %stretches_covered_by_exons; 
 print $log_fh "exonic stretches: $number_of_exonic_stretches\n"; 
 foreach my $exonic_stretch_start (sort keys %stretches_covered_by_exons) { 
  my $exonic_stretch_end = $stretches_covered_by_exons{$exonic_stretch_start}; 
  print $log_fh "stretches: $exonic_stretch_start..$exonic_stretch_end\n"; 
  if ($counter == 1) { 

   if ($exonic_stretch_start == $boundary) { 
    unless ($exonic_stretch_end == $end_of_tfoi) { 
     $intron_start = $exonic_stretch_end + 1; # assign value to intron start for next round 
     if ($counter == $number_of_exonic_stretches) { 
      if ($upordown eq "up") { 
       $intron_stretches{$intron_start} = $end_of_tfoi -1; 
      } 
      if ($upordown eq "down") { 
       $intron_stretches{$intron_start} = $end_of_tfoi; 
      } 
     } 
     else { 
      $counter++; 
     } 
    } 
   } 
   else { 



    if ($upordown eq "up") { 
     $intron_start = $boundary; 
    } 
    if ($upordown eq "down") { 
     $intron_start = $boundary + 1; 
    } 
    $intron_end = $exonic_stretch_start - 1; 
    $intron_stretches{$intron_start} = $intron_end; 
    $intron_start = $exonic_stretch_end + 1; # assign value to intron start for next round  
    if ($counter == $number_of_exonic_stretches) { 
     unless ($exonic_stretch_end == $end_of_tfoi) { 
      if ($upordown eq "up") { 
       $intron_stretches{$intron_start} = $end_of_tfoi - 1; 
      } 
      if ($upordown eq "down") { 
       $intron_stretches{$intron_start} = $end_of_tfoi; 
      } 
     } 
    } 
    $counter++; 
   } 
  } 
  else { 
   $intron_end = $exonic_stretch_start - 1; 
   $intron_stretches{$intron_start} = $intron_end; # $intron_start got its value during last round. 

   unless ($exonic_stretch_end == $end_of_tfoi) { 
    $intron_start = $exonic_stretch_end + 1; # assign new value to intron_start for next round; 
   } 
   if ($counter == $number_of_exonic_stretches) { 
    unless ($exonic_stretch_end == $end_of_tfoi) { 
     if ($upordown eq "up") { 
      $intron_stretches{$intron_start} = $end_of_tfoi - 1; 
     } 
     if ($upordown eq "down") { 
      $intron_stretches{$intron_start} = $end_of_tfoi; 
     } 
    } 
   } 
   $counter++; 
  } 
 } 
 if (!%stretches_covered_by_exons) { 
  $intron_stretches{$boundary} = $end_of_tfoi -1; 
} 
return \%intron_stretches; 
} 
# end of subroutines # # 
 
 
 

  



assign_cell-type-specific_interactions.pl 
 
#!/usr/bin/perl 
 
use strict; 
use warnings; 
use files; 
 
=head 
Purpose: This script assigns interactions and interaction types between TF based on the results of expression analysis and DNAse seq footprint analysis. 
Input: List of expressed TF with ENST/ENSG identifiers (in /scratch/todtova/transcriptome_pipeline/cufflinks/<cell-type>/cell-type_ENSTENSG_expressed. 
Output: File listing each TF-TF interaction and its type; File listing each tf and its incoming regulators + interaction type. 
=cut 
 
my $open = "<"; 
my $write = ">"; 
my $add = ">>"; 
 
my $cell_type = $ARGV[0]; 
 
#TOP section 
#1) Open file that contains mapping of ENST and ENSG tags to isoform names. Only protein coding isoforms (and the ENSG tags of all tfoi mapped to "TF-000") are stored in this file.  
my $enst_tag_conversion_list = "reg_regions/collection_ENST_protiso_ENSG_all.txt"; 
my $enst_conv_fh = files::write_or_open($enst_tag_conversion_list, $open); 
my @enst_conv = <$enst_conv_fh>; 

my %conv_hash; # will contain all isoforms enst tags and their name 
foreach my $line (@enst_conv) { 
 my @split_line = split(/\t/, $line); 
 $conv_hash{$split_line[0]} = $split_line[1]; 
} 
 
# 2) Read a file containing HGNC gene symbol to uniprot ID mapping (for conversion of uni tf names in reference net and in the footprint files). 
# HGNC2uniprot.txt was created using biomart, and adding 3 factor manually by hand, namely ZNF238, NR2E3 and FOXD1.  
my $hgnc = "../transcriptome_pipeline/HGNC2uniprot.txt"; 
my $hgnc_fh = files::write_or_open($hgnc, $open); 
my @hgnc_uni = <$hgnc_fh>; 
my %hgnc_mapping; 
 
foreach my $hgnc_line (@hgnc_uni) { 
 unless ($hgnc_line =~ /^#/) { 
  my @split_hgnc = split(/\t/, $hgnc_line); 
  my $hgnc_symbol = $split_hgnc[0]; 
  my @split2 = split(/_/, $split_hgnc[1]); 
  my $uni_ID = $split2[0]; 
  $hgnc_mapping{$uni_ID} = $hgnc_symbol; 
 } 
} 
 
# 3) Create Set 1 (Reference net (only motif-interactions)) 
my $reference_from_only_motifs = "/scratch/todtova/tf_regions/motif_overlaps/motif_locations_protiso.bed.uniq.bedsorted.nochrY"; 
my $ref_fh = files::write_or_open($reference_from_only_motifs, $open); 
my @reference_int = <$ref_fh>; 

my ($ref_net_ref, $ref_net_regulated_ref) = get_interactions_from_file_with_fimo_motifs(\@reference_int, \%hgnc_mapping, 0); 
my %ref_net = %{$ref_net_ref}; 
 
# 4) Create Set 2a - the set of expressed nodes: Open file with expressed isoform enst-/ensg-tags and get the names of the corresponding isoforms from %conv_hash. 
my $expr_isoforms = "/scratch/todtova/transcriptome_pipeline/cufflinks/expression_analysis/" . $cell_type . "_expressed.txt"; 
my $expr_iso_fh = files::write_or_open($expr_isoforms, $open); 
my @expr_isos = <$expr_iso_fh>; 
 
my %expr_iso_list; # will contain only expressed isoform enst tags and their name 
foreach my $expr_enst (@expr_isos) { 
 chomp $expr_enst; 
 my $iso_name = $conv_hash{$expr_enst}; 
 chomp $iso_name; 
 $expr_iso_list{$iso_name} = $expr_enst;  
} 
 
my %expr_tf_to_iso_names; # associate a tf with all its expressed isoforms (union of expr isoforms = node (for expressed tf) 



foreach my $transcript (keys %expr_iso_list) { 
 chomp $transcript; 
 my $tf; 
 my @spl = split(/\-\d\d\d/, $transcript); # all isoforms must be in form "TF-001" 
 $tf = $spl[0]; 
 $expr_tf_to_iso_names{$tf} .= " $transcript"; #TF1 -> TF1-001 TF1-002 TF1-003 
} 
 
#Create Set 2b - a set of not expressed tfs. 
my @excluded = ("NR2E3");# not recognized or LOWDATA in cufflinks, for mouse: ("Foxc2", "Foxf1", "Hoxd4", "Irf8", "Sox2"); 
my %excluded_genes; 
foreach my $ex (@excluded) { 
 $excluded_genes{$ex} = ""; 
} 
my $tf_list = "HGNC_symbols_humantf.sorted.txt"; 
my $tf_list_fh = files::write_or_open($tf_list, $open); 
my @all_tfs = <$tf_list_fh>; 
my %nexpr_tfs; 
my ($count, $count2) = 0; 
foreach my $tf_gene (@all_tfs) { 
 chomp $tf_gene; 
 unless (exists $excluded_genes{$tf_gene}) { 
  unless (exists $expr_tf_to_iso_names{$tf_gene}) { 
   $nexpr_tfs{$tf_gene} = ""; 
  } 

 } 
} 
 
# 5) Create Set 3 (all footprinted nodes) and Set 4 (reg interactions on motifs overlapped by footprints) 
my $fps = "/scratch/todtova/tf_regions/motif_overlaps/cell-specific_fps/" . $cell_type . "/" . $cell_type . ".bedmap.neph.onlymapped"; # $ARGV[1];##SK-N-SH_RA/SK-N-
SH_RA.bedmap.neph.onlymapped"; 
my $fps_fh = files::write_or_open($fps, $open); 
my @footprints = <$fps_fh>; 
 
#first put all footprints in a hash 
my %resolve_fp; 
foreach my $fp_line (@footprints) { 
 my @blocks = split(/;/, $fp_line); # first block is motif location, second to ... are footprints that overlap motif 
 my $last_index_of_overlapped_fp = scalar(@blocks) - 1; 
 for my $i (1..$last_index_of_overlapped_fp) { # some motif-lines are overlapped by more than one fp  
  my @fp_tabs = split (/\t/, $blocks[$i]); # split each footprint record 
  my $footprint = $fp_tabs[0] . "\t" . $fp_tabs[1] . "\t" . $fp_tabs[2]; #remeber footprints as chr \t start \ŧ end 
  $resolve_fp{$footprint} = ""; 
 } 
} 
 
#now associate each fp in the hash with a hash of the motifs that it overlaps. Originally, motifs are in the form tf->tf-iso. Now, through splicing away the isoform id from the target, and 
through  
#storing in a hash, pseudo-unresolvedness is removed (meaning when one fp overlaps multiple motifs in which the same regulator regulates different isoforms of the same target tf,  
#this is counted as one motif for regulator-> regulated tf).  
foreach my $fp (keys %resolve_fp) { 
 my %motifs_in_fp; 

 foreach my $line (@footprints) { 
  if ($line =~ $fp) { 
   my @tabs = split(/\t/, $line); 
   my $iso_motif = $tabs[3]; 
   my @split_iso_from_motif = split(/-\d\d\d/, $iso_motif); 
   my $motif = $split_iso_from_motif[0]; 
   $motifs_in_fp{$motif} = ""; #multiple motifs with the same regulator but different regulated isoforms of the same target tf are collapsed by putting them into hash 
keys 
  } 
 } 
 $resolve_fp{$fp} = \%motifs_in_fp; 
} 
 
#if the hash with the regulator-> regulated tf motifs has more than one entry, the footprint is unresolved.  
foreach my $footpr (keys %resolve_fp) { 
 my $number_of_overlapped_motifs = keys %{$resolve_fp{$footpr}}; 
 if ($number_of_overlapped_motifs > 1) { 



  $resolve_fp{$footpr} = "nrs"; 
 } 
 else { 
  $resolve_fp{$footpr} = "res"; 
 } 
} 
  
#now create set 3 (footprinted nodes) and set 4 (regulatory interactions on motifs overlapped by footprints. 
my ($fp_ref, $footprinted_tf_ref) = get_interactions_from_file_with_fimo_motifs(\@footprints, \%hgnc_mapping, \%resolve_fp); 
my %fp = %{$fp_ref}; 
my %footprinted_tf = %{$footprinted_tf_ref}; 
 
# MAIN section 
# 6) Go through interactions and find interactions of a) expressed b) not-expressed tf.   
my %tf_interactions; 
foreach my $tf_int (keys %ref_net) { 
 my @split_int = split(/\t/, $tf_int); 
 my ($interaction_regulator, $interaction_regulated) = ($split_int[0], $split_int[1]); 
 #a) go through all expressed isoforms and get their interactions 
 if (exists $expr_tf_to_iso_names{$interaction_regulator}) { # check if regulator in int is expressed 
  chomp $interaction_regulated; 
  my $expr_tf = $interaction_regulator; 
  my $first_neighbour_tf = $interaction_regulated; 
  if (exists $expr_tf_to_iso_names{$first_neighbour_tf}) { # check if first neighbour (= regulated) is among expressed 
   if (exists $fp{$tf_int}) { 

    my $ia = $expr_tf . "\t" . $first_neighbour_tf . "\t+d" . "\t$fp{$tf_int}"; 
    $tf_interactions{$ia} = ""; 
   } 
  } 
  #if the target is not expressed, and it has a footprinted motif, it is also an inhibition.  
  if (exists $nexpr_tfs{$first_neighbour_tf}) { 
   if (exists $fp{$tf_int}) { 
    my $ia = $expr_tf . "\t" . $first_neighbour_tf . "\t-d" . "\t$fp{$tf_int}"; 
    $tf_interactions{$ia} = ""; 
   } 
  } 
 } 
 #b) go through all not expressed tfs and get their interactions 
 elsif (exists $nexpr_tfs{$interaction_regulator}) { # check if regulator in int is not expressed 
  my $nexpr = $interaction_regulator; 
  chomp $interaction_regulated; 
  my $first_neighbour_tf = $interaction_regulated; 
  if (exists $expr_tf_to_iso_names{$first_neighbour_tf}) { # check if first neighbour (= regulated) is among expressed  
   unless (exists $footprinted_tf{$first_neighbour_tf}) { 
    my $ia = $nexpr . "\t" . $first_neighbour_tf . "\t-i" . "\trnc"; 
    $tf_interactions{$ia} = ""; 
   } 
   #if however the target has a footprint in its regulatory region, the regulatory effect of the non-expression of the current tf is uncertain. 
   #an uncertain edge is attributed.  
   if (exists $footprinted_tf{$first_neighbour_tf}) { 
    my $ia = $nexpr . "\t" . $first_neighbour_tf . "\t0u" . "\trnc"; 
    $tf_interactions{$ia} = ""; 

   } 
  } 
  if (exists $nexpr_tfs{$first_neighbour_tf}) { 
   unless (exists $footprinted_tf{$first_neighbour_tf}) { 
    my $ia = $nexpr . "\t" . $first_neighbour_tf. "\t+i" . "\trnc"; 
    $tf_interactions{$ia} = ""; 
   } 
   if (exists $footprinted_tf{$first_neighbour_tf}) { 
    my $ia = $nexpr . "\t" . $first_neighbour_tf . "\t0u" . "\trnc"; 
    $tf_interactions{$ia} = ""; 
   } 
  } 
 } 
} 
 
# OUTPUT section 



# #7) Prepare node-hash for node-outfile. This file will list all interactions in the following form: regulated tf/node, interaction type, resolvedness of footprint, combinedness, regulating 
factor (separator: "_") 
# First, all regulated nodes are stored in a hash. 
my %regulated_node_hash; 
foreach my $ia (sort keys %tf_interactions) { 
 my $ia_to_split = $ia; 
 my @split_outgoing = split(/\t/, $ia_to_split); 
 my $receiving_tf = $split_outgoing[1]; 
 $regulated_node_hash{$receiving_tf} = ""; 
} 
 
# Open node_incomings_outfile and expressed_tf_outfile 
my $outprefix = "inputs_to_active_net/" . $cell_type; 
my $node_file = $outprefix . "_node_incomings_list"; 
my $node_fh = files::write_or_open($node_file, $write); 
 
my $expressed_tf_out = $outprefix . "_expressed_list"; 
my $expr_out_fh = files::write_or_open($expressed_tf_out, $write); 
 
# Then, the interactions are parsed for each regulated node. Each regulated node is associated with all its regulators and their type of interaction and the resolvedness of the pf. 
foreach my $regulated_node (keys %regulated_node_hash) { 
 my @regulators_list; 
 foreach my $ia (keys %tf_interactions){ 
  my @split_outgoing = split(/\t/, $ia); 
  my $receiving_tf = $split_outgoing[1]; 

  my $regulating_tf = $split_outgoing[0]; 
  my $type_of_ia = $split_outgoing[2]; 
  my $resolvedness = $split_outgoing[3]; 
  if ($receiving_tf eq $regulated_node) { 
   my $regulator_int = $type_of_ia . "_" . $resolvedness . "_" . $regulating_tf; 
   push (@regulators_list, $regulator_int); 
  } 
 } 
 $regulated_node_hash{$regulated_node} = \@regulators_list; 
} 
 
# Now, all regulated nodes are parsed again and the number of direct regulations is counted. If there is more than one direct interaction, all direct interactions are termed 'com' (for  
# combined effect. If there is only one direct interaction, 'sep' is assigned (separate effect). Indirect and uncertain interactions are termed 'cnc' (combinedness not considered), as they are 
all combined. 
foreach my $target_node (keys %regulated_node_hash) { 
 my $count_if_combined_effect = 0; 
 foreach my $regulation1 (@{$regulated_node_hash{$target_node}}) { 
  if ($regulation1 =~ "d") { 
   $count_if_combined_effect++; 
  } 
 } 
 if ($count_if_combined_effect > 1) { 
  foreach my $regulation2 (@{$regulated_node_hash{$target_node}}) { 
   my @spl_reg = split(/_/, $regulation2); 
   if ($regulation2 =~ "d") { 
    $regulation2 = $spl_reg[0] . "_" . $spl_reg[1] . "_com" . "_$spl_reg[2]"; 
   } 

   else { # for indirect and uncertain interactions, the effect is always combined 
    $regulation2 = $spl_reg[0] . "_" . $spl_reg[1] . "_com" . "_$spl_reg[2]"; 
   } 
  } 
 } 
 else { 
  foreach my $regulation3 (@{$regulated_node_hash{$target_node}}) { 
   my @spl_reg = split(/_/, $regulation3); 
   if ($regulation3 =~ "d") { 
    $regulation3 = $spl_reg[0] . "_" . $spl_reg[1] . "_sep" . "_$spl_reg[2]"; 
   } 
   else { 
    $regulation3 = $spl_reg[0] . "_" . $spl_reg[1] . "_com" . "_$spl_reg[2]"; 
   } 
  } 
 } 
} 



 
# printing to node- and expressed-outfile, preparing hash for edge-outfile  
my %regulator_node_hash;  
foreach my $node (sort keys %regulated_node_hash) { 
 my $state; 
 if (exists $expr_tf_to_iso_names{$node}) { 
  $state = 1; 
 } 
 if (exists $nexpr_tfs{$node}) { 
  $state = 0; 
 } 
 print $expr_out_fh $node, "\t $state\n"; 
 foreach my $regulation (sort @{$regulated_node_hash{$node}}) { 
  print $node_fh $node, "_" , $regulation, "\n"; 
   
 } 
} 
 
# as a last thing, the node_incomings_output is rearranged and sorted by regulating tf in bash, creating a list of edges (regulating_tf->target descriptions) (tab-delimited file!) 
my $edge_file = $outprefix . "_edge_type_list"; 
`sed 's/_/\t/g' $node_file | awk '{print \$5 \"\t\" \$1 \"\t\" \$2 \"\t\" \$3 \"\t\" \$4}' | sort -k1 > $edge_file`; 
 
# this function receives 1) a fimo output file produced by 'make_genomic_coord_from_fimo.pl' - this can be either 1.1) the overlap of this reference net with footprints or 1.2) the reference 
net of potential interactions. 
#                        2) a hash to convert uniprot-names to hgnc names  

#                        3) a variable holding either a hash reference with the resolvedness of fp (for 1.1) or a variable saying '0' (for 1.2) 
sub get_interactions_from_file_with_fimo_motifs { 
 my ($file_ref, $hgnc_mapping_ref, $fp_resolvedness) = @_; 
 my @file = @{$file_ref}; 
 my %hgnc_mapping = %{$hgnc_mapping_ref}; 
 my %resolve_fp; 
 #-for 1.1 
 unless ($fp_resolvedness == 0) {  
  %resolve_fp = %{$fp_resolvedness}; 
 } 
 #----- 
 my (%interactions, %regulated); 
 foreach my $line (@file) { 
  my @spl = split (/\t/, $line); 
  my $motif = $spl[3]; 
  my @split_interaction = split(/>/, $motif); 
  my $fp_regulator = $split_interaction[0]; 
  my $fp_regulated_hgnc = $split_interaction[1]; # regulated isoform is already in hgnc format 
  my @splice_away_isoid = split(/\-\d\d\d/, $fp_regulated_hgnc); 
  my $regulated_tf = $splice_away_isoid[0];  
  $regulated{$regulated_tf} = ""; # regulated tf is stored as footprinted 
  my ($fp_regulator_hgnc, $interaction, $resolvedness); 
   
  #-for 1.1: for each line, determine if the motif is resolved (based on whether is is overlapped by an "exclusive" footprint 
  unless ($fp_resolvedness == 0 ) { 
   my @blocks = split(/;/, $line); # each line has the form: motif-block; fp-block1; ...; fp_block$j 
   my $number_of_ovlp_fp = scalar(@blocks) -1; 

   for my $j (1..$number_of_ovlp_fp) { # for each fp-block 
    my @tabs = split(/\t/, $blocks[$j]); 
    my $footprint = $tabs[0] . "\t" . $tabs[1] . "\t" . $tabs[2]; # fp = chr start end 
    if ($number_of_ovlp_fp == 1) { # if there is only one fp-block 
     $resolvedness = $resolve_fp{$footprint}; 
    } 
    else { # if the motif is overlapped by more than one fp, all 'resolvednesses' are collected 
     $resolvedness .= $resolve_fp{$footprint};  
    } 
   } 
   # in this step, resolvedness is searched for an entry 'nrs' (not resolved) and is changed to 'nrs' if it holds any fp that is not resolved (from 
concatenation/collection in previous loop!) 
   # this is done because of the possibility of motifs that are overlapped by multiple fp - if one of the fp is unresolved, the motif is termed unresolved 
   if ($resolvedness =~ "nrs") { 
    $resolvedness = "nrs"; 
   } 
   else { 



    $resolvedness = "res"; 
   } 
  } 
  #------ 
     
  if ($fp_regulator =~ /\+/) { # for combined motif-models. eg. GABP1+GABP2 
   my @combined_tf_model = split (/\+/, $fp_regulator); 
   foreach my $tf (@combined_tf_model) {      
    $fp_regulator_hgnc = $hgnc_mapping{$tf}; 
    $interaction = $fp_regulator_hgnc . "\t" . $regulated_tf; 
    $interactions{$interaction} = ""; 
    #for 1.1: interactions get their resolvedness from motifs. if multiple motifs with different resolvedness exist for one interaction, it is unresolved with 
at least one unresolved motif. 
    unless ($fp_resolvedness == 0) { 
     if (exists $interactions{$interaction}) { 
      $interactions{$interaction} .= $resolvedness; 
     } 
     else { 
      $interactions{$interaction} = $resolvedness; 
     } 
    } 
    #---- 
   } 
  } 
  else { 

   $fp_regulator_hgnc = $hgnc_mapping{$fp_regulator}; 
   $interaction = $fp_regulator_hgnc . "\t" . $regulated_tf; 
   $interactions{$interaction} = ""; 
   #for 1.1: as for combined tf-models. 
   unless ($fp_resolvedness == 0) { 
    if (exists $interactions{$interaction}) { 
     $interactions{$interaction} .= $resolvedness; 
    } 
    else { 
     $interactions{$interaction} = $resolvedness; 
    } 
   } 
   #----------- 
  }  
 } 
 #for 1.1: unresolvedness is assigned to interactions with at least one unresolved motif 
 unless ($fp_resolvedness == 0) { 
  foreach my $ia (keys %interactions) { 
   my $res = $interactions{$ia}; 
   if ($res =~ "nrs") { 
    $res = "nrs"; 
   } 
   else { 
    $res = "res"; 
   } 
  } 
 } 

 #----------------- 
 return (\%interactions, \%regulated); 
} 
 
 
 

  



active_subnet.pl 
 
#!/usr/bin/perl 
use strict; 
use warnings; 
use files; 
use Data::Dumper; 
 
=head 
Purpose: Derive active subnet from the cell-type specific net in which all interactions have been assigned. The active subnet contains:  
  1) Interactions between expressed tf 
  2) Interactions from expressed tf to non-expressed and vice-versa (= first neighbour interactions) 
  3) Interactions between first neighbours 
  1 + 2 + 3 = core active net 
  4) Chains of interactions starting at the core, going across non-expressed tf and returning to the core 
  4 = chain interactions 
Input:  <cell_type>_expressed_list (derived from RNA-seq expression calls, see /scratch/todtova/transcriptome_pipeline/cufflinks/expression_analysis),  
 <cell_type>_edge_type_list (file produced by assign_tf_specific_interactions.pl) 
Output: a) node.csv, edge.csv b) pajek.net 
=cut 
 
 
# TOP section 
my $open = "<"; 
my $write = ">"; 

my $add = ">>"; 
 
my $cell_type = $ARGV[0]; 
my $indir = "inputs_to_active_net/"; 
my $expressed_file = $indir . $cell_type . "_expressed_list"; 
my $edge_file = $indir . $cell_type . "_edge_type_list"; 
 
my $expr_fh = files::write_or_open($expressed_file, $open); 
my $edge_fh = files::write_or_open($edge_file, $open); 
my @edges_list = <$edge_fh>; 
 
#1) Create set of expressed tf from '_expressed_list' 
my %expr_tf; 
foreach (<$expr_fh>) { 
 # TF expression is described in the form: TF-name\s<1/0>. all lines that contain a whitespace followed by "1" mark expressed TF. 
 if ($_ =~/\s1/) { 
  my @split_line = split(/\s/, $_); 
  my $expressed_tf = $split_line[0]; 
  $expr_tf{$expressed_tf} = ""; 
 } 
} 
 
#2) Create set of interactions from '_edge_type_list' file 
my %interactions; 
foreach $_ (@edges_list) { 
 chomp $_; 
 my @split_int = split(/\t/, $_); 

 # first and second columns contain regulator and target 
 my $regulator = $split_int[0]; 
 my $target = $split_int[1]; 
 my $int = $regulator . "\t" . $target; 
 
 # next three columns contain information describing the interaction: interaction type, if the footprint that was considered to assign the interaction type is resolved, 
 # and last, if the effect of the interaction is carried out by the regulator alone, or together, in combination with other regulators. 
 my $int_type = $split_int[2]; 
 my $resolvedness = $split_int[3]; 
 my $combinedness = $split_int[4]; 
 my $description = $int_type . "\t" . $resolvedness . "\t" . $combinedness; 
 $interactions{$int} = $description; 
} 
 
#MAIN section 
=head 
3) Get interactions for the 'core net':  



 a) interactions going out from expressed tf (-d to not expressed, +d between expressed tf) 
 b) interactions going out from not expressed to expressed tf (-i, 0u where target is expressed) 
   First neighbours are by definition not expressed nodes, that are regulated by expressed tf or regulate expressed tf. They are considered as a part of the core net.  
=cut 
my %core_net_interactions; 
my %first_neighbours_going_out;  
my %first_neighbours_going_in; 
foreach $_ (keys %interactions) { 
 # all interactions with direct evidence are part of the core net, because they go out from expressed tf 
 if ($interactions{$_} =~ "d") { 
  $core_net_interactions{$_} = $interactions{$_}; 
  # -d interactions are interactions to FNO (first neighbours going out) 
  # targets of -d interactions are marked as FNO 
  if ($interactions{$_} =~ /\-d/) {  
   my @split_int = split(/\t/, $_); 
   my $target = $split_int[1]; 
   $first_neighbours_going_out{$target} = "";  
  }   
 } 
 if ($interactions{$_} =~ /\-i/) {  
  # -i interactions go out from nexpr tf to expr tf - their regulators are first neighbours going in (FNI) 
  # regulators of -i are stored as FNI  
  $core_net_interactions{$_} = $interactions{$_}; 
  my @split_int = split(/\t/, $_); 
  my $regulator = $split_int[0]; 

  $first_neighbours_going_in{$regulator} = "";  
 } 
 if ($interactions{$_} =~ "0u") {  
  # a part of the 0u interactions also goes out from FNI to expressed tf 
  # if the target of a 0u interaction is expressed, the regulator is marked as an FNI 
  my @split_int = split(/\t/, $_); 
  my $target = $split_int[1]; 
  my $regulator = $split_int[0]; 
  if (exists $expr_tf{$target}) {  
   $core_net_interactions{$_} = $interactions{$_}; 
   $first_neighbours_going_in{$regulator} = ""; 
  } 
 } 
} 
 
my %all_first_neighbours = (%first_neighbours_going_in, %first_neighbours_going_out); 
 
=head 
4) Get all interactions between first neighbours  
 1) Create set of potential chain interactions, which will run from FNO to non-expressed tf, between non-expressed tf, and from non-expressed tf to FNI.  
    These interactions are +i or 0u by default, just as the interactions between first neighbours are.  
 2) Add interactions between first neighbours to the core net, and then remove these interactions from the set of potential chain interactions.  
    When looking for chain interactions between non-expressed nodes, you will be only interested in those that do not go directly from FN to FN 
=cut 
# create a hash that will associate each unexpressed node with its #####unexpressed###### targets 
my %potential_chain_nodes;  
# initially, this will contain all +i interactions and 0u interactions with unexpressed targets, but then interactions directly from FN to FN will be removed 

my %potential_chain_interactions;  
 
foreach (keys %interactions) { 
 if ($interactions{$_} =~ /\+i/) { 
  $potential_chain_interactions{$_} = $interactions{$_}; #make keys for +i int + get description value 
  my @tabs = split(/\t/, $_); 
  my $regulator = $tabs[0]; 
  my $target = $tabs[1]; 
  #store both regulators and targets from +i as potential chain nodes 
  $potential_chain_nodes{$regulator} = ""; 
  $potential_chain_nodes{$target} = ""; #  
 } 
 if ($interactions{$_} =~ "0u") { 
  $potential_chain_interactions{$_} = $interactions{$_}; 
  my @tabs = split(/\t/, $_); 
  my $regulator = $tabs[0]; 
  my $target = $tabs[1]; 



  # we are only interested in 0u interactions that have an unexpressed target (regulator of 0u is by default unexpressed) 
  unless (exists $expr_tf{$target}) {  
   $potential_chain_nodes{$regulator} = ""; 
   $potential_chain_nodes{$target} = ""; 
  } 
 } 
} 
 
# now go through %potential chain interactions (contains all +i and 0u interactions (derived in previous block)), and seperate those interactions that go from FN to FN 
my %int_between_first_neighbours; 
foreach my $pot_int (keys %potential_chain_interactions) { 
 my @split_pot_int = split(/\t/, $pot_int); 
 my $regulator = $split_pot_int[0]; 
 my $regulated = $split_pot_int[1]; 
 # if interaction is regulated by a first neighbour and the target is also a first neighbour -> store as interaction between first neighbours 
 if (exists $all_first_neighbours{$regulator}) { 
  if (exists $all_first_neighbours{$regulated}) {  
   $int_between_first_neighbours{$pot_int} = $potential_chain_interactions{$pot_int}; # assign interactions from potential chain set to first neighbour set 
   # delete interactions between FN from potential chain set 
   delete $potential_chain_interactions{$pot_int}; 
  } 
 } 
} 
 
# Here, interactions between first neighbours are added to the core net 

@core_net_interactions{keys %int_between_first_neighbours} = values %int_between_first_neighbours; 
 
# Now, go through potential chain interactions and get the targets for each potential chain node. 
foreach (keys %potential_chain_nodes) { 
 my %targets; 
 foreach my $int (keys %potential_chain_interactions) { 
  if ($int =~ /^$_\t/) { # only look at interactions regulated by the current potential nexpr regulator $_ 
   if ($potential_chain_interactions{$int} =~ /\+i/) { 
    my @spl_int = split(/\t/, $int); 
    my $target = $spl_int[1]; 
    #save all targets in target hash 
    $targets{$target} = ""; 
   } 
   if ($potential_chain_interactions{$int} =~ /0u/) { 
    my @spl_int = split(/\t/, $int); 
    my $target = $spl_int[1]; 
    $targets{$target} = ""; 
   } 
  } 
 } 
 #associate hash of all targets with current regulator $_ 
 $potential_chain_nodes{$_} = \%targets; 
} 
 
=head 
#5) Get chains of interactions starting at the core, going across non-expressed tf and returning to the core. 
 These chains will only go along +i or 0u edges (as stored in potential chain interactions) 

 They have to start on a first_neighbour_going_out and to end on first_neighbour_going_in. 
=cut 
my %int_from_chains; 
my %dead_ends; 
foreach my $pot_cyc_int (keys %potential_chain_interactions) { 
 my @split_pot_int = split(/\t/, $pot_cyc_int); 
 my $regulator = $split_pot_int[0]; 
 my $regulated = $split_pot_int[1]; 
 # find potential chain interactions, in which the regulator is a FNO, and start looking for chain int from there 
 if (exists $first_neighbours_going_out{$regulator}) { 
  my (%remember_int, %seen, %seen_in_rounds, %remove_int); 
  my $loopcount = 0; 
  $remember_int{$pot_cyc_int} = $potential_chain_interactions{$pot_cyc_int}; 
  $seen{$regulator} = ""; 
  $seen_in_rounds{$loopcount} = \%seen; 
  # start to look for chain interactions using the function find_chains (see below for a description of the function arguments) 
  if (exists $first_neighbours_going_in{$regulated}) { 



   $int_from_chains{$pot_cyc_int} = ""; 
  }  
  else { 
   my ($chain_int_ref, $remove_ref, $dead_end_ref, $FNI_ref) = find_chains(\%potential_chain_nodes, \%remember_int, \%first_neighbours_going_in, $regulated, 
\%seen_in_rounds, $loopcount, \%remove_int, \%dead_ends);  
   my %chain_ints = %{$chain_int_ref}; 
   if (keys %chain_ints > 1) { 
    @int_from_chains{keys %chain_ints} = values %chain_ints; 
    print "chain int found.\n"; 
   } 
   else { 
    #print "no int from chains for FNO $regulator\n\n"; 
   } 
   @first_neighbours_going_in{keys %{$FNI_ref}} = values %{$FNI_ref}; 
   @dead_ends{keys %{$dead_end_ref}} = values %{$dead_end_ref}; 
  } 
 } 
} 
 
#a)Remove interactions that end on dead ends from int_from_chains 
foreach (keys %dead_ends) { 
 #print "dead node: $_\n"; 
 foreach my $found_chain_int (keys %int_from_chains) { 
  my @int_partners = split (/\t/, $found_chain_int); 
  my $target = $int_partners[1]; 

  if ($_ eq $target) { 
   delete $int_from_chains{$found_chain_int}; 
  } 
 } 
} 
 
#b)Create the set of found chain nodes. Then get interactions from FNI to chain nodes  
#(we cannot get them otherwise because function find chains stops after finding FNI) 
my %found_chain_nodes; 
foreach (keys %int_from_chains) { 
 my @chain_nodes = split(/\t/, $_); 
 foreach my $node (@chain_nodes) { 
  $found_chain_nodes{$node} = ""; 
 } 
} 
 
foreach (keys %potential_chain_nodes) { 
 if (exists $first_neighbours_going_in{$_}) { 
  foreach my $target (keys %{$potential_chain_nodes{$_}}) { 
   if (exists $found_chain_nodes{$target}) { 
    my $FNI_int = $_ . "\t" . $target; 
    $int_from_chains{$FNI_int} = ""; 
   } 
  } 
 } 
} 
#c)Get interactions from chain nodes to FNO 

#d)Get autoloops on chain interactions 
#e)Get interaction description for each chain interaction (look up in %interactions) 
foreach (keys %int_from_chains) { 
 $int_from_chains{$_} = $interactions{$_}; 
 my @split_chain_int = split(/\t/, $_); 
 foreach my $int_partner (@split_chain_int) { 
  #Go through all interactions of potential chain nodes 
  foreach my $possible_target (keys %{$potential_chain_nodes{$int_partner}}) { 
 
   if (exists $first_neighbours_going_out{$possible_target}) { 
    my $int_to_FNO = $int_partner . "\t" . $possible_target; #c 
    $int_from_chains{$int_to_FNO} = $interactions{$int_to_FNO}; #e 
   } 
   #if a chain node has itself as a possible target, the interaction is an autoloop and is added to chain interactions 
   if ($possible_target eq $int_partner) { 
    my $autoloop = $int_partner . "\t" . $possible_target; #d 
    $int_from_chains{$autoloop} = $interactions{$autoloop}; #e 



   } 
  } 
 }   
} 
 
my %active_net_interactions = (%core_net_interactions, %int_from_chains); 
 
# OUTPUT section 
my $edges_out = "active_nets/" . $cell_type . "_edges.active.csv"; # "active_nets/dnaser_fp/" . $cell_type . "_edges.active.csv"; 
my $nodes_out = "active_nets/" . $cell_type . "_nodes.active.csv"; 
my $pajek_out = "active_nets/" . $cell_type . ".active.net"; 
my $pajek_ref_out = "active_nets/" . $cell_type . ".active.net.deg"; 
 
my $eo_fh = files::write_or_open($edges_out, $write); 
my $no_fh = files::write_or_open($nodes_out, $write); 
my $paj_fh = files::write_or_open($pajek_out, $write); 
my $paj_ref_fh = files::write_or_open($pajek_ref_out, $write); 
 
my %active_nodes; 
print $eo_fh "Source\tTarget\tEvidence\tResolvedness\tCombinedness\n"; 
foreach (sort keys %active_net_interactions) { 
 my @split_active_int = split(/\t/, $_); 
 $active_nodes{$split_active_int[0]} = ""; 
 $active_nodes{$split_active_int[1]} = "";  
 print $eo_fh "$_\t$active_net_interactions{$_}\n"; 

} 
close $eo_fh; 
 
my $index = 1; 
my $no_act_nodes = keys %active_nodes; 
my %indexed_nodes; 
print $no_fh "ID\tExpr\n"; 
foreach (sort keys %active_nodes) { 
 my $state; 
 if (exists $expr_tf{$_}) { 
  $state = 1; 
 } else { 
  $state = 0; 
 } 
 print $no_fh "$_\t$state\n"; 
 $active_nodes{$_} = $index; 
 $indexed_nodes{$index} = $_; 
 $index++; 
} 
close $no_fh; 
 
my %index_instead_of_tf_names_in_int; 
foreach (keys %active_net_interactions) { 
 my @split_active_int = split(/\t/, $_); 
 my $regulator = $split_active_int[0]; 
 my $target = $split_active_int[1]; 
 my $ix_reg = $active_nodes{$regulator}; 

 my $ix_tar = $active_nodes{$target}; 
 my $ix_int = $ix_reg . "\t" . $ix_tar; 
 $index_instead_of_tf_names_in_int{$ix_int} = $active_net_interactions{$_}; 
}  
 
print $paj_fh "*Vertices $no_act_nodes\n"; 
foreach (sort {$a<=>$b} keys %indexed_nodes) { 
 print $paj_fh "$_\t\"$indexed_nodes{$_}\"\n"; 
} 
print $paj_fh "*Arcs\n"; 
foreach (keys %index_instead_of_tf_names_in_int) { 
 my $val = $index_instead_of_tf_names_in_int{$_}; 
 if ($val =~ "d") { 
  print $paj_fh "$_\t1\n"; 
 } 
 if ($val =~ "i") { 
  print $paj_fh "$_\t2\n"; 



 } 
 if ($val =~ "0u") { 
  print $paj_fh "$_\t3\n"; 
 } 
} 
close $paj_fh; 
 
# the second pajek file will contain as vertices all possible vertices from the HOCOMOCO set (for network degree clustering) 
my $all_tf_file = "/scratch/todtova/tf_regions/HGNC_symbols_humantf.sorted.txt"; 
my $all_tf_fh = files::write_or_open($all_tf_file, $open); 
my @ref_tf = <$all_tf_fh>; 
 
my $index2 = 1; 
my %ref_tf_ind; 
foreach (@ref_tf) { 
 chomp $_; 
 $ref_tf_ind{$_} = $index2; 
 $index2++; 
} 
my $no_ref_nodes = keys %ref_tf_ind; 
my %ref_tf_interactions; 
foreach (keys %active_net_interactions) { 
 my @sp = split(/\t/, $_); 
 my $regulator = $sp[0]; 
 my $target = $sp[1]; 

 my $ix_reg = $ref_tf_ind{$regulator}; 
 my $ix_tar = $ref_tf_ind{$target}; 
 my $ix_int = $ix_reg . "\t" . $ix_tar; 
 $ref_tf_interactions{$ix_int} = $active_net_interactions{$_}; 
} 
 
print $paj_ref_fh "*Vertices $no_ref_nodes\n"; 
foreach (sort keys %ref_tf_ind) { 
 print $paj_ref_fh "$ref_tf_ind{$_}\t\"$_\"\n"; 
} 
print $paj_ref_fh "*Arcs\n"; 
foreach (keys %ref_tf_interactions) { 
 my $val = $ref_tf_interactions{$_}; 
 if ($val =~ "d") { 
  print $paj_ref_fh "$_\t1\n"; 
 } 
 if ($val =~ "i") { 
  print $paj_ref_fh "$_\t2\n"; 
 } 
 if ($val =~ "0u") { 
  print $paj_ref_fh "$_\t3\n"; 
 } 
} 
close $paj_ref_fh; 
 
# SUBROUTINES 
=head 

Description of find_chains 
The function explores the interactions of potential chain nodes in an iterative manner. With each step, it is checked if 
 a) the node is a dead end 
 b) the node has only targets that are dead ends 
 c) targets are checked 
  c1) is target an FNI? 
  c2) was the target already seen before 
  c3)  
Input Arguments:  
 $pot_regulators_ref: hashref that associates each potential chain node with all its targets (hash of hashes) 
 $remember_int_ref: hashref that contains all interactions of potential chain. In the last step of the function, interactions from loops are removed. 
 $first_neighbours_ingoing_ref: hashref containing all nodes that are either direct FNI pointing to the active core, or nodes that point to FNI 
 $current_node: the "current" node whose interactions are checked 
 $seen_in_rounds_ref: hashref containing the nodes that have been seen in each round (hash of hashes) 
 $lc: counter of the rounds / current round counter 
 $remove_ref: hashref containing all loop interactions and int to dead ends, which are removed in the very last step 
 $dead_end_ref: hash of nodes that either have no targets or point to nodes that have no targets 



=cut 
  
sub find_chains { 
 my ($pot_regulators_ref, $remember_int_ref, $first_neighbours_ingoing_ref, $current_node, $seen_in_rounds_ref, $lc, $remove_ref, $dead_end_ref) = @_; 
 my %pot_regulators = %{$pot_regulators_ref}; 
 my %remember_int = %{$remember_int_ref}; 
 my %first_neighbours_ingoing = %{$first_neighbours_ingoing_ref}; 
 my %seen_rounds = %{$seen_in_rounds_ref}; 
 my %seen_last_round = %{$seen_rounds{$lc}}; 
 my %remove_from_int = %{$remove_ref}; 
 my %dead_ends = %{$dead_end_ref}; 
 my %chain_int; 
 my $chain_int_ref = \%chain_int; 
 my $chain_int_to_remove_ref = \%remove_from_int; 
 my $dead_ref = \%dead_ends; 
 my $FNI_ref = \%first_neighbours_ingoing; 
 $lc++; 
 my %seen_this_round; 
 @seen_this_round{keys %seen_last_round} = values %seen_last_round; 
 $seen_rounds{$lc} = \%seen_this_round; 
 #print "\ncounter: $lc\n"; 
 
 #a) target from last int, have you got targets? if not, you're a dead end 
 if (keys %{$pot_regulators{$current_node}} == 0) { 
  #print "$current_node target of last int is a dead end.\n"; 

  $dead_ends{$current_node} = ""; 
 
 }else { 
  #b) then, check if all targets of the current_node are dead ends.  
  my $count_dead_targets = 0; 
  my $num_targets_of_current_node = keys %{$pot_regulators{$current_node}}; 
  foreach (keys %{$pot_regulators{$current_node}}) { 
   if (exists $dead_ends{$_}) { 
    $count_dead_targets++; 
   } #if all targets are dead ends, make regulator a dead end itself 
   if ($count_dead_targets == $num_targets_of_current_node) { 
    $dead_ends{$current_node} = ""; 
   } 
  } 
  $seen_this_round{$current_node} = ""; 
   
  #c) check each target of the current node 
  foreach my $target_of_current (keys %{$pot_regulators{$current_node}}) { 
   my $pot_int = $current_node . "\t" . $target_of_current; 
   # check if target of current is an FNI 
   if (exists $first_neighbours_ingoing{$target_of_current}) { 
    #print "B: $target_of_current, target of $current_node is a first neighbour going in\n"; 
    $remember_int{$pot_int} = ""; 
    #check if you've already walked all paths of $current_node. if yes, itself becomes an FNI 
    my $check_paths = check_all_paths_walked(\%pot_regulators, \%dead_ends, \%remember_int, $current_node); 
    unless ($check_paths eq "NULL") { 
     $first_neighbours_ingoing{$current_node} = ""; 

    } 
   } else { 
    #check if the target of current is in the collection of nodes which you have seen up to last round 
    if (exists $seen_this_round{$target_of_current}) { 
     #print "C: $target_of_current, target of $current_node i've seen you already\n"; 
     my $number_of_seen_ints = 0; 
     foreach my $target_of_target (keys %{$pot_regulators{$target_of_current}}) { 
      #check target of target, if its an FNI 
      if (exists $first_neighbours_ingoing{$target_of_target}) { 
       my $int = $target_of_current . "\t" . $target_of_target; 
       $remember_int{$pot_int} = "";     
       #print "$target_of_target, target of $target_of_current is an FNI going in, $pot_int\n"; 
       my $check_paths = check_all_paths_walked(\%pot_regulators, \%dead_ends, \%remember_int, $target_of_current); 
       if ($check_paths eq "TRUE") { 
        $first_neighbours_ingoing{$target_of_current} = ""; 
       } 
      }  



      # check if you have seen target of target already 
      else { 
       my $count_seen_targets_of_target = 0; 
       if (exists $seen_this_round{$target_of_target}) { 
        $seen_this_round{$target_of_target} = ""; 
        $count_seen_targets_of_target++; 
         
        # if you find you have already seen all targets of target, you might be in a loop. try to break the loop! 
        if ($count_seen_targets_of_target == keys %{$pot_regulators{$target_of_current}}) { 
         #print "F: i already know all targets of the current target \"$target_of_current\", i'm in a loop\n"; 
         my (%found_in_loop, %remember_chain_int); 
         # try to break loop will return an array of ints if it broke the loop, and a hash if it did not.  
         my $loop_ints= try_to_break_loop(\%pot_regulators, \%seen_this_round, \%found_in_loop, 
\%remember_chain_int, $target_of_current,1); 
         if (ref($loop_ints) eq "HASH") { 
          #print "i did not break the loop\n"; 
          @remove_from_int{keys %{$loop_ints}} = values %{$loop_ints};   
   
         } 
         elsif (ref($loop_ints) eq "ARRAY") { 
          foreach (@{$loop_ints}) { 
           @found_in_loop{keys %{$_}} = values %{$_}; 
          } 
         } 
          @remember_int{keys %found_in_loop} = values %found_in_loop; 

        } 
       } else { 
        unless (exists $first_neighbours_ingoing{$target_of_target}) { 
         unless (exists $dead_ends{$target_of_target}) { 
          $seen_this_round{$target_of_target} = ""; 
          #print "E: $target_of_target i have not seen this target of $target_of_current yet, i'm going 
along here.\n"; 
          ($chain_int_ref, $chain_int_to_remove_ref, $dead_ref, $FNI_ref) = 
find_chains(\%potential_chain_nodes, \%remember_int, \%first_neighbours_going_in, $target_of_target, \%seen_rounds, $lc, \%remove_from_int, \%dead_ends); 
          my %int_from_iterations = %{$chain_int_ref}; 
          @remember_int{keys %int_from_iterations} = values %int_from_iterations; 
          @remove_from_int{keys %{$chain_int_to_remove_ref}} = values %{$chain_int_to_remove_ref}; 
          @dead_ends{keys %{$dead_ref}} = values %{$dead_ref}; 
          @first_neighbours_ingoing{keys %{$FNI_ref}} = values %{$FNI_ref}; 
         } 
        } 
       } 
      } 
     } 
    } # if you have not seen target_of_current yet, send it to the next round  
    else { 
     unless (exists $first_neighbours_ingoing{$target_of_current}) { 
      unless (exists $dead_ends{$target_of_current}) { 
       $seen_this_round{$target_of_current} = ""; 
       #print "C: $target_of_current i have not seen this target of $current_node yet, i'm going along.\n"; 
       $remember_int{$pot_int} = ""; 
       ($chain_int_ref, $chain_int_to_remove_ref, $dead_ref, $FNI_ref) = find_chains(\%potential_chain_nodes, \%remember_int, 

\%first_neighbours_going_in, $target_of_current, \%seen_rounds, $lc, \%remove_from_int, \%dead_ends); 
       my %int_from_iterations = %{$chain_int_ref}; 
       @remember_int{keys %int_from_iterations} = values %int_from_iterations; 
       @remove_from_int{keys %{$chain_int_to_remove_ref}} = values %{$chain_int_to_remove_ref}; 
       @dead_ends{keys %{$dead_ref}} = values %{$dead_ref}; 
       @first_neighbours_ingoing{keys %{$FNI_ref}} = values %{$FNI_ref}; 
      } 
     } 
    } 
   } 
  }  
 } 
 @remember_int{keys %chain_int} = values %chain_int; 
 foreach (keys %remove_from_int) { 
  delete $remember_int{$_}; 
 } 
 return (\%remember_int, \%remove_from_int, \%dead_ends, \%first_neighbours_ingoing); 



} 
 
#after you discovered one of the targets of $current_node is an FNI, this sub checks if you have already walked all paths going out from $current_node 
#if you have, you will make $current_node a new FNI in order to stop going over already walked paths. 
sub check_all_paths_walked { 
 my ($pot_regulators_ref, $dead_ref, $remember_ref, $current_node) = @_; 
 my %pot_regulators = %{$pot_regulators_ref}; 
 my %dead_ends = %{$dead_ref};  
 my %remember_int = %{$remember_ref}; 
 my %remembered_paths;      
 my $num_targets = keys %{$pot_regulators{$current_node}}; 
 
 #go through all remembered ints and store those in %remembered_paths that have the current node as regulator 
 foreach (keys %remember_int) { 
  my @int_partners = split (/\t/, $_); 
  my $regulator = $int_partners[0]; 
  if ($regulator eq $current_node) { 
   $remembered_paths{$_} = ""; 
  } 
 } 
 #if regulator has dead ends as targets, store these as well in %remembered_paths 
 foreach (keys %{$pot_regulators{$current_node}}) { 
  if (exists $dead_ends{$_}) { 
   $remembered_paths{$_} = ""; 
  } 

 } 
 my $number_of_seen_ints = keys %remembered_paths; 
 if ($number_of_seen_ints == $num_targets) { 
  return "TRUE"; 
 } else { 
  return "FALSE"; 
 }       
} 
 
#for breaking the loop, you go through all seen targets and try to find a target of (target of target) which you have not seen yet.  
#if you find one, the function will return an array, if you dont, it will return a hash.  
sub try_to_break_loop { 
 my ($regulators_to_targets_ref, $seen_before_ref, $found_yet_in_loop_ref, $remember_chain_int_ref, $start_of_loop, $counter) = @_; 
 #print "Try to break loop...$counter\n"; 
 my %regulators_to_targets = %{$regulators_to_targets_ref}; 
 my %seen_before = %{$seen_before_ref}; 
 my %found_yet = %{$found_yet_in_loop_ref}; 
 my %remember_chain_int = %{$remember_chain_int_ref}; 
 my (@ref_to_int, @ref_to_found); 
  
 foreach my $node (keys %{$regulators_to_targets{$start_of_loop}}) { 
  if (exists $seen_before{$node}) { 
   unless (exists $found_yet{$node}) { 
    $found_yet{$node} = "found"; 
    my $int = $start_of_loop . "\t" . $node; 
    $remember_chain_int{$int} = ""; 
    my $loop_int_ref = try_to_break_loop(\%regulators_to_targets, \%seen_before, \%found_yet, \%remember_chain_int, $node, $counter++); 

    if (ref($loop_int_ref) eq "HASH") { 
     @remember_chain_int{keys %{$loop_int_ref}} = values %{$loop_int_ref}; 
    } 
    elsif(ref($loop_int_ref) eq "ARRAY") { 
     my @temp = (@ref_to_int, @{$loop_int_ref}); 
     @ref_to_int = @temp; 
    } 
   } 
  } else { 
   my $int = $start_of_loop . "\t" . $node; 
   $found_yet{$node} = ""; 
   $remember_chain_int{$int} = ""; 
   my $reference = \%remember_chain_int;  
   push(@ref_to_int, $reference); 
  } 
 } 
 if (scalar @ref_to_int == 0) { 



  return \%remember_chain_int; 
 } else { 
  return \@ref_to_int; 
 } 
} 
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