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1 Introduction

In the traditional economic analysis of firm behavior, three key quantities play a major role:

The monopoly quantity QM , the Walrasian (or fully competitive) quantity QW , and the Cournot

quantity QC . According to the theory, if a monopolist serves the market, he chooses to produce

the quantity QM , at the expense of the consumers. On the other extreme, if the market is fully

competitive, each firm chooses a quantity such that the price equals the firm’s marginal cost,

resulting in zero profits for all firms. Between those two extremes is the Cournot quantity QC ,

representing the total production quantity chosen by perfectly rational firms with perfect foresight

in an oligopolistic market.

Huck et al. (2004b) make experiments with participants representing two, three, four and five

firms, in order to analyze the competitiveness of Cournot markets. They find that in a setting with

two subjects, there is a tendency towards collusion, i.e., producing a quantity below the Cournot

output and thus reaping higher profits. For three or more subjects, they find a tendency towards

the Cournot solution. In the experiments of Brandts and Guillén (2007), two subjects decide not

only on the production quantities, but also on the price. They find that the subjects either end up

in a pure monopoly (because the other ones are forced to leave the market due to unprofitability),

or collude at monopolistic output levels.

Attempting to model firm behavior in a way that could explain why firms might in fact do

better than what the standard Cournot model predicts, Huck et al. (2004a) make firms maximize

absolute profits by following a rule called ”trial and error” in a continuous time setup. If a certain

direction of movement is beneficial for the firms, they simply keep that direction. Huck et al. find

that firms learning according to ”trial and error” converge to the joint-profit maximizing solution,

i.e., the total production quantity equals exactly the quantity a monopolist would choose (i.e., the

total production quantity Q = QM ). An earlier version of the paper, Huck and Oechssler (2000),

finds the same results, but in discrete time.

An agent-based model of Kimbrough and Murphy (2009), however, leads to the conclusion

that firms behaving according to an algorithm called ”probe and adjust” converge to the Cournot

solution (i.e., the total production quantity Q = QC). ”Probe and adjust” is similar to ”trial

and error”, as firms maximize absolute profits and explore the production space around quantities

which they found profitable already.

In the dynamic Cournot model of Vega-Redondo (1997), firms do not seek to maximize absolute

profits, but relative profits (i.e., market share) instead. Vega-Redondo argues that this best reflects

the firm’s main objective of survival. Firms achieve relative profit maximization by imitating last

period’s most successful firm. For any finite number of firms, the total production quantity equals

the Walrasian outcome (i.e., Q = QW ).

In this paper, I reconcile the two models of Huck and Oechssler (2000) and Kimbrough and

Murphy (2009) and explain the key differences in their models, resulting in the contradictory

results. I show that rigidity of ”trial and error” firms allows them to do better than ”probe

and adjust” firms, who do not optimize in such a straightforward way, but rather probe certain

production quantities and attempt to improve from there on. Once the assumption of pure rigidity

is relaxed and ”trial and error” firms start experimenting randomly, also they converge to the

Cournot outcome.
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Firms in the model of Vega-Redondo require perfect knowledge for their imitation behavior. In

order to analyze whether also firms with imperfect knowledge converge to the Walrasian outcome

of Vega-Redondo, I modify the ”probe and adjust” algorithm by making firms seek to maximize

relative profits rather than absolute profits. The results found show that also ”probe and adjust”

firms, maximizing relative instead of absolute profits, converge to the Walrasian outcome.

The remainder of this paper is structured as follows. In Section 2, I give an overview about

previous literature on the subject. First addressing the question of the contradictory results of

Kimbrough and Murphy and Huck and Oechssler, Section 3 explains the two models in detail.

Section 4 describes the replication of the two models. In Section 5, I gradually modify the as-

sumptions of Kimbrough and Murphy towards the ones of Huck and Oechssler until I find matching

results. An analysis of the sensitivity of ”trial and error” firms to the propensity to experiment

is performed in Section 6. In Section 7, I make ”probe and adjust” firms optimize relative profits

and compare the outcome to the results of Vega-Redondo. Section 8 concludes.

2 Literature review

Traditional economic theory typically employs three major tools to analyze markets with oligopolis-

tic competition: the Cournot model, the Bertrand model, and the Stackelberg model (Gravelle

and Rees, 2004). All of them treat the respective decisions of the firms as one-shot games. Firms

are assumed to be perfectly rational and to have perfect foresight.

In the Cournot model, firms simultaneously decide on the quantities to produce. Once their

binding decision is made, prices are determined according to market demand, and firms realize their

respective profits. Assuming perfectly rational competitors, firms end up in the Nash equilibrium.

Total production quantities are higher than what a monopolist would choose, but lower than the

quantities of a perfectly competitive market, where prices equal marginal costs (Gravelle and Rees,

2004).

Conversely, in the Bertrand model, firms do not make quantity decisions, but price decisions

instead. The quantities produced and sold are determined by market demand upon binding

simultaneous price decisions of the competitors. In a monopoly, it does not matter whether a price

or a quantity decision was made; in an oligopoly, however, there is a difference. For homogeneous

products, the Bertrand outcome are prices equal to the marginal costs, i.e., the competitive market

outcome, sometimes also referred to as the Walrasian result (Gravelle and Rees, 2004).

In his seminal work, Vega-Redondo (1997) analyzes the evolutionary process of a dynamic

Cournot model with finitely many firms competing in a market with a homogeneous product.

Contrary to traditional theory, he does not assume that firms seek to maximize absolute profits,

but relative profits instead, i.e., payoff differentials. His justification is that in a Darwinian sense,

survival is the primary objective of the firms. A competitor which gets stronger and stronger

might eventually drive a firm out of the market, even though it made big profits on its own. Thus,

we might view firm behavior as ”responding to forces of learning and imitation” (Vega-Redondo,

1997, p. 382). It might result in ”spiteful behavior”, i.e., firms might be willing to take actions

which harm themselves, as long as these actions harm their competitors even more. In Vega-

Redondo’s (1997) model, firms choose their quantities from a finite set in a discrete time setup.

In each period, firms ”imitate” the behavior of last period’s most successful firm, or with a small
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probability choose to experiment with any other randomly chosen quantity. Thus, the model can

be seen as a model of dynamic learning. As in the standard Cournot model, firms take prices

as given. However, in stark contrast to the outcome of the standard Cournot model, for any

finite number of firms, in particular for a small number such as two or three, Vega-Redondo finds

convergence to the Walrasian, i.e., fully competitive outcome, instead of the Nash equilibrium.

Also Huck et al. (2004a) investigate a dynamic Cournot model, but show a result on the other

extreme, namely convergence to the monopoly solution. They model their agents to follow a

learning process called ”trial-and-error”. The agents have only two options: increase or decrease

the output quantity by a fixed amount. Afterwards, the agents assess whether the outcome was

beneficial for them or not. Depending on the outcome, they continue their choices in the same

direction or revert it. There are two important differences to the setup of Vega-Redondo (1997):

(i) ”trial-and-error” learning does not require any information about the other agents’ actions,

contrary to the agents in Vega-Redondo, who require full knowledge in order to imitate their op-

ponents, and (ii) while in Vega-Redondo (1997) the success measure for agents were relative profits,

Huck et al. make their agents optimize absolute profits. Huck et al. stress that agents’ collusion is

only possible because coincidentally, they find that simultaneous downwards movements from the

Cournot solution are beneficial for all of them. The standard Cournot model does not allow for

such random encounters. Huck et al. mention that already 1964, Baumol and Quandt obtained

a similar result for a monopoly. While Huck et al. (2004a) work with continuous time, Huck and

Oechssler (2000) provide an analysis in discrete time, finding the same results, i.e., that firms

behaving according to ”trial and error” learn to produce the joint-profit maximizing quantities.

Several authors analyze Cournot oligopolies in agent-based models, e.g., Waltman and Kaymak

(2008), Arifovic (1994), Kirman and Vriend (2001) and Kimbrough and Murphy (2009). Using

agent-based models allows capturing complex process dynamics that are out of scope of analytical

frameworks. Kimbrough and Murphy attempt to connect economic theory, recommendations from

management literature and the results of the experiments by setting up an agent-based economic

model using the modeling software NetLogo1. They want to analyze ”the question whether there

are effective procedures, using realistically available information, that may actually be used by

managers in oligopoly settings and that produce Cournot-improving outcomes” (Kimbrough and

Murphy, 2009, p. 49) by modeling agents in an oligopoly to behave as recommended by Nagle

and Holden (2006). Agents are set up to evaluate their output decision in each period against a

predefined success measure, e.g., the own profit, the overall profit of the entire market, or a convex

combination of those two. If the decision to increase output proved to be advantageous according

to the success measure, the agent continues exploring further possibilities from there on. Thus,

they call this process ”Probe and Adjust”. There are apparent similarities to the ”trial-and-error”

learning proposed by Huck et al. (2004a). The ”Probe and Adjust” process is repeated until the

agents’ output decisions stabilize. If the agents’ success measure are only (absolute) own profits,

the model yields the Cournot solution, contradicting the findings of Huck et al. (2004a), who find

convergence to the monopoly solution. It is not apparent immediately which differences in the

models cause these contrasting results.

However, if agents follow a policy called ”Market Returns, Constrained by Own Returns”, a

firm ”looks to get its share of the market and then looks to keep the market as profitable as

1http://ccl.northwestern.edu/netlogo/
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possible” (Kimbrough and Murphy, 2009, p. 52), and the model admits the monopoly solution.

This completes the description of the three papers which are most relevant for the analysis at

hand. More generally speaking, the standard Cournot model has been criticized and extended in

various ways in the literature.

Leonard and Nishimura’s (1999) claim that in the Cournot model the assumption of knowledge

of exact demand functions is unreasonable, because ”knowledge is imprecise and information

expensive” (Leonard and Nishimura, 1999, p. 165). Leonard and Nishimura analyze a duopoly

model with a homogeneous nonstorable good and general nonlinear demand where they relax

the aforementioned assumption by letting firms make error-prone estimates about the consumer’s

demand behavior. Both firms face linear total cost. As in the standard Cournot model, firms

try to maximize profits by assuming that the competitor keeps his production quantity constant.

Leonard and Nishimura find that when firms make mistakes in their estimates of consumer demand,

these mistakes do not necessarily disappear, but might instead lead to a two-period equilibrium

cycle.

Bischi et al. (2002) extend the model of Leonard and Nishimura by setting up a duopoly model

with cost externalities among firms, building on the idea that the prices of an input factor might

change for firm A if firm B demands more or less of this input factor. Again, agents do not possess

perfect knowledge, but might have a biased picture of the world. Bischi et al. understand this

imperfect knowledge as representation of the fact that firms might simply make errors during their

estimates or have lagged information. The inverse demand curve is assumed to be linear, but the

cost functions are nonlinear. Stressing that the results depend on the initial conditions, Bischi

et al. find that ”the economy ends up in subjective equilibria, because the outcome observed

[by the firms] is perfectly consistent with their (mis-specified) beliefs” (Bischi et al., 2002, p. 20).

The equilibrium established might even be ”far away” from the Nash equilibrium, even if the

mis-specification is relatively small, resulting in welfare loss.

Theocharis (1960) shows that there is a stable solution in a Cournot model with a linear

inverse demand function and constant marginal cost when there are only two firms, but this

solution becomes unstable once there are more than four firms. When there are exactly three

firms, there are ”finite oscillations about the equilibrium” (Theocharis, 1960, p. 133).

On the contrary, Rand (1978) finds effects which he refers to as ”chaotic” even in the fully

deterministic duopoly model in discrete time without production costs. This behavior emerges as

a result of the construction of the reaction functions.

Furth (2009) states that, in general, equilibria need not exist; if they exist, they need not be

stable; and if they are stable, they need not be unique. Quoting Debreu (1974) and Mantel (1974),

he claims that ”’everything is possible’, sometimes formulated as: ’anything goes’” (p. 183). Furth

shows that, even though ”all kinds of instabilities” are possible in heterogeneous oligopolies, in ho-

mogeneous duopolies this need not be the case. He analytically proves that homogeneous duopolies

admit these instabilities only if there are cost externalities, which Furth terms ”unrealistic”, or

the reaction correspondences exhibit certain properties. However, he does not present an analytic

proof for oligopolies with more than two firms.

In the setup of Vega-Redondo, the economy consisting only of ”imitators” converges to the

Walrasian equilibrium. The standard Cournot model consisting only of ”optimizers”, always play-

ing the myopic best response to the last round’s total output, converges to the Nash equilibrium.
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Schipper (2009) mixes the two approaches by modeling an economy consisting both of optimiz-

ers and imitators in a repeated Cournot game. Schipper finds that in this model, imitators are

generally ”strictly better off than optimizers” (p. 1982). He offers the possible explanation that

imitators are in a sense similar to the ”first movers” in the Stackelberg game and have the accord-

ing first-mover advantage, because they are (in a sense) ”independent” of what the competitors do.

Optimizers, on the other hand, are ”dependent” on their opponents decisions in previous rounds.

Schipper claims that this shows ”ambiguous semantics of profit maximization” (p. 1987), as even

though optimizers want to maximize their profits, their attitude is too myopic and therefore they

cannot reap maximum profits. The question what would happen if optimizers were not myopic is

left open.

The actual business environment which firms typically face is coined by non-perfectly rational

producers and consumers and imperfect information. In particular, the exact demand behavior

is rarely known to a firm. Management literature provides recommendations to firms operating

in such an environment, e.g., Nagle and Holden (2006). Managers should ”rather explore than

optimize” (Kimbrough and Murphy 2009, p. 51).

Among the first to analyze a Cournot oligopoly in an agent-based simulation model was Ar-

ifovic in 1994 by employing a genetic algorithm (GA) which she summarizes as follows: ”Rules

whose application has been more successful in the past are more likely to become more frequently

represented in the population, through a process similar to the natural selection in population ge-

netics” (Arifovic, 1994, p. 4). She claims that the behavior generated by computer-based adaptive

algorithms is more in line with data from experiments than models with rational models, i.e., the

standard Cournot model, predicts, by converging to the fully competitive equilibrium. Even when

the market price emerging in each period is not known, the agents find a solution as if the price

were known. Arifovic’s (1994) findings are mainly in line with Vega-Redondo (1997).

According to Riechmann (2002), Cournot models of evolutionary learning yield different out-

comes, depending on the type of learning employed. If agents learn socially, i.e., they learn from

each other, e.g., by interaction, the outcome is Walrasian, as predicted by Vega-Redondo (1997).

Similar to Vega-Redondo, Riechmann attributes this to the ”spite effect”, i.e., the agents focus on

relative payoffs instead of absolute payoffs and thus are willing to take actions which harm them-

selves, as long as they harm their opponents even more. Imitation of last periods most successful

agent leads to the Walrasian outcome.

Conversely, if individual learning is employed, i.e., there is no interaction among agents, there

is no imitation, but rather learning by ”introspection”, avoiding the harmful spite effect. In that

case, according to Riechmann, the more rational agents are, the more likely they are to leave

the Walrasian and converge to the Cournot outcome. However, as Riechmann refers to higher

rationality if an agent is equipped with more knowledge, measured by ”amount of information

needed to conduct the retrospective learning method, the question if agents need a personal

memory, and the computational abilities an agent needs (p. 18), the term ”sophistication” seems

more accurate than ”rationality”.

Waltman and Kaymak (2008) model repeated Cournot oligopoly games with Q-learning agents.

Q-learning is a form of reinforcement learning, where agents decide on a finite set of actions based

on the current state of the world. As in the model of Vega-Redondo (1997), agents have a certain

probability to deviate and ”experiment” instead. Watkins and Dayan (1992) proved that ”... [Q-
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learning] agents can learn to behave optimally under certain conditions” (Waltman and Kaymak,

2008, p. 3279). In the model of Waltman and Kaymak, there is a fixed number of firms, a

linear demand function, identical marginal costs across firms, and the goods produced are perfect

substitutes. Firms aim to maximize absolute profits. The repeated game discussed is different

from the one-stage game, because firms maximize long-term profits, and thus ”it may be possible

to sustain collusion” (p. 3281). In their model, the probability of experimentation approaches

zero over the time span of 1.000.000 periods. As all agents are Q-learners, no analytical result is

possible. Waltman and Kaymak find a general tendency towards collusive behavior, but not full

collusion.

The previously discussed models build upon the Cournot model; Zhang and Brorsen (2011)

analyze an agent-based model for price-setting firms in an oligopoly, i.e., the Bertrand model. The

analysis involved is much more complex, because small changes in prices can cause large changes

in sales. Employing a method called Particle Swarm Optimization (PSO) and claiming that it

finds better results than Genetic Algorithms (GA), their agents end up at the monopoly solution

in a duopoly, and once more than four firms compete, the markets tend to become competitive.

This is in line with the results from Huck et al. (2004b).

One of the most comprehensive agent-based computational economics (ACE) models to the

day was created by Kirman and Vriend (2001), analyzing the wholesale fish market in Marseille

by focusing on two stylized facts from a rich empirical data set: there is high loyalty of buyers to

sellers, and there is persistent price dispersion. They model the market as a market hall with 10

initially identical sellers and 100 initially identical buyers, who meet in the market hall for 5000

days (periods). Buyers can choose which seller to ask for a price offer, and sellers can offer prices

to each buyer individually. The buyer wants to buy one unit of fish every day, and he can decide

to accept or reject price offers. As fish is a perishable commodity, inventories do not play any role

in the analysis. Agents learn behavior by a reinforcement learning algorithm, i.e., a strategy that

worked well in the past is more likely to be repeated in the future. Sellers are assumed not to

have any reservation price. Loyalty of buyers to sellers and treatment of loyal customers are not

embedded in the agents, but are shown to emerge.

Kirman and Vriend find that their model can explain the two aforementioned stylized facts

very well. They interpret loyalty as a coordination device, being somehow similar to ”intrinsically

meaningless signals like wearing a blue shirt” (p. 491). However, a key difference is that loyalty

emerges because agents find that it is beneficial for them, because, as they term it, ”loyalty means

continuity”. The results are obtained even though agents are not forward looking and thus do not

play dynamic strategies.

Barr and Saraceno (2005) analyze the effects of environmental and organizational effects on

the outcome of repeated Cournot games with two firms by modeling firms as a network of agents,

represented by a learning neural network which takes into account environmental factors. Firm

sizes are exogenously given. They find that smaller firms are more flexible and therefore learn

faster and perform better in the short run, whereas big firms perform better in the long run by

finding more accurate solutions. The more complex the environment, the bigger the optimal firm

size, because the short-run advantage of being smaller disappears faster. The firms represented

by neural networks converge to the Nash equilibrium.

Kochanski (2009) develops a hybrid model containing both elements of agent-based simulation
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and the analytical Cournot framework, analyzing determinants of market concentration. His model

allows for marginal-cost reducing innovation and is consistent with what mainstream theory would

predict - markets with high costs tend to be more concentrated. Kochanski (2009) demonstrates

that analytical and agent-based model can complement each other.

The literature described above leaves the following questions open:

1. Kimbrough and Murphy (2009) and Huck and Oechssler (2000) find very contradictory

results, even though the models used seem similar at first sight. How can one model find

convergence to the Nash equilibrium, while the other finds convergence to the monopoly

solution?

2. In the model of Vega-Redondo (1997), firms do not attempt to maximize absolute, but

relative profits, i.e., market share. The same is true for the model of Riechmann (2002)

when agents learn socially. Similar to Vega-Redondo, the firms converge to the Walrasian

outcome when agents have full information. To complete our analysis, I will confirm that

an economy with agents trying to maximize market share that do not have full knowledge

also converges to the Walrasian outcome.

Both questions are addressed in the upcoming sections.

3 Model

In order to compare the contrasting outcomes of the models of Kimbrough and Murphy (2009)

and Huck et al. (2004a), the following section describes the two models in detail. Afterwards, I set

up my own model to match the described models as close as possible, and attempt to replicate the

results found by the respective authors. I start with the model of Kimbrough and Murphy and

use it as a reference, and afterwards introduce stepwise changes towards the model of Huck et al..

However, in 2004, Huck et al. analyze the model in continuous time, because ”...[this] version lends

itself to a much more elegant presentation and analysis” (Huck et al., 2004a, p. 207). Already in

2000, they discussed the model in discrete time, essentially finding the same results: ”Theorem

1: For a duopoly the trial & error process converges to a collusive outcome. If cost functions are

identical, then it converges to the joint profit maximizing outcome” (Huck and Oechssler, 2000,

p. 7). As the simulation of Kimbrough and Murphy is, as most simulations, in discrete time by

nature, further comparisons and development are much more straightforward to be done based on

Huck and Oechssler (2000). Thus, I do not go into the details of Huck et al. (2004a), but only of

Huck and Oechssler (2000).

As the strikingly different results appear even in the duopoly case, in the following I just

describe and analyze the case of two firms.

3.1 Kimbrough and Murphy (2009)

This model is an agent-based simulation of a Cournot oligopoly. Even though the model provides

several different success measures for the firms, in the following I only refer to the simulation where

absolute profits of the firms were used as success measure (in terminology used by Kimbrough and
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Murphy, the firms aim for ”own returns”). As in the standard Cournot model, firms make quantity

decisions, taking the price as given, which is determined by the market.

The agents have no information about the demand function or the other players decisions; they

only observe the price which is determined by the market and consequently calculate their own

profits. Demand follows a linear inverse demand function of the form

Pt(Qt) = max(0, α− βQt) (1)

where Pt is the market price in period t, α and β are constants and Qt := q1,t + q2,t. In the

following, the subscript t is omitted whenever it is clear from the context that quantities from

the current period are referred to. There are constant marginal production costs ci for each firm

i = 1, 2 and no fixed costs. Therefore, firm i’s total production costs Ci take the form

Ci(qi) = qici (2)

(1) Each firm i is assigned a base quantity bi.

(2) Each period, the firm randomly picks its qi from the uniform distribution bi ± δi, where
δi is a firm-specific parameter. This is the quantity actually ”produced” by the firm in
the current period. The firm ”probes” or ”explores” the space around bi for advantageous
production quantities.

(3) ”The market” collects the quantities from all the firms, calculates Q in the current period,
and determines the current price P according to the linear demand function. Markets are
assumed to clear in all periods.

(4) Firms calculate their profit πi = qi(P − ci).

(5) Each firm maintains two vectors: πai for profits generated when the current quantity is
above the base quantity (i.e., qi ≥ bi) and πbi for profits generated when the current
quantity is below the base quantity (i.e., qi < bi).

(6) Each firm repeats steps 2 -5 for an entire epoch, which typically consists of 30 periods.
By the end of an epoch:

(i) The firm calculates the averages of the profits generated when the quantity was
above, respectively below the base quantity:

avgai =

∑
πai

dimπai
, avgbi =

∑
πbi

dimπbi

(ii) If avgai ≥ avgbi , the firms makes an upward adjustment of its base quantity bi for
the next epoch, i.e., bi = bi + εi, where εi is a firm-specific parameter.

(iii) Otherwise, bi = max(0, bi − εi)
(iv) Both vectors πai and πbi are reset.

(v) The firm continues as normal at step 2.

Figure 1: ”Probe and Adjust” according to Kimbrough and Murphy (2009, p. 56).
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The firms decision procedure termed ”Probe and Adjust” is described in Figure 1 (cf. Kim-

brough and Murphy 2009, Figure 1, p. 56). As Kimbrough and Murphy point out, ”Probe and

Adjust” is in line with other algorithms where agents find the ”direction of improvement” (Win-

ston, 2004). It is worth noting that here the firms quantities are continuous, while, as we will see

later, Huck and Oechssler (2000) work with a ”finite grid”.

As can be inferred from Figure 1, a firm has several ”inherent” properties, which might be

identical or different for other firms. For clarity and further use, these properties are summarized

again in Figure 2, together with default values as used by (Kimbrough and Murphy, 2009, cf. Ta-

ble 2, p. 60). Unless otherwise stated, these default values are also used in the analysis in this

paper.

Base quantity bi: The initial quantity to start the process. As it is a priori unclear whether
there are any initial value effects in this algorithm, firms might have different initial
quantities. Default value for both firms: 40.

δi: Determines the range within which the firm randomly draws its production quantity in
each period. As the production quantity is bi ± δi, the range is 2δi. Default value for
both firms: 3.

εi: Determines by which amount the base quantity bi should be adjusted by the end of an
epoch. Default value for both firms: 0.7.

Epoch length: For how many periods the firm continues exploring possibilities around the
current bi until it adjusts it. Default value for both firms: 30.

Unit costs ci: The constant marginal cost of production of one unit of the final good. De-
fault value for both firms: 0.

Figure 2: Properties of the firms and their default values.

By default, the intercept for Equation (1) is α = 400, and the slope is β = 2. At unit costs

ci = 0 for both firms in the duopoly, the Cournot quantity is therefore

QC =
2α− c1 − c2

3β
=

2α

3β
= 133.33 (3)

If the market were fully competitive and marginal costs were equal among firms, i.e., c = c1 =

c2 = 0, the Walrasian outcome would be

QW =
α− c
β

=
α

β
= 200 (4)

Finally, a monopolist operating in this market with constant marginal costs c = c1 = 0 would

choose the production quantity

QM =
α− c

2β
=

α

2β
= 100 (5)

The reference values QC = 133.33, QW = 200 and QM = 100 are used as benchmarks in the

following sections.
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3.2 Huck and Oechssler (2000)

Huck and Oechssler discuss a Cournot oligopoly in purely analytical framework. Even though

their results are more general, for reasons given above, I here only describe the case with two

firms, further on being referred to by an index i = 1, 2. Firms have no information about the

decisions of the competitors, but they observe which price they achieve in each period, and are

able to calculate their profits consequently. They have a two-period memory, which allows them

to store their previous period’s quantity and profit. Firms are assumed to optimize absolute

profits by following a learning process called ”trial and error”. In each period t, each firm i

chooses its production quantity qi,t from the finite grid Γ := {0, δ, 2δ, . . . , vδ}2,3. Note that this

is a fundamental difference to Kimbrough and Murphy, where firms pick their quantities from

continuous space. However, also in Huck and Oechssler, the choice of δ > 0 is arbitrary, and

v ∈ N should be ”large enough” (Huck and Oechssler, 2000, p. 2). The inverse demand function

Pt(Qt) is assumed to satisfy P ′t < 0 and P ′t + 2P ′′t Qt < 0, where Qt := q1,t + q2,t as in Section 3.1.

This assumption is satisfied by the linear inverse demand function described in Equation (1).

Production costs for each firm are assumed to be increasing and weakly convex, which again is

satisfied by working with constant marginal costs ci > 0 for each firm i as in Equation (2). In order

to obtain their results analytically, they require existence of some Qt such that Pt(Qt) = C ′i(0).

By combining Equation (1) and Equation (2), this is clearly satisfied for qi = 0 and qj , j 6= i, large

enough such that Pt(Q) = 0. Finally, ”to avoid a monopolized market” (Huck and Oechssler,

2000, p. 2), it is assumed that the price at which each firm would sell if it were a monopolist is

larger than the minimal marginal cost of all other firms. Since in Equation (2) C ′i(0) = 0, also

this assumption holds.

For choosing production quantities qi,t, firms follow a process called ”trial and error”, which

is summarized in a simple formula:

di,t = sign(qi,t−1 − qi,t−2)× sign(πi,t−1 − πi,t−2)

si,t =

di,t if di,t 6= 0

1
3 [−1] + 1

3 [0] + 1
3 [−1] if di,t = 0

qi,t = qi,t−1 + δsi,t (6)

where as before πi,t = qi,t(Pt − ci) and sign(x) is defined as

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

In period t, firm i starts its consideration with the quantity chosen in the previous period qi,t−1.

Depending on the direction of the quantity change and its respective profit in the previous period,

the quantity in the current period is one step δ above or below the previous periods quantity. If

2As in Section 3.1, the subscript t is omitted if it is clear from the context which period this is about.
3The δ used here could be any positive value. For simplicity and notational convenience, I further on assume

that δ = δ1 = δ2 from the previous section.
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in the previous period (i) the quantity was increased and the profit consequently increased as well

(both signs being positive yields a positive factor for the δ) or (ii) the quantity was decreased and

the profit decreased as well (both signs being negative yields a positive factor for the δ as well),

the quantity is increased in the current period. Otherwise, the quantity is decreased in the current

period. This process represents the idea that if last period’s move was profitable, the direction of

the move is kept; otherwise, it is reverted.

If any of the two sign expressions is 0, e.g., because both firms produce such that Pt = ci,

resulting in zero profits, then the firms would get stuck according to Equation (6). Hence, there

is the extra rule that if di,t = sign(qi,t−1 − qi,t−2) × sign(πi,t−1 − πi,t−2) = 0, the firm chooses a

direction of movement with equal probability 1
3

4.

According to Huck and Oechssler, the process can be started with arbitrary values for qi,t−1

and an arbitrary sign for the direction of movement of the previous period, or, equivalently, simply

with two arbitrary qi,t−1, qi,t−2 and according profits.

Plugging in marginal production costs c1 = c2 = 10 into Equations (3) to (5) yields a Cournot

quantity QC = 130, a Walrasian outcome QW = 195 and a monopoly quantity QM = 97.5.

4 Replication

Based on the models described in the previous section, I set up my own model to match the

reference models as close as possible. This section describes to what extent I am able to replicate

the results found in the original papers. For my model I use the simulation software Repast

Simphony5.

Wilensky and Rand (2007) propose to start with specifying a replication standard. Axtell et al.

(1996) distinguish between aiming for (i) numerical identity, (ii) distributional equivalence and (iii)

relational alignment. Numerical identity means that exactly the same values are produced by the

replicated model as by the original model. However, even running exactly the same model on the

same computer might result in slightly different results due to different floating point representation

in memory (Belding, 2000). As numerical identity is also not mandatory for the analysis at hand,

I do not aim for it. On the other extreme, relational alignment is satisfied if two models predict an

output value in the same direction if an input parameter is changed in the same direction. This

might not be sufficient for my needs, because I do not only want to know whether, for example,

increasing the production costs for firm i results in lower production quantities of the firm, but

rather whether, on aggregate, firms find the Cournot quantity. Finally, distributional equivalence

means that both the original and the replicated model produce a distribution of one or more output

values which cannot statistically be distinguished from each other. In terms of precision , this is

between ”numerical identity” and ”relational alignment”. Aiming for distributional equivalence

should be manageable, yet provide all the key insights required. Thus, this is my replication

standard for the model of Kimbrough and Murphy (2009). Since the model of Huck and Oechssler

(2000) is analytical and gives an exact result, another statistical test is used to check whether the

distribution of the results provided by my model is statistically distinguishable from the target

4Huck and Oechssler in principle allow firm randomly experimenting with some probability ε by choosing any
direction of change. However, the key theorem holds only for the limit case where ε→ 0. Therefore, experimenting
is left aside for the moment.

5http://repast.sourceforge.net/, in the latest stable version 2.1.
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value. For both models, the target measure is the total production quantity Q := q1 + q2. Some of

the results obtained by Kimbrough and Murphy (2009) go far beyond the key question addressed

here, and therefore is not be replicated.

Unless otherwise stated, I work with a linear inverse demand function as in Equation (1),

a linear cost function as in Equation (2), and the set of default values for firms behavior as in

Figure 2.

4.1 Kimbrough and Murphy (2009)

Kimbrough and Murphy repeat the simulation with the above described default values 100 times

and describe the results in their paper. However, in order to perform nonparametric statistical

tests between their and my results, I had to run their simulation. It is not possible to conduct a

reasonable statistical test simply by comparing the means and / or the minimum and maximum

values. A full set of data is required. As Kimbrough and Murphy generously provide their NetLogo

model online, this was an easy task. Thus, the exact values that are further on referred to as values

from Kimbrough and Murphy are not exactly the ones they used in their paper, but the ones that

result from running their simulation on my own.

In one simulation run, Kimbrough and Murphy finish the simulation after 6600 periods of

”probe and adjust”, which, as they claim, is ”long after a stable settling has occurred” (Kimbrough

and Murphy, 2009, p. 58). They then calculate the average of the total quantity Q over the last

1000 periods (in their terminology, this quantity is called ”runningAverageBid”). Table 1 contains

a summary of the 100 ”average total quantities” obtained from their model, compared with the

respective values as obtained from my model. Keeping in mind that for the default parameter

settings with c1 = c2 = 0 the total Cournot quantity is QC = 133.33, the data provided is a

reasonable basis for their key finding that ”Probe and Adjust with Own Returns leads the agents

to the Cournot solution”6 (Kimbrough and Murphy, 2009, p. 60)7.

Kimbrough Avg. Q My Avg. Q
Min. 129.9 129.6
1st Qu. 132.7 132.3
Median 133.6 133.4
Mean 133.6 133.3
3rd Qu. 134.7 134.4
Max. 137.2 137.9

Table 1: Average quantities obtained from Kimbrough and Murphy (2009) and my model.

The output of a representative simulation run is shown in Figure 3. The data suggests that

there is no statistical significant difference between the results obtained by Kimbrough and Murphy

and my model. The nonparametric Mann-Whitney U test (also referred to as Wilcoxon rank sum

test) was used to check for the null hypothesis that the distributions of the two results do not

differ. The p-value of the Mann-Whitney U test is 0.294; thus, there is no evidence to reject the

null hypothesis that the results do not differ. Therefore, the model replication can be considered

6As mentioned above, ”Own Returns” means absolute profit maximization.
7Kimbrough and Murphy base their claim on the result of a binomial test. This test only captures how many

outcomes where above or below a certain value, but it does not take into account how far the outcomes were from
the target value. Therefore in the following, the binomial test is not used, but the more appropriate t-test instead.
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Figure 3: Firms behaving according to ”probe-and-adjust” with default parameter values.

successful; the results obtained from my model are distributionally identical to the results of

Kimbrough and Murphy.

4.2 Huck and Oechssler (2000)

For a model setup as described above with the default parameters from Figure 2 with constant

marginal costs c1 = c2 = 10, Huck and Oechssler predict that the firms settle at the ”joint profit

maximizing outcome”, i.e., Q := q1 + q2 = QM = 97.5.

Setting up an agent-based model with the firms behaving according to ”trial and error” as

described in Section 3.2 is straightforward. In the first two periods, firms choose any random

quantity between 0 and their respective base quantity, here being set to 400 for both firms. This

setup satisfies the requirement of the model for an ”arbitrary initial quantity”. The step size of

both firms δ is set to 0.5, in order to allow ”finding” exactly the expected outcome of QM = 97.5.

As first experiments showed, firms tend to find stable behavior way faster than with ”probe and

adjust”; on average, after 1200 - 1500 periods. Thus, each simulation run does not last for 6600

periods, but only 3000 periods, still way after stable behavior has established. Again, the total

quantity averaged over the last 1000 runs of the simulation is taken and reported. I repeated

the simulation run 200 times. For each of those 200 runs, the average total quantity was exactly

97.5, with no exceptions. Thus, there is not even a need for a statistical test; clearly, firms in an

agent-based simulation behaving according to ”trial-and-error” find the ”joint profit maximizing

outcome”, as predicted by Huck and Oechssler. Thus, also this model replication can be considered

successful.

The exceptional rule that, if in Equation (6) any of the two sign-expressions is equal to 0, the

firms ”experiment” with some random probability is of utmost importance. Without that rule,
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firms get stuck at some quantities, having no possibility to deviate from there again.

It is also worth noting that firms are not right on QM all the time; instead, they keep oscillating

around it. This is inherent to the nature of ”trial and error”.

5 From Kimbrough and Murphy towards Huck and Oechssler

Having successfully replicated both the model of Kimbrough and Murphy and of Huck and

Oechssler, including the contradicting results of finding the Cournot quantity and the monopoly

quantity, respectively, it is now time to attempt to align the two models with each other, in order

to find out which ingredient of the models causes the striking difference. Both models make their

firms start with a base quantity, from where on they attempt to improve. Once an improving

quantity is found, future possibilities are explored from there on. So what exactly causes the

differing outcomes? In the following paragraphs, stepwise changes are introduced to the replicated

model of Kimbrough and Murphy.

For the replication of Kimbrough and Murphy as in Section 4.1, marginal production costs of

0 were used, i.e., c1 = c2 = 0. However, Huck and Oechssler work with increasing cost functions,

so for my replication in Section 4.2 I used c1 = c2 = 10, resulting in QC = 130 and QM = 97.5.

Keeping the default parameter values from Figure 2, but using c1 = c2 = 10 and repeating a

simulation with 6600 periods 200 times results in a distribution of average total quantities over

the last 1000 periods of the run as shown in Table 2. The t-test for the null hypothesis that the

mean of the distribution is QC = 130 cannot be rejected (p = 0.413). Thus, one can conclude that

”probe and adjust” is, as expected, robust to introducing positive marginal production costs.

Avg. Q
Min. 125.8
1st Qu. 128.8
Median 130.2
Mean 130.1
3rd Qu. 131.3
Max. 134.1

Table 2: Average quantities obtained from my ”probe and adjust” model with c1 = c2 = 10 and
QC = 130.

An obvious difference between the setup of the two models is that while Huck and Oechssler

let their firms choose their quantities from a finite grid, Kimbrough and Murphy use continuous

space. Thus, a modified version of my ”probe and adjust” model makes firms not pick any more

from the uniform distribution bi ± δi as in Step 2 of Figure 1, but from {bi − δi, bi, bi + δi}, each

with probability 1
3 . However, the average total quantity remains effectively unchanged around the

Cournot quantity of QC = 130. Therefore, this difference in the model setup cannot explain the

differing outcomes.

Up to now, the simulation is run with the default values δi = 3, εi = 0.7, i = 1, 2, representing

the range from which to pick quantities in each round (which is 2δi), and the quantity by which

the base quantity bi is adjusted by the end of an epoch, respectively. Using these parameters (and,

for that matter, any combination of δi and εi with δi > εi), it is possible that, even though firm i

increased its base quantity in the last round by 0.7, the quantity in the next period is effectively
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below the previous quantity, even though the increase was apparently profitable (otherwise it

would not have been chosen in the first place). This is at odds with the setup of Huck and

Oechssler, where the quantity chosen in a period is always strictly above the quantity chosen

in the previous period, if this increment was profitable. Thus, I re-run the ”probe and adjust”

simulation with δi = 0.5, εi = 1, i = 1, 2, closer resembling the setup of ”trial and error” from Huck

and Oechssler. Nevertheless, the average total quantity produced by the model remains around

the Cournot quantity QC = 130. This verifies the results obtained by Kimbrough and Murphy,

who find robustness of their model to such parameter changes.

A central element of ”trial and error” is using the direction of change of previous quantities

and profits. In a sense, there is a similar element in ”probe and adjust” - if producing quantities

above the base quantity is more profitable then producing below the base quantity, the firm is

more likely to continue doing so in the future, but it is not guaranteed to do so; it simply rather

explores future options from there on. In that sense, ”probe and adjust” firms do not stick strictly

to any direction of movement. A first step to make ”probe and adjust” firms less fragile is by

reducing the epoch length from the default value of 30 to 2. Introducing this change (on top

of the other modifications already described), however, does not contribute to less fragility; on

the contrary, the fluctuations get even bigger, and it is questionable whether total quantities still

converge and if so, to which level. A representative output after 66000 periods - 10 times longer

than the duration of the previous runs - is shown in Figure 48.

Figure 4: Firms behaving according to the modified ”probe-and-adjust”, epoch length = 2.

Now, by employing an epoch length of 2 in the current setup, there is a possibility that firms

8Kimbrough and Murphy note that while their original ”probe and adjust” algorithm is robust, the standard
deviation of the average total quantity increases with smaller epoch lengths (excluding an epoch length of 1 where
”... agents engage in what looks like a random walk ... ”, Kimbrough and Murphy 2009, p. 59). This robustness is
apparently lost with making the firms decisions not on continuous space, but on a finite space, as described above.
However, this is not the scope of the current analysis, and is therefore left aside.
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make a move in the same direction twice, not allowing them to compare the results with the

alternative direction. In a sense, they lack the ability to compare the results as ”trial and error”

firms do. Thus, keeping an epoch length of 2, firms ”probe and adjust” behavior is modified again

as follows:

• In the first round of an epoch, firms choose from the uniformly distributed continuous space

bi ± δi again, as apparently using finite space instead was not of much help.

• In the second round, firms play the opposite direction from the first round. If in the first

round the chose some value qi,t−1 > bi, they now choose qi,t = max(0, 2bi − qi,t−1), and vice

versa. This causes them to play exactly once above its base quantity bi, and once below.

The only exception is that if they played bi in the first round, they repeat that decision.

• The adjustment rule by the end of the epoch, i.e., after the second round, remains unchanged,

as described in Figure 1.

Due to the randomness in the first round of each epoch, still getting stuck, as would be

possible for ”trial and error” firms without the exceptional rule, should be avoided. This behavior

should enable ”probe and adjust” firms ”memorize” two decisions in opposing directions and

to subsequently compare the profits generated respectively, as is done by ”trial and error” firms.

Table 3 compares summary statistics from 200 repeated simulation runs of my unmodified ”probe-

and-adjust” model with runs from the newly modified version. The standard deviation of the

average total quantity has significantly increased, but the average total quantity is still around the

Cournot quantity QC = 130. However, the results are still different from the monopoly quantity

QM = 97.5 found by Huck and Oechssler.

p-a-a avg. Q p-a-a avg. Q sd p-a-a-m avg. Q p-a-a-m avg. Q sd
Min. 125.8 2.59 122.7 5.37
1st Qu. 128.8 2.91 128.3 6.90
Median 130.2 3.11 130.7 7.95
Mean 130.1 3.12 130.7 8.14
3rd Qu. 131.3 3.34 132.7 9.02
Max. 134.1 4.47 139.4 12.79

Table 3: Average total quantities obtained from ”probe and adjust” (p-a-a) and ”modified probe
and adjust” (p-a-a-m) and their standard deviations (sd).

It seems that the firms still lack some kind of continuity, both on their side and on the side of

their competitor. ”... [firms can do better than the Cournot outcome because] further simultaneous

downward adjustments still increase the profits of both firms. And this continues until they reach

the joint-profit maximum” (Huck et al., 2004a, p. 206). Even the modified ”probe and adjust”

firms might try to explore the space above its base quantity in the next period; and if not the

firm itself, still its competitor may do so. It is much more unlikely that both of them decide to

decrease their quantities and thus find a mutually beneficial result, and if they happen to produce

in opposing directions, they both find it (misleadingly) beneficial to increase their quantities -

until they end up in the Cournot outcome again. Therefore, I changed the ”probe and adjust”

algorithm once more. Instead of randomly picking some quantity in the first and in the second

period of an epoch, firms now follow a much more straightforward rule:
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• In the first period of an epoch, qi = bi + δi, i = 1, 2. This means that both firms attempt to

increase their production quantities above the base quantities.

• In the second round, qi = max(0, bi − δi), i = 1, 2, i.e., firms decrease their production

quantities below the base quantities.

• The adjustment rule by the end of the epoch, i.e., after the second round, remains unchanged,

as described in Figure 1.

For initial quantities bi = 40, δi = εi = 0.5, i = 1, 2, the firms choose the joint-profit maxi-

mizing outcome after less than 200 periods. This model is not at all random any more, but fully

deterministic. Thus, in order to exclude the possibility of dependence on the initial quantities,

both firm’s initial value is set to a random value between 0 and 400, which matches the choice of

the initial values in Section 3.2. For 200 repeated simulation runs, each lasting for 3000 periods,

the total production quantity, averaged over the last 1000 periods, equals the monopoly quantity

QM = 97.5 in each run. This shows that finally this strongly modified version of ”probe and

adjust” is able to reproduce the results of ”trial and error” firms. It seems that the key difference

is randomness in the behavior of ”probe and adjust” firms.

In order to prove that conjecture, I also modified the ”probe and adjust” algorithm to make

firms randomly deviate from their default behavior with a propensity to experiment of γi ∈
[0, 1], i = 1, 29. If firms choose to experiment, they pick each from {qi,t−1 − δi, qi,t−1, qi,t−1 + δi}
with probability 1

3 , as in the standard exceptional rule of Huck and Oechssler (see Section 3.2).

If γ1 = γ2 = 0, the behavior naturally remains unchanged. For the other extreme case with

γ1 = γ2 = 1, there is no rigidity at all and firms make totally random decisions in each period,

consequently finding no convergence towards any stable combination. Both firms benefit from the

other firm sticking to its direction instead of experimenting.

Concluding, the missing link between the original version of ”probe and adjust” by Kimbrough

and Murphy and ”trial and error” by Huck and Oechssler is rigidity. ”Trial and error” firms are

able to converge to the joint-profit maximizing quantity by not only sticking to their direction of

movement, but also by profiting from the fact that their competitor also sticks to his direction of

movement. (Modified) ”Probe and adjust” firms benefit from the fact that both of them always

increase their production quantity in the first period, and always decrease it in the second period.

Both algorithms find a the joint-profit maximizing outcome without any explicit coordination

device among the firms. In fact, firms are able to benefit from the rigid production behavior

of their opponents, even without anticipating them or taking them into account. These findings

show that the randomness involved in the original version of ”probe and adjust” prevents further

improvements beyond the Cournot quantities for both firms.

6 Sensitivity analysis

In the previous section, I showed that the propensity to experiment γi is a crucial parameter

describing the behavior of ”trial and error” firms. In this section, I explore for which combinations

9In the notation of Huck and Oechssler, this parameter is called ε. For clear distinction from the parameter ε
already used for ”probe and adjust” firms in Section 3.1, I refer to this parameter as γ instead.
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of γi, i = 1, 2, the outcome of convergence to the total monopoly quantity is robust. I also show

that, even if solutions still converge to the total monopoly quantity, stability is reached much later

for firms with a higher propensity to experiment.

Firm i with a propensity to experiment γi chooses the production quantity in period t, qi,t,

according to the standard ”trial and error” rule in Equation (6) with probability 1− γi. However,

with probability γi, the firm decides to experiment instead, and chooses a random direction of

movement. Therefore ”trial and error” with experiments can be described as follows:

di,t = sign(qi,t−1 − qi,t−2)× sign(πi,t−1 − πi,t−2)

si,t =

(1− γi)[di,t] + γi(
1
3 [−1] + 1

3 [0] + 1
3 [+1]) if di,t 6= 0

1
3 [−1] + 1

3 [0] + 1
3 [+1] if di,t = 0

qi,t = qi,t−1 + δisi,t (7)

di,t is the direction of movement from the previous period, taking into account whether this

move was beneficial or not. The case with di,t = 0 reflects the exceptional rule described above,

meaning that firms choose a random direction of movement in order to prevent getting stuck.

The parameter space

(γ1, γ2) ={(0.0, 0.0), (0.05, 0.05), (0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4),

(0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (0.8, 0.8), (0.9, 0.9), (1.0, 1.0)}

∪ {0} × {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

is analyzed, i.e., combinations where none of the firms ever experiments, both of them always

experiment, some symmetric combinations in between as well as some cases where firm 1 never

experiments, but firm 2 experiments sometimes. For each combination, the simulation is repeated

100 times, with the other parameter values as before: c1 = c2 = 10, resulting in QC = 130 and

QM = 97.5. In order to stay in line with the simulation conducted by Kimbrough and Murphy,

each simulation lasts for 6600 periods, which in their setup is ”long after a stable settling has

occurred” (Kimbrough and Murphy, 2009, p. 58). The following numbers are used for comparison

between the results: As before, the (i) average of the total production quantity (”average total

quantity”) over the last 1000 periods of the simulation are calculated by the end of the simulation,

as well as (ii) the standard deviation of the total production quantity over the last 1000 periods

(”total quantity standard deviation”). In order to measure the adjustment speed towards the total

monopoly quantity QM , (iii) the period in which the total monopoly quantity QM is reached for

the first time is recorded. In the following, this is referred to as ”convergence period”. If QM is

never reached during an entire simulation run, this simulation run is referred to as non-converging.

Thus, for each combination of (γ1, γ2), one can calculate (iv) which percentage of the simulation

runs was converging.

Figure 5 and Figure 6 give an overview about the simulation results. The numbers represent

the average of the respective values, calculated over the 100 repeated simulation runs for this
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(a) Average of average total quantity - symmetric
cases

(b) Average of average total quantity - asymmetric
cases

(c) Average of standard deviation of total quantity
- symmetric cases

(d) Average of standard deviation of total quantity
- asymmetric cases

Figure 5: Total production quantities for ”trial and error” with experiments and different (γ1, γ2)

particular combination of (γ1, γ2)10. On all graphs, the x-axis shows the combinations of (γ1, γ2),

and the y-axis the respective quantities of interest. First, different combinations with simultaneous

increment of the propensity to experiment are explored, from (0, 0) to (1, 1). Combinations further

to the right represent higher joint propensity to experiment, until the combination (1, 1). Next

combinations are explored where only one firm experiments,, i.e., γ1 = 0 and γ2 increases stepwise.

So again, the propensity to experiment of firm 2 increases from the left to right from (0, 0.1) to

(0, 1). Figure 5(a) and Figure 5(b) show the average of ”average total quantities”. Figure 5(c) and

Figure 5(d) show the average of the standard deviation of the total production quantity (not the

standard deviation of the average total production quantity). Figure 6(a) and Figure 6(b) show

which percentage of the 100 simulation runs found any convergence at all, i.e., how many of the

10The exact numbers are provided in Table 5 in the appendix.
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(a) Percentage of converging simulation runs - sym-
metric cases

(b) Percentage of converging simulation runs - asym-
metric cases

(c) Average first convergent period - symmetric cases (d) Average first convergent period - asymmetric
cases

Figure 6: Convergence for ”trial and error” with experiments and different (γ1, γ2)

simulation runs ever reached a total production quantity of QM ±5%. Figure 6(c) and Figure 6(d)

show the average first period with convergence to QM , for those simulation runs which reached

it all, i.e., which were considered ”convergent” in the first place. A lower number thus represents

faster convergence.

The combination γ1 = γ2 = 0 is the benchmark result, where firms, as in the initial ”trial and

error”, do not experiment at all. In 100% of the simulation runs, they reach the total monopoly

quantity QM = 97.5, on average within 1175 periods. On the other extreme, the combination

γ1 = γ2 = 1.0 represents totally random behavior of the firms. Even though they come close to

QM in 3 out of 100 runs, the average total production quantity at 760 shows that there is no more

any meaningful behavior. All other combinations settle somewhere between the two extremes.

It is apparent that a higher propensity to experiment for only one firm has way more drastic
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implications than a moderate propensity to experiment for both firms. For instance, for γ1 = γ2 =

0.3, the average total production quantity is still only 2% above QM , whereas for γ1 = 0, γ2 = 0.6,

the average total production quantity is already 13% above QM . For both combinations, firms

take much longer to converge to QM , if at all, than non-experimenting ”trial and error” firms. For

the first combination, the value is already twice the benchmark value of 1175 periods, and for the

second, it is even three times the benchmark value.

The data suggests that ”trial and error” is relatively robust to moderate changes in the propen-

sity to experiment with respect to average total production quantity, as shown in Figure 5(a) and

Figure 5(b). Even for propensities to experiment as high as (0.4, 0.4), i.e., firms choose to exper-

iment 4 out of 10 times instead of sticking to what they know to be beneficial for them already,

the average total production quantity is only 6% above QM . Only for values above (0.5, 0.5) the

average total quantity is closer to the Cournot quantity QC = 130 than to QM . As mentioned

above, high propensities to experiment of only one firm causes the outcome to drift away from

QM much faster.

While the average total quantity is relatively robust to higher propensities to experiment,

fluctuations naturally become much higher the more firms tend to experiment (Figure 5(c), Fig-

ure 5(d)). Even for (0.2, 0.2), the average of the standard deviation of the total quantity is already

twice as high as for (0, 0), and for (0.5, 0.5) even nine times higher than for (0, 0). Again, versatility

is higher if only one firm shows more random behavior than if both firms have moderate random

behavior.

This is also reflected in the frequency of convergence (Figure 6(a) and Figure 6(b)), and if there

is convergence at all, in the speed of convergence. While firms until combinations of propensities

to experiment of (0.4, 0.4) always find QM sooner or later, the likelihood drops quickly from there

on: 78% for (0.5, 0.5), 11% for (0.6, 0.6), and 3% for (0.7, 0.7)11. If there is convergence at all,

firms tend to find it much later if they experiment (Figure 6(c) and Figure 6(d)). Firms who

experiment with γ1 = γ2 = 0.5 require, on average, 4.5 times longer to find QM for the first time

than firms who do not experiment at all.

7 Relative profit maximization

7.1 Vega-Redondo (1997)

In his seminal paper, Vega-Redondo (1997) models a Cournot oligopoly in an explicitly dynamic

way. Contrary to the traditional model setup, firms do not maximize absolute payoffs, but relative

payoffs instead, by imitating the previous period’s most successful firm. In order to imitate, firms

require perfect knowledge about their competitors.

”Probe and adjust” firms, on the other hand, have extremely limited information about the

environment in which they operate. In the model of Vega-Redondo, firms with perfect information

converge to the fully competitive outcome QW . Does the same hold for ”probe and adjust” firms,

which have only imperfect information, when they maximize relative profits? Or do the firms in the

model of Vega-Redondo exhibit some kind of ”information curse”, i.e., the additional information

11The fact that this value is 0% for (0.9, 0.9), but somewhat surprisingly higher (3%) for (1, 1) can be attributed
to randomness.
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they acquire induces a downward spiral in which all of them are worse off then they were without

that information? In order to analyze that question, I first describe the setup of Vega-Redondo

and then modify ”probe and adjust” firms to maximize relative profits.

Relative profit maximization reflects the idea that survival is the primary consideration of

firms, and if their competitors get stronger and stronger, they might be able to eventually exhibit

market power. Alternatively, one might also ”view [relative profit maximization] as responding to

forces of learning and imitation” (Vega-Redondo, 1997, p. 382). However, this objective results in

”spiteful behavior” of the firms, i.e., the willingness to take some actions which are harmful for

themselves, as long as it harms their competitors even more.

Vega-Redondo models a n-firm oligopoly with a homogeneous product. Similar to Huck and

Oechssler (2000), the firm’s quantities are chosen from a finite grid, contrary to the continuous

production space in the model of Kimbrough and Murphy (2009). The model is analyzed in

discrete time.

Firms behavior is very simple and straightforward. In each period, firms are allowed to modify

their previous production quantities with probability p. If the firm changes its production quantity,

it either ”imitates” the behavior (i.e., the production quantity) of last period’s most successful

firm, or with a small probability ε randomly chooses to experiment with any other quantity.

Experimenting can be understood either as a firm’s voluntary decision to experiment, ”or they

are replaced by some newcomer that chooses its output from tabula rasa” (Vega-Redondo, 1997,

p. 379). In order to imitate a competitor, firms need to be able to perfectly observe their production

quantities, which is a rather strict assumption. There is no description about the initial state of

the system, suggesting that the results do not depend on the initial values and therefore are robust

to arbitrary initial production quantities (which is again in line with Huck and Oechssler).

For any finite n, so in particular also for n = 2, total production quantities converge to the

Walrasian outcome QW . Firms in the model of Vega-Redondo have full information and optimize

relative instead of maximize profits. Thus, as prices and cost are the same across firms, the

(relatively) most successful firm is the one with the highest production quantity. Therefore other

firms are induced to increase their production quantities as well until no profits are made at all

anymore at total production quantities QW . In the models of Huck and Oechssler (”Trial and

error”) and Kimbrough and Murphy (”Probe and adjust”) firms have limited information and

optimize maximize absolute profits, which allows them to do clearly better than in QW . In order

to confirm that also firms trying to maximize relative profits that do not have full knowledge

converge to the Walrasian outcome, I modify ”Probe and adjust” accordingly.

7.2 ”Probe and adjust” with relative profit maximization

As described in Section 3.1, ”probe and adjust” firms are modeled to maximize absolute profit by

default. Reflecting the idea of Vega-Redondo, I modify firms to optimize relative profit instead.

In order to calculate their relative profits, firms need to be aware of the overall market size,

i.e., the total profits generated in a certain period. This is a slightly more restrictive information

requirement than before, but still not too unrealistic. Firm i’s relative profit in period t is then

defined as
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πri,t ≡


πi,t

Πt
if πi,t ≥ 0

0 if πi,t < 0
(8)

where the total market profit is defined as Πt ≡
∑n
i=1 πi,t. Afterwards, instead of comparing

the average total profits (see Figure 1), firms memorize and compare average relative profits by

the end of an epoch, leaving the remainder of the ”probe and adjust” algorithm unchanged.

The second part of Equation (8) represents the idea that once a firm’s absolute profit in a

period is negative, it considers this as a relative profit of 0, disregarding the absolute profit of the

other firms.

For the first run with the default parameter values (Figure 2), and in particular no production

costs, i.e., c1 = c2 = 0, the result changes immediately drastically. Instead of converging to the

total production quantity QC = 133.3, the total production quantity converges to QW = 200, as in

the model of Vega-Redondo. However, as shown in Figure 7, contrary to ”probe and adjust” with

absolute profit maximization (Figure 3), the fluctuations are not symmetric around the target

value QW . Once firms hit the total production quantity QW , they immediately find that their

(relative) profits are higher below QW .

Figure 7: Firms behaving according to ”probe-and-adjust”, but maximizing relative profits, c1 =
c2 = 0.

Summary statistics for 100 repeated simulation runs with ci = 0, i = 1, 2 and ci = 10, i = 1, 2

are shown in Table 4. The average total production quantities are close to QW , but clearly below it.

As described above, this is due to the fact that once firms hit the ceiling of QW , they immediately

decrease their production quantities. As there is very little space for fluctuations above QW , the

mean of the process cannot be QW , but has to be slightly below it. Thus it is confirmed that

also firms with limited information converge to a total production quantity (close to) QW , if they
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c1 = c2 = 0 c1 = c2 = 10
Min. 188.1 184.5
1st Qu. 193.3 188.5
Median 195.3 190.1
Mean 195.4 190.3
3rd Qu. 197.3 192.0
Max. 201.9 195.7

QW 200.0 197.5

Table 4: Average quantities from probe-and-adjust, maximizing relative profits.

optimize relative profits.

8 Conclusion

In this paper, I compare three models of oligopolistic firm behavior: ”trial and error” by Huck

and Oechssler, ”probe and adjust” by Kimbrough and Murphy (having firms maximize absolute

profits in both models), and a model with relative profit maximization through imitation by

Vega-Redondo.

Even though the first two appear very similar at first sight, their results are at odds with each

other. I find that the key component responsible for the difference in results is strict rigidity in

the model of Huck and Oechssler versus exploration of the solution space, incorporating a random

component, in the model of Kimbrough and Murphy. An argument frequently made in favor

of randomization in agent behavior is accounting for unobservable decision criteria or erroneous

decisions. According to my analysis, inclusion of a random component might change outcomes

considerably. Moderate randomization may not have such drastic consequences, but definitely

increases fluctuations. This might be important when discussing speed of convergence to stable

behavior.

Similar to the model of Vega-Redondo, firms behaving according to ”probe and adjust”, having

limited information, cannot do better thanQW anymore, once they optimize relative profits instead

of absolute profits. This is not very surprising, since once firms optimize relative profits, spiteful

behavior, inherent to relative profit maximization, cannot be avoided. The model of Kimbrough

and Murphy thus delivers the expected results if the target measure of the firms is modified.

Both for the inclusion of a random component as well as the appropriate target measure

for firms, no clear recommendations can be given based on my analysis. The modeling decision

should be made carefully, taking into account possible consequences, and with respect to economic

intuition as well as on empirical grounds.
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Appendix

”trial and error” with experiments

γ1 γ2 % convergence convergence period average total quantity average sd
0.00 0.00 100 1174.89 97.50 0.71
0.05 0.05 100 1362.55 97.75 0.84
0.10 0.10 100 1449.53 97.98 0.98
0.20 0.20 100 1712.95 98.54 1.32
0.30 0.30 100 2412.14 99.60 2.05
0.40 0.40 100 3092.43 103.25 3.95
0.50 0.50 78 4844.51 115.45 6.07
0.60 0.60 11 4653.18 125.02 5.11
0.70 0.70 3 1425.67 143.65 6.54
0.80 0.80 1 4230.00 219.74 16.07
0.90 0.90 0 452.09 15.01
1.00 1.00 3 942.33 760.49 6.94
0.00 0.10 100 1344.69 97.76 0.85
0.00 0.20 100 1560.11 98.03 1.00
0.00 0.30 100 1759.70 98.31 1.16
0.00 0.40 100 2228.99 98.94 1.55
0.00 0.50 100 2666.70 100.40 2.29
0.00 0.60 97 3953.85 110.06 4.56
0.00 0.70 34 4217.62 130.45 5.39
0.00 0.80 3 1087.67 181.60 7.52
0.00 0.90 5 1280.00 284.38 6.60
0.00 1.00 3 1093.67 417.80 4.21

Table 5: Simulation results for 100 runs for each (γ1, γ2). All numbers represent averages over the
100 runs.
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Abstract

Traditional oligopoly theory predicts production quantities at the Nash equilibrium level when

firms have perfect information. A learning algorithm which allows firms to converge to the joint-

profit maximizing outcome, even if they have only very limited information, is provided by Huck

and Oechssler (2000). On the other hand, an agent-based model with a very similar learning

structure results in the Cournot solution, i.e., the Nash equilibrium level (Kimbrough and Murphy,

2009). It is a-priori unclear which exact ingredient of the two models causes the strikingly different

results. I identify the key difference between the models by introducing step-wise changes to the

agent-based model and verifying the results in each step. The findings suggest that the key

difference in the models is strict rigidity, which is absent in the model of Kimbrough and Murphy.

In their model, firms rather explore than optimize in their attempt to maximize profits, involving

a strong random component. This makes simultaneous downward movements very unlikely, which

would be beneficial for both firms. In the model of Huck and Oechssler, firms maintain their

direction of movement as long as this is beneficial for them. According to these results, inclusion

of a random component in a model might lead to a drastically different outcome.

Laut klassischer Oligopoltheorie nähert sich die Gesamtproduktionsmenge der Firmen den

Produktionsmengen im Nash-Gleichgewicht an, wenn Firmen perfekte Information haben. Ein

Lernalgorithmus von Huck und Oechssler (2000) ermöglicht Firmen eine Gleichgewichtsproduk-

tionsmenge in Höhe der Monopolmenge zu erreichen. Ein agentenbasiertes Modell von Kim-

brough und Murphy (2009) jedoch, das auf einer sehr ähnlichen Struktur basiert, resultiert im

Nash-Gleichgewicht. Welche exakte Modellkomponente für diese divergierenden Ergebnisse ve-

rantwortlich ist, ist a-priori nicht ersichtlich. Um den Hauptunterschied zwischen den beiden

Modellen zu finden wird das Modell von Kimbrough und Murphy stückweise angepasst und die

Resultate in jedem Schritt mit denen von Huck und Oechssler verglichen. Ich stelle fest, dass der

Hauptunterschied strikte Rigididät ist, die Firmen im Modell von Kimbrough und Murphy fehlt.

In deren Modell erkunden Firmen den Produktionsraum in ihrem Versuch, Profite zu maximieren.

Dabei werden sie jedoch stark von einer zufälligen Komponenten beeinflusst. Dadurch werden

gleichzeitige Produktionsreduktionen sehr unwahrscheinlich, die für alle Firmen vorteilhaft wären.

Im Modell von Huck und Oechssler behalten Firmen die Richtung der Änderung der Produk-

tionsmengen bei, solange dies vorteilhaft für sie ist. Entsprechend dieser Feststellung kann die

Berücksichtigung einer zufälligen Komponente die Resultate eines Modells drastisch verändern.
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