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Chapter 1

Introduction

1.1 Outline

The aim of this thesis is to introduce the concept of projection operators in classical statistical

mechanics in a rigorous fashion and to compare four specific versions to each other. Approx-

imation procedures and derivations of phenomenological equations are explicitly excluded, as

the former doesn’t elucidate the general structure of the theory and the latter lacks of an exact

mathematical justification.

We therefore give a brief treatment of the fundamental concepts of statistical mechanics in

the subsequent sections, which are necessary to understand the technique of projection oper-

ators. Four different, well-established manifestations of the projection operator formalism are

then presented in separate chapters, and the thesis will be concluded by a comparison of them.

The author’s own contribution (apart from a concise presentation of the subject) consists

of an extended treatment (together with a proof) of an example of Xing (2009) in sec. 2.3.2

and a comparison of Zwanzig (1973) with Mori’s formalism (Mori (1965)) for the choice of

Hamiltonian systems in a heat bath of harmonic oscillators in sec. 2.4. In ch. 4, the author

has generalised part of the work of Kim and Oppenheim (1972) as Albers (1971) did with the

work of Mazur and Oppenheim (1970), and the proof in sec. 4.3.1 of the equivalence of the

subsequently derived generalised Langevin equation with the aforementioned work of Zwanzig

was also done by the author himself. Although the relation between Mori’s and the δ-formalism

to Grabert’s formalism (sec. 5.3) are due to Grabert (see f.e.Grabert (1982)), the explicit and

concise treatment with the addition of Mazur and Oppenheim’s formalism is a new contribution
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1.2. FUNDAMENTAL CONCEPTS CHAPTER 1. INTRODUCTION

to the literature (to the best of the author’s knowledge).

1.2 Fundamental Concepts

This section briefly summarises fundamental concepts of statistical mechanics, which are im-

portant for the comprehension of the thesis. It is based on the classic texts Khinchin (1949),

Evans and Morriss (1990) and Penrose (1979), though any graduate textbook should explain

the concepts in detail.

1.2.1 Statistical Mechanics

Statistical mechanics is a branch of physics, which tries to explain the macroscopic proper-

ties and behaviour of large systems by deriving them from simple, limited and microscopic

descriptions of the elementary constituents. Its underlying mathematical model is the theory

of probability and its results are thus inherently of statistical character. As many macroscopic

systems appear to be irreversible, the statistical mechanical methods to treat them contain a

coarse-graining procedure (f.e. the idea of molecular chaos or the Markov approximation).

1.2.2 Phase Space

We are interested in physical systems of n microscopic degrees of freedom, which are governed

by a Hamilton function H (Γ). Γ as the dependent variable is a short form for the n-generalised

coordinates q1, q2, . . . , qn and the n-generalised momenta p1, p2, . . . , pn.

The equations of motions are derived from the Hamilton function by

dqi
dt

=
∂H (Γ)

∂pi
, (1.2.1a)

dpi
dt

= −∂H (Γ)

∂qi
(1.2.1b)

and can in principle be integrated to yield every qi and pi dependent of initial states qi(0) and

pi(0). However, apart from special cases (see f.e. sec. 1.4), this procedure is not feasible for

typical systems consisting of 1023 degrees of freedom.

The generalised coordinates and momenta can be regarded as points (q1, q2, . . . , qn, p1, p2, . . . , pn)

in a 2n-dimensional space (the phase space Φ), and the time evolution of the system traces a

trajectory through it.
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CHAPTER 1. INTRODUCTION 1.2. FUNDAMENTAL CONCEPTS

1.2.3 Ensembles

If one wants to measure a macroscopic property of the system using time averages, the exper-

iment has to be repeated many times, because the dynamical state of the microscopic degrees

of freedom is not accessible and thus different for each measurement process. The outcomes of

many measurements for the same macroscopically prepared experiment will then approach a

probability distribution associated with the physical setup. However, from a theoretical point

of view, obtaining results with the aid of time averages fails due to the aforementioned largeness

of the system. Therefore, the idea of ensembles was introduced by Gibbs.

Instead of performing an experiment many times, one can consider an experiment using

a vast amount of different copies of the same system at the same time. This collection of

copies of the system under equal macroscopic constraints is called ensemble. For each copy a

point in phase space can be associated, and furthermore, an ensemble density ρ(Γ, t) can be

introduced, which describes the distribution of the ensemble systems in phase space at time t.

If one integrates the ensemble density over a given regionM of phase space, the probability of

the system being in exactly this region arises, i.e.

P (M, t) :=

∫
M
dΓ ρ(Γ, t). (1.2.2)

As the system has to be somewhere in phase space with probability 1, eq. (1.2.2) immediately

gives the normalisation∫
Φ

dΓ ρ(Γ, t) = 1. (1.2.3)

It is then possible to define the expectation value of an arbitrary dynamical variable B(Γ(t))

at time t in the usual way as

〈B(Γ(t))〉 :=

∫
Φ

dΓ B(Γ(0))ρ(Γ, t). (1.2.4)

From now own, we will drop the notation for the region from the definite integrals, if it is an

integration over the whole phase space Φ.

This idea of an ensemble average simplifies the calculation of averages of phase space func-

tions, but shifts the problem to the choice of the ensemble or rather the probability density

function ρ(Γ, t). This situation was solved for equilibrium systems with the microcanonical,

canonical and grandcanonical ensemble. On the other hand, non-equilibrium systems don’t

have a priori a specific ensemble density and great care has to be taken in the selection of it.

However, an important result reduces the set of possible ensemble densities: the Liouville

equation.
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1.2. FUNDAMENTAL CONCEPTS CHAPTER 1. INTRODUCTION

Liouville equation

The Liouville equation

dρ

dt
=
∂ρ

∂t
+ Γ̇ · ∂ρ

∂Γ
(1.2.5)

has to be satisfied. Eq. (1.2.5) is general for phase spaces and can be proved without the notion

of a Hamilton function (see f.e. Evans and Morriss (1990)). Nevertheless, as this thesis is only

concerned with systems that can be described by a Hamilton function, the Liouville equation

simplifies to

dρ

dt
= 0, (1.2.6)

or

∂ρ

∂t
= −Γ̇ · ∂ρ

∂Γ
. (1.2.7)

Eq. (1.2.6) is the fundamental equation of statistical mechanics and expresses the conservation

of the ensemble density in time.

With the introduction of the Liouville-operator

iLB(Γ, t) := {B(Γ, t),H } = Γ̇ · ∂B(Γ, t)

∂Γ
, (1.2.8)

where B(Γ, t) is an arbitrary real-valued function and {·, ·} denotes the Poisson bracket, eq.

(1.2.7) can be written as

∂ρ

∂t
= −iLρ. (1.2.9)

If the Hamilton function doesn’t include external fields which explicitly vary in time, eq. (1.2.9)

can be formally solved by

ρ(Γ, t) = e−iLtρ(Γ, 0), (1.2.10)

where ρ(Γ, 0) is the ensemble density at time 0 (or more commonly called the initial distribution

function). Thus, the time evolution of the ensemble density can be derived from the initial

distribution with the aid of the so-called ρ-Liouville propagator e−iLt.

1.2.4 State Space

Having defined the concept of phase space for microscopic states, we are now interested in a

description for the macroscopic state. Therefore, one can introduce an m dimensional (macro-

scopic) state space (also called a-space in the literature), in which each macroscopic state of the
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CHAPTER 1. INTRODUCTION 1.2. FUNDAMENTAL CONCEPTS

system (described by the macroscopic variables ai) is represented by a point a = (a1, a2, . . . , am).

Typical macroscopic variables are energy, pressure, magnetisation or the electric charge, but

also the position or momentum of a massive Brownian particle.

As we are interested in deriving equations of motion for these macroscopic variables, a

connection between the phase space and the state space description has to be made.

1.2.5 Connection between phase space and state space

This can be accomplished through phase functions Ai(Γ) : Φ → R. A macroscopic variable ai

is then represented in phase space through the phase function Ai(Γ) by ai = Ai(Γ). In general,

one macroscopic state a in state space is associated with many microscopic states Γ in phase

space. Accordingly, a hypersurface with a = const = A(Γ) in phase space corresponds to the

point a in state space.

1.2.6 Choice of initial ensemble density

In sec. 1.2.3, we noted that the ensemble density function ρ(Γ, t) for systems in non-equilibrium

has to be chosen with care. Again, this is a non-trivial problem as there is no problem inherent

choice for an ensemble density in non-equilibrium statistical mechanics. One simplification can

be achieved by noting that there is no necessity for the whole ensemble density ρ(Γ, t), but only

for ρ(Γ, 0), the initial ensemble density. This can be shown by evaluating the time evolution of

an arbitrary phase space function B(Γ), which is given by

Ḃ(Γ) = Γ̇ · ∂
∂Γ

B = iLB(Γ). (1.2.11)

The Liouville operator in eq. (1.2.11) is defined as before, and likewise the formal solution of

this differential equation is given by

B(t) = eiLtB(0), (1.2.12)

where for simplicity of notation, we wrote B(t) for B(Γ(t)) and likewise for B(0). The term

eiLt is called the p-Liouville propagator and is the adjoint of the ρ-Liouville propagator. Quite

generally,∫
dΓ ρ(Γ, 0)iLB(Γ) = −

∫
dΓ B(Γ)iLρ(Γ, 0), (1.2.13)

so that the Liouville operator L is self-adjoint and iL anti-self-adjoint (a proof of this as well

as of the next equation can be found f.e. in Evans and Morriss (1990)). Using these results, it
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1.2. FUNDAMENTAL CONCEPTS CHAPTER 1. INTRODUCTION

is possible to prove

〈B(t)〉 =

∫
dΓ ρ(Γ, 0)B(t) =

∫
dΓ B(Γ)ρ(Γ, t), (1.2.14)

i.e. either the phase function B or (exclusively) the ensemble density ρ is taken at time t′ = t,

where as the other function gets evaluated at time t′ = 0.

This reduces the problem of finding an ensemble density ρ(Γ, t) for all times t to finding an

initial ensemble density ρ(Γ, 0). In the literature, there are in principle two different approaches

to the choice of the initial ensemble density: the experimental preparation and the maximum

entropy principle (MaxENT). Both approaches require, that the mean values of the macroscopic

variables as well as the constants of motion are known at time t = 0. As their results are the

same, we will only discuss the experimental preparation.

Experimental preparation

The experimental preparation approach assumes an experimental setup, in which constant

external fields hi are applied to the system at time t = −∞ and couple to the macroscopic

variables through the phase functions Ai. The Hamilton function thus is Hprep = H −
∑
i hiAi.

We assume that the system reaches equilibrium and then turn off the fields at time t = 0. As

the system is at equilibrium, its initial ensemble density is

ρ(Γ, 0) = Z−1e−β(H −
∑
i hiAi), (1.2.15)

where Z is the normalisation

Z =

∫
dΓ e−β(H −

∑
i hiAi). (1.2.16)

The elegance of this preparation procedure of a non-equilibrium ensemble density is due to its

description as a real experiment. However, this also limits the physical cases we can inquire

about, as the fields hi have to be physically realisable. F.e. the preparation of spins of rele-

vant variables through magnetic fields could be impossible without disturbing the spins of the

irrelevant variables.

1.2.7 Macroscopic equations

In this thesis, we will be mainly concerned with the treatment of microscopic equations, which

can be approximated to yield stochastic macroscopic equations. We will mainly concentrate on a

specific subset of equations which resemble the Langevin (LE) or Fokker-Planck equation (FPE),

12



CHAPTER 1. INTRODUCTION 1.3. PROJECTION OPERATORS

but are (apart from their exact nature) more general. Although neither the LE nor the FPE will

be used, their definition is given in order to justify the later use of the term “generalised Langevin

equation” or “generalised Fokker-Planck equation”. For detailed derivations and treatments, see

f.e. Gardiner (2009) or van Kampen (1992).

Definition 1. The equation

dx(t) = A[x(t), t]dt+ B[x(t), t]dW(t), (1.2.17)

where x(t) is a stochastic process, A[x(t), t] the drift and B[x(t), t] the diffusion vector and

W(t) a Wiener process, is called Langevin equation.

In general, eq. (1.2.17) is a stochastic differential equation (SDE), which has to be treated

according to a stochastic calculus. We mention〈∫ t1

t0

B[x(t), t]dW(t)

〉
= 0 (1.2.18)

in Itō calculus. With the naive identification dW(t) = F (t)dt, where F (t) is called stochastic

or random force, we require that its average vanishes, i.e. 〈F (t)〉 = 0. The precise relationship

between this expectation value interpreted as an ensemble average over initial conditions and its

counterpart as an Itō noise expectation value in a Markov approximation of the corresponding

generalised Langevin equation will not be discussed in this thesis. We will use the terms

“Langevin equation” and “stochastic differential equation” interchangeably.

Definition 2. Given a probability density p(x, t) of a stochastic process X(t), the Fokker-

Planck equation (corresponding to an Itō LE) is defined as

∂p

∂t
= −

∑
i

∂i{Ai[x(t), t]p}+
1

2

∑
i,j

∂i∂j{[B[x(t), t]Bᵀ[x(t), t]]ij p}, (1.2.19)

where A[x(t), t] is a drift and B[x(t), t] a diffusion vector.

1.3 Projection Operators

One way of deriving macroscopic equations from microscopic ones is to use the method of

projection operators. The physical system under consideration has to be split up in so called

relevant and irrelevant variables. Relevant variables are all macroscopic variables we are inter-

ested in. In case of Brownian motion, the position and momentum of the massive Brownian

particle or the probability density of them would be considered. For hydrodynamics, we would

13



1.4. ZWANZIG’S GLE CHAPTER 1. INTRODUCTION

choose the energy-, particle- and momentum-density etc. The choice of relevant variables for

a given system is arbitrary and usually gets justified through experience (i.e. knowledge of

phenomena, experiments, etc.). Having chosen those variables declares all other variables as

irrelevant.

In the next step, a projection operator P has to be defined, which projects an arbitrary

microscopic or macroscopic variable onto the relevant variables. Vice versa, the projection

operator (1 − P) projects on the irrelevant variables. In this way, the equations of motion for

the relevant variables are decomposed in the sum of a relevant and an irrelevant part, and one

tries to calculate or approximate the irrelevant part to get self-contained equations.

As a trivial example, one may be interested in the macroscopic probability density p(x, v, t)

of a massive Brownian particle with position x and velocity v in a heat bath of light particles

j (j ∈ N) with positions xj and velocity vj . The system may be described by the ensemble

density ρ(Γ, t). With the aid of a projection operator P, we split the ensemble density according

to

ρ(Γ, t) = Pρ(Γ, t) + (1− P)ρ(Γ, t). (1.3.1)

As we are interested in p(x, v, t) (i.e. this is our relevant “variable”), we define our projection

operator acting on an arbitrary variable X(Γ) by

PX(Γ) :=

∫
dx1 . . . dxNdv1 . . . dvN X(Γ)ρ(Γ, t). (1.3.2)

Hence, the macroscopic probability density is given by

p(x, v, t) = Pρ(Γ, t). (1.3.3)

In general, equations like eq. (1.3.3) are still very hard to solve. In the past 50 years,

physicists have therefore concentrated on deriving master-, generalised Langevin- or Fokker-

Planck equations, in which the part stemming from irrelevant variables could be simplified

through approximations. With the rise of computational power, the need for approximations

is reduced, because the irrelevant parts can be calculated more directly.

1.4 Zwanzig’s Generalised Langevin Equation

Zwanzig (1973) introduced a specific, but quite general formalism, with which he was able to

derive an exact equation of motion by formally solving the equations of motion of a heat bath.

14



CHAPTER 1. INTRODUCTION 1.4. ZWANZIG’S GLE

Although his derivation was even more general, we will apply it to Hamiltonian systems only.

The Hamilton function had the formal structure

H (X,Y ) = Hs(X) + Hb(X,Y ) = HS(X) +
1

2
[Y − a(X)]

ᵀ ·K · [Y − a(X)] (1.4.1)

where X and Y are the system and heat bath coordinates, Hs(X) is the system and Hb(X,Y )

the bath Hamiltonian, a(X) an arbitrary function of the system variables and K a symmetric

non-singular matrix. The equations of motion read

dX

dt
= A · ∇X(Hs + Hb), (1.4.2a)

dY

dt
= B · ∇Y Hb (1.4.2b)

with A being the symplectic matrix

A =

 0 1

−1 0

 , (1.4.3)

and B being also a constant anti-symmetric matrix.

The equation of motion for the system coordinates X after solving and reinserting the

equation of motion for the heat bath coordinates is then

dX(t)

dt
= V (X(t))+

∫ t

0

dt′ A·W (X(t))·L(t′)·W ᵀ(X(t−t′))·Ẋt−t′ +A·W (X(t))·F (t), (1.4.4)

where

V (X) = A · ∇XHs(X), (1.4.5a)

W (X) = ∇Xaᵀ(X), (1.4.5b)

F (t) = −K · etB·K · [Y (0)− a(X(0))], (1.4.5c)

and L will be given below.

By choosing an equilibrium canonical ensemble for the heat bath of the form

ρ(X,Y ) =
1

Z
δ(X −X0)e−

Hb
kT , (1.4.6)

where Z is the partition function such that
∫
dXdY ρ(X,Y ) = 1, Zwanzig was able to derive

the mean and auto-correlation of the noise as

〈F (t)〉 = 0, (1.4.7a)

〈F (t)F ᵀ(t′)〉 = kTL(t− t′), (1.4.7b)

L(t) = K · etB·K (1.4.7c)

15



1.4. ZWANZIG’S GLE CHAPTER 1. INTRODUCTION

where L(t) is the friction coefficient and the average was taken over the ensemble as given in eq.

(1.4.6). Equations of the form of eq. (1.4.4) are called generalised Langevin equations, because

they resemble Langevin equations (see sec. 1.2.7), but are not necessarily of Markovian nature,

i.e. they contain an integral term which integrates over the past history of the motion.

The specific form of the Zwanzig-GLEs eq. (1.4.4) for the macroscopic variables {x, v} and

the Hamilton function H = v2

2 +U(x)+
∑
i

(
p2i
2 + ki

2 (qi − fi(x))
2
)
can be derived directly and

gives

dx

dt
= v(t), (1.4.8a)

dv

dt
= −∂U(x)

∂x

−
∫ t

0

ds
∑
j

kj
∂fj(x(t− s))

∂x

∂fj(x(t))

∂x
cos
(√

kjs
)
v(t− s)

+
∑
j

√
kj
∂fj(x(t))

∂x
pj(0) sin

(√
kjt
)

+
∑
j

kj
∂fj(x(t))

∂x
(qj(0)− fj(x(0))) cos

(√
kjt
)
.

(1.4.8b)
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Chapter 2

Mori-Projector

2.1 Introduction

Historically, Mori’s generalised Langevin equations (GLE) were the first derived by the method

of projection operators. They were introduced in Mori (1965) and were the starting point for

other treatments of GLEs. Mori’s formalism is mainly used in contexts where GLEs with a

linear relation of the macroscopic variable are of interest. In recent years, the formalism also

got attention from a mathematical point of view in optimal prediction theory (see f.e. Chorin

et al. (2002)).

Following the work of Zwanzig (2001), we will derive the GLEs for an arbitrary vector A

of macroscopic variables Ai. After the derivation, an example of Brownian motion, as given

by Zwanzig (2001), will be considered in sec. 2.3.1 and following the comments in Xing (2009)

enhanced by us. Finally, we will show explicitly in sec. 2.4, that Mori’s equations are equivalent

to Zwanzig’s generalised Langevin equations in case of Zwanzig’s heat bath model.

2.2 Derivation

Mori’s formalism is based on non-equilibrium systems near the equilibrium. The initial ensemble

density for this kind of systems can be given by an approximation of eq. (1.2.15), i.e.

ρ(Γ, 0) =
1

Z
e−β(H −

∑
i hi∆Ai) ≈ ρeq(Γ)

(
1 +

∑
i

hi∆Ai(Γ) +O(h2)

)
, (2.2.1)

17



2.2. DERIVATION CHAPTER 2. MORI-PROJECTOR

where ρeq(Γ) denotes the canonical equilibrium ensemble density, and the variables ∆Ai(Γ) are

the relevant variables. From here on, we will use the shorter notation B for every arbitrary

variable B(Γ) (which is a phase function at time t = 0), and we will write B(t) to denote the

same variable at time t (in the same way as in eq. (1.2.12)). We assume that the equilibrium

average of the relevant variables always vanishes (i.e. we take “interesting” variables Ai and

get the relevant variables through ∆Ai := Ai − 〈Ai〉eq). Their corresponding multipliers hi are

then known through the known averages at time t = 0,

〈∆Ai〉 =
∑
j

〈∆Ai∆Aj〉eq hj +O(h2). (2.2.2)

The projection operator PM , which was used by Mori to derive a generalised Langevin

equation, is based on a scalar product. Therefore, we are not dealing with a phase space but a

Hilbert space. Mori chose a Hilbert space L2(Φ, µ) with Φ being the phase space and µ being

the measure defined by dµ(Γ) := ρeq(Γ)dΓ. The scalar product of two elements B,C of the

Hilbert space is defined by

(B,C) :=

∫
Φ

BCρeq(Γ)dΓ. (2.2.3)

and is identical to the equilibrium average, i.e.

(B,C) = 〈BC〉eq . (2.2.4)

Mori introduced the projection operator PM acting on an arbitrary variable B through

PMB := (B,∆A) · (∆A,∆A)−1 ·∆A, (2.2.5)

where ∆A is a column vector of the macroscopic variables with m components, (B,∆A) is a

vector with the components (B,∆Ai) (1 ≤ i ≤ m) and (∆A,∆A)−1 is an m×m normalisation

matrix which is the inverse of the m ×m matrix with the entries (∆A,∆A)ij = (∆Ai,∆Aj).

PM satisfies

PM∆A = ∆A, (2.2.6a)

PMPMB = PMB, (2.2.6b)

(B,PMC) = (PMB,C), (2.2.6c)

where ∆A is macroscopic variable and B,C are arbitrary elements of the Hilbert space. Prop-

erty eq. (2.2.6a) follows directly from the definition eq. (2.2.5). Property eq. (2.2.6b), the
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idempotence, can be seen as follows: The projection operator in eq. (2.2.5) can be explicitly

written with components as

PMB =
∑
j,k

(B,∆Aj)
[
(∆A,∆A)−1

]
jk

∆Ak. (2.2.7)

Thus, for PMPMB follows

PMPMB =
∑
l,m

(PMB,∆Al)
[
(∆A,∆A)−1

]
lm

∆Am

=
∑
l,m

∑
j,k

(B,∆Aj)
[
(∆A,∆A)−1

]
jk

(∆Ak,∆Al)︸ ︷︷ ︸
(∆A,∆A)kl

[
(∆A,∆A)−1

]
lm

∆Am

=
∑
m

∑
j,k

(B,∆Aj)
[
(∆A,∆A)−1

]
jk

∆Am
∑
l

(∆A,∆A)kl
[
(∆A,∆A)−1

]
lm︸ ︷︷ ︸

=δkm

=
∑
j,k

(B,∆Aj)
[
(∆A,∆A)−1

]
jk

∆Ak

= PMB.

(2.2.8)

The third property eq. (2.2.6c) follows from (∆A,∆A) being a symmetric matrix.

(B,PMC) = (B,
∑
j,k

(C,∆Aj)
[
(∆A,∆A)−1

]
jk

∆Ak)

=
∑
j,k

(C,∆Aj)
[
(∆A,∆A)−1

]
jk

(B,∆Ak)

=
∑
j,k

(B,∆Ak)
[
(∆A,∆A)−1

]
kj

(C,∆Aj)

= (PMB,C).

(2.2.9)

The operator PM therefore satisfies the condition of idempotence and is thus a projection

operator in the mathematical sense. It is the projection on the subspace of the relevant variables

∆A, i.e. the space spanned by the macroscopic variables ∆Ai.

Next, the Liouville operator will be separated into a relevant and irrelevant part

iL = iPML+ i(1− PM )L. (2.2.10)

This allows to expand the propagator with the Dyson decomposition, i.e.

eiLt = ei(1−PM )Lt +

∫ t

0

ds eiL(t−s)iPMLei(1−PM )Ls, (2.2.11)

and when operated on the quantity i(1− PM )L∆A, the generalised Langevin equation

∂

∂t
∆A(t) = iΩ ·∆A(t)−

∫ t

0

ds K(s) ·∆A(t− s) + F (t) (2.2.12)
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results with the following definitions

F (t) := ei(1−PM )Lti(1− PM )L∆A, (2.2.13a)

K(t) := −(iLF (t),∆A) · (∆A,∆A)−1, (2.2.13b)

iΩ := (iL∆A,∆A) · (∆A,∆A)−1. (2.2.13c)

It still has to be shown that the average of F (t) vanishes. With eq. (2.2.1), we get

〈F (t)〉 =

∫
dΓ F (t)ρeq(Γ)

(
1 +

∑
i

hi∆Ai +O(h2)

)
. (2.2.14)

We will firstly concern us with the first term in eq. (2.2.14), the equilibrium average of F (t).

As the equilibrium average of the generalised Langevin equation eq. (2.2.12) is

∂

∂t
〈∆A(t)〉eq = iΩ · 〈∆A(t)〉eq −

∫ t

0

ds K(s) · 〈∆A(t− s)〉eq + 〈F (t)〉eq , (2.2.15)

and 〈∆A(t)〉eq =
∫
dΓ ∆A(t)ρeq(Γ, 0) =

∫
dΓ ∆Aρeq(Γ, t) = 〈∆A〉eq = 0, the equilibrium

average of F (t) has to vanish. The second term in eq. (2.2.14) is the sum of scalar products

hi(F (t),∆A) and vanishes therefore too, because F (t) and ∆A are orthogonal by construction

(remember that (F (t),∆A) = ((1−PM )F (t),PM∆A) = (PM (1−PM )F (t),∆A) = 0). Hence,

〈F (t)〉 is of order h2 and can be neglected for systems close to equilibrium.

An interesting feature can be extracted from the memory kernel eq. (2.2.13b), by exploiting

the anti-Hermiticity of the Liouville operator iL and by inserting an additional, but redundant

factor (1− PM ). We rewrite eq. (2.2.13b) as follows:

K(t) = −(iLF (t),∆A) · (∆A,∆A)−1

= (F (t), iL∆A) · (∆A,∆A)−1

= ((1− PM )F (t), iL∆A) · (∆A,∆A)−1

= (F (t), (1− PM )iL∆A︸ ︷︷ ︸
=F (0)

) · (∆A,∆A)−1.

(2.2.16)

Eq. (2.2.16) is a generalised fluctuation-dissipation theorem, i.e. rewritten in averages, it is

〈F (0)F (t)〉eq = K(t) · 〈∆A∆A〉eq . (2.2.17)

2.3 Examples

This subsection will examine a particular example to compare the generalised Langevin equa-

tions of Mori with those of Zwanzig. The elaboration in sec. 2.3.1 is due to Zwanzig (1980)
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and Zwanzig (2001), whereas the calculations in sec. 2.3.2 were hinted at in Xing (2009), but

explicitly calculated by us.

2.3.1 Linear macroscopic variables

The Mori GLEs for the macroscopic (relevant) variables {x, v} of the total system with Hamil-

tonian

H =
v2

2
+
x2

2
+ b

x4

4
+
∑
j

p2
j

2
+

1

2
ω2
j

(
qj −

γj
ω2
j

x

)2
 (2.3.1)

should be calculated and compared to the Zwanzig GLEs. The Zwanzig GLEs are known from

eq. (1.4.8) with the special choice of fi(x) = γi
ω2
i
x and are therefore

dx(t)

dt
= v(t), (2.3.2a)

dv(t)

dt
= −x(t)− bx(t)3 −

∫ t

0

ds KZ(s)v(t− s) + FZ(t) (2.3.2b)

with

KZ(t) =
∑
j

γ2
j

ω2
j

cos (ωjt) , (2.3.3a)

FZ(t) =
∑
j

γjpj(0)
sin(ωjt)

ωj
+
∑
j

γj

(
qj(0)− γj

ω2
j

x(0)

)
cos (ωjt) . (2.3.3b)

In the Mori formalism, the choice of {x, v} as the macroscopic variables yields the explicit

projection operator

PMB = 〈Bx〉eq 〈xx〉
−1
eq x+ 〈Bv〉eq 〈vv〉

−1
eq v. (2.3.4)

The equilibrium second moments in eq. (2.3.4) are

〈
x2
〉
eq

=
kT

ω2
0

, (2.3.5a)〈
v2
〉
eq

= kT, (2.3.5b)

which defines ω0. As we are only interested in the dynamics for very small values of b, ω2
0 can

be expanded to second order by first noting that

e−
bβ
4 x

4

≈ 1− bβ

4
x4 (2.3.6)
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as well as using the fact that b� β due to the smallness of the Boltzmann constant k. Therefore,

we can approximate
〈
x2
〉
with

〈
x2
〉
eq

=
1

Z

∫
dx e

−β
(
x2

2 +b x
4

4

)
x2

≈ 1

Z

∫
dx e−β

x2

2

(
1− bβ

4
x4

)
x2

≈ 1

Z

(∫
dx e−β

x2

2 x2 − bβ

4

∫
dx e−β

x2

2 x6

)
≈ 1

Z

√
2π

β3/2

(
1− 15

4
b

1

β

)
,

(2.3.7)

where we have omitted the noncontributing integrations over the other variables. The normal-

isation Z can be calculated in the same way to give

Z ≈
√

2π

β1/2

(
1− 3

4
b

1

β

)
. (2.3.8)

Hence,

ω2
0 =

kT

〈x2〉
≈ 1

1− 12b
4β−3b

≈ 1 +
12b

4β − 3b
≈ 1 +

12b

4β
= 1 + 3bkT +O(b2). (2.3.9)

Mori’s procedure leads to the exact linear Langevin equations

dx(t)

dt
= v(t) (2.3.10a)

dv(t)

dt
= −ω2

0x(t)−
∫ t

0

ds KM (s)v(t− s) + FM (t), (2.3.10b)

in which the random force is given by

FM (t) = eit(1−PM )Li(1− PM )Lv, (2.3.11)

and the memory function is

〈FM (0)FM (t)〉eq = kTKM (t). (2.3.12)

In order to compare the exact terms of the random force and the memory function eq. (2.3.3)

with the results of Mori’s procedure, the operator expression for FM in eq. (2.3.11) has to

be evaluated. For this, the Liouville operator iL is separated into a linear part iL0 and a

perturbation iL1,

iL = iL0 + iL1, (2.3.13a)

iL1 = −bx3 ∂

∂v
. (2.3.13b)
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It is now possible to separate the orthogonal projection (1−PM )Lv in eq. (2.3.11) in two parts,

i(1− PM )Lv =
∑
j

γj

(
qj −

γj
ω2
j

x

)
+
[
(ω2

0 − 1)x− bx3
]
. (2.3.14)

The factor (ω2
0 − 1)x results from the evaluation of b

〈
x4
〉
· 〈xx〉−1

x with the following useful

relations

(iLv, xn) = −
〈
xn+1

〉
eq
− b

〈
xn+3

〉
eq

+
∑
j

γj

〈
xn

(
γj
ω2
j

x− qj

)〉
eq

= −
〈
xn+1

〉
eq
− b

〈
xn+3

〉
eq
,

(2.3.15)

and

(iLv, xn) = − 1

Z

∫
dΓ xn

∂H

∂x
e−βH =

kT

Z

∫
dΓ xn

∂

∂x
e−βH =

= −kT
Z
n

∫
dΓ xn−1e−βH = −nkT

〈
xn−1

〉
eq
.

(2.3.16)

Equating eqs. (2.3.15) and (2.3.16) results in the general equation

nkT
〈
xn−1

〉
eq

=
〈
xn+1

〉
eq

+ b
〈
xn+3

〉
eq
. (2.3.17)

Setting n = 1 gives the aforementioned result.

Using eq. (2.3.9), eq. (2.3.14) is to the first order in b

i(1− PM )Lv =
∑
j

γj

(
qj −

γj
ω2
j

x

)
+
[
b(3kTx− x3) +O(b2)

]
. (2.3.18)

Due to the separation of the Liouville operator into two parts, the propagator appearing in eq.

(2.3.11) can be (recursively) expanded by using the Dyson decomposition, yielding

eit(1−PM )L = eit(1−PM )L0 +

∫ t

0

ds ei(t−s)(1−PM )L0i(1−PM )L1e
is(1−PM )L0 + · · · . (2.3.19)

Thus, Eq. (2.3.11) can now be written as

FM (t) =eit(1−PM )L0

∑
γj

(
qj −

γj
ω2
j

x

)
+ eit(1−PM )L0

[
(ω2

0 − 1)x− bx3
]

+

∫ t

0

ds ei(t−s)(1−PM )L0i(1− PM )L1e
is(1−PM )L0

∑
j

γj

(
qj −

γj
ω2
j

x

)
.

(2.3.20)

The first term, from now on called F0(t), can be evaluated by noticing that iL0 operated

any linear combination of the variables {x, v, qj , pj} yields another linear combination and the
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orthogonal projection (1− PM ) doesn’t alter it. By choosing the ansatz

F0(t) = ρ(t)x+ σ(t)v +
∑
j

µj(t)qj +
∑
j

νj(t)pj , (2.3.21)

we will try to solve the differential equation

∂

∂t
F0(t) = i(1− PM )L0F0(t), (2.3.22)

which was obtained by deriving F0(t) with respect to t. By substituting our ansatz eq. (2.3.21)

on both sides of eq. (2.3.22), we can determine the following differential equations by equating

the coefficients, i.e.

σ̇(t) = 0, (2.3.23a)

ρ̇(t) = −σ(t)
∑
j

γ2
j

ω2
j

+
∑
j

νj(t)γj , (2.3.23b)

ν̇j(t) = µj(t), (2.3.23c)

µ̇j(t) = σ(t)γj − ω2
j νj(t), (2.3.23d)

with the initial values

σ(0) = νj(0) = 0, (2.3.24a)

µj(0) = γj , (2.3.24b)

ρ(0) = −
∑
j

γ2
j

ω2
j

. (2.3.24c)

The differential equations for µj and ρj in eqs. (2.3.23) can be solved directly and yield

µj(t) = cos (ωjt) γj , (2.3.25a)

νj(t) =
sin(ωjt)

ωj
γj . (2.3.25b)

Supplemented in the differential equation for ρ(t) and further solving it, we get

ρ(t) = −
∑
j

γ2
j

ω2
j

cos(ωjt), (2.3.26)

which can be used to get an expression for F0(t), namely

F0(t) =
∑
j

γjpj
sin(ωjt)

ωj
+
∑
j

γj

(
qj −

γj
ω2
j

x

)
cos(ωjt) = FZ(t). (2.3.27)
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The third term in eq. (2.3.20) can be written as∫ t

0

ds ei(t−s)(1−PM )L0i(1− PM )L1F0(s) (2.3.28)

and vanishes, because F0(s) is independent of v. The second term in eq. (2.3.20) is

F1(t) = beit(1−PM )L0(3kTx− x3) +O(b2) (2.3.29)

and can be simplified by noticing that in the related differential equation

∂

∂t
F1 = i(1− PM )L0F1 (2.3.30)

the projection iPML0F1 vanishes. Therefore,

F1(t) = beitL0(3kTx− x3) +O(b2), (2.3.31)

and the total random force term is given by

FM (t) = FZ(t) + beitL0(3kTx− x3) +O(b2). (2.3.32)

Due to the FDT eq. (2.2.17), this also gives us the memory kernel

KM (t) = KZ(t) +
b2

kT

〈
(3kTx− x3)eitL0(3kTx− x3)

〉
eq

+O(b2). (2.3.33)

We conclude that Mori’s GLEs for the choice of the relevant variables x, v, though exact, appear

differently than Zwanzig’s GLEs. That they are in fact equal can’t be easily seen due to the

structure of the random force and memory kernel term. Only at t = 0, the equivalence is

obvious.

2.3.2 Nonlinear macroscopic variables

The Mori procedure of the last section will be repeated, but this time, x3 will be included in the

choice of macroscopic variables. This is a reasonable choice as it was shown in eq. (2.3.29) that

a correction term of x3 occurs in the random force as well as in the memory kernel. Without

knowledge of the exact form of FM (t), the intuitive choice would be x2, but because of

(iLv, x2n) =
1

Z

∫
dΓ

(
−x− bx3 −

∑
i

γi

(
γi
ω2
i

x− qi
))
· x2ne−βH = 0, (2.3.34)

all even powers of x don’t contribute to the GLE of v. The integral in eq. (2.3.34) can be easily

evaluated by taking advantage of symmetry properties of the functions in the product, f.e. x2n+1
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is an odd function whereas e−βH is an even function. Another also very helpful property is

time-reversal symmetry and parity, with which many scalar products can be evaluated without

solving the integral directly. A well written account of symmetry considerations in the context

of Mori’s formalism can be found in Berne (1976).

Therefore, we will first evaluate Mori’s procedure for ∆A = (x, v, x3) and afterwards, the

contributions of x5,x7,... will be considered. The new structure of the Mori projection operator

PM has to be established. The factors in eq. (2.2.5) have to be calculated. The normalisation

matrix in the new variables is

(∆A,∆A)−1 =


〈x6〉

eq

d 0 −
〈x4〉

eq

d

0
〈
v2
〉−1

eq
0

−
〈x4〉

eq

d 0
〈x2〉

eq

d

 , (2.3.35)

where d :=
〈
x2
〉
eq

〈
x6
〉
eq
−
〈
x4
〉2
eq
. Thus, the Mori projection operator can be written as

PMB = (B, x3) ·
〈
x4
〉−1

eq
· x+ (B, v) ·

〈
v2
〉−1

eq
· v

+
[
(B, x) ·

〈
x4
〉−1

eq
− (B, x3) ·

〈
x2
〉
eq

〈
x4
〉−2

eq

]
· x3

(2.3.36)

With the matrix of scalar products

(iL∆A,∆A) =


0 kT 0

−
〈
x2
〉
eq
− b

〈
x4
〉
eq

0 −
〈
x4
〉
eq
− b

〈
x6
〉
eq

0 3kT
〈
x2
〉
eq

0

 , (2.3.37)

we get for the frequency term

iΩ = (iL∆A,∆A) · (∆A,∆A)−1 =


0 1 0

−1 0 −b

0 3kT
ω2

0
0

 (2.3.38)

and therefore for the linear term of the Mori GLE

iΩ ·∆A(t) =


v(t)

−x(t)− bx3(t)

3kT
ω2

0
v(t)

 . (2.3.39)

Next, the random force term F (t) has to be calculated. We do so component-by-component

and have a look at the first (i.e. the random force term in the equation for dx
dt ) component of
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F (t). As iLx = v, i(1− PM )Lv = 0, and the equation for dx
dt contains neither a random force

nor a memory term. The second component of F (t) contains the same iLv terms as in the

linear case, but because x3 is included in the set of macroscopic variables, the bx3 term gets

projected onto itself and we therefore get

i(1− PM )Lv =
∑
j

γj

(
qj −

γj
ω2
j

x

)
, (2.3.40)

which further results in exactly FZ(t). The third component is straightforward ei(1−PM )Lt(3x2v−

3
〈
x2
〉
eq
v
)
and will not be further evaluated. To summarise, the random force term is given by

F (t) =


0

FZ(t)

ei(1−PM )Lt
(

3x2v − 3
〈
x2
〉
eq
v
)
 , (2.3.41)

and we can conclude, that the random force term FZ(t) in the GLE for v is the same as in

Zwanzig’s GLE eq. (2.3.2b), and due to the FDT, the same holds for the memory kernel.

Therefore, Zwanzig’s and Mori’s GLEs for x and v are equivalent for a Hamiltonian system as

defined in eq. (2.3.1) in the vicinity of the equilibrium (small h in eq. (2.2.1)). However, we

haven’t been able to show the equality of Mori’s equation for x3 with the usual phase space

identity dx3

dt = 3x2(t)dxdt , though it should be possible due to the exactness of the procedure.

Additional powers of x

With the successful addition of x3 to the macroscopic variables, one could be tempted to add

higher (odd) powers of x for further simplifications of the random force term and the memory

kernel in the equation for v. However, we will prove the following theorem (note the different

order of macroscopic variables in the vector A):

Theorem 1. Let H be defined as above and let ∆A be a (N × 1) dimensional vector with

N ≥ 4 defined by ∆A = (v, x, x3, x5, x7, ...)ᵀ in which the order or specific occurrence of odd

powers n (n ≥ 4) of x doesn’t matter. Then the first component of the linear term iΩ ·A of the

Mori GLE is identically equal to −x− bx3.

If one is thus interested in the equations of motion for x and v only, it is only necessary to

compute the Mori GLE for ∆A = (v, x, x3)ᵀ.
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Proof. We have to show that (iΩ)1j vanishes for j ≥ 4, i.e.

(iΩ)1j =
[
(iL∆A,∆A) · (∆A,∆A)−1

]
1j

= 0 for j ≥ 4. (2.3.42)

In its most general form, we will write for (iL∆A,∆A)

(iL∆A,∆A) =



(iLv, v) (iLv, x) (iLv, x3) (iLv, x5) · · ·

(iLx, v) (iLx, x) (iLx, x3) (iLx, x5) · · ·

(iLx3, v) (iLx3, x) (iLx3, x3) (iLx3, x5) · · ·

(iLx5, v) (iLx5, x) (iLx5, x3) (iLx5, x5) · · ·

· · ·


. (2.3.43)

As we are only interested in the first row, we notice that

iLv = −x− bx3 +
∑
j

γj

(
qj −

γj
ω2
j

x

)
(2.3.44)

and therefore

(iLv, v) = 0, (iLv, xn) = −
〈
x2n
〉
eq
− b

〈
x2(n+1)

〉
eq

(n = 1, 2, ...). (2.3.45)

Thus the first row of (iL∆A,∆A) is

(iL∆A,∆A)1 =
(

0,−
〈
x2
〉
eq
− b

〈
x4
〉
eq
,−
〈
x4
〉
eq
− b

〈
x6
〉
eq
, . . .

)
. (2.3.46)

The inverse of the normalisation matrix (∆A,∆A)−1 is in general

(∆A,∆A) =



〈
v2
〉
eq

0 0 0 · · ·

0
〈
x2
〉
eq

〈
x4
〉
eq

〈
x6
〉
eq

· · ·

0
〈
x4
〉
eq

〈
x6
〉
eq

〈
x8
〉
eq

· · ·

0
〈
x6
〉
eq

〈
x8
〉
eq

〈
x10
〉
eq
· · ·

· · ·


. (2.3.47)

Eq. (2.3.42) describes the scalar product of the first row of (iL∆A,∆A) with the jth column

vector of the normalisation matrix. For expressing the jth column vector of the normalisation

matrix, we will use the cofactor description, i.e. let C = (∆A,∆A), then the cofactor matrix is

defined by C · C# = C# · C = det(C) · 1 (hence 1
det(C)C

# = C−1 = (∆A,∆A)−1), and the jth

column vector of C# is thus given by

a#
j :=

∑
i

(−1)i+jdet(Cji)ei (2.3.48)
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where Cji denotes the Matrix C with removed row j and removed column i. Therefore,

(iL∆A,∆A)1 · a#
j =

N∑
i

(−1)i+5det(Cji) (1− δi1)

(〈
x2(i−1)

〉
eq

+ b
〈
x2i
〉

eq

)
, (2.3.49)

where δij is the Kronecker delta. By examining det(Cji) we note, that for the relevant terms,

the simple Laplace expansion in the first row is always possible with the factor
〈
v2
〉
eq

in front

of the reduced determinant. The additional factor
〈
x2(i−1)

〉
eq

+ b
〈
x2i
〉
eq

can be integrated into

the determinant, which results f.e. for the summand with C42 in

〈
v2
〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
x2
〉
eq

+ b
〈
x4
〉
eq

0 0 · · ·

0
〈
x4
〉
eq

〈
x6
〉
eq

· · ·

0
〈
x6
〉
eq

〈
x8
〉
eq

· · ·

0
〈
x10
〉
eq

〈
x12
〉
eq
· · ·

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3.50)

As one notices easily, changing the determinant in eq. (2.3.50) to

〈
v2
〉
eq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
x2
〉
eq

+ b
〈
x4
〉
eq

0 0 · · ·〈
x2
〉
eq

〈
x4
〉
eq

〈
x6
〉
eq

· · ·〈
x4
〉
eq

〈
x6
〉
eq

〈
x8
〉
eq

· · ·〈
x8
〉
eq

〈
x10
〉
eq

〈
x12
〉
eq
· · ·

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.3.51)

doesn’t change its value. Likewise, the summand with C43 can be expressed as

〈
v2
〉
eq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
〈
x4
〉
eq

+ b
〈
x6
〉
eq

0 · · ·〈
x2
〉
eq

〈
x4
〉
eq

〈
x6
〉
eq

· · ·〈
x4
〉
eq

〈
x6
〉
eq

〈
x8
〉
eq

· · ·〈
x8
〉
eq

〈
x10
〉
eq

〈
x12
〉
eq
· · ·

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3.52)

The same can be done for every Cji with (i ≥ 2, j ≥ 4). By applying the basic rule of
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summation of determinants, it is thus possible to express the sum in eq. (2.3.49) as

(iL∆A,∆A)1 · a#
j =

〈
v2
〉
eq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
x2
〉
eq

+ b
〈
x4
〉
eq

〈
x4
〉
eq

+ b
〈
x6
〉
eq

〈
x6
〉
eq

+ b
〈
x8
〉
eq
· · ·〈

x2
〉
eq

〈
x4
〉
eq

〈
x6
〉
eq

· · ·〈
x4
〉
eq

〈
x6
〉
eq

〈
x8
〉
eq

· · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
〈
v2
〉
eq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
x2
〉
eq

〈
x4
〉
eq

〈
x6
〉
eq
· · ·〈

x2
〉
eq

〈
x4
〉
eq

〈
x6
〉
eq
· · ·〈

x4
〉
eq

〈
x6
〉
eq

〈
x8
〉
eq
· · ·

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ bN
〈
v2
〉
eq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
x4
〉
eq

〈
x6
〉
eq

〈
x8
〉
eq
· · ·〈

x2
〉
eq

〈
x4
〉
eq

〈
x6
〉
eq
· · ·〈

x4
〉
eq

〈
x6
〉
eq

〈
x8
〉
eq
· · ·

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.3.53)

and as both determinants contain linearly dependent rows, they are identically zero, which

concludes the proof.

2.4 Equivalence of Mori-formalism and Zwanzig GLE

In this section, we will prove the general equivalence of Mori’s procedure and Zwanzig’s GLE

near equilibrium for Zwanzig’s Hamilton function

H =
v2

2
+ U(x) +

∑
i

(
p2
i

2
+
ki
2

(qi − fi(x))
2

)
. (2.4.1)

Two peculiarities may be noticed in the preceding examples.

1. The random force term eq. (2.3.29) contains 3kTx − x3, which is (except for the factor

β3) the fourth Hermite polynomial defined by the weight function e−β
x2

2 .

2. The resulting GLE for v has no one-to-one correspondence to the choice of the macrovari-

ables. In particular, the choice of {x+ bx3, v} results also in Zwanzig’s GLE for v, which
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Order Generalised Hermite Polynomial

0 1

1 βx

2 −β + β2x

3 −β3
(
3kTx− x3

)
Table 2.1: Generalised Hermite Polynomials for weight function e−β

x2

2

can be shown by following exactly the procedure of the example given in sec. 2.3.2.

The last peculiarity is also connected to Hermite polynomials and gives thus also rise to

investigate them in the context of the Mori formalism. We therefore define the generalised

Hermite polynomials as follows.

Definition 3. The nth (n ∈ N) generalised Hermite polynomial in the microscopic variable x

is the polynomial generated by the Rodrigues’ formula

Hen(x) := eβHs(x,v)(−1)n
(
∂n

∂xn
e−βHs(x,v)

)
(2.4.2)

Generalised Hermite polynomials for the other variables of the Hamilton function eq. (2.4.1)

are defined likewise, but they will be omitted here for the sake of simplicity. We can form an

orthogonal basis of the Hilbert space by taking many variable Hermite polynomials (defined

by the tensor product of the Hermite polynomials of the different microscopic variables), and

we notice that they arise naturally as they are orthogonal with respect to the weight function

e−βH , i.e. the same we are already using in our inner products.

Hence if we choose the proper generalised Hermite polynomial as a macroscopic variable,

we can dramatically simplify the calculations of the random force and memory term, as they

contain orthogonal projections of quantities containing the Liouville operator, which – nolens

volens – has to contain a generalised Hermite polynomial itself. The following theorem and

proof should elucidate the former statement.

Theorem 2. Near equilibrium, Mori’s procedure and Zwanzig’s formalism yield the same gen-

eralised Langevin equation for the macroscopic variables x and v given the Zwanzig Hamiltonian

eq. (2.4.1) and are thus in this sense equivalent.
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Order Generalised Hermite Polynomial

0 1

1 β
(
x+ bx3

)
2 −β2

(
kT + 3kTbx2 +

(
x+ bx3

)2)
3 xβ

(
6b− 3

(
1 + bx2

) (
1 + 3bx2

)
β + x2

(
1 + bx2

)3
β2
)

Table 2.2: Generalised Hermite Polynomials for weight function e−β
(
x2

2 +b x
4

4

)

Proof. Mori’s GLE for x is always

dx(t)

dt
= v, (2.4.3)

as the memory kernel and random force term vanishes due to i(1−PM )Lv = 0 (see sec. 2.3.2).

Let us denote Mori’s GLE for v as

dv(t)

dt
= iΩv −

∫ t

0

dτ K(t)v(t− τ) + F (t). (2.4.4)

For the calculation of F (t),K(t) and iΩ in the GLE for the macroscopic variable v, the quantity

iLv is essential. It can be evaluated as

iLv = −dU(x)

dx
+
∑
i

ki

(
∂fi(x)

∂x

)
(qi − fi(x)) = −∂H

∂x
= −

(
∂Hs

∂x
+
∂Hb

∂x

)
. (2.4.5)

But ∂Hs

∂x = dU(x)
dx is exactly the generalised Hermite polynomial 1

βHe1(x) as defined in eq.

(2.4.2). Thus, by selecting dU(x)
dx as a macroscopic variable, we can simplify all terms involving

inner products of iLv and dU(x)
dx (=: U ′(x)). As U(x) doesn’t depend on v, the first term in the

GLE is

iΩv = (iLv, U ′(x)) · (U ′(x), U ′(x))−1 · U ′(x) = −U ′(x), (2.4.6)

because the derivative of the coupling vanishes in the inner product. The random force term

F (t) = ei(1−PM )Lt(1−PM )iLv cannot include He1(x) due to the orthogonal projection and as

expected, after evaluating i(1− PM )Lv, we find

F (t) = ei(1−PM )Lt
∑
i

ki

(
∂fi(x)

∂x

)
(qi − fi(x)) . (2.4.7)

This looks similar to the first term in eq. (2.3.20), but the complete Liouville operator iL is

still present in the propagator. Nevertheless, it can be shown with exactly the same procedure
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as in sec. 4.3.1 that F (t) = FZ(t) and therefore K(t) = KZ(t). Thus, the two equations are

equivalent.

In the proof, Mori’s equation for U(x) was omitted, as we haven’t been able to show the

equivalence for this equation with Zwanzig’s.
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Chapter 3

δ-Projector

3.1 Introduction

Mori’s generalised Langevin equations are inherently linear in the relevant variables and only

valid for systems close to equilibrium. Hence, new types of projection operators where pro-

posed to circumvent these problems. Notable are the works of Mori and Fujisaka (1973) and

especially Nordholm and Zwanzig (1975), Grabert et al. (1980), Zwanzig (1980), Grabert (1982)

and Zwanzig (2001), who more or less solved it, by introducing Dirac delta functions with Ai

in the arguments as the macrovariables. As will be shown in the subsequent sections, this

elegant procedure allows not only to include the information of the dynamics of macrovariables

in one equation, but also allows the derivation of a generalised Fokker-Planck and a generalised

Langevin equation at the same time, while staying exact.

In the derivation, we will follow the derivations of Grabert et al. (1980), Grabert (1982) and

Zwanzig (2001).

3.2 Derivation

The δ-projector is essentially derived in the same way as the Mori projector, but the main

difference lies in the relevant variables. Whereas Mori used the macrovariables ∆Ai to define

his projector, we now take a variable Ga(Γ), namely Ga(Γ) := δ(A(Γ) − a) as the relevant

variable and derive the GLE for it. Here, A still describes the macrovariables (but this time,

the equilibrium average doesn’t have to vanish), and a is a parameter for the macroscopic value
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of the function A(Γ). By choosing a specific a, Ga(Γ) becomes only then non-zero, when the

phase point Γ lies on a compatible hypersurface with A(Γ) = a. This point of view can also be

used to split the ensemble density ρ(Γ, 0) in a macroscopic probability density function p(a, 0),

which is related to the probability of the system in a macroscopic state with the macroscopic

values a at time 0, and a conditional probability density w(Γ, A(Γ), 0) := w(Γ|A(Γ), 0) (i.e. a

PDF for Γ given a macroscopic state) according to

ρ(Γ, 0) = p(A(Γ), 0)w(Γ, A(Γ), 0)

=

∫
da p(a, 0)w(Γ, a, 0)δ(A(Γ)− a),

(3.2.1)

where

p(a, t) :=

∫
dΓ δ(A(Γ)− a)ρ(Γ, t), (3.2.2)

and especially at time t = 0

p(a, 0) :=

∫
dΓ δ(A(Γ)− a)ρ(Γ, 0). (3.2.3)

In case of equilibrium, eq. (3.2.2) becomes

peq(a) =

∫
dΓ δ(A(Γ)− a)ρeq(Γ). (3.2.4)

In particular, we will confine the following discussion to the choice of

w(Γ) := w(Γ, A(Γ), 0) =
ρeq(Γ)

peq(A(Γ))
, (3.2.5)

where subscript “eq” indicates the respective equilibrium probability density. As both A(Γ)

and a are vectors, the delta function δ(A(Γ)−a) is itself an abbreviation for the product of the

delta functions δ(Ai(Γ)− ai). When the function A(Γ) becomes time-dependent (i.e. A(Γ, t)),

we will write Ga(Γ, t) for the relevant variable.

The resulting equation for Ga(Γ) allows to express the GLE for any power of A, because a

simple multiplication by an and further integration over the state space yields the corresponding

GLE, i.e.

An(t) =

∫
da anGa(Γ, t). (3.2.6)

The relevant variables Ga(Γ) also have the following properties:

Ga(Γ)Ga′(Γ) = δ(a− a′)Ga(Γ), (3.2.7a)∫
dΓ w(Γ)Ga(Γ) = 1. (3.2.7b)
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The mean value of the relevant variables Ga(Γ, t) is by definition (see eq.(3.2.2)) equal to the

macroscopic probability density function p(a, t), i.e. 〈Ga(Γ, t)〉 = p(a, t). Note that one can

change to the Schrödinger picture in eq. (3.2.2) to obtain

p(a, t) =

∫
dΓ Ga(Γ, t)ρ(Γ, 0), (3.2.8)

For each real-valued function in state space f(a), there exists a corresponding (real-valued)

function F (Γ), which is connected to f(a) according to

F (Γ) =

∫
da f(a)Ga(Γ) = f(A(Γ)). (3.2.9)

Likewise, the time evolution of F (Γ) can be written as

F (Γ, t) =

∫
da f(a)Ga(Γ, t) (3.2.10)

Eq. (3.2.9) could be interpreted as a linear combination of the functions Ga(Γ).

As in Mori’s formalism, a Hilbert space L2(Φ, µ) is introduced, with Φ being the phase space

and µ being the measure defined by dµ(Γ) := w(Γ)dΓ. The scalar product is given by

(X,Y ) :=

∫
dΓ w(Γ)X(Γ)Y (Γ). (3.2.11)

As can be seen from eqs. (3.2.7a), (3.2.7b), and (3.2.9), the Ga(Γ) form an orthonormal basis

of the subspace of all functions F (Γ) ∈ L2(Φ, µ), i.e.

(Ga(Γ), Ga′(Γ)) =

∫
dΓ w(Γ)Ga(Γ)Ga′(Γ) = δ(a− a′). (3.2.12)

Hence, it is possible to introduce a projection operator P, which projects an arbitrary function

X(Γ) onto this subspace by virtue of

PX(Γ) :=

∫
da (Ga(Γ), X)Ga(Γ) (3.2.13)

The projector P is time-independent, idempotent, orthogonal (i.e. self-adjoint) and projects

(as required) on Ga(Γ). In equations, that is

P2 = P, (3.2.14a)

(X,PY ) = (PX,Y ) and (3.2.14b)

PGa(Γ) = Ga(Γ). (3.2.14c)
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The idempotence eq. (3.2.14a) can be shown for an arbitrary function X(Γ) with

P2X(Γ) =

∫
da′ (Ga′(Γ),PX(Γ))Ga′(Γ)

=

∫
da′da (Ga′(Γ), Ga(Γ))︸ ︷︷ ︸

δ(a−a′)

(Ga(Γ), X(Γ))Ga′(Γ)

=

∫
da (Ga(Γ), X(Γ))Ga′(Γ)

= PX(Γ).

(3.2.15)

The proof of P being self-adjoint is straightforward:

(X,PY ) =

∫
dΓ w(Γ)X

∫
da′ (Y,Ga′)Ga′

=

∫
da′ (Y,Ga′)

∫
dΓ w(Γ)XGa′︸ ︷︷ ︸

(X,Ga′ )

=

∫
dΓ w(Γ)Y

∫
da′ (X,Ga′)Ga′

= (PX,Y ).

(3.2.16)

Finally, eq. (3.2.14c) is proved by

PGa(Γ) =

∫
da′ (Ga, Ga′)︸ ︷︷ ︸

δ(a−a′)

Ga′

= Ga(Γ).

(3.2.17)

3.2.1 Time evolution of Ga(Γ, t)

It remains to split up the time evolution of Ga(Γ, t) into a systematic and a random part.

Therefore, we use the decomposition of the Liouville propagator

eiLt = eiLtP +

∫ t

0

du eiLuPiL(1− P)eiL(1−P)(t−u) + (1− P)eiL(1−P)t, (3.2.18)

which can be proved by differentiation. By inserting eq. (3.2.18) into the time evolution

equation

∂

∂t
Ga(Γ, t) = eiLtiLGa(Γ), (3.2.19)

one obtains the decomposed dynamics

∂

∂t
Ga(Γ, t) = eiLtPĠa(Γ) + i

∫ t

0

du eiLuPL(1− P)eiL(1−P)(t−u)Ġa(Γ)

+ (1− P)eiL(1−P)tĠa(Γ).

(3.2.20)
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The structure of eq. (3.2.20) can be further simplified by introducing various substitutions

which point to the physical interpretations of the terms. First, the term of the “random force”

is defined by

Fa(t) := (1− P)eiL(1−P)tĠa(Γ). (3.2.21)

The time derivative of G(Γ) may be casted into the form of a flux, i.e.

Ġa(Γ) = iLGa(Γ) = −
∑
j

∂

∂aj
Ga(Γ)Ȧj . (3.2.22)

We have used the chain rule of differentiation to arrive at this form:

iLδ(Aj(Γ)− aj) =
∂δ(Aj(Γ)− aj)

∂Aj
· iLAj = −∂δ(Aj(Γ)− aj)

∂aj
· iLAj . (3.2.23)

Then, Fa(t) may be rewritten as

Fa(t) = −
∑
j

∂

∂aj
Rj(a, t), (3.2.24)

where Rj(a, t) is defined by

Rj(a, t) := (1− P)eiL(1−P)tGa(Γ)Ȧj . (3.2.25)

The first term on the RHS in eq. (3.2.20) can be rewritten as

eiLtPĠa(Γ) = eiLt
∫
da′ (iLGa, Ga)Ga′

= −
∑
j

eiLt
∫
da′ (

∂

∂aj
GaȦj , Ga′)Ga′

= −
∑
j

∫
da′

∂

∂aj
(Ȧj , Ga′)︸ ︷︷ ︸

=:vj(a′)

δ(a− a′)Ga′(Γ, t)

= −
∑
j

∂

∂aj
vj(a)Ga(Γ, t),

(3.2.26)

where vj(a) is called the drift vector. For the second term, we can simplify by

PiL(1− P)eiL(1−P)(t−u)Ġa(Γ) = PiLFa(t− u), (3.2.27)

and further

(Ga′(Γ), iLFa(t− u)) = −(iLGa′(Γ), Fa(t− u))

= −
∑
j,k

∂

∂aj

∂

∂a′k

(
Ga′(Γ), ȦkRj(a, t− u)

)
= −

∑
j,k

∂

∂aj

∂

∂a′k
Djk(a, a′, t− u),

(3.2.28)
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where the diffusion kernels are defined by

Djk(a, a′, t− u) :=
(
Rj(a, t− u), ȦkGa′(Γ)

)
(3.2.29)

By using these results and by partial integration with respect to a′, eq. (3.2.20) can be

rewritten as
∂

∂t
Ga(Γ) =−

∑
j

∂

∂aj
vj(a)Ga(Γ, t)

+

∫ t

0

du
∑
j,k

∂

∂aj

∫
da′ Djk(a, a′, t− u)

∂

∂a′k
Ga′(Γ, u)

+ Fa(t).

(3.2.30)

Eq. (3.2.30) concludes the decomposition and is an exact equation, which allows to derive

either the generalised Fokker-Planck equation or the generalised Langevin Equation. The former

results from averaging eq.(3.2.30) over an initial microscopic probability density function ρ(Γ, 0)

of the aforementioned form, i.e.

ρ(Γ, 0) =

∫
da p(a, 0)w(Γ)δ(A(Γ)− a), (3.2.31)

whereas the latter can be generated by using the property eq. (3.2.6), i.e. we multiply eq.

(3.2.30) by a and integrate over a. Hence, the GLE reads

∂

∂t
A(t) =

∑
j

∫
da vj(a)Ga(Γ, t)

+

∫
da a

∫ t

0

du
∑
j,k

∂

∂aj

∫
da′ Djk(a, a′, t− u)

∂

∂a′k
Ga′(Γ, u)

+

∫
da aFa(t).

(3.2.32)

Additionally, it is possible to rewrite the diffusion kernels in eq. (3.2.29) by using the facts

Rj(a, 0) = (1− P)Ga(Γ)Ȧj

= Ga(Γ)Ȧj −Ga(Ga, Ȧj),
(3.2.33)

and

(Ga, (1− P)X) = (PGa, (1− P)X) = ((1− P)PGa, X) = 0. (3.2.34)

Therefore,

Djk(a, a′, t− u) = (Rj(a, t− u), Rk(a′, 0)), (3.2.35)

which is a generalised fluctuation-dissipation theorem.
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Chapter 4

Mazur-Oppenheim Projector

4.1 Introduction

The work of Mazur and Oppenheim (1970) was the first rigorous derivation of the phenomeno-

logical Langevin equation of Brownian Motion from microscopic dynamics. The model was

comprised of a Brownian particle (the system) suspended in a fluid of light particles (the bath).

With the introduction of a projection operator P (henceforth the MO-projector), it was possible

to derive an exact equation of motion from the Liouville-equation. By going to the Brownian

limit and making assumptions about the time development of correlations of the bath variables,

Mazur and Oppenheim arrived at the phenomenological Langevin equation of a free Brownian

particle.

While the original work restricted itself to describe the momentum of the Brownian particle,

the model was later extended to well behaved functions φ(R,P) of the position and momen-

tum of the B-particle (Albers, 1971). Deutch (1971) finally provided the general model for n

B-particles. The lack of external potentials for the B-particle was overcome by Kim and Op-

penheim (1972), although this work is only valid for the model of the original paper by Mazur

and Oppenheim, i.e. the momentum of the Brownian particle. However, the generalisation to

functions of the space and momentum of the B-particle is straightforward as will be shown in

the derivation. About 25 years later, Shea (1997) again generalised the formalism to couplings

to non-equilibrium baths.

The MO-projector was used f.e. in Deutch and Silbey (1971) to describe a Brownian particle

in a harmonic lattice. Kim and Oppenheim (1971) used it to derive the phenomenological
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Langevin equation of a rigid rotor, and Mohanty et al. (1982) did the same for a harmonic

oscillator. Interesting recent developments are due to Plyukhin et al. (see f.e. Plyukhin and

Schofield (2003), Plyukhin and Schofield (2004) and Plyukhin (2011)).

It should be noted that this model paved the way for an analysis of the B-particle in the

Mori-Zwanzig formalism by Hynes et al. (see f.e. Hynes et al. (1975a) and Hynes et al. (1975b)).

4.2 Derivation

4.2.1 Generalised Langevin Equation

In our derivation, we will follow the works of Mazur and Oppenheim (1970), Albers (1971) and

Kim and Oppenheim (1972). The Hamiltonian for the total system is given by

H = H0 + HB , (4.2.1)

where HB is the Hamiltonian of the Brownian particle and consists essentially of the kinetic

energy and an external potential which acts only on the Brownian particle but not on the bath

particles,

HB =
P2

2M
+W (R). (4.2.2)

H0 is the bath Hamiltonian consisting of the kinetic energy of all bath particles, an interaction

potential between bath particles U(rN ) and the interaction potential V (rN ,R) between bath

particles and the fixed Brownian particle, i.e.

H0 =
pN · pN

2m
+ U(rN ) + V (rN ,R). (4.2.3)

Regarding V an assumption is made, which states that V has to be the sum of pair interactions

V =

N∑
i=1

v(|ri −R|). (4.2.4)

The Liouville operator iL gets split up in the usual way as

iL = iL0 + iLB , (4.2.5)

with

iL0 =

N∑
i=1

[pi
m
· ∇ri −∇ri(U + V ) · ∇pi

]
, (4.2.6)
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iLB =

(
P

M

)
· ∇R + F · ∇P + K · ∇P, (4.2.7)

where

F := −∇RV (4.2.8)

and

K := −∇RW (R). (4.2.9)

Mazur and Oppenheim define the projection operator P acting on an arbitrary variable B

as the expectation value over the bath + interaction equilibrium distribution, i.e.

PB := 〈B〉 :=

∫
drNdpN ρ0B, (4.2.10)

where the density function is given by

ρ0(Γ) =
e−βH0∫

drNdpN e−βH0
. (4.2.11)

By following the usual expansion with Duhamel’s formula (or Dyson decomposition)

ei(1−P)Lt = eiLt −
∫ t

0

dτ eiL(t−τ)iPLei(1−P)Lτ (4.2.12)

and letting it act on (1 − P)iLφ(0) where φ(0) = φ(R,P) (φ(t) := eiLtφ(0)) is an arbitrary

function, we get

ei(1−P)Lt(1−P)iLφ(0) = eiLt(1−P)iLφ(0)−
∫ t

0

dτ eiL(t−τ)iPLei(1−P)Lt(1−P)iLφ. (4.2.13)

By first evaluating the first term on the right hand side of eq. (4.2.13), we can simplify it to

eiLt(1− P)iLφ(0) = eiLtiLφ(0)︸ ︷︷ ︸
∂
∂t e

iLtφ(0)=:φ̇(t)

−eiLtPiLφ(0)

= φ̇(t)− eiLtPiLBφ(0)

= φ̇(t)− eiLt
((

P

M

)
· ∇Rφ(0) + K · ∇Pφ(0)

)
.

(4.2.14)

Here, we have used the facts that

PiL0φ(0) = 0, (4.2.15)
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because φ(0) doesn’t depend upon rN or pN , and

PiLBφ(0) =
P

M
· ∇Rφ(0) + K · ∇Pφ(0). (4.2.16)

Eq. (4.2.16) can be proved by

PiLBφ(0) = 〈iLBφ(0)〉 =
1

Z

∫
drNdpN ρ0iLBφ(0) =

= ∇Pφ(R,P) · 1

Z

∫
drNdpN ρ0F +

〈(
P

M

)
· ∇Rφ(0) + K · ∇Pφ(0)

〉
= −∇Pφ(R,P) · 1

Z

∫
drNdpN e−βH0∇RH0 +

〈(
P

M

)
· ∇Rφ(0) + K · ∇Pφ(0)

〉
=

〈(
P

M

)
· ∇Rφ(0) + K · ∇Pφ(0)

〉
=

(
P

M

)
· ∇Rφ(0) + K · ∇Pφ(0).

(4.2.17)

In order to evaluate eq. (4.2.13) further, we introduce the definition of the projected dynamics

force F †(t) (which corresponds to the stochastic random force in the phenomenological theory)

F †(t) := ei(1−P)Lti(1− P)Lφ(0)

= ei(1−P)LtF · ∇Pφ(0).
(4.2.18)

The second line of eq. (4.2.18) was derived by using eqs. (4.2.7),(4.2.15) and (4.2.16). Therefore,

eq. (4.2.13) can be rewritten as

φ̇(t) = F †(t) + eiLt
(

P

M

)
· ∇Rφ+ eiLtK · ∇Pφ(0) +

∫ t

0

dτ eiL(t−τ)
〈
iLBF †(τ)

〉
, (4.2.19)

where we have used eq. (4.2.15) and eq. (4.2.16). We will simplify the expectation value under

the integral sign in eq. (4.2.19). Firstly, we note that because of the idempotence of P

〈
F †(t)

〉
=
〈
(1− P)F †(t)

〉
= P(1− P)F †(t) = 0. (4.2.20)

Hence,

∇R

〈
F †(t)

〉
= 0

= ∇RPei(1−P)Lti(1− P)Lφ(0)

= ∇R

∫
drNdpN e−βH0F †(t) =

∫
drNdpN ∇Re

−βH0F †(t)

=

∫
drNdpN βFe−βH0F †(t) +

∫
drNdpN e−βH0∇RF

†(t)

=
〈
∇RF

†(t)
〉

+ β
〈
FF †(t)

〉
.

(4.2.21)
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By using eq. (4.2.21), the expectation value simplifies to

〈
iLBF †(t)

〉
=

(
∇P − β

P

M

)
·
〈
FF †(t)

〉
, (4.2.22)

and the exact generalised Langevin equation for any arbitrary function of the system variables

φ(R,P) is

φ̇(t) = F †(t) + eiLt
(

P

M

)
· ∇Rφ(0) + eiLtK · ∇Pφ(0)

+

∫ t

0

dτ eiL(t−τ)

(
∇P − β

P

M

)
·
〈
FF †(τ)

〉
.

(4.2.23)

4.3 Equivalence of the Mazur-Oppenheim and Zwanzig GLE

4.3.1 Equivalence

Having defined Zwanzig’s GLE in eq. (1.4.4), we will prove the following theorem.

Theorem 3. For the special case of no coupling between the momenta of the system and the heat

bath, i.e. Hb(X,Y ) =
∑N
i

(
p2i
2 + ki

2 (qi − fi(x))
2
)
and a physical system Hamiltonian Hs(X) =

v2

2 +U(x), the GLE derived by the Mazur-Oppenheim projector coincides with Zwanzig’s GLE.

Proof. The MO-GLEs for {x, v} are given by

dx

dt
= v(t), (4.3.1a)

dv

dt
= K(t) +

∫ t

0

dτ eiL(t−τ) (∂v − βv)
〈
FF †(τ)

〉
+ F †(t). (4.3.1b)

The eqs. (4.3.1) are equivalent to Zwanzig’s GLEs eqs. (1.4.8b), if the stochastic force term

F †(t) is the same in MO’s and Zwanzig’s equations and if ∂v
〈
FF †(τ)

〉
= 0. By definition,

F = − ∂

∂x
V (q, x) = −

∑
i

ki
2

∂

∂x
(qi − fi(x))

2

=
∑
i

ki (qi − fi(x))
∂fi(x)

∂x
,

(4.3.2)

and F is therefore not dependent on v or pi. Using this result, we know that

∂v
〈
FF †(τ)

〉
= ∂v

〈
Fei(1−P)LtF

〉
=
〈
F∂ve

i(1−P)LtF
〉
, (4.3.3)
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and we therefore only have to inspect the term ∂ve
i(1−P)LtF . We will split the Liouville operator

iL in a part iLL linear in x and q and a nonlinear part iLN , i.e.

iLL :=
∂H

∂v

∂

∂x
−
(
∂H

∂x

)
L

∂

∂v
+
∑
i

(
∂H

∂pi

∂

∂qi
−
(
∂H

∂qi

)
L

∂

∂pi

)
, (4.3.4a)

iLN := −
(
∂H

∂x

)
N

∂

∂v
−
∑
i

(
∂H

∂qi

)
N

∂

∂pi
, (4.3.4b)

where subscript L or N indicates the linear or nonlinear terms. In case of the partial derivatives

with respect to qi, we can give them explicitly by(
∂H

∂qi

)
L

= kiqi, (4.3.5a)(
∂H

∂qi

)
N

= −kifi(x). (4.3.5b)

We now expand ei(1−P)LtF by using the Dyson decomposition in order to get

ei(1−P)LtF = ei(1−P)LLtF +

∫ t

0

dτ ei(1−P)L(t−τ)i(1− P)LNei(1−P)LLτF. (4.3.6)

As the term ei(1−P)LLtF is also repeated under the integral sign, we will first analyse that

term. The derivative with respect to the time t results in a first order differential equation

∂FL(t)

∂t
= i(1− P)LLFL(t) (4.3.7)

with FL(t) := ei(1−P)LLtF . We use the ansatz

FL(t) = ρ(t)x+ σ(t)v +
∑
j

µj(t)qj +
∑
j

νj(t)pj +
∑
j

φj(t)fj(x) (4.3.8)

in the differential equation (4.3.7) to get the two equations

∂FL(t)

∂t
= ρ̇(t)x+ σ̇(t)v +

∑
j

µ̇j(t)qj +
∑
j

ν̇j(t)pj +
∑
j

φ̇j(t)fj(x) (4.3.9)

and

(1− P)iLLFL(t) =
∑
j

µj(t)pj −
∑
j

kjqjνj(t) +
∑
j

kjνj(t)fj(x). (4.3.10)

Equating the coefficients in eqs. (4.3.9) and (4.3.10), we deduce the coupled ODEs

ρ̇(t) = 0, (4.3.11a)

σ̇(t) = 0, (4.3.11b)

µ̇j(t) = −kjνj(t), (4.3.11c)

ν̇j(t) = µj(t), (4.3.11d)

φ̇j(t) = kjνj(t) = −µ̇j(t), (4.3.11e)
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with the initial conditions (following from eq. (4.3.2))

ρ(0) = 0, (4.3.12a)

σ(0) = 0, (4.3.12b)

µj(0) = kj
∂fj(x)

∂x
, (4.3.12c)

νj(0) = 0, (4.3.12d)

φj(0) = −kj
∂fj(x)

∂x
. (4.3.12e)

By solving eqs. (4.3.11), we finally arrive at a solution for FL(t), namely

FL(t) =
∑
j

kj
∂fj(x)

∂x
(qj − fj(x)) cos

(√
kjt
)

+
∑
j

√
kj
∂fj(x)

∂x
pj sin

(√
kjt
)
. (4.3.13)

As eq. (4.3.13) doesn’t depend upon v, the partial derivative with respect to v vanishes in eq.

(4.3.3). We now turn to the integral term in eq. (4.3.6) and analyse i(1− P)LNFL(s). As

iLNFL(s) = −
∑
j

k
3/2
j fj(x)

∂fj(x)

∂x
sin
(√

kjt
)

(4.3.14)

is independent of {qi, pi}, the orthogonal projection i(1−P)LNFL(s) vanishes, and so does the

integral.

The results so far are

ei(1−P)LtF = FL(t) (4.3.15)

and

∂v
〈
FF †(τ)

〉
= 0. (4.3.16)

The MO-GLEs read therefore

dx

dt
= v(t), (4.3.17a)

dv

dt
= −∂U(x)

∂x
− β

∫ t

0

dτ
(
eiL(t−τ) 〈FFL(τ)〉

)
v(t− τ) + FL(t). (4.3.17b)

〈FFL(τ)〉 can be evaluated to give the memory kernel or FDT

K(τ) := β 〈FFL(τ)〉 =
∑
j

kj

(
∂fj(x(0))

∂x

)(
∂fj(x(τ))

∂x

)
cos
(√

kjτ
)

(4.3.18)

This concludes our proof as these equations are equivalent to Zwanzig’s GLEs derived in sec.

1.4.
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Chapter 5

Grabert-Projector

5.1 Introduction

Historically, the Grabert projector was introduced in Grabert (1977) and belongs to the family

of projection operators derived by Robertson (1966) and Kawasaki and Gunton (1973). It was

further developed in Grabert (1978), in which the focus was upon systems with a generalised

canonical density matrix, and a final summary was given in Grabert (1982).

The Grabert projector differs from the different kinds of Mori-Zwanzig approaches in using

a relevant probability density function to describe macrovariables and thus stays in the phase

space description (as opposed to the Hilbert space description in the Mori-Zwanzig case). The

projection operator is time-dependent and the decomposition of dynamics leads to two equations

instead of one GLE: an equation for the mean values of the macrovariables and another one for

the fluctuations. It should also be noted that Grabert’s formalism doesn’t specifically depend on

the heat bath to be in equilibrium, though its form was derived with the generalised canonical

density in mind.

In the next sections, we will introduce Grabert’s formalism based on Grabert (1977), Grabert

(1978) and Grabert (1982).
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5.2 Derivation

5.2.1 Microscopic and Macroscopic Variables

As in the former chapters, we would like to represent the equations of motion for macroscopic

variables A(Γ) by a decomposition in two parts. Hence,

Ai(t) = Ai(t) + γi(t), (5.2.1)

and likewise for the time rate of change

Ȧi(t) = Ȧi(t) + γ̇i(t). (5.2.2)

In order to achieve such a decomposition, Grabert’s formalism goes further then the other

projection operator methods and decomposes the probability density function ρ(Γ, t) itself.

5.2.2 Relevant Probability Density and Projection Operator

Grabert’s formalism is centred around the notion of a relevant probability density function

ρ̄(Γ, t). In the introduction sec. 1.2.6, it was shown that the mean value αj of a macroscopic

variable Aj is given by

αj(t) = 〈Aj(t)〉 = tr (ρ(Γ, t)Aj) , (5.2.3)

with ρ(Γ, t) being the probability density function of the whole system and the trace tr being

defined by

tr (X) :=

∫
dΓ X (5.2.4)

for arbitrary X. Grabert introduced a so called relevant probability density function ρ̄(Γ, t),

which approximates the probability density function of the system. The formalism doesn’t

specify the exact functional form of ρ̄(Γ, t) (though the use of the generalised canonical density

simplifies calculations a lot), but restricts it with the following properties:

• ρ̄(Γ, t) is a probability density function, i.e. it is always positive ρ̄(Γ, t) ≥ 0 and normalised

with tr (ρ̄(Γ, t)) = 1.

• ρ(Γ, t) and ρ̄(Γ, t) yield the same mean values for the macroscopic variables at all times

t, i.e.

tr (Aj ρ̄(Γ, t)) = αj(t) = tr (Ajρ(Γ, t)) . (5.2.5)
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Grabert coined the term “macroequivalency” for this property.

• The time-dependence of ρ̄(Γ, t) arises only through the time-dependence of the mean

values αj , i.e.

ρ̄(Γ, t) = ρ̄(Γ, α(t)), (5.2.6)

where α(t) represents all mean values αj(t).

• An optional, though very useful, property is

ρ(Γ, 0) = ρ̄(Γ, 0) (5.2.7)

which explicitly takes care of the preparation procedure and will simplify terms containing

the “random force”.

Given a relevant probability density function ρ̄(Γ, t) with the properties defined as above, it

is possible to separate an arbitrary microscopic or macroscopic variable X(t) into a macroscopic

part X(t) and a fluctuation δX(t), i.e.

X(t) = X(t) + δX(t). (5.2.8)

The macroscopic part X(t) shall be defined by

X(t) := 〈X(t)〉+
∑
j

∂〈X(t)〉
∂αj(t)

(Aj − αj(t)), (5.2.9)

where the so called macroscopic value

〈X(t)〉 := tr (Xρ̄(Γ, αj(t))) (5.2.10)

looks formally similar to the mean value 〈X(t)〉 = tr (Xρ(Γ, t)), but only depends on the mean

values of the set of macroscopic variables {Aj(Γ)}. Because of eq. (5.2.9),

〈X(t)〉 = tr (Xρ̄(Γ, t)) = tr
(
X(t)ρ(Γ, t)

)
(5.2.11)

holds. Therefore, we define a projection operator P(t), which projects an arbitrary variable X

onto its macroscopic part by

P(t)X := tr (ρ̄(Γ, t)X) +
∑
j

(Aj − αj(t))tr
(
∂ρ̄(Γ, αj(t))

∂αj(t)
X

)
= X(t).

(5.2.12)
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In case of a time-independent relevant probability density ρ̄(Γ, α), the projection operator

reduces to

PX = tr (ρ̄(Γ, α)X) +
∑
j

(Aj − αj)tr
(
∂ρ̄(Γ, αj)

∂αj
X

)
. (5.2.13)

The projection operator P(t) is for different times t and t′ idempotent in the sense of

P(t)P(t′) = P(t′). (5.2.14)

This can be proved by using the definition of P and an arbitrary variable X, i.e.

P(t)P(t′)X = P(t)

tr (ρ̄(Γ, t′)X) +
∑
j

(Aj − αj(t′))tr
(
∂ρ̄(Γ, t′)

∂αj
X

)
= tr (ρ̄(Γ, t′)X) +

∑
j

(αj(t)− αj(t′))tr
(
∂ρ̄(Γ, t′)

∂αj
X

)

+
∑
j,k

(Ak − αk(t))tr

(
∂ρ̄(Γ, t)

∂αk
Aj

)
tr

(
∂ρ̄(Γ, t′)

∂αj
X

)

= tr (ρ̄(Γ, t′)X) +
∑
j

(Aj − αj(t′))tr
(
∂ρ̄(Γ, t′)

∂αj
X

)
= P(t′)X.

(5.2.15)

The time derivative of P(t) can be directly calculated from eq. (5.2.12) and results in

Ṗ(t)X =
∑
i,j

(Ai − αi)α̇j(t) tr

(
∂2ρ̄(Γ, t)

∂αi(t)∂αj(t)
X

)
. (5.2.16)

5.2.3 Decomposition of the Dynamics

With the aid of the projection operator P(t) as defined in the last section, the decomposition

of the dynamics in organised and disorganised motion can be accomplished.

As in the former chapters, we are interested in the dynamics of an arbitrary variable X(t)

for which the time rate of change can be expressed through the Liouville-propagator, i.e.

Ẋ(t) := eiLtẊ (5.2.17)

(remember the notation B = B(0) for arbitrary B(t)). The Liouville-propagator in eq. (5.2.17)

can be decomposed with the use of the projection operator according to

eiLt =eiLtP(t)

+

∫ t

s

du eiLuP(u)
(
iL − Ṗ(u)

)
(1− P(u))G(u, t)

+ eiLs (1− P(s))G(s, t),

(5.2.18)
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where s is arbitrary in the interval [0, t] and G(t′, t) is the anti-time-ordered exponential defined

by

G(t′, t) = T_ exp

{
i

∫ t

t′
ds L(1− P(s))

}
(t ≥ t′) (5.2.19)

In contrast to the other decompositions in the former chapters, the need for the time-ordered

exponential arises through the time-dependence of the projection operator. Eq. (5.2.18) can

be proved by differentiation and an alternative derivation is also given in Grabert (1982).

By inserting eq. (5.2.18) in eq. (5.2.17), we arrive at the exact decomposed equation of

motion for an arbitrary variable X(t)

Ẋ(t) = eiLtP(t)Ẋ +

∫ t

0

ds eiLsP(s)
[
iL − Ṗ(s)

]
(1− P(s))G(s, t)Ẋ

+ (1− P(0))G(0, t)Ẋ.

(5.2.20)

5.2.4 Generalised Transport and Langevin Equations

With eq. (5.2.20), the derivation of the generalised Langevin equations is almost complete. It

remains to apply the results to the set of macrovariables Aj(t), with which this sections deals.

As usual, fluctuations δAj(t) of the macrovariables Aj(t) are defined by deviations from

their mean values αj(t), thus

δAj(t) = Aj(t)− αj(t). (5.2.21)

Further on, we can evaluate the propagator/projector terms in eq. (5.2.20)

eiLtP(t)X = tr (ρ̄(Γ, t)X) +
∑
j

δAj(t)tr

(
∂ρ̄(Γ, t)

∂αj(t)
X

)
, (5.2.22a)

eiLtṖ(t)X =
∑
j,k

δAj(t)ȧk(t)tr

(
∂

∂ak(t)

∂ρ̄(Γ, t)

∂αj(t)
X

)
(5.2.22b)

to arrive at

Ȧj(t) = tr
(
ρ̄(Γ, t)Ȧj(t)

)
+
∑
k

Ωjk(t)δAk(t)

+

∫ t

0

ds tr
(
ρ̄(s)iL(1− P(s))G(s, t)Ȧj

)
+

∫ t

0

ds
∑
k

Φjk(t, s)δAk(s) + Fj(t)

(5.2.23)
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with the definitions

Ωjk(t) := tr

(
∂ρ̄(Γ, t)

∂ak(t)
Ȧj

)
, (5.2.24a)

Φjk(t, s) := tr

(
∂ρ̄(Γ, s)

∂ak(s)
iL(1− P(s))G(s, t)Ȧj

)
(5.2.24b)

−
∑
l

ȧl(s)tr

(
∂

∂al(s)

∂ρ̄(Γ, s)

∂ak(s)
G(s, t)Ȧj

)
, (5.2.24c)

Fj(t) := (1− P(0))G(0, t)Ȧj . (5.2.24d)

Eq. (5.2.23) would be the starting point for comparisons with the δ and Mazur-Oppenheim

projection operator procedures. Mori’s formalism, however, yields equations for the fluctuations

δAj(t) which will be derived subsequently. In order to do so, the equations for the mean values

αj(t) have to be derived. After that is done, they can be plugged into eq. (5.2.21) together

with (5.2.23) to yield the equations for δȦj(t).

The mean values α̇j(t) are determined by averaging eq. (5.2.23) with the initial probability

density function ρ(Γ, 0). Because of

tr (Xρ̄(Γ, t)) = tr ((P(t)X)ρ(Γ, t)) , (5.2.25)

(see eq. (5.2.11)) the general relation

tr (((1− P(0))X)ρ̄(Γ, 0)) = 0 (5.2.26)

holds for every variable X. Therefore,

〈Fj(t)〉 = tr (Fj(t)ρ(Γ, 0)) = 0, (5.2.27)

where we have additionally used the preparation property eq. (5.2.7) of the relevant probability

density function. It is that step which justifies this otherwise useless property. Thus, in the

mean value equation, the “random force” term Fj(t) doesn’t appear, and we can write

ȧj(t) = tr
(
ρ̄(Γ, t)Ȧj

)
+

∫ t

0

ds tr
(
ρ̄(Γ, s)iL(1− P(s))G(s, t)Ȧj

)
, (5.2.28)

because the terms containing fluctuations δAj(t) also vanish (obviously, as the average of δAj(t)

vanishes).

It remains to insert the result into eq. (5.2.23) to obtain the generalised Langevin equation

δȦj(t) =
∑
k

Ωjk(t)δAk(t) +

∫ t

0

ds
∑
k

Φjk(t, s)δAk(s) + Fj(t). (5.2.29)
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5.3 Relation to other projection operators

Four different projection operators have been discussed up to this point, and one might wonder

if there is a relationship between them. There is, and it is Grabert’s formalism from which all

other three formalism are derived by the special choice of a relevant probability density ρ̄(Γ).

In the following discussion, we will not derive the generalised Langevin equations of the

preceding chapters, as it suffices to derive the different projection operators. The relationship

between Mori’s formalism and Grabert’s formalism was shown in Grabert (1982), where also the

relation to the δ-projector was hinted at. The relation to Mazur and Oppenheim’s projection

operator is given by us.

5.3.1 Mori’s projection operator

Grabert’s projection operator for time-independent relevant probability densities is

PX = tr (ρ̄X) +
∑
i

(∆Ai − αi)tr
(
∂ρ̄

∂αi
X

)
, (5.3.1)

where we have already replaced Ai by Mori’s relevant variables ∆Ai. We choose Mori’s non-

equilibrium ensemble density (for negligible O(h2)) as our relevant probability density

ρ̄(Γ) = ρeq(Γ)

1 +
∑
j

hj∆Aj


= ρeq(Γ) +

∑
j,k

ρeq(Γ)(∆Aj ,∆Ak)−1∆Ajαk,

(5.3.2)

where the expression for hj has been taken from eq. (2.2.2). By using eq. (5.3.2) in eq. (5.3.1),

we get

PX = tr (ρeqX) +
∑
i,j

αj(∆Ai,∆Aj)
−1tr (ρeq∆AiX) +

∑
i

(∆Ai − αi)tr
(
∂ρ̄

∂αi
X

)
, (5.3.3)

and because

∂ρ̄

∂αi
=
∑
i,j

ρeq(∆Aj ,∆Ai)
−1∆Aj , (5.3.4)
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the projection operator finally reads

PX = tr (ρeqX) +
∑
i,j

(∆Ai,∆Aj)
−1αjtr (ρeq∆AiX)

+
∑
i,j

(∆Ai − αi)(∆Aj ,∆Ai)−1tr (ρeq∆AjX)

= tr (ρeqX) +
∑
i,j

∆Ai(∆Aj ,∆Ai)
−1tr (ρeq∆AjX)

(5.3.5)

The second term is already Mori’s projection operator, and because the projection operator

always appears with the Liouville operator in the GLEs (see eq. (5.2.29) with the definitions

eqs. (5.2.24)), one could find a projection operator P̃ which satisfies

iLP̃ = iLP. (5.3.6)

That is the case when we drop the first term of eq. (5.3.5), because the trace is independent

of Γ, but the Liouville operator includes derivatives ∂
∂Γ . Therefore, we have shown that Mori’s

formalism is a special case of Grabert’s.

5.3.2 δ-projection operator

In general, if a relevant probability density is linear in the mean values αi, it satisfies

ρ̄(Γ) =
∑
i

αi
∂ρ̄

∂αi
, (5.3.7)

and Grabert’s time-independent projection operator eq. (5.2.13) simplifies by direct substitu-

tion of eq. (5.3.7) to

PX =
∑
i

Ai tr

(
∂ρ̄

∂αi
X

)
. (5.3.8)

In the case of the δ-projector, the relevant variables are Ga(Γ) and their mean values are the

macroscopic probability density p(a). The time-independent relevant probability density of the

δ-projection operator is because of ρ̄(Γ, 0) = ρ(Γ, 0) (see eq. (3.2.1) and eq. (3.2.5))

ρ̄(Γ) = ρeq(Γ)

∫
da

p(a)

peq(a)
Ga(Γ) (5.3.9)

and is linear in the macroscopic probability density p(a). Therefore, we have to change the

projection operator in eq. (5.3.8) according to the replacements Ai → Ga(Γ),
∑
i →

∫
da, and

because the mean values αi are now given by the functions p(a), we are replacing αi → p(a).

56



CHAPTER 5. GRABERT-PROJECTOR 5.3. REL. TO OTHER PROJECTION OP.

The original derivative ∂ρ̄
∂αi

is now a functional derivative of ρ̄ with respect to p(a), i.e. δρ̄
δp(a) =

ρeq(Γ) 1
peq(a)Ga(Γ). Hence, the projection operator becomes

PX =

∫
da Gatr

(
δρ̄

δp(a)
X

)
. (5.3.10)

Using this result we get immediately the δ-projector

PX =

∫
da (Ga, X)Ga. (5.3.11)

5.3.3 Mazur & Oppenheim’s projection operator

In the case of Mazur & Oppenheim’s projection operator, the time-independent relevant prob-

ability density

ρ̄(Γ) = δ(R−R0)δ(P−P0)ρ0(Γ), (5.3.12)

where ρ0(Γ) is defined as in eq. (4.2.11), has to be used in Grabert’s time-independent projection

operator

PX = tr (ρ̄X) + (φ(R0,P0)− 〈φ(R,P)〉) tr

(
∂ρ̄

∂α
X

)
, (5.3.13)

with α = 〈φ(R,P)〉. As the potential V in H0 only depends on the absolute value |ri−R| (see

eq. (4.2.4)), the expectation value of φ(R,P) is equal to φ(R0,P0) and the second term in eq.

(5.3.13) vanishes.

This leads immediately to the result

PX =

∫
dΓ0 ρ0(Γ0)X. (5.3.14)

In eq. (5.3.14), Γ0 denotes the phase space variables for the heat bath (i.e. Γ without R and

P). This result concludes the comparison of the four projection operators.
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Abstract

The method of projection operators in statistical mechanics describes the separation of equa-

tions of motions for properties of interest in a relevant and a fluctuating part, where the fluctu-

ating part consists of constituents which are individually not important. With these techniques,

it is possible to derive generalised Langevin equations or generalised Fokker-Planck equations,

which extend and motivate known phenomenological equations.

In this thesis, we describe the concept of projection operators in statistical mechanics,

review four specific choices of them and show that Grabert’s formalism (Grabert (1982)) is a

generalisation of the others. Examples are given and relationships to the method of partially

solving the equations of motion as described in Zwanzig (1973) are pointed out.
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Zusammenfassung

Die Methode der Projektionsoperatoren in der Statistischen Mechanik beschreibt die Aufteilung

von Bewegungsgleichungen physikalisch interessanter Größen in einen relevanten und einen

fluktuierenden Teil, wobei die Bestandteile des fluktuierenden Teils im Einzelnen nicht maßge-

blich sind. Mit dieser Methode ist es möglich, verallgemeinerte Langevin- oder Fokker-Planck-

Gleichungen herzuleiten, die bereits bekannte phänomenologische Gleichungen erweitern.

In dieser Masterarbeit wird die Methode der Projektionsoperatoren in der Statistischen

Mechanik beschrieben und anhand von vier unterschiedlichen Formalismen näher betrachtet. Es

wird gezeigt, dass Graberts Formalismus (Grabert (1982)) eine Verallgemeinerung der anderen

betrachteten Projektionsoperator-Formalismen ist. Zusätzlich werden Beispiele behandelt und

Verbindungen zu der Methode der teilweisen Lösung der Bewegungsgleichungen aus Zwanzig

(1973) hergestellt.
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