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Abstract

In this thesis I describe a setup to treat effects of heavy flavors in deep inelastic scattering (DIS)
using soft-collinear effective theory (SCET), both in the classical DIS region where 1 − x ∼ O(1)
and the endpoint region x → 1. The structure functions can be factorized into non-perturbative
matrix elements of operators in the effective theory which correspond to the standard QCD parton
distribution functions (PDFs) and Wilson coefficients encoding the hard interactions. In the classical
region the renormalization of the effective theory operators leads to the usual DGLAP evolution for
the PDFs. Two different schemes for including effects of a heavy flavor with mass m � ΛQCD, a
fixed flavor number (FFN) and a variable flavor number (VFN) scheme, are discussed. These are
well-known in the QCD literature but are formulated here for DIS for the first time in an effective
theory language. The FFN scheme is appropriate if the mass is larger or of the order of the hard
scale (which is given by the momentum transfer Q2 in the process), whereas in the VFN scheme the
evolution of a new perturbatively generated PDF for the heavy flavor introduced at the mass scale
resums logarithms of the ratio of the hard scale over the mass scale and therefore provides a setup
that is applicable even if m2 � Q2. In the endpoint region a factorization theorem separating the
physics at the hard scale, the jet scale, given by the invariant mass of the hadronic final state, and
the scale ΛQCD is derived in SCET, which allows for the resummation of logarithms of 1 − x that
become large in that region. This was done for the first time for massive quark production in DIS.
Finally a numerical analysis is performed to estimate the effects of the massive calculation compared
to the massless one.

Zusammenfassung

In dieser Arbeit beschreibe ich eine Methode um die Effekte von schweren Quarks in tief-inelastischer
Streuung (DIS) mithilfe von Soft-Collinear Effective Theory (SCET) zu behandeln, sowohl in der
klassischen DIS Region 1− x ∼ O(1) als auch in der Endpunktregion x→ 1. Die Strukturfunktionen
können faktorisiert werden in nicht-perturbative Matrixelemente von Operatoren in der effektiven
Theorie, welche den üblichen QCD Partonverteilungsfunktionen (PDFs) entsprechen, und Wilson
Koeffizienten welche die harte Wechselwirkung beschreiben. In der klassischen Region ergibt die
Renormierung der Operatoren in der effektiven Theorie die übliche DGLAP Evolution für die PDFs.
Es werden zwei verschieden Schemen zur Einbindung von schweren Quarks mit Masse m � ΛQCD

diskutiert, ein “fixed flavor number” (FFN) und ein “variable flavor number” (VFN) Schema. Diese
sind in der QCD Literatur bekannt, werden hier jedoch zum ersten Mal für DIS mit Hilfe von effektiven
Theorien formuliert. Das FFN Schema ist anwendbar wenn die Masse größer oder von der Ordnung
der harten Skala ist (welche durch den Impulsübertrag Q2 im Prozess gegeben ist), während im VFN
Schema in der Evolution einer neuen, perturbativ an der Massenskala generierten PDF für das schwere
Quark Logarithmen, die das Verhätlnis der harten Sakla und der Massenskala beinhalten, resummiert
werden. Daher liefert das VFN Schema ein Setup welches auch für den Fall m2 � Q2 anwenbar ist. In
der Endpunktregion wird ein Faktorisierungstheorem in SCET hergeleitet welches die Physik an der
harten Skala, der Jetskala, gegeben durch die invariante Masse des hadronischen Endzustandes, und
der Skala ΛQCD trennt und das Resummieren von Logarithmen von 1 − x erlaubt, welche in dieser
Region groß werden. Dies wurde zum ersten Mal für schwere Quark Produktion in DIS abgeleitet. In
einer numerischen Analyse werden die Effekte der massiven Rechnung mit der masselosen verglichen.
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1 INTRODUCTION

1 Introduction

In the era of the search for new physics at hadron colliders high precision in our understanding of strong
interaction is an import factor for success in currently running and future experiments. Therefore a lot
of effort has been made to reduce theoretical uncertainties in the predictions of QCD and determination
of its fundamental parameters. One essential ingredient for understanding processes with hadrons in the
initial state are parton distribution functions (PDFs), which have to be fitted to experimental data.
The process that is mainly used for extracting PDFs from experiment is deep inelastic scattering (DIS)
where one has to deal with only one hadron in the initial state. All common PDF sets like MSTW [1] or
CTEQ10 [2] rely heavily on fits to DIS data.
For higher precision in the determination of PDFs and the analysis of processes at hadron colliders the
effects of heavy quarks can not be neglected in the perturbative calculations. One challenge arising in
these calculations is that if there is a large hierarchy between the mass and the hard scale Q2 in the
process, large logarithms of the ratio of these scales will weaken the convergence of the perturbative
expansion when choosing an inappropriate scheme of including different numbers of active flavors. A
scheme with nf light active flavors not including the heavy quark in the RG evolution for PDFs and
couplings is applicable in the regime where m2 & Q2 because the massive flavor decouples in the limit
m2

Q2 → ∞, but leads to large uncanceled logarithms of m2

Q2 in the case where m2 � Q2. On the other

hand a scheme with nf light plus one heavy active flavors provides the correct limit for m2

Q2 → 0 and is

therefore suitable when m2 . Q2, but is inappropriate for m2 � Q2 because the heavy quark does not
decouple properly.
In the early 1990s the so called ACOT scheme [3,4] was developed to systematically include heavy flavors
with an arbitrary scaling of the mass relative to the hard scale by smoothly combining these two schemes.
In this scheme a change from a description with PDFs for nf light flavors to one with nf light plus one
heavy flavor is made at the mass scale by reshuffling terms containing mass singularities from nearly
on-shell fluctuations from the hard Wilson coefficients into a new PDF for the heavy flavor. With the
change between the two schemes at the mass scale the ACOT scheme provides a setup that is applicable
for an arbitrary ratio of the mass and the hard scale (as long as both can still be treated perturbatively).
Since then various similar schemes in the same spirit have been proposed for including effects of massive
flavors, see for example Ref. [5] for a review.
From a more modern point of view these “variable flavor number schemes” can be associated to the
use of different effective field theories in the different regimes, where the heavy particles are integrated
out at their respective mass scale and do not contribute in the RG evolution below that scale. The
appropriate effective field theory of QCD that is designed to deal with collimated hadronic objects, like
we have for DIS in the initial state when using the Breit frame or also in the final state in the end-
point region x → 1, is soft-collinear effective theory (SCET) [6–9]. It allows for deriving factorization
theorems for high energetic hadronic processes and for defining the PDFs as non-perturbative matrix ele-
ments of operators in the effective theory [10] analogous to the QCD operator definition of PDFs [11,12].
SCET can not only be used to factorize the structure functions into Wilson coefficients and PDFs and
to provide a systematic way for including or integrating out massive flavors, but also to resum large log-
arithms that arise in the jet limit of the hadronic final state when its invariant mass reaches its minimum.

In Sec. 2 we start with a brief review of soft-collinear effective theory.
The effective field theory setup for DIS with massless quarks is described in Sec. 3. In Sec. 3.1 the
kinematics of DIS with massless quarks, the cross section and the definition of the form factors are sum-
marized. In Sec. 3.2 we will show how SCET can be used to separate non-perturbative and perturbative
physics to factorize the form factors into matrix elements of SCET operators and hard Wilson coefficients
and that these non-perturbative matrix elements correspond to the well known QCD parton distribution
functions. In Sec. 3.3 this effective field theory setup is used to determine the matching coefficients at
O(αs) by calculating the relevant 1-loop diagrams in QCD with massless quarks. Finally in Sec. 3.4 the
renormalization of the PDFs leads to the standard DGLAP equations that allow for the evolution of the
PDFs from one energy scale to another.
The effects of a massive quark are investigated in Sec. 4. In Sec. 4.1 the changes in the kinematics due
to the mass of the initial state parton are discussed. In Sec. 4.2 a fixed flavor number scheme is used
to include a heavy flavor with mass m � ΛQCD. The relevant QCD 1-loop diagrams will be calculated
with massive quarks on the internal lines and it will be shown that the matching coefficients that are

obtained in that way do not lead to the correct massless limit because of uncanceled logarithms of m2

Q2 .
This problem can be solved by using a variable flavor number scheme where the number of active flavors
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1 INTRODUCTION

in the RG evolution is changed at the mass threshold to resum those logarithms in the evolution of a new
PDF for the heavy flavor which directly leads to the ACOT scheme for DIS, as described in Sec. 4.3. The
QCD and SCET diagrams with massive quarks are calculated to find the hard matching coefficients and
the threshold corrections that arise in the change from a theory with nf flavors to a theory with nf + 1
flavors to O(αs) and to check that this new approach reproduces the known QCD results for the ACOT
scheme. We show explicitly that the hard matching coefficients in the VFN scheme have the correct
massless limit.
In Sec. 5 we will discuss DIS in the endpoint region x → 1 where logarithms of 1 − x in the matching
coefficients become large and can spoil the perturbative expansion. To avoid this the effective field theory
setup can be extended by introducing a jet function at the scale µJ = Q

√
1− x and a factorization

theorem that factorizes the form factor into a hard function, a jet function and the PDF is derived in
Sec. 5.1 and the hard and the massive jet function are calculated to O(αs). In Sec. 5.2 and Sec. 5.3 the
evolution kernels are calculated to LL approximation and consistency relations for the evolution kernels
and anomalous dimensions are checked explicitly.
In Sec. 6 a numerical analysis is performed to compare the fixed order results with the results with NLL
and NNLL resummation for large x, both in the massless and the massive case, with Q = 30 GeV and
Q = 5 GeV and the masses of the bottom and the charm quark.
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2 SOFT-COLLINEAR EFFECTIVE THEORY

2 Soft-Collinear Effective Theory

Soft-Collinear Effective Theory (SCET) [6–10] is an effective field theory of QCD applicable for highly
boosted quarks and gluons interacting among each other and with soft gluons and is therefore the right
effective theory to describe jets, objects consisting of high energetic and narrowly collimated hadrons. It
achieves a systematic separation of different energy scales involved in a process and allows for deriving
factorization theorems that can be used to resum large logarithms of ratios of the different scales that
could spoil the perturbative expansion. SCET has a wide range of use, from the decay of heavy to light
particles to high energetic processes in particle colliders.

2.1 Power Counting in SCET

We start by introducing light-cone coordinates that will be useful for the separation of different modes
in the effective theory. We define the lightlike vectors

nµ = (1, 0, 0,−1), n̄µ = (1, 0, 0, 1), (2.1)

that fulfill the relations n · n = n̄ · n̄ = 0 and n · n̄ = 2. Every four-vector can be decomposed into
light-cone components p+ and p− and perpendicular components p⊥

pµ = p−
nµ

2
+ p+ n̄

µ

2
+ pµ⊥, p2 = p+p− − |p2

⊥|, (2.2)

where p+ = n · p and p− = n̄ · p. In d dimensions the vector pµ⊥ is d− 2 dimensional.1 The same notation
can also be used for gamma matrices and the metric tensor, so that

γµ⊥ := γµ − /̄nn
µ

2
− /nn̄

µ

2
γµ⊥γ

⊥
µ = d− 2 (2.3)

gµν⊥ := gµν − n̄µnν

2
− nµn̄ν

2
gµν⊥ g⊥µν = d− 2 (2.4)

We can now distinguish different modes according to the scaling of their components with respect to the
expansion parameter λ� 1 of the effective theory, Fig. 1:

hard: (p+
h , p

−
h , p

⊥
h ) ∼ Q(1, 1, 1) p2

h ∼ Q2

n-coll.: (p+
n , p

−
n , p

⊥
n ) ∼ Q(λ2, 1, λ) p2

n ∼ Q2λ2

n̄-coll.: (p+
n̄ , p

−
n̄ , p

⊥
n̄ ) ∼ Q(1, λ2, λ) p2

n̄ ∼ Q2λ2

usoft: (p+
us, p

−
us, p

⊥
us) ∼ Q(λ2, λ2, λ2) p2

us ∼ Q2λ4 (2.5)

The n- and n̄-coll. modes describe 2 back to back jets, which is the situation that we will encounter for

P−

P+

∼ Q2λ4

usoft

∼ Q2

QQλ2

Qλ2

Q

∼ Q2λ2

n−
coll.

hard

n−coll.

Figure 1: Modes in SCETI in the p+p− plane. Hard modes with off-shellness ∼ Q2 are integrated out,
the relevant modes in the effective theory are collinear and usoft with off-shellness ∼ Q2λ2 and ∼ Q2λ4

respectively.

1Note that |p2⊥| denotes the square of the three vector, i.e. |p2⊥| = −p
µ
⊥p
⊥
µ > 0.

3



2 SOFT-COLLINEAR EFFECTIVE THEORY

DIS in the Breit frame for x → 1. The Breit frame is the frame where no energy is transferred between
the two scattering particles (the electron and the proton in the case of DIS). Here the initial state will be
a n-coll. particle that scatters off the virtual photon with momentum Q to become an outgoing n̄-coll.
particle. So the hadronic initial and final state in DIS for x→ 1 in this particular frame can be described
by two back to back jets, one incoming and one outgoing. For more jets in different directions one would
have to introduce more lightlike vectors ni but this is not necessary for DIS with one initial and one final
state jet that are back to back. From the scaling of the momenta in (2.5) one can immediately see that
the typical off-shellness p2 is not conserved in an interaction between collinear particles along different
light-cone directions or with hard modes, but it is conserved if a n(n̄)-coll. particle interacts with another
n(n̄)-coll. particle or a ultra-soft (usoft) one. These interactions between collinear and usoft particles are
the ones that will appear in the Lagrangian of the effective theory when hard modes with off-shellness
∼ Q2 are integrated out.

The above setup with collinear and usoft modes is called SCETI, a different version of SCET with
the usoft modes replaced by soft ones with the counting

soft: (p+
s , p

−
s , p

⊥
s ) ∼ Q(λ, λ, λ), p2

s ∼ Q2λ2, (2.6)

is called SCETII. In SCETII there is no direct interaction between collinear and soft particles because
(pn+ps) ∼ Q(λ, 1, λ) and therefore (pn+ps)

2 ∼ Q2λ� Q2λ2. Instead of matching SCETII directly onto
QCD it is easier to perform the matching in two steps, as shown in Ref. [13]: First SCETI is matched
onto QCD. The expansion parameter of SCETI is λI and the relevant modes are usoft at the scale Qλ2

I

and hard-collinear (hc) at the scale QλI with the usual SCETI counting as in Eq. (2.5) and Fig. 1. Then
in the second step SCETII with the expansion parameter λII = λ2

I is matched onto SCETI by integrating
out the hc modes at the scale Q

√
λII to be left with the low-energy degrees of freedom with soft (the

usofts from SCETI in the first step) and collinear modes, both at the scale QλII , see Fig. 2.

P−

∼ Q2

∼ Q2λ2n−coll.

hard

soft

∼ Q2λhc

P+

h
c

n−
coll.

QQλQλ2

Q

Qλ

Qλ2

Figure 2: Modes in SCETII. In the two step matching procedure hard modes are integrated out at Q2 in
the matching QCD→SCETI. In the second step hard collinear modes at Q2λII are integrated out in the
matching SCETI→SCETII. The remaining degrees of freedom are soft and collinear, both at the scale
Q2λ2

II .

SCETII is the appropriate effective field theory for DIS in the Breit frame because the incoming initial
state jet is at the typical hadronic scale ΛQCD which is also the scale of the soft fluctuations. In the
endpoint region x→ 1 where also a final state jet is produced, this final state jet will be at a higher scale
and has therefore to be described by hard collinear modes that will be integrated out in the matching
SCETI → SCETII, see Sec. 5.

2.2 SCET Fields and Lagrangian

Here we show the construction of the SCET Lagrangian for n-coll. fields, for particles along any other
light-cone direction it can be obtained in exactly the same way. We start with a fermion field ψ(x) that
that can be decomposed as

ψ(x) = ψ+(x) + ψ−(x) (2.7)

4



2 SOFT-COLLINEAR EFFECTIVE THEORY

with

ψ+(x) =

∫
d4p

(2π)3
δ(p2)Θ(p0)

∑
s

u(p, s)a(p, s)e−ipx, (2.8)

ψ−(x) =

∫
d4p

(2π)3
δ(p2)Θ(p0)

∑
s

v(p, s)b†(p, s)e+ipx. (2.9)

u and v are particle and anti-particle spinors, a destroys a particle and b† creates an anti-particle.
The short distance fluctuations can be removed by assigning a collinear scaling to the momentum
p ∼ Q(λ2, 1, λ) and split it into a large label p̃µ = p− n

µ

2 + pµ⊥ and small residual momentum kµ ∼ Qλ2,
i.e. the full four-momentum is the sum of a large label momentum and a suppressed residual momentum
pµ = p̃µ + kµ. With this separation the fields can be written as

ψ+(x) =
∑
p̃ 6=0

e−ip̃x ψ+
n,p̃(x), (2.10)

ψ−(x) =
∑
p̃ 6=0

e+ip̃x ψ−n,p̃(x), (2.11)

where the residual fields ψ±n,p̃(x) contain only long distance fluctuations, i.e. ∂µψ
±
n,p̃(x) ∼ λ2. They have

the form

ψ+
n,p̃(x) = Θ(p̃−)

∫
d4k

(2π)3
δ(k+p̃− − |p̃2

⊥|)
∑
s

u(k, s)a(k, s)e−ikx, (2.12)

ψ−n,p̃(x) = Θ(p̃−)

∫
d4k

(2π)3
δ(k+p̃− − |p̃2

⊥|)
∑
s

v(k, s)b†(k, s)e+ikx. (2.13)

So the field ψ(x) can be written as

ψ(x) =
∑
p̃ 6=0

e−ip̃xψn,p̃(x) (2.14)

where the residual field ψn,p̃(x) is defined as

ψn,p̃(x) = ψ+
n,p̃(x) + ψ−n,−p̃(x)

= Θ(p̃−)ψ+
n,p̃(x) + Θ(−p̃−)ψ−n,−p̃(x). (2.15)

The Theta functions in the second line are just the ones from Eqs. (2.12) and (2.13) written out explicitly
once more to emphasize that fields with positive(negative) labels only contribute to particle(anti-particle)
propagation. The zero-bin p̃µ = 0 is excluded in the sum to avoid double counting because if the label
is zero it is no longer a collinear but a usoft particle. Technically this is achieved in loop calculations
by zero-bin subtractions [14] where the same diagram with a usoft counting for the collinear gluon loop
momentum is subtracted to cancel the zero-bin from the collinear diagrams. The projection operators

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
, (2.16)

can be used to project onto different components of the field ψn,p̃

ξn,p̃ = Pnψn,p̃, ξ̂n,p̃ = Pn̄ψn,p̃. (2.17)

Because /n/n = n2 = 0 we find

/nξn = 0 ξ̄n/n = 0 (2.18)

/̄nξ̂n = 0
¯̂
ξn /̄n = 0 (2.19)

We start form the massless fermion part of the QCD Lagrangian

Lq,QCD = ψ̄i /Dψ, (2.20)

5



2 SOFT-COLLINEAR EFFECTIVE THEORY

with the covariant derivative in the form iDµ = i∂µ + gAµ.2 Using the above definitions when writing

ψ(x) =
∑
p̃ e−ip̃x(ξn,p̃(x) + ξ̂n,p̃(x)) for the quark fields yields (here we drop the tilde on the label, and

from here on a sum over all labels is implicit whenever there is a label on a field)

Lq = ei(p
′−p)x

[
ξ̄n,p′

/̄n

2
iD+ξn,p +

¯̂
ξn,p′

/n

2
(p− + iD−)ξ̂n,p

+ ξ̄n,p′(/p⊥ + i /D⊥)ξ̂n,p +
¯̂
ξn,p′(/p⊥ + i /D⊥)ξn,p

]
. (2.21)

The minus and perp. components of the label scale like λ0 and λ1 respectively, but the derivative in D
acting on the collinear field scales like λ2 (because these fields only contain residual momenta that are
not in the label), so in the last three terms these derivatives are suppressed relative to the large label

components and can be dropped. This implies that the field ξ̂n is not dynamical and can be removed by
applying the equation of motion for this field

/n

2
(p− + iD−)ξ̂n,p = −(/p⊥ + i /D⊥)ξn,p

⇒
× /̄n

2

(p− + iD−)ξ̂n,p = (/p⊥ + i /D⊥)
/̄n

2
ξn,p. (2.22)

This leads to the Lagrangian in the form

Lq = ei(p
′−p)xξ̄n,p′

[
iD+ + (/p⊥ + i /D⊥)(p− + iD−)−1(/p⊥ + i /D⊥)

]
/̄n

2
ξn,p. (2.23)

Also the gluon fields can be split in a collinear part by pulling out the large labels explicitly and a usoft
gluon field

Aµ(x) = Aµus(x) + e−iqxAµn,q(x), (2.24)

where again all derivatives acting on the fields are now suppressed as λ2. The usoft and the collinear
gluon fields satisfy the same scaling as their respective momenta, i.e.

(A+
us, A

−
us, A

⊥
us) ∼ (λ2, λ2, λ2), (2.25)

(A+
n , A

−
n , A

⊥
n ) ∼ (λ2, 1, λ). (2.26)

Using this in the Lagrangian above and neglecting all terms that are not leading in λ gives

Lq =ei(p
′−p)xξ̄n,p′

[
i∂+ + gA+

us + ge−iqxA+
n,q

(/p⊥ + i/∂⊥ + ge−iqx /A
⊥
n,q)(p

− + i∂− + ge−iqxA−n,q)
−1(/p⊥ + i/∂⊥ + ge−iqx /A

⊥
n,q)

]
/̄n

2
ξn,p. (2.27)

The term in the middle can be expanded

(p− + i∂− + ge−iqxA−n,q)
−1 =

∞∑
n=0

( −g
p− + i∂−

e−iqxA−n,q

)n
1

p− + i∂−
. (2.28)

The derivatives acting on the collinear fields A−n are suppressed as λ2, but the derivatives acting on
the exponential functions pick up a label momentum q− that is of order λ0. So the sum gives an
infinite number of terms that are not suppressed in the power counting and give rise to interaction terms
between collinear quarks and an arbitrary number of gluons, each one order higher in the coupling g. In

2If there is no color index on a gluon field this means that the contraction with the SU(3) generators is implicit, i.e.
Aµ := AAµ T

A
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2 SOFT-COLLINEAR EFFECTIVE THEORY

the derivation of the Feynman rules we will only keep terms up to O(g2). Then the Lagrangian is

Lq =ei(p
′−p)xξ̄n,p′

/̄n

2
(i∂+p− − |p2

⊥|)
1

p−
ξn,p + ei(p

′−p)xξ̄n,p′gA
+
us

/̄n

2
ξn,p

+ ei(p
′−p−q)xξ̄n,p′g

[
A+
n,q +

/A
⊥
n,q/p⊥
p−

+
(/p⊥ + /q⊥) /A

⊥
n,q

p− + q−
−

(/p⊥ + /q⊥)/p⊥
(p− + q−)p−

A−n,q

]
/̄n

2
ξn,p

ei(p
′−p−q−r)xξ̄n,p′

g2

(p− + r−)

[
/A
⊥
n,q /A

⊥
n,r −A−n,q

(/p⊥ + /q⊥ + /r⊥) /A
⊥
n,r

p− + q− + r−
−

/A
⊥
n,q/p⊥
p−

A−n,r

+
(/p⊥ + /q⊥ + /r⊥)/p⊥
(p− + q− + r−)p−

A−n,qA
−
n,r

]
/̄n

2
ξn,p +O(g3). (2.29)

(Here and in the rest of this work all gluon momenta are incoming). The exponential function just states
the conservation of label momentum so we can write

Lq =ξ̄n,p
/̄n

2
(i∂+p− − |p2

⊥|)
1

p−
ξn,p + ξ̄n,pgA

+
us

/̄n

2
ξn,p

+ ξ̄n,p′g

[
A+
n,p′−p +

/A
⊥
n,p′−p/p⊥
p−

+
/p
′
⊥
/A
⊥
n,p′−p

p′−
− /p

′
⊥/p⊥
p′−p−

A−n,p′−p

]
/̄n

2
ξn,p

+ ξ̄n,p′
g2

(p′− − q−)

[
/A
⊥
n,q /A

⊥
n,p′−p−q −A−n,q

/p
′
⊥
/A
⊥
n,p′−p−q

p′−
−

/A
⊥
n,q/p⊥
p−

A−n,p′−p−q

+
/p
′
⊥/p⊥
p′−p−

A−n,qA
−
n,p′−p−q

]
ξn,p +O(g3). (2.30)

From this one can easily read off the Feynman rules, Fig. 3.

p
= Fn(p)

µ,A

= V A
us,µ

p′p

µ, A

= V A
n,µ(p, p

′)

p′p

µ, A

= V AB
n,µν(p, p

′, q)

ν, B

q

Figure 3: Feynman rules for SCET. The dashed line denotes a collinear quark, the gluon with a solid line
in the middle a collinear gluons. Usoft gluons are drawn as a standard gluon line.

Fn(p) =i
/n

2

p−

p2 + i0
(2.31)

V Aus,µ =igTAnµ
/̄n

2
(2.32)

V An,µ(p, p′) =igTA

[
nµ +

γ⊥µ /p⊥
p−

+
/p
′
⊥γ
⊥
µ

p′−
− /p

′
⊥/p⊥
p′−p−

n̄µ

]
/̄n

2
(2.33)

V ABn,µν(p, p′, q) =
ig2TATB

(p′− − q−)

[
γ⊥µ γ

⊥
ν −

γ⊥µ /p⊥
p−

n̄ν −
/p
′
⊥γ
⊥
ν

p′−
n̄µ +

/p
′
⊥/p⊥
p′−p−

n̄µn̄ν

]
/̄n

2

+
ig2TBTA

(p− + q−)

[
γ⊥ν γ

⊥
µ −

γ⊥ν /p⊥
p−

n̄µ −
/p
′
⊥γ
⊥
µ

p′−
n̄ν +

/p
′
⊥/p⊥
p′−p−

n̄µn̄ν

]
/̄n

2
(2.34)
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2 SOFT-COLLINEAR EFFECTIVE THEORY

2.3 SCET with Massive Quarks

To include massive collinear quarks in SCET we start form the massive QCD Lagrangian

Lq,QCD = ψ̄(i /D −m)ψ (2.35)

and assign the scaling m ∼ Qλ to the mass, such that p2 ∼ m2 ∼ Q2λ2, see Ref. [15]. Following the same
steps as in the previous section changes the Lagrangian from Eq. (2.21) to

Lq = ei(p
′−p)x

[
ξ̄n,p′

/̄n

2
iD+ξn,p +

¯̂
ξn,p′

/n

2
(p− + iD−)ξ̂n,p

+ ξ̄n,p′(/p⊥ −m+ i /D⊥)ξ̂n,p +
¯̂
ξn,p′(/p⊥ −m+ i /D⊥)ξn,p

]
(2.36)

and the equation of motion for the field ξ̂ is

(p− + iD−)ξ̂n,p = (/p⊥ +m+ i /D⊥)
/̄n

2
ξn,p. (2.37)

The Lagrangian after removing the field ξ̂ reads

Lq = ei(p
′−p)xξ̄n,p′

[
iD+ + (/p⊥ −m+ i /D⊥)(p− + iD−)−1(/p⊥ +m+ i /D⊥)

]
/̄n

2
ξn,p. (2.38)

From this we see that all the changes relative to the massless case are just /p⊥ → /p −m in the left and

/p⊥ → /p⊥ +m in the right term. So the Feynman rules for the vertices can be derived from the massless

ones with the replacement /p⊥ → /p⊥+m and /p
′
⊥ → /p

′
⊥−m, the one for the propagator with p2 → p2−m2:

Fn(p,m) =i
/n

2

p−

p2 −m2 + i0
(2.39)

V An,µ(p, p′,m) =igTA

[
nµ +

γ⊥µ /p⊥
p−

+
/p
′
⊥γ
⊥
µ

p′−
− /p

′
⊥/p⊥
p−p′−

n̄µ

+
m

p−p′−

(
γ⊥µ (p′− − p−) + n̄µ(/p⊥ − /p

′
⊥ +m)

)] /̄n
2

(2.40)

V ABn,µν(p, p′, q,m) =
ig2TATB

(p′− − q−)

[
γ⊥µ γ

⊥
ν −

γ⊥µ /p⊥
p−

n̄ν −
/p
′
⊥γ
⊥
ν

p′−
n̄µ +

/p
′
⊥/p⊥
p′−p−

n̄µn̄ν

+
m

p′−p−

(
p−γ⊥ν n̄µ − p′−γ⊥µ n̄ν + n̄µn̄ν(/p

′
⊥ − /p⊥ −m)

)] /̄n
2

+
ig2TBTA

(p− + q−)

[
γ⊥ν γ

⊥
µ −

γ⊥ν /p⊥
p−

n̄µ −
/p
′
⊥γ
⊥
µ

p′−
n̄ν +

/p
′
⊥/p⊥
p′−p−

n̄µn̄ν

+
m

p′−p−

(
p−γ⊥µ n̄ν − p′−γ⊥ν n̄µ + n̄µn̄ν(/p

′
⊥ − /p⊥ −m)

)] /̄n
2

(2.41)

The usoft gluon vertex is left unchanged.

2.4 Wilson Lines

2.4.1 Collinear Wilson Lines and Gauge Invariant Operators

In full QCD, a n-coll. quark can emit n̄-coll. gluons before going into the hard interaction. Since the
quark gets pushed far off-shell by this, these propagations of off-shell quarks are integrated out and do
not appear in the effective theory, so there is no interaction between the n- and the n̄-coll. sector in
the SCET Lagrangian. These n̄-coll. gluons reappear in the matching between the full theory and the
effective theory current as collinear Wilson lines, Fig. 4. To find the correct n̄-collinear Wilson line,
containing the n̄-coll. gluons emitted from an n-coll. incoming quark, we write down the full QCD

8



2 SOFT-COLLINEAR EFFECTIVE THEORY

...

⇒
qm
qm−1

q1

pn col.

n coll.

...

p

qm

qm−1

q1

n coll.

n coll.

Figure 4: Collinear Wilson line. The contributions from n̄-coll. gluons emitted from a n-coll. incoming
quark are summed in a n̄-coll. Wilson line. These collinear Wilson lines appear in external currents in
the matching QCD→SCET, where there is no interaction between n̄- and n-coll. particles.

expression for the left diagram in Fig. 4 and then change to collinear external fields ξ and expand in λ,
using the SCET power counting for collinear fields (again all gluon momenta are incoming)

ξ̄n̄Γ
i(/p+

∑m
i=1 /qi)

(p+
∑m
i=1 qi)

2 + i0
(igγµmAµm)

i(/p+
∑m−1
i=1 /qi)

(p+
∑m−1
i=1 qi)2 + i0

(
igγµm−1Aµm−1

)
× ... × i(/p+ /q1)

(p+ q1)2 + i0
(igγµ1Aµ1

) ξn. (2.42)

The momentum pµ has a n-coll. scaling pµ ∼ Q(λ2, 1, λ), for the gluon momenta qi and for the gluon
fields themselves we use a n̄-coll. power counting ∼ Q(1, λ2, λ). With that counting the leading order in
λ of the expression above is

ξ̄n̄Γ
(−g)mnµm ... nµ1

(q+
1 + i0) ... (

∑m
i=1 q

+
i + i0)

Aµm ... Aµ1 ξn. (2.43)

To get all contributions from the n̄-coll. gluons coming from the n-coll. quark one also has to include
the sum over the number of final state gluons m as well as the sum over all permutations of the gluons.
Then we can write the SCET current as χ̄n̄Γξn with the n̄-coll. jet field χn̄ = W †n̄ξn̄ where the n̄-coll.
Wilson line is

Wn̄ =
∑
m

∑
perm.

(−g)m nµ1
...nµm

(q+
1 + i0)...(

∑m
j=1 q

+
j + i0)

Aµmn̄ (qm)...Aµ1
n̄ (q1). (2.44)

In position space the Wilson line has the form

Wn̄(x) = P exp

[
ig

∫ x

−∞
ds n ·An̄(sn)

]
, (2.45)

where P denotes the path-ordering operator, i.e. all fields at spacetime points that are run through earlier
in the integration are further to the right. The same can be done for an outgoing n̄-coll. quark emitting
n-coll. gluons, which leads to a n-coll. Wilson line

Wn =
∑
m

∑
perm.

(−g)m n̄µ1
...n̄µm

(q−1 − i0)...(
∑m
j=1 q

−
j − i0)

Aµmn (qm)...Aµ1
n (q1), (2.46)

Wn(x) = P̄ exp

[
−ig

∫ ∞
x

ds n̄ ·An(sn̄)

]
. (2.47)

such that the full SCET current has the form χ̄n̄Γχn with

χn = W †nξn, χn̄ = W †n̄ξn̄. (2.48)

To pull out the large label components from the jet field one has to make sure that the label of the jet field
is the sum of the label of the collinear quark and all gluons. To assure this it is convenient to define the
label operator Pµ that picks up the labels of the fields it is acting on, i.e. Pµ∏i ξn,pi = (

∑
i p
µ
i )
∏
i ξn,pi .

Then the decomposition in large label components and a residual jet field reads

χn(x) = e−iP
−x
(
W †nξn,p

)
(x) =

∫
dω e−iωxδ(ω − P−)

(
W †nξn,p

)
(x) (2.49)

9



2 SOFT-COLLINEAR EFFECTIVE THEORY

The collinear Wilson lines are necessary to construct the jet fields χ in such a way they are invariant

under collinear gauge transformations U(x) = eiα
A(x)TA . Collinear gauge transformation means that

∂µα
A(x) scales like a collinear momentum [7, 8]. The physical interpretation of this is that a collinear

gauge transformation leaves a particle within the same jet, i.e. a n(n̄)-coll. particle is always transformed
into another n(n̄)-coll. particle under a n(n̄)-coll. gauge transformation. In the same way the gluonic
operator Gµν invariant under collinear gauge transformations can be constructed from collinear Wilson
lines and the field strength tensor Gµν

Gµνn = W †nG
µν
n Wn. (2.50)

When we write the field strength tensor as Gµνn = − i
g [iDµ

n, iD
ν
n] and use a n-coll. covariant derivative

Dµ
n, i.e.

iDµ
n = Pµ + gAµn

=
(
P− + gA−n

) nµ
2

+
(
Pµ⊥ + gAµn,⊥

)
+O(λ2) (2.51)

and use the fact that, by definition, the covariant derivative along the light-cone acting on a n-coll.
Wilson line is zero, i.e.

iD−Wn = WnP−, W †n iD
− = P−W †n, (2.52)

Gµνn can be written in the form

Gµνn = − i
g

([
P−,W †niDν

⊥Wn

] nµ
2
−
[
P−,W †niDµ

⊥Wn

] nν
2

)
+O(λ2). (2.53)

In Sec. 3.2 we will use the gauge invariant quark and gluon jet fields as basic building blocks for con-

structing the relevant EFT operators. For n-coll. quarks the leading order operator is χ̄n
/̄n
2χn (note that

χ̄nχn is zero because of the relations in Eq. (2.18)), for a collinear gluon it has to be some contraction of
Gµνn . Gµνn Gn,µν is O(λ4), but Gµαn Gβn,µn̄αn̄β is O(λ2), so the gluon jet field is defined as

Bµn = Gµνn n̄ν =
i

g

[
P−,W †niDµ

⊥Wn

]
(2.54)

and the leading order gauge invariant n-coll. gluon operator is

BµnBn,µ ∼ O(λ2). (2.55)

2.4.2 Usoft Wilson Lines

q1 qm−1 qm

µ1 µm−1 µm

n coll.

p

. . .

(a)

q1 qm−1 qm

µ1 µm−1 µm

n coll.

p

. . .

(b)

Figure 5: Usoft Wilson lines for DIS. The contributions from usoft gluons coupling to collinear quarks
can be summed in usoft Wilson lines. For DIS in the Breit frame we have to consider an n-coll. incoming
quark (a) and an n̄-coll. outgoing quark (b).

The interactions between collinear and usoft particles can be removed from the Lagrangian with the field
redefinitions [9]

ξn → Ynξ
(0)
n ξn̄ → Yn̄ξ

(0)
n̄

An → YnA
(0)
n Y †n An̄ → Yn̄A

(0)
n̄ Y †n̄ (2.56)

10



2 SOFT-COLLINEAR EFFECTIVE THEORY

With this redefinitions the Lagrangian in terms of these new fields contains no longer interaction terms
between usoft fields and the new collinear fields with the superscript (0). All effects of usoft particles are
encoded in usoft Wilson lines Yn, Yn̄ that appear in external currents. The correct Wilson lines for DIS
in the Breit frame with one incoming n-coll. and one outgoing n̄-coll. (anti-) quark in the current can
be found from the diagrams in Fig. 5 (plus all permutations).

Yn =
∑

perm.

∑
m

(−g)m nµ1
...nµm

(q+
1 + i0)...(

∑m
j=1 q

+
j + i0)

Aµmus (qm)...Aµ1
us(q1) (2.57)

Yn(x) = P exp

[
ig

∫ x

−∞
ds n ·Aus(sn)

]
(2.58)

Yn̄ =
∑

perm.

∑
m

(−g)m n̄µ1
...n̄µm

(q−1 − i0)...(
∑m
j=1 q

−
j − i0)

Aµmus (qm)...Aµ1
us(q1) (2.59)

Yn̄(x) = P̄ exp

[
−ig

∫ ∞
x

ds n̄ ·Aus(sn̄)

]
(2.60)
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3 DIS WITH MASSLESS QUARKS

3 Deep Inelastic Scattering with Massless Quarks

The process of “deep inelastic scattering” (DIS) is the scattering of a lepton on a hadron. The term
“inelastic” implies that the kinetic energy of the incoming lepton is not conserved whereas “deep” refers
to the high momentum transfer Q2 in the process. Deep inelastic scattering can be studied with various
kinds of leptons and hadrons, but the standard process is the scattering of a high energetic electron on
a proton. In the following we will only concentrate on unpolarized DIS of a charged lepton on a hadron
and set the lepton and the hadron mass to zero. As a further simplification we will only consider neutral
current DIS with a photon exchange. The process will be studied at leading order in QED and with
one-loop QCD corrections to the hadronic tensor, i.e. at order O(α)O(αs).

3.1 Cross Section and Kinematics

The general cross section for a process 1 + 2→ 3 + ... is

σ =
S

2λ
1
2 (s,m2

1,m
2
2)

∫ ∏
j

d3kj
(2π)3

1

2
√

k2
j +m2

j

(2π)4δ(4)(p1 + p2 −
∑
i

ki) |M|2, (3.1)

with the symmetry factor S for identical particles, the total center of mass energy s and the function
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. Here we consider the process e + P → e + X and set the
electron and proton mass to zero, see Fig. 6.

q

k k′

PXP

Figure 6: Deep inelastic scattering. An incoming electron with momentum k scatters off a hadron with
momentum P via the exchange of a virtual photon.

dσ =
1

2s

d3k′

(2π)3

1

2|k′|
∑
X

dΠX(2π)4δ(4)(P + k − k′︸ ︷︷ ︸
q

−PX)|M|2 (3.2)

∑
X denotes the sum over all possible hadronic final states and dΠX the integration over the whole

phase space. We want to change to proper variables to get the differential cross section with respect to
Lorentz-invariants, so we use

Q2 = −q2 (3.3)

x =
−q2

2P · q (3.4)

y =
P · q
P · k =

Q2

sx
(3.5)

d3k′

(2π)3

1

2|k′| =
d|k′|d cos θ

(2π)2

|k′|
2

=
dxdQ2

(4π)2

y

x
(3.6)

With this substitution the cross section reads

dσ =
dxdQ2

(4π)2

y2

Q2

∑
X

dΠX(2π)4δ(4)(P + q − PX)|M|2. (3.7)

12



3 DIS WITH MASSLESS QUARKS

The amplitude M for the process at leading order in QED is

M(eP → eX) = ū(k′)(−ieγµ)u(k)
−i
q2

(ie)〈X|Jµ(0)|P 〉 (3.8)

and the spin-averaged square (from here on all matrix elements should be understood as spin-averaged)
is

|M|2 =
2(4π)2α2

Q4
Lµν〈P |Jµ(0)|X〉〈X|Jν(0)|P 〉, (3.9)

where the leptonic tensor is defined as

Lµν = kµk
′
ν + kνk

′
µ − k · k′gµν . (3.10)

The electromagnetic current for quark fields with flavor i is

Jµ =
∑
i

Qiq̄iγ
µqi. (3.11)

With the definition of the hadronic tensor Wµν

Wµν =
1

4π

∑
X

dΠX(2π)4δ(4)(q + P − PX)〈P |Jµ(0)|X〉〈X|Jν(0)|P 〉

=
1

4π

∑
X

dΠX

∫
d4x ei(q+P−PX)x〈P |Jµ(0)|X〉〈X|Jν(0)|P 〉

=
1

4π

∑
X

dΠX

∫
d4x eiqx〈P |Jµ(x)|X〉〈X|Jν(0)|P 〉

=
1

4π

∫
d4x eiqx〈P |Jµ(x)Jν(0)|P 〉 (3.12)

we get the double differential cross section in the form

d2σ

dxdQ2
=

4πα2y2

Q6
LµνW

µν . (3.13)

Using the fact of current conservation qµW
µν = qνW

µν = 0 one can write down the most general ansatz
for the hadronic tensor3:

Wµν =

(
−gµν − qµqν

Q2

)
W1(x,Q2) +

(
Pµ +

qµ

2x

)(
P ν +

qν

2x

)
W2(x,Q2). (3.14)

From the expression above we can find the projectors onto W1 and W2:

A :=
Q2

4x2
,

Pµν1 =
1

(d− 2)A
(PµP ν −Agµν), Pµν1 Wµν = W1, (3.15)

Pµν2 =
1

(d− 2)A2
((d− 1)PµP ν −Agµν), Pµν2 Wµν = W2, (3.16)

with d the number of spacetime dimensions. One often defines a longitudinal form factor

WL = AW2 −W1, (3.17)

PµνL =
1

A
PµP ν , PµνL Wµν = WL. (3.18)

With the standard definitions for the form factors

F1(x,Q2) = W1(x,Q2), (3.19)

F2(x,Q2) =
Q2

2x
W2(x,Q2), (3.20)

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2), (3.21)

3Also an additional term ∼ εµναβPαqβ would be consistent with current conservation, but since the leptonic tensor Lµν
is symmetric in µ and ν if we consider only vector coupling, this term does not contribute.
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3 DIS WITH MASSLESS QUARKS

the differential cross section for a massless hadron reads

d2σ

dxdQ2
=

4πα2

Q4

(
((1− y)2 + 1)F1(x,Q2) +

1− y
x

FL(x,Q2)

)
. (3.22)

The definition of the Bjorken variable x in Eq. (3.4) gives a relation between x and the invariant mass of
the hadronic final state P 2

X = (P + q)2

x :=
−q2

2P · q =
1

1 +
P 2
X

Q2

. (3.23)

In the case where all particles in the final state are collimated in one narrow jet the invariant mass reaches
its minimum and therefore x its maximum. If all particles are massless the limit is P 2

X → 0 and x → 1.
If we assume that at least one quark antiquark pair of a heavy flavor with mass m is produced we have
the restraints P 2

X ≥ 4m2 and x ≤ 1

1+4m
2

Q2

, see Sec. 4.1.

DIS in the Parton Model

An incoming hadron with four-momentum Pµ scatters off a virtual photon with momentum qµ. Here we
assume the hadron to be massless, and choose the Breit-frame, in which the incoming photon transmits
just the momentum Q and no energy. Then the four-momenta of the particles can be decomposed into
light-cone components as following:

Pµ =
Q

x

nµ

2
, (3.24)

qµ = −Qn
µ

2
+Q

n̄µ

2
, (3.25)

where x ist the Bjorken scaling variable as defined in Eq. (3.4). In the parton model we can interpret
the interaction in Fig. 6 as a free parton inside the hadron that got struck by the photon, see Fig. 7. If

q

k k′

PX
P−

ξP−

Figure 7: Deep inelastic scattering in the parton model. An incoming electron with momentum k scatters
off a parton with fraction ξ of the hardon’s longitudinal momentum. The total final state consists of beam
remnants and hadrons created in the hard interaction.

the parton has the fraction ξ of the longitudinal momentum of the hadron and is also considered to be
massless we find

P̂µ =
ξQ

x

nµ

2
=
Q

x̂

nµ

2
(3.26)

for the parton momentum P̂ with the partonic Bjorken variable

x̂ =
x

ξ
, (3.27)
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3 DIS WITH MASSLESS QUARKS

i.e. the Bjorken-x for the incoming parton. At tree-level the amplitude for the hard scattering of a free
incoming parton with x̂ is ∼ δ(1 − x̂), so x = ξ. So the measurable quantity x tells us (at tree-level)
which momentum fraction of the hadron the struck parton was carrying. Even though this is no longer
exactly true beyond tree-level, the requirement that (P̂ + q)2 ≥ 0 assures that ξ ≥ x. So in the case
where x→ 1 we also have ξ → 1, i.e. the parton going into the hard interaction was carrying almost all
of the hadron’s momentum and all the beam remnants are soft.

3.2 DIS Factorization in SCET

3.2.1 Factorization of the Hadronic Tensor

The hadronic tensor in Eq. (3.14) can be factorized into non-perturbative matrix elements and Wilson
coefficients describing the hard interaction by using SCET, as shown in Ref. [10]. With the definition

WL =
Q2

4x2
W2 −W1 (3.28)

the hadronic tensor can be written in the form

Wµν = −gµν⊥ W1 +
1

4
(nµ + n̄µ)(nν + n̄ν)WL. (3.29)

To project onto W1 and WL one can use the projectors in Eqs. (3.15) and (3.18). This can be matched
onto SCET operators. Since we constrain ourselves to the classical OPE region where the invariant mass
of the hadronic final state scales like Q2(1−x)/x ∼ Q2 (unlike the situation in the endpoint region where
we have Q2(1 − x) � Q2, see Sec. 5) the final state is integrated out and we are left with the n-coll.
modes with an invariant mass of order ∼ Λ2

QCD in the initial state, which can be described by a n-coll.
jet field while all the hard interaction goes into a Wilson coefficient. The appropriate SCET operators
for an incoming quark with flavor i or a gluon are

χ̄(i)
n,p(0)

/̄n

2
χ

(i)
n,p′(0), (3.30)

−Tr
[
Bµn,p(0)Bn,p′ µ(0)

]
. (3.31)

Note that if the soft-collinear decoupling is made explicit with the field redefinitions shown in Sec. 2.4.2,
the usoft Wilson lines cancel to all orders because Y †nYn = 1 and therefore only purely n-coll. objects
remain. Following the arguments in Refs. [16] and [17] this also implies that all soft-bin subtractions vanish
and we are not sensitive to any soft physics. The hard interaction is encoded in a Wilson coefficient and
so the matching condition reads

Wj =
1

Q

(∑
i

O(i)
j +

O(g)
j

Q

)
, (3.32)

O(i,g)
j = 〈P |Ô(i,g)

j |P 〉, (3.33)

where j = {1, L} and the sum runs over all active quark flavors and

Ô(i)
j = χ̄(i)

n,p(0)
/̄n

2
C

(i)
j (P†−,P−)χ

(i)
n,p′(0), (3.34)

Ô(g)
j = −Tr

[
Bµn,p(0)C

(g)
j (P†−,P−)Bn,p′ µ(0)

]
. (3.35)

Since all operators are local we neglect the argument from now on, i.e. χn,p := χn,p(0). C
(q,g)
j are the

Wilson coefficients that have to be determined from the matching. First we work out the factorized form
for the matrix elements of the quark operator:

O(i)
j = 〈P |

[
χ̄(i)
n,p

/̄n

2
C

(i)
j (P†−,P−)χ

(i)
n,p′

]
|P 〉

=

∫
dωdω′ C

(i)
j (ω, ω′)〈P |

[
χ̄(i)
n,pδ(ω − P†−)

/̄n

2
δ(ω′ − P−)χ

(i)
n,p′

]
|P 〉. (3.36)
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3 DIS WITH MASSLESS QUARKS

The label operator P acts only to the right, its conjugate P† only to the left, both only inside the
brackets. Momentum conservation tells us that P− = P†− between the states and we can rewrite
δ(ω − P†−)δ(ω′ − P−) = δ(ω′ − ω)δ(ω′ − P−). So with C

(i)
j (ω) := C

(i)
j (ω, ω) and

fi/P (ξ) = 〈P |χ̄(i)
n,p

/̄n

2

[
δ(P−ξ − P−)χ

(i)
n,p′

]
|P 〉, (3.37)

f̄i/P (ξ) := −fi/P (−ξ) (3.38)

one gets

O(i)
j =

∫
dω C

(i)
j (ω)fi/P

( ω

P−

)
=

∫
dω
(

Θ(ω)C
(i)
j (ω)fi/P

( ω

P−

)
+ Θ(−ω)C

(i)
j (ω)fi/P

( ω

P−

))
=

∫
dωΘ(ω)

(
C

(i)
j (ω)fi/P

( ω

P−

)
+ C

(i)
j (−ω)fi/P

(−ω
P−

))
=

∫
dωΘ(ω)

(
C

(i)
j (ω)fi/P

( ω

P−

)
− C(i)

j (−ω)f̄i/P

( ω

P−

))
. (3.39)

The splitting into a part ∼ Θ(ω) with positive labels and a part ∼ Θ(−ω) with negative labels already
suggests that one term will depend on the quark and one on the anti-quark content in the hadron (compare
with the splitting of the fermion field into residual quark and anti-quark fields with positive and negative
labels respectively in Eq. (2.15)). It will be shown in Sec. 3.2.2 that fi/P (ξ) and f̄i/P (ξ) are the quark and

anti-quark PDFs in terms of SCET fields. Because of charge conjugation symmetry C
(i)
j (ω) = −C(i)

j (−ω)

and with the redefinition of the hard coefficient C
(i)
j (ω) = Q

ωH
(i)
j

(
Q
ω

)
and the substitution ω = P−ξ the

final expression for the matrix elements reads

O(i)
j = Q

∫
dξ

ξ
Θ(ξ)H

(i)
j

(
x

ξ

)(
fi/P (ξ) + f̄i/P (−ξ)

)
. (3.40)

Next we will do the same for the gluon operator

O(g)
j = −〈P |Tr

[
Bµn,pC

(g)
j (P†−,P−)Bn,p′µ

]
|P 〉

= −
∫

dωdω′ C
(g)
j (ω, ω′)〈P |Tr

[
Bµn,pδ(ω − P†−)δ(ω′ − P−)Bn,p′µ

]
|P 〉. (3.41)

Similar steps as for the quark case, including the same argument from momentum conservation to rewrite
the delta distributions and the substitution ω = P−ξ lead to

O(g)
j = Tf (P−)2

∫
dξ ξC

(g)
j (P−ξ)

(
− 1

TfP−ξ
〈P |Tr

[
Bµn,p[δ(P

−ξ − P−)Bn,p′µ]
]
|P 〉
)
. (3.42)

Since the gluon is its own anti-particle there is no need to split the whole expression into terms with

positive and negative labels and with the substitution C
(g)
j (ω) = 1

Tf

Q2

ω2 H
(g)
j

(
Q
ω

)
and

fg/P (ξ) = − 1

TfP−ξ
〈P |Tr

[
Bµn,p[δ(P

−ξ − P−)Bn,p′µ]
]
|P 〉, (3.43)

where fg/P (ξ) is the gluon PDF in SCET (see Sec. 3.2.3), we finally get the factorized form of the matrix
elements for the gluon operator:

O(g)
j = Q2

∫
dξ

ξ
Θ(ξ)H

(g)
j

(
x

ξ

)
fg/P (ξ). (3.44)

Eventually the factorized form of the full hadronic tensor is (j = (1, L)):

W
(P )
j (x, µ2) =

∑
i

(
H

(i)
j ⊗ (fi/P + f̄i/P )

)
(x, µ2) +

(
H

(g)
j ⊗ fg/P

)
(x, µ2), (3.45)

with the convolution defined as

(g ⊗ h) (x, µ2) =

∫
dξ

ξ
g

(
x

ξ
, µ2

)
h(ξ, µ2). (3.46)
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3 DIS WITH MASSLESS QUARKS

3.2.2 The Quark PDF

We check that the definition of the PDF in SCET in Eq. (3.37) agrees with the common QCD definition.
The standard QCD definition of the quark PDF is given in Ref. [11] as

fi/P (ξ) =
1

2π

∫
dt e−iξP

−t〈P |ψ̄(i)(tn̄)
/̄n

2
U†(tn̄, 0)ψ(i)(0)|P 〉, (3.47)

with the Wilson line

U†(tn̄, 0) = P exp

[
ig

∫ t

0

ds n̄ ·A(sn̄)

]
. (3.48)

To write this in SCET we switch to n-coll. fields

ψ(i)(x)→ ξ(i)
n (x), (3.49)

Aµ(x)→ Aµn(x). (3.50)

Then the Wilson line U†(tn̄, 0) in Eq. (3.47) becomes a collinear Wilson line W †n(tn̄, 0) that can be
decomposed into two Wilson lines going to ∞ like in Eq. (2.47)

U†(tn̄, 0)→W †n(tn̄, 0) = Wn(tn̄)W †n(0). (3.51)

Therefore we find the usual SCET jet fields χn = W †nξn and the PDF becomes

fi/P (ξ) =
1

2π

∫
dt e−iξP

−t〈P |χ̄(i)
n (tn̄)

/̄n

2
χ(i)
n (0)|P 〉. (3.52)

Pulling out the large label components by writing

χn(x) =

∫
dω e−iωxδ(ω − P−)χn,p(x) (3.53)

and using the argument from momentum conservation as in the previous section we find

fi/P (ξ) =
1

2π

∫
dωdt e−i(ξP

−−ω)t〈P |χ̄(i)
n,p(tn̄)

/̄n

2

[
δ(ω − P−)χ

(i)
n,p′(0)

]
|P 〉. (3.54)

Note that the field χ̄n,p(x) only depends on residual momenta, i.e. long distance fluctuations, so we can
shift it by applying a residual momentum operator K: χ̄n,p(x) = e−iKxχ̄n,p(0)eiKx. Since K ∼ λ2 while
the other terms in the exponential function, ξP− and ω, are all large label components, the residual
momentum can be dropped. This yields

fi/P (ξ) =
1

2π

∫
dωdt e−i(ξP

−−ω)t〈P |χ̄(i)
n,p(0)

/̄n

2

[
δ(ω − P−)χ

(i)
n,p′(0)

]
|P 〉

= 〈P |χ̄(i)
n,p(0)

/̄n

2

[
δ(P−ξ − P−)χ

(i)
n,p′(0)

]
|P 〉, (3.55)

which is precisely the term we encountered in Eq. (3.37). The anti-quark PDF is defined as

f̄i/P (ξ) =
1

2π

∫
dt e−iξP

−t〈P |Tr

[
/̄n

2
ψ(i)(tn̄)UT (tn̄, 0)ψ̄(i)(0)

]
|P 〉

= − 1

2π

∫
dt e−iξP

−t〈P |
(
ψ̄(i)(tn̄)

/̄n

2
U†(tn̄, 0)ψ(i)(0)

)∗
|P 〉

= −
(
fi/P (−ξ)

)∗
= −fi/P (−ξ). (3.56)

3.2.3 The Gluon PDF

To see that Eq. (3.43) is indeed the SCET version of the gluon PDF we go back to the Collins-Soper
definition of the gluon PDF (Ref. [11]), which is

fg/P (ξ) =
1

2πξP−

∫
dt e−iξP

−t〈P |Gαµ,A(tn̄)U†AB(tn̄, 0)GBµβ(0)|P 〉n̄αn̄β , (3.57)
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3 DIS WITH MASSLESS QUARKS

with the gluon field strength tensor GAµν = ∂µA
A
ν − ∂νAAµ + gfABCABµA

C
ν and the Wilson line in the

adjoint representation

U†AB(tn̄, 0) = P exp

[
ig

∫ t

0

ds n̄ ·AC(sn̄)T C
]
AB

. (3.58)

T C denotes the generator of SU(3) in the adjoint, and TC in the fundamental representation. When we

change to SCET fields Aµ → Aµn we get a collinear Wilson line in the adjoint representation U†AB(tn̄, 0)→
W†AB(tn̄, 0) = WAC(tn̄)W†CB(0). By using the trace relation for the generators in the fundamental

representation Tr
[
TATB

]
= Tfδ

AB and WABT
B = TBW†BA = W †nT

AWn (see Ref. [9]) we can write

WAC(tn̄)δCDW†DB(0) =
1

Tf
Tr
[
TCTD

]
WAC(tn̄)W†DB(0)

=
1

Tf
Tr
[
WAC(tn̄)TCTDW†DB(0)

]
=

1

Tf
Tr
[(
W †nT

AWn

)
(tn̄)

(
W †nT

BWn

)
(0)
]
. (3.59)

So with the definition of the gluon jet field as in Eq. (2.54)

Bµn = W †nG
µν,A
n TAWnn̄ν (3.60)

we get

n̄αn̄
βGαµ,An (tn̄)W†AB(tn̄, 0)GBnµβ = − 1

Tf
Tr [Bµn(tn̄)Bnµ(0)]

= − 1

Tf

∫
dω eiωt Tr

[
Bµn,p(0)

[
δ(ω − P−)Bnµ,p′(0)

]]
(3.61)

which leads to the SCET gluon PDF in Eq. (3.43). The covariant derivative in the gluon jet field can
also be split into a perpendicular label operator and a gluon field

iDµ
⊥ = Pµ⊥ + gAµ⊥ (3.62)

and when using this in Bµn in the gluon PDF Eq. (3.43) and using the fact of momentum conservation,
i.e.

〈P |
[
... P

]
|P 〉 = 0 = 〈P |

[
P ...

]
|P 〉, (3.63)

the SCET gluon PDF can be written in terms of collinear Wilson lines, gluon fields and label operators
as

fg/P (ξ) = −P
−ξ

Tfg2
〈P |Tr

[
W †n[(Pµ⊥ + gAµn⊥)Wn][δ(P−ξ − P−)W †n[(P⊥µ + gA⊥nµ)Wn]]

]
|P 〉. (3.64)

3.3 Hard Matching Coefficients

To find the hard coefficients Hj(x, µ
2) in Eq. (3.45) one has to perform the matching between full QCD

and the SCET operators for different partonic initial states |P̂ 〉. Since the hard coefficients encode the
physics above the matching scale and are not sensitive to any physics at lower scales, one can use partons
instead of hadrons as initial states to do the matching calculation and identify the hard coefficients. In the
massless case this is most conveniently done in pure dimensional regularization without any additional IR
regulator because then all effective theory diagrams beyond tree level are scaleless and therefore vanish
in dimensional regularization. This implies that the matching coefficient is just the finite piece of the full
QCD result4, while the UV divergences of the SCET operators are the same as the IR divergences of the

4Because the matching is between renormalized operators the UV divergences do not enter the matching anyway. Since
the full theory and effective theory must have the same IR divergences (because the effective theory has to reproduce the full
theory at low energies), the IR divergences will cancel in the matching. So only the finite parts contribute to the matching
coefficient.
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3 DIS WITH MASSLESS QUARKS

full theory with a different sign5. We will also check this result by doing the SCET calculations with an
off-shellness as an IR regulator to see the UV divergences explicitly in Sec. 3.4. The partonic tensor Ŵµν

can be calculated by taking the imaginary part of the time-ordered product of the currents

T̂µν = i

∫
d4x eiqx〈P̂ |T{Jµ(x)Jν(0)}|P̂ 〉, (3.65)

Ŵµν =
1

2π
Im T̂µν . (3.66)

This has the advantage that the time-order matrix elements T̂µν can be calculated with usual Feynman
diagrams.

3.3.1 Quark Form Factor

The relevant diagrams to order αs with quarks in the initial state are shown in Fig. 8, the matrix elements
are averaged over the spin of the incoming quark. The imaginary part was taken with the relations in

(a) (b) (c) (d)

Figure 8: QCD Diagrams for DIS with Initial Quarks

appendix B. Here only the calculations for the form factor Ŵ1 are shown explicitly, the result for ŴL will
be given at the end of the section.

Diagram Fig. 8a:
The tree level diagram is

T̂µν (q),(a)(x) = i
1

2

∑
s

ū(p, s)γν
i(/p+ /q)

(p+ q)2 + i0
γµu(p, s)

= − x

2Q2

1

(1− x+ i0)
Tr
[
/pγ

ν(/p+ /q)γ
µ
]

= − 2x

Q2

1

(1− x+ i0)

(
2pµpν + pµqν + qµpν − Q2

2x
gµν
)
. (3.67)

The projection onto T̂
(q),(a)
1 with the projector in Eq. (3.15) yields

T̂
(q),(a)
1 (x) = Pµν1 T̂ (q),(a)

µν (x) =
−1

1− x+ i0
(3.68)

and taking the imaginary part gives

Im
[
T̂

(q),(a)
1 (x)

]
= πδ(1− x). (3.69)

Diagram Fig. 8b:
Diagram 8b contains the self energy diagram

k

= i 6kΣ(k2)

5The scaleless integrals are zero in dimensional regularization because they take the form ∼
(

1
εUV

− 1
εIR

)
, i.e. the UV

and IR divergences are the same just with a different sign. Since we know that the full theory and the effective theory have
the same IR divergences, we therefore also know the UV divergences of the effective theory.
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3 DIS WITH MASSLESS QUARKS

Σ(k2) :=
αs(µ)CF

4π

(
1

ε
+ Log

µ2

−k2 − i0 + 1

)
. (3.70)

So the full diagram is proportional to the tree level result T̂µν (q),(a)

T̂µν (q),(b)(x) = i
1

2

∑
s

ū(p, s)γν
i(/p+ /q)

(p+ q)2 + i0
i(/p+ /q)Σ((p+ q)2)

i(/p+ /q)

(p+ q)2 + i0
γµu(p, s)

= −T̂µν (q),(a)(x)× Σ

(
Q2(1− x)

x

)
. (3.71)

After projecting onto T̂
(q),(b)
1 and taking the imaginary part we find

Im
[
T

(q),(b)
1 (x)

]
=
αs(µ)CF

4
Θ(1− x)

[
−δ(1− x)

(
1

ε
+ Log

µ2

Q2
+ 1

)
+

1

(1− x)+

]
. (3.72)

Diagram Fig. 8c:
The diagram in Fig. 8c contains the vertex correction of the form

p1

p2

= Vµ(p1, p2)

Vµ(p1, p2) = −4iπαs(µ)CF µ̃
2ε

∫
ddk

(2π)d
γα(/p2

− /k)γµ(/p1
− /k)γα

((k − p1)2 + i0)((k − p2)2 + i0)(k2 + i0)
. (3.73)

By introducing Feynman parameters this can be written as

Vµ(p1, p2) = −8iπαs(µ)CF µ̃
2ε

∫ 1

0

dz

∫ 1−z

0

dy

∫
ddk

(2π)d
γα(/c2 − /k)γµ(/c1 − /k)γα

(k2 −A)3
, (3.74)

cµ1 = (1− y)pµ1 − zpµ2 , (3.75)

cµ2 = −ypµ1 + (1− z)p2µ, (3.76)

A = 2zyp1 · p2 − y(1− y)p2
1 − z(1− z)p2

2. (3.77)

With this the full diagram takes the form

T̂µν (q),(c)(x) = i
1

2

∑
s

ū(p, s)γν
i(/p+ /q)

((p+ q)2 + i0)
Vµ(p, p+ q)u(p, s)

= − x

2Q2

1

1− x+ i0
Tr
[
/pγ

ν(/p+ /q)Vµ(p, p+ q)
]
. (3.78)

The trace projected onto T̂1, dropping any terms linear in k because they are antisymmetric and vanish
when integrated over, can be reduced to

Pµν1 Tr
[
/pγ

ν(/p+ /q)Vµ(p, p+ q)
]

=

∫ 1

0

dz

∫ 1−z

0

dy

∫
ddk

(2π)d
4

{
4kαkβ

(
pα(pβ + qβ)− εQ

2

4x
gαβ

)

+
Q4

x2
[(z − 1)((x− 1)(ε− 2)z − 1) + y(z(1− ε)− 1)]

}
. (3.79)

This reduces the momentum integration to standard integrals∫
ddk

(2π)d
1

(k2 −A)3
= C

x

Q2
Γ(1 + ε)(Ã− i0)−1−ε (3.80)∫

ddk

(2π)d
kαkβ

(k2 −A)3
= −C

2
Γ(ε)(Ã− i0)−εgαβ (3.81)

20



3 DIS WITH MASSLESS QUARKS

C = − i

32π2

(
4πx

Q2

)ε
(3.82)

Ã = z(y − (1− x)(1− z)) (3.83)

With

gαβ
(
pα(pβ + qβ)− εQ

2

4x
gαβ

)
=
Q2

2x
(1− 2ε+ ε2) (3.84)

the remaining integrals give

T̂
(q),(c)
1 (x) =

αs(µ)CF
2π

1

(1− x+ i0)

∫ 1

0

dz

∫ 1−z

0

dy

[
− (1− 2ε+ ε2)Γ(ε)(Ã− i0)−ε

+ Γ(1 + ε)[(z − 1)((x− 1)(ε− 2)z − 1) + y(z(1− ε− 1)](Ã− i0)−1−ε

]

=
αs(µ)CF

4π

1

(1− x+ i0)

[
1

ε
(1 + 2x`)− x`2 + 2x`

(
1 + Log

µ2

Q2

)
+ Log

µ2

Q2
+ 4

]
, (3.85)

with ` := Log −(1−x)−i0
x . Taking the imaginary part yields

Im
[
T

(q),(c)
1 (x)

]
=
αs(µ)CF

4
Θ(1− x)

[
− 1

ε

(
δ(1− x) + 2

1

(1− x)+
− 2

)
+ 2

(
Log(1− x)

1− x

)
+

− 2

(
1 + Log

µ2

Q2

)
1

(1− x)+
− δ(1− x)

(
4 +

π2

3
+ Log

µ2

Q2

)
− 2 Log(1− x)− 2xLog x

1− x + 2 Log
µ2

Q2
+ 2

]
. (3.86)

Diagram Fig. 8d:
Diagram 8d was calculated by taking the imaginary part before the integration, i.e. applying the Cutkosky
rules and cutting through the internal quark and gluon lines by replacing the denominator of the propa-
gators of the cut lines 1

k2+i0 → −2πiδ(k2)

2 Im
[
T̂µν (q),(d)

]
= i

∫
ddk

(2π)d
1

2

∑
s

[
ū(p, s)(igµ̃εTAγα)

i/k

(k2 + i0)
γνi(/k + /q)γ

µ i/k

(k2 + i0)

× (igµ̃εTAγα)u(p, s)

]
(−2π)δ((k + q)2)2πδ((k − p)2)

= (2π)3αs(µ)CF µ̃
2ε

∫
ddk

(2π)d
δ((k + q)2)δ((k − p)2)

1

(k2 + i0)2

× Tr
[
/pγ

α/kγν(/k + /q)γ
µ/kγα

]
. (3.87)

We change to light-cone variables with kµ = k− n
µ

2 + k+ n̄µ

2 + kµ⊥ and∫
ddk

(2π)d
→ (4π)ε

32π3Γ(1− ε)

∫
dk+dk−d|k2

⊥|Θ(|k2
⊥|)|k2

⊥|−ε. (3.88)

With the further substitution k− =
k2+|k2

⊥|
k+ the delta functions can be rewritten as

δ((k + q)2)δ((k − p)2) =
x2k2

Q3
δ

(
k+ − x

Q2
k2

)
δ

(
|k2
⊥|+ (1− x)k2

(
1 +

x

Q2
k2

))
, (3.89)

so that the k+ and |k2
⊥| integrations become trivial. With these replacements for k+ and |k⊥|2 the trace

projected onto T̂1 is

Pµν1 Tr
[
/pγ

α/kγν(/k + /q)γµ/kγα
]

= 4k2

(
Q2(1− x)(1− ε)

x
+ 2k2(1− (1− x)ε) +

2x2

Q2
(k2)2

)
. (3.90)

21



3 DIS WITH MASSLESS QUARKS

Then the remaining k2 integral reads

∫ 0

−Q2

x

dk2

[
k2
(

1−+xk2

Q2

)]−ε
k2

(
Q2(1− x)(1− ε)

x
+ 2k2(1− (1− x)ε) +

2x2

Q2
(k2)2

)
. (3.91)

With the substitution k2 = −Q2

x y this can be written as a sum of three Beta functions B(a, b) =∫ 1

0
dy (1− y)a−1yb−1 = Γ(a)Γ(b)

Γ(a+b)(
Q2

x

)1−ε ∫ 1

0

dy (1− y)−ε
[
(1− x)(1− ε)− 2(1− (1− x)ε)y + 2xy2

]
=

(
Q2

x

)1−ε

((1− x)(1− ε)B(1− ε,−ε)− 2(1− (1− x)ε)B(1− ε, 1− ε) + 2xB(1− ε, 2− ε)) . (3.92)

Putting everything together and expanding in ε yields the result for the imaginary part of T̂
(q),(d)
1

Im
[
T̂

(q),(d)
1 (x)

]
=
αs(µ)CF

2
Θ(1− x)

[
−(1− x)

(
1

ε
+ Log

µ2

Q2
+ Log x− Log(1− x)

)
+ 1

]
. (3.93)

Final Result:
For each external leg one has to add 1

2 times the on-shell wave function counter term which is 0 in
dimensional regularization for a massless on-shell particle, so the full result for the partonic form factor
for an incoming quark of flavor i is

Ŵ
(i)
1 (x,Q2, µ2) =

Q2
i

2π
Im
[
T

(q),(a)
1 + T

(q),(b)
1 + 2T

(q),(c)
1 + T

(q),(d)
1

]
(x,Q2, µ2)

=

[
1

2
δ(1− x) +

αs(µ)

4π
Θ(1− x)

(
−1

ε
Pqq(x) + Cqq(x,Q

2, µ2)

)]
Q2
i . (3.94)

Here Pqq is the quark-quark splitting function

Pqq(x) = CF

(
3

2
δ(1− x) +

1 + x2

(1− x)+

)
(3.95)

and the finite parts are

Cqq(x,Q
2, µ2) = CF

(
− Pqq(x)

CF
Log

µ2

Q2
+ 2

(
Log(1− x)

1− x

)
+

− 3

2

1

(1− x)+
− δ(1− x)

(
9

2
+
π2

3

)

− (1 + x)Log(1− x)− 1 + x2

1− x Log x+ 3

)
. (3.96)

Similar calculations with the projector PµνL instead of Pµν1 give the longitudinal form factor ŴL

Ŵ
(i)
L (x,Q2, µ2) =

αs(µ)CF
2π

Θ(1− x)xQ2
i . (3.97)

3.3.2 Gluon Form Factor

The relevant diagrams for the partonic tensor with gluons in the initial state are shown in Fig. 9. Here
the average over polarization6 and color of the initial state gluon is implicit. Again the Cutkosky rules
were used to take the imaginary part before the integration.

Diagram Fig. 9a:

2 Im
[
Tµν (g),(a)(x)

]
= (−i) 1

2(1− ε)
∑
pol.

1

8

∑
col.

∫
ddk

(2π)d
(2π)2δ((k + q)2)δ((k − p)2)

× εAα (p)εBβ (p)Tr
[
TATB

]
(igµ̃ε)2

(
i

k2 + i0

)2

× Tr
[
/kγα(/k − /p)γβ/kγν(/k + /q)γ

µ
]
. (3.98)

6Note that a massless vector boson in d dimensions has not just 2 but (d− 2) degrees of freedom.
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3 DIS WITH MASSLESS QUARKS

(a) (b)

Figure 9: QCD Diagrams for DIS with Initial Gluons

The sums and color trace can be solved with
∑

pol. ε
A
α (p)εBβ (p) = −gαβδAB and 1

8

∑
A Tr

[
TATA

]
= Tf ,

the rest of the calculation is analogous to the one for the box diagram with quarks in the initial state
T̂µν (q),(d). The delta functions are the same and the spin trace reduces to

Pµν1 Tr
[
/kγα(/k − /p)γα/kγν(/k + /q)γµ

]
=
−4(1− ε)Q2

x
k2

(
1 +

k2x

Q2

)
. (3.99)

With the substitution k2 = −Q2

x y the remaining integral is

αs(µ)Tf
Γ(1− ε)

(
µ2eγEx

Q2(1− x)

)ε
Θ(1− x)

∫ 1

0

dy y−1−ε(1− y)1−ε

= αs(µ)Tf

(
µ2eγEx

Q2(1− x)

)ε
Θ(1− x)

Γ(−ε)Γ(2− ε)
Γ(1− ε)Γ(2− 2ε)

. (3.100)

The final result for the imaginary part of T̂
(g),(a)
1 is

Im
[
T

(g),(a)
1 (x)

]
=
αs(µ)Tf

2
Θ(1− x)

[
−1

ε
− Log

µ2

Q2
− Log x+ Log(1− x)− 1

]
. (3.101)

Diagram Fig. 9b:

2 Im
[
Tµν (g),(b)(x)

]
= (−i) 1

2(1− ε)
∑
pol.

1

8

∑
col.

∫
ddk

(2π)d
(2π)2δ((k + q)2)δ((k − p)2)

× εAα (p)εBβ (p)Tr
[
TATB

]
(igµ̃ε)2 i

(k2 + i0)

i

((k + q − p)2 + i0)

× Tr
[
/kγα(/k − /p)γν(/k + /q − /p)γβ(/k + /q)γ

µ
]
. (3.102)

Again we have the same delta functions and with the change to the variables k+,|k2
⊥| and y = −xk2

Q2 the
spin trace becomes

Pµν1 Tr
[
/kγα(/k − /p)γν(/k + /q − /p)γα(/k + /q)γµ

]
=
−4Q4(1− x)

x

[
1 +

(
ε

x(1− x)
− 2

1− ε

)
y(1− y)

]
.

(3.103)
The second propagator is 1

(k+q−p)2 = − x
Q2

1
(1−y) and so the last integral is∫ 1

0

dy

[
y−1−ε(1− y)−1−ε +

(
ε

x(1− x)
− 2

1− ε

)
y−ε(1− y)−ε

]
= B(−ε,−ε) +

(
ε

x(1− x)
− 2

1− ε

)
B(1− ε, 1− ε). (3.104)

The full result for Im
[
T

(g),(b)
1

]
expanded in ε is

Im
[
T

(g),(b)
1 (x)

]
= αs(µ)TfΘ(1− x)x(1− x)

[
1

ε
+ Log

µ2

Q2
+ Log x− Log(1− x) + 2

]
. (3.105)
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Final Result:
The full partonic form factor Ŵ1 for the gluon is the sum of both diagrams:

Ŵ
(g)
1 (x,Q2, µ2) =

αs(µ)

4π
Θ(1− x)

(
−1

ε
Pqg(x) + Cqg(x,Q

2, µ2)

)∑
i

Q2
i , (3.106)

Ŵ
(g)
L (x,Q2, µ2) =

αs(µ)Tfx(1− x)

π
Θ(1− x)

∑
i

Q2
i , (3.107)

with the splitting function Pqg and finite parts Cqg

Pqg(x) = Tf
(
x2 + (1− x)2

)
, (3.108)

Cqg(x,Q
2, µ2) = Tf

(
−Pqg(x)

Tf

(
Log

µ2

Q2
+ Log x− Log(1− x)

)
− (1− 2x)2

)
. (3.109)

Hard Matching Coefficients

The hard matching coefficients H
(i,g)
j in Eq. (3.45) are the finite parts of the partonic form factors Ŵ :

H
(i)
1 (x,Q2, µ2) =

(
1

2
δ(1− x) +

αs(µ)

4π
Θ(1− x)Cqq(x,Q

2, µ2)

)
Q2
i , (3.110)

H
(i)
L (x,Q2, µ2) =

αs(µ)CF
2π

Θ(1− x)xQ2
i , (3.111)

H
(g)
1 (x,Q2, µ2) =

αs(µ)

4π
Θ(1− x)Cqg(x,Q

2, µ2)
∑
i

Q2
i , (3.112)

H
(g)
L (x,Q2, µ2) =

αs(µ)Tf
π

Θ(1− x)x(1− x)
∑
i

Q2
i . (3.113)

The functions Cqq and Cqg are defined in Eqs. (3.96) and (3.109). The calculations analogous to the
quark case with anti-quarks in the initial state yield exactly the same matching coefficients. Since the
electromagnetic current is conserved under QCD corrections it does not lead to any uncanceled UV
divergences, so all 1

ε terms in the results for the partonic form factors Ŵ1 have to be IR divergences.
This implies that these 1

ε terms are just the UV divergences of the EFT operators with opposite sign, as
will be shown explicitly in the next section.

3.4 Renormalization of the PDFs

The EFT operators need to be renormalized when performing calculations beyond tree level. The corre-
sponding UV divergences can be obtained in a purely partonic computation since the high energy physics
is not sensitive to the structure of the IR physics. So we have to identify the UV divergences of the
matrix elements fi/j = 〈j|fi|j〉, where the index j can stand for a quark or anti-quark of any active flavor
or a gluon. The bare PDFs f0

i (x) have to be rewritten in terms of the renormalized PDFs fj(x, µ
2) and

the counter terms Zij(x, µ
2). The matrix Z(x, µ2) will not be diagonal beyond leading order, so there

will be a mixing between the PDFs

f0
i (x) =

∑
j

(Zij ⊗ fj) (x). (3.114)

3.4.1 Calculation of SCET Diagrams

First we calculate f0
i/i(x, µ

2), the bare partonic quark PDF with the same flavor in the initial state. From

Eq. (3.55) we find the expression for fi/i with an incoming quark with momentum p

f0
i/i(ξ) = 〈i(p)|χ̄(i)

n,p

/̄n

2

[
δ(p−ξ − P−)χ

(i)
n,p′

]
|i(p)〉. (3.115)

The relevant diagrams to order αs are shown in Fig. 10.
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3 DIS WITH MASSLESS QUARKS

(a) (b) (c) (d)

Figure 10: SCET Diagrams for fi/i

Diagram Fig. 10a:
At tree level we have

f
(a)
i/i (ξ) = δ(p−ξ − p−)

1

2

∑
s

ūn(p, s)
/̄n

2
un(p, s)

=
1

4p−
δ(1− ξ)Tr[/̄n/p]

= δ(1− ξ). (3.116)

Diagram Fig. 10b:

f
(b)
i/i =

∫
ddk

(2π)d
δ(p−ξ − k−)

−i
(p− k)2 + i0

1

2

∑
s

ūn(p, s)V µ,An (p, k)Fn(k)
/̄n

2
Fn(k)V An,µ(k, p)un(p, s),

(3.117)

where Fn(k) and V An,µ(p, k) are the fermion propagator and the collinear-collinear vertex in SCET respec-
tively (see Eqs. (2.31)(2.33)). Since we choose the light-cone axis n along the incoming quark, pµ⊥ = 0.
For a massless on-shell quark with p+p− = p2 = 0 this would give a scaleless integral which is zero in
dimensional regularization, but to see the UV divergences explicitly we use an off-shellness p2 > 0 as an
IR regulator. After carrying out all the spin traces we get

f
(b)
i/i (ξ) = 8iπαs(µ)CF (1− ε)µ̃2p−

∫
ddk

(2π)d
δ(p−ξ − k−)

|k2
⊥|

(k2 + i0)2((p− k)2 + i0)
(3.118)

and using Eq. (3.88), performing the k− integration with the delta distribution and substituting k+ = zp+

yields

iαs(µ)CF (µ2eγE )ε(1− ε)
4π2Γ(1− ε)(p2)2

∫ ∞
0

d|k2
⊥| |k2

⊥|1−ε
∫ ∞
−∞

dz
1(

zξ − |k
2
⊥|
p2 + i0

)2 (
(z − 1)(ξ − 1)− |k

2
⊥|
p2 + i0

) .
(3.119)

If ξ > 1 or ξ < 0 all three poles lie below or above the real axis and the integral is zero. Only if 0 < ξ < 1
we have a double pole below and a single pole above the real axis and can close the contour in either the
positive or the negative imaginary half-plane to get∫ ∞
−∞

dz
1(

zξ − |k
2
⊥|
p2 + i0

)2 (
(z − 1)(ξ − 1)− |k

2
⊥|
p2 + i0

) = −Θ(ξ)Θ(1− ξ) 2iπ(p2)2

(|k2
⊥| − p2ξ(1− ξ))2

. (3.120)

The remaining |k2
⊥| integral gives∫ ∞

0

d|k2
⊥|

|k2
⊥|1−ε

(|k2
⊥| − p2ξ(1− ξ))2

= (1− ε)Γ(1− ε)Γ(ε)(−p2ξ(1− ξ))−ε (3.121)

and so the final result for the diagram is

f
(b)
i/i (ξ) =

αs(µ)CF
2π

Θ(ξ)Θ(1− ξ)(1− ξ)(1− ε)2Γ(ε)

(
µ2eγE

−p2ξ(1− ξ)

)ε
=
αs(µ)CF

2π
Θ(ξ)Θ(1− ξ)(1− ξ)

(
1

ε
+ Log

µ2

−p2
− Log ξ − Log(1− ξ)− 2

)
. (3.122)
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Diagram Fig. 10c:
For this diagram we have to distinguish two cases because we can connect the gluon either to the left
Wilson line Wn or the right Wilson line W †n, Fig. 11. This gives a different sign because of the complex
conjugation in the Wilson line, but also the label operator in Eq. (3.115), acting only on the right jet
field, picks up different momenta.

= +

p p p p p p

p− k p− kp− k

W †
n

∼ δ(p−ξ − p−)

Wn

∼ δ(p−ξ − k−)

Figure 11: Different Wilson lines for diagram 10c. The label operator in the delta distribution picks out
different momenta depending on to which Wilson line the gluon is attached.

f
(c)
i/i (ξ) =

∫
ddk

(2π)d
(
δ(p−ξ − p−)− δ(p−ξ − k−)

) −i
((p− k)2 + i0)

gTAµ̃εn̄µ

(p− − k− − i0)

× 1

2

∑
s

ūn(p, s)Fn(k)V An,µ(p, k)un(p, s). (3.123)

The k+ and the |k2
⊥| integrations are equivalent to the integrals in the previous diagram, the k− integration

can be done with the delta distribution δ(p−ξ − k−) for the one term and with a reduction to a Beta

function: B(x, y) =
∫ 1

0
dt tx−1(1− t)y−1 = Γ(x)Γ(y)

Γ(x+y) for the other one

f
(c)
i/i (ξ) =

αs(µ)CF
2π

Γ(ε)

(
µ2eγE

−p2ξ

)ε
Θ(ξ)Θ(1− ξ)

(
ξ(1− ξ)−1−ε − Γ(2− ε)Γ(−ε)

Γ(2− 2ε)
δ(1− ξ)

)
. (3.124)

To expand the term ξ(1− ξ)−1−ε one can use Eq. (A.3) to get

f
(c)
i/i (ξ) =

αs(µ)CF
2π

Θ(ξ)Θ(1− ξ)
((

1

ε
+ Log

µ2

−p2ξ

)(
δ(1− ξ) +

1

(1− ξ)+
− 1

)

+ δ(1− ξ)
(

2− π2

6

)
−
(

Log(1− ξ)
1− ξ

)
+

+ Log(1− ξ)
)
. (3.125)

The diagram in Fig. 10d gives the same result as the one in Fig. 10c. For each external leg we have to
add 1

2 times the wave function counter term times the tree level diagram. The counter term is the same
as for full QCD, but here it is not zero as in the last section because of the IR regulator p2 6= 0, but has
the form

− αs(µ)CF
4π

(
1

ε
+ Log

µ2

−p2
+ 1

)
(3.126)

and so the bare quark-quark PDF to order αs is

f0
q/q(ξ, µ

2) = δ(1− ξ) +
αs(µ)CF

2π

((
1

ε
+ Log

µ2

−p2ξ

)
Pqq(ξ)

CF
+ δ(1− ξ)

(
7

2
− π2

3

)

− 2

(
Log(1− ξ)

1− ξ

)
+

+ (1 + ξ)Log(1− ξ)− 2(1− ξ)
)
. (3.127)

From this result we find the UV divergence to be

αs(µ)

2π

Pqq(ξ)

ε
, (3.128)
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which is indeed just the IR divergence of the full theory result with a different sign (the factor 1
2 just

results from a different normalization of the SCET operators).

Diagram Fig. 12:
The order αs diagram for the quark PDF with a gluon in the initial state fi/g is shown in Fig. 12. It

Figure 12: SCET Diagram for fi/g

gives the expression

fi/g(ξ) =

∫
ddk

(2π)d
δ(p−ξ − k−)

1

2(1− ε)
∑
pol.

1

8

∑
col.

εAµ (p)ε∗Bν (p)

× (−1)Tr

[
V µ,An (k, k − p)Fn(k)

/̄n

2
Fn(k)V ν,Bn (k − p, p)F (k − p)

]
, (3.129)

with the trace over color and spin. After performing all traces and sums we get

fi/g(ξ) = −8iπαs(µ)Tf µ̃
2

∫
ddk

(2π)d
δ(p−ξ − k−)

|k2
⊥|

(k2 + i0)2((k − p)2 + i0)

(
(p−)2

k− − p− +
4k−

2(1− ε)

)
.

(3.130)
Again the k− integral and the k+ and |k2

⊥| integrals are analogous to diagram Fig. 10b, and so we find
for the bare quark-gluon PDF

f0
q/g(ξ, µ

2) =
αsTf
2π

Θ(ξ)Θ(1− ξ)Γ(ε)

(
µ2eγE

−p2ξ(1− ξ)

)ε
(1− ε− 2ξ(1− ξ))

=
αs(µ)Tf

2π

((
1

ε
+ Log

µ2

−p2
− Log(1− ξ)− Log ξ

)
Pqg(ξ)

Tf
− 1

)
. (3.131)

Again the UV divergence
αs(µ)

2π

Pqg(ξ)

ε
(3.132)

is the same as the IR divergence in the full theory calculation up to a minus sign. The results for fq/q
and fq/g agree with Ref. [16].

gluon PDF tree level:
For the gluon PDF with an incoming gluon with momentum p we have to evaluate

fg/g(ξ) = − p−ξ

Tfg2
〈g(p)|Tr

[
W †n[(Pµ⊥ + gAµn⊥)Wn][δ(p−ξ − P−)W †n[(P⊥µ + gA⊥nµ)Wn]]

]
|g(p)〉. (3.133)

Since we choose the light-cone axis along the incoming momentum pµ we have pµ⊥ = 0 and therefore the
perp. momentum operator Pµ⊥ will always give zero at tree level. So the tree level expression is just

− p−ξ

Tf
〈g(p)|Tr

[
Aµn
[
δ(p−ξ − P−)Aνn

]]
|g(p)〉g⊥µν . (3.134)

Again the matrix element is averaged over polarization and color so we get

f
(0)
g/g(ξ) = − 1

Tf
δ(1− ξ) 1

2(1− ε)
∑
pol.

1

8

∑
col.

εAµ (p)ε∗Bν (p)gµν⊥ Tr
[
TATB

]
= δ(1− ξ). (3.135)
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Figure 13: SCET Diagram for fg/i

Diagram Fig. 13:
For the gluon-quark PDF fg/i at order αs we have to consider four different terms

fg/i(ξ) = − p−ξ

Tfg2

(
〈i(p)|Tr

[
gAµn⊥

[
δ(p−ξ − P−)gA⊥nµ

]]
|i(p)〉 (I)

〈i(p)|Tr
[
[Pµ⊥Wn]

[
δ(p−ξ − P−)P⊥µWn

]]
|i(p)〉 (II)

〈i(p)|Tr
[
[Pµ⊥Wn]

[
δ(p−ξ − P−)gA⊥nµ

]]
|i(p)〉 (III)

〈i(p)|Tr
[
gAµn⊥

[
δ(p−ξ − P−)P⊥µWn

]]
|i(p)〉

)
. (IV ) (3.136)

The first gives term gives

f
(I)
g/i(ξ) = −p

−ξ

Tf

∫
ddk

(2π)d
δ(p−ξ − k−)

1

2

∑
s

ūn(p, s)V An,µ(p− k, p)Fn(p− k)V Bn,ν(p, p− k)un(p, s)gµν⊥

×
( −i
k2 + i0

)2

Tr
[
TATB

]
=

(1− ε)ξ
1− ξ A, (3.137)

where A is the integral

A := 8iπαs(µ)CF µ̃
2p−

∫
ddk

(2π)d
δ(p−ξ − k−)

|k2
⊥|

(k2 + i0)2((p− k)2 + i0)

=
αs(µ)CF

2π
Θ(ξ)Θ(1− ξ)(1− ξ)

(
1

ε
+ Log

µ2

−p2ξ
− Log(1− ξ)− 1

)
. (3.138)

The second term contains the same integral

f
(II)
g/i (ξ) = − p−ξ

Tfg2

∫
ddk

(2π)d
δ(p−ξ − k−)

1

2

∑
s

ūn(p, s)V An,µ(p− k, p)Fn(p− k)V Bn,ν(p, p− k)un(p, s)

×
( −i
k2 + i0

)2 −gn̄µ
(−k− − i0)

−gn̄ν
(k− − i0)

kρ⊥(−k⊥ρ )Tr
[
TATB

]
=

2(1− ξ)
ξ

A, (3.139)

as well as the third term

f
(III)
g/i (ξ) = −p

−ξ

Tfg

∫
ddk

(2π)d
δ(p−ξ − k−)

1

2

∑
s

ūn(p, s)V An,µ(p− k, p)Fn(p− k)V Bn,νun(p, s)

×
( −i
k2 + i0

)2

kµ⊥
−gn̄ν

(k− − i0)
Tr
[
TATB

]
= A. (3.140)

Because the i0 prescription in the Wilson lines does not matter in these integrals, f
(IV )
g/i = f

(III)
g/i . Putting

all four terms together gives the bare gluon-quark PDF at order αs

f0
g/q(ξ, µ

2) =
αs(µ)CF

2π
Θ(ξ)Θ(1− ξ)

((
1

ε
+ Log

µ2

−p2ξ
− Log(1− ξ)

)
Pgq(ξ)

CF
− 2(ξ(1− ξ)− 1)

ξ

)
.

(3.141)
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The splitting function Pgq is

Pgq(ξ) = CF
1 + (1− ξ)2

ξ
. (3.142)

So far we have calculated three of the four splitting functions as the coefficients of the UV divergences of
SCET operators to order αs. To get the remaining one Pgg in the same way one would have to calculate
the UV divergences of the gluon PDF with gluons in the initial state. We have not done this calculation,
it can be found for example in Ref. [18]. The leading order gluon-gluon splitting function is

Pgg(ξ) = 2CA

(
1

(1− ξ)+
+

1− ξ
ξ

+ ξ(1− ξ)− 1

)
+ δ(1− ξ)11CA − 4nfTf

6
. (3.143)

3.4.2 Renormalization and Evolution

As shown above, in dimensional regularization the matrix elements for the bare PDF operators up to
order αs have the form

f0
i/j(x) = δijδ(1− x) +

αs(µ)

2π
Θ(1− x)

(
P

(0)
ij (x)

ε
+ c

(0)
ij (x, µ2)

)
+O(α2

s). (3.144)

Here the 1
ε are only UV divergences, i.e. any IR divergences have already been regularized by the off-

shellness p2 6= 0. With this the counter terms and the running of the PDFs can be determined from
Eq. (3.114). In the MS-scheme only the 1

ε terms are absorbed into the counter terms, which yields

Zij(x, µ
2) = δijδ(1− x) +

αs(µ)

2π
Θ(1− x)

P
(0)
ij (x)

ε
+O(α2

s). (3.145)

Solving the equation

0 =
d

d Logµ2
f0
i (x) =

∑
j

d

d Logµ2
(Zij ⊗ fj)(x, µ2) (3.146)

for the derivative of fi(x, µ
2) gives the usual DGLAP equations

d

d Logµ2
fi(x, µ

2) =
αs(µ)

2π

∑
j

(Pij ⊗ fj) (x, µ2). (3.147)

This implies that the PDFs are evolved from a scale µ2
0 to µ2 in a convolution with an evolution kernel

U(x, µ2, µ2
0) that mixes the different PDFs

fi(x, µ
2) =

∑
j

(
Uij(µ

2)⊗ fj
)

(x, µ2
0) =

∑
j

∫
dξ

ξ
Uij

(
x

ξ
, µ2, µ2

0

)
fj(ξ, µ

2
0). (3.148)

The DGLAP equations can in general not be solved analytically but only with numerical methods, either
in x-space or in Mellin space where the convolution is disentangled to become a multiplication of two

functions. The splitting functions Pij(x) =
∑
n

(
αs(µ)

2π

)n
P

(n)
ij (x) can be calculated perturbatively order

by order in αs.
It is important to notice that the results of the calculations in Sec. 3.4 would not change if we replaced
a quark by its corresponding anti-quark. Also the flavor of the quark does not play a role because a
gluon does not distinguish different quark flavors. This implies that some of the splitting functions in
Eq. (3.147) are actually the same:

Pqq′ = Pq̄q̄′ Pqg = Pq̄g

Pqq̄′ = Pq̄q′ Pgq = Pgq̄ (3.149)

This fact can be used to find suitable linear combinations of the quark PDFs such that the mixing is
reduced to a 2× 2 matrix. We define the non-singlet PDFs (i, j for any quark flavor)

f±NS,ij = (fi ± f̄i)− (fj ± f̄j) (3.150)

fVNS =

nf∑
i

(fi − f̄i) (3.151)

29



3 DIS WITH MASSLESS QUARKS

and the singlet PDF

Σ =

nf∑
i

(fi + f̄i), (3.152)

such that all non-singlet PDFs evolve without any mixing

d

d Logµ2
f±NS,ij(x, µ

2) =
αs(µ)

2π

(
P±NS ⊗ f±NS,ij

)
(x, µ2) (3.153)

d

d Logµ2
fVNS(x, µ2) =

αs(µ)

2π

(
PVNS ⊗ fVNS

)
(x, µ2) (3.154)

while the singlet PDF mixes with the gluon PDF. The evolution of the singlet and non-singlet PDFs are
discussed in great detail in Refs. [19, 20]. At O(αs) this simplifies even more since we do not see any
flavor changing, which implies that

P±NS = PVNS = P (0)
qq . (3.155)

The evolution of the singlet and the gluon PDF takes the form[
d

d Logµ2

(
Σ
fg

)]
(x, µ2) =

[(
P

(0)
qq 2nfP

(0)
qg

2nfP
(0)
gq P

(0)
gg

)
⊗
(

Σ
fg

)]
(x, µ2). (3.156)

The leading order splitting functions P
(0)
ab are given in Eqs. (3.95),(3.108),(3.142),(3.143).
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4 HEAVY FLAVOR PRODUCTION IN DIS

4 Heavy Flavor Production in Deep Inelastic Scattering

We will now add an additional quark flavor with mass m and work out the corrections we get compared
to the massless case. This can be done in different schemes, namely a fixed flavor number (FFN) scheme
and a variable flavor number (VFN) scheme. Here it is assumed that the mass m is above the scale ΛQCD

and can be treated perturbatively. The FFN scheme will give a good description in the case where Q2

is of the order of the mass threshold or smaller and gives the decoupling limit for m2 � Q2, but suffers

from large logarithms Log m2

Q2 in the case where m2 � Q2. These logs can be resummed in a VFN scheme

in the evolution of a new PDF for the heavy quark that is introduced at a scale µ2
m ∼ m2. The VFN

scheme agrees with the FFN scheme for m2 & Q2, but because of the log resummation it is also able to
deal with the case where the scale Q2 is much greater than m2 and it provides the correct massless limit

for m2

Q2 rightarrow0 due to the cancellation of IR sensitive contributions in the matching.

4.1 Kinematics and Rescaling

In the VFN scheme a new PDF for a heavy quark is introduced, so we need to perform the matching on
the parton level with a massive initial state (see Sec. 4.3). In the case where the parton going into the
hard interaction has a mass m the kinematics change a little bit compared to the massless case discussed
in Sec. 3.1. To fulfill the on-shell relation P̂ 2 = m2 and maintain the definition of the (partonic) Bjorken

variable P̂ · q = Q2

2x̂ the parton momentum has to be

P̂µ =
Q

η

nµ

2
+
m2η

Q

n̄µ

2
, η =

2x̂

1 +
√

1 + 4m2x̂2

Q2

. (4.1)

If ξ is again the longitudinal momentum fraction, i.e. P̂− = ξP−, we find at tree level, where x̂ = 1, the
relation between the Bjorken variable and the momentum fraction to be x = 2

1+
√

1+4m
2

Q2

ξ. So in the case

of a massive parton the tree-level relation is no longer just x = ξ but is rescaled by a factor depending

on the parton mass. The restriction (P̂ + q)2 ≥ m2 leads to ξ ≥ 1+
√

1+4m
2

Q2

2 x, so again for x → 1 we
also have ξ → 1. The mass of the initial state also changes the form of the convolution in the matching
condition Eq. (3.45). The convolution for an arbitrary mass of the initial state with momentum P̂ was
of the form ∫

dξ

ξ
H

(
Q

ξP̂−

)
f(ξ). (4.2)

For a massless parton we had P̂− = Q
x̂ which lead to the matching condition in Eq. (3.45). For a massive

quark in the initial state we have to use Eq. (4.1), i.e. P̂− = Q
η , so the matching condition becomes

Ŵ
(p)
j (x̂,m2, µ2) =

∑
i

(
H

(i)
j ⊗ (fi/p + f̄i/p)

)
(η, µ2) +

(
H

(g)
j ⊗ fg/p

)
(η, µ2), (4.3)

where the argument of the convolution is now the variable η instead of x̂. This rescaling only depends
on the mass of the initial state, so the matching for massless partons or the convolution with the PDFs
for the (massless) hadron are not changed. Note that the rescaling only affects the convolution in the
matching (because here the light-cone component P̂− explicitly enters the argument of the convolution)
but has no effect on the renormalization of the PDFs. Also the projectors in Eqs. (3.15)(3.16)(3.18) have

to be changed for the partonic tensor with a massive quark. The factor A is shifted to A → m2 + Q2

4x2

because of the mass of the initial state. Since we sill consider the hadron to be massless the definition of
the hadronic form factors in Eqs. (3.19)-(3.21) and the form of the cross section Eq. (3.22) as well as the
convolution in the factorized form of the full hadronic tensor is not changed.

4.2 Fixed Flavor Number Scheme

In a FFN scheme it is straight forward to include the effects of an additional heavy flavor. We just stick
to the same effective theory setup with PDFs for nf light flavors like before, but add one additional
heavy quark flavor in the full theory calculations. At O(αs) this only gives two new diagrams of the
type of Fig. 9 with massive quarks for the internal lines. On the side of the effective theory operators
nothing changes at all, because modes with p2 ∼ m2 ∼ Q2 would be considered as hard in the SCET
power counting and are therefore integrated out. So all effects of the new heavy quark go into the hard
coefficients.
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4 HEAVY FLAVOR PRODUCTION IN DIS

4.2.1 QCD Calculations

The diagrams in Fig. 9 with massive quarks were calculated by using the Mathematica package FeynCalc
[21] that does the Passarino-Veltman reduction to standard scalar integrals automatically. The result in
terms of these integrals is

T̂
(g)
1,m(x,Q2,m2, µ2) =

−αs(µ)Tf
π

[(
−m

2

Q2
x− 2

3

)
b2 +

(
m2

Q2
(1− 2x)x− 2x2 − 5

6

)
b3

+

(
(x− 1)x− 1

2

)
b4 + x

(
m2

Q2
2x+ x+ 1

)
b5

−m2c2 +
Q2

3

(
m2

Q2
(3x− 2) + 1

)
c3 +Q2

(
m2

Q2
(3− 2x) +

1− 4x

2x

)
c4

+Q4

(
2
m4

Q4
− m2

Q2

)
d2 +Q4

(
4xm

4

Q4 + m2

Q2 − x− 1

2x

)
d3

]
Q2
m, (4.4)

T̂
(g)
L,m(x,Q2,m2, µ2) =

−αs(µ)Tf
π

[(
−2x

m2

Q2
− 1

3

)
b2 +

(
2x(1− 2x)

m2

Q2
− 4x2 +

1

3

)
b3

− 2x(1− x)b4 + 2x

(
2x
m2

Q2
+ x+ 1

)
b5

+
Q2

3

(
(6x+ 2)

m2

Q2
− 1

)
c3 − 4xm2c4

]
Q2
m. (4.5)

The n-point functions {b, c, d}i are given in appendix C. Only b4, c4, d2 and d3 have a non-vanishing
imaginary part (see appendix B)

Im[b4] = πΘ

(
1

w2
− x
)
s,

Im[c4] = πΘ

(
1

w2
− x
)

x

Q2
Log

(
1− s
1 + s

)
,

Im[d2] = πΘ

(
1

w2
− x
)
sx(1− x)

m2Q2
,

Im[d3] = πΘ

(
1

w2
− x
) −2x2

Q4
Log

(
1− s
1 + s

)
, (4.6)

where w and s are

w :=

√
1 +

4m2

Q2
, s :=

√
1− 4m2x

Q2(1− x)
. (4.7)

This gives the final result for the massive part of the gluon form factor

Ŵ
(g)
1,m(x,Q2,m2, µ2) =

1

2π
Im
[
T

(g)
1,m

]
=
αs(µ)Tf

4π
Θ

(
1

w2
− x
)[

Log

(
1 + s

1− s

)(
Pqg(x)

Tf
+ 4xρ (1− 2xρ− x)

)

+ 4sx(1− x)(1− ρ)− s
]
Q2
m, (4.8)

Ŵ
(g)
L,m(x,Q2,m2, µ2) =

1

2π
Im
[
T

(g)
L,m

]
=
αs(µ)Tf

π
Θ

(
1

w2
− x
)
x

[
− 2x

m2

Q2
Log

(
1 + s

1− s

)
+ s(1− x)

]
Q2
m. (4.9)

The splitting function Pqg was defined in Eq. (3.108).
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4 HEAVY FLAVOR PRODUCTION IN DIS

4.2.2 Matching

To find the corrections Hj,m to the hard coefficients we have to do the matching at the scale µ2. All
contributions from massless quarks are the same as in the previous section, so we just write the new
terms we get from the heavy quark

Ŵ
(a)
j,m(x,Q2,m2, µ2) =

∑
i

(
H

(i)
j,m,F ⊗ fi/a

)
(x, µ2) +

(
H

(g)
j,m,F ⊗ fg/a

)
(x, µ2). (4.10)

Again j denotes the form factor, j = {1, L}, a can stand for any initial state parton, so a light (anti-)
quark or a gluon, and the sum i runs over all light (anti-) quark flavors. The subscript m should remind us
that these are just the contributions from the massive quark, the subscript F that these are the matching
coefficients in the FFN scheme. If we insert the leading order results for the partonic PDFs

f
(0)
i/j (x) = δijδ(1− x),

f
(0)
g/g(x) = δ(1− x),

f
(0)
i/g(x) = 0,

f
(0)
g/i(x) = 0 (4.11)

and use that Ŵ
(a),(0)
j,m = 0 and Ŵ

(i),(1)
j,m = 0 we find that the only non zero contribution is from the gluon

coefficient at O(αs). This is because at O(αs) we do not see any flavor changing so there is no mixing
between the contributions from different quark flavors. So on a hadronic target P the fixed flavor number
result for Wj with one massive quark reads

W
(P )
j (x, µ2) = W

(P )
j,m=0(x, µ2) +

(
H

(g)
j,m,F ⊗ fg/P

)
(x, µ2) +O(α2

s), (4.12)

where H
(g)
j,m,F = Ŵ

(g)
j,m from Eqs. (4.8)(4.9) and W

(P )
j,m=0 is just the massless result without the heavy

quark. In the limit m2

Q2 → 0 the longitudinal coefficient H
(g)
L,m,F reduces to the massless coefficient

Eq. (3.107), but one import thing to notice is that for the coefficient H
(g)
1,m,F the limit m2

Q2 → 0 contains

logarithmic singularities of the form Log m2

Q2

H
(g)
1,m,F (x,Q2,m2, µ2) −−−−→

m2→0
−αs(µ)Tf

4π
Θ(1− x)

[
Pqg(x)

Tf

(
Log

m2

Q2
− Log

(
1− x
x

))
+ (1− 2x)2

]
.

(4.13)
This tells us that we get a large logarithm if m2 � Q2 and the FFN scheme is not a good choice in that
case. This is resolved by the use of a VFN scheme, as will be shown in the next section.

4.3 Variable Flavor Number Scheme

Another way to include the effects of a heavy flavor with mass m is to use a variable flavor number
scheme, as was first proposed for DIS by Aivazis et al. [3, 4]. Here two different effective theories are
used, one with nf light flavors for µ2 . m2, and one with nf light plus 1 heavy flavor for µ2 & m2. At
the scale µ2

m ∼ m2 the two theories have to be matched which will give a PDF for the heavy quark in the
nf + 1 theory. So for µ2 & m2 one has to run the PDFs (and also αs) with nf + 1 instead of nf flavors,
see Fig. 14a. In the case where the mass is above the hard scale the threshold is not crossed at all and
so the VFN scheme simply reduces to the FFN scheme, see Fig. 14b.
In the VFN scheme (scenario I) the form factor W is written as

W =
∑

l,k=
(−)
q ,

(−)

Q ,g

∑
i,j=

(−)
q ,g

H
(l)
V (µH)⊗ Unf+1

lk (µH , µm)⊗Akj(µm)⊗ Unfji (µm, µf )⊗ fi(µf ). (4.14)

Here HV are the hard matching coefficients in the VFN scheme (whereas the matching coefficients in the
FFN scheme were denoted as HF ) that will be determined in Sec. 4.3.3. The indices i, j run over light
(anti-) quark flavors and the gluon, k, l also include the heavy (anti-) quark. The matching coefficients in
A(µm) relate the PDFs in the two theories to each other (see Sec. 4.3.4), the evolution kernels U(µ, µ0)
run the PDFs from the scale µ0 to µ. The evolution of the new heavy quark PDF from the scale µm → µH
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µH ∼ Q

µf ∼ ΛQCD

µm ∼ m

H

f

A

nf

nf + 1

(a) Scenario I

µf ∼ ΛQCD

nf

f

µm ∼ m

µH ∼ Q H

(b) Scenario II

Figure 14: Variable flavor number scheme. In scenario I (left), where the mass is between ΛQCD and the
hard scale, the PDFs are run from their natural scale ΛQCD to the matching scale µm where they are
matched onto a theory with nf + 1 flavors. The threshold corrections in A relate the PDFs in the two
theories with each other. From µm to the hard scale the PDFs are run with nf + 1 flavors. In scenario
II (right) the mass is above the hard scale. Here the threshold is never crossed in the evolution and the
PDFs are run from ΛQCD to the hard scale with nf flavors. All effects of the massive flavor are in the
hard coefficients.

will eventually resum the logarithms Log m2

Q2 that appeared in Eq. (4.13). To find the hard coefficients
in the VFN scheme HV we have to perform the matching between SCET and QCD again, this time also
allowing for a heavy quark in the initial state in the nf +1 theory. All diagrams with light quarks and the
contributions from the heavy quark to the one loop diagrams with gluons in the initial state have already
been computed in the last sections, to get all necessary matching coefficients in the nf + 1 theory also

the partonic QCD form factor for a heavy quark W
(Q)
j (capital Q for a heavy quark) and the partonic

PDFs fQ/Q and fQ/g need to be calculated (at O(αs) there is no flavor changing between heavy and light
quarks).

4.3.1 QCD Calculations

The diagrams in Fig. 8 plus one additional with a mass counter term on the internal line have to be
calculated again, this time with a massive quark in the initial state. Again this was done by using the
Mathematica package FeynCalc to perform the tensor reduction for the integrals. The relevant n-point
function can be found in appendix C. The wave function counter term for the external legs in the on-shell
scheme and the mass counter term in the MS scheme are

δZOS
ψ = −αs(µ)CF

4π

(
3

ε
+ 3 Log

µ2

m2
+ 4

)
, (4.15)

δZMS
m = −3αs(µ)CF

4πε
. (4.16)

For a shorter notation we use the abbreviations

w :=

√
1 +

4m2

Q2
, r :=

√
1 +

4m2x2

Q2
, u :=

w − 1

w + 1
. (4.17)

Diagram Fig. 8a:
The tree-level result is

T̂
(Q),(a)
1 (x) = − 1

(1− x+ i0)

(
2m

2

Q2 x(x(2ε− 3) + 1) + ε− 1

(1− ε)r2

)
. (4.18)

The imaginary part is independent of the mass and just leads to the massless result

Im
[
T̂

(Q),(a)
1 (x)

]
= πδ(1− x). (4.19)
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Mass Counter Term:
The diagram with the mass counter term on the internal quark line yields

T̂
(Q),(ac)
1 (x) = 2

m2

Q2
δZMS

m

(
1

(1− x+ i0)2
+

2ε− 3

1− ε

(
1

(1− x+ i0)
− 1

2

)
+

1

2(1− ε)r2

)
. (4.20)

The imaginary part is

Im
[
T̂

(Q),(ac)
1 (x)

]
= −2π

m2

Q2
δZMS

m ((3 + ε)δ(1− x) + δ′(1− x)) . (4.21)

Diagram Fig. 8b:
The diagram in terms of the scalar integrals in appendix C reads

T̂
(Q),(b)
1 (x) =

αs(µ)CF eεγE

4π
(

1− x+ m2

Q2 x
)
r2Γ(2− ε)

×
[

1− ε
Q2

(
2m

2

Q2w
2(1− ε)

(1− x+ i0)2
+

8m
4

Q4 (5ε− 6) + 2m
2

Q2 (ε− 2)− ε+ 1

1− x+ i0

+
m2

Q2
[x2(4ε− 6) + 2xε+ ε+ 1]

+
m4

Q4
[x3(12− 8ε) + x2(24− 16ε) + x(32− 24ε) + 40− 32ε]

)
a1

+

(
4
m2

Q2

(
m2

Q2w
2(1− ε)

(1− x+ i0)2
−

4m
4

Q4 (6− 5ε) + m2

Q2 ε+ ε− 1

(1− x+ i0)

)

+
m6

Q6
[x3(24− 16ε) + x2(48− 32ε) + x(64− 48ε) + 80− 64ε]

+
m4

Q4
[x3
(
−8ε2 + 36ε− 36

)
+ x2(16ε− 24) + x(12ε− 8) + 8ε− 4]

+
m2

Q2
[x2
(
−4ε2 + 10ε− 6

)
+ x

(
−2ε2 + 8ε− 10

)
+ 4ε− 4]− (1− ε)2

)
b6

]
. (4.22)

The imaginary part can be found with the relations in appendix B. The result expanded in ε is

Im
[
T̂

(Q),(b)
1 (x)

]
=
αs(µ)CF

2
Θ(1− x)

{
−

(
9m

2

Q2 + 1
2

)
δ(1− x) + 3m

2

Q2 δ
′(1− x)

ε

− 2
1

(1− x)+
− m2

Q2

[
3 Log

µ2

m2
+ 4

]
δ′(1− x)

−
[(

9
m2

Q2
+

1

2

)
Log

µ2

m2
− 2 Log

m2

Q2
+ 15

m2

Q2

]
δ(1− x)

+
8m

6

Q6 (3x+ 1)x3 + 4m
4

Q4 (x(11− 9x) + 4)x2 + 2m
2

Q2 (x(6− 11x) + 7)x− 5(x− 1)

2
(

1− x+ m2

Q2 x
)2

r2

}
.

(4.23)
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Diagram Fig. 8c:

T̂
(Q),(c)
1 (x) =

αs(µ)CF eεγE

2πr2Γ(2− ε)

×
[
−

(1− ε)x(m
2

Q2 x(2x+ 1) + 1)

Q2
(

1− x+ m2

Q2 x
) a1 +

r2(1− m2

Q2 x− ε)
(1− x+ i0)

b1

+
4m

2

Q2 x(2x2(ε2 − 1) + x(ε− 2) + 1)− (1− ε)(2x(1 + ε) + 1)

2(1− x+ i0)
b3

+

(
w2(1 + m2

Q2 − ε)
(1− x+ i0)

+
−4m

6

Q6 x
(
x2 + x+ 1

)
+ m4

Q4 [x3
(
4ε2 − 2ε+ 2

)
+ x2(4ε− 6) + x(4ε− 5)− 4]

1− x+ m2

Q2 x

+

m2

Q2 [x3
(
4− 4ε2

)
+ x2

(
4ε2 − 5ε+ 3

)
+ x

(
ε2 − 2

)
+ 4ε− 5]− (1− x)

(
1− ε2

)
1− x+ m2

Q2 x

)
b6

+Q2
−r2ε(2m

2

Q2 x+ 1) + m2

Q2 (1 + x)
[
4x
(
m2

Q2 (2x− 1) + 1
)
− 1
]

+ 1

(1− x+ i0)
c5

]
. (4.24)

Except for the term with c5 it is again straight forward to get the imaginary parts with the relations
given in appendix B. The term proportional to c5

1−x+i0 can be split in a singular and a non-singular part

c5
1− x+ i0

=
c5,x→1

1− x+ i0
+
c5 − c5,x→1

1− x , (4.25)

so that the imaginary part is

Im

[
c5

1− x+ i0

]
= Im

[
c5,x→1

1− x+ i0

]
+

Im [c5]− Im [c5,x→1]

1− x . (4.26)

Only one of the dilogarithms in c5 has a non-zero imaginary part and so we have

Im [c5] = − xπ

Q2r
Log

(
(r + 1)(r + 2x− 1)

(r − 1)(r − 2x+ 1)

)
, (4.27)

Im [c5,x→1] =
[
Im [c5]

]
x→1

=
2π

Q2w
Log u. (4.28)

c5 in the limit x→ 1 is

c5,x→1 =
1

Q2w

[
− 2 Log u Log(−(1− x)− i0)− π2

6
− Li2

(
w − 1

2w

)
+ Li2

(
w + 1

2w

)

+ Li2
(
u2
)

+ Log u

(
1

2
Log u+ Log

(
2w3

w + 1

))]
. (4.29)

From this we find the imaginary part of the full term in question to be

Im

[
c5

1− x+ i0

]
=

π

Q2w

[
2 Log u

1

(1− x)+
+

(
Li2

(
w − 1

2w

)
− Li2

(
w + 1

2w

)
− Li2

(
u2
)

− Log u

(
1

2
Log u+ Log

(
2w3

w + 1

))
+
π2

6

)
δ(1− x)

−
xw
r Log

(
(r+1)(r+2x−1)
(r−1)(r−2x+1)

)
+ 2 Log u

1− x

]
. (4.30)

36



4 HEAVY FLAVOR PRODUCTION IN DIS

Then the imaginary part for the full diagram is

Im
[
T̂

(Q),(c)
1 (x)

]
=
αs(µ)CF

4
Θ(1− x)

{
1

ε
δ(1− x)

+

{
Log

µ2

m2
− 3w Log u− 1 + w2

w

[
Li2

(
w − 1

2w

)
− Li2

(
u2
)
− Li2

(
w + 1

2w

)

+ Log u

(
−Log u+

1

2
Log

m2

Q2
− Log(w3)

)
+
π2

6

]}
δ(1− x)

− 2(1 + w2) Log u

w

1

(1− x)+
+

2(1 + w2) Log u+ wx
r Log

(
(r+1)(r+2x−1)
(r−1)(r−2x+1)

)
w(1− x)

+

(
1− r2

) (
r2(2x+ 1) + x− 1

)
Log

(
(r+1)(r+2x−1)
(r−1)(r−2x+1)

)
2r3x2

+
2x
(
−4m

6

Q6 x
3 + m4

Q4 (2(x− 4)x+ 1)x+ m2

Q2 ((4x− 5)(x+ 1)x+ 1) + x− 1
)

(
1− x+ m2

Q2 x
)2

r2

}
.

(4.31)

Diagram Fig. 8d:

T̂
(Q),(d)
1 (x) =

αs(µ)CF eεγE

2πr2Γ(2− ε)

×
[
x2(1− ε)(2m2

Q2 x+ 1)

Q2
(

1− x+ m2

Q2 x
) a1 + (1− ε)

(
2
m2

Q2
x2(2ε− 1) + ε− 1

)
b1

+

(
−2r2(1− ε)3

2ε− 3
+ 2

m2

Q2
x

)
b2 +

(
x(1− 2

m2

Q2
− ε) + 1 +

2− ε
2ε− 3

r2

)
b3

+ x(ε− 1)

(
2x2 − 3x+ 1

1− x+ m2

Q2 x
+ 2x+

4m
2

Q2 xε

ε− 1

)
b6 +m2

(
r2(1− 2ε) + 1

)
c1

+ 2Q2

(
(ε− 1)2(ε− 1 + 2m

2

Q2 )r2

2ε− 3
− m2

Q2
x
(

1 + 4
m2

Q2
x
))

c3

+
Q2

x

(
2
m2

Q2
x
(
r2 + (1− x)

(
x(ε− 1)(2ε− 1)− 2

))
+ (1− x)(1− ε)2

)
c5

+ 2m2Q2

(
2
m2

Q2

(
− 1 + 2x+ x2(1− 2ε)

)
− ε+ 1

)
d1

]
. (4.32)

The imaginary part of this is

Im
[
T̂

(Q),(d)
1 (x)

]
=
αs(µ)CF

2
Θ(1− x)

{
1

ε
δ(1− x)− 2

1

(1− x)+

+

[
Log

µ2

m2
+ 2 Log

m2

Q2
− 1 + w2

w
Log u

]
δ(1− x)

+

(
r4 − r2((x− 3)x+ 3)− x2 − x+ 2

)
Log

(
(r+1)(r+2x−1)
(r−1)(r−2x+1)

)
2r3x

+
4m

6

Q6 (x+ 1)x3 + 2m
4

Q4 x
2
(
5− 4x2

)
+ 2m

2

Q2 (x− 2)(x− 1)(x+ 2)x+
(
x3 − 3x+ 2

)(
1− x+ m2

Q2 x
)2

r2

}
.

(4.33)
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Final Result:

The final result for the partonic form factor for a massive quark Ŵ
(Q)
1 including the wave function counter

terms for the external legs is

Ŵ
(Q)
1 (x,Q2,m2, µ2) =

1

2
δ(1− x) +

αs(µ)CF
4π

Θ(1− x)

{
− m2

Q2
δ′(1− x)

[
3 Log

µ2

m2
+ 4

]

δ(1− x)

[
− 2− 3

m2

Q2

(
4 + 3 Log

µ2

m2

)
+ 4 Log

m2

Q2
− 3w Log u

+
1 + w2

w

(
− Li2

(
w − 1

2w

)
+ Li2

(
w + 1

2w

)
+ Li2

(
u2
)

+
π2

6

+ Log u
(

Logw3 + Log u− 1

2
Log

m2

Q2
− 1
))]

− 2
1

(1− x)+

[
2 +

1 + w2

w
Log u

]

+
1

2r2(1 + x(m
2

Q2 − 1))2

(
(1− x)(9− 6x− 2x2) + 2

m2

Q2
(1− x)x(17 + 5x− 10x2)

+ 4
m4

Q4
x2(10 + 3x− 33x2) + 16

m6

Q6
x3(1 + x)

)

+
Log

(
(r+1)(r+2x−1)
(r−1)(r−2x+1)

)
2r3(1− x)x2

(
− 1 + 4x(1− x+ x2) + r2(2− 4x+ 5x2

− 2x3(2 + w) + x4) + r4(−1 + x2)

)
− 2

1− x Log u

}
. (4.34)

All IR divergences have been regularized by the mass. The mass singularities in Ŵ
(Q)
1 for m2

Q2 → 0 will

be canceled by the SCET subtractions to yield the correct finite massless limit for H
(Q)
1,V (see Sec. 4.3.5).

4.3.2 SCET Calculations

We have to calculate the diagrams in Fig. 10 again, this time with a massive quark. The mass does not
enter the tree level calculation, so Fig. 10a is again just δ(1− ξ).

Diagram Fig. 10b:

f
(b)
Q/Q(ξ) =

∫
ddk

(2π)d
δ(p−ξ − k−)

−i
(p− k)2 + i0

× 1

2

∑
s

ūn(p, s)V n,µ,A(p, k,m)Fn(k,m)
/̄n

2
Fn(k,m)V An,µ(k, p,m)un(p, s), (4.35)

with the massive propagator and vertex Fn(k,m) and V An,µ(k, p,m) from Sec. 2.3. This yields

f
(b)
Q/Q(ξ) = −8iπαs(µ)CF µ̃

2p−
∫

ddk

(2π)d
δ(p−ξ − k−)

1

(k2 −m2 + i0)2((p− k)2 + i0)

×
(
k−m2

p−

(
2− (1− ε)(p− − k−)2

p−k−

)
− (1− ε)|k2

⊥|
)
. (4.36)

With the change to light-cone coordinates and the further substitution to dimensionless integration
variables |k2

⊥| = wp+p−, k+ = yp+ and k− = zp− and the on-shell condition p+p− = m2 this simplifies
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to

f
(b)
Q/Q(ξ) =

−iαs(µ)CF
4π2Γ(1− ε)

(
µ2eγE

m2

)ε ∫
dydzdw δ(z − ξ) Θ(w)w−ε

(zy − w − 1 + i0)2(y(z − 1)− z + 1− w + i0)

×
[

2z − (1− ε)(1− z)2 − (1− ε)w
]
. (4.37)

The z integration is trivial, the y integration can be solved by contour integration∫ ∞
−∞

dy
1

(yξ − w − 1 + i0)2(y(ξ − 1)− ξ − w + 1 + i0)
=
−2πi(1− ξ)

(w + (1− ξ)2)2
Θ(ξ)Θ(1− ξ) (4.38)

and the remaining w integral is∫ ∞
0

dw
w−−ε(2ξ − (1− ε)(1− ξ)2 − (1− ε)w)

(w + (1− ξ)2)2
= −Γ(ε)Γ(1− ε)

(
(1− ξ)−2ε − ε(1 + ξ2)(1− ξ)−2−2ε

)
.

(4.39)
Therefore the full expression reads

f
(b)
Q/Q(ξ) =

αs(µ)CF
2π

Θ(ξ)Θ(1− ξ)
(
µ2eγE

m2

)ε
Γ(ε)

(
(1− ξ)1−2ε − ε(1 + ξ2)(1− ξ)−1−2ε

)
. (4.40)

One can use Eq. (A.3) to expand the last term

ε(1 + ξ2)(1− ξ)−1−2ε = −1

2
(1 + ξ2)δ(1− ξ) + ε(1 + ξ2)

1

(1− ξ)+
+O(ε2)

= −δ(1− ξ) + ε

(
2

1

(1− ξ)+
− 1− ξ

)
+O(ε2) (4.41)

and so the final result is

f
(b)
Q/Q(ξ) =

αs(µ)CF
2π

Θ(ξ)Θ(1− ξ)
((

1

ε
+ Log

µ2

m2

)
(δ(1− ξ) + 1− ξ)− 2

1

(1− ξ)+

− 2(1− ξ)Log(1− ξ) + ξ + 1

)
. (4.42)

Diagram Fig. 10c:

f
(c)
Q/Q(ξ) =

∫
ddk

(2π)d
(
δ(p−ξ − p−)− δ(p−ξ − k−)

) −i
((p− k)2 + i0)

gTAµ̃εn̄µ

(p− − k− − i0)

× 1

2

∑
s

ūn(p, s)Fn(k,m)V An,µ(p, k,m)un(p, s). (4.43)

All mass dependent terms in the vertex V Aµ (p, k,m) do not survive the contraction with n̄µ in the n-coll.
Wilson line and so the only contribution from the mass is in the propagator Fn(k,m). With the same
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substitutions as for the previous diagram we get

f
(c)
Q/Q(ξ) =

iαs(µ)CF
4π2Γ(1− ε)

(
µ2eγE

m2

)ε ∫
dzdw (δ(1− ξ)− δ(z − ξ)) Θ(w)w−εz

1− z

×
∫ ∞
−∞

dy
1

(y(z − 1) + 1− z − w + i0) (yz − 1− w + i0)︸ ︷︷ ︸
=2πiΘ(z)Θ(1−z) 1

w+(1−z)2

(4.44)

= − αs(µ)CF
2πΓ(1− ε)

(
µ2eγE

m2

)ε ∫ 1

0

dz (δ(1− ξ)− δ(z − ξ)) z

1− z

×
∫ ∞

0

dw
w−ε

w + (1− z)2︸ ︷︷ ︸
=Γ(ε)Γ(1−ε)(1−z)−2ε

(4.45)

=
αs(µ)CF

2π

(
µ2eγE

m2

)ε
Γ(ε)

×


∫ 1

0

dz δ(z − ξ)z(1− z)−1−2ε︸ ︷︷ ︸
=Θ(ξ)Θ(1−ξ)ξ(1−ξ)−1−2ε

−δ(1− ξ)
∫ 1

0

dz z(1− z)−1−2ε︸ ︷︷ ︸
=B(2,−2ε)=

Γ(−2ε)
Γ(2−2ε)

 (4.46)

=
αs(µ)CF

2π
Θ(ξ)Θ(1− ξ)

(
µ2eγE

m2

)ε
Γ(ε)

(
ξ(1− ξ)−1−2ε − δ(1− ξ) Γ(−2ε)

Γ(2− 2ε)

)
. (4.47)

The term (1− ξ)−1−2ε can be expanded with Eq. (A.3) and the full result for f
(c)
Q/Q is

f
(c)
Q/Q(ξ) =

αs(µ)CF
2π

Θ(ξ)Θ(1− ξ)
((

1

ε
+ Log

µ2

m2

)(
δ(1− ξ) +

1

(1− ξ)+
− 1

)

− 2

(
Log(1− ξ)

1− ξ

)
+

+ 2δ(1− ξ) + 2 Log(1− ξ)
)
. (4.48)

From the wave function counter term we get an additional term δ(1−ξ)δZOS
ψ and so the bare quark-quark

PDF for a massive flavor is

f0
Q/Q(ξ,m2, µ2) = δ(1− ξ)+αs(µ)CF

2π
Θ(ξ)Θ(1− ξ)

[(
1

ε
+ Log

µ2

m2

)
Pqq(ξ)

CF
+ 2δ(1− ξ)

− 2
1

(1− ξ)+
− 4

(
Log(1− ξ)

1− ξ

)
+

+ 2(1 + ξ)Log(1− ξ) + ξ + 1

]
. (4.49)

The splitting function Pqq is given in Eq. (3.95). The UV divergences are not related to a low-energy
scale like the mass and are therefore the same as for a massless quark, so in the MS renormalization
scheme the new heavy quark PDF contributes to the DGLAP evolution just like an additional massless
flavor.

Diagram Fig. 12:
To get fQ/g the diagram in Fig. 12 needs to be calculated with massive internal quarks

fQ/g(ξ) =

∫
ddk

(2π)d
δ(p−ξ − k−)

1

2(1− ε)
∑
pol.

1

8

∑
col.

εAµ (p)ε∗Bν (p)

× (−1)Tr

[
V µ,An (k, k − p,m)Fn(k,m)

/̄n

2
Fn(k,m)V ν,Bn (k − p, p,m)Fn(k − p,m)

]
. (4.50)
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Performing all sums and traces gives

−i8παs(µ)Tf
1− ε µ̃2ε

∫
ddk

(2π)d
δ(p−ξ − k−)

1

(k2 −m2 + i0)2((p− k)2 −m2 + i0)

× |k
2
⊥|[(1− ε)(p−)2 + 2k−(k− − p−)] +m2(1− ε)(p−)2

k− − p− (4.51)

=
−iαs(µ)Tf

4π(1− ε)Γ(1− ε)

(
µ2eγE

m2

)ε ∫
dydzdw δ(z − ξ) Θ(w)w−ε

(yz − w − 1 + i0)2(y(z − 1)− w − 1 + i0)

× w(2(1− z)z − 1 + ε)− 1 + ε

1− z . (4.52)

The z integration is again trivial and the for the y and w integrations one finds∫ ∞
−∞

dy
1

(yz − w − 1 + i0)2(y(z − 1)− w − 1 + i0)
= −2πi(1− ξ)

(1 + w)2
Θ(ξ)Θ(1− ξ), (4.53)

∫ ∞
0

dw
w−ε (w(2ξ(1− ξ)− 1 + ε)− 1 + ε)

(1 + w)2
= −Γ(ε)Γ(1− ε)(1− ε)(ξ2 + (1− ξ)2). (4.54)

So the bare quark-gluon PDF for a heavy quark is

f0
Q/g(ξ,m

2, µ2) =
αs(µ)Tf

2π
Θ(ξ)Θ(1− ξ)

(
1

ε
+ Log

µ2

m2

)
Pqg(ξ)

Tf
(4.55)

with the splitting function Pqg as in Eq. (3.108).

4.3.3 Matching at the Hard Scale

At the matching scale µ2 ∼ Q2 we have to match the effective theory operators onto the full theory
results. The contributions from the massless flavors will be the same as in Sec. 3.3, so again we just write
down the corrections due to the massive quark. The matching condition reads7

Ŵj,m(x, µ2) =
(
H

(Q)
j,V ⊗ fQ

)
(η, µ2) +

(
H

(g)
j,m,V ⊗ fg

)
(η, µ2), (4.56)

where η is defined as in Eq. (4.1) with the mass m of the initial state. Here the convolution on the right
hand side of Eq. (4.56) is rescaled by using the variable η instead of x because for a massive initial the
matching condition is changed compared to the massless case, see Sec. 4.1. If we have a massless particle
in the initial state the rescaling variable η reduces to x. As initial states we can use a massive quark or a
gluon (because there is no flavor changing at O(αs) a massless quark can not contribute to heavy flavor
production) which yields

Ŵ
(Q)
j (x, µ2) =

(
H

(Q)
j,V ⊗ fQ/Q

)
(η, µ2) +

(
H

(g)
j,m,V ⊗ fg/Q

)
(η, µ2), (4.57)

Ŵ
(g)
j,m(x, µ2) =

(
H

(Q)
j,V ⊗ fQ/g

)
(x, µ2) +

(
H

(g)
j,m,V ⊗ fg/g

)
(x, µ2). (4.58)

Here we have used the rescaling variable η for the massive quark and x for the massless gluon. This gives
the tree level matching coefficients

H
(Q),(0)
1,V (η) = Ŵ

(Q),(0)
1 (x) =

1

2
δ(1− x) =

w − 1

4wm2

Q2

δ

(
η − w − 1

2m
2

Q2

)
, (4.59)

H
(g),(0)
1,m,V (x) = Ŵ

(g),(0)
1,m (x) = 0, (4.60)

where w was defined in Eq. (4.17). One could just use the result for H
(Q)
1,V in this form but it would be

more convenient to have the delta distribution in the form ∼ δ(1−η) because this is the identity operator
with respect to the convolution. So we define the new function H̃ as

H̃
(Q)
j,V (η) := wH

(Q)
j,V

(
w − 1

2m
2

Q2

η

)
, H

(Q)
j,V (η) =

1

w
H̃

(Q)
j,V (χ(η)) , (4.61)

7Because we only work at O(αs) we do not see any flavor changing and therefore do not get any corrections to the light

quark coefficients of the form H
(i)
j,m ⊗ fi
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with the rescaling variable

χ(η) =
η(w + 1)

2
. (4.62)

Then we can switch form H
(Q)
1,V (η) to 1

w H̃
(Q)
1,V (χ(η)) in the convolution:(

H
(Q)
1,V ⊗ fQ

)
(η) =

1

w

(
H̃

(Q)
1,V ⊗ fQ

)
(χ(η)). (4.63)

This additional rescaling from H(η) to H̃(χ(η)) does not change the result but it allows to write the
leading order matching coefficient for the heavy quark as

H̃
(Q),(0)
1,V (χ) =

1

2
δ(1− χ), (4.64)

which has the delta distribution in the form we wanted to have it and looks the same as for the massless
case. At order αs the quark coefficient takes the form

H̃
(Q),(1)
1,V (χ(η)) = wW

(Q),(1)
1 (x)− 1

2
f

(1)
Q/Q(χ(η))

⇒ H̃
(Q),(1)
1,V (x) = wW

(Q),(1)
1

(
2x

1 + w + x2(1− w)

)
− 1

2
f

(1)
Q/Q(x) (4.65)

and the gluon coefficient is

H
(g),(1)
1,m,V (x) = W

(g),(1)
1,m (x)− 1

2w
f

(1)
Q/g(χ(x)). (4.66)

The rescaling of the distributions with the function g(x) = 2x
1+w+x2(1−w) gives

1

(1− g(x))+

=
1

w

(
1

(1− x)+
+ δ(1− x) Logw +

(w − 1)(1 + w + wx)

1 + w + x(w − 1)

)
, (4.67)

δ (1− g(x)) =
1

w
δ(1− x), (4.68)

δ′ (1− g(x)) =
1

w2

(
δ′(1− x) +

1 + w − 2w2

w
δ(1− x)

)
. (4.69)

The result for H
(Q)
1,V (x) agrees with Ref. [22].

4.3.4 Matching at the Mass Scale

At the scale µ2
m ∼ m2 we change from an effective theory with nf flavors to one with nf + 1 flavors. So

at µ2
m we have to perform a matching between the two theories to find out how the PDFs in the nf and

nf + 1 flavor theories are related. Also the running of the coupling αs(µ) has to be changed from nf to
nf + 1 flavors at µ2

m. At the matching scale µ2
m the PDFs in the two theories have to be the same, so

the matching condition is

f
nf+1
a (x, µ2) =

∑
i

(
Aai ⊗ fnfi

)
(x, µ2) +

(
Aag ⊗ fnfg

)
(x, µ2). (4.70)

The index a can stand for any light (anti-) quark i, a gluon g or a heavy (anti-) quark Q. The index i
is just for light flavors. So A(x, µ2) is a (2(nf + 1) + 1)× (2nf + 1) matrix of matching coefficients. As
initial state for the matching we can use any light flavor j or a gluon. Because there is no flavor changing
at order αs the light quark PDFs do not get any contribution from the heavy flavor. The only other non
zero coefficients are AQg and Agg. These can be found from the matching conditions

f
nf+1

Q/g (x, µ2) =
(
AQg ⊗ fnfg/g

)
(x, µ2), (4.71)

f
nf+1

g/g (x, µ2) =
(
Agg ⊗ fnfg/g

)
(x, µ2). (4.72)

We know from Sec. 3.4 that fg/g(x, µ
2) = δ(1− x) +O(αs) and so the first condition yields

AQg(x, µ
2) = f

nf+1

Q/g (x, µ2) +O(α2
s). (4.73)
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4 HEAVY FLAVOR PRODUCTION IN DIS

In the nf + 1 theory there is one quark flavor more that contributes in the gluon wave function renor-

malization in f
nf+1

g/g compared to f
nf
g/g, i.e.

f
nf+1

g/g (x, µ2) = f
nf
g/g(x, µ

2)− δ(1− x)
αs(µ)Tf

3π
Log

µ2

m2
+O(α2

s). (4.74)

Eventually we get

Aij(x,m
2, µ2) = δijδ(1− x) +O(α2

s),

Agi(x,m
2, µ2) = Aig(x, µ

2) = AQi(x, µ
2) = 0 +O(α2

s),

Agg(x,m
2, µ2) = δ(1− x)

(
1− α

nf
s (µ)Tf

3π
Log

µ2

m2

)
+O(α2

s),

AQg(x,m
2, µ2) = AQ̄g(x, µ

2) =
α
nf
s (µ)

2π
Log

µ2

m2
P (0)
qg (x) +O(α2

s) (4.75)

for the matching coefficients and therefore

f
nf+1
i (x, µ2) = f

nf
i (x, µ2) +O(α2

s),

f
nf+1
g (x, µ2) = f

nf
g (x, µ2)

(
1− α

nf
s (µ)Tf

3π
Log

µ2

m2

)
+O(α2

s),

f
nf+1
Q (x, µ2) = f̄

nf+1
Q (x, µ2) =

α
nf
s (µ)

2π
Log

µ2

m2

(
P (0)
qg ⊗ f

nf
g

)
(x, µ2) +O(α2

s) (4.76)

for the PDFs. To avoid any large logarithms in the matching one should set µ2
m ∼ m2. With µ2

m = m2

all PDFs are continuous at the matching scale at O(αs). This is no longer true at O(α2
s), when there is a

discontinuity even if the matching scale is exactly at the mass scale. The matching coefficients to O(α2
s)

can be found in Ref. [23].8

4.3.5 Massless Limit

For the gluon coefficient H
(g)
1,m,V (x) it is straightforward to get the correct massless limit. Eq. (4.66)

reduces to

H
(g)
1,m,V (x) =H

(g)
1,m,F (x)− 1

2
fQ/g(x)

−−−−→
m2→0

−αsTf
4π

Θ(1− x)

[
Pqg(x)

Tf

(
Log

µ2

Q2
− Log

(
1− x
x

))
+ (1− 2x)2

]
. (4.77)

The Log µ2

m2 in fQ/g cancels the m2 dependence in the Log m2

Q2 that we encountered in the massless

limit in the FFN scheme. This gives the correct massless limit for the hard gluon coefficient (compare
Eq.(3.109)). The large logs that arose in the limit m2 � Q2 disappeared from the matching coefficient,
they are resummed in the evolution of the heavy quark PDF.

To find the massless limit for the quark coefficient H
(Q)
1,V we have to work a little bit harder. Some

of the terms that are non-distributive for finite m give rise to new distributions in x in the limit m2

Q2 → 0.

We start from the QCD term Ŵ
(Q)
1 and split it into terms with and without distributions

Ŵ
(Q)
1 (x) = Ŵ

(Q)
1,dist.(x) + Ŵ

(Q)
1,non−dist.(x). (4.78)

For Ŵ
(Q)
1,dist. the limit m2 → 0 can be taken without any problems and yields

Ŵ
(Q)
1,dist.(x) −−−−→

m2→0

αs(µ)CF
4π

[
δ(1− x)

(
−2− Log

m2

Q2
+ Log2 m

2

Q2

)
−

4

(1− x)+

(
1 + Log

m2

Q2

)]
+O

(
m2

Q2

)
. (4.79)

8Note that there is a typo in the Arxiv version of Ref. [23] in the coefficient AHg (AQg in our notation). It is fixed in
the journal version.
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The distributions that are hidden in Ŵ
(Q)
1,non−dist. in the limit m2 → 0 can be identified by integration

over an infinitesimal interval around 1 as shown in Eqs. (A.13)-(A.16). The integration with the full

integrand Ŵ
(Q)
1,non−dist. expanded for m2 → 0 is hard to perform, but because the integration is only in an

infinitesimal interval around x = 1 one can expand for (1− x) ∼ m2

Q2 → 0 instead of just m2 → 0 because

only the singular parts give rise to distributions.9

Ŵ
(Q)
1,non−dist.(x) −−−−−−−−−→

(1−x)∼m2

Q2→0

Ŵ
(Q)
1,s (x) + Ŵ

(Q)
1,ns(x), (4.80)

Ŵ
(Q)
1,s (x) =

αs(µ)CF
4π

 1− x
2(1− x+ m2

Q2 )2
+

2 Log

(
m2

Q2

1−x+m2

Q2

)
1− x

 , (4.81)

Ŵ
(Q)
1,ns(x) =

αs(µ)CF
4π

[
4 + x− 1 + x2

1− x Log x+ (1 + x)

(
Log(1− x) + Log

m2

Q2

)]
+O

(
m2

Q2

)
. (4.82)

The singular part Ŵ
(Q)
1,s can now be integrated to get∫ 1

1−δ
dxW

(Q)
1,s (x) =

αs(µ)CF
4π

[
−
(

1

2
+
π3

3
+

1

2
Log

m2

Q2
+ Log2 m

2

Q2

)
+

Log δ

(
1

2
+ 2Log

m2

Q2

)
− Log2 δ

]
+O(δ) +O

(
m2

Q2

)
(4.83)

⇒ [new-dist.](x) =
αs(µ)CF

4π

[
− δ(1− x)

(
1

2
+
π3

3
+

1

2
Log

m2

Q2
+ Log2 m

2

Q2

)

+
1

(1− x)+

(
1

2
+ 2Log

m2

Q2

)
− 2

(
Log(1− x)

1− x

)
+

]
. (4.84)

The full expression for the correct massless limit of Ŵ
(Q)
1 is then the sum of Eqs. (4.79),(4.82) and (4.84)

Ŵ
(Q)
1 (x) −−−−→

m2→0
Ŵ

(Q)
1,dist.
m2→0

(x) + Ŵ
(Q)
1,ns(x) + [new-dist.](x)

=
αs(µ)CF

4π

[
− 2

(
Log(1− x)

1− x

)
+

− 1

(1− x)+

(
7

2
+ 2 Log

m2

Q2

)
− δ(1− x)

(
5

2
+
π2

3
+

3

2
Log

m2

Q2

)
+ 4 + x

− 1 + x2

1− x Log x+ (1 + x)

(
Log(1− x) + Log

m2

Q2

)]
+O

(
m2

Q2

)
. (4.85)

After subtracting 1
2 times the SCET result for fQ/Q Eq. (4.49) we get

H
(Q)
1,V (x) −−−−→

m2→0

αs(µ)CF
4π

[
− Pqq(x)

CF
Log

µ2

Q2
+ 2

(
Log(1− x)

1− x

)
+

− 3

2

1

(1− x)+

− δ(1− x)

(
π2

3
+

9

2

)
− (1 + x)Log(1− x)− 1 + x2

1− x Log x+ 3

]
, (4.86)

which is just the massless result from Eq. (3.96). So again we do not have any problems with large logs

of m2

Q2 in the matching coefficient in the VFN scheme and find the correct massless limit.

9This means we set m2

Q2 = a(1 − x) with a dummy variable a, expand for x → 1 and keep only the singular terms and

then substitute back with a = m2

Q2(1−x) .
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5 Deep Inelastic Scattering in the Endpoint Region

In the previous sections it was shown how a VFN scheme can be used to resum logs of the form Log m2

Q2 .

Another possible source of large logarithms are the ones of the form Log(1− x) that appear in the limit
x → 1 in the hard matching coefficients. The origin of these logarithms can be understood if we take
a look at the scales involved in the problem: so far we have considered the hard scale ∼ Q2, the scale
of the PDFs ∼ Λ2

QCD and the mass m2. Another scale is the invariant mass of the hadronic final state

P 2
X = Q2(1−x)

x . If x is not too close to 1 this is of the same order as the hard scale, but in the kinematic
endpoint region where x → 1 all outgoing hadrons are collimated in one jet with small invariant mass
that introduces the jet scale ∼ Q2(1 − x) � Q2. The logarithms containing the ratio of the hard scale
over the jet scale are just these logs of the form Log(1− x) that can spoil the perturbative expansion for
large x. To resum these logarithms the factorization theorem has to be modified by introducing a new
jet function that describes the outgoing jet and has the natural scale µ2

J ∼ Q2(1− x). This factorization
theorem assumes a large hierarchy between the hard, jet and PDF scale, i.e. Q2 � Q2(1 − x) � Λ2

QCD

and it is easiest, but not necessary, to assume (1 − x) ∼ ΛQCD

Q . This choice also defines when x should
be considered as “large”. So the factorization theorem will consist of a hard function H describing the
hard interaction at the hard scale µ2

H ∼ Q2, a jet function Jn̄ for the outgoing n̄-coll. hadronic jet at
µ2
J ∼ Q2(1 − x) and the PDF f at the scale µ2

f ∼ Q2(1 − x)2 ∼ Λ2
QCD, Fig 15. As will be shown in

Sec. 5.1.1, in this setup the PDF contains not only n-coll. but also soft physics. Since the collinear sector

Q(1− x)

P−

∼ Q2

∼ Λ2
QCD

f
∼ Q2(1− x)

P+

Jn

QQ(1− x)

Q

Λ2
QCD

Q

H

Figure 15: Scales of the PDF, hard and jet function for x → 1. The hard and jet function are at the
scales Q and Q

√
1− x respectively. The natural scale for the PDF is again ΛQCD, but the PDF is not

purely n-coll. but also contains soft physics.

of the initial state is at the same invariant mass ∼ ΛQCD as the soft one this is a typical SCETII setup.
In the derivation of the factorization theorem the two step matching procedure QCD→SCETI→SCETII,
as briefly discussed in Sec. 2.1, will be applied.

5.1 Factorization Theorem

DIS in the endpoint region has been studied by using the SCET approach for massless quarks for exam-
ple in Refs. [24–27]. We will rederive the factorization theorem for DIS for x → 1 following the steps in
Ref. [28] where it was derived for e+e− → 2 Jets with the appropriate changes in the initial and final
state to account for the differences between DIS and e+e− and the additional matching from SCETII

onto SCETI, which will be just a renaming from usoft to soft fields. Here we will again consider only the
contributions due to the massive quark to the total form factor.

We start from the definition of the hadronic tensor Wµν as in Eq. (3.12)

Wµν =
1

4π

∑
X

∫
d4z eiqz〈P |Jµ†(z)|X〉〈X|Jν(0)|P 〉. (5.1)
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The electromagnetic current can be replaced by a current of SCET fields. We make the soft-collinear
decoupling explicit by the field redefinitions shown in Sec. 2.4.2

Jµ(x)→ C(µ,Q)χ̄n̄(x)γµχn(x), (5.2)

χn(x)→ Yn(x)χ(0)
n (x), (5.3)

χn̄(x)→ Yn̄(x)χ
(0)
n̄ (x). (5.4)

The hard Wilson coefficient C(µ,Q) can be determined from matching the SCET current onto QCD. If
we write out the contractions over spin and color indices explicitly (letters i-l for spin and letters a-d for
color), we get

Wµν =
|C(µ,Q)|2

4π

∑
X

∫
d4z eiqz〈P |χ̄(0)

n (z)Y †n (z)γµYn̄(z)χ
(0)
n̄ (z)|X〉〈X|χ̄(0)

n̄ (0)Y †n̄ (0)γνYn(0)χ(0)
n (0)|P 〉

=
|C(µ,Q)|2

4π

∑
X

∫
d4z eiqz〈P |

(
χ̄(0)
n (z)Y †n (z)γµ

)a
i
Y abn̄ (z)χ

(0)b
n̄,i (z)|X〉

× 〈X|χ̄(0)c
n̄,j (0)Y †cdn̄ (0)

(
γνYn(0)χ(0)

n (0)
)d
j
|P 〉. (5.5)

The initial state contains only n-coll. particles, the final state only soft and n̄-coll. particles. This can be

seen if we split the final state momentum into light-cone components: PµX = Pµ+ qµ = Q(1−x)
x

nµ

2 +Q n̄µ

2 .

In the endpoint region we have (1−x) ∼ ΛQCD

Q and so the plus and minus components scale like P+
X ∼ Q

and P−X ∼ ΛQCD, which allows for n̄-coll. and soft but not for n-coll. modes. So the initial and final
states can be factorized into these three sectors as

|X〉 = |Xs〉|0n〉|Xn̄〉, |P 〉 = |0s〉|Pn〉|0n̄〉. (5.6)

For our purposes it is not necessary to split the PDF in a collinear and a soft function, so we do not need
distinguish between the n-coll. and soft states and define

|Xn,s〉 := |Xs〉|0n〉, |Pn,s〉 := |0s〉|Pn〉. (5.7)

Wµν =
|C(µ,Q)|2

4π

∑
X

∫
d4z eiqz

× 〈Pn,s|
(
χ̄(0)
n (z)Y †n (z)γµ

)a
i
Y abn̄ (z)|Xn,s〉〈Xn,s|Y †cdn̄ (0)

(
γνYn(0)χ(0)

n (0)
)d
j
|Pn,s〉

× 〈0n̄|χ(0)b
n̄,k (z)|Xn̄〉〈Xn̄|χ̄(0)c

n̄,l (0)|0n̄〉δikδjl. (5.8)

Color conservation implies χb|X〉〈X|χ̄c = δbc
NC

χf |X〉〈X|χ̄f and applying the SCET version of the Fierz

relation δikδjl = 1
2

(
/̄n
2

)
ij

(
/n
2

)
lk

yields

Wµν =
|C(µ,Q)|2

8π

∫
d4z eiqz

∑
Xn,s

Tr〈Pn,s|χ̄(0)
n (z)Y †n (z)γµ

/̄n

2
Yn̄(z)Y †n̄ (0)γνYn(0)χ(0)

n (0)|Pn,s〉

×
∑
Xn̄

Tr〈0n̄|
/n

2NC
χ

(0)
n̄ (z)|Xn̄〉〈Xn̄|χ̄(0)

n̄ (0)|0n̄〉, (5.9)

with the trace over color and spin. Here we have used the fact that the sum over all n-coll. and soft
states gives a full set of states in the n-coll. and soft sector, i.e.∑

Xn,s

|Xn,s〉〈Xn,s| = 1n,s. (5.10)

To project the hadronic tensor onto W1 we use the projector one can find from Eq. (3.29)

W1 =
1

2− dg
⊥
µνW

µν ,
1

2− dg
⊥
µνγ

µ /̄n

2
γν =

/̄n

2
. (5.11)
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Acting with the longitudinal projector PµνL ∼ nµnν on Wµν gives zero, so the longitudinal form factor
WL vanishes in the limit x→ 1. So we finally get

W1 =
|C(µ,Q)|2

8π

∫
d4z eiqzTr〈Pn,s|χ̄(0)

n (z)Y †n (z)Yn̄(z)
/̄n

2
Y †n̄ (0)Yn(0)χ(0)

n (0)|Pn,s〉

×
∑
Xn̄

Tr〈0n̄|
/n

2NC
χ

(0)
n̄ (z)|Xn̄〉〈Xn̄|χ̄(0)

n̄ (0)|0n̄〉, (5.12)

WL =0. (5.13)

With the jet function defined as in Ref. [28]

Jn̄(Qr− −m2,m2) =
1

2πQNC
Im

[
i

∫
d4z eirz〈0n̄|Tr

[
/n

2
T{χ(0)

n̄ (z)χ̄
(0)
n̄ (0)}

]
|0n̄〉

]
, (5.14)

with m the mass of the heavy quark, the n̄-coll. matrix element can be expressed in terms of the jet
function∑
Xn̄

Tr〈0n̄|
/n

2Nc
χ

(0)
n̄ (z)|Xn̄〉〈Xn̄|χ̄(0)

n̄ (0)|0n̄〉 = 2Qδ(z−)δ(2)(z⊥)

∫
dr− e−ir

− z+
2 Jn̄(Qr− −m2,m2). (5.15)

The remaining matrix element contains soft and collinear physics at the soft scale Q(1− x) (see Fig. 15)
and is therefore a SCETII object. The matching from SCETII onto SCETI is trivial for DIS since every
matrix element in SCETI matches onto a corresponding matrix element in SCETII with the replacement
Yn̄ → Sn̄, Yn → Sn where S is a soft Wilson line containing soft gluons Aµs instead of usoft ones, i.e.
no non-trivial matching coefficients have to be considered. So the only change in the matching is the
renaming from usoft to soft Wilson lines and that the n-coll. operators are now defined with soft-bin
subtractions instead of zero-bin subtractions. Soft-bin subtraction means that diagrams with a soft
counting (instead of usoft for zero-bins) for the internal loop momenta are subtracted from the collinear
diagrams to avoid double counting with the soft degrees of freedom. We write the n-coll./soft matrix
element as

〈Pn,s|χ̄(0)
n (

z+

2
n̄)S†n(

z+

2
n̄)Sn̄(

z+

2
n̄)
/̄n

2
S†n̄(0)Sn(0)χ(0)

n (0)|Pn,s〉 = P−
∫

dξ eiξP
− z+

2 f(ξ). (5.16)

It will be shown in Sec. 5.1.1 that f(ξ) corresponds to the PDF in the limit x → 1. The hard function
H(Q2, µ2) is just the square of the current Wilson coefficient |C(µ,Q)|2. With these definitions the
contribution from a massive quark to W1 for a massless hadron has the form

W1(x,Q2,m2) =
1

2
QP−H(Q2, µ2)

∫
dξ Jn̄

(
Q(q− + ξP−)−m2,m2, µ2

)
f(ξ, µ2)

=
Q2

2
H(Q2, µ2)

∫
dξ

ξ

ξ

x
Jn̄

(
Q2(

ξ

x
− 1− m2

Q2
),m2, µ2

)
f(ξ, µ2). (5.17)

To get the convolution in a more convenient form one can define

ĝ(x) := g(1− x) (5.18)

for any function with a hat. We can expand this for x→ 1. Because of kinematic restraints we also have
m2

Q2 ≤ 1−x
4x , so m2

Q2 ∼ (1− x).10 After performing the expansion the factorized form of W1 is

W1(x,Q2,m2) =
Q2

2
H(Q2, µ2)

∫
dξ Jn̄(Q2((1− x)− ξ − m2

Q2
),m2, µ2)f̂(ξ, µ2). (5.19)

For a massless quark this reduces to

W1(x,Q2) =
Q2

2
H(Q2, µ2)

∫
dξ Jn̄(Q2((1− x)− ξ), µ2)f̂(ξ, µ2), (5.20)

where Jn̄(s, µ2) is the massless jet function. This agrees with Refs. [25, 27]. So in the case where the
mass is above the jet scale the only difference between the massless and the massive case is a shift in the
convolution and the change to the massive jet function.

10This is because at O(αs) there is only real radiation of massive quarks. At higher orders one would of course also have
to consider virtual effects that are not restraint by kinematics so that different scenarios where the mass scale lies differently
relative to the other scales could arise.
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5.1.1 PDF / Soft Function

We have to check how the PDF in (3.47) looks like in terms of SCET fields in the case ξ → 1. The Wilson
line in the PDF is separated over a distance t ∼ 1

P−(1−ξ) and therefore only fluctuations over a length

scale t, i.e. with momenta & 1
t = (1 − ξ)P− can contribute in that Wilson line. In Sec 3.2, where we

assumed ξ to be not too close to 1, only collinear gluon fields showed up but in the case ξ → 1 also soft
gluons contribute in that Wilson line. So when we change to SCETI fields we have to write

ψ(i)(x)→ ξ(i)
n (x), (5.21)

Aµ(x)→ Aµus(x) +Aµn(x). (5.22)

The Wilson line U† can be decomposed into two usoft and two collinear Wilson lines

U†(tn̄, 0)→Wn(tn̄)Yn̄(tn̄)Y †n̄ (0)W †n(0), (5.23)

which leads to

f(ξ) =
1

2π

∫
dt e−iξP

−t〈Pn,s|χ̄n(tn̄)Yn̄(tn̄)
/̄n

2
Y †n̄ (0)χn(0)|Pn,s〉. (5.24)

After the soft-collinear decoupling in SCETI and matching onto SCETII the final SCETII object that
corresponds to the PDF in the endpoint region is

f(ξ) =
1

2π

∫
dt e−iξP

−t〈Pn,s|χ̄(0)
n (tn̄)S†n(tn̄)Sn̄(tn̄)

/̄n

2
S†n̄(0)Sn(0)χ(0)

n (0)|Pn,s〉, (5.25)

which results in the expression for the n-coll. matrix element we gave in Eq. (5.16). The PDF can also
be split in a collinear part and a soft function by splitting the initial state into a n-coll. and a soft
sector |Pn,s〉 = |Pn, 0s〉. When we pull out the labels from the jet fields

(
W †nξn

)
and use the fact of label

conservation, i.e. δ(ω − P†−)δ(ω′ − P−) = δ(ω′ − ω)δ(ω − P−), we get

f(ξ) =
1

2π

∫
dtdω e−i(P

−ξ−ω)t

× 〈Pn, 0s|
(
ξ̄n,pWnS

†
nSn̄

)
(tn̄)

/̄n

2

[
δ(ω − P−)

(
S†n̄SnW

†
nξn,p′

)
(0)
]
|Pn, 0s〉. (5.26)

To shift the residual fields from tn̄ to 0 we can use the residual momentum operator K, since for any
residual field φn,p(x) we have φn,p(x) = eiKxφn,p(0)e−iKx. The initial state is purely n-coll. and contains

no residual momentum, so 〈Pn, 0s|eiK
−t = 〈Pn, 0s|.

f(ξ) =
1

2π

∫
dtdω dk e−i(P

−ξ−ω+k)t

× 〈Pn, 0s|
(
ξ̄n,pWnS

†
nSn̄

)
(0)

/̄n

2

[
δ(k −K−)δ(ω − P−)

(
S†n̄SnW

†
nξn,p′

)
(0)
]
|Pn, 0s〉

=

∫
dk 〈Pn, 0s|

(
ξ̄n,pWnS

†
nSn̄

)
(0)

/̄n

2

[
δ(k −K−)δ(P−ξ + k − P−)

(
S†n̄SnW

†
nξn,p′

)
(0)
]
|Pn, 0s〉.

(5.27)

The residual momenta of the collinear fields scale like λ2 while that in the soft Wilson lines are ∼ λ, so
we can neglect the action of the residual momentum operator on the collinear fields and split the whole
matrix element in a collinear and a soft part

f(ξ) =

∫
dk S(k)× 〈Pn|

(
ξ̄n,pWn

)
(0)

/̄n

2

[
δ(P−ξ + k − P)

(
W †nξn,p′

)
(0)
]
|Pn〉, (5.28)

where the soft function S is

S(k) = 〈0s|
(
S†n̄Sn

)†
(0)
[
δ(k −K−)

(
S†n̄Sn

)
(0)
]
|0s〉. (5.29)

Now we have a look at the momenta that appear in the collinear matrix element. P− and P are both
label momenta of order λ0 while k is a soft momentum that scales as λ1. As a consistency check we first
go back to the case where 1− x� 1. In this case we can drop k in the collinear part and get

f(ξ) = 〈Pn|
(
ξ̄n,pWn

)
(0)

/̄n

2

[
δ(P−ξ − P)

(
W †nξn,p′

)
(0)
]
|Pn〉

∫
dk S(k)

= 〈Pn|
(
ξ̄n,pWn

)
(0)

/̄n

2

[
δ(P−ξ − P)

(
W †nξn,p′

)
(0)
]
|Pn〉, (5.30)
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which is indeed the form of the PDF we have already used in Sec. 3 and 4. But in the endpoint region
this is not the correct expansion, because since (P−ξ − P−) ∼ Q(1 − x) this is no longer leading for
x → 1 where (1 − x) ∼ λ. In this case we can reorganize the terms in the delta distribution into labels
and suppressed residual momenta and use the fact that these are separately conserved in SCET

δ(P−ξ + k − P−) = δ
(
P− − P−︸ ︷︷ ︸

label

+ k − P−(1− ξ)︸ ︷︷ ︸
residual

)
→ δP−,P− δ

(
k − P−(1− ξ)

)
. (5.31)

Then the full PDF is split into a collinear PDF fn and the soft function S

f(ξ) = fn S
(
P−(1− ξ)

)
, (5.32)

where the collinear PDF is just the local collinear matrix element

fn = 〈Pn|
(
ξ̄n,pWn

)
(0)

/̄n

2

[
δP−,P

(
W †nξn,p′

)
(0)
]
|Pn〉. (5.33)

This form of splitting the PDF into a soft function and a collinear part agrees with reference Ref. [27],
another form is given Ref. [26]. The factorization theorem then consists of four different functions: a
hard, jet and soft function and the collinear PDF, Fig. 16.

W1(x,m2, Q2) =
Q

2
H(Q2, µ2) fn(µ2)

∫
dl Jn̄

(
Q2
(
(1− x)− l

Q
− m2

Q2

)
,m2, µ2

)
S
(
l, µ2

)
. (5.34)

P−

∼ Q2

∼ Λ2
QCD

fn

∼ Q2(1− x)

P+

Jn

QQ(1− x)

Q

Q(1− x)

Λ2
QCD

Q

H

S

Figure 16: Scales of the collinear PDF, hard, jet and soft function. Here the PDF is split into a collinear
part fn and a soft function S, both at the scale ΛQCD. fn is purely n-coll. while S contains all the soft
contributions.

The advantage of the form of the PDF in Eq. (5.32) over the one in Eq. (5.25) is that the separation of
collinear and soft modes that are at the same scale allows for the resummation of rapidity logarithms
that appear in the matching conditions for the PDFs as logs of (1− x), see for example Ref. [27].

One import thing to notice about the PDFs in the limit x → 1 is that all off-diagonal elements of
the matrix of splitting functions Pij are suppressed and only the flavor diagonal part Pii is leading in the
power counting for x → 1. This can be understood from the SCET setup: we consider a particle with
label P− in the initial state that splits into a particle with longitudinal momentum fraction ξ that goes
into the hard interaction and a second particle, Fig. 17. x → 1 implies that the parton that enters the
hard interaction was carrying almost all of the initial state’s momentum, i.e. ξ → 1. This implies that
the second particle in the splitting with the light-cone component (1− ξ)P− has to be soft. In the SCET
Lagrangian there is an interaction term between collinear quarks and usoft gluons at leading order in the
power counting, allowing for the splitting in Fig. 17a, but interactions with soft quarks are suppressed
and so we do not see the splitting of a collinear gluon in a collinear and a soft quark, Fig. 17b, at leading
order in λ. This can be checked explicitly by expanding the splitting functions for x → 1 and keeping
only the leading singular terms. So there is no more mixing between the PDFs and every PDF evolves
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P−

ξP−

(1− ξ)P−

(a)

P−

ξP−

(1− ξ)P−

(b)

Figure 17: Splitting of a collinear particle into a collinear and a soft particle. The process on the right
side is suppressed relatively to the process on the left side.

according to its own RGE with the corresponding anomalous dimension

d

dLogµ2
f̂(1− x, µ2) =

(
γf ⊗̂f̂

)
(1− x, µ2). (5.35)

Here the convolution with a hat ⊗̂ is defined as(
g⊗̂h

)
(x, µ2) :=

∫
dξ g(x− ξ, µ2)h(ξ, µ2). (5.36)

To see that the convolution ⊗ of the form in Eq. (3.46) simplifies to the linear convolution ⊗̂ in Eq. (5.36)
in the limit x → 1 we switch to the hatted functions ĝ(x) := g(1 − x) and substitute the integration

variable ξ → 1− ξ̂:

(g ⊗ h) (x) =

∫ 1

x

dξ

ξ
g

(
x

ξ

)
h(ξ)

=

∫ 1

x

dξ

ξ
ĝ

(
1− x

ξ

)
ĥ(1− ξ)

=

∫ 1−x

0

dξ̂

1− ξ̂
ĝ

(
(1− x)− ξ̂

1− ξ̂

)
ĥ(ξ̂) (5.37)

When we expand for x→ 1 the integration limits tell us we can simultaneously expand for ξ̂ → 0 which
yields

(g ⊗ h) (x) ∼
∫ 1−x

0

dξ̂ ĝ
(

(1− x)− ξ̂
)
ĥ(ξ̂) =

(
ĝ⊗̂ĥ

)
(1− x) (5.38)

The anomalous dimension of the quark PDF γf (x) is just the quark-quark splitting function Pqq(1− x)
in the limit x→ 1

γf (x, µ2) =
αs(µ)CF

4π

[
4

(
1

x

)
+

+ 3 δ(x)

]
. (5.39)

This also implies that if a PDF is zero at one scale, it remains zero at any scale. Since all matching
coefficients Aij between different partons are also subleading for x → 1 (for the same reasons as the
splitting functions), no heavy quark PDF is generated perturbatively in the matching or the evolution at
leading order in the power counting.

5.1.2 Jet Function

As was argued in the previous section the heavy quark PDF is suppressed in the power counting, so no per-
turbatively generated heavy quark will enter the hard interaction and all contributions from heavy flavors
are due to secondary effects. Nevertheless we will consider the jet function for a primary massive quark as
was done in Ref. [29], which can be thought of as an intrinsic, non-perturbative constituent of the hadron.

To calculate the jet function Jn̄ defined in Eq. (5.14) we define the function J

J (Qp− −m2,m2) =

∫
d4z eip

−z〈0|Tr

[
/n

2
T{χ(0)

n̄ (z)χ̄
(0)
n̄ (0)}

]
|0〉, (5.40)
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so that the relation between Jn̄ and J is

Jn̄(s,m2) =
1

2πQNC
Im
[
iJ (s,m2)

]
, (5.41)

The tree level contribution to J is

(a) (b) (c)

(d) (e)

δm

(f)

Figure 18: Diagrams for the jet function at O(αs)

J (tree)(Qp− −m2,m2) = Tr

[
/n

2
Fn̄(p,m)

]
= i

p+

p2 −m2 + i0
Tr

[
/n

2

/̄n

2

]
= 2iNC

Q

s
, (5.42)

with p+ = Q and s := p2 −m2 + i0. The relevant diagrams for J at order αs are shown in Fig. 18.

Diagram Fig. 18a:

J (a) =

∫
ddk

(2π)d
gµ̃εTAnµ

k+ − p+ + i0
Tr

[
/n

2
Fn̄(p,m)V An̄,µ(k, p,m)Fn̄(k,m)

] −i
q2 + i0

= −8παsCF µ̃
2ε p+

p2 −m2 + i0
Tr

[
/̄n

2

/n

2

/̄n

2

/n

2

] ∫
ddk

(2π)d
k+

(k2 −m2 + i0)((k − p)2 + i0)(k+ − p+ + i0)
.

(5.43)

The trace over color and spin reduces to Tr
[
/̄n
2
/n
2
/̄n
2
/n
2

]
= 2NC and after changing to light-cone variables

the k− integral can be solved by contour integration

= − NCαsCF
2π2Γ(1− ε)

(
µ2eγE

)ε p+

p2 −m2 + i0

∫
dk+d|k2

⊥|
Θ(|k2

⊥|)k+|k2
⊥|−ε

k+ − p+ + i0

×
∫

dk−
1

(k+k− − |k2
⊥| −m2 + i0)((k− − p−)(+−p+)− |k2

⊥|+ i0)︸ ︷︷ ︸
=

2πiΘ(k+)Θ(p+−k+)

p−k+(k+−p+)+|k2
⊥|p

+−m2(k+−p+)

. (5.44)

Here the i0 is absorbed into p−, i.e. p− → p− + i0. The |k2
⊥| integral is∫ ∞

0

d|k2
⊥|

|k2
⊥|−ε

p+|k2
⊥|+ (k+ − p+)(p−k+ −m2)

= (p+)−1+εΓ(ε)Γ(1− ε)(p+ − k+)−ε(m2 − p−k+)−ε. (5.45)

With the substitutions p+ = Q, z = k+

p+ and s = p2 −m2 + i0 the remaining integral has the form

iNCαsCF
π

Q

s
Γ(ε)

(
µ2eγE

−s

)ε ∫ 1

0

dz (1− z)z−1−ε
(

1− s+m2

s
z

)−ε
︸ ︷︷ ︸

=
Γ(−ε)
Γ(2−ε) 2F 1

(
ε,−ε,2−ε, s+m2

s

)
. (5.46)
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2F 1 is the Gauss hypergeometric function. To expand the hypergeometric function the Mathematica
package HypExp [30] was used, the full result expanded in ε is

J (a)(s) = −iNC
αsCF
π

Q

s

(
1

ε2
+

1 + Log µ2

−s
ε

+ 2 +
π2

4
+ Log

m2

−s

(
Log

s+m2

−s − 1

2
Log

m2

−s −
m2

s+m2

)

+
1

2
Log2 µ

2

−s + Log
µ2

−s − Li2

(−s
m2

))
. (5.47)

The diagram in Fig. 18b is the same as the one in Fig. 18a but with a different sign on the i0 in the
Wilson line. Since this never enters the contour integration for the k− integral the result is the same as
in Eq. (5.47).

Diagram Fig. 18c:

J (c) =

∫
ddk

(2π)d
−i

(p− k)2 + i0
Tr

[
/n

2
Fn̄(p,m)V µAn̄ (k, p,m)Fn̄(k,m)V An̄,µ(p, k,m)Fn̄(p,m)

]
=
−16παs(µ)CFNC µ̃

2εQ2

s2

∫
ddk

(2π)d
1

((p− k)2 + i0)(k2 −m2 + i0)

×
[
−2m2(2− ε)

Q
+

(1− ε)
k+

(
|k2
⊥|+m2

(
1− (k+)2

Q2

))]
. (5.48)

The term in brackets can be written in a more convenient form with the relation

|k2
⊥| =

2k+

Q
(p · k)− k2 − (k+)2

Q2
p2 (5.49)

and then reads
(1− ε)
Q

[
−2m2(2− ε)

1− ε +

(
2pµ −

s

Q
nµ

)
kµ − Q

k+
(k2 −m2)

]
. (5.50)

With this the full diagram reduces to three different integrals

J (c) =
−16παs(µ)CFNCQ(1− ε)

s2

[
−2m2(2− ε)

(1− ε) I1 +

(
2pµ −

s

Q
nµ

)
Iµ2 −QI3

]
, (5.51)

I1 = µ̃2ε

∫
ddk

(2π)d
1

((p− k)2 + i0)(k2 −m2 + i0)
, (5.52)

Iµ2 = µ̃2ε

∫
ddk

(2π)d
kµ

((p− k)2 + i0)(k2 −m2 + i0)
, (5.53)

I3 = µ̃2ε

∫
ddk

(2π)d
1

((p− k)2 + i0)k+
. (5.54)

It is not necessary to calculate I3 since this term will be canceled by the tadpole diagram Fig. 18d. I1
and Iµ2 can be solved by using standard methods

I1 =
i

(4π)2

(
µ2eγE

−s

)ε
Γ(ε)

2F 1

(
1− ε, ε, 2− ε, s+m2

s

)
1− ε

=
i

(4π)2

[
1

ε
+ Log

µ2

−s −
m2

s+m2
Log

m2

−s + 2

]
+O(ε), (5.55)

Iµ2 = pµ
i

(4π)2

(
µ2eγE

−s

)ε
Γ(ε)

Γ(1− ε) 2F 1

(
1− ε, ε, 2− ε, s+m2

s

)
−

2F 1

(
2− ε, ε, 3− ε, s+m2

s

)
2− ε


= pµ

i

2(4π)2

[
1

ε
+ Log

µ2

−s −
m4

(s+m2)2
Log

m2

−s +
2s+ 3m2

s+m2

]
+O(ε). (5.56)
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The final result for diagram Fig. 18c is

J (c) =
iαs(µ)CFNC

2π

Q

s2

[
(6m2 − s)

(
1

ε
+ Log

µ2

−s

)
+

m4

s+m2

(
m2

s+m2
− 7

)
Log

m2

−s

− m4

s+m2
+ 9m2 − s

]

+
16παs(µ)CFNCQ

2(1− ε)
s2

× I3. (5.57)

Diagram Fig. 18d:
The tadpole diagram is

J (d) =
1

2

∫
ddk

(2π)d
Tr

[
/n

2
Fn̄(p,m)V µ,AAn̄,µ (p, p, k)Fn̄(p,m)

] −i
k2 + i0

= −8παs(µ)CFNC(1− ε)µ̃2Q2

s2

∫
ddk

(2π)d
1

(k2 + i0)

(
1

p+ − k+
+

1

p+ + k+

)
= −16παs(µ)CFNC(1− ε)µ̃2Q2

s2

∫
ddk

(2π)d
1

((p− k)2 + i0)k+

= −16παs(µ)CFNCQ
2(1− ε)

s2
× I3. (5.58)

This exactly cancels the corresponding term in the result for the self energy diagram Eq. (5.57).

Because n · n = 0 diagram Fig. 18e is zero.

Diagram Fig. 18f:
The diagram with the mass counter term is

J (f) = Tr

[
/n

2
Fn̄(p,m)(−i /n

2

2m

p+
mδZm)Fn̄(p,m)

]
= 4im2NC

Q

s2
δZm, (5.59)

where δZm is the mass counter term in the chosen renormalization scheme. Here we always use the MS

scheme, δZMS
m is given in Eq. (4.16).

Final Result:
The final result for J is the sum of all diagrams

J = J (tree) + 2J (a) + J (c) + J (d) + J (f)

= −i2πNCQ
{

1

π

[
− 1

s
− 2m2δm

s2
− αs(µ)CF

4π

1

s

(
4

ε2
+

1

ε

(
3 + 4 Log

µ2

−s

)
+ 2 Log2 µ

2

−s

+ 3 Log
µ2

−s + Log
m2

−s

(
−2 Log

m2

−s + 4 Log
m2 + s

−s +
m2(m2 + 2s)

(s+m2)2

)
− 4 Li2

−s
m2
− s

m2 + s
+ 8 + π2

)]}
. (5.60)

Here δm is the difference between the on-shell mass counter term δZOS
m to whatever other mass renor-

malization scheme one might choose, i.e. δm = δZm − δZOS
m . When using the MS scheme we have

δMS
m =

αs(µ)CF
4π

(
3 Log

µ2

m2
+ 4

)
+O(α2

s). (5.61)

The bare one loop jet function J0
n̄(s) is the imaginary part of the expression in curly brackets. The

relations to take the imaginary part and rewrite the plus distributions are given in appendix A and B.
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The result is

J0
n̄(s,m2) = δ(s)− 2m2δmδ′(s) +

αs(µ)CF
4π

Θ(s)

[
8

µ2

(
µ2 Log s

µ2

s

)
+

− 4

µ2

(
µ2

s

)
+

(
1

ε
− Log

µ2

m2
+ 1

)

+ δ(s)

(
4

ε2
+

3

ε
+ 2 Log2 µ2

m2
− Log

µ2

m2
+ 8− π2

3

)
+

s

(s+m2)2
− 4

s
Log

(
1 +

s

m2

)]
. (5.62)

This agrees with Ref. [29]. To renormalize the jet function the divergences are absorbed into a counter
term

J0
n̄(s) =

(
ZJ⊗̂Jn̄

)
(s, µ2), (5.63)

Since we only consider the contribution to heavy flavor production the jet scale is always above the
mass scale so the heavy flavor is contributing to the RG evolution of the jet function. We use MS
renormalization and absorb the the divergences into a counter term ZJ

ZJ(s, µ2) = δ(s) +
αs(µ)CF

4π

[
−4

ε

1

µ2

(
µ2

s

)
+

+ δ(s)

(
4

ε2
+

3

ε

)]
. (5.64)

The anomalous dimension is

γJ(s, µ2) = −
(
Z−1
J ⊗̂

dZJ
dLogµ2

)
(s, µ2)

=
αs(µ)CF

4π

[
− 4

µ2

(
µ2

s

)
+

+ 3 δ(s)

]
.

5.1.3 Hard Function

The hard function H(Q2, µ2) = |C(µ,Q)|2 is obtained from matching the QCD electromagnetic current
Jµ = q̄γµq onto the SCET current C(µ,Q)χ̄nγ

µχn. Another way to get the hard function is to compare

the hard coefficient H
(Q)
1,V , calculated in Sec. 4.3, and the jet function Jn̄ in the limit x → 1. At fixed

order, i.e. without resummation of logs in the evolution of the jet function, the factorization theorem for
x→ 1 and the factorization in the generic case have to agree in the limit x→ 1, i.e.

W1(x) =

∫
dξ

ξ
H

(Q)
1,V (ξ, µ2)fQ/P

(
χ(x)

ξ
, µ2

)
=
x→1

∫
dξ H

(Q)
1,V (ξ, µ2)fQ/P

(
x(1 + m2

Q2 )

ξ
, µ2

)

=

∫
dξ Ĥ

(Q)
1,V (ξ, µ2)f̂((1− x)− m2

Q2
− ξ, µ2)

!
=
Q2

2
H(Q2, µ2)

∫
dξ Jn̄(Q2ξ, µ2)f̂((1− x)− m2

Q2
− ξ, µ2). (5.65)

The steps to get from the “DIS convolution” to the linear convolution are the same as displayed in
Eq. (5.37). Note that in the third line we made the substitution ξ → 1− ξ, so here we have to consider

the limit ξ → 0 from now on. Here the hard and jet function and the hard coefficient H
(Q)
1 are all

evaluated at the same scale. So the hard function can be determined form the relation

Ĥ
(Q)
1,V (ξ, µ2) =

Q2

2
H(Q2, µ2)J

(
Q2ξ, µ2

)
+O(λ0) (5.66)
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with the scaling ξ ∼ m2

Q2 ∼ (1− x) ∼ λ in Ĥ
(Q)
1,V and Jn̄. The leading order in λ is

Ĥ
(Q)
1,V (ξ, µ2) =

1

2
δ(ξ) +

αs(µ)CF
4π

[
δ(ξ)

(
−4− 3

2
Log

µ2

Q2
+ Log2 m

2

Q2
+

1

2
Log

m2

Q2

)
− 2

(
1

ξ

)
+

(
1 + Log

µ2

Q2
+ Log

m2

Q2

)
+ 4

(
Log ξ

ξ

)
+

+

ξ

ξ+m2

Q2

− 4 Log
(

1 + Q2ξ
m2

)
2ξ

]
+O(λ0), (5.67)

Q2

2
Jn̄
(
Q2ξ, µ2

)
=

1

2
δ(ξ)

+
αs(µ)CF

4π

[
δ(ξ)

(
4− π2

6
+ Log2 µ

2

Q2
+

3

2
Log

µ2

Q2
+ Log2 m

2

Q2
+

1

2
Log

m2

Q2

)
− 2

(
1

ξ

)
+

(
1 + Log

µ2

Q2
+ Log

m2

Q2

)
+ 4

(
Log ξ

ξ

)
+

+

ξ

ξ+m2

Q2

− 4 Log
(

1 + Q2ξ
m2

)
2ξ

]
. (5.68)

The only difference is in the term ∼ αsCF
4π δ(ξ) and so the hard function has to be

H(Q2, µ2) = 1 +
αs(µ)CF

4π

(
−16 +

π2

3
− 2 Log2 µ

2

Q2
− 6 Log

µ2

Q2

)
. (5.69)

This result agrees with Ref. [24], where the current matching for DIS was done explicitly and because
of crossing symmetry with Ref. [29], where it was done for e+e− → hadrons, with the replacement
Q2 → −Q2. The anomalous dimension can be derived from Eq. (5.69)

γH(Q2, µ2) =
αs(µ)CF

4π

[
−4 Log

µ2

Q2
− 6

]
. (5.70)

5.2 Evolution Kernels

In the previous sections the anomalous dimensions for the hard and jet function and the PDF were
derived. In this section it will be shown how the evolution kernels can be obtained from those. The
anomalous dimensions of the jet function and PDF are of the form

γ(y, µ2) = Γ[αs]
1

µd

(
µd

y

)
+

+ γ[αs]δ(y), (5.71)

where d is the dimension of the variable y, so we have d = 2 for the jet function and d = 0 for the PDFs.
The cusp and non-cusp anomalous dimensions are series in αs

Γ[αs] =
αs(µ)

4π

∑
n=0

(
αs(µ)

4π

)n
Γ(n), γ[αs] =

αs(µ)

4π

∑
n=0

(
αs(µ)

4π

)n
γ(n). (5.72)

We want to find the evolution kernel U(y, µ1, µ0) for an arbitrary function g that fulfills the RGE

d g(y, µ2)

d Logµ2
=
(
γ(µ2)⊗̂g(µ2)

)
(y), (5.73)

i.e. the function that evolves g from a scale µ0 to the scale µ1

g(y, µ1) =
(
U(µ1, µ0)⊗̂g(µ2

0)
)

(y). (5.74)

First we change to Fourier space, which disentangles the convolutions

d g̃(z, µ2)

d Logµ2
= γ̃(z, µ2)g̃(z, µ2). (5.75)
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The Fourier transform of the plus distribution is given in appendix A. The anomalous dimension in
Fourier space reads

γ̃(z, µ2) = −Γ[αs] Log(izeγEµd0)− d

2
Γ[αs] Log

µ2

µ0
+ γ[αs]. (5.76)

The evolution kernel can be obtained from the equation

Ũ(z, µ1, µ0) = exp

[∫ Log µ2
1

Log µ2
0

dLogµ2 γ̃(z, µ)

]
= (izeγEµd0)ω(µ1,µ0)eK(µ1,µ0), (5.77)

with the functions ω and K defined as

ω(µ1, µ0) = −
∫ Log µ2

1

Log µ2
0

dLogµ2 Γ[αs], (5.78)

K(µ1, µ0) =

∫ Log µ2
1

Log µ2
0

dLogµ2

(
−d

2
Γ[αs] Log

µ2

µ2
0

+ γ[αs]

)
. (5.79)

Performing the inverse Fourier transform yields

U(y, µ1, µ0) =
eK(µ1,µ0) (eγE )

ω(µ1,µ0)

Γ(−ω(µ1, µ0))

1

µd0

(
µ
d(1+ω(µ1,µ0))
0

y1+ω(µ1,µ0)

)
+

. (5.80)

To solve the integrals one can use the RGE for the coupling

dαs(µ)

d Logµ2
= β[αs] β[αs] = −αs(µ)2

4π

∑
n=0

(
αs(µ)

4π

)n
β(n) (5.81)

to change the integration variable from Logµ2 to αs∫ Log µ2
1

Log µ2
0

dLogµ2 →
∫ αs(µ1)

αs(µ0)

dαs
1

β[αs]
. (5.82)

With this substitution the integrals in ω and K take the form

ω(µ1, µ0) = −
∫ αs(µ1)

αs(µ0)

dαs
Γ[αs]

β[αs]
(5.83)

K(µ1, µ0) =

∫ αs(µ1)

αs(µ0)

dαs
1

β[αs]

(
−d

2
Γ[αs]

∫ αs

αs(µ0)

dα′s
1

β[α′s]
+ γ[αs]

)
. (5.84)

The integrands can be expanded in αs, the leading order gives the factors for leading log (LL) resumma-
tion:

ωLL(µ1, µ0) =
Γ(0)

β(0)

∫ αs(µ1)

αs(µ0)

dαs
1

αs

=
Γ(0)

β(0)
Log r(µ1, µ0), (5.85)

KLL(µ1, µ0) = −2dπΓ(0)

(β(0))2

∫ αs(µ1)

αs(µ0)

dαs
1

αs

∫ αs

αs(µ0)

dα′s
1

α′2s

=
2dπΓ(0)

(β(0))2αs(µ1)

(
− 1 + r(µ1, µ0)− r(µ1, µ0) Log r(µ1, µ0)

)
, (5.86)

where r(µ1, µ0) is the ratio

r(µ1, µ0) =
αs(µ1)

αs(µ0)
. (5.87)
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The expanded form of ω and K up to N3LL can be found for example in the appendix of Ref. [31].11

Since the hard function is local it is not necessary to go to Fourier space. Its anomalous dimension has
the form

γH(Q2, µ2) = ΓH [αs] Log
µ2

Q2
+ γH [αs] (5.88)

and calculations analogous to the ones above yield

UH(Q,µ1, µ0) = eKH(µ1,µ0)

(
µ2

0

Q2

)ωH(µ1,µ0)

, (5.89)

with

ωH(µ1, µ0) =

∫ Log µ2
1

Log µ2
0

dLogµ2 ΓH [αs], (5.90)

KH(µ1, µ0) =

∫ Log µ2
1

Log µ2
0

dLogµ2

(
ΓH [αs] Log

µ2

µ2
0

+ γH [αs]

)
. (5.91)

The solutions for ωH and KH can therefore be obtained from the solutions for ω and K in Eqs (5.85)
and (5.86) with the replacement Γ[αs] → −ΓH [αs] in ω and Γ[αs] → − 2

dΓH [αs], γ[αs] → γH [αs] in K.
The leading order coefficients for the cusp and non-cusp anomalous dimensions for the hard function, jet
function and PDF, as calculated in the last sections, are summarized in Tab. 1.

Γ(0)

CF

γ(0)

CF
hard -4 -6
jet -4 3

PDF 4 3

Table 1: Leading order anomalous dimensions for the hard function, jet function and PDF.

5.3 Consistency Relations

Because the physical form factor W1 does not depend on the choice of the scale µ, the running of the
hard and jet function and the PDF are not independent of each other and a consistency relation between
the anomalous dimensions can be derived.

0 =
d

dLogµ2
W1(x,Q2)

=
Q2

2

(
γH(Q2, µ2)H(Q2, µ2)

∫
dξ J(Q2(x− ξ), µ2)f̂(ξ, µ2)

+H(Q2, µ2)

∫
dξdξ′Q2γJ(Q2(x− ξ − ξ′, µ2)J(Q2ξ′, µ2)f̂(ξ, µ2)

+H(Q2, µ2)

∫
dξdξ′ J(Q2(x− ξ), µ2)γf (ξ − ξ′′, µ2)f̂(ξ′′, µ2)

)

⇒ γH(Q2, µ2)δ(x) +Q2γJ(Q2x, µ2) + γf (x, µ2) = 0 (5.92)

With the anomalous dimensions derived in the previous sections

γf (x, µ2) =
αs(µ)CF

2π

[
3

2
δ(x) + 2

(
1

x

)
+

]
, (5.93)

γJ(s, µ2) =
αs(µ)CF

2π

1

µ2

[
3

2
δ

(
s

µ2

)
− 2

(
µ2

s

)
+

]
, (5.94)

γH(Q2, µ2) =
αs(µ)CF

2π

[
−3− 2 Log

µ2

Q2

]
, (5.95)

11Note that there are factors of 2 compared to our results due to different conventions in the definition of ω and K and
the series expansion of the beta function.
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it is easy to check that this consistency relation is indeed fulfilled at O(αs).

The consistency relation between the hard and jet function and the PDF can also be expressed in terms
of the evolution kernels. The result must be the same whether all functions are evolved to the hard scale
µH or all are evolved down to the scale of the PDFs µf , see Fig. 19.

UJ(µH , µJ) Uf(µH, µf)

H

f

µJ

µf

µH

UH(µf , µH) UJ(µf , µJ)

H

f

µJ

µf

µH

JJ

Figure 19: Consistency relation for the evolution kernels. The physical form factor can not depend on
the choice of µ. It must be the same whether all functions are run from their natural scales to the soft
scale µf (left) or all are run up to the hard scale µH (right).

W1(x,Q2) =
Q2

2
UH(Q,µf , µH)H(Q2, µ2

H)

∫
dξdξ′Q2UJ(Q2(x− ξ − ξ′), µf , µJ)J(Q2ξ, µ2

J)f̂(ξ′, µ2
f )

=
Q2

2
H(Q2, µ2

H)

∫
dξdξ′dξ′′Q2UJ(Q2(x− ξ − ξ′′), µH , µJ)J(Q2ξ, µ2

J)Uf (ξ′ − ξ′′, µH , µf )f̂(ξ′′, µ2
f )

(5.96)

Obviously the first and the second line are the same if

UH(Q,µf , µH)UJ(Q2(x− ξ − ξ′′), µf , µJ) =

∫
dξ′UJ(Q2(x− ξ − ξ′), µH , µJ)Uf (ξ′ − ξ′′). (5.97)

Acting on both sides with
∫

dxUJ(Q2(y − x), µJ , µH) and using that∫
dξ U(y − ξ, µ0, µ1)U(ξ − x, µ1, µ2) = U(y − x, µ0, µ2) U(x, µ, µ) = δ(x) (5.98)

results in the consistency relation for the evolution kernels in the form

Uf (x, µ, µ0) = Q2UH(Q,µ0, µ)UJ(Q2x, µ0, µ). (5.99)

To check this explicitly we go back to Fourier space where the consistency relation reads

Ũf (z, µ, µ0) = UH(Q,µ0, µ)ŨJ(
z

Q2
, µ0, µ). (5.100)

With r := αs(µ)
αs(µ0) and

ω :=
4CF
β0

Log r, K :=
16πCF
β2

0αs(µ)
(r − 1− Log r) (5.101)

Eqs. (5.77) and (5.89) give

Log
(
Ũf (z, µ, µ0)

)
= ω Log (izeγE ) , (5.102)

Log
(
ŨJ(

z

Q2
, µ0, µ)

)
= ω Log

(
izeγE

µ2

Q2

)
+K, (5.103)

Log
(
UH(Q,µ0, µ)

)
= −ω Log

µ2

Q2
−K, (5.104)

so that one can easily see that the evolution kernels indeed fulfill the consistency relation.
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6 Numerical Analysis

For the numerical analysis we follow the massless analysis in Ref. [25]. First we define a K-factor as

K(i)(x,Q2,m2) =
2F

(i)
1 (x,Q2,m2)

Q2
i fi(x,Q

2)
, (6.1)

where F
(i)
1 is just the contribution of a quark with flavor i to the total form factor F1 and a dummy PDF

fi that has the form
fi(x,Q

2) = (1− x)4 (6.2)

for large x. The aim of this analysis is to study the effects of resummation for large x and to com-
pare the results for the massless and massive short-distance coefficients. The K-factor in Eq. (6.1) is

the ratio of the full result to the (massless) tree level result F
(i),tree
1 (x,Q2) = Q2

i fi(x,Q
2) and therefore

shows the effects of higher order terms that are included in the resummed results. The dummy PDF in
Eq. (6.2) is used as the PDF of a massive quark (for this analysis we do not care whether it is intrin-
sic or generated perturbatively). This PDF is used in the convolution with both the massless and the
massive hard matching coefficients and jet functions to discuss the mass effects that arise solely from
the perturbative calculations. The theoretical errors for the resummed results will be estimated by scale
variation to check whether the effects of the mass in the short-distance coefficients can be neglected or not.

For the fixed order plots we used the results in Eq. (3.110) and Eq. (4.65) for the massless and mas-
sive case respectively. The log resummation in the large x limit was performed at NLL and NNLL. Here
we used the factorization theorem as in Eq. (5.19) where only singular terms are included in the jet and
the hard function. Whenever we speak about resummed results we refer to that, i.e. in contrast to the FO
results there are no non-singular terms included. To which order the anomalous dimensions and matrix
elements are needed for the different resummation schemes is shown in Tab. 2.

NLL NNLL
ΓH,J 2-loop 3-loop
γH,J 1-loop 2-loop

matrix elements tree level 1-loop

Table 2: NLL and NNLL resummation

The matrix elements up to 1-loop are given in Eq. (5.69) and Eq. (5.62), the 1-loop anomalous dimensions
are shown in Tab. 1. The 2- and 3-loop results for the anomalous dimensions for the hard and jet function
are summarized in the appendix of Ref. [25]12. The matrix elements were expanded together to O(αs),
i.e. the cross terms of order O(α2

s) were not included.
The running of αs and the MS-masses was always performed at 4-loop level. We used the values αs(mZ) =
0.118 with mZ = 91.187 GeV for the coupling and mb(mb) = 4.18 GeV and mc(mc) = 1.275 GeV for the
masses of the bottom and the charm quark respectively. For the hard and the jet scale we used µH = Q
and µJ = Q

√
1− x. In the analysis at 30 GeV the charm quark was considered to be massless and the

heavy flavor was a bottom quark with mass mb, for the analysis at 5 GeV we used the charm quark as the
heavy flavor and the bottom quark was decoupled at 5 GeV so that a 4-flavor running could be used over
the whole range of the jet scale. The plotting range was chosen such that µJ > 1 GeV in the massless
case and µJ > m in the case with a heavy flavor with mass m. The hard and the jet function were run
to the factorization scale Q2 where the PDF is given as in Eq. (6.2).

12In Ref. [25] different conventions were used. To relate to our coefficients ΓH,J and γH,J use:

Γ
(n)
H = −Γn

Γ
(n)
J = −Γn

γ
(n)
H = γVn

γ
(n)
J = −γJn
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Figure 20: Comparison of fixed order and resummed results in the massless case at LO, NLO, NLL and
NNLL for Q=30 GeV and Q=5 GeV.

Let us first analyse the effects or resummation in the massless case. In Fig. 20 the K-factor defined as in
Eq. (6.1) is plotted for a massless quark. The FO results (LO, NLO) are plotted as solid lines, the results
with log resummation (NLL, NNLL) as dashed lines. The LO result for the K-factor is just 1 because the
the LO result for the form factor is nothing but the PDF f(x) itself. The difference between NLO and
LO becomes large for x → 1 which indicates that higher order terms become more and more important
in that region. We see that the resummed results are much more stable for large x, i.e. there is only a
very small shift from NLL to NNLL that is much smaller than the difference between LO and NLO. This
indicates that the FO results are missing numerically important terms in the expansion whereas these
contributions from large logs at higher orders in αs are included in the NLL and NNLL results.
These results can be compared with the plots in Ref. [25] where the same analysis for massless quarks has
been made13. We find small deviations from their plots which can be due to slightly different numerical
values and different implementation of the factorization theorem14, but these deviations are much smaller
than our theoretical uncertainties (see Fig. 24).
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Figure 21: Comparison of fixed order and resummed results at LO, NLO, NLL and NNLL for different
values of Q and m.

In Fig. 21 the results for massive short-distance coefficients are shown. Comparing this with the massless
plots in Fig. 20 it becomes clear that the mass effects are mainly due to the shift in the convolution

f(x) → f(x + m2

Q2 ) (or, equivalently, the rescaling f(x) → f (χ(x)) in the FO calculation). This can be
seen from the fact that already the LO and NLL results, where no matrix elements are included, show
a similar behavior as the higher order plots. Even though the argument of the PDF is shifted only by

13Note that we defined the K-factor with the form factor F1 while in Ref. [25] it was defined with F2. Since the longitudinal
form factor is FL = 0 in the the limit x → 1 this does not matter for the singular results, but it changes the K-factor for
the FO results.

14One source of differences is a different choice for the jet scale and the argument in the convolution between jet function

and PDF as Q
√

1−x
x

in contrast to the fully expanded form Q
√

1− x that we are using in this work, other sources might

be for example different values and running of αs or cross terms of order α2
s in the product of the one-loop matrix elements

that we have not included (both issues are not specified in their work).
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(
mc

5 GeV

)2 ∼ 0.065 and
(

mb
30 GeV

)2 ∼ 0.02 this small shift leads to a huge deviation in the region (1−x)� 1
because here the PDF falls off rapidly (as ∼ (1− x)4 in the case of our dummy PDF). Again the results
with resummation are much more stable when we go to a higher order compared to the FO results, but
here also the change from LO to NLO is not as large for x → 1 as it was in the massless case, so the
impact of resummation is smaller than for the massless case.
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Figure 22: Comparison of fixed order and resummed results at LO, NLO, NLL and NNLL for different
values of Q and m with rescaled K-factor K̃(x,Q2,m2)

In Fig. 22 the K-factor with a tilde was defined with a different normalization where the argument of the

PDF is the rescaled variable χ(x) =
x(1+

√
1+4m

2

Q2 )

2 as

K̃(i)(x,Q2,m2) =
2F

(i)
1 (x,Q2,m2)

Q2
i fi(χ(x), Q2)

, (6.3)

i.e. normalized to the massive FO tree level result for the form factor
Q2
i

2 fi(χ(x), Q2). Here the the effects
of the shift/rescaling in the PDF are not as strong as before because they are already considered in the
normalization, but still we get large deviations from the FO tree level result for large x. Again we see
that higher order terms are important or large x and that resummation clearly improves the convergence
when going to higher orders.
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Figure 23: Comparison of the uncertainties estimated by variation of the jet scale (colored band) and
hard scale (gray band) for different values of Q and m at NLL (red) and NNLL (blue). The bands are
obtained by varying the jet scale between 1

2Q
√

1− x < µJ < 2Q
√

1− x and the hard scale between
1
2Q < µH < 2Q.
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The theoretical uncertainties were estimated by varying the hard and the jet scale by a factor 2 about their
canonical values µH = Q and µJ = Q

√
1− x. All variations for NLL and NNLL are shown separately

in Fig. 23. The scale dependence is larger for Q=5 GeV because all scales are much lower and therefore
the coupling αs is larger. In the massless case the scale dependence introduced by the hard scale is much
smaller than the one from the jet scale, but especially in the massive case it can not be neglected and

so we used ∆tot =
√

∆2
hard + ∆2

jet as an estimate for the total uncertainty, Fig. 24. The bands are much

broader than one would expect from the very small shift from the NLL to the NNLL result that we
already saw in Fig. 20 and Fig. 21, i.e. the scale variation for NNLL is larger by factor of 2-3 than the
difference between the NLL and NNLL results for the canonical values of the scales (dashed lines), but
the scale variation by a factor 2 yields a more conservative estimate for the theoretical uncertainty.
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Figure 24: Convergence from NLL to NNLL for different values of Q and m. The bands are obtained by
combining the uncertainties estimated from jet and hard scale variation in quadrature.

NNLL resummation reduces the scale dependence compared to NLL resummation by a factor 2-5 and we
have good convergence from NLL to NNLL. The small deviations from the results in Ref. [25] that were
mentioned above are also all clearly within these error bands.
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Figure 25: The massless and massive form factors K(x,Q2,m2)f(x,Q2) at NLL.
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Besides considering the K-factor it is also interesting to display the effects for the physically measured form
factor F1. Fig. 25 shows the the form factor F1 for a quark with unit charge, i.e. F1(x) = K(x,Q2,m2)f(x,Q2),
with NLL resummation for Q=5 GeV and Q=30 GeV with massless (red) and massive (blue) quarks. We
see that NLL resummation does not seem to be accurate enough to resolve the effects of a massive flavor
compared to the massless calculations, especially for Q=30 GeV and the bottom quark as the heavy
flavor the overlap between the massless and massive results is quite large.
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Figure 26: The massless and massive form factors K(x,Q2,m2)f(x,Q2) at NNLL.

In Fig. 26 the form factor F1 is shown with NNLL resummation for massless (red) and massive (blue)
quarks. NNLL resummation reduces the uncertainties such that the massive form factor can be clearly
distinguished from the massless one. Although there is a huge factor between the massive and the massless
result for the K-factor in the region x→ 1 (compare Fig. 20 and Fig. 21), this is strongly suppressed in
the form factor because the PDF falls off rapidly for large x. This implies that it is unlikely to resolve
the mass effects for extremely large x (& 0.95) experimentally in the near future because they are simply
too small, but for regions that are accessible to experiments (up to values of x ∼ 0.85) the mass effects
are clearly resolvable.

64



7 CONCLUSIONS

7 Conclusions

The goal of this work was to study the effects of heavy flavors in DIS using an effective field theory
approach and to extend this approach from the classical OPE region to the endpoint region x→ 1.
The ACOT scheme for DIS was formulated systematically based on EFT methods and the QCD results
at O(αs) were reproduced by using the SCET ansatz. These include the 1-loop splitting functions, the
hard matching coefficients and the threshold corrections at the mass scale.
The already existing SCET factorization theorem for DIS in the endpoint region with massless quarks
was extended to the massive case. The building blocks that appear in this factorization theorem like the
hard or the jet function are universal and also appear in other SCET factorization theorems and were
reproduced at O(αs).
The effects of the mass in the matching coefficients and of the resummation of large logs in the limit x→ 1
compared to the fixed order results were studied numerically. We found that the mass effects become
important for large x and that the resummed results are much more stable when going to higher orders
than the fixed order results. For the results with resummation we have very good convergence from NLL
to NNLL resummation within the theoretical uncertainties estimated by scale variation. The theoretical
uncertainties with NNLL resummation are small enough so that the mass should be resolvable, though
experiments do not provide very precise data for measurements in the large x region so far.
This work was focused on heavy flavor production at O(αs). If one goes to O(α2

s) this leads to a more
complicated structure because of mixing between different quark flavors in the evolution of the PDFs
and the matching coefficients, but the general framework is the same. If one wants to include also the
effects of secondary massive quarks this yields new threshold corrections in the different functions in the
factorization theorem for x → 1, depending on how the mass scales relatively to the other scales (hard,
jet, soft/PDF) in the process, see Refs. [32, 33].
DIS is a good example for studying effects of heavy flavors because one has to deal with only one hadron
in the initial state, but the concepts discussed in this work can also be applied to other processes like e.g.
heavy flavor production in hadron colliders.
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A Plus Distributions

Definition: (
Logn(1− x)

1− x

)
+

=
Logn(1− x)

1− x − δ(1− x)

∫ x

0

dx′
Logn(1− x′)

1− x′ (A.1)

∫ 1

∆

dx

(
Logn(1− x)

1− x

)
+

f(x) =

∫ 1

∆

dx
Logn(1− x)

1− x (f(x)− f(1)) +
Logn+1(1−∆)

n+ 1
f(1) (A.2)

Expansion

Θ(1− x)

(1− x)1+a
= −1

a
δ(1− x) + Θ(1− x)

∞∑
n=0

(−a)n

n!

(
Logn(1− x)

1− x

)
+

(A.3)

Rescaling:

κ

(
Logn(κ(1− x))

κ(1− x)

)
+

=
Logn+1(κ)

n+ 1
δ(1− x) +

n∑
a=0

n!

(n− a)!a!
Logn−a(κ)

(
Loga(1− x)

1− x

)
+

(A.4)

Fourier Transform:

FT [δ(s)] = 1 FT −1 [1] = δ(s) (A.5)

FT
[

1

µ2

(
µ2

s

)]
= −Log

(
iξeγEµ2

)
FT −1

[
(iξµ2)a

]
=

1

Γ(−a)

1

µ2

(
µ2

s

)
+

(A.6)

some useful relations:

x

(1− x)+
=

1

(1− x)+
− 1 (A.7)

x2

(1− x)+
=

1

(1− x)+
− 1− x (A.8)

x

(
Log(1− x)

1− x

)
+

=

(
Log(1− x)

1− x

)
+

− Log(1− x) (A.9)

(
1

x

)
+

Log (x+ c) =

(
1

x

)
+

Log c+
Log

(
1 + x

c

)
x

(A.10)(
1

x

)
+

c(2x+ c)

(x+ c)2
=

(
1

x

)
+

− x

(x+ c)2
(A.11)

If g(1) = 1 and g′(1) finite:

1

(1− g(x))+
=

1

|g′(1)|
1

(1− x)+
+

Log(g′(1))

|g′(1)| δ(1− x) +
1

1− g(x)
− 1

(1− x)|g′(1)| (A.12)

Integrals: ∫ 1

1−δ
dx [non− singular](x) = O(δ) (A.13)∫ 1

1−δ
dx δ(1− x) = 1 (A.14)∫ 1

1−δ
dx

1

(1− x)+
= Log δ (A.15)∫ 1

1−δ
dx

(
Log(1− x)

1− x

)
+

=
Log2 δ

2
(A.16)
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B Imaginary Parts

x ∈ R

Im [Log(−(1− x)± i0)] = ±πΘ(1− x) (B.1)

Im
[
Log2(−(1− x)± i0)

]
= ±2πΘ(1− x)Log(1− x) (B.2)

Im

[
1

1− x± i0

]
= ∓πδ(1− x) (B.3)

Im

[
1

(1− x± i0)2

]
= ±πδ′(1− x) (B.4)

Im

[
Log(−(1− x)− i0)

1− x+ i0

]
= −πΘ(1− x)

1

(1− x)+
(B.5)

Im

[
Log2(−(1− x)− i0)

1− x+ i0

]
=
π3

3
δ(1− x)− 2πΘ(1− x)

(
Log(1− x)

1− x

)
+

(B.6)

Im [Lis(x± i0)] = ±πΘ(x− 1)
Logs−1 x

Γ(s)
(B.7)

Im
[
tanh−1(x± i0)

]
= ±π

2
Θ(|x| − 1) (B.8)

Im
[
tan−1(x)

]
= 0 (B.9)

Im
[
tan−1(ix)

]
=

1

2
Log

(∣∣∣∣x+ 1

x− 1

∣∣∣∣) (B.10)

real parts: x, y ∈ R

Re
[
tan−1(i(x± iε))

]
= ∓π

2
Θ(|x| − 1) (B.11)

Re [Log(x+ iy)] =
1

2
Log(x2 + y2) (B.12)

C n-point Functions

w :=

√
1 +

4m2

Q2
r :=

√
1 +

4m2x2

Q2

s :=

√
1− 4m2x

Q2(1− x)
t :=

√
1 +

4m2x

Q2(1 + x)

67



APPENDIX

divergent n-point functions:
The divergent n-point functions were taken from Ref. [34].

a1 = A0(m2) = m2

(
1

ε
+ Log

µ2

m2
+ 1

)
(C.1)

b1 = B0(m2, 0,m2) =
1

ε
+ Log

µ2

m2
+ 2 (C.2)

b2 = B0(0,m2,m2) =
1

ε
+ Log

µ2

m2
(C.3)

b3 = B0(−Q2,m2,m2) =
1

ε
+ Log

µ2

m2
+ 2 + w Log

w − 1

w + 1
(C.4)

b4 = B0(
Q2(1− x)

x
,m2,m2) =

1

ε
+ Log

µ2

m2
+ 2 + sLog

s− 1

s+ 1
(C.5)

b5 = B0(−Q
2(1 + x)

x
,m2,m2) =

1

ε
+ Log

µ2

m2
+ 2 + tLog

t− 1

t+ 1
(C.6)

b6 = B0(m2 +
Q2(1− x)

x
, 0,m2) =

1

ε
+ Log

µ2

m2
+ 2− 1− x

xm
2

Q2 + 1− x

(
Log
−(1− x)

x
− Log

m2

Q2

)
(C.7)

c1 = C0(0,m2,m2,m2,m2, 0) =
1

2m2

(
1

ε
+ Log

µ2

m2

)
(C.8)

d1 = D0(−Q2, 0,m2,m2 +
Q2(1− x)

x
,−Q2,m2,m2,m2,m2, 0) =

x

2m2Q2(1− x)

(
1

ε
+ Log

µ2

m2
+ 2Log

m2

Q2
− 2Log

−(1− x)

x
− 1 + w2

w
Log

w − 1

w + 1

)
(C.9)

To get the correct imaginary part set m2 → m2 − i0.
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finite n-point functions:
The finite n-point functions were calculated by using Feynman parameters and following Ref. [35].

c2 = C0(0, 0, 0,m2,m2,m2) = − 1

2m2
(C.10)

c3 = C0(0,−Q2,−Q2,m2,m2,m2) =
−2 tanh−1

(
1
w

)
Q2w

(C.11)

c4 = C0(0,−Q2,
Q2(1− x)

x
,m2,m2,m2) =

x

Q2

(
1

2
Log2

(−(w − 1)
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− Log
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w + 1

)
Log
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)

− 1

2
Log2

(−(s− 1)
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)
+ Log

(−(s− 1)
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)
Log

(
s− 1

s+ 1
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(C.12)

c5 = C0(m2,−Q2,m2 +
Q2(1− x)

x
, 0,m2,m2) =

x

Q2r

(
− Li2

(
(r − 1)(r − x+ 1)

r2 − wxr + x− 1
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+ Li2
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r2 − wxr + x− 1

)
− Li2
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r2 + wxr + x− 1

)
+ Li2

(
(r + 1)(r + x− 1)
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− 2Li2

(
r + x− 1

x− 1
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+ Li2

(
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(r + 1)(x− 1)

)
− Li2

(
(r + 1)(r + 2x− 1)

(r − 1)(r − 2x+ 1)

)
+ Li2

(
(r − x+ 1)(r + 2x− 1)

(r − 2x+ 1)(x− 1)
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+
π2

6

)
(C.13)

d2 = D0(0, 0,
Q2(1− x)

x
,−Q2, 0,−Q2,m2,m2,m2,m2) =

x

Q2m2w

(
w + (1 + w2(1− 2x))tanh−1

(
1

w

)

+ 2w(1− x)
√
−s2 tan−1

(
1√
−s2

))
(C.14)

d3 = D0(0,
Q2(1− x)

x
, 0,−Q

2(1 + x)

x
,−Q2,−Q2,m2,m2,m2,m2)

Im [d3] = πΘ

(
1

w2
− x
) −2x2

Q4
Log

(
1− s
1 + s

)
(C.15)

To get the correct imaginary part set m2 → m2 − i0.
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