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CHAPTER 1

Introduction

“Scarcely anyone who fully understands this theory can escape from its magic.”
Albert Einstein (1879–1955)

1.1 General relativity and Einstein’s field equations

Einstein’s theory of general relativity [43] (compare e.g. [13, 28, 62, 86]) provides a well-
accepted geometric description of gravity, one of the four fundamental interactions in physics,
beside the strong and weak nuclear interactions and electromagnetism. Albeit being by
far the weakest of these interactions, it is the dominant one on large scales: Both nuclear
interactions are short-ranged, and macroscopic objects tend to be electrically neutral, so
that repulsion of like charges and attraction of opposite charges is nearly balanced, whereas
gravity appears to be always attractive.

General relativity is based on merely a few simple principles and, due to its geometric
elegance, often regarded as one of the most beautiful theories in the natural sciences. The
most crucial input into Einstein’s theory of space, time and gravity is the observation that
all particles are affected by gravity in exactly the same manner. This universality, the
equivalence principle, allows for a treatment of gravity as a purely geometric effect rather
than a force, as which it is described in Newtonian mechanics. Properties of the gravitational
field can be ascribed to the structure of space-time itself, namely its curvature: space-time
is not flat but curved. Test bodies, only subject to gravity, still move along paths that are
“as straight as possible”, as it has already been postulated in Newtonian mechanics. In the
relativistic setting, though, this means that their world lines are geodesics, a generalization of
“straight lines” to curved geometry. A consequence is that the earth does not orbit around
the sun because the sun generates a gravitational force field attracting the earth, but because
its mass curves space-time in such a way that the new “straight lines” are circles, ellipsoids
etc. around the sun. The notion of an absolute gravitational force is generally meaningless in
general relativity. Nonetheless, it can be defined in certain limits, whence, in such a limit,
the motion of an object in a curved geometry looks like its motion in a flat background with
a force acting on it, as one is used to from Newtonian mechanics.
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2 CHAPTER 1. INTRODUCTION

At the heart of general relativity lie Einstein’s field equations which read, in units where
c = G = 1,

Rµν −
1

2
Rgµν + λgµν = 8πTµν . (1.1)

Here, g = gµνdxµdxν is the metric tensor, Rµν the Ricci tensor, R = gµνRµν the curvature
scalar, λ the cosmological constant, and Tµν the stress-energy-momentum tensor. Einstein’s
equations describe in which way the presence of matter curves space-time, and how the
curvature of space-time in turn influences the motion of the matter. They form a complicated
system of non-linear partial differential equations (PDEs) for the gravitational field, which is
represented in general relativity as a pseudo-Riemannian metric g of Lorentzian signature
(−,+, . . . ,+) on the underlying topological space-time manifold M . The non-linearity of
the Einstein equations expresses a distinctive feature of the gravitational field, namely that
it is self-interacting.

To restrict attention to a physically reasonable class of energy-momentum tensors, Tµν is
required to satisfy certain energy conditions. In vacuum, characterized by the absence of
matter, that is by a vanishing energy-momentum tensor, the Einstein equations reduce to

Rµν =
2

n− 1
λgµν , (1.2)

where n denotes the dimension of space. Even the vacuum case turns out to be fairly
complicated to analyze, and already comes along with a huge variety of solutions describing
gravitational waves, black holes, singularities, etc.

Throughout we assume n ≥ 3, though some of the results might remain equally valid for
n = 2.

1.2 Outline

On the way to gaining a complete understanding of (the implications of) Einstein’s general
relativity, a thorough analysis of properties and peculiarities of solutions to his field equations
is essential. The only known way to systematically construct general solutions thereof without
any simplifying symmetry assumptions is in terms of initial (boundary) value problems, or
Cauchy problems, where existence and uniqueness of solutions is deduced from appropriately
specified initial data and initial surfaces. The two “standard” Cauchy problems in general rel-
ativity are the space-like and the characteristic Cauchy problem, where data are prescribed on
space-like and null hypersurfaces, respectively. Here, local-in-(retarded-)time well-posedness
results are available [16, 19, 27, 44, 67, 76]. These results as well as the wave-map gauge
condition which we shall impose throughout this work are recalled in Chapter 2.

This thesis is based upon the papers [69–72] and, in collaboration with P.T. Chruściel,
[34–38], all of which are attached as Chapters 7-15. Its main focus lies on the construction
of solutions to Einstein’s field equations via (characteristic) initial value problems such that
the emerging space-times exhibit specific properties:

• Instead of “ordinary” initial value problems one may consider “asymptotic” initial value
problems where (parts of) the data are prescribed “at infinity”. This is extremely useful
for the construction of space-times, solving Einstein’s vacuum field equations, which
have some global properties in the sense that they have a certain “asymptotically flat
or de Sitter-like”-structure at infinity. In particular, asymptotic initial value problems
provide a mean to construct solutions which are “large” in the sense that they have an
infinite extension, at least in certain directions. Well-posedness results are available in
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the space-like case [52], i.e. for a space-like hypersurface which represents “null infinity”
(which requires λ > 0), and for two transversally intersecting null hypersurfaces, one of
which representing “null infinity” [63] (this requires λ = 0).
One main result of this thesis is to establish a well-posedness result where data are
prescribed on the light-cone emanating from a point which represents “past time-like
infinity” [36], attached as Chapter 9. It relies on previous work by Friedrich [57],
Chruściel [27], and a novel system of wave equations derived in [69], attached as
Chapter 8, which provides a substitute to Friedrich’s conformal field equations.

• In [38, 72], attached as Chapters 10 and 11, we provide the basis to establish another
result for the construction of asymptotically flat vacuum space-times starting from an
ordinary characteristic Cauchy problem. We extract necessary and sufficient conditions
which ensure that, on the initial surface, a smooth extension of the space-time is
possible “across infinity”. This is achieved by using a novel gauge scheme to integrate
the characteristic constraint equations which we develop in [34], attached as Chapter 7,
compare [72], attached as Chapter 11. It will be proved elsewhere that such initial
data, indeed, lead to asymptotically flat space-times.

• Another important class of space-times consists of those which possess non-trivial
isometry groups. These are generated by Killing vector fields. One way of systematically
constructing vacuum space-times with Killing vector fields is to do so in terms of a
space-like Cauchy problem for appropriately chosen initial data. This is described in [8].
In [35], attached as Chapter 13, we follow the same procedure for the characteristic
Cauchy problem. In [70, 71], attached as Chapters 14 and 15, we extend these results
to the asymptotic space-like and characteristic Cauchy problems.

• Finally, an important quantity characterizing asymptotically flat space-times is its
mass, such as its ADM and Bondi mass [4, 9, 78]. The Bondi mass provides a way
to measure the amount of energy a system is loosing by virtue of radiation. In [37],
attached as Chapter 12, we give an elementary derivation of a formula which expresses
the Bondi mass of a globally smooth light-cone in terms of the initial data given there,
and which, in addition, is manifestly positive. We thus obtain a simple and direct proof
for the positivity of the Bondi mass in this setting. Moreover, such a formula might be
useful to derive a priori estimates for e.g. the stability analysis of black holes.
Here, we present a formula somewhat more general than that in [37], allowing more
flexible gauges, which is why some of the calculations are included in Chapter 5.

The definition of asymptotically flat and asymptotically de Sitter space-times in terms of
Penrose’s method of conformal rescaling is recalled in Chapter 3. There, we also introduce
Friedrich’s conformal field equations, which replace Einstein’s vacuum field equations in a
conformally rescaled space-time, and give an overview over the relevant gauge degrees of
freedom. In Chapter 4, we discuss the various types of asymptotic initial value problems
and present our system of conformal wave equations. Chapter 5 contains an introduction
to the notion of mass (or rather energy) in general relativity and we describe our approach
to determine the Bondi mass of a globally smooth light-cone. In Chapter 6, we explain the
construction of vacuum space-times with Killing vector fields via Killing initial data sets for
the various ordinary and asymptotic Cauchy problems discussed afore. We conclude with
a discussion of our results in Chapter 16, where we also raise some open questions related
to the topics addressed in this thesis. In Appendix A, we collect a couple of mathematical
well-posedness results on wave equations which play a significant role in this work.
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Light-cones and two transversally intersecting null hypersurfaces are characteristic initial
surfaces of particular interest. Here, we shall focus on light-cones. Two intersecting null
hypersurfaces can be treated similarly, although their analysis requires a discussion of the
free data on the intersection manifold which we want to avoid here for reasons of simplicity.
The reader will be referred to the references given in the text, where both cases are treated
in detail.

Besides providing an overview of the current state of research and giving a brief description
of the main results obtained in the attached papers, Chapters 7-15, we also want to stress
analogies between the space-like and the characteristic case, which is why we shall treat
them simultaneously whenever feasible. We shall analyze and compare their peculiarities and
difficulties whenever things are differing. Since we are particularly interested in summarizing
and relating our results to each other and providing some physical motivation for their
underlying questions, we will ignore the technical details here. They are taken care of in
detail in the attached papers.

If not explicitly stated otherwise, all manifolds, fields, expansion coefficients etc. are
assumed to be smooth.

1.3 Overview of the attached papers

In Chapters 7-15 we have attached all the papers on which this thesis is based. Here we give
an overview over all the manuscripts, where they are published or submitted etc., cf. page 6
for a statement on the co-authored papers:

1. “The many ways of the characteristic Cauchy problem”, with P. T. Chruściel, published
in Classical and Quantum Gravity 29 (2012) 145006, arXiv:1203.4534 [gr-qc].

Abstract. We review various aspects of the characteristic initial value problem for the
Einstein equations, presenting new approaches to some of the issues arising.

2. “Conformally covariant systems of wave equations and their equivalence to Einstein’s
field equations”, accepted for publication in Annales Henri Poincaré (28.04.2014),
arXiv:1306.6204 [gr-qc].

Abstract. We derive, in 3 + 1 spacetime dimensions, two alternative systems of
quasi-linear wave equations, based on Friedrich’s conformal field equations. We analyse
their equivalence to Einstein’s vacuum field equations when appropriate constraint
equations are satisfied by the initial data. As an application, the characteristic initial
value problem for the Einstein equations with data on past null infinity is reduced to
a characteristic initial value problem for wave equations with data on an ordinary
light-cone.

3. “Solutions of the vacuum Einstein equations with initial data on past null infinity”,
with P. T. Chruściel, published in Classical and Quantum Gravity 30 (2013) 235037,
arXiv:1307.0321 [gr-qc].

Abstract. We prove existence of vacuum space-times with freely prescribable cone-
smooth initial data on past null infinity.

4. “Characteristic initial data and smoothness of Scri. I. Framework and results”, with
P. T. Chruściel, submitted to Annales Henri Poincaré (17.03.2014), arXiv:1403.3558
[gr-qc].
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Abstract. We analyze the Cauchy problem for the vacuum Einstein equations with
data on a complete light-cone in an asymptotically Minkowskian space-time. We provide
conditions on the free initial data which guarantee existence of global solutions of the
characteristic constraint equations. We present necessary-and-sufficient conditions
on characteristic initial data in 3 + 1 dimensions to have no logarithmic terms in an
asymptotic expansion at null infinity.

5. “Characteristic initial data and smoothness of Scri. II. Asymptotic expansions and con-
struction of conformally smooth data sets”, submitted to the Journal of Mathematical
Physics (31.03.2014), arXiv:1403.3560 [gr-qc].

Abstract. We derive necessary-and-sufficient conditions on characteristic initial data
for Friedrich’s conformal field equations in 3 + 1 dimensions to have no logarithmic
terms in an asymptotic expansion at null infinity.

6. “The mass of light-cones” , with P. T. Chruściel, published as a Fast Track Com-
munication in Classical and Quantum Gravity 31 (2014), 102001, arXiv:1401.3789
[gr-qc].

Abstract. We give an elementary proof of positivity of the Trautman-Bondi mass of
light-cones with complete generators.

7. “KIDs like cones”, with P. T. Chruściel, published in Classical and Quantum Gravity
30 (2013) 235036, arXiv:1305.7468 [gr-qc].

Abstract. We analyze vacuum Killing Initial Data on characteristic Cauchy surfaces.
A general theorem on existence of Killing vectors in the domain of dependence is proved,
and some special cases are analyzed in detail, including the case of bifurcate Killing
horizons.

8. “KIDs prefer special cones”, published in Classical and Quantum Gravity 31 (2014)
085007, arXiv:1311.3692 [gr-qc].

Abstract. As complement to Class. Quantum Grav. 30 (2013) 235036 we analyze
Killing initial data on characteristic Cauchy surfaces in conformally rescaled vacuum
spacetimes satisfying Friedrich’s conformal field equations. As an application, we derive
and discuss the KID equations on a light-cone with vertex at past timelike infinity.

9. “Killing Initial Data on space-like conformal boundaries”, submitted to the Journal of
Geometry and Physics (11.03.2014), arXiv:1403.2682 [gr-qc].

Abstract. We analyze Killing Initial Data on Cauchy surfaces in conformally rescaled
vacuum space-times satisfying Friedrich’s conformal field equations. As an application,
we derive the KID equations on a spacelike I −.
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CHAPTER 2

Initial value problems in general relativity

“Prediction is very difficult, especially about the future.”
Niels H. D. Bohr (1885–1962)

2.1 Initial value problems

A basic issue in theoretical physics is the so-called Cauchy problem or initial value problem.
One considers a freely evolving physical system at a certain instant of time and asks, if the
specification of certain quantities guarantees the existence and uniqueness of a solution of
the corresponding dynamical system which describes the evolution. The Cauchy problem
is of conceptual importance since it concerns the predictability of the underlying theory.
Practically, the state of a system can only be measured with finite accuracy, so the system
should not be strongly affected by small changes of the initial conditions. One therefore asks
for a continuous dependence of the solution on the prescribed data (“Cauchy stability”). If
all these requirements are satisfied the Cauchy problem is well-posed. In classical mechanics,
for instance, where the dynamical system is described by a system of ordinary differential
equations (ODEs) the Cauchy problem is satisfactorily solved by the Picard-Lindelöf theorem
(cf. e.g. [3]), a well-posedness result for ODEs.

The Cauchy problem also arises in general relativity, where of course the concept of an
absolute time is missing. However, one natural possibility there is to regard a space-like
n-dimensional hypersurface as representing, roughly speaking, an instant of time, this leads
to the space-like Cauchy problem in general relativity. Due to the Lorentzian structure of the
space-time manifold there are other types of “initial surfaces” for which a Cauchy problem
can be formulated:

• A characteristic Cauchy problem where data are given on (piecewise) null hypersurfaces,
such as a light-cone or two null hypersurfaces intersecting transversally.

• Later on we shall also consider asymptotic Cauchy problems where these surfaces are
(partly) located “at infinity”.

• Another possibility is to prescribe (for λ = 0) data on an asymptotically hyperbolic
space-like hypersurface which intersects “null infinity” in a space-like sphere (“hyper-

7
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boloidal Cauchy problem”) [1, 2, 49, 53]. In fact, this is another space-like Cauchy
problem, though in the “classical” cases the initial manifold will be chosen to be either
compact for cosmological models or asymptotically Euclidean to describe isolated
bodies.

• Also initial boundary value problems [59] play a significant role, for instance in numerical
relativity or when studying anti-de-Sitter-like space-times. Here, part of the data need
to be specified on a time-like boundary, cf. e.g. [80] for an overview.

• Various mixtures of all these kind of Cauchy problems.

Since a space-like hypersurface represents the gravitational system at “an instant of time”,
the space-like Cauchy problem is closer related to the “classical” Cauchy problem than the
characteristic one. Most of the results obtained in the course of this thesis are related to the
characteristic Cauchy problem, let us therefore provide some motivation why it is interesting
and relevant from a physical point of view, as well (cf. [76]).

First of all, a light-cone appears in a very natural way as initial (or rather as “final”)
surface. All the observations which are made of our universe lie on a family of past light-cones
from the time when people have started observing the sky until now. This covers a rather
modest-in-size set as compared to the observational scales involved. For many observational
purposes this set is so thin that it can be considered to be a single past light-cone. The
characteristic Cauchy problem with data on a past light-cone thus reflects the issue to what
extent observational data determine a unique evolution of our universe backwards in time.

Furthermore, null hypersurfaces appear naturally in form of e.g. horizons, and one would
like to have the possibility of prescribing data on these distinguished surfaces. Finally,
gravitational radiation far away from its source is most conveniently analyzed “at null
infinity”: Whereas the (asymptotically flat) space-like Cauchy problem might be well-suited
to tackle issues “at spatial infinity”, the characteristic one is natural for questions related to
null infinity, which, by means of an appropriate conformal rescaling, can be represented (for
λ = 0) by null hypersurfaces (cf. Chapter 3). The characteristic Cauchy problem therefore
appears naturally when dealing with the “asymptotic Cauchy problems” mentioned above
and discussed in Chapter 4.

While, for the reasons just explained, it is natural to think of Cauchy problems with
all these different types of initial surfaces, it is far away from being evident that such
a Cauchy problem is well-posed in general relativity. Indeed, the Einstein equations do
not have a structure to which any of the known mathematical well-posedness results for
PDEs directly applies. Now, it is a feature of general relativity, expressed by the tensorial
nature of Einstein’s equations, that they are coordinate-independent, leaving a lot of gauge
freedom hidden in the equations. Due to this gauge freedom one actually cannot expect
them to admit unique solutions. What one can expect at most is uniqueness up to gauge-, i.e.
diffeomorphism-invariance. In fact, diffeomorphic space-times are physically indistinguishable.

It was the monumental discovery of Choquet-Bruhat [44] that imposing a harmonic gauge
condition on the coordinates, the disturbing gauge degrees of freedom are removed and
the Einstein equations do split into a system of hyperbolic wave equations, the evolution
equations, for which well-posedness results are available, and a system of constraint equations,
propagated by the evolution equations. It is the hyperbolic character of the evolution equations
which ensures a causal propagation of the gravitational field.

In the case of a space-like Cauchy problem, the constraint equations can be written as
an elliptic PDE-system. It is one of the attractive features of the characteristic Cauchy
problem that the constraints can be read as an ODE-system, which is much easier to deal
with, whence it comes along with several advantages from a technical point of view to be
discussed below.



2.2. HYPERBOLIC REDUCTION OF EINSTEIN’S FIELD EQUATIONS 9

2.2 Hyperbolic reduction of Einstein’s field equations

To realize the above mentioned splitting of the Einstein equations into constraint and evolution
equations we impose an appropriate gauge condition. We shall work in a (ĝ-generalized)
wave-map gauge [16, 50, 54],

Hλ = 0 , (2.1)

which is characterized by the vanishing of the (generalized) wave-gauge vector

Hλ := Γλ − V λ , where V λ := Γ̂λ +Wλ , Γλ := gαβΓλαβ , Γ̂λ := gαβΓ̂λαβ . (2.2)

We use the hat-symbol “ ˆ ” to denote objects associated with some target metric ĝ. The
vector field Wλ = Wλ(xµ, gµν) can be freely specified or chosen to fulfill ad hoc equations.
It is allowed to depend upon the coordinates and gµν , but not upon derivatives thereof, and
reflects the freedom to choose coordinates off the initial surface. Indeed, by an appropriate
choice of coordinates it can locally be given any preassigned form, and conversely Wλ

determines coordinates via a system of wave equations and suitable data on the initial
surface [54], as which we will take coordinates adapted to the geometry. When solving an
initial value problem it is the other way around. The coordinates are given and the metric
tensor is constructed in such a way that the coordinates become generalized wave coordinates
which satisfy (2.1).

The wave-map gauge is a generalization of Choquet-Bruhat’s classical harmonic gauge.
As will be discussed later on it is the addition of the gauge source functions Wλ, introduced
by Friedrich [50], which, in the characteristic case, bring in a flexibility crucial to solve a
couple of problems we shall be dealing with.

A hyperbolic reduction of the Einstein equations is realized when the Ricci tensor is
replaced by the reduced Ricci tensor in wave-map gauge, namely

R(H)
µν := Rµν − gσ(µ∇̂ν)H

σ . (2.3)

The so-obtained reduced Einstein equations

R(H)
µν −

1

2
R(H)gµν + λgµν = 8πTµν , (2.4)

form, in vacuum or for suitable matter models, a system of quasi-linear wave equations for
which well-posedness results are available, cf. Appendix A (in the non-vacuum case equations
for the matter fields need to be added).

However, once (2.4) has been solved, one needs to make sure that the so-obtained solution
is consistent with the gauge condition, i.e. it should satisfy Hλ = 0. Only in that case one
would end up with a solution of the original equations (1.1). Assuming that the stress-energy
tensor satisfies the conservation law ∇νTµν = 0, it follows from (2.4) and the second Bianchi
identity that the components of the wave-gauge vector fulfill a linear, homogeneous system
of wave equations,

∇ν∇̂νHµ + 2gµν∇[σ∇̂ν]H
σ = gαβ∂α∂βH

µ + fα
µHα + fα

βµ∂βH
α = 0 , (2.5)

for appropriate fields fα
µ and fα

βµ. Due to standard uniqueness results for such equations
[45, 84] the wave-gauge vector will vanish if and only the initial data for (2.5) vanish, which
we denote by [Hλ] (as a matter of course, which data need to be specified depends on the
type of the initial surface). Equation (2.5) thus reflects the key fact that the gauge condition
(2.1) and the constraint equations derived below are propagated by the evolutionary part of
the Einstein equations, whence it merely needs to be ensured that they are initially satisfied.
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We conclude that we can replace the Einstein equations by the reduced Einstein equations,
which are much easier to handle mathematically, as long as we make sure that [Hλ] = 0.
Note that [Hλ] contains metric components (or rather transverse derivatives thereof) which
are not part of the initial data for (2.4), so it is a non-trivial issue to make sure that [Hλ]
vanishes. A priori, it is not even clear whether this condition can be satisfied at all. It was
the great discovery of Choquet-Bruhat [44] that the equations have a structure due to which
it is possible. The geometric Cauchy problem for Einstein’s field equations can be reduced to
a Cauchy problem for a hyperbolic system, together with a system of constraint equations
for the initial data.

In the next sections we shall review the space-like Cauchy problem for Einstein’s field
equations [7, 21, 25, 60] whose solution relies on the classical papers by Choquet-Bruhat [44]
and Choquet-Bruhat & Geroch [19], and the characteristic one as studied most notably by
Rendall [76] and Choquet-Bruhat, Chruściel & Mart́ın-Garćıa [16]. Since the predominant
part of this thesis deals with the characteristic case and only a minor part with the space-like
case, our treatment of the characteristic Cauchy problem will be somewhat more detailed.

We shall write down most of the equations for a non-vanishing energy-momentum tensor.
However, for some of the arguments below to work, one has to make certain assumptions on
the matter models used. Since we are particularly interested in the vacuum case we have not
studied these problems.

2.3 Space-like Cauchy problem

Consider a space-like hypersurface Σ ⊂ M in some Lorentzian manifold (M , g)1 and
introduce adapted coordinates (x0 = t, xi), i = 1, . . . n+ 1, such that Σ = {t = 0} (on the
portion covered by the coordinate system). The data for the reduced Einstein equations
(2.4) are gµν |Σ and ∂tgµν |Σ, the data for (2.5) are Hλ|Σ and ∂tH

λ|Σ. We denote by nµ a
future directed unit time-like vector field, normal to the initial surface Σ, and consider the
contraction of the reduced Einstein equations with nµ,

(Rµν −
1

2
Rgµν + λgµν − 8πTµν)nν − gσ(µn

ν∇̂ν)H
σ +

1

2
nµ∇̂σHσ = 0 . (2.6)

An analysis of this equation shows that it implies the vanishing of ∂tH
λ|Σ, supposing that

the equations

(Rµν −
1

2
Rgµν + λgµν − 8πTµν)nν |Σ = 0 and Hλ|Σ = 0 (2.7)

hold. One checks that, in vacuum or for appropriate matter models, both equations in (2.7),
which are clearly necessary to obtain a solution to the full Einstein equations in wave-map
gauge, just depend on gµν |Σ and ∂tgµν |Σ, i.e. the initial data.

More specifically, let us denote by

hij := gij |Σ (2.8)

the induced metric or first fundamental form, and by

Kij :=
1

2
Lngij |Σ =

1

2

√
|gtt|(∂tgij − 2D(igj)t)|Σ (2.9)

1At this stage, we assume that a Lorentz manifold, solution to Einstein’s field equations, has been given,
later on it will be constructed from Σ and the data given there.
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the extrinsic curvature or second fundamental form, where L is the Lie derivative. We
denote by D , R[h] and Γ[h]kij covariant derivative, curvature scalar and connection coefficients

associated with the Riemannian metric h = hijdx
idxj . One then shows that (2.7) is equivalent

to

(R[h]− 2λ− |K|2 +K2 − 16πTµνn
µnν)|Σ = 0 , (2.10)

(DjKi
j −DiK − 8πhijg

jνTµνn
µ)|Σ = 0 , (2.11)

(∂tg
tt − 2

√
|gtt|K − gttgtiDigtt − 2gtigtjDigtj + 2V t)|Σ = 0 , (2.12)

(gtt∂tgtk + 2|gtt|− 1
2 gtiKik −

1

2
gttDkgtt + 2gtiDigtk + hklg

ijΓ[h]lij − Vk)|Σ = 0 . (2.13)

Here we have set K := hijKij and |K|2 := hikhjlKijKkl.
The wave-map gauge condition Hλ = 0 for the arbitrarily prescribed vector field Wλ

does not fully exploit the gauge freedom to choose coordinates. It is well-known (cf. e.g. [25])
that there remains the freedom to prescribe

gtt|Σ < 0 and gti|Σ , (2.14)

or, equivalently,

gtt|Σ and gti|Σ such that (gtt − hijgtigtj)|Σ < 0 . (2.15)

Taking this into account when analyzing the constraint equations (2.10)-(2.13), we observe
that, in vacuum say, (2.10)-(2.11) provide constraints on (hij ,Kij) (observe that ∂tgij |Σ
can be computed from Kij). Once we have found a solution, ∂tgtµ|Σ can be algebraically
determined from (2.12)-(2.13).2 In fact, due to the freedom to choose the gauge source
functions Wλ, the values of ∂tgtµ|Σ are just a matter of gauge and can be prescribed arbitrarily.
The equations (2.12)-(2.13) then need to be read as algebraic equations for W t|Σ and W i|Σ.
Contrary to the characteristic case treated below, the additional freedom arising from the
gauge source functions cannot be used to simplify the constraint equations significantly
(nonetheless, they play an important role mathematical and numerical relativity, cf. e.g.
[75, 77]). The proper, non-trivial constraints are given by the Hamiltonian constraint (2.10)
and the momentum constraint (2.11) for the geometric data (hij ,Kij) on Σ, comprising its
first and second fundamental form. In vacuum, these constraints become

R[h]− 2λ− |K|2 +K2 = 0 , (2.16)

DjKi
j −DiK = 0 , (2.17)

Now, given Σ as a manifold on its own (cf. below) there are various ways of constructing
the same (up to isometries) space-time which does not arise from a freedom in the choice of
coordinates, but from a freedom to embed Σ into the prospective space-time manifold. This
is sometimes regarded as another gauge freedom, captured by the freedom to prescribe the
mean curvature τ of Σ, though one has to be careful since e.g. a constant mean curvature
(CMC)-gauge, where τ = const, is a geometric restriction [31].

As an illustration, and for later reference we note that working in a gauge where

gtt|Σ = −1 , gti|Σ = 0 , ∂tgtµ|Σ = 0 (2.18)

and using a Minkowski target ĝ = η = −dt2 +
∑
i(dx

i)2, we need to take

W t|Σ = K , (2.19)

W k|Σ = hijΓ[h]kij . (2.20)

2Some care is needed when the Wλ’s are allowed to depend on the metric.
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There have been many successful approaches to construct solutions of (2.10)-(2.11) or
(2.16)-(2.17) (cf. e.g. [7, 21, 25, 31] and the references given therein for an overview over
the various methods). Ideally, one would like to extract certain components of (hij ,Kij)
as reduced “seed” data which can be prescribed completely freely, while the remaining
components are determined by the constraint equations. In general, though, there is no
known method to do this.

One common approach is to transform the constraint equations via the Choquet-Bruhat-
Lichnerowicz-York conformal method [13, 21, 25] into a more convenient PDE-system. A
standard choice is to regard the conformal class [hij ] of the induced metric hij , a symmetric,

trace-free tensor L̃ij and, depending on the viewpoint, the mean curvature τ as the non-gauge

data. Denote by h̃ij a representative of [hij ]. The vacuum constraints (2.16)-(2.17) expressed

in terms of L̃ij and a conformal factor φ > 0 relating h̃ and h, then read

D̃jL̃i
j − n− 1

n
φ

2n
n−2 D̃iτ = 0 , (2.21)

4
n− 1

n− 2
∆h̃φ− R̃[h̃]φ+ |L̃|2φ− 3n−2

n−2 −
(n− 1

n
τ2 − 2λ

)
φ
n+2
n−2 = 0 , (2.22)

where D̃ denotes the Levi-Civita connection of h̃. Any solution (φ > 0, L̃ij) leads via

hij = φ
4

n−2 h̃ij and Kij = φ−2 n+2
n−2 L̃ij +

τ

n
hij (2.23)

to a solution of the vacuum constraints. Writing

L̃ij = B̃ij + 2(D̃(iYj))̆ , (2.24)

where “˘” denotes the h̃-trace-free part of the corresponding 2-tensor, and where the
symmetric, trace-free “seed” tensor field B̃ij rather than L̃ij is regarded as given, the
constraints (2.21)-(2.22) become a semi-linear elliptic PDE-system for the conformal factor φ
and the vector field Y .

A characteristic property in a CMC-gauge is that the equations for φ and L̃ij decouple,

with (2.21) reducing to divL̃ = 0. In that situation [hij ] and a symmetric trace- and

divergence-free tensor (TT-tensor) L̃ij provide the free reduced non-gauge data. The
splitting (2.24) then provides a method due to York to construct TT-tensors from trace-free
tensors via a linear elliptic PDE-system. It then remains to solve Lichnerowicz equation
(2.22) (with φ > 0), a semi-linear elliptic scalar equation.

While the CMC-case is quite well-understood in many situations of physical interest such
as on compact, asymptotically Euclidean and asymptotically hyperbolic hypersurfaces, it is
particularly the non-CMC-case where the existence of a solution to the constraint equations
can generally not be guaranteed. This will be completely different in the characteristic case,
where it is possible to provide an exhaustive class of freely prescribable initial data.

To conclude, the wave-map gauge condition splits the Einstein equations into a system of
hyperbolic evolution equations (2.4), the reduced Einstein equations, and an (elliptic) system
of constraint equations (2.10)-(2.13), which needs to be satisfied on the initial manifold.
Taking well-known well-posedness results for quasi-linear wave equations into account (cf.
Appendix A) it follows that the constraint equations (2.10)-(2.11) are necessary and sufficient
for the existence of an, in this gauge, locally unique globally hyperbolic development which
solves the space-like Cauchy problem for the vacuum field equations. One thereupon shows
that the solution is locally unique up to isometries whatever coordinates have been selected.
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Strictly speaking the procedure described above to establish well-posedness of the space-
like Cauchy problem works for data given on some coordinate patch of the initial surface
Σ ⊂M . To construct a solution global in space (cf. e.g. [25]) one needs to patch together the
solutions obtained in each neighborhood to a globally hyperbolic development with Cauchy
surface Σ. This is possible owing to the fact that all solutions with the same initial data are
locally isometric. The solution is unique (up to isometries) in a neighborhood of Σ.

So far we have assumed that Σ ⊂ M , though one would rather like to consider Σ as
an n-manifold on its own. Given data (Σ, hij ,Kij), with hij a Riemannian metric and
Kij a symmetric tensor of valence two on Σ, solution to the vacuum constraint equations
(2.16)-(2.17), one shows that Σ can be equipped with an embedding ι into a new manifold
M with topology Σ× R endowed with a Lorentzian metric g, such that ι(Σ) is a space-like
Cauchy surface in (M , g), the pull-backs of the induced metric and the second fundamental
form on ι(Σ) to Σ coincide with hij and Kij , respectively, and the metric g solves the vacuum
Einstein equations and is locally unique up to isometries.

Consider the triple (Σ, hij ,Kij) for say n = 3. Taking the number of constraint equations,
the gauge character of the mean curvature and the fact that diffeomorphic initial data
sets determine physically equivalent space-times into account, one finds that (Σ, hij ,Kij)
conceals 4 free “non-gauge” functions, which means that the gravitational field has 2 degrees
of freedom per point in space [86]. This number will be retrieved in all the other Cauchy
problems we shall discuss here.

2.3.1 Maximal globally hyperbolic developments

The space-time (M , g) constructed this way is not unique. For instance, any proper subset
of M ⊃ ι(Σ) gives another, non-isometric solution to the Cauchy problem, which, though,
can be isometrically embedded into the first one, keeping the Cauchy surface fixed. This
defines a partial order. Any totally ordered subset has an upper bound which is obtained by
taking the union of all solutions in this subset and identifying points via isometric embedding.
One therefore may employ Zorn’s lemma to conclude that a maximal globally hyperbolic
development (Mmax, gmax) exists. This can be shown [19] to be unique in the sense that every
other globally hyperbolic solution to the Cauchy problem can be isometrically embedded
into (Mmax, gmax).

Theorem 2.3.1 A triple (Σ, hij ,Kij) defines a unique (up to isometries) maximal globally
hyperbolic development of the vacuum Einstein equations, which depends in a continuous
manner on the initial data,3 if and only if the constraint equations (2.16)-(2.17) are fulfilled.4

2.4 Characteristic Cauchy problem

Let us consider a (future) light-cone CO ⊂M with vertex O ∈M in a space-time (M , g)
which satisfies Einstein’s field equations. As compared to two transversally intersecting
null-hypersurfaces, treated e.g. in [34, 76], some additional technical difficulties arise due to
the non-smoothness of CO at its vertex, which most comprehensively have been solved by
Chruściel [27], compare [17, 18]

3In this work we focus on existence and uniqueness results, so here and elsewhere we will not go into
detail by e.g. specifying the topology w.r.t. which continuity holds.

4Similar results can be derived e.g. for scalar, Maxwell, Yang-Mills and Vlasov fields, supposing that
additional data for the matter fields are given [13].
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We introduce adapted null coordinates (x0 = u, x1 = r, xA), A = 2, . . . n+ 1, singular at
the tip of the cone, such that CO \ {O} = {u = 0}, r > 0 parameterizes the null geodesics
issued from O and generating the cone such that O is approached as r goes to zero, while
the xA’s are local coordinates on the level sets Σr = {u = 0, r = const.} ∼= Sn−1 (cf. [16]).
In these coordinates the trace of the metric on the cone adopts the form (the symbols x0

and u will be used interchangeably)

g = gµνdxµdxν = g00(du)2 + 2ν0dudr + 2νAdudxA + ǧ , (2.25)

where we have set
ν0 := g0r , νA := g0A , ǧ := gABdxAdxB . (2.26)

Here and henceforth we use an overbar to denote the restriction of a space-time object to CO,
or, more general, to the respective initial surface (we shall use this notation for space-like
initial surfaces, as well).

The induced metric is given by the degenerate quadric form ǧ, which induces on each
slice Σr an r-dependent Riemannian metric ǧΣr . For the convenience of the reader, let us
also note that the restriction to the cone of the inverse metric takes the form

g# = 2ν0∂u∂r + grr∂r∂r + 2grA∂r∂A + gAB∂A∂B , (2.27)

where gAB is the inverse of gAB , and where

ν0 = g0r = (ν0)−1 , grA = −ν0νA = −ν0gABνB , grr = (ν0)2(νAνA − g00) . (2.28)

In the characteristic case the data for the reduced Einstein equations (2.4) are gµν , the
data for (2.5) are Hλ (cf. Appendix A).

Recall that in the space-like case certain components of the trace of the full Einstein
equations to the initial surface involve only metric components and transverse derivatives
thereof which are part of the initial data for the evolution equations. This is the reason
why one is straightforwardly led to the geometric constraint equations (2.10)-(2.11). In the
characteristic case this is not true anymore, whence things are somewhat more involved. The
Einstein equations have to be combined with the wave-gauge vector to eliminate transverse
derivatives of the metric which do not belong to the initial data for the evolution equations.
However, it is this peculiarity which allows for a simplification of the integration scheme for
the characteristic constraint equations by the use of non-vanishing gauge source functions.

Denote by ` the vector ∂r. The null second fundamental form of CO is defined as

χij :=
1

2
L`gij . (2.29)

Since the normal vector ` is also tangent, χ shows very different properties in comparison
with the space-like case. Most notably, it is intrinsically defined and does not depend on
transverse derivatives of the metric. In adapted null coordinates we have

χAB =
1

2
∂rgAB , χ1i = 0 . (2.30)

The trace of the null second fundamental form

τ = gABχAB (2.31)

is called the expansion or divergence of CO, while its trace-free part

σA
B = (gBCχAC )̆ = χ̆A

B = χA
B − 1

n− 1
δA

Bτ =
1

2
[gBC ](∂r[gAB ])̆ (2.32)
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denotes the shear of CO. It merely depends upon the conformal class [ǧ] of ǧ. Recall that
we decorate a 2-tensor with the symbol “˘” whenever its trace-free part is meant.

It turns out [16] that, in vacuum or for appropriate matter models, the equations

(Rµν −
1

2
Rgµν + λgµν − 8πTµν)`µ`ν = −1

2
τHr , (2.33)

(RAν −
1

2
RgAν + λgAν − 8πTAν)`ν = −1

2
(∂r + τ)HA +

1

2
∂AHr , (2.34)

2ν0(R0ν −
1

2
Rg0ν + λg0ν − 8πT 0ν)`ν = (2ν0∂rν

A − grA∂r + grAV r)HA

−(∇̌A − ξA)HA − (2ν0∂r + τν0 − V 0)H0 −
(
grr(∂r + ν0∂rν0)

+2(ν0)2νA∂rν
A + ν0gAi∂Ag0i − ν0V 0 − grrV r

)
Hr +

1

2
|H|2 , (2.35)

with Hµ := gµνH
ν , |H|2 := HµHµ, and with ξA being defined in equation (2.38) below,5 do

not involve any transverse derivative of the metric tensor. It is clear, that they necessarily
need to be satisfied by any solution of the Einstein equations in wave-map gauge.

The system (2.33)-(2.35) is equivalent to the so-called Einstein wave-map gauge constraints
derived in [16] (here we have added a cosmological constant λ),

(∂r − κ)τ +
1

n− 1
τ2 = −|σ|2 − 8πT rr , (2.36)

(∂r +
1

2
τ + κ)ν0 = −1

2
V 0 , (2.37)

(∂r + τ)ξA = 2∇̌BσAB − 2
n− 2

n− 1
∂Aτ − 2∂Aκ− 16πT rA , (2.38)

(∂r −
1

2
ν0V

0)νA =
1

2
ν0(V A − ξA − gBC Γ̌ABC) , (2.39)

(∂r + τ + κ)ζ =
1

2
|ξ|2 − ∇̌AξA − Ř+ 8π(gABTAB − T ) + 2λ , (2.40)

(∂r +
1

2
τ + κ)grr =

1

2
ζ − V r , (2.41)

with

|σ|2 := σA
BσB

A , |ξ|2 := gABξAξB , ξA := gABξB , T := gµνTµν . (2.42)

We use the check symbol “ˇ” to denote objects associated with the one-parameter family of
Riemannian metrics r 7→ gAB(r, xC)dxAdxB on Sn−1. The relevant boundary conditions to
integrate (2.36)-(2.41) follow from regularity conditions at the tip of the cone [16, Section 4.5].

The function κ appearing in (2.36)-(2.41) provides another gauge function. It reflects the
freedom to choose the r-coordinate which parameterizes the null geodesics generating the cone.
Once a solution of the reduced Einstein equations in wave-map gauge has been constructed,
κ and the “auxiliary” fields ξA and ζ, which have been introduced to transform (2.33)-(2.35)
into first-order equations, turn out to be related to certain connection coefficients,

κ = Γrrr , ξA = −2ΓrrA , ζ = 2gABΓrAB + τgrr . (2.43)

5The reader is warned that in [16] a different convention has been used how the indices of the wave-gauge
vector are lowered.
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In fact, the function ζ has a physical meaning beyond its relation to a connection coefficient:
Consider two transversally intersecting null hypersurfaces N1 = {u = 0} and N2 = {r = 0}
in adapted null coordinates. Then, on the intersection manifold S, ζN1

= −2gurτN2
, i.e. the

function ζ associated to N1 is closely related to the expansion τ of N2.
It has been shown in [16] that any solution of the reduced Einstein equations with initial

data gµν fulfilling the wave-map gauge constraints implies a system of transport equations
for Hλ along the null geodesic generators of CO. Assuming that the solution is regular at
the tip of the cone, by which we mean that it can be smoothly extended through O, one
shows that Hλ = 0 is the only solution. Consequently, the Einstein equations split, again,
into a system of hyperbolic evolution equations (2.4), the reduced Einstein equations, and a
system of constraint equations (2.36)-(2.41) which is propagated by the Einstein equations.

A few comments how these equations can be solved are in order: In contrast to the
space-like case one can easily extract components from the data gµν for the evolution system
which are freely prescribable. The “standard way” to achieve that, which goes back to
Rendall [76], compare [79], is to regard the conformal class of ǧ, denoted by [γ], supplemented
by a choice of κ and the gauge source functions Wλ, as the unconstrained “reduced” data
(Rendall’s choice was κ = 0 = Wλ). We denote the conformal factor relating ǧ and a given
representative of [γ], γ = γABdxAdxB , by Ω,

ǧ = Ω2γ . (2.44)

Let us now define the subsidiary function

ϕ := Ω
(det γ

det s

)1/(2n−2)

=
(det ǧΣr

det s

)1/(2n−2)

, (2.45)

where s = sABdxAdxB denotes the unit round metric on Sn−1. Then the relation

τ = (n− 1)∂r logϕ (2.46)

holds, which transforms the Raychaudhuri equation (2.36) into a linear, second-order equation,

(
∂2
rr − κ∂r +

|σ|2 + 8πT rr
n− 1

)
ϕ = 0 . (2.47)

The system (2.47), (2.37)-(2.41) can be read as a hierarchical linear ODE-system along
each null geodesic generator of the cone (as usual, in vacuum or for appropriate matter
models).6 It can be integrated step-by-step to determine successively from the data [γ] all the
components of the space-time metric g on CO, which in turn provide the data for the reduced
Einstein equations. Some care is needed since the metric g degenerates when ϕ or ν0 have
zeros, thus leading to coordinate or space-time singularities, so a solution to the constraints
may only exists in some neighborhood of the tip of the cone. Sufficient conditions which
ensure the existence of a global solution on CO are derived in [38, Section 2.4], attached as
Chapter 10, compare [16].

Apart from the fact that in the characteristic case the constraint equations are just ODEs
for the unknown metric coefficients rather than elliptic PDEs, which, even better, can be
transformed into linear ODEs, the gauge source functions Wλ can be utilized to transform
some of them into algebraic equations, cf. the next section. Since the constraints are thus
much more convenient to solve, the characteristic Cauchy problem plays a significant role in

6If the gauge source functions are allowed to depend on the metric, certain restrictions are necessary to
preserve the hierarchical ODE-structure.
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numerical relativity [87]. Note, however, that the equations (2.36), (2.38) and (2.40) are to
a large extent gauge-independent: They merely dependent on the gauge function κ, which
can be employed to simplify the construction of solutions of the Raychaudhuri equation (cf.
below), whereas there seems to be no way to simplify the equations for ξA and ζ.

The well-posedness result for given data [γ] and gauge functions κ and Wλ, which has been
established in [16, 27], relies on Dossa’s well-posedness result for quasi-linear wave equations
[41], cf. Appendix A, and guarantees existence of a solution only in some neighborhood
to the future of the vertex of the cone (there is one subtlety which will be addressed in
Section 2.4.1). The result has been improved by Luk [67] who showed that well-posedness
holds in fact in a neighborhood to the future of the whole cone, assuming that the constraint
equations can be integrated that far, i.e. that no conjugate points appear. While Dossa’s
result and also the corresponding result of Rendall [76] for two transversally intersecting null
hypersurfaces, are valid for large classes of quasi-linear wave equations, Luk makes use of the
particular structure of Einstein’s vacuum field equations.

2.4.1 The many ways of the characteristic Cauchy problem

As has already been indicated, the characteristic Cauchy problem comes along with a huge
flexibility in prescribing data. There are many ways other than Rendall’s one of constructing
solutions of Einstein’s wave-map gauge constraints. A discussion of this point is the main
object of [34], compare also [72]. The paper [34] is attached as Chapter 7, [72] as Chapter 11.

Our motivation to take non-vanishing gauge source functions and appropriate variations
of the gauge scheme into account has been two-fold:

(i) While Rendall’s approach works well in vacuum and also for a certain class of matter
models such as scalar, Maxwell and Yang-Mills fields, non-vanishing gauge source
functions allow one to handle a larger class of matter models such as e.g. Vlasov matter.

(ii) As the no-go result in [38, Section 3] reveals, Rendall’s approach with κ = 0 = Wλ, or
rather any (κ = 0,W 0 = 0)-gauge, inevitably produces logarithmic terms at infinity
whenever non-flat data are prescribed. The need to get rid of these log terms when
constructing solutions which are smooth at null infinity (cf. Section 4.4), led us to the
search of alternative, more flexible schemes to construct solutions of the wave-map
gauge constraints. Thereby it turned out that most, but not all, logarithmic terms are
gauge-dependent and eliminable by means of suitable coordinate transformations.

In [34] we recall, develop and discuss several methods of choosing a gauge and prescribing data
to construct solutions to Einstein’s wave-map gauge constraint equations. Let us summarize
what has been done there.

• Rendall’s scheme with the classical gauge choices κ = 0 = Wλ, or rather its generaliza-
tion where the conformal class [γ] of ǧ together with arbitrary gauge functions κ and
Wλ are prescribed and which brings in more flexibility, has the advantage that one has
a clear-cut separation between physical and gauge degrees of freedom. Moreover, the
initial data [γ] do not need to satisfy any constraint equation.

• The induced metric, i.e. the degenerate quadric form ǧ is a physically and geometrically
more natural object than a family of conformal metrics [γ]. From this point of view
one should regard ǧ together with the gauge functions κ and Wλ as initial data as in
[14] or [34, Section 5], where the pair (ǧ, κ) then needs to satisfy the Raychaudhuri
equation (2.36), which in this setting plays the role of a constraint equation.
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Assume that ǧ has been given. In the regions where τ has no zeros, as it needs to
be the case near the vertex of the cone,7 κ can be algebraically computed from the
Raychaudhuri equation (2.36), so that, again, there are no constraints if ǧ together
with Wλ are regarded as the free data.8

In this scheme physical and gauge degrees of freedom are somewhat mixed.

• Another approach is to prescribe g0µ rather than Wλ and regard (2.37), (2.39) and
(2.41) as algebraic equations for Wλ. This saves a couple of integrations. As before,
one may prescribe ǧ rather than its conformal class [γ]. This way it becomes possible
to prescribe the full space-time metric g of the space-time-to-be-constructed restricted
to CO [34, Section 3], together with a choice of κ, where, again, the Raychaudhuri
equation provides a constraint on gABdxAdxB and κ.
At least sufficiently close to the tip, where the positivity of τ is necessary, κ is alge-
braically determined by the Raychaudhuri equation, cf. footnote 7. In those regions,
no constraints need to be imposed on the initial data g for the evolution equations, at
the expense, though, that physical and gauge degrees of freedom are completely mixed.
In other words, many different initial data g will evolve into geometrically the same
space-time, whereas in Rendall’s scheme only minor gauge degrees of freedom remain
hidden in the data (e.g., a choice of κ does not determine the r-coordinate uniquely).

• A modification of this scheme which takes care of this separation, discussed in [72,
Section 4], is to prescribe [γ] as the physical data and, instead of κ and Wλ, regard ϕ
and g0µ as gauge functions. Proceeding this way, the separation between physical and
gauge degrees of freedom is sustained, while some of the metric components can be
arranged to take convenient values.

• Instead of (some components of) g, one may alternatively prescribe the shear σAB of
CO [22], or certain components of the Weyl tensor, CrArB [46]. However, one has to
make sure that, once ǧ has been computed, the relation gABσAB = 0 or gABCrArB = 0,
respectively, holds. The most convenient way to arrange this is to introduce a frame
formalism and prescribe the data w.r.t. the frame field [34, Section 5].

There is one subtlety which we have ignored so far: In order to apply Dossa’s well-posedness
result [41] for the reduced Einstein equations with data on a light-cone, cf. Appendix A,
one needs to make sure that g is the restriction to the cone of some smooth space-time
metric. Clearly, this is necessary for a smooth solution of the Einstein equations to exist.
Nevertheless, it is a non-trivial issue near the tip of a cone. A similar issue arises for the
gauge source functions Wλ which, if algebraically computed from the constraint equations,
need to admit an extension to a smooth space-time vector field Wλ as needed to define the
wave-gauge vector Hλ properly.

In [27] (cf. [17, 18]) it has been analyzed in detail how such admissible data are constructed
for the various schemes. When ǧ is prescribed, it is shown that Dossa’s theorem is applicable
if ǧ is the trace on the cone of a smooth space-time metric. In Rendall’s scheme, one needs
to make sure that γ is the trace on the cone of a smooth space-time metric to end up with a
solution g of Einstein’s vacuum wave-map gauge constraints to which Dossa’s theorem is
applicable. If the whole metric field g is prescribed, and it is the restriction to the cone of a

7 If the data ǧ (or g, cf. below) are taken to be the restriction of some smooth metric in space-time, as it
is necessary for the existence of a solution anyway, one will automatically have τ > 0 near the tip.

8Note that the r-coordinate w.r.t. which ǧ is given is then implicitly defined. Its actual meaning in the
emerging space-time, like e.g. its deviation from an affine parameter, is only known once the Raychaudhuri
equation has been solved for κ.
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smooth space-time metric, the vector field Wλ, computed from the constraint equations, can
be extended to a smooth space-time field and well-posedness follows again.

Similar to the space-like case one may regard the initial surface CO \ {O} ∼= Rn \ {0} with
its vertex removed as a (then smooth) manifold on its own [37], or, as it is more convenient in
view of the results in [27], as a light-cone in some space-time (M (0), g(0)). As data one then
takes, depending on the scheme, the trace of g(0) on CO, the induced degenerate quadric
form ǧ(0), its conformal class [ǧ(0)], etc. The results described above then guarantee that the
prospective vacuum space-time has a cone-like past boundary which can be identified with
the embedded null cone CO.

Theorem 2.4.1 Consider a light-cone CO in some space-time (M (0), g(0)) near its vertex
where τ (0) > 0. The tuples

(i) (γ = [g
(0)
AB ]dxAdxB |CO , κ = 0),

(ii) ǧ = g
(0)
ABdxAdxB |CO ,

(iii) g(0)|CO ,

depending on the scheme, define locally an (up to isometries) unique globally hyperbolic
vacuum space-time which is bounded in the past by the embedded null cone CO and which
induces the prescribed data there.9 The solution depends continuously on the initial data.

Here and henceforth, local uniqueness (up to isometries) in connection with a characteristic
Cauchy problem is to be understood as follows: For given gauge functions the solution is
unique. Given two different sets of gauge functions, there exists a common neighborhood
where the solutions coincide (up to isometries). Nonetheless, also in the characteristic case
it should be viable to establish uniqueness in the sense that there exists a unique maximal
globally hyperbolic development by an appropriate adaption of the Choquet-Bruhat-Geroch-
method.

9Note that we have restricted attention to the region where τ (0) > 0, an inequality which does not need
to hold away from a neighborhood of the tip. In those regions where τ (0) = 0, (ii) and (iii) need to be

supplemented by a choice of κ, and the pair (ǧ = g
(0)
ABdxAdxB |CO , κ) needs to satisfy the Raychaudhuri

equation.
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CHAPTER 3

Asymptotically flat and asymptotically de Sitter space-times

“The fear of infinity is a form of myopia that destroys the possibility of seeing the actual
infinite [...].”

Georg F. L. P. Cantor (1845–1918)

3.1 Introduction

In the previous section we recalled local in (retarded) time well-posedness results for the space-
like and the characteristic Cauchy problem. However, even if one invokes Zorn’s lemma to
establish the existence of unique maximal globally hyperbolic developments, this does not say
anything about how large the emerging space-time will actually be. Moreover, one does not
know anything about local and, even more, global properties of the so-obtained space-times.

There have been intensive efforts to construct space-times with controlled global properties.
A decisive milestone was Friedrich’s proof of the non-linear stability of the de Sitter space-time
[53]. He further showed (cf. also [1, 2]) that for sufficiently small hyperboloidal data the
space-like initial value problem yields a space-time which has globally (to the future of the
initial surface) the same asymptotic structure as that part of Minkowski space-time which
lies to the future of a hyperboloid. Another milestone was Christodoulou’s and Klainerman’s
proof of the non-linear stability of the Minkowski space-time [23]. Christodoulou [22] used
similar methods to construct space-times from characteristic surfaces which contain trapped
surfaces (which provide a quasi-local approach to black holes) by using a regular short-
pulse-ansatz for the initial data. The class of characteristic data leading to the formation of
trapped surfaces has later been enlarged by Klainerman and Rodnianski [64].

In what follows we are interested in the construction of vacuum space-times with controlled
asymptotic behavior. More precisely, we would like to analyze the existence of space-times
which extend “arbitrarily far”, at least in certain directions, and where the gravitational field
shows a specific “asymptotically flat” or “asymptotically de Sitter” structure at infinity. In
order to avoid dealing with asymptotic limiting processes, the space-time will be conformally
rescaled so that infinity is represented by a set of regular points, an idea due to Penrose [73].
By prescribing data on these regular sets, it becomes feasible to construct space-times with
such an asymptotic structure via local existence results.

21
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3.2 Penrose’s conformal technique

Due to the absence of non-dynamical background fields w.r.t. which the asymptotic fall-off
rates of the curvature can be measured, it is a delicate issue to define a notion of asymptotic
flatness or asymptotic de Sitterness in general relativity. On the other hand, it is important
to have such a notion to be able to describe e.g. purely radiative space-times or isolated
gravitational systems. Penrose provided a very elegant geometric foundation to tackle this
issue [73, 74], cf. [61] for an overview.

Consider an n+ 1-dimensional space-time (M̃ , g̃), the physical space-time. The basic idea
is to conformally rescale the metric g̃ and add a boundary, so that infinity is represented as
something finite. For this, one assumes that (a part of) (M̃ , g̃) can be conformally embedded
into an unphysical space-time (M , g),

g̃
φ7→ g := Θ2g̃ , M̃

φ
↪→M , Θ|φ(M̃ ) > 0 ,

with φ(M̃ ) ⊂M being relatively compact and with Θ : M → R being a smooth function.

Let us add a comment concerning notation. Up to now we have denoted the physical
space-time by (M , g). However, when dealing with problems where the unphysical space-time
is involved, it will be more convenient to denote the physical space-time by (M̃ , g̃) and
reserve the “non-tilde” objects for the unphysical space-time (the only exception will be
Section 4.4, which is stressed there again).

The part of ∂φ(M̃ ) where the conformal factor Θ relating the physical and the unphysical
space-time vanishes corresponds to “infinity” of the original physical space-time. Indeed,
the affine parameter along g̃-geodesics diverges when approaching this part of the conformal
boundary. The subset {Θ = 0 , dΘ 6= 0} ⊂ ∂φ(M̃ ) is called Scri, denoted by I . Since null
geodesics in (M , g) acquire start- or end-points on I , it is regarded as a representation of
null infinity. One further distinguishes two components of I , past and future null infinity
I − and I +, which are generated by the past and future endpoints of null geodesics in M ,
respectively.

Penrose proposed to characterize space-times with a “(null) asymptotically flat” or
“asymptotically de Sitter” structure (in certain null directions) by requiring that the unphysical
metric g extends smoothly across (a part of) I .1 The idea is that only gravitational fields
with an appropriate “asymptotically flat or de Sitter-like” fall-off behavior for λ = 0 and
λ > 0, respectively, admit such a smooth extension through conformal infinity.

Supposing that a regular I exists, Einstein’s field equations with vanishing cosmological
constant imply (in vacuum or for appropriate matter models) that I is a null hypersurface,
while for positive cosmological constant it is a space-like hypersurface in (M , g). In vacuum
this follows directly from equation (3.8) below.

We have avoided a too stringent definition of an asymptotically flat or de Sitter space-time
e.g. by requiring I to be of a certain topology, or by requiring completeness in the sense
that every null geodesic in (M , g) has two distinct points on I (this leads to the notion
of asymptotically simple space-times which e.g. exclude black holes [62]). The reason for
that being that we will be interested in local problems near I and in the construction of
space-times with “a piece of a smooth I ”, so that it is not necessary to impose any global
restrictions. Our definition rather corresponds to so-called weakly asymptotically simple
space-times, cf. [62]. Note that Penrose’s construction leaves some ambiguity in that there
might exist non-equivalent conformal completions; this question is addressed in [24].

1Originally, Penrose required the metric to be C3.
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Given, in 3 + 1 dimensions, a space-time which admits a smooth I with topology R×S2,
it is possible to construct coordinates in which the physical metric becomes manifestly flat
at an appropriate fall-off rate as one approaches null infinity. In fact, these coordinates
can be taken to be Bondi coordinates [83], which will be discussed in Section 5.2, whereby
the classical coordinate approach by Bondi et al. [9] and Sachs [78] is recovered, who
analyzed the radiative structure of the gravitational field at large distances from its source.2

Asymptotically de Sitter space-times have a conformal structure similar to the one of the
de Sitter space-time, though the metric does not necessarily need to approach the de Sitter
metric at infinity.

The prototypes where Penrose’s construction is possible are of course the Minkowski
space-time for λ = 0 and the de Sitter space-time for λ > 0. In the latter case, conformal
infinity consists of two space-like hypersurfaces I − and I +. For Minkowski space-time
the asymptotic structure is somewhat richer [74]: The null hypersurfaces I − and I + form
future and past light-cones with vertex i− and i+ representing future and past time-like
infinity, respectively. The intersection of the two light-cones is considered as one point, i0,
representing space-like infinity. In other words, I − and I + form “closed up” cones with
future and past vertex i0, respectively. At i± and i0 the one-form dΘ vanishes. These points
do not belong to I . While in the Minkowski case the metric is also smooth at i± and i0, this
is generally not expected from space-times which one would still regard as “asymptotically
flat” (such as e.g. Schwarzschild space-time). In particular, a smoothness requirement at i0,
where the space-like geodesics meet, is too restrictive (the unphysical metric fails to be C1

whenever the total mass of the space-time is non-zero [5]).
A class of particular interest in this context are isolated gravitational systems (for λ = 0),

which one stipulates to be asymptotically flat at both spatial and null infinity. Since isolated
bodies may remain present at arbitrary early or late times, one does not require i± to be
regular points. A precise definition is given in [6, 61].

Another class of important gravitating systems is comprised by so-called purely radiative
space-times [51] (for λ = 0), i.e. space-times which are generated solely by gravitational
radiation coming in from past null infinity and interacting with itself. Information coming
in from past time-like infinity is excluded. In this case, one does not only stipulate the
space-time to be smooth at null infinity but also that it admits a smooth extension across
i−, and that I − forms a regular (at least near i−) future light-cone whose vertex is given
by i−. At sufficiently early times, the space-time is required to possess a conformal structure
similar to the Minkowskian one. If there is only gravitational radiation interacting with
itself and dispersing completely to infinity again, an analogous behavior is required from
the gravitational field at i+. If, in addition, certain global conditions are satisfied, the
corresponding space-time will be called purely radiative [51]. For our purposes purely
radiative space-times provide a motivation why it is physically relevant to regard i− as a
regular point.

Due to Penrose’s geometric construction, the asymptotic behavior of the gravitational
field can be analyzed in terms of a local problem in some neighborhood of an ordinary
hypersurface boundary I (possibly supplemented by the points i± and i0), to which all
the local techniques of differential geometry are applicable. Now, it is a crucial issue to
understand the interplay between Penrose’s geometric concept of asymptotically flat and
de Sitter space-times on the one hand and Einstein’s field equations on the other hand,
and whether all relevant physical systems which one would regard as “asymptotically flat
or de Sitter” are compatible with the notion of a regular conformal infinity. The Bondi-
Sachs metrics [9, 78] as well as certain other classes of metrics (cf. [74] for the relevant

2To prove the existence of Bondi coordinates it suffices to have a polyhomogeneous I [33].
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literature) which should be expected to be “asymptotically flat or de Sitter”, do admit
smooth extensions à la Penrose at null infinity. This indicates that Penrose’s approach
includes a reasonable class of space-times, even though a more careful analysis is needed
to obtain a deeper understanding of his construction (compare with [1, 2, 33] where it is
argued that a polyhomogeneous I might provide a more suitable setting to model “generic”
asymptotically flat space-times).

A systematic approach to establish existence of large classes of such space-times is via
asymptotic initial value problems, where data are prescribed in the unphysical space-time on
initial surfaces which comprise (a part of) I − (cf. Chapter 4). Once a (local) solution to this
problem has been constructed, the physical space-time is of infinite extent, at least in certain
null directions, and possesses there an asymptotically flat or de Sitter structure. Strictly
speaking, the data are prescribed on an appropriate initial manifold which a posteriori
becomes I −, once the initial value problem has been solved and a space-time has been
constructed (with Θ = 0 and dΘ 6= 0 on the initial surface). However, we will be a bit sloppy
with this terminology.

While these kinds of initial value problems might be useful for the construction of
asymptotically flat or de Sitter space-times, they do not give any insight how “generic” these
space-times are. By prescribing data on I − and constructing smooth solutions out of them,
a substantial part of the desired structure at infinity is built-in from the outset. We will
therefore also consider ordinary null hypersurfaces which intersect I and which may be
used to construct such space-times from a standard characteristic initial value problem (cf.
Section 4.4). For the hyperboloidal Cauchy problem such a result is already available [49]
for large classes of “non-generic” hyperboloidal data [1, 2]. Moreover, Corvino’s gluing
technique [39] provides a tool to construct null asymptotically flat vacuum space-times from
asymptotically Euclidean space-like initial surfaces, cf. [29] and the references given therein.

There is, however, a problem: To formulate and, even more, to solve such asymptotic
Cauchy problems, one needs well-behaved equations. The Einstein equations, say in vacuum,
where they reduce to (1.2), expressed in terms of the conformally rescaled metric g = Θ2g̃,
with the conformal factor Θ being some given smooth function, adopt the form

Rµν [g] + (n− 1)Θ−1∇µ∇νΘ + (Θ−12gΘ− nΘ−2∇σΘ∇σΘ)gµν = λΘ−2gµν , (3.1)

where we have set 2g := gµν∇µ∇ν . When treated as equations for the unphysical metric g,
the vacuum equations become (formally) singular at conformal infinity, where Θ vanishes.

3.3 Friedrich’s conformal field equations (CFE)

Due to its singular behavior at I the system (3.1) does not provide a convenient evolution
system to study the gravitational field near conformal infinity. Fortunately, Friedrich [46, 47,
56] was able to find a representation of Einstein’s vacuum field equations, the conformal field
equations (CFE), which do remain regular even if Θ vanishes, and which are equivalent to
Einstein’s equations

R̃µν [g̃] = λg̃µν , g̃µν = Θ−2gµν ,

wherever Θ is non-vanishing. It is crucial for their derivation that Einstein’s vacuum
equations exhibit a conformally invariant substructure, and it is this feature which matches
with Penrose’s geometric description of the asymptotic structure of the gravitational field [52].

The curvature of a space-time is measured by the Riemann curvature tensor Rµνσ
ρ, which

can be decomposed into the trace-free conformal Weyl tensor Wµνσ
ρ and a second term
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which involves the Schouten tensor Lµν ,

Rµνσ
ρ = Wµνσ

ρ + 2(gσ[µLν]
ρ − δ[µρLν]σ) .

The Schouten tensor Lµν is in one-to-one correspondence with the Ricci tensor Rµν = Rµαν
α,

Lµν :=
1

n− 1
Rµν −

1

2n(n− 1)
Rgµν .

The Weyl tensor Wµνσ
ρ is invariant under conformal transformations. It is often considered

to represent the radiation part of the gravitational field.
Let us further introduce the rescaled Weyl tensor

dµνσ
ρ := Θ2−nWµνσ

ρ , (3.2)

and the scalar function

s :=
1

n+ 1
2gΘ +

1

2n(n+ 1)
RΘ .

There are different versions of the CFE, depending on which fields are treated as the
unknowns. The version of the CFE which we shall primarily pay attention to are the metric
conformal field equations (MCFE) [56],

Rµνσ
κ[g] = Θn−2dµνσ

κ + 2
(
gσ[µLν]

κ − δ[µκLν]σ

)
, (3.3)

∇ρdµνσρ = 0 , (3.4)

∇µLνσ −∇νLµσ = Θn−3∇ρΘ dνµσ
ρ , (3.5)

∇µ∇νΘ = −ΘLµν + sgµν , (3.6)

∇µs = −Lµν∇νΘ , (3.7)

2Θs−∇µΘ∇µΘ = λ/n , (3.8)

where the unknowns are
gµν , dµνσ

ρ , Lµν , Θ , s ,

which are regarded as independent.
Consider now any frame field ei = eµi∂µ for which the g(ei, ej) ≡ gij ’s are constants. The

general conformal field equations (GCFE) [56] for the unknowns

eµk , Γi
k
j , dijk

l , Lij , Θ , s

read (Latin indices are used here to denote frame-components)

[ep, eq] = (Γp
l
q − Γq

l
p)el , (3.9)

e[p(Γq]
i
j)− Γk

i
jΓ[p

k
q] + Γ[p

i
|k|Γq]

k
j = δ[p

iLq]j − gj[pLq]i −
1

2
Θn−2dpqj

i , (3.10)

∇idpqji = 0 , (3.11)

∇iLjk −∇jLik = Θn−3∇lΘdjikl , (3.12)

∇i∇jΘ = −ΘLij + sgij , (3.13)

∇is = −Lij∇jΘ , (3.14)

2Θs−∇jΘ∇jΘ = λ/n , (3.15)

where the Γi
j
k’s denote the Levi-Civita connection coefficients in the frame ek.
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One easily shows that (3.8) and (3.15) are consequences of (3.6)-(3.7) and (3.13)-(3.14),
respectively, if they are arranged to hold at just one point. This can be ensured e.g. by an
appropriate choice of the initial data.

The CFE constitute a complicated and highly overdetermined system of PDEs. Like the
Einstein equations, they can be split into constraint and evolution equations. To this end, it
is convenient to impose geometric gauge conditions on the coordinates and the frame rather
than the classical harmonic gauge condition. A specific property in the 3+1-dimensional case
is that, irrespective of the sign of Θ, the propagational part of the CFE, the reduced CFE,
provide a first-order quasi-linear symmetric hyperbolic system [46, 50, 54]. This is related
to the fact that in 3 + 1 dimensions the contracted second Bianchi identity is equivalent to
the non-contracted one [56]. In higher dimensions this is no longer true, which is why the
CFE seem to provide a nice evolution system solely in 3 + 1 dimensions. Equipped with
some convenient mathematical properties they provide an indispensable tool to study those
solutions of the Einstein equations which admit an asymptotically flat or de Sitter structure
at conformal infinity à la Penrose.

In the remainder of this work we shall always assume 3+1 space-time dimensions whenever
the unphysical space-time and the CFE are involved.

3.4 Gauge freedom inherent to CFE

There is considerable gauge freedom contained in the CFE, which arises from the freedom to
choose the conformal factor and the usual freedom to choose coordinates. Let us focus on the
MCFE. As described in Section 2, one may use coordinates adapted to the initial surface and
impose a generalized wave-map gauge condition Hλ = 0 with arbitrarily prescribed gauge
source functions Wλ and κ to exploit the latter freedom.

Instead of the conformal factor, which is treated as an unknown in the MCFE, one needs
to identify another function which captures its gauge freedom. The standard choice is the
unphysical curvature scalar R (cf. e.g. [56, 69]). Indeed, given a solution (gµν ,Θ, s, Lµν , dµνσ

ρ)
of the MCFE, one may construct another one, which corresponds to the same physical solution,
by replacing Θ by φΘ, with φ some positive function, and by transforming the other fields
according to their usual behavior under conformal rescalings of the metric. This expresses
the conformal covariance of the CFE. Choosing φ such that it satisfies the wave equation

62gφ−Rφ+R∗φ3 = 0 , (3.16)

where R is the original curvature scalar and R∗ a prescribed function, the new curvature
scalar will coincide with R∗. Since well-posedness results for wave equations guarantee the
existence of a positive solution to (3.16) (cf. Appendix A), at least locally, it is possible to
regard R as a conformal gauge source function.

In addition, there remains the freedom to prescribe appropriate data [φ] on the initial
surface. Depending on the type of the initial surface, this leads to some further gauge freedom:

• If the initial surface is I −, for λ > 0, one may prescribe s|I− and only the conformal
class of the induced metric on I − matters geometrically (cf. e.g. [71, Section 2]).

• If the initial surface is, for λ = 0, the null cone Ci− = I − ∪ {i−}, one may prescribe
s|Ci− with s(i−) > 0 (cf. e.g. [69, Sections 2 and 4], compare [57, Section 4] for an
alternative choice).



CHAPTER 4

Asymptotic initial value problems in general relativity

“Infinity is the end.”
Dejan Stojanović (*1959)

4.1 Asymptotic initial value problems

Having an appropriate system of equations at our disposal, we are now in a position to
discuss various types of asymptotic Cauchy problems in the unphysical space-time, where
data are prescribed on surfaces which intersect or form a part of I , some of which will be
analyzed in greater detail in the course of this chapter. Recall that we restrict attention to
3 + 1 space-time dimensions.

1. A space-like Cauchy problem for λ > 0 with data on I −: Well-posedness has been
established by Friedrich [52], who took advantage of the fact that the CFE imply a
symmetric hyperbolic system of evolution equations for which standard well-posedness
results are available. We provide an alternative proof in [71], attached as Chapter 8,
which is based on the wave equations (4.5)-(4.9) below. The unconstrained data on
I − are, in the adapted coordinates introduced in Section 2.3, the conformal class [h]
of the induced metric h = hijdx

idxj and a symmetric trace- and divergence-free tensor
field D = Dijdx

idxj . The constraint equations, from which all the other data relevant
for the evolution equations are computed, will be given in Section 4.2.2 below. In the
final vacuum space-time one will have dtitj |I− = Dij , whence D is interpreted as the
incoming radiation field.

2. A characteristic Cauchy problem with data on the light-cone Ci− = I − ∪ {i−} for
λ = 0: More precisely, one prescribes data on a Minkowskian cone CO, so that the
emerging vacuum space-time admits a smooth conformal completion where the Ci− -cone
is represented by CO. This will be discussed in Section 4.3.

3. A characteristic Cauchy problem for λ = 0 with data on an incoming null hypersurface
and a part of I −: Well-posedness near the intersection manifold has been shown by

27
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Friedrich [48] in the analytic case. His result has been extended by Kánnár [63] to the
smooth case, exploiting the fact that the CFE imply a symmetric hyperbolic system
to which Rendall’s well-posedness result [76] applies. As free data one may prescribe,
in an adapted coordinate frame, the conformal class of ǧ on the ordinary null surface
and the tensor field drArB on I −, supplemented by certain data on the intersection
manifold [63].

4. An ordinary characteristic initial value problem with data on a light-cone (or on two
transversally intersecting null hypersurfaces): As an extension of Luk’s result [67] (for
λ = 0), one would like to establish the existence of a smooth solution in some region
to the future of the initial surface which admits a “piece of a smooth I +”. This is
expected to be possible for suitably specified data, namely those for which the solution
to Einstein’s wave-map gauge constraints is smooth at conformal infinity. Smoothness of
the relevant fields where the initial surface intersects I + will be discussed in Section 4.4.
As indicated above, an analysis of this issue will provide some insights how generic the
asymptotically flat space-times à la Penrose are.
Since we prescribe smooth data on the cone up-to-and-including conformal infinity and
since we demand the emerging space-time to admit a smooth I , we regard this as an
asymptotic Cauchy problem as well.

5. A hyperboloidal initial value problem for λ = 0: “Hyperboloidal data” with an appropri-
ate fall-off behavior are prescribed on a space-like hypersurface which intersects I + in
a smooth spherical cross-section. An advantage in comparison with the asymptotically
flat space-like case is that difficulties at i0 are avoided. Friedrich [49, 53] showed that
in this case the emerging space-time does contain a piece of a smooth I +, while for
sufficiently small data one can even predict the existence of a space-time which admits
a regular Ci+ -cone.

6. Other initial surfaces of interest could e.g. be a light-cone with vertex at I − for λ ≥ 0,
or two transversally intersecting null hypersurfaces where the intersection manifold
belongs to I − for λ ≥ 0.

These kinds of initial value problems permit the construction of space-times compatible with
a Penrose-type conformal completion at infinity in a systematic manner. Although most
of the results are local in (retarded) time in the unphysical space-time, one ends up with
solutions of the vacuum Einstein equations which exist all the way to null infinity when going
back to the physical space-time (at least in certain null directions)

As described above, Penrose proposed to distinguish asymptotically flat or de Sitter
space-times by requiring the unphysical metric g to be smooth at I . However, when working
with the CFE to construct smooth solutions of the vacuum equations via asymptotic initial
value problems, we need a metric and a rescaled Weyl tensor which are smooth at I (and,
if necessary, even at i−). Since the conformal Weyl tensor of g vanishes on I [74] and by
definition dΘ|I 6= 0, the rescaled Weyl tensor will be regular at I . If we consider data
on the Ci−-cone, though, the same conclusion cannot be drawn at i− where dΘ = 0. We
will thus confine attention to the class of solutions where both gµν and dµνσ

ρ admit smooth
extensions across i− when discussing the corresponding well-posedness result (cf., however,
the comments at the end of Section 4.2.1).
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4.2 A system of conformal wave equations

4.2.1 Derivation of the conformal wave equations (CWE)

On the way towards the construction of purely radiative space-times a first step is to derive
a well-posedness result for the CFE with data given on the Ci−-cone (at least locally near
i−), which of course provides an interesting result by itself. Since well-posedness results
are available for quasi-linear wave equations on a light-cone (cf. Apppendix A), but not for
symmetric hyperbolic systems, we will derive a system of wave equations which substitutes
Friedrich’s reduced CFE and which is equivalent to the CFE when supplemented by certain
constraint equations on the initial surface. This has been accomplished in [69], attached as
Chapter 8, compare [71], attached as Chapter 15, where a space-like I − is treated.

Our starting point are the MCFE (3.3)-(3.8). Let us, for the time being, assume that the
metric tensor is given. Then wave equations for Lµν and s are straightforwardly derived by
taking the divergence of (3.5) and (3.7), respectively, employing the second Bianchi identity
as well as (3.3) and (3.6). A wave equation for Θ is simply obtained by taking the trace of
(3.6). We further need a wave equation for dµνσ

ρ. Taking into account that, in 4 dimensions,
(3.4) is equivalent to ∇[λdµν]σ

ρ = 0, this is achieved by taking the divergence of the latter
equation and invoking (3.4). Proceeding this way, we find the system [69, Section 3]

2gLµν = 4LµκLν
κ − gµν |L|2 − 2Θdµσν

ρLρ
σ +

1

6
∇µ∇νR , (4.1)

2gs = Θ|L|2 − 1

6
∇κR∇κΘ− 1

6
sR , (4.2)

2gΘ = 4s− 1

6
ΘR , (4.3)

2gdµνσρ = Θdµνκ
αdσρα

κ − 4Θdσκ[µ
αdν]αρ

κ +
1

2
Rdµνσρ . (4.4)

If the metric field is regarded as an unknown, we need to derive a wave equation for it as
well. Moreover, when acting on tensor fields of non-zero valence, the principal part of 2g will
not be a d’Alembert operator anymore. To resolve the second issue we introduce a reduced

wave operator 2
(H)
g , which we define via its action on covector fields v = vµdxµ,

2(H)
g vλ := 2gvλ − gσ[λ(∇̂µ]H

σ)vµ + (2Lµλ −R(H)
µλ +

1

6
Rgµλ)vµ ,

similarly for higher valence tensor fields. This, indeed, defines a wave-operator with principal
part gµν∂µ∂ν which, in wave-map gauge and if (3.3) holds, coincides with the action of 2g.
Finally, taking the trace of (3.3) and replacing the Ricci tensor by the reduced Ricci tensor
yields a wave equation for the metric tensor.

Altogether, we end up with the following system of conformal wave equations (CWE),

2(H)
g Lµν = 4LµκLν

κ − gµν |L|2 − 2Θdµσν
ρLρ

σ +
1

6
∇µ∇νR , (4.5)

2gs = Θ|L|2 − 1

6
∇κR∇κΘ− 1

6
sR , (4.6)

2gΘ = 4s− 1

6
ΘR , (4.7)

2(H)
g dµνσρ = Θdµνκ

αdσρα
κ − 4Θdσκ[µ

αdν]αρ
κ +

1

2
Rdµνσρ , (4.8)

R(H)
µν [g] = 2Lµν +

1

6
Rgµν , (4.9)
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for the unknowns
gµν , dµνσ

ρ , Lµν , Θ , s .

Recall that the curvature scalar is regarded as a conformal gauge source function, so the
second-order derivative appearing in (4.5) does not disturb.

In [69, Section 6] we derive an alternative system of wave equations which treats the Weyl
and the Cotton tensor rather than the rescaled Weyl tensor as unknowns. It has the property
that the equations for the conformal factor Θ and the function s decouple from the remaining
ones, and form a linear system of wave equation once the latter ones have been solved.
Moreover, the alternative system might be suited to establish the existence of solutions of
the MCFE where the metric but not the rescaled Weyl tensor is regular at past time-like
infinity (cf. the discussion in [69, Section 7.1]). This way, the assumptions formulated at
the end of Section 4.1 might be weakened. An alternative system of wave equations based
on equations by Choquet-Bruhat and Novello [20] has been used by Dossa [42], though the
equivalence issue is ignored there.

Similar to Friedrich’s reduced CFE, the CWE form a subset of the CFE which, in a
convenient gauge, form a mathematically nice evolution system. By their derivation, any
solution of the MCFE in wave-map gauge will be a solution of the CWE. Conversely, a
solution of the CWE will generally not be a solution of the MCFE. Since, roughly speaking,
the CWE follow from the MCFE by differentiation, one essentially needs to make sure that
the MCFE are initially satisfied, including their transverse derivatives in the space-like case
(cf. [69, Theorem 3.7] and [71, Theorem A.1]). One should expect this to be the case whenever
an appropriate set of constraint equations induced by the MCFE on the initial surface is
fulfilled by the data given there. Indeed, this has been rigorously proved in the case where
the initial surface is I − for λ > 0 [71, Appendix A] and in the case where it is the Ci− -cone
with λ = 0 [69, Sections 3 and 5].

4.2.2 Equivalence of CWE & MCFE with data on a space-like I −

First of all, one needs to derive the constraint equations for the fields gµν , Θ, s, Lµν , dµνσρ
as well as their transverse derivatives, induced by the MCFE on a space-like I − (i.e. we
assume λ > 0). This has been done in [71, Section 2] (compare [52]) in adapted coordinates
(x0 = t, xi), where I − = {t = 0} (at least locally), and by imposing the gauge conditions

R = 0 , s = 0 , gtt = −1 , gti = 0 , Wσ = 0 , ĝµν = gµν . (4.10)

Recall that the relevant data are the conformal class [h] of the induced metric on I − and
the symmetric 2-tensor Dij = dtitj |I− . Then, the following set of constraint equations is
enforced by the MCFE on I − on the fields gµν , Θ, s, Lµν , dµνσρ (apart from Θ = s = 0),
which are further required to satisfy their usual algebraic symmetry properties,

hijDij = 0 , DjDij = 0 , (4.11)

gtt = −1 , gti = 0 , gij = hij , ∂tgµν = 0 , (4.12)

∂tΘ =
√

λ
3 , ∂ts =

√
λ
48 R̃ , (4.13)

Lij = L̃ij , Lti = 0 , Ltt = 1
4 R̃ , (4.14)

∂tLij = −
√

λ
3 Dij , ∂tLti = 1

4DiR̃ , ∂tLtt = 0 , (4.15)

dtitj = Dij , dtijk =
√

3
λ C̃ijk , (4.16)

∂tdtitj =
√

3
λ B̃ij , ∂tdtijk = 2D[jDk]i , (4.17)
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where L̃ij , C̃ijk and B̃ij are the Schouten, Cotton and Bach tensor of the induced metric hij .
We observe that given a representative hij of [hij ] and Dij , the equations (4.12)-(4.17) are
trivial to solve. The remaining constraints are (4.11), which correspond to the scalar and the
vector vacuum constraint (2.16) and (2.17) in the ordinary space-like case. However, in the
asymptotic case they “degenerate” to much simpler equations in that the tensor Dij just
needs to be trace- and divergence-free w.r.t. the induced metric h = hijdx

idxj (a systematic
construction of TT-tensors via York’s decomposition method was recalled in Section 2.3). We
observe that there is the same number of freely prescribable components as in the ordinary
space-like say CMC-case (that the “gauge freedom” to prescribe the mean curvature has no
counterpart appears to be reasonable due to the very special nature of the hypersurface I −).

The following theorem is proved in [71]:

Theorem 4.2.1 Suppose we have been given a Riemannian metric hij and a symmetric
tensor field Dij on a space-like I − (i.e. λ > 0). A smooth solution (gµν , Lµν , dµνσ

ρ,Θ, s) of
the CWE (4.5)-(4.9) to the future of I − which induces these data on I − is a solution of
the MCFE (3.3)-(3.8) in the (R = 0, s = 0, gtt = −1, gti = 0,Wλ = 0, ĝµν = gµν)-wave-map
gauge if and only if the fields (gµν , ∂tgµν , Lµν , ∂tLµν , dµνσ

ρ, ∂tdµνσρ, ∂tΘ, ∂ts) have their
usual algebraic symmetry properties and fulfill the constraint equations (4.11)-(4.17).

Applying standard well-posedness results for wave equations with data on a space-like
hypersurface (cf. Appendix A), one immediately recovers Friedrich’s well-posedness result [52]
for the asymptotic Cauchy problem on a space-like I − for λ > 0 (a system of wave equations
might be advantageous in certain situations from a numerical point of view [65]):

Theorem 4.2.2 The tuple (Σ, hij , Dij), with hij a Riemannian metric and Dij a symmetric
2-tensor, defines, for λ > 0, an (up to isometries) unique maximal globally hyperbolic
development (in the unphysical space-time) of the vacuum field equations where ι(Σ) represents
I − (i.e. Θ = 0 and dΘ 6= 0) with ι∗gij |Σ = hij and ι∗dtitj |Σ = Dij, if and only if Dij is
trace- and divergence-free. The solution depends continuously on the initial data.

4.2.3 Equivalence of CWE & MCFE with data on Ci−

As it is the main object of [69], attached as Chapter 8, the same analysis can be carried
out on the Ci− -cone. We first give the constraint equations for the fields gµν , Θ, s, Lµν and
dµνσρ induced by the MCFE on Ci− [69, Section 4] (we now need to assume λ = 0). In
adapted null coordinates, imposing a wave-map gauge condition with

R = 0 , s = −2 , κ = 0 , Wλ = 0 , ĝ = η , (4.18)

(here η denotes the Minkowski metric in adapted coordinates), and assuming regularity of
the fields at the vertex of the cone, cf. [16, Section 4.5], we discover that, beside their usual
algebraic symmetries, gµν , Θ, s, Lµν and dµνσρ need to satisfy the following set of constraint
equations (cf. [47, 51, 63] where they are given in a spin frame):

gµν = ηµν , (4.19)

Lrµ = 0 , L0A =
1

2
∇̌BλAB , gABLAB = 0 , L̆AB = ωAB , (4.20)

drArB = −1

2
∂r(r

−1ωAB) , (4.21)

d0rrA =
1

2
r−1∂rL0A , (4.22)

d0rAB = r−1∇̌[ALB]0 −
1

2
r−1λ[A

CωB]C , (4.23)
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(∂r + 3r−1)d0r0r = ∇̌Ad0rrA +
1

2
λABdrArB , (4.24)

2(∂r + r−1)d0r0A = ∇̌B(d0rAB − drArB) + ∇̌Ad0r0r + 2r−1d0rrA + 2λA
Bd0rrB , (4.25)

4(∂r − r−1)d̆0A0B = (∂r − r−1)drArB + 2(∇̌(AdB)rr0)̆ + 4(∇̌(AdB)0r0)̆

+3λ(A
CdB)C0r + 3d0r0rλAB , (4.26)

4(∂r + r−1)L00 = λABωAB − 4rd0r0r − 2∇̌AL0A . (4.27)

Recall that “˘” denotes the trace-free part. The r-dependent tensor field λAB on S2 is the
unique solution of

(∂r − r−1)λAB = −2ωAB with λAB = O(r5) . (4.28)

The solutions to the ODEs are uniquely determined by regularity conditions near the tip,

d0r0r = O(1), d0r0A = O(r) , d̆0A0B = O(r2) , L00 = O(1) . (4.29)

There is no constraint for the tensor field ωAB = L̆AB = O(r4) (for initial data which
fall-off slower, the rescaled Weyl tensor will not be regular at i−). As in the ordinary
characteristic case discussed in Section 2.4, one can extract certain functions which form
the free “reduced” data. A look at the constraint equations shows that there are various
alternatives. Instead of ωAB, one may, e.g., prescribe λAB (which will be (∂0gAB )̆ in the
emerging vacuum space-time), or, as in [57, 63], the incoming radiation field drArB .

By all means, as in the space-like case, the freedom to specify initial data is the same as in
the ordinary characteristic case, namely two real functions on R+ × S2. This was interpreted
by Friedrich [52] as an indication that it is a quite general feature of vacuum space-times to
possess “pieces of a smooth I ”.

In [69] we have proved:

Theorem 4.2.3 Suppose we have been given a smooth one-parameter family of sAB-traceless
tensors ωAB(r, xA) = O(r4) on the 2-sphere, where sAB denotes the standard metric. A
smooth solution (gµν , Lµν , dµνσρ,Θ, s) of the CWE (4.5)-(4.9) with λ = 0 to the future of
Ci− , smoothly extendable through Ci− , which induces these data on Ci− is a solution of the
MCFE (3.3)-(3.8) in the (R = 0, s = −2, κ = 0,Wλ = 0, ĝ = η)-wave-map gauge if and only
if the fields (gµν , Lµν , dµνσρ) have their usual algebraic properties and solve the constraint
equations (4.19)-(4.28) with boundary conditions (4.29).

4.3 Well-posedness result for the MCFE with data on Ci−

Due to Theorem 4.2.3 we have a system of wave equations at our disposal which can be used
to construct solutions of the MCFE with a regular Ci− -cone. Now, in order to apply Dossa’s
theorem [41] (cf. Appendix A) and establish a well-posedness result for the asymptotic
characteristic initial value problem with data on Ci− , we need to make sure that the initial
data for the CWE (̊gµν , L̊µν , d̊µνσρ, Θ̊, s̊), which arise from the unconstrained seed data ωAB
as solutions of the constraint equations (4.19)-(4.28), are restrictions to the cone of smooth
space-time fields. While this is trivial for g̊µν = ηµν , Θ̊ = 0 and s̊ = −2, it is an intricate

issue for L̊µν and d̊µνσρ.

One method to ensure that this is indeed the case consists of two main steps:
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1. The first one, accomplished by Friedrich in [57], is to construct approximate solutions of
the CFE. These are smooth tensor fields gappr

µν and Θappr defined in some neighborhood
of i− which satisfy the CFE and induce the given data at all orders at i−, i.e. up to
terms which decay faster than any power of the Euclidean coordinate distance from
i− (note that the remaining fields Lappr

µν , dappr
µνσρ and sappr are determined by gappr

µν and
Θappr). This is done by a computation of formal Taylor expansions of all the relevant
fields and an application of Borel’s summation lemma, starting from suitable initial
data, namely the incoming radiation field ς defined below.

2. The restrictions of the fields (gappr
µν , Lappr

µν , dappr
µνσρ,Θ

appr, sappr) obtained in step 1 to Ci−
form approximate solutions of the constraint equations (4.19)-(4.28). These differ from

the exact solution (̊gµν , L̊µν , d̊µνσρ, Θ̊, s̊) constructed from the same data ς by error
terms which are O(r∞), where r is an affine distance from the tip along the generators.
Such tensor fields on the light-cone arise from smooth tensors in space-time. The exact
solution (̊gµν , L̊µν , d̊µνσρ, Θ̊, s̊) of the constraint equations constructed from the data ς
thus arises indeed from smooth tensors in space-time. A precise formulation of this
argument is the contents of [36], attached as Chapter 9.

Proceeding this way, we end up with the following result [36]:

Theorem 4.3.1 Let CO be a light-cone in Minkowski space-time (R3+1, η). Let, in manifestly
flat coordinates yµ, ` = ∂0 + (yi/|~y|)∂i denote the field of null tangents to CO. Let d̃αβγδ
be a tensor with algebraic symmetries of the Weyl tensor and with vanishing η-traces. The
incoming radiation field ς is defined as the pull-back of d̃αβγδ`

α`γ to CO \ {O}. Let, finally,
ςab denote the components of ς in a frame parallel-propagated along the generators of CO.

Then, there exists a neighborhood O of O, a smooth metric g and a smooth function Θ such
that CO is the light-cone of O for g, Θ vanishes on CO, with dΘ nonzero on J̇+(O)∩O \{O},
the function Θ has no zeros on O ∩ I+(O), i.e. CO = Ci− , and the metric Θ−2g satisfies
the vacuum Einstein equations there. Further, the tensor field dαβγδ := Θ−1Cαβγδ extends
smoothly across Ci− , and ςab are the frame components, in a g-parallel-propagated frame, of
the pull-back to Ci− of dαβγδ`

α`γ . The solution is locally unique up to isometries.

4.4 Smoothness of I

So far we have discussed asymptotic Cauchy problems where data are prescribed in the un-
physical space-time on (a part of) I . In this section, we want to return to the standard
characteristic Cauchy problem with a null cone given in the physical space-time, which, in the
conformally rescaled space-time, intersects I + in a smooth spherical cross-section. It will be
convenient to denote the physical space-time by (M , g) and the unphysical one by (M̃ , g̃).

Recall Luk’s result [67] that, assuming that the constraint equations can be integrated
all the way to infinity (equivalently that the Raychaudhuri equation admits a global solution
τ > 0, cf. below), there exists a solution of the vacuum Einstein equations to the future of the
whole cone and not just in some neighborhood to the future of its vertex. Nonetheless, the
neighborhood where existence is predicted may shrink to zero when going up to null infinity
along the cone. It would be desirable to have a result at hand where this does not happen
and to construct classes of vacuum space-times this way which admit a piece of a smooth I +

à la Penrose. As mentioned before, such a result is available for the hyperboloidal Cauchy
problem [1, 2, 49].

One goal of this Ph.D. project was to provide a setting in which a corresponding well-
posedness result can be established in the characteristic case. As a first step, one needs to



34CHAPTER 4. ASYMPT. INITIAL VALUE PROBLEMS IN GENERAL RELATIVITY

find conditions under which the characteristic wave-map gauge constraints for the Einstein
equations admit global solutions on CO. In [38], attached as Chapter 10, we provide sufficient
conditions on the initial data such that this is the case.

As shown in Section 2.4, the constraint equations can be transformed into a linear,
hierarchical ODE-system. For a global solution of the original equations to exist, though, the
coefficients must be regular everywhere (except possibly at the vertex), which is the case if
and only if the functions ϕ and ν0 are non-vanishing (positive in the conventions of [16, 38]).
Since ν0 is in one-to-one correspondence with the gauge source function W 0, its positivity is
just a matter of gauge. However, the Raychaudhuri equation does impose proper restrictions
on the initial data. It is shown in [38, Section 2.2] that a global solution exists by all means
if ([ǧ], κ) satisfies
∫ ∞

0

(∫ r

0

eH(r̂)dr̂
)
e−H(r)|σ|2(r) dr < 2 , where H(r, xA) :=

∫ r

0

κ(r̃, xA) dr̃ . (4.30)

A sufficient condition for the positivity of ν0 is

W 0 < rϕ−2

√
det γ

det s
γABsAB , (4.31)

which holds in particular for any W 0 ≤ 0.
It is expected for both the space-like and the characteristic Cauchy problem [1, 2, 12, 33]

that even conformally smooth reduced data evolve into solutions which “generically” develop
logarithmic terms at null infinity which destroy smoothness there. Although it might be
feasible to establish a well-posedness result in the polyhomogeneous setting as well, it appears
simpler and more in the spirit of Penrose’s original notion of asymptotic flatness to prove
such a result for characteristic initial data in the smooth case. For this, one needs to make
sure that the solution g of the Einstein wave-map gauge constraints on CO is smooth and
non-degenerate at conformal infinity, and, even more, that not just g but the traces of all the
fields on CO which appear in the CFE have smooth extensions at conformal infinity as made
precise in [38, Definition 4.1]. This issue has been analyzed in detail in [38, 72], attached as
Chapters 10 and 11. We will sum up the results in the remainder of this section.

Assuming that a global solution g to the constraint equations exists, it needs to be ensured
that the conformally rescaled metric g̃ = Θ2g with Θ = x := 1/r has a smooth extension as
a Lorentzian metric across {x = 0}. We have noted in Section 3.2 that the existence of a
smooth conformal completion à la Penrose implies the existence of Bondi coordinates [83]. It
follows from their existence that the physical metric needs to be smooth when rescaled with
the conformal factor Θ [38]. Assuming also the connection coefficients ΓrrA to be smooth
at {x = 0} when transformed into the unphysical space-time,1 this leads to a couple of
asymptotic necessary and sufficient conditions to be imposed on the initial data [γ] and the
gauge functions κ and Wλ, which have been worked out in [38, Sections 4 and 5] and [72,
Section 3]:2

1. A representative of [γ] has an asymptotic expansion of the form

γ ∼ r2
(
sAB +

∞∑

n=1

h
(n)
ABr

−n
)
, (4.32)

and corresponding expansions hold for its non-transverse derivatives.

1This is clearly necessary for the existence of a solution of the CFE which is smooth at I +.
2The result can easily be adapted to other gauge schemes where, e.g., the metric g|CO is prescribed.
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2. limr→∞(r−1ϕ) > 0 and limr→∞ ν0 > 0.

3. κ = O(r−3), W 0 = O(r−1), WA = O(r−1), W r = O(r),3 supplemented by certain
conditions which need to be satisfied by the leading-order expansion coefficients of
Wλ ∼∑k(Wλ)kr

−k,

(W 0)2 =
[1
2

(W 0)1 + (ϕ−1)−2
]
τ2 , (4.33)

(WA)3 = fA((WA)2, (W
A)1, (W

0)2, (W
0)1) , (4.34)

(W 1)2 = f((W 1)1, (W
1)0, (W

1)−1) , (4.35)

where
ϕ−1 := lim

r→∞
(r−1ϕ) and τ2 := lim

r→∞
(r2τ − 2r) , (4.36)

and where f and fA are functions of the indicated expansion coefficients, whose specific
form is not relevant here.4

4. The no-logs-condition is satisfied,

h̆
(2)
AB =

1

2
(h(1) + τ2)h̆

(1)
AB . (4.37)

There are several aspects which deserve a comment: This result is obtained by a thorough
analysis of the asymptotic behavior of the solutions of Einstein’s wave-map gauge constraints
in vacuum. That the leading-order term in the expansion of [γ] can be taken to be the
standard metric (or rather r2sAB) follows from the three facts that asymptotic flatness
ensures that the leading order term in the expansion of γ needs to be non-degenerated
(supposing that there are no coordinate singularities), that on S2 any Riemannian metric
is conformal to the standard metric, and that only the conformal class of γ matters. It is
shown in [38, Section 2] that a sufficient condition on the initial data and the gauge source
functions to satisfy the conditions in 2 is, apart from (4.30) (which implies ϕ−1 > 0) and
(4.31),

(W 0)1 < 2(ϕ−1)−2 . (4.38)

While the requirement of the existence of a globally positive ϕ (equivalently the existence
of a global τ) with ϕ−1 > 0 is to exclude conjugate points up-to-and-including conformal
infinity, the second condition in 2 and all the conditions in 3 merely concern the choice of the
gauge functions κ and Wλ; in other words, many of the logarithmic terms appearing in the
asymptotic solutions of the constraint equations can be eliminated by an appropriate choice
of coordinates. They are gauge artifacts. It is only the no-logs-condition (4.37) (together
with the positivity requirements on ϕ and ϕ−1) which imposes proper restrictions on the
initial data. Indeed, these conditions are gauge-invariant [38, Section 6] and thus need to
be satisfied in any regular adapted null coordinate system which covers the whole cone as a
necessary condition for the emerging space-time to admit a “piece of a smooth I +”.

The conditions on the gauge functions exclude, for instance, any (κ = 0,W 0 = 0)-gauge
as then (4.33) implies τ2 = 0, which, for κ = 0, holds only for flat data. This is the no-go
result proved in [38, Section 3]: In harmonic coordinates adapted to the light-cone a non-flat
metric will not be smooth at I . A much more convenient gauge in this context is the metric

3We write f = O(rN ), N ∈ N, if the function F (x, ·) := xNf(x−1, ·) is smooth at x = 0.
4The condition κ = O(r−3) implies that an affine parameter diverges as r goes to infinity so that “r =∞”

represents null infinity.
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gauge: It is shown in [72, Section 4] that the gauge freedom to prescribe κ, Wλ and ∂0Wλ

can be replaced, at least for large r, by the freedom to prescribe ϕ, g0µ and ∂0g0µ. Choosing,
for large r, the Minkowskian values

ϕ = r , ν0 = 1 , νA = 0 , g00 = −1 , ∂0g0µ = 0 , (4.39)

one verifies that all the above conditions 1-4 are satisfied if and only if the initial data γ are
of the form

γ ∼ r2
(
sAB +

∞∑

n=1

h
(n)
ABr

−n
)

with h̆
(2)
AB =

1

2
h(1)h̆

(1)
AB . (4.40)

Even more, it is proved in [72, Section 5] that in the current metric gauge and under
assumption (4.40), all the fields appearing in the MCFE and the GCFE are smooth at
{x = 0} in the unphysical space-time. The no-logs-condition (together with (4.32)) is
therefore a necessary and sufficient condition on ([γ], κ) to obtain initial data for the CFE
which are smooth at {x = 0} in the metric gauge.

In the metric gauge, in Bondi coordinates, or, more general, in any gauge where κ = r
2 |σ|2,

the no-logs-condition is equivalent to Bondi’s outgoing wave condition [9], cf. [72, Section 4.5].
A more geometric interpretation of this condition is provided in [38, Section 6]. The conformal
Weyl tensor satisfies CrAr

B = O(r−4), and we have

CrAr
B = O(r−5) ⇐⇒ (4.37) holds . (4.41)

In fact, the no-logs-condition (4.37) holds if and only if the Weyl tensor Cµνσ
ρ vanishes

where the cone intersects I + [72, Section 5.2], compare [33].
As mentioned above, characteristic initial data sets for the CFE admitting a smooth

extension across {x = 0} provide a promising starting point to establish a well-posedness result
for Einstein’s vacuum field equations which admit patches of a smooth I +. This has been
achieved in [10] without any further restrictions, compare [66], so that the no-logs-condition
in fact characterizes such space-times.



CHAPTER 5

The notion of mass in general relativity

“It is important to realize that in physics today, we have no knowledge of what energy is.”
Richard P. Feynman (1918-1988)

5.1 ADM and Bondi mass

The notion of energy plays a key role in many physical theories. In general relativity, though,
it is somewhat more intricate to give a reasonable definition. This is owing to the fact that
the gravitational field, i.e. the space-time itself, contributes to the energy, and generally
there is no natural way to decompose it into a background field and a dynamical field, or
to define a preferred coordinate system (cf. e.g. [86]). General relativity does not seem to
be compatible with a notion of a locally well-defined energy density of the gravitational
field. Nonetheless, there exists the notion of a total energy p0 or, more general, of an
energy-momentum 4-vector pµ, of e.g. an isolated gravitational system as represented by a
space-time which is asymptotically flat at null and spatial infinity. In fact, there are several
approaches, including certain quasi-local notions (cf. [26] for an overview). We focus on the
two most relevant ones, ADM and Bondi mass:1

• Consider an asymptotically Euclidean space-like hypersurface Σ ⊂M representing an
“instant of time” t. Then, one can define the notation of energy at that time at spatial
infinity i0. This is the so-called ADM mass mADM [4] (cf. [5, 61] where geometric
approaches to the ADM mass are described).

• A second possibility is to define the mass of an (asymptotically) null hypersurface at a
given moment of “retarded time” u at the cross-section where it intersects null infinity.
This leads to the notion of the Trautman-Bondi mass mTB [9, 78, 85] (cf. [83] for a
geometric reformulation and [26] for alternative approaches).

The physical picture behind and the expected relation between these two notions of mass
is as follows: The ADM mass mADM at i0 is interpreted as the total energy available in

1More properly, it should be called ADM and Bondi energy, but we stick to the classical terminology
used by Bondi et al.
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the hypersurface Σ. Now, it is a peculiar feature of gravitational waves that they radiate
away their source strength, that is the mass. By virtue of gravitational radiation and other
radiation processes the system may loose energy. Cross sections of I represent the asymptotic
properties of a radiating system at a retarded time u. The Bondi mass associated to such
a section is interpreted as the remaining total energy of the system at the retarded time u
after a loss of energy due to radiation which escaped to infinity up to that time. Indeed,
it follows from the Bondi-Sachs mass loss formula [9, 78] that, in vacuum or for matter
fields satisfying appropriate fall-off requirements, mTB is monotonically decreasing in u, i.e.
radiation always carries away energy from the system. Moreover, there are partial results
[6] that ADM and Bondi mass differ precisely by the amount of energy radiated away. One
therefore expects that, within an appropriate setting, mTB(u)→ mADM as u approaches i0.

An issue of fundamental physical importance concerns the positivity of ADM and Bondi
mass, especially since it is closely related to the stability of isolated systems. First of all, one
would like to show that the total energy of an isolated system is positive. But then it still
may happen that due to gravitational radiation the Bondi mass, even if initially positive,
becomes negative at some later retarded time. So one would further like to prove that the
energy radiated away is bounded by the total energy content of the system.

It turned out that proving positivity of ADM and Bondi mass is remarkably difficult,
and it took decades to achieve that. Schoen and Yau [81, 82] (cf. Witten [88] for am
alternative proof) were the first ones who accomplished a complete proof of the positivity
of the ADM mass in a non-singular asymptotically flat space-time satisfying the dominant
energy condition. A rigorous proof that the Bondi mass is positive has been given in [32].
However, the proofs are indirect and rely on ingenious PDE- or spinor-techniques, and an
intuition what is going on there from a physical point of view is lacking (cf. e.g. [26] for an
overview over various proofs).

In this Ph.D. project we study initial value problems and properties the emerging space-
time will have which can be predicted directly from the prescribed data. In [37], attached
as Chapter 12, we derive an expression for the Bondi mass of a globally smooth light-cone
in terms of physically relevant fields, which can be easily calculated from the initial data.
In addition, this expression will be manifestly positive-definite. We merely use elementary
methods, so that we end up with a simple and direct proof of the positivity of the Bondi
mass in space-times containing globally smooth light-cones. Since we want to generalize a
formula in [37], we will provide some of the main steps of the proof in Section 5.3.

5.2 The classical definition of the Bondi mass

The classical definition of the Trautman-Bondi mass requires a smooth conformal completion
at null infinity. It is defined in terms of certain asymptotic expansion coefficients of the
metric in Bondi coordinates, which are assigned to sections of the conformal boundary. We
assume 4 space-time dimensions and a vanishing cosmological constant λ.

Let us suppose we have been given a space-time (M , g), and that there exist coordinates
such that the line-element takes the form

gBo = −V
r
e2βdu2 − 2e2βdudr + r2hAB(dxA − UAdu)(dxB − UBdu) , (5.1)

where dethAB = det sAB , where u ∈ (u−, u+) is the retarded time (the (u = const)-surfaces
are null), where r ∈ (R,∞) is the luminosity distance, and where the xA’s, A = 2, 3, are
local coordinates on (u = const, r = const) ∼= S2. One further demands the fields V , UA, β
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and hAB to satisfy certain fall-off conditions which ensure asymptotic flatness and that the
coordinates exhibit this asymptotic flatness. For u = const, one stipulates

lim
r→∞

(r−1V ) = 1 , lim
r→∞

(rUA) = 0 , lim
r→∞

β = 0 , lim
r→∞

hAB = sAB . (5.2)

These coordinates are called Bondi coordinates and have been designed by Bondi [9] and
Sachs [78] via distinguished families of outgoing null hypersurfaces to investigate gravitational
radiation in the far field regime of an isolated system. They provide a special case of adapted
null coordinates where the form (2.25) is preserved under the evolution in u. Their existence
in asymptotically flat space-times follows from [83] for a smooth I and from [33] for a
polyhomogeneous I .

Along the (u = const, xA = constA)-null geodesics Einstein’s vacuum equations imply
transport equations, which, for hAB given, determine asymptotic expansions of the fields
V , UA and β in terms of the luminosity distance r as r →∞. To avoid the appearance of
logarithmic terms in these expansions Bondi and Sachs imposed an “outgoing wave condition”.
However, it has been shown in [33] that this is an unnecassary restriction, and that the
logarithmic terms do not disturb when defining the Trautman-Bondi mass or deriving the
Bondi-Sachs mass loss formula.

The asymptotic expansions involve certain integration constants, or rather functions,
since they depend on the values of u and xA. It has been observed by Bondi et al. [9] that
in the static, axisymmetric case, where the integration functions are proper constants, they
are related to certain multipole moments. He therefore proposed to ascribe, in the non-static
case, a corresponding meaning to the mean values of these integration functions over the
2-sphere.

The (uu)-component of g admits the following expansion for large r,

(gBo)uu = −r−1V e2β = −1 +
2M

r
+ o(r−1) . (5.3)

The expansion coefficient M = M(u, xA), which arises as one of the integration functions when
integrating Einstein’s field equations, is called the Bondi mass aspect. The Trautman-Bondi
mass is defined to be its mean value on (S2, sAB),

mTB(u) :=
1

4π

∫

S2

M dµs , where dµs =
√

det sAB dθdφ (5.4)

denotes the volume element of the unit round metric. In the static case, when no radiation
occurs, it is indpendent of u and coincides with the ADM mass, mTB = M = mADM.

5.3 An alternative approach to the Bondi mass

In this section we put more emphasis on a characteristic initial value problem. We present
an approach to the Bondi mass which purely relies on the data given on some characteristic
(initial) surface, the mass of which is to be determined. For this, observe that for the above
derivation we actually do not need a space-time on which Bondi coordinates exist, but
merely a characteristic surface on which we choose the gauge functions as required by Bondi
coordinates. That is completely sufficient to ascribe a mass to an initial surface in the sense
of Bondi et al.

Bondi coordinates, which we assume to exist at least for large r, say r > r0, imply,

ϕBo = r , ∂0gBo
rr = 0 , ∂0gBo

rA = 0 , gABBo ∂0gBo
AB = 0 , (5.5)
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as follows from (5.1). This requires to take, for r > r0,

κBo =
1

2
r(|σBo|2 + 8πTBo

rr ) , (5.6)

V 0
Bo = −τBoν0

Bo , (5.7)

V ABo = gCDBo (Γ̌Bo)ACD − ν0
Bo∇̌AνBo

0 + ν0
Bo(∂r + τBo)νABo , (5.8)

V rBo = ν0
Bo∇̌AνABo − (∂r + τBo + ν0

Bo∂rν
Bo
0 )grrBo . (5.9)

The characteristic wave-map gauge constraints (2.36)-(2.41) then become for r > r0 (with
n = 3 and λ = 0),

∂rτ
Bo − 1

2
r(|σBo|2 + 8πTBo

rr )τBo +
1

2
(τBo)2 + |σBo|2 = −8πTBo

rr , (5.10)

(∂r +
r

2
(|σBo|2 + 8πTBo

rr ))ν0 = 0 , (5.11)

(∂r + τBo)ξBo
A − 2∇̌BσBo

A
B + ∂Aτ

Bo + r∂A(|σBo|2 + 8πTBo
rr ) = −16πTBo

rA , (5.12)

∂rν
A
Bo + (∇̌A + ξABo)νBo

0 = 0 , (5.13)

(∂r + τBo +
r

2
(|σBo|2 + 8πTBo

rr ))ζBo + ŘBo − |ξ
Bo|2
2

+ ∇̌AξABo = 8π(gABBo T
Bo
AB − TBo) ,(5.14)

grrBo + (τBo)−1(ζBo − 2ν0
Bo∇̌AνABo) = 0 . (5.15)

Note that the constraint equation (2.41) has become an algebraic equation for grrBo.
A comment is in order how to make sure that ϕ = r as required by Bondi coordinates. In

the case of a regular light-cone, it is shown in [27] that, in vacuum, the gauge choice (5.6) for
κ can be made up to the tip of the cone. It follows from regularity conditions at the vertex
as considered in [16, Section 4.5] that ϕ = O(r) and ∂rϕ = 1 +O(r) for small r, and we infer
that ϕ = r is the unique solution of (5.10) with τ = 2∂r logϕ as desired. In the general case,
one easily transforms into a gauge where ϕ = r by taking ϕ as the new r-coordinate, say for
r > r0 (cf. [72, Section 4]). This is always possible within the current setting where ϕ is, at
least for large r, a strictly increasing function along the null geodesics generating the initial
surface, and thus a reasonable r-coordinate.

We further need to assume

lim
r→∞

νABo = 0 , lim
r→∞

ν0
Bo = 1 , lim

r→∞
(r−2gBo

AB) = sAB . (5.16)

In fact, these are consequences of the asymptotic conditions (5.2). In terms of an initial
value problem, where e.g. the conformal class [γ] of ǧ is prescribed, it seems hard to control
the asymptotic behavior of the metric components and thereby realize (5.16). However, it
is only the current derivation of an alternative expression for the Bondi mass which relies
on (5.16), the final gauge-independent formula (5.29) below will not rely on the conditions
(5.16), which merely concern the gauge.

With (5.16) we solve the remaining equations (5.11)-(5.15). We assume the Tµν ’s to be
given functions of the coordinates, as it will be the case if, e.g., a space-time has already
been constructed or the matter model is of a form which respects the hierarchical character
of the constraint equations. Assuming further that for large r

σBo
A
B = (σBo

A
B)2r

−2 +O(r−3) , (5.17)

(corresponding assumptions on its first- and second-order non-transverse derivatives are
tacitly assumed), as follows e.g. for initial data [γ] of the form (4.32), and that

TBo
rr = O(r−4) , TBo

rA = O(r−3) , gABBo T
Bo
AB − TBo = O(r−4) , (5.18)
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we end up with

ϕBo = r (=⇒ τBo = 2r−1) , (5.19)

ν0
Bo = 1 +O(r−2) , (5.20)

ξBo
A = 2∇̊B(σBo

A
B)2r

−1 + o(r−1) , (5.21)

νABo = sAC∇̊B(σBo
C
B)2r

−2 + o(r−2) , (5.22)

ζBo = −2r−1 + ζBo
2 r−2 + o(r−3) , (5.23)

grrBo = 1 + [∇̊A∇̊B(σBo
A
B)2 −

1

2
ζBo
2 ]r−1 + o(r−1) , (5.24)

whence

gBo
00 = gBo

ABν
A
Boν

B
Bo − (νBo

0 )2grrBo = −1 +
1

2
r−1 [ζBo

2 − 2∇̊A∇̊B(σBo
A
B)2]︸ ︷︷ ︸

=4M

+o(r−1) . (5.25)

Here, ∇̊ denotes the Levi-Civita connection of the standard metric. We stress that the
no-logs-condition (4.37) does not need to be assumed, since logarithmic terms appear only
in higher orders, i.e. the fields appearing in this section will be generally polyhomogeneous
rather than smooth.

We obtain the following formula for the Bondi mass:

mTB =
1

4π

∫

S2

M dµs =
1

16π

∫

S2

ζBo
2 dµs . (5.26)

We thus have expressed the Bondi mass in terms of an expansion coefficient of ζ rather than
guu, which depends heavily on the gauge, cf. equation (2.41). In contrast, an inspection
of the wave-map gauge constraints (2.36)-(2.41) shows that the function ζ is completely
independent of the choice of the gauge source functions Wλ, i.e. how the coordinates are
chosen off the initial surface. Our formula for the Bondi mass remains equally valid in
non-Bondi-coordinates as long as, for r > r0,

ϕ = r . (5.27)

To obtain an expression for the Bondi mass of the initial surface which is valid in arbitrary
adapted null coordinates, we determine the behavior of ζ2 under changes of coordinate
transformations r 7→ r̃(r, xA), which we assume to be of the asymptotic form

r(r̃, xA) = r−1(xA)r̃ + r0(xA) +O(r̃−1) , with r−1 > 0 (5.28)

(again, corresponding assumptions on the first- and second-order xi-derivatives are tacitly
assumed). If the coordinate transformation was not of this form the so-obtained coordinates
would not be well-behaved at null infinity, cf. [38, Section 6.1].

We employ the relation (2.43) which tells us how ζ behaves under coordinate transforma-
tions. Denoting by fn the coefficient of r−n in the expansion of f , a lengthy computation
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reveals that

ζ̃(r̃) = 2g̃
AB

Γ̃rAB + τ̃ g̃rr = 2gAB
( ∂r̃
∂xk

∂xi

∂x̃A
∂xj

∂x̃B
Γkij +

∂r̃

∂r

∂2r

∂x̃A∂x̃B

)
+ τ

∂r

∂r̃

∂r̃

∂xi
∂r̃

∂xj
gij

=
∂r̃

∂r
ζ + 2gAB

∂r̃

∂xC
Γ̃CAB − 2gAB

∂r̃

∂r

∂r

∂x̃B
ξA + 4gAB

∂r̃

∂xC
∂r

∂x̃B
χA

C

+2gAB
∂r̃

∂r

∂r

∂x̃A
∂r

∂x̃B
κ+ 2gAB

∂r̃

∂r

∂2r

∂x̃A∂x̃B
+ τ

∂r

∂r̃

∂r̃

∂xA
∂r̃

∂xB
gAB

= r̃−1(r−1)−2
[
ζ1 + 2(ϕ−1)−2∆s log r−1

]
+ r̃−2(r−1)−3

[
ζ2 − r0ζ1 + 2(ϕ−1)−2∆sr0

+3(ϕ−1)−2(r−1)−2(2r0 − τ2)∇̊Ar−1∇̊Ar−1 − 2(ϕ−1)−2(r−1)−1∇̊A[(2r0 − τ2)∇̊Ar−1]

−4r−1(ϕ−1)−2(σA
B)2[∇̊A∇̊B(r−1)−1 − 2∇̊A(r−1)−1∇̊B logϕ−1]

]
+O(r̃−3) .

If (r, xA) denote Bondi coordinates on the cone, we have ϕBo
−1 = 1, ζBo

1 = −2, τBo
2 = 0,

rBo
−1 = ϕ̃−1, rBo

0 = ϕ̃0 and (σBo
A
B)2 = ϕ̃−1(σ̃A

B)2. That yields

ζ̃1 = −2(ϕ̃−1)−2[1−∆s log ϕ̃−1] ,

(ϕ̃−1)3ζ̃2 = ζBo
2 − ϕ̃−1∆sτ̃2 − 4(ϕ̃−1)2(σ̃A

B)2∇̊A∇̊B(ϕ̃−1)−1 + ϕ̃−1τ̃2(∆s log ϕ̃−1 − 1) ,

and thus

ζBo
2 = (ϕ̃−1)3[ζ̃2 −

1

2
τ̃2ζ̃1]− ϕ̃−1[2∇̊A(ξ̃A)1 + ∆sτ̃2] + divergences .

Denoting the (r̃, x̃A)-coordinates by (r, xA), equation (5.26) becomes

mTB =
1

16π

∫

S2

(
(ϕ−1)3[ζ2 −

τ2
2
ζ1]− ϕ−1[2∇̊A(ξA)1 + ∆sτ2]

)
dµs . (5.29)

This provides a formula for the Bondi mass in terms of the leading-order expansion coefficients
of ϕ, ξA and ζ (recall that τ = 2∂r logϕ) in adapted null coordinates, which does not rely on
any further gauge condition. To make sense of (5.29) only the asymptotic behavior matters,
in particular no assumptions need to be made at the tip of the cone.2 We only need to
assume that there are no conjugate points where the cone intersects the conformal boundary,
i.e. the positivity of ϕ−1. This approach to the Bondi mass does not involve any space-time
constructions, one advantage being that no existence theorem for an associated space-time is
needed.

A gauge choice for κ does not uniquely fix the parameterization of the null geodesics. For
instance, for κ = 0 the r-coordinate needs to be an affine parameter, but this still leaves the
freedom of angle-dependent rescalings of r, and it has been shown in [37] that this additional
freedom corresponds to the freedom to prescribe ϕ−1 > 0. Another way of seeing this, which
works for arbitrary κ, is to note that instead of κ the function ϕ may be regarded as a gauge
function [72, Section 4]. Any strictly increasing ϕ (this is necessary in our current setting,
at least asymptotically) determines κ, whereas a given κ does not uniquely determine ϕ, cf.
equation (2.47). There remains the freedom to multiply ϕ by an arbitrary positive scaling
function, which can be used to adjust ϕ−1 > 0.

2Note, however, that in terms of an initial value problem some of the expansion coefficients in (5.29)
appear as “integration functions” in the constraint ODEs, and are thus globally determined by the initial
data and the gauge functions.
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Imposing the gauge condition ϕ−1 = 1, the formula (5.29) takes the simple form

mTB =
1

16π

∫

S2

(ζ2 + τ2)dµs . (5.30)

Taking, in addition, r as an affine parameter (equivalently κ = 0), this expression was
the starting point in [37] to derive a manifestly positive expression for the Bondi mass of
globally smooth light-cones. By that, we mean a regular light-cone which meets I + in a
spherical cross-section, with no conjugate points up-to-and-including conformal infinity, i.e.
τ > 0 and ϕ−1 > 0, and where (5.17) and (5.18) hold.

Integrating the Raychaudhuri equation (2.36) and the ζ-equation (2.40) with κ = 0 and
performing appropriate limits, one derives expressions for τ2 and ζ2. Taking regularity at
the vertex into account and using the Gauß-Bonnet theorem one ends up with the formula3

mTB =
1

16π

∫ ∞

0

∫

S2

(1

2
|ξ|2+8π(gABTAB−T )+(|σ|2+8πT rr)e

∫∞
r

r̃τ−2
2r̃ dr̃

)
e−

∫∞
r

r̃τ−2
r̃ dr̃dµǧdr .

(5.31)
In vacuum, this provides a manifestly non-negative-definite formula for the Bondi mass of a
globally smooth light-cone in terms of the physically relevant fields τ , σ and ξ. The vanishing
of mTB yields |σ|2 = 0 = ξA, but the vanishing of |σ|2 already implies that we are in the flat
case [15].

For non-vanishing matter fields we assume the dominant energy condition. This implies
T rr = T (∂r, ∂r) ≥ 0. Consider the surface {u = 0, r = const.} ∼= S2 and denote by e0 and e1

two linearly independent null vectors which are orthogonal to eA = ∂A. Then,

gABTAB − T = −2g−1(e0, e1)T (e0, e1) ≥ 0

by the dominant energy condition, so that (5.31) is again manifestly non-negative. Moreover,
mTB = 0 yields |σ|2 = ξA = gABTAB −T = T rr = 0. For many matter models the vanishing
of T rr implies vacuum [15], and we infer that mTB is non-negative and vanishes precisely in
the flat case.

The Bondi mass of a characteristic surface with interior boundary is considered in [37].

3For this argument to work it is crucial that the cone is regular at its tip and has no conjugate points
up-to-and-including conformal infinity, meaning that τ > 0 on R>0 × S2 and ϕ−1 > 0 on S2.
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CHAPTER 6

Killing initial data (KIDs)

“Symmetry is a vast subject, significant in art and nature. Mathematics lies at its root, and
it would be hard to find a better one on which to demonstrate the working of the

mathematical intellect.”
Hermann K. H. Weyl (1885–1955)

6.1 Some preliminary considerations

Initial value problems provide a powerful tool to construct space-times, solutions to Einstein’s
field equations. In Section 4 we have seen how to construct such space-times with a specific
asymptotic structure. Another important property of a space-time is that it possesses certain
symmetries.

Configurations with symmetries play a distinguished role in physics, such as e.g. equilib-
rium states in thermodynamics. This is particularly true for general relativity, where it is
e.g. expected that gravitational collapse leads to a stationary asymptotically flat (for λ = 0)
vacuum space-time as the final state [62, 86]. This is one reason why one is interested in
space-times which satisfy Einstein’s field equations and admit isometries, i.e. diffeomorphisms
φ : M →M for which φ∗g = g. Now, the isometry group of a pseudo-Riemannian manifold
carries a natural manifold structure, and thus forms a Lie group. Since any element of the
connected component of the identity of a Lie group belongs to a one-parameter subgroup, the
action of a symmetry group can be studied by means of the generators of these subgroups,
so-called Killing vector fields (cf. e.g. [28]). This is a vector field X fulfilling Killing’s equation

LXg = 0 ⇐⇒ ∇(µXν) = 0 , (6.1)

where L denotes the Lie derivative. Conversely, any Killing vector field generates a local
isometry. To obtain a one-parameter group of isometries, though, one, in addition, needs
to make sure that X is complete. The full isometry group of a space-time may also include
discrete isometries which are not generated by Killing vector fields.

Killing vector fields form a Lie algebra w.r.t. to the usual commutator of vector fields as
follows immediately from the relation L[X,Y ] = [LX ,LY ]. A connected pseudo-Riemannian
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manifold admits 0 ≤ k ≤ dim M (dim M + 1)/2 linearly independent Killing vector fields.

For later purposes let us also introduce a generalization of Killing vector fields, so-called
conformal Killing vector fields which satisfy the conformal Killing equation

LXg =
2

n+ 1
g divX ⇐⇒ (∇(µXν))̆ ≡ ∇(µXν) −

1

n+ 1
gµν∇αXα = 0 . (6.2)

Conformal Killing vector fields arise as infinitesimal generators of conformal isometries,
which are diffeomorphisms φ : M →M such that φ∗g = Ω2g for some Ω > 0. Clearly, any
Killing vector field is a conformal one. A connected pseudo-Riemannian manifold admits
0 ≤ k ≤ (dim M + 1)(dim M + 2)/2 linearly independent conformal Killing vector fields,
which constitute a Lie algebra which contains the Killing vector fields as a Lie subalgebra.

Another reason for the importance of Killing vector fields is that any one-parameter
group of isometries gives rise to a conserved quantity for freely falling particles and light
rays, and proves helpful when integrating the geodesic equation [86]. Moreover, the presence
of an isometry may be employed to perform a dimensional reduction of the problem at hand.
Apart from these “positive” properties Killing vector fields also play an important role by
providing an obstruction in gluing initial data for the space-like Cauchy problem, cf. e.g.
[29, 31] and the references given therein. Moreover, in the compact case, the non-existence
of Killing vector fields characterizes the Marsden-Fischer linearization stability [68].

One therefore would like to construct in a systematic manner space-times with Killing
vector fields in terms of initial value problems. In other words, one would like to infer just
from the initial manifold and the data given there, that the emerging space-time contains one
or several Killing vector fields. Such data will be called Killing Initial Data (KIDs). Their
specification has first been accomplished for the space-like Cauchy problem, cf. e.g. [8, 68].
The characteristic case is treated in [35], attached as Chapter 13. We shall restrict attention
to the vacuum case.

The basic idea to derive the KID equations is as follows: We first observe that (6.1)
implies a linear wave equation for X,

2gX
α = −RβαXβ . (6.3)

Given appropriate initial data [X] on an initial surface Σ, (6.3) determines uniquely a
candidate field X. In general, though, this will not be a Killing vector field. We set

Aµν := 2∇(µXν) , (6.4)

and observe that (6.3) together with the vacuum Einstein equations Rµν = λgµν imply a
linear, homogeneous wave equation which is satisfied by Aµν ,

2gAµν = −2Rµ
α
ν
βAαβ . (6.5)

From these considerations it follows that a vacuum space-time contains a Killing vector
field if and only if there exists a vector field X such that (6.3) holds with [Aµν ] = 0. It is
important to stress that the wave equations (6.3) and (6.5) are linear, so that a solution
exists globally in the whole domain of dependence of Σ (cf. Appendix A), though non-trivial
data may lead to the trivial solution away from a neighborhood of Σ. Next, we extract
necessary and sufficient conditions which make sure that the data [X] lead via (6.3) to a
vector field in space-time with [Aµν ] = 0 in order to characterize the existence of a non-trivial
Killing vector field near Σ.
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6.2 KIDs for the space-like Cauchy problem

Let us first consider the space-like case (cf. [8]). Consider a vacuum space-time (M , g) and a
space-like hypersurface Σ ⊂M given in adapted coordinates (t, xi). One then needs to make
sure that Aµν = 0 and ∇tAµν = 0. For convenience, let us assume a gauge where gtt = −1,
gti = 0 and ∂tgtµ = 0.

First of all, one straightforwardly checks that the equations Aµν = 0, ∇tAij = 0 and (6.3)
imply ∇tAtµ = 0. One further finds that Aµν = 0 is equivalent to

∇tXt = 0 , (6.6)

∇tXi = D iXt , (6.7)

D(iXj) +KijX
t = 0 . (6.8)

Recall that D denotes the covariant derivative of the induced Riemannian metric h =
hijdx

idxj . Assuming Aµν = 0, the equation ∇tAij = 0 becomes

DiDjX
t +

1

2
∂2
ttgij X

t + LXk∂k
Kij = 0 . (6.9)

The second-order transverse derivative can be eliminated via the Einstein equations,

Rij =
2

n− 1
λgij ⇐⇒

1

2
∂2
ttgij = 2KikKj

k −KKij −(3)Rij +
2

n− 1
λgij . (6.10)

That yields

DiDjX
t + LXk∂k

Kij = [(3)Rij +KKij − 2KikKj
k − 2

n− 1
λgij ]X

t . (6.11)

The proper KID equations are (6.8) and (6.11): If and only if we find a function N and a
vector field Y on the Riemannian initial manifold (Σ, hij) with second fundamental form
Kij such that

D(iYj) +NKij = 0 , (6.12)

DiDjN + LYKij = [(3)Rij +KKij − 2KikKj
k − 2

n− 1
λhij ]N , (6.13)

the vacuum space-time contains a Killing vector field X. This is then obtained by solving
(6.3) with initial data Xt = N , Xi = Y i, ∇tXt = 0 and ∇tXi = D iN .

In terms of a Cauchy problem we are led to the result:

Theorem 6.2.1 Consider the tuple (Σ, hij ,Kij , N, Y
i). There exists an (up to isometries)

unique maximal globally hyperbolic vacuum space-time with a Killing vector field which
contains the embedded initial manifold Σ as a Cauchy surface on which the push-forwards
of the above data are induced, if and only if (Σ, hij ,Kij , N, Y

i) satisfies the usual vacuum
constraint equations (2.16)-(2.17) on Σ supplemented by the KID equations (6.12)-(6.13).

6.3 KIDs for the characteristic Cauchy problem

Let us now pass to the characteristic case, cf. [35], attached as Chapter 13. As before, we
consider for reasons of definiteness a light-cone CO, regular at its vertex. For two null surfaces
intersecting transversally we refer the reader to [35, Section 3], where we also analyze some
special cases in detail such as bifurcate Killing horizons.
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In the characteristic case it suffices to ensure that Aµν vanishes. It proves fruitful to
define

Sµνσ := ∇µ∇νXσ −RαµνσXα . (6.14)

In a first step [35, Section 2.2] one establishes, employing regularity at the vertex and assuming
Aij = 0 and (6.3), that the equations Sir0 = 0 and S̃ := gAB(SAB0 + 1

2Γ0
ABA00) = 0 are

equivalent to A0µ = 0. In a second step [35, Section 2.5] one shows that Aij = 0, (6.3) and

the vacuum Einstein equations imply τSrr0 = 0, SAr0 = 0 and S̃ = 0. Noting that we have
τ > 0, at least sufficiently close to the vertex, we conclude that it remains to ensure Aij = 0,1

and this equation does not involve any transverse derivative of X on CO.
A subtlety in the light-cone case is that one needs to make sure that X is the restriction

to CO of a smooth space-time vector field, which is a non-trivial issue albeit necessary to
apply Dossa’s well-posedness result [41] to solve (6.3) (cf. Appendix A). However, this can be
inferred from Aij = 0 [35, Section 2.4]: It follows from the fact that X can be written as the
restriction to CO of a solution of a certain system of differential equations, which reduces to
an ODE-system along any geodesic issued from O, together with the property that solutions
of ODEs depend smoothly upon their initial data.

An analysis of the KID equations Aij = 0 reveals that the equations A1i = 0 and
gABAAB = 0 determine candidate fields Y µ on the cone (let us focus attention to the region
near the tip where τ > 0),

(∂r − κ)(ν0Y
0) = 0 , (6.15)

∂rY
A + [∇̃A + ξA − ∂rgrA − κgrA](ν0Y

0) = 0 , (6.16)

τY r + ∇̃AY A −
1

2
(ζ + τgrr + 2∇̃AgrA + 2grA∇̃A)(ν0Y

0) = 0 . (6.17)

The candidate fields depend on the integration functions

c(xA) = lim
r→0

Y 0 and fA(xB) = lim
r→0

(Y A − r−1∇̊Ac) (6.18)

arising when integrating (6.15) and (6.16).
Each of the candidate fields extends to a Killing vector field of the space-time if and only if

it satisfies the reduced KID equations ĂAB = 0 (reccall that “˘” denotes the ǧ-trace-free part)

(∇̃(AYB))̆ + σABY
r − (grrσAB + Γ̆rAB)(ν0Y

0) = 0 . (6.19)

In particular this equation implies that ∇̊Ac and fA need to be conformal Killing one-forms
on (Sn−1, sABdxAdxB).

Let us formulate this result in terms of an initial value problem:

Theorem 6.3.1 For given data on a light-cone CO, (ǧ, κ, Y µ) say, there exists an (up to
isometries) locally unique globally hyperbolic vacuum space-time to the future of CO with
a Killing vector field (we restrict attention to the regime where τ > 0) which induces the
above data on CO, if and only if the pair (ǧ, κ) satisfies the Raychaudhuri equation (2.36),
and (ǧ, κ, Y µ) fulfills (6.15)-(6.19) once the vacuum wave-map gauge constraints have been
solved.2

Remark 6.3.2 The equation (6.19) contains the transverse derivatives (∂0gAB )̆, which need

to be eliminated via the Einstein equations R̆AB = 0, which provide a coupled ODE-system
for (∂0gAB )̆.

1If τ vanishes in certain regions of CO , the equation needs to be supplemented by the condition Srr0 = 0
there.

2Of course, one needs to make sure that Dossa’s well-posedness result for the evolution equations is
applicable, as it is e.g. the case if κ = 0 and ǧ is induced on CO by a smooth space-time metric [27].
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6.4 KIDs in Penrose’s conformally rescaled space-times:
Some preliminaries

In Section 4 we have discussed well-posedness results for asymptotic Cauchy problems which
permit the construction of asymptotically flat or de Sitter space-times, solution to Einstein’s
vacuum field equations. In Section 6.2 and 6.3 we have derived the KID equations, by which
the usual constraint equations need to be supplemented to end up with space-times which
contain one or several Killing vector fields. In this section, we will combine both of them, i.e.
we will construct asymptotically flat and asymptotically de Sitter space-times with Killing
vector fields via asymptotic initial value problems.

As before, when dealing with the unphysical space-time we restrict attention to 4 dimen-
sions, since the CFE and also the wave equations (6.25)-(6.28), which we shall derive below
for the Killing vector field and which replace (6.4) in the unphysical space-time, provide a
nice evolution system only in 4 dimensions, cf. [56, 70].

The first step to accomplish this is to derive a substitute to Killing’s equation (6.1) in
the unphysical space-time. It turns out, cf. [70, Section 3.1], attached as Chapter 14, that
a vector field is a Killing vector field in the physical space-time (M̃ , g̃) if and only if its
push-forward X is a conformal Killing vector field in the unphysical space-time (M , g = Θ2g̃),
i.e.

LXg =
1

2
divXg ⇐⇒ ∇(µXν) =

1

4
∇αXαgµν , (6.20)

and satisfies there the equation

LXΘ =
1

4
divXΘ ⇐⇒ Xµ∇µΘ =

1

4
Θ∇µXµ . (6.21)

Any Killing vector field is a conformal Killing vector field of the conformally rescaled metric,
that is where (6.20) comes from. Equation (6.21) makes sure that the conformal Killing
vector field becomes a Killing vector field rather than just a conformal one if one goes back
to the physical space-time. It will be essential that (6.20) and (6.21), which we call the
unphysical Killing equations, make sense also where the conformal factor Θ vanishes.

To carry on in close analogy to the proceeding in Section 6.1, we need a wave equation
which is necessarily satisfied by any solution of (6.20)-(6.21). Then, we can construct
candidate fields which, for appropriately specified initial data, satisfy the unphysical Killing
equations, and thus correspond to Killing vector fields of the original physical space-time.

Indeed, introducing the auxiliary scalar function

Y :=
1

4
divX , (6.22)

we observe that the unphysical Killing equations imply a system of linear wave equations:

2gXµ +Rµ
νXν + 2∇µY = 0 , (6.23)

2gY +
1

6
Xµ∇µR+

1

3
RY = 0 . (6.24)

For given initial data [X] and [Y ], (6.23)-(6.24) determine a candidate field X. It remains to
extract conditions which ensure that the so-obtained candidate field X satisfies the unphysical
Killing equations. This is somewhat more involved than in Section 6.1, an intuitive reason
being as follows. In asymptotic initial value problems the initial data (e.g., depending on
the scheme, certain components of the rescaled Weyl tensor or the Schouten tensor) involve
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higher-order transverse derivatives of the metric than in the ordinary case. Since one should
expect the existence of Killing vector fields to depend on the initial data, it cannot be
sufficient to infer its existence just by ensuring that the unphysical Killing equations hold
initially (including their transverse derivatives in the space-like case), which do not involve
such higher-order transverse derivatives of the metric.

It is convenient to introduce the fields:

φ := Xµ∇µΘ−ΘY , (6.25)

ψ := Xµ∇µs+ sY −∇µΘ∇µY , (6.26)

Aµν := 2∇(µXν) − 2Y gµν , (6.27)

Bµν := LXLµν +∇µ∇νY . (6.28)

All these fields vanish identically whenever X satisfies the unphysical Killing equations and Y
is given by (6.22). Conversely, assuming that the wave equations (6.23)-(6.24) and the MCFE
(3.3)-(3.8) hold, one derives a linear, homogeneous system of wave equations which is fulfilled
by the fields φ, ψ, Aµν , ∇σAµν and Bµν [70, Section 3.3]. We conclude that a space-time
which solves the MCFE admits a vector field satisfying the unphysical Killing equations if
and only if there exists a vector field X and a function Y which solve (6.23)-(6.24) with
[φ] = [ψ] = [Aµν ] = [∇σAµν ] = [Bµν ] = 0 (note that the vanishing of Aµν implies (6.22)).

Again, all the relevant wave equations are linear, whence the Killing vector field will exist
in the whole domain of dependence, though it may become trivial away from a neighborhood
of the initial surface.

Remark 6.4.1 It is the φ = 0-condition which requires the vanishing of X0 on both a space-
like and a characteristic I . A vector field which satisfies the unphysical Killing equations
cannot be time-like on I . Even more, a closer analysis [70, Section 5.3] and [71, Section 4.3]
shows that for λ > 0 there are no vacuum space-times which are stationary, while for λ = 0
Minkowski space-time is the only stationary vacuum space-time which admits a regular
Ci−-cone.3

6.5 KIDs on conformal boundaries: The space-like case

Let us first pay attention to the space-like case (cf. [71], attached as Chapter 15), where the
task consists of characterizing initial data on the initial surface Σ for which

φ = ∇tφ = ψ = ∇tψ = Aµν = ∇tAµν = ∇t∇tAµν = Bµν = ∇tBµν = 0 .

Assuming (6.23)-(6.24) and the MCFE, it turns out [71, Sections 3.4 and 3.5] that some of
these conditions are automatically fulfilled. The remaining ones are

φ = ∇tφ = ψ = ∇tψ = Aµν = ∇tAij = B̆ij = (∇tBij )̆ = 0 . (6.29)

As for KIDs in the physical space-time, some of these conditions involve undesired second-
order transverse derivative of Y . They can be eliminated via (6.24).

A particularly interesting space-like hypersurface in a conformally rescaled space-time is
the one, for λ > 0, which corresponds to I −. Let us therefore pay attention to this special

3By a “stationary space-time” we mean a space-time which admits a Killing vector field which is
asymptotically time-like.
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case. For convenience, we choose coordinates as in Section 4.2.2, equation (4.10). In this
case, some more conditions are automatically satisfied and we are left with [71, Section 4.1]

φ = ∇tφ = ψ = Aµν = (∇tBij )̆ = 0 . (6.30)

The conditions φ = ∇tφ = ψ = Aµν = 0 are equivalent to

Xt = 0 , (6.31)

∇tXt = Y , (6.32)

∇tXi = 0 (6.33)

Y =
1

3
DiX

i , (6.34)

∇tY = 0 , (6.35)

(∇̃(iXj))̆ = 0 . (6.36)

Assuming that (6.24) holds on Σ, we further find that (∇tBij )̆ can be written as

LXk∂k
Dij +

1

3
DijDkX

k = 0 . (6.37)

The proper KID equations are (6.36) and (6.37): If and only if there exists a vector field
X̊ = X̊k∂k on I − such that (6.36) and (6.37) hold, the space-time contains a vector field
X satisfying the unphysical Killing equations. It is obtained by setting Xi = X̊i and Xt,
∇tXµ, Y and ∇tY as required by (6.31)-(6.35), and solving (6.23)-(6.24) for these data.

In terms of an asymptotic Cauchy problem we are led to the following result:

Theorem 6.5.1 The tuple (Σ, hij , Dij , X̊
i), where (Σ, hij) is a Riemannian manifold and

Dij a symmetric tensor of valence two on Σ, defines, for λ > 0, an (up to isometries)
unique, in the unphysical space-time maximal globally hyperbolic vacuum space-time with
a smooth I −, represented by ι(Σ), with ι∗gij |Σ = hij and ι∗dtitj |Σ = Dij, which contains

a Killing vector field X with Xi = X̊i, if and only if the symmetric 2-tensor Dij is trace-

and divergence free and X̊ is a conformal Killing vector field on (Σ, hij) which satisfies the
reduced KID equations

LX̊D +
1

3
D divX̊ = 0 . (6.38)

6.6 KIDs on conformal boundaries: The characteristic
case

The characteristic case is treated in [70], attached as Chapter 14. Here, we confine attention
to a regular light-cone CO. We need to analyze the conditions

φ = ψ = Aµν = ∇tAµν = Bµν = 0 .

It is no surprise anymore that many of the conditions are automatically satisfied, supposing
that the wave equations (6.23)-(6.24) hold, and that the vector field X is regular at the
vertex of the cone [70, Sections 3.3 and 4.1]. The remaining conditions are

φ = ψ = Aij = A0r = Bij = 0 . (6.39)
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As on light-cones in the physical space-time, cf. Section 6.3, the condition A0r = 0 is not
needed on the closure of those sets on which τ is non-zero, such as close to the tip. The
transverse derivative of Y appearing in ψ and BAB can be eliminated via the wave equation
(6.24) for Y .

We need to make sure that the initial data X and Y for (6.23)-(6.24) are restrictions to
the cone of smooth space-time fields. Fortunately, it can be proved that all the fields solving
Aij = B1i = 0 can be extended to smooth space-time fields by invoking a similar argument
as in Section 6.3, cf. [70, Section 4.1]

Light-cones CO of particular interest in the unphysical space-time are those where O ∈ I −

for λ ≥ 0 as well as the Ci−-light-cone for λ = 0 whose vertex is located at past time-like
infinity. We focus on the latter one, since this is the one for which a well-posedness result for
the vacuum Einstein equations is available, namely the one we discussed in Section 4.3. For
convenience, we impose the gauge condition (4.18) of Section 4.2.3.

Then, some more of the necessary and sufficient conditions in (6.39) are automatically
satisfied [70, Section 5.2], and it remains to analyze the KID equations (note that on the
Ci−-cone with regular vertex we have τ > 0 globally)

φ = ψ = ArA = AAB = B̆AB = 0 , (6.40)

or, equivalently,

X0 = 0 , (6.41)

XA = dA , (6.42)

Xr = cr2 − 1

2
rDAd

A , (6.43)

Y = cr , (6.44)

with DAc(x
B) and dA(xB) being conformal Killing one-forms on (S2, s = sABdxAdxB), and

LdλAB − (
1

2
rDCd

C − cr2)∂rλAB + (
1

2
DCd

C − 2cr)λAB = 0 . (6.45)

A few comments are in order: The candidate fields X and Y obtained from (6.41)-(6.44)
with DAc and dA being conformal Killing one-forms on (S2, s = sABdxAdxB) coincide with
the Minkowskian candidate fields, whatever the initial data λAB have been taken to be. This
is in contrast to KIDs on ordinary initial surfaces and also to KIDs on a space-like I −.
Whether or not they extend to space-time Killing vector fields via (6.23)-(6.24) does, of
course, depend on λAB via the reduced KID equations (6.45).

Let us formulate the result in terms of an initial value problem, as well:

Theorem 6.6.1 Consider the symmetric and s-trace-free tensor field λ = λABdxAdxB on
a light-cone CO constructed from the incoming radiation field ςab defined in Section 4.3.
Then, there exists a locally unique vacuum space-time with a regular Ci−-cone, represented
by CO, with ∂tgAB = λAB and which admits a non-trivial Killing vector field if and only if
the reduced KID equations

Ldλ− (
1

2
r divd− cr2)∂rλ+ (

1

2
divd− 2cr)λ = 0 (6.46)

are satisfied for a conformal Killing vector field dA on (S2, s = sABdxAdxB) and a function
c on S2 which is a linear combination of ` = 0, 1-spherical harmonics.
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Abstract
We review various aspects of the characteristic initial-value problem for the
Einstein equations, presenting new approaches to some of the issues arising.

PACS number: 04.20.Ex

1. Introduction

By now there exist four well-established ways of systematically constructing general solutions
of the Einstein equations: by solving

(1) a spacelike Cauchy problem (see [1, 2] and references therein),
(2) a boundary-initial-value problem [3–5] (for further references, see [6]),
(3) a characteristic Cauchy problem on two transverse hypersurfaces or
(4) a characteristic Cauchy problem on the light-cone.

One can further consider mixtures of the above. The aim of this paper is to present some
new approaches to the last two questions, and to review the existing ones.

To put things in perspective, recall that Einstein’s equations by themselves do not have any
type that lends itself directly into a known mathematical framework which would provide the
existence and/or uniqueness of solutions [7]. The monumental discovery of Yvonne Choquet-
Bruhat in 1952 [8] was that the imposition of wave equations on the coordinate functions led
to a system where both existence and uniqueness could be proved. The constraint equations
satisfied by the initial data on a spacelike hypersurface turned out to be both necessary and
sufficient conditions for solving the problem. The constraint equations and the ‘harmonicity
conditions’ became then the two standard notions in our understanding of the spacelike Cauchy
problem.

In the early 1960s, there arose a strong interest in the characteristic initial-value problem
because of attempts to formulate non-approximate notions of gravitational radiation in the
nonlinear theory [9–13]. While those papers provided much insight into the problem at hand,
it is widely recognized that the first mathematically satisfactory treatment of the Cauchy
problem on two intersecting null hypersurfaces is due to Rendall [14], see also [15–25].
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Rendall’s initial data consist of a conformal class of a family of two-dimensional Riemannian
metrics

γ̃ := γAB(r, xC) dxA dxB

on the null hypersurfaces, complemented by suitable data on the intersection. Here r is an
affine parameter on the null geodesics threading the initial-data surfaces. Rendall uses the
Raychaudhuri equation to compute the conformal factor � needed to determine the family of
physically relevant data

g̃ := gAB(r, xC) dxA dxB ≡ �2(r, xC)γAB(r, xC) dxA dxB (1.1)

on the null hypersurfaces. The harmonicity conditions and the Einstein equations determine
then uniquely the whole metric g to the future of the initial-data surfaces and near the
intersection surface S. The reader will find more details in section 2.

Rendall’s elegant approach works well in vacuum, and more generally for a class of matter
fields that includes scalar, Maxwell or Yang–Mills fields. However, it appears awkward to use
an unphysical family of conformal metrics as initial data, since the physically relevant, and
geometrically natural, object is the family g̃. In this context, it appears appropriate to view the
tensor field g̃ as an initial datum on the characteristic surfaces, with the Raychaudhuri equation
playing the role of a constraint equation. The idea of prescribing γ̃ should then be viewed as
a conformal ansatz for constructing solutions of this constraint equation.

The last point is only a question of interpretation. More importantly, Rendall’s scheme
does not work for e.g. the Einstein–Vlasov equations for particles with prescribed rest mass
m (see [26] for an existence theorem for those equations with initial data on a spacelike
hypersurface), because the energy–momentum tensor for the Vlasov field1,

Tαβ = 8π

∫
{gρσ pρ pσ =−m2}

f pα pβ dμ(p), (1.2)

where f = f (x, p) is the Vlasov distribution function and dμ ≡ dμ(p) is the Riemannian
measure induced on the ‘mass-shell’ {gρσ pρ pσ = −m2}, depends explicitly upon all
components of the metric. This leads to the need of reformulating the problem so that the
whole metric tensor is allowed as part of the initial data on the characteristic surfaces.
Such a method will be presented in section 3, after having reviewed Rendall’s approach in
section 2. We will do this both for data given on two transversally intersecting null
hypersurfaces and on a light-cone.

We complement the above with a geometric formulation of the characteristic initial data
in section 4, where we give geometric interpretations of n, out of n + 1, wave-map gauge
constraint equations.

The bottom line of our analysis is that the gravitational characteristic initial data have to
satisfy one single constraint equation, the Raychaudhuri equation. This raises the question,
how to construct solutions thereof. In section 5, we present several methods to do this. In the
short sections 5.1–5.4, we recall how this has already been done in the preceding sections. In
section 5.5, we analyse the Hayward gauge condition κ = τ/(n − 1), which may be used as
an alternative to an affine-parameterization gauge where the function κ vanishes.

It has been proposed to use the shear tensor σ as the free initial data for the gravitational
field rather than γ̃ . However, one defect is that it is not clear how to guarantee tracelessness
of σ . We present in section 5.6 a tetrad formulation of the problem to get rid of this grievance.
Finally, we adapt in section 5.7 to any dimensions an approach of Helmut Friedrich (originally

1 We have included a factor 8π in the definition of Tμν , so that the Einstein equations read Sμν = Tμν , where Sμν is
the Einstein tensor.
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developed in dimension 4, using spinors), where certain components of the Weyl tensor are
used as unconstrained initial data for the gravitational field. Again, this requires to work in a
null-frame formalism to take care of the tracelessness of the Weyl tensor.

In the case of a light-cone, the Hayward gauge leads us to the following issue: Under
which conditions is the assumption, that the vertex is located at the origin r = 0 of the adapted
coordinate system, consistent with regularity at the vertex? This question is considered in an
appendix.

2. Rendall’s approach

In this section, we review Rendall’s approach to the characteristic initial-value problem.
For definiteness, in the remainder of this section we will consider the vacuum Einstein
equations; we comment at the end of this section on those energy–momentum tensors which
are compatible with the analysis here.

Consider two smooth hypersurfaces Na, a = 1, 2, in an (n + 1)-dimensional manifold
M , with transverse intersection along a smooth submanifold S. Near the Na’s, one can choose
adapted coordinates (x1, x2, xA) so that N1 coincides with the set {x1 = 0}, while N2 is given
by {x2 = 0}. The hypersurfaces Na are supposed to be characteristic, which is equivalent to
the requirement that, in the coordinates above, on N1, the metric takes the form

g|N1 = g11(dx1)2 + 2g12 dx1 dx2 + 2g1A dx1 dxA + gAB dxA dxB︸ ︷︷ ︸
=:g̃

, (2.1)

similarly on N2. Here, and elsewhere, the terminology and notation of [27] are used; in
particular, an overbar denotes restriction to the initial-data surface N1 ∪ N2. Rendall assumes
moreover that x2 is an affine parameter along the curves {x1 = 0, xA = constA}, and that x1 is
an affine parameter along the curves {x2 = 0, xA = constA}.

On N1 let

τ ≡ 1
2 gAB∂2gAB (2.2)

be the divergence scalar, and let

σAB ≡ 1

2
∂2gAB − 1

n − 1
τgAB (2.3)

be the trace-free part of ∂2gAB, also known as the shear tensor. The vacuum Raychaudhuri
equation

∂2τ + |σ |2 + τ 2

n − 1
= 0 (2.4)

provides a constraint equation on the family of two-dimensional metrics x2 �→
gAB(x2, xC) dxA dxB, where

|σ |2 ≡ σA
BσB

A, σA
B ≡ gBCσAC.

Note that σA
B depends only on the conformal class of gAB. As shown by Rendall, metrics

satisfying the constraint (2.4) can be constructed by freely prescribing the family x2 �→
γAB dxA dxB. Writing gAB = �2γAB, (2.4) becomes then a second-order ODE in x2 for �,

0 = ∂2
2 � + �

n − 1

[
1

2
∂2(γ

AB∂2γAB) + |σ |2 + 1

4(n − 1)
(γ AB∂2γAB)2

︸ ︷︷ ︸
=− 1

4 ∂2γ AB∂2γAB

]
+ 1

n − 1
γ AB∂2γAB∂2�.

(2.5)

This needs to be complemented by �|S and ∂2�|S.

3
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Let us require all coordinate functions to satisfy the scalar wave equation �g xμ = 0.
Then the affine-parameterization condition 2

22|N1 = 0 can be rewritten as

∂2g12 = 1
2τg12.

This equation determines the metric function g12 on N1 with the freedom to prescribe g12

on S.
The equation R2A = 0 on N1 takes the form

− 1

2
(∂2 + τ )ξA + ∇̃Bσ B

A − n − 2

n − 1
∂Aτ = 0, (2.6)

where ∇̃ is the covariant derivative operator of the metric gAB dxA dxB. Here, using the
assumption that all coordinate functions satisfy the wave equation, the covector ξA reads
[27, equation (8.25)]

ξA := − 2g12∂2g1A + 4g12g1BσA
B + 2g12g1Aτ − gABgCD̃B

CD, (2.7)

where the ̃B
CDs are the Christoffel symbols of the metric gAB dxA dxB. This provides an ODE

for the metric functions g1A: indeed, one determines ξA by integrating (3.12), with the freedom
to prescribe

ξ
N1
A := ξA(x2 = 0)

on S. (One should keep in mind that ξA here is unrelated to the corresponding field ξA on N2,
determined by an analogous equation where all quantities τ , σ , etc, are calculated using the
fields on N2.)

Then g1A is found by integrating (2.7). Since the metric needs to be continuous, the metric
component g1A has to vanish at S; this requirement defines the integration constant. We further
observe that by definition of ξA, the freedom to prescribe ξ

N1
A corresponds to the freedom of

prescribing ∂2g1A on S.
The equation gABRAB = 0 in vacuum takes the form

(∂2 + τ )ζ + R̃ − 1
2 ḡABξAξB + ḡAB∇̃AξB = 0, (2.8)

where R̃ is the curvature scalar of g̃, and where

ζ := (2∂2 + τ )ḡ22. (2.9)

Taken together, those equations provide a second-order ODE for g22; integration requires the
knowledge of g22 and ∂2g22 on S. Employing the relation g22 = (g12)2(gABg1Ag1B − g11), we
observe that g22 has to vanish at S, while there remains the freedom of prescribing ∂2g22,
equivalently ∂2g11, on S.

However, the validity of the harmonicity conditions implies certain constraints on S (see
below): the value of ∂2g11 at S is determined by equation (2.10c); similarly the function ∂2g11

at S follows from (2.10a).
One has thus determined all the metric functions gμν on N1; the procedure on N2 is

completely analogous. These are the data needed for the harmonically reduced Einstein
equations, which form a well-posed evolutionary system for the metric.

However, not every solution of the equations constructed in this way will satisfy the
vacuum Einstein equations: one still needs to make sure that the harmonicity conditions are
satisfied. There is in fact one more subtlety, as one needs to verify that the parameter x2 is
indeed an affine parameter on the null geodesics threading N1. It turns out [14] that all this
will be verified provided three more conditions are imposed on S: if we write ν+

A for what was
g1A|N1 so far, ν−

A for g2A|N2 , the wave-coordinate conditions will hold if we require that on S,

∂1g22|S = g12
∂2

√
det gAB√

det gAB
, (2.10a)

4
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∂1ν
−
A + ∂2ν

+
A = 1√

det gEF
gAB∂C(g12

√
det gEF gBC), (2.10b)

∂2g11|S = g12
∂1

√
det gAB√

det gAB
. (2.10c)

As already indicated above, the integration functions ∂1g22|S and ∂2g11|S cannot be freely
specified but have to be chosen in such a way that equations (2.10a) and (2.10c) are fulfilled.
Equation (2.10b) will be satisfied by exploiting the freedom in the choice of ∂1ν

−
A and ∂2ν

+
A .

So there remains the freedom to prescribe, say, ∂1ν
−
A − ∂2ν

+
A .

The constraint equation (2.10b) can be tied to a terminology introduced by Christodoulou
[28] as follows: let L and L be two null normals to a codimension-2 spacelike hypersurface S
satisfying

g(L, L) = −2.

Christodoulou [28] defines the torsion one-form of S by the formula

ζ (X ) = 1
2 g(∇X L, L), (2.11)

where X ∈ T S. Assuming that g12|S is positive, we can choose L =
√

2g12 ∂2; then, on S, using
the notation above, L = −

√
2g12 ∂1 and (2.11) reads

ζA = 1
2 g(∇AL, L) = 1

2 g12∂Ag12 − 2
2A = 1

2

(
1

1A − 2
2A

)
= 1

2 g12(∂1g2A − ∂2g1A) = 1
2 g12(∂1ν

−
A − ∂2ν

+
A

)
. (2.12)

So ζA contains precisely the information needed to determine ∂1ν
−
A and ∂2ν

+
B at S, after taking

into account (2.10b).

Theorem 2.1 (Rendall). Consider two smooth hypersurfaces N1 and N2 in an (n + 1)-
dimensional manifold with transverse intersection along a smooth submanifold S in adapted
null coordinates. Let γAB be a smooth family of Riemannian metrics on N1 ∪ N2, continuous
at S. Moreover, let �, ∂1�, ∂2�, f and fA, A = 3, . . . , n + 1, be smooth fields on S, where we
assume � and f to be nowhere vanishing on S. Then there exists an open neighbourhood U of
S in the region {x1 � 0, x2 � 0}, a unique function � on (N1 ∪ N2) ∩ U and a unique smooth
Lorentz metric gμν on U such that

(1) gμν satisfies the vacuum Einstein equations,
(2) ḡAB = �2γAB,
(3) � induces the given data on S, g12|S = f and ζA = fA.

This analysis of the constraints applies equally well to a light-cone with some minor
modifications [27], where the wave equations for the coordinate functions are replaced by
wave-map conditions. Moreover, there is no need to provide further initial data at the tip of the
light-cone, as those are replaced by conditions arising from the requirement of regularity of the
metric there; the reader is referred to [27] for a detailed discussion. An explicit parameterization
of tensors g̃ which arise by the restriction of a smooth metric in normal coordinates has been
given in [29]. The reader should keep in mind the serious difficulties with regularity of the
metric at the vertex, when attempting to prove an existence theorem for the light-cone problem;
see [30, 31] for results under restrictive conditions on the data.
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The above extends easily to non-vacuum models with energy–momentum tensors of the
form

T 22 = T 22(matter data, γAB, ∂iγAB,�, ∂2�, g12, ∂ig12, xi), i = 2, A,

T 2A = T 2A(matter data, γAB, ∂iγAB,�, ∂i�, g1i, ∂ig12, ∂2g1A, ∂1g22, xi),

T 12 = T 12(matter data, γAB, ∂iγAB,�, ∂i�, g1μ, ∂2g1μ, ∂Ag12, ∂1g2i, xi),

on the initial surface {x1 = 0}, cf [27].

3. All components of the metric as initial data

Let �ν denote the field of null tangents to a characteristic hypersurface. In this section, we
present a treatment of the characteristic Cauchy problem which applies to energy–momentum
tensors of the form

Tμν�
ν = Tμ(g, φ, ∂‖g, ∂‖φ, x), (3.1)

for some fields φ satisfying equations which, when the metric is considered as given, possess a
well-posed characteristic Cauchy problem. Here the symbol ∂‖ denotes derivatives in directions
purely tangential to the initial-data surfaces. In particular, equation (3.1) includes the Einstein–
Vlasov case.

As already discussed, in [14] the corresponding problem for the vacuum Einstein equations
is solved using an affine parameterization of the generators and a wave-map (‘harmonic’)
gauge. In Rendall’s approach, some components of the metric are calculated by solving the
characteristic harmonic gauge constraint equations, which form a hierarchical ODE system
along the generators of the initial surface. For an energy–momentum tensor (1.2), this approach
will generally lead instead to a quasi-linear PDE system for the metric components. To establish
an existence result for that system might be intricate, if possible at all. It is in any case not
obvious how to include an energy–momentum tensor (1.2) in this scheme, compare [32].
We circumvent the problem by using a gauge adapted to the initial data, where the metric
tensor, and thereby (1.2), is fully given on the initial surface, while the wave-gauge source
vector W̊ μ is computed from the values of the metric on the initial surface using the Einstein
wave-map-gauge constraint equations of [27].

We start with an analysis of two intersecting hypersurfaces; the case of a light-cone will
be covered in section 3.2.

3.1. Two transverse hypersurfaces

Consider two smooth hypersurfaces Na, a = 1, 2, in an (n + 1)-dimensional manifold M ,
with transverse intersection along a smooth submanifold S. As before, we choose adapted
null coordinates (x1, x2, xA) so that N1 coincides with the set {x1 = 0}, while N2 is given by
{x2 = 0}. We use a ‘generalized wave-map gauge’ as in [27], with target metric ĝ of the form

ĝ = 2 dx1 dx2 + ĝAB(x1, x2, xC) dxA dxB.

Here ĝAB is any family of Riemannian metrics on S parameterized by x1 and x2, smooth in
all variables. The metric ĝ is only introduced so that the harmonicity vector Hμ, defined in
equation (3.4), is a vector field, and plays no significant role in what follows.

As gravitational initial data on the initial hypersurfaces, we prescribe all metric
components gμν in the coordinates above, as well as a connection coefficient κ; this needs to
be supplemented by the initial data φ for φ. For instance, in the Einstein–Vlasov case, the

6
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supplementary data will be a function f defined on the mass-shell {gμν pμ pν = −m2}, viewed
as a subset of the pull-back of TM to the Na’s.

The hypersurfaces Na are supposed to be characteristic, which is equivalent to the
requirement that, in the coordinates above, on N1 the metric takes the form

g|N1 = g11(dx1)2 + 2g12 dx1 dx2 + 2g1A dx1 dxA + gAB dxA dxB︸ ︷︷ ︸
=:g̃

, (3.2)

similarly on N2. Here, and elsewhere, the terminology and notation of [27] are used; in
particular, an overbar denotes restriction to the initial-data surface N1 ∪ N2. (Some obvious
renamings need to be applied to the equations in [27], for instance, the variable u there is x1

on N1, and x2 on N2; the variable r there is x2 on N1 and x1 on N2.)
We want to apply Rendall’s existence theorem [14] for an appropriately reduced system

of equations. For this, the trace, gμν , of the metric on the initial surface N1 ∪ N2 needs to be
the restriction of a smooth Lorentzian spacetime metric. This will be the case if g12 is nowhere
vanishing, if gAB|Na is a family of Riemannian metrics and if gμν is smooth on N1 and N2

and continuous across S ≡ N1 ∩ N2. We therefore need to impose the following continuity
conditions on S:

lim
x2→0

gAB|N1 = lim
x1→0

gAB|N2, (3.3a)

lim
x2→0

g12|N1 = lim
x1→0

g12|N2, (3.3b)

lim
x2→0

g1A|N1 = 0, lim
x1→0

g2A|N2 = 0, (3.3c)

lim
x2→0

g11|N1 = 0, lim
x1→0

g22|N2 = 0. (3.3d)

Let Hμ be the harmonicity vector, defined as

Hλ := gαβλ
αβ − W λ, with W λ := gαβ̂λ

αβ︸ ︷︷ ︸
=:Ŵ λ

+W̊ λ, (3.4)

where W̊ λ will be a vector depending only upon the coordinates, and determined by the initial
data in a way to be described below. (In principle, W̊ λ can be allowed to depend on the metric
as well, but not on derivatives of the metric.) To obtain a well-posed system of evolution
equations, we will impose the generalized wave-map gauge condition

Hλ = 0.

More precisely, we view the wave-map gauge constraints [27] as equations for the restriction
W̊ μ of W̊ μ to N1 and N2. We will solve those equations hierarchically. We emphasize that,
assuming (3.1), all components of the energy–momentum tensor restricted to N1 and N2 are
explicitly known since gμν and φ are.

We present the calculations on N1; the equations on N2 are obtained by interchanging
index 1 with index 2 in all the formulae.

Let Sμν denote the Einstein tensor. In the notation and terminology of [27], the first
constraint, arising from the equation S22 ≡ R22 = T 22 evaluated on N1, reads (see
[27, equation (6.11)])

−∂2τ + κτ − |σ |2 − τ 2

n − 1
= T 22, (3.5)

7

59



Class. Quantum Grav. 29 (2012) 145006 P T Chruściel and T-T Paetz

where τ and σ are defined as in (2.2) and (2.3), respectively. Indeed, using the formulae in
[27, appendix A], one finds

∂1
1
22 = ∂2

1
12 + (

1
12

)2 − 1
12

2
22 =⇒

S22 = ∂1
1
22 − ∂2

(
1

12 − A
2A

) + (
1

12 + A
2A

)
2

22 − (
1

12

)2 − A
2BB

2A

= − ∂2
A
2A + A

2A2
22 − A

2BB
2A

= − ∂2τ + τ2
22 − χA

BχB
A, (3.6)

where

χA
B := 1

2 gBC∂2gAC.

Here we adapt the point of view that the function κ is the value on N1 of the Christoffel
coefficient 2

22, and is part of the initial data. Hence, we view (3.5) as a constraint equation
linking gAB, κ , and the matter sources (if any).

In the region where τ has no zeros, equation (3.5) can be trivially solved for κ to give

κ = ∂2τ + 1
n−1τ 2 + |σ |2 + T 22

τ
. (3.7)

It follows that κ does not need to be included as part of initial data when τ has no zeros, and
then the constraint equation (3.5) can be replaced by the last equation, determining κ .

Equation (3.7) can still be used, by continuity, to determine κ on the closure of the set
where τ has no zeros, keeping in mind that the requirement of smoothness of the function so
determined imposes non-trivial constraints on the right-hand side. In any case, equation (3.7)
does not make sense if there are open regions where τ vanishes. It seems therefore best to
assume that κ is any smooth function on N1 such that (3.5) holds, and view that last equation
as a constraint equation relating κ , gAB and its derivatives, and the matter fields; similarly
on N2.

It should be kept in mind that once a candidate solution of the Einstein equations has been
constructed, one needs to verify that κ is indeed the value of 2

22 on N1. We will return to this
in (3.25).

We choose W̊ 1 to be

W̊ 1 := − Ŵ 1 − g12(2κ + τ ) − 2∂2g12. (3.8)

Note that the right-hand side is known, so this defines W̊ 1. By definition, this is the ∂1

component of W̊ μ in the coordinate system (x1, x2, xA). We will define the remaining
components of W̊ μ shortly, the resulting collection of functions transforming by definition
as a vector when changing coordinates.

From [27, appendix A], one then finds

2
22 = κ − 1

2 g12H1, (3.9)

and (3.6) together with (3.5) give

S22 − T 22 = − 1
2 g12H1τ. (3.10)

The corresponding constraint equation on N2 determines W̊ 2|N2 . We shall return to the question
of continuity at S of W̊ 1|N1∪N2 and of W̊ 2|N1∪N2 shortly.

The next constraint equation follows from S2A ≡ R2A = T 2A. From the formulae in [27,
appendix A], we find

∂1
1
2A = ∂A1

12 + 1
12

(
1

1A − 2
2A

) + B
12

1
AB − B

2A1
1B,

8
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which gives

S2A = ∂1
1
2A + ∂2

2
2A + ∂BB

2A − ∂A1
12 − ∂A2

22 − ∂AB
2B + 1

1BB
2A

+ 1
12

(
2

2A − 1
1A

) + B
2B2

2A + B
BCC

2A − 1
ABB

12 − B
ACC

1B

= ∂2
2
2A + ∂BB

2A − ∂A2
22 − ∂AB

2B + B
2B2

2A + B
BCC

2A − B
ACC

2B

= (∂2 + τ )2
2A + ∇̃BχA

B − ∂A2
22 − ∂Aτ, (3.11)

where ∇̃ is the covariant derivative associated with the Riemannian metric gAB. That leads us
to the equation

−1

2
(∂2 + τ )ξA + ∇̃Bσ B

A − n − 2

n − 1
∂Aτ − ∂Aκ = T 2A, (3.12)

where the field ξA denotes the restriction of the (rescaled) Christoffel coefficient −22
2A to N1.

We determine ξA by integrating (3.12), with the freedom to prescribe

ξ
N1
A := ξA(x2 = 0)

on S. (One should keep in mind that ξA here is unrelated to the corresponding field ξA on N2,
determined by an analogous equation where all quantities τ , σ , etc, are calculated using the
fields on N2.) We then define W̊ A through the formula

W̊ A := gAB[ξB + 2g12(∂2g1B − 2g1CσB
C − g1Bτ ) − g1B(W̊ 1 + Ŵ 1)] + gCD̃A

CD − Ŵ A; (3.13)

equivalently

ξA = − 2g12∂2g1A + 4g12g1BσA
B + 2g12g1Aτ + g1A(W̊ 1 + Ŵ 1)

+ gAB(W̊ B + Ŵ B) − gABgCD̃B
CD. (3.14)

This has been chosen so that, using the formulae in [27, appendix A and section 9],

S2A − T 2A = − 1
2 (∂2 + τ )(gABHB + g1AH1) + 1

2∂A(g12H1). (3.15)

Moreover, one finds (cf equation (10.35) in [27])

ξA = −22
2A − gABHB − g1AH1. (3.16)

On S, equation (3.13) takes the form

W̊ A|S = gAB
[
ξ

N1
B + 2g12∂2g1B

] + gBC(̃A
BC − ̂A

BC).

Keeping in mind the corresponding equation on N2,

W̊ A|S = gAB
[
ξ

N2
B + 2g12∂1g2B

] + gBC(̃A
BC − ̂A

BC),

the requirement of continuity of W̊ A|N1∪N2 leads to

ξ
N1
A − ξ

N2
A = 2g12(∂1g2A − ∂2g1A)|S ≡ 4ζA. (3.17)

Recall that the torsion one-form ζA has been defined in (2.12).
We continue with the equation S12 = T 12, or, equivalently,

gABRAB = −(2g12T 12 + g22T 22 + 2g2AT 2A) = gABT AB − T ,

which we handle in a manner similar to the previous equations. Using identities (10.33) and
(a corrected version of2) (10.36) in [27], we find that on N1, we have

gABRAB ≡ (
∂2 + 2

22 + τ
)(

2gAB2
AB + τg22

) − 2gAB2
2A2

2B − 2gAB∇̃A2
2B + R̃,

2 On the right-hand side of (10.36) in [27], in the conventions and notations there, a term τg11/2 is missing.
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and we are led to the equation

(∂2 + κ + τ )ζ + (∇̃A − 1
2ξA

)
ξA + R̃ = gABT AB − T , (3.18)

with ξA := gABξB, and where the quantity ζ denotes the restriction of

2
(
gAB2

AB + τg22
)

to N1. We integrate (3.18), viewed as a first-order ODE for ζ . The initial data on S are
determined by the requirement of continuity of W̊ 2 at S, which we choose to be

W̊ 2 := 1
2ζ − (

∂2 + κ + 1
2τ

)
ḡ22 − Ŵ 2. (3.19)

Indeed, recall that W̊ 2|S has already been calculated algebraically when analysing the first
constraint equation on N2, in exactly the same way as we calculated W̊ 1 in the first step of the
analysis above.

Similarly the initial data for the integration of the constraint which determines W̊ 1|N2 are
determined by the requirement of continuity of W̊ 1|N1∪N2 .

The choice (3.19) has been made so that

gABRAB−gABT AB + T =(
∂2 + κ + τ − 1

2 g12H1
)
(2H2 − g12g22H1) − 1

2ζg12H1

+ (∇̃A − ξA − 1
2 gABHB − 1

2 g1AH1)(HA + g1CgACH1). (3.20)

We note that our choice of W̊ 2 is equivalent to

ζ = 2gAB2
AB + τg22 + g12g22H1 − 2H2. (3.21)

Summarizing, given the fields κ , gμν and φ on N1 ∪ N2, satisfying (3.17), and the sum

ξ
N1
A + ξ

N2
A on S, we have found a unique continuous vector field W̊ on N1 ∪ N2, smooth up-

to-boundary on N1 and N2, so that (3.10), (3.15) and (3.20) hold on N1 ∪ N2. Letting W̊ be
any smooth vector field on M which coincides with W̊ on N1 ∪ N2, and assuming that the
reduced Einstein equations (see (3.29) below) can be complemented by well-posed evolution
equations for the matter fields, we obtain a metric, solution of the Cauchy problem for the
reduced Einstein equations, in a future neighbourhood of S.

However, the metric so obtained will solve the full Einstein equations if and only if [27]
Hμ vanishes on N1 ∪ N2, so we need to ensure that this condition holds. Note that at this stage,
a smooth metric g, satisfying the reduced Einstein equations, and a smooth vector field W μ are
known to the future of N1 ∪ N2 in some neighbourhood of S, and thus Hμ is a known smooth
vector field there.

By [27, section 7.6], H1 will vanish on N1 if and only if H1 vanishes on S. Using (3.8)
and (3.9) together with the equations in [27, appendix A], we find

H1|S = (g12)2∂1g22 + 2g12κ + 2∂2g12. (3.22)

We conclude that H1|N1 will vanish if and only if the initial data g22 on N2 have the property
that the derivative ∂1g22 on S satisfies

∂1g22|S = 2(∂2g12 − g12κN1 ) ⇐⇒ 2
22|S = κN1 , (3.23)

where, to avoid ambiguities, we denote by κNa the function κ associated with the hypersurface
Na, etc. Similarly, H2|N2 will vanish if and only if we choose g11 on N1 so that

∂2g11|S = 2(∂1g12 − g12κN2 ) ⇐⇒ 1
11|S = κN2 . (3.24)

With those choices, we have H1|S = H2|S = 0, and the arguments in [27] show that
H1|N2 = H2|N1 = 0 as well.

10
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We continue with H
A
. Then by equation (3.16), we have

ξ
N1
A = −(

22
2A + gABHB + g1AH1

)∣∣
S

= −(
g12

(
∂Ag12 − ∂1g2A + ∂2g1A

) + gABHB + g1AH1
)∣∣

S,

ξ
N2
A = −(

21
1A + gABHB + g1AH1

)∣∣
S

= −(
g12(∂Ag12 − ∂2g1A + ∂1g2A

) + gABHB + g1AH1)∣∣
S,

and the conditions HA|S = 0 and H1|S = 0 determine ξ
Na
A in terms of the remaining data. Note

that (3.17) is then automatically satisfied, and that we loose the freedom to prescribe ξ
N1
A +ξ

N2
A .

It remains to show that our choice of the parameterization of the null rays is consistent,
i.e. we have to make sure that the relations 2

22|N1 = κN1 and 1
11|N2 = κN2 hold. This follows

trivially from the vanishing of the wave-gauge vector H due to the identities

H1|N1 ≡ 2g12
(
κ − 2

22

)
and H2|N2 ≡ 2g12

(
κ − 1

11

)
. (3.25)

Similarly, the vanishing of H1 and HA shows via (3.16) that the identification of ξA with the
rescaled Christoffel coefficient −22

2A on N1 and −21
1A on N2 is consistent. The vanishing

of H1 and H2 together with the identity (3.21) implies that on N1 the field ζ indeed represents
the value of 2gAB2

AB + τg22, and the corresponding field on N2 represents the value of
2gAB1

AB + τg11 there.
In particular, the above provides a new and simple integration scheme for the vacuum

Einstein equations, where all the metric functions are freely prescribable on N1 ∪ N2:

Theorem 3.1. Given any continuous functions (κ, gμν ) on N1 ∪ N2 such that

g|N1 = g22(dx2)2 + 2g12 dx1 dx2 + 2g2A dx2 dxA + gAB dxA dxB, (3.26a)

g|N2 = g11(dx1)2 + 2g12 dx1 dx2 + 2g1A dx1 dxA + gAB dxA dxB, (3.26b)

smooth up-to-boundary on N1 and N2, and satisfying (3.23)–(3.24) together with the vacuum
constraint equations (here κN1 := κ|N1 , etc)

−∂2τN1 + κN1τN1 − |σN1 |2 − τ 2
N1

n − 1
= 0 on N1, (3.27a)

−∂1τN2 + κN2τN2 − |σN2 |2 − τ 2
N2

n − 1
= 0 on N2, (3.27b)

there exists a smooth metric defined on some neighbourhood of S, solution of the vacuum
Einstein equations to the future of N1 ∪ N2.

Note that all the conditions are necessary. To see this, let g be any metric solving the
Einstein equations to the future of N1 ∪ N2, with Na characteristic. We can introduce adapted
coordinates near N1∪N2 so that (3.26a) and (3.26b) hold. Constraints (3.27a) and (3.27b) follow
then from the Einstein equations [27], while (3.23) and (3.24) follow from our calculations
above.

Proof. While the main elements of the proof have already been given, to avoid ambiguities,
we summarize the argument: let (κ, g) be given as above. Set

M := [0,∞) × [0,∞) × S,

where the first [0,∞) factor refers to the variable x1, and the second to x2. On M let ĝ be the
metric ĝ = 2dx1dx2 + φABdxAdxB, where φABdxAdxB is a Riemannian metric on S. Let W̊ μ be
constructed as above. Let W μ be any smooth extension of W μ to M , and let g be the solution
of the wave-map-reduced Einstein equations R(H)

αβ = 0, with initial data g, where

R(H)
αβ := Rαβ − 1

2 (gαλD̂βHλ + gβλD̂αHλ), (3.28)

11
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with Hμ defined by (3.4), and where D̂ is the Lévi-Cività covariant derivative in the metric
ĝ. (It follows from [33, page 163] that R(H)

αβ is a quasi-linear, quasi-diagonal operator on g,
tensor-valued, depending on ĝ, of the form

R(H)
αβ ≡ − 1

2 gλμD̂λD̂μgαβ + f̂ [g, D̂g]αβ, (3.29)

where f̂ [g, D̂g]αβ is a tensor quadratic in D̂g with coefficients depending upon g, ĝ, W̊ , D̂Ŵ and
D̂W̊ ; the existence of solutions of this problem follows from [14].) As H

μ = 0 by construction,
a standard argument shows that Hμ ≡ 0, and so g is a solution of the vacuum Einstein equations
in a suitable neighbourhood of S in M . �

3.2. The light-cone

Now let us consider the same problem on a light-cone CO with vertex O. We prescribe the
metric functions gμν on the cone in adapted null coordinates (cf [27]) as well as φ and, if
τ has zeros, κ (note that τ ≡ 1

2 gAB∂1gAB has no zeros in a sufficiently small neighbourhood
around the vertex). In this section, the notations and conventions from [27] are used again; in
particular, the x1-coordinate will be frequently denoted by r, and the light-cone is given as the
surface {x0 ≡ u = 0}.

For CO to be a characteristic cone, we need to have g11 = 0 = g1A in our adapted
coordinates. To end up with a Lorentzian metric, the component ν0 ≡ g01 has to be nowhere
vanishing, while gAB has to be a family of Riemannian metrics on Sn−1. We consider initial
data which satisfy

g00 = −1 + O(r2), ∂rg00 = O(r), (3.30a)

ν0 = 1 + O(r2), ∂rν0 = O(r), (3.30b)

νA = O(r3), ∂rνA = O(r2), (3.30c)

gAB = r2sAB + O2(r
4), ∂r∂CgAB = 2r∂CsAB + O1(r

3), (3.30d)

∂2
r ∂C∂DgAB = 2∂C∂DsAB+ O(r2), (3.30e)

for small r, where f = On(rα ) means that ∂ i
r∂

β

A f = O(rα−i) for i + |β| � n. The tensor sAB

denotes the round sphere metric.
These conditions ensure that the metric is of the same form near the vertex as in [27]. The

assumptions concerning the derivatives, which are compatible with relations (4.41)–(4.51) in
[27], are made to compute the behaviour of W̊ near the vertex3: although we do not attempt
to tackle the regularity problem at the vertex here, as a necessary condition we want to make
sure that W̊ remains bounded near the vertex, which in our adapted coordinates means

W̊ 0 = O(1), W̊ 1 = O(1), W̊ A = O(r−1).

In fact it turns out that with (3.30a)–(3.30e) and the subsequent assumptions on the target
metric and the energy–momentum tensor, the vector W̊ goes to zero.

We present the scheme for an arbitrary target metric ĝ that satisfies the relations

ν̂0 = 1 + O1(r
2), ν̂A = O1(r

3), ĝ00 = −1 + O(r2), (3.31a)

∂rĝ00 = O(r), ĝAB = r2sAB + O1(r
4), (3.31b)

3 It is conceivable that a larger class of initial data turns out to be compatible with regularity at the vertex.

12
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∂0ĝ11 = O(r), ∂0ĝ1A = O(r2), gAB∂0ĝAB = O(r). (3.31c)

Again, these assumptions are to ensure that the behaviour of W̊ can be determined at the
vertex.

Additionally, we take a look at two particular target metrics: a Minkowski target ĝ = η as
in [27] and a target metric ĝ = C which satisfies C = g and which simplifies the expressions
for the components of W̊ .

Let us now solve the constraint equations. The first constraint yields (supposing that τ

has no zeros, the case where it does have zeros can be treated as the case of two transversally
intersecting hypersurfaces)

κ = ∂1τ + 1
n−1τ 2 + |σ |2 + T 11

τ
(3.32)

and

W̊ 0 = − Ŵ 0 − ν0(2κ + τ ) − 2∂1ν
0.

If we assume4

T 11 = O(1), ∂AT 11 = O(1), ∂A∂BT 11 = O(1),

we obtain with our assumptions (3.30a)–(3.30e) and with assumptions (3.31a) and (3.31b)
concerning the target metric

κ = O(r), ∂Aκ = O(r), ∂A∂Bκ = O(r),

and

W̊ 0 = O(r).

Let us write
η= for an equality which holds when ĝ is the Minkowski metric, with an

obvious similar meaning for
C=. Then

Ŵ 0 η= −rgABsAB,

and also

W̊ 0 C= 2ν0
(
̂1

11 − κ
)
.

From the second constraint equation, one first determines ξA. Recall that this is a first-order
ODE. The integration constant which arises is determined by the requirement of finiteness of
ξA at the vertex (cf [27, section 9.2]),

ξA = 2
e− ∫ r

1 (τ− n−1
r̃ ) dr̃

rn−1

∫ r

0
r̃n−1e

∫ r̃
1 (τ− n−1

˜̃r ) d ˜̃r
(

∇̃BσA
B − n − 2

n − 1
∂Aτ − ∂Aκ − T 1A

)
dr̃. (3.33)

If we assume

T 1A = O(r), ∂BT 1A = O(r)

and employ (3.30a)–(3.31c), we find

ξA = O1(r
2).

4 These assumptions on the energy–momentum tensor, as well as those which will be made later, will hold for a tensor
Tμν which has bounded components in coordinates which are well behaved near the vertex; note that the (u, r, xA)

coordinates are singular at the vertex.
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The function W̊ A can then be computed algebraically,

W̊ A = gABξB + 2ν0gAB(∂1νB − 2νCχB
C) − νBgAB(W̊ 0 + Ŵ 0) + gBC̃A

BC − Ŵ A

= O(1),

where

χA
B ≡ 1

2 gBC∂1gAC.

In particular,

Ŵ A η= − 2

r
ν0gABg0B + gBCSA

BC,

and

W̊ A C= 2g1A
(
̂1

11 − κ
) + gAB

(
2̂1

1B + ξB
)
.

The functions SA
BC denote the Christoffel coefficients associated with the round sphere metric.

Finally, we have a first-order equation for

ζ = (2∂1 + 2κ + τ )g11 + 2W̊ 1 + 2Ŵ 1. (3.34)

It reads

(∂1 + κ + τ )ζ + R̃ + gAB
(∇̃AξB − 1

2ξAξB) + g11T 11 + 2g1AT 1A + 2ν0T 01 = 0. (3.35)

This can be integrated,

ζ = e− ∫ r
1 (κ+τ− n−1

r̃ ) dr̃

rn−1

[
c −

∫ r

0
r̃n−1 e

∫ r̃
1 (κ+τ− n−1

˜̃r ) d ˜̃r
(

R̃ + gAB∇̃AξB

− 1

2
gABξAξB + g11T 11 + 2g1AT 1A + 2ν0T 01

)
dr̃

]
,

where c is an integration constant.
Using again relations (3.30a)–(3.30e) and our assumptions on the target metric, we deduce

that

g11 = 1 + O(r2), ∂1g11 = O(r),

R̃ = (n − 1)(n − 2)r−2 + O(1).

Assuming that T 01 = O(1), we find that a general solution ζ has a term of order r−(n−1) due
to which W̊ 1 would not converge at the vertex. We thus set c = 0. That yields

ζ = −(n − 1)r−1 + O(1).

Inserting this result into (3.34), we end up with

W̊ 1 = O(r).

For that we employed

Ŵ 1 = −(n − 1)r−1 + O(r).

In the special case of a Minkowski target, we have

Ŵ 1 η≡ Ŵ 0 η≡ −rgABsAB.

Moreover, we find

W̊ 1 C= 1
2ζ − gAB̂1

AB − 1
2τg11 + g11

(
̂1

11 − κ
)
.
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Let us assume that the vector field W̊ λ can be extended to a smooth spacetime vector field
W̊ λ on the spacetime manifold M . If we further assume, as in the case of two transversally
intersecting null hypersurfaces, that the reduced Einstein equations can be complemented by
well-posed evolution equations for the matter fields, for sufficiently well-behaved initial data,
we obtain [34] a solution of the Cauchy problem in a future neighbourhood of the tip of the
cone. The metric obtained this way solves the full Einstein equations if and only if H vanishes
on CO, as shown in sections 7.6, 9.3 and 11.3 of [27].

Let us assume now that the initial data (κ, gμν ) and a target metric ĝ have been specified.
In order to prove that the wave-map gauge vector Hλ vanishes on the cone, one first establishes
that it is bounded near the vertex. In our adapted coordinates, that means

H0 = O(1), H1 = O(1), HA = O(r−1). (3.36)

If we assume that those transverse derivatives which appear in the generalized wave-map
gauge condition H = 0 satisfy (compare [27] for a justification under the conditions there)5

∂0g11 = O(r), ∂0g1A = O(r2), gAB∂0gAB = O(r),

and the initial data fulfil, additional to (3.30a)–(3.30e), the relations

∂Aν0 = O(r2), ∂BνA = O(r3),

then one finds (using (3.30a)–(3.31c)), say in vacuum,

H
0 = O(r), H

1 = O(r), H
A = O(1),

which more than suffices for (3.36).

4. A geometric perspective

4.1. One constraint equation

Let us present a more geometric description of initial data on a characteristic surface.
A triple (N , g̃, κ ) will be called a characteristic initial-data set if N is a smooth n-

dimensional manifold, n � 3, equipped with a degenerate quadratic form g̃ of signature
(0,+, . . . ,+), as well as a connection form κ on the one-dimensional degeneracy bundle
Ker g̃, understood as a bundle above its own integral curves. The data are moreover required
to satisfy a constraint equation, as follows.

We can always locally introduce an adapted coordinate system where Ker g̃ is
Span ∂1.6 (There only remains the freedom of coordinate transformations of the form
(x1, xA) �→ (x̄1(x1, xA), x̄B(xA)).) Then the connection form κ reduces to one connection
coefficient:

∇∂1∂1 = κ∂1. (4.1)

In this coordinate system, we have g̃ = gAB dxA dxB. Denoting by gAB the matrix inverse to gAB,
set

χB
A := 1

2 gAC∂1gCB, τ := χA
A. (4.2)

Under redefinitions of the adapted coordinates, the field τ transforms as a covector, which
leads to the natural covariant derivative operator

∇1τ := (∂1 − κ)τ. (4.3)

5 Note that these transverse derivatives are obtained from the solution g of the reduced Einstein equations with initial
data g. Assumptions (3.36) are known to hold e.g. if one uses the wave-map gauge W̊μ = 0 near the vertex [27].
6 This vector was denoted by ∂r or ∂1 in section 3.2, by ∂1 in section 2 when considering the null hypersurface N2
and by ∂2 in section 2 when considering the null hypersurface N1.
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With those definitions, the characteristic constraint equation reads

∇1τ = −χB
AχA

B − ρ ⇐⇒ ∇1τ + 1

n − 1
τ 2 = −σB

AσA
B − ρ, (4.4)

where ρ represents the component T11|N of the energy–momentum tensor of the associated
spacetime (M , g) and, as before, σ is the trace-free part of χ .

A triple (N , g̃, κ ) satisfying (4.2) with ρ = 0 will be called vacuum characteristic initial
data.

An initial-data set on a light-cone is a characteristic data set where N is a star-shaped
neighbourhood of the origin in Rn from which the origin has been removed, with the tangents to
the half-rays from the origin lying in the kernel of g̃, and with (g̃, κ ) having specific behaviour
at the origin as described e.g. in [27].

The reader is referred to [35] for a clear discussion of the geometry of null hypersurfaces,
and to [36–38] for a further analysis of the objects involved.

4.2. Dim-N constraint equations

An alternative geometric point of view, closely related to that in [37], is a slight variation of
the above, as follows: instead of considering a connection on the degeneracy bundle Ker g̃,
viewed as a bundle over the integral curves of Ker g̃, one considers a connection on this bundle
viewed as a bundle over N . For this, one needs the connection coefficients κ and ξA, defined
by the equations

∇∂1∂1 = κ∂1, ∇∂A∂1 = − 1
2ξA∂1 + χA

B∂B. (4.5)

The coefficient κ satisfies the same constraint equation as before. The remaining coefficients
ξA are obtained from (3.12), in notation adapted to the current setting:

−1

2
(∂1 + τ )ξA + ∇̃Bσ B

A − n − 2

n − 1
∂Aτ − ∂Aκ = T 1A. (4.6)

The fact that this system of ODEs can be solved in a rather straightforward way (compare
(3.33)) given κ and gAB should not prevent one to view this equation as a constraint on the
initial data.

A useful observation here is that in [37, appendix C], where it is shown that (4.4) and
(4.6) can be obtained from the usual vector constraint equation on a spacelike hypersurface
by a limiting process, when considering a family of spacelike hypersurfaces which become
null in the limit.

The alert reader will note that the constraint equations (4.4) and (4.6) exhaust all tangential
components of Tμν�

ν . We are not aware of a geometric interpretation of equation (3.35),
which involves the remaining, transverse, component of Tμν�

ν . Pursuing the analogy with the
spacelike Cauchy problem, one could be tempted to think of this equation as corresponding to
the scalar spacelike constraint equation. However, this analogy is wrong since it is shown in
[37, appendix C] that the scalar constraint equation and one of the vector constraint equations
degenerate to the same single equation when a family of spacelike hypersurfaces degenerates
to a characteristic one.

4.3. Uniqueness of solutions

Given a vacuum characteristic data set on a light-cone, or two vacuum characteristic data sets
with a common boundary S (where some further data might have to be prescribed, as made
clear in previous sections), one can impose various supplementary conditions to construct an
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associated spacetime metric. For example, one can redefine x1 so that κ = 0 and impose wave-
coordinate conditions or wave-map coordinate conditions in the light-cone case, to obtain the
required spacetime metric, or one can prescribe the remaining metric functions as in section
3, with appropriate conditions at the tip of the light-cone or at the intersection surface. In
[27, section 7.1], a scheme is presented where g12|N is prescribed, together with wave-map
conditions. It is obvious that there exist further schemes which are mixtures of the above and
which might be more appropriate for some specific physical situations, or for matter fields
with exotic coupling to gravity.

Rendall’s analysis, or that in [27], makes it clear that every vacuum characteristic data set
as defined in section 4.1 leads to a unique, up to isometry, associated spacetime, either near the
tip of the light-cone, or near the intersection surface S. Here uniqueness is understood locally,
though again it is clear that unique maximal globally hyperbolic developments should exist in
the current context.

5. Solving the constraint equation

There are several ways of solving (4.4). The aim of this section is to present those methods, in
vacuum. One should keep in mind that some further specific hypotheses on the matter fields
might have to be made in the schemes below for non-vacuum initial data.

5.1. Solving for κ

For any g̃ for which τ has no zeros, equations (4.3) and (4.4) can be solved algebraically for
κ . This appears to be the most natural choice near the tip of a light-cone, where τ is nowhere
vanishing.

5.2. τ and [gAB] as free data

Another way of solving (4.4) is to prescribe [gAB] and the mean null extrinsic curvature τ . Here
one can simply choose τ to be nowhere vanishing such that (4.4) is solvable for κ . Regularity
conditions on τ in the light-cone case are discussed in an appendix.

5.3. κ = 0

Rendall’s proposal is to reparameterize the characteristic curves so that κ = 0; equation (4.4)
can then be rewritten as a linear equation for a conformal factor, say �, such that gAB = �2γAB,
where γAB = [gAB] is freely prescribed; compare (2.5).

5.4. κ and [gAB] as free data

In some situations, it might be convenient not to assume that κ = 0, but retain a version of the
conformal approach of Rendall. This requires only a few minor modifications in section 2: it
suffices to replace (2.4) by (3.5), (2.6) by (3.12), (2.9) by (3.19) and (2.8) by (3.18) with T μν ,

W̊ μ and Ŵ μ set to zero. As a matter of course, the corresponding equations on N2 have to be
adjusted analogously.

By an appropriate choice of κ , i.e. by choosing an adapted parameterization of the null
rays, equation (3.5), which determines τ , can sometimes be simplified; an example will be
given in the following section.
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5.5. κ = τ/(n − 1)

An elegant approach is due to Hayward [25] who, in space dimension n = 3, proposes to use
a parameterization where κ = τ/(n − 1). Then, in vacuum, (4.4) becomes a linear equation
for τ , in terms of the trace-free part of χ which depends only upon the conformal class of g̃,

∂1τ + |σ |2 = 0. (5.1)

The solution τ can then be used to determine a conformal factor �2 relating gAB to a freely
prescribed representative γAB of the conformal class,

∂1� − �

n − 1

(
τ − 1

2
γ AB∂1γAB

)
= 0.

In the case where data are given on a light-cone, one has to face the question of boundary
conditions for (5.1), of the (necessary and/or sufficient) conditions on the data which will
guarantee regularity at the vertex and a possible relation between those.

To address those questions, we start by comparing the κ = τ/(n − 1)-gauge with the
geometric κ̊ = 0 gauge. Those quantities computed in the latter gauge will be labelled by˚in
what follows. Both gauges are related by an angle-dependent rescaling of the coordinate r:
using the transformation law of the Christoffel symbols, we find

τ/(n − 1) = κ = 1
11 = ∂r

∂ r̊
̊1

11︸︷︷︸
=κ̊=0

+∂r

∂ r̊

∂2r̊

∂r2
(5.2)

for r = r(r̊, x̊A). That yields

r̊(r) =
∫ r

e
1

n−1

∫ r1 τ (r2) dr2 dr1 =
∫ r

e− 1
n−1

∫ r1
∫ r2 |σ (r3)|2 dr3 dr2 dr1, (5.3)

where we have suppressed any angle dependence, and left unspecified any potential constants
of integration. This defines the desired local diffeomorphism.

As an example (and to obtain some intuition for this gauge scheme), consider the flat case
where |σ |2 ≡ 0 and for which we can compute everything explicitly. There is no difficulty in
determining the transformed data which satisfy |σ̊ |2 ≡ 0. The general solution of (5.1) is

τ (r, xA) = τ0(x
A).

Now we can explicitly compute (5.3),

r̊(r) = A(1) + A(2)e
τ0

n−1 r (5.4)

for some integration functions A(i), with A(2) and τ0 nowhere vanishing since we seek a map
r �→ r̊ which is a diffeomorphism on each generator. Then

τ̊ (r̊) =
(

∂ r̊

∂r

)−1

τ (r(r̊)) = n − 1

r̊ − A(1)
. (5.5)

We choose, as usual, the affine parameter r̊ in such a way that {r̊ = 0} represents the vertex and
such that τ̊ = n−1

r̊ . This leads to A(1) = 0. Consequently, we either have to place the vertex at
r = −∞ and choose a positive τ0 or at r = +∞ with a negative τ0 (w.l.o.g. we shall prefer the
first alternative). We conclude that in the κ = τ/(n − 1)-gauge, we need to prescribe initial
data for all r ∈ R.

The regularity condition for τ̊ translated into the κ = τ/(n − 1)-gauge does not lead
to any boundary conditions for τ , except for the requirement of constant sign. It determines
instead the position of the vertex, which in the new coordinates is located at infinity.
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Let us come back to the general case, which we tackle from the other side, namely by
starting in the κ̊ = 0-gauge. We use the identity ∂2 r̊

∂r2 = − (
∂ r̊
∂r

)3 ∂2r
∂ r̊2 to rewrite (5.2),

∂ r̊

∂r

τ̊

n − 1
= τ

n − 1
= −

(
∂ r̊

∂r

)2
∂2r

∂ r̊2

⇐⇒ ∂2r

∂ r̊2
+ τ̊

n − 1

∂r

∂ r̊
= 0

⇐⇒ r(r̊) =
∫ r̊

e− 1
n−1

∫ r̊1 τ̊ (r̊2 ) dr̊2 dr̊1. (5.6)

This provides the inverse coordinate transformation.
Now, for a smooth metric, in adapted null coordinates which are constructed starting from

normal coordinates, the generators are affinely parameterized and we have

τ̊ = n − 1

r̊
+ O(r̊). (5.7)

But this behaviour remains unchanged under all reparameterizations of the generators which
preserve the affine parameterization as well as the position of the vertex. It follows that (5.7)
holds for all smooth metrics in the gauge κ̊ = 0.

From (5.6) and (5.7), we obtain

r(r̊) = A(1) + A(2) log r̊ + O(r̊2), A(2) �= 0 ∀xA.

If we start in the κ̊ = 0-gauge, with the vertex at r̊ = 0, and transform into the κ = τ/(n − 1)-
gauge, then, similarly to Minkowski spacetime, the vertex is shifted to, w.l.o.g., r = −∞. Thus,
spacetime regularity forces the vertex to be located at infinity in the κ = τ/(n − 1)-gauge.

5.6. The shear as free data

Following Christodoulou [28], we let the second fundamental form χ of a null hypersurface
N with null tangent � be defined as

χ(X,Y ) = g(∇X�,Y ), (5.8)

where X,Y ∈ TN . Choosing � to be ∂r, we then have, using [27, appendix A],

χAB = g(∇A∂r, ∂B) = gμB
μ

Ar = gCB
C
Ar + guB

u
Ar

= 1

2
∂rgAB, (5.9a)

χrr = g(∇r∂r, ∂r) = 0, (5.9b)

χAr = g(∇A∂r, ∂r) = gμr
μ

Ar = gur
u
rr = 0. (5.9c)

Let σ be the trace-free part of χ on the level sets of r:

σAB := χAB − 1

n − 1
gCDχCDgAB ;

σ is often called the shear tensor of N . It has been proposed (cf, e.g., [28]) to consider σ

as the free gravitational data at N . There is an apparent problem with this proposal, because
to define a trace-free tensor, one needs a conformal metric; but if a conformal class [̃g(r)] is
given on N , there does not seem to be any need to supplement this class with σ . This issue
can be taken care of by working in a frame formalism, as follows.

Let N be an n-dimensional manifold threaded by a family of curves, which we call
characteristic curves or generators. We assume moreover that each curve is equipped with
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a connection: if, in local coordinates, ∂r is tangent to the curves, then we let κ denote the
corresponding connection coefficient, as in (4.1).

Suppose, for the moment, that N is a characteristic hypersurface embedded as the
submanifold {u = 0} in a spacetime M . Choose some local coordinates so that ∂r is tangent
to the characteristic curves of N . Let ea denote a basis of TM along N such that

∇rea = 0. (5.10)

Let S denote an (n − 1)-dimensional submanifold of N (possibly, but not necessarily, its
boundary) which intersects the generators transversally. We will further require on S that e0 is
null, and that for a = 2, . . . , n, the family of vectors ea is orthonormal. These properties will
then hold along all those generators that meet S.

Let xA be the local coordinates on S; we propagate those along the generators of N to a
neighbourhood U ⊂ N of S by requiring L∂r x

A = 0.
We choose e1 ∼ ∂r at S; equation (4.1) implies then that this will hold throughout U :

e1 = e1
r∂r on U . (5.11)

We choose the eas, a = 2, . . . n, to be tangent to S; since TN coincides with e⊥
0 , the eas,

a = 2, . . . n, will remain tangent to N :

ea = ea
r∂r + ea

B∂B on U , a = 2, . . . , n. (5.12)

On S, we choose the vector e0 to be null, orthogonal to S, with

g(e0, e1) = 1. (5.13)

Let {θa}a=0,1,...,n, be a spacetime coframe, defined on U ⊂ N , dual to the frame {ea}a=0,1,...,n.
From what has been said, we have

g = θ0 ⊗ θ1 + θ1 ⊗ θ0 + θ2 ⊗ θ2 + · · · + θn ⊗ θn︸ ︷︷ ︸
=:ηabθaθb

. (5.14)

By construction, the one-forms θa are covariantly constant along the generators of N :

∇rθ
a = 0. (5.15)

Here ∇ is understood as the covariant-derivative operator acting on one-forms.
Again by construction, θ0 annihilates TN ; thus, θ0 ∼ du along N :

θ0 = θ0
u du on U . (5.16)

We further note that

θa(∂r) = 0 on U for a = 2, . . . , n. (5.17)

To see this, recall that ∂r is orthogonal to ∂A; hence,

0 = g(∂r, ∂A) = ηabθ
a(∂r)θ

b(∂B) =
N∑

a=2

θa(∂r)θ
a(∂B).

The result follows now from the fact that the (n − 1) × (n − 1) matrix (θa(∂B))a�2 is non-
degenerate.

We would like to calculate g̃ := gAB dxA dxB using the covectors θa. For this, note that
(5.14) and (5.16) imply

gAB =
N∑

a=2

θa(∂A)θa(∂B). (5.18)
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Thus, to determine g̃ it suffices to know the components (θa
B := θa(∂B))a�2. Now, using

(5.17) together with [27, appendix A], we have for a � 2

0 = ∇rθ
a

B = ∂rθ
a

B − 
μ

rBθa
μ = ∂rθ

a
B − 1

2 gAC∂rgCBθa
A. (5.19)

There holds thus the following evolution equation for (θa
B)a�2:

∂rθ
a

B − gACχCBθa
A = 0, (5.20)

where gAC denotes the matrix inverse to
∑N

a=2 θa
Aθa

B.
Let, as before, � = ∂r and define

Bμν := ∇μ�ν. (5.21)

Let Bab denote the frame components of B:

Bab = ea
μeb

νBμν ⇐⇒ Bμν = θa(∂μ)θb(∂ν )Bab. (5.22)

It follows from definition (5.8) that χ encodes the information on components of B in directions
tangent to N :

χAB = BAB, χrr = Brr = 0, χAr = BAr = 0. (5.23)

The key distinction between B and χ is that B has components along directions transverse to
N , while χ has not. Also note that for a, b � 1 the frame components Bab only involve the
coordinate components of Bμν tangential to N , so the frame formula

χab = Bab, a, b � 1,

is geometrically sensible.
The last two equations in (5.23) give

χAC =
n∑

a,b=2

θa
Aθb

CBab ≡
n∑

a,b=2

θa
Aθb

Cχab, (5.24)

which allows us to rewrite (5.20) as

∂rθ
a

B −
n∑

b,c=2

gACθb
Bθ c

Cχbcθ
a

A = 0. (5.25)

Now, for a, c � 2,

ηac = gμνθa
μθ c

ν = gACθa
Aθ c

C, (5.26)

which leads to

∂rθ
a

B −
n∑

b,c=2

ηacθb
Bχbc = 0. (5.27)

This equation leads naturally to the following picture, assuming for simplicity vacuum Einstein
equations. Consider, first, two null transversely intersecting hypersurfaces N1 and N2, with
N1 ∩N2 = S. For a, b � 2, let ηab be 1 when a and b coincide, and 0 otherwise. In addition to
κ , the gravitational data on N = N1 ∪N2 can be encoded in a field of symmetric η-trace-free
(n − 1) × (n − 1) matrices σab, a, b = 2, . . . , n.

σab = σba, ηabσab = 0.

Let τ be a solution of the equation

(∂r − κ)τ + τ 2

n − 1
+ |σ |2η = 0, where |σ |2η := ηacηbdσabσcd . (5.28)
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There remains the freedom to prescribe τ ≡ gABχAB = ∑n
a,b=2 ηabχab on S (one such function

for each surface N1 and N2). Define

χab = σab + τ

n − 1
ηab. (5.29)

Solving (5.27) for θa
B along the generators of N1 and N2, we can calculate gAB on N from

(5.18), as long as the determinant of the matrix (θa
B)a�2 does not vanish (which will be the

case in a neighbourhood of S). Here one has the freedom of prescribing θa
B on S for a � 2.

The characteristic constraint equation Rμν�
μ�ν = 0 holds by construction. Indeed, the relation

σab = ea
Aeb

BσAB, a, b � 2, can be justified in an analogous manner as equation (5.24). That
gives, using (5.26), with a, b, c, d � 2,

|σ |2η ≡ ηacηbdσabσcd = gACθa
Aθ c

CgBDθb
Bθd

Dea
Eeb

FσEF ec
Ged

HσGH

= gACgBDσABσCD ≡ |σ |2,
and the assertion follows immediately.

We can now apply any of the methods described previously (e.g., Rendall’s original
method if κ = 0) to obtain a solution of the characteristic Cauchy problem to the future
of N .7

One should keep in mind the following: prescribing the data ea
A|S, or equivalently θa

B|S,
determines the metric gAB|S on S. There is a supplementary freedom of making an O(n − 1)-
rotation of the frame:

ea
A|S(xA) �→ ωb

a(x
A)eb

A|S(xA),

where the ωb
a(xA)s are O(n − 1)-matrices. Any such rotation needs to be reflected in the σabs:

σab(r, xA) �→ ωc
a(x

A)ωd
b(x

A)σcd(r, xA).

So in this construction, σab undergoes gauge transformations which are constant along the
generators, and are thus non-local in this sense.

In the case of a light-cone, the above construction can be implemented by first choosing
an orthonormal coframe φ̊a ≡ φ̊a

A dxA, a � 2, for the unit round metric sAB dxA dxB on Sn−1.
The solutions θa := rφa ≡ rφa

A dxA, a � 2, of (5.27) are then chosen as the unique solutions
asymptotic to rφ̊a. It would be of interest to settle the question, ignored here, of sufficient and
necessary conditions on σab so that the resulting initial data on the light-cone can be realized
by restricting a smooth spacetime metric to the light-cone.

5.7. Friedrich’s free data

In [19, 39], Friedrich proposes alternative initial data on N , based on the identity8

∂2
r gAB − κ∂rgAB − 1

2 gCD∂rgAC∂rgBD = −2RArBr; (5.30)

equivalently

∂rBAB − κBAB − gCDBACBBD = −RArBr. (5.31)

Equation (5.30) shows that the component RArBr of the Riemann tensor can be calculated in
terms of κ and the field gAB.

7 Note that prescribing σab and κ is equivalent to prescribing χab as primary data. If we assume for simplicity that the
η-trace of χab is nowhere vanishing, one can then determine κ from (5.28) and continue as described in the paragraph
following (5.29). One could also consider this procedure in an adapted frame: from χAB one determines successively
gAB, τ and κ . However, since the gAB-trace of χ is then not known a priori, it is not clear how to satisfy constraint
(5.28).
8 This equation reduces to the usual Riccati equation (cf, e.g., [35]) satisfied by the null extrinsic curvature tensor
when κ = 0. We are grateful to José-Maria Martı́n-Garcia for providing the general version of that equation.
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Alternatively, given the fields CArBr, ρ ≡ T rr and κ , together with suitable boundary
conditions, one can solve (5.30) to determine gAB. So in spacetime dimension 4, Friedrich
[19] proposes to use frame components of CArBr as the free data on N . There is, however, a
problem, in that CArBr is traceless,

0 = gμνCμrνr = gACCArCr.

So this condition has to be built-in into the formalism. But, as in the previous section, the
tracelessness condition does not seemingly make sense unless the inverse metric gAB, or at
least its conformal class, is known.

This issue can again be taken care of by a frame formalism, whatever the dimension, as
follows: let the orthonormal frame ea, a = 0, . . . , n, and its dual coframe θa be as in the last
section. The property that the frame is parallel along the generators implies

∂rea
B = −B

rCea
C = −gBABACea

C for a � 2. (5.32)

We then have, for a, b � 2,

∂rBab = ∂r
(
ea

μeb
νBμν

)
= ∂r

(
ea

A
)
eb

CBAC + ea
A∂r

(
eb

C
)
BAC + ea

Aeb
C∂rBAC

= − gADBDEea
Eeb

CBAC − ea
AgCDBDEeb

EBAC

+ ea
Aeb

C(κBAC + gEDBAEBCD − RArCr)

= − ea
Aeb

EgCDBACBDE + κBab − ea
Aeb

BRArBr. (5.33)

Using

gCD = ηcdec
Ced

D =
n∑

c,d=2

ηcdec
Ced

D,

we conclude that

∂rBab = −
n∑

c,d=2

ηcdBacBdb + κBab − ea
Aeb

BRArBr.

From the definition of the Weyl tensor in dimension n + 1,

Cμνσρ := Rμνσρ − 1

n − 1

(
gμσ Rνρ − gμρRνσ − gνσ Rμρ + gνρRμσ

)
+ 1

n(n − 1)
R(gμσ gνρ − gμρgνσ ), (5.34)

we find

CArBr = RArBr − 1

n − 1
gABRrr.

For a, b � 2, let

ψab := ea
Aeb

BCArBr

represent the components of CArBr in the current frame. Then ψab is symmetric, with vanishing
η-trace. We finally obtain the following equation for Bab ≡ χab, a, b � 2:

(∂r − κ)χab = −
n∑

c,d=2

ηcdχacχdb − ψab − 1

n − 1
ηabT rr. (5.35)

This equation shows that (κ, ψab) can be used as the free data for the gravitational field:
indeed, given κ , ψab and the component T rr of the energy–momentum tensor, we can integrate
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(5.35) to obtain χab. Note that by taking the η-trace of (5.35), one recovers constraint (5.28)
(here with T rr possibly non-vanishing).

In the case of two transverse hypersurfaces, the integration leaves the freedom of
prescribing two tensors χab on S, one corresponding to N1 and another to N2. Then one
proceeds as in the previous section to construct the remaining data on the initial surfaces,
keeping in mind the further freedom to choose θa

B|S, a � 2, on S.
On a light-cone, equation (5.35) should be integrated with vanishing data at the vertex.
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Appendix. The expansion τ and the location of the vertex

The Hayward gauge condition of section 5.5 has led us to the interesting conclusion that in
some gauge choices, the vertex of the light-cone will be located at infinity. This raises the
following question: Under which conditions is the hypothesis, that the vertex is located at
r = 0, consistent with natural boundary conditions at the tip of the light-cone?

We start with the derivation of a necessary condition which needs to be imposed on
the behaviour of the initial data in the κ = τ/(n − 1)-gauge near the vertex in order to
be compatible with regularity. It is known [27] that in a κ̊ = 0-gauge arising from normal
coordinates, the initial data have to be of the form

γ̊AB = r̊2sAB + hAB, where hAB = O1(r̊
4). (A.1)

Recall that we decorate with a circle the quantities corresponding to the gauge κ̊ = 0. We want
to work out how such data look like in the κ = τ/(n−1)-gauge. The coordinate transformation
(5.6), which defines a local diffeomorphism as long as A(2) does not change sign, reads

r(r̊) = A(1) + A(2) log r̊ + fh

= log r̊ + fh, (A.2)

where fh = O1(r̊2) is determined by hAB and where A(i) are integration functions. Here we
have set A(1) = 0 and A(2) = 1, so that the r-coordinate in the κ = τ/(n − 1)-gauge is
completely fixed, once r̊ has been chosen.

From (A.2), we extract the behaviour of the inverse transformation

r̊(r) = er + gh, gh = O1(e
3r)

(where the symbol O in connection with the r-coordinate refers to the limit r → −∞). Now
we can compute the overall form of the initial data,

γAB(r) = γ̊AB(r̊(r)) = e2rsAB + kAB, where kAB = O1(e
4r). (A.3)

This implies

|σ |2 = −1

4

(
∂1γ

AB∂1γAB + (γ AB∂1γAB)2

n − 1

)
= O(e2r). (A.4)

Note that, in contrast to the κ̊ = 0-gauge, τ remains bounded at the vertex for regular
light-cone data of the form (A.3), due to (5.1) and (A.4).

Next, let us show that a bounded τ can only be compatible with regularity when the vertex
is located at infinity. For definiteness, we consider the initial data gμν with nowhere vanishing

24

76 CHAPTER 7. CLASS. QUANTUM GRAV. 29 (2012) 145006 (CO-AUTHORED)



Class. Quantum Grav. 29 (2012) 145006 P T Chruściel and T-T Paetz

τ ≡ 1
2 gAB∂1gAB, within the scheme of section 3. Then κ is computed algebraically via (3.7)

(and depends on the initial data). Note that at this stage, τ is a known function of r which can
be regarded as ‘gauge part’ of the initial data.

By calculations similar to those in (5.2) and (5.3), we can then obtain the coordinate r̊
relevant to the κ̊ = 0-gauge:

r̊(r) =
∫ r

e
∫ r1 κ(r2) dr2 dr1, (A.5)

and transform all the fields to this gauge.
We have the identity

τ (r) = ∂ r̊

∂r
τ̊ (r̊(r)), where τ̊ = n − 1

r̊
+ O(r̊), (A.6)

since we assume regular light-cone data. We consider the maximal range of r̊, near r̊ = 0,
where τ̊ is positive. It follows from (A.5) that r̊ �→ r(r̊) is monotone there. Let us assume that
this function is strictly increasing (the decreasing case is handled in a similar way), and let
(R1, R2) denote the corresponding range of r, with −∞ � R1 < R2 � ∞. Then τ is positive
on (R1, R2) by (A.6). If we choose R1 < r0 < R2 such that r−1(r0) = r̊0 > 0, from the last
equation we find, for some (xB-dependent) constant A,∫ r(r̊)

r0

τ dr̃ =
∫ r̊

r̊0

(
n − 1

˜̊r
+ O( ˜̊r)

)
d ˜̊r = A + (n − 1) log r̊ + O(r̊2).

The right-hand side diverges to minus infinity at the vertex r̊ = 0, which is mapped to R1. This
gives ∫ r0

R1

τ dr̃ = +∞. (A.7)

We conclude that any gauge in which τ is bounded will force the vertex to lie at infinity, for
initial data which can be realized by a smooth spacetime metric.

As another application of (A.7), we reconsider the κ = τ/(n − 1)-gauge. Let us
denote by τ0(xA) the integration function which arises in the associated constraint equation
∂1τ + |σ |2 = 0. The exponential decay of |σ |2 at a regular vertex, cf equation (A.4), is
compatible with (A.7) only if τ0 is bounded away from zero.

Finally, consider initial data on (0,∞) with

gAB = r2sAB + O1(r
4),

as in section 3.2. The function τ satisfies then

τ = n − 1

r
+ O(r), (A.8)

which is, not unexpectedly, fully compatible with (A.7).
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Abstract

We derive, in 3 + 1 spacetime dimensions, two alternative systems of
quasi-linear wave equations, based on Friedrich’s conformal field equa-
tions. We analyse their equivalence to Einstein’s vacuum field equations
when appropriate constraint equations are satisfied by the initial data.
As an application, the characteristic initial value problem for the Einstein
equations with data on past null infinity is reduced to a characteristic ini-
tial value problem for wave equations with data on an ordinary light-cone.

PACs numbers: 04.20.Ex

Contents

1 Introduction 2
1.1 Asymptotic flatness . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Conformal field equations . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Characteristic initial value problems . . . . . . . . . . . . . . . . 4
1.4 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Friedrich’s conformal field equations and gauge freedom 6
2.1 Metric conformal field equations (MCFE) . . . . . . . . . . . . . 6
2.2 Gauge freedom and conformal covariance inherent to the MCFE 7

3 Conformal wave equations (CWE) 9
3.1 Derivation of the conformal wave equations . . . . . . . . . . . . 9
3.2 Consistency with the gauge condition . . . . . . . . . . . . . . . 13
3.3 Equivalence issue between the CWE and the MCFE . . . . . . . 22

∗Preprint UWThPh-2013-15.
†E-mail: Tim-Torben.Paetz@univie.ac.at

1

81



4 Constraint equations induced by the MCFE on the Ci−-cone 24
4.1 Adapted null coordinates and another gauge freedom . . . . . . . 24
4.2 Constraint equations in a generalized wave-map gauge . . . . . . 25
4.3 Constraint equations in the (R = 0, s = −2, κ = 0, ĝ = η)-wave-
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1 Introduction

1.1 Asymptotic flatness

In general relativity there is the endeavour to characterize those spacetimes
which one would regard as being “asymptotically flat”, possibly merely in cer-
tain (null) directions. Spacetimes which possess this property would be well-
suited to describe e.g. purely radiative spacetimes or isolated gravitational sys-
tems. However, due to the absence of a non-dynamical background field this is
an intricate issue in general relativity. In [31, 32] (see e.g. [26] for an overview)
R. Penrose proposed a geometric approach to resolve this problem: The starting
point is a 3 + 1-dimensional spacetime (M̃ , g̃), the physical spacetime. It then
proves fruitful to introduce a so-called unphysical spacetime (M , g) into which
(a part of) (M̃ , g̃) is conformally embedded,

g̃
φ7→ g := Θ2g̃ , M̃

φ→֒ M , Θ|φ(M̃ ) > 0 .

2
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The part of ∂φ(M̃ ) where the conformal factor Θ vanishes can be interpreted
as representing infinity of the original, physical spacetime, for the physical
affine parameter diverges along null geodesics when approaching this part of
the boundary. The subset {Θ = 0 , dΘ 6= 0} ⊂ ∂φ(M̃ ) is called Scri, denoted
by I . Large classes of solutions of the Einstein equations (with vanishing cos-
mological constant) possess a I which forms a smooth null hypersurface in
(M , g), on which null geodesics in (M , g) acquire end-points. The hypersurface
I is therefore regarded as providing a representation of null infinity.

Penrose’s proposal to distinguish those spacetimes which have an “asymptot-
ically flat” structure [in certain null directions] is to require that the unphysical
metric tensor g extends smoothly across [a part of] I .1 The idea is that such a
smooth conformal extension is possible whenever the gravitational field has an
appropriate “asymptotically flat” fall-off behaviour in these directions.

Null infinity can be split into two components, past and future null infinity
I − and I +, which are generated by the past and future endpoints of null
geodesics in M , respectively. If the spacetime is further supposed to be asymp-
totically flat in all spacelike directions, one may require the existence of a point
i0, representing spacelike infinity, where all the spacelike geodesics meet. How-
ever, i0 cannot be assumed to be smooth (it cannot even assumed to be C1 [3]).

In this work we are particularly interested in spacetimes (and the construc-
tion thereof) which, at sufficiently early times, possess a conformal infinity which
is similar to that of Minkowski spacetime. By that we mean that (a part of)
(M̃ , g̃) can be conformally mapped into an unphysical spacetime, where all time-
like geodesics originate from one regular point, which represents past timelike
infinity, denoted by i−; moreover, we assume that, at least sufficiently close to
i−, a regular I − exists and is generated by the null geodesics emanating from
i−, i.e. forms the future null cone of i−, denoted by Ci− := I − ∪ {i−}. By the
term “regular” we mean that the conformally rescaled metric g, and also the
rescaled Weyl tensor, admit smooth extensions. In fact, in 3+1 dimensions the
extendability assumption across I on the rescaled Weyl tensor is automatically
satisfied in the current setting. At i− this assumption will be dropped in Sec-
tion 6. Purely radiative spacetimes are expected to possess such a conformal
structure [20].

It is an important issue to understand the interplay between the geometric
concept of asymptotic flatness and the Einstein equations, and whether all rel-
evant physical systems are compatible with the notion of a regular conformal
infinity. There are various results indicating that this is a reasonable concept, cf.
[1, 2, 10, 21, 28, 32] and references given therein. An open issue is to character-
ize the set of asymptotically Euclidean initial data on a spacelike hypersurface
which lead to solutions of Einstein’s field equations which are “null asymptoti-
cally flat”.

Since we have a characteristic initial value problem at Ci− in mind, we want
to avoid too many technical assumptions which might lead to a more reasonable
(and rigid) notion of asymptotic flatness, asymptotic simplicity, etc. (cf. e.g.
[27]). In a nutshell, we are concerned with solutions of the vacuum Einstein
equations (with vanishing cosmological constant) which admit a regular null
cone at past timelike infinity, at least near i−.

1One may also think of weaker requirements here.
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1.2 Conformal field equations

Due to the geometric construction outlined above, the asymptotic behaviour of
the gravitational field can be analysed in terms of a local problem in a neigh-
bourhood of I (as well as i± and i0). However, the vacuum Einstein equations,
regarded as equations for the unphysical metric g, are (formally) singular at
conformal infinity (set ✷g := ∇µ∇µ),

R̃µν [g̃] = λg̃µν ⇐⇒
Rµν [g] + 2Θ−1∇µ∇νΘ+ gµν

(
Θ−1✷gΘ− 3Θ−2∇σΘ∇σΘ

)
= λΘ−2gµν , (1.1)

where the conformal factor Θ is assumed to be some given (smooth) function.
The system (1.1) does therefore not seem to be convenient to study unphysical
spacetimes (M , g) with Θ−2g being a solution of the Einstein equations away
from conformal infinity. Serendipitously, H. Friedrich [16, 17, 23] was able to
extract a system, the conformal field equations, which does remain regular even
if Θ vanishes, and which is equivalent to the vacuum Einstein equations wherever
Θ is non-vanishing.

In a suitable gauge the propagational part of the conformal field equations
implies, in 3 + 1 dimensions, a symmetric hyperbolic system, the reduced con-
formal field equations. Thus equipped with some nice mathematical proper-
ties Friedrich’s equations provide a powerful tool to analyse the asymptotic be-
haviour of those solutions of the Einstein equations which admit an appropriate
conformal structure at infinity.

1.3 Characteristic initial value problems

The characteristic initial value problem in general relativity provides a tool
to construct systematically general solutions of Einstein’s field equations. An
advantage in comparison with the spacelike Cauchy problem is that the con-
straint equations can be read as a hierarchical system of ODEs, which is much
more convenient to deal with. In fact, one may think of several different types
of (asymptotic) characteristic initial value problems, which we want to recall
briefly.

One possibility is to take two transversally intersecting null hypersurfaces
as initial surface. This problem was studied by Rendall [34] who established
well-posedness results for quasi-linear wave equations as well as for symmetric
hyperbolic systems in a neighbourhood of the cross-section of these hypersur-
faces. Using a harmonic reduction of the Einstein equations he then applied his
results to prove well-posedness for the Einstein equations.

Another approach is to prescribe data on a light-cone. There is a well-
posedness result for quasi-linear wave equations near the tip of a cone avail-
able which is due to Cagnac [4] and Dossa [13]. A crucial assumption in their
proof is that the initial data are restrictions to the light-cone of smooth2 space-
time fields. Well-posedness of the Einstein equations was investigated in a se-
ries of papers [5–7] by Choquet-Bruhat, Chruściel and Mart́ın-Garćıa, and by
Chruściel [9]. The authors impose a wave-map gauge condition to obtain a sys-
tem of wave equations to which the Cagnac-Dossa theorem is applied. A main

2There is a version for finite differentiability, but here we restrict attention to the smooth
case.
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difficulty, in the most comprehensive case treated in [9], is to make sure that the
Cagnac-Dossa theorem is indeed applicable. For that one needs to make sure
that the initial data for the reduced Einstein equations, which are constructed
from suitable free data as solution of the constraint equations, can be extended
to smooth spacetime fields. One then ends up with the result that these free
data determine a unique solution (up to isometries) in some neighbourhood of
the tip of the cone CO, intersected with J+(CO).

A third important case arises when the initial surface is, again, given by
two transversally intersecting null hypersurfaces, but now in the unphysical
spacetime and with one of the hypersurfaces belonging to I . This issue was
treated by Friedrich [18], who proved well-posedness for analytic data, and by
Kánnár [28], who extended Friedrich’s result to the smooth case. The basic idea
for the proof is to exploit the fact that the reduced conformal field equations
form a symmetric hyperbolic system to which Rendall’s local existence result is
applicable.

The case we have in mind is when the initial surface is given in the unphysical
spacetime by the light-cone Ci− emanating from past timelike infinity i−. In
order to construct systematically solutions of Einstein’s field equations which
are compatible with Penrose’s notion of asymptotic flatness and a regular i−,
one would like to prescribe data on Ci− and predict existence of a solution of
Einstein’s equations off Ci− by solving an appropriate initial value problem.
One way to establish well-posedness near the tip of the cone is to mimic the
analysis in [5, 9]. To do that, one needs a system of wave equations which,
when supplemented by an appropriate set of constrain equations, is equivalent to
the vacuum Einstein equations wherever Θ is non-vanishing and which remains
regular when Θ vanishes. Based on a conformal system of equations due to
Choquet-Bruhat and Novello [8], such a regular system of wave equations was
employed by Dossa [14] who states a well-posedness result for suitable initial
data for which, however, it is not clear how they can be constructed, nor to what
extent his system of wave equations is equivalent to the Einstein equations.

The purpose of this paper is to derive two such systems of wave equations in
3 + 1-spacetime dimensions, which we will call conformal wave equations, and
prove equivalence to Friedrich’s conformal system for solutions of the charac-
teristic initial value problem with initial surface Ci− which satisfy certain con-
straint equations on Ci− . Our first system will use the same set of unknowns as
Friedrich’s metric conformal field equations [23], while the second system will
employ the Weyl and the Cotton tensor rather than the rescaled Weyl tensor
(and might be advantageous in view of the construction of solutions with a
rescaled Weyl tensor which diverges at i−). The construction of initial data to
which the Cagnac-Dossa theorem is applicable, and thus a well-posedness proof
of the Cauchy problem with data on the Ci− -cone, is accomplished in [12, 25].

Apart from the application to tackle the characteristic initial value problem
with data on Ci− , a regular system of wave equations might be interesting for
numerics, as well [29].

1.4 Structure of the paper

In Section 2 we recall the metric conformal field equations and address the
gauge freedom inherent to them. In Section 3 we derive the first system of con-
formal wave equations, (3.11)-(3.15), and prove equivalence to the conformal
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field equations and consistency with the gauge condition under the assumption
that certain relations hold initially. In Section 4 we derive the constraint equa-
tions induced by the conformal field equations on Ci− in adapted coordinates
and imposing a generalized wave-map gauge condition. We then focus on the
case of a light-cone with vertex at past timelike infinity to verify in Section 5
that the hypotheses needed for the equivalence theorem of Section 3 are indeed
satisfied, supposing that the initial data fulfill the constraint equations (5.6)-
(5.16). Our main result, Theorem 5.1, states that a solution of the characteristic
initial value problem for the conformal wave equations, with initial data on Ci−

which have been constructed as solutions of the constraint equations, is also a
solution of the conformal field equations in wave-map gauge and vice versa. In
Section 6 we then derive an alternative system of wave equations, (6.9)-(6.14),
and study equivalence to the conformal field equations, supposing that certain
constraint equations, namely (6.52)-(6.65), are satisfied, cf. Theorem 6.5. In
Section 7 we briefly compare both systems of wave equations and give a short
summary. We conclude the article by reviewing some basic properties of cone-
smooth functions, which are utilized to prove a lemma stated in Section 2.

Throughout this work we restrict attention to 3+1 dimensions, cf. footnote 7.

2 Friedrich’s conformal field equations and gauge
freedom

2.1 Metric conformal field equations (MCFE)

As indicated above, the vacuum Einstein equations themselves do not provide
a nice evolution system near infinity and are therefore not suitable to tackle
the issue at hand, namely to analyse existence of a solution to the future of
Ci− . Nonetheless, they permit a representation which does not contain factors
of Θ−1 and which is regular everywhere [16, 17, 23]. Due to this property the
Einstein equations are called conformally regular.

The curvature of a spacetime is measured by the Riemann curvature tensor
Rµνσ

ρ, which can be decomposed into the trace-free Weyl tensor Wµνσ
ρ, invari-

ant under conformal transformations, and a term which involves the Schouten
tensor Lµν ,

Rµνσ
ρ =Wµνσ

ρ + 2(gσ[µLν]
ρ − δ[µ

ρLν]σ) . (2.1)

The Schouten tensor is defined in terms of the Ricci tensor Rµν ,

Lµν :=
1

2
Rµν − 1

12
Rgµν . (2.2)

The Weyl tensor is usually considered to represent the radiation part of the
gravitational field. Let us further define the rescaled Weyl tensor

dµνσ
ρ := Θ−1Wµνσ

ρ , (2.3)

as well as the scalar function (✷g ≡ ∇µ∇µ)

s :=
1

4
✷gΘ+

1

24
RΘ . (2.4)

6

86 CHAPTER 8. ARXIV:1306.6204 [GR-QC] (2013)



There exist different versions of the conformal field equations, depending on
which fields are regarded as unknowns. Here we present the metric conformal
field equations (MCFE) [23] which read in 3 + 1 spacetime dimensions

∇ρdµνσ
ρ = 0 , (2.5)

∇µLνσ −∇νLµσ = ∇ρΘ dνµσ
ρ , (2.6)

∇µ∇νΘ = −ΘLµν + sgµν , (2.7)

∇µs = −Lµν∇νΘ , (2.8)

2Θs−∇µΘ∇µΘ = λ/3 , (2.9)

Rµνσ
κ[g] = Θdµνσ

κ + 2
(
gσ[µLν]

κ − δ[µ
κLν]σ

)
. (2.10)

The unknowns are gµν , Θ, s, Lµν and dµνσ
ρ.

Friedrich has shown that the MCFE are equivalent to the vacuum Einstein
equations,

R̃µν [g̃] = λg̃µν , g̃µν = Θ−2gµν ,

in the region where Θ is non-vanishing. They give rise to a complicated and
highly overdetermined PDE-system. It turns out that (2.9) is a consequence of
(2.7) and (2.8) if it is known to hold at just one point (e.g. by an appropriate
choice of the initial data). Moreover, Friedrich has separated constraint and
evolution equations from the conformal field equations by working in a spin
frame [16, 17] . In Sections 3.1, 4.2 and 4.3 we shall do the same (if the initial
surface is Ci−) in a coordinate frame and by imposing a generalized wave-map
gauge condition.

A specific property in the 3 + 1-dimensional case is that the contracted
Bianchi identity is equivalent to the Bianchi identity. That is the reason why
(2.5) implies hyperbolic equations; in higher dimensions this is no longer true [23].
The conformal field equations provide a nice, i.e. symmetric hyperbolic, evolu-
tion system only in 3 + 1 dimensions.

Penrose proposed to distinguish asymptotically flat spacetimes by requiring
the unphysical metric g to be smoothly extendable across I . The Weyl tensor
of g is known to vanish on I [32]. Since by definition dΘ|I 6= 0 the rescaled
Weyl tensor can be smoothly continued across I . However, there seems to be
no reason why the same should be possible at i− where dΘ = 0. When dealing
with the MCFE, where the rescaled Weyl tensor is one of the unknowns, it is
convenient to confine attention to the class of solutions with a regular i− in the
sense that both gµν and dµνσ

ρ are smoothly extendable across i− (cf. Section 6
where this additional assumption is dropped).

2.2 Gauge freedom and conformal covariance inherent to
the MCFE

The gauge freedom contained in the MCFE comes from the freedom to choose
coordinates supplemented by the freedom to choose the conformal factor Θ
relating the physical and the unphysical spacetime. Since Θ is regarded as an
unknown rather than a gauge function, it remains to identify another function
which reflects this gauge freedom. The most convenient choice is the Ricci
scalar R:

Let us assume we have been given a smooth solution (gµν ,Θ, s, Lµν, dµνσ
ρ)

of the MCFE. Then we can compute R. For a conformal rescaling g 7→ φ2g for
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some φ > 0, the Ricci scalars R and R∗ of g and φ2g, respectively, are related
via

φR − φ3R∗ = 6✷gφ . (2.11)

Now, let us prescribe R∗ and read (2.11) as an equation for φ. If we think of
a characteristic initial value problem with data on a light-cone CO (including

the Ci− -case) we are free to prescribe some φ̊ > 0 on CO.
34 Supposing that

φ̊ is the restriction to CO of a smooth spacetime function, the Cagnac-Dossa
theorem [4, 13] tells us that there is a solution φ > 0 with φ|CO = φ̊ in some
neighbourhood of the tip of the cone. Due to the conformal covariance of the
conformal field equations, the conformally rescaled fields

g∗ = φ2g , (2.12)

Θ∗ = φΘ , (2.13)

s∗ =
1

4
✷g∗Θ∗ +

1

24
R∗Θ∗ , (2.14)

L∗
µν =

1

2
R∗

µν [g
∗]− 1

12
R∗g∗µν , (2.15)

d∗µνσ
ρ = φ−1dµνσ

ρ , (2.16)

provide another solution of the MCFE with Ricci scalar R∗ which corresponds
to the same physical solution g̃µν . These considerations show that if we treat
the conformal factor Θ as unknown, determined by the MCFE, the curvature
scalar R of the unphysical spacetime can be arranged to take any preassigned
form. The function R can therefore be regarded as a conformal gauge source
function which can be chosen arbitrarily.

There remains the freedom to prescribe φ̊ on CO. On an ordinary cone with
nowhere vanishing Θ this freedom can be employed to prescribe the initial data
for the conformal factor, Θ|CO (it clearly needs to be the restriction to CO of a
smooth spacetime function). In this work we are particularly interested in the
case where the vertex of the cone is located at past timelike infinity i−, where,
by definition, Θ = 0 (note that this requires to take λ = 0). Then the gauge

freedom to choose φ̊ can be employed to prescribe the function s on Ci− . To see
that, let us assume we have been given a smooth solution (gµν ,Θ, s, Lµν, dµνσ

ρ)
of the MCFE to the future ofCi− , at least in some neighbourhood of i−, by which
we also mean that the solution admits a smooth extension through Ci− . (When
Θ vanishes e.g. on one of two transversally intersecting null hypersurfaces one
might put forward a similar argument.) In particular the function s is smooth.
According to (2.9) (with λ = 0), it can be written away from Ci− as

s =
1

2
Θ−1∇µΘ∇µΘ ,

with the right-hand side smoothly extendable across Ci− . Under the conformal
rescaling

Θ 7→ Θ∗ := φΘ , gµν 7→ g∗µν := φ2gµν , φ > 0 , (2.17)

3The positivity of φ at the vertex guarantees any solution of (2.11) to be positive suf-
ficiently close to the vertex and thereby the positivity of Θ∗ (in the Ci− -case just off the
cone).

4Since we are mainly interested in this case, we focus on an initial surface which is a
cone. However, an analogous result can be obtained for two transversally intersecting null
hypersurfaces.

8

88 CHAPTER 8. ARXIV:1306.6204 [GR-QC] (2013)



the function s becomes

s∗ = φ−1
(1
2
Θφ−2∇µφ∇µφ+ φ−1∇µΘ∇µφ+ s

)
. (2.18)

Evaluation of this expression on Ci− yields

∇µΘ∇µφ+ φ s− φ2s∗ = 0 . (2.19)

Here and henceforth we use an overbar to denote the restriction of a spacetime
object to the initial surface. Note that ∇µΘ is tangent to I , so (2.19) does not
involve transverse derivatives of φ on I . Let us prescribe s∗ (as a matter of
course it needs to be the restriction of a smooth spacetime function) and assume
for the moment that some positive solution of (2.19) exists,5 which we denote

by φ̊. We take φ̊ as initial datum for (2.11). We would like to have a φ̊ which
is the restriction to Ci− of a smooth spacetime function, so that we can apply
the Cagnac-Dossa theorem, which would supply us with a function φ solving
(2.11) and satisfying φ|C− = φ̊. Via the conformal rescaling (2.12)-(2.16) we
then would be led to a new solution of the MCFE with preassigned functions
R∗ and s∗ which represents the same physical solution we started with.

The crucial point, which remains to be checked, is whether a solution of (2.19)
exists with the desired properties. The following lemma, which is proven in Ap-
pendix A, shows that this is indeed the case (cf. [12, Appendix A] where an
alternative proof is given).

Lemma 2.1 Consider any smooth solution of the MCFE in 3+ 1 dimensions in
some neighbourhood U to the future of i−, smoothly extendable through Ci− ,
which satisfies

s|i− 6= 0 . (2.20)

Let s∗ be the restriction of a smooth spacetime function on U ∩ ∂J+(i−) with
s∗|i− 6= 0 and limr→0 ∂rs

∗ = 0.6 Then (2.19) is a Fuchsian ODE and for every

solution φ̊ (note that the solution set is non-empty) it holds that

sign(φ̊|i−) = sign(s|i−)sign(s∗|i−) , (2.21)

and φ̊ is the restriction to Ci− of a smooth spacetime function. In particular, if
sign(s|i−) = sign(s∗|i−) the function φ̊ will be positive sufficiently close to i−.

Remark 2.2 Note that solutions with s|i− = 0 would satisfy dΘ = 0 on I −,
which is why the corresponding class of solutions is not of physical interest.

To sum it up, due the conformal covariance of the MCFE the functions R
and s|Ci− can and will be regarded as gauge source functions.

3 Conformal wave equations (CWE)

3.1 Derivation of the conformal wave equations

In this section we derive a system of wave equations from the MCFE (2.5)-
(2.10). Recall that the unknowns are gµν , Θ, s, Lµν and dµνσ

ρ, while the Ricci

5In case of a negative s∗, the gauge transformation would change the sign of Θ.
6r is a suitable (e.g. an affine) parameter along the null geodesics emanating from i−, see

Section 4 and Appendix A for more details.
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scalar R (and the function s or Θ, respectively, depending on the characteristic
initial surface) are considered as gauge functions. The cosmological constant λ
is allowed to be non-vanishing in this section.

Derivation of an appropriate second-order system

From (2.5) and (2.6) we obtain (with ✷g ≡ ∇µ∇µ)

✷gLµν −RµκLν
κ −Rαµν

κLκ
α −∇µ∇αLν

α = dµ
α
ν
ρ∇α∇ρΘ .

Using the definition (2.2) of the Schouten tensor, together with the contracted
Bianchi identity, we find

∇µLν
µ =

1

6
∇νR , (3.1)

and thus

✷gLµν −RµκLν
κ −Rαµν

κLκ
α − 1

6
∇µ∇νR = dµ

α
ν
ρ∇α∇ρΘ .

We combine the right-hand side with (2.7), and employ (2.3) as well as (2.10) to
transform the third term on the left-hand side to end up with a wave equation
for the Schouten tensor (suppose for the time being that gµν is given, cf. below),

✷gLµν − 4LµκLν
κ + gµν |L|2 + 2Θdµαν

ρLρ
α =

1

6
∇µ∇νR , (3.2)

where we have set
|L|2 := Lµ

νLν
µ .

Next, let us consider the function s. From (2.8), (3.1) and (2.7) we deduce
the wave equation

✷gs = −∇µLν
µ∇νΘ− Lµν∇µ∇νΘ

= Θ|L|2 − 1

6
∇νR∇νΘ− 1

6
sR . (3.3)

The definition of s provides a wave equation for the conformal factor,

✷gΘ = 4s− 1

6
ΘR . (3.4)

To obtain a wave equation for the rescaled Weyl tensor dµνσ
ρ in 3+1 dimen-

sions one proceeds as follows: Due to its algebraic properties the rescaled Weyl
tensor satisfies the relation

ǫµν
αβdαβλρ = ǫλρ

αβdµναβ ,

where ǫµνσρ denotes the totally antisymmetric tensor. We conclude that (cf. [33])

∇[λdµν]σρ = −1

6
ǫλµνκǫ

αβγκ∇αdβγσρ =
1

6
ǫλµν

κǫσρ
βγ∇αdβγκ

α . (3.5)

This equation implies the equivalence7

∇ρdµνσ
ρ = 0 ⇐⇒ ∇[λdµν]σρ = 0 .

7 We remark that this equivalence holds only in 4 dimensions. Any attempt to derive
a wave equation for dµνσρ in dimension d ≥ 5 seems to lead to singular terms. Also, if
one uses a different set of variables, like e.g. Cotton and Weyl tensor instead of dµνσρ, cf.
Section 6, the derivation of a regular system of wave equations seems to be possible merely in
the 4-dimensional case. This is in line with the observation that the conformal field equations
provide a good evolution system only in 4 dimensions.
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Equation (2.5) can therefore be replaced by

∇[λdµν]σρ = 0 . (3.6)

Applying ∇λ and commuting the covariant derivatives yields with (2.5)

✷gdµνσρ + 2Rκµν
αdσρα

κ + 2Rα[µdν]
α
σρ + 2Rκ[µ|σ|

αdν]
κ
αρ − 2Rαρκ[µdν]

κ
σ
α = 0 .

With (2.10) we end up with a wave equation for the rescaled Weyl tensor,

✷gdµνσρ −Θdµνκ
αdσρα

κ + 4Θdσκ[µ
αdν]αρ

κ + 2gσ[µdν]αρκL
ακ

−2gρ[µdν]ασκL
ακ + 2dµνκ[σLρ]

κ + 2dσρκ[µLν]
κ − 1

3
Rdµνσρ = 0 .(3.7)

It turns out that this equation does not take its simplest form yet. To see this
let us exploit (3.6) again. Invoking the Bianchi identity and (2.6) we find

0 = Θ∇[λdµν]σρ = ∇[λWµν]σρ − (∇[λΘ)dµν]σρ

=
2

3

(
gσν∇[λLµ]ρ + gµρ∇[λLν]σ + gσµ∇[νLλ]ρ + gλρ∇[νLµ]σ

+gσλ∇[µLν]ρ + gνρ∇[µLλ]σ

)
− (∇[λΘ)dµν]σρ

= gρ[λdµν]σ
α∇αΘ− gσ[λdµν]ρ

α∇αΘ− (∇[λΘ)dµν]σρ .

Applying ∇λ and using (3.6), (2.7) and (3.4) we are led to

0 = 3∇λ(gρ[λdµν]σ
α∇αΘ− gσ[λdµν]ρ

α∇αΘ−∇[λΘ dµν]σρ)

= 2dµν[σ
α∇ρ]∇αΘ+ 2gρ[µdν]λσ

α∇λ∇αΘ− 2gσ[µdν]λρ
α∇λ∇αΘ

−✷Θ dµνσρ −∇λ∇νΘ dλµσρ −∇λ∇µΘ dνλσρ

= 2Θgσ[µdν]λρ
αLα

λ − 2Θgρ[µdν]λσ
αLα

λ + 2Θdµνα[σLρ]
α

+2Θdσρα[µLν]
α +

1

6
ΘRdµνσρ .

This relation simplifies (3.7) significantly,

✷gdµνσρ −Θdµνκ
αdσρα

κ + 4Θdσκ[µ
αdν]αρ

κ − 1

2
Rdµνσρ = 0 . (3.8)

We have found a system of wave equations (3.2)-(3.4) and (3.8) for the fields
Lµν , s, Θ and dµνσ

ρ, assuming that gµν is given. Now, we drop this assumption,
so first of all the system needs to be complemented by an equation for the metric
tensor. Taking the trace of (2.10) yields

Rµν [g] = 2Lµν +
1

6
Rgµν . (3.9)

However, the equations (3.2)-(3.4) and (3.8)-(3.9) do not form a system of wave
equations yet: Equation (3.9) is not a wave equation due to the fact that the
principal part of the Ricci tensor is not a d’Alembert operator. Moreover, the
principal part of the wave-operator✷g is not a d’Alembert operator when acting
on tensors of valence ≥ 1 and when the metric tensor is part of the unknowns,
for the corresponding expression contains second-order derivatives of the metric
due to which the principal part is not gµν∂µ∂ν anymore. Consequently (3.2)
and (3.8) are no wave equations, as well.

We need to impose an appropriate gauge condition to transform these equa-
tions into wave equations, which is accomplished subsequently.
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Generalized wave-map gauge

Let us introduce the so-called ĝ-generalized wave-map gauge (cf. [5, 19, 22]),
where ĝµν denotes some target metric. For that we define the wave-gauge vector

Hσ := gαβ(Γσ
αβ − Γ̂σ

αβ)−W σ .

Herein Γ̂σ
αβ are the Christoffel symbols of ĝµν . Moreover,

W σ =W σ(xµ, gµν , s,Θ, Lµν, dµνσ
ρ)

is an arbitrary vector field, which is allowed to depend upon the coordinates, and
possibly upon gµν as well as all the other fields which appear in the MCFE,8 but
not upon derivatives thereof. The freedom to prescribeW σ reflects the freedom
to choose coordinates off the initial surface. We then impose the ĝ-generalized
wave-map gauge condition

Hσ = 0 .

The reduced Ricci tensor R
(H)
µν is defined as

R(H)
µν := Rµν − gσ(µ∇̂ν)H

σ , (3.10)

where ∇̂ denotes the covariant derivative associated to the target metric. The
principal part of the reduced Ricci tensor is a d’Alembert operator.

Furthermore, we define a reduced wave-operator as follows: We observe that
for any covector field vλ we have

✷gvλ = gµν∂µ∂νvλ − gµν(∂µΓ
σ
νλ)vσ + fλ(g, ∂g, v, ∂v)

= gµν∂µ∂νvλ + (Rλ
σ − ∂λ(g

µνΓσ
µν))vσ + fλ(g, ∂g, v, ∂v)

= gµν∂µ∂νvλ + (Rλ
σ − ∂λH

σ)vσ + fλ(g, ∂g, v, ∂v, ĝ, ∂ĝ, ∂
2ĝ, ∂W )

= gµν∂µ∂νvλ + (R
(H)
µλ + gσ[λ∇̂µ]H

σ)vµ + fλ(g, ∂g, v, ∂v, ĝ, ∂ĝ, ∂
2ĝ, ∂W ) .

Similarly, the action on a vector field vλ yields

✷gv
λ = gµν∂µ∂νv

λ − (Rµλ
(H) + gσ[λ∇̂σH

µ])vµ + fλ(g, ∂g, v, ∂v, ĝ, ∂ĝ, ∂2ĝ, ∂W ) .

This motivates to define a reduced wave-operator ✷
(H)
g via its action on (co)vector

fields in the following way:

✷(H)
g vλ := ✷gvλ − gσ[λ(∇̂µ]H

σ)vµ + (2Lµλ −R
(H)
µλ +

1

6
Rgµλ)v

µ ,

✷(H)
g vλ := ✷gv

λ + gσ[λ(∇̂σH
µ])vµ − (2Lµλ −Rµλ

(H) +
1

6
Rgµλ)vµ .

8I am grateful to L. Andersson for pointing that out. However, in view of the constraint
equations we shall consider later on for convenience merely those Wσ’s which depend just on
the coordinates.
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For arbitrary tensor fields we set

✷(H)
g vα1...αn

β1...βm := ✷gvα1...αn

β1...βm −
∑

i

gσ[αi
(∇̂µ]H

σ)vα1...
µ
...αn

β1...βm

+
∑

i

(2Lµαi −R(H)
µαi

+
1

6
Rgµαi)vα1...

µ
...αn

β1...βm

+
∑

i

gσ[βi(∇̂σH
µ])vα1...αn

β1...
µ
...βm

−
∑

i

(2Lµβi −Rµβi

(H) +
1

6
Rgµβi)vα1...αn

β1...
µ
...βm ,

which is a proper wave-operator even if gµν is part of the unknowns since Lµν

and the gauge source function R are regarded as independent of gµν . Note

that the action of ✷g and ✷
(H)
g coincides on scalars. Moreover, if Hσ = 0, and

Lµν and R are known to be the Schouten tensor and the Ricci scalar of gµν ,

respectively, then the action of ✷g and ✷
(H)
g coincides on all tensor fields.

Conformal wave equations

Let us reconsider the system (3.2), (3.3), (3.4), (3.8) and (3.9). We replace the
Ricci tensor by the reduced Ricci tensor and the wave-operator by the reduced
wave-operator to end up with a closed regular system of wave equations for gµν ,
Θ, s, Lµν and dµνσ

ρ,

✷(H)
g Lµν = 4LµκLν

κ − gµν |L|2 − 2Θdµσν
ρLρ

σ +
1

6
∇µ∇νR , (3.11)

✷gs = Θ|L|2 − 1

6
∇κR∇κΘ− 1

6
sR , (3.12)

✷gΘ = 4s− 1

6
ΘR , (3.13)

✷(H)
g dµνσρ = Θdµνκ

αdσρα
κ − 4Θdσκ[µ

αdν]αρ
κ +

1

2
Rdµνσρ , (3.14)

R(H)
µν [g] = 2Lµν +

1

6
Rgµν . (3.15)

Henceforth the system (3.11)-(3.15) will be called conformal wave equations
(CWE).

Remark 3.1 Since R is regarded as a gauge degree of freedom and not as un-
known, there is no need to worry about its second-order derivatives appearing
in (3.11). Note, however, that, unlike W σ, the gauge source function R cannot
be allowed to depend upon the fields Lµν , dµνσρ, Θ and s, due to the fact that
(3.11) contains second-order derivatives of R. Since ∇g = 0, R can in principle
be allowed to depend upon gµν .

3.2 Consistency with the gauge condition

Let us analyse now consistency of the CWE with the gauge conditions we
imposed. More concretely, we consider a characteristic initial value problem,
where, for definiteness, we think of two transversally intersecting null hypersur-
faces or a light-cone, and assume that we have been given initial data (̊gµν , s̊,
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Θ̊, L̊µν , d̊µνσ
ρ). We further assume that there exists a smooth solution (gµν , s,

Θ, Lµν , dµνσ
ρ) of the CWE with gauge source function R which induces these

data. We aim to work out conditions, which need to be satisfied initially, which
guarantee consistency with the gauge conditions in the sense that the solution
implies Hσ = 0 and Rg = R, where Rg := R[g] denotes the curvature scalar
of gµν . (Recall that there is, depending on the type of the characteristic initial
surface, the additional gauge freedom to prescribe Θ or s, but here consistency
is trivial.)

Let us outline the strategy. To make sure that Hσ and R − Rg vanish we
shall derive a linear, homogeneous system of wave equations for Hσ as well as
some subsidiary fields, which is fulfilled by any solution of the CWE. We shall
see that it is not necessary to regard R −Rg as an unknown. We shall assume
that all the fields which are regarded as unknowns in this set of equations vanish
on the initial surface (in Section 5 these assumptions will be justified). Due to
the uniqueness of solutions of wave equations, which is established by standard
energy estimates, cf. e.g. [15], we then conclude that the trivial solution is the
only one and that the fields involved need to vanish everywhere.

Some properties of solutions of the CWE

Let establish some properties of solutions of the CWE. First of all we show that
the tensors gµν and Lµν are symmetric, supposing that their initial data are
(and that dµνσρ satisfies a certain symmetry property on the initial surface).

Lemma 3.2 Assume that the initial data on a characteristic initial surface S of
some smooth solution of the CWE are such that gµν |S is the restriction to S of
a Lorentzian metric, that L[µν]|S = 0 and dµνσρ|S = dσρµν . Then the solution
has the following properties:

1. gµν and Lµν are symmetric tensors,

2. dµνσρ = dσρµν .

Remark 3.3 A priori it might happen that gµν becomes non-symmetric away
from the initial surface. However, the lemma shows that the tensor gµν does
indeed define a metric as long as it does not degenerate (i.e. at least sufficiently
close to the vertex or the intersection manifold, respectively). Later on, the
initial data will be constructed from certain free data such that all the hypotheses
of Lemma 3.2 are satisfied, we thus will assume throughout that gµν and Lµν

have their usual symmetry properties.

Proof: Equation (3.14) yields9

✷(H)
g (dµνσρ − dσρµν ) = 4Θ[g[αβ]dσβµκdραν

κ − g[γκ]dσβµκdρ
β
νγ ]

+2Θgαβgκγ [dρανγ(dµκσβ − dσβµκ)− dσκµβ(dναργ − dργνα)]

+
1

2
R(dµνσρ − dσρµν ) . (3.16)

9 The indices are raised and lowered as follows: vµ := gµνvν and wµ := gµνwν . Note
for this that gµν is non-degenerated sufficiently close to S. The definition of the Ricci tensor,
which appears in (3.15), in terms of Christoffel symbols which in turn are expressed in terms
of g make sense even if g is not symmetric.
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From (3.11) and (3.15) we find

✷(H)
g L[µν] = 4g[αβ]Lµ

αLν
β − g[µν]|L|2 +ΘgργLρ

σ(dνσµγ − dµγνσ)

+2Θgσκdµ
ρ
νσL[ρκ] − 2Θg[σκ]dµσν

ρLρκ , (3.17)

R
(H)
[µν][g(σρ), g[σρ]] = 2L[µν] +

1

6
Rg[µν] . (3.18)

The equations (3.16)-(3.18) are to be read as a linear, homogeneous system of
wave equations satisfied by g[µν], L[µν] and dµνσρ−dσρµν , and with all the other
fields regarded as being given. Since, by assumption, these fields vanish initially
they have to vanish everywhere and the assertion follows. ✷

It is useful to derive some more properties of the tensor dµνσρ. We emphasize
that dµνσρ is assumed to be part of some given solution of the CWE and that,
a priori, it neither needs to be the rescaled Weyl tensor nor does it need to have
all its algebraic properties.

Lemma 3.4 Assume that dµνσρ belongs to a solution of the CWE (3.11)-(3.15)
for which the hypotheses of Lemma 3.2 are fulfilled. Then the tensor dµνσρ has
the following properties:

(i) dµνσρ = dσρµν ,

(ii) dµνσρ is anti-symmetric in its first two and last two indices,

(iii) dµνσρ satisfies the first Bianchi identity, i.e. d[µνσ]ρ = 0,

(iv) dµνσρ is trace-free,

supposing that (i)-(iv) hold initially.

Remark 3.5 The constraint equations we shall impose later on on the initial
data guarantee that (i)-(iv) are initially satisfied. As for gµν and Lµν we shall
therefore use the implications of this lemma without mentioning it each time.

Proof: (i) This is part of the proof of Lemma 3.2.
(ii) Equation (3.14) implies a linear, homogeneous wave equation for d(µν)σρ,

✷(H)
g d(µν)σρ = Θdσρα

κd(µν)κ
α +

1

2
Rd(µν)σρ ,

i.e. the tensor dµνσρ is antisymmetric in its first two (and therefore by (i) in its
last two indices) since this is assumed to be initially the case.

(iii) Due to the (anti-)symmetry properties (i)-(ii), we find the following
linear, homogeneous wave equation from (3.14),

✷(H)
g d[µνσ]ρ = Θd[µν|κ|

αdσ]ρα
κ + 4Θdκ[σµ

αdν]αρ
κ +

1

2
Rd[µνσ]ρ

= 2Θdσαρ
κd[κµν]

α + 2Θdµαρ
κd[κνσ]

α + 2Θdναρ
κd[κσµ]

α

+Θdµνκ
αd[ασρ]

κ +Θdνσκ
αd[αµρ]

κ +Θdσµκ
αd[ανρ]

κ +
1

2
Rd[µνσ]ρ .

(iv) It remains to be shown that dµρσ
ρ = 0. Employing the properties (i)-(iii)

we conclude from (3.14) that

✷(H)
g dµρσ

ρ = −2Θdσ
κ
µ
αdκρα

ρ +
1

2
Rdµρσ

ρ ,

which is again a linear, homogeneous wave equation. ✷

15

95



Next, let us establish another important property:

Lemma 3.6 Assume that the hypotheses of Lemma 3.2 and 3.4 are satisfied and
that, in addition, the trace

L := Lσ
σ

of Lµν coincides on the initial surface with one sixth of the gauge source func-
tion R, L = 1

6R. Then

L =
1

6
R . (3.19)

(This is what one would expect if Lµν was the Schouten tensor and R the Ricci
scalar.)

Proof: We observe that in virtue of (3.11) the tracelessness of dµνσρ implies

✷g(L− 1

6
R) = 0 .

and the assertion follows again from standard uniqueness results for linear wave
equations. ✷

Gauge consistency

Let us return to the question of whether we have consistency with the gauge
condition in the sense that a solution of the CWE satisfies Hσ = 0 and Rg = R.
For that we assume that all the hypotheses of Lemma 3.2, 3.4 and 3.6 are
fulfilled. We consider the identity

Rµν − 1

2
Rggµν ≡ R(H)

µν − 1

2
R(H)gµν + gσ(µ∇̂ν)H

σ − 1

2
gµν∇̂σH

σ . (3.20)

Invoking (3.15) and Lemma 3.6 we deduce that

Rµν − 1

2
Rggµν = 2Lµν −

1

3
Rgµν + gσ(µ∇̂ν)H

σ − 1

2
gµν∇̂σH

σ

Bianchi
=⇒ ∇ν∇̂νH

α + 2gµα∇[σ∇̂µ]H
σ + 4(∇νLν

α − 1

6
∇αR) = 0 . (3.21)

Be aware that at this stage it is not known whether Lµν coincides with the
Schouten tensor and thus satisfies the contracted Bianchi identity (3.1) such
that the term in brackets in (3.21) drops out. That is the reason why we cannot
immediately deduce Hσ = 0 as in [5] supposing that this is initially the case.

Given two covariant derivative operators ∇ and ∇̂ (associated to the metrics
g and ĝ, respectively), there exists a tensor field Cσ

µν = Cσ
νµ, which depends on

g, ∂g, ĝ and ∂ĝ, such that

∇µv
σ − ∇̂µv

σ = Cσ
µνv

ν , (3.22)

for any vector vσ, and similar formulae hold for tensor fields of other types.
Setting

ζµ := −4(∇νLµ
ν − 1

6
∇µR) , (3.23)

the equation (3.21) can therefore be written as

✷gH
α = ζα + fα(g, ĝ;H,∇H) , (3.24)

16

96 CHAPTER 8. ARXIV:1306.6204 [GR-QC] (2013)



which is a linear wave equation satisfied by the wave-gauge vector Hσ.10 In
(3.24), as in what follows, the generic smooth field fα(g, ĝ;H,∇H), or more
general fα1...αp

β1...βq (v1, . . . , vm;w1, . . . , wn), represents a sum of fields, each of
which contains precisely one multiplicative factor from the set {wi} as well as
further factors which may depend on the vj ’s and also higher-order derivatives of
the vj ’s. The latter does not cause any problems since the vj ’s will be regarded
as given fields rather than unknowns of the system we are about to derive. In
most cases we will therefore simply write fα1...αp

β1...βq (x;w1, . . . , wn).
Taking the trace of (3.20) and inserting (3.15), yields (note that L = R/6)

Rg ≡ R(H) + ∇̂σH
σ = R+ ∇̂σH

σ . (3.25)

The vanishing of Hσ would therefore immediately ensure that Rg = R.
The tensor dµνσ

ρ is supposed to be part of a solution of the CWE. Note,
again, that at this stage it is by no means clear whether it, indeed, represents
the rescaled Weyl tensor of gµν and Θ. As before, we denote byWµνσ

ρ the Weyl
tensor associated to gµν , defined via the decomposition

Rµνσρ =Wµνσρ + gσ[µRν]ρ − gρ[µRν]σ − 1

3
Rggσ[µgν]ρ . (3.26)

As outlined above we want to derive a closed, linear, homogeneous system
of wave equations for a certain set of fields in order to establish the vanishing
of Hσ. First of all, we need a wave equation for ζµ. Making use of the Bianchi
identity, (3.19) and (3.11), we obtain

✷gζµ ≡ −4∇ν✷gLµ
ν +

2

3
✷g∇µR − 8∇ν(Wµσν

ρLρ
σ) + 8Rν

κ∇κLµ
ν

−4Rν
κ∇µLκ

ν −Rµ
νζν +

1

3
Rgζµ − 4Rµ

ν∇ν(L − 1

6
R)

+
4

3
Rg∇µ(L− 1

6
R) +

8

3
Lµ

ν∇νRg −
2

3
L∇µRg

= (4Lµ
ν −Rµ

ν)ζν + 4(2Lνσ −Rνσ +
1

6
Rgνσ)(∇µL

νσ − 2∇σLµ
ν)

−8∇ν[(Wµσν
ρ −Θdµσν

ρ)Lρ
σ] +

1

3
(ζµ + 8Lµ

ν∇ν − 2L∇µ)(Rg −R)

−4Lν
λ∇ν∇[λHµ] − 4Lµ

λ∇ν∇[λHν] + fµ(x;H,∇H) . (3.27)

We employ (3.10), (3.15), (3.25) and (3.24) to end up with

✷gζµ = 4Lµ
νζν − 1

6
Rζµ − 8∇ν [(Wµσν

ρ −Θdµσν
ρ)Lρ

σ]− 2

3
L∇µ∇νH

ν

+
2

3
Lµ

ν∇ν∇σH
σ − 4Lν

λ∇ν∇[λHµ] + fµ(x;H,∇H) . (3.28)

In order to get rid of the undesired second-order derivatives in Hσ, we introduce
the tensor field

Kµ
ν := ∇µH

ν (3.29)

10Note that in this part the metric is regarded as being given, so ✷g is a wave-operator

and there is no need to work with the reduced wave-operator ✷
(H)
g .
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as another unknown for which we need to derive a wave equation, as well. We
employ the fact that the right-hand side of (3.24) does not contain derivatives of
ζα: Differentiating (3.24) we are straightforwardly led to the desired equation,

✷gKµν ≡ ∇µ✷gHν +Rµ
κ∇κHν +Hκ∇σRκνµ

σ + 2Rκνµ
σ∇σH

κ

= ∇µζν + fµν(x;H,∇H,∇K) . (3.30)

Moreover, (3.28) becomes a wave equation for ζµ,

✷gζµ = 4Lµ
νζν − 1

6
Rζµ − 8∇ν [(Wµσνρ −Θdµσνρ)L

σρ]

+fµ(x;H,∇H,∇K) . (3.31)

We observe that we need a wave equation for Wµσνρ −Θdµσνρ (actually just for
its contraction with Lσρ, but for later purposes it is useful to show that Θdµσνρ
coincides with the Weyl tensor, which would follow, supposing, as usual, that it
is initially true). For this purpose let us introduce the tensor field ζµνσ ,

ζµνσ := 4∇[σLν]µ .

Note that ζ[µνσ] = 0 for a symmetric Lµν .
Starting from the second Bianchi identity, we find with (3.26), (3.10), (3.15)

and (3.25)

∇αWµνσρ ≡ −2∇[µWν]ασρ + 2∇[αRν][σgρ]µ − 2∇[αRµ][σgρ]ν − 2∇[µRν][σgρ]α

+
2

3
gµ[σgρ][ν∇α]Rg −

1

3
gα[σgρ]ν∇µRg

= gµ[σζρ]αν + gν[σζρ]µα − gα[σζρ]µν − 2∇[µWν]ασρ

+
2

3
gµ[σgρ][ν∇α]∇κH

κ − 1

3
gα[σgρ]ν∇µ∇κH

κ + gα[σ∇ρ]∇[µHν]

+gµ[σ∇ρ]∇[νHα] + gν[σ∇ρ]∇[αHµ] + fαµνσρ(x;H,∇H) . (3.32)

Applying ∇α yields

✷gWµνσρ = 2∇[ν∇αWµ]ασρ +Wµνα
κWσρκ

α − 4Wσκ[µ
αWν]αρ

κ +
1

3
RWµνσρ

+2(gρ[µWν]ασ
κ − gσ[µWν]αρ

κ)Lκ
α − 2L[µ

κWν]κσρ − 2L[σ
κWρ]κµν

+∇[σζρ]νµ + gσ[µ∇αζ|ρα|ν] − gρ[µ∇αζ|σα|ν] +
1

3
gµ[σgρ]ν∇κ✷gH

κ

+
1

6
gµ[σ∇ρ]∇ν∇αH

α − 1

6
gν[σ∇ρ]∇µ∇αH

α − 1

2
gµ[σ∇ρ]✷gHν

+
1

2
gν[σ∇ρ]✷gHµ + fµνσρ(x;H,∇H,∇K) . (3.33)

Before we manipulate this expression any further it is useful to compute

∇αζµνα ≡ 2✷gLµν − 2∇ν∇αLµ
α − 2Rανµ

κLκ
α − 2RνκLµ

κ

= 2✷(H)
g Lµν + 2Lα

κWµκν
α − 3Lµ

κR(H)
νκ − Lν

αR(H)
µα + gµνL

ακR(H)
ακ

−1

2
∇µ∇ν(Rg −

1

3
R) + LR(H)

µν +
1

3
LµνRg −

1

3
LRggµν

+
1

2
∇ν∇κ∇̂µH

κ +
1

2
gµκ∇ν∇α∇̂αH

κ + fµν(x;H,∇H)

= 2(Wµαν
κ − 2Θdµαν

κ)Lκ
α +

1

2
∇ν✷gHµ

+fµν(x;H,∇H,∇K) , (3.34)
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which follows from (3.10), (3.11), (3.15), (3.19), (3.21), (3.25) and (3.26). Due
to the Bianchi identity, (3.10), (3.15) and (3.25), we also have

∇αWµνσ
α ≡ −∇[µRν]σ − 1

6
gσ[µ∇ν]Rg

=
1

2
ζσµν − 1

2
∇σ∇[µHν] −

1

6
gσ[µ∇ν]∇κH

κ + fµνσ(x;H,∇H) .(3.35)

Invoking (3.34) and (3.35) we rewrite (3.33) to obtain

✷gWµνσρ = ∇[σζρ]νµ −∇[µζν]σρ +Wµνα
κWσρκ

α − 4Wσκ[µ
αWν]αρ

κ +
1

3
RWµνσρ

−2L[µ
κWν]κσρ − 2L[σ

κWρ]κµν + 4Lκ
α(Wρα[µ

κ −Θdρα[µ
κ)gν]σ

−4Lκ
α(Wσα[µ

κ − Θdσα[µ
κ)gν]ρ +

1

2
gρ[µ∇ν]✷gHσ − 1

2
gσ[µ∇ν]✷gHρ

+
1

2
gν[σ∇ρ]✷gHµ − 1

2
gµ[σ∇ρ]✷gHν +

1

3
gµ[σgρ]ν∇κ✷gH

κ

+fµνσρ(x;H,∇H,∇K) . (3.36)

We insert (3.24),

✷gWµνσρ = ∇[σζρ]νµ −∇[µζν]σρ +Wµνα
κWσρκ

α − 4Wσκ[µ
αWν]αρ

κ

−2L[µ
κWν]κσρ − 2L[σ

κWρ]κµν + 4Lκ
α(Wρα[µ

κ −Θdρα[µ
κ)gν]σ

−4Lκ
α(Wσα[µ

κ −Θdσα[µ
κ)gν]ρ +

1

3
RWµνσρ +

1

3
gµ[σgρ]ν∇κζ

κ

+
1

2
gρ[µ∇ν]ζσ − 1

2
gσ[µ∇ν]ζρ +

1

2
gν[σ∇ρ]ζµ − 1

2
gµ[σ∇ρ]ζν

+fµνσρ(x;H,∇H,∇K) . (3.37)

It proves useful to make the following definitions:

κµνσ :=
1

2
ζµνσ −∇κΘdνσµ

κ , (3.38)

Ξµν := ∇µ∇νΘ+ΘLµν − sgµν . (3.39)

We observe the relation

∇ρζµνσ = 2∇ρκµνσ + 2∇κΘ∇ρdνσµκ + 2Ξρκdνσµ
κ − 2Lρ

κΘdνσµκ + 2sdνσµρ .

Then, due to the (anti-)symmetry properties of the tensor dµνσρ derived above,
(3.37) yields

✷gWµνσρ = 2∇κΘ∇[σdρ]κνµ − 2∇κΘ∇[µdν]κσρ + 2∇[σκρ]νµ − 2∇[µκν]σρ

+2dνµ[ρ
κΞσ]κ − 2dσρ[ν

κΞµ]κ +Wµνα
κWσρκ

α − 4Wσκ[µ
αWν]αρ

κ

+
1

3
RWµνσρ + 2L[µ

κ(Θdν]κσρ −Wν]κσρ)− 2L[σ
κ(Θdρ]κνµ −Wρ]κνµ)

+4Lκ
α(Wρα[µ

κ −Θdρα[µ
κ)gν]σ − 4Lκ

α(Wσα[µ
κ −Θdσα[µ

κ)gν]ρ

+
1

2
gρ[µ∇ν]ζσ − 1

2
gσ[µ∇ν]ζρ +

1

2
gν[σ∇ρ]ζµ − 1

2
gµ[σ∇ρ]ζν

+
1

3
gµ[σgρ]ν∇κζ

κ + 4sdµνσρ + fµνσρ(x;H,∇H,∇K) . (3.40)
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On the other hand, in virtue of (3.13) and (3.14), we have

✷g(Θdµνσρ) ≡ dµνσρ✷gΘ+Θ✷gdµνσρ + 2∇κΘ∇κdµνσρ

= 4sdµνσρ + 2∇κΘ∇κdµνσρ +Θ2dµνκ
αdσρα

κ − 4Θ2dσκ[µ
αdν]αρ

κ

+
1

3
RΘdµνσρ + fµνσρ(x;H,∇H) . (3.41)

Combining (3.40) and (3.41), and invoking (3.5), we are led to the wave equation

✷g(Wµνσρ −Θdµνσρ) = 2∇[σκρ]νµ − 2∇[µκν]σρ + 2dµν[σ
κΞρ]κ + 2dσρ[µ

κΞν]κ

+Wµνα
κ(Wσρκ

α −Θdσρκ
α) + Θdσρκ

α(Wµνα
κ −Θdµνα

κ)

−4Wσκ[µ
α(Wν]αρ

κ −Θdν]αρ
κ)− 4(Wσκ[µ

α −Θdσκ[µ
α)Θdν]αρ

κ

−2L[µ
κ(Wν]κσρ −Θdν]κσρ) + 2L[σ

κ(Wρ]κνµ −Θdρ]κνµ)

+4Lκ
α(Wρα[µ

κ −Θdρα[µ
κ)gν]σ − 4Lκ

α(Wσα[µ
κ −Θdσα[µ

κ)gν]ρ

+
1

3
R(Wµνσρ −Θdµνσρ)−

1

2
∇κΘ(ǫκσρ

δǫµν
βγ + ǫκµν

δǫσρ
βγ)∇αdβγδ

α

+
1

2
gρ[µ∇ν]ζσ − 1

2
gσ[µ∇ν]ζρ +

1

2
gν[σ∇ρ]ζµ − 1

2
gµ[σ∇ρ]ζν

+
1

3
gµ[σgρ]ν∇κζ

κ + fµνσρ(x;H,∇H,∇K) , (3.42)

which is fulfilled by any solution of the CWE.
In order to end up with a homogeneous system of wave equations, it remains

to derive wave equations for κµνσ, Ξµν and∇ρdµνσ
ρ. Let us start with∇ρdµνσ

ρ,

✷g∇ρdµνσ
ρ ≡ ∇ρ✷gdµνσ

ρ − 4Wκρ[µ
α∇κdν]ασ

ρ + 2Wκρσ
α∇κdµνα

ρ

−2dµνρ
α∇[σRα]

ρ − 2dσρν
α∇[µRα]

ρ + 2dσρµ
α∇[νRα]

ρ

+2Rρ[µ∇αdν]ασ
ρ +Rσ

ρ∇αdµνρ
α + 3Rρ

α∇[µdαν]σ
ρ

−1

2
dµνσ

α∇αRg

= 2dµνρ
ακρ

σα − 4dσρ[µ
ακρ

ν]α + (Wκσρ
α −Θdκσρ

α)∇κdµνα
ρ

−4(Wκρ[µ
α −Θdκρ[µ

α)∇κdν]ασ
ρ +

1

2
Rραǫµαν

δǫσρ
βγ∇λdβγδ

λ

+2R[µ
α∇|ρdσα|ν]

ρ +Θdµνκ
α∇ρdα

κ
σ
ρ + 4Θdσ

κ
[µ

α∇|ρ|dν]ακ
ρ

+(Rσ
α +

1

2
Rδσ

α)∇ρdµνα
ρ + fµνσ(x;H,∇H,∇K) . (3.43)

The validity of the last equality follows from (3.10), (3.14), (3.15), (3.25) and
(3.5). Note that to establish (3.5) one just needs the algebraic properties of
dµνσ

ρ which are ensured by Lemma 3.4.
Next, let us derive a wave equation for Ξµν . With (3.11)-(3.13), (3.15),

(3.10), (3.19) and (3.25) the following relation is verified,

✷gΞµν ≡ ∇µ∇ν✷gΘ+ 2∇(µRν)κ∇κΘ+ 2Rκ(µ∇ν)∇κΘ+ 2Rσµν
κ∇σ∇κΘ

−∇κRµν∇κΘ+ Lµν✷gΘ+Θ✷gLµν + 2∇σΘ∇σLµν − gµν✷gs

= 2(2L(µ
κδν)

σ − gµνL
σκ −Wµ

σ
ν
κ)Ξσκ + 2ΘLσκ(Wµ

σ
ν
κ −Θdµ

σ
ν
κ)

+4∇(µΥν) +
1

6
RΞµν + fµν(x;H,∇H,∇K) , (3.44)
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where we have set
Υµ := ∇µs+ Lµν∇νΘ . (3.45)

Of course, we also need a wave equation for Υµ. Using again (3.11)-(3.13),
(3.15) as well as (3.10) and (3.25) we find that

✷gΥµ ≡ ∇µ✷gs+Rµ
κ∇κs+✷gLµν∇νΘ+ Lµ

ν∇ν✷gΘ+ Lµ
νRν

κ∇κΘ

+2∇σLµν∇σ∇νΘ

= 6Lµ
κΥκ + 2ΘLρκκρκµ + 2Ξνσ∇σLµ

ν − 1

6
Ξµ

ν∇νR

+fµ(x;H,∇H,∇K) . (3.46)

Finally, let us derive a wave equation which is satisfied by κµνσ ≡ 1
2ζµνσ −

∇κΘdνσµ
κ. The definition of the Weyl tensor (3.26) together with the Bianchi

identities yield

1

2
✷gζµνσ ≡ 2∇[σ✷gLν]µ − 2Wνσκρ∇ρLµ

κ + 4Wµκρ[σ∇ρLν]
κ − 2Rκ[ν∇σ]Lµ

κ

+2Rκ[σ∇|µ|Lν]
κ − 2Rµ[σ∇|κ|Lν]

κ − 2Rρκgµ[σ∇ρLν]
κ +

1

6
Rgζµνσ

+
2

3
Rggµ[σ∇κLν]κ + 2Lµ

κ∇[νRσ]κ + 2Lν
κ∇[µRκ]σ + 2Lσ

κ∇[κRµ]ν

= 2ζµκ[σLν]
κ + 3ζα[νσgκ]µL

ακ + 4Lρ
κ∇[ν(Θdσ]κµ

ρ) + 2Θζακ[νdσ]
κ
µ
α

+4(Wµ
ρ
[ν

κ −Θdµ
ρ
[ν

κ)∇|κ|Lσ]ρ − ζµακWν
α
σ
κ +

1

3
Lµ[ν∇σ]R

+
1

6
(Rσνµ

κ + 2gµ[νLσ]
κ)∇κR +

1

12
Rgζµνσ + fµνσ(x;H,∇H,∇K) ,

where the last equality follows from (3.10), (3.11), (3.15) and (3.25). We employ
(3.13)-(3.15) and (3.10) to deduce that

✷g(∇κΘdνσµ
κ) ≡ dνσµ

κ(∇κ✷gΘ+Rκ
ρ∇ρΘ) +∇κΘ✷gdνσµ

κ + 2∇α∇κΘ∇αdνσµ
κ

= 4Υκdνσµ
κ − 2Lκ

ρ∇ρ(Θdνσµ
κ) + 2Ξλκ∇λdνσµ

κ + 2s∇κdνσµ
κ

+Θ(
1

2
ζµλ

α − κµλ
α)dνσα

λ −Θ(2ζαλ[σ − 4καλ[σ)dν]
λ
µ
α

+
1

2
Rdνσµ

κ∇κΘ− 1

6
Θdνσµ

κ∇κR+ fµνσ(x;H,∇H) .

With (3.25) we are led to

✷gκµνσ = 4∇βΘ
{
gβ[νdσ]κµ

αLα
κ − gµ[νdσ]κβ

αLα
κ − dµβκ[νLσ]

κ

−dνσκ[µLβ]
κ − 1

12
Rdνσµβ

}

+6ΘLρ
κ∇[νdσκ]µ

ρ − 2Ξλκ∇λdνσµ
κ − 4Υκdνσµ

κ

+4(Wµ
ρ
[ν

κ −Θdµ
ρ
[ν

κ)∇|κ|Lσ]ρ −
1

2
ζµκ

α(Wνσα
κ −Θdνσα

κ)

−4κµκ[νLσ]
κ + 6κα[νσgκ]µL

ακ +Θκµλ
αdνσα

λ − 4Θκαλ[σdν]
λ
µ
α

−2s∇κdνσµ
κ − 1

6
(Wνσµ

κ −Θdνσµ
κ)∇κR+

1

6
Rgκµνσ

+fµνσ(x;H,∇H,∇K) . (3.47)
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The term in braces needs to be eliminated. To this end let us consider the
expression (we use the implications of Lemma 3.4)

3∇λ∇[λdµν]σρ = ✷gdµνσρ −∇ν∇λdσρµ
λ +∇µ∇λdσρν

λ

−Wµνλ
κdσρκ

λ + 2Wλν[σ
κdρ]κµ

λ − 2Wλµ[σ
κdρ]κν

λ

−dσρ[µκRν]κ − dµν[σ
λRρ]λ + gµ[σdρ]κνλR

λκ − gν[σdρ]κµλR
λκ .

We take (3.5), (3.10), (3.14) and (3.15) into account to rewrite this equation as

2gν[σdρ]κµ
αLα

κ − 2gµ[σdρ]κν
αLα

κ − 2dµνκ[σLρ]
κ − 2dσρκ[µLν]

κ − 1

6
Rdµνσρ

≡ 2(Wσκ[µ
α −Θdσκ[µ

α)dν]αρ
κ − 2(W[µ|αρ

κ −Θd[µ|αρ
κ)dσκ|ν]

α

−(Wµνκ
α −Θdµνκ

α)dσρα
κ + 2∇[µ∇|λdσρ|ν]

λ

−1

2
ǫλµν

κǫσρ
βγ∇λ∇αdβγκ

α + fµνσρ(x;H,∇H) . (3.48)

Combining (3.48) with (3.47) and (3.5) yields a wave equation for κµνσ ,

✷gκµνσ = 4∇βΘ[(Wνκ[µ
α −Θdνκ[µ

α)dβ]ασ
κ − (Wσκ[µ

α −Θdσκ[µ
α)dβ]αν

κ]

+2(Wµβκ
α −Θdµβκ

α)∇βΘdσνα
κ + 4∇βΘ∇[β(∇λd|σν|µ]

λ)

+ǫλµβ
κǫσν

δγ∇βΘ∇λ(∇αdδγκ
α) + ΘLρ

κǫσκν
δǫµ

ρβγ∇αdβγδ
α

−2Ξλκ∇λdνσµ
κ − 4Υκdνσµ

κ + 4(Wµ
ρ
[ν

κ −Θdµ
ρ
[ν

κ)∇|κ|Lσ]ρ

−4κµκ[νLσ]
κ + 6κα[νσgκ]µL

ακ +
1

2
ζµκ

α(Wνσα
κ −Θdνσα

κ)

+Θκµλ
αdνσα

λ + 4Θκαλ[νdσ]
λ
µ
α − 1

6
(Wνσµ

κ −Θdνσµ
κ)∇κR

−2s∇κdνσµ
κ +

1

6
Rgκµνσ + fµνσ(x;H,∇H,∇K) . (3.49)

The equations (3.24), (3.30), (3.31), (3.42), (3.43), (3.44), (3.46) and (3.49)
form a closed, linear, homogeneous system of linear wave equations satisfied by
the fields Hσ, Kµν , ζµ, Wµνσρ −Θdµνσρ, ∇ρdµνσ

ρ, Ξµν , Υµ and κµνσ, with all
other quantities regarded as being given. An application of standard uniqueness
results, cf. e.g. [15], establishes that all the fields vanish, supposing that this
is initially the case. In particular this guarantees consistency with the gauge
condition, i.e. Hσ = 0 and, by (3.9), Rg = R, for solutions of the CWE. In fact
we have proven more, and that will be of importance in the next section.

3.3 Equivalence issue between the CWE and the MCFE

Recall the CWE (3.11)-(3.15) and the MCFE (2.5)-(2.10). Let us tackle the
equivalence issue between them. A look at the derivation of the CWE reveals
that any solution of the MCFE which satisfies the gauge condition Hσ = 0
will be a solution of the CWE with gauge source function R = Rg. The other
direction is the more interesting albeit more involved one. We therefore devote
ourselves subsequently to the issue whether (or rather under which conditions)
a solution of the CWE is also a solution of the MCFE. We shall demonstrate
that a solution of the CWE is a solution of the MCFE supposing that it satisfies
certain relations on the initial surface. In fact, most of the work has already
been done in the previous section.
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We have the following intermediate result; we emphasize that the conformal
factor is allowed to have zeros, or vanish, on the initial surface:

Theorem 3.7 Assume we have been given data (̊gµν , s̊, Θ̊, L̊µν , d̊µνσ
ρ) on a

characteristic initial surface S (for definiteness we think either of two transver-
sally intersecting null hypersurfaces or a light-cone) and a gauge source function
R, such that g̊µν is the restriction to S of a Lorentzian metric, L̊µν is symmet-

ric, L̊µ
µ ≡ L̊ = R/6, and such that d̊µνσ

ρ satisfies all the algebraic properties of
the Weyl tensor (cf. the assumptions of Lemma 3.4). Suppose further that there
exists a solution (gµν , s, Θ, Lµν , dµνσ

ρ) of the CWE (3.11)-(3.15) with gauge
source function R which induces the above data on S and fulfills the following
conditions:

1. The MCFE (2.5)-(2.8) are fulfilled on S;

2. equation (2.9) holds at one point on S;

3. the Weyl tensor Wµνσ
ρ[g] coincides on S with Θ̊d̊µνσ

ρ;

4. the wave-gauge vector Hσ and its covariant derivative Kµ
σ ≡ ∇µH

σ van-
ish on S;

5. the covector field ζµ ≡ −4(∇νLµ
ν − 1

6∇µR) vanishes on S.

Then

a) Hσ = 0 and Rg = R;

b) Lµν is the Schouten tensor of gµν ;

c) Θdµνσ
ρ is the Weyl tensor of gµν ;

d) (gµν , s, Θ, Lµν , dµνσ
ρ) solves the MCFE (2.5)-(2.10) with Hσ = 0 and

Rg = R.

The conditions 1-5 are necessary for d) to be true.

Proof: The conditions 1 and 3-5 make sure that the fields Hσ, Kµν , ζµ,
Wµνσρ − Θdµνσρ, ∇ρdµνσ

ρ, Ξµν , Υµ and κµνσ vanish on S. In the previous
section we have seen that they provide a solution of the closed, linear, homo-
geneous system of wave equations (3.24), (3.30), (3.31), (3.42), (3.43), (3.44),
(3.46) and (3.49), so that all these fields need to vanish identically. In particular
that implies Hσ = 0, that Θdµνσ

ρ is the Weyl tensor of gµν , and that (2.5)-(2.8)
hold. The vanishing of Hσ guarantees that the Ricci tensor coincides with the
reduced Ricci tensor and by (3.25) that R is the curvature scalar Rg of gµν .
Equation (3.15) then tells us that Lµν is the Schouten tensor. Hence (2.10) is
an identity and automatically satisfied. To establish (2.9), it suffices to check
that it is satisfied at one point, which is ensured by condition 2. ✷

In the following we shall investigate to what extent the conditions 1-5 are
satisfied if the fields g̊µν , L̊µν , d̊µνσ

ρ, Θ̊ and s̊ are constructed as solutions of
the constraint equations induced by the MCFE on the initial surface.
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4 Constraint equations induced by the MCFE

on the Ci−-cone

4.1 Adapted null coordinates and another gauge freedom

The aim of this section is to derive the set of constraint equations induced by
the MCFE,

∇ρdµνσ
ρ = 0 , (4.1)

∇µLνσ −∇νLµσ = ∇ρΘ dνµσ
ρ , (4.2)

∇µ∇νΘ = −ΘLµν + sgµν , (4.3)

∇µs = −Lµν∇νΘ , (4.4)

2Θs−∇µΘ∇µΘ = 0 , (4.5)

Rµνσ
κ[g] = Θdµνσ

κ + 2
(
gσ[µLν]

κ − δ[µ
κLν]σ

)
, (4.6)

on the initial surface S, where we assume henceforth

λ = 0 . (4.7)

By constraint equations we mean intrinsic equations on the initial surface which
determine the fields gµν |S , Lµν |S , dµνσρ|S , Θ|S and s|S starting from suitable
free “reduced” data. We shall do this in adapted null coordinates and imposing
a generalized wave-map gauge condition. To avoid too many case distinctions
we shall derive them in the case where the initial surface is the light-cone Ci−

on which the conformal factor Θ vanishes (this requires (4.7), cf. (2.9) evaluated
on Ci−), which is completely sufficient for our purposes.

Adapted null coordinates (u, r, xA) are defined in such a way that {x0 ≡ u =
0} = I − ≡ Ci− \ {i−}, x1 ≡ r > 0 parameterizes the null rays emanating from
i−, and xA, A = 2, 3, are local coordinates on the level sets {r = const, u = 0} ∼=
S2 (note that these coordinates are singular at the tip, see [5] for more details).

First we shall sketch how the constraint equations are obtained in a general-
ized wave-map gauge with arbitrary gauge functions. We shall write them down
explicitly in a specific gauge afterwards.

We use the same notation as in [5], i.e. ν0 := g01, νA := g0A. The function
χA

B := 1
2g

BC∂1gAC denotes the null second fundamental form, the function τ ,
which describes the expansion of the cone, its trace, and the shear tensor σA

B

its traceless part. The symbols ∇̃A, Γ̃
C
AB and R̃AB refer to the r-dependent

Riemannian metric g̃ := gABdx
AdxB.

The equation (4.12) below together with regularity conditions at the tip of
the cone imply that g̃ is conformal to the the standard metric sAB on the 2-
sphere S2. It therefore makes sense to take as reduced data the g̃ -trace-free part
of LAB on Ci− (which coincides with its s-trace-free part). It will be denoted

by L̆AB =: ωAB.
The field ωAB is an r-dependent tensor on S2. Here and in what follows .̆

denotes the g̃-trace-free part of the corresponding 2-tensor on S2. As before,
overlining is used to indicate restriction to the initial surface. The gauge degrees
of freedom are comprised by R, Wλ, s (cf. Sections 2 and 3.1) and κ. The
function κ is given by

κ := ν0∂1ν0 −
1

2
τ − 1

2
ν0(g

µνΓ̂0
µν +W 0) , (4.8)
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where ν0 := g01 = (ν0)
−1. It reflects the freedom to parameterize the null

geodesics generating the initial surface [5]; the choice κ = 0 corresponds to an
affine parameterization.

4.2 Constraint equations in a generalized wave-map gauge

We show that, in the case where the initial surface is Ci− , the constraint equa-
tions form a hierarchical system of algebraic equations and ODEs along the
generators of Ci− . In doing so, we merely consider those gauge choices Wλ

which depend just upon the coordinates and none of the fields appearing in the
CWE (cf. footnote 11). To derive the constraint equations we assume we have
been given a smooth solution of the MCFE in a generalized wave-map gauge
Hσ = 0, smoothly extendable through Ci− We then evaluate the MCFE on
Ci− and eliminate the transverse derivatives. For this we shall assume that the
solution satisfies si− 6= 0, which implies that s−1 and (∂0Θ)−1 exist near i−

(the existence of the latter one follows e.g. from (4.10) below). The function
τ−1 needs to exist anyway close to i− [5]. It should be emphasized that, on a
light-cone, the initial data for the ODEs cannot be specified freely but follow
from regularity conditions at the vertex. For sufficiently regular gauges the be-
haviour of the relevant fields near the vertex is computed in [5]. When stating
this behaviour below we shall always tacitly assume that the gauge is sufficiently
regular.

In the following we shall frequently make use of the formulae (A.8)-(A.25)
in [5] for the Christoffel symbols computed in adapted null coordinates on a
cone.

We consider (4.3) for (µν) = (10), (AB) on Ci− , where we take the g
AB-trace

of the latter equation,

∂1∂0Θ+ (κ− ν0∂1ν0)∂0Θ = ν0s , (4.9)

s =
1

2
τν0∂0Θ (4.10)

(note that H0 = 0 implies κ = Γ1
11 [5]). Differentiating (4.10) and inserting the

result into (4.9) we obtain an equation for τ ,

∂1τ − (κ+ ∂1 log |s|)τ +
1

2
τ2 = 0 . (4.11)

The boundary behaviour is given by τ = 2r−1 +O(r) [5].
Due to our assumption si− 6= 0 the (AB)-component of (4.3), together with

(4.10), provides an equation for gAB (at least sufficiently close to the vertex),

s(∂1gAB − τgAB) = 0 ⇐⇒ σAB = 0 . (4.12)

The boundary condition is gAB = r2sAB+O(r4) [5], with sAB the round sphere
metric.

Using the definition of Lµν , which can be recovered from (4.6), as well as
(4.12), we find that

L11 ≡ −1

2

(
∂1τ − Γ1

11τ + χA
BχB

A
)
= −1

2
∂1τ +

1

2
κτ − 1

4
τ2 . (4.13)
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The gauge condition H0 = 0 provides an equation for ν0,
11

∂1ν
0 + ν0(

1

2
τ + κ) +

1

2
V 0 = 0 . (4.14)

Here we have set

V λ := gµνΓ̂λ
µν +Wλ .

The boundary condition is ν0 = 1+O(r2) [5]. Equation (4.10) then determines
∂0Θ. The function ∂0g11 is computed from κ = Γ1

11,

∂0g11 = 2∂1ν0 − 2ν0κ . (4.15)

We remark that the values of certain transverse derivatives are needed on the
way to derive the constraint equations. As a matter of course the constraint
equations themselves will not involve any transverse derivatives, for they are
not part of the characteristic initial data for the CWE.

Let us introduce the field

ξA := −2ν0∂1νA + 4ν0νBχA
B + νAV

0 + gABV
B − gADg

BC Γ̃D
BC . (4.16)

In a generalized wave-map gauge we have [5]

ξA = −2Γ1
1A . (4.17)

Invoking (4.10) and (4.12), equation (4.3) with (µν) = (0A) can be written as
an equation for ξA,

ξA = 2∂A log |∂0Θ| − 2ν0∂Aν0 . (4.18)

The definition of ξA can then be employed to compute νA,

ν0∂1νA − τν0νA − 1

2
νAV

0 − 1

2
gABV

B +
1

2
gADg

BC Γ̃D
BC +

1

2
ξA = 0 . (4.19)

The boundary condition is given by νA = O(r3) [5]. The equation ξA = −2Γ1
1A

then determines ∂0g1A algebraically,

∂0g1A = (∂A + ξA)ν0 + (∂1 − τ)νA . (4.20)

From (4.9), (4.10) and (4.18) we obtain the relation

∂1ξA = ∂A(τ − 2κ) ,

which yields

L1A ≡ 1

2
(∂1 + τ)Γ1

1A +
1

2
∇̃BχA

B − 1

2
∂AΓ

1
11 −

1

2
∂Aτ

= −1

4
τξA − 1

2
∂Aτ . (4.21)

11 Recall that we assume Wλ to depend just upon the coordinates, otherwise one would
have to be careful here and specify upon which components of which fields Wλ is allowed to
depend in order to get the hierarchical system we are about to derive.
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We define the function

ζ := 2(∂1 + κ+
1

2
τ)g11 + 2V 1 . (4.22)

For a solution which satisfies the generalized wave-map gauge condition Hσ = 0
it holds [5] that

ζ = 2gABΓ1
AB + τg11 . (4.23)

We find that

gABRACB
C ≡ R̃− 1

2
g1A∂Aτ + τgABΓ1

AB +
1

2
τg1AΓ1

1A +
1

2
τ2g11

= R̃− 1

2
g1A(∂A +

1

2
ξA)τ +

1

2
τζ . (4.24)

On the other hand, the gABRACB
C -part of (4.6) yields (we set ξA := gABξB)

gABRACB
C = g1AL1A + 2gABLAB

= (∇̃A − 1

2
ξA − 1

4
τg1A)ξA − 1

2
g1A∂Aτ + (∂1 + τ + κ)ζ

+R̃− 1

3
R , (4.25)

where we took into account that

2gABLAB ≡ (∂1 + τ + κ)ζ + (∇̃A − 1

2
ξA)ξ

A + R̃− 1

3
R . (4.26)

Combining (4.24) and (4.25), we end up with an equation for ζ,

(∂1 +
1

2
τ + κ)ζ + (∇̃A − 1

2
ξA)ξ

A − 1

3
R = 0 , (4.27)

where the boundary condition is ζ + 2r−1 = O(1). Then (4.26) becomes

gABLAB =
1

4
τζ +

1

2
R̃ . (4.28)

The definition (4.22) of ζ can be employed to compute g00, since g00 =
gABνAνB − (ν0)

2g11. The boundary condition is [5] g11 = 1 + O(r2). The
equation ζ = 2gABΓ1

AB + τg11 can then be read as an equation for gAB∂0gAB,

gAB∂0gAB = 2∇̃AνA − ν0(τg
11 + ζ) . (4.29)

An expression for L01 follows from the relation gµνLµν = 1
6R, which yields

L01 = −1

2
νA(∂A +

1

2
ξA)τ +

1

4
ν0g

11[∂1τ − κτ +
1

2
τ2]

−1

8
ν0(τζ + 2R̃) +

1

12
ν0R , (4.30)

where νA := gABνB. On the other hand we have

2L01 ≡ R01 −
1

6
ν0R

≡ ∂0Γ0
01 − ∂1Γ

0
00 + (∇̃A +

1

2
τν0νA)Γ

A
01 + (ν0∂1ν0 − κ+ τ)Γ1

01

−(∂1 − ν0∂1ν0 + κ+
1

2
τ)ΓA

0A − 1

6
ν0R .
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Combining this with the gauge condition ∂0H0 = 0 one determines ∂0g01 and
∂200g11, with boundary condition ∂0g01 = O(r) [5].

Note that up to this stage the initial data ωAB have not entered yet, i.e.
all the field components computed so far have a pure gauge-character. Note

further that (∂0gAB )̆ can be computed in terms of ωAB ≡ L̆AB = 1
2 R̆AB and

those quantities computed so far. (Recall that (∂0gAB )̆ denotes the trace-free
part of ∂0gAB with respect to gAB, and note that (.)̆ always refers to the two
free angular indices.)

Equation (4.6) with (µνσκ) = (0ABC), contracted with gAB, gives an equa-
tion for L0A,

L0A = −gACg
BD(∂BΓ

C
0D − ∂0ΓC

BD + Γα
0DΓC

αB − Γα
BDΓC

α0)

−ν0νAνBL1B + νBLAB + 2ν0νAL01 −
1

6
νAR̃ (4.31)

(the right-hand side contains only known quantities). From the definition of

L0A and the gauge condition ∂0HC = 0 one then computes ∂0g0A and ∂200g1A.
The relevant boundary condition is ∂0g0A = O(r2). The g̃-trace-free part of

(4.6) for (µνσκ) = (0A0B) yields (∂200gAB )̆.
The 10 independent components of the rescaled Weyl tensor in adapted null

coordinates are

d0101 , d011A , d010A , d01AB , d̆1A1B , d̆0A0B .

The g̃-trace-free part of (4.2) with (µνσ) = (A1B) determines d̆1A1B,

d̆1A1B = ν0(∂0Θ)−1
[
(∂1 −

1

2
τ)ωAB + L11Γ̆

1
AB − ∇̃AL1B +

1

2
ξBL1A

+
1

2
gAB(∇̃C − 1

2
ξC)L1C

]
. (4.32)

All the remaining components of the rescaled Weyl tensor can be determined
from (4.1). We will be rather sketchy here. For (µνσ) = (1A1) one finds

∇1d011A + νB∇1d1A1B − ν0g
CD∇Cd1A1D = 0 , (4.33)

which is an ODE for d011A, since the term gABd1ABC , which appears when ex-
pressing the covariant derivatives in terms of partial derivatives and connection
coefficients, can be written as

gABd1ABC = ν0d011C − g1Bd1B1C .

Any bounded solution of the MCFE satisfies d011A = O(r) for small r.
For (µνσ) = (AB1) one obtains an ODE for d01AB,

∇1d01AB + νC∇1d1CAB − ν0g
CD∇Dd1CAB = 0 , (4.34)

the boundary condition is given by the requirement d01AB = O(r2). Note for this
that d1ABC and d0[AB]1, both of which are hidden in the covariant derivatives

appearing in (4.34), can be expressed in terms of d1A1B and d011A. Indeed,
symmetries of the rescaled Weyl tensor imply that

d1ABC = 2gEFd1EF [CgB]A = 2(ν0d011[C − g1Dd1D1[C)gB]A ,

2d0[AB]1 = −d01AB .
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The (µνσ) = (101)-component of (4.1) can be employed to determine d0101,

∇1d0101 + νC∇1d011C − ν0g
CD∇Cd011D = 0 . (4.35)

For that purpose one needs to express gABd0AB1 in terms of known components
and d0101,

gABd0AB1 = g1Ad011A − ν0d0101 .

The boundary condition for bounded solutions is d0101 = O(1).
The function d010A is obtained from (4.1) with (µνσ) = (0A1),

∇1d010A + νC∇1d0A1C − ν0g
CD∇Cd0A1D = 0 , (4.36)

and d010A = O(r). To obtain the desired ODE one needs to use the following
relations, which, again, follow from the symmetry properties of the rescaled
Weyl tensor:

gABd0AB1 = g1Ad011A − ν0d0101 ,

2ν0d0(AB)1 = g11d1A1B − 2g1Cd1(AB)C − gCDdCABD ,

gABgCDdCABD = −2gAB(g1Cd1ABC + ν0d0AB1) ,

gCDdCABD =
1

2
gABg

CDgEFdCEFD ,

dABCD = gEF (gC[BdA]EFD − gD[BdA]EFC) ,

gABd0ABC = −ν0d010C − g11d011C − g1B(d01BC − d0(BC)1 − d0[BC]1) ,

d0ABC = 2gEFd0EF [CgB]A .

To gain an equation for d̆0A0B we observe that due to the tracelessness of
the rescaled Weyl tensor we have

0 = gµν∇0dµABν − 1

2
gABg

CDgµν∇0dµCDν

= 2ν0∇0d̆0(AB)1 − g11∇0d̆1A1B + 2(g1C∇0d1(AB)C )̆ .

Two of the transverse derivatives can be eliminated via the following relations,

0 = ν0∇ρd̆1(AB)
ρ ≡ −∇0d̆1A1B +∇1d̆0(AB)1 − ν0g

11∇1d̆1A1B

−(νC∇1d1(AB)C )̆ + νC∇C d̆1A1B + ν0(g
CD∇Dd1(AB)C )̆ ,

0 = ν0∇ρdABC
ρ ≡ ∇0dABC1 +∇1dABC0 + ν0g

11∇1dABC1

−νD∇1dABCD − νD∇DdABC1 + ν0g
DE∇EdABCD ,

so that we end up with an expression for ∇0d̆0(AB)1. The trace-free and sym-
metrized part of equation (4.1) with (µνσ) = (0AB) reads

0 = ν0∇0d̆0(AB)1 + ν0∇1d̆0AB0 + g11∇1d̆0(AB)1 + g1C∇C d̆0(AB)1

+(g1C∇1d0(AB)C )̆ + (gCD∇Dd0(AB)C )̆ , (4.37)

which thus provides an ODE for d̆0A0B with boundary condition d̆0A0B = O(r2).
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Finally, one determines L00 from equation (4.2) with (µνσ) = (100) and the
contracted Bianchi identity (3.1),

2ν0∇1L00 + g11∇1L01 +2g1A∇(1LA)0 + gAB∇AL0B − 1

6
∂0R = (ν0)2∂0Θ d0101 .

(4.38)
The boundary condition, satisfied by any bounded solution, is L00 = O(1).

4.3 Constraint equations in the (R = 0, s = −2, κ = 0, ĝ = η)-
wave-map gauge

To simplify computations significantly let us choose a specific gauge. The CWE
take their simplest form if we impose the gauge condition

R = 0 , (4.39)

which we shall do henceforth. Moreover, we assume the wave-map gauge con-
dition and an affinely parameterized cone, meaning that

κ = 0 and W σ = 0 . (4.40)

Furthermore, we set
s = −2 , (4.41)

(the negative sign of s makes sure that Θ will be positive inside the cone), and
use a Minkowski target ĝµν = ηµν . This way many of the constraint equations
can be solved explicitly. From now on all equalities are meant to hold in this
particular gauge, if not stated otherwise.

The relevant boundary conditions for the ODEs, which follow from regularity
conditions at the vertex, have been specified in the previous section. Recall that
the free initial data are given by the g̃-trace-free tensor ωAB and that we treat
the case where the initial surface is Ci− , i.e. we have

Θ = 0 . (4.42)

Regularity for the Schouten tensor requires ωAB = O(r2). However, regularity
for the rescaled Weyl tensor requires the stronger condition (cf. (4.46) below)

ωAB = O(r4) . (4.43)

Many of the above equations can be solved straightforwardly, we just present
the results,

gµν = ηµν , L1µ = 0 , gABLAB = 0 , L0A =
1

2
∇̃B∂0gAB . (4.44)

Note that Lµν is trace-free as required by Lemma 3.6. On the way to compute
these quantities we have found

τ = 2/r , ∂0Θ = −2r , ∂0g1µ = 0 , gAB∂0gAB = 0 ,

ξA = 0 , ζ = −2/r ,

(∂1 − r−1)∂0gAB = −2ωAB with ∂0gAB = O(r3) . (4.45)
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We further obtain (note that ΓB
0A = 1

2g
BC∂0gAC)

d1A1B = −1

2
∂1(r

−1ωAB) , (4.46)

(∂1 + 3r−1)d011A = ∇̃Bd1A1B , (4.47)

(∂1 + 3r−1)d0101 = ∇̃Ad011A − 1

2
∂0gABd1A1B , (4.48)

(∂1 + r−1)d01AB = 2∇̃[AdB]110 − 2ΓC
0[AdB]11C , (4.49)

(∂1 + r−1)d010A =
1

2
∇̃B(d01AB − d1A1B) +

1

2
∇̃Ad0101 + r−1d011A

+2ΓB
0Ad011B , (4.50)

with d011A = O(r), d0101 = O(1), d01AB = O(r2) and d010A = O(r). To derive
(4.46)-(4.50) we have used the following relations, which follow from algebraic
symmetry properties of the Weyl tensor,

dABCD = −2gA[CgD]Bd0101 , (4.51)

2d0[AB]1 = −d01AB , (4.52)

2d0(AB)1 = d1A1B − gABd0101 , (4.53)

d1ABC = −2d011[BgC]A , (4.54)

d0ABC = 2d010[BgC]A + 2d011[BgC]A . (4.55)

Before we proceed let us establish some relations:

Lemma 4.1 (i) (gCD∂0gAC ∂0gBD )̆ = 0,

(ii) (gCD∂0gC(AωB)D )̆ = 0,

(iii) (gCD∂0gC(A dB)1D1)̆ = 0.

Proof: This follows from the constraint equations (4.45)-(4.46), together with
the g̃-tracelessness of ∂0gAB. ✷

The lemma can be employed to simplify the ODE which determines d̆0A0B ,

2(∂1 − r−1)d̆0A0B = 3(∂1 − r−1)d̆0(AB)1 − (∂1 − r−1)d1A1B

+(∇̃Cd1(AB)C )̆ + 2(∇̃Cd0(AB)C )̆− (∂0gCDdACBD )̆

+[2ΓC
0(A(dB)C01 − dB)01C +

1

2
dB)1C1)]̆

=
1

2
(∂1 − r−1)d1A1B + (∇̃(AdB)110)̆ + 2(∇̃(AdB)010)̆

+3ΓC
0(AdB)C01 +

3

2
d0101∂0gAB , (4.56)

with d̆0A0B = O(r2). Finally, one shows that the missing component of the
Schouten tensor satisfies

2(∂1 + r−1)L00 =
1

2
ωAB∂0gAB − 2rd0101 − ∇̃AL0A , (4.57)

with L00 = O(1).
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We aim now to find explicit solutions to some of the remaining ODEs (4.47)-
(4.50). The key observation to solve (4.47) is that, due to (4.45), we have

d1A1B = −1

2
r−1∂1

(
ωAB +

1

2
r−1∂0gAB

)
. (4.58)

Hence we find

∂1(r
3d011A) = −1

2
∂1

(
r2∇̃BωAB + rL0A

)

d011A=O(r)
=⇒ d011A = −1

2
r−1∇̃BωAB − 1

2
r−2L0A (4.59)

(4.45)
=

1

2
r−1∂1L0A . (4.60)

The equations (4.45) and (4.60) can be used to rewrite (4.49),

∂1(rd01AB) = ∂1∇̃[ALB]0 − rΓC
0[A∂|1|(r

−1ωB]C)

= ∂1(∇̃[ALB]0 − ΓC
0[AωB]C)

d01AB=O(r2)
=⇒ d01AB = r−1∇̃[ALB]0 − r−1ΓC

0[AωB]C . (4.61)

The constraint equations in the (R = 0, s = −2, κ = 0, ĝ = η)-wave-map
gauge are summed up in (5.6)-(5.16) below.

5 Applicability of Theorem 3.7 on the Ci−-cone

Let us suppose we have been given initial data ωAB ≡ ˘̊
LAB on Ci− , supple-

mented by a gauge choice for R, s̊, W σ and κ. Then we solve the hierarchical
system of constraint equations derived above; the solutions are denoted by g̊µν ,

L̊µν and d̊µνσρ. Let us further assume that there exists a smooth solution
of the CWE in some neighbourhood to the future of i−, smoothly extendable
through Ci− , which induces the data Θ = 0, s = s̊, gµν = g̊µν , Lµν = L̊µν and

dµνσρ = d̊µνσρ on Ci− . The purpose of this section is to investigate to what
extent the hypotheses made in Theorem 3.7 are satisfied in the case of initial
data which have been constructed as a solution of the constraint equations. For
convenience and to make computations significantly easier we shall not do it in
an arbitrary generalized wave-map gauge but prefer to work within the specific
gauge (4.39)-(4.41).

5.1 (R = 0, s = −2, κ = 0, ĝ = η)-wave-map gauge

We restrict attention to the κ = 0-wave-map gauge with W σ = 0; moreover, we
set R = 0 and s̊ = −2, and use a Minkowski target ĝµν = ηµν . All equalities
are meant to hold in this specific gauge. For reasons of clarity let us recall the
CWE in an (R = 0)-gauge, where they take their simplest form,

✷(H)
g Lµν = 4LµκLν

κ − gµν |L|2 − 2Θdµσν
ρLρ

σ , (5.1)

✷gs = Θ|L|2 , (5.2)

✷gΘ = 4s , (5.3)

✷(H)
g dµνσρ = Θdµνκ

αdσρα
κ − 4Θdσκ[µ

αdν]αρ
κ , (5.4)

R(H)
µν [g] = 2Lµν . (5.5)
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The constraint equations, from which the initial data for the CWE are de-

termined from given free data ωAB ≡ ˘̊
LAB = O(r4) read:

g̊µν = ηµν , (5.6)

L̊1µ = 0 , L̊0A =
1

2
∇̃BλAB , g̊ABL̊AB = 0 , (5.7)

d̊1A1B = −1

2
∂1(r

−1ωAB) , (5.8)

d̊011A =
1

2
r−1∂1L̊0A , (5.9)

d̊01AB = r−1∇̃[AL̊B]0 −
1

2
r−1λ[A

CωB]C , (5.10)

(∂1 + 3r−1)d̊0101 = ∇̃Ad̊011A +
1

2
λAB d̊1A1B , (5.11)

2(∂1 + r−1)d̊010A = ∇̃B(d̊01AB − d̊1A1B) + ∇̃Ad̊0101 + 2r−1d̊011A

+2λA
B d̊011B , (5.12)

4(∂1 − r−1)
˘̊
d0A0B = (∂1 − r−1)d̊1A1B + 2(∇̃(Ad̊B)110 )̆ + 4(∇̃(Ad̊B)010 )̆

+3λ(A
C d̊B)C01 + 3d̊0101λAB , (5.13)

4(∂1 + r−1)L̊00 = λABωAB − 4rd̊0101 − 2∇̃AL̊0A , (5.14)

with

d̊0101 = O(1) , d̊010A = O(r) ,
˘̊
d0A0B = O(r2) , L̊00 = O(1) , (5.15)

and where λAB is the unique solution of

(∂1 − r−1)λAB = −2ωAB with λAB = O(r5) . (5.16)

Note that the expansion τ satisfies

τ = 2/r . (5.17)

All the other components of g̊µν , L̊µν and d̊µνσρ follow from their usual symme-
try properties which they are required to satisfy.

5.2 Vanishing of Hσ

Inserting the definition of the reduced Ricci tensor (3.10) equation (5.5) becomes

Rµν − gσ(µ∇̂ν)H
σ = 2Lµν . (5.18)

Utilizing the constraint equations (5.6) and the identities [5]

R11 ≡ −∂1τ + τΓ1
11 − |σ|2 − 1

2
τ2 = τΓ1

11 ,

Γ1
11 ≡ κ− 1

2
ν0H

0 = −1

2
H0 ,

the latter one follows from the definitions of Hσ and κ, we conclude that the
solution satisfies the ODE

∇̂1H
0 +

1

2
τH0 = 0 ⇐⇒ (∂1 + r−1)H0 = 0 . (5.19)
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For any regular solution of the CWE the function H0 will be bounded near the
vertex. We observe that

H0 = 0 (5.20)

is the only solution of (5.19) where this is the case. Then we immediately obtain

Γ1
11 = κ = 0 . (5.21)

Recall the definition of the field ξA, which vanishes in our gauge,

ξA ≡ −2ν0∂1νA + 4ν0νBχA
B + νAV

0 + gABV
B − gADg

BC Γ̃D
BC = 0 .

From the constraint equations, (5.18) and the identities [5]

R1A ≡ (∂1 + τ)Γ1
1A + ∇̃BχA

B − ∂AΓ
1
11 − ∂Aτ = (∂1 + τ)Γ1

1A , (5.22)

ξA ≡ −2Γ1
1A −HA − νAH

0 = −2Γ1
1A −HA , (5.23)

we find that HA := gABH
B fulfills the ODE

∂1HA = 0 .

Any regular solution necessarily satisfies HA = O(r) and we infer

HA = 0 and Γ1
1A = 0 . (5.24)

We have introduced the function

ζ ≡ 2(∂1 + κ+
1

2
τ)g11 + 2V 1 = −τ .

From (5.18), the constraint equation gABLAB = 0 and the identities [5]

gABRAB ≡ 2(∂1 + Γ1
11 + τ)[(∂1 + Γ1

11 +
1

2
τ)g11 + gµνΓ1

µν
︸ ︷︷ ︸

≡gABΓ1
AB+ 1

2 τg
11

]

+R̃− 2gABΓ1
1AΓ

1
1B − 2gAB∇̃AΓ

1
1B

= 2(∂1 + τ)[gABΓ1
AB +

1

2
τ ] +

1

2
τ2 , (5.25)

ζ ≡ 2gABΓ1
AB + τg11 + ν0g

11H0 − 2H1

= 2gABΓ1
AB + τ − 2H1 , (5.26)

we deduce that

(∂1 + r−1)H1 = 0 .

Our solution is supposed to be regular at i−, whenceH1 = O(1) and we conclude

H1 = 0 and gABΓ1
AB = −τ . (5.27)

Altogether we have proven that

Hσ = 0 . (5.28)
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Note that once we know the values of the wave-gauge vector on Ci− , we can
compute the values of certain components of the transverse derivative of the
metric on Ci− . More concretely, we find that the solution satisfies

∂0g11 = 0 , ∂0g1A = 0 , gAB∂0gAB = 0 .

We also have

RAB ≡ ∂αΓα
AB − ∂AΓ

α
αB + Γα

ABΓ
β
βα − Γα

βAΓ
β
αB

= R̃AB − 1

4
τ2gAB − 1

2
(∂1 − τ)∂0gAB + ∂0Γ0

AB − 1

2
τgABΓ

0
00

= −(∂1 − r−1)∂0gAB ,

where we employed the relation

∂0Γ0
AB =

1

2
τgAB∂0g01 −

1

2
∂1∂0gAB .

The vanishing of Hσ implies via (5.18) and (5.6)

RAB = 2LAB = 2ωAB ,

and thus by (5.16)
(∂1 − r−1)(λAB − ∂0gAB) = 0 .

For initial data of the form ωAB = O(r4) we have λAB = O(r5). Since regularity
requires [5] ∂0gAB = O(r3), we discover the expected relation

λAB = ∂0gAB .

5.3 Vanishing of ∇µHσ and ζµ

We know that the wave-gauge vector satisfies the wave equation (3.21),

∇ν∇̂νH
α + 2gµα∇[σ∇̂µ]H

σ + 4∇νLν
α = 0 . (5.29)

Let us first consider the α = 0-component evaluated on I −,

(∂1 + r−1)∂0H0 + 2∂0L11 = 0 . (5.30)

We need to show that the source term vanishes. Equation (5.1) provides an
expression for ∂0L11,

✷
(H)
g L11 = 0 ⇐⇒ (∂1 + r−1)∂0L11 = 0 . (5.31)

Any regular solution satisfies ∂0L11 = ∇0L11 = O(1). There is precisely one
bounded solution of (5.31), which is

∂0L11 = 0 . (5.32)

The function ∇0H0 = ∂0H0 needs to be bounded as well, and the only bounded
solution of (5.30) is

∂0H0 = 0 . (5.33)
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Taking the trace of (5.18) then shows that the curvature scalar vanishes initially,

Rg = 0 . (5.34)

Using (5.33) as well as the relation R01 = 2L01 = 0, which follows from (5.18),
one verifies that

∂0g01 = 0 and ∂200g11 = 0 .

The α = A-component of (5.29) yields

(∂1 + 2r−1)∂0HA + 2gAB(∂0L1B + ∂1L0B + τL0B + ∇̃CωBC) = 0 . (5.35)

We employ (5.1) to compute the source term,

✷
(H)
g L1A = 0 ⇐⇒ 2∂1∂0L1A − τ∇̃BωAB − τ2L0A = 0 . (5.36)

Equation (5.16) implies

2∇̃BωAB = −∇̃B∂1λAB + τL0A = −2∂1L0A − τL0A . (5.37)

From (5.36) and (5.37) we derive the ODE

∂1(∂0L1A + r−1L0A) = 0 . (5.38)

For any sufficiently regular solution we have ∂0L1A = ∇0L1A = O(r). Since
the initial data satisfy ωAB = O(r4), we have L0A = O(r2) by (5.36). We then
conclude from (5.38) that

∂0L1A = −r−1L0A = −1

4
τ∇̃BλAB . (5.39)

With (5.6), (5.37) and (5.39) equation (5.35) becomes

(∂1 + 2r−1)∂0HA = 0 . (5.40)

Any solution which is regular at i− fulfills ∂0HA = ∇0HA = O(r−1). The ODE
(5.40) admits precisely one such solution, namely

∂0HA = 0 . (5.41)

We have

∇̃BλAB = 2L0A = R0A =
1

2
∂200g1A − 1

2
(∂1 − τ)∂0g0A +

1

2
∇̃BλAB ,

0 = gAB∂0H
B = ∂200g1A + (∂1 + τ)∂0g0A + ∇̃BλAB .

The combination of both equations yields

∂1∂0g0A + ∇̃BλAB = 0 and ∂200g1A = −τ∂0g0A . (5.42)

Utilizing the previous results of this section the α = 1-component of (5.29)
can be written in our gauge as

(∂1 + r−1)∂0H1 + 2(∂1 + τ)L00 + 2∇̃AL0A − gAB∂0LAB︸ ︷︷ ︸
=:f

= 0 , (5.43)
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where we took into account that owing to Lemma 3.6 we have

0 = ∂0L = 2∂0L01 + gAB∂0LAB − ωABλAB . (5.44)

We show that the source f vanishes. To do that we compute the g̃-trace of the
(µν) = (AB)-component of (5.1) on I −. With (5.16) we obtain

gAB✷
(H)
g LAB = 2LA

BLB
A ⇐⇒

2(∂1 + r−1)(gAB∂0LAB)− 2λAB(∂1 − r−1)ωAB

+ 2τ∇̃AL0A + τ2L00 + 2|ω|2 = 0 , (5.45)

where we have set |ω|2 := ωA
BωB

A.
As another intermediate step it is useful to derive a second-order equation

for L00, so let us differentiate (5.14) with respect to r,

(4∂211 + 2τ∂1 − τ2)L00 = 8d0101 − 4r(∂1 + 3r−1)d0101 − 2∂1∇̃AL0A + ∂1(λ
ABωAB) .

With (5.8), (5.9) (5.11), (5.16) and again (5.14) that yields

2(∂211 + 3r−1∂1 + r−2)L00 = λAB(∂1 − r−1)ωAB − |ω|2 − 2∇̃A∂1L0A . (5.46)

Let us return to the source term f in (5.43). It satisfies the ODE

2(∂1 + r−1)f = 4∂211L00 + 6τ∂1L00 − 2τ∇̃AL0A + 4∇̃A∂1L0A

−2(∂1 + r−1)(gAB∂0LAB)

(5.45)
= 4∂211L00 + 6τ∂1L00 + τ2L00 + 4∇̃A∂1L0A

−2λAB(∂1 − r−1)ωAB + 2|ω|2
(5.46)
= 0 .

We conclude that

f ≡ 2(∂1 + τ)L00 + 2∇̃AL0A − gAB∂0LAB = c(xA)r−1 (5.47)

for some angle-dependent function c. Regularity at i− implies L00 = O(1) and
∂1L00 = ∇1L00 = O(1). Furthermore, we have (note that λABωAB = O(r5))

O(1) = ∇AL0A = ∇̃AL0A − 1

2
λABωAB + τL00 ,

O(1) = gAB∇0LAB = gAB∂0LAB − λABωAB

=⇒ ∇̃AL0A + τL00 = O(1) , gAB∂0LAB = O(1) .

Therefore the problematic r−1-term in the expansion of f needs to vanish, and
we conclude c = 0. Then (5.43) enforces ∂0H1 to vanish in order to be bounded,
i.e. altogether we have proven that

∇µHν = 0 . (5.48)

Recall that ζµ ≡ −4(∇νLµ
ν −∇µR/6) = −4∇νLµ

ν . If we evaluate (5.29)
on I − (which, as a matter of course, is to be read as an equation for ζµ) and
insert (5.48), we immediately observe that

ζµ = 0 . (5.49)
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5.4 Vanishing of W µνσρ

We want to show that the Weyl tensor Wµνσρ of gµν vanishes on Ci− , and thus
coincides there with the tensor Θdµνσρ. The 10 independent components are

W 0101 , W 011A , W 010A , W 01AB , W̆ 1A1B , W̆ 0A0B .

Due to the vanishing of Hσ, ∇µHσ and Rg, (5.5) tells us that the tensor Lµν

coincides on Ci− with the Schouten tensor. We thus have the formula:

Wµνσρ = Rµνσρ − 2(gσ[µLν]ρ − gρ[µLν]σ) . (5.50)

The following list of Christoffel symbols, or rather of their transverse derivatives,
will be useful:

∂0Γ0
01 = ∂0Γ1

11 = 0 ,

∂0Γ0
0A

(5.42)
= −1

2
(∂1 + τ)∂0g0A ,

∂0Γ0
AB = −1

2
∂1λAB ,

∂0Γ1
1A =

1

2
∂1∂0g0A ,

∂0Γ1
AB =

1

2
τgAB∂0g00 + ∇̃(A∂|0g0|B) −

1

2
∂200gAB − 1

2
∂1λAB ,

∂0ΓC
0A =

1

2
gCD∂200gAD − 1

2
λA

DλD
C + gCD∇̃[A∂|0g0|D] ,

∂0ΓC
1A =

1

2
∂1λA

C ,

∂0ΓC
AB =

1

2
τgABg

CD∂0g0D + ∇̃(AλB)
C − 1

2
∇̃CλAB ,

∂200Γ
0
AB

(5.42)
=

1

2
τgAB∂

2
00g01 − τ∇̃(A∂|0g0|B) −

1

2
∂1∂200gAB .

We compute the relevant components of the Riemann tensor Rµνσ
ρ ≡ ∂νΓ

ρ
µσ −

∂µΓ
ρ
νσ + Γα

µσΓ
ρ
να − Γα

νσΓ
ρ
µα,

R0101 = 0 , R011A = 0 , R01AB = 0 , R1A1B = 0 , (5.51)

R010A =
1

2
(∂1 − τ)∂0g0A − 1

2
∂200g1A

(5.42)
= −1

2
∇̃BλAB , (5.52)

R̆0A0B = (∇̃(A∂|0g0|B))̆−
1

2
(∂200gAB )̆ . (5.53)

Next, we determine the independent components of the Weyl tensor on I − via
(5.50) and by taking into account the values we have found for Lµν ,

W 0101 = 0 , W 011A = 0 , W 010A = 0 , (5.54)

W 01AB = 0 , W 1A1B = 0 , (5.55)

W̆ 0A0B = ωAB + (∇̃(A∂|0g0|B))̆−
1

2
(∂200gAB )̆ . (5.56)

It remains to determine ∂200gAB. Note that according to (5.18) the vanishing of
Hσ and ∇µHσ implies

∂0RAB = 2∂0LAB

=⇒ ✷gRAB = 2✷gLAB = 2✷
(H)
g LAB

(5.1)
= 8ωACωB

C − 2gAB|ω|2 .
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A rather lengthy computation, which uses (5.16), reveals that this is equivalent
to (set ∆g̃ := ∇̃A∇̃A)

(∂1 − r−1)∂0RAB − 2(∂1 − r−1)(ωC(AλB)
C) + 2τ∇̃(ALB)0

+ (∂211 − τ∂1 +∆g̃)ωAB + gAB(
1

2
τ2L00 + |ω|2) = 0 .

We take its traceless part and invoke Lemma 4.1,

(∂1 − r−1)(∂0RAB )̆ + 2τ(∇̃(ALB)0)̆ + (∂211 − τ∂1 +∆g̃)ωAB = 0 .(5.57)

Let us compute ∂0RAB on I −, which is done by using (5.16), (5.42) and the
above formulae for the u-differentiated Christoffel symbols,

∂0RAB = ∂200Γ
0
AB + ∂1∂0Γ1

AB + ∇̃C∂0ΓC
AB − ∇̃A∂0ΓC

BC − ∇̃A∂0Γ1
1B

−∇̃A∂0Γ0
0B − Γ0

BC∂0Γ
C
0A − Γ0

AC∂0Γ
C
B0 − ΓC

B0∂0Γ
0
AC − ΓC

0A∂0Γ
0
BC

−Γ1
BC∂0Γ

C
1A − Γ1

AC∂0Γ
C
B1 + Γ0

AB∂0Γ
µ
µ0 + Γ1

AB∂0Γ
µ
µ1

= −(∂1 − r−1)∂200gAB + (∂1 − r−1)ωAB − 1

2
(∆g̃ −

1

2
τ2)λAB

−τ∇̃(A∂|0g0|B) −
1

2
τλA

CλBC − 2λ(A
CωB)C + f(r, xC)gAB .(5.58)

The traceless part of ∂0RAB reads

(∂0RAB )̆ = −(∂1 − r−1)(∂200gAB )̆ + (∂1 − r−1)ωAB − 1

2
(∆g̃ −

1

2
τ2)λAB

−τ(∇̃(A∂|0g0|B))̆ . (5.59)

Next, we apply 2(∂1 − r−1) to the expression (5.56) which we have found for

W̆ 0A0B. With (5.59) and (5.42) we end up with

2(∂1 − r−1)W̆ 0A0B = (∂1 − r−1)
[
2ωAB + 2(∇̃(A∂|0g0|B))̆− (∂200gAB )̆

]

= (∂1 − r−1)ωAB − 4(∇̃(ALB)0)̆ + (∂0RAB )̆

+
1

2
(∆g̃ − 2r−2)λAB . (5.60)

On the other hand, from the Bianchi identity ∇[µRiA]B
µ = 0, i = 0, 1, we infer

(∇µWi(AB)
µ)̆ +

1

2
(∇iRAB )̆−

1

2
(∇(ARB)i)̆ = 0 .

Employing further the tracelessness of the Weyl tensor,

gµν∇0WµABν = 0 =⇒ 2(∇0W0(AB)1 )̆ = (∇0W1A1B )̆ ,

we obtain with Rµν = 2Lµν , Rg = 0, Lemma 4.1 and since the other components
of the Weyl tensor are already known to vanish initially,

2(∂1 − r−1)W̆ 0A0B = (∂1 − r−1)ωAB + (∂0RAB )̆− 2(∇̃(ALB)0)̆ . (5.61)

Combining (5.60) and (5.61) we are led to

(∆g̃ −
1

2
τ2)λAB − 4(∇̃(ALB)0)̆ = 0 . (5.62)
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We apply (∂1 + r−1) and use (5.16) to conclude that

(∆g̃ −
1

2
τ2)ωAB + 2(∂1 + r−1)(∇̃(ALB)0)̆ = 0 , (5.63)

which will prove to be a useful relation. Next we apply (∂1 − r−1) to (5.60).
With (5.16), (5.57), (5.62) and (5.63) we end up with

2(∂1 − r−1)2W̆ 0A0B = (∂211 − 2r−1∂1 + 2r−2)ωAB − 4(∂1 − r−1)(∇̃(ALB)0)̆

−(∆g̃ − 2r−1)(ωAB + r−1λAB) + (∂1 − r−1)(∂0RAB )̆

= 0

=⇒ W̆ 0A0B = cAB(x
C)r2 + dAB(x

C)r = cAB(x
C)r2 ,

for any regular solution satisfies W̆ 0A0B = O(r2) in adapted coordinates.
We have ωAB = O(r4) and λAB = O(r5) = ∂0gAB. A regular solution

satisfies O(r2) = (∇(ALB)0)̆ = ∇̃(ALB)0. Similarly, we have O(r2) = ∇0RAB =

∂0RAB − 2ΓC
0(ARB)C , which implies (∂0RAB )̆ = O(r2), so the right-hand side of

(5.61) is O(r2), consequently W̆ 0A0B = O(r3), whence cAB = 0 and

W̆ 0A0B = 0 .

5.5 Validity of equation (2.9) on Ci−

We need to show that (2.9) holds at at least one point. In fact, since Θ vanishes
and∇µΘ is null, one immediately observes that it is satisfied on the whole initial
surface Ci−.

5.6 Vanishing of Υµ

Using the constraint equations (5.6) it is easily checked that the components
µ = 1, A of Υµ ≡ ∇µs + Lµ

ν∇νΘ vanish. To show that also the µ = 0-
component vanishes, we need to compute the value of the transverse derivative
of s on I −, which is accomplished via the CWE (5.2),

✷gs = 0 ⇐⇒ (∂1 + r−1)∂0s = 0 .

The function ∂0s is bounded. Thus

∂0s = 0 , (5.64)

and the vanishing of Υµ is ensured.

5.7 Vanishing of Ξµν

We consider

Ξµν ≡ ∇µ∇νΘ+ΘLµν − s gµν = ∂µ∂νΘ− Γ0
µν∂0Θ+ 2gµν .

First of all we need to determine the value of ∂0Θ, which is not part of the
initial data. It can be derived from the CWE. Evaluation of (5.3) on I − gives

✷gΘ = 4s ⇐⇒ (∂1 + r−1)∂0Θ = −4 .
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For any sufficiently regular solution of the CWE the function ∂0Θ is bounded
near the vertex, and there is precisely one such solution,

∂0Θ = −2r . (5.65)

One straightforwardly checks that Ξµν = 0 for (µν) 6= (00). To determine Ξ00

we need to compute the second-order transverse derivative of Θ first. This is
done via the CWE (5.3),

∂0✷gΘ = 4∂0s
(5.64)
= 0 ⇐⇒ (∂1 + r−1)∂200Θ− 2r−1 = 0 ,

where we took into account that ∂0g1µ = 0, gAB∂0gAB = 0 , ∂200g11 = 0, as
well as the formulae for the u-differentiated Christoffel symbols. The general
solution of the ODE is ∂200Θ = 2 + cr−1. For any sufficiently regular solution

∂200Θ = ∇0∇0Θ is bounded, and we conclude

∂200Θ = 2 ,

which guarantees the vanishing of Ξ00.

5.8 Vanishing of κµνσ

Recall the definition of the tensor

κµνσ ≡ 2∇[σLν]µ −∇κΘdνσµ
κ .

Due to the symmetries κµ(νσ) = 0, κ[µνσ] = 0 and κνµ
ν = 0 (since ζµ = 0 and

L = 0) its independent components on the initial surface are

κ11A , κA1B , κ01A , κABC κ00A , κA0B .

We find (recall that L1µ = 0 and L0A = 1
2∇̃BλAB),

κ11A = 0 ,

κA1B = −(∂1 − r−1)ωAB − 2rd1A1B
(5.8)
= 0 ,

κ01A = −∂1L0A + 2rd011A
(4.59)
= 0 ,

κABC = 2∇̃[CωB]A − τgA[BLC]0 − 2rd1ABC

= 2∇̃[CωB]A − 2∇̃Dω[B
DgC]A

tr(ω)=0
= 0 ,

where the first equal sign in the last line follows from (4.54), (5.9), (5.6) and (5.16).
To prove the vanishing of the remaining components,

κA0B = ∇̃BL0A − 1

2
λB

CωAC +
1

2
τgABL00 −∇0LAB + 2rd0BA1 ,

κ00A = ∇̃AL00 − λA
BL0B −∇0L0A + 2rd010A ,

is somewhat more involved as it requires the knowledge of certain transverse
derivatives of Lµν on I −. These can be extracted from (5.1),

✷gLAB = ✷
(H)
g LAB = 4ωACωB

C − gAB|ω|2 ,
✷gL0A = ✷

(H)
g L0A = 4ωA

BL0B .
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We employ the facts, established above, that the Weyl tensor vanishes on Ci−

and that Lµν coincides there with the Schouten tensor, to compute the action
of ✷g on LAB and L0A,

✷gLAB = 2(∂1 − r−1)∇0LAB + ∂1(∂1 − τ)ωAB + (∆g̃ −
1

2
τ2)ωAB

+2τ∇̃(ALB)0 − τλ(A
CωB)C +

1

2
τ2gABL00

(5.63)
= 2(∂1 − r−1)∇0LAB + ∂1(∂1 − τ)ωAB − 2(∂1 − r−1)(∇̃(ALB)0)̆

+τgAB∇̃CL0C − τλ(A
CωB)C +

1

2
τ2gABL00 ,

✷gL0A = 2∂1∇0L0A + (∂1 + r−1)(∂1 − r−1)L0A − 2ωA
BL0B

+(∆g̃ − r2)L0A + τ∇̃AL00 − λB
C∇̃BωAC − τλA

BL0B

(5.16)
= 2∂1∇0L0A − (∂1 − r−1)∇̃BωAB − 2ωA

BL0B

+(∆g̃ + r−2)L0A + τ∇̃AL00 − λB
C∇̃BωAC − τλA

BL0B .

With these expressions, Lemma 4.1, (5.6)-(5.16) and (4.51)-(4.55) we find

2(∂1 − r−1)κA0B = 2(∂1 − r−1)∇̃BLA0 − ωA
C(∂1 − r−1)λBC + τgAB∂1L00

−λBC(∂1 − τ)ωAC + 4r∂1d0BA1 − 2(∂1 − r−1)∇0LAB

= 2(∂1 − r−1)∇̃[BLA]0 + gAB(∂1 + 3r−1)∇̃CLC0

−λBC∂1ωAC + τλ[B
CωA]C − 2ωACωB

C + gAB|ω|2

+τgAB(∂1 + r−1)L00 − 2rgAB(∂1 + τ)d0101 + 2r∂1d01AB

= −(∂1 + r−1)(λ(A
CωB)C )̆− 4(ωCAωB

C )̆

= 0 ,

as well as

2∂1κ00A = 2∂1∇̃AL00 + 4(ωA
B + r−1λA

B)L0B + 2λA
B∇̃CωBC − 2∂1∇0L0A

+4r(∂1 + r−1)d010A

=
1

2
∇̃A(ωBCλ

BC) + 2(r−1λA
B − ωA

B)L0B − ∇̃A∇̃BL0B − λC
B∇̃CωAB

+2λA
B∇̃CωBC − (∂1 − r−1)∇̃BωAB + (∆g̃ + r−2)L0A

+2r∇̃Bd01AB − 2r∇̃Bd1A1B + 4d011A + 4rλA
Bd011B

= −∇̃B(λC(AωB)
C )̆− r−2L0A − 2∇̃[A∇̃B]L0

B

= 0 .

Due to regularity we have κA0B = O(r2) and κ00A = O(r), so the only remain-
ing possibilities are

κA0B = 0 and κ00A = 0 .

5.9 Vanishing of ∇ρdµνσρ

The independent components of∇ρdµνσρ, which by Lemma 3.4 is antisymmetric
in its first two indices, trace-free and satisfies the first Bianchi identity, are

∇ρd0A0
ρ , ∇ρd0A1

ρ , ∇ρd0AB
ρ , ∇ρd1A1

ρ , ∇ρd1AB
ρ , ∇ρdABC

ρ .

42

122 CHAPTER 8. ARXIV:1306.6204 [GR-QC] (2013)



We need to show that they vanish altogether. Let us start with those compo-
nents which do not involve transverse derivatives. Then their vanishing follows
immediately from the constraint equations (5.6)-(5.16) and (4.51)-(4.55),

∇ρd0A1
ρ = −(∂1 + r−1)d010A +

1

2
∇̃Bd01AB − 1

2
∇̃Bd1A1B +

1

2
∇̃Ad0101

+r−1d011A + λA
Bd011B = 0 ,

∇ρd1A1
ρ = −(∂1 + 3r−1)d011A + ∇̃Bd1A1B = 0 .

To determine the remaining components we first of all need to compute the
transverse derivatives. This is done by evaluating the CWE (5.4) on Ci− ,

✷gdµνσρ = ✷
(H)
g dµνσρ = 0 . (5.66)

Moreover, we will exploit the Lemmas 3.4 and 4.1, the fact that the Weyl tensor
vanishes on Ci− , and that Lµν coincides there with the Schouten tensor, i.e.
that (4.6) holds initially.

Invoking (5.6)-(5.16) and (4.51)-(4.55) we compute

(∂1 − r−1)∇ρd1AB
ρ = −(∂1 − r−1)∇0d1A1B − 1

2
(∂1 − r−1)2d1A1B

+2τ(∇̃(AdB)110)̆− (∇̃(A∇̃CdB)1C1)̆ . (5.67)

With (5.51) we further find

✷gd1A1B = 2(∂1 − r−1)∇0d1A1B + (∂211 − 2r−1∂1)d1A1B +∆g̃d1A1B

+2τ∇̃Cd1(AB)C +
1

2
τ2gCDdACBD + 2τ∇̃(AdB)101 +

1

2
τ2gABd0101

= 2(∂1 − r−1)∇0d1A1B + (∆g̃ + ∂211 − 2r−1∂1)d1A1B − 4τ(∇̃(AdB)110 )̆ .

The transverse derivative in (5.67) is eliminated via ✷gd1A1B = 0,

(∂1 − r−1)∇ρd1AB
ρ =

1

2
∆g̃d1A1B − r−2d1A1B − (∇̃(A∇̃CdB)1C1)̆ .

We need an expression for the ∆g̃-term, which can be derived from (5.8), (5.63),
(5.6) and (5.16) as follows,

∆g̃d1A1B = −1

2
r−1(∂1 + r−1)∆g̃ωAB

=
1

2
r−1(∂1 + r−1)[2(∂1 + r−1)(∇̃(ALB)0)̆−

1

2
τ2ωAB]

= 2r−2d1A1B + 2(∇̃(A∇̃CdB)1C1)̆ . (5.68)

Plugging that in we are led to the ODE

(∂1 − r−1)∇ρd1AB
ρ = 0 .

For any sufficiently regular solution of the CWE we have ∇ρd1AB
ρ = O(r2) and

hence
∇ρd1AB

ρ = 0 .
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To show that the other components of ∇ρdµνσ
ρ vanish initially, we pro-

ceed in a similar manner. In particular, we shall make extensively use of the
constraint equations (5.6)-(5.16) (and also of their non-integrated counterparts
(4.46)-(4.50)), (4.51)-(4.55) and of the expressions (5.51)-(5.53) we computed
for the components of the Riemann tensor.

Let us establish the vanishing of ∇ρdABC
ρ. By (5.66) we have ✷gd1ABC = 0

on I − with

✷gd1ABC = 2(∂1 − τ)∇0d1ABC + (∂211 − 4r−1∂1 + r−2)d1ABC +∆g̃d1ABC

−τ∇̃DdDABC + τ∇̃Ad10BC + 2τ∇̃[BdC]0A1 + 2τ∇̃[BdC]1A1

+2∇̃D(λ[B
DdC]1A1)− τλ[B

DdC]1AD − τλ[B
DdC]DA1

−1

2
τ2d0ABC − τ2gA[BdC]010 − τ2gA[BdC]110 − τλA[BdC]110

= 2(∂1 − τ)∇0d1ABC + 2gA[B(∂
2
11 − 5r−2)dC]110 + 2gA[B∆g̃dC]110

−3τgA[B∇̃C]d0101 − τ∇̃Ad01BC + τ∇̃[BdC]A01 + τ∇̃[BdC]1A1

+2∇̃D(λ[B
DdC]1A1)− 2τgA[BλC]

Dd011D − 2τλA[BdC]110 .(5.69)

We determine

∇ρdABC
ρ = ∇0dABC1 + 2gC[A(∂1 + r−1)dB]010

−2gC[A∇̃B]d0101 − gC[AλB]
Dd011D + λC[AdB]110

= ∇0dABC1 + gC[A∇̃DdB]D01 + gC[A∇̃DdB]11D + τgC[AdB]110

−gC[A∇̃B]d0101 + gC[AλB]
Dd011D + λC[AdB]110 .

Due to the constraint equations that yields

2(∂1 − τ)∇ρdCBA
ρ

= 2(∂1 − τ)∇0d1ABC + 2gA[B∇̃D(∂|1| − τ)dC]1D1

−2gA[B∇̃D(∂|1| + r−1)dC]D01 − 2τgA[B(∂|1| + 3r−1)dC]110

+2gA[B∇̃C](∂1 + 3r−1)d0101 − 2gA[BλC]
D(∂1 + 3r−1)d011D

−2λA[B(∂|1| + 3r−1)dC]110 + 3τgA[B∇̃DdC]D01 + 4τ2gA[BdC]110

−3τgA[B∇̃C]d0101 + 4τgA[BλC]
Dd011D + 4τλA[BdC]110

+4ωA[BdC]110 + 4gA[BωC]
Dd011D︸ ︷︷ ︸

=0

= 2(∂1 − τ)∇0d1ABC + 2gA[B∇̃D(∂|1| − 2τ)dC]1D1 + 4τgA[BλC]
Dd011D

+4τλA[BdC]110 − 3τgA[B∇̃C]d0101 + 3τgA[B∇̃DdC]D01 +
7

2
τ2gA[BdC]110

+gA[B∇̃C](λ
DEd1D1E) + 2gA[B∆g̃dC]110 + gA[B∇̃D(dC]1F1λD

F )

−gA[B∇̃D(λC]
Ed1D1E)−2gA[BλC]

E∇̃Dd1D1E − 2λA[B∇̃DdC]1D1︸ ︷︷ ︸
=0

.

With ✷gd1ABC = 0 we eliminate the transverse derivative. Employing further
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(5.8), (5.9) and (5.16) we end up with

2(∂1 − 2r−1)∇ρdCBA
ρ

= −1

4
τ2(∂1 − r−1)(gA[B∇̃DωC]D − ∇̃[BωC]A)

+τ∇̃Ad01BC − τ∇̃[BdC]A01 + 3τgA[B∇̃DdC]D01

+6τgA[BλC]
Dd011D + 6τλA[BdC]110

−gA[B∇̃D(λC]
Ed1D1E) + gA[B∇̃C](λ

DEd1D1E)− ∇̃D(λ[B
DdC]1A1)

+gA[B∇̃D(dC]1E1λD
E)− ∇̃D(λ[B

DdC]1A1)

= 0 , (5.70)

since the terms in each line add up to zero, as one checks e.g. by introducing an
orthonormal frame for g̃. By regularity we have ∇ρdABC

ρ = O(r3), so (5.70)
enforces

∇ρdABC
ρ = 0 .

To check the vanishing of ∇ρd0A0
ρ we start with the relation ✷gd010A = 0,

and compute

✷gd010A = 2L0
Bd0A1B + 2L0

Bd01AB + 2L0Ad0101 + 2∂1∇0d010A − 1

2
τλA

Bd010B

+(∆g̃ + ∂211 −
5

4
τ2)d010A − λB

C∇̃BdC10A + λB
C∇̃Bd01AC

+
1

2
λB

CλBDd1CAD − 1

4
|λ|2d011A + (τλA

B + λA
CλC

B)d011B

−τ∇̃Bd0A0B − 1

2
τλBCd0BAC + τ∇̃Ad0101 + λA

B∇̃Bd0101

= 2∂1∇0d010A + ∇̃A∇̃Bd011B − 1

2
∆g̃d011A +

1

4
∇̃B(λA

Cd1B1C)

+
1

4
∇̃A(λ

BCd1B1C)−
1

2
∇̃B(∂1 − 5r−1)d1A1B − τ∇̃Bd01AB

−2ωA
Bd011B + λA

C∇̃Bd1B1C − τ∇̃Bd0A0B − 3

4
∇̃B(λB

Cd1A1C)

+
3

2
∇̃B(λB

Cd01AC) +
3

2
∇̃B(λA

Bd0101) + ∆g̃d010A − 9

8
τ2d011A

−3

4
τ2d010A − τλA

Bd011B +
3

2
λA

BλB
Cd011C − 3

4
|λ|2d011A

︸ ︷︷ ︸
=0

,

as follows from the constraint equations. We have

∇ρd0A0
ρ = ∇0d010A + (∂1 + τ)d010A + ∇̃Bd0A0B − 1

2
λA

Bd011B ,
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which implies, again via the constraint equations,

2∂1∇ρd0A0
ρ = 2∂1∇0d010A + 2∇̃B(∂1 − r−1)d̆0A0B − ∇̃A(∂1 + 3r−1)d0101

+τ∇̃Ad0101 − τ∇̃Bd0A0B − λA
B(∂1 + 3r−1)d011B − τ2d010A

+2τλA
Bd011B + 2ωA

Bd011B + 2(∂1 + r−1)2d010A

= 2∂1∇0d010A − 9

8
τ2d011A − 3

4
τ2d010A +∆g̃d010A − 1

2
∆g̃d011A

+
3

2
∇̃B(λ(A

CdB)C01) +
3

2
∇̃B(λA

Bd0101) + ∇̃B(λ[A
CdB]1C1)

+∇̃A∇̃Bd011B − τ∇̃Bd0A0B − τ∇̃Bd01AB − 2ωA
Bd011B

−1

2
∇̃B(∂1 − 5r−1)d1A1B − τλA

Bd011B + λA
C∇̃Bd1B1C .

Combining these results we end up with

2∂1∇ρd0A0
ρ =

1

2
∇̃B(λ(A

CdB)1C1)−
1

4
∇̃A(λ

BCd1B1C)
︸ ︷︷ ︸

=0

−3

2
∇̃B(λ[B

CdA]C01)︸ ︷︷ ︸
=0

,

and, as regularity requires ∇ρd0A0
ρ = O(r), that gives

∇ρd0A0
ρ = 0 .

To continue, we analyse the vanishing of ∇ρd0AB
ρ. We have

✷gd0AB1 = 2(∂1 − r−1)∇0d0AB1 − 2L0
Cd1BAC − 2L0Ad011B

+(∂1 − τ)∂1d0AB1 +∆g̃d0AB1 − λAC∇̃Cd011B − τ∇̃Ad011B

+τ∇̃Bd010A − τ∇̃Cd0ABC − λCD∇̃Dd1BAC − 1

2
τλCDdACBD

−1

2
τλA

Cd1B1C +
1

2
τ2d01AB +

1

2
τ(τgAB + λAB)d0101

−τ λ[ACdB]C01︸ ︷︷ ︸
=0

+
1

4
|λ|2d1A1B − 1

2
λA

CλC
Dd1B1D

︸ ︷︷ ︸
=0

= 2(∂1 − r−1)∇0d0AB1 − 2gABL0
Cd011C − 4L0[AdB]110 +

1

2
∆g̃d1A1B

+
1

2
(∂1 − τ)∂1d1A1B − 1

2
gAB∇̃C∇̃Dd1C1D +

1

2
gABω

CDd1C1D

−1

4
gABλ

CD(∂1 − 2τ)d1C1D − 1

2
gAB∆g̃d0101 − ∇̃[A∇̃CdB]1C1

−τ∇̃BdA110 + ω[A
CdB]1C1 −

1

2
λ[A

C(∂1 − 2τ)dB]1C1 −
1

2
∆g̃d01AB

−2λC[A∇̃CdB]110 − τ∇̃(AdB)110 − 2τ∇̃[AdB]010 −
1

2
τλA

Cd1B1C

+τgAB∇̃Cd010C +
5

2
τgAB∇̃Cd011C − gABλ

CD∇̃Dd011C ,
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which vanishes owing to (5.66). Moreover,

∇ρd0AB
ρ = ∇0d0AB1 + (∂1 − r−1)d0AB0 + (∂1 − r−1)d0AB1 + ∇̃Cd0ABC

+
1

2
λCDdACBD +

1

2
λA

Cd01BC +
1

2
λB

Cd0A1C − 1

2
τd01AB

= ∇0d0AB1 +
1

4
(∂1 − r−1)d1A1B − 1

4
λA

Cd1B1C + ∇̃[AdB]010

+
1

2
∇̃(AdB)110 −

1

2
gAB∇̃Cd010C − 3

4
gAB∇̃Cd011C +

1

4
λ[A

CdB]C01 ,

and thus

2(∂1 − r−1)∇ρd0AB
ρ

= 2(∂1 − r−1)∇0d0AB1 +
1

2
(∂1 − r−1)2d1A1B − 1

2
λA

C(∂1 − τ)d1B1C

+ωA
Cd1B1C + 2∇̃[A(∂1 + r−1)dB]010 + ∇̃(A(∂1 + 3r−1)dB)110

−gAB∇̃C(∂1 + r−1)d010C − 3

2
gAB∇̃C(∂1 + 3r−1)d011C − 2τ∇̃[AdB]010

+
1

2
λ[A

C(∂1 + r−1)dB]C01 −
3

2
r−1λ[A

CdB]C01 + τgAB∇̃Cd010C

−2τ∇̃(AdB)110 + 3τgAB∇̃Cd011C − ω[A
CdB]C01

= 2(∂1 − r−1)∇0d0AB1 +
1

2
(∂1 − r−1)2d1A1B − 1

2
λA

C(∂1 − τ)d1B1C

+ωA
Cd1B1C + ∇̃B∇̃Cd1A1C − gAB∇̃C∇̃Dd1C1D − τ∇̃BdA110

−τ∇̃(AdB)110 +
5

2
τgAB∇̃Cd011C + 2(∇̃[AλB]

C − gABL0
C)d011C

+∇̃[A∇̃CdB]C01 −
3

2
λ[A

C∇̃B]dC110 − 2τ∇̃[AdB]010 + τgAB∇̃Cd010C

−1

2
λC[A∇̃CdB]110 − gABλC

D∇̃Cd011D − 1

2
gAB∆g̃d0101

−1

4
λC

Dλ[A
CdB]1D1︸ ︷︷ ︸

=0

−ω[A
CdB]C01︸ ︷︷ ︸
=0

−3

2
r−1 λ[A

CdB]C01︸ ︷︷ ︸
=0

.

Using the formula (5.68) we derived for ∆g̃d1A1B, we conclude that

2(∂1 − r−1)∇ρd0AB
ρ

= 2{(∇̃Cλ[A
C)dB]110 + (∇̃[AλB]

C)d011C} −
1

2
(∂1 − 3r−1){(λ(ACdB)1C1)̆}

+
3

2
{λC[A∇̃CdB]110 − λ[A

C∇̃B]dC110}+ {∇̃[A∇̃CdB]C01 +
1

2
∆g̃d01AB}

= 0 ,

since the terms in each of the braces add up to zero (recall Lemma 4.1). Taking
further into account that regularity yields ∇ρd0AB

ρ = O(r2), we deduce that

∇ρd0AB
ρ = 0 .

5.10 Main result

By way of summary we end up with the following result:
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Theorem 5.1 Let us suppose we have been given a smooth one-parameter family
of s-traceless tensors ωAB(r, x

A) = O(r4) on the 2-sphere, where s denotes the
standard metric. Let λAB be the unique solution of the equation

(∂1 − r−1)λAB = −2ωAB , (5.71)

with λAB = O(r5). A smooth solution (gµν , Lµν , dµνσ
ρ,Θ, s) of the CWE (5.1)-

(5.5) to the future of Ci− , smoothly extendable through Ci− , with initial data

(̊gµν , L̊µν , d̊µνσ
ρ, Θ̊ = 0, s̊ = −2) and with

˘̊
LAB = ωAB, is a solution of the

MCFE (4.1)-(4.6) with λ = 0 in the

(R = 0, s = −2, κ = 0, ĝµν = ηµν)-wave-map gauge ,

if and only if the initial data have their usual algebraic properties and solve the
constraint equations (5.6)-(5.14) with boundary conditions (5.15).

The function Θ is positive in the interior of Ci− and sufficiently close to i−,
and dΘ 6= 0 on Ci− \ {i−}.

Remark 5.2 Note that regularity for the rescaled Weyl tensor implies that the
initial data necessarily need to satisfy ωAB(r, x

A) = O(r4), cf. equation (5.8).

Proof: The previous computations show that Theorem 3.7 is applicable. The
positivity of Θ inside the cone simply follows from (4.3) and the negativity of s
near the vertex as one might check using e.g. normal coordinates.

Concerning the “only if”-part: That the constraint equations (5.6)-(5.14) are
satisfied by any solution of the MCFE in the (R = 0, s = −2, κ = 0, ĝµν = ηµν)-
wave-map gauge and with Θ = 0 follows directly from their derivation. ✷

6 Alternative system of conformal wave equa-

tions (CWE2)

Instead of a wave equation for the rescaled Weyl tensor dµνσ
ρ, it might be

advantageous in certain situations to work with the Weyl tensor itself, which
we denote here by Cµνσ

ρ, as unknown. The Weyl tensor is a more physical
quantity (it is conformally invariant and thus coincides with the physical Weyl
tensor) and can be expressed in terms of the metric even on null and timelike
infinity. We shall see that proceeding this way it becomes necessary to regard
the Cotton tensor as another unknown, so that the system of wave equations
we are about to derive might be somewhat more complicated. An advantage
is that we just need to require the metric to be regular at i− rather than the
metric and the rescaled Weyl tensor, so the alternative system might be useful
to find a more general class of solutions (cf. the discussion in Section 7.1).

Since many of the computations which need to be done to derive the alter-
native system of wave equations (6.9)-(6.14) and prove Theorem 6.5 are very
similar to the ones we did for the CWE involving the rescaled Weyl tensor, the
computations are partially even more compressed than in the previous part.
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6.1 Derivation

The Cotton tensor in 4-spacetime dimensions is defined as

ξµνσ := 2∇[σRν]µ +
1

3
gµ[σ∇ν]R = 4∇[σLν]µ .

It is manifestly antisymmetric in its last two indices. Moreover, the Bianchi
identities imply the following properties,

ξ[µνσ] = 0 , (6.1)

ξρν
ρ = 0 , (6.2)

∇ρξρνσ = 0 , (6.3)

ξµνσ = −2∇αC
α
µνσ . (6.4)

Using the wave equation (3.2) for the Schouten tensor (written in terms of Cµνσ
ρ

rather than Θdµνσ
ρ) one further verifies the relation

2LασCµ
α
ν
σ +∇σξµνσ = 0 , (6.5)

which expresses the vanishing of the Bach tensor.
The second Bianchi identity implies,

2∇[αCµν]σ
ρ = gσ[µξ

ρ
αν] + δ[µ

ρξ|σ|να] . (6.6)

(In particular one recovers (6.4) for ρ = α.) Contracting (6.6) with ∇α we find
a wave equation for the Weyl tensor12

✷gCµνσρ
(6.5)
= 2∇α∇[νCµ]ασρ + 2gσ[µCν]αρβL

αβ − 2gρ[µCν]ασβL
αβ −∇[σξρ]µν

(6.4)
= Cµνα

κCσρκ
α − 4Cσκ[µ

αCν]αρ
κ − 2Cσρκ[µLν]

κ − 2Cµνκ[σLρ]
κ

−∇[σξρ]µν −∇[µξν]σρ +
1

3
RCµνσρ . (6.7)

We observe that the Cotton tensor is needed to eliminate the disturbing second-
order derivatives of Cµνσρ.

Finally, we derive a wave equation for the Cotton tensor ξµνσ by employing
the wave equation (3.2) for the Schouten tensor, the Bianchi identity and (6.4):

✷gξµνσ ≡ 4∇[σ✷gLν]µ + 8gµ[νL|α|
κ∇αLσ]κ − 16L[ν

κ∇σ]Lµκ

+2ξκσνLµ
κ + 4ξµκ[σLν]

κ + Cνσα
κξµκ

α + 8Cα[σ|µ|
κ∇αLν]κ

−2

3
R∇[νLσ]µ +

2

3
Lµ[ν∇σ]R+

2

3
gµ[νLσ]κ∇κR

= 4ξκα[νCσ]
α
µ
κ + Cνσα

κξµκ
α − 4ξµκ[νLσ]

κ + 6gµ[νξ
κ
σα]Lκ

α

+8Lακ∇[νCσ]
α
µ
κ +

1

6
Rξµνσ − 1

3
Cνσµ

κ∇κR . (6.8)

Combining these results with the equations we found for Θ, s, gµν and Lµν ,
we end up with an alternative system of conformal wave equations (of course

12Recall that ✷g, acting on higher valence tensors, is not a wave-operator if the metric field
belongs to the unknowns.
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we need to replace ✷g by ✷
(H)
g , cf. Section 3.1),

✷(H)
g Lµν = 4LµκLν

κ − gµν |L|2 − 2Cµσν
ρLρ

σ +
1

6
∇µ∇νR , (6.9)

✷gs = Θ|L|2 − 1

6
∇κR∇κΘ− 1

6
sR , (6.10)

✷gΘ = 4s− 1

6
ΘR , (6.11)

✷(H)
g Cµνσρ = Cµνα

κCσρκ
α − 4Cσκ[µ

αCν]αρ
κ − 2Cσρκ[µLν]

κ − 2Cµνκ[σLρ]
κ

−∇[σξρ]µν −∇[µξν]σρ +
1

3
RCµνσρ , (6.12)

✷(H)
g ξµνσ = 4ξκα[νCσ]

α
µ
κ + Cνσα

κξµκ
α − 4ξµκ[νLσ]

κ + 6gµ[νξ
κ
σα]Lκ

α

+8Lακ∇[νCσ]
α
µ
κ +

1

6
Rξµνσ − 1

3
Cνσµ

κ∇κR , (6.13)

R(H)
µν [g] = 2Lµν +

1

6
Rgµν . (6.14)

Remark 6.1 Note that (6.9) and (6.12)-(6.14) do not involve the functions s
and Θ, so they form a closed system of wave equations for gµν , Lµν , ξµνσ and
Cµνσρ. Once a solution has been constructed, it remains to solve the linear wave
equations (6.10) and (6.11) for s and Θ.

We want to investigate under which conditions a solution of the system (6.9)-
(6.14), which we denote henceforth by CWE2, provides a solution of the MCFE.

6.2 Some properties of the CWE2 and gauge consistency

First of all we want to establish consistency with the gauge conditions Hσ = 0
and R = Rg. To do that we assume that there are smooth fields gµν , s, Θ,
Cµνσ

ρ, Lµν and ξµνσ which solve the CWE2. We aim to derive necessary and
sufficient conditions on the initial surface which guarantee the vanishing of Hσ

and R − Rg. For definiteness we, again, think of the case where the initial
surface consists of either two transversally intersecting null hypersurfaces or a
light-cone. The strategy will be the same as for the CWE, which is to derive a
homogeneous system of wave equations for Hσ as well as some subsidiary fields,
and infer the desired result from standard uniqueness results for wave equations
by making the assumption, which will be analysed afterwards, that all the fields
involved vanish initially.

However, let us first derive some properties of solutions of the CWE2.

Lemma 6.2 Assume that the initial data on a characteristic initial surface S of
some smooth solution of the CWE2 are such that gµν |S is the restriction to S
of a Lorentzian metric, that L[µν]|S = 0 and Cµνσρ|S = Cσρµν . Then gµν and
Lµν are symmetric and Cµνσρ = Cσρµν .

Proof: Equation (6.9) yields (cf. footnote 9)

✷(H)
g (Cµνσρ − Cσρµν ) =

1

3
R(Cµνσρ − Cσρµν )

+4gαβgκγ [(C[µ|βσκ| − Cσκ[µ|β|)Cν]αργ + (Cρα[ν|γ| − C[ν|γρα|)Cµ]κσβ ]

−4(gαβg[κγ] + gγκg[αβ])CναργCµβσκ . (6.15)
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From (6.9) and (6.14) we further find

✷(H)
g L[µν] = 4g[αβ]Lµ

αLν
β − g[µν]|L|2 + gργLρ

σ(Cνσµγ − Cµγνσ)

+2gσκCµ
ρ
νσL[ρκ] − 2g[σκ]Cµσν

ρLρκ , (6.16)

R
(H)
[µν][g(σρ), g[σρ]] = 2L[µν] +

1

6
Rg[µν] . (6.17)

The equations (6.15)-(6.17) are to be read as a linear, homogeneous system of
wave equations satisfied by g[µν], L[µν] and Cµνσρ − Cσρµν with all the other
fields being given. Hence if we assume these fields to vanish initially they will
vanish everywhere. ✷

The lemma shows that the tensor gµν determines indeed a metric as long
as it does not degenerate. We will only care about initial data for which the
assumptions of this lemma hold.

In analogy to Lemma 3.4 one could show that Cµνσρ is anti-symmetric in
its first two and last two indices and satisfies C[µνσ]ρ = 0, and that ξµνσ is
anti-symmetric in its last two indices and fulfills ξ[µνσ] = 0, supposing that this
is initially the case. However, these properties will follow a posteriori anyway,
so it is not necessary to prove them here. Due to the appearance of first-order
derivatives on the right-hand side of the wave equations for Cµνσρ and ξµνσ, it is
not possible to establish tracelessness of Cµνσρ and ξµνσ at this stage in a manner
it was possible for the CWE (where it simplified the subsequent computations),
since this would require to have something like the second Bianchi identity; also
these properties can be, again, inferred a posteriori, once we know that Cµνσρ

and ξµνσ are Weyl and Cotton tensor of gµν , respectively.

Gauge consistency

Similarly to what we did in Section 3.2, one proceeds to verify the formulae

Rµν − 1

2
Rggµν = 2Lµν − (L+

1

6
R)gµν + gσ(µ∇̂ν)H

σ − 1

2
gµν∇̂σH

σ , (6.18)

∇ν∇̂νH
α + 2gµα∇[σ∇̂µ]H

σ + 4∇νLν
α − 2∇αL− 1

3
∇αR = 0 , (6.19)

✷gH
α = ζα + fα(x;H,∇H) , ζµ := −4∇κLµ

κ + 2∇µL+
1

3
∇µR , (6.20)

✷gKµν = ∇µζν + fµν(x;H,∇H,∇K) , Kµν := ∇µHν , (6.21)

Rg = 2L+
2

3
R + ∇̂σH

σ . (6.22)

From (6.9) we derive a wave equation for L−R/6,

✷g(L− 1

6
R) = −2Cµσ

µρLρ
σ = 2(Wµσ

µρ − Cµσ
µρ)Lρ

σ . (6.23)

The tensors Lµν , Cµνσ
ρ and ξµνσ are supposed to be part of the given solution of

the CWE2; we stress that it is by no means clear, whether they, indeed, represent
the Schouten, Weyl and Cotton tensor of gµν , respectively. We denote byWµνσ

ρ

the Weyl tensor associated to gµν , while we define the tensor ζµνσ to be

ζµνσ := 4∇[σLν]µ .
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Since we do not know at this stage whether the source term in (6.23) vanishes,
we have no analogue of Lemma 3.6. It is not possible to conclude that L− 1

6R
vanishes as we did for the CWE, supposing that it vanishes initially. In fact
that is the reason for the modified definition of ζµ in (6.20).

Note that once we have established L = 1
6R and Hσ = 0, (6.22) implies R =

Rg. For (6.23) to be part of a homogeneous system of wave equations, we regard
Wµνσρ − Cµνσρ as another unknown and show that it satisfies an appropriate
homogeneous wave equation (for later purposes this is more advantageous than
to derive a wave equation for the traces Cµσ

µρ).
From (6.18) and (6.22) we find for the Weyl tensor, cf. (3.32) and (3.36) (since

we do not know yet whether L−R/6 vanishes, the formulae differ slightly),

∇αWµνσρ = gµ[σζρ]αν + gν[σζρ]µα − gα[σζρ]µν − 2∇[µWν]ασρ

+gµ[σ∇ρ]∇[νHα] + gν[σ∇ρ]∇[αHµ] + gα[σ∇ρ]∇[µHν]

+
4

3
gµ[σgρ][ν∇α](L− 1

6
R)− 2

3
gα[σgρ]ν∇µ(L− 1

6
R)

+
2

3
gµ[σgρ][ν∇α]∇κH

κ − 1

3
gα[σgρ]ν∇µ∇κH

κ + fαµνσρ(x;H,∇H) ,

✷gWµνσρ = ∇[σζρ]νµ + 2∇[ν∇αWµ]ασρ +Wµνα
κWσρκ

α − 4Wσκ[µ
αWν]αρ

κ

+2(gρ[µWν]ασ
κ − gσ[µWν]αρ

κ)Lκ
α − 2L[µ

κWν]κσρ − 2L[σ
κWρ]κµν

+gσ[µ∇αζ|ρα|ν] − gρ[µ∇αζ|σα|ν] +
1

2
gν[σ∇ρ]✷gHµ − 1

2
gµ[σ∇ρ]✷gHν

+
1

2
gσ[µ∇ν]∇ρ∇αH

α − 1

2
gρ[µ∇ν]∇σ∇αH

α − 1

3
gµ[σ∇ρ]∇ν∇κH

κ

+
1

3
gν[σ∇ρ]∇µ∇κH

κ +
1

3
gµ[σgρ]ν✷g∇κH

κ +
2

3
gµ[σgρ]ν✷g(L− 1

6
R)

+
4

3
gα[σgρ][µ∇ν]∇α(L − 1

6
R) +

1

3
RWµνσρ + fµνσρ(x;H,∇H,∇K) .

We further have (cf. (3.34) and (3.35))

∇αζµνα = 2(Wµαν
κ − 2Cµαν

κ)Lκ
α +

1

2
∇ν✷gHµ −∇µ∇ν(L− 1

6
R)

−(
5

3
Rg − 6L− 2

3
R)Lµν + (

2

3
Rg − 2L− 1

3
R)Lgµν

+fµν(x;H,∇H,∇K) , (6.24)

∇αW
α
µνσ = −1

2
ζµνσ +

1

2
∇µ∇[νHσ] +

1

6
gµ[ν∇σ](Rg −R)

+fµνσ(x;H,∇H) , (6.25)

which yields with (6.20) and (6.22)

✷gWµνσρ = ∇[σζρ]νµ −∇[µζν]σρ +Wµνα
κWσρκ

α − 4Wσκ[µ
αWν]αρ

κ

−2L[µ
κWν]κσρ − 2L[σ

κWρ]κµν + 4Lκ
α(Wρα[µ

κ − Cρα[µ
κ)gν]σ

−4Lκ
α(Wσα[µ

κ − Cσα[µ
κ)gν]ρ +

1

2
gρ[µ∇ν]ζσ − 1

2
gσ[µ∇ν]ζρ +

1

2
gν[σ∇ρ]ζµ

−1

2
gµ[σ∇ρ]ζν − 8

3
gσ[µLν]ρ(L− 1

6
R) +

8

3
gρ[µLν]σ(L− 1

6
R) +

1

3
RWµνσρ

+
4

3
Lgσ[µgν]ρ(L− 1

6
R) +

1

3
gµ[σgρ]ν✷g(Rg −R) + fµνσρ(x;H,∇H,∇K) .
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The first term in the last line is disturbing. However, invoking (6.22) and (6.23)
we find the relation

✷g(Rg −R) = 2✷g(L− 1

6
R) +✷g∇̂σH

σ

= 4(Wµσ
µρ − Cµσ

µρ)Lρ
σ + f(x;H,∇H,∇K) .

Combining with (6.12) we end up with the wave equation

✷g(Wµνσρ − Cµνσρ) = −∇[σ(ζρ]µν − ξρ]µν)−∇[µ(ζν]σρ − ξν]σρ)

+(Wµνα
κ − Cµνα

κ)Wσρκ
α + Cµνα

κ(Wσρκ
α − Cσρκ

α)

−4(Wσκ[µ
α − Cσκ[µ

α)Wν]αρ
κ − 4Cσκ[µ

α(Wν]αρ
κ − Cν]αρ

κ)

−2(Wσρκ[µ − Cσρκ[µ)Lν]
κ − 2(Wµνκ[σ − Cµνκ[σ)Lρ]

κ

+4Lκ
α(Wρα[µ

κ − Cρα[µ
κ)gν]σ − 4Lκ

α(Wσα[µ
κ − Cσα[µ

κ)gν]ρ

+
1

2
gρ[µ∇ν]ζσ − 1

2
gσ[µ∇ν]ζρ +

1

2
gν[σ∇ρ]ζµ − 1

2
gµ[σ∇ρ]ζν

+
4

3
(L − 1

6
R)(Lgσ[µgν]ρ − 2gσ[µLν]ρ + 2gρ[µLν]σ) +

R

3
(Wµνσρ − Cµνσρ)

+
4

3
gµ[σgρ]ν(Wκα

κβ − Cκα
κβ)Lβ

α + fµνσρ(x;H,∇H,∇K) , (6.26)

which is fulfilled by any solution of the CWE2.
To end up with a homogeneous system we need to derive wave equations for

ζµ and ζµνσ − ξµνσ . Let us start with ζµ. In close analogy to (3.27) and (3.28)
we find with (6.9), (6.23), (6.25), (6.18) and (6.22),

✷gζµ ≡ −4∇κ✷gLµ
κ − 8Wακµ

ρ∇αLρ
κ − 4Rκρ∇µL

ρκ + 8Rαρ∇αLµ
ρ

−4Lρκ∇µRρκ + 4Lρκ∇ρRµκ +
2

3
Rµ

κ∇κR−Rµ
νζν +

1

3
Rgζµ

+2Lµ
ρ∇ρRg +

2

3
Rg∇µ(L− 1

6
R) + 2∇µ✷g(L+

1

6
R)

= −8∇ν [(Wµσν
ρ − Cµσν

ρ)Lρ
σ] + 4∇µ[(Wασ

αρ − Cασ
αρ)Lρ

σ]

−8

3
Lµ

ν∇ν(L− 1

6
R) +

4

9
R∇µ(L− 1

6
R)− 2

3
(L − 1

6
R)∇µR

+(4Lµ
ν −Rµ

ν)ζν +
1

3
(Rg −R)ζµ + fµ(x;H,∇H,∇K) . (6.27)

Finally, let us establish a wave equation which is satisfied by ζµνσ − ξµνσ.
The definition of the Weyl tensor together with the Bianchi identities yield

✷gζµνσ ≡ 4∇[σ✷gLν]µ − 4Wνσκρ∇ρLµ
κ + 8Wµκρ[σ∇ρLν]

κ − 4Rκ[ν∇σ]Lµ
κ

+4Rκ[σ∇|µ|Lν]
κ − 4Rµ[σ∇|κ|Lν]

κ − 4Rρκgµ[σ∇ρLν]
κ +

1

3
Rgζµνσ

+
4

3
Rggµ[σ∇κLν]κ + 4Lµ

κ∇[νRσ]κ + 4Lν
κ∇[µRκ]σ + 4Lσ

κ∇[κRµ]ν

(6.9)
= 4Lµ

κζκνσ − 4Lµ
κ∇[σRν]κ + 16Lκ[ν∇σ]Lµ

κ − 4Rκ[ν∇σ]Lµ
κ

−8Lρ
κgµ[ν∇σ]Lκ

ρ − 4Rρκgµ[σ∇ρLν]
κ + 4Rκ[σ∇|µ|Lν]

κ

−4Rµ[σ∇|κ|Lν]
κ + 4Lν

κ∇[µRκ]σ + 4Lσ
κ∇[κRµ]ν +

4

3
Rggµ[σ∇κLν]κ

+8Lρ
κ∇[νCσ]κµ

ρ + 4ζακ[νCσ]
κ
µ
α − 2ζµακWν

α
σ
κ +

1

3
Rσνµ

κ∇κR

+8(Wµ
ρ
[ν

κ − Cµ
ρ
[ν

κ)∇|κ|Lσ]ρ +
1

3
Rgζµνσ + fµνσ(x;H,∇H,∇K) .
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Using the relations (6.18), (6.22) and ζ[µνσ] = 0 one then shows

✷gζµνσ = −4ζµκ[νLσ]
κ + 6gµ[νζ

κ
σα]Lκ

α + 8Lρ
κ∇[νCσ]κµ

ρ + 4ζακ[νCσ]
κ
µ
α

−2ζµακWν
α
σ
κ + 8(Wµ

ρ
[ν

κ − Cµ
ρ
[ν

κ)∇|κ|Lσ]ρ − 2Lµ[νζσ]

+
1

3
Wσνµ

κ∇κR − 1

6
(R− 2Rg)ζµνσ + fµνσ(x;H,∇H,∇K) .

Combining with (6.13) we infer that ζµνσ − ξµνσ fulfills the wave equation,

✷g(ζµνσ − ξµνσ)

= 6gµ[ν(ζ
κ
σα] − ξκσα])Lκ

α − 4(ζµκ[ν − ξµκ[ν)Lσ]
κ + 4(ζακ[ν − ξακ[ν)Cσ]

κ
µ
α

+ξµκ
α(Wνσα

κ − Cνσα
κ) + 8(Wµ

ρ
[ν

κ − Cµ
ρ
[ν

κ)∇|κ|Lσ]ρ − 2Lµ[νζσ]

−1

3
(Wνσµ

κ − Cνσµ
κ)∇κR+ (ζµκ

α − ξµκ
α)Wνσα

κ +
1

6
R(ζµνσ − ξµνσ)

+4Lµ[ν∇σ](L − 1

6
R) +

8

3
(L− 1

6
R)gµ[σ∇κLν]κ +

2

9
(L− 1

6
R)gµ[ν∇σ]R

+
2

3
(L− 1

6
R)ζµνσ + fµνσ(x;H,∇H,∇K) . (6.28)

The equations (6.20), (6.21), (6.23), (6.26), (6.27) and (6.28) form a closed,
linear, homogeneous system of wave equations satisfied by Hσ, Kµν , L − R/6,
Wµνσρ−Cµνσρ, ζµ and ζµνσ − ξµνσ, with gµν , Lµν , etc. regarded as being given.
An application of standard uniqueness results for wave equations, cf. e.g. [15],
establishes that all the fields vanish identically, supposing that this is initially
the case. In particular this guarantees the vanishing of Hσ and, via (6.22), of
Rg −R, and therefore consistency of the CWE2 with the gauge condition.

Moreover, the computations above reveal that the solution satisfies certain
relations expected from the derivation of the CWE2; e.g. it follows from (6.14)
that Lµν is the Schouten tensor of gµν if Hσ = 0 and Rg = R.

Proposition 6.3 Let us assume we have been given data (̊gµν , s̊, Θ̊, L̊µν ,

C̊µνσ
ρ, ξ̊µνσ) on an initial surface S (for definiteness we think either of two

transversally intersecting null hypersurfaces or a light-cone) and a gauge source
function R, such that g̊µν is the restriction to S of a Lorentzian metric, L̊µν is

symmetric and L̊ = R/6. Suppose further that there exists a smooth solution
(gµν , s, Θ, Lµν , Cµνσ

ρ, ξµνσ) of the CWE2 (6.9)-(6.14) with gauge source func-
tion R which induces the above data on S and fulfills the following conditions:

1. Hσ[g] = 0,

2. Kµ
σ[g] = 0, where Kµ

σ ≡ ∇µH
σ,

3. Wµνσ
ρ[g] = Cµνσ

ρ,

4. ζµνσ[g, L] = ξµνσ, where ζµνσ ≡ 4∇[σLν]µ,

5. ζµ = 0, where ζµ ≡ −4∇κLµ
κ + 2∇µL+ 1

3∇µR.

Then

a) Hσ = 0 and Rg = R,

b) Cµνσ
ρ is the Weyl tensor of gµν ,
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c) Lµν is the Schouten tensor of gµν ,

d) ξµνσ is the Cotton tensor of gµν .

The validity of the assumptions 1-5 will be the subject of Section 6.5.

6.3 Equivalence issue between the CWE2 and the MCFE

We devote ourselves now to the issue to what extent and under which conditions
a solution of the CWE2 is also a solution of the MCFE. It turns out that
this issue is somewhat more intricate than for the CWE due to the change of
variables. Note that at this stage the cosmological constant λ does not need to
vanish.

A subsidiary system

Recall the MCFE,

∇ρdµνσ
ρ = 0 , (6.29)

∇µLνσ −∇νLµσ = ∇ρΘ dνµσ
ρ , (6.30)

∇µ∇νΘ = −ΘLµν + sgµν , (6.31)

∇µs = −Lµν∇νΘ , (6.32)

2Θs−∇µΘ∇µΘ = λ/3 , (6.33)

Rµνσ
κ[g] = Θdµνσ

κ + 2
(
gσ[µLν]

κ − δ[µ
κLν]σ

)
. (6.34)

The MCFE are equivalent to the following system, supposing that Θ > 0,

∇ρCνµσ
ρ = ∇µLνσ −∇νLµσ , (6.35)

Θ(∇µLνσ −∇νLµσ) = ∇ρΘCνµσ
ρ , (6.36)

∇µ∇νΘ = −ΘLµν + sgµν , (6.37)

∇µs = −Lµν∇νΘ , (6.38)

2Θs−∇µΘ∇µΘ = λ/3 , (6.39)

Rµνσ
κ[g] = Cµνσ

κ + 2
(
gσ[µLν]

κ − δ[µ
κLν]σ

)
. (6.40)

This can be seen as follows: Suppose we have a solution of (6.35)-(6.40), then we
obtain a solution of (6.29)-(6.34) by identifying dµνσ

ρ with Θ−1Cµνσ
ρ and vice

versa (hence the system (6.35)-(6.40) is also equivalent to the vacuum Einstein
equations for Θ > 0). In fact, a solution of (6.29)-(6.34) provides a solution of
(6.35)-(6.40) for any Θ since the identification of Cµνσ

ρ with Θdµνσ
ρ is possible,

even where Θ = 0.
We elaborate in somewhat more detail on the characteristic initial value

problem for an initial surface S for which the set {Θ = 0} is non-empty. Since
we are mainly interested in a light-cone with Θ = 0 everywhere we specialise
to the case S = Ci− (we then need to assume λ = 0). Let us assume we have

been given free initial data ωAB ≡ L̆AB on Ci− , and that the fields g̊µν , Θ̊ = 0,

s̊, L̊µν , C̊µνσ
ρ = 0 and ξ̊µνσ have been constructed by solving the constraint

equations to be derived below (cf. Section 6.4). Let us further assume that there
exists a smooth solution of the system (6.35)-(6.40) to the future of S which
induces these data on S and which satisfies s|i− 6= 0. Then Θ has no zeroes
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inside the cone and sufficiently close to the vertex. Moreover, cf. the proof of
Lemma A.5 in Appendix A, dΘ 6= 0 on I − and dΘ|i− = 0. Since the tensor
Cµνσ

ρ vanishes on Ci− the field Cµνσ
ρ/Θ can be smoothly continued across I −

(though not necessarily across i−). The solution at hand thus solves (6.29)-
(6.34) (except possibly at i−) when identifying Cµνσ

ρ/Θ with dµνσ
ρ, smoothly

continued across I −.
The system (6.35)-(6.40) is not regular for Θ = 0, and thus does not provide a

good evolution system. However, it turns out that it is equivalent to the CWE2,
when the latter system is supplemented by the constraint equations, and thus
provides a useful tool to solve the equivalence issue between the MCFE and
the CWE2. The only grievance (or possibly advantage, we will come back to
this issue later) is that we do not know how dµνσ

ρ behaves near the vertex,
in particular it is by no means clear whether it can be continuously continued
across past timelike infinity at all. Nevertheless, the solution provides a solution
of the MCFE up to and excluding the vertex, which induces the free initial data
ωAB on Ci− , and it provides a solution of the vacuum Einstein equations inside
the cone, at least near i−.

Equivalence of the CWE2 and the subsidiary system

In this section we address the equivalence issue between the CWE2 (6.9)-(6.14)
and the subsidiary system (6.35)-(6.40) we just introduced and which, once we
have constructed a solution thereof, provides a solution of the MCFE (6.29)-
(6.34), with the possible exception of the vertex of the cone Ci− . For that we
shall demonstrate that a solution of the CWE2 is a solution of the subsidiary sys-
tem supposing that certain relations are satisfied on the initial surface, namely
the constraint equations, cf. the next section. The other direction follows from
the derivation of the CWE2. As initial surface we have, as before, two transver-
sally intersecting null hypersurfaces or a light-cone in mind.

Recall the CWE2 (6.9)-(6.14). We assume we have been given a smooth
solution (gµν , Lµν , Cµνσ

ρ, ξµνσ,Θ, s) with all the hypotheses of Proposition 6.3
being satisfied. Then Lµν , Cµνσ

ρ and ξµνσ are the Schouten, Weyl and Cotton
tensor of gµν , respectively. The equations (6.35) and (6.40) are thus identities
and automatically satisfied. Recall that it suffices for (6.39) to be satisfied at
just one point. Let us derive a homogeneous system of wave equations which
establishes the validity of the remaining equations, (6.36)-(6.38).

It is convenient to make the following definitions:

Λσνµ :=
1

2
Θξσνµ +∇ρΘCµνσ

ρ ,

Ξµν := ∇µ∇νΘ+ΘLµν − sgµν ,

Υµ := ∇µs+ Lµν∇νΘ .

Computations similar to the ones which led us to (3.44) and (3.46) (now
with Hσ and Kµν vanishing) reveal that, because of (6.9)-(6.11), we have

✷gΞµν = 2Ξσκ(2L(µ
κδν)

σ − gµνL
σκ − Cµ

σ
ν
κ) + 4∇(µΥν) +

1

6
RΞµν , (6.41)

✷gΥµ = 6Lµ
κΥκ + 2LρκΛρκµ + 2Ξν

σ∇σLµ
ν − 1

6
Ξµ

ν∇νR . (6.42)
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Furthermore, in virtue of (6.11)-(6.13) and (6.6) we find that

✷gΛσνµ = sξσνµ − 2Lρκ∇κΘCµνσ
ρ − 2∇ρΘCσρκ[µLν]

κ − 2∇ρΘCµνκ[σLρ]
κ

+∇ρΘ(∇[ρξσ]νµ +∇[µξν]ρσ) +∇ρΘ∇σξρνµ + 4ΥρCµνσ
ρ

+2Ξκρ∇κCµνσ
ρ + 4Cσ

κ
[µ

αΛ|κα|ν] − Cµνα
κΛσκ

α +
1

3
RΛσνµ .

We observe the relation

2∇ρΘ(∇[ρξσ]νµ +∇[µξν]ρσ)

= 4∇ρΘ(∇[ρ∇µ]Lνσ −∇[ρ∇ν]Lµσ +∇[σ∇ν]Lµρ −∇[σ∇µ]Lνρ)

= 4∇ρΘ(Cµν[σ
κLρ]κ − Cσρ[µ

κLν]κ) ,

which yields

✷gΛσνµ = 2Ξκρ∇κCµνσ
ρ + ξρµνΞσρ + 2Lσ

ρΛρνµ + 4Cσ
κ
[µ

αΛ|κα|ν]

−Cµνα
κΛσκ

α + 4ΥρCµνσ
ρ +∇σ(ξρνµ∇ρΘ) +

1

3
RΛσνµ . (6.43)

It remains to derive a wave equation for ξρνµ∇ρΘ which follows from (6.11),
(6.13) and (6.6),

✷g(ξρνµ∇ρΘ) = ξρνµ∇ρ✷gΘ+ 2Ξκρ(∇κξρνµ + 2Lκ
δCµνδρ)− 4Lκρ∇κΛρνµ

+∇κΘ(4Lδρ∇δCµνρκ + 4Lκ
ρξρνµ +✷gξκνµ) +

1

6
Rξρνµ∇ρΘ

= 4ξρνµΥρ + 2Ξκρ(∇κξρνµ + 2Lκ
δCµνδρ)− 4Lκρ∇κΛρνµ

−(ξκβ
α∇κΘ)Cµνα

β + 4ξαβ [µΛ|αβ|ν] −
1

3
Λρνµ∇ρR

+
1

2
R ξρνµ∇ρΘ . (6.44)

The equations (6.41)-(6.44) form a closed, linear, homogeneous system of
wave equations for the fields Ξµν , Υµ, Λσνµ and ξρνµ∇ρΘ. If we assume that
the equations (6.36)-(6.38) are initially satisfied and that ξρνµ∇ρΘ = 0, we have
vanishing initial data, and standard uniqueness results for wave equations can
be applied (cf. e.g. [15]) to conclude that (6.36)-(6.38) are fulfilled.

As an extension of Proposition 6.3 we have proven the following result (note
that the cosmological constant λ is allowed to be non-vanishing):

Theorem 6.4 Let us assume we have been given data (̊gµν , s̊, Θ̊, L̊µν , C̊µνσ
ρ,

ξ̊µνσ) on a characterteristic initial surface S (for definiteness we think either
of two transversally intersecting null hypersurfaces or a light-cone) and a gauge
source function R, such that g̊µν is the restriction of a Lorentzian metric, L̊µν

is symmetric and L̊ = R/6. Suppose further that there exists a smooth solution
(gµν , s, Θ, Lµν , Cµνσ

ρ, ξµνσ) of the CWE2 (6.9)-(6.14) with gauge source func-
tion R which induces the above data on S and satisfies the following conditions
(since it is the case of physical relevance we assume Θ 6= 0 away from S; later
on we shall consider only initial data where this is automatically the case, at
least sufficiently close to S):
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1. The equations (6.36)-(6.39) are satisfied on S (it suffices if (6.39) holds
at just one point on S).

2. The Weyl tensor of gµν coincides on S with Cµνσ
ρ.

3. The relation ξµνσ = 4∇[σLν]µ holds on S.

4. The covector field ζµ ≡ −4∇κLµ
κ + 2∇µL+ 1

3∇µR vanishes on S.

5. The tensor field ξρνµ∇ρΘ vanishes on S.

6. The wave-gauge vector Hσ and its covariant derivative Kµ
σ ≡ ∇µH

σ

vanish on S.

Then:

a) Hσ = 0 and Rg = R.

b) The fields Cµνσ
ρ, Lµν and ξµνσ are the Weyl, Schouten and Cotton tensor

of gµν , respectively.

c) Set dµνσ
ρ := Θ−1Cµνσ

ρ where Θ 6= 0. The tensor dµνσ
ρ extends to the

set {Θ = 0, dΘ 6= 0} ⊂ S. Moreover, the tuple (gµν , Lµν , Θ , s , dµνσ
ρ)

solves the MCFE (6.29)-(6.34) in the (Hσ = 0, Rg = R)-gauge.

The conditions 1-6 are necessary for c) to be fulfilled.

We shall investigate next to what extent the conditions 1-6 are satisfied if
the initial data are constructed as solutions of the constraint equations induced
by the MCFE on the initial surface.

6.4 Constraint equations on Ci− in terms of Weyl and Cot-
ton tensor

Generalized wave-map gauge

The aim of this section is to determine the constraint equations induced by the
MCFE on the fields gµν , Lµν , Θ, s, Cµνσρ and ξµνσ . For this purpose we assume
we have been given some smooth solution (gµν , Lµν , Θ, s, dµνσρ) of the MCFE.
For simplicity and to avoid an exhaustive case-by-case analysis we shall restrict
attention, as for the CWE, to the case where the initial surface is S = Ci− .
This requires to assume

λ = 0 .

As a matter of course the constraints for gµν , Lµν , Θ and s are the same as
before, cf. Section 4.2. The Weyl tensor vanishes on I [32],

Cµνσ
ρ = 0 . (6.45)

It thus remains to determine the constraint equations for ξµνσ . In adapted null
coordinates the independent components of the Cotton tensor are

ξ00A , ξ01A , ξ11A , ξA0B , ξA1B , ξABC .
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We have

ξ01A = 2(∇AL01 −∇1L0A) , (6.46)

ξ11A = 2(∇AL11 −∇1L1A) , (6.47)

ξA1B = 2(∇BL1A −∇1LAB) , (6.48)

ξABC = 2(∇CLAB −∇BLAC) , (6.49)

and no transverse derivatives of Lµν are involved. The remaining components
follow from (6.30),

ξ00A = 2ν0∂0Θ d010A , (6.50)

ξA0B = 2ν0∂0Θ d0BA1 . (6.51)

(R = 0, s = −2, κ = 0, ĝ = η)-wave-map gauge

To make computations easier we restrict attention to the (R = 0, s = −2, κ =
0, ĝ = η)-wave-map gauge. Henceforth all equalities are meant to hold in this

particular gauge. As free initial data we take the s-trace-free tensor ωAB = L̆AB.
The constraint equations for g̊µν , L̊µν and C̊µνσρ read (cf. (5.6)-(5.16))

g̊µν = ηµν , C̊µνσρ = 0 , (6.52)

L̊1µ = 0 , L̊0A = 1
2∇̃BλAB , g̊ABL̊AB = 0 , (6.53)

4(∂1 + r−1)L̊00 = λABωAB − 4rρ− 2∇̃AL̊0A , (6.54)

where

(∂1 − r−1)λAB = −2ωAB , (6.55)

(∂1 + 3r−1)ρ =
1

2
r−1∇̃A∂1L̊0A − 1

4
λAB∂1(r

−1ωAB) . (6.56)

The relevant boundary conditions are

L̊00 = O(1) , λAB = O(r3) , ρ = O(1) . (6.57)

The equations (6.46)-(6.51) yield

ξ̊01A = −2∂1L̊0A = g̊BC ξ̊BAC , (6.58)

ξ̊11A = 0 , (6.59)

ξ̊A1B = −2r∂1(r
−1ωAB) , (6.60)

ξ̊ABC = 4∇̃[CωB]A − 4r−1g̊A[BL̊C]0 , (6.61)

ξ̊00A = −4rd̊010A , i.e. (6.62)

∂1ξ̊00A = ∇̃B(λ[A
CωB]C)− 2∇̃B∇̃[AL̊B]0 +

1

2
∇̃B ξ̊A1B

−2r∇̃Aρ+ r−1ξ̊01A + λA
B ξ̊01B , (6.63)

ξ̊A0B = 2rg̊AB d̊0101 − 2rd̊1A1B − 2rd̊01AB

= λ[A
CωB]C − 2∇̃[AL̊B]0 + 2rρ g̊AB − 1

2
ξ̊A1B , (6.64)

with boundary condition
ξ̊00A = O(r) . (6.65)
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We employed the dµνσρ-constraints (5.8)-(5.12) to derive the expressions for

ξ̊00A and ξ̊A0B (recall that ∂0Θ = −2r, cf. Section 4.3).
Using the constraints for ξµνσ , one may rewrite the equation for ρ,

8(∂1 + 3r−1)ρ = r−1λAB ξ̊A1B − 2r−1∇̃Aξ̊01A . (6.66)

Note that for the Cotton tensor to be regular at i− the initial data necessarily
need to satisfy ωAB = O(r3), cf. (6.60).

6.5 Applicability of Theorem 6.4 on the Ci−-cone

Let us assume we have been given initial data ωAB = O(r3) on Ci− , such that
a smooth solution of the CWE2 exists in some neighbourhood to the future
of i−, smoothly extendable through Ci− , which induces the prescribed data
Θ̊ = 0, s̊ = −2, C̊µνσ

ρ = 0, g̊µν = ηµν , L̊µν and ξ̊µνσ on Ci− , the last two
fields determined from the hierarchical system of constraint equations (6.52)-
(6.64). We want to investigate to what extent the hypotheses of Theorem 6.4
are satisfied under these assumptions.

For convenience let us recall the CWE2 in an (R = 0)-gauge,

✷(H)
g Lµν = 4LµκLν

κ − gµν |L|2 − 2Cµσν
ρLρ

σ , (6.67)

✷gs = Θ|L|2 , (6.68)

✷gΘ = 4s , (6.69)

✷(H)
g Cµνσρ = Cµνα

κCσρκ
α − 4Cσκ[µ

αCν]αρ
κ − 2Cσρκ[µLν]

κ − 2Cµνκ[σLρ]
κ

−∇[σξρ]µν −∇[µξν]σρ , (6.70)

✷(H)
g ξµνσ = 4ξκα[νCσ]

α
µ
κ + Cνσα

κξµκ
α − 4ξµκ[νLσ]

κ + 6gµ[νξ
κ
σα]Lκ

α

+8Lακ∇[νCσ]
α
µ
κ , (6.71)

R(H)
µν [g] = 2Lµν . (6.72)

Vanishing of H
σ

This can be shown in exactly the same manner as for the CWE, Section 5.2.

Vanishing of ∂0Hσ and ζµ

We know that the wave-gauge vector fulfills the wave equation (6.19) with R = 0,

∇ν∇̂νH
α + 2gµα∇[σ∇̂µ]H

σ + 4∇νLν
α − 2∇αL = 0 . (6.73)

As for the CWE the vanishing of ∂0H0 and ∂0HA follows from (6.73) with
α = 0, A by taking regularity at the vertex into account. Taking the trace of
the restriction of (6.72) to the initial surface then shows that the curvature
scalar vanishes initially, Rg = 0.

The α = 1-component of (6.73) can be written as

(∂1 + r−1)∂0H1 + 2(∂1 + τ)L00 + 2∇̃AL0A − gAB∂0LAB = 0 , (6.74)

where we used that ∂0L11 = 0, cf. (5.32), and that

∂0L = ∂0(gµνLµν) = 2∂0L01 + gAB∂0LAB − λABLAB . (6.75)
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We observe that, although we do not know yet whether ∂0L vanishes, equation
(6.74) coincides with (5.43) of Section 5.3, and thus the vanishing of ∂0H1 can
be established by proceeding in exactly the same manner as for the CWE; one
first shows that the source terms in (6.74) vanishes and then utilizes regularity
to deduce the desired result. Altogether we have

∇µHν = 0 . (6.76)

Inserting the definition (6.20) of ζµ into (6.73) yields

ζµ = 0 . (6.77)

Vanishing of ξρνµ∇ρΘ

Since Θ = 0, it suffices to show that ξ1µν = 0. Invoking the symmetries of ξµνσ,
we deduce from the constraint equations (6.58)-(6.64) that

ξ101 ≡ gABξA1B = 0 ,

ξ10A ≡ gBCξBAC − ξ01A − ξ11A = 0 ,

ξ11A = 0 ,

ξ1AB ≡ −2ξ[AB]1 = 0 .

Vanishing of ζµνσ − ξµνσ

We need to show that

ξµνσ = ζµνσ ≡ 4∇[σLν]µ .

For the components ξ01A, ξ11A, ξA1B and ξABC this follows straightforwardly
from the constraint equations (6.58)-(6.61). The remaining independent com-
ponents ξ00A and ξA0B are determined by (6.63) and (6.64), respectively. We
observe that ζ00A − ξ00A and ζA0B − ξA0B satisfy the same equations as the
components κ00A/2 and κA0B/2 in Section 5.8, so one just needs to repeat the
computations carried out there to accomplish the proof that ξµνσ = ζµνσ.

Vanishing of Wµνσ
ρ

In the same manner as for the CWE, Section 5.4, one shows that the Weyl
tensor Wµνσ

ρ of gµν vanishes initially.

Validity of the equations (6.36)-(6.39) on Ci−

The validity of (6.36) on Ci− follows from the vanishing of Θ and Cµνσρ. The
computation which shows the vanishing of (6.37)-(6.39) is identical to the one
we did for the CWE, cf. Sections 5.5-5.7.

6.6 Main result concerning the CWE2

We end up with the following result, which is in close analogy with Theorem 5.1:
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Theorem 6.5 Let us suppose we have been given a smooth one-parameter family
of s-traceless tensors ωAB(r, x

A) = O(r3) on the 2-sphere, where s denotes the
standard metric. A smooth solution (gµν , Lµν , Cµνσ

ρ, ξµνσ ,Θ, s) of the CWE2
(6.67)-(6.72) to the future of Ci− , smoothly extendable through Ci− , with initial

data (̊gµν , L̊µν , C̊µνσ
ρ, ξ̊µνσ , Θ̊ = 0, s̊ = −2), where

˘̊
LAB = ωAB, provides a

solution
(gµν , Lµν , dµνσ

ρ = Θ−1Cµνσ
ρ,Θ, s)

of the MCFE (6.29)-(6.34) with λ = 0, smoothly continued across I −, in a
neighbourhood of i− intersected with J+(i−), with the possible exception of i−

itself, in the

(R = 0, s = −2, κ = 0, ĝµν = ηµν)-wave-map gauge

if and only if the initial data have their usual symmetry properties and satisfy the
constraint equations (6.52)-(6.56) and (6.58)-(6.64) with boundary conditions
(6.57) and (6.65),13

Remark 6.6 Note that regularity for the Cotton tensor implies that the initial
data necessarily need to satisfy ωAB(r, x

A) = O(r3), cf. equation (6.60).

7 Conclusions and outlook

Let us finish by briefly comparing the two systems of wave equations, CWE and
CWE2, which we have studied here, and by summarizing the results we have
established for them.

7.1 Comparison of both systems CWE & CWE2

It might be advantageous in certain situations that the Schouten, Weyl and
Cotton tensor, which appear in the CWE2-system, can be directly expressed in
terms of the metric. In contrast, the rescaled Weyl tensor, which is an unknown
of the CWE, can be defined on I in terms of the metric and the conformal
factor only via a limiting process from the inside.

Once a smooth solution of the CWE has been constructed (we think of a
characteristic Cauchy problem with data on Ci−), it is, as a matter of course,
known that the rescaled Weyl tensor is regular at i−. Since both, Θ and dΘ,
vanish at i− the same conclusion cannot be straightforwardly drawn for a solu-
tion of CWE2, even if one takes initial data ωAB = O(r4). Note for this that the
constraint equations for CWE2 are somewhat “weaker” than the constraints for
the CWE involving the rescaled Weyl tensor, which is due to the fact that the
Cotton tensor has less independent components than the rescaled Weyl tensor.
It is the d̆0A0B-constraint which has no equivalent in the CWE2-system. Thus it
seems to be plausible that the conclusions are weaker, too. One has no control
how Cµνσρ/Θ behaves near the vertex. It seems to be hopeless to catch the
behaviour of dµνσ

ρ when approaching i− in terms of the initial data on Ci− .
However, this can be seen as an advantage as well, for there seems to be no

reason why the rescaled Weyl tensor should be regular at i−. It might be more

13Note that if s|i− < 0 then Θ is positive in the interior of Ci− and sufficiently close to
i− and dΘ 6= 0 on Ci− \ {i−} near i−, so a solution of the CWE2 provides a solution of the
MCFE in J+(i−) \ {i−} sufficiently close to i−.
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sensible to assume just the unphysical metric to be regular there. Note, however,
that for analytic data the rescaledWeyl tensor will be regular at i− [24], while for
smooth data this is an open issue. The CWE2 might be predestined to construct
solutions of the Einstein equations with a rescaled Weyl tensor which cannot be
extended across i−, supposing of course that such solutions do exist at all. In
fact, we have seen that any smooth solution of the CWE (supplemented by the
constraint equations) necessarily requires initial data ωAB = O(r4), while for
the CWE2 we just needed to require ωAB = O(r3). So if one is able to construct
a solution of the CWE2 from free initial data ωAB which are properly O(r3), the
corresponding solution of the MCFE will lead to a rescaled Weyl tensor which
could not be regular at i−.

7.2 Summary and outlook

Both CWE and CWE2 have been extracted from the MCFE by imposing a
generalized wave-map gauge condition. Similar to Friedrich’s reduced conformal
field equations, they provide, in 3 + 1 dimensions, a well behaved system of
evolution equations. The main object of this paper was to investigate the issue
under which conditions a solution of the CWE/CWE2 is also a solution of
the MCFE. Since, roughly speaking, the CWE/CWE2 have been derived from
the MCFE by differentiation, one needs to make sure, on characteristic initial
surfaces, that the MCFE are initially satisfied, as made rigorous by Theorems 3.7
and 6.4.

One would like to construct the initial data for the CWE/CWE2 in such
a way, that all the hypothesis in these theorems are fulfilled. The expectation
is that this is the case whenever the data are constructed from suitable free
“reduced” data by solving a set of constraint equations induced by the MCFE
on the initial surface, which is a hierarchical system of algebraic equations and
ODEs, as typical for characteristic initial value problems for Einstein’s vacuum
field equations. In this work, we have restricted attention to the Ci− -cone,
which requires λ = 0, and, for computational purposes, to a specific gauge, and
showed that this is indeed the case, cf. Theorems 5.1 and 6.5.

Analogous results should be expected to hold for e.g. a light-cone for λ ≥ 0
whose vertex is located at I −, or for two transversally intersecting null hy-
persurfaces, one of which belongs to I − for λ = 0, or where the intersection
manifold is located at I − for λ > 0, and also for such surfaces with a vertex, or
intersection manifold, located in the physical space-time. Furthermore, any gen-
eralized wave-map gauge with sufficiently well-behaved gauge functions should
lead to the same conclusions. We will not work out the details here. It should
also be clear that results similar to Theorems 5.1 and 6.5 can be established
with initial data of finite differentiability.

The equivalence issue between CWE/CWE2 and MCFE is also of relevance
for spacelike Cauchy problems. This has been analysed in [30]. It is shown
there that, roughly speaking, a solution of the CWE is a solution of the MCFE
if the MCFE and their transverse derivatives are satisfied on the initial surface.
As in the characteristic case, it should be expected that this can be guaranteed
whenever the initial data are constructed as solutions of an appropriate set of
constraint equations. In [30] this has been proved to be the case if the initial
surface is a spacelike I − (here one needs to assume λ > 0).
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A Cone-smoothness and proof of Lemma 2.1

In order to prove Lemma 2.1 we need some facts about cone-smooth functions.
Therefore let us briefly review the notion of cone-smoothness as well as some
basic properties of cone-smooth functions. For the details we refer the reader
to [9, 11].

We denote by {y0 ≡ t, yi} coordinates in a 4-dimensional spacetime for which

CO :=
{
yµ ∈ R4 : y0 =

√∑

i

(yi)2
}
.

is the light-cone emanating from a point O. Such coordinates exist at least
sufficiently close to the vertex. Adapted null coordinates are denoted by {x0 ≡
u, x1 ≡ r, xA}. Both coordinate systems are related via a transformation of the
form (cf. [11]),

y0 = x1 − x0 , yi = x1Θi(xA) with

3∑

i=1

[Θi(xA)]2 = 1 .

Definition A.1 ([11]) A function ϕ defined on CO is said to belong to C k(CO),
k ∈ N∪ {∞}, if it can be written as ϕ̂+ rϕ̌ with ϕ̂ and ϕ̌ being C k-functions of
yi. If k = ∞ the function ϕ is called cone-smooth.

Remark A.2 We are particularly interested in the cone-smooth case k = ∞.

Proposition A.3 ([11]) Let ϕ : CO → R be a function and let k ∈ N ∪ {∞}.
The following statements are equivalent:

(i) The function ϕ can be extended to a C k function on R4.

(ii) ϕ ∈ C k(CO).

(iii) The function ϕ admits an expansion of the form (ϕi1...ip , ϕ
′
i1...ip−1

∈ R)

ϕ =

k∑

p=0

ϕpr
p+ok(r

k) where ϕp := ϕi1...ipΘ
i1 . . .Θip+ϕ′

i1...ip−1
Θi1 . . .Θip−1 .

Lemma A.4 ([9]) Let ϕ ∈ C k(CO) with k ∈ N ∪ {∞}. Then

(i) exp(ϕ) ∈ C k(CO), and

(ii) r−1
∫ r

0
ϕ(r̂, xA) dr̂ ∈ C k(CO).

If, in addition, ϕ(0) = 0, then
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(iii)
∫ r

0
r̂−1ϕ(r̂, xA) dr̂ ∈ C k(CO).

Lemma A.5 Consider any smooth solution of the MCFE in 4 spacetime dimen-
sions in some neighbourhood U to the future of i−, smoothly extendable through
Ci− , which satisfies

si− := s|i− 6= 0 . (A.1)

Let ρ be any function on U ∩∂J+(i−) with ρi− := ρ|i− 6= 0 and limr→0 ∂rρ = 0
which can be extended to a smooth spacetime function. Then the equation

∇µΘ∇µφ̊+ φ̊ s− φ̊2ρ = 0 (A.2)

is a Fuchsian ODE for φ̊ and any solution satisfies (set φ̊i− := φ̊|i−)

sign(φ̊i− ) = sign(si−)sign(ρi−) (A.3)

(in particular φ̊i− 6= 0), and is the restriction to Ci− of a smooth spacetime
function.

Proof: We assume a sufficiently regular gauge so that the regularity conditions
(4.41)-(4.51) in [5] hold. Evaluation of the MCFE (2.7) on I − in coordinates
adapted to the cone implies the relation

gAB∇A∇BΘ = 2s ⇐⇒ τ∂0Θ = 2ν0s . (A.4)

The notation is introduced at the beginning of Section 4. The expansion τ of
the light-cone satisfies

τ =
2

r
+O(r) , ∂1τ = − 2

r2
+O(1) .

Moreover, regularity requires

ν0 = 1 +O(r2) , ∂1ν0 = O(r) , s = O(1) , ∂1s = O(1) .

Hence
∂0Θ = si−r +O(r2) and ∂1∂0Θ = si− +O(r) . (A.5)

The r-component of the MCFE (2.8) yields

∂1s+ ν0L11∂0Θ = 0 =⇒ ∂1s|i− = 0

due to regularity (note that L11 = O(1)), i.e.

s = si− +O(r2) .

In adapted null coordinates (A.2) reads

ν0∂0Θ∂1φ̊+ sφ̊− ρφ̊2 = 0 , (A.6)

i.e., since dΘ|I − 6= 0, (A.2) is a Fuchsian ODE for φ̊ along the null geodesics
emanating from i−. By assumption, the functions s and ρ are cone-smooth.
In [9] it is shown that ν0 and rτ are cone-smooth. That implies that the function

ψ :=
∂0Θ

r

(A.4)
=

2ν0s

rτ
= si− +O(r2)
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is cone-smooth, as well (note that (rτ)|i− 6= 0). Since we have assumed si− 6= 0,
the function ψ has no zeros near i−, so ψ−1 exists near i− and is cone-smooth.
The ODE (A.6) thus takes the form

r∂1φ̊+ ω̂φ̊− ωφ̊2 = 0 , (A.7)

where the functions ω̂ := ν0sψ
−1 = 1 +O(r2) and ω := ν0ρψ

−1 =
ρi−
si−

+O(r2)

are cone-smooth and non-vanishing near the tip of the cone.14

Let ε > 0 be sufficiently small. We introduce the function

γ := e−
∫ r
ε
r̂−1ω̂ dr̂ φ̊−1 , (A.8)

so that (A.7) becomes

r2∂1γ + ζ = 0 , (A.9)

where

ζ := εωe−
∫

r
ε
r̂−1(ω̂−1) dr̂ = ε

ρi−

si−
e
∫

ε
0
r̂−1(ω̂−1) dr̂

︸ ︷︷ ︸
=:c

+O(r2) (A.10)

is cone-smooth by Lemma A.4 and has a sign near the tip,

sign(ζi−) = sign(si−)sign(ρi−) .

Consequently,

rγ = −r
∫
r̂−2ζ dr̂ = c+ ĉr +O(r2) (A.11)

is cone-smooth and has a sign as follows immediately from the expansions in
Proposition A.3 and term-by-term integration. The constant ĉ can be regarded
as representing the, possibly xA-dependent, integration function. We conclude
that the function

φ̊ = εe−
∫

r
ε
r̂−1(ω̂−1) dr̂ (rγ)−1 =

si−

ρi−
+O(r) (A.12)

is cone-smooth and has a sign near the vertex of the cone,

sign(φ̊i−) = sign(si−)sign(ρi−)

(Note that there remains a gauge freedom to choose ∂1φ̊|i− .) ✷
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Mills-Higgs, Ann. Henri Poincaré 4 (2003) 385–411.
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Abstract
We prove existence of vacuum space-times with freely prescribable cone-
smooth initial data on past null infinity.
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1. Introduction

A question of interest in general relativity is the construction of large classes of space-
times with controlled global properties. A flagship example of this line of enquiries is
the Christodoulou–Klainerman theorem [3] of nonlinear stability of Minkowski space-time.
Because this theorem carries only limited information on the asymptotic behaviour of the
resulting gravitational fields, and applies only to near-Minkowskian configurations in any
case, it is of interest to construct space-times with better understood global properties. One
way of doing this is to carry out the construction starting from initial data at the future null
cone, I −, of past timelike infinity i−. An approach to this has been presented in [10], but an
existence theorem for the problem is still lacking. The purpose of this work is to fill this gap.

In order to present our result some terminology and notation is needed: Let CO denote
the (future) light-cone of the origin O in Minkowski space-time (throughout this work, by
‘light-cone of a point O’ we mean the subset of a spacetime M covered by future directed null
geodesics issued from O). Let, in manifestly flat coordinates yμ, � = ∂0 + (yi/|�y |)∂i denote the
field of null tangents to CO. Let d̃αβγ δ be a tensor with algebraic symmetries of the Weyl tensor
and with vanishing η-traces, where η denotes the Minkowski metric. Let ς be the pull-back
of

d̃αβγ δ�
α�γ

to CO \ {O}. Let, finally, ςab denote the components of ς in a frame parallel-propagated along
the generators of CO. We prove the following:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0
licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.
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Theorem 1.1. Let CO be the light-cone of the origin O in Minkowski space-time. For any ς as
above there exists a neighbourhood O of O, a smooth metric g and a smooth function 
 such
that CO is the light-cone of O for g, 
 vanishes on CO, with ∇
 nonzero on J̇+(O) ∩ O \ {O},
the function 
 has no zeros on O ∩ I+(O), and the metric 
−2g satisfies the vacuum Einstein
equations there. Further, the tensor field

dαβγ δ := 
−1Cαβγ δ,

where Cαβγ δ is the Weyl tensor of g, extends smoothly across {
 = 0}, and ςab are the
frame components, in a g-parallel-propagated frame, of the pull-back to CO of dαβγ δ�

α�γ . The
solution is unique up to isometry.

1.1. Strategy of the proof

The starting point of our analysis are the conformal field equations of Friedrich. The task
consists of constructing initial data, for those equations, which arise as the restriction to the
future light-cone I − of past timelike infinity i− of tensors which are smooth in the unphysical
space-time. We then use a system of conformally invariant wave equations of [13] to obtain a
space-time with a metric solving the vacuum Einstein equations to the future of i−.

Now, some of Friedrich’s conformal equations involve only derivatives tangent to I −,
and have therefore the character of constraint equations. Those equations form a set of PDEs
with a specific hierarchical structure, so that solutions can be obtained by integrating ODEs
along the generators of I −. This implies that the constraint equations can be solved in a
straightforward way in coordinates adapted to I − in terms of a subset of the fields on the
light-cone. However, there arise serious difficulties when attempting to show that solutions
of the conformal constraint equations can be realized by smooth space-time tensors. These
difficulties lie at the heart of the problem at hand. To be able to handle this issue, we note
that ς determines the null data of [12]. These null data are used in [12] to construct smooth
tensor fields satisfying Friedrich’s equations up to terms which decay faster than any power
of the Euclidean coordinate distance from i−, similarly for their derivatives of any order; such
error terms are said to be O(|y|∞). For fields on the light-cone, the notation O(r∞) is defined
similarly, where r is an affine distance from the vertex along the generators, with derivatives
only in directions tangent to the light-cone. In particular the approximate solution so obtained
solves the constraint equations up to error terms of order O(r∞). Using a comparison argument,
we show that the approximate fields differ, on CO, from the exact solution of the constraints
by terms which are O(r∞). But tensor fields on the light-cone which decay to infinite order in
adapted coordinates arise from smooth tensors in space-time, which implies that the solution
of the constraint equations arises indeed from a smooth tensor in space-time. As already
indicated, this is what is needed to be able to apply the existence theorems for systems of
wave equations in [7], provided such a system is at disposal. This last element of our proof is
provided by the system of wave equations of [13], and the results on propagation of constraints
for this system established there.1

2. From approximate solutions to solutions

Recall Friedrich’s system of conformally-regular equations (see [11] and references therein)

∇ρdμνσ
ρ = 0, (2.1)

1 Compare [8], where a system based on the equations of Choquet-Bruhat and Novello [2] is used.

2
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∇μLνσ − ∇νLμσ = ∇ρ
 dνμσ
ρ, (2.2)

∇μ∇ν
 = −
Lμν + sgμν, (2.3)

∇μs = −Lμν∇ν
, (2.4)

2
s − ∇μ
∇μ
 = 0, (2.5)

Rμνσ
κ [g] = 
dμνσ

κ + 2(gσ [μLν]
κ − δ[μ

κLν]σ ). (2.6)

Here 
 is the conformal factor relating the physical metric 
−2g̃μν with the unphysical metric
gμν , the fields dμνσ

κ and Lαβ encode the information about the unphysical Riemann tensor as
made explicit in (2.6), while the trace of (2.3) can be viewed as the definition of s.

We wish to construct solutions of (2.1)–(2.6) with initial data on a light-cone Ci− ,
emanating from a point i−, with 
 vanishing on Ci− and with s(i−) �= 0. (The actual value
of s(i−) can be changed by constant rescalings of the conformal factor 
 and of the field
dαβγ

δ . For definiteness we will choose s(i−) = −2.) As explained in [9], such solutions lead
to vacuum space-times, where past timelike infinity is the point i− and where past null infinity
I − is Ci− \ {i−}.

We will present two methods of doing this: while the second one is closely related to the
classical one in [2], the advantage of the first one is that it allows in principle a larger class of
initial data, see remark 2.6 below.

Let, then, a ‘target metric’ ĝ be given and let the operator ∇̂ denote its covariant derivative
with associated Christoffel symbols �̂σ

αβ . Set

Hσ := gαβ
(
�σ

αβ − �̂σ
αβ

)
. (2.7)

Consider the system of wave equations which [13, section 6.1] follows from (2.1)–(2.6) when
Hσ vanishes:

�(H)
g Lμν = 4LμκLν

κ − gμν |L|2 − 2Cμσν
ρLρ

σ + 1
6∇μ∇νR, (2.8)

�g s = 
|L|2 − 1
6∇κR ∇κ
 − 1

6 sR, (2.9)

�g 
 = 4s − 1
6
R, (2.10)

�(H)
g Cμνσρ = Cμνα

κCσρκ
α − 4Cσκ[μ

αCν]αρ
κ − 2Cσρκ[μLν]

κ − 2Cμνκ[σ Lρ]
κ

−∇[σ ξρ]μν − ∇[μξν]σρ + 1
3 RCμνσρ, (2.11)

�(H)
g ξμνσ = 4ξκα[νCσ ]

α
μ

κ + Cνσα
κξμκ

α − 4ξμκ[νLσ ]
κ + 6gμ[νξ

κ
σα]Lκ

α

+ 8Lακ∇[νCσ ]
α

μ
κ + 1

6 Rξμνσ − 1
3Cνσμ

κ∇κR, (2.12)

R(H)
μν [g] = 2Lμν + 1

6 Rgμν. (2.13)

Here R(H)
μν [g] is defined as

R(H)
μν := Rμν − gσ (μ∇̂ν)H

σ . (2.14)

Further, the field ξμνσ above will, in the final space-time, be the Cotton tensor, related to the
Schouten tensor Lμν as

ξμνσ = 4∇[σ Lν]μ = 2∇[σ Rν]μ + 1
3 gμ[σ∇ν]R.
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Finally, the operator �(H)
g is defined as

�(H)
g vα1...αn := �g vα1...αn −

∑
i

gσ [αi (∇̂μ]H
σ )vα1...

μ
...αn

+
∑

i

(
2Lμαi − R(H)

μαi
+ 1

6
Rgμαi

)
vα1...

μ
...αn , (2.15)

with �g = ∇μ∇μ, where in the sums in (2.15) the index μ occurs as the i’th index on vα1...αn .
Some comments concerning (2.15) are in order. First, if g solves Friedrich’s

equations (2.1)–(2.6) in the gauge Hσ = 0, then �(H)
g = �g, so one may wonder why

we are not simply using �g. The issue is that the operator �g on tensor fields of nonzero
valence contains second-order derivatives of the metric, so that the principal part of a system
of equations obtained by replacing �(H)

g by �g in (2.8)–(2.13) will not be diagonal. This could
be cured by adding equations obtained by differentiating (2.13), which is not convenient as it
leads to further constraints. Instead, one observes [13, section 3.1] that the second derivatives
of the metric appearing in �g can be eliminated in terms of the remaining fields above. For
example, for a covector field v,

�g vλ = gμν∂μ∂νvλ − gμν
(
∂μ�σ

νλ

)
vσ + fλ(g, ∂g, v, ∂v)

= gμν∂μ∂νvλ + (
Rλ

σ − ∂λ

(
gμν�σ

μν

))
vσ + fλ(g, ∂g, v, ∂v)

= gμν∂μ∂νvλ + (Rλ
σ − ∂λHσ )vσ + fλ(g, ∂g, v, ∂v, ĝ, ∂ ĝ, ∂2ĝ)

= gμν∂μ∂νvλ + (
R(H)

μλ + gσ [λ∇̂μ]H
σ
)
vμ + fλ(g, ∂g, v, ∂v, ĝ, ∂ ĝ, ∂2ĝ),

with fλ changing from line to line. This leads to the definition

�(H)
g vλ := �g vλ −gσ [λ(∇̂μ]H

σ )vμ +
(

2Lμλ − R(H)
μλ + 1

6 Rgμλ

)
vμ, (2.16)

consistently with (2.15).
An identical calculation shows that the operator (2.15) has the properties just described

for higher-valence covariant tensor fields.
It follows from the above that the principal part of �(H)

g is gμν∂μ∂ν . This implies that
the principal part of (2.8)–(2.13) is diagonal, with principal symbol equal to gμν pμ pν times
the identity matrix. In particular, we can use [7] to find solutions of our equations whenever
suitably regular initial data are at disposal.

Let (x0, x1 ≡ r, xA) be coordinates adapted to the light-cone Ci− of i− as in [1, section 4],
and let κ measure how the coordinate x1 differs from an affine parameter along the generators
of the light-cone of i−:

∇1∂1|Ci− = κ∂1.

There are various gauge freedoms in the equations above. To get rid of this we can, and
will, impose

ĝμν = ημν, R = 0, Hσ = 0, κ = 0, s|Ci− = −2. (2.17)

The condition ĝμν = ημν is a matter of choice. The conditions R = 0 and Hσ = 0 are
classical, and can be realized by solving wave equations. The condition κ = 0 is a choice of
parameterization of the generators of Ci− . The fact that s can be made a negative constant on
Ci− is justified in the appendix, see remark A.3. As already pointed out, the value s = −2 is a
matter of convenience, and can be achieved by a constant rescaling of 
 and of the field dαβγ

δ .
Consider the set of fields

� = (gμν, Lμν,Cμνσ
ρ, ξμνσ ,
, s). (2.18)

4
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We will denote by

�̊ := (g̊μν, L̊μν, C̊μνσ
ρ, ξ̊μνσ , 
̊, s̊) (2.19)

the (characteristic) initial data for � defined along Ci− .
Set

ωAB ≡ ˘̊LAB := L̊AB − 1
2 g̊CDL̊CDg̊AB, (2.20)

and define λAB to be the solution of the equation

(∂1 − r−1)λAB = −2ωAB (2.21)

satisfying λAB = O(r3).2 The following can be derived [13, sections 4.2, 4.3 & 6.4] from
(2.1)–(2.6) and the gauge conditions (2.17):

g̊μν = ημν, (2.22)

L̊1μ = 0, L̊0A = 1
2 DBλAB, g̊ABL̊AB = 0, (2.23)

C̊μνσρ = 0, (2.24)

ξ̊11A = 0, (2.25)

ξ̊A1B = −2r∂1(r
−1ωAB), (2.26)

ξ̊ABC = 4D[CωB]A − 4r−1g̊A[BL̊C]0, (2.27)

ξ̊01A = g̊BC ξ̊BAC, (2.28)

∂1ξ̊00A = DB(λ[A
CωB]C) − 2DBD[AL̊B]0 + 1

2 DBξA1B − 2rDAρ + r−1ξ̊01A + λA
Bξ̊01B, (2.29)

ξ̊A0B = λ[A
CωB]C − 2D[AL̊B]0 + 2rg̊ABρ − 1

2 ξ̊A1B, (2.30)

4(∂1 + r−1)L̊00 = λABωAB − 2DAL̊0A − 4rρ, (2.31)

with ξ̊00A = O(r), L̊00 = O(1), and where ρ is the unique bounded solution of

(∂1 + 3r−1)ρ = 1
2 r−1DA∂1L̊0A − 1

4λAB∂1(r
−1ωAB). (2.32)

Here, and elsewhere, the symbol DA denotes the covariant derivative of g̊ABdxAdxB.
Let sAB denote the unit round metric on S2. We will need the following result [13,

theorem 6.5]:

Theorem 2.1. Consider a set of smooth fields � defined in a neighbourhood U of i− and
satisfying (2.8)–(2.13) in I+(i−). Define the data (2.19) by restriction of � to Ci− , suppose
that 
̊ = 0 and s̊ = −2. Then the fields

(gμν, Lμν, dμνσ
ρ = 
−1Cμνσ

ρ,
, s)

solve on D+(J̇+(i−) ∩ U ) the conformal field equations (2.1)–(2.6) in the gauge (2.17), with
the conformal factor 
 positive on I+(i−) sufficiently close to i−, with d
 �= 0 on Ci− \ {i−}
near i−, and with C̊μνσ

ρ = 0, if and only if (2.21)–(2.32) hold with ρ and r−3λAB bounded.

2 When L̊AB arises from the restriction to the light-cone of a bounded space-time tensor, it holds that ωAB = O(r2) or
better. We will only consider such initial data here, then there exists a unique solution of (2.21) satisfying λAB = O(r3)

.
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Remark 2.2. It follows from (2.26) that a necessary condition for existence of solutions as in
the theorem is ωAB = O(r3).

Remark 2.3. Note that solutions of the ODEs (2.29) and (2.31) are rendered unique by the
conditions ξ̊00A = O(r) and L00 = O(1), which follow from regularity of the fields at the
vertex.

We use overlining to denote restriction to the η-light-cone of i−. Consider a set of fields
(L̃μν, ξ̃μνρ ) defined in a neighbourhood of i−, and set

ωAB := L̃AB − 1
2 g̃CDL̃CDg̃AB. (2.33)

We will say that (L̃μν, ξ̃μνρ ) provides an approximate solution of the constraint equations if
(2.21)–(2.32) hold up to O(r∞) error terms. Thus it must hold that

L̃1μ = O(r∞), L̃0A = 1
2 DBλAB + O(r∞), g̃ABL̃AB = O(r∞), (2.34)

ξ̃ 11A = O(r∞), (2.35)

ξ̃A1B = −2r∂1(r
−1ωAB) + O(r∞), (2.36)

ξ̃ABC = 4D[CωB]A − 4r−1g̃A[BL̃C]0 + O(r∞), (2.37)

ξ̃ 01A = g̃BC ξ̃BAC + O(r∞), (2.38)

∂1ξ̃ 00A = DB(λ[A
CωB]C) − 2DBD[AL̃B]0 + 1

2 DBξA1B

− 2rDAρ̃ + r−1ξ̃ 01A + λA
Bξ̃ 01B + O(r∞), (2.39)

ξ̃A0B = λ[A
CωB]C − 2D[AL̃B]0 + 2rg̃ABρ̃ − 1

2 ξ̃A1B + O(r∞), (2.40)

4(∂1 + r−1)L̃00 = λABωAB − 2DAL̃0A − 4rρ̃ + O(r∞), (2.41)

with ξ̃ 00A = O(r), L̃00 = O(1), where ρ̃ is a bounded solution of

(∂1 + 3r−1)ρ̃ = 1
2 r−1DA∂1L̃0A − 1

4λAB∂1(r
−1ωAB) + O(r∞), (2.42)

and where λAB is the solution of (2.21) satisfying λAB = O(r3), or differs from that solution
by O(r∞) terms.

Our first main result is the following:

Theorem 2.4. Let g̃μν be a smooth metric defined near i− such that for small r we have

g̃μν − ημν = O(r∞).

Let L̃μν be the Schouten tensor of g̃μν , let ξ̃αβγ be the Cotton tensor of g̃μν and let C̃αβγβ be its
Weyl tensor. Assume that (L̃μν, ξ̃μνρ ) solves the approximate constraint equations.

Then there exist smooth fields (gμν, Lμν,Cμνσ
ρ,
, s) defined in a neighbourhood of i−

such that the fields

(gμν, Lμν, dμνσ
ρ = 
−1Cμνσ

ρ,
, s)

solve the conformal field equations (2.1)–(2.6) in I+(i−), satisfy the gauge conditions (2.17),
with


 = 0, Cμνσ
ρ = 0, L̆AB = ωAB, (2.43)

with the conformal factor 
 positive on I+(i−) sufficiently close to i−, and with d
 �= 0 on
Ci− \ {i−} near i−.

6
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Proof. We will apply theorem 2.1 to a suitable evolution of the initial data. For this we need
to correct � by smooth fields so that the restriction to the light-cone of the new � satisfies the
constraint equations as needed for that theorem. Subsequently, we define new fields

ǧμν = g̃μν + δgμν, Ľμν = L̃μν + δLμν, ξ̌μνσ = ξ̃μνσ + δξμνσ ,

as follows.
We let δgμν be any smooth tensor field defined in a neighbourhood of i− which is O(|y|∞)

and which satisfies

δgμν = ημν − g̃μν.

Indeed, it follows from e.g. [4, equations (C4)–(C5)] that the y–coordinates components δgμν

of g are O(r∞), and existence of their smooth extensions follows from [5, lemma A.1]. This
extension procedure will be used extensively from now on without further reference.

To continue, we let δξαβγ be any smooth tensor defined in a neighbourhood of i−, with
y-coordinate-components which are O(|y|∞), such that

(1) δξ 11A = −ξ̃ 11A;

(2) δξA1B = −ξ̃A1B − 2r∂1(r−1ωAB)

(recall that ωAB has been defined in (2.33));

(3) δξABC = −ξ̃ABC + 4D[CωB]A − 4r−1g̃A[BL̃C]0;
(4) δξ 01A = −ξ̃ 01A + g̃BC ξ̃BAC;
(5) δξ 00A is the solution vanishing at r = 0 of the ODE

∂1(δξ 00A + ξ̃ 00A) = DB(λ[A
CωB]C) − 2DBD[AĽB]0 + 1

2 DBξ̌A1B

−2rDAρ̌ + r−1ξ̌ 01A + λA
Bξ̌ 01B, (2.44)

where ρ̌ is the unique bounded solution of

(∂1 + 3r−1)ρ̌ = 1
2 r−1DA∂1Ľ0A − 1

4 r−1λAB∂1(r
−1ωAB) (2.45)

(it follows from [4, appendix B] that δξ 00A is O(r∞));

(6) δξA0B = −ξ̃A0B + λ[A
CωB]C − 2D[AL̃B]0 + 2rg̃ABρ̌ − 1

2 ξ̃A1B .

Finally, we let δLμν be any smooth tensor field defined in a neighbourhood of i−, the
y-components of which are O(|y|∞), such that:

(1) δL1μ = −L̃1μ;

(2) δL0A = −L̃0A + 1
2 DBλAB;

(3) δLAB = f ηAB, where f is any smooth function defined in a neighbourhood of i− which is
O(|y|∞) such that

2 f ≡ ηABδLAB = −g̃ABL̃AB

(we emphasise that the ηAB-trace-free part of LAB coincides thus with the ηAB-trace-free
part of L̃AB);

(4) δL00 is the solution vanishing at r = 0 of the system of ODEs

4(∂1 + r−1)(δL00 + L̃00) = λABωAB − 2DAL̃0A − 4rρ̌ (2.46)

(it follows from [4, appendix B] that δL00 is O(r∞)).
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Let

(gμν, Lμν,Cμνσ
ρ, ξμνσ ,
, s)

be a solution of (2.8)–(2.13) with initial data

(g̊μν, L̊μν, C̊μνσ
ρ, ξ̊μνσ , 
̊, s̊) := (ημν, Ľμν, 0, ξ̌μνσ , 0,−2) .

A solution exists by [7, théorème 2]. It follows by construction that the hypotheses of
theorem 2.1 hold, and the theorem is proved. �

An alternative way of obtaining solutions of our problem proceeds via the following
system of conformal wave equations:

�(H)
g Lμν = 4LμκLν

κ − gμν |L|2 − 2
dμσν
ρLρ

σ + 1
6∇μ∇νR, (2.47)

�g s = 
|L|2 − 1
6∇κR ∇κ
 − 1

6 sR, (2.48)

�g 
 = 4s − 1
6
R, (2.49)

�(H)
g dμνσρ = 
dμνκ

αdσρα
κ − 4
dσκ[μ

αdν]αρ
κ + 1

2 Rdμνσρ, (2.50)

R(H)
μν [g] = 2Lμν + 1

6 Rgμν. (2.51)

Any solution of the conformal field equations (2.1)–(2.6) in the gauge

(R = 0, ĝμν = ημν, Hμ = 0, κ = 0, s̊ = −2) (2.52)

necessarily satisfies [13, sections 4.2 & 4.3]:

g̊μν = ημν, L̊1μ = 0, L̊0A = 1
2 DBλAB, g̊ABL̊AB = 0, (2.53)

d̊1A1B = − 1
2∂1(r

−1ωAB), (2.54)

d̊011A = 1
2 r−1∂1L̊0A, (2.55)

d̊01AB = r−1D[AL̊B]0 − 1
2 r−1λ[A

CωB]C, (2.56)

(∂1 + 3r−1)d̊0101 = DAd̊011A + 1
2λABd̊1A1B, (2.57)

2(∂1 + r−1)d̊010A = DB(d̊01AB − d̊1A1B) + DAd̊0101 + 2r−1d̊011A + 2λA
Bd̊011B, (2.58)

4(∂1 − r−1)
˘̊d0A0B = (∂1 − r−1)d̊1A1B + 2(D(Ad̊B)110)˘+ 4(D(Ad̊B)010 )̆

+3λ(A
Cd̊B)C01 + 3d̊0101λAB, (2.59)

4(∂1 + r−1)L̊00 = λABωAB − 2DAL̊0A − 4rd̊0101. (2.60)

We have the following result [13, theorem 5.1]:

Theorem 2.5. A smooth solution

(gμν, Lμν, dμνσ
ρ,
, s)

of the system (2.47)–(2.51), with initial data

(g̊μν, L̊μν, d̊μνσ
ρ, 
̊ = 0, s̊ = −2)

on Ci− , solves on D+(J̇+(i−)) the conformal field equations (2.1)–(2.6) in the gauge (2.52),
with 
 positive on I+(i−) sufficiently close to i−, and with d
 �= 0 on Ci− \ {i−} near i−, if
and only if (2.53)–(2.60) hold with ωAB(r, xA) and λAB(r, xA) defined by (2.20)–(2.21).

8
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Remark 2.6. It follows from (2.54) that a necessary condition for existence of solutions as in
theorem 2.5 is ωAB = O(r4). Note that this is stronger than what is needed in theorem 2.4,
see remark 2.2. It would be of interest to clarify the question of existence of data needed for
theorem 2.1 with ωAB = O(r3) properly.

Remark 2.7. Note that the solutions of the ODEs (2.57)–(2.60) are rendered unique by the

conditions d̊0101 = O(1), d̊010A = O(r), ˘̊d0A0B = O(r2) and L̊00 = O(1), which follow from
regularity of the fields at the vertex.

A smooth metric g̃ will be called an approximate solution of the constraint
equations (2.53)–(2.60) if C̃α

βγ δ = 
̃d̃α
βγ δ for some smooth function 
̃ vanishing on Ci− and

for some smooth tensor d̃α
βγ δ , where C̃α

βγ δ is the Weyl tensor of g̃, and if (2.53)–(2.60) hold
on the light-cone of i− up to terms which are O(r∞), where L̃μν is the Schouten tensor of g̃,
and where ωAB and λAB are, possibly up to O(r∞) terms, given by (2.20)–(2.21).

Our second main result is the following:

Theorem 2.8. Let g̃μν be an approximate solution of the constraint equations (2.53)–(2.60)
defined near i−. Then there exist smooth fields

(gμν, Lμν, dμνσ
ρ = 
−1Cμνσ

ρ,
, s)

defined in a neighbourhood of i− which solve the conformal field equations (2.1)–(2.6) in
I+(i−), satisfy the gauge conditions (2.17), with


 = 0, Cμνσ
ρ = 0, L̆AB = ωAB, (2.61)

with the conformal factor 
 positive on I+(i−) sufficiently close to i−, and with d
 �= 0 on
Ci− \ {i−} near i−.

Proof. We will apply theorem 2.5 to a suitable evolution of the initial data. For this we need to
correct (g̃μν, L̃μν, d̃μνσρ ) by smooth fields so that the new initial data on the light-cone satisfy
the constraint equations as needed for that theorem. The construction of the new fields

ǧμν = g̃μν + δgμν, Ľμν = L̃μν + δLμν, ďμνσρ = d̃μνσρ + δdμνσρ, (2.62)

is essentially identical to that of the new fields of the proof of theorem 2.4, the reader should
have no difficulties filling-in the details. We emphasise that the trace-free part of δLAB is chosen
to be zero, hence the trace-free part of ĽAB coincides with the trace-free part of L̃AB on the
light-cone.

Once the fields (2.62) have been constructed, we let

(gμν, Lμν, dμνσρ,
, s)

be a solution of (2.47)–(2.51) with initial data

(g̊μν, L̊μν, d̊μνσρ, 
̊, s̊) := (ημν, Ľμν, ďμνσρ, 0,−2).

A solution exists by [7, théorème 2]. It follows by construction that the hypotheses of
theorem 2.5 hold, and the theorem is proved.

�

3. Proof of theorem 1.1

We are ready now to prove theorem 1.1. Let ς be the cone-smooth tensor field of the statement
of the theorem. Thus, there exists a smooth tensor field d̃αβγ δ with the algebraic symmetries
of the Weyl tensor so that ς is the pull-back of

d̃αβγ δ�
α�γ (3.1)

to CO \ {O}.
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Let ψ̃MNPQ be a totally-symmetric two-index spinor associated to d̃αβγ δ in the usual way
[12, section 3] (compare [14]). Set θ0 = dt, θ1 = dr. Let γ be a generator of C0, and let θ2,
θ3 be a pair of covector fields so that {θμ} forms an orthonormal basis of T ∗M over γ and
which are η-parallel propagated along γ . Then ς can be written as

ς = ςabθ
aθb,

with a, b running over {2, 3}. By construction, the coordinate components ςAB of ς coincide

with the coordinate components d̃1A1B of the restriction to the light-cone of d̃1A1B, and thus
define a unique field ωAB by integrating (2.54) with the boundary condition ωAB = O(r2).

Let the basis {eμ} be dual to {θμ}, set m = e2 + √−1e3. Then the radiation field ψ0 of
[12, equation (5.3)], defined using ψ̃MNPQ, equals

ψ0 = ςabmamb.

(Under a rotation of {e3, e4} the field ψ0 changes by a phase, and defines thus a section of a
spin-weighted bundle over CO \ {O}.) Conversely, any radiation field ψ0 of [12] arises from a
unique cone-smooth ςab as above.

It has been shown in [12, propositions 8.1 & 9.1] that the radiation field ψ0, hence ς , defines

a smooth Lorentzian metric ˜̃g such that the resulting collection of fields ( ˜̃gμν,
˜̃Lμν,

˜̃dμνσρ,
˜̃

, ˜̃s)

satisfies (2.1)–(2.6) up to error terms which are O(|y|∞), with ˜̃gμν |CO = ημν . The construction
in [12] is such that the field ς calculated from the field d̃αβγ δ of (3.1) coincides with the field

ς calculated from the field ˜̃dαβγ δ associated with the metric ˜̃g. Hence the fields ωAB associated

with d̃αβγ δ and ˜̃dαβγ δ are identical. The conclusion follows now from theorem 2.8.

4. Alternative data at I −

Recall that there are many alternative ways to specify initial data for the Cauchy problem for the
vacuum Einstein equations on a (usual) light-cone, cf e.g. [6]. Similarly there are many ways
to provide initial data on a light-cone emanating from past timelike infinity. In theorem 1.1
some components of the rescaled Weyl tensor dμνσρ have been prescribed as free data. As
made clear in the proof of that theorem, this is equivalent to providing some components
of the rescaled Weyl spinor ψMNPQ, providing thus an alternative equivalent prescription.
Our theorems 2.4 and 2.8 use instead the components (2.33) of the rescaled Schouten tensor
L̃μν . These components are related directly to the free data of theorem 1.1 via the constraint
equation (2.54). It is clear that further possibilities exist. Which of these descriptions of the
degrees of freedom of the gravitational field at large retarded times is most useful for physical
applications remains to be seen.
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Appendix. The s̄ = −2 gauge

We start with some terminology. We say that a function f defined on a space-time
neighbourhood of the origin is om(|y|k) if f is Cm and if for 0 � � � m we have

lim
|y|→0

|y|�−k∂μ1 . . . ∂μ�
f = 0,

where |y| :=
√∑n

μ=0(y
μ)2.
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A similar definition will be used for functions defined in a neighbourhood of O on the
future light-cone

CO = {y0 = |�y|}.
For this, we parameterize CO by coordinates �y = (yi) ∈ Rn, and we say that a function f
defined on a neighbourhood of O within CO is om(rk) if f is a Cm function of the coordinates
yi and if for 0 � � � m we have limr→0 r�−k∂μ1 . . . ∂μ�

f = 0, where

r := |�y| ≡
√√√√ n∑

i=1

(yi)2.

We further set


i := yi

r
.

A function ϕ defined on CO will be said to be Ck-cone-smooth if there exists a function
f on space-time of differentiability class Ck such that ϕ is the restriction of f to CO. We will
simply say cone-smooth if k = ∞.

The following lemma will be used repeatedly:

Lemma A.1 (lemma A.1 in [5]). Let k ∈ N. A function ϕ defined on a light-cone CO is the
trace f on CO of a Ck space-time function f if and only if ϕ admits an expansion of the form

ϕ =
k∑

p=0

fprp + ok(r
k), (A.1)

with

fp ≡ fi1...ip

i1 · · · 
ip + f ′

i1...ip−1

i1 · · · 
ip−1 , (A.2)

where fi1...ip and f ′
i1...ip−1

are numbers.
The claim remains true with k = ∞ if (A.1) holds for all k ∈ N.

Coefficients fp of the form (A.2) will be said to be admissible.
One of the elements needed for the construction in [12] is provided by the following

result:

Proposition A.2. Let p be a point in a smooth space-time (M , g), U a neighbourhood of p,
and Sμν[g] the trace-free part of the Ricci tensor of g. Let �ν denote the field of null directions
tangent to ∂J+(p) ∩ U . Let a > 0 be a real number and let β be a one-form at p. Then,
replacing U by a smaller neighbourhood of p if necessary, there exists a unique smooth
function θ defined on U satisfying

θ = a and dθ = β at p, �μ�νSμν[θ2g] = 0 on ∂J+(p) ∩ U , (A.3)

and such that

the Ricci scalar of θ2g vanishes on J+(p) ∩ U . (A.4)

Remark A.3. It follows from (2.4) multiplied by ∇μ
 that s is constant on ∂J+(p)∩U when
the gauge (A.3) has been chosen.

Proof. In dimension n let g′ = φ4/(n−2)g, then

R′
μν = Rμν − 2φ−1∇μ∇νφ + 2n

n − 2
φ−2∇μφ∇νφ − 2

n − 2
φ−1(∇σ∇σφ + φ−1|dφ|2)gμν.
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So, in dimension n = 4, and with φ = θ we obtain

S′
μν = Sμν − 2θ−1

(∇μ∇νθ − 1
4�θgμν

) + 4θ−2
(∇μθ∇νθ − 1

4 |∇θ |2gμν

)
.

We overline restrictions of space-time functions to the light-cone. The equation
�μ�νSμν[θ2g] = 0 takes thus the form

�μ�ν∇μ∇νθ − 2θ−1(�μ∇μθ )2 = 1

2
θ�μ�νSμν.

In coordinates adapted to the light-cone as in [1, appendix A], so that �μ∂μ = ∂r, with r an
affine parameter, this reads

θ−1∂2
r θ − 2θ−2(∂rθ )2 = 1

2 S11.

Setting

ϕ := ∂rθ

θ
,

this can be rewritten as

∂rϕ = ϕ2 + 1
2 S11. (A.5)

It is useful to introduce some notation. As in [1], we underline the components of a tensor
in the coordinates yμ, thus:

Sμν = S

(
∂

∂yμ
,

∂

∂yμ

)
, Sμν = S

(
∂

∂xμ
,

∂

∂xμ

)
,

etc, where (xμ) := (y0 − |�y|, |�y|, xA), with xA being any local coordinates on S2. We write
interchangeably x1 and r.

The initial data for ϕ are

ϕ(0) = 1

a
(β0 + βi


i). (A.6)

To show that θ is cone-smooth, it suffices to prove that

ψ := rϕ

is Ck-cone-smooth for all k, as follows immediately from the expansions of lemma A.1,
together with integration term-by-term in the formula

ln

(
θ

a

)
=

∫ r

0
ϕ,

compare [4, lemma B.1].
We shall proceed by induction. So suppose that ψ is Ck-cone-smooth. The result is true

for k = 0 since every solution of (A.5) is continuous in all variables, and rϕ tends to zero as r
tends to zero, uniformly in 
i ∈ S2.

It follows that the source term S11 in (A.5) can be written as

S11 = r−2r2S00 + 2tS0iy
i + Si jy

iy j︸ ︷︷ ︸
=:χ

:= r−2χ,

where χ is a smooth function on space-time. We thus have

∂rϕ = ϕ2 + 1
2 S11 = r−2

(
ψ2 + 1

2χ
)
. (A.7)

The function ψ is Ck-cone-smooth and O(r), and can thus be written in the form (A.1)–(A.2),

ψ =
k∑

p=1

fprp + ok(r
k).
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Squaring we obtain

ψ2 =
k+1∑
p=2

f ′
prp + ok(r

k+1),

for some new admissible coefficients f ′
p. The function χ is Ck+1-cone-smooth and O(r2), and

can thus be written in the form (A.1) and (A.2) with k replaced by k + 1 there,

χ =
k+1∑
p=2

f ′′
p rp + ok+1(r

k+1).

Hence

∂rϕ =
k−1∑
p=2

f ′′′
p rp−2 + ok(r

k−1) (A.8)

for some admissible coefficients f ′′′
p . Integration gives

ϕ = 1

a
(β0 + βi


i) +
k∑

p=2

1

p − 1
f ′′′

p rp−1 + ok(r
k), (A.9)

and thus

ψ = rϕ = 1

a
(β0r + βiy

i) +
k+1∑
p=2

1

p − 1
f ′′′

p rp + ok(r
k+1). (A.10)

Differentiating rϕ with respect to r and using (A.8) we further obtain

∂rψ = ∂r

⎛
⎝1

a
(β0r + βiy

i) +
k+1∑
p=2

1

p − 1
f ′′′

p rp

⎞
⎠ + ok(r

k). (A.11)

Let X = XA∂A be any vector field on S2, then X (ϕ) solves the equation obtained by
differentiating (A.7),

∂rX (ϕ) = 2ϕX (ϕ) + 1
2 X (S11). (A.12)

Equivalently,

X (rϕ)(r, xA) = e2
∫ r

0 ϕ(r̃,xA )dr̃

(
X (rϕ(0, xA)) + 1

2
r
∫ r

0
e−2

∫ r̂
0 ϕ(r̃,xA ) dr̃X (S11)(r̂, xA) dr̂

)
.

The right-hand side isCk-cone-smooth. We conclude that ψ isCk+1-cone-smooth. This finishes
the induction, and proves that θ is cone-smooth.

The existence and uniqueness of a solution θ of (A.4) which equals θ on CO follows now
from [7, théorème 2]. �
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Abstract

We analyze the Cauchy problem for the vacuum Einstein equations
with data on a complete light-cone in an asymptotically Minkowskian
space-time. We provide conditions on the free initial data which guarantee
existence of global solutions of the characteristic constraint equations. We
present necessary-and-sufficient conditions on characteristic initial data in
3+1 dimensions to have no logarithmic terms in an asymptotic expansion
at null infinity.
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1 Introduction

An issue of central importance in general relativity is the understanding of grav-
itational radiation. This has direct implications for the soon-expected direct
detection of gravitational waves. The current main effort in this topic appears
to be a mixture of numerical modeling and approximation methods. From this
perspective there does not seem to be a need for a better understanding of the
exact properties of the gravitational field in the radiation regime. However, as
observations and numerics will have become routine, solid theoretical founda-
tions for the problem will become necessary.

Now, a generally accepted framework for describing gravitational radiation
seems to be the method of conformal completions of Penrose. Here a key hy-
pothesis is that a suitable conformal rescaling of the space-time metric becomes
smooth on a new manifold with boundary I +. One then needs to face the ques-
tion, if and how such space-times can be constructed. Ultimately one would like
to isolate the class of initial data, on a spacelike slice extending to spatial infinity,
the evolution of which admits a Penrose-type conformal completion at infinity,
and show that the class is large enough to model all physical processes at hand.
Direct attempts to carry this out (see [17, 22, 23] and references therein) have
not been successful so far. Similarly, the asymptotic behaviour of the gravita-
tional field established in [3, 9, 19–21,24] is inconclusive as far as the smoothness
of the conformally rescaled metric at I + is concerned. The reader is referred
to [18] for an extensive discussion of the issues arising.

On the other hand, clear-cut constructions have been carried-out in less
demanding settings, with data on characteristic surfaces as pioneered by Bondi
et al. [5], or with initial data with hyperboloidal asymptotics. It has been
found [1, 2, 11, 30] that both generic Bondi data and generic hyperboloidal data,
constructed out of conformally smooth seed data, will not lead to space-times
with a smooth conformal completion. Instead, a polyhomogeneous asymptotics
of solutions of the relevant constraint equations was obtained, with logarithmic
terms appearing in asymptotic expansions of the fields.

The case for the necessity of a polyhomogeneous-at-best framework, as re-
sulting from the above work, is not waterproof: In both cases it is not clear

2
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whether initial data with logarithmic terms can arise from evolution of a physi-
cal system which is asymptotically flat in spacelike directions. There is a further
issue with the Bondi expansions, because the framework of Bondi et al. [5, 28]
does not provide a well posed system of evolution equations for the problem at
hand.

The aim of this work is to rederive the existence of obstructions to smooth-
ness of the metric at I + in a framework in which the evolution problem for the
Einstein vacuum equations is well posed and where free initial data are given
on a light-cone extending to null infinity, or on two characteristic hypersurfaces
one of which extends to infinity, or in a mixed setting where part of the data
are prescribed on a spacelike surface and part on a characteristic one extending
to infinity. This can be viewed as a revisiting of the Bondi-type setting in a
framework where an associated space-time is guaranteed to exist.

One of the attractive features of the characteristic Cauchy problem is that
one can explicitly provide an exhaustive class of freely prescribable initial data.
By “exhaustive class” we mean that the map from the space of free initial data
to the set of solutions is surjective, where “solution” refers to that part of space-
time which is covered by the domain of dependence of the smooth part of the
light-cone, or of the smooth part of the null hypersurfaces issuing normally from
a smooth submanifold of codimension two.1 There is, moreover, considerable
flexibility in prescribing characteristic initial data [12]. In this work we will
concentrate on the following approaches:

1. The free data are a triple (N , [γ], κ), where N is a n-dimensional mani-
fold, [γ] is a conformal class of symmetric two-covariant tensors on N of
signature (0,+, . . . ,+), and κ is a field of connections on the bundles of
tangents to the integral curves of the kernel of γ.2

2. Alternatively, the data are a triple (N , ǧ, κ), where ǧ is a field of sym-
metric two-covariant tensors on N of signature (0,+, . . . ,+), and κ is a
field of connections on the bundles of tangents to the integral curves of
the characteristic direction of ǧ. 3 The pair (ǧ, κ) is further required to
satisfy the constraint equation

∂rτ − κτ + |σ|2 + τ2

n− 1
= 0 , (1.1)

where τ is the divergence and σ is the shear (see Section 2.2 for details),
which will be referred to as the Raychaudhuri equation.

3. Alternatively, the connection coefficient κ and all the components of the
space-time metric are prescribed on N , subject to the Raychaudhuri con-
straint equation. Here N is viewed as the hypersurface {u = 0} in the

1This should be contrasted with the spacelike Cauchy problem, where no exhaustive
method for constructing non-CMC initial data sets is known. It should, however, be kept
in mind that the spacelike Cauchy problem does not suffer from the serious problem of for-
mation of caustics, inherent to the characteristic one.

2Recall that a connection ∇ on each such bundle is uniquely described by writing ∇r∂r =
κ∂r , in a coordinate system where ∂r is in the kernel of γ. Once the associated space-time
has been constructed we will also have ∇r∂r = κ∂r, where ∇ now is the covariant derivative
operator associated with the space-time metric.

3We will often write (ǧ, κ) instead of (N , ǧ, κ), with N being implicitly understood, when
no precise description of N is required.
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space-time to-be-constructed, and thus all metric components gµν are pre-
scribed at u = 0 in a coordinate system (xµ) = (u, xi), where (xi) are local
coordinates on N .

4. Finally, schemes where tetrad components of the conformal Weyl tensor
are used as free data are briefly discussed.

In the first two cases, to obtain a well posed evolution problem one needs to
impose gauge conditions; in the third case, the initial data themselves determine
the gauge, with the “gauge-source functions” determined from the initial data.

The aim of this work is to analyze the occurrence of log terms in the asymp-
totic expansions as r goes to infinity for initial data sets as above. The gauge
choice κ = O(r−3) below (in particular the gauge choice κ = r

2 |σ|2, on which
we focus in part II), ensures that affine parameters along the generators of N
diverge as r goes to infinity (cf. [26, Appendix B]), so that in the associated
space-time the limit r → ∞ will correspond to null geodesics approaching a
(possibly non-smooth) null infinity.

It turns out that the simplest choice of gauge conditions, namely κ = 0 and
harmonic coordinates, is not compatible with smooth asymptotics at the confor-
mal boundary at infinity: we prove that the only vacuum metric, constructed
from characteristic Cauchy data on a light-cone, and which has a smooth con-
formal completion in this gauge, is Minkowski space-time.

It should be pointed out, that the observation that some sets of harmonic
coordinates are problematic for an analysis of null infinity has already been
made in [4, 6]. Our contribution here is to make a precise no-go statement,
without approximation procedures or supplementary assumptions.

One way out of the problem is to replace the harmonic-coordinates condition
by a wave-map gauge with non-vanishing gauge-source functions. This provides
a useful tool to isolate those log terms which are gauge artifacts, in the sense
that they can be removed from the solution by an appropriate choice of the
gauge-source functions. There remain, however, some logarithmic coefficients
which cannot be removed in this way. We identify those coefficients, and show
that the requirement that these coefficients do not vanish is gauge-independent.
In part II of this work we show that the logarithmic coefficients are non-zero
for generic initial data. The equations which lead to vanishing logarithmic
coefficients will be referred to as the no-logs-condition.

It is expected that for generic initial data sets, as considered here, the space-
times obtained by solving the Cauchy problem will have a polyhomogeneous
expansion at null infinity. There are, however, no theorems in the existing
mathematical literature which guarantee existence of a polyhomogeneous I +

when the initial data have non-trivial log terms.
The situation is different when the no-logs-condition is satisfied. In part II

of this work we show that the resulting initial data lead to smooth initial data
for Friedrich’s conformal field equations [14] as considered in [13]. This implies
that the no-logs-condition provides a necessary-and-sufficient condition for the
evolved space-time to posses a smooth I +. For initial data close enough to
Minkowskian ones, solutions global to the future are obtained.

It may still be the case that the logarithmic expansions are irrelevant as
far as our understanding of gravitational radiation is concerned, either because
they never arise from the evolution of isolated physical systems, or because

4
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their occurrence prevents existence of a sufficiently long evolution of the data,
or because all essential physical issues are already satisfactorily described by
smooth conformal completions. While we haven’t provided a definite answer
to those questions, we hope that our results here will contribute to resolve the
issue.

If not explicitly stated otherwise, all manifolds, fields, and expansion coeffi-
cients are assumed to be smooth.

2 The characteristic Cauchy problem on a light-
cone

In this section we will review some facts concerning the characteristic Cauchy
problem. Most of the discussion applies to any characteristic surface. We con-
centrate on a light-cone, as in this case all the information needed is contained in
the characteristic initial data together with the requirement of the smoothness
of the metric at the vertex. The remaining Cauchy problems mentioned in the
Introduction will be discussed in Sections 7 below.

2.1 Gauge freedom

2.1.1 Adapted null coordinates

Our starting point is a C∞-manifold M ∼= Rn+1 and a future light-cone CO ⊂
M emanating from some point O ∈ M . We make the assumption that the sub-
set CO can be globally represented in suitable coordinates (yµ) by the equation
of a Minkowskian cone, i.e.

CO = {(yµ) : y0 =

√√√√
n∑

i=1

(yi)2} ⊂ M .

Given a C1,1-Lorentzian space-time such a representation is always possible in
some neighbourhood of the vertex. However, since caustics may develop along
the null geodesics which generate the cone, it is a geometric restriction to assume
the existence of a Minkowskian representation globally.

A treatment of the characteristic initial value problem at hand is easier in
coordinates xµ adapted to the geometry of the light-cone [8, 27]. We consider
space-time-dimensions n+1 ≥ 3. It is standard to construct a set of coordinates
(xµ) ≡ (u, r, xA), A = 2, . . . , n, so that CO \ {0} = {u = 0}. The xA’s denote
local coordinates on the level sets Σr := {r = const, u = 0} ∼= Sn−1, and are
constant along the generators. The coordinate r induces, by restriction, a pa-
rameterization of the generators and is chosen so that the point O is approached
when r → 0. The general form of the trace g on the cone CO of the space-time
metric g reduces in these adapted null coordinates to

g = g00du
2 + 2ν0dudr + 2νAdudx

A + ǧ , (2.1)

where
ν0 := g01 , νA := g0A ,
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and where
ǧ = ǧABdx

AdxB := gABdx
AdxB

is a degenerate quadratic form induced by g on CO which induces on each
slice Σr an r-dependent Riemannian metric ǧΣr (coinciding with ǧ(r, ·) in the
coordinates above).4

The components g00, ν0 and νA are gauge-dependent quantities. In particu-
lar, ν0 changes sign when u is replaced by −u. Whenever useful and/or relevant,
we will assume that ∂r is future-directed and ∂u is past-directed, which corre-
sponds to requiring that ν0 > 0.

The quadratic form ǧ is intrinsically defined on CO, independently of the
choice of the parameter r and of how the coordinates are extended off the cone.

Throughout this work an overline denotes the restriction of space-time ob-
jects to CO.

The restriction of the inverse metric to the light-cone takes the form

g# = 2ν0∂u∂r + g11∂r∂r + 2g1A∂r∂A + gAB∂A∂B ,

where

ν0 := g01 = (ν0)
−1 , νA := gABνB , g1A = −ν0νA , g11 = (ν0)2(νAνA− g00) ,

and where gAB is the inverse of gAB. The coordinate transformation relating
the two coordinate systems (yµ) and (xµ) takes the form

u = r̂ − y0 , r = r̂ , xA = µA(yi/r̂) , with r̂ :=

√∑

i

(yi)2 .

The inverse transformation reads

y0 = r − u , yi = rΘi(xA) , with
∑

i

(Θi)2 = 1 .

Adapted null coordinates are singular at the vertex of the cone CO and C∞

elsewhere. They are convenient to analyze the initial data constraints satisfied
by the trace g on the light-cone. Note that the space-time metric g will in general
not be of the form (2.1) away from CO. We further remark that adapted null
coordinates are not uniquely fixed, for there remains the freedom to redefine
the coordinate r (the only restriction being that r is strictly increasing on the
generators and that r = 0 at the vertex; compare Section 2.2 below), and to
choose local coordinates on Sn−1.

2.1.2 Generalized wave-map gauge

Let us be given an auxiliary Lorentzian metric ĝ. A standard method to estab-
lish existence, and well-posedness, results for Einstein’s vacuum field equations
Rµν = 0 is a “hyperbolic reduction” where the Ricci tensor is replaced by the
reduced Ricci tensor in ĝ-wave-map gauge,

R(H)
µν := Rµν − gσ(µ∇̂ν)H

σ . (2.2)

4The degenerate quadratic form denoted here by ǧ has been denoted by g̃ in [8, 12]. How-
ever, here we will use g̃ to denote the conformally rescaled unphysical metric, as done in most
of the literature on the subject.

6
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Here
Hλ := Γλ − Γ̂λ −Wλ , Γλ := gαβΓλ

αβ , Γ̂λ := gαβΓ̂λ
αβ . (2.3)

We use the hat symbol “ ˆ ” to indicate quantities associated with the target
metric ĝ, while Wλ = Wλ(xµ, gµν) denotes a vector field which is allowed to
depend upon the coordinates and the metric g, but not upon derivatives of g.

The wave-gauge vector Hλ has been chosen of the above form [8, 15, 16] to
remove some second-derivatives terms in the Ricci tensor, so that the reduced
vacuum Einstein equations

R(H)
µν = 0 (2.4)

form a system of quasi-linear wave equations for g.
Any solution of (2.4) will provide a solution of the vacuum Einstein equations

provided that the so-called ĝ-generalized wave-map gauge condition

Hλ = 0 (2.5)

is satisfied. In the context of the characteristic initial value problem, the “gauge
condition” (2.5) is satisfied by solutions of the reduced Einstein equations if it
is satisfied on the initial characteristic hypersurfaces.

The vector field Wλ reflects the freedom to choose coordinates off the cone.
Its components can be freely specified, or chosen to satisfy ad hoc equations.
Indeed, by a suitable choice of coordinates the gauge source functions Wλ can
locally be given any preassigned form, and conversely the Wλ’s can be used to
determine coordinates by solving wave equations, given appropriate initial data
on the cone.

In most of this work we will use a Minkowski target in adapted null coordi-
nates, that is

ĝ = η ≡ −du2 + 2dudr + r2sABdx
AdxB , (2.6)

where s is the unit round metric on the sphere Sn−1.

2.2 The first constraint equation

Set ℓ ≡ ℓµ∂µ ≡ ∂r. The Raychaudhuri equation Rµνℓ
µℓν ≡ R11 = 0 provides a

constraining relation between the connection coefficient κ and other geometric
objects on CO, as follows: Recall that the null second fundamental form of CO

is defined as

χij :=
1

2
(Lℓǧ)ij ,

where L denotes the Lie derivative. In the adapted coordinates described above
we have

χAB = −Γ0
ABν0 =

1

2
∂rgAB , χ11 = 0 , χ1A = 0 .

The null second fundamental form is sometimes called null extrinsic curvature
of the initial surface CO, which is misleading since only objects intrinsic to CO

are involved in its definition.
The mean null extrinsic curvature of CO, or the divergence of CO, which we

denote by τ and which is often denoted by θ in the literature, is defined as a
trace of χ:

τ := χ A
A ≡ gABχAB ≡ 1

2
gAB∂rgAB ≡ ∂rlog

√
det ǧΣr . (2.7)

7
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It measures the rate of change of area along the null geodesic generators of CO.
Its traceless part,

σ B
A := χ B

A − 1

n− 1
δ B
A τ ≡ gBCχAC − 1

n− 1
δ B
A τ (2.8)

=
1

2
γBC(∂rγAC )̆ , (2.9)

is known as the shear of CO. In (2.9) the field γ is any representative of the
conformal class of ǧΣr , which is sometimes regarded as the free initial data. The
addition of the “˘”-symbol to a tensor wAB denotes “the trace-free part of”:

w̆AB := wAB − 1

n− 1
γABγ

CDwCD . (2.10)

We set

|σ|2 := σ B
A σ A

B = −1

4
(∂rγ

AB )̆ (∂rγAB )̆ . (2.11)

We observe that the shear σA
B depends merely on the conformal class of

ǧΣr . This is not true for τ , which is instead in one-to-one correspondence with
the conformal factor relating ǧΣr and γ.

Imposing the generalized wave-map gauge conditionHλ = 0, the wave-gauge
constraint equation induced by R11 = 0 reads [8, equation (6.13)],

∂rτ −
(
ν0∂rν0 −

1

2
ν0(W

0 + Γ̂0)− 1

2
τ
)

︸ ︷︷ ︸
=:κ

τ + |σ|2 + τ2

n− 1
= 0 . (2.12)

Under the allowed changes of the coordinate r, r 7→ r(r, xA), with ∂r/∂r > 0,
r(0, xA) = 0, the tensor field gAB transforms as a scalar,

gAB(r, x
C) = gAB(r(r, x

C), xC) , (2.13)

the field κ changes as a connection coefficient

κ̄ =
∂r

∂r
κ+

∂r

∂r

∂2r

∂r2
, (2.14)

while τ and σAB transform as one-forms:

τ =
∂r

∂r
τ , σAB =

∂r

∂r
σAB . (2.15)

The freedom to choose κ is thus directly related to the freedom to reparam-
eterize the generators of CO. Geometrically, κ describes the acceleration of the
integral curves of ℓ, as seen from the identity ∇ℓℓ

µ = κℓµ. The choice κ = 0 cor-
responds to the requirement that the coordinate r be an affine parameter along
the rays. For a given κ the first constraint equation splits into an equation for
τ and, once this has been solved, an equation for ν0.

Once a parameterization of generators has been chosen, we see that the met-
ric function ν0 is largely determined by the choice of the gauge-source function
W 0 and, in fact, the remaining gauge-freedom in ν0 can be encoded in W 0.
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2.3 The wave-map gauge characteristic constraint equa-
tions

Here we present the whole hierarchical ODE-system of Einstein wave-map gauge
constraints induced by the vacuum Einstein equations in a generalized wave-map
gauge (cf. [8] for details) for given initial data ([γ], κ) and gauge source-functions

W
λ
.
The equation (2.12) induced by R11 = 0 leads to the equations

∂rτ − κτ + |σ|2 + τ2

n− 1
= 0 , (2.16)

∂rν
0 +

1

2
(W 0 + Γ̂0) + ν0(

1

2
τ + κ) = 0 . (2.17)

Equation (2.16) is a Riccati differential equation for τ along each null ray, for
κ = 0 it reduces to the standard form of the Raychaudhuri equation. Equation
(2.17) is expressed in terms of

ν0 :=
1

ν0
rather than of ν0, as then it becomes linear. Our aim is to analyze the asymptotic
behavior of solutions of the constraints, for this it turns out to be convenient to
introduce an auxiliary positive function ϕ, defined as

τ = (n− 1)∂r logϕ , (2.18)

which transforms (2.16) into a second-order linear ODE,

∂2rϕ− κ∂rϕ+
|σ|2
n− 1

ϕ = 0 . (2.19)

The function ϕ is essentially a rewriting of the conformal factor Ω relating ǧ
and the initial data γ, gAB = Ω2γAB:

Ω = ϕ

(
det s

det γ

)1/(2n−2)

. (2.20)

Here s = sABdx
AdxB denotes the standard metric on Sn−1. The initial data

symmetric tensor field γ = γABdx
AdxB is assumed to form a one-parameter

family of Riemannian metrics r 7→ γ(r, xA) on Sn−1.
The boundary conditions at the vertex O of the cone for the ODEs occurring

in this work follow from the requirement of regularity of the metric there. When
imposed, they guarantee that (2.17) and (2.19), as well as all the remaining
constraint equations below, have unique solutions. The relevant conditions at
the vertex have been computed in regular coordinates and then translated into
adapted null coordinates in [8] for a natural family of gauges.

For ν0 and ϕ the boundary conditions read
{
limr→0 ν

0 = 1 ,

limr→0 ϕ = 0 , limr→0 ∂rϕ = 1 .

The Einstein equations R1A = 0 imply the equations [8, Equation (9.2)]
(compare [12, Equation (3.12)])

1

2
(∂r + τ)ξA − ∇̌Bσ

B
A +

n− 2

n− 1
∂Aτ + ∂Aκ = 0 , (2.21)
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where ∇̌ denotes the Riemannian connection defined by ǧΣr , and

ξA := −2Γ1
1A .

When H0 = 0 one has HA = 0 if and only if

ξA = −2ν0∂rνA + 4ν0νBχA
B + νA(W

0 + Γ̂0) + gAB(W
B + Γ̂B)

−γABγ
CDΓ̌B

CD . (2.22)

Here Γ̌B
CD are the Christoffel symbols associated to the metric ǧΣr .

Given fields κ and gAB = gAB|u=0 satisfying the Raychaudhuri constraint
equation, the equations (2.21) and (2.22) can be read as hierarchical linear first-
order PDE-system which successively determines ξA and νA by solving ODEs.
The boundary conditions at the vertex are

lim
r→0

νA = 0 = lim
r→0

ξA .

The remaining constraint equation follows from the Einstein equation gABRAB =
0 [8, Equations (10.33) & (10.36)],

(∂r + τ + κ)ζ + Ř− 1

2
ξAξ

A + ∇̌Aξ
A = 0 , (2.23)

where we have set ξA := gABξB . The function Ř is the curvature scalar associ-
ated to ǧΣr . The auxiliary function ζ is defined as

ζ := (2∂r + τ + 2κ)g11 + 2W 1 + 2Γ̂1 , (2.24)

and satisfies, if Hλ = 0, the relation ζ = 2gABΓ1
AB+τg11. The term Γ̂1 depends

upon the target metric chosen, and with our current Minkowski target ĝ = η
we have

Γ̂1 = Γ̂0 = −rgABsAB . (2.25)

Taking the relation
g11 = (ν0)2(νAνA − g00) (2.26)

into account, the definition (2.24) of ζ becomes an equation for g00 once ζ has
been determined. The boundary conditions for (2.23) and (2.24) are

lim
r→0

g11 = 1 , lim
r→0

(ζ + 2r−1) = 0 .

2.4 Global solutions

A prerequisite for obtaining asymptotic expansions is existence of solutions of
the constraint equations defined for all r. The question of globally defined data
becomes trivial when all metric components are prescribed on CO: Then the
only condition is that τ , as calculated from gAB, is strictly positive. Now, as
is well known, and will be rederived shortly in any case, negativity of τ implies
formation of conjugate points in finite affine time, or geodesic incompleteness of
the generators. In this work we will only be interested in light-cones CO which
are globally smooth (except, of course, at the vertex), and extending all the way
to conformal infinity. Such cones have complete generators without conjugate
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points, and so τ must remain positive. But then one can solve algebraically the
Raychaudhuri equation to globally determine κ.

We note that the function τ depends upon the choice of parameterisation of
the generators, but its sign does not, hence the above discussion applies regard-
less of that choice. Recall that we assume that the tip of the cone corresponds to
r → 0 and that the condition that κ = O(r−3) ensures that an affine parameter
along the generators tends to infinity for r → ∞, so that the parameterization
of r covers the whole cone from O to null infinity.

In some situations it might be convenient to request that κ vanishes, or
takes some prescribed value. In this case the Raychaudhuri equation becomes
an equation for the function ϕ, and the question of its global positivity arises.

Recall that the initial conditions for ϕ at the vertex are ϕ(0) = 0 and
∂rϕ(0) = 1, and so both ∂rϕ and ϕ are positive near zero. Now, (2.19) with
κ = 0 shows that ϕ is concave as long as it is non-negative; equivalently, ∂rϕ is
non-increasing in the region where ϕ > 0. An immediate consequence of this is
that if ∂rϕ becomes negative at some r0 > 0, then it stays so, with ϕ vanishing
for some r0 < r1 < ∞, i.e. after some finite affine parameter time. We recover
the result just mentioned, that negativity of ∂rϕ indicates incompleteness, or
occurrence of conjugate points, or both. In the first case the solution will not
be defined for all affine parameters r, in the second CO will fail to be smooth
for r > r1 by standard results on conjugate points. Since the sign of ∂rϕ is
invariant under orientation-preserving reparameterisations, we conclude that:

Proposition 2.1 Globally smooth and null-geodesically-complete light-cones must
have ∂rϕ positive.

A set of conditions guaranteeing global existence of positive solutions of
the Raychaudhuri equation, viewed as an equation for ϕ, has been given in [8,
Theorem 7.3]. Here we shall give an alternative simpler criterion, as follows:

Suppose, first, that κ = 0. Integration of (2.19) gives

∂rϕ(r, x
A) = 1− 1

n− 1

∫ r

0

(
ϕ|σ|2

)
(r̃, xA) dr̃ ≤ 1 (2.27)

as long as ϕ remains positive. Since ϕ(0) = 0, we see that we always have

ϕ(r, xA) ≤ r

in the region where ϕ is positive, and in that region it holds

∂rϕ(r, x
A) ≥ 1− 1

n− 1

∫ r

0

r̃ |σ(r̃, xA)|2dr̃

≥ 1− 1

n− 1

∫ ∞

0

r̃ |σ(r̃, xA)|2dr̃ .

This implies that ϕ is strictly increasing if

∫ ∞

0

r|σ|2 dr < n− 1 . (2.28)

Since ϕ is positive for small r it remains positive as long as ∂rϕ remains positive,
and so global positivity of ϕ is guaranteed whenever (2.28) holds.
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A rather similar analysis applies to the case κ 6= 0, in which we set

H(r, xA) :=

∫ r

0

κ(r̃, xA)dr̃ . (2.29)

Let

ϕ(r) = ϕ̊(s(r)) , where s(r) :=

∫ r

0

eH(r̂)dr̂ , (2.30)

the xA-dependence being implicit. The function s(r) is strictly increasing with
s(0) = 0. If we assume that κ is continuous in r with κ(0) = 0, defined for all r
and, e.g., ∫ ∞

0

κ > −∞ , (2.31)

then limr→∞ s(r) = +∞, and thus the function r 7→ s(r) defines a differentiable
bijection from R+ to itself. Consequently, a differentiable inverse function s 7→
r(s) exists, and is smooth if κ is.

Expressed in terms of (2.30), (2.19) becomes

∂2s ϕ̊(s) + e−2H(r(s)) |σ|2(r(s))
n− 1

ϕ̊(s) = 0 . (2.32)

A global solution ϕ > 0 of (2.19) exists if and only if a global solution ϕ̊ > 0 of
(2.32) exists. It follows from the considerations above (note that ϕ̊(s = 0) = 0
and ∂sϕ̊(s = 0) = 1) that a sufficient condition for global existence of positive
solutions of (2.32) is

∫ ∞

0

se−2H(r(s))|σ|2(r(s)) ds < n− 1

⇐⇒
∫ ∞

0

( ∫ r

0

eH(r̂)dr̂
)
e−H(r)|σ|2(r) dr < n− 1 . (2.33)

Consider now the question of positivity of ν0. In the κ = 0-wave-map gauge
with Minkowski metric as a target we have (see [10, Equation (4.7)])

ν0(r, xA) =
ϕ−(n−1)/2(r, xA)

2

∫ r

0

(
r̂ϕ(n−1)/2gABsAB

)
(r̂, xA) dr̂ . (2.34)

In an s-orthonormal coframe θ(A), gABsAB is the sum of the diagonal elements
g(A)(A) = g♯(θ(A), θ(A)), A = 1, . . . , n− 1, where g♯ the scalar product on T ∗Σr

associated to gABdx
AdxB, each of which is positive in Riemannian signature.

Hence
gABsAB > 0 .

So, for globally positive ϕ we obtain a globally defined strictly positive ν0, hence
also a globally defined strictly positive ν0 ≡ 1/ν0.

When κ 6= 0, and allowing further a non-vanishing W 0, we find instead

ν0(r, xA) =

(
e−Hϕ−(n−1)/2

)
(r, xA)

2
×

∫ r

0

(
eHϕ(n−1)/2(r̂gABsAB −W 0)

)
(r̂, xA) dr̂ , (2.35)
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with H as in (2.29). If W 0 = 0 we obtain positivity as before. More generally,
we see that a necessary-and-sufficient condition for positivity of ν0 is positivity
of the integral in the last line of (2.35) for all r. This will certainly be the case
if the gauge-source function W 0 satisfies

W 0 < rgABsAB = rϕ−2
(det γ
det s

)1/(n−1)

γABsAB . (2.36)

Summarising we have proved:

Proposition 2.2 1. Solutions of the Raychaudhuri equation with prescribed
κ and σ are global when (2.31) and (2.33) hold, and lead to globally positive
functions ϕ and τ .

2. Any global solution of the Raychaudhuri equation with ϕ > 0 leads to a
globally defined positive function ν0 when the gauge source function W 0

satisfies (2.36). This condition will be satisfied for any W 0 ≤ 0.

2.5 Positivity of ϕ−1 and (ν0)0

For reasons that will become clear in Section 4, we are interested in fields ϕ and
ν0 which, for large r, take the form

ϕ(r, xA) = ϕ−1(x
A)r + o(r) , ν0(r, xA) = (ν0)0(x

A) + o(1) , (2.37)

with ϕ−1 and (ν0)0 positive. The object of this section is to provide condi-
tions which guarantee existence of such expansions, assuming a global positive
solution ϕ.

Let us further assume that e−2Hϕ|σ|2 is continuous in r with
∫ ∞

0

(
e−2Hϕ|σ|2

)∣∣
r=r(s)

ds =

∫ ∞

0

e−Hϕ|σ|2dr <∞ .

Integration of (2.32) and de l’Hospital rule at infinity give

ϕ̊−1 := lim
s→∞

ϕ̊(s)

s
= lim

s→∞
∂sϕ̊(s) = 1− 1

n− 1

∫ ∞

0

e−Hϕ|σ|2dr . (2.38)

This will be strictly positive if e.g. (2.33) holds, as
∫ r

0

eH(r̃)dr̃ − ϕ(r) =

∫ r

0

(eH(r̃) − ∂r̃ϕ(r̃))dr̃

=

∫ r(s)

0

(1− ∂s̃ϕ̊(s̃))︸ ︷︷ ︸
≥0 by (2.27)

ds̃ ≥ 0 ,

and thus by (2.38) and (2.33)

ϕ̊−1 ≥ 1− 1

n− 1

∫ ∞

0

( ∫ r

0

eH(r̂)dr̂
)
e−H(r)|σ|2(r) dr > 0 .

One can now use (2.38) to obtain (2.37) if we assume that the integral of κ
over r converges:

∀xA −∞ < β(xA) :=

∫ ∞

0

κ(r, xA)dr <∞ , (2.39)
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so that ∫ r

0

κ(s, ·)ds = β(·) + o(1) . (2.40)

Indeed, it follows from (2.39) that there exists a constant C such that the
parameter s defined in (2.30) satisfies

C−1 ≤ ∂s

∂r
≤ C , C−1r ≤ s ≤ Cr , lim

r→∞
∂s

∂r
= eβ . (2.41)

We then have

ϕ−1 = lim
r→∞

ϕ(r)

r
= lim

s→∞
ϕ̊(s)

r(s)
= lim

s→∞
∂sϕ̊(s)

∂sr(s)
= e−βϕ̊−1

= e−β

(
1− 1

n− 1

∫ ∞

0

e−Hϕ|σ|2dr
)
. (2.42)

We have proved:

Proposition 2.3 Suppose that (2.31), (2.33) and (2.39) hold. Then the func-
tion ϕ is globally positive with ϕ−1 > 0.

Consider, next, the asymptotic behaviour of ν0. In addition to (2.39), we
assume now that ϕ = ϕ−1r + o(r), for some function of the angles ϕ−1, and
that there exists a bounded function of the angles α such that

rgABsAB −W 0 =
α

r
+ o(r−1) . (2.43)

Passing to the limit r → ∞ in (2.35) one obtains

ν0(r, xA) =
α(xA)

n− 1
+ o(1) .

We see thus that

(ν0)0 > 0 ⇐⇒ α > 0 , (ν0)0 > 0 ⇐⇒ α <∞ .

Remark 2.4 Note that (2.39) and (2.43) will hold with smooth functions α and
β when the a priori restrictions (4.8)-(4.10), discussed below, are satisfied and
when both ϕ and ϕ−1 are positive. Recall also that if W 0 ≤ 0 (in particular,
if W 0 ≡ 0), then the condition α ≥ 0 follows from the fact that both sAB and
gAB are Riemannian.

So far we have justified the expansion (2.37). For the purposes of Section 3
we need to push the expansion one order further. This is the contents of the
following:

Proposition 2.5 Suppose that there exists a Riemannian metric (γAB)−2 ≡
(γAB)−2(x

C) and a tensor field (γAB)−1 ≡ (γAB)−1(x
C) on Sn−1 such that for

large r we have

γAB = r2(γAB)−2 + r(γAB)−1 + o(r) , (2.44)

∂r
(
γAB − r2(γAB)−2 − r(γAB)−1

)
= o(1) , (2.45)

∫ r

0

κ(s, xA)ds = β0(x
A) + β1(x

A)r−2 + o(r−2) . (2.46)

Assume moreover that ϕ exists for all r, with ϕ > 0. Then:
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1. There exist bounded functions of the angles ϕ−1 ≥ 0 and ϕ0 such that

ϕ(r) = ϕ−1r + ϕ0 +O(r−1) . (2.47)

2. If, in addition, ν0 exists for all r, if it holds that ϕ−1 > 0 and if W 0 takes
the form W 0(r, xA) = (W 0)1(x

A)r−1 + o(r−1) with

(W 0)1 < sAB(g
AB)2 = (ϕ−1)

−2
(det γ−2

det s

)1/(n−1)

γAB
−2 sAB , (2.48)

then
0 < (ν0)0 <∞ .

Remark 2.6 If the space-time is not vacuum, then (2.32) becomes

∂2s ϕ̊(s) + e−2H(r(s))

(
|σ|2 +Rrr

)
(r(s))

n− 1
ϕ̊(s) = 0 . (2.49)

and the conclusions of Proposition 2.5 remain unchanged if we assume in addi-
tion that

Rrr = O(r−4) . (2.50)

Proof: From (2.11) one finds

|σ|2 = O(r−4) .

We have already seen that

ϕ̊ = ϕ̊−1s+ o(s) .

Plugging this in the second term in (2.32) and integrating shows that

∂sϕ̊(s) = ϕ̊−1 +O(s−2) , ϕ̊(s) = ϕ̊−1s+ ϕ̊0 +O(s−1) .

A simple analysis of the equation relating r with s gives now

∂rϕ(r) = ϕ−1 + O(r−2) , ϕ(r) = ϕ−1r + ϕ0 +O(r−1) .

This establishes point 1.
When ϕ−1 is positive one finds that (2.43) holds, and from what has been

said the result follows. ✷

3 A no-go theorem for the (κ = 0, W 0 = 0)-wave-
map gauge

Rendall’s proposal, to solve the characteristic Cauchy problem using the (κ = 0,
Wµ = 0)-wave-map gauge, has been adopted by many authors. The object of
this section is to show that, in 3 + 1 dimensions, this approach will always lead
to logarithmic terms in an asymptotic expansion of the metric except for the
Minkowski metric. This makes clear the need to allow non-vanishing gauge-
source functions Wµ.

More precisely, we prove (compare [6]):
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Theorem 3.1 Consider a four-dimensional vacuum space-time (M , g) which
has a conformal completion at future null infinity (M ∪ I +, g̃) with a C3 con-
formally rescaled metric, and suppose that there exists a point O ∈ M such
that CO \ {O}, where CO denotes the closure of CO in M ∪ I +, is a smooth
hypersurface in the conformally completed space-time. If the metric g has no
logarithmic terms in its asymptotic expansion for large r in the W 0 = 0 wave-
map gauge, where r is an affine parameter on the generators of CO, then (M , g)
is the Minkowski space-time.

Proof: Let S ⊂ I + denote the intersection of CO with I +. Elementary
arguments show that CO intersects I + transversally and that S is diffeomorphic
to S2. Introduce near S coordinates so that S is given by the equation {u =
0 = x}, where x is an g̃-affine parameter along the generators of CO, with x = 0
at S, while the xA’s are coordinates on S in which the metric induced by ǧ is
manifestly conformal to the round-unit metric sABdx

AdxB on S2. (Note that
this construction might lead to the loss of one derivative of the metric.) The
usual calculation shows that the g-affine parameter r along the generators of
CO equals a(xA)/x for some positive function of the angles a(xA). Discarding
strictly positive conformal factors, we conclude that for large r the tensor field
ǧ is conformal to a tensor field γABdx

AdxB satisfying

γAB = r2
(
sAB + (γAB)−1r

−1 + o(r−1)
)
, (3.1)

∂r
(
γAB − r2sAB − r(γAB)−1

)
= o(1) . (3.2)

The result follows now immediately from [7] and from our next Theorem 3.2. ✷

Theorem 3.2 Suppose that the space-dimension n equals three. Let r|σ|, rW 0

and r2Rµνℓ
µℓν be bounded for small r. Suppose that γAB(r, x

A) is positive
definite for all r > 0 and admits the expansion (3.1)-(3.2), for large r with
the coefficients in the expansion depending only upon xC . Assume that the first
constraint equation (2.19) with κ = 0 and

0 ≤ Rµνℓ
µℓν = O(r−4)

has a globally defined positive solution satisfying ϕ(0) = 0, ∂rϕ(0) = 1, ϕ > 0,
and ϕ−1 > 0. Then there are no logarithmic terms in the asymptotic expansion
of ν0 in a gauge κ = 0 and W 0 = o(r−2) (for large r) if and only if

σ ≡ 0 ≡ Rµνℓ
µℓν .

Proof of Theorem 3.2: At the heart of the proof lies the following observa-
tion:

Lemma 3.3 In space-dimension n, suppose that κ = 0 and set

Ψ = r2 exp(

∫ r

0

(τ + τ1
2

− n− 1

r

)
dr) . (3.3)

with τ1 ≡ (n− 1)/r We have τ = (n− 1)r−1 + τ2r
−2 + o(r−2), where

τ2 := − lim
r→∞

r2Ψ−1 ×
∫ r

0

(|σ|2 +Rµνℓ
µℓν)Ψ dr , (3.4)

provided that the limit exists.
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Proof: Let δτ = τ−τ1. It follows from the Raychaudhuri equation with κ = 0
that δτ satisfies the equation

dδτ

dr
+
τ + τ1

2
δτ = −|σ|2 − 8πT rr .

Solving, one finds

δτ = −Ψ−1

∫ r

0

(|σ|2 + 8πT rr)Ψ dr

=
τ2
r2

+ o(r−2) ,

as claimed. ✷

Let us return to the proof of Theorem 3.2. Proposition 2.5 and Remark 2.6
show that

ϕ(r, xA) = ϕ−1(x
A)r + ϕ0(x

A) + o(r−1) , (3.5)

τ ≡ 2∂r logϕ = 2r−1 − 2ϕ0(ϕ−1)
−1r−2 + o(r−2) . (3.6)

Recall, next, the solution formula (2.34) for the constraint equation (2.17) with
κ = 0 and n = 3:

ν0(r, xA) =
1

2ϕ(r, xA)

∫ r

0

ϕ
(
sgABsAB −W 0

)
(s, xA) ds . (3.7)

From (3.5)-(3.6) one finds

gAB = r−2(ϕ−1)
−2[sAB + r−1(τ2s

AB − γ̆AB
−1 ) + o(r−1)] , (3.8)

with

γ̆AB
−1 := sACsBD[(γCD)−1 −

1

2
sCDs

EF (γEF )−1] .

Inserting this into (3.7), and assuming that W 0 = o(r−2), one finds for large r

ν0 = (ϕ−1)
−2 +

1

2
τ2(ϕ−1)

−2 ln r

r
+O(r−1) , (3.9)

with the coefficient of the logarithmic term vanishing if and only if τ2 = 0 when
a bounded positive coefficient ϕ−1 exists. One can check that the hypotheses of
Lemma 3.3 are satisfied, and the result follows. ✷

4 Preliminaries to solve the constraints asymp-

totically

4.1 Notation and terminology

Consider a metric which has a smooth, or polyhomogeneous, conformal com-
pletion at infinity à la Penrose, and suppose that the closure (in the completed
space-time) N of a null hypersurface N of O meets I + in a smooth sphere.
One can then introduce Bondi coordinates (u, r, xA) near I +, with N ∩ I +

being the level set of a Bondi retarded coordinate u (see [29] in the smooth case,
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and [11, Appendix B] in the polyhomogeneous case). The resulting Bondi area
coordinate r behaves as 1/Ω, where Ω is the compactifying factor. If one uses
Ω as one of the coordinates near I +, say x, and chooses 1/x as a parameter
along the generators of N , one is led to an asymptotic behaviour of the metric
which is captured by the following definition:

Definition 4.1 We say that a smooth metric tensor gµν defined on a null hyper-
surface N given in adapted null coordinates has a smooth conformal completion
at infinity if the unphysical metric tensor field g̃µν obtained via the coordinate

transformation r 7→ 1/r =: x and the conformal rescaling g 7→ g̃ ≡ x2g is, as a
Lorentzian metric, smoothly extendable across {x = 0}. We will say that gµν
is polyhomogeneous if the conformal extension obtained as above is polyhomo-
geneous at {x = 0}, see Appendix A.

The components of a smooth tensor field on N will be said to be smooth at
infinity, respectively polyhomogeneous at infinity, whenever they admit, in the
(x, xA)-coordinates, a smooth, respectively polyhomogeneous, extension in the
conformally rescaled space-time across {x = 0}.

Remark 4.2 The reader is warned that the definition contains an implicit re-
striction, that N is a smooth hypersurface in the conformally completed space-
time. In the case of a light-cone, this excludes existence of points which are
conjugate to O both in M and on CO ∩ I +.

We emphasise that Definition 4.1 concerns only fields on N , and no assump-
tions are made concerning existence, or properties, of an associated space-time.
In particular there might not be an associated space-time; and if there is one,
it might or might not have a smooth completion through a conformal boundary
at null infinity.

The conditions of the definition are both conditions on the metric and on
the coordinate system. While the definition restricts the class of parameters r,
there remains considerable freedom, which will be exploited in what follows. It
should be clear that the existence of a coordinate system as above on a globally-
smooth light-cone is a necessary condition for a space-time to admit a smooth
conformal completion at null infinity, for points O such that CO ∩ I + forms a
smooth hypersurface in the conformally completed space-time.

Consider a real-valued function

f : (0,∞)× Sn−1 −→ R , (r, xA) 7−→ f(r, xA) .

If this function admits an asymptotic expansion in terms of powers of r (whether
to finite or arbitrarily high order) we denote by fn, or (f)n, the coefficient of
r−n in the expansion.

We will write f = O(rN ) (or f = O(x−N ), x ≡ 1/r), N ∈ Z if the function

F (x, ·) := xNf(x−1, ·) (4.1)

is smooth at x = 0. We emphasize that this is a restriction on f for large r, and
the condition does not say anything about the behaviour of f near the vertex
of the cone (whenever relevant), where r approaches zero.

We write

f(r, xA) ∼
∞∑

k=−N

fk(x
A)r−k
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if the right-hand side is the asymptotic expansion at x = 0 of the function
x 7→ r−Nf(r, ·)|r=1/x, compare Appendix A.

The next lemma summarizes some useful properties of the symbol O:

Lemma 4.3 Let f = O(rN ) and g = O(rM ) with N,M ∈ Z.

1. f can be asymptotically expanded as a power series starting from rN ,

f(r, xA) ∼
∞∑

k=−N

fk(x
A)r−k

for some suitable smooth functions fk : Sn−1 → R.

2. The n-th order derivative, n ≥ 0, satisfies

∂nr f(r, x
A) =





O(rN−n) for N < 0

O(rN−n) for N ≥ 0 and N − n ≥ 0

O(rN−n−1) for N ≥ 0 and N − n ≤ −1

as well as
∂nAf(r, x

B) = O(rN ) .

3. fngm = O(rnN+mM ) for all n,m ∈ Z.

4.2 Some a priori restrictions

In order to solve the constraint equations asymptotically and derive necessary-
and-sufficient conditions concerning smoothness of the solutions at infinity in
adapted coordinates, it is convenient to have some a priori knowledge regarding
the lowest admissible orders of certain functions appearing in these equations,
and to exclude the appearance of logarithmic terms in the expansions of fields
such as ξA and Wλ. Let us therefore derive the necessary restrictions on the
metric, the gauge source functions, etc. needed to end up with a trace of a metric
on the light-cone which admits a smooth conformal completion at infinity.

4.2.1 Non-vanishing of ϕ and ν0

As described above, the Einstein wave-map gauge constraints can be represented
as a system of linear ODEs for ϕ, ν0, νA and g11, so that existence and unique-
ness (with the described boundary conditions) of global solutions is guaranteed
if the coefficients in the relevant ODEs are globally defined. Indeed, we have
to make sure that the resulting symmetric tensor field gµν does not degenerate,
so that it represents a regular Lorentzian metric in the respective adapted null
coordinate system. In a setting where the starting point are conformal data
γAB(r, ·)dxAdxB which define a Riemannian metric for all r > 0, this will be
the case if and only if ϕ and ν0 are nowhere vanishing, in fact strictly positive
in our conventions,

ϕ > 0 , ν0 > 0 ∀ r > 0 . (4.2)
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4.2.2 A priori restrictions on gµν

Assume that gµν admits a smooth conformal completion in the sense of Defini-
tion 4.1. Then its conformally rescaled counterpart g̃µν ≡ x2gµν satisfies

g̃µν = O(1) with g̃0x|x=0 > 0 , det g̃AB|x=0 > 0 . (4.3)

This imposes the following restrictions on the admissible asymptotic form of the
components gµν in adapted null coordinates (u, r ≡ 1/x, xA):

ν0 = O(1) , νA = O(r2) , g00 = O(r2) , gAB = O(r2) , (4.4)

with
(ν0)0 > 0 and (det ǧΣr)−4 > 0 . (4.5)

Moreover,

τ ≡ 1

2
gAB∂rgAB =

n− 1

r
+O(r−2) , (4.6)

and (recall that τ = (n− 1)∂r logϕ)

ϕ = ϕ−1r +O(1) for some positive function ϕ−1 on Sn−1. (4.7)

Indeed assuming that ϕ−1 vanishes for some xA, the function ϕ does not diverge
as r goes to infinity along some null ray Υ emanating from O, i.e. ϕ|Υ = O(1)
and det ǧΣr |Υ ≡ (ϕ2(n−1) det s)|Υ = O(1), which is incompatible with (4.5).

The assumptions ϕ(r, xA) > 0 and ϕ−1(x
A) > 0 imply the non-existence of

conjugate points on the light-cone up-to-and-including conformal infinity.

4.2.3 A priori restrictions on gauge source functions

Assume that there exists a smooth conformal completion of the metric, as in
Definition 4.1. We wish to find the class of gauge functions κ and Wµ which
are compatible with this asymptotic behaviour.

The relation gAB = O(r2) together with ∂r = −x2∂x and the definition (2.8)
implies

σA
B = O(r−2), |σ|2 = O(r−4). (4.8)

Using the estimate (4.7) for τ and the Raychaudhuri equation (2.16) we find

κ = O(r−3) , (4.9)

where cancellations in both the leading and the next-to-leading terms in (2.16)
have been used. Then (2.17), (4.4), (4.7) and (4.9) imply

W 0 = O(r−1) . (4.10)

Similarly to κ = Γr
rr, ξA corresponds to the restriction to CO of certain

connection coefficients (cf. [8, 12])

ξA = −2Γr
rA .

We will use this equation to determine the asymptotic behaviour of ξA; the main
point is to show that there needs to exist a gauge in which ξA has no logarithmic
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terms. We note that the argument here requires assumptions about the whole
space-time metric and some of its derivatives transverse to the characteristic
initial surface, rather than on gAB.

A necessary condition for the space-time metric to be smoothly extendable
across I + is that the Christoffel symbols of the unphysical metric g̃ in coordi-
nates (u, x ≡ 1/r, xA) are smooth at I +, in particular

Γ̃x
xA = O(1) . (4.11)

The formula for the transformation of Christoffel symbols under conformal
rescalings of the metric, g̃ = Θ2g, reads

Γ̃ρ
µν = Γρ

µν +
1

Θ

(
δ ρ
ν ∂µΘ+ δ ρ

µ ∂νΘ− gµνg
ρσ∂σΘ

)
,

and shows that (4.11) is equivalent to

Γx
xA = O(1) , or Γr

rA = O(1) ; (4.12)

the second equation is obtained from the first one using the transformation law
of the Christoffel symbols under the coordinate transformation x 7→ r ≡ 1/x.
Hence ξA = O(1). Inspection of the leading-order terms in (2.21) leads now to

ξA = O(r−1) . (4.13)

One can insert all this into (2.22), viewed as an equation for WA, to obtain

WA = O(r−1) .

We note the formula
ζ = 2gABΓr

AB + τgrr

which allows one to relate ζ to the Christoffel symbols of g, and hence also to

those of g̃. However, when relating Γ̃x
AB and Γr

AB derivatives of the conformal
factor Θ appear which are transverse to the light-cone and whose expansion is
a priori not clear. Therefore this formula cannot be used to obtain information
about ζ in a direct way, and one has to proceed differently. Assuming, from
now on, that we are in space-dimension three, it will be shown in part II of
this work that the above a priori restrictions and the constraint equation (2.23)
imply that the auxiliary function ζ has the asymptotic behaviour

ζ = O(r−1) . (4.14)

It then follows from (2.24) and (4.4) that

W 1 = O(r) . (4.15)

This is our final condition on the gauge functions. To summarize, necessary
conditions for existence of both a smooth conformal completion of the metric g
and of smooth extensions of the connection coefficients Γ1

1A are

ξA = O(r−1) , W 0 = O(r−1) , WA = O(r−1) . (4.16)

Moreover,

if ζ = O(r−1) then W 1 = O(r) . (4.17)
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5 Asymptotic expansions

We have seen in Section 4.2.2 that existence of a smooth completion at null
infinity requires gAB = O(r2) with (det gAB)−4 > 0, and thus ϕ = O(r) with
ϕ−1 > 0. But then

1√
det γ

γAB = ϕ−2 1√
det s

gAB = O(1) .

Since only the conformal class of γAB matters, we see that there is no loss of
generality to assume that γAB = O(r2), with (det γAB)−4 6= 0; this is convenient
because then γAB and gAB will display similar asymptotic behaviour. Moreover,
since any Riemannian metric on the 2-sphere is conformal to the standard metric
s = sABdx

AdxB , in the case of smooth conformal completions we may without
loss of generality require the initial data γ to be of the form, for large r,

γAB ∼ r2
(
sAB +

∞∑

n=1

h
(n)
ABr

−n
)
, (5.1)

for some smooth tensor fields h
(n)
AB on S2. (Recall that the symbol “∼” has been

defined in Section 4.1.) If the initial data γAB are not directly of the form (5.1),
they can either be brought to (5.1) via an appropriate choice of coordinates
and conformal rescaling, or they lead to a metric gµν which is not smoothly
extendable across I +.

In the second part of this work [26] the following theorem will be proved:

Theorem 5.1 Consider the characteristic initial value problem for Einstein’s
vacuum field equations in four space-time dimensions with smooth conformal
data γ = γABdx

AdxB and gauge functions κ and Wλ on a cone CO which has
smooth closure in the conformally completed space-time. The following condi-
tions are necessary-and-sufficient for the trace of the metric g = gµνdx

µdxν

on CO, obtained as solution to Einstein’s wave-map characteristic vacuum con-
straint equations (2.19) and (2.21)-(2.24), to admit a smooth conformal com-
pletion at infinity and for the connection coefficients Γr

rA to be smooth at I +,
in the sense of Definition 4.1, when imposing a generalized wave-map gauge
condition Hλ = 0:

(i) There exists a one-parameter family κ = κ(r) of Riemannian metrics on
S2 such that κ satisfies (5.1) and is conformal to γ (in particular we may
assume γ itself to be of the form (5.1)).

(ii) The functions ϕ, ν0, ϕ−1 and (ν0)0 have no zeros on CO \ {0} and S2,
respectively, with the non-vanishing of (ν0)0 being equivalent to

(W 0)1 < 2(ϕ−1)
−2 . (5.2)

(iii) The gauge functions satisfy κ = O(r−3), W 0 = O(r−1), WA = O(r−1),
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W 1 = O(r) and, setting WA := gABW
A,

(W 0)2 =
[1
2
(W 0)1 + (ϕ−1)

−2
]
τ2 , (5.3)

(WA)1 = 4(σA
B)2∇̊A logϕ−1 − (ϕ̌−1)

−2[(ν0)2(WA)−1 + (ν0)1(WA)0]

−∇̊Aτ2 −
1

2
(wA

B)1(wB
C)1(WC)−1 −

1

2
(wA

B)2(WB)−1

−(wA
B)1

[
(WB)0 + (ϕ̌−1)

2(ν0)1(WB)−1

]
, (5.4)

(W 1)2 =
ζ2
2

+ (ϕ−1)
−2τ2 +

τ2
4
Ř2 +

τ2
2
(W 1)1 +

[τ3
4

+
κ3
2

− (τ2)
2

8

]
(W 1)0

[ 1

48
(τ2)

3 − 1

8
τ2τ3 −

1

4
τ2κ3 +

1

6
τ4 +

1

3
κ4

]
(W 1)−1 , (5.5)

where ∇̊ is the covariant derivative operator of the unit round metric on
the sphere sABdx

AdxB, Ř2 is the r−2-coefficient of the scalar curvature
Ř of the metric ǧABdx

AdxB, ϕ̌−1 := [(ϕ−1)
−2 − 1

2 (W
0)1]

−1/2, and the
expansion coefficients (wA

B)n are defined using

wA
B :=

[r
2
ν0(W

0 + Γ̂0)− 1
]
δA

B + 2rχA
B .

(iv) The no-logs-condition is satisfied:

(σA
B)3 = τ2(σA

B)2 . (5.6)

Remark 5.2 If any of the equations (5.3)-(5.6) fail to hold, the resulting char-
acteristic initial data sets will have a polyhomogeneous expansion in terms of
powers of r.

Remark 5.3 Theorem 5.1 is independent of the particular setting used (and
remains also valid when the light-cone is replaced by one of two transversally
intersecting null hypersurfaces meeting I + in a sphere), cf. Section 7: As long
as the generalized wave-map gauge condition is imposed one can always compute
Wλ, τ , σ etc. and check the validity of (5.3)-(5.6), whatever the prescribed initial
data sets are. Some care is needed when the Minkowski target is replaced by
some other target metric, cf. [26].

All the conditions in (ii) and (iii) which involve κ or Wλ can always be
satisfied by an appropriate choice of coordinates. Equivalently, those logarithmic
terms which appear if these conditions are not satisfied are pure gauge artifacts.

Recall that to solve the equation for ξA both κ and ϕ need to be known.
This requires a choice of the κ-gauge. Since the choice ofW 0 does not affect the
ξA-equation, there is no gauge-freedom left in that equation and if the no-logs-
condition (5.6) does not hold there is no possibility to get rid of the log terms
that arise in this equation. (In Section 6 we will return to the question, whether
(5.6) can be satisfied by a choice of κ.) Similarly there is no gauge-freedom left
when the equation for ζ is integrated but, due to the special structure of the
asymptotic expansion of its source term, no new log terms arise in the expansion
of ζ.

The no-logs-condition involves two functions, ϕ−1 and ϕ0, which are globally
determined by the gauge function κ and the initial data γ, cf. (2.19). The
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dependence of these functions on the gauge and on the initial data is rather
intricate. Thus the question arises for which class of initial data one can find
a function κ = O(r−3), such that the no-logs-condition holds, and accordingly
what the geometric restrictions are for this to be possible. This issue will be
analysed in part II of this work, using a gauge scheme adjusted to the initial data
so that all globally defined integration functions can be computed explicitly.

6 The no-logs-condition

6.1 Gauge-independence

In this section we show gauge-independence of (5.6). It is shown in paper II
[26] that (5.6) arises from integration of the equation for ξA, where the gauge-
functions Wµ do not occur. Equation (5.6) is therefore independent of those
functions. So the only relevant freedom is that of rescaling the r-coordinate pa-
rameterizing the null rays. We therefore need to compute how (5.6) transforms
under rescalings of r. For this we consider a smooth coordinate transformation

r 7→ r̃ = r̃(r, xA) . (6.1)

Under (6.1) the function ϕ transforms as a scalar. We have seen above that a
necessary condition for the metric to be smoothly extendable across I + is that
ϕ has the asymptotic behaviour

ϕ(r, xA) = ϕ−1(x
A)r + ϕ0 +O(r−1) , with ϕ−1 > 0 . (6.2)

The transformed ϕ thus takes the form

ϕ̃(r̃, xA) = ϕ(r(r̃), xA) = ϕ−1(x
A)r(r̃) + ϕ0 +O(r(r̃)−1) ,

∂r̃ϕ̃(r̃, x
A) =

∂r

∂r̃
∂rϕ(r(r̃), x

A) =
∂r

∂r̃
ϕ−1(x

A)r(r̃) +
∂r

∂r̃
O(r(r̃)−2) .

If we require ϕ̃ to be of the form (6.2) as well, it is easy to check that we must
have

r(r̃, xA) = r−1(x
A)r̃ + r0 +O(r̃−1) and (6.3)

∂r̃r(r̃, x
A) = r−1(x

A) +O(r̃−2) , with r−1 > 0 . (6.4)

We have:

Proposition 6.1 The no-logs-condition (5.6) is invariant under the coordinate
transformations (6.3)-(6.4).

Proof: For the transformation behavior of the expansion coefficients we obtain

ϕ−1 = (r−1)
−1ϕ̃−1 , ϕ0 = ϕ̃0 − r0(r−1)

−1ϕ̃−1

=⇒ τ2 = −2(ϕ−1)
−1ϕ0 = r−1τ̃2 + 2r0 .

Moreover, with (6.3)-(6.4) we find

σ̃A
B =

∂r

∂r̃
σA

B =
[
r−1 +O(r̃−2)

] [
(σA

B)2r(r̃)
−2 + (σA

B)3r(r̃)
−3 +O(r(r̃)−4)

]

= (r−1)
−1(σA

B)2r̃
−2 +

[
(r−1)

−2(σA
B)3 − 2r0(r−1)

−2(σA
B)2

]
r̃−3 +O(r̃−4)

=⇒ (σA
B)2 = r−1(σ̃A

B)2 ,

(σA
B)3 = (r−1)

2(σ̃A
B)3 + 2r0r−1(σ̃A

B)2 .
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Hence
(σA

B)3 − τ2(σA
B)2 = (r−1)

2[(σ̃A
B)3 − τ̃2(σ̃A

B)2] .

✷

Although the No-Go Theorem 3.1 shows that the (κ = 0, Wλ = 0)-wave-
map gauge invariably produces logarithmic terms except in the flat case, one
can decide whether the logarithmic terms can be transformed away by checking
(5.6) using this gauge, or in fact any other. In the ([γ], κ) scheme this requires
to determine τ2 by solving the Raychaudhuri equation, which makes this scheme
not practical for the purpose. In particular, it is not a priori clear within
this scheme whether any initial data satisfying this condition exist unless both
(σA

B)2 and (σA
B)3 vanish. On the other hand, in any gauge scheme where ǧ is

prescribed on the cone, the no-logs-condition (5.6) is a straightforward condition
on the asymptotic behaviour of the metric.

Let us assume that (5.6) is violated for say κ = 0. We know that the
metric cannot have a smooth conformal completion at infinity in an adapted null
coordinate system arising from the κ = 0-gauge via a transformation which is
not of the asymptotic form (6.3)-(6.4). On the other hand if the transformation
is of the form (6.3), then the no-logs-condition will also be violated in the new
coordinates. We conclude that we cannot have a smooth conformal completion
in any adapted null coordinate system. That yields

Theorem 6.2 Consider initial data γ on a light-cone CO in a κ = 0-gauge

with asymptotic behaviour γAB ∼ r2(sAB +
∑∞

n=1 h
(n)
ABr

−n). Assume that ϕ,
ν0 and ϕ−1 are strictly positive on CO \ {O} and S2, respectively. Then there
exist a gauge w.r.t. which the trace g of the metric on the cone admits a smooth
conformal completion at infinity and where the connection coefficients Γr

rA are
smooth at I + (in the sense of Definition 4.1) if and only if the no-logs-condition
(5.6) holds in one (and then any) coordinate system related to the original one
by a coordinate transformation of the form (6.3)-(6.4).

6.2 Geometric interpretation

Here we provide a geometric interpretation of the no-logs-condition (5.6) in
terms of the conformal Weyl tensor. This ties our results with the analysis
in [1] (compare also Section 7.4).

For this purpose let us consider the components of the conformal Weyl ten-
sor, CrAr

B, on the cone. To end up with smooth initial data for the con-

formal fields equations we need to require the rescaled Weyl tensor d̃rAr
B =

Θ−1C̃rAr
B = Θ−1CrAr

B to be smooth at I +, which is equivalent to

CrAr
B = O(r−5) . (6.5)

In particular the CrAr
B-components of the Weyl tensor need to vanish one

order faster than naively expected from the asymptotic behavior of the metric.
In adapted null coordinates and in vacuum we have, using the formulae of [8,
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Appendix A],

CrAr
B = RrAr

B = −∂rΓB
rA + ΓB

rAΓ
r
rr − ΓB

rCΓ
C
rA

= −(∂r − κ)χA
B − χA

CχC
B

= −1

2
(∂rτ − κτ +

1

2
τ2)δA

B − (∂r + τ − κ)σA
B − σA

CσC
B

=
1

2
|σ|2δAB − (∂r + τ − κ)σA

B − σA
CσC

B .

Assuming, for definiteness, that κ = O(r−3) and gAB = O(r2) with (det gAB)−4 >
0 we have

CrAr
B =

(
(σA

B)3 − τ2(σA
B)2 +

1

2
(σC

D)2(σD
C)2δA

B − (σA
C)2(σC

B)2

)
r−4

+O(r−5) .

As an s-symmetric, trace-free tensor (σA
C)2 has the property

(σA
C)2(σC

B)2 =
1

2
(σD

C)2(σC
D)2δA

B ,

i.e.

CrAr
B =

[
(σA

B)3 − τ2(σA
B)2

]
r−4 +O(r−5) ,

and (6.5) holds if and only if the no-logs-condition is satisfied.

7 Other settings

We pass now to the discussion, how to modify the above when other data sets
are given, or Cauchy problems other than a light-cone are considered.

7.1 Prescribed (ǧAB, κ)

In this setting the initial data are a symmetric degenerate twice-covariant tensor
field ǧ, and a connection κ on the family of bundles tangent to the integral curves
of the kernel of ǧ, satisfying the Raychaudhuri constraint (2.16).

Recall that so far we have mainly been considering a characteristic Cauchy
problem where ([γ], κ) are given. There (2.19) was used to solve for the confor-
mal factor relating ǧ and γ:

ǧ ≡ gABdx
AdxB = ϕ2

(det sCD

det γEF

) 1
n−1 γABdx

AdxB . (7.1)

But then a pair (ǧ, κ) satisfying (2.16) is obtained.
So, in fact, prescribing the pair (ǧ, κ) satisfying (2.16) can be viewed a special

case of the ([γ], κ)-prescription, where one sets γ := ǧ. Indeed, when ǧ and κ
are suitably regular at the vertex, uniqueness of solutions of (2.19) with the
boundary conditions ϕ(0) = 0 and ∂rϕ(0) = 1 shows that

ϕ =
(det gEF

det sCD

) 1
2(n−1) ⇐⇒ gAB ≡ γAB ⇐⇒ ǧ ≡ γ . (7.2)

In particular all the results so far apply to this case.
If τ is nowhere vanishing, as necessary for a smooth null-geodesically com-

plete light-cone extending to null infinity, then (2.16) can be algebraically solved
for κ, so that the constraint becomes trivial.
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7.2 Prescribed (gµν , κ)

In this approach one prescribes all metric functions gµν on the initial char-
acteristic hypersurface, together with the connection coefficient κ, subject to
the Raychaudhuri equation (2.16). Equation (2.12) relating κ and ν0 becomes
an algebraic equation for the gauge-source function W 0, while the equations
RrA = 0 = gABRAB become algebraic equations for WA and W r.

In four space-time dimensions, a smooth conformal completion at null infin-
ity will exist if and only if r−2gµν can be smoothly extended as a Lorentzian
metric across I + and no logarithmic terms appear in the asymptotic expan-
sion of Γr

rA; this last fact is equivalent to (5.6). To see this, note that since the
equations for Wµ are algebraic, no log terms arise in these fields as long as no
log terms appear in the remaining fields appearing in the constraint equation.
Similarly no log terms arise in the ζ-equation. The only possible source of log
terms is thus the ξA-equation, and the appearance of log terms there is excluded
precisely by the no-logs-condition. The existence of an associated space-time
with a “piece of smooth I +” follows then from the analysis of the initial data
for Friedrich’s conformal equations in part II of this work, together with the
analysis in [13].

We conclude that (5.6) is again a necessary-and-sufficient condition for ex-
istence of a smooth I + for the current scheme in space-time dimension four.

7.3 Frame components of σ as free data

In this section we consider as free data the components χab in an adapted
parallel-propagated frame as in [12, Section 5.6]. We will assume that

χa
b =

1

r
δab +O(r−2) , a, b ∈ {2, 3} . (7.3)

There are actually at least two schemes which would lead to this form of χa
b:

One can e.g. prescribe any χa
b satisfying (7.3) such that χ2

2 +χ3
3 = χ22 +χ33

has no zeros, define σab = χab − 1
2 (χ

2
2 + χ3

3)δab, and solve algebraically the
Raychaudhuri equation for κ. Another possibility is to prescribe directly a
symmetric trace-free tensor σab in the κ = 0 gauge, use the Raychaudhuri
equation to determine τ , and construct χab using

χa
b =

τ

2
δab + σa

b , a, b ∈ {2, 3} . (7.4)

The asymptotics (7.3) will then hold if σa
b is taken to be O(r−2).

Given χab, the tensor field ǧ is obtained by setting

ǧ =
(
θ2Aθ

2
B + θ3Aθ

3
B

)
dxAdxB , (7.5)

where the co-frame coefficients θaA are solutions of the equation [12]

∂rθ
a
A = χa

bθ
b
A , a, b ∈ {2, 3} . (7.6)

Assuming (7.3), one finds that solutions of (7.6) have an asymptotic expan-
sion for θaA without log terms:

θaA = rϕa
A +O(1) , a, b ∈ {2, 3} (7.7)
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for some globally determined functions ϕa
A. If the determinant of the two-by-

two matrix (ϕa
A) does not vanish, one obtains a tensor field ǧ to which our

previous considerations apply. This leads again to the no-logs conditions (5.6).
Writing, as usual,

σab = (σab)2r
−2 + (σab)3r

−3 +O(r−4) , a, b ∈ {2, 3} , (7.8)

the no-logs-condition rewritten in terms of σab read

(σab)3 = τ2(σab)2 , a, b ∈ {2, 3} . (7.9)

7.4 Frame components of the Weyl tensor as free data

Let Cαβγδ denote the space-time Weyl tensor. For a, b ≥ 2 let

ψab := ea
Aeb

BCArBr

represent the components of CArBr in a parallelly-transported adapted frame,
as in Section 7.3. The tensor field ψab is symmetric, with vanishing η-trace, and
we have in space-time dimension four (cf., e.g., [12, Section 5.7])

(∂r − κ)χab = −
3∑

c=2

χacχcb − ψab −
1

2
ηabT rr . (7.10)

Given (κ, ψab), we can integrate this equation in vacuum to obtain the tensor
field χab needed in Section 7.3. However, this approach leads to at least two
difficulties: First, it is not clear under which conditions on ψab the solutions will
exist for all values of r. Next, it is not clear that the global solutions will have
the desired asymptotics. We will not address these questions but, taking into
account the behaviour of the Weyl tensor under conformal transformations, we
will assume that

κ = O(r−3) , ψab = O(r−4) , (7.11)

and that the associated tensor field χab exists globally and satisfies (7.3). The
no-logs-condition will then hold if and only if

ψab = O(r−5) ⇐⇒ (ψab)4 = 0 . (7.12)

Note that one can reverse the procedure just described: given χab we can
use (7.10) to determine ψab. Assuming (7.3), the no-logs-condition will hold if
and only if the ψab-components of the Weyl tensor vanish one order faster than
naively expected from the asymptotic behaviour of the metric (cf. Section 6.2).

Equation (7.12) is the well-known starting point of the analysis in [25], and
has also been obtained previously as a necessary condition for existence of a
smooth I in the analysis of the hyperboloidal Cauchy problem [1]. It is therefore
not surprising that it reappears in the analysis of the characteristic Cauchy
problem. However, as pointed out above, a satisfactory treatment of the problem
using ψab as initial data requires further work.
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7.5 Characteristic surfaces intersecting transversally

Consider two characteristic surfaces, say N1 and N2, intersecting transversally
along a smooth submanifold S diffeomorphic to S2. Assume moreover that
the initial data on N1 (in any of the versions just discussed) are such that the
metric gµν admits a smooth conformal completion across the sphere {x = 0},
as in Definition 4.1. The no-logs-condition (5.6) remains unchanged. Indeed,
the only difference is the integration procedure for the constraint equations:
while on the light-cone we have been integrating from the tip of the light-
cone, on N1 we integrate from the intersection surface S. This leads to the
need to provide supplementary date at S which render the solutions unique.
Hence the asymptotic values of the fields, which arise from the integration of
the constraints, will also depend on the supplementary data at S.

7.6 Mixed spacelike-characteristic initial value problem

Consider a mixed initial value problem, where the initial data set consists of:

1. A spacelike initial data set (S , 3g,K), where 3g is a Riemannian metric
on S and K is a symmetric two-covariant tensor field on S . The three-
dimensional manifold S is supposed to have a compact smooth boundary
S diffeomorphic to S2, and the fields (3g,K) are assumed to satisfy the
usual vacuum Einstein constraint equations.

2. A hypersurface N1 with boundary S equipped with a characteristic initial
data set, in any of the configurations discussed so far. Here N1 should be
thought of as a characteristic initial data surface emanating from S in the
outgoing direction.

3. The data on S and N1 satisfy a set of “corner conditions” at S, to be
defined shortly.

The usual evolution theorems for the spacelike general relativistic initial
value problem provide a unique future maximal globally hyperbolic vacuum
development D+ of (S , 3g,K). Since S has a boundary, D+ will also have a
boundary. Near S, the null part of the boundary of ∂D+ will be a smooth null
hypersurface emanating from S, say N2, generated by null geodesics normal to
S and “pointing towards S ” at S. In particular the space-time metric on D+

induces characteristic initial data on N2. In fact, all derivatives of the metric,
both in directions tangent and transverse to N2, will be determined on N2

by the initial data set (S , 3g,K). This implies that the characteristic initial
data needed on N1, as well as their derivatives in directions tangent to N1,
are determined on S by (S , 3g,K). These are the “corner conditions” which
have to be satisfied by the data on N1 at S, with these data being arbitrary
otherwise. The corner conditions can be calculated algebraically in terms of
the fields (3g,K), the gauge-source functions Wµ, and the derivatives of those
fields, at S, using the vacuum Einstein equations.

One can use now the Cauchy problem discussed in Section 7.5 to obtain the
metric to the future of N1 ∪ N2, and the discussion of the no-logs-condition
given in Section 7.5 applies.
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A Polyhomogeneous functions

A function f defined on an open set U with smooth boundary ∂U = {x = 0}
is said to be polyhomogeneous at x = 0 if f ∈ C∞(U ) and if there exist integers
Ni, real numbers ni, and functions fij ∈ C∞(U ) such that

∀m ∈ N, ∃N(m) ∈ N, f −
N(m)∑

i=0

Ni∑

j=0

fijx
ni lnj x ∈ Cm(U ) . (A.1)

We will then write
f ∼

∑

i,j

fijx
ni lnj x .

We will similarly write

f ∼
∑

i

fix
i

when (A.1) holds with no logarithmic terms.
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1 Introduction

In this work we continue the work initiated in [7] to analyze the occurrence of
logarithmic terms in the asymptotic expansion of the metric tensor and some
other fields at null infinity. In part I of this work, where we also described the
setting, it has been shown that the harmonic coordinate condition is not com-
patible with a smooth asymptotic structure at the conformal boundary at infin-
ity, but has to be replaced by a wave-map gauge condition with non-vanishing
gauge-source functions.

However, it is expected [5, 12] (compare also [1]) that even for smooth ini-
tial data the asymptotic expansion of the space-time metric at null infinity will
generically be polyhomogeneous and involve logarithmic terms which do not
have their origin in an inconvenient choice of coordinates. One main object of
this note, treated in Section 3, is to study thoroughly the asymptotic behavior
of solutions of the Einstein’s vacuum constraint equations and analyze under
which conditions a smooth conformal completion of the restriction of the space-
time metric to the characteristic initial surface across null infinity is possible.
As announced in [7, Theorem 5.1] we intend to provide necessary-and-sufficient
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conditions on the initial data and the gauge source functions which permit such
extensions. In doing so it will become manifest that many, though not all, of
the logarithmic terms which arise at infinity are gauge artifacts. The remain-
ing non-gauge logarithmic terms can be eliminated by imposing restrictions on
the asymptotic behavior of the initial data, captured by what we call no-logs-
condition.

In Section 5, we will show that solutions of the characteristic vacuum con-
straint equations satisfying the no-logs-condition lead to smooth initial data for
Friedrich’s conformal field equations. The data will be computed in a new gauge
scheme developed in Section 4 and will provide the basis to solve the evolution
problem and construct space-times with a “piece of smooth I +”.

In Section 2 we give a summary of [7] where we briefly describe the frame-
work and recall the most important definitions and results of part I. Finally,
in Appendix A our proceeding in Section 3-5 to solve the constraint equations
in terms of polyhomogeneous expansions will be rigorously justified, while in
Appendix B we compare the peculiarities of different gauge schemes.

2 Preliminaries

We use all the notation, terminology and conventions introduced in part I [7].
For the convenience of the reader, though, let us briefly recall the most essential
ingredients and definitions of our framework.

2.1 Notation

Consider a smooth function

f : (0,∞)× S2 −→ R , (r, xA) 7−→ f(r, xA) .

If this function permits an asymptotic expansion as a power series in r, we
denote by fn, or (f)n, the coefficient of r−n in the corresponding expansion.
Be aware that sometimes a lower index might denote both the component of a
vector, and the n-th order term in an expansion of the corresponding object. If
both indices need to appear simultaneously we use brackets and place the index
corresponding to the n-th order expansion term outside the brackets. We write

f(r, xA) ∼
∞∑

k=−N

fk(x
A)r−k

if the right-hand side is the polyhomogeneous expansion at x = 0 of the function
x 7→ r−Nf(r, ·)|r=1/x. Moreover, we write f = O(rN ) (or f = O(x−N ), x ≡
1/r), N ∈ Z, if the function x 7→ r−Nf(r, ·)|r=1/x is smooth at x = 0.

2.2 Setting

We consider a 3+1-dimensionalC∞-manifold M . For definiteness we take as ini-
tial surface either a globally smooth light-cone CO ⊂ M or two null hyper-
surfaces N1, N2 ⊂ M intersecting transversally along a smooth submanifold
S ∼= S2. Suppose that the closure (in the completed space-time) N of N ∈
{CO \ {O},N1} meets I + transversally in a smooth spherical cross-section.
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We introduce adapted null coordinates (u ≡ x0, r ≡ x1, xA) on N (i.e.
N = {u = 0}, where r parameterizes the null rays generating N , and (xA) are
local coordinates on Σr ≡ {r = const, u = 0} ∼= S2). Then the trace g of the
metric on N becomes

g = g00du
2 + 2ν0dudr + 2νAdudx

A + ǧ , (2.1)

where
ǧ = ǧABdx

AdxB := gABdx
AdxB (2.2)

is a degenerate quadratic form induced by g on N which induces on each
slice Σr an r-dependent Riemannian metric ǧΣr (coinciding with ǧ(r, ·) in the
coordinates above). While the components g00, ν0 and νA depend upon the
choice of coordinates off N , the quadratic form ǧ is intrinsically defined on N .

In fact, we will be interested merely in the asymptotic behavior of the restric-
tion of the space-time metric to N . A regular light-cone or two transversally
intersecting null hypersurfaces with appropriately specified initial data, though,
guarantee that the vacuum constraint equations have unique solutions.

Throughout this work we use an overline to denote a space-time object
restricted to N . The symbol “ ˇ ” will be used to denote objects associated
with the Riemannian metric ǧΣr .

Definition 2.1 (cf. [7]) We say that a smooth metric tensor gµν defined on a
null hypersurface N given in adapted null coordinates has a smooth conformal
completion at infinity if the unphysical metric tensor g̃µν obtained via the co-

ordinate transformation r 7→ 1/r =: x and the conformal rescaling g 7→ g̃ ≡ x2g
is, as a Lorentzian metric, smoothly extendable at {x = 0}.

The components of a smooth tensor field on N will be said to be smooth at
infinity whenever they admit a smooth expansion in the conformally rescaled
space-time at {x = 0} and expressed in the (x, xA)-coordinates.

As remarked in [7], Definition 2.1 concerns only fields on N and is not
tied to the existence of an associated space-time. Moreover, it concerns both
conditions on the metric and on the coordinate system.

The Einstein equations split into a set of evolution equations and a set of
constraint equations which need to be satisfied on the initial surface. In the
characteristic case the data for the evolution equations are provided by the
trace of the metric on the initial surface. Due to the constraints not all of
its components can be prescribed freely. There are various ways of choosing
free data [6, 7]. Here we focus on Rendall’s scheme [10], where the free data
are formed by the conformal class [γ] of the tensor ǧΣr (and the function κ
introduced below).1 By choosing a representative they can be viewed as a one-
parameter family, parameterized by r, of Riemannian metrics γ(r, ·) on S2. A
major advantage of this scheme in particular in view of Section 4 is that it
permits a separation of physical and gauge degrees of freedom. Some comments
on how things change for other approaches to prescribe characteristic initial
data are given in [7], cf. Remark 3.4.

Einstein’s vacuum constraint equations in a ĝ-generalized wave-map gauge are
obtained from Einstein’s vacuum equations assuming that the wave-gauge vector

Hλ := Γλ − Γ̂λ −Wλ = 0 , Γλ := gαβΓλ
αβ , Γ̂λ := gαβΓ̂λ

αβ . (2.3)

1 In the case of two transversally intersecting null hypersurfaces these data need to be
supplemented by corresponding data on N2 and certain data on the intersection manifold S.
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vanishes. We use the hat-symbol “ ˆ ” to indicate objects associated with some
target metric ĝ, which we assume for convenience to be of the form

ĝ1i = 0 , ĝAB = r2sAB +O(1) , ν̂0 = 1 +O(r−3) , ν̂A = O(r−2) ,

ĝ00 = −1 +O(r−2) , ∂0ĝ1i = O(r−3) , ∂0ĝAB = O(r−1) (2.4)

on N , where s = sABdx
AdxB is the unit round metric on the sphere S2.

By Wλ = Wλ(xµ, gµν) we denote the components of a vector field, the gauge
source functions, which can be arbitrarily prescribed. They reflect the free-
dom to choose coordinates off the initial surface, and thus allow us to analyze
smoothness of the metric tensor at infinity in arbitrary coordinates.

For given initial data γ = γABdx
AdxB the wave-map gauge constraints form

a hierarchical system of ODEs along the null generators of the cone (cf. [2]):

∂2rrϕ− κ∂rϕ+
1

2
|σ|2ϕ = 0 , (2.5)

(∂r +
1

2
τ + κ)ν0 +

1

2
(W 0 + Γ̂0) = 0 , (2.6)

(∂r + τ)ξA − 2∇̌Bσ
B

A + ∂Aτ + 2∂Aκ = 0 , (2.7)

2ν0(∂rνA − 2νBχA
B)− νA(W

0 + Γ̂0)− gAB(W
B + Γ̂B)

+γABγ
CDΓ̌B

CD + ξA = 0 , (2.8)

(∂r + τ + κ)ζ + Ř− 1

2
ξAξ

A + ∇̌Aξ
A = 0 , (2.9)

(2∂r + τ + 2κ)grr + 2W r + 2Γ̂r − ζ = 0 , (2.10)

where τ and σA
B denote the expansion and the shear of N , respectively,

κ = Γr
rr , ξA = −2Γr

rA , ζ = 2gABΓr
AB + τgrr . (2.11)

Apart fromWλ the function κ turns out to be another gauge degree of freedom,
reflecting the freedom to choose r, which can be prescribed conveniently.

Integrating these equations successively one determines all the components
of g (note that ν0 = (ν0)−1 and g00 = gABνAνB − (ν0)

2grr). The relevant
boundary conditions follow either from regularity conditions at the vertex [2]
when N is a cone, or from the remaining data specified on N2 and S (cf. e.g.
[6, 10]) in the case of two characteristic surfaces intersecting transversally.

Our ultimate goal is to find necessary-and-sufficient conditions on the initial
data given on N , such that the resulting space-time has a smooth conformal
completion at infinity à la Penrose. This requires the following ingredients:

1. To exclude the appearance of conjugate points or coordinate singularities
on N , the constraint equations need to admit a non-degenerated global
solution g on N . This will be the case if and only if the functions ϕ and
ν0 are of constant sign,

ϕ 6= 0 , ν0 6= 0 on N . (2.12)

2. The metric g needs to be smoothly extendable as a Lorentzian metric,
which means that the functions ϕ−1 and (ν0)0 need to have a sign

ϕ−1 6= 0 , (ν0)0 6= 0 on S2 . (2.13)

This assumption excludes conjugate points at the intersection of N with I +.
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3. The components of g need to be smooth at I +. For this one has to make
sure that their asymptotic expansions contain no logarithmic terms and
have the correct order in terms of powers of r.

4. All the fields which appear in Friedrich’s conformal field equations (which
provide an evolution system which, in contrast to Einstein’s field equa-
tions, is well-behaved at I +) need to be smooth at I +.

5. Finally, an appropriate well-posedness result for the conformal field equa-
tions is needed.

Point 1 and 2 have been addressed in [7], cf. Proposition 2.2 below. Point 3
will be the subject of Section 3, while point 4 will be investigated in Section 5.
Point 5 will be addressed elsewhere.

From now on we shall consider exclusively conformal data γAB(r, ·)dxAdxB
and gauge functions κ and Wλ for which (2.12) and (2.13) hold. Let us sum-
marize some of the results established in [7] (adapted to the smooth setting on
which we focus here) which provide sufficient conditions such that (2.12) and
(2.13) hold in the case where N represents a regular light-cone CO:

2

Proposition 2.2 1. Solutions of the Raychaudhuri equation (2.5) with pre-
scribed κ = O(r−3) and σA

B = O(r−2) lead to a globally positive ϕ on
CO \ {O} with ϕ−1 > 0 on S2 if
∫ ∞

0

(∫ r

0

eH(r̂)dr̂
)
e−H(r)|σ|2(r) dr < 2 , where H(r, xA) :=

∫ r

0

κ(r̃, xA)dr̃ .

2. Assuming a Minkowski target and

W 0 = O(r−1) with W 0 < rϕ−2

√
det γ

det s
γABsAB and (W 0)1 < 2(ϕ−1)

−2 ,

any positive solution ϕ of (2.5) leads to a globally defined positive function
ν0 on CO with 0 < (ν0)0 <∞.

2.3 A priori restrictions

Before we analyze thoroughly the asymptotic behavior of the vacuum Einstein
constraint equations and derive necessary-and-sufficient conditions concerning
smoothness of the solutions at infinity it is convenient to have some a priori
knowledge regarding the lowest admissible orders of the gauge functions, and
to exclude the appearance of log terms in the expansion of “auxiliary” fields
such as ξA = Γr

rA. In [7] we have shown that the following equations need to
be necessarily fulfilled in some adapted null coordinate system to end up with
a trace of a metric on N which admits a smooth conformal completion and
infinity, and connection coefficients which are smooth at I +:

κ = O(r−3) , W 0 = O(r−1) , ξA = O(r−1) , WA = O(r−1) . (2.14)

Moreover, we may assume the initial data to be of the asymptotic form

γAB ∼ r2
(
sAB +

∞∑

n=1

h
(n)
ABr

−n
)
, (2.15)

2 In the conventions of [7] the functions ϕ, ν0, ϕ−1 and (ν0)0 need to be positive.
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for some smooth tensor fields h
(n)
AB on S2. If γ is not of the form (2.15), it can

either be brought to it via a conformal rescaling and an suitable choice of r, or it
leads to a metric g which does not have a smooth conformal completion at I +.

At this stage we do not know whether a space-time which admits a conformal
completion at infinity is compatible with polyhomogeneous rather than smooth
expansions of the functions ζ and W r. It will turn out that this is not the case.
However, we note that it follows from the constraint equations and the above a
priori restrictions that

if ζ = O(r−1) then W r = O(r). (2.16)

3 Asymptotic solutions of Einstein’s character-
istic vacuum constraint equations

It is useful to introduce some notation first: Let wAB be a rank-2-tensor on the
initial surface N . We denote by w̆AB , or (wAB )̆, its trace-free part w.r.t. the
metric gABdx

AdxB . Consider now the expansion coefficients (wAB)n at infinity,
which are tensors on S2. We denote by (w̆AB)n, or (wAB )̆n, the trace-free part
w.r.t. the unit round metric s = sABdx

AdxB. Finally, we set

|w|2 := gACgBDwABwCD , and |wn|2 := sACsBD(wAB)n(wCD)n .

Let us make the convention to raise indices of the expansion coefficients h
(n)
AB

with the standard metric. Moreover, we set

h(n) := sABh
(n)
AB .

A ring˚on a covariant derivative operator or a connection coefficient indicates
that the corresponding object is associated to s = sABdx

AdxB .

3.1 Asymptotic solutions of the constraint equations

The object of this section is twofold: First of all we will show that the Einstein
wave-map gauge constraints (2.5)-(2.10) can be solved asymptotically in terms
of polyhomogeneous expansions at infinity of the solution. This is done by
rewriting the equations in a form to which Appendix A applies. The second aim
is to make some general considerations concerning the appearance of logarithmic
terms in the asymptotic solutions of (2.5)-(2.10) for initial data of the form
(2.15). We want to extract necessary-and-sufficient conditions leading to the
trace g of a metric on N which admits a smooth conformal completion at
infinity in the sense of Definition 2.1.

Our starting point are initial data γ with an asymptotic behavior of the form
(2.15) and gauge functions

κ = O(r−3) , W 0 = O(r−1) , WA = O(r−1) , W r = O(r) , (3.1)

for which ϕ, ν0, ϕ−1 and (ν0)0 have a sign on N and S2, respectively. We fur-
ther require that the asymptotic expansion of ξA contains no logarithmic terms,
i.e. ξA = O(r−1). A violation of one of these assumptions would not be compat-
ible with a space-time which admits a smooth conformal completion at infinity
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as follows from the a priori restriction and the following fact: The considera-
tions below reveal that (2.15), κ = O(r−3) and ξA = O(r−1) imply ζ = O(r−1),
and that (2.16) applies. So we are imposing no restrictions when assuming
W r = O(r).

Consider the shear tensor,

σA
B =

1

2
gBC(∂rgAC )̆ =

1

2
γBC(∂rγAC )̆ , (3.2)

whose asymptotic expansion we express in terms of the expansion coefficients
of the initial data γ

σA
B = −1

2
h̆
(1)B
A r−2 +

(1
2
h(1)h̆

(1)B
A − h̆

(2)B
A

)
r−3 +O(r−4) , (3.3)

|σ|2 =
1

4
|h̆(1)|2r−4 +

(
h̆
(1)B
A h̆

(2)A
B − 1

2
h(1)|h̆(1)|2

)
r−5 +O(r−6) . (3.4)

A global solution, and thereby also the value of the “asymptotic integra-
tion functions”, to each of the constraint ODEs is determined by regularity
conditions at the vertex O of a light-cone, or by the data on the intersection
manifold S for two intersecting characteristic surfaces. However, the integra-
tion functions, which depend on the initial data γ, the gauge functions and the
boundary conditions at the vertex or the intersection manifold, appear difficult
to control.

3.1.1 Expansion of ϕ

We start with the constraint equation (2.5) for the function ϕ,

∂2rrϕ− κ∂rϕ+
1

2
|σ|2ϕ = 0 . (3.5)

In order to enable an easier comparison to Appendix A we make the transforma-
tion r 7→ 1/r ≡ x, with ϕ, κ and |σ|2 treated as scalars, and rewrite the ODE as
a first-order system. The equation then reads with ϕ(1) := ϕ and ϕ(2) := x∂xϕ,

[
x∂x +

(
0 −1

|σ|2
2x 1 + κ

x

)](
ϕ(1)

ϕ(2)

)
= 0 ,

or, when the leading order term is diagonalized,

[
x∂x +

(
1 0
0 0

)
+

(
κ
x − |σ|2

2x − |σ|2√
2x

|σ|2
23/2x

− κ√
2x

|σ|2
2x

)

︸ ︷︷ ︸
=O(x)

](
ϕ̃(1)

ϕ̃(2)

)
= 0 ,

with
(
ϕ̃(1)

ϕ̃(2)

)
:=

(
0 −

√
2

1 1

)(
ϕ(1)

ϕ(2)

)
.

The results in Appendix A (we have, in the notation used there, λ1 = −1,

λ2 = 0, and, since there is no source, ℓ̂ = −1) shows that this ODE can be
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solved asymptotically via a polyhomogeneous expansion with ϕ̃(n) = O(x−1).
It also reveals that the coefficients (ϕ̃(n))λn , n = 1, 2, i.e. (ϕ̃(1))−1 and (ϕ̃(2))0,
can be regarded as integrations functions, and that logarithmic terms do not
appear if and only if (cf. condition (A.19))

[( |σ|2
23/2x

− κ√
2x

)
ϕ̃(1) − |σ|2

2x
ϕ̃(2)

]
0
= 0 . (3.6)

Recall that · n denotes the r−n-term (xn-term) in the asymptotic expansion of
the corresponding field. Using κ = O(r−3) and |σ|2 = O(r−4) we observe that
(3.6) holds automatically. In particular we have ϕ = O(r). Furthermore, since

(ϕ̃(1))−1 = −
√
2(ϕ(2))−1 =

√
2ϕ−1 ,

(ϕ̃(2))0 = (ϕ(1))0 + (ϕ(2))0 = ϕ0 ,

the coefficients ϕ−1 and ϕ0 can be identified as the integration functions. As
indicated above, though being left undetermined by the equation itself, they
have global character.

In the following we shall set for convenience

σn := (|σ|2)n . (3.7)

Inserting the expansion ϕ ∼ ∑∞
n=ℓ̂ ϕnr

−n into (3.5) and equating coefficients
gives the expansion coefficients ϕn by a hierarchy of equations,

ϕ1 =
(1
2
κ3 −

1

4
σ4

)
ϕ−1 , (3.8)

ϕ2 =
(1
6
κ4 −

1

12
σ5

)
ϕ−1 −

1

12
σ4ϕ0 , (3.9)

while

τ ≡ 2∂r logϕ = 2r−1 − 2ϕ0(ϕ−1)
−1r−2

+[2(ϕ0)
2(ϕ−1)

−2 + σ4 − 2κ3]r
−3 +O(r−4) . (3.10)

Consider the conformal factor relating the r-dependent Riemannian metric
ǧΣr and γ, gABdx

AdxB = Ω2γABdx
AdxB. We find

det γ = det s
[
r4 + h(1)r3 +

(
h(2) +

1

2
(h(1))2 − 1

2
|h(1)|2

)
r2
]
+O(r) , (3.11)

Ω ≡ ϕ
( det s
det γ

)1/4
= ϕ−1 −

1

4
ϕ−1

(
2τ2 + h(1)

)
r−1 (3.12)

+
1

4
ϕ−1

[
2κ3 +

1

4
(h(1))2 +

1

4
|h(1)|2 − h(2) +

1

2
τ2h

(1)
]
r−2 +O(r−3) .

We conclude that

gAB = (ϕ−1)
2
[
sABr

2 + (h̆
(1)
AB − τ2sAB)r

+h̆
(2)
AB − (τ2 +

1

2
h(1))h̆

(1)
AB + [

1

4
(τ2)

2 + κ3 +
1

2
σ4]sAB

]
+O(r−1) .(3.13)

To sum it up, (2.15) and κ = O(r−3) imply that no logarithmic terms appear in
the conformal factor relating γAB and gAB, the latter one thus being smoothly
extendable at I + as a Riemannian metric on S2 whenever a global solution of
the Raychaudhuri equation exists on N with ϕ−1 6= 0.
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3.1.2 Expansion of ν0

We consider the constraint equation (2.6) which determines ν0,

∂rν
0 + ν0(

1

2
τ + κ) +

1

2
(W 0 + Γ̂0) = 0 , (3.14)

where W 0 = O(r−1) and, using (2.4),

Γ̂0 = 2ν0(ν̂0∂r ν̂0 − κ̂)− ν̂0Ω−2γABχ̂AB

= O(r−3)ν0 − 2(ϕ−1)
−2r−1 − 2(ϕ−1)

−2τ2r
−2 +O(r−3) . (3.15)

Again, we express the ODE by x ≡ 1/r. Its asymptotic form reads

[x∂x − 1− τ2
2
x+O(x2)]ν0

=
1

2
(W 0)1 − (ϕ−1)

−2

︸ ︷︷ ︸
=:−Φ−2

+[
1

2
(W 0)2 − (ϕ−1)

−2τ2]x+O(x2) . (3.16)

We want to make sure that the asymptotic solution of ν0 can be written as
power series. In the notation of Appendix A we have λ = 1 and ℓ̂ = 0, and
condition (A.10) which characterizes the absence of logarithmic terms reads

(W 0)2 =
[1
2
(W 0)1 + (ϕ−1)

−2
]
τ2 . (3.17)

Assuming (3.17) we insert the expansion ν0 ∼ ∑∞
n=ℓ̂(ν

0)nr
−n into (3.14) to

obtain the expansion coefficients (ν0)n in terms of κ, W 0, ϕ and γ,

ν0 = Φ−2 −D(ν0)Φ−4r−1 +O(r−2) , (3.18)

where D(ν0) denotes the globally defined integration function.
As mentioned above, for gµν to have a smooth conformal completion at

infinity the function (ν0)0 needs to be of constant sign which is the case if and
only if the gauge source function is chosen so that (compare Proposition 2.2)

(W 0)1 6= 2(ϕ−1)
−2 ∀xA . (3.19)

For the inverse of ν0 we then find

ν0 = Φ2 +D(ν0)r−1 +O(r−2) . (3.20)

Note that in the special case where (W 0)1 = 0 we have Φ = ϕ−1 and the
positivity of (ν0)0 follows from that of ϕ−1.

Since (W 0)1 can be prescribed arbitrarily and the value of ϕ−1 does not
depend on that choice, (3.19) is not a geometric restriction. Similarly, (3.17)
can be fulfilled by an appropriate choice of (W 0)2. The gauge freedom associated
with the choice of W 0 can be used to control the behavior of ν0 and to get rid
of the log terms in its asymptotic expansion (only the two leading order terms
in the expansion of W 0 are affected, compare the discussion in Section 3.3).
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3.1.3 Expansion of ξA

The connection coefficients ξA = −2Γr
rA are determined by (2.7),

(∂r + τ)ξA − 2∇̌Bσ
B

A + ∂Aτ + 2∂Aκ = 0 . (3.21)

To compute the covariant derivative of σA
B associated to gABdx

AdxB , we first
determine the asymptotic form of the Christoffel symbols,

Γ̌C
AB =

1

2
γCD(2∂(AγB)D−∂DγAB)+2δ(B

C∂A) logΩ−γCDγAB∂D logΩ = O(1) ,

with

(Γ̌C
AB)0 = Γ̊C

AB + 2δ(B
C∇̊A) logϕ−1 − sAB∇̊C logϕ−1 , (3.22)

(Γ̌C
AB)1 = ∇̊(Ah̆

(1)C
B) − 1

2
∇̊C h̆

(1)
AB − δ(A

C∇̊B)τ2 +
1

2
sAB∇̊Cτ2

−(sCDh
(1)
AB − h(1)CDsAB)∇̊D logϕ−1 . (3.23)

Invoking (3.3) that yields

∇̌BσA
B = Ξ

(2)
A r−2 + Ξ

(3)
A r−3 +O(r−4) , (3.24)

where

Ξ
(2)
A = −1

2
∇̊Bh̆

(1)B
A − h̆

(1)B
A ∇̊B logϕ−1 = ∇̊B(σA

B)2 + 2(σA
B)2∇̊B logϕ−1 ,(3.25)

Ξ
(3)
A = ∇̊B(σA

B)3 + 2(σA
B)3∇̊B logϕ−1 − (σA

B)2∇̊Bτ2 +
1

2
∇̊Aσ4 . (3.26)

Substituting now the coefficients by their asymptotic expansions we observe
that (3.21) has the asymptotic structure,

(∂r + 2r−1 + τ2r
−2 +O(r−3))ξA

= (2Ξ
(2)
A − ∂Aτ2)r

−2 + [2Ξ
(3)
A − ∂A(τ3 + 2κ3)]r

−3 +O(r−4) .

Nicely enough, the ODEs for ξA, A = 2, 3, are decoupled. For comparison with
the formulae in Appendix A we rewrite them in terms of x ≡ 1/r,

(x∂x − 2− τ2x+O(x2))ξA

= (∂Aτ2 − 2Ξ
(2)
A )x− [2Ξ

(3)
A − ∂A(τ3 + 2κ3)]x

2 +O(x3) .

Appendix A tells us (with λ = 2 and ℓ̂ = 1) that there are no logarithmic terms
in the expansion of ξA if and only if (A.10) holds,

τ2(2Ξ
(2)
A − ∂Aτ2) = 2Ξ

(3)
A − ∇̊A (τ3 + 2κ3) . (3.27)

The asymptotic expansion (3.10) of τ implies

τ3 =
1

2
(τ2)

2 + σ4 − 2κ3 , (3.28)

such that (3.27) can be written as

2τ2Ξ
(2)
A = 2Ξ

(3)
A − ∇̊Aσ4 . (3.29)
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Note that κ3, on which we have not imposed conditions yet, drops out, so
there is no gauge freedom left which could be appropriately adjusted to fulfill
this equation. The impact of (3.29) will be analyzed in Section 3.2, where it
becomes manifest that it does impose geometric restrictions on the initial data.
We refer to (3.29) as no-logs-condition.

Whenever the no-logs-condition holds, which we assume henceforth, the cov-
ector field ξA can be expanded as a power series,

ξA = (2Ξ
(2)
A − ∇̊Aτ2)r

−1 + C
(ξB)
A r−2 +O(r−3) . (3.30)

The coefficients C
(ξB)
A = C

(ξB)
A (xC), A = 2, 3, represent globally defined inte-

gration functions.

3.1.4 Expansion of νA

We analyze (2.8) to compute the asymptotic behavior of νA,

[
2∂r−ν0(W 0+Γ̂0)

]
νA−4νBχA

B+ν0[ξA−gAB(W
B+Γ̂B)+γABγ

CDΓ̌B
CD] = 0 .

(3.31)
Here

ν0gABΓ̂
B = 2gABΓ̂

B
01 − 2gABν

C χ̂C
B + ν0γABγ

CD(ˆ̃ΓB
CD − ĝ1Bχ̂CD)

= −τ̂ νA + vA
BνB + ν0γABγ

CDΓ̊B
CD +O(r−2) ,

with vC
B = O(r−2) ∈ Mat(2, 2), as follows from (2.4). Recall that W 0 =

O(r−1) and WA = O(r−1), or, by (3.13), WA := gABW
B = O(r). We deter-

mine the asymptotic expansions of the coefficients involved,

νBχ
B

A ≡ 1

2
νBg

BC∂rgAC = νA∂r logΩ +
1

2
νBγ

BC∂rγAC

= νAr
−1 +

1

2
(τ2νA − h̆

(1)B
A νB)r

−2 +O(r−3) . (3.32)

For the source term involving Christoffel symbols of the metrics sAB and gAB =
Ω2γAB we obtain,

γABγ
CD(̊ΓB

CD − Γ̌B
CD) = −∇̊Bh̆

(1)B
A r−1 +O(r−2) . (3.33)

Combining this with what we found for ν0, Γ̂
0 and ξA (assuming that the no-

logs-condition holds) the ODE for νA takes the asymptotic form

∂rνA + wA
BνB =

Φ2

2
(WA)−1r +

1

2

[
Φ2(WA)0 +D(ν0)(WA)−1

]
+

1

2

[
(ν0)2(WA)−1

+D(ν0)(WA)0 +Φ2
(
∇̊Aτ2 + 2h̆

(1)B
A ∇̊B logϕ−1 + (WA)1

)]
r−1 +O(r−2) ,

where

wA
B =

[ τ̂
2
− 1

2
ν0(W

0 + Γ̂0)
]
δA

B − 2χA
B

=
[
[Φ−2D(ν0) − 1

2
τ2]δA

B − 2(σA
B)2

]
r−2 +O(r−3) ∈ Mat(2, 2) .
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Note that this first-order system is not decoupled. In terms of x ≡ 1/r the
equation becomes (set w̃A

B(x, xA) = −x−1wA
B(x−1, xA) = O(x))

x∂xνA + w̃A
BνB = −1

2
Φ2(WA)−1x

−2 − 1

2

[
Φ2(WA)0 +D(ν0)(WA)−1

]
x−1

−1

2

[
(ν0)2(WA)−1 +D(ν0)(WA)0 +Φ2

(
∇̊Aτ2 + 2h̆

(1)B
A ∇̊B logϕ−1 + (WA)1

)]
+O(x) .

Again, we consult Appendix A; inspection of (A.19) tells us (with λ1 = λ2 = 0,

ℓ̂ = −2) that no logarithmic terms appear whenever the source satisfies,

(WA)1 = 4(σA
B)2∇̊B logϕ−1 − ∇̊Aτ2 − Φ−2(ν0)2(WA)−1

−Φ−2D(ν0)(WA)0 −
1

2
[(w̃A

B)1(w̃B
C)1 + (w̃A

C)2](WC)−1

−(w̃A
B)1

[
(WB)0 +Φ−2D(ν0)(WB)−1

]
. (3.34)

We express (3.34) in terms of WA = gABWB. It can be solved for (WA)1, and
thus provides a condition on (WA)1 once (WA)−1 and (WA)0 have been chosen.

Assuming that the gauge functions WA have an asymptotic behavior which
fulfills (3.34), any solution of (3.31) has the asymptotic form νA ∼∑∞

n=ℓ̂(νA)nr
−n.

For suitable, globally defined integration functions D
(νA)
A we find,

νA =
Φ2

4
(WA)−1r

2 +
[Φ2

2

[
(WA)0 + (σA

B)2(WB)−1 +
τ2
4
(WA)−1

]

+
1

4
D(ν0)(WA)−1

]
r +D

(νA)
A +O(r−1) . (3.35)

3.1.5 Expansion of ζ

We consider the ODE (2.9) which determines the auxiliary function ζ,

(∂r + τ + κ)ζ + Ř− 1

2
ξAξ

A + ∇̌Aξ
A = 0 . (3.36)

It remains to compute the source terms. From (3.13) and (3.30) we find

1

2
gABξAξB = O(r−4) (3.37)

gAB∇̌AξB = (ϕ−1)
−2∇̊A(ξA)1r

−3 +O(r−4) , (3.38)

with
(ξA)1 = 2(∇̌BσA

B)2 − ∇̊Aτ2 . (3.39)

Lemma 3.1 The curvature scalar Ř satisfies

Ř = Ř2r
−2 + [τ2Ř2 − (ϕ−1)

−2∇̊A(ξA)1]r
−3 +O(r−4) ,

with Ř2 = 2(ϕ−1)
−2(1−∆s logϕ−1).
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Since the computation of the curvature scalar is elementary though somewhat
lengthy we leave the proof of Lemma 3.1 to the reader.

Putting everything together, we observe that the ζ-constraint is of the form

[
∂r +

2

r
+ τ2r

−2 +O(r−3)
]
ζ = −Ř2r

−2 − τ2Ř2r
−3 +O(r−4) .

We express the ODE in terms of x ≡ 1/r,

[
x∂x − 2− τ2x+O(x2)

]
ζ = Ř2x+ τ2Ř2x

2 +O(x3) .

Comparison with Appendix A tells us (with λ = 2 and ℓ̂ = 1) that, due to the
specific form of the source, condition (A.10), which excludes the appearance of
logarithmic terms, is automatically satisfied, and the asymptotic expansion of
ζ reads

ζ = −Ř2r
−1 + C(ζ)r−2 +O(r−3) , (3.40)

where C(ζ) = C(ζ)(xA) can be identified with the integration function. It thus
follows that ζ = O(r−1), supposing that κ = O(r−3), that γ has the asymptotic
form (2.15) with ϕ−1 6= 0, and that the no-logs-condition holds.

3.1.6 Expansion of grr

Let us compute grr which satisfies (2.10),

(∂r +
1

2
τ + κ)grr =

1

2
ζ −W r − Γ̂r . (3.41)

Recall that now where we have established (3.40), it follows from the a priori
restrictions that W r = O(r). We further have,

Γ̂r = 2ν0Γ̂r
0r + grrκ̂− grAξ̂A + gABΓ̂r

AB

= κ̂grr − 2(ϕ−1)
−2r−1 − 2(ϕ−1)

−2τ2r
−2 +O(r−3) ,

so the ODE for grr is of the form

(∂r + r−1 +O(r−2))grr = O(r) ,

or, expressed in terms of the x ≡ 1/r-coordinate,

(x∂x − 1 + f∗)grr = f∗∗ , (3.42)

where

f∗ = −1

2
τ2x− (

1

2
τ3 + κ3 + κ̂3)x

2 − (
1

2
τ4 + κ4 + κ̂4)x

3 +O(x4) ,

f∗∗ = (W r)−1x
−2 + (W r)0x

−1 + (W r)1 +
1

2
Ř2 − 2(ϕ−1)

−2

+
[
(W r)2 −

1

2
ζ2 − 2(ϕ−1)

−2τ2

]
x+O(x2) .

We analyze the occurrence of logarithmic terms in the asymptotic solution of
(3.42). In the notation of Appendix A we have λ = 1 and ℓ̂ = −2. The
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considerations made there show that the asymptotic expansion of grr is O(r2)
if and only if the following condition is fulfilled (cf. (A.10)),

f∗
1 (g

rr)0 + f∗
2 (g

rr)−1 + f∗
3 (g

rr)−2 = f∗∗
1 . (3.43)

The expansion coefficients (g11)i can be derived from (A.9),

(grr)−2 = −1

3
f∗∗
−2 ,

(grr)−1 = −1

2
f∗∗
−1 −

1

6
f∗
1 f

∗∗
−2 ,

(grr)0 = −f∗∗
0 − 1

3
f∗
2 f

∗∗
−2 −

1

2
f∗
1 f

∗∗
−1 −

1

6
(f∗

1 )
2f∗∗

−2 .

A straightforward calculation reveals that (3.43) is equivalent to

(W r)2 =
ζ2
2

+ (ϕ−1)
−2τ2 +

τ2
4
Ř2 +

τ2
2
(W r)1 +

[τ3
4

+
κ3 + κ̂3

2
− (τ2)

2

8

]
(W r)0

[ 1

48
(τ2)

3 − τ2
4
(
τ3
2

+ κ3 + κ̂3) +
τ4
6

+
1

3
(κ4 + κ̂4)

]
(W r)−1 . (3.44)

By an appropriate choice of the gauge source function W r, or merely the ex-
pansion coefficient (W r)2, one can always arrange that (3.44) holds and thereby
get rid of all logarithmic terms in the expansion of grr. In that case

grr = −1

3
(W r)−1r

2 +O(r)

=⇒ g00 = Φ4
[ 1

16
(ϕ−1)

2sAB(W
A)1(W

B)1 +
1

3
(W r)−1

]
r2 +O(r) .

The integration function is represented by (g00)1, and its explicit form is not
relevant here.

3.2 The no-logs-condition

The no-logs-condition (3.29)

2τ2[∇̌BσA
B ]2 = 2[∇̌BσA

B]3 − ∇̊Aσ4 , (3.45)

needs to be imposed to exclude logarithmic terms in the asymptotic expansion
of ξA. Let us rewrite and simplify it. In (3.25) and (3.26) we have computed
[∇̃BσA

B]2 and [∇̃BσA
B]3. Plugging this in, we observe that the ∇̊Aσ4-terms

cancel out in (3.45), which becomes

∇̊B[τ2(σA
B)2 − (σA

B)3] + 2[τ2(σA
B)2 − (σA

B)3∇̊B]∇̊B logϕ−1 = 0 . (3.46)

This can be written as a divergence,

∇̊B

[
(ϕ−1)

2(τ2(σA
B)2 − (σA

B)3)
]
= 0 . (3.47)

One can view this equation as a linear first-order PDE-system on S2. Note that
by definition of σ B

A the expansion coefficients (σ B
A )n are s-traceless tensors on

S2, whence the term in squared brackets in (3.47) is traceless. It is known (cf.
e.g. [9]) that for any smooth source vA a PDE-system of the form ∇̊BζA

B = vA,
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with ζA
B a traceless tensor on the unit sphere S2, admits precisely one smooth

solution. In our case the source of the PDE vanishes, so we conclude that the
no-logs-condition (3.45) is equivalent to (recall our assumption ϕ−1 6= 0)

(σA
B)3 = τ2(σA

B)2 ⇐⇒ h̆
(2)
AB =

1

2
(h(1) + τ2)h̆

(1)
AB . (3.48)

Since ξA = −2Γr
rA, determined by (2.7), has a geometric meaning one should

expect the no-logs-condition to be gauge-invariant. In [7] it is shown that this
is indeed the case. Although the (κ = 0, W 0 = 0)-wave-map gauge invariably
produces logarithmic terms except for the flat case [7], one can decide whether
they can be transformed away or not by checking (3.48).

In the current scheme, where conformal data γ are prescribed on N , together
with the gauge functions κ and Wλ, this requires to determine τ2 by solving the
Raychaudhuri equation, which makes this scheme not practical for the purpose.
In particular, it is not a priori clear within this scheme whether any initial
data satisfying this condition exist unless both (σA

B)2 and (σA
B)3 vanish (⇐⇒

h̆
(1)
AB = 0 = h̆

(2)
AB). On the other hand, in gauge schemes where ǧ is prescribed,

(3.48) is a straightforward condition on its asymptotic behavior (cf. Section 4
where a related scheme is used).

In [7] we also provide a geometric interpretation of the no-logs-condition
(3.48) via the conformal Weyl tensor. Moreover, (3.48) can be related to Bondi’s
“outgoing wave condition”, cf. Section 4.5, Remark 4.1.

3.3 Summary and discussion

The subsequent theorem summarizes our analysis of the asymptotic behavior of
solutions to Einstein’s vacuum constraint equations ((i) and (ii) follow from [7]):

Theorem 3.2 Consider the characteristic initial value problem for Einstein’s
vacuum field equations with smooth conformal data γ = γABdx

AdxB and gauge
functions κ and Wλ, all defined on a smooth characteristic surface N meet-
ing I + transversally in a smooth spherical cross-section (and supplemented by
certain data on the intersection manifold S if N is one of two transversally
intersecting null hypersurfaces). The following conditions are necessary-and-
sufficient for the trace of the metric g = gµνdx

µdxν on N , obtained as solution
to the characteristic wave-map vacuum constraint equations (2.5)-(2.10), to ad-
mit a smooth conformal completion at infinity, and for the connection coeffi-
cients Γr

rA to be smooth at I + (in the sense of Definition 2.1), when imposing
a generalized wave-map gauge condition Hλ = 0:

(i) There exists a one-parameter family κ = κ(r) of Riemannian metrics on
S2 such that κ satisfies (2.15) and is conformal to γ (in particular we
may assume γ itself to be of the form (2.15)).

(ii) The functions ϕ, ν0, ϕ−1 and (ν0)0 have no zeros on N and S2, respec-
tively (the non-vanishing of (ν0)0 is equivalent to (3.19)).

(iii) The gauge source functions are chosen in such a way that κ = O(r−3),
W 0 = O(r−1), WA = O(r−1), W r = O(r), and such that the conditions
(3.17), (3.34) and (3.44) hold.
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(iv) The no-logs-condition is satisfied, i.e.

(σA
B)3 = τ2(σA

B)2 ⇐⇒ h̆
(2)
AB =

1

2
(h(1) + τ2)h̆

(1)
AB . (3.49)

Remark 3.3 For further reference let us explicitly list the conditions (3.17),
(3.34) and (3.44) in the case where the gauge source functions satisfy W 0 =
O(r−2) , WA = O(r−3) , W r = O(r−2):

(W 0)2 = τ2(ϕ−1)
−2 , (3.50)

(WA)3 = −(ϕ−1)
−2∇̊Aτ2 + 4(ϕ−1)

−3(σB
A)2∇̊Bϕ−1 , (3.51)

(W r)2 =
1

2
ζ2 + τ2

[
(ϕ−1)

−2 +
1

4
Ř2 +

1

2
(W r)1

]
. (3.52)

If, in addition, the no-logs-condition (3.49) is fulfilled then the leading order
terms of the non-vanishing metric components restricted to the cone read

g00 = −(1 + ∆sϕ−1) +D(g00)r−1 +O(r−2) , (3.53)

ν0 = (ϕ−1)
2 +D(ν0)r−1 +O(r−2) , (3.54)

νA = D
(νA)
A +O(r−1) ,

gAB = (ϕ−1)
2sABr

2 + (ϕ−1)
2[h̆

(1)
AB − τ2sAB]r (3.55)

−1

2
τ2h̆

(1)
AB + (

1

4
(τ2)

2 + κ3 +
1

2
σ4)sAB +O(r−1) . (3.56)

The coefficients denoted by D have a global character in that they are globally
defined by the initial data and the gauge functions.

Remark 3.4 For definiteness we have restricted attention to the setting where
the initial data are provided by the conformal data γ = γABdx

AdxB together with
the gauge functions κ and Wλ. Theorem 3.2, though, is quite independent of
the particular setting that has been chosen. This is discussed in [7].

It is shown in Appendix A that when analyzing the asymptotic behavior
of a linear first-order Fuchsian ODE-system whose indicial matrix has only
integer eigenvalues one has to distinguish two different cases. If the indicial
matrix cannot be diagonalized, or if it can be but the condition (A.20) of Ap-
pendix A is violated, then the appearance of logarithmic terms always depends
on the boundary conditions and thereby on the globally defined integration
functions. If, however, (A.20) is fulfilled their appearance depends exclusively
on the asymptotic behavior of the coefficients in the corresponding ODE. In
fact, all the Einstein wave-map gauge constraints are of the latter type.3

Due to this property and since many of the constraint equations have a
source term which involves a gauge freedom, many, though not all, logarithmic
terms arising can be eliminated for given data γ by a carefully adjusted leading-
order-term-behavior of the gauge functions. These are precisely the conditions
of Theorem 3.2 which involve a gauge source function κ or Wλ. Logarithmic
terms which appear if these conditions are violated are pure gauge artifacts.

This does not apply to the ξA- and the ζ-equation. Recall that to solve the
equation for ξA both κ and ϕ need to be known. This requires a choice of the

3Since the integration functions of some constraint equations appear as coefficients in other
ones, the no-logs-condition does depend on the integration functions ϕ−1 and ϕ0.
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κ-gauge. Since the choice of W 0 does not affect the ξA-equation, there is no
gauge-freedom left. If the no-logs-condition (3.49), which is gauge-invariant [7],
does not hold, there is no possibility to get rid of the log terms that arise there,
whatever κ has been chosen to be. Similarly, there is no gauge-freedom left when
the equation for ζ is integrated but, due to the special asymptotic structure of
its source term, no new log terms arise in the expansion of ζ.

The ξA-equation is the reason why the conditions on Wλ have to be supple-
mented by the no-logs-condition (3.49) which involves two integration functions,
ϕ−1 and ϕ0, globally determined by the initial data γ and the gauge function κ.
A decisive grievance is that, at least in our current setting, their dependence on
γ and κ is very intricate. Thus the question arises for which class of initial data
one finds a function κ = O(r−3), such that the no-logs-condition holds, and
accordingly what the geometric restrictions are for this to be possible. The only

obvious fact is that (3.49) will be satisfied for sure whenever h̆
(1)
AB = h̆

(2)
AB = 0.

For a “generic” choice of γ and κ one should expect that the expansion
coefficient τ2 = −2ϕ0(ϕ−1)

−1 will not vanish. Equation (3.17) then shows
that a W 0 = 0-gauge (in particular the harmonic gauge) is not adequate for
our purposes, since logarithmic terms can only be removed by a non-vanishing
gauge source function W 0 6= 0. This is illustrated best by the no-go result [6,
Theorem 3.1]. In order to fulfill (3.17) one needs a gauge choice for W 0 which
depends on the globally defined integration functions (ϕ−1, ϕ0). This indicates
the need of an initial data-dependent gauge choice to get rid of the logarithmic
terms. (Note that the higher-order terms in the expansion of W 0 do not affect
the appearance of log terms.) We shall address this issue in the next sections.

4 Metric gauge

4.1 Introduction

Up to now we investigated the overall form of the asymptotic expansions of the
trace of the metric on N . It turned out that it is not possible to manifestly
eliminate all logarithmic terms just by imposing restrictions on the asymptotic
behavior of the gauge functions. Instead, an additional gauge-independent “no-
logs-condition” (3.49), which depends on some of the globally defined integration
functions, needs to be fulfilled to ensure expansions at conformal infinity in terms
of power series. Nonetheless, the current gauge scheme is unsatisfactory in that
it seems hopeless to characterize those classes of initial data which satisfy (3.49).

In the following we will modify the scheme to allow for a better treatment
of these problems at hand. We develop a gauge scheme which is adjusted to
the initial data in such a way that we can solve at least some of the constraint
equations analytically, so that the values of the troublesome functions ϕ−1 and
ϕ0, which appeared hitherto as “integration functions” in the asymptotic solu-
tions and which are related to the appearance of log terms via (3.49), can be
computed explicitly. In view of the computation of all the fields appearing in
the conformal field equations we will choose a gauge in which the components
of the metric tensor take preferably simple values (at the expense of more com-
plicated gauge functions κ and Wλ). As before we shall adopt Rendall’s point
of view [10] and regard [γ] (together with a choice of κ) as the free “physical”
data.
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4.2 Gauge scheme

The trace of certain components of the vacuum Einstein equations on N to-
gether with the gauge condition Hλ = 0 can be used to determine the metric
and some of its transverse derivatives on N . Similarly, the remaining compo-
nents of the Einstein equations on N as well as their transverse derivatives,
∂n0Rµν = 0, n ∈ N, in combination with the gauge condition Hλ = 0, pro-
vide a way to determine higher-order transverse derivatives of the metric on N
when necessary. To compute all the fields which appear in the conformal field
equations, such as e.g. the rescaled Weyl tensor, this is what needs to be done.

However, it is very convenient to exploit the gauge freedom contained in the
vector field Wλ to prescribe certain metric components and transverse deriva-
tives thereof on N , and treat the corresponding equations as equations for Wλ.
Indeed, proceeding this way the computations below can be significantly sim-
plified. It turns out that the most convenient way here is a mixture of schemes
described in [6]: We still regard the conformal class [γ] of ǧΣr as the free “non-
gauge”-initial data.4 Recall that up to this stage we have regarded κ and Wλ

as gauge degrees of freedom. Now, instead of Wλ and ∂0Wλ we shall show that
it is possible to prescribe the functions

g0µ and ∂0g0µ with ν0 = g0r 6= 0 .

Of course there are some restrictions coming from regularity when N is a light-
cone, and from the requirement of the metric to be continuous at the intersection
manifold when N is one of two intersecting null surfaces. Since we are mainly
interested in prescribing these function for large values of r, this issue can be
ignored for our purposes. Some comments are given in the course of this section.

Let us now explain how the above gauge scheme can be realized: First
of all we solve the Raychaudhuri equation to compute gAB, where, as before,
we assume that a global solution τ exists. Then we compute Wλ from the
constraint equations (2.6), (2.8) and (2.10), a procedure which was introduced
in [6] as an alternative scheme for integrating the null constraint equations. In

order to make sure that we may prescribe ∂0g0µ rather than ∂0Wλ we need to
analyze the remaining Einstein equations on N (those components which have
not already been used to derive the Einstein wave-map gauge constraints in [2]).

We impose a wave-map gauge condition Hλ = 0 with arbitrarily prescribed
gauge functions κ and Wλ. From Hλ = 0 we obtain algebraic equations for
∂0grr, ∂0grA and gAB∂0gAB,

∂0grr = τν0 + (ν0)
2(Γ̂0 +W 0) , (4.1)

gAB∂0grB = ∇̌Aν0 − ∂rν
A − ν0g

CDΓ̌A
CD − grA(∂0grr − τν0)

+ν0(Γ̂
A +WA) , (4.2)

gAB∂0gAB = 2∇̌Aν
A − (2∂r + 2τ − ν0∂0grr)(ν0g

rr)− 2ν0(Γ̂
r +W r) .(4.3)

Recall that

Rµν = ∂αΓ
α
µν − ∂µΓ

α
να + Γα

µνΓ
β
αβ − Γα

µβΓ
β
να . (4.4)

4 We do not regard e.g. gµν as the free data as in [6] since we want to separate gauge
degrees of freedom and physical initial data.
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Einstein equations R̆AB = 0: Using the formulae in [2, Appendix A] (which
we shall make extensively use of for all the subsequent computations) we find

R̆AB = (∂0Γ0
AB )̆−

1

2
ν0(∂r − τ)(∂0gAB )̆−

1

2
ν0gABσ

CD(∂0gCD)̆

+2ν0σ(B
C(∂|0|gA)C )̆− (ν0)2∂0g0rσAB + known quantities

= −ν0∂r(∂0gAB )̆ +
1

2
(2τν0 +W 0 + Γ̂0)(∂0gAB )̆ + 2ν0σ(A

C(∂|0|gB)C )̆

+known quantities ,

where we used that

∂0Γ0
AB =

1

2
(ν0)2∂0grr ∂0gAB + (ν0)2∂0g0rχAB − 1

2
ν0∂r∂0gAB

+known quantities . (4.5)

Note that ∂0g0r, which appears in an intermediate step, cancels out at the end.

We observe that R̆AB = 0 provides a coupled linear ODE-system for (∂0gAB )̆.
The relevant boundary condition if N is a light-cone is [2, Section 4.5]

limr→0(∂0gAB )̆ = 0, in the case of two transversally intersecting characteristic
surfaces the boundary condition is determined by the shear of N2.

Einstein equation R0r = 0: We have

R0r = −∂0Γr
rr − ∂0ΓA

rA + known quantities

=
1

2
ν0∂200grr − ν0(∂r − κ)∂0g0r + known quantities ,

when taking into account that

∂0Γr
rr = ν0(∂r∂0g0r −

1

2
∂200grr)− (ν0)2(∂rν0 −

1

2
∂0grr)∂0g0r + known quantities ,

∂0ΓA
rB = known quantities .

Moreover, employing

∂0Γ0
0r =

1

2
ν0∂200grr −

1

2
(ν0)2∂0grr ∂0g0r + known quantities ,

∂0Γ0
ir = known quantities .

we find that

∂0H0 = ∂0gµν(Γ
0
µν − Γ̂0

µν) + gµν(∂0Γ0
µν − ∂0Γ̂0

µν)− ∂0W 0

= 2ν0∂0Γ0
0r + grr∂0Γ0

rr + 2grA∂0Γ0
rA + gAB∂0Γ0

AB − 2(ν0)3∂0grr ∂0g0r

−2(ν0)2∂0g0rΓ̂
0
0r − ∂0W 0 + known quantities

= (ν0)2∂200grr − [2(ν0)2(τ + Γ̂0
0r) + 3ν0(W 0 + Γ̂0)]∂0g0r − ∂0W 0

+known quantities .

Consequently, the gauge condition ∂0H0 = 0 can be used to rewrite the Einstein
equation R0r = 0 as a linear ODE for ∂0g0r, or, depending on the setting, as an
algebraic equation for the gauge source function ∂0W 0,
[
∂r−τ−κ−Γ̂0

0r−
3

2
ν0(W

0+Γ̂0)
]
∂0g0r =

1

2
(ν0)

2∂0W 0+known quantities . (4.6)
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The boundary condition if N is a light-cone is [2, Section 4.5] limr→0 ∂0g0r = 0;
in the case of two characteristic surfaces intersecting transversally it is deter-
mined by limu→0 ∂ugur|N2 .

Once ∂0g0r (or ∂0W 0) has been determined, we obtain ∂200grr algebraically

from the gauge condition ∂0H0 = 0.

Einstein equations R0A = 0: We find

R0A = −∂0Γr
rA − ∂0ΓB

AB + ν0χA
B∂0g0B + known quantities

=
1

2
ν0∂200grA − 1

2
ν0∂r∂0g0A + ν0χA

B∂0g0B + known quantities ,

where we used that

∂0Γr
rA = −ν0χA

B∂0g0B +
1

2
ν0(∂r∂0g0A − ∂200grA) + known quantities ,

∂0ΓC
AB = ν0χABg

CD∂0g0D + known quantities .

From

∂0ΓA
0r = −1

2
ν0gAB∂0grr ∂0g0B +

1

2
gAB(∂200grB + ∂r∂0g0B) + known quantities ,

∂0ΓA
rr = known quantities ,

we obtain for the angle-components of the u-differentiated wave-gauge vector,

∂0HA = ∂0gµν(Γ
A
µν − Γ̂A

µν) + gµν(∂0ΓA
µν − ∂0Γ̂A

µν)− ∂0WA

= −(ν0)2∂0grrg
AB∂0g0B − 2ν0gBC∂0g0C(χB

A − χ̂B
A) + 2ν0∂0ΓA

0r

+gij∂0ΓA
ij − ∂0WA + known quantities

= ν0gAB∂200grB + ν0gAB∂r∂0g0B − (τν0 + 2W 0 + 2Γ̂0)gAB∂0g0B

−2ν0gBC∂0g0C(χB
A − χ̂B

A)− ∂0WA + known quantities .

The gauge condition ∂0HA = 0 can be used to rewrite R0A = 0 as a coupled lin-
ear ODE-system for ∂0g0A or, depending on the setting, as an algebraic equation
for ∂0WA,

[
∂r −

3

2
τ +

1

2
τ̂ − ν0(W

0 + Γ̂0)
]
∂0g0A − (2σA

B − gADg
BC σ̂C

D)∂0g0B

=
1

2
ν0gAB∂0WB + known quantities . (4.7)

In the light-cone-case [2, Section 4.5] as well as in the case of two transversally
intersecting null hypersurfaces the boundary condition is limr→0 ∂0g0A = 0.

The gauge condition ∂0HA = 0 then determines ∂200grA algebraically.

Einstein equation R00 = 0: Finally, we have

R00 = ν0
(1
2
∂r + κ+

τ

2
− ν0∂rν0

)
∂0g00 − ∂0Γr

0r − ∂0ΓA
0A + known quantities

=
1

2
ν0τ∂0g00 −

1

2
gAB∂200gAB + known quantities .
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For that calculation we used that

∂0Γr
0r = −1

2
(ν0)2∂0grr ∂0g00 +

1

2
ν0∂r∂0g00 + known quantities ,

∂0ΓA
0B =

1

2
gAC∂200gBC + known quantities .

Taking into account that

∂0Γr
AB = (ν0)2χAB∂0g00 −

1

2
ν0∂200gAB + known quantities ,

we compute the r-component of the u-differentiated wave-gauge vector,

∂0Hr = ∂0gµν(Γ
r
µν − Γ̂r

µν) + gµν(∂0Γr
µν − ∂0Γ̂r

µν)− ∂0W r

= −(ν0)2
(
κ− κ̂+

1

2
ν0∂0grr

)
∂0g00 + 2ν0∂0Γr

0r + gij∂0Γr
ij

−∂0W r + known quantities

= (ν0)2
[
∂r −

τ

2
− κ+ κ̂− 3

2
ν0(W

0 + Γ̂0)
]
∂0g00 −

1

2
ν0gAB∂200gAB

−∂0W r + known quantities .

Once again we exploit the gauge condition, here ∂0Hr = 0, to rewrite R00 = 0
as a linear ODE for ∂0g00, or, alternatively, an algebraic equation for ∂0W r

[
∂r − τ −κ+ κ̂−

3

2
ν0(W

0+Γ̂0)
]
∂0g00 = (ν0)

2∂0W r +known quantities . (4.8)

For both light-cones [2, Section 4.5] and transversally intersecting null hyper-
surfaces, the boundary condition is limr→0 ∂0g00 = 0. The gauge condition
∂0Hr = 0 then determines gAB∂200gAB algebraically.

The gauge scheme we want to use here now works as follows: We prescribe
γ, κ, g0µ and ∂0g0µ. The Raychaudhuri equation and the vacuum Einstein
wave-map gauge constraints then determine gAB and Wλ. We then solve the
hierarchical system of equations derived above to compute ∂0Wλ from (4.6),
(4.7) and (4.8). We choose a smooth space-time vector field Wλ which induces

the computed values for Wλ and ∂0Wλ on N (in the light-cone case it is a
non-trivial issue whether such an extension off the cone exists near the tip, we
return to this issue below). Then we solve the reduced Einstein equations (or
the conformal field equations, cf. Section 5). It is well-known that the solution
induces the prescribed data for the metric tensor on the initial surface and
satisfies Hλ = 0 with the prescribed source vector field Wλ, and thus solves
the full Einstein equations. But then it follows from the equations (4.6)-(4.8),
together with the relevant boundary conditions at the vertex or the intersection
manifold, respectively, that the desired values for ∂0g0µ are induced, as well.

Some comments in the light-cone-case concerning regularity at the vertex
are in order: What we have described above is exactly the strategy on two
transverse characteristic surfaces (some care is needed to obtain a Wλ which
is continuous at the intersection manifold, cf. [6, Section 3.1]). On a null cone
there is a difficulty related to the behavior near the tip: In [3] it has been shown
that if the metric g is the restriction to the cone of a smooth space-time metric,
then Wλ does admit a smooth extension (and the known well-posedness result
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is applicable). However, we also want to prescribe ∂0g0µ, whence ∂0Wλ needs
to be of a specific form on the cone, as well. It seems difficult to ensure thatWλ

and ∂0Wλ arise from a smooth vector field Wλ in space-time if one proceeds
this way. To avoid dealing with the issue of extendability near the tip of the
cone, the gauge scheme will be somewhat modified:

Since we are merely interested in the asymptotic behavior of the fields, it
suffices for our purposes to prescribe g0µ and ∂0g0µ just for large r, say r > r2.
For small r, say r < r1 < r2 we can use a conventional scheme where for instance
γ, κ and Wλ are prescribed with e.g. Wλ = 0. Then the regularity issue near
the tip of the cone is well-understood [3]. A smooth transition in the regime
r1 < r < r2 is obtained via cut-off functions:

Let χ ∈ C∞(R) be any non-negative non-increasing function satisfying
χ(r) = 0 for r ≥ r2 and χ = 1 for r ≤ r1. Let (g0µ)̊ and (∂0g0µ)̊ denote
the values of g0µ and ∂0g0µ computed from (γ, κ) for say Wλ = 0, and denote
by (g0µ)

† and (∂0g0µ)
† those values we want realize for r > r2. We then set

g0µ = (1− χ)(g0µ)
† + χ(g0µ)̊ , (4.9)

∂0g0µ = (1− χ)(∂0g0µ)
† + χ(∂0g0µ)̊ . (4.10)

For these new values for g0µ and ∂0g0µ we go through the above scheme again.
By construction we still obtain the desired values for g0µ and ∂0g0µ for r >

r2, but now we also have Wλ = 0 = ∂0Wλ for r < r1, and the extension
problem becomes trivial: Since there are no difficulties in extending a vector
field defined along the light-cone to a neighborhood of the cone away from the
tip, we conclude that Wλ and ∂0Wλ arise from the restriction to the cone of
some smooth vector field Wλ.

The coordinate r which parameterizes the null rays generating the initial
surface is determined to a large extent by the choice of κ. We would like to
choose an r for which the expansion on N takes the form τ = 2/r. On a light-
cone this is straightforward, we simply choose κ = r

2 |σ|2. It follows from [3] that
this choice can be made up to the vertex, and it follows from the Raychaudhuri
equation and regularity at the vertex that τ takes the desired form.

If N is one of two transversally intersecting characteristic surfaces we cannot
achieve τ = 2/r globally, for the expansion needs to be regular on the intersec-
tion manifold. We would like to construct a κ such that τ = 2/r for large r.
Let us therefore again modify our gauge scheme slightly to bypass this issue:

Instead of κ (supplemented by the initial data for the ϕ-equation ϕ|S 6= 0
and ∂rϕ|S in the case of two characteristic surfaces, cf. [6, 10]), we prescribe
the function ϕ on N . An analysis of the Raychaudhuri equation (2.5) shows
that, for given κ, the existence of a nowhere vanishing ϕ on N (which can then
without loss of generality be taken to be positive), and which further satisfies
ϕ−1 > 0 implies ∂rϕ > 0 on N .5 When prescribing ϕ rather than κ we therefore
assume that ϕ is a strictly increasing, positive function with ϕ−1 > 0. Indeed,
the function κ is then determined algebraically via the ϕ-equation (cf. [6]).

In this section we have established the following setting: On N we regard
the conformal class of the family γ = γABdx

AdxB of Riemannian metrics as

5 Indeed, we observe that for κ = 0 any globally positive ϕ is concave in r. Together with
the required positivity of ϕ−1 this implies that ∂rϕ needs to be positive for all r. The case
κ 6= 0 can be reduced to κ = 0, cf. [7, Section 2.4].
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the “physical” initial data (in the case of two transversally intersecting null
hypersurfaces supplemented by data on N2 and S), while the functions

ϕ , g0µ , ∂0g0µ , (4.11)

rather than κ, Wµ and ∂0Wµ, are regarded as gauge functions on N , at least
for r > r2 (recall that ϕ , ∂rϕ and ν0 need to be positive).

4.3 Metric gauge and some conventions

We now impose specific values for the gauge functions (4.11). Guided by their
Minkowskian values we set, for r > r2,

ϕ = r , ν0 = 1 , νA = 0 , g00 = −1 , ∂0g0µ = 0 . (4.12)

Moreover, we assume a Minkowski target for r > r2,

ĝ = η ≡ −du2 + 2dudr + r2sABdx
AdxB . (4.13)

From now on everything will be expressed in this gauge, which we call metric
gauge. Although it may not explicitly be mentioned each time, since (4.12) and
(4.13) are merely assumed to hold for r > r2 we will tacitly assume henceforth
that all the equations are meant to hold in this regime.

The relation between metric gauge and harmonic coordinates is discussed in
Appendix B, where we address the “paradox” that in the metric gauge we do
not need to impose conditions on γ while in the harmonic gauge we do need to
do it to make sure that the constraint equations admit a global solution.

We have not discussed here what in this gauge scheme (which may be used
on N2 as well) the free data on the intersection manifold are, and we leave it
to the reader to work this out. We are interested in the asymptotic regime, and
the main object of this section was to show that the choice (4.12) can be made
without any geometric restrictions for large r, if one does not prescribe κ and
Wλ anymore, but treats them as unknowns determined by the constraints.

4.4 Solution of the constraint equations in the metric gauge

We solve the Einstein vacuum constraints in the metric gauge for κ and Wλ,
where we assume the initial data γ to be of the form (2.15). Recall our conven-
tion that all equations are meant to hold for r > r2.

Equation (2.5) yields with ϕ = r

κ = (∂rϕ)
−1
(
∂2rrϕ+

1

2
|σ|2ϕ

)
=

1

2
r|σ|2 (4.14)

=
1

2
σ4r

−3 +O(r−4) =
1

8
|h̆(1)|2r−3 +O(r−4) . (4.15)

We further note that ϕ = r implies

τ = 2/r , (4.16)

as desired, in particular τ2 = 0. We emphasize that the argument used for the
No-Go Theorem in [7], that the coefficient τ2 vanishes only for Minkowski data,
does not apply when κ 6= 0. In our case κ does not vanish unless |σ|2 ≡ 0.
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It follows from (3.13), (4.12) and (4.15) that

gAB = ϕ2

√
det s

det γ
γAB = r2sAB + rh̆

(1)
AB +

1

4
|h̆(1)|2sAB − (σA

C)3sBC +O(r−1) .

(4.17)
Moreover,

W 0 = −(2∂r + τ + 2κ)ν0 − Γ̂0 = −2r−1 − r|σ|2 + rgABsAB (4.18)

=
1

4
|h̆(1)|2r−3 +O(r−4) , (4.19)

where we used that

Γ̂0 = −rgABsAB = −2r−1 − 1

2
|h̆(1)|2r−3 +O(r−4) . (4.20)

The equation (2.7) which determines ξA cannot be solved in explicit form.
The asymptotic analysis of its solutions has already been done in Section 3.1.3.
The asymptotic expansion of ξA does not contain logarithmic terms if and only
if the no-logs-condition is fulfilled, which in the metric gauge where τ2 = 0
reduces to

(σA
B)3 = 0 . (4.21)

Assuming (4.21) one finds

ξA = −∇̊Bh̆
(1)
ABr

−1 + C
(ξB)
A +O(r−3) . (4.22)

Now we can solve (2.8) for WA,

WA = ξA + gCDΓ̌A
CD − Γ̂A = O(r−4) , (4.23)

where we used

Γ̂A = gCDΓ̊A
CD = sCDΓ̊A

CDr
−2 − h̆(1)CDΓ̊A

CDr
−3 +O(r−4) . (4.24)

Note that the two leading-order terms in (4.23) cancel out.
The ζ-equation (2.9) cannot be solved analytically, its asymptotic solution,

which has been determined in Section 3.1.5, does not involve log terms,

ζ = −2r−1 + C(ζ)r−2 +O(r−3) . (4.25)

Finally, we solve the constraint equation (2.10) for W r,

W r =
1

2
ζ −

(
∂1 +

1

2
τ + κ

)
grr − Γ̂r

=
1

2
ζ − r−1 − r

2
|σ|2 + rgABsAB =

1

2
C(ζ) +O(r−3) , (4.26)

as

Γ̂r = −rgABsAB = −2r−1 − 1

2
|h̆(1)|2r−3 +O(r−4) . (4.27)
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4.5 Overview of the metric gauge I

In the metric gauge one treats, at least for large r, some of the metric compo-
nents as gauge degrees of freedom rather than κ, Wλ and ∂0Wλ. This provides
the decisive advantage that one obtains more explicit solutions of the constraint
equations since most of them are algebraic equations rather than ODEs in this
setting, so that the asymptotic expansions contain less integration functions,
whose values are not explicitly known. Moreover, the computations of Schouten
tensor, Weyl tensor etc. (as needed in Section 5 for Friedrich’s equations) will
be simplified significantly by the fact that several metric components take their
Minkowskian values.

We have seen in Section 3 that many log terms are produced due to a bad
choice of coordinates. In the metric gauge all the gauge-dependent conditions
of Theorem 3.2 (cf. Remark 3.3 and compare (4.29)-(4.34) below with (3.50)-
(3.56)), are satisfied and we are left with the gauge-invariant no-logs-condition,
which can be expressed as an explicit condition on γ in this gauge,

0 = (σ B
A )3 =

1

2
h(1)h̆

(1)B
A − h̆

(2)B
A . (4.28)

Consequently we can freely prescribe all the h
(n)
AB’s except for h̆

(2)
AB which is

determined by (4.28).
It is easy to find sufficient conditions on the initial data γ such that the no-

logs-condition (3.49) in its general form is fulfilled (just take h̆
(1)
AB = h̆

(2)
AB = 0),

i.e. Theorem 3.2 shows that there is a large class of initial data for which the
metric admits a smooth conformal completion at infinity. To find necessary
conditions on γ is more involved, since the expansion coefficient τ2 is in general
not explicitly known. In the metric gauge, though, τ2 is explicitly known,
whence it is easily possible to characterize the initial data sets completely which
lead to the restriction of a metric to N which admits a smooth conformal
completion at infinity. Moreover, it becomes obvious that for “generic” initial
data the no-logs-condition will be violated.

Note that we have not studied yet the asymptotic behavior of the unknowns
of the conformal field equations which also involve transverse derivatives of the
metric. The gauge functions are more complicated in the metric gauge and
contain certain integration functions, and one might wonder whether log-terms
arise at some later stage. Luckily, it turns out (cf. Section 5) that this is not
the case, and that the no-logs-condition is necessary-and-sufficient to guarantee
smoothness of all the relevant fields at conformal infinity .

Of course, once we have determined the gauge functions it is possible to
return to the original viewpoint and regard them as the relevant gauge degrees
of freedom. This leads to an initial data-dependent gauge. Assuming that the
initial data γ satisfy the no-logs-condition (4.28) we give their values for r > r2
(the functions ∂0Wλ will be computed in Section 4.6):

κ =
1

2
r|σ|2 =

1

8
|h̆(1)|2r−3 +O(r−4) , (4.29)

W 0 = −r|σ|2 − 2

r
− Γ̂0 =

1

4
|h̆(1)|2r−3 +O(r−4) , (4.30)

WA = ξA + gCDΓ̌A
CD − Γ̂A = O(r−4) , (4.31)

W r =
1

2
ζ − r−1 − 1

2
r|σ|2 − Γ̂r = O(r−2) , (4.32)
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with ξA and ζ given by (4.22) and (4.25), respectively. The restrictions to N
of the metric components then take the form (again for r > r2):

g00 = −1 , ν0 = 1 , νA = 0 , grr = grA = 0 , (4.33)

gAB = r2sAB + rh̆
(1)
AB + 1

4 |h̆(1)|2sAB +O(r−1) . (4.34)

Remark 4.1 The asymptotic expansion of gAB depends only on the gauge
choice for κ. Our κ, equation (4.29), coincides with the κ used to define Bondi
coordinates (where one also requires τ = 2/r). The no-logs-condition which, in
a κ = r

2 |σ|2-gauge is equivalent to the absence of s-trace-free terms in (gAB)0,

(gAB )̆0 = 0 ,

recovers the “outgoing wave condition” imposed a priori by Bondi et al. and by
Sachs to inhibit the appearance of logarithmic terms (cf. e.g. [5]).

For an arbitrary κ = O(r−3) the correct generalization of this condition,
equivalent to the no-logs-condition (3.49), is (cf. (3.13)),

(gAB )̆0 = τ2sAC(σB
C)2 = −1

2
τ2h̆

(1)
AB .

4.6 Transverse derivatives of the metric on N

In this section we compute the ∂0Wλ’s and certain transverse derivatives of the
metric on N (the asymptotic expansions thereof) in the metric gauge using the
vacuum Einstein equations Rµν = 0 and assuming that the no-logs-condition is
fulfilled, so that (4.29)-(4.34) and ∂0g0µ = 0 hold. As before, all equalities are
meant to be valid for r > r2, even if this is not mentioned wherever relevant.

It follows from (4.1)-(4.3) that

∂0grr = −r|σ|2 = −2κ , (4.35)

∂0grA = ξA , (4.36)

gAB∂0gAB = −ζ − τ . (4.37)

If we plug in the values for gµν and ∂0gµν we find from [2, Appendix A] the
following expressions for the Christoffel symbols restricted to N , which we shall
made frequently use of:

Γµ
00 = Γ0

rr = Γ0
rA = ΓC

rr = 0 , Γr
rr = −Γ0

0r = −Γr
0r = κ , (4.38)

Γ0
0A = Γr

0A = −Γr
rA = 1

2ξA , ΓC
0r = 1

2 ξ
C , ΓC

rA = χA
C , Γ0

AB = −χAB , (4.39)

Γr
AB = − 1

2∂0gAB − χAB , ΓC
0A = 1

2g
CD∂0gAD , ΓC

AB = Γ̌C
AB . (4.40)

Einstein equations R̆AB = 0: From (4.4) we obtain

RAB = ŘAB + ∂0Γ0
AB + (∂r + ΓC

rC)Γ
r
AB + Γ0

AB(Γ
0
00 + Γr

0r + ΓC
0C)

−2ΓC
0(AΓ

0
B)C − 2Γr

rAΓ
r
rB − 2ΓC

r(AΓ
r
B)C .

First of all we have to determine the u-differentiated Christoffel symbol,

∂0Γ0
AB = −

(1
2
∂r + κ

)
∂0gAB − 2κχAB + ∇̌(AξB) . (4.41)
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Employing (4.38)-(4.40) and the relation ŘAB = 1
2 ŘgAB we obtain after some

simplifications that

R̆AB = −
(
∂r −

1

r
+
r

2
|σ|2

)
(∂0gAB )̆ + 2σ(A

C(∂|0|gB)C )̆− (∂rσAB )̆

+
(ζ
2
+

1

r
− r

2
|σ|2

)
σAB − 1

2
(ξAξB )̆ + (∇̌(AξB) )̆ , (4.42)

which should vanish in vacuum. The equations R̆AB = 0 form a closed linear
ODE-system for (∂0gAB )̆. Since it is generally hopeless to look for an analytic
solution, we content ourselves with computing the asymptotic solution. For this
it is convenient to rewrite the matrix equation (4.42) as a vector equation,


∂r +



(
r
2 |σ|2 − 1

r

)
− 2σ2

2 −2σ2
3 0

−σ32
(
r
2 |σ|2 − 1

r

)
−σ23

0 −2σ3
2

(
r
2 |σ|2 − 1

r

)
− 2σ3

3







(∂0g22)̆

(∂0g23)̆

(∂0g33)̆


 =



q22
q23
q33


 ,

where

qAB := −(∂rσAB )̆ +
(ζ
2
+

1

r
− r

2
|σ|2

)
σAB − 1

2
(ξAξB )̆ + (∇̌(AξB))̆ = O(r−1) .

In order to permit an easier comparison with Appendix A, we apply the trans-
formation r 7→ x := 1/r (with all quantities treated as scalars). Then the ODE
adopts the following asymptotic form,


x∂x +



1 0 0
0 1 0
0 0 1


+M





(∂0g22)̆

(∂0g23)̆

(∂0g33)̆


 = O(1) ,

where M = Mat(3, 3) = O(x). In the notation of Appendix A we observe

that λ = −1 and ℓ̂ = −1, and no logarithmic terms appear in the asymptotic
solution. Moreover, it is O(r) and the integration functions are represented by
the leading order terms,

(∂0gAB )̆ = DABr +O(1) .

Note that DAB is symmetric, DAB = DBA, and s-trace-free, s
ABDAB = 0.

Einstein equation R0r = 0:

R0r = ∂rΓ
r
0r + ∇̌AΓ

A
0r − ∂0Γr

rr − ∂0ΓA
rA + Γ0

0rΓ
A
0A + Γr

0r(Γ
0
0r + ΓA

rA)− ΓA
rBΓ

B
0A .

We determine the u-differentiated Christoffel symbols involved,

∂0Γr
rr = −1

2
∂200grr +

r2

2
|σ|4 − 1

2
|σ|2 − r

2
∂r|σ|2 , (4.43)

∂0ΓC
rA =

1

2
ξAξ

C +
1

2
∂r(g

BC∂0gAB) + gBC∇̌[AξB] (4.44)

=⇒ ∂0ΓA
rA =

1

2
ξAξ

A − 1

2
∂rζ +

1

r2
.
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Note that ∂200grr is the only unknown at this stage. We obtain

R0r =
1

2
∂200grr +

1

2

(
∂r + r−1 +

r

2
|σ|2

)
ζ − r2

4
|σ|4 − 1

2
|σ|2

+
1

2
(∇̌A − ξA)ξ

A − 1

2
σAB∂0gAB ,

which, again, should vanish in vacuum. With (2.9) that yields

∂200grr =
1

r
ζ + Ř+

1

2
ξAξ

A +
r2

2
|σ|4 + |σ|2 + σAB∂0gAB = O(r−3) . (4.45)

The leading-order term

Ξ := (∂200grr)3 = ζ2 + [DA
B − 2∇̊A∇̊B](σB

A)2 . (4.46)

depends on certain integration functions and is not explicitly known. We choose
this special notation, though, since it will appear several times in the leading-
order terms of other expansions.

The gauge condition then provides an algebraic equation for ∂0W 0,

0 = ∂0H0 = −∂0grrΓ0
00 − 2∂0grrΓ

0
0r − 2gAB∂0grBΓ

0
0A

+∂0gAB(Γ0
AB + rsAB) + 2∂0Γ0

0r + ∂0Γ0
rr + gAB∂0Γ0

AB − ∂0W 0

= ∂200grr + rsAB∂0gAB + ∇̌Aξ
A − 2ξAξ

A − 1

r2
− 3

2
r2|σ|4

−3

2
|σ|2 − r

2
∂r|σ|2 +

1

2
(∂r + r|σ|2)ζ − ∂0W 0 ,

where we used that

∂0Γ0
rr =

r2

2
|σ|4 − 1

2
|σ|2 − r

2
∂r|σ|2 , (4.47)

∂0Γ0
0r =

1

2
∂200grr −

r2

2
|σ|4 − 1

2
ξAξ

A . (4.48)

Inserting (4.45) and using again (2.9) we deduce that

∂0W 0 = −
(1
2
∂r +

1

r

)
ζ + (rsAB − σAB)∂0gAB − 1

r2
− r

2
∂r|σ|2

−1

2
|σ|2 − r2|σ|4 − ξAξ

A (4.49)

= O(r−3) . (4.50)

Einstein equations R0A = 0:

R0A = ∂rΓ
r
0A + ∇̌BΓ

B
0A − ∂0Γr

rA − ∂0ΓB
AB + Γ0

0AΓ
B
0B + (Γr

rr + ΓB
rB)Γ

r
0A

+ΓB
0AΓ

r
rB − Γ0

ABΓ
B
00 − 2Γr

rAΓ
r
0r − Γr

ABΓ
B
0r − ΓB

rAΓ
r
0B .

For the u-differentiated Christoffel symbols we find,

∂0Γr
rA = −1

2
∂200grA − χA

BξB − r

2
∂A|σ|2 −

1

2
r|σ|2ξA , (4.51)

∂0ΓC
AB = gCD∇̌(A∂|0|gB)D − 1

2
∇̌C∂0gAB +

1

2
ξC∂0gAB + ξCχAB ,(4.52)

=⇒ ∂0ΓB
AB = χA

BξB +
1

2
ξB∂0gAB − 1

2
∂Aζ .
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We insert these expressions into the formula for R0A to obtain,

R0A =
1

2
(∂r + r−1)ξA +

1

2
(∇̌B − ξB)∂0gAB +

r

2
(∂A +

1

2
ξA)|σ|2 +

1

2
∂200grA

+
1

2
(∂A − 1

2
ξA)ζ ,

which should vanish in vacuum, i.e.

∂200grA = (ξB − ∇̌B)∂0gAB − (∂r +
1

r
− ζ

2
)ξA − r(∂A +

ξA
2
)|σ|2 − ∂Aζ(4.53)

= −∇̊BDA
Br−1 +O(r−2) .

We employ the gauge condition ∂0HA = 0 to compute ∂0WA. This requires the
knowledge of further u-differentiated Christoffel symbols,

∂0ΓC
0r =

1

2
gCD∂200grD +

r

2
|σ|2ξC +

1

2
ξD∂0gCD , (4.54)

∂0ΓC
rr = gCD∂rξD − 1

2
r|σ|2ξC +

r

2
∇̌C |σ|2 . (4.55)

We then obtain

0 = ∂0HC = −∂0grrΓC
00 − 2∂0grrΓ

C
0r − 2gAB∂0grBΓ

C
0A − 2gAB∂0grB(Γ

C
rA − Γ̂C

rA)

+∂0gAB(ΓC
AB − Γ̂C

AB) + 2∂0ΓC
0r + ∂0ΓC

rr + gAB∂0ΓC
AB − ∂0WC

=
(
∂r +

3

r
+

3

2
r|σ|2

)
ξC + gCD∂200grD +

1

2
(∇̌C − ξC)ζ +

r

2
∇̌C |σ|2

+∂0gAB(Γ̌C
AB − Γ̊C

AB)− (∇̌A − 2ξA)∂0gAC − ∂0WC .

Combining this with the expression we found for ∂200grA yields

∂0WA = (∂0gAB − 2σAB)ξB − r

2
(∇̌A − 2ξA)|σ|2 − 1

2
∇̌Aζ

+∂0gBC(Γ̌A
BC − Γ̊A

BC) (4.56)

= O(r−4) . (4.57)

Einstein equation R00 = 0: The (00)-component of the Ricci tensor satisfies

R00 = (∂r + 2Γr
rr + ΓA

rA)Γ
r
00 − ∂0Γr

0r − ∂0ΓA
0A − Γr

0rΓ
r
0r − 2Γr

0AΓ
A
0r − ΓA

0BΓ
B
0A .

The u-differentiated Christoffel symbols appearing in this expression satisfy,

∂0Γr
0r =

1

2r
ζ +

1

2
Ř− 1

4
ξAξ

A − r2

4
|σ|4 + 1

2
|σ|2 + 1

2
σAB∂0gAB , (4.58)

∂0ΓA
0A =

1

2
gAB∂200gAB +

1

2
∂0gAB∂0gAB − 1

2
ξAξ

A , (4.59)

and we are led to

R00 = −1

2
gAB∂200gAB −

(1
2
σAB +

1

4
∂0gAB

)
∂0gAB − 1

2r
ζ − 1

2
Ř+

1

4
ξAξ

A − 1

2
|σ|2 ,

30

226 CHAPTER 11. ARXIV:1403.3560 [GR-QC] (2014)



which should vanish in vacuum, solving for gAB∂200gAB we are led to

gAB∂200gAB = −
(
σAB +

1

2
∂0gAB

)
∂0gAB − 1

r
ζ − Ř+

1

2
ξAξ

A − |σ|2 (4.60)

=
1

2
|D|2r−2 +O(r−3) . (4.61)

To compute ∂0W r we employ the gauge condition

0 = ∂0Hr = −∂0grr(Γr
00 − Γr

rr)− 2gAB∂0grBΓ
r
0A − 2gAB∂0grBΓ

r
rA

+∂0gAB(Γr
AB − Γ̂r

AB) + 2∂0Γr
0r + ∂0Γr

rr + gAB∂0Γr
AB − ∂0W r

=
1

2
(∇̌A − ξA)ξ

A − 1

2
gAB∂200gAB − 1

r2
− (1 +

r

2
∂r)|σ|2 −

3

4
r2|σ|4

−ζ
2
(
1

r
− r

2
|σ|2) + (rsAB − 1

2
σAB − 1

2
∂0gAB)∂0gAB − ∂0W r.(4.62)

For this calculation we used that

gAB∂0Γr
AB = ∇̌Aξ

A +
1

2
(∂r +

2

r
+ r|σ|2)ζ + 1

r2
− |σ|2 − σAB∂0gAB − 1

2
gAB∂200gAB .

We solve (4.62) for ∂0W r, and insert the expression we found for gAB∂200gAB,

∂0W r =
1

2
(∇̌A − 3

2
ξA)ξ

A +
1

4
r|σ|2ζ + 1

2
Ř− 1

r2
− 1

2
|σ|2 − r

2
∂r|σ|2

−3

4
r2|σ|4 − (

1

4
∂0gAB + σAB − rsAB)∂0gAB (4.63)

=
1

4
|D|2r−2 +O(r−3) . (4.64)

Einstein equations (∂0RAB )̆ = 0 Assuming the gauge condition Hλ = 0 the

Einstein equations (∂0RAB )̆ = 0 provide a linear ODE-system for (∂200gAB )̆. We
have

∂0RAB = ∂λ∂0Γλ
AB − ∂A∂0Γλ

λB + Γλ
ρλ∂0Γ

ρ
AB + Γρ

AB∂0Γ
λ
ρλ − Γλ

ρA∂0Γ
ρ
λB − Γρ

λB∂0Γ
λ
ρA .

The right-hand side contains several first-order u-differentiated Christoffel sym-
bols and one of second-order, ∂200Γ

0
AB, which we have not determined yet,

∂0Γ0
00 = ∂200g0r , (4.65)

∂0Γ0
0A =

1

2
∂200grA − 1

2
ξB∂0gAB +

r

2
|σ|2ξA (4.66)

= −1

2
∇̊BDA

Br−1 +O(r−2) , (4.67)

∂0Γ0
rA = −χA

BξB − r

2
(∂A + ξA)|σ|2 (4.68)

= −2∇̊B(σA
B)2r

−2 +O(r−3) , (4.69)

∂0Γr
AB = −1

2
∂200gAB − 1

2
(∂r + r|σ|2)∂0gAB + ∇̌(AξB) − r|σ|2χAB(4.70)

= −1

2
∂200gAB − 1

2
DAB +O(r−1) , (4.71)

∂0ΓC
0A = −1

2
ξAξ

C +
1

2
∂0gCD∂0gAD +

1

2
gCD∂200gAD (4.72)

=
1

2
gCD∂200gAD − 1

2
DADD

CDr−2 +O(r−3) . (4.73)
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To calculate the two-times u-differentiated Christoffel symbol we use that

∂200g
µν = −2gνσ∂0gµρ∂0gρσ − gµρgνσ∂200gρσ ,

whence

∂200g
00 = −∂200grr + 2ξAξ

A + 2r2|σ|4 (4.74)

= −Ξr−3 +O(r−4) , (4.75)

∂200g
0r = −∂200g0r − ∂200grr + 2ξAξ

A + 2r2|σ|4︸ ︷︷ ︸
=O(r−4)

, (4.76)

∂200g
0C = −gCD∂200grD − 2r|σ|2ξC − 2ξD∂0gCD (4.77)

= ∇̊BD
BCr−3 +O(r−4) . (4.78)

That yields

∂200Γ
0
AB =

(1
2
∂200grr − r2|σ|4 − ξCξ

C
)
(∂0gAB + 2χAB) + χAB∂200g0r

−
(1
2
∂r + r|σ|2

)
∂200gAB − r|σ|2∂r∂0gAB + 2r|σ|2∇̌(AξB)

−ξC(2∇̌(A∂|0|gB)C − ∇̌C∂0gAB) + ∇̌(A∂
2
|00|gB)r

= χAB∂200g0r −
(1
2
∂r + r|σ|2

)
∂200gAB − ∇̊(A∇̊|C|DB)

Cr−1 +O(r−2) .

Now all quantities have been determined which are needed to compute (∂0RAB )̆

(the ∂200g0r’s cancel out); we are just interested in the asymptotic behavior,

(∂0RAB )̆ = −
(
∂r − r−1 + r|σ|2

)
(∂200gAB )̆ + 2σ(A

C(∂2|00|gB)C )̆

− 1

2
(∆s − 2)DABr

−1 +O(r−2) ,

and this expression should vanish in vacuum.
We need to check whether there are logarithmic terms in the asymptotic ex-

pansion of (∂200gAB )̆, solution to (∂0RAB )̆ = 0. However, this ODE is of exactly
the same form as the ODE (4.42) for ∂0gAB. Therefore an identical argument
applies and leads to the conclusion that the solution can be asymptotically
expanded as a power series,

(∂200gAB )̆ = CABr +O(1) , (4.79)

where the symmetric and s-trace-free tensor CAB can be identified with the
integration functions.

For completeness let us also compute

∂0Γr
0A =

1

2
∂200grA − 1

2
ξB∂0gAB +

r

2
|σ|2ξA (4.80)

= −1

2
∇̊BDA

Br−1 +O(r−2) . (4.81)

32

228 CHAPTER 11. ARXIV:1403.3560 [GR-QC] (2014)



4.7 Overview of the metric gauge II

We give an overview of the values of all those objects we have computed so far in
the metric gauge. Recall the values for the gauge functions κ, Wλ and ∂0Wλ as
given by (4.29)-(4.32), (4.49), (4.56) and (4.63), needed to realize these values.
Recall further that equality is meant to hold for r > r2.

Metric components
g00 = −1, g00 = 0,
g0r = 1, g0r = 1,
g0A = 0, g0A = 0,
grr = 0, grr = 1,
grA = 0, grA = 0,

gAB = r2
√

det s
det γ γAB = r2sAB +O(r), gAB = r−2

√
detγ
det s γ

AB = r−2sAB +O(r−3).

First-order u-derivatives of the metric components
∂0g00 = 0, ∂0g00 = r|σ|2 = O(r−3),

∂0g0r = 0, ∂0g0r = r|σ|2 = O(r−3),

∂0g0A = 0, ∂0g0A = −ξA = O(r−3),

∂0grr = −r|σ|2 = O(r−3), ∂0grr = r|σ|2 = O(r−3),

∂0grA = ξA = O(r−1), ∂0grA = −ξA = O(r−3),

∂0gAB = DABr +O(1), ∂0gAB = −DABr−3 +O(r−4).

Second-order u-derivatives of the metric components

∂200grr = Ξr−3 +O(r−4) ,

∂200grA = −∇̊BDA
Br−1 +O(r−2) ,

gAB∂200gAB =
1

2
|D|2r−2 +O(r−3) .

Asymptotic behavior of the Christoffel symbols (cf. p. 27)
Γ0
00 = 0, Γr

rr = O(r−3),

Γ0
0r = O(r−3), Γr

rA = 1
2∇̊Bh

(1)B
A r−1 +O(r−2),

Γ0
0A = − 1

2∇̊B h̆
(1)
A

Br−1 +O(r−2), Γr
AB = −(sAB + 1

2DAB)r +O(1),
Γ0
rr = 0, ΓC

00 = 0,

Γ0
rA = 0, ΓC

0r = − 1
2∇̊Bh

(1)C
B r−3 +O(r−4),

Γ0
AB = −rsAB +O(1), ΓC

0A = 1
2DA

Cr−1 +O(r−2),
Γr
00 = 0, ΓC

rr = 0,
Γr
0r = O(r−3), ΓC

rA = 1
r δA

C +O(r−2),

Γr
0A = − 1

2∇̊B h̆
(1)B
A r−1 +O(r−2), ΓC

AB = Γ̊C
AB +O(r−1).

First-order u-derivatives of the Christoffel symbols
We give a list of the asymptotic behavior of all the u-differentiated Christof-
fel symbols crucial e.g. for the computation of the Weyl tensor, which can be
straightforwardly derived from our previous results,
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∂0Γ0
00 = not needed, ∂0Γr

rr = − 1
2Ξr

−3 +O(r−4),

∂0Γ0
0r = 1

2Ξr
−3 +O(r−4), ∂0Γr

rA = 1
2∇̊BDA

Br−1 +O(r−2),

∂0Γ0
0A = − 1

2 ∇̊BDA
Br−1 +O(r−2), ∂0Γr

AB = − 1
2CABr +O(1),

∂0Γ0
rr =

3
8 |h̆(1)|2r−4 +O(r−5), ∂0ΓC

00 = not needed,

∂0Γ0
rA = ∇̊Bh

(1)B
A r−2 +O(r−3), ∂0ΓC

0r = − 1
2∇̊BD

BCr−3 +O(r−4),

∂0Γ0
AB = − 1

2DAB +O(r−1), ∂0ΓC
0A = 1

2CA
Cr−1 +O(r−2),

∂0Γr
00 = not needed, ∂0ΓC

rr = ∇̊Bh
(1)C
B r−4 +O(r−5),

∂0Γr
0r = 1

2Ξr
−3 +O(r−4), ∂0ΓC

rA = − 1
2DA

Cr−2 +O(r−3),

∂0Γr
0A = − 1

2 ∇̊BDA
Br−1 +O(r−2), ∂0ΓC

AB =
[
∇̊(ADB)

C − 1
2∇̊CDAB

]
r−1 +O(r−2).

5 Asymptotic Expansions of the unknowns of

the CFE on N

5.1 Conformal field equations (CFE)

As indicated in the introduction, one would like to establish an existence the-
orem for the characteristic initial value problem for the vacuum Einstein equa-
tions which guarantees a “piece of a smooth I +”. This global existence prob-
lem, where one needs to control the limiting behavior near null infinity, can be
transformed into a local one via a conformal rescaling g 7→ g̃ = Θ2g, where
the conformal factor Θ has to vanish on the hypersurface I + which represents
(future) null infinity (with dΘ 6= 0 there). Henceforth we use ˜ to label objects
related to the unphysical space-time metric g̃.

The Einstein equations, regarded as equations for g̃ and Θ, become singular
wherever Θ vanishes, and are therefore not suitable to tackle the issue of proving
existence of a solution near I +. However, H. Friedrich was able to find a
representation of the vacuum Einstein equations which remains regular even
where the conformal factor vanishes, cf. e.g. [8]. These conformal field equations
(CFE) treat Θ as an unknown rather than a gauge function. Its gauge freedom
is reflected in the freedom to prescribe the curvature scalar R̃. This still leaves
the freedom to prescribe Θ on the initial surface. We shall take

Θ = 1/r = x for r > r2 (5.1)

as initial data on N . The CFE give rise to a complicated and highly overdeter-
mined system of PDEs, which, in 4 space-time dimensions, can be represented as
a symmetric hyperbolic system, supplemented by certain constraint equations.

5.1.1 Metric conformal field equations (MCFE)

There exist different versions of the CFE depending on which fields are re-
garded as unknowns. Let us first introduce the metric conformal field equations
(MCFE) [8]. Beside g̃ and Θ the unknowns are the Schouten tensor,

L̃µν =
1

2
R̃µν − 1

12
R̃g̃µν ,

the rescaled Weyl tensor,

d̃µνσ
ρ = Θ−1C̃µνσ

ρ = Θ−1Cµνσ
ρ ,
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and the scalar function (set ✷g̃ = g̃µν∇̃µ∇̃ν)

s̃ =
1

4
✷g̃Θ+

1

24
R̃Θ .

The MCFE read

R̃µνσ
κ[g̃] = Θd̃µνσ

κ + 2(g̃σ[µL̃ν]
κ − δ[µ

κL̃ν]σ) (5.2)

∇̃ρd̃µνσ
ρ = 0 , (5.3)

∇̃µL̃νσ − ∇̃ν L̃µσ = ∇̃ρΘ d̃νµσ
ρ , (5.4)

∇̃µ∇̃νΘ = −ΘL̃µν + s̃g̃µν , (5.5)

∇̃µs̃ = −L̃µν∇̃νΘ , (5.6)

2Θs̃− ∇̃µΘ∇̃µΘ = 0 , . (5.7)

Equation (5.7) is a consequence of (5.5) and (5.6) if it is known to hold at one
point (e.g. by an appropriate choice of the initial data).

5.1.2 General conformal field equations (GCFE)

Consider any frame field ek = eµk∂µ such that the g̃(ei, ek) ≡ g̃ik’s are constants.
The general conformal field equations (GCFE) [8] for the unknowns

eµk , Γ̃i
k
j , d̃ijk

l , L̃ij , Θ , s̃

read (from now on Latin indices are used to denote frame-components)

[ep, eq] = (Γ̃p
l
q − Γ̃q

l
p)el , (5.8)

e[p(Γ̃q]
i
j)− Γ̃k

i
jΓ̃[p

k
q] + Γ̃[p

i
|k|Γ̃q]

k
j = δ[p

iL̃q]j − g̃j[pL̃q]
i − 1

2
Θd̃pqj

i , (5.9)

∇̃id̃pqj
i = 0 , (5.10)

∇̃iL̃jk − ∇̃jL̃ik = ∇̃lΘd̃jik
l , (5.11)

∇̃i∇̃jΘ = −ΘL̃ij + sg̃ij , (5.12)

∇̃is̃ = −L̃ij∇̃jΘ , (5.13)

2Θs̃− ∇̃jΘ∇̃jΘ = 0 , (5.14)

where the Γ̃i
j
k’s denote the Levi-Civita connection coefficients in the frame ek.

Again, (5.14) suffices to be satisfied at just one point.

5.2 Asymptotic behavior of the fields appearing in the CFE

In this section we analyze the asymptotic behavior of the restriction to N of
the fields g̃µν , e

µ
k, Γ̃

σ
µν , d̃µνσ

ρ, L̃µν , Θ and s̃ and prove that they are smooth
at infinity in the metric gauge and taking (5.1) when constructed as solutions
of the constraint equations induced by the wave-map gauge reduced vacuum
Einstein equations, supposing that the initial data γ are of the form (2.15), and
the no-logs-condition (3.49) hold. As we shall show that the above fields are
smooth at I + w.r.t the ek-frame if and only if they have this property in the
coordinate frame defined by {u, x, xA}, we shall end up with the result that
(2.15) and (3.49) lead to smooth initial data for both MCFE and GCFE.

Using our previous results summarized in Section 4.7 most of the computa-
tions will be straightforward.
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5.2.1 Asymptotic behavior of the metric tensor

It follows from (4.33)-(4.34) that6

g̃00 = −x2, g̃0x = −1 , g̃0A = g̃xx = g̃xA = 0 , g̃AB = sAB +O(x) ,

i.e. g̃ has a smooth conformal completion at conformal infinity.

5.2.2 Asymptotic behavior of the Weyl tensor

Note that the rescaled Weyl tensor d̃µνσ
ρ = O(1) will be smooth at I + if

and only if the Weyl tensor is smooth at I + and vanishes there, i.e. C̃µνσ
ρ =

Cµνσ
ρ = O(x).

In vacuum we haveRµν = 0, and the Weyl tensor coincides with the Riemann
tensor,

Cµνρ
σ = Rµνρ

σ = ∂νΓσ
µρ − ∂µΓσ

νρ + Γα
µρΓ

σ
αν − Γα

νρΓ
σ
αµ .

Due to its algebraic symmetries it suffices to consider the components

C0r0
0 = O(r−3) , C0rA

0 = O(r−3) , C0A0
0 = O(r−1) ,

C0A0
B = O(r−1) , CAB0

0 = O(r−1) , CrAB
0 = O(r−3) ,

as follows from the formulae in Section 4.7. Remarkably all the leading order
terms which would induce terms of constant order after carrying out the coor-
dinate transformation r 7→ x := 1/r cancel out, in particular those involving
some of the integration constants whose explicit values are not known,

C0x0
0 = O(x) , C0xA

0 = O(x) , C0A0
0 = O(x) ,

C0A0
B = O(x) , CAB0

0 = O(x) , CxAB
0 = O(x) .

(Recall that O(x) has been defined in Section 2.1.) To establish that CrAB
0 =

O(r−3) rather than CrAB
0 = O(r−2) one needs to employ the no-logs-condition

and is led to the geometric interpretation described in [6, Section 6.2]. No
further condition on the initial data needs to be imposed.

5.2.3 Asymptotic behavior of ∂0Θ and ∂200Θ

To compute the remaining fields on N we first need to determine the trace
of the first- and second-order u-derivative of the conformal factor Θ on N .
However, the values of Θ away from N depend on the unphysical curvature
scalar R̃, which is treated as a conformal gauge source function in the CFE [8].
We impose the gauge condition

R̃ = O(1) , ∇̃0R̃ = O(1) (5.15)

(which is no restriction since R̃ needs to be smooth at I + anyway). The Ricci
scalars of g̃ = Θ2g and g are related via

R̃ = Θ−2(R− 6Θ−1gρσ∂ρ∂σΘ+ 6Θ−1gρσΓα
ρσ∂αΘ) . (5.16)

6 While up to now we used the variable x = 1/r mainly as an auxiliary quantity to facilitate
the comparison of the constraint equations with the formulae in Appendix A, we shall use it
henceforth as a coordinate.
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With R = 0 that yields an ODE for ∂0Θ on N where Θ = 1/r,

R̃ = 6r2
[
− 2r

(
∂r + r−1 +

r

2
|σ|2

)
∂0Θ + |σ|2 + 1

2
r−1gAB∂0gAB

]

= −12r3
(
∂r + r−1 +O(r−3)

)
∂0Θ+O(r−1) . (5.17)

Employing (5.15) it takes the form

r∂r∂0Θ+ [1 +O(r−2)]∂0Θ = O(r−2) . (5.18)

Appendix A tells us (with λ = ℓ̂ = 1) that the asymptotic expansion does not
contain logarithmic terms and is of the form

∂0Θ = O(r−1) = O(x) . (5.19)

The second-order u-derivative of the conformal factor can be computed as
follows: From (5.16) we deduce with ∂0R = 0 that

∂0R̃ = 6∂0(Θ−3gρσΓα
ρσ∂αΘ−Θ−3gρσ∂ρ∂σΘ)

= −3rR̃∂0Θ− 12r3
(
∂r + r−1 +O(r−3)

)
∂200Θ+O(1) .

Taking the gauge condition (5.15) into account this ODE for ∂200Θ becomes

r∂r∂200Θ+ [1 +O(r−2)]∂200Θ = O(r−2) , (5.20)

which is of the same form as (5.19). Hence

∂200Θ = O(r−1) = O(x) . (5.21)

5.2.4 Asymptotic behavior of the Christoffel symbols

We have computed the restriction to N of the Christoffel symbols in adapted
null coordinates (u, r, xA) by imposing the metric gauge condition, cf. Sec-
tion 4.7. Using the well-known behavior of Christoffel symbols under coordinate
transformations we determine their asymptotic behavior in the (u, x = 1/r, xA)-
coordinates,

Γ0
00 = 0 , Γx

xx = −2x−1 +O(x) ,
Γ0
0x = O(x) , Γx

xA = O(x) ,
Γ0
0A = O(x) , Γx

AB = (sAB + 1
2DAB)x+O(x2) ,

Γ0
xx = 0 , ΓC

00 = 0 ,

Γ0
xA = 0 , ΓC

0x = O(x) ,
Γ0
AB = −x−1sAB +O(1) , ΓC

0A = 1
2DA

Cx+O(x2) ,
Γx
00 = 0 , ΓC

xx = 0 ,
Γx
0x = O(x3) , ΓC

xA = −δACx−1 +O(1) ,

Γx
0A = O(x3) , ΓC

AB = Γ̊C
AB +O(x) .

We compute the trace of the Christoffel symbols on N associated to the
unphysical metric g̃. The transformation law for Christoffel symbols under a
conformal rescaling g 7→ Θ2g of the metric reads,

Γ̃ρ
µν = Γρ

µν +
1

Θ

(
δ ρ
ν ∂µΘ+ δ ρ

µ ∂νΘ− gµνg
ρσ∂σΘ

)
, (5.22)
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which yields on N , where Θ = x and ∂0Θ = O(x),

Γ̃0
00 = O(1) , Γ̃0

0x = O(x) , Γ̃0
0A = O(x) , Γ̃0

xx = 0 , Γ̃0
xA = 0 ,

Γ̃0
AB = O(1) , Γ̃x

00 = O(x2) , Γ̃x
0x = O(x) , Γ̃x

0A = O(x3) ,

Γ̃x
xx = O(1) , Γ̃x

xA = O(x) , Γ̃x
AB = O(1) , Γ̃C

00 = 0 , Γ̃C
0x = O(x) ,

Γ̃C
0A = O(1) , Γ̃C

xx = 0 , Γ̃C
xA = O(1) , Γ̃C

AB = O(1) .

The Christoffel symbols are smooth without any further restrictions on γ.

5.2.5 Asymptotic behavior of the Schouten tensor

From now all tensors will be expressed in terms of the coordinates (u, x, xA).
We compute the Schouten tensor L̃µν = 1

2 R̃µν − 1
12 R̃g̃µν , restricted to N , for

the conformally rescaled metric g̃ = Θ2g. The transformation law for the Ricci
tensor under conformal rescalings of the metric reads,

L̃µν = Lµν −Θ−1(∂µ∂νΘ− Γα
µν∂αΘ) + 2Θ−2(∂µΘ∂νΘ)̆ . (5.23)

With Lµν = 0 we obtain on N

L̃µν = 2x−2∂µΘ ∂νΘ− x−1∂µ∂νΘ+ (x−1Γ0
µν + gµν)∂0Θ+ x−1Γx

µν − 1

2
x2gµν .

Assuming (5.15), so that (5.19) and (5.21) hold, we find

L̃00 = 2x−2∂0Θ ∂0Θ− ∂0Θ +
1

2
x2 − x−1∂200Θ = O(1) ,

L̃0x =
1

2
− ∂x(x

−1∂0Θ) +O(1)∂0Θ+O(x2) = O(1) ,

L̃0A = −x−1∂A∂0Θ+O(1)∂0Θ+O(x2) = O(1) ,

L̃xx = O(1) ,

L̃xA = O(1) ,

L̃AB = O(x−1)∂0Θ+O(1) = O(1) ,

We conclude that the trace of the Schouten tensor on N is smooth at conformal
infinity.

5.2.6 Asymptotic behavior of the function s̃

Let us determine the asymptotic behavior of the function s̃ ≡ 1
4✷g̃Θ + 1

24 R̃Θ

on N . Using (5.16) with R = 0 and (5.22) we find that

s̃ =
1

4
x−2gµν∂µ∂νΘ − 1

4
x−2gµν Γ̃κ

µν∂κΘ+
1

24
R̃x

=
1

24
x−1R+

1

4
x−2gµν(Γα

µν − Γ̃α
µν)∂αΘ

=
1

2
x−3gαβ∂αΘ ∂βΘ ,
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which recovers (5.6), and which yields with (5.19) that

s̃ =
1

2
x− x−1∂0Θ = O(1) , (5.24)

i.e. the function s̃ is smooth at conformal infinity.

Asymptotic behavior of the frame field

The GCFE (5.8)-(5.14) require a frame field (eµk) w.r.t which the metric tensor
is constant. In our coordinates the trace of g̃ on N looks as follows (recall that
equality is meant to hold for r > r2):

g̃ = −x2du2 − 2dudx+ g̃ABdx
AdxB with g̃AB = x2gAB = O(1) .

We deduce that we may take (eµk) to be of the following form on N :

e0 = ∂u − x2

4
∂x ,

ex = ∂x ,

eÃ = eA
Ã
∂A with eA

Ã
= O(1) Ã = 2, 3 ,

and its dual

Θ0 = du ,

Θx = dx+
x2

4
du ,

ΘÃ = êÃAdx
A with êÃA = O(1) Ã = 2, 3 .

All the relevant fields are smooth at I + w.r.t. this frame if and only if they have
this property w.r.t. the coordinate frame defined by the adapted coordinates
{u, x, xA}, which we have shown to be the case.

5.3 Main result

Consider a space-time (M , g) which admits a smooth conformal completion at
infinity à la Penrose, and consider a null hypersurface N ⊂ M whose closure
in the conformally completed space-time M ∪ I + is smooth and meets I + in
a smooth spherical cross-section. It follows from the considerations in [11], cf.
[7], that then one can introduce Bondi coordinates near N ∩ I + w.r.t. which
N intersects I + at the surface {u = 0}, and in which all the fields appearing
in the CFE are smooth at I + in the sense of Definition 2.1.

The existence of adapted null coordinates in which the unknowns of the CFE
are smooth at I + is thus a necessary condition for the existence of a space-time
which admits a smooth conformal completion à la Penrose. We are led to the
following result:

Theorem 5.1 A necessary-and-sufficient condition for the restrictions to N
of all the fields appearing in the GCFE (5.8)-(5.14), or the MCFE (5.2)-(5.7),
constructed from initial data γ = γABdx

AdxB of the form (2.15) to be smooth
at I +, is that the initial data γ satisfy the no-logs-condition (3.49) in some
(and then all) adapted null coordinate systems. In that case the metric gauge
provides a gauge choice where smoothness at I + holds.
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A Asymptotic solutions of Fuchsian ODEs

The main object of this appendix is to justify rigorously our use of expansions as
asymptotic solutions to Einstein’s characteristic constraint equations. Smooth-
ness of these solutions at infinity is a crucial aspect of the analysis, which is why
we derive necessary-and-sufficient conditions for the asymptotic expansions to
involve no logarithmic terms. To do that we shall proceed as follows: Instead of
using r as the independent variable, we introduce x := 1/r as a new variable and
study the transformed ODE near x = 0. For this we make Taylor expansions
of the coefficients appearing in the ODE at x = 0, and write down the formal
polyhomogeneous solutions. The Borel summation lemma guarantees that there
exists a function whose polyhomogeneous expansion coincides with the formal
series. This function will be shown to approximate the exact solution around
x = 0, from which we eventually conclude that the formal polyhomogeneous
solution is in fact an expansion of the exact solution at x = 0.

To illustrate the procedure, we first show how it works for linear first-order
scalar equations in full generality. We then show how this adapts to linear first-
order systems, under conditions corresponding to those that arise in the main
text, in order to avoid an uninteresting discussion of several special cases. Every
dependence on further variables, which we assume to have compact support, will
be suppressed for convenience.

For the definition of polyhomogeneous functions we refer the reader to [7,
Appendix A].

A.1 Formal solutions

A.1.1 Scalar equation x∂xf + hf = g

We consider the ODE
x∂xf + hf = g , (A.1)

where x−ℓg = O(1), ℓ ∈ Z, and h = O(1) (which clearly includes those cases
where h has a zero of any order at x = 0) are assumed to be smooth functions
on some interval [0, x0).

We represent x−ℓg and h via their Taylor expansions at x = 0,

g ∼
∞∑

n=ℓ

gnx
n , h ∼

∞∑

n=0

hnx
n

(the symbol ∼ has been defined in Section 2.1). We define the indicial exponent
to be

λ := −h(0) = −h0 . (A.2)

When considering functions which further depend on angular variables, we will
always make the supplementary hypothesis that

h0 is angle-independent. (A.3)
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1st case: λ 6∈ Z . We make the ansatz

f ∼ xλ
∞∑

n=ℓ

f
(0)
n+λx

n +

∞∑

n=ℓ

f (1)
n xn =: xλf (0) + f (1) . (A.4)

Here we use f (a) as short form for the corresponding formal power series (in
Section A.2 we shall use Borel summation to obtain a proper function from
these formal expansions). In the course of this appendix it will become clear
that any solution of (A.1) admits an expansion of the form (A.4), so this ansatz
is not restrictive. It follows from (A.1) that f (1) needs to satisfy for any N ∈ N

N∑

n=ℓ

nf (1)
n xn +

N∑

n=ℓ

n−ℓ∑

k=0

hkf
(1)
n−kx

n =

N∑

n=ℓ

gnx
n + o(xN )

⇐⇒ (n− λ)f (1)
n = gn −

n−ℓ∑

k=1

hkf
(1)
n−k for n = ℓ, ℓ+ 1, . . . (A.5)

Since n − λ 6= 0 by assumption, this defines a unique formal solution f (1) by
solving the equations hierarchically. The formal series f (0) needs to satisfy

xλ
N∑

n=ℓ

(λ + n)f
(0)
n+λx

n + xλ
N∑

n=ℓ

n−ℓ∑

k=0

hkf
(0)
n−k+λx

n = o(xλ+N )

⇐⇒ nf
(0)
n+λ = −

n−ℓ∑

k=1

hkf
(0)
n−k+λ for n = ℓ, ℓ+ 1, . . . (A.6)

We observe that f
(0)
n+λ = 0 for n < 0, while f

(0)
λ can be chosen arbitrarily. Once

this has been done, (A.6) determines the higher-order coefficients. Hence, our

ansatz leads to a formal solution, where f
(0)
λ can be thought of as represent-

ing the integration constant, or function if angular variables are involved. For
convenience we will just speak of an integration constant in what follows.

2nd case: λ ∈ Z . We start with the (again non-restrictive) ansatz

f ∼
∞∑

n=ℓ̂

f (0)
n xn + log x

∞∑

n=ℓ̂

f (1)
n xn =: f (0) + f (1) log x , (A.7)

where we have set ℓ̂ := min(λ, ℓ). Inserting (A.7) into (A.1) yields

logx
N∑

n=ℓ̂

nf (1)
n xn +

N∑

n=ℓ̂

f (1)
n xn + log x

N∑

n=ℓ̂

n−ℓ̂∑

k=0

hkf
(1)
n−kx

n +
N∑

n=ℓ̂

nf (0)
n xn

+

N∑

n=ℓ̂

n−ℓ̂∑

k=0

hkf
(0)
n−kx

n =

N∑

n=ℓ̂

gnx
n + o(xN log x)

⇐⇒ (n− λ)f (1)
n +

n−ℓ̂∑

k=1

hkf
(1)
n−k = 0 (A.8)

and f (1)
n + (n− λ)f (0)

n +
n−ℓ̂∑

k=1

hkf
(0)
n−k = gn for any n ≥ ℓ̂ . (A.9)
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If n = ℓ̂, (A.8) is understood as (ℓ̂ − λ)f
(0)

ℓ̂
= 0, for ℓ̂ ≤ n < λ it leads

to f
(1)
n = 0. Then (A.9) with ℓ̂ ≤ n < λ determines the coefficients f

(0)
n . If

n = λ (A.8), holds automatically, while (A.9) determines f
(1)
λ . The coefficient

f
(0)
λ can always be chosen arbitrarily. Once this has been done, all coefficients

f
(1)
n and f

(0)
n with λ > n are determined by the (A.8) and (A.9), respectively.

This way we obtain a formal solution with one free parameter, f
(0)
λ , which can

be regarded as integration constant.
These considerations also reveal that the formal solution (A.7) contains no

logarithmic terms if and only if f
(1)
λ = 0 or, equivalently,

λ−ℓ̂∑

k=1

hkf
(0)
λ−k = gλ . (A.10)

Indeed the vanishing of f
(1)
λ enforces by (A.8) that all the f

(1)
n ’s are zero for

n > λ as well, while those with n < λ have to vanish anyway. Note that

(A.10) is in fact a condition relating h and g, since the f
(0)
λ−k’s are determined

hierarchically from (A.9) (with f
(1)
n = 0), it does not depend on the boundary

conditions as captured by the integration constant.

A.1.2 ODE-system x∂xf + hf = g

Let us now consider a first-order linear ODE-system,

x∂xf + hf = g , (A.11)

where h = O(1) ∈ Mat(n, n) and g = O(xℓ), ℓ ∈ Z. The components of
h and x−ℓg are assumed to be smooth functions on the interval [0, x0). For
convenience, and because it suffices for our purposes, we focus on the case
n = 2. Only at some points we add a comment how the general case looks like.

Again, we represent x−ℓg and h via their Taylor expansions at x = 0,

g ∼
∞∑

n=ℓ

gnx
n , gn ∈ R2 , h ∼

∞∑

n=0

hnx
n , hn ∈ Mat(2, 2) .

There exists a change of basis matrix T ∈ GL(2) such that Th0T
−1 =: hJ0

adopts Jordan normal form. Hence, it suffices to study the system

x∂xTf +
[
hJ0 +

∞∑

n=1

ThnT
−1xn

]
Tf = Tg ,

or, by relabeling the symbols,

x∂xf +
( ∞∑

n=0

hnx
n
)
f = g , (A.12)

with either

h0 =

(
−λ1 0
0 −λ2

)
or h0 =

(
−λ 1
0 −λ

)
. (A.13)
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We mentioned that a dependence on additional variables is permitted. However,
as in the scalar case, we assume

the indicial matrix h0 is angle-independent, (A.14)

and thus is a truly constant matrix. In addition, since this covers all cases we
are interested in with regard to the main text, we assume that

λ, λi ∈ Z . (A.15)

1st case: h0 =

(
−λ1 0
0 −λ2

)
. W.l.o.g. we assume λ1 ≤ λ2. Furthermore,

we define
ℓ̂ := min(λ1, ℓ) .

We make the ansatz (again, later on it will be shown that any solution of (A.11)
admits an expansion of the form (A.16))

fi ∼
2∑

k=0

logk x

∞∑

n=ℓ̂

(f
(k)
i )nx

n =: f
(0)
i + f

(1)
i log x+ f

(2)
i log2 x , (A.16)

where the symbols appearing in this definition are to be understood in the same
way as above. The upper index in brackets displays the order of the log term.

Whenever useful, the coefficients f
(a)
k with k < ℓ̂ are defined as to be zero.

We insert (A.16) into (A.12). The coefficients need to satisfy the following

set of equations (for n ≥ ℓ̂):

(1) (n− λi)(f
(2)
i )n + Fi[(f

(2))k, k < n] = 0 , i = 1, 2 ,

(2) 2(f
(2)
i )n + (n− λi)(f

(1)
i )n +Gi[(f

(1))k, k < n] = 0 , i = 1, 2 ,

(3) (f
(1)
i )n + (n− λi)(f

(0)
i )n +Hi[(f

(0))k, k < n] = (gi)n , i = 1, 2 ,

where Fi, Gi and Hi are multi-linear functions of the indicated quantities. The
explicit form of Hi, which will be needed later on, is

Hi =

n−ℓ̂∑

k=1

[
hk(f

(0))n−k

]
i
, (A.17)

analogously for the other functions. Note that Hi generally depends on both
components of f (0) since there is no need for the hk’s, k ≥ 1, to be diagonal.

A solution to the equations (1)-(3) can be constructed as follows: We describe
the case λ1 < λ2, the case λ1 = λ2 can be treated similarly.

n < λ1 : We have to choose (f
(2)
i )n = 0 and (f

(1)
i )n = 0 to fulfill (1) and (2).

The coefficients (f
(0)
i )n will be generally non-zero and are determined by (3).

n = λ1 : Choose (f
(2)
i )λ1 = 0 and (f

(1)
2 )λ1 = 0. The first component of (2)

(i.e. the one with i = 1) is automatically satisfied, while the first component of

(3) determines (f
(1)
1 )λ1 . The coefficient (f

(0)
1 )λ1 is free to choose, while (f

(0)
2 )λ1

follows from the second component of (3) (the one with i = 2).

λ1 < n < λ2 : (1) still requires (f
(2)
i )n = 0. The coefficients (f

(1)
i )n are

determined by (2), while the (f
(0)
i )n’s are determined by (3).
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n = λ2 : Set (f
(2)
1 )λ2 = 0. The second component of (1) holds automat-

ically, no matter what the value of (f
(2)
2 )λ2 is. The coefficient (f

(1)
1 )λ2 is de-

termined by the first component of (2). The coefficient (f
(2)
2 )λ2 follows from

(2). The coefficient (f
(1)
2 )λ2 is determined by the second component of (3). The

coefficient (f
(0)
1 )λ2 follows from (3), while (f

(0)
2 )λ2 can be chosen arbitrarily.

n > λ2 : All coefficients (f
(j)
i )n = 0 are determined by (1)-(3).

We remark that for λ1 = λ2 the coefficients which can be viewed as integra-

tion constants are (f
(0)
i )λ, i = 1, 2. Moreover, this case implies f (2) = 0.

Consequently, the ansatz (A.16) leads to a formal solution of (A.12) with

two free parameters, which can be considered as integration constants (f
(0)
i )λi .

In fact a similar ansatz, namely

fi ∼
N∑

k=0

∞∑

n=ℓ̂

(f
(k)
i )nx

n logk x , (A.18)

leads to a formal solution of the corresponding N -dimensional system with h0 =

diag(−λ1, . . . ,−λN). The integration constants can be identified with (f
(0)
i )λi .

Logarithmic terms do not appear in (A.16) if and only if

λi−ℓ̂∑

k=1

[hk(f
(0))λi−k]i = (gi)λi , i = 1, 2 . (A.19)

Here one has to distinguish two cases: If

(A.19) is independent of (f
(0)
1 )λ1 , (A.20)

then (A.19) is, as in the scalar case, a condition involving exclusively g and
h, i.e. it just concerns the equations itself and is independent of the boundary
conditions. In particular this case occurs for λ1 = λ2. Otherwise the appearance

of log terms depends on the value of the integration constant (f
(0)
1 )λ1 .

2nd case: h0 =

(
−λ 1
0 −λ

)
. We use the same ansatz (A.16) as in the 1st

case, and with ℓ̂ := min(λ, ℓ). We insert this ansatz into (A.12) to end up with

the following relations among the coefficients (n ≥ ℓ̂):

(1) (n− λ)(f
(2)
i )n + δ1i(f

(2)
2 )n + Fi[(f

(2))k, k < n] = 0 , i = 1, 2,

(2) 2(f
(2)
i )n + (n− λ)(f

(1)
i )n + δ1i(f

(1)
2 )n +Gi[(f

(1))k, k < n] = 0 , i = 1, 2,

(3) (f
(1)
i )n + (n− λ)(f

(0)
i )n + δ1i(f

(0)
2 )n +Hi[(f

(0))k, k < n] = (gi)n , i = 1, 2,

where Fi, Gi and Hi are again multi-linear functions of the indicated quantities
whose explicit formulae look similar to (A.17). We describe how one obtains a
solution of these equations:

n < λ : All coefficients are determined by (1)-(3), in particular (f
(1)
i )n =

(f
(2)
i )n = 0.

n = λ : Equation (1) is fulfilled iff (f
(2)
2 )λ = 0. The second component of

(2) holds since we have chosen (f
(2)
2 )λ = 0. The first component of (2) enforces

44

240 CHAPTER 11. ARXIV:1403.3560 [GR-QC] (2014)



2(f
(2)
1 )λ + (f

(1)
2 )λ = 0. In order to satisfy the second component of (3) the yet

unspecified (f
(1)
2 )λ (equivalently (f

(2)
1 )λ) has to be chosen such that

(f
(1)
2 )λ +H2[(f

(0))k, k < λ] = (g2)λ , (A.21)

whatever is taken for (f
(1)
1 )λ and (f

(0)
2 )λ. The first component of (3) can be

fulfilled by an appropriate choice of (f
(1)
1 )λ, and is independent of (f

(0)
1 )λ,

(f
(1)
1 )λ + (f

(0)
2 )λ +H1[(f

(0))k, k < λ] = (g1)λ . (A.22)

n > λ : All coefficients (f
(j)
i )n are uniquely determined by (1)-(3).

This way we get a formal solution for any choice of (f
(0)
i )λ, i = 1, 2, which

may be regarded as representing the integration constants.
The above algorithm shows that, in the current setting, logarithms are absent

if and only if

(f
(1)
i )λ = 0 . (A.23)

According to (A.21), (f
(1)
2 )λ vanishes iff H2[(f

(0))k, k < λ] = (g2)λ, i.e. iff h
and g satisfy appropriate relations. However, (A.22) shows that the vanishing

of (f
(1)
1 )λ depends on the integration constant (f

(0)
2 )λ, i.e. on the boundary

conditions, and thus cannot be guaranteed to hold generally. Only specific
boundary data lead to solutions without logarithmic terms.

A.2 Borel summation

We have seen that there exist formal solutions of the ODE x∂xf + hf = g (in
one or two dimensions) of the form

fformal = κ(0)f (0) + κ(1)f (1) + κ(2)f (2) , κ(i) ∈ {log x, log2 x, xλ, 0, 1} ,(A.24)

where the form of κ(i) depends on the specific value of the indicial exponent λ.
However, in any case all the f (i)’s are formal power series. We can therefore
appeal to the Borel Summation Lemma (see, e.g., [4, Appendix D]) which states

that for every formal power series f one can find a smooth function f̂ whose
Taylor expansion, around x = 0 say, coincides with f . Applied to our case that
means that there are smooth functions f̂ (i), i = 0, 1, 2, such that

f̂ := κ(0)f̂ (0) + κ(1)f̂ (1) + κ(2)f̂ (2) ∼ fformal . (A.25)

Finally we emphasize that the integration constants are (f (0))λ in the scalar

case, and (f
(0)
i )λi or (f

(0)
i )λ, respectively, in the 2-dimensional case, so that the

corresponding expansion coefficients of f̂ can be specified arbitrarily. This will
be crucial for the subsequent argument.

A.3 Approximation of the exact solution

In the final step we will show that f̂ approximates the exact solution f to
arbitrary high order in x; equivalently, they have the same polyhomogeneous
expansions. We denote by c (possibly supplemented by some index) a generic
positive constant, while C is supposed to be a constant with a specific value. If
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angular variables are involved c and C will still supposed to be constant. We
consider the ODE

x∂xf + hf = g , h = O(1) ∈ Mat(n, n) , 0 < x < x0 , (A.26)

where, as before, the components of h and x−ℓg are smooth functions on [0, x0).
Set

ĝ := x∂xf̂ + hf̂ . (A.27)

By construction of f̂ the Taylor expansion of g − ĝ at x = 0 is zero,

δg := g − ĝ ∼ 0 , i.e. (A.28)

∀ N ∈ N ∃ c(N) > 0 : ‖δg‖ ≤ c(N)xN ∀ x < x0 , (A.29)

where ‖ · ‖ :=
√
〈·, ·〉. Set δf := f − f̂ , then

x∂xδf + hδf = δg . (A.30)

We want to show that for a given f we can adjust the initial conditions of f̂
(equivalently, of the formal solution), such that δf is a solution of the ODE and
satisfies ‖δf‖ ≤ c(N)xN for all N . We find

|x∂x‖δf‖2| = 2| 〈δf, x∂xδf〉 | = 2| 〈δf, δg − hδf〉 |
≤ 2| 〈δf, δg〉 |+ 2| 〈δf, hδf〉 | ≤ (1 + 2‖h‖)‖δf‖2 + ‖δg‖2 .

Setting ψ := ‖δf‖2, we thus have

±x∂xψ ≤ (1 + 2‖h‖)ψ + ‖δg‖2

=⇒ ±∂x(χ±1ψ) ≤ ‖δg‖2
x

χ±1 ,

where

χ := exp

(∫ x0

x

1 + 2‖h‖
y

dy

)
.

The function χ satisfies the inequality (with h0 ≡ h(0))

χ ≤ exp
(∫ x0

x

1 + 2‖h0‖
y

dy
)
· exp

(
2

∫ x0

x

‖h− h0‖
y

dy

︸ ︷︷ ︸
=:χ̂=O(1)

)
= x−µxµ0 χ̂ , (A.31)

where
µ := 1 + 2‖h0‖ ≥ 1 ,

and χ̂ > 0 is a smooth function bounded away from zero in [0, x0),

χ̂±1 ≤ c (A.32)

=⇒ ±∂x(χ±1ψ) ≤ c ‖δg‖2x−µ
0 xµ−1 ≤ c(N)xN . (A.33)

The inequality with the minus sign yields

(χ−1ψ)(x) ≤ (χ−1ψ)(x0) +

∫ x0

x

c(N)yN dy ≤ c

(A.31) & (A.32) ‘+’
=⇒ ψ ≤ cχ ≤ c x−µ

=⇒ ‖δf‖ ≤ c x−µ/2 . (A.34)
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We conclude that

‖x∂xδf + h0δf‖ = ‖δg − (h− h0)δf‖ ≤ c x−µ/2+1 . (A.35)

This leads us to the study of the ODE

x∂xf̃ + h0f̃ = g̃ (A.36)

with source g̃ fulfilling ‖g̃‖ ≤ c x1−µ/2. The general solution to this equation is

f̃(x) = x−h0xh0
0 f̃(x0)− x−h0

∫ x0

x

yh0−1g̃(y) dy . (A.37)

Here 1 denotes the n-dimensional identity matrix. When writing xh0 for a
matrix h0 we mean exp(h0 log x). In the following we will distinguish two cases,
depending on whether h0 can be diagonalized or not.

1st case: We assume that h0 can be diagonalized. Clearly this case includes
the 1-dim. case. In fact, let us focus for the time being on that case and return
to the general case later. Equation (A.37) then implies

|δf | ≤ c(1)x−h0 + c(2)x−h0

∫ x0

x

yh0−1(|δg|+ c(3)y|δf |)dy

(A.34)
≤ c(1)x−h0 + c(2)x−h0

∫ x0

x

yh0−µ/2dy .

Replacing µ by a slightly larger number if necessary, we may assume w.l.o.g.
h0 − µ/2 6= −1. Then

|δf | ≤ c(1)x−h0 + c(2)x−h0

[
yh0−µ/2+1

h0 − µ/2 + 1

]x0

x

= c(1)x−h0 + c(2)x−µ/2+1 .

Suppose that µ/2− 1 < h0, then the inequality |δf | ≤ c x−h0 follows. If µ/2−
1 > h0, we can merely conclude |δf | ≤ c x−µ/2+1. However, this improves the
estimate in (A.34) by a factor x. Repeating the whole procedure k-times until
µ/2− 1− k < h0 we finally end up with the estimate

|xh0δf | ≤ c for all x ∈ (0, x0) ,

which is independent of the specific relation between µ and h0. Since

|∂x(xh0δf)| = xh0−1|x∂xδf + h0δf | = xh0−1|δg − (h− h0)δf | ≤ c ,

xh0δf can be continued to a continuous function on [0, x0). Hence, multiplying
(A.37) (with f̃ = δf) by xh0 , we observe that δF := xh0δf is continuous even
at x = 0. Performing the limit x0 → 0, we find

δF = C +

∫ x

0

yh0−1(δg − (h− h0)δf) dy

=⇒ ∂xδF = xh0−1δg − h− h0
x

xh0δf ,
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for a suitable constant C. We read off that the function δF is in fact continuously
differentiable at x = 0. Then, by Taylor’s theorem,

δF = (∂xδF )0 +O(x) = C +O(x)

=⇒ δf = x−h0C +O(x1−h0 ) .

Recall that in the polyhomogeneous expansion of f̂ the coefficient f̂
(0)
λ , with

λ ≡ −h0, can be chosen freely. We choose it such that δfλ ≡ (x−λδf)0 vanishes,
leading to

δf = x−h0

∫ x

0

yh0−1(δg −O(y)δf) dy (A.38)

=⇒ |δf | ≤ c x−h0+1 . (A.39)

Inserting (A.39) into (A.38) improves the estimate in each step by a factor of x.
Repeating this as many times as necessary (there is no disturbing term anymore
which is proportional to x−h0 and prohibits the improvement of the estimate),
we eventually end up with the desired result,

|δf | ≤ c(N)xN for all N , i.e. δf ∼ 0 . (A.40)

When dealing with higher-dim. systems we can proceed in a similar manner
(note that we have derived the formal solution only for λi ∈ Z). We give
a sketch. Denote by −λ1, . . . ,−λn the eigenvalues of h0 and assume w.l.o.g.
λ1 ≤ · · · ≤ λn. Equation (A.37) provides the estimate (for g̃ = δg− (h− h0)δf)

|δfi| ≤ c(1)xλi + c(2)xλi

∫ x0

x

y−λi−1(|δgi|+ c(3)y‖δf‖)dy . (A.41)

Note that the integrand depends on ‖δf‖ and not just on |δfi|, because the
higher-order terms in the expansion of h do not need to be diagonal.

Again we assume without restriction µ/2+λi 6= 1. We conclude from (A.34)
and (A.41) that if µ/2−1 < −λ1 then |δf1| ≤ c xλ1 . Otherwise |δfi| ≤ c x−µ/2+1

for all i, and thus ‖δf‖ ≤ c x−µ/2+1. This can be repeated until µ/2− 1− k1 <
−λ1, which means |δf1| ≤ c xλ1 . By adjusting the initial conditions via the

integration constant (f̂
(0)
1 )λ1 appearing in the expansion of f̂ one achieves that

the λ1-th order term in the polyhomogeneous expansion of δf1 vanishes. Then
one proceeds in the same way until µ/2 − 1 − k2 < −λ2. To continue this

process the integration constant (f̂
(0)
2 )λ2 has to be chosen suitably. And so

on. Eventually one obtains ‖δf‖ ≤ c xλn+1 and a formula analog to (A.38) for
higher dimensions. One then straightforwardly establishes the desired estimate,

‖δf‖ ≤ c(N)xN for all N , i.e. δf ∼ 0 . (A.42)

2nd case: It remains to deal with the case where h0 cannot be diagonalized.
For reasons of simplicity we restrict attention again to the two-dimensional case.
The matrix h0 can be brought into Jordan normal form:

h0 =

(
−λ 1
0 −λ

)
. (A.43)
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Note that we have derived the formal solution only for λ ∈ Z, which we assume
here, as well. First, we compute xh0 ,

xh0 ≡ eh0 log x ≡
∞∑

m=0

hm0 logm x

m!
= x−λ

(
1 log x
0 1

)
.

From equation (A.37) we find

δf(x) = xλx−λ
0

(
1 log(x0/x)
0 1

)
δf(x0)−xλ

∫ x0

x

y−λ−1

(
1 log(y/x)
0 1

)
g̃(y) dy .

(A.44)
The second component of δf , δf2, fulfills the integral equation

δf2(x) = xλx−λ
0 δf2(x0)− xλ

∫ x0

x

y−λ−1g̃2(y) dy . (A.45)

Recall that g̃i ≡ δgi− [(h−h0)δf ]i. As before, we may assume w.l.o.g. µ/2−1 6=
−λ, and deduce

|δf2| ≤ c(1)xλ + c(2)xλ
∫ x0

x

y−λ−1(|δg2|+ c(3)y‖δf‖)dy

≤ c(1)xλ + c(2)x−µ/2+1 (A.46)

by using (A.34). Next, we consider the first component of (A.44), which, once
we have an estimate for δf2, supplies one for δf1:

δf1(x) = xλx−λ
0 [δf1(x0) + log(x0/x)δf2(x0)]

−xλ
∫ x0

x

y−λ−1 [g̃1(y) + g̃2(y) log(y/x)] dy

= −δf2(x) log x+ xλx−λ
0 [δf1(x0) + log x0δf2(x0)]

−xλ
∫ x0

x

y−λ−1 [g̃1(y) + g̃2(y) log y] dy . (A.47)

That yields (w.l.o.g. we assume x0 < 1)

|δf1(x)| ≤ |δf2(x) log x|+ c(1)xλ − c(2)xλ
∫ x0

x

‖δf‖ y−λ log y dy . (A.48)

The estimate (A.34) supplemented by the one for |δf2|, (A.46), implies

|δf1(x)| ≤ |δf2 log x|+ c(1)xλ +
∣∣∣xλ
[
y−λ−µ/2+1(c(2) + c(3) log y)

]x0

x

∣∣∣

≤ c(1)xλ| log x|+ c(2)x−µ/2+1| log x| .

If µ/2 − 1 < −λ we are immediately led to |δf2(x)| ≤ c xλ and |δf1(x)| ≤
c xλ| log x|, whence ‖δf‖ ≤ cxλ| log x|.

If the reverse inequality holds, we find |δf2(x)| ≤ c x−µ/2+1 and |δf1(x)| ≤
c x−µ/2+1| log x|. Combined, that gives ‖δf(x)‖ ≤ c x−µ/2+1| log x|. Repeating
this procedure k-times as long as µ/2−k > 1−λ the estimates for δfi improve in
each round by a factor of x, accompanied possibly by the appearance of higher
order powers of log x,

|δf2(x)| ≤ c x−µ/2+k| log x|k−1 , |δf1(x)| ≤ c x−µ/2+k| log x|k ,
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with k a positive integer. Anyway, the log terms do not cause any troubles here,
because as soon as k > µ/2 + λ− 1 becomes true, the inequalities

|δf2| ≤ cxλ , |δf1| ≤ cxλ| log x| =⇒ ‖δf(x)‖ ≤ c xλ| log x| (A.49)

replace the estimates with µ. This is owing to the fact that a term of the form
xq, q > 0, kills any log term, xq logm x→ 0 if x→ 0.

We proceed in a similar way as above to show that one can improve the
estimates by adjusting the integration constants contained in f̂ . Recall that

δF2(x) := x−λδf2(x) = x−λ
0 δf2(x0)−

∫ x0

x

y−λ−1g̃2(y) dy . (A.50)

From the preceding considerations we conclude that the integrand is O(log y).
Thus we can perform the limit x→ 0. The function δF2 is continuous on [0, x0)
and we rewrite it as

δF2(x) = C +

∫ x

0

y−λ−1g̃2(y) dy = C +O(x| log x|) . (A.51)

By choosing the value of (f̂
(0)
2 )λ appropriately (this coefficient was free to choose

in our analysis above) one achieves that C vanishes,

|δf2| ≤ c xλ+1| log x| . (A.52)

Combined with |δf1| ≤ cxλ| log x|, this inequality can be used to improve the
estimate for |δf1|: Starting from (A.48) one establishes

|δf1| ≤ cxλ
(A.52)
=⇒ ‖δf‖ ≤ cxλ . (A.53)

It follows from (A.47) that there exists a constant C with

lim
x→0

x−λδf1(x) = C , (A.54)

so one can perform the limit x0 → 0,

x−λδf1(x) = C − x−λδf2(x) log x+

∫ x

0

y−λ−1 [g̃1(y) + g̃2(y) log y] dy (A.55)

= C +O(x| log x|) .

We choose the (yet unspecified) value (f̂
(0)
1 )λ in the expansion of f̂1 such that

C vanishes. Then
|δf1| ≤ cxλ+1| log x| , (A.56)

and (A.51) yields
|δf2| ≤ cxλ+1 , (A.57)

i.e. we have improved (A.49) by a factor of x.
If we continue this process, an analysis of (cf. (A.45) and (A.47)),

δf2(x) = xλ
∫ x

0

y−λ−1g̃2(y) dy ,

δf1(x) = −δf2(x) log x+ xλ
∫ x

0

y−λ−1 [g̃1(y) + g̃2(y) log y] dy
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reveals that the estimates improve in each step by a factor of x, and, since the
log term in δf1 does not matter in the end, we arrive at

|δfi| ≤ c(N)xN for all N ⇐⇒ ‖δf‖ ≤ c(N)xN for all N . (A.58)

Summarizing, we have proved:

Theorem A.1 Consider the linear ODE

x∂xf + hf = g on (0, x0) ,

where x−ℓg = O(1), ℓ ∈ Z, and h = O(1) are assumed to be smooth maps on
[0, x0), and where fand g have values in R or R2, with h having values in the

space of corresponding linear maps. Let f̂ be a solution of the ODE specified by
boundary conditions, that is by a choice of the expansion coefficients f̂λ in the
scalar case, and (f̂i)λi or (f̂i)λ, respectively, in the 2-dimensional case. Denote
by gformal and hformal the Taylor expansions of g and h, respectively, at x = 0.
Then there exists a formal solution fformal of

x∂xf + hformalf = gformal ,

such that fformal is the polyhomogeneous expansion of f̂ at x = 0,

f̂ ∼ fformal .

We have further indicated that the theorem remains true in arbitrary dimensions
if h0 is a diagonal matrix with integer entries.

B Relation between κ = 0- and κ = r
2|σ|2-gauge

The metric gauge turned out to be very convenient to construct data for the CFE
which are smooth at I +: Global existence and positivity of ϕ and ν0 are
implicitly contained in the gauge condition, while the no-logs-condition reduces
to a simple algebraic condition on the expansion coefficients of γ.

Using an affine parameterization, i.e. a κ = 0-gauge, we have to assume that
the initial data [γ] are chosen in such a way that the function ϕ is positive on
N and that ϕ−1 is positive on S2. These assumptions do impose geometric
restrictions on γ in that they exclude data producing conjugate points or even
space-time singularities on the initial surface. On the other hand, the gauge
choice κ = r

2 |σ|2, on a light-cone say, implies that the Raychaudhuri equation
admits a global solution with all the required properties without any additional
assumptions. To resolve this “paradox” it is useful to understand in which way
a κ = r

2 |σ|2-gauge is related to other choices of the r-coordinate parameterizing
the null rays generating the cone, such as affine parameterizations. A similar
problem arises for ν0, and can be resolved in the same way.

If the gauge function κ depends on the initial data, the physical/geometrical
interpretation of the parameter r (its deviation from an affine one) w.r.t. which
the γ is given, depends on γ itself. Due to this “implicit definition” of r, the
choice κ = r

2 |σ|2 conceals geometric restrictions, which we want to discuss now.
We consider initial data γ̊ given in a κ̊-gauge on an initial surface N , which

we assume for definiteness to be a light-cone, and analyze under which conditions
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a transformation to a κ = r
2 |σ|2-gauge is possible, by which we mean that

both solutions differ by a coordinate change only. The relevant coordinate
transformations (̊r, x̊A) 7→ (r, xA) are angle-dependent transformations of the
r-coordinate

r = r(̊r, x̊A) , xA = x̊A .

It follows from the transformation behavior of connection coefficients that

κ = Γr
rr = Γr̊

r̊r̊︸︷︷︸
=κ̊

∂r̊

∂r
−
(
∂r̊

∂r

)2
∂2r

∂r̊2
. (B.1)

The function |σ|2 which contains partial derivatives of r (cf. (3.2)) transforms as

|σ|2(r) =
(
∂r̊

∂r

)2

|̊σ|2(̊r(r)) . (B.2)

With κ = r
2 |σ|2 (B.1) becomes

∂2r

∂r̊2
− κ̊

∂r

∂r̊
+

1

2
r|̊σ|2 = 0 .

We observe that r(̊r, x̊A) and ϕ̊(̊r, x̊A) satisfy the same ODE. Imposing the
boundary conditions r|̊r=0 = 0 and ∂r̊r|̊r=0 = 1, we conclude that

r(̊r, x̊A) = ϕ̊(̊r, x̊A) . (B.3)

Since gAB(r) = g̊AB(r(̊r)) the function ϕ ≡ (
det ǧΣr

det s )1/4 transforms as a scalar, and

r = ϕ̊(̊r(r, xA), xA) = ϕ(r, xA) , (B.4)

as expected and required by the metric gauge.
To transform from a κ̊-gauge to a κ = r

2 |σ|2-gauge one simply identifies ϕ̊
as the new r-coordinate. However, this is only possible when (̊r, x̊A) 7→ (r =
ϕ̊, xA = x̊A) defines a diffeomorphism. Globally this happens if and only if ϕ̊
is a strictly increasing function, which is equivalent to the existence of a global
solution to the Raychaudhuri equation. Another requirement on r should be
that

lim
r̊→∞

r = ∞ ⇐⇒ lim
r̊→∞

ϕ̊ = ∞ ⇐⇒ ϕ̊−1 > 0 .

This derivation clarifies in which way the assumptions on ϕ̊ in say a κ̊ =
0-gauge enter: Prescribing smooth data in a κ = r

2 |σ|2-gauge one implicitly
excludes data violating these assumptions and thereby the existence of conjugate
points up-to-and-including conformal infinity. In this work, though, we are only
interested in those cases where ϕ̊ is strictly increasing with ϕ̊−1 > 0, in which
case a transition from a κ̊ = 0- to a κ = r

2 |σ|2-gauge is always possible.
Let us take a look at the reversed direction. It follows from (B.1) and the

requirement ∂r r̊|r=0 = 1 that

r

2
|σ|2 = −

(
∂r̊

∂r

)2
∂2r

∂r̊2
=

(
∂r̊

∂r

)−1
∂2r̊

∂r2
⇐⇒ ∂r̊

∂r
= e

∫ r
0

r̂
2 |σ|2dr̂ > 0 ,

which defines a diffeomorphism. Consequently, a transformation from a κ =
r
2 |σ|2-gauge to a κ̊ = 0-gauge is possible without any restrictions.

We conclude that the metric gauge is a reasonable and convenient gauge
condition whenever the light-cone is supposed to be globally smooth.
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Abstract
We give an elementary proof of positivity of total gravitational energy in space-
times containing complete smooth light-cones.

Keywords: Bondi mass, complete light-cones, positivity of total gravitational
energy
PACS numbers: 04.20.Cv, 04.20.Ex, 04.20.Ha

One of the deepest questions arising in general relativity is that of positivity of total energy.
Years of attempts by many authors have led to an affirmative answer in the milestone papers of
Schoen and Yau [13, 14] and Witten [17]; see also [6, 10, 15]. These proofs use sophisticated
PDE techniques, with positivity resulting from the analysis of solutions of seemingly unrelated
partial differential equations. The aim of this communication is to show that an elementary
direct proof of positivity can be given for a large class of space-times, namely those containing
globally smooth light-cones. As a bonus, our proof gives an explicit positive-definite expression
for the mass, equation (31), in terms of physically relevant fields, such as the shear of the light-
cone.

Thus, consider a globally smooth, null-geodesically complete light-cone in an
asymptotically Minkowskian space-time. The formula (47) below for the mass in this context
has been derived by Bondi et al [2, 12], compare [16]. We show how to rewrite this formula
in terms of geometric data on the light-cone, equation (37) below. The constraint equations
induced by Einstein’s field equations on the light-cone are then used to obtain our manifestly
positive mass formula (31) by elementary manipulations.

The initial data on the light-cone comprise a pair (N , ǧ), where N = R3 \ {0} and ǧ
is a smooth field of symmetric two-covariant tensors on N of signature (0,+,+) such that
ǧ(∂r, ·) = 0. 1 The vertex O of the light-cone CO := N ∪ {O} is located at the origin of R3,
and the half-rays issued from the origin correspond to the generators of CO. For simplicity

1 To avoid an ambiguity in notation we write ǧ for what was denoted by g̃ in [4], as g̃ is usually used for the
conformally rescaled metric when discussing I +.

0264-9381/14/102001+09$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1
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we assume throughout that the initial data lead to a smooth space-time metric, cf [5]. The
requirements of regularity at the origin, asymptotic flatness, and global smoothness, lead to
the following restrictions on ǧ.

Letting (r, xA), A ∈ {2, 3}, denote spherical coordinates on R3, and writing sAB dxA dxB

for the unit round metric on S2, regularity conditions at the vertex imply that the coordinate r
can be chosen so that for small r we have

ǧ ≡ gAB dxA dxB = r2(sAB + hAB) dxA dxB, (1)

hAB = O(r2), ∂ChAB = O(r2), ∂rhAB = O(r); (2)

see [4, section 4.5] for a detailed discussion, including properties of higher derivatives; the
latter are assumed implicitly whenever needed below. Here, and elsewhere, an overline denotes
a space-time object restricted to the light-cone.

Existence of a Penrose-type conformal completion implies that the coordinate r can be
chosen so that for large r we have

gAB = r2(gAB)−2 + r(gAB)−1 + ψAB, (3)

ψAB = O(1), ∂CψAB = O(1), ∂rψAB = O(r−2), (4)

∂2
r ψAB = O(r−3), ∂C∂DψAB = O(1), (5)

∂r∂CψAB = O(r−2), ∂r∂C∂DψAB = O(r−2), (6)

∂2
r ∂CψAB = O(r−3), ∂2

r ∂C∂DψAB = O(r−3), (7)

for some smooth tensors (gAB)−i = (gAB)−i(xC), i = 1, 2, on S2.
Equations (3)–(7) are necessary for existence of a smooth I +, but certainly not sufficient:

our conditions admit initial data sets which might lead to a polyhomogeneous but not smooth
I +; see [1, 7, 8, 11].

We denote by τ the divergence, sometimes called expansion, of the light-cone:

τ := χA
A, where χA

B := 1
2 gBC∂rgAC. (8)

Conditions (1)–(7) imply

τ = 2r−1 + τ2r−2 + O(r−3) for large r, (9)

τ = 2r−1 + O(r) for small r. (10)

In particular τ is positive in both regions. Now, standard arguments show that if τ becomes
negative somewhere, then the light-cone will either fail to be globally smooth, or the space-
time will not be null-geodesically complete. So our requirement of global smoothness of the
light-cone together with completeness of generators imposes the condition2

τ > 0. (11)

We further require

det(gAB)−2 > 0, (12)

which excludes conjugate points at the intersection of the light-cone with I +. Both conditions
will be assumed to hold from now on.
2 The Raychaudhuri equation (13) below with κ = 0 implies that τ is monotonous non-increasing, which yields (11)
directly in any case after noting that the sign of τ is invariant under orientation-preserving changes of parametrization
of the generators.

2
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The inequality (11) implies that the connection coefficient κ , defined through the equation

∇∂r∂r = κ∂r,

and measuring thus how the parameter r differs from an affine-one, can be algebraically
calculated from the Raychaudhuri equation:

∂rτ − κτ + τ 2

2
+ |σ |2 + 8πTrr|N = 0

⇐⇒ κ = 1

τ

(
∂rτ + τ 2

2
+ |σ |2 + 8πTrr|N

)
. (13)

Here σ is the shear of the light-cone:

σA
B = χA

B − 1
2τδA

B, (14)

which satisfies

σA
B = O(r) for small r, σA

B = O(r−2) for large r. (15)

Assuming that

Trr|N = O(r−4) for large r, (16)

we find from (13) and our previous hypotheses

κ = O(r) for small r, κ = O(r−3) for large r. (17)

For the proof of positivity of the Trautman–Bondi mass it will be convenient to change r
to a new coordinate so that (gAB)−2 in (3) is the unit round sphere metric and that the resulting
κ vanishes (i.e. the new coordinate r will be an affine parameter along the generators of the
light-cone). Denoting momentarily the new coordinate by ras, and using the fact that every
metric on S2 is conformal to the unit round metric sAB, the result is achieved by setting

ras(r, xA) = 
(xA)

∫ r

0
eH(r̂,xA ) dr̂, (18)

H(r, xA) = −
∫ ∞

r
κ(r̃, xA) dr̃, (19)


(xA) =
(

det(gAB)−2

det sAB

)1/4

. (20)

The functions r 	→ ras(r, xA) are strictly increasing with ras(0, xA) = 0. Equation (17) shows
that there exists a constant C such that for all r we have

e−C � eH � eC, (21)

which implies that limr→∞ ras(r, xA) = +∞. We conclude that for each xA the function
r 	→ ras(r, xA) defines a smooth bijection from R+ to itself. Consequently, smooth inverse
functions ras 	→ r(ras, xA) exist.

We have normalized the affine parameter ras so that

ras(r, xA) = 
(xA)r + (ras)∞(xA) + O(r−1), (22)

for large r, which implies

ras(r, xA) = (ras)0(x
A)r + O(r3) for small r, (23)

where

(ras)∞(xA) = 
(xA)

∫ ∞

0
(eH(r,xA ) − 1) dr, (24)

3
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(ras)0(x
A) = 
(xA) e− ∫ ∞

0 κ(r̃,xA )dr̃. (25)

After some obvious redefinitions, for ras large (3) becomes

gAB = r2
assAB + ras(gAB)−1 + ψAB. (26)

The boundary conditions (4)–(7) remain unchanged when r is replaced by ras there. On the
other hand, (1)–(2) will not be true anymore. However, we note for further use that the
coordinate transformation (18) preserves the behaviour of τ and σ near the vertex. Indeed,
inserting r = r(ras) into (3) and using the definitions (8) and (14) one finds that (9)–(10) and
(15) continue to hold with r replaced by ras.

A key role in what follows will be played by the equation [4, equations (10.33) and
(10.36)], 3

(∂r + τ + κ)ζ + Ř − 1
2 |ξ |2 + gAB∇̌AξB = S, (27)

where |ξ |2 := gABξAξB. In coordinates adapted to the light-cone as in [4] the space-time
formula for the auxiliary function ζ is

ζ = (2gABr
AB + τgrr)|N , (28)

and ζ is in fact the divergence of the family of suitably normalized null generators normal to
the spheres of constant r and transverse to N . Here ∇̌ denotes the Levi-Civita connection of
ǧ viewed as a metric on S2 (more precisely, an r-dependent family of metrics). The symbol Ř
denotes the curvature scalar of ǧ. The connection coefficients ξA ≡ −2r

rA|N are determined
by [4, equation (9.2)]:

1
2 (∂r + τ )ξA − ∇̌Bσ B

A + 1
2∂Aτ + ∂Aκ = −8πTrA|N . (29)

Finally,

S := 8π(gABTAB − gμνTμν )|N
= −8π

(
grrTrr + 2grATrA + 2gurTur

)|N , (30)

with Tur = T (∂u, ∂r), where ∂u is transverse to N . The first equality makes it clear that
S does not depend upon the choice of coordinates away from N . In a coordinate system
where grr = grA = 0 we have S = −16πgurTur|N which, with our signature (−,+,+,+), is
non-negative for matter fields satisfying the dominant energy condition when both ∂r and ∂u

are causal future pointing, as will be assumed from now on.
Letting dμǧ = √

det gAB dx2 dx3, we derive below the following surprising formula for the
Trautman–Bondi [2, 12, 16] mass mTB of complete light-cones:

mTB = 1

16π

∫ ∞

0

∫
S2

(
1

2
|ξ |2 + S + (|σ |2 + 8πTrr|N )e

∫ ∞
r

r̃τ−2
2r̃ dr̃

)
dμǧ dr. (31)

The coordinate r here is an affine parameter along the generators normalised so that r = 0 at
the vertex, with (26) holding for large r. Positivity of mTB obviously follows in vacuum. For
matter fields satisfying the dominant energy condition we have S � 0, Trr � 0 and positivity
again follows.

Note that since mTB decreases when sections of I + are moved to the future, (31) provides
an a priori bound on the integrals appearing there both on N and for all later light-cones,
which is likely to be useful when analysing the global behaviour of solutions of the Einstein
equations.

3 On the right-hand side of the second equality in [4, equation (10.36)] a term τg11/2 is missing.

4
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To prove (31), we assume (16). We change coordinates via (18), and use now the symbol
r for the coordinate ras. Thus κ = 0, we have (3) with (gAB)−2 = sAB, and further (4)–(7),
(9)–(10) and (15) hold. For r large one immediately obtains√

det gAB = r2
√

det sAB(1 − τ2r−1 + O(r−2)). (32)

Let us further assume that, again for large r,

TrA|N = O(r−3), S = O(r−4). (33)

It then follows from (29) and our remaining hypotheses that ξA satisfies

ξA = (ξA)1r−1 + o(r−1) and ∂BξA = O(r−1), (34)

for some smooth covector field (ξA)1 on S2. An analysis of (27) gives

ζ (r, xA) = −2r−1 + ζ2(x
A)r−2 + o(r−2), (35)

with a smooth function ζ2. Regularity at the vertex requires that for small r

ξA = O(r2), ζ = O(r−1), (36)

where r is the original coordinate which makes the initial data manifestly regular at the vertex.
Using the transformation formulae for connection coefficients one checks that this behaviour
is preserved under (23).

We will show shortly that if the light-cone data arise from a space-time with a smooth
conformal completion at null infinity I +, and if the light-cone intersects I + in a smooth
cross-section S, then the Trautman–Bondi mass of S equals

mTB = 1

16π

∫
S2

(ζ2 + τ2) dμs, (37)

where dμs = √
det sAB dx2dx3. Note that this justifies the use of (37) as the definition of mass

of an initial data set on a light-cone with complete generators, regardless of any space-time
assumptions.

It follows from (9), (32) and (35) that for large r we have∫
S2

ζ dμǧ =
∫

S2
(−2r + ζ2 + o(1))(1 − τ2r−1 + O(r−2)) dμs

= − 8πr +
∫

S2
(ζ2 + 2τ2) dμs + o(1). (38)

This allows us to rewrite (37) as

16πmTB = lim
r→∞

(∫
S2

ζdμǧ + 8πr

)
−

∫
S2

τ2 dμs. (39)

To establish (31), first note that from (27) with κ = 0 and the Gauss–Bonnet theorem we have,
using ∂r

√
det gAB = τ

√
det gAB,

∂r

∫
S2

ζ dμǧ = −8π +
∫

S2

(
1

2
|ξ |2 + S

)
dμǧ. (40)

Integrating in r and using (33)–(36) one obtains

lim
r→∞

(∫
S2

ζ dμǧ + 8πr

)
=

∫ ∞

0

∫
S2

(
1

2
|ξ |2 + S

)
dμǧ dr.

Next, let τ1 := 2/r, δτ := τ − τ1. It follows from the Raychaudhuri equation with κ = 0
that δτ satisfies the equation

dδτ

dr
+ τ + τ1

2
δτ = −|σ |2 − 8πTrr|N .

5
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Letting

� = exp

( ∫ r

0

r̃τ − 2

2r̃
dr̃

)
, (41)

and using (9)–(10) and (15)–(16) one finds

δτ (r) = − r−2�−1
∫ r

0
(|σ |2 + 8πTrr|N )�r2dr

= τ2r−2 + o(r−2), (42)

where

τ2 = − lim
r→∞ �−1

∫ r

0
(|σ |2 + 8πTrr|N )�r2 dr � 0. (43)

Inserting this into (39) gives (31) after noting that

dμǧ = e− ∫ ∞
r

r̃τ−2
r̃ dr̃r2dμs. (44)

To continue, suppose that mTB vanishes. It then follows from (43) that Trr|N = 0 = σ . In
vacuum this implies [3] that the metric is flat to the future of the light-cone. In fact, for many
matter models the vanishing of Trr on the light-cone implies the vanishing of Tμν to the future
of the light-cone [3], and the same conclusion can then be obtained.

It remains to establish (37). We decorate with a symbol ‘Bo’ all fields arising in Bondi
coordinates. Consider characteristic data in Bondi coordinates, possibly defined only for large
values of rBo. The space-time metric on N = {uBo = 0} can be written as

g = gBo
00 du2

Bo + 2νBo
0 duBodrBo + 2νBo

A duBodxA
Bo + ǧBo. (45)

Under the usual asymptotic conditions on νBo
A and νBo

0 one has (see, e.g., [7, 12])

gBo
00 = −1 + 2M

(
xA

Bo

)
rBo

+ O
(
r−2

Bo

)
, (46)

and the Bondi mass is then defined as

mTB = 1

4π

∫
S2

M dμs. (47)

In Bondi coordinates (28) becomes

ζ Bo = 2

( ∇̌AνBo
A

νBo
0

− (gBo)rr

rBo

)
, (48)

which allows us to express (gBo)rr in terms of ζ Bo, leading eventually to

gBo
00 = (gBo)ABνBo

A νBo
B − (

νBo
0

)2
(gBo)rr

= −1 + ζ Bo
2 − 2∇̊A

(
νBo

A

)
0

2rBo
+ O

(
r−2

Bo

)
, (49)

where ∇̊ is the Levi-Civita connection of the metric sABdxAdxB, and (νBo
A )0 is the r-independent

coefficient in an asymptotic expansion of νBo
A . Comparing with (46), we conclude that

mTB = 1

16π

∫
S2

ζ Bo
2 dμs. (50)

To finish the calculation we need to relate ζ Bo
2 to the characteristic data. In Bondi coordinates

we have

τBo = 2

rBo
,

6
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and the Raychaudhuri equation implies that

κBo = rBo
|σ Bo|2 + 8πT rr

2
.

The equation κ ≡ r
rr = 0 together with the usual transformation law for connection

coefficients gives the equation

∂rBo

(∂rBo

∂r

)
+ κBo ∂rBo

∂r
= 0

�⇒ ∂r

∂rBo
= e− ∫ ∞

rBo
κBo = 1 + O(r−2

Bo ),

where we have used the asymptotic condition limr→∞ ∂rBo
∂r = 1. Hence

r =
∫ rBo

0
e− ∫ ∞

rBo
κBo = rBo +

∫ ∞

0

(
e− ∫ ∞

rBo
κBo − 1

)
︸ ︷︷ ︸

=:−(rBo )0

+O(r−1
Bo ).

To continue, we note that xA
Bo = xA and

gBo
AB(rBo, xA) = gAB

(
r(rBo, xA), xA

)
,

which implies

2

rBo
= τBo = τ∂rBo r =

(
2

r
+ τ2

r2
+ O(r−3)

)
(1 + O(r−2))

= 2

r
+ τ2

r2
+ O(r−3),

equivalently

rBo = r − τ2

2
+ O(r−1) �⇒ (rBo)0 = −τ2

2
. (51)

We are ready now to transform ζ as given by (28) to the new coordinate system:

ζ Bo = 2(gBo)AB(
Bo

)
rBo
AB + τBo(gBo)rBorBo

= 2(gBo)AB

(
∂rBo

∂xk

∂xi

∂xA
Bo

∂x j

∂xB
Bo

k
i j + ∂rBo

∂r

∂2r

∂xA
Bo∂xB

Bo

)
+ τ

∂r

∂rBo

∂rBo

∂xi

∂rBo

∂x j
gi j

= ∂rBo

∂r
ζ + 2

∂rBo

∂r
�ǧr + O(r−3

Bo ),

where �ǧ is the Laplace operator of the two-dimensional metric ǧABdxAdxB. From this one
easily obtains

ζ Bo
2 = ζ2 + τ2 + �sτ2. (52)

Inserting (52) into (50) one obtains (37), which completes the proof.
In fact, the calculations just made show that the integral (37) is invariant under changes

of the coordinate r of the form r 	→ r + r0(xA) + O(r−1).
Let S be a section of I + arising from a smooth light-cone as above, and let S′ be any

section of I + contained entirely in the past of S. The Trautman–Bondi mass loss formula
shows that mTB(S′) will be larger than or equal to mTB(S) [9, section 8.1]. So, our formula
(31) establishes positivity of mTB for all such sections S′.

In many cases the past limit of mTB is the ADM mass, and one expects this to be true
quite generally for asymptotically Minkowskian space-times. Whenever this and (31) hold,
we obtain an elementary proof of non-negativity of the ADM mass.
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It is tempting to use a density argument to remove the hypothesis of non-existence of
conjugate point precisely at I + along some generators; such generators will be referred to as
asymptotically singular. For this one could first rewrite (31) as

mTB = 1

16π

∫ ∞

0

∫
S2

(
1

2
|ξ |2 + S + (|σ |2 + 8πTrr|N ) e

∫ ∞
r

r̃τ−2
2r̃ dr̃

)
r2 e− ∫ ∞

r
r̃τ−2

r̃ dr̃ dμs dr, (53)

where we have used (44). One might then consider an increasing sequence of tensors σi which
converge to σ as i → ∞ so that |σi|2 converges to |σ |2 from below, and such that for each i
the associated solution τi of the Raychaudhuri equation leads to a metric satisfying (12). It is
easy to see that τi is then decreasing to zero along the asymptotically singular generators as i
tends to infinity, monotonically in i, which leads to an infinite integral − ∫ ∞

r
r̃τ−2

r̃ dr̃ on those
generators. It is however far from clear if and when this divergence leads to a finite volume
integral after integrating over the generators, and we have not been able to conclude along
those lines.

Suppose, finally, that instead of a complete light-cone we have a smooth characteristic
hypersurface N with an interior boundary S0 diffeomorphic to S2, and intersecting I +

transversally in a smooth cross-section S as before. Let r be an affine parameter on the
generators chosen so that S0 = {r = r0} for some r0 > 0 and such that (3)–(7) hold. The
calculations above give the following formula for mTB:

mTB = r.h.s. of (53) + 1

16π

(
8πr0 +

∫
r=r0

(
ζ + (2r−1 − τ ) e

∫ ∞
r0

rτ−2
2r dr

)
dμǧ

)
, (54)

with the range [0,∞) replaced by [r0,∞] in the first integral symbol appearing in (53).
(For outgoing null hypersurfaces issued from any sphere of symmetry in the domain of
outer-communications in Schwarzschild, the term multiplying the exponential in (54) and the
right-hand side of (31) vanish, while the remaining terms add to the usual mass parameter m.)

Equation (54) leads to the following interesting inequality for space-times containing
white hole regions. We will say that a surface S is smoothly visible from I + if the null
hypersurface generated by the family of outgoing null geodesics is smooth in the conformally
rescaled space-time. Assume, then, that S is smoothly visible and weakly past outer trapped:

ζ |S � 0. (55)

Smooth visibility implies that τ > 0 everywhere, in particular on S. By a translation of the
affine parameter r of the generators of N we can achieve

r0 = 2

supS τ
. (56)

All terms in (54) are non-negative now, leading to the interesting inequality

mTB � 1

supS τ
. (57)

Further, equality implies that S and Trr vanish along N , and that we have

ξ = σ = 0 along N , ζ |S = 0, τ |S ≡ 2

r0
= 1

mTB
. (58)

Integrating the Raychaudhuri equation gives

τ = 2

r
, r � r0. (59)

The equations τgAB = 2χAB = ∂rgAB together with the asymptotic behaviour of the metric
imply

gAB = r2sAB, r � r0. (60)
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It follows that the outgoing null hypersurface issued from S can be isometrically embedded
in the Schwarzschild space-time with m = mTB as a null hypersurface emanating from a
spherically symmetric cross-section of the past event horizon.

Time-reversal and our result provide, of course, an inequality between the mass of the past
directed null hypersurface issuing from a weakly future outer trapped surface S and supS ζ in
black hole space-times.

We finish this communication by noting that formulae such as (54), together with
monotonicity of mass, might be useful in a stability analysis of black hole solutions, by
choosing the boundary to lie on the initial data surface, for then one obtains an a priori
L2-weighted bound on |σ |2 and |ξ |2 on all corresponding null hypersurfaces.
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Abstract
We analyze vacuum Killing Initial Data on characteristic Cauchy surfaces. A
general theorem on existence of Killing vectors in the domain of dependence
is proved, and some special cases are analyzed in detail, including the case of
bifurcate Killing horizons.

PACS numbers: 04.20.Cv, 04.20.Ex

1. Introduction

Killing Initial Data (KIDs) are defined as initial data on a Cauchy surface for a spacetime
Killing vector field. Vacuum KIDs on spacelike hypersurfaces are well understood (see
[1, 10] and references therein). In the spacelike case they play a significant role by providing
an obstruction to gluing initial data sets [4, 6].

The question of KIDs on light-cones has been recently raised in [14]. The object of this
note is to analyze this, as well as KIDs on characteristic surfaces intersecting transversally. It
turns out that the situation in the light-cone case is considerably simpler than for the spacelike
Cauchy problem, which explains our title.

For definiteness we assume the Einstein vacuum equations, in dimensions n + 1, n � 3,
possibly with a cosmological constant,

Rμν = λgμν, λ ∈ R. (1.1)

Similar results can be proved for Einstein equations with matter fields satisfying well-behaved
evolution equations.

1.1. Light-cone

Consider the (future) light-cone CO issued from a point O in an (n+1)-dimensional spacetime
(M , g), n � 3; by this we mean the subset of M covered by future-directed null geodesics
issued from O. (We expect that our results remain true for n = 2; this requires a more careful
analysis of some of the equations arising, which we have not attempted to carry out.) Let
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licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.
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(xμ) = (x0, xi) = (x0, r, xA) be a coordinate system such that x0 vanishes on CO. In the
theorem that follows the initial data for the sought-for Killing vector field are provided by
a spacetime vector field Y which is defined on CO only.1 We will need to differentiate Y in
directions tangent to CO, for this we need a covariant derivative operator which involves
only derivatives tangent to the characteristic hypersurfaces. In a coordinate system such
that the hypersurface under consideration is given by the equation x0 = 0, for the first
derivatives the usual spacetime covariant derivative ∇iY μ applies. However, the tensor of
second spacetime covariant derivatives involves the undefined fields ∇0Y μ. To avoid this we
set, on the hypersurface {x0 = 0},2

DiY μ := ∂iY μ − �ν
μiY ν ≡ ∇iY μ, (1.2)

DiD jY μ := ∂iD jY μ − �k
i jDkY μ − �ν

iμD jY ν

≡ ∂i∇ jY μ − �k
i j∇kY μ − �ν

iμD jY ν, (1.3)

with an obvious similar formula for DiD jY μ. When the restriction ∇0Y μ to the hypersurface
{x0 = 0} of the x0-derivative is defined we have

DiD jY μ = ∇i∇ jY μ + �0
i j∇0Yμ.

Clearly, DiD jY 0 coincides with ∇i∇ jY0|{x0=0} when Y μ is the restriction to the hypersurface
{x0 = 0} of a Killing vector field Y μ, as then ∇0Y0 = 0. This is of key importance for our
equations below.

In the adapted null coordinates of [2] we have �0
1i = 0 on {x0 = 0} (see [2, appendix A]),

so in these coordinates DiD j differs from ∇i∇ j only when i, j ∈ {2, . . . , n}.
Our main result is:

Theorem 1.1. Let Y be a continuous vector field defined along CO in a vacuum spacetime
(M , g), smooth on CO \ {O}. There exists a smooth vector field X satisfying the Killing
equations on D+(CO) and coinciding with Y on CO if and only if on CO it holds that

DiY j + D jY i = 0, (1.4)

D1D1Y 0 = R011
μY μ. (1.5)

Furthermore, (1.5) is not needed on the closure of the set on which the divergence τ of CO is
non-zero.

While this is not necessary, the analysis of KIDs on light-cones thus can be split into
two cases: the first is concerned with the region sufficiently close to the tip of the cone where
the expansion τ has no zeros. Once a spacetime with Killing field has been constructed near
the vertex, the initial value problem for the remaining part of the cone can be reduced to
a characteristic initial value problem with two transversally intersecting null hypersurfaces,
which will be addressed in theorem 1.2. From this point of view the key restriction for
light-cones is (1.4).

The proof of theorem 1.1 can be found in section 2.5. In order to prove it we
will first establish some intermediate results, theorems 2.1 and 2.5 below, which require

1 Given a smooth vector field Y μ defined in a spacetime neighborhood of a hypersurface { f = 0} we will write
Y μ = Y μ| f =0, but at this point of the discussion Y μ is simply a vector field defined along the surface { f = 0}, it
being irrelevant whether or not Y μ arises by restriction of a smooth spacetime vector field. On the other hand, that
last question will become a central issue in the proof of theorem 2.5.
2 We use the following conventions on indices: Greek indices are for spacetime tensors and coordinates, small Latin
letters shall be used for tensors and coordinates on the light-cone or the characteristic surfaces, and capital Latin letters
for tensors or coordinates in the hypersurfaces of spacetime co-dimension two foliating the characteristic surfaces.
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further hypotheses. It is somewhat surprising that these additional conditions turn out to be
automatically satisfied.

Equations (1.4) provide thus necessary-and-sufficient conditions for the existence, to the
nearby future of O, of a Killing vector field. They can be viewed as the light-cone equivalent
of the spacelike KID equations, keeping in mind that (1.5) should be added when CO contains
open subsets on which τ vanishes. As made clear by the definitions, (1.4) and (1.5) involve
only the derivatives of Y in directions tangent to CO.

We shall see in section 2.6 that some of the equations (1.4) can be integrated to determine
Y in terms of data at O. Once this has been done, we are left with the trace-free part of
DAY B + DBY A = 0 as the ‘reduced KID equations’.

It should be kept in mind that a Killing vector field satisfies an overdetermined system
of second-order ODEs which can be integrated along geodesics starting from O, see (2.56)
below. This provides both X , and its restriction X to CO, in a neighborhood of O, given the
free data Xα|O and ∇[αXβ]|O. We will see in the course of the proof of theorem 2.1 how such
a scheme ties-in with the statement of the theorem, cf in particular section 2.3.

In section 2.6 we give a more explicit form of the KID equations (1.4) on a cone and
discuss some special cases.

In section 3.3 we show how bifurcate Killing horizons arise from totally geodesic null
surfaces normal to a spacelike submanifold S of co-dimension two, and how isometries of S
propagate to the spacetime.

1.2. Two intersecting null hypersurfaces

Throughout, we employ the symbol (·̆) to denote the trace-free part of the field (·) with respect
to g̃ = gAB dxAdxB. Further, an overbar denotes restriction to the initial surface.

In what follows the coordinates xA are assumed to be constant on the generators of the
null hypersurfaces. The analogue of theorem 1.1 for two intersecting hypersurfaces reads:

Theorem 1.2. Consider two smooth null hypersurfaces N1 = {x1 = 0} and N2 = {x2 = 0}
in an (n + 1)-dimensional vacuum spacetime (M , g), with transverse intersection along a
smooth (n − 1)-dimensional submanifold S. Let Y be a continuous vector field defined on
N1 ∪ N2 such that Y |N1 and Y |N2 are smooth. There exists a smooth vector field X satisfying
the Killing equations on D+(N1 ∪ N2) and coinciding with Y on N1 ∪ N2 if and only if on N1

it holds that

D2Y 2 = 0, (1.6)

D(2Y A) = 0, (1.7)

(D(AY B) )̆ = 0, (1.8)

R122
μY μ − D2D2Y 1 = 0, (1.9)

where D is the analogue on N1 of the derivative operator (1.2) and (1.3), with identical
corresponding conditions on N2, and on S one needs further to assume that

(D1Y 2 + D2Y 1)|S = 0, (1.10)

gABDAY B|S = 0, (1.11)

∂i(g
ABDAY B)|S = 0, i = 1, 2, (1.12)

R21A
μY μ − DAD[1Y 2]|S = 0. (1.13)

3

263



Class. Quantum Grav. 30 (2013) 235036 P T Chruściel and T-T Paetz

Similarly to theorem 1.1, (1.9) can be replaced by the requirement that gABDAY B = 0 on
regions where the divergence of N1 is non-zero. An identical statement applies to N2.

Theorem 1.2 is proved in section 3. As before, (1.6)–(1.13) provide necessary-and-
sufficient conditions for the existence, to the future of S, of a Killing vector field. Hence
they provide the equivalent of the spacelike KID equations in the current setting. Note that in
(1.6)–(1.13) the derivative D coincides with ∇.

2. The light-cone case

2.1. Adapted null coordinates

We use local coordinates (x0 ≡ u, x1 ≡ r, xA) adapted to the light-cone as in [2], in the
sense that the cone is given by CO = {x0 = 0} . Further, the coordinate x1 parameterizes
the null geodesics emanating to the future from the vertex of the cone, while the xA’s are
local coordinates on the level sets {x0 = 0, x1 = const} ∼= Sn−1, and are constant along the
generators. Then the metric takes the following form on CO:

g|CO = g00( dx0)2 + 2ν0 dx0 dx1 + 2νA dx0 dxA + gAB dxA dxB. (2.1)

We stress that we do not assume that this form of the metric is preserved under differentiation
in the x0–direction, i.e. we do not impose any gauge condition off the cone. On CO the inverse
metric reads

g	|CO = g11∂2
1 + 2g1A∂r∂A + 2ν0∂0∂r + gAB∂A∂B, (2.2)

with

ν0 = 1

ν0
, g1A = −ν0gABνB, g11 = (ν0)2(−g00 + gABνAνB). (2.3)

2.2. A weaker result

We start with a weaker version of theorem 2.5 which, moreover, assumes that the vector field
Y there is the restriction to the light-cone of some smooth vector field Y :

Theorem 2.1. Let Y be a smooth vector field defined in a neighborhood of CO in a vacuum
spacetime (M , g). There exists a smooth vector field X satisfying the Killing equations on
D+(CO) and coinciding with Y on CO if and only if the equations

DiY j + D jY i = 0, (2.4)

R011
μY μ − D1D1Y 0 = 0, (2.5)

R01A
μY μ − DAD1Y 0 = 0, (2.6)

gAB(R0AB
μY μ − DADBY 0) = 0, (2.7)

are satisfied by the restriction Y of Y to CO.

Proof. To prove necessity, let X be a smooth vector field satisfying the Killing equations on
D+(CO):

∇μXν + ∇νXμ︸ ︷︷ ︸
=:Aμν

= 0, (2.8)

4
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the tangent components of which give (2.4). It further easily follows from (2.8) that X satisfies

∇μ∇νXσ = Rαμνσ Xα, (2.9)

and (2.5)–(2.7) similarly follow; for (2.7) the equation A00 = 0 is used.
To prove sufficiency, by contracting (2.9) one finds

� Xσ = −Rσ
αXα (2.10)

(which equals −λXσ under (1.1)). So, should a solution X of our problem exist, it will
necessarily satisfy the wave equation (2.10).

Now, it follows from e.g. [7, théorème 2] that for any smooth vector field Y defined on
M there exists a smooth vector field X on M solving (2.10) to the future of O, such that,

X
μ = Y

μ
. (2.11)

Here, and elsewhere, overlining denotes restriction to CO. Further X |D+(CO) is uniquely defined
by Y |CO .

Applying � to (2.8) leads to the identity

� Aμν =2∇(μ � Xν) +4Rκ(μν)
α∇κXα +2Xα∇κRκ(μν)

α +2Rα(μ∇αXν). (2.12)

When Xμ solves (2.10) this can be rewritten as a homogeneous linear wave equation for the
tensor field Aμν ,

� Aμν = −2Rμ
α

ν
κAακ + 2R(μ

αAν)α − 2LX Rμν, (2.13)

if one notes that, under (1.1) the last term −2LX Rμν equals −2λAμν (and, in fact, cancels
with the before-last one, though this cancellation is irrelevant for the current discussion). It
follows from uniqueness of solutions of (2.13) that a solution X of (2.10) will satisfy the
Killing equation on D+(CO) if and only if

Aμν = 0. (2.14)

But by (2.4) we already have

Ai j = 0, (2.15)

so it remains to show that the equations A0μ = 0 hold. (Annoyingly, these equations involve
the derivatives ∂0Xμ which cannot be expressed as local expressions involving only the initial
data X = Y .) The theorem follows now directly from lemma 2.4 below. �
Definition 2.2. It is convenient to introduce, for a given vector field X, the tensor field

S(X )
μνσ := ∇μ∇νXσ − Rα

μνσ Xα. (2.16)

Whenever it is clear from the context which vector field is meant we will suppress its appearance
and simply write Sμνσ .

Using the algebraic symmetries of the Riemann tensor we find:

Lemma 2.3. It holds that:

(i) 2Sαβγ = 2∇(αAβ)γ − ∇γ Aαβ ,
(ii) 2Sα(βγ ) = ∇αAβγ ,

(iii) S[αβ]γ = 0.

Lemma 2.4. Suppose that Ai j = 0 and � X = −λX.

(1) (2.5) is equivalent to A01 = 0.

(2) If (2.5) holds, then (2.6) is equivalent to A0A = 0.

(3) If (2.5) and (2.6) hold, then (2.7) is equivalent to A00 = 0.
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Proof. It turns out to be convenient to consider the identity

∇μAμν ≡ ∇μ(∇μXν︸ ︷︷ ︸
=−RνμXμ

+∇νXμ) = −RνμXμ + ∇μ∇νXμ = ∇ν∇μXμ = 1
2∇νAμ

μ.

Thus, it holds that

gαβ (2∇αAβν − ∇νAαβ ) = 0. (2.17)

In adapted null coordinates (2.17) implies

0 = 2ν0(∇0A1μ + ∇1A0μ − ∇μA01) + 2g1B(∇1ABμ + ∇BA1μ − ∇μA1B)

+ g11(2∇1A1μ − ∇μA11) + gBC(2∇BACμ − ∇μABC). (2.18)

Due to lemma 2.3 we have

∇0Ai j = ∇iA j0 + ∇ jAi0 − 2Si j0. (2.19)

When (i j) = (11) that yields

∇0A11 − 2∇1A01 = −2S110. (2.20)

Inserting into (2.18) with μ = 1, after some simplifications one obtains

4ν0∇1A01 + 2g1B∇BA11 − gBC(∇1ABC − 2∇BAC1) + g11∇1A11 = 4ν0S110.

Using the vanishing of the �0
i1’s [2, appendix A] and the Ai j’s, this becomes a linear

homogeneous ODE for A01; in the notation of the last reference (where, in particular, τ

denotes the divergence of CO):3

(2∂r + τ − 2ν0∂rν0)A01 = 2S110. (2.21)

If A01 = 0, the vanishing of S110 immediately follows.
To prove the reverse implication, for definiteness we assume here and in what follows

a coordinate system as in [2, section 4.5]. In this coordinate system τ behaves as (n − 1)/r
for small r, ν0 satisfies ν0 = 1 + O(r2), and (2.21) is a Fuchsian ODE with the property that
every solution which is o(r−(n−1)/2) for small r is identically zero, see appendix A. As A01 is
bounded, when S110 vanishes we conclude that

A01 = 0. (2.22)

This proves point 1 of the lemma.
Next, (2.18) with μ = D reads

0 = 2ν0(∇0A1D + ∇1A0D − ∇DA01) + 2g1B(∇1ABD + ∇BA1D − ∇DA1B)

+ g11(2∇1A1D − ∇DA11) + gBC(2∇BACD − ∇DABC). (2.23)

Using (2.19) with (i j) = (A1),

∇0A1A = ∇AA01 + ∇1A0A − 2SA10, (2.24)

to eliminate ∇0A1D from (2.23), and invoking (2.22), on CO one obtains a system of Fuchsian
radial ODEs for A0D,(

2∂r + n − 3

n − 1
τ + 2κ − 2ν0∂rν0

)
A0B − 2σB

CA0C = 2SB10, (2.25)

with zero being the unique solution with the required behavior at r = 0 when SB10 = 0:

A0B = 0. (2.26)

This proves point 2 of the lemma.

3 Throughout we shall make extensively use of the formulae for the Christoffel symbols in adapted null coordinates
computed in [2, appendix A]. Apart from the vanishing of the �0

i1’s the expressions for �0
01, �1

11 = κ , �A
1B and �0

AB
will be often used.

6
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Let us finally turn attention to (2.18) with μ = 0:

0 = 2ν0∇1A00 + 2g1B(∇1AB0 + ∇BA10 − ∇0A1B)

+ g11(2∇1A10 − ∇0A11) + gBC(2∇BAC0 − ∇0ABC). (2.27)

The transverse derivatives ∇0A1i can be eliminated using (2.20) and (2.24),

2ν0∇1A00 + 4g1BSB10 + 2g11S110 + gBC(2∇BA0C − ∇0ABC) = 0. (2.28)

The remaining one, gAB∇0AAB, fulfils the following equation on CO, which follows from (2.19),

gAB∇0AAB = 2gAB∇AA0B − 2gABSAB0 = 2gAB∇AA0B − 2S̃ − τν0A00,

where we have set

S̃ := gABSAB0 − 1
2τν0A00. (2.29)

Note that S̃ is the negative of the left-hand side of (2.7), and we want to show that the vanishing
of S̃ is equivalent to that of A00. Equation (2.28) with Ai j = 0 and A0i = 0 (i.e. Si10 = 0) yields

ν0(2∂r + τ + 4κ − 4ν0∂rν0)A00 = −2S̃. (2.30)

For S̃ = 0 this is again a Fuchsian radial ODE for A00, with the only regular solution A00 = 0,
and the lemma is proved. �

2.3. The free data for X

Let us explore the nature of (1.4). Making extensive use of [2, appendix A], and of the notation
there (thus κ ≡ �1

11, ξA ≡ −2�1
1A, while χA

B = �B
1A denotes the null second fundamental

form of CO), we find

A11 = 2(∂r − κ)X1, (2.31)

A1A = ∂rXA − 2χA
BXB + (∂A + ξA)X1, (2.32)

AAB = 2∇̃(AXB) + 2χABX1 − ν0(2∇̃(AνB) − ∂0gAB)X1. (2.33)

For definiteness, in the discussion that follows we continue to assume a coordinate system
as in [2, section 4.5], in particular κ = 0 and

χA
B = 1

r
δA

B + O(r), ξA = O(r2), (2.34)

τ = n − 1

r
+ O(r), ∂r

(
τ − n − 1

r

)
= O(1), ∂Aτ = O(r), (2.35)

σA
B = O(r), ∂rσA

B = O(1), ∂CσA
B = O(r). (2.36)

Under (1.4) the left-hand sides of (2.31)–(2.33) vanish. Hence, we can determine X1 by
integrating (2.31),

X1(r, xA) = c(xA), (2.37)

for some function of the angles.
We continue by integrating (2.32). This is a Fuchsian ODE for XB, the solutions of which

are of the form

XA = rD̊Ac + fA(xB)r2 + O(r3), (2.38)

where D̊ is the covariant derivative operator of the unit round metric s on Sn−1 where fA(xB)

is an integration function.
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In a neighborhood of O, where τ does not vanish, the component X1 can be algebraically
determined from the equation AA

A = 0, leading to

X1 = − 1

n − 1
�sc − r

n − 1
sABD̊A fB + O(r2), (2.39)

where �s is the Laplace operator of the metric s.
The equation ĂAB = 0, where ĂAB denotes the g̃-trace free part of AAB, imposes the

relations

(D̊AD̊Bc)̆ = 0, (2.40)

(D̊(A fB) )̆ = 0, (2.41)

with (·̆) denoting here the trace-free part with respect to the metric s.
We wish, now, to relate the values of c and fA to the values of the vector field X at the

vertex, under the supplementary assumption that X is the restriction to CO of a differentiable
vector field defined in spacetime. Following [2], we denote by yμ normal coordinates centered
at O. Given the coordinates yμ the coordinates xα can be obtained by setting

x0 = r − y0, x1 = r, xA = μA

(
yi

r

)
, (2.42)

for some functions μA, so that the xA form local coordinates on Sn−1, and

r :=
{∑

i

(yi)2

} 1
2

. (2.43)

We underline the components of tensor fields in the yα-coordinates, in particular

Xα = ∂xμ

∂yα
Xμ, Xα = ∂yμ

∂xα
Xμ, Xα = ∂yα

∂xμ
Xμ, Xα = ∂xα

∂yμ
Xμ. (2.44)

For vector fields such that Xμ is continuous, we obtain

X1(0) = X1(0) = X0(0) +
∑

i

X i(0)
yi

r
= −X0(0) +

∑
i

X i(0)
yi

r
. (2.45)

Thus, for such vector fields, X1(0) is a linear combination of � = 0 and � = 1 spherical
harmonics, and contains the whole information about Xα(0). We conclude that

c(xA) = −X0(0) +
∑

i

X i(0)
yi

r
. (2.46)

Equation (2.40) will be satisfied if and only if c is of the form (2.46), which can be seen by
noting that (2.46) provides a family of solutions of (2.40) with the maximal possible dimension.

To determine fA when Xμ is differentiable at the origin we Taylor expand X there,

Xμ = Xμ(0) + y j∂ jXμ(0) + y0∂0Xμ(0) + O(|y|2).
so that

XA = ∂yi

∂xA
Xi = ∂yi

∂xA

(
Xi(0) + y j∂ jXi(0) + y0∂0Xi(0)

)
+ O(r2), (2.47)

which determines fA in terms of ∂μXi(0). Equation (2.41), which is the conformal Killing
vector field equation on Sn−1, will be satisfied under the hypotheses of theorem 2.1 if and only
if ∂iXj(0) is anti-symmetric.

8
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2.4. A second intermediate result

As a next step toward the proof of theorem 1.1, we drop in theorem 2.1 the assumption of Y
being the restriction of a smooth spacetime vector field:

Theorem 2.5. Let Y be a vector field defined along CO in a vacuum spacetime (M , g). There
exists a smooth vector field X satisfying the Killing equations on D+(CO) and coinciding with
Y on CO if and only if on CO it holds that

DiY j + D jY i = 0, (2.48)

R011
μY μ − D1D1Y 0 = 0, (2.49)

R01A
μY μ − DAD1Y 0 = 0, (2.50)

gAB(R0AB
μY μ − DADBY 0) = 0. (2.51)

Proof of theorem 2.5. We wish to apply theorem 2.1. The crucial step is to construct the
vector field Y needed there. For further reference we note that (2.51) will not be needed for
this construction.

In the argument that follows we shall ignore the distinction between X and Y whenever it
does not matter.

By hypothesis it holds that

Ai j = 0, (2.52)

Si10 = 0. (2.53)

We define an anti-symmetric tensor Fμν via

Fi j := ∇[iX j],

−F0i = Fi0 := ∇iX0.

Then

F1i ≡ 1
2∇1Xi − 1

2∇iX1 ≡ ∇1Xi − 1
2 A1i

= ∇1Xi.

Moreover,

2∇1Fi j ≡ ∇1∇iX j − ∇1∇ jX i

≡ ∇i∇1X j − ∇ j∇1Xi + R1i j
αXα + Rj1i

αXα

≡ ∇iA1 j − ∇ jA1i − ∇i∇ jX1 + ∇ j∇iX1 − Ri j1
αXα

≡ ∇iA1 j − ∇ jA1i − 2Ri j1
αXα.

With (2.52) that gives

∇1Fi j = −Ri j1
αXα.

Further,

∇1Fi0 ≡ ∇1∇iX0 = ∇i∇1X0 + R1i0
αXα = R01i

μXμ + R1i0
αXα

= −Ri01
μXμ.

To sum it up, (2.52) and (2.53) imply that the equations

∇1Xμ = F1μ, (2.54)

∇1Fμν = Rα
1μνXα (2.55)

hold on CO,
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Let X̊μ = X
μ|O and F̊μν = Fμν |O be the initial data at O needed for solving those

equations. These data can be calculated as follows: (2.40) and (2.41) show that D̊Ac and fA are
conformal Killing fields on the standard sphere (Sn−1, s). It follows from [13, proposition 3.2]
(a detailed exposition can be found in [12, proposition 2.5.1]) that c is a linear combination
of the first two spherical harmonics, so that X̊μ can be read off from c using (2.46). Similarly
(2.47) can be used to read off F̊μν from fA.

We conclude that, in coordinates adapted to CO as in (2.42), under the hypotheses of
theorem 2.5 the desired Killing vector X is a solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇1Xμ = F1μ, on CO;
∇1Fαβ = Rγ 1αβXγ , on CO;
Xμ = X̊μ, at O;
Fμν = F̊μν, at O;
� Xμ = −λXμ, on D+(CO);
Xμ = Xμ, on CO.

(2.56)

Note that the first four equations above determine uniquely the initial data Xμ on CO

needed to obtain a unique solution of the wave equation for Xμ.
Now, we claim that there exists a smooth vector field Y μ defined near O so that X

μ
is the

restriction of Y μ to the light-cone. To see this, let �̊μ be given and define (xμ(s), Zμ(s), Fαβ (s))
as the unique solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xμ

ds2
+ �

μ
αβ

dxα

ds

dxβ

ds
= 0,

dZμ

ds
− �α

μβZα

dxβ

ds
= Fαμ

dxα

ds
,

dFαβ

ds
− �μ

αγ

dxγ

ds
Fμβ − �

μ
βγ

dxγ

ds
Fμα = Rγ δαβZγ dxδ

ds
,

xμ(0) = 0,
dxμ

ds
(0) = �̊μ,

Fμν (0) = F̊μν,

Zμ(0) = X̊μ.

(2.57)

For initial values such that xμ(1) is defined, set

Y μ|xμ(1) = Zμ|s=1. (2.58)

It follows from smooth dependence of solutions of ODEs upon initial data that Y μ is smooth
in all initial variables, in particular in �̊μ. If the xμ’s are normal coordinates centered at O, then
xμ(s = 1) = �̊μ, which implies that (2.58) defines a smooth vector field in a neighborhood of
O. It then easily follows that the restriction of Y μ to CO equals Xμ, as defined by the first four
equations in (2.56).

The hypotheses of theorem 2.1 are now satisfied, and theorem 2.5 is proved. �

2.5. Proof of theorem 1.1

To prove theorem 1.1 we will use theorem 2.1, together with some of the ideas of the proof of
theorem 2.5. We need to show that (1.4) together with the Einstein equations imply both the
existence of a smooth extension Y of Y , and that (2.5)–(2.7) hold.
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2.5.1. Properties of Sμνσ . Recall the definition

Sμνσ ≡ ∇μ∇νXσ − Rα
μνσ Xα, (2.59)

and lemma 2.3.
In the context of theorem 1.1, only those components of the tensor field Sαβγ which do

not involve ∂0-derivatives of X are a priori known. One easily checks:

Lemma 2.6. The components

Si jμ with (i j) �= (AB) (2.60)

of the restriction to CO of Sμνσ can be algebraically Xσ ≡ Y σ , DiXσ ≡ DiY σ and DiDjXσ ≡
DiDjY σ .

We wish, next, to calculate ∇αSαβγ and ∇γ Sαβγ . This requires the knowledge of ∇0Xμ, of
∇0∇0Xμ, and even of ∇0∇0∇0Xμ in some equations. For this, let X be any extension of X from
the light-cone to a punctured neighborhood O \ {O} of O, so that the transverse derivatives
appearing in the following equations are defined. X is assumed to be smooth on its domain
of definition, and we emphasize that we do not make any hypotheses on the behavior of the
extension X as the tip O of the light-cone is approached. As will be seen, the transverse
derivatives of X on CO drop out from those final formulae which are relevant for us.

We will make use several times of

∇αRα
βγ δ = 0,

which is a standard consequence of the second Bianchi identity when the Ricci tensor is
proportional to the metric.

We start with ∇αSαβγ . Two commutations of derivatives allow us to rewrite the first term
in the divergence of Sαβγ over the first index as

∇α∇α∇βXγ = ∇α(∇β∇αXγ + Rγ
σ

αβXσ )

= ∇β∇α∇αXγ + Rασ
αβ∇σ Xγ + 2Rγ

σ
αβ∇αXσ

= ∇β � Xγ + Rσ
β∇σ Xγ + 2Rγ

σ
αβ∇αXσ . (2.61)

Hence, since Rαβ = λgαβ , and using the first Bianchi identity in the second line

∇αSαβγ = ∇β � Xγ + λ∇βXγ + 2Rγ
σ

αβ∇αXσ − Rσ
αβγ ∇αXσ

= ∇β (� Xγ + λXγ ) + Rγ
σα

βAασ . (2.62)

Similarly,

∇αSβγα = ∇α(∇β∇γ Xα − Rσ
βγαXσ )

= ∇β∇α∇γ Xα + Rγ
σα

β∇σ Xα + Rα
σα

β∇γ Xσ − Rσ
βγα∇αXσ

= ∇β (∇γ ∇αXα + Rσ
γ Xσ ) + Rγ

σα
β∇σ Xα + Rσ

β∇γ Xσ − Rσ
βγα∇αXσ

= 1
2∇β∇γ Aα

α + λAβγ . (2.63)

Now, on CO and in coordinates adapted to the cone

∇αSαβγ = ν0(∇0S1βγ + ∇1S0βγ ) + g1A(∇1SAβγ + ∇AS1βγ )

+ g11∇1S1βγ + gAB∇ASBβγ , (2.64)

while

∇αSβγα = ν0(∇0Sβγ 1 + ∇1Sβγ 0) + g1B(∇1Sβγ B + ∇BSβγ 1)

+ g11∇1Sβγ 1 + gBC∇BSβγC. (2.65)
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In order to handle undesirable terms such as ∇0Sβγ 1 we write

∇0∇α∇βXγ = ∇α∇0∇βXγ + Rβ
σ

0α∇σ Xγ + Rγ
σ

0α∇βXσ

= ∇α(∇β∇0Xγ + Rγ
σ

0βXσ ) + Rβ
σ

0α∇σ Xγ + Rγ
σ

0α∇βXσ

= ∇α(∇β (A0γ − ∇γ X0) + Rγ
σ

0βXσ )

+ Rβ
σ

0α∇σ Xγ + Rγ
σ

0α∇βXσ . (2.66)

2.5.2. Analysis of condition (2.5).

Lemma 2.7. Assume that A1i = 0 and ĂAB = 0. Then, in vacuum,(
∂r + 2

n − 1
τ − κ

)
∂r(g

ABAAB) = 2τν0S110. (2.67)

Proof. By lemma 2.3 the vanishing of A1i implies

(i) S111 = 0,
(ii) 0 = S11A, as well as all permutations thereof.

Consider (2.63) with (βγ ) = (11). Setting a := gABAAB we find

∇αS11α = 1
2∇1∇1Aα

α + λA11 = ν0∇1∇1A01 + 1
2 gAB∇1∇1AAB

= ν0∇1∇1A01 + 1
2 (∂r − κ)∂ra. (2.68)

Due to lemma 2.3 we have

2χABS1AB = χAB∇1AAB = χAB(∂rAAB − 2χA
CABC)

= 1

n − 1
χAB[∂r(agAB) − 2aχAB]

= 1

n − 1
τ∂ra.

Using (2.65) with (βγ ) = (11), as well as the last equation, and employing again lemma 2.3
we obtain, on CO,

∇αS11α = ν0(∇0S111 + ∇1S110) + g1B(∇1S11B + ∇BS111)

+ g11∇1S111 + gBC∇BS11C

= ν0(∇0S111 + ∇1S110) + gBC∇BS11C

= ν0(∇0S111 + ∇1S110) − 2χABS1AB + τν0S110

= ν0(∇0S111 + ∇1S110) − 1

n − 1
τ∂ra + τν0S110. (2.69)

Using (2.66) we find

∇0S111 = ∇0∇1∇1X1 = ∇1∇1A01 − ∇1S110 + R011
μA1μ

= ∇1∇1A01 − ∇1S110. (2.70)

Equating (2.68) with (2.69), and using the last equation we end up with (2.67). �

Corollary 2.8. In a region where the divergence τ does not vanish (in particular, near the
vertex), Ai j = 0 implies, in vacuum, S110 = 0.

12
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2.5.3. Analysis of condition (2.6).

Lemma 2.9. Assume that Ai j = 0 and S110 = 0. Then, in vacuum, SA10 = 0.

Proof. From (2.66) we obtain

∇0SA11 = ∇0∇A∇1X1 = ∇A∇1A01 − ∇AS110 + R1
σ

0AAσ1.

This allows us to rewrite (2.65) with (βγ ) = (A1) on CO as

∇αSA1α = ν0(∇A∇1A01 − ∇AS110 + R1
σ

0AAσ1 + ∇1SA10)

+g1B(∇1SA1B + ∇BSA11) + g11∇1SA11 + gBC∇BSA1C. (2.71)

Combining with (2.63), which reads with (βγ ) = (A1)

∇αSA1α = 1
2∇A∇1Aα

α + λA1A,

we obtain on the initial surface

− ν0∇1SA10 = ν0(∇A∇1A01 − ∇AS110 + R1
j
0AAj1) + g1B(∇1SA1B + ∇BSA11)

+ g11∇1SA11 + gBC∇BSA1C − 1
2∇A∇1Aα

α − λA1A. (2.72)

Assuming Ai j = 0, lemma 2.3 shows that Si11 = 0 = S1i1 = S11i = SA1B. This allows us to
rewrite the right-hand side of (2.72) as

rhs = ν0∇A∇1A01 − ν0∇AS110 + gBC∇BSA1C + g1B(∇1SA1B + ∇BSA11) − 1
2∇A∇1Aα

α

= −ν0∇AS110 + gBC∇BSA1C − 1
2 gBC∇A∇1ABC − g1B(∇BSA11 − ∇A∇1A1B).

Now, using in addition that S110 = 0,

∇BSA11 − ∇A∇1A1B = 1
2∇A(∇BA11 − 2∇1A1B)

= − ∇AS11B = −ν0χABS110 = 0.

Hence,

rhs = −ν0∇AS110 + gBC∇BSA1C − 1
2 gBC∇A∇1ABC

= −ν0∇AS110 + gBC(∇BSA1C − ∇ASB1C)

= −ν0∇AS110 − gBC( 2χ[B
DSA]DC︸ ︷︷ ︸

=0 by lemma 2.3

−ν0χBCS1A0 + ν0χACS1B0)

= −ν0∇AS110 + τν0S1A0 − ν0χA
BS1B0

= τν0SA10 + ν0χA
BSB10,

and thus, again due to S110 = 0 and lemma 2.3,

(∂r + τ − ν0∂rν0)SA10 = 0. (2.73)

But zero is the only solution of this equation which is o(r−(n−1)), and to be able to conclude
that

SA10 = 0 (2.74)

we need to check the behavior of SA10 at the vertex. For definiteness we assume a coordinate
system as in [2, section 4.5]. Now, by definition,

SA10 = ∇A∇1X0 − RμA10Xμ

= ∂A(∂rX0 − �
μ

10Xμ) − �
μ

A1∇μX0 − �
μ

A0∇1Xμ − RμA10Xμ.

From (2.37)–(2.39) we find

X1, ∂iX1 = O(1), X0, ∂iX0, ∂A∂rX0 = O(1), (2.75)
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XA, ∂BXA = O(r), ∂rXA = O(1). (2.76)

Using the formulae from [2, appendix A] one obtains

SA10 = −�0
A1︸︷︷︸

=0

∇0X0 + O(r−1) = O(r−1),

which implies that (2.74) holds, and lemma 2.9 is proved. �

2.5.4. Proof of theorem 1.1. We are ready now to prove our main result.

Proof of theorem 1.1. By assumption, using obvious notation, A(Y )
i j = 0. When τ does not

vanish corollary 2.8 applies and shows that S(Y )

110 = 0. Otherwise, S(Y )

110 = 0 holds by hypothesis

and lemma 2.9 shows that S(Y )

A10 vanishes as well. In the proof of theorem 2.5 we have shown

that A(Y )
i j = 0 and S(Y )

i10 = 0 suffice to make sure that Y is the restriction to CO of a smooth
spacetime vector field Y . Then, due to the Cagnac–Dossa theorem [7, théorème 2], there exists
a smooth vector field X with X = Y which solves � X = −λX . The assertions of theorem
1.1 follow now from theorem 2.1, whose remaining hypotheses are satisfied by lemma 2.11
below. �

2.5.5. Analysis of condition (2.7). A straightforward application of lemma 2.3 yields

Lemma 2.10. Assume that Aiμ = 0. Then

(i) Si jk = 0,
(ii) S110 = S101 = S011 = 0,

(iii) SA10 = SA01 = S1A0 = S0A1 = S10A = S01A = 0.

Lemma 2.11. Consider a smooth vector field X in a vacuum spacetime (M , g) which satisfies
Aiμ = 0 on CO and � X + λX = 0. Then

S̃ := gABSAB0 − 1
2τν0A00 = gAB(DADBX0 − R0AB

μXμ) = 0. (2.77)

Proof. Equation (2.62) yields with Aiμ = 0, � X + λX = 0 and in vacuum

gAB∇αSαAB = −(ν0)2R11A00 = −λ(ν0)2 g11︸︷︷︸
=0

A00 = 0.

On the other hand, (2.64) gives with lemma 2.3 and 2.10 on CO,

gAB∇αSαAB = ν0gAB(∇0S1AB + ∇1S0AB) + g1CgAB(∇1SCAB + ∇CS1AB)

+ g11gAB∇1S1AB + gABgCD∇CSDAB

= ν0gAB(∇0S1AB + ∇1S0AB) + gABgCD∇CSDAB

= ν0gAB(∇0S1AB + ∇1S0AB) + ν0gAB(τS0AB + 2χA
DSD(0B))

= ν0gAB(∇0S1AB − ∇1SAB0 + ∇1∇AA0B)

− τν0gABSAB0 + (ν0)2(τ 2 + |χ |2)A00.

Moreover, from (2.66) and lemma 2.3 we deduce that, on CO,

gAB∇0S1AB = gAB∇0∇1∇AXB

= gAB∇1∇AA0B − gAB∇1SAB0 + gABR01A
μABμ

= gAB∇1∇AA0B − gAB∇1SAB0.
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Hence,

0 = 2gAB∇1∇AA0B − 2gAB∇1SAB0 − τgABSAB0 + ν0(τ 2 + |χ |2)A00

= 2gAB∇A∇1A0B − 2ν0R11A00 − 2gAB∇1SAB0 − τgABSAB0

+ ν0(τ 2 + |χ |2)A00

= − 2gAB∇1SAB0 − τgABSAB0 + ν0(2τ∇1 + τ 2 − |χ |2)A00

= τν0
(
∂r + 1

2τ − 2�0
01

)
A00 − ν0(∂rτ − κτ + |χ |2)A00 − 2

(
∂r + 1

2τ − �0
10

)
S̃.

Using the vacuum constraint [2] 0 = λg11 = R11 = −∂rτ + κτ − |χ |2, we obtain

0 = −2
(
∂r + 1

2τ + κ − ν0∂rν0
)

S̃ − τν0
(
∂r + 1

2τ + 2κ − 2ν0∂rν0
)

A00.

We employ (2.30),

S̃ = −ν0
(
∂r + 1

2τ + 2κ − 2ν0∂rν0
)

A00,

which holds since all the hypotheses of lemma 2.4 are fulfilled, to end up with

(∂r + τ + κ − ν0∂rν0)S̃ = 0.

Regularity at O in coordinates as in [2, section 4.5] gives S̃ = O(r−1), which implies that
S̃ = 0 is the only possibility. �

2.6. Analysis of the KID equations in some special cases

2.6.1. KID equations. Theorem 1.1 shows that a vacuum spacetime emerging as solution
of the characteristic initial value problem with data on a light-cone possesses a Killing field if
and only if the conformal class γAB = [gAB] of gAB, which together with κ describes the free
data on the light-cone, is such that, in the region where τ has no zeros, the KID equations
Ai j = 0 admit a non-trivial solution Y . Written as equations for the vector field Y , they read
(we use the formulae from [2, appendix A])

(∂r − κ + ν0∂rν0)Y
0 = 0, (2.78)

∂rY
A + (∇̃Aν0 − ∂rg

1A + κνA + ν0ξ
A + ν0∇̃A)Y 0 = 0, (2.79)

τY 1 + ∇̃AY A − 1
2ν0(ζ + τg11 + 2g1A∇̃A)Y 0 = 0, (2.80)

(∇̃(AY B) )̆ + σABY 1 − ν0
(
g11σAB + �̆1

AB

)
Y 0 = 0, (2.81)

where σA
B denotes the trace-free part of χA

B, ξA := gABξB and

ζ := 2gAB�1
AB + τg11, (2.82)

ξA := −2�1
1A. (2.83)

The analysis of these equations is identical to that of their covariant counterpart, already
discussed in section 2.3. The first three equations, arising from A1i = 0 and gABAAB = 0
determine a class of candidate fields (depending on the integration functions c(xA) and fA(xB),
with D̊Ac and fA being conformal Killing fields on (Sn−1, s). Note that it is crucial for the
expansion τ to be non-vanishing in order for gABAAB = 0 to provide an algebraic equation
for Y 1. Regardless of whether τ has zeros or not, we can determine Y 1 by integrating radially
(1.5), compare remark 3.2 below.

15

275



Class. Quantum Grav. 30 (2013) 235036 P T Chruściel and T-T Paetz

2.6.2. Killing vector fields tangent to spheres. Let us consider the special case where the
spacetime admits a Killing field X with the property that X0 = X1 = 0 on CO. The KID
equations for the candidate field Y (2.78)–(2.81) then reduce to

∂rY
A = 0,

∇̃(AYB) = 0,

which leads us to the following corollary of theorem 1.1.

Corollary 2.12. Consider initial data ḡAB(r, xC) dxA dxB for the vacuum Einstein equations
(cf, e.g., [5]) on a light-cone CO. In the resulting vacuum spacetime there exists a Killing field
X with X0 = X1 = 0 on CO defined on a neighborhood of the vertex O if and only if the family
of Riemannian manifolds

(Sn−1, gAB(r, ·) dxA dxB)

admits an r-independent Killing field f A = f A(xB).

2.6.3. Killing vector fields tangent to the light-cone. Let us now restrict attention to those
Killing fields which are tangent to the cone CO, i.e. we assume

X0 = 0. (2.84)

We start by noting that in the coordinates of (2.42) we have

Xμ = ωμνyν + O(|y|2),
for an anti-symmetric matrix ωμν . Hence, quite generally,

X0 = ∂x0

∂yμ
Xμ = −X0 + yi

r
Xi = ω0iy

i + yi

r
(ωi jy

j − ω0iy
0) + O(|y|2) = O(|y|2), (2.85)

X1 = ∂r

∂yμ
Xμ = ωi0

yi

r
y0 + O(|y|2). (2.86)

Thus (2.84) does not impose any restrictions on ωμν , and we have

X1 = ωi0yi + O(r2). (2.87)

Next, under (2.84) the KID equations (2.78)–(2.81) for the candidate field Y become

∂rY
A = 0, (2.88)

τY 1 + ∇̃AY A = 0, (2.89)

(∇̃(AY B) )̆ + σABY 1 = 0, (2.90)

or, equivalently (note that ∂r�̃
B
AB = ∂Aτ )

Y A = f A(xB), (2.91)

∂r(τY 1) + f A∂Aτ = 0, (2.92)

∇̃(A fB) + χABY 1 = 0, (2.93)

where we have set fA := gAB f B. Equations (2.91)–(2.93) provide thus a relatively simple form
of the necessary-and-sufficient conditions for existence of Killing vectors tangent to CO.

If we choose a gauge where τ = (n − 1)/r (cf e.g. [5]), the last three equations become

Y A = f A(xB), (2.94)
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Y 1 = − r

n − 1
∇̃A f A = − r

n − 1
D̊A f A, (2.95)

(∇̃(A fB) )̆ = σAB
r

n − 1
D̊C f C. (2.96)

Note that there are no non-trivial Killing vectors tangent to all generators of the cone, Y A = 0,
as (2.95) gives then Y 1 = 0. This should be contrasted with a similar question for intersecting
null hypersurfaces, see section 3.3.

3. Two intersecting null hypersurfaces

3.1. An intermediate result

In analogy with the light-cone case let us first prove an intermediate result.

Theorem 3.1. Consider two smooth null hypersurfaces N1 = {x1 = 0} and N2 = {x2 = 0}
in an (n + 1)-dimensional vacuum spacetime (M , g), with transverse intersection along a
smooth submanifold S. Let Y be a vector field defined on N1 ∪ N2. There exists a smooth vector
field X satisfying the Killing equations on D+(N1 ∪ N2) and coinciding with Y on N1 ∪ N2 if
and only if on N1 it holds that

D2Y 2 = 0, (3.1)

D(2Y A) = 0, (3.2)

D(AY B) = 0, (3.3)

R122
μY μ − D2D2Y 1 = 0, (3.4)

R12A
μY μ − DAD2Y 1 = 0, (3.5)

gAB(R1AB
μY μ − DADBY 1) = 0, (3.6)

where D is the analogue on N1 of the derivative operator (1.2)–(1.3); similarly on N2; while
on S one needs further to assume that

(D1Y2 + D2Y1)|S = 0. (3.7)

Proof. The proof is essentially identical to the proof of theorem 2.1. The candidate field is
constructed as a solution of the wave equation (2.10); the delicate question of regularity of Y
needed at the vertex in the cone case does not arise. Existence of the solution in J+(N1 ∪ N2)

follows from [11].
The main difference is that one cannot invoke regularity at the vertex to deduce the

vanishing of, say on N2, A2μ|N2 from the equations which correspond to (2.21), (2.25) and
(2.30). Instead, one needs further to require (3.7) as well as

(∇2YA + ∇AY2)|S = 0 and ∇2Y2|S = 0.

However, the last two conditions follow from (3.1) and (3.2) on N1. �
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3.2. Proof of theorem 1.2

We prove now our main result for transversally intersecting null hypersurfaces.

Proof of theorem 1.2. We want to show that (1.6)–(1.13) imply that all the remaining
assumptions of theorem 3.1, namely (3.1)–(3.7), are satisfied. The conditions (3.1), (3.2),
(3.4) and (3.7) follow trivially.

Lemma 2.7, adapted to the intersecting null hypersurfaces-setting, tells us that gAB∇(AYB)

vanishes on N1 ∪ N2 due to (1.11) and (1.12). Hence (3.3) is fulfilled.
The analogue of lemma 2.9 for two intersecting null hypersurfaces requires, in addition

to (1.13), the vanishing of

DAD(1Y 2)|S = 0. (3.8)

Both (1.13) and (3.8) together imply vanishing initial data for the analogue of the ODE (2.73)
in the current setting. Equation (3.8) follows from (1.7), the corresponding equation on N2,
and (1.10). Thus (3.5) is fulfilled.

A straigthforward adaptation of lemma 2.11 to the current setting shows that, say on N2,
gABSAB2 − 1

2τg12A22 vanishes, supposing that it vanishes on S. Using lemma 2.3 (i) we find(
gABSAB2 − 1

2τg12A22
) |S = gAB

(∇(AAB)2 − 1
2∇2AAB

) − 1
2τg12A22

= 0,

because of (1.6)–(1.12). Hence also (3.6) is fulfilled. �

Remark 3.2. While τ has no zeros near the tip of a light-cone, for two transversally intersecting
null hypersurfaces the expansion τ may vanish even near the intersection. In that case the trace
of (3.3) on, say, N1 will fail to provide an algebraic equation for X2. Also, corollary 2.8 cannot
be applied to deduce the vanishing of S221, equivalently, the validity of (3.4), in the regions
where τ vanishes. Instead one can use the second-order ODE (3.4) to find a candidate for
X2, and then lemma 2.7 guarantees that the trace of the left-hand side of (3.3) vanishes when
gABAAB|S = 0 = ∂2(gABAAB)|S.

3.3. Bifurcate horizons

A key notion to the understanding of the geometry of stationary black holes is that of a
bifurcation surface. This is a smooth submanifold S of co-dimension two on which a Killing
vector X vanishes, with S forming a transverse intersection of two smooth null hypersurfaces so
that X is tangent to the generators of each. In our context this would correspond to a KID which
vanishes on S, and is tangent to the null generators of the two characteristic hypersurfaces
emanating normally from S. In coordinates adapted to one of the null hypersurfaces, so that
the hypersurface is given by the equation x1 = 0, we have X = X2∂2, and X � = g12X2dx1.
Then (2.84) holds, and therefore also (2.88)–(2.90) (which correspond to (3.2) and (3.3)).
Equations (2.89)–(2.90) show that this is only possible if τ = σAB = 0, which implies that
translations along the generators of the light-cone are isometries of the (n − 1)-dimensional
metric gABdxAdxB. Equivalently, N1 and N2 have vanishing null second fundamental forms,
which provides a necessary condition for a bifurcate horizon.

Assuming vacuum (as everywhere else in this work), this condition turns out to be
sufficient. Let ζA be the torsion one-form of S (see, e.g., [3], or (B.4) below). We can use
theorem 2.1 to prove (compare [8, proposition B.1] in dimension 3 + 1 and [9, end of
section 2] in higher dimensions):
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Theorem 3.3. Within the setup of theorem 2.1, suppose that the null second fundamental forms
of the hypersurfaces Na, a = 1, 2, vanish. Then:

(i) There exists a Killing vector field X defined on D+(N1 ∪ N2) which vanishes on S and is
null on N1 ∪ N2.

(ii) Furthermore, any Killing vector Ŷ = Ŷ A∂A of the metric induced by g on S extends to a
Killing vector X of g on D+(N1 ∪ N2) if and only if the Ŷ -Lie derivative of the torsion
one-form of S is exact.

Remarks 3.4.

(1) Killing vectors as above would exist to the past of S if the past-directed null hypersurfaces
emanating from S also had vanishing second null fundamental forms. However, this does
not need to be the case, a vacuum example is provided by suitable Robinson– Trautman
spacetimes.

(2) Concerning point 2. of the theorem, when the Ŷ -Lie derivative of ζ is merely closed the
argument of the proof below provides one-parameter families of Killing vectors defined
on domains of dependence D+(O ) of simply connected subsets O of S. It would be of
interest to find out whether or not the resulting locally defined Killing vectors can be
patched together to a global one when S is not simply connected.

Proof.

(1) In coordinates adapted to the null hypersurfaces the condition that a Killing vector X is
tangent to the generators is equivalent to

Xμ|S = 0, X1|N1 = X2|N2 = 0, XA|N1∪N2 = 0, (3.9)

⇐⇒ Xμ|S = 0, X2|N1 = X1|N2 = 0, XA|N1∪N2 = 0. (3.10)

For simplicity we assume that the generators of the two null hypersurfaces are affinely
parameterized, i.e. κN1 = κN2 = 0. By hypothesis we have

τN1 = τN2 = σ
N1
AB = σ

N2
AB = 0. (3.11)

The KID equations (1.6)–(1.13) for the candidate field Y reduce to

∂2∂2Y 1 − 2�1
12∂2Y 1 + ((

�1
12

)2 − ∂2�
1
12

)
Y 1|N1 = 0, (3.12)

∂1∂1Y 2 − 2�2
12∂1Y 2 + ((

�2
12

)2 − ∂1�
2
12

)
Y 2|N2 = 0, (3.13)

(∂1Y 2 + ∂2Y 1)|S = 0, (3.14)

∂A(∂1Y 2 − ∂2Y 1)|S = 0. (3.15)

Since Y μ|S = 0 we need non-trivial initial data ∂2Y 1|S and ∂1Y 2|S for the ODEs (3.12)
and (3.13) for ∂2Y 1|N1 and ∂1Y 2|N2 , respectively.
Using the formulae in [2, appendix A], (3.12)–(3.15) can be rewritten as

∂2∂2Y
2|N1 = 0, (3.16)

∂1∂1Y
1|N2 = 0, (3.17)

(∂1Y
1 + ∂2Y

2)|S = 0, (3.18)

∂A(∂1Y
1 − ∂2Y

2)|S = 0. (3.19)
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Hence there remains the freedom to prescribe a constant c �= 0 for 1
2 (∂1Y 1 − ∂2Y 2)|S.

(The constant c reflects the freedom of scaling the Killing vector field by a constant, and
is related to the surface gravity of the horizon; we will return to this shortly.) By (3.18)
one needs to choose ∂1Y 1|S = c and ∂2Y 2|S = −c. Together with Y 1|S = Y 2|S = 0 the
functions Y 2|N1 and Y 1|N2 are then determined by (3.16) and (3.17), and existence of the
desired Killing vector follows from theorem 2.1.

(2) By assumption we have, using obvious notation,

χ
N1
AB = χ

N2
AB = 0 ⇐⇒ ∂2gAB|N1 = ∂1gAB|N2 = 0. (3.20)

Now, the flow of a spacetime Killing vector field which is tangent to S preserves S. This implies
that the bundle of null vectors normal to S is invariant under the flow. Equivalently, the image
by the flow of a null geodesic normal to S will be a one-parameter family of null geodesics
normal to S. This is possible only if the Killing vector field is tangent to both N1 and N2. It thus
suffices to consider candidate Killing vector fields Y which satisfy, in our adapted coordinates,

Y 1|N1 = Y 2|N2 = 0 ⇐⇒ Y 2|N1 = Y 1|N2 = 0. (3.21)

To continue, we need a simple form of the KID equations (1.6)–(1.13), assuming (3.20)
and (3.21), and supposing again that the generators of the two null hypersurfaces are affinely
parameterized, i.e. κN1 = κN2 = 0. Using the notation Ŷ ≡ Y A|S∂A we find:

∂2Y
A|N1 = 0, ∂1Y

A|N2 = 0, (3.22)

(∇̃(AY B) )̆ |N1∪N2 = 0, (3.23)

∂2∂2Y
2|N1 = 0, ∂1∂1Y

1|N2 = 0, (3.24)

(∂1Y
1 + ∂2Y

2 + g12LŶ g12)|S = 0, (3.25)

∇̃AY A|S = 0, (3.26)

[∂A(∂1Y
1 − ∂2Y

2) + 2LŶ ζA]|S = 0. (3.27)

(The fields g12|S and

ζA = 1
2 (�1

1A − �2
2A)|S (3.28)

are part of the free initial data on S [11]; compare [5].) The first-order equations above are
straightforward; some details of the derivation of the remaining equations above will be given
shortly. Before passing to that, we observe that (3.22)–(3.23) and (3.26), together with (3.20),
are equivalent to the requirement that Ŷ |S is a Killing vector field of (S, gAB|S), and that
Y A = Ŷ A on N1 ∪ N2, i.e. that Y A is independent of the coordinates x1 and x2. Supposing
further that LŶ ζA is exact, the remaining equations (3.24), (3.25) and (3.27) can be used to
determine Y 1 and Y 2 on N1 ∪ N2. (As such, on each connected component of S the difference
(∂1Y 1 − ∂2Y 2)|S is determined up to an additive constant by (3.27), which reflects the freedom
of adding a Killing vector field which vanishes on S and is tangent to the null geodesics
generating both initial surfaces.) The existence of a Killing vector field X on the spacetime
which coincides with Ŷ on S follows now from theorem 1.2.

In appendix B it is shown that the KID equations (3.22)–(3.27) are invariant under affine
reparameterizations of generators. We also show there that the freedom to choose an affine
parameter on N1 and N2 can be employed to prescribe g12 on S, and also to add arbitrary
gradients to ζ . In particular exactness of ζ , and thereby solvability of the KID equations, is
independent of the gauge, as one should expect.
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Let us pass to some details of the derivation of the second-order equations above. The
calculation uses extensively

0 = �
μ

22|N1 = �A
B2|N1,

similarly on N2. First, let us compute R122
A|N1 and R211

A|N2 , as needed to evaluate (1.9). Making
use of [2, appendix A], we find

∂1�
A
22|N1 = g2A∂2∂2g12 + gAB∂2(∂1g2B − ∂Bg12)

= g2A∂2∂2g12 + ∂2
(
g12gABξ

N1
B

) + gAB∂2∂2g1B,

�A
12|N1 = 1

2 g12gABξ
N1
B + gAB∂2g1B + g2A∂2g12,

and thus

R122
A|N1 = (∂2 + g12∂2g12)�

A
12 − ∂1�

A
22 = 1

2 g12gAB∂2ξ
N1
B ,

where, using the notation in [5], ξN1
A = −2�2

2A|N1 and ξ
N2
A = −2�1

1A|N2 . Now for χ
N1
AB = χ

N2
AB = 0

the vacuum characteristic constraint equations [2] imply ∂2ξ
N1
A = 0 and ∂1ξ

N2
A = 0, hence

R122
A|N1 = R211

A|N2 = 0.

Further simple calculations lead to (3.24).
Next, on S, we consider the KID equation

0 = ∇A∇1Y
1 − RμA1

1Y μ = ∇A∇1Y
1 + R1

1BAY B. (3.29)

Again on S it holds that

∇1Y
μ∂μ = ∂1Y

1∂1 + �
μ

1AY A∂μ,

∇μY 1dxμ = ∂1Y
1dx1 + �1

μAY Adxμ,

∇A∇1Y
1 = ∂A

(
∂1Y

1 + �1
1BY B

) + �1
Aμ∇1Y

μ − �
μ

A1∇μY 1

= ∂A∂1Y
1 + �1

1B∂AY B + (
∂A�1

1B + �1
Aμ�

μ

1B − �
μ

A1�
1
μB

)︸ ︷︷ ︸
=∂B�1

1A−R1
1BA

Y B.

Inserting into (3.29) gives the following equation on S, in coordinates adapted to N2:

0 = ∇A∇1Y
1 − RμA1

1Y
μ = ∂A∂1Y

1 + �1
1B∂AY B + ∂B�1

1AY B. (3.30)

The analogous formula in coordinates adapted to N1 reads

0 = ∇A∇2Y
2 − RμA2

2Y μ = ∂A∂2Y
2 + �2

2B∂AY B + ∂B�2
2AY B. (3.31)

Subtracting we obtain (3.27).
From the discussion so far it should be clear that the conditions are necessary. This

concludes the proof. �
As an example, suppose that Ŷ is a Killing vector on S and that the torsion one-form is

invariant under the flow of Ŷ . It follows from the equations above that we can reparameterize
the initial data surfaces so that g12 = 1 on S, with the torsion remaining invariant in the new
gauge. Then Y 1 = Y 2 = 0 and Y A = Ŷ A provides a solution of the KID equations on N1 ∪ N2.

It is of interest to relate the constant c, arising in the paragraph following (3.19), to the
surface gravity (which we denote by κH here); this will also prove in which sense the seemingly
coordinate-dependent derivatives ∂1X1|S = −∂2X2|S are in fact geometric invariants. In the
process we recover the well-known fact, that surface gravity is constant on bifurcate horizons.
We have

κ2
H = − 1

2 (∇μXν )(∇μXν )|N1∪N2 = −(∇1X1)(∇2X2)|N1∪N2 . (3.32)
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On, say, N1 we have due to (3.9) and (3.16)–(3.19)

∇2X2|N1 = ∂2X2 = −c, (3.33)

while ∇1X1|N1 can be computed from (2.10),

� X1|N1 = −R1
αXα = −g12R22X2 = 0 ⇐⇒ ∂2∇1X1|N1 = 0 ⇐⇒ ∇1X1|N1 = c,

where we used (3.9), the vanishing of χAB, and ∇1X1|S = c. Hence

κH = |c|. (3.34)
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Appendix A. Fuchsian ODEs

Since it appears difficult to find an adequate reference, we describe here the main property of
first-order Fuchsian ODEs used in our work.

Consider a first order system of equations for a set of fields φ = (φI ), I = 1, . . . , N, of
the form

r∂rφ = A(r)φ + F(r, φ), (A.1)

for some smooth map F = (FI ) with F(0, 0) = 0, ∂φF(r, 0) = 0, where A(r) is a
smooth map with values in N × N matrices. For our purposes it is sufficient to consider the
case where

A(0) = λId,

where Id is the N × N identity matrix. It holds that the only solution of (A.1) such that
limr→0 r−λφ(r) = 0 is φ(r) = 0 for all r.

Appendix B. Gauge-dependence of the torsion one-form

In this appendix we consider the question of gauge-independence in point (ii) of theorem
3.3. Indeed, even within the gauge conditions imposed so far, that x1 and x2 are affine
parameters on the relevant characteristic surfaces, there is some gauge freedom left concerning
the gravitational initial data. The point is that we can rescale the affine parameters x2 on N1

and x1 on N2,

x2 �→ x̌2 = e− f +(xB )x2, x1 �→ x̌1 = e− f −(xB )x1, (B.1)

with some functions f ± defined on S. Under (B.1), the metric on N1 becomes

g|N1 = g11(dx1)2 + 2(g12 dx2 + g1A dxA) dx1 + gAB dxA dxB

= e2 f −
g11(dx̌1)2 + 2(e f +

g12 dx̌2 + (g1A + x̌2e f +
g12∂A f +) dxA)e f −

dx̌1

= e2 f −
g11(dx̌1)2 + 2(e( f ++ f − )g12︸ ︷︷ ︸

ǧ12

dx̌2 + e f −
(g1A + x2g12∂A f +)︸ ︷︷ ︸

=:ǧ1A

dxA) dx̌1

+ gAB dxA dxB, (B.2)

with a similar formula on N2. This leads to

ǧ12|S = e( f ++ f − )g12|S, (B.3)
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as well as, using [5, equation (2.12)],

ζ̌A = 1

2
ǧ12

(
∂ ǧ1A

∂ x̌2
− ∂ ǧ2A

∂ x̌1

) ∣∣∣∣
S

= 1

2
e−( f ++ f − )g12

(
e f + ∂(e f −

(g1A + x2g12∂A f +))

∂x2
− ∂ ǧ2A

∂ x̌1

) ∣∣∣∣
S

= ζA + 1

2
(∂A f + − ∂A f −)|S. (B.4)

Letting x̌A = xA, in the new coordinates the Killing vector becomes

Y = Y μ∂xμ = Y μ ∂ x̌ν

∂xμ
∂x̌ν

= Y μ ∂(e− f −
x1)

∂xμ
∂x̌1 + Y μ ∂(e− f +

x2)

∂xμ
∂x̌2 + Y μ ∂ x̌A

∂xμ
∂x̌A

= (e− f −
Y 1 − x̌1Y A∂A f −)∂x̌1 + (e− f +

Y 2 − x̌2Y A∂A f +)∂x̌2 + Y A∂x̌A . (B.5)

Invariance of (3.22)–(3.24) and (3.26) is clear. One can further check invariance of (3.25)
(recall that Ŷ ≡ Y A∂A|S):

(∂x̌1Y̌ 1 + ∂x̌2Y̌ 2 + ǧ12LŶ ǧ12)|S
= (∂x̌1 (e− f −

Y 1 − x̌1Y A∂A f −) + ∂x̌2Y̌ 2 + e−( f ++ f − )g12LŶ (e f ++ f −
g12))|S

= (∂1Y
1 + ∂2Y

2 − Ŷ A∂A( f + + f −) + Ŷ A∂A( f + + f −) + g12LŶ g12)|S
= (∂1Y

1 + ∂2Y
2 + g12LŶ g12)|S. (B.6)

As such, on S the first two-terms in (3.27) transform as

∂x̌A (∂x̌1Y̌ 1 − ∂x̌2Y̌ 2) = ∂xμ

∂ x̌A
∂μ(∂x̌1Y̌ 1 − ∂x̌2Y̌ 2)

= ∂A(∂1Y
1 − ∂2Y

2 + Ŷ B∂B( f − − f +)). (B.7)

Equation (B.4) can be rewritten as

ζ̌ = ζ + 1
2 d( f + − f −). (B.8)

Thus

2LŶ ζ̌ = LŶ (2ζ + d( f + − f −)) = 2LŶ ζ + d(LŶ ( f + − f −)),

which shows that the one-form

d(∂1Y
1 − ∂2Y

2) + 2LŶ ζ (B.9)

is invariant under changes of the affine parameters, as desired.
We end this paper by deriving the behavior of ζA ≡ 1

2 (�1
1A − �2

2A)|S under arbitrary
coordinate transformations which preserve the adapted null coordinates conditions,

x̌1 = e− f +(xμ)x1, x̌2 = e− f −(xμ)x2, x̌A = xA. (B.10)

We set

f ±
0 (xA) := f ±(x1 = 0, x2 = 0, xA).

Then(
�̌1

1A − �̌2
2A

)
|S = �σ

μν

(
∂ x̌1

∂xσ

∂xμ

∂ x̌1
− ∂ x̌2

∂xσ

∂xμ

∂ x̌2

)
∂xν

∂ x̌A
+ ∂ x̌1

∂xσ

∂2xσ

∂ x̌1∂ x̌A
− ∂ x̌2

∂xσ

∂2xσ

∂ x̌2∂ x̌A

= �1
1B

∂ x̌1

∂x1

∂x1

∂ x̌1

∂xB

∂ x̌A
− �2

2B

∂ x̌2

∂x2

∂x2

∂ x̌2

∂xB

∂ x̌A
+ ∂ x̌1

∂x1

∂2x1

∂ x̌1∂ x̌A
− ∂ x̌2

∂x2

∂2x2

∂ x̌2∂ x̌A
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= �1
1Ae− f +

0
∂x1

∂ x̌1
− �2

2Ae− f −
0

∂x2

∂ x̌2
+ e− f +

0 ∂A
∂x1

∂ x̌1
− e− f −

0 ∂A
∂x2

∂ x̌2

= �1
1A − �2

2A + ∂A( f +
0 − f −

0 ),

i.e. (B.8) holds under coordinate transformations of the form (B.10).
If we assume S to be compact, there is a natural way to fix the gauge: according to the

Hodge decomposition theorem ζ can be uniquely written as the sum of an exact one-form, a
dual exact one-form and a harmonic one-form. The considerations above show that the first
term has a pure gauge character and can be transformed away, while the remaining part has an
intrinsic meaning. In particular, if ζ is exact, the remaining gauge freedom can be employed
to transform it to zero.
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Abstract
As complement to Chruściel and Paetz (2013 Class. Quantum Grav. 30 235036)
we analyse Killing Initial Data (KID) on characteristic Cauchy surfaces in
conformally rescaled vacuum space-times satisfying Friedrich’s conformal field
equations. As an application, we derive and discuss the KID equations on a
light-cone with vertex at past timelike infinity.

Keywords: characteristic initial value problem, Killing initial data, light-cone
with vertex at past timelike infinity, conformal field equations
PACS numbers: 04.20.Ex, 04.20.Ha

1. Introduction

Gaining a better insight into properties and peculiarities of space-times which represent
(physically meaningful) solutions to Einstein’s field equations belongs to the core of the
analysis of general relativity. One question of interest concerns the existence of space-times
which possess certain symmetry groups, mathematically expressed via a Lie algebra of Killing
vector fields on that space-time. A fundamental issue in this context is to systematically
construct such space-times in terms of an initial value problem. By that it is meant to supplement
the usual constraint equations, which need to be satisfied by a suitably specified set of initial
data, by some further equations which make sure that the emerging space-time contains one or
several Killing vector fields. In vacuum, such Killing Initial Data (KIDs) are well-understood
in the spacelike case as well as in the characteristic case, cf [1, 3, 10] and references therein.
In this article we would like to complement the analysis of the characteristic case given in [3]
to space-times satisfying Friedrich’s conformal field equations, and in particular to analyse
the case where the initial surface is a light-cone with vertex at past timelike infinity.

In a first step, section 3, we translate the Killing equation into the unphysical, conformally
rescaled space-time. The so-obtained ‘unphysical Killing equations’ constitute the main focus
of our subsequent analysis. Assuming the validity of the conformal field equations, recalled in
section 2, we will derive necessary-and-sufficient conditions on a characteristic initial surface

0264-9381/14/085007+29$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1
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which guarantee the existence of a vector field satisfying the unphysical Killing equations,
cf theorem 3.4.1 In section 4 we then restrict attention to four space-time dimensions (it will
be indicated that the higher dimensional case is more intricate). As in [3] we shall see that
many of the hypotheses appearing in theorem 3.4 are automatically satisfied. The remaining
‘KID equations’ are collected in theorem 4.4 (cf proposition 4.9) for a light-cone, and in
theorem 4.13 for two characteristic hypersurfaces intersecting transversally.

In section 5 we then apply theorem 4.4 to the ‘special cone’ Ci− whose vertex is located at
past timelike infinity (assuming the cosmological constant to be zero). As for ‘ordinary cones’
treated in [3] it turns out that some of the KID equations determine a class of candidate fields
on the initial surface while the remaining ‘reduced KID equations’ provide restrictions on the
initial data to make sure that one of these candidate fields does indeed extend to a space-time
vector field satisfying the unphysical Killing equations. However, contrary to the ‘ordinary
case’, and this explains our title, on Ci− the candidate fields can be explicitly computed, and,
besides, the reduced KID equations can be given in terms of explicitly known quantities. The
main result for the Ci− -cone is the contents of theorem 5.1.

Finally, in appendix A we recall a result on Fuchsian ODEs which will be of importance in
the main part, in appendix B we review conformal Killing vector fields on the round 2-sphere.

2. Setting

Our analysis will be carried out in the so-called unphysical space-time (M , g,�), related
to the physical space-time (M̃ , g̃), g̃ being a solution to Einstein’s field equations, via a
conformal rescaling,

g̃
φ�→ g := �2g̃, M̃

φ
↪→ M , �|

φ(M̃ )
> 0.

The part of ∂φ(M̃ ) on which the conformal factor � vanishes represents ‘infinity’ in the
physical space-time.

In (M , g,�) Einstein’s vacuum field equations with cosmological constant λ are replaced
by Friedrich’s conformal field equations (cf e.g. [7]), which read in d � 4 space-time
dimensions

∇ρdμνσ
ρ = 0, (2.1)

∇μLνσ − ∇νLμσ = �d−4∇ρ� dνμσ
ρ, (2.2)

∇μ∇ν� = −�Lμν + sgμν, (2.3)

∇μs = −Lμν∇ν�, (2.4)

(d − 1)(2�s − ∇μ�∇μ�) = λ, (2.5)

Rμνσ
κ [g] = �d−3dμνσ

κ + 2(gσ [μLν]
κ − δ[μ

κLν]σ ), (2.6)

with gμν , �, s, Lμν and dμνσ
ρ regarded as unknowns. The trace of (2.3) can be read as the

definition of the function s,

s := 1

d
gμν∇μ∇ν� + 1

2d(d − 1)
R�. (2.7)

1 This issue has already been analysed in [8]. However, it is claimed there that regularity of the principal part of
a wave equation suffices to guarantee uniqueness of solutions, and counter-examples of this assertion can be easily
constructed. For instance, let � be the unique solution of the wave-equation �g � = 1 which vanishes on the initial
surface which we assume to be a light-cone CO, i.e. �|CO = 0. Then �|I+(O) > 0, at least sufficiently close to O.
Consider the non-regular wave-equation �g f − 1

�
f = 0. For given initial data f |CO = 0 there exist at least three

solutions: f = 0, ±�.

2
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The tensor field Lμν is the Schouten tensor

Lμν := 1

d − 2
Rμν − 1

2(d − 1)(d − 2)
Rgμν, (2.8)

while

dμνσ
ρ := �3−dCμνσ

ρ (2.9)

is a rescaling of the conformal Weyl tensor Cμνσ
ρ .

The conformal field equations are equivalent to the vacuum Einstein equations where �

is positive, but remain regular even where � vanishes. The Ricci scalar R turns out to be a
conformal gauge source function which reflects the freedom to choose the conformal factor
�. It can be prescribed arbitrarily.

In (2.1)–(2.6) the fields s, Lμν and dμνσ
ρ are treated as independent of gμν and �. However,

once a solution has been constructed they are related to them via (2.7)–(2.9). When talking
about a solution of the conformal field equations we therefore just need to specify the pair
(gμν,�).

The conformal field equations imply a wave equation for the Schouten tensor, which will
be of importance later on: One starts by taking the divergence of (2.2). Using then (2.1),
(2.3), (2.6) and the tracelessness of the rescaled Weyl tensor one finds (cf [11] where the
four-dimensional case is treated in detail)

�gLμν = −2Rμ
α

ν
βLαβ + gμν |L|2 + 1

2(d − 1)
∇μ∇νR + 1

d − 1
RLμν

+ (d − 4)
[
Lμ

αLνα + �d−5∇α�∇β�dμ
α

ν
β
]
,

with |L|2 := Lμ
νLν

μ. Supposing that � has no zeros, or that we are in the four-dimensional
case, we can use (2.2) to rewrite this as

�gLμν = −2Rμ
α

ν
βLαβ + gμν |L|2 + 1

2(d − 1)
∇μ∇νR + 1

d − 1
RLμν

+ (d − 4)
[
Lμ

αLνα + 2�−1∇α�∇[αLμ]ν
]
. (2.10)

3. KID equations in the unphysical space-time

3.1. The Killing equation in terms of a conformally rescaled metric

Lemma 3.1. A vector field X̃ is a Killing vector field in the physical space-time (M̃ , g̃) if
and only if its push-forward X := φ∗X̃ is a conformal Killing vector field in the unphysical
space-time (M , g,�) and satisfies there the equation Xκ∇κ� = 1

d �∇κXκ .

Proof. By definition X̃ is a Killing field if and only if (set X̃μ := g̃μνX̃ν and Xμ := gμνXν)

∇̃(μX̃ν) = 0

⇐⇒ ∇̃(μ(�−2Xν)) = 0

⇐⇒ ∇(μ(�−2Xν)) + 2�−2X(μ∇ν) log � = gμν�
−2Xκ∇κ log �

⇐⇒ ∇(μXν) = gμν�
−1Xκ∇κ�

⇐⇒ ∇(μXν) = 1

d
∇κXκ gμν & Xκ∇κ� = 1

d
�∇κXκ (3.1)

(note that �|
φ(M̃ )

> 0). �

3
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Remark 3.2. The conditions (3.1), which replace the Killing equation in the unphysical space-
time, make sense also where � is vanishing, supposing that g can be smoothly extended across
{� = 0} (note that the conformal Killing equation induces a linear symmetric hyperbolic
system of propagation equations for φ∗X̃ which then implies that φ∗X̃ is smoothly extendable
across the conformal boundary [6]).

Remark 3.3. We will refer to (3.1) as the unphysical Killing equations.

The main object of this work is to extract necessary-and-sufficient conditions on a
characteristic initial surface which ensure the existence of some vector field X which fulfils
the unphysical Killing equations, so that its pull-back is a Killing vector field of the physical
space-time.

3.2. Necessary conditions for the existence of Killing vector fields

Let us first derive some implications of the unphysical Killing equations (3.1) under the
hypothesis that the conformal field equations (2.1)–(2.6) are satisfied.

From the conformal Killing equation we first derive a system of wave equations for X and
for the function

Y := 1

d
∇κXκ (3.2)

(set �g := gμν∇μ∇ν):

�gXμ + Rμ
νXν + (d − 2)∇μY = 0, (3.3)

�gY + 1

d − 1

(
1

2
Xμ∇μR + RY

)
= 0. (3.4)

With (3.1) and (2.7) we find

0 = �g(X
μ∇μ� − �Y )

≡ �gXμ∇μ� + Xμ∇μ�g� + XμRμ
ν∇ν� + 2∇νXμ∇μ∇ν�

− Y�g� − ��gY − 2∇μ�∇μY

= d(Xμ∇μs + sY − ∇μ�∇μY ). (3.5)

We set

Aμν := 2∇(μXν) − 2Y gμν. (3.6)

Using the second Bianchi identity, (2.8), (3.3) and (3.4) we obtain

�gAμν ≡ 2∇(μ�gXν) + 2Rκ(μ∇κXν) − 2Rμ
α

ν
βAαβ − 4RμνY

+ 2Xκ∇(μRν)κ − 2Xκ∇κRμν − 2�gY gμν

= 2R(μ
κAν)κ − 2Rμ

α
ν
βAαβ − 2(d − 2)(LX Lμν + ∇μ∇νY ). (3.7)

(Recall that

LX Lμν ≡ Xκ∇κLμν + 2Lκ(μ∇ν)X
κ . )

Hence the conformal Killing equation for X , which is Aμν = 0, implies

Bμν := LX Lμν + ∇μ∇νY = 0. (3.8)

4
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3.3. KID equations on a characteristic initial surface

3.3.1. First main result. We are now in a position to formulate our first main result. Here and
in the following we use an overbar to denote restriction to the initial surface.

Theorem 3.4. Assume we have been given, in dimension d � 4, an‘unphysical’ space-time
(M , g,�), with (g,�) a smooth solution of the conformal field equations (2.1)–(2.6). Assume
further that � is bounded away from zero if d � 5. Consider some characteristic initial
surface N ⊂ M (for definiteness we think of a light-cone or two transversally intersecting
null hypersurfaces). Then there exists a vector field X̂ satisfying the unphysical Killing
equations (3.1) on D+(N) (i.e. representing a Killing field of the physical space-time) if
and only if there exists a vector field X and a function Y which fulfil the following equations
(recall the definitions (2.7) and (2.8) for s and Lμν , respectively)

(i) �g Xμ + Rμ
νXν + (d − 2)∇μY = 0,

(ii) �g Y + 1
d−1

(
1
2 Xμ∇μR + RY

) = 0,
(iii) φ = 0 with φ = Xμ∇μ� − �Y ,
(iv) ψ = 0 with ψ = Xμ∇μs + sY − ∇μ�∇μY ,
(v) Aμν = 0 with Aμν = 2∇(μXν) − 2Y gμν ,

(vi) B̆μν := Bμν − 1
d gμνBα

α = 0 with Bμν = LX Lμν + ∇μ∇νY .

Proof. ‘
⇒’: Follows from the considerations above if one takes X = X̂ and Y = 1
d ∇κ X̂κ .

‘⇐
’: We will derive a homogeneous system of wave equations from which we conclude
the vanishing of Aμν and φ as well as the relation Y = 1

d ∇κXκ , which imply that X satisfies
(3.1). Since by assumption (3.3) and (3.4) hold we can repeat the steps which led us to (3.7),

�gAμν = 2R(μ
κAν)κ − 2Rμ

α
ν
βAαβ − 2(d − 2)Bμν. (3.9)

With (i), (ii) and the definition (2.7) of s we find

�gφ ≡ �gXμ∇μ� + Xμ∇μ�g� + XμRμ
ν∇ν� + 2∇μXν∇μ∇ν�

− Y�g� − ��gY − 2∇μ�∇μY

= dψ − 1

2(d − 1)
Rφ + Aμν∇μ∇ν�. (3.10)

We use (i), (ii), (2.7), (2.8) and the conformal field equations (2.3) & (2.4) (which imply
�g s = �|L|2 − 1

2(d−1)
(sR + ∇μ�∇μR)) to obtain

�gψ ≡ �gXμ∇μs + Xμ∇μ�gs + XμRμ
ν∇νs + Aμν∇μ∇νs

+ 3Y�gs + s�gY + 2∇νs∇νY − ∇μ�g�∇μY − 2Rμ
ν∇ν�∇μY

−∇μ�∇μ�gY − 2∇μ∇ν�∇μ∇νY

= |L|2φ + Aμν (∇μ∇νs − 2�Lκ
μLνκ ) + 2�LμνBμν

+ 1

2(d − 1)

(
Aμν∇μR∇ν� − ∇μR∇μφ − Rψ

)
. (3.11)

As an immediate consequence of the first Bianchi identity we observe the identity
1
2∇μAνκ + ∇[νAκ]μ ≡ ∇μ∇νXκ + Rνκμ

αXα − 2∇(μY gν)κ + ∇κY gμν. (3.12)

Another useful relation which follows from the Bianchi identities is

2Lαβ (∇β∇[αAν]μ − ∇μ∇[αAν]β ) = 2LαβXκ∇κRα(μν)β

+ Lαβ (Rβνμ
κAακ − Rμβα

κAνκ ) + 4Lαβ (Rα(μν)
κ∇[βXκ] + R(μ|βα|κ∇ν)Xκ )

− 2gμνLαβ∇α∇βY + 4L(μ
β∇ν)∇βY − 1

d − 1
R∇μ∇νY . (3.13)

5
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Employing (i), (ii), the conformal field equations, the wave equation for the Schouten tensor
(2.10) as well as the identities (3.12) and (3.13) a tedious computation reveals that

�gBμν ≡ 2(gμνLαβ − Rμ
α

ν
β )Bαβ − 2R(μ

κBν)κ + 2

d − 1
RBμν

+ 2Lαβ (∇β∇[αAν]μ − ∇μ∇[αAν]β )

+ (∇(μA|αβ| + 2∇[αAβ](μ)(2∇αLν)
β − 1

4(d − 1)
δν)

α∇βR)

+ Aαβ [∇α∇βLμν − 2L(μ
κRν)ακβ + 2LμαRνβ + Lα

κ (2Rμβνκ + Rνβμκ )

− 2gμνLακLβ
κ ] + |L|2Aμν + LαβRμαβ

κAνκ − 1

d − 1
RL(μ

κAν)κ

+ (d − 4)[2L(μ
βBν)β − Lμ

αLν
βAαβ − �d−5∇α�dκμν

α(∇κφ − ∇β�Aκβ )]

− (d − 4)�d−6φ∇α�∇β�dμ
α

ν
β

+ (d − 4)�−1∇α�[2∇[αBμ]ν + (∇[μA|νκ| + 2∇[νAκ][μ)Lα]
κ ]. (3.14)

While the before-last line contains negative powers of � merely in five dimensions, the last
line contains such powers in any dimension d � 5. This is the point where our assumption
enters that � is bounded away from zero for d � 5, since this ensures that (3.14) is a regular
equation also in higher dimensions.

Note that the right-hand side of (3.14) involves second-order derivatives of Aμν , which is
why we regard ∇σ Aμν as another unknown for which we derive a wave equation. However,
since the right-hand side of (3.9) does not involve derivatives, such a wave equation is easily
obtained by differentiation (and, once again, the second Bianchi identity),

�g∇σ Aμν = 2∇σ (R(μ
κAν)κ − Rμ

α
ν
κAακ ) + 2Aα(μ(∇ν)Rσ

α − ∇αRν)σ )

− 4Rσκ(μ
α∇κAν)α + Rασ ∇αAμν − 2(d − 2)∇σ Bμν. (3.15)

In the current setting the equations (3.9)–(3.11), (3.14) and (3.15) form a closed homogeneous
system of regular wave equations for Aμν , φ, ψ , Bμν and ∇σ Aμν . The assumptions (iii)–(v)
assure that the first three fields vanish initially. By (ii) and (v) we have

Bα
α = 1

2(d − 1)
Xμ∇μR + 2Lμν∇μXν + �gY = LμνAμν = 0,

which, together with (vi), implies

Bμν = 0. (3.16)

It remains to verify the vanishing of ∇σ Aμν . This follows from lemma 3.5 below, together with
(i), (ii), (v) and (3.16). We thus have vanishing initial data for the homogeneous system of
wave equations (3.9)–(3.11), (3.14) and (3.15). It follows from [5] in the light-cone-case and
from [12] in the case of two characteristic hypersurfaces intersecting transversally that there
exists a unique solution, whence all the fields involved need to vanish identically.

It is important to note that we have treated X and Y as independent so far. The vanishing
of Aμν and φ implies that the unphysical Killing equations (3.1) hold for X only once we have
shown that Y = 1

d ∇κXκ . Fortunately we have

0 = Aα
α = 2∇κXκ − 2dY, (3.17)

and the theorem is proved. �

6
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3.3.2. Adapted null coordinates. Before we state and prove lemma 3.5, which is needed to
complete our proof of theorem 3.4, it is useful, also with regard to later purposes, to introduce
adapted null coordinates on light-cones and on transversally intersecting null hypersurfaces.
We will be rather sketchy here, the details can be found e.g. in [2, 12].

First we consider a light-cone CO ⊂ M with vertex O ∈ M in a d-dimensional space-
time (M , g). We use coordinates (x0 = 0, x1 = r, xA), A = 2, . . . , d − 1, adapted to CO in the
sense that CO \ {O} = {x0 = 0}, r parameterizes the null geodesics generating the cone, and
the xA’s are local coordinates on the level sets {x0 = 0, r = const} ∼= Sd−2. On CO the metric
then reads

g = g00(dx0)2 + 2ν0dx0 dx1 + 2νAdx0 dxA + gABdxA dxB.

Note that these coordinates are singular at the vertex of the cone. Moreover, we stress that we
do not impose any gauge condition off the cone. The inverse metric takes the form

g� = 2ν0∂0∂1 + g11∂2
1 + 2g1A∂1∂A + gAB∂A∂B,

with

ν0 = (ν0)
−1, g1A = −ν0gABνB, g11 = (ν0)2(gABνAνB − g00).

It is customary to introduce the following quantities:

χA
B := 1

2 gBC∂1gAC null second fundamental form,

τ := χA
A expansion,

σA
B := χA

B − τ

d − 2
δA

B shear tensor.

Next, let us consider two smooth hypersurfaces Na, a = 1, 2, with transverse intersection
along a smooth submanifold S. Then, near the Na’s one can introduce coordinates (x1, x2, xA),
A = 3, . . . , d, such that Na = {xa = 0}. On N1 the coordinate x2 parameterizes the null
geodesics {x1 = 0, xA = constA} generating N1 and vice versa. Since the hypersurfaces are
required to be characteristic the metric takes there the specific form, on N1 say,

g|N1 = g11(dx1)2 + 2g12dx1 dx2 + 2g1Adx1 dxA + gABdxA dxB,

similarly on N2. The quantities τ , σA
B, χA

B are defined on N1 and N2 analogous to the light-
cone-case.

3.3.3. Some useful relations. In this section we consider a light-cone. However, we note that
exactly the same relations hold in the case of two intersecting null hypersurfaces.

Recall that the wave equations for X and Y , (3.3)–(3.4), imply the wave equation (3.9) for
Aμν . One straightforwardly verifies that in adapted null coordinates

�gAμν = 2ν0(∇1∇0Aμν + R01(μ
αAν)α ) + g11∇1∇1Aμν

+ 2g1A(∇1∇AAμν + RA1(μ
αAν)α ) + gAB∇A∇BAμν. (3.18)

We equate the trace of (3.9) on the initial surface with (3.18). Making use of the formulae
for the Christoffel symbols in adapted null coordinates in [2, appendix A], an elementary
calculation yields the following set of equations where f , fA and fAB denote generic (multi-
linear) functions which vanish whenever their arguments vanish:
(μν) = (11):(
∂1 + τ

2
− �0

01 − 2�1
11

)
∇0A11 = (R11 + |χ |2)A01 − (d − 2)ν0B11 + f (Ai j) (3.19)

7
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(μν) = (1A):(
∂1 + d − 4

2(d − 2)
τ − ν0∂1ν0

)
∇0A1A − σA

B∇0A1B = 1

2
(R11 + |χ |2)A0A

+ (R1A1
B + χC

BχA
C)A0B − (d − 2)ν0B1A + fA(Ai j, A01,∇0A11) (3.20)

(μν) = (AB):(
∂1 + d − 6

2(d − 2)
τ − �0

01

)
∇0AAB − 2σ(A

C∇0AB)C

= −ν0(R1A1B + χACχB
C)A00 − (d − 2)ν0BAB + fAB(Ai j, A0i,∇0A1i) (3.21)

(μν) = (01):(
∂1 + τ

2
+ �1

11 − 2ν0∂1ν0

)
∇0A01 = −(d − 2)ν0B01 + f (Aμν,∇0Ai j) (3.22)

(μν) = (0A):(
∂1 + d − 4

2(d − 2)
τ − 2�0

01

)
∇0A0A − σA

B∇0A0B = −(d − 2)ν0B0A + fA(Aμν,∇0Ai j,∇0A01)

(3.23)

(μν) = (00):(
∂1 + τ

2
− 3�0

01

)
∇0A00 = −(d − 2)ν0B00 + f (Aμν,∇0Ai j,∇0A0i). (3.24)

The Christoffel symbols appearing in these equations satisfy

�0
01 = 1

2ν0∂0g11, �1
11 = ν0∂1ν0 − 1

2ν0∂0g11. (3.25)

3.3.4. An auxiliary lemma.

Lemma 3.5. Assume that the wave equations for X and Y , (3.3) and (3.4), are fulfilled.
Assume further that Aμν = 0 = Bμν on either a light-cone or two transversally intersecting
null hypersurfaces. Then ∇σ Aμν = 0.

Proof. We start with the light-cone case. By assumption the equations (3.19)–(3.24) hold.
Invoking Aμν = 0 = Bμν they become(

∂1 + τ

2
− �0

01 − 2�1
11

)
∇0A11 = 0, (3.26)

(
∂1 + d − 4

2(d − 2)
τ − ν0∂1ν0

)∇0A1A − σA
B∇0A1B = fA(∇0A11), (3.27)

(
∂1 + d − 6

2(d − 2)
τ − �0

01

)
∇0AAB − 2σ(A

C∇0AB)C = fAB(∇0A1i), (3.28)

(
∂1 + τ

2
+ �1

11 − 2ν0∂1ν0

)
∇0A01 = f (∇0Ai j), (3.29)

(
∂1 + d − 4

2(d − 2)
τ − 2�0

01

)
∇0A0A − σA

B∇0A0B = fA(∇0Ai j,∇0A01), (3.30)

8
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(
∂1 + τ

2
− 3�0

01

)
∇0A00 = f (∇0Ai j,∇0A0i). (3.31)

Taking the behaviour of the metric components at the tip of the cone into account, cf the
formulae (4.41)–(4.51) in [2], we have

τ = d − 2

r
+ O(r), σA

B = O(r), ν0 = 1 + O(r2), ∂1ν0 = O(r), (3.32)

and it follows from [2, appendix A] that

�0
01 = O(r), �1

11 = O(r). (3.33)

With (3.32)–(3.33) we observe that the equations (3.26)–(3.31) form a hierarchical system of
Fuchsian ODEs which can be solved step-by-step. Existence of a regular conformal Killing
field X requires the tensor field Aμν to be regular, as well. Then ∇0Aμν needs to show the
following behaviour near the vertex:

∇0A11 = O(1), ∇0A1A = O(r), ∇0AAB = O(r2), (3.34)

∇0A01 = O(1), ∇0A0A = O(r), ∇0A00 = O(1). (3.35)

Standard results on Fuchsian ODEs (cf e.g. [3, appendix A]) imply that the only solution of
(3.26)–(3.35) is provided by ∇0Aμν = 0.

In the case of two transversally intersecting null hypersurfaces one can derive the same
hierarchical system of ODEs on N1 and N2, respectively, which now is a system of regular
ODEs. The assumption Aμν = 0 implies ∇σ Aμν |S = 0. We thus have vanishing initial data for
the ODEs and the unique solutions are ∇1Aμν |N1 = 0 and ∇2Aμν |N2 = 0. �

3.4. A special case: � = 1

Let us briefly analyse the implications of theorem 3.4 in the special case where the conformal
factor � is identical to one,

� = 1

(note that thereby the gauge freedom to prescribe the Ricci scalar is lost). Then the unphysical
space-time can be identified with the physical space-time. The conformal field equations (2.1)–
(2.6) imply the equations

s = 1

2(d − 1)
λ,

Lμν = sgμν ⇐⇒ Rμν = λgμν,

i.e. in particular the vacuum Einstein equations hold.
Let us analyse the conditions (i)–(vi) of theorem 3.4 in this setting: condition (iii) gives

Y = 0, which we take as initial data for the wave equation (ii) which then implies Y = 0,
i.e. X needs to be divergence-free, as desired. We observe that (iv) is automatically satisfied.
Moreover,

Bμν = LX Lμν = sLX gμν = 2s∇(μXν),

so (vi) follows from (v). To sum it up, the hypotheses of theorem 3.4 are satisfied if and only
if there is a vector field X which satisfies

�gXμ + λXμ = 0,

∇(μXν) = 0.

This was the starting point of the analysis in [3].

9
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4. KID equations in four dimensions

Theorem 3.4 can be applied to dimensions d � 5 only when the conformal factor � is bounded
away from zero. In fact, this situation is rather uninteresting since then there is no need to
pass to a conformally rescaled space-time (or to put it differently, it is just a matter of gauge
to set � = 1). One reason why we included this case, though, was to emphasize that there
arise difficulties when one tries to go from four to higher dimensions (which is in line with the
observation that the conformal field equations provide a good evolution system only in four
space-time dimensions). Another reason was to be able to consider the limiting case � = 1
in any dimension d � 4 where the unphysical space-time can be identified with the physical
space-time, and to compare the resulting equations with those in [3]. This is also a reason
why we avoided to make the common gauge choice R = 0: � = 1 is compatible with R = 0
solely when the cosmological constant vanishes. Henceforth we restrict attention to d = 4
space-time dimensions.

4.1. A stronger version of theorem 3.4 for light-cones

A more careful analysis of the computations made in the proof of lemma 3.5 will lead us to
a refinement of theorem 3.4. We first treat the light-cone case. We will assume the vanishing
of Ai j and Bi j together with the validity of the wave equations (3.3) & (3.4) for X and Y ,
and explore the consequences concerning the vanishing of other components of these tensors,
including certain transverse derivatives thereof.

Indeed as a straightforward consequence of theorem 3.4 and lemmas 4.2 and 4.3 below
we establish the following result.

Theorem 4.1. Assume that we have been given a 3 + 1-dimensional space-time (M , g,�),
with (g,�) a smooth solution of the conformal field equations (2.1)–(2.6). Let CO ⊂ M be a
light-cone. Then there exists a vector field X̂ satisfying the unphysical Killing equations (3.1)
on D+(CO) if and only if there exists a pair (X,Y ), X a vector field and Y a function, which
fulfils the following conditions:

(i) �gXμ + Rμ
νXν + 2∇μY = 0,

(ii) �gY + 1
6 Xμ∇μR + 1

3 RY = 0,
(iii) φ = 0 with φ = Xμ∇μ� − �Y ,
(iv) ψ = 0 with ψ = Xμ∇μs + sY − ∇μ�∇μY ,
(v) Ai j = 0 with Aμν = 2∇(μXν) − 2Y gμν ,

(vi) A01 = 0,
(vii) Bi j = 0 with Bμν = LX Lμν + ∇μ∇νY .

In that case one may take X̂ = X and ∇κ X̂κ = 4Y . The condition (vi) is not needed on
the closure of those sets where τ is non-zero.

4.1.1. Vanishing of A0μ. We take the trace of (3.12) which together with the wave
equation (3.3) for X implies the relation

∇νAμ
ν − 1

2∇μAν
ν = 0. (4.1)

On the initial surface that yields in adapted null coordinates,

0 = ν0(2∇(0A1)μ − ∇μA01) + g11
(∇1Aμ1 − 1

2∇μA11
)

+ g1A(2∇(1AA)μ − ∇μA1A) + gAB
(∇AAμB − 1

2∇μAAB
)
. (4.2)

10
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In the following we shall always assume that (3.3) and (3.4) hold, and thereby in particular
(4.2) and (3.19)–(3.21).

With the assumptions Ai j = 0 and B11 = 0 equation (3.19) becomes(
∂1 + 1

2τ − �1
11 − ν0∂1ν0

)∇0A11 = −A01
(
∂1 − �1

11

)
τ,

where we have fallen back on the identity [2]

R11 ≡ −(
∂1 − �1

11

)
τ − |χ |2. (4.3)

Moreover, we deduce from the μ = 1-component of (4.2) that

τA01 + ∇0A11 = 0, (4.4)

which leads us to an ODE satisfied by A01,

τ
(
∂1 + 1

2τ − ν0∂1ν0
)
A01 = 0. (4.5)

Since τ has no zeros sufficiently close to the vertex it follows from regularity, which requires
A01 to be bounded near the vertex, that A01 = 0 (and thus ∇0A11 = 0) in that region. Even
more, A01 = 0 will automatically vanish on the closure of those sets on which τ is non-zero.

Next we assume Ai j = 0, A01 = 0, ∇0A11 = 0, B1A = 0. Then, due to (3.20), (4.3) and
the identity

R1A1
B ≡ −(

∂1 − �1
11

)
χA

B − χA
CχC

B (4.6)

we have

(∂1 − ν0∂1ν0)∇0A1A − σA
B∇0A1B = −A0A

(
∂1 − �1

11

)
τ − A0B

(
∂1 − �1

11

)
σA

B.

With the current assumptions the μ = A-component of (4.2) can be written as

∇0A1A + (
∂1 + τ − �0

01

)
A0A = 0, (4.7)

whence

(∂1 + τ − ν0∂1ν0)
[(

∂1 − �0
01

)
A0A − σA

BA0B
] = 0. (4.8)

Regularity requires A0A = O(r), and A0A = 0 is the only solution of (4.8) with this property.
Of course, ∇0A1A will then vanish as well.

In the final step we assume (in addition to (3.3) and (3.4)) Ai j = 0, A0i = 0, ∇0A1i = 0
and gABBAB = 0. Taking the gAB-trace of (3.21) and using again (4.3) we find(

∂1 + 1
2τ + �1

11 − ν0∂1ν0
)
(gAB∇0AAB) = ν0A00

(
∂1 − �1

11

)
τ.

From the μ = 0-component of (4.2) we derive the equation

ν0
(
∂1 + τ + 2�1

11 − 2ν0∂1ν0
)
A00 − 1

2 gAB∇0AAB = 0,

and end up with an ODE satisfied by A00,(
∂1 + τ + �1

11 − ν0∂1ν0
)[

ν0
(
∂1 + 1

2τ + 2�1
11 − 2ν0∂1ν0

)
A00

] = 0. (4.9)

Regularity requires A00 = O(1), which leads to A00 = 0, which in turn implies gAB∇0AAB = 0.
Assuming BAB = 0 we further have ∇0AAB = 0 due to (3.21).

Altogether we have proved the lemma.

Lemma 4.2. Assume that (3.3) and (3.4) hold, and that Ai j = A01 = 0 = Bi j. Then A0μ = 0
and ∇0Ai j = 0. On the closure of those sets where τ is non-zero, in particular sufficiently
close to the vertex of the cone, the assumption A01 = 0 is not needed, but follows from the
remaining hypotheses.

11
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4.1.2. Vanishing of B0μ. By the second Bianchi identity we have

∇νBμ
ν − 1

2∇μBν
ν ≡ Aαβ

(∇αLμ
β − 1

2∇μLαβ
)

+ Lμ
κ (�gXκ + Rκ

αXα + 2∇κY ) + 1
2∇μ

(
�gY + 1

6 Xν∇νR + 1
3 RY

)
.

Assuming the wave equations (3.3) and (3.4) for X and Y as well as Aμν = 0 this induces on
the initial surface the relation

∇νBμ
ν − 1

2∇μBν
ν = 0. (4.10)

As for Aμν , equation (4.2), we deduce that in adapted coordinates we have

0 = ν0(2∇(0B1)μ − ∇μB01) + g11
(∇1Bμ1 − 1

2∇μB11
)

+ g1A(2∇(1BA)μ − ∇μB1A) + gAB
(∇ABμB − 1

2∇μBAB
)
. (4.11)

Recall that (3.3), (3.4) and the conformal field equations imply a wave equation (3.14) which
is satisfied by Bμν . Assuming Aμν = 0, ∇0Ai j = 0 and Bi j = 0, evaluation on the initial
surface yields

�gBi j = 2(gi jL
αβ − Ri

α
j
β )Bαβ − 2R(i

αBj)α + 2Lαβ (∇β∇[αAj]i − ∇i∇[αAj]β ). (4.12)

In adapted null coordinates we have, as for the corresponding expression (3.18) for Aμν ,

�gBi j = 2ν0(∇1∇0Bi j + R01(i
αBj)α ) + g11∇1∇1Bi j

+ 2g1A(∇1∇ABi j + RA1(i
αBj)α ) + gAB∇A∇BBi j. (4.13)

Moreover, we have seen that (3.3) & (3.4) imply that the wave equation (3.15) is satisfied by
∇σ Aμν . Assuming Aμν = 0 and ∇0Ai j = 0 we compute its trace on the initial surface,

�g∇0Ai j = 2ν0(R1(i + 2ν0R011(i)∇|0|Aj)0 − 2Ri
α

j
κ∇0Aακ − 4∇0Bi j. (4.14)

In adapted null coordinates and with the current assumptions the left-hand side becomes

�g∇0Ai j = 2ν0∇1∇0∇0Ai j + 2ν0R01(i
μ∇|0|Aj)μ + 2g1A∇1∇A∇0Ai j

+ 2g1ARA1(i
μ∇|0|Aj)μ + gAB∇A∇B∇0Ai j. (4.15)

Recall that Aμν = 0 suffices to establish Bα
α = 0. In that case Bi j = 0 implies

B01 = 0, (4.16)

and, by (3.22),

∇0A01 = 0.

As for Aμν , the μ = 1-component of (4.11) yields

τB01 + ∇0B11 = 0 
⇒ ∇0B11 = 0. (4.17)

The (i j) = (11)-component of (4.14) reads

�g∇0A11 = 0
(4.15)
⇒ (

∂1 + 1
2τ − 2ν0∂1ν0

)∇0∇0A11 = 0


⇒ ∇0∇0A11 = 0

by regularity.
At this stage we can and will assume Aμν = ∇0Ai j = ∇0A01 = ∇0∇0A11 = Bi j = B01 =

∇0B11 = 0. With (3.23) we then find for the (i j) = (1A)-components of (4.12)

�gB1A = 2ν0R1A1
BB0B + 1

2 (ν0)2R11∇0∇0A1A + 1
2τ (ν0)2R11∇0A0A + 1

2 (ν0)2R11σA
B∇0A0B.

The (i j) = (1A)-components of (4.13) read

�gB1A = 2ν0(∂1 − ν0∂1ν0)∇0B1A − 2ν0σA
B∇0B1B − ν0(|χ |2B0A + 2χA

CχC
BB0B).

12
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Equating both expressions for �g B1A and using (4.6) we deduce that

2(∂1 − ν0∂1ν0)∇0B1A − 2σA
B∇0B1B = −2B0B

(
∂1 − �1

11

)
χA

B + |χ |2B0A + 1
2ν0R11∇0∇0A1A

+ 1
2τν0R11∇0A0A + 1

2ν0R11σA
B∇0A0B. (4.18)

Evaluation of (4.14) for (i j) = (1A) leads to

�g∇0A1A = ν0R11∇0A0A + 2ν0R1A1
B∇0A0B − 4∇0B1A,

while (4.15) becomes

�g∇0A1A = 2ν0
(
∂1 + �1

11 − 2ν0∂1ν0
)∇0∇0A1A − 2ν0σA

B∇0∇0A1B

− ν0|χ |2∇0A0A − 2ν0χA
CχC

B∇0A0B.

Using (4.3) and (4.6) we end up with

2
(
∂1 + �1

11 − 2ν0∂1ν0
)∇0∇0A1A − 2σA

B∇0∇0A1B

= −2∇0A0A
(
∂1 − �1

11

)
τ − 2∇0A0B

(
∂1 − �1

11

)
σA

B − 4ν0∇0B1A. (4.19)

The μ = A-components of (4.11) give, again in close analogy to the corresponding equations
for Aμν , (

∂1 + τ − �0
01

)
B0A + ∇0B1A = 0. (4.20)

By (3.23) we have(
∂1 − 2�0

01

)∇0A0A − σA
B∇0A0B = −2ν0B0A. (4.21)

Taking the behaviour of the metric components at the vertex into account, cf [2, section 4.5],
we observe that the ODE-system (4.18)–(4.21) for B0A, ∇0B1A, ∇0A0A and ∇0∇0A1A is of the
form⎡
⎢⎢⎣∂1 +

⎛
⎜⎜⎝

2r−1 + O(r) 1 0 0
− 2r−2 + O(1) O(r) O(r−1) O(1)

2 + O(r2) 0 O(r) 0
0 2 + O(r2) −2r−2 + O(1) O(r)

⎞
⎟⎟⎠
⎤
⎥⎥⎦
⎛
⎜⎜⎝

B0A

∇0B1A

∇0A0A

∇0∇0A1A

⎞
⎟⎟⎠ = 0,

where each matrix entry is actually a 2 × 2-matrix. Regularity requires

B0A,∇0B1A,∇0A0A,∇0∇0A1A = O(r).

But then a necessary condition for (4.20) to be satisfied is

B0A = O(r2), (4.22)

whence it follows from (4.21) and (4.19) that

∇0A0A = O(r3), ∇0∇0A1A = O(r2). (4.23)

Setting B̃0A := r−2B0A, ˜∇0B1A = r−1∇0B1A, ˜∇0A0A := r−3∇0A0A and ˜∇0∇0A1A = r−2∇0∇0A1A

the ODE-system adopts the form

⎡
⎢⎢⎣∂1 + r−1

⎛
⎜⎜⎝

4 1 0 0
− 2 1 0 0
2 0 3 0
0 2 −2 2

⎞
⎟⎟⎠ + M

⎤
⎥⎥⎦ v = 0, v :=

⎛
⎜⎜⎜⎜⎝

B̃0A
˜∇0B1A
˜∇0A0A
˜∇0∇0A1A

⎞
⎟⎟⎟⎟⎠ = O(1),

where M = O(r) is some matrix. Setting

ṽ := T −1v = O(1), (4.24)
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where

T :=

⎛
⎜⎜⎝

0 −1/2 −1/3 0
0 1/2 2/3 0

−1 −1/2 2/3 0
2 0 0 1

⎞
⎟⎟⎠

is the change of basis matrix which transforms the leading order matrix to Jordan normal form,
we end up with the Fuchsian ODE-system

∂1ṽ + r−1

⎛
⎜⎜⎝

3 1 0 0
0 3 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ṽ + M̃ṽ = 0, M̃ := T −1MT = O(r). (4.25)

In appendix A it is shown that any solution of (4.25) which is O(1) needs to vanish identically
(take, in the notation used there, λ = −1). Hence B0A = ∇0B1A = ∇0A0A = ∇0∇0A1A = 0,
which we can and will assume in the subsequent computations.

The gAB-trace of the (i j) = (AB)-component of (4.12) reads

gAB�gBAB = 1
2 (ν0)2R11gAB∇0∇0AAB − 1

2τ (ν0)3R11∇0A00.

For the corresponding component of (4.13) we find

gAB�gBAB ≡ 2ν0
(
∂1 + 1

2τ − �0
01

)
(gAB∇0BAB) + 2(ν0)2|χ |2B00,

and thus (
∂1 + 1

2τ − �0
01

)
(gAB∇0BAB) + ν0|χ |2B00

= 1
4ν0R11gAB∇0∇0AAB − 1

4τ (ν0)2R11∇0A00. (4.26)

From (4.14) we deduce

gAB�g∇0AAB = −2(ν0)2R11∇0A00 − 4gAB∇0BAB,

while from (4.15) we obtain

gAB�g∇0AAB = 2ν0
(
∂1 + 1

2τ − 2�0
01

)
(gAB∇0∇0AAB) + 2(ν0)2|χ |2∇0A00.

Invoking (4.3) we are led to the equation(
∂1 + 1

2τ − 2�0
01

)
(gAB∇0∇0AAB) = ν0∇0A00

(
∂1 − �1

11

)
τ − 2ν0gAB∇0BAB. (4.27)

The μ = 0-component of (4.11) reads

(∂1 + τ − 2�0
01)B00 − 1

2ν0gAB∇0BAB = 0. (4.28)

Recall that by (3.24) we have(
∂1 + 1

2τ − 3�0
01

)∇0A00 + 2ν0B00 = 0. (4.29)

Using again the results of [2, section 4.5] we find that the ODE-system (4.26)–(4.29) for B00,
gAB∇0BAB, ∇0A00 and gAB∇0∇0AAB is of the form⎡
⎢⎢⎣∂1 +

⎛
⎜⎜⎝

2r−1 + O(r) − 1
2 + O(r2) 0 0

2r−2 + O(1) r−1 + O(r) O(r−1) O(1)

2 + O(r2) 0 r−1 + O(r) 0
0 2 + O(r2) 2r−2 + O(1) r−1 + O(r)

⎞
⎟⎟⎠
⎤
⎥⎥⎦
⎛
⎜⎜⎝

B00

gAB∇0BAB

∇0A00

gAB∇0∇0AAB

⎞
⎟⎟⎠ = 0.

Due to regularity we have

B00 , gAB∇0BAB,∇0A00, gAB∇0∇0AAB = O(1).

14
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Even more, from (4.28) we conclude that

B00 = O(r). (4.30)

From (4.29) and (4.27) we then deduce

∇0A00 = O(r2), gAB∇0∇0AAB = O(r). (4.31)

In terms of the rescaled fields ˜gAB∇0∇0AAB = r−1gAB∇0∇0AAB and B̃00 := r−1B00,
˜∇0A00 := r−2∇0A00 the ODE-system takes the form

⎡
⎢⎢⎣∂1 + r−1

⎛
⎜⎜⎝

3 − 1
2 0 0

2 1 0 0
2 0 3 0
0 2 2 2

⎞
⎟⎟⎠ + M

⎤
⎥⎥⎦ v = 0, v :=

⎛
⎜⎜⎜⎜⎝

B̃00

gAB∇0BAB
˜∇0A00
˜gAB∇0∇0AAB

⎞
⎟⎟⎟⎟⎠ = O(1),

with M = O(r) being some matrix. The change of basis matrix

T :=

⎛
⎜⎜⎝

0 −1/3 −1/3 0
0 −2/3 0 0

1/
√

5 2/3 4/3 0
2/

√
5 8/3 0 1

⎞
⎟⎟⎠,

transforms the indicial matrix to Jordan normal form, and we end up with another Fuchsian
ODE-system,

∂1ṽ + r−1

⎛
⎜⎜⎝

3 0 0 0
0 2 1 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ṽ + M̃ṽ = 0, (4.32)

where ṽ := T −1v = O(1) and M̃ := T −1MT = O(r). Again, lemma A.1 in appendix A (with
λ = −1) implies ṽ = 0, and thus B00 = gAB∇0BAB = ∇0A00 = gAB∇0∇0AAB = 0.

In this section we have proved:

Lemma 4.3. Assume that (3.3) and (3.4) hold, and that Aμν = 0 = Bi j = ∇0Ai j. Then B0μ = 0,
∇0B1i = gAB∇0BAB = 0, ∇0A0μ = 0 and ∇0∇0A1i = gAB∇0∇0AAB = 0.

4.1.3. The (proper) KID equations. The conditions (iv), (vi) and (vii) in theorem 4.1 are not
intrinsic in the sense that they involve transverse derivatives of X and Y which are not part
of the initial data for the wave equations (i) and (ii). However, they can be eliminated via
these wave equations. In fact, this is crucial if one wants to check for a certain candidate field
defined only on the initial surface whether it extends to a vector field satisfying the unphysical
Killing equations or not. In essence this is what we will do next.

We have

�gY ≡ 2ν0(∇1 + 1
2τ
)∇0Y + gi jDiD jY , (4.33)

where Di is the derivative operator introduced in [3],

DiY := ∇iY ,

DiXμ := ∇iXμ,

DiD jY := ∂iD jY − �k
i jDkY,

DiD jXμ := ∂iD jXμ − �k
i jDkY μ − �ν

iμD jY ν,
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i.e. one simply removes the transverse derivatives which would appear in the corresponding
expressions with covariant derivatives. Since the action of ∇i and Di coincides in many
cases relevant to us one may often use them interchangeably. Nevertheless, we shall use Di

consistently whenever derivatives of X or Y appear to stress that no transverse derivatives of
these fields are involved.

By (ii) and (4.33) the function ϒ := ∂0Y (note that ϒ is not a scalar) satisfies the ODE(
∂1 + τ

2 − �0
01

)
ϒ − �i

01∇iY + 1
2ν0

(
gi jDiD jY + 1

6 Xμ∇μR + 1
3 RY

) = 0. (4.34)

Regularity requires ϒ = O(1).
It is useful to make the following definition

Sμνσ := ∇μ∇νXσ − Rσνμ
κXκ − 2∇(μY gν)σ + ∇σY gμν. (4.35)

It follows from the identity (3.12) that

Sμνσ = ∇(μAν)σ − 1
2∇σ Aμν. (4.36)

Note that this implies the useful relations

2Sμ(νσ ) = ∇μAνσ , (4.37)

S[μν]σ = 0. (4.38)

Recall that (4.4) is a consequence of (i) and (v). Hence

S110 = ∇1A01 − 1
2∇0A11 = (

∂1 + 1
2τ − ν0∂1ν0

)
A01. (4.39)

Taking regularity into account we conclude that

A01 = 0 ⇐⇒ S110 = 0.

This leads us to the following stronger version of theorem 4.1:

Theorem 4.4. Assume that we have been given a 3 + 1-dimensional space-time (M , g,�),
with (g,�) being a smooth solution of the conformal field equations (2.1)–(2.6). Let X̊ be a
vector field and Y̊ a function defined on a light-cone CO ⊂ M . Then there exists a smooth
vector field X with X = X̊ and ∇κXκ = 4Y̊ satisfying the unphysical Killing equations (3.1)
on D+(CO) (i.e. representing a Killing field of the physical space-time) if and only if

(a) the conditions (iii) and (v) in theorem 4.1 hold,
(b) ψ intr := X̊μ∇μs + sY̊ − ∇ i�DiY̊ − ν0ϒ∇1� = 0,
(c) S110 ≡ D1D1X̊0 − R011

κ X̊κ − 2ν0D1Y̊ = 0,
(d) B1i ≡ X̊κ∇κL1i + 2Lκ(1Di)X̊κ + D1DiY̊ = 0,
(e) Bintr

AB := X̊κ∇κLAB + 2Lκ(ADB)X̊κ + DADBY̊ + ν0ϒχAB = 0,
(f) X̊ and Y̊ are restrictions to the light-cone of smooth space-time fields.

The function ϒ is the unique solution of(
∂1 + τ

2
− �0

01

)
ϒ − �i

01DiY̊ + 1

2
ν0

(
gi jDiD jY̊ + 1

6
X̊μ∇μR + 1

3
RY̊

)
= 0 (4.40)

which is bounded near the tip of the cone. The condition (c) is not needed on the closure of
those sets on which the expansion τ is non-zero.

Proof. It needs to be shown that (X̊, Y̊ ) extends to a pair (X,Y ) satisfying (i)–(vii) in
theorem 4.1. From the considerations above it becomes clear that (a)–(e) do imply (i)–(vii) in
theorem 4.1 if X̊ and Y̊ can be extended to smooth solutions of the wave equations (3.3) and
(3.4) for X and Y . However, this follows from [5] and (f). �
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Remark 4.5. The conditions (a)–(e) will be called (proper) 2 KID equations (cf proposition 4.9
below which shows that condition (f) is not needed).

Remark 4.6. Theorem 4.4 can e.g. be applied to a light-cone with vertex at past timelike
infinity for vanishing cosmological constant (this is done in section 5), or to light-cones with
vertex on past null infinity for vanishing or positive cosmological constant.

4.1.4. Extendability of the candidate fields. A drawback of theorem 4.4 is the condition (f): it
is a non-trivial issue to make sure that the candidate fields X̊ and Y̊ which are constructed from
(a subset of) (a)–(e) are restrictions to the light-cone of smooth space-time fields. (Nonetheless
we shall see in section 5 that (f) becomes trivial on the Ci− -cone.) We therefore aim to prove
that (f) follows directly and without any restrictions from the KID equations (a)–(e).

Since the validity of (f) is non-trivial only in some neighbourhood of the vertex of the
cone, we can and will assume in this section that the expansion τ has no zeros.

The procedure will be in close analogy to [3, section 2.5]. First of all we shall compute the
divergence ∇γ Sαβγ which contains certain transverse derivatives of X̊ and Y̊ (which eventually
drop out from the relevant formulae). For these expressions to make sense let X and Y be any
smooth extensions of X̊ and Y̊ from the cone CO to a punctured neighbourhood of O. We stress
that no assumptions are made concerning the behaviour of X and Y as the tip of the cone is
approached.

By (4.35) and the second Bianchi identity we have

∇σ Sμνσ ≡ 1
2∇μ∇νAσ

σ + 2Bμν + 1
6 RAμν + (Bσ

σ − LαβAαβ )gμν. (4.41)

In adapted null coordinates the trace of the left-hand side on the cone reads,

∇σ Sμνσ = ν0(∇0Sμν1 + ∇1Sμν0) + g1A(∇1SμνA + ∇ASμν1) + g11∇1Sμν1 + gAB∇ASμνB.

(4.42)

The undesirable transverse derivatives which appear in ∇0Sμν1 can be eliminated via

∇0∇μ∇νXσ = ∇μ∇νA0σ − ∇μ∇ν∇σ X0 + 2g0σ ∇μ∇νY + ∇μ(R0νσ
κXκ )

+R0μν
κ∇κXσ + R0μσ

κ∇νXκ . (4.43)

Lemma 4.7. Assume Ai j = 0. Then

2B11 = τν0S110.

Proof. Equation (4.41) with (μν) = (11) yields

∇σ S11σ = ν0∇1∇1A01 + 2B11. (4.44)

Note that it follows from (4.36) that the vanishing of A1i implies the vanishing of S11i and all
permutations thereof. Due to (4.42) we further have S1AB = SA1B = 0. From (4.42) we then
obtain with (μν) = (11)

∇σ S11σ = ν0∇0S111 + ν0∇1S110 − 2χABS1AB + τν0S110, (4.45)

while (4.43) gives

∇0S111 = ∇0∇1∇1X1 = ∇1∇1A01 − ∇1S110.

Equating (4.44) with (4.45) yields the desired result. �

2 In the sense that they do not involve transverse derivatives of X or Y .
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Lemma 4.8. Assume Ai j = 0 and S110 = 0. Then

2ν0B1A = (∂1 + τ − ν0∂1ν0)SA10.

Proof. From the (μν) = (A1)-components of (4.41) we deduce

∇σ SA1σ = 1
2∇A∇1Aσ

σ + 2B1A. (4.46)

It follows from (4.43) that

∇0SA11 = ∇0∇A∇1X1 = ∇A∇1A01 − ∇AS110 = ∇A∇1A01 + 2χA
BSB10.

Recall that S11i as well as all permutations thereof vanish, and that SA1B = S1AB = 0.
Equation (4.42) with (μν) = (A1) and (4.37) then yield

∇σ SA1σ = ν0∇0SA11 + ν0∇1SA10 + g1B∇BSA11 + gBC∇CSA1B

= ν0∇A∇1A01 + 2ν0χA
BSB10 + ν0∇1SA10 + 1

2 g1B∇B∇AA11 + gBC∇CSA1B. (4.47)

Combining (4.46) and (4.47) and invoking again (4.37) we obtain

2B1A = ν0∇1SA10 + 2ν0χA
BSB10 + 2gBC∇[CSA]1B + g1B

(
1
2∇B∇AA11 − ∇A∇1A1B

)
. (4.48)

Since
1
2∇B∇AA11 − ∇A∇1A1B = −∇AS11B = 0,

and

2gBC∇[CSA]1B = τν0SA10 − ν0χA
BSB10 + 2gBCχ[A

DSC]DB︸ ︷︷ ︸
=0 by (4.36)

the lemma is proved. �
As in [3] one checks via the formulae in [2, section 4.5] and assuming

X̊1, ∂iX̊1 = O(1), X̊0, ∂iX̊0, ∂A∂1X̊0 = O(1), (4.49)

X̊A, ∂BX̊A = O(r), ∂1X̊A = O(1), Y̊ , ∂iY̊ = O(1), (4.50)

that SA10 needs to exhibit the following behaviour near the tip of the cone:

SA10 = O(r−1). (4.51)

Note that (4.49)–(4.50) are necessarily satisfied by any pair (X̊, Y̊ ) = (X, 1
4 divX ) with X a

smooth vector field.
It now follows immediately from lemmas 4.7 and 4.8 that for any vector field X̊ and any

function Y̊ which satisfy Ai j = 0 and B1i = 0 the equation

Si10 = 0 (4.52)

holds sufficiently close to the vertex of the cone where τ has no zeros.
Let us define an antisymmetric tensor field F̊μν via

F̊i j := ∇[iX̊ j], (4.53)

F̊i0 := ∇iX̊0 − g0iY̊ . (4.54)

We also define a covector field H̊μ,

H̊i := ∇iY̊ , (4.55)

H̊0 := 0. (4.56)
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In the following computations we assume

Si10 = 0 = Ai j = B1i. (4.57)

Then, due to the first Bianchi identity,

F̊1i ≡ ∇1X̊i − 1
2 A1i − Y̊ g1i = ∇1X̊i,

∇1F̊i j ≡ ∇[iA j]1 − 2g1[iH̊ j] − Ri j1
αX̊α = −Ri j1

αX̊α,

∇1Fi0 ≡ Si10 − Ri01
αX̊α + ν0H̊i − g1i∇0Y = ν0H̊i − Ri01

αX̊α.

Moreover,

∇1H̊i ≡ B1i − LX L1i ≡ B1i − L(1
jAi) j − X̊α∇αL1i − 2L(1

αF̊i)α − 2L1iY̊

= − X̊α∇αL1i − 2L(1
α(F̊i)α + gi)αY̊ ),

∇1H̊0 ≡ − �i
01H̊i.

Therefore the candidate fields X̊ and Y̊ solving (a)–(e) in theorem 4.4 form a solution of the
following problem on CO,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇1X̊μ = F̊1μ + g1μY̊ ,

∇1F̊μν = 2g1[νH̊μ] − Rμν1
αX̊α,

∇1Y̊ = H̊1,

∇1H̊μ = −X̊α∇αL1μ − 2L(1
α(F̊μ)α + gμ)αY̊ )

− g1μν0[�i
01H̊i − X̊α∇αL01 − 2L(1

α(F̊0)α + g0)αY̊ )],

(4.58)

which is uniquely defined by the values of X̊μ, F̊μν , Y̊ and H̊μ at the vertex of the cone.
We want to show that the fields which solve (4.58) are restrictions to the cone

of smooth space-time fields: Given any vector �μ in the tangent space at O define
(xμ(s), Xμ(s), Fμν (s),Y (s), Hμ(s)) as the unique solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xμ

ds2
+ �

μ
αβ

dxα

ds

dxβ

ds
= 0,

dXμ

ds
− �α

μβXα

dxβ

ds
= Fαμ

dxα

ds
+ gαμY

dxα

ds
,

dFμν

ds
− �α

μγ Fαν

dxγ

ds
− �α

νγ Fμα

dxγ

ds
= 2gγ [νHμ]

dxγ

ds
− Rμνγ

αXα

dxγ

ds
,

dY

ds
= Hα

dxα

ds
,

dHμ

ds
− �α

μβHα

dxβ

ds
= {−Xα∇αLγμ − 2L(γ

α(Fμ)α + gμ)αY )

−gγμν0[�i
01Hi − Xα∇αL01 − 2L(1

α(F0)α + g0)αY )]}dxγ

ds
,

xμ(0) = 0,
dxμ

ds
(0) = �μ,

(4.59)

for given initial data (Xμ(0), Fμν (0),Y (0), Hμ(0)). As in [3, section 2.4] the system (4.59),
together with the property that solutions of ODEs depend smoothly upon initial data, and that
the trace of solutions of (4.59) on CO solve (4.58), shows that the fields solving (4.58) are
restrictions to the cone of smooth space-time fields. We have proved:

Proposition 4.9. The condition (f) in theorem 4.4 can be removed.

19

303



Class. Quantum Grav. 31 (2014) 085007 T-T Paetz

4.2. A stronger version of theorem 3.4 for two transversally intersecting null hypersurfaces

4.2.1. Stronger version. We want to establish the analogues of lemmas 4.2 and 4.3 for two
transversally intersecting null hypersurfaces.

Lemma 4.10. Assume that the wave equations (3.3) and (3.4) for X and Y hold, and that,
on N1, A2μ = AAB = 0 = B22 = B2A = BAB, similarly on N2. Furthermore, we assume that
∇[1A2]A|S = 0. Then, on N1, A11 = A1A = 0 and ∇1A22 = ∇1A2A = ∇1AAB = 0, and a
corresponding statement holds on N2. On the closure of those sets where τ is non-zero the
assumption A12 = 0 is not needed but follows from the remaining assumptions, supposing that
A12|S = 0.

Proof. We can repeat most of the steps which were necessary to prove lemma 4.2. The only
difference is that the ODEs are not of Fuchsian type anymore, but regular ones. To make sure
that all the fields involved vanish on N1 ∪ N2 we therefore need to make sure that we have
vanishing initial data on S. This is the case if, on S,

A11 = A22 = A1A = A2A = ∇1A2A = ∇2A1A = gAB∇1AAB = gAB∇2AAB = 0.

Observing that the analogue of (4.7) for light-cones holds, i.e.

∇(1A2)A = 0

this is an obvious consequence of the hypotheses made above. �
In analogy to lemma 4.3 we have

Lemma 4.11. Assume that (3.3) and (3.4) hold, and that Aμν = 0. Moreover, assume
that, on N1, B22 = B2A = BAB = 0 and ∇1A22 = ∇1A2A = ∇1AAB = 0, similarly
on N2. Then, on N1, B1μ = 0, ∇1B22 = ∇1B2A = gAB∇1BAB = 0, ∇1A1μ = 0 and
∇1∇1A22 = ∇1∇1A2A = gAB∇1∇1AAB = 0, and similar conclusions can be drawn on N2.

Proof. Again, we just need to make sure that all the initial data for the ODEs vanish on S. For
all the field components involving covariant derivatives of Aμν this follows directly from the
vanishing of Aμν . The vanishing of those field components involving (covariant derivatives
of) Bμν follows from the same fact, since, by (3.9), they can be expressed in terms of Aμν and
covariant derivatives thereof. �

Altogether we have proved

Theorem 4.12. Assume that we have been given a 3 + 1 dimensional space-time (M , g,�),
with (g,�) a smooth solution of the conformal field equations. Let Na ⊂ M , a = 1, 2, be
two transversally intersecting null hypersurfaces with transverse intersection along a smooth
two-dimensional submanifold S. Then there exists a vector field X̂ satisfying the unphysical
Killing equations (3.1) on D+(N1 ∪ N2) if and only if there exists a pair (X,Y ), X a vector
field and Y a function, which fulfils the following conditions:

(a) the conditions (i)–(iv) in theorem 3.4 hold,
(b) A12 = 0 with Aμν ≡ 2∇(μXν) − 2Y gμν ,
(c) AAB = 0 = A22|N1 = A2A|N1 = A11|N2 = A1A|N2 ,
(d) ∇[1A2]A|S = 0,
(e) BAB = 0 = B22|N1 = B2A|N1 = B11|N2 = B1A|N2 with Bμν ≡ LX Lμν + ∇μ∇νY .

In that case one may take X̂ = X and ∇κ X̂κ = 4Y . The condition (b) is not needed on the
closure of those sets where τ is non-zero, supposing that A12|S = 0.
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4.2.2. The (proper) KID equations. Again, we would like to replace the non-intrinsic
conditions (b), (e) and ψ = 0 by conditions which do not involve transverse derivatives
of X and Y . For the latter two this can be done as in the light-cone case. We just note that the
ODEs for ϒNa , a = 1, 2, corresponding to (4.34), need to be supplemented by the boundary
condition ϒNa |S = ∂aY . To replace (b) one needs to take into account that, due to (4.39), we
have

A12 = 0 ⇐⇒ A12|S = 0 = S221|N1 = S112|N2 .

Furthermore, (b) and (c) imply

SA12|S = 2∇(AA1)2 − ∇2A1A = 2∇[1A2]A,

i.e. (d) can be replaced by the condition

0 = SA12|S ≡ 2∇A∇1X2 − 2R21A
κXκ − 4∇(AY g1)2 + 2∇2Y gA1

= 2∇A∇1X2 − 2R21A
κXκ − 2g12∇AY.

As a direct consequence of theorem (4.12) we end up with the result:

Theorem 4.13. Assume we have been given a 3 + 1-dimensional space-time (M , g,�), with
(g,�) a smooth solution of the conformal field equations. Let X̊ be a vector field and Y̊ a
function defined on two transversally intersecting null hypersurfaces Na ⊂ M , a = 1, 2, with
transverse intersection along a smooth two-dimensional submanifold S. Then there exists a
smooth vector field X with X = X̊ and ∇κXκ = 4Y̊ satisfying the unphysical Killing equations
(3.1) on D+(N1 ∪ N2) (i.e. representing a Killing field of the physical space-time) if and only
if the KID equations are fulfilled (we suppress the dependence of Di on Na):

(i) X̊μ∇μ� − �Y̊ = 0,
(ii) X̊μ∇μs + sY̊ − ∇2�D2Y̊ − ∇A�DAY̊ − ϒN1 g12∇1�|N1 = 0,

X̊μ∇μs + sY̊ − ∇1�D1Y̊ − ∇A�DAY̊ − ϒN2 g12∇2�|N2 = 0,
(iii) D(AX̊B) − Y̊ gAB = 0,

D2X̊2|N1 = D(2X̊A)|N1 = 0,
D1X̊1|N2 = D(1X̊A)|N2 = 0,

(iv) D2D2X̊1 − R122
κ X̊κ − 2g12D2Y̊ |N1 = 0,

D1D1X̊2 − R211
κ X̊κ − 2g12D1Y̊ |N2 = 0,

(v) X̊κ∇κL2i + 2Lκ(2Di)X̊κ + D2DiY̊ |N1 = 0, i = 2, A,
X̊κ∇κL1i + 2Lκ(1Di)X̊κ + D1DiY̊ |N2 = 0, i = 1, A,

(vi) X̊κ∇κLAB + 2Lκ(ADB)X̊κ + DADBY̊ + ϒNa g12χ
Na
AB|Na = 0, a = 1, 2,

(vii) D(1X̊2) − Y̊ g12|S = 0,
(viii) 2DAD1X̊2 − 2R21A

κ X̊κ − 2g12DAY̊ |S = 0,

where ϒN1 is given by ϒN1 |S = D1Y̊ and(
∂2 + τN1

2
− �1

12

)
ϒN1 − �2

12D2Y̊ − �A
12DAY̊

+ 1

2
g12

(
g22D2D2Y̊ + 2g2AD2DAY̊ + gABDADBY̊ + 1

6
X̊μ∇μR + 1

3
RY̊

)
= 0,

similarly on N2.
The condition (iv) is not needed on the closure of those sets on which the expansion τ is

non-zero.
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Proof. Once (i)–(viii) have been solved one uses the solutions X̊ and Y̊ as initial data for the
wave equations (3.3) and (3.4). A solution exists due to [12], and the rest follows from the
considerations above. �

Remark 4.14. As in [3] one could replace the condition gABD(AX̊B) −2Y̊ = 0 of (iii) by certain
conditions on S if one makes sure that (iv) holds regardless of the (non-)vanishing of τ .

Remark 4.15. Theorem 4.13 can e.g. be applied to two null hypersurfaces intersecting
transversally with one of them being part of I −.

5. KID equations on the light-cone Ci−

Let us analyse now in detail the case where the initial surface is the light-cone Ci− with vertex
at past timelike infinity i− in 3 + 1-space-time dimensions (note that this requires a vanishing
cosmological constant λ). In particular that means

� = 0. (5.1)

That the corresponding initial value problem is well-posed for suitably prescribed data has
been shown in [4]. Our aim is to apply theorem 4.4 and analyse the KID equations in this
special case.

5.1. Gauge freedom and constraint equations

To make computations as easy as possible it is useful to impose a convenient gauge condition.
We will adopt the gauge scheme explained in [11, section 2.2 & 4.1], where the reader is
referred to for further details. Let us start with a brief overview over the relevant gauge degrees
of freedom.

The freedom to choose the conformal factor �, regarded as an unknown in the conformal
field equations (2.1)–(2.6), is comprised in the freedom to prescribe the Ricci scalar R and
the function s, where the latter one needs to be the restriction to Ci− of a smooth function,
non-vanishing at i− (which ensures d�|I − �= 0).

As above, we will choose adapted null coordinates (x0 = u, x1 = r, xA), A = 2, 3, on
Ci− . The freedom to choose coordinates off the cone is reflected in the freedom to prescribe
an arbitrary vector field W σ for the ĝ-generalized wave-map gauge condition

Hσ := gαβ
(
�σ

αβ − �̂σ
αβ

) − W σ = 0,

where ĝ denotes some target metric. The choice W σ = 0 is called wave-map gauge.
This still leaves the freedom to parameterize the null geodesics generating Ci− , due to

which it is possible to additionally prescribe the function

κ := ν0∂1ν0 − 1
2τ − 1

2ν0
(
gμν�̂0

μν + W 0
)
.

The choice κ = 0 corresponds to an affine parameterization. Moreover, when Hσ = 0 it holds
that

κ = �1
11.

Henceforth we choose as in [4, 11]

R = 0, s = −2, W σ = 0, κ = 0, ĝ = η, (5.2)

where

η := −(du)2 + 2 du dr + r2sAB dxA dxB
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denotes the Minkowski metric in adapted null coordinates, with s = sAB dxA dxB being the
standard metric on S2.

Let us assume we have been given a smooth solution (g,�) of the conformal field
equations (2.1)–(2.6) in the (R = 0, s = −2, κ = 0, ĝ = η)-wave-map gauge.3 It is shown in
[11, section 4] that then the following equations are valid on Ci− ,

gμν = ημν, L1μ = 0, LAB = ωAB, L0A = 1
2 ∇̃BλA

B, (5.3)

∂0� = −2r, ∂0g1μ = 0, (5.4)

τ = 2/r, ξA := −2�1
1A = 0, ζ := 2gAB�1

AB + τ = −2/r, (5.5)

(∂1 − r−1)λAB = −2ωAB , λA
A = ωA

A = 0, (5.6)

where λAB := ∂0gAB = O(r3). The operator ∇̃ denotes the Levi-Civita connection of
g̃ := gABdxAdxB. The s-trace-free tensor ωAB = O(r2) may be regarded as representing
the free initial data in the corresponding characteristic initial value problem [4, 11].

For convenience we give a list of the Christoffel symbols in adapted null coordinates on
Ci− , which are easily obtained from (5.3)–(5.6) and the formulae in [2, appendix A],

�0
0μ = �

μ

01 = �
μ

11 = �0
1A = �1

0A = �1
1A = 0,

�1
00 = 1

2
∂0g00, �C

00 = gCD∂0g0D, �0
AB = −1

r
gAB, �C

1A = 1

r
δA

C,

�C
0A = 1

2
λA

C, �1
AB = −1

r
gAB − 1

2
λAB, �C

AB = �̃C
AB = SC

AB.

5.2. Analysis of the KID equations

5.2.1. The conditions φ = 0, ψ intr = 0, Ai j = 0 and S110 = 0. With � = 0 and ∂0� = −2r it
immediately follows that (recall that φ has been defined in theorem 4.1)

φ = 0 ⇐⇒ X̊0 = 0, (5.7)

i.e. any vector field satisfying the unphysical Killing equations necessarily needs to be tangent
to Ci− .

Taking further into account that s = −2 and ν0 = 1 we obtain (recall that ψ intr has been
defined in theorem 4.4)

ψ intr = 0 ⇐⇒ (∂1 − r−1)Y̊ = 0 ⇐⇒ Y̊ = c(xA)r, (5.8)

for some angle-dependent function c. The condition A11 = 0 is then automatically fulfilled.
Furthermore, one readily checks that (we denote by D the Levi-Civita connection associated
to the standard metric on S2)

A1A = 0 ⇐⇒ ∂1X̊A = 0 ⇐⇒ X̊A = dA(xB), (5.9)

gABAAB = 0 ⇐⇒ X̊1 = − 1
2 rDAdA + cr2, (5.10)

ĂAB = 0 ⇐⇒ dA is a conformal Killing field on (S2, sAB). (5.11)

Here and in what follows .̆ denotes the sAB- (equivalently the gAB-) trace-free part of the
corresponding rank-2 tensor field.

Since τ = 2/r > 0 the condition S110 = 0 holds automatically for all r > 0.

3 In fact it is not necessary here to require the rescaled Weyl tensor to be regular at i−.
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5.2.2. The conditions B1i = 0 and Bintr
AB = 0. First we solve (4.40) for ϒ , which in our gauge

becomes

(∂1 + r−1)ϒ + 1
2 r−2�sY̊ + r−1∂1Y̊ = 0, (5.12)

where we have set �s := sABDADB. With Y̊ = cr and ϒ = O(1) we obtain as the unique
solution of (5.12)

ϒ = − 1
2 (�s + 2)c. (5.13)

For B1i we find

B11 ≡ X̊κ∇κL11 + 2Lκ(1D1)X̊
κ + D1D1Y̊

= 0,

B1A ≡ X̊κ∇κL1A + 2Lκ(1DA)X̊
κ + D1DAY̊

= ωAB∂1X̊B + ∂A(∂1 − r−1)Y̊

= 0

without any further restrictions on X̊ , Y̊ or the initial data ωAB. It remains to determine Bintr
AB ,

Bintr
AB = X̊ i∇iLAB + 2L0(ADB)X̊

0 + 2LC(ADB)X̊
C + DADBY̊ + r−1gABϒ

= X̊1∂1ωAB + X̊C∇̃CωAB + 2ωC(A∇̃B)X̊
C + ∇̃A∇̃BY̊ + 1

2λAB∂1Y̊ + r−1gAB(∂1Y̊ + ϒ).

We first compute its trace,

gABBintr
AB = 2ωAB(∇̃AX̊B )̆ + �g̃Y̊ + 2r−1∂1Y̊ + 2r−1ϒ = 0,

again without any further restrictions. For its traceless part we find

B̆intr
AB = X̊1∂1ωAB + X̊C∇̃CωAB + 2ωC(A∇̃B)X̊

C − gABωCD(∇̃CX̊D )̆ + (∇̃A∇̃BY̊ )̆ + 1
2λAB∂1Y̊

= LdωAB − 1
2 r∂1ωABDCdC + cr2∂1ωAB + 1

2 cλAB + r(DADBc)̆.

Recall that regularity of the metric requires ωAB = O(r2) and λAB = O(r3), in particular
LdωAB = O(r2). Hence B̆intr

AB = 0 if and only if

∇̊Ac is a conformal Killing field on (S2, sAB dxA dxB), (5.14)

LdωAB − 1
2 r∂1ωAB∇̊CdC + cr2∂1ωAB + 1

2 cλAB = 0. (5.15)

5.2.3. Summary. By way of summary the conditions (a)–(f) in theorem 4.4 hold if and only if

X̊0 = 0, (5.16)

X̊A = dA, (5.17)

X̊1 = − 1
2 rDAdA + cr2, (5.18)

Y̊ = cr, (5.19)

such that

DAc and dA are conformal Killing fields on (S2, sAB dxA dxB), (5.20)

LdωAB − 1
2 rDCdC∂1ωAB + cr2∂1ωAB + 1

2 cλAB = 0. (5.21)
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In section 4.1.4 we have shown that solutions of the KID equations are restrictions to the
light-cone of smooth space-time fields. On Ci− this turns out to be a trivial issue anyway: the
candidate fields satisfying (5.16)–(5.20) are explicitly known4 and coincide independently of
the choice of initial data ωAB, with the restriction to Ci− of the Minkowskian Killing fields.

While in the Minkowski case ωAB = 0 every candidate field does extend to a Killing
vector field, equation (5.21) provides an obstruction equation for non-flat data. We call (5.21)
the reduced KID equations.

As a corollary of theorem 4.4 we obtain:

Theorem 5.1. Assume that we have been given a 3 + 1-dimensional ‘unphysical’ space-
time (M , g,�) which contains a regular Ci− -cone (the cosmological constant λ thus needs
to vanish) and where (g,�) is a smooth solution of the conformal field equations in the
(R = 0, s = −2, κ = 0, ĝ = η)-wave-map gauge. Then there exists a smooth vector field X
satisfying the unphysical Killing equations (3.1) on D+(Ci− ) (i.e. representing a Killing field
of the physical space-time) if and only if there exist a function c and a vector field dA on S2 with
DAc and dA conformal Killing fields on (S2, sAB dxA dxB) such that the reduced KID equations

LdωAB − 1
2 r∂1ωABDCdC + cr2∂1ωAB + 1

2 cλAB = 0 (5.22)

are satisfied on Ci− (recall that λAB is the unique solution of (∂1 − r−1)λAB = −2ωAB with
λAB = O(r3)).

The Killing field satisfies

X0 = 0, XA = dA, X1 = − 1
2 rDAdA + cr2, ∇μXμ = 4cr. (5.23)

Remark 5.2. The reduced KID equations (5.22) can be replaced by one of their equivalents
(i)–(iii) in lemma 5.3.

5.3. Analysis of the reduced KID equations

5.3.1. Equivalent representations of the reduced KID equations. We provide some alternative
formulations of the reduced KID equations.

Lemma 5.3. The reduced KID equations (5.22) are equivalent to each of the following
equations:

(i) LdλAB − ( 1
2 rDCdC − cr2)∂1λAB + ( 1

2DCdC − 2cr)λAB = 0,
(ii) (∂1 − r−1)LdωAB − 1

2 r∂2
11ωABDCdC + cr2∂1(∂1 + r−1)ωAB = 0,

(iii) 2LdL0A + (1 − r∂1)L0ADBdB + rωA
CDCDBdB + 2cr2∂1L0A − (2ωAB + r−1λAB)DBc = 0

(recall that L0A = 1
2 ∇̃BλA

B).

Proof. (i) Applying (∂1 − r−1) to (i) yields (5.22), equivalence follows from regularity.
(ii) Applying (∂1 − r−1) to (5.22) yields (ii), equivalence follows from regularity.
(iii) We use the fact that on (S2, sAB dxA dxB) the equations wAB = 0 and DBwAB = 0 with

wAB trace-free are equivalent. Taking the divergence of (i) and invoking the conformal Killing
equation for dA complete the equivalence proof. �

Both ωAB or λAB may be regarded as the freely prescribable initial data. So (i) and (ii)
in lemma 5.3 provide formulations of the reduced KID equations which involve exclusively
explicitly known quantities for all admissible initial data. In the case of an ordinary cone,
treated in [3], this is not possible: For generic KIDs there, neither the candidate fields nor all
the relevant metric components can be computed analytically.
4 The function c satisfies the equation DA(�s + 2)c = 0 and can thus be written as linear combination of � = 0, 1
spherical harmonics. Conformal Killing fields on the round 2-sphere are discussed in appendix B.
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5.3.2. Some special cases. We continue with a brief discussion of some special cases. There
exists a vector field X satisfying the unphysical Killing equations (3.1) on D+(Ci− ) with

(1) ∇μXμ = 0 ⇐⇒ ∃ a conformal Killing field dA on (S2, sAB dxA dxB) with LdωAB =
1
2 r∂1ωABDCdC,

(2) X1 = 0 ⇐⇒ ∃ a Killing field dA on (S2, sAB dxA dxB) with LdωAB = 0,

(3) XA = 0 ⇐⇒ ∂1(∂1 + r−1)ωAB = 0
ωAB=O(r2 )⇐⇒ ωAB = 0

(ωAB ≡ L̆AB = O(r2) is a necessary condition for the Schouten tensor to be regular at i−).

The third case shows that the property XA = 0 is compatible only with the Minkowski
case (supposing that i− is a regular point). In the non-flat case any non-trivial vector field
satisfying the unphysical Killing equations has a non-trivial component XA = dA �≡ 0. Since

gμνXμXν = gABXAXB = r2sABdAdB,

we see that there are no non-trivial vector fields satisfying the unphysical Killing equations
which are null on Ci− . To put it differently, possibly apart from certain directions determined by
the zeros of dA, any isometry of a non-flat, asymptotically flat vacuum space-time is necessarily
spacelike sufficiently close to I −. This leads to the following version of a classical result of
Lichnerowicz [9]:

Theorem 5.4. Minkowski space-time is the only stationary vacuum space-time which admits
a regular Ci− -cone.

5.3.3. Structure of the solution space. Let X and X̂ be two distinct non-trivial solutions of
the unphysical Killing equations (3.1). Since solutions of these equations form a Lie algebra,
ˆ̂X := [X, X̂] is another, possibly trivial solution. We have

ˆ̂X0 = [X, X̂]0 = 0,

ˆ̂XA = [X, X̂]A = [d, d̂]A,

ˆ̂X1 = [X, X̂]1 = − 1
2 rDB[d, d̂]B + r2

(
dBDBĉ − d̂BDBc + 1

2 cDBd̂B − 1
2 ĉDBdB

)
.

Hence, by their derivation, the reduced KID equations are fulfilled with

ˆ̂
dA = [d, d̂]A,

ˆ̂c = dBDBĉ − d̂BDBc + 1
2 cDBd̂B − 1

2 ĉDBdB,

and
ˆ̂

dA and DA
ˆ̂c are conformal Killing fields on the standard 2-sphere. Indeed, via the relation

L[d,d̂]λAB = [Ld,Ld̂]λAB, this can be straightforwardly checked. We refer the reader to
appendix B where the conformal Killing fields on the standard 2-sphere are explicitly given.

Let us consider for the moment flat initial data λAB = 0 which generate Minkowski
space-time. Then one has ten independent isometries.

• The four translations are generated by the tuples (c, dA = 0) with c being a spherical
harmonic function of degree � = 0 or 1.

• The three rotations are generated by the tuples (c = 0, dA) with dA being a Killing field
on (S2, sABdxAdxB).

• The three boosts are generated by the tuples (c = 0, dA = DA f ) with f being a spherical
harmonic function of degree � = 1.

We have already seen above that translations (in the above sense) cannot exists in the
non-flat case λAB �= 0 if the Schouten tensor is assumed to be regular at i−.
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Proposition 5.5. Minkowski space-time is the only vacuum space-time with a regular Ci− -cone
which admits translational Killing vector fields.

This is linked with another observation. Since, in the non-flat case, any non-trivial Killing
field of the physical space-time (i.e. a vector field satisfying the unphysical Killing equations)
has a non-trivial dA, for a given dA there can be at most one c such that (c, dA) solves the
reduced KID equations. Now the standard 2-sphere admits six independent conformal Killing
vector fields dA. We thus have:

Proposition 5.6. Any non-flat vacuum space-time with a regular Ci− -cone admits at most six
independent Killing vector fields.

Now let us assume that there are two distinct rotations, i.e. two Killing fields d(1) and d(2)

on (S2, sABdxAdxB) such that (c = 0, d = d(i)), i = 1, 2, solves the reduced KID equations.
Then (c = 0, d = d(3)) with d(3) = [d(1), d(2)] provides another independent, non-trivial
solution of the reduced KID equations. Altogether we have

Ld(i)λAB = 0, i = 1, 2, 3 
⇒ λAB ∝ sAB 
⇒ λAB = 0,

since λAB is trace-free. This recovers the well-known fact that two rotational symmetries imply
Minkowski space-time.
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Appendix A. Fuchsian ODEs

As we have not been able to find an adequate reference, we state and prove here a key result
about Fuchsian ODEs which is used in our work.

Lemma A.1. Let a > 0, and for r ∈ (0, a) consider a first-order ODE-system of the form

∂rφ = r−1Aφ + M(r)φ, (A.1)

for a set of fields φ = (φI ), I = 1, . . . , N, where A is an N × N-matrix, and where M(r) is a
continuous map on [0, a) with values in N × N-matrices which satisfies r‖M(r)‖op = o(1).
Let λ denote the smallest number so that

〈φ, Aφ〉 � λ‖φ‖2.

Suppose that there exists ε > 0 such that

φ = O(rλ+ε ).

Then

φ ≡ 0.

Proof. The proof is done by a simple energy estimate. Set

〈φ,ψ〉 :=
∑

I

φIψ I, ‖φ‖2 := 〈φ, φ〉 ,
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then for any k ∈ R
∂r(r

−2k‖φ‖2) = 2r−2kφ∂rφ − 2kr−2k−1‖φ‖2

= 2r−2k−1(〈φ, Aφ〉 + r 〈φ, M(r)φ〉 − k‖φ‖2)

� 2r−2k−1(λ − k + r‖M(r)‖op)‖φ‖2.

Applying
∫ r

r0
yields (assume r0 < r)

r−2k‖φ(r)‖2 � r−2k
0 ‖φ(r0)‖2 + 2

∫ r

r0

(λ − k + r̃‖M(r̃)‖op)r̃
−2k−1‖φ‖2dr̃

� r−2k
0 ‖φ(r0)‖2 + 2

(
λ − k + sup

0<r̃<r
(r̃‖M(r̃)‖op)

) ∫ r

r0

r̃−2k−1‖φ‖2dr̃.

Due to our assumption φ = O(rλ+ε ) any λ < k0 < λ + ε satisfies r−2k0‖φ‖2 = O(r2δ ), where
δ := λ − k0 + ε > 0. We then take the limit r0 → 0,

r−2k0‖φ(r)‖2 � 2
(
λ − k0 + sup

0<r̃<r
(r̃‖M(r̃)‖op)

) ∫ r

0
r̃−2k0−1‖φ‖2dr̃

� 0 for sufficiently small r.

Thus φ vanishes for small r, but then it needs to vanish for all r. �

Appendix B. Conformal Killing fields on the round 2-sphere

We consider the 2-sphere equipped with the standard metric

s = sABdxA dxB = dθ2 + sin2 θ dϕ2.

It admits the maximal number of independent conformal Killing vector fields, which is 6.
There are three independent Killing vector fields,

K(1) = ∂ϕ,

K(2) = sin ϕ∂θ + cot θ cos ϕ∂ϕ,

K(3) = cos ϕ∂θ − cot θ sin ϕ∂ϕ,

and three independent conformal Killing fields which are not Killing fields,

C(1) = sin θ∂θ ,

C(2) = cos θ cos ϕ∂θ − sin−1 θ sin ϕ∂ϕ,

C(3) = cos θ sin ϕ∂θ + sin−1 θ cos ϕ∂ϕ.

All the C(i)’s turn out to be gradients of � = 1-spherical harmonics,

CA
(1) = DAc(1), where c(1) = cos θ,

CA
(2) = DAc(2), where c(2) = sin θ cos ϕ,

CA
(3) = DAc(3), where c(3) = sin θ sin ϕ.

Moreover,

DACA
(i) = �sc(i) = −2c(i), i = 1, 2, 3.

The conformal Killing fields satisfy the commutation relations

[K(i), K( j)] =
∑

k

εi jkK(k),

[C(i),C( j)] = −
∑

k

εi jkK(k),

[K(i),C( j)] =
∑

k

εi jkC(k),
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i.e. they form a Lie algebra isomorphic to the Lie algebra so(3, 1) of the Lorenz group in four
dimensions. The Killing fields form a Lie subalgebra.
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We analyze Killing Initial Data on Cauchy surfaces in conformally
rescaled vacuum space-times satisfying Friedrich’s conformal field equa-
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1 Introduction

Symmetries are of utmost importance in physics, and so is the construction
of space-times (M̃ , g̃) satisfying Einstein’s field equations in general relativity
which possess k-parameter groups of isometries, 1 ≤ k ≤ 10 when dimM̃ =
4, generated by so-called Killing vector fields. Indeed, such space-times can
be systematically constructed in terms of an initial value problem when the
usual constraint equations, which are required to be fulfilled by appropriately
prescribed initial data, are supplemented by certain additional equations, the
Killing Initial Data (KID) equations.

The KID equations have been derived on spacelike as well as characteristic
initial surfaces (cf. [1, 3] and references therein). In [10] the same issue was
analyzed for characteristic surfaces in conformally rescaled vacuum space-times
satisfying Friedrich’s conformal field equations. In particular, for vanishing cos-
mological constant, the KID equations on a light-cone with vertex at past time-
like infinity have been derived there. The aim of this work is to carry out the
corresponding analysis on spacelike hypersurfaces in conformally rescaled vac-
uum space-times. As a special case we shall derive the KID equations on I −

supposing that the cosmological constant is positive so that I − is a spacelike
hypersurface.

In Section 2 we recall the conformal field equations, discuss their gauge
freedom and derive the constraint equations induced on I −. Well-posedness
of the Cauchy problem for the conformal field equations with data on I − was
shown in [4], we shall provide an alternative proof based on results proved in
Appendix A by using a system of wave equations.

The “unphysical Killing equations”, introduced in [10] replace, and are in
fact equivalent to, the original-space-time Killing equations in the unphysical
space-time. Employing results in [10] we derive in Section 3 necessary-and-
sufficient conditions on a spacelike hypersurface in a space-time satisfying the
conformal field equations which guarantee existence of a vector field fulfilling
these equations (cf. Theorem 3.3). Similar to the proceeding in [3, 10] we first

2
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derive an intermediate result, Theorem 3.1, with a couple of additional hypothe-
ses, which then are shown to be automatically satisfied.

In Section 4 we apply Theorem 3.3 to the special case where the spacelike
hypersurface is I −. We shall see that some of the KID equations determine a
set of candidate fields on I −. Whether or not these fields extend to vector fields
satisfying the unphysical Killing equations depends on the remaining “reduced
KID equations”. As for a light-cone with vertex at past timelike infinity it
turns out that the KID equations adopt at infinity a significantly simpler form
as compared to “ordinary” Cauchy surfaces (cf. Theorem 4.1).

2 Setting

2.1 Conformal field equations

In 3+1 dimensions Friedrich’smetric conformal field equations (MCFE) (cf. [5])1

∇ρdµνσ
ρ = 0 , (2.1)

∇µLνσ −∇νLµσ = ∇ρΘ dνµσ
ρ , (2.2)

∇µ∇νΘ = −ΘLµν + sgµν , (2.3)

∇µs = −Lµν∇νΘ , (2.4)

2Θs−∇µΘ∇µΘ = λ/3 , (2.5)

Rµνσ
κ[g] = Θdµνσ

κ + 2(gσ[µLν]
κ − δ[µ

κLν]σ) (2.6)

form a closed system of equations for the unknowns gµν , Θ, s, Lµν and dµνσ
ρ.

The tensor field Lµν denotes the Schouten tensor,

Lµν =
1

2
Rµν − 1

12
Rgµν , (2.7)

while
dµνσ

ρ = Θ−1Cµνσ
ρ (2.8)

is a rescaling of the conformal Weyl tensor Cµνσ
ρ. The function s is defined as

s =
1

4
✷gΘ+

1

24
RΘ . (2.9)

Friedrich has shown that the MCFE are equivalent to Einstein’s vacuum field
equations with cosmological constant λ in regions where the conformal factor
Θ, relating the “unphysical” metric g = Θ2gphys with the physical metric gphys,
is positive. Their advantage lies in the property that they remain regular even
where Θ vanishes.

The system (2.1)-(2.6) treats s, Lµν and dµνσ
ρ as independent of gµν and

Θ. However, once a solution of the MCFE has been given these fields are
related to gµν and Θ via (2.7)-(2.9). A solution of the MCFE is thus completely
determined by the pair (gµν ,Θ).

1It is indicated in [10] that things are considerably different in higher dimensions, which
is why we restrict attention to 4 dimensions from the outset.
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2.2 Gauge freedom

2.2.1 Conformal factor

Let (gµν ,Θ, s, Lµν , dµνσ
ρ) be some smooth solution of the MCFE.2 From gµν

we compute R. Let us then conformally rescale the metric, g 7→ φ2g, for some
positive function φ > 0. The Ricci scalars R and R∗ of g and φ2g, respectively,
are related via (set ✷g := gµν∇µ∇ν)

φR − φ3R∗ = 6✷gφ . (2.10)

Now, let us prescribe R∗ and read (2.10) as an equation for φ. When dealing
with a Cauchy problem with data on some spacelike hypersurface H (including

I − for λ > 0) we are free to prescribe functions φ|H =: φ̊ > 0 and ∂0φ|H =: ψ̊
on H.3 Throughout x0 ≡ t denotes a time-coordinate so that ∂0 is transverse
to H. According to standard results there exists a unique solution φ > 0 in
some neighborhood of H which induces the above data on H. The MCFE are
conformally covariant, meaning that the conformally rescaled fields

g∗ = φ2g , (2.11)

Θ∗ = φΘ , (2.12)

s∗ =
1

4
✷g∗Θ∗ +

1

24
R∗Θ∗ , (2.13)

L∗
µν =

1

2
R∗

µν [g
∗]− 1

12
R∗g∗µν , (2.14)

d∗µνσ
ρ = φ−1dµνσ

ρ , (2.15)

provide another solution of the MCFE, now with Ricci scalar R∗, which rep-
resents the same physical solution: If the conformal factor Θ is treated as an
unknown, determined by the MCFE, the unphysical Ricci scalar R can be ar-
ranged to adopt any preassigned form, it represents a conformal gauge source
function.

There remains the gauge freedom to prescribe the functions φ̊ and ψ̊ on H.
On an ordinary hypersurface, where Θ has no zeros, this freedom can be used
to prescribe Θ|H and ∂0Θ|H. A main object of this work is to treat the case
H = I −, where, by definition, Θ = 0 (and dΘ 6= 0). We shall show that in this
situation the gauge freedom allows one to prescribe the function s on I − and
to make conformal rescalings of the induced metric on I −.

To see this we consider a smooth solution of the MCFE to the future of I −.
Now (2.5) and dΘ|I − 6= 0 enforce g00 < 0 (hence, as is well known, I − must
be spacelike when λ > 0). Due to (2.5), the function s can be written away
from I − as

s =
1

2
Θ−1∇µΘ∇µΘ+

1

6
Θ−1λ ,

and the right-hand side is smoothly extendable at I −. A conformal rescaling

Θ 7→ Θ∗ := φΘ , gµν 7→ g∗µν := φ2gµν , φ > 0 , (2.16)

2For convenience we restrict attention throughout to the smooth case, though similar
results can be obtained assuming finite differentiability.

3The positivity-assumption on φ̊ makes sure that the solution of (2.10) is positive suffi-
ciently close to H and thereby that the new conformal factor Θ∗ is positive as well (in the
I −-case just off the initial surface).
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maps the function s to

s∗ = φ−1
(1
2
Θφ−2∇µφ∇µφ+ φ−1∇µΘ∇µφ+ s

)
. (2.17)

The trace of this equation on I − is

∇µΘ∇µφ+ φ s− φ2s∗ = 0 , (2.18)

or, in coordinates adapted to I −, i.e. for which I − = {x0 ≡ t = 0} locally,

g0µ∇0Θ∇µφ+ φ s− φ2s∗ = 0 . (2.19)

Here and henceforth we use overlining to denote restriction to the initial surface.
Let us prescribe s∗ . We choose any φ̊ > 0 to conformally rescale the induced
metric on I −. Then we solve (2.19) for ψ̊ ≡ ∇0φ (recall that∇0Θ and g00 are

not allowed to have zeros on I −). We take the so-obtained functions φ̊ > 0

and ψ̊ as initial data for (2.10).
By way of summary, the conformal covariance of the MCFE comprises a

gauge freedom due to which the functions R and s|I − can be regarded as gauge
source functions, and due to which only the conformal class of the induced
metric on I − matters.

2.2.2 Coordinates

It is well-known (cf. e.g. [2]) that the freedom to choose coordinates near a
spacelike hypersurface H = {x0 = 0} with induced Riemannian metric hij can
be employed to prescribe

g00 < 0 and g0i . (2.20)

Equivalently, one may prescribe

g00 and g0i such that g00 − hijg0ig0j < 0 . (2.21)

The remaining freedom to choose coordinates off the initial surface is comprised
in the ĝ-generalized wave-map gauge condition

Hσ = 0 (2.22)

with
Hσ := gαβ(Γσ

αβ − Γ̂σ
αβ)−W σ (2.23)

being the generalized wave-gauge vector. Here ĝµν denotes some target metric,

Γ̂σ
αβ are the Christoffel symbols of ĝµν . More precisely, the gauge freedom is

captured by the vector field

W σ =W σ(xµ, gµν , s,Θ, Lµν , dµνσ
ρ, ĝµν)

which can be arbitrarily prescribed. In fact, within our setup, it can be allowed
to depend upon the coordinates, and possibly upon gµν as well as all other fields
which appear in the MCFE, but not upon derivatives thereof.
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2.2.3 Realization of the gauge scheme

Given some smooth solution of the MCFE and a new choice of gauge functions
R, s, W σ, g0µ, as well as a conformal factor Ω > 0 by which one wants to
rescale the induced metric gij , a transformation into the new gauge is realized
as follows:

In the first step we set φ̊ := Ω and solve (2.19) for ψ̊ ≡ ∇0φ, which gives us
the relevant initial data for (2.10) which we then solve. This way s and R take
their desired values, and a new representative Ω2gij of the conformal class of
the induced metric on I − is selected. Then the coordinates are transformed in
such a way that the metric takes the prescribed values for g0µ on I −. Finally
we just need to solve another wave equation to obtain Hσ = 0 for the given
vector field W σ.

2.3 Constraint equations in the (R = 0,W λ = 0, s = 0, g00 =
−1, g0i = 0, ĝµν = gµν)-wave map gauge

In the following we aim to derive the constraint equations for the fields gµν , Θ, s,
Lµν , dµνσ

ρ on I − as well as their transverse derivatives induced by the MCFE
on a spacelike I − in adapted coordinates (x0 = t, xi) with I − = {t = 0}. The
surface I − is characterized by

Θ = 0 and dΘ 6= 0 . (2.24)

Note that for I − to be spacelike a positive cosmological constant λ > 0 is
required. The constraint equations will be relevant for the derivation of the
KID equations in Section 4.

To simplify computations we make the specific gauge choice

R = 0 , s = 0 , g00 = −1 , g0i = 0 , W σ = 0 , ĝµν = gµν . (2.25)

(Note that the target metric is taken to be gµν for all t.) We shall show that
appropriate data to solve the constraint equations are gij and d0i0j , where the
latter field needs to satisfy a vector and a scalar constraint equation.

Let us start with a list of all the Christoffel symbols in adapted coordinates

Γk
ij = Γ̃k

ij , Γ0
ij =

1
2∂0gij , Γ0

0i = 0 , (2.26)

Γ0
00 = − 1

2∂0g00 , Γk
00 = gkl∂0g0l , Γk

0i =
1
2g

kl∂0gil , (2.27)

where the Γ̃k
ij ’s denote the Christoffel symbols of the Riemannian metric g̃ =

gijdx
idxj . Throughout we shall use .̃ to denote fields such as the Riemann

tensor, the Levi-Civita connection etc. associated to g̃.
Evaluation of (2.5) on I − gives

∇0Θ =
√
λ/3 . (2.28)

The (µν) = (00)-component of (2.3) implies

∇0∇0Θ = 0 , (2.29)

while the (µν) = (ij)-components of (2.3) yield

0 = ∇i∇jΘ = −Γ0
ij∇0Θ = −

√
λ

12
∂0gij . (2.30)

6
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We compute the (µνσκ) = (ikjk)-components of (2.6),

Rikj
k = Lij + gijg

klLkl ,

where

Rikj
k = ∂kΓ

k
ij − ∂iΓ

k
jk + Γα

ijΓ
k
αk − Γα

ikΓ
k
jα = R̃ikj

k = R̃ij .

Hence

Lij = R̃ij −
1

4
gijR̃ = L̃ij , (2.31)

where L̃ij is the Schouten tensor of g̃. The gauge conditions (2.25) imply

0 =
1

6
R = gµνLµν = gijLij − L00 =

1

4
R̃− L00 . (2.32)

From the µ = i-component of (2.4) we deduce

L0i = 0 . (2.33)

Next, we employ the wave-map gauge condition to obtain

0 = Hk = gαβ(Γk
αβ − Γ̂k

αβ) = −Γk
00 = −gkl∂0g0l ,

0 = H0 = gαβ(Γ0
αβ − Γ̂0

αβ) = −Γ0
00 =

1

2
∂0g00 .

Altogether we have found that

∂0gµν = 0 . (2.34)

Thus (2.26)-(2.27) simplify to

Γk
ij = Γ̃k

ij , Γ0
ij = Γ0

0i = Γ0
00 = Γk

00 = Γk
0i = 0 . (2.35)

We have

Rij ≡ ∂µΓ
µ
ij − ∂iΓ

µ
jµ + Γα

ijΓ
µ
αµ − Γα

iµΓ
µ
jα

= R̃ij + ∂0Γ0
ij = R̃ij +

1

2
∂0∂0gij .

Hence

∂0∂0gij = 4Lij − 2R̃ij = 2R̃ij − gijR̃ . (2.36)

If we evaluate the µ = 0-component of (2.4) on I − we are led to,

∇0s = L00∇0Θ =

√
λ

48
R̃ . (2.37)

The (µνσ) = (0i0)-components of (2.2) yield

∇0L0i = ∇iL00 =
1

4
∇̃iR̃ . (2.38)
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Moreover, for (µνσ) = (jki) we obtain

d0ijk =

√
12

λ
∇̃[kLj]i =

√
3

λ
C̃ijk , (2.39)

where C̃ijk is the Cotton tensor of g̃. For (µνσ) = (0ji) we find

∇0Lij = −
√
λ/3 d0i0j . (2.40)

The gauge condition R = 0 together with the tracelessness of the rescaled Weyl
tensor then imply

0 = gµν∇0Lµν = gij∇0Lij −∇0L00 = −∇0L00 . (2.41)

Via the second Bianchi identity the (µνσ) = (0ij)-components of (2.1) become

∇0d0i0j = −∇̃kd0ijk = −
√

3

λ
∇̃kC̃ijk =

√
3

λ
B̃ij , (2.42)

where B̃ij denotes the Bach tensor of g̃. The (µνσ) = (kji)-components give

∇0d0ijk = −∇̃ldjkil = 2∇̃[jdk]0i0 − 2gi[j∇̃ldk]0l0 . (2.43)

Here we used that due to the algebraic symmetries of the rescaled Weyl tensor

dijkl = 2gmn(gk[idj]mln − gl[idj]mkn − gk[igj]lg
pqdpmqn)

= 2(gk[idj]0l0 − gl[idj]0k0) . (2.44)

The (µνσ) = (0i0)-components of (2.1) imply a vector constraint for d0i0j ,

∇̃jd0i0j = 0 . (2.45)

(A “scalar constraint”, which has already been used in the derivation of the
constraint equations, is simply given by the tracelessness-requirement on the
rescaled Weyl tensor,

gijd0i0j = gµνd0µ0ν = 0 .) (2.46)

To sum it up, we have the following analogue of a result of Friedrich [4]: The
free data can be identified with a Riemannian metric hij := gij and a symmetric
tensor field Dij := d0i0j on I − satisfying

hijDij = 0 and ∇̃jDij = 0 (2.47)

(that these are indeed the free data follows e.g. from the considerations in Ap-
pendix A). Then the MCFE enforce on I − in the (R = 0, s = 0, g00 = −1, g0i =
0, ĝµν = gµν)-wave-map gauge,

g00 = −1 , g0i = 0 , gij = hij , ∂0gµν = 0 , (2.48)

Θ = 0 , ∂0Θ =
√

λ
3 , (2.49)

s = 0 , ∂0s =
√

λ
48 R̃ , (2.50)

Lij = L̃ij , L0i = 0 , L00 = 1
4 R̃ , (2.51)

∂0Lij = −
√

λ
3 Dij , ∂0L0i =

1
4∇̃iR̃ , ∂0L00 = 0 , (2.52)

d0i0j = Dij , d0ijk =
√

3
λ C̃ijk , (2.53)

∂0d0i0j =
√

3
λ B̃ij , ∂0d0ijk = 2∇̃[jDk]i . (2.54)

8
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Note that due to (2.35) the actions of ∇0 and ∂0, as well as ∇i and ∇̃i, respec-
tively, coincide on I −, so we can use them interchangeably.

We have seen in Section 2.2 (cf. also [4]) that there remains a gauge freedom
to conformally rescale the induced metric on I −. Due to this freedom the
pairs (hij , Dij) and (Ω2hij ,Ω

−1Dij), with Ω some positive function, generate
the same physical space-times. With regard to the constraint equations we note
that Ω−1Dij is trace- and divergence-free w.r.t. Ω2hij whenever Dij is w.r.t. hij .

In the following we shall write [hij , Dij ] if this gauge freedom is left unspec-
ified and if we merely want to refer to the conformal classes of hij and Dij .

2.4 Well-posedness of the Cauchy problem on a space-
like I −

In [9] a system of conformal wave equations (CWE) has been derived from
the MCFE. In Appendix A it is shown that a solution of the CWE, equations
(A.1)-(A.5), is a solution of the MCFE if and only if the constraint equations
(2.47)-(2.54) are satisfied. Using standard well-posedness results about wave
equations we thereby recover a result due to Friedrich [4] who proved well-
posedness of the Cauchy problem on I − (Friedrich used a representation of
the MCFE as a symmetric hyperbolic system, in some situations, however, it
might be advantageous to deal with a system of wave equations instead [6]). We
restrict attention to the smooth case (for a version with finite differentiability
see [4]):

Theorem 2.1 Let H be a 3-dimensional smooth manifold. Let hij be a smooth
Riemannian metric and let Dij be a smooth symmetric, trace- and divergence-
free tensor field on H. Moreover, assume a positive cosmological constant λ > 0.
Then there exists an (up to isometries) unique smooth space-time (M , g,Θ) with
the following properties:

(i) (M , g,Θ) satisfies the MCFE (2.1)-(2.6),

(ii) Θ|H = 0 and dΘ|H 6= 0, i.e. H = I − (and Θ has no zeros away from and
sufficiently close to H),

(iii) gij |H = hij , d0i0j |H = Dij.

The isometry class of the space-time does not change if the initial data are
replaced by (ĥij , D̂ij) with [ĥij , D̂ij ] = [hij , Dij ].

Remark 2.2 De Sitter space-time is obtained for H = S3, hij = sij and Dij =
0, where s = sijdx

idxj denotes the round sphere metric, cf. Section 4.3.2

3 KID equations

3.1 Unphysical Killing equations

In [10] it is shown that the appropriate substitute for the Killing equation in
the unphysical, conformally rescaled space-time is provided by the unphysical
Killing equations

∇(µXν) =
1

4
∇σXσ gµν & Xσ∇σΘ =

1

4
Θ∇σX

σ . (3.1)
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A vector field Xphys is a Killing field in the physical space-time (Mphys, gphys)
if and only if its push-forward X := φ∗Xphys satisfies (3.1) in the unphysical
space-time (φ(Mphys) ⊂ M , g = φ(gphys) = Θ2gphys), where φ defines the con-
formal rescaling. The unphysical Killing equations remain regular even where
the conformal factor Θ vanishes.

In what follows we shall derive necessary-and-sufficient conditions on a space-
like initial surface which guarantee the existence of a vector field X which sat-
isfies the unphysical Killing equations.

3.2 KID equations on a Cauchy surface

Necessary conditions on a vector field X to satisfy the unphysical Killing equa-
tions are that the following wave equations are fulfilled [10],

✷gXµ +Rµ
νXν + 2∇µY = 0 , (3.2)

✷gY +
1

6
Xµ∇µR+

1

3
RY = 0 , (3.3)

where we have set

Y :=
1

4
∇σX

σ . (3.4)

It proves fruitful to make the following definitions:

φ := Xµ∇µΘ−ΘY , (3.5)

ψ := Xµ∇µs+ sY −∇µΘ∇µY , (3.6)

Aµν := 2∇(µXν) − 2Y gµν , (3.7)

Bµν := LXLµν +∇µ∇νY . (3.8)

All these fields need to vanish whenever X is a solution of (3.1) [10].
The equations (3.2) and (3.3) together with the MCFE imply that the fol-

lowing system of wave equations is satisfied by the fields φ, ψ, Aµν , ∇σAµν and
Bµν (cf. [10]):

✷gAµν = 2R(µ
κAν)κ − 2Rµ

α
ν
βAαβ − 4Bµν , (3.9)

✷gφ = dψ − 1

6
Rφ+Aµν∇µ∇νΘ , (3.10)

✷gψ = |L|2φ+Aµν(∇µ∇νs− 2ΘLκ
µLνκ) + 2ΘLµνBµν

+
1

6

(
Aµν∇µR∇νΘ−∇µR∇µφ−Rψ

)
, (3.11)

✷gBµν ≡ 2(gµνL
αβ −Rµ

α
ν
β)Bαβ − 2R(µ

κBν)κ +
2

3
RBµν

+2Lαβ(∇β∇[αAν]µ −∇µ∇[αAν]β)

+(∇(µA|αβ| + 2∇[αAβ](µ)(2∇αLν)
β − 1

12
δν)

α∇βR)

+Aαβ [∇α∇βLµν − 2L(µ
κRν)ακβ + 2LµαRνβ + Lα

κ(2Rµβνκ +Rνβµκ)

−2gµνLακLβ
κ] + |L|2Aµν + LαβRµαβ

κAνκ − 1

3
RL(µ

κAν)κ , (3.12)

✷g∇σAµν = 2∇σ(R(µ
κAν)κ −Rµ

α
ν
κAακ) + 2Aα(µ(∇ν)Rσ

α −∇αRν)σ)

−4Rσκ(µ
α∇κAν)α +Rασ∇αAµν − 4∇σBµν . (3.13)

In close analogy to [10, Theorem 3.4] we immediately obtain the following result:

10
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Theorem 3.1 Assume we have been given, in 3+1 dimensions, an“unphysical”
space-time (M , g,Θ), with (g,Θ) a smooth solution of the MCFE (2.1)-(2.6).
Consider a spacelike hypersurface H ⊂ M . Then there exists a vector field
X̂ satisfying the unphysical Killing equations (3.1) on D+(H) (and thus cor-
responding to a Killing vector field of the physical space-time) if and only if
there exists a pair (X,Y ), X a vector field and Y a function, which fulfills the
following equations:

(i) ✷gXµ +Rµ
νXν + 2∇µY = 0,

(ii) ✷gY + 1
6X

µ∇µR+ 1
3RY = 0,

(iii) φ = 0 and ∂0φ = 0,

(iv) ψ = 0 and ∂0ψ = 0,

(v) Aµν = 0, ∇0Aµν = 0 and ∇0∇0Aµν = 0,

(vi) Bµν = 0 and ∇0Bµν = 0.

Moreover, X̂ = X, ∇0X̂ = ∇0X, ∇µX̂µ = 1
4Y and ∇0∇µX̂µ = 1

4∇0Ŷ .

3.3 A special case: Θ = 1

Let us briefly discuss the case where the conformal factor Θ is identical to one,

Θ = 1 ,

so that the unphysical space-time can be identified with the physical one. Then
the MCFE imply

s =
1

6
λ , Lµν = sgµν , Rµν = λgµν ,

i.e. the vacuum Einstein equations hold. We consider the conditions (i)-(vi) of
Theorem 3.1 in this setting. Condition (iii) is equivalent to Y = 0 and ∂0Y = 0,
which provide the initial data for the wave equation (ii). The only solution is
Y = 0, i.e. X needs to be a Killing field, as desired. Condition (iv) is then
automatically satisfied. Since

Bµν = LXLµν = sLXgµν = 2s∇(µXν) , (3.14)

the validity of (vi) follows from (v), and we are left with the conditions

✷gXµ + λXµ = 0 , (3.15)

∇(µXν) = 0 , (3.16)

∇0∇(µXν) = 0 , (3.17)

∇0∇0∇(µXν) = 0 . (3.18)

Note that Bµν = 0 due to (3.14) and (3.16), so that (3.15)-(3.17) imply via the
trace of (3.9) on H the validity of (3.18).

The equations (3.15)-(3.17) form a possible starting point to derive the KID
equations on Cauchy surfaces in space-times satisfying the vacuum Einstein
equations (cf. [1, 8]).
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3.4 A stronger version of Theorem 3.1

Let us now investigate to what extent the conditions (iii)-(vi) in Theorem 3.1
imply each other. For this purpose we choose adapted coordinates (x0 ≡ t, xi)
in the sense that the initial surface is (locally) given by the set {x0 = 0} and
that, on H, the metric takes the form

g|H = −(dt)2 + gijdx
idxj = −(dt)2 + hijdx

idxj , (3.19)

with hij some Riemannian metric. Moreover, we denote by f , fi and fij generic
functions which depend on the indicated fields (and possibly spatial derivatives
thereof) and vanish whenever all their arguments vanish. The symbol .̆ is used
to denote the h-trace-free part of the corresponding 2-rank tensor on H, i.e.

v̆ij := vij −
1

3
hijh

klvkl . (3.20)

We start with the identity [10]

∇νAµ
ν − 1

2
∇µAν

ν ≡ ✷gXµ +Rµ
νXν + 2∇µY . (3.21)

Because of (3.2) the right-hand side vanishes and we obtain

∇0A00 = 2gkl∇kA0l − gkl∇0Akl = −gkl∇0Akl + f(Aµν) , (3.22)

∇0A0i =
1

2
∇iA00 + gkl∇kAil −

1

2
gkl∇iAkl = fi(Aµν) , (3.23)

∇0∇0A00 = 2gkl∇0∇kA0l − gkl∇0∇0Akl

= 2gkl∇k∇0A0l − gkl∇0∇0Akl + f(Aµν) , (3.24)

∇0∇0A0i =
1

2
∇0∇iA00 + gkl∇0∇kAil −

1

2
gkl∇0∇iAkl

=
1

2
∇i∇0A00 + gkl∇k∇0Ail −

1

2
gkl∇i∇0Akl + fi(Aµν) .(3.25)

We further have the identity [10]

∇νBµ
ν − 1

2
∇µBν

ν ≡ Aαβ(∇αLµ
β − 1

2
∇µL

αβ)

+Lµ
κ(✷gXκ +Rκ

αXα + 2∇κY ) +
1

2
∇µ(✷gY +

1

6
Xν∇νR+

1

3
RY ) .

With (3.2) and (3.3) we deduce

∇0B00 = 2gkl∇kB0l − gkl∇0Bkl + f(Aµν)

= −gkl∇0Bkl + f(Aµν , Bµν) , (3.26)

∇0B0i =
1

2
∇iB00 + gkl∇kBil −

1

2
gkl∇iBkl + fi(Aµν)

= fi(Aµν , Bµν) . (3.27)

Evaluation of (3.9) on the initial surface gives with (2.26)-(2.27)

∇0∇0Aij = 4Bij − gklΓ0
kl∇0Aij + fij(Aµν) , (3.28)

∇0∇0A0i = 4B0i − gklΓ0
kl∇0A0i + fi(Aµν) , (3.29)

∇0∇0A00 = 4B00 − gklΓ0
kl∇0A00 + f(Aµν) . (3.30)
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From the definition of Bµν we obtain with (3.3) (set B := gµνBµν)

B ≡ LµνAµν +✷gY +
1

6
Xµ∇µR +

1

3
RY

= LµνAµν , (3.31)

∇0B ≡ ∇0(LµνAµν) +∇0(✷gY +
1

6
Xµ∇µR+

1

3
RY )

= ∇0(LµνAµν) . (3.32)

We use the equations (3.22)-(3.32) to establish a stronger version of Theo-
rem 3.1. Let us assume that

Aµν = 0 , ∇0Aij = 0 , B̆ij = 0 , (∇0Bij )̆ = 0 . (3.33)

Then by (3.22) and (3.23) we have ∇0Aµν = 0. From (3.31) and (3.32) we
deduce B = ∇0B = 0. The equations (3.24), (3.28) and (3.30) yield the system

∇0∇0A00 = −gij∇0∇0Aij ,

gij∇0∇0Aij = 4gijBij
B=0
= 4B00 ,

∇0∇0A00 = 4B00 ,

from which we conclude ∇0∇0A00 = gij∇0∇0Aij = B00 = 0. From (3.25) and
the trace-free part of (3.28) we then deduce ∇0∇0Aµν = 0, and the equations
(3.29) and (3.31) imply Bµν = 0. Moreover, invoking (3.26) and (3.32) yields

∇0B00 = −gij∇0Bij ,

0 = ∇0B = gij∇0Bij −∇0B00 ,

i.e. ∇0B00 = gij∇0Bij = 0. The equation (3.27) then completes the proof that
∇0Bµν = 0.

We end up with the result

Theorem 3.2 Assume we have been given, in 3+1 dimensions, an“unphysical”
space-time (M , g,Θ), with (g,Θ) a smooth solution of the MCFE (2.1)-(2.6).
Consider a spacelike hypersurface H ⊂ M . Then there exists a vector field X̂
satisfying the unphysical Killing equations (3.1) on D+(H) if and only if there
exists a pair (X,Y ), X a vector field and Y a function, which fulfills the KID
equations, i.e.

(a) equations (i)-(iv) of Theorem 3.1,

(b) Aµν = 0 and ∇0Aij = 0 with Aµν ≡ 2∇(µXν) − 2Y gµν ,

(c) B̆ij = 0 and (∇0Bij )̆ = 0 with Bµν ≡ LXLµν +∇µ∇νY .

Moreover, X̂ = X, ∇0X̂ = ∇0X, ∇µX̂µ = 1
4Y and ∇0∇µX̂µ = 1

4∇0Ŷ .

3.5 The (proper) KID equations

We want to replace the equations ∂0ψ = 0 and (∇0Bij )̆ = 0 appearing in The-
orem 3.2 by intrinsic equations on H in the sense that they involve at most
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first-order transverse derivatives of X and Y , which belong to the freely pre-
scribable initial data for the wave equations (3.2) and (3.3). The higher-order
derivatives appearing can be eliminated via (3.3) which implies

∇0∇0Y = gkl∇k∇lY +
1

6
Xµ∇µR+

1

3
RY . (3.34)

We are straightforwardly led to

Theorem 3.3 Assume that we have been given a 3 + 1-dimensional space-time
(M , g,Θ), with (g,Θ) being a smooth solution of the MCFE. Let X̊ and Λ̊
be spacetime vector fields, and Y̊ and Υ̊ be functions defined along a spacelike
hypersurface H ⊂ M . Then there exists a smooth space-time vector field X with
X = X̊, ∇0X = Λ̊, ∇µXµ = 1

4 Y̊ and ∇0∇µXµ = 1
4 Υ̊ satisfying the unphysical

Killing equations (3.1) on D+(H) (and thus corresponding to a Killing field of
the physical space-time) if and only if in the adapted coordinates (3.19):

(i) φ ≡ X̊µ∇µΘ−ΘY̊ = 0,

∂0φ ≡ Λ̊µ∇µΘ+ X̊µ∇µ∇0Θ−ΘΥ̊−∇0ΘY̊ = 0,

(ii) ψ ≡ X̊µ∇µs+ sY̊ −∇iΘ∇̃iY̊ +∇0ΘΥ̊ = 0,

∂0ψ
intr := Λ̊µ∇µs+ X̊µ∇µ∇0s+∇0sY̊ + (s+∇0∇0Θ)Υ̊−∇i∇0Θ∇̃iY̊ +

∇0Θ(∆hY̊ − Γk
0kΥ̊ + 1

6X̊
µ∇µR+ 1

3RY̊ )−∇kΘ(∇̃kΥ̊− Γi
0k∇̃iY̊ ) = 0,

(iii) Aij ≡ 2∇(iX̊j) − 2Y̊ gij = 0,

A0i ≡ Λ̊i +∇iX̊0 = 0,
A00 ≡ 2Λ̊0 + 2Y̊ = 0,
∇0Aij ≡ 2∇̃(iΛ̊j) − 2Γk

0(i∇kX̊j) − 2Γ0
ijΛ̊0 + 2R0(ij)

µX̊µ − 2Υ̊gij = 0,

(iv) B̆ij ≡ (X̊µ∇µLij + 2Lµ(i∇j)X̊
µ + ∇̃i∇̃j Y̊ − Γ0

ijΥ̊)̆ = 0,

(∇0Bintr
ij )̆ := [LX̊∇0Lij+2Lµ(i(∂j)Λ̊

µ+Γµ
jαΛ̊

α−Γk
0j∇kX̊

µ)+2Lk(iRj)µ0
kX̊µ+

∇̃i∇̃jΥ̊−Γ0
ij(∆hY̊ + 1

6X̊
µ∇µR+ 1

3RY̊ )−2Γk
0(i∇̃j)∇̃kY̊ +(R0ij

0+Γk
0iΓ

0
jk+

Γ0
ijΓ

k
0k)Υ̊ + (R0ij

k − ∇̃iΓ
k
0j)∇̃kY̊ ]̆ = 0.

Proof: Assume that there exist fields X̊ , Λ̊, Y̊ and Υ̊ which satisfy (i)-(iv).
These fields provide the initial data for the wave equations (3.2) and (3.3) for
X and Y . A solution exists due to standard results. Once (3.2) and (3.3) are
satisfied the considerations above reveal that (i)-(iv) are equivalent to (a)-(c)
of Theorem 3.2, i.e. all the hypotheses of Theorem 3.2 hold and we are done.
From the derivation of (i)-(iv) it follows that these conditions are necessary, as
well. ✷

Remark 3.4 We call the equations in (i)-(iv) the (proper) KID equations on H.

4 KID equations on a spacelike I −

4.1 Derivation of the (reduced) KID equations

Let us restrict now attention to space-times which contain a spacelike I −,
which we take henceforth as initial surface (recall that this requires a positive

14

328 CHAPTER 15. ARXIV:1403.2682 [GR-QC] (2014)



cosmological constant λ). We impose the (R = 0, s = 0, g00 = −1, g0i = 0, ĝµν =
gµν)-wave-map gauge condition introduced in Section 2.3. Recall that the freely
prescribable data on I − for the Cauchy problem are the conformal class of
a Riemannian metric hij and a symmetric, trace- and divergence-free tensor
Dij . The MCFE then imply the constraint equations (2.48)-(2.54) on I −. In
Appendix A it is shown that a solution to the MCFE further satisfies

∇0∇0Θ = 0 , R0ij
k = 0 . (4.1)

We are now ready to evaluate the conditions (i)-(iv) of Theorem 3.3.
The condition (i) becomes

X̊0 = 0 , Λ̊0 = Y̊ . (4.2)

Then condition (ii) is satisfied iff (set ∆g̃ := gij∇̃i∇̃j)

Υ̊ = 0 , X̊ i∇̃iR̃+ 2R̃Y̊ + 4∆g̃Y̊ = 0 . (4.3)

The condition Aµν = 0 requires

Λ̊i = 0 , (4.4)

Y̊ =
1

3
∇̃iX̊

i , (4.5)

(∇̃(iX̊j))̆ = 0 . (4.6)

The condition ∇0Aij = 0 is then automatically fulfilled.
We reconsider the second condition in (4.3). Observe that (4.5), (4.6) and

the second Bianchi identity imply the relation

0 = ∇̃i∇̃jAij = ∇̃i∆g̃X̊
i +∆g̃Y̊ +

1

2
X̊ i∇̃iR̃+ R̃jk∇̃jX̊k

︸ ︷︷ ︸
=R̃Y̊

= 4∆g̃Y̊ + X̊ i∇̃iR̃+ 2R̃Y̊ ,

i.e. (4.3) follows from (4.5) and (4.6).
We have

B̆ij = (X̊k∇̃kL̃ij + 2L̃k(i∇̃j)X̊
k + ∇̃i∇̃j Y̊ )̆

= LX̊k∂k

˘̃Lij + (∇̃i∇̃j Y̊ )̆ ,

and

(∇0Bintr
ij )̆ = −

√
λ

3
(Dij Y̊ + X̊k∇̃kDij + 2Dk(i∇̃j)X̊

k)

= −
√
λ

3
(LX̊k∂k

Dij +Dij Y̊ ) .

We observe that due to the second Bianchi identity and (4.5)

∇̃i∇̃kAjk = LX̊k∂k
R̃µν + ∇̃i∇̃j Y̊ + 2X̊k∇̃[iR̃j]k +∆g̃∇̃iX̊j

+2R̃i
k
j
l∇̃kX̊l − 2R̃ij Y̊ − R̃i

kAjk .
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Symmetrizing this expression, taking its traceless part and taking Aij = 0 into
account we end up with

LX̊k∂k

˘̃Lµν + (∇̃i∇̃j Y̊ )̆ = 0 ,

i.e. B̆ij holds automatically, as well.

Theorem 4.1 Assume we have been given a 3 + 1-dimensional “unphysical”
space-time (M , g,Θ), with (gµν ,Θ, s, Lµν, dµνσ

ρ) a smooth solution of the MCFE
with λ > 0 in the (R = 0, s = 0, g00 = −1, g0i = 0, ĝµν = gµν)-wave-map gauge.
Then there exists a smooth vector field X satisfying the unphysical Killing equa-
tions (3.1) on D+(I −) (and thus corresponding to a Killing vector field of the
physical space-time) if and only if there exists a conformal Killing vector field
X̊ on (I −, g̃ = hijdx

idxj) such that the reduced KID equations

LX̊Dij +
1

3
Dij∇̃kX̊

k = 0 (4.7)

hold (recall that the symmetric, trace- and divergence-free tensor field Dij =
d0i0j belongs to the freely prescribable initial data). In that case X satisfies

X0 = 0 , Xi = X̊ i , ∇0X0 =
1

3
∇̃iX̊

i , ∇0X i = 0 . (4.8)

Remark 4.2 Note that, in contrast to the λ = 0-case treated in [10], the candi-
date fields, i.e. the conformal Killing fields on I −, do depend here on the initial
data h = hijdx

idxj .

Remark 4.3 For initial data with Dij = 0 the reduced Killing equations (4.7)
are always satisfied, and each candidate field, i.e. each conformal Killing field
on the initial manifold, extends to a Killing field of the physical space-time.

In terms of an initial value problem Theorem 2.1 and 4.1 state that given a
Riemannian manifold (H, h) and a symmetric, trace- and divergence-free tensor
field Dij there exists an (up to isometries) unique evolution into a space-time
manifold (M , g,Θ) with H = I −, gij = hij and d0i0j = Dij which fulfills the
MCFE and contains a vector field satisfying the unphysical Killing equations
(3.1) if and only if there exists a conformal Killing vector field X̊ on (H, h) such
that the reduced KID equations (4.7) hold.

4.2 Properties of the reduced KID equations

We compute how the reduced KID equations (4.7) behave under conformal
transformations. For this consider the conformally rescaled metric ˜̃g := Ω2g̃
with Ω some positive function. Expressed in terms of ˜̃g (4.7) becomes

LX̊(Ω−1Dij) +
1

3
(Ω−1Dij)

˜̃∇kX̊
k = 0 , (4.9)

i.e. they are conformally covariant in the following sense:

Lemma 4.4 The pair (g̃ij , Dij) is a solution of the reduced KID equations (4.7)
if and only if the conformally rescaled pair (Ω2g̃ij ,Ω

−1Dij), with Ω some positive
function, is a solution of these equations.

This is consistent with the observation that conformal rescalings of the initial
data do not change the isometry class of the emerging space-time.
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4.3 Some special cases

Let us finish by taking a look at some special cases:

4.3.1 Compact initial manifolds

We consider a compact initial manifold (I −, g̃) and assume that it admits a
conformal Killing field X̊. Then there exists (cf. e.g. [7]) a positive function Ω
such that the conformally rescaled metric ˜̃g = Ω2g̃ has one of the following
properties:

• Either (I −, ˜̃g) = (S3, sijdx
idxj) is the standard 3-sphere,

• or X̊ is a Killing vector field w.r.t. ˜̃g.

If (I −, ˜̃g) is the round 3-sphere all the conformal Killing fields are explicitly
known. In the second case where X̊ is a Killing vector field w.r.t. ˜̃g the equation
(4.9) simplifies to

LX̊(Ω−1Dij) = 0 . (4.10)

That implies:

Lemma 4.5 Consider a solution of the vacuum Einstein equations which admits
a compact spacelike I − and has a non-trivial Killing field. If (I −, g̃) is not
conformal to a standard 3-sphere, then there exists a choice of conformal factor
so that space-time Killing vector corresponds to a Killing field (rather than a
conformal Killing field) of (I −, g̃).

4.3.2 Maximally symmetric space-times

Let us consider the case where the initial manifold admits the maximal number
of conformal Killing vector fields. Clearly this is a prerequisite to obtain a
maximally symmetric space-time once the evolution problem has been solved. A
connected 3-dimensional Riemannian manifold (H, h) admits at most 10 linearly
independent conformal Killing vector fields. If equality is attained, (H, h) is
known to be locally conformally flat [12].

Let us first consider the compact case. We use a classical result due to
Kuiper (cf. [7]):

Theorem 4.6 For any n-dimensional, simply connected, conformally flat Rie-
mann manifold (H, h), there exists a conformal immersion (H, h) →֒ (Sn, s =
sijdx

idxj), the so-called developing map, which is unique up to composition
with Möbius transformations. If H is compact this map defines a conformal
diffeomorphism from (H, h) onto (Sn, s).

Since only the conformal class of the initial manifold matters we thus may as-
sume (H, h) for compact H to be the standard 3-sphere from the outset. To end
up with a maximally symmetric physical space-time containing 10 independent
Killing fields one needs to make sure that each of the conformal Killing fields
extends to a space-time vector field satisfying the unphysical Killing equations
(3.1). In other words one needs to choose Dij such that the reduced KID equa-
tions (4.7) hold for each and every conformal Killing field on (S3, s). Via a
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stereographic projection onto Euclidean space one shows that this is only pos-
sible when Dij is proportional to the round sphere metric. But Dij is traceless,
and thus needs to vanish. For data (H, h) = (S3, s) and Dij = 0 one ends
up with de Sitter space-time. This is in accordance with the fact that de Sit-
ter space-time is (up to isometries) the unique maximally symmetric, complete
space-time with positive scalar curvature.

The non-compact case is somewhat more involved since the developing map
does in general not define a global conformal diffeomorphism into (Sn, s). For
convenience let us therefore make some simplifying assumptions on (H, h) which
allow us to apply a result by Schoen & Yau [11] (we restrict attention to 3
dimensions when stating it):

Theorem 4.7 Let (H, h) be a complete, simply connected, conformally flat 3-
dimensional Riemannian manifold and Φ : H →֒ S3 its developing map. Assume
that |R(h)| is bounded on H and that d(H) < 1

3 .
4 Then Φ is one-to-one and

gives a conformal diffeomorphism from H onto a simply connected domain of S3.

We conclude, again, that the emerging space-time will be maximally symmetric
iff Dij = 0, and will be (isometric to) a part of de Sitter space-time.

4.3.3 Non-existence of stationary space-times

For (M , g,Θ) to contain a timelike isometry there must exist a vector field X
satisfying the unphysical Killing equations (3.1) which is null on I − (it cannot
be timelike since X0 = 0),

0 = gµνX
µXν = hijX

iXj =⇒ Xi = 0 .

But then the preceding considerations show that Xµ = ∇0Xµ = Y = ∇0Y = 0,
and solving the wave equations for X and Y , (3.2) and (3.3), yields that X
vanishes identically. It follows that there is no vacuum space-time with λ > 0
which is stationary near I −. (Compare [4, Section 4].)

Acknowledgements I would like to thank my advisor Piotr T. Chruściel for
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over, I am grateful to Helmut Friedrich for pointing out reference [11] to me.
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4For the definition of the invariant d(H) in terms of the minimal Green’s function for the
conformal Laplacian we refer the reader to [11].
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A Equivalence between the CWE and the MCFE

A.1 Conformal wave equations (CWE)

In [9] the MCFE (2.1)-(2.6) have been rewritten as a system of conformal wave
equations (CWE),

✷(H)
g Lµν = 4LµκLν

κ − gµν |L|2 − 2Θdµσν
ρLρ

σ +
1

6
∇µ∇νR , (A.1)

✷gs = Θ|L|2 − 1

6
∇κR∇κΘ− 1

6
sR , (A.2)

✷gΘ = 4s− 1

6
ΘR , (A.3)

✷(H)
g dµνσρ = Θdµνκ

αdσρα
κ − 4Θdσκ[µ

αdν]αρ
κ +

1

2
Rdµνσρ , (A.4)

R(H)
µν [g] = 2Lµν +

1

6
Rgµν . (A.5)

Here
R(H)

µν := Rµν − gσ(µ∇̂ν)H
σ , (A.6)

denotes the reduced Ricci tensor. The reduced wave-operator ✷
(H)
g (which is

needed to obtain a PDE-system with a diagonal principal part) is defined via
its action on covector fields vλ,

✷(H)
g vλ := ✷gvλ − gσ[λ(∇̂µ]H

σ)vµ + (2Lµλ −R
(H)
µλ +

1

6
Rgµλ)v

µ , (A.7)

and similar formulae hold for higher-valence covariant tensor fields.
In the following we want to show that a solution of the CWE in the gauge

(2.25) is a solution of the MCFE if and only if the constraint equations (2.47)-
(2.54) hold on I −,

hijDij = 0 , ∇̃jDij = 0 , (A.8)

g00 = −1 , g0i = 0 , gij = hij , ∂0gµν = 0 , (A.9)

Θ = 0 , ∂0Θ =
√

λ
3 , (A.10)

s = 0 , ∂0s =
√

λ
48 R̃ , (A.11)

Lij = L̃ij , L0i = 0 , L00 = 1
4 R̃ , (A.12)

∂0Lij = −
√

λ
3 Dij , ∂0L0i =

1
4∇̃iR̃ , ∂0L00 = 0 , (A.13)

d0i0j = Dij , d0ijk =
√

3
λ C̃ijk , (A.14)

∂0d0i0j =
√

3
λ B̃ij , ∂0d0ijk = 2∇̃[jDk]i . (A.15)

A.2 An intermediate result

In close analogy to [9, Theorem 3.7] one establishes the following result:

Theorem A.1 Assume we have been given data (̊gµν , K̊µν , s̊, S̊, Θ̊, Ω̊, L̊µν ,

M̊µν , d̊µνσ
ρ, D̊µνσ

ρ) on a spacelike hypersurface H and a gauge source function
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R, such that g̊µν is the restriction to H of a Lorentzian metric, K̊µν , L̊µν and

M̊µν are symmetric, L̊ ≡ L̊µ
µ = R/6, M̊µ

µ = ∂0R/6, and such that d̊µνσ
ρ and

D̊µνσ
ρ satisfy all the algebraic properties of the Weyl tensor. Suppose further

that there exists a solution (gµν , s, Θ, Lµν , dµνσ
ρ) of the CWE (A.1)-(A.5)

with gauge source function R which induces the above data on H,

gµν = g̊µν , s = s̊ , Θ = Θ̊ , Lµν = L̊µν , dµνσ
ρ = d̊µνσ

ρ ,

∂0gµν = K̊µν , ∂0s = S̊ , ∂0Θ = Ω̊ , ∂0Lµν = M̊µν , ∂0dµνσρ = D̊µνσ
ρ ,

and fulfills the following conditions:

1. The MCFE (2.1)-(2.4) and their covariant derivatives are fulfilled on H;

2. equation (2.5) holds at one point on H;

3. Wµνσ
ρ[g] = Θ dµνσ

ρ and ∇0Wµνσ
ρ[g] = ∇0(Θ dµνσρ);

4. the wave-gauge vector Hσ and its first- and second-order covariant deriva-
tives ∇µH

σ and ∇µ∇νH
σ vanish on H;

5. the covector field ζµ ≡ −4(∇νLµ
ν − 1

6∇µR) and its covariant derivative
∇νζµ vanish on H.

Then

a) Hσ = 0 and Rg = R (where Rg denotes the Ricci scalar of gµν);

b) Lµν is the Schouten tensor of gµν ;

c) Θdµνσ
ρ is the Weyl tensor of gµν ;

d) (gµν , s, Θ, Lµν , dµνσ
ρ) solves the MCFE (2.1)-(2.6) in the (Hσ = 0,

Rg = R)-gauge.

The conditions 1.-5. are also necessary for d) to be true.

A.3 Applicability of Theorem A.1 on I −

We now consider the case where H = I −. Using the gauge (2.25) we want to
show that the hypotheses of Theorem A.1 are fulfilled by any tuple (gµν , s, Θ,
Lµν , dµνσ

ρ) which satisfies the constraint equations (A.8)-(A.15) and the CWE.
For R = 0 the CWE reduce to

✷(H)
g Lµν = 4LµκLν

κ − gµν |L|2 − 2Θdµσν
ρLρ

σ , (A.16)

✷gs = Θ|L|2 , (A.17)

✷gΘ = 4s , (A.18)

✷(H)
g dµνσρ = Θdµνκ

αdσρα
κ − 4Θdσκ[µ

αdν]αρ
κ , (A.19)

R(H)
µν [g] = 2Lµν . (A.20)

First of all note that L = 0 = R/6 and ∂0L = 0 = ∂0R/6, as required.
Moreover (A.10) implies that (2.5) is satisfied on I −, i.e. it remains to verify
that the hypotheses 1. and 3.-5. in Theorem A.1 are fulfilled.

Recall that in our gauge the only non-vanishing Christoffel symbols on I −

are Γk
ij = Γ̃k

ij , and that this implies that the action of ∇0 and ∂0 as well as the

action of ∇i and ∇̃i coincides on I −.
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A.3.1 Vanishing of H, ∇H and ∇∇H
We have

H0 ≡ gµν(Γ0
µν − Γ̂0

µν) = 0 , (A.21)

Hi ≡ gµν(Γi
µν − Γ̂i

µν) = 0 . (A.22)

Equation (A.20) can be written as

Rµν − gσ(µ∇̂ν)H
σ = 2Lµν . (A.23)

Invoking Hσ = 0 that gives

R00 + ∂0H0 = 2L00 ,

R0i −
1

2
gij∂0Hj = 2L0i ,

Rij = 2Lij .

On the other hand, with (A.9) we find

R00 = −∂0Γk
0k = −1

2
gkl∂0∂0gkl ,

R0i = −∂0Γk
ik = 0 ,

Rij = ∂0Γ0
ij + R̃ij =

1

2
∂0∂0gij + R̃ij .

Taking (A.12) into account, we conclude that

∂0∂0gij = 2R̃ij − gijR̃ , (A.24)

as well as ∂0Hσ = 0, and we end up with

∇µHσ = 0 . (A.25)

Note that this implies

0 = ∂0H0 = gµν∂0Γ0
µν =

1

2
∂0∂0g00 −

1

2
R̃ , (A.26)

0 = ∂0Hk = gµν∂0Γk
µν = −gkl∂0∂0g0l , (A.27)

i.e.

∂0∂0g00 = R̃ , ∂0∂0g0i = 0 . (A.28)

We give a list of the transverse derivatives of the Christoffel symbols on I −,

∂0Γ0
00 = − 1

2 R̃ , ∂0Γ0
ij = gjk∂0Γk

0i = R̃ij − 1
2gijR̃ , (A.29)

∂0Γ0
0i = ∂0Γk

00 = ∂0Γk
ij = 0 . (A.30)

Using (A.23) that yields with Hσ = 0 = ∇µHσ the relation

∂0Rµν − gσ(µ∂ν)∂0Hσ = 2∂0Lµν , (A.31)
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and thus

∂0R00 + ∂0∂0H0 = 2∂0L00 ,

∂0R0i −
1

2
gij∂0∂0Hj = 2∂0L0i ,

∂0Rij = 2∂0Lij .

We compute

∂0R00 = −∂0∂0Γk
0k = −1

2
gkl∂0∂0∂0gkl ,

∂0R0i = ∇̃k∂0Γk
0i︸ ︷︷ ︸

=0

−∂0∂0Γk
ik = −1

2
∇̃i(g

kl∂0∂0gkl) =
1

2
∇̃iR̃ ,

∂0Rij = ∂0∂0Γ0
ij =

1

2
∂0∂0∂0gij .

From (A.13) we deduce that

∂0∂0∂0gij = −4

√
λ

3
Dij , (A.32)

from which we obtain ∂0∂0Hσ = 0, and thus

∇µ∇νHσ = 0 . (A.33)

A.3.2 Vanishing of ζ and ∇ζ
In our gauge we have

ζµ = −4∇αLµ
α . (A.34)

We invoke (A.12) and (A.13) to obtain

ζ0 = 4∂0L00 − 4gkl∇kL0l = 0 , (A.35)

ζi = 4∂0L0i − 4gkl∇̃kLil = 0 . (A.36)

The computation of ∇0ζµ requires the knowledge of certain second-order trans-
verse derivatives of Lµν which we compute from the CWE (A.16). Since Hσ =
0 = ∇µHσ we have

✷gLµν = ✷
(H)
g Lµν = 4LµκLν

κ − gµν |L|2 ⇐⇒
∇0∇0Lµν = ∆g̃Lµν − 4LµκLν

κ + gµν [Lk
lLl

k + (L00)
2] ,

whence

∇0∇0L00 =
1

4
∆g̃R̃− |R̃|2 + 1

2
R̃2 , (A.37)

∇0∇0L0i = 0 . (A.38)

From

∇0ζµ = 4∇0∇0L0µ − 4gkl∇̃k∇0Llµ − 4R0kµ
lLl

k − 4R00L0µ
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and

R0k0
l = −R̃k

l +
1

2
δk

lR̃ , (A.39)

R0ki
l = 0 , (A.40)

we conclude that

∇0ζ0 =
3

2
R̃2 − 4|R̃|2 − 4R0k0

lLl
k = 0 , (A.41)

∇0ζi = 4

√
λ

3
∇̃jDij − 4R0ki

lLl
k = 0 . (A.42)

A.3.3 Validity of the MCFE (2.1)-(2.4) and their transverse deriva-
tives on I −

The independent components of ∇ρdµνσρ, which is antisymmetric in its first
two indices, trace-free and satisfies the first Bianchi identity, are

∇ρdijkρ and ∇ρd0ijρ

(similarly for its transverse derivatives).
It follows from (2.44), (A.14), (A.15) and (A.8) that

∇ρdijkρ = ∇̃ldijkl −∇0d0kji = 2gk[i∇̃lDj]l = 0 , (A.43)

∇ρd0ijρ = ∇kd0ijk +∇0d0i0j = 0 . (A.44)

We consider the corresponding transverse derivatives. With (A.39) and
(A.40) we find

∇0∇ρdijkρ = ∇0∇0d0kij + ∇̃l∇0dijkl − 2R0[j|0
ld0|i]kl +R0k0

ld0lij +R00d0kji ,

∇0∇ρd0ijρ = ∇0∇0d0i0j + ∇̃k∇0d0ijk −R0
k
0
ldikjl +R0j0

kDik −R00Dij .

The second-order transverse derivatives of the rescaled Weyl tensor follow from
the CWE (A.19),

✷gdµνσρ = ✷
(H)
g dµνσρ = 0 ⇐⇒ ∇0∇0dµνσρ = ∆g̃dµνσρ ,

hence

∇0∇0d0ijk = ∆g̃d0ijk =

√
3

λ
∆g̃C̃ijk , (A.45)

∇0∇0d0i0j = ∆g̃d0i0j = ∆g̃Dij . (A.46)

The Bianchi identities together with the identity

R̃ijkl ≡ 2gi[kR̃l]j − 2gj[kR̃l]i − R̃gi[kgl]j , (A.47)

which holds in 3 dimensions, imply the following relations for Cotton and Bach
tensor,

C̃[ijk] = C̃j
ij = ∇̃kC̃kij = 0 ,

∇̃[iC̃j]kl = ∇̃[lC̃k]ji + R̃ij[l
mL̃k]m + R̃kl[i

mL̃j]m ,

∇̃jB̃ij = R̃klC̃kli ,

∇̃[iB̃j]k = −1

2
∆g̃C̃kji + R̃[j

lC̃i]kl −
1

2
R̃k

lC̃lij − gk[iC̃
l
j]
mR̃lm +

1

4
R̃C̃kji .
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With (2.44), (A.8), (A.14) and (A.15) we then obtain

∇0∇ρdijkρ =

√
3

λ

(
2gk[i∇̃lB̃j]l − 2∇̃[iB̃j]k − (∆g̃ −

R̃

2
)C̃kji + 2R̃[j

lC̃i]kl − R̃k
lC̃lij

)

= 0 ,

∇0∇ρd0ijρ = 0 .

Set
Ξµν := ∇µ∇νΘ+ΘLµν − sgµν . (A.48)

To compute Ξ00 we need to know the value of ∇0∇0Θ which can be determined
from the CWE (A.18),

✷gΘ = 4s ⇐⇒ ∇0∇0Θ = 0 . (A.49)

Invoking (A.10)-(A.11) we then find

Ξij = 0 , (A.50)

Ξ0i = ∇i∇0Θ = 0 , (A.51)

Ξ00 = ∇0∇0Θ = 0 . (A.52)

To calculate the transverse derivative of Ξµν on I − we need to determine the
third-order transverse derivative of Θ

∇0✷gΘ = 4∇0s ⇐⇒ ∇0∇0∇0Θ = −
√

λ

12
R̃ . (A.53)

One then straightforwardly verifies with (A.39) and the constraint equations

∇0Ξij = ∇i∇j∇0Θ+R0i0j∇0Θ+ Lij∇0Θ−∇0sgij = 0 ,

∇0Ξ0i = ∇i∇0∇0Θ+ L0i∇0Θ = 0 ,

∇0Ξ00 = ∇0∇0∇0Θ+ L00∇0Θ+∇0s = 0 .

Set
Υµ := ∇µs+ Lµν∇νΘ . (A.54)

We observe that by (A.10)-(A.12)

Υ0 = ∇0s− L00∇0Θ = 0 , (A.55)

Υi = 0 . (A.56)

To compute the corresponding transverse derivatives on I − we first of all need
to calculate ∇0∇0s, which follows from (A.17),

✷gs = 0 ⇐⇒ ∇0∇0s = 0; . (A.57)

Employing further the constraint equations and (A.49) we then deduce

∇0Υ0 = ∇0∇0s−∇0L00∇0Θ− L00∇0∇0Θ = 0 ,

∇0Υi = ∇i∇0s−∇0L0i∇0Θ+ Lij∇j∇0Θ = 0 .

Set
κµνσ := 2∇[σLν]µ −∇ρΘ dνσµ

ρ . (A.58)
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Due to the symmetries κµ(νσ) = 0, κ[µνσ] = 0 and κνµ
ν = 0 (since ζµ = 0 and

L = 0) its independent components on the initial surface are

κijk and κij0 .

Since also ∇0ζµ = 0 an analogous statement holds true for ∇0κµνσ. We find
with (A.10) and (A.12)-(A.14)

κijk = 2∇[kLj]i −∇0Θ d0ijk = 0 , (A.59)

κij0 = 2∇[0Lj]i +∇0Θ d0i0j = 0 . (A.60)

Before we proceed let us first determine the second-order transverse derivative
of Lij on I −. From the CWE (A.16) we obtain

✷gLij = ✷
(H)
g Lij4L̃ikL̃j

k − gij |L̃|2 − gij(L00)
2 ⇐⇒

∇0∇0Lij = ∆g̃L̃ij − 4L̃ikL̃j
k + gij(|L̃|2 +

1

16
R̃2) . (A.61)

For the transverse derivatives we then find with (A.39), (A.40) and (A.49) and
the constraint equations

∇0κijk = 2∇̃[k∇|0|Lj]i −∇0Θ∇0d0ijk = 0 ,

∇0κij0 = ∇0∇0Lij − ∇̃j∇0L0i −R0j0
kLik −R0i0jL00 +∇0Θ∇0d0i0j

= ∇0∇0Lij −
1

4
∇̃i∇̃jR̃ + L̃j

kL̃ik −
1

16
R̃2gij + B̃ij = 0 ,

where we have used that

B̃ij = −∆g̃L̃ij +
1

4
∇̃i∇̃jR̃− gij |L̃|2 + 3L̃ikL̃j

k . (A.62)

A.3.4 Vanishing of Wµνσ
ρ −Θ dµνσ

ρ and ∇0(Wµνσ
ρ −Θ dµνσρ)

The independent components of the conformal Weyl tensor in adapted coordi-
nates are

W 0ij
k and W 0i0

j .

Using the definition of the Weyl tensor

Wµνσ
ρ ≡ Rµνσ

ρ − 2
(
gσ[µLν]

ρ − δ[µ
ρLν]σ

)

we observe that by (A.39), (A.40) and (A.12) we have

W 0ij
k = gijL0

k − δi
kL0j = 0 ,

W 0i0
j = R0i0

j + Li
j − δi

jL00 = 0 .

To derive expressions for the transverse derivatives recall the formulae (2.35),
(A.29)-(A.30) for the Christoffel symbols and their transverse derivatives on I −.
Since, by (A.24), (A.27) and (A.32), we further have

∂0∂0Γk
ij =

1

2
gkl(∇̃i∂0∂0gjl + ∇̃j∂0∂0gil − ∇̃l∂0∂0gij)

= 2∇̃(iR̃j)
k − δ(i

k∇̃j)R̃− ∇̃kR̃ij +
1

2
gij∇̃kR̃ ,

∂0∂0Γ
j
i0 =

1

2
gjk(∂0∂0∂0gik + ∇̃i∂0∂0g0k − ∇̃k∂0∂0g0i) = −2

√
λ

3
Di

j ,
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we find that

∇0R0ij
k = ∂0R0ij

k = ∇̃i∂0Γk
0j − ∂0∂0Γk

ij

= −∇̃jR̃i
k +

1

2
δi

k∇̃jR̃+ ∇̃kR̃ij −
1

2
gij∇̃kR̃ ,

∇0R0i0
j = ∂0R0i0

j = −∂0∂0Γj
i0 = 2

√
λ

3
Di

j .

Hence

∇0W0ij
k = ∇0R0ij

k + gij∇0L0
k − δi

k∇0L0j = ∇̃kL̃ij − ∇̃jL̃i
k = C̃ij

k ,

∇0W0i0
j = ∇0R0i0

j +∇0Li
j − δi

j∇0L00 =

√
λ

3
Di

j ,

and we end up with

∇0(W0ij
k −Θd0ijk) = ∇0W0ij

k −∇0Θ d0ij
k = 0 ,

∇0(W0i0
j −Θd0i0j) = ∇0W0i0

j −∇0Θ d0i0
j = 0 ,

which completes the proof that Theorem A.1 is applicable supposing that the
initial data for the CWE satisfy the constraint equations (A.8)-(A.15) on I −.

Theorem A.2 Let us suppose we have been given a Riemannian metric hij and
a smooth tensor field Dij on I −. A smooth solution (gµν , Lµν , dµνσ

ρ,Θ, s) of
the CWE (A.16)-(A.20) to the future of I − with initial data

(gµν = g̊µν , ∂0gµν = K̊µν , Lµν = L̊µν , ∂0Lµν = M̊µν , dµνσ
ρ = d̊µνσ

ρ,

∂0dµνσρ = D̊µνσ
ρ, Θ = Θ̊ = 0, ∂0Θ = Ω̊, s = s̊ = 0, ∂0s = S̊)

where g̊ij = hij and the trace- and divergence-free part of d̊0i0j = Dij are the
free data, is a solution of the MCFE (2.1)-(2.6) in the

(R = 0, s = 0, g00 = −1, g0i = 0, ĝµν = g̊µν)-wave-map gauge

if and only if the initial data have their usual algebraic properties and solve the
constraint equations (A.8)-(A.15). The function Θ is positive in some neigh-
borhood to the future of I −, and dΘ 6= 0 on I −.
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CHAPTER 16

Conclusions and outlook

“To doubt everything or to believe everything are two equally convenient truths; both
dispense with the necessity of reflection.”

J. Henri Poincaré (1854–1912)

16.1 Conclusions

In this thesis we have analyzed and solved several issues related to the initial value problem
in general relativity. We contributed to a systematic construction of space-times with specific
physically reasonable properties in the sense that they possess certain symmetries, a certain
(positive) mass, and/or a certain asymptotic structure.

First of all, we have developed new ways to integrate Einstein’s wave-map gauge constraints
for the characteristic initial value problem. The so-obtained flexibility is advantageous in
various situations, for instance to prove well-posedness results for a larger class of matter
models. We have used it to eliminate all the gauge-dependent logarithmic terms appearing
in the asymptotic expansions of the solutions of the constraint equations at null infinity.
It turned out, though, that some logarithmic terms cannot be removed by coordinate
transformations. This led us to a gauge-independent no-logs-condition which characterizes
the occurrence of log terms on the initial surface, and is strongly expected to characterize
characteristic initial data leading to space-times which admit a “piece of a smooth I +”. The
construction of such space-times which are (at least in certain null directions) asymptotically
flat in the sense of Penrose will be crucial to get a better understanding of the compatibility
of Penrose’s geometric notion of asymptotic flatness with Einstein’s field equations.

Another approach to construct asymptotically flat (or de Sitter) space-times is via
asymptotic initial value problems where (parts of the) data are prescribed on past null
infinity. We focused attention to those cases where the initial surface is I −. For positive
cosmological constant λ this is a space-like hypersurface, whereas for λ = 0 it is a null
hypersurface, which we assumed to form a light-cone whose vertex, representing past time-
like infinity, is a regular point as well. To analyze the corresponding Cauchy problems,
we extracted a system of wave equations from Friedrich’s conformal field equations. We
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proved that the wave equations are equivalent to the conformal field equations, supposing
that they are supplemented by an appropriate set of constraint equations on I −. In the
characteristic case we used these wave equations together with Dossa’s well-posedness result
for such systems to prove well-posedness of the conformal field equations with data on the
Ci−-cone near i−. This result permits a systematic construction of solutions to Einstein’s
vacuum equations which extend arbitrarily far into the past and, at sufficiently early times,
have an asymptotic structure resembling the Minkowskian one. Moreover, it provides a first
step towards the construction of Friedrich’s purely radiative space-times. We were further
be able to use the system of wave equations to provide an alternative proof of Friedrich’s
well-posedness result for the conformal fields equations with data on a space-like I −.

The analysis of the asymptotic behavior of solutions of the wave-map gauge constraints
led us to a new formula for the Trautman-Bondi mass, which we expressed in terms of the
data prescribed on the associated null hypersurface. Assuming this null hypersurface to be a
globally smooth light-cone, we have rewritten this formula as a manifestly positive expression,
and thereby obtained an unexpected and direct proof of the positivity of the Bondi mass.

Finally, we studied the construction of Killing vector fields in terms of initial value
problems, i.e. the issue which additional equations, the so-called KID equations, the data
need to fulfill, so that the emerging space-time contains a Killing vector field. Since symmetries
play an utmost important role in physics and Killing vector fields generate (local) isometries,
it is of great relevance to have such results available. The analysis had only been done for
the space-like case before, while we did it for the characteristic case. Moreover, we did the
same analysis for the asymptotic Cauchy problems. We first established a substitute for
Killing’s equation in Penrose’s conformally rescaled space-times, which we then analyzed
thoroughly to derive the KID equations. We have studied them in detail on a space-like I −

and a characteristic I −.

16.2 Outlook and open issues

There are several open issues closely related to the problems which have been considered in
the course of this Ph.D. project, which we briefly discuss here:

• We have explained that one main motivation for analyzing the numerous possibilities
to integrate Einstein’s wave-map gauge constraints in [34] was to provide the basis to
include larger classes of matter models for which well-posedness results can be derived,
such as above all the Einstein-Vlasov system. While an approach to this has been given
in [14], a well-posedness result with non-vanishing Vlasov matter up to the vertex of
the cone is still lacking.

• The considerations in [38, 72] concerning the construction of smooth initial data for the
CFE up-to-and-including conformal infinity are just a first step towards the construction
of space-times which admit a piece of a smooth I +. An appropriate well-posedness
result for smooth data for the evolution equations has been established in [10]. It might
be interesting to investigate, whether a corresponding result can be obtained in the
polyhomogeneous setting, as well, i.e. without imposing the no-logs-condition.

• Another question of interest is to establish the existence of a vacuum development which
includes at least a piece of a smooth or polyhomogeneous I + when data a prescribed
on the Ci− -cone. This would provide a way to construct space-times with a smooth i−

and I −, a regular i0 and a regular I +, though it is hardly predictable what difficulties
one might encounter near i0, where the metric tensor cannot be assumed to be smooth,
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and whether one is (generically) led to a smooth or rather to a polyhomogeneous I +.
This would be a decisive step towards the construction of Friedrich’s purely radiative
space-times, for which it is not conclusively clear yet whether the very concept of such
a space-time is appropriate in that a sufficiently large class of solutions is compatible
with all its requirements.

• Asymptotic initial value problems provide a tool to construct systematically space-times
which are asymptotically flat or de Sitter (similarly, asymptotic initial boundary value
problems can be employed to construct asymptotically anti-de Sitter space-times).
However, no exhaustive knowledge is gained how restrictive such asymptotic conditions
on space-times are. The analysis of the asymptotic appearance of logarithmic terms
when integrating the constraint equations on a light-cone led to the no-logs-condition
as the only relevant obstruction. Nonetheless, this condition shows that, as in the
hyperboloidal case [1, 2], initial data which are smooth at conformal infinity are
not generic. Further investigations are necessary. In particular, it is an open issue
to characterize the set of asymptotically Euclidean space-like initial data sets, the
evolution of which lead to (null) asymptotically flat solutions of Einstein’s field equations
(compare [55] for an approach to this issue, where i0 is blown up to a cylinder).
While the result in [53] shows that small perturbations of de Sitter initial data still lead
to a regular I , the result on the non-linear stability of the Minkowski space-time [23]
give less hints in this respect. However, it is known that in the stationary case smooth
conformal extensions through I are admitted [40]. Moreover, Chruściel and Delay [29]
modified Corvino’s gluing technique [39] to construct large classes of asymptotically
flat space-time from asymptotically Euclidean initial data sets.
So before a conclusion can be drawn whether a smooth or a polyhomogeneous I should
be required, the space-like Cauchy problem needs to be better understood. For instance,
it is not clear at all to what extent a smooth or polyhomogeneous I is compatible
with space-times which are asymptotically flat in spatial directions, i.e. arises from the
evolution of asymptotically Euclidean initial data sets.

• Further open problems regard well-posedness results for the CFE with data on light-
cone with vertex at I − for λ ≥ 0 or for two transversally intersecting characteristic
surfaces whose intersection manifold is located at I − for λ > 0, and to analyze which
are the freely prescribable data in these cases.

• Similarly, it might be of interest to derive the KID equations for these initial surfaces.

• Another task would be to generalize the KID equations to include certain matter
models.

• It would also be of interest to construct KIDs for which the corresponding Killing
vector fields have specific properties, so that the emerging space-time is, e.g., stationary,
static, axisymmetric etc.

• The formula for the Bondi mass derived in [37] could be generalized to include a
cosmological constant.

• An explicit computation, if possible, of the Bondi news function, or rather of ∂umTB,
in terms of characteristic initial data would provide some information on the amount
of energy radiated away by the system. Moreover, it might be possible to establish
necessary and/or sufficient conditions on the null data this way to produce space-times
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where no gravitational energy is radiated away (at least for a certain retarded time
interval).

• It is an open issue to derive – using elementary methods – a positive mass theorem
for a characteristic hypersurface with an interior boundary diffeomorphic to S2 and
intersecting I + in a smooth spherical cross-section. Starting from the corresponding
expression for the Bondi mass [37, Equation (54)], which is not manifestly positive,
this requires to gain a better understanding of the implications of the boundary terms
(cf. [37] for partial results on this issue).

• The formula for the Bondi mass in [37] is derived in the physical space-time. It might
be auspicious to rewrite it in terms of unphysical fields in the conformally rescaled
space-time to obtain an expression which remains regular on the Ci−-cone. It then
could be compared with the ADM mass computed at i0.

• An analysis of the asymptotic behavior of solutions of the Einstein wave-map gauge
constraints in a space-time with negative cosmological constant may shed some light
on how to satisfy the corner conditions arising at the intersection of the light-cone with
I , when reflective boundary conditions are imposed there. This would be particularly
interesting, since it is not clear how they can be fulfilled in the space-like case [58],
compare [30] where partial results are given.

• A technical issue of rather mathematical relevance would be to derive all the above
results under lower regularity assumptions.



APPENDIX A

Mathematical preliminaries

“Mathematics is the queen of sciences [...]. She often condescends to render service to
astronomy and other natural sciences [...].”

Carl Friedrich Gauss (1777–1855)

A.1 Well-posedness results for wave equations

In this appendix we have collected some well-posedness results for (quasi-)linear wave
equations on which many results obtained in the main text are based. We restrict attention
to the smooth case and assume a dimension of space n ≥ 1.

We start with a classical result for a space-like Cauchy problem, cf. e.g. [84]:

Theorem A.1.1 Consider a quasi-linear system of wave equations for a collection of functions
v on Rn+1,

Aµν(x, v, ∂v)∂µ∂νv + f(x, v, ∂v) = 0 , (A.1)

where A and f are smooth functions of the indicated variables, and where the quadratic
form A has Lorentzian signature. Consider further a space-like (w.r.t. A) hypersurface
Σ ⊂ Rn+1, on which smooth Cauchy data are given,

v|Σ = φ , ∂tv|Σ = ψ . (A.2)

Then, there exist unique smooth functions v in some neighborhood of Σ which solve (A.3) and
induce the prescribed data. The solution depends in a continuous manner on the initial data.

The following result for a Cauchy problem on two characteristic hypersurfaces intersecting
transversally is due to Rendall [76]:

Theorem A.1.2 Consider a quasi-linear system of wave equations for a collection of functions
v on Rn+1,

Aµν(x, v)∂µ∂νv + f(x, v, ∂v) = 0 , (A.3)
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where A and f are smooth functions of the indicated variables, and where the quadratic form
A has Lorentzian signature. Consider further continuous initial data φ on two transversally
intersecting characteristic (w.r.t. A) hypersurfaces N1, N2 ⊂ Rn+1,

v|N1∪N2
= φ , (A.4)

whose restrictions to N1 and N2 are smooth.
Then there exist unique smooth functions v in some neighborhood to the future of the

intersection manifold which solve (A.3) and induce the prescribed data. The solution depends
continuously on the initial data.

A well-posedness result for quasi-linear wave equations with data on a light-cone goes back
to work of Cagnac [11] and Dossa [41], compare [16] for an English summary of their result.

Theorem A.1.3 Consider a quasi-linear system of wave equations for a collection of functions
v on Rn+1,

Aµν(x, v)∂µ∂νv + f(x, v, ∂v) = 0 , (A.5)

where A and f are smooth functions of the indicated variables, and where the quadratic form
A has Lorentzian signature and takes the Minkowskian values for x = 0 and v = 0. Consider
initial data φ on a light-cone CO ⊂ Rn+1 (w.r.t. A),

v|CO = φ with φ(O) = 0 , (A.6)

and assume that φ is the trace on CO of a smooth function.
Then, there exist unique smooth functions v in some neighborhood to the future of O

which solve (A.5), which can be extended to smooth functions in Rn+1, and which induce the
prescribed data on CO. The solution depends continuously on the initial data.

For all of the corresponding Cauchy problems for linear systems of wave equations it
is possible to establish global existence results, though it appears partly difficult to find
adequate references, cf. e.g. [13, 45, 62]:

Theorem A.1.4 Consider a linear system of wave equations for a collection of functions
v = (vi) on a space-time (M , g),

gµν(x)∂µ∂νvi +
∑

j

(aij)
µ(x)∂µvj +

∑

j

bij(x)vj = fi(x) , (A.7)

where aij, bij and fi are smooth on M .

1. Consider smooth initial data φ and ψ on a space-like hypersurface Σ ⊂M

v|Σ = φ , ∂tv|Σ = ψ . (A.8)

Then, there exist unique smooth functions v in D(Σ) which solve (A.7) and induce the
data φ and ψ on Σ.

2. Consider initial data φ on two null hypersurfaces N1∪N2 ⊂M intersecting transversally
along a smooth submanifold,

v|N1∪N2 = φ . (A.9)

Assume that the φ’s are smooth on N1 and N2 and continuous at the intersection
manifold. Then, there exist unique smooth functions v in D+(N1 ∪N2) which solve
(A.7) and induce the data φ on N1 ∪N2.
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3. Consider initial data φ on a light-cone CO ⊂M

v|CO = φ . (A.10)

Assume that the φ’s are traces on CO of smooth functions. Then, there exist unique
smooth functions v in D+(CO) which solve (A.7) and induce the data φ on CO.

In each case, the solution depends in a continuous manner on the initial data.
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partielles non linéaires, Acta Math. 88 (1952) 141–225.

[45] F.G. Friedlander: The wave-equation on a curved space-time, Cambridge: Cambridge University
Press, 1975.

[46] H. Friedrich: On the regular and the asymptotic characteristic initial value problem for
Einstein’s vacuum field equations, Proc. R. Soc. Lond. A 375 (1981) 169–184.

[47] H. Friedrich: The asymptotic characteristic initial value problem for Einstein’s vacuum field
equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system,
Proc. R. Soc. Lond. A 378 (1981) 401–421.

[48] H. Friedrich: On the existence of analytic null asymptotically flat solutions of Einstein’s
vacuum field equations, Proc. R. Soc. Lond. A 381 (1982) 361–371.

[49] H. Friedrich: Cauchy problems for the conformal vacuum field equations in general relativity,
Comm. Math. Phys. 91 (1983) 445–472.

[50] H. Friedrich: On the hyperbolicity of Einstein’s and other gauge field equations, Comm. Math.
Phys. 100 (1985) 525–543.



354 BIBLIOGRAPHY

[51] H. Friedrich: On purely radiative space-times, Comm. Math. Phys. 103 (1986) 35–65.

[52] H. Friedrich: Existence and structure of past asymptotically simple solutions of Einstein’s field
equations with positive cosmological constant, J. Geom. Phys. 3 (1986) 101–117.

[53] H. Friedrich: On the existence of n-geodesically complete or future complete solutions of
Einstein’s field equations with smooth asymptotic structure, Comm. Math. Phys. 107 (1986)
587–609.

[54] H. Friedrich: Hyperbolic reductions for Einstein’s equations, Class. Quantum Grav. 13 (1996)
1451–1469.

[55] H. Friedrich: Gravitational fields near space-lie and null infinity, J. Geom. Phys. 24 (1998)
83–163.

[56] H. Friedrich: Conformal Einstein evolution, in: The conformal structure of space-time –
Geometry, analysis, numerics, J. Frauendiener, H. Friedrich (eds.), Berlin, Heidelberg: Springer,
2002, 1–50.

[57] H. Friedrich: The Taylor expansion at past time-like infinity, Comm. Math. Phys. 324 (2013)
263–300.

[58] H. Friedrich: On the AdS stability problem, Class. Quantum Grav. 31 (2014) 105001.

[59] H. Friedrich, G. Nagy: The initial boundary value problem for Einstein’s vacuum field equation,
Comm. Math. Phys. 201 (1999) 619–655.

[60] H. Friedrich, A.D. Rendall: The Cauchy problem for the Einstein equations, in: Einstein’s
field equations and their physical implications, B. Schmidt (ed.), Berlin, Heidelberg: Springer,
2000, 127–224.

[61] R. Geroch: Asymptotic structure of space-time, in: Asymptotic structure of space-time, F. P.
Esposito, L. Witten (eds.), New York: Plenum Press, 1977, 1–105.

[62] S.W. Hawking, G.F.R. Ellis: The large scale structure of space-time, Cambridge: Cambridge
University Press, 1973.

[63] J. Kánnár: On the existence of C∞ solutions to the asymptotic characteristic initial value
problem in general relativity, Proc. R. Soc. Lond. A 452 (1996) 945–952.

[64] S. Klainerman, I. Rodnianski: On the formation of trapped surfaces, (2009), arXiv:0912.5097
[gr-qc].

[65] H.-O. Kreiss, O.E. Ortiz: Some mathematical and numerical questions connected with first
and second order time-dependent systems of partial differential equations, in: The conformal
structure of space-time – Geometry, analysis, numerics, J. Frauendiener, H. Friedrich (eds.),
Berlin, Heidelberg: Springer, 2002, 359–370.

[66] J. Li, X.-P. Zhu: On the local extension of the future null infinity, (2014), arXiv:1406.0048
[gr-qc].

[67] J. Luk: On the local existence for the characteristic initial value problem in general relativity,
Int. Math. Res. Notices 2012 (2012) 4625–4678.

[68] V. Moncrief: Spacetime symmetries and linearization stability of the Einstein equations I, J.
Math. Phys. 16 (1975) 493–498.

[69] T.-T. Paetz: Conformally covariant systems of wave equations and their equivalence to
Einstein’s field equations, (2013), arXiv:1306.6204 [gr-qc].



BIBLIOGRAPHY 355

[70] T.-T. Paetz: KIDs prefer special cones , Class. Quantum Grav. 31 (2014) 085007.

[71] T.-T. Paetz: Killing Initial Data on space-like conformal boundaries, (2014), arXiv:1403.2682
[gr-qc].

[72] T.-T. Paetz: Characteristic initial data and smoothness of Scri. II. Asymptotic expansions
and construction of conformally smooth data sets, (2014), arXiv:1403.3560 [gr-qc].

[73] R. Penrose: Asymptotic properties of fields and space-time, Phys. Rev. Lett. 10 (1963) 66–68.

[74] R. Penrose: Zero rest-mass fields including gravitation: Asymptotic behavior, Proc. R. Soc.
Lond. A 284 (1965) 159–203.

[75] F. Pretorius: Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95 (2005) 121101.

[76] A.D. Rendall: Reduction of the characteristic initial value problem to the Cauchy problem and
its applications to the Einstein equations, Proc. R. Soc. Lond. A 427 (1990) 221–239.

[77] H. Ringström: On the topology and future stability of the universe, Oxford: Oxford University
Press, 2013.

[78] R.K. Sachs: Gravitational waves in general relativity. VIII. Waves in asymptotically flat
space-time, Proc. R. Soc. Lond. A 270 (1962) 103–126.

[79] R.K. Sachs: On the characteristic initial value problem in gravitational theory, J. Math. Phys.
3 (1962) 908–914.

[80] O. Sarbach, M. Tiglio: Continuum and discrete initial-boundary value problems and Ein-
stein’s field equations, Living Rev. Relativity 15 (2012), http://www.livingreviews.org/
lrr-2012-9.

[81] R. Schoen, S.-T. Yau: On the proof of the positive mass conjecture in general relativity, Comm.
Math. Phys. 65 (1979), 45–76.

[82] R. Schoen, S.-T. Yau: Proof of the positive mass theorem II, Comm. Math. Phys. 79 (1981),
231–260.

[83] L.A. Tamburino, J.H. Winicour: Gravitational fields in finite and conformal Bondi frames,
Phys. Rev. 150 (1966), 1039–1053.

[84] M.E. Taylor: Partial differential equations III, Berlin, Heidelberg: Springer, 1996.

[85] A. Trautman: Radiation and boundary conditions in the theory of gravitation, Bull. Acad. Pol.
Sci., Ser. Sci. Math. Astron. Phys. VI (1958) 407–412.

[86] R.M. Wald: General relativity, Chicago and London: The University of Chicago Press, 1984.

[87] J.H. Winicour: Characteristic evolution and matching, Living Rev. Relativity 15 (2012),
http://www.livingreviews.org/lrr-2012-2.

[88] E. Witten: A new proof of the positivity energy theorem, Comm. Math. Phys. 80 (1981),
381–402.

http://www.livingreviews.org/lrr-2012-9
http://www.livingreviews.org/lrr-2012-9
http://www.livingreviews.org/lrr-2012-2


356 BIBLIOGRAPHY



357

“The most incomprehensible thing about the world is that it is comprehensible.”
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Abstract

Initial value problems provide an extremely powerful tool to construct in a systematic
manner general solutions to Einstein’s field equations. Due to the Lorentzian geometry
of a space-time there are in fact various possibilities of choosing an initial surface, such
as e.g. characteristic ones, on which the main focus of this thesis lies. Now, aside from
predicting existence and uniqueness (up to isometries) of solutions to these initial value
problems for appropriately prescribed data sets, one would also like to say something about
the properties of the so-emerging space-times; or, to put it differently, one would like to
construct space-times via initial value problems which exhibit specific, physically relevant
properties.

One such property is that the space-time extends arbitrarily far, at least in certain (null)
directions, and that the gravitational field shows there a specific “asymptotically flat or
de Sitter”-like fall-off behavior. Such solutions to Einstein’s field equations constitute well-
suited candidates to model isolated gravitational systems and purely radiative space-times.
Another such property is that the space-time admits certain isometry groups. These play a
fundamental role in physics, since they e.g. give rise to conserved quantities, and are typical
features of the preferred states of a system. Finally, the Bondi mass is an important quantity
to capture the energy content of a space-time, while its dependence on the retarded time
measures the loss of energy due to radiation escaping to infinity. Its positivity is an important
physical expectation, though the proofs of the available positive mass theorems confirming
this lack in a physical intuition where this positivity originates from.

This thesis is concerned with the construction of solutions to Einstein’s field equations
from space-like and in particular from characteristic surfaces such that some insights regarding
these properties can be gained just from an analysis of the initial data. More concretely,
we construct vacuum space-times via “asymptotic initial value problems” which possess a
past-asymptotic structure similar to the Minkowskian one by using a novel system of wave
equations. We investigate under which conditions on the initial data the prospective vacuum
space-time admits a Killing vector field (that is a vector field generating a local isometry),
and analyze the existence of vacuum space-times which have both a Killing vector field and a
past-asymptotically flat (or de Sitter) structure. Moreover, we characterize null initial data
sets for Einstein’s field equations which are “smooth at infinity”, and thus provide the basis
to construct asymptotically flat vacuum space-times from ordinary (non-asymptotic) null
surfaces. We further present a manifestly positive-definite formula for the Bondi mass of
a globally smooth light-cone just in terms of the initial data given there. It is derived by
elementary methods, whereby we obtain a direct, simple positivity proof in this setting.
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Zusammenfassung

Anfangswertprobleme stellen ein äußerst mächtiges Werzeug dar, um auf systematische Art
und Weise allgemeine Lösungen der Einsteinschen Feldgleichungen zu konstruieren. Die
Lorentzsche Geometrie einer Raumzeit bietet vielfältige Möglichkeiten eine Anfangsfläche
auszuwählen, wie beispielsweise charakteristische Anfangsflächen, auf denen das Hauptau-
genmerk dieser Arbeit liegt. Nun möchte man nicht nur Existenz und Eindeutigkeit (bis
auf Isometrien) von Lösungen zu solch einem Anfangswertproblem sicherstellen, sondern
vielmehr möchte man auch etwas zu den Eigenschaften der so entstehenden Raumzeiten
wissen. Das Ziel besteht also darin, über Anfangswertprobleme Raumzeiten zu konstruieren,
welche spezifische, physkalische Eigenschaften aufweisen.

Eine dieser Eigenschaften ist, dass die Raumzeit zumindest in gewissen (Null-)Richtungen
beliebig weit ausgedehnt ist, und dass das Gravitationsfeld dort ein spezifisches “asymptotisch
flaches oder de Sitter”-artiges Abfallverhalten zeigt. Derartige Lösungen der Einsteinschen
Feldgleichungen bilden geeignete Kandidaten um isolierte gravitierende Systeme und soge-
nannte purely radiative space-times zu modellieren. Eine weitere Eigenschaft ist, dass die
Raumzeit gewisse Isometriegruppen besitzt. Diese spielen eine fundamentale Rolle in der
Physik, da sie z.B. die Existenz von Erhaltungsgrößen anzeigen, und typische Merkmale
von ausgezeichneten Zuständen eines System sind. Schließlich ist die Bondi-Masse eine
wichtige Größe um den Energieinhalt einer Raumzeit zu erfassen; ihre Abhängigkeit von der
retardierten Zeit misst den Energieverlust durch Strahlung, die ins Unendliche entkommt.
Die physikalische Erwartung, dass diese Masse positiv sein muss, wird durch die verfügbaren
positiven Massentheoreme bestätigt. Allerdings geben deren Beweise keinerlei physikalische
Einsicht darin, warum das so ist.

Die vorliegende Arbeit beschäftigt sich mit der Konstruktion von Lösungen zu den Ein-
steinschen Feldgleichungen über raumartige und insbesondere charakteristische Anfangswert-
probleme, so dass nur über eine Analyse der Anfangsdaten etwas zu den gerade beschriebenen
Eigenschaften ausgesagt werden kann. Genauer gesagt, werden wir ein neuartiges System von
Wellengleichungen benutzen, um Vakuum-Raumzeiten über “asymptotische Anfangswert-
probleme” zu konstruieren, die zu hinreichend frühen Zeiten eine asymptotische Struktur
ähnlich der der Minkowski Raumzeit besitzen. Wir untersuchen weiterhin welche Bedingun-
gen Anfangsdaten erfüllen müssen, damit die aus ihnen entstehende Raumzeit Killingfelder
enthält (d.h. Vektorfelder, die lokale Isometrien generieren), und analysieren die Existenz
von Vakuum-Raumzeiten, die sowohl Killingfelder als auch eine asymptotisch flache- (oder
de Sitter-) artige Struktur besitzen. Zudem beschreiben wir Nullanfangsdaten, die einerseits
mit den Feldgleichungen kompatibel und andererseits “glatt im Unendlichen” sind, und
daher die Basis für die Konstruktion von asymptotisch flachen Vakuum-Raumzeiten von
gewöhnlichen (nicht-asymptotischen) Nullflächen aus bieten. Schließlich präsentieren wir
eine Formel für die Bondi-Masse eines global glatten Lichtkegels, ausgedrückt nur durch die
dort gegebenen Anfangsdaten, die unmittelbar deren Positivität zeigt und durch elementare
Methoden hergeleitet werden kann.
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