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Summary

Whenever enumerative combinatorialists are particularly fond of a counting problem, it will tend
to have the following three features: First, it is easy to formulate. Second, the solution is a simple
closed formula. Third, its proof poses a challenge to our current methods. One of the most intriguing
examples of such a problem is given by Alternating Sign Matrices (ASMs), i.e. square matrices with
entries {0, 1,−1} where in each row and in each column the non-zero entries alternate in sign and
sum up to 1. In 1983, a beautiful product formula for the number of n× n-ASMs was conjectured
by Mills, Robbins and Rumsey. It remained an open problem for over a decade until the first
proof (in an 84-pages paper) by Zeilberger appeared in 1996. The corresponding counting sequence
1, 2, 7, 42, 429, 7436, 218348, . . . (OEIS A005130) appears in the enumeration of a substantial variety
of combinatorial objects, some of which are in simple bijection with ASMs, whereas for others no
such correspondence is known until today.

In the first part of this thesis we put our focus on Monotone Triangles (MTs), which are in one-to-
one correspondence with n×n-ASMs if we fix the bottom row of the MT to be (1, 2, . . . , n). Fischer
derived an operator formula for α(n; k1, k2, . . . , kn), a polynomial in each ki which – evaluated at
integers k1 < k2 < · · · < kn – equals the number of MTs with fixed bottom row (k1, k2, . . . , kn) ∈ Zn.
Fischer used the operator formula and additional properties of the polynomial to give an alternative
proof of the Refined ASM Theorem in 2007. Since the introduced concepts and methods are the
foundation for several subsequent results, we first present the most current version of this proof.

As computer experiments indicated the existence of miraculous identities satisfied by the α-
polynomial – for example α(n; 1, 2, . . . , n) = α(2n;n, n, n − 1, n − 1, . . . , 1, 1) – we consider evalu-
ations of the polynomial α(n; k1, k2, . . . , kn) at weakly decreasing sequences k1 ≥ k2 ≥ · · · ≥ kn.
As a first result we show that in this case the evaluation can be interpreted as signed enumer-
ation of a new combinatorial object we call Decreasing Monotone Triangle (DMT). We then
use this interpretation and the previously introduced method to give a proof of the identity
α(n; 1, 2, . . . , n) = α(2n;n, n, n− 1, n− 1, . . . , 1, 1).

Such astonishing identities also appear when evaluating the polynomial at non-monotonous inte-
ger sequences. We therefore extend the interpretation of the α-polynomial to (k1, k2, . . . , kn) ∈ Zn

by defining another new combinatorial object we call Generalized Monotone Triangle (GMT) –
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a joint generalization of both ordinary MTs and DMTs. This result then allowed us to extend
the combinatorially understood domain of a simple identity and give a combinatorial interpreta-
tion to several conjectural identities, including a surprising generalization of α(n; 1, 2, . . . , n) =
α(2n;n, n, n− 1, n− 1, . . . , 1, 1).

After that, we tackle a long-standing conjecture on a refined enumeration of vertically symmetric
ASMs (VSASMs). In 2008, Fischer conjectured a product formula for Bn,i, the number of (2n +
1) × (2n + 1)-VSASMs where the unique 1 in the left half of the second row is in column i ∈
{1, 2, . . . , n}. Our attempt to prove the conjecture using the introduced method required us to
extend the combinatorial interpretation of Bn,i to i ∈ {1, 2, . . . , 2n}. We are able to combinatorially
explain the symmetry Bn,n+i = Bn,n+1−i, i = 1, . . . , n. However, the derivation of a related system
of linear equations leads to a more general conjectural multivariate Laurent polynomial identity,
which has so far resisted our approaches. The startling fact about this conjecture is that it is
expressible only in terms of elementary mathematical concepts independent from ASMs or related
combinatorial objects.

The final part of the thesis is devoted to another remarkable product formula, namely the
hook-length formula for counting standard Young tableaux of fixed shape. By applying a sorting
algorithm called jeu de taquin, Novelli, Pak and Stoyanovskii gave a bijective proof of the hook-
length formula in 1997. We consider a natural extension of jeu de taquin to arbitrary posets,
where jeu de taquin transforms each labeling into a (dual) linear extension. In particular, we
study jeu de taquin on the so-called double-tailed diamond poset Dm,n having two possible linear
extensions. The counting problem how many times either of the two linear extensions is obtained
leads to an interesting statistic on permutations generalizing right-to-left-minima. We derive an
explicit formula for the distribution implying that uniform distribution is obtained if and only if
m ≥ n. In all cases we are also able to explain this result combinatorially by defining appropriate
sign-reversing involutions. Finally, we observe that the extended hook-length formula for counting
linear extensions on d-complete posets can be applied to provide an answer to a seemingly unrelated
question, namely: Given a uniformly random standard Young tableau of fixed shape, what is the
expected value of the left-most entry in the second row?







Zusammenfassung

Ein in der Abzählkombinatorik beliebtes Problem zeichnet sich meist durch drei Eigenschaften aus:
Erstens lässt sich das Problem leicht verständlich formulieren, zweitens hat die Abzählformel eine
einfache, geschlossene Form und drittens stellt das Beweisen der Formel mit den uns zur Verfügung
stehenden Methoden eine Herausforderung dar. Eines der faszinierendsten Probleme mit diesen Ei-
genschaften wird von alternierenden Vorzeichenmatrizen gestellt. Dies sind quadratische Matrizen
mit Einträgen aus {0, 1,−1}, sodass sich in jeder Zeile und in jeder Spalte die von Null verschiedenen
Einträge abwechseln und zu 1 aufsummieren. Für die Anzahl der alternierenden Vorzeichenmatrizen
mit n Zeilen stellten Mills, Robbins und Rumsey im Jahr 1983 eine Vermutung in Form einer Pro-
duktformel auf. Über ein Jahrzehnt später gelang es Zeilberger im Jahr 1996 diese Produktformel (in
einem Paper mit 84 Seiten) zu beweisen. Die zugehörige Abzählfolge 1, 2, 7, 42, 429, 7436, 218348, . . .
(OEIS A005130) tritt auch bei einer Vielzahl anderer Abzählprobleme auf, wobei nur manche dieser
Zusammenhänge bisher bijektiv erklärt werden konnten.

Im ersten Teil der Dissertation behandeln wir monotone Dreiecke, welche mit fixer unterster Zeile
(1, 2, . . . , n) umkehrbar eindeutig den alternierenden Vorzeichenmatrizen mit n Zeilen entsprechen.
Fischer leitete eine Operatorformel für das Polynom α(n; k1, k2, . . . , kn) her, dessen Auswertung
an ganzzahligen Stellen k1 < k2 < · · · < kn gleich der Anzahl an monotonen Dreiecken mit un-
terster Zeile (k1, k2, . . . , kn) ∈ Zn ist. Unter Anwendung dieser Operatorformel und zusätzlicher
Eigenschaften des Polynoms veröffentlichte Fischer im Jahr 2007 einen alternativen Beweis für die
verfeinerte Abzählung von alternierenden Vorzeichenmatrizen hinsichtlich der Position des eindeu-
tigen Eintrags 1 in der ersten Zeile. Da die eingeführten Konzepte und Methoden die Grundlage für
einige weitere Resultate bilden, präsentieren wir zunächst die aktuellste Version dieses Beweises.

Nachdem Computerexperimente darauf hindeuteten, dass das α-Polynom erstaunliche Iden-
titäten wie zum Beispiel α(n; 1, 2, . . . , n) = α(2n;n, n, n− 1, n− 1, . . . , 1, 1) erfüllt, betrachten wir
Auswertungen des Polynoms α(n; k1, k2, . . . , kn) an ganzzahligen Stellen k1 ≥ k2 ≥ · · · ≥ kn. Als
erstes Resultat zeigen wir, dass die Auswertung in diesem Fall eine Interpretation als vorzeichenbe-
haftete Abzählung eines neuen kombinatorischen Objekts namens

”
Decreasing Monotone Triangle“

besitzt. Wir wenden daraufhin diese Interpretation und die zuvor eingeführte Methode an, um die
Identität α(n; 1, 2, . . . , n) = α(2n;n, n, n− 1, n− 1, . . . , 1, 1) zu beweisen.
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Solche eindrucksvollen Identitäten treten auch dann auf, wenn das Polynom an ganzzahligen,
aber nicht notwendigerweise monotonen Stellen ausgewertet wird. Daher erweitern wir die In-
terpretation des α-Polynoms auf (k1, k2, . . . , kn) ∈ Zn, indem wir ein weiteres kombinatorisches
Objekt namens

”
Generalized Monotone Triangle“ definieren, welches eine Verallgemeinerung von

monotonen Dreiecken und
”
Decreasing Monotone Triangles“ darstellt. Dieses Resultat ermöglicht

uns einerseits die Domäne, auf der eine einfache Identität bereits kombinatorisch verstanden war,
auf Zn zu erweitern. Andererseits verleiht das Resultat einigen vermuteten Identitäten – ein-
schließlich einer bewundernswerten Verallgemeinerung von α(n; 1, 2, . . . , n) = α(2n;n, n, n− 1, n−
1, . . . , 1, 1) – eine mögliche kombinatorische Bedeutung.

Im Anschluss betrachten wir eine langjährige Vermutung zu einer verfeinerten Abzählung von
vertikal symmetrischen, alternierenden Vorzeichenmatrizen. Im Jahr 2008 vermutete Fischer eine
Produktformel für Bn,i, die Anzahl solcher Matrizen mit 2n + 1 Zeilen, bei denen sich der ein-
deutige Eintrag 1 in der linken Hälfte der zweiten Zeile in Spalte i ∈ {1, 2, . . . , n} befindet. Unser
Versuch, die Vermutung mit der gleichen Methode zu beweisen, erfordert eine Erweiterung der
kombinatorischen Bedeutung von Bn,i auf i ∈ {1, 2, . . . , 2n}. Die dadurch entstandene Symmetrie
Bn,n+i = Bn,n+1−i, i = 1, . . . , n, können wir bijektiv erklären. Durch Herleitung eines zugehörigen
linearen Gleichungssystems lässt sich die Vermutung schließlich auf eine Identität eines multiva-
riaten Laurent-Polynoms reduzieren. Diese neue Vermutung ist unabhängig von alternierenden
Vorzeichenmatrizen oder verwandten kombinatorischen Objekten und sollte daher einem großen
Publikum zugänglich sein.

Der letzte Teil der Dissertation ist einer weiteren bemerkenswerten Produktformel gewidmet,
nämlich der Hakenlängenformel für die Anzahl der

”
standard Young tableaux“ einer fixen Parti-

tion. Im Jahr 1997 veröffentlichten Novelli, Pak und Stoyanovskii einen bijektiven Beweis für die
Hakenlängenformel unter Anwendung des Sortieralgorithmus

”
jeu de taquin“. Wir betrachten eine

naheliegende Verallgemeinerung von
”
jeu de taquin“ auf teilweise geordneten Mengen, welche je-

des Labeling in eine (duale) lineare Erweiterung transformiert. Insbesondere untersuchen wir den
Sortieralgorithmus auf dem sogenannten

”
double-tailed diamond“ Dm,n, der zwei mögliche lineare

Erweiterungen besitzt. Das Abzählproblem, wie oft man welche der beiden linearen Erweiterungen
als Ergebnis der Sortierung erhält, führt zu einer interessanten Statistik auf Permutationen, die
Rechts-Links-Minima verallgemeinert. Wir leiten eine explizite Formel für die Verteilung her, die
insbesondere eine Gleichverteilung genau im Fall m ≥ n impliziert. In allen Fällen können wir die
erhaltene Verteilung auch mittels geeigneter vorzeichenumkehrender Involutionen erklären. Schließ-
lich zeigen wir, dass die Hakenlängenformel für lineare Erweiterungen von

”
d-complete posets“ zur

Beantwortung einer scheinbar unabhängigen Frage verwendet werden kann: Welchen Wert nimmt
der erste Eintrag in der zweiten Zeile bei Betrachtung aller

”
standard Young tableaux“ einer fixen

Partition durchschnittlich an?







Chapter 1
Introduction

We start this first chapter by reviewing the amazing story of Alternating Sign Matrices in Sec-
tion 1.1. In order to avoid distraction, the definitions of all mentioned combinatorial objects are
deferred to Section 1.2.

1.1 Timeline

The counting sequence
1, 2, 7, 42, 429, 7436, 218348, 10850216, . . . (1.1.1)

has attracted the attention of combinatorialists throughout the past decades. In 1979, it first
appeared in a work by Andrews on so-called Descending Plane Partitions (DPPs). He showed that
the number of DPPs where no part exceeds n is equal to [And79, Th. 10]

n−1∏

i=0

(3i+ 1)!

(n+ i)!
=

1! 4! · · · (3n− 2)!

n! (n+ 1)! · · · (2n− 1)!
, n ≥ 1, (1.1.2)

i.e. a product formula yielding exactly the numbers in (1.1.1). This already happened before the
birth of Alternating Sign Matrices (ASMs), which Robbins encountered when doing computer
experiments on a generalization of determinants: Recall that the ordinary determinant of a matrix
M = (mi,j)1≤i,j≤n is

detM =
∑

σ∈Sn

sgnσ
n∏

i=1

mi,σ(i), (1.1.3)

and can be computed recursively using Dodgson’s condensation algorithm. At the heart of the
algorithm is the Desnanot-Jacobi adjoint matrix theorem, which states that

detM det
(
M1,n

1,n

)
= det

(
M1

1

)
det (Mn

n )− det (Mn
1 ) det

(
M1

n

)
, n ≥ 3,

whereby subscripts (resp. superscripts) define which rows (resp. columns) are deleted from the
matrix. In other words, we can reduce the computation of an n×n-determinant to the computation
of (n− 1)× (n− 1) and (n− 2)× (n− 2)-determinants.

1



2 CHAPTER 1. INTRODUCTION

Robbin’s generalization of the determinant introduces an additional parameter λ. The λ-
determinant of a matrix is then inductively defined by

detλ (m1,1) := m1,1,

detλ

(
m1,1 m1,2

m2,1 m2,2

)
:= m1,1m2,2 + λm1,2m2,1,

detλ (M) :=
detλ

(
M1

1

)
detλ (M

n
n ) + λdetλ (M

n
1 ) detλ

(
M1

n

)

detλ

(
M1,n

1,n

) , n ≥ 3.

Robbins then conjectured (and proved years later together with Rumsey [RR86, (27)]) that λ-
determinants satisfy an analogue of (1.1.3), but instead of summing over all permutations (or
equivalently permutation matrices), one has to sum over all Alternating Sign Matrices of size n:

detλ (M) =
∑

A∈An

λI(A)(1 + λ−1)N(A)
n∏

i,j=1

m
ai,j

i,j , (1.1.4)

whereby An denotes the set of n × n-ASMs, N(A) the number of (−1)s in the ASM and I(A) =∑
1≤i′<i≤n,
1≤j<j′≤n

ai,j ai′,j′ a natural generalization of the inversion number.

If we set λ = −1 in (1.1.4), then the only summands not vanishing are those with N(A) = 0.
Since ASMs without (−1)s are exactly the permutation matrices, (1.1.4) is indeed a generalization
of (1.1.3). The natural question one may ask at that point is whether the number of summands in
(1.1.4) is essentially larger than n!, i.e. the number of summands in (1.1.3)? Computer experiments
indicated that the number of summands for the first few values of n are exactly given by the sequence
in (1.1.1).

In 1983, Mills, Robbins and Rumsey published [MRR83] several conjectures: First of all they
conjectured that the number of ASMs of size n is given by

An := |An| =
n−1∏

i=0

(3i+ 1)!

(n+ i)!
, (1.1.5)

which is referred to as ASM Conjecture (resp. ASM Theorem since 1996). Then they also introduced
a refinement of this conjecture, namely that the number of ASMs of size n with their first row’s
unique 1 located in column i is equal to

An,i =

(
n+i−2
n−1

)(
2n−i−1
n−1

)
(
3n−2
n−1

) An, (1.1.6)

the Refined ASM Conjecture (resp. Refined ASM Theorem since 1996). Now, if there are supposed
to be the same number of ASMs of size n as DPPs with no parts exceeding n, one might expect
a combinatorial explanation for this, i.e. a bijection between the two sets. Even though Mills,
Robbins and Rumsey were able to conjecturally identify three statistics of DPPs that correspond
to the number of (−1)s in the ASM, the inversion number and the position of the unique 1 in
the first row [MRR83, Conj. 3], no such bijection in full generality has been found so far (for a
bijection restricted to permutation matrices see [Ayy10, Str11]). Recently, a computational proof
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was given in [BFZJ12] and even more refined by an additional statistic in [BFZJ13]. Back in the
1980s however, trying to prove the equinumerosity of ASMs of size n and DPPs with parts smaller
than or equal to n turned out to be a dead end.

It was a connection with a different kind of plane partition that should eventually lead to the first
proof of the ASM Conjecture: In 1986, Mills, Robbins and Rumsey conjectured [MRR86, Conj. 1]
that the number of totally symmetric self-complementary plane partitions (TSSCPPs) inside a

(2n)× (2n)× (2n)-box is given by the same product formula
∏n−1

i=0
(3i+1)!
(n+i)! . Moreover, they observed

that these TSSCPPs are in bijective correspondence with certain triangular arrays of integers,
which Zeilberger later on called n-Magog triangles. This seemed promising since Mills, Robbins and
Rumsey already observed in [MRR83] that ASMs of size n are also in one-to-one correspondence
with certain triangular arrays of integers, namely Monotone Triangles (MTs) with bottom row
(1, 2, . . . , n), which Zeilberger later renamed to n-Gog triangles. After Andrews managed to prove
[And94, Th. 1] the TSSCPP conjecture in the early 90s, the ASM conjecture was reduced to showing
that the number of n-Magog triangles and the number of n-Gog triangles coincides. Even though
a bijective proof of this has not been found so far, Zeilberger eventually succeeded in finding a
computational proof of it in an 84-pages paper [Zei96a]. But with this first proof of the ASM
Conjecture, the story was far from over.

Soon after, a connection with a well-studied model in statistical mechanics was discovered: Ku-
perberg observed that configurations of the six-vertex model with domain wall boundary condition
bijectively correspond to ASMs. This connection allowed him to apply the developed machinery
and give an alternative, shorter proof of the ASM Theorem [Kup96]. Afterwards, Zeilberger also
applied this method [Zei96b] to prove the Refined ASM Conjecture (1.1.6). For a more detailed
account it is highly recommended to consider Bressoud’s book [Bre99].

With the two main conjectures resolved, further questions regarding different aspects of ASMs
arose: One such aspect is the enumeration of symmetry classes of ASMs, e.g. how many vertically
symmetric ASMs of size n are there? As it turned out, the solution of many counting problems
involving symmetry classes of ASMs can also be expressed in terms of a product formula (see for
example [Kup02,RS06a,RS06b,Oka06]). Another aspect are further refined enumerations of ASMs,
e.g. how many ASMs of size n are there if we fix the position of the unique 1 in the first row, first
column, last row and last column at the same time? This quadruply refined enumeration of ASMs
was recently solved by Ayyer and Romik [AR13] as well as Behrend [Beh13] in 2013.

But also combinatorial objects different from ASMs that are counted by (1.1.1) admit a va-
riety of refined enumerations, generalizations and symmetry properties [Pro01]. One particularly
beautiful example for this are the so-called Fully Packed Loop configurations on a square grid and
their rotational symmetry due to Wieland [Wie00]. In the present thesis our main focus is put
on Monotone Triangles, which bijectively correspond to ASMs of size n if we fix the bottom row
to be (1, 2, . . . , n). In 2006, Fischer derived an operator formula [Fis06] for the number of Mono-
tone Triangles with general bottom row (k1, k2, . . . , kn), which subsequently allowed her to give an
alternative proof of the Refined ASM Theorem [Fis07] in 2007.
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1.2 Some combinatorial objects counted by 1, 2, 7, 42, 429, . . .

1.2.1 Alternating Sign Matrices

Definition 1.2.1. An Alternating Sign Matrix (ASM) of size n is an n× n-matrix with entries in
{0, 1,−1} such that

• the sum of the entries in each row and in each column is 1 and

• the non-zero entries in each row and in each column alternate in sign.

Let ASM(n) denote the set of ASMs of size n and An its cardinality. From the definition it
follows that permutation matrices are ASMs, but starting from n = 3 there are more ASMs than
permutation matrices:

Example 1.2.2. The seven ASMs of size 3 are

ASM(3) =

{




1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 0 1
0 1 0



 ,





0 1 0
1 0 0
0 0 1



 ,





0 1 0
0 0 1
1 0 0



 ,





0 0 1
1 0 0
0 1 0



 ,





0 0 1
0 1 0
1 0 0



 ,





0 1 0
1 −1 1
0 1 0





}
,

and one of the 429 ASMs of size 5 is




0 1 0 0 0
1 −1 0 1 0
0 0 1 −1 1
0 1 −1 1 0
0 0 1 0 0




.

From the definition of ASMs it directly follows that the first row cannot contain a −1 and
therefore contains exactly one non-zero entry, namely a 1. Let An,i denote the number of ASMs of
size n where the first row’s unique 1 is located in column i. Reflection along the vertical symmetry
axis is a bijection between the set of ASMs counted by An,i and those counted by An,n+1−i, hence

An,i = An,n+1−i. (1.2.1)

If an ASM of size n contains a 1 in the top-left corner, then removing the first row and column
yields an ASM of size n− 1. Conversely, appending such a row and column to an ASM of size n− 1
gives an ASM of size n with a 1 in the top-left corner (see Figure 1.1). Hence,

An,1 = An−1 =
n−1∑

i=1

An−1,i. (1.2.2)

The definition of ASMs implies that each partial row sum, i.e.
∑j

j′=1 ai,j′ , and each partial column

sum, i.e.
∑i

i′=1 ai′,j , is either 0 or 1. Even though an ASM contains only three different kinds of
entries, namely 1s, 0s and −1s, there are six different kinds of entries from the viewpoint of partial
row/column sums: If ai,j = 1, then the corresponding partial row/column sum is 1. If ai,j = −1,
then the corresponding partial row/column sum is 0. However, if ai,j = 0, then the corresponding
partial row sum can be either 0 or 1 and the same is true for the corresponding partial column
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1 0 0 0 0 0
0 0 1 0 0 0
0 1 −1 0 1 0
0 0 1 0 −1 1
0 0 0 1 0 0
0 0 0 0 1 0




⇐⇒




0 1 0 0 0
1 −1 0 1 0
0 1 0 −1 1
0 0 1 0 0
0 0 0 1 0




Figure 1.1: Combinatorial explanation of (1.2.2).

sum, i.e. there are four different kinds of 0s. Given an ASM A, let z1(A) (resp. z2(A)) denote the
number of 0s of A where both the partial row sum and column sum is 0 (resp. 1), and let z3(A)
(resp. z4(A)) denote the number of 0s where the partial row sum is 0 (resp. 1) and the partial
column sum is 1 (resp. 0). For example, the ASM of size 5 in Figure 1.1 yields z1(A) = z2(A) = 2
and z3(A) = z4(A) = 6. As it turns out, every ASM A satisfies z1(A) = z2(A) and z3(A) = z4(A):
To see this, consider the corresponding corner-sum matrix C = (ci,j)0≤i,j≤n and the height-function
matrix H = (hi,j)0≤i,j≤n defined by

c0,j = ci,0 = 0,

ci,j =
∑

1≤i′≤i
1≤j′≤j

ai′,j′ , i, j ≥ 1,

hi,j = i+ j − 2ci,j .

For example

A =




0 1 0 0 0
1 −1 0 1 0
0 1 0 −1 1
0 0 1 0 0
0 0 0 1 0




, C =




0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 1 2 2
0 1 2 2 2 3
0 1 2 3 3 4
0 1 2 3 4 5




, H =




0 1 2 3 4 5
1 2 1 2 3 4
2 1 2 3 2 3
3 2 1 2 3 2
4 3 2 1 2 1
5 4 3 2 1 0




.

Since each row and column of an ASM sums up to 1, the right-most column and bottom row of
the corner-sum matrix is (0, 1, . . . , n), and therefore the right-most column and bottom row of H is
(n, n− 1, . . . , 0). Since the first row and column of C is by definition (0, 0, . . . , 0), the first row and
column of H is (0, 1, . . . , n). The entries of the height-function matrix further satisfy by definition

hi,j = hi−1,j−1 + 2(1 + ci−1,j−1 − ci,j), i, j ≥ 1.

If ai,j = 0 with partial row and partial column sum equal to 0, then ci,j = ci−1,j−1 and therefore
hi,j = hi−1,j−1 + 2. If ai,j = 0 with partial row and partial column sum equal to 1, then ci,j =
ci−1,j−1 + 2 and therefore hi,j = hi−1,j−1 − 2. In all other cases ci,j = ci−1,j−1 + 1 and therefore
hi,j = hi−1,j−1. Together with the previous observation regarding the border of H , it follows that
along each of the diagonals, the number of 0s contributing to z1(A) has to be equal to the number
of 0s contributing to z2(A) (see Figure 1.2). In particular, z1(A) = z2(A). Analogously, one can
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0

1

2

3

4

5

1 2 3 4 5

4

3

2

1

01234

Figure 1.2: Increments by 2 along a diagonal correspond to 0s counted by z1(A). Decrements
correspond to 0s counted by z2(A).

observe that each anti-diagonal of A has to contain the same number of 0s contributing to z3(A)
as 0s contributing to z4(A).

Coming back to the question, whether there are essentially more ASMs than permutation ma-
trices: The number of ASMs of size n is trivially bounded by n! ≤ An ≤ 3n

2

. From the ASM
Theorem and Stirling’s formula one can deduce that (see Lemma A.1.1)

lim
n→∞

A
1

n2
n =

3
√
3

4
≈ 1.299,

i.e. an affirmative answer to the question (see also [BF06] for more refined asymptotics).

1.2.2 Monotone Triangles

Definition 1.2.3. A Monotone Triangle (MT) of size n is a triangular array of integers (ai,j)1≤j≤i≤n

arranged in the form
a1,1

a2,1 a2,2

.

.

.

.

.

.

an,1 . . . an,n. . .

such that

• entries in each row are strictly increasing, i.e. ai,j < ai,j+1 and

• each entry is weakly between its two bottom neighbours, i.e. ai+1,j ≤ ai,j ≤ ai+1,j+1.

To obtain a feasible counting problem one can fix the entries in the bottom row and ask for the
number of MTs with this bottom row. Let MT (k1, k2, . . . , kn) denote the set of MTs with bottom
row (k1, k2, . . . , kn) and α(n; k1, k2, . . . , kn) its cardinality.

Example 1.2.4. The seven MTs with bottom row (1, 2, 3) are

MT (1, 2, 3) =
{

1
1 2

1 2 3
,

1
1 3

1 2 3
,

2
1 2

1 2 3
,

2
2 3

1 2 3
,

3
1 3

1 2 3
,

3
2 3

1 2 3
,

2
1 3

1 2 3

}
,



1.2. SOME COMBINATORIAL OBJECTS COUNTED BY 1, 2, 7, 42, 429, . . . 7

and one of the 429 MTs with bottom row (1, 2, 3, 4, 5) is

2
1 4

1 3 5
1 2 4 5

1 2 3 4 5

.

As a result by Mills, Robbins and Rumsey there is the same number of ASMs of size n and MTs
with bottom row (1, 2, . . . , n), i.e.

α(n; 1, 2, . . . , n) =
n−1∏

i=0

(3i+ 1)!

(n+ i)!
. (1.2.3)

Proposition 1.2.5 ([MRR83]). The set of Monotone Triangles with bottom row (1, 2, . . . , n) is
in one-to-one correspondence with the set of Alternating Sign Matrices of size n via the following
mapping:

Row i of MT contains entry j. ⇔ Top i entries in column j of ASM sum up to 1. (1.2.4)

An example can be seen in Figure 1.3.

2
1 4

1 3 5
1 2 4 5

1 2 3 4 5

⇐⇒




0 1 0 0 0
1 −1 0 1 0
0 0 1 −1 1
0 1 −1 1 0
0 0 1 0 0




Figure 1.3: A MT with bottom row (1, 2, 3, 4, 5) and its corresponding ASM of size 5.

Proof. Let us first show that for each ASM A of size n the construction indeed yields a MT M . By
definition of ASMs all partial column sums are either equal 0 or 1. Since the entries in each of the
first i rows sum up to 1, the i-th row of M contains exactly i different numbers of {1, 2, . . . , n}. By
construction these are ordered in increasing order in each row, so it remains to check that entries
along North-East- and South-East-diagonals are weakly increasing. For this, let ci,j count in how
many of the first j columns the first i rows sum up to 1. From the definition of ASMs it follows
that for each fixed j we have c1,j ≤ c2,j ≤ · · · ≤ cn,j . By construction ci,j is the number of entries
≤ j in the i-th row of M and therefore entries along NE-diagonals of M are weakly increasing. If
one analogously considers the last j columns of A, then the number of those columns with partial
column sum equal to 1 is also weakly increasing row by row. Therefore the number of entries ≥ j
in M is weakly increasing row by row, thus implying the weak increase along SE-diagonal.

Conversely, let M be a MT with bottom row (1, 2, . . . , n). Then the i-th row of M contains
exactly i different integers of {1, 2, . . . , n}. By construction the corresponding matrix A contains
only entries in {−1, 0, 1} such that in each column the non-zero entries alternate in sign and sum
up to 1. The weak increase along NE-diagonals (resp. SE-diagonals) implies that the number of
entries ≤ j (resp. the number of entries ≥ j) in M is weakly increasing row by row. In each row of
A the the non-zero entries therefore alternate in sign and sum up to 1, i.e. A is an ASM.
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1.2.3 Descending Plane Partitions

Definition 1.2.6. A Descending Plane Partition (DPP) is an array (Di,j)1≤i≤r,
i≤j≤λi+i−1

of positive

integers arranged in the form

D1,1 D1,2 D1,3 · · · D1,λ1

D2,2 D2,3 · · · D2,λ2+1

. . . . .
.

Dr,r · · · Dr,λr+r−1

such that

• entries in each row are weakly decreasing, i.e. Di,j ≥ Di,j+1,

• entries in each column are strictly decreasing, i.e. Di,j > Di+1,j and

• the number of entries in each row is strictly less than the first entry in the same row and at
least as large as the first entry in the following row, i.e. D1,1 > λ1 ≥ D2,2 > λ2 ≥ · · · ≥
Dr−1,r−1 > λr−1 ≥ Dr,r > λr.

The entries of a DPP are also referred to as parts. Let DPP(n) denote the set of DPPs where
each part is at most n (or equivalently D1,1 ≤ n). The number of rows of the DPP does not have
to satisfy any further restriction, in particular ∅ ∈ DPP(n).

Example 1.2.7. The seven DPPs where D1,1 ≤ 3 are

DPP(3) =

{
∅ , 3 , 2 , 3 3 , 3 2 , 3 1 ,

3 3
2

}
,

and one of the 429 DPPs in DPP(5) is

5 4 2 2
3 1

.

In [BFZJ13] it was shown that ASMs of size n and DPPs with D1,1 ≤ n are equinumerous with
respect to four different statistics on ASMs and DPPs. Finding a bijection between the two sets,
however, is still an open problem.

1.2.4 Totally symmetric self-complementary plane partitions

There are two equivalent definitions for plane partitions which are both useful to have in mind.

Definition 1.2.8. A plane partition (PP) is an array (Pi,j)1≤i≤r,
1≤j≤λi

of positive integers arranged in

the form
P1,1 P1,2 · · · P1,λ1

P2,1 P2,2 · · · P2,λ2

... . .
.

Pr,1 Pr,2 · · · Pr,λr

such that
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• entries in each row and column are weakly decreasing, i.e. Pi,j ≥ max{Pi,j+1, Pi+1,j} and

• the number of entries in each row is weakly decreasing, i.e. λ1 ≥ λ2 ≥ · · · ≥ λr.

A plane partition of n is a plane partition where the sum of all entries is n. On the other
hand a plane partition can be thought of as stacks of cubes pushed into the corner of a room (see
Figure 1.4). This motivates the following equivalent definition: A plane partition is a finite subset

3

3

2

2

1 1

1

⇐⇒
3 2 1 1
3 1
2

Figure 1.4: A plane partition of 13.

P ⊆ N3 such that (i′, j′, k′) ∈ P whenever (i, j, k) ∈ P and 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, 1 ≤ k′ ≤ k. As a
result by MacMahon, the number of plane partitions fitting inside

B(r, s, t) := {1, 2, . . . , r} × {1, 2, . . . , s} × {1, 2, . . . , t}
is given by

r∏

i=1

s∏

j=1

t∏

k=1

i+ j + k − 1

i+ j + k − 2
.

Yet another combinatorial object counted by (1.1.1) is obtained if one imposes additional con-
ditions on the structure of the plane partition:

Definition 1.2.9. A totally symmetric self-complementary plane partition (TSSCPP) of size 2n is
a plane partition T ⊆ B(2n, 2n, 2n) that is

• totally symmetric, i.e.

(i, j, k) ∈ T =⇒ (i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, i) ∈ T,

• and self-complementary, i.e.

(i, j, k) ∈ T ⇐⇒ (2n+ 1− i, 2n+ 1− j, 2n+ 1− k) /∈ T.

Let T SSCPP(n) denote the set of TSSCPPs of size 2n.

Example 1.2.10. The seven TSSCPPs of size 6 are

T SSCPP(3) =

{ 6 6 6 3 3 3
6 6 6 3 3 3
6 6 6 3 3 3
3 3 3 0 0 0
3 3 3 0 0 0
3 3 3 0 0 0

,

6 6 6 4 3 3
6 6 6 3 3 3
6 6 5 3 3 2
4 3 3 1 0 0
3 3 3 0 0 0
3 3 2 0 0 0

,

6 6 6 4 3 3
6 6 6 4 3 3
6 6 4 3 2 2
4 4 3 2 0 0
3 3 2 0 0 0
3 3 2 0 0 0

,

6 6 6 5 5 3
6 5 5 4 3 1
6 5 4 3 2 1
5 4 3 2 1 0
5 3 2 1 1 0
3 1 1 0 0 0

,

6 6 6 5 5 3
6 5 5 3 3 1
6 5 5 3 3 1
5 3 3 1 1 0
5 3 3 1 1 0
3 1 1 0 0 0

,

6 6 6 5 4 3
6 6 5 4 3 2
6 5 4 3 2 1
5 4 3 2 1 0
4 3 2 1 0 0
3 2 1 0 0 0

,

6 6 6 5 4 3
6 6 5 3 3 2
6 5 5 3 3 1
5 3 3 1 1 0
4 3 3 1 0 0
3 2 1 0 0 0

}
.
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As a result by Andrews [And94] the number of TSSCPPs of size 2n is given by
∏n−1

i=0
(3i+1)!
(n+i)! , but

this equinumerosity with ASMs has not been understood bijectively so far. Striker [Str13] found a
natural bijection restricted to the set of permutation matrices.

1.2.5 Gogs & Magogs

Definition 1.2.11. A (n, k)-Gog trapezoid is an array (Gi,j)1≤i≤n,
1≤j≤min{k,n+1−i}

of positive integers

arranged in the form
G1,1 · · · G1,k−1 G1,k

G2,1 · · · G2,k−1 G2,k

...
...

...
Gn+1−k,1 · · · Gn+1−k,k−1 Gn+1−k,k

Gn+2−k,1 · · · Gn+2−k,k−1

... . . .

Gn,1

such that

• entries in each row are strictly increasing, i.e. Gi,j < Gi,j+1,

• entries in each column and each North-East-diagonal are weakly increasing, i.e. Gi,j ≤ Gi+1,j ≤
Gi,j+1 and

• G1,i = i, i = 1, . . . , k.

Note that if k = n, then these are exactly the Monotone Triangles with bottom row (1, 2, . . . , n).

Definition 1.2.12. A (n, k)-Magog trapezoid is an array (Mi,j)1≤i≤min{k,n+1−j},
1≤j≤n

of positive inte-

gers arranged in the form

M1,1 M1,2 · · · M1,n+1−k · · · M1,n−1 M1,n

M2,1 M2,2 · · · M2,n+1−k · · · M2,n−1

...
...

... . . .

Mk,1 Mk,2 · · · Mk,n+1−k

such that

• entries in each row are weakly increasing, i.e. Mi,j ≤ Mi,j+1,

• entries in each column are weakly decreasing, i.e. Mi,j ≥ Mi+1,j and

• entries in the first row are upper-bounded by M1,j ≤ j.

The objects obtained in the special case k = n each represent the fundamental domain of a
TSSCPP of size 2n, i.e. the objects are in one-to-one correspondence [MRR86] with TSSCPPs of
size 2n. Zeilberger showed [Zei96a] that there is the same number of (n, k)-Gog trapezoids as (n, k)-
Magog trapezoids, thus giving the first proof of the ASM Conjecture. In the special case k = 2, a
bijective proof was found by Cheballah and Biane [CB12]. A more refined conjecture on Gogs and
Magogs (including an additional parameter and two statistics) was introduced by Krattenthaler
[Kra] and has not been proven so far.
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1.2.6 Configurations of the six-vertex model with DWBC

Starting point of the six-vertex model with domain wall boundary condition is the following grid
containing n rows of n vertices:

Gn :
.
.
.

.
.
.

.
.
.

.
.
.

. . .

. . .

. . .

. . .

The domain wall boundary condition (DWBC) refers to the fact that the left- and right-most edges
along the boundary are directed inwards whereas the top- and bottom-most edges are directed
outwards. A configuration of Gn is an assignment of directions to the remaining edges such that
each vertex has in-degree and out-degree two. At a vertex having four undirected edges, there are
six ways to choose the directions of the four edges, hence the name six-vertex model. Let SVM(n)
denote the set of configurations of Gn.

Example 1.2.13. The seven configurations of size 3 are

SVM(3) =





, , , , , ,





,

and one of the 429 configurations in SVM(5) is

.

The sets SVM(n) and ASM(n) are in bijection by identifying the six different kinds of vertices
with the six different kinds of entries in an ASM (cf. Subsection 1.2.1) in the following way:

00

0

0 0 0

0

1

1

0

1

1 1 −1

.
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For details on the history and related ice-type models, we refer the reader to [Bax89]. Kuperberg
used this connection and applied techniques from statistical mechanics (e.g. determinantal expres-
sions for the partition function of the six-vertex model) to give an alternative proof of the ASM
Theorem [Kup96], and Zeilberger soon after [Zei96b] took the same approach to give the first proof
of the Refined ASM Theorem. To see how these techniques can be applied, it is recommendable to
read [BFZJ12, Section 2.1].

1.2.7 Fully Packed Loop configurations

As in the six-vertex model, one starts with a square grid containing n2 vertices and 4n external
edges. Instead of assigning directions to the edges, one considers subgraphs of the grid. Hereby,
the boundary condition is that starting with the horizontal, external edge incident with the top-left
vertex every other external edge is contained in the subgraph:

F5 : .

A Fully Packed Loop (FPL) configuration of size n is a subgraph of Fn such that each vertex has
degree 2. An FPL configuration of size 5 is depicted in Figure 1.5. The set of FPL configurations
of size n is in one-to-one correspondence with the set of six-vertex configurations of same size (and
hence with the set of ASMs of size n) by the following mapping: Partition the set of vertices into
odd and even vertices in a chessboard manner, i.e. the top-left vertex is defined to be odd, each
vertex adjacent to an odd vertex is even and vice versa each vertex adjacent to an even vertex
is odd. At odd vertices the FPL configuration contains exactly the edges directed inwards in the
corresponding six-vertex configuration, whereas at even vertices the FPL configuration contains
exactly the edges directed outwards (see Figure 1.5).

The degree condition implies that an FPL configuration consists of paths connecting the external
edges and may contain interior loops. If one numbers the 2n external edges contained in the FPL
configuration, one can then associate a so-called link pattern with each FPL configuration that only
stores the information which external edges are connected to each other (see Figure 1.6).

One could then refine the enumeration of FPL configurations w.r.t. a fixed link pattern (see for
example [CKLN04]). As a result by [Wie00], the enumeration of FPL configurations w.r.t. a fixed
link pattern is rotationally invariant. This means that in the example given in Figure 1.6 there is
the same number of FPL configurations with the depicted link pattern π as there are for the link
pattern π′ = {{1, 10}, {2, 9}, {3, 4}, {5, 6}, {7, 8}} (obtained from counter-clockwise rotation by one
step). This refined enumeration of FPLs and Wieland gyration also play a central role in the proof
of the long-standing open Razumov-Stroganov (ex-)conjecture [CS11].
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⇐⇒

Figure 1.5: An FPL configuration of size 5 and the corresponding configuration of the six-vertex
model.
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910

 

Figure 1.6: Link pattern π = {{1, 8}, {2, 3}, {4, 5}, {6, 7}, {9, 10}}.
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ASM Monotone Triangle 6-vertex configuration FPL configuration



1 0 0
0 1 0
0 0 1




1
1 2

1 2 3



1 0 0
0 0 1
0 1 0




1
1 3

1 2 3



0 1 0
1 0 0
0 0 1




2
1 2

1 2 3



0 1 0
0 0 1
1 0 0




2
2 3

1 2 3



0 0 1
1 0 0
0 1 0




3
1 3

1 2 3



0 0 1
0 1 0
1 0 0




3
2 3

1 2 3



0 1 0
1 −1 1
0 1 0




2
1 3

1 2 3



Chapter 2
Proof of the Refined Alternating Sign
Matrix Theorem

2.1 Introduction

In this chapter we present a proof of the Refined Alternating Sign Matrix Theorem:

Theorem 2.1.1 (Refined ASM Theorem). The number An,i of ASMs of size n with the first row’s
unique 1 in column i is given by

An,i =

(
n+i−2
n−1

)(
2n−i−1
n−1

)
(
3n−2
n−1

)
n−1∏

j=0

(3j + 1)!

(n+ j)!
. (2.1.1)

The following proof is due to Fischer and is primarily based on the two papers [Fis06] and
[Fis07]. Over the years additional insight (for example the observations in [Fis10, Fis11]) helped
finding shortcuts and simplifications, which we integrated into this chapter. What makes this proof
particularly appealing is that it is at the same time both reasonably short and self-contained (apart
from one well-known determinant evaluation due to Andrews [And79, Theorem 3]). The goal of
this chapter is to present the complete proof and underlining the self-containment by requiring no
prerequisites except for the definition of Alternating Sign Matrices and Monotone Triangles and
their bijective correspondence presented in Proposition 1.2.5. Thereby we hope to provide a wide
audience with the opportunity to perceive the elegance of this proof.

Let us start by observing that the definition of ASMs is symmetric w.r.t. reflection and rotation.
Therefore, An,i also counts the number of ASMs of size n where the unique 1 in the first (resp. last)
column is in row n + 1 − i. From the correspondence (1.2.4) it then follows that An,i counts the
number of MTs with bottom row (1, 2, . . . , n) and exactly i entries equal to 1 in the left-most NE-
diagonal (resp. exactly i entries equal to n in the right-most SE-diagonal). An example is given in
Figure 2.1.

The chapter is structured as follows: In Section 2.2 we observe that for each n ≥ 1 there exists
a unique polynomial α(n; k1, k2, . . . , kn) in the variables {k1, k2, . . . , kn} such that the evaluation
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2
1 4

1 3 5
1 2 4 5

1 2 3 4 5

⇐⇒




0 1 0 0 0
1 −1 0 1 0
0 0 1 −1 1
0 1 −1 1 0
0 0 1 0 0




Figure 2.1: Corresponding statistics in a MT and its ASM-counterpart.

at increasing integers k1 < k2 < · · · < kn is equal to the number of MTs with bottom row
(k1, k2, . . . , kn). Hereby, we show not only the existence of the polynomials, but also provide an
explanation how to compute the polynomials recursively. In fact, one can give an explicit formula
for α(n; k1, k2, . . . , kn) in terms of an operator formula (Theorem 2.3.1), which first appeared in
[Fis06]. We present a proof of this operator formula in Section 2.3. Next, we observe in Section 2.4
that the number of MTs with a fixed number of 1s in the left-most NE-diagonal can be expressed
in terms of certain evaluations of α(n; k1, k2, . . . , kn) (an idea which first appeared in [Fis11]). Even
though it is not clear how to directly see that these evaluations are equal to the right-hand side
of (2.1.1), one can apply properties of α(n; k1, k2, . . . , kn) to derive a linear equation system (LES)
they satisfy. This and the fact that the LES has a one-dimensional solution space are shown in
Section 2.5. To complete the proof of the Refined ASM Theorem, it then only remains to compute
that the numbers on the right-hand side of (2.1.1) also form a solution of this LES and determine
the constant factor, which is done in Section 2.6.

2.2 The summation operator

An immediate advantage of considering MTs instead of ASMs is that a generalization of the counting
problem has a simple recursive structure [MRR83]: Instead of counting the number of MTs with
bottom row (1, 2, . . . , n) we want to know the number of MTs with bottom row (k1, k2, . . . , kn)
where the ki are integers satisfying k1 < k2 < · · · < kn. Suppose we have solved the counting
problem for MTs with n−1 rows. Given a fixed bottom row (k1, k2, . . . , kn), it follows by definition
of MTs that (l1, . . . , ln−1) ∈ Zn−1 is an admissible penultimate row if and only if ki ≤ li ≤ ki+1 and
li < li+1 for all i (see Figure 2.2). The total number of MTs with fixed bottom row (k1, k2, . . . , kn)

k1

≤

l1

≤

k2

≤

l2

≤

k3

< < . . .

. . . kn−1 kn

≤

ln−1

≤

<

Figure 2.2: Bottom and penultimate row of a Monotone Triangle.

can thus be obtained by summing up the number of MTs with bottom row (l1, . . . , ln−1) over all
admissible penultimate rows.

The goal of this section is to observe that for each n ≥ 1 there exists a unique polynomial in n
variables – called α-polynomial – counting MTs with n rows and fixed bottom row. More precisely,
the evaluation α(n; k1, k2, . . . , kn) at each strictly increasing integer sequence k1 < k2 < · · · < kn
equals the number of MTs with n rows and fixed bottom row (k1, k2, . . . , kn). For instance,
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α(1; k1) = 1 and α(2; k1, k2) = k2 − k1 + 1. Let us first remark that if such a polynomial
α(n; k1, k2, . . . , kn) counting MTs exists, it must be unique.

Remark 2.2.1. A polynomial in n ≥ 1 variables is uniquely determined by its values on
{(k1, k2, . . . , kn) ∈ Zn : k1 < k2 < · · · < kn}: To see this if n = 1, first recall (by induction
w.r.t. the degree) that a polynomial f(x) ∈ R[x] of degree m over an integral domain R has at most
m roots. This is because p(x) =

∑m
k=0 akx

k and p(r) = 0 imply

p(x) = p(x)− p(r) =

m∑

k=1

ak(x
k − rk) = (x− r)

m∑

k=1

ak(x
k−1 + rxk−2 + · · ·+ rk−1) = (x− r)q(x),

with a polynomial q(x) of degree one less. In particular, two univariate polynomials coinciding on
an infinite number of positions have to be identical. Now let n ≥ 2 and suppose

p(k1, . . . , kn) = q(k1, . . . , kn) for all k1 < k2 < · · · < kn, ki ∈ Z.

Then, for fixed integers k1 < k2 < · · · < kn−1, the univariate polynomials kn 7→ p(k1, . . . , kn) and
kn 7→ q(k1, . . . , kn) agree, whenever kn ∈ Z and kn > kn−1. From the previous observation, it
follows that

p(k1, . . . , kn−1, z) = q(k1, . . . , kn−1, z) for all k1 < k2 < · · · < kn−1, ki ∈ Z, z ∈ C.

For each fixed z ∈ C, the polynomials pz(k1, . . . , kn−1) := p(k1, . . . , kn−1, z) and qz(k1, . . . , kn−1) :=
q(k1, . . . , kn−1, z) are therefore identical by the induction hypothesis. Hence, the two polynomials
agree on all positions, which implies that they are identical.

In the following we show how to construct the polynomials α(n; k1, k2, . . . , kn) inductively. By
the previous observations it suffices to define α(n; k1, k2, . . . , kn), verify that is a polynomial and
that it satisfies

α(n; k1, k2, . . . , kn) =
∑

(l1,...,ln−1)∈Z
n−1,

k1≤l1≤k2≤l2≤···≤kn−1≤ln−1≤kn,
li<li+1

α(n− 1; l1, . . . , ln−1) (2.2.1)

for all k1 < k2 < · · · < kn, ki ∈ Z, n ≥ 2. For this, we first define a summation operator
(k1,...,kn)∑
(l1,...,ln−1)

for all (k1, . . . , kn) ∈ Zn having two properties:
On the one hand, the summation operator should yield an extension of (2.2.1), i.e. for any

function A(l1, . . . , ln−1) we want

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =
∑

(l1,...,ln−1)∈Z
n−1,

k1≤l1≤k2≤l2≤···≤kn−1≤ln−1≤kn,
li<li+1

A(l1, . . . , ln−1), (2.2.2)

whenever k1 < k2 < · · · < kn, ki ∈ Z. On the other hand, we want the summation operator to
preserve polynomiality. More precisely, if A(l1, . . . , ln−1) is a polynomial in each li, then

(k1, . . . , kn) 7→
(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) (2.2.3)
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should be a polynomial function on Zn. As soon as we have such a summation operator we can
obtain the desired polynomials α(n; k1, . . . , kn) inductively by defining α(1; k1) := 1 and

α(n; k1, . . . , kn) :=

(k1,...,kn)∑

(l1,...,ln−1)

α(n− 1; l1, . . . , ln−1), (k1, . . . , kn) ∈ Z
n. (2.2.4)

When constructing all admissible penultimate rows (l1, . . . , ln−1) of a MT with bottom row
(k1, . . . , kn) distinguish between two distinct cases for the values of ln−1, namely kn−1 < ln−1 ≤ kn
and ln−1 = kn−1 (cf. Figure 2.2). In the former case (l1, . . . , ln−1) is an admissible penultimate
row if and only if (l1, . . . , ln−2) is an admissible penultimate row of the MT with bottom row
(k1, . . . , kn−1). If ln−1 = kn−1, however, then the strict increase along rows implies ln−2 < kn−1.
This motivates the following inductive definition of the summation operator and its application to
any function A(l1, . . . , ln−1):

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) :=

(k1,...,kn−1)∑

(l1,...,ln−2)

kn∑

ln−1=kn−1+1

A(l1, . . . , ln−2, ln−1) (2.2.5)

+

(k1,...,kn−2,kn−1−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1), n ≥ 2,

where
(k1)∑
()

:= id. To make sense of the summation operator’s definition for arbitrary (k1, . . . , kn) ∈

Zn we have to define
∑b

i=a also in the case a > b, a, b ∈ Z. The formal equation
∑b

i=a f(i) =∑
i≥a f(i)−

∑
i≥b+1 f(i) for a ≤ b may motivate the following extension of ordinary sums

b∑

i=a

f(i) :=





0, b = a− 1,

−
a−1∑

i=b+1

f(i), b+ 1 ≤ a− 1.
(2.2.6)

For example, in the base case n = 2, we then have

(k1,k2)∑

(l1)

f(l1) =

(k1)∑

()

k2∑

l1=k1+1

f(l1) +

(k1−1)∑

()

f(k1) =

k2∑

l1=k1

f(l1), k1, k2 ∈ Z. (2.2.7)

Furthermore it follows inductively from (2.2.5) and (2.2.6) that the summation operator indeed
satisfies (2.2.2) for all k1 < k2 < · · · < kn−1 ≤ kn.

To prove that the defined summation operator also preserves polynomiality, note that (2.2.5)
allows us to write the summation operator only in terms of ordinary sums as defined in (2.2.6).
It therefore suffices to show that ordinary sums preserve polynomiality. Recall that for every
polynomial p(x) there exists a polynomial q(x) such that q(x + 1) − q(x) = p(x) – namely if
p(x) =

∑n
j=0 aj

(
x
j

)
, then set q(x) :=

∑n
j=0 aj

(
x

j+1

)
. By telescoping, it follows that

b∑

i=a

p(i) = q(b+ 1)− q(a), a ≤ b, a, b ∈ Z.
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The crucial observation is that definition (2.2.6) implies the equality also for integers a > b. Hence

P (a, b) := q(b+1)−q(a) is a polynomial satisfying P (a, b) =
∑b

i=a p(i) for all a, b ∈ Z. By induction,
(2.2.4) therefore defines a polynomial in (k1, k2, . . . , kn) counting MTs with this bottom row.

Moreover, the line of reasoning reveals the following: Whenever we apply the summation oper-
ator to polynomials, we can use any other recursive description of the summation operator instead
of (2.2.5), as long as it is based on ordinary sums as defined in (2.2.6) and satisfies (2.2.2) for all
integers k1 < k2 < · · · < kn. For example, one can also use the recursion building the penultimate
row from the left side:

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =

(k2,...,kn)∑

(l2,...,ln−1)

k2−1∑

l1=k1

A(l1, l2, . . . , ln−1) (2.2.8)

+

(k2+1,k3,...,kn)∑

(l2,...,ln−1)

A(k2, l2, . . . , ln−1), n ≥ 2.

In this case, it follows inductively that (2.2.2) is satisfied for all integers k1 ≤ k2 < · · · < kn−1 < kn.
A third recursion of the summation operator is

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =

(k1,...,kn−1)∑

(l1,...,ln−2)

kn∑

ln−1=kn−1

A(l1, . . . , ln−2, ln−1) (2.2.9)

−
(k1,...,kn−2)∑

(l1,...,ln−3)

A(l1, . . . , ln−3, kn−1, kn−1), n ≥ 3.

The intuition in this case is that if we allow (l1, . . . , ln−2) to be any penultimate row of a MT with
bottom row (k1, . . . , kn−1) and independently let kn−1 ≤ ln−1 ≤ kn, then not all penultimate rows
(l1, . . . , ln−1) one obtains are admissible. Namely, we have overcounted exactly by those rows where
ln−2 = ln−1 = kn−1.

As an example, let us explicitly compute the polynomial α(3; k1, k2, k3) by applying recur-
sion (2.2.9):

α(3; k1, k2, k3)
(2.2.4)
=

(k1,k2,k3)∑

(l1,l2)

α(2; l1, l2)
(2.2.7)
=

k2∑

l1=k1

k3∑

l2=k2

α(2; l1, l2)− α(2; k2, k2)

=

k2∑

l1=k1

k3∑

l2=k2

(l2 − l1 + 1)− 1

=

k2∑

l1=k1

((
k3 + 1

2

)
−
(
k2
2

)
− (k3 − k2 + 1)l1 + (k3 − k2 + 1)

)
− 1

= (k2 − k1 + 1)

((
k3 + 1

2

)
−
(
k2
2

)
+ (k3 − k2 + 1)

)
− (k3 − k2 + 1)

((
k2 + 1

2

)
−
(
k1
2

))
− 1

=
1

2

(
−3k1 + k21 + 2k1k2 − 4k1k3 − k21k2 + k21k3 + k1k

2
2 − k1k

2
3

−2k22 + 2k2k3 − k22k3 + k2k
2
3 + 3k3 + k23

)
.
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2.3 Proof of the operator formula for α(n; k1, k2, . . . , kn)

The goal of this section is to derive the operator formula for Monotone Triangles (Theorem 2.3.1),
which states that the polynomial α(n; k1, k2, . . . , kn) can be obtained by taking a scaled version of
the Vandermonde-polynomial

∏
1≤i<j≤n(kj − ki) and applying certain operators to it. For further

reference, Table 2.1 contains a list of operators that are used throughout the thesis. From the fact
that shift operators commute, i.e. Ex Ey f(x, y) = Ey Ex f(x, y), it follows that all operators in
Table 2.1 commute, except for the swap-operator.

Ex f(x) := f(x+ 1) (shift operator)

∆xf(x) := f(x+ 1)− f(x) = (Ex − id)f(x) (difference operator / ∆-operator)

δxf(x) := f(x)− f(x− 1) = (id−E−1
x )f(x) (difference operator / δ-operator)

Vx,y := id+δx∆y = E−1
x +Ey −E−1

x Ey (V-operator)

Wx,y := ExVx,y = Ex +∆x∆y = id−Ey +Ex Ey (W-operator)

Ix,y := E−1
x +E−1

y − id (I-operator)

Sx,y f(x, y) := f(y, x) (swap operator)

Table 2.1: Overview of operators.

Theorem 2.3.1 (Operator formula for Monotone Triangles). Let n ≥ 1. Then

α(n; k1, k2, . . . , kn) =
∏

1≤p<q≤n

Wkq,kp

∏

1≤i<j≤n

kj − ki
j − i

. (2.3.1)

Note that the first product in the operator formula (2.3.1) denotes the usual composition of op-
erators. Since the W-operators commute, there is no need to specify in which order the composition
is executed.

Remark 2.3.2. Let us remark that the operand of (2.3.1) can be written as determinant, namely

∏

1≤i<j≤n

kj − ki
j − i

= det
1≤i,j≤n

(
ki

j − 1

)
. (2.3.2)

To see this, take the well-known Vandermonde determinant

∏

1≤i<j≤n

(kj − ki) = det
1≤i,j≤n

(kj−1
i )
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and perform elementary column operations to obtain

∏

1≤i<j≤n

(kj − ki) = det
1≤i,j≤n

(pj(ki))

for any polynomial pj of degree j − 1 with leading coefficient 1. Equation (2.3.2) now follows by
setting pj(x) := x(x − 1) . . . (x− j + 1) and dividing each column by (j − 1)!.

The operator formula is trivially true for n = 1, since the empty product is defined as 1, and
for n = 2 the right-hand side of (2.3.1) is

Wk2,k1

[
k2 − k1
2− 1

]
= (id−Ek1 +Ek2 Ek1) [k2 − k1] = k2 − k1 + 1,

i.e. indeed the number of MTs with bottom row k1 < k2.

Remark 2.3.3. Since Wkq ,kp = Ekq Vkq ,kp equation (2.3.1) is equivalent to

α(n; k1, k2, . . . , kn) =
∏

1≤p<q≤n

Vkq,kp

∏

1≤i<j≤n

kj − ki + j − i

j − i
. (2.3.3)

Even though it is not relevant for the remaining chapter, let us remark that the operator formula
written in this form is particularly interesting, because it reveals a connection with a different
counting problem: Gelfand-Tsetlin patterns are the same objects as MTs except for the condition of
strict increase along rows omitted. Gelfand-Tsetlin patterns with fixed bottom row (k1, . . . , kn) are
known to be in bijection with semi-standard Young tableaux of shape (kn, . . . , k1) and largest entry
at most n (see [Sta01, p.313]). From Stanley’s hook-content formula [Sta01, p.374] one can derive

that the number of these objects is exactly the operand
∏

1≤i<j≤n

kj−ki+j−i
j−i .

Lemma 2.3.4. Let B(l1, . . . , ln−1) be a function satisfying Wli,li+1 B(l1, . . . , ln−1)

∣∣∣∣
li=li+1

= 0 for

all i = 1, . . . , n− 2. Then

(k1,...,kn)∑

(l1,...,ln−1)

∆l1 . . .∆ln−1B(l1, . . . , ln−1) =
n∑

r=1

(−1)r−1B(k1, . . . , kr−1, kr+1 + 1, . . . , kn + 1)

holds for n ≥ 1.

Proof. For n = 1 the statement is trivial. If n = 2, we have

(k1,k2)∑

(l1)

∆l1B(l1)
(2.2.7)
=

k2∑

l1=k1

(B(l1 + 1)−B(l1)) = B(k2 + 1)−B(k1).
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For n ≥ 3 it follows inductively that

(k1,...,kn)∑

(l1,...,ln−1)

∆l1 . . .∆ln−1B(l1, . . . , ln−1)

(2.2.9)
=

kn∑

ln−1=kn−1

∆ln−1

n−1∑

r=1

(−1)r−1B(k1, . . . , kr−1, kr+1 + 1, . . . , kn−1 + 1, ln−1)

−
n−2∑

r=1

(−1)r−1∆kn−1∆k∗

n−1
B(k1, . . . , kr−1, kr+1 + 1, . . . , kn−2 + 1, kn−1, k

∗
n−1)

∣∣∣∣
k∗

n−1=kn−1

=

n−1∑

r=1

(−1)r−1B(k1, . . . , kr−1, kr+1 + 1, . . . , kn−1 + 1, kn + 1)

+

n−1∑

r=1

(−1)rB(k1, . . . , kr−1, kr+1 + 1, . . . , kn−1 + 1, kn−1)

+

n−2∑

r=1

(−1)r(Wkn−1,k∗

n−1
−Ekn−1)B(k1, . . . , kr−1, kr+1 + 1, . . . , kn−2 + 1, kn−1, k

∗
n−1)

∣∣∣∣
k∗

n−1=kn−1

The last summand of the second sum can be added as n-th summand to the first sum. The remaining
summands of the second sum cancel with the shifted summands of the third sum and we obtain

n∑

r=1

(−1)r−1B(k1, . . . , kr−1, kr+1 + 1, . . . , kn−1 + 1, kn + 1)

+

n−2∑

r=1

(−1)r Wkn−1,k∗

n−1
B(k1, . . . , kr−1, kr+1 + 1, . . . , kn−2 + 1, kn−1, k

∗
n−1)

∣∣∣∣
k∗

n−1=kn−1

.

The second sum vanishes by assumption.

Lemma 2.3.5. Let m2, . . . ,mn be non-negative integers and set m1 := −1. Then

(k1,...,kn)∑

(l1,...,ln−1)

∏

1≤p<q≤n−1

Wlq,lp det
1≤i,j≤n−1

(
li

mj+1

)
=

∏

1≤p<q≤n

Wkq ,kp det
1≤i,j≤n

(
ki

mj + 1

)
.

holds for n ≥ 2.

Proof. Let us first show that

B(l1, . . . , ln−1) :=
∏

1≤p<q≤n−1

Wlq,lp det
1≤i,j≤n−1

(
li

mj+1 + 1

)
.
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satisfies the condition of Lemma 2.3.4: Since Wli,li+1

∏
1≤p<q≤n−1

Wlq,lp is symmetric in li and li+1

and det
1≤i,j≤n−1

(
li

mj+1+1

)
is antisymmetric in li and li+1, it follows that Wli,li+1 B(l1, . . . , ln−1) is anti-

symmetric in li and li+1. In particular, Wli,li+1 B(l1, . . . , ln−1)

∣∣∣∣
li=li+1

= 0. From ∆x

(
x
k

)
=
(

x
k−1

)
it

follows that

∆l1 . . .∆ln−1B(l1, . . . , ln−1) =
∏

1≤p<q≤n−1

Wlq,lp det
1≤i,j≤n−1

(
li

mj+1

)
.

Applying Lemma 2.3.4 therefore yields

(k1,...,kn)∑

(l1,...,ln−1)

∏

1≤p<q≤n−1

Wlq,lp det
1≤i,j≤n−1

(
li

mj+1

)

=

n∑

r=1

(−1)r−1B(k1, . . . , kr−1, kr+1 + 1, . . . , kn + 1)

=

n∑

r=1

(−1)r−1
∏

1≤p<q≤n
p,q 6=r

Wkq,kp


 det

1≤i,j≤n−1

(
li

mj+1 + 1

) ∣∣∣∣(l1,...,ln−1)
=(k1,...,kr−1,kr+1+1,...,kn+1)


 .

Since the r-th summand does not depend on kr we have Wkq ,kr = Ekq and Wkr ,kp = id. Hence,
this is further equal to

n∑

r=1

(−1)r−1
∏

1≤p<q≤n

Wkq,kp

(
det

1≤i,j≤n−1

(
li

mj+1 + 1

) ∣∣∣∣
(l1,...,ln−1)=(k1,...,kr−1,kr+1,...,kn)

)

=
∏

1≤p<q≤n

Wkq,kp

n∑

r=1

(−1)r−1 det
1≤i,j≤n−1

(
li

mj+1 + 1

) ∣∣∣∣
(l1,...,ln−1)=(k1,...,kr−1,kr+1,...,kn)

=
∏

1≤p<q≤n

Wkq,kp det
1≤i,j≤n

(
ki

mj + 1

)
,

where the last assertion is Laplace expansion w.r.t. the first column.

We are now in the position to prove the operator formula inductively.

Proof of Theorem 2.3.1. Apply (2.2.4), the induction hypothesis, Remark 2.3.2 and Lemma 2.3.5
(mj := j − 2) to obtain

α(n; k1, k2, . . . , kn) =

(k1,...,kn)∑

(l1,...,ln−1)

α(n− 1; l1, l2, . . . , ln−1)

=

(k1,...,kn)∑

(l1,...,ln−1)

∏

1≤p<q≤n−1

Wlq,lp det
1≤i,j≤n−1

(
li

j − 1

)

=
∏

1≤p<q≤n

Wkq,kp det
1≤i,j≤n

(
ki

j − 1

)
=

∏

1≤p<q≤n

Wkq,kp

∏

1≤i<j≤n

kj − ki
j − i

.
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Remark 2.3.6. Let us observe that the degree of each ki in the polynomial α(n; k1, k2, . . . , kn) is
exactly n − 1. Recall that the difference operators decrease the degree of a polynomial by exactly
one, since

∆x

n∑

i=0

ai

(
x

i

)
=

n∑

i=1

ai

(
x

i− 1

)
=

n−1∑

i=0

ai+1

(
x

i

)
,

and δx = E−1
x ∆x, whereas the shift operator Ex leaves the degree invariant. The operator formula

(2.3.1) therefore implies that the degree in each ki is at most n− 1. Moreover, the operator Wx,y =
id+Ey ∆x acting on polynomials has an inverse, namely W−1

x,y =
∑

i≥0(−1)i Ei
y ∆

i
x (note that the

sum is finite for each polynomial). So, we can apply the inverse operators in (2.3.1) such that
only the operand having degree n − 1 in each ki remains at the right-hand side. Therefore, the
α-polynomial also has to have degree at least n− 1 in each ki.

2.4 Expressing An,i in terms of α-evaluations

There are multiple ways to express An,i in terms of α-evaluations. One possibility is to observe that
the position of the unique 1 in the bottom row of an ASM translates by Proposition 1.2.5 into the
unique integer 1 ≤ i ≤ n that is missing in the penultimate row of the corresponding MT. Thus,

An,i = α(n− 1; 1, . . . , i− 1, i+ 1, . . . , n).

This approach is taken in [Fis07] and the proof proceeds by deriving the identity

α(n; 1, 2, . . . , n− 1, k) =

n∑

i=1

An,i

(
i− 1 + k − n

i− 1

)
.

We take a different approach: As explained in Section 2.1, An,i also counts the number of MTs
with bottom row (1, 2, . . . , n) and precisely i entries equal to 1 in the left-most NE-diagonal
(resp. precisely i entries equal to n in the right-most SE-diagonal). The following lemma is a special
case of a more recent result in [Fis11] and also allows us to express An,i in terms of α-evaluations:

Lemma 2.4.1. Let 1 ≤ i ≤ n and (k1, k2, . . . , kn) ∈ Z
n.

1. If k1 < k2 < · · · < kn−1 ≤ kn, then δi−1
kn

α(n; k1, . . . , kn) counts the number of MTs with
bottom row (k1, . . . , kn−1, kn + 1) and precisely i entries equal to kn + 1 in the right-most
SE-diagonal (see Figure 2.3). In particular

An,i = δi−1
kn

α(n; 1, 2, . . . , n− 1, kn)

∣∣∣∣
kn=n−1

. (2.4.1)

2. If k1 ≤ k2 < k3 · · · < kn, then (−1)i−1∆i−1
k1

α(n; k1, . . . , kn) counts the number of MTs with
bottom row (k1 − 1, k2, . . . , kn) and precisely i entries equal to k1 − 1 in the left-most NE-
diagonal (see Figure 2.4). In particular

An,i = (−1)i−1∆i−1
k1

α(n; k1, 2, 3, . . . , n)

∣∣∣∣
k1=2

. (2.4.2)
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kn−2 kn−1
k2k1 · · ·

i
row

s

kn+1

kn+1

· · ·

kn+1 {

Figure 2.3: δi−1
kn

α(n; k1, . . . , kn)

k3k2 kn−1 kn· · ·

i
ro
w
s

k1−1

k1−1

k1−1

· ·
·{

Figure 2.4: (−1)i−1∆i−1
k1

α(n; k1, . . . , kn)

Proof. Recall that for k1 < k2 < · · · < kn−1 ≤ kn the summation operator satisfies

(k1,...,kn)∑

(l1,...,ln−1)

α(n− 1; l1, . . . , ln−1) =
∑

(l1,...,ln−1)∈Z
n−1,

k1≤l1≤k2≤l2≤···≤kn−1≤ln−1≤kn,
li<li+1

α(n− 1; l1, . . . , ln−1).

Note that the right-hand side counts the number of MTs with bottom row (k1, . . . , kn−1, kn + 1)
having precisely one entry equal to kn + 1 in the right-most SE-diagonal (by replacing the right-
most entry kn in the bottom row with kn + 1). The case i = 1 now follows from the definition of
α(n; k1, k2, . . . , kn), i.e. (2.2.4).

Recursion (2.2.5) of the summation operator implies

δkn

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1)

= δkn




(k1,...,kn−1)∑

(l1,...,ln−2)

kn∑

ln−1=kn−1+1

A(l1, . . . , ln−2, ln−1) +

(k1,...,kn−2,kn−1−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1)




=

(k1,...,kn−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn).

With A(l1, . . . , ln−1) := α(n− 1; l1, . . . , ln−1) and (2.2.4) we obtain

δknα(n; k1, . . . , kn) =

(k1,...,kn−1)∑

(l1,...,ln−2)

α(n− 1; l1, . . . , ln−2, kn). (2.4.3)

According to (2.2.2) the right-hand side of (2.4.3) has a combinatorial interpretation: We sum over
all penultimate rows (l1, . . . , ln−2) of a MT with bottom row (k1, . . . , kn−1) and append kn at the
right end of each penultimate row (see left side of Figure 2.5). Since l1 < l2 < · · · < ln−2 ≤ kn
we know from the case i = 1 that α(n− 1; l1, . . . , ln−2, kn) counts the number of MT with bottom
row (l1, . . . , ln−2, kn + 1) with no further entries equal to kn + 1. Therefore the set of objects
counted by the right-hand side of (2.4.3) bijectively corresponds to the set of MT with bottom row
(k1, . . . , kn−1, kn + 1) having precisely two entries equal to kn + 1 in the right-most SE-diagonal
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k1

l1

k2

· · ·

· · · kn−2 kn−1

ln−2 kn

k1

l1

k2

· · ·

· · · kn−2 kn−1

ln−2 kn+1

kn+1

≤ kn

Figure 2.5: Combinatorial interpretation of δknα(n; k1, . . . , kn) for k1 < k2 < · · · < kn−1 ≤ kn.

(see Figure 2.5). Iterating (2.4.3) and using the exact same argument shows the claim for all
i = 1, 2, . . . , n.

For the second part of the claim we use recursion (2.2.8) which implies

−∆k1

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1)

= −∆k1




(k2,...,kn)∑

(l2,...,ln−1)

k2−1∑

l1=k1

A(l1, l2, . . . , ln−1) +

(k2+1,k3,...,kn)∑

(l2,...,ln−1)

A(n− 1; k2, l2, . . . , ln−1)




=

(k2,...,kn)∑

(l2,...,ln−1)

A(k1, l2, . . . , ln−1),

and therefore

−∆k1α(n; k1, . . . , kn) =

(k2,...,kn)∑

(l2,...,ln−1)

α(n− 1; k1, l2, . . . , ln−1). (2.4.4)

The claim then follows analogously to the first part.

2.5 A system of linear equations satisfied by (An,1, . . . , An,n)

The goal of this section is to apply the derived expressions for An,i to show that (An,1, . . . , An,n)
satisfies a system of n linear equations, which has a one-dimensional solution space. For this, we
need two more identities satisfied by the α-polynomial. The first identity is

α(n; k1, k2, . . . , kn) = α(n; k1 + c, k2 + c, . . . , kn + c), c ∈ Z, (2.5.1)

which is combinatorially clear for integers k1 < k2 < · · · < kn, since there is the same number of MTs
with bottom row (k1, k2, . . . , kn) as with bottom row (k1 + c, k2 + c, . . . , kn + c). By Remark 2.2.1,
equation (2.5.1) is therefore also true as identity satisfied by the polynomials. The second identity
is more surprising and forms the cornerstone in deriving the system of linear equations.
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Lemma 2.5.1. The α-polynomial satisfies the circular shift identity

α(n; k1, k2, . . . , kn) = (−1)n−1α(n; k2, k3, . . . , kn, k1 − n) (2.5.2)

for all n ≥ 1.

Note that this identity only makes sense as an identity satisfied by the polynomial α(n; k1, . . . , kn)
and has per se no combinatorial interpretation. In fact, Chapter 4 is devoted to giving both sides of
the identity a combinatorial meaning for (k1, . . . , kn) ∈ Zn. If we believe the circular shift identity
for now, then we can derive a system of linear equations satisfied by (An,1, . . . , An,n).

Lemma 2.5.2. Let An,i denote the number of n × n-ASMs where the first row’s unique 1 is in
column i. Then

An,i =

n∑

j=i

(
2n− i− 1

j − i

)
(−1)n+jAn,j , i = 1, . . . , n. (2.5.3)

Proof.

An,i
(2.4.2)
= (−1)i−1∆i−1

k1
α(n; k1, 2, 3, . . . , n)|k1=2

(2.5.2)
= (−1)n+i∆i−1

k1
α(n; 2, 3, . . . , n, k1 − n)|k1=2

= (−1)n+i E−2n+i+1
k1

δi−1
k1

α(n; 2, 3, . . . , n, k1 + 1)|k1=n−1

(2.5.1)
= (−1)n+i(id−δk1)

2n−i−1δi−1
k1

α(n; 1, 2, . . . , n− 1, k1)|k1=n−1

=
∑

j≥0

(
2n− i− 1

j

)
(−1)n+i+jδi+j−1

k1
α(n; 1, 2, . . . , n− 1, k1)|k1=n−1.

In Remark 2.3.6 we have seen that the α-polynomial has degree n− 1 in each ki. Therefore

An,i =

n∑

j=i

(
2n− i− 1

j − i

)
(−1)n+jδj−1

k1
α(n; 1, 2, . . . , n− 1, k1)|k1=n−1

(2.4.1)
=

n∑

j=i

(
2n− i− 1

j − i

)
(−1)n+jAn,j .

A proof of the circular shift identity was given in [Fis07], and it relies on the following lemma:

Lemma 2.5.3. Let Q(X1, . . . , Xn) be a symmetric polynomial without constant term, i.e. Q is
invariant under permuting the variables and Q(0, . . . , 0) = 0. Then

Q(∆k1 , . . . ,∆kn)
∏

1≤i<j≤n

kj − ki
j − i

= 0. (2.5.4)

In particular, Q(∆k1 , . . . ,∆kn) α(n; k1, . . . , kn) = 0.
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Proof. By (2.3.2) it is equivalent to show that

Q(∆k1 , . . . ,∆kn) det
1≤i,j≤n

(
ki

j − 1

)
= 0. (2.5.5)

Since Q is a symmetric polynomial without constant term, it suffices to show that

∑

π∈Sn

∆
mπ(1)

k1
. . .∆

mπ(n)

kn
det

1≤i,j≤n

(
ki

j − 1

)
= 0 (2.5.6)

for all n-tuples of non-negative integers (m1, . . . ,mn) 6= (0, . . . , 0). As ∆x

(
x
k

)
=
(

x
k−1

)
, this is further

equal to

∑

π,σ∈Sn

sgnσ

(
k1

σ(1)−mπ(1) − 1

)
. . .

(
kn

σ(n)−mπ(n) − 1

)
= 0.

If σ(i) − mπ(i) − 1 < 0 for any 1 ≤ i ≤ n, then the corresponding summand vanishes. On the
remaining set of summands

s(π, σ) := sgnσ

(
k1

σ(1)−mπ(1) − 1

)
. . .

(
kn

σ(n)−mπ(n) − 1

)

we give a sign-reversing involution:

Let s(π, σ) be any such summand. Since 0 ≤ σ(i) − mπ(i) − 1 ≤ n − 1 for all 1 ≤ i ≤ n, the
existence of a positive mk implies the existence of 1 ≤ i < j ≤ n such that σ(i) − mπ(i) − 1 =
σ(j)−mπ(j)−1. Let 1 ≤ i′ < j′ ≤ n−1 be the lexicographically minimal indices with this property
and set π′ := π ◦ (i′, j′), σ′ := σ ◦ (i′, j′). Then s(π′, σ′) = −s(π, σ) and π′′ = π, σ′′ = σ.

Remark 2.5.4. From ∆x = Ex δx and (2.5.6) it also follows that

Q(δk1 , . . . , δkn)
kj − ki
j − i

= 0 (2.5.7)

for every symmetric polynomial Q(X1, . . . , Xn) without constant term.

In the following proof of the circular shift identity we apply Lemma 2.5.3 with the elementary
symmetric polynomials, which are defined by

ek(X1, . . . , Xn) :=
∑

1≤i1<i2<···<ik≤n

Xi1Xi2 . . .Xik , k = 1, . . . , n, (2.5.8)

and e0(X1, . . . , Xn) := 1. Observe that for k ≥ 1 the elementary symmetric polynomials are indeed
symmetric polynomials without constant term.
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Proof of Lemma 2.5.1. Note that Ex f(x)g(x) = (Ex f(x))(Ex g(x)) to obtain

α(n; k2, . . . , kn, k1 − n)
(2.5.1)
= α(n; k2 + 1, . . . , kn + 1, k1 − n+ 1)

(2.3.3)
= Ek2 . . .Ekn E−n+1

k1

∏

2≤p<q≤n

(id+∆kpδkq )
n∏

p=2

(id+∆kpδk1)

∏

2≤i<j≤n

kj − ki + j − i

j − i

n∏

i=2

k1 − ki + n− i+ 1

n− i+ 1

=
∏

2≤p<q≤n

(id+∆kpδkq )

n∏

p=2

(id+∆kpδk1)
∏

2≤i<j≤n

kj − ki + j − i

j − i

n∏

i=2

k1 − ki − i+ 1

i− 1

= (−1)n−1
∏

2≤p<q≤n

(id+∆kpδkq )

n∏

p=2

(id+∆kpδk1)
∏

1≤i<j≤n

kj − ki + j − i

j − i
.

To prove the circular shift identity (2.5.2) we therefore have to show that

∏

2≤p<q≤n

(id+∆kpδkq )

[
n∏

q=2

(id+∆k1δkq )−
n∏

p=2

(id+∆kpδk1)

] ∏

1≤i<j≤n

kj − ki + j − i

j − i
= 0.

Because of the identities
n∏

q=2

(id+∆k1δkq ) =
n−1∑

r=0

∆r
k1
er(δk2 , . . . , δkn),

n∏

p=2

(id+∆kpδk1) =

n−1∑

r=0

δrk1
er(∆k2 , . . . ,∆kn),

it is enough to show for all r = 1, . . . , n− 1 that

[
∆r

k1
er(δk2 , . . . , δkn)− δrk1

er(∆k2 , . . . ,∆kn)
] ∏

1≤i<j≤n

kj − ki
j − i

= 0.

With Xi := ∆ki and Yi := δki this follows from Lemma 2.5.3 and Remark 2.5.4 as soon as we show
the following claim for 1 ≤ r ≤ n− 1:

Xr
1er(Y2, . . . , Yn)− Y r

1 er(X2, . . . , Xn)

=
r∑

s=1

Xr
1Y

r−s
1 (−1)r+ses(Y1, . . . , Yn) +

r∑

s=1

Xr−s
1 Y r

1 (−1)r+s−1es(X1, . . . , Xn).

The case r = 1 is immediate. For r ≥ 2 observe that the left-hand side is equal to

Xr
1er(Y1, . . . , Yn)− Y r

1 er(X1, . . . , Xn)−X1Y1

(
Xr−1

1 er−1(Y2, . . . , Yn)− Y r−1
1 er−1(X2, . . . , Xn)

)
.

By induction hypothesis this is further equal to

Xr
1er(Y1, . . . , Yn)− Y r

1 er(X1, . . . , Xn)

+

r−1∑

s=1

Xr
1Y

r−s
1 (−1)r+ses(Y1, . . . , Yn) +

r−1∑

s=1

Xr−s
1 Y r

1 (−1)r+s−1es(X1, . . . , Xn).
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We have seen that (An,1, . . . , An,n) satisfies (2.5.3), i.e. a system of n linear equations. However,
its solution space is higher-dimensional. This can be remedied by recalling that there are more linear
relations between the refined ASM numbers. Namely, by reflection along the vertical symmetry axis
the identity An,i = An,n+1−i follows combinatorially. If we now replace each entry on the right-hand
side of (2.5.3) one arrives at

An,i =

n+1−i∑

j=1

(
2n− i− 1

n− i− j + 1

)
(−1)j+1An,j , i = 1, . . . , n. (2.5.9)

The goal of the remaining part of the section is to observe that the solution space of (2.5.9) is
one-dimensional, i.e. it determines (An,1, . . . , An,n) up to a constant Cn.

Remark 2.5.5. Whenever binomial coefficients appear in this thesis, we use the definition

(
x

j

)
:=

{
x(x−1)···(x−j+1)

j! if j ≥ 0,

0 if j < 0,
(2.5.10)

where x ∈ C and j ∈ Z. While this is for practical reasons the common definition in discrete
mathematics [GKP89], be aware of two traps: First, the symmetry identity

(
n
k

)
=
(

n
n−k

)
is only

true for integers n ≥ 0. Second, your favourite computer algebra system may use the analytic
continuation of the binomial coefficient via Gamma functions. In this case, the computer will
tell you that the binomial coefficient

(
x
y

)
with negative integers y ≤ x < 0 is non-zero, namely

(−1)x−y
(
−y−1
−x−1

)
. When checking results involving such binomial coefficients one should therefore

manually define the binomial coefficient with (2.5.10) and explicitly set
(
x
j

)
:= 0 for j ∈ Z−.

Note that (2.5.9) is equivalent to the fact that (An,1, . . . , An,n) is an eigenvector of the matrix((
2n−i−1
n−i−j+1

)
(−1)j+1

)
1≤i,j≤n

with eigenvalue 1. The proof in [Fis07, p.262] proceeds by showing

that the corresponding eigenspace is 1-dimensional, i.e. that

rk

((
2n− i− 1

n− i− j + 1

)
(−1)j + δi,j

)

1≤i,j≤n

= n− 1.

For n = 1 this is obvious. If n ≥ 2, let us show that removing the first row and first column yields
a matrix of full rank, i.e. we have to show that

det
1≤i,j≤n−1

((
2n− i− 2

n− i− j − 1

)
(−1)j+1 + δi,j

)
6= 0.

This is clear for n = 2. For n ≥ 3 consider the matrices

Bn =

((
2n− i− 2

n− i− j − 1

)
(−1)j+1 + δi,j

)

1≤i,j≤n−1

,

B∗
n =

((
i+ j

j − 1

)
(1− δi,n−1)

)

1≤i,j≤n−1

,

Rn =

((
n+ j − i− 1

j − i

))

1≤i,j≤n−1

,

R−1
n =

((
n

j − i

)
(−1)i+j

)

1≤i,j≤n−1

.
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The fact that R−1
n indeed is the inverse of Rn and R−1

n BnRn = B∗
n+ In−1 are both hypergeometric

identities which can be reduced to the Chu–Vandermonde identity (see Lemma A.2.1). Laplace
expansion w.r.t. the last row yields

detBn = det

((
i+ j

j − 1

)
+ δi,j

)

1≤i,j≤n−2

. (2.5.11)

This determinant is known to count the number of descending plane partitions with parts strictly
smaller than n and is therefore non-zero ([And79, Theorem 3]).

2.6 Proof of the Refined ASM Theorem

Showing that the numbers

Xn,i :=

(
n+i−2
n−1

)(
2n−i−1
n−1

)
(
3n−2
n−1

)
n−1∏

j=0

(3j + 1)!

(n+ j)!
, i = 1, . . . , n

also solve the LES (2.5.9) is a task of reducing a hypergeometric sum to the Chu–Vandermonde iden-
tity (see Lemma A.2.2). Since the solution space is one-dimensional it follows that (An,1, . . . , An,n) =
Cn(Xn,1, . . . , Xn,n) for all n ≥ 1. To prove the Refined ASM Theorem (Theorem 2.1.1) it only re-
mains to show that Cn = 1.

If an ASM of size n has a 1 in the top-left corner, then all other entries in the first row and
column are zeroes, and removing the first row and column yields an ASM of size n − 1. This
establishes a one-to-one correspondence between the ASMs counted by An,1 and all ASMs of size

n − 1, hence An,1 = An−1. The hypergeometric identity Xn,1 =
∑n−1

i=1 Xn−1,i holds as well (see
Lemma A.2.2). Since A1,1 = 1 = X1,1 we have C1 = 1, and for n ≥ 2 we inductively obtain

An,1 = An−1 =

n−1∑

i=1

An−1,i =

n−1∑

i=1

Cn−1Xn−1,i = Xn,1,

and therefore Cn = 1.
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Chapter 3
Combinatorial reciprocity for Monotone
Triangles

The contents of this chapter essentially consist of the research published in [FR13].

3.1 Introduction

In Section 2.3 we presented a proof of the operator formula for the polynomial α(n; k1, k2, . . . , kn).
Recall that the condition that the evaluation at integers k1 < k2 < · · · < kn should be the number of
Monotone Triangles (MTs) with bottom row (k1, k2, . . . , kn) uniquely determined the α-polynomial
(Remark 2.2.1). The starting point of the research presented in this chapter were computational
experiments indicating the surprising identity

α(2n;n, n, n− 1, n− 1, . . . , 1, 1) = α(n; 1, 2, . . . , n). (3.1.1)

Note that so far only the evaluation on the right-hand side of (3.1.1) has a combinatorial meaning,
namely the number of MTs with bottom row (1, 2, . . . , n). The first goal of this chapter is to
give a combinatorial interpretation to the evaluations of α(n; k1, k2, . . . , kn) at weakly decreasing
sequences k1 ≥ k2 ≥ · · · ≥ kn. To this end, we define a new combinatorial object:

Definition 3.1.1. A Decreasing Monotone Triangle (DMT) of size n is a triangular array of
integers (ai,j)1≤j≤i≤n arranged in the form

a1,1

a2,1 a2,2

.

.

.

.

.

.

an,1 . . . an,n. . .

such that

(D1) entries along NE- and SE-diagonals are weakly decreasing, i.e. ai+1,j ≥ ai,j ≥ ai+1,j+1,

33
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2
2 2

3 2 2
3 3 2 2

6 3 3 2 1

3
3 3

3 3 2
3 3 2 2

6 3 3 2 1

3
3 3

3 3 2
4 3 2 2

6 3 3 2 1

2
2 2

4 2 2
5 3 2 2

6 3 3 2 1

3
3 3

3 3 2
5 3 2 2

6 3 3 2 1

Figure 3.1: The five Decreasing Monotone Triangles with bottom row (6, 3, 3, 2, 1).

>
=

>

=

=

=⇒
=

resp.
>

=

>

=

=

=⇒
=

Figure 3.2: Condition (D3’) of DMTs.

(D2) each integer appears at most twice in a row and

(D3) two consecutive rows do not both contain the same integer exactly once.

Five DMTs with bottom row (6, 3, 3, 2, 1) are illustrated in Figure 3.1. Before checking that
there are no other DMTs with this bottom row, let us state an equivalent definition for DMTs.

Remark 3.1.2. Even though condition (D3) is more concise, it can be more practical to keep the
following equivalent condition in mind (see Figure 3.2):

(D3’) If two adjacent entries in a row are distinct and their interlaced neighbour in the row above
is equal to its SW-neighbour (resp. SE-neighbour), then the interlaced neighbour has a left
(resp. right) neighbour and is equal to it, i.e.

ai,j = ai+1,j > ai+1,j+1 =⇒ ai,j−1 = ai,j ,

ai+1,j > ai+1,j+1 = ai,j =⇒ ai,j+1 = ai,j .

By condition (D1) entries along each row of a DMT are weakly decreasing and interlaced with their
neighbours in the row below. This immediately implies that (D3) and (D3’) are equivalent.

If the bottom row of a DMT is (6, 3, 3, 2, 1), condition (D3’) implies that the right-most entry
of the penultimate row has to be 2, thus its left neighbour has to be 2 too. The second entry has
to be 3 and the first entry may be 5, 4 or 3. Continuing in the same way with these three possible
penultimate rows, one obtains that the five DMTs depicted in Figure 3.1 are indeed all DMTs with
bottom row (6, 3, 3, 2, 1).

In Section 3.2 we prove that the evaluation of α(n; k1, . . . , kn) at weakly decreasing integer
sequences k1 ≥ k2 ≥ · · · ≥ kn is a signed enumeration of DMTs with bottom row (k1, k2, . . . , kn).
The sign of a DMT is determined by the number of so-called duplicate-descendants in the DMT:
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Definition 3.1.3. A pair of adjacent identical entries in a row is briefly called a pair. A pair is
called duplicate-descendant (DD) if it is in the bottom row or if the row below contains the same
pair.

The duplicate-descendants of the DMTs in Figure 3.1 are marked in boldface.

Theorem 3.1.4 ([FR13]). Let k1 ≥ k2 ≥ · · · ≥ kn be a sequence of weakly decreasing integers, and
let Wn(k1, . . . , kn) denote the set of DMTs with bottom row (k1, . . . , kn). Then

α(n; k1, k2, . . . , kn) = (−1)(
n
2)

∑

A∈Wn(k1,...,kn)

(−1)dd(A), (3.1.2)

where dd(A) denotes the total number of duplicate-descendants of A.

The example in Figure 3.1 contains four DMTs with an even number of duplicate-descendants
and one with an odd number. The assertion of Theorem 3.1.4 hence is that α(5; 6, 3, 3, 2, 1) = 3.
Theorem 3.1.4 was reproven from a geometric point of view by Jochemko and Sanyal [JS12].

In Section 3.3 we show a correspondence between DMTs with bottom row (n, n, n − 1, n −
1, . . . , 1, 1) and a set of ASM-like matrices, which we call 2-ASMs. The notion of 2-ASMs turns out
helpful in giving a computational proof of (3.1.1) – the second main contribution of this chapter.
In fact, we prove the following stronger result in Section 3.4 and show that (3.1.1) is a consequence:

Theorem 3.1.5 ([FR13]). The refined ASM-numbers An,i =
(n+i−2

n−1 )(2n−1−i
n−1 )

(3n−2
n−1 )

n−1∏
j=0

(3j+1)!
(n+j)! satisfy

An,i = (−1)n−1α(2n− 1;n− 1 + i, n− 1, n− 1, . . . , 1, 1) (3.1.3)

for i = 1, . . . , 2n− 1, n ≥ 1.

Since both sides of (3.1.3) are polynomials in i of degree 2n− 2, Theorem 3.1.5 implies

α(2n− 1;n− 1 + i, n− 1, n− 1, . . . , 1, 1) = (−1)n−1

(
n+i−2
n−1

)(
2n−1−i
n−1

)
(
3n−2
n−1

)
n−1∏

j=0

(3j + 1)!

(n+ j)!

for arbitrary i ∈ C, n ≥ 1.
Finally, having a combinatorial interpretation in terms of DMTs for the left-hand side of (3.1.1)

and one in terms of MTs for the right-hand side, the equality demands for a combinatorial expla-
nation. In Section 3.5 a first approach towards a bijective proof is given.

3.2 Decreasing Monotone Triangles

This section is devoted to the proof of Theorem 3.1.4. For this, we require the summation operator
explained in Section 2.2 (originally introduced in [Fis06]).

We start by first considering the case that the bottom row (k1, . . . , kn) is weakly decreasing
and contains three identical entries, i.e. ki = ki+1 = ki+2. By definition, there are no such DMTs,
i.e. Wn(k1, . . . , kn) = ∅, and thus the right-hand side of (3.1.2) is zero. Let us therefore show that
the polynomial α(n; k1, . . . , kn) also vanishes in this case:
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Lemma 3.2.1. Let n ≥ 3 and A(l1, . . . , ln−1) be a polynomial in each variable satisfying

A(l1, . . . , li−1, li, li, li, li+3, . . . , ln−1) = 0, i = 1, . . . , n− 3.

The polynomial B(k1, . . . , kn) :=
(k1,...,kn)∑
(l1,...,ln−1)

A(l1, . . . , ln−1) then satisfies

B(k1, . . . , ki−1, ki, ki, ki, ki+3, . . . , kn) = 0, i = 1, . . . , n− 2.

In particular
α(n; k1, . . . , ki−1, ki, ki, ki, ki+3, . . . , kn) = 0, i = 1, . . . , n− 2. (3.2.1)

Proof. The proof is by induction w.r.t. n. In the base case n = 3 one obtains

(k1,k1,k1)∑

(l1,l2)

A(l1, l2)
(2.2.5)
=

(k1,k1)∑

(l1)

k1∑

l2=k1+1

A(l1, l2) +

(k1,k1−1)∑

(l1)

A(l1, k1)

(2.2.7)
=

k1∑

l1=k1

k1∑

l2=k1+1

A(l1, l2) +

k1−1∑

l1=k1

A(l1, k1)
(2.2.6)
= 0.

There are three cases to check for n ≥ 4 depending on whether there are zero, one or at least
two entries to the right of the three identical entries:

• i = n− 2: Together with the Lemma’s assumption it follows that

B(k1, . . . , kn−3, kn−2, kn−2, kn−2)
(2.2.5)
=

(k1,...,kn−3,kn−2,kn−2−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−2)

(2.2.9)
= −

(k1,...,kn−3)∑

(l1,...,ln−4)

A(l1, . . . , ln−4, kn−2, kn−2, kn−2) = 0.

• i = n− 3: Applying recursion (2.2.9) yields

B(k1, . . . , kn−4, kn−3, kn−3, kn−3, kn) =

(k1,...,kn−4,kn−3,kn−3,kn−3)∑

(l1,...,ln−2)

kn∑

ln−1=kn−3

A(l1, . . . , ln−2, ln−1)

−
(k1,...,kn−4,kn−3,kn−3)∑

(l1,...,ln−3)

A(l1, . . . , ln−3, kn−3, kn−3).

Note that A′(l1, . . . , ln−2) :=
kn∑

ln−1=kn−3

A(l1, . . . , ln−2, ln−1) satisfies the Lemma’s hypothesis.

By induction the first sum vanishes, and using (2.2.5) shows that the second sum vanishes
too.

• 1 ≤ i ≤ n − 4: Using recursion (2.2.5) and the induction hypothesis as in the previous case
implies that B(k1, . . . , ki−1, ki, ki, ki, ki+3, . . . , kn) = 0.
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In particular, (2.2.4) implies that α(n; k1, k2, . . . , kn) = 0, whenever there are three consecutive
identical entries among (k1, k2, . . . , kn).

We can now restrict ourselves to the case of weakly decreasing sequences k1 ≥ k2 ≥ · · · ≥ kn
which contain each integer at most twice. Apart from the number of duplicate-descendants, a
second statistic on DMTs is of interest:

Definition 3.2.2. An entry strictly smaller than the South-West-neighbour and strictly larger
than the South-East-neighbour is called a newcomer, i.e. an entry ai,j with 1 ≤ i < n satisfying
ai+1,j > ai,j > ai+1,j+1.

The proof of Theorem 3.1.4 consists of the following steps: At the heart of the theorem’s proof

is Lemma 3.2.3 which explains the connection between applying the summation operator
(k1,...,kn)∑
(l1,...,ln−1)

with decreasing integer arguments k1 ≥ · · · ≥ kn, and taking a signed summation over all candidates
for penultimate rows of DMTs with bottom row (k1, . . . , kn). In Corollary 3.2.4 we see by induction
that α(n; k1, . . . , kn) is the signed summation over all DMTs with bottom row (k1, . . . , kn), where
the sign is determined by the total number of pairs and newcomers in the DMT without the bottom
row. Finally, we show in Lemma 3.2.5 that the parity of this statistic is equal to the parity of the
statistic in Theorem 3.1.4.

Given integers k1 ≥ k2 ≥ · · · ≥ kn, let P(k1, . . . , kn) denote the set of (l1, . . . , ln−1) ∈ Z
n−1 such

that the conditions of DMTs are locally satisfied in the following trapezoid:

k1

l1

k2 kn−1 kn

ln−1

. . .

. . . . . .

More precisely, we require ki ≥ li ≥ ki+1, each integer appearing at most twice in (l1, . . . , ln−1)
and if ki > ki+1, then li = ki implies li−1 = ki resp. li = ki+1 implies li+1 = ki+1. For example,
P(6, 3, 3, 2, 1) = {(3, 3, 2, 2), (4, 3, 2, 2), (5, 3, 2, 2)}.

Lemma 3.2.3. Let k = (k1, . . . , kn) be a weakly decreasing sequence of integers with each integer
appearing at most twice. Then, for every polynomial A(l1, . . . , ln−1) we have

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =
∑

l=(l1,...,ln−1)∈P(k1,...,kn)

(−1)sc(k;l)A(l1, . . . , ln−1), n ≥ 2, (3.2.2)

where the sign-change function sc(k; l) := sc(k1, . . . , kn; l1, . . . , ln−1) counts the total number of
pairs and newcomers in (l1, . . . , ln−1).

Proof. To make the given definitions easier to understand, let us first check the base cases n = 2, 3:

(k1,k2)∑

(l1)

A(l1)
(2.2.7)
=

k2∑

l1=k1

A(l1)
(2.2.6)
=





A(k1), k1 = k2,

0, k1 = k2 + 1,

−
k1−1∑

l1=k2+1

A(l1), k1 > k2 + 1.
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k1 k2 k3> >

l1 l2

>
> >

>

>

k1 k2 k3> >

k2 k2

=

=

=

>
>

Figure 3.3

k1 k2 k3> =

l1 k2

=

> =

>

>

k1 k2 k3> =

k2 k2

=

= =

>

=

Figure 3.4

This is in accordance with DMTs with bottom row (k1, k2): If on the one hand k1 = k2, then we
have P(k1, k2) = {(k1)}. On the other hand, k1 > k2 implies that P(k1, k2) = {(l1) : k1 > l1 > k2},
whereby the entry l1 is a newcomer. If n = 3 and k1 > k2 > k3, then

(k1,k2,k3)∑

(l1,l2)

A(l1, l2)
(2.2.9)
=

k2∑

l1=k1

k3∑

l2=k2

A(l1, l2)−A(k2, k2)
(2.2.6)
=

k1−1∑

l1=k2+1

k2−1∑

l2=k3+1

A(l1, l2)−A(k2, k2).

The situation is depicted in Figure 3.3: either l1 and l2 are both newcomers (corresponding to the
double sum) or (l1, l2) = (k2, k2) is a pair (corresponding to the term −A(k2, k2)). If k1 > k2 = k3,
then

(k1,k2,k3)∑

(l1,l2)

A(l1, l2)
(2.2.9)
=

k2∑

l1=k1

A(l1, k2)−A(k2, k2)
(2.2.6)
= −

k1−1∑

l1=k2+1

A(l1, k2)−A(k2, k2).

This again corresponds to a signed summation over all elements of P(k1, k2, k3): either l1 is a
newcomer or (l1, l2) = (k2, k2) is a pair (see Figure 3.4). If the bottom row is k1 = k2 > k3, the
claim can be shown analogously. For n ≥ 4, distinguish between the case kn−1 > kn and kn−1 = kn:

Case 1 (kn−1 > kn) :
Recursion (2.2.9) of the summation operator, (2.2.6) and the induction hypothesis yield

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1)

= −
(k1,...,kn−1)∑

(l1,...,ln−2)

kn−1−1∑

ln−1=kn+1

A(l1, . . . , ln−1)−
(k1,...,kn−2)∑

(l1,...,ln−3)

A(l1, . . . , ln−3, kn−1, kn−1)

=
∑

(l1,...,ln−2)∈P(k1,...,kn−1)

(−1)sc(k1,...,kn−1;l1,...,ln−2)+1

kn−1−1∑

ln−1=kn+1

A(l1, . . . , ln−1)

+
∑

(l1,...,ln−3)∈P(k1,...,kn−2)

(−1)sc(k1,...,kn−2;l1,...,ln−3)+1A(l1, . . . , ln−3, kn−1, kn−1).
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In order to see that this is indeed equal to the right-hand side of (3.2.2), let us define

L1 := P(k1, . . . , kn−1)× {ln−1 | kn−1 > ln−1 > kn},
L2 := P(k1, . . . , kn−2)× {(kn−1, kn−1)},

and show
P(k1, . . . , kn) = L1 ∪̇ L2, (3.2.3)

whereby

(l1, . . . , ln−1) ∈ L1 =⇒ sc(k; l) = sc(k1, . . . , kn−1; l1, . . . , ln−2) + 1, (3.2.4)

(l1, . . . , ln−1) ∈ L2 =⇒ sc(k; l) = sc(k1, . . . , kn−2; l1, . . . , ln−3) + 1. (3.2.5)

We start by observing that the right-hand side of (3.2.3) is contained in the left-hand side, so
let (l1, . . . , ln−1) ∈ L1 ∪ L2. Condition (D1) of DMTs is clearly satisfied. To see that (l1, . . . , ln−1)
contains each integer at most twice is also immediate except in one case, namely (l1, . . . , ln−1) ∈ L2

and ln−3 = kn−2 = kn−1. However, (l1, . . . , ln−3) ∈ P(k1, . . . , kn−2) and condition (D3’) then imply
that kn−3 = kn−2, contradicting the lemma’s assumption that (k1, . . . , kn) contains each integer
at most twice. Therefore (l1, . . . , ln−1) satisfies condition (D2). Condition (D3) is again obviously
satisfied.

For the reverse direction note that each (l1, . . . , ln−1) ∈ P(k1, . . . , kn) either satisfies kn−1 >
ln−1 > kn or ln−1 = kn−1 (condition (D3’) of DMTs implies that ln−1 = kn is not possible if
kn−1 > kn). In the following we check that in the former case (l1, . . . , ln−1) ∈ L1 and (3.2.4),
whereas in the latter case (l1, . . . , ln−1) ∈ L2 and (3.2.5).

Case 1.1 (kn−1 > ln−1 > kn) :
We have to show that (l1, . . . , ln−2) ∈ P(k1, . . . , kn−1). Condition (D1) immediately follows

from (l1, . . . , ln−1) ∈ P(k1, . . . , kn). Together with ln−1 < kn−1 it follows that ln−2 > kn−1 and
therefore condition (D2) and (D3) carry over from (l1, . . . , ln−1) ∈ P(k1, . . . , kn). Since ln−1 is a
newcomer and ln−2 6= ln−1 we obtain sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−1; l1, . . . , ln−2) + 1.

Case 1.2 (ln−1 = kn−1) :
Since (l1, . . . , ln−1) ∈ P(k1, . . . , kn) and kn−1 = ln−1 > kn condition (D3’) implies that ln−2 =

kn−1. It remains to show that (l1, . . . , ln−3) ∈ P(k1, . . . , kn−2). Conditions (D1) and (D2) again
translate from (l1, . . . , ln−1) ∈ P(k1, . . . , kn). The only position where condition (D3’) does not
carry over from (l1, . . . , ln−1) ∈ P(k1, . . . , kn) is ln−3, namely suppose kn−3 > ln−3 = kn−2. But
then condition (D3’) implies that ln−2 = kn−2 and therefore ln−3 = ln−2 = ln−1. This contradicts
condition (D2) in (l1, . . . , ln−1) ∈ P(k1, . . . , kn). The pair (ln−2, ln−1) = (kn−1, kn−1) contributes
one sign-change, and thus sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−2; l1, . . . , ln−3) + 1.

Case 2 (kn−1 = kn) :
Recursion (2.2.5) and the induction hypothesis yield

(k1,...,kn−1,kn−1)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =

(k1,...,kn−2,kn−1−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1)

=
∑

(l1,...,ln−2)∈P(k1,...,kn−2,kn−1−1)

(−1)sc(k1,...,kn−2,kn−1−1;l1,...,ln−2)A(l1, . . . , ln−2, kn−1).
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It remains to observe that

P(k1, . . . , kn−2, kn−1 − 1)× {kn−1} = P(k1, . . . , kn−2, kn−1, kn−1), (3.2.6)

sc(k1, . . . , kn−2, kn−1 − 1; l1, . . . , ln−2) = sc(k1, . . . , kn−2, kn−1, kn−1; l1, . . . , ln−1). (3.2.7)

Equation (3.2.6) follows directly from the definition of DMTs after observing that kn−1 = kn and
the lemma’s assumption imply that kn−2 > kn−1. To see (3.2.7), distinguish between ln−2 = kn−1

and ln−2 > kn−1: If ln−2 = kn−1, then ln−2 is a newcomer w.r.t. (k1, . . . , kn−2, kn−1−1) on the one
hand and (ln−2, ln−1) is a pair w.r.t. (k1, . . . , kn−2, kn−1, kn−1) on the other hand, and therefore
both sides of (3.2.7) are equal to 1+sc(k1, . . . , kn−2; l1, . . . , ln−3). If ln−2 > kn−1, then kn−2 > kn−1

implies that both sides of (3.2.7) are equal to sc(k1, . . . , kn−1; l1, . . . , ln−2).

Let us extend the domain of the sign-changes function sc to DMTs by defining

sc(A) :=

n−1∑

i=1

sc(ai+1,1, . . . , ai+1,i+1; ai,1, . . . , ai,i),

where A = (ai,j)1≤j≤i≤n is a DMT with n rows. In other words, sc(A) is the total number of pairs
and newcomers in the top n − 1 rows of A. Applying Lemma 3.2.3 to α(n; k1, . . . , kn) establishes
the connection between α(n; k1, . . . , kn) and Wn(k1, . . . , kn):

Corollary 3.2.4. Let k1 ≥ k2 ≥ · · · ≥ kn. Then

α(n; k1, . . . , kn) =
∑

A∈Wn(k1,...,kn)

(−1)sc(A) (3.2.8)

holds for n ≥ 1.

Proof. If ki = ki+1 = ki+2 for any i = 1, . . . , n − 2, then we have already seen in Lemma 3.2.1
that the left-hand side is zero. The right-hand side also vanishes since the bottom row of a DMT
contains each integer at most twice by definition. The case n = 1 is also trivial. For n ≥ 2, apply
(2.2.4) together with Lemma 3.2.3 and the induction hypothesis to see that

α(n; k1, . . . , kn) =
∑

(l1,...,ln−1)∈P(k1,...,kn)

(−1)sc(k1,...,kn;l1,...,ln−1)α(n− 1; l1, . . . , ln−1)

=
∑

(l1,...,ln−1)∈P(k1,...,kn)

(−1)sc(k1,...,kn;l1,...,ln−1)
∑

A∈Wn−1(l1,...,ln−1)

(−1)sc(A)

=
∑

A∈Wn(k1,...,kn)

(−1)sc(A).

In order to complete the proof of Theorem 3.1.4, it remains to show that the two statistics sc(A)
and

(
n
2

)
+ dd(A) have the same parity.

Lemma 3.2.5. Each A ∈ Wn(k1, . . . , kn) satisfies

(−1)sc(A) = (−1)(
n
2)+dd(A), n ≥ 1.
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Figure 3.5: A DMT and the correspondence between peaks and base-pairs.

Proof. If one of the top n − 1 rows of a DMT contains an integer x exactly once, then – by
condition (D3) of DMTs – the row below contains x either not at all or twice. In the former case x
is a newcomer, and in the latter case let us call x a peak. Let p(A) denote the number of peaks in
A, n(A) denote the number of newcomers in A and ti(A) denote the number of pairs in the i-th row
of A. Since every entry in the top n − 1 rows is either a peak, a newcomer or in a pair, it follows
that (

n

2

)
= p(A) + n(A) + 2

n−1∑

i=1

ti(A) ≡ p(A) + n(A) (mod 2).

Let us call a pair (x, x) a base-pair if it is located in the bottom row or the row below contains x
exactly once. Note that the set of base-pairs and the set of peaks are in one-to-one correspondence
(see Figure 3.5), i.e. the total number of base-pairs is p(A). For the total number of duplicate-
descendants (Definition 3.1.3) we therefore obtain

dd(A) =

n∑

i=1

ti(A) − p(A) + tn(A) ≡
n−1∑

i=1

ti(A)− p(A) (mod 2).

Since sc(A) = n(A) +
∑n−1

i=1 ti(A), it follows that

sc(A)− dd(A) ≡ n(A) + p(A) ≡
(
n

2

)
(mod 2).

3.3 DMTs and 2-ASMs

In this section, we examine the impact of the change from Monotone Triangles to DMTs on the level
of matrices. The goal of this section is to show that DMTs with bottom row (n, n, n−1, n−1, . . . , 1, 1)
are in one-to-one correspondence with objects we call 2-ASMs.

Definition 3.3.1. A 2-ASM of size n is a (2n)× n-matrix with entries in {0, 1,−1} where

(2-ASM 1) in each row the non-zero entries alternate in sign and sum up to 1, and

(2-ASM 2) in each column the non-zero entries occur in pairs such that each partial column sum
is in {0, 1, 2}, and each column sums up to 2.
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0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 1 −1 1 0
1 −1 1 0 0
1 0 −1 0 1
0 1 −1 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0




⇐⇒

3
3 3

4 3 3
4 4 3 2

4 4 3 3 1
5 4 4 3 1 1

5 5 4 4 2 1 1
5 5 4 4 2 2 1 1

5 5 4 4 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1

Figure 3.6: A 2-ASM of size 5 and the corresponding DMT.

Σ = 0 Σ = 1
[Length = n]

−1

0 0

1

Figure 3.7: ASM-machine generating the rows and columns of ordinary ASMs of size n.

An example of a 2-ASM of size 5 can be seen in Figure 3.6. Before proving that DMTs with
bottom row (n, n, n− 1, n− 1, . . . , 1, 1) are in one-to-one correspondence with 2-ASMs of size n, we
consider ASMs and 2-ASMs from another perspective:

An ASM of size n is a n × n-matrix where each row and each column is a word of the ASM-
machine depicted in Figure 3.7. The semantics of the machine are the following: When generating
a row (resp. column) of an ASM, the initial state is Σ = 0, meaning that the current partial row
sum (resp. column sum) is 0. One may then stay in the state taking the 0-loop or transit to the
state Σ = 1 by taking the edge labelled with 1. In the state Σ = 1 – i.e. the partial row sum
(resp. column sum) is currently equal to 1 – one may either stay in the state by taking the 0-loop
or transit back to the state Σ = 0 taking the edge labelled with −1. As the row sum (resp. column
sum) is equal to 1, one has to be in the state Σ = 1 after n steps.

Analogously, a 2-ASM of size n is a (2n)×n-matrix where each row is a word of the ASM-machine
in Figure 3.7 and each column is a word of the 2-ASM-machine in Figure 3.8. It should be clear that
this definition of 2-ASMs is equivalent to Definition 3.3.1, but the notion of the 2-ASM-machine
and the interpretation of its edges turn out useful in the proof of Lemma 3.4.2. Apart from that, it
could be interesting to analyze the combinatorial structures obtained from other modifications of
the ASM-machine.

Recall the one-to-one correspondence (Proposition 1.2.5) transforming an ASM (ai,j)1≤i,j≤n

into a MT with bottom row (1, 2 . . . , n): The i-th row of the MT contains an entry j, if and only

if bi,j :=
∑i

k=1 ak,j = 1. In our case let bi,j be the number of entries j in row i of a DMT with
bottom row (n, n, n− 1, n− 1, . . . , 1, 1). Define a (2n)× n-matrix A with entries in {0, 1,−1} such
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11

0

[Length = 2n]

−1− 1

Σ = 0 Σ = 2

0

1− 1 −1 1

Figure 3.8: 2-ASM-machine generating the columns of 2-ASMs of size n.

that
∑i

k=1 ak,j = bi,j, i.e. a1,j := b1,j and ai,j := bi,j − bi−1,j , 2 ≤ i ≤ 2n. An example is given in
Figure 3.6. Let us show that this is indeed a one-to-one correspondence between 2-ASMs of size n
and DMTs with bottom row (n, n, n− 1, n− 1, . . . , 1, 1).

Proposition 3.3.2. The condition

row i of DMT contains bi,j entries equal to j ⇐⇒ (3.3.1)

top i entries in column j of 2-ASM sum up to bi,j

for all 1 ≤ i ≤ 2n, 1 ≤ j ≤ n establishes a one-to-one correspondence between the set of DMTs with
bottom row (n, n, n− 1, n− 1, . . . , 1, 1) and the set of 2-ASMs of size n.

Proof. Let A = (ai,j)i=1,...,2n,
j=1,...,n

be a 2-ASM of size n, and B = (bi,j)i=1,...,2n,
j=1,...,n

be the corresponding

partial column-sum matrix, i.e. bi,j =
∑i

k=1 ak,j . Since each of the first i rows of A sum up to
1, the i-th row of B sums up to i. From the definition of 2-ASMs it immediately follows that
bi,j ∈ {0, 1, 2} and bn,j = 2. By putting bi,j entries equal to j in row i in decreasing order one
obtains a triangular array T of integers with bottom row (n, n, n− 1, n− 1, . . . , 1, 1) where each of
{1, 2, . . . , n} is contained at most twice in each row.

Suppose T violates condition (D3) of DMTs in rows i and i + 1 for the first time, i.e. bi,j =
bi+1,j = 1. If i = 1, then a1,j = 1 and a2,j = 0, contradicting condition (2-ASM 2). If i > 1, then
the minimality of i implies that bi−1,j ∈ {0, 2}. In terms of the 2-ASM-machine bi−1,j = 0 means
that after i−1 steps in generating column j of A, one is in state Σ = 0. But bi,j = bi+1,j = 1 implies
ai,j = 1 and ai,j+1 = 0 but there is no (1, 0)-edge leaving state Σ = 0, contradiction. Similarly,
bi−1,j = 2 together with bi,j = bi+1,j = 1 translates into trying to take a (−1, 0)-edge leaving state
Σ = 2, contradiction.

To prove that T ∈ W2n(n, n, n− 1, n− 1, . . . , 1, 1), it remains to check condition (D1), i.e. the

weak decrease along diagonals. Let ci,j :=
∑j

k=1 bi,k denote the total number of entries ≤ j in
row i of T . From condition (2-ASM 1) it follows that c1,j ≤ c2,j ≤ · · · ≤ c2n,j , which ensures that
entries along SE-diagonals of T are weakly decreasing. Analogously, the alternating sign condition
of 2-ASMs in rows read from right to left implies the weak increase along NE-diagonals.

To prove that the mapping is indeed a bijection we have to show that the obvious candidate
for the inverse mapping yields a 2-ASM for each T ∈ W2n(n, n, n − 1, n − 1, . . . , 1, 1): Given
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T ∈ W2n(n, n, n − 1, n − 1, . . . , 1, 1), define the (2n) × n matrices B and A with bi,j being the
number of entries j in row i of T , a1,j = b1,j and ai,j = bi,j − bi−1,j for 2 ≤ i ≤ 2n.

Condition (D2) of DMTs implies bi,j ∈ {0, 1, 2} and thus ai,j ∈ {0, 1,−1, 2,−2}. If a row of the
DMT contains a pair (x, x), then the interlaced neighbour in the row above and below also equals
x by condition (D1), and therefore ai,j ∈ {0, 1,−1}. Since the total number of entries increases by
1 in each row of T , each row of A sums up to 1. The alternating sign condition (2-ASM 1) follows
from the monotonicity of entries along diagonals in T .

It remains to observe that condition (2-ASM 2) is satisfied by A, or equivalently that each
column of A is a word of the 2-ASM-machine in Figure 3.8. To check it for column j, consider the
entries j in T from top to bottom.

If bi,j = 0, then there are no entries j in row i of T . For the number of entries j in row i + 1,
there are two possibilities: Either there is still no entry j in row i + 1, then ai+1,j = 0 (i.e. take
the 0-loop in state Σ = 0), or there exists exactly one entry j. In the latter case we know from
condition (D3) that in row i + 2 there is either no entry j or two entries j. If there is no entry j,
then ai+1,j = 1 and ai+2,j = −1, i.e. take the (1,−1)-loop in state Σ = 0. If there are two entries
j, then ai+1,j = ai+2,j = 1, i.e. transit to the state Σ = 2 taking the (1, 1)-edge.

If bi,j = 2, then there are exactly two entries j in row i of T . Analogously, the row i+1 contains
either two entries j again, i.e. take the 0-loop at state Σ = 2, or the row below contains exactly one
entry j. In the latter case condition (D3) implies that row i+2 contains either two or no entries j,
i.e. take the (−1, 1)-loop or the (−1,−1)-edge.

Since the bottom row of T is (n, n, n − 1, n − 1, . . . , 1, 1) all columns of A sum up to 2, and
therefore A is a 2-ASM.

3.4 Connections between MTs and DMTs

The starting point for the content of this section was the empirical observation of (3.1.1). The
following computational proof of Theorem 3.4.1 applies the methodology used in Chapter 2 to
reprove the Refined ASM Theorem.

Theorem 3.4.1. The numbers

Wn,i := ∆i−1
k1

α(2n− 1; k1, n− 1, n− 1, n− 2, n− 2, . . . , 1, 1)

∣∣∣∣
k1=n

are given by

Wn,i =

i∑

l=1

(
i− 1

l − 1

)
(−1)n+i+l−1An,l (3.4.1)

for all i = 1, . . . , 2n− 1, n ≥ 1.

Recall the definition of the shift and difference operators from Table 2.1 (p. 20). Let us first
note that Theorem 3.4.1 and Theorem 3.1.5 are equivalent: On the one hand, (3.1.3) implies for
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i = 1, . . . , 2n− 1 that

Wn,i = (Ek1 − id)i−1α(2n− 1; k1, n− 1, n− 1, . . . , 1, 1)

∣∣∣∣
k1=n

=

i−1∑

l=0

(
i− 1

l

)
(−1)i−1−lα(2n− 1;n+ l, n− 1, n− 1, . . . , 1, 1)

=

i∑

l=1

(
i− 1

l − 1

)
(−1)n+i+l−1An,l.

Conversely, for i = 1, . . . , 2n− 1 we have that

α(2n− 1;n− 1 + i, n− 1, n− 1, . . . , 1, 1)

= Ei−1
k1

α(2n− 1; k1, n− 1, n− 1, . . . , 1, 1)

∣∣∣∣
k1=n

= (∆k1 + id)i−1α(2n− 1; k1, n− 1, n− 1, . . . , 1, 1)

∣∣∣∣
k1=n

=

i−1∑

k=0

(
i − 1

k

)
Wn,k+1 =

i−1∑

k=0

(
i− 1

k

) k+1∑

l=1

(
k

l − 1

)
(−1)n+k+lAn,l

=

i∑

l=1

(−1)n+lAn,l

i−1∑

k=l−1

(
i− 1

k

)(
k

l − 1

)
(−1)k.

The inner sum is a Chu–Vandermonde convolution (A.2.1):

i−1∑

k=l−1

(
i− 1

k

)(
k

l − 1

)
(−1)k =

i−1∑

k=l−1

(
i− 1

i− k − 1

)(
k

k − l + 1

)
(−1)k

= (−1)l−1
∑

k

(
i− 1

i− k − 1

)( −l

k − l + 1

)
= (−1)l−1

(
i− l − 1

i− l

)
.

Since
(
a−1
a

)
= 0 for all a ∈ Z \ {0} (cf. (2.5.10)), the only summand not vanishing is l = i, yielding

the equation we claim in Theorem 3.1.5.
Let us also note that (3.1.1) is a consequence of Theorem 3.1.5: On the one hand, Theorem 3.1.5

implies that

α(2n+ 1;n+ 1, n, n, . . . , 1, 1) = (−1)nAn+1,1 = (−1)nAn = (−1)nα(n; 1, 2, . . . , n).

On the other hand, since the only admissible penultimate row of a DMT with bottom row (n +
1, n, n, . . . , 1, 1) is (n, n, n− 1, n− 1, . . . , 1, 1), Lemma 3.2.3 and (2.2.4) yield

α(2n+ 1;n+ 1, n, n, . . . , 1, 1) = (−1)nα(2n;n, n, n− 1, n− 1, . . . , 1, 1).

Following the methodology used in Chapter 2, the proof of Theorem 3.4.1 consists of the following
steps:
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In Lemma 3.4.2 the numbers Wn,i are given a combinatorial meaning and shown to satisfy
a certain symmetry relation. After that, we derive in Lemma 3.4.3 that (Wn,i)i=1,...,2n−1 is an

eigenvector of
((

n−i
2n−i−j

)
(−1)n+i

)
1≤i,j≤2n−1

with eigenvalue 1. In Lemma 3.4.4 we prove that the

corresponding eigenspace is one-dimensional. In Lemma 3.4.6 we show that

(
i∑

l=1

(
i− 1

l − 1

)
(−1)n+i+l−1An,l

)

i=1,...,2n−1

is in the same eigenspace. Finally, we obtain a recursion for Wn,1 in Lemma 3.4.5, which then lets
us inductively derive the constant factor.

The symmetry An,i = An+1−i satisfied by the refined ASM numbers is a direct consequence
of the involution reflecting an ASM along the horizontal symmetry axis. The idea for proving the
symmetry Wn,i = (−1)n−1Wn,2n−i is to give the numbers a combinatorial interpretation (as signed
enumeration) and to construct a one-to-one correspondence between the objects enumerated by
Wn,i and those enumerated by Wn,2n−i. In this case a sign-change of (−1)n−1 is involved.

Lemma 3.4.2. The numbers Wn,i satisfy the symmetry relation

Wn,i = (−1)n−1Wn,2n−i

for i = 1, . . . , 2n− 1, n ≥ 1.

Proof. Let us start by checking the claim Wn,1 = (−1)n−1Wn,2n−1 separately: In Lemma 2.4.1
we showed that (−1)n−1∆n−1

k1
α(n; k1, k2, . . . , kn) counts the number of MTs with bottom row

(k2, k3, . . . , kn) whenever k1 ≤ k2 < k3 < · · · < kn, i.e.

(−1)n−1∆n−1
k1

α(n; k1, k2, . . . , kn) = α(n− 1; k2, k3, . . . , kn). (3.4.2)

Together with Remark 2.3.6 it follows that (3.4.2) holds as a polynomial identity for all (k1, . . . , kn) ∈
Cn. In particular

Wn,2n−1 = ∆2n−2
k1

α(2n− 1; k1, n− 1, n− 1, . . . , 1, 1)

∣∣∣∣
k1=n

= α(2n− 2;n− 1, n− 1, . . . , 1, 1).

Since the only admissible penultimate row of a DMT with bottom row (n, n− 1, n− 1, . . . , 1, 1) is
the row (n− 1, n− 1, . . . , 1, 1) consisting of n− 1 pairs, Lemma 3.2.3 implies

Wn,1 = (−1)n−1α(2n− 2;n− 1, n− 1, . . . , 1, 1) = (−1)n−1Wn,2n−1.

In the following let 2 ≤ i ≤ 2n−2. From (2.4.4) and Lemma 3.2.3 it follows for weakly decreasing
sequences k1 ≥ k2 ≥ · · · ≥ kn that

∆k1α(n; k1, . . . , kn) (3.4.3)

= −
∑

(l2,...,ln−1)∈P(k2,...,kn)

(−1)sc(k2,...,kn;l2,...,ln−1)α(n− 1; k1, l2, . . . , ln−1),
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where sc(k2, . . . , kn; l2, . . . , ln−1) is the total number of pairs and newcomers (Definition 3.2.2) in
(l2, . . . , ln−1). Let us define a DMT-trapezoid to be an array of integers (ap,q)1≤p≤j,

1≤q≤n−j+p
arranged

in the form
a1,1 · · · a1,n−j+1

. . . . . .

aj,1 · · · · · · aj,n

satisfying the same conditions (D1), (D2) and (D3) as DMTs. Let Pj(k1, . . . , kn; l1, . . . , ln−j+1)
denote the set of DMT-trapezoids with j rows, bottom row (k1, . . . , kn) and top row (l1, . . . , ln−j+1).
As an example, the two DMT-trapezoids with bottom row (7, 7, 4, 1, 1) and top row (6, 4, 2) are
depicted in Figure 3.9. Given a DMT-trapezoid T let sc(T ) denote the total number of sign-

6 4 2
7 5 3 1

7 7 4 1 1

6 4 2
7 4 4 1

7 7 4 1 1

Figure 3.9: The two DMT-trapezoids contained in P3(7, 7, 4, 1, 1; 6, 4, 2).

changes in the trapezoid, i.e. the total number of pairs and newcomers contained in all rows except
the bottom row. For example, the two DMT-trapezoids depicted in Figure 3.9 contain 5 resp. 3
sign-changes.

Since the ∆-operator is linear and the sequence (k1, l2, . . . , ln−1) in (3.4.3) is again weakly
decreasing, we can apply induction to see that

∆j−1
k1

α(n; k1, . . . , kn)

= (−1)j−1
∑

(l1,...,ln−j ,T ):
T ∈Pj(k2,...,kn;l1,...,ln−j)

(−1)sc(T )α(n− j + 1; k1, l1, l2, . . . , ln−j)

holds for 2 ≤ j ≤ n− 1. Together with Corollary 3.2.4 we obtain

Wn,i = (−1)i−1
∑

(l1,...,l2n−i−1,T ):
T ∈Pi(n−1,n−1,...,1,1;l1,...,l2n−i−1)

(−1)sc(T )α(2n− i;n, l1, l2, . . . , l2n−i−1)

=
∑

(l1,...,l2n−i−1,T ):
T ∈Pi(n−1,n−1,...,1,1;l1,...,l2n−i−1)

∑

A∈W2n−i(n,l1,l2,...,l2n−i−1)

(−1)i−1+sc(T )+sc(A),

i.e. Wn,i is a signed enumeration of the following partial DMTs: Start with the bottom row (n −
1, n− 1, . . . , 1, 1) and construct a DMT-trapezoid with i rows. Then append an entry n at the left
end of the top row of the DMT-trapezoid and complete it to the top as a DMT (see Figure 3.10).

Note that condition (D1) of DMTs implies that the right neighbour of the entry n in row 2n− i
is smaller than n, and by condition (D3’) their interlaced neighbour in the row above is also smaller
than n. Hence, all entries are in {1, 2, . . . , n− 1} except for the one entry n at the fixed location in
row 2n− i.

Let us now encode the position of the entries smaller than n in a (2n − 1) × (n − 1)-matrix
with entries {0, 1,−1} as done in Proposition 3.3.2. More precisely, the sum of the top i entries in
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Figure 3.10: Combinatorial interpretation of Wn,i.

column j of the matrix is equal to the number of entries j in row i of the partial DMT. Conditions
(D2) and (D3) of DMTs imply that in each column of the matrix the non-zero entries occur in pairs
such that each partial column sum is in {0, 1, 2}. Since the bottom row is (n−1, n−1, . . . , 1, 1) each
column sums up to 2. Condition (D1) implies that in all rows the non-zero entries alternate in sign.
Moreover, the number of entries smaller than or equal to n− 1 increases by 1 in each row except
row 2n − i where it stays the same. As a consequence, the sum of each row in the corresponding
matrix is 1 except for row 2n− i where the last non-zero entry is a −1 and the row-sum is therefore
0. An example is given in Figure 3.11.

2
2 2

3 2 2
3 3 2 1

4 3 3 1 1
3 3 2 1 1

3 3 2 2 1 1

⇐⇒




0 1 0
0 1 0
0 0 1
1 −1 1
1 −1 0
0 1 0
0 1 0




Figure 3.11: One of the objects counted by W4,3 and its corresponding matrix.

Phrased differently, the described matrices are (2n− 1)× (n− 1)-matrices such that

• all columns are generated by the machine in Figure 3.8 with length 2n− 1,

• the (2n − i)-th row is generated by the machine in Figure 3.7 with length n − 1, but the
transition to the final state is located at the state Σ = 0 (since the last non-zero entry is a
−1), and

• all other rows are generated by the machine in Figure 3.7 with length n− 1.

This establishes a one-to-one correspondence with the partial DMTs occurring in the signed
enumeration of Wn,i (cf. Proposition 3.3.2). The advantage of this perspective is that the matrices
corresponding to Wn,i and those corresponding to Wn,2n−i are now subject to a simple bijection,
namely reflecting the corresponding matrices along the horizontal symmetry axis. It remains to
show that this reflection changes the parity of sc(T ) + sc(A) by n− 1.
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The total number of sign-changes has an interpretation in terms of the corresponding matrices
by counting how often which of the edges in the column-generating machine in Figure 3.8 are taken.
On the one hand, the total number of pairs in the partial DMT equals the number of positions in
the matrix where the partial column-sum equals 2. This is exactly the number of times an edge
leading into the state Σ = 2 is taken. On the other hand, the number of newcomers in the partial
DMT is equal to the number of positions in the matrix where the partial column sum is 1 and
the entry below is a −1. Hence, it is given by the total number of times we take the (−1,−1)-
edge or the (1,−1)-edge in Figure 3.8. Since the bottom row contains n− 1 pairs, we obtain that
sc(T )+sc(A)+n−1 is equal to the total number of edges taken for generating entries in the matrix
except for the 0-loop at the state Σ = 0.

Note that reflecting the matrix along the horizontal symmetry axis means that the columns of
the reflected matrix are generated in reverse order, i.e. the number of times the edges are taken
is interchanged in the following way: (1,−1)-edge ↔ (−1, 1)-edge, 0-loop at state Σ = 0 ↔ 0-
loop at state Σ = 2. Hence, the parity of the difference between the number of times we take
the two 0-loops gives us the change of (−1)sc(T )+sc(A) under the reflection. But the parity of this
difference is independent from T and A. This is because the total number of entries in the matrix
is (2n − 1)(n − 1) and each of the other edges generates two entries of the matrix. Therefore the
parity of the difference of the number of times we take the two 0-loops has to be n−1. We conclude

Wn,i =
∑

(l1,...,l2n−i−1,T ):
T ∈Pi(n−1,n−1,...,1,1;l1,...,l2n−i−1)

∑

A∈W2n−i(n,l1,l2,...,l2n−i−1)

(−1)i−1+sc(T )+sc(A)

= (−1)n−1Wn,2n−i.

In the following, we show that the numbers Wn,i satisfy a certain system of linear equations.

Lemma 3.4.3. Fix n ≥ 1. The numbers Wn,i satisfy the system of linear equations

Wn,i =

2n−1∑

j=1

(
n− i

2n− i− j

)
(−1)n+iWn,j , (3.4.4)

for i = 1, . . . , 2n− 1.

For the proof, keep in mind that by (2.5.10) the binomial coefficient
(

n−i
2n−i−j

)
does not necessarily

vanish for i > n, but does so for j > 2n− i.

Proof. The general idea of the proof is similar to Lemma 2.5.2 where we derived a system of linear
equations for the refined ASM numbers by applying the circular shift identity (2.5.2). In this proof
we additionally require the following identity

α(n; k1, k2, . . . , kn) = α(n;−kn,−kn−1, . . . ,−k1), (3.4.5)

which is combinatorially clear for integers k1 < k2 < · · · < kn (reflect MT w.r.t. horizontal symme-
try axis and change the sign of each entry). Since both sides of (3.4.5) are polynomials, the identity
holds for arbitrary (k1, k2, . . . , kn) ∈ Cn (Remark 2.2.1).
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First apply the circular shift identity to obtain

Wn,i = ∆i−1
k1

α(2n− 1;n− 1, n− 1, . . . , 1, 1, k1 − 2n+ 1)

∣∣∣∣
k1=n

= Ei−n
k1

δi−1
k1

α(2n− 1;n− 1, n− 1, . . . , 1, 1, k1 − n)

∣∣∣∣
k1=n

.

Then use Ex = (id−δx)
−1, (3.4.5) and Remark 2.3.6 to see that

Wn,i =
∑

j≥0

(
n− i

j

)
(−1)jδi+j−1

k1
α(2n− 1;n− 1, n− 1, . . . , 1, 1, k1)

∣∣∣∣
k1=0

=

2n−i−1∑

j=0

(
n− i

j

)
(−1)jδi+j−1

k1
α(2n− 1;−k1,−1,−1, . . . ,−(n− 1),−(n− 1))

∣∣∣∣
k1=0

.

The difference operators satisfy the equation

δixf(−x) = (−1)i∆i
yf(y)

∣∣∣∣
y=−x

(3.4.6)

for any function f and i ≥ 0: The case i = 0 is obvious. For i ≥ 1 define the operator Nx f(x) :=
f(−x) and observe that δx Nx = −Nx ∆x:

δxNx f(x) = f(−x)− f(−x+ 1) = Nx f(x)−Nx f(x+ 1) = −Nx ∆xf(x).

Therefore we obtain

δixf(−x) = δixNx f(x) = (−1)i Nx∆
i
xf(x) = (−1)i∆i

yf(y)

∣∣∣∣
y=−x

.

Together with (2.5.1) it follows that

Wn,i =

2n−i−1∑

j=0

(
n− i

j

)
(−1)i−1∆i+j−1

k1
α(2n− 1; k1,−1,−1, . . . ,−(n− 1),−(n− 1))

∣∣∣∣
k1=0

=
2n−i−1∑

j=0

(
n− i

j

)
(−1)i−1∆i+j−1

k1
α(2n− 1; k1, n− 1, n− 1, . . . , 1, 1)

∣∣∣∣
k1=n

=

2n−i−1∑

j=0

(
n− i

j

)
(−1)i−1Wn,i+j =

2n−1∑

j=1

(
n− i

j − i

)
(−1)i−1Wn,j .

Using the symmetry shown in Lemma 3.4.2 yields

Wn,i =
2n−1∑

j=1

(
n− i

j − i

)
(−1)n+iWn,2n−j =

2n−1∑

j=1

(
n− i

2n− i− j

)
(−1)n+iWn,j .
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Lemma 3.4.4. Let δi,j denote the Kronecker delta. Then

rk

((
n− i

2n− i− j

)
(−1)n+i − δi,j

)

1≤i,j≤2n−1

= 2n− 2,

holds for n ≥ 1, i.e. the 1-eigenspace of
((

n−i
2n−i−j

)
(−1)n+i

)
1≤i,j≤2n−1

is one-dimensional.

Proof. Note that the n-th row of S :=
((

n−i
2n−i−j

)
(−1)n+i − δi,j

)
1≤i,j≤2n−1

contains only zeroes. In

the following, we show that removing this row and the last column results in a (2n− 2)× (2n− 2)-
matrix S′ with non-zero determinant (in fact, it is equal to (−1)n−1An−1, where An−1 denotes
the number of ASMs of size n − 1). The block structure of S′ is displayed in Figure 3.12. The

−1

−1

0

0

0

.
.
.

−1

0. . .

0

0

. . .

.
.
.

. . .

0

0

−1

0

0

.
.
.

0

0. . .

−1

0

. . .

.
.
.

. . .

(

n−i

2n−i−j

)

(−1)n+i

(

n−i

2n−i−j

)

(−1)n+i

. . .
. . .

. . .
. . .

j = 1, . . . , 2n− 2

i = 1, . . . , n− 1

i = n+ 1, . . . , 2n− 1

Figure 3.12: The matrix S′ decomposed into four (n− 1)× (n− 1)-blocks.

determinant of a block matrix

(
A B
C D

)
with an invertible matrix A and a square matrix D

is equal to det(A) det(D − CA−1B): This follows from the decomposition (I denotes the identity
matrix)

(
A B
C D

)
=

(
A 0
C I

)(
I A−1B
0 D − CA−1B

)

together with the fact that

det

(
A 0
C D

)
= det

(
A B
0 D

)
= det

(
A 0
0 D

)
= det

(
A 0
0 I

)(
I 0
0 D

)

= det(A) det(D).
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The block matrices in our case are

A = −In−1,

B =

((
n− i

n− i− j + 1

)
(−1)n+i

)

1≤i,j≤n−1

,

C =

(( −i

n− i− j

)
(−1)i

)

1≤i,j≤n−1

,

D = (−δi+1,j)1≤i,j≤n−1 .

That C−1 =
((

i−n
i+j−n

)
(−1)n−i

)
1≤i,j≤n−1

is indeed the inverse matrix of C follows from Chu–

Vandermonde convolution (A.2.1):

n−1∑

k=1

( −i

n− i − k

)(
k − n

k + j − n

)
(−1)i+n−k = (−1)i+j

∑

k

( −i

n− i− k

)(
j − 1

k + j − n

)

= (−1)i+j

(
j − i− 1

j − i

)
= δi,j .

Note that the binomial coefficients in C vanish, unless i+ j ≤ n, i.e. C is an upper-left triangular
matrix, whereby the anti-diagonal entry in row i is equal to (−1)i. It follows that det(A) = det(C) =
(−1)n−1. Together with A−1 = −In−1, we obtain

det(S′) = det(A) det(C) det(C−1D −A−1B) = det(C−1D +B)

= det
1≤i,j≤n−1

((
i− n

i+ j − 1− n

)
(−1)n+i+1 +

(
n− i

n− i− j + 1

)
(−1)n+i

)
.

Since n− i is non-negative, the identity
(
n
k

)
=
(

n
n−k

)
is applicable to the second binomial coefficient.

Multiplying the i-th row with (−1)n+i yields

det(S′) = (−1)(
n
2) det

1≤i,j≤n−1

((
n− i

j − 1

)
−
(

i − n

i+ j − 1− n

))
.

As (−1)(
n
2)+⌊n−1

2 ⌋ = (−1)n−1, switching row i with row n− i for i = 1, . . . , ⌊n−1
2 ⌋ gives

det(S′) = (−1)n−1 det
1≤i,j≤n−1

((
i

j − 1

)
−
( −i

j − i− 1

))
.

Multiply from the right with the upper-triangular matrix
((

j−2
j−i

))
1≤i,j≤n−1

having determinant 1

and apply Chu–Vandermonde convolution:

det(S′) = (−1)n−1 det
1≤i,j≤n−1

(
n−1∑

k=1

((
i

k − 1

)
−
( −i

k − i− 1

))(
j − 2

j − k

))

= (−1)n−1 det
1≤i,j≤n−1

((
i+ j − 2

j − 1

)
−
(
j − i− 2

j − i− 1

))

= (−1)n−1 det
0≤i,j≤n−2

((
i+ j

i

)
− δi,j+1

)
.
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In [BFZJ12] it was shown that the determinant of
((

i+j
i

)
− δi,j+1

)
0≤i,j≤n−1

is equal to the number

of Descending Plane Partitions with each part smaller than or equal to n, which is known to be
equal to the number of ASMs of size n (see [And79, Theorem 3]). It follows that

det(S′) = (−1)n−1An−1 6= 0.

Similar to the combinatorial identity An,1 =
∑n−1

i=1 An−1,i satisfied by the refined ASM numbers,
Wn,1 can also be expressed in terms of the numbers Wn−1,i.

Lemma 3.4.5. Let n ≥ 2. Then

Wn,1 = −
n−1∑

i=1

(
n− 1

i

)
Wn−1,i.

Proof. The only penultimate row of a DMT with bottom row (n, n−1, n−1, . . . , 1, 1) is (n−1, n−
1, . . . , 1, 1). From Lemma 3.2.3 and the circular shift identity (2.5.1) one therefore obtains

Wn,1 = α(2n− 1;n, n− 1, n− 1, . . . , 1, 1)

= (−1)n−1α(2n− 2;n− 1, n− 1, . . . , 1, 1)

= (−1)nα(2n− 2; 2n− 1, n− 1, n− 1, . . . , 2, 2, 1).

The possible penultimate rows of a DMT with bottom row (2n − 1, n − 1, n − 1, . . . , 2, 2, 1) are
(l, n−1, n−1, . . . , 2, 2) where l may take any value in {n, n+1, . . . , 2n−2}. Each such penultimate
row consists of n − 2 pairs and one newcomer (Definition 3.2.2). The claim now follows from

Lemma 3.2.3 and the binomial identity
b∑

k=a

(
k
a

)
=
(
b+1
a+1

)
:

Wn,1 = −
2n−2∑

l=n

α(2n− 3; l, n− 1, n− 1, . . . , 2, 2)

(2.5.1)
= −

2n−3∑

l=n−1

α(2n− 3; l, n− 2, n− 2, . . . , 1, 1)

= −
2n−3∑

l=n−1

(∆k1 + id)l−n+1α(2n− 3; k1, n− 2, n− 2, . . . , 1, 1)

∣∣∣∣
k1=n−1

= −
2n−3∑

l=n−1

l−n+1∑

i=0

(
l − n+ 1

i

)
∆i

k1
α(2n− 3; k1, n− 2, n− 2, . . . , 1, 1)

∣∣∣∣
k1=n−1

= −
n−2∑

i=0

Wn−1,i+1

2n−3∑

l=n+i−1

(
l − n+ 1

i

)
= −

n−1∑

i=1

(
n− 1

i

)
Wn−1,i.

The next step is to show that the numbers on the right-hand side of (3.4.1) are also a solution
of the LES (3.4.4) with one-dimensional solution space.
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Lemma 3.4.6. Let Xn,i :=
∑i

l=1

(
i−1
l−1

)
(−1)n+i+l−1An,l. Then

Xn,i =

2n−1∑

j=1

(
n− i

2n− i− j

)
(−1)n+iXn,j

holds for all i = 1, . . . , 2n− 1, n ≥ 1.

Proof. By (2.1.1), the refined ASM numbers satisfy

An,l =

(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
cn

with a constant cn independent from l. Hence, it suffices to show that

2n−1∑

j=1

(
n− i

2n− i− j

) j∑

l=1

(
j − 1

l− 1

)(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)i+l+j−1

=
i∑

l=1

(
i− 1

l − 1

)(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)n+i+l−1.

One way to prove this routinely (see also [PWZ96]) is to apply Chu–Vandermonde convolution to
the left-hand side, then identify – under the guidance of C. Krattenthaler’s HYP–package [Kra95]
– the hypergeometric series on both sides and find out that applying transformation T3207 to the
right-hand side twice yields the left-hand side. A computational proof by hand is also included in
the appendix (Lemma A.2.3).

We are now in the position to conclude the proof of Theorem 3.4.1: Since (Wn,i)i=1,...,2n−1

(Lemma 3.4.3) and (Xn,i)i=1,...,2n−1 (Lemma 3.4.6) both satisfy the same system of linear equations
with one-dimensional solution space (Lemma 3.4.4), it follows that

(Xn,i)i=1,...,2n−1 = Cn(Wn,i)i=1,...,2n−1, n ≥ 1.

Let us now show by induction w.r.t. n, that Xn,i = Wn,i for all i = 1, . . . , 2n − 1, n ≥ 1. The
case n = 1 is trivial (X1,1 = W1,1 = 1). For n ≥ 2, it suffices to show that Xn,1 = Wn,1, since
then Cn = 1. Apply Lemma 3.4.5, the induction hypothesis and Chu–Vandermonde convolution to
obtain

Wn,1 = −
n−1∑

i=1

(
n− 1

i

)
Wn−1,i = −

n−1∑

i=1

(
n− 1

i

)
Xn−1,i

= −
n−1∑

i=1

(
n− 1

i

) i∑

l=1

(
i− 1

l− 1

)
(−1)n+i+lAn−1,l

= (−1)n−1
n−1∑

l=1

An−1,l

n−1∑

i=l

(
n− 1

n− 1− i

)(
i− 1

i− l

)
(−1)i+l

= (−1)n−1
n−1∑

l=1

An−1,l

∑

i

(
n− 1

n− 1− i

)( −l

i− l

)

= (−1)n−1
n−1∑

l=1

An−1,l = (−1)n−1An−1 = (−1)n−1An,1 = Xn,1.
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This concludes the proof of Theorem 3.4.1, or equivalently Theorem 3.1.5, and therefore identity
(3.1.1).

3.5 Towards a bijective proof of the identity

Even though we have seen a computational proof of (3.1.1) in the previous section, it is from a com-
binatorialist’s point of view more desirable to find a bijective explanation of the identity. The right-
hand side counts the number of MTs with bottom row (1, 2, . . . , n). According to Theorem 3.1.4, the
left-hand side of (3.1.1) is a signed enumeration of DMTs with bottom row (n, n, n−1, n−1, . . . , 1, 1):

α(2n;n, n, n− 1, n− 1, . . . , 1, 1) = (−1)(
2n
2 )

∑

A∈W2n(n,n,n−1,n−1,...,1,1)

(−1)dd(A).

Since there are exactly n pairs in the bottom row, and
(
2n
2

)
has the same parity as n, it follows

that (3.1.1) is equivalent to

∑

A∈W2n(n,n,n−1,n−1,...,1,1)

(−1)dd(A) = α(n; 1, 2, . . . , n), (3.5.1)

where dd(A) is the number of pairs (x, x) for which there also exists a pair (x, x) in the row below.
A bijective proof of (3.5.1) could succeed by partitioning the set of DMTs with bottom row

(n, n, . . . , 1, 1) into three sets:

W2n(n, n, n− 1, n− 1, . . . , 1, 1) = S1 ∪̇ S2 ∪̇ S3.

Hereby dd(A) should be even for all A ∈ S1 ∪S2, whereas dd(A) should be odd for all A ∈ S3. The
DMTs in S1 should be in bijective correspondence with MTs with bottom row (1, 2, . . . , n), and the
DMTs in S2 and S3 should also be in one-to-one correspondence, thus cancelling each other out in
(3.5.1).

It is plausible that S1 should contain exactly those DMTs with bottom row (n, n, n − 1, n −
1, . . . , 1, 1) where the (2i)-th row consists of i pairs for all i = 1, . . . , n (see Figure 3.13). Note
that this also determines the entries in odd rows. Identifying the entries connected by an edge
with one single entry and reflecting the triangle along the vertical symmetry axis yields a MT with
bottom row (1, 2, . . . , n). An example is given in Figure 3.14. In fact, this establishes a one-to-one
correspondence with MTs with bottom row (1, 2, . . . , n):

The weak increase along diagonals directly translates from MTs to DMTs. The strict increase
along rows of MTs corresponds to condition (D2) of DMTs, i.e. each integer is contained at most
twice per row. Condition (D3) of DMTs is ensured by the structural restriction, since every even
row only consists of pairs. Note that for each A ∈ S1 we have that dd(A) is exactly twice the
number of diagonally adjacent identical entries in the corresponding MT. In particular, it follows

that (−1)dd(A) = 1 for all A ∈ S1.
Finding a sign-reversing involution on W2n(n, n, n− 1, n− 1, . . . , 1, 1) \ S1 to completely under-

stand (3.5.1) in a combinatorial way remains an open problem.
Observe that from the viewpoint of 2-ASMs the subset S1 ⊆ W2n(n, n, n − 1, n − 1, . . . , 1, 1)

corresponds to the set of 2-ASMs where the column generation is restricted to the machine in
Figure 3.15. The one-to-one correspondence with ASMs of size n is even more obvious from this
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Figure 3.13: Structural restriction of DMTs in S1: entries connected by an edge must have the
same value.
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Figure 3.14: A DMT in S1 and its corresponding MT.
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[Length = 2n]
Σ = 0 Σ = 2

00

−1− 1

00

11

Figure 3.15: Machine generating the columns of those 2-ASMs corresponding to S1 ⊆ W2n(n, n, n−
1, n− 1, . . . , 1, 1).

perspective (cf. Figure 3.7). For all A ∈ W2n(n, n, n − 1, n − 1, . . . , 1, 1), the modified duplicate-
descendants statistic dd has an easy translation in terms of the corresponding 2-ASM. Namely, it
is equal to the total number of times the 0-edge is taken at the state Σ = 2 (Figure 3.8) in the
generation of all columns. This connection might turn out to be useful in finding a sign-reversing
involution.

Another natural question is to ask for the number of DMTs with bottom row (n, n, n− 1, n−
1, . . . , 1, 1) or equivalently the number of 2-ASMs of size n. However, the first values of the sequence
are 1, 2, 7, 58, 1061, 44396, which are divisible by large prime factors (1061 is actually prime). Hence,
one should not expect a nice product formula.

Considering the equation α(n; 1, 2, . . . , n) = α(2n;n, n, n− 1, n− 1, . . . , 1, 1) it is natural to look
for more such identities. The generalization

α(n; k1, . . . , kn) = α(2n; kn, kn, . . . , k1, k1)

to arbitrary strictly increasing sequences k1 < k2 < · · · < kn does not hold, for example

α(2; 1, 4) = 4 6= 2 = α(4; 4, 4, 1, 1).

Yet, the evaluation α(n;n, n − 1, . . . , 1) seems to be of interest. Note that for n = 2m the set
W2m(2m, 2m−1, . . . , 1) is empty, and hence Theorem 3.1.4 implies that α(2m; 2m, 2m−1, . . . , 1) =
0. However, the situation in the case n = 2m+1 seems to be more interesting. The first few values
of α(2m+ 1; 2m+ 1, 2m, . . . , 1) are displayed in the following table:

α(3; 3, 2, 1) −1
α(5; 5, 4, 3, 2, 1) 3

α(7; 7, 6, 5, 4, 3, 2, 1) −26
α(9; 9, 8, 7, 6, 5, 4, 3, 2, 1) 646

α(11; 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) −45885
α(13; 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) 9304650

The absolute values of these numbers are known to be the first entries of the sequence of numbers of
Vertically Symmetric Alternating Sign Matrices (VSASMs). It is not difficult to see (the argument
is provided in Section 5.1) that the set of VSASMs with 2m+1 rows is in one-to-one correspondence
with the set of MTs with bottom row (2, 4, . . . , 2m) leading to Conjecture 3.5.1.
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Conjecture 3.5.1. For n = 2m+ 1, m ≥ 1, the equation

α(n;n, n− 1, . . . , 1) = (−1)mα(m; 2, 4, . . . , 2m) (3.5.2)

holds.

It would be interesting to see, whether similar techniques as presented here (or other techniques)
can be applied to prove this conjecture.



Chapter 4
Generalized Monotone Triangles: an
extended combinatorial reciprocity
theorem

The contents of this chapter appeared in [Rie12].

4.1 Introduction

In the previous chapter we studied the evaluation of the polynomial α(n; k1, . . . , kn) at weakly
decreasing sequences k1 ≥ k2 ≥ · · · ≥ kn and showed that the evaluation can be interpreted as
signed enumeration of DMTs. One of the motivations for considering evaluations of α(n; k1, . . . , kn)
at non-increasing (k1, . . . , kn) ∈ Zn stems from the connection with ASMs: In Lemma 2.4.1 we
observed that the refined ASM numbers can be obtained by applying difference operators to the
polynomial, e.g.

A3,2 = δk3α(3; 1, 2, k3)

∣∣∣∣
k3=2

= α(3; 1, 2, 2)− α(3; 1, 2, 1). (4.1.1)

A second motivation is the circular shift identity

α(n; k1, . . . , kn) = (−1)n−1α(n; k2, . . . , kn, k1 − n), (4.1.2)

which plays one of the key roles in the proof of the Refined ASM Theorem given in Chapter 2.
Note that if k1 < k2 < · · · < kn, then kn > k1 − n, i.e. the identity can per se only be understood
as identity satisfied by the polynomial. A bijective proof of (4.1.2) could give more combinatorial
insight to the Refined ASM Theorem.

In this chapter we first give an interpretation to the evaluation of α(n; k1, . . . , kn) at arbitrary
(k1, . . . , kn) ∈ Zn and prove a generalization of Theorem 3.1.4. Then we apply the theorem and
combinatorially prove an identity satisfied by α(n; k1, . . . , kn), which already had a combinatorial
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interpretation in terms of increasing integer arguments. Finally, we consider the circular shift
identity in the case k1 < k2 < · · · < kn and present a first step towards a combinatorial proof.

To state how the evaluation of α(n; k1, . . . , kn) at arbitrary (k1, . . . , kn) ∈ Zn may be interpreted
as signed enumeration, we define a combinatorial object which locally combines the restrictions of
ordinary Monotone Triangles and DMTs introduced in Chapter 3.

Definition 4.1.1. A Generalized Monotone Triangle (GMT) is a triangular array of integers
(ai,j)1≤j≤i≤n arranged in the form

a1,1

a2,1 a2,2

.

.

.

.

.

.

an,1 . . . an,n. . .

satisfying the following three conditions (cf. Figure 4.1):

(G1) Each entry is weakly bounded by its SW- and SE-neighbour, i.e.

min{ai+1,j , ai+1,j+1} ≤ ai,j ≤ max{ai+1,j , ai+1,j+1}.

(G2) If three consecutive entries in a row are weakly increasing, then their two interlaced neigh-
bours in the row above are strictly increasing, i.e.

ai+1,j ≤ ai+1,j+1 ≤ ai+1,j+2 =⇒ ai,j < ai,j+1.

(G3) If an entry is strictly larger than its right neighbour and their interlaced neighbour in the row
above is equal to its SW-neighbour (resp. SE-neighbour), then the interlaced neighbour has a
left (resp. right) neighbour and is equal to it, i.e.

ai,j = ai+1,j > ai+1,j+1 =⇒ ai,j−1 = ai,j ,

ai+1,j > ai+1,j+1 = ai,j =⇒ ai,j+1 = ai,j .

As an example (cf. Figure 4.2), let us determine all GMTs with fixed bottom row (4, 2, 1, 3):
First, construct all possible penultimate rows (l1, l2, l3). From condition (G1) we know that
(l1, l2, l3) ∈ {2, 3, 4} × {1, 2} × {1, 2, 3}. Condition (G3) implies that l1 ∈ {2, 3}. If on the one
hand l1 = 2, then condition (G3) forces l2 = 2. The right-most entry l3 could be either 1, 2 or 3,
but conditions (G1) and (G2) ensure that a GMT does not have three consecutive equal entries, so
l3 ∈ {1, 3}. If on the other hand l1 = 3, then condition (G3) implies that l2 = l3 = 1. Proceeding in
the same way with the three penultimate rows (2, 2, 1), (2, 2, 3) and (3, 1, 1) yields the four GMTs
depicted in Figure 4.2.

Remark 4.1.2. GMTs are a joint generalization of ordinary MTs and DMTs. More precisely:

1. If k1 < k2 < · · · < kn, then the set of GMTs and the set of MTs with fixed bottom row
(k1, k2, . . . , kn) coincide: Every GMT with strictly increasing bottom row is by conditions (G1)
and (G2) a MT. Conversely, the weak increase along NE- and SE-diagonals of MTs implies
condition (G1) of GMTs, the strict increase along rows condition (G2), and the premise of
(G3) cannot hold.
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Figure 4.1: Local restrictions of Generalized Monotone Triangles.
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2 2 3
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3
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2 2 3
4 2 1 3

1
1 1

3 1 1
4 2 1 3

Figure 4.2: The four GMTs with bottom row (4, 2, 1, 3).

2. If k1 ≥ k2 ≥ · · · ≥ kn, then the set of GMTs and the set of DMTs with fixed bottom row
(k1, k2, . . . , kn) coincide: Conditions (G1) and (D1) are equivalent for weakly decreasing bot-
tom rows. Conditions (G3) and (D3’) are identical. Conditions (G1) and (G2) imply that
each integer appears at most twice in a row. Conversely, condition (D2) ensures that the
premise of (G2) is never satisfied.

The main result of this chapter is that the evaluation α(n; k1, . . . , kn) is a signed enumeration
of the GMTs with bottom row (k1, k2, . . . , kn). The sign of a GMT is determined by the following
two statistics:

• An entry ai,j is called newcomer if ai+1,j > ai,j > ai+1,j+1.

• A pair (x, x) of two consecutive equal entries in a row is called sign-changing, if their interlaced
neighbour in the row below is also equal to x.

In the following, let Gn(k1, k2, . . . , kn) denote the set of GMTs with bottom row (k1, k2, . . . , kn).

Theorem 4.1.3 ([Rie12]). Let n ≥ 1 and (k1, k2, . . . , kn) ∈ Zn. Then

α(n; k1, k2, . . . , kn) =
∑

A∈Gn(k1,k2,...,kn)

(−1)sc(A),

where sc(A) is the total number of newcomers and sign-changing pairs in A.
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Consider for example (4.1.1). The theorem implies α(3; 1, 2, 2) = 2 and α(3; 1, 2, 1) = −1, which
corresponds to the three ASMs counted by A3,2. Of the four GMTs in Figure 4.2, only the left-most
contains an even number of sign-changes, and therefore α(4; 4, 2, 1, 3) = −2 by Theorem 4.1.3.

In Remark 4.1.2 we observed that Gn(k1, . . . , kn) is equal to the set of MTs with bottom row
(k1, k2, . . . , kn) whenever k1 < k2 < · · · < kn. Since sc(A) = 0 for every MT, Theorem 4.1.3 is
already known to be true in this case.

If k1 ≥ k2 ≥ · · · ≥ kn on the other hand, then the set of GMTs and DMTs with this bottom
row coincide. The correctness of Theorem 4.1.3 then follows from Corollary 3.2.4 after observing
that each pair not contained in the bottom row of a DMT is sign-changing by the weak monotony

along diagonals. However, note that general GMTs do not have this property, e.g.
2

2 2
1 3 1

.

In Section 4.2 we give a straight-forward proof of Theorem 4.1.3 resembling the proof of The-
orem 3.1.4 in the case of DMTs. In Section 4.3 we observe a connection with a previously known
[Fis12] combinatorial interpretation of α(n; k1, . . . , kn) in the general case (k1, . . . , kn) ∈ Zn. This
connection allows us to give a shorter, more subtle proof of Theorem 4.1.3. Apart from being a
joint generalization of MTs and DMTs, the generalization given here is more reduced in the sense
that fewer cancellations occur in the signed enumerations than in previously known generaliza-
tions. In Section 4 we apply the theorem to give a combinatorial proof of an identity satisfied by
α(n; k1, . . . , kn) and provide a collection of open problems.

4.2 First proof of Theorem 4.1.3

The following proposition establishes a connection between the summation operator and GMTs,
which then gives us the means to prove Theorem 4.1.3 inductively.

Given (k1, . . . , kn) ∈ Zn, let P(k1, . . . , kn) denote the set of (l1, . . . , ln−1) ∈ Zn−1 such that the
local restrictions of GMTs (cf. Figure 4.1) are satisfied in the following trapezoid:

k1

l1

k2 kn−1 kn

ln−1

. . .

. . . . . .

For example, P(4, 2, 1, 3) = {(2, 2, 1), (2, 2, 2), (2, 2, 3), (3, 1, 1)}.

Proposition 4.2.1. Let A(l1, . . . , ln−1) be a polynomial in each variable satisfying

A(l1, . . . , li−1, li, li, li, li+3, . . . , ln−1) = 0, i = 1, . . . , n− 3.

Then

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =
∑

(l1,...,ln−1)∈P(k1,...,kn)

(−1)sc(k;l)A(l1, . . . , ln−1), n ≥ 2,

where sc(k; l) := sc(k1, . . . , kn; l1, . . . , ln−1) is the total number of newcomers and sign-changing
pairs in (l1, . . . , ln−1).

The idea of the proof is to show that both sides satisfy the same recursion. For the summation
operator we have already seen the recursions (2.2.5), (2.2.8) and (2.2.9). Before proving Propo-
sition 4.2.1, we first show that the set P(k1, . . . , kn) can be decomposed in a corresponding way.
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Given two sets A,B ⊆ Zn−1, we write A ≃ B iff the two sets only differ by tuples containing three
consecutive integers, i.e.

(l1, . . . , ln−1) ∈ A ∆ B =⇒ ∃i : li = li+1 = li+2.

Let us further use the notation (a, b]Z := {c ∈ Z | a < c ≤ b} and the analogous notation for open
and closed intervals of integers.

Lemma 4.2.2. Let n ≥ 4 and (k1, . . . , kn) ∈ Zn.

1. If kn−1 ≤ kn, then

P(k1, . . . , kn) ≃ P(k1, . . . , kn−1)×(kn−1, kn]Z ∪̇ P(k1, . . . , kn−2, kn−1−1)×{kn−1}. (4.2.1)

Moreover, if ln−1 ∈ (kn−1, kn]Z, then

sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−1; l1, . . . , ln−2),

and if ln−1 = kn−1, then

sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−2, kn−1 − 1; l1, . . . , ln−2).

2. If kn−1 > kn, then

P(k1, . . . , kn) ≃ P(k1, . . . , kn−1)× (kn, kn−1)Z ∪̇ P(k1, . . . , kn−2)× {(kn−1, kn−1)}. (4.2.2)

Moreover, if ln−1 ∈ (kn, kn−1)Z, then

sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−1; l1, . . . , ln−2) + 1,

and if ln−2 = ln−1 = kn−1, then

sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−2; l1, . . . , ln−3) + 1.

Proof.

1. Let us determine which (l1, . . . , ln−1) ∈ Zn−1 are contained in both sides of (4.2.1). By
definition, ln−1 ∈ [kn−1, kn]Z on both sides. In the following, distinguish between kn−1 <
ln−1 ≤ kn and ln−1 = kn−1:

Case 1.1 (kn−1 < ln−1 ≤ kn) :

If kn−2 > kn−1, then kn−2 ≥ ln−2 > kn−1 on both sides:

Left-hand side of (4.2.1) Right-hand side of (4.2.1)

kn−2

ln−2

kn−1

ln−1

kn

≥

> ≤

<
≤>

kn−2

ln−2

kn−1

ln−1

≥

>

>
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For fixed (ln−2, ln−1), the restrictions for (l1, . . . , ln−3) are the same on both sides. The entry
ln−1 does not contribute a sign-change, and the entry ln−2 is involved in a sign-change on
both sides. Hence, sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−1; l1, . . . , ln−2).

If kn−2 ≤ kn−1, then kn−2 ≤ ln−2 ≤ kn−1 on both sides:

Left-hand side of (4.2.1) Right-hand side of (4.2.1)

kn−2

ln−2

kn−1

ln−1

kn

≤

≤ ≤

<
≤≤

kn−2

ln−2

kn−1

ln−1

≤

≤

≤

For fixed (ln−2, ln−1), the restrictions for (l1, . . . , ln−3) are the same on both sides. The entry
ln−1 does not contribute a sign-change, and the entry ln−2 is involved in a sign-change on the
left-hand side if and only if it is on the right-hand side.

Case 1.2 (ln−1 = kn−1) :

If kn−2 = kn−1, then there is no row on the left-hand side with ln−1 = kn−1, and on the
right-hand side this implies ln−3 = ln−2 = ln−1 = kn−1:

Left-hand side of (4.2.1) Right-hand side of (4.2.1)

kn−2

 

kn−1

kn−1

kn= ≤

=

≤

kn−1

kn−1

kn−1−1

kn−1

=

>

>

kn−3

kn−1

=

If kn−2 ≤ kn−1 − 1, then kn−2 ≤ ln−2 < kn−1 on both sides:

Left-hand side of (4.2.1) Right-hand side of (4.2.1)

kn−2

ln−2

kn−1

kn−1

kn< ≤

=

≤<
≤

kn−2

ln−2

kn−1−1

kn−1

≤

≤

≤

For fixed (ln−2, ln−1), the restrictions for (l1, . . . , ln−3) are the same on both sides. The
entry ln−1 does not contribute a sign-change, and the entry ln−2 is involved in a sign-
change on the left-hand side if and only if it is on the right-hand side. It follows that
sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−2, kn−1 − 1; l1, . . . , ln−2).

If kn−2 > kn−1, then kn−2 ≥ ln−2 ≥ kn−1 on both sides:

Left-hand side of (4.2.1) Right-hand side of (4.2.1)

kn−2

ln−2

kn−1

kn−1

kn> ≤

=

≤≥
≥

kn−2

ln−2

kn−1−1

kn−1

≥

>

>
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For fixed (ln−2, ln−1), the restrictions for (l1, . . . , ln−3) are the same on both sides. The
entry ln−2 is involved in a sign-change on both sides (also note the special case ln−2 = kn−1,
where (ln−2, ln−1) is a sign-changing pair on the left-hand side and ln−2 a newcomer on the
right-hand side).

2. Now let us determine which (l1, . . . , ln−1) ∈ Zn−1 are contained in both sides of (4.2.2) if
kn−1 > kn. By definition ln−1 ∈ [kn−1, kn)Z on both sides. In the following, distinguish
between the cases ln−1 ∈ (kn−1, kn)Z and ln−1 = kn−1:

Case 2.1 (kn−1 > ln−1 > kn) :

If kn−2 > kn−1, then kn−2 ≥ ln−2 > kn−1 on both sides:

Left-hand side of (4.2.2) Right-hand side of (4.2.2)

kn−2

ln−2

kn−1

ln−1

kn> >

>
>>

≥

kn−2

ln−2

kn−1

ln−1

≥

>

>

For fixed (ln−2, ln−1), the restrictions for (l1, . . . , ln−3) are the same on both sides. The
entry ln−1 is a newcomer on the left-hand side, and ln−2 is either a newcomer on both sides
or in a sign-changing pair with ln−3 on both sides. Therefore, sc(k1, . . . , kn; l1, . . . , ln−1) =
sc(k1, . . . , kn−1; l1, . . . , ln−2) + 1.

If kn−2 ≤ kn−1, then kn−2 ≤ ln−2 ≤ kn−1 on both sides:

Left-hand side of (4.2.2) Right-hand side of (4.2.2)

kn−2

ln−2

kn−1

ln−1

kn≤ >

>
>≤

≤

kn−2

ln−2

kn−1

ln−1

≤

≤

≤

For fixed (ln−2, ln−1), the restrictions for (l1, . . . , ln−3) are the same on both sides. The entry
ln−1 is a newcomer on the left-hand side, and ln−2 is involved in a sign-changing pair on the
left-hand side if and only if it is on the right-hand side.

Case 2.2 (ln−1 = kn−1) :

Since kn−1 > kn and ln−1 = kn−1, we have ln−2 = kn−1 on both sides of (4.2.2). Distinguish
between kn−3 ≤ kn−2 and kn−3 > kn−2:

If kn−3 ≤ kn−2, then kn−3 ≤ ln−3 ≤ kn−2 on the right-hand side:

Left-hand side of (4.2.2) Right-hand side of (4.2.2)

kn−2

kn−1

kn−1

kn−1

kn>

=

>=

ln−3

kn−3 ≤

≤

kn−3

ln−3

kn−2

kn−1

≤

≤

≤

kn−1
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On the left-hand side we also have kn−3 ≤ ln−3 ≤ kn−2, unless kn−2 = kn−1. In this case
kn−3 ≤ ln−3 < kn−2 on the left-hand side. However, this missing possibility ln−3 = kn−2 is
remedied by the fact that on the right-hand side we then have ln−3 = kn−2 = kn−1 = ln−2 =
ln−1, i.e. there are three consecutive equal entries. For fixed (ln−3, ln−2, ln−1), the restrictions
for (l1, . . . , ln−4) are the same on both sides.

The pair (ln−2, ln−1) contributes a sign-change on the left-hand side, and ln−3 is involved
in a sign-change on the left-hand side if and only if it is on the right-hand side. Hence,
sc(k1, . . . , kn; l1, . . . , ln−1) = sc(k1, . . . , kn−2; l1, . . . , ln−3) + 1.

If kn−3 > kn−2, then kn−3 ≥ ln−3 > kn−2 on the right-hand side (n > 4):

Left-hand side of (4.2.2) Right-hand side of (4.2.2)

kn−2

kn−1

kn−1

kn−1

kn>

=

>=

ln−3

kn−3 >

≥

kn−3

ln−3

kn−2

kn−1

≥

>

>

kn−1

On the left-hand side, we also have ln−3 ∈ (kn−2, kn−3]Z, unless kn−2 = kn−1, where ln−3 ∈
[kn−2, kn−3]Z. However ln−3 = kn−2 then implies that ln−3 = kn−2 = kn−1 = ln−2 = ln−1,
i.e. there are three consecutive equal entries. For fixed (ln−3, ln−2, ln−1), the restrictions for
(l1, . . . , ln−4) are the same on both sides. If n = 4, then the argument remains the same with
the only difference that k1 > l1 instead of k1 ≥ l1 on both sides.

The entry ln−3 contributes a sign-change on both sides and (ln−2, ln−1) is a sign-changing
pair on the left-hand side.

Proof of Proposition 4.2.1. If n = 2, then l1 ∈ [k1, k2]Z if k1 ≤ k2, and l1 ∈ (k2, k1)Z if k1 > k2.
In the former case sc(k1, k2; l1) = 0, and in the latter case sc(k1, k2; l1) = 1. The claim now follows
from

(k1,k2)∑

(l1)

A(l1)
(2.2.7)
=

k2∑

l1=k1

A(l1)
(2.2.6)
=





k2∑
l1=k1

A(l1), k1 ≤ k2,

0, k1 = k2 + 1,

−
k1−1∑

l1=k2+1

A(l1), k1 > k2 + 1.

For n = 3, it only remains to observe the alternating cases k1 < k2 > k3 and k1 > k2 < k3. The
cases k1 ≤ k2 < k3 and k1 < k2 ≤ k3 follow from (2.2.2), the cases k1 ≥ k2 > k3 and k1 > k2 ≥ k3
from Lemma 3.2.3, and the case k1 = k2 = k3 from Lemma 3.2.1.

In the case k1 < k2 > k3, it follows that

P(k1, k2, k3) = [k1, k2]Z × (k3, k2)Z ∪ {(k2, k2)}.

If (l1, l2) ∈ [k1, k2]Z × (k3, k2)Z, then l2 is a newcomer, and if (l1, l2) = (k2, k2), then (l1, l2) is a
sign-changing pair. Either way, we have sc(k1, k2, k3; l1, l2) = 1. The summation operator yields
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the same signed summation:

(k1,k2,k3)∑

(l1,l2)

A(l1, l2)
(2.2.9)
=

(k1,k2)∑

(l1)

k3∑

l2=k2

A(l1, l2)−
(k1)∑

()

A(k2, k2)

(2.2.7)
=

k2∑

l1=k1

k3∑

l2=k2

A(l1, l2)−A(k2, k2)
(2.2.6)
= −

k2∑

l1=k1

k2−1∑

l2=k3+1

A(l1, l2)−A(k2, k2).

If n ≥ 4, we can apply Lemma 4.2.2 by distinguishing between kn−1 ≤ kn and kn−1 > kn:
Case 1 (kn−1 ≤ kn) :

Apply recursion (2.2.5) of the summation operator and the induction hypothesis to obtain

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1)

=

(k1,...,kn−1)∑

(l1,...,ln−2)

kn∑

ln−1=kn−1+1

A(l1, . . . , ln−1) +

(k1,...,kn−2,kn−1−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1)

=
∑

(l1,...,ln−2)∈P(k1,...,kn−1)

(−1)sc(k1,...,kn−1;l1,...,ln−2)
kn∑

ln−1=kn−1+1

A(l1, . . . , ln−1)

+
∑

(l1,...,ln−2)∈P(k1,...,kn−2,kn−1−1)

(−1)sc(k1,...,kn−2,kn−1−1;l1,...,ln−2)A(l1, . . . , ln−2, kn−1).

By the first part of Lemma 4.2.2 and the proposition’s assumption this is further equal to

∑

(l1,...,ln−1)∈P(k1,...,kn)

(−1)sc(k;l)A(l1, . . . , ln−1).

Case 2 (kn−1 > kn) :
Recursion (2.2.9) of the summation operator and the induction hypothesis yield

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1)

= −
(k1,...,kn−1)∑

(l1,...,ln−2)

kn−1−1∑

ln−1=kn+1

A(l1, . . . , ln−1)−
(k1,...,kn−2)∑

(l1,...,ln−3)

A(l1, . . . , ln−3, kn−1, kn−1)

=
∑

(l1,...,ln−2)∈P(k1,...,kn−1)

(−1)sc(k1,...,kn−1;l1,...,ln−2)+1

kn−1−1∑

ln−1=kn+1

A(l1, . . . , ln−1)

+
∑

(l1,...,ln−3)∈P(k1,...,kn−2)

(−1)sc(k1,...,kn−2;l1,...,ln−3)+1A(l1, . . . , ln−3, kn−1, kn−1).

The claim now follows from the second part of Lemma 4.2.2.
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In Lemma 3.2.1 we observed that the α-polynomial fulfills the assumption of Proposition 4.2.1.
We are now in the position to give an inductive proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. The result is immediate for n = 1. If n ≥ 2, apply Proposition 4.2.1 and
the induction hypothesis to obtain

α(n; k1, . . . , kn)
(2.2.4)
=

(k1,...,kn)∑

(l1,...,ln−1)

α(n− 1; l1, . . . , ln−1)

=
∑

(l1,...,ln−1)∈P(k1,...,kn)

(−1)sc(k;l)α(n− 1; l1, . . . , ln−1)

=
∑

(l1,...,ln−1)∈P(k1,...,kn)

(−1)sc(k;l)
∑

A∈Gn−1(l1,...,ln−1)

(−1)sc(A)

=
∑

A∈Gn(k1,...,kn)

(−1)sc(A).

4.3 Second proof of Theorem 4.1.3

In [Fis12] four different combinatorial extensions of α(n; k1, . . . , kn) to all (k1, . . . , kn) ∈ Zn are
described. The idea behind all of them is to write the sum in (2.2.1) in terms of ordinary summa-
tions, i.e. summations as defined in (2.2.6). In one of the extensions this is achieved by applying
the inclusion-exclusion principle in the following way: Let k1 < k2 < · · · < kn and

M := {(l1, . . . , ln−1) ∈ Z
n−1 | ∀j : kj ≤ lj ≤ kj+1 ∧ lj < lj+1},

A := {(l1, . . . , ln−1) ∈ Z
n−1 | ∀j : kj ≤ lj ≤ kj+1},

Ai := {(l1, . . . , ln−1) ∈ Z
n−1 | ∀j : kj ≤ lj ≤ kj+1 ∧ li−1 = ki = li}, i = 2, . . . , n− 1.

From ki < ki+1 it follows that Ai ∩Ai+1 = ∅, and thus the inclusion-exclusion principle implies for
any function f(l) := f(l1, . . . , ln−1) that

∑

l∈M

f(l) =
∑

l∈A

f(l)−
n−1∑

i=2

∑

l∈Ai

f(l) +
∑

2≤i1<i2≤n−1,
i2 6=i1+1

∑

l∈Ai1∩Ai2

f(l)

−
∑

2≤i1<i2<i3≤n−1,
i2 6=i1+1,
i3 6=i2+1

∑

l∈Ai1∩Ai2∩Ai3

f(l) · · · . (4.3.1)

This can be written in terms of ordinary sums as

∑

p≥0

(−1)p
∑

2≤i1<i2<···<ip≤n−1,
ij+1 6=ij+1

k2∑

l1=k1

k3∑

l2=k2

· · ·
ki1∑

li1−1=ki1

ki1∑

li1=ki1

· · ·
kip∑

lip−1=kip

kip∑

lip=kip

· · ·
kn∑

ln−1=kn−1

f(l).

(4.3.2)
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We can make sense of (4.3.2) for arbitrary (k1, . . . , kn) ∈ Zn by using the extended definition of
ordinary sums (2.2.6). As explained in Section 2.2, the fact that (4.3.2) is a polynomial function in
each ki coinciding with

∑

(l1,...,ln−1)∈Z
n−1,

k1≤l1≤k2≤l2≤···≤kn−1≤ln−1≤kn,
li<li+1

f(l1, . . . , ln−1)

whenever k1 < k2 < · · · < kn ensures that

α(n; k1, . . . , kn) =
∑

p≥0

(−1)p
∑

2≤i1<i2<···<ip≤n−1,
ij+1 6=ij+1

(4.3.3)

k2∑

l1=k1

k3∑

l2=k2

· · ·
ki1∑

li1−1=ki1

ki1∑

li1=ki1

· · ·
kip∑

lip−1=kip

kip∑

lip=kip

· · ·
kn∑

ln−1=kn−1

α(n− 1; l1, . . . , ln−1)

holds for (k1, . . . , kn) ∈ Zn.
As pointed out in [Fis12], we can give (4.3.3) a combinatorial interpretation in terms of a signed

enumeration of the following objects: In a triangular array (ai,j)1≤j≤i≤n of integers arranged in the
form

a1,1

a2,1 a2,2

.

.

.

.

.

.

an,1 . . . an,n. . .

let us call the entries ai−1,j−1 and ai−1,j the parents of ai,j . Among the entries (ai,j)1<j<i≤n,
there may be special entries (choosing the special entries in the bottom row corresponds to fixing
(i1, . . . , ip) in (4.3.3)). Special entries in the same row must not be adjacent. The requirements for
the entries are

1. If ai,j is special, then ai−1,j−1 = ai,j = ai−1,j .

2. If ai,j is not the parent of a special entry and ai+1,j ≤ ai+1,j+1, then ai+1,j ≤ ai,j ≤ ai+1,j+1.

3. If ai,j is not the parent of a special entry and ai+1,j > ai+1,j+1, then ai+1,j > ai,j > ai+1,j+1.
In this case ai,j is called inversion.

Two examples are depicted in Figure 4.3. Let us denote by Tn(k1, . . . , kn) the set of these objects
with bottom row (an,1, . . . , an,n) = (k1, . . . , kn). For A ∈ Tn(k1, . . . , kn) let s(A) be the total
number of special entries and inversions. Using induction and (4.3.3), one then obtains

α(n; k1, . . . , kn) =
∑

A∈Tn(k1,...,kn)

(−1)s(A).

However, there are cancellations in this signed enumeration, which can be eliminated. To be specific,
consider those A ∈ Tn(k1, . . . , kn) violating the condition

ai,j−1 ≤ ai,j ≤ ai,j+1 =⇒ ai−1,j−1 < ai−1,j (4.3.4)
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4 2 1 3

2 2 3

2 2

2

∗

⇐⇒

4 2 1 3

2 2 3

2 2

2

∗

∗

Figure 4.3: Sign-reversing involution on the set of arrays violating (4.3.4). Special entries are
marked with a star on top.

at least once. Given such an array, locate the lexicographically minimal position (i, j) such that
ai,j−1 ≤ ai,j ≤ ai,j+1 and ai−1,j−1 = ai,j = ai−1,j . If ai,j is not special, then make it special and
vice versa if ai,j is special, then turn it into a non-special entry (see Figure 4.3).

Note that the minimality of i ensures that turning ai,j special is admissible: Suppose a neighbour
of ai,j is special, then the row above contains three consecutive equal entries and thus condition
(4.3.4) is already violated in the row above. Conversely, turning the special entry ai,j into a non-
special one is allowed because of ai,j−1 ≤ ai,j ≤ ai,j+1. Since the number of inversion stays the same
and the number of special entries changes by exactly 1, this mapping is a sign-reversing involution.
It follows that

α(n; k1, . . . , kn) =
∑

A∈Tn(k1,...,kn),
ai,j−1≤ai,j≤ai,j+1 =⇒ ai−1,j−1<ai−1,j

(−1)s(A).

Furthermore, observe that in this reduced set an entry ai,j is special if and only if ai−1,j−1 =
ai,j = ai−1,j . In fact, we can now establish a one-to-one correspondence with the set of GMTs with
bottom row (k1, . . . , kn). For this, let us show that

Gn(k1, . . . , kn) = {A ∈ Tn(k1, . . . , kn) | ai,j−1 ≤ ai,j ≤ ai,j+1 =⇒ ai−1,j−1 < ai−1,j},

whereby an entry ai,j is defined to be special if and only if ai−1,j−1 = ai,j = ai−1,j .

Given a GMT, the first condition is satisfied by definition. The second condition follows from
(G1). If ai+1,j > ai+1,j+1, then ai+1,j ≥ ai,j ≥ ai+1,j+1 by (G1). The third condition then follows
from (G1) and (G3) since neither ai+1,j nor ai+1,j+1 are special. The additional restriction (4.3.4)
is exactly condition (G2).

Conversely, condition (G1) and (G2) are obviously satisfied and condition (G3) is a direct
consequence of the third and the first condition. Since special entries correspond to sign-changing
pairs and inversions to newcomers, we obtain

α(n; k1, . . . , kn) =
∑

A∈Gn(k1,k2,...,kn)

(−1)sc(A).

4.4 A shift-antisymmetry property

Having a combinatorial interpretation of α(n; k1, k2, . . . , kn) for arbitrary (k1, . . . , kn) ∈ Zn, we can
try to give a combinatorial interpretation to identities satisfied by the α-polynomial. By way of
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illustration, take the identity

α(n; k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) (4.4.1)

= α(n; k1, . . . , ki−1, ki, ki, ki+2, . . . , kn) + α(n; k1, . . . , ki−1, ki + 1, ki + 1, ki+2, . . . , kn).

A combinatorial proof of this identity in the case that k1 < k2 < · · · < ki and ki+1 < ki+2 < · · · <
kn was given in [Fis12]. Using Theorem 4.1.3, we can now give a combinatorial proof for arbitrary
(k1, . . . , kn) ∈ Zn by establishing a sign-preserving bijection between the sets

Gn(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn)

⇐⇒ Gn(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn) ∪̇ Gn(k1, . . . , ki−1, ki + 1, ki + 1, ki+2, . . . , kn).

Using the notation from Section 4.2 and

P1 := P(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn)

P2 := P(k1, . . . , ki−1, ki + 1, ki + 1, ki+2, . . . , kn)

we show this by observing that

P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) ≃ P1 ∪̇ P2, (4.4.2)

whereby each row contained in both sides has the same total number of newcomers and sign-changing
pairs: Each (l1, . . . , ln−1) ∈ P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) satisfies li ∈ {ki, ki + 1}. Let us
show that those rows with li = ki correspond to the rows contained in P1. Symmetrically, those
rows with li = ki + 1 then correspond to P2.

If li = ki, then the restrictions for (l1, . . . , li−1) are identical for both P(k1, . . . , ki−1, ki, ki +
1, ki+2, . . . , kn) and P(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn). For the restrictions of (li+1, li+2) distinguish
between ki + 1 ≤ ki+2, ki = ki+2 and ki > ki+2:

If ki + 1 ≤ ki+2, then ki + 1 ≤ li+1 ≤ ki+2 on both sides and the restrictions for li+2 are the
same:

Left-hand side of (4.4.2) Right-hand side of (4.4.2)

ki

ki

ki+1

li+1

ki+2

=

< ≤

≤
≤<

ki

ki

ki

li+1

ki+2

=

= ≤

<
≤=

If ki = ki+2, then each row in P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) with li = ki satisfies
li = li+1 = li+2 = ki, and P(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn) is empty:

Left-hand side of (4.4.2) Right-hand side of (4.4.2)

ki

ki

ki+1

ki

ki

=

< >

>
=<

ki

=

ki

ki

ki ki

=

= =

=

 

If ki > ki+2, then ki ≥ li+1 ≥ ki+2 on both sides and the restrictions for li+2 are the same:



72 CHAPTER 4. GENERALIZED MONOTONE TRIANGLES

Left-hand side of (4.4.2) Right-hand side of (4.4.2)

ki

ki

ki+1

li+1

ki+2

=

< >

>
≥<

ki

ki

ki ki+2

=

= >

=

li+1

≥
≥

In this case, the entry li+1 is involved in a sign-change on both sides (also observe the special
case li+1 = ki, where li+1 is a newcomer on the left-hand side and in a sign-changing pair on the
right-hand side). The restrictions for (li+3, . . . , ln−1) are clearly the same for both sides. Sym-
metrically, the set P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) restricted to li = ki + 1 corresponds to
P(k1, . . . , ki−1, ki+1, ki+1, ki+2, . . . , kn), concluding the combinatorial proof of (4.4.2) for arbitrary
(k1, . . . , kn) ∈ Zn.

The GMTs contained in Gn(k1, . . . , ki−1, ki, ki+1, ki+2, . . . , kn) can therefore be partitioned into
those where the i-th entry in the penultimate row equals ki and those where it equals ki+1. The for-
mer set is then in one-to-one correspondence with the GMTs in Gn(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn)
and the latter corresponds to the set of GMTs contained in Gn(k1, . . . , ki−1, ki+1, ki+1, ki+2, . . . , kn).
Together with Theorem 4.1.3, we therefore combinatorially understand identity (4.4.1) for all
(k1, . . . , kn) ∈ Zn.

In [Fis06], a computational proof of the identity (definitions of the operators in Table 2.1, p. 20)

(id+Eki+1 E
−1
ki

Ski,ki+1)Vki,ki+1 α(n; k1, . . . , kn) = 0 (4.4.3)

was given. For fixed integers k1, . . . , ki−1, ki+2, . . . , kn, let

tn(x, y) := α(n; k1, . . . , ki−1, x, y, ki+2, . . . , kn).

Then (4.4.3) is equivalent to

tn(ki − 1, ki+1) + tn(ki, ki+1 + 1)− tn(ki − 1, ki+1 + 1)

+ tn(ki+1, ki − 1) + tn(ki+1 + 1, ki)− tn(ki+1, ki) = 0. (4.4.4)

Note that if ki = ki+1+1, then (4.4.4) is equivalent to the identity (4.4.1) which we combinatorially
understand. For Gelfand-Tsetlin patterns a shift-antisymmetry property along the lines of (4.4.3)
was shown bijectively in [Fis12]. It would be interesting to give a bijective proof of (4.4.4) in the
general case using GMTs.

4.5 The circular shift identity

In Section 2.5 we presented a computational proof of the circular shift identity

α(n; k1, . . . , kn) = (−1)n−1α(n; k2, . . . , kn, k1 − n), n ≥ 1, (4.5.1)

which then allowed us to derive a system of linear equations for the refined ASM numbers. With
Theorem 4.1.3 we now have a combinatorial interpretation of both sides in terms of a signed
summation. The goal of this section is to describe a first step towards a combinatorial understanding
of the identity.

For integers k1 < k2 < · · · < kn, the left-hand side of (4.5.1) counts the number of MTs
with bottom row (k1, . . . , kn). The right-hand side is by Theorem 4.1.3 a signed summation over
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GMTs with bottom row (k2, . . . , kn, k1 − n). There is a reasonable choice for the subset of GMTs
corresponding to the MTs:

Given a MT with bottom row (k1, . . . , kn), take the left-most NE-diagonal, subtract i from
the i-th entry top-down and append the entries as right-most SE-diagonal (see Figure 4.4). By
construction, the bottom row then is (k2, . . . , kn, k1 − n) and the entries of the right-most SE-
diagonal are strictly decreasing. In fact, each of the top n− 1 entries in the right-most SE-diagonal
is a newcomer. Since the remaining entries form a MT, the object one obtains is indeed a GMT
with bottom row (k2, . . . , kn, k1 − n) and sign (−1)n−1.

7
6 7

5 7 8
5 7 8 9

7→
6

7 4
7 8 2

7 8 9 1

Figure 4.4: A MT with bottom row (5, 7, 8, 9) and its corresponding GMT with bottom row
(7, 8, 9, 1).

However, not all GMTs with bottom row (k2, . . . , kn, k1 − n) can be obtained in this way. If an
entry ai,i in the right-most NE-diagonal is too large (namely ai,i + i > ai+1,1 or ai,i + i = ai+1,1 =
ai,1), then increasing it by i and moving it to the left end of the row violates the monotonicity
condition of MTs. One therefore needs an argument, why these remaining GMTs cancel each other
out. For n = 3, this cancellation of GMTs not corresponding to MTs can be seen in the following
way: First, remove the two GMTs

k2 k3 k1−3

k2 k2−2

k2−1

k2 k3 k1−3

k3 k3

k3

⇐⇒ ,

which have opposite signs, since the left GMT contains two newcomers whereas the right GMT
contains one sign-changing pair. What remains are those GMTs

k2 k3 k1−3

x y

z

with (x, y, z) ∈ S := {(x, y, z) ∈ Z3 | x ∈ [k2, k3]Z, y ∈ [k2 − 1, k3 − 1]Z, z ∈ P(x, y)}. We claim
that (x, y, z) 7→ (y + 1, x− 1, z) defines a sign-reversing involution on S.

Let (x, y, z) ∈ S. By definition, we then have y + 1 ∈ [k2, k3]Z and x − 1 ∈ [k2 − 1, k3 − 1]Z. If
x ≤ y, then x ≤ z ≤ y and therefore y + 1 > z > x − 1, i.e. (y + 1, x − 1, z) ∈ S. If x = y + 1,
then P(x, y) = ∅. If x > y + 1, then y + 1 ≤ z ≤ x − 1, i.e. (y + 1, x− 1, z) ∈ S. The mapping is
therefore well-defined and a sign-reversing involution, because for each (x, y, z) ∈ S, the entry y is
always a newcomer whereas the top entry z is a newcomer if and only if x > y.

It would be interesting to see whether similar arguments can be found to give a combinatorial
proof of (4.5.1) in the general case.
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4.6 Further conjectures on evaluations of the α-polynomial

In Chapter 3, we showed the surprising identity

An = α(n; 1, 2, . . . , n) = α(2n;n, n, n− 1, n− 1, . . . , 1, 1) (4.6.1)

computationally and gave initial thoughts on how a bijective proof could succeed. Let us conclude
this chapter with a list of related identities – all of them are up to this point conjectured using
mathematical computing software. As Theorem 4.1.3 provides a combinatorial interpretation of
these identities, bijective proofs are of high interest.

Conjecture 4.6.1. Let n ≥ 1. Then

α(n; 2, 4, . . . , 2n) = α(2n; 2n, 2n, 2n− 2, 2n− 2, . . . , 2, 2). (4.6.2)

Conjecture 4.6.2. Let n ≥ 1. Then

An = α(n+ i; 1, 2, . . . , i, 1, 2, . . . , n), i = 0, . . . , n, (4.6.3)

An = (−1)nα(2n+ 1; 1, 2, . . . , n+ 1, 1, 2, . . . , n). (4.6.4)

Furthermore, the numbers

Cn,i := α(2n+ 1; i, 2, . . . , n+ 1, 1, 2, . . . , n), i = 1, . . . , 3n+ 2

satisfy the symmetry Cn,i = Cn,3n+3−i.

Conjecture 4.6.3. Let n ≥ 2. Then

An = α(n+ 2; 1, 2, . . . , i+ 1, i, i+ 1, . . . , n), i = 1, . . . , n− 1. (4.6.5)

Further computational experiments led to the following interesting conjectural generalization of
(4.6.1): Given the sequence (1, 2, . . . , n), take out any subsequence (i, i+1, . . . , i+k− 1), duplicate
each entry of the subsequence, reverse its order and put it back in. Then the evaluation of the
α-polynomial at this modified sequence again yields the ASM numbers:

Conjecture 4.6.4. Let n ≥ 1. Then

An = α(n+ k; 1, . . . , i− 1, i+ k − 1, i+ k − 1, i+ k − 2, i+ k − 2, . . . , i, i, i+ k, i+ k + 1, . . . , n) (4.6.6)

holds for all i = 1, . . . , n− k + 1 and k = 1, . . . , n.

Identity (4.6.1) is thus the special case of (4.6.6) where k = n. Conjecture 4.6.3 is also a special
case of Conjecture 4.6.4 where k = 2. To see this, apply (4.4.1) and (3.2.1) twice:

α(n+ 2; 1, 2, . . . , i− 1, i, i+ 1, i, i+ 1, i+ 2, . . . , n)

= α(n+ 2; 1, 2, . . . , i− 1, i, i, i, i+ 1, i+ 2, . . . , n)

+ α(n+ 2; 1, 2, . . . , i− 1, i+ 1, i+ 1, i, i+ 1, i+ 2, . . . , n)

= α(n+ 2; 1, 2, . . . , i− 1, i+ 1, i+ 1, i, i, i+ 2, . . . , n)

+ α(n+ 2; 1, 2, . . . , i− 1, i+ 1, i+ 1, i+ 1, i+ 1, i+ 2, . . . , n)

= α(n+ 2; 1, 2, . . . , i− 1, i+ 1, i+ 1, i, i, i+ 2, . . . , n).

From Proposition 1.2.5, it follows that An,i = α(n−1; 1, 2, . . . , i−1, i+1, . . . , n). In the following
conjecture we analogously remove the i-th argument from the right-hand side of (4.6.5):
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Conjecture 4.6.5. Let n ≥ 1. Then

α(n+ 1; 1, 2, . . . , i− 1, i+ 1, i, i+ 1, . . . , n) = −
n∑

j=1

(j − i)An,j, i = 1, . . . , n− 1. (4.6.7)

To see the case i = 1 of (4.6.7), note that the penultimate row (l1, . . . , ln) of a GMT with
bottom row (2, 1, 2, . . . , n) satisfies l1 = l2 = 1 by condition (G3). Taking conditions (G1) and (G2)
into account, Proposition 4.2.1 implies that

α(n+ 1; 2, 1, 2, . . . , n) = −
n∑

p=2

α(n; 1, 1, 2, . . . , p− 1, p+ 1, . . . , n).

Each penultimate row (m1, . . . ,mn−1) of a GMT with bottom row (1, 1, 2, . . . , p− 1, p+ 1, . . . , n)
satisfies m1 = 1,m2 = 2, . . . ,mp−1 = p− 1. Applying Proposition 4.2.1 again yields

α(n+ 1; 2, 1, 2, . . . , n) = −
n∑

p=2

n∑

j=p

An,j = −
n∑

j=2

(j − 1)An,j .

For general i, the set of GMTs with bottom row (1, 2, . . . , i− 1, i+ 1, i, i+ 1, . . . , n) can be written
as a disjoint union S1 ∪̇ S2 ∪̇ S3 by distinguishing between the possible choices for (li−1, li, li+1):

1

l1

. . .

. . .

i−2

li−2

i−1

i+1

i+1

i+1

i

i

i+1

li+2

i+2

. . .

. . . n

lnS1:

1

l1

. . .

. . .

i−2

li−2

i−1

i+1

i+1

i

i

i

i+1

li+2

i+2

. . .

. . . n

lnS2:

1

l1

. . .

. . .

i−2

li−2

i−1

i−1

i+1

i

i

i

i+1

li+2

i+2

. . .

. . . n

lnS3:

For the GMTs in S3 we have (l1, l2, . . . , li−2) = (1, 2, . . . , i − 2). Analogous to the case i = 1, one
obtains that the signed enumeration of GMTs in S3 is equal to

−
n∑

j=i+1

(j − i)An,j .

Proving that the signed enumeration of GMTs in S1 and S2 yields

−
i−1∑

j=1

(j − i)An,j

remains an open problem. The following conjectures are also related to (4.6.5) by removing the
(i− 1)-st argument from the right-hand side.
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Conjecture 4.6.6. Let n ≥ 4. Then

α(n+ 1; 1, 3, 4, 3, 4, 5, . . . , n) =
n+ 4

2
An−1. (4.6.8)

As an immediate consequence of Theorem 4.1.3 we obtain (the known fact) that the evaluation
of α(n; k1, . . . , kn) at integral values is integral. Let us observe that the right-hand side of (4.6.8) is
an integer too: For n even, this is trivial. Otherwise, observe that vertically symmetric ASMs can
only exist for odd size, since the top row of each ASM contains a unique 1. Therefore, reflection
along the vertical symmetry axis is a fixed-point-free involution on the set of even-sized ASMs. In
particular, the number of even-sized ASMs is even.

Using Krattenthaler’s Mathematica package RATE, we were able to find more conjectured
formulæ similar to (4.6.8):

Conjecture 4.6.7.

α(n+ 1; 1, 2, 4, 5, 4, 5, . . . , n) =
n3 + 7n2 + 10n− 36

8n− 12
An−1, n ≥ 5,

α(n+ 1; 1, 2, 3, 5, 6, 5, 6, . . . , n) =
n4 + 12n3 + 53n2 + 54n− 288

48n− 72
An−1, n ≥ 6.

In general, this leads to the following conjecture:

Conjecture 4.6.8. Let n ≥ k ≥ 4. Then there exist polynomials pk(n) and qk(n) with deg pk −
deg qk = k − 3 such that

α(n+ 1; 1, 2, . . . , k − 3, k − 1, k, k − 1, k, . . . , n) =
pk(n)

qk(n)
An−1.



Chapter 5
Vertically symmetric alternating sign
matrices and a multivariate Laurent
polynomial identity

Most of this chapter’s content appeared in [FR14].

5.1 Introduction

A Vertically Symmetric Alternating Sign Matrix (VSASM) is an ASM which is invariant under
reflection with respect to the vertical symmetry axis (see Figure 5.1). Since the first row of an




0 0 0 0 1 0 0 0 0
0 0 0 1 −1 1 0 0 0
0 0 1 −1 1 −1 1 0 0
0 1 0 0 −1 0 0 1 0
0 0 0 0 1 0 0 0 0
1 −1 0 1 −1 1 0 −1 1
0 0 0 0 1 0 0 0 0
0 1 0 0 −1 0 0 1 0
0 0 0 0 1 0 0 0 0




⇐⇒

5
4 6

3 5 7
2 3 7 8

2 3 5 7 8
1 3 4 6 7 9

1 3 4 5 6 7 9
1 2 3 4 6 7 8 9

1 2 3 4 5 6 7 8 9

Figure 5.1: A VSASM and its corresponding MT.

ASM contains a unique 1, it follows that VSASMs can only exist for odd dimensions. Moreover,
the alternating sign condition along rows and the vertical symmetry imply that no 0 can occur in
the middle column. In a (2n + 1) × (2n + 1)-VSASM, the (n + 1)-st column is therefore equal to
(1,−1, 1, . . . ,−1, 1)T , and the VSASM is uniquely determined by its first n columns.

77
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The number of (2n+1)×(2n+1)-VSASMs is also given by a beautiful product formula [Kup02],
namely

Bn =
n!

2n(2n)!

n∏

j=1

(6j − 2)!

(2n+ 2j − 1)!
. (5.1.1)

As in the case of ordinary ASMs we are also interested in refined enumerations of the VSASM-
numbers. The fact that the unique 1 in the first row of a VSASM is always in the middle column
implies that the refined enumeration with respect to the first row is trivial. However, it also follows
that the second row contains precisely two 1s and one −1. Therefore, a possible refined enumeration
of VSASMs is with respect to the unique 1 in the second row that is situated left of the middle
column. Let Bn,i denote the number of (2n+1)× (2n+1)-VSASMs where the first 1 in the second
row is in column i. In [Fis08], it was conjectured that

Bn,i =
Bn−1

(4n− 2)!

(2n+ i− 2)!(4n− i− 1)!

(i− 1)!(2n− i)!
, i = 1, . . . , n. (5.1.2)

Another possible refined enumeration is the one with respect to the first column’s unique 1. Let
B∗

n,i denote the number of VSASMs of size 2n+ 1 where the first column’s unique 1 is located in
row i. Razumov and Stroganov showed [RS04] that

B∗
n,i =

Bn−1

(4n− 2)!

i−1∑

r=1

(−1)i+r−1 (2n+ r − 2)!(4n− r − 1)!

(r − 1)!(2n− r)!
, i = 1, . . . , 2n+ 1. (5.1.3)

Interestingly, the conjectured formula (5.1.2) would also imply a particularly simple linear relation
between the two refined enumerations, namely

Bn,i = B∗
n,i +B∗

n,i+1, i = 1, . . . , n.

To give a bijective proof of this relation is an open problem. Such a proof would also imply (5.1.2).
If we switch from the world of ASMs to the world of MTs (cf. Proposition 1.2.5), then the

property that a (2n+1)× (2n+1)-VSASM is uniquely determined by its first n columns translates
into the property that the corresponding MT is uniquely determined by the array of integers formed
by the entries {1, 2, . . . , n}. This array consists of 2n rows, whereby row i contains ⌈i/2⌉ entries,
and the bottom row is (1, 2, . . . , n) (see Figure 5.1). Let us therefore define a Halved Monotone
Triangle (HMT) to be an array of integers (ai,j)1≤i≤n,

1≤j≤⌈i/2⌉

arranged in the form

a1,1
a2,1

a3,1 a3,2
a4,1 a4,2

a5,1 a5,2 a5,3
a6,1 a6,2 a6,3

a7,1 a7,2 a7,3 a7,4
a8,1 a8,2 a8,3 a8,4

with strict increase along rows and weak increase along NE- and SE-diagonals. The set of (2n +
1)× (2n+1)-VSASMs is then in one-to-one correspondence with the set of HMTs with bottom row
(1, 2, . . . , n) and no entries larger than n.
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The general counting problem of finding the number of HMTs with bottom row k1 < k2 <
· · · < k⌈n/2⌉ and no entry larger than x was considered in [Fis08]. There it was shown that for each
n ≥ 1 there exists a unique polynomial γ(n, x; k1, . . . , k⌈n/2⌉) in the variables ki and x such that
the evaluation at integers k1 < k2 < · · · < k⌈n/2⌉ ≤ x yields the number of HMTs with bottom row
(k1, k2, . . . , k⌈n/2⌉) and no entry larger than x. In particular, the number of (2n + 1) × (2n + 1)–
VSASMs is equal to γ(2n, n; 1, 2, . . . , n). Similar to the α-polynomial for counting MTs with fixed
bottom row, the γ-polynomial can also be explicitly expressed in terms of an operator formula
[Fis08]:

Theorem 5.1.1 (Operator formula for Halved Monotone Triangles). Let Wx,y := Ex+∆x∆y and
Ix,y := E−1

x +E−1
y − id and n ≥ 1. For odd n we then have

γ(n, x; k1, . . . , k(n+1)/2) =
∏

1≤p<q≤(n+1)/2

Wkq,kp Ikp,kq

∏

1≤i<j≤(n+1)/2

(kj − ki)(2x+ 1− ki − kj)

(j − i)(j + i − 1)
,

and for even n we have

γ(n, x; k1, . . . , kn/2) =
∏

1≤p<q≤n/2

Wkq,kp Ikp,kq

∏

1≤i<j≤n/2

(kj − ki)(2x+ 2− ki − kj)

(j − i)(j + i)

n/2∏

i=1

x+ 1− ki
i

.

In Section 2.4 we expressed the refined ASM numbers An,i in terms of evaluations of the α-
polynomial by considering the position of the unique 1 in the first column of the ASM or equivalently
the number of entries 1 in the left-most NE-diagonal of the corresponding MT.

One way to express Bn,i is to consider the position of the unique 1 in the left half of the
VSASM’s penultimate row. In the corresponding HMT with 2n rows and bottom row (1, 2, . . . , n)
this translates into the unique integer missing from {1, 2, . . . , n} in row 2n− 2 (see Figure 5.1), i.e.

Bn,i = γ(2n− 2, n; 1, 2, . . . , î, . . . , n).

A different way to express Bn,i can be obtained by first rotating the VSASM by 90 degrees. The
(n+ 1)-st row of the rotated VSASM then is (1,−1, 1, . . . ,−1, 1). From the definition of ASMs, it
follows that the vector of partial column sums of the first n rows is (0, 1, 0, . . . , 1, 0), i.e. the n-th
row of the MT corresponding to the rotated VSASM is (2, 4, . . . , 2n). Since the rotated VSASM
is uniquely determined by its first n rows, this establishes a one-to-one correspondence between
VSASMs of size 2n+ 1 and MTs with bottom row (2, 4, . . . , 2n), and thus Bn = α(n; 2, 4, . . . , 2n).
The refined enumeration of VSASMs directly translates into a refined enumeration of MTs with
bottom row (2, 4, . . . , 2n): from the correspondence it follows that Bn,i counts MTs with bottom
row (2, 4, . . . , 2n) and exactly n+ 1− i entries equal to 2 in the left-most North-East-diagonal (see
Figure 5.2).

In Chapter 2, we explained in general how to count MTs with fixed bottom row (k1, k2, . . . , kn)
and a fixed number of entries k1 in the left-most NE-diagonal. Applied to our problem, Lemma 2.4.1
yields

Bn,n−i = (−1)i∆i
k1
α(n; k1, 4, 6, . . . , 2n)

∣∣∣∣
k1=3

. (5.1.4)

The research presented in this chapter started after observing that the numbers Bn,i seem to be a
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0 0 0 1 0 0 0 0 0
0 1 0 −1 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 −1 1 0
1 −1 1 −1 1 −1 1 −1 1




⇔
4

2 6
2 6 7

2 4 6 8

Figure 5.2: Upper part of the rotated VSASM and its corresponding MT.

solution of a LES similar to the one satisfied by the refined ASM numbers (cf. Lemma 2.5.2):

Bn,n−i =

n−1∑

j=i

(
3n− i− 2

j − i

)
(−1)j+n+1Bn,n−j , i = −n,−n+ 1, . . . , n− 1,

Bn,n−i = Bn,n+i+1, i = −n,−n+ 1, . . . , n− 1.

(5.1.5)

Here we have to be a bit more precise: Bn,i is not yet defined if i = n+1, n+2, . . . , 2n. However, if
we use for the moment (5.1.2) to define Bn,i for all i ∈ Z, then (Bn,i)1≤i≤2n is a solution of (5.1.5);
in Proposition 5.3.2 we show that the solution space of this LES is also one-dimensional. Coming
back to the combinatorial definition of Bn,i, the goal of this chapter is to show how to naturally
extend the combinatorial interpretation of Bn,i to i = n+ 1, . . . , 2n and to present a conjecture of
a completely different flavor which, once it is proven, implies that the numbers are a solution of the
LES. The identity analogous to (1.2.2) is

Bn,1 =

n−1∑

i=1

Bn−1,i. (5.1.6)

The Chu–Vandermonde summation implies that also the numbers on the right-hand side of (5.1.2)
fulfill this identity, and, once the conjecture presented next is proven, (5.1.2) also follows by induc-
tion with respect to n.

In order to be able to formulate the conjecture, we recall that the unnormalized symmetrizer
Sym is defined as Sym p(x1, . . . , xn) :=

∑
σ∈Sn

p(xσ(1), . . . , xσ(n)).

Conjecture 5.1.2. For integers s, t ≥ 1, consider the following rational function in z1, . . . , zs+t−1

Ps,t(z1, . . . , zs+t−1) :=

s∏

i=1

z2s−2i−t+1
i (1−z−1

i )i−1
s+t−1∏

i=s+1

z2i−2s−t
i (1−z−1

i )s
∏

1≤p<q≤s+t−1

1− zp + zpzq
zq − zp

and let Rs,t(z1, . . . , zs+t−1) := SymPs,t(z1, . . . , zs+t−1). If s ≤ t, then

Rs,t(z1, . . . , zs+t−1) = Rs,t(z1, . . . , zi−1, z
−1
i , zi+1, . . . , zs+t−1)

for all i ∈ {1, 2, . . . , s+ t− 1}.

Note that in fact the following more general statement seems to be true: if s ≤ t, then

Rs,t(z1, . . . , zs+t−1) is a linear combination of expressions of the form
s+t−1∏
j=1

[(zj − 1)(1 − z−1
j )]ij ,
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ij ≥ 0, where the coefficients are non-negative integers. Moreover, it should be mentioned that it
is easy to see that Rs,t(z1, . . . , zs+t−1) is in fact a Laurent polynomial: Observe that

Rs,t(z1, . . . , zs+t−1) =

ASym

(
Ps,t(z1, . . . , zs+t−1)

∏
1≤i<j≤s+t−1

(zj − zi)

)

∏
1≤i<j≤s+t−1

(zj − zi)

with the unnormalized antisymmetrizer ASym p(x1, . . . , xn) :=
∑

σ∈Sn

sgnσ p(xσ(1), . . . , xσ(n)). The

assertion follows since Ps,t(z1, . . . , zs+t−1)
∏

1≤i<j≤s+t−1

(zj − zi) is a Laurent polynomial and every

antisymmetric Laurent polynomial is divisible by
∏

1≤i<j≤s+t−1

(zj − zi).

We will prove the following two theorems.

Theorem 5.1.3 ([FR14]). Let Rs,t(z1, . . . , zs+t−1) be as in Conjecture 5.1.2. If

Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1)

for all 1 ≤ s ≤ t, then (5.1.2) is fulfilled.

Theorem 5.1.4 ([FR14]). Let Rs,t(z1, . . . , zs+t−1) be as in Conjecture 5.1.2. Suppose

Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1) (5.1.7)

if t = s and t = s+ 1, s ≥ 1. Then (5.1.7) holds for all s, t with 1 ≤ s ≤ t.

While we believe that (5.1.2) should probably be attacked with the six vertex model approach
(although we have not tried), we also think that the more general Conjecture 5.1.2 is interesting
in its own right, given the fact that it only involves very elementary mathematical objects such as
rational functions and the symmetric group.

This chapter is organized as follows: As a result independent from the rest of the chapter, we
start by giving a shorter proof of Theorem 5.1.1, in which we apply the simplifications derived in
Chapter 2. After that we move on to proving Theorem 5.1.3 and Theorem 5.1.4. For this, we first
show in Section 5.3 that the solution space of (5.1.5) is one-dimensional, and that the conjectured
numbers in (5.1.2) are a solution of this LES and satisfy (5.1.6). Then we present systems of linear
equations that generalize the system satisfied by the refined ASM numbers in (2.5.3) and the system
in the first line of (5.1.5) when restricting to non-negative i in the latter. Next we use the expression
(5.1.4) for Bn,i to extend the combinatorial interpretation to i = n+1, n+2, . . . , 2n and also extend
the linear equation system to negative integers i accordingly. In Section 5.7, we justify the choice
of certain constants that are involved in this extension. Afterwards we present a first conjecture
implying (5.1.2). Finally, we are able to prove Theorem 5.1.3. The proof of Theorem 5.1.4 is given
in Section 5.10. It is independent of the rest of the chapter and, at least for our taste, quite elegant.
We would love to see a proof of Conjecture 5.1.2 which is possibly along these lines.

5.2 Operator formula for Halved Monotone Triangles

Similar to ordinary MTs, the number of HMTs with n rows, fixed bottom row (k1, . . . , k⌈n/2⌉) and
no entry larger than x can be computed recursively. We have to distinguish between the cases n
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odd and n even. If n is odd, then the number of entries in the row above is one less and they have
to satisfy the usual restrictions of MTs:

k1

≤

l1

≤

k2

≤

l2

≤

k3

< < . . .

. . . k⌈n/2⌉−1 k⌈n/2⌉

≤

l⌈(n−1)/2⌉

≤

<

However, if n is even, then the row above contains the same number of entries, so that the right-most
entry is upper bounded by x:

k1

≤

l1

≤

k2

≤

l2

≤

k3

< < . . .

. . . k⌈n/2⌉−1 k⌈n/2⌉

≤

l⌈(n−1)/2⌉−1

≤

< < l⌈(n−1)/2⌉ ≤

≤

x

We proceed as in Section 2.2 and define the γ-polynomials inductively using the summation oper-
ator: Let γ(1, x; k1) := 1 and for n ≥ 2

γ(n, x; k1, . . . , k(n+1)/2) :=

(k1,...,k(n+1)/2)∑

(l1,...,l(n−1)/2)

γ(n− 1, x; l1, . . . , l(n−1)/2), n odd, (5.2.1)

γ(n, x; k1, . . . , kn/2) :=

(k1,...,kn/2,x)∑

(l1,...,ln/2)

γ(n− 1, x; l1, . . . , ln/2), n even. (5.2.2)

Given integers k1 < k2 < · · · < k⌈n/2⌉ ≤ x, the previous observations and (2.2.2) imply that
γ(n, x; k1, . . . , k⌈n/2⌉) is equal to the number of HMTs with n rows, bottom row (k1, . . . , k⌈n/2⌉)
and no entry greater than x, e.g. γ(2, x; k1) = x− k1 + 1.

Lemma 5.2.1. The operands appearing in Theorem 5.1.1 can each be written as a determinant,
namely for odd n

∏

1≤i<j≤(n+1)/2

(kj − ki)(2x+ 1− ki − kj)

(j − i)(j + i − 1)
= (−1)(

(n+1)/2
2 ) det

1≤i,j≤(n+1)/2

(
ki + j − x− 2

2j − 2

)
,

and for even n

∏

1≤i<j≤n/2

(kj − ki)(2x+ 2− ki − kj)

(j − i)(j + i)

n/2∏

i=1

x+ 1− ki
i

= (−1)(
(n+2)/2

2 ) det
1≤i,j≤n/2

(
ki + j − x− 2

2j − 1

)
.

Proof. Let us show the identities

∏

1≤i<j≤n

(kj − ki)(kj + ki)

(j − i)(j + i− 1)
= det

1≤i,j≤n

(
ki + j − 3/2

2j − 2

)
, (5.2.3)

and
∏

1≤i<j≤n

(kj − ki)(kj + ki)

(j − i)(j + i)

n∏

i=1

ki
i
= det

1≤i,j≤n

(
ki + j − 1

2j − 1

)
. (5.2.4)
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The assertions then follow by substituting kl 7→ kl − x − 1/2 in the odd case, and kl 7→ kl − x − 1
in the even case. Since

(
ki + j − 3/2

2j − 2

)
=

1

(2j − 2)!

j−1∏

l=1

(k2i − (l − 1/2)2)

we have

det
1≤i,j≤n

(
ki + j − 3/2

2j − 2

)
=

n∏

j=1

1

(2j − 2)!
det

1≤i,j≤n
(pj(k

2
i )),

where pj is a polynomial of degree j − 1 with leading coefficient 1. From Remark 2.3.2 it follows
that

det
1≤i,j≤n

(
ki + j − 3/2

2j − 2

)
=

n∏

j=1

1

(2j − 2)!

∏

1≤i<j≤n

(k2j − k2i ).

Equation (5.2.3) is now a consequence of
n∏

j=1

1
(2j−2)! =

∏
1≤i<j≤n

1
(j−i)(j+i−1) . The second identity

follows similarly with

det
1≤i,j≤n

(
ki + j − 1

2j − 1

)
= det

1≤i,j≤n

(
ki

(2j − 1)!

j−1∏

l=1

(k2i − l2)

)

=
n∏

j=1

1

(2j − 1)!

n∏

i=1

ki
∏

1≤i<j≤n

(k2j − k2i )

and
n∏

j=1

1
(2j−1)! =

1
n!

∏
1≤i<j≤n

1
(j−i)(j+i) .

For the following lemma, recall the definitions of the operators from Table 2.1 (p. 20).

Lemma 5.2.2. Let n ≥ 1 odd. Then

(k1,...,k(n+1)/2)∑

(l1,...,l(n−1)/2)

∏

1≤p<q≤(n−1)/2

Wlq,lp Ilp,lq det
1≤i,j≤(n−1)/2

(
li + j − x− 2

2j − 1

)

=
∏

1≤p<q≤(n+1)/2

Wkq ,kp Ikp,kq det
1≤i,j≤(n+1)/2

(
ki + j − x− 2

2j − 2

)
.

Proof. Let us first observe that the function

B(l1, . . . , l(n−1)/2) :=
∏

1≤p<q≤(n−1)/2

Wlq,lp Ilp,lq det
1≤i,j≤(n−1)/2

(
li + j − x− 2

2j

)

fulfills the assumption of Lemma 2.3.4. To see this note that the operator

Wli,li+1

∏

1≤p<q≤(n−1)/2

Wlq,lp Ilp,lq
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is symmetric in the variables li and li+1, and therefore

Sli,li+1 Wli,li+1 B(l1, . . . , l(n−1)/2) = −Wli,li+1 B(l1, . . . , l(n−1)/2).

In particular, the assumption of Lemma 2.3.4 is fulfilled, and we obtain

(k1,...,k(n+1)/2)∑

(l1,...,l(n−1)/2)

∏

1≤p<q≤(n−1)/2

Wlq,lp Ilp,lq det
1≤i,j≤(n−1)/2

(
li + j − x− 2

2j − 1

)

=

(k1,...,k(n+1)/2)∑

(l1,...,l(n−1)/2)

∆l1 · · ·∆l(n−1)/2
B(l1, . . . , l(n−1)/2)

=

(n+1)/2∑

r=1

(−1)r−1B(k1, . . . , kr−1, kr+1 + 1, . . . , k(n+1)/2 + 1)

=

(n+1)/2∑

r=1

(−1)r−1
∏

1≤p<q≤(n+1)/2,
p,q 6=r

Wkq,kp Ikp,kq

det
1≤i,j≤(n−1)/2

(
li + j − x− 2

2j

) ∣∣∣∣(l1,...,l(n−1)/2)

=(k1,...,kr−1,kr+1+1,...,k(n+1)/2+1)

.

As the operand in the r-th summand does not contain kr, we have Wkr ,kp = id, Wkq,kr = Ekq ,

Ikr ,kq = E−1
kq

and Ikp,kr = E−1
kp

. Together with Laplace expansion along the first column it follows
that

(k1,...,k(n+1)/2)∑

(l1,...,l(n−1)/2)

∏

1≤p<q≤(n−1)/2

Wlq,lp Ilp,lq det
1≤i,j≤(n−1)/2

(
li + j − x− 2

2j − 1

)

=

(n+1)/2∑

r=1

(−1)r−1
∏

1≤p<q≤(n+1)/2

Wkq,kp Ikp,kq

det
1≤i,j≤(n−1)/2

(
li + j − x− 1

2j

)∣∣∣∣(l1,...,l(n−1)/2)

=(k1,...,kr−1,kr+1,...,k(n+1)/2)

=
∏

1≤p<q≤(n+1)/2

Wkq,kp Ikp,kq det
1≤i,j≤(n+1)/2

(
ki + j − x− 2

2j − 2

)
.

Lemma 5.2.3. Let n ≥ 2 even. Then

(k1,...,kn/2,x)∑

(l1,...,ln/2)

∏

1≤p<q≤n/2

Wlq,lp Ilp,lq (−1)(
n/2
2 ) det

1≤i,j≤n/2

(
li + j − x− 2

2j − 2

)

=
∏

1≤p<q≤n/2

Wkq ,kp Ikp,kq (−1)(
n/2+1

2 ) det
1≤i,j≤n/2

(
ki + j − x− 2

2j − 1

)
.
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Proof. The function

Bx(l1, . . . , ln/2) :=
∏

1≤p<q≤n/2

Wlq,lp Ilp,lq det
1≤i,j≤n/2

(
li + j − x− 2

2j − 1

)

fulfills analogously to Lemma 5.2.2 the condition of Lemma 2.3.4. It follows that

(k1,...,kn/2,x)∑

(l1,...,ln/2)

∏

1≤p<q≤n/2

Wlq,lp Ilp,lq(−1)(
n/2
2 ) det

1≤i,j≤n/2

(
li + j − x− 2

2j − 2

)

= (−1)(
n/2
2 )

(k1,...,kn/2,x)∑

(l1,...,ln/2)

∆l1 · · ·∆ln/2
Bx(l1, . . . , ln/2)

=

n/2∑

r=1

(−1)r−1+(n/2
2 )Bx(k1, . . . , kr−1, kr+1 + 1, . . . , kn/2 + 1, x+ 1)

+ (−1)n/2+(
n/2
2 )Bx(k1, . . . , kn/2).

Note that the last summand equals the right-hand side of the equation we want to prove. Let
us show that Bx(l1, . . . , ln/2−1, x + 1) = 0, which implies that all other summands vanish. From
Lemma 5.2.1 we obtain

Bx(l1, . . . , ln/2)

=
∏

1≤p<q≤n/2

Wlq,lp Ilp,lq (−1)(
(n+2)/2

2 )
∏

1≤i<j≤n/2

(lj − li)(2x+ 2− li − lj)

(j − i)(j + i)

n/2∏

i=1

x+ 1− li
i

.

It therefore suffices to show that

n/2−1∏

p=1

Wln/2,lp Ilp,ln/2
(x+ 1− ln/2)

n/2−1∏

i=1

(ln/2 − li)(2x+ 2− li − ln/2)

∣∣∣∣
ln/2=x+1

= 0. (5.2.5)

Since

Wy,z Iz,y = (Ey Ez −Ez + id)(E−1
z +E−1

y − id)

= Ey − id+E−1
z +Ez −Ez E

−1
y +E−1

y −Ey Ez +Ez − id

= 2∆z + E−1
z −∆z(Ey +E−1

y )

equation (5.2.5) holds in particular if

(Ey +E−1
y )N (x+ 1− y)

n/2−1∏

i=1

(y − li)(2x+ 2− li − y)

∣∣∣∣
y=x+1

= 0, N ∈ N0.
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From (Ey +E−1
y )N =

∑N
k=0

(
N
k

)
E2k−N
y one obtains

(Ey +E−1
y )N (x+ 1− y)

n/2−1∏

i=1

(y − li)(2x+ 2− li − y)

∣∣∣∣
y=x+1

=

N∑

k=0

(
N

k

)
(N − 2k)

n/2−1∏

i=1

(x+ 1 + 2k −N − li)(x + 1− li − 2k +N)

=

N∑

k=0

(
N

k

)
(N − 2k)

n/2−1∏

i=1

(
(x+ 1− li)

2 − (N − 2k)2
)
.

The fact that this sum vanishes follows from

N∑

k=0

(
N

k

)
(N − 2k)2M+1 = 0, N,M ∈ N0,

which holds because of

N∑

k=0

(
N

k

)
(N − 2k)2M+1 =

N∑

k=0

(
N

N − k

)
(N − 2(N − k))2M+1 = −

N∑

k=0

(
N

k

)
(N − 2k)2M+1.

We are now in the position to prove the operator formula by induction w.r.t. n.

Proof of Theorem 5.1.1.

• n − 1 → n, n odd: Applying recursion (5.2.1), the induction hypothesis, Lemma 5.2.1 and
Lemma 5.2.2 yields

γ(n, x; k1, . . . , k(n+1)/2)

=

(k1,...,k(n+1)/2)∑

(l1,...,l(n−1)/2)

γ(n− 1, x; l1, . . . , l(n−1)/2)

=

(k1,...,k(n+1)/2)∑

(l1,...,l(n−1)/2)

∏

1≤p<q≤(n−1)/2

Wlq,lp Ilp,lq (−1)(
(n+1)/2

2 ) det
1≤i,j≤(n−1)/2

(
li + j − x− 2

2j − 1

)

=
∏

1≤p<q≤(n+1)/2

Wkq,kp Ikp,kq (−1)(
(n+1)/2

2 ) det
1≤i,j≤(n+1)/2

(
ki + j − x− 2

2j − 2

)

=
∏

1≤p<q≤(n+1)/2

Wkq,kp Ikp,kq

∏

1≤i<j≤(n+1)/2

(kj − ki)(2x+ 1− ki − kj)

(j − i)(j + i− 1)
.
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• n− 1 → n, n even: Analogously, apply Lemma 5.2.3 to obtain

γ(n, x; k1, . . . , kn/2)

=

(k1,...,kn/2,x)∑

(l1,...,ln/2)

γ(n− 1, x; l1, . . . , ln/2)

=

(k1,...,kn/2,x)∑

(l1,...,ln/2)

∏

1≤p<q≤n/2

Wlq,lp Ilp,lq (−1)(
n/2
2 ) det

1≤i,j≤n/2

(
li + j − x− 2

2j − 2

)

=
∏

1≤p<q≤n/2

Wkq,kp Ikp,kq (−1)(
(n+2)/2

2 ) det
1≤i,j≤n/2

(
ki + j − x− 2

2j − 1

)

=
∏

1≤p<q≤n/2

Wkq,kp Ikp,kq

∏

1≤i<j≤n/2

(kj − ki)(2x+ 2− ki − kj)

(j − i)(j + i)

n/2∏

i=1

x+ 1− ki
i

.

5.3 The solution space of the LES

The goal of this section is to show that the numbers in (5.1.2) form a solution of the LES (5.1.5)
and that the solution space is one-dimensional. Finally we show that the conjectured numbers also
satisfy the recursion given in (5.1.6).

Lemma 5.3.1. Let n ≥ 1 and

Xn,i :=
Bn−1

(4n− 2)!

(3n− i− 2)!(3n+ i− 1)!

(n− i− 1)!(n+ i)!
. (5.3.1)

Then

Xn,i =
n−1∑

j=i

(
3n− i − 2

j − i

)
(−1)j+n+1Xn,j, i = −n, . . . , n− 1.

Proof. We have to show that

(3n− i− 2)!(3n+ i− 1)!

(n− i− 1)!(n+ i)!
=

n−1∑

j=i

(
3n− i− 2

j − i

)
(−1)j+n+1 (3n− j − 2)!(3n+ j − 1)!

(n− j − 1)!(n+ j)!
.

The right-hand side is equal to

(3n− i− 2)!

n−1∑

j=i

(−1)j+n+1 (3n+ j − 1)!

(n− j − 1)!(n+ j)!(j − i)!

=
(3n− i− 2)!(2n− 1)!

(n− i− 1)!

n−1∑

j=i

(−1)j+n+1

(
n− i − 1

j − i

)(
3n+ j − 1

n+ j

)

= − (3n− i− 2)!(2n− 1)!

(n− i− 1)!

n−1∑

j=i

(
n− i− 1

n− j − 1

)(−2n

n+ j

)
.



88 CHAPTER 5. VSASMS AND A MULTIVARIATE LAURENT POLYNOMIAL IDENTITY

Since n− i− 1 ≥ 0, Chu–Vandermonde convolution yields

∑

j

(
n− i− 1

n− j − 1

)(−2n

n+ j

)
=

(−n− i− 1

2n− 1

)
= −

(
3n+ i− 1

2n− 1

)
.

Proposition 5.3.2. For fixed n ≥ 1, the solution space of the following LES

Yn,i =
n−1∑

j=i

(
3n− i− 2

j − i

)
(−1)j+n+1Yn,j , i = −n,−n+ 1, . . . , n− 1,

Yn,i = Yn,−i−1, i = −n,−n+ 1 . . . , n− 1,

in the variables (Yn,i)−n≤i≤n−1 is one-dimensional.

Proof. Since the numbers Xn,i from Lemma 5.3.1 establish a solution of the homogeneous system
of linear equations, the solution space is at least one-dimensional. As

Yn,i =

n−1∑

j=−n

(
3n− i − 2

j − i

)
(−1)j+n+1Yn,−j−1 =

n−1∑

j=−n

(
3n− i− 2

−j − i− 1

)
(−1)j+nYn,j

it suffices to show that the 1-eigenspace of
((

3n−i−2
−j−i−1

)
(−1)j+n

)
−n≤i,j≤n−1

is 1-dimensional. So, we

have to show that

rk

((
4n− i− 1

2n− i− j + 1

)
(−1)j+1 − δi,j

)

1≤i,j≤2n

= 2n− 1.

After removing the first row and column and multiplying each row with −1, we are done as soon
as we show that

det

((
4n− i− 1

2n− i− j + 1

)
(−1)j + δi,j

)

2≤i,j≤2n

6= 0.

In Section 2.5 we already came across this determinant and observed that it is non-zero.

Lemma 5.3.3. Let Xn,i be the numbers defined in (5.3.1). Then

Xn,n−1 =

n−2∑

i=0

Xn−1,i

holds for n ≥ 2.

Proof. The left-hand side is equal to Bn−1 by definition. For the right-hand side one obtains

n−2∑

i=0

Xn−1,i =
Bn−2

(4n− 6)!

n−2∑

i=0

(3n− i− 5)!(3n+ i− 4)!

(n− i− 2)!(n+ i− 1)!

=
Bn−2(
4n−6
2n−3

)
n−2∑

i=0

(
3n− i− 5

n− i− 2

)(
3n+ i− 4

n+ i− 1

)
.
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Note that the two factors in the sum interchange under substitution i 7→ −i − 1. Together with
Chu–Vandermonde convolution it follows that

n−2∑

i=0

Xn−1,i =
Bn−2

2
(
4n−6
2n−3

)
n−2∑

i=−n+1

(
3n− i− 5

n− i− 2

)(
3n+ i− 4

n+ i− 1

)

= − Bn−2

2
(
4n−6
2n−3

)
∑

i

(−2n+ 2

n− i− 2

)(−2n+ 2

n+ i− 1

)

= − Bn−2

2
(
4n−6
2n−3

)
(−4n+ 4

2n− 3

)
=

Bn−2

2
(
4n−6
2n−3

)
(
6n− 8

2n− 3

)
.

That this is further equal to Bn−1 follows directly from (5.1.1).

5.4 A generalized LES for Monotone Triangles

We already observed in (2.4.2) resp. (5.1.4) that the refined ASM numbers resp. the refined VSASM
numbers can be expressed as

An,i+1 = (−1)i∆i
k1
α(n; k1, 2, 3, . . . , n)

∣∣∣∣
k1=2

,

Bn,n−i = (−1)i∆i
k1
α(n; k1, 4, 6, . . . , 2n)

∣∣∣∣
k1=3

,

for all i = 0, 1, . . . , n− 1. Let us generalize this by defining

C
(d)
n,i := (−1)i∆i

k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

, d ∈ Z, i ≥ 0.

By Lemma 2.4.1, C
(d)
n,i is for all d ≥ 1 equal to the number of MTs with bottom row (d, 2d, 3d, . . . , nd)

and exactly i + 1 entries equal to d in the left-most NE-diagonal. Note that C
(1)
n,i = An,i+1 and

C
(2)
n,i = Bn,n−i. In this section we prove that the numbers C

(d)
n,i fulfill a certain LES. For d = 1, this

proves Lemma 2.5.2, while for d = 2 it proves the first line of (5.1.5) for non-negative i.

Proposition 5.4.1. For fixed n, d ≥ 1 the numbers (C
(d)
n,i )0≤i≤n−1 satisfy the following LES

C
(d)
n,i =

n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)j+n+1C

(d)
n,j , i = 0, . . . , n− 1. (5.4.1)

Proof. The main ingredients of the proof are the identities (cf. Section 2.5)

α(n; k1, k2, . . . , kn) = (−1)n−1α(n; k2, k3, . . . , kn, k1 − n),

α(n; k1, k2, . . . , kn) = α(n; k1 + c, k2 + c, . . . , kn + c), c ∈ Z.
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Together with ∆x = Ex δx and E−1
x = (id−δx) we obtain

C
(d)
n,i = (−1)i∆i

k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

= (−1)i+n+1∆i
k1
α(n; 2d, 3d, . . . , nd, k1 − n)

∣∣∣∣
k1=d+1

= (−1)i+n+1 E−n−nd+i+2
k1

δik1
α(n; 2d, 3d, . . . , nd, k1 + d)

∣∣∣∣
k1=nd−1

= (−1)i+n+1(id−δk1)
n(d+1)−i−2δik1

α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=nd−1

=
∑

j≥0

(
n(d+ 1)− i− 2

j

)
(−1)i+j+n+1δi+j

k1
α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=nd−1

=
∑

j≥i

(
n(d+ 1)− i− 2

j − i

)
(−1)j+n+1δjk1

α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=nd−1

.

Since applying the δ-operator to a polynomial decreases its degree, and α(n; k1, . . . , kn) is a poly-
nomial of degree n− 1 in each ki (Remark 2.3.6), it follows that the summands of the last sum are
zero whenever j ≥ n. So, it remains to show that

C
(d)
n,j = δjk1

α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=nd−1

. (5.4.2)

From Lemma 2.4.1 we know that the right-hand side of (5.4.2) is the number of MTs with bottom
row (d, 2d, . . . , nd) and exactly j + 1 entries equal to nd in the right-most SE-diagonal. Replacing
each entry x of the MT by (n + 1)d − x and reflecting it along the vertical symmetry axis is a

one-to-one correspondence with the objects counted by C
(d)
n,j .

5.5 The numbers C
(d)
n,i for negative i

In order to prove (5.1.2), it remains to extend the definition of C
(2)
n,i to i = −n, . . . ,−1 in such a

way that both the symmetry C
(2)
n,i = C

(2)
n,−i−1 and the first line of (5.1.5) are satisfied for negative

i. Note that the definition of C
(2)
n,i contains the operator ∆i

k1
which is per se only defined for i ≥ 0.

The difference operator is (in discrete analogy to differentiation) only invertible up to an additive
constant. This motivates the following definitions of right inverse difference operators:

Given a polynomial p : Z → C, we define the right inverse difference operators as

z∆−1
x p(x) := −

z∑

x′=x

p(x′) and zδ−1
x p(x) :=

x∑

x′=z

p(x′) (5.5.1)

where x, z ∈ Z and the extended definition of summation defined in (2.2.6) is used. Recall from
Section 2.2 that this definition ensures that polynomiality is preserved, i.e. if p(i) is a polynomial in
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i then (a, b) 7→
b∑

i=a

p(i) is a polynomial function on Z
2. The definition of the right inverse difference

operators directly implies the following identities:

Proposition 5.5.1. Let z ∈ Z and p : Z → C a function. Then

1. ∆x
z∆−1

x = id and z∆−1
x ∆x p(x) = p(x) − p(z + 1),

2. δx
zδ−1

x = id and zδ−1
x δx p(x) = p(x)− p(z − 1),

3. ∆x = Ex δx and z∆−1
x = E−1

x Ez
zδ−1

x ,

4. ∆y
z∆−1

x = z∆−1
x ∆y and δy

z∆−1
x = z∆−1

x δy for y 6= x, z.

Now we are in the position to define higher negative powers of the difference operators: For
i < 0 and z = (zi, zi+1, . . . , z−1) ∈ Z

−i we let

z∆i
x := zi∆−1

x
zi+1∆−1

x . . . z−1∆−1
x ,

zδix := ziδ−1
x

zi+1δ−1
x . . . z−1δ−1

x .

After observing that zδ−1
x E−1

x = E−1
x E−1

z
zδ−1

x we can deduce the following generalization of Propo-
sition 5.5.1 (3) inductively:

z∆i
x = Ei

x E
i+2
zi Ei+3

zi+1
. . .E1

z−1

zδix. (5.5.2)

The right inverse difference operator allows us to naturally extend the definition of C
(d)
n,i . First,

let us fix a sequence of integers x = (xj)j<0 and set xi = (xi, xi+1, . . . , x−1) for i < 0. We define

C
(d)
n,i :=





(−1)i∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

, i = 0, . . . , n− 1,

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

, i = −n, . . . ,−1.
(5.5.3)

We detail on the choice of x in Section 5.7.
If d ≥ 1, it is possible to give a rather natural combinatorial interpretation of C

(d)
n,i also for

negative i, which is based on the observations in Chapter 4. It is of no importance for the rest of

the chapter, however, it provides a nice intuition: For non-negative i we already observed that C
(d)
n,i

counts the number of MTs with bottom row (d, 2d, . . . , nd) and exactly i + 1 entries equal to d in

the left-most NE-diagonal. Equivalently, the quantity C
(d)
n,i counts partial MT where we cut off the

bottom i elements of the left-most NE-diagonal, prescribe the entry d + 1 in position i + 1 of the
NE-diagonal and the entries (2d, 3d, . . . , nd) in the bottom row of the remaining array (see Figure
5.3); in fact, in the exceptional case of d = 1 we do not require that the bottom element 2 of the
truncated left-most NE-diagonal is strictly smaller than its right neighbour.

From (5.5.1) it follows that applying the inverse difference operator has the opposite effect of

prolonging the left-most NE-diagonal: if i < 0, the quantity C
(d)
n,i is the signed enumeration of

arrays of the shape as depicted in Figure 5.4 subject to the following conditions:

• For the elements in the prolonged NE-diagonal including the entry left of the entry 2d, we
require the following: Suppose e is such an element and l is its SW-neighbour and r its SE-
neighbour: if l ≤ r, then l ≤ e ≤ r; otherwise r < e < l. In the latter case, the element
contributes a −1 sign.



92 CHAPTER 5. VSASMS AND A MULTIVARIATE LAURENT POLYNOMIAL IDENTITY

i
ro
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2d 3d · · · (n−1)d nd

·
·
·

·
·
·

d+1 · · ·

·
·
·

·
·
·

Figure 5.3: C
(d)
n,i for i ≥ 0.

d+1 xi

xi+1

·
·
·

·
·
·

x
−1

· · · nd2d 3d

· · ·

·
·
·

·
·
·

Figure 5.4: C
(d)
n,i for i < 0.

• Inside the triangle, we follow the rules of GMTs (cf. Figure 4.1) as presented in Chapter 4.
The total sign is the product of the sign of the GMT and the signs of the elements in the
prolonged NE-diagonal.

An example for this combinatorial interpretation of the inverse difference operator is given in
Figure 5.5.

4 1

3 2 3

2 2

2

4 1

2 2 3

2 3

2

4 1

2 2 3

2 3

3

Figure 5.5: Combinatorial interpretation of − 1∆−1
k1

α(3; k1, 2, 3)

∣∣∣∣
k1=4

= −1 + 1 + 1 = 1.

5.6 Extending the LES to negative i

The purpose of this section is the extension of the LES in Proposition 5.4.1 to negative i. This
is accomplished with the help of the following lemma which shows that certain identities for
∆i

k1
α(n; k1, . . . , kn), i ≥ 0, carry over into the world of inverse difference operators.

Lemma 5.6.1. Let n, d ≥ 1.

1. Suppose i ≥ 0. Then

(−1)i ∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

= δikn
α(n; d, 2d, . . . , (n− 1)d, kn)

∣∣∣∣
kn=nd−1

.

2. Suppose i < 0, and let xi = (xi, . . . , x−1) and yi = (yi, . . . , y−1) satisfy the relation yj =
(n+ 1)d− xj for all j. Then (see Figure 5.6)

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

= yiδikn
α(n; d, 2d, . . . , (n− 1)d, kn)

∣∣∣∣
kn=nd−1

.
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3. Suppose i ≥ 0. Then

∆i
k1
α(n; k1, . . . , kn) = (−1)n−1 Ei−n

k1
δik1

α(n; k2, . . . , kn, k1).

4. Suppose i < 0, and let xi = (xi, . . . , x−1) and yi = (yi, . . . , y−1) satisfy the relation yj =
xj + j − n+ 2 for all j. Then

xi∆i
k1
α(n; k1, . . . , kn) = (−1)n−1 Ei−n

k1

yiδik1
α(n; k2, . . . , kn, k1).

d+1 xi

xi+1

·
·
·

·
·
·

x
−1

· · · nd2d 3d

· · ·

nd−1yi

yi+1

·
·
·

·
·
·

y
−1

· · ·d (n−1)d2d

· · ·

Figure 5.6: Symmetry of inverse difference operators if yj = (n+ 1)d− xj .

Proof. For the first part we refer to (5.4.2). Concerning the second part, we actually show the
following more general statement: if r = (n+ 1)d− l and i ≤ 0, then

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=l

= yiδikn
α(n; d, 2d, . . . , (n− 1)d, kn)

∣∣∣∣
kn=r

, (5.6.1)

whereby x0∆0
k1

:= id and y0δ0kn
:= id. We use induction with respect to i:

If i = 0, then (5.6.1) follows from the general identity

α(n; k1, . . . , kn) = α(n; c− kn, . . . , c− k1),

which is combinatorially obvious (cf. (5.4.2)) for c ∈ Z and integers k1 < . . . < kn, and is therefore
an identity satisfied by the polynomials.

If i < 0, then, by the definitions of the right inverse operators and the induction hypothesis, we
have

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=l

=

xi∑

k′

1=l

(−1)i+1 xi+1∆i+1
k′

1
α(n; k′1, 2d, 3d, . . . , nd)

=

xi∑

k′

1=l

yi+1δi+1
k′

n
α(n; d, 2d, . . . , (n− 1)d, k′n)

∣∣∣∣
k′

n=(n+1)d−k′

1

=

(n+1)d−l∑

k′

1=(n+1)d−xi

yi+1δi+1
k′

n
α(n; d, 2d, . . . , (n− 1)d, k′n)

∣∣∣∣
k′

n=k′

1

=
r∑

k′

n=yi

yi+1δi+1
k′

n
α(n; d, 2d, . . . , (n− 1)d, k′n)

= yiδikn
α(n; d, 2d, . . . , (n− 1)d, kn)

∣∣∣∣
kn=nd−1

.
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The third part follows from the circular shift identity (2.5.2) and ∆x = Ex δx. The last part
is again shown by induction with respect to i. In fact the cases i = 0 of the third and last part
coincide and can thus be chosen to be the initial case of the induction. If i < 0, then the induction
hypothesis and (2.2.6) imply

xi∆i
k1
α(n; k1, . . . , kn) = −

xi∑

l1=k1

xi+1∆i+1
l1

α(n; l1, k2, . . . , kn)

= −
xi∑

l1=k1

(−1)n−1Ei+1−n
l1

yi+1δi+1
l1

α(n; k2, . . . , kn, l1)

=

k1+i−n∑

l1=xi+i−n+2

(−1)n−1 yi+1δi+1
l1

α(n; k2, . . . , kn, l1)

= (−1)n−1 Ei−n
k1

yiδik1
α(n; k2, . . . , kn, k1).

Now we are in the position to generalize Proposition 5.4.1 to negative i.

Proposition 5.6.2. Let n, d ≥ 1. For i < 0, let xi, zi ∈ Z−i with zj = (n+ 2)(d+ 1)− xj − j − 4
and define

D
(d)
n,i :=





(−1)i∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

, i = 0, . . . , n− 1,

(−1)i zi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

, i = −n, . . . ,−1.
(5.6.2)

Then

C
(d)
n,i =

n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)j+n+1D

(d)
n,j .

holds for all i = −n, . . . , n− 1.

Proof. To simplify notation let us define xi∆i
k1

:= ∆i
k1

for i ≥ 0. Since the definition of C
(d)
n,i

and D
(d)
n,i only differ in the choice of constants for negative i, the fact that the system of linear

equations is satisfied for i = 0, . . . , n − 1 is Proposition 5.4.1. For i = −n, . . . ,−1 first note that,
by Lemma 5.6.1, (2.5.1) and E−1

x
zδ−1

x = z+1δ−1
x E−1

x , we have

C
(d)
n,i = (−1)n−1+i Ei−n

k1

yiδik1
α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=1

where yi = (yi, . . . , y−1) with yj = xj + j + 2− n− d. This is furthermore equal to

(−1)n−1+i E
i−n(d+1)+2
k1

yiδik1
α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=nd−1

.

Now we use

E
i−n(d+1)+2
k1

= (id−δk1)
n(d+1)−i−2 =

n(d+1)−i−2∑

j=0

(
n(d+ 1)− i− 2

j

)
(−1)jδjk1
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and Proposition 5.5.1 (2) to obtain

n(d+1)−i−2∑

j=0

(
n(d+ 1)− i− 2

j

)
(−1)n−1+i+j yi+jδi+j

k1
α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=nd−1

.

Since the (ordinary) difference operator applied to a polynomial decreases the degree, the upper
summation limit can be changed to n− 1− i. Together with Lemma 5.6.1 this transforms into

n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)n−1+j yjδjk1

α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣∣∣
k1=nd−1

=
n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)n−1 zj∆j

k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣∣∣
k1=d+1

,

where zj = (n+ 1)d− yj = (n+ 2)(d+ 1)− xj − j − 4.

Now it remains to find an integer sequence (xj)j<0 such that C
(2)
n,i = C

(2)
n,−i−1 and C

(2)
n,i = D

(2)
n,i

for negative i.

5.7 How to choose the constants x = (xj)j<0

In this section, it is shown that C
(2)
n,i = C

(2)
n,−i−1 if we choose x = (xj)j<0 with xj = −2j+ 1, j < 0.

This can be deduced from the following more general result.

Proposition 5.7.1. Let xj = −2j+1, j < 0, and set xi = (xi, xi+1, . . . , x−1) for all i < 0. Suppose
p : Z → C and let

ci :=





(−1)i∆i
yp(y)

∣∣∣∣
y=3

, i ≥ 0,

(−1)i xi∆i
yp(y)

∣∣∣∣
y=3

, i < 0,

for i ∈ Z. Then the numbers satisfy the symmetry ci = c−i−1.

Proof. Recall the definition of the right inverse difference operator (5.5.1) and check that c0 = c−1.
In the following, we assume i ≥ 1. Then

ci = (−1)i(Ey − id)ip(y)

∣∣∣∣
y=3

=

i+3∑

d1=3

(
i

d1 − 3

)
(−1)d1+1p(d1),

and

c−i−1 = (−1)i+1 x−i−1∆−i−1
y p(y)

∣∣∣∣
y=3

=
2i+3∑

di+1=3

2i+1∑

di=di+1

· · ·
5∑

d2=d3

3∑

d1=d2

p(d1). (5.7.1)

The situation is illustrated in Figure 5.7. According to (2.2.6), the iterated sum is the signed
summation of (d1, d2, . . . , di+1) ∈ Zi+1 subject to the following restrictions: We have 3 ≤ di+1 ≤
2i+ 3, and for 1 ≤ j ≤ i the restrictions are

dj+1 ≤ dj ≤ 2j + 1 if dj+1 ≤ 2j + 1,

dj+1 > dj > 2j + 1 if dj+1 > 2j + 1.
(5.7.2)
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Note that there is no admissible (d1, d2, . . . , di+1) with dj+1 = 2j+2. The sign of (d1, d2, . . . , di+1)
is computed as (−1)#{1≤j≤i: dj>2j+1}.

3 2i+3

di+1 2i+1

di 2i−1

·
·
·

·
·
·

d2 3

d1 4 6 · · · 2n

Figure 5.7: Combinatorial interpretation of (5.7.1) if p(y) = α(n; y, 4, 6, . . . , 2n).

The proof now proceeds by showing that the signed enumeration of (d1, . . . , di+1) with fixed d1
is just

(
i

d1−3

)
(−1)d1+1. The reversed sequence (di+1, di, . . . , d1) is weakly increasing as long as we

are in the first case of (5.7.2). However, once we switch from the first case to the second case, the
sequence is strictly decreasing afterwards, because dj+1 > 2j + 1 implies dj > 2j + 1 > 2j − 1.
Thus, the sequence splits into two parts: there exists an l, 0 ≤ l ≤ i, with

3 ≤ di+1 ≤ di ≤ . . . ≤ dl+1 > dl > . . . > d1.

Moreover, it is not hard to see that (5.7.2) implies dl+1 = 2l + 3 and dl = 2l + 2. The sign of the
sequence is (−1)l. Thus it suffices to count the following two types of sequences.

1. 3 ≤ di+1 ≤ di ≤ · · · ≤ dl+2 ≤ dl+1 = 2l + 3.

2. dl = 2l+ 2 > dl−1 > · · · > d2 > d1 > 3 and dk > 2k + 1 for 1 < k ≤ l − 1; d1 fixed.

For the first type, this is accomplished by the binomial coefficient
(
i+l
i−l

)
.

If l ≥ 1, then the sequences of the second type are prefixes of Dyck paths in disguise: To see
this, consider prefixes of Dyck paths starting in (0, 0) with a steps of type (1, 1) and b steps of type
(1,−1). Such a partial Dyck path is uniquely determined by the x-coordinates of its (1, 1)-steps.
If pi denotes the position of the i-th (1, 1)-step, then the coordinates correspond to such a partial
Dyck path if and only if

0 = p1 < p2 < · · · < pa < a+ b and pk < 2k − 1.

In order to obtain our sequences, set a 7→ l − 1, b 7→ l + 3 − d1 and pk 7→ 2l + 2 − dl−k+1. By the
reflection principle, the number of prefixes of such Dyck paths is

(
a+ b

b

)
a+ 1− b

a+ 1
=

(
2l + 2− d1
l + 3− d1

)
d1 − 3

l
.

If l = 0, then d1 = d2 = . . . = di+1 = 3 and this is the only case where d1 = 3. Put together, we
see that the coefficient of p(d1) in (5.7.1) is

i∑

l=1

(−1)l
(
i+ l

i− l

)(
2l + 2− d1
l + 3− d1

)
d1 − 3

l
(5.7.3)
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if d1 ≥ 4. Using standard tools to prove hypergeometric identities, it is not hard to see that this is
equal to

(
i

d1−3

)
(−1)d1+1 if d1 ≥ 4 and i ≥ 1. For instance, C. Krattenthaler’s Mathematica package

HYP [Kra95] can be applied as follows: After converting the sum into hypergeometric notation,
one applies contiguous relation C16. Next we use transformation rule T4306, before it is possible
to apply summation rule S2101 which is the Chu–Vandermonde summation. For those preferring
computational proofs by hand, see Lemma A.2.4 in the appendix.

In the following, we let x = (xj)j<0 with xj = −2j + 1 and z = (zj)j<0 with zj = (n + 2)(d+

1) + j − 5. Recall that x is crucial in the definition of C
(d)
n,i , see (5.5.3), while z appears in the

definition of D
(d)
n,i , see (5.6.2). To complete the proof of (5.1.2), it remains to show

C
(2)
n,i = D

(2)
n,i (5.7.4)

for i = −n,−n + 1, . . . ,−1, since Proposition 5.6.2 and Proposition 5.7.1 then imply that the

numbers C
(2)
n,i , i = −n,−n+1, . . . , n−1, are a solution of the LES (5.1.5). The situation is depicted

in Figure 5.8. When trying to proceed as in the proof of Proposition 5.7.1 one eventually ends

3 −2i+1

−2i−1

·
·
·

·
·
·

5

3

4 6 · · · 2n−2 2n

· · ·

3 3n+1+i

3n+2+i

·
·
·

·
·
·

3n−1

3n

4 6 · · · 2n−2 2n

· · ·

Figure 5.8: Combinatorial interpretation of the open problem (5.7.4).

up with having to show that the refined VSASM numbers Bn,i satisfy a different system of linear
equations:

n−1∑

j=0

((
3n− i− 2

i+ j + 1

)
−
(
3n− i − 2

i− j

))
(−1)jBn,n−j = 0, i = 0, 1, . . . , n− 1. (5.7.5)

While computer experiments indicate that this LES uniquely determines (Bn,1, . . . , Bn,n) up to a
multiplicative constant for all n ≥ 1, it is not clear at all how to derive that the refined VSASM
numbers satisfy (5.7.5). We therefore try a different approach in tackling (5.7.4).

The task of the rest of the chapter is to show that (5.7.4) follows from a more general multivariate
Laurent polynomial identity and present partial results towards proving the latter.

5.8 The key conjecture

We start this section by showing that the application of the right inverse difference operators z∆−1
k1

to α(n; k1, . . . , kn) can be replaced by the application of a bunch of ordinary difference operators
to α(n+ 1; k1, z, k2, . . . , kn):
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Lemma 5.8.1. Let i < 0 and xi ∈ Z−i. Then

xi∆i
kj
α(n; k1, . . . , kn) = (−1)ij

×∆−i
k1

. . .∆−i
kj−1

δ0xi
δ1xi+1

. . . δ−i−1
x−1

δ−i
kj+1

. . . δ−i
kn
α(n− i; k1, . . . , kj , xi, xi+1, . . . , x−1, kj+1, . . . , kn)

and

xiδikj
α(n; k1, . . . , kn) = (−1)(j−1)i+(−i

2 )

×∆−i
k1

. . .∆−i
kj−1

∆−i−1
x−1

∆−i−2
x−2

. . .∆0
xi
δ−i
kj+1

. . . δ−i
kn
α(n− i; k1, . . . , kj−1, x−1, x−2, . . . , xi, kj , . . . , kn).

Proof. Informally, the lemma follows from the following two facts:

• The quantity xi∆i
kj
α(n; k1, . . . , kn) can be interpreted as the signed enumeration of Monotone

Triangle structures of the shape as depicted in Figure 5.9 where the j-th NE-diagonal has
been prolonged. Similarly, for xiδikj

α(n; k1, . . . , kn), where the shape is depicted in Figure 5.10
and the j-th SE-diagonal has been prolonged.

• The application of the (−∆)-operator truncates left NE-diagonals, while the δ-operator trun-
cates right SE-diagonals. This idea first appeared in [Fis11].

kj xi

xi+1

·
·
·

·
·
·

x
−2

x
−1

· · · knkj+1kj−1· · ·k1

· · · · · ·

·
·
·

Figure 5.9: xi∆i
kj
α(n; k1, . . . , kn)

kjxi

xi+1

·
·
·

·
·
·

x
−2

x
−1

· · ·k1 kj−1 kj+1 · · · kn

· · ·· · ·

·
·
·

Figure 5.10: xiδikj
α(n; k1, . . . , kn)
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Formally, let us prove the first identity by induction with respect to i. First note that (2.2.5)
and (2.2.8) imply

(−1)j∆k1 . . .∆kj−1δkj+1δkj+2 . . . δkn

(k1,...,kj−1,kj ,x,kj+1,...,kn)∑

(l1,...,ln)

A(l1, . . . , ln) (5.8.1)

= −
(kj ,x)∑

(lj)

A(k1, . . . , kj−1, lj , kj+1, . . . , kn) =
x∆−1

kj
A(k1, k2, . . . , kn).

Together with (2.2.4) the base case i = −1 follows. For the inductive step i < −1, apply the
induction hypothesis, (5.8.1), (2.2.4) and Proposition 5.5.1 (4) to obtain

xi∆i
kj
α(n; k1, . . . , kn)

= xi∆−1
kj

(−1)(i+1)j∆−i−1
k1

. . .∆−i−1
kj−1

δ0xi+1
δ1xi+2

. . . δ−i−2
x−1

δ−i−1
kj+1

. . . δ−i−1
kn

α(n− i− 1; k1, . . . , kj , xi+1, xi+2, . . . , x−1, kj+1, . . . , kn)

= (−1)ij∆−i
k1

. . .∆−i
kj−1

δ1xi+1
δ2xi+2

. . . δ−i−1
x−1

δ−i
kj+1

. . . δ−i
kn

(k1,...,kj ,xi,xi+1,...,x−1,kj+1,...,kn)∑

(l1,...,lj,yi+1,...,y−1,lj+1,...,ln)

α(n− i− 1; l1, . . . , lj , yi+1, yi+2, . . . , y−1, lj+1, . . . , ln)

= (−1)ij∆−i
k1

. . .∆−i
kj−1

δ1xi+1
. . . δ−i−1

x−1
δ−i
kj+1

. . . δ−i
kn
α(n− i; k1, . . . , kj , xi, xi+1, . . . , x−1, kj+1, . . . , kn).

The second identity can be shown analogously. The sign is again obtained by taking the total
number of applications of the ∆-operator into account.

As mentioned in Section 4.4, the α-polynomial satisfies [Fis06]

(id+Eki+1 E
−1
ki

Ski,ki+1)Vki,ki+1 α(n; k1, . . . , kn) = 0 (5.8.2)

for 1 ≤ i ≤ n− 1. This property together with the fact that the degree of α(n; k1, . . . , kn) in each
ki is n − 1 determines the polynomial up to a constant. Next we present a conjecture on general
polynomials with property (5.8.2); the goal of the current section is to show that this conjecture
implies (5.7.4).

Conjecture 5.8.2. Let 1 ≤ s ≤ t and a(k1, . . . , ks+t−1) be a polynomial in (k1, . . . , ks+t−1) with

(id+Eki+1 E
−1
ki

Ski,ki+1)Vki,ki+1 a(k1, . . . , ks+t−1) = 0 (5.8.3)

for 1 ≤ i ≤ s+ t− 2. Then

s∏

i=1

E2s+3−2i
yi

δi−1
yi

t∏

i=2

E2i
ki
δski

a(y1, . . . , ys, k2, . . . , kt)

=

t∏

i=2

E2i
ki
(−∆ki)

s
s∏

i=1

E2t+3−2i
yi

(−∆yi)
s−ia(k2, . . . , kt, y1, . . . , ys)

if y1 = y2 = . . . = ys = k2 = k3 = . . . = kt.
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Proposition 5.8.3. Let x = (−2j + 1)j<0 and z = (3n + j + 1)j<0. Under the assumption that
Conjecture 5.8.2 is true, it follows for all −n ≤ i ≤ −1 that

1. xi∆i
k1
α(n; k1, 4, 6, . . . , 2n)

∣∣∣∣
k1=3n+2+i

= 0,

2. xi∆i
k1
α(n; k1, 4, 6, . . . , 2n) =

zi∆i
k1
α(n; k1, 4, 6, . . . , 2n); in particular C

(2)
n,i = D

(2)
n,i.

Proof. According to Lemma 5.8.1 we have

xi∆i
k1
α(n; k1, 4, 6, . . . , 2n)

= (−1)i
−1∏

j=i

E−2j+1
yj

δj−i
yj

n∏

j=2

E2j
kj

δ−i
kj
α(n− i; k1, yi, yi+1, . . . , y−1, k2, . . . , kn)

∣∣∣∣(yi,yi+1,...,y−1)=0,
(k2,...,kn)=0

.

We set yj = yi+j−1 and s = −i to obtain

(−1)s
s∏

j=1

E2s+3−2j
yj

δj−1
yj

n∏

j=2

E2j
kj

δskj
α(n+ s; k1, y1, y2, . . . , ys, k2, . . . , kn)

∣∣∣∣(y1,...,ys)=0,
(k2,...,kn)=0

.

By our assumption that Conjecture 5.8.2 is true, this is equal to

(−1)s
n∏

j=2

E2j
kj
(−∆kj )

s
s∏

j=1

E2n+3−2j
yj

(−∆yj
)s−jα(n+ s; k1, k2, . . . , kn, y1, . . . , ys)

∣∣∣∣(y1,...,ys)=0,
(k2,...,kn)=0

.

Now we use the properties (2.5.1) and (2.5.2) of the α-polynomial to obtain

(−1)n+1
n∏

j=2

E2j+n+s
kj

(−∆kj )
s

s∏

j=1

E3n+3−2j+s
yj

(−∆yj
)s−j

α(n+ s; k2, . . . , kn, y1, . . . , ys, k1)

∣∣∣∣(y1,...,ys)=0,
(k2,...,kn)=0

.

According to Lemma 5.8.1, this is

(−1)n+1 wiδik1
α(n; 4 + n− i, 6 + n− i, . . . , 3n− i, k1)

where wi = (3n+ 3 + i, 3n+ 5+ i, . . . , 3n+ 1− i). Setting k1 = 3n+ 2+ i, the first assertion now
follows since x+1δ−1

x p(x) = 0.
For the second assertion we use induction with respect to i. In the base case i = −1 note that

the two sides differ by 3n∆−1
k1

α(n; k1, 4, 6, . . . , 2n)

∣∣∣∣
k1=4

. By (2.2.6) this is equal to

−3∆−1
k1

α(n; k1, 4, 6, . . . , 2n)

∣∣∣∣
k1=3n+1

,
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which vanishes due to the first assertion. For i < −1 observe that

xi∆i
k1
α(n; k1, 4, 6, . . . , 2n)

= −2i+1∆−1
k1

xi+1∆i+1
k1

α(n; k1, 4, 6, . . . , 2n)

= −
−2i+1∑

l1=k1

xi+1∆i+1
l1

α(n; l1, 4, 6, . . . , 2n)

= −
3n+1+i∑

l1=k1

zi+1∆i+1
l1

α(n; l1, 4, 6, . . . , 2n) +

3n+1+i∑

l1=−2i+2

xi+1∆i+1
l1

α(n; l1, 4, 6, . . . , 2n),

where we have used the induction hypothesis in the first sum. Now the first sum is equal to the
right-hand side in the second assertion, while the second sum is by (2.2.6) just the expression in
the first assertion and thus vanishes.

The problem of proving the refined enumeration formula (5.1.2) is therefore reduced to showing
Conjecture 5.8.2. In the following section we explain how this problem can be translated into
a multivariate Laurent polynomial identity. We then prove Theorem 5.1.3 by showing that its
assumptions imply Conjecture 5.8.2.

5.9 Proof of Theorem 5.1.3

Let p(x1, . . . , xn) be a function in (x1, . . . , xn) and T ⊆ Sn a subset of the symmetric group. We
define

(T p)(x1, . . . , xn) :=
∑

σ∈T

sgnσ p(xσ(1), . . . , xσ(n)).

The unnormalized antisymmetrizer ASym as defined in Section 5.1 is obtained in the special case
T = Sn, i.e. ASym p(x1, . . . , xn) = (Snp)(x1, . . . , xn). If T = {σ}, then we write (T p)(x1, . . . , xn) =
(σp)(x1, . . . , xn). A function is said to be antisymmetric if (σp)(x1, . . . , xn) = sgnσ · p(x1, . . . , xn)
for all σ ∈ Sn. Before proving Theorem 5.1.3, we need two auxiliary results.

Lemma 5.9.1. Let a(z1, . . . , zn) be a polynomial in (z1, . . . , zn) with

(id+Ezi+1 E
−1
zi Szi,zi+1)Vzi,zi+1 a(z1, . . . , zn) = 0

for 1 ≤ i ≤ n− 1. Then there exists an antisymmetric polynomial b(z1, . . . , zn) with

a(z1, . . . , zn) =
∏

1≤p<q≤n

Wzq,zp b(z1, . . . , zn)

where Wx,y := Ex Vx,y = id−Ey +Ex Ey.

Proof. Denoting z := (z1, . . . , zn), we have by assumption

Szi,zi+1 Wzi,zi+1 a(z) = Ezi+1 Szi,zi+1 Vzi,zi+1 a(z) = −Ezi Vzi,zi+1 a(z) = −Wzi,zi+1 a(z).

This implies that

c(z1, . . . , zn) :=
∏

1≤p<q≤n

Wzp,zq a(z1, . . . , zn)
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is an antisymmetric polynomial. Now observe that Wx,y = id+Ey ∆x is invertible on C[x, y], to

be more concrete W−1
x,y =

∞∑
i=0

(−1)i Ei
y ∆

i
x. Hence, b(z1, . . . , zn) :=

∏
1≤p6=q≤n

W−1
zp,zq c(z1, . . . , zn) is

an antisymmetric polynomial with a(z1, . . . , zn) =
∏

1≤p<q≤n

Wzq,zp b(z1, . . . , zn).

Lemma 5.9.2. Suppose Op(x1, . . . , xn) is a Laurent polynomial and a(z1, . . . , zn) is an antisym-
metric function. If there exists a non-empty subset T of Sn with (T Op)(x1, . . . , xn) = 0, then

(Op(Ez1 , . . . ,Ezn)a(z1, . . . , zn))

∣∣∣∣
z1=z2=...=zn

= 0.

Proof. First observe that the antisymmetry of a(z1, . . . , zn) implies

(T ′a)(z1, . . . , zn) =
∑

σ∈T ′

sgnσ a(zσ(1), . . . , zσ(n)) = |T ′|a(z1, . . . , zn)

for any subset T ′ ⊆ Sn. Letting

Op(x1, . . . , xn) =
∑

(i1,...,in)∈Zn

ci1,...,inx
i1
1 xi2

2 · · ·xin
n ,

we observe that

(Op(Ez1 , . . . ,Ezn)a(z1, . . . , zn))

∣∣∣∣
(z1,...,zn)=(d,...,d)

=
∑

(i1,...,in)∈Zn

ci1,...,ina(i1 + d, . . . , in + d) =
1

|T −1|
∑

(i1,...,in)∈Zn

ci1,...,in(T −1a)(i1 + d, . . . , in + d)

with T −1 = {σ−1 | σ ∈ T }, since (i1, . . . , in) 7→ a(i1 + d, . . . , in + d) is also an antisymmetric
function. This is further equal to

1

|T |
∑

(i1,...,in)∈Zn

ci1,...,in
∑

σ∈T

sgnσ a(iσ−1(1) + d, . . . , iσ−1(n) + d)

=
1

|T |
∑

(i1,...,in)∈Zn

ci1,...,in
∑

σ∈T

sgnσ E
iσ−1(1)
z1 . . .E

iσ−1(n)
zn a(z1, . . . , zn)

∣∣∣∣
(z1,...,zn)=(d,...,d)

=
1

|T |
∑

(i1,...,in)∈Zn

ci1,...,in
∑

σ∈T

sgnσ Ei1
zσ(1)

. . .Ein
zσ(n)

a(z1, . . . , zn)

∣∣∣∣
(z1,...,zn)=(d,...,d)

=
1

|T | [(T Op)(Ez1 , . . . ,Ezn)] a(z1, . . . , zn)

∣∣∣∣
(z1,...,zn)=(d,...,d)

= 0.

Now we are in the position to prove Theorem 5.1.3.
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Proof of Theorem 5.1.3. In order to prove (5.1.2), it suffices to show that Conjecture 5.8.2 holds
under the theorem’s assumptions. We set

Op(z1, . . . , zs+t−1) :=
s∏

i=1

z2s+3−2i
i (1− z−1

i )i−1
s+t−1∏

i=s+1

z2i−2s+2
i (1− z−1

i )s

−
t−1∏

i=1

z2i+2
i (1− zi)

s
s+t−1∏

i=t

z4t+1−2i
i (1− zi)

s+t−1−i

and observe that the claim of Conjecture 5.8.2 is that Op(Ez1 , . . . ,Ezs+t−1)a(z1, . . . , zs+t−1) van-
ishes if z1 = . . . = zs+t−1. According to Lemma 5.9.1, there exists an antisymmetric polynomial
b(z1, . . . , zs+t−1) with

a(z1, . . . , zs+t−1) =
∏

1≤p<q≤s+t−1

Wzq,zp b(z1, . . . , zs+t−1).

Thus, let us deduce that Op(Ez1 , . . . ,Ezs+t−1)b(z1, . . . , zs+t−1) = 0 if z1 = . . . = zs+t−1 where

Op(z1, . . . , zs+t−1) := Op(z1, . . . , zs+t−1)
∏

1≤p<q≤s+t−1

(1− zp + zpzq)

s+t−1∏

i=1

z−2−t
i .

Now, Lemma 5.9.2 implies that it suffices to show ASymOp(z1, . . . , zs+t−1) = 0. Observe that

Op(z1, . . . , zs+t−1) = P s,t(z1, . . . , zs+t−1)− P s,t(z
−1
s+t−1, . . . , z

−1
1 )

s+t−1∏

i=1

zs+t−2
i

where P s,t(z1, . . . , zs+t−1) = Ps,t(z1, . . . , zs+t−1)
∏

1≤i<j≤s+t−1

(zj − zi) and Ps,t(z1, . . . , zs+t−1) is as

defined in Conjecture 5.1.2. Furthermore,

ASymOp(z1, . . . , zs+t−1) = Rs,t(z1, . . . , zs+t−1)
∏

1≤i<j≤s+t−1

(zj − zi)

−Rs,t(z
−1
s+t−1, . . . , z

−1
1 )

∏

1≤i<j≤s+t−1

(z−1
s+t−j − z−1

s+t−i)

s+t−1∏

i=1

zs+t−2
i

whereRs,t(z1, . . . , zs+t−1) is also defined in Conjecture 5.1.2. SinceRs,t(z1, . . . , zs+t−1) is symmetric
we have that ASymOp(z1, . . . , zs+t−1) = 0 follows once it is shown that Rs,t(z1, . . . , zs+t−1) =
Rs,t(z

−1
1 , . . . , z−1

s+t−1).

5.10 Proof of Theorem 5.1.4

For integers s, t ≥ 0, we define the following two rational functions:

Ss,t(z; z1, . . . , zs+t−2) := z2s−t−1
s+t−2∏

i=1

(1− z + ziz)(1− z−1
i )

zi − z
,

Ts,t(z; z1, . . . , zs+t−2) := (1− z−1)szt−2
s+t−2∏

i=1

1− zi + ziz

(z − zi)zi
.

(5.10.1)
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Based on these two functions, we define two operators on functions f in s + t − 2 variables that
transform them into functions in (z1, . . . , zs+t−1):

PSs,t[f ] := Ss,t(z1; z2, . . . , zs+t−1) · f(z2, . . . , zs+t−1),

PTs,t[f ] := Ts,t(zs+t−1; z1, . . . , zs+t−2) · f(z1, . . . , zs+t−2).

The definitions are motivated by the fact that Ps,t(z1, . . . , zs+t−1) as defined in Conjecture 5.1.2
satisfies the two recursions

Ps,t = PSs,t[Ps−1,t] and Ps,t = PTs,t[Ps,t−1]. (5.10.2)

We also need the following two related operators, which are again defined on functions f in s+ t−2
variables:

QSs,t[f ] := Ss,t(z
−1
s+t−1; z

−1
s+t−2, z

−1
s+t−3, . . . , z

−1
1 ) · f(z1, . . . , zs+t−2),

QTs,t[f ] := Ts,t(z
−1
1 ; z−1

s+t−1, z
−1
s+t−2, . . . , z

−1
2 ) · f(z2, . . . , zs+t−1).

Note that if we set Qs,t(z1, . . . , zs+t−1) := Ps,t(z
−1
s+t−1, . . . , z

−1
1 ), then

Qs,t = QSs,t[Qs−1,t] and Qs,t = QTs,t[Qs,t−1]. (5.10.3)

From the definitions, one can deduce the following commutation properties:

Lemma 5.10.1. Let s, t be positive integers.

1. If (s, t) 6= (1, 1), then

PSs,t ◦PTs−1,t = PTs,t ◦PSs,t−1,

QSs,t ◦QTs−1,t = QTs,t ◦QSs,t−1 .

2. If t ≥ 2, then
PTs,t ◦QTs,t−1 = QTs,t ◦PTs,t−1 .

Proof. Let f(z1, . . . , zs+t−3) be an arbitrary function. For the left-hand side of the first statement
we then obtain

PSs,t [PTs−1,t [f(z1, . . . , zs+t−3)]]

= PSs,t [Ts−1,t(zs+t−2; z1, . . . , zs+t−3) f(z1, . . . , zs+t−3)]

= Ss,t(z1; z2, . . . , zs+t−1)Ts−1,t(zs+t−1; z2, . . . , zs+t−2) f(z2, . . . , zs+t−2),

whereas the right-hand side is equal to

PTs,t [PSs,t−1 [f(z1, . . . , zs+t−3)]]

= PTs,t [Ss,t−1(z1; z2, . . . , zs+t−2) f(z2, . . . , zs+t−2)]

= Ts,t(zs+t−1; z1, . . . , zs+t−2)Ss,t−1(z1; z2, . . . , zs+t−2) f(z2, . . . , zs+t−2).

It remains to show the rational function identity

Ts,t(zs+t−1; z1, . . . , zs+t−2)Ss,t−1(z1; z2, . . . , zs+t−2) (5.10.4)

=Ts−1,t(zs+t−1; z2, . . . , zs+t−2)Ss,t(z1; z2, . . . , zs+t−1).
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This follows directly from the definition of the rational functions (5.10.1), since both sides of (5.10.4)
are equal to

(1− z−1
s+t−1)

szt−2
s+t−1z

2s−t−1
1 (1− z1 + z1zs+t−1)/(zs+t−1 − z1)

×
s+t−2∏

i=2

(1 − zi + zizs+t−1)(1− z1 + ziz1)(1− z−1
i )

(zs+t−1 − zi)zi(zi − z1)
.

The left-hand side of the second equation yields

QSs,t
[
Ts−1,t(z

−1
1 ; z−1

s+t−2, . . . , z
−1
2 ) f(z2, . . . , zs+t−2)

]

= Ss,t(z
−1
s+t−1; z

−1
s+t−2, . . . , z

−1
1 )Ts−1,t(z

−1
1 ; z−1

s+t−2, . . . , z
−1
2 ) f(z2, . . . , zs+t−2),

and the right-hand side is equal to

QTs,t

[
Ss,t−1(z

−1
s+t−2; z

−1
s+t−3, . . . , z

−1
1 ) f(z1, . . . , zs+t−3)

]

= Ts,t(z
−1
1 ; z−1

s+t−1, . . . , z
−1
2 )Ss,t−1(z

−1
s+t−1; z

−1
s+t−2, . . . , z

−1
2 ) f(z2, . . . , zs+t−2).

The second equation is therefore also a consequence of (5.10.4) by replacing zi 7→ z−1
s+t−i. Analo-

gously, the third equation boils down to showing

Ts,t(zs+t−1; z1, . . . , zs+t−2)Ts,t−1(z
−1
1 ; z−1

s+t−2, . . . , z
−1
2 )

=Ts,t(z
−1
1 ; z−1

s+t−1, . . . , z
−1
2 )Ts,t−1(zs+t−1; z2, . . . , zs+t−2).

By definition (5.10.1) of the rational function both sides are equal to

(1− z−1
s+t−1)

szt−2
s+t−1(1 − z1)

sz2−t
1 (1− z1 + z1zs+t−1)/(zs+t−1 − z1)

×
s+t−2∏

i=2

(1− zi + zizs+t−1)(1 − z−1
i + z−1

i z−1
1 )

(zs+t−1 − zi)(z
−1
1 − z−1

i )
.

Moreover, we need the following identities, which follow from the fact that Ss,t(z; z1, . . . , zs+t−2)
and Ts,t(z; z1, . . . , zs+t−2) are symmetric in z1, . . . , zs+t−2 (the symbol ẑi indicates that zi is missing
from the argument):

SymPSs,t[f ] =

s+t−1∑

i=1

Ss,t(zi; z1, . . . , ẑi, . . . , zs+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1),

SymPTs,t[f ] =

s+t−1∑

i=1

Ts,t(zi; z1, . . . , ẑi, . . . , zs+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1),

SymQSs,t[f ] =

s+t−1∑

i=1

Ss,t(z
−1
i ; z−1

1 , . . . , ẑ−1
i , . . . , z−1

s+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1),

SymQTs,t[f ] =

s+t−1∑

i=1

Ts,t(z
−1
i ; z−1

1 , . . . , ẑ−1
i , . . . , z−1

s+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1).

(5.10.5)
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We consider words w over the alphabet A := {PS,PT,QS,QT} and let |w|S denote the number
of occurrences of PS and QS in the word and |w|T denote the number of occurrences of PT and
QT. It is instructive to interpret these words as labelled lattice paths with starting point in the
origin, step set {(1, 0), (0, 1)} and labels P,Q. The letters PS and QS correspond to (1, 0)-steps
labelled with P and Q, respectively, while the letters PT and QT correspond to (0, 1)-steps. With
this interpretation, (|w|S , |w|T ) is the endpoint of the path (see Figure 5.11).

s

t

P
P

Q

P
Q

Q

(0, 0)

(2, 4)

Figure 5.11: Labelled lattice path corresponding to w = (PT,PS,QT,PT,QS,QT).

To every word w of length n, we assign a rational function Fw(z1, . . . , zn+1) as follows: If w is
the empty word, then Fw(z1) := 1. Otherwise, if L ∈ A and w is a word over A, we set

FwL := L|wL|S+1,|wL|T+1[Fw].

For example, the rational function assigned to w in Figure 5.11 is

Fw(z1, . . . , z7) = QT3,5 ◦QS3,4 ◦PT2,4 ◦QT2,3 ◦PS2,2 ◦PT1,2[1].

In this context, Lemma 5.10.1 has the following meaning: on the one hand, we may swap two
consecutive steps with the same label, and, on the other hand, we may swap two consecutive (0, 1)-
steps without changing the corresponding rational functions. For example, the rational functions
corresponding to the words in Figure 5.11 and Figure 5.12 coincide.

Proof of Theorem 5.1.4. We assume

Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1) (5.10.6)

if t = s and t = s + 1. We show the following more general statement: Suppose w1, w2 are two
words over A with |w1|S = |w2|S and |w1|T = |w2|T , and every prefix w′

i of wi fulfills |w′
i|S ≤ |w′

i|T ,
i = 1, 2. (In the lattice paths language this means that w1 and w2 are both prefixes of Dyck paths
sharing the same endpoint; there is no restriction on the labels P and Q.) Then

SymFw1 = SymFw2 . (5.10.7)
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s

t

P
P

P

Q

Q
Q

(0, 0)

(2, 4)

Q

Q

Figure 5.12: Labelled lattice path corresponding to w̃ = (PT,PS,PT,QT,QT,QS).

The assertion of the theorem then follows since Fw = P|w|S+1,|w|T+1 if w is a word over {PS,PT}
(cf. (5.10.2)) and Fw = Q|w|S+1,|w|T+1 if w is a word over {QS,QT} (cf. (5.10.3)), and therefore

Rs,t(z1, . . . , zs+t−1) = SymPs,t(z1, . . . , zs+t−1) = SymQs,t(z1, . . . , zs+t−1)

= SymPs,t(z
−1
s+t−1, . . . , z

−1
1 ) = Rs,t(z

−1
1 , . . . , z−1

s+t−1).

The proof is by induction with respect to the length of the words; there is nothing to prove if
the words are empty. Otherwise let w1, w2 be two words over A with |w1|S = |w2|S = s − 1 and
|w1|T = |w2|T = t − 1, and every prefix w′

i of wi fulfills |w′
i|S ≤ |w′

i|T , i = 1, 2. Note that the
induction hypothesis and (5.10.5) imply that SymFwi only depends on the last letter of wi (and
on s and t of course). Thus the assertion follows if the last letters of w1 and w2 coincide; we assume
that they differ in the following.

If s = t, then the assumption on the prefixes implies that the last letters of w1 and w2 are in
{PS,QS}. W.l.o.g. we assume w1 = w′

1 PS and w2 = w′
2 QS. By the induction hypothesis and

(5.10.5), we have SymFw1 = SymPs,s and SymFw2 = SymQs,s. The assertion now follows
from (5.10.6), since SymPs,s(z1, . . . , z2s−1) = Rs,s(z1, . . . , z2s−1) and SymQs,s(z1, . . . , z2s−1) =
Rs,s(z

−1
1 , . . . , z−1

2s−1).
If s < t, we show that we may assume that the last letters of w1 and w2 are in {PT,QT}: if

this is not true for the last letter L1 of wi, we may at least assume by the induction hypothesis and
(5.10.5) that the penultimate letter L2 is in {PT,QT}; to be more precise, we require L2 = PT if
L1 = PS and L2 = QT if L1 = QS; now, according to Lemma 5.10.1, we can interchange the last
and the penultimate letter in this case. We may therefore assume that w1 = w′

1 PT and w2 = w′
2 QT

in the following.
If t = s+ 1, then the induction hypothesis and (5.10.5) imply – analogously to the case s = t –

that SymFw1 = SymPs,s+1 and SymFw2 = SymQs,s+1. The claim SymFw1 = SymFw2 again
follows from our assumption (5.10.6).

If s+1 < t, then we may assume by the induction hypothesis and (5.10.5) that the penultimate
letter of w1 is QT. According to Lemma 5.10.1, we can interchange the last and the penultimate
letter of w1 and the assertion follows also in this case.

We conclude this chapter by referring the interested reader to [FR14], where additional remarks
on the case s = 0 in Conjecture 5.1.2 are described.
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Chapter 6
Playing jeu de taquin on d-complete posets

The contents of this chapter appeared in [RN14].

6.1 Introduction

6.1.1 Jeu de taquin on posets

Jeu de taquin (literally translated ’teasing game’) is a board game (also known as 15-puzzle) where
fifteen square tiles numbered with {1, 2, . . . , 15} are arranged inside a 4 × 4 square. The goal of
the game is to sort the tiles by consecutively sliding a square into the empty spot (see Figure 6.1).
In combinatorics the concept of jeu de taquin was originally introduced by Schützenberger [Sch76]
on skew standard Young tableaux. Two related operations called promotion and evacuation, which
act bijectively on the set of linear extensions of a poset, were also defined by Schützenberger
[Sch72]. A modified version of jeu de taquin [NPS97] has an obvious extension to arbitrary posets,

7 11 4 5

8 1 3 13

14 6 12 2

10 15 9

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 6.1: An initial and final configuration of the board game jeu de taquin.

which we describe first: The goal of jeu de taquin on an n-element poset P is to transform any
(bijective) labeling of the poset elements with [n] := {1, 2, . . . , n} into a dual linear extension, i.e. a
labeling ι such that ι(x) > ι(y) whenever x <P y in the poset. For this, we first fix a linear
extension σ : P → [n] of the poset, which defines the order in which the labels are sorted (see
Figure 6.2). The sorting procedure consists of n rounds where after the first i rounds the poset
elements {σ−1(1), σ−1(2), . . . , σ−1(i)} have dually ordered labels. To achieve this, we compare in
round i the current label of x := σ−1(i) with the labels of all poset elements covered by x. If the

109
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9

8

7

6 3

4

1

2

5

σ:

Figure 6.2: Hasse diagram of a poset and a linear extension σ.

current label is the smallest of them, we are done with round i. Else, let y be the poset element with
the smallest label. Swap the labels of x and y and repeat with the new label of y. An example can
be seen in Figure 6.3. The fact that σ is a linear extension together with the minimality condition in
the sorting procedure ensures that after i rounds the poset elements {σ−1(1), σ−1(2), . . . , σ−1(i)}
have dually ordered labels. In particular, the sorting procedure transforms each labeling of the
poset into a dual linear extension. The question we are interested in is: Given a uniformly random

Round 1 Round 2 Round 3

5 2 4

673

1 8

9

5 2 6

473

1 8

9

5 2 6

473

1 8

9

Round 4 Round 5 Round 6

5 7 6

423

1 8

9

5 7 8

463

1 2

9

5 7 8

463

1 2

9

Round 7 Round 8 Round 9

5 7 8

463

1 2

9

5 7 8

463

1 2

9

9 7 8

465

3 2

1

Figure 6.3: Example of jeu de taquin in order σ as given in Figure 6.2.

labeling of the poset elements, does jeu de taquin output a uniformly random dual linear extension
of the poset? More specifically, given a poset, is there an order σ such that playing jeu de taquin
with all possible labelings yields each dual linear extension equally often? If yes, then jeu de taquin
allows us to immediately extend each algorithm for creating uniformly random permutations to an
algorithm creating uniformly random linear extensions of the poset.
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6.1.2 (Shifted) standard Young tableaux & the hook-length formula

For certain classes of posets we know the answer: Most famously, the Young diagram of an integer
partition λ = (λ1, λ2, . . . , λk) ⊢ n can be considered as a poset (see Figure 6.4). A Young tableau

Figure 6.4: Young diagram of the partition (3, 3, 2, 1) and the corresponding poset.

is a bijective filling of the boxes with [n] and thus corresponds to a labeling of the poset. A
standard Young tableau is a filling of the boxes where entries in each row (left-to-right) and column
(top-down) are strictly increasing. Hence, standard Young tableaux correspond to the dual linear
extensions of the respective poset. Novelli, Pak and Stoyanovskii showed [NPS97] that jeu de taquin
with column-wise order σ (as in Figure 6.2) yields uniform distribution among standard Young
tableaux. Their proof can actually be extended to work for orders different from column-wise order
(see also [Sag01]).

A second class of posets where we know the answer corresponds to shifted Young diagrams of
strict integer partitions, i.e. partitions where λ1 > λ2 > · · · > λk and the boxes of the shifted Young
diagram are indented as depicted in Figure 6.5. It was shown by Fischer [Fis01] that row-wise order

1 2 3 5 8

4 6 9 12

7 10

11

1

2

3

5

8
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6

9

12

7

10

11

Figure 6.5: A shifted standard Young tableau of shape (5, 4, 2, 1) and the dual linear extension of
the corresponding poset.

σ yields uniform distribution among shifted standard Young tableaux (however column-wise order
fails for the partition (4, 3, 2, 1)).

What both classes have in common is that the number of different standard fillings of fixed
shape λ can be obtained with a simple product formula, called hook-length formula: In the case of
Young diagrams the hook of a cell consists of all cells to the right in the same row, all cells below
in the same column and the cell itself. The hook-length hc of a cell c is the number of cells in its
hook (see Figure 6.6(a)). The number fλ of standard Young tableaux of fixed shape λ is then given
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Figure 6.6: The hook-lengths of all cells in a Young diagram and a shifted Young diagram.

by [FRT54]

fλ =
n!∏

c∈λ

hc
, (6.1.1)

where the product is taken over all cells c in the Young diagram. For shifted Young diagrams,
Gansner [Gan78] showed that the number of standard fillings can be obtained with the same hook-
length formula (6.1.1). However, the definition of the hooks has to be slightly modified: the shifted
hook of a cell contains the same cells as the hook before, and additionally, if the hook contains the
left-most cell in row i, then the shifted hook is extended to all cells in row i+1 (see Figure 6.6(b)).

6.1.3 d-complete posets

The definition of the hook-lengths can be generalized so that the hook-length formula extends to
further classes of posets, called d-complete posets [Pro99].

For m,n ≥ 2 the poset Dm,n consists of m+n elements for which the Hasse diagram is obtained
by taking a diamond of four elements and appending a chain of m−2 elements at the top element of
the diamond and a chain of n− 2 elements at the bottom element of the diamond (see Figure 6.7).
The poset Dm,n is referred to as double-tailed diamond and plays a fundamental role as elementary

︷
︸
︸

︷
m

−
2

︷
︸
︸

︷
n
−

2

Figure 6.7: Hasse diagram of the double-tailed diamond Dm,n.

building block in the definition of d-complete posets [Pro99]:
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Given a poset P and k ≥ 3, an interval [w, z] in the poset is called dk-interval if [w, z] ∼= Dk−1,k−1.
An interval [w, y] is called d−k -interval if [w, y]

∼= Dk−2,k−1 (in the special case k = 3 let us abuse
notation and say that a d−3 -interval is a diamond with top element removed). A poset P is called
dk-complete if it satisfies the following three conditions:

1. [w, y] is d−k -interval ⇒ ∃z ∈ P : [w, z] is dk-interval,

2. [w, z] is dk-interval ⇒ z does not cover an element outside of [w, z] and

3. [w, z] is dk-interval ⇒ there exists no w′ 6= w such that [w′, z] is dk-interval.

A poset P is called d-complete if and only if P is dk-complete for all k ≥ 3. The posets corresponding
to Young diagrams and shifted Young diagrams are examples of d-complete posets (see Figure 6.8).
A full classification of d-complete posets can be found in [Pro99].

9
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233
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Figure 6.8: Two d-complete posets with assigned hook-lengths.

Recall that for any poset P a map σ : P → N is called P -partition of n if σ is order-reversing
and satisfies

∑
x∈P σ(x) = n. Let GP (x) denote the corresponding generating function, i.e.

GP (x) :=
∑

n≥0

anx
n,

where an denotes the number of P -partitions of n. As a result by R.P. Stanley [Sta11, Theorem
3.15.7] the generating function can be factorized into

GP (x) =
WP (x)

(1− x)(1 − x2) . . . (1− x|P |)
(6.1.2)

with a polynomial WP (x) such that WP (1) is the number of linear extensions of P . A poset P is
called hook-length poset if there exists a map h : P → Z+ such that

GP (x) =
∏

z∈P

1

1− xh(z)
. (6.1.3)

The number fP of linear extensions of a hook-length poset can be obtained from (6.1.2) and (6.1.3)
by taking the limit x → 1:

fP =
|P |!∏

z∈P h(z)
. (6.1.4)
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Every d-complete poset is a hook-length poset [PP]. In fact, d-complete posets were generalized
to so-called leaf posets [IT07], which are also hook-length posets. The hook-lengths hz := h(z) for
d-complete posets can be obtained in the following way:

1. Assign all minimal elements of the poset the hook-length 1.

2. Repeat until all elements have their hook-length assigned: Choose a poset element z where
all smaller elements have their hook-length assigned. Check whether z is the top element of
a dk-interval [w, z].

• If no, set hz := #{y ∈ P : y ≤ z}.
• If yes, set hz := hl + hr − hw, where l and r are the two incomparable elements of the
dk-interval [w, z].

Two examples are given in Figure 6.8. By definition of d-complete posets the procedure is well-
defined (there exists at most one dk-interval with z as top element). Moreover, it is a nice exercise to
check that this definition is equivalent to the previous definition of hook-lengths for Young diagrams
(which only contain D2,2 intervals) and shifted Young diagrams (which additionally contain D3,3

intervals along the left rim). As an example compare Figure 6.6 and Figure 6.8.

6.1.4 Jeu de taquin on the double-tailed diamond

Since there is exactly one pair of incomparable elements in the double-tailed diamond Dm,n, there
are two different dual linear extensions T1 and T2 of Dm,n (see Figure 6.9). For jeu de taquin

1

m− 2

m+ 1 m

m− 1

m+ 2

m+ 3

m+ n

T1: 1

m− 2

m+ 1m

m− 1

m+ 2

m+ 3

m+ n

T2:

Figure 6.9: The two possible dual linear extension of Dm,n.

we choose w.l.o.g. the order σ that corresponds to the reverse order of T1. In Section 6.2 we
show that jeu de taquin with all (m + n)! labelings yields T1 and T2 equally often if and only
if m ≥ n. We proceed by defining a related statistic on permutations generalizing right-to-left
minima. In terms of this statistic we can analyze a refined counting problem, namely counting the
number of permutations for which jeu de taquin swaps the order between the labels of the two
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incomparable elements exactly k times. As it turns out this counting problem has a nice closed
solution (Proposition 6.2.2) as well as the resulting difference between the number of permutations
yielding T1 and T2:

Theorem 6.1.1 ([RN14]). Let s
(1)
m,n (resp. s

(2)
m,n) denote the number of permutations in Sm+n which

jeu de taquin on Dm,n with order σ maps to T1 (resp. T2). Then

s(1)m,n − s(2)m,n = (−1)m
(
n− 1

m

)
m!n!, m, n ≥ 2. (6.1.5)

In particular, s
(1)
m,n = s

(2)
m,n if and only if m ≥ n.

What is interesting about the result is that the poset Dm,n is d-complete if and only if m ≥ n.
Together with Young diagrams and shifted Young diagrams (two further classes of d-complete
posets) this hints towards a connection between d-completeness of a poset and the property that
jeu de taquin w.r.t. an appropriate order yields uniform distribution.

In Section 6.3 we give a purely combinatorial proof of Theorem 6.1.1 by constructing an appro-
priate involution Φm,n on Sm+n if m ≥ n. In the case m < n we identify a set E of

(
n−1
m

)
m!n!

exceptional permutations and construct an appropriate involution Φm,n on Sm+n \ E .

6.1.5 Jeu de taquin on insets

The class of insets (fourth class in the classification of d-complete posets in [Pro99]) can be defined
in terms of the shape of its corresponding diagram. For k ≥ 2 and λ = (λ1, . . . , λk) ⊢ n the
inset Pk,λ is obtained by taking the Young diagram corresponding to λ and adding k − 1 boxes
at the left end of the first row and one box at the left end of the second row (see Figure 6.10).
The hook-lengths of the cells in λ can be computed like for Young diagrams. The additional box

Figure 6.10: The inset P4,(3,2,2,1) and its corresponding box diagram.

in the second row is not the maximum of a double-tailed diamond interval, whereas each of the
k − 1 additional boxes in the first row is the top element of a double-tailed diamond interval. The
resulting hook-lengths are depicted in Figure 6.11. The hook-length formula (6.1.4) implies that
the number fk,λ of standard fillings is given by

fk,λ =
(n+ k)!(∏

c∈λ

hc

)(
k∏

i=1

(n− λi + i)

) . (6.1.6)
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n−λk+k

λk

standard

n−λ3+3 n−λ2+2 k+λ1−1

n−λ1+1 k+λ2−2

k+λ3−3

hook-lengths

Figure 6.11: The hook-lengths of Pk,λ with λ = (λ1, . . . , λk) ⊢ n.

Computational experiments indicate that jeu de taquin on Pk,λ with row-wise order again yields
uniform distribution. Even though we were so far not able to modify the techniques of [NPS97]
and [Fis01] to prove that jeu de taquin indeed yields uniform distribution, a quick analysis of insets
yields a solution to a different, nice problem:

Fix an integer partition λ = (λ1, . . . , λk) and consider uniform distribution on the set of standard
Young tableaux of shape λ. What is the expected value of the left-most entry in the second row?
Three examples are depicted in Figure 6.12. In Section 6.4 we observe that the expected value can

1

X
λ

1

X
λ

︷
︸
︸

︷

k

︸ ︷︷ ︸

c

1

X
λ

Figure 6.12: What is EXλ under uniform distribution among standard Young tableaux?

be written in terms of a simple product formula:

Theorem 6.1.2 ([RN14]). Fix a partition λ = (λ1, . . . , λk) ⊢ n. Let (Ω, 2Ω, P ) be the probability
space containing the fλ different standard Young tableaux of shape λ and uniform probability mea-
sure P . Let Xλ ∈ {2, 3, . . . , λ1 + 1} denote the random variable measuring the left-most entry in
the second row. Then

EXλ =
fk,λ

fλ
=

k∏

i=1

n+ i

n+ i− λi
. (6.1.7)
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Take for example the partition (3, 3, 2, 1) from Figure 6.6(a) which has according to the hook-
length formula 9!

6·5·4·3·3·2 = 168 different standard Young tableaux. The corresponding inset has

f4,(3,3,2,1) = 429 standard fillings. Hence, (6.1.7) tells us that in a standard Young tableau of shape
(3, 3, 2, 1) the left-most entry in the second row is on average 429

168 ≈ 2.554.

The expected value could also be expressed as a sum of determinants by Aitken’s determinant
formula for skew standard Young tableaux [Ait43; Sta01, Corollary 7.16.3]. While it should be
possible to derive the same product formula (6.1.7) from this expression, the simplicity of the
combinatorial argument given in Section 6.4 is somewhat appealing.

A different approach for generating uniformly random linear extensions was taken by Nakada
and Okamura [NO10, Nak12]. They generalize a probabilistic algorithm (introduced by Greene,
Nijenhuis and Wilf [GNW79]) for generating linear extensions and compute the probability p(L)
that a fixed linear extension L is generated by the algorithm. Since they show that p(L) actually
does not depend on L their statement not only implies that the algorithm yields uniform distribution
among linear extensions but also that the number of linear extensions is given by 1

p .

6.2 Jeu de taquin on the double-tailed diamond

6.2.1 Reducing the problem to understanding a permutation statistic

For the purpose of this section let us visualize the elements of the double-tailed diamond Dm,n as
boxes and labelings as fillings of the boxes. Let Bi,j denote the box in row i and column j, and given
a filling of the boxes let Ti,j denote the entry in box Bi,j (see Figure 6.13). We perform jeu de taquin

(1, 1)(1, 2)(1, 3)(1, 4)(1, 5)

(2, 5)(2, 6)

(3, 6)

(4, 6)

(5, 6)

(1, 6) 8 2 7 3 10

5 11

1

9

6

4

Figure 6.13: Coordinates of the boxes in D6,5 and a filling.

onDm,n with respect to the linear extension σ satisfying σ(B2,m−1) = n and σ(B1,m) = n+1. Given
a permutation π = π1π2 . . . πm+n ∈ Sm+n we start jeu de taquin by assigning (π1, π2, . . . , πm+n) to
the boxes in reverse order of σ (see Figure 6.14).

Let xi := xi(π) (resp. yi := yi(π)) denote the entry T1,m (resp. T2,m−1) after i rounds of jeu de
taquin. So, the initial values are x0 = πm and y0 = πm+1, and we know that in the end we have

{xm+n, ym+n} = {m,m+ 1}. As in Theorem 6.1.1 we denote by s
(1)
m,n the number of permutations

π ∈ Sm+n with xm+n(π) = m and by s
(2)
m,n the number of permutations with xm+n(π) = m+ 1.

In the first n rounds of jeu de taquin the elements {πm+n, πm+n−1, . . . , πm+1} are simply sorted
in increasing order (cf. Insertion-Sort algorithm). Therefore

xn(π) = πm and yn(π) = min{πm+1, πm+2, . . . , πm+n}.



118 CHAPTER 6. PLAYING JEU DE TAQUIN ON D-COMPLETE POSETS
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Figure 6.14: Linear extension σ for jeu de taquin and initial filling of the boxes.

In the following we are no longer interested in the exact values of xi and yi but only whether xi < yi
or xi > yi: If xn < yn, then xn < T2,m, so nothing happens in the (n+1)-st round of jeu de taquin
and xn+1 < yn+1. If on the other hand xn > yn, then T1,m may or may not be swapped with T2,m

and further entries, but in any case xn+1 > yn+1, since T2,m > max{xn, yn} at the start of the
round. Therefore, xn+1(π) < yn+1(π) if and only if πm = min{πm, πm+1, . . . , πm+n}, i.e. if πm is a
right-to-left minimum of π.

For the remaining rounds we observe the following: Before moving πi at the start of round
m + n + 1 − i the boxes B1,i+1, . . . , B1,m, B2,m−1 contain the m + 1 − i smallest elements of
{πi+1, πi+2, . . . , πm+n}. We have to distinguish between two cases, namely whether πi is among
the m+ 1− i smallest elements of {πi, πi+1, . . . , πm+n} or not.

If on the one hand πi > max{xm+n−i, ym+n−i}, then jeu de taquin first moves πi to B1,m−1

and then swaps πi with min{xm+n−i, ym+n−i}, which – by assumption – changes the order between
T1,m and T2,m−1. After that πi may or may not move further, but in any case the order between
xm+n−i+1 and ym+n−i+1 is exactly the opposite of the order between xm+n−i and ym+n−i. If on
the other hand πi < max{xm+n−i, ym+n−i}, then jeu de taquin moves πi at most to B1,m or B2,m−1

and – by assumption – does not change the order. Thus xm+n−i+1 and ym+n−i+1 are in the same
order as xm+n−i and ym+n−i.

Summed up, we have observed that xn+1(π) < yn+1(π) if and only if πm is a right-to-left
minimum. After that, the order between T1,m and T2,m−1 is kept the same in the round starting
with πi if and only if πi is among the m+1−i smallest elements of {πi, πi+1, . . . , πm+n}. Therefore,
we have reduced the problem to understanding a corresponding statistic on permutations.

6.2.2 A generalization of right-to-left-minima

The previous observations motivate the following definition generalizing right-to-left-minima of
permutations:

Definition 6.2.1 (RLk –min). Let π = π1π2 . . . πn ∈ Sn. We say that πi is a RLk –min if and
only if πi is among the k smallest elements of {πi, πi+1, . . . , πn}.

To solve our counting problem, we need to understand the distribution of

cm,n(π) :=

m∑

i=1

[πi is RLm+1−i –min] , π = π1 · · ·πm+n ∈ Sm+n, (6.2.1)

where the square brackets denote Iverson brackets, i.e. [φ] := 1 if φ is true, and 0 otherwise. As it
turns out the distribution of cm,n can be expressed in a particularly simple way:
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Proposition 6.2.2. Let

cm,n,k := #{π ∈ Sm+n | cm,n(π) = m− k}, m, n ≥ 1, 0 ≤ k ≤ m.

Then

cm,n,k = nk

[
m+ 1

k + 1

]
n!, (6.2.2)

where
[
s
t

]
denotes the unsigned Stirling numbers of first kind, i.e. the number of permutations of s

elements with t disjoint cycles.

Remark 6.2.3. Note that cm,n,k counts the number of π ∈ Sm+n for which the order between T1,m

and T2,m−1 in jeu de taquin is changed exactly k times (with πm contributing to k if and only if πm

is not a right-to-left minimum). In particular, xm+n(π) < ym+n(π) if and only if k = m− cm,n(π)
is even.

Proof of Proposition 6.2.2. The proof is split into the two edge cases k = m and k = 0 and the
case 0 < k < m.

• k = 0: Let us show that

cm,n(π) = m ⇐⇒ {π1, . . . , πm} = {1, . . . ,m}.

Assume s(πi) := [πi is RLm+1−i –min] = 1 for all i = 1, . . . ,m. Then s(πm) = 1 implies
1 ∈ {π1, . . . , πm}. Suppose there exists 2 ≤ k ≤ m such that k ∈ {πm+1, . . . , πm+n}. It then
follows from s(πm) = s(πm−1) = · · · = s(πm+2−k) = 1 that none of πm, πm−1, . . . , πm+2−k

can be greater than k, i.e. {πm+2−k, . . . , πm} = {1, 2, . . . , k−1}. But this contradicts πm+1−k

being a RLk –min. The reverse direction is obvious. Since there are exactly m! permutations
in Sm+1 consisting of exactly one cycle, we obtain

cm,n,0 = m!n! = n0

[
m+ 1

1

]
n!.

• k = m: In this case let us observe that

cm,n(π) = 0 ⇐⇒ j ∈ {πm+2−j, πm+3−j , . . . , πm+n} for all j = 1, . . . ,m.

Suppose j /∈ {πm+2−j , πm+3−j , . . . , πm+n}. Then there exists an i ∈ {1, . . . ,m+ 1 − j} such
that πi = j ≤ m + 1 − i. But this implies that πi is a RLm+1−i –min, so cm,n(π) > 0. If
we conversely assume that {1, 2, . . . ,m + 1 − i} ⊆ {πi+1, . . . , πm+n} for all i = 1, . . . ,m, it
follows that πi is not among the m+1− i smallest elements of {πi, . . . , πm+n}, and therefore
cm,n(π) = 0.

Therefore we have exactly nm possibilities to choose the preimage of {1, 2, . . . ,m} and for
each such choice the preimages of {m+ 1, . . . ,m+ n} can be chosen in any order, i.e.

cm,n,m = nmn! = nm

[
m+ 1

m+ 1

]
n!.
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• 0 < k < m: We proceed by induction on m. From the recurrence relation
[
s+1
t

]
= s
[
s
t

]
+
[

s
t−1

]

and the induction hypothesis (resp. the edge cases) it follows that

nk

[
m+ 1

k + 1

]
n! = nkm

[
m

k + 1

]
n! + nk

[
m

k

]
n! = m cm−1,n,k + n cm−1,n,k−1.

So it only remains to show that

m cm−1,n,k + n cm−1,n,k−1 = cm,n,k. (6.2.3)

For a bijective proof of (6.2.3) consider the position of 1 in π1 . . . πmπm+1 . . . πm+n. Let π′

denote the permutation π with πj = 1 removed and each number reduced by 1, so that
π′ ∈ Sm+n−1.

If on the one hand 1 ≤ j ≤ m, note that cm−1,n(π
′) = cm,n(π) − 1 and thus cm−1,n(π

′) =
(m− 1)− k if and only if cm,n(π) = m− k. For each 1 ≤ j ≤ m this establishes a one-to-one
correspondence between the permutations π ∈ Sm+n with πj = 1 that are counted by cm,n,k

and permutations π′ ∈ Sm+n−1 counted by cm−1,n,k.

If on the other hand m + 1 ≤ j ≤ m + n, note that cm−1,n(π
′) = cm,n(π) and therefore

cm−1,n(π
′) = (m− 1)− (k − 1) if and only if cm,n(π) = m− k. For each m+ 1 ≤ j ≤ m+ n

this is a one-to-one correspondence between the permutations π ∈ Sm+n with πj = 1 that are
counted by cm,n,k and permutations π′ ∈ Sm+n−1 counted by cm−1,n,k−1.

Proof of Theorem 6.1.1. In Remark 6.2.3 we have observed that

s(1)m,n − s(2)m,n = #{π ∈ Sm+n | m− cm,n(π) is even} −#{π ∈ Sm+n | m− cm,n(π) is odd}.

Together with Proposition 6.2.2 it follows that

s(1)m,n − s(2)m,n =

m∑

k=0

(−1)kcm,n,k =

m+1∑

k=1

(−1)k−1nk−1

[
m+ 1

k

]
n!

= (−1)m(n− 1)!

m+1∑

k=0

(−1)m+1−k

[
m+ 1

k

]
nk.

Since

(x)s := x(x − 1) . . . (x − s+ 1) =
s∑

k=0

(−1)s−k

[
s

k

]
xk

we obtain

s(1)m,n − s(2)m,n = (−1)m(n− 1)!(n)m+1 = (−1)m
(
n− 1

m

)
m!n!.

So, in particular jeu de taquin yields uniform distribution on the double-tailed diamond Dm,n

if and only if m ≥ n.
Let us close this section by noting that the if-direction can also be obtained by a simple inductive

argument, which can be extended to general posets: If we play jeu de taquin on Dm,m with all
permutations where π1 has a fixed value and stop the sorting procedure before π1 is moved, then
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we obtain a (non-uniform) distribution (α, β) with α + β = (2m − 1)! and α, β independent from
π1. As previously observed π1 does not change the order between T1,m and T2,m−1 if and only
if π1 is a RLm –min, i.e. π1 ∈ {1, 2, . . . ,m}. After completing jeu de taquin by moving π1, we
therefore obtain the distribution (α, β) if π1 ∈ {1, 2, . . . ,m} and the distribution (β, α) if π1 ∈
{m+ 1,m+ 2, . . . , 2m}. In total each of the two standard fillings occurs m(α + β) times, i.e. jeu
de taquin yields a uniform distribution on Dm,m. In the same way we can now fix π1 in jeu de
taquin on Dm,n with m > n. Inductively we obtain a uniform distribution on Dm−1,n for each fixed
π1 ∈ {1, 2, . . . ,m+ n}. Since each fixed π1 either always (π1 > m) or never (π1 ≤ m) changes the
order of the entries in the incomparable boxes, we also obtain a uniform distribution on Dm,n.

A similar argument applies when it comes to playing jeu de taquin on posets with a maximum:
Given an n-element poset P and an order σ such that jeu de taquin yields uniform distribution, we
can extend this property to the poset P ′ obtained by adding a maximum element m to P : First it
is clear that the total number of (dual) linear extensions remains the same, i.e. fP = fP ′

. As order
for jeu de taquin choose σ′|P := σ|P and σ′(m) := n+ 1. Now consider all labelings π of P ′ where
πm = i is fixed. If we play jeu de taquin with all such labelings and stop before moving i we obtain
(restricted to P ) a uniform distribution among the fP different dual linear extensions (with entries
[n + 1] \ {i}). Note that in each dual linear extension of P ′ the label i has a unique reverse path
back to the top. Thus, moving i in the last step of jeu de taquin preserves the uniform distribution.
Having a uniform distribution for each πm = i ∈ [n+ 1] implies uniform distribution in total.

Since jeu de taquin with row-wise order on Young tableaux yields a uniform distribution [NPS97],
it follows from the previous observation that the poset obtained from removing the top row of the
inset Pk,λ has the same property. It remains an open problem to understand why the uniform
distribution is also preserved when adding the top row.

6.3 A combinatorial proof of Theorem 6.1.1

In this section we give a bijective proof of Theorem 6.1.1. For this purpose we define the type τ for
each permutation π ∈ Sm+n by setting τ(π) := 1 if jeu de taquin with input permutation π yields
the output tableau T1, and τ(π) = −1 if the output tableau is T2 (see Figure 6.9 and Figure 6.14).
Given two subsets S1, S2 ⊆ Sm+n we say that f : S1 → S2 is type-inverting if τ(π) = −τ(f(π)) for
all π ∈ S1. To give a combinatorial proof of Theorem 6.1.1 we define a type-inverting involution
Φm,n : Sm+n → Sm+n for all m ≥ n. In the case m < n we identify a set E of

(
n−1
m

)
m!n!

exceptional permutations in Sm+n of the same type. On the remaining set Sm+n \ E we then define
a type-inverting involution Φm,n.

As in Section 6.2 let xi(π) and yi(π) denote the entries T1,m and T2,m−1 after i rounds of jeu
de taquin. Before giving the formal definition of Φm,n let us start by explaining the basic ideas:

First, if the last i entries of π are in the same relative order as the last i entries of π′, then
xi(π) < yi(π) if and only if xi(π

′) < yi(π
′). This means that whether or not xi(π) < yi(π) for

i = n+1, . . . , n+m depends on the relative order of πm+n+1−i, πm+n+2−i, . . ., πm+n but not their
absolute values.

Second, we have noted in Section 6.2 that πi does not change the order between T1,m and T2,m−1

if and only if πi is among the m+1− i smallest elements of {πi, πi+1, . . . , πm+n}. This implies that
whether or not πi changes the order only depends on the set of elements {πi+1, πi+2, . . . , πm+n},
but not their relative order. In particular, π1 changes the order between T1,m and T2,m−1 if and
only if π1 > m.
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In the case m = n we therefore construct an involution Φn,n on S2n such that the relative order
of all entries in π and the relative order of all entries in π′ := Φn,n(π) is the same if we exclude π1

and π′
1 := 2n+1−π1. In the case m > n we let Φm,n fix the first m−n entries of each permutation

and apply the type-inverting involution Φn,n to the bottom 2n entries. If m < n we apply Φm,m

to the smallest 2m entries if π1 ≤ 2m. Else, we apply Φm−1,m−1 to the smallest 2(m− 1) entries
if π2 ≤ 2(m − 1), and so on. Either one of the first m entries is small enough to apply the type-
inverting involution Φm+1−i,m+1−i or π1, π2, . . ., πm are all too large. In the latter case we call the
permutation exceptional and exclude it from the involution Φm,n. As it turns out there are exactly(
n−1
m

)
m!n! exceptional permutations all having the same type, thus proving Theorem 6.1.1.

Let us now formally define the involution Φm,n in all three cases, prove the correctness and give
examples.

6.3.1 Case m = n

For n ∈ N and 1 ≤ t ≤ 2n define the permutation χn,t ∈ S2n by

1 ≤ t ≤ n : χn,t(i) :=





2n+ 1− t if i = t,

i− 1 if t < i ≤ 2n+ 1− t,

i otherwise.

(6.3.1)

n+ 1 ≤ t ≤ 2n : χn,t(i) :=





2n+ 1− t if i = t,

i+ 1 if 2n+ 1− t ≤ i < t,

i otherwise.

(6.3.2)

For all 1 ≤ t ≤ 2n we have

χn,t ◦ χn,2n+1−t = χn,2n+1−t ◦ χn,t = id

and χn,t

∣∣∣∣
[2n]\t

is order-preserving. The desired involution Φn,n : S2n → S2n is

Φn,n(π) := χn,π1 ◦ π. (6.3.3)

An example can be seen in Figure 6.15. As composition of permutations it is clear that Φn,n(π) ∈

2 5 6 3

1 7

4

8

7 4 5 2

1 6

3

8

Φ4,4

Figure 6.15: The involution Φ4,4 applied to π = 25631748.

S2n, and from χn,π1(π1) = 2n+ 1− π1 it follows that

Φ2
n,n(π) = Φn,n(χn,π1 ◦ π) = χn,2n+1−π1 ◦ χn,π1 ◦ π = π,
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i.e. Φn,n is an involution. Since χn,π1 is order-preserving except for π1 the entries of π and π′ :=
Φn,n(π) have the same relative order except for π1 and π′

1. Therefore

x2n−1(π) < y2n−1(π) ⇐⇒ x2n−1(π
′) < y2n−1(π

′).

As π′
1 = 2n+ 1− π1 exactly one of π1 > n or π′

1 > n holds, and thus the two permutations π and
π′ are of different type, i.e. Φn,n is a type-inverting involution on S2n.

6.3.2 Case m > n

Given two subsets A,B ⊆ N with |A| = |B|, let σA,B : A → B denote the unique order-preserving
bijection between A and B, i.e. the bijection satisfying (a1 < a2) → (σA,B(a1) < σA,B(a2)) for all
a1, a2 ∈ A. Obviously, we have σB,A ◦ σA,B = σA,B ◦ σB,A = id.

If m > n and π ∈ Sm+n set A := Aπ := {πm−n+1, πm−n+2, . . . , πm+n}, B := {1, 2, . . . , 2n} and
t := tπ := σA,B(πm−n+1). The type-inverting involution Φm,n in this case is

Φm,n(π) :=

{
i 7→ πi if 1 ≤ i ≤ m− n,

i 7→ σB,A ◦ χn,t ◦ σA,B(πi) if m− n+ 1 ≤ i ≤ m+ n.
(6.3.4)

Note that Φm,n(π) is well-defined and an element of Sm+n (see Figure 6.16 for an example).

1 3 5 7

8 2

6

Φ5,3

4 1 7 3 6

8 2

5

4

Figure 6.16: The involution Φ5,3 applied to π = 41357826 with Aπ = {2, 3, 5, 6, 7, 8}.

Moreover, we have

Φm,n(π)

∣∣∣∣
{1,...,m−n}

= π,

Φm,n(π)

∣∣∣∣
{m−n+1,...,m+n}

= σB,A ◦ χn,t ◦ σA,B ◦ π.

Therefore AΦm,n(π) = Aπ and tΦm,n(π) = σA,B(σB,A ◦ χn,tπ ◦ σA,B(πm−n+1)) = χn,tπ(t
π) = 2n +

1− tπ. It follows that Φ2
m,n(π)

∣∣∣∣
{1,...,m−n}

= π

∣∣∣∣
{1,...,m−n}

and

Φ2
m,n(π)

∣∣∣∣
{m−n+1,...,m+n}

= Φm,n(σB,A ◦ χn,tπ ◦ σA,B ◦ π)
∣∣∣∣
{m−n+1,...,m+n}

= σB,A ◦ χn,2n+1−tπ ◦ σA,B ◦ σB,A ◦ χn,tπ ◦ σA,B ◦ π
∣∣∣∣
{m−n+1,...,m+n}

= π

∣∣∣∣
{m−n+1,...,m+n}

,
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i.e. Φ2
m,n = id. As in the case m = n the relative order of the last 2n − 1 entries of π and π′ :=

Φm,n(π) is the same. The entry πm−n+1 is among the n smallest elements of {πm−n+1, . . . , πm+n}
if and only if π′

m−n+1 is not among the n smallest elements of {π′
m−n+1, . . . , π

′
m+n}. Therefore

x2n(π) < y2n(π) ⇐⇒ x2n(π
′) > y2n(π

′).

Since πi = π′
i for all i = 1, . . . ,m− n, the permutations π and π′ are of different type.

6.3.3 Case m < n

In the case m < n let us define a subset E ⊆ Sm+n of exceptional permutations which we exclude
from the involution: We say that π = π1 . . . πm+n is exceptional if and only if πi > 2(m+1−i) for all
i = 1, . . . ,m. Note that the number of exceptional permutations is (n−m)(n−m+1) . . . (n−1)n! =(
n−1
m

)
m!n!. Given π ∈ Sm+n \ E , let k := kπ ≥ 1 minimal such that πk ≤ 2(m+ 1− k). Define

Φm,n(π) :=

{
i 7→ πi if πi > 2(m+ 1− k),

i 7→ χm+1−k,πk
(πi) otherwise.

(6.3.5)

An example can be seen in Figure 6.17. Note that Φm,n(π) is well-defined and since χm+1−k,πk
(πk) =

10 2 5 7

12 4

6

Φ5,7

11

1

9

3

8

10 5 4 7

12 3

6

11

1

9

2

8

Figure 6.17: The involution Φ5,7 with kπ = 3.

2(m+1− k)+ 1− πk we have kΦm,n(π) = kπ and Φm,n(π) ∈ Sm+n \ E . With L := {1 ≤ i ≤ m+n :

πi > 2(m+ 1− k)} it follows that Φ2
m,n(π)

∣∣∣∣
L

= Φm,n(π)

∣∣∣∣
L

= π

∣∣∣∣
L

and

Φ2
m,n(π)

∣∣∣∣
[m+n]\L

= Φm,n(χm+1−k,πk
◦ π)

∣∣∣∣
[m+n]\L

= χm+1−k,2(m+1−k)+1−πk
◦ χm+1−k,πk

◦ π
∣∣∣∣
[m+n]\L

= π

∣∣∣∣
[m+n]\L

,

i.e. Φm,n is an involution. The relative order of the entries in π and π′ := Φm,n(π) is the same
except for πk and π′

k. Since πk is among the m+ 1− k smallest elements of {πk, . . . , πm+n} if and
only if π′

k is not among the m + 1 − k smallest elements of {π′
k, . . . , π

′
m+n} the involution Φm,n is
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type-inverting. We can conclude the proof by noting that all exceptional permutations are of the
same type, since πi > 2(m+ 1 − i) for all i = 1, . . . ,m implies that πi is not among the m+ 1 − i
smallest elements of {πi, πi+1, . . . , πm+n}.

6.4 Proof of Theorem 6.1.2 & Examples

The statement of Theorem 6.1.2 can be observed by computing the number fk,λ of standard fillings
of the inset Pk,λ in two different ways. On the one hand we can use the hook-length formula
for insets (see (6.1.6)). On the other hand we can refine the counting w.r.t. the left-most entry
in the second row: In each standard filling of Pk,λ the k − 1 left-most entries in the first row are

(T1,1, T1,2, . . . , T1,k−1) = (1, 2, . . . , k−1). For i = 0, 1, . . . , λ1 let f
k,λ
i denote the number of standard

fillings of Pk,λ where the left-most entry in the second row is T2,k−1 = k+ i (see Figure 6.18). Now

k+i−11 k−2 k−1 k

k+i

Figure 6.18: Standard fillings counted by fk,λ
i .

note that for each fixed i ∈ {0, 1, . . . , λ1} the standard fillings counted by fk,λ
i are in one-to-one

correspondence with standard Young tableaux of shape λ where the top row starts with (1, 2, . . . , i).
This in turn is equivalent to requiring that the left-most entry in the second row of the standard
Young tableau is at least i+ 1. Together with fk,λ =

∑λ1

i=0 f
k,λ
i , (6.1.1) and (6.1.6) we obtain

EXλ =

λ1+1∑

i=1

P{Xλ ≥ i} =

λ1∑

i=0

fk,λ
i

fλ
=

fk,λ

fλ
=

k∏

i=1

n+ i

n+ i− λi
.

Let us apply this result to the three families of partitions in Figure 6.12.

Example 6.4.1. Consider the partition λ = (k, 1k−1) ⊢ 2k − 1. From Theorem 6.1.2 we obtain

EXλ =

k∏

i=1

2k − 1 + i

2k − 1 + i− λi
=

2k

k

k∏

i=2

2k − 1 + i

2k − 2 + i
= 3− 1

k
.

Of course, this can also be obtained by the elementary observation that fλ =
(
2k−2
k−1

)
and

EXλ =
∑

i≥1

P(Xλ ≥ i) =
1(

2k−2
k−1

)



(
2k − 2

k − 1

)
+
∑

i≥2

(
2k − i

k − 1

)
 = 1 +

(
2k−1

k

)
(
2k−2
k−1

) = 3− 1

k
.
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Example 6.4.2. Fix c ≥ 1 and consider the partition λ = (c, . . . , c) ⊢ kc. For k ≥ c it follows that

EXλ =

k∏

i=1

kc+ i

kc+ i− c
=

c∏

i=1

k(c+ 1) + 1− i

kc+ 1− i

k→∞−−−−→
(
1 +

1

c

)c

.

Example 6.4.3. Let λ = (k, k − 1, . . . , 1) ⊢
(
k+1
2

)
be of staircase shape. From Theorem 6.1.2 it

follows that

EXλ =

k∏

i=1

(
k+1
2

)
+ i(

k+1
2

)
+ 2i− k − 1

=

((
k+1
2

)
+ k
)
!
((

k+1
2

)
− k − 1

)
!!

(
k+1
2

)
!
((

k+1
2

)
+ k − 1

)
!!

=

((
k+1
2

)
+ k
)
!!
((

k+1
2

)
− k − 1

)
!!

(
k+1
2

)
!

,

where !! denotes the double factorial, i.e.

(2n)!! = (2n)(2n− 2) · · · 2 = 2nn!,

(2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1 =
(2n)!

(2n)!!
=

(2n)!

2nn!
.

Applying Stirling’s formula one can show (Lemma A.3.1) that asymptotically EXλ ∼ e ≈ 2.71828.



Appendix A
Asymptotics and hypergeometric identities

A.1 Asymptotics of ASMs

Lemma A.1.1. The number of ASMs of size n satisfies

lim
n→∞

A
1

n2
n =

3
√
3

4
. (A.1.1)

Proof. Since An =
∏n−1

j=0
(3j+1)!
(n+j)! , it is equivalent to show that

lim
n→∞

1

n2
log




n−1∏

j=0

(3j + 1)!

(n+ j)!


 = log

(
3
√
3

4

)
.

From Stirling’s formula n! ∼
(
n
e

)n √
2πn it follows that

logn! = n logn− n+
1

2
logn+ c+ αn

with a constant c and αn → 0. Since both

1

n2

n−1∑

j=0

log(3j + 1) ≤ log(3n− 2)

n
and

1

n2

n−1∑

j=0

log(n+ j) ≤ log(2n− 1)

n

tend to zero as n → ∞, we obtain

1

n2
log




n−1∏

j=0

(3j + 1)!

(n+ j)!


 =

1

n2

n−1∑

j=0

(log(3j + 1)!− log(n+ j)!)

=
1

n2




n−1∑

j=0

((3j + 1) log(3j + 1)− (n+ j) log(n+ j))


− n− 1

n
+ 1 + ǫn,

127
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where ǫn → 0. Hence, it suffices to show that

S(n) :=
n−1∑

j=0

((3j + 1) log(3j + 1)− (n+ j) log(n+ j))

satisfies

lim
n→∞

S(n)

n2
= log

(
3
√
3

4

)
. (A.1.2)

The interpretation of lower and upper sums yields for any monotonically increasing function f and
integers a ≤ b

∫ b

a−1

f(x) dx ≤
b∑

j=a

f(j) ≤
∫ b+1

a

f(x) dx .

Set f(x) := x log x to obtain

S(n) =

n−1∑

j=1

f(3j + 1)−
2n−1∑

j=n

f(j).

Together with
∫
x log x dx = x2

2 log x− x2

4 + c it follows that

S(n) ≥
∫ n−1

0

f(3x+ 1) dx−
∫ 2n

n

f(x) dx =
1

3

∫ 3n−2

0

u logu du−
∫ 2n

n

x log x dx

=
1

3

(
(3n− 2)2

2
log(3n− 2)− (3n− 2)2

4

)
−
(
(2n)2

2
log(2n)− (2n)2

4
− n2

2
log n+

n2

4

)

and therefore

S(n)

n2
≥ 3

2
log(3n− 2)− 3

4
− 2 log(2n) + 1 +

1

2
logn− 1

4
− λn = log

(
(3n− 2)

3
2n

1
2

(2n)2

)
− λn,

where λn → 0. Taking the limit, we obtain

lim
n→∞

S(n)

n2
≥ log

(
3
√
3

4

)
.

Analogously,

S(n) ≤
∫ n

1

f(3x+ 1) dx−
∫ 2n−1

n−1

f(x) dx =
1

3

∫ 3n+1

4

u logu du−
∫ 2n−1

n−1

x log x dx

=
1

3

(
(3n+ 1)2

2
log(3n+ 1)− (3n+ 1)2

4
− 8 log 4 + 4

)

−
(
(2n− 1)2

2
log(2n− 1)− (2n− 1)2

4
− (n− 1)2

2
log(n− 1) +

(n− 1)2

4

)
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and thus

S(n)

n2
≤ 3

2
log(3n+1)− 3

4
−2 log(2n−1)+1+

1

2
log(n−1)− 1

4
+µn = log

(
(3n+ 1)

3
2 (n− 1)

1
2

(2n− 1)2

)
+µn,

where µn → 0. In the limit we therefore also have

lim
n→∞

S(n)

n2
≤ log

(
3
√
3

4

)
.

In total (A.1.2) and therefore the asymptotics (A.1.1) of ASMs follows.

A.2 Hypergeometric identities

Apart from the identities
(
r
k

)
= (−1)k

(
k−r−1

k

)
and

(
r
m

)(
m
k

)
=
(
r
k

)(
r−k
m−k

)
, which are true for all

k,m ∈ Z, r ∈ C, and
(
n
j

)
=
(

n
n−j

)
, which only holds for non-negative integers n (if we use definition

(2.5.10) of the binomial coefficient), we make extensive use of the Chu–Vandermonde convolution
[GKP89, p.169]

∑

k∈Z

(
r

m+ k

)(
s

n− k

)
=

(
r + s

m+ n

)
, m, n ∈ Z, r, s ∈ C. (A.2.1)

There are two simple ways to convince oneself of the Chu–Vandermonde convolution: On the one
hand there is the generating function approach, i.e. compare the coefficient at zm+n on both sides
of (1 + z)r+s = (1 + z)r(1 + z)s to obtain

(
r + s

m+ n

)
=

m+n∑

k=0

(
r

k

)(
s

m+ n− k

)
=
∑

k

(
r

m+ k

)(
s

n− k

)
.

On the other hand the identity is clear from a combinatorial point of view if r and s are non-negative
integers (the number of ways to assign m+n balls to r+ s slots is the same as the number of ways
to assign m + k balls to the first r slots and n − k to the last s slots for any integer k). For fixed
integers m and n both sides are polynomials in r and s and therefore the identity also holds for
r, s ∈ C.

Let us also remark that a standard way of dealing with the following identities would be to
first write them in generalized hypergeometric function notation and then apply the appropriate
transformation and summation formulæ (under guidance of Krattenthaler’s HYP package [Kra95]).

Lemma A.2.1. The matrices

Bn =

((
2n− i− 2

n− i− j − 1

)
(−1)j+1 + δi,j

)

1≤i,j≤n−1

,

B∗
n =

((
i+ j

j − 1

)
(1− δi,n−1)

)

1≤i,j≤n−1

,

Rn =

((
n+ j − i− 1

j − i

))

1≤i,j≤n−1

,

R−1
n =

((
n

j − i

)
(−1)i+j

)

1≤i,j≤n−1
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satisfy RnR
−1
n = In−1 and R−1

n BnRn = B∗
n + In−1.

Proof. The first identity is an immediate consequence of the Chu–Vandermonde convolution:

(
RnR

−1
n

)
i,j

=
n−1∑

k=1

(
n+ k − i− 1

k − i

)(
n

j − k

)
(−1)k+j

=
∑

k

( −n

k − i

)(
n

j − k

)
(−1)i+j =

(
0

j − i

)
(−1)i+j = δi,j .

For the second identity we want to compute

(
R−1

n BnRn

)
i,j

=

n−1∑

l=1

(
n

l − i

)
(−1)i+l(BnRn)l,j ,

whereby

(BnRn)l,j =

(
n−1∑

k=1

(
2n− l − 2

n− l − k − 1

)(
n+ j − k − 1

j − k

)
(−1)k+1

)
+

(
n+ j − l − 1

j − l

)
.

After observing that

n−1∑

l=1

(
n

l − i

)
(−1)i+l

(
n+ j − l − 1

j − l

)
= (−1)i+j

∑

l

(
n

l − i

)( −n

j − l

)

= (−1)i+j

(
0

j − i

)
= δi,j

it remains to show that

n−1∑

l=1

(
n

l − i

)
(−1)i+l

n−1∑

k=1

(
2n− l − 2

n− l − k − 1

)(
n+ j − k − 1

j − k

)
(−1)k+1 =

(
i+ j

j − 1

)
(1− δi,n−1).

The sum over l evaluates to

n−1∑

l=1

(
n

l− i

)(
2n− l − 2

n− l− k − 1

)
(−1)i+l = (−1)n+i+k+1

∑

l

(
n

l − i

)( −n− k

n− l − k − 1

)

= (−1)n+i+k+1

( −k

n− i− k − 1

)
=

(
n− i− 2

n− i− k − 1

)
.

At this point one must avoid the trap
(

n−i−2
n−i−k−1

)
=
(
n−i−2
k−1

)
set up by i = n − 1, because in this

case n− i− 2 < 0, and
(

n−i−2
n−i−k−1

)
=
(
−1
−k

)
= 0 for all k ≥ 1. For 1 ≤ i ≤ n− 2 the claim follows as

n−1∑

k=1

(
n+ j − k − 1

j − k

)(
n− i− 2

k − 1

)
(−1)k+1 = (−1)j+1

∑

k

( −n

j − k

)(
n− i− 2

k − 1

)

= (−1)j+1

(−i− 2

j − 1

)
=

(
i+ j

j − 1

)
.
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Lemma A.2.2. The numbers

Xn,i :=

(
n+i−2
n−1

)(
2n−i−1
n−1

)
(
3n−2
n−1

)
n−1∏

j=0

(3j + 1)!

(n+ j)!

satisfy

Xn,i =

n∑

j=1

(
2n− i− 1

n− i− j + 1

)
(−1)j+1Xn,j , i = 1, . . . , n, (A.2.2)

Xn,1 =

n−1∑

i=1

Xn−1,i, n ≥ 2. (A.2.3)

Proof. After eliminating the common factors on both sides that only depend on n, it remains to
show that

(
n+ i− 2

n− 1

)(
2n− i− 1

n− 1

)
=

n∑

j=1

(
2n− i− 1

n− i− j + 1

)(
n+ j − 2

n− 1

)(
2n− j − 1

n− 1

)
(−1)j+1. (A.2.4)

In order to simplify the right-hand side let us first observe that

(
2n− i− 1

n− i− j + 1

)(
n+ j − 2

n− 1

)(
2n− j − 1

n− 1

)(
n− 1

i− 1

)

is symmetric in i and j: The binomial identity
(
r
m

)(
m
k

)
=
(
r
k

)(
r−k
m−k

)
implies

(
2n− i− 1

n− i− j + 1

)(
n+ j − 2

n− 1

)
=

(
2n− i− 1

2n− i− j

)(
2n− i− j

n− i− j + 1

)
=

(
2n− i− 1

j − 1

)(
2n− i − j

n− i− j + 1

)

and (
2n− j − 1

n− 1

)(
n− 1

i− 1

)
=

(
2n− j − 1

i− 1

)(
2n− i− j

n− i

)
.

Since both
(

2n−i−j
n−i−j+1

)
and

(
2n−i−j
n−i

)
are invariant under switching i and j, the claimed symmetry

follows.

After multiplying both sides of (A.2.4) with
(
n−1
i−1

)
, applying the symmetry on the right-hand

side and cancelling the two identical binomial coefficients on both sides, it only remains to show
that (

n− 1

i− 1

)
=

n∑

j=1

(
2n− j − 1

n− i − j + 1

)(
n− 1

j − 1

)
(−1)j+1.

Indeed the right-hand side is by Chu–Vandermonde convolution equal to

(−1)n+i
∑

j

( −n− i+ 1

n− i− j + 1

)(
n− 1

j − 1

)
= (−1)n+i

( −i

n− i

)
=

(
n− 1

i− 1

)
.
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For the second identity observe that

n−1∑

i=1

(
n+ i− 3

n− 2

)(
2n− i− 3

n− 2

)
=

n−1∑

i=1

(
n+ i− 3

i− 1

)(
2n− i− 3

n− i− 1

)

= (−1)n
∑

i

(−n+ 1

i− 1

)( −n+ 1

n− i− 1

)

= (−1)n
(−2n+ 2

n− 2

)
=

(
3n− 5

n− 2

)
.

The right-hand side of (A.2.3) is therefore
n−2∏
j=0

(3j+1)!
(n−1+j)! , which is further equal to

n−2∏

j=0

(3j + 1)!

(n− 1 + j)!
=

(2n− 2)!(2n− 1)!

(3n− 2)!(n− 1)!

n−1∏

j=0

(3j + 1)!

(n+ j)!
=

(
2n−2
n−1

)
(
3n−2
n−1

)
n−1∏

j=0

(3j + 1)!

(n+ j)!
= Xn,1.

Lemma A.2.3. The identity

2n−1∑

j=1

(
n− i

2n− i− j

) j∑

l=1

(
j − 1

l − 1

)(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)i+l+j−1

=

i∑

l=1

(
i− 1

l − 1

)(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)n+i+l−1.

holds for all i = 1, . . . , 2n− 1, n ≥ 1.

Proof. Using
(
n
j

)
=
(

n
n−j

)
,
(
a
b

)
=
(
b−a−1

b

)
(−1)b and Chu–Vandermonde convolution shows that the

left-hand side is equal to

2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l− 1

n− 1

)
(−1)i+l−1

2n−1∑

j=l

(
n− i

2n− i− j

)(
j − 1

j − l

)
(−1)j

=

2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)i−1

∑

j

(
n− i

2n− i− j

)( −l

j − l

)

=

2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)(
n− i− l

2n− i− l

)
(−1)i−1.

Hence, one has to show that

(
2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)(
n− i− l

2n− i− l

))

i=1,...,2n−1

=

(
i∑

l=1

(
i− 1

l − 1

)(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)n+l

)

i=1,...,2n−1

.
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This can be accomplished by multiplying the vectors on both sides with the invertible (lower

triangular) matrix T :=
((

i−1
j−1

)
(−1)j

)
1≤i,j≤2n−1

from the left. On the right-hand side this yields

the vector



2n−1∑

j=1

(
i − 1

j − 1

)
(−1)j

j∑

l=1

(
j − 1

j − l

)(
n+ l − 2

n− 1

)(
2n− l− 1

n− 1

)
(−1)n+l




i=1,...,2n−1

=




2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)n

∑

j

( −l

j − l

)(
i− 1

i− j

)


i=1,...,2n−1

=

(
2n−1∑

l=1

(
n+ l− 2

n− 1

)(
2n− l − 1

n− 1

)(
i− l − 1

i− l

)
(−1)n

)

i=1,...,2n−1

=

((
n+ i− 2

n− 1

)(
2n− i− 1

n− 1

)
(−1)n

)

i=1,...,2n−1

,

where the last equality is due to
(
j−1
j

)
= δj,0, j ∈ Z. And for the left-hand side one obtains the

vector



2n−1∑

j=1

(
i− 1

j − 1

)
(−1)j

2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)(
n− j − l

2n− j − l

)


i=1,...,2n−1

=




2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l − 1

n− 1

)
(−1)l

∑

j

(
n− 1

2n− j − l

)(
i− 1

j − 1

)


i=1,...,2n−1

=

(
2n−1∑

l=1

(
n+ l − 2

n− 1

)(
2n− l− 1

n− 1

)(
n+ i− 2

2n− l − 1

)
(−1)l

)

i=1,...,2n−1

.

Since n + l ≥ 2 we have
(
n+l−2
n−1

)
=
(
n+l−2
l−1

)
, and

(
r
m

)(
m
k

)
=
(
r
k

)(
r−k
m−k

)
implies

(
2n−l−1
n−1

)(
n+i−2
2n−l−1

)
=(

i−1
n−l

)(
n+i−2
n−1

)
. The left-hand side is thus further equal to

((
n+ i− 2

n− 1

) 2n−1∑

l=1

(
n+ l − 2

l − 1

)(
i− 1

n− l

)
(−1)l

)

i=1,...,2n−1

=

(
−
(
n+ i− 2

n− 1

)∑

l

( −n

l − 1

)(
i− 1

n− l

))

i=1,...,2n−1

=

(
−
(
n+ i− 2

n− 1

)(
i− n− 1

n− 1

))

i=1,...,2n−1

=

((
n+ i − 2

n− 1

)(
2n− i− 1

n− 1

)
(−1)n

)

i=1,...,2n−1

.
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Lemma A.2.4.
i∑

l=j

(
i+ l

i− l

)(
2l − j − 1

l− j

)
(−1)l−j

l
=

(
i
j

)

j
(A.2.5)

for i, j ≥ 1.

Equation (5.7.3) then follows with the substitution j 7→ d1 − 3.

Proof. First note that Vandermonde convolution yields for n, r ≥ 0 and m ≥ q ≥ 0

∑

0≤k≤r

(
r − k

n

)(
q + k

m

)
=
∑

0≤k≤r

(
r − k

r − k − n

)(
q + k

q + k −m

)

= (−1)m+n+q+r
∑

0≤k≤r

( −n− 1

r − k − n

)( −m− 1

q + k −m

)

= (−1)m+n+q+r

( −m− n− 2

q + r −m− n

)

=

(
q + r + 1

q + r −m− n

)
=

(
q + r + 1

m+ n+ 1

)
.

Substituting m 7→ j, n 7→ 2l − j − 1, q 7→ 0 and r 7→ i+ l − 1 gives

(
i+ l

i− l

)
=

(
i+ l

2l

)
=

i+l−1∑

k=0

(
i+ l − k − 1

2l− j − 1

)(
k

j

)
=

i∑

k=j

(
i+ l− k − 1

2l − j − 1

)(
k

j

)
.

The left-hand side of (A.2.5) is therefore equal to

i∑

k=j

(
k

j

) i∑

l=j

(
i+ l − k − 1

2l − j − 1

)(
2l− j − 1

l − j

)
(−1)l−j

l
.

Apply
(
r
m

)(
m
k

)
=
(
r
k

)(
r−k
m−k

)
and Chu–Vandermonde convolution to see that the inner sum is equal

to

i∑

l=j

(
i+ l − k − 1

l − j

)(
i+ j − k − 1

l − 1

)
(−1)l−j

l
=

i∑

l=j

(−i− j + k

l − j

)(
i+ j − k

l

)
1

i+ j − k

=
1

i+ j − k

∑

l

(−i− j + k

l − j

)(
i+ j − k

i+ j − k − l

)

=
1

i+ j − k

(
0

i− k

)
.

So, the only remaining summand is k = i and we indeed obtain the right-hand side of (A.2.5).



A.3. ASYMPTOTICS OF EXλ IN THE STAIRCASE SHAPE 135

A.3 Asymptotics of EXλ in the staircase shape

Lemma A.3.1.

lim
k→∞

((
k+1
2

)
+ k
)
!!
((

k+1
2

)
− k − 1

)
!!

(
k+1
2

)
!

= e ≈ 2.71828.

Proof. We show the assertion for k = 4m (the cases k = 4m+ 1, k = 4m+ 2 and k = 4m+ 3 can
be observed analogously). The three factorial expressions are then equal to

((
k + 1

2

)
+ k

)
!! = (2m(4m+ 3))!! = 2m(4m+3)(m(4m+ 3))!,

((
k + 1

2

)
− k − 1

)
!! = (2m(4m− 1)− 1)!! =

(2m(4m− 1))!

2m(4m−1) (m(4m− 1))!
,

(
k + 1

2

)
! = (2m(4m+ 1))!.

By Stirling’s formula we know that n! ∼
(
n
e

)n √
2πn. Since the arguments of the two factorials

in the numerator and the arguments of the two factorials in the denominator both sum up to
m(12m + 1), and the respective products of the factorial arguments are both polynomials with
leading term 32m4, it suffices to show that

lim
m→∞

2m(4m+3)(m(4m+ 3))m(4m+3)(2m(4m− 1))2m(4m−1)

2m(4m−1)(m(4m− 1))m(4m−1)(2m(4m+ 1))2m(4m+1)
= e

The left-hand side is further equal to

lim
m→∞

(4m+ 3)m(4m+3)(4m− 1)m(4m−1)

(4m+ 1)2m(4m+1)
= lim

m→∞

(
1 +

2

4m+ 1

)m(4m+3)(
1− 2

4m+ 1

)m(4m−1)

= lim
m→∞

(
1 +

2

4m+ 1

)4m(
1− 4

(4m+ 1)2

)m(4m−1)

.

Take the logarithm and apply l’Hôpital’s rule to see that

lim
n→∞

(
1 +

1

f(n)

)g(n)

= e
β
α

for any polynomials f and g with deg f = deg g ≥ 1 and leading coefficients lc[f ] = α, lc[g] = β.
The claim now follows as

lim
m→∞

(
1 +

2

4m+ 1

)4m

= exp(2),

lim
m→∞

(
1− 4

(4m+ 1)2

)m(4m−1)

= exp(−1).
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