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Abstract

A stationary reflection principle in P, (k) is a statement of the form ” for
every stationary subset S of P, (k), there exists a set X C k of size wy such
that w; C X and SNP, (X) is stationary in P, (X)”. In short, we say that
S reflects to X. The main difference between these principles is the cofinal-
ity of the reflecting set X. Without restriction, we call this statement the
Weak Reflection Principle. Requiring cof(ot(X)) = wq, we obtain a stronger
principle, namely the Reflection Principle. Interesting results can also be
derived when we replace stationary with semistationary, a notion introduced
by Shelah.

The goal of this thesis is to present all known results concerning the consis-
tency of these stationary reflection principles in P, (k), where & is a regular
cardinal. Our main focus is on Py, (ws).

We start by proving facts about a partial version of reflection. This kind
of stationary reflection deals with reflecting points of a stationary subset of
P, (w2). This theory was developed by Sakai. He proved its consistency
without the use of large cardinals. We will use the techniques developed by
Konig-Larson-Yoshinobu to show the failure of the cofinality w case of the
Partial Stationary Reflection Principles for P, (wy) under 2" = wy and for
P, (wy) under CH and 2“1 = w,, for n > 2.

Then we continue with the consistency of the stationary reflection principles
mentioned above. For those results, we need large cardinals. The Weak

and the Strong Reflection Principle for ws are equiconsistent with a weakly
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compact cardinal. Similarly, one can derive consistency for all cardinals by
Lévy collapsing a supercompact to wy. Moreover, we show that we do not
have to be concerned with the restriction of the cofinality of the reflecting set
X to w, since this statement is inconsistent. We mention a result by Sakai,
who proved that under the assumption of a strongly compact cardinal, the
Semistationary Reflection Principle is consistent.

In the final chapter we present the known implications between the Weak
Reflection Principle, the Strong Reflection Principle, and the Semistationary

Reflection Principle.



Zusammenfassung

Ein Reflexionsprinzip fiir stationire Mengen in P, (k) ist eine Aussage der
Form 7 fiir jede stationdre Teilmenge S wvon P, (k) existiert eine Menge
X C k der Grife wy, sodass wy € X und S NP, (X) in P, (X) stationdr
1st”. Kurz gesagt, S wird von X reflektiert. Der grofite Unterschied zwischen
diesen Prinzipien ist die Kofinalitét der reflektierenden Menge X. Ohne Ein-
schrinkung wird diese Aussage Schwaches Reflexionsprinzip genannt. Setzt
man cof(ot(X)) = w; voraus, erhilt man ein stérkeres Prinzip, das Refle-
xionsprinzip. Man kann interessante Resultate erzielen, wenn man stationér
durch semistationér ersetzt, ein Begriff, der von Shelah eingefiihrt wurde.
Ziel dieser Arbeit ist es, die bekannten Resultate iiber die Widerspruchsfrei-
heit der Reflexionsprinzipien stationédrer Mengen in P, (k) zu présentieren,
wobei k eine reguldre Kardinalzahl bezeichnet. Unser Hauptaugenmerk rich-
tet sich auf P, (ws).

Wir beginnen damit, Ergebnisse iiber eine partielle Version der Reflexion zu
préasentieren. Diese Art von Reflexion behandelt Reflexionspunkte stationérer
Teilmengen einer stationdren Menge in P, (ws). Diese Theorie wurde von
Sakai entwickelt. Fr zeigte die Widerspruchsfreiheit der Prinzipien ohne Ver-
wendung grofler Kardinalzahlen. Wir verwenden Methoden, die von Konig-
Larson-Yoshinobu entwickelt wurden, um zu zeigen, dass wenn 2“* = wy, die
Restriktion der Kofinalitit zu w in P, (ws) fehlschldgt. Wir zeigen dies auch
allgemeiner fiir partielle Reflexion in P, (w,) unter der Annahme von CH

und 2“1t = w,, fir n > 2.



CONTENTS 6

Danach behandeln wir die Widerspruchsfreiheit der oben genannten Re-
flexionsprinzipien fiir stationdre Mengen. Um diese Resultate zu erhalten,
benétigen wir grofle Kardinalzahlen. Die Widerspruchsfreiheit des Schwachen
und Starken Reflexionsprinzips fiir wo ist dquivalent zu der Widerspruchs-
freiheit einer weakly compact cardinal. Auf dhnliche Weise kann man die
Widerspruchsfreiheit dieser Reflexionsprinzipien fiir alle Kardinalzahlen ab-
leiten, wenn man eine supercompact cardinal zu wy kollabiert. Weiters zeigen
wir, dass die Einschrankung der Kofinalitét der reflektierenden Menge X auf
w irrelevant ist, da diese Aussage nicht widerspruchsfrei ist. Wir erwahnen
ein Resultat von Sakai, das aussagt, dass unter der Annahme einer strongly
compact cardinal das Reflexionsprinzip fiir semistationdre Mengen wider-
spruchsfrei ist.

Im letzten Kapitel prasentieren wir die bekannten Implikationen zwischen
dem Schwachen Reflexionsprinzip, dem Starken Reflexionsprinzip und dem

Semistationdren Reflexionsprinzip.
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Chapter 1
Introduction

This introduction is meant to give the basic definitions and tools necessary
for this thesis. The reason for studying stationary reflection principles is
that they have interesting combinatorial consequences. The Weak Reflection
Principle for ws, for example, implies 2¥ < wq, ~[],,, and that every station-
ary subset of wy with cofinality w reflects to an ordinal in wy with cofinality
wy. Foreman-Magidor-Shelah were the ones who introduced this principle in
the context of Martin’s Maximum which shares similar consequences. The
notion of semistationarity was introduced by Shelah [15] in connection to

semiproperness of posets.

1.1 Stationary and semistationary sets

Clubs and stationary sets in P, (k) are natural extensions of these notions in
a cardinal k. We let P, (k) = {a C k| |a|] < w;} and for a regular cardinal x,
let cof (k) denote the class of all ordinals with cofinality x. Instead of giving

those definitions for a cardinal x, we give them for an arbitrary set X.

Definition 1.1.1. Let X be an arbitrary set. A subset C of P, (X) is closed
and unbounded (or club) in P, (X) if the following two properties hold.
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(1) Vz € P, (X) Jye C x Cy, and

(2) for every increasing sequence (x, : n < w) of elements of C,
U{xn:n<w}€C’.

A subset S of Py, (X) is called stationary if S intersects every club in
P (X).
For a set Y C X, we say that S reflects to Y if S NP, (Y) is stationary in
Pun (Y).

If it is clear from the context, we will omit in which space a set is club.
Sometimes we will use the equivalent definition of club and stationary in

terms of functions.

Definition 1.1.2. For a function F : P,(X) — X and z C X, we say that
x is closed under F' if for every y € Py, (z), F(y) C x.

Fact 1.1.3 ([9]). If C C P,(X) is club, then there exists a function F :
Po(X) = X such that every set in P, (X) which is closed under F' is in C.
Then S C P, (X) is stationary if for any function F : P,(X) — X there is
a set b € S which is closed under F'.

One of the most important lemmata in connection to stationary sets is
Fodor’s Lemma, which states that for certain functions there are station-

ary sets on which they are constant.

Definition 1.1.4. A partial function F : P, (X) — X is regressive if for

all a in the domain of F', F(a) is a member of a.

Lemma 1.1.5 (Fodor ([5], 8.7)). If S C P, (X) is a stationary set and
F .85 — X a total regressive function, then there is a stationary set T C S
and a set x in X such that F(a) =x for alla in T.
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In order to show w;-distributivity of a forcing poset, we will make frequent

use of the following generalized version of the A-System Lemma.

Theorem 1.1.6 (A-System Lemma ([5], 9.19)). Assume GCH and k<" =
k. Suppose X is a collection of sets with cardinality less than k and | X| = k™.
Then there exists a collection Z C X of size k™ and a set A such that

W NY = A for any two distinct elements W, Y of Z.

Semistationarity was introduced by Shelah [15] in close relation to semiproper-

ness of posets, which we will define in 1.3.11.

Definition 1.1.7. For countable sets x and y, we call y an wi-extension of

rifr CyandxrNw, =yNw;. We write x C y.

Definition 1.1.8. Let X be a set such that wy € X. A set S C P, (X) is
semistationary if the set of wi-extensions {y € P, (X) | Jxr € S = C y} of

elements of S is stationary in P, (X).

Note that for a set X of size wy, the notion of stationary and semistationary
are the same on P, (X). It is clear that if S denotes a stationary subset of
P (X), then S* = {y € P, (X) | Jx € S x C y} DO S is also stationary on
P, (X). Therefore S is also semistationary. If S is a semistationary subset
of P, (X), then S* = {y € P,,(X) | Iz € S x C y} is stationary on P, (X)
by definition. Let h be a function from P, (X) to X defining a club. Then
there exists a set y € S* which is closed under h. By definition of S*, there
is a set x € S such that x C gy, i.e. © C y and x Nw; = y Nw;. Since
| X| = wy, there is a bijection between X and w;. But x and y coincide on w;
and therefore z is also closed under h. Hence, S is also stationary in P, (X).
As a consequence, we can say that S reflects to X, S is stationary in P,,, (X)

or S is semistationary in P, (X).

The next fact can be found in [11]. We use it to prove Lemma 1.1.10, a

property unique for semistationary sets.
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Fact 1.1.9. Let k be a reqular cardinal and X and X' be sets with k C X C
X'.

(1) If C C Po(X) is club then the set {z' € P (X') | 2'NX € C} is club in
P (X'). Thus, if S" C P.(X') is stationary then the set {x' N X | 2’ €
S’} is stationary in Py(X).

(2) If C" C Pu(X') is club then the set {x' N X | 2’ € C'} contains a
club in Py(X). Thus, if S C Pu(X) is stationary then the set {x' €
P.(X') | 2’ NX €S} is stationary in P.(X').

Lemma 1.1.10. Let X and X' be sets with w; € X C X'.

(1) If S" C P, (X') is semistationary then the set {x' N X | 2’ € S'} is

semistationary in P, (X).
(2) If S C P, (X) is semistationary then S is semistationary in P, (X’).

Proof. (1) Since S’ is semistationary in P, (X’), the set
T'={yeP,(X")|Izes xCy}

is stationary in P, (X’). By Fact 1.1.9 (1), the set {yN X |y € T} is
stationary in P, (X). Since

{yNnX |yeT} C{yeP,(X)|I'NnX (' €S AN 2’NXCy)},

the right side is also stationary in P, (X). But this is the set of w;-extensions
of elements of {2/ N X | 2’ € S’}. Therefore, {2’ N X | 2’ € §'} is semista-
tionary.

(2) Let S C P, (X) be semistationary and

T={yeP,(X)|JzeSzCy}
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Note that T is a subset of
T'={ye P, (X') |z eSzCuy}
Since T is stationary in P, (X), so is T”. Since
T'={yeP,(X)|ynX eT}

T" is stationary in P, (X’) by 1.1.9 (2). Hence S is semistationary in
P, (X). O

1.2 The principles

In this section we give an overview of the reflection principles we work with.
Two versions of each principle can be found throughout the literature. We
state both and prove to some extent that they are equivalent. These defini-

tions can be easily generalized by replacing w, with a larger cardinal.

Definition 1.2.1. For a stationary set S* C Py, (w2) and k € {0,1}, let the
Partial Stationary Reflection Principle for wy or SRy (S™) denote the following

principle:

SRk(S’*) = For every stationary set S C S* there is a set X C wy of size wy
with w; € X and cof(ot(X)) = wg such that S reflects to X.

The Weak Reflection Principle for wy or WRP(ws) is the statement:

WRP(wy) = For every stationary set S C Py, (w2) there is a set X C wy of
size wy with wy € X such that S reflects to X.

The Reflection Principle for wy or RP(ws) is the statement:

RP(w2) = For every stationary set S C Py, (wa) there is a set X C wy of
size wy with wy € X and cof(ot(X)) = wy such that S reflects to X.
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The Semistationary Reflection Principle for wy or SSR(ws) is the statement:

SSR(w2) = For every semistationary set S C Py, (wa) there is a set X C wy
of size wy with wy C X such that S NP, (X) is semistationary in P, (X).

In fact, we can require X to be an ordinal and the statement is unchanged.
Since this seems to make things easier, we will use the following versions of

the reflection principles.

Definition 1.2.2. For a stationary set S* C P, (we) and k € {0,1}, let
SRy(S™) denote the following principle:

SRy (S") = For every stationary set S C S* there is an uncountable ordinal

a € wy with cof(a) = wy, such that S reflects to a.
The Weak Reflection Principle for wy or WRP(ws) is the statement:

WRP(wy) = For every stationary set S C P, (w2) there is an uncountable

ordinal o € wy such that S reflects to a.
The Reflection Principle for wy or RP(ws) is the statement:

RP(ws) = For every stationary set S C Py, (we) there is an ordinal o € wy

with cofinality wy such that S reflects to a.
The Semistationary Reflection Principle for we or SSR(w2) is the statement:

SSR(wq) = For every semistationary set S C Py, (w2) there is an
uncountable ordinal o € wy such that S NP, («) is semistationary in

P, ().

It suffices to show that the set version implies the ordinal version. First
we show this for the Weak Reflection Principle, then for the Semistationary
Reflection Principle.

Take a surjection o, : w; — «a for each a < wy and let the function f :

wg X w; — wy be defined by f(a, &) = 04(&) for each (o, &) € wy X wy.
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Consider an arbitrary stationary set S C P, (ws). Without loss of generality,
we may assume that every element of S'is closed under f. Let X be a witness
for the set version of WRP(wy) for S, i.e., X is a subset of Py, (w2) such that
| X| =w € X and SN P, (X) is stationary in P, (X). Since X is closed
under f for stationary many elements, X is closed under f. Therefore, o C X
for all @ € X. Hence, X is an uncountable ordinal in ws.

As above it suffices to show that the set version of SSR(ws) implies the ordinal
version. Let sup(z) = sup{a+ 1 | a € x}. Take an arbitrary semistationary
set S C P, (ws2). Let X C wy be a witness for the set version of SSR(ws) for
S and X’ := sup(X). Then X’ is an uncountable ordinal in wy. By Lemma
1.1.10 (2) we get that S NP, (X’) is semistationary in P, (X’). Therefore
S NPy, (X') is semistationary. Hence X’ witnesses the ordinal version of

SSR(MQ)

1.3 Forcing

In this part of the introduction we will give an overview of most of the
definitions and facts about forcing which are needed in later chapters. More
on forcing can be found in the books of Jech [5] and Kunen [10].

A forcing poset or forcing notion is a partial order (IP, <), which is reflexive
and transitive. As usual, V' denotes the set theoretic universe. Furthermore,
we say that a cardinal 0 is sufficiently large, if 6 > 2l A model M is an
elementary submodel of the structure (H(0), €, <,...) where H(f) denotes
the collection of sets hereditarily of cardinality less than 8, < is an unspecific
well-order of H(0), and H(0) contains all relevant objects. In particular, the
model M contains (P, <). From now on we will abuse notation and let P

denote the forcing notion.

Definition 1.3.1. We say that a forcing notion P satisfies the k-chain con-
dition or k-c.c. if every antichain in P has size less than k. The wy-c.c. is

the countable chain condition or c.c.c.
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Fact 1.3.2 ([5], 15.13). Let x be a regular cardinal. If P satisfies the k-c.c.,

then k remains a reqular cardinal in any generic extension by P.
Therefore if P satisfies the x-c.c., all regular cardinals > x are preserved.

Definition 1.3.3. A forcing notion IP is k-Knaster for a reqular uncountable
cardinal Kk, if for any sequence (p; : i < k) of conditions of P there exists a
set Z C K of size k such that for all 1 < j in Z, the conditions p; and p; are

compatible.
It is easy to see that if a forcing notion is k-Knaster, then it has the x-c.c.

Definition 1.3.4. A forcing notion P is k-distributive if the intersection of

less than k-many open dense sets is dense.

Note that k-distributivity implies that for a generic filter G on P over V, if
x C V in V|G| with V|G| IF |z| < k, then x € V. In particular, no new

bounded subsets of k are added.

Definition 1.3.5. For two forcing notions P and Q we define the product
P x Q as the set of all pairs (p,q) such that p € P and q € Q with the

following partial order:
(p,q) < (P, q) if and only if p < p" and ¢ < .
If G is a generic filter on P x Q let
Gi={pelP|3(peel) G={¢cQ|P(pg)cq}

Then G and Gy are generic on P and Q respectively and G = Gy X G.

Fact 1.3.6 (Product Lemma ([5], 15.9)). Suppose that P and Q are two

forcing notions in V. Then the following are equivalent:

(1) G C P xQ is generic over V.
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(2) G = G1 x Gy, G1 C P is generic over V and G5 C Q is generic over
V[G4]. Furthermore, V[G] = V[G1][G2].

Consequently, if G is generic over V' and G is generic over V[G,], then Gy
is generic over V[Gs]. Also V[G41][G2] = V[G,][G4].

Now we describe a generalization of product forcing, namely iterated forcing.

Definition 1.3.7 (Iteration of length «). Let o > 1. A forcing notion
P, is an iteration of length « if it is a set of a-sequences which satisfies the

following properties:
(1) If a =0, then there exists a forcing notion Q, such that

(a) Py is the set of all 1-sequences (p(0)) with p(0) € Q,,
(b) (p(0)) <1 (q(0)) if and only if p(0) < q(0).
(2) Ifa=03+1, thenPs =P, [ B={p [ B | pe€P.} is an iteration of
length B and there exists a forcing notion @B e VP such that
(a) p € P, if and only if p | € Pg and IF-5 p(B) € Qﬁ,
(b)) p<aqif and only if p | B <sq B and s p(B) < q(B).
(3) If v is a limit ordinal, then for each § < o, Pg =P, | B is an iteration
of length B and
(a) the a-sequence (1,1,...,1,...) is in P,,
(b) for p e P, and 5 < a, if ¢ € Pg satisfies q SP[} p | B, then there
exists r € P, such than for each £ < a, (&) = q(&) if £ < B and
r(§) =p&) fB<E<a,
(¢) p<aqif and only if VB <apl B <sqlp.

A forcing iteration depends not only on the forcing notion QB but also on

the limit stages of the iteration. We distinguish between two sorts of limits.
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Definition 1.3.8. Suppose P, is an iteration of length o where o is a limit

ordinal. Then P, is a direct limit if for every a-sequence p,
peP, ifandonlyif IB<ap|pePsandVl>F p€) =1.
We call P, an inverse limit if for every a-sequence p,
peP, ifandonlyif VB<ap]|pePs.

Countable support iterations will be an important tool in this thesis.

Definition 1.3.9. The set supp(p) = {8 < a | s p(B8) = 1} is the support
of p € P,. Let a be an ordinal and I be the ideal on « consisting of all
at most countable sets. A forcing iteration P, has countable support if for

every limit ordinal v < «,
peP, ifandonlyif VB <~vyp|pBe€Psand supp(p) € I.

Theorem 1.3.10 ([5], 16.30). Suppose k is a regular cardinal and « is a
limat ordinal. Further, let P, be a forcing iteration such that for every 5 < a,
Ps =P, | B satisfies the k-chain condition. If P, is a direct limit and either
cof(a) # k or Pg is a direct limit for a stationary set of ordinals B < «, then

P, satisfies the k-chain condition.

The idea of semiproperness and therefore semistationary sets was introduced
by Shelah in [15]. We give the basic definitions.

Definition 1.3.11. Suppose P is a forcing notion and 6 a sufficiently large
cardinal. For a countable elementary submodel N < (H (), €), a condition
q is (N,P)-semigeneric, if for every name & € N with IF "& is a countable

ordinal”,
q-3d8€ N a=p.

We call a forcing notion P semiproper, if for every reqular 6 > 2|]P‘, any
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countable elementary submodel N < (H(0),€) containing P, the following
holds.
VpePNN 3q<pqis(N,P)— semigeneric

Shelah showed that a forcing notion P is semiproper if and only if P preserves
semistationarity. Interesting consequences of this statement can be found in
[15] and [3].

Even though we will not use semigeneric conditions, we make frequent use

of generic conditions and generic sequences.

Definition 1.3.12. Suppose P is a forcing notion and M a countable ele-
mentary submodel of (H(0),€,<,...) for a sufficiently large 6. A condition
p is (M,P)-generic (or M-generic), if for every antichain A in M, the set
AN M is predense below p.

Definition 1.3.13. Let P be a forcing notion and M a countable set. A
descending sequence (p, : n < w) of conditions in P is called an (M,P)-
generic sequence, if p, € M for every n < w and for every dense open subset
D C M of P there exists n < w with p, € D.

Since we are often concerned with lower bounds of (M, IP)-generic sequences,

note that such lower bounds are (M, P)-generic conditions.

1.4 Large cardinals

We will now introduce those large cardinals, whose existence is needed for
our consistency results. We start by defining the property all large cardinals
satisfy, namely weak inaccessibility. The existence of weakly inaccessible
cardinals is not provable in ZFC. For more information about large cardinals

the reader is referred to [5] or [4].

Definition 1.4.1. We call a cardinal k > w weakly inaccessible if it is

reqular and limit.



CHAPTER 1. INTRODUCTION 19

We call a cardinal k > w strongly inaccessible if it is reqular and for all

<K, 2! <K.

We derive the consistency of our reflection principles from weakly, strongly,
and supercompact cardinals. We give the definitions in terms of elementary
embeddings. If j is an elementary embedding and & is the critical point, then

Jj is the identity map on all ordinals 7 < k and j(k) > k.
Definition 1.4.2. Assume that Kk > w. Then

(1) k is called weakly compact, if k is inaccessible and for every transitive
model M of ZF without the powerset axiom of size Kk satisfying k €
M and M s closed under sequences of length < k, there exists an
elementary embedding j : M — N, where N 1s transitive and K 1is the

critical point of 7.

(2) k is called p-strongly compact, if there exists an elementary embedding
j 'V — M with critical point K, j(k) > p, and for any X C M of size
<, there exists a Y € M such that Y 2 X and (Y| < j(k))M.

We say that K is strongly compact, if it is p-strongly compact for every

ordinal .

(3) K is called p-supercompact, if there is an elementary embedding j :
V. — M with critical point k, j(k) > p and *M C M, i.e., every
sequence of length v of elements of M is in M.

We say that k is supercompact, if it is p-supercompact for every ordinal

L.

We will make use of these elementary embeddings in the following way:
First, we use the Lévy Collapse to collapse the large cardinal to wy. If
P = Coll(wy, < k), we can factorize j(IP) = Coll(wy, < k) * Coll(wy, [k, j(K))
using standard arguments. In the extension, x will no longer be a cardinal,

but an uncountable ordinal in j(x) = wy. Therefore, if a set S is stationary in
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P, (k) as it will be by assumption, then x witnesses that there is an uncount-
able ordinal « in j(k) = wy such that j(S) reflects to a. By elementarity of

j, there is a witness for the reflection principle in the original model.



Chapter 2
Partial Stationary Reflection

Instead of looking at stationary subsets of the space P, (ws), we are inter-
ested in the reflection points of a stationary set S* C P, (w2). We denote
this principle with SRy (S”), where k € {0, 1} asserts that the cofinality of the
reflecting set is wy. The first question is if the principles SRy (S”) are consis-
tent from ZFC for k € {0,1}. We give a positive answer which is due to Sakai
[12]. Furthermore we want to know if a set S* exists such that SRy (S™) holds.
We will show that if 241 = wy, then SRo(S”) does not hold for any stationary
subset S* C P, (wy) and under CH and 2“1 = w,, SRy(S") does not hold
for S* C P, (w,) for n > 2. This was proven in Kénig-Larsen-Yoshinobu [7].
Recall that for a stationary subset S* C P, (w2) and k € {0,1},we let
SRy (S™) denote the following principle:

For every stationary subset S C S* there exists an uncountable ordinal o in

wy with cofinality wy such that S reflects to «.

2.1 SRy(S") is consistent with ZFC

Sakai proved in [12] that for the consistency of partial stationary reflection
no large cardinal is needed. The goal of this section is to prove the following

theorem.

21
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Theorem 2.1.1. If ZFC is consistent, then so is ZFC with the existence of
a stationary set S* C P, (wy) such that SRy (S”) holds for k € {0,1}.

The idea of proving Theorem 2.1.1 is to construct stationary sets S,? for
k € {0,1} from a O,,-sequence which are maximal with respect to reflection.
We define a countable support iteration of club shootings which destroys
the stationarity of all non-reflecting subsets of Sg . In order to preserve w;-
distributivity and ws-c.c. at each stage of our iteration, we use T-complete
and better forcing notions. This gives us absoluteness of stationarity in any

generic extension.

Definition 2.1.2. Let P be a forcing notion, a an ordinal > wy, and T a
subset of P, (). We call P a T-complete forcing notion if it satisfies the
following property:

For a sufficiently large cardinal 0 and a countable elementary submodel M of
(H(0),e,P, T) with M N € T, every (M, P)-generic sequence has a lower

bound in P.

We give one of the equivalent definitions of T-completeness via the following

lemma.

Lemma 2.1.3. Let P be a forcing notion, a an ordinal > wy, and T be a
subset of P, (). Then P is T-complete if and only if the following holds:
There ezists a reqular cardinal 0 with P, T € H(6) and an expansion M of
the structure (H(0), €) such that for every countable elementary submodel M
of M with M Na €T, every (M,P)-generic sequence has a lower bound in
P.

For the next result, we use a definition of stationary which can be found in
[5]. A set S C P, (H()) is stationary, if for every model (H(0), €, ...) there
exists an M in S such that M < (H(0), €, ...).

Lemma 2.1.4. Let « be an ordinal > wy and T a stationary subset of P, ().

Then every T-complete forcing notion is wy-distributive.
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Proof. Let P be a T-complete forcing notion and {D,, | n < w} a family of
dense open subsets of P. For an arbitrary p € P, we must find a condition
p' < p which is in () D,.

Let 6 be a suﬂicier?tel; large regular cardinal. By the stationarity of T, there
exists a countable elementary submodel M of (H(0), €, P, T) such that {p}U
{D, | n<w}CMand MNa € T. Take an (M, P)-generic sequence
(pn 1 m < w) with pg = p. Since P is T-complete, there exists a lower bound

p of (p, :n <w). Clearly, p <pand p' € () D,. ]

new

T-completeness is preserved by countable support iterations.

Lemma 2.1.5. Let « be an ordinal and T be a subset of P, («). If I =
<]P£,Qn : &,m < () is a countable support iteration of T-complete forcing

notions for some ordinal ¢, then P¢ is T'-complete.

Proof. Let 6 be a sufficiently large regular cardinal, M be a countable ele-
mentary submodel of (H(0),&€,1,T), and (p, : n < w) an (M,P,)-generic
sequence. By Lemma 2.1.3 it suffices to show that (p, : n < w) has a lower
bound in P.

Claim. For n € ( N M the sequence (p, [ 7 : n < w) is (M, P,)-generic.
Furthermore, if p’ is a lower bound for (p, | 7 : n < w), then p’ forces that
(Pn(n) :n < w) is an (M[Gn],(@n)—generic sequence, where G, is the canoni-
cal name for a IP,-generic filter.

Proof of Claim. 1Tt is easy to see that (p, | 7 : n < w) is a descending
sequence in P, N M. Take an arbitrary dense open set D C M such that
D € P,. We have to show that there is an n < w with p,, [ n € D. Let
D*:={peP;|plne D} Notethat D*is a dense open set in P, which
belongs to M. By the (M, P,)-genericity of the sequence (p, : n < w), there
is an n < w with p, € D*. Then p, [ n € D for this n.

For the second part of the claim, it suffices to show the genericity of the
sequence (p,(1) : n < w). Let D € M be a P,-name of a dense open subset
of Qn- We must find n < w with p' I, "p,(n) € D,
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Let
D™ :={peP|plnl, pn) D"}

Clearly D** is a dense open set in [P, and belongs to M. Therefore, there
exists n < w with p, € D**. Then p' I, "p,(n) € D” and p/ < p, | 1. This
proves the claim.

Now we can construct a lower bound p’ of the sequence (p, : n < w). We
define p’ such that it is a function whose domain is ¢ and p’(n) is a IP,-name

for a condition of @n for each n < ¢. We choose p'(n) by induction on n < (:

(1) p' I nlk, 7p'(n) is a lower bound of (p,(n) : n < w)”.

(2) p(n) = 1,7 for every n < ¢\ M.

We make sure that supp(p’) is countable via (2), since M is countable. First
note that if n < ¢ and p'(n) satisfies the induction hypotheses for each ' < 7,
then p’ [ n = (p'(n') : n < n) is a lower bound of (p, [ n:n < w). Secondly,
p' [ nis an (M, P,)-generic condition by the claim.

Now we construct p'(n). Suppose that for n < (, p’ | n has already been
constructed. If n ¢ M, let p'(n) = 1,. Since supp(p,) is a countable set
belonging to M for each n < w and M < (H(0), €), we have that supp(p,) C
M. Therefore p,(n) = 1, for each 7 < w and hence p'(n) satisfies the first
induction hypothesis.

For n € M, let Gn be the canonical name for a IP,- generic filter. By the

claim, we have
P Ik, " {pn(n) :n <w)is an (M[Gn], Qn)—generic sequence” .
Furthermore,
Pl "MIG,) < (HO)VIS) e, Q,,T) and M[G]NA=MNAeT

by the (M,P,)-genericity of p' | 7. It is easy to see that the induction
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hypotheses are satisfied. Since we can now construct a lower bound p’ of the

sequence (p, : n < w), the proof is complete. O

Definition 2.1.6. Let PP be a forcing notion. We say that P is good, if:
(1) A condition p € P is a function such that |p| = w and ran(p) C w;.
(2) Forp,q € P, p<qifand only if p 2 q

(3) For all p,q € P if p | (dom(p) Ndom(q)) = ¢ [ (dom(p) Ndom(q)) then

p and q are compatible.

We say that P is better if P also satisfies the following property:

(4) If (pn : n < w) is a descending sequence in P with a lower bound, then

U p. €P.

new
The following lemma can be shown by using the A-System Lemma. We skip

its proof.
Lemma 2.1.7. Every good forcing notion has the (2)"-c.c.

If we assume CH, then for a stationary set T', countable support iterations

of T-complete better forcing notions satisfy the ws-c.c.

Lemma 2.1.8. Let « be an ordinal and T be a subset of Py, (a). If for
some ordinal (, I = <P§>Qn 2 &,m < () is a countable support iteration of
T-complete better forcing notions, then P¢ has the (2*)*-c.c.

Proof. We show that the forcing notion PP restricted to a certain dense set
D is good. Then P; has the (2¥)*-c.c. by Lemma 2.1.7. Let

D:={pecP.|Vn<(IqeV pn) =q}

We show that D is dense in P, i.e., for an arbitrary p € P; we find a p’ € D

which is below p. Let 6 be a sufficiently large regular cardinal and M a
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countable elementary submodel of (H(#),€,1,T) with p € M. Such an M
exists because T is stationary. Take an (M, P,)-generic sequence (p,, : n < w)
such that py < p. The required p’ will be a lower bound of (p, : n < w)
constructed the same way as in the proof of Lemma 2.1.5.

By induction on 1 < ¢, we pick a [P,-name p'(n) for a condition in Qn' The
induction hypotheses remain the same as in the proof of 2.1.5. So assume
that n < ¢ and that P’ | n has already been constructed. The definition of
p'(n) splits into two cases. The first case is that 7 ¢ M. Then let P'(n) = 1,,.
Since we can assume that 1, = 0 for all n < ¢, P(n) = (). For the second case
n € M we claim the following.

Claim. For all n < w there exists ¢, € V with p' [ n Ik, "p,(n) = ¢.”.
Proof of Claim. Fix n < w. Now look at the set

A={pelP,|JqecVplk,"p.(n)=q¢"}

Since P, is wi-distributive by Lemma 2.1.4 and 2.1.5, the set A is a dense
open subset of P, and A € M. Using the claim in the proof of Lemma 2.1.5,
the sequence (p,, [ n : m < w) is (M,P,)-generic. Therefore there exists
m < w with p,, € A. But then p’ [ n € A because p’ is a lower bound of
(pm : m < w). Hence there exists ¢, € V such that p’ [ n Ik, "p,(n) = ¢.”,
which proves the claim.

Now we can construct p/(n). For each n < w let ¢, be as in the claim above

and ¢ := |J ¢,- Repeating the argument from the proof of Lemma 2.1.5,
n<w
one can show that p’ [ n forces that the sequence (p, () : n < w) has a lower

bound in Qn' Since Q, is better, p' [ n forces that ¢ is a lower bound of
(pn(n) : n < w). Now let p'(n) = ¢. By construction, p’ < p and p € D.
Hence D is dense in P,,.

We define the forcing notion }P’CD which is P¢ restricted to D (or at least
isomorphic to this forcing notion). First, we observe that by ws-distributivity
of P, p(n) is a countable function from the ordinals to w; for each p € D. A

condition p* € IP’? for p € D is a partial function from ¢ x ON to w; whose
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domain is equal to {(n,«) | @ € dom(p(n))}. Define p*(n, a) = p(n)(«) for
all (n,a) € dom(p*).

Then IP’? = {p* | p € D} and for p*, ¢* € IP’?, we let p* < ¢*, if p* extends
g* as a function. By construction, ]P’? is good. Then IP’? has the (2¥)"-c.c.
by Lemma 2.1.7. Since D is dense in P¢, the forcing notion P; also has the

(2¢)T-c.c. and the proof of this lemma is complete. O

For the proof of Theorem 2.1.1 we need certain subsets Soé and S? of Py, (w2),
where ' = (Cy : a € Lim(ws)) denotes a [, -sequence. We show that those
sets are maximal with respect to reflection. As usual, when x is a set, then
Lim(x) denotes the set of limit points of 2. We will prove that every subset
of Py, (w2) \ Soé does not reflect to any uncountable ordinal in £2? and every

subset of Py, (w2) \ Slé does not reflect to any ordinal in EZ?.

Definition 2.1.9. For an uncountable cardinal k and a set E C Lim(k™),
let OF denote the following principle:
OF = There exists a sequence (C, : o € E) such that for every a,o’ € E

(1) Cy is a club subset of a,
(2) if cof(a) < k then ot(C,) < K, and
(3) if o/ € Lim(C,) then Cyy = C, N Y.

We call a sequence (C, : a € E) satisfying the properties (1)-(3) a OF-
sequence. In the case where E = Lim(k™) we omit the superscript and write
..

Definition 2.1.10. For a O, -sequence C = (C,, : o € Lim(ws)) let
S(? := the set of all x € Py, (w2) such that

(1) x Nwy € wy and sup(x) ¢ z,
(2) ot(Coup(z)) < T Nwi,

(3) C’sup(:p) C x.



CHAPTER 2. PARTIAL STATIONARY REFLECTION 28

SC = the set of all x € P, (ws) such that
(1) zNw; € wy and sup(x) ¢ x,
(2) ot(Csup(a)) =  Nwy,
(3) Csupa) € .

Lemma 2.1.11. Let C' = (C,, : o € Lim(ws)) be a O, -sequence. Then the
following holds:

(1) Soé NPy, (a) contains a club in P, (c) for every a € E? \ wy.
(2) S NP, (o) contains a club in Py, (a) for every a € B2
In particular, both 5’05 and Slé are stationary in P, (w2).

Proof. (1) Fix a € E%* \ wy. Since cof(a) = w, the order type of C, is
countable by property (2) of the definition of a O, -sequence C. Let C' be
the set of all z € P, («) such that C,, C z and ot(C,) < x Nw; € wy. Then
C'is club in P, (a). Since sup(x) < a, we have C' C 506.

(2) Fix a € E%? and an enumeration (d; : ¢ < wi) of the sets in C,. We
define C' as the set of all x € P, () such that x Nw; is a countable limit
ordinal, sup(z) = dyn,, ¢ x and {d; | i € xNw;} C 2. Then C is club in
P, (a). Now we need to show that C' C SC. For every = € C property (1) of
the definition of Slé is satisfied by definition of C. For (2) and (3) note that
Cosup(z) = Clpr, = 1di | i € xNwi} by the coherency of C. Then Coup(z) C @
by definition of C' and ot(Cysup(z)) =  Nw;. Hence C' C Slé. O

Next we define the club shooting Q(.S), which is a forcing notion designed to
destroy the stationarity of a given set S by adding a generic function under
which S is not closed. In our iteration we use Q(S) for each non-reflecting
subset S of S*. By the previous section we need to show that Q(S) is 7-

complete and better.
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Definition 2.1.12. Let S be a subset of P, (w2). Define Q(S) as the forcing

poset consisting of conditions p satisfying:

(1) p is a function of the form p : a? X a? — wy, where a? is a countable

subset of wy,
(2) for every x in S, if x C aP, then x is not closed under p.

Let q < p, if q extends p as a function, that is, if a® C a? and q | (a? xaP) = p.

For a countable set a C wq, we write a® for a X a.
We summarize the properties of Q(S5).
Lemma 2.1.13. Let S be a subset of P, (w2).
(1) For every x € P, (w2), the set {p € Q(S) | x C aP} is dense in Q(S).

(2) Let G be a generic filter on Q(S) over V. Then |G is a total function,
UG :wy xwy — wy. Furthermore, there are no setsy € S which are
closed under | JG.

(3) Q(S) is better.

Proof. (1) For a set y € P, (ws) and a condition p € Q(S) we must find
p < p with y C a”. We define p’ as a function from a” x a?" to wy, where
a? = a? Uy. Take € € wy \ @ and let

p(b) ifbea? xa?
p'(b) =

& otherwise

Now we have to show that if z € S and z C ap', then z is not closed under
p. Let x be such a set. In the first case x C a?. Since p € Q(S5), the
set x is not closed under p by the definition of Q(S). Thus x is not closed
under p’ which extends p. In the second case x € aP. Then there exists a
be (zxx)\(aP x aP) such that p'(b) = £ ¢ a”. The fact that z C a” implies
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P/ (b) ¢ x. Hence x is not closed under p'.

(2) Clear from (1).

(3) It is easy to see that Q(S) satisfies conditions (1) and (2) from the
definition of better. It remains to check (3) and (4). To prove property (3),
take conditions p, ¢ € Q(S) and assume that

p [ (dom(p) Ndom(q)) = ¢q [ (dom(p) N dom(q)).

In order to show compatibility we must find a common extension r of p and
q. Let a” = (a? U a?) and r be the function from a" x a” to wy defined as
follows: Fix £ € w; \ (a”) and let

p(b) if b€ aP x a?
r(b) = { q(b) if b€ a? x al
19 otherwise.

Then r is well-defined because p and ¢ coincide on dom(p) Ndom(q). Finally,
we must show that if x € S and x C a”, then z is not closed under r. Assume
that x € Sand z C a". If x C a? or x C a?, then we can repeat the argument
from the proof of (1).

For the final case assume = € a? and x Z a?. Take o € z\ a? and § € x \ a4
and let b := (o, 8). Then b € x xx but b ¢ a? xa? and b ¢ a? x a4. Therefore,
r(b) = £ ¢ x and z is not closed under r.

To prove property (4) of the definition of better, we take a descending se-
quence (p, : n < w) in Q(S) with a lower bound p’. Then |J p, is a

n<w

restriction of p’ to (|J a?™) x (|J a*). Hence |J p, is clearly in Q(S). O

n<w n<w n<w
Iterated club shootings are T-complete for certain stationary subsets T of
P, (w2). The following statement will be a sufficient condition for Q(S) to
be T-complete.

Definition 2.1.14. For sets S,T C P, (wa), let ®(S,T) denote the following
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principle:

There exists a reqular cardinal 8 > 2“2 and an expansion M of the structure
(H(0),€) such that for every countable elementary substructure M of M
with M Nwy € T, we have SNP(M) C M.

Lemma 2.1.15. Let S,T C P, (ws) and assume that ®(S,T") holds. Then
Q(S) is T-complete.

Proof. Let 6 and M be witnesses for ®(S,T"), M a countable elementary
submodel of M with M Nwy € T, and (p, : n < w) an (M, Q(S5))-generic
sequence. By Lemma 2.1.3 and the definition of being better, it suffices to
show that p’ = |J p, is a condition in Q(S). Let a® = |J a?». Then

n<w n<w

a’ € P, (ws) and p is a function from a” x a” to w;. We need to show
that if z € S and = C o, then z is not closed under p’. Assume that = € S
and z C a”. Since each aP* is a countable set belonging to M < (H(6), €),
we have a?» C M. Therefore, a? C M and hence  C M. Then O(S,T)
implies that x € M and the set D := {p € Q(S) | + C a?} belongs to M.
Also D is dense open in Q(S) by Lemma 2.1.13 (1). By (M, Q(S))-genericity
there exists n < w with p, € D. Since x C aP* by the definition of D and
pn € Q(S), x is not closed under p,. Hence x is not closed under p’ which

extends p,,. O

The next question is for which stationary set 7' C P, (wy) the iteration of
the club shootings will be T-complete. We will present such a set and prove
its stationarity by using the following lemma due to Shelah. As usual, let
E2? ={a € wy | cof(a) = w}.

Lemma 2.1.16. If (S; : i < wq) is a sequence of stationary subsets of E*2,
then the set

T={x€P,(w) | xNwi €Ew; A sup(z) &z A sup(z) € Sirw, }

is stationary in P, (w2).
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Definition 2.1.17. Let C = (C, : « € Lim(ws)) be a O, -sequence. We
define
TC to be the set of all x € Py, (ws) such that

(1) x Nwy € wy and sup(x) ¢ z,

(2) Ot(Csup(x)) > xMNws.
Lemma 2.1.18. Let C be a U, -sequence. Then TC is stationary.

Proof. Let C = (C, : a € Lim(ws)) be a O, -sequence. For every i € w; let
S;i={a € E¥ | ot(C,) > i}. Since S; N B contains a club subset in / for
every 8 € E2?, the set S; is a stationary subset of E2.

Note that the set TC := {z € P, (ws) | xNwy Asup(x) ¢ x Asup(z) € Sprw,
is also stationary by Lemma 2.1.16. O]

Next we need to refine the sets S,? and T in the following way.

Definition 2.1.19. Fix a surjection o, : wy — « for each o € wy. We call
a sequence & = (0, : @ € wy) a surjection system. For such a surjection

system &, a O, -sequence 6, and k € {0, 1} we define

—

SE7 = {xGSE|Va€x rNa=0,"(xNw)}

Lemma 2.1.20. Let C = (C,, : o € Lim(ws)) be a O, -sequence, 0 a suf-
ficiently large reqular cardinal, and M a countable elementary submodel of
(H(0),e,C). Furthermore let o be an ordinal in B> with o/ < sup(M Nw,),
o ¢ M, and sup(M Na') =a'. Then ot(Cy) = M Nwy.

Proof. Define ' = min(M \ «). Then ' € M Nwy and sup(M N f') =
o < . Furthermore, ' € EZ? by elementarity of M. We enumerate Cj
increasingly. Let (8; : ¢ < wp) denote this enumeration. Now we prove
sup(M N B') = Burw,. Since Cy is in M by elementarity of M, the set
{Bi|i€ MNuw} is asubset of M. Hence,

sup(M N A") >sup{B; | i € M Nwi} = Brirw -
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So suppose sup(M N B') > Buynw,- Then there exists § € M N such that
B > Bunw,- Let v denote the least ordinal less than w; with 8, > . Thus
v > M Nw; since B > Brynw,. However, v € M Nwy by the elementarity of
M, which is a contradiction. Hence, sup(M N 5’) < Burrw, -

Therefore sup(M N ') = Bynw,- By definition of «, we obtain o/ = By, -
Then the coherency of C' implies Coy = {3; | i €< Nw;}. Thus

Ot(Ca/) =MDnN Wwi.

]

Lemma 2.1.21. Let C = (C, : a € Lim(w,)) be a O,,-sequence and G =

(0ot v € wy \ wy) a surjection system.

(1) If S is a subset of S()é,a which does not reflect to any ordinal in E?\ wy,
then Q(S) is TC-complete.

(2) If S is a subset of Slé’& which does not reflect to any ordinal in EZ?,
then Q(S) is TC-complete.

Proof. (1) It suffices to show that ®(S5,T") holds by Lemma 2.1.15. So let € be
a sufficiently large regular cardinal and M a countable elementary submodel
of (H(0),€,5,C,5) with M Nwy € T. We show that S NP(M) C M,
ie., if we take x € S and x* € M we show that x € M. First note that
zNw < MNw € ws.

Claim 1. sup(x) € M.

Proof of Claim 1. Assume that x ¢ M. We show that M Nw; < ot(Csup(a))-
In the first possible case sup(x) = sup(M Nwy). Then MNw; < ot(Csup(z)) by
the second part of the definition of T since M Nwy € TC . In the second case
sup(x) < sup(M Nwz). Then M Nwy = ot(Csup(z)) by the previous lemma.
Also # Nwy > ot(Csup(e)) since x € Sg’g. Therefore M Nw; < ot (Caup(a)) <
x Nwy which is a contradiction to x C M. This proves Claim 1.

Claim 2. zNw; < M Nwy.
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Proof of Claim 2: Assume that z Nw; = M Nw;. At this point we make use
of the surjection system &. For each « € M Nwy, M N = 0,” (M Nwy) by
elementarity of M. Thus

M Nsup(z) = U 0o (M Nwy) = U 0. (x Nwy) = .

acx acT

The last equality follows from z € Soé 7. Since S N P, (sup(z)) is non-
stationary by assumption and sup(z) € M by Claim 1, there exists a function
[ Pu(sup(z)) — sup(z) in M such that every set in S NP, (sup(z)) is not
closed under f. But + = M Nsup(z) and therefore z is closed under f by
elementarity of M. Since z € S NP, (sup(x)) this is a contradiction and
proves Claim 2.

Now 2 = U{oa"(x Nw1) | @ € Cap(z)} because x € Soé’&. Therefore x is
definable in (H(6), €, C, &) with parameters z N w, and sup(z). But both of
these parameters belong to M by Claim 1 and 2 and M < (H(0),€,C, ).
Hence x € M.

(2) Again we show that ®(S,T') holds. So let 8, M and x be as in the proof
of (1). We show that z € S.

Claim 1’. sup(z) € M.

Proof of Claim 1. Assume that sup(x) ¢ M. We show that sup(z) <
sup(M Nws). If not, sup(z) = sup(M Nws) and M Nw; < ot(Caup(z)) by the
second part of the definition of T because M Nwy € T and z € Sf’a. This
contradicts z C M.

Then M Nw; = ot(Cyup(z)) by Lemma 2.1.20. Then M Nw; = 2 Nw; because
T € SF’E. Just like in the proof of Claim 2 one can show that M Nsup(z) = z.
Let o = min(M \ sup(x)). Then o € EZ? and SN P,, (o) is non-stationary
by assumption. Since a € M < (H(0), e, C, 7) there exists a function f :
P.(a) = ain M such that every set in SNP,, () is not closed under f. But
x = M Nsup(x) = M N« and therefore x is closed under f by elementarity

of M. This is a contradiction to x € S and we proved Claim 1’.
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Observe that & Nw; = ot(Csup(z)) € M Nwy by Claim 1’ and elementarity of
M. The rest of the proof is similar to the proof of (1). O

Now we are able to prove Theorem 2.1.1 by combining all of the lemmata

above and prove the following theorem.

Theorem 2.1.22. Suppose that GCH and O, hold and let C be a O,,-
sequence. Then there exists an wy-distributive and wo-c.c. forcing extension

in which SRy(SS) holds for k € {0,1}.

Proof. Take a surjection system & in V. By iterating the club shootings
from Definition 2.1.12, we obtain a countable support iteration destroying
the stationarity of all non-reflecting stationary subsets of Soé 7 and Slé 7,
Note that S,?’E and TC are absolute between all wi-distributive and ws-c.c.
forcing extensions of V.

By combining all the lemmata above, we can construct a countable support

iteration (P, Qn : &, m < ws) which satisfies the following properties:
(1) P¢ is wy-distributive and has the wy-c.c. for each £ < ws.

(2) If n < ws, H_Qn K Qn = Q(S)” for some P,-name S such that cither
”_Qn "S C S§ and S does not reflect to any uncountable ordinal in
E*2” | or
H—@n "8 C Slé and S does not reflect to any ordinal in E327.
Therefore ”_Qn 7 Qn is T-complete, better and ]Qn| < wy”.

(3) If € < wsz and S is a Pe-name such that either
Il—]13>5 "8 C Soé and S does not reflect to any uncountable ordinal in
E®27 | or
Il—]pE S C Slé and S does not reflect to any ordinal in Eg2”
then there exists an ordinal 7 € ws \ € such that ”_Qn "Q, = Q(5)".

Then the limit of this iteration P, is wy-distributive and wy-c.c. Now take a
generic filter G on P, over V. Then the following holds in V[G]:
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(1) f S C SOG’E and S does not reflect to any ordinal in £%? \ w; then S is

non-stationary.

(2) If § C Slé 7 and S does not reflect to any ordinal in EZ? then S is

non-stationary.

Therefore, SRk(SE’&) holds for k£ € {0,1} in V[G]. Since Ské \ 35’6 is non-
stationary, SRk(S,(;) holds for k € {0,1} in V[G]. O

2.2 SRy(S") fails under 2¥1 = w,

When trying to shed some new light on the question whether the Weak
Reflection Principle for w, implied the Reflection Principle for w,, Konig-
Larson-Yoshinobu were able to do so under certain assumptions. For n > 2,
they obtained the result by assuming CH and 2“»-' = w,. In the case of
n = 2, CH could be dropped and only 2** = wy was needed. In the course
of those proofs, Konig-Larson-Yoshinobu showed in [7] that under the above
mentioned assumptions SRy(S”) failed. In the last section we constructed a
model such that SRy(S”) holds for a subset S* of P, (w,). For this result we
assumed GCH and U,,. In the generic extension however, 2! became ws.
Therefore, the assumption 2% = ws does not contradict the following proofs.

We start with the more general setting of Py, (wy).

Lemma 2.2.1. Assume CH and 1 < n < w. Then for every S* C P, (wn),
there is a set S C S* which is cofinal in S* and does not reflect to any set of

stize wi.

Definition 2.2.2. Let A be a regular cardinal. For a set S* C P, (\) and
a set x € Py, (X) we denote S*(x) as the set of all supersets of x in S*. We

call the union of all supersets of x in S*, i.e.,

s @) =Utye " e <y}
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the S*-coverage of x.
For the proof of Lemma 2.2.1 we want to partition S* in the following way.

Lemma 2.2.3. Every set S* C P, (\) can be partitioned into two sets S
and S} such that

(1) S§ has no C-increasing chains of length wy, and
(2) each x € ST has uncountable ST -coverage.

Proof. For a set S* C P, (\) we iteratively remove all sets with countable

coverage. So let

S* ita=0
S = { {z € S} | » has uncountable Si-coverage} if = §+1
N Sh if v is limit
B<a
Since at some stage there are no more sets with countable coverage left,
there must be an ordinal oo with S5 = S% ;. Therefore let ST = S%  and
¢ = 5%\ S;. Then every set in S; has uncountable S}-coverage. To see
(1), take a C-increasing sequence § of length w;. Every member of § has
uncountable S*-coverage. Hence this sequence will not be removed by the
iteration above. Therefore s is in S} and S; does not contain any such

sequences of length wy. O]

The next two lemmata show how to thin out the set S* after partitioning.
We make use of the fact that a set containing no increasing sequences of

length w + 1 cannot be stationary.

Lemma 2.2.4. Let A be a regular cardinal and S* C P, (N). Suppose (x, :
a < &) is a possibly incomplete list of members of S*. For every a < §

assume that T, is a C-cofinal subset of S*(x,) which does not contain any
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continuous, C-increasing chains of length w+ 1. Define a sequence (T", : o <

&) inductively as follows. Let

T, ={yeTy|Vb<aVzeTy, (yZx N xZy)}

Let T" = \J T,. Then T" a cofinal subset of |J S*(x,) which contains no
a<é a<é
continuous, C-increasing sequence of length w + 1.

Proof. We prove this lemma by induction on £. First we check that 7" is
cofinal in |J S*(z,). Take x € S*(x,). We must find a y € T" with z C y.

a<é
Since Ty, is cofinal in S*(z,), we may assume that x € T,,. If x is also in T,

we are done. So suppose that ¥ ¢ T}, and z is not in any member of (J T}
B<a
(or else we would have already found a y € 7" with  C y). By the definition

of T! there must be a z € Tj for some § < o with z C x (again, if x C z we
would be done). Since |J T, € | S*(zo) and |J T} is cofinal in |J S*(x4)

<o a<é y<a a<é

by the induction hypothesis, |J 77 is also cofinal in |J T,. At this point
y<a y<a
note that T N.S*(2) is cofinal in S*(2). Therefore there must beay € (J T/,
y<o

with y C x.
Now we need to show that 7" does not contain any continuous, C-increasing
sequences of length w + 1. This follows from the fact that no 7T, contains

such a sequence and therefore neither does 77, by construction. ]

Lemma 2.2.5. Assume CH and 1 < n < w. Let S* C P, (wn) be such that
every member in S* has uncountable S*-coverage. Then there is a cofinal set

S C S* which contains no continuous, C-increasing sequence of length w+1.

Proof. The proof is by induction on n.
Claim. If every member of S*(x) has S*-coverage of cardinality ws,, then
there exists a cofinal subset S(z) of S* which does not contain any continuous,
C-increasing sequence of length w + 1.

Proof of Claim. By using CH we can enumerate S*(z) = {z, | @ < w,}.
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For every a < w,, choose y, € S*(z,) with yo, € |J ys. So each y, contains
B<a
a new ordinal. Then the set S(z) = {y, | @ < w,} does not contain any

continuous, C-increasing sequences of length w 4 1. This proves the claim.
Now we can thin out S*(z) as desired. Either every superset of z in S*
has S*-coverage of cardinality w, then this works by the claim, or z has 5*-
coverage of cardinality less than w,, then we use the induction hypothesis.
In either case the set x € S* is cofinal in S*. Therefore we can apply Lemma
2.2.4, which finishes the proof. 0

Proof of Lemma 2.2.1: The goal is to find a subset of S* which does not
reflect to any set of size w;. First partition S* into two sets as in Lemma
2.2.3. Then we can apply Lemma 2.2.5 to S} to find a cofinal set S C S}

which does not contain any continuous, C-increasing sequence of length w+1.
Thus S5 U S is as desired. O

Definition 2.2.6. Suppose \ is a cardinal and E is a stationary subset of \.
By A*(k, E) we denote the assertion that there exists a sequence (Cy, : o € E)
satisfying

(1) Cy is a club subset of P.(«) for all o in E, and

(2) for all clubs D C P, (A) there exists a club C C X such that for all
aeCnk, C,<*D.

In (2), A <* B if and only if there is a set x of size less than k such that if
x Cy € Atheny € B for ally. The sequence (C,, : o € E) is called a tail

club guessing sequence.

The principle A*(k, F) is a weaker form of $*(F), since it implies A*(k, E)
for all k, but the converse it not true. Furthermore, A*(k, F) is preserved
by k-c.c. forcing notions. Note that the logical strength depends on the set
E and increases with the size of E. When E = EX. = {a € [\, A1) | w <

cof(a) < k}, the following theorem gives an equivalence to A*(, E2,), which
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shows that its logical strength is pretty weak. The proof of the next theorem

can be found in [7].
Theorem 2.2.7. Suppose k < X. Then the following are equivalent:
(1) A*(k, E2,).

(2) There exists a club F' C P.(A1) such that for each club D C P, (A1)
there exists a club C C \* such that for all o € C’ﬂEg, FNPg(a) <
D.

(3) The number of clubs in P.(\) is XT. Furthermore the collection of

these clubs is cofinal with respect to <*.

Property (3) is easily obtained by cardinal arithmetic, i.e., if 2* = A", then
there are A™-many club subsets of P, (). The collection of all those clubs is
cofinal with respect to <*, since it generates the club filter. For the failure of
A5 (R, Eﬁ;) take a model in which A*T-many Cohen-subsets of A are added.
This is possible if A is regular.

A similar characterization as in Theorem 2.2.7 cannot be given when A* is
defined on ordinals with higher cofinality. The tail guessing principle is much

stronger when E = E}" and cannot be derived from GCH.

Theorem 2.2.8. Suppose CH and A*(wy, E“™) hold for some 2 <n < w. If
B C Py, (wy) is stationary, then there is a stationary set A C B such that
{z € A |sup(x) = a} does not reflect to any set of size wy for all a € E<".

Proof. Take the club F' C P, (wy,) from Theorem 2.2.7 (2). Without loss
of generality, we may assume that each member of F' has limit order type
with supremum in E“". For every £ € E“», let F¢ = {x € F | sup(z) = a}.
Now take some stationary B C P, (w,). We can assume that B C F. Next
we want to apply Lemma 2.2.1 for every £ € E“" to obtain a C-cofinal set
A C BN F¢ which does not reflect to any set of size w;. The union of all
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these A%’s will be as desired. So let

A= U A8,

ce e

We need to show that A is stationary. Let D C P, (w,) be a club. By
definition of F', we can assume that D C F. Next we define a club D’ as
the set of all x € P, (w,,) containing increasing ordinals 7; for ¢ < w, which

satisfy the following properties:
(1) sup;,(7i) = sup(x),
(2) for every i <w, D NP, (v;) is club in Py, (7;), and
(3) each element of F'NP,, (v;) containing x N~ is in D.

If we choose x € BN D’ with sup(z) = &, then 2 € B N F¢ Therefore there
exists a y € A® which contains z. Since z € D', we have yN~; € D for every
1 <w. Hence y € DN A. O]

Theorem 2.2.9. Assume CH and 2*~' = w,,. Then SRy(S") fails for S* C
P (wn).

Proof. Follows from Theorem 2.2.7 and 2.2.8. m
Theorem 2.2.10. Assume 2“1 = wy. Then SRo(S”) fails for S* C P, (wy).

Proof. We will show that for every stationary subset S of P, (ws), there
exists a stationary subset T of S which does not reflect to any uncountable

ordinal in wy with cofinality w. Let
A ={a € wyNcof(w) | SNP,, () is stationary in P, (a)}.

If A is non-stationary, let C' denote a club in wy with AN C = (). Then
T ={x €S |sup(x) € C}.
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So suppose A is stationary. If « is in A, it is straightforward to find an
unbounded subset of S N P, () which does not contain any continuous,
increasing sequence of length w + 1. Therefore, the above lemmata are not
needed for this proof and we can drop CH in the assumptions. The result

can be obtained by repeating the proof of Theorem 2.2.8. O



Chapter 3

Stationary Reflection Principles

3.1 Consistency of WRP and RP

The consistency strength of the Weak Reflection Principle for wy and the
Reflection Principle for ws is a weakly compact cardinal. We obtain this
result by collapsing a weakly compact cardinal to ws. Following Velickovié¢
[16], we show that those reflection principles are in fact equiconsistent with
a weakly compact cardinal. This makes crucial use of Jensen’s work [6].

Using the same arguments, collapsing a supercompact cardinal to wy, one

can obtain the (Weak) Reflection Principle for all cardinals.

Theorem 3.1.1. The consistency of ZFC+ "there exists a weakly compact

cardinal” implies the consistency of
(1) ZFC + 7the Reflection Principle for we”, and therefore
(2) ZFC + 7"the Weak Reflection Principle for ws”.

Proof. Suppose k is a weakly compact cardinal. Let P = Coll(w;, < k) denote
the Lévy Collapse and G a generic filter on P over V. In V[G], take an
arbitrary stationary set S C P, (k). We need to show that there exists an
ordinal o < k with cofinality w; such that S NP, («) is stationary.

43
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Let (M, €) be a transitive elementary submodel of (V, €) of size k containing
all relevant objects. By weak compactness of k, there exists an elementary
embedding j : M — N with critical point &, (i.e., j(k) > k) for some
transitive model (N, €). By standard arguments, we can decompose j(P) to
PxQ, where Q = Coll(wy, [k, j(x))). Note that Q is o-closed in V and M. By
absoluteness, Q remains o-closed in M[G], where G denotes a generic filter
on P over M. Next let H be a generic filter on Q over M[G]. In M[Gx H|, we
can extend j : M — N to j' : M[G] — N|[GxH]. Clearly, S = j'(S)NP,, (k).
Since Q is o-closed, S remains stationary in M[G*H|. By the same argument,
S is stationary in N[G * H]. Then s witnesses that in N[G x H] there exists
an ordinal a < j(k) of cofinality w; such that j'(S) NP, («) is stationary.
By elementarity of j/, there is a < k with cofinality w; in M[G] such that
S NP, () is stationary. By elementarity of M, the same statement holds
in VI[G]. O

Theorem 3.1.2. The following are equiconsistent:
(1) ZFC + "there exists a weakly compact cardinal”,
(2) ZFC + WRP(ws).

By proving Theorem 3.1.1, we have taken care of one direction of this theo-
rem. For the converse, we define a weaker form of a [J,.-sequence in order to
use Jensen’s work [6]. He proved that if x is a regular cardinal which is not

weakly compact, then there exists such a weaker [J,-sequence.

Definition 3.1.3. Let k be a regular cardinal > wo. We call a sequence

(Cy : a € Lim(k)) a Of-sequence if it satisfies the following properties:
(1) Cy is club in « for every a € Lim(k),
(2) Cz =C,nNp for every B € Lim(C,),

(3) =3C C k (C is club N Va € Lim(C) C, = C Na).
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The main tool for the construction in our proof is the following two-player

game, which we will revisit in the proof of Theorem 3.3.1.

Definition 3.1.4. We define the two-player game G, as follows. Let k > w;

be a reqular cardinal, F' a function F : P,(k) = K, and o an ordinal < w;.

]ZI(),C() ]1,C1 InaCn

IT: Mo M M

At stage n Player I picks an interval I,, in k and an ordinal ¢, € I,,. Player
11 responds with an ordinal n, < k. Then Player I has to choose 1,1 such
that inf(L,+1) > n,. Player I wins, if by letting y = clp({(, | n < w} U «)
we have y C | J{I, | n <w} and yNw; = a.

Since G, is an open game for Player 11, the Gale-Stewart Theorem implies

that one of the players has a winning strategy.
The proof of the following theorem can be found in [16].

Lemma 3.1.5. Ap = {a < wy | II has a winning strategy in G,} is non-

stationary.
The following theorem is crucial to proving Theorem 3.1.2.

Theorem 3.1.6. Let k be a reqular cardinal and assume that U7, holds. Then
there exists a stationary set S C P, (k) such that S does not reflect to any

a € KR.

Proof. Let C = (C, : a € Lim(k)) be a O%-sequence and
S ={zreP,(k)| a:ngéa: A sup(C, Nx) < a}.

Since C is a [*-sequence, C, is a club in « for every limit o € k. Therefore
S NP, (a) is non-stationary. Thus we need to prove the following claim to

finish the proof.
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Claim. § is stationary.

Proof of Claim. For a function F' : P,(k) — k we have to find a set x € S
which is closed under F'. We use a winning strategy for player I in the game
Go to recursively construct a sequence (I, : g € k<*) of intervals in x and a

sequence (0, : g € K<) satisfying:
(1) For every d € k<% §4 € 1y,
(2) For every d € k< and o, € k [ < B — sup(Igy Na) < inf(I; N G)],
(3) For every f € k¥ clp{dsm | n <w} CU{Ifm | n <w}.

Now fix a sufficiently large regular cardinal # and an elementary submodel
M < H(#) containing every relevant object. Furthermore let M Nk =« € Kk
and cof(a) = w. Fix a sequence (a, : n < w) converging to o. We build a

sequence of functions f € o inductively such that the following holds:

(1) Vn <w dpp > an,
(2) Vn >0 If[nﬂCa = 0.

For the inductive step we use the following claim.

Subclaim. Let (I; : £ < k) be a sequence in M where I; are intervals in
r such that if ¢ < ¢ then sup(l;) < inf(l¢). Then there exists £ < o with
I.NnC, =0.

Proof of Subclaim. If not, then V¢ < a Je N C,, # C,. Hence

MEVE<KkIy<kY<E JNC, #0.

Then H () satisfies the same statement by elementarity of M. Let D be
the set of limit points of I,. We now prove that V3,v € D if 3 < 7 then
Cs=0C,Np:

For such § and v, fix ( < s with 8,7 < inf(J;) and § < k with V¢ <
¢ IeNC, # (. Thus S and 7 are limit points of Cs. Since Cs belongs to a
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[0 -sequence, Cg = C5 N 5 and C, = Cs5 N~y by property (2) of O0F. Hence
Cs = C, N B. But then the set D is a contradiction to property (3) of the
definition of [J%. This proves the subclaim.

To finish the proof of the claim let * = clp{ds; | n < w}. Note that
sup(C, Nz) < a = sup(x). Therefore x € S and z is closed under F. Hence
S is stationary and the proof of the claim and therefore the proof of the

theorem is complete. O

Proof of Theorem 3.1.2: —(1) implies —(2): By Jensen’s result, there exists
a U7, -sequence. Using Theorem 3.1.6, it follows that there exists a set S C
P, (w2) which does not reflect. Hence, WRP (wy) fails. O

3.2 Consistency of SSR

Recall that for a cardinal A > w,, the Semistationary Reflection Principle
for X\ denotes the following principle:

For every semistationary S C Py, (X), there exists X C X such that | X| =
w1 € X and SN Py, (X) is semistationary in P, (X).

The consistency of the Semistationary Reflection Principles can be taken care
of in two steps. The first case is SSR(wy). We will show in the next chapter
that for wy the Semistationary Reflection Principle is equivalent to the Weak
Reflection Principle. Therefore, SSR(ws) is also equiconsistent with a weakly
compact cardinal.

For a larger cardinal A\, Shelah has obtained a model in which SSR(\) holds
by using a A-strongly compact cardinal. We refer the reader to [15]. However,
Sakai proved in [13] that collapsing a A-strongly compact cardinal does not
suffice to show WRP(A). The key to this result is the following theorem.

Theorem 3.2.1. Suppose that X\ is a supercompact cardinal. Then there
exists a generic extension in which X is a strongly compact cardinal and
WRP(AT) fails.
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3.3 SRo(P.,(w2)) is inconsistent

The next result shows that it suffices to consider the Weak Reflection Prin-
ciple for wy and the Reflection Principle for wy, since the following reflection
principle is inconsistent.

For every stationary set S C Py, (wa), there exists an uncountable ordinal o
in wy with cofinality w such that S NP, («) is stationary in P, (a).

As usual EZ? = {a € wy | cof(a) = w1 }.
Theorem 3.3.1. The statement SRo(P,, (w2)) is inconsistent.
Proof. First, let (Cy : o € E?) be a sequence of the following sets:
(1) C, is an unbounded set of a, and
(2) ot(C,) = w.

We call such a sequence a ladder system. Next we define a set witnessing the
failure of SRo(P., (w2)). Let X = {z € Py, (w2) | Coup(a) € }-

Claim. The set X is stationary in P, (ws).

Proof of Claim. Here we can repeat the proof of Theorem 3.1.6. The only
difference is the proof of the subclaim. For that we can get a contradiction
as follows. Recall that we assumed V¢ < o Je N C,, # C,,. Hence

MEVE<kIy<kYC<E JNC, #0.

But then the order type of C, would be at least £, because the intervals J¢ are
pairwise disjoint. Therefore ot(C,) cannot be equal to w for every £ € (w, k).
For the failure of SRg(Py,(w2)) look at X NP, (a) for any a € wy with
cofinality w. For any such «, there are club many y in P, («) such that

Co C y. Therefore X NP, (a) is non-stationary for any a in EZ2. O
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3.4 A remark on bigger spaces

We have now considered the consistency of many stationary reflection prin-
ciples in P, (A). One might ask about those principles for the uncountable
space P, (A). Feng and Magidor considered this question in [2]. They started
with the following principle, which is consistent.

Assume that \ is a cardinal and X > wo. For every stationary set S C
Po, (H(N)), there exists an X C H(N) of size wy such that w; C X and S
reflects to X.

So we ask if one could extend this principle to the following.

Assume that X is a cardinal and N > ws. For every stationary set S C
P, (H(N)), there exists an X C H(N) of size wy such that wy C X and S
reflects to X.

In this context, S reflects to X if SNP,,(X) is stationary in P, (X). Feng
and Magidor proved that this extension is false for sufficiently large cardinals
A

Theorem 3.4.1 ([2], 2.1). Suppose X is a reqular cardinal and X\ > (242)*+.
Then there exists a stationary set S C Pu,(H(X)) such that for any set
X C H(X) of size wa, wy € X implies that S NP, (X) is non-stationary in
Pun (X))

3.5 A result on cardinal arithmetic

In the beginning of the introduction we gave a result on cardinal arithmetic
as motivation for considering reflection principles. As an example, we will
prove that the Weak Reflection Principle for wy implies 2 < w,. This is due
to Todorcevié, but we follow Shelah [14].

Theorem 3.5.1. WRP(ws) implies 2¥ < ws.

Proof. Suppose that 2 > w,. We will find a stationary set S C Py, (w2)

which does not reflect, i.e., S NPy, () is not stationary in P, («) for each
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uncountable « in wy. We define h,, for every ordinal a to be a one to one
function from |a| to a. Let V' = L[(h, : a < wy)]. Note that in this new
model V' both w; and w, remain the same. Then in V' there are at most wy
countable subsets of wy . By a fact from Baumgartner-Taylor [1], every club
C' in P, (wq) has size equal to 2 which is greater than wy by assumption.
Therefore, the set S = {x € Py, (w2) | © ¢ V'} is a stationary subset of
P, (ws). But for each a < wy, we can define a club C, C V' using h,,. Since
S and C, are disjoint for each a < wy, we have found a non-reflecting set as
desired. O]



Chapter 4

Implications between

Reflection Principles

In this chapter we compare the Weak Reflection Principle to the Reflection
Principle and the Semistationary Reflection Principle. Clearly, the Reflection
Principle implies the Weak Reflection Principle for any cardinal. As far as the
converse is concerned, two things have been proven. Krueger showed in [8]
that under the assumption of a supercompact cardinal, we can separate the
two principles. We give an outline of this proof. Furthermore, Konig-Larsen-
Yoshinobu proved in [7] that if 2“* = wq, the Weak Reflection Principle
implies the Reflection Principle for wy. We can also derive this result for
wy, for arbitrary n under the assumption that CH holds and 2*»-!' = w,,. In
comparison to the Semistationary Reflection Principle, the Weak Reflection
Principle turns out to be stronger for any cardinal greater than ws. Since we
are mainly interested in wy, we give a proof of their equivalence and refer the

reader to Sakai’s paper [13] for more information.

51
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4.1 WRP(wy) and —RP(w»)

In 2011, Krueger asserted that under the assumption of a supercompact car-
dinal, the Weak Reflection Principle does not imply the Reflection Principle
for wy. It is an open question, if a supercompact is really necessary to obtain
this result. Krueger proved the following theorem by adapting Sakai’s club
shooting to negate the Reflection Principle. However, this would not work to
maintain the Weak Reflection Principle, since Sakai’s proof depends on the
[.,,-sequence and the Weak Reflection Principle for wy implies ~[],,,. There-
fore, Krueger combined Sakai’s work with classical methods for constructing

WRP(ws), i.e., using an elementary embedding to get a generic extension in
which WRP(ws) holds.

Theorem 4.1.1. Let k be a kT -supercompact cardinal and assume that 2% =

k1. Then there exists a forcing poset P which collapses k to become wy and
”‘p WRP(MQ) A~ RP(CUQ) .

The idea of the proof is to define the forcing notion P in a way that whenever
K is a generic filter over V| then in V[K] there is a set S satisfying:
(1) S is a stationary subset of P, (w2),

(2) S does not reflect to any ordinal in wy N cof (wy),

(3) every stationary subset of S reflects to an uncountable ordinal in ws N
cof (w),

(4) every stationary subset of Py, (w2)\ S reflects to an uncountable ordinal

in wy N cof(wy).

Clearly, conditions (1) and (2) imply = RP(w;). We show that (3) and (4)
suffice to ensure WRP(w,). Take an arbitrary stationary set " C P, (w2).

Since the union of two non-stationary sets is non-stationary, either 7'N .S or
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T\ S must be stationary. In the first case, T'N .S reflects to an uncountable
ordinal « in wy with cofinality w by (3). In the second case, T\ S reflects
to an ordinal « in we with cofinality w; by (4). Hence in either case, there
exists an uncountable ordinal « in wy such that T reflects to a.

We assume that V' is a model in which there exists a k*-supercompact car-

dinal k. In V|, we define a forcing notion P which will be of the form
P = Coll(wy, < k) * P, x Q.

First, we force with the Lévy Collapse to make x equal to ws. In this generic
extension, we define the forcing poset P,, which adds a generic stationary
set S C Py, (ws) which does not reflect to any ordinal in ws N cof(w;). In
the third step of our iteration, we define a forcing notion Q which destroys
the stationarity of any subset of S which does not reflect to any uncountable

ordinal in wy N cof(w). In the final extension we will have a set S as desired
in (1), (2), (3) and (4).

4.1.1 Adding a generic stationary set

The forcing notion P, is a special case of the forcing poset we introduce next.
Since after forcing with P, we want to extend the elementary embedding we
obtain from the supercompactness of , the next definition gives a generalized

version of this forcing notion.

Definition 4.1.2. Let a < < wy be ordinals such that B has uncountable
cofinality. Let A be a subset of P, («). Furthermore assume that P, («)\ A
is stationary, if cof(a) = wy. We define the forcing poset P(«, A, B) as the
set of pairs (X, F') satisfying:

(1) X is a countable subset of P, (5),

(2) for every b in X, b is not a subset of «,
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(3) F denotes a function whose domain is a countable subset of [a, ) N

cof (wy),

(4) for every & in dom(F), F(§) is a C-increasing and continuous sequence

(af =i < Ye) of countable subsets of &, for some ve < wy,
(5) for every & in dom(F) and i < g, af is not in X UA,
(6) for every & in dom(F), a§/€ is a subset of | J X.
We define an order on P(a, A, 5) by letting (X', F') < (X, F) if:
(1) X C X'
(2) for every b in X'\ X, b is not a subset of | J X,
(3) dom(F) € dom(F"),
(4) for every & in dom(F), F(&) is an initial segment of F'(£).
For an ordinal f < wy with uncountable cofinality, let Ps denote P(0,0, 5).

For a condition (X, F'), the set X is an approximation of the generic sta-
tionary set S C P,, (), which is added by the forcing. The function F
approximates an array of clubs which witnesses that S satisfies (2) of the
requirements above, i.e., it does not reflect to any ordinal in [a, 8) N cof (wy).
Therefore, P, adds a generic stationary set S which satisfies (1) and (2).
The motivation for defining P,, in a more generalized way is the following.
For an ordinal n < ws with cofinality wy, let H denote a generic filter on
P, over V. Then we can define the set S = (J{X | 3F (X,F) € H} in
V[H], which is a subset of P, (n). We will prove that P, (1) \ S is sta-
tionary in P, (n) and that P,,, is forcing equivalent to the two-step iteration
P, « P(n, S, wa).

Since we often consider generic sequences of conditions, we define a lower

bound on the sequence of functions of these conditions.
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Definition 4.1.3. Let ((X,,F,) : n < w) be a descending sequence of
conditions in P(a, A,B). Then the infinum of the sequence of functions
(F, :n <w) is a function K whose domain is equal to | J{dom(F},) : n < w},
which is a countable subset of [cv, B) Ncof(wy). For & in dom(K), |J{F.(§) :
n < w,¢ € dom(F,)} is an increasing, continuous sequence of the form
(x5 i < Ye) where ve < wi. If ye is a successor ordinal, let K(§) be

S0 < e —1). If ve is a limit ordinal, define Oy 1= U{as i < e} and let
K () be the sequence (a5 : i < ).

i

(s}

The next proposition shows how to construct a lower bound for a sequence

of conditions. The proof can be found in [8].

Proposition 4.1.4. Let 0 be a sufficiently large cardinal and N an elemen-
tary substructure of H(0) containing P(a, A, ). If cof () = w1, assume that
Nnaisnotin A. Let (X, F) :n <w), X’ and ' be as above. Suppose Y is a
countable subset of P, (8) such that X" CY, and for everyy in Y\ X', either
y = NN}, or there is an uncountable ordinal n in [, 5) N cof(w) such that
y=Nnmn. Then (Y, F') is a condition in P(a, A, B) and (Y, F') < (X, F,)

for every n < w.
Theorem 4.1.5. The forcing poset P(«, A, ) is wy -distributive.

Proof. For a collection of dense sets {D,, | n < w} of P(a, A, 5) and a con-
dition (X, F'), we have to find a condition (Y, K) < (X, F), which belongs
to ({D, | n < w}. Let 0 be a sufficiently large regular cardinal and N
a countable elementary submodel of H(f), which contains all relevant ob-
jects. Furthermore let N N« ¢ A if cof(ar) = wy, which is possible since
in that case, P(a, A, 8) \ A is stationary in P, (a). We construct (Y, K) as
follows. Pick an N-generic sequence ((X,, F},) : n < w) below (X, F'). Let
Y = ({X, | n <w} and K be the infinum of the sequence (F,, : n < w).
Then (Y, K) is a condition in P(a, A, 8) with (Y, K) < (X, F,,) foralln < w
by Proposition 4.1.4. In particular, (Y, K) < (X, F'). By assumption, D,, is
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in N for each n < w. So fix an n < w. Then (X,,, F,) is in D,, for some
m < w, since (Y, K) is in D,,. Hence (Y, K) is in (\{D, | n < w}. O

The proof of the next theorem uses the A-System Lemma repeatedly. We
use the same arguments as in the proof which states that the forcing poset

Q is wy-distributive, which we will give in detail.
Theorem 4.1.6. If 2 = wy, then the forcing poset P(«, A, B) is wa-c.c..

As hinted, the next definition gives us the required set, which is added by the
forcing notion P(a, A, 3). We prove that it is a stationary subset of P, (3),

which does not reflect to any ordinal in [a, ) with cofinality w;.

Definition 4.1.7. Let S(a, A, ) be a P(a, A, B)-name such that
Ik S(a, A,8) = | {X | 3F (X, F) € H},

where H denotes the canonical name for the generic filter.
We write Sg for S(0,0, ).

Lemma 4.1.8. In V[H]|, for every £ in [a, §) Ncof(wy), the set {af | i <wi}
is a club subset of P, (B) which is disjoint from S(a, A, B). Hence S(a, A, B)

does not reflect to any ordinal in o, B) N cof (wy).

Proof. Clearly, {at | i < w;} is club in P, (€) for every € in [a, 8) N cof (wy).
Assume towards a contradiction that SN {a® | i < w;} is non-empty. Then
there is a b in S such that b = a° for some i < w;. Now fix (X, F) in H
such that b € X. Then there is a condition (Y, K') below (X, F') such that b
is in the sequence F'(§). Hence b € Y, which contradicts property (5) of the
definition of P(«, A, ). ]

Proposition 4.1.9. The forcing poset P(a, A, B) forces that S(a, A, B) is a
stationary subset of Py, (5).
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Proof. Let (X, F) be a condition in P(«, A, §). Assume (X, F) forces that C
is a club in P, (). We must find a condition (Z, K) < (X, F) and a set b
with (Z, K)IFb e SNC. Let §, N and (Y, K) be as in the proof of Theorem
4.1.5. We define Z =Y U{N N B}. Then (Z, K) is a condition in P(«, A, )
by Proposition 4.1.4. Recall that (7, K) < (X, F) and that (Z,K) is an
N-generic condition. Since NNFisinY, (Y, K) I NNS. Furthermore, C is
in N by assumption on N. Therefore, P(«, A, 3) forces that for a canonical
P(a, A, B)-name H of the generic filter, N[H] N € C. Since (Z,K) is
N-generic, (Z,K) - N[H]N3 = NNpj. Hence, (Z,K)IFNNBeSNC. O

The next lemma is used to show that P(«, A, B) preserves stationary sets
disjoint from S(«, A, 5). We state it without proof, which can be found in
[3].

Lemma 4.1.10. Let 6 > wy be a reqular cardinal.

(1) P(a, A, B) forces that there are stationary many N in P, (H(0)) such
that S(o, A,)NP(NNB) C N.

(2) Suppose cof(a) = wy, and let T' be a stationary subset of Py, («) which
is disjoint from S. Then P(«, A, B) forces that there are stationary
many N in Py, (H(0)) such that S(a, A, B)NP(NNB) € N and NNa €
T.

Corollary 4.1.11. Suppose that cof (a) = wy. Let T be a stationary subset of
P, () which is disjoint from A. Then P(a, A, B) forces that T is stationary
in P, (a).

Proof. For a generic filter H on P(a, A, §) over V, define a club subset C
of P,,(a) in V[H]. Let 6 be a sufficiently large cardinal. Note that in V,
0 is a regular cardinal > wy. Using Lemma 4.1.10, we can find a countable
elementary substructure N of H(6) such that C' € N and N N« € T. Since
C e N, NNaisin C, which completes the proof. n
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Corollary 4.1.12. The forcing poset P(c, A, ) forces that P, (6)\S(cv, A, 3)
is stationary in Py, (5).

Proof. For a generic filter H on P(a, A, 8) over V', let F : P,(8) — 5 be
a function defined in V[H]|. Fix a regular cardinal § much larger than f.
Just like in the proof of the previous lemma, we can use Lemma 4.1.10 to
get a countable elementary substructure N of H(f) such that F' € N and
SNP(NNB)C N. Then NN g is closed under F' by elementarity of N.
Since N N ( is in P(N N ) but not in N, we have that N N g is not in S.
Hence P, () \ S is stationary in P, (3). O

Now we have successfully added a stationary subset of P, () which does
not reflect to any ordinal in [, 8) with cofinality w;. By using the forcing
poset P, we have obtained a set satisfying (1) and (2) of the requirements
for the proof of Theorem 4.1.1. We end this section by giving two lemmata

for technical purposes.

Lemma 4.1.13. For each set b in P, (), there are densely many conditions
(Y, K) in P(a, A, B) with b C |JY.

Proof. Suppose (X, F') is an arbitrary condition. Consider a countable set
d C g withbu (UX)U{a} C d. It is easy to see that (X U {d}, F) is a
condition in P(a, A, 5) which is below (X, F'). Then b C |J(X U {d}). O

Lemma 4.1.14. Suppose (X, F') is a condition in P(«, A, 5). Then
(X, F)IF S(e, A, 8)nP(JX) = X.

Proof. Tt is clear that (X, F) I X C S(a, A,8) N P(JX). Let H be a
P(a, A, B)-generic filter containing (X, F'). Assume towards a contradiction
that there is a member z of S(a, A, 5) N P(JX), which is not in X. Then
we can take a condition (Y, K) in H such that z is in Y. Now consider a
condition (Z, L) in H which is below (X, F) and (Y, K). But then z is in
Z\ X and x C |JX. This contradicts (Z, L) < (X, F). O
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4.1.2 Extending an elementary embedding I

Next we give an idea how to factorize the forcing notion Pz as the two-step
iteration P, « IP(n, Sm B).

Definition 4.1.15. Suppose (X, F') is a condition in Pz and for every & €
dom(F) we have F(€) = (a% : i < 7). Then define

(1) Xy ={be X [bCn},
(2) Fn:FrW;
(3) X"={be X [bZn},

(4) F"=F[n,B).

Furthermore let P, 53 be the suborder of Pg consisting of conditions (X, F)
with |J X, = (UX") Nn.

Theorem 4.1.16. If i : P, 5 — P, « P(n,S,, 3) is defined by i(X,F) =
(X5, ) * (X”, F’”), then i is an isomorphism of P, g onto a dense subset of
the two-step iteration P, x P(n, S,, B).

Since one can show that P, 3 is dense, Theorem 4.1.16 implies that Pg is forc-
ing equivalent to P, x P(n, Sn, f). Recall that the reason for this factorization
was to extend the elementary embedding j we obtain from supercompact-
ness of the cardinal k. The next theorem summarizes all properties of the
extension of j, which will also be denoted by j for simplicity. For the proof

we refer the reader to [8].

Theorem 4.1.17. Suppose that G H is a j(Coll(wy, < k) xP,)-generic filter
over V. By letting G = G N Coll(wy, < k) and H = H NP,, we have that
G is a Coll(wy, < K)-generic filter over V. and H is a P.-generic filter over
VIG]. Moreover, the elementary embedding j : V. — M can be extended in
VIGxH] toj:V[G*H]— M[Gx* H] with (G x H) = G * H. Furthermore,
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(1) MG * H)*" NVI[G* H] C M[G % H,

(2) if H' is a P(k, Sy, j(k))-generic filter over M[G][H], then M|[G  H] =

MIG|[H][H],

(3) 7(Sk) = Sjw)s Sjw) = Sk US(K, Sk, j(K)), S ={b € Sji) | b C k}, and
S(k, Sk, j(k)) = {b € Sjw) | b L K}.

4.1.3 Adding a club

The next goal is to find a forcing poset designed to destroy the stationarity
of all non-reflecting subsets of S. In Chapter 2 we have reviewed a forcing
notion Q(7") due to Sakai which adds a club disjoint from 7. Recall the

following definition.

Definition 4.1.18. Let T be a subset of P, (w2). Define Q(T) as the forcing

poset consisting of conditions p satisfying:

(1) p is a function of the form p : a? X a? — wy, where a? is a countable

subset of ws,
(2) for every x in T, if x C aP, then x is not closed under p.

Let g < p, if q extends p as a function, that is, if a? C a? and q | (a? xaP) = p.

For a countable set a C wq, we write a® for a X a.

Now we want to know how to iterate this club shooting. We work in the
extension of V' by a generic filter on P,, and define a forcing notion Q,
which forces (3) of the requirements for the proof of Theorem 4.1.1, i.e.,
every stationary subset of S, reflects to an uncountable ordinal in ws with
cofinality w. Similar to Chapter 2, the forcing notion Q is an iteration of
club shootings Q(7") for each subset T of S,,, which does not reflect to any
uncountable ordinal in ws with cofinality w.

The following definitions are for technical purposes to define Q.
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Definition 4.1.19. Let f : w3 — w3 X w3 be a surjective function satisfying
that whenever f(a) = (i,7), then i < a. This f is used as a bookkeeping

function.

Definition 4.1.20. Let R denote the set of all non-empty partial functions
r of the form v : (a")? — w1, where a” is a countable subset of wy. Let s <g T

if s extends r as a function, that is, a” C a® and s | (a”") =r.

Definition 4.1.21. For every ordinal o in we, fix a surjective function o, :
wi — a. Let E be the set of all b in Py, (wa) such that ot(b) is a limit ordinal
and b is closed under o, for all o in b.

Note that E is a club subset of P, (w2).

The forcing poset Q will be defined satisfying the following recursion hy-
potheses. Note that we work in V[H]. In particular, we define the sequence
of forcing posets (Q, : a < ws) such that each Q, satisfies the recursion
hypotheses below. We will use the bookkeeping function to enumerate all
subsets of S,,,, which do not reflect to an uncountable ordinal with cofinality
w. We define the sequence (TJZ : 4,7 < ws) of those subsets as follows. For
every a < wz and f(a) = (i,7), we let T((a) = T;. Then Q is defined as the
forcing poset Q,, .

Recursion Hypotheses: For all a < ws:

(1) If p is in Q,, then p is a partial function p : @« — R whose domain is
countable, and for all p and ¢ in Q,, ¢ < p if and only if dom(p) C
dom(g) and for all n in dom(p), let ¢(n) <g p(n).

(2) Let 8 < a. Then

(a) for all ¢in Q,, ¢ | B is in Qg,
(b) Q,B g Qav

(c) ifgisin Q, and s < ¢ | B isin Qp, then letting t = sU(q | [5, «v)),
tisin Q, and t < s, ¢ in Q,, and
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(d) the inclusion map Qg — Q, is a complete embedding.
(3) Q, is wi-distributive and wsy-c.c.

(4) If @ < ws, then the sequence (T : i < ws) is an enumeration of all nice
Q,-names T for a subset of P, (w2) such that Q, forces T C S, NE

and 7' does not reflect to any uncountable ordinal in w, N cof (w).

One can easily show that the recursion hypotheses (1), (2) and (4) are satis-
fied by the next definition. Since checking (3) is more work, we will tend to

this separately.

Definition 4.1.22. We define Q.. The definition splits into three cases.

- a 18 equal to 0

Let Qg consist of the empty function.

- a 18 a limit ordinal

Let Q,, be the set of all partial functions p : a — R, whose domain is countable
such that for all f < o, p | B is in Qp. Let ¢ < p in Q, if dom(p) C dom(q)
and for all n in dom(p), q(n) <g p(n).

- a 18 a successor ordinal

Let o = f+1 and f be the bookkeeping function from Definition 4.1.19, that
is, f(B) = (i,7). Theni < 8 and j < ws, so T] is defined and is equal to
7(8).

Let Q. consist of all partial functions p : « — R, whose domain is countable
such that p | B is in Qg and if B is in dom(p), we have p | B Iq, p(B) €
Q(T(B)). Let ¢ < p if dom(p) € dom(q) and for all 1 in dom(p), q(n) <w
p(n).

The next lemma completes the recursive definition of Q.

Lemma 4.1.23. The forcing poset Qg1 is isomorphic to a dense subset of
Qg * Q(T(B)). Therefore Qayy is forcing equivalent to Qg Q(T(3)).
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Notation 4.1.24. Let p be a partial function p : a — R, whose domain is
countable. For every £ in dom(p), let ag denote a?®) . Particularly, ag 1s the

non-empty countable set a with dom(p(§)) = a?.

The following lemma follows directly from the definition of the Q,’s.

Lemma 4.1.25. Let p be in Q,. Suppose 3 is in dom(p) and x is a countable
subset of ajy which is closed under p(B). Thenp [ Bz ¢ T(B).

Lemma 4.1.26. Let p be a partial function p : o — R with a countable
domain. If p is not in Q,, then there exist 3, t, and x such that:

(1) [ is in dom(p),
(2) p | B isin Qg,
(3) t<plpBinQg,

(4) x is a countable subset of ajj which is closed under p(f3),

(5) tlkgz € T(B).

Proof. We prove this lemma by induction on «. Clearly, it holds when o = 0.
So suppose this statement is true for Q,, for all n < a.

Case 1. a=ag+1

Assume that p is a partial function of the form p : @ — R whose domain is
countable and p ¢ Q,. Then either p [ ag ¢ Q, orp | ap € Q,, ap € dom(p),
and p | o does not force that p(ay) € Q(T'(ap)). In the first case, we can
apply the induction hypothesis to p | o in Q,, and we are done. In the
second case, there exists tg < p | ag, which forces that p(ag) ¢ Q(T(ay)).
The fact that p(ap) is in R implies that ¢, forces that there is a countable
set & C a”(®) which is closed under p(ag) and is a member of T'(ag). We
can apply Recursion Hypothesis (3) to the forcing poset P,, and therefore it
is wi-distributive. This asserts that tq forces that there exists such a set x in

the ground model. So pick a condition t < t; and a set x such that t forces
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x satisfies all properties above. Then x is a countable subset of af, which is
closed under p(ag). Furthermore, t forces that  is in 7'(c).

Case 2. « is limit

Suppose that p ¢ Q,. Then there exists v < o with p [ v ¢ Q. by definition
of Q,. Again, we can apply the induction hypothesis to p [ v in Q, and the

proof is complete. O

Lemma 4.1.27. Let p and q be conditions in Q, such that for all 5 in
dom(p) Ndom(q), p(B) | (ag N a%)2 =q(p) 1 (ag N aqﬁ)z. Then p and q are

compatible. Furthermore, there is a condition r < p, q such that
(1) dom(r) = dom(p) U dom(q),
(2) for all B in dom(p) \ dom(q), r(53) = p(B), and

(3) for all § in dom(q) \ dom(p), r(5) = q(5).

In particular, if p and q are conditions in Q, such that for all 5 in dom(p)N
dom(q), aj N aj is empty, then p and q are compatible.

Lemma 4.1.28. Let z be a countable subset of a and let b be a countable
subset of wy. Then there are densely many conditions t in Q. such that
z C dom(t) and for all B in z, b C aj.

Definition 4.1.29. We call a condition p in Q. square, if there is a set a

such that for all 3 in dom(p), we have aj; = a. Then aP denotes this set.
Proposition 4.1.30. The forcing poset Q,, is wy-distributive.

Proof. Suppose {D,, | n < w} is a family of dense open subsets of Q, and
p is a condition in Q,. We must find a condition ¢ < p such that ¢ €
({D, | n < w}. Let 6 be a sufficiently large cardinal. Now we can apply
Lemma 4.1.10 to P, to find stationary many N in P, (H(#)) which satisfy
Sws NP(N Nwy) € N. Note that this is in the model V[H], where H denotes
a generic filter on P, over V. So we can pick an N in P, (H(#)) which is
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an elementary submodel of H(f) containing all relevant objects as elements
and S, NP(N Nwy) C N.

Next take an N-generic sequence (p, : n < w) in Q, with pg = p. Then it
is easy to see that (J{dom(p,) | n <w} = N Na. For every f € N Na, we
have (J{aj" | n <w} = NNw,.

We construct ¢ in the following way. Let dom(q) = ([J{dom(p,) | n < w} and
for each f € dom(q), let ¢(8) = U{pn(S) | n < w}. Therefore ¢ is a partial
function ¢ : @ — R whose domain is countable. To finish this proof, we need
to show that ¢ is a condition in Q. Because then ¢ is below p,, for all n < w
and hence is in (\{D, | n < w}.

So assume that ¢ is not a condition in Q,. By Lemma 4.1.26, we can fix
B, t, and x such that 8 € dom(q) = NNa, q [ B € Qg t < g B in
Qg, 7 is a countable subset of a}, = N N w, which is closed under ¢(3),
and t IFg x € T(B). Observe that ¢ [ 8 < p, [ B for all n < w. Since
t kg o € T(B), the set x is in S,,. Furthermore, z € N Nw,. By Lemma
4.1.10, z is in S,, NP(N Nws). Hence x is in N by assumption on N.

To prove the contradiction, let D denote the set of conditions s in QQ, such
that 3 is in dom(s) and z C aj. Then D is dense open by Lemma 4.1.28
and in N by elementarity of N. Fix n < w with p, € D. Then z is closed
under p, (), since  is closed under ¢(3) and ¢(8) [ (a")? = pn(B). But then
pn | BlFgx ¢ T(B). Since t kg & € T(f), the conditions p,, |  and t must
be incompatible. This is a contradiction, because t < g [ 5 < p, | B. O

Proposition 4.1.31. The forcing notion Q, is ws-c.c.

Proof. We show that the forcing notion Q, is wo-Knaster. Suppose (p; :
i < wq) is a sequence of conditions in Q,. Without loss of generality, we
may assume that p; is square for each i < wy. Note that CH holds in V[H].
Therefore, we can apply the A-System Lemma to the sequence (dom(p;) : i <
wa), which consists of countable sets, to find an unbounded set Zy C ws and
a countable set b such that for all i < j in Zj, we have dom(p;) Ndom(p;) = b.

We use the A-System Lemma again to the sequence (a? : i € Zy) to find an
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unbounded set Z; C Z; and a countable set ¢ such that for all ¢ < j in 7,
we have aPi N aPi = c.

Using CH, we can show that for each ¢ € Z;, there are at most w; many
possibilities for a sequence (p;(3) | ¢* : B € b). Thus, fix an unbounded set
Zy C Zy such that for all i < j in Zy and all B € b, we have p;(3) | 2 =
pi(B) | ¢ Soleti < jin Zy. Thus if B € dom(p;) N dom(p;) = b, then
pi(B) | (aP NaPi)? = p(B) | ¢ = p;(B) | (aP NaPi)?. Then p; and p; are
compatible by Lemma 4.1.27. O

4.1.4 Preserving the stationarity of S,,

Proposition 4.1.32. The forcing poset Q forces that S, is stationary in
Pwl (wg)

Proof. We will work in the model V[H], where H is a generic filter over V.
So it suffices to show in V' that the forcing notion P, * Q forces that S,, is
stationary.

Now take a condition (X, F)*p in P,, *Q, and assume that (X, F') % p forces
that h : P.(ws) = wo is a function. To show that S, is stationary, we must
find a condition (Y, K) * ¢ below (X, F) * p and a set z such that (Y, K) * ¢
forces that z is a member of S,, which is closed under h. Since (X, F)  p
forces that there are club many ordinals 7 < ws which are closed under h, we
can choose a condition (X', F') xp’ < (X, F) % p and an uncountable ordinal
7 in wy with cofinality w such that (X', F') % p/ forces 7 is closed under h.
For each a < wy, the iteration P, *Q forces that T'(cv) is a subset of P, (w)
which does not reflect to any uncountable ordinal in wy N cof(w). Then in
particular, P, * Q, forces that T'(a) does not reflect to 7. So pick a P, * Q-
name fa for a function fa : Po(1) — 7 such that P, * Q,, forces that no set
in T'(o) NPy, (1) is closed under f,.

Let 6 be a sufficiently large cardinal and N a countable elementary substruc-
ture of H(#) containing all relevant objects, particularly the sequence of func-
tions (f, : @ < ws). The goal is to define a condition (Y, K)*¢ < (X', F') =/



CHAPTER 4. IMPLICATIONS BETWEEN THE PRINCIPLES 67

which is N-generic for P, * Q.

Therefore, pick an N-generic sequence ((X,,, F},) *p, : n < w) with (Xo, Fy) *
po = (X', F") x p/. Define K as the infinum of the sequence (F), : n < w) as
in Definition 4.1.3. Further, let Y = (J{X,, : n <w}U{NN7}. Then (Y, K)
is an N-generic condition in P, and (Y, K) < (X, F,,) for all n < w due to
Proposition 4.1.4.

Since NNrisinY, (Y, K) I NNt € S,,. By Lemma 4.1.13, we obtain | JY =
N Nw,. Then using Lemma 4.1.14, we have (Y, K) I S,, N"P(N Nw,y) =Y.
Let H be a P,,-generic filter over V' containing the condition (Y, K). Then
N[H]NV = N by N-genericity of (Y, K). If we let p, = p for each n < w
then (p, < w) is an N[H]-generic sequence for Q. By Lemma 4.1.5 and
N[H]-genericity, [ J{dom(p,) | n < w} = N[H]Nws = N Nws and for every
B in J{dom(p,) | n < w}, we have (J{a}" | n <w} = N[H] Nws = N Nw,.
Now we define a lower bound ¢ of the sequence (p,, < w). Let the dom(q) =
U{dom(p,) | » < w} and for each 8 in dom(q), define ¢(f) as the union
of the set of functions {p,(5) : n < w}. It is easy to see that ¢ is a partial
function ¢ : w3 — R whose domain is countable. Moreover, dom(q) = N Nws,
and for each 3 in dom(q), we have aj = N Nws.

Next we need to prove that ¢ is a condition in Q. Then ¢ is clearly below
pn for all n < w. Assume towards a contradiction that ¢ is not in Q. Using
Lemma 4.1.26, we can fix 8, t and = such that 5 is in dom(g), ¢ | 5 is in Qg,
t <q | pBinQg, xis a countable subset of a% which is closed under ¢(/3), and
t -5 x € T(B). Note here that 8 is in NNws and z isin S, N"P(NNwy) =Y.
It is clear that ¢ | f < p, | B for all n < w. In particular, ¢ | 5 is N[H]-
generic for Qg.

Since z isin Y = [ J{X, :n <w}U{NN7}and J{X,:n <w} CN, we
have that z is either in N or x = N N 7. First assume that z is in N. Let
D be the dense subset of conditions s in Q with 8 € dom(s) and = C aj.
Then the elementarity of N implies that D is in N. Now fix n < w such
that p, is in D. We obtain that © C p,. Since z is closed under ¢(5) and
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q(B) | (a]g")2 = pn(B), the set x is closed under p,(f). Lemma 4.1.25 implies
that p, [ BlFgx & T(B). Since t forces that x € T'(), the conditions p,, [ S
and t must be incompatible. Butt < ¢ [ 8 < p,, | £, which is a contradiction.
The second case is © = NN 7. Recall that P,,, *Q forces that fg cPu(T) =T
is a function such that there is no set in 7°(8) N P, () which is closed un-
der fﬁ. Since ( is in N, the function f,g is also in N by elementarity of V.
Suppose I is a Qg-generic filter over V[H] which contains ¢. By choice of ¢,
we obtain ¢ < ¢ [ 5. Since ¢ [  is N[H]|-generic, N[H|[Ig] N V[H]| = N[H].
Furthermore, N[H][Is]NT = N[H|NT = NN7. Define f5 = f:*lﬁ. Since the
function fz is in N, we have fz is in N[H|[I5]. Then N[H]|[Izs]NT=NNT
is closed under fz by elementarity of N[H][Is]. But since ¢ is in Ig, the set
z=NnNrisin T(3) = T(8). So z is a set in T(8) N P,,(7) and z is
closed under fsz, which is a contradiction by choice of fz. Therefore, ¢ is a
condition in Q.

Suppose ¢ is a P,,-name such that the condition (Y, K') forces that ¢ is in
Q and ¢ < p, for all n < w. Then the condition (Y, K) % ¢ is N-generic for
P,, * Q and below (X, F) % p. Now we need to show that (Y, K) x ¢ forces
that N N7 is a member of S,, which is closed under the function h. Since
h belongs to N, the condition (Y, K) % ¢ forces that N[H  I] N w, is closed
under h, where H x I is the canonical P, * Q-name for the generic filter.
Hence, (Y, K) * ¢ forces that N[H  I] N7 is closed under h. We obtain that
(Y,K)* ¢l N[H*I]n7= NNt by N-genericity of (Y, K) *q¢. But N7
is a member of Y and therefore, (Y, K) * ¢ forces that N N7 is in S,, and
closed under . O

Theorem 4.1.33. The forcing notion Q forces that S, is a stationary set
in Py, (wa), which does not reflect to any ordinal in wy N cof(wy) and for
every stationary subset T' of S,,, there exists an uncountable ordinal T in
wq N cof (w) such that T reflects to .

Proof. Take a condition p in Q such that p forces that U C S, such that

U does not reflect to any uncountable ordinal in wy N cof(w). The goal is
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to prove that p forces that U is non-stationary. As the forcing poset Q is
wy-distributive, F is still club in any generic extension by Q. Therefore, it
suffices to show that U N E is non-stationary.

Next fix a nice Q-name 7 for a subset of P, (w;) such that p FQ T =UNE.
Furthermore, let Q force that if p is not in the generic filter, then 7T is the
empty set. Now for some sequence of antichains (A, : x € P, (wy)) of Q, we
have that T is equal to J{A, x {&} | 2 € Py, (ws)}. Next we do a simple
counting argument. Since Q has the wo-c.c., the cardinality of each A, is at
most wy. As P, (wy) has cardinality wy and Q = (J{Q, | @ < w3}, we can
fix B < ws such that for all x € P, (w2), the antichain A, is a subset of Qg.
Thus 7' is a nice Qgp-name.

For every 7 in weNcof(w), we have that H-Q T does not reflect to 7. Hence
we can pick a nice Q-name C; for a club in P, (7) which is disjoint from
T. Repeating the argument above, we can choose £ < w3 larger than § such
that C. is a Qg¢-name for all such 7. Clearly, Q¢ forces that C,NT is empty
for all uncountable 7 in wy N cof (w).

We have shown that 7T is a nice Q¢-name for a subset of P, (w2) such that Q¢
forces that 7' C S,,, N E. Further 7" does not reflect to 7 for all uncountable 7
in wy N cof (w). By recursion hypothesis (4), there exists i < ws with 7' = Tf
Now fix an ordinal v < ws such that f(y) = (&4). Then T(y) = Tf =T.
By Lemma 4.1.23, the forcing poset Q. ; adds a club in P, (ws) which is
disjoint from T. As the inclusion map Q,+1 — Q is a complete embedding,
Q adds a club which is disjoint from 7'. Since p IF T'= U N E, the condition
p forces that U N E is non-stationary. O]

4.1.5 Extending an elementary embedding II

Next we show how to define a projection mapping 7 : j(Q) — Q in M[G * H].
One actually has to prove the existence of such a j, but we leave this to the
reader. Let I be a generic filter on j(Q) over V[G * H|. The incentive is to
extend j in V[G x H * I] such that j(G* H x I) = G * H * I, where I is the
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filter on Q generated by m[/].

When extending the elementary embedding, we always have to keep track of
the cardinal k. In M[G * H| and V[G * H]|, k is equal to ws and its successor
k% is equal to w3 by assumption on k. Nevertheless, in the model M |G * H]
we have that j(k) is equal to wy. Note that x and k1 are both ordinals with
cofinality wy in (wy,ws). Here, k™ denotes the ordinal successor, since & is
no longer a cardinal in this extension.

One can easily deduce from Theorem 4.1.17 and the Recursion Hypotheses
(1) and (4) that the sequences (Q, : a < s*) and (T'(a) : a < ) are in
MIG * H].

Definition 4.1.34. For each o < k™, we define a map ©, with domain
7(Qq) in MG x H] as follows. For a condition q in j(Qy), let the domain
of T be equal to j7'(dom(q) N jla]), and for every v in this domain, let
ma(0)(7) = q(i(7)) [ &%

Note that for a condition ¢ in j(Q,), ¢ is a partial function from j(a) to
j(R) whose domain is countable. Hence, dom(q) N j[«] is a countable subset
of j(a). Furthermore, j7'(dom(q) N j[a]) is a countable subset of . By
the fact that M[G * H| is an extension of M by an w;-distributive forcing
notion, the set j~!(dom(q) N j[a]) is in M. Thus, j~'(dom(q) N j[a]) is in
V[G % H]. The next lemma shows that this definition is well-defined. The
following proposition and theorem summarize the properties of the mapping

7 and can be found in [8].

Lemma 4.1.35. In M|[G x H], R = {s € j(R) : a®* C k}. Therefore if t is in
J(R), then t | k2 is in R.

Proposition 4.1.36. For all « < k%, 7, is a projection mapping 7, :
J(Qn) = Q. Furthermore, ift < m,(q) in Qq, then j(t) and q are compatible
in ](Qa)

Definition 4.1.37. We define m = m.+. Therefore, 7 is a map from j(Q) to
Q.
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Theorem 4.1.38. Suppose that I is a j(Q)-generic filter over V[G x H|. If

I = 7[I], then the elementary embedding j can be lifted to j : V|G x H x I] —
MG * H x I] with j(G+ H* 1) =G H % I.
4.1.6 Preserving stationary sets

This is the last step to acquire Krueger’s result. It remains to show that the

stationarity of sets disjoint from S is preserved by our forcing iteration.
Lemma 4.1.39. M[G * H x I] = M|[G * H = I|[G'|[H'][1].

Proof. By Theorem 4.1.17. M[G x H] = M|G][H|[H']. If we define G’ =
G N Coll(wy, [k, j(k))), then M[G] = M|G]|G’]. Hence

Therefore,

MIG = H + I] = M[G)[G')[H][H'][]].

Since 7 : j(Q) — Q is a projection mapping and 7[I] = I, we obtain

M[GGNH][H'][I] = M[G][G"|[H][H][T][1].
Hence

MG * H + 1) = MIG)[G')[H[H')[1)[1).

By using the Product Lemma repeatedly, we can reverse the order of the

extensions. Because P, is defined in M[G],

MIG)G[H] = M[G][H][G].

Hence,
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Since we defined Q in the model M[G][H], we have

MIGIH][GHI] = MIGIH][I][G'][H].

Thus,

MG+ Hx 1) = M[G * H * I)[G'][H'][1].
[l

The next theorem completes the properties we require from the set S. We

refer the reader to [8] for the long proof.

Theorem 4.1.40. In V[GxHxI]|, suppose T is a stationary subset of P, (k)
which is disjoint from S.. Then T remains a stationary subset of P, (k) in

MI[G x H * 1.

4.2 WRP(wy) implies RP(ws) if 241 = wy

In this section we revisit Section 2.2. As a corollary, we obtain that the Weak
Reflection Principle for ws implies the Reflection Principle for wy under the

assumption that 2 = wy. For w,, we use CH and 2“"—! = w,,.

Corollary 4.2.1. Suppose CH holds and 2“"—* = w,, for some 2 < n < w.
Then WRP(w,,) implies RP(w,,).

Corollary 4.2.2. Suppose 2" = wy. Then WRP(ws) implies RP(ws2).

Proof of Corollaries 4.2.1 and 4.2.2. Let S be a stationary subset of P, (wy,).
By Theorems 2.2.9 and 2.2.10 respectively, there exists a stationary set T' C
S, which does not reflect to any uncountable ordinal in w, N cof(w). By
WRP(w,,), there is an uncountable ordinal o in wy such that T reflects to a.
By the choice of T the cofinality of a must be w;. Therefore, S also reflects

to an uncountable ordinal in w, with cofinality w;. 0
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4.3 WRP(w;) and SSR(ws)

In this section we compare the Semistationary Reflection Principle to the
Weak Reflection Principle and prove that they are equivalent for ws. For

bigger cardinals we can separate them using a supercompact.

Theorem 4.3.1. For a cardinal A > wy, WRP(A) implies SSR(N).

Proof. Assume that WRP(\) holds. Take an arbitrary semistationary set
S C P, (N). Let T be the set of wy-extensions of elements of S, i.e. T =
{y € Pu,(A) | 3x € S x C y}. Since S is semistationary, T" is stationary. By
WRP(A) there exists X C A such that |X| = w; € X and T NP, (X) is
stationary in P, (X). But TNP,(X)={y € P, (X)|Fre Sz Ty} C
{y € P,y(N) | 3z € SNP,,(X) z C y}, which is the set of wi-extensions of
elements of SN P, (X). Hence SN P, (X) is semistationary. O

Next we are going to show that at stage ws, those reflection principles are

equivalent. This is actually false for all cardinals > w3. We follow Sakai [13].

Theorem 4.3.2. SSR(ws) implies WRP(ws) and therefore they are equiva-

lent.
For the proof of Theorem 4.3.2 we need the following lemma.

Lemma 4.3.3. Let A and k be cardinals such that k is reqular and wy < kK <
A. Suppose for a set S C P, () there exists X € Pi(\) such that X Nk € Kk
and S NP, (X) is semistationary. Let X* € P(\) satisfy

(1) w1 € X* Nk €k and SN P, (X*) is semistationary,

(2) for every X € Py.(N), ifwy € XNk €k and SNP,, (X) is semista-
tionary then sup(X™*) < sup(X).

Then

So = {y € Puy(X*) |z € SNPL(X*) 2 Ty A sip(z) = sup(y)}
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is stationary in P, (X*).

Proof. Assume that Sy is non-stationary. Let S; := {y € P,,(X*) | Iz €
SNP,(X*)zEy A sup(x) < sup(y)}. Since Sy U S; is the set of all
wi-extensions of elements of S, this union is stationary. By the assumption
and the fact that the union of two non-stationary sets is non-stationary, S;
must be stationary. For each y € S, choose z, € S with z, C y and
stup(z) < sup(y). Let &, € y with sup(z,) < §,. By Fodor’s Lemma there
exists £* € X* such that S* = {y € S; | §{ = &'} is stationary. Let
X' = X* N Since X* € Pi(N), we get that X* € P,(A). Clearly,
w1 € X' Nk € k. Furthermore sup(X’) < sup(X*).

Now we show that SN P, (X’) is semistationary, which is a contradiction to
property (2) of X*. Note that for y € S*, =, € P, (X’) since z, € X* and
sup(z) < &*. Therefore, z, C y N X'. Hence,

{ynX'|ye St C{yePu,(X') |3z € SNP,(X') z Cy}.

Since S* is stationary in P, (X') the left side is stationary in P, (X*). Thus
the right side is stationary, which implies that SNP,,, (X’) is semistationary.
[

Proof of 4.3.1. Suppose that SSR(ws) holds. Let S be a stationary subset of
P, (ws). For each v € [wy,wy) fix a bijection 7, : w; — a. Without loss of
generality we may assume for each x € S that w; < sup(z) and z is closed
under 7, and 7! for each a € x \ wy.

Let o be the least ordinal in wy to which S reflects and Sy be the set of all
y C P, (a') such that

(1) there exists z € S NP, (/) with  C y and sup(z) = sup(y), and
(2) y is closed under 7, and 7! for every a € y \ wy.

Then Sy is stationary in P, (/) by Lemma 4.3.3. For every y € Sy choose a
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set x, € SN Py, (') witnessing (1). But if y € Sy then
yNa=m,(yNwy) =me(zy Nwy) =2, N

for every a € z, \ w;. Then sup(y) = sup(z,) implies y = x, for each y € 5.
Therefore Sy C S NPy, () and hence S NP, (o) is stationary.

O

We conclude this section with the theorem refuting the equivalence of SSR(\)
and WRP(A) for A > w,. The proof can be found in [13].

Theorem 4.3.4 (Sakai). Let k be a supercompact cardinal. Then there exists
a generic extension in which SSR(X) holds for all X\ > wy but WRP () fails

for every A > ws.
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