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Abstract

A stationary reflection principle in Pω1(κ) is a statement of the form ”for

every stationary subset S of Pω1(κ), there exists a set X ⊆ κ of size ω1 such

that ω1 ⊆ X and S∩Pω1(X) is stationary in Pω1(X)”. In short, we say that

S reflects to X. The main difference between these principles is the cofinal-

ity of the reflecting set X. Without restriction, we call this statement the

Weak Reflection Principle. Requiring cof(ot(X)) = ω1, we obtain a stronger

principle, namely the Reflection Principle. Interesting results can also be

derived when we replace stationary with semistationary, a notion introduced

by Shelah.

The goal of this thesis is to present all known results concerning the consis-

tency of these stationary reflection principles in Pω1(κ), where κ is a regular

cardinal. Our main focus is on Pω1(ω2).

We start by proving facts about a partial version of reflection. This kind

of stationary reflection deals with reflecting points of a stationary subset of

Pω1(ω2). This theory was developed by Sakai. He proved its consistency

without the use of large cardinals. We will use the techniques developed by

König-Larson-Yoshinobu to show the failure of the cofinality ω case of the

Partial Stationary Reflection Principles for Pω1(ω2) under 2ω1 = ω2 and for

Pω1(ωn) under CH and 2ωn−1 = ωn for n > 2.

Then we continue with the consistency of the stationary reflection principles

mentioned above. For those results, we need large cardinals. The Weak

and the Strong Reflection Principle for ω2 are equiconsistent with a weakly
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compact cardinal. Similarly, one can derive consistency for all cardinals by

Lévy collapsing a supercompact to ω2. Moreover, we show that we do not

have to be concerned with the restriction of the cofinality of the reflecting set

X to ω, since this statement is inconsistent. We mention a result by Sakai,

who proved that under the assumption of a strongly compact cardinal, the

Semistationary Reflection Principle is consistent.

In the final chapter we present the known implications between the Weak

Reflection Principle, the Strong Reflection Principle, and the Semistationary

Reflection Principle.



Zusammenfassung

Ein Reflexionsprinzip für stationäre Mengen in Pω1(κ) ist eine Aussage der

Form ”für jede stationäre Teilmenge S von Pω1(κ) existiert eine Menge

X ⊆ κ der Größe ω1, sodass ω1 ⊆ X und S ∩ Pω1(X) in Pω1(X) stationär

ist”. Kurz gesagt, S wird von X reflektiert. Der größte Unterschied zwischen

diesen Prinzipien ist die Kofinalität der reflektierenden Menge X. Ohne Ein-

schränkung wird diese Aussage Schwaches Reflexionsprinzip genannt. Setzt

man cof(ot(X)) = ω1 voraus, erhält man ein stärkeres Prinzip, das Refle-

xionsprinzip. Man kann interessante Resultate erzielen, wenn man stationär

durch semistationär ersetzt, ein Begriff, der von Shelah eingeführt wurde.

Ziel dieser Arbeit ist es, die bekannten Resultate über die Widerspruchsfrei-

heit der Reflexionsprinzipien stationärer Mengen in Pω1(κ) zu präsentieren,

wobei κ eine reguläre Kardinalzahl bezeichnet. Unser Hauptaugenmerk rich-

tet sich auf Pω1(ω2).

Wir beginnen damit, Ergebnisse über eine partielle Version der Reflexion zu

präsentieren. Diese Art von Reflexion behandelt Reflexionspunkte stationärer

Teilmengen einer stationären Menge in Pω1(ω2). Diese Theorie wurde von

Sakai entwickelt. Er zeigte die Widerspruchsfreiheit der Prinzipien ohne Ver-

wendung großer Kardinalzahlen. Wir verwenden Methoden, die von König-

Larson-Yoshinobu entwickelt wurden, um zu zeigen, dass wenn 2ω1 = ω2, die

Restriktion der Kofinalität zu ω in Pω1(ω2) fehlschlägt. Wir zeigen dies auch

allgemeiner für partielle Reflexion in Pω1(ωn) unter der Annahme von CH

und 2ωn−1 = ωn für n > 2.
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Danach behandeln wir die Widerspruchsfreiheit der oben genannten Re-

flexionsprinzipien für stationäre Mengen. Um diese Resultate zu erhalten,

benötigen wir große Kardinalzahlen. Die Widerspruchsfreiheit des Schwachen

und Starken Reflexionsprinzips für ω2 ist äquivalent zu der Widerspruchs-

freiheit einer weakly compact cardinal. Auf ähnliche Weise kann man die

Widerspruchsfreiheit dieser Reflexionsprinzipien für alle Kardinalzahlen ab-

leiten, wenn man eine supercompact cardinal zu ω2 kollabiert. Weiters zeigen

wir, dass die Einschränkung der Kofinalität der reflektierenden Menge X auf

ω irrelevant ist, da diese Aussage nicht widerspruchsfrei ist. Wir erwähnen

ein Resultat von Sakai, das aussagt, dass unter der Annahme einer strongly

compact cardinal das Reflexionsprinzip für semistationäre Mengen wider-

spruchsfrei ist.

Im letzten Kapitel präsentieren wir die bekannten Implikationen zwischen

dem Schwachen Reflexionsprinzip, dem Starken Reflexionsprinzip und dem

Semistationären Reflexionsprinzip.



CONTENTS 7

Acknowledgements

First, I want to thank my advisor Sy-David Friedman for the opportunity

to write my master thesis at the KGRC. I am very grateful for his time

and advice. It was an honor to work with such a prestigious mathematician

and wonderful teacher. I also want to thank Hiroshi Sakai for being so kind

and helpful in answering my questions. I am grateful to my teacher Alexan-

dra Lux, who showed me that mathematics goes beyond what is taught in

school and without whom I would not have attended the Summer School of

Mathematics, where I also met two of my best friends and colleagues Martin
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Chapter 1

Introduction

This introduction is meant to give the basic definitions and tools necessary

for this thesis. The reason for studying stationary reflection principles is

that they have interesting combinatorial consequences. The Weak Reflection

Principle for ω2, for example, implies 2ω ≤ ω2, ∼�ω2 , and that every station-

ary subset of ω2 with cofinality ω reflects to an ordinal in ω2 with cofinality

ω1. Foreman-Magidor-Shelah were the ones who introduced this principle in

the context of Martin’s Maximum which shares similar consequences. The

notion of semistationarity was introduced by Shelah [15] in connection to

semiproperness of posets.

1.1 Stationary and semistationary sets

Clubs and stationary sets in Pω1(κ) are natural extensions of these notions in

a cardinal κ. We let Pω1(κ) = {a ⊆ κ | |a| < ω1} and for a regular cardinal κ,

let cof(κ) denote the class of all ordinals with cofinality κ. Instead of giving

those definitions for a cardinal κ, we give them for an arbitrary set X.

Definition 1.1.1. Let X be an arbitrary set. A subset C of Pω1(X) is closed

and unbounded (or club) in Pω1(X) if the following two properties hold.

8
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(1) ∀x ∈ Pω1(X) ∃y ∈ C x ⊆ y, and

(2) for every increasing sequence 〈xn : n < ω〉 of elements of C,⋃
{xn : n < ω} ∈ C.

A subset S of Pω1(X) is called stationary if S intersects every club in

Pω1(X).

For a set Y ⊆ X, we say that S reflects to Y if S ∩ Pω1(Y ) is stationary in

Pω1(Y ).

If it is clear from the context, we will omit in which space a set is club.

Sometimes we will use the equivalent definition of club and stationary in

terms of functions.

Definition 1.1.2. For a function F : Pω(X)→ X and x ⊆ X, we say that

x is closed under F if for every y ∈ Pω1(x), F (y) ⊆ x.

Fact 1.1.3 ([9]). If C ⊆ Pω(X) is club, then there exists a function F :

Pω(X)→ X such that every set in Pω1(X) which is closed under F is in C.

Then S ⊆ Pω1(X) is stationary if for any function F : Pω(X)→ X there is

a set b ∈ S which is closed under F .

One of the most important lemmata in connection to stationary sets is

Fodor’s Lemma, which states that for certain functions there are station-

ary sets on which they are constant.

Definition 1.1.4. A partial function F : Pω1(X) → X is regressive if for

all a in the domain of F , F (a) is a member of a.

Lemma 1.1.5 (Fodor ([5], 8.7)). If S ⊆ Pω1(X) is a stationary set and

F : S → X a total regressive function, then there is a stationary set T ⊆ S

and a set x in X such that F (a) = x for all a in T .
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In order to show ω1-distributivity of a forcing poset, we will make frequent

use of the following generalized version of the ∆-System Lemma.

Theorem 1.1.6 (∆-System Lemma ([5], 9.19)). Assume GCH and κ<κ =

κ. Suppose X is a collection of sets with cardinality less than κ and |X| = κ+.

Then there exists a collection Z ⊆ X of size κ+ and a set A such that

W ∩ Y = A for any two distinct elements W , Y of Z.

Semistationarity was introduced by Shelah [15] in close relation to semiproper-

ness of posets, which we will define in 1.3.11.

Definition 1.1.7. For countable sets x and y, we call y an ω1-extension of

x if x ⊆ y and x ∩ ω1 = y ∩ ω1. We write x v y.

Definition 1.1.8. Let X be a set such that ω1 ⊆ X. A set S ⊆ Pω1(X) is

semistationary if the set of ω1-extensions {y ∈ Pω1(X) | ∃x ∈ S x v y} of

elements of S is stationary in Pω1(X).

Note that for a set X of size ω1, the notion of stationary and semistationary

are the same on Pω1(X). It is clear that if S denotes a stationary subset of

Pω1(X), then S∗ = {y ∈ Pω1(X) | ∃x ∈ S x v y} ⊇ S is also stationary on

Pω1(X). Therefore S is also semistationary. If S is a semistationary subset

of Pω1(X), then S∗ = {y ∈ Pω1(X) | ∃x ∈ S x v y} is stationary on Pω1(X)

by definition. Let h be a function from Pω(X) to X defining a club. Then

there exists a set y ∈ S∗ which is closed under h. By definition of S∗, there

is a set x ∈ S such that x v y, i.e. x ⊆ y and x ∩ ω1 = y ∩ ω1. Since

|X| = ω1, there is a bijection between X and ω1. But x and y coincide on ω1

and therefore x is also closed under h. Hence, S is also stationary in Pω1(X).

As a consequence, we can say that S reflects to X, S is stationary in Pω1(X)

or S is semistationary in Pω1(X).

The next fact can be found in [11]. We use it to prove Lemma 1.1.10, a

property unique for semistationary sets.
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Fact 1.1.9. Let κ be a regular cardinal and X and X ′ be sets with κ ⊆ X ⊆
X ′.

(1) If C ⊆ Pκ(X) is club then the set {x′ ∈ Pκ(X ′) | x′∩X ∈ C} is club in

Pκ(X ′). Thus, if S ′ ⊆ Pκ(X ′) is stationary then the set {x′ ∩X | x′ ∈
S ′} is stationary in Pκ(X).

(2) If C ′ ⊆ Pκ(X ′) is club then the set {x′ ∩ X | x′ ∈ C ′} contains a

club in Pκ(X). Thus, if S ⊆ Pκ(X) is stationary then the set {x′ ∈
Pκ(X ′) | x′ ∩X ∈ S} is stationary in Pκ(X ′).

Lemma 1.1.10. Let X and X ′ be sets with ω1 ⊆ X ⊆ X ′.

(1) If S ′ ⊆ Pω1(X
′) is semistationary then the set {x′ ∩ X | x′ ∈ S ′} is

semistationary in Pω1(X).

(2) If S ⊆ Pω1(X) is semistationary then S is semistationary in Pω1(X
′).

Proof. (1) Since S ′ is semistationary in Pω1(X
′), the set

T ′ = {y ∈ Pω1(X
′) | ∃x ∈ S ′ x v y}

is stationary in Pω1(X
′). By Fact 1.1.9 (1), the set {y ∩ X | y ∈ T} is

stationary in Pω1(X). Since

{y ∩X | y ∈ T} ⊆ {y ∈ Pω1(X) | ∃x′ ∩X (x′ ∈ S ′ ∧ x′ ∩X v y)},

the right side is also stationary in Pω1(X). But this is the set of ω1-extensions

of elements of {x′ ∩ X | x′ ∈ S ′}. Therefore, {x′ ∩ X | x′ ∈ S ′} is semista-

tionary.

(2) Let S ⊆ Pω1(X) be semistationary and

T = {y ∈ Pω1(X) | ∃x ∈ S x v y}.
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Note that T is a subset of

T ′ = {y ∈ Pω1(X
′) | ∃x ∈ S x v y}.

Since T is stationary in Pω1(X), so is T ′. Since

T ′ = {y ∈ Pω1(X
′) | y ∩X ∈ T},

T ′ is stationary in Pω1(X
′) by 1.1.9 (2). Hence S is semistationary in

Pω1(X
′).

1.2 The principles

In this section we give an overview of the reflection principles we work with.

Two versions of each principle can be found throughout the literature. We

state both and prove to some extent that they are equivalent. These defini-

tions can be easily generalized by replacing ω2 with a larger cardinal.

Definition 1.2.1. For a stationary set S∗ ⊆ Pω1(ω2) and k ∈ {0, 1}, let the

Partial Stationary Reflection Principle for ω2 or SRk(S
*) denote the following

principle:

SRk(S
*) ≡ For every stationary set S ⊆ S∗ there is a set X ⊆ ω2 of size ω1

with ω1 ⊆ X and cof(ot(X)) = ωk such that S reflects to X.

The Weak Reflection Principle for ω2 or WRP(ω2) is the statement:

WRP(ω2) ≡ For every stationary set S ⊆ Pω1(ω2) there is a set X ⊆ ω2 of

size ω1 with ω1 ⊆ X such that S reflects to X.

The Reflection Principle for ω2 or RP (ω2) is the statement:

RP(ω2) ≡ For every stationary set S ⊆ Pω1(ω2) there is a set X ⊆ ω2 of

size ω1 with ω1 ⊆ X and cof(ot(X)) = ω1 such that S reflects to X.
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The Semistationary Reflection Principle for ω2 or SSR(ω2) is the statement:

SSR(ω2) ≡ For every semistationary set S ⊆ Pω1(ω2) there is a set X ⊆ ω2

of size ω1 with ω1 ⊆ X such that S ∩ Pω1(X) is semistationary in Pω1(X).

In fact, we can require X to be an ordinal and the statement is unchanged.

Since this seems to make things easier, we will use the following versions of

the reflection principles.

Definition 1.2.2. For a stationary set S∗ ⊆ Pω1(ω2) and k ∈ {0, 1}, let

SRk(S
*) denote the following principle:

SRk(S
*) ≡ For every stationary set S ⊆ S∗ there is an uncountable ordinal

α ∈ ω2 with cof(α) = ωk such that S reflects to α.

The Weak Reflection Principle for ω2 or WRP(ω2) is the statement:

WRP(ω2) ≡ For every stationary set S ⊆ Pω1(ω2) there is an uncountable

ordinal α ∈ ω2 such that S reflects to α.

The Reflection Principle for ω2 or RP(ω2) is the statement:

RP(ω2) ≡ For every stationary set S ⊆ Pω1(ω2) there is an ordinal α ∈ ω2

with cofinality ω1 such that S reflects to α.

The Semistationary Reflection Principle for ω2 or SSR(ω2) is the statement:

SSR(ω2) ≡ For every semistationary set S ⊆ Pω1(ω2) there is an

uncountable ordinal α ∈ ω2 such that S ∩ Pω1(α) is semistationary in

Pω1(α).

It suffices to show that the set version implies the ordinal version. First

we show this for the Weak Reflection Principle, then for the Semistationary

Reflection Principle.

Take a surjection σα : ω1 → α for each α < ω2 and let the function f :

ω2 × ω1 → ω2 be defined by f(α, ξ) = σα(ξ) for each (α, ξ) ∈ ω2 × ω1.
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Consider an arbitrary stationary set S ⊆ Pω1(ω2). Without loss of generality,

we may assume that every element of S is closed under f . Let X be a witness

for the set version of WRP(ω2) for S, i.e., X is a subset of Pω1(ω2) such that

|X| = ω1 ⊆ X and S ∩ Pω1(X) is stationary in Pω1(X). Since X is closed

under f for stationary many elements, X is closed under f . Therefore, α ⊆ X

for all α ∈ X. Hence, X is an uncountable ordinal in ω2.

As above it suffices to show that the set version of SSR(ω2) implies the ordinal

version. Let ¯sup(x) = sup{α + 1 | α ∈ x}. Take an arbitrary semistationary

set S ⊆ Pω1(ω2). Let X ⊆ ω2 be a witness for the set version of SSR(ω2) for

S and X ′ := ¯sup(X). Then X ′ is an uncountable ordinal in ω2. By Lemma

1.1.10 (2) we get that S ∩ Pω1(X
′) is semistationary in Pω1(X

′). Therefore

S ∩ Pω1(X
′) is semistationary. Hence X ′ witnesses the ordinal version of

SSR(ω2).

1.3 Forcing

In this part of the introduction we will give an overview of most of the

definitions and facts about forcing which are needed in later chapters. More

on forcing can be found in the books of Jech [5] and Kunen [10].

A forcing poset or forcing notion is a partial order (P, <), which is reflexive

and transitive. As usual, V denotes the set theoretic universe. Furthermore,

we say that a cardinal θ is sufficiently large, if θ > 2|P|. A model M is an

elementary submodel of the structure 〈H(θ),∈, <, ...〉 where H(θ) denotes

the collection of sets hereditarily of cardinality less than θ, < is an unspecific

well-order of H(θ), and H(θ) contains all relevant objects. In particular, the

model M contains (P, <). From now on we will abuse notation and let P
denote the forcing notion.

Definition 1.3.1. We say that a forcing notion P satisfies the κ-chain con-

dition or κ-c.c. if every antichain in P has size less than κ. The ω1-c.c. is

the countable chain condition or c.c.c.
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Fact 1.3.2 ([5], 15.13). Let κ be a regular cardinal. If P satisfies the κ-c.c.,

then κ remains a regular cardinal in any generic extension by P.

Therefore if P satisfies the κ-c.c., all regular cardinals ≥ κ are preserved.

Definition 1.3.3. A forcing notion P is κ-Knaster for a regular uncountable

cardinal κ, if for any sequence 〈pi : i < κ〉 of conditions of P there exists a

set Z ⊆ κ of size κ such that for all i < j in Z, the conditions pi and pj are

compatible.

It is easy to see that if a forcing notion is κ-Knaster, then it has the κ-c.c.

Definition 1.3.4. A forcing notion P is κ-distributive if the intersection of

less than κ-many open dense sets is dense.

Note that κ-distributivity implies that for a generic filter G on P over V , if

x ⊆ V in V [G] with V [G]  |x| < κ, then x ∈ V . In particular, no new

bounded subsets of κ are added.

Definition 1.3.5. For two forcing notions P and Q we define the product

P × Q as the set of all pairs (p, q) such that p ∈ P and q ∈ Q with the

following partial order:

(p, q) ≤ (p′, q′) if and only if p ≤ p′ and q ≤ q′.

If G is a generic filter on P×Q let

G1 = {p ∈ P | ∃q (p, q) ∈ G}, G2 = {q ∈ Q | ∃p (p, q) ∈ G}.

Then G1 and G2 are generic on P and Q respectively and G = G1 ×G2.

Fact 1.3.6 (Product Lemma ([5], 15.9)). Suppose that P and Q are two

forcing notions in V . Then the following are equivalent:

(1) G ⊆ P×Q is generic over V .
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(2) G = G1 × G2, G1 ⊆ P is generic over V and G2 ⊆ Q is generic over

V [G1]. Furthermore, V [G] = V [G1][G2].

Consequently, if G1 is generic over V and G2 is generic over V [G1], then G1

is generic over V [G2]. Also V [G1][G2] = V [G2][G1].

Now we describe a generalization of product forcing, namely iterated forcing.

Definition 1.3.7 (Iteration of length α). Let α ≥ 1. A forcing notion

Pα is an iteration of length α if it is a set of α-sequences which satisfies the

following properties:

(1) If α = 0, then there exists a forcing notion Q0 such that

(a) P1 is the set of all 1-sequences 〈p(0)〉 with p(0) ∈ Q0,

(b) 〈p(0)〉 ≤1 〈q(0)〉 if and only if p(0) ≤ q(0).

(2) If α = β + 1, then Pβ = Pα � β = {p � β | p ∈ Pα} is an iteration of

length β and there exists a forcing notion Q̇β ∈ V P such that

(a) p ∈ Pα if and only if p � β ∈ Pβ and β p(β) ∈ Q̇β,

(b) p ≤α q if and only if p � β ≤β q � β and β p(β) ≤ q(β).

(3) If α is a limit ordinal, then for each β < α, Pβ = Pα � β is an iteration

of length β and

(a) the α-sequence 〈1, 1, . . . , 1, . . . 〉 is in Pα,

(b) for p ∈ Pα and β < α, if q ∈ Pβ satisfies q ≤Pβ p � β, then there

exists r ∈ Pα such than for each ξ < α, r(ξ) = q(ξ) if ξ < β and

r(ξ) = p(ξ) if β ≤ ξ < α,

(c) p ≤α q if and only if ∀β < α p � β ≤β q � β.

A forcing iteration depends not only on the forcing notion Q̇β but also on

the limit stages of the iteration. We distinguish between two sorts of limits.
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Definition 1.3.8. Suppose Pα is an iteration of length α where α is a limit

ordinal. Then Pα is a direct limit if for every α-sequence p,

p ∈ Pα if and only if ∃β < α p � β ∈ Pβ and ∀ξ ≥ β p(ξ) = 1.

We call Pα an inverse limit if for every α-sequence p,

p ∈ Pα if and only if ∀β < α p � β ∈ Pβ.

Countable support iterations will be an important tool in this thesis.

Definition 1.3.9. The set supp(p) = {β < α | 6β p(β) = 1} is the support

of p ∈ Pα. Let α be an ordinal and I be the ideal on α consisting of all

at most countable sets. A forcing iteration Pα has countable support if for

every limit ordinal γ ≤ α,

p ∈ Pγ if and only if ∀β < γ p � β ∈ Pβ and supp(p) ∈ I.

Theorem 1.3.10 ([5], 16.30). Suppose κ is a regular cardinal and α is a

limit ordinal. Further, let Pα be a forcing iteration such that for every β < α,

Pβ = Pα � β satisfies the κ-chain condition. If Pα is a direct limit and either

cof(α) 6= κ or Pβ is a direct limit for a stationary set of ordinals β < α, then

Pα satisfies the κ-chain condition.

The idea of semiproperness and therefore semistationary sets was introduced

by Shelah in [15]. We give the basic definitions.

Definition 1.3.11. Suppose P is a forcing notion and θ a sufficiently large

cardinal. For a countable elementary submodel N ≺ 〈H(θ),∈〉, a condition

q is (N,P)-semigeneric, if for every name α̇ ∈ N with  ”α̇ is a countable

ordinal”,

q  ∃β ∈ N α̇ = β.

We call a forcing notion P semiproper, if for every regular θ > 2|P|, any
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countable elementary submodel N ≺ 〈H(θ),∈〉 containing P, the following

holds.

∀ p ∈ P ∩N ∃ q ≤ p q is (N,P)− semigeneric

Shelah showed that a forcing notion P is semiproper if and only if P preserves

semistationarity. Interesting consequences of this statement can be found in

[15] and [3].

Even though we will not use semigeneric conditions, we make frequent use

of generic conditions and generic sequences.

Definition 1.3.12. Suppose P is a forcing notion and M a countable ele-

mentary submodel of 〈H(θ),∈, <, ...〉 for a sufficiently large θ. A condition

p is (M,P)-generic (or M -generic), if for every antichain A in M , the set

A ∩M is predense below p.

Definition 1.3.13. Let P be a forcing notion and M a countable set. A

descending sequence 〈pn : n < ω〉 of conditions in P is called an (M,P)-

generic sequence, if pn ∈M for every n < ω and for every dense open subset

D ⊆M of P there exists n < ω with pn ∈ D.

Since we are often concerned with lower bounds of (M,P)-generic sequences,

note that such lower bounds are (M,P)-generic conditions.

1.4 Large cardinals

We will now introduce those large cardinals, whose existence is needed for

our consistency results. We start by defining the property all large cardinals

satisfy, namely weak inaccessibility. The existence of weakly inaccessible

cardinals is not provable in ZFC. For more information about large cardinals

the reader is referred to [5] or [4].

Definition 1.4.1. We call a cardinal κ > ω weakly inaccessible if it is

regular and limit.
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We call a cardinal κ > ω strongly inaccessible if it is regular and for all

µ < κ, 2µ < κ.

We derive the consistency of our reflection principles from weakly, strongly,

and supercompact cardinals. We give the definitions in terms of elementary

embeddings. If j is an elementary embedding and κ is the critical point, then

j is the identity map on all ordinals γ < κ and j(κ) > κ.

Definition 1.4.2. Assume that κ > ω. Then

(1) κ is called weakly compact, if κ is inaccessible and for every transitive

model M of ZF without the powerset axiom of size κ satisfying κ ∈
M and M is closed under sequences of length < κ, there exists an

elementary embedding j : M → N , where N is transitive and κ is the

critical point of j.

(2) κ is called µ-strongly compact, if there exists an elementary embedding

j : V →M with critical point κ, j(κ) > µ, and for any X ⊆M of size

≤ µ, there exists a Y ∈M such that Y ⊇ X and (|Y | < j(κ))M .

We say that κ is strongly compact, if it is µ-strongly compact for every

ordinal µ.

(3) κ is called µ-supercompact, if there is an elementary embedding j :

V → M with critical point κ, j(κ) > µ and µM ⊆ M , i.e., every

sequence of length µ of elements of M is in M .

We say that κ is supercompact, if it is µ-supercompact for every ordinal

µ.

We will make use of these elementary embeddings in the following way:

First, we use the Lévy Collapse to collapse the large cardinal to ω2. If

P = Coll(ω1, < κ), we can factorize j(P) = Coll(ω1, < κ) ∗ Coll(ω1, [κ, j(κ))

using standard arguments. In the extension, κ will no longer be a cardinal,

but an uncountable ordinal in j(κ) = ω2. Therefore, if a set S is stationary in
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Pω1(κ) as it will be by assumption, then κ witnesses that there is an uncount-

able ordinal α in j(κ) = ω2 such that j(S) reflects to α. By elementarity of

j, there is a witness for the reflection principle in the original model.



Chapter 2

Partial Stationary Reflection

Instead of looking at stationary subsets of the space Pω1(ω2), we are inter-

ested in the reflection points of a stationary set S∗ ⊆ Pω1(ω2). We denote

this principle with SRk(S
*), where k ∈ {0, 1} asserts that the cofinality of the

reflecting set is ωk. The first question is if the principles SRk(S
*) are consis-

tent from ZFC for k ∈ {0, 1}. We give a positive answer which is due to Sakai

[12]. Furthermore we want to know if a set S∗ exists such that SRk(S
*) holds.

We will show that if 2ω1 = ω2, then SR0(S
*) does not hold for any stationary

subset S∗ ⊆ Pω1(ω2) and under CH and 2ωn−1 = ωn, SR0(S
*) does not hold

for S∗ ⊆ Pω1(ωn) for n > 2. This was proven in König-Larsen-Yoshinobu [7].

Recall that for a stationary subset S∗ ⊆ Pω1(ω2) and k ∈ {0, 1},we let

SRk(S
*) denote the following principle:

For every stationary subset S ⊆ S∗ there exists an uncountable ordinal α in

ω2 with cofinality ωk such that S reflects to α.

2.1 SRk(S
*) is consistent with ZFC

Sakai proved in [12] that for the consistency of partial stationary reflection

no large cardinal is needed. The goal of this section is to prove the following

theorem.

21
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Theorem 2.1.1. If ZFC is consistent, then so is ZFC with the existence of

a stationary set S∗ ⊆ Pω1(ω2) such that SRk(S
*) holds for k ∈ {0, 1}.

The idea of proving Theorem 2.1.1 is to construct stationary sets S
~C
k for

k ∈ {0, 1} from a �ω1-sequence which are maximal with respect to reflection.

We define a countable support iteration of club shootings which destroys

the stationarity of all non-reflecting subsets of S
~C
k . In order to preserve ω1-

distributivity and ω2-c.c. at each stage of our iteration, we use T -complete

and better forcing notions. This gives us absoluteness of stationarity in any

generic extension.

Definition 2.1.2. Let P be a forcing notion, α an ordinal ≥ ω1, and T a

subset of Pω1(α). We call P a T -complete forcing notion if it satisfies the

following property:

For a sufficiently large cardinal θ and a countable elementary submodel M of

〈H(θ),∈,P, T 〉 with M ∩ α ∈ T , every (M,P)-generic sequence has a lower

bound in P.

We give one of the equivalent definitions of T -completeness via the following

lemma.

Lemma 2.1.3. Let P be a forcing notion, α an ordinal ≥ ω1, and T be a

subset of Pω1(α). Then P is T -complete if and only if the following holds:

There exists a regular cardinal θ with P, T ∈ H(θ) and an expansion M of

the structure 〈H(θ),∈〉 such that for every countable elementary submodel M

of M with M ∩ α ∈ T , every (M,P)-generic sequence has a lower bound in

P.

For the next result, we use a definition of stationary which can be found in

[5]. A set S ⊆ Pω1(H(θ)) is stationary, if for every model 〈H(θ),∈, ...〉 there

exists an M in S such that M ≺ 〈H(θ),∈, ...〉.

Lemma 2.1.4. Let α be an ordinal ≥ ω1 and T a stationary subset of Pω1(α).

Then every T -complete forcing notion is ω1-distributive.
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Proof. Let P be a T -complete forcing notion and {Dn | n < ω} a family of

dense open subsets of P. For an arbitrary p ∈ P, we must find a condition

p′ ≤ p which is in
⋂
n∈ω

Dn.

Let θ be a sufficiently large regular cardinal. By the stationarity of T , there

exists a countable elementary submodel M of 〈H(θ),∈,P, T 〉 such that {p}∪
{Dn | n < ω} ⊆ M and M ∩ α ∈ T . Take an (M,P)-generic sequence

〈pn : n < ω〉 with p0 = p. Since P is T -complete, there exists a lower bound

p′ of 〈pn : n < ω〉. Clearly, p′ ≤ p and p′ ∈
⋂
n∈ω

Dn.

T -completeness is preserved by countable support iterations.

Lemma 2.1.5. Let α be an ordinal and T be a subset of Pω1(α). If I =

〈Pξ, Q̇η : ξ, η ≤ ζ〉 is a countable support iteration of T -complete forcing

notions for some ordinal ζ, then Pζ is T -complete.

Proof. Let θ be a sufficiently large regular cardinal, M be a countable ele-

mentary submodel of 〈H(θ),∈, I, T 〉, and 〈pn : n < ω〉 an (M,Pζ)-generic

sequence. By Lemma 2.1.3 it suffices to show that 〈pn : n < ω〉 has a lower

bound in P.

Claim. For η ∈ ζ ∩M the sequence 〈pn � η : n < ω〉 is (M,Pη)-generic.

Furthermore, if p′ is a lower bound for 〈pn � η : n < ω〉, then p′ forces that

〈pn(η) : n < ω〉 is an (M [Ġη], Q̇η)-generic sequence, where Ġη is the canoni-

cal name for a Pη-generic filter.

Proof of Claim. It is easy to see that 〈pn � η : n < ω〉 is a descending

sequence in Pη ∩M . Take an arbitrary dense open set D ⊆ M such that

D ∈ Pη. We have to show that there is an n < ω with pn � η ∈ D. Let

D∗ := {p ∈ Pζ | p � η ∈ D}. Note that D∗ is a dense open set in Pη which

belongs to M . By the (M,Pζ)-genericity of the sequence 〈pn : n < ω〉, there

is an n < ω with pn ∈ D∗. Then pn � η ∈ D for this n.

For the second part of the claim, it suffices to show the genericity of the

sequence 〈pn(η) : n < ω〉. Let Ḋ ∈ M be a Pη-name of a dense open subset

of Q̇η. We must find n < ω with p′ η ”pn(η) ∈ Ḋ”.
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Let

D∗∗ := {p ∈ Pζ | p � η η ”p(η) ∈ Ḋ”}.

Clearly D∗∗ is a dense open set in Pη and belongs to M . Therefore, there

exists n < ω with pn ∈ D∗∗. Then p′ η ”pn(η) ∈ Ḋ” and p′ ≤ pn � η. This

proves the claim.

Now we can construct a lower bound p′ of the sequence 〈pn : n < ω〉. We

define p′ such that it is a function whose domain is ζ and p′(η) is a Pη-name

for a condition of Q̇η for each η < ζ. We choose p′(η) by induction on η < ζ:

(1) p′ � η η ”p′(η) is a lower bound of 〈pn(η) : n < ω〉”.

(2) p′(η) = 1̇η for every η < ζ \M .

We make sure that supp(p′) is countable via (2), since M is countable. First

note that if η ≤ ζ and p′(η) satisfies the induction hypotheses for each η′ < η,

then p′ � η = 〈p′(η′) : η′ < η〉 is a lower bound of 〈pn � η : n < ω〉. Secondly,

p′ � η is an (M,Pη)-generic condition by the claim.

Now we construct p′(η). Suppose that for η < ζ, p′ � η has already been

constructed. If η /∈ M , let p′(η) = 1̇η. Since supp(pn) is a countable set

belonging to M for each n < ω and M ≺ 〈H(θ),∈〉, we have that supp(pn) ⊆
M . Therefore pn(η) = 1̇η for each η < ω and hence p′(η) satisfies the first

induction hypothesis.

For η ∈ M , let Ġη be the canonical name for a Pη- generic filter. By the

claim, we have

p′ � η η ”〈pn(η) : n < ω〉 is an (M [Ġη], Q̇η)-generic sequence”.

Furthermore,

p′ � η η ”M [Ġη] ≺ 〈H(θ)V [Ġη ],∈, Q̇η, T 〉 and M [Ġ] ∩ λ = M ∩ λ ∈ T”

by the (M,Pη)-genericity of p′ � η. It is easy to see that the induction
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hypotheses are satisfied. Since we can now construct a lower bound p′ of the

sequence 〈pn : n < ω〉, the proof is complete.

Definition 2.1.6. Let P be a forcing notion. We say that P is good, if:

(1) A condition p ∈ P is a function such that |p| = ω and ran(p) ⊆ ω1.

(2) For p, q ∈ P, p ≤ q if and only if p ⊇ q

(3) For all p, q ∈ P if p � (dom(p)∩ dom(q)) = q � (dom(p)∩ dom(q)) then

p and q are compatible.

We say that P is better if P also satisfies the following property:

(4) If 〈pn : n < ω〉 is a descending sequence in P with a lower bound, then⋃
n∈ω

pn ∈ P.

The following lemma can be shown by using the ∆-System Lemma. We skip

its proof.

Lemma 2.1.7. Every good forcing notion has the (2ω)+-c.c.

If we assume CH, then for a stationary set T , countable support iterations

of T -complete better forcing notions satisfy the ω2-c.c.

Lemma 2.1.8. Let α be an ordinal and T be a subset of Pω1(α). If for

some ordinal ζ, I = 〈Pξ, Q̇η : ξ, η ≤ ζ〉 is a countable support iteration of

T -complete better forcing notions, then Pζ has the (2ω)+-c.c.

Proof. We show that the forcing notion Pζ restricted to a certain dense set

D is good. Then Pζ has the (2ω)+-c.c. by Lemma 2.1.7. Let

D := {p ∈ Pζ | ∀η < ζ ∃q ∈ V p(η) = q̌}.

We show that D is dense in Pζ , i.e., for an arbitrary p ∈ Pζ we find a p′ ∈ D
which is below p. Let θ be a sufficiently large regular cardinal and M a
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countable elementary submodel of 〈H(θ),∈, I, T 〉 with p ∈ M . Such an M

exists because T is stationary. Take an (M,Pζ)-generic sequence 〈pn : n < ω〉
such that p0 ≤ p. The required p′ will be a lower bound of 〈pn : n < ω〉
constructed the same way as in the proof of Lemma 2.1.5.

By induction on η < ζ, we pick a Pη-name p′(η) for a condition in Q̇η. The

induction hypotheses remain the same as in the proof of 2.1.5. So assume

that η < ζ and that P′ � η has already been constructed. The definition of

p′(η) splits into two cases. The first case is that η /∈M . Then let P′(η) = 1̇η.

Since we can assume that 1̇η = ∅̌ for all η < ζ, p′(η) = ∅̌. For the second case

η ∈M we claim the following.

Claim. For all n < ω there exists qn ∈ V with p′ � η η ”pn(η) = q̌n”.

Proof of Claim. Fix n < ω. Now look at the set

A := {p ∈ Pη | ∃q ∈ V p η ”pn(η) = q̌”}.

Since Pη is ω1-distributive by Lemma 2.1.4 and 2.1.5, the set A is a dense

open subset of Pη and A ∈M . Using the claim in the proof of Lemma 2.1.5,

the sequence 〈pm � η : m < ω〉 is (M,Pη)-generic. Therefore there exists

m < ω with pm ∈ A. But then p′ � η ∈ A because p′ is a lower bound of

〈pm : m < ω〉. Hence there exists qn ∈ V such that p′ � η η ”pn(η) = q̌n”,

which proves the claim.

Now we can construct p′(η). For each n < ω let qn be as in the claim above

and q′ :=
⋃
n<ω

qn. Repeating the argument from the proof of Lemma 2.1.5,

one can show that p′ � η forces that the sequence 〈pn(η) : n < ω〉 has a lower

bound in Q̇η. Since Qη is better, p′ � η forces that q′ is a lower bound of

〈pn(η) : n < ω〉. Now let p′(η) = q̌′. By construction, p′ ≤ p and p ∈ D.

Hence D is dense in Pη.
We define the forcing notion PDζ which is Pζ restricted to D (or at least

isomorphic to this forcing notion). First, we observe that by ω1-distributivity

of Pη, p(η) is a countable function from the ordinals to ω1 for each p ∈ D. A

condition p∗ ∈ PDζ for p ∈ D is a partial function from ζ × ON to ω1 whose
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domain is equal to {(η, α) | α ∈ dom(p(η))}. Define p∗(η, α) = p(η)(α) for

all (η, α) ∈ dom(p∗).

Then PDζ = {p∗ | p ∈ D} and for p∗, q∗ ∈ PDζ , we let p∗ ≤ q∗, if p∗ extends

q∗ as a function. By construction, PDζ is good. Then PDζ has the (2ω)+-c.c.

by Lemma 2.1.7. Since D is dense in Pζ , the forcing notion Pζ also has the

(2ω)+-c.c. and the proof of this lemma is complete.

For the proof of Theorem 2.1.1 we need certain subsets S
~C
0 and S

~C
1 of Pω1(ω2),

where ~C = 〈Cα : α ∈ Lim(ω2)〉 denotes a �ω1-sequence. We show that those

sets are maximal with respect to reflection. As usual, when x is a set, then

Lim(x) denotes the set of limit points of x. We will prove that every subset

of Pω1(ω2) \S ~C
0 does not reflect to any uncountable ordinal in Eω2

ω and every

subset of Pω1(ω2) \ S ~C
1 does not reflect to any ordinal in Eω2

ω1
.

Definition 2.1.9. For an uncountable cardinal κ and a set E ⊆ Lim(κ+),

let �Eκ denote the following principle:

�Eκ ≡ There exists a sequence 〈Cα : α ∈ E〉 such that for every α, α′ ∈ E

(1) Cα is a club subset of α,

(2) if cof(α) < κ then ot(Cα) < κ, and

(3) if α′ ∈ Lim(Cα) then Cα′ = Cα ∩ α′.

We call a sequence 〈Cα : α ∈ E〉 satisfying the properties (1)-(3) a �Eκ -

sequence. In the case where E = Lim(κ+) we omit the superscript and write

�κ.

Definition 2.1.10. For a �ω1-sequence ~C = 〈Cα : α ∈ Lim(ω2)〉 let

S
~C
0 := the set of all x ∈ Pω1(ω2) such that

(1) x ∩ ω1 ∈ ω1 and sup(x) /∈ x,

(2) ot(Csup(x)) < x ∩ ω1,

(3) Csup(x) ⊆ x.
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S
~C
1 := the set of all x ∈ Pω1(ω2) such that

(1) x ∩ ω1 ∈ ω1 and sup(x) /∈ x,

(2) ot(Csup(x)) = x ∩ ω1,

(3) Csup(x) ⊆ x.

Lemma 2.1.11. Let ~C = 〈Cα : α ∈ Lim(ω2)〉 be a �ω1-sequence. Then the

following holds:

(1) S
~C
0 ∩ Pω1(α) contains a club in Pω1(α) for every α ∈ Eω2

ω \ ω1.

(2) S
~C
1 ∩ Pω1(α) contains a club in Pω1(α) for every α ∈ Eω2

ω1
.

In particular, both S
~C
0 and S

~C
1 are stationary in Pω1(ω2).

Proof. (1) Fix α ∈ Eω2
ω \ ω1. Since cof(α) = ω, the order type of Cα is

countable by property (2) of the definition of a �ω1-sequence ~C. Let C be

the set of all x ∈ Pω1(α) such that Cα ⊆ x and ot(Cα) < x ∩ ω1 ∈ ω1. Then

C is club in Pω1(α). Since sup(x) ≤ α, we have C ⊆ S
~C
0 .

(2) Fix α ∈ Eω2
ω1

and an enumeration 〈di : i < ω1〉 of the sets in Cα. We

define C as the set of all x ∈ Pω1(α) such that x ∩ ω1 is a countable limit

ordinal, sup(x) = dx∩ω1 /∈ x and {di | i ∈ x ∩ ω1} ⊆ x. Then C is club in

Pω1(α). Now we need to show that C ⊆ S
~C
1 . For every x ∈ C property (1) of

the definition of S
~C
1 is satisfied by definition of C. For (2) and (3) note that

Csup(x) = Cdx∩ω1 = {di | i ∈ x ∩ ω1} by the coherency of ~C. Then Csup(x) ⊆ x

by definition of C and ot(Csup(x)) = x ∩ ω1. Hence C ⊆ S
~C
1 .

Next we define the club shooting Q(S), which is a forcing notion designed to

destroy the stationarity of a given set S by adding a generic function under

which S is not closed. In our iteration we use Q(S) for each non-reflecting

subset S of S∗. By the previous section we need to show that Q(S) is T -

complete and better.
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Definition 2.1.12. Let S be a subset of Pω1(ω2). Define Q(S) as the forcing

poset consisting of conditions p satisfying:

(1) p is a function of the form p : ap × ap → ω1, where ap is a countable

subset of ω2,

(2) for every x in S, if x ⊆ ap, then x is not closed under p.

Let q ≤ p, if q extends p as a function, that is, if ap ⊆ aq and q � (ap×ap) = p.

For a countable set a ⊆ ω2, we write a2 for a× a.

We summarize the properties of Q(S).

Lemma 2.1.13. Let S be a subset of Pω1(ω2).

(1) For every x ∈ Pω1(ω2), the set {p ∈ Q(S) | x ⊆ ap} is dense in Q(S).

(2) Let G be a generic filter on Q(S) over V . Then
⋃
G is a total function,⋃

G : ωV2 × ωV2 → ωV2 . Furthermore, there are no sets y ∈ S which are

closed under
⋃
G.

(3) Q(S) is better.

Proof. (1) For a set y ∈ Pω1(ω2) and a condition p ∈ Q(S) we must find

p′ ≤ p with y ⊆ ap
′
. We define p′ as a function from ap

′ × ap′ to ω1, where

ap
′
= ap ∪ y. Take ξ ∈ ω1 \ ap

′
and let

p′(b) =

p(b) if b ∈ ap × ap

ξ otherwise

Now we have to show that if x ∈ S and x ⊆ ap
′
, then x is not closed under

p′. Let x be such a set. In the first case x ⊆ ap. Since p ∈ Q(S), the

set x is not closed under p by the definition of Q(S). Thus x is not closed

under p′ which extends p. In the second case x 6⊆ ap. Then there exists a

b ∈ (x×x)\ (ap×ap) such that p′(b) = ξ /∈ ap′ . The fact that x ⊆ ap
′

implies
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p′(b) /∈ x. Hence x is not closed under p′.

(2) Clear from (1).

(3) It is easy to see that Q(S) satisfies conditions (1) and (2) from the

definition of better. It remains to check (3) and (4). To prove property (3),

take conditions p, q ∈ Q(S) and assume that

p � (dom(p) ∩ dom(q)) = q � (dom(p) ∩ dom(q)).

In order to show compatibility we must find a common extension r of p and

q. Let ar = (ap ∪ aq) and r be the function from ar × ar to ω1 defined as

follows: Fix ξ ∈ ω1 \ (ar) and let

r(b) =


p(b) if b ∈ ap × ap

q(b) if b ∈ aq × aq

ξ otherwise.

Then r is well-defined because p and q coincide on dom(p)∩dom(q). Finally,

we must show that if x ∈ S and x ⊆ ar, then x is not closed under r. Assume

that x ∈ S and x ⊆ ar. If x ⊆ ap or x ⊆ aq, then we can repeat the argument

from the proof of (1).

For the final case assume x 6⊆ ap and x 6⊆ aq. Take α ∈ x \ ap and β ∈ x \ aq

and let b := (α, β). Then b ∈ x×x but b /∈ ap×ap and b /∈ aq×aq. Therefore,

r(b) = ξ /∈ x and x is not closed under r.

To prove property (4) of the definition of better, we take a descending se-

quence 〈pn : n < ω〉 in Q(S) with a lower bound p′. Then
⋃
n<ω

pn is a

restriction of p′ to (
⋃
n<ω

apn)× (
⋃
n<ω

apn). Hence
⋃
n<ω

pn is clearly in Q(S).

Iterated club shootings are T -complete for certain stationary subsets T of

Pω1(ω2). The following statement will be a sufficient condition for Q(S) to

be T -complete.

Definition 2.1.14. For sets S, T ⊆ Pω1(ω2), let Φ(S, T ) denote the following
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principle:

There exists a regular cardinal θ > 2ω2 and an expansion M of the structure

〈H(θ),∈〉 such that for every countable elementary substructure M of M
with M ∩ ω2 ∈ T , we have S ∩ P(M) ⊆M .

Lemma 2.1.15. Let S, T ⊆ Pω1(ω2) and assume that Φ(S, T ) holds. Then

Q(S) is T -complete.

Proof. Let θ and M be witnesses for Φ(S, T ), M a countable elementary

submodel of M with M ∩ ω2 ∈ T , and 〈pn : n < ω〉 an (M,Q(S))-generic

sequence. By Lemma 2.1.3 and the definition of being better, it suffices to

show that p′ =
⋃
n<ω

pn is a condition in Q(S). Let ap
′

=
⋃
n<ω

apn . Then

ap
′ ∈ Pω1(ω2) and p′ is a function from ap

′ × ap
′

to ω1. We need to show

that if x ∈ S and x ⊆ ap
′
, then x is not closed under p′. Assume that x ∈ S

and x ⊆ ap
′
. Since each apn is a countable set belonging to M ≺ 〈H(θ),∈〉,

we have apn ⊆ M . Therefore, ap
′ ⊆ M and hence x ⊆ M . Then Φ(S, T )

implies that x ∈ M and the set D := {p ∈ Q(S) | x ⊆ ap} belongs to M .

Also D is dense open in Q(S) by Lemma 2.1.13 (1). By (M,Q(S))-genericity

there exists n < ω with pn ∈ D. Since x ⊆ apn by the definition of D and

pn ∈ Q(S), x is not closed under pn. Hence x is not closed under p′ which

extends pn.

The next question is for which stationary set T ⊆ Pω1(ω2) the iteration of

the club shootings will be T -complete. We will present such a set and prove

its stationarity by using the following lemma due to Shelah. As usual, let

Eω2
ω = {α ∈ ω2 | cof(α) = ω}.

Lemma 2.1.16. If 〈Si : i < ω1〉 is a sequence of stationary subsets of Eω2
ω ,

then the set

T = {x ∈ Pω1(ω2) | x ∩ ω1 ∈ ω1 ∧ sup(x) /∈ x ∧ sup(x) ∈ Sx∩ω1}

is stationary in Pω1(ω2).
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Definition 2.1.17. Let ~C = 〈Cα : α ∈ Lim(ω2)〉 be a �ω1-sequence. We

define

T
~C to be the set of all x ∈ Pω1(ω2) such that

(1) x ∩ ω1 ∈ ω1 and sup(x) /∈ x,

(2) ot(Csup(x)) > x ∩ ω1.

Lemma 2.1.18. Let ~C be a �ω1-sequence. Then T
~C is stationary.

Proof. Let ~C = 〈Cα : α ∈ Lim(ω2)〉 be a �ω1-sequence. For every i ∈ ω1 let

Si := {α ∈ Eω2
ω | ot(Cα) > i}. Since Si ∩ β contains a club subset in β for

every β ∈ Eω2
ω1

, the set Si is a stationary subset of Eω2
ω .

Note that the set T
~C := {x ∈ Pω1(ω2) | x∩ω1 ∧ sup(x) /∈ x ∧ sup(x) ∈ Sx∩ω1}

is also stationary by Lemma 2.1.16.

Next we need to refine the sets S
~C
k and T

~C in the following way.

Definition 2.1.19. Fix a surjection σα : ω1 → α for each α ∈ ω2. We call

a sequence ~σ = 〈σα : α ∈ ω2〉 a surjection system. For such a surjection

system ~σ, a �ω1-sequence ~C, and k ∈ {0, 1} we define

S
~C,~σ
k := {x ∈ S ~C

k | ∀α ∈ x x ∩ α = σα”(x ∩ ω1)}

Lemma 2.1.20. Let ~C = 〈Cα : α ∈ Lim(ω2)〉 be a �ω1-sequence, θ a suf-

ficiently large regular cardinal, and M a countable elementary submodel of

〈H(θ),∈, ~C〉. Furthermore let α′ be an ordinal in Eω2
ω with α′ < sup(M∩ω2),

α′ /∈M , and sup(M ∩ α′) = α′. Then ot(Cα′) = M ∩ ω1.

Proof. Define β′ = min(M \ α). Then β′ ∈ M ∩ ω2 and sup(M ∩ β′) =

α′ < β′. Furthermore, β′ ∈ Eω2
ω1

by elementarity of M . We enumerate Cβ′

increasingly. Let 〈βi : i < ω1〉 denote this enumeration. Now we prove

sup(M ∩ β′) = βM∩ω1 . Since Cβ′ is in M by elementarity of M , the set

{βi | i ∈M ∩ ω1} is a subset of M . Hence,

sup(M ∩ β′) ≥ sup{βi | i ∈M ∩ ω1} = βM∩ω1 .



CHAPTER 2. PARTIAL STATIONARY REFLECTION 33

So suppose sup(M ∩ β′) > βM∩ω1 . Then there exists β ∈ M ∩ β′ such that

β ≥ βM∩ω1 . Let γ denote the least ordinal less than ω1 with βγ ≥ β. Thus

γ ≥ M ∩ ω1 since β ≥ βM∩ω1 . However, γ ∈ M ∩ ω1 by the elementarity of

M , which is a contradiction. Hence, sup(M ∩ β′) ≤ βM∩ω1 .

Therefore sup(M ∩ β′) = βM∩ω1 . By definition of α, we obtain α′ = βM∩ω1 .

Then the coherency of ~C implies Cα′ = {βi | i ∈< ∩ω1}. Thus

ot(Cα′) = M ∩ ω1.

Lemma 2.1.21. Let ~C = 〈Cα : α ∈ Lim(ω2)〉 be a �ω1-sequence and ~σ =

〈σα : α ∈ ω2 \ ω1〉 a surjection system.

(1) If S is a subset of S
~C,~σ
0 which does not reflect to any ordinal in Eω2

ω \ω1,

then Q(S) is T
~C-complete.

(2) If S is a subset of S
~C,~σ
1 which does not reflect to any ordinal in Eω2

ω1
,

then Q(S) is T
~C-complete.

Proof. (1) It suffices to show that Φ(S, T ) holds by Lemma 2.1.15. So let θ be

a sufficiently large regular cardinal and M a countable elementary submodel

of 〈H(θ),∈, S, ~C, ~σ〉 with M ∩ ω2 ∈ T . We show that S ∩ P(M) ⊆ M ,

i.e., if we take x ∈ S and x ⊆ M we show that x ∈ M . First note that

x ∩ ω1 ≤M ∩ ω1 ∈ ω1.

Claim 1. sup(x) ∈M .

Proof of Claim 1. Assume that x /∈M . We show that M ∩ ω1 ≤ ot(Csup(x)).

In the first possible case sup(x) = sup(M∩ω1). Then M∩ω1 < ot(Csup(x)) by

the second part of the definition of T
~C since M∩ω2 ∈ T ~C . In the second case

sup(x) < sup(M ∩ ω2). Then M ∩ ω2 = ot(Csup(x)) by the previous lemma.

Also x ∩ ω1 > ot(Csup(x)) since x ∈ S ~C,~σ
0 . Therefore M ∩ ω1 ≤ ot(Csup(x)) <

x ∩ ω1 which is a contradiction to x ⊆M . This proves Claim 1.

Claim 2. x ∩ ω1 < M ∩ ω1.
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Proof of Claim 2: Assume that x∩ ω1 = M ∩ ω1. At this point we make use

of the surjection system ~σ. For each α ∈ M ∩ ω2, M ∩ α = σα”(M ∩ ω1) by

elementarity of M . Thus

M ∩ sup(x) =
⋃
α∈x

σα”(M ∩ ω1) =
⋃
α∈x

σα”(x ∩ ω1) = x.

The last equality follows from x ∈ S
~C,~σ
0 . Since S ∩ Pω1(sup(x)) is non-

stationary by assumption and sup(x) ∈M by Claim 1, there exists a function

f : Pω(sup(x))→ sup(x) in M such that every set in S ∩Pω1(sup(x)) is not

closed under f . But x = M ∩ sup(x) and therefore x is closed under f by

elementarity of M . Since x ∈ S ∩ Pω1(sup(x)) this is a contradiction and

proves Claim 2.

Now x =
⋃
{σα”(x ∩ ω1) | α ∈ Csup(x)} because x ∈ S

~C,~σ
0 . Therefore x is

definable in 〈H(θ),∈, ~C, ~σ〉 with parameters x ∩ ω1 and sup(x). But both of

these parameters belong to M by Claim 1 and 2 and M ≺ 〈H(θ),∈, ~C, ~σ〉.
Hence x ∈M .

(2) Again we show that Φ(S, T ) holds. So let θ, M and x be as in the proof

of (1). We show that x ∈ S.

Claim 1’. sup(x) ∈M .

Proof of Claim 1’. Assume that sup(x) /∈ M . We show that sup(x) <

sup(M ∩ ω2). If not, sup(x) = sup(M ∩ ω2) and M ∩ ω1 < ot(Csup(x)) by the

second part of the definition of T
~C because M ∩ ω2 ∈ T and x ∈ S ~C,~σ

1 . This

contradicts x ⊆M .

Then M ∩ω1 = ot(Csup(x)) by Lemma 2.1.20. Then M ∩ω1 = x∩ω1 because

x ∈ S ~C,~σ
1 . Just like in the proof of Claim 2 one can show that M∩sup(x) = x.

Let α = min(M \ sup(x)). Then α ∈ Eω2
ω1

and S ∩ Pω1(α) is non-stationary

by assumption. Since α ∈ M ≺ 〈H(θ),∈, ~C, ~σ〉 there exists a function f :

Pω(α)→ α in M such that every set in S∩Pω1(α) is not closed under f . But

x = M ∩ sup(x) = M ∩ α and therefore x is closed under f by elementarity

of M . This is a contradiction to x ∈ S and we proved Claim 1’.
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Observe that x ∩ ω1 = ot(Csup(x)) ∈M ∩ ω1 by Claim 1’ and elementarity of

M . The rest of the proof is similar to the proof of (1).

Now we are able to prove Theorem 2.1.1 by combining all of the lemmata

above and prove the following theorem.

Theorem 2.1.22. Suppose that GCH and �ω1 hold and let ~C be a �ω1-

sequence. Then there exists an ω1-distributive and ω2-c.c. forcing extension

in which SRk(S
~C
k ) holds for k ∈ {0, 1}.

Proof. Take a surjection system ~σ in V . By iterating the club shootings

from Definition 2.1.12, we obtain a countable support iteration destroying

the stationarity of all non-reflecting stationary subsets of S
~C,~σ
0 and S

~C,~σ
1 .

Note that S
~C,~σ
k and T

~C are absolute between all ω1-distributive and ω2-c.c.

forcing extensions of V .

By combining all the lemmata above, we can construct a countable support

iteration 〈Pξ, Q̇η : ξ, η < ω3〉 which satisfies the following properties:

(1) Pξ is ω1-distributive and has the ω2-c.c. for each ξ < ω3.

(2) If η < ω3, Qη
”Q̇η = Q(Ṡ)” for some Pη-name Ṡ such that either

Qη
”Ṡ ⊆ S

~C
0 and Ṡ does not reflect to any uncountable ordinal in

Eω2
ω ”, or

Qη
”Ṡ ⊆ S

~C
1 and Ṡ does not reflect to any ordinal in Eω2

ω1
”.

Therefore Qη
”Q̇η is T -complete, better and |Q̇η| ≤ ω2”.

(3) If ξ < ω3 and Ṡ is a Pξ-name such that either

Pξ ”Ṡ ⊆ S
~C
0 and Ṡ does not reflect to any uncountable ordinal in

Eω2
ω ”, or

Pξ ”Ṡ ⊆ S
~C
1 and Ṡ does not reflect to any ordinal in Eω2

ω1
”

then there exists an ordinal η ∈ ω3 \ ξ such that Qη
”Q̇η = Q(Ṡ)”.

Then the limit of this iteration Pω3 is ω1-distributive and ω2-c.c. Now take a

generic filter G on Pω3 over V . Then the following holds in V [G]:
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(1) If S ⊆ S
~C,~σ
0 and S does not reflect to any ordinal in Eω2

ω \ ω1 then S is

non-stationary.

(2) If S ⊆ S
~C,~σ
1 and S does not reflect to any ordinal in Eω2

ω1
then S is

non-stationary.

Therefore, SRk(S
~C,~σ
k ) holds for k ∈ {0, 1} in V [G]. Since S

~C
k \ S

~C,~σ
k is non-

stationary, SRk(S
~C
k ) holds for k ∈ {0, 1} in V [G].

2.2 SR0(S
*) fails under 2ω1 = ω2

When trying to shed some new light on the question whether the Weak

Reflection Principle for ωn implied the Reflection Principle for ωn, König-

Larson-Yoshinobu were able to do so under certain assumptions. For n > 2,

they obtained the result by assuming CH and 2ωn−1 = ωn. In the case of

n = 2, CH could be dropped and only 2ω1 = ω2 was needed. In the course

of those proofs, König-Larson-Yoshinobu showed in [7] that under the above

mentioned assumptions SR0(S
*) failed. In the last section we constructed a

model such that SR0(S
*) holds for a subset S∗ of Pω1(ω2). For this result we

assumed GCH and �ω1 . In the generic extension however, 2ω1 became ω3.

Therefore, the assumption 2ω1 = ω2 does not contradict the following proofs.

We start with the more general setting of Pω1(ωn).

Lemma 2.2.1. Assume CH and 1 ≤ n < ω. Then for every S∗ ⊆ Pω1(ωn),

there is a set S ⊆ S∗ which is cofinal in S∗ and does not reflect to any set of

size ω1.

Definition 2.2.2. Let λ be a regular cardinal. For a set S∗ ⊆ Pω1(λ) and

a set x ∈ Pω1(λ) we denote S∗(x) as the set of all supersets of x in S∗. We

call the union of all supersets of x in S∗, i.e.,⋃
S∗(x) =

⋃
{y ∈ S∗ | x ⊆ y}
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the S∗-coverage of x.

For the proof of Lemma 2.2.1 we want to partition S∗ in the following way.

Lemma 2.2.3. Every set S∗ ⊆ Pω1(λ) can be partitioned into two sets S∗0

and S∗1 such that

(1) S∗0 has no (-increasing chains of length ω1, and

(2) each x ∈ S∗1 has uncountable S∗1-coverage.

Proof. For a set S∗ ⊆ Pω1(λ) we iteratively remove all sets with countable

coverage. So let

S∗α =


S∗ if α = 0

{x ∈ S∗β | x has uncountable S∗β-coverage} if α = β + 1⋂
β<α

S∗β if α is limit

Since at some stage there are no more sets with countable coverage left,

there must be an ordinal ∞ with S∗∞ = S∗∞+1. Therefore let S∗1 = S∗∞ and

S∗0 = S∗ \ S∗1 . Then every set in S∗1 has uncountable S∗1 -coverage. To see

(1), take a (-increasing sequence ~s of length ω1. Every member of ~s has

uncountable S∗-coverage. Hence this sequence will not be removed by the

iteration above. Therefore ~s is in S∗1 and S∗0 does not contain any such

sequences of length ω1.

The next two lemmata show how to thin out the set S∗ after partitioning.

We make use of the fact that a set containing no increasing sequences of

length ω + 1 cannot be stationary.

Lemma 2.2.4. Let λ be a regular cardinal and S∗ ⊆ Pω1(λ). Suppose 〈xα :

α < ξ〉 is a possibly incomplete list of members of S∗. For every α < ξ

assume that Tα is a ⊆-cofinal subset of S∗(xα) which does not contain any
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continuous, (-increasing chains of length ω+1. Define a sequence 〈T ′α : α <

ξ〉 inductively as follows. Let

T ′α = {y ∈ Tα | ∀β < α ∀x ∈ T ′β (y 6⊆ x ∧ x 6⊆ y)}.

Let T ′ =
⋃
α<ξ

T ′α. Then T ′ a cofinal subset of
⋃
α<ξ

S∗(xα) which contains no

continuous, (-increasing sequence of length ω + 1.

Proof. We prove this lemma by induction on ξ. First we check that T ′ is

cofinal in
⋃
α<ξ

S∗(xα). Take x ∈ S∗(xα). We must find a y ∈ T ′ with x ⊆ y.

Since Tα is cofinal in S∗(xα), we may assume that x ∈ Tα. If x is also in T ′α,

we are done. So suppose that x /∈ T ′α and x is not in any member of
⋃
β<α

T ′β

(or else we would have already found a y ∈ T ′ with x ⊆ y). By the definition

of T ′α there must be a z ∈ Tβ for some β < α with z ⊆ x (again, if x ⊆ z we

would be done). Since
⋃
γ<α

Tγ ⊆
⋃
α<ξ

S∗(xα) and
⋃
γ<α

T ′γ is cofinal in
⋃
α<ξ

S∗(xα)

by the induction hypothesis,
⋃
γ<α

T ′γ is also cofinal in
⋃
γ<α

Tγ. At this point

note that Tβ ∩S∗(z) is cofinal in S∗(z). Therefore there must be a y ∈
⋃
γ<α

T ′γ

with y ⊆ x.

Now we need to show that T ′ does not contain any continuous, (-increasing

sequences of length ω + 1. This follows from the fact that no Tα contains

such a sequence and therefore neither does T ′α by construction.

Lemma 2.2.5. Assume CH and 1 ≤ n < ω. Let S∗ ⊆ Pω1(ωn) be such that

every member in S∗ has uncountable S∗-coverage. Then there is a cofinal set

S ⊆ S∗ which contains no continuous, (-increasing sequence of length ω+1.

Proof. The proof is by induction on n.

Claim. If every member of S∗(x) has S∗-coverage of cardinality ω2, then

there exists a cofinal subset S(x) of S∗ which does not contain any continuous,

(-increasing sequence of length ω + 1.

Proof of Claim. By using CH we can enumerate S∗(x) = {xα | α < ωn}.
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For every α < ωn choose yα ∈ S∗(xα) with yα 6⊆
⋃
β<α

yβ. So each yα contains

a new ordinal. Then the set S(x) = {yα | α < ωn} does not contain any

continuous, (-increasing sequences of length ω + 1. This proves the claim.

Now we can thin out S∗(x) as desired. Either every superset of x in S∗

has S∗-coverage of cardinality ωn then this works by the claim, or x has S∗-

coverage of cardinality less than ωn, then we use the induction hypothesis.

In either case the set x ∈ S∗ is cofinal in S∗. Therefore we can apply Lemma

2.2.4, which finishes the proof.

Proof of Lemma 2.2.1: The goal is to find a subset of S∗ which does not

reflect to any set of size ω1. First partition S∗ into two sets as in Lemma

2.2.3. Then we can apply Lemma 2.2.5 to S∗1 to find a cofinal set S ⊆ S∗1

which does not contain any continuous, (-increasing sequence of length ω+1.

Thus S∗0 ∪ S is as desired. �

Definition 2.2.6. Suppose λ is a cardinal and E is a stationary subset of λ.

By f∗(κ,E) we denote the assertion that there exists a sequence 〈Cα : α ∈ E〉
satisfying

(1) Cα is a club subset of Pκ(α) for all α in E, and

(2) for all clubs D ⊆ Pκ(λ) there exists a club C ⊆ λ such that for all

α ∈ C ∩ E, Cα ≤∗ D.

In (2), A ≤∗ B if and only if there is a set x of size less than κ such that if

x ⊆ y ∈ A then y ∈ B for all y. The sequence 〈Cα : α ∈ E〉 is called a tail

club guessing sequence.

The principle f∗(κ,E) is a weaker form of ♦∗(E), since it implies f∗(κ,E)

for all κ, but the converse it not true. Furthermore, f∗(κ,E) is preserved

by κ-c.c. forcing notions. Note that the logical strength depends on the set

E and increases with the size of E. When E = Eλ+

<κ = {α ∈ [λ, λ+) | ω ≤
cof(α) < κ}, the following theorem gives an equivalence to f∗(κ,Eλ+

<κ), which
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shows that its logical strength is pretty weak. The proof of the next theorem

can be found in [7].

Theorem 2.2.7. Suppose κ ≤ λ. Then the following are equivalent:

(1) f∗(κ,Eλ+

<κ).

(2) There exists a club F ⊆ Pκ(λ+) such that for each club D ⊆ Pκ(λ+)

there exists a club C ⊆ λ+ such that for all α ∈ C∩Eλ+

<κ, F ∩Pκ(α) ≤∗

D.

(3) The number of clubs in Pκ(λ) is λ+. Furthermore the collection of

these clubs is cofinal with respect to ≤∗.

Property (3) is easily obtained by cardinal arithmetic, i.e., if 2λ = λ+, then

there are λ+-many club subsets of Pκ(λ). The collection of all those clubs is

cofinal with respect to ≤∗, since it generates the club filter. For the failure of

f∗(κ,Eλ+

<κ) take a model in which λ++-many Cohen-subsets of λ are added.

This is possible if λ is regular.

A similar characterization as in Theorem 2.2.7 cannot be given when f∗ is

defined on ordinals with higher cofinality. The tail guessing principle is much

stronger when E = Eλ+

λ and cannot be derived from GCH.

Theorem 2.2.8. Suppose CH and f∗(ω1, E
ωn
ω ) hold for some 2 ≤ n < ω. If

B ⊆ Pω1(ωn) is stationary, then there is a stationary set A ⊆ B such that

{x ∈ A | sup(x) = α} does not reflect to any set of size ω1 for all α ∈ Eωn
ω .

Proof. Take the club F ⊆ Pω1(ωn) from Theorem 2.2.7 (2). Without loss

of generality, we may assume that each member of F has limit order type

with supremum in Eωn
ω . For every ξ ∈ Eωn

ω , let F ξ = {x ∈ F | sup(x) = α}.
Now take some stationary B ⊆ Pω1(ωn). We can assume that B ⊆ F . Next

we want to apply Lemma 2.2.1 for every ξ ∈ Eωn
ω to obtain a ⊆-cofinal set

Aξ ⊆ B ∩ F ξ which does not reflect to any set of size ω1. The union of all
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these Aξ’s will be as desired. So let

A =
⋃

ξ∈Eωn
ω

Aξ.

We need to show that A is stationary. Let D ⊆ Pω1(ωn) be a club. By

definition of F , we can assume that D ⊆ F . Next we define a club D′ as

the set of all x ∈ Pω1(ωn) containing increasing ordinals γi for i < ω, which

satisfy the following properties:

(1) supi<ω(γi) = sup(x),

(2) for every i < ω, D ∩ Pω1(γi) is club in Pω1(γi), and

(3) each element of F ∩ Pω1(γi) containing x ∩ γ is in D.

If we choose x ∈ B ∩D′ with sup(x) = ξ, then x ∈ B ∩ F ξ Therefore there

exists a y ∈ Aξ which contains x. Since x ∈ D′, we have y ∩ γi ∈ D for every

i < ω. Hence y ∈ D ∩ A.

Theorem 2.2.9. Assume CH and 2ωn−1 = ωn. Then SR0(S
*) fails for S∗ ⊆

Pω1(ωn).

Proof. Follows from Theorem 2.2.7 and 2.2.8.

Theorem 2.2.10. Assume 2ω1 = ω2. Then SR0(S
*) fails for S∗ ⊆ Pω1(ω2).

Proof. We will show that for every stationary subset S of Pω1(ω2), there

exists a stationary subset T of S which does not reflect to any uncountable

ordinal in ω2 with cofinality ω. Let

A = {α ∈ ω2 ∩ cof(ω) | S ∩ Pω1(α) is stationary in Pω1(α)}.

If A is non-stationary, let C denote a club in ω2 with A ∩ C = ∅. Then

T = {x ∈ S | sup(x) ∈ C}.
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So suppose A is stationary. If α is in A, it is straightforward to find an

unbounded subset of S ∩ Pω1(α) which does not contain any continuous,

increasing sequence of length ω + 1. Therefore, the above lemmata are not

needed for this proof and we can drop CH in the assumptions. The result

can be obtained by repeating the proof of Theorem 2.2.8.



Chapter 3

Stationary Reflection Principles

3.1 Consistency of WRP and RP

The consistency strength of the Weak Reflection Principle for ω2 and the

Reflection Principle for ω2 is a weakly compact cardinal. We obtain this

result by collapsing a weakly compact cardinal to ω2. Following Veličković

[16], we show that those reflection principles are in fact equiconsistent with

a weakly compact cardinal. This makes crucial use of Jensen’s work [6].

Using the same arguments, collapsing a supercompact cardinal to ω2, one

can obtain the (Weak) Reflection Principle for all cardinals.

Theorem 3.1.1. The consistency of ZFC + ”there exists a weakly compact

cardinal” implies the consistency of

(1) ZFC + ”the Reflection Principle for ω2”, and therefore

(2) ZFC + ”the Weak Reflection Principle for ω2”.

Proof. Suppose κ is a weakly compact cardinal. Let P = Coll(ω1, < κ) denote

the Lévy Collapse and G a generic filter on P over V . In V [G], take an

arbitrary stationary set S ⊆ Pω1(κ). We need to show that there exists an

ordinal α < κ with cofinality ω1 such that S ∩ Pω1(α) is stationary.

43
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Let 〈M,∈〉 be a transitive elementary submodel of 〈V,∈〉 of size κ containing

all relevant objects. By weak compactness of κ, there exists an elementary

embedding j : M → N with critical point κ, (i.e., j(κ) > κ) for some

transitive model 〈N,∈〉. By standard arguments, we can decompose j(P) to

P×Q, where Q = Coll(ω1, [κ, j(κ))). Note that Q is σ-closed in V and M . By

absoluteness, Q remains σ-closed in M [G], where G denotes a generic filter

on P over M . Next let H be a generic filter on Q over M [G]. In M [G∗H], we

can extend j : M → N to j′ : M [G]→ N [G∗H]. Clearly, S = j′(S)∩Pω1(κ).

Since Q is σ-closed, S remains stationary inM [G∗H]. By the same argument,

S is stationary in N [G ∗H]. Then κ witnesses that in N [G ∗H] there exists

an ordinal α < j(κ) of cofinality ω1 such that j′(S) ∩ Pω1(α) is stationary.

By elementarity of j′, there is α < κ with cofinality ω1 in M [G] such that

S ∩ Pω1(α) is stationary. By elementarity of M , the same statement holds

in V [G].

Theorem 3.1.2. The following are equiconsistent:

(1) ZFC + ”there exists a weakly compact cardinal”,

(2) ZFC + WRP(ω2).

By proving Theorem 3.1.1, we have taken care of one direction of this theo-

rem. For the converse, we define a weaker form of a �κ-sequence in order to

use Jensen’s work [6]. He proved that if κ is a regular cardinal which is not

weakly compact, then there exists such a weaker �κ-sequence.

Definition 3.1.3. Let κ be a regular cardinal ≥ ω2. We call a sequence

〈Cα : α ∈ Lim(κ)〉 a �∗κ-sequence if it satisfies the following properties:

(1) Cα is club in α for every α ∈ Lim(κ),

(2) Cβ = Cα ∩ β for every β ∈ Lim(Cα),

(3) ¬∃C ⊆ κ (C is club ∧ ∀α ∈ Lim(C) Cα = C ∩ α).
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The main tool for the construction in our proof is the following two-player

game, which we will revisit in the proof of Theorem 3.3.1.

Definition 3.1.4. We define the two-player game Gα as follows. Let κ > ω1

be a regular cardinal, F a function F : Pω(κ)→ κ, and α an ordinal < ω1.

I : I0, ζ0 I1, ζ1 ... In, ζn ...

II : η0 η1 ... ηn ...

At stage n Player I picks an interval In in κ and an ordinal ζn ∈ In. Player

II responds with an ordinal ηn < κ. Then Player I has to choose In+1 such

that inf(In+1) > ηn. Player I wins, if by letting y = clF ({ζn | n < ω} ∪ α)

we have y ⊆
⋃
{In | n < ω} and y ∩ ω1 = α.

Since Gα is an open game for Player II, the Gale-Stewart Theorem implies

that one of the players has a winning strategy.

The proof of the following theorem can be found in [16].

Lemma 3.1.5. AF = {α < ω1 | II has a winning strategy in Gα} is non-

stationary.

The following theorem is crucial to proving Theorem 3.1.2.

Theorem 3.1.6. Let κ be a regular cardinal and assume that �∗κ holds. Then

there exists a stationary set S ⊆ Pω1(κ) such that S does not reflect to any

α ∈ κ.

Proof. Let ~C = 〈Cα : α ∈ Lim(κ)〉 be a �∗κ-sequence and

S = {x ∈ Pω1(κ) | α =
⋃

x /∈ x ∧ sup(Cα ∩ x) < α}.

Since ~C is a �∗κ-sequence, Cα is a club in α for every limit α ∈ κ. Therefore

S ∩ Pω1(α) is non-stationary. Thus we need to prove the following claim to

finish the proof.
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Claim. S is stationary.

Proof of Claim. For a function F : Pω(κ) → κ we have to find a set x ∈ S
which is closed under F . We use a winning strategy for player I in the game

G0 to recursively construct a sequence 〈Ig : g ∈ κ<ω〉 of intervals in κ and a

sequence 〈δg : g ∈ κ<ω〉 satisfying:

(1) For every d ∈ κ<ω δd ∈ Id,

(2) For every d ∈ κ<ω and α, β ∈ κ [α < β → sup(Id ∩ α) < inf(Id ∩ β)],

(3) For every f ∈ κω clF{δf�n | n < ω} ⊆
⋃
{If�n | n < ω}.

Now fix a sufficiently large regular cardinal θ and an elementary submodel

M ≺ H(θ) containing every relevant object. Furthermore let M ∩κ = α ∈ κ
and cof(α) = ω. Fix a sequence 〈αn : n < ω〉 converging to α. We build a

sequence of functions f ∈ αω inductively such that the following holds:

(1) ∀n < ω δf�n ≥ αn,

(2) ∀n > 0 If�n ∩ Cα = ∅.

For the inductive step we use the following claim.

Subclaim. Let 〈Iξ : ξ < κ〉 be a sequence in M where Iξ are intervals in

κ such that if ζ < ξ then sup(Iζ) < inf(Iξ). Then there exists ξ < α with

Iξ ∩ Cα = ∅.
Proof of Subclaim. If not, then ∀ξ < α Jξ ∩ Cα 6= Cα. Hence

M ` ∀ξ < κ ∃γ < κ ∀ζ < ξ Jξ ∩ Cγ 6= ∅.

Then H(θ) satisfies the same statement by elementarity of M . Let D be

the set of limit points of Iγ. We now prove that ∀β, γ ∈ D if β < γ then

Cβ = Cγ ∩ β:

For such β and γ, fix ζ < κ with β, γ < inf(Iζ) and δ < κ with ∀ξ <

ζ Iξ ∩ Cγ 6= ∅. Thus β and γ are limit points of Cδ. Since Cδ belongs to a
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�∗κ-sequence, Cβ = Cδ ∩ β and Cγ = Cδ ∩ γ by property (2) of �∗κ. Hence

Cβ = Cγ ∩ β. But then the set D is a contradiction to property (3) of the

definition of �∗κ. This proves the subclaim.

To finish the proof of the claim let x = clF{δf�n | n < ω}. Note that

sup(Cα ∩ x) < α = sup(x). Therefore x ∈ S and x is closed under F . Hence

S is stationary and the proof of the claim and therefore the proof of the

theorem is complete.

Proof of Theorem 3.1.2: ¬(1) implies ¬(2): By Jensen’s result, there exists

a �∗ω2
-sequence. Using Theorem 3.1.6, it follows that there exists a set S ⊆

Pω1(ω2) which does not reflect. Hence, WRP(ω2) fails. �

3.2 Consistency of SSR

Recall that for a cardinal λ ≥ ω2, the Semistationary Reflection Principle

for λ denotes the following principle:

For every semistationary S ⊆ Pω1(λ), there exists X ⊆ λ such that |X| =

ω1 ⊆ X and S ∩ Pω1(X) is semistationary in Pω1(X).

The consistency of the Semistationary Reflection Principles can be taken care

of in two steps. The first case is SSR(ω2). We will show in the next chapter

that for ω2 the Semistationary Reflection Principle is equivalent to the Weak

Reflection Principle. Therefore, SSR(ω2) is also equiconsistent with a weakly

compact cardinal.

For a larger cardinal λ, Shelah has obtained a model in which SSR(λ) holds

by using a λ-strongly compact cardinal. We refer the reader to [15]. However,

Sakai proved in [13] that collapsing a λ-strongly compact cardinal does not

suffice to show WRP(λ). The key to this result is the following theorem.

Theorem 3.2.1. Suppose that λ is a supercompact cardinal. Then there

exists a generic extension in which λ is a strongly compact cardinal and

WRP(λ+) fails.
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3.3 SR0(Pω1(ω2)) is inconsistent

The next result shows that it suffices to consider the Weak Reflection Prin-

ciple for ω2 and the Reflection Principle for ω2, since the following reflection

principle is inconsistent.

For every stationary set S ⊆ Pω1(ω2), there exists an uncountable ordinal α

in ω2 with cofinality ω such that S ∩ Pω1(α) is stationary in Pω1(α).

As usual Eω2
ω1

= {α ∈ ω2 | cof(α) = ω1}.

Theorem 3.3.1. The statement SR0(Pω1(ω2)) is inconsistent.

Proof. First, let 〈Cα : α ∈ Eω2
ω1
〉 be a sequence of the following sets:

(1) Cα is an unbounded set of α, and

(2) ot(Cα) = ω.

We call such a sequence a ladder system. Next we define a set witnessing the

failure of SR0(Pω1(ω2)). Let X = {x ∈ Pω1(ω2) | Csup(x) 6⊆ x}.
Claim. The set X is stationary in Pω1(ω2).

Proof of Claim. Here we can repeat the proof of Theorem 3.1.6. The only

difference is the proof of the subclaim. For that we can get a contradiction

as follows. Recall that we assumed ∀ξ < α Jξ ∩ Cα 6= Cα. Hence

M ` ∀ξ < κ ∃γ < κ ∀ζ < ξ Jξ ∩ Cγ 6= ∅.

But then the order type of Cγ would be at least ξ, because the intervals Jξ are

pairwise disjoint. Therefore ot(Cγ) cannot be equal to ω for every ξ ∈ (ω, κ).

For the failure of SR0(Pω1(ω2)) look at X ∩ Pω1(α) for any α ∈ ω2 with

cofinality ω. For any such α, there are club many y in Pω1(α) such that

Cα ⊆ y. Therefore X ∩ Pω1(α) is non-stationary for any α in Eω2
ω1

.
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3.4 A remark on bigger spaces

We have now considered the consistency of many stationary reflection prin-

ciples in Pω1(λ). One might ask about those principles for the uncountable

space Pω2(λ). Feng and Magidor considered this question in [2]. They started

with the following principle, which is consistent.

Assume that λ is a cardinal and λ ≥ ω2. For every stationary set S ⊆
Pω1(H(λ)), there exists an X ⊆ H(λ) of size ω1 such that ω1 ⊆ X and S

reflects to X.

So we ask if one could extend this principle to the following.

Assume that λ is a cardinal and λ ≥ ω3. For every stationary set S ⊆
Pω2(H(λ)), there exists an X ⊆ H(λ) of size ω2 such that ω2 ⊆ X and S

reflects to X.

In this context, S reflects to X if S ∩Pω2(X) is stationary in Pω2(X). Feng

and Magidor proved that this extension is false for sufficiently large cardinals

λ.

Theorem 3.4.1 ([2], 2.1). Suppose λ is a regular cardinal and λ ≥ (2ω2)++.

Then there exists a stationary set S ⊆ Pω2(H(λ)) such that for any set

X ⊆ H(λ) of size ω2, ω2 ⊆ X implies that S ∩ Pω2(X) is non-stationary in

Pω2(X).

3.5 A result on cardinal arithmetic

In the beginning of the introduction we gave a result on cardinal arithmetic

as motivation for considering reflection principles. As an example, we will

prove that the Weak Reflection Principle for ω2 implies 2ω ≤ ω2. This is due

to Todorčević, but we follow Shelah [14].

Theorem 3.5.1. WRP(ω2) implies 2ω ≤ ω2.

Proof. Suppose that 2ω > ω2. We will find a stationary set S ⊆ Pω1(ω2)

which does not reflect, i.e., S ∩ Pω1(α) is not stationary in Pω1(α) for each
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uncountable α in ω2. We define hα for every ordinal α to be a one to one

function from |α| to α. Let V ′ = L[〈hα : α < ω2〉]. Note that in this new

model V ′ both ω1 and ω2 remain the same. Then in V ′ there are at most ωV2

countable subsets of ωV2 . By a fact from Baumgartner-Taylor [1], every club

C in Pω1(ω2) has size equal to 2ω which is greater than ω2 by assumption.

Therefore, the set S = {x ∈ Pω1(ω2) | x /∈ V ′} is a stationary subset of

Pω1(ω2). But for each α < ω2, we can define a club Cα ⊆ V ′ using hα. Since

S and Cα are disjoint for each α < ω2, we have found a non-reflecting set as

desired.



Chapter 4

Implications between

Reflection Principles

In this chapter we compare the Weak Reflection Principle to the Reflection

Principle and the Semistationary Reflection Principle. Clearly, the Reflection

Principle implies the Weak Reflection Principle for any cardinal. As far as the

converse is concerned, two things have been proven. Krueger showed in [8]

that under the assumption of a supercompact cardinal, we can separate the

two principles. We give an outline of this proof. Furthermore, König-Larsen-

Yoshinobu proved in [7] that if 2ω1 = ω2, the Weak Reflection Principle

implies the Reflection Principle for ω2. We can also derive this result for

ωn for arbitrary n under the assumption that CH holds and 2ωn−1 = ωn. In

comparison to the Semistationary Reflection Principle, the Weak Reflection

Principle turns out to be stronger for any cardinal greater than ω2. Since we

are mainly interested in ω2, we give a proof of their equivalence and refer the

reader to Sakai’s paper [13] for more information.

51
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4.1 WRP(ω2) and ¬RP(ω2)

In 2011, Krueger asserted that under the assumption of a supercompact car-

dinal, the Weak Reflection Principle does not imply the Reflection Principle

for ω2. It is an open question, if a supercompact is really necessary to obtain

this result. Krueger proved the following theorem by adapting Sakai’s club

shooting to negate the Reflection Principle. However, this would not work to

maintain the Weak Reflection Principle, since Sakai’s proof depends on the

�ω1-sequence and the Weak Reflection Principle for ω2 implies ∼�ω1 . There-

fore, Krueger combined Sakai’s work with classical methods for constructing

WRP(ω2), i.e., using an elementary embedding to get a generic extension in

which WRP(ω2) holds.

Theorem 4.1.1. Let κ be a κ+-supercompact cardinal and assume that 2κ =

κ+. Then there exists a forcing poset P which collapses κ to become ω2 and

P WRP(ω2)∧¬RP(ω2) .

The idea of the proof is to define the forcing notion P in a way that whenever

K is a generic filter over V , then in V [K] there is a set S satisfying:

(1) S is a stationary subset of Pω1(ω2),

(2) S does not reflect to any ordinal in ω2 ∩ cof(ω1),

(3) every stationary subset of S reflects to an uncountable ordinal in ω2 ∩
cof(ω),

(4) every stationary subset of Pω1(ω2)\S reflects to an uncountable ordinal

in ω2 ∩ cof(ω1).

Clearly, conditions (1) and (2) imply ¬RP(ω2). We show that (3) and (4)

suffice to ensure WRP(ω2). Take an arbitrary stationary set T ⊆ Pω1(ω2).

Since the union of two non-stationary sets is non-stationary, either T ∩ S or
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T \ S must be stationary. In the first case, T ∩ S reflects to an uncountable

ordinal α in ω2 with cofinality ω by (3). In the second case, T \ S reflects

to an ordinal α in ω2 with cofinality ω1 by (4). Hence in either case, there

exists an uncountable ordinal α in ω2 such that T reflects to α.

We assume that V is a model in which there exists a κ+-supercompact car-

dinal κ. In V , we define a forcing notion P which will be of the form

P ≡ Coll(ω1, < κ) ∗ Ṗω2 ∗ Q̇.

First, we force with the Lévy Collapse to make κ equal to ω2. In this generic

extension, we define the forcing poset Pω2 which adds a generic stationary

set S ⊆ Pω1(ω2) which does not reflect to any ordinal in ω2 ∩ cof(ω1). In

the third step of our iteration, we define a forcing notion Q which destroys

the stationarity of any subset of S which does not reflect to any uncountable

ordinal in ω2 ∩ cof(ω). In the final extension we will have a set S as desired

in (1), (2), (3) and (4).

4.1.1 Adding a generic stationary set

The forcing notion Pω2 is a special case of the forcing poset we introduce next.

Since after forcing with Pω2 we want to extend the elementary embedding we

obtain from the supercompactness of κ, the next definition gives a generalized

version of this forcing notion.

Definition 4.1.2. Let α < β ≤ ω2 be ordinals such that β has uncountable

cofinality. Let A be a subset of Pω2(α). Furthermore assume that Pω2(α)\A
is stationary, if cof(α) = ω1. We define the forcing poset P(α,A, β) as the

set of pairs (X,F ) satisfying:

(1) X is a countable subset of Pω1(β),

(2) for every b in X, b is not a subset of α,
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(3) F denotes a function whose domain is a countable subset of [α, β) ∩
cof(ω1),

(4) for every ξ in dom(F ), F (ξ) is a ⊆-increasing and continuous sequence

〈aξi : i ≤ γξ〉 of countable subsets of ξ, for some γξ < ω1,

(5) for every ξ in dom(F ) and i ≤ γξ, a
ξ
i is not in X ∪ A,

(6) for every ξ in dom(F ), aξγξ is a subset of
⋃
X.

We define an order on P(α,A, β) by letting (X ′, F ′) ≤ (X,F ) if:

(1) X ⊆ X ′

(2) for every b in X ′ \X, b is not a subset of
⋃
X,

(3) dom(F ) ⊆ dom(F ′),

(4) for every ξ in dom(F ), F (ξ) is an initial segment of F ′(ξ).

For an ordinal β ≤ ω1 with uncountable cofinality, let Pβ denote P(0, ∅, β).

For a condition (X,F ), the set X is an approximation of the generic sta-

tionary set S ⊆ Pω1(β), which is added by the forcing. The function F

approximates an array of clubs which witnesses that S satisfies (2) of the

requirements above, i.e., it does not reflect to any ordinal in [α, β)∩ cof(ω1).

Therefore, Pω2 adds a generic stationary set S which satisfies (1) and (2).

The motivation for defining Pω2 in a more generalized way is the following.

For an ordinal η < ω2 with cofinality ω1, let H denote a generic filter on

Pη over V . Then we can define the set S =
⋃
{X | ∃F (X,F ) ∈ H} in

V [H], which is a subset of Pω1(η). We will prove that Pω1(η) \ S is sta-

tionary in Pω1(η) and that Pω2 is forcing equivalent to the two-step iteration

Pη ∗ P(η, S, ω2).

Since we often consider generic sequences of conditions, we define a lower

bound on the sequence of functions of these conditions.
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Definition 4.1.3. Let 〈(Xn, Fn) : n < ω〉 be a descending sequence of

conditions in P(α,A, β). Then the infinum of the sequence of functions

〈Fn : n < ω〉 is a function K whose domain is equal to
⋃
{dom(Fn) : n < ω},

which is a countable subset of [α, β) ∩ cof(ω1). For ξ in dom(K),
⋃
{Fn(ξ) :

n < ω, ξ ∈ dom(Fn)} is an increasing, continuous sequence of the form

〈xξi : i < γξ〉 where γξ < ω1. If γξ is a successor ordinal, let K(ξ) be

〈xξi : i ≤ γξ − 1〉. If γξ is a limit ordinal, define aγξ :=
⋃
{aξi : i < γξ} and let

K(ξ) be the sequence 〈aξi : i ≤ γξ〉.

The next proposition shows how to construct a lower bound for a sequence

of conditions. The proof can be found in [8].

Proposition 4.1.4. Let θ be a sufficiently large cardinal and N an elemen-

tary substructure of H(θ) containing P(α,A, β). If cof(α) = ω1, assume that

N∩α is not in A. Let 〈(X,F ) : n < ω〉, X ′ and F ′ be as above. Suppose Y is a

countable subset of Pω1(β) such that X ′ ⊆ Y , and for every y in Y \X ′, either

y = N ∩ β, or there is an uncountable ordinal η in [α, β) ∩ cof(ω) such that

y = N ∩ η. Then (Y, F ′) is a condition in P(α,A, β) and (Y, F ′) ≤ (Xn, Fn)

for every n < ω.

Theorem 4.1.5. The forcing poset P(α,A, β) is ω1-distributive.

Proof. For a collection of dense sets {Dn | n < ω} of P(α,A, β) and a con-

dition (X,F ), we have to find a condition (Y,K) ≤ (X,F ), which belongs

to
⋂
{Dn | n < ω}. Let θ be a sufficiently large regular cardinal and N

a countable elementary submodel of H(θ), which contains all relevant ob-

jects. Furthermore let N ∩ α /∈ A if cof(α) = ω1, which is possible since

in that case, P(α,A, β) \ A is stationary in Pω1(α). We construct (Y,K) as

follows. Pick an N -generic sequence 〈(Xn, Fn) : n < ω〉 below (X,F ). Let

Y =
⋂
{Xn | n < ω} and K be the infinum of the sequence 〈Fn : n < ω〉.

Then (Y,K) is a condition in P(α,A, β) with (Y,K) ≤ (Xn, Fn) for all n < ω

by Proposition 4.1.4. In particular, (Y,K) ≤ (X,F ). By assumption, Dn is
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in N for each n < ω. So fix an n < ω. Then (Xm, Fm) is in Dn for some

m < ω, since (Y,K) is in Dn. Hence (Y,K) is in
⋂
{Dn | n < ω}.

The proof of the next theorem uses the ∆-System Lemma repeatedly. We

use the same arguments as in the proof which states that the forcing poset

Q is ω1-distributive, which we will give in detail.

Theorem 4.1.6. If 2ω = ω1, then the forcing poset P(α,A, β) is ω2-c.c..

As hinted, the next definition gives us the required set, which is added by the

forcing notion P(α,A, β). We prove that it is a stationary subset of Pω1(β),

which does not reflect to any ordinal in [α, β) with cofinality ω1.

Definition 4.1.7. Let Ṡ(α,A, β) be a P(α,A, β)-name such that

 Ṡ(α,A, β) =
⋃
{X | ∃F (X,F ) ∈ Ḣ},

where Ḣ denotes the canonical name for the generic filter.

We write Ṡβ for Ṡ(0, ∅, β).

Lemma 4.1.8. In V [H], for every ξ in [α, β)∩ cof(ω1), the set {aξi | i < ω1}
is a club subset of Pω1(β) which is disjoint from S(α,A, β). Hence S(α,A, β)

does not reflect to any ordinal in [α, β) ∩ cof(ω1).

Proof. Clearly, {aξi | i < ω1} is club in Pω1(ξ) for every ξ in [α, β) ∩ cof(ω1).

Assume towards a contradiction that S ∩ {aξi | i < ω1} is non-empty. Then

there is a b in S such that b = aξi for some i < ω1. Now fix (X,F ) in H

such that b ∈ X. Then there is a condition (Y,K) below (X,F ) such that b

is in the sequence F (ξ). Hence b ∈ Y , which contradicts property (5) of the

definition of P(α,A, β).

Proposition 4.1.9. The forcing poset P(α,A, β) forces that Ṡ(α,A, β) is a

stationary subset of Pω1(β).
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Proof. Let (X,F ) be a condition in P(α,A, β). Assume (X,F ) forces that Ċ

is a club in Pω1(β). We must find a condition (Z,K) ≤ (X,F ) and a set b

with (Z,K)  b ∈ Ṡ ∩ Ċ. Let θ, N and (Y,K) be as in the proof of Theorem

4.1.5. We define Z = Y ∪ {N ∩ β}. Then (Z,K) is a condition in P(α,A, β)

by Proposition 4.1.4. Recall that (Z,K) ≤ (X,F ) and that (Z,K) is an

N -generic condition. Since N ∩β is in Y , (Y,K)  N ∩S. Furthermore, Ċ is

in N by assumption on N . Therefore, P(α,A, β) forces that for a canonical

P(α,A, β)-name Ḣ of the generic filter, N [Ḣ] ∩ β ∈ Ċ. Since (Z,K) is

N -generic, (Z,K)  N [Ḣ]∩β = N ∩β. Hence, (Z,K)  N ∩β ∈ Ṡ ∩ Ċ.

The next lemma is used to show that P(α,A, β) preserves stationary sets

disjoint from S(α,A, β). We state it without proof, which can be found in

[8].

Lemma 4.1.10. Let θ ≥ ω1 be a regular cardinal.

(1) P(α,A, β) forces that there are stationary many N in Pω1(H(θ)) such

that Ṡ(α,A, β) ∩ P(N ∩ β) ⊆ N .

(2) Suppose cof(α) = ω1, and let T be a stationary subset of Pω1(α) which

is disjoint from S. Then P(α,A, β) forces that there are stationary

many N in Pω1(H(θ)) such that Ṡ(α,A, β)∩P(N∩β) ⊆ N and N∩α ∈
T .

Corollary 4.1.11. Suppose that cof(α) = ω1. Let T be a stationary subset of

Pω1(α) which is disjoint from A. Then P(α,A, β) forces that T is stationary

in Pω1(α).

Proof. For a generic filter H on P(α,A, β) over V , define a club subset C

of Pω1(α) in V [H]. Let θ be a sufficiently large cardinal. Note that in V ,

θ is a regular cardinal ≥ ω2. Using Lemma 4.1.10, we can find a countable

elementary substructure N of H(θ) such that C ∈ N and N ∩ α ∈ T . Since

C ∈ N , N ∩ α is in C, which completes the proof.
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Corollary 4.1.12. The forcing poset P(α,A, β) forces that Pω1(β)\Ṡ(α,A, β)

is stationary in Pω1(β).

Proof. For a generic filter H on P(α,A, β) over V , let F : Pω(β) → β be

a function defined in V [H]. Fix a regular cardinal θ much larger than β.

Just like in the proof of the previous lemma, we can use Lemma 4.1.10 to

get a countable elementary substructure N of H(θ) such that F ∈ N and

S ∩ P(N ∩ β) ⊆ N . Then N ∩ β is closed under F by elementarity of N .

Since N ∩ β is in P(N ∩ β) but not in N , we have that N ∩ β is not in S.

Hence Pω1(β) \ S is stationary in Pω1(β).

Now we have successfully added a stationary subset of Pω1(β) which does

not reflect to any ordinal in [α, β) with cofinality ω1. By using the forcing

poset Pω2 , we have obtained a set satisfying (1) and (2) of the requirements

for the proof of Theorem 4.1.1. We end this section by giving two lemmata

for technical purposes.

Lemma 4.1.13. For each set b in Pω1(β), there are densely many conditions

(Y,K) in P(α,A, β) with b ⊆
⋃
Y .

Proof. Suppose (X,F ) is an arbitrary condition. Consider a countable set

d ⊆ β with b ∪ (
⋃
X) ∪ {α} ( d. It is easy to see that (X ∪ {d}, F ) is a

condition in P(α,A, β) which is below (X,F ). Then b ⊆
⋃

(X ∪ {d}).

Lemma 4.1.14. Suppose (X,F ) is a condition in P(α,A, β). Then

(X,F )  Ṡ(α,A, β) ∩ P(
⋃

X) = X.

Proof. It is clear that (X,F )  X ⊆ Ṡ(α,A, β) ∩ P(
⋃
X). Let H be a

P(α,A, β)-generic filter containing (X,F ). Assume towards a contradiction

that there is a member x of Ṡ(α,A, β) ∩ P(
⋃
X), which is not in X. Then

we can take a condition (Y,K) in H such that x is in Y . Now consider a

condition (Z,L) in H which is below (X,F ) and (Y,K). But then x is in

Z \X and x ⊆
⋃
X. This contradicts (Z,L) ≤ (X,F ).
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4.1.2 Extending an elementary embedding I

Next we give an idea how to factorize the forcing notion Pβ as the two-step

iteration Pη ∗ P(η, Ṡη, β).

Definition 4.1.15. Suppose (X,F ) is a condition in Pβ and for every ξ ∈
dom(F ) we have F (ξ) = 〈aξi : i < γξ〉. Then define

(1) Xη = {b ∈ X | b ⊆ η},

(2) Fη = F � η,

(3) Xη = {b ∈ X | b 6⊆ η},

(4) F η = F � [η, β).

Furthermore let Pη,β be the suborder of Pβ consisting of conditions (X,F )

with
⋃
Xη = (

⋃
Xη) ∩ η.

Theorem 4.1.16. If i : Pη,β → Pη ∗ P(η, Ṡη, β) is defined by i(X,F ) =

(Xη, Fη) ∗ (X̌η, F̌ η), then i is an isomorphism of Pη,β onto a dense subset of

the two-step iteration Pη ∗ P(η, Ṡη, β).

Since one can show that Pη,β is dense, Theorem 4.1.16 implies that Pβ is forc-

ing equivalent to Pη ∗P(η, Ṡη, β). Recall that the reason for this factorization

was to extend the elementary embedding j we obtain from supercompact-

ness of the cardinal κ. The next theorem summarizes all properties of the

extension of j, which will also be denoted by j for simplicity. For the proof

we refer the reader to [8].

Theorem 4.1.17. Suppose that Ḡ∗H̄ is a j(Coll(ω1, < κ)∗ Ṗκ)-generic filter

over V . By letting G = Ḡ ∩ Coll(ω1, < κ) and H = H̄ ∩ Pκ, we have that

G is a Coll(ω1, < κ)-generic filter over V and H is a Pκ-generic filter over

V [G]. Moreover, the elementary embedding j : V → M can be extended in

V [G ∗H] to j : V [G ∗H]→M [Ḡ ∗ H̄] with j(G ∗H) = Ḡ ∗ H̄. Furthermore,
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(1) M [G ∗H]κ
+ ∩ V [G ∗H] ⊆M [G ∗H],

(2) if H ′ is a P(κ, Ṡκ, j(κ))-generic filter over M [Ḡ][H], then M [Ḡ ∗ H̄] =

M [Ḡ][H][H ′],

(3) j(Sκ) = Sj(κ), Sj(κ) = Sκ ∪S(κ, Sκ, j(κ)), Sκ = {b ∈ Sj(κ) | b ⊆ κ}, and

S(κ, Sκ, j(κ)) = {b ∈ Sj(κ) | b 6⊆ κ}.

4.1.3 Adding a club

The next goal is to find a forcing poset designed to destroy the stationarity

of all non-reflecting subsets of S. In Chapter 2 we have reviewed a forcing

notion Q(T ) due to Sakai which adds a club disjoint from T . Recall the

following definition.

Definition 4.1.18. Let T be a subset of Pω1(ω2). Define Q(T ) as the forcing

poset consisting of conditions p satisfying:

(1) p is a function of the form p : ap × ap → ω1, where ap is a countable

subset of ω2,

(2) for every x in T , if x ⊆ ap, then x is not closed under p.

Let q ≤ p, if q extends p as a function, that is, if ap ⊆ aq and q � (ap×ap) = p.

For a countable set a ⊆ ω2, we write a2 for a× a.

Now we want to know how to iterate this club shooting. We work in the

extension of V by a generic filter on Pω2 and define a forcing notion Q,

which forces (3) of the requirements for the proof of Theorem 4.1.1, i.e.,

every stationary subset of Sω2 reflects to an uncountable ordinal in ω2 with

cofinality ω. Similar to Chapter 2, the forcing notion Q is an iteration of

club shootings Q(T ) for each subset T of Sω2 , which does not reflect to any

uncountable ordinal in ω2 with cofinality ω.

The following definitions are for technical purposes to define Q.
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Definition 4.1.19. Let f : ω3 → ω3 × ω3 be a surjective function satisfying

that whenever f(α) = (i, j), then i ≤ α. This f is used as a bookkeeping

function.

Definition 4.1.20. Let R denote the set of all non-empty partial functions

r of the form r : (ar)2 → ω1, where ar is a countable subset of ω2. Let s ≤R r

if s extends r as a function, that is, ar ⊆ as and s � (ar) = r.

Definition 4.1.21. For every ordinal α in ω2, fix a surjective function σα :

ω1 → α. Let E be the set of all b in Pω1(ω2) such that ot(b) is a limit ordinal

and b is closed under σα for all α in b.

Note that E is a club subset of Pω1(ω2).

The forcing poset Q will be defined satisfying the following recursion hy-

potheses. Note that we work in V [H]. In particular, we define the sequence

of forcing posets 〈Qα : α ≤ ω3〉 such that each Qα satisfies the recursion

hypotheses below. We will use the bookkeeping function to enumerate all

subsets of Sω2 , which do not reflect to an uncountable ordinal with cofinality

ω. We define the sequence 〈Ṫ ij : i, j ≤ ω3〉 of those subsets as follows. For

every α < ω3 and f(α) = (i, j), we let T (α) = Ṫ ij . Then Q is defined as the

forcing poset Qω3
.

Recursion Hypotheses: For all α ≤ ω3:

(1) If p is in Qα, then p is a partial function p : α → R whose domain is

countable, and for all p and q in Qα, q ≤ p if and only if dom(p) ⊆
dom(q) and for all η in dom(p), let q(η) ≤R p(η).

(2) Let β < α. Then

(a) for all q in Qα, q � β is in Qβ,

(b) Qβ ⊆ Qα,

(c) if q is in Qα and s ≤ q � β is in Qβ, then letting t = s∪(q � [β, α)),

t is in Qα and t ≤ s, q in Qα, and
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(d) the inclusion map Qβ → Qα is a complete embedding.

(3) Qα is ω1-distributive and ω2-c.c.

(4) If α < ω3, then the sequence 〈Ṫαi : i < ω3〉 is an enumeration of all nice

Qα-names Ṫ for a subset of Pω1(ω2) such that Qα forces Ṫ ⊆ Sω2 ∩ E
and Ṫ does not reflect to any uncountable ordinal in ω2 ∩ cof(ω).

One can easily show that the recursion hypotheses (1), (2) and (4) are satis-

fied by the next definition. Since checking (3) is more work, we will tend to

this separately.

Definition 4.1.22. We define Qα. The definition splits into three cases.

- α is equal to 0

Let Q0 consist of the empty function.

- α is a limit ordinal

Let Qα be the set of all partial functions p : α→ R, whose domain is countable

such that for all β < α, p � β is in Qβ. Let q ≤ p in Qα if dom(p) ⊆ dom(q)

and for all η in dom(p), q(η) ≤R p(η).

- α is a successor ordinal

Let α = β+ 1 and f be the bookkeeping function from Definition 4.1.19, that

is, f(β) = (i, j). Then i ≤ β and j < ω3, so Ṫj is defined and is equal to

Ṫ (β).

Let Qα consist of all partial functions p : α→ R, whose domain is countable

such that p � β is in Qβ and if β is in dom(p), we have p � β Qβ p(β) ∈
Q(Ṫ (β)). Let q ≤ p if dom(p) ⊆ dom(q) and for all η in dom(p), q(η) ≤R

p(η).

The next lemma completes the recursive definition of Q.

Lemma 4.1.23. The forcing poset Qβ+1 is isomorphic to a dense subset of

Qβ ∗Q(Ṫ (β)). Therefore Qβ+1 is forcing equivalent to Qβ ∗Q(Ṫ (β)).
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Notation 4.1.24. Let p be a partial function p : α → R, whose domain is

countable. For every ξ in dom(p), let apξ denote ap(ξ). Particularly, apξ is the

non-empty countable set a with dom(p(ξ)) = a2.

The following lemma follows directly from the definition of the Qα’s.

Lemma 4.1.25. Let p be in Qα. Suppose β is in dom(p) and x is a countable

subset of apβ which is closed under p(β). Then p � β  x /∈ Ṫ (β).

Lemma 4.1.26. Let p be a partial function p : α → R with a countable

domain. If p is not in Qα, then there exist β, t, and x such that:

(1) β is in dom(p),

(2) p � β is in Qβ,

(3) t ≤ p � β in Qβ,

(4) x is a countable subset of apβ which is closed under p(β),

(5) t β x ∈ Ṫ (β).

Proof. We prove this lemma by induction on α. Clearly, it holds when α = 0.

So suppose this statement is true for Qη for all η < α.

Case 1. α = α0 + 1

Assume that p is a partial function of the form p : α → R whose domain is

countable and p /∈ Qα. Then either p � α0 /∈ Qα or p � α0 ∈ Qα, α0 ∈ dom(p),

and p � α0 does not force that p(α0) ∈ Q(Ṫ (α0)). In the first case, we can

apply the induction hypothesis to p � α0 in Qα0
and we are done. In the

second case, there exists t0 ≤ p � α0, which forces that p(α0) /∈ Q(Ṫ (α0)).

The fact that p(α0) is in R implies that t0 forces that there is a countable

set x ⊆ ap(α0), which is closed under p(α0) and is a member of Ṫ (α0). We

can apply Recursion Hypothesis (3) to the forcing poset Pα0 and therefore it

is ω1-distributive. This asserts that t0 forces that there exists such a set x in

the ground model. So pick a condition t ≤ t0 and a set x such that t forces
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x satisfies all properties above. Then x is a countable subset of apα0
which is

closed under p(α0). Furthermore, t forces that x is in Ṫ (α0).

Case 2. α is limit

Suppose that p /∈ Qα. Then there exists γ < α with p � γ /∈ Qγ by definition

of Qα. Again, we can apply the induction hypothesis to p � γ in Qγ and the

proof is complete.

Lemma 4.1.27. Let p and q be conditions in Qα such that for all β in

dom(p) ∩ dom(q), p(β) � (apβ ∩ a
q
β)2 = q(β) � (apβ ∩ a

q
β)2. Then p and q are

compatible. Furthermore, there is a condition r ≤ p, q such that

(1) dom(r) = dom(p) ∪ dom(q),

(2) for all β in dom(p) \ dom(q), r(β) = p(β), and

(3) for all β in dom(q) \ dom(p), r(β) = q(β).

In particular, if p and q are conditions in Qα such that for all β in dom(p)∩
dom(q), apβ ∩ a

q
β is empty, then p and q are compatible.

Lemma 4.1.28. Let z be a countable subset of α and let b be a countable

subset of ω2. Then there are densely many conditions t in Qα such that

z ⊆ dom(t) and for all β in z, b ⊆ atβ.

Definition 4.1.29. We call a condition p in Qα square, if there is a set a

such that for all β in dom(p), we have apβ = a. Then ap denotes this set.

Proposition 4.1.30. The forcing poset Qα is ω1-distributive.

Proof. Suppose {Dn | n < ω} is a family of dense open subsets of Qα and

p is a condition in Qα. We must find a condition q ≤ p such that q ∈⋂
{Dn | n < ω}. Let θ be a sufficiently large cardinal. Now we can apply

Lemma 4.1.10 to Pω2 to find stationary many N in Pω1(H(θ)) which satisfy

Sω2 ∩P(N ∩ω2) ⊆ N . Note that this is in the model V [H], where H denotes

a generic filter on Pω2 over V . So we can pick an N in Pω1(H(θ)) which is
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an elementary submodel of H(θ) containing all relevant objects as elements

and Sω2 ∩ P(N ∩ ω2) ⊆ N .

Next take an N -generic sequence 〈pn : n < ω〉 in Qα with p0 = p. Then it

is easy to see that
⋃
{dom(pn) | n < ω} = N ∩ α. For every β ∈ N ∩ α, we

have
⋃
{apnβ | n < ω} = N ∩ ω2.

We construct q in the following way. Let dom(q) =
⋃
{dom(pn) | n < ω} and

for each β ∈ dom(q), let q(β) =
⋃
{pn(β) | n < ω}. Therefore q is a partial

function q : α→ R whose domain is countable. To finish this proof, we need

to show that q is a condition in Qα. Because then q is below pn for all n < ω

and hence is in
⋂
{Dn | n < ω}.

So assume that q is not a condition in Qα. By Lemma 4.1.26, we can fix

β, t, and x such that β ∈ dom(q) = N ∩ α, q � β ∈ Qβ, t ≤ q � β in

Qβ, x is a countable subset of aqβ = N ∩ ω2 which is closed under q(β),

and t β x ∈ Ṫ (β). Observe that q � β ≤ pn � β for all n < ω. Since

t β x ∈ Ṫ (β), the set x is in Sω2 . Furthermore, x ⊆ N ∩ ω2. By Lemma

4.1.10, x is in Sω2 ∩ P(N ∩ ω2). Hence x is in N by assumption on N .

To prove the contradiction, let D denote the set of conditions s in Qα such

that β is in dom(s) and x ⊆ asβ. Then D is dense open by Lemma 4.1.28

and in N by elementarity of N . Fix n < ω with pn ∈ D. Then x is closed

under pn(β), since x is closed under q(β) and q(β) � (apnβ )2 = pn(β). But then

pn � β β x /∈ Ṫ (β). Since t β x ∈ Ṫ (β), the conditions pn � β and t must

be incompatible. This is a contradiction, because t ≤ q � β ≤ pn � β.

Proposition 4.1.31. The forcing notion Qα is ω2-c.c.

Proof. We show that the forcing notion Qα is ω2-Knaster. Suppose 〈pi :

i < ω2〉 is a sequence of conditions in Qα. Without loss of generality, we

may assume that pi is square for each i < ω2. Note that CH holds in V [H].

Therefore, we can apply the ∆-System Lemma to the sequence 〈dom(pi) : i <

ω2〉, which consists of countable sets, to find an unbounded set Z0 ⊆ ω2 and

a countable set b such that for all i < j in Z0, we have dom(pi)∩dom(pj) = b.

We use the ∆-System Lemma again to the sequence 〈api : i ∈ Z0〉 to find an
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unbounded set Z1 ⊆ Z0 and a countable set c such that for all i < j in Z1,

we have api ∩ apj = c.

Using CH, we can show that for each i ∈ Z1, there are at most ω1 many

possibilities for a sequence 〈pi(β) � c2 : β ∈ b〉. Thus, fix an unbounded set

Z2 ⊆ Z1 such that for all i < j in Z2 and all β ∈ b, we have pi(β) � c2 =

pj(β) � c2. So let i < j in Z2. Thus if β ∈ dom(pi) ∩ dom(pj) = b, then

pi(β) � (api ∩ apj)2 = pi(β) � c2 = pj(β) � (api ∩ apj)2. Then pi and pj are

compatible by Lemma 4.1.27.

4.1.4 Preserving the stationarity of Sω2

Proposition 4.1.32. The forcing poset Q forces that Sω2 is stationary in

Pω1(ω2).

Proof. We will work in the model V [H], where H is a generic filter over V .

So it suffices to show in V that the forcing notion Pω2 ∗ Q̇ forces that Ṡω2 is

stationary.

Now take a condition (X,F )∗ ṗ in Pω2 ∗ Q̇α and assume that (X,F )∗ ṗ forces

that ḣ : Pω(ω2)→ ω2 is a function. To show that Sω2 is stationary, we must

find a condition (Y,K) ∗ q̇ below (X,F ) ∗ ṗ and a set z such that (Y,K) ∗ q̇
forces that z is a member of Ṡω2 which is closed under ḣ. Since (X,F ) ∗ ṗ
forces that there are club many ordinals τ < ω2 which are closed under ḣ, we

can choose a condition (X ′, F ′) ∗ ṗ′ ≤ (X,F ) ∗ ṗ and an uncountable ordinal

τ in ω2 with cofinality ω such that (X ′, F ′) ∗ ṗ′ forces τ is closed under ḣ.

For each α < ω3, the iteration Pω2 ∗ Q̇ forces that Ṫ (α) is a subset of Pω1(ω2)

which does not reflect to any uncountable ordinal in ω2 ∩ cof(ω). Then in

particular, Pω2 ∗ Q̇α forces that Ṫ (α) does not reflect to τ . So pick a Pω2 ∗ Q̇-

name ḟα for a function ḟα : Pω(τ)→ τ such that Pω2 ∗ Q̇α forces that no set

in Ṫ (α) ∩ Pω1(τ) is closed under ḟα.

Let θ be a sufficiently large cardinal and N a countable elementary substruc-

ture of H(θ) containing all relevant objects, particularly the sequence of func-

tions 〈ḟα : α < ω3〉. The goal is to define a condition (Y,K)∗ q̇ ≤ (X ′, F ′)∗ ṗ′
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which is N -generic for Pω2 ∗ Q̇.

Therefore, pick an N -generic sequence 〈(Xn, Fn)∗ ṗn : n < ω〉 with (X0, F0)∗
ṗ0 = (X ′, F ′) ∗ ṗ′. Define K as the infinum of the sequence 〈Fn : n < ω〉 as

in Definition 4.1.3. Further, let Y =
⋃
{Xn : n < ω}∪ {N ∩ τ}. Then (Y,K)

is an N -generic condition in Pω2 and (Y,K) ≤ (Xn, Fn) for all n < ω due to

Proposition 4.1.4.

Since N∩τ is in Y , (Y,K)  N∩τ ∈ Ṡω2 . By Lemma 4.1.13, we obtain
⋃
Y =

N ∩ ω2. Then using Lemma 4.1.14, we have (Y,K)  Ṡω2 ∩ P(N ∩ ω2) = Y .

Let H be a Pω2-generic filter over V containing the condition (Y,K). Then

N [H] ∩ V = N by N -genericity of (Y,K). If we let pn = ṗHn for each n < ω

then 〈pn < ω〉 is an N [H]-generic sequence for Q. By Lemma 4.1.5 and

N [H]-genericity,
⋃
{dom(pn) | n < ω} = N [H] ∩ ω3 = N ∩ ω3 and for every

β in
⋃
{dom(pn) | n < ω}, we have

⋃
{apnβ | n < ω} = N [H] ∩ ω2 = N ∩ ω2.

Now we define a lower bound q of the sequence 〈pn < ω〉. Let the dom(q) =⋃
{dom(pn) | n < ω} and for each β in dom(q), define q(β) as the union

of the set of functions {pn(β) : n < ω}. It is easy to see that q is a partial

function q : ω3 → R whose domain is countable. Moreover, dom(q) = N∩ω3,

and for each β in dom(q), we have apβ = N ∩ ω2.

Next we need to prove that q is a condition in Q. Then q is clearly below

pn for all n < ω. Assume towards a contradiction that q is not in Q. Using

Lemma 4.1.26, we can fix β, t and x such that β is in dom(q), q � β is in Qβ,

t ≤ q � β in Qβ, x is a countable subset of aqβ which is closed under q(β), and

t β x ∈ Ṫ (β). Note here that β is in N∩ω3 and x is in Sω2∩P(N∩ω2) = Y .

It is clear that q � β ≤ pn � β for all n < ω. In particular, q � β is N [H]-

generic for Qβ.

Since x is in Y =
⋃
{Xn : n < ω} ∪ {N ∩ τ} and

⋃
{Xn : n < ω} ⊆ N , we

have that x is either in N or x = N ∩ τ . First assume that x is in N . Let

D be the dense subset of conditions s in Q with β ∈ dom(s) and x ⊆ asβ.

Then the elementarity of N implies that D is in N . Now fix n < ω such

that pn is in D. We obtain that x ⊆ pn. Since x is closed under q(β) and
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q(β) � (apnβ )2 = pn(β), the set x is closed under pn(β). Lemma 4.1.25 implies

that pn � β β x 6∈ Ṫ (β). Since t forces that x ∈ Ṫ (β), the conditions pn � β

and t must be incompatible. But t ≤ q � β ≤ pn � β, which is a contradiction.

The second case is x = N ∩ τ . Recall that Pω2 ∗ Q̇ forces that ḟβ : Pω(τ)→ τ

is a function such that there is no set in Ṫ (β) ∩ Pω1(τ) which is closed un-

der ḟβ. Since β is in N , the function ḟβ is also in N by elementarity of N .

Suppose Iβ is a Qβ-generic filter over V [H] which contains t. By choice of t,

we obtain t ≤ q � β. Since q � β is N [H]-generic, N [H][Iβ] ∩ V [H] = N [H].

Furthermore, N [H][Iβ]∩τ = N [H]∩τ = N∩τ . Define fβ = ḟ
H∗Iβ
β . Since the

function ḟβ is in N , we have fβ is in N [H][Iβ]. Then N [H][Iβ] ∩ τ = N ∩ τ
is closed under fβ by elementarity of N [H][Iβ]. But since t is in Iβ, the set

x = N ∩ τ is in T (β) = Ṫ (β)Iβ . So x is a set in T (β) ∩ Pω1(τ) and x is

closed under fβ, which is a contradiction by choice of fβ. Therefore, q is a

condition in Q.

Suppose q̇ is a Pω2-name such that the condition (Y,K) forces that q̇ is in

Q̇ and q̇ ≤ ṗn for all n < ω. Then the condition (Y,K) ∗ q̇ is N -generic for

Pω2 ∗ Q̇ and below (X,F ) ∗ ṗ. Now we need to show that (Y,K) ∗ q̇ forces

that N ∩ τ is a member of Ṡω2 which is closed under the function ḣ. Since

ḣ belongs to N , the condition (Y,K) ∗ q̇ forces that N [Ḣ ∗ İ] ∩ ω2 is closed

under ḣ, where Ḣ ∗ İ is the canonical Pω2 ∗ Q̇-name for the generic filter.

Hence, (Y,K) ∗ q̇ forces that N [Ḣ ∗ İ] ∩ τ is closed under ḣ. We obtain that

(Y,K) ∗ q̇  N [Ḣ ∗ İ] ∩ τ = N ∩ τ by N -genericity of (Y,K) ∗ q̇. But N ∩ τ
is a member of Y and therefore, (Y,K) ∗ q̇ forces that N ∩ τ is in Ṡω2 and

closed under ḣ.

Theorem 4.1.33. The forcing notion Q forces that Sω2 is a stationary set

in Pω1(ω2), which does not reflect to any ordinal in ω2 ∩ cof(ω1) and for

every stationary subset T of Sω2, there exists an uncountable ordinal τ in

ω2 ∩ cof(ω) such that T reflects to τ .

Proof. Take a condition p in Q such that p forces that U̇ ⊆ Sω2 such that

U̇ does not reflect to any uncountable ordinal in ω2 ∩ cof(ω). The goal is



CHAPTER 4. IMPLICATIONS BETWEEN THE PRINCIPLES 69

to prove that p forces that U̇ is non-stationary. As the forcing poset Q is

ω1-distributive, E is still club in any generic extension by Q. Therefore, it

suffices to show that U̇ ∩ E is non-stationary.

Next fix a nice Q-name Ṫ for a subset of Pω1(ω2) such that p Q Ṫ = U̇ ∩E.

Furthermore, let Q force that if p is not in the generic filter, then Ṫ is the

empty set. Now for some sequence of antichains 〈Ax : x ∈ Pω1(ω2)〉 of Q, we

have that Ṫ is equal to
⋃
{Ax × {x̌} | x ∈ Pω1(ω2)}. Next we do a simple

counting argument. Since Q has the ω2-c.c., the cardinality of each Ax is at

most ω1. As Pω1(ω2) has cardinality ω2 and Q =
⋃
{Qα | α < ω3}, we can

fix β < ω3 such that for all x ∈ Pω1(ω2), the antichain Ax is a subset of Qβ.

Thus Ṫ is a nice Qβ-name.

For every τ in ω2∩cof(ω), we have that Q ”Ṫ does not reflect to τ”. Hence

we can pick a nice Q-name Ċτ for a club in Pω1(τ) which is disjoint from

Ṫ . Repeating the argument above, we can choose ξ < ω3 larger than β such

that Ċτ is a Qξ-name for all such τ . Clearly, Qξ forces that Ċτ ∩ Ṫ is empty

for all uncountable τ in ω2 ∩ cof(ω).

We have shown that Ṫ is a nice Qξ-name for a subset of Pω1(ω2) such that Qξ

forces that Ṫ ⊆ Sω2∩E. Further Ṫ does not reflect to τ for all uncountable τ

in ω2 ∩ cof(ω). By recursion hypothesis (4), there exists i < ω3 with Ṫ = Ṫ
ξ

i .

Now fix an ordinal γ < ω3 such that f(γ) = (ξ, i). Then Ṫ (γ) = Ṫ
ξ

i = Ṫ .

By Lemma 4.1.23, the forcing poset Qγ+1 adds a club in Pω1(ω2) which is

disjoint from Ṫ . As the inclusion map Qγ+1 → Q is a complete embedding,

Q adds a club which is disjoint from Ṫ . Since p  Ṫ = U̇ ∩E, the condition

p forces that U ∩ E is non-stationary.

4.1.5 Extending an elementary embedding II

Next we show how to define a projection mapping π : j(Q)→ Q in M [Ḡ∗H̄].

One actually has to prove the existence of such a j, but we leave this to the

reader. Let Ī be a generic filter on j(Q) over V [Ḡ ∗ H̄]. The incentive is to

extend j in V [Ḡ ∗ H̄ ∗ Ī] such that j(G ∗H ∗ I) = Ḡ ∗ H̄ ∗ Ī, where I is the
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filter on Q generated by π[Ī].

When extending the elementary embedding, we always have to keep track of

the cardinal κ. In M [G ∗H] and V [G ∗H], κ is equal to ω2 and its successor

κ+ is equal to ω3 by assumption on κ. Nevertheless, in the model M [Ḡ ∗ H̄]

we have that j(κ) is equal to ω2. Note that κ and κ+ are both ordinals with

cofinality ω1 in (ω1, ω2). Here, κ+ denotes the ordinal successor, since κ is

no longer a cardinal in this extension.

One can easily deduce from Theorem 4.1.17 and the Recursion Hypotheses

(1) and (4) that the sequences 〈Qα : α ≤ κ+〉 and 〈Ṫ (α) : α < κ〉 are in

M [G ∗H].

Definition 4.1.34. For each α ≤ κ+, we define a map πα with domain

j(Qα) in M [Ḡ ∗ H̄] as follows. For a condition q in j(Qα), let the domain

of πα be equal to j−1(dom(q) ∩ j[α]), and for every γ in this domain, let

πα(q)(γ) = q(j(γ)) � κ2.

Note that for a condition q in j(Qα), q is a partial function from j(α) to

j(R) whose domain is countable. Hence, dom(q)∩ j[α] is a countable subset

of j(α). Furthermore, j−1(dom(q) ∩ j[α]) is a countable subset of α. By

the fact that M [Ḡ ∗ H̄] is an extension of M by an ω1-distributive forcing

notion, the set j−1(dom(q) ∩ j[α]) is in M . Thus, j−1(dom(q) ∩ j[α]) is in

V [G ∗ H]. The next lemma shows that this definition is well-defined. The

following proposition and theorem summarize the properties of the mapping

π and can be found in [8].

Lemma 4.1.35. In M [Ḡ ∗ H̄], R = {s ∈ j(R) : as ⊆ κ}. Therefore if t is in

j(R), then t � κ2 is in R.

Proposition 4.1.36. For all α ≤ κ+, πα is a projection mapping πα :

j(Qα)→ Qα. Furthermore, if t ≤ πα(q) in Qα, then j(t) and q are compatible

in j(Qα).

Definition 4.1.37. We define π = πκ+. Therefore, π is a map from j(Q) to

Q.
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Theorem 4.1.38. Suppose that Ī is a j(Q)-generic filter over V [Ḡ ∗ H̄]. If

I = π[Ī], then the elementary embedding j can be lifted to j : V [G ∗H ∗ I]→
M [Ḡ ∗ H̄ ∗ Ī] with j(G ∗H ∗ I) = Ḡ ∗ H̄ ∗ Ī.

4.1.6 Preserving stationary sets

This is the last step to acquire Krueger’s result. It remains to show that the

stationarity of sets disjoint from S is preserved by our forcing iteration.

Lemma 4.1.39. M [Ḡ ∗ H̄ ∗ Ī] = M [G ∗H ∗ I][G′][H ′][Ī].

Proof. By Theorem 4.1.17. M [Ḡ ∗ H̄] = M [Ḡ][H][H ′]. If we define G′ =

G ∩ Coll(ω1, [κ, j(κ))), then M [Ḡ] = M [G][G′]. Hence

M [Ḡ ∗ H̄] = M [G][G′][H][H ′].

Therefore,

M [Ḡ ∗ H̄ ∗ Ī] = M [G][G′][H][H ′][Ī].

Since π : j(Q)→ Q is a projection mapping and π[Ī] = I, we obtain

M [G][G′][H][H ′][Ī] = M [G][G′][H][H ′][I][Ī].

Hence

M [Ḡ ∗ H̄ ∗ Ī] = M [G][G′][H][H ′][I][Ī].

By using the Product Lemma repeatedly, we can reverse the order of the

extensions. Because Pκ is defined in M [G],

M [G][G′][H] = M [G][H][G′].

Hence,

M [Ḡ ∗ H̄ ∗ Ī] = M [G][H][G′][H ′][I][Ī].
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Since we defined Q in the model M [G][H], we have

M [G][H][G′][H ′][I] = M [G][H][I][G′][H ′].

Thus,

M [Ḡ ∗ H̄ ∗ Ī] = M [G ∗H ∗ I][G′][H ′][Ī].

The next theorem completes the properties we require from the set S. We

refer the reader to [8] for the long proof.

Theorem 4.1.40. In V [G∗H∗I], suppose T is a stationary subset of Pω1(κ)

which is disjoint from Sκ. Then T remains a stationary subset of Pω1(κ) in

M [Ḡ ∗ H̄ ∗ Ī].

4.2 WRP(ω2) implies RP(ω2) if 2ω1 = ω2

In this section we revisit Section 2.2. As a corollary, we obtain that the Weak

Reflection Principle for ω2 implies the Reflection Principle for ω2 under the

assumption that 2ω1 = ω2. For ωn, we use CH and 2ωn−1 = ωn.

Corollary 4.2.1. Suppose CH holds and 2ωn−1 = ωn for some 2 ≤ n < ω.

Then WRP(ωn) implies RP(ωn).

Corollary 4.2.2. Suppose 2ω1 = ω2. Then WRP(ω2) implies RP(ω2).

Proof of Corollaries 4.2.1 and 4.2.2. Let S be a stationary subset of Pω1(ωn).

By Theorems 2.2.9 and 2.2.10 respectively, there exists a stationary set T ⊆
S, which does not reflect to any uncountable ordinal in ωn ∩ cof(ω). By

WRP(ωn), there is an uncountable ordinal α in ω2 such that T reflects to α.

By the choice of T the cofinality of α must be ω1. Therefore, S also reflects

to an uncountable ordinal in ωn with cofinality ω1. �
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4.3 WRP(ω2) and SSR(ω2)

In this section we compare the Semistationary Reflection Principle to the

Weak Reflection Principle and prove that they are equivalent for ω2. For

bigger cardinals we can separate them using a supercompact.

Theorem 4.3.1. For a cardinal λ ≥ ω2, WRP(λ) implies SSR(λ).

Proof. Assume that WRP(λ) holds. Take an arbitrary semistationary set

S ⊆ Pω1(λ). Let T be the set of ω1-extensions of elements of S, i.e. T =

{y ∈ Pω1(λ) | ∃x ∈ S x v y}. Since S is semistationary, T is stationary. By

WRP(λ) there exists X ⊆ λ such that |X| = ω1 ⊆ X and T ∩ Pω1(X) is

stationary in Pω1(X). But T ∩ Pω1(X) = {y ∈ Pω1(X) | ∃x ∈ S x v y} ⊆
{y ∈ Pω1(λ) | ∃x ∈ S ∩ Pω1(X) x v y}, which is the set of ω1-extensions of

elements of S ∩ Pω1(X). Hence S ∩ Pω1(X) is semistationary.

Next we are going to show that at stage ω2, those reflection principles are

equivalent. This is actually false for all cardinals ≥ ω3. We follow Sakai [13].

Theorem 4.3.2. SSR(ω2) implies WRP(ω2) and therefore they are equiva-

lent.

For the proof of Theorem 4.3.2 we need the following lemma.

Lemma 4.3.3. Let λ and κ be cardinals such that κ is regular and ω2 ≤ κ ≤
λ. Suppose for a set S ⊆ Pω1(λ) there exists X ∈ Pκ(λ) such that X ∩κ ∈ κ
and S ∩ Pω1(X) is semistationary. Let X∗ ∈ Pκ(λ) satisfy

(1) ω1 ⊆ X∗ ∩ κ ∈ κ and S ∩ Pω1(X
∗) is semistationary,

(2) for every X ∈ Pκ(λ), if ω1 ⊆ X ∩ κ ∈ κ and S ∩ Pω1(X) is semista-

tionary then ¯sup(X∗) ≤ ¯sup(X).

Then

S0 := {y ∈ Pω1(X
∗) | ∃x ∈ S ∩ Pω1(X

∗) x v y ∧ ¯sup(x) = ¯sup(y)}
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is stationary in Pω1(X
∗).

Proof. Assume that S0 is non-stationary. Let S1 := {y ∈ Pω1(X
∗) | ∃x ∈

S ∩ Pω1(X
∗) x v y ∧ ¯sup(x) < ¯sup(y)}. Since S0 ∪ S1 is the set of all

ω1-extensions of elements of S, this union is stationary. By the assumption

and the fact that the union of two non-stationary sets is non-stationary, S1

must be stationary. For each y ∈ S1, choose xy ∈ S with xy v y and

¯sup(x) < ¯sup(y). Let ξy ∈ y with ¯sup(xy) ≤ ξy. By Fodor’s Lemma there

exists ξ∗ ∈ X∗ such that S∗ := {y ∈ S1 | ξy = ξ∗} is stationary. Let

X ′ := X∗ ∩ ξ∗. Since X∗ ∈ Pκ(λ), we get that X∗ ∈ Pκ(λ). Clearly,

ω1 ⊆ X ′ ∩ κ ∈ κ. Furthermore ¯sup(X ′) < ¯sup(X∗).

Now we show that S ∩Pω1(X
′) is semistationary, which is a contradiction to

property (2) of X∗. Note that for y ∈ S∗, xy ∈ Pω1(X
′) since xy ∈ X∗ and

¯sup(x) ≤ ξ∗. Therefore, xy v y ∩X ′. Hence,

{y ∩X ′ | y ∈ S∗} ⊆ {y ∈ Pω1(X
′) | ∃x ∈ S ∩ Pω1(X

′) x v y}.

Since S∗ is stationary in Pω1(X
′) the left side is stationary in Pω1(X

∗). Thus

the right side is stationary, which implies that S∩Pω1(X
′) is semistationary.

Proof of 4.3.1. Suppose that SSR(ω2) holds. Let S be a stationary subset of

Pω1(ω2). For each α ∈ [ω1, ω2) fix a bijection πα : ω1 → α. Without loss of

generality we may assume for each x ∈ S that ω1 < ¯sup(x) and x is closed

under πα and π−1α for each α ∈ x \ ω1.

Let α′ be the least ordinal in ω2 to which S reflects and S0 be the set of all

y ⊆ Pω1(α
′) such that

(1) there exists x ∈ S ∩ Pω1(α
′) with x v y and ¯sup(x) = ¯sup(y), and

(2) y is closed under πα and π−1α for every α ∈ y \ ω1.

Then S0 is stationary in Pω1(α
′) by Lemma 4.3.3. For every y ∈ S0 choose a
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set xy ∈ S ∩ Pω1(α
′) witnessing (1). But if y ∈ S0 then

y ∩ α = πα(y ∩ ω1) = πα(xy ∩ ω1) = xy ∩ α

for every α ∈ xy \ω1. Then ¯sup(y) = ¯sup(xy) implies y = xy for each y ∈ S0.

Therefore S0 ⊆ S ∩ Pω1(α
′) and hence S ∩ Pω1(α

′) is stationary.

�

We conclude this section with the theorem refuting the equivalence of SSR(λ)

and WRP(λ) for λ > ω2. The proof can be found in [13].

Theorem 4.3.4 (Sakai). Let κ be a supercompact cardinal. Then there exists

a generic extension in which SSR(λ) holds for all λ ≥ ω2 but WRP(λ) fails

for every λ ≥ ω3.
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