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Overview of the scientific field

Molecular Plant Systems Biology

Systems biology, a paradigm shift towards holistic rather than reductionist ap-
proaches to enable a systems understanding and study of complex interactions, 
has become a dominant trend in the biological sciences. Its foundation are the 
unbiased “omics” approaches, such as genomics, transcriptomics, proteomics, 
metabolomics, and the plant-specific phenomics, followed by data integration, 
statistics and computational modeling, trying to form as complete a picture as 
possible. Since a multitude of causes need to be observed, it is all about rec-
ognizing patterns and forming hypotheses after experimental design and data 
analysis, in contrast to measuring specific parameters due to a preformed hy-
pothesis. This has become possible due to technological advances, specifically 
dramatic increases of computational power, next-generation sequencing, and 
advances in mass spectrometry (Aebersold and Mann 2003; Metzker 2010; 
Schwanhäusser, Busse, and Li 2011; Lommen, Gerssen, and Oosterink 2011; 
Wienkoop et al. 2004; Weckwerth, Wenzel, and Fiehn 2004; Hu et al. 2005).

In order to expand biological insights of important crop plants, well-known 
plant model organisms such as Arabidopsis thaliana L. (Brassicaceae) 
and Medicago truncatula Gaertn. (Fabaceae / Legumes), are used world-
wide. The mixotrophic alga Chlamydomonas reinhardtii P. A. Dangeard 
(Chlamydomonadaceae) has been used in order to study the photosynthetic ap-
paratus, and serves as a model organism for alga. The study of such model or-
ganisms enables fundamental research and strives to improve and to transfer 
knowledge on agronomics, nutrition, biotechnology and bioenergy. The avail-
ability of genomic data, as well as the critically important functional annota-
tion is essential for systems biology, since genome sequences can be translat-
ed to protein sequences, transcripts can be mapped to genes, and metabolic 
pathways can be inferred from genes. Genetic modification such as knockdown 
and or knockout mutants are widely used to gain more insight into specific bio-
logical processes (Staudinger et al. 2012; Weckwerth 2011b; Valledor et al. 
2013; Hebeler et al. 2008).
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Mass Spectrometry-based concepts

Various methods exist in analytical chemistry to analyze complex biological 
samples, each with specific strengths and weaknesses. Mass Spectrometry (MS) 
is a very powerful post-genomic technique. Due to high sensitivity, it enables 
the measurement of analytes (e.g. proteins and metabolites) of about four to five 
orders of magnitude, depending on the instrument and sample. When coupling 
Chromatography with Mass Spectrometers, the complex mixture of a sample is 
separated in time as well as focused on the column. This enables the detection 
of low abundant compounds due to enrichment on the column, decreases the 
complexity of the sample at any given time, allows a more accurate quantifica-
tion via chromatographic peak integration, and enables the Mass Spectrometer 
to perform various types of scans on specific mass to charge (m/z) regions 
(Weckwerth 2003). MS can only measure ions, charged molecules. Various 
ionization techniques exist. Two commonly used methods are Electro Spray 
Ionization (ESI), a soft ionization technique mostly generating intact ionized 
analytes, and the hard ionization Electron Impact (EI), which produces ionized 
fragments of analytes. The analysis of larger, more non-polar and less volatile 
compounds, e.g. peptides, is preferably performed with Liquid Chromatography 
(LC) coupled to Mass Spectrometry with ESI (nanoLC-ESI/MS). This is in 
contrast to smaller, more polar and more volatile compounds, such as amino 
acids and sugars, which are preferably analyzed by Gas Chromatography (GC) 
coupled to Mass Spectrometry with EI (GC-EI/MS) (Scherling et al. 2010). A 
focus of many shotgun-proteomics studies is the maximization of the sequence 
coverage of proteins (Michalski, Cox, and Mann 2011; Mann et al. 2011; Nagaraj 
et al. 2012). Improving the resolution of the chromatographic separation (by 
e.g. increasing the length of the LC-column or reducing the particle size of the 
stationary phase) is one factor, however, sensitivity is the crucial factor, since 
the dynamic range of complex samples spans several orders or magnitude and 
therefore only the most abundant proteins would be detected with convention-
al (4.6 mm inner diameter) chromatographic setups. Increasing the sensitivity 
can be achieved by concurrently reducing the inner diameter of LC-columns 
as well as the flow rate. Theoretically, reducing the inner diameter (ID) to a 
quarter of its original size enhances the sensitivity by a factor of sixteen (qua-
dratic increase). Thus, for LC/MS-based shotgun proteomics, a general devel-
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opment from micro- to nano-flow has occurred in most laboratories (Mitulovic 
and Mechtler 2006).

Metabolomics
Metabolomics, analogous to proteomics, is the study of the entirety of small-

molecule fingerprints, the final products of cellular processes. Division into 
“primary” (necessary for growth, development, and reproduction) and  “sec-
ondary” metabolites (not directly involved in the latter, but necessary for sur-
vivability, fecundity, etc.) can be made (D’Auria, Gershenzon, and Auria 2005; 
Doerfler et al. 2013; http://en.wikipedia.org/). Primary metabolites are 
well-characterized and experimentally validated, though naturally not detect-
able in every sample of plant origin. Plant secondary metabolites are extremely 
diverse, known for e.g. preformed and induced defense mechanisms, local and 
systemic localization, and complex biological interactions and activities. An in-
conceivable amount of novel, yet unknown metabolites (including derivatives) 
remain to be discovered. These theoretical numbers are dwindling, particu-
larly due to species extinction in primary tropical forests. Typically, primary 
metabolites are measured with GC/MS and secondary metabolites using LC/
MS (when applying Mass Spectrometry, otherwise HPLC/UV usually is a stan-
dard method) (Matsuda, Yonekura-Sakakibara, et al. 2009; Scherling et al. 
2010). GC/MS metabolomics benefits from reproducible Retention times and 
Retention time indices as well as fragmentations (EI), while LC/MS metabo-
lomics is not nearly as standardized and reproducible when comparing cross-
laboratory methodology (Chromatography setup, Collision Energy settings, 
fragmentation type, etc.). The unpredictability of fragmentation patterns of 
metabolites in contrast to peptides constitutes a major difference between me-
tabolomics and proteomics. Therefore, reference spectra are essential to iden-
tify/annotate compounds. Another major difference between GC and LC/MS is 
the superior availability of reference fragment spectra and Retention times of 
pure compounds in GC/MS (in the form of databases e.g. NIST-AMDIS, http://
www.nist.gov/; GMD, http://gmd.mpimp-golm.mpg.de/). Acquiring high Mass 
Accuracy LC/MS metabolomics data, enables elemental composition determi-
nation (Kind and Fiehn 2006; Kind and Fiehn 2007). Many differences between 
GC and LC/MS metabolomics exist, which will not be indulged, since this is 
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not within the scope of this work. Targeted as well as unbiased approaches, 
using specialized instruments and data acquisition methods, in analogy to pro-
teomics, exist for both GC as well as LC/MS (Matsuda, Yonekura-Sakakibara, 
et al. 2009; Doerfler et al. 2013; Mari et al. 2013; Doerfler et al. 2014).

Proteomics
The large-scale analysis of protein mixtures is termed proteomics. Apart from 

the targeted analysis of specific proteins/peptides, in systems biology, pro-
teomics mostly aims to analyze the proteome, the entirety of all proteins of an 
organism of a given cell or tissue, at a given time, in a given state. Profiling pro-
teomics delineates differently expressed abundance levels of proteins between 
samples. Functional proteomics inspects Post Translational Modification(s) 
(PTMs) of proteins, the interaction of proteins with substrates and small mol-
ecules, aiming at a functional characterization (Mitulovic and Mechtler 2006; 
Baerenfaller et al. 2008).

Two-dimensional Sodium-Dodecyl-Sulfate Poly-Acrylamide-Gel-
Electrophoresis (2D SDS-PAGE) is a well-known technique for the separation 
of complex protein mixtures. It employs IsoElectric-Focussing (IEF), the sepa-
ration of proteins based on their isoelectric point, in the first dimension and 
subsequently the separation by mass in an electric field. Due to the combina-
tion of two orthogonal separation techniques, a much higher resolution can 
be achieved, compared to using either technique by itself. After the separation 
processes, proteins can be made visible with various staining solutions, rela-
tive quantification based on spot intensity can be performed, the spots can be 
excised for further analysis, or transferred to other matrices, e.g. for Western 
Blots (Görg et al. 2002; Towbin, Staehelin, and Gordon 1979). Established labo-
ratory protocols exist for the application of 2D SDS-PAGE. It is a robust and 
inexpensive method, but has inherent limitations. Namely, resolution limits 
owing to the hydrophobicity, isoelectric point, and molecular weight range of 
proteins resolvable and to protein-loading capacity; low-abundant proteins 
lying below the Limit Of Detection (LOD), PTMs cause proteins coded by the 
same gene to migrate to different locations on the gel (Glinski and Weckwerth 
2006). A complementary non-gel-based approach called MudPIT (Multi-
dimensional Protein Identification Technology) demonstrated the rapid and 
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large-scale analysis of the yeast proteome, by using a biphasic stationary phase 
composed of Strong Cation eXchange (SCX) and Reversed Phase (RP) materi-
als, coupled to Mass Spectrometry (Washburn, Wolters, and Yates 2001).

To date 2D SDS-PAGE and Western Blots are commonly used, though a trend 
towards the high-throughput nanoLC-ESI/MS shotgun proteomics techniques, 
as well as absolute quantification based on stable isotope-labeled internal stan-
dards can be observed (Lehmann et al. 2008; Wienkoop et al. 2008; Aebersold, 
Burlingame, and Bradshaw 2013; Recuenco-Munoz et al. 2014 accepted).

Unbiased approach
In „bottom up“-shotgun proteomics, all of the proteins (of a complex 

sample) are digested with a protease (e.g. Trypsin), subsequently the result-
ing peptides are measured. This protein-profiling strategy enables a very high 
sample throughput due to a relatively short sample preparation time. Shotgun 
proteomics is capable of resolving complex samples and can provide a high 
protein identification rate. Typically, the complex peptide mixture is separated 
by Reversed Phase Liquid Chromatography (RPLC), ionized by Electro Spray 
Ionization (ESI), and the precursors (entire peptides) are measured by MS and 
their corresponding fragments by MS/MS (Aebersold and Mann 2003). This 
data can be used to search against genomic databases and Expressed Sequence 
Tag (EST) libraries for peptide identification (as well as reference databases of 
previously identified spectra, such as “ProMEX”, or could even be “de-novo-
sequenced”) (Hummel et al. 2007; Wienkoop et al. 2012). Label-free relative 
quantitation can also be performed either by „intensity based“ approaches (e.g. 
integrating the area under the chromatographic peak) or by „spectral counting“ 
(enumerating the occurrence of MS/MS scan events of a given precursor ion) 
(Hoehenwarter and Wienkoop 2010). Label-based relative quantification, such 
as Stable Isotope Labeling by Amino acids in Cell culture (SILAC), has often 
been applied to mammalian samples, e.g. mouse (Ong et al. 2002). Since mam-
malian cells cannot synthesize a number of “essential” amino acids, these are 
provided in the medium to support cell growth. Amino acids labeled with heavy 
stable isotopes are introduced into the medium, which are incorporated into 
proteins. Subsequent shotgun-proteomics analysis of mixed samples, grown 
on natural and heavy media, result in the detection of light and heavy peptide 
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signals, enabling accurate relative quantification. In contrast, photoautotro-
phic plants can synthesize all amino acids, therefore Stable Isotope Labeling In 
Planta (SILIP), which uses 15N enriched nitrogen sources, was developed (Schaff 
et al. 2008). Depending on the labeling-time and the growth rate of the organ-
ism, partial as well as full metabolic labeling can thus be achieved (see Specific 
background and objectives of the FWF project) (Kline and Sussman 2010).

Sequenced organisms offer a major advantage, since the known nucleotide se-
quence can be translated into an amino acid sequence, which can be digested 
in silico (providing e.g. tryptic peptides). The experimental MS/MS spectra and 
their corresponding precursor masses are matched against the in silico data-
base using e.g. commercially available algorithms/programs like „Sequest“ 
and „Mascot“ to identify peptides and infer proteins (Eng et al. 1994; Pappin, 
Hojrup, and Bleasby 1993). The experimental data yields even more stringent 
results when working with instruments capable of high Mass Accuracy and re-
solving power (e.g. „LTQ-Orbitrap-MS“). With the rapid generation of genome 
sequence information in conjunction with advances in Mass Spectrometry tech-
nology as well as bioinformatics, shotgun proteomics has emerged as a promis-
ing field of protein research and a routine in many laboratories. Two general cat-
egories can be distinguished: Unbiased (untargeted) analyses of samples 
using Data Independent (e.g. SWATH, MSE) and Data Dependent Analysis (e.g. 
dynamic MS/MS triggering of the LTQ-Orbitrap) for protein identification as 
well as PTM analysis thereof (qualitative analysis); and biased (targeted) 
analyses using specialized Mass Spectrometers such as triple-quadrupoles 
(QqQ) (quantitative analysis) (Gillet et al. 2012; Collins et al. 2013; Moran et al. 
2014). Biological interpretation necessitates quantitative information in addi-
tion to identifications. Some of the new generation Mass Spectrometers aim to 
comply with both demands and novel data-processing methods improve quan-
titation (e.g. Orbitrap Fusion). Thus, a strict separation of qualitative and quan-
titative methods is not always possible. Rather, the goal would most often, if 
not always, be to get as much qualitative and quantitative information as pos-
sible, which depending on the technical platform as well as time and cost, is not 
always possible. Naturally, this leads to specialized methods and instruments 
(as previously mentioned) (Schulze and Usadel 2010).
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Targeted approach
The “Mass Western” is a targeted proteomics technique used to quantify spe-

cific proteins of interest. The term was coined in analogy to the well-known 
“Western Blot”. A number of selected proteotypic peptides (specific only to the 
protein of interest) are synthesized, each containing one amino acid labeled 
with 13C and 15N, and can thus serve as internal standards. The synthetic pep-
tides are tuned on the mass spectrometer in order to achieve maximum sen-
sitivity. A dynamic range of about four orders of magnitude can be measured. 
The internal standard is introduced to the sample as early as possible and the 
proteins are digested. Subsequent LC/MS measurements are typically per-
formed on a Triple Quadrupole type instrument. The synthetic peptides co-
elute with their natural counterparts on the LC system, but can be differen-
tiated on the MS level, because of a mass shift due to the introduction of the 
“heavy amino acid”. This technique allows absolute quantification of low-abun-
dant proteins in complex samples (Lehmann et al. 2008; Lyon, Weckwerth, 
and Wienkoop 2014; Recuenco-Munoz et al. 2014 accepted). The ben-
efits of absolute in contrast to relative quantification are the comparability of 
data, independent of the sample, experiment, tissue or organism, as well as the 
increase in accuracy of the measurement. The drawbacks are an increased cost 
of reagents (internal standards), time needed to establish the specific methods 
(finding proper SRM transitions, tuning of the Mass Spectrometer and measur-
ing calibration curves), and that only specific analytes will be detected regard-
less of the contents of the sample. With absolute quantification it is possible to 
distinguish isoforms or gene families all in one LC/MS run. In order to reach 
a selection of proteotypic peptides, two different approaches can be employed. 
The experimental approach consists of the LC/MS analyses of the tryptic 
digest of a heterogeneous protein mixture. Offline pre-fractionation and/or en-
richment and online two-dimensional LC can be used to increase the sensitiv-
ity/dynamic range of the method as well as the number of detected peptides. 
The resulting data is matched against a database in order to identify which of 
the measured peptides belong to the protein of interest. From these peptides, a 
number of suitable signature peptides (proteotypic peptides) are chosen to be 
used as stable isotope-labeled synthetic peptide standards. The theoretical 
approach uses the sequence of the protein of interest, which is digested in 
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silico, yielding tryptic peptides. A number of proteotypic peptides (specific only 
for the protein of interest) are chosen, taking size, amino acid composition, and 
tryptic efficiency into account. The experimental setup has to be validated and 
potential additional iterations concerning the choice of peptides have to be done 
(Lehmann et al. 2008; Lyon, Weckwerth, and Wienkoop 2014; Schulze 
and Usadel 2010; Wienkoop et al. 2008; Lange et al. 2008).

Databases
The UniProt Knowledgebase (UniProtKB) is not only a mere repository for 

amino acid sequences, but contains functional information on proteins, with 
accurate, consistent and rich annotation, as well as cross-references to experi-
mental data, amongst others. UniProtKB is divided into two sections, Swiss-
Prot, a labor-intensive, high-quality, manually annotated and non-redundant 
protein-sequence database, as well as TrEMBL, computer-annotated trans-
lated nucleotide sequences. UniProt Reference Clusters (UniRef) clusters sets 
of sequences, from UniProtKB and UniParc, to gain complete coverage of the 
sequence space, while merging redundant sequences and/or fragments. “The 
UniRef100 database combines identical sequences and sub-fragments from 
any organism into a single entry” (http://www.uniprot.org/; Suzek et al. 2007). 

A large collection of non-redundant protein sequences of several sources 
can be found at the National Center for Biotechnology Information (NCBI) at 
the  following web-page http://www.ncbi.nlm.nih.gov/protein/. This resource 
includes protein sequences translated from nucleotide sequences of coding 
regions of DNA (GenBank), annotated protein-sequence records derived from 
data in public sequence archives and from computation, curation and collabo-
ration (RefSeq), experimental and inferential, manually annotated sequences 
(SwissProt), functional information (PIR), and structural information (PDB) 
(K. Pruitt et al. 2002; K. D. Pruitt et al. 2014; Tatusova et al. 2014; http://www.
ncbi.nlm.nih.gov/).

More and more genome sequencing projects are currently running (incomplete 
projects 21461) and are being completed (completed projects 6646) (https://gold.
jgi-psf.org/index, as of October 2014). One specific project aims to sequence 
and annotate the genome of M. truncatula which is still not complete (http://
www.jcvi.org/). The umbrella association International Medicago Genome 
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Annotation Group (IMGAG) is a combined effort to re-sequence various inbred 
M. truncatula lines, to characterize Single Nucleotide Polymorphisms (SNP), 
Insertions/Deletions (INDELs) and Copy Number Variants (CNV), in order to 
describe the population structure and identify haplotypes. Thus, a long-term, 
community-accessible Genome-Wide Association (GWA) mapping resource has 
been created (http://www.medicagohapmap.org; http://www.jcvi.org/ ).

The generation of Expressed Sequence Tags (ESTs) is (or in former times was) 
faster and cheaper than the generation of entire genomes (Adams et al. 1991). 
These nucleotide sequences can be translated to protein sequences via Six-
Frame-Translation (using e.g. EMBOSS) (Rice, Longden, and Bleasby 2000). 
Such a collection of protein sequences can serve as a database for shotgun pro-
teomics identification (Larrainzar et al. 2007; Weckwerth 2011a). 

ProMEX is a public mass-spectral library of experimental data. The data-
base consists of mass spectra of tryptic peptides derived from A. thaliana, C. 
reinhardtii, M. truncatula and Solanum tuberosum L. Since it is independent 
of genomic data, it is especially suitable to search for PTMs (Post Translational 
Modifications) such as phosphorylation sites. New gene models can be derived 
from proteomics data using this tool. The database includes data from subcel-
lular fractionation, metal oxide affinity chromatography (MOAC) as a phos-
phoprotein-enrichment strategy, from neutral loss scanning for p-site quan-
tification, drought-stress protein markers, novel protein allergens and pollen 
development, amongst others (Hummel et al. 2007; Wienkoop et al. 2012; 
Hoehenwarter et al. 2008; Larrainzar et al. 2009; May et al. 2008; Wienkoop et 
al. 2008; Lehmann et al. 2008; Reumann et al. 2007; Kierszniowska, Walther, 
and Schulze 2009; Wienkoop et al. 2010; Ischebeck et al. 2014).

Functional annotation
Reasons to use BLAST

Even though the genome of an organism may be fully sequenced, this neither 
immediately results in the proper assignment of all coding regions, nor the un-
ambiguous functional annotation thereof. Additionally, splice variants, Single 
Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (INDELs) exist, 
complicating the picture. Genetically highly diverse species, such as Pisum 
sativum L., and plant polyploidy (e.g. Magnolia)  additionally increase the 
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complexity of the data and its interpretation (Bourgeois et al. 2011; Parris et 
al. 2010). Similar sequences do not necessarily have the same function and 
differing sequences have shown to possess the same function. Nevertheless, 
the curious mind of a biologist can utilize well-known tools such as BLAST in 
the hope of gaining insights in homology, function, and localization, amongst 
others (Altschul et al. 1990; http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Applying BLAST
Basic Local Alignment Search Tool (BLAST) is an umbrella term for tools en-

abling biological sequence comparison to assess homology. Multiple specialized 
variants (e.g. blastp, blastn, blastx, PSI-blast, DELTA-blast, etc.) exist, depen-
dent on the sequence and problem at hand. Taking the sequence length and 
the evolutionary distance between the query sequence and the database into 
account, various substitution matrices exist (e.g. BLOSUM 62, PAM30, etc.), 
producing different scores that evaluate the search result. Usually, the E-value 
(expectancy value) is used to evaluate the data. The latter is produced by cal-
culating the fraction of the search space (database size in bits) by the adjusted 
score (in bits). Thus, low E-values indicate that the rarity of the score overcomes 
the search space. In other words, a low E-value shows that the hit would not be 
expected by chance alone, but is due to sequence identity and similarity. Due 
to the fact that the E-value depends on the query size as well as the database 
size, there is not a single ubiquitous threshold cutoff value to be used. Within 
the publications presented in this work, a cutoff value of 1 * e-3 was used. This 
particular value was chosen in order to produce a sufficient amount of query 
hits, while trying to retain the stringency to get meaningful results, since only 1 
* e-3 hits would be expected to be seen by chance alone.

 A. thaliana has enjoyed most attention in the world of molecular plant biology, 
therefore the genome annotation is more advanced compared to other model 
plants. Subsequently, homology-based information transfer is often performed 
against A. thaliana (i.e. TAIR10 at the present time) (Ischebeck et al. 2014; 
http://blast.ncbi.nlm.nih.gov/Blast.cgi).

MapMan and GO
Mercator is an automated pipeline, an efficient annotation tool for functional 

genomic and proteomic sequences. It utilizes the MapMan bin ontologies for 
functional annotation of plant omics data. Controlled vocabularies and func-
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tional ontologies simplify the exchange of information and enable computation-
al approaches. 36 major MapMan bin categories exist (e.g. Photosynthesis, Tri 
Carboxylic Acid cycle (TCA), etc.), each with various specialized sub-categories, 
modeled as a tree (Thimm et al. 2004; Lohse et al. 2014; Usadel et al. 2009). A 
typical use case would be the visualization of gene expression and/or integrated 
proteomics and metabolomics data, comparing a control to a treatment group. 
By selecting different so-called “pathways”, versatile data exploration can be 
performed, since a general overview as well as particular functional categories 
can be visualized and thus inspected for patterns of differential expression in 
abundance levels (Staudinger et al. 2012; Tellström et al. 2007; Ischebeck 
et al. 2014). MapMan was originally designed for plants, specifically A. thali-
ana, in contrast to the species-unspecific Gene Ontology (GO). There are three 
GO ontologies that conform to independent categories of gene function: molec-
ular function (GO-MF), biological processes (GO-BP), and cellular component 
(GO-CC). The dependencies are realized in a directed acyclic graph (Ashburner 
et al. 2000; Klie and Nikoloski 2012).

Another important resource is the Protein Ontology (PO, formerly PRO), pro-
viding an ontological representation of protein-related entities and showing 
relationships between them. Genes, taxon-neutral to species specific protein 
sequences, protein complexes, and PTMs are represented (if available). PO 
complements databases such as UniProtKB and interoperates with other on-
tologies such as GO (Natale et al. 2014; http://proconsortium.org).

	D ata Integration and Interpretation – 
Bioinformatics

The goal of many systems biology approaches is to recognize differential 
patterns of expression as a consequence of specific treatments and/or time 
courses. Observing that transcripts/proteins/metabolites associated with par-
ticular pathways are enriched/up- or down-regulated (Valledor et al. 2013; 
Hoehenwarter et al. 2008; Jurgen Cox et al. 2014; Wienkoop and Weckwerth 
2006). In situ, analytes differ by several orders of magnitude in abundance, 
thus posing difficulties for data acquisition and therefore also when evaluating 
their relative expression patterns. Additionally, technical and batch-to-batch 
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variability have to be accounted for, to delineate the latter from biological vari-
ability and differential expression due to sample treatments. In order to draw 
as holistic a picture as possible and thus maximize the information content, all 
MS-measured analytes and other (e.g. physiological) parameters can be merged 
into a single data matrix (Doerfler et al. 2013; Mari et al. 2013). Since 
these values often consist of a wild mixture of SI (The International System 
of Units) as well as arbitrary units, and can differ by several orders of magni-
tude, data normalization/transformation/standardization is needed. To illus-
trate: High-abundance proteins have higher values (peak area, spectral count) 
compared to low-abundance or small proteins; using multivariate statistics this 
may cause high ranking for high-abundance proteins. Data transformation is 
necessary to rescale data, enabling small, but potentially statistically signifi-
cant changes to emerge from the data set. Thus, log (e.g. base 2 or base 10) and/
or “z-transformation”/”standardization” (or other methods) should be applied 
(Staudinger et al. 2012; Weckwerth 2007). In shotgun proteomics, when e.g. 
using spectral counting, the protein size will greatly influence the magnitude of 
the measured abundance value. One method of resolution is the Normalized 
Spectral Abundance Factor (NSAF), another the exponentially modified Protein 
Abundance Index (emPAI) (Schulze and Usadel 2010; Ischebeck et al. 2014). 
Novel methods are constantly being developed to increase the quantitative ac-
curacy of MS data. One, for instance, is the “proteomic ruler”, which normal-
izes protein abundance to histone content (Winiewski et al. 2014). In metabo-
lomics, internal standards are often used for sample normalization. Technical 
variability (e.g. ESI-quality, sample injection volume, skimmer or S-lens pollu-
tion, etc.) can dramatically influence the signal intensity of MS measurements. 
In order to cope with such problems, normalization can be applied in an in-
tra-experimental/batch-fashion. This can be illustrated with a simple example 
of building the sum of all signals for each measurement (sum_m), as well as 
the overall sum, the sum of all these sums (sum_all). Subsequently, each indi-
vidual value is divided by the sum_m of its corresponding measurement and 
multiplied by the fixed sum_all value. Thereby, the varying signal intensities of 
individual measurements (e.g. one LC/MS “run”) are represented as the frac-
tion of the total intensity of the measurement, and then all values are scaled to 
the same “baseline-intensity”, while retaining the biologically relevant variabil-
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Figure 1 legend:
The histograms display the intensity of all peptide signals (log base 10) versus the density of the occurrence. 

The sub-plots are divided on the abscissa by five distinct TimePoints (0h, 24h, 48h, 72h, 96h) and the ordi-
nate is divided by two technical replicates (both of the biological replicate “B”). Plot A shows the original data, 
and plot B the transformed data. 

ity (see Figure 1). Figure1.Sub-plot A.sample72h.B2 stands out in comparison 
to the histograms of the other samples, due to its shift on the x-axis (smaller 
values) as well as its more positive kurtosis. Sub-plot B.sample72h.B2 shows 
a clear shift of the values to the right, to elevated numbers, conforming with 
the other sub-plots. However, this shift does not influence the distribution of 
values and therefore the positive kurtosis remains unchanged. Naturally, such a 
data transformation does not resolve any type of difficulty concerning outliers 
or even missing values. Numeric and visual inspection of the data and testing 
various transformation strategies is an important aspect of data analysis. This 
data is from an unpublished data set.

Data to stats: getting data ready for analysis
Preparing data for statistical analysis is often anything but trivial. Careful 

considerations have to be taken concerning missing values and data normal-
ization/transformation/standardization (Gromski et al. 2014). Another diffi-
culty is the expected input format of software capable of statistical analysis. 
E.g. “R”, “Matlab-COVAIN”, or commercial programs such as “SIMCA” and 
“Statgraphics” (to name only a few) all expect a specific input, which has to be 
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accounted for (Sun and Weckwerth 2012; R Development Core Team 2008). 
I have used scripting languages such as “Python” or “R” to apply established 
functions such as “melt” or “pivot”, as well as implemented other data trans-
formations to perform exploratory data analysis (Lyon and Castillejo et al. 
2014 in preparation).

Software
As technological aspects of Mass Spectrometry are rapidly developing, exper-

imental design towards a better understanding of biology adapts and evolves 
(Bantscheff et al. 2007). Since research doesn’t end with the mere acquisition 
of experimental data, but necessitates the computational analysis of such bio-
logical information, adaptation of existing as well as creation of new software 
tools and programs is essential (Kohlbacher et al. 2007; Pluskal et al. 2010; 
Deutsch et al. 2010; Lommen 2009; Lommen, Gerssen, and Oosterink 2011). 
This includes adaptation to novel community standards (e.g. file formats such 
as “mzXML” to “mzML” and novel standards such as “qcML” and “mzTAB”), 
data processing parallelization to increase speed, connecting available individ-
ual resources by creating pipelines, automation and inventing novel algorithms, 
to generally enable high throughput analysis of omics data (this is not meant to 
be a comprehensive list of bioinformatics tasks) (Martens et al. 2011; Walzer 
et al. 2014; Bald et al. 2012; Goloborodko et al. 2013; Choi et al. 2014; Griss et 
al. 2014). Last but definitely not least, the visualization of data serves to get an 
overview, to zoom into specific aspects (see Figure 1), it can highlight mistakes 
or technical problems and aids in the explanation of interpretations when con-
veying information in the form of publications or lectures (Gehlenborg et al. 
2010). Manual data analysis is not feasible for high-throughput MS data, simply 
due to the excess of information, as well as potentially justifiable, but irrepro-
ducible decisions taken by the data analyst. Therefore, the automated identifica-
tion and quantification of high-throughput MS data is a necessity (Jürgen Cox 
and Mann 2008; Jürgen Cox et al. 2011; Lommen 2009; Lommen, Gerssen, and 
Oosterink 2011; Deutsch et al. 2010; Kohlbacher et al. 2007; Pluskal et al. 2010; 
Röst et al. 2014; Egelhofer et al. 2013; Smith et al. 2006; McIlwain et al. 2014). 
The difficulty lies in the translation from human pattern recognition combined 
with specialized knowledge and intuitive decision-making to stringent math-
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ematical descriptions, operations and heuristics that can be implemented as an 
algorithm in software. This type of data processing can be done with various 
software solutions. Two prominent and adequate programming/scripting lan-
guages are “Python” and “R”, which I have used extensively throughout the 
present work. “Python” is known for its ease of use, flexibility and rapid devel-
opment times, and “R” for statistical calculations as well as its powerful graph-
ics engine (Rossum and Drake 2001; R Development Core Team 2008). I have 
extensively used “IPython” (web-based interactive computation environment 
for Python) as well as the R package “ggplot2” (Grammar of Graphics) (Perez 
and Granger 2007; Wickham 2009). For high performance computing, other 
programing languages such as (the low-level programming language) C++ are 
preferably used.

Application to plant research

The following section outlines the specific background and objectives of the 
PhD thesis. The major part of this work was conducted during the FWF project 
(Fonds zur wissenschaftlichen Förderung/Austrian Research Fund), which 
will be described in more detail as follows (FWF project number P23441-B20, 
http://homepage.univie.ac.at/stefanie.wienkoop/fwf23441_en.html).

LC/MS method development and data analysis

Establishing a robust and reproducible LC/MS metabolomics platform on 
an Orbitrap Mass Spectrometer, combined with subsequent data analysis, 
is not a straightforward task, if samples of various species, organs and frac-
tions are to be considered. A single methodology is not capable of coping with 
all possible analytical tasks, and if a nearly all-encompassing method would 
be established, it might be too impractical, due to extended laboratory work 
and measurement time. Therefore, depending on the analytes to be analyzed, 
choices have to be made concerning the Mass Spectrometry setup: measuring 
in positive or negative ion mode, scan range, Mass Resolving Power, LockMass, 
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number of MS/MS scan events, micro scans, fragmentation mode and colli-
sion energy settings, dynamic exclusion/inclusion lists, charge state recogni-
tion, intensity thresholds, etc. (Doerfler et al. 2013; Doerfler et al. 2014; 
Mari et al. 2013; Koulman et al. 2009; Xu et al. 2010; Vincent et al. 2013). 
Additionally, due to the Ion Trap, interesting MSn scan events can be created. 
Many derivatives of known Flavonoids exist, whose MS/MS spectra cannot be 
annotated, since only the neutral loss of sugars or organic acids from the pre-
cursor is visible in the spectrum. MSn spectral trees can result in the fragmen-
tation of e.g. the Agylcon backbone of a glycosylated-Flavonoid. Such a spec-
trum can be compared to spectra of known reference compounds. The Aglycon 
compound can therefore be identified and the sugars/organic acids inferred 
(Matsuda, Yonekura-Sakakibara, et al. 2009; Doerfler et al. 2013; Doerfler 
et al. 2014). Such MSn trees can be performed in a “flat” fashion (e.g. the five 
most abundant ions of the MS/MS scan event will be used for MS/MS/MS frag-
mentation, i.e. 1 x MS, 1 x MS/MS, and 5 x MS/MS/MS ), or a “deep” fashion 
(e.g. the most abundant ion from the MS/MS scan event will be used for MS/
MS/MS fragmentation, subsequently the most abundant ion will be subjected 
to MS/MS/MS/MS fragmentation and so on and so forth, i.e. 1 x MS, 1 x MS/
MS, 1 x MS/MS/MS, 1 x MS/MS/MS/MS, and 1 x MS/MS/MS/MS/MS). Due to 
limited scan event numbers (inherent limitation of the software), considering 
a sufficient number of MS scans for peak integration (duty cycle time), lack of 
sufficient ions to acquire sufficient Signal to Noise ratios, etc., these scan events 
have to be restricted (even with modern and fast Mass Spectrometers). I have 
developed several methods for MS/MS as well as MSn fragmentation trees, 
which resulted in an improved reproducibility of spectra and an increase in the 
Signal to Noise ratio, while retaining sufficient MS scans to perform quantita-
tion (methods and data largely unpublished, though some aspects were applied 
in the following publications) (Doerfler et al. 2013; Mari et al. 2013; 
Doerfler et al. 2014). Furthermore, I’ve suggested the use of spiking pep-
tides into the metabolite sample as internal reference standards, in order to use 
the subsequent signals to build a Retention time index in analogy to GC/MS 
metabolomics.

Many of these settings additionally depend on the chromatographic setup 
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and the acquisition speed of the Mass Spectrometer, since peak widths and the 
duty cycle time of the entire MS method should be considered when setting the 
dynamic exclusion duration of precursors as well as the number of scan events 
and types. Sample injection volumes of 5 µl have a great influence on the chro-
matographic performance of 100 µm I.D. columns, in contrast to more conven-
tional 4.6 mm I.D. columns. This needs to be considered when choosing sample 
solvents for injection, as well as the initial gradient conditions. Naturally, 
not all types of analytes can be separated with commonly used Reversed 
Phased Liquid Chromatography (RPLC) or are highly soluble at initial gradi-
ent conditions. Therefore, other modes such as Hydrophilic Interaction Liquid 
Chromatography (HILIC) have to be employed, MS compatible mobile phases 
used, and during the subsequent MS data analysis, attention paid to potentially 
differing adduct formations, dependent on the mobile phase and the concentra-
tion of the analyte in question. Comparing Retention times of analytes mea-
sured with orthogonal chromatographic techniques, in order to gain additional 
information concerning the annotation, is difficult to impossible (Lu et al. 2010; 
Koulman et al. 2009; Xu et al. 2010; Vuckovic and Pawliszyn 2011; Matsuda, 
Yonekura-Sakakibara, et al. 2009; Matsuda, Shinbo, et al. 2009; Goodacre et 
al. 2004; Lee et al. 2011). Apart from these technical MS aspects, there is a very 
limited to non-existent choice of software solutions available to cope with such 
data.

Following data acquisition, data analysis is the next challenging task. A mul-
titude of methods exist, the choice of which depends on the data acquisition. 
These techniques will not be described, since this would go beyond the scope of 
this work. Rather, a brief overview of the data analysis used for the publications 
pertinent to this thesis will follow. Depending on the data acquisition method 
and the samples, the Mass Spectrometer chooses which precursors to select 
for MS/MS fragmentation (data dependent MS/MS triggering). Therein lies a 
lot of information which was used by ProtMAX to align and extract data from 
multiple LC/MS measurements, building a data matrix of unidentified m/z-
features and their intensities (Egelhofer et al. 2013). The raw LC/MS data was 
manually analyzed, in order to find proper settings for ProtMAX data extrac-
tion. The LC/MS data matrix was filtered for reproducible signals, merged with 
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the analogous GC/MS data matrix, subsequently transformed and subjected to 
statistical analysis and modelling (see “Data Integration and Interpretation – 
Bioinformatics” and (Doerfler et al. 2013; Mari et al. 2013; Egelhofer et al. 
2013)).

Many of the aforementioned technical considerations apply to Proteomics MS 
analysis as well. For more accurate quantification and a wider dynamic range, 
Triple Quadrupole Mass Spectrometers (QqQ) were used (Lyon, Weckwerth, 
and Wienkoop 2014). 

Specific background and objectives of the FWF 
project

The production of nitrogen fertilizers is an energy-demanding process, the use 
of such fertilizers is economically expensive and by leaching and eutrophication 
can negatively influence biodiversity and ecological processes. The capability of 
mutualistic symbiosis of legumes with rhizobia is significant for sustainable ag-
ricultural systems worldwide, specifically due to the metabolic exchange of ni-
trogen-fixing bacteria with their host plant. In this relationship, legume plants 
can form so-called root-nodules (bulbous growths interspersed throughout 
the length of the plant root-system) encapsulating specialized bacteria, spe-
cific to the host plant. The bacteria can assimilate the abundant atmospheric 
nitrogen (~ 78%), transform it to ammonia, and subsequently provide the plant 
with this important and potentially growth-limiting nutrient. In exchange, the 
plant feeds the bacteria with sugars and other nutrients. This process is called 
Symbiotic Nitrogen Fixation (SNF). When legumes grow without these 
endosymbionts, they need to be fertilized with nitrogen (amongst other nutri-
ents). Accordingly, the opposing terms “N-fix”, for SNF, and “N-fed”, for fertil-
ized plants, can be distinguished. SNF is susceptible to environmental stresses, 
particularly drought, which inhibits SNF and subsequently reduces crop yields. 
M. truncatula, a sequenced model organism of legumes, serves to study physi-
ological, metabolic as well as proteomic responses to drought stress within the 
FWF project. The molecular mechanisms regulating the differential control of 
water relations during drought is of fundamental importance to plant physiol-
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ogy. Elucidated mechanisms could hopefully be applied to closely related crop 
species such as P. sativum and Medicago sativa L. (Larrainzar et al. 2009; 
Larrainzar et al. 2007; Staudinger et al. 2012).

M. truncatula is a diploid, annual, forage plant that serves as a model organ-
ism for the large Fabaceae family (Legumes) of which most species can perform 
SNF. Other prominent species of the family are Lens culinaris Medik., Phaseolus 
vulgaris L., and Glycine max (L.) Merr. Apart from the Poaceae, Fabaceae are 
the most import plant family to humans, due their use as grains, pasture, and 
in agroforestry. Due to SNF, they can colonize low-nitrogen environments, 
thereby improving the soil and thus play a critical role in natural ecosystems, 
agriculture, and agroforestry (http://medicago.vbi.vt.edu/; Graham and Vance 
2003; Trevaskis et al. 2002). Next-generation sequencing technologies enable 
time and cost efficient acquisition of entire genomes, thus also paving the 
way for database dependent shotgun proteomics experiments (Metzker 2010). 
Though M. truncatula is almost completely sequenced, the genome annotation 
is not complete. Proteomic databases specific for Medicago do not reflect the 
“entirety” of potential proteins (e.g. UniProt entries specific for M. truncatu-
la, (http://www.uniprot.org)) or are imperfectly annotated (e.g. International 
Medicago Genome Annotation Group (IMGAG), (http://medicago.org/genome/
IMGAG/)). Consequently, many proteins of M. truncatula are regarded as puta-
tive proteins, particularly protein databases created from nucleotide sequences 
via automated gene prediction. In an effort to increase the number of protein 
identifications while concurrently reducing computational cost, I have created 
non-redundant fused databases (for M. truncatula and other species) using 
various sources, with the intent of providing data to ameliorate genome anno-
tation (e.g. ProMEX data is cross-referenced in UniProt). Hence, such a single 
database can be used to analyze shotgun-proteomics LC/MS data, in contrast 
to evaluating the same data with multiple databases (Staudinger et al. 2012; 
Lyon et al. 2014). Larger non-redundant databases will automatically lead to 
an increase in Peptide Spectrum Matches (PSMs) for the target as well as the 
decoy database. Discord exists about the use of such fused databases, largely 
due to inconsistent functional annotation of proteins. Reassigning the identifi-
cation results to the original databases poses another difficulty. With different 
versions of genome annotations (of the same species, utilizing the exact same 
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genomic sequence), some confidently and repeatedly experimentally validated 
proteins can vanish (Valledor et al. 2012). It is apparent that functional annota-
tion of M. truncatula is ongoing and that unbiased, reproducible shotgun pro-
teomics data is a valuable resource for proteogenomics, amongst others.

In order to gain more functional information, I have performed homolo-
gy searches, using BLAST, against the well-characterized species A. thaliana 
(Ischebeck et al. 2014). I have used the Mercator pipeline for the functional 
annotation of the aforementioned fused protein sequence databases specific to 
species such as M. truncatula. Due to size restrictions and ambiguous difficul-
ties with protein sequence recognition (largely due to interspersed asterisks, 
“X” and other single letter amino acid codes not describing the most simplis-
tic 20 proteinogenic amino acids for humans, short repeats, sequence length, 
etc., mostly derived from six-frame-translation of nucleotide sequences), semi-
automated filtering had to be performed preceding the upload to the Mercator 
pipeline. This task was achieved using in-house unpublished Python scripts as 
well as manual investigation, which I performed. The functional categorization 
served not only for visualization, but also for clustering the data (in analogy 
to GO-term enrichment). The resulting data were used within the following 
publications (Staudinger et al. 2012; Lyon et al. 2014; Ischebeck et al. 
2014). 

Progress in unbiased as well as targeted analyses of proteins and metabo-
lites is tightly linked to technological advances especially in the field of Mass 
Spectrometry (MS) (Glinski and Weckwerth 2006; Hu et al. 2005; Olsen et 
al. 2005). Shotgun proteomics using Liquid Chromatography coupled to Mass 
Spectrometry (LC/MS and LC/MS/MS) generates tremendous amounts of 
data (expressed protein sequence information). Within this project, proteins 
identified with high confidence, through computer assisted database depen-
dent identification, are stored in the publicly accessible spectral reference da-
tabase PROMEX (http://promex.pph.univie.ac.at/promex/) (Hummel et al. 
2007; Wienkoop et al. 2012). This reference database is cross-linked to UniProt 
(Apweiler and Consortium 2012; http://www.uniprot.org). Thus, experimental-
ly validated protein sequences characterized as putative can ameliorate genome 
annotation. Furthermore, information for better functional characterization 
can potentially be supplied through sample information (e.g. sample of roots 
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and nodules vs. leaves, subcellular fractionation, enrichment, etc.), experimen-
tal design (comparing sample groups), and sequence homology searches. Thus, 
the research objectives are defined as follows:

1. Functional characterization and visualization of 
proteins for legumes

Irrespective of database-dependent identification, computationally assisted 
data interpretation and visualization is necessary to cope with the given data. 
Mapping functional annotation to protein sequences and therefore to unique 
identifiers such as Accession Numbers, enables biologically meaningful data 
interpretation, functional clustering, and additional visualization methods. 
As previously mentioned, one task consisted of merging protein FASTA files 
(FASTA-format-files will henceforth be referred to as FASTA files) of various 
sources, creating a non-redundant protein database specific for the given organ-
ism. These protein FASTA files were subjected to the aforementioned Mercator 
pipeline to utilize the resulting MapMan functional categories. In order to find 
homologs and therefore gain additional information, protein FASTA databases 
were subjected to BLAST against e.g. TAIR10 or other better characterized da-
tabases of closely related species. This type of bioinformatics work was per-
formed not only for M. truncatula, but also for Nicotiana tabacum, G. max, 
Phaseolus vulgaris, Lotus japonicus, Oriza sativa, Physcomitrella patens, P. 
sativum, and Triticum aestivum (Staudinger et al. 2012; Ischebeck et al. 
2014; Gil-Quintana 2014 submitted; Meisrimler et al. 2014 in prepara-
tion; as well as unpublished work).

2. 15N labeling, development of an automated 
program for protein turnover calculations

In shotgun proteomics, the comparison of the abundance of peptides cor-
responding to specific proteins yields the Fold Changes of Proteins (FCP) 
(Hoehenwarter and Wienkoop 2010; L. Li et al. 2012). The FCP is widely used 
to compare protein levels of various samples, but neither resolves the dynamics 
of the proteome in the different biological states that are being compared nor 
the mechanisms whereby the system changes from one state to the other (Pratt 
et al. 2002). The measurement of a protein in steady-state conditions will be the 
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result of the change in its synthesis rate compared with the change in its deg-
radation rate (Pratt et al. 2002). Metabolic (in situ) labeling is characterized by 
the incorporation of stable isotopes into the proteins of organisms via growth 
on media or food (Kline and Sussman 2010). The advantage of this technique 
is that the tags are very subtle with insignificant impact on cellular processes 
and allow the fully functional proteins to be produced and distributed within 
cells in a normal context (L. Li et al. 2012). Since only fully labeled or unlabeled 
peptides can be identified automatically with current software, the SELPEX 
(Selective Peptide Extraction) approach was used for robust MS data extraction 
(Castillejo et al., 2012). Mass spectrometric measurement of the ratio between 
light (naturally occurring isotopic distribution) and heavy (enriched with 15N) 
isotopic peaks and their respective degrees of enrichment provide a means to 
measure the synthesis and degradation rates of individual proteins (Pratt et 
al. 2002; Cargile et al. 2004). Such approaches have been shown for cell cul-
tures, and most approaches rely on previously identified sequences (Martin et 
al. 2012; L. Li et al. 2012). Software tools coping with partial metabolic labeling 
data in an automated fashion have recently been published. Nevertheless, novel 
algorithms to approach such complex data are needed (Lyon et al. 2014).

The main goal of the proposed PhD project was the mining and processing of 
LC/MS proteomics data from partial metabolic labeling experiments; focusing 
on developing a robust automated system to extract and align peptide isotopic 
envelopes in order to determine the ratio between light (naturally occurring 
isotopic distribution) and heavy (enriched with 15N) peptide spectra. The major 
objectives and challenges are the allocation of individual peptide signals within 
multiple measurements, the link between database dependent identification 
and 15N data analysis, and database independent 15N data analysis. A peer-re-
viewed article showing the successful implementation of a robust automated 
program determining peptide label ratios from LC/MS analyses was published 
(Lyon et al. 2014).

The relation of rhizobia with their host plants, and thus Symbiotic Nitrogen 
Fixation, its importance to the nitrogen cycle and the influence of drought 
on the latter, is the central theme of the FWF project (FWF project number 
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P23441-B20, http://homepage.univie.ac.at/stefanie.wienkoop/fwf23441_
en.html). Protein turnover information from M. truncatula is unavailable to 
date. Studying drought stress of plants is of fundamental importance for sus-
tainable human agriculture worldwide. In order to study the differential regula-
tion of protein degradation and synthesis during the recovery phase of drought 
stress, an experiment was conducted, comprising M. truncatula growing under 
controlled conditions. Six-week-old plants were subjected to drought stress and 
re-watered with ordinary as well as 15N enriched inorganic fertilizer. The in-
corporation of heavy nitrogen sources (NH4NO3) into amino acids and subse-
quently into proteins results in complex composite isotopic envelopes, changing 
in time as the incorporation progresses (Lyon and Castillejo et al. 2014 in 
preparation). This elegant experimental design enables the study of the recov-
ery phase of drought stress by analyzing protein turnover information in con-
junction with more conventional proteomics data. This was done to gain novel 
insights and broaden our understanding of the molecular dynamics under such 
conditions and in the hope of transferring this knowledge to crop plants (see 
Outlook).
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Publications

A brief overview of all published manuscripts (8) I have contributed to ensues, 
followed by more detailed descriptions and the publications themselves.

The following two publications are an integral part of the previously described 
FWF project:

Lyon, David, Maria Angeles Castillejo, Christiana Staudinger, Wolfram Weckwerth, 
Stefanie Wienkoop, and Volker Egelhofer. 2014. “Automated Protein Turnover 
Calculations from 15N Partial Metabolic Labeling LC/MS Shotgun Proteomics Data.” 
PloS One 9 (4): e94692. doi:10.1371/journal.pone.0094692.

Staudinger, Christiana, Vlora Mehmeti, Reinhard Turetschek, David Lyon, Volker 
Egelhofer, and Stefanie Wienkoop. 2012. “Possible Role of Nutritional Priming for 
Early Salt and Drought Stress Responses in Medicago Truncatula.” Frontiers in Plant 
Science 3 (December): 285. doi:10.3389/fpls.2012.00285. 

The following two publications, as well as the last-mentioned publication, are 
first-author publications, and therefore an integral part of this thesis: 

Lyon, David, Wolfram Weckwerth, and Stefanie Wienkoop. 2014. „ Mass Western for ab-
solute quantification of target proteins and considerations about the instrument of 
choice.“, Plant Proteomics. Edited by Jesus V. Jorrin-Novo, Setsuko Komatsu, Wolfram 
Weckwerth, and Stefanie Wienkoop. Vol. 1072. Methods in Molecular Biology. 
Totowa, NJ: Humana Press. doi:10.1007/978-1-62703-631-3. http://link.springer.
com/10.1007/978-1-62703-631-3.

Doerfler, Hannes, David Lyon, Thomas Nägele, Xiaoliang Sun, Lena Fragner, Franz 
Hadacek, Volker Egelhofer, and Wolfram Weckwerth. 2012. “Granger Causality in 
Integrated GC–MS and LC–MS Metabolomics Data Reveals the Interface of Primary 
and Secondary Metabolism.” Metabolomics, October. doi:10.1007/s11306-012-0470-
0. (Hannes Doerfler, David Lyon, Thomas Naegele and Xiaoliang Sun contributed 
equally to this work.)

Finally, the following publications were published during this PhD thesis and 
are pertinent to the latter in form and content. The first publication of the fol-
lowing list was a contribution related to the development of the FWF project, 
transferred to other plant species:

Ischebeck, Till, Luis Valledor, David Lyon, Stephanie Gingl, Matthias Nagler, Mónica 
Meijón, Volker Egelhofer, and Wolfram Weckwerth. 2014. “Comprehensive Cell-Specific 
Protein Analysis in Early and Late Pollen Development from Diploid Microsporocytes 
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to Pollen Tube Growth.” Molecular & Cellular Proteomics : MCP 13 (1): 295–310. 
doi:10.1074/mcp.M113.028100. 

Doerfler, Hannes, Xiaoliang Sun, Lei Wang, Doris Engelmeier, David Lyon, and Wolfram 
Weckwerth. 2014. “mzGroupAnalyzer--Predicting Pathways and Novel Chemical 
Structures from Untargeted High-Throughput Metabolomics Data.” PloS One 9 (5): 
e96188. doi:10.1371/journal.pone.0096188. 

Egelhofer, Volker, Wolfgang Hoehenwarter, David Lyon, Wolfram Weckwerth, and 
Stefanie Wienkoop. 2013. “Using ProtMAX to Create High-Mass-Accuracy Precursor 
Alignments from Label-Free Quantitative Mass Spectrometry Data Generated in 
Shotgun Proteomics Experiments.” Nature Protocols 8 (3): 595–601. doi:10.1038/
nprot.2013.013.

Mari, Angela, David Lyon, Lena Fragner, Paola Montoro, Sonia Piacente, Stefanie 
Wienkoop, Volker Egelhofer, and Wolfram Weckwerth. 2013. “Phytochemical 
Composition of Potentilla Anserina L. Analyzed by an Integrative GC-MS and LC-MS 
Metabolomics Platform.” Metabolomics : Official Journal of the Metabolomic Society 9 
(3): 599–607. doi:10.1007/s11306-012-0473-x. 



26

Automated Protein Turnover Calculations from 
15N Partial Metabolic Labeling LC/MS Shotgun 

Proteomics Data

Protein turnover reflects the combination of protein synthesis and degrada-
tion, independent of the absolute or relative abundance of proteins. Systems 
biology approaches demand high throughput measurements, which in turn 
generate copious amounts of data, not only in shotgun proteomics. Novel al-
gorithms and their implementation into user-friendly computer programs, 
aiming to cope with such large amounts of data, are needed, since manual data 
analysis is not feasible.

Declaration of authorship
The results of this chapter are presented in the form of a manuscript published 

in the journal „PLOS One“. The work presented in the following manuscript is 
largely my own. I have developed the ProtOver algorithm, programmed the 
software, contributed to the LC/MS method and measurement, and written the 
manuscript.
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Automated Protein Turnover Calculations from 15N
Partial Metabolic Labeling LC/MS Shotgun Proteomics
Data
David Lyon, Maria Angeles Castillejo, Christiana Staudinger, Wolfram Weckwerth, Stefanie Wienkoop,

Volker Egelhofer*

Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria

Abstract

Protein turnover is a well-controlled process in which polypeptides are constantly being degraded and subsequently
replaced with newly synthesized copies. Extraction of composite spectral envelopes from complex LC/MS shotgun
proteomics data can be a challenging task, due to the inherent complexity of biological samples. With partial metabolic
labeling experiments this complexity increases as a result of the emergence of additional isotopic peaks. Automated
spectral extraction and subsequent protein turnover calculations enable the analysis of gigabytes of data within minutes, a
prerequisite for systems biology high throughput studies. Here we present a fully automated method for protein turnover
calculations from shotgun proteomics data. The approach enables the analysis of complex shotgun LC/MS 15N partial
metabolic labeling experiments. Spectral envelopes of 1419 peptides can be extracted within an hour. The method
quantifies turnover by calculating the Relative Isotope Abundance (RIA), which is defined as the ratio between the intensity
sum of all heavy (15N) to the intensity sum of all light (14N) and heavy peaks. To facilitate this process, we have developed a
computer program based on our method, which is freely available to download at http://promex.pph.univie.ac.at/protover.
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Introduction

In shotgun proteomics the FCP (Fold Change in Protein) is

widely used to compare protein levels of various samples, but

neither resolves the dynamics of the proteome in the different

biological states that are being compared, nor the mechanisms

whereby the system changes from one state to the other [1–3]. The

elevated abundance of a protein could be the result of an increased

synthesis or a decreased degradation rate or a combination of the

latter. In recent years, numerous publications employed protein

turnover to gain more insight into the regulation of protein

abundance [4–13]. SILAC-based experimental data can be

analyzed with the freely available MaxQuant software for

identification and quantification purposes [14]. However, a user-

friendly, fully automated, and freely available tool is needed,

enabling the extraction of complex partial metabolic labeling data

for high throughput studies.

Since plants are capable of synthesizing their own amino acids,

supplying them with an inorganic nitrogen source enriched with
15N leads to the incorporation of 15N into amino acids and

subsequently into fully functional proteins. The higher the degree

of 15N incorporation, the higher the mass shift of the resulting

mass spectrum. Full incorporation of 15N results in a mass shift of

all isotopic peaks compared to the 14N form of the peptide (see

purple spectrum in Figure 1). In the latter spectrum, there are still

isotopic peaks present, mainly due to the contribution of 13C. A

vast number of combinatorial possibilities of isotopomers and

isotopologues range from the light 14N to the pure 15N form,

known as partially labeled peptides. The resulting mass spectra of

individual proteolytic peptides are a composite of all peptide

species of variable 15N incorporation (see also example Figure 1).

This adds to the inherent complexity of biological shotgun-

proteomics samples, due to the increased isotopic envelope of

individual spectra. Therefore, the main objective of this work was

to develop an efficient algorithm for fully automated protein

turnover calculations, which can be applied to any kind of sample

data arising from partial metabolic 15N labeling experiments, no

matter the type of organism or tissue.

Software tools coping with partial metabolic labeling data in an

automated fashion already exist. Commercial in conjunction with

freely available software were used to analyze mammalian pulse

chase LC/MS data [15–17]. The latter method relies on a

combination of 14N and 15N spectral counts with MS1 informa-

tion, and requires every peptide quantitation event to have an

associated 15N MS2 peptide identification [15]. Thus, fully 15N

labeled peptide species are essential, in contrast to the method

presented within this manuscript, which aims to analyze partially
15N labeled peptides.

The software ‘‘ProTurnyzer’’ introduced by [18] is available

upon request. It accepts pep.xml files in conjunction with RAW

data files from Thermo Scientific. Each RAW file (LC/MS file)

depends on one corresponding pep.xml file containing the peptide
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sequence and retention time information necessary to extract data

from the RAW files. This means that every RAW file is used for

peptide identification purposes as well as for protein turnover

analysis. Accordingly, each LC/MS measurement has to be

subjected to database dependent identification. Since the vast

majority of shotgun proteomics search engines rely on the MS2

spectra of monoisotopic precursors for identification purposes, this

approach is only applicable for very low partial metabolic labeling

rates.

Another software processing 15N partial metabolic labeling

data, named ‘‘TurnStile’’ [9], is available upon request. The

program uses centroided mzXML and MS Excel files (providing

peptide sequence, charge state, and retention time start and end

information) to extract spectral envelopes. Subsequently, multiple

spectra are averaged and fitted in order to derive the 15N

incorporation percentage and intensities of the light and heavy

isotopic envelopes. Retention time values can be adapted for each

file individually.

Both ‘‘ProTurnyzer’’ and ‘‘TurnStile’’ process each LC/MS file

individually, average over multiple spectra (producing a single

averaged spectrum for the extraction of the spectral envelope of

each peptide) and subsequently fit experimental data to theoretical

values. One of the main differences between ‘‘TurnStile’’ and

‘‘ProTurnyzer’’ is how they calculate the averaged spectra.

‘‘TurnStile’’ averages over all scans within a given retention time

start and end point, and have applied a 3 min window for their

data [9]. In contrast, ‘‘ProTurnyzer’’ extracts peak intensities from

RAW MS1 scans within an elution time window of 60 s before

and after the corresponding MS2 scan, by summing up all

intensities bound by local minima surrounding the maximum

within 20 ppm [18].

The presented method is fundamentally different to the

previously mentioned methods, since all LC/MS files of a time

series experiment are processed together, in reverse chronological

order (from the maximally to the minimally labeled state). The

basic idea behind this approach is the assumption that the spectral

envelope of the maximally labeled Time Point will always have the

maximum number and intensity of isotopic peaks, given that the

monoisotopic precursor is still present. This leads to the best signal

to noise ratio for the isotopic peaks. The peak picking of every

Time Point depends on the previous one. Thus, an interdepen-

dency of Time Points is established, that reduces picking of noise.

The application expects centroid or profile mode mzML files in

conjunction with a text file containing peptide identification

information. This algorithm has been implemented in a program,

written in Python, which is freely available to the scientific

community at http://promex.pph.univie.ac.at/protover.

Methods

Since we cannot assume that every protein will be present in the

sample at any given time (or present in a detectable quantity), the

question remains for which proteins/peptides to look in a partial

metabolic labeling LC/MS shotgun proteomics data set, if this

data cannot be used for peptide identification. We have

circumvented this problem with the experimental design of our

study. Parallel to a 15N labeled sample group, we have grown a set

of 14N control plants. The LC/MS data generated from samples of

the latter group was used for peptide identification (for details see

Document S1). Seven-week-old M. truncatula plants were split into

two groups a control (non-labeled) and a treatment (fertilized with
15N enriched ammonium nitrate) group. Samples were taken for

five consecutive days. After protein extraction and digestion, the

samples were analyzed by LC/MS. Since the incorporation of 15N

leads to fully functional proteins, we assumed a very similar

protein composition for the control and the treated sample groups.

Subsequently, the control group was used for peptide identifica-

tion, generating a list of peptide sequences, their corresponding

charge state and retention time as well as the accession number of

the inferred protein [19]. This list together with the samples of the

treatment served as the input for the program at hand (for a more

detailed description see Document S1).

Figure 1. Simulated spectrum of isotopic distribution of the peptide sequence ‘‘MPSAVGYQPTLGTEMGTLQER’’ (charge state 2). The
spectrum consists of a peptide species with natural isotopic distribution (red), a peptide with 30% 15N incorporation (green), a peptide with 50% 15N
incorporation (blue), and a peptide with 100% 15N incorporation (purple). The sum of all composite spectra is displayed in black.
doi:10.1371/journal.pone.0094692.g001
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The current software does not require unlabeled data/samples

in any way. We’ve employed an experimental design which

includes control samples that are unlabeled in order to use these

unlabeled samples for peptide/protein identification, which in turn

serves as the input for the program. If previously identified peptide

sequences, charge states and retention times are known, this

unlabeled control is unnecessary. Any partially labeled 15N LC/

MS shotgun proteomics data could be evaluated with this

software.

Method Outline
The following steps were used in our algorithm:

N Sort the input files in reverse chronological order

N Calculate the isotopic peaks (isotopic envelope) for a given

peptide sequence and charge

N Pick peaks according to template

N Filter out co-eluted picked peaks

N Choose best scan within retention time-range

N Set new template from experimental data for the next file

N Filter noise at TP0 (first Time Point)

N Calculate the RIA (Relative Isotope Abundance)

N Post processing filter

N Data export

N Compatibility

Sort Input Files in Reverse Chronological Order
Since partial metabolic labeling experiments consist of time

course measurements, regardless of pulse-chase or other experi-

mental designs, the chronological order of the measurements can

be taken into consideration. In our approach we search the files in

reverse chronological order (from the maximally labeled to the

minimally/non-labeled). The number of peaks of the isotopic

envelope increase with time, as more 15N is incorporated,

therefore decreasing when reversing the order. The first file

(TPMAX) is searched with a template of theoretically calculated m/

z values for a given peptide, producing the picked peaks of the

measured spectrum. The template for the next Time Point (TP)

consists of only those peaks that could be picked for the previous

TP. The extracted (experimental) spectrum serves as the template

(replacing the number and position of the peaks in the template,

but not their theoretically calculated value). Thus the m/z values

do not change, but the number of values in the template changes

dependent on how many of them were found in the previous TP.

This leads to the next extracted spectrum which is again used to

extract the spectrum of the next file (TPMAX-2). This approach

enables the algorithm to never pick more peaks than in the

previous time point, which in turn reflects the biology of the

underlying data.

Calculate the Isotopic Peaks (Isotopic Envelope) for a
Given Peptide Sequence and Charge
The possible isotopic envelope and thus the peaks for the

theoretical template are calculated as follows: For each peptide

sequence, the sum of its individual C, H, O, N, S atoms is built

and multiplied with the mass of its most abundant isotope. This

produces the monoisotopic peak. All subsequent peaks are

calculated by exchanging the mass of a 14N by a 15N atom. The

largest isotopic peak is the 15N monoisotopic peak. Thus, the

template consists of as many peaks as there are nitrogen atoms plus

one (n+1). Finally, the mass values are converted to m/z values by

the addition of as many protons as charges, divided by the number

of charges.

Pick Peaks According to Template
For any given peptide, the mzML file is searched within a user

defined retention time window, allowing for common retention

time deviations occurring in Liquid Chromatography (LC). Every

Full Scan within this window is processed as follows:

– The most abundant m/z value is picked within a user-defined

range (e.g. +/210 ppm) of the monoisotopic peak.

– The algorithm only searches for subsequent peaks if the first

peak (the monoisotopic peak) was found.

– All subsequent peaks are picked analogously (since the mass

accuracy decreases with decreasing intensity, this value can also

be adjusted separately by the user dependent on the given

data).

Filter Out Co-eluted Picked Peaks
In order to remove overlapping peaks belonging to another

peptide, the following filter was implemented. If the ratio of the

current peak is 3 times higher to the preceding peak (empirically

found value), the current peak is removed from the raw data.

Subsequently, the appropriate peak is picked again. This routine

of removal and re-picking is iterated either until no more peaks are

removed from the raw data, or no more peaks remain to be picked

from the raw data (see Figure 2.A and 2.B).

Furthermore, the application of the co-eluted picked peaks filter

in conjunction with the penalty of the total score addresses the

issue of complex overlapping envelopes.

Choose Best Scan within Retention Time-range
A single scan is used for peak picking, and not a scan as a result

of averaging over multiple scans. The latter could potentially lead

to an increase in noise and or elevate the complexity of the

spectrum, since analytes eluting with similar retention times are

prone to produce overlapping isotopic envelopes, especially for

partial metabolic labeling data. In order to choose the best

retention time (scan) from within the given retention time range

and to evaluate the quality of the selected data points for a given

peptide, a total score (TS) is calculated for each scan. The

maximum score is selected and the corresponding data points

saved

TS~IMIP0{WppmzCTP{n{P ðIÞ

The total score is composed of the following components:

N IMIP0: logarithm to the base 10 of the intensity of the

Monoisotopic Precursor (MIP0) in arbitrary units.

NWppm: Weighted sum of ppm deviations of a given peptide

spectrum.

(II) Wppm~
Pn
i~1

IkPn
i~1

Ii

0
B@

1
CA � Dppmj j, with

– Ik: Intensity of a peak in the given peptide spectrum (in

arbitrary units).

– Dppmj j: The absolute value of the ppm deviation of the m/z

value of compared to the theoretically calculated m/z value.

–
Pn
i~1

Ii: Sum of all peak intensities in the given peptide spectrum

(in arbitrary units).

Automated Protein Turnover Calculations
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NCoverage: (III) CTP{n~
NTP{n

NTP

– CTP{n: Coverage of a given Time Point (TP) with n from Zero

to the maximum number of Time Points, in reverse

chronological order.

– NTP{n: Number of picked peaks of the experimental spectrum

of the previous Time Point, respectively number of theoreti-

cally calculated peaks of a given peptide sequence for last Time

Point (TPMAX).

– NTP: Number of picked peaks of the experimental spectrum of

the given Time Point.

N Penalty: (IV)

3, I m=z½ �sw0
� �

^ I m=z½ �sv2� I m=z½ �k

� �
^ I m=z½ �sw0:5 � I m=z½ �k

� �

0, I m=z½ �s~0
� �

8><
>:

9>=
>;

with: m=z½ �s~m=zk{ m=zkz1{m=zkð Þ.
If the first peak of the experimental spectrum is an isotopic peak

of another peptide a penalty is applied. First, the mass difference

m=zkz1{m=zkð Þof the first to the second peak is calculated. This

value is deducted from the first peak. Within a range of +/2
10 ppm of m/z the peak with the highest intensity is selected. If the

intensity of this peak is higher than half and less than twice of the

intensity of IMIP0, then a penalty of 3 is applied.

Set New Template from Experimental Data for the Next
File
After the processing of the initial file (TPMAX), the template

changed from all theoretically calculated peaks to only those peaks

that could be picked for the previous TP. If not a single peak could

be picked in the ‘‘previous round’’, all theoretically calculated

values remain as the template.

Filter Noise at TP0 (First Time Point)
The spectrum of the minimally labeled measurement is used to

determine which peaks represent the 14N peptide (natural

abundance of N). In order to remove data points that are rather

considered noise than low abundant peaks, all data points

following a missing peak are removed from the spectrum (from

low to high m/z-values, see Figures 2.B and 2.C).

Calculate the RIA (Relative Isotope Abundance)
The Relative Isotope Abundance (RIA) is defined as the ratio of

the 15N to all isotopic peaks [1,20]. Since no 15N incorporation has

taken place at the very first measurement, all peaks present in TP0
are considered part of the 14N peptide species. For each individual

experimental spectrum the RIA is calculated as follows:

RIA~
A15

A14zA15
ðVÞ

with

– A14: Sum of intensities of all 14N peaks (natural abundance).

– A15: Sum of intensities of all 15N peaks (isotopically labeled).

In order to differentiate the natural abundance from the

enriched part of an overlapping isotopic peak (see Figure 1 red and

green species overlapping at e.g. the 5th isotopic peak), the relative

intensity values at TP0 are taken into account when calculating

Figure 2. Picked peaks of the peptide sequence ‘‘AVANQPIA-
VAVEGGGR’’ at all Time Points (TP). The abscissa indicates the
mass to charge ratio. Left ordinate indicates Time Points (corresponding
to the user-given number in the ‘‘Experiment file’’), right ordinate
indicates the retention time (in minutes) of the scan used to pick the
peaks. The individual spectra are normalized to the base peak of the
given spectrum. A: Without the application of any filters. B: Filter out co-
eluted picked peaks. C: Filter out co-eluted picked peaks and Filter
noise at TP0.
doi:10.1371/journal.pone.0094692.g002
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A14 and A15 for all other TPs. (for more details please see

Document S1).

Post-processing Filter
Due to the incorporation of 15N, novel synthesis of a given

protein will produce an increase of the A15 term when measuring

its proteolytic peptides. We assume that the RIA for a given

protein will stay constant or increase with time due to the following

reasons. A fictitious protein without novel synthesis, but with

degradation, would produce a constant A15 and a decreasing A14

term (see formula (V)), and thus a constant numerator and a

decreasing denominator with time, leading to an increase of the

RIA over time. A fictitious protein with novel synthesis, but

without degradation, would produce an increasing A15 and a

constant A14 term, also leading to an increase of the RIA over

time. Furthermore, a protein with novel synthesis and degradation

will always produce an increasing RIA over time. Therefore, a

post-processing filter was devised, removing all peptides whose

RIA decreased over time (see Figure 3.A and 3.B as well as

Figure 4). If data for one Time Point of a peptide is missing, the

RIA for that Time Point is not calculated. Subsequently, this

peptide will not pass the post processing filter even if all other

Time Points produced a positive result.

This very stringent filter reduces the data to the most stable

signals that can be traced throughout the entire data set (see

Figure 4.D). Please see Document S1 for configuration options

(Post-processing configuration options).

Data Export
In order to save the output of the data analysis, the extracted

spectra and useful additional information is saved to tab delimited

txt files for easy import into Excel (see Document S1).

Additionally, two-dimensional plots of peptide spectra for all the

Time Points can be plotted as pdf files (see example Figure 2.C).

The RIA for each protein can be plotted as well (see example

Figure 3.A and 3.B without the regression line).

Compatibility
Furthermore, the presented program runs on all commonly

used operating systems (Windows, OSX, and Linux), is indepen-

dent of the tissue being analyzed, and is not restricted to any

specific type mass spectrometric data.

Results and Discussion

Protein turnover experiments are most often performed using

cell cultures of human or plant cell lines. The uniformity of the

given cell type and the possibility to quickly exchange the growth

medium enable full incorporation of heavy labels within hours or

at maximum a couple of days [1,3,8,13]. The experimental design

of the present study is inherently different, due to the fact that

entire plants were grown in pots to their fully functioning potential,

closely resembling the phenotype of the species in the wilderness of

nature. This results in dramatically reduced measurable turnover

rates due to the following reasons: The exchange of the light by the

heavy amino acid pool cannot be performed by simple plating (as

in cell cultures), but by supplying an inorganic nitrogen source that

has to be taken up by the roots and incorporated into amino acids

and subsequently into proteins, in contrast to SILAC experiments

[21] where fully labeled amino acids are provided in excess, and

plant cell cultures, where a labeled nitrogen source replaces the

unlabeled form immediately. The degradation of existing light or

marginally labeled proteins feeds the light amino acid pool,

thereby counteracting the relative increase of the heavy amino

acids. In order to ensure full labeling, plants were grown with 15N

medium for over 12 weeks [22]. Therefore, the RIA values of the

data set utilized within this study are generally low, but much

closer to in situ-growth conditions. After 5 days of labeling, the

mean of all RIAs is still below 50% (data not shown). The higher

the intensity of the signal, the higher the mass accuracy and vice

versa. Manual inspection of the extracted spectra and comparison

with the raw data showed that highly abundant peptides lead to

fewer missing peaks as well as to congruence of the resulting RIAs,

while low abundant peptides showed higher variability, since true

positive peaks might not fall within the calculated mass range, but

random noise could. The three biological replicates of the test data

set showed that over 800 peptides of the 1419 identified peptides

passed all three previously described filters, with a variability that

can be expected of independent biological replicates. Naturally,

the quality of the extracted spectra and thus the output strongly

depends on the quality of the input data. Measuring the LC/MS

data with a high mass resolution is beneficial, since overlapping

peaks are more likely to be resolved and thus enable the algorithm

to pick the proper peaks. Instability or poor ESI-spray quality can

lead to missing or noisy spectra and reduce mass accuracy.

Peptides with missing spectra at any given Time Point will

eventually fail to pass the filters. The major steps of the algorithm

will be discussed as follows.

Performance of the Applied Filter
The effect of removing co-eluted picked peaks filter as described

in Methods becomes apparent when comparing Figure 2.A to 2.B,

as the two peaks with the highest m/z-values were excluded from

the spectrum. The effect of filter out noise at the first Time Point

(TP0) is visible when inspecting the extracted spectrum of

Figure 2.C compared to 2.A or 2.B, as all peaks following an

empty position (missing peak) are removed from the spectrum.

The ameliorated peak picking of spectral envelopes of peptides,

due to the incorporation of the latter two filters, not only affects

the extracted spectra, but also the resulting RIA of the associated

proteins. The post-processing filter, described in the Methods part,

removes the peptide sequence ‘‘NAVFGDSSALAPGGVR’’ (hol-

low circle as symbol) (see Figure 3.A and B), due to the lack of an

increasing RIA over time. Linear regression of mean RIA values

per Time Point, yielded an increase in the regression coefficient

from 0.978 (Figure 3.A) to 0.997 (Figure 3.B). Only the application

of the co-eluting picked peaks filter affects the total score (lowers

the coverage term) and thus potentially alters which scan is chosen

for spectral extraction.

The variability of the calculated RIAs for a protein decreases

when applying the previously described filters. The overall effects

of the various filters are illustrated in Figure 4.A to D. For each

protein, all associated peptide RIAs were averaged for each Time

Point and a linear regression calculated. The density distribution

of regression coefficients (R2) of all 422 proteins with and without

the application of the previously described filters are shown in

Figure 4. The fraction of high R2 values increases with the

application of the filters. Since the post-processing filter removes

peptides, all subsequently removed protein R2 values were set to

Zero (see Figure 4.D). The fraction of proteins with a regression

coefficient between 0.95 and 1.0 starts at 59%, without the

application of any filters, increases to 64%, with the application of

the co-eluted picked peaks filter, increases further to 66% with the

additional application of the filter noise at TP0 filter, and finally

reaches 89% with the additional application of the post-processing

filter (due to the removal of values). The increase in precision of

the RIA values after application of the filters is corroborated by the

change in the regression coefficients.

Automated Protein Turnover Calculations
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Each histogram shown in Figure 5 displays the frequency as a

function of the coverage of peptides at a given Time Point.

Generally, when comparing the histograms in a reverse chrono-

logical order (from maximum time point (TPMAX) to minimum

time point (TPMIN), 96 h to 0 h) and thus from the maximally

labeled to the minimally labeled state, a trend from a negative

skew to a positive skew with intermediate stages can be observed

(see Figure 5. A to E). The distribution at TPMAX clearly shows a

high coverage for most of the peptides and as the coverage

decreases so does the number of peptides. This reflects the

underlying biology of the experimental setup showing the partial

labeling state of the proteins and thus of their proteolytic peptides.

Due to the varying turnover rates, the coverage cannot be constant

for all 1419 cases (peptides) at any given time (it should however be

constant for all peptides associated with a protein at any given

time). As described in the Methods (see ‘‘Set new template from

experimental data for the next file’’), the algorithm was trained to

produce a decreasing coverage over time. Figure 5 illustrates the

results of the implementation of this desired functionality.

Performance of the developed strategy is demonstrated by the

automated protein turnover calculations of 1419 peptides from five

Time Points (n = 3, three biological replicates).

Many studies express protein turnover as % turnover per hour

(log ratio of heavy to light per hour for SILAC experiments show

linear correlation). We are dealing with an entire organism, not a

specific cell type, thus we would not expect the synthesis and

degradation rates to be constant over time, but rather showing

distinct biologically relevant and interesting dynamic kinetics.

Biological Applicability
The amount of information that can be generated with the

presented automated method, is very high, specifically due to the

coupling of partial metabolic labeling with high throughput

shotgun proteomics, in contrast to the excision of proteins from

gel spots [22,23]. Within the given dataset, the Glycine-rich RNA

binding protein (Uniprot accession number: G7JG67) showed a

high turnover rate (RIA) in all biological replicates (0.716 mean

+/20.01 standard deviation of 3 biological replicates at TPMAX).

The protein plays a functional role in processing, transport,

localization, translation and stability of mRNAs and the high

turnover rates are in accordance to previous plant protein

turnover measurements [23,24]. In contrast, a low protein

turnover rate (RIA) was observed for the Harpin binding protein

containing a conserved fibrillin domain (Uniprot accession

number: G7I4U4) (0.398 mean +/20.021 standard deviation of

3 biological replicates at TPMAX). Plant fibrillins expression

increases during acclimation to various biotic and abiotic stresses

(reviewed by [25]). The observed low RIA after five days of 15N

metabolic labeling is in line with the assumption of low stresses

during the experimental period.

Comparison to Other Approaches
The presented algorithm is based on data analysis in reverse

chronological order (a unique and novel feature), and doesn’t

subsequently fit data to theoretical relative isotope abundances,

but uses experimentally derived intensity values for subsequent

RIA calculations. Assuming that the monoisotopic precursor is still

present, the spectral envelope of the maximally labeled Time Point

will always have the maximum number and intensity of isotopic

peaks, leading to the best signal to noise ratio. An interdependency

of Time Points is established that reduces picking of noise, since

the peak picking of every Time Point depends on the previous one.

The presented algorithm is trained to pick the best possible scan

within the user-given retention time range, enabling large

retention time deviations that can occur in high throughput

studies. Switching (renewing) liquid chromatography columns

(sometimes done between batches of samples), often leads to

retention time shifts. A major strength of our approach is that it

can cope very well with these shifts. The user has to simply set a

higher retention time range in the ’’experiment-file‘‘, which will

Figure 3. Relative Isotope Abundance (RIA) plots. The abscissa represents the Time Points (provided by the user in the Experiment File) and the
ordinate the RIA ratio at the given Time Point. The titles of the plots indicate the Accession Number for the given data. The legend shows all peptide
sequences that could be attributed to the given protein. A: illustrates the RIA plot for G7JAR7 without the application of any filters. B: RIA plot for
G7JAR7 with the application of post-processing filter.
doi:10.1371/journal.pone.0094692.g003
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lead to a prolonged runtime (more data has to be processed). The

algorithm will still pick the correct scan, making high-throughput

studies feasible. In contrast, ‘‘TurnStile’’ [9] averages over a user-

defined retention time range, thus potentially averaging over

isobaric or isomeric peaks or even noise not belonging to the

target. In order to circumvent this behavior, the user would need

to set a very narrow retention time range and potentially adapt this

setting for each individual file, leading to an enormous work-load

contradicting the computational automation of the workflow and

impeding high-throughput data analysis (see Figure S1).

Comparing the calculated RIA values, the protein with the

Uniprot accession number G7IF28, with 9 associated peptides,

displays a low protein turnover when applying our approach (RIA

values ranging from 0.0 to 0.35, and linear regression coefficient

(R2) of mean RIA values is 0.998, see Figure S2.A and S2.B). In

contrast, the output generated with ‘‘TurnStile’’ displayed a

spread of data, the resulting RIA values reach from 0.23 to 0.99,

encompassing a large part of the range of possible values (with

R2= 20.2213). The protein with the accession number G7JG67,

with 5 associated peptides, displays a high protein turnover when

applying our approach, with a linear regression coefficient of

R2 = 0.992 (RIA values ranging from 0 to 0.76). Except for the last

two Time Points the RIA values of the peptides at a given Time

Point derived from ‘‘TurnStile’’ analysis are neither similar nor do

they indicate a trend towards an increase in RIA over time (with

R2= 20.568, and the spread of the data reaches from 0.09 to

0.85 for the RIA) (see Figure S2.C and S2.D). For further

comparison see Document S1.

Figure 4. Histograms of the regression coefficient versus the density of proteins. Histograms of the regression coefficient versus the
density of proteins, comparing no filter (A), co-eluted picked peaks filter (B), co-eluted picked peaks and filter noise at TP0 (C), and all filters combined
(D). (A-D) with 422 cases each. For each Time Point, all peptide RIA values (associated with an Accession Number) were averaged. Subsequently the
linear regression was calculated, and thereof Histograms produced. (D) includes (the 94 of the 422) proteins that were removed by the post-
processing filter.
doi:10.1371/journal.pone.0094692.g004

Automated Protein Turnover Calculations

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94692



34

Automated Protein Turnover Calculations

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94692



35

Computation Rate
The computation rate depends on the amount of LC/MS data,

the number of identified peptides, and the user-defined retention

time range. The runtime increases linearly as a function of the

retention time range and/or the number of identified peptides.

E.g. given five mzML-files with about 5 GB of data, 1419

identified peptides, and 2 min retention time range, the runtime

was about 40 min. Principally, many files can be processed with

the given program (it was tested with about 60 GB of data). One

strength of the algorithm is to pick the proper scan despite isobaric

peptides in the chromatographic domain. Therefore, using a high

retention time range is recommended despite the extended

runtime.

Outlook

– Implementation of a Graphical User Interface (GUI).

– Post-Translational Modification (PTM) support.

– Differential data analysis of treatment groups with repect to

biological and technical replicates.

Supporting Information

Figure S1 TurnStile output strongly depends on Rt
range. The abscissa represents the Time Points and the ordinate

the RIA ratio at the given Time Point. The titles of the plots

indicate the Accession Number for the given data as well as the

retention time window used for data analysis. From Ai to Aii to

Aiii (note: the legend for these sub-plots shown at the bottom) and

from Bi to Bii to Biii (note: the legend for these sub-plots shown at

the bottom) the retention time window decreases from 10 min to

90 s to individually adapted values for every peptide for every file

(in the range of 15 to 45 seconds).

(TIF)

Figure S2 Qualitative comparison of TurnStile vs.
Protover. The abscissa represents the Time Points and the

ordinate the RIA ratio at the given Time Point. The titles of

the plots indicate the Accession Number for the given data. The

legends show all peptide sequences that could be attributed to

the given protein. A and B show the RIA plots for G7IF28 (note:

the legend for both sub-plots only shown in the right sub-plot). C

and D show the RIA for G7JG67 (note: the legend for both sub-

plots only shown in the right sub-plot). The data illustrated in A

and D were processed using TurnStile with a 90 s retention time

window (the recommended setting). B and D were processed using

Protover with a 10 min retention time window (+/25 min) (the

recommended setting).

(TIF)

Document S1 Supplements. Detailed description of experi-

mental procedures and methods, data analysis and comparison

with other algorithm. Calculation of relative RIA, discussion of

averaging scans as well as comparison of Retention Time settings.

(DOC)
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Supplementary Material

Plant Growth
The seeds of barrel medic (M. truncatula A17 cv. Jemalong) were surface sterilized and 

sown in pots containing a mixture of perlite: vermiculite 2:5 (v:v). Plants were grown under 

controlled conditions in a growth chamber (14h day and 10h night; 300 µmol m–2 s–1 

photosynthetic photon flux density; 22°C day and 16°C night temperatures; 50–60% 

relative humidity). During the first week of growth, plants were watered with nutrient 

solution (Evans, 1981) containing 0.5mM ammonium nitrate. The following 6 weeks a 

nutrient solution with ammonium nitrate concentration of 2.5 mM was used for watering in 

order to enhance biomass accumulation and to keep plant growth performance identical 

during the initial developmental stage. 

15N labeling experiment 
Seven week old plants were randomly separated into two subsets: 1) control plants were 

further watered with 14N- ammonium nitrate fertilizer (2.5 mM), while 2) another set of 

plants was transferred to 15N- labeled ammonium nitrate (15N nitrate, 98% 15N; Sigma-

Aldrich) containing growth medium. Plants were washed two times with water before 

medium application. Growth medium was supplied daily to pot capacity for 5 days. M. 

truncatula shoots were collected each day from the first day of 15N application, frozen in 

liquid nitrogen and stored to -80ºC until further processing. 

Protein Extraction
Three biological replicates were used for protein extraction. Two hundred mg of liquid 

nitrogen frozen material (fresh weight) were homogenized in 1 ml of urea buffer containing 

50mM HEPES, pH 7.8 and 8 M Urea using a glass homogenizer. After centrifugation 

(10000g, 10min, 4°C), the urea-soluble proteins in the supernatant were precipitated 

overnight in five volumes of -20°C cold acetone containing 0.5% β-mercaptoethanol. The 

precipitate was pelleted at 4000g, 4°C for 15 min. The resulting pellet was washed with -

20°C cold methanol containing 0.5% β-mercaptoethanol and again centrifuged (4000g, 

4°C, 10 min). Air-dried protein pellets were dissolved in 800 µl of urea buffer (described 

above). Protein concentration was determined by Bradford assay using BSA as a standard. 
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Protein Digestion
One hundred µg of protein was initially digested using 0.1 µg (1:1000, w/w) of 

endoproteinase LysC (Roche, Mannheim, Germany) during 5 h at 30°C. For the second 

digestion step, samples were diluted with trypsin buffer (10% Acetonitrile, 50mM 

Ammonium bicarbonate, 2 mM CaCl2) to a final  concentration of 2 M Urea, and incubated 

overnight at 37°C with Poroszyme immobilized trypsin beads (3.3:100, v/w; Applied 

Biosystems, Darmstadt, Germany). The digest was desalted with C18-SPEC96-well plates 

(Varian, Darmstadt, Germany) according to the manufacturer’s instructions. The eluted 

peptides were vacuum-dried. 

nanoESI LC-MSMS
Peptide digests (2.5 µg each) were randomly applied to a RP column (Supelco Ascentis® 

Express Peptide ES-C18, 150x0.1mm) separated during a 90 min gradient ranging from 

98% solvent A (0.1% FA in water, 2% ACN) to 80% solvent B (90% acetonitrile, 0.1% FA 

in water). For each treatment tree biological and two technical replicates were randomly 

analyzed to discriminate technical from biological variation. MS analyses were performed 

on a LTQ-Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany), applying a top seven 

method. A full-scan range from 350 to 1,600 m/z was used. The resolution was set to 

60,000. Dynamic exclusion settings were as described in [1]. Briefly, repeat count was set 

to one, repeat duration 20 s, exclusion list size 500, exclusion duration 60 s and exclusion 

mass width 10 ppm. Charge state screening was enabled with rejection of unassigned and 

1+ charge states. Minimum signal threshold counts were set to 50,000. 

Peptide identification and generation of input list
The control (14N) as well as the treated (15N) samples resulted in a total of 15 files each 

(three biological replicates x five time points). Only the raw data files from non-labeled 

(14N) samples were processed and quantified using MaxQuant (v 1.4.0.3) with a combined 

protein fasta database (see 5.1, for MaxQuant details see 5.2). 

Medicago truncatula composite fasta generation 
A composite protein-fasta-file was created by fusing the following three databases: 

1.) Uniprot UniRef100 Medicago, origin: www.uniprot.org, Uniprot advanced-search 

Medicago truncatula (3880), UniRef100. The search was performed on May 7th 2013. 

54246 entries. 
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2.) IMGA, origin: http://medicago.org/genome/IMGAG/. 64123 entries.  

3.) Database of Plant Ubiquitin Proteoasome System, origin: 

http://bioinformatics.cau.edu.cn/plantsUPS/. 1010 entries 

4.) DCFI/MTGI/TC, origin: http://compbio.dfci.harvard.edu/tgi/cgi-

bin/tgi/gimain.pl?gudb=medicago. Originally 412908 entries reduced to 59598 entries 

(after picking the longest continuous amino acid sequence). 

The six-frame-translation was performed with an in-house tool. (The six-frame-translated 

longest-open-reading-frame protein-fasta-file contains six entries per accession number.) A 

new protein-fasta-file was created by picking only the longest continuous amino acid 

sequence per accession number. 

The three fasta files described above were combined, producing a new fasta containing 

131338 entries, which will be referred to as MT-fasta henceforth. Protein sequences 100% 

identical in sequence and in length were combined by subsequently adding one header after 

the other, separating them by the following characters " __***__ " (no matter if the 

redundancies originated from one or multiple fasta-files). All other entries were simply 

added to the new file. The first accession number of the header was repeatedly written to 

the very beginning of the header line, separated by a " | " (pipe character), in order to 

consistently view and parse the accession numbers. 

Peptide identification settings using MaxQuant 
Trypsin (trypsin/P) was selected as the digestion enzyme, a maximum of two missed 

cleavages and no static or dynamic modifications were selected.  Default settings were used 

except for the following modifications: “Global Parameters / Identification / Min. Peptides” 

was set to 2 and the “Parameters / Match between runs” box was selected. Within the 

“Group-specific parameters” the “Multiplicity” of 1 was selected, no variable modifications 

were selected, and for “Label-free quantification” LFQ was selected and “Fast LFQ” was 

deselected. Within the “Global parameters” no fixed modifications were selected. The 

default decoy database settings containing reversed sequences were used to estimate the 

false discovery rate (FDR) and a PSM as well as protein identification cutoff of FDR ≤ 1%. 

Generation of input list 
We used a similar strategy to the Selective Peptide Extraction (SelPEx) [2] that allows for 

the targeted quantification of 15N-labeled peptides. The input list for Medicago truncatula 
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shoots was generated from the MaxQuant data matrix derived from the 14N control samples 

(the “evidence” file). This list was filtered for target peptides according to the following 

criteria:  

a) All peptide sequences were assigned a “+” in the “Reverse” or “Contaminant” column 

were disregarded. 

b) Only peptide sequences with an “Intensity” value, a “Score” and a “PEP” score were 

retained. 

This resulted in three separate lists of peptide identifications (A: 1055, B: 1118, and C: 

916) which were combined and the duplicates removed. Finally, this resulted in a list of 

1419 peptides. The peptide sequence, the dominant charge state (mean value of charge 

states rounded to the closest integer), as well as the recalibrated retention time (calculated 

by MaxQuant) were used to build the input list. 

Generation of mzML files 
The proprietary “raw” file format (from Thermo Scientific™) is only legible under 

windows operating systems with the use of proprietary software. Thus the cross platform 

compatible, open standard mzML was used. All “raw” files were converted to “mzML” 

files using “msconvert” [3]. 

Generation of LC/MS test data 
To enable a rapid download and quick execution of the test data, the raw files were 

converted (analogous to 5.4 but) with the following restrictions. Limited to only MS1 

scans, mz-range restricted to 402 to 866 mz, and retention time-range restricted from 28.85 

to 32.3 min. 

Calculation of A14 and A15
Assuming that no enrichment of 15N has occurred at TP0 (first Time Point), the ratio of the 

monoisotopic peak to the intensity values of all other isotopic peaks of the spectral 

envelope of a peptide, reflect the experimentally derived intensity distribution of the natural 

isotopic composition. In order to differentiate the natural abundance from the enriched part 

(light and heavy) of an overlapping isotopic peak (see Figure 1 in Manuscript red and green 

species overlapping at e.g. the 5th isotopic peak), the relative intensity values at TP0 are 

taken into account when calculating A14 and A15. At TP0 the sum of all intensity values 
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produces A14, and A15 is set to Zero. For all other TPs, all intensity values  iTPnzmI / of the 

isotopic peaks i occurring at TP0 are split and one part assigned to A14 and the rest to A15, 

depending on the intensity ratio  
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I

/
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the fractional part assigned to A14 is not greater than the intensity of the peak itself. 

Otherwise, A14 is simply the sum of all intensity values and no corresponding intensity is 

assigned to A15. 
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For all TPs, all intensity values  iTPnzmI /  of isotopic peaks NOT occurring at TP0 are 

assigned to A15. 
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/15  

Post processing configuration options
The possibility of a negative effect of this filter strongly depends on the type of data used 

for analysis. If the experimenter realizes that this filter is too stringent for the data at hand, 

he/she could simply change a single line of code (from „RIAincreasing = True” to 
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„RIAincreasing = False” in „run_experimentfile.py“), thus stopping the application of this 

filter.  

Averaging over multiple scans vs. one single scan
Chromatographic peak widths are not constant for all analytes, can vary between replicates 

and are dependent on analyte concentration and chromatographic conditions. Thus 

“fronting” and or “tailing”, very narrow as well as broad peaks, and peaks with multiple 

shoulders are commonly observed in liquid chromatography of highly complex samples. 

Determining the beginning and end of an eluting substance is a challenging task by itself. 

Averaging over multiple scans in order to produce one single spectrum necessitates the 

additional step of binning in the mass (m/z) dimension (a simple arithmetic mean will 

certainly not suffice, since the intensities of almost identical m/z values would not be 

summed). Also, the fact that the mass accuracy and relative isotope abundances increase 

with the signal intensity needs to be considered for such an endeavor. A reliable and fast 

averaging method could lead to smoother spectral envelopes and a better signal to noise 

ratio in comparison to single scans, but could also raise the complexity of the spectrum or 

lead to overlaps of isotopic peaks from different analytes that would not occur in a single 

scan. In a nutshell, there are advantages and disadvantages for both approaches. The 

utilization of a single scan is straightforward, but averaging over multiple scans isn’t. The 

presented algorithm is trained to pick the best possible scan within the user-given retention 

time range, coping with large retention time deviations that can occur in high throughput 

studies. Additionally, the functionality of the presented program could easily be extended 

with a proper algorithm (if available) that averages over multiple spectra.  

Comparison of Retention Time settings
Figure S1.Ai, Aii, and Aiii illustrate how the individual RIA values of peptides attributed to 

the same relatively high turnover protein are drawn closer together when applying smaller 

Retention time settings and that the best results are achieved with individually optimized 

Retention time window settings for each peptide for each file (for the data presented in 

Figure S1.Aiii and Biii this means 140 manual data entries for the beginning and the end of 

the retention time (14 peptides * 5 LC/MS measurements * 2 beginning/ending Rt). The 

analogue processing steps were performed for a relatively low turnover protein, see Figure 

S1.Bi, Bii, and Biii. In the latter plots, the values are less stringent, probably due to the fact 
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that low protein turnover produces low intensity heavy isotope envelopes, which are hard to 

differentiate from noise when averaging over multiple scans.
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Figure_S1   TurnStile output strongly depends on Rt range. The abscissa represents the Time 
Points and the ordinate the RIA ratio at the given Time Point. The titles of the plots indicate the Ac-
cession Number for the given data as well as the retention time window used for data analysis. From 
Ai to Aii to Aiii (note: the legend for these sub-plots shown at the bottom) and from Bi to Bii to Biii 
(note: the legend for these sub-plots shown at the bottom) the retention time window decreases from 
10 min to 90 s to individually adapted values for every peptide for every file (in the range of 15 to 45 
seconds).
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Figure_S2    Qualitative comparison of TurnStile vs. Protover. The abscissa represents the Time 
Points and the ordinate the RIA ratio at the given Time Point. The titles of the plots indicate the 
Accession Number for the given data. The legends show all peptide sequences that could be attribu-
ted to the given protein. A and B show the RIA plots for G7IF28 (note: the legend for both sub-plots 
only shown in the right sub-plot). C and D show the RIA for G7JG67 (note: the legend for both sub-
plots only shown in the right sub-plot). The data illustrated in A and D were processed using Turn-
Stile with a 90 s retention time window (the recommended setting). B and D were processed using 
Protover with a 10 min retention time window (+/−5 min) (the recommended setting).
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Additional remarks
Setting the Mass Resolving Power to a higher value raises the likelihood of 

baseline separation of overlapping peaks in the MS spectra. However, this 
comes at the cost of a loss of scan time (and an increase in file size). Thus, less 
MS/MS spectra were measured in order to increase the duty cycle time, which 
results in more MS spectra. This is necessary to obtain a sufficient amount of 
MS spectra to clearly delineate peaks in the chromatographic domain. I have 
provided the MS method for the analysis of the data.

Two complementary programs, named Isodist and Envelope, were developed 
for the analysis of isotopic distributions of MS data (Sykes and Williamson 
2008; Sperling et al. 2008). Envelope enables the modeling of complex isotopic 
distributions of composite peptide species (e.g. a given amino acid sequence 
with natural isotopic distribution plus the same sequence enriched with 20% 
15N, in a ratio of 1 to 3). Isodist provides functionality to calculate the isotopic 
distribution of complex labeling patterns, computing the fractional degree of 
labeling as well as the ratio of the peptide species (e.g. given the latter example 
of a complex spectrum consisting of 2 merged peptide species, the fractional 
degree of labeling, i.e. 20% 15N, as well as the ratio of 1 to 3, can be calculat-
ed) (Sperling et al. 2008; Sykes and Williamson 2008). I have tested the cou-
pling of ProtOver to Isodist, since the fractional degree of labeling of a com-
posite peptide spectrum is of interest for calculations, such as the estimation 
of the degree of labeling of the total precursor pool or even individual amino 
acids, as well as protein synthesis and degradation rates (Nelson, Li, and 
Millar 2014; Hinkson and Elias 2011; Claydon and Beynon 2012; Q. Li 2010). 
Envelope was used to generate simulated spectra of varying degrees of isoto-
pic labeling. Specifically, three amino acid sequences “ANSYSVHGAALGAK”, 
“FLAIDAVEK”, and “VLPGLIGGSADLASSNMTLLK” (attributed to the 
Accession Number “G7IF28”), of charge state two, were used (unpublished 
data). For each sequence four individual spectra were generated. 1. Natural iso-
topic distribution; 2. Natural isotopic distribution plus 20% 15N incorporation, 
in a ratio of 1 to 1; 3. Natural isotopic distribution plus 40% 15N incorporation, 
in a ratio of 1 to 1; 4. Natural isotopic distribution plus 60% 15N incorporation, 
in a ratio of 1 to 1 (see Figure 2: A1, B1, and C1). The resulting spectra were con-
verted to an “mgf-style” format, subsequently converted to mzML-files using 
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msconvert from ProteoWizard, and the “ms level” changed from 2 to 1 (Martens 
et al. 2011; Chambers et al. 2012). These mzML-files served as the input for the 
ProtOver software, generating a data matrix of extracted peaks (analogous to 
centroids of profile mode peaks, see Figure 2: A1, B1, and C1), which was sub-
sequently converted into individual spectra for each peptide for each degree 
of labeling, in order to serve as the input for Isodist. Isodist processing was 
performed using a two-population model, one consisting of the natural isoto-
pic distribution and the other fully enriched with 15N, otherwise default set-
tings were applied. The Isodist output, consisting of the amplitude of the light 
and the heavy species, as well as the fractional degree of 15N enrichment, was 
entered into Envelope in order to produce simulated spectra (see Figure 2: A2, 
B2, and C2). All intermediate steps of the above data preparation that could be 
automated were performed using an unpublished Python script. Figure 2: A1, 
B1, and C1 show that ProtOver picked the apex of each profile mode peak, as ex-
pected. A2, B2, and C2 show that only the first two sub-graphs (from bottom to 
top) were correctly simulated, while the remaining sub-graphs strongly deviate 
from the desired values, which should exactly resemble the corresponding sub-
graphs A1, B1, and C1. Since several parameters can be modified for Isodist 
calculations, an adaptation of the latter seems likely to produce the desired 
results. A potential and beneficial approach could be to use existing RIA values 
to automatically adjust these parameters. This work remains to be done and 
published in the future. 

In naturally occurring biological organisms, two distinct populations of vastly 
differing labeling degree (such as the simulated data described above) would 
not occur using a partial metabolic labeling approach. Rather many intermedi-
ate populations of varying degrees of labeling exist. The latter data is not fea-
sible to be computed with the described Isodist program, since an unknown 
amount of populations entails many permutations to consider, such functional-
ity is not given, and the computational cost would be exuberant. Nevertheless, 
a simplified two- or even three-species population model could be employed 
to estimate the fractional degree of labeling. The ProtOver algorithm extracts 
data from a single MS scan and the mass spectrometer used (LTQ-Orbitrap-XL) 
produces spectra of very high Mass Accuracy, but not of highly accurate relative 
intensities (Xu et al. 2010). Therefore, a future outlook would be to average over 
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Figure 2 Legend:
A1 and A2 show the amino acid sequence “ANSYSVHGAALGAK”; B1 and B2  “FLAIDAVEK”; C1 and C2 

“VLPGLIGGSADLASSNMTLLK”. A1, B1, and C1 display the output of the Envelope simulation in blue and 
the ProtOver extracted data points in red. A2, B2, and C2 display the output of Isodist in blue and the same 
ProtOver extracted data points as in A1, B1, and C1 in blue, as a visual aid and for reference. Each sub-graph 
shows an increased degree of labeling, from bottom to top: 1. Natural isotopic distribution; 2. Natural isotopic 
distribution plus 20% 15N incorporation, in a ratio of 1 to 1; 3. Natural isotopic distribution plus 40% 15N in-
corporation, in a ratio of 1 to 1; 4. Natural isotopic distribution plus 60% 15N incorporation, in a ratio of 1 to 1.
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multiple MS scans and thus produce a “smoothed” averaged spectrum. Such 
“smoothed” spectra would be much more likely to yield successful results when 
coupling ProtOver to Isodist, but could also result in erroneous spectra due to 
co-elution. Furthermore, a Graphical User Interface (GUI) is planned, as well as 
parallelization of computation in order to increase speed and thus throughput, 
as well as potentially coupling/integrating the Isodist software (see Outlook).
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Possible role of nutritional priming for early salt 
and drought stress responses in Medicago trun-

catula

Abiotic stress, specifically salt and drought stress, are becoming even more 
important with the decline of freshwater availability. It is therefore critical to 
aspire a more profound understanding of regulatory mechanisms of plants on 
a molecular level. The utilization and integration of unbiased (untargeted) GC/
MS, LC/MS, as well as physiological data facilitates a systems biology approach 
to study salt and drought stress of the model plant M. truncatula. 

I have adapted a so-called “mapping-file” (provided by the MapMan-store 
http://mapman.gabipd.org/web/guest/mapmanstore) of the publicly accessible 
tool MapMan (Thimm et al. 2004; Lohse et al. 2014) to operate with multiple 
specific protein databases, used for protein identification. This aided in the vi-
sualization and thus interpretation of highly complex shotgun proteomics data. 
Furthermore, I adapted a “metabolomics-mapping”, a functional categorization 
of metabolites (also provided by the MapMan-store) and incorporated it into 
the “proteomics-mapping”. I have achieved the latter tasks by programming 
(unpublished in-house Python script) using both string comparison techniques 
and standalone BLAST from http://blast.ncbi.nlm.nih.gov for sequence simi-
larity search. Functional categories, so-called “bins”, within this “mapping-file” 
were (and still are) manually adapted, and are freely available to download at 
the departments’ website (http://www.univie.ac.at/mosys/databases.html) for 
the scientific community. 

Declaration of authorship
The results of this chapter are presented in the form of a manuscript pub-

lished in the journal „Frontiers in Plant Science“. I have provided a critical 
contribution to the following publication, though the largest part the work was 
performed by the coauthors.

I have contributed by creating a non-redundant protein FASTA database 
from various sources, which was used for identification of shotgun proteomics 
data, using unpublished Python scripts. Furthermore, using online resourc-
es (see publication) as well as unpublished Python scripts, I’ve created a so-
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called „mapping“ file. The latter links protein identifiers (Accession Numbers) 
to multiple functional categories. Thus aiding and enabling the interpretation 
of complex data. The „mapping file“ was used for visualization (see Figure 1 of 
the following publication) amongst other things. Further unpublished Python 
scripts which I created were used to retrieve sub-selections of various data. 
Finally, I’ve participated in pertinent discussions, proof-read the manuscript, 
and written the respective part of the manuscript.

Additional remarks
Due to manual refinement of protein and metabolite functional categories, ad-

dition of complementary databases, BLAST comparisons (homology searches), 
etc., the „mapping file“ is constantly amended and used for various tasks.

Published manuscript
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Most legume species establish a symbiotic association with soil bacteria. The plant
accommodates the differentiated rhizobia in specialized organs, the root nodules. In this
environment, the microsymbiont reduces atmospheric nitrogen (N) making it available for
plant metabolism. Symbiotic N-fixation is driven by the respiration of the host photosyn-
thates and thus constitutes an additional carbon sink for the plant. Molecular phenotypes
of symbiotic and non-symbiotic Medicago truncatula are identified.The implication of nod-
ule symbiosis on plant abiotic stress response mechanisms is not well understood. In
this study, we exposed nodulated and non-symbiotic N-fertilized plants to salt and drought
conditions. We assessed the stress effects with proteomic and metabolomic methods
and found a nutritionally regulated phenotypic plasticity pivotal for a differential stress
adjustment strategy.

Keywords: salt stress, plant-microbe interactions, drought stress, Medicago truncatula, mapman mapping

INTRODUCTION
Reduced water availability will dramatically impact agricultural
productivity in the next 40 years. According to demographic and
climate change models, the human population will double by 2050
and the variability in rainfalls will increase (IPCC, 2007). There-
fore, we need a profound understanding of plant physiology and
metabolism under water limiting conditions.

Drought and salinity are environmental constraints account-
ing for substantial yield losses. Both decrease the amount of water
available to plants, leading to reduced growth, and photosynthe-
sis (Chaves et al., 2009). Thus, it has been proposed that early
acclimatory responses to both stresses share strong commonalities
(Munns, 2002).

Legumes play an important role in increasing the sustainability
of agricultural land use. Amongst several studies on drought and
salt stress effects in model legumes, many have been conducted
with Medicago spp. recently (Lopez et al., 2008; Bianco and Defez,
2009; Salah et al., 2009; Aranjuelo et al., 2011; Filippou et al., 2011;
Kang et al., 2011). Noticeably, the symbiotic status amongst the
studies is very diverse. The stress response of N-fixation in root
nodules was extensively studied (Larrainzar et al., 2007, 2009; Naya
et al., 2007; Lopez et al., 2008; Salah et al., 2009). However, various

Abbreviations: C, control; D, drought; DW, dry weight; F ′, chlorophyll fluorescence
in the light-adapted state; FDR, false discovery rate; F m′ , chlorophyll fluorescence
when PSII centers are maximally closed in the light-adapted state; F q′ , differ-
ence between F ′and F m′ ; FW, fresh weight; g s, stomatal conductance; IS, internal
standard; N, nitrogen; N-fed, nitrogen fertilization; N-fix, nitrogen fixation; PS,
photosynthesis; PSII, photosystem II; S, salt; SE, standard error; WC, water content;
Ψleaf , leaf water potential.

publications have been conducted with non-symbiotic (not inoc-
ulated with rhizobia) legumes (Sanchez et al., 2008a; Noreen and
Ashraf, 2009; Diaz et al., 2010). Interestingly, a positive impact
of rhizobial symbiotic interaction to stress has been proposed
(Frechilla et al., 2000; Miransari and Smith, 2009). However, the
influence of symbiotic interactions on abiotic stress acclimatory
mechanisms is still in its infancy.

During their life-cycle plants acclimate to environmental con-
straints by a wide range of mechanisms that are conceptually
classified as avoidance or tolerance strategies (Levitt, 1980). In case
of lowered water availability in the environment, stress avoidance
essentially aims at maintaining the initial plant water status and
lowering the rate of stress imposed at the tissue or cellular level.
Tolerance strategies aim at preventing damage and maintaining
metabolism, once water deficit has been established. Avoidance
and tolerance mechanisms are neither mutually exclusive nor
active in a temporal sequence. Their distinction is conceptual, but
useful when investigating plant stress responses (Verslues et al.,
2006).

Plant acclimatory responses are complex exhibiting multigenic
and interrelated properties. In addition, comparability with pre-
vious work is known to be hampered, due to heterogeneities in
factors influencing stress responses such as plant age, growth con-
ditions, diurnal changes, and the experimental treatment, such as
severity, duration, and method of stress imposition (Aguirrezabal
et al., 2006). Consequently, robust parameters for a specific defini-
tion of stress are still missing. Due to the complexity of plant stress
response and its interlinked mechanisms and influencing factors, it
becomes necessary to extend research to multilevel analyses (Joga-
iah et al., 2012). Using systems biology approaches the integration

www.frontiersin.org December 2012 | Volume 3 | Article 285 | 1
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of -omics data such as metabolomics and proteomics may also
compensate method specific limitations.

To date, data of proteomic studies are still behind in numbers
of identifications that of transcript data. Nevertheless, the infor-
mative value on the protein level seems high for several reasons.
For instance, the direct translation of transcript abundance to pro-
tein abundance in terms of one point abundance and changes over
time is still under controversial debate. Especially, in the context of
changes in time- and stress dependent manner it has been shown
that transcript and protein data do not correlate significantly (Haj-
duch et al., 2010). As a possible reason they suggest for instance
regulation via post-translational protein modification. A temporal
lag that causes, e.g., a delay in adjustment of enzyme abundance
when transcript levels have already changed, have extensively been
discussed by Gibon et al. (2004, 2006).

So far, most studies focused on genetic engineering using, e.g.,
Quantitative Trait Loci (QTL) mapping have shown only limited
success (Rispail et al., 2010). Thus, knowledge transfer from tran-
script and genome data complemented with postgenomic metabo-
lite and proteome data will enhance the success for smart breeding
in future.

In the present study, early stress response mechanisms to salt
and drought stress have been investigated. The aim of this work was
to (i) unravel robust and easily detectable putative stress response
markers on a physiological, metabolite as well as protein level and
(ii) to find novel insights for a regulatory relevant role of the
nutritional priming comparing shoots of N-fixing with fertilized
M. truncatula plants.

MATERIALS AND METHODS
PLANT GROWTH AND SAMPLING CONDITIONS
The seeds of barrel medic (M. truncatula A17 cv. Jemalong) were
surface sterilized and sown in pots containing a mixture of per-
lite:vermiculite 2:5 (v:v). The experimental setup was based on
the protocol used by (Larrainzar et al., 2009). Plants were grown
under controlled conditions in a growth chamber (14-h day and
10-h night; 270 µmol m–2 s–1 photosynthetic photon flux density;
22˚C day and 16˚C night temperatures; 50–60% relative humid-
ity). During the first week of growth, plants were watered with
nutrient solution (Evans, 1981) containing 0.5 mM ammonium
nitrate. The following 2 weeks a nutrient solution with ammo-
nium nitrate concentration of 2.5 mM was used for watering in
order to enhance biomass accumulation and to keep plant growth
performance identical during the initial developmental stage. After
3 weeks, half of the plants were randomly selected and inocu-
lated with S. meliloti 2011. Furthermore, for inoculated plants
nutrient solution was N free while the other subset was fertilized
with 2.5 mM ammonium nitrate. After 7 weeks plants were ran-
domly separated into sub-sets: control and drought or salt stressed,
respectively. Control plants were supplied daily with nutrient solu-
tion to pot capacity whereas abiotic stress was applied to the other
groups as follows. Drought stress was imposed by withholding
water and nutrients; after flushing pots with deionized water,
nutrient solutions containing 200 mM NaCl were applied every
day to salt stressed plants. After 6 days of stress, plants were har-
vested 6 h after the onset of light. M. truncatula shoot and root
tissue was separated, flash-frozen in liquid nitrogen, and stored

at −80˚C until further processing. Analysis was carried out as pre-
viously described using 3 biological replicates for each condition:
N-fertilized and inoculated plants [n the following referred to as
N-fed and nitrogen fixing (N-fix)] exposed to salt stress or water
deprivation as well as control without stress treatment.

PHYSIOLOGICAL PARAMETERS
Stomatal conductance (g s) was measured 3 h after onset of the
photoperiod with a steady-state porometer (PMR-4, PP Systems,
Hitchin, UK) connected to the EGM-4 gas monitor serving as
data logger. About 0.5 cm2 of terminal leaflets of fully expanded
leaves were placed into a cuvette. Records were taken after ∼20 s,
when equilibrium was established. The inlet air flow rate was
kept constant at 75 ml/min. The porometer then measured the
air humidity of inlet and outlet air flow, air temperature and the
PPFD reaching the leaf. From these parameters g s was calculated.
The water content (WC) of the leaves and roots was calculated as
(FW−DW)∗FW−1(FW = fresh weight; DW = dry weight). Leaf
water potential was measured 3 h after the onset of the pho-
toperiod with a Scholander pressure bomb. Primary chlorophyll
fluorescence parameters (F m′ , F ′) were assessed employing a
saturation pulse method, using the MINI-head version of the
IMAGING-PAM chlorophyll fluorometer M-series (Heinz Walz
GmbH, Effeltrich, Germany). The PSII operating efficiency was
calculated by F q

′/F m′ = (F m
′
−F ′)/F m

′ (Baker,2008). Analysis was
carried out on three biological replicates for each of the previously
described conditions (Table 1).

EXTRACTION AND DERIVATIZATION OF METABOLITES
Medicago truncatula roots and shoots were ground to a fine powder
under liquid nitrogen and subsequently lyophilized. About 10 and
30 mg of the powdered shoots and roots were used for the extrac-
tion with 1 ml of freshly prepared and pre-cooled extraction buffer
(MeOH:CHCl3:H2O, 2.5:1:0.5), respectively. In order to avoid any
degradation or modification of metabolites the samples were kept
on ice for 8 min. During this time the samples were vortexed

Table 1 | Effect of drought and salt treatments on plant water status

and physiological parameters in N-fed (A) and N-fix (B) M. truncatula.

Parameter Control Drought Salt

(A) N-FED

WCshoot 0.82 ± 0.06 a 0.78 ± 0.01 b 0.82 ± 0.01 a

Ψleaf (MPa) −0.68 ± 0.07 a −1.06 ± 0.08 b −0.69 ± 0.18 a

gs [mmol m−2 s−1] 381.52 ± 139.02 a 121.52 ± 30.32 b 37.01 ± 5.46 c

F ′
q/F ′

m 0.55 ± 0.05 a 0.44 ± 0.07 b 0.58 ± 0.03 a

(B) N-FIX

WCshoot 0.89 ± 0.01 a 0.89 ± 0.01 a 0.90 ± 0.01 a

Ψleaf (MPa) −0.73 ± 0.10 a −0.98 ± 0.09 b −0.75 ± 0.17 a

gs [mmol m−2 s−1] 425.95 ± 156.23 a 165.71 ± 36.15 b 36.14 ± 6.40 c

F ′
q/F ′

m 0.57 ± 0.02 a 0.56 ± 0.01 a 0.58 ± 0.02 a

Values represent the mean ± SE (n = 3).The letters a, b, and c indicate significant

differences between control and stress treatments (Student’s t test p < 0.05).

WC, water content; Ψleaf, leaf water potential; gs, stomatal conductance; F′
q/F′

m,

PSII operating efficiency.
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regularly and afterward centrifuged for 4 min at 14,000 g /min,
at 4˚C. The supernatant was added to another tube which con-
tained 500 µl of ultrapure water and shaken thoroughly. After
the phase separation by centrifugation (4 min, 14,000 g /min), the
upper polar phase was split into two aliquots. Internal standard
(IS) was added (10 µl of 0.1 g/l 13C6-Sorbitol) and the samples
were dried out using a vacuum concentrator at room temper-
ature. For metabolite derivatization, 20 µl of the freshly pre-
pared methoximation mixture (40 g/l methoxyamine hydrochlo-
ride CH3ONH2

∗HCL in pyridine) were added to the dried samples
and shaken for 90 min at 30˚C. After adding 80 µl of the silyla-
tion mixture: 1 ml of MSTFA (N -methyl-N -trimethylsilyl triflu-
oroacetamide) spiked with 30 µl of the alkane standard mixture
(C10-C40, each 50 mg/l) as retention index (RI) marker, the sam-
ples were incubated for 30 min with shaking at 37˚C and then
centrifuged (14,000 g /min) for 2 min to remove any insoluble
material. The supernatant was carefully taken and transferred into
glass vials with micro inserts. One microliter of the derivatized
sample was injected. Six replicates per treatment (three biological,
two technical) were randomly injected to discriminate technical
from biological variation.

GC-TSQ-MS SETTINGS
For metabolite profiling GC-MS is mostly the method of choice.
Here we used GC hyphenated to triple quadrupole (Thermo Scien-
tific TSQ Quantum GC™, Bremen, Germany). In order to identify
a large number of metabolites, a profiling analysis in full-scan
mode was performed with a scan range of m/z 40–600 and a scan
time of 200 ms. The metabolite separation was performed on a
HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm; Agilent
Technologies, Santa Clara, CA, USA), at a constant flow 1 ml/min
helium. The split less injection of 1 µl of the sample was done by
the TriPlus auto sampler (Thermo Scientific, Bremen, Germany).
The temperature of the injector was 230˚C. Compound elution
settings were 1 min at 70˚C isotherm, ramp to 76˚C at 1˚C per min
heating rate, then to 350˚C at a 6˚C per min rate and hold for 1 min.
Post run temperature was set to 325˚C for 10 min. The transfer
line temperature was set to 340˚C and ion source temperature was
250˚C. Electron Impact (EI) ionization was set to 70 eV.

METABOLITE DETECTION, IDENTIFICATION, AND RELATIVE
QUANTIFICATION
The criteria used for identification were fragmentation patterns
that are characteristic for the particular compound, the reten-
tion time (RT) and RI. Combining these criteria, it is possible to
unambiguously identify metabolites and distinguish between the
components even if they are chemically very similar. The identifi-
cation of each analyte was achieved by matching the MS-spectra
and RT against (a) an in-house library (modified gmd database)1;
(b) AMDIS (calculation of retention indices and comparison with
RI of compounds in the mass spectral library); and (c) matching
against the in-house measured standards. Calculation of retention
indices was performed using the RT of the detected compound and
the RT of the RT-index marker (alkane mixture), calculated with

1http://gmd.mpimp-golm.mpg.de/download/

AMDIS for representative samples of different treatments. Due to
derivatization, in some cases more than one peak was detected for
one metabolite. These peaks were initially analyzed separately and
summed up for further analysis or data mining. About 15% of the
detected analytes were identified as unknown compounds. Cal-
culation of the peak areas was performed using LC-Quan for the
GC-TSQ-MS data, which is suitable to calculate the peak area for
all compounds in all samples according to given parameters. Here
the determined RT as well as the quant mass for each component
was used to automatically extract data from all sample replicates.
An initial data matrix of the calculated peak area for each detected
compound was obtained separately. The list of detected compo-
nents and calculated areas was exported to an Excel file. We used
an in-house Matlab tool to produce a complete data matrix auto-
matically. The data matrix was normalized to the sample DW and
the IS for relative quantification.

PROTEIN EXTRACTION
The same three biological replicates as those taken for metabo-
lite analysis have been used for protein extraction. Two hundred
milligrams of liquid nitrogen frozen shoot material were cryo-
ground using a Retsch MM400 ball mill and homogenized in
1 ml of urea buffer containing 50 mM HEPES, pH 7.8, 5 mM
PMSF, and 8 M Urea. After centrifugation (10,000 g, 10 min, 4˚C)
the urea soluble proteins in the supernatant were precipitated
overnight in five volumes of −20˚C cold acetone containing 0.5%
β-mercaptoethanol. The precipitate was pelleted at 4,000 g, 4˚C for
15 min. The resulting pellet was washed with −20˚C cold methanol
and again centrifuged (4,000 g, 4˚C, 10 min).

PROTEIN DIGESTION
Air-dried protein pellets were dissolved in 500 µl urea buffer the
protein concentration was determined by Bradford assay, using
BSA as a standard. 100 µg of protein was initially digested using
endoproteinase LysC (1: 100 vol/vol, 5 h, 30˚C, Roche, Mannheim,
Germany). For the second digestion step, samples were diluted
with trypsin buffer (10% ACN, 50 mM AmBic, 2 mM CaCl2) to a
final concentration of 2 M Urea and incubated overnight at 37˚C
with Porosyzme immobilized trypsin beads (1:10, vol/vol; Applied
Biosystems, Darmstadt, Germany). The digest was desalted with
C18-SPEC 96- well plates (Varian, Darmstadt, Germany) accord-
ing to the manufacturer’s instructions. The eluted peptides were
vacuum-dried.

nanoESI LC-MS/MS
Peptide digests (0.5 µg each) were randomly applied to a RP
monolithic capillary column (50 µm internal diameter, 15 cm
length, Merck, Darmstadt, Germany) separated during a 120 min
gradient ranging from 90% solvent A (0.1% FA in water) to 80%
solvent B (80% acetonitrile, 0.1% FA in water). For each treat-
ment tree biological and three technical replicates were randomly
analyzed. MS analyses were performed on a LTQ-Orbitrap XL
(Thermo Fisher Scientific, Bremen, Germany). For the database
dependent spectral count analysis (Wienkoop, 2011), a top five
MS analysis setting was used with the full-scan range from 350 to
1,800 m/z. Dynamic exclusion settings were as described in Hoe-
henwarter and Wienkoop (2010). Briefly, repeat count was set to
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one, repeat duration 20 s, exclusion list size 500, exclusion dura-
tion 60 s and exclusion mass width 10 ppm. Charge state screening
was enabled with rejection of unassigned and 1+ charge states.
Minimum signal threshold counts were set to 1,000.

PROTEIN IDENTIFICATION AND RELATIVE QUANTIFICATION
We used the SEQUEST algorithm and the Proteome Discoverer
(v 1.3, Thermo Scientific) to search MS data against a fasta file
we created from a Medicago spp. and Sinorhizobium spp. sub-
set of UniProt Knowledgebase2 containing 63,688 sequences as of
April 2012. In silico peptide lists were generated with the follow-
ing settings: trypsin as the digestion enzyme, a maximum of three
missed cleavages and methionine oxidation as dynamic modifi-
cation. Mass tolerance was set to 5 ppm for precursor ions and
0.8 Da for fragment ions. Additionally, a decoy database contain-
ing reversed sequences was used to estimate the false discovery
rate (FDR) Only high confidence (FDR ≤ 0.01%) peptide iden-
tifications with a minimum XCorr of 2.2 and proteins with at
least two distinct peptides were considered. Peptide spectra are
stored in the ProMEX library (Wienkoop et al., 2012) and can
be checked under its ID “Med trun001.” Protein relative quan-
tification is based on database dependent spectral counting as
described previously (Larrainzar et al., 2009). Six replicates per
treatment (three biological, two technical) were randomly injected
to discriminate technical from biological variation.

STATISTICAL ANALYSIS
Detailed analysis of the physiology, as well as metabolite and pro-
tein data was performed by calculating the ratios between control
and treated samples. Significant differences between these were
determined using Student’s t test at p < 0.05 and fold change ≥ 2
(Tables 2 and 3).

2http://www.uniprot.org/

MAPMAN MAPPING FILE FOR M. TRUNCATULA PROTEINS AND
METABOLITES
A new Mapman mapping file was created on the basis of the map-
ping file “Mt_Mt3.5_0411” and “MappingMetabolites” acquired
from http://mapman.gabipd.org/web/guest/mapmanstore. This
mapping file corresponds to MTGI release “Mt3.5v3 RELEASE
20100825”(“Mt3.5_GenesProteinSeq_20100825.fasta”subsequently
called MTGI-fasta-DB) which can be found at http://www.jcvi.org/.
Shotgun proteomics experimental data were evaluated with the
Uniprot database fasta file (see Protein Identification and Relative
Quantification).

The“Identifier”and“Description”categories of entries from the
“Mt_Mt3.5_0411” mapping file correspond to accession numbers
and header information of the MTGI-fasta-DB. The mapping file
”Med trun_mappingformapman_Mosys_v1_20120913.txt” was
created by comparing the protein sequences of the Uniprot-fasta-
DB (MT only) to the MTGI-fasta-DB. Comparison was performed
using string comparison (unpublished Python script) as well as
standalone BLAST from http://blast.ncbi.nlm.nih.gov. Mapping
file entries corresponding to completely identical sequences were
replaced. The “Bincode” and “Name” remained unchanged, but
the “Identifier” and the “Description” were replaced by the corre-
sponding Uniprot accession number and header, furthermore the
“Type” was set to “P.” All Uniprot entries not 100% identical in
sequence and length to an entry in MTGI were blasted against a
database created from the entire MTGI fasta file. Uniprot entry
hits with an e-value equal to or lower than10−3 replaced map-
ping file entries as previously described. Uniprot entry hits with
e-values higher than 10−3 were added to the bincode “35.2.1” with
the name “not assigned.unknown.evalhigh” and entry hits result-
ing in no query hit at all were assigned to the bincode “35.2.2”
with the description “not assigned.unknown.blastwithouthits.”
The pertinent information of the metabolite mapping file from
the MapMan Store was incorporated into the current mapping
file by simply adding the respective entries (at the proper bin loca-
tion). Certain entries were manually curated and shifted from“not
assigned.unknown” bins to appropriate categories. Six metabolites

Table 2 | Ratios of stress responsive root metabolites (stressed/control).

SN-fed vs.CN-fed SN-fix vs.CN-fix DN-fed vs. CN-fed DN-fix vs.CN-fix

GABA 3.1 (0.019) 0.5 (0.046) ns 2.0 (0.043)

Aspartate 3.7 (0.011) 3.3 (0.048) 2.5 (0.049) 2.8 (0.008)

Leucine 2.0 (0.007) ns 2.5 (0.005) ns

Threonate 3.0 (0.046) 2.9 (0.048) ns 2.8 (0.001)

Glutamate 4.9 (0.024) ns 2.0 (0.001) ns

Proline ns ns 10.5 (0.001) 12.1 (0.005)

Fumarate 3.5 (0.025) 2.3 (0.004) 3.1 (0.001) 3.3 (0.009)

Galactonate 3.8 (0.001) 2.8 (0.013) ns 2.0 (0.003)

Sucrose 2.7 (0.003) 4.4 (0.006) 2.8 (0.001) 2.1 (0.003)

Myo-Inositol 4.0 (0.003) ns 2.3 (0.002) 2.0 (0.001)

Ononitol 3.0 (0.035) 2.0 (0.003) ns 2.0 (0.003)

Pinitol 2.6 (0.048) ns 3.0 (0.018) ns

Fold change ≥ 2 and student’s t test p < 0.05 in brackets (n = 6). CN-fed, mean of controls of N-fertilized plant roots; SN-fed, mean of salt stressed, N-fertilized plant

roots; CN-fix, mean of controls of N-fixing plant roots; DN-fix, mean of salt stressed, N-fixing plant roots; ns, not significantly changed.
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Table 3 | Stress responsive shoot proteins and metabolites of six replicates as fold change.

Stressed

Drought

Stressed

Salt

Non-stressed

Controls

DN-fed/CN-fed DN-fix/CN-fix SN-fed/CN-fed SN-fix/CN-fix CN-fed/CN-fix

PROTEINS

1. Photosystem (PS)

1.1 PS.lightreaction

G7IJ45 photosystem II 10 kDa polypeptid ns ns ns 3.8 (0.002) ns

G7JH56 photosystem II CP47 chlorophyll apoprotein ns ns 2.2 (0.005) ns ns

G7JE46 thylokoid luminal 16.5 kDa protein ns ns ns 0.4 (0.009) ns

G7JAX6 photosystem I reaction center subunit N ns 0.3 (0.029) ns ns 2.9 (0.043)

G7JQA7 apocytochrom f 0.3 (0.0029) ns ns ns ns

B7FIU4 ATP synthase gamma chain ns 2.8 (0.003) ns ns 0.5 (0.010)

B7FIR4 ATP synthase gamma chain ns 0.5 (0.009) ns ns ns

G7JAI2 ATP synthase ns ns 3.5 (0.0030) ns ns

1.2 PS.photorespiration

G7JAR7 serin hydroxymethyltransferase ns 0.5 (0.019) ns ns ns

1.3 PS.calvin cycle

G7J252 ribulose bisphosphate carboxylase small chain ns ns 3.3 (0.020) ns 3.2 (0.005)

2.1.2 Major CHO metabolism.synthesis.starch.transporter

G7LDP4 ADP, ATP carrier protein ns ns 2.1 (0.014) ns ns

3.4 Minor CHO metabolism.myo-inositol

G7J4B5 l-myo-inositol-1 phosphate synthase 5.3 (0.0001) ns ns ns 4.0 (0.033)

G7LAD5 l-myo-inositol-1 phosphate synthase 2.0 (0.0204) ns ns ns ns

6.3 Gluconeogenesis.Malate DH

G7JTZ0 Malate dehydrogenase ns ns ns 0.4 (0.000) ns

7.1 OPP.oxidative PP.6-phosphogluconate dehydrogenase

Q2HVD9 6-phosphogluconate dehydrogenase ns 0.5 (0.001) ns ns 2.0 (0.001)

9.9 Mitochondrial electron transport/ATP synthesis.F1-ATPase

G7LCJ4 ATP synthase delta subunit 2.5 (0.0001) ns ns ns 2.2 (0.048)

10.1 Cell wall.precursor synthesis

G7L571 UDP-glucose 6-dehydrogenase ns 0.3 (0.001) ns ns ns

11.1 Lipid metabolism.FA synthesis and FA elongation

G7LIV6 biotin carboxylase ns 0.4 (0.032) ns ns 2.6 (0.023)

G7JNN1 Acyl-[acyl-carrier-protein] desaturase ns ns 3.6 (0.014) ns ns

11.6 Lipid metabolism.lipid-transfer proteins

G7JID0 non-specific lipid-transfer protein 2.5 (0.002) ns ns ns ns

12.2 N -metabolism.ammonia metabolism.glutamate synthase

Q2HW53 ferredoxin-dependent glutamate synthase ns 0.5 (0.000) ns ns ns

P04078 glutamine synthetase cytosolic isozyme ns ns ns 0.5 (0.004) 3.8 (0.004)

13.1 Amino acid metabolism.synthesis

Q6J9 × 6 SAMS 2.2 (0.0079) ns ns ns ns

A4ULF8 SAMS 2.4 (0.0007) ns ns ns ns

A4PU48 SAMS ns 0.5 (0.009) ns ns ns

G7L3W1 SAMS ns 0.5 (0.002) ns ns ns

G7JTY4 LL-diaminopimelate aminotransferase ns ns 0.4 (0.021) ns ns

G7J013 alanine glyoxylate aminotransferase ns ns ns 2.4 (0.005) ns

15.2 Metal handling.binding, chelation, and storage

G7K283 ferritin ns ns 4.0 (0.018) ns ns

G7JLS7 ferritin 11.4 (0.005) ns 10.0 (0.0004) ns ns

16.2 Secondary metabolism.phenylpropanoids

G7JTH6 caffeic acid 3-O-methyltransferase 6.5 (0.0000) ns 4.0 (0.0023) ns ns

(Continued)
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Table 3 | Continued

Stressed

Drought

Stressed

Salt

Non-stressed

Controls

DN-fed/CN-fed DN-fix/CN-fix SN-fed/CN-fed SN-fix/CN-fix CN-fed/CN-fix

19.10Tetrapyrrole synthesis

G7IK85 Mg-chelatase subunit chlI 0.3 (0.0002) 0.3 (0.0005) ns 0.5 (0.004) ns

20.1 Stress.biotic

B0RZH7 putative thaumatin-like protein ns 0.4 (0.000) ns ns 2.2 (0.001)

G7IYL0 receptor-like protein kinase ns 0.5 (0.002) ns ns ns

20.2 Stress.abiotic

Q2HT97 heat shock protein Hsp70 ns ns ns 0.5 (0.034) ns

G7JGC6 low-temperature inducible 2.3 (0.0001) ns ns ns 2.3 (0.001)

G7JGC9 low-temperature inducible ns ns ns 0.3 (0.021) ns

21.5 Redox.peroxiredoxin

G7JS60 peroxiredoxin Q 2.6 (0.0000) ns ns ns ns

23.4 Nucleotide metabolism.phosphotransfer and pyrophosphatases

G7JMM2 nucleoside diphosphate kinase ns ns 2.0 (0.040) ns ns

B7FIM7 soluble inorganic pyrophosphatase ns 03 (0.006) ns ns ns

26.20 Misc.ferredoxin-like

G7KWY5 ferredoxin ns 0.3 (0.011) ns ns 2.1 (0.037)

26.4 Misc.beta-1,3 glucan hydrolases

G7JQL4 endo-beta-1,3-glucanase ns ns 0.5 (0.014) ns ns

27.1 RNA.processing

G7JK09 Poly(A)-binding protein ns 0.4 (0.000) ns ns ns

27.4 RNA.RNA binding

G7JG67 glycerine-rich RNA binding protein 0.5 (0.0059) ns ns ns ns

29.2 Protein.synthesis

Q945F4 eukaryotic translation initiation factor 5A-2 ns 0.4 (0.003) ns ns 2.5(0.003)

G7IH13 elongation factor EF-2 ns ns ns 2.5 (0.000) ns

29.5 Protein.degradation

G7LIT0 ATP-dependent Clp protease 0.4 (0.0226) ns ns ns ns

G7ZVC0 presequence protease ns 0.5 (0.010) ns ns ns

G7K8J5 bi-ubiquitin ns ns 0.3 (0.024) ns ns

G7LB82 proteasome subunit alpha type ns ns 2.1 (0.019) ns ns

31.1 ′Cell.organization

G7IAN2 tubulin ßchain ns ns 5.4 (0.0006) ns ns

G7L5V0 tubulin ßchain ns ns 3.0 (0.0205) 0.4 (0.046) ns

G7KB73 annexin 2.0 (0.0394) ns ns ns 0.5 (0.000)

G7JAX5 actin ns ns 3.8 (0.0001) ns ns

34.1Transport. p- and v-ATPases

A6Y950 Vacuolar H + -ATPase B subunit ns 0.5 (0.001) ns ns ns

“PUTATIVE” UNCHARACTERIZED PROTEINS

B7FJY9 similar 94.0% Q9SQL2, CB24_PEA, chlorophyll a-b binding

protein P4, chloropl., Pisum sativum (garden pea), e = 1.0 × 10−178

3.0 (0.0001) ns ns ns ns

B7FMC4 similar 73.0% Q03666, GSTX4_TOBAC, probable

glutathione S-transferase, Nicotiana tabacum (common tobacco),

e = 1.0 × 10−121

2.1 (0.007) ns ns ns 2.6 (0.036)

B7FJR8 similar 83.0% Q9LZG0, ADK2_ARATH, adenosine kinase

2, Arabidopsis thaliana (mouse-ear cress), e = 0

ns 0.4 (0.000) ns ns 2.1 (0.015)

B7FM78 similar 97.0% P81406, GAPN_PEA, NADP-dependent

glyceraldehyde-3-phosphate dehydrogenase, Pisum sativum

(garden pea), e = 0

ns 0.5 (0.023) ns ns ns

(Continued)
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Table 3 | Continued

Stressed

Drought

Stressed

Salt

Non-stressed

Controls

DN-fed/CN-fed DN-fix/CN-fix SN-fed/CN-fed SN-fix/CN-fix CN-fed/CN-fix

B7FKR5 similar 99.0% O24076, GBLP_MEDSA, guanine

nucleotide-binding protein subunit beta, Medicago sativa (alfalfa),

e = 0

ns 0.4 (0.005) ns ns 2.6 (0.001)

B7FI14 similar 64.0% Q9LEH3, PER15_IPOBA, peroxidase 15,

Ipomea batatas (sweet potato) (Convolvulus batatas),

e = 1.0 × 10−132

ns 0.4 (0.000) ns ns 2.2 (0.001)

B7FL15 similar 85.0% P13443, DHGY_CUCSA, glycerate

dehydrogenase, Cucumis sativus (cucumber), e = 2.0 × 10−71

ns 0.3 (0.000) ns ns 2.7 (0.000)

G7I4F9 uncharacterized protein ns 0.4 (0.021) ns ns 2.1 (0.035)

B7FHX0 similar 98.0% P29500, TBB1_PEA, tubulin beta-1 chain,

Pisum sativum (garden pea), e = 0

ns ns 4.4 (0.0035) ns 2.2 (0.002)

B7ZWQ5 similar 90.0% Q40977, MDAR_PEA,

monodehydroascorbate reductase, Pisum sativum (garden pea),

e = 0

ns ns 2.0 (0.035) ns ns

B7FL16 similar 84.0% P13443, DHGY_CUCSA, glycerate

dehydrogenase, Cucumis sativus (Cucumber), e = 2.0 × 10−88

ns ns ns 0.5 (0.043) ns

B7FI41 similar 52.0% Q41160, LCB3_ROBPS, putative bark

agglutinin LECRPA3, Robinia pseudoacacia (BLAQCK locust),

e = 5.0 × 10−87

ns ns ns 0.4 (0.023) ns

G7KAG7 similar 71.0% Q9THX6, TL29_SOLLC, thylakoid lumenal

29 kDa protein, chloroplast, Solanum lycopersicum (tomato;

Lycopersicon esculentum), e = 1.0 × 10−172

ns ns ns 0.5 (0.032) ns

B7FNH1 similar 79.0% O23755, EF2_BETVU, elongation factor 2,

Beta vulgaris (sugar beet), e = 2.0 × 10−67

ns ns ns 0.3 (0.004) 3.6 (0.004)

METABOLITES

Major CHO metabolism

Glucose ns 10 (0.034) ns 0.3 (0.009) 0.5 (0.014)

Glucose-1-p ns ns ns 5.1 (0.000) 0.5 (0.014)

Maltose ns ns ns 2.3 (0.003) ns

Ribitol 3.2 (0.010) ns ns ns ns

Amino acid metabolism

Glutamate ns ns 2.1 (0.010) ns ns

Leucine ns 6.1 (0.000) 2.7 (0.006) 2.2 (0.012) ns

Proline 0.5 (0.049) ns 2.6 (0.006) ns ns

Valine ns ns 2.4 (0.000) 2.4 (0.012) ns

Aspartate ns 0.3 (0.021) ns ns ns

TCA

2-Oxoglutarate ns ns ns 0.3 (0.040) ns

Citrate ns ns 0.5 (0.008) 0.3 (0.000) ns

Succinate ns ns ns 0.5 (0.008) ns

Malate ns ns ns 0.2 (0.001) 2.0 (0.012)

Malonate ns 0.5 (0.029) 0.4 (0.000) 0.1 (0.001) 2.1 (0.001)

Others

Phosphate ns ns 0.5 (0.006) 0.2 (0.000) ns

(Student’s t test p < 0.05 in brackets and fold change ≥ 2; n = 6) with significantly altered abundances in response to spectral counts of stress proteins and peak

area of metabolites (IS and DW normalized). Protein category headers including binning numbers of the MapMan mapping file. CN-fed, control, N-fertilized; CN-fix,

control, N-fixation; DN-fed, drought, N-fertilized; DN-fix, drought, N-fixation; SN-fed, salt, N-fertilized; SN-fix, salt, N-fixation; numbers 1 – 6 indicate replicates. ns, not

significant; SAMS, S-adenosylmethionone synthetase.
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not previously contained in the mapping were added. Separate bins
were created for S. meliloti and S. medicae. Identified and perti-
nent protein accessions of these two endosymbionts were manually
classified and thus put into sub-bins. The mapping file can be
downloaded at http://www.univie.ac.at/mosys/databases.html. It
will be updated in accordance to novel identifications/insights.

FUNCTIONAL CHARACTERIZATION OF STRESS RESPONSIVE PUTATIVE
UNCHARACTERIZED PROTEINS
For a functional characterization of the stress responsive, so far
putative proteins of unknown function in our analysis, we have
used BLAST to find entries in phylogenetically related organisms
by sequence similarity (see also Table 3).

RESULTS
PHYSIOLOGICAL RESPONSES TO SALT AND DROUGHT IN M.
TRUNCATULA
Medicago truncatula was chosen in order to study the early stress
acclimation under two N-nutritional conditions combined with
two different environmental perturbations (four different stress
treatments). The effect of reduced water availability on plant per-
formance was analyzed in order to assess the degree of stress as
alterations in water status in both nutritional phenotypes in M.
truncatula (N-fed and N-fix; Table 1). The effect of drought stress
was significant for most of the analyzed parameters depending on
nutritional status. Water potential was significantly reduced dur-
ing drought (potential dropped to −0.98 MPa and −1.06 MPa for
N-fix and N-fed plants respectively), but not during salt stress.
The PSII operating efficiency in terms of (F ′q/F ′m) was signifi-
cantly decreased only in the leaves of drought stressed N-fed plants.
Stomatal conductance was significantly reduced upon perturba-
tion. In order to get a more holistic insight into the extent of
plant acclimatory responses, significantly changing root metabo-
lites were assessed (Table 2). Most of the significantly changed
metabolites in roots did not change significantly in the leaves and
vice versa. However, the degree of stress in terms of the fold change
was more significant in the roots. Most of the responsive metabo-
lites increased during stress. However, especially organic acids and
a few amino acids of the leaves showed a decline in response to
stress (Table 3).

DESCRIPTIVE ANALYSIS OF THE DETECTED PROTEINS AND
METABOLITES
All identified proteins and metabolites were functionally catego-
rized and visualized with Mapman (Thimm et al., 2004) using
a new M. truncatula mapping file we created for UniProt data
(Figure 1, see Mapman Mapping File for M. truncatula Pro-
teins and Metabolites). Upon all identified proteins (643),“protein
regulation” (20%), and “PS” (13%) are the dominant functional
categories. In addition, the proteins assigned to the PS show high-
est relative abundance (spectral count per protein weight). Other
categories are “redox,”“amino acid,” and “cell,” each accounting for
5% of all identified proteins. Stress and signaling together reach
7% of all protein identifications followed by several other small
categories (Figure 1). For the metabolites we found the major
categories of the primary metabolism including amino acids “AA
metabolism,” the “TCA” cycle (organic acids), sugars “major COH
metabolism,” and “others.”

QUANTITATIVE DATA MINING FOR SALT AND DROUGHT RESPONSIVE
METABOLITES AND PROTEINS OF NUTRITIONAL M. TRUNCATULA
PHENOTYPES
About 11% of all identified proteins (69 of 643) and 33% of all
identified metabolites (15 of 45) changed significantly upon early
stress acclimation (p ≤ 0.05 and fold change ≥ 2; n = 6). GC-MS
based metabolite profiling generally results in the identification
of metabolites associated with the primary metabolism. Here, we
found that most metabolites responding to stress were correspond-
ing to the major sugar and amino acid metabolism and the TCA
cycle. The protein categories with the highest percentage involved
in stress response are: “PS,”“amino acid,” and “cell” with 12% each
(Table 3). A small overlap of responsive compounds across the
two stress treatments was observed (7 of 98, Figure 2). However,
no analyzed compound was responsive during stress acclimation
across all treatments. The Mg-chelatase subunit chlI (G7IK85),
leucine, and malonate have been found to respond to three of the
four different treatments. Of all the significantly altered levels of
proteins and metabolites, only a particular subset responded to a
specific treatment. Approaching the data from a different perspec-
tive, Figure 2A shows that more responsive compounds are shared
between the salt than between the drought treated phenotypes.
In contrast, a few specific response features were observed when
dissecting the nutritional phenotypes (Figure 2B). Altogether, we
found that the majority of significantly changed compounds of
the nitrogen fertilized (N-fed) plants increased while the majority
of significantly changed compounds of the N-fix plants decreased
independent of the stress type (Figures 3 and 4).

We then compared the control levels of the proteins of the
nutritional phenotypes with the response levels of perturba-
tion (Figure 4). Interestingly, for the drought stressed plants, an
approximation in protein levels between the two phenotypes has
been observed. Thirteen responsive proteins of the N-fix plants
show a higher control level compared to the N-fed controls. At the
analyzed time of drought acclimation, those proteins decreased
significantly, reaching the level of the N-fed plants (which have
not changed during drought stress). Vice versa, control levels
of six responsive proteins of the N-fed plants increased during
drought, reaching unchanged control levels of the N-fix plants.
This mechanism is less distinct for salt stress (Figure 4).

DISCUSSION
DEFINITION OF THE DEGREE OF STRESS AND THE CHALLENGE OF
COMPARING DIFFERENT CONSTRAINTS
Salt and drought, two major environmental constraints have been
compared. A moderate stress level was applied in order to study
the early acclimation responses of M. truncatula growing under
two different nutritional conditions. A biphasic growth inhibition
model by saline conditions has been proposed earlier (Munns,
2002). During the first phase, growth inhibition is mainly governed
by the decreased water availability due to higher solute concentra-
tions in the soil solution, lowering soil water potential. If salt stress
is prolonged ion toxicity effects gain importance in constraining
plant metabolism and survival, described as the second phase, the
salt stress specific phase (Sanchez et al., 2008a). To obtain similar
early stress response levels for both stress types, keeping morpho-
logical parameters comparable, plants were harvested at the same
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FIGURE 1 | Mapman overview. Functional distribution and relative
abundance of the 643 shoot proteins (Log10 of the spectral count
normalized by protein weight; FDR ≤ 0.01%) and 45 metabolites (Log10

of peak area normalized by DW and IS) identified. Triangles = proteins;
circles = metabolites. The strength of the color indicates the abundance
of the compounds.
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FIGURE 2 | Venn diagrams of the number of stress responsive proteins
and metabolites. (A) overview of N-source depended changes for drought
and salt separately; (B) overview of stress dependent overlap for N-fed
(nitrogen fertilization) and N-fix (nitrogen fixation) separately.

age (duration-of-stress was 6 days). We compared the response of
M. truncatula to water deficit resulting from a progressive mild
drought treatment and a high initial 200 mM salt treatment. After
6 days of treatment, water-withholding and salt stress treatment
resulted in stress responses. In order to assess the degree of stress
at the plant level, several physiological parameters showing typical
responses to decreasing water availability were analyzed as direct
and indirect measures of plant water status (Table 1). All four
stress treatments elicited acclimatory responses, as evidenced by

DN-fed vs CN-fed ( 5   , 14   )

SN-fed vs CN-fed ( 6    ,19   )

DN-fix vs CN-fix (26   , 3    )

SN-fix vs CN-fix (18    ,7    )

CN-fix vs CN-fed ( 4    ,21   )  comparison of basic control states

mostly up-regulation

mostly down-regulation

DN-fed vs CN-fed ( 5   , 14   )

SN-fed vs CN-fed ( 6    ,19   )

DN-fix vs CN-fix (26   , 3    )

SN-fix vs CN-fix (18    ,7    )

CN-fix vs CN-fed ( 4    ,21   )  comparison of basic control states

mostly up-regulation

mostly down-regulation

FIGURE 3 | Summary of the number of up- or down-regulated shoot
compounds (proteins and metabolites) of the different treatments.
Compounds, mostly up-regulated in N-fed and mostly down-regulated in
N-fix plants during stress (independent on stress condition). D, drought; C,
control; S, salt; N-fed, nitrogen fertilization; N-fix, nitrogen fixation.

significant decreases in stomatal conductance. Furthermore, our
data also indicate that stress treatments had a low effect on photo-
synthesis. The PSII operating efficiency was neither affected by salt
nor severely by drought (Table 1). This supports the onset of an
early phase of stress acclimation. Drought experiments of soybean
have shown that rates of photosynthesis were inhibited when leaf
water potential dropped below −1.1 MPa (Boyer, 1970). This is
consistent with our data; since photosynthesis was only affected in
drought treated N-fed plants, when leaf water potential reached
threshold. Salt and drought constraints are initially encountered
at the root part of the plants. This might also contribute to the fact
that in legumes, N-fixation is impaired in response to water deficit,
before a decrease in photosynthetic rate can be observed (Durand
et al., 1987; Djekoun and Planchon, 1991). As expected, when test-
ing for some significant changes of metabolites in roots compared
to the shoots (Table 2), the extent of stress-induced was more
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FIGURE 4 | Schematic overview of differentially up or down-regulated
protein clusters depending on control level and nutritional status. (A)
Similar control levels but different stress levels. (B) Different control levels
but similar stress response levels. N-fed, nitrogen fertilization; N-fix,
nitrogen fixation.

important in roots than in shoots. Some typical stress response
marker such as proline, GABA and the polyols pinitol, ononi-
tol, and myo-inositol (Vernon and Bohnert, 1992) were partially
found to solely or more distinctly accumulate in the roots. Surpris-
ingly, proline was only significantly increased in roots (∼10-fold)

exposed to drought and shoots (∼twofold) exposed to salt. In
leaves of N-fed plants it was found to even decrease. Since pro-
line has been reported to increase during drought (Delauney and
Verma, 1993) and other abiotic effects (Szabados and Savouré,
2010), the data suggest a moderate stress response where pro-
line accumulation has not been fully established. This observation
could result from the more pronounced stomatal closure in salt
stressed than in drought stressed plants. As the water loss through
stomata is lower, tissue WC, and water potential remain constant.
Thus the degree of stress at the plant tissue level might not yet
induce a substantial accumulation of osmoprotectants such as
proline. The results for drought are in agreement with the data
of Filippou et al. (2011), where, e.g., proline accumulation in M.
truncatula leaves occurred only after 9 days of water-withholding,
whereas in roots already after 3 days. The biological role of proline
accumulation during stress is under extensive discussion (Ver-
bruggen and Hermans, 2008). Drought stress experiments in Lotus
japonicus strengthened the hypothesis that proline is necessary for
the rehydration ability of the plants (Diaz et al., 2010). In agree-
ment with our data, they showed that it does not reduce the rate
of water loss. Interestingly, the counter-correlation of salt stressed
plants showing no changes in leaf water potential suggests that this
might be due to the more significant decrease in stomatal conduc-
tance, regulated by an increased ABA level. It was shown that the
stomatal conductance was controlled by the root water poten-
tial when the ABA level of the xylem sap was increased (Tardieu
et al., 1991). Thus our data demonstrate that salt and drought have
impact on stomatal conductance but to a different degree, indicat-
ing higher stress response to salt than to drought. In contrast, water
potential decreased significantly only during drought and more
severely in N-fed compared to N-fix plants leading to the conclu-
sion that drought stress has a stronger and thus earlier impact on
water availability than salt. However, effects are still in a moderate
range revealing an early stress response for both constraints. Alto-
gether the physiological results lead to the following conclusions:
(a) Indifferent to stress treatment and nutritional status stom-
atal conductance is an early stress response parameter; (b) Proline
and the other observed, typical stress responsive metabolites as
well as photosynthetic efficiency seem to be robust markers only
for severe stress in leaves; (c) the root is the first place adjusting
and controlling acclimation of stress; (d) all physiological para-
meters showing significant differences when comparing control to
stressed groups, interestingly also showing significant differences
between the two stress treatments; (e) in order to establish the
highest possible similarity in plant water status between the two
constraints, numerous salt concentrations and time points need
to be assessed (and possibly additional parameters measured).
However, an identical response seems very unlikely.

MOLECULAR STRESS ADJUSTMENTS DEPENDING ON THE
NUTRITIONAL PHENOTYPE – CHAOS WITH SYSTEM?
Numerous studies on salt and/or drought stress in plants have
been summarized recently (Pinheiro and Chaves, 2011; Krasensky
and Jonak, 2012). Drought and salinity reduce soil water avail-
ability and induce common stress avoidance strategies such as
shoot growth inhibition and lower stomatal conductance. How-
ever, there is not much overlap between the molecular data sets
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published so far. This is probably due to the fact that experi-
mental setups and application of stresses are very different and
an appropriate definition of the degree of stress (in terms of
experimental conditions as well as plant water status) for a better
comparison is difficult and often missing (Jones, 2007). Another
reason may be the differential steady-state of the plants such as
growth state (Chaves et al., 2009) and nutritional status prior to
stress exposure (Frechilla et al., 2000). The molecular data pre-
sented here shows that salt and drought stress share few common
features in terms of changes in compound abundance (Table 3
and Figures 2A,B). First of all, the significantly responding com-
pounds appear randomly distributed across treatments and most
functional categories of the metabolic network. This result is not
surprising since stress effects seem not severe and plant metab-
olism has not yet been fully adjusted at the time of analyses.
However, in agreement with other data (Sanchez et al., 2008a,b),
we found a down-regulation of organic acids and an up-regulation
of amino acids that seem typical for salt stress (Table 3). The results
suggest that the TCA cycle is almost exclusively responding to early
salt stress but not to drought. Within the N-fix phenotype of the
salt stress group all five of the responsive metabolites of the TCA
cycle were down-regulated.

Amino acids most significantly change in salt stressed and N-fed
plants while most of the responsive sugars significantly changed
in N-fix plants. The protein levels of the functional categories of
amino acid and N-metabolism decreased, while the amino acids
accumulated in response to stress. This trend could be observed
within all stress treatments, except for drought stressed N-fed
plants where this trend was inverted (Table 3). Possibly, increased
amino acid levels are the cause for the down-regulation of proteins
involved in amino acid synthesis and/or the consequence of pro-
tein degradation. Interestingly, this correlation has also previously
been observed in root nodules of drought stressed M. truncatula
(Larrainzar et al., 2009). They also found some glutamine sythetase
isoforms decreasing during drought. However, while amino acid
synthetases and asparagine aminotransferases seemed to play an
important role during drought stress acclimation in nodules, S-
adenosyl-l-methionine synthases (SAMS) seem to be more specif-
ically involved in leaves. In addition, the SAMS isoforms seem only
involved in early response to drought but not to salt stress. Fur-
thermore, the four identified SAMS isoforms respond differently
to drought. SAMS is a key enzyme, catalyzing the biosynthesis of
SAM using methionine and ATP. It has been described that some
of the SAMS genes were expressed constitutively, whereas others
seemed specifically regulated by developmental and/or environ-
mental factors depending on the requirement for SAM (Boerjan
et al., 1994; Gómez-Gómez and Carrasco, 1998). SAM is a methyl
donor, involved in many regulatory relevant processes on the tran-
script and protein level (Gómez-Gómez and Carrasco, 1998).
However, further studies need to be conducted to unravel the
regulatory function of the different SAMS isoforms during plant
responses to water deficits.

Sugars are usually described to increase during osmotic stress
adjustment (Clifford et al., 1998; Hummel et al., 2010). Surpris-
ingly, glucose was decreasing in salt stressed plants. However,
under drought stress glucose increased and other carbon metabo-
lites increased as well. Interestingly, on the protein level, cell

organization seemed most responsive in salt stressed N-fed plants.
Distinctively, the two tubulin β chains (G7IAN2 and G7L5V0)
and actin (G7JAX5) were found to be up-regulated. These com-
ponents are involved in the dynamics of the cytoskeleton. Several
studies in Arabidopsis have shown a relationship between the plant
cytoskeleton and salt stress tolerance by the induction of actin fil-
ament assembly and bundle formation (Wang et al., 2010, 2011).
This result may indicate a more specific response of salt stressed
plants that are N-fertilized.

Besides malonate (down-regulation) and leucine (up-
regulation), the metabolites found to respond in three out of the
four treatments, Mg-chelatase subunit chlI (G7IK85) was also sig-
nificantly changed (down-regulated) in both drought phenotypes
as well as the salt stressed N-fix plants. The Mg-chelatase, com-
posed of three different subunits, is the first enzyme involved in
chlorophyll biosynthesis. It has been described to be involved in
several stress-induced alterations. Dalal and Tripathy (2012) sum-
marized the stress response of enzyme activity and on the protein
and transcript level. They showed that Mg-chelatase protein abun-
dance and gene expression are generally down-regulated during
drought, salt, cold, and heat stress. A study on pea revealed that
the Mg-chelatase chlI activity is redox regulated by chloroplast
thioredoxins (Luo et al., 2012). Intriguingly, there are controversial
discussions dealing with the Mg-chelatase subunit chlH. Initially
it has been reported to act as an ABA receptor (Shen et al., 2006).
However, Müller and Hansson (2009) reported that ABA had no
effect on subunit chlH. Recently, Tsuzuki et al. (2011) presented
evidence for the chlH subunit affecting ABA signaling of stom-
ata guard cells but not acting as ABA receptor. These data strongly
support that the Mg-chelatase is an important key player of chloro-
phyll degradation already during early stress response. The role of
subunit chlI, however, needs to be studied in more detail.

Most other stress responsive compounds found, appear to be
selectively distributed. However, we found interesting response
patterns that might be explained by regulatory important mecha-
nism: noticeably, the ratio between up and down-regulated com-
pounds is grouping the nutritional phenotypes (Figure 3). The
different molecular control levels of the two nutritional traits
are leading to these response patterns. Starting with the com-
parison of the phenotypes, we found 25 of the stress responsive
compounds also significantly distinguish N-fix from N-fed plants
under control condition (Table 3). Here in general, protein and
metabolite levels are higher in the control steady states of the N-
fix plants compared to the N-fed plants. Furthermore, the ratio
of up- vs. down-regulated proteins and metabolites during early
stress response is generally higher in N-fed plants and vice versa
the ratio of down-regulation higher in N-fed plants. Several dis-
tinct proteins seemed to change randomly coming from the same
control state (Figure 4A). However, when analyzing the pheno-
types after early stress adjustment, the proteomic data revealed a
process of approximation to a similar molecular stress-steady-state
(Figure 4B). Especially the protein response-pattern to drought
aligned the way that proteins of the N-fix shoots of higher control
level decreased to the level of N-fed shoots and vice versa. Taking
these data together, there is evidence that the N-fed plants invest
more energy in stress adjustment of protein levels than the N-
fixing plants, where down-regulation of proteins is dominating the
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process of acclimation. Interestingly, there is an overlap of six for
the salt- compared to one stress responsive protein of the drought
treatment (Figure 2A). Thus, salt stress response seems less depen-
dent on the nutritional status than drought. Thus, we propose that
(a) the initial molecular steady-state of the plants in terms of nutri-
tional status seems pivotal for the downstream stress adjustment
strategy; (b) during stress-acclimation-phase plants try to adjust
their metabolic network to an approximate level (more signifi-
cantly during the drought stress response); and (c) N-fix plants
may need less energy for the stress adjustment than N-fed M.
truncatula plants.

CONCLUSION
In the case of M. truncatula, our results suggest the following.

• Our drought stress treatment, led to a more pronounced
water deficiency at the plant level than the salt stress treat-
ment. This finding points to stress type specific acclima-
tion strategies, especially stress avoidance mechanisms such as
stomatal conductance. Either way, physiological, metabolomic,

and proteomic data revealed significant differences in the
degree and strategy of early drought, as compared to salt stress
response, under identical growth conditions.

• Mg-chelatase subunit chlI, leucin, and malonate were signifi-
cantly affected in three out of four stress treatments (two stress
types, two nutritional conditions). Thus, they are likely robust
early stress response markers. Further evaluation studies are
necessary for confirmation.

• Proteomic adjustment seems low cost for N-fixing, as compared
to N-fertilized plants, suggesting a potentially increased tol-
erance to stress. Whether this can be explained by symbiotic
interaction itself or a more general kind of nutritional prim-
ing remains to be investigated further. However our results
underline that the N-nutritional condition seems of crucial
importance for plant stress acclimation.
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Mass Western for Absolute Quantification of 
Target Proteins and Considerations About the 

Instrument of Choice

The Western Blot is a well-known and established technique for the specif-
ic detection and quantification of target proteins. Despite numerous success-
ful applications, this antibody-based method is potentially prone to unspe-
cific binding and cross-reactivity. In analogy to the famous Western Blot, the 
Mass Western, an alternative Mass-Spectrometry-based technique for the ab-
solute quantification of target proteins, was developed (Lehmann et al. 2008). 
This method relies on external and internal synthetic standard peptides, 
labeled with stable isotopes. Due to the coupling of liquid chromatography to 
mass spectrometry, the Mass Western additionally enables multiplexing. The 
study highlights the importance of using specialized instruments, e.g. Triple 
Quadrupoles, and methods, e.g. Selective Reaction Monitoring (SMR), in order 
to maximize quantitative accuracy and the Linear Dynamic Range.

Declaration of authorship
The results of this chapter are presented in the form of a manuscript pub-

lished as a chapter in the book series „Methods in Molecular Biology“. The work 
presented in the following manuscript is largely my own. I have conducted all 
experiments, analyzed the data and written the manuscript.

Additional remarks
In order to increase the accuracy of stoichiometry, a modified approach of the 

“MassWestern” was developed in analogy to Holzmann et al. 2009. When de-
termining the exact stoichiometry of e.g. two proteins, it is imperative to spike 
the sample with equal amounts of respective internal heavy peptide standards. 
Therefore, cross-concatenated standard peptides were designed. A concate-
nated peptide consists of a (e.g. tryptic) peptide from each of the two proteins 
which could be cleaved using a protease, thereby ensuring identical amounts 
of standard peptides for both proteins (Recuenco-Munoz et al. 2014 ac-
cepted). I assisted in the design of this method.
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    Chapter 15   

 Mass Western for Absolute Quantifi cation of Target Proteins 
and Considerations About the Instrument of Choice 

           David     Lyon    ,     Wolfram     Weckwerth    , and     Stefanie     Wienkoop    

    Abstract 

   The Mass Western describes the absolute quantifi cation of proteins based on stable isotope labeled integral 
standard peptides and liquid chromatography coupled selective reaction monitoring triple quadrupole 
mass spectrometry (LC-SRM/MS). Here, we present a detailed workfl ow including tips and we discuss 
advantages and disadvantages of using different types of MS for absolute quantifi cation.  

  Key words     Mass Western  ,   SRM  ,   Heavy peptide internal standard  ,   Absolute quantifi cation  ,   Triple 
quadrupole  ,   Orbitrap  

  Abbreviations 

   SID    Stable isotope dilution   
  SRM    Selective reaction monitoring   
  PTM    Posttranslational modifi cation   
  QqQ    Triple quadrupole   
  LC-SRM/MS    Liquid chromatography coupled selective reaction monitoring triple 

quadrupole mass spectrometry   
  HP    Heavy peptide ( 15 N 13 C labeled synthetic standard)   
  LP    Light peptide (native peptide, no labeling)   
  HCD    High energy collision induced dissociation   
  CE    Collision energy   
  LDR    Linear dynamic range   
  LOD    Limit of detection   
  LOQ    Limit of quantifi cation   

1         Introduction 

 Absolute protein quantifi cation using stable isotope dilution 
(SID) in conjunction with liquid chromatography (LC) and selec-
tive reaction monitoring (SRM) triple quadrupole (QqQ) mass 
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 spectrometry (MS) has been successfully applied to highly com-
plex crude proteomics samples [ 1 ,  2 ]. In contrast to relative quan-
tifi cation, absolute quantitative data result in absolute 
concentration levels. Thus besides comparison of different experi-
mental treatments, absolute quantifi cation enables the analysis of 
protein stoichiometry within a sample, the differentiation of iso-
forms as well as the comparison of inter-experimental conditions, 
such as different species. Additionally, it leads to highly verifi able 
data. In analogy to the well-known Western Blot, Lehmann et al. 
[ 3 ] fi rst coined the suitable term Mass Western. While for Western 
Blot analysis synthetic peptides can be used for the synthesis of 
antibodies, they can be directly applied for the sensitive and tar-
geted detection and absolute quantifi cation using the Mass 
Western. It is the integration of stable isotope labeled synthetic 
peptides in combination with gel based or gel-free LC-SRM/MS. 
A theoretical and an experimental approach to set up the Mass 
Western can be distinguished (Fig.  1 ). Both approaches start out 
by defi ning at least one protein of interest. The theoretical 
approach continues with in silico digestion of proteins and predic-
tion of proteotypic peptides (understood as a unique amino acid 
sequence of a peptide, unambiguously identifying a specifi c pro-
tein of interest within a given proteome) for the target proteins 
(in reference to the proteome of the sample). Subsequently, the 

Choice of proteotypic peptides 3.2

Number of peptides per protein 3.3

Label position 3.4

Choice of transitions 3.5

Calibration curves 3.6

Absolute quantification 3.7

Frequently asked question:
Triple Quadrupole or Orbitrap 3.8

  Fig. 1    Workfl ow diagram of the steps for Mass Western as described in the text       
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chosen peptides are synthesized, including (at least) one stable 
isotope labeled amino acid (being highly enriched with  15 N and 
 13 C) per peptide. In contrast to the latter, within the experimental 
approach, proteotypic peptides are chosen through data mining of 
shotgun-proteomics experiments, mass spectral reference data-
bases such as the plant proteomic  spectral library ProMEX [ 4 ], as 
well as protein fractionation, enrichment, and subsequent mass 
spectral analysis. The ensuing synthesis of stable isotope labeled 
peptides is identical to the theoretical approach, as well as the rest 
of the procedure. LC-SRM/MS method development follows 
and completes the workfl ow of the Mass Western approach. The 
detailed workfl ow is presented in the specifi c context of quantifi -
cation capacity of a QqQ, here a TSQ (Thermo Triple Stage 
Quadrupole Vantage), compared to a Linear Trap Quadrupole-
Orbitrap (LTQ-Orbitrap).

2        Materials 

  We recommend the use of Skyline ([ 5 ],   https://brendanx-uw1.
gs.washington.edu/    ) for method development and data analysis. 
Proteolytic cleavage probability, hydrophobicity calculation, and 
PTM prediction are part of many useful features available at Expasy 
Tools (  http://ca.expasy.org/    ). Skyline in conjunction with SRM 
collider can be used for the predition of proteotypic peptides and 
to fi nd interferences in a given background proteome [ 6 ].  

     TSQ (Thermo Triple Stage Quadrupole, Vantage).  
  LTQ-Orbitrap (Thermo Linear Trap Quadrupole-Orbitrap XL).      

3     Methods 

  The heavy synthetic standard peptide (containing one amino acid 
labeled with  15 N and  13 C; HP) and its native counterpart, the light 
peptide (with no artifi cially introduced label; LP), share identical 
physicochemical properties. Retention time, ionization effi ciency, 
and fragmentation properties of a HP-LP pair are assumed to be 
identical. The HP is used to tune the mass spectrometer and to 
create an external calibration curve. The peak area of the LP is set 
into the calibration curve to calculate the absolute quantity. When 
measuring samples for quantifi cation, equal amounts of HP are 
spiked into each sample, as internal standards. The internal stan-
dard serves as a quality control. The retention time, peak shape, 
and relative intensities of individual transitions ( see   Notes 1  and  2 ) 
of the LP are compared to the HP. This gives the experimenter 
great confi dence concerning the accuracy of the data used for 

2.1   Software

2.2   Mass 
Spectrometer

3.1   General 
Overview

The Mass Western
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quantifi cation. The incorporation of a HP internal standard is the 
only approach that enables absolute quantifi cation. The peak area 
of the HP can be used to normalize data across multiple samples 
(by dividing each individual peak area of a sample by the peak area 
of the HP of that particular sample). Since a known amount of HP 
is spiked into the sample, the peak area of the HP can be compared 
to the mean and standard deviation of its calibration curve at the 
given concentration. Sample handling and or technical aberrations 
can thereby be detected. Subsequently, the measurement can be 
repeated or a correction factor applied. The discrete steps to set up 
a Mass Western experiment are described as follows.  

  When setting up a Mass Western using the experimental approach, 
all identifi ed peptides of the target protein are considered as puta-
tive candidates. The amino acid sequences of each peptide can be 
BLASTed against the proteome of the organism, in order to distin-
guish proteotypic peptides (other tools such as Skylineare available 
as well). Sequences containing missed cleavage sites should be 
avoided, due to the potential occurrence of proteolytic peptides 
consisting of partial sequences of the targeted peptide. Sub-
sequently, the total amount of the targeted peptide will decrease 
and thus the accuracy and sensitivity of the experiment. Methionine 
should be avoided, since it is prone to oxidation. Cysteine residues 
tend to build disulfi de bridges and can result in dimers or cycliza-
tion, though alkylation can counteract this problem. Generally, 
reproducibly identifi able proteotypic peptides are very promising 
candidates for a Mass Western experiment. Peptides with the high-
est ionization effi ciency (and thus the most intense signal), and 
best chromatographic peak shape should be chosen. 

 When approaching a Mass Western experiment theoretically, 
the putative list of proteolytic peptides, resulting from in silico 
digestion of the protein of interest, needs to be reduced to proteo-
typic candidates. This can be performed by BLAST, as previously 
mentioned. Further selection criteria are as follows: Peptide length 
should preferably be between eight and twenty amino acids. 
Proteolytic effi ciency should be as high as possible and can be esti-
mated by tools such as Peptide Cutter (  http://web.expasy.org/
peptide_cutter/    ). N-terminal Glutamine has a tendency to form 
cyclic peptides. Low coupling effi ciency due to the hydrophobic 
and steric characteristics of Tryptophan can pose problems when 
synthesizing peptides. Generally hydrophobicity and thus  solubility 
of the peptides needs to be considered not only concerning synthe-
sis, but also concerning extraction, digestion and resuspension of 
proteins/peptides. Sequences containing Proline can produce 
multiple chromatographic peaks due to enantiomers, but are also 
known to easily and prominently fragment in MS/MS experi-
ments. Furthermore, potential Post Translational Modifi cations 
(PTMs) should be considered. To the best of the author’s 

3.2   Choice of 
Proteotypic Peptides
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 knowledge, no robust method exists to predict the signal intensity 
(ionization effi ciency) of a given peptide sequence (Fig.  2 ). This 
can potentially be a major drawback, since the ionization effi ciency 
can only be determined experimentally. Subsequently, an other-
wise suitable peptide can exhibit very low signal intensities, and 
thus pose analytical diffi culties. Digestion effi ciency, peptide solu-
bility, ionization effi ciency, and matrix effects are accounted for 
within the experimental approach, in contrast to the theoretical 
approach.

     Peptides should be chosen from different regions (e.g., the middle 
of and close to the C-terminus) of the protein. The more peptides 
per protein measured, leading to identical results, the more certainty 
about the quality of the results can be assumed. Principally, one pep-
tide per protein should be suffi cient for quantifi cation. Nonetheless, 
at least two peptides per protein should be used for the Mass Western, 
if possible, due to variability in proteolytic effi ciency and differing 
recovery rates. Necessary validation can thus be performed by com-
paring individual peptide results for a given protein.  

3.3   Number of 
Peptides per Protein

  Fig. 2    Concentration versus Peak Area. A dilution series of four HPs was mea-
sured on a Thermo TSQ Vantage QqQ-MS. The ionization effi ciency, and thus the 
signal response, is dependent on the amino acid sequence, as can be seen by 
the differing slopes of the linear regression lines       
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  No matter the label position, the precursor  m / z  values of a HP-LP 
pair (isotopologues) will differ, dependent on the labeled amino 
acid. In principal, it doesn’t matter which amino acid is chosen, if 
 15 N and  13 C labeling is applied, since delta M (the mass shift) will 
be at least 4 Da (for Alanine) which can easily be separated by 
modern mass spectrometers. However, it is recommended choos-
ing the C-terminal amino acid of the synthetic peptide to be labeled 
with  15 N and  13 C. Y-ions are predominantly used for SRM transi-
tions in QqQ, due to their abundance and intensity but b-ions may 
be chosen as well. Subsequently, the product  m / z  values of any 
Y-ion will also differ for a HP-LP pair, resulting in highly selective 
transition pairs. In theory, the selection of one transition is enough. 
However, the more transitions per peptide selected, the higher the 
certainty. More transitions may also increase signal intensity while 
improving sensitivity, but increase the duty cycle at the same time.  

  It is imperative to use identical types of transitions for a HP and 
its LP counterpart (The charge state of the precursor of the HP 
needs to be the same as for the LP. If a singly charged Y 3 -type-ion 
is chosen for the HP, the same needs to be chosen for the LP.) A 
similar ion fragmentation intensity pattern has been described 
comparing HCD collision with QqQ fragmentation [ 7 ]. 
However, tuning of the mass spectrometers collision energy (CE) 
by direct infusion (fl ow injection) of the synthetic peptides 
enables maximum sensitivity for specifi c transitions. Atleast for 
some mass spectrometers a semiautomatic ramping of CE and 
selection of the most intense transitions is possible [ 8 ]. The 
occurrence of other parameters such as Declustering Potential, 
S-lens, Collision Exit Potential, Ion Transfer Capillary Offset 
Voltage, etc. is vendor specifi c. Fine tuning of all possible param-
eters guarantees the highest possible sensitivity of the experiment. 
Y-ions N-terminal to Proline frequently result in high signal 
intensities, and are therefore preferably  chosen. Selecting the 
most abundant fragments aims at maximum sensitivity of the 
assay ( see   Note 1 ). High selectivity can usually be achieved by 
choosing transitions whose product  m / z  values are higher than 
their precursor  m / z  value (possible due to for example precursor 
charge state 2, product charge state 1). A combination of sensi-
tive and selective transitions often results in the most effective 
experimental setup. In general two transitions per peptide are 
suffi cient for sensitivity and selectivity since the HP internal 
standard includes the retention time as additional confi dence 
identifi cation parameter ( see   Note 2 ).  

  Comparing HP and LP peak areas to deduce quantitative results 
(single point calibration) is not recommended due to the well known 
fact that peptide ionization effi ciency varies signifi cantly (Fig.  2 ). 
Except for nearly identical peak areas, quantitation will not be as 

3.4   Label Position

3.5   Choice of 
Transitions

3.6  Calibration 
Curves

David Lyon et al.
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accurate as with external calibration curves. An external calibration 
curve is recorded as follows. A dilution series of the synthetic pep-
tides is measured using optimized settings for the instrument given. 
The linear dynamic range (LDR), the limit of detection (LOD), and 
the limit of quantifi cation (LOQ) can thereby be estimated. If the 
standard peptides are spiked into a complex matrix (refl ecting the 
nature of the sample to be analyzed), the LDR, LOD, and LOQ in 
matrix can be assessed more precisely concerning the performance 
of the assay. Accurate quantifi cation can only be achieved within the 
linear dynamic range. For each HP a linear regression is calculated 
for data within its linear dynamic range.  

  When measuring samples for quantifi cation, the amount of HP 
added to the individual samples should be kept constant. The 
heavy standard peptide (HP) is introduced to the sample at the 
earliest possible point of time. The signal intensity of the HP stan-
dard should be as close as possible to that of the native target. The 
peak area integral of the HP can be used to normalize data across 
multiple samples. The LP peak area can thus be adjusted and set 
into the regression equation of the external calibration curve to 
calculate a quantitative value. Best results are expected if the values 
are in the middle of the linear regression.  

  The SRM approach can generally be executed on different types of 
MS. At present, for absolute quantifi cation triple quadrupole mass 
spectrometers (QqQ) are routinely being used due to a wide linear 
dynamic range, excellent sensitivity and selectivity, as well as acqui-
sition speed. In contrast, due to the very long duty cycles and 
incomparable sensitivity, quantifi cation based on SRM on the 
hybrid MS instrument LTQ-Orbitrap-XL is not recommended. 
The LTQ-Orbitrap-XL MS features high mass accuracy and 
 resolution, and is an excellent tool for discovery experiments (such 
as shotgun proteomics), and relative quantifi cation [ 7 ,  8 ]. The lat-
ter MS instrument has also successfully been used for LC-MS based 
quantifi cation with the drawback of a reduced linear dynamic range 
compared to QqQ LC-SRM/MS. Recent articles state that the 
Orbitrap-Exactive is “equal or better” than QqQ if full scan acquisi-
tion based quantifi cation is applied [ 9 ,  10 ] ( see   Note 3 ). However, 
at present the use of QqQ holds advantages compared to other 
types of instruments such as a Linear Trap Quadrupole-Orbitrap 
(LTQ-Orbitrap). Figure  3  illustrates the differing linear dynamic 
range of the aforementioned instruments for three distinct standard 
HP. The two MS instruments are compared for applicability of 
absolute quantifi cation (methodological details can be found at 
  http://www.univie.ac.at/mosys/publications.html    ). The fi gure 
shows that even though LTQ-Orbitrap MS signal intensities in data 
dependent mode appears higher, the linear dynamic range is bigger 
for the QqQ Triple Stage Quadrupole (TSQ) MS ( see   Note 4 ). 

3.7   Absolute 
Quantifi cation

3.8   Frequently 
Asked Question: Triple 
Quadrupole or Orbitrap

The Mass Western



74

206

This is due to the fact that low concentration signals are  detectable 
in TSQ while the signal-to-noise ratio is already too low in the 
LTQ-Orbitrap. Thus, when aiming to quantify very low abundant 
targets in complex matrices, QqQs are the instruments of choice. 
Recent developments in the fi eld of mass spectrometry include 
optimized Ion Optics (enabling larger amounts of ions to be focused 
in a shorter amount of time), data acquisition speed, data acquisi-
tion range, sensitivity [ 10 – 13 ] as well as the emergence of novel 
DIA (Data Independent Acquisition) instruments, methods and 
software [ 14 ]. Thus high resolution and high mass accuracy instru-
ments, such as the latest generation of the Orbitrap, are increasingly 
competitive to QqQs. Additionally data produced by these instru-
ments is not restricted to quantifi cation as with SRM. These and 
other studies show that at present the use of an LTQ-Orbitrap MS 
may be an alternative to QqQ if the sensitivity is not limited [ 10 ]. 
For improved sensitivity of low abundant proteins using FullScan 
high resolution high mass accuracy MS some instrument adjust-
ments may be useful ( see   Note 5 ).

  Fig. 3    Concentration versus Peak Area. Three Stable isotope labeled synthetic peptides was  subjected to a 
dilution series, and measured with the LTQ-Orbitrap-XL, in data-dependent acquisition mode, and the TSQ-
Vantage, in SRM-mode. Data indistinguishable from noise or simply not present are not depicted, and thus the 
“missing” data points in the Orbitrap function at lower concentration levels. The linear and nonlinear parts of 
the two functions are distinguished by the fl attening of the respective functions. In order to attain an optimal 
coeffi cient of determination ( R  2 ) similar for both instruments, the linear regression was calculated with a sub-
set of the data points. The resulting regression lines are depicted in the graph. The upper but especially the 
lower limit of the TSQ regression line clearly extends to lower concentration levels, indicating heightened 
sensitivity over a wider linear dynamic range       
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4         Notes 

     1.    When multiple SRM transitions for a given substance are cho-
sen, the individual signal intensities are added to a single sig-
nal. This should also be considered when comparing high mass 
accuracy and resolution FullScan methods with SRM/MRM 
methods as well as the generation of the mass spectrometer, 
instrument parameters, and complexity of the underlying sam-
ple matrix.   

   2.    False positive signals can be disregarded and do not necessarily 
distort quantifi cation, since true signals can reliably be identi-
fi ed by comparing the retention time, peak shape, and relative 
transition order of a HP-LP-pair.   

   3.    Since metabolites most frequently are detected with a single 
charge, the precursor is larger than its product  m / z  value, and 
SRM transitions whose precursor is smaller than its product 
 m / z  value can’t be selected.   

   4.    The systematic shift of Peak Area values (arbitrary units), 
between the two instruments does not imply any qualitative or 
quantitative difference.   

   5.    Reducing the scan range (Full Scan or Selected Ion Monitoring) 
elevates the signal to noise ratio and improves sensitivity, how-
ever, useful information may thus become unavailable [ 15 ]. 
Elevating target Automatic Gain Control (AGC) values can 
improve the dynamic range, due to elevated sensitivity for low 
concentrations, but can lead to negative space charge effects at 
high concentrations [ 12 ].         
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Granger causality in integrated GC/MS and LC/
MS metabolomics data reveals the interface of 

primary and secondary metabolism

To date, no single analytical platform can cope with the detection of the 
immense structural diversity of all plant metabolites (not even from a single 
species). Variations in molecular weight, polarity, hydrophobicity, volatility, as 
well as other physicochemical properties imply the necessity for specialized 
analytical techniques such as GC/MS and LC/MS. The comprehensive acquisi-
tion of analytes strives towards a more holistic understanding of biological pro-
cesses, by e.g. mapping primary and secondary metabolites to pathways. Data 
integration of primary metabolites, measured with GC/MS, and secondary me-
tabolites measured with LC/MS, followed by a combined data analysis, enables 
a more comprehensive interpretation of metabolic responses to environmental 
stress. Since the analysis of a sample can be considered as a metabolic snapshot 
in time, the acquisition of time-series data aims to understand developmental 
processes over time, and can be used for modeling efforts.
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Abstract Metabolomics has emerged as a key technique

of modern life sciences in recent years. Two major tech-

niques for metabolomics in the last 10 years are gas

chromatography coupled to mass spectrometry (GC–MS)

and liquid chromatography coupled to mass spectrometry

(LC–MS). Each platform has a specific performance

detecting subsets of metabolites. GC–MS in combination

with derivatisation has a preference for small polar

metabolites covering primary metabolism. In contrast,

reversed phase LC–MS covers large hydrophobic metab-

olites predominant in secondary metabolism. Here, we

present an integrative metabolomics platform providing a

mean to reveal the interaction of primary and secondary

metabolism in plants and other organisms. The strategy

combines GC–MS and LC–MS analysis of the same sam-

ple, a novel alignment tool MetMAX and a statistical

toolbox COVAIN for data integration and linkage of

Granger Causality with metabolic modelling. For meta-

bolic modelling we have implemented the combined GC–

LC–MS metabolomics data covariance matrix and a

stoichiometric matrix of the underlying biochemical reac-

tion network. The changes in biochemical regulation are

expressed as differential Jacobian matrices. Applying the

Granger causality, a subset of secondary metabolites was

detected with significant correlations to primary metabo-

lites such as sugars and amino acids. These metabolic

subsets were compiled into a stoichiometric matrix N.

Using N the inverse calculation of a differential Jacobian J

from metabolomics data was possible. Key points of reg-

ulation at the interface of primary and secondary metabo-

lism were identified.

Keywords Plant systems biology � Metabolomics � Cold
acclimation � Granger causality � Mass spectrometry �
Differential Jacobian

1 Introduction

The interaction of primary and secondary metabolism in

plants and other organisms is probably one of the most

active regulatory circuits balancing biotic and abiotic

environmental pressures to the system. Secondary metab-

olites therefore serve as important functional units to cope

with these stresses and at the same time provide the richest

resource of natural products in medicine and nutrition.

Besides their obvious interconnectivity, in most metabolo-

mics studies either primary or secondary metabolites are

analysed to reveal the metabolic response of the system to a

specific perturbation. However, by analysing complex

reprogramming of metabolism in response to environmental

changes it becomes clear that a comprehensive interpreta-

tion is hardly possible without integration of the data as

recently shown by combining GC–MS and LC–MS meta-

bolomics data in a long-term biodiversity experiment
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(Scherling et al. 2010). In another study metabolic cross-

talk during the final ripening process in melon fruit (Cuc-

umis melo) was revealed by the identification of large

metabolic association networks and global patterns of

coordinated compositional changes of primary and sec-

ondary metabolism (Moing et al. 2011). However, due to

the complexity of interactions between various pathways it

is hardly possible to unambiguously trace back changes in

metabolism to regulatory cues. The study of such complex

interactions is focused by the research field of systems

biology attempting to resolve the relationship between

individual entities, for example molecules or genes, in a

complex system in order to understand the resulting system

behaviour. Numerous experimental and mathematical

approaches to comprehensively analyse plant metabolic

networks have been proposed relying on iterative processes

of model development, model simulation and experimental

validation (Giersch 2000; Morgan and Rhodes 2002; Rios-

Estepa and Lange 2007; Nägele et al. 2010). In addition to

approaches of mathematical modelling, systems biology

also comprises multidimensional data analysis focusing on

interpretation of the results of experiments on transcripto-

mics, proteomics and metabolomics (Weckwerth 2011a).

Recently, we developed a toolbox, called COVAIN, which

provides statistical methods allowing for the comprehensive

analysis of high-dimensional metabolomics data (Sun and

Weckwerth 2012). The Granger causality analysis, which is

amongst other methods also implemented in COVAIN, is a

time-series correlation analysis, which allows for the

identification of variables being controlled by time-lagged

values of other variables. This method originates from the

investigation of causal relations within econometric models

(Granger 1969), and recently it was also applied in a study

of yeast metabolism (Walther et al. 2010). Granger cau-

sality analysis considers the time-series of variable X and Y,

which can be expressed as follows (Eq. 1):

XðtÞ ¼
Xd
i¼1

CX;iXðt � iÞ þ
Xd
i¼1

CXY ;iYðt � iÞþRXðtÞ

YðtÞ ¼
Xd
i¼1

CYX;iXðt � iÞ þ
Xd
i¼1

CY ;iYðt � iÞþRYðtÞ
ð1Þ

CX,i is the regression coefficient between X(t) and X(t-i),

and CXY,i is the regression coefficient between X(t) and

Y(t-i). X(t) and Y(t) represent the conditions at time point

t, R is the residual error, and d is the maximal time lag

between the variables. An association between X and Y is

assumed to exist if the p value of the F test on the cross-

coefficients is less than 0.01 (Sun and Weckwerth 2012).

Hence, Granger causality between variables may be iden-

tified if a time series of variables is available which shows

a dynamical behaviour and allows for the robust estimation

of regression coefficients. Besides this pair-wise analysis of

variables, Granger causality is also applicable to more than

two variables using a Granger model of the n-th order

(Granger 1969).

Each single point of a time series at which variables are

determined describes a quasi steady state of the considered

system such as the metabolite contents describe the

metabolism of a plant leaf cell at a certain time point. A so-

called Jacobian matrix characterizes the local dynamics

around such a steady state. In this context, the dynamic

representation of a metabolic pathway can be described by

a system of differential equations where changes of

metabolite concentrations over time are expressed as

functions of all metabolite concentrations considered

within the system. The corresponding Jacobian is the

matrix of all first-order partial derivatives of all functions

on all metabolites. Hence, the Jacobian describes the

influence of the change of each metabolite upon the

changes of other metabolites.

Applying an approach that links the Jacobian with the

covariance of the involved metabolite concentrations

(Steuer et al. 2003; Weckwerth 2011b, 2003), statistical

features of the data are being connected to dynamical

properties of the system (Eq. 2):

JC þ CJT ¼ �2D ð2Þ

Here, C is the covariance matrix of metabolites, J is the

Jacobian and D represents a fluctuation matrix taking into

account the apparent stochasticity of the data. If the

stoichiometric matrix N of the underlying metabolic

system is exploited this equation can be used for inverse

calculation of the Jacobian from metabolomics covariance

data (Weckwerth 2011b). As it was described previously

(Sun and Weckwerth 2012), the solution of J cannot be

obtained directly due to under-determined equations. To

circumvent this problem, reversibility and irreversibility of

the reactions within a metabolic network are integrated in

the ‘‘directed stoichiometric matrix’’ and non-zero entries

of J can be calculated (Sun and Weckwerth 2012). In cases

when J contains less non-zero entries than C, an over-

determined problem exists, which can be solved, e.g. by

minimizing total least squares.

To reveal perturbation sites between two different

metabolic states we recently introduced the differential

Jacobian matrix (Sun and Weckwerth 2012). The differ-

ential Jacobian matrix, dJij, is defined by the relative

change between the Jacobian matrices a and b, representing

two metabolic states (Eq. 3):

dJij ¼ log2 abs
Ja;ij
Jb;ij

� �� �
ð3Þ

The entries of the differential Jacobian describe the

relative changes between Jacobian a and b for every

element ij.
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Summarizing both methods of Granger causality anal-

ysis and the differential Jacobian, it becomes obvious that

neither statistical correlation analysis nor mathematical

modelling of metabolic networks is capable of providing a

comprehensive functional interpretation on their own. This

is due to the fact that knowledge of metabolite interaction

is needed for model development while unknown interac-

tions can only be estimated by statistical methods like

correlation analysis. On the other hand, statistical correla-

tion analysis does not provide adequate tools for far-

reaching analysis of metabolite interaction as they are

represented by enzymatic interconversions. To overcome

this limitation, we developed an approach for integrated

analysis of primary and secondary metabolism in Arabid-

opsis thaliana during exposure to low temperature from the

same sample by combined use of GC–MS and LC–MS

techniques. Merging methods of correlation analysis and

mathematical modelling indicated key points of regulation

at the interface of primary and secondary metabolism

during cold exposure in A. thaliana. For the first time, the

inverse calculation of a differential biochemical Jacobian

from metabolomics data is demonstrated.

2 Materials and methods

2.1 Chemicals

Methanol (HPLC-grade), Chloroform (anhydrous,[99 %,

p.a.), Acetonitrile (UHPLC-grade) and Pyridine (anhy-

drous,[99,8 %) were purchased from Sigma-Aldrich

(Vienna, Austria). Formic acid (98–100 %) was purchased

from Merck (Vienna, Austria). N-methyl-N-(trimethylsilyl)

trifluoroacetamide (95–100 %) was purchased from Mache-

rey–Nagel (Düren,Germany). Chloramphenicol ([98 %) and

Ampicillin trihydrate (analytical standard) were purchased

from Fluka (Vienna, Austria). 13C6-Sorbitol (99 %) was

purchased by Campro Scientific (Berlin, Germany).

2.2 Plant material and harvest

Arabidopsis thaliana plants Col-0 (wild type) were culti-

vated in a growth chamber under controlled conditions.

The substrate for plant growth was composed of Einhe-

itserde� ED63 and perlite. Plants were fertilized once with

NPK fertilization solution (WUXAL�Super; MANNA�-
Dünger, Ammerbuch, Germany). Light intensity was

250 lmol m-2 s-1 for 8 h followed by 16 h darkness,

relative humidity was 60 % with a temperature of 22 �C.
Of 120 A. thaliana specimen, 12 plants were harvested in a

non cold acclimated state directly from the growth cham-

ber; the remaining plants were put to 4 �C with the same

light intensity and humidity applied as described above.

Every 48 h, 2 h after the onset of the light period the plants

were harvested randomly resulting in a total number of ten

time points including time point ‘‘0’’ of the non cold

acclimated state. Leaves were sampled in three biological

replicates, representing pools of four plants each. Imme-

diately after cutting leaves from the plants, they were put in

aluminium bags and quenched in liquid nitrogen. Plant

material was ground to a fine powder using mortar and

pestle with liquid nitrogen. Sample material was stored at

-80 �C between all steps until extraction.

2.3 Extraction procedure and sample preparation

for primary and secondary metabolite analysis

For GC–MS analysis a protocol according to Weckwerth

et al. was used (Weckwerth et al. 2004). Deep frozen plant

material was ground to a fine powder using a mortar and

pestle under constant adding of liquid nitrogen. About

45 mg of each replicate was transferred to pre-cooled

reaction tubes. For the extraction process, 1 ml of ice cold

extraction mixture (methanol:chloroform:water, 5:2:1,

v:v:v) was subsequently added. Additionally, 10 ll of

internal 13C6-Sorbitol standard were added into each tube.

Tubes were vortexed for several seconds and incubated on

ice for 8 min to achieve a good extraction. Hereupon, the

samples were centrifuged for 4 min at 14,0009g, separating

the soluble compounds from remaining cell structure

components. For phase separation, the supernatant was then

carried over into a new tube containing 500 ll deionized
water and 200 ll chloroform. After 2 min of centrifugation

at 14,0009g, the water/methanol phase, containing the

polar metabolites, was separated from the subjacent chlo-

roform phase and completely dried out overnight.

Samples were derivatised by dissolving the dried pellet

in 20 ll of a 40 mg methoxyamine hydrochloride per 1 ml

pyridine solution and incubation on a thermoshaker at

30 �C for 90 min. After adding of 80 lL of N-methyl-N-

trimethylsilyltrifluoroacetamid (MSTFA), the mixture was

again incubated at 37 �C for 30 min with strong shaking.

A solution of even-numbered alkanes (Decane C10,

Dodecane C12, Tetradecane C14, Hexadecane C16, Octa-

decane C18, Eicosane C20, Docosane C22, Tetracosane

C24, Hexacosane C26, Octacosane C28, Triacontane C30,

Dotriacontane C32, Tetratriacontane C34, Hexatriacontane

C36, Octatriacontane C38, Tetracontane C40) was spiked

into the derivatized sample before GC–MS analysis in order

to infer the retention time and create the retention index.

For LC–MS analysis, frozen plant leaf material was

ground as for GC–MS sample preparation, followed by

addition of 1 ml pre-chilled 80/20 v:v MeOH/H2O extrac-

tion solution containing each 1 lg of the internal standards

Ampicillin and Chloramphenicol per 50 mg of fresh weight.

Samples were hereupon centrifuged at 15,0009g for 15 min
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and the supernatant was placed into a new tube and com-

pletely dried out overnight. The resulting pellet was then

dissolved in 100 ll of a 50/50 v:v MeOH/H2O solution and

centrifuged again for 15 min at 20,0009g. The remaining

supernatant was then filtered through a STAGE tip (Empore/

DiskC18, diameter 47 mm) into a vialwith amicro insert tip.

Before analysis lipid components were removed by adding

500 ll of chloroform, centrifugation and separation of the

non-polar-phase to avoid contamination of the ESI ion

transfer capillary.

2.4 GC-TOF/MS analysis

GC–MS measurements were carried out on an Agilent

6890 gas chromatograph coupled to a LECO Pegasus� 4D

GCxGC-TOF mass spectrometer. Injection was performed

splitless with a 4 mm inner diameter tapered liner con-

taining deactivated glass wool at an injection temperature

of 230 �C. Components were separated on an Agilent HP-

5MS column (30 m length, 0.25 mm diameter, 0.25 lm
film). The initial oven temperature was 70 �C hold for one

minute, followed by a ramp of 9 �C per minute with

310 �C target temperature, which was held for 5 min,

followed by a 20 �C jump to 330 �C, also being held for

5 min. Data acquisition rate on the mass spectrometer was

15 spectra/second with a detector voltage of 1600 V.

Length of a run was 35 min, after an acquisition delay of

7.5 min, and the mass range was 40–600 m/z. The obtained

raw data were processed by the on-board LECO Chroma-

TOF� software capable of spectrum deconvolution, base

line correction and automated peak searching. Compounds

were manually annotated with the help of a retention index

and mass spectra comparison to a spectra library (Kopka

et al. 2005) and, with a minimum match factor of 850,

arranged into a reference table (Supplement 1). Subse-

quently, chromatograms acquired under the same condi-

tions were matched against the reference compound list.

For relative quantification, peak areas from selected unique

fragment ions for every identified compound were used.

The obtained data matrix was directly exported from the

Pegasus� software into an Excel worksheet.

2.5 LC–MS metabolomics

5 lL of sample were injected on a Waters HSST3 column

(100 mm length 9 100 lm I.D.) using a nano LC ultra 1D

pump from Eksigent and a HTC PAL autosampler. Mobile

phase A consisted of H2O with 0,1 % formic acid (FA) and

mobile phase B of 90 % acetonitrile (ACN) with 0, 1 %

FA. A constant flow rate of 500 nl/min was used with the

following nonlinear gradient:

Time (min) % A % B

0 95 5

3 95 5

20 85 15

22 83 17

27 80 20

42 68 32

57 54 46

68 25 75

72 5 95

90 5 95

95 95 5

115 95 5

A nano ESI source from Thermo Scientific was used. All

data were acquired in positive ionisation mode. Each Full

Scan, resolution 60,000, was followed by a data dependent

MS2 scan, resolution 7,500, of the most abundant ion,

which was subjected to Collision Induced Dissociation

(CID) using a normalized collision energy of 50 %. The

Orbitrap was used to acquire MS spectra, ranging from 100

to 2,000 m/z, as well as MS/MS spectra. Only recognized

charge states were allowed to trigger MS2 spectra genera-

tion. Non-peptidic precursor selection was enabled, and the

dynamic exclusion list was set to 500 values, with a

duration of 90 s, and a repeat count of one. Minimum

signal threshold was set to 1,000 (absolute value). The

temperature of the heated capillary and electrospray volt-

age were 180 �C and 2 kV, respectively. After MS analy-

sis, mzXML files were created using MassMatrix MS Data

File Conversion (v3.9c) from raw files and analyzed using

the MetMAX algorithm which is based on PROTMAX

(v2.7) (Hoehenwarter et al. 2008) with the following set-

tings: Ion Count, Intensity, Decimals: two cut, all charge

states, Environment 10 min, Unite neighbours, Intensity

expected one, no retention time filter. Results from this

data extraction process were arranged in an Excel file of the

same order as the GC–MS obtained data.

2.6 Statistical data analysis

GC–MS as well as LC–MS obtained data were normalized

to fresh weight and internal standards (13C6-Sorbitol for

GC–MS, Ampicillin for LC–MS). To reduce the high

variation in the LC–MS data, the data set was filtered as

follows: the coefficient of variation (CV) of each time point

was calculated, as well as the average CV of all ten time

points. All values equal or lower than 30 % were disre-

garded. Data matrices from both measurements were

combined. Data pre-processing, principal component

H. Doerfler et al.
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analysis (PCA), Granger causality analysis as well as cal-

culation of the differential Jacobian matrices were per-

formed in the Matlab� Toolbox COVAIN (Sun and

Weckwerth 2012). After filling of missing values and

adjustment of outliers, as well as log10 and z-transforma-

tion, Granger analysis was applied. Granger parameters

were set to time lag 1 with a significance p value of 0.05.

The Granger causality analysis was performed pair-wise on

metabolite concentrations applying linear regression.

3 Results and discussion

3.1 Cold-induced reprogramming of primary

metabolism in Arabidopsis thaliana

Primary metabolite content of leaf tissue of A. thaliana,

accession Columbia (Col-0), were identified by GC-TOF/

MS before and after 2, 4, 6, 8, 10, 12, 14, 16 and 18 days of

exposure to 4 �C. Fast, intermediate and slow steps of

metabolic readjustment could be distinguished and results

are explicitly summarized in Supplement 2. To shortly

summarize the findings, components of primary carbohy-

drate metabolism displayed a fast increase due to cold

exposure. Besides the increase of carbohydrate contents,

the fastest response to cold exposure was the significant

decrease of aromatic amino acids, phenylalanine, tyrosine

and tryptophan. Significant accumulation of organic acids,

like ascorbic acid, citrate or malic acid, were observed after

4 to 8 days of cold exposure. Accumulation of pyruvic acid

was found to be part of late metabolic readjustment after

12 days at 4 �C. Changes in polyamine content were not

unique, as putrescine accumulated within the first 2 days of

cold exposure while spermidine accumulated significantly

after 12 days.

3.2 Analysis of the interaction between primary

and secondary metabolism

Applying the alignment tool MetMAX to metabolomics

data, which was developed on the basis of the PROTMAX

algorithm (Hoehenwarter et al. 2008), and using ion count

and intensity as quantitative parameters in the algorithm to

correctly bin the m/z ratios, about 3,000 m/z ratios were

acquired by each chromatographic run (explicit description

of settings are provided in Materials and methods). From

this data set 349 m/z values in total were filtered and reli-

ably identified for all time points of cold exposure by

statistical analysis and calculation of the coefficient of

variance (CV) (Hoehenwarter et al. 2008). In a next step

this LC–MS data set was integrated with the GC–MS data

set from the same samples using a function in COVAIN for

data integration (Sun and Weckwerth 2012). The

interactions between primary and secondary metabolites

were investigated by Granger causality analysis—another

function of COVAIN. With a p value\0.05 approximately

15,000 Granger causations were determined, which were

either describing time series correlation between metabo-

lites within the GC–MS data matrix, within the LC–MS

data matrix or between components of these two matrices.

The results are summarized in Supplement 3. As a conse-

quence of the experimental design, which was intended to

stimulate flavonoid accumulation due to low temperature

and elevated light intensity, Granger causations were pre-

dominantly detected in flavonoid biosynthesis. (Fig. 1).

Putative metabolic interaction sites were identified

revealing the synthesis of the molecule A17 (m/z 1151)

from shikimic acid and phenylalanine (Fig. 1). Addition-

ally, precursor molecules of A17 could be identified within

the LC–MS data set allowing for the reconstruction of the

synthesis pathway: the molecule [Cy ? Glc ? Mal]? (m/

z 535) is substrate for synthesis of A8 (m/z 1137) which is

subsequently methylated to molecule A17 (m/z 1151). In

addition to molecule A17, most cyanidin derivatives were

putatively identified to be associated to molecule A1 (m/z

743) which was previously termed cyanidin 3-O-[200-O-
(xylosyl)glucoside] 5-O-glucoside (Tohge et al. 2005).

Accurate mass-to-charge-ratios of metabolites were used

for calculation of sum formulas and putative identifications

were confirmed by comparison with existing literature, as

well as tracking the specific MSn fragmentation patterns,

which are described for flavonoids (Matsuda et al. 2009;

Waridel et al. 2001) (Table 1).

3.3 Analysis of cold-induced metabolic perturbation

sites—calculation of a differential Jacobian

from metabolomics data

Based on the data set derived from GC–MS analysis a

simplified metabolic network structure was derived com-

prising interconversions of primary metabolism. The

prominent interaction with secondary metabolism via

phenylalanine, which was identified by Granger causation,

was also included in the network structure (Fig. 2). We

focused on the phenylalanine-derived synthesis of putative

flavonoids because this is one of the most prominent

examples of interaction described in the literature (Winkel-

Shirley 2002; Tzin et al. 2012).

The underlying stoichiometric matrix of this network

was compiled for the inverse calculation of a differential

Jacobian matrix using metabolomics covariance data

according to (Sun and Weckwerth 2012). Metabolic states

a and b were defined by time points of differentially cold

acclimated plants (state a) and, as a reference state, of non-

acclimated plants (state b). With reference to metabolite

levels of non-acclimated plants, calculation was performed
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for plants after 2 days at 4 �C (Fig. 3 a), 8 days at 4 �C
(Fig. 3 b), 14 days at 4 �C (Fig. 3 c), and 18 days at 4 �C
(Fig. 3 d) to reveal short-term, intermediate and long-term

effects of cold exposure on metabolism. Mean values of 30

calculations were built and the ratios of mean values to

standard errors of calculation are given in Supplement 4.

Resulting mean values of entries of the differential

Jacobian matrices indicated a progressive perturbation of

metabolism during exposure to 4 �C. Interactions of solu-
ble sugars and pyruvic acid-derived metabolites were

affected strongly after 2 days at 4 �C (Fig. 3a). After

8 days, the metabolic perturbation was only of alleviated

intensity (Fig. 3b) and after 14 and 18 days it became even

smaller than before cold exposure (Fig. 3c, d). Relative

changes of the flavonoid pool (Flavonoids), being induced

by relative changes of its substrate pool phenylalanine,

became maximal after 8 days of cold exposure (Fig. 3b)

and were dampened until 18 days at 4 �C (Fig. 3c, d).

3.4 Integration of GC–MS and LC–MS data

for a comprehensive understanding of plant-

environment interactions

Cold-induced reprogramming of primary metabolism in A.

thaliana is a prominent example of plant-environment

interaction. Like many previous studies, our results show

that levels of various metabolites are affected significantly

by low temperature. In a comprehensive analysis of pri-

mary metabolism by GC–MS technique we were able to

distinguish fast from slow metabolic reactions induced by

cold exposure. Contents of putative cryoprotective com-

pounds like sucrose, galactinol and putrescine showed a

fast significant increase, thus proving their involvement in

the immediate response to abiotic stress. However, in

contrast to previous studies where asparagine content was

Table 1 Associated molecules to A1 (m/z 743) identified by Granger causality analysis

Molecule

abbreviation

Mass-to-

charge

ratio (m/z)

Name of molecule Reference Experimental

mass deviation

(ppm)

CAS-

no.

A2 829.2034

[M ? H?]?
Cyanidin 3-O-[20 0-O-(xylosyl)glucoside]5-O-(60 0 0-O-malonyl)glucoside Tohge

et al.

2005

1.0854 866259-

91-8

A3 889.2307

[M ? H?]?
Cyanidin 3-O-[20 0-O-(xylosyl) 60 0-O-(p-coumaroyl)glucoside]5-O-

glucoside

Tohge

et al.

2005

-0.5623 866259-

92-9

A6 1051.2926

[M ? H?]?
Cyanidin 3-O-[20 0-O-(xylosyl)-60 0-O-(p-O-(glucosyl)-p-
coumaroyl)glucoside]5-O-glucoside

Tohge

et al.

2005

0.5707 906811-

94-7

A7 1095.2977

[M ? H?]?
Cyanidin 3-O-[20 0-O-(20 0 0-O-(sinapoyl) xylosyl)60 0-O-(p-
coumaroyl)glucoside]5-O-glucoside

Tohge

et al.

2005

-0.2739 866259-

94-1

A8 1137.2930

[M ? H?]?
Cyanidin 3-O-[20 0-O-(xylosyl)60 0-O-(p-O-(glucosyl)p-
coumaroyl)glucoside]5-O-[60 0 0-O-(malonyl)glucoside]

Tohge

et al.

2005

-0.4396 475163-

06-5

A9 1181.2981

[M ? H?]?
Cyanidin 3-O-[20 0-O-(20 0 0-O-(sinapoyl)xylosyl)60 0-O-(p-O-
coumaroyl)glucoside]5-O-[60 0 0 0-O-(malonyl) glucoside]

Tohge

et al.

2005

-0.4233 864155-

73-7

A10 1257.3530

[M ? H?]?
Cyanidin 3-O-[20 0-O-(20 0 0-O-(sinapoyl) xylosyl)60 0-O-(p-O-(glucosyl)p-
coumaroyl) glucoside]5-O-glucoside

Tohge

et al.

2005

1.5906 n.a.

A11 1343.3509

[M ? H?]?
Cyanidin 3-O-[20 0-O-(60 0 0-O-(sinapoyl) xylosyl)60 0-O-(p-O-(glucosyl)-
p-coumaroyl)glucoside]5-O-(60 0 0 0-O-malonyl)glucoside

Tohge

et al.

2005

-0.8188 475163-

04-3

A17 1151.3086

[M ? H?]?
Cyanidin 3-O-[20 0-O-(xylosyl)60 0-O-(p-O-(glucosyl)p-
coumaroyl)glucoside] 5-O-[60 0 0-O-(methyl-malonyl)glucoside]

Shi and

Xie

2010

0.7817 n.a.

Fig. 1 Granger causality analysis between molecules of GC–MS and

LC–MS measurements from primary and secondary metabolism. Key

metabolites for phenylpropanoid synthesis identified by GC-TOF/MS

from Arabidopsis leaves have Granger correlations with compound

A17 (Shi and Xie 2010) obtained by LC–MS, either by upregulation

(shikimic acid) or downregulation (phenylalanine) over 18 days of

cold stress. Also, m/z 1137, A8, is shown to be a precursor for its

methyl ester form, A17, while itself being caused by m/z 535,

Cyanidin 5-O-(60 0 0-O-malonyl)glucoside. Corresponding p values are

depicted in the figure

b
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found to increase significantly during cold exposure

(Klotke et al. 2004; Usadel et al. 2008), we found that

asparagine content decreases significantly within the first

two days of cold exposure. This discrepancy may be

explained by the different light intensities, which were used

in the experiments. In the present study, we applied a light

intensity of 250 lmol m-2 s-1, which was significantly

higher than in studies of (Klotke et al. 2004) and (Usadel

et al. 2008) to stimulate biosynthesis of secondary metab-

olites. Elevated light was shown to repress the transcription

of asparagine synthetase genes (Tsai and Coruzzi 1991),

and may therefore explain the observed decrease in

asparagine content in the present study.

Besides those findings, levels of tryptophan and phen-

ylalanine were significantly decreased during the first two

days of cold exposure. These aromatic amino acids (AAAs)

are central metabolic precursors for synthesis of secondary

metabolites (Tzin and Galili 2010). However, in contrast to

primary metabolites like sugars or amino acids, plant sec-

ondary metabolites cannot be analysed by GC–MS, but LC–

MS has to be applied. Although numerous approaches

already provided evidence for the usefulness of a combined

GC–MS and LC–MS approach (Tzin et al. 2009, 2012),

these approaches were driven by the available knowledge

about certain interactions between pathways of primary and

secondary metabolism. The mass-to-charge (m/z) ratios,

which represent the primary results of LC–MS analysis, are

identified by comparison to available data bases or libraries.

Although such an approach is very powerful because it

allows for the simultaneous analysis of hundreds of

metabolites, it is limited by the a priori knowledge about

metabolic pathways. To overcome this limitation, we

developed and applied statistical Granger causality analysis

to unravel putative interactions of primary and secondary

metabolism. Thus, shikimic acid as well as AAAs were

correlated with a set of m/z ratios from LC–MS measure-

ments which could afterwards be identified as members of

the cyanidin family representing the predominant flavo-

noids in A. thaliana (Bloor and Abrahams 2002; Tohge

et al. 2005). It is known from literature that accumulation of

anthocyanins in leaves is stress-inducible, protecting

against photoinhibitory damage caused by high irradiance

(Havaux and Kloppstech 2001; Page et al. 2012). We also

identified a correlation between ascorbic acid and antho-

cyanins, which was previously described by Page and co-

workers who compared six Arabidopsis accessions under

high light conditions (Page et al. 2012). The authors con-

cluded from their experiments that the ability to accumulate

anthocyanins in Arabidopsis is tuned by the status of

ascorbic acid. Although we are not yet able to give a

Fig. 2 Schematic representation of the primary metabolism in leaf

cells of A. thaliana. Secondary metabolites identified by Granger

causalities are exemplarily integrated derived from phenylalanine. PI
phosphorylated intermediates, Glu glutamate, Gln glutamine, Gly
Glycine, Ser serine, Suc sucrose, Fru fructose, Glc glucose, Gol
galactinol, Raf raffinose, Mel melibiose, myoIn myo-Inositol, Asc

ascorbic acid, Gal galactose, Phe phenylalanine, Tyr tyrosine, Trp
tryptophan, Pyr pyruvic acid, Val valine, Leu leucine, Ala alanine, Cit
citric acid, 2-KGA 2-ketoglutaric acid, Succ succinic acid, Fum
fumaric acid, Mal malic acid, Asp aspartic acid, Asn asparagine, Arg
arginine, Put putrescine, Spdine spermidine, Pro proline, Thr
threonine
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physiological interpretation of all the metabolic correlations

we found by Granger causality analysis, we are now able to

derive possible interactions and test them by further

experimental investigation. We exemplified this by

describing the metabolic network, which is represented by

our GC–MS data, and expanded this network by the phen-

ylalanine-derived synthesis of secondary metabolites iden-

tified by Granger causality analysis. Applying the inverse

calculation of the differential Jacobian (Sun andWeckwerth

2012), the synthesis of secondary metabolites, termed as

Flavonoids, were indicated to become maximally

dependent on changes in phenylalanine content after 8 days

of cold exposure (Fig. 3b). Here, the term perturbation

describes the change in flavonoid content due to a relative

change in phenylalanine content. Additionally, the calcu-

lation of the differential Jacobian allowed for the estimation

of system behaviour after perturbation by changing envi-

ronmental conditions. While entries of the differential

Jacobian became positive after 2 days at 4 �C, most of them

got negative after 14 days at 4 �C pointing to a change in

dynamical system behaviour around the metabolic steady

state. Because positive entries result from a ratio of greater

Fig. 3 Entries of the differential Jacobian after 2d(a), 8d(b),
14d(c) and 18d(d) of cold exposure relative to the non-acclimated

condition are visualized by the heat map. Red colours indicate an

increase of putative metabolic interaction while blue colours indicate

a decrease relative to the non-acclimated plants. Entries of the

differential Jacobian matrices represent mean values of 30

calculations
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than 1 this finding might indicate an increased reactivity of

primary metabolites during the first 2 days of cold expo-

sure. However, due to thermodynamic effects on enzymatic

interconversions of primary metabolism at 4 �C (Nägele

et al. 2012) this putative increase might be dampened and

rather represents a compensation of thermodynamic effects

on metabolic homeostasis than an increase in reactivity.

Although this shows clearly that we cannot explicitly

characterize rates of metabolic interconversions by this

covariance-based approach, we are now able to detect rel-

ative changes in metabolic homeostasis due to changing

environmental conditions. Additionally, deriving the Jaco-

bian from covariance data represents a novel and conve-

nient method to predict biochemical changes in

multidimensional data sets, which is hardly feasible by

classical biochemical experiments. Localizing biochemical

hot spots from metabolomics data provides the basis for

eventually understanding the perturbation dynamics in a

whole metabolic network. Granger causality analysis is

applied to reveal significant co-variance within the meta-

bolic network and thereby used to extend its stoichiometric

matrix (Fig. 4). As we have shown in the present study, this

enables the interpretation of metabolic constitutions within

a physiological context, which is fundamental for a com-

prehensive understanding of plant-environment interactions

(Weckwerth 2011a; Nägele and Weckwerth, 2012).

4 Conclusions

Based on our findings of cold-induced changes in primary

and secondary metabolism of A. thaliana, we conclude that

the identification of Granger causalities offers a novel

method to comprehensively analyse GC- and LC–MS data

from the same sample. Particularly, interfaces of complex

biochemical networks can be characterized providing new

insights in pathway regulation. The direct linkage of sta-

tistical (i.e. Granger causality analysis) with mathematical

methods (differential Jacobian) is demonstrated in the

present study as depicted in Fig. 4. All the described fea-

tures from integration of different data sets such as GC–MS

and LC–MS data to statistical methods such as Granger

causality analysis and metabolic modelling using an

inverse calculation of the differential Jacobian are imple-

mented in the metabolomics toolbox COVAIN (Sun and

Weckwerth 2012). The calculation of the differential

Jacobian from metabolomics data provides hints to path-

way regulation, however, these predictions need to be

tested by classical biochemical methods. We propose the

presented strategy as a fundamental concept to link gen-

ome-scale metabolic reconstruction and metabolomics data

(Weckwerth 2011b). The approach can be systematically

used for genotype-metabo-phenotype studies.
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Comprehensive Cell-specific Protein Analysis in 
Early and Late Pollen Development from Diploid 

Microsporocytes to Pollen Tube Growth

A thorough understanding of pollen development on a molecular level is nec-
essary, since plant reproduction and productivity is dependent on the latter. 
The analysis of the differential expression of protein patterns dependent on de-
velopmental stages of pollen growth and the public access to such data is of in-
terest to the scientific community. Nicotiana tabacum produces relatively large 
flowers compared to other important crop species of the Solanaceae family 
such as Solanum lycopersicum, Solanum tuberosum, and Solanum melongena 
and was therefore well-suited for the study.

Declaration of authorship
The results of this chapter are presented in the form of a manuscript pub-

lished in the journal „Molecular & Cellular Proteomics“. I have provided a criti-
cal contribution to the following publication, though the largest part the work 
was performed by the coauthors.

Since tobacco is not as well-characterized as e.g. A. thaliana, three distinct 
protein FASTA files (databases) were used for identification as well as all down-
stream analyses. Using unpublished Python scripts, I have fused the FASTA 
files into a single non-redundant database (in analogy to Staudinger et al. 
2012, see Application to plant research and Publications), and subsequent-
ly using the Mercator pipeline, as well as unpublished Python scripts, I’ve 
created a so-called „mapping“ file for tobacco. The latter links protein identi-
fiers (Accession Numbers) to multiple functional categories. Using stand-alone 
BLAST in conjunction with unpublished Python scripts, I found homologues of 
tobacco to A. thaliana. 
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Comprehensive Cell-specific Protein Analysis
in Early and Late Pollen Development from
Diploid Microsporocytes to Pollen Tube
Growth*□S

Till Ischebeck‡§, Luis Valledor‡, David Lyon‡, Stephanie Gingl‡, Matthias Nagler‡,
Mónica Meijón¶, Volker Egelhofer‡, and Wolfram Weckwerth‡§

Pollen development in angiosperms is one of the most
important processes controlling plant reproduction and
thus productivity. At the same time, pollen development is
highly sensitive to environmental fluctuations, including
temperature, drought, and nutrition. Therefore, pollen
biology is a major focus in applied studies and breeding
approaches for improving plant productivity in a globally
changing climate. The most accessible developmental
stages of pollen are the mature pollen and the pollen tubes,
and these are thus most frequently analyzed. To reveal a
complete quantitative proteome map, we additionally ad-
dressed the very early stages, analyzing eight stages of
tobacco pollen development: diploid microsporocytes, mei-
osis, tetrads, microspores, polarized microspores, bipolar
pollen, desiccated pollen, and pollen tubes. A protocol for
the isolation of the early stages was established. Proteins
were extracted and analyzed by means of a new gel LC-MS
fractionation protocol. In total, 3817 protein groups were
identified. Quantitative analysis was performed based on
peptide count. Exceedingly stage-specific differential
protein regulation was observed during the conversion
from the sporophytic to the gametophytic proteome. A
map of highly specialized functionality for the different
stages could be revealed from the metabolic activity and
pronounced differentiation of proteasomal and ribo-
somal protein complex composition up to protective
mechanisms such as high levels of heat shock proteins
in the very early stages of development. Molecular &
Cellular Proteomics 13: 10.1074/mcp.M113.028100, 295–
310, 2014.

Plants contain numerous specialized cell types, each of
them expressing a specific set of proteins. In recent studies

much effort has been put into isolating and analyzing proteins
of these individual cell types (1) rather than whole organs.
New emerging methods have led to the in-depth analysis of
different plant cell types, including guard cells (2, 3), meso-
phyll cells (4), trichomes (5–9), root hair cells (10–12), and egg
cells (13). Additionally, because of their easy availability, ma-
ture pollen and in vitro–grown pollen tubes are among the
most frequently studied cell types. Pollen and pollen tube
proteomes have been analyzed, for example, from Arabidop-
sis (14–16), lily (17, 18), tomato (19, 20), rice (21, 22), quercus
and pine trees (23–27), and tobacco (28).

As pollen represents the severely reduced male gameto-
phyte of higher plants, it expresses a very unique set of genes
(29) required for the fast and energy-consuming polar out-
growth of the pollen tube during the fertilization process (30).
Enzymes required for metabolism and energy generation are
overrepresented, but there are also components of the exo-
cytotic machinery, including signaling proteins (14) required
for the deposition of pectin compounds at the tip of the
growing pollen tube.

Although mature pollen and in vitro–grown pollen tubes
have been the focus of research because of the ease of
harvesting procedures and are widely used for cell biological
studies (31–36), this is not the case for earlier stages of pollen
development.

In angiosperms, mature pollen develops from microsporo-
cytes in the anthers of the flower in a series of distinct stages
(37). After the microsporocytes have completed meiosis, they
form tetrads that release microspores with one central haploid
nucleus. These microspores undergo polarization and asym-
metric mitosis. The bigger vegetative cell internalizes the
smaller cell, which later divides again and forms the two
sperm cells. Finally, the pollen desiccates. When the pollen
falls on the stigma, it rehydrates, and the vegetative cell forms
a pollen tube that delivers the two sperm cells through the
transmitting tract to the ovule (38).

Even though pollen development studies using electron
microscopy date back to the 1960s (39) and many mutants
are described that are disrupted in this process (14), informa-
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tion on the proteome of developing pollen remains relatively
sparse and is mostly restricted to whole anthers (40, 41). Only
very recently, a work on tomato pollen was conducted cov-
ering five developmental stages (42).

The transcriptome of Arabidopsis pollen has been analyzed
from the microspore stage on (43), but the earlier stages of
microsporocytes, meiosis, and tetrads were not studied, most
likely because of a limitation of available material. However,
this study was able to show dramatic changes in the tran-
scriptome during the development from microspores to the
mature pollen. Similar studies have been performed with
Brassica napus (44) and rice pollen (45).

A comparative analysis of the proteome from these stages,
as presented in our study, can have special relevance, be-
cause in pollen the proteome can greatly differ from the
transcriptome not only quantitatively, but also qualitatively, as
has been shown for Arabidopsis pollen (14). It seems that
often the mRNA is degraded while the protein persists or
mRNA is stored in desiccated pollen to be transcribed after
rehydration (14).

Additionally, in our proteomic study, we extended the anal-
ysis to even earlier stages, including the stage of meiosis. We
were able to compare, for the first time, the proteome of a
total of eight stages: the diploid microsporocytes, cells un-
dergoing meiosis, tetrads, microspores, polarized mi-
crospores (undergoing mitosis I), bipolar pollen, desiccated
pollen, and finally pollen tubes. We found that the proteome
underwent great changes during development, especially
during the polarized microspore stage.

EXPERIMENTAL PROCEDURES

Plant Growth and Pollen Collection—Tobacco was grown under
greenhouse conditions (12 h of light, 120 �mol m�2 s�1, 23 °C during
the day, 20 °C at night, 60% humidity). Flowers of different sizes were
collected, and the anthers of individual flowers were sampled in 200
�l of 10% mannitol. Anthers were gently squeezed open and vor-
texed, and the supernatant including the released pollen was trans-
ferred to a new tube. Pollen was spun down at 100 � g for 1 min and
washed twice with 10% mannitol. A subfraction of the pollen of each
individual flower was analyzed under a microscope to determine the
developmental stage. Samples not representing a stage with at least
90% of their pollen were discarded.

Pollen tubes were grown for 5 h in pollen tube medium (10%
sucrose, 15 mM MES-KOH pH 5.9, 1 mM CaCl2, 1 mM KCl, 0.8 mM

MgSO4, 1.6 mM H3BO3, 30 �M CuSO4) slightly modified according to
Read et al. (46).

Young leaves and roots were ground in liquid nitrogen, and pro-
teins were extracted accordingly.

Microscopy—Pollen samples were fixed in 10% mannitol and 4%
formaldehyde overnight, collected via centrifugation, and resuspended
in 1 �g/ml DAPI and 1% triton X-100 5 min prior to microscopy.

Images were recorded with an upright point laser scanning confo-
cal microscope (LSM780, Zeiss, Oberkochen, Germany) using a
405-nm diode laser for excitation and a band-pass filter ranging from
450–550 nm. Acquired images were processed using Fiji software.

Quantitative Proteome Analysis (GeLC-LTQ-Orbitrap MS)—For
each sample, pollen from between 5 and 30 flowers (depending on
the stage) was pooled, freeze-dried, cooled in liquid nitrogen, and

ground for 3 min in a shaking mill using three 2-mm steel balls per
tube. The pollen fragments were resuspended in 200 �l of protein
extraction buffer (62.5 mM Tris-HCl pH 6.5, 5% SDS (w/v), 10%
glycerol (v/v), 10 mM DTT, 1.2% (v/v) plant protease inhibitor mixture
(Sigma P9599)) and incubated for 5 min at room temperature. After
this time, the samples were mixed again by pipetting, incubated for 3
min at 90 °C, and then centrifuged at 21,000 � g for 5 min at room
temperature. Supernatants were carefully transferred to a new tube.
After the addition of an equal volume of 1.4 M sucrose, proteins were
extracted twice with Tris-EDTA buffer–equilibrated phenol. The com-
bined phenolic phases were counter-extracted with 0.7 M sucrose
and subsequently mixed with five volumes of 0.1 M ammonium-
acetate in methanol to precipitate the proteins. After 16 h of incuba-
tion at �20 °C, samples were centrifuged for 5 min at 5000 � g at
5 °C. The pellet was washed twice with 0.1 M ammonium-acetate and
once with acetone and then air-dried. Pellets were redissolved in 6 M

urea, 5% SDS, and protein concentrations were estimated via bicin-
choninic acid assay (47).

Proteins were analyzed via a new gel-LC-MS protocol (48). 40 �g
of protein were loaded into a mini-protean cell and run for 1.5 cm.
Gels were fixed and stained with methanol:acetic acid:water:Coo-
massie Brilliant Blue R-250 (40:10:50:0.001). Gels were destained in
methanol:water (40:60), and then each lane was divided into two
fractions. Gel pieces were destained, equilibrated, and digested with
trypsin as previously described (49). Peptides were then desalted with
the use of Bond-Elute C-18 stage tips (50) and concentrated in a
SpeedVac. Prior to mass spectrometric measurement, protein digest
pellets were dissolved in 4% (v/v) acetonitrile, 0.1% (v/v) formic acid.
10 �g of digested peptides were loaded per injection into a one-
dimensional nano-flow LC-MS/MS system equipped with a pre-col-
umn (Eksigent, Redwood City, CA, USA). Peptides were eluted using
a monolithic C18 column Chromolith RP-18r (Merck, Darmstadt, Ger-
many) of 15-cm length and 0.1-mm internal diameter during an 80-
min gradient from 5% to 50% (v/v) acetonitrile/0.1% (v/v) formic acid
with a controlled flow rate of 500 nl/min.

MS analysis was performed on an Orbitrap LTQ XL mass spec-
trometer (Thermo Fisher Scientific, Bremen, Germany). Specific tune
settings for the MS were as follows: the spray voltage was set to 1.8
kV using a needle with a 30-�m inner diameter (PicoTip Emitter, New
Objective, Woburn, MA), and the temperature of the heated transfer
capillary was set at 180 °C. Fourier transform MS was operated as
follows: full scan mode, centroid, resolution of 30,000, covering the
range of 300–1800 m/z, and cyclomethicone used as a lock mass.
Each full MS scan was followed by 10 dependent MS/MS scans
performed in the ion trap, in which the 10 most abundant peptide
molecular ions were dynamically selected with a dynamic exclusion
window set to 90 s and an exclusion list set to 500. Dependent
fragmentations were performed in collision-induced dissociation
mode with a normalized collision energy of 35, an isolation width of
2.0, an activation Q of 0.250, and an activation time of 30 ms. Ions
with an unassigned charge or a charge of �1 were excluded for
fragmentation. The minimum signal threshold was set at 1000.

Raw data were searched with the SEQUEST algorithm present in
Proteome Discoverer version 1.3 (Thermo, Germany) as described
elsewhere (51). In brief, identification confidence was set at a 5% false
discovery rate, and the variable modifications were set as acetylation
of the N terminus, oxidation of methionine, and carbamidomethyl
cysteine formation, with mass tolerances of 10 ppm for the parent ion
and 0.8 Da for the fragment ion. Up to two missed cleavage sites were
permitted. Three different databases were employed (tobacco 7.0, a
CDNA library from the gene index project with 120,122 entries; a
tobacco protein database from UniProt 09.2011 with 4826 entries;
and a genomic sequence database from the Tobacco Genome Initi-
ative 11.2008 with 349,877 entries, resulting in 2,099,262 entries after
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six-frame translation). Databases were translated with an in-house
tool, taking into consideration only the longest open reading frame of
all reading frames. In the case of the genomic sequences, the longest
open reading frames of all reading frames were considered.

When the database from the gene index project was used, addi-
tional variable modifications were allowed: phosphorylation of threo-
nine, serine, and tyrosine; methylation and dimethylation of lysine and
arginine; and acetylation and trimethylation of lysine.

Peptides were matched against these databases plus decoys, with
a significant hit considered as one in which the peptide confidence
was at least medium or high, and the xcorr score threshold was
established at 2.5 for �2 ions and 3.5 for charge states of �3 or
greater. The high thresholds were chosen to minimize false identifi-
cations based on the incomplete databases used.

The identified proteins were quantitated via a label-free approach
based on peptide count followed by a normalized spectral abundance
factor (NSAF)1 normalization strategy (52),

�NSAF�k � �PSM/L�k /�i�1
N �PSM/L�i

in which the total number of spectra counts for the matching peptides
from protein k (PSM) was divided by the protein length (L) and then
divided by the sum of PSM/L for all N proteins.

Multivariate Statistical and Bioinformatic Data Analysis—Multivari-
ate statistical analyses such as principal components analysis (PCA)
and k-means clustering were performed with the statistical toolbox
COVAIN (53). The software and parameter settings can be accessed
online. Missing values were estimated from the dataset, and data were
log transformed before the PCA. For cluster analysis, the mean NSAF
value of each developmental stage was calculated and normalized for
each protein, setting the total amount throughout the stages to 1.

All proteins in the three used databases were blasted for the
closest Arabidopsis (TAIR10) homologue using an unpublished Py-
thon script in conjunction with stand-alone BLAST v2.2.26� using the
default matrix, and entries in the TAIR Arabidopsis MapMan mapping
file (Ath_AGI_LOCUS_TAIR10_Aug2012) were replaced as previously
described (54). This way, most tobacco protein accessions could be
assigned to a functional bin and an Arabidopsis homologue.

Tobacco and Arabidopsis microarray results were binned accord-
ing to the MapMan mapping files Ntob_AGILENT44K_mapping and
Ath_AGI_LOCUS_TAIR10_Aug2012, respectively. Tobacco bin num-
bers were slightly adjusted to fit the tobacco protein bins.

Further blasting of the tobacco protein sequences versus the list of
Arabidopsis proteins found in Arabidopsis pollen (14) and a list of
pollen-affected Arabidopsis mutants (extended list from Ref. 14) was
performed using the same Python script.

RESULTS AND DISCUSSION

Isolation and Proteomic Analysis of Early and Late Pollen
Developmental Stages—Pollen from a total of eight develop-
mental stages was harvested for proteomic analysis (Figs. 1
and 2).

These distinct stages were diploid microsporocytes (also
referred to as stage A), meiosis (stage B), tetrad stage (stage
C), microspores (stage D), polarized microspores (stage E),
bipolar pollen (stage F), desiccated pollen (stage G), and
pollen tubes (stage H).

Immature pollen was obtained by gently opening the anther
buds of individual flowers and vortexing in 10% mannitol. In

this way, pollen in the supernatant could be easily separated
from larger cell debris via simple pipetting. Smaller cell debris
and soluble proteins could be removed with the supernatant
after low-speed centrifugation.

Although pollen from the microsporocyte and meiosis
stages was obtained as large aggregates, which were asso-
ciated with cell debris (Fig. 1), it was possible to isolate
individual cells (or tetrads) from later stages (Figs. 1 and 2).

As the stage of pollen development cannot be easily deter-
mined by the size of the flower or anthers, especially in early
stages, the developmental stage of the pollen of each indi-
vidual flower was determined via microscopy, and a sufficient
amount of pollen was pooled for protein extraction.

Desiccated pollen was harvested after anthesis, and pollen
tubes were grown in vitro for 6 h.

For comparison, proteins from young tobacco leaves and
roots were analyzed.

Three biological replicates of each stage (or tissue) were
analyzed and separated into two fractions via SDS-PAGE
prior to tryptic digestion and LC-MS/MS analysis.

The spectra of all identified peptides (supplemental Table
S1) from the different stages can be reviewed online in the
proteomics database PROMEX (http://promex.pph.univie.
ac.at/promex/Experiment; Nic taba002 for pollen and Nic
taba003 for roots and leaves). Additionally, the mass spec-
trometry proteomics data have been deposited in the
ProteomeXchange Consortium via the PRIDE partner repository
(55) with the dataset identifier PXD000469.

In total, 3817 protein groups were identified from all pollen
stages (Table I, supplemental Table S2), with stages A–D and
F–H showing the most overlap (Fig. 3A). When the results
were compared with data on extracts from tobacco roots and
leaves, a total of 4262 protein groups were identified: 1217
from leaves, 1285 from roots, and 3888 from pollen (Fig. 3B,
Table I, supplemental Table S3; the increased number of
pollen protein groups is due to different groupings of the
proteins). The high number of identified pollen proteins was in
part caused by the large tobacco genome (4.5 billion bp),
leading to the finding of many homologue isoforms, but it is
also attributable to the great changes that took place in the
proteome during the development.

The protein groups represent a total of 12,728 putative
protein accessions in pollen (supplemental Table S2) and
14,323 proteins in all the samples (supplemental Table S3).
For easier reading, the protein groups are referred to as
proteins hereinafter.

Protein abundances were quantified by peptide count and
an NSAF normalization strategy (52). For further analysis, only
proteins that were detected in all three biological replicates of
at least one of the developmental stages (or tissues) were
considered, leading to datasets of 1869 proteins when only
pollen proteins were considered and 2135 proteins when
leaves and roots were included. Proteins were classified by
identifying the closest Arabidopsis homologue and assigning

1 The abbreviations used are: NSAF, normalized spectral abun-
dance factor; PCA, principal components analysis.
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a function according to functional Arabidopsis mapping for
MapMan (supplemental Tables S2, S3, and S7).

Of the 2135 proteins used for quantification, 837 were not
detected in any of the root or leaf samples (supplemental
Table S3). It cannot be ruled out that these proteins are also
present in minor amounts in these organs or in other non-
analyzed tissues. However, the proteins showing high expres-
sion levels in one of the pollen stages (Table II) can be con-
sidered as especially strong candidates for being specifically
expressed in developing pollen, or at least for serving specific
purposes in these cell types. One example is the highly abun-
dant ethanol dehydrogenase, which serves a specific function
in the primary metabolism of pollen tubes (56) and is not
needed in roots and leaves, at least under normal conditions,
as well as cell wall degrading enzymes. Another protein that
was also not found in roots and leaves is the Rab-GDP
dissociation inhibitor, which is crucial for G-protein signaling
and, thus, maintaining cell polarity during polar tip growth.

Multivariate Statistical Data Mining—A PCA of the pollen
proteins alone revealed that, on the proteome level, tobacco
pollen development could be separated into three major

phases (Fig. 4A), with the first one including the stages from
microsporocytes to microspores (A–D), the second one in-
cluding only the polarized microspores (E), and the third one
including the binuclear pollen stage to the pollen tubes (F–H).

This separation in the PCA and the stage specificity of the
proteomes are clearly based on different cell functionalities. In
the first four stages (A–D), the principal function of the pollen
is its own transformation from diploid microsporocytes to
microspores, whereas the obviously very different function of
the rehydrated pollen is to produce and elongate a pollen
tube. To facilitate a quick outgrowth, many proteins that sup-
port this function are apparently already synthesized prior to
desiccation, which leads to the observed similarity of the last
three stages (F–H). The polarized microspore stage (E) could
be a transition stage. However, this stage also contains a
unique set of proteins not present in any of the other stages.

The distinct composition of the proteome of this stage was
also apparent in the individual principal components (supple-
mental Table S4). PC1 separated the samples according to
their ongoing development, and PC2 separated stage E from
all other stages (Fig. 4A).

FIG. 1. Confocal images of pollen purifications as were used for proteomic analysis. A–D, microsporocytes; E–H, meiotic cells; I–L,
tetrads; M–P, microspores. Pollen was stained with DAPI and images were obtained at 250� and 630� magnification.
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The proteins with the highest loadings in PC2 showed com-
paratively high abundance in stage E (Fig. 4B), but they were
also present in stages A, F, and H. Among these proteins were
several subunits of the 26S proteasome.

In comparison, the proteins with the most negative loadings
in PC2 showed an inverse expression pattern (Fig. 4B). The
proteins with the highest PC2 loadings were ribosomal proteins,
hinting at a severe rearrangement of the ribosomal complex
during stage E: from a total of 155 detected ribosomal proteins,
71 were missing in stage E, and 44 of these were detected in all
other stages. A specific set of 38 ribosomal proteins had higher
loadings in stage E than the average over all samples.

Thus, we observed a pronounced reprogramming of the
protein synthesis machinery that might prepare the ribosomal
complex machinery for the high demands of protein synthesis
during pollen tube growth.

As PC1 differentiated the samples according to develop-
ment, the negative loadings represented proteins with high
abundance in early stages that declined during development,
whereas positive loadings represented proteins with high ex-
pression levels in the last stages (Fig. 4B).

Among the negative loadings, histones were especially well
represented, probably because of their lower cell-volume-to-
nucleus ratios in early stages relative to mature pollen.

FIG. 2. Confocal images of pollen purifications as used for proteomic analysis. A–D, polarized microspores; E–H, binuclear pollen; I–L,
desiccated and rehydrated pollen; M–P, in vitro grown pollen tubes. Pollen was stained with DAPI and images were obtained at 250� and 630�
magnification.

TABLE I
Number of identified protein groups by stage/tissue. Values given in
parentheses are the numbers of protein groups when only pollen
proteins are considered, which leads to a smaller number of protein
groups from the same number of proteins (due to different grouping)

Stage Label n proteins

Microsporocyte A 1775 (1741)
Meiosis B 1596 (1573)
Tetrad C 1748 (1719)
Microspore D 1288 (1264)
Polarized microspore E 2004 (1956)
Binuclear pollen F 1770 (1740)
Dessicated pollen G 1604 (1580)
Pollen tubes H 2526 (2485)
Pollen total 3888 (3817)
Leaves 1217
Roots 1285
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The highest positive loadings included proteins required for
pollen tube growth such as enzymes of the primary metabo-
lism, ethanolic fermentation, and cell wall synthesis.

A PCA additionally including roots and leaves revealed a
clear separation of the different tissues (Fig. 4C, supplemental
Table S4). Whereas PC1 discriminated especially between the
different pollen stages and the sporophytic tissues, PC2 dis-

criminated between roots and leaves, with the earlier devel-
opmental pollen stages being more closely related to leaves.
This closer connection of leaves and the early male gameto-
phytes was also apparent from the correlation coefficients
(Pearson’s R, Fig. 4C).

In order to further group the pollen proteins according to
their presence in the different stages, the NSAF scores were

FIG. 3. Venn diagrams. A, number of proteins identified throughout development. A–D, microsporocytes, meiotic cells, tetrads, and
microspores, respectively; E, polarized microspores; F–H, binuclear pollen, desiccated pollen, and pollen tubes, respectively. B, number of
identified proteins in all pollen stages, leaves, and roots.

TABLE II
Proteins with the highest NSAF scores (maximum of eight stages) that were not detected in roots and leaves

Accession
number

Proposed function
Closest Arabidopsis

homologue
A B C D E F G H

CN824898 Unknown — 8.73
AM795719 Unknown — 3.29 0.44 5.27 7.58
Q42953 Alcohol dehydrogenase AT1G77120.1 0.06 3.46 4.98 2.94
TC125213 Globulin-like protein, storage AT1G07750.1 0.06 0.32 0.06 0.25 4.73 3.28 4.27 2.38
191520275 Unknown — 4.63
AM837330 Fructokinase AT4G10260.1 0.22 3.28 3.06 4.39 2.52
TC131738 Globulin-like protein, storage AT1G07750.1 0.04 0.33 0.04 0.20 4.32 2.63 4.07 1.85
191442209 Polygalacturonase inhibitor

protein precursor
AT5G06860.1 2.00 4.19 2.91 2.19 2.96 0.07 0.22

TC127895 Polygalacturonase inhibitor
protein precursor

AT5G06860.1 2.10 3.98 3.32 2.70 2.80 0.20 0.15

191443577 Polygalacturonase inhibitor
protein precursor

AT5G06860.1 2.11 3.85 3.02 2.74 2.75 0.21 0.16

TC156020 Glyceraldehyde 3-phosphate
dehydrogenase

AT1G13440.2 3.74 1.86 2.38

O24625 Chalcone/stilbene synthase AT1G02050.1 3.66 0.43 0.12 2.87 0.06
D4I601 Alcohol dehydrogenase AT1G77120.1 0.12 1.65 2.86 3.45
TC129072 Alcohol dehydrogenase AT1G77120.1 1.48 3.37 2.72
TC132846 Late embryogenesis abundant

protein
AT3G15670.1 3.27

TC150130 Rab-GDP dissociation inhibitor AT5G09550.1 0.66 3.11 0.71
190837846 Unknown AT3G59510.1 1.40 3.09 1.63 1.22 2.29 0.60
191572052 Unknown AT1G12570.1 3.08 2.10
CV021106 Ribosomal 60S subunit.L32 AT4G18100.1 1.35 1.41 1.05 2.95 0.17 0.28 0.26
AM806415 Membrane transporter AT3G08580.2 0.16 0.37 2.70 1.33 1.06

Notes: Average NSAF scores over three biological replicates multiplied by 1000. A, microsporocytes; B, meiotic cells; C, tetrads and
microspores; E, polarized microspores; F, binuclear pollen; G, desiccated pollen; H, pollen tubes.
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normalized for each protein and the proteins were clustered
using the k means algorithm (supplemental Table S6, sup-
plemental Fig. S1). 12 of the 35 clusters showed proteins
that were almost exclusively expressed in one of the stages
(Table III).

Again, stage E stood out in terms of the number of specif-
ically expressed proteins (clusters 5, 6, and 21; Fig. 5A).

Among them were three proteins similar to Skp1 (BP531238,
TC168823, and 191216821), a core component of the E3
ubiquitin ligase that targets protein for degradation by the 26S
proteasome. The isoform expressed in stage E might interact
with specific F-Box proteins, which could target a distinctive
set of proteins for ubiquitination and breakdown, in order to
adjust the proteome as required for the change in cellular
function.

It is also possible that the skp1 proteins are directly in-
volved in mitosis. The 26S proteasome is a key factor in the
degradation of cell cycle proteins (57). Also, a skp1-like 1
(ASK1) of Arabidopsis is essential for meiosis in pollen (58),
where it is essential for nuclear reorganization and homolog
juxtapositioning (59). It was also found to be involved in mi-
tosis (60).

Several proteases identified in stage E could also be in part
responsible for the major rearrangement of the pollen pro-
teome during in this transition stage.

Many potential cellulases, glucosidases, and mannosidases
were expressed during stage E (supplemental Table S6). They

FIG. 4. Multivariant statistic analysis. A, PCA plot of the eight stages of pollen development. B, sum of the NSAF scores of the 30 highest
and 30 most negative loadings of PC1 and PC2, respectively. C, PCA plot of the eight stages of pollen development including leaves and roots.
PCA was based on log values of the NSAF scores. D, correlation coefficient according to calculated average NSAF values of three replicates.
A, microsporocytes; B, meiotic cells; C, tetrads; D, microspores; E, polarized microspores; F, binuclear pollen; G, desiccated pollen; H, pollen
tubes; L, leaves; R, roots.

TABLE III
Overview of stage-specific clusters identified via k means clustering

Stage Cluster number N proteins

A 10 22
B 27 5
C 33 15
D 2 7
E 5, 6, 21 59, 51, 29
F 30 10
G 13, 24 17, 33
H 11, 15 39, 47
B � E 23 33
F � H 22 37
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have previously been proposed to support the loosening of the
cell wall required for cell expansion taking place between stages
D and F (61).

A subset of proteins grouped in cluster 23 (Fig. 5B) was
expressed predominantly during meiosis (B) and mitosis (E),
and these proteins might take part in the regulation of mitosis
and meiosis, as they are specifically expressed in these
stages (supplemental Table S6). One example is annexins
(TC137724, BP533244, Q56D09), which might act in targeted
secretion (62), required for cytokinesis. Another example is a
set of potential subtilases (TC132351, TC133164, TC133288,
191501021) that could take part in signaling or specific pro-
tein cleavage and degradation.

Other proteins expressed during these two stages are pre-
dicted to play a role in secondary metabolism, which makes
them unlikely to take direct part in the cell cycle. Three of them
(191361943, CN949712, and O24625) show homologies to
the anther expressed proteins less adhesive pollen 5 and 6,
which show similarities to chalcone synthases and are essen-
tial for exine formation (63).

Before pollination, the pollen desiccates and has to drasti-
cally adjust its physiology to protect its membranes from
breaking and its proteins from denaturation. In the cluster
analysis, a set of proteins was grouped (clusters 13 and 24;
Fig. 5C) that was almost exclusively expressed in the desic-
cated stage (G) and disappeared after rehydration and pollen
tube growth (H). Among these proteins were late early abun-
dant proteins (TC132846, TC146808, TC165472, 191501982)
that also play a role in the desiccation of seeds (64) and are

proposed to protect pollen during dehydration (65). Also, a
homologue of an Arabidopsis tonoplast monosaccharide
transporter (TC129132) and potential signaling proteins that
could play a role in adaption to desiccation were grouped in
this cluster.

Additionally, a set of proteins (cluster 22; Fig. 5D) was
identified showing that some proteins might be degraded
prior to desiccation and resynthesized after rehydration. Pro-
teins in this cluster included enzymes of �-oxidation and of
other primary metabolic pathways (supplemental Table S4).
We can only speculate about the reason for this temporary
degradation. The proteins might have a negative effect on the
adaption to desiccation or be unstable under this condition.

Functional Remodeling of the Proteome During Pollen De-
velopment—During development, the pollen cells have to ad-
just their metabolism to suit their functions. In order to get a
better overview of the functionality, proteins were matched
against their closest Arabidopsis homologues and grouped
according to their predicted functions (supplemental Table
S7). The total NSAF scores were added (Fig. 6).

Some functional groups were predominantly present in
specific stages, such as the already mentioned late early
abundant proteins in desiccated pollen (stage G); the gluco-,
galacto-, and mannosidases, factors of protein degradation in
polarized microspores (stage E); and the enzymes of second-
ary metabolism during meiosis and mitosis (stages B and E).

Starch synthesis seems to occur in microsporocytes and
binuclear pollen prior to desiccation (stages A and F), most
likely to store energy for cell division and pollen tube growth

FIG. 5. Cluster analysis. Relative abundance of proteins in a selection of groups obtained via k means clustering. NSAF scores were
averaged over three biological replicates and normalized for each protein to represent their proportion of the total abundance over all eight
stages. A, microsporocytes; B, meiotic cells; C, tetrads; D, microspores; E, polarized microspores; F, binuclear pollen; G, desiccated pollen;
H, pollen tubes.
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FIG. 6. Functional analysis. Total NSAF scores of proteins grouped in functional groups. NSAF scores were averaged over three biological
replicates and multiplied by 1000. Red indicates high abundance in relation to the other stages. Standard deviation can be assessed from
supplemental Table S7. L, leaves; R, roots; A, microsporocytes; B, meiotic cells; C, tetrads; D, microspores; E, polarized microspores; F,
binuclear pollen; G, desiccated pollen; H, pollen tubes.
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(66), respectively. The synthesis of storage proteins starts
during polarization of the microspore.

Many enzymes required for energy-consuming pollen tube
growth are synthesized starting from the polarized microspore
or binuclear pollen stage (stages E and F). These include
enzymes required for ethanolic fermentation, which is per-
formed by pollen tubes due to anoxia caused by rapid oxygen
consumption during their growth (56). Furthermore, enzymes
of sucrose, lipid, and amino acid degradation and proteins
involved in cell wall metabolism and vesicle trafficking follow
a similar expression pattern. These proteins are required to
support pollen tube growth with sufficient energy (30) and the
machinery to deposit large amounts of cell wall and mem-
brane at the tip of the growing pollen tube (67).

Interestingly, the abundance of proteins involved in ana-
bolic pathways like gluconeogenesis and sucrose synthesis is
also increased in the later stages, which is somewhat surpris-
ing, as sucrose can be taken up by the pollen tube from the
surrounding tissue (68) and was also present in large amounts
in the medium used for cultivation in this study.

Proteins associated with cell division showed increased
abundance during the polarized microspore stage, but their
levels were also increased in desiccated pollen, probably in
preparation for the mitosis of the generative cell, which takes
place after pollen tube germination. One subgroup of proteins
(C5MQG8, FG636560, Q1G0Z1, TC141620) in this functional
group, the cell cycle controlling CDC48 (69), has numerous
functions (70), including spindle disassembly at the end of
mitosis (71). The heterozygous Arabidopsis mutant cdc48a
(72) displayed incomplete pollen germination of the mutated
pollen. Our data suggest an additional role of CDC48 in pollen
mitosis, which was not affected in the described mutant, the
reason being most likely the presence of two other isoforms of
CDC48a in the Arabidopsis genome (73).

Hot and cold temperature stresses can be detrimental to all
phases of pollen development and have major effects on
sexual reproduction. Heat shock proteins have been de-
scribed as strongly abundant in pollen during the later stages
of development in comparison to other tissues (74). The anal-
ysis of earlier stages including microsporocytes, meiotic cells,
and tetrads in our study revealed an even greater abundance
of proteins associated with heat stress.

A total of 67 heat-stress-associated proteins were identified
in our study, including isoforms of the chaperones HSP 70
and HSP 90 and luminal binding proteins (supplemental Table
S7). Taken together, these proteins constituted up to 10% of
the total protein abundance according to our NSAF calcula-
tion (Fig. 6), highlighting the importance of these groups of
proteins for pollen development, especially in early stages.

The functional comparison of the pollen stages with roots
and leaves displayed a number of functional groups including
ethanolic fermentation, polyamine metabolism, and late early
abundant and storage proteins, which were almost not found
in the sporophytic tissues and which highlight the highly spe-

cialized functionality of the developing pollen (Fig. 6). The
comparison also displayed the previously described high rate
of anabolic metabolism, especially in the late pollen stages.
Also, the synthesis of fatty acids seemed to be much higher in
pollen tubes than in leaves and roots, as the abundance of the
related proteins was much higher. This shows that pollen
tubes do not rely solely on previously synthesized and oil-
body stored fatty acids and also require de novo synthesis to
cope with the rapidly expanding membranes.

The rate of protein synthesis, in contrast, did not seem to be
strongly enhanced in developing pollen or, especially, pollen
tubes when taking into account the abundance of proteins
associated with protein synthesis (ribosomal and nonribo-
somal). This observation once more supports the idea that
growing pollen tubes rely strongly on presynthesized proteins.

Analysis with Respect to Previous Transcriptomics, Pro-
teomics, and Genetic Studies—In order to find out to what
extent protein and transcript levels differed, the data in this
study were compared with expression data from a previous
study (75). The microarrays of the latter study were based on
transcripts obtained from mature tobacco pollen grains and
pollen tubes.

Because different accessions were used in this and the
previous study and in order to simplify the comparison, the
transcripts and proteins were grouped according to their
MapMan bins, and the individual values were added (supple-
mental Table S8).

From the comparison, it is apparent that the transcripts of
proteins involved in signaling were much higher than the
protein levels, maybe because of high turnover rates (Table
IV). In contrast, protein levels of enzymes of the primary
metabolism were much higher relative to their transcript levels
(Table IV). This could be because the translation rate of these
transcripts is much higher or the turnover rate of the proteins
is lower. Another possibility is that the proteins are synthe-
sized in earlier stages of pollen development and persist while
the mRNA is degraded. Unfortunately, no expression data on
developing tobacco pollen are available to date.

Transcript data on Arabidopsis stages ranging from unicel-
lular microspores to pollen tubes have been previously gen-
erated (43, 76), and we compared our dataset to these tran-
script levels. Again, the transcripts and proteins were grouped
according to their MapMan bins (supplemental Table S9).
Once more it was apparent that the abundance of proteins of
the primary metabolism was greater than the corresponding
transcript levels. Additionally, they followed a different pat-
tern. The enzymes phosphoglycerate kinase and pyruvate
decarboxylase, for example (Fig. 7), showed their greatest
abundance in desiccated pollen, whereas the corresponding
Arabidopsis transcripts peaked much earlier and were com-
pletely abolished in mature pollen and pollen tubes, respec-
tively. It could be speculated that this difference is simply due
to the different analyzed species. The detection of both pro-
teins in substantial amounts in a proteomic survey of mature
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Arabidopsis pollen (14), however, makes a strong case that
proteins are synthesized in earlier stages and persist though
desiccation, rehydration, and pollen tube growth, by which
time their transcripts are already degraded. This seems to be
true for many enzymes of glycolysis, as the total protein and
transcript abundance of this pathway follows a similar pattern.
Another group that shows high protein levels in desiccated
tobacco pollen and pollen tubes contains proteins associated
with cell wall metabolism. Here, however, the Arabidopsis
transcripts show a similar dynamic, maybe because the pro-
teins in this group show a higher turnover rate and have to be
resynthesized.

In order to be able to study the different dynamics of tran-
scripts and proteins in better detail, it should be a future goal to

generate either protein data from earlier Arabidopsis stages or
transcript data throughout tobacco pollen development.

It must be concluded that the transcript levels in mature
pollen can be very misleading when considering the impor-
tance of a specific gene for pollen tube growth or, even worse,
pollen development, especially when only the transcript levels
in mature pollen are considered, which is often the case (as,
for example, in the commonly used open access version of
GENEVESTIGATOR).

To find out how tobacco pollen might differ from Arabidop-
sis pollen, we compared the proteins in our study to the
proteins found in the already mentioned proteomic survey of
Arabidopsis (14), blasting all the sequences of the identified
proteins from tobacco against the protein sequences from

TABLE IV
Comparison of tobacco pollen transcript and protein data

Bin Function
Transcript Protein NSAF

G H A B C D E F G H

1.3.3 � 4.1.11 3-phosphoglycerate kinase 0.2 0.2 12.1 8.9 10.4 13.0 11.7 18.2 20.8 16.9
4.1.8 Glyceraldehyde 3-phosphate dehydrogenase 0.9 0.5 27.8 17.9 31.0 31.3 20.4 40.8 33.2 23.9
5.2 Pyruvate decarboxylase 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.3 2.9 2.1
5.3 Alcohol dehydrogenase 0.5 0.2 0.0 0.4 0.0 0.0 0.0 13.4 22.6 17.7
30.3 Calcium signaling 30.7 31.4 8.5 11.5 11.5 7.6 5.8 2.6 5.8 3.5
30.5 G-proteins 20.2 23.6 8.4 5.9 7.5 6.1 9.0 10.3 5.0 11.8
20.2.1 Stress abiotic heat 6.4 7.1 142.7 158.8 174.4 160.5 132.6 96.5 38.1 45.7

Notes: Transcript data were previously published by Hafidh et al. (75). Transcripts and proteins were binned according to MapMan. The
complete dataset can be surveyed in supplemental Table S8. Normalized values were multiplied by 1000. A, microsporocytes; B, meiotic cells;
C, tetrads; D, microspores; E, polarized microspores; F, binuclear pollen; G, desiccated pollen; H, pollen tubes.

FIG. 7. Protein and transcript comparison. Tobacco protein abundances (NSAF scores over three replicates) and Arabidopsis transcript
levels were grouped according to MapMan. All transcript data excluding pollen tubes were derived from Honys et al. (43). Pollen tube transcript
data were derived from Wang et al. (76). Arabidopsis stages: UNM, unicellular microspores; BCP, bicellular pollen; TCP, tricellular pollen; MPG,
mature pollen grains; PT, pollen tubes. Tobacco stages: D, microspores; E, polarized microspores; F, binuclear pollen; G, desiccated pollen;
H, pollen tubes.
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Arabidopsis pollen. All matches with an E-value equal to or
less than 10�10 were considered as homologues (supplemen-
tal Table S10).

Of the 3817 proteins in this study, only 1055 did not have a
homologue in Arabidopsis pollen. Of the 1869 proteins con-
sidered for quantification, an even lower proportion (320 pro-
teins) had no homologues in Arabidopsis pollen. Even though
this indicates high similarity of the proteomes, there are some
distinct differences.

The ortholog of Arabidopsis alcohol dehydrogenase
(At1g77120), catalyzing the conversion from acetaldehyde to
ethanol, was one of the enzymes with the greatest abundance
in tobacco pollen tubes but was not found itself in Arabidopsis
pollen. On the transcript level, this gene also showed only very
weak expression in microspores and bicellular pollen and no
expression in later stages. As the production of ethanol is one
of the hallmarks of pollen tube metabolism in many species
such as lily (77), tobacco, and petunia (56), this indicates a
strong difference in primary metabolism between Arabidopsis
and tobacco, probably based on the much shorter growing
distance of Arabidopsis pollen tubes, which decreases the
problem of anoxia. It is also possible that another enzyme
takes this role in Arabidopsis pollen tubes, as several other
proteins in Arabidopsis pollen showed a high similarity to
the tobacco alcohol dehydrogenase. However, the protein
with the highest similarity, ADH2, is already described as a
glutathione reductase. It remains to be investigated whether
Arabidopsis pollen tubes produce ethanol during growth.

Another possibility is that the acetaldehyde produced by
pyruvate decarboxylase (which was found in Arabidopsis pol-
len) is directly converted to acetate and, later, acetyl-CoA, a
pathway termed the pyruvate dehydrogenase bypass. An en-
zyme that is a strong candidate to perform the oxidation of
acetaldehyde, aldehyde dehydrogenase (78), was detected in
substantial amounts in Arabidopsis.

Another example of how the primary metabolism might
differ is in the conversion of fructose-6-phosphate to fruc-
tose-1,6-bisphosphate. Whereas in Arabidopsis pollen only
the phosphofructokinase was found, tobacco pollen and pol-
len tubes additionally contained several pyrophosphate-fruc-
tose-6-P phosphotransferase isoforms with a total abun-
dance that was more than 8-fold greater than that of the
phosphofructokinase (supplemental Table S9). This way, py-
rophosphate can be used instead of ATP for the second
activation step of glycolysis, increasing the ATP yield per
hexose by one. Although this increase might not be so sig-
nificant under aerobic conditions, it does make a big differ-
ence when ATP is generated via fermentation, which is the
case in tobacco but might not be in Arabidopsis.

In Arabidopsis, many mutants are described that are af-
fected in pollen development and pollen tube growth. After a
survey of the literature, we updated a previously published list
(14) of affected genes from 127 to 215 (supplemental Fig.
S11). From these, we found 135 to have homologues (E-value

equal to or less than 10�10) in tobacco pollen. This supports
the theory that most proteins with important functions in
pollen development could be detected in tobacco pollen.
However, from the 3817 proteins identified, only 320 homo-
logues have been described so far in Arabidopsis mutant
studies according to our literature survey, leaving tremendous
room for future pollen research.

Post-translational Modifications—The identification of post-
translational modifications was not the focus of this study,
and the available material from early developmental stages
was too limited for the enrichment of modified peptides. How-
ever, 655 potentially modified peptides were detected, includ-
ing methylation of lysine and arginine; acetylation of lysine;
and phosphorylation of serine, threonine, and tyrosine (sup-
plemental Table S12). The protein with the greatest number of
modifications was a homologue of elongation factor 1-� (Fig.
8). This protein is a member of the family of small G-proteins
and serves a multitude of functions (79) including elongation
of protein translation (80), regulation of the cytoskeleton (81,
82), and signaling (83–85). It has been previously shown to be
methylated (86, 87) and acetylated (88). Multiple potential
methylation sites were found; however, they must be consid-
ered with caution, as the mass of the peptide can be identical
to a nonmodified peptide of a homologue protein, leading to
ambiguous identifications (supplemental Table S12). This is
an even bigger problem when the organism used in the study
is not entirely sequenced, as potential ambiguous identifica-
tions might be missed because of the incomplete database.
Also, methylated lysine and arginine residues lie at the N
terminus of peptides cleaved by tryptic digest, making a
confirmation of the modification based on the MS2 spectrum
harder, as y-ions are too small to be detected. Therefore, only
methylation sites can be considered as strong candidates
(Fig. 8) if the modified amino acid lies in the middle of a
miscleaved peptide and the MS2 spectrum shows the correct
b- and y-ions of the modified amino acid.

The identification of additional modification sites and the
study of their dynamics should be goals for the future. At
least, the material available from the microspore stage on
should be sufficient for metal oxide affinity chromatography
enrichment of phosphopeptides, as has been performed re-
cently for desiccated and activated pollen (28).

CONCLUSION

The comparative proteomic analysis of pollen development
was, for the first time, extended to eight stages ranging from
diploid microsporocytes to pollen tubes. In order to compare
the data to results for sporophytic tissues, leaves and roots
were also investigated, leading to the identification of a total
of 4262 proteins.

Based on these data, pollen development can be divided
into three phases (Fig. 9). The early phase that is still more
closely related to leaves ranges from the microsporocytes to
meiosis, extends to the formation of tetrads, and ends with
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the release of the microspores. The proteome of this phase is
relatively static, with a high abundance of heat shock proteins
to protect the cells in the process of meiosis and cell division.
It appears that the “sporophytic proteome” synthesized in the
microsporocytes is sustained throughout the development to
early microspores.

The late phase ranges from binuclear pollen via desiccated
pollen to pollen tubes and presents a “gametophytic pro-
teome.” Many proteins required for pollen tube growth, such
as enzymes of the primary metabolism, and for cell wall

synthesis are already produced prior to desiccation, so as to
later allow a rapid outgrowth of the pollen tube without a
bulk protein synthesis, as has also been previously ob-
served (18, 24).

From the comparison of our protein data to Arabidopsis
transcript data, it could also be concluded that many proteins,
especially from the primary metabolism, do not seem to be
further synthesized during pollen tube growth.

In between the early and the late phase, which are clearly
very different in their cellular functionality, the pollen under-

FIG. 8. Post-translational modifications observed in a homologue of translation elongation factor 1-á (TC 141641). Sequences
highlighted in green were identified via LC-MS/MS analysis. Modification sites are marked above the sequence. M, methylation; D, dimethy-
lation; T, trimethylation.

FIG. 9. Key features of the tobacco
pollen proteome through develop-
ment. A, microsporocytes; B, meiotic
cells; C, tetrads; D, microspores; E, po-
larized microspores; F, binuclear pollen;
G, desiccated pollen; H, pollen tubes.
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goes an intermediate phase. During this polarized microspore
stage, the “sporophytic proteome” is partially degraded, ac-
companied by ribosomal rearrangement and a strong in-
crease in the abundance of proteins associated with protein
degradation. However, this phase not only appears to be a
turning point between the sporophytic and the gametophytic
phase, but also seems to represent a phase on its own,
because many proteins identified in this work were exclusively
found during this stage.

Reasons for this could be the strong expansion in cell size,
which is unique to this cell stage in pollen development, the
performed polarization and asymmetric mitosis, and also the
degradation of the sporophytic proteome, which would need
distinct protein degradation machinery.

The great changes in the proteome observed during the
three phases underlie the complexity of the protein networks
required for male gametogenesis, which are just starting to
get unraveled. As this work represents a first thorough pro-
teomic map of pollen development, it could lay the base for a
better understanding of these networks, especially of the early
stages.
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mzGroupAnalyzer-Predicting Pathways and Novel 
Chemical Structures from Untargeted High-

Throughput Metabolomics Data

The annotation (“identification”) of metabolites remains the biggest bottle-
neck in untargeted LC/MS-based metabolomics studies. Plant secondary me-
tabolites, such as Flavonoid derivatives, can be composed of composite me-
tabolites, known sub-structures, e.g. Glycosylated Flavonoids, consisting of the 
Aglycon Flavonoid backbone as well as the sugar moiety (Matsuda, Yonekura-
Sakakibara, et al. 2009; Tohge et al. 2005). Environmental stress, such as cold 
stress, can result in e.g. Reactive Oxygen Species (ROS), which can be scav-
enged in order prevent damage, thus producing chemical transformations (Apel 
and Hirt 2004). Furthermore, the study of Redox regulation and signaling is a 
promising field of plant biology (Hartl and Finkemeier 2012; Schmidtmann et 
al. 2014; Schwarzländer and Finkemeier 2013). A method to inspect relations of 
molecules, extract putative chemical transformations of compounds and to find 
putative pathways in high Mass Accuracy LC/MS metabolomics data was im-
plemented as an algorithm, called mzGroupAnalyzer. This algorithm in avail-
able as part of the freely available Matlab tool-box called COVAIN (Sun and 
Weckwerth 2012). mzGroupAnalyzer generates multiple potential pathways di-
rectly from raw-LC/MS data and visualizes these as networks, additionally van 
Krevelen plots composed of untargeted metabolomics data can validate struc-
tural familiarity between compounds through a metabolic pattern.
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Abstract

The metabolome is a highly dynamic entity and the final readout of the genotype x environment x phenotype (GxExP)
relationship of an organism. Monitoring metabolite dynamics over time thus theoretically encrypts the whole range of
possible chemical and biochemical transformations of small molecules involved in metabolism. The bottleneck is, however,
the sheer number of unidentified structures in these samples. This represents the next challenge for metabolomics
technology and is comparable with genome sequencing 30 years ago. At the same time it is impossible to handle the
amount of data involved in a metabolomics analysis manually. Algorithms are therefore imperative to allow for automated
m/z feature extraction and subsequent structure or pathway assignment. Here we provide an automated pathway inference
strategy comprising measurements of metabolome time series using LC- MS with high resolution and high mass accuracy.
An algorithm was developed, called mzGroupAnalyzer, to automatically explore the metabolome for the detection of
metabolite transformations caused by biochemical or chemical modifications. Pathways are extracted directly from the data
and putative novel structures can be identified. The detected m/z features can be mapped on a van Krevelen diagram
according to their H/C and O/C ratios for pattern recognition and to visualize oxidative processes and biochemical
transformations. This method was applied to Arabidopsis thaliana treated simultaneously with cold and high light. Due to a
protective antioxidant response the plants turn from green to purple color via the accumulation of flavonoid structures. The
detection of potential biochemical pathways resulted in 15 putatively new compounds involved in the flavonoid-pathway.
These compounds were further validated by product ion spectra from the same data. The mzGroupAnalyzer is implemented
in the graphical user interface (GUI) of the metabolomics toolbox COVAIN (Sun & Weckwerth, 2012, Metabolomics 8: 81–93).
The strategy can be extended to any biological system.
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Introduction

Metabolomic techniques have been recently established and

refined to characterize the widely heterogeneous small molecules

present at a specific time in a living tissue. Several analytical

approaches exist for the application of metabolomics to various

biological questions, for instance gas chromatography coupled to

mass spectrometry (GC-MS) for the detection of small and volatile

compounds [1] or capillary electrophoresis coupled to mass

spectrometry (CE-MS) for charged compounds [2]. The method

with the highest preference for larger and more hydrophobic

metabolites and complementary to GC-MS is liquid chromatog-

raphy coupled to mass spectrometry (LC-MS) [3,4]. Recently, we

showed that the GC-MS and LC-MS techniques can be integrated

into a combined platform to increase the total coverage of the

metabolome, as well as to provide insights into the mutual

regulation of both primary and secondary metabolism by analysis

of the same sample and subsequent data merging and processing

[4–6]. Metabolomics-via-LC-MS approaches have yet to hit the

ranks of other analytical techniques with respect to their

robustness and database availability, but no other method has

the potential to achieve a better coverage of the metabolome whilst

maintaining high resolution and inferring additional structural

information in the process. In contrast to metabolite profiling on

the GC-MS platform, where standard operating procedures and

large databases are present and being improved continuously,

there exists little standardization on how to approach the analysis

of larger metabolites using LC-MS [7]. A significant step forward

in the field of untargeted metabolomics is the advent of

instruments capable of sub-ppm mass accuracy measurements as

well as precursor fragmentation, enabling the acquisition of the

exact mass as well as obtaining molecule fragment information in

order to construct a meaningful sum formula [8,9]. Owing to these

technological advances, metabolomics has already proven to be a

valuable tool in fields like biomarker discovery and functional

genomics [10–12]. In this study, we introduce an algorithm called

mzGroupAnalyzer to provide characterization and identification of

data signals acquired by an LC-Orbitrap-FT-MS system utilizing
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sub-ppm mass measurements and intelligent sum formula query.

We applied this strategy to plant secondary metabolism. Plants are

most important resources for natural products, providing the

highest diversity of chemical structures in the range of 200.000–

400.000 different compounds and a high in vivo plasticity in

response to environmental conditions. Due to this diversity of

chemical structures ranging from simple hydrocarbons to complex

heteroatomic molecules, the elucidation of the metabolome of

higher plants and in general of natural products of any origin poses

a challenge for metabolomic techniques. Traditionally, the

metabolism of higher plants is subclassified into the primary

metabolism, which comprises molecules with a low molecular

weight that are involved in the central energy conversion cycles of

the organism, and the secondary metabolism, which is not per se

involved in energy homeostasis but rather involved in the chemical

communication with the environment. Only recently, the field of

plant secondary metabolites has begun moving more and more

into the focus of new bio-analytical techniques and their

stereotypic role as simple chemical weapons is being revised as

numerous findings indicate their ability to stimulate vital processes

in the cell by regulating the concentration of reactive oxygen

species in vivo [13,14]. Also, secondary metabolites are of vast

interest to the area of medicine and nutrition, as these

phytochemicals often possess physiological activity in the human

body, for example antioxidant activity or cancer chemoprevention

[15].

To provide a suitable experimental system, we stressed

Arabidopsis thaliana plants by parallel cold and light treatment

introducing high oxidative stress over a 3-week interval. This led to

a comprehensive switch of the vegetative growth metabolism to

protective accumulation of secondary metabolites. We show a way

of embedding the multitude of signals into a biochemical context

through automated detection of metabolic steps between the

acquired m/z features. Putative structures are inferred by analysis

of the product ions from the same data. By applying mzGroupA-

nalyzer to LC-MS raw data, we are able to prove the existence and

relation of known molecules as well as propose novel compounds

and pathways, in the present case molecules arising during

oxidative stress within the secondary metabolism of Arabidopsis

thaliana. This strategy can be applied systematically and conve-

niently to any kind of LC-MS data set and is expected to improve

identification and structural elucidation in complex metabolomics

data, which is currently the limiting step in large-scale metabo-

lomics studies.

Materials and Methods

Plant material and harvest
Arabidopsis thaliana Col-0 was cultivated in a growth chamber

under controlled conditions: light intensity was 280 mmol m22 s21

in an 8-hour light/16-hour dark day cycle; relative humidity was

60% with an average temperature of 22uC. Time point ‘‘zero’’ of

cold stress consisted of replicates of non-stressed plants, while

every 2 days another sample batch of cold-acclimated plants in a

4uC cold chamber was taken. Rosette leaves were harvested

approximately 2 hours after the beginning of the light period.

Metabolic activity in the leaves was quenched by immediately

putting the plant material into liquid nitrogen after harvesting.

Deep-frozen leaf material was ground to a fine powder with a

pestle and mortar under steady addition of liquid nitrogen and

subsequently stored at 280uC before measurement.

Chemicals
Methanol (HPLC-grade), chloroform (anhydrous, .99%, p.a.)

and acetonitrile (UHPLC-grade) were purchased from Sigma-

Aldrich (Vienna, Austria). Formic acid (98–100%) was purchased

from Merck (Vienna, Austria). Chloramphenicol (.98%) and

Ampicillin trihydrate (analytical standard) were purchased from

Fluka (Vienna, Austria).

Extraction procedure and sample preparation for
secondary metabolite analysis
For LC-MS analysis, about 50 mg of frozen plant-leaf material

was extracted by 1 ml pre-chilled 80/20 v:v MeOH/H2O solution

containing 1 mg of the internal standards Ampicillin and

Chloramphenicol. Samples were centrifuged at 15.000 g for 15

minutes. The supernatant was dried out overnight in a new tube

and re-dissolved in 100 ml of 50/50 v:v MeOH/H2O solution and

centrifuged again for 15 minutes at 20.000 g. The supernatant was

then filtered through a STAGE tip (Empore/Disk C18, diameter

47 mm) before it was conveyed into a GC vial with a micro insert

tip. Plant extracts were further extracted with 500 ml of chloroform
to remove the highly abundant lipid components. The LC-MS

method for secondary metabolite analysis has been described

before [6].

Data processing, mzGroupAnalyzer and pathway viewer
Both mzGroupAnalyzer and Pathway Viewer have been integrated

into the GUI of the COVAIN toolbox [16]. The standalone

version of COVAIN can be downloaded at http://www.univie.ac.

at/mosys/software.html. The data processing strategy and subse-

quent analysis of the data using mzGroupAnalyzer and Pathway viewer

are explained in the mzGroupAnalyzer-Tutorial (Figure S1). m/z-

values acquired by LC-MS were exported to Excel data sheets

using the Xcalibur software. Elemental composition determination

was enabled, with a maximum of 10 possible sum formulas for

each compound and a ppm deviation of 1.

The single excel-sheets can be uploaded to mzGroupAnalyzer via

the GUI of COVAIN. Furthermore, a user-defined rules-file is

uploaded and the folder for storage of the result-files is provided.

By starting the mzGroupAnalyzer, the lists of m/z values with

associated chemical compositions from Xcalibur output are read

and the atomic differences between m/z-pairs are calculated and

compared with the putive chemical modifications provided by the

rules-file.

Based on all chemical modifications provided by the rules-file,

mzGroupAnalyzer searches pathways between pairs of m/z features.

Regarding each m/z feature as a node in a metabolic network, an

edge connects two nodes if a chemical modification exists. These

edges and nodes generate large networks. A pathway can therefore

be constructed by searching the shortest path between two nodes.

Redundant paths that are included in other longer paths are

removed. The pathway searching algorithm can deal with time

series data by filtering out pathways that do not reflect the correct

chronological order of the given measurements. For example,

there is no path from m/z feature A occurring on Day 2 to m/z

feature B occurring on Day 1, although theoretically a chemical

modification from A to B is possible. Finally, to better visualize the

pathways, we further developed Pathway Viewer, which is integrated

in mzGroupAnalyzer, and is able to plot the pathways after a series of

user-defined filtering options like m/z range or time points. The

following result files will be created, exported and saved:

1. Transformations corresponding to the rules-file.

2. A ranking of frequently found chemical modifications.

Automated Data Analysis in LC-MS Based Metabolomics
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3. Putative transformations that were not listed in the rules-file.

4. A mzStructure file for Pathway viewer.

5. A Pajek-file (http://vlado.fmf.uni-lj.si/pub/networks/pajek/)

for network visualization.

Next the Pathway viewer is started and a table of transformations

and the possibility for visualization of pathways is provided (see

Figure S1 – mzGroupAnalyzer-Tutorial). The above process is

summarized in Figure 1. The list of chemical and biochemical

reactions searched by mzGroupAnalyzer (currently comprising 56

metabolic reaction steps in the provided rules-file) is shown in

Table S1. This list can be easily extended to novel transformations.

For the construction of the van Krevelen plots, sum formulas

with mzGroupAnalyzer-predicted metabolic transformations were

assorted in an Excel sheet and their O/C and H/C ratios were

calculated. These values were exported to SigmaPlot 12.3 and

mapped to a multiple scatter plot within the boundaries 0 to 1 for

the O/C ratio and 0 to 2 for H/C ratio.

Results and Discussion

Development of the mzGroupAnalyzer algorithm to
identify biochemical and chemical transformations in
non-targeted metabolomics data
The development and application of algorithms is essential to

systematically search for biochemical and chemical transforma-

tions of compounds and to find putative pathways in highly

complex LC-MS based metabolomics data. We have established

an algorithm which is able to extract putative chemical

transformations from high mass accuracy metabolome data. The

algorithm generates multiple potential pathways directly from raw-

LC-MS data and visualizes these as networks. The entire approach

is implemented as a graphical user interface (GUI) in COVAIN

(Figure 1). COVAIN is a toolbox for statistical data mining in

metabolomics and other OMICS approaches [16] in the Matlab

environment. In order to evaluate the algorithm, we measured

various reference compounds of typical plant secondary metabo-

lites with nano-UPLC-Orbitrap-MS. Subsequently, sum formulas

were generated in Xcalibur 2.0 using the integrated sum formula

Figure 1. Scheme of the mzGroupAnalyzer and Pathway Viewer algorithm and GUI implementation. The program reads the m/z features
which are extracted from Xcalibur, as well as the user predefined reaction rules. Then it finds transformations between all pairs of m/z features, and
reports the frequency of transformations for the listed and not listed but potentially existing rules. Next, the program starts searching pathways
inside the m/z features’ network. A shorter path existing in other longer paths is removed, thereby non-redundant pathways are obtained. Then,
mzGroupAnalyzer opens the Pathway Viewer, in which pathways satisfying user-defined filtering options will be displayed on the panel. The pathway
diagram, which consists of reaction rules, m/z feature names, compositions and time points, can be plotted by clicking the table. Finally, all the
results, including the frequency table of transformations, the interconnected network visualization file (in Pajek’s format), the inferred pathways and a
Matlab workspace (suffixed with mzStruct.mat) containing all results, will be exported to the user-specified folder.
doi:10.1371/journal.pone.0096188.g001
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calculator. Within a 1 ppm mass accuracy window and using the

monoisotopic masses of several common elements, possible sum

formulas were obtained (Figure 2 and Figure S1 – mzGroupAnalyzer-

Tutorial). Many of the sum formulas did not result in feasible

chemical structures but had a very high mass accuracy according

to the measured compound, thus leading to false positives. As a

consequence the correct sum formula prediction was not among

the top first hits. The fact that high mass accuracy alone is not

sufficient for correct sum formula prediction has been shown

before [17,18]. This is especially true for metabolites which often

Figure 2. mzGroupAnalyzer is able to detect possible metabolic steps out of various proposed sum formulas for a measured m/z
feature. A Kaempferol and Quercetin standards measured by LC-MS result into several sum formula suggestions for the measured mass-to-charge-
ratio (m/z). Because a low ppm deviation of assigned elemental composition to the mass is not the decisive factor, the correct sum formula might not
be the first one proposed and thus several must be looked at, which is handled by the program automatically. If mzGroupAnalyzer finds a possible
reaction step (out of a list of reactions which can be altered manually), it is reported to the user. B MS2 spectra of Kaempferol (left) and Quercetin
(right). The fragmentation schemes are in accordance with published literature [42,43]. The difference of one oxygen atom (nominal mass 16) is
visible in the fragments m/z 213R229 and 241R257, while m/z 165 occurs in both product scans.
doi:10.1371/journal.pone.0096188.g002

Automated Data Analysis in LC-MS Based Metabolomics
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contain elements like S and P, or even halogens. The utilization of

electrospray ionization tends to produce Na+, K+ and other

adducts in positive ionization mode. Because mzGroupAnalyzer looks

for putative chemical transformations of compounds the consid-

ered number of sum formulas can be reduced. The application of

mzGroupAnalyzer revealed metabolic conversions of the protonated

reference compound such as the addition of a hydroxyl group to

Kaempferol leading to Quercetin (Figure 2). Due to this chemical

transformation the sum formula pair of Kaempferol and

Quercetin is automatically detected. Indeed, this reaction occurs

in the flavonol biosynthetic pathway catalyzed by a flavonoid 39-
monooxygenase. The constraints for detectable metabolic reac-

tions (e.g.+1C+2H denotes a net methylation) are uploaded to the

program before performing the analysis and can be customized by

the user (Figure S1 – mzGroupAnalyzer-Tutorial). mzGroupAnalyzer is

also able to recognize the frequency of equidistant steps between

m/z values and exports these data as suggestions for novel

modifications (see Methods section). Furthermore, whole series of

reaction steps in the data can be detected and analyzed in the

context of metabolic pathways. This will be discussed in the next

sections.

Cold- and light-induced stress has a dramatic effect on
the Arabidopsis thaliana metabolome
To test the performance of the mzGroupAnalyzer algorithm we

designed the following experiment. Arabidopsis thaliana plants were

Figure 3. After oxidative stress the Arabidopsis thaliana plants turn from green into purple indicating a dramatic shift in metabolism,
specifically elevated flavonoid biosynthesis involved in oxidative stress protection [6]. A Plants turns from green to purple under high
light and cold temperature treatment. B Van Krevelen diagram of the most abundant m/z values of unstressed (green dots) and 20-day cold stressed
(purple dots) Arabidopsis plants. A clear shift of metabolism in the stressed plants is visible.
doi:10.1371/journal.pone.0096188.g003
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exposed to excess irradiation in a 4uC environment. This

treatment is described in the literature to produce high levels of

reactive oxygen species (ROS) [19–21]. ROS, such as hydrogen

peroxide (H2O2), hydroxyl radicals (OH), superoxide anion (O2
2)

and singlet oxygen (1O2), are unavoidable by-products of

photosynthetic organisms occurring in organelles with a high

oxidative turnover rate during normal metabolic activity and can

be highly damaging for cells and tissues under stress [13,22,23].

These stress conditions require an effective scavenging system in

order to prevent the organism from being damaged by free

radicals [24]. Especially biomolecules from the phenylpropanoid

family, such as flavonoids and anthocyanins, have been recognized

as effective radical-scavenging compounds [25,26]. After several

days of stress in our experimental systems, the plants began to

produce violet pigments in the rosette leaves (Figure 3A). The

purple color is the result of the accumulation of anthocyanidins as

a response to oxidative stress [25–28]. The enhanced production

of anthocyanidins under these stress conditions requires a large-

scale metabolic reprogramming as recently described by us [6].

Leaf extracts of the cold/light-treated Arabidopsis thaliana plants

were analyzed with LC/MS. From these analyses sum formulas of

putative metabolites were generated based on the acquired m/z

values focusing only on C, H and O elements (see also Figure S1 –

mzGroupAnalyzer-Tutorial). The generated sum formulas were

loaded into a van Krevelen plot to visualize the chemical and

biochemical transformations of metabolites during cold and light

stress (Figure 3B). Oxidative shifts in the plot induced by cold-

related stress might be explained by the incorporation of oxygen,

as well as radical scavenging by redox-active compounds, such as

aromatic hydroxyl groups which can stabilize radicals after

Figure 4. Exploration of the van Krevelen diagram created by sum formulas with chemical transformations detected by
mzGroupAnalyzer. A m/z 1181, 1195, 1197 and 1211 are interconnected with net shifts of K O2 and a CH2 group and form a rhombic pattern. B
Proposed fragmentation scheme of these compounds under the chosen conditions. C Product ion scans show similar fragmentation behavior of the
polysubstituted anthocyanins. The spectrum of m/z 1195 shows a peak at m/z 549, pointing to a methyl group at the cyanidin core. A putative
methylation site is shown.
doi:10.1371/journal.pone.0096188.g004
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deprotonation. Van Krevelen plots were originally introduced to

characterize carbon-based resources like mineral oils and coal

according to their possible chemical composition acquired by

high-resolution mass spectrometry [29,30]; only recently, van

Krevelen plots have been applied as useful tools for visualization of

metabolic processes and pathways [31] as well as for sum formula

annotation of natural organic matter (NOM) [32].

The investigation of van Krevelen plots composed of untargeted

metabolomics data can validate structural familiarity between

compounds through a metabolic pattern as depicted in Figure 4.

In the O/C ratio range from 0.51 to 0.55 and H/C range of 1.036

to 1.056, the chemical relation of compounds m/z 1181, 1195,

1197 and 1211 is visible (Figure 4A), while their structures are

validated by MS2 product ion scans (Figure 4B and 4C). These

compounds were also automatically detected by the mzGroupAna-

lyzer approach when investigating the putative chemical and

biochemical transformations from the generated sum formula hits

(see also Figure S1 – mzGroupAnalyzer-Tutorial). In the following

section we explored the potential of mzGroupAnalyzer to reveal full

pathways leading to novel structures.

Broad-scale analysis of metabolic conversions and novel
structure prediction bymzGroupAnalyzer in the cold/light
stress metabolome of Arabidopsis thaliana
Time-dependent sampling of Arabidopsis thaliana leaf samples in

cold stress yielded strong alterations in the metabolic profiles (see

above). All precursor ions from the LC/MS analysis obtained from

one sampling time point were assigned to ten possible sum

formulas with the following parameters: 100 max C, 200 max H,

50 max O, 10 max N, 1 ppm maximum deviation from suggested

sum formula. Data from all time points were exported from

Xcalibur 2.0 software as single Excel sheets and uploaded into

mzGroupAnalyzer using the graphical user interface (see above and

methods; see Figure S1 – mzGroupAnalyzer-Tutorial). Further, a

user-defined rules-file of the molecular shifts of chemical and

biochemical transformations needs to be uploaded via the GUI.

Here, we provide a rules-file with 56 reactions. By starting the

mzGroupAnalyzer via the GUI, the algorithm detects metabolic

transformations between pairs of m/z values in the uploaded list of

suggested sum formulas. A table of detected pathways is generated

using the GUI option ‘‘Pathway Viewer’’. Individual pathways can

be visualized by clicking on the corresponding cell. Furthermore,

the whole pathway network can be exported as a Pajek-file for

Figure 5. Identification of biochemical transformations of in vivo data using mzGroupAnalyzer. A metabolic pathway leading to a putative
new compound m/z 1121 is revealed. Amongst several hundreds of other interlinked m/z values in the data, the figure shows metabolic transitions
derived from sub-ppm accuracy measurements on the left side and their corresponding MS2 product ion scans on the right. Comparison of the
spectral information from step to step reveals the possible location of metabolic structural changes. Stereochemistry is assumed due to literature
findings [33].
doi:10.1371/journal.pone.0096188.g005
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visualization (see Figure S1 – mzGroupAnalyzer-Tutorial and

Figure 1). Over the course of the cold and light stress, several

highly frequent reactions were identified. Overall, the 10

predominant reactions were mono-oxygenations, followed by

hydrogenations, hydrations, methoxylations, methylations, oxido-

reductions, oxidations, malonylations, hexosylations, and dihy-

droxylations of double bonds. Due to possible false positives within

the detected metabolic steps and reactions, these reaction lists have

to be carefully validated manually and present preliminary results.

More evaluation of the mzGroupAnalyzer and further proof-of-

concept studies are needed in the future.

Nevertheless, mzGroupAnalyzer reported many reactions, which

were validated to be metabolic pathways: By investigating the

information from the MS2 spectra as well as comparing them with

published literature (e.g. [33], see Table 1), the presence of several

compounds of the anthocyanin family in the Arabidopsis plants was

revealed. Additionally, the program reported metabolic steps from

these compounds to previously undescribed m/z features, which

are suspected to be new anthocyanins. In Figure 5, it is shown how

a metabolic pathway is extracted by mzGroupAnalyzer. The

prediction of the pathway is validated by corresponding MS2

product ion spectra from the same data set. This pathway leads to

Table 1. Putative compounds including their mzGroupAnalyzer- predicted sum formulas, the corresponding exact mass as well as
dominant MS2 product ion fragments.

name or m/z
value

sum formula detected by
mzGroupAnalyzer exact mass main fragments mass accuracy (ppm) reference

A1 C32H39O20 743.20292 287, 581 0.35 Tohge et al. [33]

A2 C35H41O23 829.20331 287, 535, 581, 785 0.29 Tohge et al.

A3 C41H45O22 889.23970 287, 449, 727 20.11 Tohge et al.

A4 C43H49O24 949.26083 287, 449, 787 0.48 Tohge et al.

A5 C44H47O25 975.24009 491, 535, 727, 931 20.23 Tohge et al.

A6 C47H55O27 1051.29252 449, 889 20.27 Tohge et al.

A7 C52H55O26 1095.29761 449, 933 0.41 Tohge et al.

A8 C50H57O30 1137.29292 491, 535, 889 20.13 Bloor & Abrahams [40]

A9 C55H57O29 1181.29800 491, 535, 933, 1137 20.28 Bloor & Abrahams

A10 C58H65O31 1257.35043 449, 1095 20.07 Tohge et al.

A11 C61H67O34 1343.35083 491, 535, 1095, 1299 0.51 Bloor & Abrahams

A12 C26H29O15 581.15010 287, 449 0.43 Tohge et al.

A13 C35H35O17 727.18688 287, 581 0.23 Tohge et al.

A14 C37H39O19 787.20801 287 0.21 Tohge et al.

A15 C41H45O22 889.23970 287 20.14 Tohge et al.

A16 C46H45O21 933.24478 287, 727 0.28 Tohge et al.

A17 C52H55O26 1095.29761 449, 933 0.56 Tohge et al.

919 C42H47O23 919.25026 287, 757 0.16 -

991 C44H47O26 991.23501 491, 535, 743, 947 0.17 -

1005 C45H49O26 1005.25066 491, 535, 757, 961 0.28 -

1035 C46H51O27 1035.26122 491, 535, 787, 991 0.31 -

1065 C51H53O25 1065.28704 449, 903 0.29 -

1081 C51H53O26 1081.28196 449, 919 0.68 -

1111 C52H55O27 1111.29252 449, 949 0.36 -

1121 C53H53O27 1121.27687 491, 535, 873, 1077 0.13 -

1125 C53H57O27 1125.30817 449, 963 0.51 Saito et al. [39]

1151 C54H55O28 1151.28744 491, 535, 903, 1107 0.48 -

1167 C54H55O29 1167.28235 491, 535, 919, 1123 0.54 Kasai et al. [41]

1195 C56H59O29 1195.31365 505, 549, 947, 1151 0.49 -

1197 C55H57O30 1197.29292 491, 535, 949, 1153 0.28 Saito et al.

1211 C56H59O30 1211.30857 491, 535, 963, 1167 0.05 Saito et al.

1313 C60H65O33 1313.34026 491, 535, 1065, 1269 0.13 -

1329 C60H65O34 1329.33518 491, 535, 1081, 1285 0.43 -

1359 C61H67O35 1359.34574 491, 535, 1111, 1315 0.58 -

1373 C62H69O35 1373.37156 491, 535, 1125, 1329 0.67 -

1549 C72H77O38 1549.40873 535, 1301, 1505 0.57 -

The nomenclature is according to [33]. Compounds m/z 1125, 1197 and 1211 were found in Matthiola incana by [39].
doi:10.1371/journal.pone.0096188.t001
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a putatively novel compound m/z 1121 which was detected

automatically by mzGroupAnalyzer:

mzGroupAnalyzer detected reactions between the m/z signals 287,

449, 595, 727, 889, 975 and 1121. m/z 287, the core cyanidin

structure, is hexosylated to structure m/z 449, which itself shows

the intact cyanidin structure in its MS2 product ion scan and

which has been reported as cyanidin 5-O-glycoside [33]. A

coumaroyl group is then added to the sugar group in m/z 449,

resulting in compound m/z 595, while showing the previous two

compounds in the MS2 spectrum. To m/z 595, a 5-C sugar is then

added to the already existing hexose group – judged from the MS2

spectrum – forming compound m/z 727. In the MS2 spectrum of

m/z 727 (‘‘A13’’) only m/z 595 is visible, indicating that the sugar-

sugar bond is more prone for collision-induced dissociation (CID)

than the hexose-coumaroyl bond. Next, another metabolic shift of

+6C, +10H and +5O from m/z 727 to m/z 889 (‘‘A3’’) was

detected by mzGroupAnalyzer, which indicates a hexosylation

reaction. Indeed, MS2 fragmentation scans again showed peaks

at m/z 287 and m/z 449, as well as m/z 727 itself in the spectrum,

proving our assumptions that CID is happening in both positions,

3-O as well as 5-O. From m/z 889 to m/z 975, a malonylation step

was detected. In the product ion scans, the fragment m/z 727 is

again present, as well as a new peak at m/z 535, with m/z 449

nearly disappearing. m/z 975 has been reported as molecule ‘‘A5’’

before [33], and coincides with all our findings both in the

metabolic route as well as in the MS2 spectra. The last step in this

reaction list was detected to be a coumaroylation from m/z 975 to

m/z 1121. Again, fragment 535 is found in the MS2 scan, while

now a higher peak, m/z 873, emerges. We assume this peak is the

structure of m/z 727 with another coumaroyl group in position 2

of the xylose, as this position tends to carry further groups. The

peaks at m/z 1077 and m/z 931 in the MS2 product ion scan of m/

z 1121 and m/z 975, respectively, correspond to a decarboxylation

of the malonyl group in the native molecule. Furthermore the m/z

491 in these two MS2 product ion scans supports the decarbox-

ylation reaction of m/z 535. Figure 6 shows additional MS3

product ion scans of the isolated MS2 product ions m/z 535, 873

and 1077. Both MS2 peaks m/z 535 and 873 result in the core

cyanidin structure m/z 287 by undergoing MS3 fragmentation. m/
z 1077, the putatively decarboxylized form of m/z 1121, yields m/z
491, as observed in the MS2 spectrum already, by CID-cleavage of

the 3-O-glycosidic bond. Fragment m/z 873 arises again from the

CID-cleavage of the glycosidic bond at 5-O. m/z 1017 is a putative
structure generated by CID cleavage of an acetyl-group together

with a water loss (260 u). These findings lead us to propose m/z
1121 as compound ‘‘[Cy+2Glc+Xyl+2Cou+Mal]+’’, or systemat-

ically, cyanidin 3-O-[20-O-(690-O-(p-coumaroyl) xylosyl) 60-O-(p-

O-(glucosyl)-p-coumaroyl) glucoside] 5-O-(600-O-malonyl) gluco-

side. The resulting putative structure is shown in Figure 5.

mzGroupAnalyzer detected a differential appearance of various

anthocyanidins (see Table 1) during the different time points. m/z
287 was detected in all time points, m/z 449 after 2 days, and 595,

727, 889, 975 and 1121 only after 4 days of oxidative stress.

Following this strategy, 15 new compounds in Arabidopsis thaliana
could be proposed by investigating the mzGroupAnalyzer pathway
suggestions together with their product ion spectra m/z. Putative
compounds with their mzGroupAnalyzer- predicted sum formulas,

the corresponding exact mass as well as dominant MS2 product

ion fragments are summarized in Table 1.

Using these new substances in combination with confirmed

compounds from the literature, a network of the anthocyanin

family starting with the KEGG pathway was reconstructed

(Figure 7). Product ion scans of the new compounds and their

reconstructed structures can be found in the Figure S2.

Conclusions

In this study, we showed that the application of mzGroupAnalyzer
– a novel algorithm for untargeted identification of chemical

modifications in metabolome data – on time-dependent, high-

throughput LC-Orbitrap-FT-MS metabolomic profiles can give

new insights into biochemical pathways, and combined with MSn

scans has the power to validate known compounds and predict

Figure 6. Structure validation of m/z 1121 by MS3 product ion scans. Both MS2 fragments m/z 535 and 873 result in the core cyanidin
structure by undergoing MS3 fragmentation. m/z 1077, the putatively decarboxylized form of 1121, yields m/z 491, as observed in the MS2 spectrum
already, by scission of the 3-O-glycosidic bond. Fragment m/z 873 arises again from the breaking of the glycosidic bond at 5-O. m/z 1017 would
comply with the complete removal of the rest of the former malonyl group together with a water loss (260 u). A putative structure is given.
doi:10.1371/journal.pone.0096188.g006
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new structures. Attempts at assigning sum formulas to highly

resolved metabolomic data have been done before and have

proven to be very fruitful [34,35], yet it is clear that those

approaches ultimately have to be automatized. The visualization

of the elemental composition of metabolites on a van Krevelen

diagram is useful for recognition of metabolic patterns, which can

point to a structural similarity between those molecules.

The unambiguous structural assignment and stereochemical

elucidation of a compound is always a time-intensive process and

demands further validation from other analytical platforms, such

as NMR [7]. In our approach, we circumvent some of these issues

by capturing metabolic intermediates of a compound in the data

set, thus creating an additional layer of information. The

complementary analysis of product ion spectra associated with

the predicted chemical modifications of the precursor m/z-ratios

introduces novel aspects for structural elucidation of unknown

metabolites, and enables further validation. While the issues of

unambiguous sum formula annotation in high-resolution LC-MS

metabolomics still remain, and further application and validation

of other analytical techniques are needed, mzGroupAnalyzer proves

to be a convenient tool for tracking metabolic changes, thus sum

formulas, and inferring metabolic pathways from time-series data,

leading to the prediction of entirely novel, hitherto undescribed

compounds. Furthermore, mzGroupAnalyzer is able to handle time-

series data and is thus able to identify time-dependent chemical

modifications. Finally, mzGroupAnalyzer is connected with the

Pathway Viewer which plots corresponding pathways in a user

friendly way.

Several strategies will be implemented in future to further

improve the algorithm. First, the transformation frequency will be

used in future to rank sum formulas corresponding to the same m/

z feature. Secondly, more strict sum formula filtering criteria will

be applied in selecting correct sum formulas from m/z features

[36]. Thirdly, more reaction rules, and how these rules are

connected in a pathway, will be learned from metabolic pathway

databases ([37,38] for KEGG and MetaCyc).

Figure 7. A proposed network of the detected anthocyanin family featuring putatively novel compounds as well as known
structures including the KEGG pathway of anthocyanin biosynthesis [38,44]. Only compounds from the KEGG anthocyanin pathway are
depicted, for which a suitable precursor mass was found in the data. Exact masses, sum formulas, and main MS2 fragments of the new compounds
are compiled in Table 1; reconstructed structures together with MS2 scans are in the supporting information. The network was created with VANTED
[45,46].
doi:10.1371/journal.pone.0096188.g007
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Supporting Information

Figure S1 ‘‘S1 mzGA tutorial.pptx’’; tutorial for mzGroupAna-

lyzer in pptx format.

(PPTX)

Figure S2 ‘‘S2 MS2 putative cyanidins.pptx’’; recorded MS2

product ion scans of the putative new cyanins in pptx format.

(PPTX)

Table S1 Rules file for chemical and biochemical transforma-

tions.

(XLSX)
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Using ProtMAX to create high-mass-accuracy 
precursor alignments from label-free quantita-

tive mass spectrometry data generated in shotgun 
proteomics experiments

Various freely available, as well as commercial software for LC/MS data ex-
traction exist. While commercial solutions are mostly easy to handle for the 
user, they often do not state the details of the applied methods, in order to 
protect their product. Freely available software, on the other hand, isn’t always 
well-documented and often necessitates a more thorough understanding of the 
algorithms/filters to apply (specifically the order of filter application as well as 
which type of filter to apply, which can depend on the data at hand). Simple, 
robust, and fast solutions, capable of handling very large datasets, are needed.

Mass Accuracy Precursor Alignment (MAPA) is a freely available tool that 
offers the possibility to analyze and validate peptides without any previous se-
quence knowledge or dependency on a data base (Hoehenwarter et al. 2008; 
Egelhofer et al. 2013). Due to the high Mass Accuracy achieved by the “Orbitrap” 
Mass Spectrometer, the measured precursors can be identified and aligned with 
the ProtMAX algorithm, having the spectral counts or ion intensity counts of 
each precursor as a quantitative parameter. This means that the entire analysis 
can be performed on the peptide level, considerably increasing the amount of 
peptides detected. The database independency also permits the detection of yet 
unknown, modified, and mutated peptides that would not or only with consid-
erable difficulty be recognizable through a database-dependent analysis; there-
fore, enabling the search for new putative biological markers. After de-novo-
sequencing and through BLASTing against different databases, new evidence 
about cellular functions or analogies to similar proteins in other species can be 
derived.
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IntroDuctIon
The genome-wide measurement of differences in protein abun-
dance is the essence of proteomics. Thus far, the combination of 
liquid chromatography and mass spectrometry (LC-MS) has been 
indispensable for this endeavor. On-line or off-line multidimen-
sional chromatography can achieve considerable separation of 
the several hundreds of thousands of peptides that are the result 
of enzymatic cleavage of the proteome. The latest generation of 
high-resolution, high-mass-accuracy mass spectrometers can 
resolve and acquire a substantial fraction of these peptide ions 
in a single 1D LC-MS experiment and target them for tandem 
mass spectrometry (MS/MS) analysis1–3. In the past decade, very 
accurate measurements of peptide and protein abundance have 
been achieved, despite the vastly differing electrospray ioniza-
tion efficiencies of biomolecules4–11. As a result, state-of-the-art  
techniques have emerged, such as stable isotope dilution; metabolic 
labeling; and label-free quantitative measurements of proteomes  
of unicellular and multicellular organisms, as well as of their  
specific tissues12–17.

To understand molecular mechanisms, it is often necessary to 
compare protein levels across cellular states. The inherent complex-
ity of proteomics data requires statistical selection and testing to 
pinpoint significant features that may be of interest. In principle, 
shotgun proteomics approaches enable the detection of any pro-
tein in a given sample regardless of its concentration as long as the 
experiment is carried out a sufficiently large number of times6,18. 
High-quality proteomics profiling studies therefore often comprise 
tens to hundreds of shotgun proteomics analyses, thus producing 
hundreds of gigabytes to terabytes of data. This poses a consider-
able analytical challenge. Software must grasp and record the mul-
tivariate features of the data and the peptide ion signals, and it must 
map them to the data landscape for comparison. This will always 
come as a trade-off between the accuracy and comprehensiveness 
of feature detection and the computational cost.

Algorithms for analyzing MS data
Recently, new software tools have been developed for improved 
protein quantification using MS data. However, there are still 
limitations, especially in high-sample-throughput quantification 
methods, and most of these depend on extensive computational 
calculations in platforms such as MetAlign and MaxQuant19,20. 
We first published ProtMAX, a Windows Forms application in the 
Common Language Runtime (CLR) environment in 2008 (ref. 21). 
It was distinguished by feature detection with a single variable: 
the accurately measured peptide ion mass-to-charge ratio (m/z). 
This is the most informative feature parameter, and we used it to 
trace peptide ions in shotgun proteomics analyses for compari-
son. For the number of MS/MS spectra recorded for each m/z, we 
used the spectral count to quantify the peptide ions in the analysis. 
This concept, called mass accuracy precursor alignment (MAPA), 
proved to be very powerful for data-dependent MS combining fea-
ture detection and quantification at minimal cost, and thus made 
the comparison of nearly 200 shotgun proteomics analyses of 12 
tissue states possible22. The MAPA approach was also successfully 
applied to the detection and quantification of in vivo phosphoryla-
tion sites23. The current version of ProtMAX can additionally be 
used for LC-MS/MS-based metabolomics24,25.

Overview of ProtMAX
ProtMAX is a software tool that builds on the MAPA concept and 
includes several key features.

First, although the m/z measured with sub-p.p.m. error comes 
reasonably close to a unique definition of every tryptic peptide in the 
proteome of higher eukaryotes, it is overly simplistic. Indeed, it is not 
uncommon to observe two different baseline-separated peptide ion 
signals that share the same error-tolerated mass (m/z). ProtMAX pro-
vides a local retention time (Rt) window (Environment) in order to 
discriminate peptides that share the same error-tolerated mass (m/z)  
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precursor alignments from label-free quantitative 
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proteomics experiments
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recently, new software tools have been developed for improved protein quantification using mass spectrometry (Ms) data. 
However, there are still limitations especially in high-sample-throughput quantification methods, and most of these relate to 
extensive computational calculations. the mass accuracy precursor alignment (Mapa) strategy has been shown to be a robust 
method for relative protein quantification. Its major advantages are high resolution, sensitivity and sample throughput. Its 
accuracy is data dependent and thus best suited for precursor mass-to-charge precision of ~1 p.p.m. this protocol describes how 
to use a software tool (protMaX) that allows for the automated alignment of precursors from up to several hundred Ms runs within 
minutes without computational restrictions. It comprises features for ‘ion intensity count’ and ‘target search’ of a distinct set 
of peptides. this procedure also includes the recommended Ms settings for complex quantitative Mapa analysis using protMaX 
(http://www.univie.ac.at/mosys/software.html).
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but that do not elute within an expected Rt window. Thus, peaks 
eluting outside of the expected local Rt window will be placed in 
a different ‘bin’. Together with an absolute intensity–based noise 
filter, this is a simple yet effective means of incorporating the chro-
matographic Rt into the peptide definition without the necessity of 
complex peak detection algorithms and the accompanying marked 
increase in computational cost.

Spectral counting is a popular strategy for LC-MS/MS–based 
differential protein expression analyses4–6. It refers to the total 
number of MS/MS spectra assigned to a protein. We provide sev-
eral options for expanding peptide quantification. In addition to 
counting dependent MS/MS spectra (spectral count), it is also pos-
sible to count the accurately measured precursor ions (m/z) of a 
given peak, again anchored by a dependent MS/MS spectrum. We 
call this the ion count. Here the peak is defined by the peak width 
setting (Environment Rt). The absolute signal intensity of the m/z 
can also be summed for intensity-based quantification, called ion 
intensity count.

These concepts in label-free quantification offer an increase in 
dynamic range and absolute signal. In a traditional spectral count 
approach, missing values can occur if the precursor has not been 
triggered for MS/MS in all replicates. As ion count and ion intensity 
count are independent of MS/MS spectral information, these fea-
tures have a smaller number of missing values, thereby potentially 
improving quantification accuracy, particularly of low-abundance 
peptides. They also increase the resolution of a ‘peak’, resulting in 
more accurate quantitative ratio calculations. ProtMAX is an effi-
cient, user-friendly and robust quantification tool. There is no need 
for complex preprocessing and knowledge of Java and R program-
ming. It is optimized for huge proteomics data sets and is unique 
in its selection of m/z features on the basis of the MS/MS trigger.  
A workflow overview is given in Figure 1.

In principle, ProtMAX is not restricted to any MS instrument. 
However, the quality of the output depends on the quality of the 
input. For instance, for low-mass-accuracy data (>10 p.p.m.), the 
threshold for the mass-binning process is less stringent. As for 
protein identification, low mass accuracy will lead to less accurate 
results. Quantification comprises the comparison of different MS 
analyses. ProtMAX compares MS data derived from LC separations. 
High chromatographic variability between samples can impede 
comparison, or in worst cases, even render it impossible.

In the PROCEDURE, there are two approaches that are referred 
to as ‘unbiased’ (Steps 1–10) and ‘targeted’ (Steps 11–15). In addi-
tion to the unbiased approach, which creates a matrix from all of 
the precursors identified in the MS/MS data (Steps 1–10), ProtMAX 
also allows for known target-peptide extraction with specific m/z 
and Rt (Steps 11–15). Instead of using the MS/MS level for m/z 
precursor selection (unbiased approach), ProtMAX extracts all  
m/z precursors that have been uploaded using a target list (Fig. 2).

Orbitrap MS
instrument
settings
(Equipment
Setup)

Proteomic LC-
MS/MS analyses

ProtMAX settings: ProtMAX matrix
Data mining

Unbiased

Targeted

Unbiased
(Steps 1–10;
Figs. 3 and 4)
Targeted
(Steps 11–15;
Fig. 5)

Figure 1 | Workflow diagram from MS analysis to a quantitative protein data 
matrix.

A

1 779.88 46.6

B

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

516.26

639.78

829.43

821.4

510.24

715.86

484.73

458.25

761.89

613.3

697.85

692.84

680.35

574.79

30.7

23

51.9

36.7

17.8

42.7

6.4

33.7

31.4

30.5

48.1

58.1

39.6

20.4

Figure 2 | Target list example. This file is a tab-delimited text file with two 
columns. Column A contains m/z values; column B contains Rt in minutes.

MaterIals
EQUIPMENT

Mass spectrometer: we recommend an LTQ Orbitrap family mass  
spectrometer (Thermo Scientific) and Xcalibur software (any other  
high-mass-accuracy MS instrument can be used); the instrument should be 
coupled to an HPLC system

Computer
Operating system: XP, Vista or Windows 7
Computer processor: Intel Core 2 Duo or better
Computer memory: 2 GB or 4 GB or more recommended
ProtMAX (http://www.univie.ac.at/mosys/software.html)
RAW to mzXML file converter (MassMatrix MS Data File Conversion, v3.9, 
http://www.massmatrix.net/mm-cgi/downloads.py). According to  
MassMatrix, it is running on Windows PC (XP/7, 32/64 bit). The file  
converter does not need any particular options

•

•
•
•
•
•

Excel (Microsoft), MATLAB (MathWorks), or other appropriate software 
depending on data analysis requirements

Input data files
Data need to be uploaded as mzXML files (please find test files from Fig. 3 
for download at http://www.univie.ac.at/mosys/software.html)

EQUIPMENT SETUP
Instrument settings ProtMAX is not restricted to any specific mass spectrom-
eter. However, the better the mass accuracy and LC performance, the better 
the results. Our recommended settings for quantitative analysis using an LTQ 
Orbitrap mass spectrometer are described in Box 1 (Fig. 4).
Calibration In addition to standard instrument mass calibration according 
to the manufacturer’s instructions, an additional real-time recalibration  
using internal Lock Mass calibrant molecules from an antiperspirant 
 containing polydimethylcyclosiloxane may be used26.

•

•
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Tissue compatibility To our knowledge, any  
tissue can be analyzed if protein extraction and 
sample handling are compatible with MS.  
In general, there is no optimal protocol for all  
tissues. However, there are recommended  
protocols27. A discussion about different  
MS-compatible plant protein extraction  
methods can be found here28.
HPLC separation A shotgun approach using 
HPLC coupled to MS is required. For higher 
sensitivity, nano-flow HPLC systems using 
reversed-phase columns suitable for low flow 
rates (with an inner diameter of ~75 µm) are 
recommended. We usually use a monolithic 
column (150 mm × 0.1 mm) (Merck) that 
seems to be very robust for large-scale sample 
analyses21–23.

Data for sample 1

a b c d e

Data for sample 2

m/z Charge state Count [all] al1_1 [Sum] al1_1 [Scan] al1_1 [Rt] al2_1 [Sum] al2_1 [Scan] al2_1 [Rt]

300.63
301.14
301.14

4.04E+07
2

2.79E+0 8
1187943
1015228

1.78E+0 7
0

0 0 0 0 2836 19.10

2204752
4911157
2918113
4871819
2817526
329421.6

0
151484.2
1.76E+07
183358.7
3423541
1590284
1836817
1.14E+07
3923815
2900347
459961.8
1950017
869223.5
1703308
1909969
1127298
2690541
6898012
186875.8
1.45E+07
81385.92
3706743
8429528

0
2006294
793937.9
254061.6
3778490
487654.6
845292.3

0

1.94E+07
1.43E+08
671294
243529

1.10E+07
0

2078326
2622588
1525773
2289013
1873275
102788.5

0
61681.82
1.17E+07

0
1637935
1244236
631394.7
4974495
1063879
2454803
114685.2
938587.5
642399

810197.1
0

691543.3
692244.7
2936522
186875.8
8890250

0
1800053
3898936

0
761097.1
501277.3

0
624560.6
44127.66
125796.6

0

2486
466
1197
1652
1327
2959
1278
723
150
625
925
1101

0
1628
692
0

2312
830
1527
405
981
4011
2061
918
2012
1224
1030
1975
2816
1176
3208
477
2228
970
1079
2783
683
2428
1632
5993
2202
2473
5525

17.3
4.7
10.1
12.6
10.8
19.9
10.5
7.1
1.5
6.3
8.5
9.5
0

12.5
6.9
0

16.3
7.8
11.9
4.1
8.9
26.1
14.9
8.5
14.6
10.2
9.1
14.4
19.1
10

21.4
4.9
15.8
8.8
9.4
18.9
6.8
16.9
12.5
38

15.7
17.2
35.1

2535
688
974
1712
1369

0
1582
777
438
441
1000
1160
931
1666
910
1621
1962
638
1562
420
1020
4020
2157
949
2071
1287
1062
2053
2878
1219
3325
860
2313
1027
1109
2855
729
2633
1664
5950
2482
2527
5591

17.4
6.7
8.6
12.8
10.9

0
12
7.4
4.3
4.3
8.8
9.7
8.4
12.5
8.2
12.2
14.1
6.3
11.9
4.2
8.9
25.9
15.2
8.5
14.8
10.4
9.1
14.7
19.3
10

21.9
7.9
16.1
8.9
9.4
19.2
7.1
17.9
12.5
37.6
17.1
17.3
35.4

302.16
302.67
303.17
303.19
304.16
304.17
305.18
305.68
306.13
307.15
307.64
308.19
308.19
308.64
308.67
308.69
308.69
309.18
309.18
309.2
309.67
309.69
310.17
310.18
311.16
311.17
311.2
311.68
312.15
312.17
312.17
312.19
312.21
312.62
312.69
313.17
313.71
314.15
314.17
314.65
314.66

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2.10E+07
1.36E+08
516649.2
771699.3
6882081

0
126426.5
2288569
1392340
2582806
944250.9
226633

0
89802.35
5919995
183358.7
1785607
346048.4
1205423
6406557
2859936
445543.9
345276.5
1011430
226824.5
893110.6
1909969
435754.6
1998296
3961490

0
5649625
81385.92
1906690
4530592

0
1245197
292660.6
254061.6
3153929
443526.9
719495.6

0
...

Figure 3 | ProtMAX output file. Samples 1 and  
2 correspond to the test sample in the Equipment 
section. (a) Charge state (no information for 
target approach). (b) Sum across all samples.  
(c) Sum of ion intensity counts specific for 
sample 1 (can also be SC or Ion count, depending 
on the selected method). (d) Scan number of the 
most intense ion signal of the corresponding m/z 
value specific for sample 1. (e) Rt of the most 
intense ion signal of the corresponding m/z value 
specific for sample 1.

 Box 1 | Instrument settings for the protein shotgun LC-MS/MS analysis using 
an Orbitrap MS 
The recommended LTQ Orbitrap MS settings are also shown in Figure 4.
(a) Ms1 settings and internal lock Mass calibration
 crItIcal Before starting the LC-MS analysis, an Orbitrap mass calibration is recommended.
1. Set micro-scans to 3.
2. Check for spray stability.
3. Run a protein standard digest (e.g., BSA) to check chromatographic performance.
4. For each Fourier transform MS (FTMS) scan event (Scan Event 1), a resolution of 30,000 may be used. Scan range may be from 300 to 
1,800 (Fig. 4a). Multiple replicate measurements are required for large-scale shotgun proteomics to achieve robust statistical signifi-
cance. We usually use 6–15 independent MS analyses for each condition21–23. The replicate analysis must not be performed in sequence 
to exclude possible technical bias. For better reproducibility, experiments may be analyzed in one batch. At present, the most common  
normalization for label-free MS analysis may be the total ion current, but other methods are discussed29. In the future, ProtMAX will 
allow for automated internal standard normalization.
5. The Lock Mass can manually be set to any value (e.g., 445.12002 or 371.10123 m/z for polydimethylcyclosiloxane, see Equipment 
Setup and Fig. 4a), the difficulty being the known elemental composition of the respective molecule. To achieve a steady supply of 
calibrant molecules over the entire LC/MS run, we used Lock Mass protection according to Lee et al.26.
(B) Ms/Ms scan events
1. For each MS/MS analysis, use 5–10 dependent ion trap MS scans (Scan Event 2–6 or 2–11) (Fig. 4b).
(c) Dependent ion trap Ms scan
The following settings are recommended if not default (Fig. 4c):
1. Dynamic Exclusion: set Repeat count 1, Repeat duration 20 s, Exclusion list size 500, Exclusion duration 60 s, Exclusion mass width 
10 p.p.m. relative to reference mass.
2. Current Segment: set Enable preview mode for FTMS master scans.
3. Charge State: set Enable charge state screening, Enable monoisotopic precursor selection, Enable charge state rejection, reject 
charge state 1 and unassigned charge states.
4. Current Scan Event: set Minimum signal threshold to 1000 counts. Note: this threshold should be relatively high to allow for an 
MS/MS trigger closer to the peak apex.

(continued)
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a c

b

Figure 4 | Graphical user interface of the Xcalibur MS instrument setup. The settings for the protein analysis are indicated by green circles that are numbered 
according to the steps in Box 1 (Instrument settings for the protein shotgun LC-MS/MS analysis using an Orbitrap) in which they are described. (a) MS1 
settings and internal Lock Mass calibration. (b) MS/MS Scan Events. (c) Data-dependent settings for MS/MS scan events.

 Box 1 | Instrument settings for the protein shotgun LC-MS/MS analysis using 
an Orbitrap MS (continued)
Instrument settings for the metabolite lc-Ms/Ms analysis
We suggest changing the following settings for metabolite analyses compared to those introduced in (A) (MS1 settings and internal 
Lock Mass calibration).
1. A low scan range limit for metabolomics experiments usually needs to be set, e.g., 140 to 380 m/z.
2. For very complex samples a resolution of 60.000 is recommended.
3. For metabolite analyses an accurate inclusion mass screening (AIMS)29 may be used for confirmation of identity.
4. Only one data-dependent MS/MS scan using three micro scans is recommended.
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proceDure
protMaX settings for unbiased protein matrix generation
 crItIcal The ProtMAX settings are also shown in Figure 5. 
 crItIcal Steps 1–10 cover the settings for Preferences if 
the data accuracy is ≤10 p.p.m. In the case of less-accurate 
data, the ′Decimals′ threshold (Step 2) needs to be adapted.

1| For a traditional spectral count (summed number of 
all MS/MS spectra triggered for a specific m/z value)-based 
quantification, use Method ‘Spectral Count’ and Quantifica-
tion ‘Count’. For the ion count (summed number of all  
precursor ions belonging to a specific m/z value within a 
specified Rt window), select Method ‘Ion Count’ and  
Quantification ‘Count’, and for ion intensity count (summed 
intensity counts of all precursor ions belonging to one m/z 
value within a specified Rt window), use Method ‘Ion Count’ 
and Quantification ‘Intensity’.

2| Set Decimals to the expected data accuracy. In our case (≤10 p.p.m.), set Decimals to ‘2’ and ‘Cut’, which means that 
the m/z value is not rounded up or rounded down; it is merely cut off at the second digit.

3| Choose Unite Neighbors if you observe a mass shift  
(in this case at the second decimal, see Step 2). In other words, two precursor masses with a mass shift of ± 0.01 m/z 
eluting at the same time (occurring in the same Rt window, and thus most probably belonging to the same peptide) will be 
treated as one peptide. Neighboring precursor masses with a mass shift of ± 0.01 will be merged and treated as one peak  
(in the case of two decimals). Note: these mass shifts may also occur in rare cases because of differential mass rounding of 
the mzXML files compared with the RAW data.

4| It is possible to choose a Rt cutoff around the expected Rt, and thus to ensure that, for example, peaks eluting during 
equilibration phases will be excluded from further consideration.

5| It is possible to filter the charge state. ProtMAX will only select those monoisotopic precursor masses of acquired  
MS/MS scans with the selected charge state(s) if it was enabled in the MS analysis. In the case of protein quantification,  
we recommend leaving ′charge state 1 + ′ unchecked.

6| Define the largest peak width. In the case of MS/MS-based precursor selection (untargeted), we recommend increasing 
the Environment setting by up to three times the observed peak width because the MS/MS (m/z anchor of the Rt window) 
might have been recorded at the beginning of the peak. The Environment setting allows discriminating between peptides 
of identical m/z ratio because it is not very likely that two peptides of the exact (± 10 p.p.m.) same mass and charge state 
elute at the same time. If Environment is used, it is a constant width, as it defines the peak width for the whole analysis. 
Note that it is better to use a higher peak-width setting than a lower peak-width setting.

7| The intensity expected describes the upper limit of the background noise. The default setting is 1% of the maximum 
peak intensity.

8| The default setting of the minimum number of counts required to accept a peak is 8.

9| Choose a path for the output file or use the default setting. The checked ‘Launch Excel’ application will automatically 
open an Excel result file after processing (Fig. 2). Uncheck this if Microsoft Excel is not installed. A full version of the output 
file for Figure 4 can be downloaded at http://www.univie.ac.at/mosys/software.html.

10| RAW MS files must be converted to mzXML for upload into ProtMAX. Upload mzXML files by navigating to File→Import. 
Mark all desired files for import. 
? trouBlesHootInG

Figure 5 | Graphical user interface of ProtMAX. The settings for the unbiased 
peptide matrix generation are indicated by green circles that are numbered 
according to the PROCEDURE steps in which they are described.
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protMaX settings for targeted protein or metabolite matrix generation
! cautIon Because of the lack of information concerning the precursor charge state of the MS1 level within the mzXML file 
format after conversion of original MS RAW files, the target list quantification does not allow for charge-state matching.  
This also means that there is no charge-state restriction/filter for the targeted analysis available. Consequently, by using 
target mode, the mzXML format does not allow distinguishing between the monoisotopic and isotopomeric masses. 
 crItIcal As the target analysis is restricted to the MS1 level, it can be performed with both LC-MS/MS and LC-MS  
(full scan only). Compared with LC-MS/MS analysis, pure LC-MS may result in more data points (ion counts) for the MS1 level, 
as there is no loss in time for MS/MS scans. Thus, short gradients are possible. This approach may also be used to analyze  
MS data from metabolomics experiments. 
 crItIcal An Rt filter with each target is recommended, but this information is optional. When information for the Rt is 
given, ProtMAX only extracts quantitative information from this region of the chromatogram (± Environment settings).  
This will reduce the output file to the expected data and will thus facilitate data analysis.

11| Prepare a target precursor mass list containing all mass-to-charge ratios (m/z) of the peptide(s) of interest (Fig. 2).

12| Load the target list into ProtMAX: File→Load target list. The target list should be a tab-delimited text file without 
header, including the m/z values cut to the second decimal or more (rounding off the m/z data might degrade 1 p.p.m.  
accuracy) of the peptides of interest (targets) in row A.

13| In Preferences, select Method ‘Target List’ and Quantification ‘Intensity’.

14| Rt can be set for each target if it is added to the target list: m/z values in row A (according to Step 11) and Rt values 
in row B (Fig. 2). If there is more than one peptide with identical m/z (e.g., ± 10 p.p.m.), the Rt specification narrows the 
output down to the target of interest. If the Rt of the target of interest is not given, several hits of identical m/z ratios but 
different Rt and scan numbers, and perhaps charge states, will be listed in the ProtMAX output file. Note that if the  
Environment setting is disabled, all m/z values will be binned together, regardless of the Rt. This setting can be used for 
data mining of direct infusion (flow injection) analysis.

15| See ‘ProtMAX settings for unbiased protein matrix generation’ Steps 1–10 for other settings.

Data output and mining
16| For further statistics (e.g., to examine the relationship between two or more variables), the data matrix generated by 
ProtMAX (Fig. 3) can be uploaded into the freely available MATLAB toolbox COVAIN29 or analyzed with any other software of 
choice after removing the columns for Rt and scan number.

? trouBlesHootInG
The current version of ProtMAX has been extensively tested and is very stable. We welcome feedback and would like to hear 
of any bugs that you encounter. General errors you may experience include the following:

File Access Error. This message appears when you are trying to import an mzXML file while the resulting file from the 
 previous analysis is still open within Excel. Excel will lock it exclusively, and thus you must close the file before proceeding.
Error Target List. This error occurs when the ‘Target List’ method is selected and the user tries to import the mzXML files  
before importing a target-list file.

● tIMInG
The total duration of the protocol is dependent on the number of MS analyses and the file size. The time required for the 
initial MS instrument setup is about 10 min.

The nanoLC-MS/MS analysis time for a complex sample usually is ~90 min, including gradient and column equilibration.  
It is thus the limiting step. Conversion of RAW files (around 150 MB) to mzXML files takes about 10 s per file. The conver-
sion leads to data reduction, but depending on the number of RAW files, it may require some additional disc space. The MAPA 
matrix generation using ProtMAX is typically in the range of minutes. For instance, the generation of the matrix for 183 LC-MS 
runs took less than 1 h on a quad-core personal computer22.

antIcIpateD results
ProtMAX will create a data matrix in a tab-delimited format. The files can be opened with Microsoft Excel. Each row of 
the data matrix will contain values of the chosen method corresponding to the m/z values of a given sample, as well 

•

•
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as the Rt and the scan number extracted from the LC-MS/MS data corresponding to the most intense MS signal from 
which the MS/MS was triggered. The ProtMAX result is database independent and does not provide protein or  
metabolite identifications.

After statistical filtering, the interesting m/z precursor masses of corresponding peptides can be matched against 
database-dependent search results. As precursor masses (m/z) of the ProtMAX output file depend on the measured and 
MS/MS-triggered masses of the MS analysis, they are identical to the list of masses used for identification (the measured, 
not calculated, m/z). MS/MS spectra of unidentified candidates can be extracted from the LC-MS/MS analysis for further 
identification.
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Phytochemical composition of Potentilla anserina 
L. analyzed by an integrative GC/MS and LC/MS 

metabolomics platform

Despite the knowledge of desirable effects of herbal remedies, the responsible 
bioactive compounds are often unknown. Modern analytical techniques, such 
as nanoLC/MS (specifically a Mass Spectrometer with high Mass Accuracy 
and Mass Resolving Power such as the LTQ-Orbitrap), enable the detection of 
a plethora of compounds. The phytochemical analysis and comparative char-
acterization of various sources and extraction methods of the medicinal plant 
Potentilla anserina L. revealed the presence of compounds never reported for 
this species, as well as strongly varying concentrations of the bioactive ingre-
dient Genistein. The Isoflavon Genistein, a so-called secondary compound, is 
known to occur in other plant genera such as Glycine and Trifolium. Generally, 
Flavonoids are ubiquitous compounds, and are amongst other properties well-
known for their colorful chromophores and antioxidative properties, and are 
even used as dietary supplements.
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Abstract Potentilla anserina L. (Rosaceae) is known for

its beneficial effects of prevention of pre-menstrual syn-

drome (PMS). For this reason P. anserina is processed into

many food supplements and pharmaceutical preparations.

Here we analyzed hydroalcoholic reference extracts and

compared them with various extracts of different phar-

macies using an integrative metabolomics platform com-

prising GC-MS and LC-MS analysis and software

toolboxes for data alignment (MetMAX Beta 1.0) and

multivariate statistical analysis (COVAIN 1.0). Multivari-

ate statistics of the integrated GC-MS and LC-MS data

showed strong differences between the different plant

extract formulations. Different groups of compounds such

as chlorogenic acid, kaempferol 3-O-rutinoside, acacetin

7-O-rutinoside, and genistein were reported for the first

time in this species. The typical fragmentation pathway of

the isoflavone genistein confirmed the identification of this

active compound that was present with different abun-

dances in all the extracts analyzed. As a result we have

revealed that different extraction procedures from different

vendors produce different chemical compositions, e.g.

different genistein concentrations. Consequently, the

treatment may have different effects. The integrative

metabolomics platform provides the highest resolution of

the phytochemical composition and a mean to define subtle

differences in plant extract formulations.

Keywords Medicinal plants � Metabolomics � GC-MS �
LC-MS � Flavonoids � Genistein � Mass accuracy precursor

alignment (MAPA)

1 Introduction

Potentilla anserina L. (silverweed) belongs to the family of

Rosaceae and its extracts have been used for a long time in

traditional medicine. The gynecological indication for

P. anserina is based on pharmacological studies showing

that the herb increases the tonus of the isolated uterus in

various animal species (Schulz et al. 1998). Additionally,

extracts of the aerial and/or underground parts have been

applied in traditional medicine for the treatment of

inflammations, wounds, certain forms of cancer, infections

due to bacteria, fungi and viruses, diarrhoea, diabetes

mellitus and other ailments (Bundesgesundheitsamt 1985,

1990). Tomczyk and Latté report that P. anserina (aerial

parts or the whole plant) and other Potentilla species are

generally used to prepare homeopathic medications

(Tomczyk and Latté 2009) according to homeopathic

pharmacopoeias like Homeopathic Pharmacopoeia of the

United States (HPUS) and German Homeopathic Pharma-

copoeia (HAB) (Hiller 1994). For this reason P. anserina is

processed into many food supplements and pharmaceutical

preparations such as teas, tinctures, capsules, tablets, and

juice and is consumed by women in order to prevent the

symptoms of pre-menstrual syndrome (PMS).
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Despite all these positive effects, so far only limited

analytical information of the chemical composition on

P. anserina is available (Swiezewska and Chojnacki 1989;

Kombal and Glasl 1995; Schimmer and Lindenbaum

1995; Tomczyk et al. 2010; Xu et al. 2010). In particular

mass spectrometric data of the chemical composition of

P. anserina are still lacking. These could however be

helpful for the evaluation of physiological properties of

individual plant secondary metabolites and for stability

studies of pharmaceutical preparations. HPLC coupled to

mass spectrometry (LC-MS) proved to be a very useful tool

and is largely applied to the characterization of plant sec-

ondary metabolites. Gas chromatography coupled to mass

spectrometry (GC-MS) provides complementary data to

LC-MS analysis comprising small polar chemicals such as

organic acids, sugars, amino acids, sugar alcohols and

many more (Scherling et al. 2010; Weckwerth 2010). The

aim of the present work is to characterize the phytochem-

ical profile of hydroalcoholic extracts of P. anserina and its

commercial products prepared by different pharmacies

using a comprehensive metabolomics platform integrating

GC-MS, LC-MS and multivariate statistics (Fig. 1).

2 Materials and methods

2.1 Chemicals

Chloroform, ethanol (absolute), methanol, n-butanol, petro-

leum ether (HPLC grade), were purchased from Sigma-

Aldrich (Vienna, Austria) in Chromasolv� grade as well as

pyridine over molecular sieve (GC-grade). Acetonitrile

(HPLC grade) and formic acid were obtained from Merck

(Darmstadt, Germany). Chlorogenic acid was purchased from

Roth (Graz, Austria), genistein, quercetin-3-O-glucoside and

D-sorbitol, b-alanine, arabinose, asparagine, citric acid,

D(-)quinic acid, fructose, glucose, glyceric acid, glycerol,

glycine, L-alanine, L-aspartic acid, L-leucine, L-serine, L-thre-

onine, malic acid, mannitol, myo-inositol, phenylalanine,

pinitol, proline, sucrose, trehalose, valine and, xylose were

purchased from Sigma-Aldrich (Vienna, Austria), kaempfer-

ol-3-O-glucoside was obtained from Extrasynthese (Genay,

France). Myricetin-3-O-rhamnoside and quercetin-3-O-glu-

curonide were isolated by size exclusion chromatography and

semipreparative HPLC with UV detection from the hydroal-

coholic extract of P. anserina and their structures were

characterized by 1D and 2D nuclear magnetic resonance

(NMR). For derivatization methoxyamine hydrochloride and

N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) were

purchased from Sigma-Aldrich (Vienna, Austria), as well as

retention index marker alkanes (all even C10–C40). HPLC

grade water (18.2 mX) wËas prepared using aMilliporeMilli-

Q purification system (Millipore Corp., Bedford, MA, USA).

2.2 Plant material

Potenilla anserina air-dried plant parts were purchased

from Minardi s.r.l. (Bagnacavallo, Ra, Italy). 500 g of

whole plant parts were extracted with petroleum ether three

times. After filtration the raw material was extracted three

times with chloroform and finally with 70 % EtOH fol-

lowing the same procedure performed with petroleum

ether. The collected alcohol-aqueous extract (Panserin-

aUniSa) was dried under vacuum.

Fig. 1 Metabolomics platform for the characterization of medicinal plants integrating GC-MS, LC-MS, alignment tools and statistical analysis

using COVAIN (Sun and Weckwerth 2012)
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A second extract (PanserinaUniVie) was prepared

using a grinding mill system MM400 from Retsch (Haan,

Germany). 250 mg of ground plant material was extracted

with 25 mL of a solution of methanol/chloroform/water

(2.5:1:0.5, v:v:v) (Weckwerth et al. 2004) and then vortexed

for 10 min followed by 8 min incubation. The sample was

then centrifuged for 4 min at 3,4009g and the supernatant

was separated from the pellet. 5 mL of distilled water were

added to the supernatant, followed by 10 s shaking on a

vortex and 2 min centrifugation at 3,4009g. The alcoholic-

aqueous phase was dried under vacuum.

Five mother tinctures were acquired from five drug-

stores (# 1, 2, 3, 4 and 5) in Vienna. For each of them 1 mL

was dried under vacuum.

All samples were analyzed by gas chromatography and

liquid chromatography coupled to mass spectrometry. For

data analysis (see below) all sample injections were nor-

malized against corresponding extract dry weights.

2.3 Extract derivatization and GC-MS analysis

The protocol for GC-MS analysis was performed according

to Weckwerth et al. (2004) with slight changes. Before

derivatization 25 lL of 13C-D-sorbitol (0.02 lg lL-1)

were added to all samples as internal standard. Samples

were derivatized in two steps. First 20 lL methoxyamin-

ation mixture (40 mg mL-1 methoxyamine hydrochloride

in dry pyridine) were added and incubated for 90 min at

30 �C in a thermo shaker. Then 80 lL of N-methyl-N-tri-

methylsilyltrifluoroacetamide (MSTFA) silylation mixture

including retention index marker were added (30 lL of

alkane mixture (even-numbered C10-C40-alkanes, each

50 mg L-1) and incubated for 30 min at 37 �C.
Derivatized samples were centrifuged and 50 lL of

supernatant was transferred to GC-vials with micro inserts

and closed with crimp caps.

GC-MS analyses were performed on a ThermoFisher

Trace gas chromatograph coupled to a Triple Quadrupole

mass analyzer (Thermo Scientific TSQ Quantum GCTM,

Bremen, Germany). 1 lL of derivatized sample was

injected at a constant temperature of 230 �C in splitless

mode with a deactivated Siltek liner (Restek). Each sample

was measured three times with the same conditions to get

technical replicates.

GC separation was performed on a HP-5MS capillary

column (30 m 9 0.25 mm 9 0.25 lm) (Agilent Technol-

ogies, Santa Clara, CA), at a constant flow 1 mL min-1

helium. Initial oven temperature was set to 70 �C and hold

for 1 min, followed by a ramp to 76 �C at 1 �C min-1 and

a second ramp at 6 �C min-1 to 350 �C hold for 1 min.

Transfer line temperature was set to 340 �C and post run

temperature to 325 �C for 10 min.

Table 1 Compounds occurring in P. anserina hydroalcoholic

extracts measured by GC/EI(TSQ)MS

Compounds Rt (min) Fragments

m/z

1. Glycolic acid (2TMS) 9.50 147

2. Alanine (2TMS)a 10.28 116

3. Unknown 1 11.36 133

4. Unknown 2 12.59 281

5. Valine (2TMS)a 13.53 144

6. Leucine (2TMS)a 15.03 158

7. Glycerol (3TMS)a 15.24 205

8. Proline (2TMS)a 15.59 142

9. Glycine (3TMS)a 15.81 174

10. Succinic acid (2TMS) 16.06 247

11. Glyceric acid (3TMS)a 16.60 189

12. Serine (3TMS)a 17.30 204

13. Threonine (3TMS)a 17.91 218

14. Malic acid (3TMS)a 20.18 233

15. Pyroglutamic acid (2TMS) 20.57 156

16. Threitol or erythritol (4TMS) 20.67 156

17. Aspartic acid (3TMS)a 20.73 232

18. 4-amino butyric acid (3TMS) 20.79 174

19. Unknown 3 21.73 292

20. Unknown 4 22.13 307

21. Phenylalanine (2TMS)a 22.67 192

22. Asparagine (3TMS)a 23.61 188

23. Arabinose (1MeOx) (4TMS)a 23.76 103

24. Xylose (1MeOx) (4TMS)a 24.05 217

25. Xylitol or ribitol (5TMS) 24.80 217

26. 2-desoxy-pentos-3ylose (2MeOx)(2TMS) 25.30 231

27. Unknown 5 25.79 257

28. Lyxonic acid (5TMS) 25.90 292

29. Shikimic acid (4TMS) 26.25 204

30. Carbohydrate 26.30 217

31. Citric acid (4TMS)a 26.43 273

32. Carbohydrate (5TMS) 26.50 204

33. Glucopyranoside (5TMS) 26.64 204

34. Pinitol (5TMS)a 26.76 217

35. Quinic acid (5TMS)a 27.24 345

36. Fructose (1MeOx) (5TMS)a 27.60 307

37. Hexose (5TMS) 27.78 191

38. Glucose (1MeOx) (5TMS)a 27.91 319

39. Mannitol (6TMS)a 28.43 319

40. Unknown (inositol isomer) 28.82 305

41. Glucopyranoside (5TMS) 29.27 217

42. Carbohydrate (glucopyranoside 5TMS) 29.28 204

43. Gluconic acid (6TMS) 29.59 333

44. Unknown 6 30.04 204

45. Myo-inositola (6TMS) 30.89 305

46. Sucrose (8TMS)a 38.61 361

Phytochemical composition of Potentilla anserina L. 601
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Mass analyzer was used in full scan mode scanning a

range from m/z 40–800 at a scan time of 250 ms. Electron

impact (EI) ionization was used at 70 eV and ion source

temperature was set to 250 �C.
Metabolite derivatives were identified by matching reten-

tion time as well as mass spectra (see Table 1) with those of

the corresponding reference standards and by comparison

with an in house mass spectral library. Metabolites were

considered identified with a spectral match factor higher than

850 and RI-deviation lower than 10. Deconvolution was

performed with AMDIS (Stein 1999) and quantification with

LC-Quan2.6.0 (Thermo Fisher Scientific Inc.). For statistical

analyses aMatlab tool calledCOVAINwas used that provides

a complete workflow including uploading data, data prepro-

cessing, data integration and uni- and multivariate statistical

analysis (Sun and Weckwerth 2012).

2.4 NanoLC-Orbitrap-MS/MS analyses

For all the samples described in the plant material section,

0.12 lg lL-1 water/acetonitrile (95:5, v:v) 0.1 % formic

acid solutions were prepared and centrifuged at

13,0009g for 3 min. For each of them, 5 lL were used for

LC-MS and MS/MS analysis in triplicates.

A 1D plus nanoUHPLC system (Eksigent, Dublin,

Ireland) was equipped with an autosampler and the employed

column was a Waters nanoAcquityHSS T3, 1.8 lm,

100 lm 9 100 mm. The mobile phases were water 0.1 %

formic acid (A) and 90 % acetonitrile in water 0.1 % formic

acid (B) at a flow rate of 500 lL min-1. The LC conditions

were 5 % B during 0–3 min, a linear increase from 5 to 20 %

B during 3–25 min, from 20 to 40 % B during 25–40 min

and from 40 to 50 % B during 40–55 min, finally from 50 to

95 % B during 55–63 min followed by 15 min of mainte-

nance. A Thermo Electron LTQ-Orbitrap XL mass spec-

trometer equipped with a nano electrospray ion source

(ThermoFisher Scientific, Bremen, Germany) and operated

under Xcalibur 2.1 version software, was used in positive

ionization mode for the MS analysis using data-dependent

automatic switching between MS and MS/MS acquisition

modes. The instrument was calibrated using the manufac-

turer’s calibration standards. The scan was collected in the

Orbitrap at a resolution of 30, 000 in a m/z range of

150–1,800. In order to achieve even higher mass accuracy a

lock mass option was enabled in both MS and MS/MS mode

and the cyclomethicone N5 ions generated in the electrospray

process from ambient air (m/z = 371.101230) were used for

internal recalibration in real time. This allowed mass accu-

racies of\1 ppm. The capillary voltage was 4.5 kV, the

tube lens offset 160 V and the capillary temperature was set

at 180 �C, no sheath gas and auxiliary gas were used.

Data deconvolution was performed with a modified

ProtMAX version called MetMAX Beta 1.0 which provides

mass accuracy precursor alignment of selected m/z signals

in the LC-MS profile (Hoehenwarter et al. 2008). As for

GC-MS, the COVAIN tool (Sun and Weckwerth 2012) was

used for statistical analyses of the LC-MS data as well.

2.5 MetMAX Beta 1.0 processing and COVAIN

analysis of LC-MS data

Raw data files were converted to mzXml format using the

MassMatrix mass spectrometric data file conversion tool

version 3.9 from the Case Western Reserve University

(Cleveland, Ohio, USA; http://www.massmatrix.net/).

MetMAX Beta 1.0 was used to process the mzXml files,

generating a matrix of precursor ion intensities (Hoe-

henwarter et al. 2008). Each column vector contains the

quantities of selected metabolites; each row vector

describes the abundance of a respective metabolite ion over

the entire set of analyses. Each column was normalized to

its total spectral count. The .csv data table resulting from

MetMAX Beta 1.0 were imported into COVAIN for sta-

tistical analysis (Sun and Weckwerth 2012). The values

were then log-transformed. Principal component analysis

(PCA) was performed for decomposition and visualization

of data. The components of the column vectors, i.e. the

precursor m/z, constitute the loadings of the independent

components, and were identified by matching their reten-

tion times and mass spectra with those of the corresponding

reference standards (see supplementary data).

3 Results and discussion

3.1 Qualitative andquantitative nanoLC-Orbitrap-MS/MS

analyses of P.anserina crude extract

In order to obtain a metabolite profile of the crude

extract of P. anserina, an analytical method based on

Table 1 continued

Compounds Rt (min) Fragments

m/z

47. Trehalose (8TMS)a 39.83 361

48. Isomaltose (1MeOx) (8TMS) 40.89 361

49. Melibiose (1MeOx) (8TMS) 41.16 204

50. Unknown 7 41.77 369

51. Unknown 8 44.22 204

52. Unknown 9 44.35 647

53. Unknown 10 45.38 575

Given are (methoxime)-trimethylsilyl [(MeOx) (TMS)] derivatives of

metabolites including their retention time (Rt) and EI-fragments taken

for relative quantification
a Confirmed by comparison with corresponding reference standard
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nanoLC-Orbitrap-MS/MS was developed. The LC-MS

profile highlighted the presence of a large group of com-

pounds corresponding to the protonated molecular ions of

different flavonoids and caffeoylquinic acids (Fig. 2).

Individual components were identified by comparison of

their m/z values in the Total Ion Count (TIC) profile with

those of the selected compounds described in literature

(Table 2) or by matching their MS/MS spectra with those

Fig. 2 NanoLC-Orbitrap-MS profile (full MS-mode) of the crude hydroalcoholic extract of P. anserina (positive ion mode) (see also Table 2)

Table 2 Retention time (Rt), precursor ions and product ions (for qualitative confirmation of the compound), of compounds occurring in

P. anserina hydroalcoholic extracts by nanoLC-Orbitrap-MS/MS

Compound Rt

(min)

Precursor

ion (m/z)
Product ions (m/z) References

1. Chlorogenic acidb 19.6 377.0477 355; 163 –

2. Chlorogenic acid isomer 25.6 377.0477 355; 163 –

3. Myricetin 3-O-glucuronidea 30.6 495.0769 319 Kombal and Glasl (1995)

4. Quercetin -3-O-sambubiosidea 31.5 597.1451 465; 303 Kombal and Glasl (1995)

5. Myricetin 3-O-rhamnosideb 33.5 465.1025 319 Kombal and Glasl (1995)

6. Quercetin 3-O-glucosideb 34.0 465.1027 303 Kim et al. (2004)

7. Quercetin 3-O-glucuronideb 34.4 479.0817 303 Merfort and Wendisch (1988)

8. Quercetin 3-O-xylosidea 35.3 435.0920 303 Zou et al. (2002)

9. Quercetin pentoside 36.6 435.0921 303 –

10. Kaempferol 3-O-glucosideb 36.8 449.1077 287 Kim et al. (2004)

11. Rutin (mass bank match) 37.1 611.1815 465; 303 Wang et al. (1999)

12. Isorhamnetin3-O-glucuronidea 37.7 493.0975 317 Kombal and Glasl (1995)

13. Acacetin-7-O-rutinoside (mass bank match) 41.7 593.1863 447; 285 –

14. Kaempferol 3-O-rutinoside (mass bank match) 43.6 595.1445 449; 287 –

15. Unknown 45.0 668.4370 489; 471; 453;435; 409 –

16. Unknown 45.7 668.4371 489; 471; 453;407; 316 –

17. Genisteinb 47.0 271.0601 253; 243; 225;215; 197; 159; 153; 145 –

In italised names are putative identifications of compounds, without any comparison with the corresponding reference standard or with Mass
Bank
a Compounds, without any comparison with the corresponding reference standard or with Mass Bank but already reported in P. anserina
b Confirmed by comparison with corresponding reference standard
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reported in a public repository of mass spectral data called

Mass Bank (Horai et al. 2010). According to our knowl-

edge compounds 1, 2, 13, 14, 15, 16, 17 were never

reported in this species. The positive HR-ESI-MS spectrum

of compound 1 showed a [M ? Na]? ion peak at m/z

377.0477 along with a less intense signal at m/z 355 cor-

responding to the protonated ion. The analysis of the MS/

MS spectrum of the sodium adduct of compound 1, high-

lighted the presence of product [(M-192) ? H]? at m/z 163

a.m.u. due to the loss of a quinic acid unit. By comparing

the Rt, the mass and the MS/MS spectra of compound 1

with that of the commercial reference standard we unam-

biguously confirmed chlorogenic acid in P. anserina

extracts (Table 2; Fig. 2).

The analysis of the HR-ESI-MS spectrum of compound

2 suggested it as a chlorogenic acid isomer showing the

diagnostic [M ? Na]? ion at m/z 377.0477 along with the

[M ? H]? ion at m/z 355 with a shift of 6 min in Rt. In

particular, by the analysis of the tandem mass spectrum of

the [M ? H]? ion, compound 2 showed product ions

accounting for the same composition of chlorogenic acid,

originated by the neutral loss of 192 a.m.u. (Table 2;

Fig. 2).

Full positive HR-ESI-MS profile of compound 13 was in

agreement with a di-glycosylated acacetin structure,

showing the diagnostic [M ? H]? ion at m/z 593.1864.

The analysis of the ESI-MS2 spectrum of 13 allowed to

determine the presence of a deoxy-hexose unit, besides

product ion originated by the sequential neutral losses of

146 a.m.u leading to [(M-146) ? H]?ion at m/z 447 and of

162 a.m.u. leading to [(M-146-162) ? H]? ion at m/z 285

corresponding to the acacetin-aglycone (Table 2; Fig. 2).

For identification, the MS2 spectrum of compound 13 was

compared to that of acacetin 7-O-rutinoside present in

Mass Bank library.

The HR-ESI-MS spectrum of compound 14 assigned it

to a diglycosylated kaempferol according to the presence of

the [M ? H]? ion at m/z 595.1445. The tandem mass

experiment on the [M ? H]? ion allowed to observe a

product ion at m/z 449, due to the neutral loss of one

deoxy-hexose 146 a.m.u. and a product ion at m/z 287, due

to the neutral loss of one hexose unit and corresponding to

a kaempferol-aglycon (Table 2; Fig. 2). Identification of

compound 14 as kaempferol 3-O-rutinoside was done by

matching its tandem mass spectra with that of Mass Bank

(data not shown).

According to the HPLC-ESIMS data, the positive

ESIMS spectrum of compound 17 showed a minor

[M ? H]? ion peak at m/z 271.0601. Interestingly, the MS/

MS spectrum of the [M ? H]? ion showed a fragmentation

pattern very similar to what was proposed by Lee et al.

(2002) for the isoflavone genistein. By comparing com-

pound 17 Rt and MS/MS spectra to that of the

corresponding commercial standard we confirmed it as

genistein (Table 2; Fig. 2). Although the presence of gen-

istein and its glycosides is already reported in the family of

Rosaceae (Jung et al. 2002; Lee et al. 2002; Ismail and

Hayes 2005; Tohno et al. 2010) and in Potentilla genus

(Şöhretoğlu and Sterner 2011), this is the first time that this

isoflavone is reported in this particular species.

For compounds 15 and 16 no unambiguous identifica-

tion was possible. These compounds could be isorhamnetin

derivatives with two glucuronide units according to their

fragmentation pattern in MS/MS. The structural elucidation

is planned in future studies.

3.2 Multivariate statistical analysis of Potentilla

anserina crude and commercial extracts

from different pharmacies

In order to carry out a comparative study between our

P. anserina reference extract and five hydroalcoholic

extracts from different pharmacy vendors all were analyzed

with the same GC- and LC-MS conditions.

In both cases, our results revealed that qualitative pro-

files of mother tinctures seem to be very similar to that of

the crude extract shown in supplementary Fig. 1 and 2.

To better highlight the differences in metabolite profil-

ing of the different extracts of P. anserina, unsupervised

PCA was performed using COVAIN (Sun and Weckwerth

2012). Pre-processed GC-MS data sets (see ‘‘Materials and

methods’’) from the different samples were analyzed. The

PCA scores plot, shown in Fig. 3a, could be readily

divided into two different groups indicating that the content

and distribution of components were different between the

P. anserina crude extracts (PanserinaUniSA and Panseri-

naUnivie) and the respective commercial products. The

corresponding PCA loadings were utilized to identify

the differential metabolic compositions accountable for the

separation among groups (supplementary Fig. 3 and 4 and

supplementary Table 1). In the loadings plot, the Rt and

m/z values which point far away from zero represent

characteristic markers with most confidence to each group.

Unknown 1 (Rt 11.36 min, m/z 133), proline (2TMS)

(Rt 15.59 min, m/z 142), 2-desoxy-pentos-3ylose-dime-

thoxyamine (2TMS) (Rt 25.30 min, m/z 231), carbohy-

drate (Rt 26.30 min, m/z 217), glucopyranoside (5TMS)

(Rt 26.64 min, m/z 204) and unknown 7 (Rt 41.77 min,

m/z 369) (Table 1) accounted primarily for the differences

among our samples.

The nanoLC-Orbitrap-MS/MS data of all determined

samples were processed and aligned with MetMAX Beta

1.0 software by selecting a target list containing all the 17

identified ions (Table 2). The resulting data matrix con-

taining normalized intensities of the selected peaks was

further exported into COVAIN for PCA (Fig. 3b). In this
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latter case chlorogenic acid (Rt 19.6 min, m/z 377.0477),

myricetin-3-O-glucuronide (Rt 30.6 min, m/z 495.0769),

acacetin-7-O-rutinoside (Rt 41.7 min, m/z 593.1863) and

genistein (Rt 47.0 min, m/z 271.0601) (Table 2) are

responsible for the differences among our samples. Both

GC and LC-MS PCA plots showed the same tendencies

between crude extracts and commercial samples (see Figs. 3,

4). In particular it is observed that ‘‘PanserinaUniSa’’ and

‘‘PanserinaUnivie’’ can be considered to be very similar and

also very close to hydroalcoholic extract ‘‘#2’’. As shown in

Fig. 3, extracts # 1, 3, 4 and 5 are far away from the other

three samples.

Fig. 3 a Sample patterns of the hydroalcoholic extracts of

P. anserina analyzed by GC-MS. PC1 occupies 42 % and PC2

23 % of total variance. b Scores plot of the hydroalcoholic extracts of

P. anserina analyzed by LC-MS (only identified compounds used as

variables). PC1 occupies 39 % and PC2 19 % of total variance.

c Sample patterns of the hydroalcoholic extracts of P. anserina
analyzed by LC-MS (all the compounds with RSD \25 used as

variables). PC1 occupies 52 % and PC2 27 % of total variance
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To obtain a more comprehensive view of the LC-MS

data a second PCA was applied to a dataset pre-processed

by MetMAX Beta 1.0. After calculating the intensity mean,

standard deviation and the relative standard deviation

(RSD) among three technical replicates for all the peaks,

the RSD mean was estimated for each peak and only those

with a value\25 were selected for multivariate statistical

analysis. By application of this method we selected 1,866

variables for PCA (Fig. 3c). Both plots, Fig. 3b and c, are

very similar indicating the robustness of the LC-MS Met-

MAX Beta 1.0 approach.

Eventually the integration of GC-MS and LC-MS data

into one data matrix for PCA showed the clear separation of

the hydroalcoholic extracts PanserinaUniSa, Panserina-

UniVie and #2 from the other extracts (Fig. 4). The loadings

(supplementary Table 1) of this PCA plot demonstrates the

different importance of either GC-MS or LC-MS com-

pounds for sample classification. Synergistic effects of data

integration for sample pattern recognition were also

recently revealed in studies for the integration of primary

and secondary metabolism as well as due to the integration

of metabolomic and proteomic data (Morgenthal et al.

2005; Wienkoop et al. 2008; Doerfler et al. 2012). The

integration of GC-MS and LC-MS data enables the search

of precursor-product correlations in biosynthetic pathways.

This was recently shown in the study by Doerfler et al.

(2012) using Granger causality analysis to reveal the bio-

synthetic interface of primary and secondary metabolism.

3.3 Comparative analysis of genistein in extracts

from different pharmacy vendors

Figure 5 shows the relative evaluation of genistein in all

samples. The values were obtained after normalizing the

LC-MS intensities of this compound against the total

counts of all variables within a sample (calculated with

MetMAX Beta 1.0). The results show the higher amount of

this isoflavone in the extracts of PanserinaUniSa and

PanserinaUniVie as well as in the commercial product 2,

thus confirming the similarities between these three sam-

ples already deduced from PCA analysis. Since genistein is

considered as an active compound in estrogenic therapy

(Ferrante et al. 2004; Hellstrom and Muntzing 2012), our

results highlight that genistein intake may change

depending on the origin of different commercial products,

thereby having different effects on the treatment of PMS.

4 Conclusion

In this study we report for the first time a high resolution

LC-MS method for the evaluation of the chemical compo-

sition of P. anserina polar extracts. By this accurate and

sensitive analysis we revealed the presence of compounds

never reported for P. anserina. Especially important is the

identification of the isoflavone genistein which is considered

as an active compound in the estrogenic therapy. This fact

may explain the positive effect of P. anserina polar extracts

in the treatment of premenstrual syndrome diseases.

Moreover our results showed the advantages of applying

an integrated LC-MS, GC-MS metabolomics platform for

the evaluation of the similarities between medicinal plant

extracts and their commercial products. The unbiased

assignment of m/z features to sample classification using

Mass Accuracy Precursor Alignment (MAPA) and the

corresponding MetMAX algorithm in combination with

multivariate statistics [MAPA and COVAIN; (Hoehenw-

arter et al. 2008; Sun and Weckwerth 2012)] opens up

opportunities to identify novel compounds in the medicinal

plant extracts which were previously not detected. We have

discussed two of these unknowns and will address these

investigations in more detail in future studies.
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Outlook

15N labeling, biological application

Subsequently, the dynamics of 15N/14N incorporation in time are the basis for 
calculating turnover rates. Studying M. truncatula in response to perturbation 
(see Research objectives) should permit one to follow fluxes of partial metabolic 
labeling and thus enable the inference of biological/physiological meaning. The 
time-dependent increased incorporation of 15N of the drought-stressed group 
compared to the control group is apparent in Figure 3.A. The sponge-like re-hy-
dration of the drought-stressed plants in the recovery phase causes an increased 
level of 15N-enriched fertilizer, and thus leads to a pronounced 15N-enrichment 
of amino acids and subsequently proteins, which in turn results in generally 
higher RIA values. Nevertheless, not all drought-stressed proteins show an in-
creased RIA compared to the control group. Dependent on the plants’ regu-
latory mechanisms, specific proteins display higher or lower turnover when 
comparing the two treatments. This is exemplarily demonstrated in Figure 3.B 
and C, where B shows a higher RIA in the drought-stressed group, whereas C 
shows a higher RIA in the control group. A peer-reviewed article with novel 
insights concerning the differential regulation of proteins during the recovery 
phase of drought stress, of N-fed M. truncatula, will be published (Lyon and 
Castillejo et al. 2014 in preparation). 

Graphical User Interface for the automated 
protein turnover program and computational 

speed improvements

In order to facilitate the use of the presented program (Lyon et al. 2014), 
a Graphical User Interface (GUI), using PyQt, is planned. A precompiled ex-
ecutable for the Windows as well as the Apple OSX Operating System will be 
freely available to download, making the installation of the Python program-
ming language, as well as various dependent packages/modules unneces-
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Figure 3 Legend: 
Figure 3.A displays Histograms of the RIA versus the density of four TimePoints (from top to bottom 24, 

48, 72, and 96 hours). The control group is colored in red and the drought-stress treated group in blue. Figure 
3.B and C show Boxplots of the RIA comparing the control to the treatment group, sub-graphing the afore-
mentioned TimePoints (from left to right). B shows the values for the Accession Number “G7J9M6”, and C for 
the Accession Number “G7K283”. Each individual Boxplot is composed of three biological replicates, which 
consist of averaged values from eight peptide signals from two technical replicates each. TimePoint 0h is 
omitted in all sub-graphs since the RIA is zero per definition (see Publications) and thus does not contain 
valuable information to display.
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sary, since such a precompiled program can simply be executed (started) by 
the user without the need for installation. Also, an intuitive GUI will ease the 
handling of selecting source data and setting parameters for data processing. 
Additionally, various strategies will be employed in order to gain computa-
tional speed. Specifically, refactoring pure Python code, implementing Cython 
modules where deemed useful, and attempting to implement multithreading/
multiprocessing. Furthermore, PTM support could be implemented. This work 
is planned to be subsumed in a publication in the near future. 

Further publications submitted or in progress

I am the co-author of the following peer-reviewed publications, which are 
either accepted, submitted for review, or in preparation.

Recuenco-Munoz et al. 2014 (accepted), is a targeted study of RuBisCO of 
Chlamydomonas reinhardtii using proteomics and transcriptomics methodol-
ogy. I have contributed to this publication by assisting in the development of an 
improved Mass Spectrometry method for the exact determination of stoichio-
metric complexes of proteins (see Publications: additional remarks of the Mass 
Western). 

Gil et al. 2014 (submitted), investigates drought stress of the root nodule 
proteome of M. truncatula in comparison to G. max. I have contributed to the 
publication by preparing a merged non-redundant protein FASTA file, utilized 
the Mercator pipeline for functional annotation, and used BLAST for homology 
searches. This work is an extension of previously published work (Staudinger 
et al. 2012) (see Publications).

Lyon and Castillejo et al. 2014 (in preparation) (see Outlook: 15N labeling 
biological application).

Meisrimler et al. 2014 (in preparation) is a study of long-term iron defi-
ciency on P. sativum cultivars. I have contributed to the publication by prepar-
ing a merged non-redundant protein FASTA file, utilized the Mercator pipeline 
for functional annotation, and used BLAST for homology searches. This work 
is an extension of previously published work (Staudinger et al. 2012) (see 
Publications).
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Concluding discussion

Consolidation of publications

The work within this thesis ranges from LC/MS method development and 
application to biological samples, to data analysis and application of available 
software and algorithms, to the creation of a novel algorithm. Understanding 
technological possibilities as well as their restraints is essential for method de-
velopment and critical for the subsequent data analysis. These are intertwined 
processes and iteration is often necessary in order to acquire the desired results. 
Knowledge of and experience with the instruments in question is not only ben-
eficial for troubleshooting, but more importantly, often explains variation of 
data due to technical issues, which can be solved/allayed on the instrument side 
of the experiment and/or at the resulting data. Particularly, batch to batch vari-
ance, nanoESI droplet formation, LC-pump problems, clogging of the ESI-tip, 
ion optics contamination, etc. can lead to gradual as well as to abrupt changes 
in the acquired data, which need to be differentiated from biological variation, 
in order to decide how to proceed with data analysis and to arrive at meaning-
ful conclusions concerning biology. Small changes in MS settings can lead to 
dramatic differences in the resulting data, for better or worse. Understanding 
the logic of the instrument methods can only improve data evaluation and anal-
ysis. This expertise was crucial for the development of the ProtOver algorithm 
for automated data extraction of very particular and complex MS data. 

Concluding the analysis, delineating the preamble 
and contribution to the scientific progress

There is not a single all-encompassing analytical platform to analyze all pos-
sible biochemical compounds. Generally, Mass Spectrometry is capable of 
detecting any compound that can be ionized and is known for its high sensi-
tivity. Nevertheless, the multitude of biochemical compounds and their large 
dynamic range pose a great challenge to any analytical platform. Therefore, 
as previously mentioned, specialized Mass Spectrometry instruments exist in 
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conjunction with specialized methods, which need to be adapted and devel-
oped, also with regard to the rapid technical developments in the field of Mass 
Spectrometry (Lyon, Weckwerth, and Wienkoop 2014). Analogously to 
the data acquisition, there isn’t a single process to follow, a method that can 
be applied, to integrate and analyze data of various sources that would find ac-
ceptance by the entire scientific community. Various strategies and statistics 
can be applied to gain biological insights, though they need to be reproducible 
and their application justifiable. The publications constituting this PhD thesis 
prove the successful application of aspects of this field of research and have 
led to derive meaningful biological insights. Integrating and linking data from 
primary and secondary metabolism is pivotal to deepen our understanding 
of molecular mechanisms. A successful implementation of such an approach 
has been shown by Doerfler et al. 2013 (amongst others), constituting part 
of this thesis. Furthermore, slightly adapted methodologies were successfully 
used in other publications pertinent to this thesis and are a valuable resource 
for the scientific community (Doerfler et al. 2013; Lyon, Weckwerth, and 
Wienkoop 2014; Doerfler et al. 2014; Mari et al. 2013). 

The functional characterization and visualization of data is not a singular 
event, in the sense that it can be performed and would thus be concluded, but 
an ongoing process. As information increases (e.g. improved genomic data and 
gene prediction thereof, influences translated proteomic data), iterations of this 
work need to be performed in order to refine functional annotations and visu-
alize newly generated data (May et al. 2008). There are difficulties in keeping 
track of proteins from varying genome annotations of the same species, proving 
the importance of reliable and manually curated databases (such as SwissProt) 
and the need to continuously update them with novel data. There is a need for 
bioinformatics work which can be realized with scripting languages to perform 
simple but powerful tasks, accompanying almost every step of the scientific 
process. My varying contributions of this type of work led to three of the pub-
lications constituting this thesis Staudinger et al. 2012; Ischebeck et al. 
2014; and Lyon et al. 2014. The MapMan mapping file, containing function-
al annotation, can be freely downloaded (http://www.univie.ac.at/mosys/data-
bases.html) and thus serves as a valuable resource to the scientific community. 
Furthermore, the methodological processes illustrated in these publications 
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can be adapted for analogous studies.
Finally, the successful implementation of a novel algorithm for the extraction 

of LC/MS data, derived from partial metabolic labeling experiments, into an 
automated software, constitutes a major part of this thesis (Lyon et al. 2014). 
This work went beyond “simple scripting”. The software is freely available to 
the scientific community. The publication delineates the individual steps of the 
algorithm in written and mathematical form. The latter can be used as pro-
vided to extract MS data from other analogous experimental data of differing 
species or organs, but could also be adapted to individual goals/focus, if need 
be. Potentially, the data generated with the software in conjunction with other 
information could be used to calculate rate constants, which could be imple-
mented in modelling biological systems. The utility of the ProtOver algorithm 
is exemplarily demonstrated by showing the differential regulation of protein 
turnover due to abiotic stress (see Outlook, Figure 3).
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Abstract

Molecular Systems Biology aims to detect as many biochemical substances as 
possible utilizing and combining “omics” technologies. A specific part of this 
field of research focuses on the use of Mass Spectrometry for the detection of 
analytes in plants, such as primary and secondary metabolites as well as pep-
tides and proteins. Specialized Mass Spectrometers, e.g. Triple Quadrupole or 
Linear Ion Trap/Orbitrap, can be utilized depending on the type of analyte and 
the focus of the research. In agreement with the instrument, corresponding 
data acquisition methods have to be applied. The generated data, depending on 
the acquisition method, can be large as well as complex, and its analysis neces-
sitates the use of specialized computational methods. 

An unbiased LC/MS approach was developed for the detection of plant sec-
ondary metabolites from crude extracts of Arabidopsis thaliana. In order to 
link biochemical pathways, plant primary and secondary metabolomics data 
was integrated. LC/MS data acquisition methodology, data extraction and data 
analysis are discussed within this thesis.

A Mass Spectrometry-based method for the absolute quantification of target 
proteins, termed Mass Western, is described, with particular regard to the 
choice of instrumentation. The latter was refined by the design of cross-con-
catenated standard peptides for exact stoichiometric quantification of protein 
complexes. 

Medicago truncatula, a sequenced model organism of legumes, has the ca-
pacity to exchange sugars for ammonium with nitrogen-fixing bacteria, a 
process known as Symbiotic Nitrogen Fixation (SNF). This process is signifi-
cant for sustainable agricultural systems worldwide, as legumes are among the 
most important plant families to humans. SNF is susceptible to environmental 
stresses, particularly drought, which inhibits SNF and subsequently reduces 
crop yields. M. truncatula served to study physiological, metabolic as well as 
proteomic responses to drought stress. The molecular mechanisms regulating 
the differential control of water relations during drought is of fundamental im-
portance to plant physiology. 

Mass Spectrometry-based shotgun-proteomics mostly relies on the transla-
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tion of nucleotide to protein sequence databases for identification purposes. 
Therefore, a major bottleneck exists for un-sequenced or imperfectly sequenced 
organisms. Additionally, the functional characterization of many sequences is 
incomplete. Annotation information was transferred from well-characterized 
to un- or poorly-characterized species via automated pipelines (Mercator) and 
BLAST homology searches. These functional characterizations served to cluster 
detected compounds and to visualize omics data. 

A 15N partial metabolic labeling experiment was performed to study the mo-
lecular mechanisms regulating the differential control of water relations during 
drought. In order to extract complex spectral envelopes, arising due to the 15N 
incorporation, a novel algorithm, enabling protein turnover calculations, was 
developed. 
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Zusammenfassung

Molekulare Systembiologie zielt darauf ab, unter Verwendung von „omics“ 
Technologien so viele biochemische Substanzen wie möglich zu detek-
tieren. Ein spezifischer Teil dieser Forschung konzentriert sich auf die 
Verwendung von Massenspektrometrie zur Detektion von Analyten in 
Pflanzen, wie z.B. Primär- und Sekundärmetabolite, Peptide und Proteine. 
Spezialisierte Massenspektrometer (Tripel Quadrupol oder Lineare Ionen 
Falle/Orbitrap) werden in Abhängigkeit der zu untersuchenden Analyten und 
unter Berücksichtigung des Forschungsvorhabens verwendet. Instrumentelle 
Methoden zur Datenaufnahme müssen mit dem Gerät abgestimmt werden. 
Da die erzeugten Daten, abhängig von der Methode zur Datenaufnahme, sehr 
groß und komplex sein können, werden darauf angepasste computergestützte 
Methoden benötigt. 

Es wurde eine nichtgerichtete LC/MS-Methode zur Detektion von pflanzli-
chen Sekundärmetaboliten aus Rohextrakten von Arabidopsis thaliana ent-
wickelt. Um biochemische Stoffwechselwege zu vernetzen, wurden Metabolit-
Daten aus dem primären und sekundären Stoffwechsel integriert. LC/
MS-Datenaufnahme, Datenextraktion und Datenanalyse sind Gegenstand der 
Diskussion dieser Arbeit.

Der Mass-Western, eine massenspektrometriebasierte Methode 
zur Absolutquantifizierung von ausgewählten Proteinen, wird unter 
Berücksichtigung der Wahl der zu verwendenden Instrumente beschrieben. 
Diese Methode wurde mit dem Konzept von kreuzweise zusammenhängen-
den Standardpeptiden zur exakten stöchiometrischen Quantifizierung von 
Proteinkomplexen erweitert und angepasst.

Medicago truncatula, ein sequenzierter Modellorganismus von 
Leguminosen, besitzt die Fähigkeit mit stickstofffixierenden Bakterien Zucker 
gegen Ammonium auszutauschen. Dieser Prozess wird als symbiotische 
Stickstofffixierung (SSF) bezeichnet. Da Leguminosen zu den für Menschen 
wichtigsten Pflanzenfamilien zählen, ist SSF ein global wichtiger und wes-
entlicher Prozess für nachhaltige landwirtschaftliche Systeme. SSF reagi-
ert empfindlich auf Umweltstress, insbesondere auf Trockenheit, da diese 
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SSF hemmt und folglich Ernteerträge reduziert. Die Reaktion von M. trun-
catula auf Stress wurde auf physiologischer und metabolischer Ebene und 
mittels Proteinexpression untersucht. Die molekularen Mechanismen, die den 
Wasserhaushalt unter Trockenstress regulieren, sind von zentraler Bedeutung 
für die Pflanzenphysiologie. 

Massenspektrometriebasierte „shotgun-proteomics“ verwenden zur 
Identifizierung zumeist Proteindatenbanken, die durch Übersetzung von 
Nukleotidsequenzen erstellt werden. Dadurch besteht ein großer Engpass 
für nicht- bzw. unvollständig sequenzierte Organismen. Zusätzlich ist 
die funktionelle Charakterisierung vieler Sequenzen unvollständig. 
Annotationsinformationen wurden über automatisierte Methoden (Mercator) 
und BLAST Homologiesuchen von gut charakterisierten auf nicht bzw. schlecht 
charakterisierte Arten übertragen. Diese funktionellen Charakterisierungen 
wurden zur Gruppierung und zur Visualisierung von „omics“ Daten verwendet.

Ein partielles 15N-Metabolitmarkierungsexperiment wurde zur Untersuchung 
des differentiell regulierten Wasserhaushalts mittels molekularer Mechanismen 
durchgeführt. Um komplexe zusammengesetzte Spektren zu extrahieren, die 
aufgrund von 15N-Anreicherung entstehen, wurde ein neuer Algorithmus ent-
wickelt, der die Berechnung von Proteinumsatzraten ermöglicht.
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