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Overview of the scientific field

MOLECULAR PLANT SYSTEMS B10LOGY

Systems biology, a paradigm shift towards holistic rather than reductionist ap-
proaches to enable a systems understanding and study of complex interactions,
has become a dominant trend in the biological sciences. Its foundation are the
unbiased “omics” approaches, such as genomics, transcriptomics, proteomics,
metabolomics, and the plant-specific phenomics, followed by data integration,
statistics and computational modeling, trying to form as complete a picture as
possible. Since a multitude of causes need to be observed, it is all about rec-
ognizing patterns and forming hypotheses after experimental design and data
analysis, in contrast to measuring specific parameters due to a preformed hy-
pothesis. This has become possible due to technological advances, specifically
dramatic increases of computational power, next-generation sequencing, and
advances in mass spectrometry (Aebersold and Mann 2003; Metzker 2010;
Schwanhausser, Busse, and Li 2011; Lommen, Gerssen, and Oosterink 2011;
Wienkoop et al. 2004; Weckwerth, Wenzel, and Fiehn 2004; Hu et al. 2005).

In order to expand biological insights of important crop plants, well-known
plant model organisms such as Arabidopsis thaliana L. (Brassicaceae)
and Medicago truncatula Gaertn. (Fabaceae / Legumes), are used world-
wide. The mixotrophic alga Chlamydomonas reinhardtii P. A. Dangeard
(Chlamydomonadaceae) has been used in order to study the photosynthetic ap-
paratus, and serves as a model organism for alga. The study of such model or-
ganisms enables fundamental research and strives to improve and to transfer
knowledge on agronomics, nutrition, biotechnology and bioenergy. The avail-
ability of genomic data, as well as the critically important functional annota-
tion is essential for systems biology, since genome sequences can be translat-
ed to protein sequences, transcripts can be mapped to genes, and metabolic
pathways can be inferred from genes. Genetic modification such as knockdown
and or knockout mutants are widely used to gain more insight into specific bio-
logical processes (Staudinger et al. 2012; Weckwerth 2011b; Valledor et al.
2013; Hebeler et al. 2008).



MASS SPECTROMETRY-BASED CONCEPTS

Various methods exist in analytical chemistry to analyze complex biological
samples, each with specific strengths and weaknesses. Mass Spectrometry (MS)
is a very powerful post-genomic technique. Due to high sensitivity, it enables
the measurement of analytes (e.g. proteins and metabolites) of about four to five
orders of magnitude, depending on the instrument and sample. When coupling
Chromatography with Mass Spectrometers, the complex mixture of a sample is
separated in time as well as focused on the column. This enables the detection
of low abundant compounds due to enrichment on the column, decreases the
complexity of the sample at any given time, allows a more accurate quantifica-
tion via chromatographic peak integration, and enables the Mass Spectrometer
to perform various types of scans on specific mass to charge (m/z) regions
(Weckwerth 2003). MS can only measure ions, charged molecules. Various
ionization techniques exist. Two commonly used methods are Electro Spray
Ionization (ESI), a soft ionization technique mostly generating intact ionized
analytes, and the hard ionization Electron Impact (EI), which produces ionized
fragments of analytes. The analysis of larger, more non-polar and less volatile
compounds, e.g. peptides, is preferably performed with Liquid Chromatography
(LC) coupled to Mass Spectrometry with ESI (nanoLC-ESI/MS). This is in
contrast to smaller, more polar and more volatile compounds, such as amino
acids and sugars, which are preferably analyzed by Gas Chromatography (GC)
coupled to Mass Spectrometry with EI (GC-EI/MS) (Scherling et al. 2010). A
focus of many shotgun-proteomics studies is the maximization of the sequence
coverage of proteins (Michalski, Cox, and Mann 2011; Mann et al. 2011; Nagaraj
et al. 2012). Improving the resolution of the chromatographic separation (by
e.g. increasing the length of the LC-column or reducing the particle size of the
stationary phase) is one factor, however, sensitivity is the crucial factor, since
the dynamic range of complex samples spans several orders or magnitude and
therefore only the most abundant proteins would be detected with convention-
al (4.6 mm inner diameter) chromatographic setups. Increasing the sensitivity
can be achieved by concurrently reducing the inner diameter of LC-columns
as well as the flow rate. Theoretically, reducing the inner diameter (ID) to a
quarter of its original size enhances the sensitivity by a factor of sixteen (qua-
dratic increase). Thus, for LC/MS-based shotgun proteomics, a general devel-



opment from micro- to nano-flow has occurred in most laboratories (Mitulovic
and Mechtler 2006).

Metabolomics

Metabolomics, analogous to proteomics, is the study of the entirety of small-
molecule fingerprints, the final products of cellular processes. Division into
“primary” (necessary for growth, development, and reproduction) and “sec-
ondary” metabolites (not directly involved in the latter, but necessary for sur-
vivability, fecundity, etc.) can be made (D’Auria, Gershenzon, and Auria 2005;
Doerfler et al. 2013; http://en.wikipedia.org/). Primary metabolites are

well-characterized and experimentally validated, though naturally not detect-
able in every sample of plant origin. Plant secondary metabolites are extremely
diverse, known for e.g. preformed and induced defense mechanisms, local and
systemic localization, and complex biological interactions and activities. An in-
conceivable amount of novel, yet unknown metabolites (including derivatives)
remain to be discovered. These theoretical numbers are dwindling, particu-
larly due to species extinction in primary tropical forests. Typically, primary
metabolites are measured with GC/MS and secondary metabolites using LC/
MS (when applying Mass Spectrometry, otherwise HPLC/UV usually is a stan-
dard method) (Matsuda, Yonekura-Sakakibara, et al. 2009; Scherling et al.
2010). GC/MS metabolomics benefits from reproducible Retention times and
Retention time indices as well as fragmentations (EI), while LC/MS metabo-
lomics is not nearly as standardized and reproducible when comparing cross-
laboratory methodology (Chromatography setup, Collision Energy settings,
fragmentation type, etc.). The unpredictability of fragmentation patterns of
metabolites in contrast to peptides constitutes a major difference between me-
tabolomics and proteomics. Therefore, reference spectra are essential to iden-
tify/annotate compounds. Another major difference between GC and LC/MS is
the superior availability of reference fragment spectra and Retention times of
pure compounds in GC/MS (in the form of databases e.g. NIST-AMDIS, http://
www.nist.gov/; GMD, http://gmd.mpimp-golm.mpg.de/). Acquiring high Mass
Accuracy LC/MS metabolomics data, enables elemental composition determi-
nation (Kind and Fiehn 2006; Kind and Fiehn 2007). Many differences between
GC and LC/MS metabolomics exist, which will not be indulged, since this is



not within the scope of this work. Targeted as well as unbiased approaches,
using specialized instruments and data acquisition methods, in analogy to pro-
teomics, exist for both GC as well as LC/MS (Matsuda, Yonekura-Sakakibara,
et al. 2009; Doerfler et al. 2013; Mari et al. 2013; Doerfler et al. 2014).

Proteomics

The large-scale analysis of protein mixtures is termed proteomics. Apart from
the targeted analysis of specific proteins/peptides, in systems biology, pro-
teomics mostly aims to analyze the proteome, the entirety of all proteins of an
organism of a given cell or tissue, at a given time, in a given state. Profiling pro-
teomics delineates differently expressed abundance levels of proteins between
samples. Functional proteomics inspects Post Translational Modification(s)
(PTMs) of proteins, the interaction of proteins with substrates and small mol-
ecules, aiming at a functional characterization (Mitulovic and Mechtler 2006;
Baerenfaller et al. 2008).

Two-dimensional Sodium-Dodecyl-Sulfate Poly-Acrylamide-Gel-
Electrophoresis (2D SDS-PAGE) is a well-known technique for the separation
of complex protein mixtures. It employs IsoElectric-Focussing (IEF), the sepa-
ration of proteins based on their isoelectric point, in the first dimension and
subsequently the separation by mass in an electric field. Due to the combina-
tion of two orthogonal separation techniques, a much higher resolution can
be achieved, compared to using either technique by itself. After the separation
processes, proteins can be made visible with various staining solutions, rela-
tive quantification based on spot intensity can be performed, the spots can be
excised for further analysis, or transferred to other matrices, e.g. for Western
Blots (Gorg et al. 2002; Towbin, Staehelin, and Gordon 1979). Established labo-
ratory protocols exist for the application of 2D SDS-PAGE. It is a robust and
inexpensive method, but has inherent limitations. Namely, resolution limits
owing to the hydrophobicity, isoelectric point, and molecular weight range of
proteins resolvable and to protein-loading capacity; low-abundant proteins
lying below the Limit Of Detection (LOD), PTMs cause proteins coded by the
same gene to migrate to different locations on the gel (Glinski and Weckwerth
2006). A complementary non-gel-based approach called MudPIT (Multi-
dimensional Protein Identification Technology) demonstrated the rapid and



large-scale analysis of the yeast proteome, by using a biphasic stationary phase
composed of Strong Cation eXchange (SCX) and Reversed Phase (RP) materi-
als, coupled to Mass Spectrometry (Washburn, Wolters, and Yates 2001).

To date 2D SDS-PAGE and Western Blots are commonly used, though a trend
towards the high-throughput nanoLLC-ESI/MS shotgun proteomics techniques,
as well as absolute quantification based on stable isotope-labeled internal stan-
dards can be observed (Lehmann et al. 2008; Wienkoop et al. 2008; Aebersold,
Burlingame, and Bradshaw 2013; Recuenco-Munoz et al. 2014 accepted).

Unbiased approach

In ,bottom up“-shotgun proteomics, all of the proteins (of a complex
sample) are digested with a protease (e.g. Trypsin), subsequently the result-
ing peptides are measured. This protein-profiling strategy enables a very high
sample throughput due to a relatively short sample preparation time. Shotgun
proteomics is capable of resolving complex samples and can provide a high
protein identification rate. Typically, the complex peptide mixture is separated
by Reversed Phase Liquid Chromatography (RPLC), ionized by Electro Spray
Ionization (ESI), and the precursors (entire peptides) are measured by MS and
their corresponding fragments by MS/MS (Aebersold and Mann 2003). This
data can be used to search against genomic databases and Expressed Sequence
Tag (EST) libraries for peptide identification (as well as reference databases of
previously identified spectra, such as “ProMEX”, or could even be “de-novo-
sequenced”) (Hummel et al. 2007; Wienkoop et al. 2012). Label-free relative
quantitation can also be performed either by ,intensity based“ approaches (e.g.
integrating the area under the chromatographic peak) or by ,,spectral counting®
(enumerating the occurrence of MS/MS scan events of a given precursor ion)
(Hoehenwarter and Wienkoop 2010). Label-based relative quantification, such
as Stable Isotope Labeling by Amino acids in Cell culture (SILAC), has often
been applied to mammalian samples, e.g. mouse (Ong et al. 2002). Since mam-
malian cells cannot synthesize a number of “essential” amino acids, these are
provided in the medium to support cell growth. Amino acids labeled with heavy
stable isotopes are introduced into the medium, which are incorporated into
proteins. Subsequent shotgun-proteomics analysis of mixed samples, grown
on natural and heavy media, result in the detection of light and heavy peptide



signals, enabling accurate relative quantification. In contrast, photoautotro-
phic plants can synthesize all amino acids, therefore Stable Isotope Labeling In
Planta (SILIP), which uses N enriched nitrogen sources, was developed (Schaff
et al. 2008). Depending on the labeling-time and the growth rate of the organ-
ism, partial as well as full metabolic labeling can thus be achieved (see Specific
background and objectives of the FWF project) (Kline and Sussman 2010).

Sequenced organisms offer a major advantage, since the known nucleotide se-
quence can be translated into an amino acid sequence, which can be digested
in silico (providing e.g. tryptic peptides). The experimental MS/MS spectra and
their corresponding precursor masses are matched against the in silico data-
base using e.g. commercially available algorithms/programs like ,,Sequest®
and ,Mascot“ to identify peptides and infer proteins (Eng et al. 1994; Pappin,
Hojrup, and Bleasby 1993). The experimental data yields even more stringent
results when working with instruments capable of high Mass Accuracy and re-
solving power (e.g. ,,LTQ-Orbitrap-MS*). With the rapid generation of genome
sequence information in conjunction with advances in Mass Spectrometry tech-
nology as well as bioinformatics, shotgun proteomics has emerged as a promis-
ing field of protein research and a routine in many laboratories. Two general cat-
egories can be distinguished: Unbiased (untargeted) analyses of samples
using Data Independent (e.g. SWATH, MS¥) and Data Dependent Analysis (e.g.
dynamic MS/MS triggering of the LTQ-Orbitrap) for protein identification as
well as PTM analysis thereof (qualitative analysis); and biased (targeted)
analyses using specialized Mass Spectrometers such as triple-quadrupoles
(QqQ) (quantitative analysis) (Gillet et al. 2012; Collins et al. 2013; Moran et al.
2014). Biological interpretation necessitates quantitative information in addi-
tion to identifications. Some of the new generation Mass Spectrometers aim to
comply with both demands and novel data-processing methods improve quan-
titation (e.g. Orbitrap Fusion). Thus, a strict separation of qualitative and quan-
titative methods is not always possible. Rather, the goal would most often, if
not always, be to get as much qualitative and quantitative information as pos-
sible, which depending on the technical platform as well as time and cost, is not
always possible. Naturally, this leads to specialized methods and instruments
(as previously mentioned) (Schulze and Usadel 2010).



Targeted approach

The “Mass Western” is a targeted proteomics technique used to quantify spe-
cific proteins of interest. The term was coined in analogy to the well-known
“Western Blot”. A number of selected proteotypic peptides (specific only to the
protein of interest) are synthesized, each containing one amino acid labeled
with 8C and N, and can thus serve as internal standards. The synthetic pep-
tides are tuned on the mass spectrometer in order to achieve maximum sen-
sitivity. A dynamic range of about four orders of magnitude can be measured.
The internal standard is introduced to the sample as early as possible and the
proteins are digested. Subsequent LC/MS measurements are typically per-
formed on a Triple Quadrupole type instrument. The synthetic peptides co-
elute with their natural counterparts on the LC system, but can be differen-
tiated on the MS level, because of a mass shift due to the introduction of the
“heavy amino acid”. This technique allows absolute quantification of low-abun-
dant proteins in complex samples (Lehmann et al. 2008; Lyon, Weckwerth,
and Wienkoop 2014; Recuenco-Munoz et al. 2014 accepted). The ben-
efits of absolute in contrast to relative quantification are the comparability of
data, independent of the sample, experiment, tissue or organism, as well as the
increase in accuracy of the measurement. The drawbacks are an increased cost
of reagents (internal standards), time needed to establish the specific methods
(finding proper SRM transitions, tuning of the Mass Spectrometer and measur-
ing calibration curves), and that only specific analytes will be detected regard-
less of the contents of the sample. With absolute quantification it is possible to
distinguish isoforms or gene families all in one LC/MS run. In order to reach
a selection of proteotypic peptides, two different approaches can be employed.
The experimental approach consists of the LC/MS analyses of the tryptic
digest of a heterogeneous protein mixture. Offline pre-fractionation and/or en-
richment and online two-dimensional LC can be used to increase the sensitiv-
ity/dynamic range of the method as well as the number of detected peptides.
The resulting data is matched against a database in order to identify which of
the measured peptides belong to the protein of interest. From these peptides, a
number of suitable signature peptides (proteotypic peptides) are chosen to be
used as stable isotope-labeled synthetic peptide standards. The theoretical
approach uses the sequence of the protein of interest, which is digested in



silico, yielding tryptic peptides. A number of proteotypic peptides (specific only
for the protein of interest) are chosen, taking size, amino acid composition, and
tryptic efficiency into account. The experimental setup has to be validated and
potential additional iterations concerning the choice of peptides have to be done
(Lehmann et al. 2008; Lyon, Weckwerth, and Wienkoop 2014; Schulze
and Usadel 2010; Wienkoop et al. 2008; Lange et al. 2008).

Databases

The UniProt Knowledgebase (UniProtKB) is not only a mere repository for
amino acid sequences, but contains functional information on proteins, with
accurate, consistent and rich annotation, as well as cross-references to experi-
mental data, amongst others. UniProtKB is divided into two sections, Swiss-
Prot, a labor-intensive, high-quality, manually annotated and non-redundant
protein-sequence database, as well as TrEMBL, computer-annotated trans-
lated nucleotide sequences. UniProt Reference Clusters (UniRef) clusters sets
of sequences, from UniProtKB and UniParc, to gain complete coverage of the
sequence space, while merging redundant sequences and/or fragments. “The
UniRef100 database combines identical sequences and sub-fragments from
any organism into a single entry” (http://www.uniprot.org/; Suzek et al. 2007).

A large collection of non-redundant protein sequences of several sources
can be found at the National Center for Biotechnology Information (NCBI) at
the following web-page http://www.ncbi.nlm.nih.gov/protein/. This resource
includes protein sequences translated from nucleotide sequences of coding
regions of DNA (GenBank), annotated protein-sequence records derived from
data in public sequence archives and from computation, curation and collabo-
ration (RefSeq), experimental and inferential, manually annotated sequences
(SwissProt), functional information (PIR), and structural information (PDB)
(K. Pruitt et al. 2002; K. D. Pruitt et al. 2014; Tatusova et al. 2014; http://www.
ncbi.nlm.nih.gov/).

More and more genome sequencing projects are currently running (incomplete
projects 21461) and are being completed (completed projects 6646) (https://gold.
jgi-psf.org/index, as of October 2014). One specific project aims to sequence

and annotate the genome of M. truncatula which is still not complete (http://
www.jcvi.org/). The umbrella association International Medicago Genome




Annotation Group (IMGAG) is a combined effort to re-sequence various inbred
M. truncatula lines, to characterize Single Nucleotide Polymorphisms (SNP),
Insertions/Deletions (INDELs) and Copy Number Variants (CNV), in order to
describe the population structure and identify haplotypes. Thus, a long-term,
community-accessible Genome-Wide Association (GWA) mapping resource has
been created (http://www.medicagohapmap.org; http://www.jcvi.org/ ).

The generation of Expressed Sequence Tags (ESTS) is (or in former times was)
faster and cheaper than the generation of entire genomes (Adams et al. 1991).
These nucleotide sequences can be translated to protein sequences via Six-
Frame-Translation (using e.g. EMBOSS) (Rice, Longden, and Bleasby 2000).
Such a collection of protein sequences can serve as a database for shotgun pro-
teomics identification (Larrainzar et al. 2007; Weckwerth 2011a).

ProMEX is a public mass-spectral library of experimental data. The data-
base consists of mass spectra of tryptic peptides derived from A. thaliana, C.
reinhardtii, M. truncatula and Solanum tuberosum L. Since it is independent
of genomic data, it is especially suitable to search for PTMs (Post Translational
Modifications) such as phosphorylation sites. New gene models can be derived
from proteomics data using this tool. The database includes data from subcel-
lular fractionation, metal oxide affinity chromatography (MOAC) as a phos-
phoprotein-enrichment strategy, from neutral loss scanning for p-site quan-
tification, drought-stress protein markers, novel protein allergens and pollen
development, amongst others (Hummel et al. 2007; Wienkoop et al. 2012;
Hoehenwarter et al. 2008; Larrainzar et al. 2009; May et al. 2008; Wienkoop et
al. 2008; Lehmann et al. 2008; Reumann et al. 2007; Kierszniowska, Walther,
and Schulze 2009; Wienkoop et al. 2010; Ischebeck et al. 2014).

Functional annotation
Reasons to use BLAST
Even though the genome of an organism may be fully sequenced, this neither
immediately results in the proper assignment of all coding regions, nor the un-
ambiguous functional annotation thereof. Additionally, splice variants, Single
Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (INDELS) exist,
complicating the picture. Genetically highly diverse species, such as Pisum
sativum L., and plant polyploidy (e.g. Magnolia) additionally increase the



complexity of the data and its interpretation (Bourgeois et al. 2011; Parris et
al. 2010). Similar sequences do not necessarily have the same function and
differing sequences have shown to possess the same function. Nevertheless,
the curious mind of a biologist can utilize well-known tools such as BLAST in
the hope of gaining insights in homology, function, and localization, amongst
others (Altschul et al. 1990; http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Applying BLAST

Basic Local Alignment Search Tool (BLAST) is an umbrella term for tools en-
abling biological sequence comparison to assess homology. Multiple specialized
variants (e.g. blastp, blastn, blastx, PSI-blast, DELTA-blast, etc.) exist, depen-
dent on the sequence and problem at hand. Taking the sequence length and
the evolutionary distance between the query sequence and the database into
account, various substitution matrices exist (e.g. BLOSUM 62, PAM30, etc.),
producing different scores that evaluate the search result. Usually, the E-value
(expectancy value) is used to evaluate the data. The latter is produced by cal-
culating the fraction of the search space (database size in bits) by the adjusted
score (in bits). Thus, low E-values indicate that the rarity of the score overcomes
the search space. In other words, a low E-value shows that the hit would not be
expected by chance alone, but is due to sequence identity and similarity. Due
to the fact that the E-value depends on the query size as well as the database
size, there is not a single ubiquitous threshold cutoff value to be used. Within
the publications presented in this work, a cutoff value of 1 * e-3 was used. This
particular value was chosen in order to produce a sufficient amount of query
hits, while trying to retain the stringency to get meaningful results, since only 1
* e-3 hits would be expected to be seen by chance alone.

A. thaliana has enjoyed most attention in the world of molecular plant biology,
therefore the genome annotation is more advanced compared to other model
plants. Subsequently, homology-based information transfer is often performed
against A. thaliana (i.e. TAIR10 at the present time) (Ischebeck et al. 2014;
http://blast.ncbi.nlm.nih.gov/Blast.cgi).

MapMan and GO

Mercator is an automated pipeline, an efficient annotation tool for functional
genomic and proteomic sequences. It utilizes the MapMan bin ontologies for
functional annotation of plant omics data. Controlled vocabularies and func-
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tional ontologies simplify the exchange of information and enable computation-
al approaches. 36 major MapMan bin categories exist (e.g. Photosynthesis, Tri
Carboxylic Acid cycle (TCA), etc.), each with various specialized sub-categories,
modeled as a tree (Thimm et al. 2004; Lohse et al. 2014; Usadel et al. 2009). A
typical use case would be the visualization of gene expression and/or integrated
proteomics and metabolomics data, comparing a control to a treatment group.
By selecting different so-called “pathways”, versatile data exploration can be
performed, since a general overview as well as particular functional categories
can be visualized and thus inspected for patterns of differential expression in
abundance levels (Staudinger et al. 2012; Tellstrom et al. 2007; Ischebeck
et al. 2014). MapMan was originally designed for plants, specifically A. thali-
ana, in contrast to the species-unspecific Gene Ontology (GO). There are three
GO ontologies that conform to independent categories of gene function: molec-
ular function (GO-MF), biological processes (GO-BP), and cellular component
(GO-CC). The dependencies are realized in a directed acyclic graph (Ashburner
et al. 2000; Klie and Nikoloski 2012).

Another important resource is the Protein Ontology (PO, formerly PRO), pro-
viding an ontological representation of protein-related entities and showing
relationships between them. Genes, taxon-neutral to species specific protein
sequences, protein complexes, and PTMs are represented (if available). PO
complements databases such as UniProtKB and interoperates with other on-

tologies such as GO (Natale et al. 2014; http://proconsortium.org).

DATA INTEGRATION AND INTERPRETATION —
BIOINFORMATICS

The goal of many systems biology approaches is to recognize differential
patterns of expression as a consequence of specific treatments and/or time
courses. Observing that transcripts/proteins/metabolites associated with par-
ticular pathways are enriched/up- or down-regulated (Valledor et al. 2013;
Hoehenwarter et al. 2008; Jurgen Cox et al. 2014; Wienkoop and Weckwerth
2006). In situ, analytes differ by several orders of magnitude in abundance,
thus posing difficulties for data acquisition and therefore also when evaluating
their relative expression patterns. Additionally, technical and batch-to-batch

11



variability have to be accounted for, to delineate the latter from biological vari-
ability and differential expression due to sample treatments. In order to draw
as holistic a picture as possible and thus maximize the information content, all
MS-measured analytes and other (e.g. physiological) parameters can be merged
into a single data matrix (Doerfler et al. 2013; Mari et al. 2013). Since
these values often consist of a wild mixture of SI (The International System
of Units) as well as arbitrary units, and can differ by several orders of magni-
tude, data normalization/transformation/standardization is needed. To illus-
trate: High-abundance proteins have higher values (peak area, spectral count)
compared to low-abundance or small proteins; using multivariate statistics this
may cause high ranking for high-abundance proteins. Data transformation is
necessary to rescale data, enabling small, but potentially statistically signifi-
cant changes to emerge from the data set. Thus, log (e.g. base 2 or base 10) and/
or “z-transformation”/”standardization” (or other methods) should be applied
(Staudinger et al. 2012; Weckwerth 2007). In shotgun proteomics, when e.g.
using spectral counting, the protein size will greatly influence the magnitude of
the measured abundance value. One method of resolution is the Normalized
Spectral Abundance Factor (NSAF), another the exponentially modified Protein
Abundance Index (emPAI) (Schulze and Usadel 2010; Ischebeck et al. 2014).
Novel methods are constantly being developed to increase the quantitative ac-
curacy of MS data. One, for instance, is the “proteomic ruler”, which normal-
izes protein abundance to histone content (Winiewski et al. 2014). In metabo-
lomics, internal standards are often used for sample normalization. Technical
variability (e.g. ESI-quality, sample injection volume, skimmer or S-lens pollu-
tion, etc.) can dramatically influence the signal intensity of MS measurements.
In order to cope with such problems, normalization can be applied in an in-
tra-experimental/batch-fashion. This can be illustrated with a simple example
of building the sum of all signals for each measurement (sum_m), as well as
the overall sum, the sum of all these sums (sum__all). Subsequently, each indi-
vidual value is divided by the sum_m of its corresponding measurement and
multiplied by the fixed sum_ all value. Thereby, the varying signal intensities of
individual measurements (e.g. one LC/MS “run”) are represented as the frac-
tion of the total intensity of the measurement, and then all values are scaled to
the same “baseline-intensity”, while retaining the biologically relevant variabil-
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Figure 1 legend:

The histograms display the intensity of all peptide signals (log base 10) versus the density of the occurrence.
The sub-plots are divided on the abscissa by five distinct TimePoints (oh, 24h, 48h, 72h, 96h) and the ordi-
nate is divided by two technical replicates (both of the biological replicate “B”). Plot A shows the original data,
and plot B the transformed data.

ity (see Figure 1). Figure1.Sub-plot A.sample72h.B2 stands out in comparison
to the histograms of the other samples, due to its shift on the x-axis (smaller
values) as well as its more positive kurtosis. Sub-plot B.sample72h.B2 shows
a clear shift of the values to the right, to elevated numbers, conforming with
the other sub-plots. However, this shift does not influence the distribution of
values and therefore the positive kurtosis remains unchanged. Naturally, such a
data transformation does not resolve any type of difficulty concerning outliers
or even missing values. Numeric and visual inspection of the data and testing
various transformation strategies is an important aspect of data analysis. This
data is from an unpublished data set.

Data to stats: getting data ready for analysis

Preparing data for statistical analysis is often anything but trivial. Careful
considerations have to be taken concerning missing values and data normal-
ization/transformation/standardization (Gromski et al. 2014). Another diffi-
culty is the expected input format of software capable of statistical analysis.
E.g. “R”, “Matlab-COVAIN”, or commercial programs such as “SIMCA” and
“Statgraphics” (to name only a few) all expect a specific input, which has to be
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accounted for (Sun and Weckwerth 2012; R Development Core Team 2008).
I have used scripting languages such as “Python” or “R” to apply established
functions such as “melt” or “pivot”, as well as implemented other data trans-
formations to perform exploratory data analysis (Lyon and Castillejo et al.
2014 in preparation).

Software

As technological aspects of Mass Spectrometry are rapidly developing, exper-
imental design towards a better understanding of biology adapts and evolves
(Bantscheff et al. 2007). Since research doesn’t end with the mere acquisition
of experimental data, but necessitates the computational analysis of such bio-
logical information, adaptation of existing as well as creation of new software
tools and programs is essential (Kohlbacher et al. 2007; Pluskal et al. 2010;
Deutsch et al. 2010; Lommen 2009; Lommen, Gerssen, and Oosterink 2011).
This includes adaptation to novel community standards (e.g. file formats such
as “mzXML” to “mzML” and novel standards such as “qcML’ and “mzTAB”),
data processing parallelization to increase speed, connecting available individ-
ual resources by creating pipelines, automation and inventing novel algorithms,
to generally enable high throughput analysis of omics data (this is not meant to
be a comprehensive list of bioinformatics tasks) (Martens et al. 2011; Walzer
et al. 2014; Bald et al. 2012; Goloborodko et al. 2013; Choi et al. 2014; Griss et
al. 2014). Last but definitely not least, the visualization of data serves to get an
overview, to zoom into specific aspects (see Figure 1), it can highlight mistakes
or technical problems and aids in the explanation of interpretations when con-
veying information in the form of publications or lectures (Gehlenborg et al.
2010). Manual data analysis is not feasible for high-throughput MS data, simply
due to the excess of information, as well as potentially justifiable, but irrepro-
ducible decisions taken by the data analyst. Therefore, the automated identifica-
tion and quantification of high-throughput MS data is a necessity (Jiirgen Cox
and Mann 2008; Jiirgen Cox et al. 2011; Lommen 2009; Lommen, Gerssen, and
Oosterink 2011; Deutsch et al. 2010; Kohlbacher et al. 2007; Pluskal et al. 2010;
Rost et al. 2014; Egelhofer et al. 2013; Smith et al. 2006; Mcllwain et al. 2014).
The difficulty lies in the translation from human pattern recognition combined
with specialized knowledge and intuitive decision-making to stringent math-
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ematical descriptions, operations and heuristics that can be implemented as an
algorithm in software. This type of data processing can be done with various
software solutions. Two prominent and adequate programming/scripting lan-
guages are “Python” and “R”, which I have used extensively throughout the
present work. “Python” is known for its ease of use, flexibility and rapid devel-
opment times, and “R” for statistical calculations as well as its powerful graph-
ics engine (Rossum and Drake 2001; R Development Core Team 2008). I have
extensively used “IPython” (web-based interactive computation environment
for Python) as well as the R package “ggplot2” (Grammar of Graphics) (Perez
and Granger 2007; Wickham 2009). For high performance computing, other
programing languages such as (the low-level programming language) C++ are
preferably used.

Application to plant research

The following section outlines the specific background and objectives of the
PhD thesis. The major part of this work was conducted during the FWF project
(Fonds zur wissenschaftlichen Forderung/Austrian Research Fund), which
will be described in more detail as follows (FWF project number P23441-B20,

http://homepage.univie.ac.at/stefanie.wienkoop/fwf23441 en.html).

L.C/MS METHOD DEVELOPMENT AND DATA ANALYSIS

Establishing a robust and reproducible LC/MS metabolomics platform on
an Orbitrap Mass Spectrometer, combined with subsequent data analysis,
is not a straightforward task, if samples of various species, organs and frac-
tions are to be considered. A single methodology is not capable of coping with
all possible analytical tasks, and if a nearly all-encompassing method would
be established, it might be too impractical, due to extended laboratory work
and measurement time. Therefore, depending on the analytes to be analyzed,
choices have to be made concerning the Mass Spectrometry setup: measuring
in positive or negative ion mode, scan range, Mass Resolving Power, LockMass,
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number of MS/MS scan events, micro scans, fragmentation mode and colli-
sion energy settings, dynamic exclusion/inclusion lists, charge state recogni-
tion, intensity thresholds, etc. (Doerfler et al. 2013; Doerfler et al. 2014;
Mari et al. 2013; Koulman et al. 2009; Xu et al. 2010; Vincent et al. 2013).
Additionally, due to the Ion Trap, interesting MS" scan events can be created.
Many derivatives of known Flavonoids exist, whose MS/MS spectra cannot be
annotated, since only the neutral loss of sugars or organic acids from the pre-
cursor is visible in the spectrum. MS" spectral trees can result in the fragmen-
tation of e.g. the Agylcon backbone of a glycosylated-Flavonoid. Such a spec-
trum can be compared to spectra of known reference compounds. The Aglycon
compound can therefore be identified and the sugars/organic acids inferred
(Matsuda, Yonekura-Sakakibara, et al. 2009; Doerfler et al. 2013; Doerfler
et al. 2014). Such MS" trees can be performed in a “flat” fashion (e.g. the five
most abundant ions of the MS/MS scan event will be used for MS/MS/MS frag-
mentation, i.e. 1 x MS, 1 x MS/MS, and 5 x MS/MS/MS ), or a “deep” fashion
(e.g. the most abundant ion from the MS/MS scan event will be used for MS/
MS/MS fragmentation, subsequently the most abundant ion will be subjected
to MS/MS/MS/MS fragmentation and so on and so forth, i.e. 