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Abstract

The main topic of this thesis is the use of curvature bounds for Riemannian manifolds
with non-smooth metrics. This thesis is separated in three chapters.

In the first chapter we study scalar curvature bounds. Here we will focus on the
positive mass theorem. After providing an overview of well-known results, we will show
that the positive mass theorem remains valid for continuous Riemannian metrics that are of
regularity I/Vlif/ ? on manifolds of dimension n < 7 or spin-manifolds of any dimension. We
give a (negative) lower bound on the ADM mass of metrics for which the scalar curvature
fails to be non-negative, where the negative part has compact support and has sufficiently
small L2 norm. We show that a Riemannian metric in mep for some p > % with non-
negative scalar curvature in the distributional sense can be approximated locally uniformly
by smooth metrics with non-negative scalar curvature. For continuous metrics in I/Vlif/ 2,
there exist smooth approximating metrics with non-negative scalar curvature that converge

in LP for all p < oo.

loc

The second chapter consists of the study of metrics that satisfy bounds on the Ricci
curvature. In particular, we will study volume comparison results. We will first state the
classical volume comparison result for pointwise Ricci curvature bounds due to Bishop and
Gromov and we will afterwards provide generalizations for metrics that only satisfy an L?
bound for p > n/2 on the part of the Ricci tensor that violates Ric = ¢(n — 1)g.

We will develop volume estimates and monotonicity formula based on integral norms of
a weighted version of the negative part of Ricci along radial geodesics from each point. The
use of weighted curvature quantities will lead to sharper formulae in volume comparison
calculations that also hold for p = n/2.

In the third chapter we will study sequences of manifolds and their convergence prop-
erties. We will discuss how a pointwise bound on Ric as well as an LP-bound leads to
Gromov-Hausdorff convergence. Furthermore, we will also see that the space of manifolds
satisfying the curvature bounds as described in 2 are compact in the Gromov-Hausdorff
topology.

We will also investigate harmonic coordinates and their use for proving convergence
results in certain Sobolev or Holder spaces. We will provide a complete detailed proof
of C* convergence of Riemannian manifolds that satisfy certain bounds on the Ricci
curvature.



We will finally consider sequences of manifolds with an L” bound on the Ricci curvature.
We will describe how an additional bound on the full curvature tensor leads to convergence
in Holder spaces.
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Zusammenfassung

In dieser Arbeit wird untersucht, wie Beschrankungen an die Kriimmung in der Rie-
mannschen Geometrie fiir nicht-glatte Metriken verwendet werden konnen. Die Arbeit ist
in drei Kapitel eingeteilt.

Im ersten Kapitel untersuchen wir Metriken mit beschrankter skalarer Krimmung. Wir
konzentrieren uns auf das ”positive mass theorem”, das ein wichtiges Resultat in der all-
gemeinen Relativitétstheorie ist. Nachdem wir einen Uberblick iiber bekannte Resultate
gegeben haben, zeigen wir, dass das Theorem auch fiir stetige Riemannsche Metriken, die
im Sobolev Raum VVI?):/ 2 liegen, auf Mannigfaltigkeiten mit Dimension < 7 oder auf Spin-
Mannigfaltigkeiten beliebiger Dimension giiltig bleibt. Wir leiten eine (negative) untere
Schranke an die ADM Masse fiir Metriken her, deren negative skalare Kriimmung eine
hinreichend kleine L2 Norm hat und kompakten Triiger besitzt. Wir zeigen, dass eine
stetige Riemannsche Metrik der Regularitat VVlicp fiir p > n/2 mit nichtnegativer skalarer
Krimmung im distributionellen Sinn lokal gleichméssig durch glatte Metriken mit nicht-
negativer skalarer Kriimmung approximiert werden kann. Fir stetige Metriken in I/Vlicn/ 2
kann man glatte approximierende Metriken mit nichtnegativer skalarer Kriimmung finden,
die in L} _ fiir p < co konvergieren.

Das zweite Kapitel beschaftigt sich mit der Untersuchung von Metriken, deren Ricci
Kriimmung beschrankt ist. Wir werden Volumsvergleiche untersuchen. Zuerst wird das
klassische Resultat von Bishop und Gromov fiir punktweise Schranken
an die Ricci Krimmung dargestellt, dieses wird dann fiir Metriken, die eine LP Schranke
fir p > n/2 an den Teil des Ricci Tensors, der die Relation Ric > ¢(n — 1)g verletzt,
verallgemeinert.

Weiters werden wir Volumsabschéatzungen und Monotonie-Formeln, die auf Integral-
normen einer gewichteten Version des Negativteils der Ricci Krimmung entlang radialer
Geodaten von jedem Punkt aus, herleiten. Die Verwendung dieser gewichteten Krimmungs-

grossen fiithrt zu scharferen Abschéatzungen, die auch im Fall p = n/2 giiltg bleiben.

Im dritten Teil untersuchen wir Folgen von Mannigfaltigkeiten und ihre Konvergen-
zeigenschaften. Wir zeigen wie eine, sowohl punktweise, als auch eine LP Schranke, an
die Ricci Krimmung zu Gromov-Hausdorft Konvergenz fithren. Weiters werden wir auch
zeigen, dass die Menge der Mannigfaltigkeiten, die die Krimmungseigenschaften von 2
aufweist, kompakt in der Gromov-Hausdorff Topologie ist.
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Wir werden auch harmonische Koordinaten und deren Verwendung in Beweisen von
Konvergenzresultaten in bestimmten Sobolev oder Holder Raumen diskutieren. Ein vollsandi-
ger, detaillierter Beweis der C*® Konvergenz von Riemannschen Mannigfaltigkeiten mit
bestimmten Schranken an die Ricci Kriimmung wird gegeben.

Schlussendlich betrachten wir auch Folgen von Mannigfaltigkeiten mit einer LP-Schranke
an die Ricci Krimmung. Wir beschreiben, wie eine zusatzliche Schranke an den gesamten
Kriimmungstensor zu Konvergenz in Holder Raumen fiihrt.
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Introduction

An important branch of classical Riemannian geometry is the study of Riemannian
metrics that satisfy a curvature bound. Of particular significance are metrics where one
has a lower and/or upper bound on the sectional curvature or a lower bound on the Ricci
tensor or on the scalar curvature. Notable results that arise then include Myers’s theorem,
the Cartan-Hadamard theorem, the Bishop—Gromov relative volume comparison theorem,
the sphere theorem and the Toponogov comparison theorem (see, e.g., [12] for general
results and [66] for a recent review on metrics with a lower Ricci curvature bound). The
proofs of these results generally rely on the use of the exponential map, and require that
the metric have at least C? regularity. If one attempts to lower the regularity assumptions,
one can often argue that these results hold for metrics that are ', where one still has
existence and uniqueness of solutions of the geodesic equations. If one attempts to lower the
regularity of the metric further, for example to metrics that are C1® for some a < 1, then
one encounters metrics for which the geodesic equations do not have unique solutions (see,
e.g., [36, 18] for examples in Riemannian and Lorentzian geometry, respectively). Since
this implies that the exponential map is no longer a homeomorphism onto a neighbourhood
of a point, this poses a genuine obstacle to generalising the standard proofs of classical
results to low-regularity metrics.

This thesis is divided into three chapters: In Chapter 1 we will study manifolds that
satisfy a bound on the scalar curvature and we will see that this theorem remains valid in a
certain low-regularity setting. Chapter 2 discusses volume comparison results for manifolds
that satisfy bounds on the Ricci curvature. The final Chapter 3 focusses on convergence
of Riemannian manifolds.

0.1. Positive mass theorem

Scalar curvature bounds provide the weakest notion of a curvature bound. They have
applications not only in pure mathematics, but also in physics. The result about manifolds
with scalar curvature bound that we will study in the following chapter is the positive mass
theorem, which has its origin in the study of mass in General Relativity.

This part is organized as follows: In Section 1.1, we will discuss the physical background,
the definition of mass and of asymptotic flatness of a Riemannian manifold and state the
classical positive mass theorem and also the purely Riemannian version. Furthermore, an
overview of the historic development of proofs of this theorem will be provided.

1



Chapter 0. Introduction

In Section 1.2 we will recall the proofs of the classical positive mass theorem, i.e., for
manifolds with smooth metrics. We will sketch both the geometric proof due to Schoen
and Yau, [61], for manifolds of dimension < 7 and also the spin approach by Witten, [6&],
which holds for spin manifolds of arbitrary dimension.

In Section 1.3 we will state some low regularity versions of the positive mass theorem,
starting with the result by Miao [51] who studies manifolds that admit corners along hyper-
surfaces. His method of smoothing and conformally rescaling the approximating metrics to
get smooth metrics with nonnegative scalar curvature will be described. Furthermore the
Ricci flow technique used by McFeron and Székelyhidi, [49], for the same type of manifolds
will be described.

Another result that will be mentioned in this Section is the version by Lee ([44]) who
studies Lipschitz metrics with small singular sets. We will see that in his proof he also
makes use of Miao’s conformal rescaling method.

Section 1.4 is based on [31]. In this Section, we show that the positive mass theorem

remains valid for continuous metrics g that lie in the local Sobolev space I/Vlicn/ 2(]\/[ ). We
assume that M is either a spin manifold, or that n < 7 in order for the classical positive
mass theorem to hold. We assume that the metric g is smooth outside of the compact
set K and satisfies proper asymptotic conditions, although it is also straightforward to
generalise our results to the case where the metric lies in an appropriate weighted space
outside of K as in [6]. Since g € C°(M) n VVI(Q)’:/Q(M), the scalar curvature of g, sg, lies in
Lﬁf(M ) and, therefore, is well-defined as a distribution on M. One of our main results is
then the following:

THEOREM 0.1.1. Let (M, g) be a complete, asymptotically flat Riemannian manifold,
with g € CO(M) AW (M) and sg non-negative in the distributional sense (i.e. (sg, ) =

0,Yo e Z(M)). Then the ADM mass mg is non-negative.

In fact, our methods allow us to prove a stronger result, for metrics g for which the
scalar curvature is not constrained to be non-negative. Denoting the Sobolev constant of
the metric g by ¢;[g], and the Riemannian measure of a measurable set £ € M by |E|g,
we show the following:

THEOREM 0.1.2. Let (M, g) be a complete, asymptotically flat Riemannian manifold,
with g € CO(M) n WZ’"/2(M) with the properties that (sg)— is of compact support and that

crg] [[(se)-

Then the mass of the metric g satisfies

n—1
Ln/2(M’g) < 4 n— 2

1 1(sg) = Lrr2(a,g)

2(” - 1)wn71 (1 n—2

R
~ el (5) e

mg = — 2 | supp(sg)



0.1. Positive mass theorem

with n* = % Therefore, as long as the negative part of the scalar curvature of g is of

compact support and has sufficiently small L™? norm, we have a (negative) lower bound
on mass. To our knowledge, this is the first result of this type.

Our approach to proving the positive mass theorem is to construct appropriate smooth
approximations to the metric g, and is based on a modification of the approach of Miao [51]
(see, also, [49, 44]). In [51], metrics were considered where the singular behaviour was
localised on a hypersurface. By an ingenious mollification technique, he smoothed out
the metric on a neighbourhood of this hypersurface in a controlled way, while leaving the
metric unchanged on the rest of the manifold. The metrics that we consider can be non-
smooth on an arbitrary compact subset K < M, so we cannot directly apply this technique.
Nevertheless, we proceed by smoothing the metric on the compact set K but leaving it
unchanged on M\K. This implies that the smooth approximating metrics g. have the
same asymptotic behaviour, and hence the same mass, as the metric g. The metrics g.
generally no longer have non-negative scalar curvature, but we may perform a conformal
transformation to give a new family of smooth metrics g, that are both asymptotically flat
and have non-negative scalar curvature. The classical positive mass theorem then implies
that mg. = 0. Using elliptic estimates, we show that mg_ — mg as e — 0, thereby implying
that mg > 0.

Section 1.5, which is also part of [30, 31], investigates the convergence properties of
the approximating metrics. We will show that the scalar curvatures of the approximating
metrics converge in L{Z/CQ(M ) to the scalar curvature of the rough metric. Furthermore we
will investigate how the Sobolev constants of the smooth metrics are related to the Sobolev

constant of the non-smooth metric.

In Section 1.6, we study a Dirichlet problem, which comes from the equation of the
conformal transformation of scalar curvature. It gives rise to functions v which will then
be used as conformal factors we multiply the approximating metrics with. We will study
the analytic properties of these factors, and see how small negative curvature influences
these properties. Furthermore we also get upper and lower bounds on the solution of the
Dirichlet problem.

In the case where the metric g € VVlif for some p > % (and therefore, by the Sobolev
embedding theorem, is continuous) we have the following approximation theorem:

THEOREM 0.1.3. Let g be a Riemannian metric on an open set Q = M of reqularity
Wﬁf(Q), p > 5 with non-negative scalar curvature in the distributional sense. Then there
exists a family of smooth, Riemannian metrics {g. | € > 0} with non-negative scalar

curvature such that g. converge locally uniformly to g as € — 0.

The elliptic estimates that we require to prove this result break down for metrics g €
C' () N I/Vf’n/2 (Q). However, we can show the following:

THEOREM 0.1.4. Let g be a Riemannian metric on an open set 2 of reqularity C°(2) N
VViZLQ(Q) with non-negative scalar curvature in the distributional sense. Then there exists
3



Chapter 0. Introduction

a family of smooth, Riemannian metrics {g. | € > 0} with non-negative scalar curvature
such that g. converge g in L} () ase — 0, for all p < oo.

loc

In general, we do not expect that it will be possible to locally uniformly approximate
continuous metrics in VVE):/ ® with non-negative scalar curvature by smooth metrics with
non-negative scalar curvature. Our results suggest an underlying “bubbling off” or non-
compactness phenomenon. In light of the critical Sobolev embedding of W?2™?2 we expect,
however, that the approximating metrics that we construct should converge to g in appro-
priate BMO or Orlicz spaces [64]. We have, however, not investigated this possibility.

In the final Section 1.7 we argue that the rigidity statement of the positive mass theorem
is unlikely to hold for the metrics studied in [30].

0.2. Volume comparison

We will study manifolds that satisfy Ricci curvature bounds. A Ricci curvature bound
is weaker than a sectional curvature bound, but stronger than a bound on the scalar
curvature.

For manifolds with sectional curvature bounds, many results have been proven, in-
cluding the 1/4-pinched Sphere Theorem, the Soul Theorem, and the homotopy finiteness
theorem.

The aim became to generalize these results to manifolds that just satisfy a Ricci curva-
ture bound. From 1967 on, examples were constructed that show the differences between
sectional and Ricci curvature. It was proven e.g., that the Toponogov comparison theorem
does not hold for manifolds that satisfy only a bound on the Ricci curvature.

A detailed review on the comparison geometry of Ricci curvature is provided by [72],
for a survey about manifolds with a lower Ricci curvature bound see [66].

In Section 2.1, we will introduce a basic tool for the study of manifolds with Ricci
curvature bounds, namely the Bochner formula.

In Section 2.2, the geometry of manifolds with constant curvature will be investigated.
We will also study the behavior of the volume element and the Laplace operator in both
the constant curvature and in the arbitrary curvature setting. We will use these results to
investigate classical volume comparison results in Section 2.3 where we will prove the classi-
cal Bishop-Gromov volume comparison result and mention some of the direct applications
of this result. We will also investigate mean curvature- and Laplacian comparison.

In Section 2.4, our aim is to generalise the volume comparison results to the case where
we have an integral bound on the part of the Ricci tensor that violates Ric > ¢(n — 1)g.
For simplicity, we only treat the case ¢ = 0, but our results may easily be adapted to
any ¢ € R. Results on this topic include [24, 69] and, of particular relevance to us, those
of [59].

We will develop volume estimates and monotonicity formula based on integral norms
of a weighted version of the negative part of Ricci along radial geodesics from each point.

4



0.3. Convergence of Riemannian manifolds

The novelty of our approach is the use of weighted curvature quantities, which lead to
sharper formulae in volume comparison calculations.
The main results are the following;:

THEOREM 0.2.1. Let S < Sz, >0 and p = 5. Then,

d |l (§,T)| || (§,7‘)|1_2pl—1
=~ < 2p - 1 =~ Rf 2p—1 A’f‘ . 021
dr <|F0(S,7’)| ( ) H HL (T(S,r)) ( )

Moreover, if r < £(0) for all 0 € g then we have the slightly sharper estimate

d |l (§,T)| || S r h ][
— | ——— ] < (2 — a1 0.2.2
I <|F0(S r)| ( P — ) |Fo S r H HL F(St) ( )

where fo t)dt = 1 fo

A special case of our results are those for geodesic balls, where we take S =5, We
then get

THEOREM 0.2.2. For 0 < rg < r then, for any p = 3, we have

d (V(x,r) V(:U,r)k?z?l*l ][T

— <2p—-1)——F——— R_| 120-1(B(z.t)) dt. 0.2.3

o < T ) @p—1)— CE ) (0.2.3)
Moreover, for r < injx, we have

d (V(x,r) Viz,r) ™ ][

— <2p-1)———F—— R_|r2o-1(B(z.e)) dt.

dr ( Vo(r) ) (2p ) Volr IRz (B(z.t))

Furthermore, we prove the following monotonlclty results:

THEOREM 0.2.3. Let p = 5. The quantities

Gl [ [ () o] o

Vv(ir?)n) exp [—(2;9 —1) /0 ' <]i » R¥ dug) ey dt] (0.2.5)

are non-increasing functions of r, both of which converge to 1 asr — 0.

and

0.3. Convergence of Riemannian manifolds

In this chapter we will discuss notions of convergence of Riemannian manifolds. We
will start in Section 3.1 with introducing the notions of Hausdorff- and Gromov-Hausdorff
convergence and describe how a bound on the Ricci curvature leads to convergence in this
topology. We will provide classical examples of which bounds lead to convergence. In
particular, we will discuss how a pointwise bound on Ric as well as a LP-bound leads to

5



Chapter 0. Introduction

Gromov-Hausdorff convergence. Furthermore, we will also see that the set of manifolds sat-
isfying the curvature bounds as described in Part 2 are compact in the Gromov-Hausdorff
topology.

In particular, we get

PropPoOSITION 0.3.1. The class of Riemannian manifolds with

1/(n—1)
(][ R dug) <e
B(z,t)

s precompact in the Gromov-Hausdorff topology.

In Sections 3.2 and 3.3, we will study a different way of describing the convergence prop-
erties of Riemannian manifolds by introducing convergence in certain Sobolev or Holder
spaces. In order to study the best regularity properties for convergence in these spaces, we
will introduce harmonic coordinates and the notion of harmonic radius and describe their
properties. This Section should provide a review over well-known material, of particular
relevance is the work of Anderson and Cheeger [3] on sequences of Riemannian manifolds
with Ricci curvature bounded below, and the work of Anderson [1] (see also [37]) on man-
ifolds with Ricci curvature bounded above and below. For the sake of completeness, the
proofs of the results are presented, with details added that simplify the understanding of
the concept of the proofs. Here we will see how a bound on the harmonic radius leads
to convergence of this sequence of manifolds.See also, [14] for a review of work concern-
ing Gromov-Hausdorff limits of sequences of manifolds with Ricci curvature uniformly

bounded below.

Section 3.4 provides a historic overview of convergence results for Riemannian mani-

folds.

Section 3.5 discusses sequences of manifolds with certain integral bounds on the Ricci
curvature. We will describe how an additional bound on the full curvature tensor leads to
convergence in Holder spaces. As a final result we get:

PROPOSITION 0.3.2. Letn =22, p> 5, v >0, D <o, K <oo. Then there exists an
e =¢e(n,p, K, D) such that the class of closed Riemannian manifolds with

Vol(M) = v (0.3
diam,; < D (0.3.2)
/ IR[rry < K (0.3.3)
M

1/(n—1)
(7[ R dug) <e (0.3.4)
B(z,t)

is precompact in the C%* topology for a < 2 — %.



CHAPTER 1

The positive mass theorem

1.1. Background

Let (M, g) be a 4-dimensional spacetime, i.e. a Lorentzian manifold with the signature
of g given by (—, +, +,+). Furthermore let g satisfy the Einstein equations

1
Ric,, — ESgab = 87TTab, (1.1.1)

where Ricy, is the Ricci curvature tensor, s the scalar curvature and 7' is a symmetric (0, 2)
tensor, the so-called stress-energy-momentum tensor. From a physical point of view, this
tensor is the source of the gravitational field. 7' is divergence free and we assume that it
furthermore satisfies the dominant energy condition (DEC)
3
T° =T, (a,b=1,2,3) T =) (~ToT")"". (1.1.2)
i=1
For many problems in General Relativity, also including the positive mass theorem, it is
not necessary to work with the entire spacetime, it suffices to investigate a spacelike slice.
Thus the focus is on the Cauchy data (M, g, k) where M is a three dimensional Riemannian
manifold, with metric g, and k is a symmetric (0, 2) tensor, the second fundamental form.
A necessary and sufficient condition for this triple to be a spacelike slice of a space-
time are the following constraint equations, which are obtained from the Gauss-Codazzi
equations:

21 = sg + (trg k)? — ||k, Ji =V (kij — (trg k)gij, (1.1.3)
for n a future directed unit normal vector to M, p := T(n,n) the energy density, and

J :=T(n,-) the momentum density.
From the DEC it then follows that

pz g

When trg £ = 0, i.e. the slicing is maximal, this condition is equivalent to the condition of
nonnegative scalar curvature.

A further condition which is imposed on (M, g) is that of asymptotic flatness. We can
define for arbitrary dimensions:

DEFINITION 1.1.1. A smooth complete oriented n-dimensional Riemannian manifold
(M, g) is called asymptotically flat of order T > 0, if there exists a compact set K € M, such
that M\ K consists of a finite number of ends Ny, ..., N; such that each N; is diffeomorphic

7



Chapter 1. The positive mass theorem

to R™\ B,., where B, denotes a ball in R™. The metric has to satisfy the following asymptotic
conditions:

955 =05 +0(p77), gy =0(p"""), &g =O0(p 7). (1.1.4)
for p = |z| — oo in the, so called, asymptotic coordinates {zF} on the ends Ny, see [61].
The diffeomorphism ® : M\K — By is called a structure at infinity if

(1) (P.g);; is uniformly equivalent to the flat metric on Bg, the ball of radius R, i.e.
there is a A > 1 with

ATHEP < (@ag) e < NEP (1.1.5)
(2) (Pug)ij — 0i5 € WE’TQ(ER).

From a structure at infinity one gets coordinates at infinity by setting z° = ®%(m),
me M.

Equivalently (see [46]) one can describe a manifold (M, g) to be asymptotically flat
of order 7 if there exists a decomposition M = My u M, for a compact M, and a dif-
feomorphism between M, and R™\ B, that satisfies the asymptotic conditions (1.1.4), for
manifolds with one end, and analogously for more ends.

This definition seems to depend on the choice of coordinates. However, Bartnik showed
in [6, Section 3] that an asymptotically flat structure is determined only by the metric,
and that two asymptotic structures at infinity differ only by a rigid motion and terms of
order o(r'=7).

1.1.1. Mass in General relativity.

DEFINITION 1.1.2. Let (M, g) be a spacetime with initial data (M, g, k) where M is
an asymptotically flat Riemannian manifold. Its mass or total energy is defined as

E(g) = — hm/ Z 0igi; — 0;9:)d%y, (1.1.6)

if this limit exists. In this equation X is the surface element of the sphere Sy in R3.
Furthermore, its linear momentum is given by

1 i
P(g) = o lm g <2;kil — 5iz;kjj> . (1.1.7)

For a detailed derivation of these formulae, see [28].
The appropriate topology to study the mass functional is provided by weighted Holder
spaces.

Both E and P; are defined on the asymptotic ends, where only the asymptotic behaviour
of g;; and k;; plays a role.

The energy E and the linear momentum P; are collected in a 4-vector (E, FP;). The
(total) mass of the spacetime is defined as

m(g) = /E2 — BP;o1., (1.1.8)



1.1. Background

In the definition of the energy, (1.1.6), the integral is not necessarily finite. Another
problem that can arise is that the mass possibly depends on the choice of coordinates.
Both problems can be ruled out by choosing the fall-off conditions correctly. The following

theorem, proved in [6] and [19], says that if g satisfies the fall-off conditions
Gij = 0ij + Vij (1.1.9)
with
Vi = O(r™), Orvis = O(r=*71) (1.1.10)

for a > £, then it holds that:

THEOREM 1.1.3. Let U be an end with a Riemannian metric g;; such that the fall-off
conditions (1.1.10) with o > 1/2 are satisfied. Assume also that the scalar curvature sg is
integrable in U, that is

/ |sg| dv < 0. (1.1.11)
U

Then the energy/mass defined by (1.1.6) is unique and it is finite.
The positive energy theorem then states the following:

THEOREM 1.1.4 (Positive energy theorem). Let (M, g, k) be an asymptotically flat (with
possibly many asymptotic ends), complete, initial data set, such that the dominant energy
condition (1.1.2) holds. Then the mass, as defined by (1.1.8), satisfies

m = +/P,P;0% = 0. (1.1.12)

at every end. Moreover, m =0 at any end if and only if the initial data correspond to the
Minkowsk: space-time.

This result was first proven by Schoen and Yau in the late 1970s and early 1980s with
purely geometric methods, [61], for manifolds of dimension < 7 and later by Witten, [68],
using a different approach by investigating manifolds of arbitrary dimension, but that
admit a spin structure.

The notion of energy can also be discussed in a purely Riemannian setting, modelling
time symmetric initial data. The second fundamental form then plays no role anymore,
k;; = 0. This Riemannian case of the positive mass theorem has applications in other areas
of mathematics, it is, e.g., used in resolving the Yamabe problem (see [46] and references
therein). We will mainly focus on this purely Riemannian setting.

COROLLARY 1.1.5 (Riemannian positive mass theorem). Let (M,g) be a complete,
asymptotically flat, Riemannian manifold. Assume that the scalar curvature is non-negative.
Then the energy is non-negative at every end and it is zero at one end if and only if the
metric is flat.

This corollary was proved with the optimal decay conditions for the metric in [6] and

[46].



Chapter 1. The positive mass theorem

1.1.2. Historic overview. The study of the positive mass theorem started in the
1960ies when Arnowitt, Deser and Misner conjectured that the mass of a spacetime along
a spacelike hypersurface is always nonnegative and vanishes only if the spacetime is empty.
The proof of this result has a long history, which is outlined in Table 1.

Following Witten in [68], we will now give a brief overview over the different versions
of the positive energy conjecture.

In this results, only smooth manifolds (i.e. manifolds with metrics that are smooth)
are investigated. In Sections 1.3 and 1.4, we will also investigate manifolds which are of
certain lower regularity:.

1.2. Classical positive mass theorem

1.2.1. Geometric approach. Schoen and Yau provided the first proof of the Positive
Mass/Energy theorem in [61] by using geometric methods. In particular they make use of
minimal surface theory to obtain the result. This proof works by contradiction.

’ \ Author \ Spacetime ‘

1959/60 | Araki Brill, Deser Minkowski space is the unique station-
ary point of energy, it is a local mini-
mum

1970 Leibkovitz, Israel PEC for spherically symmetric initial
data set

1971 Misner PEC for spherically symmetric initial
data set

1974 O’Murchadha, York Time symmetric initial data, spaces
with maximal hypersurfaces

1975 Geroch Spaces with Minkowsi topology admit-
ting a maximal hypersurface

1976 Jang Spaces with flat initial hypersurfaces

1977 Leite Spaces whose initial value surface can

be embedded isometrically in R*
1976 Choquet-Bruhat, Marsden | Any space that is in a sufficiently small
neighborhood of Minkowski space

1979 Schoen, Yau Space with maximal slicing

1979 Schoen, Yau General spacetimes of dimension < 7

1981 Witten General spacetimes that admit a spin
structure

2006 Lohkamp Manifolds of arbitrary dimension, no

topological restrictions (unpublished)
TABLE 1. Proofs for different specific manifolds

10



1.2. Classical positive mass theorem

Let (M, g) be a Riemannian manifold (a spacelike slice of a Lorentzian manifold), and
suppose that the mass on one end M}, is negative, m < 0, but the scalar curvature of M is
non-negative, sg = 0. They show that this is not possible.

Schoen and Yau proceed in several steps:

Step 1: Let g be an asymptotically flat metric on M, with s > 0, and m(g) < 0.
Then there exists an asymptotically flat metric g which is conformally equivalent to g,
which has non-negative scalar curvature sg, with sz > 0 outside a compact subset of the
end M) and has negative mass.

This metric can be written as

Gij = (1 + %)45ij + 0 (712> ,

where 9;; is the Euclidean metric.

Step 2: Construct a complete area minimizing surface (with respect to g) S which is
properly embedded into M.

Step 3: Show that such a surface can not exist. Indeed, by minimality of S, the trace
of the second fundamental form of S, h, has to vanish, i.e. h;; + hos = 0. By using a
second variation argument and integration by parts, it follows that

/Rlc V) 2 WS < /sz (1.2.1)

t,j=1

for all C?—functions f with compact support on S. Here v denotes the normal to S. Using
the Gauss curvature equation, K = Ky + hyihoy — h3, (where K is the Gaussian curvature
of S) and the fact that hy; + hoy = 0, equation (1.2.1) becomes

Lésg K+ = Z:h‘ﬂ Q/Hsz (1.2.2)

1,j=1

By choosing an appropriate f, it follows that

/%ZH Z%\. (1.2.3)
S

3,j=1

Since sg = 0, and sz > 0 outside a compact subset of S, (1.2.3) implies that

/K>O (1.2.4)
S

But this does not hold. Indeed, by applying a modified version of the Gauss-Bonnet
theorem on open Riemannian surfaces, [23, 39] or by applying the classical Gauss-Bonnet
theorem and estimating the boundary term ([61], pp. 55), one gets

/Kgm (1.2.5)
S

11



Chapter 1. The positive mass theorem

which is a contradiction.

This proof can be applied to manifolds up to dimension n = 7. In higher dimensions
the minimal surface argument breaks down.

1.2.2. Spin approach. In Witten’s approach [68], the main idea is to write the mass
as a sum of squares. His proof of the positive mass theorem holds true for spin manifolds
of arbitrary dimension. For an introduction to spin manifolds see [43].

The Lichnerowicz formula ([47]) for the square of the Dirac operator on a spin manifold
is given by

DX = V*Vi + Z@z) (1.2.6)

for sections 1 of a spin bundle with covariant derivative V.
Integration by parts of (1.2.6) leads to the Weitzenbock formula

/ |V|* + Z|¢| = boundary term. (1.2.7)
M

Thus, in case the manifold M is a closed Riemannian spin manifold of nonnegative
scalar curvature s, which is positive at least somewhere, there are no nontrivial 1) with
Vi =0on M.

A calculation, see, e.g. [54], shows that the boundary integral is given by the difference
E — |P|. Thus formula (2.1.3) is the anticipated formula for the mass as a sum of squares.
From this, the positive mass theorem follows easily.

In the proof of this result it is required to show the existence of harmonic spinors with
appropriate fall-off conditions. Details for these calculations can be found in [54].

1.3. Low regularity versions

Schoen and Yau investigated manifolds with smooth (or at least C?) metrics. We will
now start lowering the regularity of the metric.

1.3.1. Manifolds admitting corners along hypersurfaces.

Approach via conformal transformations

In [51] the author investigates the special case where the metric has a jump across a
hypersurface ¥, therefore fails to be C* across this surface. We will now give an overview
of this result, since [30, 31] use modifications and similar techniques to this paper.

Let n = 3 and let (M, g) be an oriented n-dimensional smooth differentiable manifold
without boundary which is asymptotically flat, see Definition 1.1.1. Furthermore, let the
classical positive mass theorem be valid on M. Let ¥ be the hypersurface 0K, where K is
the compact set in Definition 1.1.1.

12



1.3. Low regularity versions

DEFINITION 1.3.1. A metric g = (g_,8+) admitting corners along ¥ is a Lipschitz
metric, such that its restrictions g_ on K and g, on M\K are in C?>®. Furthermore g, g_
are C? up to the boundary and g |z = g_|s.

Such a metric g is called asymptotically flat if (M\K, g, ) is asymptotically flat in the
sense of Definition 1.1.1.

The mass of g is defined to be the mass of g as in Definition 1.1.2, whenever it exists.

We denote the scalar curvatures of g and g, by sg_ and sg, , respectively. Further-
more, the mean curvatures of ¥ in (K,g ) and (M\K,g,) with respect to unit normals
pointing outwards from K, are denoted by H(X,g ) and H(3,g,).

The main result of [51] is the following:

THEOREM 1.3.2. [51, Theorem 1] Let g = (g_,g4) be an asymptotically flat metric
admatting corners along X. Let the scalar curvatures sq_, sg, be nonnegative on K and

M\K, respectively. If H(X,g ) and H(X,g.) furthermore satisfy

then the mass of g is nonnegative. It is strictly positive if at one point strict inequality

holds.

REMARK 1.3.3. The condition (1.3.1) can be interpreted as the condition that the
scalar curvature of g be nonnegative in a distributional sense, see [51, Section 2] for a
detailed explanation.

REMARK 1.3.4. For a C? metric g in a neighborhood of ¥, the Gauss equation holds.
Taking the trace of the Gauss equation leads to

2K = sg — 2Ric(v,v) + h* — |A]?, (1.3.2)
with Ric(v, ) being the Ricci curvature of g along v, h the mean curvature, A the second

fundamental form of ¥ and K its Gaussian curvature.
If 3 evolves with speed v, then the following evolution equation holds:

D,h = —Ric(v,v) — |A]*. (1.3.3)
Combining (1.3.2) and (1.3.3), we arrive at

sg = 2K — (JA]* + h*) — 2D, h. (1.3.4)
This equation will play a role in the estimation of the scalar curvature for approximating
metrics, see (2) below.

Proof of Theorem 1.5.2. The proof of Theorem 1.3.2 can be split into different steps:
(1) Smoothing g across X by metrics g. that are C? across X.
(2) Estimating sg..
(3) Modifying g. by a conformal transformation to obtain C? metrics g. which have
nonnegative scalar curvatures.

13



Chapter 1. The positive mass theorem

(4) Showing that the masses of g. converge to that of g.
(5) Finally concluding, by using the classical positive mass theorem for g., that
m(g) = 0.

For (1), Miao constructs certain mollifiers in a neighborhood of ¥ and is able to show
that the smoothed metrics g. are uniformly close to g on M, and are equal to g outside a
neighborhood U of .

In order to get the bounds (2), Miao uses (1.3.4) and estimates each term. He then
arrives at

sg.(x,t) = O(1), for (z,t) outside of U (1.3.5)
sg.(z,t) = O() +{H(Z,g-)(x) — H(Z, g+ ) (@)} (1),
for (z,t) e U, (1.3.6)

where O(1) contains quantities that are bounded by constants depending only on g, not
on ¢ and f(t) is a function determined by the chosen mollifier and the size of U, |
Proposition 3.1.].

Y

For (3) a lemma, due to Schoen and Yau in [61], is used:
LEMMA 1.3.5. [61, Lemma 3.2] There exists a constant ey = €o(g) > 0 with the property
that if

”f*HL"/Q(M,g) < 50(g)7
then the partial differential equation

Agu— fu=yg

has a unique positive solution on M that satisfies u(x) = 25 + w(r) as r — oo, where A
is constant and w(r) = O(r'=") as r — .

The proof of this lemma will be investigated more closely in Section 1.6.

Miao then considers for each ¢ the equation

Ag e + Cp(Sg.)—u: =0 (1.3.7)
with the additional condition
lir% ue. = 1. (1.3.8)

It follows from (1.3.6) and the assumptions on sg and sg, that

{ Sg._ =0, outside U,

< Cy, inside U. (1.3.9)

|8g5—
Therefore, it is possible to apply Lemma 1.3.5 with f replaced by —(sg. )_, g replaced by
0 and g by g¢., for € small, to obtain a solution to (1.3.7).

Miao is furthermore able to show that u. — 1 in L®. In more detail, he gets the
following:

PROPOSITION 1.3.6. [51, Proposition 4.1.] lim._,o |u: — 1|z« n = 0 and on a compact
set K < M\X, also |uc||c2exy < Ck. The constant Ci only depends on g and K.

14



1.3. Low regularity versions

In the proof Miao uses Moser iteration to obtain an L* bound on w. = u, — 1, and he
uses Schauder theory to also get the C*% bound.

Miao then finally defines a new metric, g., by
4

8 = ul g
By formula (A.2.4) in the Appendix the scalar curvature of g. is non-negative.
To get (4), we use the fact that
m(g.) = m(g.) + (n— 1A,
where A, is the term in the expansion u. = 1 + A |z[*™ + O(|z|'™).
After integration by parts, one obtains
n—1

m(gé‘) = m(g&) + Wnn 2 / (|Vgsu5|2 - Cn(sgs)_ug) dVOI 8 (1310)
- M

where w,, is the volume of the n — 1-dimensional unit sphere in R".
The term in the integral goes to zero with ¢ — 0. Thus

lir%m(ge) = lir%m(ga) =m(g). (1.3.11)

To finally conclude that the mass of g is positive, apply the classical positive mass
theorem to each of the g.. Indeed,

m(g) = llmm(gs) =0,

—0

which finishes the proof of Theorem 1.3.2.

Miao furthermore proves the following rigidity result:

THEOREM 1.3.7. [51, Theorem 2] Let n = 3 and g_, g, satisfy all the assumptions in
Theorem 1.3.2. Ifg_ and g, are at least Cfo’?, then, if the mass of g s zero, both g and
g, are flat away from the hypersurface 3. They induce the same second fundamental form
on X. (K,g_) and (M\K,g.) together can be isometrically identified with the Euclidean
space (R?,0).

In the proof, Miao makes use of the following result by Bray and Finster, [9]:

PROPOSITION 1.3.8. Let {g;} be a sequence of C3, complete, asymptotically flat met-
rics on M3 with non-negative scalar curvature and the total masses {m;} converging to a,
possibly non-smooth, limit metric g in C°. Let U be the interior of the set of points where
this convergence of metrics is locally C3.

If the metrics {g;} have uniformly positive isoperimetric constants and their masses
{m;} converge to zero, then g is flat in U.

Details can be found in [51, Section 5].
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Chapter 1. The positive mass theorem

Approach via Ricci flow

McFeron and Székelyhidi study in [49] the same type of manifolds as Miao, i.e. (M,g)
such that the classical positive mass theorem holds, with a hypersurface ¥ along which
the metric fails to be C?, but g is asymptotically flat in C? and H(X,g_) > H(XZ,g,), as
defined in [51].

They modify the proof of Miao by making use of Ricci-flow techniques. Instead of confor-
mally changing the smoothed metrics to get ones with non-negative scalar curvature, they

use Ricci-flow, as introduced by Hamilton in [34] to smooth the metric. In this process,
the non-negativity of the scalar curvature is preserved.
They use Simon’s result, [62], due to which Ricci-flow can be started from a C? initial

metric. In the next step they make use of Miao’s bounds on the scalar curvatures of the
g., (1.3.6), in order to show that the metrics which evolve along the Ricci-flow starting
from g have non-negative scalar curvatures.

Next they prove that the mass is constant along the Ricci-flow, [49, Section 3].

COROLLARY 1.3.9. [49, Corollary 12| The mass is preserved under the Ricci flow.

Note that the proof uses a bound on the derivative of the curvature tensor.

In order to finally conclude the positive mass theorem for manifolds with corners, McFeron
and Székelyhidi smooth the metric g by g. such that g = g. outside a ball B, they are
C? close to g and their scalar curvatures are bounded by a fixed constant K. Therefore,

by [51, Proposition 3.1], also
/ 5g.ldVi, <.
{Sg€<0}

They then take a solution g(t) of the Hamilton-DeTurk flow with initial metric g, see [62].
Let h be the background metric, h = g. outside a compact set. Using the results by Simon,
the h—flow of g can be obtained as the limit of the h—flows g.(t) with initial condition g..
It turns out that these g(t) are asymptotically flat in C*®, not in C? and have non-negative
scalar curvature. By [46], this suffices to make the positive mass theorem hold for g(t).

In the final step they show:

THEOREM 1.3.10. [49, Theorem 18] The C°-metric g has mass m(g) = 0. If it van-
ishes, i.e. if m(g) =0, then g is the flat metric up to a CY* change of coordinates.

Sketch of Proof. Let g(t) be the solution of h—flow. Since the metric gets changed only
outside a ball, m(g.) = m(g), for all e. By the properties of the h-flow, [62, p.3ff], it
is possible, for each ¢ > 0 to find diffeomorphisms ¢.; (¢-0 = id), such that ¢Z,g.(t)
are solutions of the Ricci flow. Since the mass is constant along the Ricci flow, [49,
Corollary 12], it follows that

m(gb:,tge(t)) = m(ge) = m(g)
On the other hand, m(g.(t)) = m(g) since, due to [6, Theorem 4.2.], the mass does
not depend on the choice of asymptotic coordinates.
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1.3. Low regularity versions

Finally using the fact that g(t) = limg.(¢) and Theorem 14 in [49], it follows that
m(g(t)) < m(g). The metrics g(t) have non-negative scalar curvature, thus by the classical
positive mass theorem, m(g(t)) = 0, and therefore also m(g) = 0.

For the rigidity statement, see [49)]. O

1.3.2. Lipschitz metrics with small singular sets. Compared to the previous
results, where the singular set is a hypersurface, Lee shows in [44], that the positive mass
theorem also is valid for metrics that are Lipschitz continuous, with a singular set S that
is low-dimensional (i.e. its Minkowski dimension is small).

The m-dimensional Minkowski content is defined as follows:

DEFINITION 1.3.11. Let S be a subset of an n-dimensional Riemannian manifold (M, g),
then the m-dimensional lower Minkowski content of S is
LS,
lim inf ﬁ
e=0 Qe

where L7 is the Lebesgue measure with respect to g, Se is the e-neighborhood of 5, and
Wh—m 18 the volume of the unit ball in R® ™,

In detail, he proves the following results:

THEOREM 1.3.12. [44, Theorem 1.2] Let M be a smooth manifold such that the classical
positive mass theorem holds. Let g be a complete asymptotically flat Lipschitz metric on
M, and let S be a bounded subset with vanishing n/2-dimensional lower Minkowski content.
If g has bounded C*-norm and if on M\S the scalar curvature is nonnegative, then the
mass of g is nonnegative in each end.

Lee also conjectures, without proving, that the dimension of S need to be less than
n—1.
Furthermore he shows a WP version of this theorem.

THEOREM 1.3.13. [44, Theorem 1.3] Let M be a smooth manifold such that the positive
mass theorem is valid. Let p > n, let g be a complete asymptotically flat WP (and hence

loc
continuous) metric on M, and let S be a bounded subset whose (1 — %)—dimensianal lower

Minkowski content is zero. If g has bounded C*-norm and nonnegative scalar curvature on
the complement of S, then the mass of g is nonnegative in each end.

Sketch of proof of Theorem 1.3.12. Let M be an n-dimensional Riemannian manifold with
metric g. Let S be the singular set in Theorem 1.3.12. By mollification of g, Lee obtains
a smooth metric g. with g. = g outside a neighborhood of S. By using the hypothesis of
a bounded C?—norm of g, the smoothing should have the property that g., g=!, and og.
are bounded independently of ¢, but ddg. = O(e™!), with respect to a particular atlas.
Thus, sg. = O(¢7!'). By the second hypothesis, i.e. the vanishing n/2-dimensional lower
Minkowski content, it follows that the volume of S. (the e neighborhood of S) is o(c™/?).
Thus, for this smoothing,
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Chapter 1. The positive mass theorem

/ |s,. " dg = o(1). (1.3.12)
SQ&

Then Lee conformally deforms g. to metrics that have nonnegative scalar curvature,
without changing the mass too much. By applying the classical positive mass theorem to
the smooth metrics with nonnegative scalar curvature it follows that the original manifold
(M, g) has mass greater than a small negative number that is o(1) in . For ¢ — 0 the
result follows.

O

1.4. Low regularity metrics with nonnegative scalar curvature in a
distributional sense

Let (M, g) be a complete, asymptotically flat, smooth Riemannian manifold of dimen-
sion n = 3. We assume that the metric g is smooth on M\K, where K is a compact
set, and that it satisfies the asymptotic conditions required for the validity of the smooth
positive mass theorem. In addition, we assume that the classical positive mass theorem is
valid on M.

Our global regularity assumption throughout is that the metric g is continuous and lies
in the local Sobolev space W2"/?(M).

Let 2(M) denote the collection of smooth, compactly supported test functions on M.
It follows that the map Z(M) — R defined by

> (S, p) 1= / Sgp dilg (1.4.1)
M

is a well-defined distribution on M.

DEFINITION 1.4.1. A metric g is said to have non-negative scalar curvature in the
distributional sense if sg = 0 in 2'(M), i.e.

(g, 0%> =0,  Vpe 2(M). (1.4.2)

REMARK 1.4.2. On M\ K, the metric g is smooth, so the scalar curvature is a pointwise
well-defined quantity, and the condition (1.4.2) is equivalent to the condition that sy = 0
as a smooth function. However, inside the set K the metric g is not assumed to be C?,
and so (1.4.2) imposes non-negativity of the scalar curvature only in the weak sense.

The main result of [31] is the following.

THEOREM 1.4.3. Let (M,g) be a Riemannian manifold as above with non-negative
scalar curvature in the distributional sense. Then the mass of (M,g) is non-negative.

The proof of this result is a modification of the proof provided by Miao [51] (see
also [44, 49]). As outlined in Section 1.3.1, it involves smooth approximations of the
metric g. These smooth approximations have to satisfy the following properties:

LEMMA 1.4.4. For alle > 0, there exists a smooth Riemannian metric g. and a compact
set K. < M with the following properties:
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1.4. Low regularity metrics with nonnegative scalar curvature in a distributional sense

(1) g. converges to g locally uniformly and in VVi’C"/Q(M) as € — 0;

(2) g coincides with the metric g on the set M\K,;
(8) K. converges to K as e — 0.

REMARK 1.4.5. By construction, g. = g on M\K,, so the metrics g. have the same
asymptotic behaviour and mass as g.

Proof of Lemma 1././. Generally, the existence of such a family of smooth approximating
metrics follows from density of smooth metrics in I/Vlicn/ *(M) ~ CO(M). More explicitly,
we may proceed as follows. We cover K by a finite collection of open coordinate charts
i O; — B(0,1) < R", i = 1,...,m with the property that K < u*,0; and M =
N v (U™,0;), where N := M\K. Let x;, i = 1,...,m and yy be a smooth squared
partition of unity (i.e. x% + Do, X7 = 1) subordinate to the cover of M defined by O; and
N with the property that the functions x; o ¥;' have compact support contained in the
set B(0,1) and that yy has support bounded away from dN. We decompose the metric
using the partition of unity, letting g; := x:g, ¢ = 1,...,m and gy := xng be (0,2)
tensor fields on M with support contained in O; and N, respectively. For ¢ = 1,...,m,
we define the (0,2) tensor field G; := (¢; )" g; on B(0,1) = 1;(0;), which has compact
support contained away from the boundary of B(0,1). In terms of the coordinates z$ on

¥;(0;) < R", the components G; .3 of G; are continuous and lie in W2’"/2(B(0, 1)). Let

loc
p: R" — R be a smooth, positive mollifier with suppp < B(0,1) and fB(o,l) p = 1. Let
pe(x) :=¢e"p (f) We construct smoothed versions of the tensor fields G; by taking the
scaled convolution of the components G;c.n5(x) := (pe * Giap) (z) for z € B(0,1). Since
G, has support bounded away from 0B(0, 1), it follows that there exists ey > 0 such that,
for all € < gy, the Gj..ap Will have support bounded away from 0B(0,1) for i = 1,...,m.
From the components G;..ng, we now reconstruct the smooth (0,2) tensor fields G;. on
B(0,1). Let g;. := (¢;)* Gy, for i = 1,...,m. We now define the (0,2) tensor field on M

8 1= XN8N T Z Xi8ie-
i=1
(Note that we have not changed the (smooth) metric gy.) By the convergence properties
of smoothing with mollifiers, the (0,2) tensor fields g;. will converge to g; both locally
uniformly and in W2_(M)n/2 as ¢ — 0. Since g; = x;8, we therefore have that, both
locally uniformly and in W2_(M)n/2,

8- — XNEBN + ) X8 = XNg+ > X8 =g
i=1 i=1
since (X1, -, Xm, Xn) I8 a squared partition of unity. Therefore, Condition (1) is satisfied.
Since we have not modified the metric gy, and the g; . only differ from g; on a set of size ¢,
it follows that the g. will coincide with g on an e-neighbourhood of the set K. We define
K. to be the closure of this set, which is automatically compact. With this definition of
K., Conditions (2) and (3) are satisfied. O
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Chapter 1. The positive mass theorem

For this approximations it holds that sg — sg in Llo/C (M) as ¢ — 0. This will be
shown below in 1.5.4.

REMARK 1.4.6. The condition that the metric lies in C°(M) n W2™2(M) implies that
the full curvature tensor lies in LIO/C (M) and that the curvature of the metrics g. converges

to that of g in L"/2(M). This will be proven in Propositions 1.5.1 and 1.5.4 below.

REMARK 1.4.7. For the class of metrics discussed in [51, 49, 44], one obtains a point-
wise bound on the negative part of sg_. For our metrics, it is an L™? bound on [sg.]  that
appears naturally.

In the next step we conformally transform g. as follows:

Let u. denote a solution of the equation
Ag. U + Cy[Sg. |-u. = 0,

where
n—2
4(n—1)
From Lemma 1.3.5 we get that u. > 0. Using these u. as conformal factors, we obtain
smooth metrics with non-negative scalar curvature. Indeed,

Cp 1=

PROPOSITION 1.4.8. The conformally rescaled metrics g. := ué/(" )g€ are asymptot-

ically flat and have non-negative scalar curvature. Furthermore, m(g.) — m(g:) — 0 as
e — 0.

Proof. The scalar curvature of the metric g, is given by

1 _ni2 _n+2 _ 4
= —u: "7 (—Aus + cpSgus) = ue "2 (= Aue + cpSgl1us — el Sg]-ue) = ue " Sg]+

8/\
g
Cn n

>

and is therefore non-negative by construction. Moreover, the mass of (M, g.) is related to
that of (M, g.) by the relation (1.3.10)

mg) = m@) + —"—1

/M [|Vgaus|és — Cn [Sgs]_ ug] dptg, -

(n —2)w, 1

It will be shown in 1.5.8 that the first term in the integral on the right-hand-side
converges to 0 as € — 0. For the second term, we have

/ [Sgs]_ug dpg. | = / [Sga]_uz ditg,
M K

Moreover,

2
< el loweacgoluel? 2,

el 2 ey

n—2
— |K|g" ase— 0.

R I

n—2
= |K|g2€n + ||/UE||L7L2%(K,g5)
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1.5. Properties of the approximating metrics

From compactness of K, we have |K|g < co. Since ||[sg.]_||zn2(xg) — 0, it follows that
Jos [8e.]_uZ dpg. — 0 as e — 0. Therefore m(g.) —m(g.) — 0 as ¢ — 0. O

Since m(g.) = m(g), we deduce from Proposition 1.4.8 that the masses of the con-
formally rescaled metrics converge to m(g) as e — 0. Since the classical positive mass
theorem implies that m(g.) = 0 for ¢ > 0, we deduce that m(g) = 0.

1.5. Properties of the approximating metrics

PROPOSITION 1.5.1. Let g € CO(M) A W2(M). Then sg € L"(M).

loc loc

REMARK 1.5.2. Even though for the proof of the positive mass theorem it is not neces-
sary, this result can be generalized to still hold for g € CO(M) AW} o/ *(M) for combinations

loc
of the form

> g (1.5.1)

la|=Fk

We will prove Proposition 1.5.1 in this more general setting.

Proof of Theorem 1.5.1. The result is local, so we may perform the calculations in a local
coordinate chart. Since g € VVlk n/k(M), we have o*g € Ln/k(M). The Sobolev embedding

loc

theorem implies that og € W[ '(M)n/k = L2 (M), etc. Since g is assumed continuous,

we deduce that all of the terms in the expression (1.5.1) lie in Ln/ (M), and therefore also
n/k
Dlal-k 970%9. eLlo/c (M).
Setting £ = 2, we get that the curvature tensor of g, which is schematically of the
form R = g 0%*g. + g-0g.0g._, lies in Lﬁ)/f(M) Since the scalar curvature follows from
contracting the curvature tensor with the (continuous) inverse metric, it follows that the

scalar curvature lies in L*(M). O

LEMMA 1.5.3. There exists p(e) = 1 with the property that
1
@ < g < ple)g. (1.5.2)

)

as bilinear forms on M, with p(¢) —> 1 as e — 0.

Proof. By construction, the g. converge uniformly to g on compact subsets. Taking the
compact set to be K, it follows that there exists p(¢) such that (1.5.2) holds on the set
K.. Since g. coincides with g on M\K,, it follows that (1.5.2) holds globally on M for
each € > (0. Uniform convergence of the metrics on K and the fact that K, - K ase — 0
implies that p(e) —> 1 as ¢ — 0. O

PROPOSITION 1.5.4. Let g € CO(M) n W "/2(]\/[) and g. as in Lemma 1.4.4. Then

loc

Sg. — Sg mL/(M) as e — 0.

loc
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Chapter 1. The positive mass theorem

Proof. Again, this is a local calculation. Since g € W2’n/2(M), we have d%g.. — 0%g. €

loc
Lﬁ)/f(M) By the Sobolev embedding theorem, dg € Lj! .(M) and dg. — dg.. in L} (M).

Finally, since g is assumed to be continuous, the g. . converge locally uniformly to g as
€ — 0. We then have

IR[g:].. — Rlgl..| Lo ~ 92 ?ge.. + 9:09c..0g.. — g9, — 970g..0g..|| sz
< |l9:0°ge,.. — g70%9. | o2 + |92 0Ge...0g-.. — g7 09..0g. || sz
< gz (%9 — g ) + (g2 — g7) 9. || pre
+ 19:09.... (0g-.. — 09.)||pn2 + |lgz (Oge.. — 8g..) Og..| pns2
+ (9 —97) 99.09.| Lnr2

= I+ I+ I1I[+1V+V. (1.5.3)
We then have
< |gzNe=l0%ge. — g | o,
IT< gz = g e=10g. Lo,
1T < 92|~ 0ge..| 2|1 0ge.. — 0. 1n,
IV < |gzll=)0ge.. = 29[| |0g. || Ln,
V <g: =g le=10g. 170

These estimates show that each term on the right-hand-side of (1.5.3) converges to 0 as
€ — 0. Therefore, the curvature of the metrics g. converges to that of g in L 2(M ) as

loc
¢ — 0. Since g. converges locally uniformly to g as ¢ — 0, it follows that sg. — sg in
LM (M) as e — 0. O

REMARK 1.5.5. This result can also be generalized to the case g € CO(M) A W% (M)

loc
for combinations of the form Zm‘:k g 0“g.. by estimating the additional terms via Holder’s

inequality.
We recall the following result [61, Lemma 3.1].

LEMMA 1.5.6. For each metric g., there exists a constant C > 0 such that for any
function p with compact support on M we have

11 22, 1y oy < C1VaPli2ur: (1.5.4)

The smallest such constant will be denoted by c1[g.| and referred to as the Sobolev constant
of g..
This result will be used together with:
PROPOSITION 1.5.7. The Sobolev constants of the metrics g. are related to that of the
metric g by the inequality
1
ple)

alg] <alg] <ple)"alg], t=0, (1.5.5)
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1.5. Properties of the approximating metrics

where p 1s the function introduced in Lemma 1.5.5.

Proof. Let ¢ be a function with compact support on M. We then have

o = ([ 1)

o =
< (p(g)n/2/ |90|n—2 dlug€>
M
n—2
<o aled ([ 196l du. )
M

< p(e) T ailg] (p(ﬁ)”/ o /M Vol2 dug)

= ple)"cilge] IV eliz(ag)-

n—2

Therefore ¢1[g] < p(e)™c1[g:]. Reversing the same argument gives the other part of (1.5.5).
U

1.5.1. Small negative curvature.

PROPOSITION 1.5.8. Let g € CO(M) n W n/z(M) with non-negative scalar curvature
in the distributional sense. Then the negative part of the scalar curvature of the metric g.
satisfies

H[Sgs]—HLn/Q(M) < |lsg. — SgHLn/2(M) —0 ase—0. (1.5.6)
In particular, [sg.]_ — 0 in L*(M) as e — 0.

Proof. By assumption, given ¢ € Z(M) with ¢ > 0, we have

/ Sg.pdp = <3g790> +/ (Sge - Sg)@d/i
M M

/ (Sga - Sg) pdu
M

—[lsg. — Sg”Ln/?(M) HSOHLﬁ(M) .

A\

The result then follows from Lemma 1.5.4. O

In the case where the metric g fails to have non-negative scalar curvature, but the
negative part of the scalar curvature has small L™? norm, we may derive a (negative)
lower bound on the mass of (M, g).

THEOREM 1.5.9. Let g be an asymptotically flat metric with (sg)_ being of compact
support and sufficiently small such that

ex el (58)- | vzqan) < 1.
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Chapter 1. The positive mass theorem

Then the mass of the metric g satisfies

n—1 cnll (sg)nrzany
(n = 2)wn (1= c1cnll(sg)=llpmzgan)

Proof. The metric g has non-negative scalar curvature and, hence, non-negative mass. We
therefore have

*
2 |supp f|2/n .

m(gs) Z —

~ n—1
me) = m@)+ g /M [IVguly — e [sg] ] dug
n—1 )
= (n _ Q)Wn_lCTLH(Sg)fHLn/Q(M)HUHL”*(supp(sg)_)‘ (157)

Since u = 1 + v, the estimate (1.6.10a) below implies that

1/n*

1/n* " €1 CnH(Sg)—||Ln/2(M)
l—a CHH(Sg)*HL”/Q(M)

1 1/n*
= supp f
=i en(55) Isupp /1

”u”Ln* (supp(sg)—) < |Supp f| |Supp f|

n/2 (M)

Substituting this inequality into (1.5.7) gives the desired result. O

1.6. Dirichlet problem

In this section, g will denote a smooth asymptotically flat, Riemannian metric on the
manifold M.

Due to the result of Schoen and Yau, as stated in Lemma 1.3.5, we get a unique solution
of

Agu — fu=nh
provided that

Lf -\ e arg) < €0(8),
This solution satisfies u(z) = =25 + w(r) as r — oo, where A is constant and w(r) =

O(r'™") as r — .

This follows from (1.5.6), (1.5.5) and the fact that p(e) — 1 as e — 0.

We recall some parts of the proof of Lemma 1.3.5 as it was derived in [61], since we
will require some information concerning the constant ¢y. Let {2 be an open subset of M
with compact closure, such that 0f) is smooth and contained in the ends of M.

Let v :=u — 1. We aim at solving Dirichlet problem

Agv — fv = h, v 02 =0 (1.6.1)

on the set 2. Taking a sequence of sets 2 such that  form a compact exhaustion of M, then
we may extract a subsequence of the corresponding solutions v of the Dirichlet problem
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1.6. Dirichlet problem

that converge to the solution on M with the asymptotic properties given in Lemma 1.3.5.
Treating the homogeneous problem with A = 0 and using the Sobolev inequality (1.5.4)
yields the inequality

[ (9ol it < crle) - ey [ V0l du
It follows that if the condition

gl /= lenzng < 1, (1.6.2)

is satisfied, then the homogeneous problem has a unique smooth solution v = 0 on the
region 2. Fredholm theory then yields the (unique) existence of a solution of the inhomo-
geneous problem (1.6.1).

Let now u denote a solution of the equation
Agt + ¢y [sg]-u = 0,

where
n—2

4(n—1)
As already described in Section 1.3.1, the metric g := u*("~?g has scalar curvature satis-
fying

Cp 1=

cns§u%g = —Agu + ¢, 5gu = — (Ag + ¢y [Sg]—u) + cu[sg]+u.

Since we are interested in metrics g to have non-negative scalar curvature on 2, we
impose that u satisfy the equation Agu + ¢,[sg]-u = 0 in  with v = 1 on 0.
Letting v := 1 + v, then v satisfies the equation

Agv+ fo+ f=01in Q, v 02 = 0, (1.6.3)
where f := ¢,[sg]- = 0.

We will study the general case p = n/2, even though for proving Theorem 1.4.3 we just
need p = n/2.

Let || f]z» be sufficiently small that
a || fllee |27 < 1. (1.6.4)

Let €2 € M be an open set with compact closure and smooth boundary 0£2. We wish
to derive global estimates for a solution, v, of the Dirichlet problem

Agv+ fo+ f=0 inQ, v| 02 =0, (1.6.5)
where f > 0 and we assume that f € LP(€2, g) for some p > 3.

Given any measurable set Q € M with |Q] > 0, we adopt the notation

]éfdu:ﬁ/gfdu

for the mean of a function f over the set 2.
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Chapter 1. The positive mass theorem

Furthermore, n* denotes the Sobolev conjugate to n (i.e., ni* =1- %)

LEMMA 1.6.1. If | f|» satisfies (1.6.4), then the solution v of (1.6.5) satisfies the

inequality
n* 2 1
(][ |U|n* du )1/ __a [flle|€2] P oo
x — .
o e S0l

FEquivalently,

2 1
QP 1
- _alflblof s oo (167

||U||Ln*(9) = 3
L=y [|fleelQ=">

Proof. Our proof is a modification of that of Proposition 4.1 in [51]. Multiplying the
equation Av + fv + f = 0 by v, integrating over (), and using Holder’s inequality, we
deduce that

Vol = [ (£ + o) di
< Ul I oy + 171, g g Pl
< I Lo |2 o supp f17 P o) e
+ [ fll rr2y|€2 ~ supp f|1/n*+2/n_1/p||vHLn*(Q). (1.6.8)
It follows from the Sobolev inequality that we have

012 ey < el oy |2 o supp £ 2 e

+ H]L1||L"/2(Q)|Q M supp f|1/n*+2/n_1/p||UHLn*(Q)' (169)

Therefore, if the condition (1.6.4) is satisfied, we deduce that

c|l fllzo (|2 supp f|7/n=1p

. 1/n*
HU”Ln (@ = 1— Cle||Lp(Q)|Q A Suppf|2/nfl/p

Q2 ~supp f|V,

which is (1.6.6). From this, (1.6.7) follows by the fact that [ n supp f| < |9]. O

In case p = n/2, the equations become
LEMMA 1.6.2. Let v satisfy (1.6.3), with f := ¢, [sg] . Then we have the inequalities

€1 Hf||L”/2(Q)

Q ~supp fIV™, 1.6.10a
T 1 Flvam | (1.6.102)

HU”Ln*(Q) =

Cl||fHL”/2(Q) |

5 |2 supp f|2/”* , (1.6.10b)
(1 - Cle”Ln/?(Q))

IV 2 < [l
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1.6. Dirichlet problem

respectively

1/?’L* C n/2
(f 1o i) < plflzee (16.11a)
Q

S 1—c | flleee
CleHLn/?(Q)

(1 - Cl”fHLW(Q))T

Let Q0 € M be an open set with compact closure and smooth boundary 0€2. We wish
to derive global estimates for a solution v of the Dirichlet problem (1.6.5), where f > 0
and f € LP(€), g) for some p = 5. The cases p > 5 and p = § behave differently, so we will
treat them separately.

98 V0P dpg < 1] (1.6.11b)

1.6.1. Global estimates for p > 7. The main results of this section are lower and
upper bounds for the solution v of (1.6.5) on 2. We begin with the lower bound.

THEOREM 1.6.3. If | f|r is sufficiently small such that
2_1
e lfee Q7P <1, (1.6.12)
then, on €2, we have
2_173+1
|alflpier]

vz 3 1
L= e ] 007

(1.6.13)

. n* _ 1 _ X
where x 1= 0= x0T = I

Notation: For brevity, we let A, := ¢; HfHLP|Q|%_%.

Proof of Theorem 1.6.3. Our proof follows, to a large extent, the proof of Theorem 8.15

of [26]. We reproduce the main steps of the proof as we wish to keep explicit control over
the constants that appear in the estimates.
In order to get a lower bound on v, we set ¥ = —v, and note that v satisfies the equation

AU+ fo=f 1in v 02 = 0.
The weak form of our differential equation is now given by
/<V(I)a Vg dpig = / f (0 —=1) @dpg,
Q Q

where @ is a test function, which we may take to lie in H} (). We take ® > 0 in which
case, using the fact that f > 0, we obtain

/<V<I>,V17>g dlig </f@c1>dug. (1.6.14)
Q Q

Let w := v,. Note that dw = 0 a.e. on the set v < 0 and dw = dv on the set v > 0.
Let G: [0,00) — R be a non-decreasing Lipschitz function with G(0) = 0. It follows [52,
Theorem 3.1.7] that ®(z) := G(w(z)) lies in Hi(Q) and is therefore an admissible test
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Chapter 1. The positive mass theorem

function that we can insert into (A.3.2). Moreover, ® = 0 on the set v < 0. We therefore
find that

[ IVl dug < [ oGl du.
Let H: [0,00) — [0,00) be t%e function defined b;
G'(t) = (H'(1))",  H(0)=0.
We then have
[V H W di < [ FuGlu)du
Given =1 and N > 0, (\ZNe take H to be th(i2 Lipschitz function

8 0<t<N
H[t] := ’ 1.6.15
) {5N5—1 (t—N) t>N. ( )

In this case, G[t] < tG'[t] = tH'[t]? for t = 0. Since H[w] € HZ (), the Sobolev inequality
implies that

|Hw]? < / VH[W]2 dyig < 1 / £ (wHTw])? dysg.

Taking the limit as N — oo, we deduce that

folle < s [ 0¥ dig < el Tl s,

Letting
C = [e] 1,17,
we therefore have
[w]lgnr < (CBYM? ]l piapys.
Defining

we rewrite this inequality in the form

[wlsxiam < (CBYY ] sapys

Starting with § = x™, with m a positive integer, and iterating, we have

[y pye < (CX™)X w0 yniapyr < -+ < CT Y™ ],
where
S S
" i=1 X' " o X

Letting m — oo, we deduce that

supw < C7X7 |w|ls,
Q
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1.6. Dirichlet problem

where
1 X
0‘ = — o

x—1 (x—1*
We now use the fact that sup v < sup v, = supw and

1/n*
ol =[5l = lo-l < folae < 199" (f 01" du )
Q

to give

1/n*
Q Q

2 1 0,/2 . - 1/n*
= el (o bl g

A
= AO’/2 T 4

where we recall that we have defined A, = ¢ ||f| LP|Q|%_%, and we have substituted the
inequality (1.6.6) in the final step. We have thus established (1.6.13). O

We now give an upper estimate for v.

THEOREM 1.6.4. If | f|rr is sufficiently small such that the condition (1.6.4) holds,
then we have

21
rC | flee |0

— (1.6.16)
L= | flee |7

where x 1= p ﬂ;*, = (Xfl)Q.

Proof. Let w := v, € H}(Q). Given 8 = 1 and N > 0, it follows that H[w] as defined
in (1.6.15) lies in H}(Q). The Sobolev inequality and integration by parts then yield

||U) HLn* 0 |Vw/3| d,ug
( )

_ 28-1
25_1/ Awdpg

2

=0 b /wm_lf(l—i-w) dptg
Q

28 —1
< a1 fller@ [0 pro-niay + 1w | poe-n(gy] - (1.6.17)
In addition, Holder’s inequality yields
26-1 261 -1 28—1 1
e IS e U e S o 2 U e s
We therefore have
26—-1
402y < 1B Lot [0ty gy [ 117+ 0] ey |- (1.6.18)
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Chapter 1. The positive mass theorem

Letting x := % > 1, we now claim that it follows from (1.6.18) and (1.6.7) that
A,

7“" + X

AXX

for all integers m > 1. We prove this claim by induction. From (1.6.18), taking § = x, we
have

Qv (1.6.19)

[wlhmnr < 5

1
02 gy < OIS @l 25 gy [ 1947 + a0l eniey |

We now note that
Ap 1
(Wl pnx ) = (vl pnr @) < [0]pox ) < 11— AP|Q|"*>

where the final inequality follows from (1.6.7). We therefore have

A D\ 2! : A )
2 P —F F p nF
ol 0y < exl vy (T2 1005 ) |10+ 22l |

2x—1

9 2x 2
= Q ¥
X[ flze€| (1— A)x

2 2,1 A 2x
= Qe n e [ 2
bt T— 4,

1 A 2x
_ 2 xn¥ 14

Therefore, the claim is established for m = 1. Assuming it to be true for some m > 1,
taking 8 = x™"! in (1.6.18), we have

m+1 2ym+1_1 'ml
Hw”Lx’”“n*(Q) < ClXQmHHf”L ywl >><< Mok () [|Q|X mt A+ Hw”LXm"*(Q)]
A 2Xm+1_1
< ™ ey | 22t e |

A m 1
ofe 4 ey |
[ 1_Ap

A 2Xm+1 1
< ClXQm-‘rQHfHLp(Q) [1 1 X;* + |Q|xmn*:|

P
x | "*XX [1+1:4A ]
m ol _iixp)—zxiﬂ ) (i),
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1.6. Dirichlet problem

where we have used the fact that 1 < y in the third inequality. Taking the 2x™"'th root,
we have therefore established the claim (1.6.19) for m+1. Therefore, by induction, (1.6.19)
holds for all m > 1.

Taking the limit as m — oo in (1.6.19) now yields the inequality (1.6.16). 0

1.6.2. Approximations to g. Applying Theorems 1.6.3 and 1.6.4 to the metrics g.,
we have the following result.

PROPOSITION 1.6.5. Let g € W2P(Q) with p > % have non-negative scalar curvature
in the distributional sense, and let g. be smooth approximating metrics as above. Given
any compact subset K < Q, let e(K) > 0 be such that K < Q. for all ¢ < ¢(K). Then the
solutions v.| K for e < e(K), converge uniformly to zero on K as e — 0.

Proof. Since |(sy.)—|rr(0g.) — 0 as € — 0, we may assume, without loss of generality,

2_1
that the condition ¢;[g.] [(ss.)-[rr(e)|Qele. 7 < 42=5 is satisfied for all ¢ < e(K). The
uniform bounds on v, on €. given by (1.6.13) and (1.6.16) both converge to zero as ¢ — 0,

therefore implying that v.| K converge uniformly to zero on K. U

We therefore have the following result regarding approximations of g.

THEOREM 1.6.6. Let g be a Riemannian metric on an open set ) of reqularity I/Vlif(Q),
p > 5 with non-negative scalar curvature in the distributional sense. Then there exists a
family of smooth, Riemannian metrics {g. | € > 0} defined on open sets Q. < Q such that
K. := Q. are a compact exhaustion of Q, such that:

e The g. are have non-negative scalar curvature;
e g. converge locally uniformly to g as e — 0.

The use of the sets ). was necessary since, by smoothing g on an open set {2, we will
only get locally uniform convergence of g. to g. We may remove the use of this construction
if ) is contained in a larger open set.

THEOREM 1.6.7. Let g be a Riemannian metric on an open set ' of reqularity W2 (Q),
p > 5, that has non-negative scalar curvature in the distributional sense. Let  be an open
subset of Q' with compact closure K < ', smooth boundary oS0, such that €)' is an open
neighbourhood of K. Then there exists a family of smooth, Riemannian metrics {g. | € > 0}
on K with the following properties:

o The g. are have non-negative scalar curvature;
e g. converge uniformly to g on K as e — 0.

Proof. Smoothing g by convolution in charts on 2’ gives, for all sufficiently small €, a family
of smooth Riemannian metrics g. on the set K. We now solve the Dirichlet problem

Ag e + ¢, (8g.)—us = 0, us| 092 = 1.

The conformally transformed metrics g. are then metrics with non-negative scalar curva-
ture on the set K. The bounds on v. given by (1.6.13) and (1.6.16) now hold on the set
), implying that u.| K converge uniformly to 1 on K. Since the g. converge uniformly to
g on K, it follows that the g. converge uniformly to g on K. O
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Chapter 1. The positive mass theorem

Finally, in the context of the positive mass theorem, our results give the following.

THEOREM 1.6.8. Let M be a smooth manifold and g an asymptotically flat, Riemannian
metric on M of reqularity I/VIQOCP(M) and smooth outside of the compact set K. Then there
exist smooth metrics g. on M with non-negative scalar curvature that converge locally
uniformly to g as € — 0. In particular, g can be approximated locally uniformly by smooth
metrics with non-negative ADM mass.

Proof. The only non-trivial point is to note that in the estimates (1.6.13) and (1.6.16), the
occurrences of the set {2 may be replaced by € n supp f. Since (s, )— will have compact
support, these factors will remain finite, so the v, will still converge to zero. O

REMARK 1.6.9. In the region where the metric g is smooth, the metrics g. will converge
to g in C.

1.6.3. Breakdown of Moser iteration for p = n/2. Finally, we briefly consider the

case where the metric g is of regularity C°(Q) n I/Vlicn/ 2(Q) In this case, the Moser iteration
arguments used in Section 1.6.1 to derive an L* bound on solutions of the Dirichlet problem
break down. In particular, taking p = % in the inequality (1.6.17), we deduce that

23 2 28-1 28
ol gy = 8 iy [ T2 g 002

Assuming that ¢18%| f[ Lw2(q) < 1, this inequality yields a bound on [w]|s.x g in terms of

|w| . However, it is clear that such an iteration process breaks down when 3 is

18— %m* Q)
of the order —————. As such, the Moser iteration argument breaks down after a finite

NEIIEs

number of iteration processes.! This means that we can establish an LP bound on v, where

p~ pn* ~ ”*/\/CleHLn/?(Q) < 0.

Nevertheless, we note that p(¢) — o as ¢ — 0.
These observations imply the following result:

THEOREM 1.6.10. Let Q' be an open set, g a continuous Riemannian metric on Q' of
reqularity I/Vi:/ 2(9’ ) with non-negative scalar curvature in the distributional sense. Let €
be an open subset of ' with compact closure and 02 smooth. Then, there exists a family
of smooth metrics g. on Q with non-negative scalar curvature such that g. — g in Lt (Q)

loc
as € — 0, for all p < 0.

REMARK 1.6.11. It appears in general that the g. do not converge locally uniformly
to g. We note that it is possible to construct functions f. = 0 on the unit ball in R? with
the property that f. — 0 in L' as € — 0, but the corresponding solutions of the Dirichlet
problem?

Ague + foue = 0 in B(0,1), u. =1 on ¢B(0,1)

1See, for instance, [60] and [35, Thm. 4.4] for examples of this phenomenon.
2A¢ denotes the Laplacian 02 + az.

32



1.7. Rigidity

have the property that u.(0) — oo as € — 0.".

It therefore appears likely that metrics in C’OmI/Vf)’Cn/ ? with non-negative scalar curvature
in the distributional sense cannot, in general, be approximated in C° by smooth metrics
with non-negative scalar curvature. Similarly, when considering limits of sequences of
smooth metrics with non-negative scalar curvature, one might expect to encounter non-
compactness or “bubbling off” phenomena. Based on the extremal case of the Sobolev
embedding theorem, however, we would expect that such metrics can be approximated in

BMO or appropriate Orlicz spaces.
1.7. Rigidity

In [31] it is not possible to achieve a rigidity result. The rigidity part of the classical
positive mass theorem asserts that if a metric is asymptotically flat, has non-negative scalar
curvature and the ADM mass is zero, then (M, g) is isometric to R™ with the Euclidean
metric. The methods are insufficient to prove such a statement for the class of metrics

studied there. The proof of rigidity in Schoen and Yau [61] involves a perturbation of
the metric g by its Ricci tensor. This approach cannot be adapted to our metrics, since
n/2

the Ricci tensor of the metric g lies in L,/ (M), so such a perturbation of g would not
preserve the required regularity of the metric. The proof of the rigidity part of the positive
mass theorem in the paper of Miao [51] in itself requires more regularity of the metric,
in order to apply the results of [9] (which, in turn, use Witten’s technique, and therefore
works only for spin manifolds). Finally, in the Ricci-flow approach of [49] (perhaps the
most promising approach to proving rigidity) it is required that one has an L* bound on
the negative part of the scalar curvature of the smooth approximating metrics in order to
show that the solution of the h-flow equation starting with the metric g has non-negative
scalar curvature. In our case, we have only an L™? bound on the negative part of the
scalar curvature of the approximating metrics, which is insufficient. It therefore appears
that all known ways to prove the rigidity result for non-spin manifolds break down (by
some distance) for our class of metrics.

For the case of spin manifolds, the situation is rather better (cf. [6, 7, 45]). In Witten’s
argument, the rigidity part of the positive mass theorem follows directly from the fact that,
if the mass of a metric is zero, then one has a basis of parallel spinor fields. As such, the
spin-connection is flat, thus the full curvature tensor of g is flat. A theorem of Cartan then
implies that the manifold is isometric to R** x T* where T* is a flat torus of dimension
k.* Asymptotic flatness then implies that & = 0. As such, the rigidity part of the positive
mass theorem for spin manifolds appears to require no additional regularity.

3We are grateful to Dr. Jonathan Bevan for pointing this out to us.

4This is a smooth result. It is not completely clear to us what regularity conditions a Riemannian
metric must satisfy in order vanishing of its Riemann curvature implies the existence of a locally isometry
with Euclidean space.
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CHAPTER 2

Volume comparison

2.1. Distance functions on Riemannian manifolds

In this section, let (M, g) be a smooth n—dimensional Riemannian manifold, Further-
more, let X(M) denote the space of smooth vector fields on M.

DEFINITION 2.1.1. Let f e C®(M) be a smooth function, X € X(M). Then

(1) the gradient of f is defined by g(grad(f), X) := X(f) for all X € X(M),
(2) the Hessian of f is given by Hess(f)(X,Y) := g(Vx(grad f),Y) for all X,V €
(3) and the Laplacian of f is Af := tr(Hess f).

Note that the Hessian is symmetric, i.e., Hess(f)(X,Y) = Hess(f)(Y, X) ([27, Prop. 6.1]).
Indeed,

Hess(f)(X, Y) — Hess(f)(Y, X) = g(Vx(grad f),Y) — g(Vy(grad f), X)
= X(Y(f)) - Y(X(f) + glerad £,[X,Y]) = 0.

We can now define a certain type of functions is particularly useful in comparison
geometry, namely distance functions.

DEFINITION 2.1.2. Fix p € M. Let r: U € M — R be a smooth function with
| grad | = 1. This function is called distance function.

An example of a distance function is given by r(z) = d(z,p), where p € M is fixed.
Here the set U is a sufficiently small neighborhood of p.

We will denote the smooth vector field grad r by 0,.

PROPOSITION 2.1.3. Let U € M be open. A distance function r: U — R also satisfies
Vo 0p =0 onU.

Proof. Indeed, for X € X(U), by using the symmetry of the Hessian of r,
1
g(VaT&«,X) = g(é‘r, VX(%) = §ng(a7«, 57~) = 0. (211)
Il

PROPOSITION 2.1.4. Let r be a distance function on (M,g). It satisfies the following
so called Weitzenbock identity:

| Hessr|* + g(0,, grad(Ar)) + Ric(4,,d,) = 0. (2.1.2)
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Proof. Let p € M, fix a basis of normal coordinates at p, {e1,...e,}, i.e. gle;, e;) = d;j,
V.ei(p) = 0.
We calculate at p:

|Hessr? = Zg(veiar, Ve, 0r)
= ZHessr(ei,Veﬁr) = (»).
Now we can use the symmetry of Hess to further calculate
() = ZHess (Ve 0, €;)
= Z Hessr(V,0r, ;) — Hessr(Vp,e;,€;)
= Z Hess r([0), ei] éi)
= 2.8V (@), &),

Note that Hess7(Vj,.e;,€;) = 0.
The term g(&,, grad(Ar)) can be reformulated as follows:

(0, V(Ar)) = g(0,,grad(Ar))
= ()
= 0, Z Hessr(e;, €;)
= 0,),8(Ve0r.e)
= > 0:(&(Ve,0r ) — 8(Ve,0r, Vi, )
= >.8(Vo,(Vedr), ).
Here again g(V.,0,, Vj,e;) vanishes.
For the final Ric term just use the definition of Ric and write it as
Ric(é,, 0,) Zg (€i,0r)0r, €;).
Summing up the three terms gives
| Hessr|* + g(,, grad(Ar)) + Ric(d,, 0,) Zg (Vio,.e e;) + Z g(Va,(Ve,0,),€;)
+ > g(R(e;, 0 6T,ez) = ().
Due to the definition of R, we can rewrite this expression and get
= 2.8(Ve(Va,0). ) +8(V5,0,, Vees),
which, due to (2.1.1), vanishes. O
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2.1. Distance functions on Riemannian manifolds

REMARK 2.1.5. This identity not only holds for distance functions but for arbitrary
functions that are at least in C®(M). Note that then the right hand side does not vanish,
but consists of a | grad f| term and we get

1
§A| grad f|* = |Hess f|* + g(grad f, V(Af)) + Ric(grad f, grad f). (2.1.3)
In order to prove this relation, we have to continue reformulating the term

Z g(vei(vgradf grad f)u ei) + g(vgradf grad fv veiei)7

which vanishes in case of f beng a distance function.
So in the general case,

2.8(Ve.(Varaasgrad f),e) + D 8(Varaas grad f,Vee:) = ) eig(Vigaa s grad f ;)
= Zei Hess f(grad f, e;) = Zei Hess f(e;, grad f)

1

= D, cig(Ve, grad fograd f) = = 3 eseig(grad f, grad f)
1

= §A| grad f|*.

REMARK 2.1.6. The Bochner-Weitzenbock formulas (also known as the Bochner tech-
nique) are an important tool in geometric analysis. In case of Riemannian geometry, a
Weitzenbock formula expresses the Laplace operator in terms of the Levi-Civita connec-
tion of the manifold.

This technique was introduced by Bochner in 1946 [8]. Before, in 1923 Weitzenbock
established in his book about invariant theory [67] a similar formula for p-forms.

Another property which will be used in Chapter 3 below is the following:

LEMMA 2.1.7. [3, Lemma 1.4] Let M be a Riemannian manifold with inj,; > iy and
Ricy; > —K, K > 0. Letr = d(z,-), be the distance function from x € M. Then it holds
that

|Ar| < (n — 1)K coth(Kr), (2.1.4)

provided r < ig/2.

Proof. By Laplacian comparison, see 2.3.1 below, we obtain
Ar < (n — 1)K coth(Kr) (2.1.5)

where r < 1.

In order to get the other estimate, fix x € M, and let p be a point with ¢ = d(z,p) < iy/2.

Let v be the minimal geodesic connecting p and z. Set p; = (2t). Then, on B(p, iy/2),
the estimate (2.1.5) is valid for r(-) = d(z,-) and also for ri(-) = d(p1,-), since both
functions do not reach to the cut locus.

We now want to construct a function p that is nonnegative and vanishes on . This
can be done by setting

p:=r—+nr —2t: M - R
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It follows that
p(-) = d(z,-) + d(p1,-) — 2t = d(z, p1) — 2t = 0.
Thus p = 0 and p = 0 on ~. Hence,

Ap=A(r+mr) = 0. (2.1.6)
Therefore,
Ar = —Ary = —(n — 1)K coth(Kry)
> —(n — 1)K coth(Kr)
on B(p,ip/2), since x — coth(Kx) is decreasing for K < 0, z > 0. O

2.2. Volume forms and Laplacians
Let K € R. We define the functions

e sin (VKT) K >0,
sng(r):=<T K =0, (2.2.1)

e sinh (VIETr) K <0
In case K > 0, we have to assume 7 € [0, 7/v/K|, and for K <0, r € [0,0). Let again
d6™~1 denote the standard volume element on the unit (n — 1)-sphere in R™. The metrics
g 1= dr?® + sng(r)*do" (2.2.2)

are of constant curvature, i.e., the (0,4) form of the curvature tensor takes the form

Re (W, X.Y, Z) = K (gx(W,Y)gx (X, Z) - g (W, Z)gk (X,Y)) (2:23)
for smooth vector fields W, X, Y, Z.
The Ricci tensor of the metric gx is of the form
Ricg,, = K (n—1)gk.

Although, in general, the sectional curvature will depend on the point p and the plane
o < T,M, in the case of our metrics g, it follows from (2.2.3) that K,(0) = K for all
p € M and all two-planes o < T,M.

For the volume element of these metrics, one can calculate (see e.g., [27])
diig, = sng(r)" tdr  do" .

where df"~! is the volume element of the unit sphere in R”.
The Laplacian of the distance function for these metrics can be calculated to give (for
the detailed calculation see, e.g. [27, Section 6]):

Agr = (smac(r))" (2.2.4)

(snac(r)" "

thus,
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2.2. Volume forms and Laplacians

(n—1)VK cot (VKr) K >0,
Agr =14 (=1)/r K=0,, (2.2.5)
(n — 1)4/]K] coth («/|K|r> K <0
We now investigate the volume form and the Laplacian for arbitrary metrics which are
not necessarily of constant curvature.

Let h be a general metric on the unit (n — 1)-sphere, ggn—1 the induced metric on the
unit (n — 1) sphere in R™. The volume element of the arbitrary metric g = dr® + h(r,0) is
given by

det (h)

d = X _dr Adi"? 2.2.6
Hg det (ggm 1) ( )
= o(r,0)" tdr A d9" 7, (2.2.7)
with
det (h
&(r,0)" ! = ¢t (b) (2.2.8)

V/det (ggn1)

In order for the metric to stay nonsingular at » = 0 we require that it approaches the
flat R"—metric. Thus @(r,0) — r as r — 0.

We now calculate Ar in the above metric. Using local coordinates (r, ) gives

o O or
_ ij _ kT
ar ; g <(?xi6xj ; Iy xk)

Noting that 2! = r, it follows that the first term vanishes, the & = 1 term remains in the
second term. Furthermore, we use the fact that ¢" = 1, d;g,; = 0 for all 7, j and the fact
that for any invertible, symmetric matrix A(z), it holds that tr(A='42) = 4dtA /qet A, We
then arrive at
T 1 i T
Ar = —ZQJF i =5 Z 979" [0igr; + 059k — Orgis]
2%

Z'7j7k

1 iy rr
= _5 Z g Jg [aigrj + 6jgri - argij]

i?j7k
1w 1, 10, (detg) &, (detg)"?
= — l]ﬁr i'E—t 157~ = — = .
2 %lg Jis =5t (s70rg) 2 detg (det g)'/*

Since dpg = (det g)"? d"z, we deduce from (2.2.7) that (detg)"”* = &(r,0)"* - (det h)"/?
Since det h is independent of r, we therefore have

O (@(r )" (n—1) d(r.0)

(2.2.9)
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Chapter 2. Volume comparison

2.3. Classical volume comparison results

For all of the following results, we assume that the metric g is smooth. We will fol-
low [72].

THEOREM 2.3.1 (Laplacian comparison). Let (M,g) be a complete, n-dimensional Rie-
mannian manifold. If
Ric = (n — 1)K,
then, outside of the cut locus of p € M, the following comparison result holds:
Ar < Ag(r). (2.3.1)

Proof. By (2.1.2), it holds that

| Hess | + g(Ar) + Ric(0,,0,) = 0.

Take p € M, and choose an orthonormal basis in which the matrix | Hessr| is diagonal.
This is possible due to the symmetry of the Hessian. By (2.1.1), V.0, = 0, it follows that

2), where s = diag[\1, ..., Ay_1],with the \;

. . 0
| Hess r| is an n x n matrix of the form (0

the eigenvalues of | Hess r|.
Using the Cauchy-Schwartz inequality it follows that

(Ar)? = (tr|Hessr|)?
=\ +. A m)?
<(n—1DM\+...+X_) = (n—1)|Hessr|%.

Thus, inserting this in (2.1.2), we obtain

Ar)2
% + g(Ar) + Ric(0,, 9,) <0, (2.3.2)
If Ric = (n — 1)K, then it holds that
(Ar)? 0
—— + —(A -1)K <0. 2.3.
n—1+6r( r)+ (n—1) 0 (2.3.3)

Setting v = Ar, this can be rewritten as the following Riccati inequality
2

“ -+ (n— DK <0, (2.3.4)

n —

u +

where ’ denotes differentiation with respect to r. When g converges to the flat metric of
R™ it follows that u — "7_1 for r — 0.
Integrating then leads to

(n — VK cot (VKT) K >0,
Ar<{(n—=1)/r K=0,, (2.3.5)
(n — 1)4/]K] coth (Mr) K <0
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2.3. Classical volume comparison results

This shows Laplacian comparison. O

REMARK 2.3.2. An (in)equality of the form y/(<) = —y? — K is called a Riccati
(in)equality /equation. If u and v are solutions of ' < —u? — K and v/ = —v? — K,
then it holds that the function v — u is monotonically increasing. If v(a) = u(a), then
v(t) = u(t) in the whole domain I = [a,b]. If additionally for some ¢, € I equality holds,
i.e. v(to) = u(to), then vfr] = t|[ate]-

COROLLARY 2.3.3. Let (M, g) be a complete, n-dimensional Riemannian manifold with
Ric > (n — 1)K.

then the mean curvatures of geodesic spheres of radius r in M, and in the space of constant
curvature K can be compared by

h(r) < hg(r).

Proof. Let {e1,...,e,_1} be an orthonormal basis for the geodesic sphere of radius r, N
the outer normal to this sphere. By definition of the Laplacian we get

Ar = tr(Hessr) Z ).e) +8(Vn(d,), N)

i
L

= g(veiNaei) +g(VNN7N)

~
Il
,_.)—n

3

= g(Ve,N,e;) = h(r). (2.3.6)

1=

—_

Thus the result follows from the Laplacian comparison result 2.3.1.
O

Another classical comparison result, which will also be used in the proof of the Bishop-
Gromov volume comparison theorem below is the volume element comparison, see also [27,

|:

PROPOSITION 2.3.4. Let (M,g) be as in Theorem 2.3.1. Then the map f(r) = sig:’((?)
18 non-increasing along radial geodesics.

Proof. Using again formula (2.3.3) and inserting (2.2.9) we see that w satisfies
1 *w(r,0)
w(r,0) or?

Since by assumption, w(r, ) — r, for r — 0, it follows that w(r, ) > 0, for sufficiently
small » > 0. Hence also

< —K.

0*w(r, 0)

22 + Kw(r,0) <0
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In the next step we compare g with the constant curvature metric gy, in detail, we
compare the function @ with the function sng(r) defined in equation (2.2.1). This function

satisfies
O*sng(r)

52 T Ksng(r) =0, sng(0) =0, snh (0) = 1.

We then have
O (sng (1) (r,0) — sn'y (r)w(r,0)) = sng(r)d"(r,0) — sn’(r)w(r, 6)
< —Ksng(r)w(r,0) + Ksng(r)wo(r, 0)
=0.

Hence sng(r)a'(rf) — sn’(r)w(r, 0) is non-increasing. Since at r = 0 it is zero, it follows
that
sn(r)w' (r,0) — sn'y (r)w(r,0) < 0.

Since sng, w are positive for sufficiently small » > 0, we get

(”(r’ f) )/ <0, (2.3.7)

sng(r)

and therefore also "y
f(r) = :’n(:(r)) is non-increasing. (2.3.8)
[l

We will prove a global version of the Bishop-Gromov volume comparison theorem, i.e.
a version that remains valid beyond the cut locus. We follow the lecture notes [72].
We will make use of the following lemma, which can be found in [72, Lemma 3.2]:

LEMMA 2.3.5. Let f,g be two positive functions. If f/g is non-increasing, then, for
R>r>0,8>s>0,r>s, R>S, it holds that

L f®dt _ [, gt)dt
S fwde [T gt

Let S ! denote the n — 1 dimensional unit sphere in R”, and denote by V(p,r) and
Vi (r) the volumes of the geodesic balls around p of radius r in M and in the space of
constant curvature K, respectively, we arrive at well-known comparison results:

(2.3.9)

THEOREM 2.3.6. Let (M,g) be a complete, n-dimensional Riemannian manifold. If
Ric > (n — 1)K on M,
then for R < R' it holds that

Vip, R) _ Vk(R)
Vo) Z Vell) (2.3.10)

Furthermore, for all r > 0,
V(p7 T) < VK(T)
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2.3. Classical volume comparison results

Equality for both cases holds if and only if the balls in M and in the space with constant
curvature K are actually isometric.

REMARK 2.3.7. The second statement that V{(p,r) < Vi(r) is the original result due
to Bishop, who proved this result for r less than the injectivity radius. The result was
generalized later by Gromov [33] who showed that the map r — V(p,r)/Vk(r) is non-
increasing and also noted that, with suitable modifications, the result holds for all values
of r.

Proof. Denote by Cut(py) the distance from p to the cut locus in the direction 6, then

min(R, Cut(pg))
/ / w(r, 0)drdd, (2.3.11)
Sn—1

where w(r, 0) is given by (2.2.8). We can now define w(r,8) = 0 for r > Cut(pg) (see

also [27, p. 26]).
R
:/ / w(r, 0)drdd,
Sn—1
w(r,0)

Therefore,
By the area comparison result Proposition 2.3.4, we already know that ) is non-
increasing as long as r < Cut(pg). We can use Lemma 2.3.5 to obtain for R’ > R,

Jo) @(r,0)dr g JE o, 0)dr
fOR snx(r)dr fORI sng(r)dr

where again w(r, ) = 0 for r > Cut(py).
We furthermore get

R R d R
/ o, 0)dr > M/ o(r, 0)dr.
0 Jo snx(r)dr Jo

To obtain the final result, we integrate over S" ! and get

fS" 1f0 STLK d?“d@ (p R/) _ VK(R)
fsn 1f0 sng (r)drdf 7 Vi (R)

Since 28 — 1 as R — 0, it follows that V(p, R) < Vic(R). O

Y

V(p,R

By an analogous proof it is possible to show the following more general result, see [72,
Theorem 3.1]:

THEOREM 2.38. Let R=>r>0,5>2s>0,r>s, R>=S. Choosel to be an arbitrary
measurable subset of the unit tangent sphere about p. Define

Al r(p) :=={z € M :r <r(z) < R and any minimal geodesic ¢ from p to z satisfies ¢(0) € I'}.

where r(z) = d(p, z) is the distance function from p e M.
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Chapter 2. Volume comparison

Then,

Vol (A} z(p)) - Vol g (A} z(p))
Vol (AL 5(p)) ~ Vol k(AL s(p))’

(2.3.12)

where the subscript K declares the quantity in the space of constant curvature K. Equality
holds if and only if the curvatures along radial geodesics are all equal to K.
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2.3.1. Applications.

(1)

Myers’ theorem:

The volume comparison result, Theorem 2.3.10, provides a way of proving
Myers’ theorem [53] without making use of variational arguments.

THEOREM 2.3.9. Let M be an n— dimensional complete Riemannian manifold.
If for all X € X(M) it holds that Ricy (X, X) = (n — 1)Kg(X, X) , then every
geodesic of length > 7K? has conjugate points and therefore diam(M) < TK*.
Therefore M is compact.

Proof. Without loss of generality we assume K = 1.

By contradiction, let p,q € M be two points with d(p,q) > 7, ¢ a minimal
geodesic from p to ¢. Since ¢ is minimal, ¢(7) is not on the cut locus of p, hence
the distance function r(x) = d(p, x) is smooth at ¢(r), hence Ar is finite. Using
the formula for the Laplacian of r from (2.2.9), thus

Ar < (n—1)cotr.

Taking r — m, it follows that Ar < —oo, which contradicts the fact that Ar is

finite. Hence, the diameter of M, diam M < . [l
A version of the proof using the Index Lemma, can be found in [15, 1.26],
resp. [22].

Estimating volumes of geodesic balls:

As a second application we will investigate a result by Yau [71]. It will, together
with the Bishop estimate give a both-sided bound on the growth rate of balls in
manifolds which are non-compact and have non-negative Ricci curvature.

THEOREM 2.3.10. For (M,g) a complete, non-compact n-dimensional man-
ifold with Ric > 0, the following lower bound on the volume of geodesic balls
holds:

Vip,r) = cr

for some ¢ > 0.

The original proof of this results uses analytic methods [71]. For the proof
with help of volume comparison, see [72, Theorem 3.5].



2.4. Relative volume comparison with integral bounds on the curvature

2.4. Relative volume comparison with integral bounds on the curvature

In this section we will discuss two approaches to studying volume comparison for man-
ifolds that just admit integral bounds on the curvature. In [59] the authors prove a more
general version of the classical Bishop-Gromov volume comparison result by imposing an
LP-bound (p > n/2) for the part of Ricci curvature that lies below a certain value. In [29]
the case p = 7 is covered as well.

NOTATION 2.4.1. Let (M, g) be a Riemannian manifold. Let z € M and r(:) := d(z, -)
denote the distance function from z. Let S, < T,M denote the sphere of unit tangent
vectors at x. For 6 € S, let 79: R — M denote the geodesic with v5(0) = z, 7,(0) = 6.
Furthermore, we denote the distance along the geodesic 7y to its cut-point by

0(0) :=sup{t > 0| d(z,7(t)) = t}.

As in Section 2.3, we denote the volume of the ball radius » > 0 centered at p € M by
V(p,r) or |B(p,r)|, and the area of the corresponding sphere by |S(p,r)|. We denote the
corresponding quantities in flat R™ by Vy(r) = |Bo(r)| = Lw,_1r", and |So(r)| = w,—1r™
where w,,_; denotes the area of the unit (n — 1)-sphere in R". Furthermore, the quantities

in the comparison space of constant curvature K are denoted by Vi (r) and Sk(r).

The function g : M — [0,00) is defined by the condition that g(z) is the smallest
eigenvalue of the Ricci tensor at x. Furthermore, let

k(K p) := Mmax{—g(x) + (n — 1)K, 0}Pdpg, (2.4.1)
k(K,p) = W Mmax{—g(m) + (n — 1)K, 0} dpg. (2.4.2)

The quantities k and k, respectively, measure the amount, and the averaged amount of
curvature respectively, that lies below (n — 1) K.

The volume element of g is of the form dug(r,0) = w(r,)dr A d§" ', and analo-
gously dpg, (1,0) = wk(r,0)dr A d§" ! for the constant curvature metric gx. Note that
w(r,0)" ! = w(r,0). In order to calculate volume integrals correctly, for each 6 € S,, we
adopt the Gromov convention that w(r, ) := 0 for r = ¢(0).

Let h and hx be the mean curvatures of the geodesic balls in M with respect to g and gx
respectively.

For any measurable function f, we let f, := max(f,0) and f_ := max (—f,0). In partic-
ular, f_ = 0.

Finally, given a measurable open set U < M, we denote its Riemannian measure by |U|

and define the average
1
fdug := —/ fdig.
]{J Ul TE
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The mean curvatures h and hy satisfy the following relations due to (2.2.4)and (2.3.6)

aﬁw(r, 0) = h(r,0)w(r, ), (2.4.3)
-
d
JWK(T) = hr(r) wi (7). (2.4.4)
Furthermore, they satisfy, by (2.3.2),
0 h(r,0)? )
gh(r, ) + ] —Ric(0,, 0,), (2.4.5)
d hK(T')2
— =—(n—-1)K. 2.4.
S hwlr) + 1) (24

DEFINITION 2.4.2. Given a subset S € S, and r > 0, we define the cone over S of
radius 7 as the set (see [69, §7])

LS, r) = {yeM‘yzexpx(w), where € S, 0 <t <, d(z,y) zr}.

We define analogous quantities on flat R". Given a reference point zy € R", let
I:T,M — T, R" be a fixed linear isometry, by which we may identify the unit spheres
Sy < T,M and S,, < T,,,R".

Given S < S., we will abuse notation and also denote by S the corresponding set [ (§ )
in S,,. We define the corresponding cone

Lo(S,r) = {y e R"

y = exp,, (t0), where € S, 0 <t <, d(x,y) zt}.

2.4.1. Volume of cones and geodesic balls. In this section, we will investigate
volume monotonicity results, thus we start by studying the derivatives of volumes.

REMARK 2.4.3. The derivative of the area of the cone is given by the following:

d ~ d "
—|T = — t.0)dtdb
dr (57)] dr /geg/o w(t, )

= / w(r,0)db, (2.4.7)

i|ro(§,r)| = / /t" 1dtd9_/ 1 df
dr 0eS 0eS
- / L / /t”ldtde
r s n 0eS
(s

n
= ;|FO ’r)|_ (248)

and
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In [59] the authors develop volume comparison results based on integral estimates for
the difference between mean curvatures,

W(r,0) := h(r,0) — ho(r). (2.4.9)

Petersen and Wei prove the following

LEMMA 2.4.4. [59, Lemma 2.1] It holds that
d V(w,r)) V(x,r)lf% (/ )211’ 1
— <c(n,r t,0)dus(t,0 Vo(r)ze. 2.4.10
() =ecnnisd T (L v nanen) v @i

with equality for r < inj x.

It is also possible, as in [29], to study, in contrast to (2.4.9), the dimensionless quantity
U(r,0) :=r(h(r,0) — ho(r)) = r¢(r,0). (2.4.11)
The volume comparison analysis in [29] begins with the following result.

PROPOSITION 2.4.5. Let §x < S, andr > 0. Then

p L (IEELY L (L, 0) dpg(t, 0) = 11| U(t,0) dyug(t, 0),
dr |F0(S,7’)| |F0(S,T)| INGRD) |F0(S,T)| r(S,r)
(2.4.12)
with equality if r < €(0) for all 0 € S.
Proof. Using (2.4.7), (2.4.8), we get
d ([rEn ) _d (J;eg Jo w(t,6) dtd@)
ar \I0o(B,1)]) ~ dr \ Jyes Jy o T dedo
1 lw(r, 0) — E/ w(t,0) dt] do. (2.4.13)
ITo(S,7)| Joes r Jo

Let S, :={0€ S | r < {(h)} and note that S, = S if £(6) <r forall € 5. If § € S,, then

we note that
T 1 r
w(r,&)—ﬁ/ w(t,0)dt = —/ t"i w(t,0) &t
T Jo r )y Ot \ tnl
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Chapter 2. Volume comparison

Indeed,

T _ g/o tgw(t,9)+w(t,9)dt—§/Orw(t,e)dt
) l/ort” (atw(t,e) B (n—l)w(t,9)> gt

w(r,@)—ﬁ/orw(t,ﬁ) it — E/OT%(tw(t,G))dt—;/OTw(t,H)dt

r tnfl tn

1 (", 0 (w(t0)
N F/Otat<tn1)dt'

Furthermore, using (2.4.3), this expression can be simplified to

1 (" 0 (w(t0) 1 (" 0 (w(t0)
il n_ = = n_ 4.14
T/Oté’t(t”_l )dt T/Otﬁt(wo(t) dt (2 )
_ 1/ t(h(t,@)—n—_1> o(t,0)dt (2.4.15)
r Jo t
_ ! / U(t,0) w(t, 0) dt, (2.4.16)
rJo
If 6 € 5\S, then, since w(t,8) = 0 for ¢ = ((A),
n r n £(6)
w(r,0) — —/ w(t, ) dt = ——/ w(t, d)dt < 0. (2.4.17)
rJo rJo

Substituting (2.4.16) and (2.4.17) into (2.4.13), we deduce that

LGV [/ \I/(t,@)w(t,@)dt] -1 U g,
dr \ |To(S,r)| r|Lo(S, )| Jees. Lo 7 |To(S, )] JrEr

with equality if S, = S, i.e. r < ((f) for all 6 € 5. O
Applying Proposition 2.4.5 with S =25, gives the following result for geodesic balls.

PROPOSITION 2.4.6.

i (i) <oy

][ U(t,0) dpg 2, 0), (2.4.18)
B(z,r)

with equality for r < inj x.

REMARK 2.4.7. The expressions (2.4.12) and (2.4.18) appear to be an improvement on
previously known formulae developed for volume comparison, in the sense that we have
equality until we reach the cut-locus of the point . They suggest that the quantity ¥, and
its average f W, are, in fact, the most natural quantities to study in volume comparison.
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2.4. Relative volume comparison with integral bounds on the curvature

REMARK 2.4.8. Since 0 < t < r in the integrals in (2.4.18), we have
By Holder’s inequality, we therefore deduce from (2.4.18) that

d V(x,r)) 1
# (Wt) <7m f

1
< WH%Hsz(BW))||1HLZP/(2P,1)(B($,T))

1

V(x,r)1_2

= W”% | L2r (B2 ,r))-

Ve, r)\ " L
N < Vf&r?) [VD(T) 2pr+||L2P(B(x,r))].

We thus recover a slightly sharpened version of (2.4.10), which contains a constant C (n, 0, )
equal to n, which is 1 in our estimate.

2.4.2. Curvature. We now want to relate the functions ¢ and ¥ with curvature
quantities.

The function ¢ (r, ) := h(r,0) — ho(r, §) satisfies the relation
2
n—1
with ¢(0) = 0 (cf., for instance, [59]), where o denotes the trace-free part of the second

fundamental form of the sphere S(x,r). In particular,

2
n—1
where we denote by p,(r, 8) the radial component of the Ricci tensor along the minimising
geodesic from z to exp, (rf).

In particular, p depends on both x and the point at which the Ricci tensor is evaluated.
Since x is fixed, for the rest of this section we will drop the explicit x dependence.

@wgﬁ)+5%7¢uﬁf+ ho(r)(r.0) = — (Ric(2,.8,) + |o(r,0)?)

00(r,0) + (1,6 + 2 ho()i(r, 0) < ~Ric(d,,0,) =t —pu(r,6),  (2419)

The positive part of 1» may be estimated in terms of the negative part of p:

LEMMA 2.4.9.

1 2
e L s L (I (2.4.20)

Proof. If ¥ = 0, then ¢, = 1, so (2.4.19) yields

1 2
W+ — 0+ —Fhoty S —p<p.
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Chapter 2. Volume comparison

If ¢ < 0, then ¢, =0, so

1 2
¢;+n_1wi+n_1h0¢+=o.

Since p_ = 0, (2.4.20) holds trivially. O

The function 1, satisfies the following inequality.

LEMMA 2.4.10. Let p = 1. Let p: [0,00) — R be a non-negative, smooth test function
with the property that ¢(t) = o(t~"*2P=V) as t — 0. Then, for 0 <r < {(f),

| r- O ettt dt > o (P el
+ (- o) [ retewans (2 - 1) [ ettt

n—1 2p-—1

1 " 2p—1 1
— t)w(t)dt. 2.4.21
o | e ) (2.4.21)

Proof. Multiplying (2.4.20) by @Z)Qp 2( t)o(t)w(t) and integrating from t = 0 to t = r, we
have

/OT p_ (VP2 () p(t)w(t) dt = /OT [w; + ni 1@&3 + ho%] P72 () p(t)w(t) dt
t=r 1

+
t=0

— ¥+ (O w(®)e(?)

/0 T[ Pt 2o p(t)w(t) dt

n—1

T -1 / V(W + ho) (t) + @' (8)] w(t) dt.

The boundary term at ¢ = 0 in the first term of the right-hand-side vanishes due to the

asymptotics of ¢. Using the fact that fo g01/12p “W_wdt = 0 and collecting terms then
gives (2.4.21). O
In [59], the authors take () = 1 with p > n/2, and use the fact that ho(t) = 2+ = 0.

Then they deduce from (2.4.21) that there exists a constant C' = C'(n, p) with the property
that

[+ 1220 8oy < Cllo=lLe(sie)- (2.4.22)
In [5, Lemma 3.1], an alternative approach was adopted and the author showed that,
for p > %, there exists an explicit constant C(p,n) such that for all » > 0, one has

W, (r,0) w(r,0) < C(n, p) /0 o (1, 0)Pu(t, 0) dt.

Motivated by the expression (2.4.18) and natural scaling properties, we define the scaled
curvature quantity
R _(r,0):=rp_(r,0).
Again, note that R depends both on the point x and on (r, ), but we have suppressed
the x dependence for the moment.
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2.4. Relative volume comparison with integral bounds on the curvature

Therefore we can prove:

THEOREM 2.4.11. Let S < Sz, >0 andp = 5. Then,

d [ Ir(S,r) D8, r)| 7
dr g S 2 R 2p—1 S )" 2.4.23
dr <|P0(S7 7,)| ( P — ) |F0( )| H HL (T(S,r)) ( )

Moreover, if r < £(0) for all 0 € g, then we have the slightly sharper estimate

d [ I1(S,7)] |FSr f
S B2} < (2 e 2.4.24
dr <|F0(S,T)| (2p—1) ITo(S 1R 20 (T(5,t)) ( )

where fo t)dt = 1 fo

Proof. Take o(t) = t2»~1 in (2.4.21). For all fixed 6 € S, we have

" 1
[ R 0w 0t = v 07 e0)
0 -
+( L1 >/%@+(t,6)2”w(t,9)dt
0

n—1 2p—1

n—1 "1 op 1
+ (1 2p—1)/0 t\Iu(t,G) w(t,0) dt.
(2.4.25)

Since —1 — ﬁ > 0, we deduce that'
p—

V0w 0) < @p=1) [ ROV 607 u(t. 0 dr
0
Integrating over I'(S, r), we have
min(r,¢(0))
[ waor o= [ [ W (1,0 wo(t, 0) dt o
NG 0eS Jo

S,r)
min(r,¢(0)) t
<(@2p—1) / ) / ( / R (5,000, (5,0)22u(s, 0) ds) dt b,
feS JO 0
(2.4.26)

INote that, in the case p = 5, the last two terms in (2.4.25) vanish. As such, our estimates seem
optimal in this case.
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Chapter 2. Volume comparison

We split the integral into an angular integral over gr and §\§T Firstly,

min(r,¢(0)) t
/ / < / R_(S,Q)\I/+(s,0)2p_2w(s,0)ds) dt do
6esS, Jo 0

:/gegr/o (/ R_(s,0)0 (s,0)2 (s,e)ds) dt d
:/or/ee: (/0 R( (5,07 (s, 0) ds) a9 dt
_ / ( /F R_\yip—2dug) dt. (2.4.27)

In particular, we have

min(r,6(0)) t
/ / ( / R_(s,0)W 4 (s,0)* 2w(s,0) ds> dtdd <r < / R_W*? dﬂg> :
0es, Jo 0 I'(Sr,r)

(2.4.28)
Secondly,

min(r,(6)) t
// (/ R(8,9)%(8,6)2?%(3,9)(13) dt do
0eS\Sy J0 0
o) t
/ / (/ (5,0)W . (5,0)2w(s,0) ds) dt do
0e5\S,
0 0
</ | ( | re w0t ) ds> a9
0eS\S, J0 0
£(6)
= / o) (/ R_(5,0)W,(s,0)*%w(s,0) ds> do
0eS\Sr 0

£(6)
r/ (/ R_(5,0)¥  (s,0)* w(s,0) ds) db
0e5\S 0

=7 / R_UP 2 dy,. (2.4.29)
L'(S\S,,r)
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2.4. Relative volume comparison with integral bounds on the curvature

~

It follows that if r < £(6) for all 6 € S (i.e. S, = S), then we may use equation (2.4.27)
to deduce that

/ U (10 dpug (1, 0) < (2p — 1) / ( / R_\Ifip—2dug) dt
I'(S,r) 0 I'(5,t)

2p—2
< [ IR Lo s (2.4.30)
<@ =0 ([ IR L ) 1022
(2.4.31)

Hence,

Wil opr gy < (20— 1) ( /0 [ Bl 2p-1r5.0) dt) :

From equation (2.4.18), we therefore have

d (IP(E.r)] / ! / ¥, dy
a g ~ g
dr \ [To(S,7)] |PoSr| [To(5, )| Jresan

_ L@
v 2p—1 S
To(8.1)] )
IT°( S )|
< p- / LA
0

which is (2.4.24).
In the case where there exists 6 € S such that £(f) < r, then (2.4.28) and (2.4.29) imply

that
/ U (1,0)7 " dug(t,0) < (2p— 1) 7 (/ Ry dug)
(S,r) (S,r)

2p—2
< (2p - 1) r ”R*”L?P—l(I‘(g,r))”\IjJr”Lpr—l(F(gm))

Therefore,
Wil 2oz < @ = D) [Bo| 2ot (03,0
A similar calculation to that above then leads to (2.4.23). O

In the special case of geodesic balls, where we take S = Sy, we get:

THEOREM 2.4.12. For 0 < rq < r then, for any p = 5, we have
d (V(x,r)
— 2p—1 R_| 120-1(B(z.0)) dt. 2.4.32
dr ( %(r) ) ( D ) f H HL2 L(B(z,t)) ( )

93



Chapter 2. Volume comparison

Moreover, for r < injx, we have
d (V(x,r) V(a:,r)k?v%l ][T
— <2p-1)—7r~7— R_| 120-1(B(z.1)) dt.
i (er) < 0= DR ) Wby

2.4.3. Comparison and monotonicity results. Petersen and Wei prove the follow-
ing relative volume comparison theorem.

THEOREM 2.4.13. [59, Theorem 1.1] Let x € M, K <0, p > n/2, then there exists a
constant ¢ = ¢(n,p, K, R), nondecreasing in R such that

1 1
V(z, R))QP (V(x,r))’@ a1
— — | ——= < c(k(K,p)). 2.4.33
(Ve Vi ) = D) (2459
At r =0 it holds that
V(z,R) < (1 + c(k(K,p)2)* Vi (R).
The case k(p, K) = 0 is the classical relative volume comparison.

Here the case p = n/2 is not covered. In [29], an analogous result is shown also in this
case.

Petersen and Wei obtain equation (2.4.33) by observing that equation (2.4.10) is a
differential inequality of the form

Yy < ay' w f(x),
y(0)=1, y>0,

where o > 0 is a constant. Thus after integration and separation of variables they obtain

R
2y (B) ~ 2 () < [ fla)d.
Then by choosing ¢ properly, the result follows.

REMARK 2.4.14. The proof of equation (2.4.22) does not work if p < n/2. It is also

necessary to have p > n/2 to get convergence of the integral fOR (Vo(1))~'/?rdt that comes
up in the proof.

COROLLARY 2.4.15. [59, Cor. 2.4] Let (M, g) be a complete n—dimensional Riemannian
manifold with diam(M) < D (D >0), x€e M, r < D. Forp >n/2, K <0, it is possible
to find for all o <1 an e =e(n,p, K, D,a) > 0, such that if k(p, K) < €, then

Vi) _ Vi)
V(D) = Vol M

(2.4.34)

We will now show volume comparison and monotonicity results which follow from Theo-
rem 2.4.11.
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2.4. Relative volume comparison with integral bounds on the curvature

THEOREM 2.4.16. Let S < Sz, 7> 0andp = 5. Then, for 0 < ro <7, we have

LS,r) < (ESr) ), / <][ RQpldug> T (2.4.35)
Fo(S, 7’) Fo(S, 7“0) 70 F(é,t)

Moreover, if r < €(0) for all 8 € S, then we have

r g,r S r §,r 7T [ 1 s |
L(s,r) < [ L(S.m0) exp / — { ][ [ B2 5.0y dt} ds
Fo(S,T) Fo(S,To) | /70 F(S’ 5)2p—1 0 1
(2.4.36)
a 217%1 [ s 1/(2p—1) i
< M exp / ][ (f R d,ug> dt y ds
FQ(S, 7”0) | /70 0 F(§,t) 1
(2.4.37)

Proof. From equation (2.4.23) in Theorem 2.4.11, we have

d F(§7 r) ( 2p—1 T
—log| —=—= ] <(2p—-1 f R du . 2.4.38
dr <FO(S : 7’)) ( ) r(8.r) : ( )

Integration then yields (2.4.35).
If r < €(9) for all 6 € S, then we may use (2 4.24) to deduce that

ilog F(SA’ r) <(2p—1)
dr Fo(S,T) |F S T

Integration then gives (2.4.36). Since I'(S,¢) < I'(S,s) for 0 < t < s, (2.4.37) follows
from (2.4.36). O

The following monotonicity results follow immediately from Theorem 2.4.16.

THEOREM 2.4.17. The quantity

Fo(é 7;)) exp [—(2p— 1) /0 T (][F@t) R‘ipldug) o dt] (2.4.39)

1s a non-increasing function of r, which converges to 1 asr — 0.

Simalarly, the quantities
(§ r) '
exp (2p—1)/ — ][ |R_||}2p-1 ydt e ds |, (2.4.40)
") . (S . 2p L2p=1(T(S1))
)

To(S,
FO((S r) [ (2p=1) /0 {]ﬁ (]f G RZ dug) e dt} ds] (2.4.41)

are non-increasing functions of v, as long as r < €(0) for all § € §, and converge to 1 as
r— 0.
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Chapter 2. Volume comparison

Integrating Theorem 2.4.11 in a different way gives the following result.
THEOREM 2.4.18. If 0 < ro < r, we have

() () ()"
Lo(S,r) o (S, ro) |S]

Proof. From equation (2.4.23), we have

iy QGO R — ()
dr F0(§,r) \FO(S\,T)T! — L2 =1(r(S,r)) —llL2o-1(r(5,r))-

ERE
Integration yields (2.4.42).

/SQpanL2pl(B(x78))dS. (2.4.42)
T0

A

0
In the special case of geodesic balls, where we take S = S, we get the following results:

THEOREM 2.4.19. For 0 < rg < r then, for any p > 2
mequalities

5, we have the relative volume
V(:v,r))%ll (V(x,ro))%’ll i / 1 { ][ }
< ex T R_ p— T dt dS
( %(T) %(TO) p /s, V(x’ 3)2;77—1 0 || ||L2 1(B( 715))

(2.4.43)
V(x,ro))%l‘l ' [ ( f o vy
< exp R dpu dt } ds
( %(TO) | /7o 0 B(z,t) &
(2.4.44)
and

()™ = () o [ (f o) ]

In case p = 7, we obtain

THEOREM 2.4.20. For 0 < rg < r, we have

()" < Ce) "o [ (o) o)

(2.4.46)

(57)" = (565) " L (o) o] e

Integrating gives the following special cases of Theorems 2.4.22 and 2.4.18.%

and

2We only state the versions that hold globally.
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2.4. Relative volume comparison with integral bounds on the curvature

THEOREM 2.4.21. For any p = 3, the quantity

% exp [—(Qp —1) /0 ' (7{9 - R2! d,ug) v dt] (2.4.48)

1 a non-increasing function of r, which converges to1 asr — 0. Moreover, for 0 < ro <7,
we have

174 T 174 %1 1 " n
< (l'yr)) _ < (:Ear())) < _— / Sim’j“R—HLQP*%B(Z‘,S)) dS, (2449)
Vo(r) Vo(ro) Vo(1)ze-1 Jrg

where Vo(1) denotes the volume of the unit ball in R™.

The following monotonicity results follow immediately from Theorem 2.4.16.

THEOREM 2.4.22. Let p = 5. The quantities

e [eon [ () afa]

Vv(ir;) exp [—(Qp —1) /0 ' <]i » o dug) e dt] (2.4.51)

are non-increasing functions of r, both of which converge to 1 asr — 0.

and

The special case p = 4 gives

COROLLARY 2.4.23.

VV(O%;) exp [—(n —1) /0 T { ]f (]é . R! dug) o dt} dSI (2.4.52)

VV(:(T")’) exp [—(n —1) /0 ' (7{9 - R dug> e dt] (2.4.53)

are non-increasing functions of r, both of which converge to 1 asr — 0.

and

THEOREM 2.4.24. For 0 < rg < r, we have

) G e [ = |
_ <C . R |pnsipmmdth ds  (2.4.54
(5 Volro) s, e i

"1
< Cl/ SL ”RfHL”—l(B(a:,s)) dS, (2455)
ro n—1
where we have defined the constant
1
Gy =Ci(n) = ———
Vo(1)
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Chapter 2. Volume comparison

REMARK 2.4.25. If the Ricci tensor of g is continuous, then
/ 37%\\1{{_\\,;2%1(3(%8)) ds =O0(r*) asr — 0,
0

for any p > §. As such, equation (2.4.49) implies that the (well-defined) quantity

V(I,T))Qpl_l 1 /r __n_
R — S 2p-1 ||R7||L2p71 B(z,s ds
(Vo(r) V(1)1 Jo ()

is a non-increasing function of r, for any p = 5. More generally, if p_(y) = A(z)d(x,y)* as
y — x, then

T‘izl’ni—lnR,”LQp—l(B(%r)) ds = O(T1+a) as 1 — O,
independently of p. In order for this quantity to be integrable, we therefore require o > —2.
As such, validity of our monotonicity theorems rules out the (standard) critical case where
the Ricci tensor has a %2 singularity at the point x.

2.4.4. Morrey spaces. The expression on the right-hand-side of (2.4.55) is rather
reminiscent of an L' version of a Morrey space norm. Recall that the (homogeneous)
Morrey space of R", M?(R") with 1 < ¢ < p consists of those functions f € L (R") for

loc
which
1 1 1/q
I/ re@ny == sup [r"(pq) (/ FiE dx)
zeR™;r>0 B(z,r)

is finite (see, for instance, [63, pp. 301]). In our case, let ¢ > 1 and F': M x M — R have
the property that F(x,-) € LY(M) for all z € M. We define the (semi)norm

7 G-
Pl = s ([5G 0o )
xe

The quantity that appears inside the integral in the inequality (2.4.49), i.e.

3721%1 ||R7 ||L2:D—1(B(x,s)) )

would be consistent with an L' version of the Ms,_, space, rather than an L™ version, i.e.

b 11 1/q
g, o= sup [ G (/ |f|qda:) dr.
T zeM Jo B(z,r)nQ

PROPOSITION 2.4.26. Let R_ € M? (M) for some p > n. Then

P
/ —n ||R_||Ln71(B(x75)) dS
0

Ssn—1

15 finite, for all x € M.
Proof. R_ € MPY_; (M), s0 ——|R_|pa-1(p(zs) < Cs™™? for 0 < s < D, so the integral is

mn
sgn—1

finite. O

o8



CHAPTER 3

Convergence of Riemannian manifolds

3.1. From volume estimates to convergence

Let (M;,g:) be a sequence of manifolds that satisfy curvature bounds that lead to a
Bishop-Gromov type volume comparison result, so, e.g. a pointwise or an LP-bound on the
Ricci curvature, see Chapter 2. We will now describe how such a volume bound leads to
convergence in the Gromov-Hausdorff topology.

We define the following quantities:

DEFINITION 3.1.1. Let M be a compact metric space. Then the capacity of M, Cap,,(¢)
denotes the maximal number of disjoint ¢/2-balls in M. The covering of M, Covy(e) is
defined to be the minimal number of e-balls it takes to cover M.

Let dgp denote the Gromov-Hausdorff distance, see Definition A.6.5, and let M denote
the set of Riemannian manifolds . In order to show that a collection of Riemannian man-
ifolds with certain control of curvature is precompact in the Gromov-Hausdorff topology,
we use the following result due to Gromov (see [58, Proposition 44]):

PROPOSITION 3.1.2. For a set C < (M, dgn) the following statements are equivalent:

(1) C is precompact, i.e. every sequence in C has a converging subsequence,
(2) there is a function Ni(e) : (0,a) — (0,00) such that Capy(e) < Ny(e) for X €C,
(3) there is a function Na(e) : (0,a) — (0,00) such that Covx(g) < Na(e) for X € C.

3.1.1. Examples. We will now provide some examples of how Proposition 3.1.2 is
used for the proof of precompactness results. The main idea in all the examples is to use
curvature bounds to estimate the size of balls and the number of balls it takes to cover the
manifold.

Pointwise bound on Ric

THEOREM 3.1.3. The collection of closed n—dimensional Riemannian manifolds with
Ric > (n—1)K and diam < D for D > 0 is precompact in the Gromov-Hausdorff topology.

Proof. The aim is to show that M does not contain too many disjoint balls, which will
then allow us to apply Proposition 3.1.2. Indeed, let [ be the maximal number of disjoint
¢ balls in M, with centers {z1,...x;}. Let B(z;,¢) be the ball of least volume. Then, by
the Bishop-Gromov result, we get for r = D,
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[ < < < )
V(flfi,g) V(l‘i,ﬁ) VK(S)

where Vi (r) denotes, as in 2, the volume of the ball of radius r with respect to the constant
curvature metric gx. The last quantity is bounded, thus, from Proposition 3.1.2 we get
the precompactness property. U

L? (p > %) bound on the negative part of Ricci

Both Yang [69] and Petersen-Wei [59] study manifolds with L? bounds on the Ricci
curvature for p > 2. We will outline both approaches.

(1) Yang’s approach:

In [69, 70] the author investigates manifolds with the following bounds:
Let n >3, p>n/2,0<n<1, D p>0, positive constants e(n), x(n,p,n),
Qc M,

Viz,r) =n"n " twr®  forallzeQc M,
diam(Q2) < D,

3.1.1
IR o2 (s < e(m)n*™ ) for all z € €, ( )
r2=P|Ric| Loay < K(n, p,n).
Yang shows in [69, Theorem 2.1] that sequences of complete Riemannian man-

ifolds that satisfy the bounds (3.1.1) and additionally have Vol (2) > v for some
v > 0, contain a subsequence that converges in Gromov-Hausdorff distance to an
open C! manifold with a continuous Riemannian metric.

He shows in [69, Section 7] that an LP-bound on the negative part of the Ricci
curvature leads to an upper bound on the volume of a geodesic cone, see also [24].

Yang then uses an isoperimetric inequality due to Croke [20]:

THEOREM 3.1.4. [20, Theorem 11| Let M be a Riemannian manifold, Q@ < M
then
Vol (692) oo\
YR Gn)ey (R , 3.1.2
Vol (Q)(n=D/n (n)er(R™) (wnl) ( )

with ¢; the local isoperimeric constant, C'(n) > 0. The quantity & is defined as
follows: & =|S,|, where S, < S, the space of unit tangent vectors at x, where x
is chosen such that S, has minimal volume.

Using this result, he gets a volume bound that leads to the following local
isoperimetric inequality:
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3.1. From volume estimates to convergence

THEOREM 3.1.5. [69, Theorem 7.4] Let p > n/2, 7,R > 0, o € M. Define
. V(l‘o, R) —l/n
= nLlw, 1 R" ’
and
Ui
_ R
147
If
C’(n,p)RQp"/ Ric_Pdug < wpq
B(zo,R+2r)
min | 72p—1 nn—2p 7 2p(n — 1) Tn" 7
n(2p—1)(1+7+n)%
then

n+1
-
c1(B(wo, 1)) = ¢(n) (ﬁ) e (R").

From there it follows that a sequence of compact Riemannian manifolds that
satisfy (3.1.1) has a subsequence that converges to a compact metric space in
Hausdorff distance, [69, Cor. 7.7]. Here the number of balls it takes to cover M
is estimated by the previously mentioned volume estimate of cones. Note that for
this result the bound on R is not necessary.

In order to prove that the limiting metric space is actually a Riemannian
manifold with a continuous metric, Yang uses the so-called local Ricci flow. For a
smooth metric g it is defined via the evolution equation

g—f = —2°Ric(g(t)),  &(0) = go. (3.1.3)
Here x is a nonnegative compactly supported smooth function. The existence
of T > 0 such that (3.1.3) has smooth solutions g(t) for 0 < t < T under ap-
propriate integral bounds on the Riemann- and Ricci curvature, is shown in |
Theorem 8.2|.

Furthermore the metrics g(t) regularize the initial metric g. Yang investigates
three situations: R € L"? R e L? for 2 < p < o0, and R e L®.

In the first case, an additional L” bound for Ric is needed. Then it is possible
to obtain, beside the uniform bound for the time of existence of solutions to the
local Ricci flow, also an L® bound on R.

In the second case, an additional isoperimetric inequality is needed to get a
uniform time estimate. In the last case, the time estimate is obtained without any
additional assumptions.

Y

After having obtained the pointwise bound on the curvature, and therefore a
sectional curvature bound, Yang uses the classical Cheeger-Gromov compactness
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Chapter 3. Convergence of Riemannian manifolds

result to obtain convergence. For this result a bound on the injectivity radius is
necessary, which Yang obtains by [17, Theorem 4.7].

2) Petersen-Wei’s approach:
Pp

In [59, Theorem 1.1.], the authors obtain the volume bound
1 1
V(zx, R))QP (V(x,r))% 1
. < o(k(K,p))>, 3.1.4
(Ve Vet ) D) 14

for closed n-dimensional Riemannian manifolds with an upper bound on the di-
ameter and a small LP-norm of Ric.

Hence we can also estimate the capacity of the manifold, and thus an analogous
argument to that given in the case of pointwise bounded Ric_ outlined above,
leads to the result.

M? (M) bound on the negative part of Ric

We use the results of Chapter 2 to get the following result:

PROPOSITION 3.1.6. Let D > 0 be constant. Then for all « < 1 we can find K =
K(n,D,«a) (: — Jogl) ) such that any closed Riemannian manifold M with'

(n—1)D

zeM t=0

1/(n—1)
diam M < D, sup sup (7[ R_(x,y)" d,ug(y)) < K.
B(z,t)

satisfies, for allxe M and 0 <t <r <D,
(L) Tolr) (3.1.5)
Viz,t) = V()
respectively,
Viw,r)  Volr) u-vxo, (3.1.6)
Viz,t) = V()

Therefore we get
PROPOSITION 3.1.7. The class of Riemannian manifolds with

diamy; < D

1/(n—1)
(][ R dﬂg) <€
B(z,t)

1s precompact in the Gromov-Hausdorff topology.

!Note that we have now reinstated the dependence of R_ on the point x.
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3.2. Convergence of Riemannian manifolds in Holder- and Sobolev spaces

Proof. Let € > 0, and [ be the maximal number of disjoint § balls in M, with centers
{z1,...,21}. Let B(z;, 5) be the ball of volume. Then, by (3.1.6), we have

| < Vol M _ V (x4, D) < Vo(D) ((n—1ED _ (Q)ne(nl)KD — Ny(e).
Vi(zn3)  Viwss)  W(3) e
Applying Proposition 3.1.2 leads to the result. U

3.2. Convergence of Riemannian manifolds in Holder- and Sobolev spaces

A different notion of convergence of Riemannian manifolds, which has a stronger em-
phasis on the analytic properties, is the following:

DEFINITION 3.2.1. Let (M;, g;) be a sequence of smooth n-dimensional compact Rie-
mannian manifolds. We say that M; — M in C** (in W*P) if M is a compact Rie-
mannian manifold, g a C** (W*P) metric, and furthermore if there are diffeomorphisms
fi + M — M;, for sufficiently large 7 such that the pulled back metrics f*g; converge to g
in C* (in W*?) on M. See for example [2, 3, 37| etc.

As outlined in [37, Remark 1], the appropriate framework for convergence in C* is
the set of C*+1:% manifolds with C* metrics.

REMARK 3.2.2. For M a Riemannian manifold, we will denote f € C*(M) briefly by
f e Cke,

In order to obtain (pre)compactness in the C* (W*P) topology of manifolds that sat-
isfy certain curvature bounds, an important tool is the use of harmonic coordinates. Since
the Ricci tensor becomes a simpler expression in these coordinates, they are particularly
useful in the study of manifolds that satisfy bounds on the Ricci curvature. By applying
elliptic estimates it is possible to deduce convergence results in the space of C*< /WP
manifolds.

3.2.1. Harmonic coordinates. Harmonic coordinates are frequently used in Rie-
mannian geometry. As we will see in Theorem 3.2.7, harmonic coordinates provide optimal
regularity. In applications, their important feature of a simple coordinate expression for
the Ricci tensor is utilized.

Here we are particularly interested in applying harmonic coordinates for the study of
convergence properties of Riemannian manifolds. They are used in proving (pre-)compactness
results on the spaces of Riemannian manifolds that satisfy a certain curvature bound and
bounds on the injectivity radius, volume of geodesic balls etc.

The notion of harmonic coordinates goes back to DeTurk and Kazdan, [21]. They show
that these coordinates are optimal as far as regularity issues are concerned. Furthermore
it is possible to obtain a-priori bounds for harmonic coordinates as was shown by Jost
and Karcher, [40] under the additional assumption of a sectional curvature bound. These
bounds will be needed in estimates in the proofs below. We will briefly review their results.
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Chapter 3. Convergence of Riemannian manifolds

DEFINITION 3.2.3. A coordinate chart (z',...,2") on a Riemannian manifold (M, g)
is called harmonic, if Aga’ =0,i=1,...,n.
It is possible by [21, Lemma 1.1], to relate these coordinates by a straightforward

calculation to the Christoffel symbols.

LEMMA 3.2.4. Let (z',...,2") be a local coordinate chart, and define in this chart
Ik = gijl"fj. This chart is harmonic if and only if Agr' = —T"=0,1=1,...,n.

As was shown in [21], one can always find harmonic coordinates in a neighborhood
about some p € M.

LEMMA 3.2.5. Let (M,g) be a Riemannian manifold, k € N, a € (0,1). Let g e C* in
a local chart about p e M. Then there exists a neighborhood around p on which harmonic
coordinates exist. These coordinates are C*THfunctions of the original coordinates. Ad-
ditionally, all harmonic coordinate charts defined near p have the same level of reqularity.

Thus, when changing to harmonic coordinates the regularity of tensors behaves as
follows by applying the previous result:

COROLLARY 3.2.6. Let g € C*% in an arbitrary coordinate chart (x!,... z"), and let
T be a tensor in CbP for | = k, B = « in these coordinates. Then T is of reqularity of at
least C** in harmonic coordinates.

As a special case of Corollary 3.2.6, when applied to the metric g itself, we obtain that
g has optimal regularity in harmonic coordinates:

THEOREM 3.2.7. Let g € C* in some coordinate chart, then it is also in C*® in
harmonic coordinates.

REMARK 3.2.8. When changing to geodesic normal coordinates, we just get g € C*~22,
In [21, Ex. 2.3], it is shown that this assertion can in general not be improved.

Let V be the connection for g, with Christoffel symbols I' = Féj. They involve first
derivatives of the metric, so if I' € C*, we can at most expect that g € C¥*1,

By using the fact that for g € C!, the map T : g — [I' is an overdetermined partial
differential operator at g, DeTurk and Kazdan [21] showed the following

THEOREM 3.2.9. Let g € C?. If in some local coordinates I' is of class C*?, then
g € OFLa in these coordinates.

In addition to the optimal regularity properties of these coordinates, another advantage
of them is that the components of the Ricci tensor take a rather simple form.

PROPOSITION 3.2.10. Let (M, g) be a Riemannian manifold, let (z', ..., z") be coordi-
nates on M. Then the Ricci tensor in these coordinates, Ricg, is given by
1 % gi; 1 orr orr
Ricy)ij= —~g—29 4 ~ (g . yg T )1 3.2.1
(Ricg):j 29 w2 <g PR 8371) " (3:2.1)

where the dots consist of lower order terms with at most one derivative of the metric.
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3.2. Convergence of Riemannian manifolds in Holder- and Sobolev spaces

If the coordinates are harmonic, (3.2.1) reduces to

1 (9291']'
icg)ij = —=¢"°—=——+.... 2.2
(Rlcg)w 2g axraxs + (3 )

See [21, 4.1].

Constructing harmonic coordinates

In [40], Jost and Karcher constructed harmonic coordinates out of almost linear func-
tions. Their results hold for manifolds that satisfy a pointwise bound on the sectional
curvature.

In contrast to [21], they also obtain a lower bound on the size of the neighborhood
on which it is possible to obtain harmonic coordinates, and they also prove curvature
dependent estimates for the Christoffel symbols.

Almost linear functions

Let (M, g) be a compact, n—dimensional Riemannian manifold. Let p € M, and B(p,r)
a ball around p, that does not meet the cut locus of p. Let v € T,M be a unit tangent
vector.
The almost linear function [, associated with u is defined as follows:

Let, for x # p € M, d the distance in M with respect to g,

r(z) = d(p, ), p(z) = epr(r(:c)u), q(z) = expp(—r(x)u), f(z) = %d(p, )2,

Then

d(z,q(x))* — d(z, p(x))®
4r(z) '

If one additionally assumes the sectional curvature bounds —w? < K < k?, |K| < A?
for positive constants w, k, A, then:

(1) |gradly(x) — u(z)| < 2rAr? 2508200,
W(7)] < (8RAZRRZAT 4y coth wr) r(z),
2 D2l 8 AS;;;Q“ h .
«(x) —<graal, gra T)| € (kA== —wrcothwr) r°(x).
o AL grac ()] < (30 S5 rr cothior) o
See [40, Satz 2.1.].

Now take an orthonormal basis uy, ..., u, of T,M and set l; :=l,,. Let h; : B(p,r) = R
be the solution of

L(x) =

Agh; =0  on B(p,r),
hi=1; on dB(p,r).

These h; are then the harmonic coordinates we searched for. For proving the existence
and estimates on these coordinates, see [40, Satz 5.1.].
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Chapter 3. Convergence of Riemannian manifolds

As we will see below, the existence of harmonic coordinates on balls of a radius that
is uniformly bounded below, can also be shown for manifolds that just satisfy a Ricci
curvature bound.

3.2.2. Harmonic coordinates for proving compactness results. The basic idea
is as follows:

Take a sequence of Riemannian manifolds that satisfy a certain curvature bound,
bounds on volume, diameter, or injectivity radius. Show that for these special manifolds
one can find a bound on the size of harmonic balls, i.e., that one has harmonic coordinates
of certain regularity (C* or W*P) on these balls. Then use the Arzela-Ascoli theorem to
extract a converging subsequence in the C*® respectively, W5 (o/ < a,p < p) topology.
Finally show that the limit manifold satisfies the desired regularity properties.

The key point to perform this process is that one has a uniform lower bound on the
size of harmonic balls, i.e. on the radius of balls such that around each p € M it is possible
to find harmonic coordinates. We will recall well known results and also add the proofs.
Although the material is not original, our aim is to make these results more accessible by
giving detailed proofs.

Harmonic radius

DEFINITION 3.2.11. [1, 3, 37] Let (M, g) be an n-dimensional Riemannian manifold.
For a € (0,1), Q > 1, the C** -harmonic radius at z € M is the largest number ry(z) =
ry(k, a, Q)(x) such that on any geodesic ball B = B(z,ry) there is a harmonic coordinate
chart U = {u'}?_, : B — R" such that

Q‘léij < gij < Qo5 (3.2.3)
0P g, —0%q;.
D risup07gy (@) + Y i sup 19%95(9) = 095 (2)] Q-1 (3.2.4)
x _ YF#Z dz(y7 Z)a
1<|B8I<k 1Bl=k

The harmonic radius of M is rg (M) = inf,ep ru(k, o, Q)(2).

Analogously, for p € (n,0), Q@ > 1, the W¥*P-harmonic radius at x € M, ry(x) =
ry(k,p, Q)(x), is the largest number such that on any geodesic ball B = B(x,ry) there is
a harmonic coordinate chart U = {u'}!"; : B — R™ such that

Q7 '0; < gij < Qdy;, (3.2.5)

> g < Q-1 (3:2.6)

1<|BI<k
and ry (M) = infep ru(k, p, Q) ().

REMARK 3.2.12. The harmonic radius rg(z) is the radius of the largest geodesic ball
around x € M on which one has harmonic coordinates satisfying (3.2.3) and (3.2.4)
or (3.2.5) and (3.2.6) respectively.
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3.2. Convergence of Riemannian manifolds in Holder- and Sobolev spaces

Using the results by Jost and Karcher [40], the harmonic radius is positive for a fixed
smooth compact Riemannian manifold.

Continuity properties

We will now study what happens to the properties (3.2.5) and (3.2.6) when we consider
sequences of Riemannian metrics.

LEMMA 3.2.13. Let g; — g in the strong W*P-topology. Then the bounds (3.2.5) and
(3.2.6) are preserved.

Proof. Let {x}, {y?'} be harmonic coordinates for g resp. g;. Then

(0 9\ _dwdw (0 9
8 oyF oyl ) oyF oyl S\ oze ozt )

The third factor converges by assumption in the W*?-topology to g (&%, %).
Furthermore, {y} — {x®} in W**1P 50 also in C*, see A.3.9. Therefore
0 0
9, Id, MCEN Id
or oy
in C*~1% thus locally uniformly,

(2 0 o 7
Si oyr’ Oyl S\ oze aab

in C° | which gives (3.2.5) with Q; — Q.
By a similar argument we also obtain (3.2.6). O

Following Hebey and Herzlich [37], we will investigate how the harmonic radius behaves
when taking limits g; — g. We start with the following observation:

LEMMA 3.2.14. [37, Lemma 8] Let (M, g) be a smooth Riemannian manifold without
boundary. Let x € M, k € N* and p > n. Then it holds that for all 1 < Q < Q' < ®©
(1) ru(k,p, Q)(x) < ru(k,p, Q)(x),
(2) fOT’ all Q > 1; hrna—»O+ TH<k77p7 Q + 5)(33) = TH(kap7 Q)(ﬂf)
Thus, with respect to Q, the WP harmonic radius is increasing and upper semicontinuous.

Proof. The first statement just follows by definition, rg(k,p, @Q)(x) is increasing with re-
spect to Q.
It remains to show that limsup,__,,rg(k,p, @ + €)(x) < rg(k,p, Q). So let
r < limsupry(k,p, @ + ¢)(x)
e—-0+
be fixed.

Then we can find harmonic coordinate charts U, := {ul... u"} on B(z,r) which sat-
isfy (3.2.5), (3.2.6) with @ replaced by @ + ¢, and r instead of ry. The sequence {U.}.~0o
is bounded in W¥P since it satisfies (3.2.6), thus a subsequence converges in W**1r by
Sobolev embedding, to a limiting chart U.
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Chapter 3. Convergence of Riemannian manifolds

Define now ta sequence of metrics g. by g.,; = g(d%i, ﬁ that converge t g.

Since, by Lemma 3.2.13 the relations (3.2.5), (3.2.6) are preserved under W*P-convergence,
it holds that rg(k,p, Q)(z) = r. But r < limsup, ¢+ rg(k, p, Q@ + €)(x) was chosen arbi-
trarily, therefore, 7y (k, p, @)(x) = lim._o+ 5 (k, p, @ + €)(x). O

If we now consider a sequence of Riemannian metrics {g;} on a fixed smooth differ-
entiable manifold without boundary, denote by ry(g;, Q) = ry(k,p,Q)(x), x € M, the
harmonic radius with respect to the metric g;.

In order to prove that the harmonic radius satisfies certain continuity properties we
will need the following result:

PROPOSITION 3.2.15. Let g; be a sequence of Riemannian metrics on M, g; — g in
WkP with corresponding Laplacians A; and A. Let w; be a sequence of functions that
satisfy

w; =0 on 0B,

with a (with respect to g) harmonic function f.
Then w; converges to 0 in W**LP uniformly on compact subsets B' € B.

Proof. By using [26, Theorem 8.16] it follows that
sup w; < sup(w;)™ + C|A; f| r(5)-
B 0B

Due to the convergence of g; — g, it follows that A; — A in W*?, and since Af = 0, we
obtain that

|AifllLr ) — 0.
Therefore, since w; = 0 on 085,
lim ”wi”CO(B) — 0.
Applying [26, Theorem 8.33], we can estimate the C**-norm of w; to get
|lwillcrasy < Clwilcom),

hence

lim [wilcrasy — 0
where a =1 — 2. Note that for ¢ € [1,00), we can estimate |w;|rp) < |wilcre(s).
We can apply [26, Theorem 9.11] to estimate
lwillwer(py < Clwilposy < C'lwillcrasy,
therefore,
lim |w;|w2r(py — 0.

By an induction argument similar to e.g., [57, Appendix] we obtain lim ||w;|ys+155y — 0.
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3.2. Convergence of Riemannian manifolds in Holder- and Sobolev spaces

We now want to generalize Lemma 3.2.14 to the situation of not having a fixed Rie-
mannian metric, but a sequence of g;.

It was proven in [37, Lemma 10] for the general W*P-case and in [3, Proposition 1.1]
for the W'P-case that the following result holds:

LEMMA 3.2.16. [37, Lemma 10], [3, Proposition 1.1] Let M be a smooth Riemannian
manifold without boundary, {g;} be a sequence of Riemannian metrics on M. For @ > 1,
ke N*, p > n suppose that g; converge in W*? to a WP metric g.

Then the harmonic radius is upper and lower semicontinuous, i.e.,

(1) TH(g’ Q) = lim Sup; TH(gia Q)7
(2) for all0 <e <@ —1, rg(g, Q —¢) < liminf, ,o, ru (g, Q).

REMARK 3.2.17. In [1] only the second property is shown in the C1* case, i.e., that
the harmonic radius is lower semi-continuous with respect to C%® convergence. This is the
property that will be needed in the proof of the uniform lower bound and therefore for the
precompactness result below.

We will recall the proof in [3], for a more detailed version see [37].
Proof of Lemma 3.2.16. Let r; := rg(g;, Q). In order to show

ru(g, Q) = limsupr;,
1—00

let U; : B(x,r;) — R™ be harmonic coordinate charts satisfying (3.2.5), (3.2.6). Suppose
limsup, ,,7; > 0. Since g; — g in W¥? a subsequence of the charts U; converges in
WHkHLP 0 a limiting chart U: B(x,r) — R", for any r < limsup,_,., 7;.

Since (3.2.5), (3.2.6) are preserved under W**1? convergence, this limit U also satisfies
the same conditions. Thus ry(g,Q) = r for any r < limsup, ,., 7, hence rgy(g, Q) =
lim sup;_, 4, 7i-

To show the lower semicontinuity property,

TH(g7Q_€) < hmlnfrH(gZ,Q) Ve e (OaQ_1)>
71—00

fix r <rg(g, Q). Let {z',..., 2"} be harmonic coordinates for g on B(x,7) = B. Denote
by A; the Laplacian of g;. View g; as metrics on B(z,r). In the coordinates {z',... 2"},
A, can be written as

o 0

) , 1 0 » 0
(g, — (NI (TS, - ly A
Ai = (9:)" 575 = (9)" (Ta)i 5 It (gl V] det g;| M) . (3.2.9)

Let now {y},...,y"} be solutions of the problem

Ayt=0 onB (3.2.10)

Y =o' on 0B. (3.2.11)

We aim at showing that the harmonic coordinates {y,...,y"} converge locally in
WH+Le on uniformly on compact sets B’ € B to {z!,..., 2"}
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Chapter 3. Convergence of Riemannian manifolds

Set therefore w! = 2! — y!. This functions satisfy the conditions (3.2.7), (3.2.8) in

i

Proposition 3.2.15 and we obtain that

hm ||w7€“wk+l,p(B/) i O

Thus for all B' € B, {y},...,y"} are harmonic coordinates on B’ for g; that converge
to {z!,..., 2"} in W*LP(B’). Since the conditions (3.2.5), (3.2.6) are continuous in the
strong WkP-topology, {y?,...,y"} and g; satisfy the same conditions as {z',..., 2"} and

g with @ replaced by @Q;, lim; ,, Q; = Q.
Therefore, for ¢ > 0 we get

r < liminfry(g;, Q;) < liminfry(g;, Q + ¢). (3.2.12)
1—0 1—00
Since r < ry(g, Q) was arbitrary, the result follows. O

Bounds on rgy

We now want to show that under certain conditions on the curvature we get a lower
bound on rz. We will only investigate the W*? case, since from a W*? bound we obtain
a C* bound by the Sobolev embedding.

We will follow [37, Theorem 11] since their proof includes Anderson-Cheeger’s result
from [3] and also Anderson’s [1] with additional W*? results for k > 2.

THEOREM 3.2.18. [37, Theorem 11] Let (M,g) be a smooth Riemannian manifold
without boundary, Q@ < M open, Q > 1, p>n, d> 0.

Suppose that for K € R, ig > 0, it holds that for all x that are in Q(d), i.e. that are of
distance at most d from €,

Ric(yg)(7) = K, inj(arg) () = io, (3.2.13)

then there exists a constant ¢ = c(n,Q,p,k,d,ig, K) such that for all x € Q the W1»
harmonic radius satisfies

rr(L,p, Q)(x) > C. (3.2.14)
If, instead of (3.2.13) we have for ke N, C(j) (7 =0,...,k)

|DIRicrg (@) < C(5), g () = o, (3.2.15)

then there exists a constant ¢ = c(n, Q,p, k, d, iy, C(j)) such that for all x € Q the W**+2p
harmonic radius satisfies

ru(k +2,p,Q)(z) = C. (3.2.16)

This result is proven by contradiction. The idea is as follows: Start with constructing a
sequence (M;, g;, x;) of pointed Riemannian manifolds, such that z; € M;, rg(k,p, Q)(x;) =
1 and (M;, g;, z;) converges to a Riemannian manifold (M, g, ) in W*?. In the next step
show that (M, g) is isometric to (R",d), where § is the standard Euclidean metric. We
finally arrive at a contradiction, since by the continuity of the harmonic radius, (3.2.16),
ry(k,p,Q)(x) =1, but in R™ it holds that ry (k, p, Q)(y) = oo for all y € R™.
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We will need the following results:

LEMMA 3.2.19. Let (M,g) be a Riemannian manifold, x € M, B < M a ball around
x. Then the function

fB-’]R T TH(g7x)

inj(B,g) (‘7;)

can be minimized at a point z € B, z ¢ 0B.

Proof. Consider the set C' := {q € B|f(q) < f(z)}, with C n éB = . This map f
is continuous on C. Furthermore, by definition, C' is compact, thus a minimum of f is

attained away from the boundary of B.
O

Another result which will be used is the Cheeger-Gromoll splitting theorem:

THEOREM 3.2.20 ([16]). Let (M,g) be a complete Riemannian manifold of dimension
n = 2, with Ricg = 0. If M contains a line, then M is isometric to the product (R* x
N,0*®gn), with k > 0, N containing no lines and 6* the standard metric on R¥.

Proof of Theorem 3.2.18. We will prove the result for k£ > 2, following closely [37], the
modifications for the k = 1 case will be described in Remark 3.2.21 below.

Assume, that for @ > 1,p>n,d > 0,49 > 0, ke N, C(j) € R*, we can find a sequence
(M;, g, z;) of pointed Riemannian manifolds without boundary, and open subsets §; < M;,
and points z; € €; such that for all x € Q;(d) the bounds (3.2.15) hold, but

lim ry (g, z;) = ra(k+ 2,p,Q)(z) = 0. (3.2.17)

We will show in several steps that this assumption leads to a contradiction:

(1) Choose certain optimal basepoints y; on sets B; € M,;.

(2) Rescale the metrics g; on B; to metrics h; such that for i — oo one gets certain
convergence results on the Ricci curvature, and ry(h;, y;) = 1.

(3) Show that the harmonic radius with respect to the rescaled metric has a positive
lower bound on arbitrarily large balls in M;, therefore it is possible to construct
harmonic coordinates U; on these balls.

(4) (Bi,hy := (U; ')*h;,y;) converges to a complete Ricci flat Riemannian manifold
in W*+2? yniformly on compact subsets.

(5) This manifold is isometric to R” and a contradiction to (3.2.17) can be deduced.

For the detailed calculation we will follow [37, Theorem 11]. Without loss of generality we
can set K = 1.

Step 1: Fix i¢. The first idea to choose x; € M; would be to choose it such that
75 (8, x;) is minimal at x;. Such points do not necessarily have to exist. To overcome this,
consider the sequence (B, g;), where B; = B(z;,inf(d,io)) the geodesic ball for g;. For
x € B; it holds that inj g, o (7) = dg, (7, 0B;) where dg, denotes the distance with respect
to g;. Therefore,
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$l_i)161}9i injp, g0 () =0, injp, g (i) = inf(d, 7). (3.2.18)

We apply Lemma 3.2.19 to find minimizing points y; for %
7184
The ratio satisfies

(8, Yi) < (8, )

— 0 i — (3.2.19)

by (3.2.17).
Step 2: Let now r; := ry(g;,y;). We rescale the metric to h; := r%_gl- on B;. Note that
in this metric 7y (h;, y;) = 1. Furthermore we get

HRiC(Bi,hi) ck = T?HRiC(Bi,gi) ck — 0 for i — 0,

nj(p,n) = 77 (s, g9 — %
dn, (yi, 0B;) = ;-dg, (yi, 0B;) — 0,

) _ ra(hiy) dg,; (y,0Bi) dn, (y,0B;)
TH(hwy) = rathgy) & dgi(yiﬁBi) = dhi(yiﬁBi)'

(3.2.20)

T — 1
(B, ;) dn; (yi,0B:)

Step 3: We now show that rp(h;,y) = 1 for y € By, (vi, 5—)-
Indeed, by using the last property in (3.2.20), we obtain

dhi (yv aBz)

dn, (yi, 0B;)

Therefore u; — 0 for ¢ — oo.

Let now u; :=

TH(hia y) =

Choose y € By, (y;, 2%1), 80 dn, (Yi,y) <
For z € 0B; it holds that dy,(z,v;) < dw,(y,2) + dn,(y,y:), since dn,(yi, 2) = dn,(yi, 0B;)
and dn, (y,y;) < 5,

2ui ’

dp,(y,2) = du, (4, 2) — dn, (i, y)

1
> dhi(yi’z)_Zu-
1
= —dg (yi,2) — . 3.2.21
™ gz(y Z) 2, ( )

Therefore, because z € 0B;, we obtain

dhi (yi, 531')
2

QUZ'
1
= §dhi (yi, 0B;).
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Hence,

by, y) > W08 2

(3.2.22)

Now we have that for all y € By, (yi, %) the harmonic radius satisfies ry(h;, y) > %

Since u; — 0 as ¢ — 00, one can choose R > 0 arbitrarily large. It is therefore possible to
find I such that for all ¢ > I it holds that ry(h;,z) = 3 for all z € By,(y;, R). In other
words, it is possible to find harmonic coordinate charts {U;}: ©; — B(0, #@) < R" on
open sets ; € M;, centered at z; € ; satisfying (3.2.5), (3.2.6) on these balls. Note that

the radius #@ in the Euclidean ball comes from condition (3.2.5). Indeed the condition

implies that ds(z,y) < /Qdp,.
Step 4: Set now h; := (U, !)*h,.
We want to show that (B;, h;, ;) converges in W# 27 uniformly on compact subsets,

to a complete Riemannian manifold (M, h,y).

Since h; is bounded in W**2?_ by Sobolev embedding a subsequence converges in C*+he,
The expression for the Ricci tensor in these coordinates is given by formula (3.2.2),

. = 7rs 62 BZ
—2(Ricg, ) — A(h;) = hj 5;*81?'

(3.2.23)

where A(hy) is quadratic in first derivatives of h;.
Since, by (3.2.20) |Ric(g, n,)|cr — 0, it follows that

(Ricﬁ,‘)k’l = (U;l)*(RiChi)kl — 0 in Ck

Therefore, the sequence h; is not only bounded in this space, but also, since (3.2.23)
includes derivatives of h; up to second order, converges in W*+2?_ Furthermore, also the
charts converge to a limiting chart, U; — U in W**3?_ which is harmonic as well.

By the third property of (3.2.20), dy,(y;, 0B;) — 0, it follows that (M, h) is complete.
To show that (M, h) is Ricci flat, note that since coordinates H := (U~1)*h are har-
monic, the Laplacian in these coordinates satisfies

0*Hy,
AH)+ H — = 3.2.24
(H) + oxrox?® ( )
Thus, by elliptic regularity, see, e.g. [26, Theorem 8.13] H is smooth, and, since the left

hand side equals the Ricci tensor expression, it follows that (A, h) is a complete, Ricci flat
Riemannian manifold.

Step 5: To show that (M, h) is isometric to (R™,d), we aim to use Theorem 3.2.20.
Since M is actually Ricci flat, every geodesic is a line thus we obtain n different linearly
independent lines starting from the same point. Applying the splitting theorem n times
gives the isometry to R".
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Step 6: To arrive at the contradiction, observe that h; — h in W**2? and by the con-
tinuity property of the harmonic radius we also know that rg(k +2,p, Q") (y) < limrg(k +

2,p,Q)(y;) for Q' < Q. By construction, rg(k+2,p,Q)(y;) = 1, but rg(k+2,p,Q")(y) = o
for all y € R™, which is a contradiction. U

REMARK 3.2.21. Anderson-Cheeger [3] prove the W'P-(respectively C%*) version of
the theorem. The proof presented above does not work in this case. One of the reasons is
that Ric does not converge to zero in C*, but we only get Ric(, n) = Kru(yi, hi)* — 0.
To overcome this, the authors use the distance function instead of the expression for Ric.
We will outline the modifications which are necessary to obtain the result.

Instead of the injectivity radius, Anderson-Cheeger work with the following quantity,
which allows the result to be phrased purely locally:

DEFINITION 3.2.22. We denote with sp/(z) := sup,{min(r,inf{inj(y) : y € B(x,r) <
M})} the largest s such that all points y € B(z, s) € M have inj(y) > s.

For closed Riemannian manifolds, this quantity sy, (x) = inj(M) for all x € M.

The proof of Theorem 3.2.18 in case k£ = 1 works again by contradiction, Steps 1 — 3
and Steps 5,6 are analogous to the k& > 2-case, only the fourth step has to be modified.
Without loss of generality we use K = 1.

We rescale the metric as above to h; = T%gi and get the same convergence properties

as in (3.2.20) with the Ricci condition replaced by
RiC(Bi,hi) = T?RiC(Bhgi) = —7“1-2 —0 (3.2.25)

By an analysis of the distance function, which replaces the previous Step 4, Anderson-
Cheeger obtain the convergence result. It is first shown that the Laplacian of an arbitrary
distance function has an upper as well as a lower bound depending on the bound on the
Ricci curvature. Then a sequence of certain smooth distance functions p; will be defined,
such that |A;p;| — 0. It will be shown that this sequence converges in W?” to p on M.
Finally the strong WP convergence of (M;,g;, z;) to a limit manifold (M, g, z) will be
deduced.

LEMMA 3.2.23. Let (M;, h;) be a sequence of Riemannian manifolds. Let~y; be a geodesic
on (M;,h;), s; >0, z; = v(—s;). Then the distance function

is smooth on By, (x;, $;/2).
If the metrics h; furthermore satisfy (3.2.20) and (3.2.25), with Ricy, n,y = K; — 0 then
|Aipi| = 0 as i — .

Proof. To show smoothness we note that dy,(z;, ) is smooth everywhere apart from z; and

the cut locus of z;, Cut(z;). Here it would suffice to have s; = 5.

So for s; = 22 we get a smooth function on By, (14, 5;/2).

27"7;
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3.2. Convergence of Riemannian manifolds in Holder- and Sobolev spaces

To show the second part of the claim, i.e. |A;p;| — 0, we apply (2.1.4) to p;. In order
for the estimate to hold, we need dn,(zi,p) < 1/2injs, n,)(2:) so that we do not cross

Cut(z;). So for s; = i% we get on By, (x;, 5;/2):

|Aipi| < (n—1)K;coth(K;(p; + si))
< (n— 1)r; coth(ri(p; + io/(41;))) — 0 (3.2.27)
as r; — 0 since coth(r;p; + ig/4) < c0. Here (3.2.25) is used. O
LEMMA 3.2.24. The functions p; are bounded in W?P? on B' € M;. Furthermore,

a subsequence of {p;} converges strongly in WP and weakly in WP to a W*P-distance
function p, uniformly on the compact sets.

Proof. On each ball B = B; € M, of bounded distance to x; and sufficiently small radius
there exist harmonic coordinates {u¥}. The Laplacian in these coordinates is

62
A; = i . 3.2.28
Zgz ouk oul ( )
By elliptic estimates (see, eg., [26, Theorem 9.11]), we obtain
loilw2r @y < C|AipillLrs) + lpil o () (3.2.29)

on B’ € B. By definition, see (3.2.26), p; is finite on B. Therefore, by (3.2.27), p; stays
bounded in W?2?(B'). Using now the compactness of the embedding of W*? in W' we
obtain that the bounded sequence has a subsequence, also denoted by {p;}, that converges
strongly in W' and weakly in W?2?. O

REMARK 3.2.25. Since in the proof of 3.2.24 we make use of (3.2.27), we implicitly
assume that the metrics satisfy (3.2.20) and (3.2.25), thus the curvature bound is needed.

Next we want to show that this convergence is actually strong:

LEMMA 3.2.26. The sequence {p;} has a subsequence that converges strongly in WP
on B'.

Proof. By applying (3.2.29) to p — p; we obtain

|p = pilw2rsy < C(|1Ai(p = pi) Loy + 0 = pil o)) (3.2.30)
For the last term we get |p — pi|Lr(5) — 0 by strong convergence in W7, 3.2.24. For the
other term we estimate,

18i(p — pi) ey = [Dip—Ap+ Ap— Dipi| o)
< (A = A)p|rosy + A0 romy + [Aipi| oy (3.2.31)

By (3.2.27), the last summand converges to zero. Furthermore,
(A =A)p=(g'—g"oa+...50 (3.2.32)
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in C%% so A;p — Apin LP.
It remains to show that

Ap=10 in LP. (3.2.33)
Since Ap = lim; A;p;, the result follows by (3.2.27), hence finally we showed that p; — p
strongly in W?2P. U

The lemmata 3.2.23, 3.2.24 and 3.2.26 are implicitly contained in the proof of [3, Propo-
sition 1.2].

PROPOSITION 3.2.27. [3, Proposition 1.2] Let (M;, g;, x;) be a sequence of manifolds
satisfying Ric(, g,) = K; — 0. Then a subsequence converges in the strong WhP-topology
to a limit WYP-manifold (M, g).

Sketch of Proof. The proof uses the properties of the distance functions p; as described

above. Out of certain distance functions p!, a system of equations will be constructed. The
apé 6pf;
6uf 6ué :

unknowns are g with coefficients To solve this system, the determinant of the

coefficients has to be nonzero.

By the arguments above, each p! is close in the C'-(resp. W%4-) topology to a limit
distance function on (M, g). Therefore, by choosing @ in (3.2.3) sufficiently close to 1, for
the limit distance function, ¢* is sufficiently close in the C%#-topology to d*.

Hence for B’ < B sufficiently small, the distance functions p! are close to the corre-
spondingly defined Euclidean distance function on B’, which gives nonsingularity of the
matrix on B’. So it is possible to solve the system for each i, hence the (g;) on (M;, g;) in
the harmonic coordinates {u¥} converge strongly in W to limit W1P-functions, so also

(90w — g in WP (3.2.34)
O
For the complete detailed proof, see [3, Proposition 1.2]

The isometry statement and the contradiction are derived as in the k£ > 2-case.

REMARK 3.2.28. Anderson [1]| proves the result locally, the assumption of M being
compact without boundary simplifies the proof.

In Remark 2.3. he states that if the L? norm for p > n/2 of Ric is bounded, then the
C%* norm of the metric is bounded (o < 2 — %) and thus we get convergence in C%?.

3.2.3. From harmonic radius bounds to convergence. We have shown in Theo-
rem 3.2.18 that under the appropriate conditions on the curvature, we get a uniform bound
on the C** (W**1P) harmonic radius of a manifold. Following [41] (see also [1] and [37,
Proposition 12]), we will sketch how to get from the existence of a uniform bound on the
harmonic radius to convergence of sequences of Riemannian manifolds.

REMARK 3.2.29. The general topological concept of precompactness is given for our
setup as follows: Let n,k € N, a € (0,1) and C a set of smooth n-dimensional compact
Riemannian manifolds. The set C is called precompact in the C**-topology, if any sequence
in C possesses a subsequence that converges in the C*“topology.
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PROPOSITION 3.2.30. [37, Proposition 12] Let (M;, g;) be a sequence of smooth complete
Riemannian manifolds of dimension n, that satisfy
(1) Rici, g = K, for all i, with K € R,
(2) For some r > 0, any sequence {y;} of points in M; possesses correspondingly
harmonic charts U; : Q;: B(0,r) € R™ where Q; is an open neighborhood of v;.
(3) Any such harmonic chart satisfies for Q@ > 1 and for any i, that

Q "o < (U7 ) g < Qb
(4) A subsequence of (U7 )*gi)u converges either in C**(B(0,7)) or in W*12(B(0, 1)),
respectively.

Then there exists a complete C**he (Wr2P ) manifold (M,g), with a C** (Wk+1p)
metric g and x € M such that for any domain D < M that contains x, it is possible to
find domains D; = M;, x; € M; and diffeomorphisms ®;: D — D; of class Ckt1e (Wh+2P)
with

(1) lim; o ;! (7;) = ,
(2) (¢Fg:) — g in C*, (o/ < ) (WFP) in any chart of the induced CF+He (Wh+2p)
atlas of D.

Before we will prove this result, we recall:

PROPOSITION 3.2.31. Let X be an arbitrary metric space. Then X obtains a finite -
net, i.e., a maximal set of base points X = {x1,...,x} such that B(z;,e) n B(xj,¢) = @.

See [10, p. 278].

REMARK 3.2.32. For (M, g) a smooth complete Riemannian manifold of dimension n
with
RiC( Mg) = K,
K € R, denote the set of base points as in Proposition 3.2.31 by X. Then each bounded
set D < M, diamD = d, that contains a point of X, can be covered by balls of radius e
around base points in Y = {xy,...,2;} © X (I < k). The number [ can be estimated by
using the Bishop-Gromov volume comparison, and depends on n, K, d, .

PROPOSITION 3.2.33. Let (M, g) be a in Remark 3.2.32. Then any bounded set D < M
can be embedded in RN were N is determined by . Furthermore, the image under this
embedding is a submanifold in RY.

Proof. Choose harmonic coordinates on each ball, H;: B(z;,e) — R" (i = 1,...1). Let
¥ : R™ — [0,00) be a smooth cut-off function with ¥ (t) = 1 on B(0,7/2), ¥(t) = 0 outside
B(0,r). Let for i = 1,...1, ¢; := (H;). These functions are smooth, with compact
support.

To embed D in a fixed space RY, where N = (n + 1)l, define ¥pp: M — RY as

Up(y) == (W (y)Hi(y), -, 0u(y) Hi(y), Y1 (y), ., i(y)).
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This map is smooth, any image is contained in a ball of fixed size, depending on n,[,r,
which is guaranteed by the use of the cut-off function .

We claim that when restricted to D, ¥ is a smooth embedding. Indeed, we first show
that W p is injective. Take y;,y2 € D with Up(y;) = Up(y2). Choose k € {1,...1} such that
Ur(y1) = Yr(y2) # 0. Therefore y; and ys lie in the support of ¢;. But then by definition
of 1y, also Hy(y1) = Hy(y2). Since Hy, is bijective, we get that y; = ys.

The function ¥p is also an immersion. To see this, choose p € D, X € T,,D. Then

(dVp),(X) = (X (1) Hi(p) + u(p)(dH1)p(X), - ., X () Hi(p)
+ Uu(p)(dH)p(X), X (1), - -, X ().

If now d¥p = 0, also X (¢) = 0 for all k, and therefore also ¥ (p)(dHy),(X) = 0 for all k.
Pick k such that ¢y (p) # 0. Then (dHj),(X) has to vanish. Since Hy, is a diffeomorphism,
it follows that X = 0, hence dV¥p is injective, thus ¥p is an immersion.

On D, ¥ is a homeomorphism, thus it is a smooth embedding.

To show that W (D) is actually a submanifold in R¥, fix now 1 < k < [, for simplicity
let k = 1. Then Vp(H, '(B(0,7/2)) can be represented as a graph over B(0,7/2) € R" by
Up(H,  (2)) = {(z, foFs, ... fiF}, fi,..., fi) : @ € B(0,r/2)}. The maps F; and f; are given
by F} = Hyo H,', and f; = ¢(|F;]), which are smooth.

O

Proof of Proposition 3.2.30. Choose a sequence of pointed manifolds (M;,g;, z;) that sat-
isfy (1) — (4) . By Proposition 3.2.33, we can set D = B(x;, R), therefore we get, for
arbitrary R > 0, for each ¢ an embedding

0. B(xg, R) — RN,

Note that for R’ > R, and for fixed 7, % is obtained from W% by the canonical embedding
of RN into RN,

By assumption (4), in any B(0,7/2) a subsequence of each component ((H! ) ')*g; is
bounded in C*°, hence converges in C*< (Wk+LP) "hence also the transition functions
H o (H!)™' =: H  converge in C**1" (Wk+2P) to H,,. We can perform the same
procedure for each of the m’s, for fixed R there are only finitely many possibilities. Thus
by the definition of W%, we obtain a subsequence of the images of the embedding W% that
converge in C**+12" (Wk+1P) as submanifolds of RV to a C*+le (WHF+2P) submanifold

Mp in RN,

We will now construct the point z. Let therefore x := lim; o, Who(H}) ™! = lim;_,q Wh(x;),
Mj, := Wi (B(z;, R)) € RNG),

Define a metric g; := ((¥%)™1)*g; on RNF),

Next we construct metrics that converge in Ckt1e (ZWF+2P) to a limiting metric g on
Mp. Therefore, observe that the projection II;: M% — Mp induces a CFFLe (Wk+2p)
diffeomorphism from M}, — Mg.
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Consider the metrics
(M)~ H*gs = () ) *((PR) ™) g = (M 0 ¥y) ™) g

If necessary passing to a subsequence, these metrics converge to a C*® (W**+1LP) metric
g on Mp by the convergence properties of U% and noting that II; — Id.

If R; — oo are increasing numbers, we can use a diagonal sequence argument and obtain
a CFrLe (TWF+2P) limit manifold M as an increasing union of Mg, with a CF (WH*1r)
metric g.

To obtain that the manifold is complete, observe that M is constructed to be an exhaus-
tion of closed and bounded domains that are compact thus, using Hopf-Rinow’s theorem,
we get the result.

Note that the diffeomorphisms ®; are given by (II; o W%,)~ 1. 0

REMARK 3.2.34. Kasue [41] does not obtain completeness of the limiting manifold,
since in his proof he does not work with D; < M;, but with M; itself, which are assumed
to be compact.

Using this proposition, we are in the position to prove the following (pre)compactness
theorem [37, 1, 3]:

THEOREM 3.2.35. [37, Main Theorem| Let n € N, K € R, i,v > 0. The space of
n—dimensinal Riemannian manifolds (M, g) with
inj(pr g () =1, Vol (arg) < v (3.2.35)
and
RiC(M,g) (.1‘) > K (3.2.36)

is precompact in the C%*-topology for any o € (0,1).
If, instead of (3.2.36) we have for k € N, and constants C(j) >0 (j =0,...,k)
|D’Ricg) ()] < C(), (3.2.37)
then it is precompact in the C**1*-topology for any o € (0, 1).

REMARK 3.2.36. By using [20, Proposition 15|, the bounds (3.2.35) are equivalent to
a diameter bound diamM < d.

Proof. Let (M;, g;) be a sequence of manifolds that satisfy (3.2.36) or (3.2.37) with A, 4, v, k, C(j)
independent of i.

We will show that under this bounds the manifolds satisfy the conditions of Proposi-
tion 3.2.30.

In both cases, condition (1) of Proposition 3.2.30 is satisfied. By Theorem 3.2.18, we obtain
harmonic coordinates on balls of size which is uniformly bounded below, which therefore
gives (2) and (3).
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In order to obtain (4), note that the sequences ((U; ')*g;)n are bounded in C%%, respec-
tively, in C**1*. We can therefore use the Arzela-Ascoli theorem to get a subsequence
that converges in C%®' respectively, in C*+1' (o/ < ).

By Remark 3.2.36, we obtain an upper bound d on the diameter of the manifolds M; which
is independent of i.

Now we are in the position to apply (3.2.30) with D = B(x,r), R > d. We can choose
D; = M; for i large, and therefore get diffeomorphisms ®;: M — M, with &g, — g in
C%' or Ck+1e’ regpectively. O

3.3. Alternative approach via harmonic norm

In [58] the author used a different concept to the harmonic radius to prove precom-
pactness results. Indeed, he works with the C*“-norm of a Riemannian manifold:

DEFINITION 3.3.1. The C*“norm of an n-dimensional Riemannian manifold (M, g)
on scale 7 > 0, |(M,g)| cr.a, is the infimum over the positive numbers @) that satisfy the
following properties (s,t > 0):

(1) There exist embeddings
¢ B(O,r) < R" - U, € M,

(2) | D¢t <9, and |Déy| < e? on B(0,7)

(3) every ball B(p,r/10e~?), p e M, lies in some U;,

(4) r*ed'grgloa <@  for 0<I| <K,

(5) the transition functions satisfy |¢;' © ¢¢|k+1.0 < (10 + )@ on the domain where
they are defined.

Analogously, the W*P norm of scale r of (M,g), |(M,g)|kp, is defined to be the
infimum over ) > 0 such that there are charts ¢; : B(0,r) € R" — U, € M with
(1) |Dg; '] < e9, and |dey| < €@ on B(0,7)
(2) every ball B(p,r/10e=%), p e M, lies in some Uy,
(3) ri=?loigly <@ for 0<|j| <k,
(4) ¢ : Uy — B(0,7) is harmonic.

In contrast to the harmonic radius, where r is maximised for fixed @), in the norm-
concept () is minimised for fixed r. As it is shown in [58, Proposition 2.1(iii), Proposi-
tion 4.4(iv)], the latter leads to better continuity properties. Whereas for the harmonic
radius we only get rg(Q;, k, a)(M;) — ry(Q, k,a)(M) for Q; | @ by Proposition 3.2.16,
the norm gives (both in the C** and in the W"? case) that if (M;, g;, ;) — (M,g, ) in
the pointed C*? (resp. W*P) topology, then for each bounded B < M there are bounded
sets B; < M, such that

1Bio8)lar = 1Bo@lr (Bl — | (B.8) (3.3.1)

If the manifold is closed, the norm is always finite for all . In case M = R", it vanishes
for all r,
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3.4. Historic overview

Gromov and Cheeger, [33, 13] were the first to prove a finiteness/convergence theorem
for spaces of Riemannian manifolds. Gromov’s proof, where details missing, was later on
worked out in all detail by Katsuda in [42].

Their result was later on improved independently by Greene-Wu [32] and Peters [56].
The authors show that in the space of compact connected n—dimensional Riemannian
manifolds with bounded sectional curvature an upper bound on the diameter and a lower
bound on the volume, any sequence has a subsequence that converges in the Lipschitz
topology to a limit manifold (M, g). The metric g is of C'1 regularity. Both proofs make
use of harmonic coordinates. Peters is able to show that in this space of manifolds, the
Hausdorff distance is equivalent to the Lipschitz distance. He uses the same techniques as
in [55] to obtain the convergence result.

The first result in which the pointwise bound on the curvature is weakened to an integral
bound is due to Gao. In [25] the author weakens the sectional curvature assumption to an
L"? bound on the curvature tensor. Additionally he assumes a pointwise Ricci bound, a
lower injectivity radius bound and a upper bound on the diameter. He is then able to show
that away from a finite number of points {m,...my}, a sequence of manifolds satisfying
these bounds converges to a manifold (M, g), where g is a C* metric on M\{my,...my}.

He furthermore shows the following: Let (M;,g;) be a sequence of closed connected
Riemannian manifolds that satisfy |Ricg,| < H, diam(M;) < D and Vol(M;) > V. If

] | Author | Bounds | Convergence
[3] Anderson, | Ric > —\, inj > i, | in C% to ge C%, (o/ < a).
Cheeger Vol <V
2] Anderson | |Ric] < A, inj = g, [ge Ch®
diam < D
[33, 42] | Gromov |K| < A% diam < d, | in Lipschitz topology to g € C?, dg € C*!
Vol =V,
[32] Greene, K| < A% diam < d, | ge Ch®
Wu Vol =V
[37] Hebey, see 3.2.18 ge Che
Herzlich
[41] Kasue K| < A%, diam < d. [inC'" toge O, 0<ad' <a<1
iIlj = ]0
[55, 56] | Peters |K|] < A%, diam < d, | in Lipschitz topology to g € C1*
Vol =V
[13] Cheeger |K|] < A?, diam < d, | Finiteness statement
Vol =V
[69, 70] | Yang (3.1.1) g e C° (M a C'-manifold)

TABLE 1. Important convergence results
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Chapter 3. Convergence of Riemannian manifolds

in addition there exists a small constant x depending on H, D and V such that for fixed
p>0, [ Blap) |R(g;)|"/?dVol 4, < K, then a subsequence converges to a Riemannian manifold

(M,g) with g a C** metric. In addition, there are diffeomorphisms ®; : M — M; such
that ®¥g; — g in Che.

In proving this result, Gao covers the manifolds by harmonic balls (i.e. balls on which
one has harmonic coordinates) of controllable size. Since, due to Jost-Karcher [40] har-
monic coordinates exist in case of a pointwise bound on the curvature and a lower injectivity
radius bound, Gao’s main technical achievement is that he manages to prove the existence
of harmonic coordinates under just an L™? bound on the full curvature, a pointwise Ricci
bound and a lower injectivity radius bound. This proof can be divided in two parts: first,
he shows that if a ball in M;, Bi(x,1) = M; with |Ricy, )| < H, injy, ) = 4 and
i} B(z.p) | R(g:)|"/2dVol g, — 0, then the ball can, by using geodesic coordinates {y¥}, be iden-
tified with the Euclidean ball and the metrics g; converge to the Euclidean metric § on
B(0,1) < R™ in L™? norm.

In the second step, Gao solves the Dirichlet problem AF; = 0 on B(0,1), F; = y; on
0B(0,1). Via LP estimates for elliptic equations, Gao shows that the metric tensor in the
harmonic coordinates Fj has C1® regularity. Details of how the harmonic coordinates are
constructed can be found in [25, § 3].

3.5. L? bounds on the curvature

In contrast to Anderson and Anderson-Cheeger, who used pointwise bounds on curva-
ture, we will now investigate manifolds that have just an integral bound on the curvature.
We will recall results that state under which bounds it is possible to get compactness and
convergence results.

3.5.1. Anderson. The proof of the result by Anderson [1], 3.2.35, remains true when
the pointwise bound on Ric is replaced by an L? bound |Ric| s, with the regularity of g
reduced to C%° for o < 2 — %. Indeed, in the proof of the C'*® harmonic radius bound [1,
Lemma 2.2], the pointwise bound on Ric is replaced by ||Ric|z», and Ct* by C%.

Analogously to the proof of the convergence result in Theorem 3.2.35, we obtain a se-
quence of manifolds (M;, h;, z;), where the h; are uniformly bounded in C%*, and therefore
a subsequence converges in C% to a C% limit (M, g, z) (o/ < a).

By the Sobolev embedding result, C%* 2 W?2? for a < 2 — % Hence we will show that
(M;, h;, x;) converge in W?P. As above, write the Ricci tensor in coordinates

hiyy

—2(Riciyr wy)m — A(hy) = "™ .
( lc(Muhz))kl ( ) axraxs

(3.5.1)

where A(h;) is quadratic in first derivatives of h;.

By assumption |Ric(y; ny)llze — 0. The metrics h; are uniformly bounded in W?2?, so
1 11

we can assume that h; — g in W2 (for p < n). Indeed, for p < n, 5 > 5 — o and

so by Sobolev embedding W2? < W' Therefore g has a well defined Laplacian Ag and
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3.5. LP? bounds on the curvature

Ap, = Ag in W2, For the p > n case, since 2 — n/p > 1, g is actually in C'¥ for
B8 =1—n/p and therefore h; — g in C*7,

Furthermore, A(h;) — A(g) in LP, since the first derivatives converge in L? and A is
quadratic in those.

2, 2 . .
Therefore we can conclude that h;"* TRk —, g’”s%, in L?, or, in other words,

) oz Oz
Aph; — Agg in LP.
Using elliptic estimates, see A.4, we can conclude

H(hz)rs - grs”Wva < CHAz((hz)rs - grs>HLP + CH(hz)rs - grs”LP
< C([Ai(hi)rs) = Algrs) e + [(A = Ai)grs| o + [[(hi)rs = grs]lLe) -
By the previous observations, this expression converges to zero for ¢ — co.

Finally we want to show that g e C'.

Indeed, the limit metric g satisfies —A(g) = ¢"* aii%’;ﬁs. In case p > n, observe that

2—n/p > 1so g is actually in C1¥ for 8 = 1 —n/p. Therefore the highest order coefficients
of A are in C!, and A(g) is in C%P. Using standard elliptic theory, we see that g € C%#,
and bootstrapping the argument leads to g € C®. If n/2 < p < n, define ¢ = (2/p—2/n) .
Since g € W27 it follows that g € W24 ~ 02~/ therefore A(g) € L. Hence also Ag € L4
and g € W24, Iterating this procedure, we get g € WP with Q > p + k(p — n/2). If k is
big enough, ¢ > n and we get g € CY#, 3 = 1 — n/Q. Therefore we carry out the p > n
procedure to get g € C* also in this case.

The remaining part of the proof works analogously to the proof for a pointwise Ricci
bound as in Theorem 3.2.18, i.e. one has to show that (M, g) is isomorphic to (R™,0) and
then to obtain a contradiction.

It is also possible to assume that the derivatives up to some order j of Ricci are bounded
in L?, p > n/2. By using that in his case |Ric(as, n,)|lwe» — 0, we can control the W*+2»
harmonic radius.

3.5.2. Yang. In [70], the author studies manifolds that satisfy (3.1.1) and is able to
improve the previously mentioned Gromov-Hausdorff convergence result to the following
theorem, [70, Theorem 3.1.]:

THEOREM 3.5.1. Let n > 3, p > n/2, 0 < n < 1. Then there exist constants
e(n), k(n,p,m) > 0, such that the following holds:

Let My, M, ... be a sequence of complete Riemannian manifolds, such that, for open
subsets 0; € M; D,p > 0,K > 0, they satisfy

Viz,p) = n"n twp” for all z € €,
diam(€;) < D, (35.2)
IR o2 (B pyy < e(m)n*™) for all € €, e
PP Ric| Loy < w(n,pm)*.
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If for e > 0, €., the e-neighborhood of );, satisfies VolQ; . > v for some v > 0, then
there exists a subsequence, also denoted by €); . and diffeomorphisms ®; : Q@ — Q, . such

that ®}g; — g uniformly. For any x € ), the ®; can be defined such that locally ®fg, — g
weakly in W?2P.

Yang shows that under the bounds (3.5.2) uniformly bounded harmonic coordinates
exist. Indeed, he first solves the local Ricci flow on B(z,2p) to obtain a family of smooth
metrics g(t), 0 <t < T on B(z, p) that satisfy (3.1.3).

Using [69, Theorem 9.1.] he obtains a value for 7, and also that |R(g(T))|L~ is
bounded. Therefore, it is possible to use the results by Jost-Karcher to obtain harmonic
coordinates h'(T),...,h"(T) on B(z,p) for g(T). Yang then shows that h'(¢),..., h"(¢)
remain harmonic coordinates for 0 < ¢ < 7', so in particular we get harmonic coordinates
for g(0) = g.

By using the volume estimates of Section 7 in [69], each manifold in the sequence can
be covered by a fixed number of harmonic balls. Furthermore, we have LP-control over
the curvature on the entire manifold and also a global Sobolev inequality (see Section 4 in
Yang’s paper). Hence applying [69, Theorem 12.1.] yields the result.

For the W?2? statement, define ®; to have a fixed set of coordinates on B(z, p) that are
harmonic for ®}g;.

3.5.3. Hiroshima. In [38] the author shows that it is possible to obtain a bound on
the WP harmonic radius under weaker assumptions than in [3]. Indeed, he shows that
if the pointwise bound on Ric is weakened to an LP bound on A, the lowest non-positive
Eigenvalue of Ric, Anderson and Cheeger’s result remains true without assuming a volume
bound.

Hiroshima uses in his proof the results by Yang [69], Gallot [24] and [20] to obtain
bounds on the volume of balls. Furthermore he obtains LP estimates on the Laplacian
of the distance function. He then proceeds as in [3] to get, by a contradiction argu-

ment, a bound on the harmonic radius. Hiroshima does not use the function sy (x) :=
sup, {min(r, inf e inj(y))}, but a similar L? version

S(M) 1= inj (M) sup (e, inj(M),
xeM
where k(z, R) = RF™" [, oy APdVol.

3.5.4. Petersen-Wei. The authors show in [59, Theorem 1.4.], that the class of closed
n—dimensional Riemannian manifolds with
Vol (M) = v > 0,
diam(M) < D < o
R|r < A < o0,
HRiC_HLp < €

(3.5.3)

is precompact in the C%* topology, @ < 2 — 5.
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The proof uses [57, Theorem 5.1, Theorem 5.4], which state that the class of manifolds
with

is precompact in the C%® topology, o < 2 — %.

Therefore it remains to show that the volume growth condition is implied by the bounds
Vol (M) = v, diam(M) < D and |Ric||» < e. Indeed, from the relative volume compari-
son (3.1.4), we obtain

Vi (r) - V(x,r)
Ve(D/2) = Vol (M)’
Since Vol (M) = V', we deduce that for r < D/2,

(3.5.4)

()

Viz,r) = CVK(T)W

3.5.5. MP_ (M) bound. If we further assume that the full curvature R is bounded
in LP for p > % we get the following:

PROPOSITION 3.5.2. Letn = 2, p > 5, v > 0, D < 00, A < o0. Then there erists
K = K(n,p, A, D) > 0 such that the class of closed Riemannian manifolds with

VolM = v (3.5.5a)

diam M < D (3.5.5b)

IR[|zoary < A (3.5.5¢)
1/(n—1)

sup sup (][ R (z,y)"* dug(y)> <K (3.5.5d)

zeM t>0 B(z,t)

is precompact in the C%* topology for a < 2 — %.

In order to prove this theorem, we need the following result due to Petersen [57, The-
orem. 5.4], see also [2, 69]:

PROPOSITION 3.5.3. Let v,rg, D, A € (0,00). The class of manifolds that satisfy, for
all v e M,

V(z,r) = vr" for r <o (3.5.6a)

diam M < D (3.5.6b)

IR[|ze(ary < A (3.5.6¢)
is precompact in the C%% topology for o < 2 — %.
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Chapter 3. Convergence of Riemannian manifolds

Proof of Proposition 3.5.2. Using Proposition 3.5.3, we need to show that we get the local
bound V(z,7) = vr™ from the bounds (3.5.5). Indeed, from (3.1.5) we have that, for all

x € M and all r < D, and for o < 1, we can find K = —(ff(lo)‘)D, such that
VolM _ V(x,r) Do s . Y1)
< exp | (n—1 / ][ (][ R _(x,y)" " dug(y dt y ds
VD) < Valr) [( /). { s Ty 00 diislt)
V@) ol — 1)K D]

Vo(r)
As in Proposition (3.1.7), observe that the integral on the right hand side is positive,

thus
D s 1/(n—-1)
f(n,D) = exp [(n — 1)/ {][ (][ R*! dug) dt} ds] > 1.
0 0 B(z,t)

From there, it follows that
1 Vol(M) - V(z,ro)

- < Vr < D.
f Vo(D) Vo(ro)
Therefore,
1 V(z,r)
V(x,r) = =Vol(M
) = gV,
1 T
= —Vol(M)(=)"
VIO ()"
which is the anticipated estimate V (x,r) = vr™. Applying the previously mentioned result,
the precompactness statement follows. [l
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APPENDIX A

A.1. Notions of curvature
In this section we will mainly follow [27, 65]. Let (M,g) be a Riemannian manifold

with connection V. The curvature tensor R € T;(M) is given by :

R(X,Y)Z = (VxVy = VyVx —Vxy)) Z VXY, ZeX(M). (A.1.1)
Here X(M) denotes the set of smooth vector fields on M.

Alternatively, one can define a (0,4) version of the curvature tensor, also denoted as
R e T{(M), by

RW,X,Y,Z) = g(RW, X)Z,Y). (A.1.2)
Locally, in coordinates (z',..., 2") we get
o 0 0 , 0
S I . Al
R <5l‘7’ " Oxd ) ork ; Rklj oxl’ ( 3)
and
Rijk:l = nglRZ;j' (A14)

The coefficients Rj;; can be expressed in terms of the Christoffel symbols, by

Rl = ol — 0T, + > Th, T = > T, T, (A.1.5)
PRrROPOSITION A.1.1. The curvature tensor has the following properties, for X, Y, Z, W €
(1) R(X,Y)Z =—-R(Y,X)Z
(2) (First Bianchi identity) R(X,Y)Z + R(Y,Z)X + +R(Z,X)Y =0
(3) RIXY,Z,W)=—-R(X,Y,W, Z)
(4) R(X,)Y,Z W)= R(Z,W,X,Y)

Given a point p € M, and a two-dimensional plane o < T,M, we define the sectional
curvature of o at p to be

R,(X,Y,X,Y)
K .: p h) ) 9
W0) = R X )g,¥,Y) — g, (X, V)
87
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Chapter A.

where X,Y € T,M are two vectors at p that span the plane o.

K,(0) depends only on the plane ¢ < T,M, and is independent of the vectors X,Y
chosen to span o.
It can be shown that K, determines R,. Thus, the knowledge of all the sectional curvatures
determines the curvature tensor.
A Riemannian manifold is said to have constant (or negative, positive) curvature, if its
sectional curvature is constant (negative, positive) at all points p € M.

We also define the Ricci curvature tensor as the symmetric (0,2) tensor field on M
given by Ric(X,Y) := tr [Z — R(Z,X)Y]|. Hence, for p € M, z,y € T,M, the Ricci
tensor is defined with respect to any orthonormal basis (ey,...e,) of T,M by

Ric,(z,y) Zg ei, R(e;, x)y). (A.1.7)

The scalar curvature s, is defined to be the trace of Ric, i.e.,
s(p) = Z Ric,(e;, €;). (A.1.8)
i=1

Furthermore, the mean curvature of a geodesic sphere at p with outer normal N is

given by
2 (Ve N, e
where {ej,...¢e, 1} is an orthonormal ba81s for the geodesic sphere.

A.2. Conformal transformations

DEFINITION A.2.1. Let u: M — R be a smooth function, g a Riemannian metric. The
metric g := e g is called conformal to g.

An operation which will simplify the calculations below, is the Kulkarni-Nomizu prod-
uct:

DEFINITION A.2.2. Let A, B be two symmetric (0, 2)-tensors. The Kulkarni-Nomizu
product of A and B, A® B, is defined as the (0,4) tensor

—AX,W)B(Y,Z) + A(Y,W)B(X, Z).
In the following proposition we will investigate how the curvature of g can be expressed

in terms of the original metric g. The quantities without a bar come from g, those with a
bar are generated by g.

PROPOSITION A.2.3. Let (M,g) be a Riemannian manifold, g = e 2*g. Then
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(1) the Christoffel symbols transform as
fijk = gil (—&j(u)gm - ﬁk(u)glj + 8l(u)gjk) + Fijk, (A.2.1)
(2) the (1,3) curvature as

_ 1
Ry =g” ((VQu + du® du — §|Vu|2) @g) - + R, (A.2.2)
ijp
(3) for the Ricci curvature we get
Ric = (n —2) <V2u + 2(Au)gdu ® du — |Vu|2g) + Ric, (A.2.3)
n JE—
(4) and for the scalar curvature
s=e"(2(n—1)Au—(n—1)(n—2)|Vuf’ +s). (A.2.4)
The proofs of these formulae are straightforward, but consist of rather lengthy calcula-
tions. Therefore we will omit them, details can be found in the lecture notes [65, Lecture
20].

For the calculations relevant to us, we will use a different conformal factor, namely
4

g =uvn-—2g.

PRrROPOSITION A.2.4. Let v be smooth, v > 0. Let g = vﬁg. For the scalar curvature

of g it holds that
n—1 +2

Av + Rv = Ry, (A.2.5)

—4
n—2

Proof. Since e=2* = vz it follows that

Inw.

u:_n—Q

Inserting this in (A.2.4), gives the result. O

A.3. Sobolev spaces

We provide the definitions in R" following [26], for a generalization to arbitrary mani-
folds, see, eg. [4].

A.3.1. L? Spaces. Let Q be a bounded domain in R™. For p > 1, the space LP(Q2)
denotes the Banach space that consists of equivalence classes of measurable functions on
), that are p-integrable, i.e., that satisfy

i<,

where two measurable functions are equivalent if they are equal a.e.
A norm for this space is provided by

1/p
1y = ( / |f|p) .
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In case there is no ambiguity possible, we will denote this norm by | f|,.
For p = oo, the space L*(Q2) is the Banach space of bounded functions on  with norm

| f =) = sup|f].
Q

An important inequality for LP spaces is the Hdlder inequality, i.e. for u € LP(Q),
veLq(Q),lép,q<oo,%+§:1,

Juv]y < Jullp[vlly- (A.3.1)

The number ¢ is called the conjugated index to p.

The space L} (€2) consists of measurable functions on 2 that are locally p-integrable.

A.3.2. Weak derivatives. For a locally integrable function f on €2, the o* weak
derivative g of f for a multi index « is given by

/ pgdz = (—1) / fD%dx  for all ¢ € C(Q). (A.3.2)
Q Q

Then we write g = D*f. The weak derivative is uniquely determined up to sets of measure
zero. If all weak derivatives up to order k of f exist, f is called k-times weakly differentiable.

A.3.3. Holder- and Sobolev Spaces.

DEFINITION A.3.1. For 2 € R"™ open, and k a nonnegative integer, the Hdélder spaces
Ck2(Q) are defined as the subspaces of C*(€) consisting of the functions whose k-th order
partial derivatives are Holder continuous with exponent « in €2, i.e., which satisfy

sup 2SO =D W _ (A.3.3)

T#Y€e) |"L‘ - y|a

The spaces C*(Q) equipped with the norms

(A.3.4)

[flera = S 1D fllco + sup |D*f(x) = D*f(y)|

|a\<k z,y |x_y|a

are Banach spaces.
Here || f]co(q) := max,eq | f(x)|.

DEFINITION A.3.2. For p > 1, and k > 0 an integer, the space W"?(Q) consists of all
the functions f, which are weakly p-integrable, such that D*f € LP(Q2) for all |a| < k.
A norm on this space can be defined by
1/p

oo = / S Do flrdz | (A.3.5)

la|<k

In case no ambiguity can arise, we will denote the norm by || f|x -
This space is again a Banach space.
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Taking the closure of CF(Q) (ie., for f € C*(Q) which have compact support) in
WHhP(Q), one arrives at the spaces WP(Q). In case of bounded €, those spaces do not
coincide (see [26, Chapter 7]).

The local version of the W*?(Q) spaces is given by T/Vlléf (), which consist of functions
that belong to W*P(Q') for Q' € Q.

This spaces can be continuously embedded into each other due to the following Sobolev
inequalities:

THEOREM A.3.3. Let Q < R", then, for k a nonnegative integer, 1 < p < oo,
Lrel=k) () for kp < n (A.3.6)
Wil ()

loc

Ccm™(Q) for0 <m < k —

A

In case S satisfies the interior cone condition (i.e., there ezists a fived cone K, such that
each x € § is the vertex of a cone which is congruent to K ), it furthermore holds that the
following embeddings are continuous

Lre/(n=kp) () for kp <n (A.3.7)
()
CE(Q) for0<m<k—12

where CF(SY) consists of m-times differentiable functions f with D*f € L*(Q), |a| < m.
Extending this result, it is also possible to show that the embeddings
L1(Q) for kp < n,q < £~ (A.3.8)

n—kp

WP (Q)

loc
Cm(Q)for0<m <k —2

p

are compact and that one can replace W,?(€2) by W*?(Q) for domains Q that satisfy the
interior cone condition.
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For proofs of these results in R", see [26, Theorem 7.10], where the authors show the
continuity of the embedding for £ = 1, and by iteratively applying the result to higher
order derivatives one gets the general case. The compactness statement is proven in The-
orem 7.22. of [26].

A proof of the Sobolev embedding theorem for arbitrary manifolds can be found in [4,
Theorem 2.20].

Sobolev spaces can also be embedded into certain Holder spaces by using the following
result, known as Morrey’s inequality:

THEOREM A.3.4. Forn <p < oo let B(z,r) € R"™, and let y € B(z,r). Then
lu(z) — u(y)] < Cr' 7| Dullpopwary — Yue CHR™).

Using this result we obtain the following embedding theorem, which is here stated for
k =1, but can be generalized for bigger k by a bootstrapping argument.

THEOREM A.3.5. There ezists a constant C' = C(n,p) such that
1y Yue WHP(R™M).

[ul oz < Clul
The general result states that if 2==2 = %, with a € (0,1) it holds that

WHhP(R™) < C™*(R"). (A.3.9)

For arbitrary tensor fields, we also introduce the following notation:

Let e be an arbitrary smooth Riemannian metric on M. We denote by dpue the Rie-
mannian measure defined by the metric e.

Given a tensor field, T, on M, and p € [1,0], we define the LP-norm of T on a set
U © M with respect to e to be

1/p
T = ( [ due> ,

with the usual extension if p = c0. We will also use LP norms of tensor fields with respect
to different continuous metrics, such as g, in which case we denote the norm by |-||zr(vg),
for example. A tensor field T is said to lie in L} (M) if | T|zr(cy < o0 for each compact set

C < M. (The space Lj (M) is independent of the metric in our class used to define the
LP norms.) Similarly, for £ > 0 an integer and p € [1, o], we introduce the Sobolev norm

1Ty = > / VTP e
| <k

where V, denotes the Levi-Civita connection of the background metric e. Again, a tensor
field T lies in the local Sobolev space WP (M) if I'T|[wp(cy < oo for all compact C'< M.

loc
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A.3.4. Weighted Sobolev spaces. Weighted Sobolev spaces are applied when study-
ing the asymptotic behavior of Riemannian manifolds. Thus they are used in the investi-
gation of mass in general relativity.

We follow [46, Section 9], and [6].

DEFINITION A.3.6. Let (M, g) be an asymptotically flat manifold, with asymptotic
coordinates {z'} on the end N;. Let p = |z| on Ny, and extend it to a smooth positive
function on the whole manifold M.

For ¢ > 1, 5 € R the weighted Lebesgque space, L%(M), is defined to be the set of locally
integrable functions f for which the norm

Flas = ( / |p‘5f|qp‘”dVg)

is finite. Analogously, for k a nonnegative integer, the weighted Sobolev space Wg (M) is
the set of locally integrable functions f for which [V'f|e L% (M), 0 <i < k. A norm on
this space is given by

1 flkgs = D 1D fllgs—i-

Furthermore, the weighted C* space, C’g (M), consists of C*-functions f for which the
norm

1Flley = 2 sup p~" | DS,

Finally, the weighted Hélder space, Cg’o‘ (0 < a < 1), is the set of f e C§(M) with finite
norms

penralVEf(@) — DEf(y)]
|z — y|® '

| flgte = > Ifles +S;lyp(min(p(x),p(y)))

lo| <k

Note that 8 determines the order of growth, f € Cg’a or in W; ' implies that f = O(p?).
For weighted spaces, the Sobolev embedding also holds. Furthermore, also global elliptic
regularity results remain true, [6]:

LEMMA A3.7. For ¢ > 1, l — k — «a > n/q and arbitrary ¢ > 0, the embeddings
Cé;’i(M) - Wé’q(M) c Clg’o‘(M) are continuous.

THEOREM A.3.8. Let 7 > 0, ¢ > 1. For an asymptotically flat Riemannian manifold
(M, g) with g;; — 6;; € C-*(M) the following statements hold:

(1) For f e W39(M),
[fl20.8 < CUASlogs-2+ [logs) -
(2) The operator A : Wg’q(M) — ngz(M) is an isomorphism iff 2 —n < § < 0.
(3) In case f e C§(M), and Af € Cgf‘Q(M), then f is actually in CE’“(M) with
1fleze < € (1ASlne, + 1 fleg) -
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(4) For2—n<p<0,d< -2, he Cg’o‘(M), it holds that, if the operator
A+ h: Cé’a(]\/[) — Cng(M) is injective, then it is an isomorphism.

For a proof of this theorem, see [6, 11, 48, 50].

A.4. Elliptic regularity

Let Q < R™ be bounded, ' cc Q compact. Let L = a”0;0; be a strictly elliptic
second-order differential operator, with smooth coefficients. Let v € C*(€2). Then the
following holds:

THEOREM A.4.1 (Schauder estimates). If the coefficients a” satisfy |[a”||cra) < @,
there exists a constant C' = C(k,a,n,Q,) such that

\\u\\ck+2,a(9/) < C(”LuHck,a(Q) + ||u||co(Q)) (A41)

The proof for k = 0 can be found in [26, Theorem 6.2], the inductive step is carried
out in [57, Theorem A. 1].

Furthermore, we get the following LP-version:

THEOREM A.4.2 (LP-estimates). For coefficients a” with |a"|lyrpqy < Q, V > 0 he
following holds: if Vol (Q) <V, andp > n fork =1 orp > n/2 for k = 2 then there exists
a constant C = C'(k,p,n,Q,Y) such that
lulwrsrogry < C (| Lulwr-ro@) + [ull o)) - (A4.2)
If Q = B(0, R) is a Euclidean ball with uw = 0 on 0B(0, R), then there is a C = C(n,p, Q, R)
such that
lulw2a0,r) < C(ILu]Lr(Bo,R)) + 4| Lr(B0,RY)- (A.4.3)
The proof can also be found in [57, Appendix|, who uses the result [26, Theorem 9.11, 9.13].
Another result which will be used is the following:

THEOREM A.4.3. For uw e W*?(M) that solves Lu = f for L = a”0;0;, a” € C"* and
feWhP(M) (or feCY). Then ue WH2P(M) (or C*+2P),

See [26, Theorem 9.19].

A.5. The Arzela-Ascoli theorem

An important tool in the study of convergence and compactness results is the Arzela-
Ascoli theorem. We will briefly recall the result and its proof.

DEFINITION A.5.1. Let X be a compact metric space, and C°(X) be the space of
continuous functions X — R. A sequence of functions {f,} € C%(X) is called bounded if
there exists a positive constant K < oo, such that for all n € N and for all x € X it holds
that |f,(z)| < K.
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One says that a function f < C°(X) is equicontinuous if, for every € > 0 there exists a
d = d(e) > 0 such that for all z,y e X

d(z,y) <0 =|f(x) — fly)| <e.

With these definitions in mind we can state the following theorem.

THEOREM A.5.2. If a sequence {f,} < C°(X) is bounded and equicontinuous, then it
has a uniformly converging subsequence.

Proof. By compactness of X, it follows that X is separable. Indeed, for z € X, n € N, the
union | J, By, (x) covers X, hence a finite subcollection suffices to cover X. Let S, be an
1/n-dense set in X, i.e. each x € X is within distance of 1/n of one of the points in S,,.
Then the set S = [, S, is a countable dense subset of X, hence X is separable.

In the next step we construct a subsequence { f,, } of the original sequence that converges
pointwise on the set S formed in the above step: Since S is countable, we can write it as
S = {z1,x9,...}. The numerical sequence { f,(z1)}X_; is, by the assumption of boundedness
of the whole sequence {f,}, bounded, hence using the Bolzano-Weierstrass theorem gives a
converging subsequence { f,1(21)}>_;. Now we can insert z5 in the f,;s and get a bounded
sequence { f,1(22)}%_;, and so again we get a converging subsequence { f,2(x2)}*_; (which
also converges at x1, since it is a subsequence of {f,1}). We can proceed further by the
same arguments and if we pick the diagonal sequence { f,,,,}’°_, we obtain a subsequence of
the original sequence {f,} that converges at each point of S.

As a final step we want to show that {f,,} = {g»} is uniformly continuous:

Let therefore € > 0, and choose > 0 such that by equicontinuity we get

d(z,y) <= |gn(z) — guly)| < /3.

for all z,y € X, ne N. Fix M > 1/§, such that Sy, < S is §-dense in X.

Since {g,} converges at each point of Sy, we can find a N > 0 such that for m,n > N,
lgn(s) — gm(s)| < /3 for some s € Sy.

For x € X arbitrary, it holds that d(z,s) < ¢ for some s € Sy;. Thus for m,n >
max (M, N) it holds

19n(2) = g (2)] < |9n(2) = gn($) + gn(s) = gm () + |gm(s) —gm ()| < €/3+€/3+€/3 =&

So {g»} is uniformly Cauchy, hence uniformly convergent. O

A.6. Convergence of metric spaces

In order to study convergence properties of metric spaces, the first thing to do is to
introduce a notion of distance between them. There are various possibilities to do so, e.g.
Lipschitz distance, or Gromov-Hausdorff distance, which we will briefly describe. Alterna-
tively one can also study how metrics of a sequence of Riemannian manifolds converge. It
turns out that in some cases both notions are actually the same (see, e.g., [56]).

In this section we mainly follow the definitions in [10].
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A.6.1. Lipschitz distance.

DEFINITION A.6.1. Let X,Y be two metric spaces, f: X — Y an arbitrary map. The
distortion of f is defined by

disf := sup |dy(f(z), f(y)) — dx(z,y)]

z,yeX

where dy,dy denote the distances in X and Y respectively.
A sequence { X, } of metric spaces uniformly converges to a metric space X if there are
homeomorphisms f,: X,, — X such that disf,, — 0 (n — ).

In case the map f is Lipschitz, we define as follows:

DEFINITION A.6.2. Let X,Y be metric spaces, f: X — Y a Lipschitz map. The

dilation of f is defined by
dilf = sup dy (f(2), f(y))
z,yeX dX (CC, y)

A homeomorphism is called bi-Lipschitz, if both f and f~! are Lipschitz. The Lipschitz
distance between X and Y is now defined as

dp(X,Y) = fg(nfylog(max(dﬂf, dilf 1)),
where the infimum is taken over all bi-Lipschitz maps from X to Y.

A sequence {X,,} of metric spaces converges in the Lipschitz distance to a metric space
X, if dp(X,, X) — 0.

Furthermore, if there are no bi-Lipschitz homeomorphisms between X and Y, dy (X, Y) =
0.

Two metric spaces are close in the Lipschitz distance, if they are relatively close to each

other, i.e., if W is close to 1.

THEOREM A.6.3. dj is a metric on the space of isometry classes of compact metric
spaces.
See [10, 7.2.4.].

REMARK A.6.4. The assumption of compactness is necessary for showing that if the
Lipschitz distance between X and Y vanishes, they are actually isometric and vice versa.
Moreover one would get a semi-metric when dropping the compactness assumption.

A.6.2. Hausdorff- and Gromov-Hausdorff convergence. Let X,Y < M subsets
of a metric space (M,dy;). The Hausdorff distance between X and Y is given by the
following expression:

dp(X,Y)=inf{e >0: X Y, and Y < X.},
where X, = {z€ M : dy(z, X) < €}.
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The Hausdorff distance is therefore small, if every point in X is close to a point in Y,
and vice versa. The Hausdorff distance defines a metric on the closed and bounded subsets
of M. This collection is compact, whenever M is compact.

In the 1980ies Gromov used this concept to define a distance between metric spaces.

DEFINITION A.6.5. The Gromov-Hausdorff distance between two metric spaces (M, dyy)
and (N, dy) is defined as
deu (M, N) = inf{dy(M', N")} (A.6.1)
where M’ N’ are subspaces of a metric space (Z,dz) and which are isometric to M, N.

A sequence {M;, dy,} of compact metric spaces converges to a compact metric space
(M, dys) in the Gromov-Hausdorff sense, if dgy(M;, M) — 0 as i — c0.

It follows that the Gromov-Hausdorff distance between isometric spaces is zero. It can

be shown that dgpy is a metric on the space of isometry classes of compact metric spaces
[10, Theorem 7.3.30].

If M and N are non-compact, then the pointed Gromov-Hausdorff distance is used,
deu((M,m), (N,n)) = inf{dy(M', N') + dz(m/,n")},

where M’  N' are again isometric to M, N in Z and m’,n’ are the images of m,n in Z
under this isometry. Thus if the distance between two pointed spaces is close, they are
close in Hausdorff distance and, in addition, the basepoints are close as well.

DEFINITION A.6.6. Let M, N be metric spaces, and ¢ > 0. An e-isometry is a (not
necessarily continuous) map f: M — N such that the distortion of f,

disf = sup {[dn(f(mu), f(m2)) — dy(mi,ma)[} <e.

ml,mgeM

Furthermore, f(M) has to be an ¢ net in N, ie., every n € N has dy(n, f(m)) < ¢ for
some f(m), me M.

It can be shown, [10, Cor. 7.3.28],that if M, N are e-close in the Gromov-Hausdorff
distance, that there exists a 2¢ isometry from M to N and conversely, if there exists an
e-isometry between M and N, the metric spaces are 2¢ close in the Gromov-Hausdorft
distance.

Therefore, a sequence {M;}2, of metric spaces converges to a metric space M in the
Gromov-Hausdorff topology, if and only if there are ¢; — 0 and maps f;: M; — M that
are g;-isometries.

Another criterion for Gromov-Hausdorff convergence is provided by the following result
[10, Proposition 7.4.12]:

PROPOSITION A.6.7. For compact metric spaces M, {M;}.,, we say that M; converge
to M, M; — M, in Gromov-Hausdorff if and only if for every € > 0 there exists a finite
(i.e. consisting of finitely many points) e-net S in M and for each i an e-net S; in M;,
such that S; — S in Gromov-Hausdorff. For large i, the nets S; can be chosen to have the
same cardinality as S.
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