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Preface

This thesis comprises of my research in the field of mathematical population genetics
that I have carried out during my doctoral studies at the University of Vienna in the
past four years. The manuscript is structured into three parts, each corresponding to a
published or (soon to be) submitted paper.

All three chapters of the following work are connected by the overriding question of my
research, i.e., how do populations adapt in the face of changing environmental conditi-
ons? And more specifically, how does a population’s ability to respond to environmental
change and the characteristics of the adaptive process depend on the general forces of
evolution, i.e., selection, mutation and recombination, and ecological factors, such as the
mode and tempo of environmental change?

In the first part, Rapid evolution of quantitative traits: theoretical perspectives, we re-
view theoretical models of rapid evolution in quantitative traits. Special focus is put on
the implications and limits of maximal sustainable rates of genetically-based change
and their adequacy for assessing the risk of population extinction in changing environ-
ments.

In the second part, Fisher’s geometric model with a moving optimum, we study adaptati-
on of multiple pleiotropically related traits to a moving selective optimum, which allows
us to capture both the dynamic nature of selection pressures and the complexity and
high-dimensionality of organismic phenotypes. This marks an important step towards
more realistic models of adaptation, as it integrates two modelling traditions which have
had little overlap so far: on the one hand, the multivariate moving-optimum model as
used by Jones et al. (2004, 2012), and on the other hand, Fisher’s classical geometric
model of adaptation (Fisher 1930; Orr 1998, 2000).

Finally, in the third part, Catch me if you can: On the importance of standing genetic
variation for the genetics of adaptation in changing environments, we aim to contribute
to overcoming what has been described as “the most obvious theoretical limitation when
describing the adaptive process” (Orr 2005b), that is the description of the ecological
and genetic factors that determine the genetic basis of adaptation from standing genetic
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viii PREFACE

variation. Specifically, we consider the evolution of a quantitative trait to a gradually
changing environment. By means of analytical approximations, we derive the distribu-
tion of standing adaptive substitutions, that is, the distribution of the phenotypic effects
of those alleles that become fixed during adaptation and which originated from standing
genetic variation.

A more detailed motivation and discussion of these scenarios, with respect to implicati-
ons for current and future research, their necessary simplifications and limitations, and
their interrelatedness is given in the subsequent introduction.

Finally, in accordance with the formal criteria for cumulative dissertations, each paper is
followed by a separate paragraph that contains information about the status of submis-
sion (as of November 2014) and my personal contribution. For the ease of readability,
each paper has its own bibliography. An overall bibliography for all chapters including
the preamble and the synopsis is given at the end of this thesis.
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Preamble

“As many more individuals of each species are born than can possibly
survive; and as, consequently, there is a frequently recurring struggle for
existence, it follows that any being, if it vary however slightly in any manner
profitable to itself, under the complex and sometimes varying conditions of
life, will have a better chance of surviving, and thus be naturally selected.
From the strong principle of inheritance, any selected variety will tend to
propagate its new and modified form."

— Charles Darwin, The Origin of Species

Adaptation lies at the heart of Darwinian evolution. To avoid extinction, natural po-
pulations must adapt to frequent changes in their environment. This issue is particular
pressing in the context of global climate change, which subjects large numbers of popu-
lations to shifts in temperature, aridity, seasonal patterns etc. While this human-induced
global environmental change has driven many populations close to extinction, others ha-
ve managed to respond to the altered conditions. Since 1975, 12% of the local Mexican
Sceloporus lizard populations have gone extinct, as the heliothermal reptile was not able
to adapt its thermal physiology to the rising temperatures, with physiological models of
extinction risk predicting that 39% of these populations will be lost by 2080 (Sinervo
et al. 2010). On the contrary, Darwin’s finches that faced an extreme drought in 2004
causing 85% of the population on Daphne island to die, were able to adapt their beaks
to other food resources and, thus, managed to survive (Grant and Grant 2006). As the
number of empirical studies of adaptation to changing environments continue to pile up,
theory – until recently – has lacked behind considerably. Consequently, the answers to
seemingly simple questions are unknown even for simple scenarios. This includes ques-
tions such as: from the set of mutations that emerge in a population, which are the ones
that will get fixed, and what is their effect on phenotype or fitness? Can we predict which
populations have the potential to adapt to rapid climate change, and how and when do
genetic and ecological factors constrain or facilitate adaptation? What is the relative ro-
le of standing genetic variation (i.e., alleles that are already present in the population)
versus new mutations during short- and medium-term adaptation, and how do the cha-
racteristics of adaptation differ between these? The main question of this thesis is, thus,
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4 PREAMBLE

put very generally: How do populations adapt to changing environments? Special focus
is, furthermore, laid on the interplay of the evolutionary forces such as selection, muta-
tion and recombination, and ecological factors – i.e., mode and tempo of environmental
change – and their joint effects for the genetics of adaptation.

In recent years several studies have tried to provide a formal framework for the descrip-
tion of the adaptive process. Many of these are built on two complementary modelling
approaches. The first approach focuses on the statistical properties of adaptive substituti-
ons (i.e., beneficial mutations that thrive to fixation) as opposed to the dynamics of geno-
types or allele frequencies. Many models are either based on Fisher’s geometric model
(Fisher 1930; Orr 1998, 2000; Martin and Lenormand 2006a) or so-called adaptive-walk
or mutational landscape models (Gillespie 1984; Kauffman and Levin 1987; Orr 2002),
and they usually consider the simplest possible scenario of environmental change, i.e., a
population evolving towards a constant phenotypic optimum after a sudden shift in the
environment. Remarkably, despite its simplicity and the lack of a clear genetic context
(Chevin et al. 2010b), Fisher’s geometric model, more than 80 years after its proposal,
has yielded several robust predictions supported by growing empirical evidence (Martin
and Lenormand 2006a,b, 2008). An important aspect of these models is the assumption
that selection is strong compared to mutation so that the population can be considered
monomorphic all the time and that all observed evolutionary change is the result of new
mutations.

In stark contrast, quantitative-genetic models consider an inexhaustible pool of pree-
xisting standing genetic variants as the sole source for adaptation. Evolving traits are
assumed to have a polygenic basis where many loci contribute small individual effects,
such that the distribution of trait values follows approximately a Gaussian distribution
(Bulmer 1980; Barton and Turelli 1991; Kirkpatrick et al. 2002). For historical reasons,
however – quantitative-genetic models were intended for and have ever since success-
fully been used to design plant and animal breeding schemes (Wricke and Weber 1986;
Tobin et al. 2006; Hallauer et al. 2010) –, the focus of these models was on predicting
short-term changes in the population mean phenotype z̄ instead of following allele fre-
quency changes at individual loci. Furthermore, the change in the population mean phe-
notype ∆z̄ after one generation of selection can easily be projected by the key theoretical
tool for studying phenotypic evolution, that is, the Lande equation (Lande 1976a)

∆z̄ = σ2
gβ, (1.1)
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where σ2
g is the additive genetic variance and β denotes the selection gradient, i.e. the re-

gression of fitness on phenotype. Repeated application of the Lande equation, however,
presupposes that the distributions of genotypes and phenotypes remain Gaussian and that
σ2

g remains constant. While this might be approximately true for short-term evolution,
over longer timescales – in particular, when studying adaptation to prolonged environ-
mental change – σ2

g is itself subject to evolutionary change and strongly depends on the
input of new mutations.

Thus, to foster our understanding on how populations adapt to environmental conditions
we need to construct a theory of adaptive evolution “that speaks in the same terms as the
data; that is in terms of individual mutations that have individual effects” (Orr 2005a);
these data critically involve new mutations and standing genetic variation. Thus, bridging
the gap between adaptive-walk and quantitative-genetic models – the two extremes of a
continuum of adaptive approaches – is a necessary and important step towards a general
theory of adaptation.

Another aspect that has been largely ignored until recently, is that adaptation ultimate-
ly occurs as an evolutionary response to environmental change – a process that is itself
inherently dynamic. While the vast majority of studies have focused on the simplest
possible scenario, i.e., a single sudden shift in the environment, already Maynard Smith
(1976) pointed out the necessity to include gradual environmental change into studies of
adaptive evolution. Collins (2011a) recently emphasized that “using [models] of instan-
taneous environmental change to understand adaptive evolutionary responses to gradual
change will not only underestimate the amount of adaptation, but also predict the wrong
genotypic and phenotypic changes.”

This discrepancy becomes particularly acute when put into the context of conservation
biology. While the past two decades have made it clear that evolutionary change can
be fast enough to be observed in present-day populations (Hendry and Kinnison 1999;
Collins et al. 2007; Lindsey et al. 2013), one of the key questions is, whether or not it
is fast enough for populations to keep track with the altering environmental conditions.
Thus, identifying those populations that are threatened by extinction and require targeted
conservation programs is one of the main challenges in current evolutionary biology – a
challenge that would benefit a lot from a more realistic and general theory of adaptati-
on.

The aim of this thesis is thus to study the combined effects of gradual environmental
change, standing genetic variation and organismic complexity on the genetic basis of
phenotypic adaptation to provide a first step towards a generalized model of adaptation
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that reflects both the dynamic nature of selection and the complexity of real organisms,
and which allows to make testable predictions for both short- and long-term evoluti-
on.

Rapid evolution of quantitative traits: theoretical perspectives.

In the first part (published; see Kopp and Matuszewski 2014), we review theoretical mo-
dels addressing the potential for adaptation to a changing climate. In particular, we focus
on quantitative traits, that is, traits with continuous variation that are determined by a
large number of loci with appreciable standing genetic variation, and whose optimum
changes gradually over time. Specific emphasis is laid on “critical rates of environmen-
tal change” or “maximal sustainable rates of evolution”, a concept introduced by Lynch
and Lande (1993) and Bürger and Lynch (1995) to calculate rates of environmental (and
evolutionary) change beyond which long-term population persistence is not possible.
While this concept has subsequently been extended to include multivariate selection
(Gomulkiewicz and Houle 2009), spatial variation (Duputié et al. 2012) and phenotypic
plasticity (Chevin et al. 2010b), one key result remains valid: Maximal sustainable rates
of evolutionary change are on the order of 0.1 haldanes, which is equivalent to a per-
generation change of 0.1 phenotypic standard deviations in the mean population pheno-
type. Several meta-analyses of contemporary evolution show, however, that evolutionary
rates above 0.1 haldanes are not uncommon (Hendry and Kinnison 1999; Gingerich
2009), even though the majority of rates are lower. This observation has led Barrett and
Hendry (2012) to criticize theory-derived critical rates, arguing that these rely on many
unrealistic assumptions, such as the “perpetual persistence under constant environmental
change”, and that “critical rates for natural populations over time frames of conservation
interest could be very different.”

Building on the model of Bürger and Lynch (1995), we attempt to evaluate these claims
by calculating critical rates of environmental and phenotypic change that allow the po-
pulation to remain above a critical size (e.g., 50 individuals) over a time frame of 50
generations. These calculations are, however, based on a deterministic approximation,
which neglects various sources of stochasticity. To quantify how rates of phenotypic
change are influenced by non-selective factors, such as genetic drift or environmental
variance, the deterministic model is further complemented by individual-based simu-
lations. Due to these modifications, we can no longer consider a dynamic equilibrium
between environmental and evolutionary change, so that critical rates of environmental
change and maximal sustainable rates of evolutionary change are no longer equivalent.
Indeed, we find that critical rates of environmental change over modest time frames are
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substantially higher than those predicted by Bürger and Lynch (1995). In constrast, ma-
ximal sustainable rates of evolutionary change – the only rates that can be measured in
empirical studies – remain largely unaltered, in particular, if the population is allowed
only a modest decline. Indeed, the observed differences between maximal evolutionary
rates over short and long timescales rarely exceed 30%. Such differences appear minor in
relation to the uncertainty in estimates of evolutionary rates that is introduced by stocha-
stic fluctuations. In particular, we show that, in small populations genetic drift alone can
induce generation-to-generation rates of change of up to 0.15 haldanes (even under con-
stant environmental conditions), thus, largely surpassing the 0.1 haldanes predicted by
Bürger and Lynch (1995). Overall, these results cast serious doubt on our ability to iden-
tify populations facing extinction based on short-term measures of micro-evolutionary
change.

Fisher’s geometric model with a moving optimum.

In the second part (published; see Matuszewski et al. 2014a), we now shift focus towards
what has been phrased “the fundamental event during adaptation” (Kopp and Hermis-
son 2009b), that is the substitution of a resident allele (i.e., gene variant) by a beneficial
mutation. An important goal of current research – both empirical and theoretical – is to
learn more about the statistical properties of these substitutions (Orr 2005b). In particu-
lar, much effort is being devoted to understanding the distribution of the effects of new
mutations (with respect to phenotype and fitness; e.g., Martin and Lenormand 2006b;
Eyre-Walker and Keightley 2007; Martin and Lenormand 2008) and the distribution of
the subset of those mutations that go to fixation and contribute to adaptation (Gerrish
and Lenski 1998; Orr 1998, 2002; Kopp and Hermisson 2009b; Mackay et al. 2009).
The main tool for studying the “distribution of adaptive substitutions” has been Fisher’s
geometric model (FGM; Fisher 1930), which addresses the situation in which a populati-
on is confronted with constant stabilizing selection after a sudden environmental change.
Under this scenario, FGM has yielded three main predictions, which are supported by
growing empirical evidence: First, the distribution of fitness effects of new mutations is
well approximated by a (displaced) negative gamma distribution (Martin and Lenormand
2006a; for empirical support see Hietpas et al. 2013). Second, the distribution of adapti-
ve substitutions is approximately exponential, meaning that most fixed mutations are of
small and only a few are of large effect (Orr 1998; for empirical support see Rockman
2012, but see Bell 2009). Finally, fixed mutational effects become on average smaller
as organismic complexity (i.e., the number of phenotypic traits) increases (Orr 2000; for
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empirical support see Cooper et al. 2007) – a phenomenon that has been termed “the cost
of complexity” (Orr 2000; Welch and Waxman 2003b; Wagner and Zhang 2011).

In contrast to the classical Fisher model, a number of recent studies has focused on
the so-called moving-optimum model, which describes the evolution of a quantitative
trait that is under stabilizing selection towards an optimal phenotype that changes over
time (Lynch and Lande 1993; Bürger and Lynch 1995; Waxman and Peck 1999; Bür-
ger and Gimelfarb 2002; Nunney 2003; Bello and Waxman 2006). These studies take
into account that environmental change in nature might often be gradual than sudden
(Thompson 2005; Parmesan 2006; Perron et al. 2008) and meet the long been recogni-
zed necessity to include gradual environmental change into studies of adaptive evolu-
tion (Maynard Smith 1976). Characteristics of individual substitutions in the moving-
optimum model have been investigated by (Collins et al. 2007; Kopp and Hermisson
2007, 2009a,b). These studies showed that selection for a moving optimum produces
patterns that are fundamentally different from those predicted under constant selection
after a single, abrupt change in the environment. In particular, the distribution of adapti-
ve substitutions is unimodal (with an intermediate mode) rather than exponential, that is,
most substitutions have an intermediate phenotypic effect, while small- and large substi-
tutions are rare. Furthermore, this distribution is entirely determined by a scaled rate of
evolutionary change, which combines both ecological and genetic factors.

Previous studies of the genetic basis of adaptation in the moving-optimum model, ho-
wever, only considered the evolution of a single trait (Collins et al. 2007; Kopp and
Hermisson 2007, 2009a,b) . While this provided a minimal model for analyzing adapta-
tion in gradually changing environments, selection in nature does not act on single traits,
but on entire organisms. Living organisms possess numerous traits, each of which de-
pend on a large number of genes. These genes are physically linked on chromosomes
(linkage), they interact with each other in non-linear ways (epistasis), and each gene ty-
pically affects several traits at once (pleiotropy). Hence, adaptation takes place in very
complex and high-dimensional genotype and phenotype spaces. An obvious question is,
hence, how the single-trait results are affected if adaptation to gradually changing en-
vironments is constrained by pleiotropic correlations among traits under selection. To
answer this question, we add a key feature of FGM to the moving-optimum model, that
is the effect of phenotypic complexity (or pleiotropy; which is equivalent in the context
of FGM). By means of analytical approximations and individual-based simulations we
study how the expected distribution of adaptive steps is influenced by the rate of envi-
ronmental change, the number of traits under selection (i.e, organismic complexity), and
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by selectional and mutational correlations (i.e., the shape of the fitness landscape and the
multivariate distribution of new mutations).

Along with previous single-trait studies, our analysis shows that the genetic basis of the
adaptive process critically depends on the tempo and mode of environmental change.
In particular, we show that the distribution of adaptive substitutions is largely determi-
ned by a single composite parameter γ, which scales the rate of environmental change
relative to the “adaptive potential” of the population and defines a continuum between
environmentally- and genetically-limited adaptation (sensu Kopp and Hermisson 2009b).
In the environmentally-limited regime (i.e., slow environmental change), the population
follows the optimum closely, adaptive steps are small and their multivariate distribution
mirrors the shape of the fitness landscape. In the genetically-limited regime (i.e., fast en-
vironmental change), in contrast, the population follows the optimum with a large gap,
adaptive steps are large and their distribution is determined primarily by the distributi-
on of new mutations. Thus, our results confirm and extend previous studies of adaptive
evolution to changing environments for single traits (Collins et al. 2007; Kopp and Her-
misson 2007, 2009a,b). Furthermore, the effect size of fixed mutations increases with
the degree of pleiotropy (i.e., organismic complexity), in contrast to classical predicti-
ons from Fisher’s geometric model (FGM) under sudden environmental change. Along
the same line, long-term persistence is likely restricted to the environmentally-limited
regime – where adaptation proceeds “smoothly” in small steps – but the parameter ran-
ge for this regime is reduced in complex organisms. In particular, the maximal rate of
environmental change (Bürger and Lynch 1995, see above) decreases with organismic
complexity.

Catch me if you can: On the importance of standing genetic variation for the gene-
tics of adaptation.

Like the majority of the theory on the genetics of adaptation (Orr 2000, 2005a; Kopp and
Hermisson 2009b; Matuszewski et al. 2014a), the second part of this thesis has focused
on adaptation from new mutations. As mentioned above, these adaptive-walk models
(Gillespie 1984; Kauffman and Levin 1987; Orr 2002, 2005b) have produced robust pre-
dictions (Orr 1998, 2000; Martin and Lenormand 2006a) that are supported by empirical
data (Cooper et al. 2007; Rockman 2012; Hietpas et al. 2013). The downside to this
success, however, is that, with respect to the genetic basis of adaptation “we cannot say
anything about adaptation from standing genetic variation” (Orr 2005b). Quantitative-
genetic models cannot provide an answer, either, because, while focusing exclusively on
standing genetic variation, they do not follow the evolution of individual alleles.
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It is only in the past decade that population geneticist have thoroughly addressed adap-
tation from standing genetic variation at the level of individual substitutions (Orr and
Betancourt 2001; Hermisson and Pennings 2005; Chevin and Hospital 2008). Hermis-
son and Pennings (2005) calculated the probability of adaptation from standing genetic
variation following a sudden change in the selection regime. They found that, for small-
effect alleles, the fixation probability is considerably increased relative to that from new
mutations. Similarly, Chevin and Hospital (2008) showed that the selective dynamics
at a focal locus are substantially affected by genetic background variation. Performing
experimental evolution in yeast, Lang et al. (2011) followed beneficial mutations in hun-
dreds of populations and showed that the selective advantage of a mutation plays only a
limited role in determining its ultimate fate. Instead, fixation or loss is largely determi-
ned by variation in the genetic background – which might not be preexisting, but could
quickly be generated by a large number of new mutations. Still, predictions for the ge-
netics of adaptation from standing genetic variation have been verbal at best, stating that
“compared with new mutations, adaptation from standing genetic variation is likely to
lead to faster evolution [and] the fixation of more alleles of small effect [...]” (Barrett and
Schluter 2008). Thus, despite recent progress, one of the central questions still remains
unanswered: From the multitude of standing genetic variants segregating in a population,
which are the ones that ultimately become fixed and contribute to adaptation, and how
does their distribution differ from that of de-novo mutations?

The aim of the third part of this thesis (in preparation; see Matuszewski et al. 2014b) is to
contribute to overcoming what has been described as “the most obvious theoretical limi-
tation when describing the adaptive process” (Orr 2005b) and to study the ecological and
genetic factors that determine the genetic basis of adaptation from standing genetic varia-
tion. Specifically, we consider the evolution of a quantitative trait to a gradually changing
environment. By means of analytical approximations, we derive the distribution of stan-
ding adaptive substitutions and discuss its dependence on the effective population size,
the strength of selection and ecological factors.

In line with Barrett and Schluter (2008), we find that compared to new mutations, ad-
aptation from standing genetic variation proceeds, on average, by smaller “steps”. Our
analysis shows that the genetic basis of adaptation from standing genetic variation cru-
cially depends on the efficacy of selection as defined by the population size, the strength
of (stabilizing) selection and the tempo of environmental change. In contrast to studies
that consider adaptation from new mutations only (Perron et al. 2008; Bell and Gonzalez
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2011; Lindsey et al. 2013; Bell 2013), we find that faster environmental change can ena-
ble the population to remain better adapted and to traverse larger distances in phenotype
space, when standing genetic variation is the sole source for adaptation.

Synopsis and outlook.

“When a species is well adapted to the conditions which environ it, it
flourishes; when imperfectly adapted it decays; when ill-adapted it becomes
extinct."

— Alfred Russel Wallace, Contributions to the theory of natural selection

In less than a wink of evolutionary time, we have come from Charles Darwin and Alfred
Russel Wallace laying the foundations for evolutionary biology with their description of
the “struggle for existence” and the causes of natural selection to the era of transcrip-
tomics, proteomics and whole-genome sequencing that allow evolutionary change to be
observed in real time in present-day populations (Hendry and Kinnison 1999; Collins
et al. 2007; Lindsey et al. 2013). These technical advances have led to an ever-growing
body of data on the genetic basis of adaptation and have widened the gap between da-
ta and theory. The aim of this thesis is to advance our theoretical understanding of the
adaptive process and to construct a theory which, by explicitly considering genetic and
ecological factors, accounts for the inherently dynamic nature of selection and includes
standing genetic variation.

All chapters of this thesis stress the importance of the dynamics of the selective en-
vironment for adaptation and emphasize that the genetic basis of the adaptive process
critically depends on the tempo and mode of environmental change. In particular, in the
environmentally-limited regime – where the environment changes slowly and long-term
population persistence is most likely (which is consistent with current empirical data;
Perron et al. 2008; Bell and Gonzalez 2011; Lindsey et al. 2013) – ecological factors are
more important than genetic factors. In contrast, our analysis of the moving-optimum
model shows that the genetic basis of adaptation from standing genetic variation has,
indeed, very different properties compared to that of de-novo mutations. In particular,
adaptation proceeds in many small steps and just a few large ones and the prospects of
population persistence increase as the environment changes faster, when standing ge-
netic variation is the sole source for evolution. However, quantifying the prospects of
population persistence by measuring “maximal sustainable rates of evolution” in natu-
ral populations is difficult at best, since stochastic fluctuations due to genetic drift, and



12 PREAMBLE

sampling effects can already result in unsustainably high “rates of evolution” – even
under constant environmental conditions.

We have also identified some developing areas that significantly increase the realism
of the basic models, such as the ones presented in this thesis. Natural populations live
in fragmented environments and they can react to environmental change by migration
(Pease et al. 1989; Kirkpatrick and Barton 1997; Polechová et al. 2009; Schloss et al.
2012; Duputié et al. 2012; Boeye et al. 2013) and phenotypic plasticity (Chevin et al.
2010b; Reed et al. 2010; Chevin et al. 2012; Gienapp et al. 2013) in addition to genetic
evolution.

In fact, the importance of phenotypic plasticity for adaptation to environmental change
is well documented (Ghalambor et al. 2007; Hendry et al. 2008; Pfennig et al. 2010; Me-
rilä 2012) and theory suggests that plasticity can facilitate the approach towards a new
phenotypic optimum (Lande 2009) and, hence, reduce the risk of population extinction
(Chevin and Lande 2010). Its effect, however, strongly depends on cue reliability (Reed
et al. 2010) and costs of maintenance (Chevin et al. 2010a), when the population is per-
fectly adapted. Studies connecting explicit genetics with phenotypic plasticity, though,
are sparse (but see Draghi and Whitlock 2012) and there are currently no multivaria-
te plasticity models available in the context of environmental change. Here our models
could serve as a starting point for studying the interactions between phenotypic plasticity
and genetic evolution.

The effect of migration – similar to that of phenotypic plasticity – is strongly context de-
pendent. While gene flow from maladapted populations can potentially constrain adap-
tation, it may also promote population persistence by enabling the exploitation of larger
geographic ranges and by spreading favourable alleles (Schiffers et al. 2013). A cou-
ple of studies also considered a shifting environmental gradient, that is a phenotypic
optimum that changes in both space and time (Pease et al. 1989; Kirkpatrick and Bar-
ton 1997; Polechová et al. 2009; Duputié et al. 2012). These investigations, however,
focused on population persistence rather than on the type, effect-size and origin of mu-
tations contributing to local adaptation. Furthermore, no studies to date have considered
the joint effects of plasticity and genetic adaptation in spatially explicit models under
environmental change.

Finally, real populations do not evolve in isolation but are embedded in a network of
ecological interactions, and so predictions of responses to climate change should be ma-
de in a community context. Studies have shown that interspecific competition can have
both positive and negative effects on adaptation. While the presence of competitors can
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reduce the population size of a focal species and “block” their access to new ecologi-
cal niches (Johansson 2007; Jones 2008; Jones and Gomulkiewicz 2012; Osmond and
Mazancourt 2013; Uecker and Hermisson 2014), competition may facilitate adaptation
if a competitor (or predator) “pushes” a focal species towards the direction of the new
optimum (Jones 2008; Osmond and Mazancourt 2013; Uecker and Hermisson 2014).
The effects of species interactions on the genetic basis of adaptation, however, have not
been explored yet.

Together with studying experimental evolution under gradually changing conditions
(Collins 2004; Perron et al. 2008; Lindsey et al. 2013) integration of these developing
areas promises to significantly increase the realism of the basic models and advance our
understanding of species adaptations in their continued “struggle for existence” (Darwin
1859).





Rapid evolution of quantitative traits: theoretical perspectives

m. kopp, s. matuszewski

Abstract. An increasing number of studies demonstrate phenotypic and genetic changes in
natural populations that are subject to climate change, and there is hope that some of these
changes will contribute to avoiding species extinctions (“evolutionary rescue”). Here, we review
theoretical models of rapid evolution in quantitative traits that can shed light on the potential
for adaptation to a changing climate. Our focus is on quantitative-genetic models with selec-
tion for a moving phenotypic optimum. We point out that there is no one-to-one relationship
between the rate of adaptation and population survival, because the former depends on relative
fitness and the latter on absolute fitness. Nevertheless, previous estimates that sustainable rates
of genetically-based change usually do not exceed 0.1 haldanes (i.e., phenotypic standard de-
viations per generation) are probably correct. Survival can be greatly facilitated by phenotypic
plasticity, and heritable variation in plasticity can further speed up genetic evolution. Multivaria-
te selection and genetic correlations are frequently assumed to constrain adaptation, but this is
not necessarily the case and depends on the geometric relationship between the fitness landscape
and the structure of genetic variation. Similar conclusions hold for adaptation to shifting spatial
gradients. Recent models of adaptation in multispecies communities indicate that the potential
for rapid evolution is strongly influenced by interspecific competition.

1. Introduction

Over the past two decades, it has become clear that evolutionary change can be fast
enough to be observed in present-day populations (Hendry and Kinnison 1999; Kinni-
son and Hendry 2001; Hendry et al. 2008; Gingerich 2009), and that it can directly affect
the dynamics of populations and communities (Hairston et al. 2005; Saccheri and Han-
ski 2006; Kinnison and Hairston 2007; Pelletier et al. 2009). Much recent interest has
focused on the possibility that so-called rapid or contemporary evolution leads to “evo-
lutionary rescue”, whereby threatened populations avoid extinction by adapting to an
altered environment (Barrett and Hendry 2012; Gonzalez et al. 2013). This issue is par-
ticularly pressing in the context of global climate change, which subjects large numbers

15
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of populations to shifts in temperature, aridity, seasonal patterns etc. While phenoty-
pic responses to climate change have been documented (Parmesan 2006; Bradshaw and
Holzapfel 2006; Hoffmann and Sgro 2011 and this issue), the potential for evolutiona-
ry rescue is still unclear (Bell 2013). At the same time, it is often difficult to distinguish
changes based on genetic evolution from those due to phenotypic plasticity (Merilä 2012;
Merilä and Hendry 2014).

At the basis of many questions in the context of adaptation to environmental change are
rates of phenotypic evolution (Hendry and Kinnison 1999; Kinnison and Hendry 2001;
Gingerich 2009). These rates are often measured in haldanes. One haldane is equivalent
to a change of one phenotypic standard deviation per generation (for other measures, see
discussion in Hendry and Kinnison 1999, and for alternative standardizations and issues
of scale, Hereford et al. 2004; Hansen and Houle 2008). Several recent meta-analysis of
contemporary evolution yield the following picture: Evolutionary rates above 0.1 halda-
nes are not uncommon (Hendry and Kinnison 1999; Gingerich 2009), even though the
majority of rates are lower (Kinnison and Hendry 2001). Rates are higher in popula-
tions that are strongly influenced by human activities (Hendry et al. 2008; Darimont
et al. 2009). Rates measured over few generations are higher than those measured over
many generations (Gingerich 1983; Kinnison and Hendry 2001; Hendry et al. 2008; Gin-
gerich 2009; Westley 2011). Studies that controlled for environmental effects (e.g., by
using common garden experiments) find lower rates than those that do not (Hendry et al.
2008), suggesting a role for phenotypic plasticity (Pigliucci and Murren 2003; Hendry
et al. 2008; Westley 2011). Over palaeontological timescales, the best-fitting model of
phenotypic evolution is one of stasis interrupted by bursts of change (Estes and Arnold
2007; Uyeda et al. 2011).

The aim of this paper is to review quantitative-genetic models that shed light on the
potential for rapid adaptation. Our focus will be on the evolution of quantitative traits,
that is, traits with continuous variation that are determined by a large number of loci
with appreciable standing genetic variation. While we will frequently mention the link
between adaptation and population survival, we do not aim for a comprehensive review
of evolutionary rescue theory (see Gonzalez et al. 2013 and 14 other articles in a recent
theme issue of the Philosophical Transactions of the Royal Society B, vol. 368:1610). In
particular, we will not treat evolutionary rescue via the fixation of single large mutations
(Gomulkiewicz and Holt 1995; Holt and Gomulkiewicz 1997; Orr and Unckless 2008;
Uecker and Hermisson 2011; Martin et al. 2013; Kirkpatrick and Peischl 2013).

The structure of the paper is as follows. We first give a detailed description of the basic
models of adaptation of single and multiple quantitative traits under various scenarios
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of environmental change, including a discussion of “maximal sustainable rates of evo-
lution” (Bürger and Lynch 1995). Subsequently, we discuss four avenues into which the
basic models have been extended by recent work: (i) the role of phenotypic plasticity and
its interactions with genetic evolution, (ii) determinants of adaptive potential and evol-
vability, (iii) adaptation to shifting spatial gradients, and (iv) evolution and adaptation in
a community context.

2. Basic models

2.1. Modeling approaches

Environmental change. Most theoretical approaches to adaptation in a changing en-
vironment are based on models of stabilizing selection with a moving optimum. That
is, at any given time, selection favors a specific trait value (or combination of trait va-
lues), but this favored phenotype changes over time. The most important scenarios are
the following:

• A single, sudden change of the optimum: this is a classic scenario studied in
population genetics, and also in recent models about the genetic basis of adap-
tation (Orr 2005) and evolutionary rescue (Orr and Unckless 2008). It is well
suited to study adaptation in invasive species, as well as in species suffering a
sudden degradation of their environment.

• Gradual (typically linear) movement of the optimum: This scenario seems best
suited to investigate the effects of continued climate change (Fig. 1).

• Random fluctuations of the optimum, either around a constant value or around
a linear trend: these fluctuations may or may not show auto-correlation. Such
models are useful to study the effects of environmental stochasticity that overlay
all climate-driven trends.

Genetic adaptation. The majority of models reviewed here are based on quantitative
genetics theory. Evolving traits are assumed to have a polygenic basis and follow a nor-
mal distribution with phenotypic variance σ2

p. In the simplest case (additive genetics, no
phenotypic plasticity), σ2

p can be decomposed into σ2
p = σ2

g + σ2
e , where σ2

g is the addi-
tive genetic variance, σ2

e is the environmental variance (variation due to developmental
instability and micro-environmental fluctuations), and h2 = σ2

g/σ
2
p is the (narrow-sense)

heritability. If phenotypes are measured in units of the environmental variance, σ2
e can be
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set to 1 (e.g., Bürger and Lynch 1995). The key theoretical tool for studying phenotypic
evolution is the Lande equation (Lande 1976a), whose univariate version reads

∆z̄t = σ2
gβt, (2.1)

where ∆z̄t is the change in mean phenotype after one generation of selection, and βt =

d(ln w̄t)/dz̄t is the selection gradient at time t, that is, the derivative of log mean fitness
w̄t with respect to the mean phenotype. Note that equation (2.1) is analogous to the
univariate breeder’s equation ∆z̄t = h2S t, where S t = σ2

pβt = cov(wt, zt) is the selection
differential. A rate of change in haldanes can be obtained by standardizing with σp,
yielding

∆z̄t

σp
= h2βσ,t, (2.2)

where βσ,t = cov(wt, zt)/σp is the variance-standardized selection gradient (Lande and
Arnold 1983; Hereford et al. 2004).

For multiple traits, the structure of phenotypic variation is summarized by the matrix
P, whose diagonal entries contain the phenotypic variances of the individual traits, and
whose off-diagonal entries contain the phenotypic covariances. In the standard model,
P = G + E, where G is the (additive) genetic covariance matrix and E the matrix of
environmental variances and covariances. The multivariate version of Lande’s equation
is

∆z̄t = Gβt, (2.3)

where, for n traits, z̄t = (z̄1,t, . . . , z̄n,t)′ is the vector of mean trait values (with ′ denoting
transposition) and βt = (∂w̄t/∂z̄1,t, . . . , ∂w̄t/∂z̄n,t)′ is the multivariate selection gradient,
which points in the direction of steepest ascent on the fitness landscape. The response
to selection is also influenced by the structure of genetic variation specified in the G-
matrix. In particular, genetic correlations can cause the response to selection to show
a bias towards trait combinations with high genetic variation (see Fig. 2 below; for an
introduction to the geometric aspects of multivariate selection, see Walsh and Blows
2009).

The structure of multivariate genetic variation is often analyzed in terms of the eigen-
vectors of the G-matrix (as in a principal component analysis). The eigenvectors (princi-
pal components) can be viewed as composite traits (linear combinations of the original
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traits) that are genetically uncorrelated (i.e., their covariances are zero) and whose gene-
tic variances are given by the corresponding eigenvalues. Graphically, if the distribution
of breeding values (i.e., the average contribution of an individual to the phenotype of
its offspring) is multivariate Gaussian, isoclines of this distribution can be represented
by ellipses (or higher-dimensional ellipsoids), with axes given by the eigenvectors and
their lengths proportional to the roots of the eigenvalues (Fig. 2). The major axis of such
an ellipse (i.e., the leading eigenvector of the G-matrix) represents the trait combinati-
on with a maximum of genetic variation. Is has been called gmax or the genetic line of
least resistance (Schluter 1996). Eigenvectors with small (or zero) eigenvalues represent
trait combinations with little (or no) genetic variation, into which evolution is severely
constrained (Hansen and Houle 2008; Gomulkiewicz and Houle 2009; Kirkpatrick 2009;
Walsh and Blows 2009; Chevin 2013). More generally, it is also possible to calculate the
amount of variation along any direction of the phenotypic space (Hansen and Houle
2008; Gomulkiewicz and Houle 2009). For the pros and cons of multivariate analysis
in quantitative genetics, see Houle et al. (2002), Mezey and Houle (2003), Pigliucci and
Kaplan (2006), Blows (2007), Walsh and Blows (2009), Berner (2012) and the commen-
taries to Blows (2007) in volume 20:1 of the Journal of Evolutionary Biology.

Phenotypic plasticity. Phenotypic plasticity in quantitative traits is usually charac-
terized by reaction norms, which give the phenotype as a function of an environmental
variable. When different genotypes have different reaction norms, plasticity is itself evol-
vable. While the evolution of plasticity can be modeled in different ways (Via and Lande
1985; De Jong 1995, see also Box 1 in Chevin et al. 2012) most of the models reviewed
here focus on linear reaction norms and treat their slope and elevation as quantitative
traits (e.g., Lande 2009). The majority of models have studied plasticity in single traits
only (but see Gavrilets and Scheiner 1993; Draghi and Whitlock 2012), even though the
G-matrix is known to be sensitive to environmental conditions (e.g., Tonsor and Scheiner
2007; Husby et al. 2011).

Population dynamics. Models of evolutionary rescue assume that the intrinsic po-
pulation growth rate depends on the degree of adaptation, that is on mean absolute fit-
ness. Regardless of potential density-dependence, a population will decline if the average
number of offspring per individual drops below 1. That is, eventually, population size N
is likely to follow

Nt+1 = w̄tNt. (2.4)



20 RAPID EVOLUTION OF QUANTITATIVE TRAITS: THEORETICAL PERSPECTIVES

As shown in Appendix 1, the mean fitness w̄t is generally reduced by two kinds of ge-
netic load (Lande and Shannon 1996; Chevin 2013): a standing load due to phenotypic
variation and a lag load (Maynard Smith 1976) due to deviations of the mean phenotype
from the optimum (also called selection load). In many models, survival or extinction of
the population depends primarily on the lag load. A crucial point is that population dyna-
mics depend on the mean fitness (eq. 2.4), whereas evolutionary change depends on the
fitness gradient (eq. 2.1 or 2.3). Another way of saying this is that population dynamics
depends on absolute fitness and evolution on relative fitness (Bell 2013). The relation-
ship between these two quantities is determined by the fitness function: A given fitness
gradient can be associated with a higher mean fitness under strong selection than under
weak selection (Fig. 1B). This point will be essential in our discussion of sustainable
evolutionary rates (see below).

Some predictions from the various models reviewed in this paper are summarized in
Table 1.

2.2. Adaptation of a single quantitative trait

Sudden environmental change. In the sudden-change scenario, a population that is
well-adapted to its environment is displaced from the fitness peak by a sudden shift of
the optimum. Phenotypic evolution is relatively straightforward: The mean phenotype
will approach the new optimum exponentially (because the fitness gradient decreases
in the vicinity of the optimum) (Lande 1976b). The key question is whether evolution
is fast enough in cases where, immediately after the environmental change, the popu-
lation mean fitness is less than 1. In this case, the population size will initially decline,
setting off a “race” between adaptation and extinction. Gomulkiewicz and Holt (1995)
showed that evolutionary rescue is possible only if the initial maladaptation after the
environmental change is not too large and the initial population size is high.

Gradual environmental change. The situation is quite different if the optimum chan-
ges gradually rather than suddenly. In the simplest case, the optimum increases linearly
at rate k. This model has been analyzed by Lynch et al. (1991), Lynch and Lande (1993)
and Bürger and Lynch (1995) and later been extended by various authors (see below). An
excellent summary is given in Bürger and Lynch (1997). Since the behavior of this model
is highly instructive, we will describe it in some detail (see also Appendix 1).

Assume again that the original population is well-adapted. As the optimum starts mo-
ving, selection becomes gradually stronger (see eq. A4). Consequently, the population
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will initially evolve slowly, and the lag between the optimum and the population mean
phenotype will increase (the population “slips off” the fitness peak). However, as the
distance to the optimum increases, so does the selection gradient, until finally a state
of dynamic equilibrium is reached, at which the rate of evolution exactly matches the
rate of environmental change (see Fig. 1A and eq. A5). Whether or not the population
survives depends on the mean fitness at this distance from the optimum (i.e., on the lag
load, which is approximately proportional to k2; Lande and Shannon 1996). One can
thus calculate a critical rate of environmental change kcrit (eq. A6), which is the maxi-
mal rate of change the population can handle. If the environment changes faster than kcrit

the lag load becomes so large that the population can no longer maintain itself. Extinc-
tion usually follows quickly, because the reduction in population size leads to a loss of
genetic variation, which further undermines the population’s ability to adapt.

Thus, in contrast to the sudden-change scenario, evolutionary rescue in a gradually chan-
ging environment requires that the population maintain a positive growth rate at all times.
This is a consequence of the “relentless” movement of the optimum, which means that
a population that has fallen behind in the race will get no chance to catch up. It also is
noteworthy that extinction in this model usually is not due to a lack of genetic variance
(except in the final phases of the collapse), nor due the classical “cost of selection” (i.e.,
the required number of selective deaths, Haldane 1957). Rather, the population dies out
because all individuals (not just the less adapted ones) have low fitness.

The critical rate of environmental change is directly proportional to the additive genetic
variance and the square root of the maximal population growth rate (see eq. A6). The
dependence on the width of the fitness landscape – or conversely, the strength of stabi-
lizing selection – is more complex: As shown in the first row of Figure 3, for constant
σ2

g, kcrit is maximal at small to intermediate values of the parameter Vs, which measures
the effective width of the fitness function. In other words, the population can support
the fastest environmental change if stabilizing selection is strong but not too strong. The
drop-off in kcrit at low or high values of Vs can be explained by the two kinds of gene-
tic load introduced above. On the one hand, very strong selection (i.e., in a steep and
narrow fitness landscape; small Vs), induces a high standing load, which reduces the rea-
lized growth rate and diminishes the ability of the population to tolerate environmental
change. On the other hand, sufficiently weak selection in combination with a moving
optimum increases lag load, because the population will follow the optimum at a greater
distance. This somewhat counter-intuitive result is due to the fact that, on a flatter fitness
landscape, reaching a given selection gradient requires a larger decrease in mean popu-
lation fitness (see above and Fig. 1). In other words, whereas strong selection keeps the
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population close to the optimum at high mean fitness, weak selection, precisely becau-
se it is ineffective, allows the population to slip farther off the fitness peak. Therefore,
weak selection in combination with a constantly moving optimum represents a “slippery
slope” that can be very dangerous for population survival (see discussion in Bürger and
Lynch 1995 and Huey and Kingsolver 1993). Bürger and Lynch (1995) also showed that
the critical rate of change is further decreased by genetic drift of the mean phenotype in
small populations and by stochastic fluctuations of the optimum around the linear trend
(see also Björklund et al. 2009).

In many quantitative-genetic models, the additive genetic variance σ2
g is assumed to be

constant. Over short time-scales, this may be approximately true, but over longer times-
cales, σ2

g is itself subject to evolutionary change, and it is this fact that makes expressions
for kcrit (such as eq. A6) “deceptively simple” (Bürger and Lynch 1995). Explaining the
evolution and maintenance of genetic variation is one of the perennial problems in theo-
retical population genetics, and no fully satisfactory model has as of yet been found
(Barton and Turelli 1989; Bürger 2000; Barton and Keightly 2002; Johnson and Barton
2005; Hill 2010). Before the environmental change, the population may be assumed to
be at mutation-selection-drift balance, for which several approximations have been de-
veloped (Lande 1976a; Turelli 1984; Bürger 2000; Alvarez-Castro et al. 2009). In the
second row of Figure 3, we follow Bürger and Lynch (1995) by showing the predicted
values of kcrit (in units of the phenotypic standard deviation σp, see below) when σ2

g is
chosen according to the so-called stochastic house-of-cards approximation (Bürger et al.
1989). Doing so takes into account that populations under weak selection have higher
genetic variance, which may offset the negative effects of weak selection on the lag load
(see above) and lead to a positive relationship between the width of the fitness landsca-
pe and kcrit (see Huey and Kingsolver 1993). However, this is still not the whole story,
because once the optimum starts moving, σ2

g is expected to increase. This increase is
mainly due to the rise in frequency of previously rare alleles, and it is strongest in large
populations (Bürger 1999): For example, under standard values of mutational and selec-
tional parameters, σ2

g increases up to 4-fold in populations with Ne > 5000. In contrast,
selection has little impact on σ2

g if Ne < 200 − 300 (Bürger 1999), which might explain
why genetic variances usually do not increase in artificial selection experiments, as no-
ted by (Johnson and Barton 2005). A useful upper limit for the genetic variance in small
populations (Ne < 500, Bürger and Lynch 1995) is the neutral expectation 2VmNe, where
Vm is the input of genetic variance from new mutations (a typical value is Vm = 0.001σ2

e

Lande 1976a; Lynch 1988). In summary, evolution of the genetic variance may increase
the prospects of population survival, but mostly in large populations. It should be noted,
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though, that the increase in variance takes time and may come too late for populations
subject to strong environmental change.

Fluctuating selection. In addition to sudden or gradual changes, most environments
are subject to stochastic fluctuations. We have already seen that superimposing fluctua-
tions on a linear trend in the optimal phenotype increases population extinction risk and
decreases the critical rate of environmental change kcrit (Bürger and Lynch 1995). Here,
we briefly discuss the effects of fluctuations around a constant mean. Uncorrelated fluc-
tuations (white noise) in the optimal phenotype resemble a sudden-change scenario that
is repeated each generation. Such fluctuations can incur strong selection, but the respon-
ses of the population will not add up to large changes over longer timescales (Gingerich
1983; Gibbs and Grant 2006). In addition, genetic responses to selection in one genera-
tion are likely to be maladaptive in the next generation, and therefore the lag load will be
high (Lande and Shannon 1996; Bürger 1999; Chevin 2013). Consequently, uncorrelated
fluctuations do not lead to a significant increase in genetic variance relative to constant
stabilizing selection (Bürger 1999). An exception exists, however, if a species possesses
dormant stages such as seeds or resting eggs or if generations are overlapping but selec-
tion acts only on juveniles. In these cases, the “storage effect” allows the maintenance of
genetic polymorphism and, hence, high levels of variation (Chesson and Warner 1981;
Hairston et al. 1996). Environmental fluctuations can also select for phenotypic plastici-
ty, provided the state of the environment can be assessed by a reliable cue (Tufto 2000),
or for bet-hedging, if there is no such cue (Svardal et al. 2011).

In contrast to uncorrelated fluctuations, autocorrelated fluctuations are more similar to
the gradual-change scenario, and a population with sufficient genetic variance can follow
the optimum and maintain high fitness (Charlesworth 1993; Lande and Shannon 1996;
Chevin 2013). Consequently, autocorrelated fluctuations can lead to significant increases
in genetic variation (Bürger 1999).

2.3. Adaptation of multiple correlated traits

When several traits are under selection, the above analyses need to be extended to ac-
count for the effects of genetic correlations. As mentioned above, genetic correlations
tend to bias the phenotypic response to selection towards the leading eigenvector of the
G-matrix, gmax (the “genetic line of least resistance”; Schluter 1996). In the sudden-
change scenario, an evolving population will still reach the new optimum, although not



24 RAPID EVOLUTION OF QUANTITATIVE TRAITS: THEORETICAL PERSPECTIVES

along the most direct path (Fig. 2A). While the optimum is approached, the lag load de-
creases as a sum of exponential terms, with rates given by the eigenvalues of the matrix
of selection responses (Chevin 2013). Adaptation is fastest and evolutionary rescue is
most likely if the angle between the direction of selection and gmax is small (Schluter
1996; Gomulkiewicz and Holt 1995).

Under gradual environmental change, selection for a moving optimum may cause per-
manent maladaptation of traits (or trait combinations) that are under pure stabilizing
selection (i.e., orthogonal to the direction of the optimum). As illustrated in Figure 2B,
the initial response to selection is biased towards gmax, causing the population to rise abo-
ve the line of the moving optimum, a phenomenon that has been termed the “flying-kite
effect” (Jones et al. 2004). Eventually, the rise comes to a halt, as stabilizing selection in
the respective direction increases, and the population’s trajectory continues in parallel to
that of the optimum. Again, population survival will depend on the lag load at this steady
state. A critical rate of environmental change can be calculated in analogy to the univa-
riate case (see Appendix 2). It depends not only on the shape of the fitness landscape,
but also on the direction of the optimum and the structure of the G-matrix. In particular,
the critical rate is high if the optimum moves in parallel to gmax, and it is lowest if the
optimum moves in a direction of low genetic variation (see Hellmann and Pineda-Krch
2007 for graphical illustrations and a discussion of the consequences for conservation
biology).

As in the univariate case, many studies assume that the G-matrix is roughly constant over
the timescale of interest. Evolution of the G-matrix has been studied in a recent series
of papers by Jones, Arnold and Bürger (Jones et al. 2003, 2004, 2007, 2012; for review
see Arnold et al. 2008). In accordance with previous studies (Barton and Turelli 1987;
Bürger and Lynch 1995; Jones et al. 2004), Jones et al. (2012) found that, irrespective
of the mode of environmental change (gradual, episodic, stochastic), genetic variance
increases in the direction of environmental change. While this facilitates the response to
selection, the phenotypic lag also induces a skew in the distribution of breeding values
(unfit phenotypes “trailing behind”), which restrains the response to selection. General-
ly, the two phenomena do not offset each other (Jones et al. 2012), requiring inspection
for every individual case. These results highlight the need for caution when iterating
the Lande equation or interpreting G’s eigenvalues (Kirkpatrick 2009). Under pure sta-
bilizing selection, the G-matrix tends to align itself with the fitness landscape, that is,
genetic variance is highest in directions with weak selection. G depends, however, also
on the distribution of new mutations, that is, the M-matrix (Jones et al. 2003, 2007), and
on gene-flow (Guillaume and Whitlock 2007; Franks et al. 2014).
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2.4. Genetic basis of adaptation

The quantitative-genetic models we have considered so far are most accurate if adapta-
tion is based on a large number of loci with small individual effects. In this section, we
briefly discuss several issues that arise when this assumption is relaxed.

The first question is how the rate of adaptation is affected by alleles of large effect. If the
same total progress towards the optimum can be made by the fixation of either a single
allele of large effect or many alleles with small effects, adaptation will be faster in the
former case, because selection on the large alleles is more effective (Gomulkiewicz et al.
2010; for the same result in a different context, see also Gavrilets et al. 2007; Rettel-
bach et al. 2011). In Appendix 3, we calculate the rate of phenotypic evolution due to
the fixation of a major allele and show that it can be quite high, at least while the allele
is at intermediate frequency. For quantitative traits that are determined by a combinati-
on of small- and large-effect loci, Gomulkiewicz et al. (2010) showed that adaptation is
fastest when both classes of loci are evolving. For the same situation, Chevin and Hospi-
tal (2008) demonstrated that “background”-adaptation from minor loci, by successively
reducing the selective advantage of a large-effect allele, can significantly affect its trajec-
tory, and even prevent fixation. The exact outcome crucially depends on the initial allele
frequency, the distance from the optimum, and the amount of genetic variation provided
by the minor loci.

Another question is, however, how likely beneficial alleles with large effect are in the
first place. In a multivariate context, Fisher (1930) used his classical “geometric model”
to argue that alleles (i.e., mutations) with large effect that pleiotropically affect multiple
traits are most likely to be deleterious. As pointed out by Kimura (1983), however, Fisher
neglected the fact that, among beneficial mutations, the few mutations with large effect
have a higher fixation probability than the more common mutations with small effects.
In the last two decades, numerous theoretical studies have developed predictions for
the distribution of phenotypic and fitness effects of both new and fixed mutations (e.g.,
Martin and Lenormand 2006b, 2008; Keightley and Eyre-Walker 2007; Yeaman and
Whitlock 2011), and many models have concluded that the role of mutations with major
effects in adaptation is surprisingly large (reviewed by Orr 2005). However, almost all of
these models have considered a sudden-change scenario. Under gradual environmental
change, results might be very different. In particular, Collins et al. (2007) and Kopp and
Hermisson (2007, 2009a,b) showed that a slowly moving optimum favors adaptation by
small mutations.
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Finally, many authors have studied adaptation and evolutionary rescue from a single
large mutation. Since these models usually do not refer to quantitative traits, we only
point out the relevant literature: for the probability of evolutionary rescue, see Gomul-
kiewicz and Holt (1995); Holt and Gomulkiewicz (1997); Orr and Unckless (2008);
Uecker and Hermisson (2011); Martin et al. (2013); for the fixation probability of a new
mutation in a changing environment, see Uecker and Hermisson (2011); Kirkpatrick and
Peischl (2013); Martin et al. (2013); and for the probability of adaptation from standing
genetic variation versus new mutations Hermisson and Pennings (2005); Martin et al.
(2013).

2.5. Maximal sustainable rates of evolution?

A well-known prediction from the models by Lynch and Lande (1993) and Bürger and
Lynch (1995) is that of a “maximal sustainable rate of evolutionary change” on the order
of 0.1 haldanes or less. This value is simply a ballpark estimate of the critical rate of
gradual environmental change, kcrit (eq. A6), scaled by the phenotypic standard deviation
and parametrized with realistic parameter values (see Appendix 1 and Fig. 3). Since, at
the dynamic equilibrium, the population follows the optimum with a constant lag, the
rates of environmental and phenotypic change are “formally equivalent” (Bürger and
Lynch 1995). For clarity, we will denote the rate of phenotypic change in haldanes by
κcrit = kcrit/σp (eq. A7).

Barrett and Hendry (2012) note that it is “tempting” to use κcrit = 0.1 as a benchmark
for empirically observed evolutionary rates, the idea being that rates near or above this
value might be cause for concern since they are not “sustainable” (see also Hendry and
Kinnison 1999). Based on earlier meta-analysis (Hendry and Kinnison 1999; Kinnison
and Hendry 2001; Hendry et al. 2008), these authors conclude that most rates of change
are below 0.1. In contrast, Gingerich (2009) argued that evolutionary rates on the order
of 0.1 and 0.3 haldanes are common, but his analysis relied on an interpolation techni-
que (log-rate-log-interval plots) that is sensitive to measurement error when real rates of
change are small (Hunt 2012 and below). Barrett and Hendry (2012) also warn, however,
that theory-derived critical rates rely on “many unrealistic assumptions, such as perpe-
tual persistence under constant environmental change” and that “critical rates for natural
populations over time frames of conservation interest could be very different”.

There are several points to be made here (see also Appendix 4). First, and obviously, a
universal κcrit of 0.1 haldanes cannot be more than a rule of thumb. Critical rates may
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be higher under strong selection, high heritabilities and in large populations (Fig. 3). Se-
cond, some of the reasons for population extinction found by Bürger and Lynch (1995) –
such as random but autocorrelated fluctuations in genetic variance – are, indeed, mainly
a long-term concern under sustained environmental change. Third, however, the critical
rate in equations (A6) and (A7), is simply equivalent to the (instantaneous) rate of evolu-
tionary change that can be achieved without a decrease in population size, as a function
of (i) the genetic variance, (ii) the reproductive capacity of the population, and (iii) the
shape of the fitness landscape (see discussion of mean fitness vs. fitness gradient above).
Faster evolution is possible temporarily, but only at the cost of a reduction in population
size. To quantify this effect, in Appendix 4, we estimate maximal rates of environmental
and phenotypic change when allowing modest population decline over a limited time
frame (e.g., the population is to maintain a minimal size of 50 individuals for 50 gene-
rations). As shown in Fig. A1, this provision leads to modest increases in κcrit in large
populations (typically around 30%), whereas the effect in small populations is negligible
(in particular in light of the stochastic variations discussed below).

In summary, κcrit is, indeed, likely to often be around or below 0.1 haldanes. Faster obser-
ved rates may be a sign that the population is under stress (e.g., the well-known example
of Darwin’s finches during a drought, where beak-size increased by 0.66 standard devia-
tions, but 85% of the population died; Grant and Grant 2006) or may indicate that part
of phenotypic change is due to plasticity (see below). Temporarily high rates of change
may also be achieved by the fixation of a large-effect mutation (Appendix 3).

Small maximal rates of phenotypic change also raise statistical issues (Appendix 5; see
also Hendry and Kinnison 1999): Detecting a difference of 0.1 standard deviations bet-
ween two populations requires very large sample sizes (e.g., almost 800 per population
for 50% power in a two-sample t-test with α = 0.05). On the other hand, differences
of this magnitude can easily be created by sampling effects (Fig. A2, A3; Kinnison and
Hendry 2001; Hunt 2012). Indeed, the mean absolute differences in units of phenoty-
pic standard deviations between two samples of size n drawn from the same population
is 2/

√
nπ (Hunt 2012), which equals 0.113 for n = 100. In finite populations, similar

effects occur due to genetic drift and environmental variance (even if the whole popu-
lation is sampled). The variance of the mean phenotype due to genetic drift is σ2

g/Ne,
with Ne being the effective population size (Lande 1976a). By a calculation analogous
to the one in Hunt (2012), the mean generation-to-generation rate in haldanes due to
drift is 2

√
h2/(πNe), which is 0.025 for Ne = 1000 and h2 = 0.5. Similarly, the contri-

bution of environmental variance (i.e., genotype-independent random variation in indi-
vidual phenotypes) to the mean rate of phenotypic change is 2

√
(1 − h2)/(πN) (with N
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being the census population size). Together, these two sources of variation may dominate
the generation-to-generation changes in the mean phenotype of small populations (Ap-
pendix 5, Fig. A3, A4). In summary, maximal sustainable rates of evolutionary change
might often be of the same order than various sources of stochastic noise, something
which should be kept in mind when interpreting evolutionary rates measured over short
timescales.
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Figure 1 – Illustration of trait evolution in the one-dimensional moving-optimum model. (A) Solid and dotted
grey curves represent the fitness landscape at different points in time (eq. A2), whose width is
determined by ω. θt is the optimal phenotype, which moves at constant speed (θt = kt). The black
curves represent the distribution of breeding values in the population (mean z̄t, variance σ2

g). The
mean phenotype evolves according to eq. (2.1). At the dynamic equilibrium, it follows the optimum
with a constant lag δ∗t . (B) illustrates the relation between rate of evolution and extinction risk. The
grey curves show the log mean fitness as a function of the mean phenotype z̄t for two different
fitness functions with widths ωs and ωw, respectively. The rate of evolution, given by the horizontal
arrows is determined by the fitness gradient βt, indicated by the black lines. The vertical position of
the population gives its mean (log) fitness. In the Figure, the optimum is assumed to move at rate
k = 0.035, and the population placed at the narrow fitness curve follows at this pace while
maintaining a positive growth rate (w̄ > 1). With the wide fitness function, however, the same rate of
evolution requires a larger distance from the optimum, such that the growth rate is negative and the
population goes extinct.
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Figure 2 – Illustration of adaptation involving two genetically correlated traits. (A) Adaptation after a sudden
environmental change; the new optimum θt is constant. Grey lines illustrate the fitness surface,
defined by the matrix ω. The distribution of breeding values defined by the G-matrix is illustrated
by the black ellipse, whose center is the mean phenotype z̄t and whose axis are the eigenvectors of
G. The initial response to selection is biased towards the leading eigenvector, that is, the genetic line
of least resistance (Schluter 1996). (B) Adaptation to a moving optimum. Grey circles show the
fitness landscape at four different points in time. Black ellipses show the corresponding positions of
the population (represented by the G-matrix). The insets at the bottom show the leading eigenvector
of G, λ1, the selection gradient βt and the response to selection ∆z̄t at time-points 1, 2 and 3,
respectively. Because the initial response is biased towards the leading eigenvector, the population
“rises” above the line of the moving optimum (i.e., the flying-kite effect; Jones et al. 2004). This rise
comes to a halt as the tendency to follow the line of least resistance is balanced by the selection
gradient, resulting in horizontal movement of the population.
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Figure 3 – The critical rate of phenotypic evolution, κcrit = kcrit/σp (eq. A7) expressed in haldanes, for the
one-dimensional moving-optimum model (A2) (after Bürger and Lynch 1995), as a function of the
width of the fitness function Vs = ω2 + σ2

e (with σ2
e = 1), for various values of the reproductive

potential B. The top row shows results for three different values of heritability h2 = σ2
g/(σ

2
g +σ2

e). In
the bottom row, σ2

g has been set to the value predicted by the stochastic house-of-cards (SHC)
approximation under pure stabilizing selection for three values of the population size N. The SHC
approximation is given by σ2

g = 2VmNe/(1 + α2Ne/Vs) (Bürger and Lynch 1995), where Vm is the
mutational variance, α2 is the variance of the effect of new mutations, and Ne ≈ 2BN/(2B − 1)
(Bürger and Lynch 1995) is the effective population size. The figures are for Vm = 0.001 and
α2 = 0.05. The thin dotted line gives the heritability h2 associated with σ2

g(SHC).
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3. The role of phenotypic plasticity

So far, we have only considered genetic adaptation. However, many observed responses
to climate change are likely to be plastic (Gienapp et al. 2008; Hendry et al. 2008; Merilä
2012), and assessing the relative importance of plastic and genetic changes is precisely
the aim of this special issue of Evolutionary Applications. Yet, in its basic form, the
question is empirical and cannot be answered by theory alone. While quantitative genetic
models can make some tentative predictions about the maximal rates of genetically based
evolution (see above), it seems impossible to make general statements about the range
and scope of plasticity. Here, we will instead focus on reviewing models that investigate
the interaction between plasticity, population dynamics and genetic evolution. Because
several important aspects have already been reviewed elsewhere (Ghalambor et al. 2007;
Chevin et al. 2012), our treatment can be short.

Ecological models have investigated the effect of plasticity on population stability and
extinction risk in the absence of evolution. Community models including so-called trait-
mediated indirect effects (Werner and Peacor 2003) frequently find that phenotypic pla-
sticity mediated by species interactions (e.g., inducible defenses against predators; Toll-
rian and Harvell 1999) can stabilize population dynamics, even though such a stabilizing
influence is not universal (Kopp and Gabriel 2006). If plasticity increases the range of
conditions under which a community is stable, it reduces the risk of species extinctions
after an arbitrary environmental change (“plastic rescue”; Kovach-Orr and Fussmann
2013).

For a single population, Reed et al. (2010) studied the impact of phenotypic plasticity
on population extinction risk in a randomly fluctuating environment. They found that
adaptive plasticity decreases extinction risk, unless the magnitude of plastic responses
exceeds an optimal level set by cue reliability (strong responses to unreliable cues tend
to be harmful). Chevin et al. (2010) included phenotypic plasticity into the moving-
optimum model of Lynch and Lande (1993) and Bürger and Lynch (1995). Assuming a
linear reaction norm with slope less than one, plasticity essentially reduces the speed of
environmental change perceived by the population. Plasticity thus increases the critical
rate of environmental change kcrit that separates population survival from extinction. In
consequence, it increases the maximal rate of phenotypic change, while simultaneously
decreasing the rate of genetic evolution. This effect may be reversed at high levels of
plasticity if plasticity itself is costly (and hence, reduces the mean fitness of the popula-
tion).
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Gienapp et al. (2013) recently applied both the Chevin et al. (2010) and the Bürger
and Lynch (1995) model to anticipate evolution of egg-laying dates in great tits from a
well-studied Dutch population. Egg-laying date in this species is a phenotypically pla-
stic trait that depends on spring temperature and is selected to coincide with the peak in
caterpillar abundance. Using various modeling techniques, the authors show that, despi-
te plasticity, global warming will create a mismatch between the optimal and realized
egg-laying dates, which might threaten population persistence unless it can be closed by
genetic evolution. By focusing on the predicted mismatch, the authors were able to pa-
rametrize the Bürger and Lynch (1995)-model (i.e., eq. A6), even though this model was
not built to deal with plasticity. They conclude that, even under a mild climate-change
scenario, the predicted rate of environmental change (from the point of view of the po-
pulation) is close to the theoretical maximal sustainable rate. To parametrize the Chevin
et al. (2010)-model, (Gienapp et al. 2013) assumed that both optimal and realized egg-
laying dates correlate with mean spring temperature (measured between mid-March and
mid-April). Although the Chevin et al. (2010)-model seems to be more suitable for the
analysis of a plastic trait, its results are less plausible than those obtained from the Bürger
and Lynch (1995)-model. In particular, the model predicts that population survival will
be facilitated by fast environmental change. The authors argue that this counterintuitive
prediction is an artefact, which arises because, with faster temperature increase, mean
spring temperature becomes less and less correlated with the true causal variable deter-
mining optimal egg-laying date. This highlights the general problem that, frequently, the
variables we can measure are just proxys for one or more causal factors. If the proxy is
bad, any model will perform poorly. Despite these issues, the study by Gienapp et al.
(2013) is exemplary in its combined use of long-term empirical data, climate-change
predictions, and models for future optimal and realized behavior.

In the following we briefly review models in which plasticity can itself evolve. Condi-
tions for the evolution of plasticity are fairly well understood. Plasticity is adaptive if
individuals encounter different environmental conditions that favor different phenotypes
and that can be assessed by a reliable cue (e.g., Tollrian and Harvell 1999; Ghalam-
bor et al. 2007). Its evolution may be limited by functional constraints, unreliable cues
(Tufto 2000), and costs for the necessary sensory and developmental machinery (De-
Witt et al. 1998; van Buskirk and Steiner 2009). More recently, however, phenotypic
plasticity has been advocated as not only a product, but also a driver of genetic evolution
(West-Eberhard 2003; for recent reviews, see Ghalambor et al. 2007; Pfennig et al. 2010;
Wund 2012; Wennersten and Forsman 2012). The basic idea is that new phenotypes first
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appear as a result of environmental induction and only later are fixed via “genetic assimi-
lation” or “genetic accommodation”. Here, genetic assimilation corresponds to a loss of
plasticity, such that expression of the phenotype becomes independent of environment
cues. Genetic accommodation is a more general “fine-tuning” of the novel phenotype
via changes in allele frequencies, potentially facilitated by a release of hidden genetic
variation (Hermisson and Wagner 2004; Moczek 2007; for more conceptual discussi-
on, see West-Eberhard 2005; Crispo 2007; Ghalambor et al. 2007). The more ambitious
versions of this hypothesis – that environmental induction can be at the basis of “evolu-
tionary novelties” (West-Eberhard 2003; Pigliucci et al. 2006; Uller and Helanterä 2011)
– appears unaccessible to classical population-genetics modeling. Here, we focus on the
less far-reaching question of the role of plasticity in the evolution of existing quantitative
traits.

Phenotypic plasticity has traditionally been viewed as delaying genetic evolution. This
is certainly true if plasticity is sufficient to ensure continued high fitness of a population
in a changing environment. However, there are other scenarios in which plasticity may,
indeed, speed up or facilitate genetic change. A simple case is the Baldwin effect (Bald-
win 1896; Crispo 2007), where plasticity (specifically, learning) allows a population to
survive in a new or changed environment, thereby enabling future genetic adaptation
(for models, see Ancel 1999; Pál and Miklós 1999; Ancel 2000; Paenke et al. 2007).
Furthermore, plasticity can influence the course of evolution by bringing a population
into the domain of attraction of a specific adaptive peak. The probability of a peak shift
is highest if plasticity is of intermediate strength (Price et al. 2003). Both mechanisms
may play a role in biological invasions as well as adaptation to climate change.

Recently, Lande (2009) proposed a simple model for the role of plasticity in adaptation
to an abrupt environmental shift. He considered the evolution of a quantitative trait that is
determined by linear reaction norms. That is, for each individual, the trait value is a line-
ar function of an environmental variable, with genetic variation in the slope and intercept
of this function (see also Gavrilets and Scheiner 1993). Under the original conditions,
a modest level of plasticity (i.e., an intermediate slope of the reaction norm) is favored
in a slightly fluctuating environment with constant mean and imperfect cues. At this sta-
ge, reaction-norm slope varies between individuals, but the mean phenotype is relatively
homogeneous (canalization). When the mean environment changes, genetic variance is
increased due to differential plastic responses (decanalization), and selection favors indi-
viduals with steep reaction norms, which can best adjust to the new conditions. That is,
the population evolves towards the new optimum via the evolution of increased plastici-
ty, allowing high rates of phenotypic change. Subsequently, the reaction norm intercepts
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increase and slopes decrease, again reaching the optimal degree of plasticity in the new
environment (genetic assimilation). Chevin and Lande (2010) added population dyna-
mics to this model and showed that evolving plasticity strongly increases the probability
of evolutionary rescue after a sudden environmental change.

4. What determines adaptive potential?

Ideally, we would like to be able to predict which species have the potential to adapt to
rapid climate change (Williams et al. 2008; Huey et al. 2012). Obviously, phenotypic
plasticity will help (see above), but theory can say little more than that. With regard to
genetic adaptation, the adaptive potential depends most directly on the genetic variation
that is available in the direction of selection. In addition, we may also ask what kind
of genetic architectures and evolutionary histories facilitate rapid adaptation. We will
discuss these two issues in turn.

4.1. Genetic variance and genetic constraints

For single traits, a short-term measure of adaptive potential is given by the additive gene-
tic variance (see eq. 2.1), and a lack of such variance corresponds to a genetic constraint
(i.e., adaptive potential and genetic constraints are two sides of the same coin). An ab-
solute constraint is present if genetic variance is zero, and a relative constraint if it is
low. Gomulkiewicz and Houle (2009) pointed out that, if adaptation is too slow to avoid
extinction, a relative (or quantitative) constraint is effectively transformed into an abso-
lute constraint. They coined the term “demographic constraint” to refer to this situation
and calculated “critical amounts of genetic variance” and “critical heritabilities” that are
necessary to prevent extinction under scenarios of sudden and gradual environmental
change.

In the multivariate case, an additional source of genetic constraints may arise from ge-
netic correlations. Indeed, even if every single trait has positive genetic variance, the
variance for certain trait combinations may be zero (Dickerson 1955). In this case, the
G-matrix is singular (Lande 1979), that is, at least one of its eigenvectors has a zero
eigenvalue. If the selection gradient is parallel to such an eigenvector, it will produce
no effect. Regardless of the direction of selection, evolution will be possible only in a
lower-dimensional subspace of the original phenotype space (e.g., along a line in two
dimensions or a plane in three dimensions). A singular G-matrix might be an extreme
case (and is difficult to infer statistically). However, relative constraints arise in the same
way, whenever an eigenvalue is positive but small. Using their concept of demographic
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constraints, Gomulkiewicz and Houle (2009) calculated critical values for the smallest
eigenvalue of G in the worst-case scenario that selection acts exactly in the direction of
the corresponding eigenvector.

What is the overall role of genetic correlations in constraining the rate of adaptation?
– Walsh and Blows (2009) argued that strong multivariate constraints (weak variation
in the direction of selection) might, indeed, be common and could explain the frequent
observation of slow evolutionary change despite strong selection on (individually) varia-
ble traits. To quantify the distribution of genetic variation, Kirkpatrick (2009) defined a
measure of “effective dimensionality”

nd =

n∑
i=1

λi

λ1
, (2.5)

where the λi denote the eigenvalues of the G-matrix ordered from the largest (λ1) to the
smallest (λn). If genetic variation is uniformly distributed among the eigenvectors, nd

takes it maximal value of n, whereas it is minimal (equal to 1) when genetic variation is
only present along a single axes. A review of empirical estimates of nd suggests that it
is often (much) smaller than the number of traits considered (Kirkpatrick 2009). Thus,
genetic variation seems to be concentrated around a few dimensions, meaning that the
ability of populations to respond to arbitrary selection pressures may be severely redu-
ced.

However, an alternative approach by Agrawal and Stinchcombe (2009) yields more nu-
anced results. These authors proposed to compare the increase in mean fitness in respon-
se to a given selection gradient for the full G-matrix with the expected response when
assuming a (hypothetical) modified G-matrix in which all off-diagonal entries (i.e., all
covariances) have been set to zero. Using data from empirical estimates of G- (or P)-
matrices and selection gradients, they found that removing genetic correlations someti-
mes increases and sometimes decreases the rate of adaptation, and that often, the effect is
minor. In this context, it is worth pointing out that genetic correlations do not necessarily
decrease the variance in a particular direction. For example, adding arbitrary covariances
to a diagonal G-matrix can only increase genetic variation in the direction of the leading
eigenvector (Horn and Johnson 1985, p. 194).

Theoretical studies have used two approaches to quantify genetic constraints (for a re-
view of measures, see Walsh and Blows 2009). If the selection gradient is known, ad-
aptability and constraints should be expressed relative to its direction. A sophisticated
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set of measures was proposed by Hansen and Houle (2008), who distinguish “responda-
bility” (the magnitude of overall phenotypic change in response to selection in a given
direction with unit magnitude), “evolvability” (the magnitude of response in the direc-
tion of selection), “conditional evolvability” (the magnitude of response in a selected
traits if correlated traits are forced to remain constant), and “autonomy” (the fraction of
genetic variation in a trait that is independent of potentially constraining characters). For
cases where the direction of selection is not known, several authors have calculated mean
rates of adaptation over a distribution of possible selection gradients (Hansen and Houle
2008; Kirkpatrick 2009; Chevin 2013). When the distribution of selection gradients is
uniform, genetic correlations have no effect on the mean rate of adaptation, because high
rates in directions of large variation are offset by low rates in directions of small varia-
tion (Hansen and Houle 2008; Kirkpatrick 2009). When the distribution of gradients is
not uniform, however, the mean rate of adaptation is highest if selection gradients tend
to coincide with directions of large genetic variation (Chevin 2013).

4.2. Other determinants of adaptive potential

We now go on to discuss a broader view of adaptive potential and evolvability. Sexual
reproduction and genetic recombination have long been hypothesized to facilitate adap-
tation to changing environments (e.g., by bringing together alleles on the same genome
and reducing the effect of clonal interference). For a gradual-change model, this was
confirmed via simulation by Bürger (1999) (see also Charlesworth 1993; Waxman and
Peck 1999). In particular, the increase in genetic variance under directional selection (see
above) is almost absent in asexual populations.

Several theoretical studies have compared adaptation in (sexual) haploid and diploid po-
pulations, but the results are complex. Haploid populations can be expected to evolve
faster than diploid populations, because selection is more efficient in haploids (Orr and
Otto 1994; Otto and Gerstein 2008), and this was confirmed experimentally in yeast
(Gerstein et al. 2011). Nevertheless, haploid populations were invaded by diploid strains
(Gerstein and Otto 2011). While in this case the “cryptic fitness advantage” was attri-
buted to negative frequency-dependent selection, a more general advantage to diploidy
was proposed by Sellis et al. (2011). Using the framework of Fisher’s geometric model,
these authors argued that heterozygote advantage is a natural consequence of adaptation
in diploids, at least in populations that are close to a phenotypic optimum. (The reason
is that mutations often have smaller phenotypic effects in heterozygotes than in homozy-
gotes, such that heterozygotes may have a fitness advantage, while homozygotes already
overshoot the optimum – a probability that increases with the number of phenotypic
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dimensions.) Since heterozygote advantage favors the maintenance of polymorphism,
diploids are expected to have higher levels of genetic variation, conferring them an in-
creased adaptive potential in case of rapid environmental change. Indeed, simulations
showed that, in fluctuating environments, diploid populations maintained higher mean
fitness than haploids, despite a larger standing load (Sellis et al. 2011).

Again using Fisher’s geometric model, Orr (2000) argued that evolvability is reduced
in complex organisms, because mutations are more likely to have negative pleiotropic
side effects. This “cost of complexity” can, however, be reduced by a modular organisa-
tion (Welch and Waxman 2003). Indeed, several studies have concluded that “effective
complexity” is low in many organisms (e.g., Martin and Lenormand 2006a; Lourenco
et al. 2011). Such low dimensionality/pleiotropy is predicted to increase the proportion
of beneficial mutations with large effect, which in turn can facilitate adaptation (Gomul-
kiewicz et al. 2010). Gene-network models also predict that small network size leads to
an increased rate of adaptation, faster population recovery and higher critical rates of en-
vironmental change (Malcom 2011a,b). Along similar lines, mutational robustness (i.e.,
the probability for genotypes connected by mutations to express the same phenotype)
can paradoxically increase the adaptive potential of a population by allowing synony-
mous genetic variants to accumulate, thus increasing the mutational neighborhood of
a given phenotype (Gavrilets 1997; Fontana and Schuster 1998; Wagner 2008; Draghi
et al. 2010).

Finally, adaptive potential is likely to be influenced by a species’ evolutionary history.
In particular, species that have evolved in variable environments are more likely to sur-
vive future environmental change than species that have long lived under very constant
conditions. The idea is not only that past fluctuations endow a species with increased ge-
netic variation (see above), which has been pre-tested by selection in past environments
(Masel 2006; Wagner 2007; Hayden et al. 2011), different habitats, or even in another
species (e.g., introgression) (Rieseberg et al. 2003; Barrett and Schluter 2008), but al-
so that the species may have evolved increased plasticity and a more flexible genetic
architecture (Hansen 2006). Indeed, the last two points might be related. Several recent
models have shown that genetic networks that evolved to express plasticity also allow for
faster genetic adaptation (Fierst 2011; Espinosa-Soto et al. 2011; Draghi and Whitlock
2012).

On the other hand, species that have evolved under highly stable conditions are expected
to be the most sensitive to environmental change (Overgaard et al. 2011). In particular,
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there is concern that tropical ectoterms might be unable to resist increasing tempera-
tures (Janzen 1967; Ghalambor et al. 2006; Deutsch et al. 2008; McCain 2009; Hoff-
mann et al. 2012; Urban et al. 2014). Indeed, such species are characterized by narrow
thermal tolerance curves (Amarasekare and Savage 2012) and have narrow altitudinal
ranges (McCain 2009). If genetic variation in the optimal temperature is proportional
to the width of the thermal tolerance curve (as has been demonstrated for Drosophila;
Kellermann et al. 2009; Schilthuizen and Kellermann 2014) they should also have re-
duced critical rates of environmental change (Huey and Kingsolver 1993). Quantitative
predictions about extinction risk are difficult, however, because most studies on thermal
tolerances provide only relative, not absolute, fitnesses (Deutsch et al. 2008; Martin and
Huey 2008; Bonebrake and Mastrandrea 2010).

5. Adaptation in space

Real populations are distributed in space, and they can react to environmental change by
migration in addition to genetic evolution and plasticity (Parmesan 2006; Schloss et al.
2012). Here, we are not primarily interested in range shifts, but instead focus on the
effects of gene flow on local adaptation in changing environments.

A natural extension of the gradual-change model discussed above considers a shifting en-
vironmental gradient, that is, an optimum that changes in both space and time. Building
on earlier models by Pease et al. (1989), Kirkpatrick and Barton (1997) and Polechová
et al. (2009), Duputié et al. (2012) recently investigated adaptation of multiple quan-
titative traits in response to such a shifting gradient. In particular, they addressed how
multivariate genetic constraints and gene flow alter the adaptive potential. While gene
flow from maladapted populations can potentially constrain local adaptation, it may also
promote population persistence by enabling the exploitation of larger geographic ran-
ges and by spreading favorable alleles (Schiffers et al. 2013). Consequently, regardless
of the number of traits under selection, the critical rate of environmental change is ma-
ximized when dispersal is neither too weak nor too strong (Alleaume-Benharira et al.
2006; Duputié et al. 2012). Population persistence also strongly depends on the slope
of the spatial gradient. When the gradient is weak (i.e., the loss of fitness per unit space
is small), the population remains well-adapted over a wide range. Conversely, a steep
gradient constrains the range. In this case, population persistence depends heavily on
the geometric relation of the G-matrix, the shape of the fitness landscape, and the di-
rection of the spatial gradient. In particular, adaptive constraints are minimal whenever
the spatial gradient is collinear with the direction of weakest stabilizing selection and
largest genetic variance. Similar to the “flying-kite effect” (Jones et al. 2004), Duputié
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et al. (2012) also found that, when there is indirect selection on negatively correlated
traits, adaptation in one trait can cause another trait to develop a spatial gradient in the
direction opposite to its optimum. When genetic variances are allowed to evolve (as a
consequence of selection and gene flow, see above), univariate models have shown that
sufficiently large populations can be perfectly adapted over their whole range, albeit at
the cost of an increased standing load (Barton 2001; Polechová et al. 2009; Bridle et al.
2010).

The effect of gene-flow on the G-matrix has been studied by Guillaume and Whitlock
(2007). Using a continent-island model, these authors showed that a migration rate of
about one individual per generation increases the size of G by up to 3-fold, and may
cause its shape and orientation to “flip” (albeit only over time-scales of several hun-
dred generations). These effects are particularly pronounced if other factors acting on
G, such as the input of mutational variance and mutational or selective correlations, are
weak.

The effect of phenotypic plasticity on local adaptation and the colonization of new habi-
tats has been studied by Chevin and Lande (2011) and Thibert-Plante and Hendry (2011).
Both studies found that plasticity can facilitate colonization of new habitats, especially
if it is expressed after migration (i.e. juvenile dispersal). However, no studies to date
have considered the joint effect of plasticity and genetic adaptation in spatially explicit
models under environmental change.

6. Beyond single species

Real populations do not evolve in isolation but are embedded in a network of ecologi-
cal interactions, and so predictions of responses to climate change should be made in a
community context. Several studies have investigated the effects of interspecific compe-
tition on the rate of adaptation and the likelihood of evolutionary rescue. Both positive
and negative effects are possible. The presence of competitors can reduce the rate of ad-
aptation in a focal species by reducing its population size (and, hence, genetic variance
or mutational input) and by “blocking” the access to new ecological niches (Johansson
2007; Jones 2008; Jones and Gomulkiewicz 2012; Osmond and Mazancourt 2013). This
effect increases the lag load, decreases the critical rate of environmental change and can
contribute to species extinctions. On the other hand, competition may also facilitate ad-
aptation if a competitor (or predator) “pushes” a focal species in the direction of the
new optimum (Jones 2008; Osmond and Mazancourt 2013). Osmond and Mazancourt
(2013) argue that both effects can be found in recent studies of character displacement
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in Darwin’s finches (Grant and Grant 2006). Evolution may also be sped up by com-
petitive release if climate change causes a competitor to go extinct (Poloczanka et al.
2008).

In the presence of a shifting spatial gradient (see above), community evolution depends
on the interaction of local adaptation and dispersal (de Mazancourt et al. 2008; Urban
et al. 2012a,b). De Mazancourt et al. (2008) used simulations of a multi-patch model
to show that species often shift their range to new habitats rather than adapting to their
altered current habitat, and that this effect is stronger in species-rich communities. Ur-
ban et al. (2012a) use the term “competitive constraint” to describe the situation where a
local species is prevented from adapting to a changing environment because its habitat is
being invaded by a competing species already adapted to the new conditions. This effect
is a possible explanation for niche conservatism (Wiens et al. 2010) during contempora-
ry evolution. The opposite effect is also possible, however: local adaptation of a resident
species can prevent the establishment of a later-arriving invader (monopolization effect,
Urban and de Meester 2009; Urban et al. 2012a. And even mal-adapted residents can
slow range expansions of dispersing species into newly available habitats (“boxcar ef-
fect”: species can climb climate gradients only as fast as species further up the line; Ur-
ban et al. 2012b). In summary, predicting community response to environmental change
requires considering the interactions of two local processes (local community dynamics;
local adaptation) and two regional processes (immigration from regional species pool;
immigration from regional genotype pool; Urban et al. 2012a).

If we move beyond pairwise interactions, both rapid evolution and phenotypic plasticity
have been shown to contribute to community stability (e.g., Werner and Peacor 2003;
Yamamichi et al. 2011). Kovach-Orr and Fussmann (2013) coined the terms “evolutio-
nary and plastic rescue” to describe situations where this enhanced stability prevents
species extinctions after an environmental change. Finally, evolutionary responses to
climate change in complex communities will not always increase the chances of popu-
lation survival, but may instead lead to “evolutionary suicide” (Ferrière and Legendre
2013).

7. Conclusions

We have reviewed theoretical models of adaptation to changing environments, with a
focus on evolutionary rates of quantitative traits. Unlike models of evolutionary rescue
by single mutations, the majority of quantitative-genetic models consider gradual rat-
her than abrupt environmental change. Early models for single traits have introduced the
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concept of a critical rate of environmental change or maximal sustainable rate of evoluti-
on, beyond which long-term persistence is not possible (Lynch and Lande 1993; Bürger
and Lynch 1995). Subsequently, this concept has been extended to include multivariate
selection (Gomulkiewicz and Houle 2009), spatial variation (Duputié et al. 2012) and
phenotypic plasticity (Chevin et al. 2010). Despite the added complexity, it seems unli-
kely that genetic evolution can frequently produce rates of change beyond 0.1 haldanes
for more than a few generations. Higher observed rates are thus likely to be due to phe-
notypic plasticity, or to be accompanied by population decline. Empirical tests of this
theory are challenging (Gomulkiewicz and Shaw 2013), in part due to a strong impact
of non-selective stochastic factors on observed evolutionary rates, and only one study
(Gienapp et al. 2013) has attempted to estimate the critical rate of change for a natural
population (for estimates based on physiological models and laboratory data, see Huey
and Kingsolver 1993 and Willi and Hoffman 2008). We hope that, in the future, more
such estimates will become available from well-studied populations. Another promising
avenue is experimental evolution under gradually changing conditions (Collins 2004;
Perron et al. 2008; Lindsey et al. 2013).

We have also identified four developing areas that significantly increase the realism of
the basic models. These include the interactions between phenotypic plasticity and ge-
netic evolution, the role of genetic architecture for the adaptive potential, adaptation to
shifting spatial gradients, and the influence of interspecific interactions on rates of adap-
tation. The former two concern mainly internal (organismal) features, whereas the latter
two are about external (environmental) factors. Further integrating these various models
promises to significantly advance our understanding of species adaptations to climate
change.
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Mode of Env. Change Phenotypic Evolution Survival/Extinction Effects of Plasticity

Sudden Change
Single Trait Change in mean pheno-

type described by univa-
riate Lande equation (eq.
2.1). Exponential approach
to new optimum (Gomul-
kiewicz and Holt 1995).

Maximal amount of envi-
ronmental change the popu-
lation can handle depends
on width of fitness function,
intrinsic growth rate, initial
population size, and gene-
tic variation (Gomulkiewicz
and Holt 1995)

Approach to new optimum
is facilitated by temporary
increase in phenotypic pla-
sticity and a concomitant re-
lease of hidden genetic va-
riation (Lande 2009). Plasti-
city reduces extinction risk
(Chevin and Lande 2010).

Multiple Traits Change in mean phenotype
described by multivariate
Lande equation (eq. 2.3).
Trajectory to new optimum
biased towards genetic line
of least resistance (Schluter
1996). Lag load decreases
roughly exponentially (Che-
vin 2013).

As for single trait. Extincti-
on risk depends on genetic
variance in direction of se-
lection (Gomulkiewicz and
Houle 2009).

No models available for
the context of environmen-
tal change.

Gradual Change
Population follows the op-
timum with a constant lag
(Lynch and Lande 1993).
Trait correlations can indu-
ce permanent maladaptation
in traits under stabilizing se-
lection (“flying kite effect”;
Jones et al. 2004). Gene-
tic variance increases (Bür-
ger and Lynch 1995; Bürger
1999).

Critical rate of environmen-
tal change (eq. A6) incre-
ases with genetic varian-
ce in direction of moving
optimum and with intrin-
sic growth rate; is maximal
at intermediate strength of
selection (Lynch and Lan-
de 1993; Bürger and Lynch
1995; Gomulkiewicz and
Houle 2009), see Fig. 3.

Adaptive plasticity reduces
the perceived speed of envi-
ronmental change ⇒ incre-
ases critical rate of change,
decreases phenotypic lag
and decreases rate of gene-
tic evolution. Effects may
be counteracted by costs
of plasticity (Chevin et al.
2010).

Random Change
Population’s ability to track
the optimum increases with
autocorrelation of fluctua-
tions (Lande and Shan-
non 1996; Chevin 2013).
Autocorrelated fluctuations
increase genetic variance,
whereas uncorrelated fluc-
tuations do not (Bürger
1999).

Extinction risk elevated if
fluctuations are uncorrela-
ted and occur in directions
with strong selection and
high genetic variation (Che-
vin 2013).

Strong plasticity increases
extinction risk if environ-
mental cues are unreliable
(Reed et al. 2010). Predic-
table fluctuations can select
for increased plasticity.

Spatial Heterogeneity
Spatial heterogeneity cons-
trains adaptation. Trait
interactions can induce
“counter-gradient” clines,
causing traits to evolve
away from the optimum
(Duputié et al. 2012).

Population growth is ma-
ximized at intermediate di-
spersal rates. Critical rate
of environmental change in-
creases if spatial selection
gradient is aligned with di-
rection of abundant gene-
tic variation and weak sta-
bilizing selection (Duputié
et al. 2012).

If plasticity is expressed be-
fore (after) migration, it in-
creases (reduces) migration
load and can decreases (in-
crease) species ranges. Ex-
pressed plasticity increases
near range limits (Chevin
and Lande 2011; Thibert-
Plante and Hendry 2011).

Table 1 – A summary of theoretical predictions for models of adaptation to environmental change.
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8. Appendix

Appendix 1: Adaptation and extinction in the one-dimensional moving-optimum
model

The following is a simplified version of the model by Bürger and Lynch (1995), which
assumes the Gaussian fitness function

wz,t = B exp
(
−

(z − θt)2

2ω2

)
with (A1)

θt = kt (A2)

Here, z is the phenotype of an individual, wz,t its fitness at time t, θt is the optimal pheno-
type, which increases linearly at rate k, and ω2 measures the width of the fitness lands-
cape (i.e., selection is strong if ω2 is small). B is the expected number of offspring (abso-
lute fitness) of a perfectly adapted individual, and hence ln B is the maximal population
growth rate.

If the trait z is normally distributed in the population with mean z̄t and variance σ2
p, the

mean absolute fitness at time t is

w̄t = B

√
ω2

σ2
g + Vs

exp
(
−

(z̄t − θt)2

2(σ2
g + Vs)

)
, (A3)

with Vs = ω2 + σ2
e describing the effective width of the fitness landscape (which is

somewhat “smeared out” by the environmental variance σ2
e). Equation (A3) shows that

the maximal fitness B is reduced by two components of genetic load: The standing load
(the square root term) due to standing genetic variation, and the lag load due to the
deviation of the mean phenotype from the optimum.

For constant σ2
g, a population with mean phenotype z̄t evolves according to Lande’s

equation ∆z̄t = σ2
gβt, where the directional selection gradient at time t is

βt =
d ln w̄t

dz̄t
=

θt − z̄t

σ2
g + Vs

. (A4)

βt measures the proportional change in log mean fitness per unit change of the mean
phenotype. As outlined in the main text, the population will reach a state of dynamic
equilibrium, where it follows the optimum with a constant lag, which is given by
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δ∗t = kt − z̄t = k
σ2

g + Vs

σ2
g

(A5)

(Bürger and Lynch 1995).

At the same time, the population dynamics are governed by Nt+1 = Ntw̄t (e.g., Gomul-
kiewicz and Holt 1995) or a density-dependent version thereof (e.g., Bürger and Lynch
1995). In any case, population survival requires that, given the equilibrium lag δ∗t , the
equilibrium mean fitness w̄∗ ≥ 1. This condition yields the critical rate of environmental
change

kcrit = σ2
g

√√√√
2 ln

(
B

√
ω2

σ2
g+Vs

)
σ2

g + Vs
≈ σ2

g

√
2 ln B

Vs
, (A6)

(Bürger 2000), where the approximation is valid for weak selection (Vs ≥ 20; see Bürger
2000). When scaled by the phenotypic standard deviation, eq. (A6) gives the critical rate
of phenotypic evolution

κcrit = kcrit/σp (A7)

in haldanes. Figure 3 illustrates the value of κcrit as a function of heritability, the width of
the fitness landscape and the reproductive potential of the population. The rule of thumb
κcrit ≤ 0.1 (Bürger and Lynch 1995) is based on Vs between 5 and 100, ln(B) < 1, and
h2 < 0.5. Bürger and Lynch (1995) note that genetic drift and fluctuating selection might
decrease κcrit even further.

Appendix 2: Adaptation and extinction in the multi-dimensional moving-optimum
model

The multivariate version of model (A2) for n selected traits is

wz,t = B exp
(
−

1
2

(z − θt)Tω−1(z − θt)
)
. (A8)

where the fitness landscape is a bell-shaped “hill”, whose orientation and dimensions are
determined by the (positive semi-definite) covariance matrix ω (of size n × n).

If the phenotype distribution is multivariate normal, the mean fitness is

w̄t = B
√

det((ω + P)−1ω) exp
(
−

1
2

(z̄t − θt)T (ω + P)−1(z̄t − θt)
)
, (A9)
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which, as in the univariate case, is reduced by a standing load (the square root term) and
a lag load (the exponential).

The mean phenotype evolves according to the multivariate Lande equation ∆z̄t = Gβt,
where the multivariate selection gradient is

βt = (ω + P)−1(θt − z̄t) (A10)

In the gradual-change scenario, θt = kt, the rate and the direction of environmental
change is described by a speed vector k = (k1, . . . , kn)

′

, which contains the rates of
change in the optimum for each trait. As in the univariate case, the population will even-
tually follow the optimum with a constant lag (assuming the G-matrix is constant):

δ∗t = (ω + P)G−1k

(Jones et al. 2004; Gomulkiewicz and Houle 2009; Chevin 2013; Jones et al. 2012).
Again, the population can persist if w̄∗ ≥ 1. If the vector k is decomposed into its length
and its direction, k = ‖k‖c with c = k/‖k‖, then this condition is satisfied if

‖k‖ ≥

√
2 ln(B) + ln(det((ω + P)−1ω))

cT G−1(ω + P)G−1c
(A11)

(Gomulkiewicz and Houle 2009).

Appendix 3: Fixation of a major mutation

Assume constant selection and a major mutation increasing fitness from 1 − s to 1. Let
the phenotypic effect of this mutation be δz. For simplicity, we look at the haploid case
and neglect genetic variation at other loci as well as environmental variance. Then, the
phenotypic variance of the population at time t is σ2

p,t = pt(1 − pt)δz2, where pt is the
frequency of the beneficial allele. The per generation change in mean phenotype is

∆z̄t = δzpt(1 − pt)
s

1 − s + spt
, (A12)

which in haldanes is

∆zt

σp,t
=

√
pt(1 − pt)

s
1 − s + spt

, (A13)
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independent of δz. The maximal rate of change, which is achieved when p = 1/2, is
s/(2 − s),

which may be large if selection is strong (e.g., for s = 1/2, κmax = 1/2).

Appendix 4: Maximal sustainable rates of phenotypic evolution over “time frames
of conservation interest”

Barrett and Hendry (2012) have argued that, over time frames of conservation interest,
maximal sustainable rates of phenotypic evolution could well exceed the 0.1 haldanes
that have been proposed by Bürger and Lynch (1995) for the long-term equilibrium of
the moving-optimum model. Their point was that environments will not keep changing
forever, and that conservation biology is rather concerned with population survival over
modest periods of time (e.g., 50 generations). Here, we attempt to evaluate this claim
by calculating critical rates of environmental and phenotypic change, kcrit(tcrit,Ncrit) and
κcrit(tcrit,Ncrit), such that the population consists of Ncrit individuals after tcrit generati-
ons. Note that, since we are no longer considering a dynamic equilibrium, the two rates
kcrit and κcrit are no longer equivalent. Our analysis is based on a “quasi-deterministic”
approximation developed by Bürger and Lynch (1995) for studying the mean time to
extinction. This analysis neglects evolution of genetic variance in response to selection,
as well as several sources of stochasticity (see Appendix 5). Its results can, therefore,
only be a first approximation, which however, help to elucidate several principals.

Consider, first, the case Ncrit = N0, that is, we require that the population size does not
decline from its initial value N0 over tcrit generations. The corresponding critical rate of
environmental change can be calculated by rearranging equation (12a) in Bürger and
Lynch (1995), which gives

kcrit(tcrit,N0) = kcrit(∞,N0)
1 − exp

−σ2
g + Vs

σ2
g

tcrit

−1

, (A14)

where kcrit(∞,N0) is the critical rate given in equation (A6) for infinite times. While
kcrit(tcrit,N0) can substantially exceed kcrit(∞,N0), the corresponding critical rates of phe-
notypic change are identical, that is, κcrit(tcrit,N0) = κcrit(∞,N0) = kcrit(∞,N0)/σp. The
reason is that both κcrit(tcrit,N0) and κcrit(∞,N0) are achieved when the mean absolute
fitness w̄ = 1 (see eq. A3). This illustrates that equation (A6) does not depend on the
assumption of an indefinitely moving optimum, and that the corresponding κcrit simply
gives the maximal rate at which the population can evolve without decreasing in size. In
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Figure A1 – Critical rates of environmental change kcrit (top row) and the corresponding rates of phenotypic
evolution κcrit (bottom row), under the premise that the population maintains a minimal size of
Ncrit individuals over tcrit generations. The case tcrit = ∞,Ncrit = N0 (where N0 is the initial
population size, which equals the carrying capacity; black line) corresponds to the case
investigated by Bürger and Lynch (1995). The case tcrit = 50,Ncrit = N0 (grey line) is given by
equation A14. In the bottom row, red and grey lines are identical, because
κcrit(tcrit,N0) = κcrit(∞,N0). Parameters are as in the bottom row of Fig. 3 with B = 2.

other words, rates of phenotypic evolution can only exceed κcrit(∞,N0) if population size
declines.

To study this case, we now allow moderate population decline while still requiring the
population size to remain above a critical threshold Ncrit < N0 over tcrit generations. No
analytical solution exists (Bürger and Lynch 1995), but the critical rates can be estimated
numerically by iterating equation (2.4). Since a reduction in population size also entails
a reduced genetic variance, we followed Bürger and Lynch (1995) by assuming that
σ2

g at any time is given by the stochastic house-of-cards approximation for the current
N.

Figure A1 shows maximal rates of environmental and phenotypic change under the cons-
traint that the population is to maintain a minimal size of Ncrit = 50 individuals over
tcrit = 50 generations, and compares the results to those from the Bürger and Lynch
(1995) framework (no reduction in population size over infinite times) and those from
equation (A14) (no reduction in population size over 50 generations). The critical ra-
te of environmental change, kcrit increases substantially when short-term reductions in
population size are allowed (top row of Figure A1). In contrast, the differences in the
critical rates of phenotypic change, κcrit are much less pronounced (bottom row), in par-
ticular for small populations (which might be of highest interest for conservation). Even
in large populations, the relative increase in κcrit rarely exceeds 30% (unless selection is
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extremely strong). Given the large uncertainty in our estimates of evolutionary rates (see
below), this increase appears minor, and we conclude that considering adaptation over
“time-frames of conservation interest” does not substantially alter the rule-of-thumb that
critical rates are typically around 0.1 haldanes.

Appendix 5: Stochastic fluctuations in evolutionary rates
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Figure A2 – Observed generation-to-generation rates of phenotypic change κ in haldanes for the entire
population (n = N, red line) or based on a sample of n = 100 individuals (grey line), for two
simulation runs with carrying capacities (and initial population sizes) N0 = 1000 and N0 = 10000,
respectively, and parameters as in Fig. A1. The inset shows the trajectories of the mean phenotype
z̄ and the phenotypic optimum zopt. The spike in κ around generation 40, which partially closes the
large initial phenotypic lag (insert), is due to an increase in genetic variance (see main text).
Fluctuations in the red line reflect genetic drift and environmental variance, whereas those in the
grey line are largely due to sampling effects. In addition, rates measured in haldanes vary due to
fluctuations in the phenotypic variance σ2

p (for potential problems of scale, see Hereford et al.
2004; Hansen and Houle 2008).

The analysis presented in Appendix 4 was based on a deterministic approximation,
which neglects various sources of stochasticity (see main text). To illustrate this sto-
chasticity, we conducted individual-based simulations as described in Bürger and Lynch
(1995). Two exemplary runs are shown in Figure A2. While the population mean pheno-
type follows the moving optimum, generation-to-generation rates of phenotypic change
(κ) in haldanes fluctuate as a consequence of non-selective factors such as genetic drift,
environmental variance and fluctuations in the phenotypic variance σ2

p. Observed fluc-
tuations in κ are further amplified if only a part of the population is sampled (grey lines
in Fig. A2), and their range can largely surpass the 0.1 haldanes predicted by Bürger and
Lynch (1995), see Figure A3. Similarly, in small populations, drift and environmental
variance alone can induce rates of changes of up to 0.15 haldanes (Fig. A4). Overall,
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these results cast serious doubt on our ability to predict the fate of populations based on
short-term measures of micro-evolutionary change.
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Figure A3 – Distribution of observed generation-to-generation rates of phenotypic change κ in haldanes, over
100 simulation runs similar to those in Fig. A2. In (a), rates based on the entire population (n = N)
or on samples of size n = 100 are shown for various initial population sizes (and carrying
capacities) N0. In (b), N0 = 10000 was kept constant and only sample size n was varied. Other
parameters are as in Fig. A1.
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Figure A4 – Expected absolute rate of phenotypic change κ between generations due to genetic drift and
environmental variance, which contribute 2

√
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(1 − h2)/(πN), respectively (see

main text), as a function of heritability h2 and population size N = Ne (inset). Environmental
variance σ2

e refers to the phenotypic variance caused by developmental instability and
micro-environmental fluctuations.
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Fisher’s geometric model with a moving optimum

s. matuszewski, j. hermisson, m. kopp

Abstract. Fisher’s geometric model has been widely used to study the effects of pleiotropy
and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher’s mo-
del in which a population adapts to a gradually moving optimum. Key parameters are the rate
of environmental change, the dimensionality of phenotype space, and the patterns of mutational
and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the
multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results
are based on an “adaptive-walk approximation”, which is checked against individual-based si-
mulations. We find that (i) the distribution of adaptive substitutions is strongly affected by the
ecological dynamics and largely depends on a single composite parameter γ, which scales the
rate of environmental change by the “adaptive potential” of the population; (ii) the distribution
of adaptive substitution reflects the shape of the fitness landscape if the environment changes
slowly, whereas it mirrors the distribution of new mutations if the environment changes fast;
(iii) in contrast to classical models of adaptation assuming a constant optimum, with a moving
optimum, more complex organisms evolve via larger adaptive steps.

1. Introduction

Natural populations are constantly faced with environmental changes that force them to
either adapt or go extinct. In Arabidopsis thaliana, Hancock et al. (2011) recently iden-
tified candidate SNPs scattered over the entire genome that affect flowering time and
vernalization and are strongly correlated with climate variables. Likewise, annual cycles
of reproduction of various plants and animals have been adjusted to the peak availability
of food as a response to changing environments (Gienapp et al. 2013). Conversely, mi-
gratory bird species that fail to respond phenologically decline in population size (Møller
et al. 2008). The brood parasitic common cuckoo (Cuculus canorus) population, for ex-
ample, declined in size by 6% since 1980, as they failed to synchronize their reproductive
and migratory cycles with those of their particular host species, to which they are adap-
ted to in terms of egg size, coloration and spottiness (Antonov et al. 2010; Møller et al.
2011).

In recent years, numerous theoretical studies of the population genetics of adaptation ha-
ve attempted to provide a formal framework for the observed empirical phenomena (for
a review see Orr 2005b). Central to these studies is the description of the fundamental
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event during adaptation, that is, the substitution of a resident allele (i.e. gene variant) by
a beneficial mutation. The statistical description of this process has been at the heart of
evolutionary biology (Charlesworth 1996), and is key to addressing seemingly simple
questions, such as: From the set of mutations that emerge in a population, which are the
ones that will get fixed and what is their effect on phenotype or fitness? Will adaptation
proceed by many steps of small effect or just by a few adaptive substitutions of large
effect? Do simple organisms evolve faster than complex ones?

One of the most influential models of adaptive phenotypic evolution is Fisher’s geome-
tric model (FGM) (Fisher 1930). In this model, a phenotype is treated as a point in a
multidimensional trait space, and mutations are random vectors in this space, which are
beneficial if they bring the mutant phenotype closer to a nearby local optimum. Thus,
FGM implicitly assumes “universal pleiotropy” (each mutation affects every trait) and,
therefore, equates pleiotropy with “organismic complexity”. Despite its simplicity and
the lack of a clear genetic context (Chevin et al. 2010), FGM, more than 80 years af-
ter its proposal, has yielded several robust predictions supported by growing empirical
evidence: First, the distribution of fitness effects of new mutations is well approximated
by a (displaced) negative gamma distribution (Martin and Lenormand 2006a; for empi-
rical support see Hietpas et al. 2013). Second, the distribution of adaptive substitutions
is approximately exponential, meaning that most fixed mutations are of small and only
a few are of large effect (Orr 1998; for empirical support see Rockman 2012, but see
Bell 2009). Finally, fixed mutational effects become on average smaller as organismic
complexity increases (Orr 2000; for empirical support see Cooper et al. 2007) – a phe-
nomenon that has been termed “the cost of complexity” (Orr 2000; Welch and Waxman
2003; Wagner and Zhang 2011).

The classical version of FGM, however, only addresses the situation where a population
is confronted with constant stabilizing selection after a sudden change in the environ-
ment (e.g., Orr 2002; Martin and Lenormand 2006a). In nature, in contrast, environmen-
tal change may as often be gradual (Hairston et al. 2005; Thompson 2005; Parmesan
2006; Perron et al. 2008). Collins (2011b) recently emphasized that “using [models of]
instantaneous environmental change to understand adaptive evolutionary responses to
gradual change will not only underestimate the amount of adaptation, but also predict
the wrong genotypic and phenotypic changes.” Indeed, the necessity to include gradu-
al environmental change into studies of adaptive evolution has long been recognized
in quantitative genetics (e.g., Maynard Smith 1976). A number of studies have focused
on the so-called moving-optimum model, in which the optimal values of a quantitati-
ve trait change over time (Lynch and Lande 1993; Bürger and Lynch 1995; Waxman
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and Peck 1999; Bürger and Gimelfarb 2002; Nunney 2003; Collins et al. 2007; Gor-
do and Campos 2013); extensions include multivariate phenotypes and the effects of
pleiotropic constraints (Jones et al. 2004; Gomulkiewicz and Houle 2009; Jones et al.
2012; Chevin 2013; Lourenco et al. 2013). The focus of these studies was, however, on
the rate of adaptation (Lynch and Lande 1993; Bürger and Lynch 1995; Gomulkiewicz
and Holt 1995; Nunney 2003; Hansen and Houle 2008; Chevin 2013; Kopp and Ma-
tuszewski 2014) and the evolution and maintenance of genetic variation (Bürger 1999;
Waxman and Peck 1999; Bürger and Gimelfarb 2002; Gomulkiewicz and Houle 2009;
Jones et al. 2004, 2012). In contrast, characteristics of individual substitutions have been
addressed only recently (Collins et al. 2007; Kopp and Hermisson 2007, 2009a,b). In
particular, Kopp and Hermisson (2007, 2009a) employed the moving-optimum model
of a single quantitative trait to study the fixation time of single mutations and the order
in which mutations of different phenotypic effect sizes become fixed. Their latest study
(Kopp and Hermisson 2009b) addresses the distribution of adaptive substitutions during
long-term adaptation. Specifically, they showed that this distribution is almost entirely
determined by a scaled rate of environmental change γ, which combines ecological and
genetic factors (see below), and is unimodal (with an intermediate mode) rather than
exponential. That is, most substitutions have an intermediate phenotypic effect, while
small- and large-effect substitutions are rare.

An obvious next question is how these results are affected if phenotypic adaptation to
gradual change is constrained by pleiotropic correlations among the traits under selec-
tion (as frequently observed in nature; Svensson et al. 2001; Roff and Fairbairn 2012;
Guerreiro et al. 2012). This is the aim of the present article. This way, we integrate two
modelling traditions, which have had little overlap so far: on the one hand, the multi-
variate moving-optimum model as used by Jones et al. (2004, 2012), and on the other
hand, Fisher’s classical geometric model for the study of adaptive effect sizes (Fisher
1930; Orr 1998, 2000). We study how the expected distribution of adaptive steps is in-
fluenced by the rate of environmental change, the number of traits under selection (i.e.,
“organismic complexity”) and by selectional and mutational correlations (i.e., the shapes
of the fitness landscape and the multivariate distribution of new mutations). Our analysis
shows that the genetic basis of adaptation crucially depends on the tempo and mode of
environmental change.
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2. Model and Methods

2.1. Model description

Phenotype, environmental change and selection. We consider the evolution of n
phenotypic traits z = (z1, . . . , zn)′, each of which is under Gaussian stabilizing selec-
tion with regard to a time-dependent optimum zopt(t):

w(z, t) = exp
[
−

(
z − zopt(t)

)′
Σ−1

(
z − zopt(t)

)]
. (1)

where ′ denotes transposition and Σ (and thus also Σ−1) is an n × n positive defini-
te and symmetric matrix. Throughout this paper, we choose the linearly moving opti-
mum,

zopt(t) = vt, (2)

where v = (v1, . . . , vn)′ is the vector of environmental change. In the following, we will
interchangeably refer to n as the “degree of pleiotropy” or the “degree of complexi-
ty”.

The matrix Σ describes the shape of the fitness landscape (including a contribution of
environmental noise to the phenotype z, which otherwise is not modeled explicitly; see
Bürger 2000). We will say that selection is isotropic if Σ is proportional to an identity
matrix, Σ = σ2I (σ2 > 0); and selection is correlated if Σ has non-zero off-diagonal
entries. As a measure for the average width of the fitness landscape, we define

σ̄2 =
n
√

det(Σ), (3)

which is the geometric mean of the eigenvalues of Σ (if the fitness landscape is repre-
sented by an ellipse, as in Fig. S1_1 below, the axes of the ellipse have length propor-
tional to the square root of the eigenvalues). Note that overall selection is strong if σ̄2 is
small.

Genotypes and mutation. In accordance with Fisher’s original model, we make the
assumption of “universal pleiotropy”, that is, each mutation affects every trait. We denote
by α the vector of the phenotypic effects of a mutation, and we assume that its distri-
bution p(α) (which we will refer to as the distribution of new mutations) is multivariate
normal with mean 0 and covariance matrix M (thus, we assume a continuum-of-alleles
model), that is

p(α) =
1

√
2πn det(M)

exp
(
−

1
2
α′M−1α

)
. (4)
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Like Σ, M has dimensions n × n and must be symmetric and positive definite. The dia-
gonal elements of M are the variances of the mutational effects for individual traits,
whereas off-diagonal elements are the mutational covariances. We will say that mutation
is isotropic if M is proportional to an identity matrix, M = m2I (m2 > 0); and mutation
is correlated if M has non-zero off-diagonal entries. A measure for the average variance
of mutational effects (in an arbitrary direction) is given by

m̄2 =
n
√

det(M). (5)

When comparing different degrees of pleiotropy/complexity, we typically assume that
the distribution of mutational effects on a given trait is independent of the total number
of traits n (so-called Euclidean superposition model; Turelli 1985; Wagner 1988; Wag-
ner and Zhang 2011). For example, with isotropic mutation (see above), adding more
traits does not change the parameter m̄2. As a consequence, the average total effect of a
mutation increases with n.

In Supporting Information 2, we introduce a transformation that shows that the general
model outlined above can always be reduced to a model with isotropic selection (Σ =

σ2I) and movement of the optimum along a single dimension (v = (v1, 0, . . . , 0)′). In
this transformed phenotype space, the effects of selectional and mutational correlations
are entirely captured by the M-matrix (and, in particular, the orientation of its leading
eigenvector/first principal component) relative to the direction of environmental change.
Furthermore, all vectors (e.g., z, v,α) are measured relative to the average width of the
distribution of new mutations m̄.

2.2. The adaptive-walk approximation

The aim of this article is to investigate the distribution of adaptive substitutions φ(α),
that is, the distribution of the effects of those mutations that eventually go to fixation
and contribute to adaptation. Our main analytical tool will be the “adaptive-walk ap-
proximation”. Following Kopp and Hermisson (2009b), this approximation is based on
the simplifying assumption that whether a new beneficial mutation goes to fixation or is
lost by drift is determined immediately after its appearance and that, in the former case,
fixation occurs instantaneously. Therefore, the population can be considered monomor-
phic nearly all of the time, and adaptation occurs as a series of discrete “steps”, which
together will be referred to as an “adaptive walk” (Kauffman 1993; Orr 2000). This ap-
proximation ignores interactions between co-segregating mutations, such as epistasis,
linkage and Hill-Robertson interference (Hill and Robertson 1966).
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Adaptive walks can easily be simulated using the following algorithm: (i) draw the wai-
ting time for a new mutation from an exponential distribution with parameter Θ/2 (where
Θ is a standard measure for the population- and genomewide mutation rate); (ii) draw
the size of the mutation from its distribution p(α) (eq. 4); (iii) accept the mutation (i.e.,
perform an adaptive step) with its fixation probability

pfix (x, y, t) ≈

2s (x, y, t) for s (x, y, t) > 0

0 for s (x, y, t) ≤ 0
(6)

(Haldane 1927), where y is the current population phenotype, x = y + α is the mutant
phenotype, and

s (x, y, t) =
w(x, t)
w(y, t)

− 1 (7)

denotes the selection coefficient of the mutant x in a wild-type population with phenotype
y at time t. Note that equation (6) assumes s to be small and neglects chance fixations
of deleterious mutations. In some simulations, we also used the slightly more accurate
approximation pfix ≈ max(0, 1 − exp(−2s)). (Even more accurate approximations exist
that account for the change in the selection coefficient during the fixation process due to
the environmental change, see Uecker and Hermisson 2011; however, within the simple
framework of the adaptive walk model we do not obtain further improvement.)

2.2.1. The distribution of adaptive substitutions

In the following we derive an analytical expression for the distribution φ(α|y) of the size
α = x − y of the next adaptive substitution given an initial phenotype y at time t = 0.
First, equation 7 can be approximated by

s (x, y, t) ≈ (y − vt)′ Σ−1 (y − vt) − (x − vt)′ Σ−1 (x − vt)

= λx,y
(
t − τx,y

)
,

(8a)

with

λx,y = 2(x − y)′Σ−1v (8b)

τx,y =
(x − y)′Σ−1(x + y)

2(x − y)′Σ−1v
(8c)

(provided λx,y , 0). That is, with a linearly moving optimum, the selection coefficient
increases or decreases approximately linearly over time, where λx,y is the rate of change
and τx,y is the time when s reaches zero (the “lag time” in the terminology of Kopp and
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Hermisson 2007). This time dependence of the selection coefficient is illustrated in Sup-
porting Information 1. The distribution φ(α|y) can then be calculated in four steps.

The instantaneous rate of substitutions. We denote by g(t, y) the rate at which sub-
stitutions of any kind happen at time t. g(t, y) is given by

g(t, y) = Θ

∫
χ(t,y)

p(x − y)s(x, y, t)dx. (9)

where χ(t, y) = {x | s (x, y, t) > 0} is the set of all mutant phenotypes with positive
selection coefficient at time t. The integrand in (9) is simply the product of the proba-
bility that a mutation with phenotype x arises (Θp(α)/2) and its probability of fixation
approximated as (2s(x, y, t), see eq. 6).

The waiting-time distribution. We denote by F(t|y) the probability that no fixation
has happened before time t (thus, 1−F(t|y) is the cumulative distribution function of the
waiting time to the next fixation). From the theory of Poisson processes,

F(t|y) = exp
(
−

∫ t

0
g(τ, y)dτ

)
. (10)

The conditional distribution of step sizes. The distribution of step sizes, given that
the step occurs at time t, is simply proportional to the distribution of new mutations
weighted by the selection coefficient (Gillespie 1983; Kopp and Hermisson 2009b):

φ(α|t, y) =


Θp(α)s(y+α,y,t)

g(t,y) if s > 0

0 otherwise.
(11)

The distribution of step sizes. Finally, the unconditional distribution of the size of the
next adaptive step can be calculated by integrating over all possible waiting times (see
Kopp and Hermisson 2009b), yielding

φ(α|y) =

∫ ∞

0
φ(α|t, y) f (t|y)dt, (12a)

where f (t|y) = (1−F(t|y))′ is the density of the waiting-time distribution. Equation (12a)
can also be written as
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φ(α|y) =


Θ

∫ ∞
max(0,τx,y)

p(α)s (x, y, t) F(t|y)dt if λx,y ≥ 0

Θ
∫ max(0,τx,y)

0
p(α)s (x, y, t) F(t|y)dt if λx,y < 0

(12b)

where τx,y is given by equation (8c).

2.2.2. The parameter γ

Supporting Information 3 shows that the distribution of step sizes in the adaptive-walk
approximation depends only on the distribution of new mutations and the composite
parameter

γ =

√
v′Σ−1v

Θ (σ̄/m̄)−3/2 (13)

where the term in the numerator can be interpreted as the rate of environmental change
relative to the width of the fitness landscape in the direction of the moving optimum. If
selection is isotropic, equation (13) reduces to

γ =

‖v‖
m̄

Θ (σ̄/m̄)−2 , (14)

which is equivalent to the γ defined by Kopp and Hermisson (2009b) for the single-trait
case, except for differences in notation, and is independent of n. Here, σ̄/m̄ describes
the mean width of the fitness landscape relative to the mean effect size of new muta-
tions, and (σ̄/m̄)−2 can be seen as a scale-free measure for the strength of stabilizing
selection. The product of this term and the population-wide mutation rate Θ determines
the “adaptive potential” of the population, γ can, thus, be interpreted as a scaled rate of
environmental change (how fast the population needs to adapt relative to how readily it
can adapt). In particular, it can be used to distinguish two limiting cases (Kopp and Her-
misson 2009b). If γ is small, the population can easily follow the optimum. The adaptive
process is, therefore, environmentally-limited, and the distribution of adaptive substitu-
tions is primarily determined by the lag time τx,y, which determines when a mutation of
effect α = x−y becomes beneficial (“dynamic sieve” sensu Kopp and Hermisson 2009b).
If γ is large, the population will follow the optimum with a large lag. In this case, the
adaptive process is genetically-limited, and the distribution of adaptive substitutions is
largely determined by the distribution of new mutations p(α) (“static sieve” sensu Kopp
and Hermisson 2009b). Numerical values for γ in these two regimes are discussed in
Supporting Information 3.
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2.2.3. The environmentally-limited regime

In the environmentally-limited regime, the Gaussian distribution of new mutations, p(α),
can be approximated by a uniform distribution pu(α) with the same density at α = 0, that
is,

p0 = pu(α) = p(0) =

(
1

√
2πm̄2

)n

(15)

(see Kopp and Hermisson 2009b). This approximation is justified if the optimum moves
so slowly that all beneficial mutations are small (α close to 0). It allows to directly
calculate several properties of the distribution of adaptive substitutions. In particular, if
the wild-type phenotype y = 0 (i.e., the population is perfectly adapted at time t = 0), the
distribution of the “first” substitution (and all its moments) can be calculated analytically
(Supporting Information 4).

2.3. Individual-based simulations

In addition to our adaptive-walk approximation, we conducted individual-based simula-
tions (implemented in C++, available upon request; see Bürger 2000; Kopp and Hermis-
son 2009b), which allow multiple mutations to segregate simultaneously, while making
additional assumptions about the genetic architecture of the selected traits, the life cycle
of individuals and the regulation of population size.

The simulations follow the evolution of a population of individuals with discrete and
non-overlapping generations. Individuals are characterized by L unlinked diploid loci,
which additively determine the n-dimensional phenotype z. According to the universal-
pleiotropy assumption, each allele at each locus is specified by a vector of contributi-
ons to the n traits. We neglect environmental variance and, therefore, equate genotypic
and phenotypic values. Mutations occur at rate u per (diploid) locus and have effects
drawn from the distribution p(α) (eq. 4). Each generation, the following steps are per-
formed:

(1) Viability selection: Individuals are removed with probability 1 − w(z) (eq. 1).

(2) Population regulation: If, after selection, the population size N exceeds the
carrying capacity K, N − K randomly chosen individuals are killed (Bürger
2000).

(3) Reproduction: The surviving individuals are randomly assigned to mating pairs,
and each mating pair produces exactly B offspring (typically, B = 4). Note that,
with this procedure, the effective size of a well-adapted population exceeds the
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census size (e.g., for B = 4, Ne = 4/3N p. 274 Bürger 2000). The offspring
genotypes are derived from the parent genotypes by taking into account segre-
gation, recombination and mutation.

To monitor adaptive substitutions, the program keeps track of the genealogical relation-
ship between the alleles at a given locus. A substitution is recorded whenever there is
a change in the root of such an “allele tree” (i.e., when the surviving alleles get a new
most recent common ancestor). This is equivalent to calling an allele fixed if the entire
population has been taken over by that allele or its descendants (e.g., Gillespie 1993;
Park and Krug 2007).

In all simulations, the initial population contained K = 1000 identical, homozygous indi-
viduals with phenotype 0 (i.e., the population was perfectly adapted at time 0). The num-
ber of loci was set to L = 10 and the mutation rate per diploid locus to µ = 5·10−6 per ge-
neration. This yields a population- and genome-wide mutation rate Θ = 2NLu = 0.2. We
chose this value to limit complications from interference between alleles co-segregating
at the same locus, which have been thoroughly studied for the one-trait case in Kopp
and Hermisson (2009b) (see Discussion). When comparing individual-based simulati-
ons to adaptive-walk simulations with differing Θ, the speed of environmental change v
was adjusted accordingly to reach the same value of γ (eq. 13). Simulations were stop-
ped after 1000 substitutions had been recorded. Alternatively, we only recorded the first
adaptive substitution for 1000 replicate runs to study the initial phase of the adaptive
process. Finally, for some parameter combinations, the simulations terminated because
the population went extinct (e.g., if the environmental change was too fast).

3. Results

Our primary interest is the distribution of adaptive substitutions, that is, the distribution
φ(α) of the effects of those mutations that go to fixation and contribute to adaptation
(eq. 12).

3.1. The distribution of adaptive substitutions and phenotypic complexity

Key properties of the distribution of adaptive substitutions can already be seen from a
simplified model in which both mutation and selection are isotropic. Note that any model
in which the two matrices M and Σ are proportional to each other, i.e., have the same
shape and orientation, can be reduced to this case via the transformation described in
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Supporting Information 2. The same holds true for any model under the environmentally-
limited regime, in which the shape of the M-matrix is irrelevant (since any distribution
of new mutations can be approximated by a uniform distribution).

In the isotropic model, the distribution of adaptive substitutions is symmetric around
the direction of the moving optimum. Figure 1 shows this distribution in adaptive-walk
simulations with n = 2 traits. The marginal distribution in the direction of the opti-
mum has an intermediate mode and resembles a gamma distribution, in accordance with
previous results for the one-dimensional moving-optimum model (Kopp and Hermisson
2009b), and in contrast to the exponential pattern predicted for the classical Fisher model
with constant selection (Orr 1998). While the population always follows the optimum,
pleiotropic side-effects of fixed mutations frequently lead to maladaptation of the traits
under pure stabilizing selection. The distribution of these deviations is bell-shaped and
centered around zero (Fig. 1).

For small γ, explicit analytical results can be obtained for the distribution of the first
adaptive substitution in the environmentally-limited regime (Supporting Information 4,
eq. S19). In particular, assuming v = (v1, 0, . . . , 0), the mean and variance in the direction
of the optimum are given by

E(α1|0) = m̄
(

γ

η(n)(2π)−
n
2

) 1
n+3

Γ

(
n + 4
n + 3

)
(16)

Var(α1|0) = m̄2
(

γ

η(n)(2π)−
n
2

) 2
n+3

n + 5
n + 4

Γ

(
n + 5
n + 3

)
− Γ

(
n + 4
n + 3

)2 , (17)

where η(n) = π
n
2

(n+3)Γ(2+ n
2 ) . Interestingly, the coefficient of variation

√
Var(α̃1|0)/E(α̃1|0)

depends only on n (see Fig. S4_2). The variance in directions orthogonal to the optimum
is given by

Var(α2|0) =
m̄2

n + 4

(
γ

η(n)(2π)−
n
2

) 2
n+3

Γ

(
n + 5
n + 3

)
. (18)

Additional results regarding higher moments of α1 and α2, the total step size ‖α‖ and the
magnitude of pleiotropic deviations are given in Supporting Information 4.

In accordance with previous findings (Kopp and Hermisson 2007; Collins et al. 2007;
Kopp and Hermisson 2009a,b), equations 16-18 show that the mean step size in the
direction of the optimum increases with the scaled rate of environmental change γ, and
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Figure 1 – The multivariate distribution of the first adaptive substitution (left) and for the entire adaptive walk
(right) for n = 2 traits, when the optimum moves slowly in the direction of the first trait. In the
top-left figures on each side, shades of grey indicate the frequency of a given step size in
adaptive-walk simulations with normally-distributed mutational effects (with dark grey
corresponding to high frequency), with the white cross showing the observed mean. The contour
lines on the left represent the probability density predicted for a uniform distribution of new
mutations (environmentally-limited regime, eq. S19; highest probability density intervals for
0.25, 0.5, 0.75, 0.95 from inside out). Histograms show the marginal distribution of the first and
second trait, α1 and α2, and the distribution of the total step size ‖α‖. Parameter values are
v1 = 10−5,Θ = 1, σ2 = 10, ρΣ = 0,m2 = 1, ρM = 0; the scaled rate of environmental change
γ = 10−4.

so does the magnitude of pleiotropic deviations (Fig. S4_1, S5_1). This fundamental
relationship also holds true over the entire adaptive walk and beyond the environmental
limit (Fig. 2, S5_2, S5_3).

Some discussion is warranted regarding the dependence of the mean step size on the
average variance of mutational effects m̄2. Increasing m̄2 decreases γ and, consequently,
leads to a reduced mean step size in the transformed phenotype space (see Supporting
Information 2, eq. S28), where phenotypes are measured relative to m̄. When phenotypes
are measured in arbitrary units, however, the mean step size increases with m̄ (eq. 16,
see also Kopp and Hermisson 2009b). The reason is that an increase in m̄ reduces the
rate of appearance of small mutations (and, hence the parameter p0 in the environmental
limit, see eq. 15), which reduces the ability of the population to follow the optimum
closely.

A key result of our analysis is that, for a given speed of environmental change, the mean
step size in direction of the optimum increases with the number of traits under selection,
that is, with the level of pleiotropy or organismic complexity (eq. 16, Fig. 2, S4_1, see
also Fig. S5_2 and S5_3), and a similar result also holds for fitness (Fig. S5_4). At first,
this result seems to contradict the “cost of complexity” argument from Fisher’s model,
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which states that, in complex organisms, large mutations are unlikely to contribute to
adaptation. The explanation is that, precisely because fewer mutations are beneficial if n
is large (because there are more directions in which they can “go wrong”; Orr 1998), the
time to the first step increases (see Supporting Information 4). By this time, the optimum
has already moved considerably, such that also large mutations are beneficial (see Sup-
porting Information 1 and Fig. S1_1), even if they have significant pleiotropic effects.
These effects – in particular, the increased waiting time between adaptive substitutions –
also affect population persistence: as shown in Figure S5_5, the mean time to extinction
decreases with organismic complexity, and so does the maximal rate of environmental
change a population can tolerate (Bürger and Lynch 1995).
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Figure 2 – Distribution of the size α1 of the first adaptive substitution (left) and for the entire adaptive walk
(right) in the direction of the moving optimum, as a function of phenotypic complexity n for
different rates of environmental change v1. Symbols in the left-hand panel show the predicted mean
of the first adaptive substitution when assuming a uniform distribution of mutational effects
(environmentally-limited regime, eq. 16). This approximation produces a good match as long as the
predicted ᾱ1 does not exceed the (mean) standard deviation of the effects of new mutations (m̄ = 1).
Beyond this mark, the realized step size is reduced due to limited availability of large-effect
mutations. Compared to the first-step, the increase of ᾱ1 with n is less pronounced when
considering the entire adaptive-walk. The reason is that subsequent substitutions will often
compensate for pleiotropic side effects of previous steps rather than follow the moving optimum.
Boxplots are based on 10000 replicated adaptive-walk simulations. The box contains 50% of the
data. Horizontal white bars indicate the mean step size ᾱ1. Whiskers extend to maximally 1.5 times
the size of the box. Outliers are not shown. Parameters: σ2 = 10, ρΣ = 0,Θ = 1,m2 = 1, ρM = 0; the
scaled rate of environmental parameter γ = 10 · v1.

3.2. Selectional and mutational correlations

To study the orientation of the distribution of step sizes in the n-dimensional phenotype
space, we now consider a model with correlated selection and correlated mutations. We
will assume that the angle between the direction of the optimum v and the leading eigen-
vector of Σ and/or M is 45◦. More precisely, the optimum moves along the first trait axis
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(v = (v1, 0, . . .)′), whereas the fitness landscape and/or the distribution of new mutations
are concentrated along the main diagonal: All diagonal elements of Σ (M) are equal to
σ2 (m2) and all off-diagonal elements have magnitude ρΣσ

2 (ρMm2), where 1 > ρΣ ≥ 0
(1 > ρM ≥ 0 ) is the magnitude of selectional (mutational) correlation. In this case, the
fitness landscape (distribution of new mutations) is symmetric around the leading eigen-
vector of Σ(M), ν = (1, 1, 1, . . . ). We first study the effects of mutational and selectional
correlation separately. Exemplary adaptive walks for strong correlations are shown in
Figure 3.

Figure 4 shows the multivariate distribution of adaptive substitutions, φ(α), for different
strengths of selectional and mutational correlations under varying speeds of environmen-
tal change for n = 2 traits. As in the isotropic case (Fig. 1), the distribution φ(α) is biased
towards the direction of the optimum, with pleiotropic side-effects of fixed mutations on
average being neutral (Fig. S5_6, S5_7). The shape of the distribution, however, critical-
ly depends on the interaction between the type and strength of correlations and the rate of
environmental change. Mutational correlations tend to align the distribution of adaptive
substitutions along the leading eigenvector of M, with stronger mutational correlations
leading to stronger correlation in step sizes (Fig. 4, Fig. 5 and S5_8 top left). This effect
is strongest in fast-changing environments and gradually gets weaker as the rate of en-
vironmental change decreases (Fig. 5), until becoming almost unnoticeable. Selectional
correlations similarly orientate the distribution of adaptive substitutions along to the lea-
ding eigenvector of Σ (Fig. 4, 5 bottom left, S5_8). In contrast to mutational correlations,
however, their impact is strongest if environmental change is slow (for small γ and the

first step, the correlation is given by ρΣ

√
Var(α2 |0)
Var(α1 |0) ≈ ρΣ, see eq. S36). Correlations in step

sizes remain almost unchanged for a broad range of rates v1, before dropping off sharply
once environmental change gets sufficiently fast.

These results still hold true when mutational and selectional correlations are both present
but with opposite signs. As shown in Figure 6, the correlations in step sizes resemble the
selectional correlations if environmental change is slow and resemble the mutational cor-
relations if environmental change is fast. At intermediate rates of environmental change,
the two effects cancel, and correlations in step sizes are close to zero.

Mutational and selectional correlations depend on the coordinate system in which mul-
tivariate phenotypes are measured (i.e., on the definition of traits). As shown in Suppor-
ting Information 2, there is always a transformation to coordinates in which selection
(but not necessarily mutation) is isotropic. The key question, therefore, is whether or not
the distribution of new mutations is aligned with the fitness landscape (in terms of the
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eigensystems/principle components of the matrices M and Σ). Our results can, thus, be
reformulated as follows: The distribution of adaptive substitutions reflects the shape and
orientation of the fitness landscape if adaptation is environmentally limited (i.e., if the
optimum changes slowly), whereas it mirrors the distribution of new mutations (but with
a mean shifted in the direction of the optimum) if adaptation is genetically limited (i.e.,
if the environment changes fast). Intuitively, as long as environmental change is slow, the
population is close to the optimum and the shape of the distribution of new mutations is
practically irrelevant, because only a small subset of new mutations from the center of
their distribution can pass the selective sieve (Kopp and Hermisson 2009b). In contrast,
if environmental change is fast, the population is far from the optimum, and the selective
sieve has less impact on the adaptive process than the supply with new mutations. In
the limit, pleiotropic side effects become negligible and the selection coefficient of new
mutations depends only on their effect in the direction of the optimum.

Finally, mutational and selectional correlations also impact the trajectory of the mean
phenotype (Fig. 3, 5, S5_8; see also Jones et al. 2004). In particular, strong mutational
correlations can cause the mean phenotype to trail above and behind the moving opti-
mum – an effect that has been phrased the “flying-kite effect” (Jones et al. 2004). Con-
versely, with strong (positive) selectional correlation, the phenotypic mean follows the
optimum behind and below. In analogy to the flying-kite effect, we call this phenomenon
the “diving-kite effect”. Both effects can be explained by a deterministic model in which
the change in the mean phenotype depends primarily on the leading eigenvector of M and
the selection gradient β(t) (Figure 7). Under strong mutational correlation, the change in
mean phenotype is initially dominated by the leading eigenvector of M, causing the “rise
of the kite”, until it is balanced by the selection gradient pointing towards the optimum.
Under strong selectional correlation, however, the selection gradient is initially orthogo-
nal to the leading eigenvector of Σ (i.e., the “ridge” of the fitness landscape), causing the
mean phenotype to “dive”. Again, the trajectory will gradually change until it is aligned
with the direction of the moving optimum (where it is aligned with the axis of largest
width of the fitness landscape). Observing either the flying or the diving kite requires a
sufficiently fast-changing environment (the kite needs to be pulled strongly enough) and
at least intermediate levels of mutational or selectional correlations (right column Fig. 5,
S5_8). As the number of traits increases, the strength of both effects decreases on a per-
trait basis, but their total strength increases (Supporting Information 4 and Fig. S4_1).
Independently of the number of traits, the population on average takes smaller steps in
the direction of the optimum as correlations (either selectional or mutational) become
stronger (Fig. S5_2, S5_3).
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3.3. Accuracy of the approximations

Our main analytical tool has been the adaptive-walk approximation with normally distri-
buted mutational effects. When compared to individual-based simulations of an explicit
genetic model, its performance is often surprisingly good (e.g., Fig. 4, 5, S5_2, S5_3,
S5_8). Significant deviations occur mainly if the population-wide mutation rate Θ is
high (Θ � 1), which, in violation of the adaptive-walk assumption, increases the proba-
bility of co-segregating beneficial mutations (Discussion and Fig. S5_9, S5_10). Since
the adaptive-walk approximation does not account for population dynamics, it cannot be
used to predict population persistence or extinction. Individual-based simulations show
that long-term persistence is often impossible if the scaled rate of environmental change
γ exceeds 0.1 (corresponding to v1 = 0.01 in Fig. 6, S5_2, S5_3).

For slow environmental change, the normal distribution of new mutations can, further-
more, be approximated by an appropriate uniform distribution. The resulting approxi-
mation for adaptive walks works well for a broad range of small to intermediate rates
of environmental change (see insets in Fig. S5_2). Naturally, this approximation can-
not capture mutational correlations (see the poor fit for high values of ρM and v1 in
Fig. S5_3). Note, however, that for sufficiently small rates of environmental change,
mutational correlations can, indeed, be ignored (see above, Fig. 4, 5).

Finally, we have attempted to approximate the distribution of adaptive substitutions over
an entire adaptive walk by the distribution of the first step. This approximation works
well in the one-trait case (Kopp and Hermisson 2009b), and in combination with a uni-
form distribution of new mutations, it is the only approach that allowed significant ana-
lytical progress (Supporting Information 4). With multiple traits, however, the first step
makes a larger progress towards the optimum than the subsequent steps (Fig. 2,S5_2,
S5_3). The reason is that the first step will always introduce maladaptive pleiotropic
side-effects, which become compensated for by subsequent substitutions. Some of the-
se compensatory substitutions are “backward steps”, which are beneficial, despite their
effect being opposite to the direction of the optimum (e.g. Supporting Information 1,
grey ellipse in Figure S1_1 and “backward-steps” in Figure 1 and 4). Consequently, the
first-step approximation works less well as the number of traits increases (Fig. S5_1).
Furthermore, with mutational or selectional correlations, the direction of the first step
systematically deviates from the distribution of step sizes over the entire adaptive walk
(see flying and diving-kite effects above; for the case of selectional correlation, see
Fig. S5_11).
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Figure 3 – Example trajectories of the mean phenotype z̄ = (z̄1, z̄2) from adaptive-walk simulations with n = 2
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Figure 4 – The distribution of adaptive substitutions for n = 2 traits under mutational or selectional correlation
and their dependence on the speed of environmental change v1. Shades of grey indicate the
frequency of a given step size in adaptive-walk simulations, and dark ellipses are the corresponding
90%-confidence ellipses (based on the empirical covariance matrix). Light ellipses are
90%-confidence ellipses for the step-size distribution from individual-based simulations (absent for
v1 = 0.1 because simulated populations went extinct). The white dots mark the origins of the
coordinate systems. Columns 1 and 2 are for weak and strong mutational correlations, respectively,
with uncorrelated selection (ρΣ = 0). Columns 3 and 4 show results for selectional but no mutational
correlation (ρM = 0). Remaining parameters: Θ = 1, σ2 = 10,m2 = 1.
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Figure 5 – The impact of mutational and selectional correlations on the distribution of adaptive substitutions
for n = 2 traits. The left-hand column shows the correlation ρα1 ,α2 between step sizes in the
direction of the moving optimum (α1) and in an orthogonal direction (α2), for different values of
mutational (top row) and selectional (bottom row) correlation ρΣ and ρM , plotted as a function of the
rate of environmental change v1. The right-hand column shows δ2, that is, the phenotypic lag in the
direction orthogonal to the moving optimum, demonstrating the flying- and diving-kite effects (top
and bottom, respectively). Lines show results from adaptive-walk simulations, whereas symbols are
from individual-based simulations. Remaining parameters: Θ = 1, σ2 = 10,m2 = 1.
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Figure 7 – Schematic illustration of the flying- (top) and diving-kite effects (bottom) in a deterministic
approximation, with snapshots taken at the initial (left), intermediate (middle) and equilibrium
(right) phases. For each snapshot, the black ellipse represents the fitness landscape (defined by the
Σ-matrix), the grey ellipse gives the shape of the distribution of new mutations (the M-matrix), the
white triangle gives the current position of the mean phenotype, and dots show its trajectory. Grey
arrows represent hypothetical trajectories towards a constant optimum if the population were placed
at the beginning of the arrow. Results are based on the “canonical equation” of adaptive dynamics
(Dieckmann and Law 1996), which states that the mean phenotype z̄ changes according to
∆z̄ = Mβ(t), where β(t) = (Σ + M)−1

(
zopt(t) − z̄(t)

)
(Jones et al. 2004) is the selection gradient

(which points in the direction of steepest ascent on the fitness landscape). (Note that the canonical
equation is structurally identical to the Lande equation from quantitative genetics (Lande 1979,
1980; Jones et al. 2004) if the M-matrix is replaced by the G-matrix of standing genetic variation.)
Without selectional correlation (top row), the selection gradient always points towards the current
optimum. Without mutational correlation (bottom row), the selection gradient is parallel to the grey
arrows.
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4. Discussion

Environmental change forces populations to either adapt to the altered conditions or go
extinct. In the absence of standing genetic variance for fitness, the outcome crucially de-
pends on mutations, which provide the “genetic fuel” for adaptation, and selection which
converts this resource into adaptive substitutions. Here, we have used analytical approxi-
mations and individual-based simulations to study the effects of pleiotropy or “organis-
mic complexity” on the genetic basis of adaptation in gradually changing environments.
In particular, we have investigated the distribution of adaptive substitutions (i.e., the dis-
tribution of the phenotypic effect sizes of fixed mutations) in populations following a mo-
ving optimum. Our results confirm and extend previous analysis of “adaptive walks” for
single traits (Collins et al. 2007; Kopp and Hermisson 2007, 2009a,b). We show that the
distribution of adaptive substitutions is largely determined by a single composite parame-
ter γ, which scales the rate of environmental change relative to the “adaptive potential”
of the population and defines a continuum between environmentally- and genetically-
limited adaptation (Kopp and Hermisson 2009b). In the environmentally-limited regime
(slow environmental change), the population follows the optimum closely, adaptive steps
are small and their multivariate distribution mirrors the shape of the fitness landscape.
In the genetically-limited regime, in contrast, the population follows the optimum with
a large gap, adaptive steps are large and their distribution is determined primarily by
the distribution of new mutations. We furthermore show that the mean effect size of fi-
xed mutations increases with the degree of pleiotropy, in contrast to classical predictions
from Fisher’s geometric model (FGM) under sudden environmental change. We now
discuss these results in greater detail.

4.1. The effect of phenotypic complexity on the genetics of adaptation

In complex organisms, pleiotropy is wide-spread, that is most mutations affect multi-
ple traits simultaneously. Different traits, therefore, do not evolve independently (Lande
1979; Walsh and Blows 2009; Agrawal and Stinchcombe 2009). With this basic fact in
mind, Fisher (1930) used his classical geometric model to argue for a predominance of
small mutations in adaptive evolution. While theoretical studies later pointed out that
large beneficial mutations may, nevertheless, play an important role (Kimura 1983; Gil-
lespie 1993; Orr 1998, 2005a), they also confirmed that organisms pay a “cost of com-
plexity” (Orr 1998, 2000; Welch and Waxman 2003) in the form of a reduced rate of
adaptation. With regard to individual substitutions, Orr (2000) found that more complex
organisms make smaller steps when adapting towards a fixed optimum (with step size
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measured as the decrease in the absolute distance to the optimum, which is closely rela-
ted to the fitness effect of a fixed mutation). This is in direct contrast to our results for a
moving optimum, where increased complexity leads to larger step sizes, with respect to
both phenotype and fitness (Fig. 2, S5_4).

The main reason for this finding arises from the ecological differences between the clas-
sical FGM and the moving optimum model (consequences of different mutation models
are discussed below). In the classical Fisher model, the proportion of beneficial mutati-
ons decreases with organismic complexity. Thus, the more phenotypic traits, the longer
one has to wait for a beneficial mutation to appear (as adding another trait adds yet ano-
ther dimension where mutations can go wrong; eq. S18). Of course, this argument still
holds true under a moving optimum. As more complex organisms have to wait longer
for a beneficial mutation to appear, the optimum has already travelled farther, enabling
larger mutations to become fixed. Thus, the moving-optimum model does not contradict
the “cost of complexity” argument, but reveals yet another aspect of it.

4.2. Adaptation under mutational and selectional correlations

The impact of mutational and selectional correlations on the distribution of adaptive
substitutions is a direct consequence of the general principle that the shape of this distri-
bution depends on the scaled rate of environmental change (see above). In particular, if
the rate of environmental change is slow, only mutations from the very center of the mu-
tational distribution can pass the selective sieve (Kopp and Hermisson 2009b), making
mutational correlations irrelevant relative to the shape of the fitness landscape. Converse-
ly, if adaptation is genetically-limited, the selective sieve has less impact on the adaptive
process than the supply with new mutations. Between these two extremes, the distribu-
tion of adaptive substitutions will progressively take the orientation of the mutational
distribution as the rate of environmental change increases (Fig. 6).

Our results reveal strong parallels between the distribution of adaptive substitutions and
the evolution of the G-matrix describing standing genetic variation (see also below).
Recent quantitative-genetic studies have shown that both mutational and selectional cor-
relations can induce correlations in the G-matrix, under both constant stabilizing and
moving-optimum selection (Jones et al. 2003, 2004). A link between selectional correla-
tion and genetic correlation has also been confirmed empirically (see Roff and Fairbairn
(2012) for a recent meta-analysis). As shown in Figure S5_13, the distribution of adap-
tive substitutions closely matches the shape and orientation of the G-matrix. While this
seems intuitive, it had not been shown by any previous study, and little is known about
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the relation between alleles in the standing variation and those that ultimately reach fixa-
tion (but see Hill 1982; Hill and Rasbash 1986a,b). This close correspondence between
standing variation and fixed mutations might explain why the adaptive-walk approxima-
tion works surprisingly well even in populations with a high mutation rate (see Kopp
and Hermisson 2009b). Quantitative-genetic studies have, so far, not systematically in-
vestigated how correlations in the G-matrix are affected by the rate of environmental
change. It would be interesting to know whether the effects of mutational and selec-
tional correlations on the G-matrix are similar to those on the distribution of adaptive
substitutions.

Confirming previous results by Jones et al. (2004), our simulations showed that muta-
tional and selectional correlations can cause systematic maladaption in traits under pu-
rely stabilizing selection (i.e., in directions orthogonal to the direction of the optimum).
These “flying-” and “diving-kite” effects require that correlations are strong and the en-
vironmental change is sufficiently fast (i.e., in the genetically-limited regime, see Fig. 3
and 5). Strong effects are, therefore, likely to be restricted to a narrow parameter range,
where populations might often be on the brink of extinction.

4.3. Discussion of the model assumptions and future directions

Like all models, our study is based on a number of simplifying assumptions, which
might constrain the generality of our results. In the following, we discuss the likely
consequences of these assumptions, potential extensions of the model, and ways to test
our predictions empirically.

First, our model is based on the assumption of universal pleiotropy (Kacser and Burns
1981; for a review see Paaby and Rockman 2013). This assumption has been challenged
recently, both because empirical levels of pleiotropy are rather low (median 1-7; Wang
et al. 2010) and because true universal pleiotropy would induce unsustainably high costs
(“the cost of complexity [. . . ] should be more properly called the cost of pleiotropy”
Wagner and Zhang 2012, but see Hill and Zhang 2012a). Alternative approaches have,
therefore, suggested modularity (Wagner and Altenberg 1996; Welch and Waxman 2003)
or partial pleiotropy (Chevin et al. 2010; Lourenco et al. 2011) as a solution to this
problem. Indeed, our model might be best interpreted as applying to a given module with
a moderate level of pleiotropy. In any case, the relatively low number of traits assumed
in most parts of this paper is consistent with the degree of pleiotropy observed in natural
populations (Martin and Lenormand 2006a,b; Wang et al. 2010). Thus, we expect our
results to apply across a wide range of species facing environmental change.
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Second, we assume the so-called Euclidean-superposition model (Turelli 1985; Wagner
1988), where the distribution of mutational effects on a given trait is independent of com-
plexity (see also Welch and Waxman 2003; Lourenco et al. 2011; Zhang 2012). Other
studies (Orr 1998, 2000; Wingreen et al. 2003; and an alternative model in Welch and
Waxman 2003) have instead used a “constant total-effects model”, in which the total mu-
tational effect size (‖α‖) is constant across levels of complexity and, in consequence, the
mean effect size on individual traits decreases. Indeed, this assumption explains part of
our differences to Orr (1998, 2000). More generally, it raises the question of which factor
is more important in shaping the distribution of adaptive substitutions at different levels
of complexity: the “pleiotropic scaling” of mutations (Wagner et al. 2008) or the mode of
environmental change. To address this issue, we conducted additional simulations, which
combined constant and moving-optimum selection with the Euclidean-superposition and
constant-total-effect models. These simulations yielded three main results (Fig. S5_12).
First, the moving-optimum model behaves qualitatively similarly under both mutation
models; in particular, average step size increases with complexity (at least as long as
adaptation remains environmentally limited). This shows that our main results are ro-
bust to considerable variation in the pleiotropic scaling of mutational effects. Second,
with a constant optimum, the mutation model does make a qualitative difference for the
mean step size in the direction of the optimum (but not for total step size ‖α‖), which
decreases with complexity under the constant-total effects model, but increases under
the Euclidean-superposition model. Third, a fundamental difference between constant
and moving-optimum selection, which is independent of the mutation model, is seen at
the level of the selection coefficients of fixed mutations, which decrease with complexi-
ty under a constant optimum but increase with complexity under a moving optimum. In
summary, the mode of environmental change plays a fundamental role in shaping the dis-
tribution of adaptive substitutions and, in many cases, overrides the effects of pleiotropic
scaling. Nevertheless, a better understanding of pleiotropic scaling – both empirically
(Wagner et al. 2008; Hermisson and McGregor 2008; Wang et al. 2010; Wagner and
Zhang 2011; Hill and Zhang 2012b) and with respects to its theoretical consequences –
clearly is an important topic for future research.

Third, our adaptive-walk approximation assumes that evolution proceeds as a series of
(hard) selective sweeps originating from new mutations. This follows the tradition of
models based on a strong-selection-weak-mutation approximation (Gillespie 1983; Orr
1998, 2005a). In contrast, quantitative-genetic models assume that virtually all adaptati-
on stems from standing genetic variation (in the context of the moving-optimum model,
see e.g. Bürger and Lynch 1995; Gomulkiewicz and Holt 1995; Jones et al. 2004, 2012;
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Zhang 2012; Chevin 2013; see also Fig. S5_13), and the importance of standing variati-
on is well documented empirically (Hermisson and Pennings 2005; Barrett and Schluter
2008; Gomulkiewicz and Houle 2009; Teotónio et al. 2009; Jerome et al. 2011; Do-
mingues et al. 2012; Messer and Petrov 2013). So far, quantitative-genetic models with
a multidimensional moving optimum have focused either on the risk of population ex-
tinction (Gomulkiewicz and Houle 2009) or the maintenance and structure of genetic
variation (Jones et al. 2004, 2012). To our knowledge, very little is known about the
distribution of phenotypic effect sizes of adaptive substitutions when adaptation occurs
from standing genetic variation. Since in this case the adaptive process is likely to have
very different properties (e.g., adaptation could be faster with on average smaller mu-
tations becoming fixed Barrett and Schluter 2008; Rockman 2012), this should be an
important topic for future research.

Fourth, in accordance with the adaptive-walk approximation, most of our simulations
(including those in Fig. 6) assumed a relatively (but not unrealistically) low population-
wide mutation rate Θ. As such, we ignore effects of interactions between co-segregating
beneficial mutations. For the one-dimensional case, Kopp and Hermisson (2009b) sho-
wed that high mutation rates in combination with low recombination (or a small num-
ber of loci) lead to an increase in the mean size of adaptive substitutions, due to Hill-
Robertson interference (Hill and Robertson 1966; Gerrish and Lenski 1998). At high
recombination rates (or with a large number of unlinked loci), in contrast, the mean step
size decreases as a result of epistasis for fitness (due to stabilizing selection). Individual-
based simulations suggest that these results also hold true for the multivariate case
(Fig. S5_9, S5_10). Note, however, that the strength of interference is expected to decre-
ase with increasing complexity, since the rate of beneficial mutations decreases.

In addition, Hill-Robertson interference also influences how the distribution of adaptive
substitutions is affected by mutational and selection correlations. In particular, corre-
lations between adaptive substitutions increase with increased linkage in the presence
of mutational correlations (Fig. S5_9), but decrease with linkage in the presence of se-
lectional correlations (Fig. S5_10). Thus, at high mutation rates, increasing linkage has
a similar effect as increasing the scaled rate of environmental change γ. This makes
intuitive sense, since interference weakens the efficiency of selection (Gerrish and Len-
ski 1998; Weissman and Barton 2012), which brings the adaptive process closer to the
genetically-limited regime.

Finally, our adaptive-walk approximation does not consider population dynamics. By
setting an arbitrary extinction-threshold with respect to mean fitness, we found that
the maximal rate of environmental change a population can tolerate (Bürger and Lynch
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1995), as well as the mean time to extinction, decreases with the number of traits
(Fig. S5_5; this result is also supported by individual-based simulations). In particular, in
complex organisms, long-term persistence in the face of an indefinitely moving optimum
seems to be possible only in the environmentally-limited regime (γ . 0.1), that is, when
adaptation is not limited by the availability of new mutations. In the genetically-limited
regime, in contrast, populations can only persist for a limited amount of time (e.g., fast
environmental change followed by a period of stasis). Over shorter timescales and with
high mutation rates (large Θ, as in Jones et al. 2004), population persistence can also
be facilitated by adaptation from standing genetic variation (Bürger and Lynch 1995;
Barrett and Schluter 2008; Gomulkiewicz and Houle 2009). Indeed, our parameter γ is
structurally similar to expressions describing the equilibrium phenotypic lag in quanti-
tative genetic models of adaptation to a moving optimum (eq. 5 in Jones et al. 2004; see
also eq. 8a in Bürger and Lynch 1995). The interpretation is analogous: the lag increases
with the speed of environmental change, and decreases with the strength of selection and
the amount of (standing) genetic variation.

Our model makes a number of concrete predictions (Tab. 1) that can be tested empiri-
cally, even though such tests will certainly be challenging. The most direct approach is
experimental evolution (for reviews see Elena and Lenski 2003; Kawecki et al. 2012;
Barrick and Lenski 2013). While the majority of studies have employed constant con-
ditions (Reusch and Boyd 2013), Collins (2011b) recently urged for more studies in
gradually changing environments. Microorganisms such as bacteria, yeast or algae can
be cultivated in media where an environmental factor such as temperature (Hietpas et al.
2013), salinity (Bell and Gonzalez 2009; Lachapelle and Bell 2012), pH (Hughes et al.
2007), the availability of nutrients (Collins 2011a), or the concentration of stressors such
as antibiotics (Perron et al. 2008; Lindsey et al. 2013) or pollutants (Adamo et al. 2012)
is gradually changed. Until now, these studies were mainly used to investigate the pro-
bability of “evolutionary rescue” (Gonzalez et al. 2013). Recent advances in sequencing
technologies (reviewed in Metzker 2010), however, make it possible to conduct real-time
genome-wide analyses and to map genetic changes to their effects on phenotype and fit-
ness (Barrick et al. 2009; Barrick and Lenski 2013), such that the distribution of adaptive
substitution over entire adaptive walks can be analyzed.

In natural populations, where only present-day data are available, the most promising
approach for studying the genetic basis of adaptation is the analysis of quantitative-trait
loci (QTLs) in diverging populations. For example, Langlade et al. (2005) identified
QTLs for leaf shape in two species of Antirrhinum and postulated a sequence of substi-
tutions that can traverse the “allometric space” between them. Albert et al. (2008) and
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Rogers et al. (2012) analyzed genetic differences between ancestral marine and derived
freshwater populations of sticklebacks (Gasterosteus aculeatus). Rogers et al. (2012)
compared two sets of freshwater populations and showed that those whose environment
(and presumably phenotypic optimum) is more different from that of the marine popula-
tions (with respect to salinity and presence of predators) displayed a higher frequency of
large-effect QTLs. Albert et al. (2008) crossed an ancestral Pacific and a highly derived
benthic freshwater form and found a gamma-like distribution of QTL effect sizes with
an intermediate mode. Taking into account the detection limits for small-effect QTLs
(Otto and Jones 2000), they interpreted this result as support for Fisher’s geometric mo-
del with constant selection (i.e., the difficulty in identifying small QTLs would turn the
predicted exponential distribution into an observed gamma-like distribution). However,
both studies could, in principle, also be interpreted as showing the outcome of adap-
tation to a moving optimum (as briefly discussed in Schluter et al. 2010; Rogers et al.
2012), which directly predicts a distribution of effect sizes with an intermediate mode.
More stringent tests of the present theory would require studying populations for which
a moving optimum can be assumed a priori (e.g., comparisons of microalgae from pris-
tine habitats with populations known to have experienced gradual eutrophication). Even
then, the difficulty in detecting small-effect substitutions will remain a major challenge
(Otto and Jones 2000).

4.4. Conclusion

Natural populations are constantly forced to adapt to changing environments, a process
that takes place in a high-dimensional phenotype and genotype space. Along with pre-
vious studies, our analysis of the moving-optimum model shows that the genetic basis
of this process depends critically on the tempo and mode of environmental change. In
particular, our environmentally- and genetically-limited regimes lead to qualitative dif-
ferences in the distribution of adaptive substitution, with respect to its mean, shape and
correlation patterns. Long-term persistence is likely restricted to the environmentally-
limited regime – where adaptation proceeds “smoothly” in small steps – but the parame-
ter range for this regime is reduced in complex organisms.
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Table 1 – A summary of theoretical predictions of the moving-optimum model.

How does ... affect adaptation? Theoretical prediction

Mode of environmental change
Sudden change The distribution of adaptive substitution is approximately exponential with

respect to phenotype and fitness. Accordingly, most fixed mutations are
of small effect and only a few large-effect alleles become fixed when
approaching the constant optimum. The farther the optimum is away (i.e.,
the harsher the sudden environmental change) the larger the mutational
effects that get fixed.

Gradual change The distribution of adaptive substitution with respect to phenotype (in the
direction of the optimum or total effect) and fitness is gamma-like with
an intermediate mode (Fig. 1, S5_4). Thus, when following the moving-
optimum, most adaptive substitutions are of intermediate effect with only
a few large-effect alleles becoming fixed.

Scaled rate of environmental change
The faster the rate of environmental change relative to the adaptive poten-

tial, the larger the mutational effects that become fixed. Holds true with
respect to phenotype and fitness (Fig. 2, S5_4). With increasing rate of
environmental change the distribution of fitness effects becomes more
asymmetric.

Complexity/Pleiotropy
Mean effect of adaptive substitutions with respect to phenotype and fitness

increases as the number of traits affected by a single mutation increases
(Fig. 2, S5_12).

Mutational correlation
If the rate of environmental change is fast, the distribution of adaptive sub-

stitution mirrors the mutational distribution (Fig. 6).
Selectional correlation

If the rate of environmental change is slow, the distribution of adaptive sub-
stitution reflects the shape of the fitness landscape. (Fig. 6)
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5. Supporting Information

In the following Supporting Information, we derive several analytical results for the
adaptive-walk approximation.

5.1. Supporting Information 1: The selection coefficient

Figure S1_1 illustrates the time dependence of the selection coefficient s(x, y, t) in the
multi-dimensional moving-optimum model. Recall that s(x, y, t) can be written as

s (x, y, t) ≈ λx,y
(
t − τx,y

)
, (S1a)

with

λx,y = 2(x − y)′Σ−1v (S1b)

τx,y =
(x − y)′Σ−1(x + y)

2(x − y)′Σ−1v
, (S1c)

(provided λx,y , 0), where λx,y is the rate of change and τx,y is the lag time (i.e., the
time when s reaches zero). The line λx,y = 0 contains all mutational effects α that are
orthogonal to Σ−1v, which in the case of uncorrelated selection (ρΣ = 0) simply means
orthogonal to the direction of the moving optimum. Accordingly, the line divides the
space of mutant phenotypes into “backward mutations” (λx,y < 0), which have a chance
at fixation only during a limited time window (if any), and “forward mutations”, which
have an unlimited amount of time to appear and go on to fixation. The set of mutations
that are beneficial at time t is given by an ellipse (the solution of s(x, y, t) = 0) that
passes through the wild-type y and has its center at the current optimum vt. Note that,
as the optimum moves on, the area of this ellipse decreases as long as the optimum is
to the left of the λx,y = 0 line, and increases indefinitely afterwards. Together with the
λx,y = 0 line, the two ellipses corresponding to the initial and the current optimum (bold
and gray ellipse in Fig. S1_1, respectively) split the space of mutant phenotypes into
six sectors: backward mutations that never were and never will be beneficial (sector I);
backward mutations that were beneficial initially, but which have become deleterious by
that time (sector II); backward mutations that are still beneficial (sector III); forward
mutations that have been beneficial from the outset (sector IV); forward mutations that
have become beneficial after a positive lag time τx,y (sector V); and forward mutations
that are not yet beneficial but will become beneficial in the future (sector VI). Note that,
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Figure S1_1 – The time dependence of selection in the two-dimensional moving optimum model. The axes
span the values of two quantitative traits. The wildtype phenotype combination y is represented
by the open triangle, and the optimum zopt has moved at constant speed along the dotted line
from the open circle at time t = 0 to the grey circle at time t = 70 and the black circle at time
t = 210. The solid ellipse encloses the set of mutant phenotypes that were selectively favored at
t = 0 (i.e., {x | s(x, y, 0) > 0}), whereas the grey and the dashed ellipses represent those mutants
that are selectively favored at t = 70 and t = 210, respectively ({x | s(x, y, 70) > 0}). The solid
line is the line λx,y = 0, which divides the phenotype space into “forward” and “backward” types
as described in the text. The roman numerals refer to sets of mutant phenotypes at time t = 70
that differ with respect to their past, present and future selection coefficient (see text for details).
Parameters: v1 = 0.01,Θ = 2, σ2 = 10, ρΣ = 0.1.

as the optimum moves on, sectors II and V will grow, sectors III and VI will shrink, and
sectors I and IV remain unchanged.

5.2. Supporting Information 2: Transformation of phenotype space

To make further progress, we introduce a transformation of the phenotype space, which
will be denoted by tildes (z̃ etc.) and has the following properties: (i) the selection matrix
Σ̃ is proportional to the identity matrix, that is, selection is equally strong in all directions
(isotropic); (ii) the optimum moves in the direction of the first trait axis, ṽ = (ṽ1, 0, . . .)′,
that is, only the first trait is under moving-optimum selection, whereas all other traits
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are under constant stabilizing selection; (iii) the mutation matrix M̃ has determinant 1;
if mutation is uncorrelated in the transformed space, this means that the geometric mean
of the mutational standard deviations equals 1; therefore, the length scale is determined
by the average size of new mutations. According to these goals, the transformation is
done in three steps. First, let A be the matrix whose rows contain the eigenvectors of
Σ, scaled to magnitude 1, and let D be the diagonal matrix containing the corresponding
eigenvalues (i.e.,Σ−1 = A′D−1A). For the first step of the transformation, we define

B = σ̄D−1/2A, (S2)

with σ̄ =
2n√det(Σ) (eq. 3), such that det(B) = 1 and B′B = σ̄2Σ−1. Substituting z

by B−1ż, such that ż = Bz, ẋ = Bx, ẏ = By, v̇ = Bv and using the fact that Σ̃−1 =

(B−1)′Σ−1B−1 = σ̄−2I, the selection coefficient (eq. 8a) in the transformed phenotype
space is given by

ṡ(ẋ, ẏ, t) = σ̄−2
(
‖ẏ − v̇t‖2 − ‖ẋ − v̇t‖2

)
(S3)

where ‖ξ‖2 = ξ′ξ is the square of the Euclidean norm. After this first transformation step,
goal (i) has been reached, that is, selection is symmetric in all directions with strength
σ̄−2. For the second step, we need to define a n × n rotation matrix R that satisfies
Rv̇ = (‖v̇‖, 0, . . . , 0)′. For the present calculation, it is not necessary to give R explicitly.
However, for numerical calculations, such a matrix can always been found by applying
the Gram-Schmidt orthonormalization algorithm (and a potential step of rearrangement)
to a basis of the unrotated vector space that is given by the n×n identity matrix whose ith

column is replaced by v̇, where i is determined by the first non-zero entry of v̇. Like all
rotation matrices, R satisfies R′ = R−1 and det(R) = 1. With the transformations z̈ = Rż
etc., we get

s̈(ẍ, ÿ, t) = σ̄−2
(
‖ÿ − v̈t‖2 − ‖ẍ − v̈t‖2

)
. (S4)

The third step of the transformation is to express all vectors relative to m̄ =
2n
√

det(M−1)
(eq. 5), that is, z̃ = z̈/m̄ etc., leading to

s̃(x̃, ỹ, t) = ¯̃σ−2
(
‖ỹ − ṽt‖2 − ‖x̃ − ṽt‖2

)
. (S5)

with ¯̃σ = σ̄/m̄. Summarizing, we can combine all three steps by defining a transforma-
tion matrix
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Q =
1
m̄

RB = ¯̃σRD−1/2A, (S6)

with det(Q) = m̄−n =
√

det(M−1), such that z̃ = Qz etc. Note that the transformation
also affects the distribution of new mutations p̃(α̃), which is given by p̃(α̃) = det(Q−1) ·
p(Q−1α̃) = m̄n p(α), and has covariance matrix M̃ = QMQ′ with det(M̃) = 1.

5.3. Supporting Information 3: The parameter γ

We can use the transformation from Supporting Information 2 to show that the parame-
ters Θ, v and Σ affect the distribution of adaptive substitutions only through the compo-
site parameter γ.

First, using the fact that ṽ = (ṽ1, 0, . . .)′, g(t, y) (eq. 9) can be rewritten as

g̃(t, ỹ) = Θ ¯̃σ−2
∫
χ̃

p̃(α̃)
[
2(x̃1 − ỹ1)′ṽ1t − (x̃′x̃ − ỹ′ỹ)

]
dx̃, (S7)

where the integration region χ̃(t, ỹ) = {x̃ | ‖x̃ − ṽt‖ < ‖ỹ − ṽt‖} is the set of mutant
phenotypes in the transformed space with positive selection coefficient at time t. Next,
using the substitution ζ = ṽ1t, the waiting-time distribution on the transformed scale,
F̃(t|ỹ) = exp

(
−

∫ t

0
g̃(τ, ỹ)dτ

)
(eq. 10) can be written as

F̃(t|ỹ) = exp
(
−

1
γ

∫ ṽ1t

0

∫
χ̃

p̃(α̃)
[
2(x̃1 − ỹ1)′ζ − (x̃′x̃ − ỹ′ỹ)

]
dx̃dζ

)
(S8)

with

γ =
ṽ1

Θσ̃−2 . (S9)

Therefore, F̃(t|ỹ) depends only on γ, p̃ (or M̃), ỹ, and the product ṽ1t. Furthermore, the
same substitution can be applied to the distribution of adaptive substitutions, which can
be written as

φ̃(α̃|ỹ) =
p̃(α̃)
γ

∫ ∞

x̃′ x̃−ỹ′ ỹ
2(x̃1−ỹ1)

[
2(x̃1 − ỹ1)ζ − (x̃′x̃ − ỹ′ỹ)

]
F̃(ζ |ỹ)dζ. (S10)

Thus, in the transformed space, the distribution of adaptive substitutions depends only
on γ, the initial phenotype ỹ, and the distribution of new mutations p̃(α̃). At the original
scale, we have φ(α|y) = det(Q)φ̃(α̃|ỹ) = m̄−nφ̃(Qα|Qy). Finally, since
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ṽ1 = ‖ṽ‖ =
1
m̄
‖Bv‖ =

1
m̄

√
v′B′Bv = ¯̃σ

√
v′Σ−1v, (S11)

γ reduces to the form given in equation (13) of the main text when expressed in terms of
the original variables.

In the adaptive-walk approximation, the effects of the rate and direction of environmental
change v, the population-wide mutation rate Θ and the selection matrix Σ are completely
captured by γ. The same is, however, not true for changes in the mutational covariance
matrix M (and, hence, the distribution of new mutations p(α); see eq. S10), since γ
contains only the “average variance” of mutational effects (m̄2, eq. 5), but not the details
of the correlation structure. γ also does not capture the impact of organismic complexity
per se, as it is independent of n in the absence of mutational and selectional correlations
(eq. 14). In the presence of correlations, γ may depend on n, but only because σ̄ or
m̄ depend on n. For example, increasing the number of selectionally correlated traits
increases the average strength of selection, and hence decreases σ̄ (eq. 3).

Kopp and Hermisson (2009b) proposed a value of γ � 1 as an approximate bounda-
ry between the environmentally- and genetically-limited regimes. In the context of the
present paper, a value of γ = 1 is already very large and often leads to population extinc-
tion in individual-based simulations. Indeed, it refers to a situation where the adaptive
process is clearly neither environmentally nor genetically limited. For n = 1, the envi-
ronmental limit (where the distribution of new mutations can be treated as effectively
uniform) provides a very good approximation for γ . 10−2 −10−1 (see Fig. 4F Kopp and
Hermisson 2009b). Here, we show that this boundary shifts to smaller values as com-
plexity increases (reflecting the cost of complexity, see above), but the approximation
remains reasonably good for γ = 10−2 (Fig. S5_1, S5_2, S5_3). In general, for the mean
step size in the direction of the optimum (ᾱ1), the relative error incurred by the appro-
ximation remains at the order of 10% as long as the mean step size is on the order of
magnitude of the (mean) standard deviation of the effects of new mutations (ᾱ1 ≈ m̄,
see Fig S5_2). Similarly, in Fig. 6, the effects of mutational and selectional correlations
offset each other (indicating an intermediate regime) around γ = 0.1 (v1 ≈ 0.005).

5.4. Supporting Information 4: The environmentally-limited regime (uniform dis-
tribution of new mutations)

As argued in the main text, if γ is sufficiently small, the distribution of new mutations
p(α) can be approximated by a uniform distribution with pu(α) = p(0) ≡ p0. This simpli-
fication allows further analytical progress. For the instantaneous rate of fixation, g̃(t, ỹ)
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(eq. S7), we can use the fact that, in the transformed phenotype space, all mutants with a
given distance r̃ = ‖x̃ − ṽt‖ from the optimum have identical selection coefficients

s̃(r̃, ỹ, t) = ¯̃σ−2
(
δ̃(t, ỹ)2 − r̃2

)
, for r̃ < δ̃(t, ỹ) (S12)

where we denote by δ̃(t, ỹ) = ‖ỹ − ṽt‖ the distance of the wild-type from the optimum at
time t.

The weight of such a class of mutants is given by the surface S n(r̃) of a n-dimensional
hypersphere with radius r̃ (Hartl and Taubes 1998; Tenaillon et al. 2007; Gros et al.
2009), which is

S n =
2π

n
2

Γ
(

n
2

) r̃n−1, (S13)

where Γ (•) denotes the gamma function. g̃(t, ỹ) is then given by

g̃(t, ỹ) = Θp̃0

∫ δ̃(t,ỹ)

0
S n(r̃)s(r̃, ỹ, t)dr̃

= Θp̃0 ¯̃σ−2 2π
n
2

Γ
(

n
2

) ∫ δ̃(t,ỹ)

0
r̃n−1

(
δ̃(t, ỹ)2 − r̃2

)
dr̃

= Θp̃0 ¯̃σ−2 π
n
2

Γ
(
2 + n

2

) δ̃(t, ỹ)n+2,

(S14)

where we used the fact that ξΓ(ξ) = Γ(ξ + 1). Here, p̃0 = det(Q−1)p0 = m̄n p0. For a
general wild-type phenotype y, the waiting-time distribution is given by

F̃(t|ỹ) = exp
(
−

∫ t

0
g̃(τ, ỹ)dτ

)
= exp

− p̃0

γ

π
n
2

Γ
(
2 + n

2

) ṽ1

∫ t

0
‖ṽ1τ − ỹ‖n+2dτ

 . (S15)

The integral in the exponent can be easily calculated for even values of n, and (e.g.,
by using Mathematica) also for small odd n, but the resulting expressions are unwieldy
and will not be given here. We note that adaptive walks in the environmentally-limited
regime can be efficiently simulated by alternately drawing the step time from the distri-
bution (S15) and the step size from the conditional distribution (11). (For the latter, use
the symmetry of the transformed trait space by first drawing the new distance from the
optimum, r̃ [see (S14)], and then choosing a random direction.)
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Characterization of the first step of the adaptive walk in the environmentally-limited
case. Further progress can be made if the wild-type is initially well-adapted (y = 0),
such that δ̃(t, ỹ) = ṽ1t. We refer to the adaptive substitution with these initial conditions
as the first step of the adaptive walk. The waiting-time distribution for this step simplifies
to

F̃(t|0) = exp
(
−

p̃0

γ
η(n)(ṽ1t)n+3

)
(S16)

with

η(n) =
π

n
2

(n + 3)Γ
(
2 + n

2

) . (S17)

Below, we will use the moments of the waiting-time distribution, which are given by

E(ti|0) =

∫ ∞

0
ti f̃ (t|0)dt =

1
ṽi

1

(
γ

η(n) p̃0

) i
n+3

Γ

(
n + 3 + i

n + 3

)
, i = 1, 2, . . . . (S18)

Using equations (S1) and (12b), the distribution of the first adaptive step can be expres-
sed as

φ̃(α̃|0) = λα̃,0τ
2
α̃,0

(
E 1+n

3+n

(
η(n)p̃0

γ

(
ṽ1τα̃,0

)n+3
)
− E 2+n

3+n

(
η(n) p̃0

γ

(
ṽ1τα̃,0

)n+3
))

=
p̃0

(n + 3)γ
‖α̃‖4

2α̃1

E 1+n
3+n

η(n)p̃0

γ

[
‖α̃‖2

2α̃1

]n+3 − E 2+n
3+n

η(n)p̃0

γ

[
‖α̃‖2

2α̃1

]n+3 ,
(S19)

where Eξ (ψ) =
∫ ∞

1
(exp(−ψt)/tξ)dt denotes the exponential integral function.

While this expression is not particularly instructive, further insight can be gained by
focusing on the moments of the distributions of certain components of α̃.

Distribution of α̃1. We start by deriving the moments of the marginal distribution of
step sizes in the direction of the optimum, which we will denote by φ̃1(α̃1). Here and
below, our strategy will be to first focus on the conditional distribution of step sizes
given the waiting time (eq. 11), which in the transformed trait space, is given by
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φ̃(α̃|t, 0) =
Θp̃0s(α̃, 0, t)

g̃(t, 0)
=

2α̃1ṽ1t − ‖α̃‖2

πn/2

Γ(2+ n
2 ) (ṽ1t)n+2

. (S20)

Accordingly, the conditional distribution of α̃1 is

φ̃1(α̃1|t, 0) =

∫ √2α̃1ṽ1t−α̃2
1

0
S n−1(r̃)φ̃[(α̃1, r̃, 0, . . .)′|t, 0]dr̃

=
2

(ṽ1t)n+2

Γ
(

n+4
2

)
√
πΓ

(
n−1

2

) ∫ √2α̃1ṽ1t−α̃2
1

0
(2α̃1ṽ1t − α̃2

1 − r̃2)r̃n−2dr̃

=
4

(n2 − 1)(ṽ1t)n+2

Γ
(

n+4
2

)
√
π Γ

(
n−1

2

) (2α̃1ṽ1t − α̃2
1)

n+1
2 ,

(S21)

where the integration is over all classes of mutations with identical fitness. Using Ma-
thematica, the i’th moment of this conditional distribution can be evaluated to

E(α̃i
1|t, 0) =

∫ 2ṽ1t

0
α̃i

1 φ̃1(α̃1|t, 0)dα̃1 =
2iΓ(n + 3)Γ

(
n+3+2i

2

)
Γ(n + 3 + i)Γ

(
n+3

2

) (ṽ1t)i. (S22)

By applying the properties of the Gamma function and cancelling, this can be simplified
to

E(α̃i
1|t, 0) =


(ṽ1t)i ∏i/2

j=1
n+1+i+2 j
n+2+2 j if i is even,

(ṽ1t)i ∏(i−1)/2
j=1

n+2+i+2 j
n+2+2 j if i is odd.

(S23)

In particular,

E(α̃1|t, 0) = ṽ1t, (S24)

E(α̃2
1|t, 0) =

n + 5
n + 4

(ṽ1t)2. (S25)

The moments of the unconditional distribution are given by

E(α̃i
1|0) =

∫ ∞

0
α̃i

1

(∫ ∞

α̃1/(2ṽ1)
φ̃1(α̃1|t, 0) f̃ (t|0)dt

)
dα̃1

=

∫ ∞

0
f̃ (t|0)

(∫ 2ṽ1t

0
α̃i

1 φ̃1(α̃1|t, 0)dα̃1

)
dt.

(S26)
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The inner integral equals the conditional moment (eq. S22). Since the latter is proportio-
nal to ti, the unconditional moment is simply

E(α̃i
1|0) =

1
ti E(α̃i

1|t, 0) E(ti|0). (S27)

For the ease of notation, t denotes a random variable as well as its realization. In parti-
cular,

E(α̃1|0) =

(
γ

η(n) p̃0

) 1
n+3

Γ

(
n + 4
n + 3

)
(S28)

Var(α̃1|0) = E(α̃2
1|0) − (E(α̃1|0))2 =

(
γ

η(n)p̃0

) 2
n+3

n + 5
n + 4

Γ

(
n + 5
n + 3

)
− Γ

(
n + 4
n + 3

)2 . (S29)

As a consequence, the coefficient of variation
√

Var(α̃1|0)/E(α̃1|0) is independent of γ,
η and p̃0. For the isotropic case, equations (16) and (17) in the main text are obtained
by using p̃0 = (2π)−

n
2 and transforming back to the original scale with α = Q−1α̃ =

m̄α̃.

Distribution of α̃2. A similar calculation leads to the moments of the distribution of
α̃2, or indeed of any trait under constant stabilizing selection (i.e., orthogonal to the
direction of the moving optimum).

The conditional distribution of α̃2 is given by

φ̃2(α̃2|t, 0) =

∫ √(ṽ1t)2−α̃2
2

0
S n−1(r̃)φ̃[(ṽ1t + r̃, α̃2, 0, . . .)′|t, 0]dr̃

=
4

(n2 − 1)(ṽ1t)n+2

Γ
(

n+4
2

)
√
πΓ

(
n+1

2

) [(ṽ1t)2 − α̃2
2]

n+1
2 ,

(S30)

with moments

E(α̃i
2|t, 0) =

[1 + (−1)i]Γ
(

1+i
2

)
Γ
(

n+4
2

)
2
√
π Γ

(
n+4+i

2

) (ṽ1t)i

=


∏i/2

j=1
(2 j−1)

(n+2+2 j) (ṽ1t)i if i is even,

0 if i is odd.

(S31)

The unconditional moments are again given by
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E(α̃i
2|0) =

1
ti E(α̃i

2|t, 0) E(ti, 0). (S32)

In particular, the variance of α̃2 is

Var(α̃2|0) = E(α̃2
2|0) =

1
n + 4

(
γ

η(n) p̃0

) 2
n+3

Γ

(
n + 5
n + 3

)
. (S33)

Furthermore, due to symmetry, all pairs of components of α̃ are uncorrelated (though
not independent). Hence, the covariance matrix of α̃ is a diagonal matrix with its first
entry given by the right-hand side of equation (S29) and all others by the right-hand side
of equation (S33). Furthermore, the covariance matrix in the untransformed space can
be obtained from the back-transformation

Cov(α|0) = Q−1Cov(α̃|0)(Q−1)′. (S34)

For the special case of selectional correlation discussed in the main text, one finds that,
for n = 2

Cov(α|0) =
1√

1 − ρ2
Σ

(1 − ρ2
Σ
)Var(α̃1|0) + ρ2

Σ
Var(α̃2|0) ρΣVar(α̃2|0)

ρΣVar(α̃2|0) Var(α̃2|0)

 (S35)

and, hence,

ρα = Cor(α1, α2|0) = ρΣ

√
Var(α2|0)
Var(α1|0)

≈ ρΣ

√
(1 − ρ2

Σ
)0.77 + ρ2

Σ
≈ ρΣ. (S36)

In particular, ρα (for the first step and in the environmentally-limited regime) is indepen-
dent of γ.

Distribution of ‖α̃‖. As shown by equation (S19), the distribution of adaptive substi-
tutions depends only on the first component α̃1 and the total step size ‖α̃‖ (i.e., of the
Euclidean norm of α̃). To characterize the distribution of ‖α̃‖, we again start with the
conditional distribution, which can be written as

φ̃norm(‖α̃‖ | t, 0) =∫ ‖α̃‖

‖α̃‖2
2ṽ1t

S n−1

(√
‖α̃‖2 − α̃2

1

)
φ̃

[(
(α̃1,

√
‖α̃‖2 − α̃2

1, 0, . . .
)′
| t, 0

]
‖α̃‖√
‖α̃‖2 − α̃2

1

dα̃1.
(S37)
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Here, the last term arises because the integral is calculated along a line in the (α̃1, α̃2)

space, where α̃2 =

√
‖α̃‖2 − α̃2

1. After some rearrangements and using Mathematica, the
moments of this distribution can be evaluated to yield

E(‖α̃‖i | t, 0) =
2n+1+iΓ

(
n+4

2

)
Γ
(

n+1+i
2

)
(n + 2 + i)

√
π/Γ

(
2n+2+i

2

) (ṽ1t)i, (S38)

and the unconditional moments are again given by

E(‖α̃‖i|0) =
1
ti E(‖α̃‖i | t, 0) E(ti|0). (S39)

Again, the coefficient of variation is independent of γ, η and p̃0.

Distribution of
√∑n

j=2 α̃
2
j . We might also be interested in how much deviation from

the optimum an adaptive substitution incurs in the traits under constant selection (this can
be seen as the “cost” for following the moving optimum). Let this deviation be denoted

by ε̃ =
√∑n

j=2 α̃
2
j =

√
‖α̃‖2 − α̃2

1. The conditional distribution of ε̃ is

φ̃ε(ε |t, 0) =

∫ ṽ1t+
√

(ṽ1t)2−ε̃2

ṽ1t−
√

(ṽ1t)2−ε̃2
S n−1(ε̃)φ̃[α̃1, ε̃, 0, . . .)′|t, 0]dα̃1

=
8 Γ

(
n+4

2

)
εn−2

(
(ṽ1t)2 − ε2

)3/2

3(ṽ1t)n+2
√
π Γ

(
n−1

2

) .

(S40)

Its moments are

E(ε̃ i|t, 0) =
Γ
(

n+4
2

)
Γ
(

n−1+i
2

)
Γ
(

n−1
2

)
Γ
(

n+4+i
2

) (ṽ1t)i, (S41)

and the unconditional moments are again E(ε̃ i|0) = t−iE(ε̃ i|t, 0)E(ti|0), with the coefficient
of variation independent of γ, η and p̃0. In addition, we can calculate the covariance
between α̃1 and ε̃. We start with the conditional expectation of the product α̃1ε̃,

E(α̃1ε̃ |t, 0) =

∫ 2ṽ1t

0

∫ √2α̃1ṽ1t−α2
1

0
α̃1ε̃S n−1(ε̃)φ̃((α̃1, ε̃, 0, . . .)|t, 0)dε̃dα̃1

=
(n + 2)Γ

(
n+2

2

)2

nΓ
(

n−1
2

)
Γ
(

n+5
2

) (ṽ1t)2.

(S42)
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Figure S4_1 – Dependence of various components of the first adaptive step α̃ in the transformed phenotype
space, as a function of the scaled rate of environmental change γ for various numbers of traits n,
assuming a uniform distribution of new mutations. (a,b) Expectation and variance of the step
size in the direction of the moving optimum, α̃1 (eq. S28 and S29); (c, d) expectation and
variance of step size in an direction orthogonal to the moving optimum, α̃1 (eq. S33); (e, f)
expectation and variance of the total step size (Euclidean norm), ‖α̃‖ (based on eq. S39); (g, h)
expectation and variance of the total deviation from the optimum in traits under constant

stabilizing selection, ε̃ =
√∑n

j=2 α̃
2
j (based on eq. S41).
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Figure S4_2 – (a) Coefficient of variation of the size of the first step in the direction of the moving optimum,
√

Var(α̃1)/E(α̃1). (b) Correlation coefficient between the size of the first step in the direction of
the moving optimum and its total deviation from the optimum in traits under constant stabilizing
selection, ρ(α̃1, ε̃) (eq. S44). Both quantities depend only on the number of traits, n. Results are
valid in the transformed phenotype space and assume a uniform distribution of new mutations.

The unconditional expectation is E(α̃1ε̃ |0) = 1
t2 E(α̃1ε̃ |0)E(t2|0), and the covariance is

given by

Cov(α̃1, ε̃ |0) = E(α̃1ε̃|0) − E(α̃1|0)E(ε̃|0). (S43)

Furthermore, it is easy to show that the coefficient of correlation

ρ(α̃1, ε̃ |0) =
Cov(α̃1, ε̃ |0)

√
Var(α̃1|0)Var(ε̃ |0)

(S44)

is independent of γ, η and p̃0.
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An illustration of some of these results is give in Figure S4_1. Note that all quantities
depend on γ only through the moments of the waiting-time distribution (eq. S18), whose
power-law form leads to the linear relationship in double-log plots, with the slope for
the i’th moment given by the exponent i/(n + 3). Since this slope decreases with n (ulti-
mately a geometric consequence of equation S13), the lines in Figure S4_1 cross at high
values of γ. Biologically, this means that, while at a given distance to the optimum, the
proportion of beneficial mutations is smaller in complex organisms, the same proportion
increases faster as the distance to the optimum increases. As a consequence, at very high
values of γ, the relationship between mean step size and n is reversed, with more com-
plex organisms being predicted to evolve in smaller steps. However, this effect only sets
in if the environment changes so fast that realistic populations cannot follow anyway and
go extinct right away.
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5.5. Supporting Information 5: Supplementary Figures
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Figure S5_1 – Distribution of the size of the first adaptive substitution, for two (top row) and four (bottom row)
traits and two different rates of environmental change v1. For each rate, columns display the
distribution of step sizes in direction of the moving optimum (α1, left column), the distribution
of step sizes for the trait under stabilizing selection (α2, central column) and the distribution of
the total step sizes (‖α‖, right column). Results are shown for adaptive-walk simulations (dark
bins) assuming a normally-distributed distribution of new mutations and for the approximation
eq. S19, which is based on a uniform distribution of new mutations (light bins). Note that the
scales of the axes vary between plots. Parameters: Θ = 1, σ2 = 10, ρΣ = 0,m2 = 1, ρM = 0.
Scaled rate of environmental change γ = 10 · v1.
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Figure S5_4 – Mean selection coefficient of adaptive substitutions as a function of the rate of environmental
change for various strengths of mutational (dashed lines) and selectional (solid lines)
correlations ρM and ρΣ. The inset gives a representative distribution of the selection coefficient
for the isotropic case (ρM = ρΣ = 0.0) and v1 = 10−4. Note that with increasing v1 the
distribution becomes more asymmetric. Parameters: Θ = 1.
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Figure S5_5 – The mean time to extinction for different levels of phenotypic complexity n as a function of the
rate of environmental change. The mean extinction time was calculated based on 100, 000
adaptive-walk simulations, where populations were considered extinct when the mean fitness
dropped below 0.5. Simulations that persisted for more than 1, 000, 000 generations were
aborted for performance reasons. Parameter values are Θ = 1, σ2 = 10, ρΣ = 0.0,m2 = 1; the
scaled rate of environmental change γ = 10 · v1.
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Figure S5_6 – The multivariate distribution of the first adaptive substitution (left) and over the entire adaptive
walk (right) for n = 2 traits, when the optimum moves slowly in the direction of the first trait
and the effects of new mutations are strongly correlated (ρM = 0.9). In the top-left figures on
each side, shades of grey indicate the frequency of a given step size in adaptive-walk
simulations with normally-distributed mutational effects (with dark grey corresponding to high
frequency), with the white cross showing the observed mean. The contour lines on the left
represent the probability density intervals predicted for a uniform distribution of new mutations
(environmentally-limited regime, eq. S19; highest probability density intervals for
0.25, 0.5, 0.75, 0.95 from inside out). Histograms show the marginal distribution of the first and
second trait, α1 and α2, and the distribution of the total step size ‖α‖. Parameter values are
v1 = 10−5,Θ = 1, σ2 = 10, ρΣ = 0.0,m2 = 1; the scaled rate of environmental change γ = 10−4.
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Figure S5_7 – The multivariate distribution of the first adaptive substitution (left) and over the entire adaptive
walk (right) for n = 2 traits, when the optimum moves slowly in the direction of the first trait
and selection is strongly correlated (ρΣ = 0.9). In the top-left figures on each side, shades of
grey indicate the frequency of a given step size in adaptive-walk simulations with
normally-distributed mutational effects (with dark grey corresponding to high frequency), with
the white cross showing the observed mean. The contour lines on the left represent the
probability density intervals predicted for a uniform distribution of new mutations
(environmentally-limited regime, eq. S19; highest probability density intervals for
0.25, 0.5, 0.75, 0.95 from inside out). Histograms show the marginal distribution of the first and
second trait, α1 and α2, and the distribution of the total step size ‖α‖. Parameter values are
v1 = 10−5,Θ = 1, σ2 = 10,m2 = 1, ρM = 0; the scaled rate of environmental change γ = 10−4.
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Figure S5_8 – The impact of mutational and selectional correlations on the distribution of adaptive
substitutions for n = 3 traits. For details, see Fig. 5 of the main text.
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Figure S5_9 – The effects of linkage and interference between co-segregating alleles on the mean step size in
direction of the moving optimum α1 (left) and the correlation between adaptive substitutions
ρα1 ,α2 (right) under strong mutational correlations ρM = 0.9. The plots are based on 5000
replicated individual-based simulations. The population-wide mutation rate Θ was varied by
increasing the per-locus mutation rate µ. Rates of environmental change v1 were chosen such
that the same three values of γ (i.e., the scaled rate of environmental change; see above;
γ(◦) = 0.0035, γ(�) = 0.035, γ(F) = 0.17) applied for each Θ. Other parameters:
K = 1000, L = 10, σ2 = 10, ρΣ = 0.0,m2 = 1.
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Figure S5_10 – The effects of linkage and interference between co-segregating alleles on the mean step size in
direction of the moving optimum α1 (left) and the correlation between adaptive substitutions
ρα1 ,α2 (right) under strong selectional correlations ρΣ = 0.9. The plots are based on 5000
replicated individual-based simulations. The population-wide mutation rate Θ was varied by
increasing the per-locus mutation rate µ. Rates of environmental change v1 were chosen such
that the same three values of γ (i.e., the scaled rate of environmental change;
γ(◦) = 0.00066, γ(�) = 0.0066, γ(F) = 0.033) applied for each Θ. Other parameters:
K = 1000, L = 10, σ2 = 10,m2 = 1, ρM = 0.0.
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Figure S5_11 – The multivariate distribution of the first adaptive substitution in adaptive-walk simulations
with strong selectional correlation (ρΣ = 0.9), illustrating the “diving-kite effect” (the negative
bias in the α2-direction) present for fast (v1 = 0.1) but not for slow (v1 = 10−5) environmental
change. The left-hand plot on each side is as in Figure S5_7, with shades of grey illustrating
the distribution in adaptive-walk simulations with normally-distributed new mutations, and
contour lines showing the prediction for a uniform distribution of new mutations
(environmentally-limited regime, eq. S19). The histograms compare the marginal distributions
of both traits for the two distributions of new mutations. Other parameters are identical to
those in Figure S5_7.
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Figure S5_12 – Comparison of the first adaptive substitution under the constant total-effect (darker grey) and
the Euclidean superposition model (lighter grey) for Fisher’s geometric model with constant
selection (left) and a moving optimum (right). The boxplots are based on 10000 replicated
adaptive-walk simulations and show the distribution of step sizes in direction of the optimum
α1 (top row), the distribution of total step sizes ‖α‖ and the distribution of the selection
coefficient s of adaptive substitutions. Whiskers extend to maximally 1.5 times the size of the
box. Horizontal white bars indicate the mean. In the constant selection case, the population
started at an initial distance of 1 from the optimum. In the moving-optimum model, the rate of
environmental change was v1 = 10−5. The variance of mutational effects was m2 = 0.1 in the
Euclidean superposition model and 0.1/

(√
2(Γ [(n + 1)/2] /Γ [n/2])

)
in the constant

total-effect model (here, the denominator is the expected mean of the norm of a multinormal
distribution with covariance matrix I, which is equal to the expectation of a χ-distribution with
n degrees of freedom). Note that the constant total-effects model used here differs from the one
in Orr (2000), because Orr only considered mutations of a single fixed total effect ‖α‖ (i.e., his
mutations are drawn from the surface of a hypersphere, whereas ours are drawn from a
multivariate normal distribution). Other parameters: Θ = 1, σ2 = 10, ρΣ = 0.0, ρM = 0.0.
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Figure S5_13 – The G matrix (grey ellipse) and the 90%-confidence ellipse of the distribution of adaptive
substitutions (dark ellipse) under strong mutational (ρM = 0.9) and selectional (ρΣ = 0.9)
correlation, for various rates of environmental change (v1). Results are shown for
individual-based simulations of 1000 adaptive substitutions. G was calculated as an average
over samples taken every 100th generation. Note that G increases with v1. Parameters:
K = 1000, L = 50, µ = 5 × 10−5, σ2 = 10, m2 = 0.05.
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Catch me if you can: On the importance of standing genetic
variation for the genetics of adaptation in changing environments

s. matuszewski, j. hermisson, m. kopp

Abstract. Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies
have tried to provide a formal framework for the description of the adaptive process. Out of these
two complementary modelling approaches have emerged: While so-called adaptive walk models
typically consider adaptation from the successive fixation of de-novo mutations only, quantitative
genetic models, on the other hand, assume that adaptation proceeds exclusively from preexisting
standing genetic variation. The latter approach, however, has focussed on short-term evolution
of population means and variances rather than on the statistical properties of adaptive substi-
tutions. Our aim is to overcome what has been phrased “the most obvious theoretical limitation
when describing the adaptive process” (Orr 2005b) and to describe the ecological and genetic
factors that determine the genetic basis of adaptation from standing genetic variation. Speci-
fically, we consider the evolution of a quantitative trait to gradually changing environment. By
means of analytical approximations, we derive the distribution of standing adaptive substitutions,
that is, the distribution of the phenotypic effects of those alleles that become fixed during adap-
tation and which originated from standing genetic variation. Our results are checked against
individual-based simulations. We find that (i) compared to adaptation from de-novo mutations,
adaptation from standing variation proceeds by the fixation of more alleles of small effect; (ii) in
contrast to models that consider new mutations only, faster environmental change can enable the
population to remain better adapted and to traverse larger distances in phenotype space when
standing genetic variation is the sole source for adaptation.

1. Introduction

One of the biggest surprises that has emerged from evolutionary research in the past
few decades is that, in contrast to what has been claimed by the neutral theory (Kimura
1983), adaptive evolution at the molecular level is wide-spread. In fact, empirical studies
concluded that about 45% of all amino acid changes between Drosophila simulans and
D. yakuba are adaptive (Smith and Eyre-Walker 2002; Orr 2005b). Along the same line,
Wichman et al. (1999) evolved the single-stranded DNA bacteriophage ΦX174 to high
temperature and a novel host and found that 80− 90% of the observed nucleotide substi-
tutions had an adaptive effect. These and other results have led to an increased interest
in providing a formal framework for the adaptive process, that goes beyond traditional
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population- and quantitative genetic approaches, by considering the statistical proper-
ties of suites of substitutions of “individual mutations that have individual effects” (Orr
2005a). In general, selection following a change in the environmental conditions may
either act on de-novo mutations, or on alleles already present in the population, also
known as standing genetic variation. Consequently, from the numerous studies that have
attempted to address this subject, two complementary modelling approaches have emer-
ged.

So-called adaptive-walk models (Gillespie 1984; Kauffman and Levin 1987; Orr 2002,
2005b) typically assume that selection is strong compared to mutation, so that the popu-
lation can be considered monomorphic all the time and all observed evolutionary change
is the result of de-novo mutations. These models have produced several robust predic-
tions (Orr 1998, 2000; Martin and Lenormand 2006), which are supported by growing
empirical evidence (Cooper et al. 2007; Rockman 2012; Hietpas et al. 2013), and pro-
vided a statistical framework for the fundamental event during adaptation, that is, the
substitution of a resident allele (i.e., gene variant) by a beneficial mutation. Specifically,
the majority of models (Gillespie 1984; Orr 2000; Martin and Lenormand 2006) con-
sider the effect-size distribution of adaptive substitutions following a sudden change in
the environment. Recently, Kopp and Hermisson (2009b) and Matuszewski et al. (2014)
shifted the focus to gradual environmental change.

In contrast, quantitative-genetic models consider an inexhaustible pool of preexisting
standing genetic variants as the sole source for adaptation. Evolving traits are assumed
to have a polygenic basis, where many loci contribute small individual effects, such that
the distribution of trait values approximately follows a Gaussian distribution (Bulmer
1980; Barton and Turelli 1991; Kirkpatrick et al. 2002). Since the origins of quantitative
genetics lie in the design of plant and animal breeding schemes (Wricke and Weber
1986; Tobin et al. 2006; Hallauer et al. 2010), the traditional focus of these models was
on predicting short-term changes in the population mean phenotype (often assuming
constant genetic variances and covariances), and not on the fate and effect of alleles
at individual genetic loci. The same is true for the relatively small number of models
that have studied the contribution of new mutations to the response of artificial selection
(Hill and Rasbash 1986a) and the shape and stability of the G-matrix (i.e., the variance-
covariance matrix of genotypes; Jones et al. 2004, 2012).

It is only in the past decade that population geneticist have thoroughly addressed adap-
tation from standing genetic variation at the level of individual substitutions (Orr and
Betancourt 2001; Hermisson and Pennings 2005; Chevin and Hospital 2008). Hermis-
son and Pennings (2005) calculated the probability of adaptation from standing genetic
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variation following a sudden change in the selection regime. They found that, for small-
effect alleles, the fixation probability is considerably increased relative to that from new
mutations. Similarly, Chevin and Hospital (2008) showed that the selective dynamics
at a focal locus are substantially affected by genetic background variation. Performing
experimental evolution in yeast, Lang et al. (2011) followed beneficial mutations in hun-
dreds of populations and showed that the selective advantage of a mutation plays only a
limited role in determining its ultimate fate. Instead, fixation or loss is largely determi-
ned by variation in the genetic background – which need not to be preexisting, but could
quickly be generated by a large number of new mutations. Still, predictions for the ge-
netics of adaptation from standing genetic variation have been verbal at best, stating that
“compared with new mutations, adaptation from standing genetic variation is likely to
lead to faster evolution [and] the fixation of more alleles of small effect [...]” (Barrett and
Schluter 2008). Thus, despite recent progress, one of the central questions still remains
unanswered: From the multitude of standing genetic variants segregating in a population,
which are the ones that ultimately become fixed and contribute to adaptation, and how
does their distribution differ from that of de-novo mutations?

The aim of the present article is to contribute to overcoming what has been described
as “the most obvious theoretical limitation when describing the adaptive process” (Orr
2005b) and to study the ecological and genetic factors that determine the genetic basis
of adaptation from standing genetic variation. Specifically, we consider the evolution
of a quantitative trait in a gradually changing environment. We develop an analytical
framework that accurately describes the distribution of standing adaptive substitutions
and discuss its dependence on the effective population size, the strength of selection and
ecological factors.

In line with Barrett and Schluter (2008), we find that, compared to new mutations, ad-
aptation from standing genetic variation proceeds, on average, by smaller steps. Our
analysis shows that the genetic basis of adaptation from standing genetic variation cru-
cially depends on the efficacy of selection as defined by the population size, the strength
of (stabilizing) selection and the tempo of environmental change. In contrast to studies
that consider adaptation from new mutations only (Perron et al. 2008; Bell and Gonzalez
2011; Lindsey et al. 2013; Bell 2013), we find that, when standing genetic variation is
the sole source for adaptation, faster environmental change can enable the population to
remain better adapted and to traverse larger distances in phenotype space.
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2. Model and Methods

2.1. Phenotype, Selection and Mutation

We consider the evolution of a diploid population of N individuals with discrete and
non-overlapping generations characterized by a single phenotypic trait z, which is under
Gaussian stabilizing selection with regard to a time-dependent optimum zopt(t):

w(z, t) = exp

−
(
z − zopt(t)

)2

2σ2
s

 , (1)

where σ2
s describes the width of the fitness landscape. Throughout this paper we choose

the linearly moving optimum,

zopt(t) = vt, (2)

where v is the rate of environmental change.

Mutations enter the population at rate Θ and we assume that their phenotypic effect size
α follows a Gaussian distribution with mean 0 and variance σ2

m (which we will refer to
as the distribution of new mutations), that is

p(α) =
1

√
2πσm

exp
(
−
α2

2σ2
m

)
. (3)

Throughout this paper we equate genotypic with phenotypic values and, thus, neglect any
environmental variance. Note that this model is, so far, identical to the moving-optimum
model proposed by Kopp and Hermisson (2009b) (see also Bürger 2000).

Based on this general formulation, we derive two complementary submodels that make
additional assumptions on the genetic architecture (single- vs. multi-locus framework),
the mutational process (recurrent mutation vs. infinite sites model) and population dy-
namics (present vs. absent). More details are given in subsection 2.3.1 Wright-Fisher
simulations and 2.3.2 Individual-based simulations, respectively.

2.2. Theoretical Background

In the following, we briefly recapitulate results from previous studies that form the basis
for our analytical derivations. A summary of our notation is given in Table 1.
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2.2.1. The probability for adaptation from standing genetic variation for a single
bi-allelic locus after a sudden environmental change

Hermisson and Pennings (2005) studied the situation where selection at a single bi-
allelic locus changes following a sudden environmental shift. In particular, they derived
the probability for a mutant allele—which was neutral or deleterious prior to the change
but has become beneficial in the new environment—to reach fixation. In the continuum
limit for allele frequencies x this probably is given by

PSGV =

∫ 1

0
ρ(x)Πxdx, (4)

where ρ(x) is the density function for the allele frequency of the mutant allele in mutation-
selection-drift balance and Πx denotes its fixation probability.

For a mutant allele present at frequency x and with selective advantage sb in the new
environment, the fixation probability is given by (Kimura 1957)

Πx(sb) ≈
1 − exp[−4Nesbx]
1 − exp[−4Nesb]

. (5)

There are two points to make here. First, mutational effects in the Hermisson and Pen-
nings (2005) model are directly proportional to fitness, whereas mutations in our model
affect a phenotype under selection. Second, sb, in our framework, denotes the (beneficial)
selection coefficient for heterozygotes.

Approximations for ρ(x) can be obtained using standard diffusion theory (e.g., Ewens
2004). If the mutant allele was neutral prior to the change in the selection scheme

ρ(x) = CxΘ−1 1 − x1−Θ

x − 1
. (6)

Here, C = (γ + ψ(Θ))−1 denotes a normalization constant where γ ≈ 0.577 is Euler’s
gamma and ψ(•) is the polygamma function.

Similarly, if the mutant allele was deleterious before the environmental change (with
negative selection coefficient sd) the allele-frequency distribution is given by

ρ(x) = C
(
1 − exp [(1 − x)4Nesd]

)
xΘ−1

x − 1
dx, (7)

where C = (1F1(0,Θ, 4Nesd))−1 denotes a normalization constant and 1F1(a, b, c) is the
hypergeometric function.
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If the allele was sufficiently deleterious (4Ne|sd|≥ 10), equation (7) can further be appro-
ximated as

ρ(x) = CxΘ−1 exp[−4Ne|sd|x], (8)

where C = (γ[Θ,4Ne |sd |]
(4Ne |sd |)Θ )−1 again denotes a normalization constant with

γ[a, b] =
∫ b

0
ta−1 exp[−t]dt denoting the lower incomplete gamma function.

Finally, the probability that a population successfully adapts from standing genetic va-
riation can be derived as

PSGV = 1 −
(
1 +

4Nesb

4Ne|sd|+1

)−Θ

1− ≈ exp
[
−Θ log

[
4Nesb

4Ne|sd|+1

]]
. (9)

2.2.2. Fixation probabilities under time-inhomogeneous selection

In gradually changing environments, the selection coefficient of a given (mutant) al-
lele is not fixed but changes over time (i.e., as the position of the optimum changes).
Uecker and Hermisson (2011) recently developed a mathematical framework based on
branching-process theory to describe the fixation process of a beneficial allele under
temporal variation in population size and/or selection pressures. They showed that the
probability of fixation for a mutation starting with n initial copies is given by

Πfix(n) = 1 −
(
1 −

1
ϕ

)n

, (10a)

where

1
ϕ

=
2

1 +
∫ ∞

0
(N(0)/Ne(t)) exp

[
−

∫ t

0
s(τ)dτ

]
dt
. (10b)

Assuming that the population size remains constant and that the selection coefficient
increases linearly in time, s(t) = sd + stt, equation (10a) becomes

Πfix = 1 −

1 − [
1 + ξ

√
π

2st
exp

(
s2

d

2st

)
erfc

(
sd
√

2st

)]−1n

, (11)

where erfc(•) denotes the Gaussian error function and ξ is a scaling constant.
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2.2.3. Evolution of a focal locus in the presence of genetic background variati-
on

Both the Hermisson and Pennings (2005) and the Uecker and Hermisson (2011) frame-
work study evolution at a single locus only. In the quantitative-genetics view of adapta-
tion, however, there is simultaneous selection at many loci that contribute to an adaptive
trait. Assuming that the genetic values (of individuals) for that trait follow a Gaussi-
an distribution with genetic variance σ2

g, the change in the mean phenotype is given
by

∆z̄ = σ2
gβ, (12a)

where

β =
∂ log(w̄)
∂z̄

(12b)

denotes the selection gradient, which measures the proportional change in log mean
fitness per unit change of the mean phenotype (Lande 1976).

When individual alleles influencing the same trait segregate in the standing genetic va-
riation, the selective dynamics of any individual allele and therefore its fate are critically
affected by the collective evolutionary response at other loci, due to interference effects
(epistasis for fitness). In particular, any allele that brings the mean phenotype closer
to the optimum simultaneously decreases the selective advantage of other such alleles.
Thus, if evolution of the genetic background allows the population to closely follow
the optimum, the large-effect alleles at any given locus are likely to remain deleterious
(as their carriers would overshoot the optimum). Therefore, the probability for alleles
from the standing genetic variation to reach fixation crucially depends on the genetic
background, which determines their time-dependent selection coefficient.

This issue was first addressed by Lande (1983), who proposed a model that considers
the simultaneous evolution at a focal locus and of genetic background variation that both
affect a quantitative trait evolving towards a constant optimum. Adapting this approach,
Chevin and Hospital (2008) analyzed the effect of genetic background variation on the
allele trajectory of a focal allele sweeping to fixation, and Gomulkiewicz et al. (2010)
studied the probability of adaptation to novel environments. In essence, all studies stres-
sed the fact that genetic background variation cannot be neglected and critically affects
the adaptive outcome. To assess the probability of adaptation from standing genetic va-
riation for individual mutant alleles, while accounting for simultaneous evolution at other
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loci, we introduce a genetic background zB (evolving according to equation 12) into the
Hermisson and Pennings (2005) and Uecker and Hermisson (2011) frameworks.

2.3. Simulations

To check our analytical approximations, we used two complementary simulation ap-
proaches, which are explained in detail in the subsequent paragraphs. Both programs
were written in C++ and make use of the Gnu Scientific Library (Galassi et al. 2009).
Mathematica (Wolfram Research, Inc., Champaign, USA) was used for the numerical
evaluation of integrals and to create plots and graphics, making use of the LevelScheme
package (Caprio 2005).

2.3.1. Wright-Fisher simulations

Following Hermisson and Pennings (2005), we implemented a multinomial Wright-
Fisher (WF) sampling approach (available upon request). While this framework allows
the adaptive process to be simulated fast and efficiently, it can only serve as an approxi-
mation since it does not include population dynamics nor does it have an explicit genetic
context (see below).

Genome. Instead of following allele trajectories across multiple loci, we focus on the
effect of selection on a focal locus affecting the quantitative trait of interest and on ge-
netic background variation for this trait, which summarizes the collective evolutionary
response by other loci. Thus, this model effectively reduces to a single-locus framework,
where the focal locus is assumed to be in linkage equilibrium with the genetic back-
ground (i.e., with all other loci). For a fixed allelic effect α, mutations appear recurrently
at rate Θ at the focal locus, where they convert ancestral alleles into derived standing and
derived de-novo alleles, depending on whether they appeared prior to or after the envi-
ronmental change. Accordingly, despite of a normally distributed genetic background,
there are at most three types of (focal) alleles in the population, where each type only
“feels” the mean background z̄B, which evolves according to equation (12) with constant
σ2

g. Note that dynamics at the focal locus are coupled with the genetic background (and
vice versa), meaning that the evolutionary responses at the focal locus and the genetic
background are interdependent. Furthermore, the amount of genetic background variati-
on σ2

g in this model serves as a free parameter that is independent of Θ, Ne and σ2
s .
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Procedure. We follow the evolution of 2Ne haploid individuals in the presence of ge-
netic background variation σ2

g in a gradually changing environment. Each generation is
generated by binomial or multinomial sampling, where the probability of choosing an
allele of a given type (wild-type, derived standing, derived de-novo) is weighted by its
respective fitness. Furthermore, z̄B evolves deterministically according to equation (12)
with constant σ2

g. To let the population reach mutation-selection-drift equilibrium each
simulation is started 4Ne generations before the environment starts changing. Initially,
the population consists of only ancestral alleles “0”; the derived allele “1” is created by
mutation. If the derived allele reaches fixation by drift, it is itself denoted “ancestral”;
i.e., the population is set back to the initial state. After 4Ne generations, the selection
coefficient of the derived allele increases from neutral or deleterious (i.e., sd ≤ 0) until
it may eventually become beneficial (i.e., sb(t) > 0). Mutations now convert ancestral
alleles into new derived alleles (using a different symbol, “2”) with the same selective
advantage sb(t). New mutational input is stopped M = 0.1Ne generations after the envi-
ronmental change (for details see Hermisson and Pennings 2005). Simulations continue
until the ancestral allele either fixes or gets lost. Each run has four possible outcomes:
Fixation of 0, 1, or 2 or of 1 and 2 together. In the following, fixation of “1” or “1
and 2” will both be considered as adaptation from standing genetic variation. Fixation
probabilities are estimated from 100,000 runs.

2.3.2. Individual-based simulations

We conducted individual-based simulations (IBS; available upon request; see Bürger
2000; Kopp and Hermisson 2009b) to explicitly model the simultaneous evolution at
multiple loci, while making additional assumptions about the genetic architecture of the
selected trait, the life cycle of individuals and the regulation of population size.

Genome. Individuals are characterized by a linear (continuous) genome of diploid loci,
which additively determine the phenotype z (i.e., there is no phenotypic epistasis; note
that there is, however, epistasis for fitness).

We do not fix the number of loci a-priori, but instead assume that every mutation occur-
ring at constant rate u per haplotype creates a unique polymorphic locus on the genome,
whose position is drawn randomly from a uniform distribution on the unit interval. Thus,
each locus only consists of a neutral wild-type and a mutant allele with phenotypic effect
α. Thus, we effectively design a bi-allelic infinite-sites model, where allelic effects are
drawn from a continuum (eq. 3).
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To monitor adaptive substitutions, we introduce a population-consensus genome G that
keeps track of all loci (i.e., all mutant alleles) that are segregating in the population.
Mutant alleles that have become fixed in the population (i.e., that have risen to frequency
of one) are declared the new wild-type allele and their phenotypic effect is reset to 0. The
phenotypic effects of all fixed mutations are taken into account by a variable zfix, which
can be interpreted as a phenotypic baseline effect. Thus, the phenotype z of an individual
i is given by

zi = zfix +
∑

h∈{1,2}

∑
l∈G

1(i, l, h)αl.

where

1(i, l, h) =

1 if individual i carries mutant allele α at locus l on haplotype h

0 otherwise.

Life cycle. Each generation, the following steps are performed:

(1) Viability selection: Individuals are removed with probability 1−w(z) (see eq. 1).

(2) Population regulation: If, after selection, the population size N exceeds the
carrying capacity K, N − K randomly chosen individuals are removed.

(3) Reproduction: The surviving individuals are randomly assigned to mating pairs,
and each mating pair produces exactly B offspring (typically, B = 4). The off-
spring genotypes are derived from the parent genotypes by taking into account
segregation, recombination and mutation.

Recombination. We assume that recombination is free, that is, all loci are unlinked, so
that the number of crossing-over events tends to infinity. For each locus on the maternal
and/or paternal haplotype a Bernoulli distributed random number is drawn to determine
whether the offspring haplotype will receive the maternal or the paternal allele at that
locus.

Simulation initialization and termination. Starting from a population of K geneti-
cally identical and homozygous individuals with phenotype z = 0 (i.e., the population
was perfectly adapted at t = 0), we allowed for the establishment of genetic variation
by letting the population evolve for 10,000 generations under stabilizing selection with a



2. MODEL AND METHODS 139

constant optimum. Increasing the number of generations had no effect on σ2
g. Following

this equilibration time, the optimum started moving, and simulations were stopped once
all alleles from the standing genetic variation had either been fixed or lost (i.e., when
σ2

g = 0), and replicated until a total number of 5000 standing adaptive substitutions was
recorded.
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Table 1 – A summary of notation and definitions.

α phenotypic effect of mutation

p(α) (Gaussian) distribution of new mutations

z phenotype

z̄B mean genetic background phenotype

v rate of environmental change

w(z, zopt(t)) (Gaussian) fitness function

σ2
s width of Gaussian fitness function

σ2
m variance of new mutations

σ2
g genetic variance

s(α, t) time-dependent selection coefficient for allele with phenoty-
pic effect α

sd (deleterious) selection coefficient prior to environmental
change

sb (beneficial) selection coefficient after environmental change

st rate of selection coefficient increase

x frequency of mutant allele

Ne effective population size

Θ population-wide mutation rate

Πfix fixation probability

ρ(x, α) Distribution of mutant allele frequency x at a single locus
with phenotypic effect α

PSGV Probability to adapt from standing genetic variation

pSGV Distribution of standing substitutions
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3. Results

In the following we calculate the probability that alleles from the standing genetic varia-
tion become fixed when adapting to a moving phenotypic optimum, and we derive their
effect-size distribution. Note that the former will be calculated under the assumption of
recurrent mutation (see 2.3.1 Wright-Fisher simulations), whereas the later is derived
under an infinite-sites model (see 2.3.2 Individual-based simulations).

3.1. The probability for adaptation from standing genetic variation

The selection coefficient at time t of a focal mutant allele with effect α can be calculated
as

s(α, t) =
w(α + z̄B(t), t)

w(z̄B(t), t)
− 1

≈ −
α2

2
(
σ2

s + σ2
g

) +
α

σ2
s + σ2

g
(vt − z̄B(t)). (14)

Note that the width of the fitness landscape is somehow “stretched” by the genetic back-
ground varianceσ2

g. Assuming that the distribution of phenotypic values from the genetic
background is Gaussian and the genetic variance remains constant,

z̄B(t) ≈ vt −
v
γ

(1 − (1 − γ)t) (15a)

with

γ =
σ2

g

σ2
g + σ2

s
(15b)

(Bürger and Lynch 1995). Note that the amount of standing genetic variation in our
individual-based simulations (subsection 2.3.2) is accurately predicted by the Stochastic-
House-Of-Cards (SHC) approximation (not shown; Bürger and Lynch 1995)

σ2
g =

Θσ2
m

1 +
Neσ

2
m

σ2
s

. (16)

The reason is that, with an infinite-sites model, there is no recurrent mutation and thus
no intra-locus competition between co-segregating alleles that could reduce the amount
of genetic variation (e.g., Alvarez-Castro et al. 2009).
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Plugging into equation (14) then yields the selection coefficient,

s(α, t) ≈ −
α2

2
(
σ2

s + σ2
g

) +
αv

γ
(
σ2

s + σ2
g

) (1 − (1 − γ)t). (17)

Assuming that the population is perfectly adapted at t = 0 (z̄B = 0), the (deleterious)
selection coefficient is given by

s(α, 0) = −
α2

2
(
σ2

s + σ2
g

) .
Unlike in the model without genetic background variation (Kopp and Hermisson 2009b),
s(α, t) does not increase linearly, but instead depends on the evolution of the phenotypic
lag between the optimum and the mean background phenotype. In particular, if v is
less than or equal to the critical rate of environmental change for population persistence
(Bürger and Lynch 1995), the population will reach a dynamic equilibrium with ∆z̄ = v,
where it follows the optimum with a constant lag δeq = v

γ
(Bürger and Lynch 1995).

Consequently, the selection coefficient approaches

lim
t→∞

s(α, t) = −
α2

2
(
σ2

s + σ2
g

) +
αv

γ
(
σ2

s + σ2
g

) . (18)

In this case, the largest obtainable selection coefficient is at α = v
γ

(i.e., α = δeq) and
evaluates to

smax = s(
v
γ
,∞) =

v2

2γ2
(
σ2

s + σ2
g

) . (19)

The range of allelic effects α which can reach a positive selection coefficient is boun-
ded by αmin = 0 and αmax = 2 v

γ
(i.e., twice the equilibrium lag). Note that in previous

adaptive-walk models (e.q., Kopp and Hermisson 2009b; Matuszewski et al. 2014) there
was no strict αmax since the population followed the optimum by stochastic jumps. This
difference arises because the genetic background evolves deterministically and establis-
hes a constant equilibrium lag. These calculations, furthermore, allow for a heuristic
assessment of αmax which increases with v and σ2

s , but decreases with σ2
g.

Assuming that α was deleterious prior to the environmental change, the allele frequency
spectrum ρ(x, α), is given by equation (8). When genetic background variation is absent
Πfix(α) (eq. 10) can explicitly be calculated using
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1
ϕσ2

g=0(α)
=

1 +
1
2

√
π

2 αv
σ2

s

exp

 s(α, 0)2

2 αv
σ2

s

 erfc

 s(α, 0)√
2 αv
σ2

s



−1

. (20)

For the general case, however, Πfix(α) can only be calculated numerically with

1
ϕ(α)

=
2

1 +
∫ ∞

0
1 + s(α, 0)dt exp

[
−

∫ t

0
s(α, τ)dτ

]
=

2

1 +
∫ ∞

0
(1 + s(α, t)) exp

[
−

((
− α2

2(σ2
s+σ2

g)

)
+

(
(1 − (1 − γ)t) 1

log[(1−γ)t] + 1
)

αv
γ(σ2

s+σ2
g)

)
t
]

dt

(21)

The fixation probability for an allele from the standing genetic variation with allelic
effect α and a recurrent population-wide mutation rate Θ can then be calculated as

PSGV(α)=


1−C(α)

∫ 1
0 xΘ−1 exp[−4Ne |s(α,0)|x]

(
1− 1

ϕ(α)

)2Ne x
dx if 0<α<αmax

0 otherwise
(22)

Checking our analytical approximations against Wright-Fisher simulations (for details
see subsection 2.3.1) showed that they in general perform very well (Fig. 1). Only if
background genetic variation is large (large σ2

g) and the strength of stabilizing selection
is weak (i.e., if σ2

s is large) does the analytical approximation underestimate PSGV(α) for
small α ∼ 0.5σm. The reason is that, under a constant optimum, the genetic background
will compensate for the deleterious effect of α (i.e., z̄B < 0, in violation of our assumption
that z̄B = 0), effectively reducing the selection strength against the deleterious mutant
allele. Consequently, α on average is already present at higher frequencies than predicted
by equation (8). Note that in the limit of α � σm and very slow rates of environmental
change (i.e., v � 10−5), PSGV(α) will approach that for a neutral allele (i.e., α = 0). The
probability that a neutral allele is present in the population and becomes fixed can be
calculated (by using equation 6) as

PSGV, neutral =

∫ 1

0
xρ(x)dx

=
HΘ − 1
γ + ψ(Θ)

(23)
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where Hn denotes the nth harmonic number, γ ≈ 0.577 is Euler’s gamma and ψ(•) is the
polygamma function.

The results in Figure 1, furthermore, show some general trends. First, the probability
for a mutant allele α to become fixed increases with Θ, σ2

s and v, irrespective of its
effect-size. In accordance with the results from Chevin and Hospital (2008), we find that
PSGV(α) critically depends on the genetic background variation σ2

g. In particular, as σ2
g

increases PSGV(α) decreases, rendering most large effect alleles deleterious even if the
rate of environmental change is fast.
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Figure 1 – The probability to adapt from standing genetic variation as a function of the rate of environmental change v. Solid lines correspond to the analytical prediction
(eq. 22), the grey dotted line gives PSGV, neutral (eq. 23), and symbols give WF-simulation results. The phenotypic effect size α ranges from 0.5σm (top line) to 3σm

(bottom line) with increments of 0.5σm. The figures in each parameter box correspond to different values of σ2
g with σ2

g = 0 (no background variation; top left),
σ2

g = 0.005 (top right), σ2
g = 0.01 (bottom left) and σ2

g = 0.05 (bottom right). Other parameters: Ne = 25000, σ2
m = 0.05.
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3.2. The distribution of standing adaptive substitutions

When deriving the distribution of standing adaptive substitutions, we have to account
for the fact that the individual-based simulations assume an infinite-sites model. Thus,
there are no recurrent mutations, and every allele originates from a single mutation. Note
that equation (22) contains a probability that the allele is not present in the population
when the environment starts changing. This probability can be approximated by inte-
grating over the distribution of allele frequencies ρ(x, α) from 0 to 1

2Ne
(see Appendix in

Hermisson and Pennings 2005) and approximately evaluates to

P0(α) ≈
(

2Ne

4Ne|s(α, 0)|+1

)−Θ

= exp
[
−Θ log

[
2Ne

4Ne|s(α, 0)|+1

]]
. (24)

The fixation probability for a segregating allele that is derived from a single mutation
prior to the environmental change can then be derived by conditioning on segregation of
the allele in the limit Θ→ 0 (Hermisson and Pennings 2005). With a moving phenotypic
optimum this probability reads

Πseg(α) = lim
Θ→0

PSGV(α)
1 − P0(α)

≈ lim
Θ→0

1 −C(α)
∫ 1

0
xΘ−1 exp[−4Ne|s(α, 0)|x]

(
1 − 1

φ(α)

)2Ne x
dx

1 − exp
[
−Θ log

[
2Ne

4Ne |s(α,0)|+1

]] . (25)

Since the numerator can only be calculated numerically, the limit in equation (25) can
be approximated by replacing Θ by a placeholder variable ε � 1. Multiplying by the
α-specific mutation rate Θp(α) (i.e., the rate of mutations with effect α), the distribution
of standing substitutions can be calculated as

pSGV(α) ≈
Θp(α)Πseg(α)∫ αmax

0
Θp(α)Πseg(α)dα

=
p(α)Πseg(α)∫ αmax

0
p(α)Πseg(α)dα

. (26)

Note that while Θ does not affect the distribution of the focal allele directly (since there
are no recurrent mutations), it still indirectly enters pSGV(α) through σ2

g. In particular, in
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the SHC approximation (eq. 16) σ2
g scales linearly with Θ. Furthermore, equation (26)

should be valid for any distribution of mutational effects p(α).

In the limit where the equilibrium lag is reached fast (i.e., when σ2
s is small and v is

large) the moving-optimum model reduces to a model with constant selection (e.g., as in
Hermisson and Pennings 2005). Using equations (9), (24), and (26), the distribution of
standing substitutions can be approximated by

pSGV,δeq(α) ≈
p(α)

1−exp
[
−ε log

[
1+

2Ne s(α,∞)
4Ne |s(α,0)|+1

]]
1−exp

[
−ε log

[
2Ne

4Ne |s(α,0)|+1

]]∫ αmax

0
p(α)

1−exp
[
−ε log

[
1+

2Ne s(α,∞)
4Ne |s(α,0)|+1

]]
1−exp

[
−ε log

[
2Ne

4Ne |s(α,0)|+1

]] dα
. (27)

Similarly, we can calculate the limit distribution of de-novo substitutions as

pDNM,δeq(α) ≈
p(α)

(
1 − exp

[
−
α(2δeq−α)
σ2

s+σ2
g

])
∫ αmax

0
p(α)

(
1 − exp

[
−
α(2δeq−α)
σ2

s+σ2
g

])
dα
. (28)

In contrast, if the environment changes very slowly, we can calculate the limit distri-
bution of standing substitutions conditioned on segregation by using equation (7) and
approximating the fixation probability by that of a neutral allele (i.e., its allele frequen-
cy)

pSGV,v0(α) ≈

p(α)C(α)1F(0,ε+1,4Ne |s(α,0)|
1−exp

[
−ε log

[
2Ne

4Ne |s(α,0)|+1

]]∫ ∞
−∞

p(α)C(α)1F(0,ε+1,4Ne |s(α,0)|
1−exp

[
−ε log

[
2Ne

4Ne |s(α,0)|+1

]] dα
(29)

where C(α) = (1F(0, ε, 4Ne|s(α, 0)|))−1 denotes a normalization constant. Note that the
integral in the denominator can be approximated by sufficiently large boundaries (e.g.,
±3σm). Furthermore, unlike equation (26), this approximation (eq. 29) permits to predict
substitutions with negative allelic effects (i.e., α < 0).
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Figure 2 – The distribution of adaptive substitutions from standing genetic variation compared to that from de-novo mutations (eq. 28). The black line corresponds to the
analytical prediction (eq. 26). σ2

g is given by equation (16). Other parameters: σ2
m = 0.05.
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Figure 3 – The analytical approximation of the mean step size ᾱ (
∫ αmax

0
αpSGV(α)dα) measured in units of σm

as a function of the rate of environmental change v (top row) and for various v as a function of σ2
s

(bottom left), Θ (bottom middle) and Ne (bottom right). Symbols give the individual-based
simulation results. Individual-based simulation results for v = 0.1 constitute a degenerate case and
are thus not shown (for details see The accuracy of the approximation). Other parameters:
σ2

m = 0.05.
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Figure 4 – The distribution of adaptive substitutions from standing genetic variation compared to that from de-novo mutations (eq. 28)

for various rates of environmental change. The black line corresponds to the analytical prediction (eq. 26). σ2
g is given by

equation (16). Other parameters: Θ = 5, N = 5000, σ2
m = 0.05.
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Figure 5 – The distribution of adaptive substitutions from standing genetic variation compared to the analytical prediction (black line;
eq. 29). σ2

g is given by equation (16). Other parameters: v = 10−5, σ2
m = 0.05.
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The distribution of adaptive substitutions from standing genetic variation (Figs. 2,4) has
an intermediate mode and resembles a log-normal distribution. Compared to adaptive
substitutions from de-novo mutations, substitutions from standing genetic variation have
smaller effects. Furthermore, as for de-novo mutations, the mean phenotypic effect of
substitutions increases with the rate of environmental change (Fig. 3, top row). In parti-
cular, as v increases, there are fewer “backward-steps” (i.e., substitutions with negative
effect that are opposite to the moving direction; Fig. 4), while at the same time larger
phenotypic effects can become fixed. Additionally, if the rate of environmental change
is fast, the distribution of standing substitutions becomes more skewed, resembling the
“almost exponential” distribution of de-novo substitutions in the sudden change scena-
rio (Orr 1998). Interestingly, in contrast to the effect-size distribution of fixed de-novo
mutations, even though the mean increases, the mode of the distribution of standing sub-
stitutions shifts towards smaller values as v increases (i.e., the distribution becomes more
asymmetric; Fig. 4). Recall that the effect-size distribution of standing substitutions is
ultimately the product of the allele-frequency spectrum ρ(x, α) and the corresponding
fixation probabilities Πfix(α) (eq. 4). Of course, only the latter depends on v. As long as
the rate of environmental change is slow, most alleles get fixed or lost simply by chan-
ce (i.e., genetic drift), because selection is not efficient enough. As v increases, so does
the selection coefficient of all positive mutations. Thus, more alleles need to pass the
selective sieve (sensu Kopp and Hermisson 2009b) to become fixed.

The rate of environmental change v has a strong impact on how the distribution of stan-
ding substitutions, and in particular, its mean ᾱ depends on the rate of mutational supply
Θ. Recall that Θ only indirectly enters pSGV(α) through σ2

g. Accordingly, as Θ increases
so does σ2

g and, thus, γ (eq. 15b). In the limit t → ∞, the population will follow the
optimum at a constant lag δeq = v

γ
. Thus, if v is large (and the lag is large even for lar-

ge σ2
g) increasing Θ does not affect ᾱ. In contrast, if v is small, increasing the genetic

background variation (by increasing Θ) will reduce the lag even further, making most
large-effect alleles deleterious. Consequently, for small v, ᾱ decreases as Θ increases
(Fig. 3).

The width of the fitness landscape of σ2
s is more ambiguous, as it affects different aspects

of the adaptive process. First, as σ2
s increases (i.e., as stabilizing selection gets wea-

ker) alleles start at higher average initial frequencies. In particular, the amount of large-
effect alleles in the standing genetic variation increases, as selection gets less efficient in
purging them. On the other hand, the same effect also increases the amount of genetic
background variation σ2

g, which might prevent most large-effect alleles from becoming
beneficial. Second, also the strength of directional selection (after the optimum starts
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moving) decreases with that of stabilizing selection (Kopp and Matuszewski 2014). Con-
sequently, st (the rate of selection coefficient increase; second term in eq. 14) decreases
as stabilizing selection gets weaker. Overall, however, we find that the mean fixed phe-
notypic effect increases with σ2

s (Fig. 3). The reason is, that the inefficiency of selection
also results in an increased equilibrium lag, which together with the increased starting
frequency outweighs disadvantage of the smaller st and the increased σ2

g.

Similar arguments hold for Ne (when Θ is held constant). First, increasing Ne will always
increase the efficacy of selection, resulting in lower initial starting frequencies of mutant
alleles (eq. 7) and decreased σ2

g (eq. 16). If the environment changes slowly, ᾱ increases
with Ne, because the equilibrium lag increases (caused by the decrease inσ2

g). In contrast,
if the rate of environmental change is fast, ᾱ slightly decreases due to the lower initial
starting frequency and because small-effect alleles are selected for more efficiently (i.e.,
they are less prone to get lost by genetic drift, since Nes increases).

The accuracy of the approximation. In our analytical derivations, we have used diffe-
rent results derived from both diffusion theory and branching processes. When compared
to our individual-based simulations of an explicit genetic model, we find that the perfor-
mance of our approximations is often surprisingly good as long as selection is strong,
i.e., if v is large and/or the strength of stabilizing selection σ2

s is not too weak. Converse-
ly, if selection is weak our analytically-derived distribution (eq. 26) fails to capture the
shape of the distribution. This discrepancy arises since we condition on s(α, t) to be po-
sitive for large t for alleles to become fixed. Thus, neutral alleles (α = 0) and ‘backward
steps’ (i.e., α < 0; e.g., Fig. 2) are not captured by our analytically derived distribution
(eq. 26). Particularly, if genetic drift is the main driver of phenotypic evolution (e.g.,
if the environment changes very slowly), the distribution of standing substitutions re-
sembles a Gaussian distribution with its mean slightly offset from 0, including a lot of
backward steps. Indeed, equation (29) provides a very good fit to our individual-based si-
mulations (Fig. 5) when the overall strength of selection is low, i.e., when Ne|s(α, t)|< 1.
Recall, however, that Nes(α, t), depends itself on v, σ2

s and σ2
g.

With a moving phenotypic optimum the selection coefficient (eq. 17) increases with
time. Accordingly, there is always a phase during the adaptive process where genetic
drift dominates, i.e., where Ne|s(α, t)|< 1. The length of this phase (i.e., the time it takes
until selection becomes the main force of evolution) again depends on the interplay of
multiple parameters, notably α, v, σ2

s , Ne and Θ. A good heuristic to identify the main
driver of phenotypic evolution is to calculate Nesmax (eq. 19), which gives the maximal
population-scaled selection coefficient. Since the selection coefficient of most mutations
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will be smaller, one can consider as a rule of thumb that drift is the main driver of
evolution as long as Nesmax ≤ 10. Similarly, when Nesmax > 10 equation (26) matches the
individual-based simulations very well. In summary, the accuracy of our approximation
crucially depends on the efficacy of selection.

Interestingly, if the environment changes very fast the distribution of standing substi-
tutions from our IBS almost exactly matches the one for de-novo mutations (Fig. 6).
However, this seems to be an artifact rather than a relevant biological effect. The reason
is that the environment changes so fast that the population quickly dies out. Thus, the
resulting distribution of standing substitutions is that for a dying population and might
not necessarily reflect the adaptive process. In an experimental setup, though, where po-
pulations evolve until they go extinct, the distribution of adaptive standing substitutions
might be indistinguishable to the distribution from de-novo mutations.
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Figure 6 – The distribution of adaptive substitutions from standing genetic variation compared to that from
de-novo mutations (eq. 28). The black line corresponds to the analytical prediction (eq. 26). σ2

g is
given by equation (16). Other parameters: σ2

s = 100, Θ = 20, N = 5000, v = 0.1, σ2
m = 0.05.

3.3. Extinction and the rate of environmental change

Even though not the main focus of the present study, we also performed individual-
based simulations to investigate the relation between the rate of environmental change
and population extinction when adaptation depends exclusively on standing genetic va-
riation (i.e., when there are no further mutations after the environmental change). For
this purpose, we recorded the mean population phenotype z̄ at the time standing genetic
variation was exhausted (i.e., when all alleles had been either fixed or lost). This amount
of phenotypic evolution from standing genetic variation alone determines the amount of
environmental change the population can tolerate before extinction becomes inevitable
without the input of new mutations (i.e., before the phenotypic lag becomes so large that
the population mean fitness drops below a critical value). Our simulation results show
that the average distance traversed in phenotype space initially increases with the rate
of environmental change, until v becomes very fast where it drops off sharply (Fig. 7).
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The reason is that more (large-effect) alleles become fixed as v increases until the rate of
environmental change becomes so fast, that the population goes extinct even before all
positively selected alleles can become fixed. Conversely, this means that if the optimum
stopped moving at a given value zopt,max (e.g., the maximal possible z̄), populations will
achieve a higher degree of adaptation (higher z̄∗) if the final optimum is reached fast
rather than slowly, at least if standing genetic variation is the sole source for adaptati-
on. Note that this pattern is qualitatively consistent across different values of σ2

s and Θ

(Fig. 7). Clearly, the assumption of no new mutations appearing after the environmental
change is an evident simplification. In experimental populations, however, where selec-
tion is strong and the duration of the experiment is usually short, de-novo mutations can
often be neglected.
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Figure 7 – The average distance traversed in phenotype space as a function of the rate of environmental change
v when standing genetic variation is the sole source for adaptation (i.e., there were no new
mutations after the environment started changing). σ2

g is given by equation (16). Data points from
individual-based simulations are averaged over 100 replicate runs. Other parameters: σ2

m = 0.05.
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4. Discussion

Global climate change has forced many populations to adapt to the altered environmen-
tal conditions to avoid extinction. When studying the genetic basis of this process, most
theoretical work has focused on adaptation from new mutations (Gillespie 1984; Orr
1998, 2000; Collins et al. 2007; Kopp and Hermisson 2007, 2009a,b; Matuszewski et al.
2014). Consequently, very little is known about the genetic basis of adaptation from
standing genetic variation (but see Hermisson and Pennings 2005), that is, which of
the alleles segregating in the population will become fixed and contribute to adaptation.
Here, we have used analytical approximations and stochastic simulations to study the
effects of standing genetic variation on the genetic basis of adaptation in gradually chan-
ging environments. Supporting Barrett and Schluter (2008), we show that, compared to
de-novo mutations, adaptation from standing genetic variation proceeds, on average, by
smaller steps (i.e., by the fixation of more alleles of small effect). As in adaptive-walk
models, however, the genetic basis of adaptation from standing genetic variation cruci-
ally depends on the efficacy of selection, which in turn is determined by the population
size, the strength of (stabilizing) selection and the rate of environmental change. When
standing genetic variation is the sole source for adaptation, we find that fast environmen-
tal change enables the population to traverse larger distances in phenotype space than
under slow environmental change, thus contrasting studies that consider adaptation from
new mutations only (Perron et al. 2008; Bell and Gonzalez 2011; Lindsey et al. 2013;
Bell 2013). We now discuss these results in greater detail.

4.1. Adaptation in the moving optimum model

Introduced as a model for sustained environmental change, such as global warming
(Lynch et al. 1991; Lynch and Lande 1993), the moving-optimum model describes the
evolution of a quantitative trait under stabilizing selection towards a time-dependent op-
timal phenotype (Bürger 2000). A large number of studies have analyzed both the basic
model and several modifications, for example, models with a periodic or fluctuating
optimum, or models for multiple traits (Slatkin and Lande 1976; Charlesworth 1993;
Bürger and Lynch 1995; Lande and Shannon 1996; Kopp and Hermisson 2007, 2009a,b;
Gomulkiewicz and Houle 2009; Zhang 2012; Chevin 2013; Matuszewski et al. 2014).
Following traditional quantitative-genetic approaches, the majority of these studies, ho-
wever, assumed that the distribution of genotypes (and phenotypes) follows a Gaussian
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with constant (time-invariant) genetic variance and have mostly focussed on the evolu-
tion of the population mean phenotype and population persistence in changing environ-
ments (Bürger and Lynch 1995; Lande and Shannon 1996; Gomulkiewicz and Houle
2009). None of these models, however, allows to address the fate of individual alleles
(i.e., whether they become fixed or not). In a recent series of papers Kopp and Her-
misson (2007, 2009a,b) studied the genetic basis of adaptation from new mutations and
derived the distribution of adaptive substitutions (i.e, the distribution of those mutations
that arise in population and become fixed); this approach has recently been generalized
to multiple phenotypic traits (Matuszewski et al. 2014). The shape of this distribution
resembles a Gamma-distribution with an intermediate mode. Thus, most substitutions
are of intermediate effect with only a few large-effect alleles contributing to adaptation.
The reason is that small-effect alleles – despite appearing more frequently than large-
effect alleles – only have small effects on fitness and, hence, are often lost due to genetic
drift, while large-effect alleles might be removed because they “overshoot” the optimum
(Kopp and Hermisson 2009b).

Similarly to Kopp and Hermisson (2009b), we find that the distribution of standing sub-
stitutions depends on the distribution of standing genetic variants (i.e., the distribution
of alleles segregating in the population prior to the environmental change) and the inten-
sity of selection. The distribution of standing genetic variants is shaped primarily by the
strength of stabilizing selection, which removes large-effect alleles. In contrast, the influ-
ence of the distribution of new mutations is relatively weak, since for a sufficient number
of loci, the distribution of standing variants will always converge to a Gaussian (Lande
1976). After the environmental change, the standing genetic variation is “filtered” by
selection. Depending on the speed of change v, we find two regimes characterized by
a separate distribution. If v is very small, allele-frequency dynamics are dominated by
genetic drift, and the distribution of standing substitutions reflects the approximately
Gaussian distribution of standing genetic variants (eq. 29; Fig. 5). Conversely, if the en-
vironment changes fast, selection will become the main driver of phenotypic evolution
and transform the distribution of standing genetic variants into an log-normal-like dis-
tribution of standing substitutions (eq. 26; Fig. 2). Consequently, when adapting from
standing genetic variation, most substitutions are of small phenotypic effect. The rea-
son is that, in the standing genetic variation, small-effect alleles are more frequent than
large-effect alleles and might already segregate at appreciable frequency (so that they
are not lost by genetic drift). With a moving optimum, they furthermore are the first



4. DISCUSSION 157

to become positively selected, hence reducing the time they are under purifying selec-
tion. Thus, compared to adaptation from de-novo mutations, adaptation from standing
variation proceeds by the fixation of more alleles of small effect.

4.2. Connection to experimental data

Recently, several experimental studies have explored how the rate of environmental
change affects the persistence of populations adapting to a gradually changing envi-
ronment (Perron et al. 2008; Bell and Gonzalez 2011; Lindsey et al. 2013). In line with
theoretical predictions (Bell 2013), all studies found that evolutionary rescue is con-
tingent on a small rate of environmental change. In particular, Lindsey et al. (2013)
evolved replicate populations of E. coli under different rates of increase in antibiotic
concentration and found that certain genotypes were evolutionarily inaccessible under
rapid environmental change, suggesting that “rapidly deteriorating environments not on-
ly limit mutational opportunities by lowering population size, but [...] also eliminate sets
of mutations as evolutionary options”. This is in contrast to our prediction that faster
environmental change can enable the population to remain better adapted and to traverse
larger distances in phenotype space, when standing genetic variation is the sole source
for adaptation (Fig. 7; in line with recent experimental observations; H. Teotonio, pri-
vate communication). The difference between these results arises from the availability
of the “adaptive material”. While standing genetic variants are on-hand right away and
might already be segregating at appreciable frequency, de-novo mutations first need to
appear and survive stochastic loss before becoming fixed. Thus, in both cases, the rate
of environmental change plays a critical, though antagonistic, role in determining the
accessibility of the adaptive material as evolutionary options. While fast environmental
change eliminates sets of new mutations, it simultaneously helps to preserve standing
genetic variation until it can be picked-up by selection. Under slow change, in contrast,
most large-effect alleles from the standing variation, by the time they are needed, will
already have been eliminated by drift or purifying selection.

4.3. Testing the predictions

The predictions made by our model can in principle be tested empirically, even though
suitable data might be sparse and experiments challenging. There is, of course, ample
evidence for adaptation from standing genetic variation. For example, Domingues et al.
(2012) showed that camouflaging pigmentation of oldfield mice (Peromyscus poliono-
tus) that have colonized Florida’s Gulf Coast has evolved quite rapidly from a preexisting
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mutation in the Mc1r gene; Limborg et al. (2014) investigated selection in two allochro-
nic but sympatric lineages of pink salmon (Oncorhynchus gorbuscha) and identified 24
divergent loci that had arisen from different pools of standing genetic variation, and
Turchin et al. (2012) showed that height-associated alleles in humans display a clear
signal for widespread selection on standing genetic variation.

Furthermore, testing the predictions of our model requires detailed knowledge of the
genotype-phenotype relation. Currently, there is only a small (though increasing) number
of cases for which both a set of functionally validated beneficial mutations and their se-
lection coefficients under different environmental conditions are available (Jensen 2014).
Recent developments in laboratory systems (Morran et al. 2009; Parts et al. 2011), ho-
wever, have created opportunities for experimental evolution where population size, the
selective regime and the duration of selection can be manipulated, and which allow ad-
aptation from de-novo mutations and standing genetic variation to be recorded (Burke
2012). Applying these techniques in experiments in the vein of Lindsey et al. (2013)
but starting from a polymorphic population should make it possible to test the relation
between the rate of environmental change and population persistence, and to assess the
probability to adapt from standing genetic variation. First experiments along these lines
are currently being carried out in populations of C. elegans, with the aim of determining
the limits of adaptation to different rates of increase in sodium chloride concentration
(H. Teotonio, private communication). Encouragingly, Pennings (2012) recently applied
the Hermisson and Pennings (2005) framework to study the evolution of drug resistance
in HIV from standing genetic variation and found that the model provided explanations
for why resistance mutations in women who only receive a single-dose treatment, and
patients who interrupt treatment, are likely to become established within the first year.
This study, furthermore, emphasized that standing genetic variation plays an important
role in the evolution of drug-resistance, affecting up to 39% of patients (depending on
treatment).

Estimating the distribution of standing substitutions will be even more challenging, be-
cause of the often unknown genotype-phenotype relation of beneficial mutations and the
large number of replicate runs needed to obtain a reliable empirical distribution. Further-
more, even if these problems were solved, small-effect alleles might not be detectable
due to statistical limitations (Otto and Jones 2000), and in certain limiting cases where
the population quickly goes extinct (i.e., when the environment changes very fast), the
distribution of standing substitutions might be indistinguishable from the distribution of
de-novo substitutions (Fig. 6).



4. DISCUSSION 159

4.4. Future directions

Here, we have used an approach originally proposed by Lande (1983), which considers
the simultaneous evolution at a focal locus and of genetic background variation (mi-
micking the collective selective response across other loci) and still allows to obtain an
analytically tractable model. When compared to our individual-based simulations with
an explicit multi-locus genetic context, we obtained an surprisingly good description of
the adaptive process. One key assumption, however, is that the focal allele and the ge-
netic background are in linkage equilibrium (i.e., that there is free recombination). An
obvious follow-up question would be how linkage (i.e., limited recombination) affects
the distribution of standing substitutions. Considering adaptation from de-novo mutati-
ons, Kopp and Hermisson (2009b) and Matuszewski et al. (2014) found that increased
linkage increases the mean size of adaptive substitutions in the moving-optimum model.
The reason are interference effects between co-segregating alleles (e.g., Hill-Robertson
interference; Hill and Robertson 1966) that reduce the efficacy of selection (Gerrish and
Lenski 1998; Weissman and Barton 2012). This aspect should still hold true for adap-
tation from standing genetic variation and might even be reinforced, since linkage also
reduces the (standing) genetic variance σ2

g (Bürger 1989). On the other hand, large-effect
alleles are rarer in the standing genetic variation, which might counteract or even overri-
de the former effect, depending on the genetic and ecological parameters.

Furthermore, it might be interesting to see how our results for a moving phenotypic op-
timum relate to the case of a sudden environmental change. For adaptation from de-novo
mutations Kopp and Hermisson (2009b) and Matuszewski et al. (2014) showed that the
mode of environmental change plays a critical role for the genetic basis of adaptation.
This should still be expected for adaptation from standing genetic variation. In particular,
unlike in the moving-optimum model where the phenotypic lag (and thus the selection
coefficient) increases monotonically, adaptation to a constant optimum is characterised
by a decreasing lag. Hence, in the presence of genetic background variation, alleles need
to “race for fixation” before other competing alleles get fixed and they become delete-
rious. The dynamics of a mutation along its trajectory should therefore be even more
complex than in the moving-optimum model, and expected to show an even stronger
dependence on the genetic background (Chevin and Hospital 2008).

Finally, while we have compared adaptation from standing genetic variation to that from
new mutations (though focussing on the former), we have not investigated their relative
importance during the course of adaptation. Although pioneering work by Hill (1982b,a)
and Hill and Rasbash (1986b) yielded some general results concerning the response to
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selection due to new mutations in a quantitative-genetics framework – the latter work
even explicitly considering both new mutations and standing genetic variation – the rela-
tive role of standing genetic variation versus new mutations during short- and medium-
term adaptation needs to addressed in future studies.

4.5. Conclusion

As global climate change continues to force populations to respond to the altered envi-
ronmental conditions, studying adaptation to changing environments – both empirically
and theoretically – has become one of the main topics in evolutionary biology. Despite
increased efforts, however, very little is known about the genetic basis of adaptation from
standing genetic variation. Our analysis of the moving-optimum model shows that this
process has, indeed, a very different genetic basis than that of adaptation from de-novo
mutations. In particular, adaptation proceeds in many small steps and just a few large
ones. In accordance with previous studies, the adaptive process critically depends on the
tempo of environmental change. Specifically, when populations adapt from standing ge-
netic variation only, the prospects of population persistence increase as the environment
changes faster.
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Zusammenfassung in deutscher Sprache

“As many more individuals of each species are born than can possibly
survive; and as, consequently, there is a frequently recurring struggle for
existence, it follows that any being, if it vary however slightly in any manner
profitable to itself, under the complex and sometimes varying conditions of
life, will have a better chance of surviving, and thus be naturally selected.
From the strong principle of inheritance, any selected variety will tend to
propagate its new and modified form."

— Charles Darwin, The Origin of Species

Genetische Anpassung ist die Triebfeder der Darwin’schen Evolution. Um nicht auszu-
sterben, müssen sich natürliche Populationen ihren Umwelten anpassen. Dieser Punkt ist
im besonderen Maße im Zuge des globalen Klimawandels akut geworden, welcher eine
Vielzahl von Populationen Veränderungen der Temperatur, der Luftfeuchte und saisona-
len Gegebenheiten ausgesetzt hat. Während von Menschen verursachte Klimaverände-
rungen viele Populationen an den Rand des Aussterbens gedrängt haben, ist es anderen
gelungen, sich an die neuen Bedingungen anzupassen. Seit 1975 sind 12% der lokalen
mexikanischen Sceloporus Eidechsen-Populationen ausgestorben. Sollten die heliother-
men Reptilien es weiterhin nicht schaffen ihre thermale Physiologie an die steigenden
Temperaturen anzupassen, so sagen physiologische Modelle eine Aussterberate von 39%
bis zum Jahr 2080 vorher (Sinervo et al. 2010). Im Gegensatz dazu haben es Darwinfin-
ken innerhalb kürzester Zeit geschafft, sich trotz des Rückgangs der lokalen Population
auf Daphne Island um 85%, an die Folgen einer extremen Dürre anzupassen (Grant und
Grant 2006). Während die Zahl empirischer Studien zum Thema Anpassung in sich ver-
ändernden Umwelten kontinuierlich zunimmt, standen theoretische Untersuchung des
Anpassungsprozesses dem bis vor Kurzem deutlich nach. Als Folge dessen sind Antwor-
ten zu den vermeintlich einfachsten Fragen und selbst den simpelsten Szenarien unbe-
kannt. Beispielsweise, welche der in einer Population auftretenden Mutationen fixieren
und was ist deren phänotypischer- beziehungsweise Fitnesseffekt. Können wir vorhersa-
gen, welche Populationen das Potenzial haben, sich an schnell verändernde Umwelten
anzupassen, und welche genetischen und ökologischen Faktoren den Anpassungsprozess
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beschleunigen oder einschränken? Welche Bedeutung hat „stehende“ genetische Varia-
tion (das heißt Allele, die bereits in der Population segregieren) im Vergleich zu Neu-
mutationen während kurz- und mittelfristiger genetischer Anpassung, und worin unter-
scheiden sich diese? Die übergeordnete Fragestellung dieser Dissertation ist daher sehr
allgemein gefasst: Wie passen sich Populationen in sich verändernden Umwelten gene-
tisch an? Spezielles Augenmerk liegt in diesem Zusammenhang auf dem Wechselspiel
zwischen den evolutionären Kräften, Selektion, Mutation und Rekombination sowie den
ökologischen Faktoren, wie der Art und Geschwindigkeit der Umweltänderung, und de-
ren gemeinsame Effekte auf die Genetik des Anpassungsprozesses.

In den vergangen Jahren haben viele Studien versucht, einen formalen Rahmen zur Be-
schreibung des Anpassungsprozesses zu finden. Viele dieser Studien bauen auf zwei
komplementären Modellierungsansätzen auf. Ein erster Ansatz fokussiert auf die sta-
tistischen Eigenschaften von adaptiven Substitutionen (das sind vorteilhafte Mutatio-
nen, welche im Zuge der genetischer Anpassung fixieren) anstatt auf Genotyp- oder
Allelfrequenzdynamiken. Viele Modelle basieren entweder auf Fishers geometrischem
Modell (Fisher 1930; Orr 1998, 2000; Martin und Lenormand 2006a) oder sogenann-
ten „adaptive-walk“ beziehungsweise Mutationslandschaftsmodellen (Gillespie 1984;
Kauffman und Levin 1987; Orr 2002), welche im Allgemeinen das einfachste aller mög-
lichen Szenarien der Umweltveränderung betrachten: Die Anpassung einer Population
an ein konstantes phänotypisches Optimum nach einer plötzlichen Umweltänderung. Er-
staunlicherweise hat Fishers geometrisches Modell trotz seiner Einfachheit und des Feh-
lens eines explizit genetischen Kontextes mehr als 80 Jahre nach seiner Veröffentlichung
mehrere robuste Vorhersagen geliefert, welche zunehmend durch empirische Studien
bestätigt werden (Martin und Lenormand 2006a,b, 2008). Allerdings nehmen diese Mo-
delle typischerweise an, dass Selektion stark im Vergleich zu Mutation ist, so dass die
Population zu jedem Zeitpunkt nur aus einem Phäno- beziehungsweise Genotyp besteht
und Evolution folglich das alleinige Produkt von Neumutationen ist.

Im starken Kontrast dazu stehen quantitativ-genetische Modelle, welche annehmen, dass
genetische Anpassung einzig durch bereits existierende genetische Variationen voran-
schreitet. Darüber hinaus wird angenommen, dass evolvierende Merkmale eine poly-
gene Basis haben, wobei viele Genorte jeweils verschwindend geringe Effekte haben
und die Verteilung der Genotypen daher ungefähr einer Gaussverteilung folgen (Bulmer
1980; Barton und Turelli 1991; Kirkpatrick et al. 2002). Aus historischen Gründen –
quantitativ-genetische Modelle waren dafür gedacht und wurden seit je her erfolgreich
zur Erstellung und Optimierung von Kreuzungsschemata für Pflanzen- und Nutztier-
haltung verwendet – war der Fokus dieser Modelle allerdings auf die Vorhersage von
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kurzfristigen Änderungen des mittleren Phänotyps ∆z̄ nach einer Generation von Selek-
tion gerichtet, anstatt auf Allelfrequenzdynamiken an einzelnen Genorten. Insbesondere
kann die Änderung des mittleren Phänotyps nach einer Generation von Selektion durch
die Lande-Gleichung (Lande 1976) einfach vorhergesagt werden

∆z̄ = σ2
gβ, (1)

wobei σ2
g die additiv-genetische Varianz und β den Selektionsgradienten bezeichnet. Die

wiederholte Anwendung der Lande-Gleichung erfordert jedoch, dass die Verteilungen
der Phäno- und Genotypen gaussverteilt bleiben und σ2

g konstant ist. Während dies über
kurze Zeitspannen ungefähr zutreffen mag, so ist σ2

g jedoch über längere Zeit, insbeson-
dere, wenn man Anpassung an kontinuierlich fortschreitende Umweltänderung unter-
sucht, selbst Gegenstand von evolutionärer Veränderung und hängt stark vom Input von
Neumutationen ab.

Um unser Verständnis des Anpassungsprozesses und die Frage, wie sich Populationen
an sich verändernde Umweltbedingungen anpassen, zu erweitern, ist es notwendig, ei-
ne Theorie aufzustellen, „die auf der Basis von empirischen Daten beruht, das heißt
auf individuellen Mutationen mit individuellen Effekten“1 (Orr 2005a); Daten, die so-
wohl Neumutationen als auch stehende genetische Variation umfassen. Das Schließen
der Lücke zwischen „adaptive-walk“ und quantitativ-genetischen Modellen, welche die
beiden Extreme eines Kontinuums von Modellierungsansätzen des genetischen Anpas-
sungsprozesses darstellen, ist daher ein notwendiger und wichtiger Schritt zu einer all-
gemeinen Theorie des Anpassungsprozesses.

Ein weiterer Aspekt, der bisher überwiegend ignoriert wurde, ist, dass Anpassung letzt-
lich die evolutionäre Konsequenz von Umweltänderungen ist – ein von Natur aus dyna-
mischer Prozess. Während sich die Mehrheit der Studien auf das einfachste der mögli-
chen Szenarien fokussiert, das heißt, eine einmalige plötzliche Änderung der Umwelt,
ist die Notwendigkeit Modelle zu entwickeln, die kontinuiuerliche Umweltänderungen
beschreiben, seit Langem bekannt (Maynard Smith 1976). So betonte Collins (2011)
kürzlich, dass „die Verwendung von Modellen, welche eine plötzliche Umweltänderung
annehmen, um genetische Anpassung in sich kontinuierlich verändernden Umwelten
zu verstehen, nicht nur den Umfang der genetischen Anpassung unterschätzen, sondern

1“that speaks in the same terms as the data; that is in term of individual mutations that have individual
effects”
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auch die falschen geno- und phänotypischen Veränderungen vorhersagen.“2 Diese Dis-
krepanz wird besonders im Hinblick auf die Konservationsbiologie offenbar. Während
in den letzten beiden Jahrzehnten klar geworden ist, dass evolutionäre Veränderungen
schnell genug sind, um sie in gegenwärtigen Populationen zu beobachten (Hendry und
Kinnison 1999; Collins et al. 2007; Lindsey et al. 2013), bleibt die Hauptfrage, ob ge-
netische Anpassung schnell genug ist, damit Populationen mit den sich verändernden
Umweltbedingungen Schritt halten können. Eine der größten Herausforderungen für die
Evolutionsbiologie ist es daher derzeit, die Populationen zu identifizieren, welche vom
Aussterben bedroht sind und gezielte Arterhaltungsprogramme benötigen – eine Her-
ausforderung, welche von realistischeren und allgemeineren Modellen der genetischen
Anpassung profitieren würde.

Das Ziel dieser Dissertation ist es daher, die kombinierten Effekte von gradueller Um-
weltänderung, stehender genetischer Variation sowie Pleiotropie für die genetische Ba-
sis der phänotypischen Anpassung zu untersuchen, um so einen ersten Schritt zu einem
einheitlichen Modell der Anpassung zu machen, welcher sowohl die dem Selektionspro-
zess inhärente Dynamik, als auch die Komplexität realer Organismen berücksichtigt und
überprüfbare Vorhersagen über kurz- und langfristige Evolution erlaubt.

Rapid evolution of quantitative traits: theoretical perspectives.

Im ersten Kapitel (publiziert; siehe Kopp und Matuszewski 2014) vergleiche ich ver-
schiedene theoretische Modellierungsansätze, welche sich mit dem Potenzial zur geneti-
schen Anpassung in sich verändernden Umwelten beschäftigen. Der Fokus dieses Über-
sichtsartikels liegt auf der Evolution quantitativer Merkmale (das heißt Merkmale, deren
Werte auf einer kontinuierlichen Skala und durch eine große Anzahl von Loci definiert
sind), welche von erheblicher stehender genetischer Varianz gekennzeichnet sind, und
deren phänotypisches Optimum sich kontinuierlich mit der Zeit verändert. Besonderes
Augenmerk gilt den sogenannten „kritischen Raten der Umweltänderung“ beziehungs-
weise den „maximal tragfähigen Raten genetischer Anpassung“. Dieses von Lynch und
Lande (1993) und Bürger und Lynch (1995) eingeführte Konzept erlaubt es, unter Be-
rücksichtigung populationsgenetischer Parameter, Raten zu berechnen, die – sollten sie
überschritten werden – keinen langfristigen Populationserhalt erlauben. Obwohl dieser
Ansatz in den letzten Jahren beispielsweise um multivariate Selektion (Gomulkiewicz

2“using [models] of instantaneous environmental change to understand adaptive evolutionary responses to
gradual change will not only underestimate the amount of adaptation, but also predict the wrong genotypic
and phenotypic changes”
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und Houle 2009), räumliche Variation (Duputié et al. 2012) und phänotypische Plastizi-
tät kontinuierlich erweitert worden ist, blieb ein Hauptresultat bestehen: Maximal trag-
fähige Raten der genetischen Anpassung sind von der Größenordnung 0.1 haldanes, was
einer Änderung des mittleren Phänotyps um 0.1 phänotypischen Standardabweichungen
pro Generation entspricht. Allerdings zeigen Analysen, dass in natürlichen Populationen
gemessene Raten nicht selten über den 0.1haldanes liegen (Hendry und Kinnison 1999;
Gingerich 2009), jedoch die Mehrheit diesen Wert nicht überschreitet. Auf dieser Be-
obachtung beruhend kritisierten Barrett und Hendry (2012) kürzlich die aus der Theorie
hergeleiteten kritischen Raten. Diese, so die Autoren, würden auf vielen unrealistischen
Annahmen beruhen, wie beispielsweise dem „fortwährenden Populationserhalt in einer
sich konstant ändernden Umwelt“3, so dass „kritische Raten in natürlichen Populatio-
nen über Zeitspannen von konservationsbiologischen Interesse sehr unterschiedlich sein
könnten.“4

Aufbauend auf dem Modell von Bürger und Lynch (1995) untersuche ich diese Ein-
wände, indem ich sowohl kritische Raten der Umweltänderung als auch der genetischen
Anpassung berechne. Dabei beschränke ich mich auf Zeitspannen von konservationsbio-
logischen Interesse – konkret 50 Generationen – und erlaube der Population temporär zu
schrumpfen, wobei eine kritische Größe von 50 Individuen nicht unterschritten werden
darf. Allerdings basieren meine Berechnungen auf einer deterministischen Approximati-
on und vernachlässigen dementsprechend verschiedenste stochastische Einflüsse. Um zu
quantifizieren, wie Raten phänotypischer Anpassung von nicht-selektiven Kräften, wie
beispielsweise genetischem Drift, beeinflusst werden, habe ich das deterministische Mo-
dell zusätzlich durch individuen-basierte Simulationen komplementiert. Aufgrund die-
ser Modifikationen ist es allerdings nicht möglich, weiterhin ein dynamisches Gleich-
gewicht zwischen Umwelt- und evolutionärer Änderung anzunehmen, so dass kritische
Raten der Umweltänderung nicht mehr formal equivalent zu maximalen Raten der gene-
tischen Anpassung sind.

Tatsächlich zeigen meine Untersuchungen, dass kritische Raten der Umweltänderung
über kürzere Zeiträume deutlich höher sein können als die von Bürger und Lynch (1995)
vorhergesagten Raten. Maximal tragfähige Raten genetischer Anpassung hingegen –
welche als Einzige in experimentellen Studien gemessen werden können – sind nahe-
zu identisch und realtive Unterschiede zwischen kurz- und langfristigen evolutionären
Raten übersteigen selten 30%. Allerdings sind diese Unterschiede zu vernachlässigen,

3“perpetual persistence under constant environmental change”
4“critical rates for natural populations over time frames of conservation interest could be very different”
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betrachtet man die Unsicherheit der Schätzung der evolutionären Raten, die durch sto-
chastische Fluktuationen verursacht werden. Meine Ergebnisse zeigen, dass, speziell in
kleinen Populationen, genetischer Drift – selbst bei konstanten Umweltbedingungen –
generationsweise Raten von bis zu 0.15 haldanes erzeugen und somit die von Bürger
und Lynch (1995) vorhergesagte kritische Marke von 0.1 haldanes überschreiten kann.
Zusammenfassend lassen diese Resultate erheblichen Zweifel an der Verwendung von
evolutionären Raten zur Vorhersage und Identifikation von vom Aussterben bedrohten
Populationen aufkommen.

Fisher’s geometric model with a moving optimum.

Im zweiten Kapitel (publiziert; siehe Matuszewski et al. 2014a) richte ich nun den Fo-
kus auf das „fundamentale Ereignis des genetischen Anpassungsprozesses“ (Kopp und
Hermisson 2009b)5: die Substitution eines ursprünglichen Alleles (das heißt einer Gen-
variante) durch eine vorteilhafte Mutation. Ein wichtiges Ziel, sowohl empirischer wie
theoretischer Forschung, ist es, mehr über die statistischen Eigenschaften dieser Sub-
stitution zu lernen (Orr 2005b). In diesem Zusammenhang wurden kürzlich besondere
Anstrengung unternommen, um die Verteilung der Effekte von sämtlichen Neumutatio-
nen (sowohl in Bezug auf deren phänotypischen als auch deren Fitnesseffekt; Martin
und Lenormand 2006b; Eyre-Walker und Keightley 2007; Martin und Lenormand 2008)
sowie die Verteilung der fixierten und somit zur genetischen Anpassung beitragenden
Mutationen, genauer zu untersuchen (Gerrish und Lenski 1998; Orr 1998, 2002; Kopp
und Hermisson 2009b; Mackay et al. 2009).

Das Hauptwerkzeug für das Studium der „Verteilung adaptiver Substitutionen“ ist Fis-
hers geometrisches Modell (FGM; Fisher 1930), welches den Anpassungprozess einer
Population beschreibt, die als Folge einer plötzlichen Umweltänderung konstanter, stabi-
lisierender Selektion ausgesetzt ist. Für dieses Szenario hat FGM drei Hauptvorhersagen
aufgestellt, die zunehmend durch empirische Studien gestützt werden. Erstens entspricht
die Verteilung der Fitnesseffekte von Neumutationen ungefähr einer (verschobenen) ne-
gativen Gammaverteilung (Martin und Lenormand 2006a; empirisch gestützt durch Hiet-
pas et al. 2013). Zweitens ist die Verteilung adaptiver Substitutionen näherungsweise ex-
ponentiell, was bedeutet, dass die meisten fixierten Mutationen von kleinem und nur eine
geringe Anzahl von großem Effekt sind (Orr 1998; empirisch gestützt durch Rockman
2012, aber siehe Bell 2009). Drittens nimmt der mittlere Effekt von fixierten Mutatio-
nen mit steigender organismischer Komplexität (das heißt mit der Anzahl der phänoty-
pischen Merkmale) ab (Orr 2000; empirisch gestützt durch Cooper et al. 2007) – ein
5“the fundamental event during adaptation”
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Phänomen, welches als die „Kosten der Komplexiät“6 bezeichnet wird (Orr 2000; Welch
und Waxman 2003; Wagner und Zhang 2011).

Im Gegensatz zu dem klassischen Fisher-Modell haben einige Studien ihren Fokus auf
das sogenannte „moving-optimum“ Modell gerichtet, welches die Evolution eines quan-
titativen Merkmals unter stabilisierender Selektion beschreibt, dessen optimaler Phäno-
typ sich kontinuierlich mit der Zeit ändert (Lynch und Lande 1993; Bürger und Lynch
1995; Waxman und Peck 1999; Bürger und Gimelfarb 2002; Nunney 2003; Bello und
Waxman 2006). Dadurch berücksichtigen diese Arbeiten, dass Umweltänderungen in
der Natur genauso oft graduell wie auch plötzlich sind (Thompson 2005; Parmesan
2006; Perron et al. 2008) und tragen der seit Langem bekannten Notwendigkeit Rech-
nung, kontinuierliche Umweltänderungen in Modelle adaptiver Evolution zu integrieren
(Maynard Smith 1976).

Die Eigenschaften individueller Substitutionen im „moving-optimum“ Modell wurden
vor Kurzem genauer untersucht (Collins et al. 2007; Kopp und Hermisson 2007, 2009a,b).
Diese Studien zeigten, dass Selektion für ein sich kontinuierlich bewegendes phänotypi-
sches Optimum im Vergleich zu denen des Anpassungsprozesses unter konstanter Selek-
tion (das heißt nach einer einzigen, plötzlichen Umweltänderung) fundamental verschie-
dene Charakteristiken aufweist. So ist die Verteilung der adaptiven Substitutionen uni-
modal (mit einem intermediären Modalwert) anstatt exponentiell, so dass die Mehrheit
der Substitutionen von intermediärem, phänotypischem Effekt sind, während Substitu-
tionen von kleinem und großem Effekt selten sind. Des Weiteren kann diese Verteilung
vollständig durch einen einzigen Parameter beschrieben werden, welcher als skalierte
Rate der Umweltänderung interpretiert werden kann und die genetischen sowie ökologi-
schen Faktoren kombiniert und in Relation setzt.

Allerdings haben frühere Arbeiten zur genetischen Basis des Anpassungsprozesses im
„moving-optimum“ Modell nur die Evolution eines einzigen phänotypischen Merkmals
betrachtet (Collins et al. 2007; Kopp und Hermisson 2007, 2009a,b). Während diese
Minimalmodelle wertvolle Einblicke über den Anpassungsprozess in sich kontinuierlich
verändernden Umwelten lieferten, so wirkt Selektion in der Natur nicht auf einzelne
Merkmale, sondern auf das gesamte Individuum. Diese Individuen besitzen in der Re-
gel eine Vielzahl von Merkmalen, welche wiederum selbst von einer großen Zahl von
Genen abhängen. Diese Gene können physisch auf dem selben Chromosom gekoppelt
sein (Kopplung), sie können auf nicht-lineare Weise miteinander interagieren (Epistasie)

6“cost of complexity”
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und zugleich mehrere Merkmale beeinflussen (Pleiotropie). Folglich findet der Anpas-
sungsprozess in sehr komplexen und hochdimensionalen Genotyp- und Phänotypräumen
statt.

Eine in diesem Kontext naheliegende Folgefragestellung ist, wie sich die Resultate des
Ein-Merkmal-Modells verändern, wenn der Anpassungsprozess durch pleiotrope Kor-
relationen zwischen den phänotypischen Merkmalen unter Selektion beeinflusst wird.
Um diese Frage zu beantworten, füge ich eines der Schlüsselmerkmale des FGM zum
„moving-optimum“ Modell hinzu, nämlich den Effekt von phänotypischer Komplexität
(beziehungsweise Pleiotropie, welches im Kontext von FGM äquivalent ist). Mit Hilfe
analytischer Approximationen sowie individuen-basierter Simulationen untersuche ich,
wie die erwartete Verteilung adaptiver Substitutionen von der Rate der Umweltände-
rung, der Anzahl der phänotypischen Merkmale (organismischer Komplexität) und von
Selektions- und Mutationskorrelationen (das heißt von der Form der Fitnesslandschaft
und der multivariaten Verteilung der Neumutationen) abhängt.

Übereinstimmend mit vorherigen Ein-Merkmals-Studien, zeigt meine Analyse des
„moving-optimum“ Modells, dass die genetische Basis des Anpassungsprozesses kri-
tisch von der Rate und der Art der Umweltänderung abhängt. Des Weiteren ist die
Verteilung adaptiver Substitutionen zu einem Großteil durch einen einzelnen Parameter
γ bestimmt, welcher die Rate der Umweltänderung mit dem Anpassungspotenzial der
Population skaliert und so ein Kontinuum zwischen umwelt-limitierter und genetisch-
limitierter Anpassung definiert (sensu Kopp und Hermisson 2009b). Im
umwelt-limitierten Regime (das heißt, wenn sich die Umwelt nur sehr langsam ändert)
kann die Population dem Optimum sehr dicht folgen, so dass die adaptiven Schritte klein
sind und deren multivariate Verteilung die Fitnesslandschaft widerspiegelt. Im genetisch-
limitierten Regime (das heißt, wenn sich die Umwelt sehr schnell ändert) fällt die Po-
pulation weit hinter das Optimum zurück, so dass die adaptiven Schritte groß sind und
deren Verteilung hauptsächlich von der Verteilung der Neumutationen bestimmt wird.
Meine Resultate bestätigen und erweitern somit vorhergehende Studien adaptiver Evo-
lution in sich verändernden Umwelten für einzelne phänotypische Merkmale (Collins
et al. 2007; Kopp und Hermisson 2007, 2009a,b). Im Gegensatz zu den Vorhersagen
für FGM (nach einer plötzlichen Umweltänderung) zeigen meine Resultate, dass die
mittlere Effektgröße fixierter Mutationen mit dem Grad von Pleiotropie (das heißt orga-
nismischer Komplexität) zunimmt. Darüber hinaus scheint längerfristiger Populations-
fortbestand nur im umwelt-limiterten Regime möglich – in dem der Anpassungsprozess
von vielen kleinen adaptiven Schritten gekennzeichnet ist – dessen Parameterbereich in
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komplexen Organismen jedoch zunehmend eingeschränkt wird. So nimmt die maxima-
le Rate der Umweltänderung (Bürger und Lynch 1995, siehe oben) mit zunehmender
organismischer Komplexität ab.

Catch me if you can: On the importance of standing genetic variation for the gene-
tics of adaptation.

Wie die vorwiegende Mehrheit der Theorie des genetischen Anpassungsprozesses (Orr
2000, 2005a; Kopp und Hermisson 2009b; Matuszewski et al. 2014a) hat sich das zwei-
te Kapitel dieser Dissertation auf genetische Anpassung von Neumutationen beschränkt.
Wie bereits angemerkt, haben diese „adaptive-walk“ Modelle (Gillespie 1984; Kauffman
und Levin 1987; Orr 2002, 2005b) über die Jahre viele robuste Vorhersagen geliefert
(Orr 1998, 2000; Martin und Lenormand 2006a), welche von empirischen Studien ge-
stützt werden (Cooper et al. 2007; Rockman 2012; Hietpas et al. 2013). Der Nachteil des
Erfolges dieser Modelle ist allerdings, dass man in Bezug auf die genetische Basis des
Anpassungsprozesses „kaum etwas über Adaptation durch bestehende genetische Varia-
tion sagen kann“7 (Orr 2005b). Allerdings können auch quantitativ-genetische Modelle
keine Antwort geben, da sie, gleichwohl sie bereits existierende stehende genetische Va-
riation als die alleinige Quelle des genetischen Anpassungprozesses annehmen, nicht die
Evolution einzelner Loci untersuchen.

Allein im letzten Jahrzehnt haben sich Populationsgenetiker ernsthafter mit dem geneti-
schen Anpassungsprozess durch stehende genetische Variation und die Beschreibung der
statistischen Eigenschaften individueller Allele beschäftigt (Orr und Betancourt 2001;
Hermisson und Pennings 2005; Chevin und Hospital 2008). So berechneten Hermisson
und Pennings (2005) die Wahrscheinlichkeit, dass ein Allel aus der stehenden geneti-
schen Varianz in Folge einer plötzlichen Umweltänderung fixiert. Des Weiteren konn-
ten sie zeigen, dass die Fixationswahrscheinlichkeit von Allelen der stehenden geneti-
schen Varianz mit kleinem phänotypischen Effekt verglichen zu denen von Neumutatio-
nen erheblich erhöht ist. In ähnlicher Weise untersuchten Chevin und Hospital (2008)
die Selektionsdynamiken an einem Fokallokus in Gegenwart von stehender genetischer
Hintergrundvarianz und fanden heraus, dass diese die Alleltrajektorie am Fokallokus
erheblich beeinflusst. Eine ähnliche Beobachtung machten Lang et al. (2011), welche
experimentelle Evolution in Hefe durchführten. Darin untersuchten sie das Schicksal
mehrerer vorteilhafter Mutationen in hunderten von Populationen. Sie konnten zeigen,
dass der selektive Vorteil einer einzelnen Mutation nur eine kleine Rolle für deren evolu-
tionäres Schicksal spielt. Weitaus wichtiger und von zentraler Bedeutung ist stattdessen

7“we cannot say anything about adaptation from standing genetic variation”
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der genetische Hintergrund auf dem die Mutation auftritt, welcher nicht notwendiger-
weise prä-existent sein muss, sondern ebenso schnell durch viele Neumutationen gene-
riert werden kann. Nichtsdestotrotz sind die meisten Vorhersagen bezüglich des geneti-
schen Anpassungsprozesses von stehender genetischer Variation nur verbaler Natur und
besagen, dass „im Vergleich zu Neumutationen, Adaptation von stehender genetischer
Varianz wahrscheinlich schneller und vermehrt durch Fixation von Allelen mit kleinem
phänotypischem Effekt voranschreitet [...]“8 (Barrett und Schluter 2008). Trotz dieser
Fortschritte bleibt eine der zentralen Fragen immer noch unbeantwortet: Welche von der
Vielzahl der in einer Population segregierenden stehenden Varianten können am Ende
fixieren und zum genetischen Anpassungprozess beitragen und wie unterscheidet sich
deren phänotypische Effektgrößenverteilung von der von Neumutationen?

Das Ziel des dritten Kapitels meiner Dissertation (in Vorbereitung; siehe Matuszewski
et al. 2014b) ist es, dazu beizutragen, diese „offensichtlichste theoretische Limitierung
den genetischen Anpassungsprozess betreffend“9 (Orr 2005b) zu überwinden, und die
ökologischen und genetischen Faktoren zu untersuchen, welche gemeinsam die Basis
des genetischen Anpassungsprozesses von stehender genetischer Variation definieren.
Mittels analytischer Approximationen leite ich die Verteilung der stehenden adaptiven
Substitutionen her und diskutiere deren Abhängigkeit von der effektiven Populations-
größe, der Stärke der Selektion sowie ökologischen Faktoren.

In Übereinstimmung mit Barrett und Schluter (2008) finde ich heraus, dass, im Vergleich
zu Neumutationen, der Anpassungprozess durch stehende genetische Variation von klei-
neren „Schritten“ gekennzeichnet ist. Meine Analyse zeigt, dass die genetische Basis des
Anpassungsprozesses von stehender genetischer Varianz entscheidend von der Effizienz
der Selektion – welche wiederum von der Populationgröße, der Stärke der (stabilisieren-
den) Selektio und der Rate der Umweltänderung definiert wird – abhängt. Im Gegensatz
zu Studien, die Adaptation ausschließlich auf Neumutationen beschränken (Perron et al.
2008; Bell und Gonzalez 2011; Lindsey et al. 2013; Bell 2013), zeigen meine Resultate,
dass Populationen, deren Evolution nur auf stehender genetische Varianz beruht, besser
angepasst sind und weitere phänotypische Distanzen zurücklegen können, wenn sich die
Umwelt schnell ändert.

8“compared with new mutations, adaptation from standing genetic variation is likely to lead to faster
evolution [and] the fixation of more alleles of small effect [...]”
9“the most obvious theoretical limitation when describing the adaptive process”
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Synopsis und Ausblick.

“When a species is well adapted to the conditions which environ it, it
flourishes; when imperfectly adapted it decays; when ill-adapted it becomes
extinct."

— Alfred Russel Wallace, Contributions to the theory of natural selection

Gemessen in evolutionärer Zeit haben wir in weniger als einem Augenblick, ausgehend
von Charles Darwin und Alfred Russel Wallace, welche mit ihrer Beschreibung des
„Kampfes ums Überleben“10 und der Ursachen natürlicher Selektion den Grundstein für
die heutige Evolutionsbiologie gelegt haben, das Zeitalter von „Transcriptomics“, „Pro-
teomics“ und „Whole-Genome Sequencing“ erreicht, welche uns erlauben, Evolution in
natürlichen Populationen in Echtzeit zu beobachten (Hendry und Kinnison 1999; Collins
et al. 2007; Lindsey et al. 2013). Dieser technische Fortschritt hat jedoch dazu geführt,
dass einer immer weiter zunehmenden Menge an Daten eine immer größer werdende
Lücke zur Theorie gegenübersteht. Das Ziel dieser Dissertation ist es, unser Verständnis
des genetischen Anpassungsprozesses voranzutreiben und Modelle zu entwickeln, wel-
che, durch die explizite Berücksichtigung von genetischen und ökologischen Faktoren
sowie stehender genetischer Variation, der Dynamik des Selektionsprozesses Rechnung
tragen.

Alle Kapitel dieser Dissertation betonen die Wichtigkeit der Dynamik der selektiven
Umwelt für den genetischen Anpassungprozess und unterstreichen, dass die genetische
Basis des Anpassungsprozesses in kritischer Weise vom Tempo und der Art der Um-
weltänderung abhängt. So sind im umweltlimitierten Regime – in dem sich die Umwelt
nur sehr langsam ändert und das langfristige Überleben einer Population am wahrschein-
lichsten ist (siehe auch vergleichbare empirische Studien Perron et al. 2008; Bell und
Gonzalez 2011; Lindsey et al. 2013) – ökologische Faktoren wichtiger als genetische.
Im Gegensatz dazu zeigen meine Untersuchungen des „moving-optimum“ Modells, dass
sich die genetische Basis des Anpassungsprozesses von stehender genetischer Variation
stark zu der von Neumutationen unterscheidet. So ist der Anpassungsprozess von stehen-
der genetischer Variation durch viele kleine Schritte und nur wenige große gekennzeich-
net. Außerdem sind Populationen, deren Evolution nur auf stehender genetische Varianz
beruht, besser angepasst und haben eine höhere Überlebenschance, wenn sich die Um-
welt schnell ändert. Allerdings ist die Vorhersage und Identifikation von vom Aussterben
bedrohten Populationen, basierend auf „maximalen evolutionären Raten“ , schwierig, da

10“struggle for existence”
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genetischer Drift sowie Samplingeffekte bereits in untragbar hohen „evolutionären Ra-
ten“ resultieren können – selbst in Fällen, in denen sich die Umwelt überhaupt nicht
ändert.

Darüber hinaus gibt es ein paar Entwicklungsgebiete, welche die Basismodelle – wie
beispielswiese die in dieser Dissertation präsentierten Modelle – noch realistischer ma-
chen können. Natürliche Populationen leben in fragmentierten Umwelten und können
zusätzlich zu genetischer Anpassung auch durch Migration (Pease et al. 1989; Kirkpa-
trick und Barton 1997; Polechová et al. 2009; Schloss et al. 2012; Duputié et al. 2012;
Boeye et al. 2013) und durch phänotypische Plastizität (Chevin et al. 2010; Reed et al.
2010; Chevin et al. 2012; Gienapp et al. 2013) auf Änderungen in ihrer Umwelt reagie-
ren. In der Tat ist die Rolle von phänotypischer Plastizität für den Anpassungsprozess
gut dokumentiert (Ghalambor et al. 2007; Hendry et al. 2008; Pfennig et al. 2010; Me-
rilä 2012) und theoretische Modelle zeigen, dass Plastiziät die Annäherung an ein neues
phänotypisches Optimum unterstützt (Lande 2009) und so das Risiko des Aussterbens
verringert (Chevin und Lande 2010). Der Effekt von Plastizität hängt allerdings von der
Verlässlichkeit des Umweltreizes (Reed et al. 2010) sowie deren Erhaltungskosten ab
(wenn die Population perfekt angepasst ist; Chevin et al. 2010). Studien, welche phä-
notypische Plastizität mit explizit genetischen Modellen verbinden, sind selten (Draghi
und Whitlock 2012) und es existieren derzeit keine multivariaten Plastizitätsmodelle,
die Anpassung an sich verändernde Umwelten betrachten. Hier könnten meine Modelle
als Ausgangspunkt für vertiefende Studien der Interaktionen zwischen phänotypischer
Plastizität und genetischer Anpassung dienen.

Ebenso wie der Effekt von phänotypischer Plastizität ist der von Migration stark vom
Kontext abhängig. Während Genfluss von schlecht-angepassten Populationen den An-
passungsprozess behindern kann, kann Genfluss ebenso die Überlebenschancen von Po-
pulationen erhöhen, indem er die Erschließung von größeren geographischen Gebieten
und die Verbreitung von vorteilhaften Allelen ermöglicht (Schiffers et al. 2013). Andere
Studien untersuchten den Anpassungsprozess bei einem sich änderenden Umweltgra-
dienten, das heißt zu einem phänotypischen Optimum, welches sich sowohl in Zeit als
auch im Raum, ändert (Pease et al. 1989; Kirkpatrick und Barton 1997; Polechová et al.
2009; Duputié et al. 2012). Allerdings war der Fokus dieser Untersuchungen auf den Po-
pulationserhalt und nicht auf die Art, Effektgröße und den Ursprung von Mutationen, die
zur lokalen Anpassung beitragen, gerichtet. Des Weiteren gibt es derzeit keine Studien,
die den gemeinsamen Effekt von Plastizität und genetischer Anpassung in einem explizit
räumlich-strukturierten Modell bei kontiniuerlicher Umweltänderung untersucht.
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In der Natur evolvieren Populationen nicht in Isolation, sondern sind in ein Netzwerk von
ökologischen Interaktionen eingebettet, so dass Vorhersagen zum Anpassungsprozess in
sich verändernden Umwelten unter Berücksichtigung dieser Interaktionen gemacht wer-
den sollten. Studien haben gezeigt, dass interspezifische Konkurrenz sowohl positive als
auch negative Effekte auf den genetischen Anpassungsprozess haben kann. Während die
Anwesenheit eines Konkurrenten die Populationsgröße einer fokalen Spezies reduzieren
und den Zugang zu neuen ökologischen Nischen blockieren kann (Johansson 2007; Jo-
nes 2008; Jones und Gomulkiewicz 2012; Osmond und Mazancourt 2013; Uecker und
Hermisson 2014), kann Konkurrenz auch den genetischen Anpassungsprozess beschleu-
nigen, falls ein Konkurrent (oder Räuber) eine fokale Spezies in die Richtung des neuen
Optimums „drängt“ (Jones 2008; Osmond und Mazancourt 2013; Uecker und Hermis-
son 2014). Die Effekte von Interaktionen zwischen verschiedenen Spezies auf den gene-
tischen Anpassungsprozess sind allerdings bisher nicht untersucht worden.

Zusammen mit den Studien experimenteller Evolution in sich kontinuierlich verändern-
den Umwelten (Collins 2004; Perron et al. 2008; Lindsey et al. 2013) verspricht die In-
tegration dieser Ansätze, heutige Modelle noch stärker an die in der Natur ablaufenden
Prozesse anzulehnen, und so unser Verständnis des Adaptationsprozesses verschiedener
Spezies in ihrem fortlaufendem „Kampf ums Überleben“11 (Darwin 1859) zu erwei-
tern.

11“struggle for existence”
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Epilog

“Begin at the beginning,” the King said gravely, “and go on till you come to the end: then stop.”
— Lewis Carroll, Alice in Wonderland
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