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Introduction

The intention of this thesis is to prove a generalization of a statement of
Roger Godement presented in his article [3, p. 202] in the Séminaire Nicolas
Bourbaki but given without proof. This statement originally lists six prop-
erties of height functions on the AQ-module AnQ where AQ is the adele ring
over Q and n a natural number. It can be generalized for height functions on
the AK-module AnK where K is a global field, i. e. an algebraic number field
or an algebraic field extension of the rational function field in one variable
with finite field of constants, and AK is the adele ring over K. Therefore the
aim of this work is to introduce the needed concepts and prove this general
result in an exact and succinct way. The thesis is written in a way that basic
knowledge in algebra and algebraic number theory should be sufficient for
an understanding.

One motivation for looking at height functions is diophantine geometry
where they are a fundamental tool. Their intention is to measure the

”
size“

of points, in our case, elements of AnK for a global field K. In order to get a
useful notion of a size, on the one hand, height functions should reflect the
arithmetic and geometric nature of points. To illustrate the first we want
to consider the height function HQ on AQ which is given on the rational
numbers a

b for a, b ∈ Z and b 6= 0 by

HQ(
a

b
) = max{|a|, |b|},

where |a| = sign(a) · a is the normal absolute value on Q. Then the rational
number 1

2 has height HQ(1
2) = 2. However the number 1001

2000 , which is
”
more

complicated“ than 1
2 , has height 2000. On the other hand, a function mea-

suring sizes is motivated by the following finiteness property: For every real
number B > 0 there are up to multiplication by a scalar only finitely many
points with size smaller than B. For height functions on AnK , the above
property is fulfilled for points in Kn ⊆ AnK .

Another application for height functions is reduction theory for reductive
algebraic groups over Q or, more generally, over a global field. In [3], given
the base field Q, Godement uses height functions to construct fundamental
domains and to deal with reduction theory in the adelic setting.

The first chapter gives an introduction into the theory of valuations be-
ginning with the basic definitions and properties of archimedean- and non-
archimedean absolute values and valuations. Since we need to apply the
theory of valuations in later chapters solely in the case of global fields we
focus in the given examples on valuations and absolute values over these
fields. An important result in this section is Theorem 1.1.5 - often called
Ostrowski’s Theorem - which describes up to equivalence all absolute values
on Q or Fq(x) respectively.

In the next section we introduce the notion of a complete field with respect
to an absolute value. Theorem 1.2.2 states that every complete field with
respect to an archimedean absolute value is isomorphic to either R or C.
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With this result at hand the rest of this section deals with the structure of
complete fields with respect to a non-archimedean absolute value. However,
Theorem 1.2.9, which states that all norms on a vector space over a complete
field are equivalent, is general.

The third section is about extensions of absolute values on finite field
extensions. These extensions are fully characterized by Theorem 1.3.4. In
quite a few results we require that the considered field extension is separable.
In some situations we can avoid this requirement by using Theorem 1.3.3.
An essential concept introduced in this section are places of global fields,
which are equivalence classes of absolute values. With the notion of normed
absolute values | |p corresponding to a place p of a global field K we obtain
Theorem 1.3.12, which states ∏

p

|x|p = 1,

where x ∈ K and the product is over all places p of K.
The last section is about local fields. These are finite field extensions of

the completions of global fields with respect to a non-archimedean absolute
value.

In the second chapter we introduce the adele ring AK and the idele group
IK over a global field K. Both of them are defined using the restricted direct
product of locally compact topological groups respectively rings which is
introduced in the first section. For a global field K we can embed K in
a natural way into its adele ring AK . In Theorem 2.3.1 we show that the
image ι(K) of K under this embedding ι is a discrete and cocompact subring
of AK , i. e., the quotient space AK/ι(K) is compact.

Finally we work towards Theorem 2.3.5 the so-called strong approxima-
tion of the adele ring over a global field. It states that every global field K
embeds

”
almost“ dense into its adele ring AK .

The final chapter concerns height functions. In the first section we deal
with height functions on the projective space Pn(K) for a global field K and
an integer n. To be more precise we only introduce the absolute multiplica-
tive / logarithmic height function on Pn(K). With methods from algebraic
geometry one can obtain more height functions (cf. [1], [4]), but this will not
be treated in this thesis. The main result in this section is Theorem 3.1.6.
It states that for all real numbers B,D > 0 there exist only finitely many
points P ∈ Pn(K) with [L : K] ≤ D and L|K separable for the smallest field
L with P ∈ Pn(L), such that the height of P is limited by B.

In order to define height functions on AnK for a global field K in a simple
way we introduce in the second section the notion of adelic norms on AnK .
These are families of norms ‖ ‖p on the Kp-vector space Kn

p for all places p
of K, where Kp is the completion of K with respect to p, such that ‖ ‖p is
for almost all places the supremum norm on Kp. We obtain for every adelic
norm F a height function hF : AnK → R corresponding to F . Our main
result, Theorem 3.2.7, states six properties of such height functions which
are roughly speaking the following:
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The first property states that all height functions on AnK are equivalent,
where equivalence for height functions is defined analogously as for norms on
vector spaces. Secondly, multiplying the argument of a height function by
an scalar t ∈ A∗K is equal to multiplying the value of the height function by
the norm |t|AK of t. The third states that the image of a null sequence under
a height function is a null sequence. Conversely, by the fourth property, if
the image of a sequence of primitive elements under a height function is
a null sequence, we can multiply every element of the sequence by a non
zero scalar and obtain by this a null sequence. The fifth property is the
analogue of Theorem 3.1.6, which is described above, in the adelic setting.
The last property states that for every height function h and every compact
subset M ⊆ GLn(AnK) of the group of AK-automorphism of AnK the maps
h ◦ (x 7→ g · x) for g ∈ M are bounded from above and below by multiples
of h with some constants, depending only on M and h.

Since the requirement for a family of norms ‖ ‖p on the Kp-vector space
Kn

p to be an adelic norm on AnK is very restrictive we want to consider a
generalisation of adelic norms such that their corresponding height functions
also enjoy Theorem 3.2.7. We give at the end of this thesis a possible
definition for a general adelic norm on AnK and their corresponding general
height functions. Finally we proof Theorem 3.2.10 which is the generalisation
of Theorem 2.2.5 to general height functions.

Last but not least I want to express my gratitude to my advisor Professor
Joachim Schwermer for this interesting topic, his guidance and support dur-
ing my studies and also to my family and friends without whom my studies
would not be possible in that way.



5

1.Valuation theory

This chapter gives a brief introduction to the theory of valuations. It
covers the basic definitions and provides all Theorems which are important
for the further understanding of this thesis. The structure and notation
are closely following [6]. Further [5] was taken as basis for valuations on
function fields. One can also find in [2] a good introduction into the theory
of valuations.

1.1.Absolute values and valuations

Definition 1.1.1 An absolute value | | on a field K is a map

| | : K → R,

such that for all x, y ∈ K holds:

(i) |x| ≥ 0 and |x| = 0 iff x = 0,
(ii) |xy| = |x||y|,

(iii) |x+ y| ≤ |x|+ |y|.

Let | | be an absolute value on a field K. We can define a metric d :
K ×K → R on K via

d(x, y) = |x− y|, for all x, y ∈ K.

Hence we obtain on every field K with an absolute value | | a topology
induced by the absolute value. The field K together with this topology is
automatically a topological field, as one can prove easily. On every field K
there exists a trivial absolute value | | given by

|x| =

{
1 x 6= 0,

0 x = 0,

for x ∈ K. The trivial absolute value induces the discrete topology on K.
We assume for the rest of the thesis that every absolute value is non-trivial.

Definition 1.1.2 Two absolute values | |1 and | |2 on a field K are called
equivalent if they define the same topology on K.

Theorem 1.1.3 Let | |1 and | |2 be two absolute values on a field K.
Then they are equivalent iff there exists a real number s > 0 such that

|x|1 = |x|s2
for all x ∈ K.

Proof. See [6, p. 122]. �
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Examples 1.1.4 (i) For the fields Q ⊆ R ⊆ C we have the ordinary
absolute value | |∞ given by

|x|∞ :=
√
xx,

for x ∈ C, where x is the complex conjugate of x.
(ii) Let p ∈ Z be a prime number. Then we define the absolute value | |p

on Q via
|x|p := p−α,

where x = pα ab with α, a, b ∈ Z, b 6= 0 and a, b coprime to p. As a
consequence of the previous Theorem the absolute values | |p, | |q, | |∞
are pairwise not equivalent for all primes p, q with p 6= q.

(iii) Let Fq be the finite field of cardinality q. Denote by Fq(x) := Quot(Fq[x])
the rational function field over Fq. Since Fq[x] is a principal ideal do-
main we can write every element r ∈ Fq(x) as

r =
∏
p

pνp(r),

where the product is over all irreducible polynomials p ∈ Fq[x], νp(r) ∈
Z and νp(r) = 0 for almost all p. For every irreducible polynomial
p ∈ Fq(x) there is an absolute value | |p given by

|r|p := q− deg(p)·νp(r),

for r ∈ Fq(x).
Further we obtain another absolute value on Fq(x) denoted by | |∞:

|f
g
|∞ = qdeg(f)−deg(g),

for f, g ∈ Fq[x] and g 6= 0. By using Theorem 1.1.3 one can easily
show that the above described absolute values on Fq(x) are pairwise
not equivalent.

The following Theorem is fundamental in the theory of valuations.

Theorem 1.1.5 (Ostrowski) (i) Every absolute value on Q is equiv-
alent to either | |∞ or | |p for a prime number p.

(ii) Every absolute value on the rational function field Fq(x) over the finite
field Fq is equivalent to either | |∞ or | |p for an irreducible polynomial
p ∈ Fq[x].

Proof. See [6, p. 124] and [5, p. 105]. �

Definition 1.1.6 An absolute value | | on a field K is called non-archimedean
if it satisfies |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K. Otherwise the absolute
value is called archimedean.

By the above Theorem we see that up to equivalence the only archimedean
absolute value on Q is | |∞ and every non-archimedean is equivalent to | |p



7

for an appropriate prime number p. Further every absolute value on the
function field Fq(x) over the finite field Fq is non-archimedean.

Definition 1.1.7 A valuation v on a field K is a map v : K → R ∪ {∞}
with the following properties:

(i) v(x) =∞ iff x = 0,
(ii) v(xy) = v(x) + v(y) for all x, y ∈ K

(iii) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

For a valuation v on a field K and a real number q > 1 we obtain a non-
archimedean absolute value | |v corresponding to v by setting |x|v = q−v(x)

for every x ∈ K. Vice-versa we get for every non-archimedean absolute value
| | a valuation v via v(x) = − log(|x|) for all x ∈ K. If we set q = e this
defines a 1− 1 correspondence between the set of non-archimedean absolute
values on K and the set of valuations on K.
Let q > 1 be fixed. We call two valuations v, w equivalent if the corre-
sponding absolute values |x|v = q−v(x) and |x|w = q−w(x) are equivalent.
The definition of equivalence of valuations is independent of the choice of
the real number q:
Let v, w be equivalent valuations with respect to q and q′ > 1 another real
number. By Theorem 1.1.3 there exists a real number s > 0 such that
|x|v = |x|sw. Denote by |x|′v = q′−v(x) and |x|′w = q′−w(x) the absolute values
corresponding to v, w with respect to q′. Then we obtain for every x ∈ K:

|x|′v = q′
−v(x)

= q
−v(x)

log(q′)
log(q) = |x|

log(q′)
log(q)
v = |x|

s
log(q′)
log(q)

w =

= q
−w(x)s

log(q′)
log(q) = q′

−sw(x)
= |x|′w

s
.

Hence the absolute values | |′v, | |′w are equivalent iff the absolute values
| |v, | |w are equivalent.

As a consequence of Theorem 1.1.3 the valuations v and w are equivalent
iff there exists a real number s > 0 with v = s · w.

Theorem 1.1.8 Let v be a valuation on the field K. Then the ring

Ov = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x|v ≤ 1},
is an integral domain with quotient field K. Its unit group is given by

O
∗
v = {x ∈ K : v(x) = 0} = {x ∈ K : |x|v = 1},

and the ideal

pv = {x ∈ K : v(x) > 0} = {x ∈ K : |x|v < 1},
is the only maximal ideal in Ov.

Proof. Since Ov is a subring of K it is an integral domain. The quotient field
of Ov is by definition a subfield of K. On the other hand for every x ∈ K
we have either v(x) ≥ 0 which is equivalent to x ∈ Ov or we have v(x) < 0
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which is equivalent to 1
x ∈ Ov. In the second case x is an element of the

quotient field of Ov which implies K ⊆ Quot(Ov). The second claim is an
obvious consequence of the definition of Ov.

The ideal pv is a maximal ideal of Ov since it is an ideal and Ov \ pv = O∗v.
Assume there is a maximal ideal m 6= pv of Ov. Then there exists an element
x ∈ Ov \m with v(x) > 0. Let m′ be the ideal generated by m and x. Since
m is maximal we must have m′ = Ov. Hence there exist elements y ∈ m and
λ ∈ Ov with y + λx ∈ O∗v which is equivalent to v(y + λx) = 0. However we
have

v(y + λx) ≥ min{v(y), v(λx)} ≥ min{v(y), v(λ) + v(x)} > 0. �

The ring Ov is called valuation ring and the field Ov/pv is its residue
field . It is obvious to see that the ring Ov, the group O∗v and the prime ideal
pv are invariant under equivalence of valuations.

Definition 1.1.9 A valuation v on a field K is called discrete, if v(K∗) =
sZ for an appropriate real number s > 0. A discrete valuation is called
normed if s = 1.

Let v be a discrete valuation on a field K and π an element of the valuation
ring Ov with v(π) = s. Then every element x ∈ K∗ can be written in the
form x = uπm for a unit u ∈ O∗v and m ∈ Z:
Since v is discrete we have v(x) = sm with m ∈ Z. This implies v(xπ−m) = 0
which is equivalent to xπ−m ∈ O∗v.
The element π is a prime element of Ov and every prime element of Ov is by
the above consideration of the form uπ for u ∈ O∗v.

Examples 1.1.10 (i) Let p be a prime number. The valuation vp on Q
given by vp(p

n a
b ) = n for a, b, n ∈ Z and a, b coprime to p is normed.

The absolute value | |p can be written as

|x|p = p−vp(x),

for all x ∈ Q. Since every valuation corresponds to a non-archimedean
absolute value, Theorem 1.1.5 implies that the valuations vp for prime
numbers p are up to equivalence all valuations on Q.

(ii) Let Fq(x) be the rational function field over the finite field Fq. For
every irreducible polynomial p ∈ Fq[x] there is a valuation vp given by

vp(r) = νp(r)

for every r ∈ Fq(x) where r =
∏
p p

νp(r) is the unique factorisation of

r into irreducible polynomials p ∈ Fq[x]. We can express the absolute
value | |p through

|r|p = q− deg(p)vp(r)

for all r ∈ Fq(x).

We define deg(r) := deg(f)−deg(g) for r = f
g ∈ Fq(x) with f, g ∈ Fq[x]

and g 6= 0. Let v∞ be the valuation on Fq(x) given by

v∞(r) = −deg(r)
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for all r ∈ Fq(x). By Theorem 1.1.5 the valuations vp for irreducible
polynomials p ∈ Fq[x] and v∞ are up to equivalence all valuations on
Fq(x).

Theorem 1.1.11 Let Ov be the valuation ring of a discrete valuation
v on a field K. Then Ov is a principal ideal domain.

Proof. Let I 6= (0) be an ideal of Ov and π ∈ Ov be a prime element. Every
element of Ov \{0} can be written as uπn for an integer n and a unit u ∈ O∗v.
Let m be the minimal integer such that (πm) ⊆ I. For every element
x = uπn ∈ I holds n ≥ m as a consequence of the minimality of m. This
implies I = (πm). �

1.2.Complete fields

Definition 1.2.1 Let | | be an absolute value on a field K. A sequence
(xn)n∈N in K is called a Cauchy-sequence with respect to | | if there exists
for every ε > 0 an integer N , such that |xn − xm| < ε for all m,n ≥ N . A
sequence (xn) has a limit x ∈ K iff there exists for all ε > 0 an integer N ,
such that |xn − x| < ε for all n ≥ N . If a sequence has a limit, the limit is
obviously unique.
The field K is called complete if every Cauchy-sequence in K converges to
a limit in K.

Let K be a field with an absolute value | |. Then there exists a complete

field K̂ with respect to an absolute value | |′ together with an embedding

ι : K → K̂ of fields, such that |ι(x)|′ = |x| for all x ∈ K and the embedding

of K into K̂ is dense. The field K̂ is up to isomorphism unique and is called
the completion of K with respect to | |:

We construct the completion K̂ by
”
adding“ the needed limits to K. Let

R be the ring of all Cauchy sequences (xn) in K with respect to | |. The
addition and multiplication on R are defined component-wise. Denote by m
the maximal ideal of all null sequences in R

m = {(yn) ∈ R : lim
n→∞

yn = 0}.

We set K̂ := R/m. The field K embeds into K̂ via ι : x 7→ (x, x, x, · · · ) +m.
For a Cauchy sequence (xn) in K the sequence (|xn|) is a Cauchy sequence
in R. Since R is complete with respect to | |∞ the limit limn→∞ |xn| exists.
For (yn) ∈ m we obtain

lim
n→∞

|xn| ≤ lim
n→∞

(|xn − yn|+ |yn|) = lim
n→∞

|xn − yn| ≤

≤ lim
n→∞

(|xn|+ |yn|) = lim
n→∞

|xn|.
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Hence |(xn) +m|′ := limn→∞ |xn| is a well-defined extension of the absolute

value onto K̂. Since K̂ is constructed in such a way that (xn) + m is the
limit of the Cauchy sequence (ι(xn)) we obtain for any extension | |′′ of | |
onto K̂:

lim
n→∞

(|xn| − |(xn) + m|′′) = 0.

This implies that the extensions | |′′, | |′ are equal and hence the extension

of | | onto K̂ is unique.

For every (xn)+m ∈ K̂ and ε > 0 there exists an integer N with |ι(xN )−
(xn) + m|′ < ε. Hence K is a dense subfield of K̂.

Let (an) be a Cauchy sequence in K̂. Since K embeds dense into K̂ there
exists for every n ∈ N an element xn ∈ K such that |(xn+m)−an|′ < 1

n . The
sequence (xn) is then a Cauchy sequence in K and it follows that (xn) + m

is the limit of (an). This proves the completeness of K̂.

The uniqueness of the completion K̂ up to isomorphism is straight for-
ward.

We denote in the following the completion of the absolute value | | onto

K̂ also with | |. Let | |′ be an absolute value on K which is equivalent to
| |. An element x ∈ K is limit of a sequence (xn) with respect to | | iff it
is limit with respect to | |′. Furthermore a sequence (xn) in K is a Cauchy
sequence with respect to | | iff it it is a Cauchy sequence with respect to | |′.
Hence the completion K̂ of K is independent under equivalence of absolute
values.

Theorem 1.2.2 (Ostrowski) Let K be a complete field with respect to
an archimedean absolute value | |. Then there exists an isomorphism
of fields σ from K to R or C, such that

|x| = |σ(x)|s∞,

for a real number s > 0.

Proof. See [6, p. 130]. �

The above Theorem states that the fields R and C are up to isomorphisms
the only fields which are complete with respect to an archimedean absolute
value. Therefore the rest of the section deals mainly with fields which are
complete with respect to a non-archimedean absolute value.

Let v be a valuation on a field K and let |x|v = q−v(x) be an absolute

value corresponding to v which is automatically non-archimedean. Let K̂
be the completion of K with respect to v, i. e., the completion of K with
respect to the absolute value | |v. Since the extension of | |v onto K̂ is also

non-archimedean there exists a unique extension of v onto K̂ which is also
be denoted by v. It is given by

v(x) = lim
n→∞

v(xn),
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for x = (xn) + m ∈ K̂ with xn ∈ K. This limit exists in R ∪ {∞} since

lim
n→∞

v(xn) = lim
n→∞

− log(|xn|v)
log(q)

= − log(limn→∞ |xn|v)
log(q)

=
− log(|x|v)

log(q)
.

If v is a discrete valuation on K then the extension onto K̂ is also a discrete
valuation.

Theorem 1.2.3 Let v be valuation on K and K̂ the completion of K
with respect to v. Denote by Ov, pv and Ôv, p̂v the valuation rings and
their maximal ideal in K or K̂ respectively. Then

Ôv/p̂v ∼= Ov/pv

are isomorphic as topological rings. For a discrete valuation v one
obtains further

Ôv/p̂
m
v
∼= Ov/p

m
v , m ≥ 1.

Proof. Since we can embed the valuation ring Ov into Ôv we want to identify
Ov with its embedding. Let ϕ : Ov → Ôv/p̂v be the projection onto Ôv/p̂v.
The kernel of ϕ is obviously pv. Let x = (xn)+m be an arbitrary element of
Ôv with xn ∈ K for all n ∈ N. Since v(x) = limn→∞ v(xn) ≥ 0 there exists
an integer N0 such that xm ∈ Ov for all m ≥ N0. Further there exists an
integer N1 > N0 such that v(x − xm) > 0 for m ≥ N1 which is equivalent
to xm ≡ x mod p̂v for m ≥ N1. Hence ϕ is a surjection and induces an
isomorphism of rings

ϕ′ : Ov/pv → Ôv/p̂v.

Since both spaces are equipped with the discrete topology ϕ′ is also a home-
omorphism.

Now let v be discrete, without loss of generality v is also normed. Denote
by ϕ : Ov → Ôv/p̂

m
v the projection onto Ôv/p̂

m
v . Analogous to above there

exists an integer N such that xk ∈ Ov and v(x − xk) > m for all k ≥ N ,
i. e., x ≡ xk mod p̂mv for k ≥ N . Hence ϕ is a surjection with kernel pmv and
induces an isomorphism of rings

ϕ′ : Ov/p
m
v −→ Ôv/p̂

m
v .

Since the open neighbourhoods of 0 are of the form pkv/p
m
v or p̂kv/p̂

m
v respec-

tively for k ≤ m the map ϕ′ is also a homeomorphism. �

Theorem 1.2.4 Let K be a field with a discrete valuation v, R ⊆ Ov

be a set of representatives of Ov/pv with 0 ∈ R and π a prime element

of Ov. Then there exists for every x ∈ K̂∗ a unique representation as
a converging series

x = πm
∑
i≥0

aiπ
i

with m ∈ Z, ai ∈ R and a0 6= 0.



12

Proof. Since π is also a prime element of the valuation ring Ôv of K̂ and v is
a discrete valuation on K̂ every element x ∈ K̂ can be written as x = πmu
for m ∈ Z and u ∈ Ô∗v. As a consequence of Ôv/p̂v ∼= Ov/pv there is a unique
representative a0 ∈ R with a0 6= 0 and x = πm(a0 + πr1) with r1 ∈ Ôv.
Assume that we have already x = πm(a0 + a1π + · · · + anπ

n + πn+1rn+1)
with unique a0, · · · , an ∈ R and rn+1 ∈ Ôv. Since we can write rn+1 =
an+1 + πrn+2 uniquely with an+1 ∈ R and rn+2 ∈ Ôv we obtain

x = πm(a0 + a1π + · · ·+ anπ
n + an+1π

n+1 + πn+2rn+2).

Hence we can find a unique series πm
∑∞

n=0 anπ
n with an ∈ R, a0 6= 0. Since

x−πm
∑N

i=0 aiπ
i ∈ pN+1

v for every integer N the infinite series is equal x. �

Examples 1.2.5 (i) Let p be a prime number. We denote by Qp the
unique completion of Q with respect to the absolute value | |p. By the
above Theorem every element x ∈ Qp can be written as

x = pm
∑
i≥0

aip
i,

for m ∈ Z, ai ∈ {0, 1, · · · , p− 1} and a0 6= 0. On the other hand there
exists for every m ∈ Z and every sequence (ai) with ai ∈ {0, 1, · · · , p−
1} and a0 6= 0 an element x ∈ Qp with x = pm

∑
i≥0 aip

i, namely

the limit of the sequence (pm
∑n

i=0 aip
i)n∈N. The valuation ring of Qp,

denoted as Zp, contains all elements which can written as a formal
power series in p and coefficients in {0, 1, · · · , p− 1}. It is easy to see
that Zp is the closure of Z in Qp.

(ii) Let Fq(x) be the rational function field over the finite field Fq. Every
element r in the completion of Fq(x) with respect to | |∞ can be written
as

r = xm
∑
i≥0

ai
1

xi
,

for m ∈ Z , ai ∈ Fq and a0 6= 0. Analogous to above every formal
Laurent series in 1

x with coefficients in Fq represents an element of the
completion of Fq(x) with respect to | |∞. Therefore the completion of
Fq(x) with respect to | |∞ is isomorphic to the field of formal Laurent
series Fq(( 1

x)) in 1
x with coefficients in Fq.

Definition 1.2.6 Let {Rn}n∈N be a family of topological rings and ϕn :
Rn+1 → Rn a homomorphism of topological rings for n ∈ N. The ring

lim←−
n

Rn := {(xn) ∈
∏
n

Rn : ϕn(xn+1) = xn},

with component-wise addition and multiplication together with the subset
topology of

∏
nRn is called the inverse limit of the Rn.

Theorem 1.2.7 Let K be a complete field with respect to a discrete
valuation v, Ov be its valuation ring and pv the maximal ideal of Ov.
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Then the map ϕ : Ov → lim←−n Ov/p
n
v given by

ϕ : x 7→ (x mod pnv )n∈N,

is an isomorphism of topological rings.

Proof. The map ϕ is injective since its kernel is
⋂
n∈N pnv = (0). Let R ⊆ Ov

be a set of representatives of Ov/pv with 0 ∈ R and π a prime element in Ov.
As a consequence of Theorem 1.2.4 every element x ∈ Ov/p

n
v for arbitrary

n ≥ 1 is of the form

x =
n∑
i=1

aiπ
i + pnv .

Hence every element s ∈ lim←−n Ov/p
n
v can be written as s = (

∑n
i=1 aiπ

i)n∈N
for a sequence ai ∈ R. The series

∑
i≥1 aiπ

i converges in Ov and its image
under ϕ is s.
Any neighbourhood of 0 in lim←−n Ov/p

n
v is of the form∏

n≤m
(pknv /p

n
v )
∏
n>m

(Ov/p
n
v )

 ∩ lim←−
n

Ov/p
n
v ,

with kn ≤ n and m ∈ N. If we set k = maxn≤m kn the pre-image of the
above set under ϕ is pkv . Since every neighbourhood of 0 ∈ Ov is of the form
pmv the map ϕ is a homeomorphism. �

Definition 1.2.8 Let K be a field with an absolute value | | and V a finite
dimensional vector space over K. A norm on V is a map ‖ ‖ : V → R,
such that

(i) ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 iff x = 0,
(ii) ‖λx‖ = |λ|‖x‖ for all x ∈ V and all λ ∈ K,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

Two norms ‖ ‖1 and ‖ ‖2 on V are called equivalent if there exist real
numbers c1, c2 > 0, such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1,
for all x ∈ V .

Theorem 1.2.9 Let K be a field which is complete with respect to an
absolute value | | on K and V a finite dimensional vector space over
K. Then all norms on V are equivalent.

Proof. We prove this by induction on the dimension dimK(V ) = n. For
n = 1 the statement is trivial. Let {b1, · · · , bn} be a K-basis of V and set
‖
∑

1≤i≤n λibi‖∞ = max{|λ1|, · · · , |λn|}. Then it suffices to show that every

norm ‖ ‖ on V is equivalent to ‖ ‖∞. By setting c2 =
∑

1≤i≤n ‖bi‖ we obtain
for all x ∈ V

‖x‖ ≤ c2‖x‖∞.
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We set

Vi =
⊕

1≤j≤n,j 6=i
Kbj .

There exists a real number δ > 0 such that ‖x + bi‖ > δ for 1 ≤ i ≤ n and
all x ∈ Vi. Assume the converse:
Then there exists an index i and a sequence (yn) in Vi such that limn→∞ ‖yn+
bi‖ = 0. This implies

‖yn + bi − (ym + bi)‖ = ‖yn − ym‖ → 0, for n,m→∞.

Hence the sequence (yn) is a Cauchy sequence with respect to ‖ ‖|Vi . Since

by induction every norm on Vi is equivalent (yn) is also a Cauchy sequence
witch respect to ‖ ‖∞|Vi . Therefore the components of (yn) with respect

to the basis {b1, · · · , bn} are Cauchy sequences in K. The component-wise
limit y ∈ Vi of (yn) is also the limit of (yn) with respect to ‖ ‖∞|Vi . Hence

we obtain limn→∞ ‖yn + bi‖ = ‖y + bi‖ 6= 0 since y + bi 6= 0.

Let x =
∑

1≤i≤n λibi ∈ V \ {0} be arbitrary and j an index such that

|λj | = ‖x‖∞. Then we have

‖λ−1
j x‖ = ‖

∑
1≤i≤n,i 6=j

λibi + bj‖ > δ.

This inequality implies ‖x‖ > δ‖x‖∞. �

1.3.Global fields and extensions of valuations

We observe in this section the behaviour of absolute values and valuations
under field extensions. This allows us to develop the concept of valuations
on global fields, which play an important role in number theory.

Theorem 1.3.1 Let K be a complete field with respect to an absolute
value | | and L|K an algebraic field extension. Then there is a unique
extension of the absolute value | | onto L given by

|x| = n

√
|NL|K(x)|

for all x ∈ L where n = [L : K]. The field L is then complete with
respect to the extension | |.

Proof. See [6, p. 137] �

Definition 1.3.2 A global field K is a finite extension of Q or Fp(x) for a
prime number p ∈ Z. A place p of a global field K is an equivalence class of
absolute values on K. We call p infinite if the restriction of a representative
| | ∈ p onto Q or Fp(x) respectively is equivalent to the absolute value | |∞
and otherwise finite and use the notations p|∞ or p - ∞ respectively. For
char(K) = 0 an infinite place p is called real or complex if the completion
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of K associated to p is R or C respectively. The set of all places of K is
denoted by VK .

Remark Let K be a finite field extension of the rational function field Fq(x)
with Fq finite. Then we have to keep in mind that K|Fq(x) is in general not
a separable extension - in [2] separability of K|Fq(x) is a required property
for K to be a global field. For many of the Theorems concerning valuations
on field extensions separability is a needed requirement. Since we are mainly
interested on valuations on K and not their behaviour on the field extension
K|Fq(x) the following Theorem is very helpful.

Theorem 1.3.3 Let K be a finite extension of the rational function
field Fp(x). Then there exist two elements s, t ∈ K with

K = Fp(s, t),
such that K|Fp(s) is a finite separable field extension and Fp(s)|Fp(x)
is purely inseparable. The element s is called separating element
for K.

Proof. See [8, p. 144]. �

Let K be a global field and p a place of K. We denote by Kp the comple-
tion of K with respect to the place p. If p is a class of archimedean absolute
values we call p archimedean and otherwise non-archimedean . If K is
an algebraic number field the infinite places are just the archimedean places.
For a non-archimedean place p we set vp as the unique normed valuation
corresponding to p, write Op for the valuation ring of p in Kp and κp for its
residue field and use the notation p|p if char(κp) = p. If p is archimedean we
set Op := Kp and vp(x) = − log(|x|p), where | |p is the unique representative
of p with | |p|Q = | |∞.

Let K be a global field, p a place of K and | |p a representative of p. We
denote the unique extension of | |p onto Kp also by | |p. By Theorem 1.3.1

there is a unique extension of | |p onto Kp which is denoted by | |p.
Let L|K be an algebraic field extension and τ, τ ′ two K-linear embeddings
from L into Kp. Then τ and τ ′ are called conjugated over Kp if there is

a Kp-linear automorphism σ ∈ AutKp(Kp) of Kp such that τ = σ ◦ τ ′.

Theorem 1.3.4 Let L|K be an algebraic field extension of global
fields, p a place of K and | |p a representative of p.

(i) Every extension | | of | |p onto L is given by | | = | |p ◦ τ , where

τ : L→ Kp is a K-linear homomorphism of fields.
(ii) Two extensions | |p ◦τ and | |p ◦τ ′ are equal, iff τ and τ ′ are conjugated

over Kp.

Proof. See [6, p. 170]. �
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Examples 1.3.5 (i) The absolute values on Q are by Theorem 1.1.5 equiv-
alent to | |p or | |∞. We denote the corresponding places by p or ∞
respectively and obtain

VQ = {p|p is prime number} ∪ {∞}.

(ii) Let K be an algebraic number field and OK its ring of integers. Every
finite place p of K corresponds to a prime ideal of OK and vice versa:
For every prime ideal p of OK we obtain a normed valuation vp given
by vp(x) = νp(x), where

(x) =
∏

p prime ideal

pνp(x),

is the unique factorisation of (x) into prime ideals. Let on the other
hand p be a finite place of K and p|p. The Ideal m = OK ∩ {x ∈
K|vp(x) > 0} is non empty, since p ∈ m. Further m is obviously a
prime ideal. The valuation vm as defined above coincides with the
normed valuation vp.

Let ρ1, · · · , ρr be the embeddings of K into R and σ1, σ1, · · ·σs, σs
be the embeddings of K into C. By Theorem 1.3.4 all archimedean
absolute values of K are up to equivalence of the form |x|ρi = |ρi(x)|∞
or |x|σj = |σj(x)|∞. Further all the | |ρi and | |σj are pairwise non
equivalent. Hence the set of places of K is given by

VK = {p|p is prime ideal of OK} ∪ {ρ1, · · · , ρr, σ1, · · · , σs}.

For every element x ∈ K the factorisation of (x) into prime ideals is
finite. Therefore holds vp(x) = 0 for almost all finite places p of K.

(iii) Let Fp(x) be the rational function field over the finite field Fp. By
Theorem 1.1.5 every absolute value on Fp(x) is equivalent to either
| |q for a irreducible polynomial q ∈ Fp[x] or | |∞. The corresponding
places are denoted by q or ∞ respectively and we obtain

VFp(x) = {q|q ∈ Fp[x] irreducible} ∪ {∞}.

(iv) Let K be a separable extension of Fp(x). Analogous to (ii) the finite
places of K correspond to the prime ideals of the integral closure OK

of Fp[x] in K. The infinite places of K correspond by Theorem 1.3.4
to the embeddings σ1, · · · , σn of K into Fp((

1
x)) which are pairwise not

conjugated over Fp(( 1
x)).

Lemma 1.3.6 Set K = Q or K = Fp(x) and OK = Z or OK = Fp[x]
respectively. Then we obtain for the intersection⋂

p-∞

Op = OK .

Proof. One has obviously
⋂

p-∞ Op ⊇ OK . Now let x ∈
⋂

p-∞ Op. For a place

p′ we can choose for a prime element πp′ in Op′ a prime number p ∈ Z if
K = Q or a irreducible polynomial q ∈ Fp[x] if K = Fp(x). In both cases
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we obtain

vp(πp′) =

{
1 p = p′,

0 otherwise.

We can write x = πmp′
∑

i>0 aiπ
i
p′ for m ∈ Z and ai ∈ R, where R ⊆ OK

is a set of representatives of Op′/p
′ with 0 ∈ R. If the sum is not finite

there exists a place p such that vp(ai) 6= 0 for infinitely many i. This is a
contradiction to x ∈ Op since the sum does not converge in Op. Therefore
x ∈ OK . �

Definition 1.3.7 Let K be a global field, L|K an algebraic field extension
and p, P be places of K or L respectively. We say P lies over p, denoted
by P|p, if the restriction | |P|K is equivalent to | |p for representatives | |P
and | |p of P and p respectively.

The expression P|p is well-defined since the restriction of two representa-
tives | |P, | |′P of P onto K are equivalent.

Let L|K be an algebraic field extension of a global field K and let P, p be
places of L or K respectively with P|p. Denote by mL,mK the set of null
sequences in L or K. We can write every element of LP or Kp as (xn) +mP

or (xn) + mp for a Cauchy-sequence (xn) in L or K respectively. Since the
restriction of the absolute value | |P onto K is equivalent to | |p a Cauchy-
sequence (xn) in K is also a Cauchy-sequence in L and hence mK ⊆ mL.
Therefore the map

ι : Kp −→ LP, (xn) + mK 7→ (xn) + mL,

is well-defined. It is also an homomorphism of fields since the addition and
multiplication in both Kp and LP are component-wise. Finally ι preserves
the absolute value:

|ι((xn) + mK)|P = |(xn) + mL|P = lim
n→∞

(|(xn)|P) =

= lim
n→∞

(|(xn)|p) = |(xn) + mK |p.

Therefore we can embed Kp into LP such that the restriction of | |P onto
Kp is equivalent to | |p.

The following Theorem is very useful to lift properties from Kp onto LP

if P|p.

Theorem 1.3.8 Let L|K be a separable field extension of global fields
and p a place of K. Then there exists an isomorphism of topological
Kp-algebras

Kp ⊗K L −→
∏
P|p

LP,

if we choose the topology on Kp ⊗K L as in the following Remark.
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Proof. See [2, p. 57]. �

Remark Let ϕ : Kn
p −→ Kp ⊗K L be an isomorphism of Kp-vector spaces

and the topology on Kn
p be the product topology. We equip Kp ⊗K L with

the initial topology with respect to ϕ, i. e., a subset O ⊆ Kp ⊗K L is open
iff O is the image of an open subset of Kn

p . Since every change of basis in
Kn

p is a homeomorphism the topology on Kp ⊗K L does not depend on the
choice of the isomorphism ϕ. The addition and multiplication on Kp ⊗K L
are continuous as one proves easily.

Proposition 1.3.9 Let L|K be a separable field extension of global
fields and p a place of K. Then the following holds:

(i) [L : K] =
∑

P|p[LP : Kp].

(ii) NL|K(x) =
∏

P|pNLP|Kp
(x).

Proof. See [6, p. 172]. �

Definition 1.3.10 Let K be a global field, L|K an algebraic field extension
and p,P be places of K or L respectively with P|p. We define the ramifi-
cation index

e(P|p) :=

{
(vP(L∗) : vp(K

∗)) p not archimedean,

1 p archimedean,

and the inertial degree

f(P|p) :=

{
[κP : κp] p not archimedean,

[LP : Kp] p archimedean,

where κp is the residue field of Kp if p is non-archimedean. Further we use
the abbreviation ep = e(p|p) for a finite place p and ep = e(p|∞) for an
infinite place p and the analogue for fp. We define

N(p) =

{
pfp p|p,
efp p is archimedean,

and the normed absolute value | |p corresponding to p as |x|p := N(p)−vp(x)

for all x ∈ K.

Let K be a global field and p a place of K. We denote for the rest of the
thesis with | |p the normed absolute value corresponding to the place p.

Proposition 1.3.11 Let K be a global field, L|K an algebraic exten-
sion and p, P be places of K or L respectively with P|p.

(i) N(P) = N(p)f(P|p).
(ii) vP(x) = e(P|p)vp(x) for all x ∈ K.

(iii)
∑

P|p e(P|p)f(P|p) = [L : K] where the sum is over all places P

of L with P|p.
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(iv) |x|P = |NLP|Kp
(x)|p for all x ∈ L if L|K is separable.

Proof. We will prove the Theorem only for separable field extensions L|K.
For the inseparable case see [8, p. 71, 74].

(i) For an archimedean place p holds

N(P) = efP = ef(P|∞) = ef(P|p)f(p|∞) = N(p)f(P|p).

One proves the claim analogously for a non-archimedean place p.
(ii) For infinite places p,P this follows directly form the definition of vp, vP.

Since vp and vP are for finite places p,P the unique normed valuations
corresponding to p or P respectively this is a direct consequence from
the definition of e(P|p).

(iii) Proposition 1.3.9 states [L : K] =
∑

P|p[LP : Kp]. The claim is

therefore obviously true for an archimedean place p. Let p be a non-
archimedean place. Denote by Op and OP the valuation rings corre-
sponding to p or P respectively and by p and P their only prime ideals
- it is clear out of the context if the letters p,P stand for the places or
for the prime ideals. By Theorem 1.1.11 Op and OP are principal ideal
domains. Since vP, vp are the normed valuations corresponding to P, p
the ramification index e(P|p) of the places P, p satisfies

pOP = Pe(P|p).

Since the initial degree f(P|p) is defined the same way for the places
P, p and for the prime ideals P, p we obtain

[Lw : Kv] = e(P|p)f(P|p),

which implies the claim.
(iv) By Theorem 1.3.1 we know for x ∈ L

w(x) =
1

[LP : Kp]
vp(NLP|Kp

(x)),

is an extension of vp onto L which satisfies w|K = vp. The property (ii)
implies vP(x) = e(P|p)w(x). By (i) and the proof of (iii) we obtain

|x|P = N(P)−vP(x) = N(p)−f(P|p)e(P|p)w(x) =

= N(p)
−vp(NLP|Kp (x))

= |NLP|Kp
(x)|p. �

The following Theorem justifies the definition of a normed absolute value
corresponding to a place.

Theorem 1.3.12 (Product Formula) Let K be a global field and x ∈
K∗. Then |x|p = 1 for almost all places p and∏

p∈VK

|x|p = 1.
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Proof. Set K0 = Q if char(K) = 0 and K0 = Fp(s) if char(K) = p, where
s ∈ K is a separating element for K, and O to be the ring Z or Fp[s] respec-
tively. Theorem 1.3.3 states the existence of such a separating element s for
char(K) = p and that K|Fp(s) is separable.
By Example 1.3.5 every global field K has only finitely many infinite places.
Every finite place P corresponds to a prime ideal P of the integral closure
OK of O in K, which is a Dedekind domain. The normed valuations vP cor-
responding to a finite places P are of the form vP(x) = νP(x) where x ∈ K
and (x) =

∏
PPνP(x) is the unique factorisation of the fractional ideal (x)

into prime ideals P in OK . This implies now the first claim.

As a consequence of Proposition 1.3.9 and Proposition 1.3.11 we obtain∏
P∈VK

|x|P =
∏

p∈VK0

∏
P|p

|x|P =
∏

p∈VK0

∏
P|p

|NKP|K0p
(x)|p =

∏
p∈VK0

|NK|K0
(x)|p.

Therefore it suffices to prove the product formula for K = K0.
Let K = Q. For every element x ∈ Q∗ there is a unique prime factorisation
x = sign(x)

∏
p p

νp , where νp ∈ Z and almost all equal to zero. Hence we
obtain ∏

p∈VQ

|x|p = |x|∞ ·
∏

p prime

p−νp =
∏

p prime

pνp ·
∏

p prime

p−νp = 1.

Now let K = Fp(s). For r ∈ Fp(s) let r = u
∏
q q

νp(x) be the unique factori-

sation of r into irreducible polynomials q ∈ Fp[s] and u ∈ F∗p. The degree of
r is given by deg(r) =

∑
q νq(r) deg(q) where the sum is over all irreducible

polynomials q. Then we obtain∏
p∈VFp(s)

|r|p = |r|∞ ·
∏

q irreducible

|r|q = pdeg(r) ·
∏

q irreducible

p− deg(q)νq(r) =

= p
∑
q irreducible νq(r) deg(q) ·

∏
q irreducible

p− deg(q)νq(r) = 1. �

1.4.Local fields

Definition 1.4.1 A local field is a complete field K with respect to a
discrete valuation v such that the residue field κv = Ov/pv is finite.

Proposition 1.4.2 A local field K is locally compact and its valuation
ring Ov is compact.

Proof. As a consequence of Theorem 1.2.4 Ov/p
n
v is finite for every n ≥ 1

and therefore compact. Theorem 1.2.7 states Ov
∼= lim←−n Ov/p

n
v as topological

rings. The topological space
∏
n≥1 Ov/p

n
v is by Tychonoff’s Theorem com-

pact. Since lim←−n Ov/p
n
v is a closed subset of

∏
n≥1 Ov/p

n
v the valuation ring Ov



21

is also compact. For any x ∈ K the set x+ Ov is a compact neighbourhood
which proves that K is locally compact. �

Theorem 1.4.3 Every finite field extensions of Qp and Fp((t)) is a
local field and every local field is isomorphic to a finite field extension
of either Qp or Fp((t)), where Fp((t)) is the field of formal Laurent
series in t over the finite field Fp.

Proof. See [6, p. 141]. �

Since every local field K is obviously Hausdorff, Theorem A.5 states that
there exists a Haar measure µ on (K,+). Let Ov be the residue field of K
and pv the maximal ideal of Ov. We normalize µ for the rest of the thesis
by setting µ(Ov) = 1. With this normalization we obtain a unique measure
µ on K given by

µ(x+ pnv ) := q−n,

where x ∈ K, n ∈ Z and q = |Ov/pv|. For an element x ∈ K we obtain

µ(xOv) = |x|v,
where | |v is the normalized absolute value corresponding to v given by

|x|v = q−v(x).
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2.Ring of adeles

With the background knowledge of valuations provided in the first chapter
we can now introduce the adele ring of a global field. We mainly follow [2],
[6] and [7]. The notation follows mostly [6] and [7].

2.1.Restricted direct product

Before we are able to define the adele ring we need the concept of the
restricted direct product.

Definition 2.1.1 Let J be an index set and let J∞ ⊆ J be a finite subset.
For j ∈ J let Gj be a locally compact topological group and for j /∈ J∞ let
Hj be a compact open subgroup of Gj. The restricted direct product of
the Gj with respect to the Hj is the topological group∏

j∈J

′(Gj : Hj) = {(xj)j∈J ∈
∏
j∈J

Gj : xj ∈ Hj for almost all j ∈ J},

where the group multiplication is component-wise and the topology is gen-
erated by the base of all sets of the form

∏
j∈J Oj with Oj open in Gj and

Oj = Hj for almost all j ∈ J .

Proposition 2.1.2 Let G =
∏
j∈J
′(Gj : Hj) be the restricted direct

product of the Gj with respect to the Hj and Gj , Hj as above. Then
G is a locally compact topological group.

Proof. Let (gj)j∈J be an arbitrary element of G. Let S ⊆ J be the finite
subset consisting of all indices j ∈ J such that either j ∈ J∞ or gj /∈ Hj . We
set Nj ⊆ Gj to be a compact neighbourhood of gj for j ∈ S and Nj = Hj

for j /∈ S. The set

GS :=
∏
j∈J

Nj ,

is then a compact neighbourhood of (gj): GS is by Tychonoff’s Theorem
compact in the product topology. Hence GS is compact with respect to the
subspace topology of GS in G, since the subspace topology is coarser than
the product topology. �

Proposition 2.1.3 Let G =
∏
j∈J
′(Gj : Hj) be the restricted direct

product of the Gj with respect to the Hj and let Gj be Hausdorff for all
j ∈ J .Denote by µj the Haar measure on Gj with the normalization
µj(Hj) = 1 for all j /∈ J∞. Then there exists a unique Haar measure
µ on G given by

µ(
∏
j

Mj) =
∏
j

µj(Mj),
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where the Mj ⊆ Gj are µj-measurable and Mj = Hj for almost all
j ∈ J .

Proof. See [2, p. 63] and [7, p. 185]. �

2.2.Ring of adeles and idele group

Definition 2.2.1 Let K be a global field, denote by Kp the completion of K
with respect to the place p and by Op the valuation ring of Kp if p is non-
archimedean. The adele ring AK over K is the restricted direct product

AK :=
∏
p∈VK

′(Kp : Op)

of the additive groups Kp with respect to the Op. It can be endowed with
a multiplicative structure given by component-wise multiplication such that
AK is a topological ring. An element of the adele ring is called adele.

Let K be a global field. We can see K as a subfield of its completion
Kp for every place p of K. Theorem 1.3.12 implies then that every element
x ∈ K lies in Op for almost all places p. Therefore we can embed K into its
ring of adeles AK via

x 7→ (x)p∈VK .

We identify for the rest of the thesis the field K with its embedding into AK
and call an element x ∈ K principal adele .

We will need later the following

Lemma 2.2.2 Let K be a global field. Then there exists an embedding
of K-vector spaces ι : Kn → AnK such that every K-basis {b1, · · · , bn}
of Kn is mapped onto an AK-basis {ι(b1), · · · , ι(bn)}.

Proof. Let ϕ : Kn → Kn ⊗K AK be the homomorphism of K-vector spaces
given by ϕ : v 7→ v ⊗ 1K . Then ϕ maps K-bases onto AK-bases (cf. [10,
p. 216]). Denote by ψ : Kn ⊗ AK → AnK the isomorphism of AK-modules
which is induced by ψ : (xi)1≤i≤n ⊗ a 7→ (xi · a)1≤i≤n. Therefore the map
ι := ψ ◦ ϕ is an embedding of K-vector spaces which maps K-bases of Kn

onto AK-bases of AnK . �

Remark The above defined map ι : Kn → AnK is given in every component
as the embedding of K into AK . Since we have identified K with its em-
bedding in AK we want to do the same with the embedding of Kn into AnK
and write v = ι(v) for v ∈ Kn. Hence the above Lemma states that every
K-basis of Kn is also an AK-basis of AnK .
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Definition 2.2.3 Let K be a global field. The idele group IK over K is
defined as the restricted direct product

IK :=
∏
p∈VK

′(K∗p : O
∗
p),

of the groups K∗p with respect to the O∗p. An element of the idele group is
called idele.

We can obviously see the idele group IK as a subset of the ring of adeles
AK . The idele group is then exactly the group of units of the adele ring :
Every idele is clearly a unit element of the adele ring. For an element
x = (xp) ∈ A∗K we have xp ∈ K∗p for every place p since the multiplication is

defined component-wise. Since (x−1
p ) ∈ A∗K we have xp, x

−1
p ∈ Op for almost

all p. Therefore xp ∈ O∗p holds for almost all places p and x = (xp) is an
idele. As a consequence the embedding K ↪→ AK induces an embedding of
the group of units K∗ ↪→ IK . The elements in the image are called principal
ideles.
While the algebraic structure is the same for IK and A∗K they differ in their
topology. Since the inversion x 7→ x−1 is not continuous on AK the topology
on IK can not coincide with the subspace topology on AK . However the
embedding

IK → AK × AK x 7→ (x, x−1),

induces an isomorphism of topological groups from IK onto the image of ι
(cf. [7, p. 68]).

Definition 2.2.4 Let K be a global field. Then we define the absolute
value | |AK on AK as

| |AK : AK −→ R, (xp) 7→
∏
p∈VK

|xp|p.

The above map is not an absolute value in the sense of the definition
given in the first chapter, nevertheless the name suits for this map and is
commonly used in literature. Since the product in the definition of | |AK is
infinite we have to think about its existence. For any adele x = (xp) ∈ AK
almost all components xp are elements of Op, i. e., |xp|p ≤ 1. Hence the
product is either converging or 0. One can easily prove |x|AK 6= 0 iff x ∈ IK .
For principal ideles x ∈ K∗ Theorem 1.3.12 states |x|AK = 1.

The restriction of | |AK onto IK is obviously a continuous map. It is also
easy to see, that | |AK is not continuous on AK :
Let (xp) be an adele with |(xp)|AK 6= 0. If | |AK is continuous on AK , then
there exists a neighbourhood U ⊆ AK of (xp) such that

1

2
|(xp)|AK ≤ |(yp)|AK ≤ 2|(xp)|AK ,

for every (yp) ∈ U . But in every neighbourhood of (xp) there is an element
(yp) with at least one component yp = 0, which is a contradiction.
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Theorem 2.2.5 Let K be a global field and L|K a separable field
extension. The map

ϕ : AK ⊗K L −→ AL, (xp)p∈VK ⊗ a 7→ (xp · τP(a))P∈VL,P|p,

is an isomorphism of topological rings, where the map τP : L → LP

is the canonical embedding of L into LP.

Proof. See [2, p. 64]. �

Remark Let K be a global field, L|K a separable field extension and
{b1, · · · , bn} be a K-basis of the field L. The map

ψ :

[L:K]∏
i=1

AK → AK ⊗K L,

((xp,i)p∈VK )1≤i≤[L:K] 7→
∑

1≤i≤[L:K]

(xp,i)p∈VK ⊗ bi,

is an isomorphism of topological groups. By the above Theorem we obtain
an isomorphism

ψ :

[L:K]∏
i=1

AK → AL

of topological groups given by (xp,i) 7→
∑[L:K]

i=1 bi(xp,i)p∈VL,P|p.

2.3.Strong approximation

In this subchapter we prove two important Theorems which give some
insight on the relation between a global field K and its adele ring AK . The
first is Theorem 2.3.1 which states that K lies discrete and cocompact in its
adele ring AK . The other is the so-called strong approximation, Theorem
2.3.5 which states that K is

”
almost dense“ in its adele ring AK .

Theorem 2.3.1 Let K be a global field. We identify K with its image
of the map

K −→ AK , x 7→ (x)p∈VK .

Then K is a discrete and cocompact subring of the adele ring AK ,
i. e., the quotient AK/K is compact.

Proof. We set K0 = Q if char(K) = 0 and K0 = Fp(s) if char(K) = p,
where s ∈ K is a separating element for K and set n = [K : K0]. Theorem
1.3.3 states the separability of K|K0 for char(K) 6= 0. As a consequence of
Theorem 2.2.5 we obtain a commutative diagram of topological K0-vector
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spaces ∏n
i=1 AK0

∼= // AK

∏n
i=1K0

?�

OO

∼= // K
?�

OO

Therefore AK/K is compact iff
∏n
j=1(AK0/K0) is compact, which is true iff

AK0/K0 is compact. Analogous it suffices to prove that K0 is discrete in
AK0 . Let Op be the valuation ring corresponding to a place p of K and C
be the compact set

C := {(xp) ∈ AK0 : |x∞|∞ ≤
1

2
, |xp|p ≤ 1 for p -∞}.

Then the following holds

(i) C ∩K0 = {0},
(ii) AK0 = C +K0 := {x+ y|x ∈ C, y ∈ K0}.

Proof:

(i) Let x ∈ K0 ∩ C, then we obtain x ∈ Op for all finite places p. As a
consequence of Lemma 1.3.6 we get

x ∈
⋂
p-∞

Op = OK0 :=

{
Z char(K) = 0,

Fp[s] char(K) = p.

The condition |x|∞ ≤ 1
2 implies x = 0.

(ii) Let x = (xp) ∈ AK0 be arbitrary and denote by S the finite set of all
finite places p with xp /∈ Op. For p ∈ S we can write xp =

ap

π
νp
p

+ bp with

ap ∈ K0, bp ∈ Op, νp ∈ N and πp ∈ K0 a prime element of Op. We set

y = x−
∑
p∈S

ap

π
νp
p

.

For all finite places p we have yp ∈ Op. We can choose an element
r ∈ OK0 with |y∞ − r|∞ ≤ 1

2 . Hence we obtain

x = (y − r) + (r +
∑
p∈S

ap

π
νp
p

),

where (y − r) ∈ C and r +
∑

p∈S
ap

π
νp
p
∈ K0, which implies the claim.

Since AK0 is a topological group with respect to addition and C is a neigh-
bourhood of 0, the subring K0 is discrete in AK0 by (i). The map π : AK0 →
AK0/K0 is continuous. By (ii) we have π(AK0) = π(C). The compactness
of C implies therefore the compactness of AK0/K0. �

Corollary 2.3.2 Let K be a global field. There exists a set C ⊆ AK
of the form C = {(xp) ∈ AK : |xp|p ≤ δp} with δp = 1 for almost
all places p such that C + K = AK , i. e., every adele z ∈ AK can be
written as z = x+ y with x ∈ C and y ∈ K.
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Proof. Let K0 = Q if char(K) = 0 and K0 = Fp(s) if char(K) = p, where
s is a separating element for K. By the proof of the above Theorem there
exists a compact set C0 ⊆ AK0 with AK0 = K0 + C0 and C0 = {(xp) ∈
AK0 : |xp|p ≤ δp} with δp = 1 for almost all p ∈ VK0 . Let {b1, · · · , bn} be a
K0-basis of K and define

ψ :

n∏
i=1

AK0 → AK , ((xp,i)p∈VK0
)1≤i≤n 7→

n∑
i=1

bi(xp,i)P∈VK ,P|p.

Then ψ is an isomorphism of topological groups by the Remark after The-
orem 2.2.5 with ψ(Kn

0 ) = K. This implies

ψ−1(K) +

n∏
i=1

C0 =

n∏
i=1

(K0 + C0) =

n∏
i=1

AK0 .

We have ψ(
∏n
i=1C0) = ι(C0)b1+ι(C0)b2+· · ·+ι(C0)bn, where ι : AK0 → AK

is the embedding of AK0 into AK given by (xp)p∈VK0
7→ (xp)P∈VK ,P|p. Since

we have |bi|P ≤ 1 for 1 ≤ i ≤ n and for almost places P of K there exists a
compact subset C ′ ⊆ AK of the form C ′ = {(xP) ∈ AK : |xP|P ≤ δ′P} with

δ′P = 1 for almost all P ∈ VK and ψ(
∏n
i=1C0) ⊆ C ′. The set C ′ satisfies

obviously C ′ +K = AK . �

Remark Let K be a global field. As a consequence of Proposition 2.1.3
there exists a Haar measure µ on the additive group (AK ,+) with µ(x ·B) =
|x|AKµ(B) for every x ∈ AK and every Borel subset B of AK . Let µ′ be the
Haar measure on AK/K such that Proposition ?? in the Appendix holds
without rescaling µ′.

Lemma 2.3.3 Let K be a global field. Then there exists a constant
cK only depending on the field K with the following property:
Let y ∈ AK and |y|AK > cK then there exists an element x ∈ K∗ with
|x|p ≤ |yp|p for every place p.

Proof. Let c0 = µ′(AK/K) and

c1 = µ

({
(zp) ∈ AK : |zp|p ≤

{
1 p -∞,
1
2 p|∞,

})
.

We obtain 0 < c0, c1 <∞ since both sets are compact. Set cK := c0
c1

and let
T be the set

T =

{
(zp) ∈ AK : |zp|p ≤

{
yp p -∞,
1
2yp p|∞,

}
,

for an adele (yp) ∈ AK with |(yp)|AK > cK . The set T has Haar measure

µ(T ) = |(yp)|AKc1 > cKc1 = c0 = µ′(AK/K).

By Proposition ?? there exist two distinct elements t, t′ ∈ T with t ≡ t′

mod K. For the element x = t− t′ ∈ K holds |x|p = |tp − t′p|p ≤ |yp|p for all
places p of K. �



28

Corollary 2.3.4 Let K be a global field, p0 an arbitrary place of K
and δp > 0 real numbers for every place p 6= p0 with δp = 1 for almost
all places p. Then there exists an element x ∈ K∗ with

|x|p ≤ δp, p 6= p0.

Proof. Choose (yp) ∈ AK such that |yp|p ≤ δp for all places p 6= p0 and
yp such that |y|AK > cK , where cK is as above. Then there exists by the
previous Lemma an element x ∈ K∗ with

|xp|p ≤ |yp|p ≤ δp, for p 6= p0. �

Theorem 2.3.5 Let K be a global field (yp) ∈ AK and p0 an arbitrary
place of K. Then there exists for every ε > 0 and for every finite set
S of places containing all infinite places and p0 /∈ S an element x ∈ K
with

(i) |x− yp|p < ε for p ∈ S,
(ii) x ∈ Op for p0 6= p /∈ S.

Proof. According to Corollary ?? there is a set

C := {(zp) ∈ AK : |zp|p ≤ δp},
with δp = 1 for almost all places p, such that AK = K + C. By Corollary

2.3.4 there is an element λ ∈ K∗ with |λ|p ≤ εδ−1
p for p ∈ S and |λ|p ≤ δ−1

p

for p /∈ S and p 6= p0. We set

ỹp =

{
yp p ∈ S
0 p /∈ S

.

Then there exist x ∈ K and (zp) ∈ C with λ−1(ỹp) = x+ (zp). The element
λx ∈ K fulfils obviously the requested properties. �

Remark Theorem 2.3.5 can also be formulated in the following way:
Let p0 be an arbitrary place of a global field K. Then the embedding
x 7→ (x)v∈VK\{p0} form K into

∏′
p6=p0

(Kp : Op) is dense.
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3.Height functions

We are now ready to deal with heights. In the first section we look at the
absolute multiplicative / logarithmic height function on the projective space
Pn(K) over the algebraic closure of a global field K. This will be the last
preparation for our main goal: the treatment of height functions on AnK and
Theorem 3.2.7 together with its proof.

3.1.Height functions on the projective space

For this section we followed mostly [4] and also [1].

Definition 3.1.1 Let K be a global field and Pn(K) be the n-dimensional
projective space over K. For a point P ∈ Pn(K) with homogeneous coordi-
nates P = [x0 : · · · : xn] we define the multiplicative height relative to K
as

HK(P ) :=
∏
p∈VK

max{|x0|p, · · · , |xn|p}.

The logarithmic height relative to K is defined via

hK(P ) := log (HK(P )) =
∑
p∈VK

−fp log (N(p)) min{vp(x0), · · · , vp(xn)},

where fp and N(p) are defined as in Definition 1.3.10.

We have to show that these height functions exist and are well-defined.
The latter will be done in Lemma 3.1.3. Let [x0 : · · · : xn] be homogeneous
coordinates of a point P ∈ Pn(K). As a consequence of Theorem 1.3.12 for
almost all p ∈ VK holds |xi|p = 1 for 0 ≤ i ≤ n. Since P ∈ Pn(K) there
exists an index i with xi 6= 0 which implies max{|x0|p, · · · , |xn|p} > 0 for
all places p ∈ VK . The product

∏
p∈VK max{|x0|p, · · · , |xn|p} is therefore a

finite product and greater than 0. Hence the height HK(P ) and hk(P ) =
log(HK(P )) exist.

Examples 3.1.2 (i) Let P ∈ Pn(Q) be a point in the projective space
over Q. Then there are up to multiplication with (−1) unique ho-
mogeneous coordinates [x0 : · · · : xn] for P with x0, · · · , xn ∈ Z and
gcd(x0, · · · , xn) = 1. For every prime number p we have therefore
max{|x0|p, · · · , |xn|p} = 1. Hence the multiplicative height of P is
given by

HQ(P ) = max{|x0|∞, · · · , |xn|∞}.
(ii) For P ∈ Pn(Fp(x)) we can choose homogeneous coordinates P = [f0 :
· · · : fn] of P with f0, · · · , fn ∈ Fp[x] and (f0, · · · , fn) = Fp[x]. Let q ∈
Fp[x] be an irreducible polynomial, then the choice of the homogeneous
coordinates of P implies max{|f0|q, · · · , |fn|q} = 1. Hence we obtain
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for the height of P = [f0 : · · · : fn]

HFp(x)(P ) = max{|f0|∞, · · · , |fn|∞}.

Conclusion : With the above considerations it is obvious that for every
real number B ≥ 0 there are only finitely many points P ∈ Pn(K0) with
HK0(P ) ≤ B for K0 = Q or K0 = Fp(x).

Lemma 3.1.3 Let K be a global field.

(i) The height of a point P ∈ Pn(K) is well-defined, i. e., it is inde-
pendent of the choice of the homogeneous coordinates of P .
(ii) HK(P ) ≥ 1 for all points P ∈ Pn(K).

(iii) Let L|K be a separable field extension. Then we have for all points
P ∈ Pn(K)

HL(P ) = HK(P )[L:K].

Proof. (i) Let [x0 : · · · : xn] and [λx0 : · · · : λxn] be two homogeneous
coordinates for a point P ∈ Pn(K) with λ ∈ K∗. Then we have

HK([λx0 : · · · : λxn]) =
∏
p∈VK

max{|λx0|p, · · · , |λxn|p} =

=
∏
p∈VK

|λ|p max{|x0|p, · · · , |xn|p}.

Since the product is finite and |λ|AK = 1 by Theorem 1.3.12 we obtain

HK([λx0 : · · · : λxn]) = |λ|AKHK([x0 : · · · : xn]) = HK([x0 : · · · : xn]).

(ii) Let P ∈ Pn(K). There exist homogeneous coordinates [x0 : · · · : xn] of
P with xi = 1 for an index i. This implies

HK(P ) =
∏
p∈VK

max{1, |x0|p, · · · , |xn|p} ≥ 1.

(iii) Let P ∈ Pn(K) with homogeneous coordinates P = [x0 : · · · , : xn].
For an element x ∈ K and p,P places of K and L respectively with
P|p Proposition 1.3.11 states

|x|P = |NLP|Kp
(x)|p = |x|[LP:Kp]

p .

Using this and Proposition 1.3.9 we obtain

HL(P ) =
∏

P∈VL

max{|x0|P, · · · , |xn|P} =

=
∏
p∈VK

∏
P|p

max{|x0|
[LP:Kp]
p , · · · , |xn|

[LP:Kp]
p } =

=
∏
p∈VK

∏
P|p

max{|x0|p, · · · , |xn|p}[LP:Kp] =

=
∏
p∈VK

max{|x0|p, · · · , |xn|p}[L:K] = HK(P )[L:K]. �
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Definition 3.1.4 Let K0 = Q or K0 = Fp(x). For a point P ∈ Pn(K0) and
an algebraic field extension K|K0 we say P is defined over K if there are
homogeneous coordinates P = [x0 : · · · : xn] with x0, · · · , xn ∈ K. We define
K0(P ) as the smallest field such that P is defined over K0(P ).

The absolute multiplicative height function is the map

H : Pn(K0) −→ [1,∞), P 7→ HK0(P )(P )
1

[K0(P ):K′0] ,

where K ′0 is defined as K ′0 := K0 if char(K0) = 0 and K ′0 = Fp(s) if
char(K0) = p, where s is a separating element for K. The absolute loga-
rithmic height function is the map

h : Pn(Q) −→ [0,∞), P 7→ log (H(P )) =
1

[K0(P ) : K ′0]
hK0(P )(P ),

where K ′0 is defined as above.

Lemma 3.1.3 implies that the absolute multiplicative/logarithmic height
function is well-defined. Let P = [x0 : · · · : xn] ∈ Pn(K0) be homogeneous
coordinates. One proves easily

K0(P ) = K0(
x0

xi
, · · · xn

xi
),

for any xi 6= 0.

Lemma 3.1.5 Let K0 be either Q or Fp(x) for a prime number p,

P ∈ Pn(K0) and σ ∈ Gal(K0,K0) then H(P ) = H(σ(P )) where
σ(P ) = σ([x0 : · · · : xn]) := [σ(x0) : · · · : σ(xn)].

Remark The field Fp(x)|Fp(x) for a prime number p is not separable and

therefore not galois. The group Gal(Fp(x),Fp(x)) stands in this case for the

group AutFp(x)(Fp(x)) of Fp(x)-automorphisms of Fp(x).

Proof. Set K = K0(P ) and K ′0 := K0 if char(K0) = 0 and K ′0 := Fp(s) if
char(K0) = p where s is a separating element for K. The map σ induces an
isomorphism σ : K → σ(K) and the restriction of σ onto K ′0 is the identity
idK′0 . The map σ also induces a bijection

σ : VK → Vσ(K), p 7→ σ(p),

where σ(p) is the place of σ(K) containing the absolute value |x|σ(p) :=

|σ−1(x)|p for x ∈ σ(K). The absolute value | |σ(p) is then clearly the normed
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absolute value to σ(p). Therefore we obtain:

H(P ) = HK(P )
1

[K:K′0] =

 ∏
p∈VK

max{|x0|p, · · · , |xn|p}

 1
[K:K′0]

=

=

 ∏
σ(p)∈Vσ(K)

max{|σ(x0)|σ(p), · · · , |σ(xn)|σ(p)}

 1
[σ(K):K′0]

=

= Hσ(K)(σ(P ))
1

[σ(K):K′0] = H(σ(P )). �

For an element x ∈ K of a global field K we define HK(x) := HK([1 :
x]) =

∏
p∈VK max{1, |x|p} and H(x) := H([1 : x]).

Theorem 3.1.6 Let K0 be either Q or Fp(x), let B,D > 0 be real
numbers and n an integer. Then the set

P (K0, B,D) := {P ∈ Pn(K0) :H(P ) ≤ B, [K0(P ) : K0] ≤ D,
K0(P )|K0 is separable}

is finite.

Proof. Let P ∈ Pn(K0) with K0(P )|K0 separable and choose homogeneous
coordinates P = [x0 : · · · : xn] such that xj = 1 for an index j. For every
place p ∈ VK0(P ) we have

max{|x0|p, · · · , |xj−1|p, 1, |xj+1|p, · · · |xn|p} ≥ max{1, |xi|p},

for 0 ≤ i ≤ n. By multiplying over all places p ∈ VK0(P ) and taking the
[K0(P ) : K0]-th root we obtain

H(P ) ≥ H(xi),

for all 0 ≤ i ≤ n. It suffices to prove that the set

C(K0, B, d) := {y ∈ K0 : H(y) ≤ B, [K0(y) : K0] = d, y is separable over K0},

is finite for 1 ≤ d ≤ D. Indeed, if H(P ) ≤ B then its coordinates x0, · · · , xn
lie in C(K0, B, d) for an appropriate d, if we choose homogeneous coordi-
nates for P as above. If the sets C(K0, B, d) are finite for 1 ≤ d ≤ D there
are only finitely many possibilities to choose homogeneous coordinates for a
point P ∈ Pn(K0) such that one coordinate is 1 and the other coordinates
are in the above set.

Let y ∈ K0 be separable over K0 and

my(T ) =
∏

1≤i≤d
(T − yi) =

d∑
r=0

(−1)rsr(y)T d−r,

the minimal polynomial of y over K0, where y = y1 and sr(y) is the r-th
symmetric polynomial in y1, · · · , yd. We set K = K0(y). Let p be a place of
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K, then we obtain

|sr(y)|p =

∣∣∣∣∣∣
∑

1≤i1<···<ir≤d
yi1 · · · yir

∣∣∣∣∣∣
p

≤ c(p, r, d) max
1≤i1<···<ir≤d

{|yi1 · · · yir |p} ≤

≤ c(p, r, d) max
1≤i≤d

{|yi|rp},

where c(p, r, d) =
(
d
r

)
≤ 2d for p archimedean and c(p, r, d) = 1 for p non-

archimedean. We get

max{|s0(y)|p, · · · , |sd(y)|p} ≤ c(p, d)
d∏
i=1

max{1, |yi|p}d,

where c(p, d) = 2d for p archimedean and c(p, d) = 1 for p non-archimedean.
As a consequence of Example 1.3.5 there are at most [K : K0] = d archimedean
places of K. Multiplying over all places p ∈ VK we obtain

HK([s0(y) : · · · : sd(y)]) ≤ 2d
2

d∏
i=1

HK(yi)
d.

Lemma 3.1.5 implies HK(y1) = HK(y2) = · · · = HK(yd). Hence we obtain

H([s0(y) : · · · : sd(y)]) ≤ 2dH(y)d
2
.

If y satisfies H(y) ≤ B then the Point Py = [s0(y) : · · · : sd(y)] ∈ Pd(K0)

satisfies H(Py) ≤ 2dBd2 . By the conclusion in Example 3.1.2 there are only

finitely many Points P ∈ Pd(K0) satisfying H(P ) ≤ 2dBd2 and therefore
only finitely many separable y ∈ K0 satisfying H(y) ≤ B. �

Corollary 3.1.7 Let K be a global field, B ≥ 0 a real number and n
a natural number. The set {P ∈ Pn(K) : HK(P ) ≤ B} is finite.

Proof. Follows directly of Theorem 3.1.6. �

3.2.Adelic norms and height functions on the adele

ring

We are interested in height functions on the AK-module AnK for a global
field K and their properties which are stated in Theorem 3.2.7 (cf. [3]). For
the concepts of adelic norms and primitive elements we followed [9] and [3].

For the rest of the thesis we identify AnK with
∏′

p∈VK (Kn
p : Onp ) as topo-

logical AK-modules by the map

ϕ : ((xp,i)p∈VK )1≤i≤n 7→ ((xp,i)1≤i≤n)p∈VK .

Indeed this is a well-defined isomorphism of AK-modules, whereby the op-
eration of AK onto

∏′
p∈VK (Kn

p : Onp ) is given by

(λp) · (xp,i) = (λpxp,i).
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Since the topology on AnK is the product topology, a basis for the open
subsets of AnK are all sets of the form

∏
1≤i≤n,p∈VK Oi,p, where Oi,p ⊆ Kp

is open in Kp and for every 1 ≤ i ≤ n we have Oi,p = Op for almost all

p ∈ VK . A basis for the open subsets of
∏′

p∈VK (Kn
p : Onp ) are all sets of the

form
∏

p∈VK Up where Up ⊆ Kn
p is open and Up = Onp for almost all p ∈ VK .

The morphism φ and its inverse φ−1 map a basis of the open sets of one
space onto a basis of the open sets of the other space. Hence the map ϕ is
a homeomorphism.

The above identification induces a map

ϕ̃ : GLn(AK) −→
∏
p∈VK

′ (GLn(Kp) : GLn(Op)) ,

whereby GLn(R) stands for the group of R-module automorphisms of Rn

for an commutative ring R. The map is given by ϕ̃ : g 7→ (g|Kn
p

)p∈VK and is
an isomorphism of local-compact groups.

Remark The identification ϕ form above could be formulated more gener-
ally:
Let {b1, · · · , bn} be an AK-basis of AnK . We define another identification

ϕ′ : AnK →
∏′

p∈VK (Kn
p : Onp ) by mapping each element x ∈ AnK onto

ϕ(λ1, · · · , λn), where x =
∑n

i=1 λibi with λi ∈ AK for 1 ≤ i ≤ n. Let
g ∈ GLn(AK) be the matrix with b1, · · · , bn as columns, then the map ϕ′ is
given by

ϕ′ = (x 7→ g−1 · x) ◦ ϕ.
The purpose of these identifications is to provide a simple way to formulate

the definition of a height function H on AnK . Lemma 3.2.6 implies that every
height function on AnK for whose definition the identification ϕ is used can
also be defined using the identification ϕ′ and vice versa. Therefore the
choice of this special identification means no loss of generality.

Definition 3.2.1 Let K be a global field. A family F = {‖ ‖p}p∈VK of
norms ‖ ‖p : Kn

p → R is called adelic norm on the AK-module AnK iff
for almost all places p holds ‖(x1, · · · , xn)‖p = max{|x1|p, · · · , |xn|p} for all
(x1, · · · , xn) ∈ Kn

p . We call the map

HF : AnK −→ R : (xp,i) 7→
∏
p∈VK

‖(xp,1, · · · , xp,n)‖p,

the height function on AnK associated to F .

Since xp,1, · · · , xp,n ∈ Op for almost all p ∈ VK and ‖(xp,1, · · · , xp,n)‖p =
max{|xp,1|p, · · · , |xp,n|p} for almost all p ∈ VK the product∏

p∈VK

‖(xp,1, · · · , xp,n)‖p

is finite. Hence the height function associated to an adelic norm is a well-
defined map.
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Remark (i) The concept of an adelic norm can be found e. g. in [9].
The above definition is however inspired by the definition of height
functions in [3] and is hence different from the definition given in [9]
which is the following:

An adelic norm is a family F = {‖ ‖p}p∈VK of norms ‖ ‖p : Kn
p →

R such that there exists a K-lattice Λ in Kn such that for almost all
p ∈ VK and all x ∈ Kn

p holds

‖x‖p = inf
λ∈K∗p ,λx∈Λp

|λ|−1
p ,

where Λp is the closure of Λ in Kn
p .

We want to show that these two definitions are equivalent:
First Assume the now given definition. We can write Λ =

⊕
1≤i≤n OK ·

bi, where {b1, · · · , bn} is an OK-basis of Λ with bi = (bi,j) ∈ Kn. Let
S be the finite set of places p ∈ VK such that VK \ S is the set of all
non-archimedean places p with |bi,j |p = 1 for 1 ≤ i, j ≤ n and the norm
‖ ‖p is given as above. Let Kn

p \ {0} 3 x = (xi) =
∑

1≤i≤n αibi. One
has the following equivalences

λx ∈ Λp ⇔ λαi ∈ Op for all i⇔ |λαi|p ≤ 1 for all i⇔
⇔ |αi|p ≤ |λ|−1

p for all i,

where λ ∈ K∗p . Hence we obtain for the norm of x

‖x‖p = inf
λ∈K∗p ,λx∈Λp

|λ|−1
p = max

1≤i≤n
{|αi|p} =

= max
1≤i≤n

{|
∑

1≤j≤n
αjbi,j |p} = max

1≤i≤n
{|xi|p}.

Now assume our definition of an adelic norm. Let S ⊆ VK be the
finite set such that VK \S is the set of all places p of K with ‖(xi)‖p =
max1≤i≤n |xi|p for all (xi) ∈ Kn

p . Set Λ =
⊕

1≤i≤n OK · bi where the

bi = (bi,j) form a K-basis of Kn with |bi,j |p = 1 for all 1 ≤ i, j ≤ n and
p /∈ S.

(ii) Let F = {‖ ‖p}p∈VK be an adelic norm on AnK for a global field K. The
requirement ‖(x1, · · · , xn)‖p = max{|x1|p, · · · , |xn|p} for (xi) ∈ Kn

p and
for almost all places p of K is very restrictive. Since this requirement
is not necessary for a well-defined height function, as we will see in
Example 3.2.9, one can ask oneself if it is possible to weaken it in a
way such that one would obtain more general height functions which
enjoy the same properties as stated in Theorem 3.2.7. We will state a
possible generalisation as closure for this thesis and proof in Theorem
3.2.10 that Theorem 3.2.7 holds also in this more general setting.

Examples 3.2.2 (i) Let K be a global field and F = {‖ ‖p}p∈VK be
the adelic norm defined by ‖(x1, · · · , xn)‖p = max{|x1|p, · · · , |xn|p}
for (x1, · · · , xn) ∈ Kn

p and all p ∈ VK . The restriction of the height
function HF onto Kn induces the multiplicative height HK on the
projective space Pn−1(K). Therefore we denote the height function
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HF associated to this special adelic norm F also by HK and call it
standard height function on AnK .

(ii) Let K be a global field and ‖ ‖p be the norm on Kn
p defined by

‖(x1, · · · , xn)‖p :=

{(∑n
i=1 |xi|2p

) 1
2 p|∞,

max{|x1|p, · · · , |xn|p} p -∞.

The heightHF for F = {‖ ‖p}p∈VK is called l2 Northcott-Weil height
(cf. [9, p. 94]).

Definition 3.2.3 Let K be a global field. An element x ∈ AnK is called
primitive iff there exists an AK-automorphism g ∈ GLn(AK) of AnK with
g · x ∈ Kn \ {0}.

Proposition 3.2.4 Let K be a global field and x = ((xp,i)1≤i≤n)p∈VK ∈
AnK . Then the following are equivalent:

(i) The element x ∈ AnK is primitive.
(ii) The set {x} can be extended to an AK-basis of AnK .

(iii) For almost all places p ∈ VK there is a component xp,i of (xp,1, · · · , xp,n)
with xp,i ∈ O∗p.

Proof. (i)⇒ (ii):
Extend b1 = g · x to a K-basis {b1, · · · , bn} of Kn. By Lemma 2.2.2 the set
{b1, · · · , bn} is an AK-basis of AnK . Therefore the set {x, g−1 ·b2, · · · , g−1 ·bn}
is an AK-basis of AnK .

(ii)⇒ (iii):
Assume the converse. Choose for every finite place p an element λp ∈ K∗p ,
such that the vector λp · (xp,1, · · · , xp,n) ∈ Onp and there is at least one
index i with λpxp,i ∈ O∗p. By the assumption we have λp /∈ Op for infinitely
many finite places p. We set λp = 1 for every infinite place p and set
x̃ = (λpxp,i) which is obviously an element of AnK . By (ii) we can extend
{x} to an AK-basis {x, b2, · · · bn} of AnK with bj = (bj,p) where bj,p ∈ Kn

p

for 2 ≤ j ≤ n and all places p. Thus there exist α1, · · · , αn ∈ AK with
x̃ = α1x+ α2b2 + · · ·+ αnbn. Denote αi = (αi,p) for every i. We obtain for
every place p ∈ VK

λp(xp,i)1≤i≤n = (x̃p,i)1≤i≤n =

= α1,p(xp,i)1≤i≤n + α2,pb2,p + · · ·+ αn,pbn,p.

This implies α1,p = λp and α2,p = · · · = αn,p = 0 for all places p, which is a
contradiction since (λp) /∈ AK .

(iii)⇒ (i):
Let S be the finite set of places p for which (xp,i)1≤i≤n has no component
lying in O∗p. For every place p ∈ S we extend (xp,i)1≤i≤n to a Kp-basis
{(xp,i)1≤i≤n, b2,p, · · · , bn,p} of Kn

p . For every place p /∈ S let ip denote an
index such that xp,ip ∈ O∗p. We choose b2,p, · · · , bn,p such that {b2,p, · · · bn,p}
is the standard basis of Kn

p without eip .
Let gp ∈ GLn(Kp) be the matrix with the vectors (xp,i)1≤i≤n, b2,p, · · · , bn,p as
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columns for every place p. For p /∈ S we have gp ∈ GLn(Op) since the columns
of gp are obvious an Op-basis of Onp . If we set g = (gp)p∈VK ∈ GLn(AK) then
we obtain

g−1 · x = e1 ∈ Kn. �

Remark In the article [3] the height is only defined for primitive elements.
The previous Proposition implies that the height of an element x ∈ AnK is
non-zero iff the element is primitive.

In order to shorten the proof of Godement’s Theorem and make it clearer,
we need the following two Lemmas.

Lemma 3.2.5 Let K be a global field, p an arbitrary place, ‖x‖p =
max{|x1|p, · · · |xn|p} for x ∈ Kn

p and let g = (gi,j) ∈ GLn(Kp). We

define the maps ‖ ‖s,p, ‖ ‖i,p : GLn(Kp)→ R+ by

‖g‖s,p := sup
‖x‖p=1

‖g · x‖p = sup
‖x‖p≤1

‖g · x‖p = sup
x 6=0

‖g · x‖p
‖x‖p

,

‖g‖i,p := inf
‖x‖p=1

‖g · x‖p = inf
x 6=0

‖g · x‖p
‖x‖p

.

Then the following holds:

(i) ‖g‖s,p = max
1≤i≤n

{
n∑
j=1

|gi,j |p} <∞ for all g ∈ GLn(Kp) and p|∞.

(ii) ‖g‖s,p = max
1≤i,j≤n

{|gi,j |p} <∞ for all g ∈ GLn(Kp) and p -∞.

(iii) ‖g‖s,p =
1

‖g−1‖i,p
for all g ∈ GLn(Kp).

(iv) For a finite place p and g ∈ GLn(Op) one has

‖g‖s,p = ‖g‖i,p = 1.

(v) The maps ‖ ‖s,p, ‖ ‖i,p are continuous.

Proof. (i) ‖g‖s,p = sup
‖x‖p≤1;1≤i≤n

∣∣∣∣∣∣
∑

1≤j≤n
gi,jxj

∣∣∣∣∣∣
p

≤

≤ sup
1≤i≤n;|xi|p≤1

∑
1≤j≤n

|gi,j |p|xj |p = max
1≤i≤n

{
n∑
j=1

|gi,j |p}.

Let k be an index such that
∑n

j=1 |gk,j |p is maximal within the set

{
∑n

j=1 |gk,j |p : 1 ≤ i ≤ n}. If we set yj = sign(gk,j) we obtain∣∣∣∣∣∣
∑

1≤j≤n
gi,jyj

∣∣∣∣∣∣
p

=
∑

1≤j≤n
|gk,j |p.

Together with the previous inequality this implies (i).
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(ii) We have

‖g‖s,p = sup
1≤i,j≤n,|xj |p≤1

{|gi,j |p|xj |p} ≤ max
1≤i,j≤n

{|gi,j |p}.

Let l, k be indices such that |gl,k|p is maximal within the set {|gi,j |p :
1 ≤ i, j ≤ n}. If we set xi = 1 for i = k and otherwise xi = 0 we get
‖g‖s,p = |gl,k|p = max1≤i,j≤n{|gi,j |p} which proves the claim.

(iii) ‖g‖s,p = sup
x 6=0

‖g · x‖p
‖x‖p

= sup
x 6=0

‖x‖p
‖g−1 · x‖p

=

= sup
‖x‖p=1

1

‖g−1 · x‖p
=

1

inf‖x‖p=1 ‖g−1 · x‖p
=

1

‖g−1‖i,p
.

(iv) As a consequence of (ii) we have ‖g‖s,p, ‖g−1‖s,p ≤ 1. Assume we have
‖g‖s,p < 1. Then (iii) implies ‖g−1‖i,p > 1, but ‖g−1‖i,p ≤ ‖g−1‖s,p ≤
1. Hence we obtain ‖g‖s,p = ‖g−1‖s,p = 1 and (iii) implies ‖g‖i,p = 1.

(v) With the explicit formulas for ‖ ‖s,p given in (i) and (ii) the map ‖ ‖s,p
is obviously continuous for arbitrary places p. Since the map g 7→ g−1

is continuous on GLn(Kp) and the map x 7→ 1
x is continuous on R+

the map

‖ ‖i,p = (x 7→ 1

x
) ◦ ‖ ‖s,p ◦ (g 7→ g−1),

is also continuous. �

Lemma 3.2.6 Let K be a global field, F an adelic norm on AnK and
g = (gp) ∈ GLn(AK). Set ‖x‖′p = ‖gp · x‖p for x ∈ Kn

p . Then the
family F ′ = {‖ ‖′p}p∈VK is also an adelic norm.

Proof. Let S ⊆ VK be the finite set consisting of all infinite places, all places
p, such that ‖(x1, · · · , xn)‖p 6= max{|x1|p, · · · , |xn|p} for all (x1, · · · , xn) ∈
Kn

p and all places p such that gp /∈ GLn(Op). By the previous Lemma we
obtain for p /∈ S

‖x‖′p = ‖gpx‖p = ‖x‖p = max{|x1|p, · · · , |xn|p},

for all x = (x1, · · · , xn) ∈ Kn
p . Since S is finite F ′ is an adelic norm. �

Theorem 3.2.7 Let K be a global field and F = {‖ ‖p}p∈VK an adelic
norm on the module AnK over the adele ring AK of K.

(i) Let F ′ = {‖ ‖′p}p∈VK be another adelic norm on AnK . Then there
exist real numbers c1, c2 > 0 with

c1HF ′(x) ≤ HF (x) ≤ c2HF ′(x),

for all x ∈ AnK .

(ii) HF (t · x) = |t|AK ·HF (x) for all t ∈ A∗K and x ∈ AnK .
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(iii) Let (xk)k∈N = ((xk,p)p∈VK )k∈N be a sequence of primitive elements
xk ∈ AnK with xk,p ∈ Kn

p and limk→∞ xk = 0, then

lim
k→∞

HF (xk) = 0.

(iv) Let (xk)k∈N be a sequence of primitive elements xk ∈ AnK with
limk→∞HF (xk) = 0. Then there exists a sequence (λk) of principal
ideles λk ∈ K∗ such that

lim
k→∞

(λk · xk) = 0.

(v) For given g ∈ GLn(AK), c > 0 the set

Zg,c := {x ∈ Kn : HF (g · x) < c}/K∗,

is finite.

(vi) Let M ⊆ GLn(AK) be a compact subset. Then there exist real
numbers c1, c2 > 0 with

c1HF (x) ≤ HF (m · x) ≤ c2HF (x),

for all m ∈M and x ∈ AnK .

Proof. (i) Let S be the finite set of all places p with ‖ ‖p 6= ‖ ‖′p. By
Theorem 1.2.9 there exist for every p ∈ S real numbers cp,1, cp,2 > 0
with

cp,1‖y‖′p ≤ ‖y‖p ≤ cp,2‖y‖′p,
for y ∈ Kn

p . By multiplying over all places we obtain∏
p∈S

cp,1 ·HF ′(x) ≤ HF (x) ≤
∏
p∈S

cp,2 ·HF ′(x),

for all x ∈ AnK .

(ii) We have for all t ∈ A∗K and x ∈ AnK

HF (t · x) =
∏
p∈VK

‖tp · (xp,1, · · · , xp,n)‖p =

=
∏
p∈VK

|tp|p‖(xp,1, · · · , xp,n)‖p =

=
∏
p∈VK

|tp|p
∏
p∈VK

‖(xp,1, · · · , xp,n)‖p = |t|AKHF (x).

Since the product in the second last line is finite the splitting up into
two products which is done in the second last step is allowed.

(iii) Let S be the finite set of all places p with p|∞ or ‖x‖p 6= max{|xi|p, · · · , |xn|p}
for x ∈ Kn

p . Since the sequence (xk) converges to 0 there exists an in-
teger N0 with

xk,p ∈ O
n
p ,
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for k ≥ N0 and p /∈ S. Let ε > 0 be arbitrary. Then there exists an
integer Nε such that we have

‖xk,p‖p < ε,

for every place p ∈ S and k ≥ Nε. Hence we obtain for k ≥ max{N0, Nε}

HF (xk) =
∏
p∈S
‖xk,p‖p

∏
p∈VK\S

‖xk,p‖p <
∏
p∈S

ε
∏

p∈VK\S

1 = ε|S|,

which proves the claim since S 6= {}.

(iv) Let S ⊆ VK be a finite set of places containing all non-archimedean
places and let ε > 0 be an arbitrary real number. As a consequence of
(i) we have

lim
k→∞

HF (xk) = 0 ⇔ lim
k→∞

HK(xk) = 0,

where HK is the standard height function. Hence we set without loss of
generality HF = HK . Since the set VK of all places of K is countable
we can choose an enumeration VK = {p1, p2, · · · } of all places. We
denote by (xk) = (xk,pi) with xk,pi ∈ Kn

pi the given sequence, set
dk;i := ‖xk,pi‖pi and hk := HK(xk) =

∏
i≥1 dk;i. Since xk is primitive

the height HK(xk) = hk 6= 0. We have to show the existence of an
integer N such that |xk,pi |pi < ε for pi ∈ S and xk,pi ∈ Opi for pi /∈ S
and for all k ≥ N .

Let c(K) be the constant only depending on K as in Lemma 2.3.3.
For every integer l we set Nl as the minimal integer such that

1

hk2l
2 > c(K),

holds for all k ≥ Nl. Since limk→∞ hk = 0 the integer Nl exists for
every l. We set

δk;i =


1 k < N0,

d−1
k;i N0 ≤ k < Ni,

d−1
k;i2
−l Ni ≤ Nl ≤ k < Nl+1.

By the definition of Nl we have
∏
i≥1 δk;i > c(K) for all k > N0. Hence

Lemma 2.3.3 implies that there exists an element λk ∈ K∗ with

|λk|pi ≤ δk;i,

for all places pi and k ≥ N0. This implies ‖λk(xk;pi)‖pi ≤ 1 for all
k ≥ N0 which is equivalent to (xk;pi) ∈ Onpi for every archimedean place
pi. For every i ≥ 1 and k ≥ max{Ni, Nl} we obtain

‖λk(xk;pi)‖pi ≤ 2−l.

Now set L = max
{

0,
⌈
− log(ε)+1

log(2)

⌉}
and N = maxpi∈S{N0, NL, Ni}.

Then for all k ≥ N holds

|xk,pi |pi ≤ 2−L < ε,

for pi ∈ S and
|xk,pi |pi ∈ Op,



41

for pi /∈ S, which proves the claim.

(v) By Lemma 3.2.6 there is an adelic norm F ′ on AnK such that HF (g ·
x) = HF ′(x) for all x ∈ AnK . Therefore without loss of generality let
g = idAnK . By (i) there are real numbers c1, c2 > 0 with

c1HK(x) ≤ HF (x) ≤ c2HK(x),

for all x ∈ AnK , where HK is the standard height function on AnK . The
restriction of HK onto Kn induces on the projective space Pn−1(K)
the multiplicative height function HK . By Corollary 3.1.7 the set

{x ∈ Kn : HF (x) < c}/K∗ ⊆ {x ∈ Kn : HK(x) <
c

c2
}/K∗ =

= {x ∈ Pn−1(K) : HK(x) ≤ c

c2
},

is finite.
(vi) With (i) already proven it suffices to show the claim for HF = HK .

We define two maps Hs, Hi : GLn(AK)→ R via

Hs((gp)) :=
∏
p∈VK

‖gp‖s,p,

Hi((gp)) :=
∏
p∈VK

‖gp‖i,p.

By Lemma 3.2.5 the above products are both finite. We show that Hs

and Hi are continuous:
Let 1 > ε > 0 be arbitrary, (gp) ∈ GLn(AK) and S be the set of places
p such that gp /∈ Op. Since the maps ‖ ‖s,p, ‖ ‖i,p are for all places
continuous we can choose for all p ∈ S neighbourhoods Up of gp with

(1− ε)
1
|S| ‖gp‖s,p ≤ ‖hp‖s,p ≤ (1 + ε)

1
|S| ‖gp‖s,p,

(1− ε)
1
|S| ‖gp‖i,p ≤ ‖hp‖i,p ≤ (1 + ε)

1
|S| ‖gp‖i,p,

for all p ∈ S and hp ∈ Up. For p /∈ S and hp ∈ GLn(Op) Lemma 3.2.5
states ‖hp‖i,p = ‖hp‖s,p = ‖gp‖i,p = ‖gp‖s,p = 1. Hence we have for an
element (hp) of the neighbourhood U =

∏
p∈S Up ×

∏
p∈VK\S GLn(Op)

of (gp):

(1− ε)Hs((gp)) ≤ Hs((hp)) ≤ (1 + ε)Hs((gp)),

(1− ε)Hi((gp)) ≤ Hi((hp)) ≤ (1 + ε)Hi((gp)).

This implies that Hs, Hi are continuous in (gp) and since (gp) was ar-
bitrary, both maps are continuous on GLn(AK).

Hence there are constants c1, c2 > 0 such that

Hs(M), Hi(M) ⊆ (c1, c2).

Together with the inequality

Hi((gp))HK(x) ≤ HK((gp) · x) ≤ Hs((gp))HK(x),

this proves the the claim. �
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Remark Let Hn be the set of all height functions h on AnK for a global field
K. Indeed Hn is a set, since it is a subset of

∏
p∈VK Hn,p where Hn,p is the

set of all norms on Kn
p which is a subset of the set of all functions mapping

Kn
p into R. We can define a topology on Hn by taking all sets of the form

Bh,ε := {h′ ∈ Hn : εh(x) ≤ h′(x) ≤ 1

ε
h(x) for all x ∈ AnK},

with h ∈ Hn and 0 < ε < 1 as a basis for the open sets. Lemma 3.2.6 implies
that

ϕ : GLn(AK)×Hn −→ Hn, (g, h) 7→ h ◦ g−1

is a left group action. The proof of (vi) in the above Theorem shows basically
that ϕ(−, h) is continuous for all h ∈ Hn. As a consequence the group action
ϕ is continuous, as one proves easily.

The definition of an adelic norm F on AnK for a global field K is very
restrictive. As mentioned in the remark after Definition 3.2.1 we want to
consider a possible generalisation of height functions on AnK .
This generalisation is on the one hand motivated by the question why we
have chosen this special definition for an adelic norm F = {‖ ‖p} - is the
property that almost all norms ‖ ‖p are given by ‖(xi)‖p = maxi{|xi|p}
only a necessary condition for the proof of Theorem 3.2.7 or can we weaken
it? On the other hand we want to know if there exist other functions than
the height functions on AnK which enjoy the same properties. Hence the
motivation for this generalisation is more of philosophical nature than of
mathematical utility. The wanted general height functions should enjoy the
following properties:

Firstly H(x) 6= 0 for every general height function H on AnK iff x ∈ AnK is
primitive. Secondly H ◦ (x 7→ g · x) should be a general height function for
every g ∈ GLn(AK). Thirdly every general height function H should satisfy
Theorem 3.2.7. These three properties are satisfied by the general height
functions defined in the following

Definition 3.2.8 Let K be a global field and let HK be the standard height
on K. A general adelic norm F on the AK-module AnK is a family
{‖ ‖p}p∈VK of norms ‖ ‖p on Kn

p such that there exist two real numbers
c1, c2 > 0 with

c1HK((xp)) ≤ HF ((xp)) ≤ c2HK((xp)),

for all (xp) ∈ AnK and such that HF ((xp)) :=
∏

p∈VK ‖xp‖p is well-defined

for all (xp) ∈ AnK . The map HF is called the general height function
associated to F .

The definition of the general adelic norm implies that HF (x) 6= 0 iff
x ∈ AnK is primitive since this is true for the standard height function HK .
Let g ∈ GLn(AK) be arbitrary. Then there exists an adelic norm F ′ such
that HF ′(x) = HK(g · x) for all x ∈ AnK . By Theorem 3.2.7 there exist
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constants c′1, c
′
2 > 0 such that

c′1HK(x) ≤ HF ′(x) = HK(g · x) ≤ c′2HK(x),

holds for all x ∈ AnK . Therefore we obtain

c1c
′
1HK(x) ≤ c1HK(g · x) ≤ HF (g · x) ≤ c2HK(g · x) ≤ c2c

′
2HK(x),

for all x ∈ AnK . Finally general height functions enjoy Theorem 3.2.7 which
is stated in Theorem 3.2.10.

Example 3.2.9 We want to describe in this example a general adelic norm,
which is not an adelic norm.

Let ‖ ‖ be the norm on R2 given by

‖(x, y)‖ :=
√
x2 − xy + y2, (x, y) ∈ R2.

For every prime number p we obtain a norm ‖ ‖′p on Q2
p via

‖(x, y)‖′p := ‖(|x|p, |y|p)‖,

for all (x, y) ∈ Q2
p. It is easy to see that ‖(x, y)‖′p ≤ max{|x|p, |y|p} for all

(x, y) ∈ Q2
p. We want to find a maximal real number cp > 0 which satisfies

cp max{|x|p, |y|p} ≤ ‖(x, y)‖′p,

for all (x, y) ∈ Q2
p. Let (x, y) ∈ Q2

p with max{|x|p, |y|p} = 1. Without loss
of generalisation let |x|p = 1 and therefore y ∈ Zp. Then the constant cp
satisfies

cp ≤ ‖(x, y)‖′p =
√

1− |y|p + |y|2p.

Since |y|p = 1
pn with suitable n ∈ N and the function f : R → R, x 7→√

1− x+ x2 is convex with a minima at 1
2 and satisfies f(1

2 +x) = f(1
2 −x)

we obtain for the constant cp =
√

1− 1
p + 1

p2
=

√
p2−p+1
p .

Let {qn, n ∈ N} be an infinite set of prime numbers satisfying 2n ≤ qn <
qn+1 for all n ∈ N. We set F = {‖ ‖p}p∈VQ the family of norms ‖ ‖p : Q2

p → R
with

‖(x, y)‖p =

{
‖(x, y)‖′p, p ∈ {qn, n ∈ N},
max{|x|p, |y|p} otherwise.

We set c =
∏
n∈N cqn where cqn is defined as above. Then c exists and is

greater than zero:
The product

∏
n∈N cqn converges iff the sum

∑
n∈N log(cqn) converges. We

obtain for the infinite sum even absolute convergence:∑
n∈N
| log(cqn)| =

∑
n∈N

∣∣∣∣12 log

(
q2
n − qn + 1

q2
n

)∣∣∣∣ =
∑
n∈N

1

2
log

(
1 +

qn − 1

q2
n − qn + 1

)
≤

≤
∑
n∈N

1

2
log

(
1 +

1

qn

)
≤
∑
n∈N

1

2
log

(
1 +

1

2n

)
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The power series expansion of the logarithm implies log(1 + 1
2n ) < 1

2n for
n ∈ N. This yields∑

n∈N
| log(cqn)| ≤

∑
n∈N

1

2
log

(
1 +

1

2n

)
≤
∑
n∈N

1

2n+1
=

1

2
.

Hence the product c =
∏
n∈N cqn exists for every rearrangement. If we set

δp = cp for p ∈ {qn, n ∈ N} and δp = 1 otherwise we obtain∏
p∈VQ

‖(x, y)‖p ≤
∏
p∈VQ

max{|x|p, |y|p} = HQ((x, y)),

and ∏
p∈VQ

‖(x, y)‖p ≥
∏
p∈VQ

δp max{|x|p, |y|p} ≥

≥
∏
p∈VQ

δp
∏
p∈VQ

max{|x|p, |y|p} = c ·HQ((x, y)),

for all (x, y) ∈ A2
Q. Hence F is an general adelic norm.

Theorem 3.2.10 Let K be a global field, F a general adelic norm and
HF the general height function corresponding to F . Then Theorem
3.2.7 is also true for the general height function HF .

Proof. The first property is a part of the definition of a general adelic norm.
The proof of the second property is analogue to the proof for height

functions expect one may split the product in the second last step since the
product converges for every rearrangement of the factors.

Using the first property it suffices to prove the properties (iii)− (vi) only
for the case of HF = HK , which is true by Theorem 3.2.7. �
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A.Haar measure

We need for the understanding of this thesis some techniques form mea-
sure theory. See for more details and the proofs [7] and [11].

Definition A.1 Let X be a set. A σ-algebra Σ over X is a subset of the
power set 2X of X with the following properties:

(i) X ∈ Σ,
(ii) X \A ∈ Σ for all A ∈ Σ,

(iii)
⋃
n∈NAn ∈ Σ for all families {An ∈ Σ, n ∈ N}.

The pair (X,Σ) is called measurable space. If X is a topological space the
Borel algebra B of X is the smallest σ-algebra containing all open subsets
of X. An element B ∈ B is called Borel subset of X.

Definition A.2 A measure µ on a measurable space (X,Σ) is a map µ :
Σ→ [0,∞) such that

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An),

for all families {An} of pairwise disjoint sets in Σ. For a topological space
X with Borel algebra B a measure µ on (X,B) is called Borel measure on
X.

Definition A.3 Let X be a locally compact Hausdorff space. A Radon
measure on X is a Borel measure on X such that

(i) µ(K) is finite for all compact K ⊆ X.
(ii) µ(B) = inf{µ(O) : B ⊆ O,O ⊆ X open} for all B ∈ B.

(iii) µ(O) = sup{µ(K) : K ⊆ O,K ⊆ X compact} for all O ⊆ X open.

Definition A.4 Let G be a locally compact Hausdorff group. A left-Haar
measure µ on G is a nonzero Radon measure on G such that

µ(g ·B) = µ(B),

for all g ∈ G and all Borel sets B of G.

Theorem A.5 Let G be a locally compact Hausdorff group. Then
there exists a left-Haar measure µ on G, which is up to a positive
multiplicative constant unique.

Proof. See [7, p. 12]. �
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Proposition A.6 Let µ be a left-Haar measure on a locally compact
Hausdorff group G. Then µ(G) is finite iff G is compact

Proof. See [7, p. 10]. �

Proposition A.7 Let µ be a left-Haar measure on a locally compact
Hausdorff group G, Γ ⊂ G be a discrete subgroup such that G/Γ is
compact. We can scale the left-Haar measure µ′ on G/Γ such that for
all Borel subsets B of G with µ(B) > µ′(G/Γ) there exist two distinct
elements x, y ∈ B with xy−1 ∈ Γ.

Proof. See [11, p. 36]. �
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Abstract

This thesis deals with height functions on free modules over the adele ring
AK over a global field K and is aimed at proofing six fundamental properties
of these height functions. It starts with an introduction into valuation the-
ory to give the needed background knowledge. By using the direct restricted
product of locally compact groups we can define the adele ring AK and the
idele group IK over a global field K and prove their properties pertinent to
this thesis. The first example for height functions given in this thesis are
height functions on the projective space over global fields. Finally we deal
with height functions on free modules over the adele ring over a global field
K. The six properties of these height functions, as mentioned above, can be
summarised as following:
All height functions are equivalent, where the equivalence is defined analo-
gously as for norms on vector spaces. The image of a null sequence under a
height function is a null sequence. Conversely if the image of a sequence of
primitive elements under a height function is a null sequence, we can multi-
ply every element of the sequence by a non zero scalar from K and obtain
thereby a null sequence. For every real number B and every height func-
tion h there exist up to multiplication by scalars from K only finitely many
points P with components in K and h(P ) ≤ B. The last two properties deal
with the behaviour of height functions when the argument is multiplied by
an scalar from A∗K or when a change of AK-basis is applied.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Höhenfunktionen auf freien Moduln
über dem Adelring AK über einem globalen Körper K mit dem Ziel, sechs
grundlegende Eigenschaften von diesen zu beweisen. Die Arbeit beginnt mit
einer Einführung in die Bewertungstheorie, um das nötigte Hintergrundwis-
sen zu vermitteln. Mithilfe des direkten eingeschränkten Produktes von
lokal kompakten Gruppen wird der Adelring AK und die Idelgruppe IK
über einem globalen Körper K definiert und deren für diese Arbeit relevan-
ten grundlegenden Eigenschaften präsentiert und bewiesen. Mit den Höhen-
funktionen auf dem projektiven Raum über einem globalen Körper werden
wir erste Beispiele von Höhenfunktionen sehen. Abschließend werden wir
Höhenfunktionen auf freien Moduln über dem Adelring über einem globalen
Körper K betrachten. Die sechs Eigenschaften von diesen Höhenfunktionen
die wir beweisen werden lassen sich wie folgt zusammenfassen:
Alle Höhenfunktionen sind äquivalent zueinander, wobei Äquivalenz hier
analog wie bei Normen auf Vektorräumen definiert ist. Das Bild einer Null-
folge unter einer Höhenfunktion ist wieder eine Nullfolge. Ist umgekehrt das
Bild einer Folge von primitiven Elementen unter einer Höhenfunktion eine
Nullfolge, so kann man jedes Folgenglied mit einem Skalar aus K ungleich
Null multiplizieren sodass man eine Nullfolge erhält. Für jede reelle Zahl
B und jeder Höhenfunktion h gibt es bis auf Multiplikation mit Skalaren
aus K nur endlich viele Punkte P mit Komponenten aus K und h(P ) ≤ B.
Die letzten beiden Eigenschaften behandeln das Verhalten von Höhenfunk-
tionen unter Multiplikation der Argumente mit Skalaren aus A∗K und unter
AK-Basiswechsel.
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