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Introduction

The intention of this thesis is to prove a generalization of a statement of
Roger Godement presented in his article [3, p. 202] in the Séminaire Nicolas
Bourbaki but given without proof. This statement originally lists six prop-
erties of height functions on the Ag-module Af) where Ag is the adele ring
over Q and n a natural number. It can be generalized for height functions on
the Ag-module A’ where K is a global field, i. e. an algebraic number field
or an algebraic field extension of the rational function field in one variable
with finite field of constants, and Ak is the adele ring over K. Therefore the
aim of this work is to introduce the needed concepts and prove this general
result in an exact and succinct way. The thesis is written in a way that basic
knowledge in algebra and algebraic number theory should be sufficient for
an understanding.

One motivation for looking at height functions is diophantine geometry
where they are a fundamental tool. Their intention is to measure the , size“
of points, in our case, elements of A% for a global field K. In order to get a
useful notion of a size, on the one hand, height functions should reflect the
arithmetic and geometric nature of points. To illustrate the first we want
to consider the height function Hgp on Ag which is given on the rational
numbers ¢ for a,b € Z and b # 0 by

Ho(3) = max{lal, ]},

where |a| = sign(a) - a is the normal absolute value on Q. Then the rational

number % has height H@(%) = 2. However the number %, which is ,,more

complicated“ than %, has height 2000. On the other hand, a function mea-
suring sizes is motivated by the following finiteness property: For every real
number B > 0 there are up to multiplication by a scalar only finitely many
points with size smaller than B. For height functions on A%, the above
property is fulfilled for points in K" C A'.

Another application for height functions is reduction theory for reductive
algebraic groups over QQ or, more generally, over a global field. In [3], given
the base field Q, Godement uses height functions to construct fundamental
domains and to deal with reduction theory in the adelic setting.

The first chapter gives an introduction into the theory of valuations be-
ginning with the basic definitions and properties of archimedean- and non-
archimedean absolute values and waluations. Since we need to apply the
theory of valuations in later chapters solely in the case of global fields we
focus in the given examples on valuations and absolute values over these
fields. An important result in this section is Theorem [I.1.5] - often called
Ostrowski’s Theorem - which describes up to equivalence all absolute values
on Q or Fy(x) respectively.

In the next section we introduce the notion of a complete field with respect
to an absolute value. Theorem states that every complete field with
respect to an archimedean absolute value is isomorphic to either R or C.
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With this result at hand the rest of this section deals with the structure of
complete fields with respect to a non-archimedean absolute value. However,
Theorem [1.2.9] which states that all norms on a vector space over a complete
field are equivalent, is general.

The third section is about extensions of absolute values on finite field
extensions. These extensions are fully characterized by Theorem In
quite a few results we require that the considered field extension is separable.
In some situations we can avoid this requirement by using Theorem [1.3.3
An essential concept introduced in this section are places of global fields,
which are equivalence classes of absolute values. With the notion of normed
absolute values | |, corresponding to a place p of a global field K we obtain

Theorem [1.3.12] which states

H ‘x|P = 17
p

where x € K and the product is over all places p of K.

The last section is about local fields. These are finite field extensions of
the completions of global fields with respect to a non-archimedean absolute
value.

In the second chapter we introduce the adele ring Ax and the idele group
Ix over a global field K. Both of them are defined using the restricted direct
product of locally compact topological groups respectively rings which is
introduced in the first section. For a global field K we can embed K in
a natural way into its adele ring Ag. In Theorem we show that the
image ¢(K) of K under this embedding ¢ is a discrete and cocompact subring
of Ak, i.e., the quotient space Ag /i(K) is compact.

Finally we work towards Theorem the so-called strong approxima-
tion of the adele ring over a global field. It states that every global field K
embeds ,,almost* dense into its adele ring Ag.

The final chapter concerns height functions. In the first section we deal
with height functions on the projective space P"*(K) for a global field K and
an integer n. To be more precise we only introduce the absolute multiplica-
tive / logarithmic height function on P"(K). With methods from algebraic
geometry one can obtain more height functions (cf. [I], [4]), but this will not
be treated in this thesis. The main result in this section is Theorem [3.1.6]
It states that for all real numbers B, D > 0 there exist only finitely many
points P € P*(K) with [L : K] < D and L|K separable for the smallest field
L with P € P"(L), such that the height of P is limited by B.

In order to define height functions on A% for a global field K in a simple
way we introduce in the second section the notion of adelic norms on A’.
These are families of norms | ||, on the Ky-vector space K for all places p
of K, where K, is the completion of K with respect to p, such that || ||, is
for almost all places the supremum norm on K,. We obtain for every adelic
norm F a height function hr : A% — R corresponding to F. Our main
result, Theorem [3.2.7] states six properties of such height functions which

are roughly speaking the following;:



The first property states that all height functions on A% are equivalent,
where equivalence for height functions is defined analogously as for norms on
vector spaces. Secondly, multiplying the argument of a height function by
an scalar t € A% is equal to multiplying the value of the height function by
the norm |t|4, of t. The third states that the image of a null sequence under
a height function is a null sequence. Conversely, by the fourth property, if
the image of a sequence of primitive elements under a height function is
a null sequence, we can multiply every element of the sequence by a non
zero scalar and obtain by this a null sequence. The fifth property is the
analogue of Theorem [3.1.6] which is described above, in the adelic setting.
The last property states that for every height function A and every compact
subset M C GL,(A%) of the group of Ag-automorphism of A’ the maps
ho(x— g-x) for g € M are bounded from above and below by multiples
of h with some constants, depending only on M and h.

Since the requirement for a family of norms || ||, on the Kj-vector space
Ky to be an adelic norm on A% is very restrictive we want to consider a
generalisation of adelic norms such that their corresponding height functions
also enjoy Theorem [3.2.7 We give at the end of this thesis a possible
definition for a general adelic norm on A’ and their corresponding general
height functions. Finally we proof Theorem[3.2.10]which is the generalisation
of Theorem [2.2.5] to general height functions.

Last but not least I want to express my gratitude to my advisor Professor
Joachim Schwermer for this interesting topic, his guidance and support dur-
ing my studies and also to my family and friends without whom my studies
would not be possible in that way.



1.Valuation theory

This chapter gives a brief introduction to the theory of valuations. It
covers the basic definitions and provides all Theorems which are important
for the further understanding of this thesis. The structure and notation
are closely following [6]. Further [5] was taken as basis for valuations on
function fields. One can also find in [2] a good introduction into the theory
of valuations.

1.1. Absolute values and valuations

Definition 1.1.1 An absolute value | | on a field K is a map
||: K — R,
such that for all x,y € K holds:
(i) |z| >0 and |z| =0 iff x =0,

(i) |zy| = |||y,
(iii) |z +y| < |z[+ |y.

Let | | be an absolute value on a field K. We can define a metric d :
K x K —Ron K via

d(z,y) =|z—vy|, foralzyeK.

Hence we obtain on every field K with an absolute value | | a topology
induced by the absolute value. The field K together with this topology is
automatically a topological field, as one can prove easily. On every field K
there exists a trivial absolute value | | given by

1 x #0,
|z = ~
0 z =0,

for x € K. The trivial absolute value induces the discrete topology on K.
We assume for the rest of the thesis that every absolute value is non-trivial.

Definition 1.1.2 Two absolute values | |1 and | |2 on a field K are called
equivalent if they define the same topology on K.

Theorem 1.1.3 Let | |1 and | |2 be two absolute values on a field K.
Then they are equivalent iff there exists a real number s > 0 such that

|zl = [23

forallxz e K.

Proof. See [0, p. 122]. O
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Examples 1.1.4 (i) For the fields @ € R C C we have the ordinary
absolute value | | given by

|00 1= V2T,

for x € C, where T is the complex conjugate of x.

(ii) Let p € Z be a prime number. Then we define the absolute value | |,
on Q via

‘x|P = p_a’

where x = p*¢ with a,a,b € Z, b # 0 and a,b coprime to p. As a
consequence of the previous Theorem the absolute values | [p, | |4, | |
are pairwise not equivalent for all primes p, ¢ with p # .

(iii) Let Fy be the finite field of cardinality ¢. Denote by F,(z) := Quot(F,[x])
the rational function field over F,. Since Fy[z] is a principal ideal do-
main we can write every element r € Fy(z) as

r = Hp"p(T)’
p

where the product is over all irreducible polynomials p € Fy[x], v,(r) €
Z and vp(r) = 0 for almost all p. For every irreducible polynomial
p € Fy(z) there is an absolute value | |, given by

Irlp =g~ deg(p)-vp(r)

Y

for r € Fy(x).
Further we obtain another absolute value on Fy(x) denoted by | |oo:

= qdes(f)—deg(9)

f
|*|OO ’
g

for f,g € Fylz] and g # 0. By using Theorem one can easily
show that the above described absolute values on F,(z) are pairwise
not equivalent.

The following Theorem is fundamental in the theory of valuations.

Theorem 1.1.5 (Ostrowski) (i) Every absolute value on Q is equiv-
alent to either | | or | |, for a prime number p.

(11) Every absolute value on the rational function field F,(x) over the finite
field Fy is equivalent to either | | or | |, for an irreducible polynomial

p € Fylz].

Proof. See [0, p. 124] and [5, p. 105]. O

Definition 1.1.6 An absolute value | | on a field K is called non-archimedean
if it satisfies |z + y| < max{|z|, |y|} for all x,y € K. Otherwise the absolute
value is called archimedean.

By the above Theorem we see that up to equivalence the only archimedean
absolute value on Q is | |« and every non-archimedean is equivalent to | |,
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for an appropriate prime number p. Further every absolute value on the
function field Fy(x) over the finite field F, is non-archimedean.

Definition 1.1.7 A valuation v on a field K is a map v : K — R U {oo}
with the following properties:

(i) v(z) = oo iff z =0,
(i7) v(zy) = v(z) +v(y) for all z,y € K
(117) v(x 4+ y) > min{v(x),v(y)} for all x,y € K.

For a valuation v on a field K and a real number ¢ > 1 we obtain a non-
archimedean absolute value | |, corresponding to v by setting |z|, = ¢~*(*)
for every x € K. Vice-versa we get for every non-archimedean absolute value
| | a valuation v via v(z) = —log(|z|) for all x € K. If we set ¢ = e this
defines a 1 — 1 correspondence between the set of non-archimedean absolute
values on K and the set of valuations on K.

Let ¢ > 1 be fixed. We call two valuations v, w equivalent if the corre-
sponding absolute values |z|, = ¢~*®) and |z|, = ¢%®) are equivalent.
The definition of equivalence of valuations is independent of the choice of
the real number g¢:

Let v, w be equivalent valuations with respect to ¢ and ¢’ > 1 another real
number. By Theorem there exists a real number s > 0 such that
|z|, = |z|2,. Denote by |z, = ¢~*®) and |z|,, = ¢~®®) the absolute values
corresponding to v, w with respect to ¢/. Then we obtain for every z € K:

log(q) log(q)

_ _ log(q') s
Iz} = ¢ ) = g0 = || 5D = g, =
log(q’)
—w(x)s 1—sw(x) /s
= q log(q) — q = ’x‘w .

Hence the absolute values | |/,| |/, are equivalent iff the absolute values

| |v, | | are equivalent.

As a consequence of Theorem the valuations v and w are equivalent
iff there exists a real number s > 0 with v = s - w.

Theorem 1.1.8 Let v be a valuation on the field K. Then the ring
op={ze€K:v(x)>0}={reK:|z|, <1},

is an integral domain with quotient field K. Its unit group is given by
o,={ze€K:v(r)=0}={reK:|x|, =1},

and the ideal
pp={zeK:v(zx)>0}={zreK:|z|, <1},

1s the only mazimal ideal in o,.

Proof. Since o, is a subring of K it is an integral domain. The quotient field
of o, is by definition a subfield of K. On the other hand for every x € K
we have either v(z) > 0 which is equivalent to = € o, or we have v(z) < 0
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which is equivalent to % € 0,. In the second case x is an element of the
quotient field of o, which implies K C Quot(o,). The second claim is an
obvious consequence of the definition of o,.

The ideal p, is a maximal ideal of o, since it is an ideal and o, \ p, = oJ,.
Assume there is a maximal ideal m # p,, of 0,. Then there exists an element
T € 0, \ m with v(z) > 0. Let m’ be the ideal generated by m and x. Since
m is maximal we must have m’ = o,. Hence there exist elements y € m and
A € o, with y + Az € o} which is equivalent to v(y + Az) = 0. However we
have

v(y + Az) > min{v(y),v(Az)} > min{v(y),v(A) + v(z)} > 0. O

The ring o, is called valuation ring and the field o,/p, is its residue
field. 1t is obvious to see that the ring o, the group o}, and the prime ideal
p, are invariant under equivalence of valuations.

Definition 1.1.9 A wvaluation v on a field K is called discrete, if v(K*) =
sZ for an appropriate real number s > 0. A discrete valuation is called
normed if s = 1.

Let v be a discrete valuation on a field K and 7 an element of the valuation
ring o, with v(m) = s. Then every element © € K* can be written in the
form = un™ for a unit u € o}, and m € Z:

Since v is discrete we have v(z) = sm with m € Z. This implies v(z7~") = 0
which is equivalent to z7m™™ € o},

The element 7 is a prime element of o, and every prime element of o, is by
the above consideration of the form ur for u € o},.

Examples 1.1.10 (i) Let p be a prime number. The valuation v, on Q
given by v,(p"§) = n for a,b,n € Z and a, b coprime to p is normed.

The absolute value | |, can be written as
’[B‘p — p—Up(I)’

for all x € Q. Since every valuation corresponds to a non-archimedean
absolute value, Theorem implies that the valuations v, for prime
numbers p are up to equivalence all valuations on Q.

(ii) Let Fq(x) be the rational function field over the finite field F,. For
every irreducible polynomial p € F,[z] there is a valuation v, given by

vp(r) = vp(r)
for every r € Fy(z) where r =[], p»(") is the unique factorisation of
r into irreducible polynomials p € F,[z]. We can express the absolute
value | |, through
rlp =g~ deg(p)vp(r)

for all r € Fy(z).

We define deg(r) := deg(f)—deg(g) for r = g € Fy(z) with f,g € F,[z]

and g # 0. Let vs be the valuation on Fy(x) given by

Voo (1) = — deg(r)
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for all r € Fy(x). By Theorem the valuations v, for irreducible
polynomials p € Fy[z] and v are up to equivalence all valuations on
Fy().

Theorem 1.1.11 Let o, be the valuation ring of a discrete valuation
v on a field K. Then o, is a principal ideal domain.

Proof. Let I # (0) be an ideal of o, and 7 € o, be a prime element. Every
element of o, \ {0} can be written as un™ for an integer n and a unit u € oJ,.
Let m be the minimal integer such that (7) C I. For every element
x = un™ € I holds n > m as a consequence of the minimality of m. This
implies I = (7). O

1.2.Complete fields

Definition 1.2.1 Let | | be an absolute value on a field K. A sequence
(zn)nen in K is called a Cauchy-sequence with respect to | | if there exists
for every € > 0 an integer N, such that |z, — x| < € for allm,n > N. A
sequence () has a limit x € K iff there exists for all e > 0 an integer N,
such that |x, — x| < € for alln > N. If a sequence has a limit, the limit is
obviously unique.

The field K is called complete if every Cauchy-sequence in K converges to
a limit in K.

Let K be a field with an absolute value | |. Then there exists a complete
field K with respect to an absolute value | | together with an embedding
t: K — K of fields, such that |¢(z)|" = |z| for all z € K and the embedding

of K into K is dense. The field K is up to isomorphism unique and is called
the completion of K with respect to | |:

We construct the completion K by ,,adding“ the needed limits to K. Let
R be the ring of all Cauchy sequences (z,) in K with respect to | |. The
addition and multiplication on R are defined component-wise. Denote by m
the maximal ideal of all null sequences in R

m={(y,) € R: li_)m yn = 0}.

We set K := R/m. The field K embeds into K via ¢ :  — (z,z,,--- ) +m.
For a Cauchy sequence (z,) in K the sequence (|z,|) is a Cauchy sequence
in R. Since R is complete with respect to | | the limit lim,, o |2, | exists.
For (y,) € m we obtain

lim |z, < lm (|z, —yn| + |yn]) = Im |z, —yn| <

< lim (|zn| + yn]) = Hm |z,
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Hence |(z5) +m|" := limp o0 [2n] is a well-defined extension of the absolute
value onto K. Since K is constructed in such a way that (xn) + m is the
limit of the Cauchy sequence (¢(z,)) we obtain for any extension | |” of | |
onto K:

Tim ([za] = |(@a) + m[") = 0.
This implies that the extensions | |",| |’
of | | onto K is unique.

are equal and hence the extension

For every (z,)4+m € K and € > 0 there exists an integer N with [¢(z ) —
(zn) +m|’ < e. Hence K is a dense subfield of K.

Let (ay) be a Cauchy sequence in K. Since K embeds dense into K there
exists for every n € N an element z,, € K such that |(z,,+m)—a,|' < L. The
sequence (zy) is then a Cauchy sequence in K and it follows that (x,) +m
is the limit of (a,). This proves the completeness of K.

The uniqueness of the completion K up to isomorphism is straight for-
ward.

We denote in the following the completion of the absolute value | | onto
K also with | |. Let | | be an absolute value on K which is equivalent to
| |. An element x € K is limit of a sequence (z,) with respect to | | iff it
is limit with respect to | |'. Furthermore a sequence () in K is a Cauchy
sequence with respect to | | iff it it is a Cauchy sequence with respect to | |'.
Hence the completion K of K is independent under equivalence of absolute
values.

Theorem 1.2.2 (Ostrowski) Let K be a complete field with respect to
an archimedean absolute value | |. Then there exists an isomorphism
of fields o from K to R or C, such that

|z = lo(2)[%

for a real number s > 0.

Proof. See [6l, p. 130]. O

The above Theorem states that the fields R and C are up to isomorphisms
the only fields which are complete with respect to an archimedean absolute
value. Therefore the rest of the section deals mainly with fields which are
complete with respect to a non-archimedean absolute value.

Let v be a valuation on a field K and let |z|, = ¢~*(*) be an absolute
value corresponding to v which is automatically non-archimedean. Let K
be the completion of K with respect to v, i.e., the completion of K with
respect to the absolute value | |,. Since the extension of | |, onto K is also
non-archimedean there exists a unique extension of v onto K which is also
be denoted by v. It is given by

o(w) = lim v(r)
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for # = (z,) + m € K with z,, € K. This limit exists in R U {oc} since

l niv 1 1 T—00 nl|v *1 v
lim v(x,) = lim — 0g(|Znly) _  log(limp oo [Tnly) _ —log(|z])
n—00 n—00 10g(q) log(q) lOg(q)

If v is a discrete valuation on K then the extension onto K is also a discrete
valuation.

Theorem 1.2.3 Let v be valuation on K and K the completion of K
with respect to v. Denote by 0,,p, and 0., P, the valuation rings and
their maximal ideal in K or K respectively. Then

@v/ﬁv = Ov/pv

are isomorphic as topological rings. For a discrete valuation v one
obtains further

ou/py' Zou/py', m =1

Proof. Since we can embed the valuation ring o, into ¢, we want to identify
o, with its embedding. Let ¢ : 0, — &,/p, be the projection onto ,/p,.
The kernel of ¢ is obviously p,. Let x = (x,) +m be an arbitrary element of
oy with z, € K for all n € N. Since v(z) = limy, o0 v(25,) > 0 there exists
an integer Ny such that x,, € o, for all m > Ny. Further there exists an
integer N1 > Np such that v(x — z,,) > 0 for m > N; which is equivalent
to o, = ¢ mod p, for m > N;. Hence ¢ is a surjection and induces an
isomorphism of rings

o' oy /Py = 0u/Pu-

Since both spaces are equipped with the discrete topology ¢’ is also a home-
omorphism.

Now let v be discrete, without loss of generality v is also normed. Denote
by ¢ : 0, — ,/pl" the projection onto 0,/p. Analogous to above there
exists an integer N such that z; € o, and v(z — xr) > m for all k > N,
i.e., x =xp mod pI* for k > N. Hence ¢ is a surjection with kernel p”* and
induces an isomorphism of rings

90/ : Ov/p:;n — @v/ﬁ:;n

Since the open neighbourhoods of 0 are of the form p¥/p™ or p¥ /p™ respec-
tively for k < m the map ¢’ is also a homeomorphism. O

Theorem 1.2.4 Let K be a field with o discrete valuation v, R C o,
be a set of representatives of 0, /p, with 0 € R and m a prime element
of 0,. Then there exists for every x € K* a unique representation as

a CONVETYIng Series
r=7" Z a;mt
i>0
with m € Z, a; € R and ag # 0.
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Proof. Since 7 is also a prime element of the valuation ring &, of K and v is
a discrete valuation on K every element x € K can be written as z = 7"u
for m € Z and u € o). As a consequence of &, /p, = 0,/p, there is a unique
representative ap € R with ag # 0 and z = 7™ (ag + 7r1) with r; € 0,.
Assume that we have already x = 7" (ag + a1 + -+ + a7 + 7r"+1rn+1)
with unique ag, -+ ,a, € R and r,y1 € 0,. Since we can write 7,41 =
Gn41 + Trpyo uniquely with an+1 € R and rp42 € 0, we obtain

n+1 + 7Tn+2

r=7m"(ap+am+ -+ ap7m" + apm Tnt2).

Hence we can find a unique series 7y > a, 7" with a,, € R, ap # 0. Since
z—7™ vazo a;m € pN*! for every integer N the infinite series is equal z. [

Examples 1.2.5 (i) Let p be a prime number. We denote by Q, the
unique completion of Q with respect to the absolute value | |,. By the
above Theorem every element x € Q, can be written as

r = pm Z aipia

i>0
forme€ Z, a; € {0,1,--- ,p— 1} and ag # 0. On the other hand there
exists for every m € Z and every sequence (a;) with a; € {0,1,--- ,p—

1} and ag # 0 an element z € Q, with = p™ )" ,.a;p’, namely
the limit of the sequence (p™ > 1 a;p")nen. The valuation ring of Qy,
denoted as Z,, contains all elements which can written as a formal
power series in p and coefficients in {0,1,--- ,p — 1}. It is easy to see
that Z, is the closure of Z in Q,,.

(ii) Let Fy(x) be the rational function field over the finite field F,. Every
element  in the completion of Fy(x) with respect to | |« can be written

as
1
r=axm Z @i
i>0
for m € Z , a; € F; and a9 # 0. Analogous to above every formal
Laurent series in % with coefficients in F, represents an element of the
completion of Fy(z) with respect to | |s. Therefore the completion of
Fq(x) with respect to | |s is isomorphic to the field of formal Laurent
series Fy((2)) in 2 with coefficients in F,.
Definition 1.2.6 Let {R,}nen be a family of topological rings and ¢y, :
Ry+1 — R, a homomorphism of topological rings for n € N. The ring

T&an = {(zn) € HRn L on(Tnt1) = Tnt,
n n
with component-wise addition and multiplication together with the subset

topology of 1], Ry is called the inverse limit of the R,.

Theorem 1.2.7 Let K be a complete field with respect to a discrete
valuation v, o, be its valuation ring and p, the mazimal ideal of o,.
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Then the map ¢ : 0, — gnn oy /Pl given by
p:x— (x mod p))nen,

is an isomorphism of topological rings.

Proof. The map ¢ is injective since its kernel is (), . Py = (0). Let R C o,
be a set of representatives of o, /p, with 0 € R and 7 a prime element in o,,.
As a consequence of Theorem every element = € o,/p} for arbitrary
n > 1 is of the form

n
T = g a;7" + Py
i=1

Hence every element s € lim oy /Py can be'written as s = (30| aim)nen
for a sequence a; € R. The series ) .-, a;m" converges in o, and its image
under ¢ is s.

Any neighbourhood of 0 in 1£1n o, /p3 is of the form

LT Gk /o) TT (ou/p) | Nlimoy /p7,

n<m n>m n
with k, < n and m € N. If we set £ = max,<, k, the pre-image of the
above set under ¢ is p¥. Since every neighbourhood of 0 € o, is of the form
py' the map ¢ is a homeomorphism. O

Definition 1.2.8 Let K be a field with an absolute value | | and V a finite
dimensional vector space over K. A norm on V is a map || || : V — R,
such that

(1) |z|| >0 for allz € V and ||z|| =0 iff v =0,

(i) || Az|| = |A|||z]| for allz € V and all X € K,
(i) ||z +yll < llzll + llyll for all z,y € V.
Two norms || |1 and || ||2 on V are called equivalent if there exist real
numbers c1,co > 0, such that

allzlly < [lzfl2 < eaflzll,
forallz e V.

Theorem 1.2.9 Let K be a field which is complete with respect to an
absolute value | | on K and V' a finite dimensional vector space over
K. Then all norms on V are equivalent.

Proof. We prove this by induction on the dimension dimg (V) = n. For
n = 1 the statement is trivial. Let {b1,---,b,} be a K-basis of V' and set
| > 1<icn Aibilloc = max{|A1],--- ,[An|}. Then it suffices to show that every
norm || || on V is equivalent to || [|oc. By setting co = >, .., ||bi|| we obtain
foralz e V o

2]l < eal[]|oo-
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We set
Vi= P Kb
1<j<n,j#i
There exists a real number § > 0 such that ||z + b;|| > 6 for 1 <i < n and
all z € V;. Assume the converse:

Then there exists an index 7 and a sequence (yy,) in V; such that lim,, .« ||yn+
bi|| = 0. This implies

lyn + bi = Ym + )| = [|[Yn — Yml| — 0, for n,m — oo.

Hence the sequence (y;) is a Cauchy sequence with respect to || |||, . Since

by induction every norm on V; is equivalent (y,) is also a Cauchy sequence
witch respect to || ||o|,.. Therefore the components of (y,) with respect

to the basis {b1,--- ,by} are Cauchy sequences in K. The component-wise
limit y € V; of (yn) is also the limit of (y,) with respect to || |, . Hence

we obtain lim, o0 [|yn + bil| = ||y + bil| # 0 since y + b; # 0.

Let # = > ;e Aibi € V'\ {0} be arbitrary and j an index such that
IAj| = [|z||cc. Then we have

Il =1 YD Nibi + byl > 6.
1<i<n,i#j
This inequality implies ||z| > 6|zl co- O

1.3.Global fields and extensions of valuations

We observe in this section the behaviour of absolute values and valuations
under field extensions. This allows us to develop the concept of valuations
on global fields, which play an important role in number theory.

Theorem 1.3.1 Let K be a complete field with respect to an absolute
value | | and L|K an algebraic field extension. Then there is a unique
extension of the absolute value || onto L given by

lz| = {/INL ik ()]

for all x € L where n = [L : K]. The field L is then complete with
respect to the extension | |.

Proof. See [6l, p. 137] O

Definition 1.3.2 A global field K is a finite extension of Q or Fy(x) for a
prime number p € Z. A place p of a global field K is an equivalence class of
absolute values on K. We call p infinite if the restriction of a representative
| | € p onto Q or Fp(x) respectively is equivalent to the absolute value | |~
and otherwise finite and use the notations ploo or p t co respectively. For
char(K) = 0 an infinite place p is called real or complex if the completion
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of K associated to p is R or C respectively. The set of all places of K is
denoted by Vi .

Remark Let K be a finite field extension of the rational function field Fy(x)
with F finite. Then we have to keep in mind that K|F,(z) is in general not
a separable extension - in [2] separability of K|F,(z) is a required property
for K to be a global field. For many of the Theorems concerning valuations
on field extensions separability is a needed requirement. Since we are mainly
interested on valuations on K and not their behaviour on the field extension
K|F,(z) the following Theorem is very helpful.

Theorem 1.3.3 Let K be a finite extension of the rational function
field Fp(x). Then there exist two elements s,t € K with

K =TFy(s,t),

such that K|Fy(s) is a finite separable field extension and Fy(s)|Fp(x)
is purely inseparable. The element s is called separating element
for K.

Proof. See [8, p. 144]. O

Let K be a global field and p a place of K. We denote by K, the comple-
tion of K with respect to the place p. If p is a class of archimedean absolute
values we call p archimedean and otherwise non-archimedean. If K is
an algebraic number field the infinite places are just the archimedean places.
For a non-archimedean place p we set v, as the unique normed valuation
corresponding to p, write o, for the valuation ring of p in K, and x, for its
residue field and use the notation p|p if char(x,) = p. If p is archimedean we
set oy := K, and vy(x) = —log(|z|p), where | |, is the unique representative
of p with | [pi0 = | |eo-

Let K be a global field, p a place of K and | |, a representative of p. We
denote the unique extension of | |, onto K, also by | |,. By Theorem [1.3.]]
there is a unique extension of | |, onto K which is denoted by | 5.

Let L|K be an algebraic field extension and 7,7 two K-linear embeddings
from L into K,. Then 7 and 7’ are called conjugated over K, if there is
a Kp-linear automorphism o € Autg, (K,) of K, such that 7 = o o 7'.

Theorem 1.3.4 Let L|K be an algebraic field extension of global
fields, p a place of K and | |, a representative of p.
1) Every extension of onto L is given by = | |g o7, where
(1) vtes p P
7: L — K, is a K-linear homomorphism of fields.
1) Two extensions | [zoT and | [zo7 are equal, iff T and ' are conjugated
p p
over K.

Proof. See [6l, p. 170]. O
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Examples 1.3.5 (i) The absolute values on Q are by Theorem equiv-

(i)

(iii)

alent to | [, or | [s. We denote the corresponding places by p or oo
respectively and obtain

Vo = {plp is prime number} U {oo}.

Let K be an algebraic number field and ok its ring of integers. Every
finite place p of K corresponds to a prime ideal of o and vice versa:
For every prime ideal p of o we obtain a normed valuation v, given
by vp(x) = vp(x), where

@)= 11 »"“,

p prime ideal

is the unique factorisation of (z) into prime ideals. Let on the other
hand p be a finite place of K and p|p. The Ideal m = ox N {z €
K|vg(z) > 0} is non empty, since p € m. Further m is obviously a
prime ideal. The valuation v, as defined above coincides with the
normed valuation vy.

Let p1,---, pr be the embeddings of K into R and 01,07, - 05,05
be the embeddings of K into C. By Theorem [1.3.4] all archimedean
absolute values of K are up to equivalence of the form |z|,, = |pi(2)|co
or |z],; = [0j(7)]ec. Further all the | [, and | |,; are pairwise non
equivalent. Hence the set of places of K is given by

Vi = {p|p is prime ideal of ox} U{p1, - ,pr,01, -+ ,05}.

For every element € K the factorisation of (x) into prime ideals is
finite. Therefore holds vy(x) = 0 for almost all finite places p of K.
Let Fp(x) be the rational function field over the finite field F,. By
Theorem every absolute value on F,(z) is equivalent to either
| |4 for a irreducible polynomial ¢ € Fp[z] or | |o. The corresponding
places are denoted by g or co respectively and we obtain

Vi, (z) = {alq € Fplz] irreducible} U {oo}.

Let K be a separable extension of Fj(z). Analogous to (i7) the finite
places of K correspond to the prime ideals of the integral closure ox

of Fplz] in K. The infinite places of K correspond by Theorem m

to the embeddings o1, -+ , 0, of K into F,,((2)) which are pairwise not

conjugated over F,((1)).

Lemma 1.3.6 Set K =Q or K =F,(x) and oxg =7 or og = F)x]
respectively. Then we obtain for the intersection

pfoo

Proof. One has obviously (., 0p 2 ox. Now let € [, 0p. For a place

p’ we can choose for a prime element 7y in oy a prime number p € Z if

K:

Q or a irreducible polynomial ¢ € Fy[z] if K = Fp,(z). In both cases
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we obtain

1 op=y,
Up(”p/)Z{ P=b

0 otherwise.

We can write x = 7[‘;7 Zi>0 aﬂré, for m € Z and a; € R, where R C og
is a set of representatives of oy /p’ with 0 € R. If the sum is not finite
there exists a place p such that vy(a;) # 0 for infinitely many . This is a
contradiction to x € o, since the sum does not converge in o,. Therefore
T € oK. O

Definition 1.3.7 Let K be a global field, L|K an algebraic field extension
and p, B be places of K or L respectively. We say B lies over p, denoted
by Blp, if the restriction | |y, is equivalent to | |, for representatives | |y
and | |, of P and p respectively.

The expression B|p is well-defined since the restriction of two representa-
tives | |y, | “/13 of B onto K are equivalent.

Let L|K be an algebraic field extension of a global field K and let 3, p be
places of L or K respectively with B|p. Denote by mp, mg the set of null
sequences in L or K. We can write every element of Ly or Ky as (x,) + mgyp
or () + my for a Cauchy-sequence (x,) in L or K respectively. Since the
restriction of the absolute value | | onto K is equivalent to | |, a Cauchy-
sequence (z,) in K is also a Cauchy-sequence in L and hence mg C my,.
Therefore the map

t: Ky — Ly, (x,) +mg — (z,) +mp,

is well-defined. It is also an homomorphism of fields since the addition and
multiplication in both K} and Ly are component-wise. Finally ¢ preserves
the absolute value:

() + mi)lp = () + el = Tim (|Gen)lp) =
= Tim (|(zn)lp) = |(zn) + micly

Therefore we can embed K, into Ly such that the restriction of | [p onto
K, is equivalent to | |p.

The following Theorem is very useful to lift properties from K onto Ly

if Pp.

Theorem 1.3.8 Let L|K be a separable field extension of global fields
and p a place of K. Then there exists an isomorphism of topological
K,-algebras
K, @k L— [] Ly,
PBlp
if we choose the topology on K, @ L as in the following Remark.
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Proof. See [2, p. 57]. O

Remark Let ¢ : K — K, ®k L be an isomorphism of Ky-vector spaces
and the topology on K’ be the product topology. We equip K, ®k L with
the initial topology with respect to ¢, i.e., a subset O C K, ®k L is open
iff O is the image of an open subset of K. Since every change of basis in
K is a homeomorphism the topology on K}, ®k L does not depend on the
choice of the isomorphism ¢. The addition and multiplication on K, @k L
are continuous as one proves easily.

Proposition 1.3.9 Let L|K be a separable field extension of global
fields and p a place of K. Then the following holds:

(i) [L: K] =3 qp[ L Kp).
(it) Nrjre(2) = [l Nrog)x, (2)-

Proof. See [6l, p. 172]. O

Definition 1.3.10 Let K be a global field, L|K an algebraic field extension
and p, B be places of K or L respectively with B|p. We define the ramifi-
cation index

e(Bp) == (vgp (L") = vp(K7)) p not archimedean,
= 1 p archimedean,

and the inertial degree

Ky @ K not archimedean,
Fplp) = { 8l ot a
[Ly : Ky]  p archimedean,

where ky is the residue field of Ky if p is non-archimedean. Further we use
the abbreviation e, = e(p|p) for a finite place p and e, = e(p|oo) for an
infinite place p and the analogue for f,. We define

N(p) = {pfp plp,

efr p is archimedean,

and the normed absolute value | |, corresponding to p as |z|, := DN(p) )
forallxz € K.

Let K be a global field and p a place of K. We denote for the rest of the
thesis with | |, the normed absolute value corresponding to the place p.

Proposition 1.3.11 Let K be a global field, L|K an algebraic exten-
sion and p, P be places of K or L respectively with Plp.

(i) N(F) = N(p)/ FP).

(ii) vp(x) = e(Blp)vp(x) for all x € K.
(iii) D oo €(Bl0) f(Blp) = [L : K] where the sum is over all places P
of L with B|p.
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() |zl = [Ny, (@)lp for all x € L if L|K is separable.

Proof. We will prove the Theorem only for separable field extensions L|K.
For the inseparable case see [8, p. 71, 74].

(i) For an archimedean place p holds

N(P) = efB — f(Bloo) — oF(Blp)flploc) — sﬁ(p)f(‘mp).

One proves the claim analogously for a non-archimedean place p.

(ii) For infinite places p, P this follows directly form the definition of vy, vg.
Since vp and vy are for finite places p, ‘B the unique normed valuations
corresponding to p or P respectively this is a direct consequence from
the definition of e(P|p).

(iii) Proposition @ states [L : K] = Y q,[Lp : Kp]. The claim is
therefore obviously true for an archimedean place p. Let p be a non-
archimedean place. Denote by o, and oy the valuation rings corre-
sponding to p or R respectively and by p and B their only prime ideals
- it is clear out of the context if the letters p, P stand for the places or
for the prime ideals. By Theorem op and og are principal ideal
domains. Since vy, vy are the normed valuations corresponding to B, p
the ramification index e(|p) of the places B, p satisfies

pog = PR,

Since the initial degree f(B|p) is defined the same way for the places
B, p and for the prime ideals B, p we obtain

[Luw = K] = e(Blp) f(Blp),

which implies the claim.
(iv) By Theorem we know for z € L

[Lqu:Kp]v"(NL%KP (z)),

w(zr) =
is an extension of vy onto L which satisfies w|x = vp. The property (i)
implies v () = e(Plp)w(x). By (i) and the proof of (iii) we obtain
|z = m(m)—vm(fﬁ) - m(p)—f(‘B|P)€(‘J3IP)W($) =
—vp (N T
= 91(p) ) = N (@)l 0

The following Theorem justifies the definition of a normed absolute value
corresponding to a place.

Theorem 1.3.12 (Product Formula) Let K be a global field and x €
K*. Then |z|, =1 for almost all places p and

I lals=1.

peVK
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Proof. Set Ko = Q if char(K) = 0 and Ky = Fy(s) if char(K) = p, where
s € K is a separating element for K, and o to be the ring Z or F,[s] respec-
tively. Theorem [1.3.3|states the existence of such a separating element s for
char(K) = p and that K|F,(s) is separable.

By Example every global field K has only finitely many infinite places.
Every finite place P corresponds to a prime ideal 3 of the integral closure
ok of o in K, which is a Dedekind domain. The normed valuations vy cor-
responding to a finite places P are of the form vyp(z) = vp(x) where z € K
and (z) = [[ B> (@) is the unique factorisation of the fractional ideal (x)
into prime ideals 3 in og. This implies now the first claim.

As a consequence of Proposition and Proposition [1.3.11] we obtain
IT tzle = TT ITleke = TT TTWVkgimo,@ls = TT 1Nkix(@)ls-
PeVi PEVK, Blp PEVK, Blp PeVK,

Therefore it suffices to prove the product formula for K = Kj.
Let K = Q. For every element x € Q* there is a unique prime factorisation
z = sign(z) [[, p"?, where v, € Z and almost all equal to zero. Hence we

obtain
H |zlp = |2 - H pr = H pr- H p " =1

peVp p prime p prime p prime

Now let K = F,(s). For r € Fy(s) let r = u]], ¢"*®) be the unique factori-
sation of r into irreducible polynomials ¢ € Fp[s] and u € F,. The degree of
r is given by deg(r) = >_, v4(r) deg(q) where the sum is over all irreducible
polynomials q. Then we obtain

H |’I“|¥J = |7f‘|OO . H |T|q — pdeg(r) . H p— deg(q)vq(r) _

pEV[pp(s) q rreducible q irreductble
— qu irreducible VQ(T) deg(Q) . H p_ deg(Q)”q (T‘) — 1 D

q irreducible

1.4.Local fields

Definition 1.4.1 A local field is a complete field K with respect to a
discrete valuation v such that the residue field k, = oy /py is finite.

Proposition 1.4.2 A local field K is locally compact and its valuation
Tng 0, 15 compact.

Proof. As a consequence of Theorem [1.2.4] 0,/p} is finite for every n > 1
and therefore compact. Theorem [1.2.7|states o, = l&ln 0, /Pl as topological
rings. The topological space [],,~; ©v/py is by Tychonoff’s Theorem com-
pact. Since lim o, /p™ is a closed subset of [,>1 ©0/p% the valuation ring o,
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is also compact. For any = € K the set x 4+ o, is a compact neighbourhood
which proves that K is locally compact. O

Theorem 1.4.3 Every finite field extensions of Q, and F,((t)) is a
local field and every local field is isomorphic to a finite field extension
of either Qp or F,((t)), where Fy((t)) is the field of formal Laurent
series in t over the finite field Fy,.

Proof. See [6l, p. 141]. O

Since every local field K is obviously Hausdorff, Theorem states that
there exists a Haar measure p on (K, +). Let o, be the residue field of K
and p, the maximal ideal of 0,. We normalize p for the rest of the thesis
by setting p(o,) = 1. With this normalization we obtain a unique measure
won K given by

p(@ +py) =q ",
where x € K, n € Z and q = |o,/p,|. For an element z € K we obtain

p(roy) = [xly,

where | |, is the normalized absolute value corresponding to v given by
|:L’|,U — q—’U(.Z‘)‘
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2.Ring of adeles

With the background knowledge of valuations provided in the first chapter
we can now introduce the adele ring of a global field. We mainly follow [2],
[6] and [7]. The notation follows mostly [6] and [7].

2.1.Restricted direct product

Before we are able to define the adele ring we need the concept of the
restricted direct product.

Definition 2.1.1 Let J be an index set and let Joo C J be a finite subset.
For j € J let G; be a locally compact topological group and for j ¢ J let
H; be a compact open subgroup of G;. The restricted direct product of
the G; with respect to the H; is the topological group

H'(Gj cHj) ={(xj)jes € H G :x; € Hj for almost all j € J},
JjeJ Jj€J
where the group multiplication is component-wise and the topology is gen-

erated by the base of all sets of the form [[..; O; with O; open in G and
Oj = Hj for almost all j € J.

jeJ

Proposition 2.1.2 Let G = [[,c;/(Gj : Hj) be the restricted direct
product of the G; with respect to the H; and G, H; as above. Then
G s a locally compact topological group.

Proof. Let (g;)jes be an arbitrary element of G. Let S C J be the finite
subset consisting of all indices j € J such that either j € Jo or g; ¢ H;. We
set N; C G; to be a compact neighbourhood of g; for j € S and N; = H;

for j ¢ S. The set
Gs = HNj,

J€J
is then a compact neighbourhood of (g;): Gg is by Tychonoft’s Theorem
compact in the product topology. Hence Gg is compact with respect to the
subspace topology of Gg in G, since the subspace topology is coarser than
the product topology. U

Proposition 2.1.3 Let G = [[;c,/(G; : Hj) be the restricted direct
product of the G with respect to the H; and let G; be Hausdorff for all
J € J.Denote by u; the Haar measure on G with the normalization
pi(Hj) =1 for all j ¢ Joo. Then there exists a unique Haar measure
w on G given by

M(H M;) = Huj(Mj),
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where the M; C G; are pj-measurable and M; = H; for almost all
jed.

Proof. See [2, p. 63] and [7, p. 185]. O

2.2.Ring of adeles and idele group

Definition 2.2.1 Let K be a global field, denote by K, the completion of K
with respect to the place p and by o, the valuation ring of K, if p is non-
archimedean. The adele ring Ax over K is the restricted direct product

Ag = H "(Ky : op)

pPeVK

of the additive groups K, with respect to the oy,. It can be endowed with
a multiplicative structure given by component-wise multiplication such that
Ak is a topological ring. An element of the adele ring is called adele.

Let K be a global field. We can see K as a subfield of its completion
K, for every place p of K. Theorem implies then that every element
x € K lies in o, for almost all places p. Therefore we can embed K into its
ring of adeles Ag via

x = (T)pevy-

We identify for the rest of the thesis the field K with its embedding into Ag
and call an element x € K principal adele.

We will need later the following

Lemma 2.2.2 Let K be a global field. Then there exists an embedding
of K -vector spaces v : K™ — A%, such that every K-basis {b1,--- ,b,}
of K™ is mapped onto an Ag-basis {t(b1), -+ ,1(bn)}.

Proof. Let ¢ : K™ - K™ ® Ak be the homomorphism of K-vector spaces
given by ¢ : v — v ® 1. Then ¢ maps K-bases onto Ag-bases (cf. [10)]
p. 216]). Denote by 9 : K" ® Ag — Al the isomorphism of Ag-modules
which is induced by v : (z;)1<i<n ® a — (x; - @)1<i<n. Therefore the map
L := 1 o is an embedding of K-vector spaces which maps K-bases of K™
onto A-bases of A% O

Remark The above defined map ¢ : K™ — A is given in every component
as the embedding of K into Ag. Since we have identified K with its em-
bedding in Ax we want to do the same with the embedding of K" into A’
and write v = «(v) for v € K™. Hence the above Lemma states that every
K-basis of K™ is also an A-basis of A



24

Definition 2.2.3 Let K be a global field. The idele group lx over K is
defined as the restricted direct product

I =[] (55 : op),
peVK
of the groups K; with respect to the oy. An element of the idele group is
called idele.

We can obviously see the idele group I as a subset of the ring of adeles
Ak. The idele group is then exactly the group of units of the adele ring :
Every idele is clearly a unit element of the adele ring. For an element
x = (xp) € A} we have x, € K for every place p since the multiplication is
defined component-wise. Since (z, h e A% we have zp, z, le o, for almost
all p. Therefore x, € o} holds for almost all places p and z = (zp) is an
idele. As a consequence the embedding K < Ak induces an embedding of
the group of units K* — Ix. The elements in the image are called principal
ideles.

While the algebraic structure is the same for Ix and A7 they differ in their
topology. Since the inversion z — ! is not continuous on Ax the topology
on [x can not coincide with the subspace topology on Ag. However the
embedding

I = Ag x A z— (z,27Y),

induces an isomorphism of topological groups from Ix onto the image of ¢
(cf. [T, p. 68]).

Definition 2.2.4 Let K be a global field. Then we define the absolute
value | |5, on Ak as

| |lag :Ax — R, (2p) — H |@plp-
peVk

The above map is not an absolute value in the sense of the definition
given in the first chapter, nevertheless the name suits for this map and is
commonly used in literature. Since the product in the definition of | |, is
infinite we have to think about its existence. For any adele x = (x,) € Ag
almost all components x, are elements of oy, i.e., |zy], < 1. Hence the
product is either converging or 0. One can easily prove |z|a, # 0iff x € Ig.
For principal ideles z € K* Theorem states |z|a, = 1.

The restriction of | |4, onto Ik is obviously a continuous map. It is also
easy to see, that | |4, is not continuous on Ag:

Let (zp) be an adele with |(zp)|a, # 0. If | |a, is continuous on A, then
there exists a neighbourhood U C Ak of () such that

1
Sl@p)lax = I(yp)lax < 21(zp)|

for every (y,) € U. But in every neighbourhood of (z,) there is an element
(yp) with at least one component y, = 0, which is a contradiction.
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Theorem 2.2.5 Let K be a global field and L|K a separable field
extension. The map

oA @k L— AL, (7p)pevy @ a— (zp - mp(a))pev, plos

is an isomorphism of topological rings, where the map 7p : L — Lo
is the canonical embedding of L into L.

Proof. See [2, p. 64]. O

Remark Let K be a global field, L|K a separable field extension and
{b1,--- ,bn} be a K-basis of the field L. The map

[L:K]
Qp: H AK%AKQ@KL,
i=1
((ﬂfp,i)pevx)lgz‘g[/:;m = Z (Cﬂp,i)peVK ® by,

1<i<[L:K]

is an isomorphism of topological groups. By the above Theorem we obtain
an isomorphism
[L:K]
v [ Ax = AL
i=1

. . L:K
of topological groups given by (z;) — E£:1 } bi(Tpi)pevy glp-

2.3.Strong approximation

In this subchapter we prove two important Theorems which give some
insight on the relation between a global field K and its adele ring Ag. The
first is Theorem which states that K lies discrete and cocompact in its
adele ring Ag. The other is the so-called strong approzimation, Theorem
which states that K is ,,almost dense“ in its adele ring Ag.

Theorem 2.3.1 Let K be a global field. We identify K with its image
of the map

K — Ag, o+ (2)pevy-

Then K is a discrete and cocompact subring of the adele ring Ag,
i. e., the quotient Ax /K is compact.

Proof. We set Ky = Q if char(K) = 0 and K¢ = Fp(s) if char(K) = p,
where s € K is a separating element for K and set n = [K : Ky|. Theorem
states the separability of K|Ky for char(K) # 0. As a consequence of
Theorem we obtain a commutative diagram of topological Ky-vector
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spaces

I Ay — Ax

).

H?:l Ko ——

Therefore Ay /K is compact iff [T;_; (A, /Ko) is compact, which is true iff
Ak,/Kp is compact. Analogous it suffices to prove that K is discrete in
Ag,. Let oy be the valuation ring corresponding to a place p of K and C
be the compact set

1
C:={(zp) € Ay [Tl < > [zplp < 1 for p oo}

Then the following holds

(i) €N Ky ={0},

(ii) Ag, =C+ Ko :={z+ylz € C,y € Ko}.
Proof:

(i) Let z € Ko N C, then we obtain = € oy for all finite places p. As a
consequence of Lemma [I.3.6] we get

{Z char(K) = 0,

x € ﬂ op = 0K, 1= 0
POk F,[s] char(K) =p.

pfoo

The condition |z|s < 1 implies = = 0.
(ii) Let © = (zp) € Ak, be arbitrary and denote by S the finite set of all

finite places p with x, ¢ o,. For p € S we can write z, = :J’,, + b, with

P
ap € Ko, by € 0y, 1, € N and m, € Ko a prime element of o,. We set

a
p

y=x— E -
pes P

For all finite places p we have y, € o,. We can choose an element
T € 0K, With |Yoo — 7'|oc < % Hence we obtain

=y —r)+ (Y B,

pes Ty
where (y —r) € Candr+ 3 g :T"p € Ko, which implies the claim.
P

Since A, is a topological group with respect to addition and C' is a neigh-
bourhood of 0, the subring Ky is discrete in Ag, by (). The map 7 : Ag, —
Ak, /Ky is continuous. By (ii) we have 7(Ag,) = 7(C). The compactness
of C implies therefore the compactness of Ag,/Ko. O

Corollary 2.3.2 Let K be a global field. There exists a set C C Ay
of the form C = {(zy) € Ak : |zplp < 0p} with §, = 1 for almost
all places p such that C + K = A, i.e., every adele z € Ak can be
written as z =x +y withx € C and y € K.
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Proof. Let Ky = Q if char(K) = 0 and Ko = [F,(s) if char(K) = p, where
s is a separating element for K. By the proof of the above Theorem there
exists a compact set Cy C Ak, with Ag, = Ko+ Cp and Cy = {(z,) €
Ak, ¢ |xply < 0p} with 0y = 1 for almost all p € Vi,,. Let {b1,--- ,b,} be a
Ky-basis of K and define

n n
v [[Ar = Ak, (p.i)pevic, J1<i<n = > bi(@pi)pevic pip-
i=1 i=1
Then v is an isomorphism of topological groups by the Remark after The-
orem with ¢(K{') = K. This implies
n n n
N EK) + [] Co=[](Ko+ Co) = ][ Axo-
i=1 i=1 i=1
We have (], Co) = t(Co)b1+1(Co)ba+- - -+1(Co)by, where ¢ : Ag, — Ak
is the embedding of Ak, into Ax given by (zy)pevi, = (Zp)pevi gpp- Since
we have |b;|p < 1 for 1 <4 < n and for almost places B of K there exists a
compact subset C' C Ag of the form C" = {(zq) € Ak : |zgplp < o} with
dp = 1 for almost all P € Vi and ([[;; Co) C C’. The set C” satisfies
obviously C' + K = Ag. O

Remark Let K be a global field. As a consequence of Proposition [2.1.3
there exists a Haar measure p on the additive group (Ag, +) with p(z-B) =
|z|a, p(B) for every x € Ag and every Borel subset B of Ag. Let p/ be the
Haar measure on Ak /K such that Proposition ?? in the Appendix holds
without rescaling 1.

Lemma 2.3.3 Let K be a global field. Then there exists a constant
cx only depending on the field K with the following property:

Lety € Ak and |y|a, > ck then there exists an element x € K* with
|z|p < |yplp for every place p.

Proof. Let ¢g = p/(Ax/K) and

cL=p ({(Zp) €Ag |zl < {1 ;LOOO’}) :

We obtain 0 < ¢g, c; < oo since both sets are compact. Set cx = 2—(1) and let

T Dbe the set
yP pTOO,
T =4 (2p) € Akt |zplp < ,
{ p plp Ly ploo,

N[

for an adele (yp) € Ag with |(yp)|a, > cx. The set T has Haar measure
wT) = |(yp)lagcr > cxer = co = i (Ax/K).

By Proposition ?? there exist two distinct elements ¢t € T with ¢t = ¢/
mod K. For the element x = ¢ —t' € K holds [z, = [ty —t,|p < |yplp for all
places p of K. O
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Corollary 2.3.4 Let K be a global field, po an arbitrary place of K
and 6 > 0 real numbers for every place p # po with é, = 1 for almost
all places p. Then there exists an element x € K* with

|m|P §5p? P#PO

Proof. Choose (yp) € Ak such that [yy|, < d, for all places p # po and
yp such that |y|a, > ck, where ck is as above. Then there exists by the
previous Lemma an element x € K* with

|Zplp < |Yplp < 0p,  for p # po. O

Theorem 2.3.5 Let K be a global field (y,) € Ax and po an arbitrary
place of K. Then there exists for every e > 0 and for every finite set
S of places containing all infinite places and po ¢ S an element x € K
with

(i) |z —yplp <€ forpels,

(i) x € op forpo#p ¢ S.

Proof. According to Corollary ?7 there is a set
C:={(2) € Ar : |zplp < 6p},

with 6, = 1 for almost all places p, such that Ax = K + C. By Corollary
there is an element A € K* with [A|, < €6, ' for p € S and |\, < &;"
for p ¢ S and p # po. We set

.._{yp pGS
Yp =

0 peg S’
Then there exist # € K and (z,) € C with A™}(g,) = 2 + (2p). The element
Ax € K fulfils obviously the requested properties. O

Remark Theorem can also be formulated in the following way:
Let pg be an arbitrary place of a global field K. Then the embedding
T = (T)pevie\ {po} form K into H;J#O(Kp : 0p) is dense.
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3.Height functions

We are now ready to deal with heights. In the first section we look at the
absolute multiplicative / logarithmic height function on the projective space
P"(K) over the algebraic closure of a global field K. This will be the last
preparation for our main goal: the treatment of height functions on A% and

Theorem together with its proof.

3.1.Height functions on the projective space

For this section we followed mostly [4] and also [1].

Definition 3.1.1 Let K be a global field and P"(K) be the n-dimensional
projective space over K. For a point P € P*(K) with homogeneous coordi-
nates P = [xg : -+ : x,] we define the multiplicative height relative to K
as
Hy(P):= [ max{|aolp, -, |zaly}-
peVK
The logarithmic height relative to K is defined via

hi(P) :=log (Hi(P)) = Y —fylog (N(p)) min{vy(z0), -+ , vp(wn)},
peVk

where f, and N(p) are defined as in Definition|1.3.10

We have to show that these height functions exist and are well-defined.
The latter will be done in Lemma Let [zg : -+ : x| be homogeneous
coordinates of a point P € P"(K). As a consequence of Theorem for
almost all p € Vi holds |z;|, = 1 for 0 < i < n. Since P € P"(K) there
exists an index ¢ with x; # 0 which implies max{|zo|p,--- ,|zn|p} > 0 for
all places p € V. The product [],cy, max{|zoly, -, |zn[p} is therefore a
finite product and greater than 0. Hence the height Hx(P) and hi(P) =
log(Hg (P)) exist.

Examples 3.1.2 (i) Let P € P"(Q) be a point in the projective space
over Q. Then there are up to multiplication with (—1) unique ho-

mogeneous coordinates [z : -+ : x,] for P with g, -+ ,z, € Z and
ged(xo, -+ ,xn) = 1. For every prime number p we have therefore
max{|zo|p, - ,|znlp} = 1. Hence the multiplicative height of P is
given by

HQ(P) = max{’$0|oo> Tty ‘xn‘oo}

(ii) For P € P*(Fp(z)) we can choose homogeneous coordinates P = [fj :
oot fn] of P with fo, -, fn € Fpla] and (fo, -, fn) = Fp[z]. Let ¢ €
[F,[x] be an irreducible polynomial, then the choice of the homogeneous
coordinates of P implies max{|folq, - ,|fulq} = 1. Hence we obtain
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for the height of P = [fo: -+ : fu]
Hp,(2)(P) = max{[foloo, - -+ , [ fnloo }-

Conclusion: With the above considerations it is obvious that for every
real number B > 0 there are only finitely many points P € P"(Kj) with
Hp,(P) < B for Ky =Q or Ko =Fp(x).

Lemma 3.1.3 Let K be a global field.

(i) The height of a point P € P"(K) is well-defined, i.e., it is inde-
pendent of the choice of the homogeneous coordinates of P.

(ii) Hi(P) > 1 for all points P € P"(K).
(iii) Let L|K be a separable field extension. Then we have for all points

P e P'(K)
Hp(P) = Hg (P)IFKL
Proof. (i) Let [xg : -+ : xp] and [Axg : -+ : Azy,] be two homogeneous
coordinates for a point P € P"(K) with A € K*. Then we have
Hy([Axo -+ Awn]) = [ max{|Azolp, -+, [Aznlp} =
peVk
= H [ Alp max{[zolp, -+, [wnlp}-
peEVK
Since the product is finite and |A|4,, = 1 by Theorem |1.3.12| we obtain
Hrg([Axo - Azp]) = ANagHr([xo - xn]) = Hr([xo -+ xn))-
(ii) Let P € P"(K). There exist homogeneous coordinates [zg : - - : 2] of
P with x; = 1 for an index 7. This implies
Hg(P) = ] max{L,|xoly,- - ,|xalp} > 1.
peVk
(iii) Let P € P*(K) with homogeneous coordinates P = [zg : -+ ,: Zy].

For an element x € K and p,*P places of K and L respectively with
B|p Proposition [1.3.11] states
[Lop: K]

|zl = [Ny, (@)]p = |2y :

Using this and Proposition [1.3.9] we obtain

Hp(P) =[] max{|zolp, -, |wnlp} =

BeVL
Ly K, Lo: K,
= T TTmax{zoli® - w250y =
pEVE Plp
- H Hmax{\x0|p7... || pEFH] =
PEVK Plp
= H max{]xo\p’... ’|xn‘p}[L:K} — HK(P)[LK} O

pPEVK
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Definition 3.1.4 Let Ky = Q or Ko = Fy(x). For a point P € P"(Ky) and
an algebraic field extension K|Ky we say P is defined over K if there are
homogeneous coordinates P = [xqg : -+ : ) with xg,- -+ ,x, € K. We define
Ky(P) as the smallest field such that P is defined over Ko(P).

The absolute multiplicative height function is the map

1
H :P"(Ko) — [1,00), P Hy,(py(P) [Ko(P):Kgl

where K|, is defined as Ky = Ko if char(Ky) = 0 and K| = Fy(s) if
char(Ky) = p, where s is a separating element for K. The absolute loga-
rithmic height function is the map

BiPU@) — [0,00), P> log (H(P)) = MhKo<p><P>,

where K, is defined as above.

Lemma implies that the absolute multiplicative/logarithmic height
function is well-defined. Let P = [zg : --- : x,] € P"(K() be homogeneous
coordinates. One proves easily

Zo Tn
=,...=2

Ko(P) = Ko( )

Z; Xy
for any x; # 0.
Lemma 3.1.5 Let Ky be either Q or F,(z) for a prime number p,

P ¢ P*(Kgy) and 0 € Gal(Ky, Ko) then H(P) = H(o(P)) where
o(P)=oc(xzg: - :xy)):=[o(zg) : -+ : o(zn)].

Remark The field Fy(z)|F,(x) for a prime number p is not separable and

therefore not galois. The group Gal(F,(x),[F,(x)) stands in this case for the

group Autg () (Fp(x)) of Fp(x)-automorphisms of Fy(x).

Proof. Set K = Ko(P) and K := Ky if char(Kp) = 0 and K| := F,(s) if
char(Ky) = p where s is a separating element for K. The map o induces an
isomorphism o : K — o(K) and the restriction of o onto K{ is the identity
idg;. The map o also induces a bijection

0: Vg = Vyky, p—=o(p),

where o(p) is the place of o(K) containing the absolute value |7y =
lo=1(2)], for € o(K). The absolute value | |,y is then clearly the normed
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absolute value to o(p). Therefore we obtain:

1 (K]
H(P) = Hg(P)"50 = | T max{|olp,- -, |2nlp} =
peVK
1
[U(K):K(/)]
= [T mex{lo(@o)low), - lo@n)lom} =
a(p)EVy (k)
1
= Hy(i)(0(P)) "09%0) = H(o(P)). O

For an element z € K of a global field K we define Hg(x) := Hg([1 :
x]) = HpeVK max{1l, |z|p} and H(zx) := H([1 : z]).

Theorem 3.1.6 Let K\ be either Q or Fy(x), let B,D > 0 be real
numbers and n an integer. Then the set

P(Ko, B,D) := {P € P"(K,) :H(P) < B, [Ko(P) : Ko] < D,
Ko(P)|Ky is separable}

s finite.

Proof. Let P € P"(Ky) with Ko(P)|Ky separable and choose homogeneous
coordinates P = [zg : --- : ] such that 2; = 1 for an index j. For every
place p € Vi, (p) we have

max{|zolp, -+, |zj—1lp, L [Tjs1lp, - - [nlp} > max{L, |z;lp},
for 0 <@ < n. By multiplying over all places p € Vi (p) and taking the
[Ko(P) : Ko)]-th root we obtain
H(P) > H (),
for all 0 <7 < n. It suffices to prove that the set
C(Ko,B,d) :=={y € Ky : H(y) < B,[Ko(y) : Ko] = d,y is separable over Ky},

is finite for 1 < d < D. Indeed, if H(P) < B then its coordinates xg, - - - ,
lie in C(Ky, B,d) for an appropriate d, if we choose homogeneous coordi-
nates for P as above. If the sets C(Kjy, B, d) are finite for 1 < d < D there
are only finitely many possibilities to choose homogeneous coordinates for a
point P € P"(Ky) such that one coordinate is 1 and the other coordinates
are in the above set.

Let y € Ky be separable over Ky and
d

my(T) = T (=) = S (~1) s, ()T,

1<i<d r=0

the minimal polynomial of y over Ky, where y = y; and s,(y) is the r-th
symmetric polynomial in y1, -+ ,y4. We set K = Ky(y). Let p be a place of
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K, then we obtain

e Wl =1 > wivi| <clpord)  max {lyi ey lp) <
1<iy <-<ip<d LSii<<irsd

< c(p, 7, d) max {|yily},

p

where c(p,r,d) = (f) < 2¢ for p archimedean and c(p,r,d) = 1 for p non-
archimedean. We get

d
max{|so(y)lp, -+, [sa®)lp} < clp, d) [ [ max{1, lyil,}?,
i=1

where ¢(p, d) = 2¢ for p archimedean and c(p, d) = 1 for p non-archimedean.

As a consequence of Example there are at most [K : Ky = d archimedean
places of K. Multiplying over all places p € Vx we obtain

d
Hic((so(y) -+ sa(w)) < 2 [T Hie ().
i=1
Lemma [3.1.5| implies Hx (y1) = H (y2) = - -+ = Hg (ya). Hence we obtain
H([so(y) : -+~ = saw)]) < 2'H ()"
If y satisfies H(y) < B then the Point P, = [so(y) : -+ : sa(y)] € P4(Kp)

satisfies H(Py) < 2¢B%* By the conclusion in Example there are only
finitely many Points P € P4(Kj) satisfying H(P) < 29B?% and therefore

only finitely many separable y € Ky satisfying H(y) < B. O

Corollary 3.1.7 Let K be a global field, B > 0 a real number and n
a natural number. The set {P € P"(K) : Hx(P) < B} is finite.

Proof. Follows directly of Theorem [3.1.6) (]

3.2. Adelic norms and height functions on the adele
ring

We are interested in height functions on the Ag-module A% for a global
field K and their properties which are stated in Theorem (cf. [3]). For

the concepts of adelic norms and primitive elements we followed [9] and [3].

For the rest of the thesis we identify A’ with H;GVK(KSZ : o) as topo-
logical Ag-modules by the map
@1 ((@p,i)pevic)1<icn = (@pi)1<i<n)pev -

Indeed this is a well-defined isomorphism of A g-modules, whereby the op-

eration of Ag onto H;EVK(K,? : of) is given by

(Ap) - (pi) = (App i)
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Since the topology on A% is the product topology, a basis for the open
subsets of A% are all sets of the form ngign,pev}( Oip, where O;, C K,
is open in K, and for every 1 < ¢ < n we have O;, = o, for almost all
p € Vk. A basis for the open subsets of H;E‘/K(K;‘ : o) are all sets of the
form HpGVK Up where U, C K, is open and Uy = o for almost all p € V.
The morphism ¢ and its inverse ¢~ map a basis of the open sets of one
space onto a basis of the open sets of the other space. Hence the map ¢ is
a homeomorphism.

The above identification induces a map

¢ GLn(Ax) — [] ' (GLn(K,) : GLn(oy)),
pPEVK
whereby GL,(R) stands for the group of R-module automorphisms of R"
for an commutative ring R. The map is given by ¢ : g — (9|K;L)peVK and is
an isomorphism of local-compact groups.

Remark The identification ¢ form above could be formulated more gener-
ally:
Let {b1,--- ,b,} be an Ag-basis of A%. We define another identification
¢ AL — H;E‘/K(Kg : o) by mapping each element z € Al onto
©(A1, -+, An), where = Y0 \ib; with \; € Ag for 1 < 4 < n. Let
g € GL,(Ak) be the matrix with by, -- , b, as columns, then the map ¢’ is
given by
=g ta)op

The purpose of these identifications is to provide a simple way to formulate
the definition of a height function H on A% . Lemma implies that every
height function on A% for whose definition the identification ¢ is used can
also be defined using the identification ¢’ and vice versa. Therefore the
choice of this special identification means no loss of generality.

Definition 3.2.1 Let K be a global field. A family F = {|| ||p}pevic of
norms || ||y : Ky — R is called adelic norm on the Ax-module A iff
for almost all places p holds ||(x1,- - ,2n)|lp = max{|zi|p, - -, |znlp} for all
(w1, ,zn) € K. We call the map

Hr: A% —R: (zp) = [] l@ps,- o zpm)le,
peVK

the height function on A% associated to F.

Since zp1, -+, Tpn € 0p for almost all p € Vi and ||(zp1,- -, Zpn)llp =
max{|zp.1lp, -, |Tpnlp} for almost all p € Vi the product
I Hpas-apn)l
peVK

is finite. Hence the height function associated to an adelic norm is a well-
defined map.
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Remark (i) The concept of an adelic norm can be found e. g. in [9].

The above definition is however inspired by the definition of height
functions in [3] and is hence different from the definition given in [9]
which is the following:

An adelic norm is a family F = {|| |lp}pevy of norms || ||y : K —
R such that there exists a K-lattice A in K™ such that for almost all
p € Vk and all x € K holds

= inf At
], Aexéf&xem,’ b

where Ay is the closure of A in K.

We want to show that these two definitions are equivalent:

First Assume the now given definition. We can write A = @, ,-,, ox-
bi, where {by, -+ ,b,} is an og-basis of A with b; = (b;;) € K". Let
S be the finite set of places p € Vi such that Vi \ S is the set of all
non-archimedean places p with |b; j|, = 1 for 1 <4, j < n and the norm
| [lp is given as above. Let K\ {0} > x = (%;) = > <, @ibi. One
has the following equivalences

Ax € Ay & Aoy € o) for all i & [Aagl, <1 for all i &
& lailp < A for all i,

where \ € K;. Hence we obtain for the norm of x

— 1 f )\ -1 = . e
[EdlP® AeK&gxeApl o ggﬂazlp}
= 112%{\ Z ajbijlp} = giag};{!milp}-
1<j<n

Now assume our definition of an adelic norm. Let S C Vi be the

finite set such that Vi \ S is the set of all places p of K with [|(x;)], =
maxi<i<p |zilp for all (x;) € K. Set A = @<, 0K - b where the
bi = (b;j) form a K-basis of K™ with |b; j|, = 1 for all 1 <4, j < n and
pés.
Let F = {]| |lp }pevi be an adelic norm on A’ for a global field K. The
requirement [|(z1, - -+ , @) |y = max{|z1[p, -, [znlp} for (z;) € K and
for almost all places p of K is very restrictive. Since this requirement
is not necessary for a well-defined height function, as we will see in
Example [3.2.9] one can ask oneself if it is possible to weaken it in a
way such that one would obtain more general height functions which
enjoy the same properties as stated in Theorem We will state a
possible generalisation as closure for this thesis and proof in Theorem
that Theorem holds also in this more general setting.

Examples 3.2.2 (i) Let K be a global field and F = {|| ||p}pevi be

the adelic norm defined by |[[(z1,- - ,2,)|, = max{|zi|p,- -, |znlp}
for (z1,---,x,) € K and all p € Vik. The restriction of the height
function Hr onto K™ induces the multiplicative height Hx on the
projective space P"~!(K). Therefore we denote the height function
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Hr associated to this special adelic norm F also by Hg and call it
standard height function on A%.
(ii) Let K be a global field and || [|, be the norm on K defined by

ezl = {@?:1 i) bloo,

max{[ifp, -, [znlp} Pt oo

The height Hzx for F = {|| ||y }pevy is called I* Northcott- Weil height
(cf. [9, p. 94]).

Definition 3.2.3 Let K be a global field. An element x € A% is called
primitive iff there exists an Ag-automorphism g € GL,(Ak) of A} with
g-x € K"\ {0}.

Proposition 3.2.4 Let K be a global field and © = ((xp;i)1<i<n)pevi €
A%-. Then the following are equivalent:
(i) The element x € A%, is primitive.
(i1) The set {x} can be extended to an Ag-basis of A'l.
(111) For almost all places p € Vi there is a component xy; of (xp1, -, Tpn)
with xp; € o;.

Proof. (i) = (i7):
Extend by = g -z to a K-basis {b1, -+ ,b,} of K". By Lemma [2.2.2] the set
{b1,--+ by} is an A-basis of A%. Therefore the set {x, g1 -bo, -+, g7 by}
is an Ag-basis of A% .

(i1) = (i4i):
Assume the converse. Choose for every finite place p an element A, € K,
such that the vector Ay - (@p1,+,%pn) € op and there is at least one
index i with A\yxy; € op. By the assumption we have A, ¢ o, for infinitely
many finite places p. We set A\, = 1 for every infinite place p and set
Z = (Apxp,) which is obviously an element of A%. By (ii) we can extend
{z} to an Ag-basis {x,by,-- by} of A% with b; = (bj,) where b, € K
for 2 < j < n and all places p. Thus there exist oy, - ,a, € Ag with
T = a1z + azby + - - + ayby,. Denote a; = () for every i. We obtain for
every place p € Vi

Ap(Tpi)1<i<n = (Tpi)i<i<n =

= a1,p(Tp,i)1<i<n + Q2pbap + -+ Qnpbny.

This implies a1 p = A\p and gy = - -+ = ay,p = 0 for all places p, which is a
contradiction since (Ay) ¢ A
(7i1) = (i):

Let S be the finite set of places p for which (xy;)1<i<n has no component
lying in oj. For every place p € S we extend (wp;)i<i<n to a Kjy-basis
{(@p,i)1<i<nsbap, - ,bpp} of K. For every place p ¢ S let i, denote an
index such that wy;, € o;. We choose by p, - -, by such that {bay,- - bpp}
is the standard basis of K;} without e;, .

Let gy € GL,(K,) be the matrix with the vectors (zpi)1<i<n,b2p, - ,bnp as
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columns for every place p. For p ¢ S we have g, € GLy(0p) since the columns
of gy are obvious an op-basis of of. If we set g = (gp)pevyc € GLn(Ak) then
we obtain

gt z=e cK" O

Remark In the article [3] the height is only defined for primitive elements.
The previous Proposition implies that the height of an element x € A% is
non-zero iff the element is primitive.

In order to shorten the proof of Godement’s Theorem and make it clearer,
we need the following two Lemmas.

Lemma 3.2.5 Let K be a global field, p an arbitrary place, ||z|, =
max{|z1|p, - [Tnlp} for x € K} and let g = (gi;) € GLn(Ky). We
define the maps || ||sp || lip : GLn(Kp) — RT by

g -z
gllsp = sup |lg-z|, = sup lg -zl = sup HH H I8
llzllp=1 ]|y < 2#0 b
: Hg-m\lp
gllip :== inf Hga:H = inf )
P el PT 0 [z,

Then the following holds:

(i) llgl

() llglls
1
i’p

(i) For a finite place p and g € GLy(0y) one has

sp = Inax {Z |9ijlp} < 00 for all g € GL,(K,) and ploo.

1<i<n

» = Dax {|g”|p} < oo for all g € GL,(K,) and p { oo.

S?p

lgllsp = llgllip = 1.

(v) The maps || ||sp, || |lip are continuous.

Proof. (1) ||gllsp = sup Z P
lzllp<yi<i<n |52, p

n
< sup D 1giilelily = max > 1gijlp}-
=1

1<i<mileilp <1452, lsisn
Let k be an index such that > ", |g |y is maximal within the set
{377=119k4lp : 1 <i < n}. If we set y; = sign(gy,;) we obtain

> gyl = Y lokile

1<j<n ,  l<isn

Together with the previous inequality this implies (7).
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(ii) We have

b}

lgllsp = sup {gijlplzilp} < | ax {19:.5
1<i,j<n,e;lp <1 <i,j<n

Let I,k be indices such that |g; x|, is maximal within the set {|g;;lp :
1<4,j <n}. If weset x; =1 for i = k and otherwise z; = 0 we get

llglls,p = l91,klp = maxi<ij<n{lgijlp} which proves the claim.
s,p — - — -
x7#0 HJ:HP x#0 Hg L. 'THP
1 1 1
prg Sup — pry " — = — .
lalo=t lg7 - xlly  infye=1llg™ 2l g ip

iv) As a consequence of (i7) we have ||g|sp,[|g7 " |ls,p < 1. Assume we have

(iv) A £ (ii) we have [lglop, g™ lop < 1. A h
lgllsp < 1. Then (iii) implies lg~"(li,, > 1, but [lg™lip < llg™|sp <
1. Hence we obtain ||g|[sp = [lg7!||s, = 1 and (iii) implies ||g||ip = 1.

(v) With the explicit formulas for || ||5, given in (i) and (4¢) the map || |/

is obviously continuous for arbitrary places p. Since the map g — g~

is continuous on GL,(K,) and the map = — % is continuous on R™

the map

1 -
Hlip = (= =)ol lspolg— g7,

is also continuous. O

Lemma 3.2.6 Let K be a global field, F an adelic norm on A% and
g = (9p) € GLu(AK). Set ||zl = |lgp - zllp for x € K. Then the
family F' = {|| | }pevy is also an adelic norm.

Proof. Let S C Vi be the finite set consisting of all infinite places, all places
p, such that [[(x1, -, 2n)|lp # max{|z1]p, - ,|znlp} for all (z1,---,2,) €
K} and all places p such that gy ¢ GLy(0p). By the previous Lemma we
obtain for p ¢ S

Iy = llgpzlly = [l2llp = max{|a1lp, - [xnlp},
for all x = (21,--+ ,x,) € K. Since S is finite 7 is an adelic norm. O

Theorem 3.2.7 Let K be a global field and F = {|| ||y }pev, an adelic
norm on the module A% over the adele ring Ak of K.

(i) Let F' = {|| ly}pevx be another adelic norm on A%,. Then there
exist real numbers c1,co > 0 with

caHr(z) < Hr(x) < coHp (),

for all x € A%

(it) Hr(t - ) = |t|a, - HF(z) for allt € A} and x € A
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(iii) Let (xr)ken = ((Thp)pevic )ken be a sequence of primitive elements
xp € A with xp, € Ky and limg_,o0 x; = 0, then

lim Hz(zy) =0.

k—o0
(i) Let (xi)ren be a sequence of primitive elements xy, € A% with

limy oo Hr(xr) = 0. Then there exists a sequence (\i) of principal
ideles N\, € K* such that

lim (/\k . l‘k) = 0.

k—o0

(v) For given g € GL,(Ak), ¢ > 0 the set
Zge:={z € K":Hr(g-z) < c}/K",
is finite.

(vi) Let M C GLn(Ak) be a compact subset. Then there exist real
numbers c1,co > 0 with

caiHr(x) < Hr(m-x) < coHr(x),

for allm € M and x € A% .

Proof. (i) Let S be the finite set of all places p with || ||, # || [;- By

Theorem there exist for every p € S real numbers cp1,cp2 > 0
with

cpallylly < lylle < co2llylly,
for y € K. By multiplying over all places we obtain

[ Hr() < He(x) < [ ep2 - Hr(2),
pes pes

for all z € A%.

(ii) We have for all t € A}, and = € AL

Hr(t-x) = [T o~ (s 2pn)lly =

peVi

= H [tplpll(@p,15 - s @pn)llp =
peVk

= H [tplp H [(@p,1, -+ @pn)llp = [t]ag Hr(2).
peVK peVK

Since the product in the second last line is finite the splitting up into
two products which is done in the second last step is allowed.

(ili) Let S be the finite set of all places p with p|oo or ||z ||, # max{|z;i|p, -, |2Znlp}
for z € K. Since the sequence (zy) converges to 0 there exists an in-
teger Ny with

xk7p € O;L,
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for kK > Ny and p ¢ S. Let € > 0 be arbitrary. Then there exists an
integer N, such that we have

ksl <e,
for every place p € S and k > N.. Hence we obtain for k& > max{Ny, N.}

Hr(xy) = H [@kpllp H [Zrplly < Hf‘? H 1=l

peS peVE\S peS peVi\S

which proves the claim since S # {}.

Let S C Vi be a finite set of places containing all non-archimedean
places and let € > 0 be an arbitrary real number. As a consequence of
(1) we have

lim H}'(l‘k) =0 & lim HK<QZk) =0,
k—oo k—o0

where H is the standard height function. Hence we set without loss of
generality Hr = Hp. Since the set Vi of all places of K is countable
we can choose an enumeration Vi = {p1,po,---} of all places. We
denote by (7r) = (wgp,) With zx,, € K. the given sequence, set
di:i := ||k, |lp; and hy := Hg(xg) = [[;>1 di;i- Since xy, is primitive
the height Hy (z3) = hi # 0. We have to show the existence of an
integer N such that |z, [y, < € for p; € S and xyp, € op, for p; ¢ S
and for all £k > N.

Let ¢(K) be the constant only depending on K as in Lemma
For every integer [ we set N; as the minimal integer such that

1
hy 2t

holds for all & > N;. Since limy_,,, by = 0 the integer N exists for
every . We set

>C(K)a

1 k < Ny,
Okyi = d;i No <k <N,
di27t Ny <Ny <k < Ny
By the definition of N; we have Hizl Ok;i > ¢(K) for all k > Ny. Hence

Lemma [2.3.3| implies that there exists an element A\, € K* with

’)‘k‘m < 5k§i7

for all places p; and k > No. This implies || Ap(Zky,)|lp; < 1 for all
k > No which is equivalent to (zj,,) € oy, for every archimedean place
p;. For every i > 1 and k& > max{N;, N;} we obtain

Ak (hsp, ) s < 27
Now set L = maX{O, [711%(8)“1} and N = maxy,c5{No, N, N;}.
Then for all ¥ > N holds

’xk,pi‘m < 27L <g,

for p; € S and
‘xk,pi’pi € Op,
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for p; ¢ S, which proves the claim.

By Lemma there is an adelic norm 7’ on A’ such that Hr(g -
x) = Hp(x) for all x € A},. Therefore without loss of generality let
g =idpn . By (i) there are real numbers ¢y, cy > 0 with

caHg(x) < Hr(x) < coHg (),

for all x € A%, where Hf is the standard height function on A%-. The
restriction of Hy onto K™ induces on the projective space P"~1(K)
the multiplicative height function Hg. By Corollary the set

{x € K" : Hr(z) < c}/K* C {z € K" : Hg(z) < é}/K* -
= {r € PN (K) : Hi() < ),

is finite.
With (i) already proven it suffices to show the claim for Hr = H.
We define two maps Hg, H; : GL,(Ag) — R via

Hy((g9)) = ] lgpllsp:

peVi

Hi((99)) == [ llg
peVK
By Lemma the above products are both finite. We show that Hj
and H; are continuous:
Let 1 > € > 0 be arbitrary, (gp) € GL,(Ak) and S be the set of places
p such that g, ¢ op. Since the maps || ||sp,| |lip are for all places
continuous we can choose for all p € S neighbourhoods U, of g, with

,L‘?p ‘

1 1
(1 =) lgpllsp < [[hpllsp < (1 +€)T5T[gplls.p,

1 L
(L =2)Fgpllip < l[pllip < (1 +2)TTl|gpllip,

for all p € S and hy, € Uy. For p ¢ S and hy, € GL,(0p) Lemma
states ||hpllip = |[Ppllsp = llgpllip = llgplls,p = 1. Hence we have for an
element (hy) of the neighbourhood U = [],cs Up X [Ipev\s GLn(0p)

of (gp):

(1 —e)Hs((9p)) < Hs((hy)) < (1+¢)Hs((gp)),
(1 —e)Hi((gp)) < Hi((hp)) < (1 +)Hi((gp))-

This implies that Hy, H; are continuous in (g,) and since (gy,) was ar-
bitrary, both maps are continuous on GL,,(Af).

<
<

Hence there are constants cq, co > 0 such that
HS(M), Hz(M) g (Cl, 62).
Together with the inequality
Hi((9p))Hi (x) < Hx ((gp) - x) < Hs((9p)) Hi (@),
this proves the the claim. O
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Remark Let H,, be the set of all height functions h on A% for a global field
K. Indeed Hy, is a set, since it is a subset of [ oy, Hpp Where H,,p is the
set of all norms on K" which is a subset of the set of all functions mapping
Ky into R. We can define a topology on H,, by taking all sets of the form

1
B :={h' € Hy, : eh(z) < B'(z) < =h(z) for all x € A%},
€

with h € H,, and 0 < € < 1 as a basis for the open sets. Lemma3.2.6|implies
that

¢ : GLy(Ag) X Hp — Hny  (g,h) = hog™!

is a left group action. The proof of (vi) in the above Theorem shows basically
that ¢(—, h) is continuous for all h € H,,. As a consequence the group action
( is continuous, as one proves easily.

The definition of an adelic norm F on A% for a global field K is very

restrictive. As mentioned in the remark after Definition [3.2.1] we want to
consider a possible generalisation of height functions on A%
This generalisation is on the one hand motivated by the question why we
have chosen this special definition for an adelic norm F = {|| [|;} - is the
property that almost all norms || ||, are given by |/(z;)|l, = max;{|x;i|s}
only a necessary condition for the proof of Theorem [3.2.7 or can we weaken
it? On the other hand we want to know if there exist other functions than
the height functions on A% which enjoy the same properties. Hence the
motivation for this generalisation is more of philosophical nature than of
mathematical utility. The wanted general height functions should enjoy the
following properties:

Firstly H(z) # 0 for every general height function H on A% iff x € A is
primitive. Secondly H o (x +— ¢ - x) should be a general height function for
every g € GL,(Ak). Thirdly every general height function H should satisfy
Theorem [3.2.7] These three properties are satisfied by the general height
functions defined in the following

Definition 3.2.8 Let K be a global field and let Hi be the standard height
on K. A general adelic norm F on the Ag-module A}, is a family
i o }pevic of morms || ||y on K[' such that there exist two real numbers
c1,co > 0 with

c1tHi((zp)) < Hr((xp)) < c2Hi ((2p)),

for all (zy) € Al and such that Hr((zp)) := [lpev, lplly 15 well-defined
for all (x,) € A%. The map HF is called the general height function
associated to F.

The definition of the general adelic norm implies that Hr(x) # 0 iff
x € A is primitive since this is true for the standard height function Hp.
Let g € GL,(Ak) be arbitrary. Then there exists an adelic norm F’ such
that Hr/(z) = Hk(g - =) for all z € A%. By Theorem there exist
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constants ¢}, c5 > 0 such that
¢\ Hi () < Hr/(2) = Hiclg - ) < Hic(a),
holds for all x € A%-. Therefore we obtain
i Hg(x) < ciHg(g-x) < Hr(g-x) < coHg (g x) < cachHg (),
for all x € A% Finally general height functions enjoy Theorem which
is stated in Theorem [B.2.10l

Example 3.2.9 We want to describe in this example a general adelic norm,
which is not an adelic norm.

Let || || be the norm on R? given by

Iz, )]l = Va2 —ay +y%,  (z,y) € R%
For every prime number p we obtain a norm || ||} on Q3 via
1, )l = (], [y1p)Il,

for all (z,y) € Q2. It is easy to see that ||(z,y)|;, < max{|z|, |y|,} for all
(z,y) € @12)' We want to find a maximal real number ¢, > 0 which satisfies

cp max{|zlp, [ylp} < (2, )},

for all (z,y) € Q2. Let (z,y) € Q2 with max{|z|, |yl,} = 1. Without loss
of generalisation let |z|, = 1 and therefore y € Z,. Then the constant ¢,

satisfies
cp < Il = /1= lylp + [y[3-
Since |y|, = 1% with suitable n € N and the function f : R — R,z —

V1 =z + 2?2 is convex with a minima at  and satisfies f(3 +z) = f(5 — )
1141 Vp?—p+1
2 T P .

we obtain for the constant ¢, = >t

Let {gn,n € N} be an infinite set of prime numbers satisfying 2" < ¢, <
Gn+1 for alln € N. We set ' = {|| [[p}pev, the family of norms | ||, : @;2) SR
with

1), = 4 1@ 9l p € {gu,n € N},
o max{|x|p, |y|p} otherwise.

We set ¢ = [, ey cq. Where ¢, is defined as above. Then c exists and is
greater than zero:

The product [], o ¢q, converges iff the sum ) log(c,, ) converges. We
obtain for the infinite sum even absolute convergence:

1 q2—qn+1)’ 1 ( g —1 >
log(cq, )| = —log| 22— || = “log |14+ =———) <
5 fHos(es )| = 3 |y 1ow (5 > gios (14 5

neN neN neN

1 1 1 1
Szzlog(1+%> §2210g<1+2n>

neN neN
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The power series expansion of the logarithm implies log(1 + 2%) < 2% for
n € N. This yields

1 1 1 1
Z|10g(cqn)| §Z§log (14—271) SZW:Q

neN neN neN

Hence the product ¢ = [],, oy ¢q, exists for every rearrangement. If we set
dp = ¢ for p € {gn,n € N} and §, = 1 otherwise we obtain

I l@wls < TT max{lzly, lyls} = Ho((z,y)).
peVp peVp

and

I Il > T 6pmax{laly, lyl,} >

peVQ PE€VD
> I o [[ max{lzlp. lylp} = ¢ Ho((z,y)),
pGVQ pEVQ

for all (z,y) € A?Q. Hence F is an general adelic norm.

Theorem 3.2.10 Let K be a global field, F a general adelic norm and
Hyr the general height function corresponding to F. Then Theorem
is also true for the general height function Hr.

Proof. The first property is a part of the definition of a general adelic norm.
The proof of the second property is analogue to the proof for height
functions expect one may split the product in the second last step since the
product converges for every rearrangement of the factors.
Using the first property it suffices to prove the properties (7ii) — (vi) only
for the case of Hr = Hg, which is true by Theorem [3.:2.7] O



45

A.Haar measure

We need for the understanding of this thesis some techniques form mea-
sure theory. See for more details and the proofs [7] and [11].

Definition A.1 Let X be a set. A o-algebra X over X is a subset of the
power set 2% of X with the following properties:
(i) X € ¥,
(ii) X\ A€X forall A€ X,
(iii) U,en An €  for all families {A, € ¥,n € N},
The pair (X, X)) is called measurable space. If X is a topological space the

Borel algebra B of X is the smallest o-algebra containing all open subsets
of X. An element B € B is called Borel subset of X.

Definition A.2 A measure p on a measurable space (X,%) is a map p :
¥ — [0,00) such that

p (U An> = > u(An),

neN neN

for all families { A} of pairwise disjoint sets in . For a topological space
X with Borel algebra B a measure p on (X, B) is called Borel measure on
X.

Definition A.3 Let X be a locally compact Hausdorff space. A Radon
measure on X is a Borel measure on X such that

(i) u(K) is finite for all compact K C X.
(ii) p(B) =inf{u(O): B C 0,0 C X open} for all B € B.
(111) p(O) =sup{u(K): K C O,K C X compact} for all O C X open.

Definition A.4 Let G be a locally compact Hausdorff group. A left-Haar
measure i on G is a nonzero Radon measure on G such that

u(g - B) = pu(B),
for all g € G and all Borel sets B of G.

Theorem A.5 Let G be a locally compact Hausdorff group. Then
there exists a left-Haar measure p on G, which is up to a positive
multiplicative constant unique.

Proof. See [7, p. 12]. O
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Proposition A.6 Let i be a left-Haar measure on a locally compact
Hausdorff group G. Then u(QG) is finite iff G is compact

Proof. See [7, p. 10]. O

Proposition A.7 Let i be a left-Haar measure on a locally compact
Hausdorff group G, T' C G be a discrete subgroup such that G/T" is
compact. We can scale the left-Haar measure ' on G /T such that for
all Borel subsets B of G with pu(B) > 1/(G/T) there exist two distinct
elements x,y € B with xy~! € T.

Proof. See [11], p. 36]. O
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Abstract

This thesis deals with height functions on free modules over the adele ring

Ak over a global field K and is aimed at proofing six fundamental properties
of these height functions. It starts with an introduction into valuation the-
ory to give the needed background knowledge. By using the direct restricted
product of locally compact groups we can define the adele ring Ax and the
idele group Ik over a global field K and prove their properties pertinent to
this thesis. The first example for height functions given in this thesis are
height functions on the projective space over global fields. Finally we deal
with height functions on free modules over the adele ring over a global field
K. The six properties of these height functions, as mentioned above, can be
summarised as following:
All height functions are equivalent, where the equivalence is defined analo-
gously as for norms on vector spaces. The image of a null sequence under a
height function is a null sequence. Conversely if the image of a sequence of
primitive elements under a height function is a null sequence, we can multi-
ply every element of the sequence by a non zero scalar from K and obtain
thereby a null sequence. For every real number B and every height func-
tion h there exist up to multiplication by scalars from K only finitely many
points P with components in K and h(P) < B. The last two properties deal
with the behaviour of height functions when the argument is multiplied by
an scalar from A% or when a change of Ag-basis is applied.



49

Zusammenfassung

Diese Arbeit beschéaftigt sich mit Hohenfunktionen auf freien Moduln

iiber dem Adelring A iiber einem globalen Kérper K mit dem Ziel, sechs
grundlegende Eigenschaften von diesen zu beweisen. Die Arbeit beginnt mit
einer Einfiihrung in die Bewertungstheorie, um das notigte Hintergrundwis-
sen zu vermitteln. Mithilfe des direkten eingeschréinkten Produktes von
lokal kompakten Gruppen wird der Adelring Ax und die Idelgruppe I
iiber einem globalen Kérper K definiert und deren fiir diese Arbeit relevan-
ten grundlegenden Eigenschaften prasentiert und bewiesen. Mit den Héhen-
funktionen auf dem projektiven Raum iiber einem globalen Korper werden
wir erste Beispiele von Hohenfunktionen sehen. Abschliefend werden wir
Hohenfunktionen auf freien Moduln iiber dem Adelring iiber einem globalen
Korper K betrachten. Die sechs Eigenschaften von diesen Hohenfunktionen
die wir beweisen werden lassen sich wie folgt zusammenfassen:
Alle Hohenfunktionen sind &dquivalent zueinander, wobei Aquivalenz hier
analog wie bei Normen auf Vektorrdumen definiert ist. Das Bild einer Null-
folge unter einer Hohenfunktion ist wieder eine Nullfolge. Ist umgekehrt das
Bild einer Folge von primitiven Elementen unter einer Héhenfunktion eine
Nullfolge, so kann man jedes Folgenglied mit einem Skalar aus K ungleich
Null multiplizieren sodass man eine Nullfolge erhalt. Fiir jede reelle Zahl
B und jeder Hohenfunktion h gibt es bis auf Multiplikation mit Skalaren
aus K nur endlich viele Punkte P mit Komponenten aus K und h(P) < B.
Die letzten beiden Eigenschaften behandeln das Verhalten von Hohenfunk-
tionen unter Multiplikation der Argumente mit Skalaren aus A% und unter
A -Basiswechsel.
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