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Abstract

It is known that gravity can bend or slow down classical light. But the influence
of gravity on single photons has not been tested so far. Here the influence of
gravity on single photons in quantum optical experiments is of interest. In par-
ticular such influence on single photons in a superposition of different regions of
gravitational potential is considered. When only Newtonian gravity is assumed
a gravitational scalar Aharonov-Bohm like phase occurs. Yet, treating gravity
as locally equivalent to an accelerating reference frame, like in the general the-
ory of relativity, the Shapiro delay could affect the coherence of the photon’s
superposition. A measurement of effects which are explainable only by such
a gravitational time dilation can be viewed as the first experiment where both
theories, quantum mechanics and gerneral relativity, are essential to predict the
outcome. Since, on earth, this effect is acutely small a direct measurement
which was already suggested [1] is unpromising. In this thesis five methods
which base on the amplification effect of postselections are analysed concerning
their experimental feasibility in order to verify gravitational time dilations or
gravitational phase shifts on single photons. Two of them directly base on the
well-known weak measurement approach with postselections. It turns out that
these methods could be used to reach a siginificant improvement in the exper-
imental feasibility. While in [1] the required surface of the interferometer was
calculated as 103 km2 an improvement of five orders of magnitude is presented
here. Moreover they can be used to detect any kind of time dilations or phase
shifts which occur in interferometric experiments.

Zusammenfassung

Es ist bekannt, dass Gravitation klassisches Licht sowohl krümmen, als auch
verlangsamen kann. Jedoch wurde die Wirkung von Gravitation auf einzelne
Photonen bis heute noch nicht getestet. In dieser Arbeit steht der Einfluss
von Gravitation auf einzelne Photonen in quantenoptischen Experimenten im
Mittelpunkt. Im Speziellen wird der Einfluss von Gravitation auf Photonen in
einer Superposition verschiedener Regionen des Gravitationspotentials betra-
chtet. Verwendet man die Newtonsche Gravitationstheorie könnte eine rela-
tive Phase, analog zur skalaren Aharonov-Bohm Phase, auftauchen. Behan-
delt man dagegen Gravitation als lokal äquivalent zu einem beschleunigten
Bezugssystem, wie in der Allgemeinen Relativitätstheorie, könnte die Shapiro-
Verzögerung die Kohärenz der Photonen beeinflussen. Eine Messung solcher
Effekte, die allein durch gravitative Zeitdilatation erklärt werden können, wäre
das erste Experiment, bei dem sowohl Quantenmechanik als auch Allgemeine
Relativitätstheorie essentiell sind, um das Ergebnis vorherzusagen. Da der Ef-
fekt auf der Erde äußerst klein ist, ist eine direkte Messung, wie sie bereits
in [1] vorgeschlagen wurde, äußerst unwahrscheinlich. Um gravitative Zeitdi-
latationen oder gravitative Phasenverschiebungen auf einzelnen Photonen den-
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noch messen zu können, werden in dieser Arbeit fünf Methoden auf ihre Durch-
führbarkeit analysiert. Die Methoden basieren auf dem Verstärkungseffekt durch
postselections. Zwei von ihnen beruhen direkt auf dem bekannten Verfahren der
schwachen Messung mit postselections. Es stellt sich heraus, dass die Durch-
führbarkeit des Experiments durch diese Methoden signifikant verbessert wer-
den kann. Während in [1] noch ein Interferometer, das eine Fläche von 103 km2

einschließt, vorgeschlagen wurde, wird hier eine Verbesserung um fünf Größen-
ordnungen präsentiert. Darüber hinaus können sie genutzt werden, um jede
beliebige Art von Zeitdiliatationen oder Phasenverschiebungen in Interferome-
terexperimenten zu detektieren.
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1 Introduction

Although the research on quantum mechanics and quantum field theory on curved space-
time looks back on decades, there is still a lack of experiments or proposals for feasible
experiments which could probe an interplay between the fundamentals of quantum me-
chanics and general relativity. Since, from historical perspective, the progress in physics
is predominantly driven by experiments, coming up with such experiments can provide an
important contribution to the goal of a unified theory.

In 2011 Zych, Costa, Pikovski and Brukner published a thought experiment of this kind
[2]. They propose a simple Mach-Zehnder setup placed in the gravitational field of the earth
such that different amount of proper time elapses along each of the interferometer arms.
Interference of single particles with internal time-evolving degrees of freedom serving as a
clock is considered in this setup. Due to the gravitational time dilation the clock reveals
which-path information. In combination with the complementarity principle, this can be
understood as a gravitationally induced mechanism of losses and revival of coherence. Note
that in this context the complementarity principle states the dichotomy between which-path
information and the visibility of interference. Realising an experiment of this kind could be
viewed as the first verification of general relativistic proper time in a quantum experiment.

A related paper was published later analysing the previously suggested experiment with
the particular choice of single photons as particles [1]. In this case the distance taken by
the photon is analogous to the mentioned internal degree of freedom serving as a clock.
Even though optical interferometers are in general more feasible than interferometry with
matter the major problem of this approach is the required size of the interferometer. For a
significant drop of the visibility of the interference the gravitational time dilation must be
of the order of the coherence time (pulse width) of the photon. According to the results
of [1] the interferometer arms need to enclose an area of 103 km2, even if pulses with a
coherence length of femtoseconds are used. Since such a size is far beyond what is feasible
with current technology other approaches are needed to measure the effect of gravitational
time dilation.

In this thesis five different theoretical approaches are considered in order to getting closer
to a possible experimental verification of general relativistic effects on single photons.

The thesis is structured as follows: The basic concepts and physical effects (e.g. super-
position principle, gravitational time dilation) are presented in chapter 2. In chapter 3 the
formalism of weak measurements is introduced in order to apply it for the situation of a
single photon travelling through a gravitationally influenced interferometer whose setup is
presented in chapter 4. In section 5 five methods are suggested which base on amplifica-
tion effects of postselections. Two of them directly use the weak measurement formalism.
The five methods are: (1) Detecting amplified shifts in the mean frequency or in the mean
arrival time of the photon, (2) Amplifying the gravitationally induced phase shift via post-
selection, (3) Improving the original visibility approach by using different pulse shapes or
an additional controllable time delay, (4) Deforming the double-humped photon shape in
dependence of the gravitational phase shift, and finally (5) Cutting out certain frequencies
of the photons in dependence of the gravitational phase shift.
Two of these methods (1 and 3) directly probe the gravitational time dilation whereas three
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(2, 4 and 5) are only consequences of the gravitational phase shift. However, a verifica-
tion of the latter is not a proof of the existence of the former because a gravitational phase
shift can also be explained via a gravitational scalar Aharonov-Bohm phase within Newto-
nian gravity if the photon couples to the gravitational potential. This phase occurs even if
the force is the same on both paths. Although in such experiments the gravitational time
dilation cannot be probed, the mass-energy equivalence for single photons can be tested.
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2 Fundamental concepts

In this section the fundamental concepts crucial for this thesis are explained briefly to em-
phasise their meaning. Knowledge of the mathematical formalism of general relativity and
quantum mechanics is assumed.

First gravitational time dilation is shown to be a consequence of the theory of general
relativity. The gravitational redshift and the Shapiro delay are also derived as related effects.
Second quantum mechanical superposition is introduced. The two papers [2] and [1],
which build the fundament of this thesis, are presented, in order to demonstrate an interplay
between quantum mechanics and gravity.

2.1 Gravitational time dilation, redshift and the Shapiro delay

Gravitational time dilation is a consequence of the different flow of time measured by a
clock in different space-time regions. For example, a clock on the surface of the earth runs
slower than a clock on a tower.

To derive this effect quantitatively within general relativity the Schwarzschild metric
is assumed to be a good approximation of the geometry of space-time on a planet. In
Schwarzschild coordinates (t, r,θ ,ϕ) the Schwarzschild metric g can be written as

g =−c2
�

1−
2GM

c2r

�

dt2+
1

1− 2GM
c2r

dr2+ r2dθ2 + r2 sin2 θdϕ2 , (1)

where c is the speed of light, G is the gravitational constant and M is the mass of the planet.
The signature (− + ++) is used for the metric. Two stationary observers with identical
constant angular coordinates θ0,ϕ0 are located at R1 (say on the earth’s surface) and at
R2 > R1 (say on a tower). Their world lines can be written as x i(τ) =

�

t i(τ), Ri ,θ0,ϕ0
�

,
i = 1,2, where the parameter τ is the proper time. The proper time is the elapsing time as
measured by an ideal clock moving along the given world line. It is defined as the parameter
of the world line such that the length g

�dx i

dτ
, dx i

dτ

�

of the four-velocity dx i

dτ
is equal to −c2. So

the flow of the time coordinate t i(τ) of the stationary observers can be found via

−c2 = g
�

dx i

dτ
,
dx i

dτ

�

=
∑

αβ

gαβ
dxαi
dτ

dxβi
dτ
=−c2

�

1−
2GM

c2Ri

��

dt i

dτ

�2

, (2)

leading to

t i(τ) =
τ

q

1− 2GM
c2Ri

. (3)

This equation shows that in order to pass the same amount of coordinate time, the elapsed
proper time (the time of the clock of a stationary observer) is different for the two observers.
Consider, e.g., two spatial fixed events with time coordinates separated by ∆t. According to
(3) observer 1 measures a proper time interval of

∆τ1 =

r

1−
2GM

c2R1
∆t (4)
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with his clock, whereas observer 2 measures

∆τ2 =

r

1−
2GM

c2R2
∆t . (5)

A suitable form to express this time dilation is the ration between ∆τ2 and ∆τ1:

∆τ2

∆τ1
=

q

1− 2GM
c2R2

q

1− 2GM
c2R1

. (6)

The ratio (6) can be expressed as a function of the measurable proper distance h of the
two stationary observers. The proper distance h is the distance between the two stationary
observers as measured by a ruler. It is defined by the length of the space-like curve γ(λ) =
(t0, R1 + λ(R2 − R1),θ0,ϕ0) extending from R1 (at λ = 0) to R2 (at λ = 1) where the
coordinate time t0 is constant:

h=

∫ 1

0

r

g
�

dγ

dλ
,

dγ

dλ

�

dλ=

∫ R2

R1

1
Æ

1− 2GM
c2r

dr . (7)

Note that for M 6= 0 the proper distance h is different to the coordinate distance R2−R1. In
general the proper distance between two space-like separated events (dt = 0) is an invariant
length measure in general relativity. Assuming ∆R

R1
:= R2−R1

R1
to be very small (i.e. the two

observers are close to each other as compared to the radius of the earth) the time dilation
can be approximated as

∆τ2

∆τ1
=

q

1− 2GM
c2R1(1+∆R/R1)

q

1− 2GM
c2R1

= 1+
1

1− 2GM
c2R1

GM

c2R1

∆R

R1
+O

�

∆R

R1

�2

. (8)

Furthermore h can be approximated as

h=
R1

q

1− 2GM
c2R1

∆R

R1
+O

�

∆R

R1

�2

, (9)

leading to
∆τ2

∆τ1
≈ 1+

gh

c2

1
q

1− 2GM
c2R1

, (10)

where g is the gravitational acceleration on earth. Furthermore, on earth, the square root
can, in the last step, be approximated as 1 to obtain

∆τ2

∆τ1
≈ 1+

gh

c2 . (11)
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The first experimental test of gravitational time dilation was the Hafele-Keating experi-
ment in 1971 [3], [4]. Four previously synchronised atomic clocks were compared after
several hours, where two of them stayed on the ground and two of them flew in an airplane
at an altitude of 10 km. Note that in this experiment the measured time dilation was orig-
inated not only by the gravitational time dilation but also by kinematic effects like special
relativistic time dilation and the Sagnac effect.

Gravitational redshift

Light leaving a source with a certain frequency will be measured to have a different fre-
quency in different space-time regions. For example, sending light from the surface of the
earth to the top of a tower decreases the frequency of the light (redshift).

The effect of the gravitational redshift is related to the gravitational time dilation. This
is due to the fact that the frequency of light is nothing but the inverse of the period of the
propagating light wave. Since time dilation also affects this period, gravitational redshift is
a consequence of gravitational time dilation.

For a simple mathematical derivation consider two radial null geodesics in the Schwarz-
schild metric (1) representing two sequent wave crests of a light wave. A curve γ(τ) in
space-time is called to be null or light-like if g

� dγ
dτ

, dγ
dτ

�

= 0 where τ is the proper time. It is
called radial if the angular coordinates are constant. The geodesics of the wave crests pass
a fixed point in space (say the light source on earth’s surface) at R1 at different coordinate
times separated by ∆t. For null geodesics one gets from (1) the relation

cdt =
1

1− 2GM
c2r

dr (12)

between r and t. Since the right hand side is independent of t both crests pass the observer
at R2 > R1 (say on a tower) with the same difference in coordinate time ∆t. According to
(4) and (5) an observer at the earth’s surface will measure a different period ∆τ1 of the
wave than an observer on the tower ∆τ1. Since frequency is nothing but the inverse of the
period νi = 1/∆τi one obtains

ν1

ν2
=
∆τ2

∆τ1
=

q

1− 2GM
c2R2

q

1− 2GM
c2R1

, (13)

where ν1 and ν2 are the frequencies as measured on earth or on top of the tower respectively.
Using the same approximation as in the previous section this formula can be expressed in
terms of the height difference h of the observers:

ν1

ν2
≈ 1+

gh

c2 . (14)
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Robert Pound and Glen A. Rebka were the first1 who observed this redshift effect in the
famous Pound-Rebka experiment in 1960 [6]. Gamma rays were send 22.5 m from the
bottom to the top of a tower. The Mössbauer effect was used to make sure that emitter
and absorber have the same resonance frequency. According to the redshift the emitted
gamma rays were only absorbed when the absorbers resonance frequency was modified by
a Doppler shift due to additional relative motion.

The Shapiro delay

The speed of light, as measured by a stationary observer, is slowed down near massive
objects which originate a gravitational potential. Again, this is an effect related to the
gravitational time dilation. For a light-like curve the Shapiro delay can be defined as the
difference between the elapsed coordinate time of a certain path in Minkowski space-time
and the elapsed coordinate time of the same path in a curved space-time.

Consider a light-like radial geodesic in Minkowski space-time. The Minkowski metric in
spherical coordinates is given by

η=−c2dt2+ dr2+ r2dθ2+ r2 sin2 θdϕ2 . (15)

The elapsed coordinate time for light to travel from R1 to R2 > R1 then is

∆tM =
R2− R1

c
. (16)

In the Schwarzschild metric (1), in contrast, one gets for the elapsed coordinate time

∆tS =
1

c

∫ R2

R1

1

1− 2GM
c2r

dr =
R2− R1

c
+

2GM

c3 ln

�

R2− 2GM/c2

R1− 2GM/c2

�

. (17)

This can be used to define the Shapiro delay ∆s as the difference between ∆tS and ∆tM :

∆s =∆tS −∆tM =
2GM

c3 ln

�

R2− 2GM/c2

R1− 2GM/c2

�

. (18)

Obviously ∆s > 0 holds for all R2 > R1 > 2GM/c2, hence more coordinate time and there-
fore more proper time (for any observer) passes in the presence of a massive object.

Its first observation was in 1966 and 1967 by Irwin Shapiro et al. [7]. They measured the
time of a radar signal sent from earth and bounced off Venus in dependence of the position
of the sun which served as the massive object.

1Although Schiffer et al. [5]measured the gravitational red shift effect a few months before Pound and Rebka,
the latter claimed that Schiffer et al. underrated the error which is originated by a temperature difference
of the photon emitter and absorber.
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2.2 Quantum superposition, interference and which-path information

The notion of a superposition of states is a foundational tenet of quantum mechanics. In
textbooks it is usually introduced as the possibility to decompose a state into different bases
where the factors in front of the basis vectors are interpreted as the probability amplitudes.
Here, however, the difference between the and of a superposition and the or of a classical
mixture is emphasised.

For the calculations the state operator formalism is used. A state is given by a linear,
hermitian operator ρ ∈ L (H ) on a Hilbert spaceH satisfying

ρ ≥ 0 , trρ = 1 . (19)

A state is called pure if and only if trρ2 = 1 or mixed if and only if trρ2 < 1.
Consider now a setup where the space is divided into ”above” and ”below” a beam splitter

(Fig. 1). The corresponding states are denoted as |0〉 and |1〉 respectively. Two states for
a single particle will be considered. The first state ρ1 is a classical balanced mixture of
”above” and ”below”:

ρ1 :=
1

2
|0〉〈0|+

1

2
|1〉〈1| , (20)

whereas the second state ρ1 is a coherent balanced superposition of ”above” and ”below”,

|S〉=
1
p

2

�

|0〉+ |1〉
�

, (21)

leading to

ρ2 := |S〉〈S|=
1

2
|0〉〈0|+

1

2
|1〉〈0|+

1

2
|0〉〈1|+

1

2
|1〉〈1| . (22)

The two detectors are represented by the measurement operators D0 = |0〉〈0| and D1 =
|1〉〈1|. Placing the detectors in front of the beam splitter (before the particle can reach the
latter) the probabilities p0 and p1 to measure ”above” or ”below” are the same for both
states:

p0 = trρ1D0 = trρ2D0 =
1

2
, p1 = trρ1D1 = trρ2D1 =

1

2
. (23)

Hence it is impossible to distinguish the states ρ1 and ρ2 in this setup. Putting the detectors
back behind the beam splitter (like in Fig. 1) leads to interference effects which clearly
shows the difference between a classical mixture (”either above or below”) and a superposi-
tion (which is sometimes described as ”both above and below at once”). Note that only one
single particle is considered. The unitary transformation representing the balanced beam
splitter is here given by

UBS =
1
p

2
(|0〉〈0|+ |1〉〈0|+ |0〉〈1| − |1〉〈1|) . (24)

The representation of the beam splitter can be constructed under the assumption that it
creates coherent superpositions from pure states. If one starts with UBS|0〉 := (|0〉+|1〉)/

p
2,

only one free parameter remains in order to keep the unitarity. This parameter turns out to
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D0

D1

|0〉

|1〉

BS

Figure 1: A simple setup with a beam splitter and two detectors to demonstrate the interfer-
ence of a single particle in an initially superposed state.

be a relative phase (see below for the notion of a relative phase) and was arbitrarily chosen
such that UBS is pure real. So the states behind the beam splitter are

ρ1
BS−→ ρ′1 = UBSρ1U†

BS = ρ1 , ρ2
BS−→ ρ′2 = UBSρ2U†

BS = |0〉〈0| . (25)

Due to interference at the beam splitter the states ρ′1 and ρ′2 lead to different detection
probabilities. For ρ′1 one still gets

p0 = trρ′1D0 =
1

2
, p1 = trρ′1D1 =

1

2
, (26)

but ρ′2 results in
p0 = trρ′2D0 = 1 , p1 = trρ′2D1 = 0 . (27)

A further difference between a classical mixture and a superposition is the relative phase,
which, for a clear analogy to the mixed state, was chosen as 1 in (21). In the state operator
representation the relative phases appear in the off-diagonal terms. How they affect the
interference at a beam splitter is demonstrated in a Mach-Zehnder interferometer (Fig. 2):
Let the incident particle be a pure state coming from below:

ρ = |1〉〈1| . (28)

The whole interferometer then acts like a unitary

UMZ = UBSUPSUBS , (29)

where UBS is the action of the beam splitter (24) and

UPS = eiϕ|0〉〈0|+ |1〉〈1| (30)

represents the phase shift which assigns a relative phase of eiϕ to the upper path. The
outgoing state ρ′ is the unitary transformed incident state

ρ
MZ−→ ρ′ = UMZρU†

MZ = sin2 ϕ
2
|0〉〈0|+

i sinϕ

2
|0〉〈1| −

i sinϕ

2
|1〉〈0|+ cos2 ϕ

2
|1〉〈1| . (31)
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D0

D1

ϕ|0〉

|1〉

Figure 2: A Mach-Zehnder interferometer consisting of two beam splitters (blue), two mir-
rors (black), a phase shift element, and two detectors.

Hence the detection probabilities oscillate with the phase ϕ:

p0 = trρ′D0 = sin2 ϕ
2

, p1 = trρ′D1 = cos2 ϕ
2

. (32)

The visibility of the interference is defined via

V =
max
ϕ
[pi]−min

ϕ
[pi]

max
ϕ
[pi] +min

ϕ
[pi]

, i = 0, 1 . (33)

In the described Mach-Zehnder setup one clearly has V = 1. The complementary quan-
tity is the distinguishability D, which is defined as the distance between the final detector
states in the trace norm [8]. It represents the amount of which-path information and can
be interpreted as the probability to correctly guess which path the particle took in the in-
terferometer. Since due to the superposition one cannot guess better than randomly which
path the particle took, the distinguishability is zero in the above example. The inequality
V 2+D2 ≤ 1 states the often-quoted complementarity principle. Note that the equality holds
only for pure states (see [8] for a comprehensive derivation).

If, for some reason, it is possible to increase the probability to correctly guess which path
the particle took (increase D) this is at the expense of the visibility V . In chapter 2.3 it will
be shown under what conditions the gravitational time dilation can induce an increase of
D.

The first experimental test of the relation between the visibility V and the distinguishabil-
ity D was done by Greenberger and Yasin in 1988 [9]. They used a neutron interferometer
where one arm was equipped with an element blocking a certain percentage of the neutron
beam to increase the distinguishability D.
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2.3 An interplay between QM interference and GR time dilation

In 2011 Zych, Costa, Pikovski and Brukner [2] published the idea of an

”interference of a clock”

which occurs in a Mach-Zehnder interferometer placed in the gravitational field if the used
particle has some internal degree of freedom that evolves in time. This internal degree of
freedom then serves as a clock measuring the proper time along its path. As the arms of
the interferometer route through different space-time regions the flow of time is different
along each arm. This affects the evolution of the clock states which become entangled
with the path degree of freedom. As a result, the initially coherent superposition of the
two paths becomes incoherent: The more distinguishable become the time dilated clock
states, the more the total state is entangled and the less coherent becomes the path degree
freedom. The time dilation reveals which-path information and therefore increases the
distinguishability and decreases the visibility of the interference. In difference to any other
performed or proposed experiments where quantum mechanics and gravity interplay, the
general relativistic notion of proper time is indispensable.

In order to review this idea shortly the next several equations are cited, with permission,
from Zych et al. [2],[1]. A similar setup on which this thesis is based, is discussed in detail
in ch. 4.

Inside the interferometer (see Fig. 3, reproduced with permission from Zych et al. [1]),
just in front of the second beam splitter, the state of the particle reads :

|ψ〉=
1
p

2

�

ie−iΦ1 |r1〉|τ1〉+ e−iΦ2+iϕ|r2〉|τ2〉
�

. (eq. (3) in [2])

Here |r1〉 and |r2〉 are the path states (according to path γ1 and γ2 respectively) whereas
|τ1〉 and |τ2〉 are the states of the internal degree of freedom acting as the clock. The
trajectory dependent phases are denoted as Φ1 and Φ2 and ϕ is some additional controllable
phase. The above state describes an entangled state, so in order to calculate the detection
probabilities for the detectors D± the internal degree of freedom has to be traced out after
the second beam splitter. Hence the detection probabilities are

P± =
1

2
±

1

2
|〈τ1|τ2〉| cos(∆Φ+α+ϕ) , (eq. (4) in [2])

where ∆Φ = Φ1 −Φ2 and α is the phase of the complex number 〈τ1|τ2〉. According to the
definition (33) the visibility reads

V = |〈τ1|τ2〉| . (eq. (5) in [2])

Thus which-path information becomes available in dependence on the accuracy of the inter-
nal clock: The smaller |〈τ1|τ2〉| ≤ 1 for a fixed time dilation the higher the accuracy of the
clock. In the case of a periodic clock one should keep in mind that a time dilation equal to
the period of the clock leads to no measurable effect. Note that there is no need to measure
the clock state. It is sufficient if the clock state is accessible in the operational sense.
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Figure 3: A Mach-Zehnder interferometer in the gravitational field. It consists of a two beam
splitters (BS), a controllable phase shift (PS) and two detectors D±. The two paths
γ1 and γ2 are separated in height by h. (This figure is reproduced with permission
from Zych et al. [1]).

The origin of this entanglement can be seen when considering the operators in the Schrö-
dinger equation in coordinates where the particle is at rest. For the solution of the Schrö-
dinger equation it holds:

iħh
∂

∂ τ
= H . (34)

Here τ is the proper time (not to be confused with internal state labels τ1 and τ2) and H is
the Hamiltonian of the internal clock degree of freedom. Since the particle is assumed to be
a point particle the internal Hamiltonian is independent of any spatial coordinates, hence a
transformation to the coordinate time t reads

iħh
∂

∂ t
= τ̇H , τ̇=

dτ

dt
. (35)

Since proper time τ of a world line x of a particle is defined as the parameter such that
−c2 = g

�dx
dτ

, dx
dτ

�

for some metric g, one can find the flow τ̇ of the proper time with respect
to the coordinate time t via:

−c2 = g
�

dx

dτ
,
dx

dτ

�

=
�

dt

dτ

�2

g
�

dx

dt
,
dx

dt

�

⇒ τ̇=
1

c

r

−g
�

dx

dt
,
dx

dt

�

. (36)

In the case of the Schwarzschild metric the Newtonian potential φ(r) = −GM
r

appears in
the metric and therefore appears in τ̇. Thus in τ̇H the coordinate r is coupled to the internal
Hamiltonian H. Treating the coordinate r as an operator, it is this coupling which originates
the entanglement between the internal clock state and the path of the particle.

While this describes interferometry with massive particles, photons are considered in a
second paper [1]. In this case the position of the photon is analogous to the clock. While
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the wave packets of the photon along the paths γ1 and γ2 (Fig. 3) would entirely overlap at
the second beam splitter in absence of gravity, they are delayed in time with respect to each
other when the interferometer is placed in a gravitational field due to time dilation which
manifests itself as a Shapiro delay. For a stationary observer located at the second beam
splitter this time dilation reads

∆τ≈
l gh

c3 . (eq. (9) in [1])

Here h and l are the dimensions of the interferometer (when considered as a rectangular
shape in Fig. 3), g is the gravitational acceleration, and c is the speed of light. This clearly
causes the visibility to drop since which-path information becomes available due to the
different arrival times for each arm. For a photon with a Gaussian shape, a pulse width
(coherence time) of σ, the visibility becomes

V = e
−
�

∆τ
t⊥

�2

, (eq. (13) in [1])

where t⊥ =
p

8σ is the so called precision of the clock (the time when the overlap of the
two wave packets becomes smaller than 1/e). Thus, the larger the time dilation ∆τ and
the shorter the coherence length σ of the photon, the larger is the drop in the visibility V .
To give a numerical example [1] assumes a femtosecond pulse. In order to get a drop in
visibility of about 1/e the dimensions of the interferometer (l · h) must be of the order of
103 km2. This is far beyond the reach of current technology.

In a more modest approach the interest can be focused on the relative phase shift instead
of the time dilation (concerning both matter and photon interferometry). In contrast to
time dilation a phase shift can also be explained with non-relativistic Newtonian gravity.
There the phase shift occurs as a gravitational Aharonov-Bohm phase as the two arms of the
interferometer guide through regions of different gravitational potential. Hence the exper-
iment is no verification of an interplay between quantum mechanics and general relativity
anymore. However, for a photon it can still be seen as a test of the mass-energy equivalence
since a phase shift requires a coupling between the gravitational potential and the photon’s
rest mass (its energy divided by c2).
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3 Weak measurements

One way to amplify the small gravitational time dilation is to make use of the weak mea-
surement formalism with postselections. In this section a general introduction to weak mea-
surements is given. A connection to the particular interferometer experiment is established
in ch. 4.

Weak measurement refers to a slightly modified von Neumann measurement scheme
[10]. The coupling between a quantum system and a pointer (which is also treated as a
quantum mechanical degree of freedom) is so weak, that an observation of the pointer state
causes virtually no disturbance of the quantum system. It is a method to amplify the effects
of weak couplings and to gain information about the evolution of a system without perform-
ing projective measurements. It was first introduced by Aharonov, Albert and Vaidman in
1988 [11]. The following is a introduction to the weak measurement scheme.

Let the initial quantum state be a product state |I〉|ψI〉 where |I〉 is the preselected state
of the system and |ψI〉 is the state of the pointer. In the position representation one writes
〈x |ψI〉 = ψI(x). The weak coupling between system an pointer is modelled by the time-
dependent Hamiltonian

H(t) = λ(t) A P , (37)

where A is the observable of the system that couples to the momentum P of the pointer, and
the coupling strength λ(t) is such that its integral,

∫ ∞

−∞
λ(t) dt =: δ , (38)

is finite. This leads to the unitary evolution operator

U = e−
i
ħh

∫

H(t) dt = e−
i
ħhδAP . (39)

Henceforth ħh is set to 1 to improve the readability of the formulae. Applying U to the initial
state creates the entanglement between the system and the pointer:

U |I〉|ψI〉= e−iδAP |I〉|ψI〉=
∞
∑

k=0

(−iδ)k

k!
Ak|I〉 Pk|ψI〉= |I〉|ψI〉 − iδA|I〉 P|ψI〉+ ... . (40)

Note that if the coupling constant δ is small, almost no information can be gained about
the system by observing the pointer state. Performing a postselection on 〈F | in the system
degree of freedom results in a product state |F〉|ψF 〉 where the state of the pointer is given
by

|ψF 〉= N
∞
∑

k=0

(−iδ)k

k!
〈F |Ak|I〉 Pk|ψI〉 , (41)

in which N is a normalisation factor. Inserting identities 1 =
∑

l |al〉〈al | in the basis where
A is diagonal shows that the final pointer state is a superposition of shifted initial pointer
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states

ψF (x) = 〈x |ψF 〉= N
∞
∑

k=0

(−iδ)k

k!

∑

l

〈F |Ak|al〉〈al |I〉 〈x |Pk|ψI〉

= N
∑

l

〈F |al〉〈al |I〉 〈x |e−iδal P |ψI〉= N
∑

l

〈F |al〉〈al |I〉ψI(x −δal) . (42)

Here it was used that e−iδal P is the translation operator.
The following approximation reveals an interesting and unexpected effect of these super-

positions. By defining the so called weak value

AW :=
〈F |A|I〉
〈F |I〉

, (43)

one can rewrite the final state of the pointer as

|ψF 〉= N〈F |I〉



1− iδAWP +
∞
∑

k=2

(−iδ)k

k!

〈F |Ak|I〉
〈F |I〉

Pk



 |ψI〉 . (44)

Now the fact that δ is small comes into play. Assuming that δ is sufficiently small and |ψI〉
be such that the sum can be neglected for k ≥ 2 (see below for the conditions), the final
state of the pointer can be approximated like

|ψF 〉 ≈ N〈F |I〉
�

1− iδAWP
�

|ψI〉 ≈ e−iδAWP |ψI〉 . (45)

Since the unitary operator e−iδAWP is the translation operator, the pointer is shifted by δAW:

ψF (x)≈ 〈x |e−iδAWP |ψI〉=ψI(x −δAW) . (46)

This shift can be of a disconcerting amount. The title ”How the result of a measurement
of a component of the spin of a spin-1/2 particle can turn out to be 100” of the pioneer
paper [11] is an expression of that. So even if δ is small the shift δAW can be very large by
choosing the preselection |I〉 and the postselection |F〉 as nearly orthogonal states, leading
to a large weak value (43). Note that this large shift can arises only for those states which
survived the postselection. It is a consequence of the superposition of small shifts (42)
where the complex amplitudes 〈F |al〉〈al |I〉 cause non-trivial interference. Metaphorically
speaking the postselection cancels all contributions in ψI except those which are centred
around δAW.

Note that the approximation (45) of (41) is critical. Remarkably in the original publica-
tion by Aharonov et al. [11] the conditions for this approximation to hold were erroneous.
This was noticed by Duck, Stevenson and Sudarshan in 1989 [12] who gave the correct
conditions. However Duck et al. calculated these conditions for the very special case of a
pure real Gaussian pointer. Here these conditions are adapted for the case of a Gaussian
pointer with a simple complex phase:

ψI(x) =
1

(2πσ2)1/4
exp
�

− x2

4σ2

�

exp
�

ip0 x
�

, (47)
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whose Fourier transform is

eψI(p) =

�

2σ2

π

�1/4

exp
�

−σ2(p− p0)
2
�

. (48)

Now the conditions for the approximation (45) of (41) read:

1

δ

1

p0+
1

2σ

� |AW| ,

δ

�

p0+
1

2σ

�

� min
k=2,3,...

�

�

�

�

〈F |A|I〉
〈F |Ak|I〉

�

�

�

�

1
k−1

.

(49)

(50)

For the derivation see [12] and use (47) for the initial pointer state.

It is important to notice, however, that the amplification effect with large weak values
AW is at the cost of the probability to successfully postselect. This fact is underestimated in
many introductions to weak measurement with postselections. To calculate the postselection
probability the state operator ρS of the system is calculated by tracing out the pointer degree
of freedom2 after the weak interaction (40):

ρS =

∫

〈p| U |I〉|ψI〉 〈I |〈ψI |U† |p〉 dp

=

∫ ∞
∑

k,l=0

(−iδ)k

k!

(iδ)l

l!
Ak|I〉〈I |Al 〈p|Pk|ψI〉〈ψI |P l |p〉 dp

=

∫ ∞
∑

k,l=0

(−iδ)k

k!

(iδ)l

l!
Ak|I〉〈I |Al pkpl |〈p|ψI〉|2 dp (51)

=

∫

e−iδpA|I〉〈I |eiδpA | eψI(p)|2 dp

The probability of a successful postselection is now given by

p = 〈F |ρS|F〉=
∫

|〈F |e−iδpA|I〉|2 | eψI(p)|2 dp (52)

This formula reveals that the postselection probability is the weighted integral of all transi-
tion probabilities |〈F |e−iδpA|I〉|2 where the effective Hamiltonian δpA of the system depends
on the momentum p. For small δ the leading term is just given by |〈F |I〉|2 which is propor-
tional to the inverse of the magnitude squared of the weak value 1/|AW|2. Thus:

2Since the symbol p denotes the postselection probability the momentum basis of the pointer is denoted by
the symbol |p〉.
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The amplification effect and a successful postselection are inversely proportional.

Furthermore the last equation shows the unsurprising relation between the postselection
probability p and the normalisation factor N ,

p =
1

N2 , (53)

by comparing (52) with an integration of the magnitude squared of (42).

If the weak value AW (43) is complex the following two statements concerning the expec-
tation values of the position 〈X 〉F = 〈ψF |X |ψF 〉 and the momentum 〈P〉F = 〈ψF |P|ψF 〉 for
the final pointer state hold:

〈X 〉F = 〈X 〉I +δReAW+O (δ2) ,

〈P〉F = 〈P〉I + 2δVarI P ImAW+O (δ2) ,

(54)

(55)

where VarI P = 〈P2〉I − 〈P〉2I is the variance of the pointer in the momentum degree of free-
dom in the initial state. This was pointed out by R. Josza [13]. Albeit the shift in the mean
position is clear from the derivation above, the momentum shift requires explanation. Com-
pared to the real part of the weak value which could be interpreted as a shift in the pointer
position, the imaginary part can not be interpreted as creating a shift in the pointer’s mo-
mentum since the interaction Hamiltonian (37) commutes with P. Hence there is no reason
to expect any dynamics from the interaction like a shift in the momentum. However, the
postselection originates some effective dynamics: The shift in the mean momentum can be
interpreted as a kind of projection onto a fraction of the momentum distribution which was
already present in the initial state of the pointer [14]. Therefore it depends on the variance
VarI P of the initial momentum distribution. Moreover, it turns out that the remaining factor,
2δ ImAW, is (to lowest order in δ) proportional to the logarithmic derivative3 of the transi-
tion probability |〈F |e−iδpA|I〉|2 which also appears in the postselection probability (52). This
can be seen in the following way:

∂

∂ p
ln
�

|〈F |e−iδpA|I〉|2
�

=−iδ

�

〈F |Ae−iδpA|I〉〈I |eiδpA|F〉
〈F |e−iδpA|I〉〈I |eiδpA|F〉

−
〈F |e−iδpA|I〉〈I |AeipA|F〉
〈F |e−iδpA|I〉〈I |eiδpA|F〉

�

= 2δ Im

�

〈F |Ae−iδpA|I〉
〈F |e−iδpA|I〉

�

(56)

= 2δ ImAW+O
�

δ2
�

.

So the shift in the momentum is rather a postselection’s product than a dynamical effect.

3the logarithmic derivative of a function f is simply defined by (ln f )′ = f ′/ f .
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PBS1

PBS2
g

P2
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|V 〉

|H〉

Figure 4: A Mach-Zehnder interferometer in the gravitational field with gravitational accel-
eration g. Two polariser (P1 and P2) preselect and postselect the polarisation of
the photon. The polarising beam splitter (PBS1 and PBS2) divide and recombine
the photon’s path and correlate the path with the polarisation. The detector D
represents a time of arrival measurement or a frequency detector.

4 Optical interferometer: Setup and theoretical approach

The setup, on which the analysis in this thesis is based, is slightly different from the original
setup proposed by Zych et al. [1]. Instead of the visibility of the interference other effects
of gravitational time dilation are proposed to uniquely prove the interplay between quan-
tum mechanics and general relativity. The methods to measure these effects are presented
in ch. 5. All of them are based on an interferometer experiment with preselections and
postselections on single photons in a superposition of different paths in space-time.

4.1 Gravitational time dilation in a Mach-Zehnder interferometer

The setup is given by an optical Mach-Zehnder interferometer as in Fig. 4. The interfer-
ometer is build such that both arms have the same proper distance, where each consists of
a horizontal part l and a vertical part h (see ch. 2.1 on p. 4 for an explanation of proper
distance).

The polarisation of a single incident photon (see Fig. 4) is preselected by a polariser (P1)
to be in the state

|I〉= cosα|H〉+ sinαeiχ |V 〉 . (57)

Here |H〉 and |V 〉 form a basis in the Hilbert space over C2 and represent linear horizontal
and linear vertical polarisation respectively. A polarising beam splitter (PBS1) which reflects
vertical polarised light and transmits horizontal polarised light creates a superposition of
two paths through different space-time regions. Which-path information is now encoded
in the polarisation degree of freedom. Due to the Shapiro delay (or rather gravitational
time dilation) the wave packet in the lower path needs more time to arrive at the second
polarising beam splitter (PBS2) as measured by a stationary observer. This time dilation
is gained only at the horizontal arms of the interferometer. Note that the gravitational
redshift (occurring only in the vertical arms) affects both paths in the same way, so both
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wave packets arrive with the same mean frequency at the second beam splitter. Since the
photon travels on light-like geodesics the time dilation of the two wave packets is given by
(see [1])

∆τ≈
l gh

c3 , (58)

as measured by a stationary observer sitting at the upper path. Here g is the gravitational
acceleration and c is the speed of light. The approximation is valid as long as the arms of
the interferometer, l and h, are short compared to the radius of the earth. The second po-
larising beam splitter (PBS2) which reflects horizontal polarised light and transmits vertical
polarised light reunites both wave packets. For the stationary observer at the upper path the
state between PBS2 and the second polariser P2 reads

|Ψ〉= cosα|H〉|ψ+δ〉+ sinαeiχ |V 〉|ψ−δ〉 . (59)

Here δ ≡∆τ/2 and the photon states |ψ±δ〉 are defined as follows:

|ψ±δ〉=
∫

eψ(ω)e±iωδ a†
ω |0〉 dω , (60)

where a†
ω is a single photon creation operator acting on the vacuum |0〉, and eψ(ω) is the fre-

quency distribution of the photon. The Fourier transform of eψ(ω) represents the temporal
shape of the photon:

ψ(t) =
1
p

2π

∫

eψ(ω)eiωt dω . (61)

Since vacuum is considered, one could also replace ω by k =ω/c and t by x = c t to obtain
the common notation with a†

k and a†
x . So the t in ψ(t) does not refer to any kind of time

evolution but ψ(t) rather describes the shape of the photon at a given moment in time as
observed by a stationary observer. The origin t = 0 is arbitrarily chosen as the peak of the
pulse, see for example Fig. 5.
Note that the state |Ψ〉 is an entangled state since the horizontal polarised contribution is
certainly correlated with the lagging wave packet and the vertical polarised contribution is
certainly correlated with the wave packet ahead. The strength of the entanglement depends
on the amount of the time dilation and the width of the wave packet. Reaching polariser P2
a postselection on

|F〉= cosβ |H〉+ sinβeiϕ|V 〉 (62)

is performed. Thus the photon is finally in the product state |F〉|ψF 〉 where its shape |ψF 〉
depends on the preselection, the postselection, and the time dilation:

|ψF 〉= N
�

cosα cosβ |ψ+δ〉+ sinα sinβ ei(χ−ϕ)|ψ−δ〉
�

. (63)

The normalisation constant reads

N =
�

cos2α cos2 β + sin2α sin2 β + 2cosα sinα cosβ sinβ cos(χ −ϕ)Re〈ψ+δ|ψ−δ〉
�−1/2 .

(64)
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Figure 5: Example of a Gaussian pulse ψ(t) = (2πσ2)−1/4 exp(−t2/4σ2) exp(iω0 t). The
parameters are chosen as ω0 = 2.5 · 1015 Hz (red photon) and σ = 2 fs.

The shape of the photon or its frequency can be measured with the detector D which repre-
sents a time of arrival measurement or a frequency detector.

To establish a connection with the weak measurement formalism one can show that the
state |Ψ〉 of eq. (59) can also be written as

|Ψ〉= e−iδAP |I〉|ψδ=0〉 , (65)

where
A=−|H〉〈H|+ |V 〉〈V | (66)

and

P =−i
∂

∂ t
. (67)

This is exactly the same form as the state (40) in the introductory chapter of the weak
measurements on p. 13. The following calculation proves that (65) is equal to (59):

e−iδAP |I〉|ψδ=0〉=
∞
∑

k=0

(−iδ)k

k!
Ak|I〉Pk|ψδ=0〉

=
∞
∑

k=0

(−iδ)k

k!
(cosα Ak|H〉+ sinαeiχ Ak|V 〉)Pk|ψδ=0〉

=
∞
∑

k=0

(−iδ)k

k!
(cosα (−1)k|H〉+ sinαeiχ (1)k|V 〉)Pk|ψδ=0〉 (68)

= cosα|H〉eiδP |ψδ=0〉+ sinαeiχ |V 〉e−iδP |ψδ=0〉

= cosα|H〉|ψ+δ〉+ sinαeiχ |V 〉|ψ−δ〉 .
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Note that the unitary operator exp(−iδAP) in (65) does not represent any physical dynam-
ics taking place. It is merely a formal trick to apply the weak measurement formalism. At
the same time this gives a formula for the weak value (43)

AW =
〈F |A|I〉
〈F |I〉

=
− cosα cosβ + sinα sinβei(χ−ϕ)

cosα cosβ + sinα sinβei(χ−ϕ) , (69)

and also a formula for the postselection probability p = 1/N2 (see eq. (53)), i.e. the proba-
bility that the photon passes P2:

p = cos2α cos2 β + sin2α sin2 β +
1

2
sin2α sin 2β cos(χ −ϕ)Re〈ψ+δ|ψ−δ〉 . (70)

If the photon has a Gaussian envelope,

ψ(t) =
1

(2πσ2)1/4
exp
�

− t2

4σ2

�

exp
�

iω0 t
�

, (71)

where ω0 denotes the mean frequency, the conditions (49) and (50) for the weak measure-
ment formalism to be valid read in this case:

2

∆τ
1

ω0+
1

2σ

� |AW| ,

∆τ
2

�

ω0+
1

2σ

�

� min
k=2,3,...

�

�

�

�

〈F |A|I〉
〈F |Ak|I〉

�

�

�

�

1
k−1

.

(72)

(73)

The shifts caused by the postselection described in (54) and (55) then occur in the mean
arrival time and in the mean frequency respectively. If ∆t denotes the shift in the mean
arrival time and ∆ω the shift in the mean frequency, they read:

∆t =
∆τ
2

ReAW+O
�

∆τ2
�

,

∆ω=
∆τ
4σ2 ImAW+O

�

∆τ2
�

.

(74)

(75)

4.2 Newtonian Limit

As mentioned at the end of ch. 2.3, no time dilation between the wave packets occurs if the
effects of gravity are considered only in the Newtonian limit (NL). Since the coupling be-
tween the internal Hamiltonian and the gravitational potential is not present, the only effect
of gravity is a relative gravitational scalar Aharonov-Bohm phase between the two paths in
the interferometer. No entanglement occurs. The state between the second polarising beam
splitter PBS2 and the postselection P2 is no longer given by (59) but reads

|ΨNL〉= cosα|H〉+ sinαei(χ+Φ)|V 〉 , (76)
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where Φ =∆τω0 is the gravitational Aharonov-Bohm phase (see [1]). The temporal shape
of the photon becomes unimportant since it is not affected. After a successful postselection
the state is clearly in the pure state |ψNL

F 〉 = |F〉, instead of (63). Apparently the postselec-
tion probability will also change from (70) to

pNL = cos2α cos2 β + sin2α sin2 β +
1

2
sin 2α sin2β cos(χ +Φ−ϕ) . (77)

Since the aim of this thesis is to find more feasible methods which uniquely proof the exis-
tence of a gravitational time dilation, all methods have to be counterchecked in the New-
tonian limit. This is due to the fact that an Aharonov-Bohm phase can have very similar
effects than a time dilation if the time dilation is very small compared to the width of the
photon pulse.

4.3 Alternative setup: Michelson-Morley interferometer

Alternatively to the Mach-Zehnder setup (Fig. 4) a Michelson-Morley type interferometer
(Fig. 6) can be used. This setup might be easier to build and easier to handle since there
are less elements. The interferometer arms have the same proper distance l like in the
Mach-Zehnder case.

A polarising beam splitter again encodes the which-path information in the polarisation
degree of freedom. To avoid that the photon returns at the source on its way back, a unitary
operation W flips the polarisation in each arm. Since it acts on each wave packet twice W
must be the square root of the NOT operator

W 2 !
= |H〉〈V | ± |V 〉〈H| , (78)

which is, for example, given by

W =
1
p

2

�

|H〉〈H|+ |H〉〈V | − |V 〉〈H|+ |V 〉〈V |
�

. (79)

Experimentally this can be realised with λ/4-plates or Faraday rotators. Like in the Mach-
Zehnder case the Shapiro delay causes a time dilation between the two wave packets (see
below for the calculation). After the postselection (at the polariser P2) the state reads like
in the Mach-Zehnder case and is given by eq. (63) whereat the time dilation is here given
by

∆τ≈
gl2

c3 . (80)

This time dilation ∆τ is calculated as follows: It is assumed that the horizontal path is
approximately on the same radial coordinate R in the Schwarzschild metric (1). While the
angle θ changes by an amount of l/R all other spatial coordinates stay constant. Thus the
length of this arm can trivially be defined via

l =

∫ l/R

0

R dθ . (81)
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Figure 6: A Michelson-Morley interferometer in the gravitational field with gravitational ac-
celeration g. Two polarisers (P1 and P2) preselect and postselect the polarisation
of the photon. The polarising beam splitter (PBS) divides and recombines the
photon’s path and correlates the path with the polarisation. The unitary transfor-
mation W 2 (e.g. a λ/4-plate or a Faraday rotator) flips the photon’s polarisation in
order to reach detector D. The detector D represents a time of arrival measurement
or a frequency detector.
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On the other hand the vertical path is described by a world line with fixed angular coordi-
nates and variable radial coordinate going from R to R+∆R. Since l is already fixed ∆R is
defined by

l =

∫ R+∆R

R

1
Æ

1− 2GM
c2r

dr . (82)

The elapsed coordinate time for the horizontal world line is

∆tH =
1

c

1
Æ

1− 2GM
c2R

∫ l/R

0

R dθ =
1

c

l
Æ

1− 2GM
c2R

=
1

c

1
Æ

1− 2GM
c2R

∫ R+∆R

R

1
Æ

1− 2GM
c2r

dr , (83)

and for the vertical (radial) world line it is

∆tV =
1

c

∫ R+∆R

R

1

1− 2GM
c2r

dr . (84)

An expansion of∆tH−∆tV for small∆R/R reveals the time dilation in the coordinate time:

∆tH −∆tV =
GM

2c3

1
�

1− 2GM
c2R

�2

�

∆R

R

�2

+O
�

∆R

R

�3

. (85)

For a stationary observer at R this difference in coordinate time corresponds to a measured
proper time interval of

∆τ
2
=

r

1−
2GM

c2R
(∆tH −∆tV ) =

GM

2c3

1
�

1− 2GM
c2R

�3/4

�

∆R

R

�2

+O
�

∆R

R

�3

. (86)

In order to express this proper time interval in terms of l instead of ∆R, one can expand the
relation (82) between l and ∆R to lowest order,

l =
R

Æ

1− 2GM
c2R

∆R

R
+O

�

∆R

R

�2

, (87)

to get the approximation
∆τ
2
≈

gl2

2c3 (88)

for (86), where g = GM
R2 . Since the wave packets travel both world lines twice the overall

time dilation results in (80).
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5 Methods and results

In this section five methods are presented to achieve a more feasible parameter range for
real experiments. The great challenge in this respect is mainly the fact, that the time dilation
∆τ (see eq. (58) on p. 18) is very small if the dimensions of the used interferometer are
of conventional order. An interferometer which encloses a surface of A = l · h = 100m2

leads to a time dilation of about ∆τ≈ 3.6 · 10−23 s when placed vertically on Earth. On the
other hand a time dilation in the range of attoseconds (10−18 s) requires a surface of about
A ≈ 2.7km2 for a quadratic interferometer which corresponds to an arm length of about
1.6 km. Thus the assumption that the time dilation is in the sub-pulse-width regime of the
used photons is reasonable and reflects the constant challenge of this thesis.

The quantity∆τ/σ, where σ is the pulse width, represents a measure for the accessibility
of the time dilation. Hence very short pulses are advisable. However, since the pulse width
is related to the frequency distribution, the restriction to optical photons (ω0 ∼ 1015 Hz) is,
at the same time, a restriction to pulse widths of about femtoseconds or broader. To see this,
consider the following naive and rough estimation: If the pulse has a width of σ the ”electric
field needs the chance to oscillate at least once” during σ, hence σ > 2π/ω0 = 6.28 fs.
Another way to get a similar inequality is based on the assumption, that the pulse has
a Gaussian shape like in (71) with a pulse width σ. From a simple Fourier transformation
follows that the spectral bandwidth is given by 1/2σ. In order to avoid nonphysical negative
frequency contributions the mean frequency ω0 should be much larger than the spectral
bandwidth, so ω0 � 1/2σ. This is equivalent to σ � 1/2ω0 = 0.5 fs. For simplicity,
henceforth, the lower bound of the pulse width is given by

σ ≥ 1/ω0 . (89)

For a more detailed discussion see [15].
Moreover this states that the usage of, e.g., attosecond photons requires frequencies of at
least 1018 Hz. This is already in the soft X-ray regime, so the setup can no longer be based
on optical devices.

In method 1 the formalism of weak measurements is used to predict an amplified shift in
the mean frequency and in the mean arrival time of the single photons in dependence of the
gravitational time dilation. These shifts are consequences of the weak measurement with
postselections in the polarisation afterwards. Method 2 presents a way to amplify phase
shifts with postselections and was inspired by the previous method. However, instead of
the gravitational time dilation only the gravitational phase shift or rather the mass-energy
equivalence for single photons can be tested. In method 3 it is shown how the postselection
probability depends on the shape of the photon or rather how it can be amplified by using
additional controllable time dilations caused by positioner elements. This positioner ele-
ments can vary the effective difference in the arm length in the subnanometer regime. Like
the first method it probes the gravitational time dilation directly. Method 4 shows how the
gravitational phase shift can deform the shape of the photon: A double-humped shape can
be created or destroyed in dependence of the gravitational phase shift. In the last method, a
certain frequency of the photon is cut out due to destructive interference in dependence of
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the gravitational phase shift. Sending these photons through a gas which absorbs photons
with a certain frequency could reveal which frequency is cut out.

As pointed out in 2.3 it is necessary to distinguish the case of direct consequences of
the gravitational time dilation from effects which result from the gravitational phase shift:
Since the latter can be explained via a gravitational scalar Aharonov-Bohm phase where
the photon’s rest mass (its energy divided by c2) couples to the Newtonian potential, it is
no verification of a gravitational time dilation. However, measuring the gravitational phase
shift could serve as a test to verify the mass-energy equivalence for single photons.
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5.1 Method 1: Amplified shifts of the mean frequency and mean
arrival time

In this method the position of the photon is interpreted as the pointer of a weak measure-
ment. The connection between the experiment considered here and weak measurements
was already established in ch. 4.1 on p. 19: The postselection causes shifts in the mean
arrival time and in the mean frequency of the photon, see eq. (74) and (75). Therefore
detector D in Fig. 4 or 6 is now considered as measuring either the arrival time or the fre-
quency of the incoming photons. Since these shifts require an actual time dilation, no shifts
occur in the Newtonian limit. This method is essentially based on [16]4.

However, the relevant quantities are not the absolute shifts, but rather the shifts in re-
lation to the width of the particular wave function (i.e. the broadness of the pulse or the
bandwidth). For example, the broader the bandwidth the more difficult it becomes to detect
a shift in the mean frequency. Since, for a Gaussian (71), the width in the time domain is σ
and the width in the frequency domain is 1/2σ, the two relative shifts are defined as follows.
For the relative shift in the arrival time one defines

κt :=
∆t

σ
=

1

2

∆τ
σ

ReAW , (90)

and the definition of the relative shift in the mean frequency reads

κω :=
∆ω
1/2σ

=
1

2

∆τ
σ

ImAW . (91)

So both relative shifts depend on the ratio between the gravitational time dilation ∆τ and
the pulse width σ in the same way. The only difference is that the former is amplified by
the real part of the weak value whereas the latter is amplified by the imaginary part of the
weak value. Note that the weak value can not be made arbitrarily large. So for both κt and
κω a general bound can be derived, using the condition (72):

|κt |=
1

2

∆τ
σ
|ReAW| ≤

1

2

∆τ
σ
|AW| �

1

2

∆τ
σ

2

∆τ
1

ω0+ 1/2σ
=

1

σω0+ 1/2
. (92)

The same holds for κω, hence the two bounds are

|κx | �
1

σω0+ 1/2
, x = t,ω . (93)

Note that since σ ≥ 1/ω0, which is the necessary condition (89) for producible photons,
the product σω0 ≥ 1 is indeed the crucial contribution of the bound. If, for example, green
picosecond photons (ω0 = 3.5 · 1015 Hz, σ = 10−12s) are considered, the bound becomes
κx � 2.9 · 10−4 = 0.029% which is unpromising. On the other hand for red femtosecond
photons (ω0 = 5·1015 Hz, σ = 10−15s) the bound looks more promising: κx � 0.18= 18%.

4Even thought the title of [16] refers to measuring phase shifts, they actually propose a method to measure
time dilations.
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To create large real and imaginary weak values AW, it is necessary to chose the postse-
lected state as orthogonal as possible to the preselected state without violating the condition
(72).
Let ε serve as the parameter to vary the amount of the weak value:

(a) Intending a shift in the mean arrival time, the preselection and postselection are chosen
by α= π

4
, χ = 0, β = 3π

4
− ε, ϕ = 0. Hence the weak value becomes

AW = cotε ⇒ ReAW = cotε , (94)

and for the postselection probability one obtains

p =
1− cos(2ε) cos(ω0∆τ) e−

∆τ2

8σ2

2
. (95)

(b) On the other hand, intending a shift in the mean frequency, the preselection and posts-
election are chosen by α= π

4
, χ = 0, β = 3π

4
, ϕ = 2ε. Hence the weak value becomes

AW = i cotε ⇒ ImAW = cotε , (96)

and the postselection probability gets the same form as in case (a).

Since the postselection probability is equal for both cases and furthermore ReAW from case
(a) equals ImAW from case (b), the calculations are henceforth carried out by the general
form

κx =
1

2

∆τ
σ

cotε , (97)

where x stands for t or ω. As also the postselection probability equals for both cases (a)
and (b) one finds the analytical relation between p and κx for both cases:

p(κx) =
1− cos

�

2 cot−1
�

2 σ
∆τκx

��

cos(ω0∆τ) e−
∆τ2

8σ2

2
. (98)

An expansion for small ∆τ reveals

p(κx) =
1

4

�

1

σ2

�

1

4
+

1

κ2
x

�

+ω2
0

�

∆τ2+O
�

∆τ4
�

. (99)

Since from (93) one gets κx � 2 and κx � 1/σω0 one can write the last equation as:

p(κx) =
1

4

∆τ2

σ2κ2
x
+O

�

∆τ2

σ2 +ω
2
0∆τ

2

�

. (100)

In Fig. 7 several plots of the postselection probability (98) in dependence of κx are shown
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Figure 7: Plots of the postselection probability (98) in dependence of the relative shift κx
due to the postselection. κx refers to both the relative shift κt in the mean arrival
time from (90) and to the relative shift κω in the mean frequency from (91) if the
preselection and postselection was chose as in case (a) or case (b) on p. 28.
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for different pulse widths and different cross sections of the interferometer.

A numerical example is instructive: 109 red femtosecond photons per second (ω0 =
2.5 · 1015 Hz, σ = 1 fs) are send through the interferometer with a surface of about A =
∆τc3/g = 104 m2. In order to have at least 10 surviving photons per second after the
postselection one can admit the postselection probability to be p = 10−8. This results in a
relative shift of κx = 0.18%. Thus, e.g., the mean frequency of the surviving photons is
shifted by ω0κx = 4.95 THz. Apart from the fact that the cross section of the interferometer
is still too large, these parameters are in the feasible regime. Note that a surface of 104 m2

is five orders of magnitude smaller than 103 km2 as suggested in [1].
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5.2 Method 2: Phase amplification via postselections

If only the gravitational Aharonov-Bohm phase Φ = ω0∆τ (see [1]) is of interest, the
method presented in this chapter constitutes in analogy to weak measurements an opportu-
nity to amplify this phase via postselections in the polarisation degree of freedom5. In the
case when only the existence of the phase shift is of interest (instead of a test of the equiv-
alence principle for single photons), a coherent laser beam with a mean frequency of ω0
can be used instead of single photons. A gravitational time dilation ∆τ then manifests itself
only as a phase shift. The setup is shown in Fig. 8. It is basically the same setup as intro-
duced in ch. 4 (see Fig. 4 or 6). But before the beam reaches the gravitationally influenced
interferometer it is splitted by a preceding beam splitter into two spatial modes |0〉 and |1〉.
Only the former mode guides the beam through the gravitational interferometer where the
gravitational Aharonov-Bohm phase Φ occurs in the polarisation degree of freedom. Next a
postselection on an almost orthogonal polarisation is performed in both modes |0〉 and |1〉.
This postselection approximately establishes an amplified relative phase Φ/ε between the
two modes where ε is the parameter to vary deviations from an orthogonal postselection.
The postselection probability is approximately given by ε2.

The physical process in the setup from Fig. 8 is as follows: The first polariser P1 pre-
selects linear diagonal polarised photons, |H〉 + |V 〉, coming from below. The first beam
splitter BS1 splits the beam into a part which travels through the gravitationally influenced
interferometer (dashed box) whereas the other part propagates freely. A relative phase ξ
is established between the modes |0〉 and |1〉 by a phase shift element. Inside the gravita-
tionally influenced interferometer the vertical and horizontal polarised parts of the beam
experience the relative Aharonov-Bohm phase Φ as described in ch. 4. For simplicity unnor-
malised states are used to describe the physical process in the setup: Inside the dashed box
(which contains the part of the interferometer which is placed into the gravitational field)
only a relative Aharonov-Bohm phase Φ occurs between |H〉 and |V 〉.

�

|H〉+ |V 〉
�

|1〉 BS1−→
�

|H〉+ |V 〉
��

|0〉+ i|1〉
�

dashed box−→
�

e−iΦ
2 |H〉+ eiΦ

2 |V 〉
�

|0〉+ (|H〉+ |V 〉)i|1〉
phase ξ
−→

�

e−iΦ
2 |H〉+ eiΦ

2 |V 〉
�

|0〉+ (|H〉+ |V 〉)ieiξ|1〉 . (101)

Next a postselection on

|F〉= cos
�

3π
4
+ ε
�

|H〉+ sin
�

3π
4
+ ε
�

|V 〉 (102)

is performed in both modes |0〉 and |1〉 when the beams pass P2:

P2−→
�

cos
�

3π
4
+ ε
�

e−iΦ
2 + sin

�

3π
4
+ ε
�

eiΦ
2

�

|0〉+
�

cos
�

3π
4
+ ε
�

+ sin
�

3π
4
+ ε
��

ieiξ|1〉

=
�

i cosε sin Φ
2
− sinε cos Φ

2

�

|0〉 − ieiξ sinε|1〉 . (103)

5This method is inspired by private communication between Li Li, Časlav Brukner and the author of this thesis.
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Figure 8: Setup for an amplification of the gravitational Aharonov-Bohm phase. The inter-
ferometer in the dashed box is similar to the two setups introduced in ch. 4: The
two arms which guide the beam through regions of different gravitational poten-
tial, experience a relative Aharonov-Bohm phase. The two additional beam split-
ters BS1 and BS2 split and combine the beam into two spatial modes |0〉 and |1〉.
The preselection and postselection which leads to the amplification effect is per-
formed with the polarisers P1 and P2. The lower mode gains a controllable phase
shift ξ. The detector D0 and D1 measure the intensity of the outgoing beams.

At last the second beam splitter provides interference between the two spatial modes:

BS2−→
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i cosε sin Φ
2
− sinε cos Φ

2
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i|0〉+ |1〉
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− eiξ sinε
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2
− eiξ sinε
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i|0〉+
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i cosε sin Φ
2
− sinε cos Φ

2
+ eiξ sinε

�

|1〉 .
(104)

In order to calculate the detection probabilities (or the beam intensities in the case of a laser
beam), this resulting state which reaches the two detectors D0 and D1 is normalised to 1:

|Ψ〉=

�

i cotε sin Φ
2
− cos Φ

2
− eiξ

�

i|0〉+
�

i cotε sin Φ
2
− cos Φ

2
+ eiξ

�

|1〉
Æ

2
�

2+ sin2 Φ
2

�

cot2 ε− 1
�

�

. (105)

Here the amplification effect is already apparent. If Φ is small, the cosine terms are close to
1 whereas the small sine terms are amplified by cotε. Note that cotε → ∞ if ε → 0. The
detection probabilities P0 and P1 (beam intensities) of the detectors D0 and D1 read:

P0 = 〈0|Ψ|0〉=
1

2
−

cotε sin Φ
2

sinξ− cos Φ
2

cosξ

2+ sin2 Φ
2

�

cot2 ε− 1
�

, (106)

P1 = 〈1|Ψ|1〉=
1

2
+

cotε sin Φ
2

sinξ− cos Φ
2

cosξ

2+ sin2 Φ
2

�

cot2 ε− 1
�

. (107)

Since the gravitational Aharonov-Bohm phase Φ is in all practical considerations very small,
an expansion of the detection probabilities is appropriate. For ξ= π

2
and 0< Φ� ε < 1 the

expansion reveals the amplification effect Φ→ Φ/ε:

P0 =
1

2

�

1−
Φ
2ε

�

+O (εΦ) ,

P1 =
1

2

�

1+
Φ
2ε

�

+O (εΦ) .

(108)

(109)
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Figure 9: Plots of the relative change in the intensity κI at the detectors D0 and D1 in de-
pendence of the loss of the beam p at P2, see eq. (114). The laser has a mean
frequency of ω0 = 1015 Hz. The different plots are based on different surfaces
A of the gravitationally influenced part of the interferometer. The relation to the
Aharonov-Bohm phase is given by Φ =ω0∆τ=ω0

Ag
c3 .

However, the probability of a successful postselection (loss of the beam intensity in the case
of a laser beam) must not be ignored. The state in the polarisation degree of freedom ρPol
is calculated by tracing out the path degree of freedom of the state (101) right before the
beam arrives at P2:

ρPol =
1

2

�

|H〉〈H|+
1

2
|H〉〈V |

�

1+ e−iΦ
�

+
1

2
|V 〉〈H|

�

1+ eiΦ
�

+ |V 〉〈V |
�

. (110)

Hence the postselection probability p reads:

p = 〈F |ρPol|F〉=
1

2

�

1− cos(2ε)
1+ cosΦ

2

�

. (111)

Considering again the expansion for 0< Φ� ε < 1, one gets:

p = ε2+O
�

Φ2� . (112)

Now the quantity of interest is the relative change of the beam intensities in the detectors
due to the gravitational Aharonov-Bohm phase Φ in dependence of the postselection proba-
bility p (loss of the beam at P2). Accordingly the relative change of the beam intensities is
defined as:

κI :=

�

�

�

�

P0(Φ)− P0(0)
P0(0)

�

�

�

�

=

�

�

�
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P1(0)

�

�

�

�

=
2cotε sin Φ

2

2+ sin2 Φ
2

�

cot2 ε− 1
�

. (113)
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Note that the choice ξ= π
2

is still assumed. Replacing ε with the postselection probability p
(by solving (111) for ε) yields the desired dependency between κI and p:

κI(p) =
2 cot

�

1
2

arccos
�

2 1−2p
1+cosΦ

��

sin Φ
2

2+ sin2 Φ
2

�

cot2
�

1
2

arccos
�

2 1−2p
1+cosΦ

��

− 1
� . (114)

For 0< Φ� p < 1 an expansion reads:

κI(p) =
Φ

2
p

p
+O (

p
pΦ) . (115)

In Fig. 9 examples of the function κI(p) from (114) are plotted for a laser with ω0 =
1015 Hz and several surfaces A of the gravitationally influenced interferometer. Note that
Φ =ω0∆τ=ω0

Ag
c3 .

One could think that introducing an additional controllable phase on top of the Aharonov-
Bohm phase could improve the sensitivity of κI in dependence of Φ. However, the slope of
κI as a function of Φ is already maximal at Φ = 0 as long as |ε|< 0.866:

d2

d2Φ
κI

�

�

Φ=0 = 0 ,
d3

d3Φ
κI

�

�

Φ=0 =
2− 3cot2 ε

6
cotε < 0 . (116)

Since, for all practical purposes, |ε| < 0.866 is no restriction, the relative change of the
beam intensities κI is already maximal sensitive if Φ is small.

Concluding this section a set of parameters is given that might be suitable for an ex-
periment: Let the surface of the gravitationally influenced interferometer be A = 104 m2.
Photons or a laser beam with a mean frequency of ω0 = 1015 Hz are used and the desired
relative change of the detection probabilities / intensities due to the gravitational Aharonov-
Bohm phase be 1%, hence kI = 0.01. Hence one needs ε ≈ 1.8·10−4. Conducting the exper-
iment without gravitational influence the loss at P2 is p ≈ 3.2 ·10−8. Thus the photon flux /
laser power needs to be sufficiently high. The detectors D0 and D1 will measure exactly the
same intensity since P0 = P1 =

1
2
. If now the interferometer is placed into the gravitational

field the intensities at D0 and D1 will change by κI = 1% since the Aharonov-Bohm phase
Φ≈ 3.6 · 10−6 occurs:

P0 ≈
1

2

�

1−
3.6 · 10−6

2 · 1.8 · 10−4

�

=
1

2

�

1− 10−2
�

, (117)

P1 ≈
1

2

�

1+
3.6 · 10−6

2 · 1.8 · 10−4

�

=
1

2

�

1+ 10−2
�

. (118)

Using laser light instead of single photons, even smaller interferometers could be used
since small postselection probabilities can be compensated by high laser intensities.
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5.3 Method 3: Additional controllable time delay

This method is similar to the initial experimental suggestion by Zych et al. [1]. The postse-
lection probability which depends on the time dilation is measured by counting the number
of photons which arrive in the detector D. Therefore it could possibly be used as a measure
of the time dilation. The postselection is chosen such that this probability is equal to the
probability to measure a photon in detector D− (see Fig. 3) in the original setup suggested
in [1]. Thus this method can easily be adapted to the original proposal. However, other
pulse shapes and the effect of an additional controllable time delay are considered here.

The preselected |I〉 and the postselected state |F〉 are choose as orthogonal states:

|I〉=
1
p

2

�

|H〉+ |V 〉
�

, (119)

|F〉=
1
p

2

�

|H〉 − |V 〉
�

. (120)

This corresponds to a choice of α = −β = π/4, χ = ϕ = 0. The probability of a successful
postselection is then given by (70):

p =
1−Re〈ψ+δ|ψ−δ〉

2
. (121)

Consider now a photon with a Gaussian shape (71),

ψ(t) =
1

(2πσ2)1/4
exp

�

−
t2

4σ2

�

exp
�

iω0 t
�

, (71)

such as in [1]. Here ω0 is the mean frequency of the photon. One gets

Re〈ψ+δ|ψ−δ〉= cos(2δω0) e−
δ2

2σ2 , (122)

and hence the postselection probability becomes

p =
1− cos(ω0∆τ) e−

∆τ2

8σ2

2
. (Gaussian case) (123)

Note that the contribution of the cosine corresponds to a phase shift of the wave pack-
ets (originated by the time dilation) whereas the exponential contribution is the effect of
the time dilation. This can be seen by looking at the Newtonian limit of the postselection
probability, see eq (77), where the phase shift ω0∆τ can be explained by a gravitational
Aharonov-Bohm effect:

pNL =
1− cos(ω0∆τ)

2
. (124)

The direct detection of the gravitational time dilation via the postselection probability (123)
is unpromising for two reasons. First it is very insensitive to small∆τ and second the cosine
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(and therefore the phase shift) is the dominating contribution for small ∆τ. This can be
seen by expanding (123) for small ∆τ:

p =
1

4

�

1

4σ2 +ω
2
0

�

∆τ2+O
�

∆τ4
�

. (125)

The condition (89) states that 1/4σ2 < ω2
0 and hence ω2

o∆τ
2 is the leading contribution

in the post selection probability. This is originated by the cosine, thus the phase shift is the
dominating effect and not the time dilation. Furthermore the lowest order is still quadratic
in ∆τ.

Hence finding a pulse shape that is, to lowest order, linear in ∆τ will increase the sen-
sitivity of the postselection probability dramatically. Moreover the time dilation effect then
predominates. Such a shape is trivially given by a rectangular pulse:

ψ(t) =

( exp(iω0 t)
(12σ2)1/4

−
p

3σ ≤ t ≤
p

3σ ,

0 otherwise .
(126)

It is constructed such that |ψ|2 is normalised to 1 and σ equals its standard deviation. The
postselection probability for this pulse can easily calculated analytically using

Re〈ψ+δ|ψ−δ〉=







cos(2δω0)
�

1− δp
3σ

�

δ ≤
p

3σ ,

0 δ >
p

3σ ,
(127)

so that one obtains

p =
1

2







1− cos(ω0∆τ)
�

1− ∆τ
2
p

3σ

�

∆τ≤ 2
p

3σ ,

1 ∆τ > 2
p

3σ .
(rectangular case) (128)

For small ∆τ this is linear in ∆τ:

p =
1

4
p

3

∆τ
σ
+O

�

∆τ2
�

. (129)

Moreover the drop in the postselection probability is clearly dominated by the time dilation
of the wave packets in comparison to the phase shift ω0∆τ.
Figure 10 shows the postselection probability for a Gaussian pulse and for a rectangular
pulse in dependence of the cross section of the interferometer for several frequencies and
pulse widths.

But photons with a perfect rectangular pulse are nonphysical. Note that both the linearity
in ∆τ and the predominance of the time dilation effect base on the discontinuity of the
rectangular pulse. This example just shows that the postselection probability depends on
the shape of the photon6.

6Hence one could try to model the transition from rounded to sharp edges.
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Figure 10: Postselection probability p for a photon to pass the second polariser P2 in depen-
dence of the cross section A = c3

g
∆τ of the interferometer. The left graphs are

log-log plots whereas the right graphs have linear axes.
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However, also for a Gaussian shape the sensitivity of the postselection probability to ∆τ
can be made linear by introducing an additional controllable time delay∆T . This additional
time delay can be realised via nanopositioners or subnanopositioners which can change the
arm length of one interferometer arm in the nanometer or subnanometer regime. In analogy
to (123) the postselection probability then reads

p =
1− cos

�

ω0(∆T +∆τ)
�

e−
(∆T+∆τ)2

8σ2

2
. (130)

If the additional time delay is chosen to be equal to one period of the photon,

∆T :=
2π

ω0
, (131)

the cosine part cos
�

ω0(∆T +∆τ)
�

= cos(ω0∆τ) will only give quadratic contributions to
the postselection probability whereas the exponential part is, to lowest order, linear in ∆τ.
An expansion of (130) about ∆τ= 0 yields:

p =
1− e

− π2

2ω2
0σ

2

2
+

π2

ω2
0σ

2
e
− π2

2ω2
0σ

2∆τ+O
�

∆τ2� . (132)

For optical photons with ω0 = 1015 Hz the additional time delay corresponds to an ad-
ditional path length of c∆T = 2πc/ω0 ≈ 1.8µm. This is clearly in the feasible regime.
The mensurable quantity is now given by the change of the postselection probability when
∆τ changes from zero to a positive value by placing the interferometer in the gravitational
field. Since, for a given ∆τ (rather for a given surface of the interferometer), the remain-
ing free parameter is the pulse width σ, the change in the postselection probability can be
maximised over σ:

∆pmax := max
σ≥1/ω0

�

p(∆τ)− p(0)
�

= max
σ≥1/ω0

�

1

2

�

e
− π2

2ω2
0σ

2 − cos(ω0∆τ) e−
(2π/ω0+∆τ)

2

8σ2

��

.

(133)
Here∆pmax represents the maximal change of the postselection probability. The maximising
pulse width, denoted by σmax, can be found analytically and reads:

σmax =
1

2
p

2

s

4π∆τ/ω0+∆τ2

ln cos(ω0∆τ) + 2 ln
�

1+ ω0∆τ
2π

� . (134)

Finally the maximal relative change κmax of the postselection probability is introduced by

κmax :=
∆pmax

p(∆τ= 0,σ = σmax)
=

e
− π2

2ω2
0σ

2
max − cos(ω0∆τ) e

− (2π/ω0+∆τ)
2

8σ2
max

1− e
− π2

2ω2
0σ

2
max

. (135)
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In Fig. 11 solutions of this maximisation problem are shown for different mean frequencies.
A lowest order approximation yields the following solutions of the maximisation problem:

κmax ≈
1

2
p

2

1

e− 1

∆τ
σmax

, ∆pmax ≈
1

2e
p

2

∆τ
σmax

, σmax ≈
π
p

2

1

ω0
, ∆T =

2π

ω0
.

(136)

In conclusion consider the following numerical example: A source emits 109 red photons
(ω0 = 2.5 · 1015 Hz) per second. Assume that the photon detector is able to distinguish
changes of the photon flux by 0.1%, thus κmax = 10−3. The required additional time delay
is given by ∆T = 2.51 fs which corresponds to an additional path length of c∆T = 0.75µm.
The ideal pulse width reads σmax = 0.89 fs and the required cross section of the interferome-
ter is A= 11.9 km2. Without gravity the postselection probability is p = 31.5% and changes
to (1+κmax)p in the gravitational case. Thus 3.15 ·105 additional photons per second arrive
at the detector.
Compared to the original suggestion of 103 km2 [1] this method represents an improvement
of two orders of magnitude concerning the cross section of the interferometer. But still this
is challenging with current technology.
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Figure 11: Solutions of the maximisation problem (133) in terms of the relative change κmax
of the postselection probability and σmax for several frequencies in dependence
of the cross section A of the interferometer.
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5.4 Method 4: Shaping double-humped photons

In this method the attention is turned to the shape of the photons after the postselection.
Here ”shape” means the shape of the photon’s wave function in the time domain. In the
operational sense this shape is relevant to a time of arrival measurement. Under certain
conditions the wave packet of the photon becomes a double-humped shape with two max-
ima and a dip between. This shape can be very sensitive to changes of the gravitational time
dilation which manifests itself in a drop or a lift of the dip between the two maxima. How-
ever, it turns out that the same effect occurs in the Newtonian limit. Thus this method can
not serve as a method to proof the gravitational time dilation but rather the gravitational
phase shift.
The occurrence of a double-humped shape after postselections was already pointed out by
Sudarshan and Stevenson [12]: If the postselection at the second polariser P2 produces a
weak value (69) which is too large such that the conditions (72) and (73) are violated, the
weak measurement formalism and its predictions are no longer applicable and a double-
humped shape appears. This happens if the preselected polarisation is almost or even per-
fectly orthogonal to the postselected polarisation.

According to [12] the double-humped shape appears in its purest form if the preselected
and postselected state are perfectly orthogonal and if the initial wave packet is real. Hence
an orthogonal postselection is not sufficient to obtain a double-humped shape, if the initial
wave packet has a complex phase. Note that Sudarshan and Stevenson [12] used a purely
real Gaussian wave packet whereas here the wave packet, which represents the photon, has
a complex phase. This complex phase is necessary in order to model a physical frequency
distribution. For simplicity and in order to keep the analogy with [12] consider a photon
with a Gaussian shape and a simple complex phase as given in eq. (71):

ψ(t) =
1

(2πσ2)1/4
exp
�

− t2

4σ2

�

exp
�

iω0 t
�

, (71)

The preselected polarisation |I〉 and the postselected polarisation |F〉 are chosen as orthog-
onal states,

|I〉=
1
p

2

�

|H〉+ |V 〉
�

, (137)

|F〉=
1
p

2

�

|H〉 − |V 〉
�

. (138)

which corresponds to α = −β = π/4, χ = ϕ = 0 such that the shape of the postselected
photon reads (see eq. 63):

f (t) := |ψF (t)|2 =
1

p

2πσ2

e−
t2

2σ2 e−
∆τ2

8σ2
�

cosh
�

t∆τ
2σ2

�

− cos(ω0∆τ)
�

1− cos(ω0∆τ)e
−∆τ

2

8σ2

. (139)

For a simpler notation this photon shape is henceforth denoted by f (t). By putting ω0 = 0
the cosine in the numerator becomes 1 and therefore f clearly represents a double-humped

41



-100 -50 50 100
t [fs ]

0.005

0.010

0.015

0.020

0.025

0.030

f(t) [fs-1
]

Δτ =10-6σ

Δτ =2σ

Δτ =5σ

Figure 12: Plot of f (t) for ω0 = 0 such that the Gaussian wave function ψ(t) is purely real
as given by (71). The pulse width is chosen as σ = 10 fs. One can see that the
two maxima are approximately located at ±

p
2σ for ∆τ � σ and at ±∆τ for

∆τ� σ.

function corresponding to the case in [12]. This can be seen by keeping in mind that f ≥ 0
decays for t →±∞ whereas f (t = 0) = 0. Figure 12 shows f (t) for ω0 = 0, σ = 10 fs, and
several ∆τ. But for ω0 > 0 this argument does not hold in general, since the cosine in the
numerator is no longer equal to 1.
In order to find the conditions to restore the double-humped shape of f for ω0 > 0 one can
look at the second derivative of f at t = 0 which necessarily has to be greater than zero to
obtain a minimum of f at t = 0. The fact that f has an extremum at t = 0 is granted by

∂

∂ t
f
�

�

t=0 = 0 . (140)

Since the second derivative of f at t = 0 is given by

∂ 2

∂ t2 f
�

�

t=0 =

r

2

π

1

σ3

e−
∆τ2

8σ2

1− cos(ω0∆τ)e
−∆τ

2

8σ2

�

∆τ2

8σ2 − sin2
�

ω0∆τ
2

�

�

, (141)

one can define the auxiliary function q(t) by neglecting the positive part of (141):

q(t) :=
t

8σ2 − sin2
�ω0 t

2

�

. (142)

The necessary condition for a double humped shape of f then reads: q(∆τ) > 0. One
can clearly see that q(∆τ,ω0 = 0) = ∆τ2/8σ2 > 0 is always fulfilled but for ω0 > 0 the
condition q(∆τ) > 0 constitutes a non-trivial relation between σ, ω0, and ∆τ. Expanding
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Figure 13: Plots of q(t) for different pulse widths σ and mean frequencies ω0. The left
graph illustrates how changes of σ and ω0 affect the graph of q. The right plot
shows the first positive maximum of q for σ = 10−11 s and ω0 = 5 ·1015 Hz. This
illustrates the narrowness of the positive areas of q.

q(∆τ) for small ∆τ yields

q(∆τ) =
∆τ2

8σ2 −
ω2

0∆τ
2

4
+O

�

∆τ4� , (143)

such that the condition q(∆τ) > 0 is equivalent to σω0 < 1/
p

2. But this violates the con-
dition (89) for producible photons. Thus for ∆τ in the sub-pulse-width regime no double-
humped photons occur behind the second polariser P2. Figure 13 shows plots of q(t) for
different choices of σ andω0: The intervals of positive q are very narrow for an appropriate
choice of σ and ω0. Since the double-humped shape occurs only for time dilations within
these intervals the following strategy is advisable:

An additional controllable time delay ∆T is introduced such that a variation
of the gravitational time dilation ∆τ (rotating the interferometer in the grav-
itational field) happens inside the interval where q is positive. The additional
time delay ∆T can be controlled by positioner elements to vary the arm length
of the interferometer. If these intervals of positive q are sufficiently narrow7 a
variation of the gravitational time dilation could have a measurable effect of the
double-humped shape: the dip between the two humps of f is dropped or lifted
(see Fig. 15). A measurable effect is expected if the length of the intervals of
positive q is only one or two orders of magnitude larger than the gravitational
time dilation.

According to this strategy it is useful to find the length of the intervals of positive q, see
Fig. 14. Even though it is not possible to find an analytical exact expression, the following

7Note that the shape of the photon experiences a drastic change (single-humped→ double-humped→ single-
humped) if the time dilation is varied from one end of the interval of positive q to the other. In practice the
variation can hardly be made so large. However the variation of the gravitational time dilation needs to be
of an amount comparable to the length of the interval of positive q.
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Figure 14: Sketch of q to illustrate the first positive area. The position of the first maximum
is denoted by T and δt is approximately the distance to the closest zeros. The
length of the interval where q is positive is denoted by ∆t ≈ 2δt.

approximation can be considered: Expand q in the area of its first positive maximum up
to quadratic order for given σ and ω0. The intersections with the abscissa then reveal the
length of these intervals of positive q.
Let T be the point of the first positive maximum of q for given σ and ω0:

T :=min
¦

t
�

� t > 0, q(t)> 0, q′(t) = 0, q′′(t)< 0
©

. (144)

Now expand q(T+δt) for small deviations δt:

q(T+δt) = q(T) +

0 by def.
︷ ︸︸ ︷

q′(T)δt+1
2
q′′(T)δt2+O

�

δt3�

=
T2

8σ2 − sin2
�

ω0T

2

�

+
1

2

�

1

4σ2 −
ω2

0

2
cos(ω0T)

�

δt2+O
�

δt3� (145)

=
T2

8σ2 −
1

2
+

1

2

È

1−
T2

4σ4ω2
0

+
1

4

 

1

2σ2 −ω
2
0

È

1−
T2

4σ4ω2
0

!

δt2+O
�

δt3� .

Here the fact that q′(T) = 0 was used, which is equivalent to

sin(ω0T) =
T

2σ2ω0
, (146)

hence one made use of

cos(ω0T) =
p

1− sin2(ω0T) =

È

1−
T2

4σ4ω2
0

, (147)

and

sin2
�

ω0T

2

�

=−
1

2
+

1

2
cos(ω0T) =−

1

2
+

1

2

È

1−
T2

4σ4ω2
0

. (148)

To find the roots of q one can now solve q(T+ δt) = 0 for δt by neglecting the O
�

δt3�

terms. The solution is given by:

δt ≈ 2

√

√

√

√

√

√

T2

4σ2 − 1+
q

1− T2

4σ4ω2
0

2ω2
0

q

1− T2

4σ4ω2
0
− 1
σ2

. (149)
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But since T is unknown this expression is not helpful yet. Even though T will remain
unknown in general one can specify the exact solution in the limit σω0 → ∞. In this
limit where the product of σ and ω0 goes to infinity the points of positive maxima of q are
given by Tn =

2πn
ω0

, n ∈ N+. This can be proven in the following way:

q(Tn) =
π2n2

2σ2 − sin2(πn) =
π2n2

2σ2 > 0 , (150)

q′(Tn) =
πn

2σ2ω0
−
ω0

2
sin(2πn) =

π

2σ

1

σω0

σω0→∞
−−−−→ 0 , (151)

q′′(Tn) =
1

4σ2 −
ω2

0

2
cos(2πn) =

ω2
0

2

�

1

2σ2ω2
0

− 1

�

σω0→∞
−−−−→−

ω2
0

2
< 0 . (152)

Thus, in the limit σω0 → ∞, the point of the first positive maximum of q is given by
T1 =

2π
ω0

. Indeed, producible photon pulses are far from the limit σω0 → ∞, but for

σω0� 1 one can still assume8 that T is of the order of 2π
ω0

.

In order to turn (149) into a useful expression, substitute X = ω0

2π
T and ε = 1

σω0
. Now X is

a quantity of the order of 1 whereas ε is small if σω0� 1. This yields

δt ≈
2

ω0

√

√

√

√

X 2π2ε2− 1+
p

1− X 2π2ε4

2
p

1− X 2π2ε4− ε2
, (153)

which can be expanded for small ε to get:

δt ≈
p

2Xπ

ω0
ε+O

�

ε5�≈
p

2π

σω0

1

ω0
, (154)

Using this approximation one arrives at the solution of the length ∆t of the first interval
where q is positive, which is just given by ∆t ≈ 2δt :

∆t ≈
2
p

2π

σω0

1

ω0
. (155)

So the double-humped shape of f occurs only if the time dilation remains in the small
interval of positive q which has the length of ∆t. To achieve these intervals an additional
controllable time delay ∆T is necessary. One can define ∆T as the point where q becomes
positive, see Fig. 14:

∆T :≈ T−δt ≈
2π

ω0

�

1−
p

2

σω0

�

. (156)

8A simple calculation shows that the smallest correction terms are negligible in the case of σω0� 1.
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Figure 15: Plot of f (t) where σ = 10ps and ω0 = 2 · 1015 Hz for several gravitational time
dilations ∆τ. The overall time dilation is given by ∆T +∆τ where the control-
lable time dilation is ∆T = 3.14137 · 10−15s. A time of arrival measurement
would detect two distinct arrival times which differ by an amount of ∼ 30 ps
(separation of the two humps) for ∆τ ∼ 10−20s whereas this effect does not
occur for ∆τ= 0.

Thus, for a time delay of∆T , the shape of the photons are almost double-humped if there is
no further gravitational time dilation (∆τ = 0). In the case of a nonvanishing gravitational
time dilation (∆τ > 0), where the overall time dilation is given by ∆T +∆τ, the photon
shape starts to become double-humped as long as ∆τ < ∆t. In Fig. 15 an illustration of
this effect is shown. Table 1 presents numerical solutions of ∆t and ∆T for given σ and ω0
which are in agreement with the approximations derived above.

t

t2 exp(−t2/2σ2)

+
p

2σ−
p

2σ

Figure 16: Sketch of t2e(−t2/2σ2)

Another important question is the separation of
the two humps if f is double-humped. This separa-
tion corresponds to the difference of the arrival time
of the photons to be measured. To find this sepa-
ration one can set ∆T = 2π

ω0
in order to annihilate

the cosine term in the numerator of f and to restore
the double-humped shape. Besides normalisation, f
reduces then to (see eq. 139)

f (t)∼ e−
t2

2σ2

�

cosh
�

tπ

σ2ω0

�

− 1
�

. (157)
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σ [ps] ω0 [PHz] ∆T [fs] ∆t [zs] A [104 m2]
100 5 1.256635 3.5 0.98
10 4 1.57077 55.5 1.53
20 2 3.1415 111 3.05
10 2 3.1415 222 6.10
0.1 5 1.255 3554 97.6

Table 1: Numerical solutions of ∆t and ∆T for given σ and ω0. Moreover A = c3∆τ
g

is
the area of an interferometer which corresponds to a gravitational time dilation of
∆τ= 0.1∆t.

Keeping the assumption that the product σω0 is
large an expansion of f reveals the double humped shape:

f (t)∼ t2e−
t2

2σ2
1

σ2ω2
0

+ t4e−
t2

2σ2 · O
�

1

σ4ω4
0

�

. (158)

Neglecting the terms of higher orders implies that the two humps are approximately located
where t2 exp(−t2/2σ2) is maximal. These maxima can easily be found via the first and
second derivative and are located at ±

p
2σ, see Fig. 16.

The two humps of f are approximately separated by 2
p

2σ if σω0� 1.

In Fig. 15 the pulse width was chose as σ = 10 ps so that the two humps are approxi-
mately separated by 2

p
2σ = 28.28 ps. This is feasible with current technology since avail-

able single-photon detectors have a resolution of 10 ps [17].

Finally the postselection probability p is calculated. The formula is already given by eq.
(123) on p. 35. Again one sets ∆T = 2π

ω0
to achieve the double-humped shape of f . Hence

one arrives at

p =
1− e

− π2

2σ2ω2
0

2
=

π2

4σ2ω2
0

+O
�

1

σ4ω4
0

�

. (159)

So to lowest order the postselection probability is given by

p ≈
π2

4σ2ω2
0

. (160)

This uncovers a major disadvantage of this method: for all practical purposes the postse-
lection probability is extremely small. Consider, e.g., the values used in the example from
Fig. 15. With these values the postselection probability becomes 6.2 · 10−9. In the next
subsection it is calculated to what extend the postselection probability can be increased by
deviations from perfectly orthogonal postselections.
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One may wonder why only the case σω0 � 1 is considered here? Although the postse-
lection probability might be considerable, even if σω0 ∼ 1, the length ∆t of the interval of
positive q becomes too large. If this interval is too large compared to the gravitational time
dilation ∆τ, the shape of the photon will not change. See, e.g., Tab. 1: The smaller the
product σω0 the larger is the required gravitational time dilation (the larger is the required
surface of the interferometer). Furthermore large p and small ∆t can not be achieved
simultaneously. This can be seen by expressing p in terms of ∆t (see eq. 160 and 155):

p ≈
ω2

0

32
∆t2 . (161)

Thus, since ω0 is bounded to optical frequencies, a sufficiently small ∆t results in a very
small postselection probability p.

Moreover, it clear, that the described effect is a phase shift effect and would therefore also
occur in the Newtonian limit. The reason is that the occurrence of the double humped shape
of f exclusively depends on the behaviour of the cosine in the numerator of (139). Thus
it depends only on the phase shift ω0∆τ which is caused by the time dilation but could be
also caused by a pure Aharonov-Bohm phase shift.

Another serious drawback of this method lies in the fact, that the accuracy of the addi-
tional controllable time dilation ∆T needs to be sufficiently high to find the region where q
becomes positive and f becomes double-humped. So if the accuracy of ∆T is several orders
of magnitude weaker than of ∆t the double-humped regions are not achievable. Currently
available nanopositioners have a resolution of 0.05nm= 50 pm which corresponds to a res-
olution of 0.17as for the controllable time delay. But if picopositioners with a resolution
of 1 pm are available, the resolution of the additional controllable time dilation would be
of the order of 3.34 zs. Thus gravitational phase shifts caused by time dilations in the sub-
zeptosecond regime (which corresponds to a interferometer’s surface of 103 m2) would be
accessible via the method presented here. Compared to a surface of 103 km2 as calculated
in [1] this would be an improvement of six orders of magnitude.

Increasing the postselection probability by deviations from orthogonal
postselections

To model deviations from a orthogonal postselection the angle ε is introduced such that the
postselection is no longer given by (138) but by

|F〉= cos
�

−π
4
+ ε
�

|H〉+ sin
�

−π
4
+ ε
�

|V 〉 , (162)

such that |F〉= (|H〉 − |V 〉)/
p

2 for ε = 0. Now f is no longer given by (139) but by

f (t) =

cos2 �− π
4
+ ε
�

|ψ(t +δ)|2+ sin2 �− π
4
+ ε
�

|ψ(t −δ)|2− cos(2ε)Re
h

ψ(t +δ)ψ(t −δ)
i

1− cos(2ε)Re〈ψ−δ,ψδ〉
.

(163)
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Figure 17: All four plots are recalculations of the example from Fig. 15 with exactly the
same numerical values but for several ε > 0. One can clearly see, that the larger
ε the more the shape is shifted towards the left hump. This indicates that the
weak measurement formalism becomes valid. Note, that the weak measurements
predict only a shift of the wave function.

Note that this is equal to (139) for ε = 0. Furthermore, in this subsection we do not consider
ψ(t) to be a Gaussian function but an arbitrary single-humped photon wave function with
a simple phase: ψ(t) = |ψ(t)|exp(iω0 t). The only assumptions are: |ψ(t)| is centred and
symmetric around t = 0 (e.g. Gaussian distribution, Lorentz distribution, sech distribution,
etc.). Remember that δ = ∆τ

2
.

The postselection probability now reads:

p =
1− cos(2ε)Re〈ψ−δ,ψδ〉

2
. (164)

Again, for ε = 0 this is equivalent to the case of a perfectly orthogonal postselection as
discussed above. But for |ε| > 0 the cos(2ε) term increases the postselection probability.
But also the double-humped shape of f decays into a single-humped shape if |ε| becomes
too large. Thus it is necessary to find a compromise between the increase of the postselection
probability and the decay of the double humped shape. Figure 17 illustrates the decay of
the double-humped shape of f for |ε| > 0: One hump grows whereas the other decays
whereupon a single-humped shape appears.

To find this compromise one needs to define the region of ε where the double-humped
shape of f is still present. Interestingly, the expectation value of f serves as a good measure
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for its presence. This can be seen as follows: For ε = 0 the expectation value of f is
located at t = 0 since both humps are equal. If ε is increased (decreased) the left (right)
hump grows whereas the other shrinks. Thus the expectation value is pulled to the left
(right). If ε is sufficiently large the dominant hump moves back to the origin at t = 0. Thus
the dominant hump drags the expectation value back to the origin. Hence the maximal
displacement of the expectation value of f due to growing |ε| can serve as an indicator
where the double-humped shape of f loses its presence.

Henceforth the expectation value of f =: fε is denoted by µ(ε):

µ(ε) :=

∫ +∞

−∞
t fε(t) dt . (165)

Since |ψ| was assumed to be symmetric around t = 0 in the definition (163) of f , the
expectation value µ(ε) can directly be calculated:

µ(ε) =−
sin(2ε)

1− cos(2ε)Re〈ψ−δ,ψδ〉
δ . (166)

The following was used to find µ(ε):

− cos2 �− π
4
+ ε
�

+ sin2 �− π
4
+ ε
�

=− sin(2ε) , (167)

∫ +∞

−∞
t |ψ(t ±δ)|2 dt =

∫ +∞

−∞
(t ∓δ) |ψ(t)|2 dt =∓δ , (168)

and
∫ +∞

−∞
t Re

h

ψ(t +δ)ψ(t −δ)
i

dt = 0 , (169)

since the integrand is an odd function of t. In order to find the maximum of µ consider the
first derivative:

µ′(ε) =−2
cos(2ε)−Re〈ψ−δ,ψδ〉

�

1− cos(2ε)Re〈ψ−δ,ψδ〉
�2δ (170)

Hence µ′(ε) = 0 is trivially solved by

εtrans =
1

2
arccos

�

Re〈ψ−δ,ψδ〉
�

=
1

2
arccos

�

cos(ω0∆τ)

∫ ∞

−∞

�

�

�ψ

�

t +
∆τ
2

�

�

�

�

�

�

�ψ

�

t −
∆τ
2

�

�

�

� dt

�

, (171)

where the assumption ψ(t) = |ψ(t)|eiω0 t was used. That this is a maximum can be seen by
checking µ′′(εtrans) < 0. The region of allowed deviations from an orthogonal postselection
is given by

ε ∈ [−εtrans,+εtrans] . (172)
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This result allows to calculate the maximal postselection probability by applying the maxi-
mal allowed deviation from the orthogonal postselection: Set ε =±εtrans to obtain

pmax =
1− cos(±2εtrans)Re〈ψ−δ,ψδ〉

2
=

1−
�

Re〈ψ−δ,ψδ〉
�2

2
. (173)

Using the assumption ψ(t) = |ψ(t)|eiω0 t one can write:

pmax =
1− cos2(ω0∆τ)

�

∫∞
−∞

�

�ψ
�

t + ∆τ
2

��

�

�

�ψ
�

t − ∆τ
2

��

� dt
�2

2
. (174)

Now one can again consider the case where the double-humped shape of f occurs, so one
sets ∆T = 2π

ω0
. For a Gaussian ψ this results in

pmax =
1− e

− π2

σ2ω2
0

2
=

π2

2σ2ω2
0

+O
�

1

σ4ω4
0

�

. (Gaussian case) (175)

Thus to lowest order the maximal postselection probability is given by

pmax ≈
π2

2σ2ω2
0

. (Gaussian case) (176)

Comparing this result with the non-maximised postselection probability (160) is rather dis-
appointing: pmax is only twice as large as in the case of an orthogonal postselection. Thus,
by deviating from perfectly orthogonal postselections the postselection probability can only
be doubled.

With different initial pulse shapes one can gain little enhancement of the postselection
probability, however, the resulting postselection probabilities will remain of the same order
of magnitude. Consider, for example, a hyperbolic secant distribution (sech):

ψ(t) =
Ç

π

4
p

3σ
sech

�

π

2
p

3

t

σ

�

eiω0 t , (177)

where

sech t =
1

cosh t
=

2

et + e−t . (178)

Here σ appears such that it is equal to the standard deviation of |ψ|2 as before. A calculation
offers:

pmax =
1− 4π4

3σ2ω2
0

csch2
�

2π2
p

3σω0

�

2
=

2π4

9σ2ω2
0

+O
�

1

σ4ω4
0

�

, (Sech case) (179)

where

csch t =
1

sinh t
=

2

et − e−t . (180)
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Thus to lowest order one gets

pmax ≈
2π4

9σ2ω2
0

, (Sech case) (181)

which is larger by a factor of 4π2/9≈ 4.39 compared to the Gaussian case.
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5.5 Method 5: Cutting out frequencies

Instead of measuring the shape of the photon the frequency distribution of the postselected
photons is of interest in this method. Under certain conditions the interference at the second
polarising beam splitter PBS2 in combination with the postselection at P2 cuts out a certain
frequency. The gravitational phase shift caused by the gravitational time dilation can shift
these cut out frequency in a measurable way. A measurement can be conducted with a gas
which absorbs photons with a certain frequency. If this frequency is cut out the photons pass
the gas whereas they will be absorbed by the gas if the cut out frequency is shifted due to
the gravitational phase.

The effect of a cut out frequency can be seen by looking at the state after the postselection
where the following preselection and postselection was chosen:

|I〉=
1
p

2

�

|H〉+ |V 〉
�

, (182)

|F〉=
1
p

2

�

|H〉+ eiϕ|V 〉
�

. (183)

This results in the final state (see eq. 63):

ψF (t) =
ψ(t + d +δ) + e−iϕψ(t − d −δ)
p

2
�

1+ cosϕRe〈ψ−d−δ,ψ+d+δ〉
�

, (184)

where an additional controllable time delay ∆T ≡ 2d (via positioner elements) was intro-
duced on top of the gravitational time dilation ∆τ ≡ 2δ. In the frequency basis the state
reads

eψF (ω) =

r

2

1+ cosϕRe〈ψ−d−δ,ψ+d+δ〉
eψ(ω) cos

�

ω(d +δ) +
ϕ

2

�

. (185)

Here the tilded functions correspond to the Fourier transformations:

eψ(ω) =
1
p

2π

∫

ψ(t) e−iωt dt . (186)

Hence after the postselection the frequency distribution of the photon is given by | eψF |2

which will be denoted by ef :

ef (ω) := | eψF (ω)|2 =
2

1+ cosϕRe〈ψ−d−δ,ψ+d+δ〉
| eψ(ω)|2 cos2

�

ω(d +δ) +
ϕ

2

�

. (187)

It is assumed that | eψ(ω)|2 (frequency distribution before the postselection) is single-peaked
at ω = ω0. However, in the frequency distribution ef (ω) after the postselection, | eψ(ω)|2 is
multiplied by cos2 which is zero at

ω=
π
�

n+ 1
2

�

− ϕ

2

d +δ
, n ∈ N . (188)
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Thus, for given ω0, one can chose the controllable time delay as

d :=
π
�

n+ 1
2

�

− ϕ

2

ω0
, for some fix n ∈ N . (189)

For this choice of d the frequency distribution ef (ω) is 0 at ω = ω0 in the absence of a
gravitational time dilation (δ = ∆τ/2 = 0) since the cos2 is 0 at ω = ω0. Hence, for this
choice of d, ef gets a double-humped shape where the frequency ω0 is cut out.

ω

(ω−ω0)
2 e
− (ω−ω0)

2

2eσ2

ω0

2
p

2eσ

Figure 18: Sketch of leading term
of the frequency distribu-
tion ef (ω).

To see this double-humped shape in an analytical
form, consider the case where eψ(ω) is Gaussian,

eψ(ω) =
1

(2πeσ2)1/4
e−

(ω−ω0)
2

4eσ2 , (190)

and d is chosen as in (189). In the absence of a grav-
itational time dilation the resulting frequency distri-
bution ef then reads, up to normalisation,

ef (ω)

∼ e−
(ω−ω0)

2

2eσ2 cos2
�

ω

ω0

�

π (n+ 1/2)−
ϕ

2

�

+
ϕ

2

�

,

(191)

n ∈ N. Since for ω0� eσ the cos2-part varies considerably slower than the exponential part
one can expand the cosine about ω=ω0:

ef (ω)∼
(ω−ω0)2

ω2
0

e−
(ω−ω0)

2

2eσ2 + e−
(ω−ω0)

2

2eσ2 · O
�

(ω−ω0)4

ω4
0

�

(192)

The leading term clearly represents the double-humped shape of ef and the cut out frequency
ω0, see Fig. 18. Via the first derivative one directly finds that the two humps are separated
by 2
p

2eσ to leading order.

ω

ef (ω)

ω0

ω0−∆ω

Figure 19: ef (ω) for a nonvanish-
ing gravitational time
dilation.

But if the gravitational time dilation comes into play
(e.g., by rotating the interferometer into the gravita-
tional field) the zeros of the cos2 are slightly down-
shifted by ∆ω. Hence another frequency ω0 −∆ω,
in the neighbourhood of ω0, is cut out, see Fig. 19.
From (188) it follows that ∆ω is given by

∆ω=ω0
δ

d +δ
, (193)

as long as ω0 < 1/δ. In terms of ∆T and ∆τ this
reads:

∆ω=ω0
∆τ

∆T +∆τ
=ω0

∆τ
∆T
+O

�

∆τ2

∆T2

�

. (194)
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Also the postselection probability needs to be considered. For the chosen preselection and
postselection one obtains:

p =
1+ cosϕRe〈ψ+d+δ,ψ−d−δ〉

2
. (195)

If one restricts on wave packets with a simple phase ψ(t) = |ψ(t)|eiω0 t the real part of the
overlap can be written as

Re〈ψ+d+δ,ψ−d−δ〉= cos(2ω0δ+ 2ω0d)

∫ ∞

−∞
|ψ(t + d +δ)| |ψ(t − d −δ)| dt

≤ cos(2ω0δ+ 2ω0d) . (196)

Choosing d as given in (189) leads to

Re〈ψ+d+δ,ψ−d−δ〉 ≤ − cos(ϕ− 2ω0δ)≈− cosϕ . (197)

Hence, to lowest order, one obtains

p ≥
1− cos2ϕ

2
. (198)

Thus the optimal choice of |ϕ| is a value around π/2 such that p ≥ 1
2
.

Consider, e.g., photons with a mean frequency of ω0 = 2 · 1015 Hz and a controllable
time delay of ∆T ≡ 2d = 2.35 · 10−15 s (see eq. (189) for n = 0 and ϕ = −π/2) which
corresponds to an additional path length of 706.37 nm. An interferometer with a surface of
2500 m2 (which, in a quadratic case, corresponds to arm lengths of only 50m) results in a
gravitational time dilation of ∆τ = 9.1 · 10−22 s and in a downshift of ∆ω = 0.77 · 109 Hz.
Since it is no problem to create photons with a bandwidth of 109 Hz this downshift ∆ω of
the cut out frequency deforms the frequency distribution of the photons significantly.

This effect could be measured in the following way. Consider a glass tube which is filled
with a gas whose atoms can be excited by photons with a frequency of ω0. If the photons
have a frequency distribution like in Fig. 18, i.e. in the gravity free case, a certain number,
which depends of the atom’s line width, of photons are able to excite an atom of the gas.
If, on the other hand, the gravitational time dilation downshifts the cut out frequency, like
in Fig. 19, more photons will be absorbed by the gas, since one hump of the frequency
distribution is shifted above the absorption frequency. So the rate of photons passing the
glass tube could be decreased in a measurable way. A photon detector behind the glass tube
could measure these changes of passing photons in dependence of the gravitational phase
shift.

A concrete example could look as follows. Assume the glass tube is filled with a gas of
133Cs atoms. Ignoring the hyperfine structure the transition of the D2 line (62S1/2 → 62P3/2)
of cesium can be exploited. The corresponding frequency of this transition [18] is given by
ωex = 2.21 · 1015 Hz. Conducting the experiment at room temperature, T = 293 K, the line
width of the atoms is given by the Doppler width due to Doppler broadening. The Doppler
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broadened line width is usually modelled by a Gaussian distribution [19] with a standard
deviation of

eσDop =

È

kB T

c2mCs
ωex . (199)

Here kB is the Boltzmann constant and mCs is the mass of a cesium atom. Since mCs =
132.91 u = 2.207 · 10−25 kg the line width of the transition has the standard deviation of
eσDop = 998.03 ·106 Hz. If the pressure of the gas is sufficiently low pressure broadening can
be neglected. In order to keep the calculations as simple as possible the 3-sigma rule9 is used
here: Photons with a frequency outside of the interval Ωex ≡ [ωex − 3eσDop,ωex + 3eσDop]
will not be absorbed by the cesium gas and therefore pass the glass tube. Hence, one can
estimate that the rate η of photons passing the glass tube unhindered is at least

η≈ 1−
∫

Ωex

ef (ω) dω . (200)

Figure 20 shows numerical results of the downshift of the cut out frequency due to the
gravitational phase shift for the example of a cesium gas in the glass tube. The photon
source was chosen to produce photons with a mean frequency of ω0 =ωex, a bandwidth of
eσ = 2 · 109 Hz, and the controllable time delay is ∆T = 2d = 1.42 · 10−15 s (see eq. (189)
for n= 0 and ϕ = 0).

Why does this method only probe the phase shift effect and not the gravitational time dila-
tion? To see this one can assume that instead of causing a time dilation gravity would only
cause an Aharonov-Bohm phase Φ = ω0∆τ between the two arms of the interferometer.
The argument of the cos2 in the frequency distribution of the photon after the postselection
(187) would then be given by ωd+ω0δ+ϕ/2 instead of ω(d+δ)+ϕ/2. This can be seen
by replacing δ→ 0 and ϕ→ ϕ+Φ = ϕ+2ω0δ in (184). Thus, in the Newtonian limit, the
downshift of the cut out frequency would read

∆ωNL =ω0
δ

d
instead of ∆ω=ω0

δ

d +δ
. (201)

The difference between both is negligible small:

∆ωNL−∆ω=ω0
δ2

d2 +O
�

δ3

d3

�

. (202)

According tho the lower right graph of Fig. 20 this difference would only be 3.5 · 103 Hz.
Thus there is no conceptual difference between the Newtonian limit and general relativistic
time dilation since in both cases a downshift of the cut out frequency occurs, as well as the
fact that the numerical difference has no mensurable influence of the proposed experiment.

Note, that a major hindrance for this method is given by requirement that the precision of
the additional controllable time delay ∆T needs to be of the order of the gravitational time

9The 3-sigma rule states that 99.7 % of the area of a Gaussian distribution is covered by plus/minus 3 standard
deviations away from the mean.
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Figure 20: Plots of the frequency distribution ef of the photon after the postselection. The
parameters are chose as ω0 = ωex = 2.21 · 1015 Hz, eσ = 2 · 109 Hz and ∆T =
2d = 1.42 · 10−15 s. The pink area illustrates the frequency contribution of the
photons which are outside of the interval Ωex ≡ [ωex − 3eσDop,ωex + 3eσDop]
and therefore can not be absorbed by the cesium gas. Here σDop represents the
Doppler width of the cesium atoms (see eq. 199). One can see that already for
a small gravitational phase shift of Φ = 4 · 10−6 the rate of photons η at least
passing the tube is decreased from 66.2% to 35.5 %.
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dilation∆τ. Otherwise it is not possible to reach the double humped-shape of the frequency
distribution ef . Since with subnanopositioner elements one can control the additional time
delay with a precision of 0.05 nm/c = 0.17as, the smallest possible interferometer for this
method will have a surface of about 4.6 · 105 m2. This is four orders of magnitude smaller
than 103 km2 as suggested in [1].
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6 Conclusion

In this thesis five methods to measure the effects of gravitational time dilation or gravita-
tional phase shifts on single photons were presented. The improvement compared to the
original publication [1] is summarised in the following.

In the first method the weak measurement formalism was applied in order to amplify
the shifts in the mean frequency and in the mean arrival time of the photons due to the
gravitational time dilation. The results show that considerably smaller interferometers can
be used to measure the influence of gravitational time dilation on single photons compared
to the ones discussed in [1]. Instead of interferometers with a surface of 103 km2 (which
is about the size of Cyprus) only 104 m2 (which is about the size of a soccer field) could be
enough to measure the gravitational time dilation. The improvement amounts to five orders
of magnitude. The postselection probability was 10−8 in this example.

The second method was a technique to amplify a relative phase in an optical interferom-
eter similar to the weak measurement formalism. The suggested set of parameters, given at
the end of ch. 5.2, also assumed an interferometer with a surface of 104 m2. The resulting
Aharonov-Bohm phase then is about Φ = 3.6·10−6. Due to the amplification effect the effec-
tive relative phase was Φ/ε = 2 · 10−2 since the chosen parameters lead to an amplification
factor of 1/ε = 5.6 · 103 and a postselection probability of 3.2 · 10−6. If, instead of photons,
only classical light is of interest even smaller interferometers can be used since in such a
case low postselection probabilities can be compensated by high laser intensities.

Introducing an additional controllable time delay on top of the gravitational time dilation
was the main idea of the third method. This additional controllable time delay was chosen
such that the sensitivity of the detection probabilities to the gravitational time dilation be-
comes maximal. Also here an improvement could be reached: The suggested parameters
lead to an interferometer with a surface of 11.9 km2. This is an improvement of two orders
of magnitude with respect to [1].

Method 4 exploited the occurrence of a double-humped shape of the photons if the time
delay of the wave packets lies within a very narrow interval. To reach this narrow interval
a controllable time delay on top of the gravitational time dilation was necessary. Inside
this narrow interval the effect was not distinguishable from a phase shift effect. Currently
available nanopositioner elements which have a resolution of 0.05nm (which corresponds
to a resolution of 0.17as) would allow to use an interferometer with a surface of 2.7·105 m2.
For optical photons the Aharonov-Bohm like phase shift would then be of the order of 10−4.
Since even smaller phase shifts can be measured with current technology, this method can
not be viewed as an improvement but rather as a new method to detect phase shifts in
quantum optical experiments.

The last method based on the idea that the gravitational phase shift causes a deforma-
tion of the frequency distribution of the postselected photons. These deformations could
be measured in a spectroscopic experiment. Feasible experimental parameters lead to the
possibility to measure a gravitational phase shift of about Φ = 3.3 · 10−4 which corresponds
to a surface of 4.6 · 105 m2. The postselection probability was larger than 1/2. Also here,
like in method 4, this can at least be seen as a new method to measure phase shifts.
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