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Abstract 

 

This cumulative PhD thesis summarises several individual studies on the luminescence of REE (rare-

earth elements; i.e., trivalent lanthanoides), which are typically incorporated in accessory minerals 

such as zircon, titanite, monazite–(Ce) and xenotime–(Y). A main objective of these studies is to 

examine the powerfulness of REE3+ luminescence spectroscopy as structural probe. In particular, this 

concerns the potential use of REE3+ emissions in characterising structural disorder of their accessory 

host minerals as caused by radiation damage and/or compositional heterogeneity. Especially the 

former (i.e., mineral disorder due to radiation damage) is of interest to Earth and materials scientists, 

for instance for the understanding of changed physicochemical properties of initially crystalline 

materials that are affected by structural damage as caused by the radioactive decay of actinides.  

Moreover, a substantial contribution of the studies presented lies in the field of basic 

properties of the REE3+ luminescence of natural accessory minerals. First, the investigations have 

addressed the identification of diverse REE species in diverse natural host minerals (which is done 

using synthetic REE-doped analogues). Second, factors that may bias the quantitative estimation of 

spectroscopic parameters have been studied, including effects of experimental parameters (crystal 

orientation and temperature) and the samples’ compositional heterogeneity. The results will be 

particularly useful to the growing community of Earth scientists who apply REE3+ luminescence 

spectroscopy in studying geological materials. 

 

Kurzzusammenfassung 

 

In der vorliegenden, kumulativen Doktorarbeit sind mehrere Einzelstudien zusammengefasst, welche 

die Lumineszenz der Seltenenerdelemente (SEE) in den akzessorischen Mineralen Zirkon, Titanit, 

Monazit–(Ce) und Xenotime–(Y) thematisieren. Diese Studien sollen insbesondere die Frage klären, 

inwiefern die Lumineszenz der SEE3+ dazu verwendet werden kann strukturelle Unordnung in diesen 

Materialien zu charakterisieren. Strukturelle Unordnung kann einerseits maßgeblich durch 

Strahlenschäden und zum anderen durch eine heterogene Probenzusammensetzung verursacht werden. 

Ersteres ist für Geo- als auch für Materialwissenschaftler von Interesse. Schäden an der kristallinen 

Ordnung von Mineralen, welche durch den radioaktiven Zerfall von strukturell eingebauten Aktiniden 

verursacht werden, haben einen maßgeblichen Einfluss auf die physikochemischen Eigenschaften 

dieser Materialien.  

Darüber hinaus befasst sich ein bedeutender Teil der vorliegenden Studien mit den 

grundlegenden, SEE-verursachten Lumineszenzeigenschaften besagter akzessorischer Minerale. Diese 

Voruntersuchungen galten in erster Linie der korrekten Zuordnung spezifischer 

Photolumineszenzbanden zum jeweiligen Element. Dies erfolgte durch Vergleich von Spektren 

natürlicher Proben mit ihren synthetisierten, SEE-dotierten Analoga. Desweiteren wurde der Einfluss 
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diverser Faktoren untersucht, welche die quantitative Bestimmung spektroskopischer Parameter 

erschweren. Im Speziellen sind dies messbedingte Effekte (unterschiedliche Kristallorientierungen und 

Umgebungstemperaturen) und der Einfluss der chemischen Zusammensetzung der Proben. Die 

Ergebnisse dieser Studien sind im Speziellen für die wachsende Zahl von Wissenschaftlern von 

Bedeutung, welche die SEE3+-Lumineszenzspektroskopie zur Untersuchung von Geomaterialien 

verwenden. 

 

1. Introduction 

 

1.1.  Luminescence of lanthanoides (REE3+) 

 

Luminescence is defined as the ability of materials to emit photons of light in the ultraviolet (UV), 

visible, and/or near-infrared (NIR) spectral range after energetic excitation. The above defines the 

creation of photons of light through the radiative release of energy during electronic transitions. Many 

sources and techniques for luminescence excitation are commonly used, such as photons 

(photoluminescence, PL), electrons (cathodoluminescence, CL), accelerated ions (ionoluminescence, 

IL), to name just a few. Typical luminescence centres or activators in inorganic materials include 

structural defects and specific, minor or trace elements incorporated into the crystal structure (e.g., 

Marfunin 1979; Blasse and Grabmeier 1999). With respect to luminescence emissions of materials in 

general, lanthanoides are a very important group of chemical elements. This is because their 

luminescence characteristics are used in a wide range of modern technological applications, such as 

lighting, colour-television screens, solid-state lasers, phosphors, and chromophores (e.g., Belsky and 

Krupa 1999; Kenyon 2002; Bünzli and Piguet 2005; Liu and Jacquier 2005).  

Moreover, these elements are commonly incorporated in accessory mineral phases. This is of 

particular interest if the lanthanoid incorporation is not homogeneous but, in contrast, shows zoning or 

other internal heterogeneity. Such distribution patterns within geological samples (commonly referred 

to as internal textures) may bear valuable information on the primary growth and the post-growth 

history. The lanthanoid-distribution textures are well visualised using luminescence techniques 

(Hanchar and Miller 1993; Rakovan and Reeder 1996; Götze 2000; Rubatto & Gebauer 2000; 

Edwards et al. 2007; MacRae et al. 2012, 2013). 

The lanthanoides are defined as a group of 15 chemical elements, from La to Lu. They have 

widely similar chemical properties and, therefore, they are referred to as elements being “similar” to 

lanthanum from the Greek ειδἠς (-eides) = related/similar (compare Connelly et al. 2005). In the Earth 

sciences, the term “rare-earth elements” (REEs) is by far more commonly used. This term, per 

definition, includes all lanthanoid-group elements as well as the elements Sc and Y. The preferential 

use of the term “REE” in the Earth sciences is perhaps explained by the fact that lanthanoides, Sc, and 

Y (all belonging to the third subgroup of the periodic table) show widely similar behaviour in natural 
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geochemical systems. It should however be noted that “REE” is applied inconsistently in the literature; 

often it is wrongly used if lanthanoides are meant. For instance, an expression such as “Y, Sc and 

REE” (e.g., Nielson et al. 1992) is substantially incorrect, considering the definitions quoted above.  

The PhD research summarized here deals with a number of lanthanoides, i.e., with selected 

REE not including Y and Sc. The term “lanthanoides” hence could have been used for description. 

However, the use of the term “REE” was preferred in the following text and the publications 

presented, motivated by the fact that Earth scientists are much more familiar with the latter.  

The elements dealt with comprise only a sub-group of the REEs (or the lanthanoides, 

respectively), namely those with an incompletely filled 4f electronic shell (i.e., Pr3+ to Yb3+). The 

luminescence of materials containing these REEs originates from intra-configurational 4fn electronic 

transitions. Emission spectra are therefore characterised by remarkably sharp bands, in contrast to the 

typically broad-band luminescence of 3d or 4d elements (Blasse and Grabmaier 1994). The unique 

characteristics of REE3+ luminescence is determined by the particular electron configurations of these 

elements, which consists of outer filled 5s2 and 5p6 orbitals shielding the electronic transitions within 

non-bonding 4f levels. For a more detailed, comprehensive introduction see Appendix A.1 (which 

contains an exemplary discussion of Nd3+). 

 

1.2.  Research objectives 

 

In the Earth sciences, one challenging task was (and still is) the detection of REEs in different host 

minerals using luminescence methods. A large variety of mineral systems has been studied already 

(Tarashchan 1978; Cesbron et al. 1995; Habermann et al. 1996; Baumer et al. 1997; Gaft et al. 1999, 

2005; Götze et al. 1999; Blanc et al. 2000; Waychunas 2002; Finch et al. 2004; Nasdala et al. 2004a; 

Czaja et al. 2008; Friis et al. 2010; Chen & Stimets 2014). Time-resolved luminescence techniques 

have improved the detection of various luminescence centres utilising their different decay times 

(Reisfeld et al. 1996; Gaft et al. 1999, 2001). Cathodoluminescence images are commonly used to 

visualise internal textures of zircon and other geological materials (e.g., Vavra 1990; Hanchar and 

Miller 1993; Hanchar and Rudnick 1995; Rakovan and Reeder 1996; Götze 2000, 2002; Hoskin and 

Black 2000; Corfu et al. 2003; Götze et al. 2013).  

The steady-state, laser-induced photoluminescence of REE3+ is commonly observed, as an 

analytical artefact, in Raman spectra of minerals (e.g., Nasdala et al. 2012). The laser beam that is used 

to induce Raman scattering is characterized by photon energies that correspond to typical absorption 

transitions of REE3+. It may therefore excite concomitantly the PL of variable REE3+ centres being 

incorporated in the material analysed. The widths of PL bands of such elements may be as narrow as 

0.1–0.3 nm at room temperature, which is on the same order as typical full-width-at-half-maximum 

(FWHM) values of Raman bands (i.e., a few cm–1). Therefore, confusion of Raman bands with narrow 

PL bands of REE3+ emissions is found quite often in the published literature (discussed in Appendix 

A.4).  
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The first aim of the present PhD thesis therefore was to contribute to the PL-based 

identification of the REE centres that strongly affect Raman spectra, especially in the (typically REE-

containing) accessory minerals zircon ZrSiO4, monazite–(Ce) CePO4, xenotime–(Y) YPO4, and 

titanite CaTiSiO5. Second, the major objective of the present PhD research was to address the question 

how the PL of REE3+ in minerals can be used as structural probe. For instance, it was studied as to 

which degree PL can complement applications of Raman spectroscopy, e.g., for the identification of 

mineral phases and to characterise effects of the real structure of geological materials (Zhang et al. 

2000; Nasdala et al. 2004b; Nasdala 2012). Recently, the PL of REE3+ in minerals and mineral-based 

ceramics has been used as structural probe of order-disorder phenomena (in particular caused by the 

accumulation of structural damage due to irradiation). To provide a few examples, spectral parameters 

of Eu3+ emissions have been used for the characterisation of REE-substituted cation-sites in glasses 

and crystalline materials, to evaluate their potential use as nuclear waste forms (Ollier et al. 2003; 

Reisfeld et al. 2004, 2005; Ternane et al. 2005). Seydoux-Guillaume et al. (2002) and Panczer et al. 

(2012) have proposed that the REE-dominated luminescence emission of monazite–(Ce) may bear 

quantitative information on the radiation-damage accumulated by this mineral.  

This thesis evaluates critically the potential of REE3+ photoluminescence for the estimation 

and visualisation of structural disorder as caused by (1) radiation damage and (2) compositional 

heterogeneity. The former is of interest especially to the radioactive-waste community, i.e., in the 

search for, and characterisation of, potentially suitable mineral-based host forms for the long-term 

immobilisation of spent nuclear fuel and other radioisotopes. Also, results are expected to be of 

interest in the fields of geochemistry/petrology and geochronology. This is because radiation damage 

often controls the post-growth alteration of accessory minerals that are used routinely for radiometric 

age dating of rocks, and whose internal textures and peculiarities are informative of the host rocks’ 

post-growth history. In both research fields, however, a fast, reliable, and in-expensive imaging (i.e., 

mapping) technique would open up new opportunities in the characterisation of radiation damage in 

the micrometre range.     

 

2.  Summary of results 

 

2.1.   Crystal-field splitting of REE emissions – Fingerprint identification of minerals 

 

Results of Appendix A.4 demonstrate that steady-state laser-induced photoluminescence of REE3+ is a 

common analytical artefact in Raman spectroscopy of accessory minerals. Emissions of REE3+ 

detected in Raman spectra, however, may be advantageous in so far as specific emissions itself are 

indicative for the analysed mineral species and may be used as complementary fingerprint method. 

Specific REE3+ emissions appear in the similar spectral range, but REE3+ electronic-levels split into 

sublevels in dependence on the local structural environment of the REE3+ ion (Stark level splitting on 
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the order of ca. 102 cm–1; cf. Fig. 1 in A.1). This crystal-field dependent splitting of 4f spectroscopic 

levels is particularly observed if PL emissions of certain REE are compared among different minerals 

and structure types (cf. Fig. 2 in A.1, and Fig. S1 in A.4). The crystal-field splitting depends on a 

variety of parameters that are related to the crystallographic environment of the REE3+ within the 

crystal structure, e.g., site symmetry, the interatomic distance to the ligands, etc. (e.g., Burns 1993). 

The comparison of Nd3+ emissions in different isotypic monazite- and zircon-type structures revealed 

that not only the point symmetry, but rather the charge distribution at the substitutional REE3+ site 

considerably affects the Nd3+ emission pattern (see Fig. 3 and discussion in A.1).  

 Many REE-related PL artefacts in Raman spectra of accessory minerals were identified by 

comparing natural samples with REE mono-doped analogues (which were synthesised in the course of 

the PhD). Differentiation of individual bands of multiple overlying REE centres is straight forward 

using PL spectra of the individually doped mineral equivalents (e.g., see Fig. 4 in A.4). Hence, the PL 

studies on synthetic mineral analogues provided both: (1) the materials individual sublevel splitting 

potentially used for a fast mineral identification (e.g., applied in igneous/metamorphic and 

sedimentary petrology, gemmological or mineral provenance studies; Richter et al. 2003, 2006, 2008; 

Fritsch et al. 2012; Andò and Garzanti 2014); and (2) an enhanced possibility to identify certain REE 

species in the accessory minerals discussed. The comparison of spectra of natural samples with those 

of singly REE-doped analogues is advantageous if the luminescence signals of multiple REE species 

overlap. Reference spectra may, therefore, help to discriminate individual species in steady-state PL 

spectra of natural specimens, and in time-resolved PL spectra with REEs having similar luminescence 

decay-times (cf. Gaft et al. 2000, 2001, 2005). Photoluminescence spectra and further original spectra 

files of REE3+ mono-doped accessory minerals studied were submitted to the CSIRO luminescence 

database (e.g., see Appendix B.7).   

  

2.2.  Trace-element distributions – PL mapping of REE luminescence intensities 

 

The intensity of PL emissions of trace elements in steady-state spectra of materials depends basically 

on (1) the effectivity of the laser photon-energy used for their excitation, i.e., the quantum cross 

section of the laser and the absorption/excitation levels of the respective REE3+ in the crystal structure; 

and (2) the presence and concentration of certain PL centres in the material. Because of the latter, 

semi-quantitative REE distribution patterns may be easily visualised using a confocal spectrometer 

system with a spatial resolution of a few µm and software-controlled x-y mapping stage (see Fig. 1 

below, and Fig. 2 and 7 in A.4). Hyperspectral PL maps in Fig. 1 show that emission intensities as 

caused by traces of Cr3+ in titanite or REE3+ in zircon correlate closely to concentrations of the 

respective elements. Intensity maps produced are found to be more sensitive to minute changes in 

element concentrations than panchromatic CL images that are typically used to unravel the primary 

formation and post-growth history of geological materials (see further discussion in “Summary and 

conclusions” in A.4). 
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Note, however, that luminescence imaging or mapping is of semi-quantitative character. The 

luminescence intensities may depend strongly on further variables such as quenching (as described for 

titanite; see A.2) and sensitizing by other elements (e.g., Marfunin 1979; Kempe and Götze 2002), 

effects of crystal orientation (see A.1 and B.1, B.2, B.3) and the structural state/crystallinity, e.g. the 

accumulation of radiation damage (see A.3, and summary below). Although the effect of the crystal 

orientation on luminescence intensities is a well-known phenomenon (Owen et al. 1998; Barbarand 

and Pagel 2001; Finch et al. 2003), it is often neglected in luminescence studies, which may result in 

biased conclusions. Hence, some demonstrative examples of this effect (with particular focus on REE-

related luminescence) are documented in the present thesis. The intensity of individual crystal-field 

split REE3+ bands strongly vary in dependence of the crystal orientation relative to the measuring 

direction (discussed in A.1). Further, the polarisation of the laser, as applied in PL measurements, has 

a strong impact (see A.1 again). A few more examples of orientation-dependent PL of Eu3+, Ho3+, 

Dy3+ (see B.1) and Nd3+ emissions (see B.2) in xenotime–(Y) were studied.  

These results suggest that relative REE3+-PL intensity-differences may be comparable in PL 

maps of single crystals (with the crystal orientation being constant throughout mapping). In contrast, 

PL intensities may vary among multiple, heterogeneously-oriented grains in case of analysing 

polycrystalline materials (discussed in B.3).  

Figure 1.  Series of BSE and CL images and PL hyperspectral maps, of a titanite sample from

Schiedergraben, Felbertal, Austria, and a zircon sample from Mt. Zomba, Malawi. Hyperspectral PL

maps were produced using the intensity of Cr3+, Sm3+, or Dy3+ emissions. Results of LA–ICP–MS point

analyses are indicated (cf. Tables 1 and 3 in Appendix A.4).  
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2.3.  Estimation and visualisation of structural disorder 

 

2.3.1 Generalities 

 

Structural disorder is defined here as the entity of deviations from the ideal chemical composition and 

the structural order (real structure). Common features, which contribute to structural disorder in 

minerals, are the presence of point defects (e.g., substitutions, vacancies, interstitials), two- and three-

dimensional defects (e.g., surface defects, grain boundaries, holes). Typical effects on light-

spectroscopic signals are band broadening and shifting. In optical spectroscopy, this phenomenon is 

commonly termed inhomogeneous broadening (discussed in A.1). Results of the present PhD thesis 

demonstrate that the FWHM of narrow REE3+ emission-bands may be used effectively to estimate 

quantitatively structural disorder as caused by (1) radiation damage and (2) compositional 

heterogeneity of minerals.  

 

2.3.2.  Structural disorder as caused by radiation damage  

 

The long-term impact of natural radioactivity may cause severe structural damage in natural minerals. 

Self-irradiation induced structural damage is created mainly by the nuclear interaction (atomic “knock-

ons”) of heavy daughter recoil-nuclei from the decay of 232Th, 235U, and 238U (Wasiliewski et al. 1977; 

Weber et al. 1990; Devanathan et al. 2006, Nasdala et al. 2013). Accessory minerals, like zircon, 

titanite, monazite- and xenotime-group minerals, incorporate these instable actinides in their crystal 

structure, whose radioactive decay creates structural damage. With progressive damage accumulation, 

minerals may finally be transformed to a so-called “metamict”, amorphous state (e.g., Brøgger 1893; 

Pabst 1952; Ewing 1993). 

The investigation of radiation-damaged or metamict minerals has increased appreciably over 

the past two decades, stimulated by the potential use of mineral-like ceramics as waste forms for the 

immobilisation of reprocessed spent nuclear fuel and other radioactive waste (Stefanovsky et al. 2004; 

Omelyanenko et al. 2007; Weber et al. 2009; Montel 2011; Ewing and Weber 2011; Vance 2012). 

Advances in waste form development and testing have been complemented by numerous 

mineralogical investigations of the analogous mineral phases in geological environments (Lumpkin 

2001; Lumpkin et al. 2004). Information obtained from these studies has important implications for 

the validation of the long-term performance of nuclear waste forms for disposal in geological 

repositories.  

Damage accumulation is associated with changes of physical parameters such as refraction 

and birefringence, hardness, density, and elastic moduli (Holland and Gottfried, 1955; Chakoumakos 

et al., 1991; Palenik et al., 2003), and a general decrease of the chemical resistance (Ewing et al., 

1982; Balan et al., 2001; Mathieu et al., 2001; Geisler et al., 2001, 2003; Soman et al. 2010). The 
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generally increased susceptibility of radiation-damaged minerals to alteration processes is of enormous 

importance as it for instance affects negatively the ability of this mineral to immobilise radionuclides 

(e.g., Ewing 2011). For Earth scientists, the investigation of radiation-damaged minerals is important 

in so far as accessory minerals that have experienced considerable self-irradiation are more susceptible 

to post-growth alteration (Horie et al. 2006; Lenting et al. 2010) and the loss of radioisotopes. The 

latter may bias results of chemical and isotopic age determinations (Kuiper 2005; Goncalves et al. 

2005; Nasdala et al. 2010a). Fission-track ages are also affected by the radiation damage of the 

minerals (Murakami et al. 2006; Li et al. 2011).  

The impact of self-irradiation on the luminescence emission of REE3+ is demonstrated in 

Appendix A.3. This study deals with radiation-damage effects in zircon. Figure 2 in A.3 shows that 

FWHMs of REE3+ PL-bands increase significantly with increasing structural damage. Band-widths of 

distinct levels of Dy3+ (4F9/2  6H13/2) and Nd3+ (4F3/2  4I9/2) emissions may be determined reliably by 

conventional band-fitting procedures. Band-broadening of REE-related emissions in radiation-

damaged minerals is assigned to the disturbance of the structure as caused by the accumulation of 

defects. A complete metamictisation, hence, cause a total loss of crystal-field states (i.e., degeneration 

of electronic states); the respective electronic transitions are then characterised by broad humps in the 

luminescence spectra (see again Fig. 2 in A.3; and Fig. 6B in A.4). On the example of cut-in-half 

zircon samples (Fig. 3 in Appendix A.3), it is demonstrated that band-widths of selected REE3+ 

emission sublevels may be used to visualise the distribution of radiation-damage accumulation, as 

obtained from hyperspectral maps (with the FWHM of certain Stark’s levels of e.g., Dy3+ being used 

as the mapping parameter). Furthermore, results of this study show that the FWHM of selected REE3+ 

luminescence sublevels of zircon is related to the amount of radiation-damage accumulated over 

geologic periods of time (effective α-dose). Hence, the FWHM parameter may be used to estimate 

quantitatively accumulated radiation-damage in accessory minerals (Fig. 5 and 7 in A.3).  

Attempted quantifications of irradiation effects based on the study of naturally radiation-

damaged minerals, however, are often biased. The latter is because of insufficient knowledge about 

their thermal and, hence, annealing history (see Nasdala et al. 2004b). This problem may be overcome 

by studying minerals that were artificially ion-irradiated in the laboratory. Within the PhD project, 

heavy-ion irradiations (with Au ions in the 1–12 MeV range) of zircon and monazite–(Ce) were 

performed to simulate the nuclear interaction of heavy daughter nuclei (that were released during α-

decay events in natural minerals) with the host material (B.4, B.5, B.6). In nature, trajectory lengths of 

α-recoils do not exceed a few tens of nanometres. This is because of low momentum energies of α-

recoils ranging between 0.07 to 0.16 MeV. To artificially create damage volumes with “measurable” 

thicknesses in the µm-range, comparably higher ion-energies in the MeV range were used in the ion-

irradiation experiments. The ions irradiated (with energies in the MeV range) still have relatively short 

penetration depths to only a few micrometres. Consequently, irradiation of a bulk sample results in the 

formation of a relatively shallow radiation-damaged layer atop of a non-irradiated, still crystalline 

host.  
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An innovative aspect of the PhD project was that the majority of the irradiations were done on 

thin foils produced using the focused ion beam (FIB) technique (see Fig. 1 in B.4). The main reason 

behind the latter idea was that spectroscopic micro-analyses, even if done with state-of-the-art 

confocal systems, have a limited depth resolution. In the analysis of micrometre-thin (Picot et al. 2008; 

Mendoza 2010) or even thinner (~100 nm, Zhang et al. 2008) radiation-damaged layers atop of an un-

irradiated host crystal, it is more than likely that the damaged layer and crystalline host are analysed 

simultaneously (see Fig. 2; also discussed in Nasdala et al. 2010b for Raman spectroscopic analyses). 

This is particularly problematic insofar as Raman or PL signals of severely damaged solids are mostly 

lowered appreciably in intensity; the signal of the thin damaged layer may therefore be obscured easily 

by the spectrum of the crystalline back (see Fig. 2 again). A relatively simple way to avoid this 

problem was the virtual pre-removal of the un-irradiated host behind the irradiated sample volume, by 

using thin foils whose thicknesses are just smaller than the maximum penetration depths of the ions 

irradiated. The thicknesses of these foils were adjusted carefully according to the penetration depths of 

the ions irradiated, which were calculated from Monte Carlo simulations (SRIM, Ziegler et al. 1984; 

see Fig 2a in B.4). This ensured on the one hand that the irradiated samples contain the majority of the 

structural damage produced – a presumption for quantitative estimates. On the other hand, irradiated 

samples do not contain any un-irradiated volumes, whose presence is likely to bias the analytical 

results. Most results of heavy-ion irradiation experiments done during this PhD were not published yet 

in peer-reviewed articles, but some preliminary results are documented in conference abstracts 

presented below (see Appendices B.4, B.5 and B.6).  

For zircon, Raman spectral parameters are used successfully to estimate the degree of 

radiation damage on a microscale (e.g., Nasdala et al. 1995), whereas this technique cannot be applied 

for some other mineral species (for titanite discussed by Kennedy et al. 2010); here a luminescence-

based quantification is most useful. In addition to X-ray diffraction (e.g., Weber 1990; Ríos et al. 

2000), several other spectroscopic techniques have been applied to quantify radiation damage 

accumulated in minerals. For instance, Wasilewski et al. (1973), Deliens et al. (1977), Zhang and Salje 

(2001) and Zhang et al. (2008) used infrared (IR) absorption spectroscopy, and Farnan et al. (2001; 

2007) applied 29Si nuclear magnetic resonance (NMR) spectroscopy to estimate the amorphous 

fraction in zircon. Advantages of using REE3+ luminescence spectroscopy with respect to the 

mentioned methods include (1) the high volume resolution (with confocal spectrometer systems, 

analyses can be done on a micrometre scale); (2) the possibility to visualise the distribution of 

structural damage in minerals/ceramics with hyperspectral mapping (a high volume resolution 

required); (3) the option to do non-destructive analyses without sample preparation; (4) the possibility 

to excite REE3+ luminescence emissions with various different techniques such as PL, CL, IL, etc.; 

and (5) to potentially analyse hazardous nuclear waste forms with remote spectrometer set-ups. 
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Figure 2.  Photoluminescence spectra showing the Nd3+ (4F3/2 → 4I9/2) emission of synthetic, Nd3+-

doped CePO4. Spectra of FIB-prepared lamellae (right) are compared with spectra obtained from 

simultaneously irradiated, unprepared crystals measured normal to the ion irradiated surface (left). 

On both sides of the figure, spectra of four samples irradiated with Au ions (1, 4, and 10 MeV) are 

shown along with the un-irradiated analogue. The FIB-foil spectra on the right show significant 

sublevel broadening with increasing irradiation doses. The sample irradiated with the highest dose 

(4.25  1013 ions/cm2) is severely radiation-damaged. It does not show any significant PL signal of 

crystalline CePO4 anymore; crystal-field states are completely degenerate. All spectra of unprepared 

crystals (left) appear “undamaged”. This analytical artefact is explained by the fact that spectra are 

dominated by intense, narrow bands originating from the un-irradiated host crystal underneath the 

surficial (1.5 m thick) damaged layer. 

 

 

 

2.3.3.  Structural disorder as caused by compositional heterogeneity 

 

A further aspect in the PhD project was to investigate effects which may bias the estimation of 

radiation-induced band broadening of REE3+ luminescence Stark’s levels. Structural disorder as 

caused by compositional heterogeneity may also strongly influence PL band-widths (e.g., Panczer et 

al. 2012). Compositional heterogeneity is due to the incorporation of non-formula elements into the 

crystal structure. Consequently, the impact of compositional heterogeneity on PL band-widths is 

strong in minerals which are characterised by high chemical flexibility, such as the monazite (Clavier 

et al., 2011) or titanite crystal-structure (Higgins and Ribbe, 1976). A quantitative discrimination 

between compositionally-induced and irradiation-induced structural disorder is needed, however, to 

estimate (precisely as possible) the accumulated radiation damage in minerals of high compositional 

variance. For zircon, it could be demonstrated that the effect of compositionally induced disorder is 
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considerably small (see discussion and Fig. 4 in A.3). In contrast, this effect is significant in  

monazite–(Ce). Investigation of a suite of synthetic and natural monazite–(Ce) samples revealed that 

the incorporation of heterovalent ions has the strongest impact on REE3+-PL band-widths, whereas the 

impact of homovalent substitutes is negligible relatively (see discussion in A.1). The impact of 

compositionally-induced structural disorder as caused by the incorporation of heterovalent ions may 

be estimated using a simple parameter which reflects the distortional behaviour of all heterovalent 

substituents (see Fig. 3 below, and Fig. 8 in Appendix A.1).  

Moreover, effects of variable compositional heterogeneity on the FWHM broadening of the 

REE3+ emissions upon accumulation of radiation damage produced by heavy-ion (Au) irradiations of 

variable dose, have been investigated (see Appendix B.5). These experiments have addressed the 

question how compositional heterogeneity on the one hand and structural damage on the other hand 

contribute to changes of the REE3+ luminescence.  

 

 

 

 

Figure 3.  Effect of chemical composition on the PL of Nd3+ in monazite–(Ce) (shown for the example 

of the 4F3/2 → 4I9/2 transition). (A) Spectra of an annealed monazite–(Ce) from central Australia 

(crystalline but compositionally impure) and pure and La-Nd-doped CePO4. The incorporation of non-

formula elements causes band-broadening of individual Stark’s levels. (B) Plot of the band-

broadening of the Nd3+ Stark’s level near 11030 cm–1 against parameter Δhetero. The latter describes 

the distortional impact of heterovalent, non-formula elements; it is calculated from the chemical 

composition of the respective sample and ionic-radii differences (cf. discussion in Appendix A.1). 
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Abstract In this paper, possibilities and limits of the appli-

cation of REE3+ luminescence (especially the Nd3+ 4F3/2 →
4I9/2 emission) as structural probe are evaluated. Important

factors controlling the Nd3+ luminescence signal are

discussed, including effects of the crystal-field, crystal orien-

tation, structural state, and temperature. Particular attention

was paid to the study of the accessory minerals zircon

(ZrSiO4), xenotime–(Y) (YPO4), monazite–(Ce) (CePO4)

and their synthetic analogues. Based on these examples we

review in short that (1) REE3+ luminescence can be used as

non-destructive phase identificationmethod, (2) the intensities

of certain luminescence bands are strongly influenced by

crystal orientation effects, and (3) increased widths of

REE3+-related emission bands are a strong indicator for

structural disorder. We discuss the potential of lumines-

cence spectroscopy, complementary to Raman spectrosco-

py, for the quantitative estimation of chemical (and

potentially also radiation-induced) disorder. For the latter,

emissions of Nd3+-related centres are found to be promising

candidates.

Introduction

The luminescence emission of rare-earth elements (REEs) in

general is well-studied, stimulated by their importance in

various modern technological applications such as lighting,

colour-television screens, solid-state lasers, phosphors, and

chromophores in different host materials (e.g., Belsky and

Krupa 1999; Kenyon 2002; Bünzli and Piguet 2005; Liu and

Jacquier 2005). In the Earth sciences, one challenging task is

the detection of REEs in different host minerals using lumi-

nescence methods; a large variety of mineral systems have

been studied already (Tarashchan 1978; Ohnenstetter et al.

1991; Habermann et al. 1996; Gaft et al. 1999; Götze et al.

1999; Blanc et al. 2000; Waychunas 2002; Nasdala et al.

2004; Gaft et al. 2005; Czaja et al. 2008). Synthetic minerals

individually- or multi-doped with REEs have also been stud-

ied routinely, aiming at a better understanding of the lumines-

cence in their natural analogues. For the example of zircon and

synthetic ZrSiO4, such investigations have been done by

Cesbron et al. (1993, 1995), Blanc et al. (2000), Hanchar et

al. (2001), and Friis et al. (2009). Time-resolved luminescence

techniques have improved the detection of various lumines-

cence centres utilizing their different decay times (Reisfeld et

al. 1996; Gaft et al. 1999; Gaft et al. 2001). Furthermore,

unravelling the internal zoning of the REE distribution within

crystals, especially of accessory minerals, may provide valu-

able information on their primary formation and post-growth

history. Such patterns are visualised easily using luminescence

techniques (Hanchar and Miller 1993; Hanchar and Rudnick

1995; Rakovan and Reeder 1996; Götze 2000, 2002; see also

the review chapter by Götze et al. in this special issue).

In addition to traditional direct imaging, the luminescence

of crystals and other geological samples is studied increasingly

using (hyperspectral) mapping techniques (see the review
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chapter by MacRae et al. in this special issue). The need four

sound spectral interpretation in reducing such hyperspectral

data sets has increased the interest in a detailed understanding

of REE luminescence features (Nasdala et al. 2004; MacRae et

al. 2005). For a number of minerals, luminescence-intensity

based quantifications of trace REEs have been proposed

(Barbarand and Pagel 2001; Habermann 2002; Richter et al.

2003; MacRae et al. 2005; 2012). Moreover, traces of REE3+

in minerals and mineral-based ceramics are used as structural

probes studied with respect to order–disorder phenomena, in

particular the accumulation of structural damage as caused by

irradiation. For instance, spectral parameters of Eu3+ emissions

have been used for the characterisation of REE-substituted

cation-sites in glasses and crystalline materials in process of

evaluation of potential nuclear waste forms (Ollier et al. 2003;

Reisfeld et al. 2004; Reisfeld 2005; Ternane et al. 2005).

Seydoux-Guillaume et al. (2002) and Panczer et al. (2012)

proposed that the REE-dominated luminescence emission of

monazite–(Ce) may bear quantitative information on the accu-

mulated radiation-damage in this mineral.

In accordance to the finding of the latter authors, we consider

the luminescence signal of Nd3+ as particularly promising

structural probe. The 4F3/2 →
4I9/2 electronic transition of

Nd3+ causes luminescence emission in the near-infrared (NIR)

spectral range between 10,600 and 11,800 cm−1 (830–940 nm).

This emission is a promising candidate because : (1) the lumi-

nescence signal can be collected with standard Si-based de-

tectors; (2) it is effectively excited by standard lasers, e.g., Ar+

(488 nm, 514 nm) as well as via accelerated electrons

(cathodoluminescence, CL); (3) other luminescence emissions

in the respective wavenumber range are rare; and (4) it has been

identified in many mineral hosts, especially in REE-bearing

accessory minerals. The application of Nd3+ (REE3+) lumines-

cence as a structural probe requires a detailed understanding of

the influencing factors and their calibration, respectively. Here

we discuss the basic effects of (1) the crystal field environment;

(2) crystal orientation; (3) structural disorder; and (4) tempera-

ture on the Nd3+ luminescence as representative example.

Similar to Nd3+, other appropriate REE3+ can be used, e.g.,

Pr3+, Sm3+, Eu3+, but are not discussed in this work. In this

study, the Nd3+ hosts zircon, xenotime–(Y) and monazite–(Ce)

and their synthetic analogues have been studied in detail.

Samples & methods

Samples and preparation

Luminescence investigations were performed on a large

variety of specimens including monazite–(Ce), Zircon and

xenotime–(Y) and/or their synthetic analogues (see Table 1).

An overview of the chemically homogeneous, natural

monazite–(Ce) samples measured here, including their origins

and ages, is given in Ruschel et al. (2012). Only samples of

these authors that were annealed in air to reconstitute their

crystalline state were chosen for the study of chemical-

induced disorder, to avoid biases of the results due to effects

of self-irradiation damage on the luminescence parameters

obtained. In addition, a range of flux-grown, synthetic sam-

ples were studied, including Ce1-xLREExPO4 (with LREE =

La, Nd, Gd) of Ruschel et al. (2012) and CePO4 samples with

predominant cheralite (2 REE3+ ↔ Ca2+ + Th4+) or huttonite

(P5+ + REE3+↔ Si4+ + Th4+) substitution (synthesised in this

study; see below).

The orientation-dependence of the luminescence was stud-

ied for Nd-doped YPO4 samples synthesised by Talla et al.

(2011), and Nd-doped ZrSiO4 crystals produced in this study

(see sub-chapter “Details on synthesis procedures” below).

An overview of the samples investigated is given in Table 1.

Doubly polished thin sections (thicknesses ~30 μm) at-

tached to a glass slide were prepared with respect to the

crystallographic orientation (xenotime and zircon samples),

Table 1 Overview of samples studied in detail

Samples Substitution type Reference

Monazite-(Ce) natural huttonite + cheralite all homogeneous, dry-annealed monazite–

(Ce) samples from Ruschel et al. (2012)

synthetic Ce1-xREEx[PO4] substitution Nd-, Gd- and/or La-containing homogeneous

samples from Ruschel et al. (2012)

synthetic cheralite + “Na-Th substitution”

Ce1-x-y Ca0.5xNay/3Th0.5+2y/3[PO4]

this study; see in “Details on synthesis procedures”

Zircon synthetic almost pure crystals doped with trace

Nd3+ without charge compensation

this study; see in “Details on synthesis procedures”

synthetic almost pure crystals doped with trace

Nd3+ incorporated via xenotime substitution,

Zr1-xNdx[Si1-xPxO4]

this study; see in “Details on synthesis procedures”

Xenotime-(Y) synthetic crystals doped with Nd3+ incorporated via

Y1-xNdx[PO4] substitution

Talla et al. (2011)
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or as randomly cut slabs (monazite samples from Ruschel et al.

2012). For electron microprobe and cathodoluminescence

analysis the sections were coated with carbon.

Details on synthesis procedures

Synthetic monazite–(Ce) crystals with predominant cheralite

or huttonite substitution were produced by a flux method using

the slow-cooling technique. Sodium polyphosphate was pref-

erentially used as flux material because of its good solubility in

water, making the extraction of the resulting product straight-

forward (and fast in comparison with Pb2P2O7, commonly

used for REE phosphate syntheses; Boatner 2002; Talla et al.

2011). Platinum crucibles with a volume of 100 cm3were used

as reaction vessels. For each batch, 10 grams of NaPO3 were

used as flux material and mixed with CeCl3.7H2O, setting the

molar ratio Ce/(Ce+Na) in the melt to 0.12 (Talla et al. 2011).

A total of five samples of Th-doped monazite–(Ce) were

produced using Th(NO3)4.5H2O. In the first three, Th was

added in varying amounts, the weight ratio Th/(Th+Ce) in

the melt being 400, 2,000 and 10,000 ppm. Charge balance

was provided using the cheralite substitution mechanism

(2 REE3+ ↔ Ca2+ + Th4+) with CaCO3 (analytical grade) as

source of Ca. A fourth, un-doped sample was also produced for

comparison (blank). In the fifth sample, the huttonite substitu-

tion (P5+ + REE3+↔ Si4+ + Th4+) was used as the mechanism

for introducing Th into monazite–(Ce) with silica as source of

Si. The weight fraction Si/(Si+Ce+Th) in themelt was adjusted

to 0.02. All reagents were of analytical grade except for NaPO3

and the cerium chloride. Preliminary tests showed that pollutant

trace Nd present in the commercial CeCl3.7H2O results in

minute concentrations of Nd in the CePO4 samples grown,

which, however, yield easily measurable Nd3+-luminescence

emissions. A separate Nd source was therefore not added to the

crucible. After being filled, the Pt crucibles were capped by a

loose lid. Crucibles were first heated to a peak temperature of

1,170 °C, at a rate of 230 K per hour. This temperature was

kept for 2 hours, and reduced afterwards to 900 °C, at a rate of

−1.35 K per hour. The furnace was then switched off, and it

was not opened until samples had cooled down slowly to room

temperature. The crystals produced were about 0.3–1.0 mm in

size. Their colours range from light green (low-Th syntheses)

to colourless (elevated Th content). The total amount of crys-

tals produced wasmuch smaller when higher concentrations of

heterovalent substituents were present. A detailed micro-

chemical characterisation of these synthetic samples is given

in Table 2.

Synthesis of zircon crystals (up to 1.5 mm) was accom-

plished by a flux technique similar to that described by

Cesbron et al. (1993, 1995) and Hanchar et al. (2001) with

an adjusted synthesis route combining the evaporation of the

highly volatileMoO3with a rapid cooling rate. This allowed us

to use an alkali-free mixture of 0.53 g ZrO2 with 0.26 g SiO2

and 10 g MoO3, preventing the incorporation of Li+ into the

zircon crystals (Hanchar et al. 2001). Preliminary test runs

showed that the resulting ratios of 0.07 mol% (Zr+Si)/(Zr+

Si+Mo) and 1:1 Zr/Si resulted in the growth of larger, well-

developed crystals. To produce Nd-doped ZrSiO4, a minor

amount of Nd was added. This was done in two different ways,

first by adding Nd2O3 without any additional charge-

Table 2 Chemical formulae of synthetic Th-doped monazite-(Ce)

samples in atomic percent per formula unit (apfu), calculated from

average electron-microprobe data of different chemically heteroge-

neous zones. The distortional behaviour of all substituents (Δ) and

heterovalent substituents (Δhetero) are approximated with a weighted

ionic radii difference between the predominant cation/anion [Ce/P in

monazite–(Ce)] and each substituent (see Eq. 1)

Chemical formula (apfu)

Sample Point Ce Nd Na Ca Th U P Si Δ Δhetero

C1 (blank) 1 0.999 0.001 bdl bdl bdl bdl 0.999 bdl 0.00012 0.00009

C2 2 0.998 0.001 bdl 0.001 bdl bdl 0.999 bdl 0.00011 0.00008

C3 3 0.997 0.002 bdl bdl bdl bdl 0.999 bdl 0.00015 0.00008

4 0.939 0.001 0.010 0.013 0.037 0.001 0.997 bdl 0.00405 0.00023

5 0.941 0.001 0.009 0.014 0.036 0.001 0.999 bdl 0.00377 0.00374

6 0.915 0.001 0.015 0.018 0.051 0.001 0.999 bdl 0.00522 0.00520

C4 7 0.864 0.001 0.023 0.029 0.083 0.001 0.999 bdl 0.00850 0.00847

8 0.931 0.001 0.012 0.015 0.040 0.001 1.000 bdl 0.00410 0.00407

9 0.997 0.001 0.001 0.001 bdl bdl 0.999 bdl 0.00010 0.00004

CSi 10 0.987 0.012 bdl bdl 0.001 bdl 1.000 bdl 0.00044 0.00002

11 0.960 bdl 0.010 0.001 0.001 bdl 0.999 bdl 0.00266 0.00264

12 0.867 bdl 0.040 0.002 0.089 0.001 0.999 bdl 0.00805 0.00803

13 0.909 bdl 0.027 0.002 0.061 bdl 0.999 0.001 0.00556 0.00554
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compensating species, and second by adding NdPO4 ensuring

charge balance via the xenotime substitution (Zr4+ + Si4+ ↔

REE3+ + P5+). The molar ratio Nd/(Nd+Zr) in the melt was

adjusted to 0.6 mol%. The temperature path consisted of

heating the loosely capped Pt crucibles to 1,100 °C, at a rate

of 216 K per hour. Without a soaking interval, the temperature

was then reduced to 700 °C, at a rate of −26.5 K per hour.

Afterwards, samples were left in the furnace to cool slowly.

Crystals were extracted manually (i.e., without the need to use

any chemical reagents) from the crucible without problems. It

was found that the size of the crystals grown was influenced

strongly by the evaporation surface of the melt during the exper-

iment. A small evaporation surface prevents rapid vaporisation of

Mo-flux, the solvent of all reagents. Therefore, thinner crucibles

result in the formation of larger single-crystals.

Analytical methods

Electron microprobe analyses were performed using a Cameca

SX100 electron microprobe with the following measurement

conditions: accelerating voltage 15 kV, beam current 20 nA,

and 8 μm beam diameter. A defocused beam was in order to

minimize the loss of Na during analysis. The peak counting

times were 20 s for major elements and 40 to 60 s for minor

and trace elements; counting times for the background (mea-

sured on both, the high- and low-energy side) were set to half

of the respective peak counting-time. The following natural

and synthetic standards were used: SiKα-natural sanidine,

Eifel; NaKα-natural albite, Amelia; PKα-LaPO4; CaKα,ThMα-

synthetic CaTh(PO4)2; CeLα-synthetic CePO4; NdLβ-synthetic

NdPO4; UMβ-synthetic U. The raw data were corrected using

the PAP routine (Pouchou and Pichoir 1991). Elemental X-ray

maps were acquired at following conditions: accelerating volt-

age 15 kV, beam current 60 nA, and <1 μm beam diameter.

Signals of NaKα, PKα, CeLα, NdLβ, and ThMα, and back-

grounds for each element were collected. The data were ac-

quired in stage moving mode, with 1 μm step width and 50 ms

dwell time. The collected peak intensities were corrected for

the background intensities and converted to absolute concen-

trations. Finally colour-coded element distribution maps were

produced to visualize internal distribution patterns for certain

chemical components.

Cathodoluminescence (CL) spectroscopy was performed

using a hot cathode luminescence microscope (HC1-LM) with

a high-vacuum chamber (< 10−6 bar). Spectral acquisition was

done with an Acton Spectra Pro 2300i spectrometer with a

charge-coupled device (CCD) detector, which is attached to the

CLmicroscope by a silica-glass fibre-guide. Measurements were

takenwith a 100μmslit, a 150 s line grid, an accelerating voltage

of 14 kV and a current of 0.2 mA with a current density of

approximately 10 μA mm−2. Calibration was done with the

mercury vapour discharge emission. The optical aperture pro-

duces a spot size of 30 μm. Cathodoluminescence examinations

were carried out on polished thin sections that are coated with

carbon to prevent any build-up of electrical charge during CL

operation (further details in Neuser et al. 1995).

Room-temperature laser-induced photoluminescence mea-

surements were carried out by means of a Horiba Jobin Yvon

LabRam-HR (high resolution) system equipped with an

Olympus BX41 optical microscope, a grating with 600

grooves per millimetre, and a Si-based, Peltier-cooled CCD

detector. Luminescence spectra were excited using the contin-

uous 532 nm emission of a frequency-doubled Nd:YAG laser

(34 mW on the sample surface). With the system operated in

confocal mode and an Olympus 100× objective (numerical

aperture=0.9), the lateral resolution was better than 1.5 μm,

and the depth resolution (with the laser beam focused at the

sample surface) was approximately 3 μm. The spectral reso-

lution in the NIR was determined to be ~2 cm−1. Wavenumber

calibration was done using the Rayleigh line and Ne lamp

emissions; the wavenumber accuracy was better than

0.5 cm−1. Temperature-dependent measurements were done

adding a Linkam FTIR 600 liquid-nitrogen cooling stage. The

temperature accuracy was better than 2 K. Photoluminescence

(hyperspectral) maps were obtained using a software-

controlled x–y stage, with a step width of 3 μm.

Luminescence bands were fitted assuming Lorentzian-

Gaussian (pseudo-Voigt) band shapes. Background correc-

tion turned out to be unnecessary.

Fingerprints of Nd3+ luminescence emission: generalities

Luminescence emissions are generated through the (radiative)

release of energy during electronic transitions. Emission spec-

tra of REE3+ in crystalline hosts are characterised by very sharp

bands in contrast to the luminescence of 3d or 4d elements

(Blasse and Grabmaier 1994). This unique characteristic of

REE3+ luminescence is determined by their particular electron

configuration. Trivalent rare earth ions (Ce3+ to Yb3+) have an

incompletely filled 4f shell which is shielded by outer filled 5s2

and 5p6 orbitals. In consequence, the influence from ligands in

the host matrix is small (but of crucial importance). The narrow

luminescence bands originate from intra-configurational 4f n

electronic transitions. The distinct 4f n energy levels result from

different electronic interactions. The four kinds of electronic

interactions are illustrated in Fig. 1 for the example of Nd3+

with 4f 3 electron configuration. The energetic state of 4f n

electrons in free REE3+ ions splits into spectroscopic terms

due to the repulsion of unpaired 4f electrons (electron–electron

interaction). In REE3+ ions, this term-splitting is on the order

of ca. 104 cm−1 (Marfunin 1979). While the possible influence

of negative charges from ligands is low, these terms further

split into spectroscopic levels due to their spin-orbit coupling

(on the order of ca. 103 cm−1). Note that the separation of

energy levels by these interactions applies to free REE3+ ions.
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An important result is that REE3+ optical transitions appear at

similar energy ranges in very different host materials. A com-

plete diagram of possible energy levels for eachREE3+ is given

in Carnall et al. (1989). If REE3+ ions are further surrounded by

ligands e.g., in molecules (ligand field) or solids (crystal field),

the electronic levels split into sublevels (Stark level splitting on

the order of ca. 102 cm−1; cf. Fig. 1). According to the crystal

field theory (cf. Burns 1993) ligand-directed orbitals experi-

ence an energy destabilization due to repulsion with the neg-

ative charge of the ligand. Non-directed orbitals are stabilized,

as their potential energy drops. The crystal field splitting de-

pends on a variety of parameters connected to the site of the

REE3+ within the crystal structure, e.g., site symmetry, the

interatomic distance to the ligands, charge of ligands etc.

Given the different characteristics of cation sites among min-

erals, REE3+ spectra may provide site-specific information on

the short-range order.

Figure 2 exemplifies the Nd3+ photoluminescence of five

different hosts: the accessory minerals xenotime–(Y),

monazite–(Ce), titanite, and synthetic cubic zirconia (YCZ)

and Yttrium-aluminium garnet (YAG). In all hosts the Nd3+-

related (4F3/2 →
4I9/2) luminescence emission can be detected

within the spectral range between 10,600 and 11,800 cm−1

(940–840 nm). Yttrium-stabilized zirconia (fluorite structure

type, Fm3m) and YAG (garnet structure type, Ia3d) are well

known synthetic gemstones, both with cubic symmetry.

Xenotime–(Y) crystallizes in the tetragonal space group

I41/amd. Monazite (P21/n) and titanite (P21/a) have mono-

clinic crystal structures. The completely different crystal field

around the Nd3+-centre is reflected by strongly differing

photoluminescence spectra (Fig. 2). Note that in many min-

erals probably more than one substitutional REE-site exists

(e.g., apatite, Czaja et al. 2009). In these cases standard steady-

state luminescence techniques obtain the luminescence signal

from all potential sites possibly differing from sample to sam-

ple. Time-resolved luminescence spectroscopy or site-selective

spectroscopy may offer differentiation possibilities (Dexpert-

Ghys et al. 1984; Dexpert-Ghys et al. 1996; Gaft et al. 1997;

Piriou et al. 2001).

Comparing the isostructural minerals monazite–(Ce)

(CePO4) and gasparite–(Ce) (CeAsO4), both with C1 cation

site symmetry, reveals a comparatively close Nd3+-lumines-

cence pattern with only minor band shifts (Fig. 3a). Note that

the band width is strongly influenced by chemical heterogene-

ity and intensity ratios by the crystal orientation (in more detail

discussed below).

The minerals xenotime–(Y) (YPO4) and chernovite–(Y)

(YAsO4) are isostructural with zircon (ZrSiO4). All crystallize

in space group I41/amd with D2d cation site symmetry.

Fig. 2 Photoluminescence spectra (532 nm excitation) of Nd3+ (4F3/2→
4I9/2) in different host minerals: Yttrium-stabilized cubic zirconia (YCZ),

yttrium-aluminium garnet (YAG), xenotime–(Y), monazite–(Ce), and

titanite. Different cationic environments of the substituted Nd3+ cause

dissimilar crystal field splittings and hence fingerprint-like luminescence

patterns

Fig. 1 Schematic illustration of the generation of electronic states for

the example of Nd3+ with 4f 3 electronic configuration. As examples

for typical photoluminescence excitations, energies of photons of 514

and 758 nm laser light are marked on the right. After various excitation

and subsequent relaxation processes, electrons eventually reach the

lowest excited level (4F3/2). The transition from this level to the ground

state is typically a radiative process that results in the emission of light,

observed in the near-infrared range of the electromagnetic spectrum
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Whereas xenotime–(Y) and chernovite–(Y) show similarities

in the Nd3+-luminescence spectra, zircon differs remarkably,

despite having the same site symmetry (Fig. 3b). Synthetic

Nd3+:ZrSiO4 charge-balanced with P
5+ and without, as well as

reference zircons from various locations were compared; their

Nd3+ luminescence shows a similar pattern to that of synthetic

Nd3+:ZrSiO4 shown in Fig. 3b. This example demonstrates

the impact of a modified electronic structure on the lumines-

cence pattern: xenotime–(Y) and chernovite–(Y) have an

isotypic crystal structure with chemically related elements;

both have trivalent Y3+ on the cationic and P5+/As5+O4 on

the anionic position. Zircon is different, having tetravalent

Zr4+ at the cation and Si4+O4 at the anion sites, respectively.

A different charge distribution at the substitutional REE3+ site

remarkably affects the crystal field splitting, and therefore the

REE3+ luminescence signal.

Luminescence studies on synthetic mineral analogues provide

both: (1) a better identification of a REE in a specific host since

the luminescence signal of many REE3+ overlap and a discrim-

ination is complicated in natural specimens (e.g., Sm3+
–Pr3+);

and (2) a fast mineral identification when the individual sublevel

splitting is known, potentially applied to igneous/metamorphic or

sedimentary petrology (Richter et al. 2008).

Orientation-dependence of REE3+ luminescence

As mentioned above, the crystal-field splitting depends on the

site symmetry of the REE3+-substituted cation site. A direct

consequence is that the luminescence intensity of sublevels

depends on the orientation of the measuring direction to

certain symmetry elements of the crystal structure. Even

though being a well-known luminescence phenomenon

(Owen et al. 1998; Barbarand and Pagel 2001; Finch et al.

2003), the orientation-dependence of REE3+ emissions is

often neglected, which may result in biased conclusions. To

give two examples: Czaja et al. (2009) proposed to use the

intensity ratio of emissions related to Pr3+ and Sm3+ to deter-

mine Pr/Sm ratios in apatite. Habermann (2002) applied REE-

cathodoluminescence intensity for a semi-quantitative estima-

tion of REE trace element concentration in calcite. In those

papers, however, authors failed to consider possible lumines-

cence intensity differences due to the orientation-dependence

of the emissions analysed. For this reason, the orientation

dependence of REE3+ luminescence on the example of Nd3+

is exemplified here for the sake of completeness (cf. Cesbron

et al. 1995, Gaft et al. 2005).

Depending on the luminescence technique applied, different

aspects of orientation effects can be discerned. In laser-induced

photoluminescence studies the polarisation of the incident laser

has to be considered, because most standard apparatus provide

a strongly linear-polarised beam due to polarising effects of

optical components (e.g., resonator, mirrors). The coupled

interaction of the laser-beam polarisation and the orientation

of the crystal leads to four independent variables: (1) the

direction of the laser beam relative to the crystal [e.g., x(yy)y,

cf. Porto notation in Porto and Krishnan (1967)]; (2) the

polarisation of the laser beam relative to the crystal [y(xy)y)];

(3) the polarisation of the luminescence emission relative to the

crystal [y(yx)y], and (4) the direction of luminescence emission

detected relative to the crystal [y(yy)x]. Most spectrometer

systems used in geoscientific research are coupled to micro-

scopes, in which the laser beam and the emission detected

proceed in opposite direction through the observing objective

lens (x yyð Þx , quasi-backscattering set-up). Hence, the latter

variable cannot be analysed separately using such a system

set-up. Figure 4 shows the other three aspects with the exam-

ple of laser-induced photoluminescence spectra of Nd3+ (4F3/2
→

4I9/2) in synthetic tetragonal Nd3+:YPO4 (xenotime struc-

ture type, I41/amd). Please note that the measurement condi-

tions, e.g., laser power, measurement point on the sample,

accumulation time etc., were kept strictly identical. Figure 4a

demonstrates the effect of a polarised laser beam with the

electric field vector (E) aligned along different crystallograph-

ic directions; here the laser beam is directed along the crystal-

lographic x axes; the polarisation of the electric field vector is

aligned in y and z, respectively. The polarisation of the emis-

sion is neglected (no polarisation filters), all intensity of the

randomly polarised signal in plane z − y is detected. Changing

the polarisation direction of the laser beam causes intensity

ratios of the luminescence sublevels to vary significantly. The

main sublevel band at 11,467 cm−1 is most strongly affected.

Fig. 3 Photoluminescence spectra (532 nm excitation) of Nd3+ (4F3/2→
4I9/2) in two groups of isostructural minerals. a Gasparite–(Ce) and

monazite–(Ce) with cation site-symmetry C1. b Zircon, chernovite–(Y),

and xenotime–(Y) with cation site-symmetry D2d
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A polarisation filter placed in the emission path-way reveals

that the luminescence emission itself is polarised (Fig. 4b).

Analysing the luminescence emission with polarisation filters

in different directions leads to significant variations of inten-

sity ratios. Turning the sample perpendicular to its tetragonal

main axis (z), with the laser polarization direction and the

polarization direction of the analysed emission held constant,

results in intensity increases in all other sublevel bands relative

to the main at 11,467 cm−1 (Fig. 4c).

In contrast to laser-induced photoluminescence, the effect of

beam polarisation is without significance using an unpolarised

electron or ion beam with cathode-/ionoluminescence tech-

niques. The polarisation of the luminescence emission is of

importance especially if the signal is analysed with polarisation

filters, which is commonly not done in CL measurements.

In Fig. 5 the cathodoluminescence spectra of synthetic

xenotime–(Y) and zircon crystals are presented. Although the

luminescence was excited with an unpolarized electron beam

there are significant effects of different analysing directions

relative to the crystal. A potential semi-quantitative estimation

of trace elements via cathodoluminescence intensity, as for

instance applied to apatite, therefore needs a broad range of

carefully calibrated conditions, e.g., standard material, system

stability, system response (Cesbron et al. 1993; Barbarand and

Pagel 2001). Moreover, other effects, e.g., concentration

quenching, quenching/sensitizing by other impurities (Kempe

and Götze 2002) and, in particular, the analysing direction

relative to the crystal, have to be considered (cf. Barbarand

and Pagel 2001).

Effects of the real structure on Nd3+ luminescence:

the example of monazite–(Ce)

Real structure is defined as the entity of deviations from the

ideal chemical composition and structure. A common feature

Fig. 5 Orientation dependence of the CL emission of Nd3+ (4F3/2 →
4I9/2). a Synthetic Nd3+:YPO4 (xenotime). b Synthetic Nd3+:ZrSiO4

(zircon). Note that all spectra have the same vertical scaling, intensities

are therefore directly comparable. The emitted CL light was obtained

in directions perpendicular and parallel to the c-axis of the respective

crystal. Note that intensity ratios among sublevel bands vary

appreciably

Fig. 4 Orientation-dependence of the laser-induced PL (532 nm exci-

tation) of Nd3+ (4F3/2 →
4I9/2) in synthetic tetragonal Nd3+:YPO4

(xenotime; I41/amd). Note that all spectra have the same vertical

scaling, intensities are therefore directly comparable. a Effect of the

polarization of the incident laser beam. b Effect of the polarization of

the luminescence emission. c Effect of the direction (relative to the

crystal) of the excitation/emission analysed. Small schematic sketches

are inserted for better illustration of the Porto notation quoted above
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is the presence of defects, including point (e.g., substitutions,

vacancies, interstitials), line, or three-dimensional defects (e.g.,

holes, surface defects, grain boundaries). Typical effects on

light-spectroscopic signals are band broadening and shifting.

In optical spectroscopy this phenomenon is commonly termed

inhomogeneous broadening (cf. Macfarlane 1990; cf. Skinner

and Moerner 1996). The sharpness of optical transitions, ob-

served either in absorption or emission processes, depends

theoretically on the lifetime of the excited electronic state.

This is due to the quantum-mechanical uncertainty and includes

both radiative and non-radiative processes (Blasse and

Grabmaier 1994). For excited states of the f n configuration,

radiative rates are typically in the millisecond and sub-

millisecond time scale. This is because these transitions are

parity-forbidden and often spin-forbidden as well (Blasse and

Grabmaier 1994; Gaft et al. 2001; Liu and Jacquier 2005). At

hypothetical ideal conditions, absorption and emission bands of

REE have very narrow Lorentzian shapes. These conditions

include: REE substituents of the same type with no cross-

interaction, a perfect crystal without defects/strain, and without

any lattice vibrations (phonons) achieved at very low tempera-

ture (ideally 0 Kwith hypothetically no vibronic coupling). The

observed absorption/emission band is considered as superposi-

tion of all electronic transitions of a certain number of REE

substituents in the area analysed (homogeneous broadening,

Fig. 6a). However, effects of the real structure (Fig. 6b) perturb

the local environment of the REE centre. As a consequence, the

crystal field around the REE cations is randomly distorted to a

certain amount and electronic transition energies shift slightly.

The observed spectral profiles can then be considered as a broad

envelope over much narrower homogeneous lines introducing a

Gaussian character to the band shape (schematically illustrated

in Fig. 6b).

To illustrate the effect of the real structure on REE lumi-

nescence, we use the example of chemically induced disorder

in monazite–(Ce) for three reasons: First of all, almost all

natural monazite-group minerals contain Nd3+ and show Nd-

luminescence. Second of all, the monazite structure has an

extremely broad range of chemical compositions, so that a

variety of substitution mechanisms can be studied. Third,

Ruschel et al. (2012) have recently studied the structural

disorder of monazite–(Ce) using Raman spectroscopy (band

broadening of the symmetric stretching vibration of PO4 tet-

rahedrons; A1gmode). This was done with the basic objective

to investigate, and distinguish among, disturbing effects of the

chemical composition and/or structural damage as caused by

self-irradiation due to the incorporation of actinide elements.

Panczer et al. (2012) showed that the incorporation of non-

formula elements affects the sharp sublevel luminescence

bands of Nd3+ as well. In the present paper we address the

question whether Nd3+-luminescence spectroscopy can be

used for a quantitative estimation of the chemically induced

structural disorder.

Monazites are monoclinic orthophosphates with the general

formula LREE[PO4]. These minerals have an extremely broad

range of chemical compositions with Ce being the predominant

cation in naturally occurring species. Solid solutions with other

minerals of the monazite group allow extensive substitutions of

Ce by other LREEs (especially La, Nd, Sm). In addition to the

more limited incorporation of heavy REEs, significant amounts

of the actinide elements Th and U, and to much lesser extent

radiogenic Pb, may also be present (Williams et al. 2007). The

incorporation of non-REE ions in the wt% range is commonly

explained by the two coupled substitutions: (1) 2REE3+ ↔

Ca2+ + Th4+ (cheralite substitution) and (2) P5+ + REE3+ ↔

Si4+ + Th4+ (huttonite substitution). The continuity in the

monazite-huttonite series extends to a maximum of 30 at%

huttonite in natural monazites (Della Ventura et al. 1996;

Kucha 1980; Förster and Harlov 1999). The substitution

mechanisms for Th4+ can be applied to U4+, also. For details

on the crystal chemistry of the monazite structure the reader is

referred to reviews by Kolitsch and Holstam (2004) and

Clavier et al. (2011).

Here we present Nd3+ luminescence data for three differ-

ent sample sets reflecting different substitution mechanisms:

(1) a series of homogeneous synthetic Ce1-xLREExPO4

crystals doped with large amounts of other REEs, forming

Fig. 6 Schematic illustration (simplified) of the band broadening

related to optical transitions as affected by the sample’s real structure

(modified after Skinner and Moerner 1996). a Nearly “ideal” crystal

(merely doped with low levels of an individual REE), assuming the

absence of notable amounts of defects and strain. The observed ab-

sorption or emission band, respectively, is considered as superposition

of all electronic transitions of a certain number of REE substituents in

the area analysed (homogenous broadening). b “Real” crystal with

notable amounts of defects such as impurities (I), vacancies (V), and

non-formula constituents, resulting in notable lattice strain. Here, the

crystal field around the REE site is perturbed randomly. The observed

spectral profile is a broad envelope over much narrower homogenous

lines (inhomogeneous broadening)
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a solid solution with LREE = La, Nd, Gd (for detailed

characterisation see Ruschel et al. 2012); (2) synthetic sam-

ples doped with Th4+ compensated with Ca2+ and/or Na+

(see details in the sample description above); and (3) homo-

geneous natural monazite–(Ce) samples reflecting combined

substitution mechanisms in nature including the huttonite

substitution with charge compensation by Si4+ on anion-

sites (for detailed characterisation see Ruschel et al. 2012).

Figure 7 shows that the exclusive substitution of

homovalent REE3+ for Ce3+ on the cation-site causes only

minor band broadening. Monazites–(Ce) with heterovalent

substitutions, such as Th4+, Ca2+ on cation and Si4+ on the

anion site, show stronger band broadening and shifting

(Fig. 7). In this case, the FWHM (full width at half maxi-

mum) of the sublevel bands lowers the probability of a

precise deconvolution/fitting due to an effective band over-

lap. Hence, the less affected out of the eight distinctive

sublevel bands at ca. 11,030 abs. cm−1 is chosen for the

interpretation of the FWHM hereafter.

To describe chemically induced disorder we introduce a

distortion parameter (Δ) which reflects the distortional

behaviour of every substituent on regular cation and anion

sites. This is approximated with a summation of the weight-

ed ionic radii difference between the predominant

cation/anion (Ce/P in monazite–Ce) and each substituent:

Δ ¼
X

cs
ccs $ rc % rcsj j þ

X
as
cas $ ra % rasj j ð1Þ

where c is the concentration of cation (ccs) or anion sub-

stituents (cas) in atomic percent per formula unit (apfu), and

r the ionic radius of the predominant cation (rc) or anion

(ra), and of the cation (rcs) or anion substituent (ras), respec-

tively. For monazite–(Ce), the cationic radii in 9-fold and

anionic radii of P and Si in 4-fold coordination after

Shannon (1976) are used. This formalism takes into account

that large ionic radii differences between predominant and

substitutional ions should have much more distortional im-

pact than smaller. Additionally, this impact is weighted with

the concentration of each ion providing an effective distor-

tional impact which is summed over all substitutional ions

present.

Figure 8 shows the effects of chemical substitution on spectral

parameters of the Nd3+ (4F3/2 →
4I9/2) luminescence emission.

An increase of the distortion parameter (Δ), calculated from

chemical data of all investigated monazite–(Ce) samples (i.e.,

Table 2), causes a band shift to lower wavenumbers. In this case,

the band shift is linear to the total sum of weighted radii differ-

ences of all substituents (Δ). This indicates that the substitution

of smaller ions than Ce causes a reduced cell volume. Clavier et

al. (2011) summarized data suggesting a complete solid solution

in the synthetic system LaPO4–ThSiO4 with linearly decreasing

cell parameters with increasing Th content. Alike, unit cell

parameters decrease linearly with the substitution ratio in the

LaxGd1-xPO4 monazite solid solution (Clavier et al. 2011).

Interestingly, the FWHM of the Nd3+-luminescence

bands is mainly controlled by heterovalent substituents

(Figs. 7 and 8b). The Δhetero parameter in Fig. 8b was

calculated applying Eq. 1 only to heterovalent substituents

present in the samples analysed. The comparison of spectral

parameters of the Ce1-x REEx[PO4] solid solution (filled

triangle, Fig. 8) gives an illustrative example: The extensive

substitution of homovalent REE3+ causes large band shifts

(Fig. 8a), but have no effect on the FWHM (Fig. 8b).

Heterovalent substitutions appear to have a much higher

impact on the electronic structure and therefore on the

perturbation of electronic states than homovalent ones (see

the discussion on the crystal field above). Hence, the

FWHM of luminescence bands is rather a measure of the

perturbed electronic structure which is in this case connected

to chemically induced disorder via substitution of heterovalent

ions.

The estimation of structural disorder by radii differences

applied above is based upon a rigid hard-sphere model of ions

and cannot take into account lattice distortion by other real-

structure defects, e.g., vacancies. Nevertheless, the good fit to

a linear trend suggests that the inferred disorder is mainly

controlled by the different chemical substitution mechanisms

in the synthetic and natural monazites analysed in this study.

Panczer et al. (2012) correlate the FWHM of Nd-

luminescence bands of natural monazites with the thorium

content (wt%) without regarding other heterovalent substitu-

tions. For comparison, we show a similar correlation of our

samples in Fig. 8c. The variance of FWHM among the natural

Fig. 7 Photoluminescence spectra (532 nm excitation) of Nd3+ (4F3/2→
4I9/2) of annealed, Th-rich natural monazite-(Ce) from Central Australia

(sample ECA6 of Ruschel et al. 2012) in comparison with La,Nd-

doped and un-doped CePO4. Band positions are quoted for un-doped

CePO4
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samples (open dots) is greater than for the correlation in

Fig. 8b. The FWHMs of synthetic multi-doped monazite

samples (cross, Fig 8) show an individual correlation with

the ThO2 content. Therefore, the correlation of the FWHM –

as potential estimation of structural disorder – with the ThO2

content alone is imprecise if variable substitution mechanisms

determine the chemical composition.

In this study, potential effects of corpuscular self-irradiation

on the structural disorder are excluded by using synthetic or

annealed samples. The estimation of the chemical impact on

the REE-luminescence band widths is of major importance for

the discrimination and quantification of irradiation-induced

disorder by REE-luminescence spectroscopy (see the review

chapter of Nasdala et al. in this special issue). The irradiation-

induced disorder accumulated in geologic timescales can be

quantified if the chemical-dependent contribution is known.

Hence, REE-luminescence spectroscopy may be a comple-

mentary technique to Raman spectroscopy, especially for

minerals where distinctive Raman bands are absent (e.g.,

titanite or pyrochlore).

Furthermore, information on the chemically induced struc-

tural disorder derived from REE-luminescence data may help

to study the dynamics in solid solutions and the interpretation

of zoning patterns. This is illustrated in Fig. 9, which presents

Fig. 8 Effects of chemical substitutions in various natural and syn-

thetic monazite samples on spectral parameters of the Nd3+ (4F3/2 →

4I9/2) luminescence emission, shown for the ~11,030 cm−1 sublevel

band (see Fig. 7). a The increase of the distortion parameterΔ (see text

and Eq. 1) causes a band shift to lower wavenumbers. b The increase of

the heterovalent distortion parameter Δhetero (see text) causes a linear

increase of the band FWHM. c Band FWHM and ThO2 content show a

less pronounced correlation, making potential estimates of the chemi-

cally induced structural disorder from the ThO2 content alone rather

imprecise

Fig. 9 Element distribution maps (a) and hyperspectral Nd3+ maps (b)

of a synthetic Th-doped monazite single crystal. The latter shows

distributions of spectral parameters of the ~11,030 cm−1 sub-band of

the 4F3/2 →
4I9/2 electronic transition of Nd

3+. Irregularities in the inner

zone (i.e. black triangular areas) are flux inclusions and outbreaks from

polishing. Note that changes in Nd-luminescence parameters (especial-

ly the FWHM) correlate closely with changes in the incorporation of

non-formula elements
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element distribution (Fig. 9a) and hyperspectral Nd-

luminescence maps (Fig. 9b) of a synthetic Th-doped

monazite–(Ce). The single crystal shown is characterised by

two major zones of significantly different chemical composi-

tion. The inner area consists of CePO4 with extremely low

amounts of trace elements below the EPMA detection limits,

and represents an early stage of crystal growth in the flux. The

outer zone (ca. 30–70μm inwidth) contains elevated amounts

of Th, Ca, and Na and is hence depleted in Ce (average

chemical formula Ce0.854Th0.084 Ca0.039Na0.023PO4). The rim

of the crystal (i.e. the outermost ca. 5–10 μm of the outer

zone) is strongly enriched in Th. Note that the Th-doped

synthetic samples contain well-detectable amounts of Na

(Table 2), which we assign to their growth in a sodium-

polyphosphate flux (cf. description of synthesis details

above). Table 2 presents element quantities (quoted in apfu)

of several measurement points on the synthetic Th-doped

monazite–(Ce) samples. It was observed for all individual

analyses that after subtraction of the respective Th amount

related to the cheralite component (2REE3+
↔ Ca2+ + Th4+;

Ca:Th = 1:1), the ratio of the remaining Na–to–Th is close to

1:2. This suggests a substitution mechanism according to

Naþ þ 2Th4þ $ 3Ce3þ ð2Þ

To the best of our knowledge, this Na–Th substitution has

not been described for natural monazite–(Ce) thus far.

The Nd-luminescence parameters are very sensitive to the

structural disorder as introduced by the presence of non-

formula elements (cf. again Fig. 9b). The FWHM of the

~11,030 cm−1 sublevel band broadens from 53 cm−1 in the case

of nearly pure CePO4 (inner area) up to 65 cm−1 near the

Th-rich rim of the crystal, accompanied by a shift of the

band position from 11,031 cm−1 to 11,022 cm−1. In all

interior regions and zones, the concentration of Nd was

below the EPMA detection sensitivity. We speculate that

Nd may be slightly enriched in the outer zone, coupled to

the other substituents; this is concluded from the generally

higher Nd-luminescence intensity in this area. Other potential

causes of lateral differences in the Nd-emission intensity –

such as quenching and/or sensitizing (e.g., Marfunin 1979) or

effects of structural disorder (e.g., Nasdala et al. 2006) – can

be excluded in our case of synthetic, mildly Nd-contaminated

specimens.

Temperature dependence

An additional important factor affecting the REE-

luminescence band width (and marginally the band position)

is temperature. Increasing temperature enhances the extent

of lattice vibrations (phonons). Lattice vibrations induce an

oscillation of interatomic distances at the luminescence

centre within the crystal structure. In consequence, the po-

tential energy of electronic states and thus the transition

energy of corresponding optical phenomena are distributed

around an equilibrium value. The observed band shape is

again a sum of all constituent transitions over a specific time

interval in the analysed area. Luminescence measurements

are commonly done at very low temperatures to avoid this

additional perturbation (vibronic coupling). In general,

lowering the temperature allows an improved separation

of the obtained luminescence features, but also enables

transitions from excited levels, which have previously been

depopulated via phonons (non-radiative transitions). The tem-

perature effect on REE band widths is comparatively small

compared with d-d or d-f transitions, where absorption and

luminescence band widths are much larger. This is because f-

electrons and their inter-transitions are well shielded by the

outermost filled 5s25p6 orbitals, so that the interaction with the

ligands is small.

Figure 10 illustrates the effect of temperature on the Nd3+

luminescence with the monazite–(Ce) example discussed

above: The FWHMs of all the eight observed sublevel bands

of the Nd3+ (4F3/2 →
4I9/2) emission increase with increasing

temperature. The FWHM of broad sublevel bands increases

much more than those of the thinner ones (Fig. 10).

Similarly, broad bands show the strongest positional shift.

However, the shift of the broadest band at 11,159 cm−1 does

not exceed 9 cm−1 (0.7 nm) from 80 K to 300 K. The low

sensitivity of the band position to higher temperature is a

useful feature for high temperature experiments with dia-

mond anvil cells (DAC), where optical-luminescence

pressure-gauges are used successfully. Datchi et al. (1997;

2007) promote the distinct luminescence emission of Sm2+

(intra 4f 6; 5D0 →
7F0) doped SrB4O7 as viable temperature-

Fig. 10 Effect of temperature on the FWHM of eight distinctive

luminescence sublevel bands (Nd3+, 4F3/2 →
4I9/2) of synthetic CePO4.

Temperature increase causes general broadening of sublevel bands,

with broader bands showing stronger absolute increase of their

FWHM, compared to narrower bands
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insensitive alternative to the Cr3+ (R-lines) luminescence of

ruby (Cr3+:Al2O3).

The prediction of FWHMs and shifts of REE bands

cannot be deduced from first principles. The temperature

not only affects the electronic interaction within the lumi-

nescent REE3+ ion, but also the surrounding ligands of the

crystal field. An anisotropic thermal expansion of the crystal

structure stresses the cation site (Mogilevsky et al. 2007;

Jardin et al. 2008; Li et al. 2009) and results in a anisotropic

crystal field splitting, which is further influenced by local

defects. This consideration is of crucial importance for the

evaluation of band widths for the quantification of chemi-

cally induced (see above) or radiation-induced disorder (see

the review chapter of Nasdala et al. in this special issue).

Figure 11 shows the FWHM of the 11,030 cm−1 Nd-

sublevel band of different monazite–(Ce) samples with var-

ious chemical compositions. Chemically induced disorder

not only causes higher FWHMs but also influences the

impact of the temperature effect. High chemical disorder

inhibits the effect of temperature broadening, possibly due

to structural relaxation induced by the presence of non-

formula elements. Measuring the FWHMs for the quantifi-

cation of e.g., chemically induced disorder gives different

absolute values at different temperatures, whereby the rela-

tive significance is not changed drastically. Hence, an abso-

lute FWHM correlation with effects connected to structural

disorder should be done at constant temperature, which is

done throughout this study. All luminescence spectra

presented in the sections above are recorded at room tem-

perature (298 K), because low temperature measurements

using cooling stages or other liquid-nitrogen set-ups entail

considerable effort; especially for measurements with

high lateral resolution for hyperspectral luminescence maps

(cf. Fig. 9).

Concluding remarks

First of all, the luminescence emission of REE3+ in minerals

depends on the type of incorporated REEs. The energetic

positions of their spectroscopic levels determine the lumi-

nescence emission pattern (a chart of spectroscopic levels

of all REE3+ was given by Carnall et al. 1989). Commonly,

natural samples contain more than one type of REE3+, often

resulting in extensively overlapping luminescence patterns.

Due to electronic shielding of the outermost 5s2 and 5p6

orbitals, the influence on the 4f transitions of the crystal field

is weak and a specific optical transition of a REE3+ appears

with comparable spectral energies in very different mineral

hosts (Fig. 2). Nevertheless, the crystal field splits spectroscop-

ic levels into sublevels depending on the distribution of the

electron density at the substituted lattice site (Fig. 2).

Luminescence investigations of REE3+ in minerals

hence provide first the opportunity to identify REEs in

a specific host mineral. Second, they enable fast mineral

identification, provided the individual sublevel splitting

of a specific REE3+ in the mineral under investigation is

known. With respect to the latter, the luminescence

emission of Nd3+ was found to be a promising candi-

date because (1) the luminescence signal can be traced

with standard Si-based detectors, (2) it is effectively

excited by standard lasers as well as via cathodoluminescence,

(3) other luminescence emissions in the respective spectral

energy range are rare, and (4) a low number of sublevels

simplifies the data reduction (i.e., fitting/deconvolution).

Even minute amounts of REE3+ cause detectable

luminescence signals and can potentially be used for

the qualitative identification of trace REEs. In contrast

to optical absorption spectroscopy, the quantitative estimation

of REEs concentrations via luminescence intensity is difficult

for several reasons (see detailed discussions above). In

particular, this study shows once more that the relative

luminescence intensity of certain sublevels may depend

strongly on the crystal orientation (Fig. 4). Furthermore,

both the polarisation of the incident laser (in the case of

laser-induced photoluminescence) and the polarisation of

the luminescence signal are of importance when com-

paring relative luminescence intensities.

The FWHM of REE3+ luminescence sublevel bands

contains information on the crystal-structural state and

provides great opportunities to study different types of

structural disorder with luminescence techniques (Fig. 9). In

this study, the effect of chemically induced disorder on

the luminescence signal of monazite–(Ce) has been described

with a simple model based on ionic radii. The discrimination

between chemically induced (Fig. 8) and irradiation-

induced structural disorder is possible, however, when

the influence of measurement temperature (Fig. 10 and 11) is

considered.

Fig. 11 Influence of the chemical composition on the FWHM-temper-

ature dependence, for the example of the ~11,030 cm−1 Nd3+ sublevel.

Chemically induced disorder not only causes FWHM increases (cf.

Fig. 8a) but also decreases the effect of temperature on the band

broadening, possibly due to structural relaxation by the substituents
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Appendix  A.2 
 

Photoluminescence of synthetic titanite-group pigments: A rare quenching effect 

Nasdala, L., Lyubenova, T.S., Gaft, M., Wildner, W., Diegor, W., Petautschnig, 

C., Talla, D., Lenz, C. (2014).  

Chemie der Erde – Geochemistry, 74, 419–424. (published) 
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trometer using a Perkin­Elmer diffuse reflectance

nit. A tungsten light source, a quartz beam­splitter,

 (26,000–10,000 cm−1) and germanium detectors

00 cm−1), respectively, were used to cover the desired

ge. Standard spectra were obtained from MgO pow­

rd and sample spectra were each averaged from 512

spectral resolution was 10 cm−1 for  both detector

­spectra were aligned in absorbance for perfect match,

.

tate photoluminescence (PL) spectra in the visible and

ed range (i.e., spectral range 21,000–10,600 cm−1) were

 means of two dispersive spectrometer systems. First,

h 488 nm Ar+ excitation (8 mW at the sample sur­

recorded using a  Renishaw RM1000 system equipped

DMLM microscope and a  diffraction grating with 1200

 in the optical pathway. Second, a Horiba Jobin Yvon

 spectrometer with Olympus BX41 optical microscope

ction grating with 1800 grooves/mm, was used to record

excited with the 473 nm emission of a diode laser

th systems were equipped with Si­based, Peltier­cooled

pled device (CCD) detector. A 50× objective (NA =  0.55)

n both cases. Spectra were calibrated using emission

eon lamp. The wavenumber accuracy was better than

d the spectral resolution was determined at ∼3–4 cm−1

nd better than 1 cm−1 (LabRam–HR), respectively. The

m was used also to  obtain Raman spectra for phase

n.

solved PL spectra were obtained with pulsed laser exci­

nd harmonic of a Nd:YAG laser at 532 nm wavelength;

ions 5–10 ns). Spectra were obtained in 90◦ geometry,

f an intensified Andor iStar CCD detector synchronised

 pulses. The setup used enabled us to perform measure­

lectable “time windows” that are determined by the

D (time period between the end of the laser pulse and

ng of the measurement) and the gate width G (duration

ginning and end of the measurement). With a diffrac­
 with 600 grooves/mm in the beam path, the spectral

was on the order of 8–10 cm−1 (or ca. 0.4 nm wave­

he red range.
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Fig.  1.  Two representative  electron  microscope  images  of Cr­doped  titanite samples.  (a) Secondary  electrons  image  of a Cr­doped  titanite pigment after heating  at  1200 ◦C.

(b)  Back­scatte is.
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l  compositions  as determined  by  XRF/XRD  and  LA–ICP–MS  (normed  to  100%

tuent  (unit)  Malayaite  samples  Titanite samples

Cr­free  Cr0.02 Cr0.20 Cr­free  Cr0.02 Cr0.20

wt%)  0.13  0.10  0.11  0.10 0.10  0.19

(wt%)  0.30 0.18 0.09  0.30 0.46  0.27

t%)  22.5  22.7  23.4  30.5  30.4  30.1

wt%) (bdl) 0.17 0.17  0.26  0.28  0.89

t%)  0.28  (bdl) (bdl)  (bdl) (bdl) 0.09

t%) (bdl)  (bdl) (bdl)  0.05 0.04  0.05

t%)  20.9  20.7 21.7  28.6  27.9  28.3

t%)  (bdl)  (bdl) 0.26  40.0 39.6  30.0

wt%)a (bdl) 0.85 8.30  (bdl) 0.91  9.88

(wt%)  0.51  0.08  0.11  0.07 0.12  0.20

t%) (bdl) (bdl) (bdl)  (bdl) 0.09  (bdl)

t%)  0.05 0.04  (bdl)  (bdl) (bdl) (bdl)

wt%)  (bdl)  0.04  (bdl)  (bdl) (bdl) (bdl)

wt%)  55.3  55.1  45.9  (bdl) (bdl) (bdl)

wt%)b (bdl)  (bdl) (bdl)  0.06 0.02  (bdl)

/g) 0.6  0.5  0.3  0.9  0.9  0.7

g/g) 18.8 13.9  7.4  5.7  8.6  4.1

g/g) 0.4  0.5  0.1  0.8  0.8  0.5

/g) 0.1  0.1  0.5  0.1  0.4  0.2

/g) 0.2  0.3  0.2  0.4  0.4  0.2

 detected,  or results  below the 3� detection limit.

mium  is  quoted  as CrO2 because  in the samples  studied,  chromium is

inantly  present  as Cr4+ , replacing  Sn4+ (cf. Cruciani  et  al., 2009) or  Ti4+

va Lyubenova  et  al., 2009a,b),  respectively. Values  quoted are  means  of

, and  LA–ICP–MS  results.

sten  is a  contaminant  resulting from  the grinding  process.
red  electrons image  of  a polished  Cr­  and Nd­doped  titanite  grown  by flux  synthes

and discussion

lities and optical absorption

ite and malayaite pigment samples are fine­grained,

l sizes on the order of a few micrometres (Fig. 1a). Addi­

te references that were grown by the flux technique are

 one millimetre in size (Fig. 1b). All samples were found

kably homogeneous, that is, no growth zoning or other

ture was observed in back­scattered electrons images

and malayaite samples, respectively, were cleaned

ly by hand­picking under a powerful binocular micro­

phase identity was then confirmed by XRD and Raman

y. In all cases, only X­ray diffraction lines and Raman

tanite or malayaite were found, without any indica­

 presence of additional phases. Depending on their

mpositions, colours of titanite samples vary between

rless (Cr­free), light ochre (low­Cr), and dark ochre­ to

wn (high­Cr). Macroscopic colours of malayaite sam­

d similarly strongly on the Cr content, ranging from

urless to light grey (Cr­free) and pale pinkish (low­Cr)

ink (high­Cr), respectively.

l compositions of the pigment samples are listed in

lues quoted for the major oxides (SiO2, CaO, TiO2,

eans of XRF and XRD results (note that XRD results

ples have already been published by Cruciani et al.,

anova Lyubenova et al., 2009a). The CrO2 concentra­

d are means including our LA–ICP–MS results also.

rmulae of the three titanite pigments can be simplified

, Ca(Ti0.98Cr0.02)SiO5, and Ca(Ti0.80Cr0.20)SiO5. Analo­

plified formulae of the three malayaite pigments are

rx)SiO5 (x =  0, x  =  0.02, and x = 0.20). The Cr per formula

stance “Cr0.02”) is used to label the samples in Table 1

res.

tative optical absorption spectra (as obtained by dif­

ance spectroscopy) of Cr­free and Cr­doped titanite

re shown in Fig. 2. While the Cr­free sample lacks any

bsorption features in the visible and near­infrared (NIR)

ges, the Cr­doped samples are characterised by steadily

absorbance in the visible range towards the ultravio­

e absorption pattern consists of several broad bands,

ghly around 20,000, 17,500, and 13,100 cm−1, and fur­

tion bands in the NIR at around 10,700 and 8800 cm−1.

 not visible in Fig. 2  but has been reported by Stoyanova

et al. (2008; see Fig. 7 in that paper). The resulting

minimum lies in the NIR at ∼12,000 cm−1 (Fig. 2). In

ange, the Cr­doping has resulted in a  general increase

Table  1

Chemica

total).

Consti

MgO (

Al2O3

SiO2 (w

P2O5 (

SO3 (w

K2O (w

CaO  (w

TiO2 (w

CrO2 (

Fe2O3

ZnO  (w

SrO  (w

ZrO2 (

SnO2 (

WO3 (

Pr  (mg

Nd  (m

Sm  (m

Eu  (mg

Er  (mg

bdl: Not
a Chro

predom

(Stoyano

XRF,  XRD
b Tung
ce by a factor of 5–6.

sorption features, resulting in brown colouration of

ed Cr­doped titanite powders, have been attributed by

Fig. 2. Optical absorption  spectra  of  the three  titanite  pigments.  Note  that  the Cr­

doping  has  resulted  in  ca.  5–6­fold  increase  of  the absorption  of the blue  laser  light

(see grey  arrow) used  to  excite  the PL spectra  presented  in  Fig.  3.

45
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Fig.  3. Steady­state  PL  spectra of synthetic  pigments  (Ar+ 488  nm  excitation;  a,  titanite samples; b,  malayaite samples)  showing  how effectively  the presence  of chromium
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pearance  or  absence  of REE­related  emissions.

Lyubenova et al. (2008) to  co­actions of crystal­field

of Cr3+ ions in octahedral, and Cr4+ ions in octahedral

etrahedral sites; and we adopt their interpretation to

ible bands and shoulders in Fig. 2. However, we pro­

 the visible spectral range these crystal­field bands are

 on the low­energy wing of a UV absorption edge (or

nd), probably caused by ligand­metal charge­transfer

ns replacing Si4+ in the tetrahedral sites of the titanite

 has been shown that tetrahedrally oxygen­coordinated

f only present in trace amounts, may cause a significant

 the fundamental absorption edge or a  broad charge­

­edge band (e.g. Talla et al., 2013). The widely similar

f Cr6+ and Si4+ in tetrahedral coordination (Shannon,

t also facilitate a partial oxidation of (Cr4+)[4] to (Cr6+)[4]

ination temperatures. This hypothesis seems to be in

 with observations of Stoyanova Lyubenova et al. (2008)

ed a colour change from yellow to  brown colour for

tanite pigments after calcination at ≥1000 ◦C.

minescence

tate PL spectra obtained under blue laser excitation are

n Fig. 3.  Spectra of undoped titanite and malayaite pig­

ot show any significant “intrinsic” feature but, instead,

rrow emission bands in the orange­red to NIR region of

agnetic spectrum. The absence of “intrinsic” emissions

s to the results of Abe et al. (2010) who did not observe

n from pure CaTiSiO5 and CaSnSiO5. The observation is

ent with the results of Blasse et al. (1988): These authors

at the green “intrinsic” broad­band emission of titanite

y mid­range UV light (excitation maximum reported at

elength) but not under long­wave UV or visible excita­

oups of  narrow emission bands are assigned to REEs, in

r3+ and Sm3+ (perhaps also Er3+) in the orange­red, and

ncillary Er3+) in the NIR. As pigment samples have not

 intentionally, the origins of these REEs are assigned to

utions of the starting oxides.

s, whose emissions are observed in PL  spectra, are

 as incorporated in the titanite and malayaite lattice,

, rather than forming separate phases. In the case of

ples, this interpretation is supported strongly by the

roups of REE3+ emission bands show fine­structures
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r than titanite were present (i.e. if emitting REEs were

doped sam

Cr­free titan

it can be  se

46
d in different solids), different crystal­field effects

lt in notably different fine­structures of electronic tran­

ft et al., 2005; Lenz et al., 2013). To the best of our

, no appropriate references for the REE–PL of malayaite

ublished thus far. However, the remarkable similarity

ctures of REE emissions of malayaite samples compared

itanite samples (see Fig. 3), supports REE incorporation

yaite lattice (which is iso­structural with titanite).

cted, Cr­doped samples show the typical broad­band

 Cr3+ whose intensity seems to correlate well with the

ration (Fig. 3). Note that only a  small fraction of the

is present as  Cr3+ whereas the majority of this element

nt (Cruciani et al., 2009; Stoyanova Lyubenova et al.,

a); nevertheless the absolute quantity of the trivalent

hromium is sufficient to cause intense PL emission. The

 of tetrahedrally coordinated Cr4+ has been observed in

patite (Gaft and Panczer, 2013), but to the best of our

 not in natural minerals thus far. Even if there was Cr4+

om our pigment samples, it would be rather irrelevant

ectra: This emission, if present, is to be expected at low

nergies of ca. 0.9–1.0 eV (ca. 1.3 mm wavelength; Gaft

), which is far off the sensitivity range of the Si­based

ors in the spectrometers used here.

markably, the narrow REE emission lines have dis­

ompletely in all Cr­doped samples. There are two

lly feasible reasons for this. First, the presence of

in the crucible could hinder the incorporation of trace­

tanite/malayaite lattice. The absence of REE lines in the

uld then be  due to the absence of REE centres. Second,

are not excluded during crystal growth but present in

the simultaneous presence of sufficient amounts of Cr

ress REE emissions. It  was therefore crucial to measure

ons of trace­REEs in all pigment samples. Results are

he lower part of Table 1.  As more or less uniform REE

ere measured in all samples, the former hypothesis can

, and the observed emission behaviour is assigned to

of REE3+ emissions by Cr3+ centres (compare Reisfeld

en, 1977).

 the above quenching effect, which was first observed

 REE­contaminated pigment samples, a suite of addi­

te samples, intentionally doped with REEs, were grown

­borate flux. Photoluminescence spectra of two Nd­
ples are shown in Fig. 4. In the spectrum of Nd­doped

ite (nearly colourless sample; lower spectrum in Fig. 4)

en that the starting Nd2O3 was somehow impure and
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Fig.  4. Steady­state  PL  spectra of  two flux­grown  titanite samples  (473 nm excita­

tion).  Dashed  graph,  Cr­free sample containing  520 mg/g  Nd;  solid graph,  Cr­bearing

sample  containing  340 mg/g  Nd. Spectra  are shown with  vertical  offset for more

clarity.
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o excite these centres and the much higher sensitivity

 CCDs in  the visible range, compared to the NIR. This

on is  supported by the spectrum of Cr­free titanite in

emissions of Pr and Sm (15,500–17,000 cm−1)  are much

tensity than the emission of Nd (below 11,500 cm−1),

h Nd is present in much higher quantity (see Table 1).
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decay  times.
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educed considerably (the Nd3+ emission in the NIR is

ca. 2% of its intensity in the Cr­free sample, even though

rations are on the same order of magnitude) or extinct
3+). This shows that, again, the presence of a sufficient

hromium suppresses the emission of REEs. Obviously,

nd narrow REE emissions are observed simultaneously

f Gaft et al., 2003, and Fig. 3B of Kennedy et al., 2010)

ples with comparably moderate Cr concentration and

 excess” (compare Table 1 of Gaft et al., 2003).

selection of time­resolved PL spectra of titanite pig­

presented in Fig. 5. The spectrum of the undoped

. 5a) is dominated by narrow emission lines assigned

tres. The decay time (�)  of the Nd3+ emission near

500 cm−1 (ca. 900 nm wavelength) was determined at

, which is about one order of magnitude longer than

decay time of the 4F3/2 → 4I9/2 Nd3+ emission in natural

10–30 ms; see also Gaft et al., 2003). In analogy to the

e PL spectra discussed above, time­resolved PL spectra

 titanite pigments do not show REE emissions but only

E → 4A2 emission of Cr3+ (Fig. 5b,c). The spectra indicate

e of two different types of Cr3+ emission centres, char­

y slightly different maxima and decay times. They are

 Cr3+ ions in positions with weaker and stronger crys­

pectively. Variable occupation of these Cr sites may also

ations in the spectral position of the Cr3+ emission band

ate PL spectra (compare for instance Cr0.02 and Cr0.20 in

eral disappearance of REE emission lines accompany­

rporation of notable chromium concentrations is quite

d difficult to explain. The relatively long decay time of

 to the possibility in the Cr­free pigments, REEs (or at

 of the REE centres present) are not excited directly but

n­radiative energy transfer via (an)other centre(s) with

ng decay time. In Cr­bearing pigments, in contrast, the

t emit; rather, the excitation energy is preferentially

 to trivalent chromium. This may be due partially to  the

bsorption of the exciting laser light by chromium; how­

–6­fold increase in absorption (Fig. 2) alone is unable

ecrease in REE emissions by more than two orders of

(Fig. 3). It appears much more likely that in Cr­bearing

e Cr3+ centres present quench the REE3+ emissions, that
igrates from REE centres to Cr by non­radiative mech­

 (re)absorption of potential REE emissions by Cr3+ needs

xcitation).  (a) Cr­free titanite pigment  showing  narrow  REE­related

0).  There  are two chromium­related  emissions  with  different  spectral
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ABSTRACT

A series of natural zircon samples (with U concentrations of 140–2600 ppm and ranging from well 

crystalline to severely radiation damaged) were investigated by means of REE3+ photoluminescence 

spectroscopy. We found systematic changes in REE3+ emissions depending on the accumulated radiation 

damage expressed by the effective time-integrated !-dose of zircon samples. Structural reconstitution as 

caused by dry annealing resulted in intensity gains and decreases of half-widths of REE3+ emissions. The 

band half-widths of distinct luminescence Stark’s levels of the 4F9/2 " 6H13/2 transition of Dy3+ (#17 250 

cm–1; #580 nm wavelength) and the 4F3/2 " 4I9/2 transition of Nd3+ (#11 300 cm–1; #885 nm wavelength) 

were found to correlate sensitively with the degree of radiation damage accumulated. These REE3+ emis-

sions are proposed as potential measure of the irradiation-induced structural disorder of zircon. The two 

emissions are considered particularly suitable because (1) they are commonly detected in PL spectra of 

natural zircon, and (2) they are hardly biased by other emissions or Stark’s levels. Preliminary calibration 

curves that relate band-width increases to the ! dose were established using a suite of well-characterized 

Sri Lankan zircon. Band broadening upon increasing corpuscular self-irradiation is assigned to increasing 

structural destruction, i.e., the increasing perturbation of REE3+ cationic lattice sites. Possible advantages 

of REE3+ luminescence spectroscopy, complementary to Raman spectroscopy, as method to quantify 

structural radiation damage are discussed.

Keywords: Radiation damage, rare-earth elements (REE), photoluminescence spectroscopy, hyper-

spectral PL mapping, zircon

INTRODUCTION

Structural disorder in U- and Th-containing minerals is caused 

predominantly by !-decay events, in particular comprising atomic 

displacements created by recoils of heavy daughter nuclei. The 

! particles, in constrast, have minor contribution to the total bulk 

damage (ca. 10–15%; Nasdala et al. 2001), whereas $ and % ra-

diation are considered insignificant for the creation of permanent 

structural damage. The transformation of initially crystalline 

minerals into an amorphous state, through accumulation of recoil 

clusters over geologic periods of time, is commonly referred to as 

“metamictization” (e.g., Brøgger 1893; Pabst 1952; Ewing 1993).

Zircon, ZrSiO4, is a widespread accessory mineral that occurs 

in many igneous, metamorphic, and sedimentary rocks. Zircon 

incorporates the actinides U4+ and Th4+ that substitute for Zr4+ in 

dodecahedral coordination (D2d; Finch et al. 2001). Concentrations 

of the two actinides lie predominantly in the range 10–4000 ppm. 

As much as several weight percent have however been reported 

in some cases (for instance reported by Törnroos 1985; Rubin 

et al. 1989; Geisler et al. 2005). The accumulation of structural 

damage as caused by the radioactive decay of U and Th and their 

instable daughter nuclei, results in dramatic changes of solid-state 

properties. This includes changes of physical parameters such as 

refraction and birefringence, hardness, density, and elastic moduli 

(Holland and Gottfried 1955; Chakoumakos et al. 1991; Palenik 

et al. 2003), and a general decrease of the chemical resistance 

(Balan et al. 2001; Mathieu et al. 2001; Geisler et al. 2003a). The 

generally increased susceptibility of radiation-damaged zircon 

to alteration in potential post-growth processes is of enormous 

importance as it for instance affects negatively the ability of this 

mineral to immobilize radioactive elements (storage of nuclear 

waste; e.g., Ewing 2001) or to retain radiogenic nuclei (bias of 

U–Pb geochronology results; Geisler et al. 2003b).

In addition to X-ray diffraction (e.g., Weber 1990; Ríos et 

al. 2000), several spectroscopic techniques have been applied to 

quantify radiation damage accumulated in zircon. For instance, 

Wasilewski et al. (1973), Deliens et al. (1977), Zhang et al. (2008), 

and Zhang and Salje (2001) used infrared (IR) absorption spec-

troscopy, and Farnan and Salje (2001) and Farnan et al. (2007)  

applied 29Si nuclear magnetic resonance (NMR) spectroscopy for 

the estimation of the amorphous fraction in radiation-damaged zir-

con. Raman spectroscopy was introduced by Nasdala et al. (1995) 

as a method to quantify the degree of radiation-induced structural 

disorder in zircon. This technique has opened up new opportunities 

for studying the structural state of heterogeneous zircon crystals 

and for investigating relationships between !-doses, age, and the 

annealing history of geothermal events on a micrometer-scale (cf. 

Nasdala et al. 2001). The present study has been performed with 

the objective to test the applicability of REE3+ luminescence spec-

troscopy for the very same purpose, i.e., to check if the proposed 

method may be used, complementary to Raman spectroscopy, to 

characterize and estimate non-destructively the radiation-induced 

disorder of zircon.
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†kOpen access: Article available to all readers online.
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Zircon typically incorporates traces of—mainly heavy—

trivalent rare-earth elements (REE) into the structure, which is 

explained commonly by the coupled, xenotime-type substitution 

(Hanchar et al. 2001)

(REE3+,Y3+) + P5+ " Zr4+ + Si4+ (1)

The emissions of REE3+ of zircon have been studied with dif-

ferent luminescence techniques based on differing excitation 

mechanisms, such as photoluminescence (PL, e.g., Friis et al. 

2010), cathodoluminescence (CL, e.g., Blanc et al. 2000), io-

noluminescence (IL, e.g., Yang et al. 1994; Finch et al. 2004), 

thermally induced luminescence (TL, e.g., Vaz and Senftle 1971; 

Van Es et al. 2002), etc. Among them, CL imaging is the most 

widespread technique within the Earth sciences. Intensity-based 

imaging of CL emissions is commonly used to visualize internal 

textures of zircon, which provide valuable information on primary 

formation and post-growth history (e.g., Vavra 1990; Hanchar and 

Miller 1993; Hanchar and Rudnick 1995; Rakovan and Reeder 

1996; Götze 2000, 2002; Corfu et al. 2003; Götze et al. 2013). 

Luminescence spectroscopy of REE emissions was (and still is) 

used successfully to detect traces of different REE species in 

zircon (e.g., Nicholas 1967; Yang et al. 1992; Götze et al. 1999; 

Kempe et al. 2000; Gaft et al. 2001). Synthetic zircon individually 

or multi-doped with REEs have also been studied routinely, aim-

ing at a better understanding of the luminescence in their natural 

analogs (e.g., Cesbron et al. 1995; Blanc et al. 2000; Karali et al. 

2000; Hanchar et al. 2001; Friis et al. 2010).

More recently, the luminescence of REE3+ was used as struc-

tural probe for the characterization of REE-substituted lattice sites 

in minerals and mineral-based ceramics. For instance, spectral pa-

rameters of Eu3+ emissions have been used for the characterization 

of REE-substituted cation-sites in glasses and crystalline materials 

in process of evaluation of potential nuclear waste forms (Ollier 

et al. 2003; Reisfeld et al. 2004; Ternane et al. 2005).

It has been found that REE3+ emission-band widths are influ-

enced significantly by the real structure, i.e., deviations from the 

ideal chemical composition and structural state. In particular, it has 

been observed that individual REE emissions broaden appreciably, 

and decrease in intensity, upon (1) increasing incorporation of 

non-formula elements (e.g., Lenz et al. 2013), and (2) increasing 

radiation damage (e.g., Jazmati and Townsend 2000; Nasdala et 

al. 2002, 2013; Ruschel et al. 2010; Panczer et al. 2012).

In the present study we review briefly the REE3+ photolu-

minescence typical of natural zircon samples, and effects of 

radiation damage on the REE3+ luminescence pattern of zircon. 

The potential of hyperspectral luminescence mapping, e.g., 

to visualize radiation damage patterns on a micrometer scale, 

is demonstrated by comparing well-characterized, cut zircon 

crystal halves (with on half annealed through heat treatment and 

the other left in the natural radiation-damaged state, Nasdala et 

al. 2006). Finally, we show that the FWHM of selected REE3+ 

luminescence sublevels of zircon is related to the amount of 

radiation-damage accumulated over geologic periods of time 

(!-dose). The latter aspect provides an alternative possibility to 

estimate the quantity of radiation damage present in unknown 

zircon samples by measuring the FWHM of REE luminescence 

Stark’s levels.

SAMPLES AND METHODS

The effects of radiation damage on the REE3+ luminescence were first studied 

using four zoned samples of natural, accessory zircon single crystals (lengths ranging 

from 150 to 350 &m, U–Pb ages scattering between Archean and Neogene), which 

have been characterized in detail by Nasdala et al. (2006). In that study, single crystals 

were cut in two halves, along their c-axes. One half each was then subjected to heat 

treatment in air to anneal the radiation damage, whereas the other half remained 

in its natural, radiation-damaged state. Both, the annealed and naturally radiation-

damaged half-crystal, of each sample were then embedded in epoxy, and prepared 

in close proximity to each other in one polished mount. These four zircon samples 

originated from the following lithologies and localities: (1) a potassium-rich leuco-

granite located near Dannemora, Adirondack Mountains, New York [sample A1; age 

#1045–1050 Ma; (J.M. Hanchar and M.J. Whitehouse, personal communication); 

for rock description cf. McLelland et al. 2001], (2) the Bluffpoint quartz diorite, 

Atikwa Lawrence Batholith, Ontario [sample 81A; age 2732 ' 1 Ma; (D.W. Davis, 

personal communication); for rock description cf. Davis and Edwards 1985], (3) a 

gabbro from the Mulcahy Lake intrusion, Ontario (sample 31E; age 2733 ' 1 Ma; 

Morrison et al. 1985), and (4) a rhyolite tuff from the Gyulakeszi formation near 

Pécs, Hungary (sample M2; age 19.6 ' 1.4 Ma; Harangi 2001). An overview of the 

samples studied, and results of electron probe micro-analysis (EPMA), are given in 

Table 1 (compare also Nasdala et al. 2006).

Second, we have investigated large, homogeneous, gem-quality zircon samples. 

These included 13 mildly to severely radiation-damaged stones from gem gravels in 

the Ratnapura area, Sri Lanka (U–Pb ages in the range 522–572 Ma; Nasdala et al. 

2004a, 2008), and one well-crystalline stone from the Ban Lung area, Ratanakiri, 

Cambodia (age 1.2 ' 0.3 Ma, P.C. Piilonen, personal communication; for sample 

description see Wittwer et al. 2013, and references therein). Uranium and thorium 

concentrations, ages, !-doses and spectroscopic data of the gem samples are listed 

in Table 2.

To identify specific REE3+ emissions in natural zircon, PL spectra of synthetic 

REE-doped ZrSiO4 single crystals up to millimeters in size were obtained as inter-

nal references. Those materials have been synthesized in earlier studies using flux 

techniques; details are described elsewhere (Hanchar et al. 2001; Lenz et al. 2013).

Photoluminescence measurements in the visible to near infrared (NIR) range 

(single spectra and hyperspectral maps) were made using a Horiba LabRAM HR 

Evolution-dispersive spectrometer. The spectrometer system was equipped with 

an Olympus BX41 optical microscope, two diffraction gratings with 600 and 1800 

grooves per millimeter, and a Si-based, Peltier-cooled charge-coupled device detec-

tor. Photoluminescence was excited using a 473 nm diode-pumped solid-state laser 

(9 mW at the sample surface) and the 532 nm emission of a frequency-doubled 

Nd3+:YAG laser (10 mW at the sample surface). An Olympus 100× objective 

(numerical aperture 0.9) was used. The system was operated in the confocal mode 

(confocal aperture and entrance slit set at 100 &m); the resulting lateral resolution 

was #1 &m, and the depth resolution (with the beam being focused at the sample 

surface) was #2–3 &m. The spectral resolution for visible light was 0.8–1.1 cm–1 

with the 1800/mm grating (used for low-T measurements). The hyperspectral PL 

maps, consisting typically of 60 000–80 000 single spectra, were obtained using a 

software-controlled x–y stage. Color-coded PL maps (here, distribution patterns of 

the FWHM of individual Stark’s levels) were then produced after appropriate data 

reduction, which included background correction and band-fitting assuming com-

bined Lorentzian-Gaussian band shapes. Any mathematical correction of measured 

FWHMs for the system’s spectral resolution (in detail discussed by Nasdala et al. 

2001) turned out to be unnecessary. This is because spectrometer-related artificial 

broadening of Stark’s level bands detected (FWHMs (12 cm–1 at room temperature) 

was negligibly small, owing to the high spectral resolution of the spectrometer. Low-

temperature photoluminescence-measurements of homogeneous, gem-quality zircon 

samples were done using a long-distance, 50× objective (numerical aperture 0.55; 

free working distance 10.6 mm) and a Linkam FTIR-600 liquid-nitrogen cooling 

stage. The temperature accuracy was better than '2 K.

RESULTS AND DISCUSSION

Photoluminescence spectra

Figure 1 shows the laser-induced ()exc = 473 nm) REE3+ pho-

toluminescence spectrum of sample M2. This spectrum can be 

considered typical of spectra of well-crystallized natural zircon. 

It is dominated by groups of narrow emission bands. In contrast, 

broad-band yellow and blue emissions (which are more often 

detected in CL spectra; e.g., Götze et al. 1999) were observed 
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only occasionally in PL. Note that the sharpness of individual 

REE3+ emission lines (with FWHMs as small as 12 cm–1 at ambi-

ent temperature) may often causes confusion with Raman signals 

(for a detailed discussion see Nasdala et al. 2012).

Comparison of the PL spectrum of zircon M2 with spectra 

of synthetic REE-doped ZrSiO4 (Fig. 1) reveals that the former 

comprises the principal transitions of traces of Dy3+ and Sm3+ in 

the visible to NIR spectral range. The most intense emissions are 

assigned to electronic transitions of Dy3+, namely 4F9/2 " 6H15/2 

near #20 700 cm–1 and 4F9/2 " 6H13/2 near #17 250 cm–1. They are 

accompanied by several transitions of Sm3+ (Fig. 1; compare, e.g., 

Cesbron et al. 1995; Blanc et al. 2000; Karali et al. 2000; Gaft et 

al. 2001; Friis et al. 2010). In addition, low-intensity PL of Tm3+ 

and Nd3+ (in the NIR near #11 400 cm–1; assigned to the 4F3/2 " 
4I9/2 transition) was observed. Assignments of electronic transitions 

and Russel-Saunders terms in Figure 1 have been extracted from 

“Dieke” energy-level diagrams (e.g., Dieke and Crosswhite 1963; 

Reisfeld and Jørgensen 1977; Wegh et al. 2000).

All electronic transitions detected show crystal-field splitting 

into sharp sublevel bands (which are commonly referred to as 

Stark’s levels). This is caused by a non-isotropic electronegative, 

crystallographic environment of REE3+ ions (crystal field split-

ting; e.g., reviewed in Burns 1993). As one consequence, REE3+ 

emissions show notable orientation dependence, i.e., individual 

Stark’s levels of a given transition may be detected with variable 

relative intensities, depending on crystal orientation (compare, 

for example, relative intensities of individual peaks in the main 

Dy3+ emissions of zircon M2 and Dy3+-doped ZrSiO4 in Fig. 1).

The predominance of Dy3+ bands in REE3+ luminescence 

spectra of natural zircon has been well documented already in 

CL (Mariano 1989; Rémond et al. 1992; Hanchar and Rudnick 

1995; Götze et al. 1999) and IL studies (Yang et al. 1994; Finch 

TABLE 1. Electron probe microanalysis results for cut-in-half zircon samples (data from Nasdala et al. 2006)

Zonea EPMA data (wt% oxide)
 BSE Intensity  ZrO2 SiO2 HfO2 P2O5 Y2O3 Dy2O3 Er2O3 Yb2O3 ThO2 UO2 Total

Sample A1 (Adirondacks leucogranite, Fig. 3a)
N1 middle  66.6 32.0 1.31 0.04 0.10 <0.04 0.04 <0.05 <0.02 0.04 100.1
N2 bright  66.8 32.1 1.27 <0.03 0.04 <0.04 <0.04 <0.05 <0.02 0.12 100.3
N3 very bright  65.0 31.7 0.98 0.13 0.79 0.04 0.15 0.16 0.08 0.19 99.2
A1 low  66.7 32.2 1.26 0.05 0.13 <0.04 0.04 <0.05 <0.02 0.05 100.4
A2 low  65.6 32.5 1.26 <0.03 0.03 <0.04 <0.04 <0.05 0.02 0.10 99.5

Sample 81A (Bluffpoint quartz diorite, Fig. 3b)
N1 very bright  67.3 32.6 1.13 0.04 0.07 <0.04 0.04 <0.05 0.02 0.02 101.3
N2 middle  67.3 32.7 0.86 <0.03 0.05 <0.04 0.04 <0.05 <0.02 <0.02 100.9
N3 bright  67.1 32.6 0.81 0.05 0.17 <0.04 0.04 <0.05 <0.02 0.03 100.7
A1 low  67.1 32.6 1.11 0.03 0.06 <0.04 <0.04 <0.05 <0.02 <0.02 100.9
A2 low  67.0 32.5 0.87 0.03 0.05 <0.04 <0.04 <0.05 <0.02 <0.02 100.6
A3 low  67.0 32.6 0.84 0.06 0.17 <0.04 <0.04 <0.05 <0.02 <0.02 100.8

Sample 31E (Mulcahy Lake gabbro, Fig. 3c) 
N1 very bright  67.1 32.3 0.79 0.05 0.14 <0.04 <0.04 <0.05 <0.02 0.02 100.5
N2 low  67.6 32.3 0.54 <0.03 <0.03 <0.04 0.04 0.05 <0.02 <0.02 100.6
A1 low  67.0 32.4 0.82 0.06 0.17 <0.04 0.05 <0.05 <0.02 0.02 100.4
A2 low  66.9 32.6 0.63 <0.03 <0.03 <0.04 <0.04 <0.05 <0.02 <0.02 100.2

Sample M2 (Hungary rhyolite tuff, Fig. 4)
N1 middle  66.7 32.8 0.96 0.27 0.11 <0.04 0.05 <0.05 <0.02 0.03 100.8
N2 very bright  65.5 32.5 1.30 0.12 0.48 0.05 0.12 0.14 0.12 0.32 100.7
A1 low  66.7 32.6 0.89 0.05 0.18 <0.04 <0.04 <0.05 <0.02 <0.02 100.6
A2 bright  65.2 32.5 1.23 0.15 0.52 0.04 0.13 0.13 0.21 0.54 100.7

Notes: Al, Ca, Fe, and Ho have also been analysed. Data are not reported here because these elements were in most cases below the detection limit of the EPMA. 
a N = naturally, damaged un-annealed zircon sample; A = annealed zircon sample. Number after letter A or N refers to different zones of the zircon grain.

TABLE 2. Uranium and thorium concentrations, ages, !-doses and spectroscopic data for zircon samples from Sri Lanka and Ratanakiri, 
Cambodia

Sample Ua (ppm) Tha (ppm) 206Pb/238U agea  !-doseb effective !-dosec Dy3+ (I) FWHM Dy3+ (II) FWHM  Nd3+ FWHM  Raman v3(SiO4) 
   (Ma) (*1018 α/g) (*1018 α/g) (cm–1) (cm–1) (cm–1) FWHMa

M144 436 ±7 140 ± 3  552 ± 6 0.86–0.91 0.47–0.50 27.0 ± 1.4 27.0 ± 1.4 27.0 ± 2.7 7.2 ± 0.5
CZ3 550 ± 10 30 ± 2 563.9 ± 1.3 1.05–1.10 0.58–0.61 28.3 ± 1.4 27.2 ± 1.4  30.8 ± 3.1 8.2 ± 0.5
B188 556 ± 24 59 ± 4 559 ± 8 1.03–1.15 0.57–0.63 29.3 ± 1.5 27.0 ± 1.4 30.0 ± 3.4  8.5 ± 0.5
BR1 796 ± 13 39 ± 1 558 ± 13 1.47–1.60 0.81–0.88 37.5 ± 1.9 31.4 ± 1.6 34.2 ± 3.4 10.9 ± 0.8
BR231 772 ± 10 109 ± 2 571 ± 4 1.53–1.59 0.84 –0.87 43.5 ± 2.2 32.4 ± 1.6 34.6 ± 3.5 11.0 ± 0.8
M257 840 ± 27 235 ± 20 561.3 ± 0.3 1.66–1.78 0.91–0.98 41.7 ± 2.1 32.8 ± 1.6 35.4 ± 3.5 11.7 ± 1.0
BR266 909 ± 17 201 ± 7 559.0 ± 0.3 1.77–1.88 0.97 –1.03 44.0 ± 2.2 36.8 ± 1.8 38.0 ± 3.8 13.3 ± 1.0
M146 923 ± 17 411 ± 9 567 ± 4 1.92–2.03 1.06–1.12 47.2 ± 2.4 33.3 ± 1.7 37.0 ± 3.7 13.6 ± 1.0
M127 923 ± 23 439 ± 11 524.3 ± 0.4 1.78–1.88 0.98–1.03 50.8 ± 2.5 36.1 ± 1.8 39.7 ± 4.0 14.1 ± 1.2 
OR1 1490 ± 70 279 ± 18 522 ± 3 2.62–2.92 1.44–1.61 65.2 ± 3.3 41.1 ± 2.1 42.8 ± 4.3 20.7 ± 1.5
G168 1499 ± 33 257 ± 9 547 ± 3 2.83–3.00 1.56–1.65 67.5 ± 3.4 39.6 ± 2.0 40.6 ± 4.1 24.5 ± 2.0
G4 2355 ± 84 330 ± 12 564 ± 5 4.48–4.91 2.46–2.70 81.2 ± 4.1 65.5 ± 3.3 49.6 ± 5.0 28.1 ± 2.0
G3 2572 ± 96 585 ± 34 542 ± 5 4.77–5.25 2.62–2.89 86.7 ± 4.3  67.2 ± 3.4 51.2 ± 5.1 30.4 ± 2.5
Rata 140 ± 100 90 ± 80 1.2 ± 0.3 ± 0 ± 0 11.8 ± 0.6 19.7 ± 1.0 14.3 ± 1.4 1.8 ± 0.3

Notes: Errors quoted are estimates that include errors of individual measurements and sample heterogeneity (scatter among multiple analyses). 
a Sources for U and Th concentrations, ages, !-doses, and Raman-band FWHMs: Nasdala et al. (2008) for M257, Nasdala et al. (unpublished) for M127,  
Piilonen et al. (personal communication) and Wittwer et al. (2013) for Rata, and Nasdala et al. (2004a, and references therein) for all other samples. 
b !-doses were calculated from U–Pb age and U and Th concentrations (Holland and Gottfried 1955; Murakami et al. 1991; Nasdala et al. 2001). 
c Effective !-doses were estimated for zircon samples from Sri Lanka to account for incomplete damage retention by multiplying the !-dose value by a correction 
factor of 0.55 (for details see Nasdala et al. 2004a). 
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et al. 2004). In contrast, emissions of Ho3+ (cf. spectrum of Ho3+-

doped ZrSiO4 in Fig. 1) were not detected in any steady-state PL 

spectrum obtained from the natural zircon samples studied here, 

neither with 473 nm nor with 532 nm laser-excitation. This is 

remarkable insofar as some of the samples have Ho and Dy con-

centrations of comparable magnitude. For instance, zircon M275 

contains 12.6 ' 0.8 ppm Dy and 4.4 ' 0.3 ppm Ho (Nasdala et al. 

2008) and M127 contains 57 ' 6 ppm Dy and 21 ' 2 ppm Ho (D. 

Frei, personal communication); however both samples showed 

intense Dy emission but no notable Ho emission bands. This 

observation seems to support results of the IL study of Finch et 

al. (2004) who concluded that Ho3+ emissions may be suppressed 

in the presence of Dy3+.

Moreover, it is worthy of note that PL spectra strongly depend 

on the excitation wavelength. None of the PL spectra of natural 

zircon samples, including M257, obtained in the present study 

(with 473 nm and 532 nm laser excitation) showed emissions of 

Er3+ with significant intensity. In contrast, Er3+ emissions have been 

readily detected in PL spectra of zircon M275 obtained with 488 

nm excitation (Nasdala et al. 2008). The contradiction is however 

only apparent, because selective excitation of REE emissions is 

well-known in steady-state laser-induced PL (e.g., Blasse and 

Grabmaier 1994). Strong excitation bands of Er3+ centered at 490 

nm (4I15/2!"!
4F7/2) have been reported for synthetic zircon (Friis et 

al. 2010). These may allow PL excitation with a nearby 488 nm, 

but not with a 473 nm laser.

Low-intensity emissions of Er and Ho, as well as emissions of 

other REEs in zircon (including Eu, Tb, Pr, Tm, Ce), which are 

hardly or not detectable with steady-state luminescence techniques, 

can however be measured using time-resolved laser-induced 

spectroscopy (cf. Gaft et al. 2001).

Hyperspectral PL mapping

Reliable estimation of spectral parameters (i.e., band fitting 

to determine FWHMs of individual REE3+ sublevels) is possible 

only if the emission detected consists of well-separated, distinct 

peaks. This is not the case for Sm3+ (and, similarly, not for Er3+ 

and Ho3+ emissions) in synthetic ZrSiO4 whose emissions show 

numerous Stark’s levels that strongly superimpose each other (Fig. 

2A). In contrast, Stark’s levels of the 4F9/2!"!
6H13/2 transition of 

Dy3+ (especially those two in the range 17 240–17 260 cm–1) can 

be identified and fitted without bias, as there are intense and not 

obscured by other bands (Fig. 2B). Dy3+ Stark’s level I (Fig. 2B) 

is therefore used exemplarily in the present study, for the creation 

of PL maps based on the distribution of this band’s FWHM.

Figure 3 shows BSE images, CL images and hyperspectral 

PL maps of pairs of halves of heterogeneous zircon crystals, 

whereas one half is naturally radiation-damaged, the other one an-

FIGURE 1. Typical laser-induced PL spectrum ()exc = 473 nm) of well-crystallized zircon in the visible to NIR spectral range (here sample M2; 

Pécs, Hungary). Comparison with spectra of synthetic REE-doped ZrSiO4 (corresponding transitions are marked with arrows and labeled) reveals 

the dominance of Dy3+ and Sm3+ emissions in the natural sample, whereas the main transitions of Ho3+ were not observed. Minor emission signal 

of Nd3+ was observed in the NIR near #11 400 cm–1.
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nealed. The PL maps show color-coded distribution patterns of 

the FWHM of sublevel I of the 4F9/2 " 6H13/2 transition of Dy3+. 

Corresponding PL spectra and the respective Stark’s levels used 

for mapping are presented in Figure 2B.

Figure 3 shows that accumulation of self-irradiation damage 

causes significant BSE increase and CL intensity decrease, as 

revealed by opposite trends upon structural reconstitution by dry 

annealing (Fig. 3). Nasdala et al. (2006) attempted to explain 

the BSE increase with increasing damage by electron channel-

ing contrast (cf. Mitchell and Day 1998), and the CL-intensity 

loss upon damage accumulation was discussed by Nasdala et al. 

(2002). A similarly close, inverse correlation was observed also 

for the total PL emission, whose intensity decreases appreciably 

with increasing U concentration and radiation damage (see Fig. 2 

again). The hypothesis that the presence of U is the main reason 

for the decreased PL emission (this effect was proposed for CL 

by Poller et al. 2001) is disproved by the fact that annealed halves 

have the same U concentrations as their unannealed counterparts 

but yield much more intense PL. Also, ion-irradiation of synthetic 

and natural zircon samples done by Finch et al. (2004) showed that 

REE3+ emissions observed in IL strongly decrease with increasing 

radiation damage. Finch et al. (2004) explained their observation 

by increasing defect concentrations upon increasing structural 

damage created, which give rise to non-radiative transitions and 

cause a reduced possibility of energy migration through the crystal.

In addition to the general intensity loss of PL bands increasing 

radiation damage results in clear increases in FWHMs of indi-

vidual bands (see also, e.g., Nasdala et al. 2013). Hyperspectral 

PL maps (Fig. 3) show that in naturally radiation-damaged zircon, 

the FWHM of Dy3+ sublevel I is broadened particularly in zones 

with high uranium concentrations and, hence, with more extensive 

radiation damage. In contrast, zones with low uranium concentra-

tions (with corresponding lower levels of accumulated radiation 

damage) are characterized by narrow Dy3+ Stark’s level bands 

(for instance see overgrowth rim of sample 31E, Fig. 3c). De-

pending on the degree of radiation damage of particular interior 

regions, the Dy3+ sublevel near 17 200 cm–1 yielded FWHMs of up 

to >40 cm–1, whereas predominantly values close to 12 cm–1 were 

obtained after annealing. Distribution patterns of the FWHM of 

certain REE-emission sublevels (here, Dy3+ sublevel I) are hence 

virtual distribution patterns of radiation damage or crystallinity, 

respectively.

It should be noted that, in contrast to FWHM or band posi-

tion, the band intensity and intensity-related spectral parameters 

such as the area integral are not suitable to estimate directly the 

degree of disorder. This is because luminescence intensity strongly 

depends on further variables, such as the absolute concentration 

of the respective REE3+, effects of quenching/sensitizing by other 

elements (e.g., Marfunin 1979; Kempe and Götze 2002), and 

effects of crystal orientation (e.g., Lenz et al. 2013). The present 

study was, hence, not focused merely on intensity-based REE 

distributions (e.g., MacRae et al. 2012, 2013), but based on the 

interpretation of band widths of REE emissions.

The dependence of the broadening of the PL emission on the 

structural damage, rather than on the U concentration, is supported 

by the observation that annealed halves (containing the same 

amounts of U as their unannealed counterparts; Table 1) show nar-

row Dy3+ sublevel-bands. Furthermore, clustering of REE centers 

potentially may also result in PL band broadening. The similarity of 

our PL maps and Raman maps for the same pairs of crystal-halves 

(presented by Nasdala et al. 2006) rather supports the dependence 

of PL broadening on the defect accumulation upon increasing 

radiation damage. Both show the very same distribution patterns, 

which are in the case of Raman maps caused predominantly by 

the radiation damage accumulated.

In addition to effects of structural damage on the PL broaden-

ing, however, minor effects of the chemical composition cannot be 

neglected. An example is the PL map in Figure 3a. The annealed 

half-zircon of sample A1 still shows a slightly heterogeneous 

FWHM distribution pattern. Nasdala et al. (2006) discussed their 

FIGURE 2. Pairs of PL spectra ()exc = 473 nm) obtained from the unannealed and annealed halves of zircon sample A1 (Adirondack Mts.). 

The two measurements were placed at corresponding locations, i.e., within the altered interior region of the crystal (cf. Fig. 3a). Spectra are shown 

with normalized maximum intensities and with vertical offset for clarity. (A) Emission related to the 4G5/2 " 6H7/2 transition of trace Sm3+. (B) Emission 

related to the 4F9/2 " 6H13/2 transition of trace Dy3+#!$%&'()*&+!%,-.+/-!01!+,&-/2-3.&%,!4&56!7//)58!9&--.:)58!;0%,5/<)&52$&.--)&5!4&56!-(&',-=!&%,!-(0>5!

for spectra of annealed halves. 
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similar Raman observation for the very same sample as possible 

indication of incomplete structural reconstitution during the heat 

treatment (four days at 1300 +C). As an alternative interpretation 

we consider the possibility that minor heterogeneity in their Raman 

map, and our PL map, may be due to minor heterogeneity of the 

chemical composition (i.e., FWHM increase due to the elevated 

presence of non-formula elements). These heterogeneous areas are 

characterized by slightly, but significantly, elevated concentrations 

of P2O5, REE2O3, and U/ThO2 (see EPMA measurement point N3 

from the sample A1 in Table 1).

The impact of compositional heterogeneity on the FWHM is 

supported also by the PL map of the very mildly radiation-damaged 

zircon M2 (Fig. 4), whose internal FWHM variations (between 

14 and 25 cm–1 in the natural and between 12 and 15 cm–1 in the 

FIGURE 3. Images of cut zircon crystals from three different lithologies, with the heat-treated crystal half always shown in close proximity to its 

unannealed counterpart. (a) Zircon from a leucogranite, Adirondack Mountains, New York (sample A1). (b) Zircon from the Bluffpoint quartz diorite, 

Ontario (sample 81A). (c=!$%&)5!1%0:!/(,!?.+*&(@!;&A,!)5/%.-)05B!C5/&%)0!9-&:'+,!DEF=#!G5!&++!/(%,,!*&-,-B!&!-,3.,5*,!01!HIF!&56!J;!):&8,-!9:06)7,6!

after Nasdala et al. 2006) and PL map is shown. The PL maps ()exc = 473 nm) were generated from the FWHM of the Dy3+ emission sublevel near 

17 200 cm–1 (sublevel I; compare Fig. 2).
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FIGURE 4. I,%),-!01!HIF!&56!J;!):&8,!9:06)7,6!&1/,%!K&-6&+&!,/!&+#!LMMN=!&56!O;!:&'!9)exc = 473 nm) of a cut zircon from a rhyolite tuff 

from the Gyulakeszi formation near Pécs, Hungary (sample M2). Note the different color-coding scale compared to the three PL maps in Figure 3. 

The non-uniformity of the BSE intensity within the annealed crystal half indicates that slight FWHM variations of the PL might be due to moderate 

chemically induced band broadening.

FIGURE 5. Effect of radiation damage on PL spectral parameters, obtained at room temperature, of gem-quality zircon samples. (a and b) 

Photoluminescence spectra (a, )exc = 473 nm; b, )exc = 532 nm) of samples whose degrees of radiation damage range from well crystalline (Rata) to 

severely damaged (G3). (c) Plot of the FWHM of two Dy3+ (4F9/2 " 6H13/2) sublevels (which are indicated in a) against calculated effective !-doses. 

Note the clear FWHM-dose correlations, which however show different slopes. Data plotted were extracted from Table 1. (d) Plot of the FWHM 

of the #11 350 cm–1 sublevel of Nd3+ (4F3/2 " 4I9/2; marked in b with arrows) against calculated effective !-doses.
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annealed half-crystal) are assigned in part to chemical heteroge-

neity. First, FWHMs are not uniform in the annealed crystal half 

(as it should be expected if FWHM broadening was solely due 

to structural damage). Second, the bright-BSE growth zone is 

characterized by both elevated concentrations of UO2, ThO2, and 

REE2O3 (Table 1) and the strongest PL band broadening (Fig. 4). 

Note that, due to its Neogene age (Harangi 2001), sample M2 has 

accumulated much less radiation damage compared to the zircon 

samples shown in Figure 3. Effects of radiation damage on the 

PL are hence less extensive in sample M2, and, correspondingly, 

the (minor) effects of the chemical composition on band FWHMs 

are detected because they are less obscured.

Effects of compositional-induced structural-disorder have 

been well documented already for the Nd3+ luminescence of 

monazite–(Ce) (e.g., PL study of Lenz et al. 2013). Note, however, 

that natural monazite–(Ce) typically has much higher composi-

tional variability, when compared to natural zircon, which hence 

affects the FWHMs of PL emissions of monazite–(Ce) to much 

higher magnitudes. The impact of chemical heterogeneity on the 

FWHM of REE3+ Stark’s levels in natural zircon is, therefore, 

comparably low.

Reference zircon spectra: Estimation of radiation damage

Effects of radiation damage on the Dy3+ and Nd3+ luminescence 

of zircon are visualized and determined more quantitatively by PL 

data obtained from a suite of gem-zircon samples from Ratnapura, 

Sri Lanka, and Ratanakiri, Cambodia (Fig. 5). Note that the Sri 

Lankan zircon samples represent various degrees of radiation dam-

age, ranging from moderately (M144) to strongly damaged (G3; 

see Table 2; compare also Nasdala et al. 2004a). The Ratanakiri 

zircon, in contrast, is characterized by a remarkably low degree 

of self-irradiation damage (Wittwer et al. 2013), which is mainly 

due to the sample’s young age of 1.2 ' 0.3 Ma (P.C. Piilonen, 

personal communication). Note also that the Sri Lanka zircon 

has experienced partial structural reconstitution in its geological 

history, which is why !-doses calculated based on the time period 

since the Neoproterozoic to Cambrian closure of the U–Pb system 

overestimate the radiation damage present (for details Nasdala et 

al. 2004a). To account for the annealing, “effective !-doses” were 

corrected applying a correction factor of 0.55 to the calculated total 

!-doses, as elucidated by Nasdala et al. (2004a).

In accordance to our findings described above, band widths 

of Dy3+ and Nd3+ luminescence sublevels show a marked increase 

that is closely related to the self-irradiation dose (Fig. 5). Note 

that the particular extent of the dose-related FWHM increase for 

a given Stark’s level band is not necessarily uniform but may vary 

appreciably among emission centers and even among individual 

sublevels of a single transition. As an example, FWHMs of two 

sublevels belonging to the 4F9/2 " 6H13/2 transition of Dy3+ (la-

beled I and II in Fig. 5a), show divergent band-broadenings upon 

increasing !-doses (Fig. 5c). Dysprosium sublevel I [FWHM 

increase from 12 cm–1 (Rata) to 87 cm–1 (G3)] obviously is more 

sensitive to radiation-induced structural disorder, compared to 

Dy3+ sublevel II [FWHM increase from 20 cm–1 (Rata) to 68 cm–1 

(G3)] and the #11 350 cm–1 sublevel of Nd3+ (4F3/2 " 4I9/2) [FWHM 

increase from 14 cm–1 (Rata) to 51 cm–1 (G3)], respectively (Fig. 

5d). Consequently, for each single Stark’s level that is intended to 

be used as measure of the radiation damage, a separate calibration 

of the FWHM-dose dependence needs to be available.

The FWHM increase of REE-related emissions in mildly to 

strongly radiation-damaged (but not yet fully amorphous) zircon 

is assigned to disturbance of the structure as caused by the ac-

cumulation of defects. These defects are considered to perturb 

the local crystallographic environment of the REE3+ centers. As 

a consequence, the crystal field around REE cations is distorted, 

and PL bands may shift slightly in spectral position. The spectral 

FIGURE 6. Effect of temperature on the PL spectra of various gem-quality zircon samples ranging from well crystallized to severely radiation 

damaged. (a) Pairs of spectra showing the Dy3+ emission (4F9/2 " 6H13/2) at ambient and low temperature. (b) Plot of the FWHM of Dy3+ sublevel 

I (see arrow in a) against temperature. Note that FWHMs of Dy3+ Stark’s levels depend strongly on the sample’s degree of radiation damage (cf. 

Fig. 5), whereas temperature has moderate effects.
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band detected may then be regarded as superposition of a multitude 

of single levels arising from variably distorted crystallographic 

sites within the spatially resolved area analyzed (e.g., Skinner and 

Moerner 1996; Lenz et al. 2013).

Completely metamict ZrSiO4, and amorphous volumes in 

moderately damaged zircon, are in contrast characterized by 

randomly perturbed cation sites, which results in the entire 

degeneration of REE3+ crystal-field states. This in turn leads to 

the total loss of fine structure of electronic transitions, i.e., no 

more distinct Stark’s levels but broad single bands are observed 

in PL spectra. Analogous effects are observed in PL spectra of 

glasses produced by melt quenching; see for instance the PL 

spectra of Dy-doped CaTiSiO5 glass (degenerate transitions) and 

crystal (Stark fine-split transitions) in Figure 15 of Nasdala et al. 

(2004b). Consequently, the broadened (but still split) Stark’s level 

bands obtained from zircon samples studied here are assigned 

to the crystalline fraction present, whereas amorphous clusters 

(for a general description of the damage-accumulation process 

see Murakami et al. 1991) are virtually “PL-invisible” at low 

self-irradiation doses. At elevated radiation damage, fitting of 

individual Stark’s level bands is feasible as long as a minimum 

of remnant (even though strongly stressed) crystalline volume 

units contribute to the luminescence emission, and provided the 

REE signal originating from the amorphous volume fraction does 

not hamper too much the background.

Note, however, that FWHMs of luminescence bands also de-

pend on temperature. In general, low-temperature luminescence 

studies are conducted to improve the sharpness of individual 

bands (for the narrowing of REE3+ emissions at low temperatures 

see, e.g., Reisfeld and Jørgensen 1977; Marfunin 1979; Blasse 

and Grabmaier 1994; Lenz et al. 2013). Figure 6a shows an ex-

emplary low-temperature series of PL spectra of Dy3+ in zircon 

samples representing various degrees of radiation damage. The 

plot of FWHMs against temperature (Fig. 6b) however indicates 

that FWHMs of Dy3+ sublevels differ appreciably among variably 

radiation-damaged samples. In contrast, the effect of temperature 

on the FWHMs (i.e., narrowing with lowered temperature) is 

comparably low. The band FWHMs decrease by approximately 

about –8 cm–1 from ambient temperature to 78 K (virtually 

independent from the degree of the sample’s radiation damage).

The effect of temperature on widths of REE3+ emissions 

(i.e., 4f elements) is hence comparatively small when com-

pared with d-d or d-f transitions. This is because f-electrons and 

their inter-transitions are well shielded by the outermost filled 

5s25p6 orbitals (Blasse and Grabmaier1994). Low-temperature 

PL measurements are, therefore, of insignificant usefulness 

to increase the reliability of FWHM estimates for strongly 

radiation-damaged zircon (see data for samples OR1 and G3 

in Fig. 6b). The effective temperature-induced narrowing of 

Stark’s levels of these two samples does not exceed significantly 

the statistical error of the FWHM estimates. In addition, low 

temperature measurements performed by using cooling stages 

or other liquid-nitrogen setups entail considerable effort; espe-

cially for measurements with high lateral resolution such as for 

hyperspectral PL mapping. Therefore, all reference luminescence 

spectra presented in the sections above are recorded at room 

temperature (298 K) as this study promotes the application of 

REE3+ luminescence spectroscopy being used potentially for 

various other techniques as well (such as CL coupled to EPMA). 

Nevertheless, for unbiased quantitative estimates, it needs to be 

ensured that luminescence analyses are done at room tempera-

ture or, alternatively, at the same temperature as the calibration 

measurements. Consequently, uncontrolled sample heating, such 

as due to intense local absorption of the incident laser light, 

must be avoided.

IMPLICATIONS

The REE3+ luminescence of zircon was found once again to 

be very sensitive to structural disorder caused by corpuscular 

self-irradiation. The emission intensity generally decreases, and 

band FWHMs increase, possibly accompanied by minor band 

shifts, with increasing structural damage. Our results show that 

the band-widths of distinct sublevels of Dy3+ (4F9/2!"!
6H13/2) and 

Nd3+ (4F3/2!"!
4I9/2) emissions (1) can be determined reliably by 

conventional band-fitting procedures and (2) is strongly related 

to the amount of radiation-damage accumulated (the latter being 

expressed by the effective time-integrated !-dose; Fig. 5). We 

propose the use of the FWHM of the Stark’s level at #17 200 

cm–1 of the 4F9/2!"!
6H13/2 transition of Dy3+ (here described as 

sublevel I; see again Fig. 5c) and the dominant Stark’s level of 

Nd3+ near 11 350 cm–1 (Figs. 5b and 5d) as most suitable means 

of estimating quantitatively the radiation-induced structural 

disorder of zircon on a micrometer-scale.

Estimation of the crystallinity based on REE-band FWHMs 

may open up new opportunities to characterize the structural 

state of radiation-damaged zircon, complementary to the use 

of Raman-band FWHMs for this purpose (Nasdala et al. 1995, 

2001). This is supported by Figure 7, which shows that the 

radiation-damage induced FWHM increase of the Dy3+ sublevel I 

is related to that of the ,3(SiO4) Raman band of zircon. Potential 

advantages of using REE3+ luminescence spectroscopy include 

(1) the high-volume resolution (with confocal spectrometer 

systems, analyses can be done on a micrometer scale), (2) the 

FIGURE 7. Plot of the FWHM of sublevel I of the Dy3+ 4F9/2 " 6H13/2 

PL emission against the FWHM of the ,3(SiO4) Raman band (B1g mode; 

antisymmetric stretching of SiO4 tetrahedrons). Data pairs of the four 

gem-quality zircon samples, whose PL spectra are shown in Figure 5, 

are labeled and marked with arrows.
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option to do non-destructive analyses without sample prepara-

tion, and (3) the possibility to obtain the FWHM of Stark’s levels 

of multiple REE3+ centers simultaneously (e.g., Dy3+ and Nd3+). 

The latter (i.e., choosing another center or transition) may be 

advisable if a Stark’s level under analysis should be obscured 

by other phenomena (e.g., defect-related broad-band emissions 

created upon corpuscular irradiation; Götze et al. 1999; Finch et 

al. 2004; Nasdala et al. 2013). The proposed PL of Dy3+ sublevel I 

may be used widely in studying zircon, because according to our 

experience, trace-Dy is virtually omnipresent in natural zircon, 

and even minute quantities yield well-measurable luminescence 

signals. Finally, similar to FWHMs of SiO4-related Raman bands, 

FWHMs of the Dy3+ (and Nd3+) signals studied here were found 

to depend predominantly on the degree of radiation damage 

present, whereas chemical effects, which may be much more 

extensive in minerals that typically are compositionally vari-

able, are almost negligible in the case of (unaltered igneous or 

metamorphic) zircon.
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 We have studied laser-induced photoluminescence of trivalent rare-earth 

elements (REEs), which are, as analytical artefacts, obtained in Raman spectra of 

selected accessory minerals. Spectra of natural titanite, monazite−(Ce), 

xenotime−(Y), and zircon samples from various geological environments were 

compared with emission spectra of synthetic, flux-grown analogues doped with 

REEs. This allowed us to identify potentially mistakable bands as either Raman or 

PL signal, and in the latter case to assign them to certain REE centres. In the 

samples investigated, various REE centres are excited selectively using 473, 514, 

532, 633, and 785 nm laser excitation. Their assignment was verified by 

photoluminescence-excitation experiments. Luminescence patterns of zircon and 

titanite vary in dependence of trace-REE concentrations, hence reflecting 

geochemical growth conditions. Advantages of “REE artefacts” in Raman spectra 

of accessory minerals are discussed with respect to their application as 

fingerprint tool and their relevance for the visualisation of mineral textures. 
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1. Introduction 

In the last decades, the use of Raman 

spectroscopy in the Earth sciences has increased 

appreciably. This was stimulated, among other reasons, 

by (i) a number of analytical advantages (including the 

opportunity to perform micrometre-scale analyses non-

destructively and without special sample-preparation 

needs), (ii) the increased availability of powerful, easy-

to-operate, and cost-efficient Raman spectrometer 

systems, (iii) a growing number of successful 

applications in virtually all sub-disciplines of the Earth 

sciences, and (iv) significant improvements in the 

availability of reliable reference spectra. The most 

common field of application of Raman spectroscopy is 

the identification of mineral phases and components of 

geological samples on the basis of spectral fingerprint-

characteristics. Examples include the fields of 

gemmology (e.g. Fritsch et al., 2004; Bersani and Lottici, 

2010; Bersani et al., 2014), archaeometry and cultural 

heritage (e.g. Edwards et al., 2000; Smith, 2006; 

Vandenabeele et al., 2006; Ropret et al., 2010), high-

pressure petrology (e.g. Korsakov et al., 2005; Stähle et 

al., 2008; Marschall et al., 2009), planetary mineralogy 

(e.g. Wang et al., 1995, 2004; Sharma et al., 2003; Popp 

and Schmitt, 2004; Bozlee et al., 2005; Blacksberg et al., 

2010), environmental mineralogy (e.g. Das and Hendry, 

2011), palaeontology (e.g. Schopf et al., 2002; Bernard 

et al., 2007; Chen et al., 2007), biomineralogy (e.g. Li et 

al., 2013; Pasteris et al., 2014), and many other 

disciplines. Furthermore, Earth scientists have become 

increasingly interested in the application of the 

hyperspectral Raman-mapping technique. The latter is a 

powerful tool to visualise, among others, the 

distribution of mineral phases within geological 

samples, and internal textures within single-crystals of 

minerals (Nasdala et al., 2004a; Bernard et al., 2008; 

Nasdala et al., 2012, and references therein).  

The reliable interpretation of Raman spectra of 

geological samples may however be hampered by a 

range of possible analytical artefacts (for a detailed 

discussion see Nasdala et al., 2012 and references 

therein). Potential bias of results is among others 
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caused by the fact that in the analysis of minerals, 

Raman-scattered light is often recorded together with, 

or even obscured by, laser-induced photoluminescence 

(PL). The incident laser beam may excite the sample’s 

valence electrons, and PL emissions are then generated 

through the release of energy in (radiative) electronic 

transitions. The strength of this artefact is controlled by 

the presence and concentration of emission centres in 

the material analysed. Such luminescence centres or 

activators may include structural defects and/or minor 

or trace elements incorporated into the crystal structure 

(e.g., Marfunin, 1979; Blasse and Grabmeier, 1999).  

Confusion of Raman bands with PL bands is likely 

especially if samples contain notable amounts of rare-

earth elements (REE) with 4f electronic configuration 

(e.g., Panczer et al., 2012). If such REEs are incorporated 

in crystalline materials, they may cause narrow-line 

emissions whose widths (0.1–0.3 nm, or a few cm–1, at 

room temperature) are on the order of typical Raman-

band widths. The REE-related emissions are therefore 

easily mistaken as Raman bands, and vice versa; 

publications describing the Raman spectrum of REE-

bearing minerals should hence be referred to with 

appropriate caution. To substantiate this rather 

pessimistic statement, a few examples are quoted here. 

Zhang et al. (2000) presented a green-laser excitation 

(Ar+ 514.5 nm) spectrum of a sample consisting of 

crystalline ZrO2 and amorphous SiO2, which showed 

Raman bands of ZrO2 and additional bands in the 

Raman-shift range 1,000–1,100 cm−1. The latter were 

assigned by Zhang et al. (2000) to Raman bands of 

crystalline ZrSiO4 and SiO2. The red-laser excitation (He-

Ne 632.8 nm) Raman spectrum of the very same sample 

(Nasdala et al., 2004) however only showed ZrO2 Raman 

bands. This indicates that the additional bands obtained 

by Zhang et al. (2000) were green (wavelength 541–546 

nm) PL emissions (most likely caused by trace-Er3+; 

Gaft et al., 2000; Nasdala and Hanchar, 2005). They 

were recorded unintentionally in the same spectral 

range as the Raman bands just because green laser-

excitation was used in that Raman experiment. 

Similarly, Xian et al. (2004) failed to recognise that their 

Raman spectra of zircon (obtained also with green laser 

excitation) were obscured by Er3+ related PL-emissions, 

and they treated these emissions as Raman bands (see 

critical discussion by Nasdala and Hanchar, 2005). Dill 

and Weber (2010) presented “Raman spectra” of 

fluorite in the Raman-shift range 400–2400 cm–1 (note 

however that fluorite has only one single first-order 

Raman band at 322 cm–1; Gee et al., 1966), and they 

assigned by mistake REE-related PL emissions in their 

spectra to Raman modes. Possible confusion of REE3+ 

emissions with Raman bands has been discussed 

critically by McCubbin et al. (2010). These authors 

pointed out that in Raman spectra of fluorapatite 

obtained with 532 nm excitation, Sm3+ emissions 

(wavelengths about 650 nm) are recorded with 

apparent Raman shifts of 3300–3500 cm–1. These 

emissions therefore may be mistaken easily as O–H 

stretching bands of structurally bound hydroxyl groups. 

Common accessory minerals (including titanite, 

monazite- and xenotime-group minerals, and zircon) 

typically incorporate REEs. The accurate assignment of 

REE signals in PL spectra of geological samples is often 

challenging, because (i) minerals, which were formed in 

natural and hence “polluted” geochemical 

environments, may contain simultaneously a range of 

REE species; (ii) emissions of several REEs may overlap 

in steady-state laser-induced PL spectra; and (iii) 

crystal-field splitting of REE luminescence transitions 

depends on the local structural environments of the REE 

cations. The latter may cause varying numbers and 

exact positions of sublevel bands for particular 

emissions of a REE, depending on its host mineral (see 

Lenz et al. 2013, and references therein).  

One challenging task for luminescence studies 

was, and still is, the detection and correct assignment of 

REEs in different host minerals (Tarashchan, 1978; 

Waychunas and Tarashchan, 1995; Habermann et al., 

1996; Baumer et al., 1997; Reisfeld et al., 1996; Gaft et 

al., 1999, 2001; Götze et al., 1999a, b; Blanc et al., 2000; 

Gorobets and Rogojine, 2001; Waychunas, 2002; 

Nasdala et al., 2004; Richter et al., 2004; Czaja et al. 

2008). A comprehensive but perhaps still incomplete 

overview of mineral species showing REE 

photoluminescence was given by Gaft et al. (2005). In 

the past years, the application of time-resolved 

luminescence spectroscopy – that utilizes the different 

decay times of luminescence centres – has strongly 

improved the reliability and sensitivity in detecting 

REEs in minerals (e.g., Gaft et al., 2001; Gaft, 2003; Gaft 

et al., 2005). In spite of this progress, reliable 

interpretation of PL bands of unknown materials 

requires the availability of reference spectra obtained 

from synthetic analogues individually doped with the 

REE under consideration. For zircon, such investigations 

have been done already by Cesbron et al. (1995), Blanc 

et al. (2000), Gaft et al. (2000), Karali et al. (2000), 

Finch et al. (2004) and Friis et al. (2009).  

Following the latter concept, this present study 

addresses PL artefacts in Raman spectra of the 

accessory minerals titanite, xenotime–(Y), monazite–

(Ce), and zircon. This is done by comparing spectra of a 

series of natural samples with spectra of synthetic 

analogues doped with a single REE (with REE in the 

series Pr3+ to Tm3+, except Pm3+ and Gd3+). These REEs 
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are known to cause PL emissions in the visible to near 

infrared (NIR) range of the electromagnetic spectrum 

(Gaft et al., 2005). In the case of titanite, which is known 

to contain occasionally notable amounts of chromium 

(e.g., Higgens and Ribbe, 1976; Fleischer, 1978), 

synthetic Cr-doped CaTiSiO5 was included in addition. 

The present paper aims at pointing the readers’ 

attention to possible biases in the interpretation of 

Raman spectra of REE-containing accessories, but also 

at emphasizing opportunities of the use of REE-emission 

characteristics to identify REEs, and to characterize 

their host minerals/materials. 

 

 

2. Samples and Experimental 
 

2.1. Samples investigated  

 

Samples investigated in this present study comprise 

first a suite of natural titanite, monazite–(Ce), xenotime–(Y), 

and zircon specimens. The latter are provided by collections of 

the Natural History Museum Vienna, Austria (NHM), the 

Institute of Mineralogy and Crystallography at the University 

of Vienna, and the authors. Second, synthetic analogues were 

produced and studied, either un-doped or doped with one 

individual REE or Cr (the latter only for titanite).  

Natural titanite samples are from Schiedergraben, 

Felben valley, Hohe Tauern, Salzburg Austria (sample A), a 

typical alpine cleft-type mineralisation hosted in amphibolites 

which is well-known for large, greenish titanite crystals 

(Strasser, 1989); São Geraldo do Araguaia, Pará, Brazil 

(sample B); the Mt. Painter uranium mining district, Arkaroola 

region, North Flinders Ranges, Australia (sample C; details on 

geology may be found in Coats and Blissett, 1971); Gratton 

Renfrew Co., Ontario, Kanada (sample D), a skarn located in 

the extensively metamorphosed Grenville Province (e.g., 

Kennedy et al., 2010); and from the Saranovskii mine 

(Saranovskoe), Saranovskaya village (Sarany), Gornozavodskii 

area, Permskaya Oblast', Middle Urals, Russia (sample E), 

ultrabasic gabbroic to gabbronoritic intrusions in Precambrian 

schist and quartzite with chromite ore-bodies and diabas 

gangue with Cr-bearing titanite in voids (see details in Ivanov, 

1979 and Voitovich, 1993).  

Natural monazite–(Ce) samples are from Braban Farm, 

Namibia (sample Namon); Itambé, Brazil (sample GM2); and 

Madagascar (samples VL-1, F6, and Madmon). Detailed 

information on F6 was published by Fletcher et al. (2010), and 

Madmon has been described by Schulz et al. (2007). Results of 

a detailed study on that five monazite–(Ce) samples, including 

U–Th–Pb ages, Raman spectroscopic and electron probe 

micro-analysis (EPMA) data, have been published by Ruschel 

et al. (2010). In addition, a Nd3+ PL study of this suite of 

samples has been published by Lenz et al. (2013). 

Natural xenotime–(Y) samples studied here originate 

from pegmatitic lenses in the Gföhl gneiss near Königsalm, 

Senftenberg, Waldviertel, Austria (sample A; for details see 

Niedermayr, 1969); a pegmatite near Novo Horizonte, Bahia, 

Brazil (sample B); and a pegmatite near Brindletown, North 

Carolina, USA (sample “E4947”, for details and further 

description see Talla et al., 2011).  

Zircon samples are from an alkaline pegmatite from 

the Zomba-Malosa complex of the alkaline province in Malawi 

(sample A; NHM-sample N3848; see e.g., in Woolley and Jones, 

1992; Soman et al., 2010 for geological details); gemstone 

placers in the Ratnapura district, Sri Lanka (samples M144 

and N17, for details see Nasdala et al., 2004b); a pegmatoid 

near Pack, Packalpe, Styria, Austria (sample D; NHM-sample 

6521; see locality description in Weiss, 1972); and two placer 

deposits in Chantanaburi (sample E) and Kanchanaburi 

(sample F), Thailand.  

 

2.2. Details on sample synthesis 

 

Synthetic monazite–(Ce) and xenotime–(Y) crystals 

were produced by a flux method using a slow-cooling route 

with NaPO3 as flux material. Sodium polyphosphate was mixed 

with the reactants Y2O3 (for xenotime) or CeO2 (for  monazite) 

and one REE2O3 (REE = all lanthanoids from Pr to Tm, except 

Pm3+ and Gd). Mixtures were heated in covered platinum 

crucibles to a peak temperature of 1170 °C, held for 2 hours 

and then slowly cooled to 600°C at a rate of –1.5 °C per hour. 

The samples were left in the furnace to cool down slowly to 

room temperature. Single-crystals were recovered from the 

crucibles by dissolving the flux in distilled water, and dried in 

air. Crystal sizes range from 0.3 to 4 mm. 

The sodium-tetraborate flux synthesis route by 

Mazdab (2009) was adopted to produce synthetic titanite 

single-crystals. Reducing the cooling rate to half of that 

proposed by Mazdab (2009) produced comparably large 

crystals up to 8 mm in size. The REE-doping of CaTiSiO5 

crystals was achieved by adding 1 mg of the respective REE2O3 

oxide to the reactants. In case of Cr-doping, the molar ratio 

Ca/(Ti+Cr) was chosen to be 1:1. This prevented excess TiO2 

to crystallize as rutile. For sample recovery, the crucible 

contents were exposed to an aqueous HNO3 solution (w = 0.2) 

for three days. The crystals along with the remainders of flux 

could then be extracted from the crucibles with moderate 

mechanical effort. More details on the titanite syntheses are 

reported elsewhere (Nasdala et al., 2014). 

Synthesis of zircon crystals (up to 1.5 mm in size) was 

accomplished by a flux technique similar to that described by 

Cesbron et al. (1995) and Hanchar et al. (2001). In our 

synthesis route we combined the evaporation of the highly 

volatile MoO3 with a rapid cooling rate. This allowed us to use 

an alkali-free mixture of 0.53 g ZrO2, 0.26 g SiO2 and 10 g 

MoO3, thereby preventing the incorporation of Li+ into the 

zircon crystals (compare Hanchar et al., 2001). To produce 

REE-doped ZrSiO4 (REE = Pr to Tm, except Gd), a minor 

amount of REE2O3 was added without any additional charge-

compensating chemical species. The temperature path 

consisted of heating the loosely capped Pt crucibles to 1100 °C 

at a rate of 216 °C per hour. Without any soaking interval, the 

temperature was then reduced to 700 °C, at a rate of –26.5 °C 

per hour. Afterwards, the furnace was switched off but left 

closed, to allow samples to cool slowly to room temperature. 

Crystals were readily extracted from the crucibles (i.e., 
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without the need to use any chemical reagents to dissolve the 

flux) by washing in distilled water and drying in air. Further 

details on the synthesis route may be found in Lenz et al. 

(2013).  

For Raman, PL-emission spectroscopy (including 

hyperspectral PL mapping) and chemical analyses, single-

crystals were embedded in epoxy, and polished mounts were 

produced. Polycrystalline, coarse-grained sample powders (ca. 

100 mg each; grain size ca. 100–250 m) were used for PL-

excitation spectroscopy.    

 

2.3. Analytical methods 
 

Laser-induced photoluminescence and Raman 

measurements were carried out at room temperature using 

three dispersive single-stage spectrometers: a Horiba (Jobin 

Yvon) LabRam HR Evolution (473 nm, 532 nm, and 633 nm 

excitation; 600 grooves/mm grating), a Horiba (Jobin Yvon) 

LabRam HR800 (532 nm, 633 nm, and 785 nm excitation; 600 

grooves/mm grating), and a Renishaw RM–1000 (514 nm 

excitation; 1200 grooves/mm grating). Laser energies were 

adjusted to about 3–20 mW at the sample surface. All three 

systems were equipped with a Si-based, Peltier-cooled charge-

coupled device (CCD) detector. The two Horiba systems were 

operated in the confocal mode. Using an Olympus 100 

objective (numerical aperture = 0.9), the lateral resolution 

was on the order of 1 µm, and the depth resolution (with the 

laser beam focused at the sample surface) was better than 3 

µm. The spectral resolution was between 3 cm–1 (in the blue 

range) and 1.5 cm–1 (near infrared).  The Renishaw system has 

a quasi-confocal arrangement of the beam path (a confocal slit 

combined with pixel binning on the CCD). A Leica 20 

objective (numerical aperture = 0.4 ) was used. The spatial 

resolution is assessed as ca. 4 µm (lateral) and ca. 10–15 µm 

(depth), respectively. Wavenumber calibration was done 

using the Rayleigh line and Ne lamp emissions; the 

wavenumber accuracy was better than 0.5 cm–1. Hyperspectral 

PL maps were obtained by means of the Horiba Evolution 

system, using a software-controlled x–y stage. The step width 

was 3 µm. 

 Photoluminescence excitation spectra were 

recorded using a Horiba Fluorolog 3 operated with a xenon 

lamp (450 W) and 1200 grooves/mm gratings in the 

excitation and the emission pathway. The spectral resolution 

was determined at ~1 nm. Wavelength calibration was done 

using xenon lamp emissions. A photon counting R928P 

photomultiplier (PMT) detector, operating in the 190 – 860 

nm spectral range, was used.  

  

Rare earth elements were determined by laser-

ablation inductive-coupled plasma mass-spectrometry (LA–

ICP–MS) at the NAWI Graz Central Lab for Water, Minerals and 

Rocks, University of Graz and Graz University of Technology. 

The material was ablated by using an ESI NWR 193 laser 

ablation unit equipped with a 193 nm excimer laser which was 

pulsed at 9 Hz, 75 µm spot size corresponding to an energy of 

~7.8 Jcm–2 and then analysed with an Agilent 7500ce 

quadrupole ICP–MS. Helium was used as carrier gas at ~0.6 

l/min flow and data were acquired in time-resolved mode. For 

each analysis a 30 second gas blank was obtained for 

background correction, followed by 60 seconds of active laser 

and a wash out time of 45 seconds. The standard glass 

NIST610 (Jochum et al., 2011) was used for standardization 

and drift correction for zircon and titanite while the USGS 

phosphate standard MAPS–4 was used for monazite and 

xenotime. The zircon reference standards 91500 (Wiedenbeck 

et al., 2004) and Plesovice (Sláma et al., 2008) as well as the 

NIST612 glass (Jochum et al., 2011) were analysed as 

unknowns to monitor the accuracy of the measurements. The 

standards could be reproduced within ±10% of the 

recommended values. Data reduction was performed using 

silicon as internal standard for zircon and titanite while 

phosphorus was used as internal standard for monazite and 

xenotime. 

The P2O5 concentration in monazite–(Ce) and 

xenotime–(Y) as well as selected REEs were determined by 

electron microprobe analysis (EMPA) at the Eugen F. Stumpfl 

− Electron Microprobe Laboratory, UZAG (University of Graz, 

Graz University of Technology and University of Leoben). 

Analytical conditions were 15 kV accelerating high voltage, 10 

nA probe current on PCD. Natural REE phosphates, a natural 

monazite as well as a REE-doped silicate glass were used as 

calibration standards. Peak and backgrounds were carefully 

set to avoid any line overlap.  

 

 

3. Results & Discussion 

 

3.1. Titanite – CaTiSiO5  

 

Results of LA–ICP–MS analysis of trace element 

concentrations in natural and synthetic titanite samples 

are quoted in Table 1. Chromium and REE 

concentrations vary appreciably among the natural 

samples investigated, depending on sample origin. 

Samples Tit-B, Tit-C, and Tit-D are characterised by 

relatively low Cr (< 100 ppm) and elevated REE 

concentrations (ranging from ca. 1,100 to 16,600 ppm). 

Titanite sample Tit-A, by contrast, yielded elevated Cr 

(ca. 160 – 1,930 ppm) and low REE concentrations 

(<200 ppm); and sample Tit-E was found to be rich in 

both, Cr and REE (see Table 1). Chromium and other 

metals, such as Nb, Ta, V, Mn, Mg, Sn, Al, and Fe, are 

generally considered to be incorporated at the six-fold 

coordinated Ti-site (Higgens and Ribbe, 1976; Fleischer, 

1978), whereas REEs substitute Ca on its large, seven-

coordinated site (Hughes et al., 1997). Charge-balance 

of trivalent REE within the titanite structure is 

explained by a coupled substitution with Al and Fe (e.g., 

Che et al., 2013):   

 

Ca2+ + Ti4+ = REE3+ + (Al, Fe)3+             (1) 
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Fig. 1 Raman spectra of titanite from São Geraldo do Araguaia (Brazil) obtained using four different laser 

excitation-wavelengths (473, 532.1, 632.8, and 785 nm) (A) in comparison with laser induced PL spectra 

(λexc = 473 nm) of synthetic CaTiSiO5 individually doped with Nd3+, Pr3+, Sm3+, and Cr3+ (B). As in all 

following plots, spectra are shown with vertical offset for clarity. Note that all spectra are plotted on the 

same absolute scale (wavenumber / wavelength); emission lines are hence directly comparable. In subfigure 

A, individual x-axes are implemented for each individual laser excitation. Assignments of REE3+ electronic 

transitions and Russel-Saunders terms in this figure, and in Figs. 3–6 below, have been extracted from 

`Dieke´ energy-level diagrams (e.g., Dieke and Crosswhite, 1963; Carnall et al., 1968; Reisfeld and Jørgensen 

1977). 

 Figure 1A shows Raman spectra of sample Tit-B 

from São Geraldo do Araguaia (Brazil). Spectra were 

obtained from the same focal spot using four different 

laser excitation- wavelengths (473, 532, 633, and 785 

nm). Photoluminescence spectra of synthetic REE-

doped CaTiSiO5 are plotted in Fig. 1B for direct 

comparison. Narrow-band PL emissions caused by Nd3+, 

Pr3+, Sm3+, and a broad-band emission of Cr3+ (cf. Gaft 

et al., 2003), predominantly affect Raman spectra of the 

natural samples investigated (cf. Fig. 1A).  

Relative emission intensities of individual REEs 

depend strongly on the excitation wavelength. The 

Raman spectra of titanite sample Tit-B obtained using a 

473 nm laser-excitation shows emissions of Pr3+, Sm3+, 

and Nd3+, whereas green excitation (532 nm) excites 

preferentially the PL of Sm3+ and Nd3+, red excitation 

(633 nm) predominantly Cr3+ and Nd3+, and NIR 

excitation (785 nm) Nd3+ only. Spectra obtained with 

different excitations from the very same micro-area may 

hence show vast differences in relative intensities of 
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Fig. 2 Series of BSE image, panchromatic CL image, and two hyperspectral PL maps of a chromian titanite from Sarani (Ural Mts., 

Russia; sample E). The PL maps show colour-coded the intensity of the narrow 600 nm Sm3+ band (4G5/2  6H7/2 transition) and 

the ~ 780 nm Cr3+ peak (4T2  4A2 broad-band emission), respectively. Locations of the five LA–ICP–MS analysis spots (cf. Table 1) 

are marked with arrows. 

individual REE emissions. These differences are due to 

strongly energy-dependent excitation efficiencies of 

various luminescence centres. The latter is supported by 

Fig. S1 (supplementary materials), which shows PL 

excitation spectra of a range of synthetic CaTiSiO5 

samples doped with different REEs. An overlap of the 

laser photon-energy with absorption levels of the 

respective REEs (i.e, preferred excitation or “pumping” 

of these levels) may result in enhanced luminescence 

emission. Different absorption levels of Pr3+, Nd3+, and 

Sm3+, may hence be excited with varying efficiency 

using different laser excitation-wavelengths (cf. Fig. S1).  

Emissions of Nd3+ in titanite (between ca. 12,500 

and 10,500 cm–1, see Fig. 1) were detected with all laser 

excitations used in the present study. Under 785 nm 

excitation, however, Nd3+ emissions are exceptionally 

strong (whereas Raman scattering is weaker under NIR 

excitation when compared to visible excitation). 

Therefore, Raman spectra of titanite samples obtained 

with IR excitation typically are obscured vastly by Nd3+ 

emissions (compare also NIR reference spectra of the 

RRUFFTM database; Downs, 2006; http://rruff.info/ 

titanite). Another example for Raman spectra being 

affected by REE emissions may be found in the 

Romanian Database of Raman Spectroscopy (RDRS; 

Buzgar et al., 2009). Their titanite spectrum (obtained 

with green laser excitation) is affected by notable Sm3+ 

photoluminescence (cf. Fig. 1).  

Relative emission intensities of individual REEs 

depend also on REE concentrations present, that is, on 

the specific geochemical composition of the sample 

analysed. Titanite sample Tit-A is characterized by 

exceptionally low REE concentrations and comparably 

high concentrations of Cr (see Table 1). As a result, PL 

spectra of this sample are dominated by the PL of Cr3+ 

only, whereas titanite samples that contain elevated 

amounts of REEs are dominated by emissions of REE3+ 

(e.g., samples Tit-C and Tit-D, Table 1), or both the 

emissions of Cr3+ and REE3+ (sample Tit-E; spectra not 

shown). Note, however, that very high Cr contents may 

potentially quench emissions of the REE3+, which has 

been observed for synthetic, Cr-doped titanite pigments 

(Nasdala et al., 2014). 

Figure 2 presents BSE and CL images of a Cr-

bearing titanite sample from Sarany (Ural Mts., Russia; 

cf. sample Tit-E) in comparison with hyperspectral PL 

maps. Colour-coded PL maps were produced using the 

intensity of two different PL centres (Sm3+ and Cr3+) as 

mapping parameters. The emission intensities of Sm3+ 

and Cr3+ vary in dependence on their concentrations, 

respectively. High Sm3+ PL intensity is accompanied by 

elevated Sm concentrations (compare spot 109 in Fig. 2 

and Table 2) and high Cr concentrations result in 

increased Cr3+ PL intensities (compare spot 112 in Fig. 2 

and Table 2), and vice versa. Note that PL intensities of 

Sm3+ and Cr3+ are inversely correlated. This is due to 

inverse concentrations of these trace elements. The 

large central interior region has higher Cr than  Sm 

concentrations and, correspondingly, the PL spectrum is 

dominated by the Cr3+-related broad-band emission. 

The opposite (i.e., low Cr and high Sm concentration and 

Sm-dominated PL emission) was observed for the 

sample’s outer area. The latter may indicate a possible 

alteration or replacement reaction rim (see also the 

Sm3+ PL intensity increase and Cr3+ decrease along 

large internal fractures, particularly recognisable near 

the bottoms of the PL maps). 
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3.2. Monazite–(Ce) and xenotime–(Y)  

 

Results of chemical analyses of natural monazite–

(Ce) samples investigated in the present study (samples 

F6, GM2, Mad, Nam and VK-1) were published 

elsewhere (cf. Table 3 of Ruschel et al., 2010). These five 

natural samples were found to be homogeneous in 

terms of chemical composition. They are characterised 

by generally high concentrations of light rare-earth 

elements (LREE) – especially of Nd2O3 (7.9 - 15.3 wt.%), 

Sm2O3 (1.2 – 5.0 wt.%), Pr2O3 (2.5 – 3.8 wt.%) – and 

variable concentrations of ThO2 (6.6 – 14.2 wt.%). Both 

the REE2O3 and ThO2 concentrations are fairly 

homogeneous on a scale within individual samples but 

vary appreciably among samples. 

Chemical compositions of synthetic CePO4 

samples individually doped with Sm, Nd, or Pr, are 

quoted in Table 2. Concentrations of the respective 

intended dopant (REE concentrations in the range 0.3–

1.5 wt.%) is always clearly higher than concentrations 

of all other trace REE, with the latter being assigned to 

impurities in the chemical reagents.  

Results of chemical analyses of natural xenotime–

(Y) and synthetic YPO4 samples investigated in this 

present study are quoted in Table 2, also. Synthetic YPO4 

crystals have dopant concentrations (ranging from 1.5 

to 9.0 wt.%) that are appreciably higher than 

concentrations of all other REEs. Natural xenotime–(Y) 

samples contain variable amounts of UO2 and ThO2 (up 

to 5.47 wt.% UO2 in sample Xen-C) and comparably high 

amounts of HREEs (i.e., Gd, Dy, Ho, Er, and Yb). The 

preferential incorporation of HREEs in xenotime–(Y) 

and tetragonal YPO4, respectively, is assigned to the fact 

that the REEO8 polyhedron in this mineral structure 

favours the incorporation of the (smaller) heavy rare-

earth elements (HREE: Tb–Lu; Ni et al., 1995). 

Figure 3 shows two Raman spectra of a 

monazite–(Ce) sample from Itambé, Brazil (sample 

GM2), which are both heavily affected by the PL of 

REE3+ (see Raman reference-spectrum of undoped 

CePO4 in Fig. 3 for comparison). Typical Raman modes 

of monazite-type compounds have for instance been 

discussed by Begun et al. (1981) and Silva et al. (2006). 

Note that spectra obtained using different lasers are 

plotted on a relative scale, attaining Raman shifts to be 

directly comparable. Spectra of REE-doped synthetic 

CePO4 crystals are shown for comparison. Note that PL 

emissions of Pr3+ and Nd3+ strongly mask the Raman 

signal in the fingerprint spectral range 100–1100 cm–1 

as observed using blue (473 nm) or NIR laser (785 nm). 

Similar to titanite, Raman spectra of monazite–(Ce) 

obtained with NIR laser excitation are typically 

obscured by the PL of Nd3+. An example is shown in Fig. 

3; more examples can be found in the RRUFFTM database 

(Downs, 2006; http://rruff.info/monazite) where all 

NIR-excitation spectra of monazite–(Ce) are affected 

strongly by Nd emission bands. This artefact is assigned 

to (i) generally high Nd concentrations in natural 

monazite–(Ce) samples, and (ii) particularly effective 

excitation of the 4F3/2  4I9/2 emission by NIR laser light 

(cf. Fig. S1, supplementary materials).  

Comparison of the emission patterns of Nd3+ in 

monazite–(Ce) and titanite exemplifies that a certain 

REE may result in very different numbers and positions 

of PL sublevel bands, depending on its host lattice. The 

principal emission, as well as excitation levels of REE3+ 

(see Fig. S1), appear at similar spectral regions in 

different host materials; however the crystal-field 

splitting of the transitions depends strongly on the local 

crystallographic environment of the REE (compare 

spectra of various REE3+, i.e., Pr3+, Nd3+, and Sm3+ in the 

monazite–(Ce) vs. titanite structure; Fig. S1). 

Raman spectra of a xenotime–(Y) sample from 

Novo Horizonte (Bahia, Brazil; sample Xen-B in Table 2) 

are presented in Fig. 4. For Raman band assignments of 

un-doped synthetic xenotime–(Y) see Giarola et al. 

(2011); cf. also reference Raman spectrum in Fig. 4. This 

 

Fig. 3 Raman spectra of monazite–(Ce) from Itambé, Brazil (sample 

Gm2; bold black graphs) and synthetic CePO4 single crystals (un-

doped, Nd3+-doped, and Pr3+-doped; grey graphs). Spectra were 

obtained using 785 nm (top) and 473 nm laser excitation (bottom). 

Absolute wavenumbers corresponding to Raman shifts for the 

particular excitation are shown at the respective top abscissa axis.  
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figure shows that, virtually independent of the 

excitation, the PL of various REE3+ centres heavily 

obscures the Raman signal of the natural xenotime–(Y) 

sample. The 5S2  5I8 transition of Ho3+ and the 4S3/2   
5I15/2 transition of Er3+ superimpose the Raman signal 

obtained with a 532 nm laser within the spectral range 

100–1200 cm–1, and the 5F5  5I8 transition of Ho3+ and 

the 4F9/2   5I15/2 transition of Er3+ obscure the 

fingerprint spectral-range of the spectrum obtained 

under 633 nm excitation. The very same Er3+-related PL 

is observed in the 532 nm-excitation spectrum at about 

3000–4000 cm–1; here it may fake high-shift Raman 

signals. The emissions of Ho3+ and Er3+ are common PL-

related artefacts in Raman spectra of natural xenotime-

group samples (cf. RRUFFTM database: Downs, 2006; cf. 

also xenotime spectrum in the Raman database of the 

Department of Physics and Earth Sciences, University of 

Parma: https://www.fis.unipr.it/phevix/ramandb.php). 

Moreover, PL emissions of Sm3+ and Eu3+ appear 

between 1300 and 3000 cm–1 Raman shift in spectra 

obtained with 532 nm excitation (Fig. 4). Raman spectra 

obtained with NIR excitation are heavily affected by 

Tm3+ and Nd3+ (cf. 785 nm spectrum in Fig. 4; and NIR 

reference spectra from the RRUFFTM database). The 

 

Fig. 4 Raman spectra of xenotime–(Y) from Novo Horizonte (Bahia, Brazil; sample Xen-B) obtained using 

three different excitation wavelengths (473, 532.1, and 785 nm), shown in comparison with spectra of 

synthetic REE-doped YPO4. The Raman-shift region of PO4 stretching bands is highlighted with a grey bar.   
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excitation efficiency of variable REE centres depends 

strongly on the excitation wavelength used. This is 

further demonstrated by PL excitation measurements of 

selected synthetic YPO4 mono-doped with REE3+ (see 

Fig. S2; supplementary materials).  

Photoluminescence spectra of the natural 

monazite–(Ce) and xenotime–(Y) samples investigated 

in the present study are remarkably uniform in terms of 

their REE3+ emission patterns (in contrast to titanite, 

and zircon discussed below, where appreciable 

variations among emissions of REEs are observed). 

Spectra were however found to differ in band widths 

and absolute intensities of the overall REE emission 

patterns. The band widths of individual PL bands may 

be strongly affected by structural disorder, which is 

reminiscent of the structurally related FWHMs of 

Raman bands. Note that FWHMs of PL bands increase 

(and intensities decrease) with increasing structural 

perturbation as caused by (1) increasing compositional 

heterogeneity due to the incorporation of heterovalent 

elements (Ruschel et al., 2010; Lenz et al., 2013) and (2) 

increasing structural damage accumulated upon self-

irradiation due to the incorporation of the radioactive 

elements Th and U (Nasdala et al., 1995, 2013). 

 

3.3. Zircon 

 

Trace-element concentrations of natural zircon 

samples and synthetic REE-doped ZrSiO4 determined by 

LA–ICP–MS analysis are presented in Table 3. Especially 

the concentrations of the actinides U4+ and Th4+ were 

found to vary appreciably (U, 39–7060 ppm; Th, <0.01–

663 ppm). These actinide elements substitute for Zr4+ in 

dodecahedral coordination (D2d; Finch et al., 2001).  The 

substitution of (mainly heavy) REE into the structure 

has been explained primarily by the coupled, xenotime-

type substitution (e.g., Hanchar et al., 2001): 

 

(REE3+,Y3+) + P5+  Zr4+ + Si4+           (1) 

 

The effect of REE-related PL on Raman spectra of 

zircon is shown in Fig. 5, for the example of a natural 

zircon sample from Kanchaburi, Thailand (sample Zir-

F). Spectra of synthetic, REE-doped ZrSiO4 crystals are 

presented for direct comparison. Descriptions of the 

Raman spectrum of pure zircon (cf. Raman reference-

spectrum not affected by REE-PL in Fig. 5) were 

published for instance by Dawson et al. (1971) and 

Syme et al. (1977). Similar to xenotime–(Y), Raman 

spectra of zircon may be obscured strongly by emissions 

of Tm3+ and Nd3+ if spectra were recorded using 785 nm 

laser-excitation. Emissions of Er3+ typically interfere 

with Raman spectra obtained with green excitation (Fig. 

5). Note that in the 532 nm excitation and 514 nm 

excitation spectra shown in Fig. 5, the 4S3/2  4I15/2 

transition of Er3+ is observed as group of bands at 

different relative Raman shifts, but is located at constant 

absolute wavenumber (see spectra’s specific top axes in 

Fig. 5).  

The potential complexity of effects of the 

sample’s chemical composition and structural state on 

its REE emissions is demonstrated in Figure 6. Spectra 

of four natural zircon samples are presented (all 

obtained with 473 nm excitation); these samples show 

appreciable compositional differences (Table 3) and 

cover the range from mildly radiation-damaged to 

metamict. According to our PL observations, most 

natural zircon samples show an emission pattern 

similar to that shown in Fig. 6A. The spectrum of a 

zircon sample from Chantanaburi, Thailand (sample Zir-

E) is dominated by Dy3+ whereas emissions of Sm3+ (for 

assignment compare the spectrum of the Sm-doped 

reference in Fig. 6C below) and other REEs are 

comparably weak. Here, the 4F9/2  6H15/2 transition of 

Dy3+ (ca. 480 nm wavelength) obscures vastly the 

Raman-fingerprint spectral range.  

 

Fig. 5 Raman spectra of zircon from Kanchanaburi, Thailand 

(bold black graphs; sample A) and synthetic, un-doped and REE-

doped ZrSiO4 single crystals (grey graphs). Spectra were 

obtained using 785 nm, 532.1 nm, and 514.5 nm excitation. The 

Raman-shift region of SiO4 stretching bands is highlighted with a 

grey bar.   
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Figure 6B shows the PL spectrum of a metamict 

zircon sample from Sri Lanka (sample N17 in Table 3). 

This spectrum is characterised by electronic transitions 

of Dy3+ and Sm3+ as well, however emissions are 

observed as broad humps. In contrast to PL spectra of 

the other natural samples and the synthetic references 

in Fig. 6, REE emissions of sample N17 are not affected 

anymore by crystal-field splitting, which is due to this 

sample’s amorphous state (see elevated U 

concentrations in Table 3; compare also X-ray and 

transmission electron microscopy results of Nasdala et 

al., 2002). The effect of amorphisation on the PL has 

been verified in an annealing experiment of Nasdala et 

al. (2004b). These authors observed that after 

recrystallization upon dry annealing of zircon N17, 

splitting of REE transitions into multitudes of Stark’s 

levels was recovered. Recently, it has been 

demonstrated that emissions of Dy3+ and Nd3+ in zircon 

may be used for a luminescence-based spectroscopic 

quantification of accumulated structural radiation 

damage (discussed in Lenz et al., 2015). 

Figures 6C and 6D demonstrate that deviations 

from the “common” REE composition may result in 

significantly different PL spectra that are not dominated 

by Dy3+ alone anymore (compare Fig. 6A). 

Photoluminescence spectra of zircon samples from the 

alkaline complex at Mt. Malosa, Malawi (sample A), 

show relatively intense emissions of Sm3+, Dy3+, and 

Nd3+ (Fig. 5C). This is explained by the fact that in this 

zircon sample, which contains generally high amounts 

of REE, the LREE concentrations are higher than that of 

the HREE (cf. Table 3). The rather untypical PL pattern 

may hence be considered to reflect the unusual trace-

element composition of this sample (for details on the 

geological setting of the Mt. Malosa alkaline complex see 

Woolley and Jones, 1992; Soman et al., 2010). Another 

unusual example is shown in Fig. 5D. This zircon from 

Pack, Austria (sample Zir–D), is characterised by 

comparably low concentrations of LREE, Dy, and Ho, 

whereas it is enriched in the HREEs Er to Lu (cf. Table 

3). The PL spectrum is dominated by emissions of Tm3+ 

whereas emissions of Dy3+ are of minor intensity. Note 

that this sample also contains notable amounts of Yb3+ 

and Lu3+, however these REEs are known to have no PL 

emissions in the visible range (e.g., Reisfeld and 

Jørgensen 1977), and Er3+ is more effectively excited 

 

Fig. 6 Laser-induced PL spectra (λexc = 473 nm) of zircon samples from Chantanaburi, Thailand (A; sample E); Sri 

Lanka (B; sample M144), Mt. Malosa, Malawi (C; sample A), and Pack, Styria, Austria (D; sample D), shown in 

comparison with spectra of synthetic, un-doped and REE-doped ZrSiO4 crystals. The Raman-shift region of SiO4 

stretching bands (see inset abscissa axis) is highlighted with a grey bar.   
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with 488 nm (Nasdala et al. 2008) or green lasers (cf. 

Fig. 5, and REE-PL excitation spectra published in Friis 

et al., 2010).  

Both the possible disturbance of Raman spectra 

by REE emissions and the powerfulness of PL mapping 

for revealing zoning and other internal heterogeneity, 

are demonstrated in Fig. 7 by presenting analytical 

results obtained from a zircon single-crystal from 

Kanchanaburi, Thailand (sample Zir-F). Figure 7A 

shows a series of BSE and CL images along with a PL 

map visualising the intensity distribution of Dy3+ 

emission (4F9/2  6H15/2). This emission overlaps with 

the Raman signal as shown in Fig. 7B (λexc = 473 nm). 

This is noteworthy, however, because Raman maps 

produced using the intensity of the ν3[SiO4] Raman band 

may show similar distribution patterns to that observed 

from neighbouring PL bands of Dy3+ (especially if no 

appropriate background correction is done in the data-

reduction process). This may be due to intensity 

variances as caused by the low – but notable – 

underlying PL background, and not due to changes of 

Raman intensities (cf. Fig 7B). 

Photoluminescence intensities of Dy3+ are very 

sensitive to minute changes in REE trace-element 

concentrations. The PL map reveals fine-scaled growth 

as well as sector zoning in two principal areas, an inner 

core surrounded by a secondary overgrowth (see Fig. 

7A again). This is apparent from crosscut oscillatory-

zoning textures, and from PL-intensity differences 

among both regions. The latter is due to small 

disparities in Dy concentration; the inner area is slightly 

enriched in REE and other heavy trace elements such as 

U and Th (compare bright area in BSE and analyses 

spots indicated in Fig. 7A). It has been reported that U 

and Th concentrations vary in close relation to the 

abundance of overall trace REEs in igneous and 

metamorphic zircon, and LREEs are predominatly 

enriched with the incorporation of Ca in alteration rims 

of zircon crystals (Wopenka et al., 1996; Hoskin and 

Schaltegger, 2003; Horie et al., 2006; Hoshino et al., 

2010). Zircon crystals from metamorphic eclogite-facies 

rocks, for instance, are characterised by HREE-depleted 

metamorphic domains which are interpreted to grow 

with a concurrent formation of REE-consuming garnet 

 

Fig. 7 Series of BSE image, CL image, and hyperspectral PL map (A) of a zircon sample from Kanchanaburi, Thailand 

(sample F). The hyperspectral PL map shows on a grayscale the intensity of the 20,500 cm–1 Dy3+ band (4F9/2  
6H15/2 transition). Two spots that were subjected to Raman spectroscopy (λexc = 473 nm; B) and LA–ICP–MS 

analysis (cf. Table 4) are marked with arrows. Note that Raman bands and Dy3+ emissions are excited 

concomitantly. The latter partially mask the Raman spectrum of zircon (see reference spectrum of un-doped and 

hence non-luminescent ZrSiO4 for comparison). 
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under sub-solidus conditions (Rubatto, 2002). Hence, 

REE distribution patterns as revealed by PL mapping 

may bear valuable geochemical information important 

for unravelling the geological history of such samples.  

Note, however, that luminescence imaging or 

mapping is of semi-quantitative nature as luminescence 

intensity may strongly depend on further variables, 

such as quenching (Nasdala et al., 2014; Kempe and 

Götze, 2002) and sensitizing by other elements (e.g., 

Marfunin, 1979), effects of crystal orientation (e.g., Lenz 

et al., 2013) and the structural state/crystallinity, e.g. 

the accumulation of radiation damage due to the 

incorporation of radioactive U and Th (e.g., Lenz et al., 

2015 and references therein). A potential (semi-

)quantitative estimation of REE trace elements via 

luminescence intensity needs a broad range of carefully 

calibrated analytical conditions, e.g., standard material, 

system stability, system response, etc. (Barbarand and 

Pagel, 2001; Habermann, 2002; Richter et al., 2003; 

Edwards et al., 2007; MacRae et al., 2012, 2013). Xian et 

al. (2000), for instance, proposed to use absolute 

intensities of Raman spectral features of zircon to 

differentiate between rock types of mafic, granitic, and 

metamorphic origin. These features have been 

interpreted by Nasdala and Hanchar (2005) to result 

from PL emissions of trace Er3+ incorporated in zircon 

(cf. Fig. 5, λexc = 514 nm). As discussed above, the 

determination of absolute intensities is difficult, 

however, without any internal or external calibrations 

(see also discussion in Nasdala and Hanchar, 2005), but 

relative intensity variations of specific REE emissions 

may be visualized without instrumental biases using 

hyperspectral PL mapping. Spectra from multiple single 

measurement points were obtained under fairly 

identical measurement conditions and the crystal 

orientation remains constant relative to the incident 

laser if a single crystal is mapped.   

    

4. Summary and conclusions 

 

Steady-state laser-induced photoluminescence of 

REE3+ is a common analytical artefact in Raman 

spectroscopy of accessory minerals that contain trace 

amounts of REEs. Intensities of PL emissions in Raman 

spectra are mainly controlled by (i) the appearance and 

concentration of the respective PL centre in the sample 

(cf. Fig. 2) and (ii) the effectivity of the laser photon-

energy used for its excitation, i.e., the quantum cross 

section of the laser and the absorption/excitation levels 

of the respective REE3+ (e.g., Fig. S1 and S2, 

supplementary materials). The latter is important in so 

far as specific REE emissions may appear alternatively 

in dependence of the excitation photon-energy used. If 

the laser excitation fits with REEs absorption levels, 

even minute amounts of trace REE may cause well-

detectable, narrow PL bands which are potentially 

mistaken for Raman bands easily. In zircon, for instance, 

less than 1 ppm Nd (sample Zir-E + Zir-F in Table 3, 

spectrum shown in Fig. 5) is sufficient to detect 

measurable emission intensities of Nd3+ using a 785 nm 

laser. Near-infrared lasers were commonly applied to 

avoid luminescence artefacts due to their comparably 

low excitation photon-energy, but in particular 

emissions of Nd3+ are excited very effectively via its 2F7/2 

and 2F5/2 absorption levels. We demonstrated that Nd3+ 

emissions strongly interfere with Raman bands in 

spectra of the four accessory minerals studied. Chen and 

Stimets (2014) found that the PL of Nd3+ (λexc = 785 

nm) is very common for many other Ca-minerals as 

well. 

In addition to effects of selective excitation as 

observed by using different laser photon energies, the 

chemical composition of accessory minerals may 

strongly affect the PL pattern obtained. Presented 

examples of titanite and zircon demonstrated that 

steady-state PL spectra substantially differ with respect 

to the samples trace-element composition. The relation 

of Cr to REE concentrations strongly affects the 

dominance of their emissions in spectra of titanite. The 

presence of specific REE emissions in PL patterns of 

zircon varies with relative depletion or enrichment of 

trace HREE and LREE, respectively (cf. Fig. 6A, C, D). In 

contrast, the REE-minerals monazite–(Ce) and 

xenotime–(Y) are characterised by high overall REE 

concentrations. Relative differences in their 

concentrations have only minor impact on the PL 

pattern. The PL spectra of monazite–(Ce) and xenotime–

(Y) samples analysed have comparably uniform 

patterns with respect to the presence of the REE3+ 

emissions identified. They are more significantly 

affected by the structural disorder as caused by (i) 

increasing compositional heterogeneity due to the 

incorporation of heterovalent elements (Ruschel et al., 

2010; Lenz et al., 2013) and (ii) increasing structural 

damage accumulated upon self-irradiation due to the 

incorporation of the radioactive elements Th and U 

(Nasdala et al., 2013).  

Internal textures of single crystals (based on 

intensity differences of PL emissions) may be visualised 

using hyperspectral mapping. As for the example of 

titanite (from Sarany, Ural Mts., Russia), it was 

demonstrated that semi-quantitative element 

distributions of two different PL centres (i.e. Sm3+ and 

Cr3+) were visualised using hyperspectral PL maps. 

Images obtained from BSE or panchromatic CL do not 

bear equivalent information (see Fig. 2). An example of 
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zircon demonstrated that PL intensity maps of REE3+ 

may visualise the internal texture of zircon single-

crystals (growth and sector zoning). Commonly, CL 

images are used to visualize internal textures of zircon 

(e.g., Vavra, 1990; Hanchar and Miller, 1993; Hanchar 

and Rudnick, 1995; Rakovan and Reeder, 1996; Götze, 

2000, 2002; Hoskin and Black, 2000; Rubatto and 

Gebauer, 2000; Corfu et al., 2003; Götze et al., 2013). 

They provide valuable information on primary 

formation and post-growth history. Hyperspectral PL 

mapping (performed with “Raman” systems using 

motorized x–y stages) may be used complementary with 

the advantage to select specific luminescence centres 

being used as mapping parameter. The opportunity to 

excite more different PL centres by choosing alternative 

excitation lasers is advantageous in comparison to CL 

hyperspectral mapping techniques (cf., Edwards et al., 

2007; MacRae, 2013). Figure 7A demonstrates that the 

hyperspectral PL map of Dy3+ emission intensities in 

zircon is particular more sensitive to minute differences 

in element concentrations than equivalent 

panchromatic CL images; and is in particular more 

suited to unravel sector zoning of specific REEs, that is 

considered to be more common than generally detected 

(Watson and Liang, 1995).  

Note, however, that luminescence imaging or 

mapping is of semi-quantitative character as the 

intensity of PL emissions may strongly depend on 

further variables such as quenching (described for 

titanite e.g., in Nasdala et al. 2014), sensitizing by other 

elements (e.g., Kempe and Götze, 2002; Marfunin, 1979) 

and effects of crystal orientation (e.g., Lenz et al., 2013; 

and references therein). Luminescence intensities of 

REE3+ may also be affected by radiation damage as 

caused by radioactive decay of U and Th; especially in 

samples with high U and Th concentrations and elevated 

geologic ages (e.g., Seydoux-Guillaume et al., 2002; 

Panczer et al., 2012; Lenz et al., 2015).     

Rather independent of the host crystal, emissions 

of particular REEs are recorded always in the same 

spectral range. Their fine-splitting however depends 

strongly on the host mineral, that is, the local structural 

environment of the REE3+ ion (crystal-field dependent 

Stark’s splitting; e.g., Burns, 1990). To give an example, 

appreciable variations of numbers and positions of 

individual bands related to the emission of Pr3+, Nd3+, 

and Sm3+ in CaTiSiO5 and CePO4 are shown in Fig. S1. 

This fact is advantageous insofar as knowledge of the 

fine-splitting in particular host minerals opens up the 

opportunity to use REE3+ emissions, similar to Raman 

spectra, as fingerprint tool in mineral identification. For 

this, however, comprehensive PL-spectral databases are 

needed. Examples of quick mineral identification by 

luminescence have already been proposed in 

igneous/metamorphic and sedimentary petrology 

(Richter et al., 2006, 2008), and gemmological (Bersani 

et al., 2012; Fritsch et al., 2012) and mineral provenance 

studies (Andò and Garzanti, 2014). Also, the availability 

of reliable, highly resolved reference PL spectra 

provides the opportunity to identify specific REE species 

in a specific host mineral, even in cases of mineral 

unknowns whose emissions consist of multiple, strongly 

interfering REE centres (see e.g., Fig. 3).  

Note that not all REE3+ species present in the 

samples studied here may have been identified in our 

spectra. This is because certain centres respond 

differently to different excitations. For instance, the 

emission of Sm dominates the 473 nm-spectrum of 

titanite sample Tit-B whereas this element is hardly 

detected in the 532 nm-spectrum of the very same 

sample (Fig. 1A). We therefore cannot exclude the 

possibility that laser excitations other than used in our 

study might excite further centres. Future studies 

addressing this question require systematic PL 

excitation-emission analysis of compositionally 

homogeneous, natural samples, similar to that shown, 

e.g., for selected REEs in synthetic titanite, monazite–

(Ce), and xenotime–(Y) in Figs. S1 and S2. 

Photoluminescence excitation spectra of various REE3+ 

species in synthetic zircon have been published by Friis 

et al. (2010).  

Narrow laser-induced REE3+ emission-bands in 

Raman spectra are quite easily recognized if they are 

recorded in spectral ranges that typically do not show 

Raman bands of minerals (e.g. 1600–2800 cm–1 or 

above 4000 cm–1). Emissions in the Raman-shift range 

below 1600 cm–1, or in the “hydroxyl stretching range” 

(ca. 3000–3800 cm–1) are in contrast more easily 

mistaken as Raman signals. In general, confusion of PL 

bands with Raman bands may be avoided by performing 

multiple Raman analyses with different laser 

excitations. Raman bands must have uniform Raman-

shifts in all Raman spectra. Luminescence emissions, in 

contrast, are characterized by particular photon 

energies and consequently certain absolute spectral 

positions; they hence must appear at different apparent 

Raman shifts (see e.g., Fig. 1 and discussion by Panczer 

et al., 2012). Nowadays there is a wide range of laser 

sources available to monitor Raman spectra at many 

different excitation wavelengths (e.g., Dubessy et al., 

2012). To obtain unbiased results, one should attempt 

to find an excitation that causes least PL artefacts in the 

Raman spectrum. To provide an example, our Raman 

spectra of zircon and monazite–(Ce) obtained with 633 

nm excitation (not shown) were unaffected by any 

REE3+-related PL in the Raman-fingerprint range.  
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We encourage operators of Raman systems to 

compare cautiously their spectra, especially if unknown 

or unusual “Raman bands” are evident, with published 

REE luminescence spectra and/or Raman spectra of 

synthetic analogues. The PL spectra shown in this paper, 

and further spectra of synthetic REE-doped titanite, 

monazite–(Ce), xenotime–(Y), and zircon, are available 

for download from the CSIRO luminescence database 

(http://www.csiro.au/luminescence).  
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Supplementary materials 

 

 

Fig. S1 Photoluminescence excitation and emission spectra of synthetic CaTiSiO5 and CePO4 individually 

doped with Pr3+, Nd3+, and Sm3+. Excitation spectra were recorded using the intensity of an emissive level 

while the sample was illuminated with the light of photon energy being continuously scanned through the 

UV to visible spectral range (emission level used: CaTiSiO5 – Pr3+ near 633, Nd3+ near 810, and Sm3+ near 

600 nm; CePO4 – Pr3+ near 723, Nd3+ near 810 and Sm3+ near 700 nm). Laser-induced PL emission spectra 

were obtained using 473 nm laser to excite Pr3+ and Sm3+, and a 785 nm laser to excite the PL of Nd3+ 

doped materials. Further typical laser excitation-wavelengths used in Raman spectroscopy are indicated; 

an overlap of laser-excitation photon-energy with respective REE3+ absorptions levels potentially results 

in excitation of PL emissions, which may interfere with Raman signals. Note that spectra are normalized; 

absolute intensity maxima of stacked spectra are not to scale. Assignments of REE3+ electronic transitions 

and Russel-Saunders terms have been extracted from `Dieke´ energy-level diagrams (e.g., Dieke and 

Crosswhite, 1963; Carnall et al., 1968; Reisfeld and Jørgensen 1977). 
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Fig. S2 Photoluminescence excitation and emission spectra of synthetic YPO4 individually doped with 

Nd3+, Dy3+, Ho3+, Er3+ and Eu3+. Excitation spectra were recorded using the intensity of an emissive level 

while the sample was illuminated with the light of photon energy being continuously scanned through the 

UV to visible spectral range (emission level used: CaTiSiO5 – Nd3+ near 810, Dy3+ near 570, Ho3+ near 656, 

Er3+ near 550, and Eu3+ near 592 nm). Laser-induced PL emission spectra were obtained using a 473 nm 

laser to excite Dy3+, Ho3+ and Eu3+; a 532 nm laser to excite Er3+; a 785 NIR-laser for Nd3+ doped YPO4. 

Further typical laser excitation-wavelengths used in Raman spectroscopy are indicated; an overlap of 

laser-excitation photon-energy with respective REE3+ absorptions levels potentially results in excitation 

of PL emissions, which may interfere with Raman signals. Note that spectra are normalized; absolute 

intensity maxima of stacked spectra are not to scale. Assignments of REE3+ electronic transitions and 

Russel-Saunders terms have been extracted from `Dieke´ energy-level diagrams (e.g., Dieke and 

Crosswhite, 1963; Carnall et al., 1968; Reisfeld and Jørgensen 1977). 
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Orientation-dependent REE photoluminescence of zircon, xenotime and 
monazite 
C. Lenz, D. Talla, L. Nasdala; Institut für Mineralogie & Kristallographie, Universität Wien, Althanstr. 
14, A-1090 Wien 

 
Introduction 
In Earth sciences, the Rare Earth Elements (REE) distribution in different minerals is used to trace 
geochemical signatures of formation processes and their genetic implications. One challenging task in 
REE spectroscopy of the last decades was the detection of different REE in different mineral hosts by 
luminescence methods [1]. It has become commonplace to interpret REE luminescence by evaluating 
the Stark level splitting caused by the crystal field interaction [2]. The presence of REE ions at more 
than one non-equivalent structural positions and semi-quantitative suggestion on rare-earth content is 
supposed [3-6], however, without regarding the orientation-dependence of REE emissions [7], which 
is often neglected and insufficiently investigated on synthetic analogue.   
 
Methods & Samples 
We have studied REE mono-doped single-crystals of zircon (ZrSiO4), xenotime (YPO4) and monazite 
(CePO4) synthesized with Mo flux technique. Common REE in minerals are chosen as dopants (Dy3+, 
Sm3+, Ho3+, Tb3+, Eu3+, Er3+). Steady-state photoluminescence (PL) and Raman spectra were obtained 
in quasi back-scattering geometry using a Renishaw RM1000 system with the 488 nm Ar+ emission 
line. Oriented measurements of polished sections parallel to the crystallographic c-axis were made.  
 
Results & Diskussion 

The luminescence of REEs is characterized by specific transitions between different spin-orbit coupled 
spectral levels which are well studied [8]. These states are further splitted in crystalline materials by 
the crystal field interaction (Stark sublevels). The luminescence of REE is dependent on both the type 
of REE incorporated and the symmetry of the REE-substituted crystallographic cation-site. Our results 
show that the crystal orientation has a strong influence on the REE photoluminescence with respect to 
the polarization of the laser. Generally, the luminescence intensity strongly increases with polarization 
direction of the laser parallel to the optical axis (crystallographic c-axis within tetragonal structures of 
zircon and xenotime). In various cases intensity ratios between bands change drastically, peak 
positions are moved, or whole sets of bands disappear as is exemplary shown for transitions of Eu3+, 
Ho3+ and Dy3+ in xenotime (Fig. 1). 
 
 
      

 
 
 
Fig. 1  PL spectra of xenotime single-crystals doped with Eu3+ (a) Ho3+ (b) and Dy3+ (c). 

Samples were measured with the electric field vector of the incident beam of light 
oriented parallel or normal to the crystallographic c-axis.   
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Quantifications of rare earth elements (REEs) from emission intensities have been proposed for 
several minerals (Barbarand & Pagel 2001; Habermann 2002; MacRea et al. 2012). A potential 
semi-quantitative estimation of trace elements via luminescence intensity requires to consider 
and maintain a broad range of carefully calibrated conditions, including reliable standard 
materials, system stability, and system response (Cesbron et al. 1995, Barbarand and Pagel 
2001). Even though being a well-known luminescence phenomenon (Owen et al. 1998; 
Barbarand and Pagel 2001; Finch et al. 2003), the orientation-dependence of REE3+ emissions 
is often neglected, which may result in biased conclusions. 
  As an example, we have studied the orientation-dependence of the photoluminescence 
(PL) emission of trace Nd3+ (4F3/2 → 4I9/2 electronic transition) in synthetic xenotime–(Y). Our 
results reconfirm that the emission intensity depends strongly on the direction of the emitted 
light being analysed. Especially in PL, the intensities observed are further affected by the 
polarisation of the incident laser beam. Figure 1 demonstrates effects of the orientation of 
electric field vector (ܧ) relative to crystallographic directions. First, changing the polarisation 
direction of the laser beam causes the intensity of the luminescence bands to vary appreciably 
(Fig. 1a). Second, by placing a polarisation filter in the emission pathway it can be demonstrated 
that the luminescence emission itself is polarised (Fig. 1b). To avoid potentially biased 
interpretations, such effects need to be considered in discussing PL intensities. 
 

 
 
Fig. 1. Orientation-dependence of the laser-induced PL (532 nm excitation) of Nd3+ (4F3/2  4I9/2) in 
synthetic Nd3+-doped YPO4 (xenotime; I41/amd). Two examples are presented for how the polarization 
of the incident laser beam (a) and the polarisation of the emitted light analysed (b) affect intensities. 
Experimental geometries are reported using the so-called Porto notation (Damen et al. 1966). 
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Fig. 2.Photoluminescence emissions of Nd3+ (4F3/2   4I9/2) in synthetic Nd-doped, xenotime-structured 
YPO4 (532 nm excitation). Spectra were obtained without polarisation filter and 1800 lines/mm grid. 
 

In addition to the orientation dependence described above, we noticed a hitherto 
unrecognised possible artefact that is caused by the grating in the optical pathway. The intensity 
ratios of Nd3+ luminescence emission bands near 880 nm wavelength vary appreciably, 
depending on the grating used. The pairs of spectra shown in Figs. 1a and 2 were obtained under 
identical geometries and conditions (same Horiba LabRAM–HR800 spectrometer, objective, 
laser power, accumulation time, measurement point, etc.), however with different gratings. The 
spectra pair shown in Fig. 1a was recorded with a grating with 600 lines/mm whereas a grating 
with 1800 lines/mm was used for the spectra pair shown in Fig. 2. Most remarkably, spectra 
obtained with the 600 lines/mm grid and an analyser in the optical pathway (Fig. 1b) are very 
similar to spectra observed with the 1800 lines/mm grid but without any analyser. This 
observation may indicate that the 1800 lines/mm grating acts similar to a polariser, perhaps due 
to high refracting angles in the near-infrared spectral range.  
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The long-term impact of natural radioactivity may cause severe structural damage in minerals. This 
damage is created mainly by the nuclear interaction (atomic “knock-ons”) of high-energy 
corpuscles with lattice atoms. In minerals incorporating instable nuclei (U and Th) in their lattice, 
damage is caused mainly by recoils of heavy daughter nuclei upon emission of an alpha particle [1–
3], which generate nm-sized defect clusters. Non-radioactive minerals can also become damaged, 
through alpha irradiation from adjacent phases [4,5]. With progressive damage accumulation, 
minerals may finally be transformed to a so-called “metamict”, amorphous state [6].  

Radiation-damaged minerals are important objects in geochemistry and geochronology, and 
their investigation has increased appreciably over the past two decades, stimulated by the potential 
use of mineral-like ceramics as waste forms for the immobilisation of spent nuclear fuel and other 
radioactive waste [7–10]. The damage accumulation is associated with changes of physical 
properties and a general decrease of the chemical durability. Radiation-damaged minerals are hence 
more susceptible to alteration [11,12] and the loss of radioisotopes, which may bias results of 
chemical and isotopic age determinations [13–15]. Better understanding of radiation damage and 
associated property changes therefore helps to avoid biased age data, and to interpret the post-
growth history of minerals. For this, however, an improved quantitative knowledge of radiation 
effects is needed. 

Attempted quantifications of irradiation effects based on the study of naturally radiation-
damaged minerals are often biased, because of the insufficiently known thermal (and hence 
annealing) history of natural samples. This problem may be overcome by studying minerals that 
were ion-irradiated in the laboratory.  

This plenary lecture starts with an introductory overview of effects of corpuscular radiation 
in minerals. It characterises “metamictisation” of U- and Th-bearing minerals as a process of long-
term accumulation mainly of alpha-recoil clusters, which however occurs only if damage does not 
undergo thermal annealing [16]. A number of examples for experimental studies are presented.  

Helium irradiation (and subsequent thermal treatment) was done to study radio-colouration 
of diamond and cordierite. Cordierite shows orange-yellow radiocolouration (in natural samples 
typically around inclusions of monazite and zircon) when being mildly radiation-damaged, whereas 
at elevated stages of structural destruction colouration reversal is observed (a phenomenon which is 
also known from sheet silicates [17]). Diamond, in contrast, was not found to show any colouration 
reversal but yielded a direct correlation of the intensity of green surface stains with the degree of 
damage [5]. Experimental He irradiation was also applied to investigate phenomena of defect 
luminescence in various minerals including zircon, monazite, and diamond. It was found that defect 
luminescence is only observed at very low defect densities and then suppressed already at relatively 
moderate defect densities. For example, the greenish-yellow defect photoluminescence of irradiated 
diamond after heat treatment (due to the thermal formation of H3 defects) was observed at defect 
densities in the approximate range 0.000006–0.003 dpa (average of atomic displacements per lattice 
atom) [5]. The yellow defect luminescence of zircon was observed by [18] in the approximate range 
0.00005–0.003 dpa. This result indicates that in heavy-mineral concentrates observed under UV 
illumination, strongly yellowish luminescing zircon grains are merely mildly radiation-damaged 
and hence potentially more suitable for U–Th–Pb geochronology. In the same study [18] it was also 
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observed that He-irradiation of mildly to strongly radiation-damaged zircon always resulted in an 
increase of the structural damage. Alpha-assisted annealing of alpha-recoil damage (which has been 
observed by [19] for initially damaged phosphate minerals irradiated with He ions) is therefore 
probably insignificant for natural zircon.  

Electron-irradiation experiments of polished sample mounts containing zircon showed that 
the impact of the electron beam in the EPMA (electron probe micro-analyser) does not create 
additional damage but causes moderate structural recovery. The extent of the recovery depends on 
the magnitude of the beam-treatment, i.e. it increases both with increasing irradiation time and 
enhanced beam current.  
 We finally present first results of heavy-ion irradiations of thin lamellae that were produced 
using the focused ion beam (FIB) technique (Fig. 1). Based on results of Monte Carlo simulations 
using the SRIM (the Stopping and Range of Ions in Matter, [20]) code, the thicknesses of these 
lamellae were adjusted carefully according to the penetration depths of the MeV Au ions irradiated 
(Fig. 2a). On the one hand, this ensures that the irradiated samples contain the majority of the 
structural damage produced, which is a presumption for quantitative estimates. On the other hand, 
irradiated samples will not contain any un-irradiated volumes, whose presence is likely to bias the 
analytical results (compare [21]). The broadening of spectroscopic signals (emissions of centres 
related to rare-earth elements, and vibrational modes; Fig. 2b) will provide potentially, after proper 
calibration, an in-situ measure of radiation damage in accessory minerals in geological samples. 
 

 
 
Figure 1: Scanning electron microscope (SEM) images visualising the preparation of thin lamellae. 
(a) Surface of a synthetic crystal. A thin “wall” of sample material was produced by FIB sputtering 
two rectangular trenches in close vicinity. After sample tilt, the “wall” is then cut free (see <2 µm 
wide “trenches”). (b) Lamella attached to the tip of a micro-manipulator needle. (c) A 1.3 µm thick, 
plane-parallel lamella after final thinning at low ion-beam current. The lamella is attached to a Cu 
sample holder (right margin) by Pt deposition. (d) Lamella after irradiation with MeV Au ions (note 
the slight bending due to the build-up of internal stress). 
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Figure 2: Irradiation of FIB foils used to quantify irradiation effects. (a) Depth distribution of point 
defects created by the triple irradiation of a ZrSiO4 target with 1 MeV (15.6 %), 4 MeV (21.9 %), 
and 10 MeV (62.5 %) Au ions, as predicted by Monte Carlo simulations using SRIM [20]. Solid 
graph = sum (i.e., total defects). Individual fluences (cf. percentages above) were chosen in order to 
create a more or less homogeneous defect density in the ∼1.5 µm thick target. (b) Broadening of the 
∼11.350 cm–1 emission band of Nd3+ (triangles), and the main, B1g-type ∼1008 cm–1 Raman band, 
observed from Au-irradiated FIB lamellae of zircon. 
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The process of irradiation induced amorphisation in inorganic materials is 
controversially discussed in literature [1, 2]. The purpose of the present research is a better 
quantification of how much of irradiation causes how much of damage. This is still an 
important issue for Earth and material sciences (e.g., interpretation of geochronological data, 
and potential use of minerals as nuclear waste form) [3]. In the present project several FIB 
foils of a natural and a synthetic monazite crystal were prepared and irradiated with different 
fluences of heavy ions (Au). Four foils per sample were irradiated with fluences ranging from 
7.5 × 1012 to 4.25 × 1013 ions/cm².  

Raman spectroscopic measurements were done to estimate the amount of radiation 
damage [2]. Furthermore laser-induced photoluminescence spectra of the same samples were 
obtained. With both methods, notable increases of width of spectroscopic signals in 
dependence of the irradiation dose were observed. This correlation can be used to potentially 
estimate structural damage caused by ion irradiation. 
 

 

Figure 1: (a) Ion-beam image of a cut-out FIB-foil of synthetic monazite-(Ce) attached to the tip of a 
micromanipulator. (b) Plot of Raman band width of the symmetric stretching band of monazite-(Ce) at ~970 

cmˉ1 against ion fluence. (c) Plot of Nd3+ (2F3/2 →4I9/2) PL band (sub-level at ca. 11030 cmˉ1) of monazite-(Ce) 
against ion fluence. 
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We present first results of a comparative study addressing effects of radiation-induced damage in two 
types of sample, namely, (i) natural zircon that has experienced long-term self-irradiation due to the 
radioactive decay of trace-U and -Th, and (ii) samples irradiated with heavy ions. The objective is to 
provide REE3+ laser-induced photoluminescence (PL) and Raman spectroscopic estimates of 
irradiation-induced damage for zircon samples of unknown geothermal history. 
The full-width-at-half-maximum (FWHM) of certain PL sublevel bands of trace REE3+, and the 
ν3[SiO4] Raman band, are used to estimate the radiation damage present. Complementary to results of 
[1], it has been found that the FWHMs of REE3+-related PL bands relate closely to the effective time-
integrated α–dose of well-characterised natural zircon samples. Hence, PL of REE3+ may be used for 
the quantitative estimation of radiation damage, in addition to the already well-established Raman-
based approach. Further, we compare naturally radiation-damaged zircon with ion-irradiated material. 
For this purpose, well-crystalline, gem-quality zircon from Ratanakiri (Cambodia) was annealed, and 
thin foils (1.5 µm thickness) – prepared with the focused ion beam (FIB) technique – were irradiated 
with Au-ions (Fig. 1).  

 

Fig.1 Zircon irradiation with Au ions: Lamellae were prepared with the FIB technique (a) and 
irradiated. Radiation damage causes volume swelling (b) and an increase of spectroscopic 
band widths (c). The FWHM of the PL emission of trace Nd3+ (4F3/2  4I9/2) and the Raman 
ν3[SiO4] mode were found to be well suitable to estimate the radiation damage created.  
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The luminescence database [1] was developed to provide a quick reference for identifying peaks in 
luminescence spectra, in similar fashion to KLM lines for x-rays or the RRUFF database for Raman 
lines. In the case of KLM lines, the characteristic x-ray energies are largely unaffected by bonding and 
so a table is relatively easy to compile. However, for luminescence the case is more complex, with the 
emission being sensitive to both material composition and structure of the host lattice. This complexity 
arises due to the luminescence signal being generated from a set of bonding influenced states such as 
conduction to valence band transitions, defect states and phonon modes [2]. Luminescence emission is 
generally grouped into intrinsic and extrinsic types, with intrinsic luminescence being native to the host 
material and extrinsic emission attributed to the presence of trace element impurities. These 
complications require the database to record not only the emitter of the line, but the host material in 
which it resides. 

The initial database, generated from a literature survey of papers containing well characterized 
luminescence data, comprised over 70 minerals and a smaller number of synthetic materials, including 
semiconductors. With multiple entries for each structure, the database recorded over 1150 lines and 
bands, detailing the mineral name, associated chemical formula, charge on the ion or classification as 
intrinsic or extrinsic, and wavelength of energy of line observed. Wherever possible the sample 
temperature at which the emission line was recorded was included, as well as the technique used to 
excite and the instrument used to collect the luminescence. This was recorded as both temperature and 
polarisation effects can occur in a number of minerals/materials that lead to changes in relative peak 
intensity with wavelength. The publication reference for all entries was also noted so that further 
experimental and sample details can be examined. The database currently contains over 2700 lines. 

The database was made public as a community resource available through the internet 
(http://www.csiro.au/luminescence/) and embedded within the freely available OpticalFit [3] software 
(Fig. 1). OpticalFit is a Windows-compatible software package for spectral fitting and peak 
deconvolution, and allows the database entries to be overlaid onto the spectra to aid in identification by 
choosing from a drop down list of structures, chemical formula and lines. In addition to recording line 
energies for particular minerals, the database now includes reference spectra generated using a number 
of techniques. This information greatly enhances the utility of the database, as it enables relative peak 
heights and efficiency of luminescence to be provided to the researcher. 

Submissions to the database from the wider community have been welcomed, and since its inception, 
the database has grown considerably in size. M. Gaft, J. Götze, L. Nasdala, C. Lenz and J. M. Hanchar 
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have most recently supplied collections of reference spectra and associated peak assignment collected 
across a wide range of minerals, both natural and synthetic, along with a set of related references 
detailing the samples and collection conditions. G. Barmarin, who has compiled a collection of 
luminescent minerals [4] and associated photoluminescence spectra, has contributed a large number of 
specimens from which we have collected cathodoluminescence (CL) reference spectra. Spectra from 
rutile and haematite, which are not normally thought of as CL active have also been included. We have 
been optimizing the collection of CL signals [5] from very weak emitters through hyper-spectral 
mapping and are growing the database to include reference spectra from such materials. 
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Figure 1 Optical fit showing a combined optical and near infra-red spectrum from an apatite sample. 
Colored vertical lines show database entries for Sm, Dy, Eu and Nd. 
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