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ABSTRACT

The usage of both video streaming as well as mobile networks has become prevalent today.
Both make up a large portion of the Internet’s current traffic mix. Additionally, video streaming
has changed radically changed in recent years, shifting from traditional approaches running
atop the unreliable UDP to using the reliable TCP as transport protocol. The behavior of these
reliable streaming approaches can be much harder to predict because of the larger number of
influence factors and cross-correlations between protocol layers. This is especially important in
light of the complexity mobile networks are adding to the stack, even more so when the mobile
control plane is factored in.

The purpose of this thesis is to evaluate this exact scenario: reliable streaming in mobile
networks. The work takes a two-fold approach by first independently investigating both the
mobile core network control plane as well as reliable streaming. For reliable streaming, a
complete emulation-based measurement framework is introduced and measurement series
that highlight the efficiency of certain playback strategies are conducted. Concerning mobile
networks, a network trace from a live network is evaluated and explored for characteristics of
the core network control plane. Through this, a network control plane load model based on
GTP tunnel statistics is formulated and further evaluated through simulations.

Afterwards, the independent efforts are merged back together again with a study on the
influences of network layers on streaming protocols. Many possible sources of influence on the
quality of video streaming are discussed and a cross-layer information exchange framework,
that can alleviate some of these negative factors, e.g., handover events in mobile networks, is
presented.

Measuring anything related to this topic of reliable streaming in mobile networks is often a
difficult task. But the efforts conducted here show that many of the factors related to it require a
large amount of understanding and investigation. Therefore, the final part presents two further
viable approaches to mobile streaming measurements: a mobile device active measurement
environment that facilitates additional sensor and mobility data from the device, and lastly
a reliable streaming simulation framework running atop a simulated LTE network to better
evaluate mobility influences on streaming. The latter method is then ultimately used to show
the effects of handover events on streaming.

All in all, this work gives insights into the relationships between reliable streaming and
mobile networks. Measurement frameworks and models help to properly investigate them and
deal with influencing factors surrounding the issue.
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ZUSAMMENFAS SUNG

Die Nutzung von Videostreaming als auch von Mobilfunknetzen ist in den letzten Jahren stark
gestiegen und beide sind nun für einen Großteil des aktuellen Verkehrsmixes im Internet verant-
wortlich. Jedoch hat sich die Ausprägung des Videostreamings auch sehr stark im Vergleich zu
früheren Formen geändert. Wo früher fast ausschließlich das unzuverlässige Transportprotokoll
UDP zur Verwendung kam wird heute mehrheitlich auf das zuverlässige TCP gesetzt. Das
Verhalten von zuverlässigen Streaming kann allerdings durch die größere Menge an Einflussfak-
toren und Abhängigkeiten zwischen den Protokollschichten deutlich schwerer zu vorhersagen
sein. Dieser Umstand fällt speziell bei Mobilfunknetzen und ihren Komplexen Protokoll- und
Signalisierungsstrukturen ins Gewicht, insbesondere wenn zusätzlich auch die “Control Plane”
der Mobilfunknetze betrachtet wird.

Genau dieses Szenario — Streaming mit zuverlässigen Transportprotokollen in Mobilfunknet-
zen — soll in dieser Dissertation vertieft untersucht werden. Dabei wird ein zweigleisiger Ansatz
verfolgt: Zuerst werden Mobilfunknetze und zuverlässiges Streaming getrennt evaluiert. Für die
Streaming-Untersuchung wird ein vollständiges emulationsbasiertes Messsystem eingeführt.
Mit diesem werden Messreihen, die die Leistung von individuellen Abspielstrategien bewerten,
durchgeführt. Mobilfunknetze werden insbesondere bezüglich ihrer Eigenschaften der Control
Plane im Kernnetz untersucht. Dies erfolgt aufgrund eines Datensatzes eines Mitschnittes aus
einem produktiven Mobilfunknetz und führt zu einer Definition von Last, die sich aus den Eigen-
schaften von GTP-Tunneln ableitet. Dieses Lastmodell wird dann durch statische Auswertungen
und Simulationen weiter untersucht.

Anschließend verbinden sich diese beiden eigenständigen Forschungsansätze wieder in einer
Studie zu den Einflussfaktoren von beispielsweise Netzwerkschichten auf Streaming-Protokolle.
Hierbei werden viele Einflussquellen und auch einmöglicherWeg, diese durch einen Cross-Layer
Informationsaustausch zu eliminieren oder zumindest zu reduzieren, diskutiert. Beispielswei-
se können durch diesen Ansatz die negativen Auswirkungen von Handover-Ereignissen auf
Video-Streaming abgefangen werden.

Das Messen und Auswerten von zuverlässigen Mobil-Streaming ist in der Regel durch diverse
Faktoren ein schwieriges Bestreben. Allerdings zeigen die hier vorgestellten Faktoren auch,
dass eine große Menge an Untersuchungen nötig ist, um die Thematik hinreichend zu verstehen.
Daher beleuchtet ein abschließender Abschnitt zwei weitere mögliche Messansätze: Einerseits
eine aktive Messumgebung, die direkt auf einem mobilen Endgerät läuft und möglichst viele
Sensorwerte und Protokollzustandsvariablen des Gerätes mit in eine Messung einbeziehen
kann.Dies ist bei Mobilfunkmessungen, die auch häufig einer großen Mobilität und Einflussfak-
toren durch den Benutzer unterliegen, ein essentieller Umstand. Zweitens wird eine zuverlässige
Video-Streaming-Simulation auf einem vorhandenen Mobilfunksimulator implementiert und
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dieser genutzt um exemplarisch den Einfluss von horizontalen Handovers auf eine laufende
Streaming-Übertragung zu untersuchen.

Zusammenfassend gibt diese Arbeit Einblicke in die Beziehung zwischen zuverlässigen
Streaming und Mobilfunknetzen. Die vorgestellten Mess- und Modellierungsmethodiken helfen
bei der korrekten Analyse der vielen beobachtbaren Einflussfaktoren und führen letztlich zu
einem besseren Verständnis der Thematik.



ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Hlavacs for his advice and especially for taking
over the supervision of my thesis at such a late stage on short notice. I would like to extend my
thanks to my reviewers Professor Reichl as well as Professor Tran-Gia for accepting my review
request and supporting me during the thesis process.

A big thanks also goes tomy colleagues, former colleagues, as well as student helpers including
Albert Rafetseder, David Stezenbach, Lukas Pühringer, Christoph Steindl, Katharina Salzlechner,
Ákos Lukovics, Christian Schwartz, and Steffen Gebert for their general support, for their work
on many big and small tasks, and last but not least for the educational and simultaneously
entertaining discussions.

xxi





1
I NTRODUCT ION

Packet Switching, the process of chunking information into smaller bits, labeling it and trans-
mitting it independently, was first described by Paul Baran in the 1960s [Bar64]. This changed
communication a lot and provided one of the foundations for the emergence of the Internet.

The original usage intent was mostly limited to remotely logging into and communicating
with mainframe computers and transferring files supported by the emergence of new multiuser
and multitasking Operating System (OS), especially including the release of UNIX in the early
seventies.

From these early times countless other services and applications emerged. Today, the Internet
is used by hundreds of millions of people and is involved in almost every aspect of daily life.
The creation of the World Wide Web — initiated by Tim Berners-Lee in 1989 — brought an easily
accessible “user interface” to the Internet and made adoption for the masses much easier. Today,
almost any form of application is available through the Web as a combination of HyperText
Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript and can be accessed
by just opening a Web browser.

But as is the case with many technological fields, the Internet’s development was also closely
entangled with other advancements. Take the huge Internet music wave beginning in 1999 as
an example. It may have been started by the creation of Napster, one of the first peer-to-peer
file sharing services. However, without the large improvements in audio compression — the
MP3 audio format in this case — a few years earlier, computers that could handle decompression
as well as compression, and increasing Internet access bandwidth (and fixed service fees), this
would not have been possible.

Similarly, video streaming and sharing sites like YouTube could not have existed without a
wide spread availability of digital camcorders and other devices with recording capability, good
video compression codes, and an even further increase in access bandwidths. For every advance
in access bandwidth new services sprung to life fueling the users’ demand for further capacity
increases.

One of the driving factors in this rapid adoption of the Internet and the Web is its content
agnosticism, i.e., that no assumptions are made on the transported data. The original idea is to
treat every packet and participating node the same and not make any assumptions on specific
applications. This provides a level playing field for every contender wanting to offer services. A
further concept, called “End-to-End Principle”, was originally stated as:

“The function in question can completely and correctly be implemented only with
the knowledge and help of the application standing at the endpoints of the commu-
nications system. Therefore, providing that questioned function as a feature of the
communication system itself is not possible. […]” [SRC84]

1
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Thismeans that any functionality, for example services or applications, or traffic differentiation
should only be implemented at the two endpoints of a transmission and not inside the network.
Tuning the network to specific applications and implementing functions inside the network,
will always only be valid for existing and narrow use cases and could hamper any future
development.

During the past decades these principles have often been discussed [BCZ97; BC01; Ise97;
LL00] but are mostly still being upheld in the current Internet topology. Interestingly, this
is contrasted by the way Circuit Switching (CS) public telephone networks but also mobile
networks operate. Here, much effort and intelligence is put into the network, which enables
only a very specific set of services, determined solely by the operator, to work, albeit with a
relatively high quality.

1.1 Video and the Internet
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Figure 1.1: Cisco’s global consumer Internet traffic prediction (data source: [Cis13]).

The total volume of Internet traffic has been rising rapidly for many years as most traffic
studies suggest, for example in a Cisco study of “consumer” traffic in Figure 1.1. One of the
largest contributing factors to today’s traffic composition is arguably video traffic. It can be
most dominantly observed in the mix of North America’s fixed access depicted in Figure 1.2.



1.1 Video and the Internet 3

The two main sources for this video traffic are typically streaming services like YouTube1 and
Netflix2, or live streaming and casting sites like Twitch3.
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Figure 1.2: Traffic composition of North American peak fixed access aggregate traffic (data
source: [San14]).

Studies predicting the development of the Internet’s traffic also tell of the large influence
of video traffic in the near future. As the video traffic volume has become so predominant, it
is very important to understand its dynamics from a modeling and performance evaluation
point of view, as specific behaviors of video traffic might significantly influence the underlying
network and vice versa.

Protocols specifically created for the purpose of video streaming — which can be defined as
“watching the video while later parts of it are still being transmitted” — have existed for a long
time and their behavior is well researched. The most prominent is Real-time Transport Protocol
(RTP), which has been specified as early as 1996 [RFC1889]. And yet they are not responsible
for the gross of the Internet’s video traffic seen today.

Instead, a new class of Transmission Control Protocol (TCP)-based and not formally standard-
ized streaming approaches has arisen, which integrate themselves much better into the current
Web ecosystem. And they are using completely different modes of transportation and control.
Finding ways to investigate these new streaming protocols, including their categorization,
measurement, and modeling, will be the first task of this thesis.

1 https://www.youtube.com
2 https://www.netflix.com
3 http://twitch.tv

https://www.youtube.com
https://www.netflix.com
http://twitch.tv
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Streaming, and media transport in general, is also not just relevant for the purpose of watching
videos, there are many more fields of use with similar requirements. For example, so-called
“cloud gaming” applications have become more popular in recent years. Here, video games are
run on large virtualization clusters with the input and video output being streamed from and to
the actual game client, putting a huge emphasis on achieving low latency. Refer to, e.g., [Ros09],
[WD09], [Jar+11], or [Aus10] for further information on this topic.

1.2 The Mobile Network Below

Much of today’sWeb interactions are today carried out over mobile networks using smartphones.
Despite their rapid evolution, mobile networks still carry much heritage from their circuit
switching roots.4 Starting in the 1950s with early analog predecessors like the German “A-Netz”
and first generation cellular structured networks in the eighties, mobile telephony entered the
fully digital world with the European Global System for Mobile Communications (GSM) and
competing Code Division Multiple Access (CDMA)-based technologies around the year 1991.
This was similar to the development in the Plain Old Telephone Service (POTS) with its shift
away from the analog roots to digital circuit switching technologies like Integrated Services
Digital Network (ISDN).

Because of the huge success of GSM, and its packet-switching extension General Packet
Radio System (GPRS), its architecture was used as a blueprint for the following mobile network
standard evolutions Universal Mobile Telecommunications System (UMTS) (including High
Speed Packet Access (HSPA) and High Speed Packet Access Plus (HSPA+)) and Long Term
Evolution (LTE).

Through this heritage, many mobile network elements and protocol have undergone only
minor changes since their GSM versions. Due to the hereditary roots in CS networks, a large
amount of state is kept inside the network and explicitly managed through a high volume of
signaling interactions. This can create a wide range of problems, creating unwanted interactions
of specific traffic patterns with the control plane and overwhelming the network’s control plane
structures.

These issues have only begun to show up in recent years due to the large influx of new users
and usage scenarios. Traffic in cellular networks follows a development similar to that of the
Internet as a whole. Through the advent of affordable high performance smartphones, a thriving
mobile application ecosystems, and faster access technologies many are now using their phones
as the primary device for interacting with the Internet. Video, too, has grown to contribute
large amounts of cellular traffic as Figure 1.3 depicts.

However, heavy traffic on a stateful network poses unique challenges to the architectural
design of network protocols, and the performance and dimensioning of the network. This
becomes even more pronounced by the circumstance that operators and vendors usually regard
any details on mobile networks equipment as closely kept trade secrets. Thus, little is known of

4 For an historical overview of mobile phone standards refer to https://en.wikipedia.org/wiki/History_of_
mobile_phones.

https://en.wikipedia.org/wiki/History_of_mobile_phones
https://en.wikipedia.org/wiki/History_of_mobile_phones


1.3 Research Methods and Approaches 5

0.0

0.1

0.2

0.3

0.4

0.5

2012 2013 2014, 1h
year

ag
gr

eg
at

e 
tr

aff
ic

 r
at

io

traffic type
marketplaces
other
real time entertainment
social networking
tunneling
web browsing

Figure 1.3: Traffic composition of North American peak mobile access aggregate traffic (data
source: [San14]).

the exact make-up of these production networks making independent evaluation efforts rather
difficult.

The investigation of the signaling structures in the core of today’s mobile networks represents
the second task of this thesis. It is also closely interlocked with the evaluation of video streaming
traffic as they are nowadays often seen together.

1.3 Research Methods and Approaches

As is the case with any scientific endeavor, this work is based on a specific set of tools and
knowledge of many years of prior research. Measuring, evaluating and modeling is standard
practice in many fields. Therefore, tools are available to tackle most kinds of problems, but one
still has to choose and properly define the most fitting ones for a given specific issue. Figure 1.4
categorizes tools available to a performance analyst, with their corresponding level of detail
and abstraction.

The most precise results will always be achieved through actual measurements of the actual
system under scrutiny. This will give a point of reference and can be used to validate the
accuracy of other methods. But it also comes with a hefty price of huge amounts of data to
process and understand. With such measurements at hand, one can now start to make sense of
this data and extract the relevant features observed in this process.
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Figure 1.4: Methodical solution spaces and apparatus comparison (based on [Tra05, p. 2]).

Aside from measurements on implementations there are three further possible approaches
to widen the scope: emulation, simulation, and mathematical analysis or analytical models.
An emulation tries to resemble implemented functionality as closely as possible with the cost
of high complexity. While there are many forms of emulation, most relevant to this type of
research is the network emulator. Instead of having a real network, parts of it are substituted
with emulating hardware or software that alters the Quality of Service (QoS) parameters of
transmissions. But emulations always just replace parts of the actual system and therefore its
capability to scale is limited.

This is where simulations come into play, implementing all internal and external functionality,
including the physical nodes and the network in software. A typical Discrete Event Simulation
(DES) can have subtle functional differences but can be scaled almost boundless, limited only
by the available processing time.

Prior to any simulation or emulation and following every measurement on a system is of
course the mathematical analysis of existing data. Through this models are built abstracting
the system the data is gathered from. With every iteration the model can be refined and new
hypotheses formed. A mathematical analysis, for example using queuing theory and stochastic
models, can then further broaden the understanding of the system. A proper queuing theory
model can already give great insights into the load dynamics of the modeled system and serve
as a tool in future planning processes.

1.4 Research Contributions

With the increasing prevalence of video streaming in mobile networks, it is important to
understand the relationship and interworking between these two. To achieve this with the
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discussed tools at hand the topic will be separated into two lines of research discussing video
streaming on the one hand and mobile networks on the other. After the individual issues
have been thoroughly investigated on their own the efforts are merged again and actual video
streaming in mobile networks is explored.

The first line of research will deal mostly with the control plane of mobile core networks.
Using architectural knowledge, collected from the large stack of mobile network specifications,
a measurement dataset from an actual core network is evaluated on the basis of its signaling
load. Through further statistical analysis of specific signaling interactions a queuing theoretic
load model of the core network well be created, abstractly describing the control plane.

This allows to draw interesting conclusions regarding the load state and its relationship to
external influence factors, e.g., to user traffic, in these cellular nets. Building on top of this basis,
an alternate model will be introduced that is better able to scale the load than the standard
model. These efforts will ultimately help to improve the planning and dimensioning of networks,
or even influence future specification iterations to reduce their adherence on signaling.

The second line will be an investigation of current video streaming mechanisms and services
facilitating them. All of the investigated streaming “protocols” are comparatively young and
similar. Protocol is put in quotation marks for a reason here. Many of the approaches are not
protocols in the classical sense. They do not follow a specification of any standards body, be it
International Organization for Standardization (ISO), International Telecommunication Union
(ITU) or the Internet Engineering Task Force (IETF).

Also, their main distinction does not lie in the usage of the network and the video transport
due to the reliance on typical Web protocols. Rather, much of the differences stems from the
behavior of the actual application. Specifically, the way data is requested and retrieved and the
video displayed, including its reaction to undesirable circumstances, e.g., having insufficient
data in the playback buffer. Surprisingly, even just with these simple rules, applications can
easily distinguish themselves from one another. Making the correct decisions to events can
greatly influence the quality of the video playback.

During the investigation a model will be created that describes all the common elements in
the streaming process. This model and additional knowledge of the structure and similarities
of the applications enables further, more complex research efforts. For example, through a
performance analysis streaming protocols can be compared to each other, or interrelations
to the network’s transport layer and other influences of the network on streaming could be
uncovered.

This especially refers to influences of mobile networks, where many assumptions targeted at
packet-switched wired networks do not hold anymore. One insightful example is the circum-
stance that the mobile network stack typically conceals any packet loss from its users. Loss
will therefore only be experienced as intermittent phases of extremely high latency, which can
go as high as several seconds, preventing transport protocols from correctly determining the
link conditions and causing erroneous scaling. This leads to the question, on which kind of
information from the network a streaming application could and should depend, or even if there
are any actual requirements for streaming.
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Gathering this kind of information can result in a better understanding of the quantitative
attributes related to these new forms of streaming. The results can be used as an analytical and
testing tool for improving the protocols, or even lead to different approaches. Furthermore,
this thesis aims to provide methods for helping all parties involved in media streaming decide
which protocols and methods to choose and which are best suited for specific scenarios.

The third and final topic bridges both of the previous lines. The full video streaming mobile
network stack is re-investigated on a quest for potential sources of influence that impact the
quality of the resulting streaming endeavors. The search is made difficult by the circumstance
that the stack is changing rapidly, with protocols being replaced or significantly altered. For
example, the transmission behavior of the Linux implementation of TCP is being changed and
improved upon constantly. Ultimately, an approach to reduce the stack’s undesired influences
will also be discussed in the form of cross-layer information flow.

Evaluating mobile networks and the complete streaming stack is a complex effort, with a vast
number of variables to control and keep track of. To give an example, consider the mobility
patterns of mobile devices, the resulting handover procedures between cells, and the effect on a
video stream running during these events.

In this work, two methods are employed that deal with this situation. The first method
enables one to conduct active measurements on mobile devices while combining them with
the metadata from the device’s stack and sensors. To achieve meaningful measurement results,
the device’s state needs to be recorded as precisely as possible. Today’s mobile phones have a
multitude of sensors and information sources available, which can be exploited for this.

The knowledge attained from these previous approaches can then finally be put into a mobile
network streaming simulation, which can be more easily scaled up than an active measurement
campaign. Through this method, new streaming strategies can be tried out and tested as well as
tuned to the potential influences of the mobile network environment.

1.5 Structure

Following these research lines, several contributions are made, which are broken down into
five major chapters.

The facets of mobile core networks are put under scrutiny in both Chapters 2 and 3. As the
amount of specifications as well as the details on the architecture, procedures, and protocols
details is vast, the mobile core architectural background in Section 2.1 attempts to put all the
basics together, with additional related work in Section 2.2.

With this foundation laid out, the actual goal of the investigations will now be defined in
Section 2.3: a novel definition of load in a mobile network, based on the control plane and not
just the user plane. To investigate this load a passive measurement data set is used. Section 2.4
describes the acquisition of the set and how it should be interpreted. The set is then evaluated
for its signaling characteristics in Section 3.1 and the data is used to formulate two queuing
theoretic load models in Section 3.2 which are then thoroughly tested using a queuing simulation
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in Section 3.3. With these models mobile network operators can better dimension and plan
their networks according to control plane load and not just to accommodate user traffic.

To introduce to the video streaming investigations, covered in Chapter 4, at first the protocols
and techniques that have been used in the past will be described in Section 4.1. This then leads
to a broad survey of current protocols. A subset of them will serve as the basis for the presented
reliable streaming model.

Furthermore, to be able to derive Quality of Experience (QoE) information from the model, it
is necessary to define an evaluation metric and its building blocks. In Section 4.3 these building
blocks, that can be directly gathered from measurements, will be defined and an overview of
existing metrics given. Now that both metric and model are ready, a measurement study using
an emulation approach is conducted in Section 4.4, investigating the performance of an actual
video streaming service with the help of the model under the influence of varying network
conditions.

Chapter 5 includes the various efforts to screen and understand cross-layer influences with
the discussion of current and upcoming protocols in Section 5.1 and a remedy in the form of a
cross-layer hinting framework in Section 5.4.Finally, some thoughts and approaches to study
video streaming traffic in mobile networks are collected in Chapter 6. Section 6.1 presents an
active measurement approach that can collect and utilize additional metadata from the device.
And Section 6.2 adapts the earlier described streaming measurement model to work with a
mobile network simulation.

The thesis concludes with a summary, some remarks, and ideas for future work in Chapter 7.





2
MOB I L E CORE NETWORK ARCH ITECTURE

For the last few years, Internet access has been shifting towards mobile smartphones and mobile
networks, sometimes even completely replacing fixed dial-up access with stationary mobile
Third Generation (3G) and LTE modems. And all the “over-the-top” media streaming services
are nowmore and more being used within mobile networks bringing a new set of traffic patterns
as well as possible issues and influence factors along with them.

Today’s cellular mobile networks are usually based on Third Generation Partnership Project
(3GPP) specifications which have evolved from the circuit switched GSM network into the fully
packet switched LTE, the latter still being in its unrolling phase. Yet being packet switched
does not mean that mobile networks share a lot of similarity with a typical wireline Internet
Protocol (IP) stack and network access infrastructure, for example a Very-high-bit-rate Digital
Subscriber Line (VDSL) or Data Over Cable Service Interface Specification (DOCSIS) dial-up
connected to an IP network.

A 3G network (a term synonymous for the typical combined GSM and UMTS cellular network
in use today) is very distinct from typical wired networks as it provides, amongst others, mobility
and authentication in its lower layers through the core specifications, rather than implementing
respective optional on-top services as is typically the case in the Internet. To achieve this, large
amounts of state have to be kept at each network node and is explicitly communicated among
the network nodes in its Core Network (CN). Also, the lines separating layers and functions
are very blurred, making it very hard to grasp parts of the architecture without understanding
the whole. Many specialized protocols are involved to communicate intents and states in the
network. This causes processing overhead and signaling traffic on the network paths on top of
the actually useful user traffic.

It is a known fact that radio spectral resources are a scarce resource that need to be well
managed. But it might not seem immediately obvious to think the same about control plane
resources in the infrastructure of a mobile network. Yet, there have been accounts123 [Yan11]
of situations where the core network has been flooded with signaling, despite only a negligible
amount of actual user traffic being transported. This resulted in an event dubbed “signaling
storm”, causing an unintentional Distributed DoS (DDoS) attack, disrupting user-plane connec-
tivity on its way. Similar patterns can also occur with some segmented transmission strategies
in streaming.

The state of research on the architecture and especially the control plane behavior of 3G
mobile cellular networks is lean in comparison to the huge volume of research conducted other
wired Internet structures. Most of the available research focuses on user-oriented metrics

1 “Docomo Counts Cost of Signaling Storm”,http://www.lightreading.com/d/d-id/693779
2 “Android Signaling Storm Rises in Japan”, http://www.lightreading.com/a/d-id/693138
3 “Angry Birds + Android + ads = network overload”, http://www.itwire.com/business-it-news/47823

11

http://www.lightreading.com/d/d-id/693779
http://www.lightreading.com/a/d-id/693138
http://www.itwire.com/business-it-news/47823
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such as traffic statistics and mobility patterns, or only investigates properties of the radio
interface. Little has been published about activity within the core network, and yet less about
core signaling.

Conducting IP traffic research at the network’s edge, independent of the access technology, is
usually relatively easy. Writing simple tests and measurement scripts, that record the user’s
traffic, is all that is needed. But mobile phones do not allow one to peek inside its layer 1 and
2 implementation and interaction, where the control plane resides. Any information on this
black box can only be indirectly inferred from layers above — by forcing behavior known from
specifications — or below — through spectrum analysis using Software Defined Radio (SDR)
approaches.

However, to directly investigate the core as well as the control plane, some kind of a mea-
surement infrastructure inside the network is needed. With this, researchers could not just
look into user traffic flowing through the network but also investigate the signaling heavy
mobile network control plane. But to gain this kind of access to the network would require the
cooperation of a mobile network operator, which they grant very reluctantly due to privacy
and competitive concerns.

Another important aspect related to signaling is network dimensioning. Operators mostly
dimension their networks in accordance to the expected user traffic. But in such a signaling-
dependent architecture this might not be the most fitting approach, as the mentioned signaling
storms seem to demonstrate.

Both this and the next chapter attempt to remedy parts of the problem. The current chapter
contains material required for a basic understanding of mobile networks and the evaluation
methodology. Section 2.1 discusses the required details of the mobile network architecture
under investigation followed by a survey of existing literature in Section 2.2. Next, an attempt
on defining control plane load is made in Section 2.3. This is used to find viable targets for a
load evaluation. The evaluation methodology is then given in Section 2.4.

This leaves Chapter 3 free to exclusively discuss the actual control plane modeling and
evaluations conducted in an existing mobile network. Both chapters also use material previously
published in [F M+12], [F M+14], and [FSH14] and extend on it.

2.1 Core Architecture Overview

Today’s dominating commercial mobile network system, which combines GSM, UMTS, and now
often also LTE, is designed and specified by the 3GPP. This group is an umbrella organization
for several standardization bodies, including the European European Telecommunications
Standards Institute (ETSI) and their individual members — in this case mostly telecommunication
companies. Unlike the IETF, the Internet’s de facto standards body, natural persons cannot
participate in the 3GPP on their own but only through the organizational members.

Specifications are not released individually but are instead grouped together into larger
releases once every or every other year. GSM was first specified in the Phase 1 release in 1992
with GPRS added in Release 97 (1998). UMTS followed with Release 99 (2000), but most 3G
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networks operate at least with Release 5 (2002), Release 6 (2004), or Release 7 (2007) as they
introduced High-Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access
(HSUPA), and HSPA+ respectively. LTE first found its way into the specifications in 2008 with
Release 8. Release 12 is scheduled to be published in March of 2015. This background section
mostly describe the UMTS-based Technical Specification (TS) with some comparisons being
made to the older GPRS and the latest LTE specification versions where available.

Today’s most commonly deployed version of the mobile network architecture is depicted in
Figure 2.1 and based on 3GPP TS 23.002 [3GP13g], with some minor nodes and network paths
omitted4. The displayed architecture combines all three access technologies as well as the CS
and the Packet Switching (PS) domains of the core.

Concerning the PS domain, one has to further distinguish between links and nodes used
solely for control plane tasks as well as links and nodes that are in path of the actual user IP
traffic. For UMTS and GPRS5 the Serving GPRS Support Node (SGSN) and the Gateway GPRS
Support Node (GGSN) are the core elements on the user traffic path. Elements other than these
solve control plane tasks only.

One architectural detail to note is the strict separation between user plane and control plane
tasks in the 3GPP architecture. Completely separate protocol stacks are used and signaling is
mostly conducted in an explicit and out-of-band manner. This is contrary to the typical approach
of the Internet’s TCP/IP stack, especially its upper layers, where most state is implicitly inferred
and only some signaled in-band.

The following sections give a short description of nodes and their tasks as well as used
protocols stacks and signaling procedures for both the user and the control plane. The description
will be mostly focused on the UMTS parts of the architecture which is also overviewed in
[3GP12b].

2.1.1 3GPP Radio Network

The architecture has three distinct radio networks, one for each access technology: GSM’s Base
Station Subsystem (BSS) (or more complete: GSM/EDGE Radio Access Network (GERAN)),
UMTS Terrestrial Radio Access Network (UTRAN) for UMTS, and Evolved UTRAN (E-UTRAN)
in LTE.

Essential to the radio network is a base station, a radio transceiver providing the physical
connection to the user’s mobile device6 3G’s base station is called Node B. The used radio
spectrum is divided into a number of channels, with various shared channels responsible
for management and control plane signaling and one or more dedicated channel for each
active mobile device [3GP12d; 3GP12e]. Layer 2 consists of several protocols managing and

4 For a complete reference of all the acronyms and addressing schemes used in 3GPP specs please refer to TS
21.905 [3GP13m] and TS 23.003 [3GP13h]

5 GPRS provides PS data services for GSM radio access. The same core infrastructure is also used in the UMTS PS
domain.

6 Mobile devices are usually called Mobile Station (MS) in GSM networks and User Equipment (UE) in 3G and later.
The terms are interchangeable and specifications often mix both terms.
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multiplexing transmissions on the link. These are Media Access Control (MAC) [3GP08d] and
Radio Link Control (RLC) [3GP08g] with an additional user plane broadcast service provided by
Broadcast/Multicast Control (BMC) [3GP08a].

On layer 3, the actual radio control plane signaling protocol Radio Resource Control (RRC)
[3GP12f] resides, managing the device’s state and the radio connection. Some of the signal-
ing procedures are detailed in [3GP12g]. Additionally, Packet Data Convergence Protocol
(PDCP) [3GP12c] provides the connection to the usual Internet TCP/IP user plane stack atop.
Thus, all user traffic is encapsulated into so called radio bearers, which tunnels traffic from the
mobile device directly into the core network.

Each base station acts as an independent radio cell. Mobile devices can be seamlessly handed
over between cells without higher layers being informed or required to act upon such events.7

The handover process is fully controlled and conducted by the network through a node that
shares the old and new path to the device. For UMTS, in most cases this can be handled by the
Radio Network Controller (RNC) while the core SGSN is responsible for handovers between
larger regions.

In UMTSmultiple base stations are concentrated into one RNC. Most of the functions of a RNC,
including Mobility Management (MM), are defined by the Radio Access Network Application
Part (RANAP) control plane protocol defined in [3GP08h]. RANAP is used at the Iu interface
between the RNC and the core network, i.e., the SGSN. Today, all non-radio links of the
network are usually IP-based. But in the past all interfaces have also been explicitly defined
for Asynchronous Transfer Mode (ATM) and exhibited some differences to their IP-based
counterparts. The connection of the decentralized parts of the radio network to either the core
network itself or a RNC is called backhaul. This term usually subsumes the bulk transport of
data over dedicated links to a central location. Often, optical fiber or microwave transmission
links are used.

2.1.2 3GPP Core Network

The PS domain of a mobile core network manages most of the aspects of the connected devices
and acts as the gateway to the further general network infrastructure of the operator and to
the Internet. It consists of nodes that are directly in the path of the user plane traffic as well
as additional nodes that only exist in the control plane. Each of the nodes can consist of any
number of actual physical machines but are considered as a monolithic unit for the architecture
and any related specification.

GPRS and UMTS use the exact same PS core network architecture. Only LTE introduced a
new core network concept, the Evolved Packet Core (EPC). If one core has to simultaneously
provide support for both UMTS and LTE access, core nodes for both architectures have to be
present. The exception are some EPC nodes that provide legacy interfaces to supplant their
UMTS predecessors.

7 However, there are still many ways to detect a handover in the upper layers of a mobile device.
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The two central elements in the user plane’s path are the SGSN and the GGSN [3GP12a;
3GP13c]. The SGSN is the endpoint of the Radio Access Bearer (RAB), tunneling user traffic
from the UE to the core, and an endpoint for the GPRS Tunneling Protocol (GTP) based core
tunnel, further transporting user plane traffic to the GGSN. GTP will be described in detail in
Section 2.1.5. The GGSN’s control plane tasks include mobility and connection management via
RANAP to the RNC. The necessary information is cached and retrieved from the Home Location
Register (HLR) using Mobile Application Part (MAP) [3GP13e]. The HLR or, respectively, the
Home Subscriber Server (HSS) in an EPC, acts as the central storage of all the operator’s
subscriber information.

The GGSN represents the gateway to the public Internet, and therefore typically is the only
node in the network that has a publicly routable IP address. It filters incoming traffic into the
corresponding GTP tunnel and routes packets to the correct SGSN. State about every active
tunnel and device has to be kept locally and is initially retrieved from the SGSN.

In EPC user traffic in the core is handled by the Serving Gateway (SGW) and Packet Gateway
(PGW), having similar functions as their GPRS counterparts SGSN and GGSN. Depending on the
specific version of the implemented infrastructure these two nodes can also be combined into
one, eliminating the S5 interface and the GTP signaling between them. In the EPC many of the
control plane tasks previously maintained by the SGSN have been offloaded to a new node, the
Mobility Management Entity (MME), which maintains its own logical connection to the radio
network using the S1 Application Protocol (S1AP) signaling protocol [3GP08b]. Instead of MAP
to retrieve user data from the central storage, Diameter [RFC6733] is now used to communicate
with the HSS. Of note is also a further addition to the Evolved Packet System (EPS): the Policy
and Charging Rules Function (PCRF) in conjunction with the Policy and Charging Enforcement
Function (PCEF) which is integrated into the PGW. They act as a Deep Packet Inspection (DPI)
entity, inspecting all user plane traffic and enable arbitrary filtering of traffic and traffic-based
billing. Both entities are described in [3GP13i].

Figure 2.2 overviews the protocol stack on the path of the user traffic through the whole
network from the UE to an external network.

2.1.3 Core Network Concepts

Most of the discussed upcoming research deals with the core network. Therefore, this next
sections will explain in detail the concepts behind the 3G core network control plane and the
GTP protocol family.

As mentioned, there is a strict separation between control instances and instances that carry
the actual user traffic. Looking at the control plane side of things, management is conducted
in a completely stateful way. Nodes keep track of every UE they are managing and need to
locally store any state information they might need for management purposes. Of particular
interest is the state revolving around the Packet Data Protocol (PDP) Context. For each open
data connection a device has, both the GGSN and SGSN must keep such a PDP Context, which
identifies the connection as well as the device belonging to it.
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Additionally, a number of state machines are maintained. Transitions between machine
states trigger a signaling message to specific network neighbors. Any one of these signaling
interactions belongs to one or more larger control plane procedures. Most of the procedures
that happen inside the core network PS domain or affect it are defined in TS 24.008 [3GP13f]
and TS 23.060 [3GP13c].
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activate PDP Context request

CAMEL
procedures

CAMEL
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create
PDP Context
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GTP-C
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GTP-C

activate PDP Context accept
RRC RANAP

Figure 2.3: PDP Context activation procedure signaling interaction diagram for UMTS, including involved
signaling protocols.

Avery simple example is demonstrated in Figure 2.3. Initiated by the UE’s sessionmanagement
state machine a data connection to the device is requested to be set up, triggering signaling with
various protocols throughout the network. Additional secondary Customised Applications for
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Mobile Networks Enhanced Logic (CAMEL) procedures, defined in [3GP07], are also triggered
and conducted.

The general motif of control in 3G networks is rather different to that of the typical TCP/IP
Internet stack. Whereas plain IP stacks rely on the end-to-end principle and put most of
the control inside the devices at the edge, in 3G control procedures are spread across the
network. Coordinating this requires the discussed control plane and all of the explicit signaling
interactions. This results in a rather high complexity but also gives the opportunity to investigate
these mechanisms and implications the structures have on the performance.

2.1.4 Tunneling Concept: Bearers and PDP Contexts

To enact the aforementioned user and control plane separation, a custom tunneling concept
is used. Beginning at the UE, the actual user IP stack is never directly carried over the link’s
layer 1 and 2 protocols but always further encapsulated into so called bearer. The specifications
distinguish between the radio bearer, existing solely on the air interface, the RAB, denominating
the path between the UE and the CN, and the CN bearer between the SGSN and GGSN.

Technically, different protocols with tunneling capability are used on each link. PDCP is used
on the radio link, GTP User (GTP-U) is employed between the Radio Access Network (RAN) and
the CN and in the core between SGSN and GGSN. Closely related to the core network bearer are
a number of information records stored and maintained at the two core nodes, the aforemen-
tioned PDP Context. For every active bearer a context is stored containing identification and
management information about it. Amongst other data this includes device identifiers, e.g., Inter-
national Mobile Subscriber Identity (IMSI) and International Mobile Equipment Identity (IMEI),
tunnel identifiers (Tunnel Endpoint Identifier (TEID)), information about the intended public
network through the Access Point Name (APN) field, charging, and QoS [3GP13c, Section 13].

Commonly, any device with an active data connection has at least one bearer and an associated
PDP Context, the default bearer. In terms of QoS this represents a best effort tunnel carrying
all user traffic that is not further differentiated. Additionally, the device can request a number
of secondary tunnels, i.e., dedicated bearers, with certain QoS guarantees. Traffic matching a
specified Traffic Flow Template (TFT) will then be carried over this dedicated bearer. However,
this concept is scarcely used in 3G networks. All in all, one UE can be associated with up to
eleven bearers, consisting of one default bearer and additional dedicated bearers.

2.1.5 GTP and GTP-based Core Network Signaling

A large part of core network communication is conducted by GTP. In 3G networks version 1 of
the protocol, defined in TS 29.060 [3GP13b] and TS 29.281 [3GP13d]8, is used. For EPC some
changes were made to GTP bringing it to version 2, which is specified in TS 29.274 [3GP13a].

8 For a more concise description of the protocol, one should actually read the GTP implementation in the community
Free and open-source software (FOSS) project OpenGGSN at https://github.com/osmobuntu/openggsn.

https://github.com/osmobuntu/openggsn
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The latter will not be further discussed as all presented evaluations will have a 3G network as
basis.

GTP is mainly used on the Gn interface that connects the two main GPRS nodes, the GGSN
and SGSN. Its functionality is split up between a user plane and a control plane part, named
respectively GTP-U and GTP Control (GTP-C). GTP can best be described as an application
layer signaling protocol and is intended to be transported by User Datagram Protocol (UDP).

Bits
Octets 8 7 6 5 4 3 2 1
1 Version 1 0 E S PN
2 Message Type
3

Length
4
5

Tunnel Endpoint Identifier
6
7
8
9

Sequence Number
10
11 N-PDU
12 Next Extension Header Type

Figure 2.4: General 12 B GTP header format.

Conceptually, GTP is structured through a base packet header, a number of extension headers
and a message body consisting of a series of Information Element (IE). The base header is
depicted in Figure 2.4 and has a total length of 12 B. Essential to the header are the TEID to
identify the corresponding user plane tunnel and the 8 bit message type field. Each of the
message types corresponds to a specific signaling interaction from the overarching control
plane procedures. The procedures that GTP concerns itself with on the Gn path belong either to
path management, tunnel management, or mobility management. Messages also usually come
in request and response pairs, thus must be sent from the receiving node back to the original
requester.

Each messages is defined as a specific set of IEs, each of which is either mandatory, conditional
to some external factor, or optional. These IEs are of fixed or variable length depending on their
type. They convey the actual state to be signaled and always relate to a specific UE and tunnel,
for example the device’s IMSI or the configured APN.

Coming back to the described PDP Context activation procedure of Figure 2.3, it contains both
the GTP message Create PDP Context request as well as the response twice. Such a Create request
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Table 2.1: All IEs in a Create PDP Context request, and respective sizes, for IPv4 network and user traffic
only. The denoted sizes exclude the first message type byte.

IE Presence Size

IMSI cond. 8 B
RAI opt. 6 B
Recovery opt. 1 B
Selection mode cond. 1 B
TEID Data I mand. 4 B
TEID Control Plane cond. 4 B
NSAPI mand. 1 B
Linked NSAPI cond. 1 B
Charging Characteris-
tics

cond. 2 B

Trace Reference opt. 2 B
Trace Type opt. 2 B
End User Address cond. 8 B
APN cond. max

102 B
PCO opt. max

255 B
SGSN signaling ad-
dress

mand. 6 B

SGSN user traffic ad-
dress

mand. 6 B

MSISDN cond. max
17 B

QoS Profile mand. max
257 B

IE Presence Size

TFT cond. max
257 B

Trigger Id opt. var.
OMC Identity opt. var.
Common Flags opt. 3 B
APN Restriction opt. 3 B
RAT opt. 3 B
User Location Infor-
mation

opt. 10 B

MS Time Zone opt. 4 B
IMEI (SV) cond. 10 B
CAMEL Charging In-
formation Container

opt. var.

Additional Trace Info opt. 11 B
Correlation-ID opt. 3 B
Evolved Allocation
Retention Priority I

opt. 3 B

Extended Common
Flags

opt. 3 B

User CSG Information opt. 10 B
APN-AMBR opt. 11 B
Signaling Priority In-
dication

opt. 3 B

Private Extension opt. var.
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consists of the 36 IE depicted in Table 2.1. Neglecting the elements which have no predefined
upper length bound (besides the default 16 bit IE length field) and assuming a maximum length
for the other variable elements this results in a message size of 1059 B. The complexity of the
other message types is comparable.

One of the investigations that will be conducted is that of the core network load, which will
be defined and discussed later in detail. GTP messages could play an interesting role here as
they may directly or indirectly contribute to this load or at least be an indicator of load existing
otherwise. Load could be caused by the generated network traffic as well as the assembly,
processing, and storage of the involved state in form of the IE.

The following sections detail the three GTP tunnel management message pairs involved in
the maintenance of PDP Contexts. These are the Create, Update, and Delete PDP Context requests
and responses. They represent the basis for the core network investigations.

2.1.5.1 Create PDP Context Message

This message type is part of procedures that enable the PS data connection and the GTP tunnel
for a mobile device. These are the PDP Context activation procedure (already depicted in
Figure 2.3) and the Secondary PDP Context activation for additional GTP tunnels to the
device with specific QoS levels set. They are triggered by the mobile device through RRC/RANAP
signaling during or following a GPRS attach procedure.

When a GGSN receives a create request from an SGSN, it has to allocate the necessary
resources for a PDP Context. Depending on the outcome, a response is sent back, indicating the
success or failure of the operation. Typical failures include failed user authentication, a lack of
resource, or unrecoverable system failures and malformed or corrupted request.

2.1.5.2 Delete PDP Context Message

Similar to Create Context messages, a Delete PDP Context request and response always
coincides with the termination of a GTP tunnel and the removal of the associated PDP Context.
Create and Delete requests together mark the beginning and the end of every user traffic
tunnel, making them very interesting in determining tunnel properties and perfect candidates
to indirectly identify tunnel durations in a core network investigation.

Deletes are either created through explicit PDP Context deactivation procedures or play a
part in GPRS attach and detach procedures. Contrary to creates, they can be initiated from the
MS as well as from a core network node, depending on the kind of procedure.

2.1.5.3 Update PDP Context Messages

Several procedures also emit Update PDP Context requests and responses, usually in rela-
tion to some aspect of the tunnel or the device changing. Possible causes for an Update Context
request are:

• The mobile devices moves between SGSNs, causing a GPRS inter-SGSN Routing Area
Update procedure.
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• Parameters belonging to the context such as the assigned QoS are altered using the PDP
Context Modification procedure.

• As part of Context redistribution and load balancing procedures.

• The MS switches between UMTS and GPRS access technologies, causing a Inter-system
intra-SGSN Update procedure. Note that the same tunnel can be used regardless of the
radio technology.

• As part of a direct RNC to GGSN GTP-U tunnel activation procedure, thereby circum-
venting the SGSN. Or, finally,

• to activate secondary PDP Contexts using the Secondary PDP Context Activation as
previously described.

However, the appearance of update message signaling in some of these procedures is condi-
tional or even optional. This often depends on the specific implementation and is not known
without in-depth knowledge of it. Only for mobility management procedures the updates are
mandatory.

By observing update messages one could capture most forms of mobility happening in
the network, and get a good picture of potential correlation between mobility and tunneling
characteristics. By distinguishing portions of tunnels which were associated with a UMTS RAB
from Second Generation (2G) radio access through the related update message, one could also
study any influence of the access technology on the core.

Nowadays GSM/GPRS is either used in older models or feature phones or in mobile scenarios
in rural areas where GSM still is prevalent due to its usage of lower frequency bands and thus
larger coverage. Both could indicate that the data session will be rather short because of limited
device capabilities or low throughput rates of GPRS.

2.1.6 GTP Influencing State Machines

To understand the occurrence of these signaling procedures one should look at the statemachines
that govern these. Involved in the tunnel management aspects are three distinct finite-state
machines (FSMs), namely the MM and RRC state machines and the actual PDP state model. The
MM and RRC describe the current state of the mobile device and its radio and data connection.
They are both maintained at the MS and mirrored at the SGSN.

The MM model, defined in [3GP13c, Section 6.1], describes the general state of the data
connection. State switches occur either based on an idle timer or when new packets arrive
for the mobile device. The specific model depends on the currently used RAT with only slight
differences between GSM (Figure 2.5a) and UMTS (Figure 2.5b) access. The LTE related model
brings larger changes but is omitted here, as it will not be relevant for the investigation. With
the transition to and from the IDLE state in the 2G model (or DETACHED in 3G) GPRS
Attach/Detach procedures are triggered, also resulting in the transmission of PDP Create and
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(b) State machine for 3G radio access.

Figure 2.5: SGSN MM state models and machines as defined in [3GP13c, Section 6.1].

Delete Context messages. Likewise, other state transition procedures indicate mobility and
location changes, which usually include update messages.

The RRC state machine given in TS 25.331 [3GP12f, Section 7.1] and depicted in Figure 2.6
governs the usage of radio channels and therefore power states of the MS. State changes happen
depending on user and radio activity and inactivity which is determined by timers. Only in
the Dedicated Channel (CELL_DCH) state is the MS assigned a dedicated channel for its data
connection and can transmit at full bidirectionally. But this consumes the most device power
and radio resources, both of which are scarce. The goal of the state machine is to minimize
resource usage with intermediary states — Forward Access Channel (CELL_FACH), URA Paging
Channel (URA_PCH), and Cell Paging Channel (CELL_PCH) — that successively require less
power and radio channels, before completely turning of the RRC connection by transitioning to
the idle state. Coinciding with the RRC, the CN GTP tunnel can also be released or needs to be
reestablished. However, this is implementation specific and not precisely specified.
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CELL_DCH CELL_FACH

URA_PCH CELL_PCH

Idle Mode

Connected Mode

Figure 2.6: RRC State Model as per [3GP12f, Section 7.1].
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Activate PDP Context

Deactivate PDP Context,
MM state change to IDLE/DETACHED

Figure 2.7: PDP State Model defined in [3GP13c, Section 9].

The final state machine of relevance is the PDP State Model from TS 23.060 [3GP13c, Sec-
tion 9] in Figure 2.7. It reflects the actual state of the PDP context and associated tunnel and is
synchronized with the MM state machine.

2.1.7 Signaling Discussion

This section on the basics of current mobile network architectures serves a critical purpose: In
order to measure and evaluate network traffic one has to first understand its architecture and
needs to grasp how certain traffic patterns can occur. Unfortunately, the 3GPP specifications do
not make this task very easy. Typical IETF protocols and architectures adhere to the fundamental
principles of protocol layering, function separation and end-to-end. One can read a single
Request for Comments (RFC) and understand its function and directly implement it independent
of the knowledge of any other specification. This is not the case in a 3G network. Functions are
often spread over several protocols or nodes, necessary details essential to an implementation are
spread out over several specifications without direct reference or are even completely omitted.
This circumstance makes it very hard to attribute certain observed phenomena to a specific
feature in the specification.

The protocols used in 3G networks are also very heavy in terms of state and signaling inside
the network. This can be the cause of unintended and hard-to-predict load, which will be defined
and discussed in Section 2.3. For now, some initial load information in relation to the Create,
Update and Delete PDP Context Request and Reply message pairs can already be deduced.
Measuring the time delta between corresponding Create and Delete events obviously results in
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the total duration a tunnel was established. Having shorter tunnels often also means having a
greater number of tunnels and therefore a higher volume of signaling messages and an increase
in processing and state-keeping efforts due to the signaling.

Conversely, longer tunnel durations cause an increased overall memory footprint in the
involved nodes to store the PDP Contexts. Large numbers of update messages, especially
combined with frequent RAT switches, are usually an indicator for highly mobile devices
switching their routing area. The time between a request and its corresponding response could
also be an indicator for the amount of processing involved for this message as well as the current
general processing load at the GGSN. Most of the actions in the network as well as in the mobile
devices are reflected in the presented tunnel management messaging. Therefore, taking a look
at the dynamics of this control aspect in real networks gives valuable insights on the influence
of many of the networks’ aspects.

2.2 Related Work

The investigations conducted in both this and the subsequent chapter do not fall strictly into an
existing research category but instead aim to provide diverse insights into the control plane from
the perspective of the core network. Nonetheless, a selection of publications from the tackled
fields is collected here and the interesting aspects for this work are noted. In the following
sections the related work is divided into four distinct fields.

Work in the first and second sections evaluate properties of the mobile network and its traffic.
They are distinguished in their approach to the investigation, as the first group uses active
measurements from mobile devices or conclude from other sources of traffic whereas to the
other one has access to passive measurements from inside a 3G mobile network. Publications
from the third category can be generally subsumed under the term traffic modeling and may not
be specific to cellular networks. The final field concerns itself with investigative work conducted
by the responsible standardization and organizational bodies themselves, i.e., the 3GPP and
GSM Association (GSMA).

2.2.1 Device Active Measurement Investigations

The approach taken by active measurement studies is simple yet still very insightful. They are
performed by writing custom application layer measurement programs for a mobile device.
Specific traffic patterns are then generated, recorded, and evaluated. While this can provide
very detailed information about the higher network layers, it is limited both in lower layer
information as well as scale, due to being limited to a rather low number of devices.

Despite being more or less completely specified in the 3GPP documents, there is no open layer
1 and 2 (together also called “baseband”) implementation for 3G.9 Therefore, the baseband’s

9 Apart from OsmocomBB (http://bb.osmocom.org/trac/), but it only provides GSM and partial GPRS function-
ality.

http://bb.osmocom.org/trac/
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behavior can not be directly instrumented from the application layer. Attempts to infer some
properties are still worth conducting as the following selection of publication demonstrates.

In [Xu+11] Xu et al. use data from a location service combined with active measurements
to determine the possible geographic location of a GGSN in order to improve the location of
application content caches for the current network infrastructure. Similarly, in [Wan+11] Wang
et al. developed a program to probe mobile networks for middle boxes. That term includes any
node that alters traffic and affects performance not intended by the actual end-to-end protocols.
Examples are Carrier-grade NAT (CGN) [RFC7021], firewalls, or intercepting HyperText Transfer
Protocol (HTTP) proxies. A large number of such nodes were present in the investigated mobile
networks and resulted in increased device power usage and download durations and even pose
security issues themselves.

Concerningmethods to infer specific baseband and RRC state machine timer values with active
measurements, a 2007 paper [BRB08] presents a way to do this by transmitting packets with a
varying inter-departure time and studying the resulting arrival pattern. Indeed, the dynamics
of the radio interface’s RRC signaling and involved state machines are under investigation by
several publications. However, almost all focus solely on the impact at the radio interface but
pay little attention to potential implications in the CN.

The aforementioned work is continued in [Per+09] and uses the presented tools to derive
RRC transitions and power usage from traffic patterns. They found, that operators have a rather
larger freedom in configuring the mobile network control plane state machines and deviate
from the standard and even omit some states completely.

A further example of cross-layer influences in mobile cellular networks is [Qia+11]. It
discusses the impact of application layer behavior on RRC signaling and its consequences for
device energy consumption and radio channel allocation efficiency. The authors argue that
there is much room for improvement in this area, and propose some enhancements.

This is further elaborated on by research from Schwartz et al.[Sch+13] using the same tech-
nique to analyze the radio signaling load and thus power efficiency from several mobile phone
applications. The impact of custom set state machine timers interacting with application traffic
is further investigated and the QoE is investigated.

2.2.2 Research Based On Network Traces

The second approach to mobile network investigations comes in the form of recording and
evaluation traffic traces inside the network. This brings a much larger experiment scale with it,
albeit usually at the cost of some finer grained details in the higher protocol layers because of
aggregation to flow level. With core network measurements, the signaling traffic of the observed
link can also be directly investigated, which is a huge benefit compared to the guesswork in
active measurements.

The authors of [RRCpt] investigate the influence of individual CN nodes on the one-way delay
distribution of user traffic packets. According to the work, the latency portion added by the
SGSN is larger but also fluctuating more, while the GGSN added a small but steady amount of
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latency. This provides initial clues on the expected load impact of the CN for the investigations
in this work.

Following up on the topic of mobile network one-way delays is Laner et al. in [Lan+12a].
The end-to-end latency of an early LTE/EPC network implementation is compared to that of
a HSPA network at several measurement points in the networks. The results show a lower
median latency for LTE, despite some scenarios still being in favor of 3G networks.

The authors of [Sha+12] limit their focus to a specific subset of connected devices, namely
those of Machine-to-Machine (M2M) type. These are small automated devices that periodically
send out data, e.g., sensor readings, or receive control commands. The paper attempts to
characterize these on the basis of their generated mobile network traffic. The patterns are
clearly distinguishable from traffic caused by other device types such as smartphones.

A 2012 publication [ZÅ12] presents a more general look on the traffic composition of cellular
access networks in comparison to a wired access network. More and shorter flows are occurring
in the case of cellular networks. It will be interesting to see if this shorter-but-more theme is
also evident in signaling traffic. Additionally, even traffic pattern distinctions between types
of applications are made showing a wide range of possible outcomes across the investigated
applications.

Both the authors of [Sha+11] and [Pau+11] take the approach of looking at high-level user
traffic characteristics in a mobile network, focusing on temporal and spatial variations of user
traffic volume and peeking at the influence of different devices on this metric. Additionally,
[Bae+11] delivers a theoretical introduction on how to conduct large scale network measure-
ments and compares some data evaluation approaches. The 2008 paper of [RHR08] takes a
look at times scales and time of day deviations observed in aggregated user traffic in a mobile
network.

Up until now no trace-based investigation considered the control plane in their evaluation.
The following publications include this at least to some degree.

In 2006, Svoboda et al. [Svo+06] conducted a core network measurement study of various
user traffic related patterns, and also provided an initial insight into PDP context activity and
durations. Another paper [LBW07] combines simulations based on WiFi and synthetic traces
with prior knowledge of RRC states and their effects to investigate detection methods for
signaling DDoS occurring on the radio interface. A possible magnitude of this type of attack
is discussed. This also gives an indication of the correlation between user traffic patterns and
radio signaling.

A 2010 publication[Qia+10] uses the indirect RRC inferring method described earlier on a core
network TCP trace data set and finds that the involved RRC state machine is largely inefficient
in terms of signaling overhead and the device’s energy consumption for the traffic patterns seen
in the data.

A more recent publication at [He+12] performs a RRC investigation at the path between RNC
and SGSN. The authors classify their evaluations based on device model and vendor and on
the application type, and find that different devices have strongly different RRC characteristics,
which could possibly also have an impact on GTP signaling. Here, the RRC evaluation was
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done in a direct manner using explicit logs from the RNC. A final paper [RCD10] recaps some
general attack scenarios on 3G networks that exploit the specific 3GPP system design. These
are often closely related to the control plane.

2.2.3 Traffic Modeling

Extracting viable models from mobile traffic measurements will also play a significant role
onwards. The first related work is a survey of source modeling approaches for GPRS user traffic
from the year 2000 [SLT00]. Models for HTTP traffic and user behavior are compared and
a combined model is recommended. One has to keep in mind, though, that due to the rapid
developments in the Web in recent years those models might no longer be valid.

Similarly, the authors of [KLL01] derive a synthetic UMTS traffic model from wired dial-up
traces. By using a batch Markovian arrival process they characterize session traffic in most
cases with a lognormal distribution.

Work conducted in [HW05] derives a model for the users’ mobility in a mobile network. The
mobility model is however more focused on the circuit-switched voice communication features
of a phone. Likewise, the authors of [PPF05] introduce a traffic model for Session Initiation
Protocol (SIP) Voice over IP (VoIP) communication in UMTS networks. However, this model is
specific to the IP Multimedia Subsystem (IMS) domain of UMTS and potentially not applicable
to the more common over-the-top pure SIP traffic. The model additionally investigates some
initial UMTS control plane timing values, such as the processing time of PDP context activation
messages.

A further publication in 2005 [LK05] attempts to model the delay of IP packets passing through
an UMTS network using a batch Markovian arrival process. However, the model specifically
focuses solely on the delay originating from processing at the radio link and not at the core
nodes.

Finally, a further paper by Laner et al. [Lan+12b] investigates, amongst other things, a
user’s session duration and throughput in a HSDPA network. The duration is modeled as an
exponential distributions and the throughput using a lognormal distribution, albeit both exhibit
additional heavy tail characteristics.

2.2.4 3GPP and GSMA Related Work

The two associations related to the mobile network under scrutiny, the 3GPP as well as the
GSMA themselves have also released some studies and recommendations concerning potential
effects of and issues with the control plane.

In reaction to the mentioned RRC signaling DDoS the GSMA released some best practices
[GSM12] intended to reduce the number of signaling messages in these circumstances. The
cause of the DDoS were in most cases mobile devices that circumvented the RRC state transition
timers and explicitly switched the radio to the idle state after a transmission was finished
re-enabling it whenever needed. This can greatly reduce the power usage but increases the
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number of signaling messages to be sent and thus the load in the radio network and possibly also
inside the CN. With the presented “Fast Dormancy” mechanism, mobile devices are supposed to
reduce the radio signaling amount while still saving energy. The implications of this mechanism
on the core are not investigated.

A 3GPP-released study [3GP11] also describes the diverse traffic mix originating from modern
smartphones and its associated signaling problems.

The aim of the study in TS 23.843 [3GP13j] is to document some of the control plane bottlenecks
and attack vectors on the CN. This also includes the interesting case of GTP-C overload and
causes for this scenario. Some approaches to alleviate the effects are also presented but mostly
targeted at the EPC. The final study is an extension to the last one [3GP13k] and focuses solely
on GTP-C overload control to be included in a future version of the 3GPP architecture. Therefore,
the mostly unfinished document again targets just a future version of LTE and provides no
investigation of the actual load situation in current 3G networks.

All of the presented publications relate only to some degree to the forthcoming investigations.
The combination of the aspects of CN signaling with a statistical evaluation and load modeling
of PDP contexts should be a genuine contribution of the thesis.

2.3 Mobile Core Network Load

Now that both the basic architecture and protocols are and introduced and related work is
presented, a specific perspective on the CN control plane can be defined. Existing core network
measurement studies looked at the control plane mostly in a rather incoherent manner. Some
aspects were singled out and presented without forming an overarching motif. The driving
question for this research aspect was that of core network load. This section defines load metrics
in this context. Following afterwards is a discussion on potential factors that could influence
this load.

2.3.1 Load Definition

A traditional definition of link load or utilization 𝜌u� is the ratio of the used versus the available
bandwidth on a link

𝜌u� =
𝑏u�
𝑏u�

. (2.1)

The network load 𝜌u� can then simply be defined as the average load of all involved links,

𝜌u� =
∑u�∈u� 𝜌u�,u�

|𝑁| . (2.2)

However, the link itself is not the only component that has a limited capacity and thus can
experience load. Other load metrics might be defined using different limited resources as well,
e.g., the available memory or processing power.
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In Internet core routers those other factors are mostly well known and researched. Their main
functionality is to forward packets on the basis of a routing table. This table is generated by
exterior and interior gateway protocols, usually Border Gateway Protocol (BGP) in conjunction
with Routing Information Protocol (RIP) or Open Shortest Path First (OSPF), and may grow
rather large10. The generation and maintenance of a routing table including all lookups —
which might be expensive in a large table — incurs load on the router’s available memory and
processing capacity. This kind of load can be attributed to the router’s control plane and occurs
in addition to the user plane packet forwarding load. All in all, the Internet’s control plane
was designed to be lightweight and isolated. Only minimal and distributed state is kept where
necessary.

The situation is a bit different in a mobile network. Here, the control and user plane are
tightly coupled as discussed in Section 2.1. Therefore, load of individual resources cannot be
looked at separately anymore and a node will be limited by any one of these resources. The
load of any particular mobile core network node 𝜌u� could then be defined as the maximum of
the node’s link load 𝜌u�,u�, memory load 𝜌u�,u�, and processing load 𝜌u�,u�,

𝜌u� = max(𝜌u�,u�, 𝜌u�,u�, 𝜌u�,u�). (2.3)

The CN load 𝜌u�u� is then the maximum load of any of the CN nodes,

𝜌u�u� = max
u�∈u�u�

(𝜌u�). (2.4)

In this definition the performance of the CN can limited by any one of the involved core
nodes. Looking back at the discussion of the 3G architecture this should be an appropriate
definition.

But before attempting to apply themodel to an actual mobile network one additional limitation
that reflects the situation in real mobile networks has to be introduced first. Core network
nodes should be considered as black boxes. They are custom pieces of hardware sold by vendors
as-is, providing no opportunity to directly monitor the inner workings of the node, including
memory and processor usage. Only the network traffic leaving these nodes can be directly
tapped and investigated as will be described in Section 2.4. But the amount of signaling traffic
exchanged on these observable links could give ample opportunities to indirectly infer some of
the nodes’ inner state and load.

With the basics of the architecture in mind, the GGSN can be considered a top candidate for
being a load bottleneck. All traffic leaving or entering the packet switched domain must pass
through this element, and it is involved in all CN GTP signaling procedures as well. Being an
endpoint for the GTP tunnel makes it responsible to sort and encapsulate incoming traffic into
the corresponding user tunnel. To accomplish this a lot of state has to be kept and processed
when signaling occurs. Therefore, the GGSN will be the node under scrutiny in the trace
evaluation and performance model creation.

10 Compare, e.g., the number of BGP entries given in http://www.cidr-report.org/as2.0/.

http://www.cidr-report.org/as2.0/
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While looking at the GGSN may be the most obvious choice, it is by far not the only one.
In addition to GTP tunnels the SGSN acts as the interface to the radio network as well, which
involves handling RABs and mobility management. However, it can be assumed that the number
of SGSNs employed in a mobile network is larger than that of GGSNs, as they are typically kept
closer to the regionally distributed radio networks. This means that a single node would have
to handle less mobile devices and related signaling interactions. One has also to bear in mind
that the SGSN can be completely circumvented by setting up a direct tunnel between GGSN
and RNC.

Apart from the two gateways directly inside the traffic path there are several other nodes
essential to the control plane decision making, which may be very load-sensitive as well. The
HLR for example is a central database storing all user related information which need to be
retrieved any time a user needs to undergo initial authentication and authorization. Typically,
the procedures the elements are involved in are fewer. Hence, this investigation concentrates
just on the case of the GGSN.

2.3.2 Load Influencing Factors

With the described understanding of core network load at hand, one can now speculate on
factors that could influence the load in mobile networks. Such factors will also play an important
role for the following evaluation.

The first factor comprises the mobile devices themselves. They are the source of any user
traffic and the cause for most signaling procedures, for some procedures directly but for most
indirectly. But it stands to reason that the device factor is only an aggregate of several influence
subfactors. And the specific selection of subfactors and their parametrization will be unique to
each device.

Specifically, this factor includes the type of device — which in turn is a composite of the
hardware, the baseband as well as the OS — and the running applications. The usage of
applications decides when the device should establish a mobile data connection, how long
the connection is held, or which mobile technology takes preference. Depending on the RAT
in use, subtle behavioral and signaling differences can be expected, e.g., in the timing of the
radio transmission intervals, which could influence the investigation. Some specific GTP tunnel
duration properties could stem from the OS’s IP and transport protocol implementation. For
example, TCP timeouts might be configured to different default values influencing the duration
of transport layer connections and therefore also the underlying tunnels. Some further influence
factors of the protocol stack are discussed in Section 5.1.

The actual user-traffic patterns are also generated by the applications running on the device.
The application traffic spectrum ranges from low volume but extremely long duration instant
messaging applications over recurring ad-retrieval patterns up to short duration burst down-
loads. Since the mobile application ecosystem is very versatile every device will pose a unique
combination of applications. The governing factor in everything device-related is the user and
her behavioral patterns. This expresses itself both in the traffic dynamics and in the mobility
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pattern. But it is nigh impossible to single out individual behavior in a network’s traffic mix or
a large network trace.

Easier to observe are the temporal statistics of large user groups, not targeting individual
users but the overall effects of device usage in a certain time span, e.g., based on the time of
day or the day of the week. In network user traffic analyses diurnal effects are typically very
distinct, with peak traffic some time during the day and the lowest traffic shortly after midnight.
Studies investigating this typically only look at user traffic. It should prove interesting to find
out if the CN control plane shows similar patterns and can be correlated to user traffic.

The second large influence factor are the mobile network’s control plane state machines and
their related signaling procedures. If a network-side state machine inactivity timer decides to
remove an existing tunnel, signaling will occur, which suggests there will be a large number
of tunnels with a duration in this range. While most 3G control plane timers have default
values, they are often changed by the manufacturer or network operator and will vary from one
implementation to another. It is therefore quite difficult to give any hard numbers in advance,
one has to correlate such aspects with certain events in the results.

2.4 Evaluation Methodology

With the mobile network load defined and possible influencing factors described, the findings
can now be applied to an actual mobile network. For this data from passive network traces will
be employed. Before that, this section describes the monitoring setup and the captured data.
This also includes a description of some methods required to examine specific device types and
other device-based factors from the dataset.

While this chapter only employs passive measurements, Chapter 6 will additionally deal
with approaches to conduct meaningful active device-based measurements and set up a mobile
streaming simulation testbed based on some of the results.

2.4.1 Network and Monitoring Setup

For the analysis the METAWIN monitoring system, developed in a previous third-party research
project and deployed in the network of an Austrian mobile operator, is used. Detail information
on this setup can be found in [Ric+06].

The measurement taps are located at the Gn interface at one GGSN within the core network
as depicted in Figure 2.8. It gives access to a wide spectrum of core GTP signaling, including
the mobility and tunnel management. The system does not offer a complete packet trace, but
aggregates every signaling transaction and user traffic flow down to a number of select fields.
This includes GTP IEs such as the RAT as well as the terminal types of the mobile clients. The
latter is determinable by the TAC-part of the IMEI and will be discussed later in detail.

In the network under study, a direct link between GGSNs and the RNCs and circumventing the
SGSN is present. It is only used for transporting user-plane traffic under specific circumstances,
and signaling procedures are still carried out in the normal way between SGSNs and GGSN.
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Figure 2.8: Location of the METAWIN monitoring probe in the 3G core network.

Therefore, only the Gn interface at GGSN is seeing the complete core network traffic, which
explains the location of the tap. The network under study has more than one GGSN at different
physical locations. The tapped GGSN manages about half of the operator’s total traffic volume
in this period.

Recording data in a live network necessitates meeting strict privacy requirements regarding
the handling of user-related data. METAWIN complies with this by anonymizing all user-
identifying markers. Application-level payload is removed and all remaining user-specific
data (e.g. the IMSI) are non-reversibly hashed before recording. UEs in a dataset can still be
differentiated by the hashes but not traced back to the actual user. The wiretaps deployed
within the monitoring system are time-synchronized with Global Positioning System (GPS).
Accordingly, the packet timestamps have an accuracy of least 100 ns.

2.4.2 Dataset Description

Using METAWIN a week-long core trace was acquired. It was recorded in April 2011, specifically
beginning at Monday, 2011-04-10, 00:00:00 and ending Sunday, 2011-04-17, 23:59:59.

The trace includes user plane as well as control plane traffic. User plane traffic is recorded at
a traffic flow granularity level with the trace containing data on 2.2 × 109 aggregated flows. No
exact flow start time is given, instead it is rounded down to a 2 h window, with the timestamp
just marking the beginning of the window. A flow entry further consists of hashed identifiers for
the IMSI and the remote server. Besides the usual protocol and port information, the transmitted
data volume, in a number of packet as well as byte count, is given on in both link directions.
Additional extended information is stored on HTTP traffic. This portion of the trace includes
precise timestamps as well as the MIME-type, result code, and size of the requested objected.

The recorded control plane traffic consists of 4.1 × 108 GTP tunnel management transactions,
i.e., every Create, Update, and Delete request and response. Not all of the IEs’ data is included.
But most importantly, it includes the Type Allocation Code (TAC), RAT and hashed IMSI for
the purpose of device discrimination. Also present are several timestamps with 64 bit precision
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describing the time of the request, response and the tunnel’s start time. Finally, the GTP data
contains the response codes for each request. With these codes, failed transactions can be
distinguished from successful ones and examined separately. Since the hashed IMEI is consistent
across the user and control plane data, both can be cross-correlated.

All trace information was exported from METAWIN as pure line-based text data. For this
investigation all records were fed into a SQL database. Evaluations were then conducted through
scripted queries on the database using Python scripts and further statistically evaluated in R.

2.4.3 Device Identification

Individual device types in a mobile network can be identified in the data through the TAC field
on every entry. The TAC, defined in [3GP13h], represents the first eight decimal digits of the
IMEI and uniquely identifies each device type. The following six digits of the IMEI constitute
the serial number of a specific device, which is omitted in the data to protect the privacy of
subscribers. Due to the short length of this serial number, popular devices will often be assigned
more than one TAC, somewhat complicating the identification of certain device models.

TACs are assigned to individual device models by the regional members, or Reporting Body
Identifiers (RBIs), of the GSMA, distinguished by the first two digits of the TAC. The full
allocation information is not freely available, but only to members of the GSMA, which is not a
viable option for research institutions and other interested parties. Some independent efforts
have been made to collect TACs from devices. Most of them allow just low-volume queries for
specific TACs for non-commercial purposes. However, one TAC dataset is publicly available
and can be used freely.11

This evaluation uses this dataset with some additional device identifiers and classification an-
notations collected during the course of the investigation. With this at hand, most of the devices
associated with the flows and GTP messages from the trace were identified and categorized.

2.4.4 TAC Evaluation Validity

It is important to know whether the information available in the TAC dataset covers enough of
the devices seen in the traces to conduct sufficiently meaningful evaluations. After all, the TAC
data is large but might still be very incomplete due to the sheer number of devices in existence.

Table 2.2 provides statistics on the devices that could be identified in the trace. About 81 %
of all unique TACs present in the trace could be mapped to a known device. More importantly,
when looking at the total number of tunnels and GTP messages during the week, even 91 % of
the responsible device can be determined. Finally, the flow data shows an even clearer picture,
as almost all of the devices involved can be identified.

This is an interesting result in itself, as the 19 % of devices present in the dataset that could
not be identified through the TAC are the cause for only about 9 % of signaling and 0.3 % of

11 Available at: http://www.mulliner.org/tacdb/.

http://www.mulliner.org/tacdb/
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Table 2.2: Relative TAC statistics.

Type Relative number of devices with an
entry in the TAC dataset

Total number of flows 99.72 %
Ratio of total traffic 99.97 %
Total number of tunnels 87.57 %
Total number of GTP signaling messages 90.95 %
Number of distinct UEs 80.93 %

total traffic. This means there is a long tail of device types in this mobile network with very
little impact on load-influencing factors. With these results, one can be rather confident that
evaluations using device discrimination based on this TAC mapping should give viable results.

2.4.5 Device Classification

With these device-to-TACs mappings available, additional meta-information can now be added
to it, intended to distinguish some of the described load influencing factors. Knowing the model
gives also a good knowledge of the device’s category and of the OS it is running by default.12

The device’s category represents a general classification of the device and should give some
initial hints on the fields of use. The devices are partitioned into smartphones, feature phones,
3G USB dongles or 3G+WiFi routers, and all other devices. The term “feature phone” usually
points to low-end mobile phones with at least some kind of data capability, often with a physical
numerical keyboard. Phones that could subjectively fall into either the smartphone or the
feature phone category were generally attributed as smartphone. Not covered here are any
kind of M2M devices, because the TAC mappings are very inconclusive and incomplete in this
area. And concluding from the previous Table 2.2, the impact of such M2M devices should be
negligible.

The next classification variable is the OS. Most popular in the trace were the two dominant
smartphone OSs, Android and iOS, but also Symbian13, often found on feature phones, was
present. Other systems of note are Blackberry OS and Windows Phone or Windows Mobile, but
they occur in such a low volume in the trace that it was decided to completely neglect them and
count them towards the other and unknown devices. It should also be noted that USB dongles
and routers cannot be linked to any specific OS solely by the knowledge of the TAC. Also not

12 The OS actually running on the device at the time of the measurement can not be inferred on this way. But the
number of devices running a different OS than the one installed by default should be relatively low.

13 While not completely accurate phones running Series 40 were also attributed to this category because of their close
relationship.
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distinguishable are the exact release versions of the OS on a specific device. This could diminish
the evaluations, as the network behavior could change noticeably between two major versions.

With this knowledge, one can even conjecture about the applications running on the device.
Combining the OS with lists of the most popular applications for this platform can already give
some very helpful hints on what can be expected from the traffic mix these types of devices are
generating. One final possible TAC classification could be a categorization by the phone vendor.
However, this was not conducted because it can be safely assumed that the information gain is
negligible in comparison to the device type and OS, e.g., iOS will be installed on every Apple
smartphone anyway.

2.4.6 Preliminary Device Statistics

After applying the categorization to the network dataset the device composition is evaluated to
get a first grasp of the network’s makeup and to help understand the later investigations.

Smartphones and 3G dongles form the two largest observed portions of shares of devices,
while classic feature phones do not seem to play a major role anymore. About twice as many
Android as iOS devices are present, attributable either to the contractual situation of the operator
or the wider price range of Android devices.

Regarding traffic, feature phones generate negligible amounts of user traffic despite still
making up one tenth of the device fraction. The difference between 3G dongles and smartphones
is also noteworthy. While the former cause large amounts of user plane traffic (compared to the
device numbers), they are responsible for but a few core network signaling events and tunnels.
This picture is reversed for smartphones.

One observation across all device types is that about 14 % of all mobile devices have activated
their GPRS data service and GTP tunnel and cause signaling traffic, but do not initiate any user
plane traffic at all. It is unclear if this is an intended behavior as this will lead to an increase
of the devices’ power usage and of radio spectrum resources with seemingly no benefit to the
user.

2.4.7 Statistical Methods

As a final preparation for the evaluation all the statistical tools that will be used in the evaluation,
are briefly defined in this section with material based on [FMF12] and [Knu97].

2.4.7.1 Distribution Functions and Fitting

With a distribution function, also called Cumulative Distribution Function (CDF), a monotonous
mapping of continuous values to a probability can be well represented. It is defined as the
probability that a random variable 𝑋 is less than or equal to a value 𝑥,

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥). (2.5)
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Sample of real data are generally finite and not continuous. Hence, the distribution can only
be approximated by an Empirical CDF (ECDF) 𝐹u�(𝑥) for values 𝑋1, 𝑋2, … , 𝑋u� and

𝐹u�(𝑥) =
number of 𝑋1, 𝑋2, … , 𝑋u� ≤ 𝑥

𝑛 . (2.6)

One of the analysis’s goal is to break down the actual measured system to a simplified
probability model. This can be conducted by attempting to match the empirical data distribution
to an existing basic probability distribution, e.g., exponential, Gamma, log-normal, or Weibull.
In order to achieve this one of several readily available matching methods, which rely either
on closed formulas or numerical optimization, can be used. Two simple methods are Matching
Moments [Vos00, pp. 99-143] and Maximum Likelihood.

The former estimates parameters for a preselected distribution function by optimizing the
target distribution function so that its moments converge to those of the sample data. The latter
approach finds a fitting target probability function by calculating the log-likelihood of the data
for a preselected distribution and maximizing the likelihood.

In such cases where none of the basic probability distributions proved to be a good fit an
attempt was made to converge rational functions to the sample ECDF with an optimization
tool specialized for this case, Eureqa [SL13; SL09]. While not as good as a simple model with a
probability distribution, having a rational function as a description for a dataset can still enable
some further statistical and queuing theoretic evaluation.

2.4.7.2 Statistical Tests

To check the statistical goodness of the generated fits, statistical tests can be used. Generally,
tests compare the values observed in an experiment to expected values following a theoretical
distribution. In this case, the tests are used to validate and estimate the quality of the discovered
fits to the empirical data.

First, as a simple measure, the Pearson correlation coefficient can be facilitated, comparing
the covariance and standard deviation of the empirical and fitted variables. Another possible
approach is Pearson’s 𝜒2 test for independence [Pea00], which is the oldest known test and
defined as

𝑉 =
u�

∑
u�=1

(𝑜u� − 𝑒u�)2

𝑒u�
. (2.7)

This simply calculates the sum of the squared difference between the observed 𝑜u� an expected
values 𝑒u� and adjusts each for their weight. The result can then be compared to the 𝜒2-distribution
with the same degrees of freedom as the test for a given significance level. In most practical
cases this comparison is conducted against precomputed tables with set significance levels. The
data collected in this thesis is typically continuous in nature on which this test cannot be used
directly. However, data could still be split into a finite number of intervals, as is done when
generating a histogram, and then using the intervals as categories for the 𝜒2 test, albeit with a
certain loss of precision.
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Continuous data can be checked with the Kolmogorov-Smirnov test. First suggested by
Kolmogorov in 1933 [Kol33] and expanded on by Smirnov in 1939 [Smi39] it is defined as

𝐾+
u� = √𝑛 sup

−∞<u�<+∞
(𝐹u�(𝑥) − 𝐹(𝑥)) (2.8)

and
𝐾−

u� = √𝑛 sup
−∞<u�<+∞

(𝐹(𝑥) − 𝐹u�(𝑥)) , (2.9)

for the ECDF 𝐹u�(𝑥) and CDF 𝐹(𝑥). Once again the results are compared against a precomputed
table of values from the Kolmogorov-Smirnov distribution to test the significance of the observed
results’ deviation from expected values.

Finally, diagrams of the empirical and fitted distribution — especially histograms, density, and
CDF — should additionally be compared and checked for specific artifacts or outliers in a visual
inspection.

2.4.7.3 Random Sampling

Most of the evaluations in Section 3.1 use random sampling to work on a subset of the original
data. Not only does this simplify the handling of a dataset this large sets — working on a set
with two billion entries can be quite problematic — but can even improve statistical significance,
as rare outliers tend to get removed by drawing samples. By selecting entries using a uniform
distribution it is ensured that no unintentional sampling bias occurs. Through a technique
called bootstrapping, the intended evaluation is now applied onto multiple and independently
drawn sample groups. If the results of every sample agree then it is also highly likely that the
assumption holds for the whole data set.

2.5 Core Network Architecture Summary

The chapter served as an introduction to mobile architectures, through a broad overview of the
3G mobile core network control plane, and the evaluation methodology, including a description
of the dataset. Modeling mobile networks cannot be achieved without first understanding many
of the aspects and protocols unique and intrinsic to mobile networks. And these differ a lot from
the conventional wisdom found in wired network architectures. The determined definition of a
control plane load serves as an essential distinction to regular mobile network investigations,
which usually consider just the user plane. The gained knowledge will be utilized as a basis for
the evaluations in the following chapter.
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EVALUAT ING MOB I L E S IGNAL ING TRAF F I C AND LOAD

With the architectural and methodological overview concluded this chapter can now move
on to the actual evaluation. To this end, the previously described dataset is explored for any
signs related to control plane load. The evaluation, including a statistical analysis, is given
in Section 3.1. The measurement data backs up a number of assumptions on the behavior
of different device and operating system types, but also reveals some remarkable signaling
characteristics.

The results of these measurements are then used to construct a queuing theoretic load model
for a CN in Section 3.2. This model is then extended with virtualization modifications to it and
followed by a numerical simulation in Section 3.3 to confirm the viability of the models.

3.1 Mobile Core Signaling Evaluation

Finally, the core network control plane load evaluations can now be tackled. The previously
described dataset is thoroughly investigated several approaches to measure load and related
factors are iterated.

3.1.1 Traffic Ratio Estimations

To get a first grasp of the dynamics present in the dataset and the core network under investiga-
tion, Table 3.1 shows a small survey of the traffic composition split up by device type and OS
categories. The majority of signaling messages originated from smartphones, which in turn
generated only a small portion of user traffic when compared to 3G dongles.

With these numbers, the notion of active devices or tunnels can also be introduced. This
only includes entities that, besides signaling, actively generated user traffic during their life
cycle. Interestingly, only about 82 % of all unique devices in the trace were active and could be
associated with at least one traffic flow. The remaining 18 % of devices still had an open GTP
tunnel but never used it. This is a probably unexpected source of load for the core network,
as it causes a significant amount of control plane load without any actual benefit to either the
network or the device. The active device distinction will also be used later on in the evaluation.

Unfortunately, the dataset does not contain any hard numbers on the data volume of the
signaling messages, which could be a direct indicator of the network load the control plane
imposes. But using the estimated upper limit of a GTP message from Section 2.1.5, a rough
upper limit on the total signaling traffic can also be derived. The following formula is used:

41
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Table 3.1: Relative device-discriminated traffic statistics extracted from the dataset.

Flows Traffic Tunnels GTP
messages

Devices

By device type
Smartphones 20.58% 12.81% 60.31% 75.99% 37.97%
Regular phones 0.26% 0.37% 5.40% 0.94% 9.25%
3G dongles 66.55% 75.12% 12.71% 9.53% 25.10%

By OS
Android 10.82% 6.48% 14.33% 43.33% 14.01%
iOS 7.22% 4.47% 18.91% 20.35% 7.94%
Symbian 1.02% 1.09% 21.17% 4.51% 12.97%
Blackberry OS 0.07% 0.10% 2.17% 2.60% 1.48%

𝑣u� = 2𝑆(𝑣u�u�u� + 𝑣u�u�u� + 𝑣u�u�), (3.1)

𝑡u� =
𝑣u�
𝑣u�

≈ 0.7%, (3.2)

with the signaling volume 𝑣u�, the set of signaling messages 𝑆 (times two since requests and
responses are considered), the estimated size of a GTP message 𝑣u�, and the length of the UDP
and IP headers. In this scenario, the traffic ratio 𝑡u� of 𝑣u� compared to the total traffic 𝑣u� is
calculated to be a minute 0.7 %. Therefore, it can be that the volume of control plane traffic
is not a limiting factor in the core network. Therefore, any impact on CN performance likely
stems from other, load factors at the network nodes, such as the memory profile of the states
kept in the gateway nodes, the time required to process the large number of information held in
the messages, or the imposed latency through several message round trips during transactions.

Consequently, the following evaluations are all intended to find some indirect approach to
measure the system’s load.

3.1.1.1 GTP Tunnel Duration

The first indirect evaluation target will be the duration of the GTP tunnels. This duration is
directly related to the amount of tunnel management signaling occurring between the SGSN
and GGSN. In turn, each of these signaling interactions causes processing at the two involved
nodes and changes the amount of state and its properties in the form of the PDP context. In
terms of signaling messages, the tunnel duration implies both tunnel create and delete messages,
but no update message.
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For the purpose of the evaluation the duration is defined as the interval between corresponding
GTP create and delete messages. As soon as the GGSN sends its successful response to the
create request, it can be expected that the necessary state has been created throughout the CN
and that the network is ready to forward user packets. Similarly, after a delete message, user
traffic should not be forwarded anymore. However, state may still exist and could be freed
up lazily. But the latter depends entirely on the specific implementation as it is not explicitly
defined in the specifications.

As a side note, while the trace itself is only one week long, information on tunnels longer
than this period can still be obtain when they were closed during the period. The trace’s record
on delete messages also contains the timestamp of the initial tunnel creation.

All the individual tunnel durations in the dataset are differentiated using two factors based on
the presented TAC mechanics. The first part of the investigation looks at tunnels from different
device types. After that, possible influences from the operating system are investigated.

Influence of the Device Type
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Figure 3.1: Tunnel duration distribution, separated for 3G dongles, smartphones and regular phones with
medians at 115 s (total), 31 s (regular), 82 s (smartphone), and 1207 s (dongle).

Figure 3.1 shows the ECDF for the user tunnels and their PDP Context durations in the dataset.
In this first graph, the duration of different device classes is distinguished and put in perspective
to the overall duration distribution. The devices classes here are smartphones, regular phones,
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and 3G dongles. It can be observed that tunnel durations range between mere seconds and
more than one week.

The median can be clearly differentiated between device types, being much longer for 3G
dongles than for mobile phones. This reflects expected user behavior very well and gives a first
indicator on a possible influence of the user plane on the control plane.

Dongles are usually used with laptops to be able to work while being mobile. Therefore,
dongle sessions last often for extended periods of time, longer than a few minutes and up to
several hours. Also, this type of device is usually put into a standby mode after the period, which
completely disables any mobile connections — and therefore any associated tunnel — instead of
switching to low power radio idle modes. This is reflected in the dongle tunnel duration here
as well. When compared to the other device category, dongles are more compactly centered
around their median of about 20 min.

A similar behavior can be observed in the regular phone distribution with values arranged
tightly around the median of 31 s. Compared to today’s smartphones, data connections on
regular phones are mostly explicitly initiated by user interaction, for example through starting
a browser and viewing a web page, and generally do not generate traffic in the background.
This could also explain the comparatively low durations observed here.

The picture is rather different in the smartphone tunnel duration. Here, often background
tasks are running over long periods of time and devices try to keep connectivity up as long as
possible (while still attempting to conserve power). Overall, this could lead to the smoother
distribution seen here with no clear center value.

Overall, a relatively high number of tunnels with a duration shorter than 10 s can also be
observed. Especially the peak at about 1.5 s — which is interestingly shifted to 6.8 s in the
dongle distribution — is of note. This is even shorter than the default values for the RRC idle
state transitions which causes the tunnel to be destroyed. It can be conjectured that these short
tunnels have been explicitly removed by the UE as no other involved state machine has timers
this short.

Another distinct step in the total and smartphone distributions can be observed at the 30 min
mark. As it is only present in these to categories — and the total distribution looks to be mostly
governed by smartphones — it is reasonable to assume that the cause for this is a specific
behavior observable in some aspect of smartphone related influence factors.

Influence of the OS

Next, the smartphone and regular phone categories are further broken down by their OS. Only
the three major systems, Android, iOS, and Symbian, are identified here, the amount of other
types was negligible. The smartphone category is almost exclusively represented by Android and
iOS devices, while Symbian devices make up most of the regular phones but is also represented
in a number of smartphone models.

Figure 3.2 depicts the ECDF of the tunnel durations of these categories in relation to the total
duration distribution. They immediately exhibit a clear difference between individual OSs.
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Figure 3.2: Tunnel duration CDF, separated for select OSs; Medians at 115 s (total), 15.5 s (symbian),
104 s (iOS), and 765 s (android).

The Symbian tunnel durations are similarly distributed to the previously depicted regular
phone category, albeit with an even shorter duration median of about 15 s. This is an indicator of
the large intersection between these two groups and the explicit user traffic property attributed
to regular phones.

The two smartphone-exclusive OSs have remarkably similar tunnel distributions with the
exception of the Android tunnel distribution shifted to much longer tunnels. This is mostly due
to the larger accumulation of iOS tunnels around the previously mentioned 1.5 s mark. Over
20 % of all tunnels established by iOS devices are shorter than 2 s. A possible explanation is an
interaction between the described implicit background traffic happening in intervals and the
efforts of iOS phones to preserve as much energy as possible.

To this end, phones aggressively force their radio connection to the low power idle states
or even completely shut off the radio immediately after transmission have ended, circumvent-
ing RRC timers. To achieve this, iOS devices are known to implement a form of 3GPP Fast
Dormancy [GSM12]. It is deemed to improve device battery life, radio signaling and radio
spectrum efficiency. Due the more frequent state transitions it also could cause an increase in
core network tunnel management signaling, which is probably what happened in the iOS case
depicted in the ECDF.

Another set of tunnel duration accumulations are also visible in the OS distributions. Two
types of steps should be distinguished here. First are accumulations that occur across multiple
or all categories. This points to an influence source outside of the specific category. If the artifact
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is present in every distribution it is even likely that the source is a behavior of the network’s
state machines. The second type of accumulation is local to one or some categories, which
places the root cause into the region of these categories and their related influence factors.

In case of the OS category, additionally, peaks at 30 s, 300 s, and 600 s can be observed.
However, whether this behavior can be attributed directly to the operating systems themselves
cannot be decided just by looking at these distribution. Other factors, e.g., the device’s baseband
and user traffic dynamics, also play a role.

Influence of the Time of Day
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Figure 3.3: Tunnel duration of all active tunnels by time of day.

In addition to device factors, diurnal effects could also play a role in the duration of tunnels.
Figure 3.3 depicts individual ECDFs of the tunnel duration for four six-hour intervals of a day,
starting at midnight. While no clear distinctions are visible, there is a trendto shorter tunnels in
the early morning hours. The early afternoon hours tend to produce tunnels more centered
around the middle duration range. Even longer tunnels should be treated with reservation, as
they exceed the length of their assigned time slot in the ECDF and span a larger time frame.
Only the tunnel creation point is guaranteed to be in the slot.
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Influence of Other Factors

Due to the nature of the trace dataset at hand many other influence factors are hard or outright
impossible to distinguish. Some factors are unknown from the CN perspective, as the mentioned
device baseband, while others have not been recorded in the trace.

For example, it would theoretically be possible to investigate the influence of the RAT as it is
an IE in the GTP messages recorded in the trace. The radio access parts of GSM and UMTS are
completely different — including the RRC state machines which were depicted in Figure 2.5
— and therefore could also differ in their control plane load impact on the core. However, the
RAT IE is optional and only set in less than 1 % of the available records. As the radio access can
change even during an existing tunnel — in which case the GGSN receives a GTP update request
informing the node about the change — a complete picture without gaps in the knowledge of
the RAT would be required to do any investigation on this.

Influence Strength of the Categories
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Figure 3.4: Q-Q Plots of the tunnel duration distributions in comparison to device classification categories.

To ascertain which of the investigated device categories influences the total duration distribu-
tion most, Q-Q plots are created and investigated. It is conjectured that the amount of influence
on the duration distribution is correlated to the influence on the control plane load. In theory, if
both durations follow the same distribution, one expects a straight diagonal 𝑦 = 𝑥 line through
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the origin. A steeper incline indicates more compact regions in the distribution plotted on the 𝑥
axis and vice versa.

The Q-Q plots in Figure 3.4 compare the total tunnel duration distribution to the duration
distribution of the dongle, smartphone, Android, and iOS classification cateogries. It can be
observed that the smartphone duration distribution is distributed almost equally to the total
except for minor variations. However, the 3G dongle tunnel durations follow a very different
distribution. Their effect on the total duration distribution seems to be negligible despite the
large amount of traffic they are causing. This is also a first indicator that smartphones might
have a larger impact on signaling than other device types.

Looking closer at the smartphone category, Q-Q plots of the two major OSs are investigated.
With the exception of the large sub-2 s peak in the lower tail of the distribution, iOS device
tunnel durations are very similar to the overall tunnel duration distribution. The same can not
be said about the Android distribution, which deviates somewhat in the distribution’s center
but is similar to the total distribution in the upper tail. Even devices with just a different OSs
seem to strongly differ in their influence on duration distribution and therefore on signaling.
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Figure 3.5: Logscale density plot of the tunnel duration with all classifications.

Figure 3.5 attempts to depict where in their distributions the investigated device categories
show the most impact on the total distribution. The plot shows the density of all previously
investigated device influence categories.

It is evident that the durations are not evenly distributed, but rather follow sharp spikes. One
of largest spike across all categories is the one at a duration of 30 min, with about 1.8 % of all
tunnels in the network falling into that region. Since this spike happens across all device types,
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it makes a rather strong case for being induced by the network. On the other hand, the bulk of
tunnel durations in the short-to-medium range does not seem to be governed by the two major
smartphone operation systems but by other devices in the network, which do not show major
spikes in other bins.

Besides the long-tailed behavior in the upper tail of the tunnel durations another slight accu-
mulation effect, repeating itself every 6 d to 7 d, is present in the upper tail. This phenomenon
is as yet of unknown origin and does not coincide with any known timers of the 3G mobile
network.

The investigation of this data leads to the conclusion that the planning and dimensioning of
the control plane needs to watch the behavior of smartphones more carefully than that device
types.

3.1.1.2 GTP Tunnel Arrivals

The duration of GTP tunnels is but one aspect of influence on control plane load. The arrival
process of these tunnels is also interesting in itself, specifically, the arrival of tunnel requests,
i.e., GTP create requests, at the GGSN.

An arrival process can be described in two distinct ways. First by the number of arrivals in a
given time interval. Second, by the Inter Arrival Time (IAT), the time between two consecutive
arrivals. Depending on the choice one has to deal with either a discrete or a continuous
distribution.

Here, the tunnel arrival process is investigated with both approaches. This also adds to the
foundation of the load model constructed in the next section. Note, that the notion of classifying
arrivals into influence categories based on device specifics is omitted here. An investigation of
this process can not be realistically be conducted categorized and still relate to the total system
load.

Figure 3.6 depicts a histogram of the number of tunnel arrivals per second during the whole
trace duration period. Of note is the clear bimodal nature with one peak around twelve arrivals
per second and the other in the low thirties. While the distribution is rather compact around
these two peaks, there are some outliers reaching 107 arrivals per second. If the hypothesis of
the correlation between signaling load and number of arrivals holds, it can be assumed that
load is not constant but rather switches between two modes with some periods of very high
load induced by an increased number of arrivals.

A reasonable cause for the occurrence of these two modes can be found in the diurnal arrival
patterns. Figure 3.7 contains a violin plot of the tunnel arrivals. This type of plot is similar to a
box plot but additionally shows the density of the individual items on the vertical axis. Here
the arrivals are broken down to hourly slots.

The nocturnal plateau of arrivals between midnight and 05:00:00 and the longer daytime
plateau between 08:00:00 and 19:00:00 match the two modes found in the histogram. In between
are short transition phases. The density of the arrivals during daytime indicates a spread of the
number of arrivals over a larger range. This could be an indication of load fluctuations in the
system.
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Figure 3.6: Tunnel arrivals histogram overlaid with a density plot.

Complementing the arrival rate evaluation is the investigation of the tunnel IAT. This metric
is more sensitive to short time fluctuations of arrivals and more suited to describe the arrival
process for use in the proposed load model.

The overall picture of all arrivals is given in the ECDF of Figure 3.8a, again broken down
by time of day. Obviously the same previously observed diurnal load oscillation can again be
perceived. The median IATs fall in the range of 20 ms and 60 ms, enveloped by the distribution
for the hours starting at 16:00:00 and 02:00:00 having the lowest and highest IAT respectively.
Additionally, tunnel arrivals are occurring at an increased frequencywith an interval of multiples
of 20 ms, which generates these wave-like steps in the ECDF plot. As this is happening very
regularly at every time of the day, a source inside the mobile network is indicated.

A hypothesis as to the origin of this effect is the value of the Transmission Time Interval
(TTI). This property determines the duration of a mobile network’s radio transmission slot.
In 3GPP standards up to UMTS the default value of the TTI is either 10 ms or 20 ms, newer
versions of the specification additionally allow values of 2 ms (in HSPA) or even 1 ms (for LTE).
The absolute time of every transmission slot is also synchronized across every base station in
the whole mobile network, which makes the TTI noticeable even when not measuring directly
at the radio link.

The observed step-width of 20 ms therefore indicates that the tunnel establishment signaling
procedure includes at least one trip from the mobile device over the radio interface. This makes
sense, as the tunnel is typically created during the GPRS Attach procedure, which is indeed
initiated at the user’s device. Unfortunately, this gives the arrival process batch properties. As a
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Figure 3.7: Violin plot of tunnel arrivals in one second per time of day.

result the load at the GGSN increases momentarily when a batch arrives. The GGSN would then
need to process more requests simultaneously than if the arrivals followed a smooth stochastic
distribution.

This effect becomes more peculiar when the tunnel arrivals are further broken down. Fig-
ure 3.8b only displays arrivals of tunnels that actually transported user traffic during their
lifetime. Here, the influence of the effect is visually unnoticeable. This could be attributed to
the fact that most active data connections during the time of the trace recording were already
using almost exclusively HSPA or better, which sees the much lower TTI. Only older, regular
phones establish plain UMTS connections and often do not even use it.

The discrimination of the IAT distribution by RAT that was used during the creation of the
tunnel reveals no further information. Due to the much lower number of connections the GPRS
distributions are shifted to much higher intervals than the UMTS specific distributions.

3.1.2 GTP Tunnel Message Processing Time

Finally, the GGSN’s processing time of GTP tunnel management messages is investigated.
Potentially, this can be a direct measure of the load at the node. In times of higher load one
would expect a higher processing time of signaling messages.

From the network trace the processing time can be calculated by two timestamps in each
record. As the trace is recorded at the Gn interface these timestamps represent the points in
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(a) All tunnel requests.

0.00

0.25

0.50

0.75

1.00

0.01 0.10 1.00
tunnel interarrival time (s)

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time of day
0h-5h
6h-11h
12h-17h
18h-23h

(b) Only tunnels with data flows.
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(c) Tunnels with data flows initiated in GPRS.
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(d) Tunnels with data flows initiated in UMTS.

Figure 3.8: ECDFs of the tunnel IAT in seconds by time of day.

time the GTP signaling request and subsequent response pass on the link to and from the GGSN.
Therefore, they can also be interpreted as the start and finish of the involved processing at the
GGSN.

Generally, the processing time of all three message types — i.e., creates, deletes and updates
— could be calculated. It would be of special interest to know what influences the setup time of
tunnels, as this is one of the GGSN’s most time-sensitive jobs and can impact the time a user has
to wait before being able to actually transfer data. Unfortunately, due to unrecoverable issues
with the recording of the dataset, the related timestamps for both the create and delete messages
records were completely unreliable and did not allow for an investigation of the processing
time.

Only GTP update messages were unaffected by this mishap and gave the opportunity for
further investigation. The trace contains roughly two orders of magnitudemore update messages
than either creates or deletes, spread out almost evenly over the whole observation period.
Therefore, a node load investigation should still be possible with just the updates messages.

Figure 3.9 depicts a band of ECDFs for the processing time of update messages by time of day.
The processing time distribution almost perfectly follows a continuous uniform distribution
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Figure 3.9: ECDFs of the time in seconds it takes a GGSN to process a GTP update event, separately
plotted for four time slots each day.

between 2 ms and 22 ms. Only the upper end displays a slight long-tail behavior. The impact
of the time of day is very slim with slightly higher processing times during the evening, the
same time frame which also experienced an elevated arrival rate.

The occurrence of a continuous uniform distribution is rather unexpected as these do not
usually occur in computing processes. According to the central limit theorem one would rather
expect to see a normal distribution influenced by, e.g., process scheduling or other queuing
artifacts. The source of this effect is still unknown and the current dataset does not allow for a
more thorough investigation. Still, the fact that a higher update processing time coincides with
an increase in the arrival rate points to an influence of tunnel messaging on the load of a GGSN.

3.1.3 Statistical Evaluation and Data Fitting

The uncovered empirical distributions for both the tunnel duration and the tunnel IAT are now
to be matched against theoretical probability distributions. Therefore, a univariate distribution
fit to the experimental data was conducted. Having a concise representation for the empirical
data will help in creating a model of the core network, which is the task conducted in the
sections following after this.
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Figure 3.10: Sampled inter-arrival time CDF and fitted theoretical distributions.

In order to investigate the tunnel IAT, Figure 3.10 displays the overall ECDF with fits for
various basic probability distributions. Each of the fits was generated through the method of
moments matching.

The goodness of these fits was checked both visually using the CDFs plots and numerically
with goodness of fit measures, using Pearson’s correlation coefficient and Pearson’s 𝜒2 test.
Unfortunately, none of the probability distributions reaches the significance level for 𝜒2. This
can probably be largely attributed to the various previously described artifacts in the data.
Matching them visually, the exponential fit seems to be reasonably close to the experimental
data.

To improve the fits, two modifications were made to the process. First, to remove the 20 ms
steps, only the active tunnels were taken into consideration. Second, the overall IAT distribution
was once again split up into time of day slots. The overall distribution is just a superimposition
of the individual slots anyway. Therefore, this should further improve the fidelity of the fits.

The results are depicted in Figure 3.11. To improve plot visibility only four larger time slots
are displayed here while the actual fits were conducted for one-hour slot. Parameters for the
exponential distribution 𝐹(𝑥) = 1 − 𝑒−u�u�, 𝑥 ≥ 0 and the corresponding correlation coefficients
to the original data for the four time slots are given in Table 3.2. The fitted functions match
the empirical data quite well, with some deviation present at the left tail but an overall positive
correlation coefficient approaching 1.
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Figure 3.11: Empirical and exponentially fitted CDFs of the tunnel IAT by time of day. CDFs are overlap-
ping as the coefficient of determination is close to 1.

Duration Fitting

The second fitting effort surrounds the empirical data concerning the tunnel durations. How-
ever, none of the basic probability distributions (including exponential, gamma, and Weibull
distributions) fit the tunnel duration even remotely. One of the reasons for this is probably that
the tunnel duration is influenced by an overwhelming amount of factors, which were previously
described. This superposition, especially with the user behavior, will result in unpredictable
results that does not follow any basic probability distribution.

Table 3.2: Parameters for the exponentially distributed inter-arrival times and corresponding Pearson
correlation coefficients.

Time of Day 𝝀 𝑹𝒂𝒓𝒓𝒊𝒗𝒂𝒍

0h-5h 10.67477 0.995
6h-11h 24.53298 0.992
12h-17h 29.2504 0.993
18h-23h 23.49983 0.986
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Figure 3.12: Empirical and fitted CDFs of the tunnel duration by time of day with fitted rational functions.

Instead, rational functions are fitted to the ECDFs using the proprietary third-party tool
Eureqa [SL09; SL13]. This allows for a much closer fit as seen in Figure 3.12, but limits its
application in the statistical evaluation.

Table 3.3: Inverse rational functions fitted to the ECDFs of the tunnel duration by time of day and
correlation coefficients of the fit.

Time of Day Inverse Serving Time CDF Representation 𝑹𝒅𝒖𝒓

0h-5h 0.919 − 60.614𝑦 − 3498.78𝑦3 − 110.707u�+2289.94u�3

u�−1.005 0.999

6h-11h 1 + 117.484𝑦 − 368.643𝑦2 − 1720.13u�4

u�−1.004 0.999

12h-17h 0.953 + 69.491𝑦 + 81146.1u�3+1.086×106u�5

805−802.01u� 0.999

18h-23h 0.912 + 82.056𝑦 − 2936.93u�4

1.945u�−1.953 0.999

Table 3.3 contains the functions which were fitted to the inverse CDF. The inverse was chosen
here to simplify the modeling and simulation process coming afterwards. The functions can
be easily inverted again for other purposes. Both the CDFs in the plot as well as the Pearson
correlation coefficient, which again approach 1, confirm the goodness of the fitted functions.
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3.2 Modeling Mobile Network Load

The next logical step after the collection of empirical data and the execution of a statistical
analysis lies in the creation of models abstracting this real system. While some loss of precision
is incurred, models are much more flexible and can have numerous applications. Load models
and the derived information on the network QoS parameters can serve as a basis for the video
measurement framework of Section 4.4, which uses arbitrarily chosen values for its latency
and loss experiments. By utilizing the load model a more realistic mobile network could be
emulated. Additionally, network operators can also be supported in predicting the signaling
load in their core network with the benefit of improved network engineering and correctly
scaling core components.

On the basis of the tunnel distributions attained in Section 3.1, models for both a traditional
GGSN as well as a virtualized GGSN are introduced. The performance trade-offs when using
a virtual GGSN are further studied, discussing different options to consider when using the
virtual node.

The modeling and simulation of the resulting models was conducted in cooperation with the
University of Würzburg and partially published in [FSH14].

3.2.1 Queuing Theory Basics

To understand the modeling process some knowledge on queuing theory is required. The next
few sections give a short overview on the definitions used in the subsequent sections.

3.2.1.1 Little’s Law

A basic queuing system can be expressed as a stream of customers arriving at an arbitrary
system with a rate 𝜆. This system then processes the customers, taking an average time of
𝑊 on a number of processors until the customers depart again. On average 𝐿 customers will
be in the system. The representation — and queuing theory in general for that matter — was
originally devised for telephone networks by Erlang [Erl17]. From that, Little’s Law [Lit61] can
be formulated as

𝐿 = 𝜆𝑊, (3.3)

which holds universally, independent of any specific arrival or service time process.

3.2.1.2 Kendall’s Notation

To distinguish the variations of a queuing system’s parameter a simple convention and naming
scheme was devised by Kendall in 1953 [Ken53] and later extended on. In its simplest form the
notation reads 𝐴/𝑆/𝑠 with 𝐴 denoting the arrival distribution, 𝑆 the service time distribution,
and 𝑠 the number of servers. Here, an extended notation will be used,
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𝐴/𝑆/𝑠/𝑞 (3.4)

which additionally describes the queue length 𝑞. With this naming scheme, a queuing system
(𝑞 = ∞) can be easily distinguished from a blocking or loss system (𝑞 = 0). The most commonly
used arrival processes and service time distributions are summarized in Table 3.4.

Table 3.4: Typical abbreviation of processes in Kendall’s notation.

Symbol Description

𝑀 Markovian, i.e., Poisson, arrival process or exponential service time distribution
𝐷 Deterministic arrival process or service time distribution
𝐺 General arrival process or service time distribution with no special assumptions
𝐺𝐼 General arrival process with independent arrivals; also called regenerative

3.2.1.3 Information Gain

Depending on the complexity of the specific queuing system model, much information can
be gained from an analysis of the given model. In simple cases the state probability can be
mathematically determined, i.e., the probability that exactly 𝑚 customers are in the system
concurrently. If this number is higher than the number of processors, this also determines the
queue length or the blocking probability 𝑝u� if there is no queue. Other properties include for
example the waiting time of customers.

0 1 c-1 c
λ λ λ λ

μ 2μ (c-1)μ cμ

c+1
λ λ

cμ cμ

i
λ λ

cμ cμ

Figure 3.13: 𝑀/𝑀/𝑐/∞ Markov chain model.

One such basic queuing system is 𝑀/𝑀/1/∞ [Kle75, pp. 94-99], on which stationary analysis
can be applied upon. Both the one processor queue and 𝑀/𝑀/𝑐/∞ can also be easily expressed
as a Markov chain due to their memoryless property. Figure 3.13 depicts the state transitions of
a system with 𝑐 processors and a queue length of 𝑖 − 𝑐.

More complex models are often not tractable by stationary analysis or other mathematical
tools any more and no general solution is known. This is especially true for the class of 𝐺/𝐺/𝑐
systems, which can only be directly solved under certain conditions. System parameters may
still be investigated using numerical queuing simulations. Hereby, both the arrival and the
serving process are implemented in a DES using random numbers drawn from the desired
distributions in order to ascertain the system load and blocking probability.
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3.2.2 GGSN Model Rationale and General Queuing Theoretic Representation

The GGSN was already determined to be critical to the CN’s load. Therefore, the network will
be represented by this node in the model. Additionally, most of the load influencing factors are
at least to a degree related to the GTP tunnels. So, to dimension a mobile network to its control
plane load, the number of supported tunnels has to be modeled.

GG G

1 2 c

Blocking

Arrival Process:
Tunnel Setup

Departures:
Tunnel Deletion

G

Serving Time:
Tunnel Length

Figure 3.14: Queuing system representation of a mobile network’s GGSN.

Figure 3.14 shows this model for the proposed tunnel load metric. It is in its generic form
a 𝐺/𝐺/𝑐/0 system. Tunnels enter the system governed by a general random distribution and
are served at the GGSN for the duration of their existence. This duration also follows a general
distribution. Afterwards, tunnels leave the system again through the reception of a GTP tunnel
delete message. If all 𝑐 serving units are filled, blocking occurs and arriving tunnel requests are
rejected.

The number of serving units corresponds to available resources at the GGSN. The maximum
supported number of concurrent tunnels is hard to estimate as it depends on a number of factors,
most of which are unknown for this modeling process. This could include soft-limits like the
specific configuration, and hard-limits, e.g., the GGSN’s processing and memory constraints.

For the purpose of creating an initial toy model the generic 𝐺/𝐺/𝑐/0 is simplified to a
𝑀/𝑀/∞ system. As stated, no actual limit to the number of virtual servers is known and the
data also does not indicate any obvious limits. Thus, an unlimited system with neither blocking
nor queuing is assumed for this simple model.

Now, assuming both a Poisson arrival and an exponential serving process (temporarily
neglecting the fact that no basic function matched the GGSN’s serving process), a stationary
analysis can be conducted. As seen in the statistical evaluation, the former condition may hold,
but the serving time is definitely not exponentially distributed. However, for the toy model this
assumption is still made to get an initial grasp of the model.

The diurnal influences seen in the tunnel arrivals in the trace data are also temporarily
ignored and only the overall empirical distribution is taken into account. Through distribution
fitting with moment matching the overall arrival rate is set to be 𝜆 ≈ 25.641 in the trace. The
exponential service time distribution is calculated to have the parameter 𝜇 ≈ 1.587 × 10−4.
Using Little’s Law this gives an estimate for the mean number of concurrent tunnels at the
GGSN in a 𝑀/𝑀/∞ system of
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𝐿 =
𝜆
𝜇 ≈ 161.6. (3.5)

As stated, the amount of state held at the node and propagated through the network is directly
related to the number of tunnels. Therefore, this metric can serve as an initial estimate of the
load at the GGSN.

3.2.3 Representative GGSN Models

With the experience from the toymodel at handmore appropriatemodels can now be constructed
to better accommodate for the core network’s properties. Two models are provided here. The
first describes a monolithic version of a GGSN, closely resembling the system used traditionally
in the network. The second model is that of a hypothetical virtualized GGSN using Network
Function Virtualization (NFV). In NFV [NFV13] custom monolithic network nodes are replaced
by commodity hardware. The tasks solved by the original hardware are migrated to a pure
software implementation.

3.2.3.1 Monolithic GGSN

The GGSN is considered to be one fixed monolithic entity, even if in reality it often consists of
multiple servers. The entire GGSN is purchased from a vendor as a single entity with very little
control over its inner workings for the operator. For example, idle instances can typically not
be deactivated or reused for other purposes.
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Figure 3.15: Traditional control plane load modeling approach to a GGSN.

The queuing theoretic equivalent is displayed in Figure 3.15 and is very similar to the basic
toy model. New tunnels requests arrive according to a Poisson distribution with a rate of 𝜆(𝑡)
at the GGSN. The periodic time-of-day dependence of these exponentially distributed IAT and
the corresponding distribution fits were extrapolated from the trace data.

Furthermore, the model has a maximum tunnel capacity of 𝑐. When this capacity is reached,
blocking will occur and further incoming tunnels are rejected. The governing factors of the
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capacity are mostly the node’s available memory and processing capabilities. Monolithic GGSNs
need to be preemptively dimensioned in such a way that blocking rarely happens, often resulting
in gross overdimensioning as the node can not be easily scaled after it has been deployed.

When an incoming tunnel request is accepted one of the GGSN’s serving units will be occupied
for the tunnel’s duration 𝑥(𝑡). Following the trace data, this duration is assumed to be of an
arbitrary, non-Markovian service time distribution, again with a slight time-of-day dependence.

Combining the model with the exponential and rational function fits functions previously
depicted in Tables 3.2 and 3.3 this results in a non-stationary Erlang loss model, or more
precisely

𝑀(𝑡)/𝐺(𝑡)/𝑐/0. (3.6)

With this model, high control plane load can be indirectly described as the system’s blocking
probability 𝑝u�. The peak load can be ascertained by looking at the busy hour period where the
arrival rate is the highest. No exact mathematical solution is known for this type of model. Only
if the service time distribution can be confined to certain specific distributions, e.g. Phase-type
distributions, some approximations can be made [DMW95]. However, the evaluated trace
data does not give any indication of the presence of such a Phase-type in the service time
distribution. Therefore, the model falls back to a non-stationary general distribution and a
simulative approach to evaluate the model will be taken in Section 3.3.

3.2.3.2 Virtualized GGSN
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Figure 3.16: Model of a GGSN using NFV.

In the second model virtualization concepts are introduced. The assumptions of the non-
stationary Markov arrival process 𝜆(𝑡) and the serving time distributions 𝑥(𝑡) are carried over.
However, instead of one server processing every tunnel, the system is now partitioned into
individual server instances coordinated by a load balancer in Figure 3.16.
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One virtual GGSN has up to 𝑠 servers instances 𝑠u�. Each of the individual instances can
be much smaller than the monolithic GGSN, having a concurrent tunnel serving capacity of
𝑐u� ≪ 𝑐 and a total system capacity of 𝑐u�u�u�u� = ∑u�

u�=1 𝑐u� = ‖ ⃗𝑐‖1 with ⃗𝑐 = {𝑐1, 𝑐2, … , 𝑐u�, … , 𝑐u�}. The
complete model now reads:

𝑀(𝑡)/𝐺(𝑡)/‖ ⃗𝑐‖1/0. (3.7)

The instances do not have a static uptime. Instead, their life cycle is managed by a Virtual
Machine Manager (VMM) and adjusted to the current load of the network. New tunnels are
either placed on running instances or new ones are provisioned on demand. The VMM can have
multiple optimization goals. A prominent example is the minimization of server instance and
energy usage. Another set of example provisioning rules is discussed in the implementation of
the model simulation in Section 3.3.

A target criterion could be to keep the blocking probability inside a certain target range. If
the VMM decision rules are not carefully selected additional blocking could occur. Despite not
having reached its maximum capacity, this system will still reject tunnel requests during the
provisioning phase when no tunnel slots are free. This could be remedied by a request queue.
However, this makes the system more complex without providing real benefit, as failed tunnel
requests are retransmitted by the network control plane or another attempt might also be made
directly by the mobile device after a timeout.

To place incoming tunnel state on one of the available servers and manage the servers a load
balancer is required. To ensure that the system can scale down to its actual needs, the balancer
should place tunnels on servers that are the fullest, keeping the reserve free. It may even migrate
tunnel state from almost empty servers away so that these can be shut down, when certain
conditions are fulfilled. Keeping instance close to their capacity should also have no impact on
the performance a mobile device associated to a specific tunnel experiences. Adequate strategies
for both load balancing and migration should be considered in subsequent research.

Through this virtualized model, which suggests to use technologies from cloud computing in
the network and replace specialized nodes with commodity hardware, network operators can
scale the GGSN out instead of only up. Today, these network components are typically sold in a
static and monolithic form and can not be easily extended with of-the-shelf hardware in order
to accommodate to a changing environment. The system in this model can however be easily
scaled out to additional low cost machines instead of completely replacing the existing GGSN
with a more powerful version.

It is also entirely possible that the described single-arrival-process approaches might not
the best way to describe control plane load. Several load influencing factors discussed earlier
have direct influence on the tunnel arrivals and duration, e.g., the device type or the radio
access technology. Therefore, amongst others, multidimensional queuing networks or fluid flow
models could be more appropriate in subsequent research. Still, the non-stationary Erlang loss
model described here should be sufficient for basic core network control plane load estimations.
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3.3 Load Model Queuing Simulation

As discussed, the solvability of a non-stationary Erlang loss system is very limited. To better
tackle this, a simulative approach can be taken. Depending on the level of detail, different types
of simulations are available.

Here, a queuing simulation is used to ascertain the blocking probability and tunnel serving
slot utilization from the model using the fitted distributions from the trace.

3.3.1 Queuing Simulation Implementation

The queuing simulation is implemented on the basis of a DES. Instead of reproducing continuous
time, this simulation is a series of discrete events. Time is advanced only at these events.

A queuing model can be easily represented in a DES. Each tunnel request arrival is modeled
as a discrete event. When such an event occurs, three processes are executed. The first process
draws a random number from a Pseudorandom Number Generator (PRNG) mapped to IAT
exponential distribution to schedule the next arrival event. Secondly, the serving units are
checked for any free units. If one is found, it will now be occupied. Else, this arrival will be
marked as rejected and the third action skipped. This third process now determines the length
of the tunnel using another PRNG adjusted to the serving time distribution to schedule the
event in which the tunnel exits the system.

This model was implemented on the basis of version 3.0 of the SimPy1 package, which is
a Python DES framework that provides the basic event and scheduling infrastructure. On
top of this a base GGSN class was constructed, managing the arrival of tunnel events and the
scheduling of the service ending events. Specific classes for the traditional (i.e., monolithic) and
virtualized (called “multiserver” in the code) nodes respectively exist.2

3.3.2 Description and Design of the Individual Experiments

To match the measurement data the simulation time is set to be 7 d in all simulation scenarios.
The initial 60 min of each experiment are considered to be the transient phase and are afterwards
excluded from the results. Ten replications of each scenario were performed. All depicted error
bars show the 95 % confidence intervals across the experiments.

The first experiment was conducted to investigate the normalized baseline load a monolithic
GGSN experiences using the presented model and the fits from Tables 3.2 and 3.3. Using this, an
upper limit to the number of concurrent tunnels and the correlation to the blocking probability
and tunnel rejection rate can be established. The effects of scaling up, improving the hardware
capabilities of the single node, can thus be investigated afterwards.

1 https://simpy.readthedocs.org/
2 The implementation is also publicly available at https://github.com/fmetzger/ggsn-simulation/ as a refer-

ence.

https://simpy.readthedocs.org/
https://github.com/fmetzger/ggsn-simulation/
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Based on these results, the virtualization and scaling out effects in the virtualized, GGSN
model are examined. In order to study the feasibility of this approach the performance indicators
of the virtual GGSN are compared to the baseline established in the first experiment. To this end,
the virtual GGSN is simulated in several configurations, which vary the number of instances
and supported concurrent tunnels per instance.

In a final experiment the startup and shutdown duration of virtual instances and the life
cycle management of these instances are additionally taken into account. Although the boot
duration of modern OSs and Virtual Machines (VMs), especially on current hardware with flash
storage, is significantly lower than it has been in the past, there is still a delay. This could cause
further blocking if the load balancer does not account for this. But the more generously the
balancer starts instances in advance the smaller the virtualization efficiency gain, especially
the energy consumption, will be become. For this reason, the number of active instance is a
relevant performance metric in the virtual GGSN model.

The experiment varies the boot delay and implements a very simple load balancer rule
as baseline. The rule keeps at least one empty instance running in reserve at all times and
deactivates instances, when two running instances are completely unused. As this is very
generous, virtualization blocking should only occur in cases of instances limited to handling
a low maximum number of tunnels or very rapid arrivals. Realistic provisioning rules can
improve on this quite easily. But even this simplistic approach already serves to demonstrate
potential benefits.

3.3.2.1 GGSN Load, Capacity, and Scaling

First, with the help of the IATs and duration of tunnels calculated in the dataset evaluation,
the monolithic GGSN model is studied. While these passive measurement traces provided
information on the frequency of new tunnel arrivals and the duration they remain active, no
reliable information on the number of required supported concurrent tunnels for a given arrival
rate could be deduced. This experiment evaluates arbitrary values for the GGSN tunnel capacity
and determines the resulting blocking probability such that a reasonable value can be found,
given desired limits on the blocking probability. This is a typical task in a dimensioning process.

Figure 3.17 studies this impact of the maximum supported number of concurrent tunnels
𝑛 on the blocking probability 𝑝u�, where 𝑛 is incrementally increased in steps of 100 tunnels
from 0 to 5,500. As expected, the blocking probability decreases with the number of supported
tunnels. An almost linear correlation can be observed in the larger part of the graph with a
small convergence phase shortly before reaching 𝑝u� = 0. For the normalized inter-arrival rate
no blocking is occurring if a capacity of 5,000 concurrent tunnels is allocated to the GGSN.

A similar picture is also evident in the number of tunnels served by this GGSN in the same
scenario as shown in Figure 3.18. For the first half of the experiments the GGSN is loaded to
its limit. Only when the capacity reaches 4,600 can the normalized arrival rate be fully served,
which surmounts to about 3,820 tunnels on average in the system. Both results are stable across
all simulation runs as the confidence intervals display. For the purpose of network dimensioning
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Figure 3.17: Impact of the number of supported parallel tunnels on the blocking probability for the
traditional GGSN model.

the results can be easily scaled up from the normalized arrival rates to the actual ones in the
network in question.

3.3.2.2 Virtualization Impact and Gain

A similar experiment can be set up for the virtual GGSN model. Learning from the monolithic
model, these follow-up simulations can be tuned to the same total tunnel capacity in advance.
The only difference is that the tunnel capacity is now spread out evenly between the virtual
GGSN instances. The experiment tests different amounts for the total number of virtual instances,
ranging from 1, which represents the monolithic architecture, up to 100 instances in steps of 10.

Figures 3.19 and 3.20 demonstrate the results in terms of 𝑝u� and concurrent tunnels served
overlaid onto the base monolithic scenario’s results. No large difference in the results can be
seen and the virtualized GGSN model behaves no worse than a single large node model.

But the possible effects of an increased number of instances need to be investigated further.
One goal in virtualization is the increase of energy efficiency. This can be achieved by having
turned on just as many instances as needed and not more, thus scaling the system to its current
load.

Therefore, Figure 3.21 takes a look at scenarios with nine different instance pools and varying
tunnel capacities for each instance. Each setup is compared by the mean number of active
instances during the one-week course. The bigger the capacity of each instance, the smaller the
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Figure 3.18: Mean number of tunnels concurrently served by the GGSN for incrementally increasing
capacity.

number of instances required to be active. An actual GGSN, even a virtualized one, would need
to be dimensioned in such a way to keep the total overhead low. It was already determined
that, with the assumed normalized arrival rate, a capacity of 5,000 tunnels is sufficient in order
to achieve a blocking probability close to zero. Keeping the setup at this minimum capacity and
taking a look at the results in the figure, a good portion of the instances, usually around 20 %,
can still be kept turned off.

To get into more detail, Figure 3.22 displays the distribution of the portion of time a specific
number of instances was active. Depicted are four configurations that differ in their total
number of instances and their tunnel capacity. The setup with 30 instances with 100 capacity
was clearly overwhelmed with the arrival rate and all 30 instances were active over 70 % of the
time. Only when the capacity was increased to 150 tunnels the virtualization benefits come
into effect and more instances are able to sleep. Similar observations can be made in the 50
instance case. Here, the 100 tunnel scenario is already equipped to handle the tunnel arrival
rate and can scale back its active instances quite well, below 40 instances half the time. The
final configuration with a 150 tunnel capacity is clearly overdimensioned here with no more
than 33 of the 50 instances ever being active.

Looking at these scenarios and additionally Figure 3.23 from a network dimensioning per-
spective, two distinct pathways to scale in the virtualized GGSN model are revealed. To reach
the desired tunnel capacity either the number of instances or the instance’s tunnel capacity
can be increased. The latter represents the classical scaling up. But virtualization also opens up
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Figure 3.19: Comparison of the mean blocking probability of various virtual instance configurations. The
horizontal axis depicts the aggregate capacity of all instances in the experiment.

the new path of scaling out by increasing the number of instances. Through this, scaling can
become easier and cheaper as existing machines need not be replaced any more.

3.3.2.3 Virtual Instance Life Cycle Management Impact

A final aspect to be investigated in the simulation experiments is the potential increase of the
blocking probability in virtualized scenarios when compared to the monolithic base. In theory,
virtualization can incur additional overhead which would represent itself as an increase in 𝑝u�.
In the given model the overhead can stem from the hypervisor and its scheduling and lifecycle
management strategies in conjunction with the instances’ boot delay.

The somewhat simplistic hypervisor strategy in this simulation was already discussed above
and should give an upper limit on the impact on the blocking probability. This strategy is fixed,
but the instance boot duration gets changed to analyze the impact. Values between 20 s and
5 min are considered and should reasonable represent real-life systems of a wide variety.

Figure 3.24 compares a number of instance and tunnel capacity scenarios on basis of their
instance boot duration. In most scenarios there is almost no increase in the tunnel blocking
probability. Only in cases with very many but small instances, where a lot of instance churn
will occur, an increase can be noticed at higher boot durations.

Figure 3.25 investigates this increase in more detail and shows the blocking probability of
one select scenario. Here, the system supports 5,000 tunnels in total with differing individual
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Figure 3.20: Comparison of the mean tunnel capacity usage of the individual virtual instance configura-
tions.

instance capacity of 50, 150, and 500. In each case the start and stop down duration is changed
between 1 min and 5 min. The increase in blocking probability in relation to both the instance
capacity as well as the start duration can be easily observed.

This can be partially attributed to the assumed hypervisor and its simplistic scheduling and
lifecycle management strategies in the simulation. If a low capacity instance with a long start
time is activated, there is a high probability that the system will quickly expend its capacity
again. A potential conclusion is that choosing larger instance capacities decreases the blocking
probability at the cost of energy efficiency (because less instances can stay turned off).

Finally, Figure 3.26 shows two scenarios with 40 and 100 virtual GGSN instances respectively,
ranging from 1,000 up to 5,000 served tunnels. For each scenario, the combined impact of
different individual instance tunnel capacities as well as start up and shutdown time on blocking
probability and mean resource utilization is studied. The first observation is that by increasing
the number of instances, i.e., scaling out, the blocking probability can be decreased, while
maintaining a relatively low mean resource utilization.

In addition to the previous effects, it can be noticed that a higher start up and shut down
time causes a slight increase in blocking probability for instances with low tunnel capacity.
Therefore, if smaller instances are to be used, for example due to price considerations, both
the start up and shut down duration should be kept at a minimum. This could for example be
achieved by using purely virtual instances in combination with fast storage.
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Figure 3.21: Mean instance usage of various virtualization configurations. A higher number of total
instances results in a finer granularity of scaling and energy efficiency as more instances
can be kept shut down.

3.3.2.4 Significance and Effect Sizes

In order to analyze the influence of the different model parameters on the resulting metrics a
one-way Analysis of Variance (ANOVA) is performed. The effect size measures calculated here
are the F-test, 𝜂2, as well as 𝜔2 [Ell10; FMF12]. All are applied pairwise to each independent
and derived variable combination. The results are depicted in Table 3.5. The two derived values
and simulation metrics are the blocking probability and the mean tunnel usage.

Both of these metrics yield very similar results as they are also — by design — strongly related
to each other. The F-ratio computed by the F-test and the corresponding significance level
𝑝 indicate a large influence of the individual instance capacity on the metrics with a minor
influence of the number of instances and no measurable impact of the start/stop duration. This
is also confirmed by both 𝜂2 and 𝜔2. Interestingly, only the compound variable, which describes
the total tunnel capacity, i.e., the product of the individual instance tunnel capacity and the
number of instances, is an almost perfect match in its variance to the derived metrics.

3.4 Core Network Evaluation Summary

The investigation of a week-long measurement trace recorded in an operational core network
revealed some interesting signaling characteristics especially regarding the interdependency
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Figure 3.22: Impact of the maximum number of tunnels and number of instances on the number of active
instances in the virtual GGSN model.
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Figure 3.24: Influence of the boot and shutdown time on the blocking probability.

between user plane and control plane. Additionally, GTP tunnel properties were determined to
be a worthwhile measure for control plane load at the GGSN, one of the central nodes in a 3G
core network.

The investigation showed that the control plane is easily influenced by several device-based
— as far as they can be distinguished in a core network trace — and time-of-day related features.
The overall diurnal tunnel signaling load closely resembles the progression of the user plane.
Most of the control plane’s procedures are still triggered, either directly or indirectly, by user
devices, of which the offered load is much smaller during night time. The trace evaluation also
shows the currently dominating influence of smartphones compared to other devices types,
even when looking at the control plane.

But this also means that sheer traffic volume is not a good measure to determine load, as the
per-device traffic volume of a smartphone is rather low when compared to devices like pure 3G
modems attached to a notebook. In this aspect, the findings also support the stories of signaling
storms in mobile networks caused by applications regularly causing small amounts of network
traffic. Each application interaction results in disproportionate amounts of signaling load being
generated. Even worse, measures taken to improve the radio interface control plane such as
Fast Dormancy could possibly have adverse effects to core signaling as they might increase the
tunnel churn.

But the load investigation should not stop here. The presented approaches were just the ones
that could be conducted with the available data. If one were to have access to a mobile network
monitoring system or more detailed data records from such a system, it would open up many
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Figure 3.25: Influence of start up and shut down time on blocking probability with regard to different
numbers of instances.

40 instances 100 instances

0.01

0.10

1000 2000 3000 1000 2000 3000
concurrent tunnels served on average

bl
oc

ki
ng

 p
ro

ba
bi

lit
y start/stop duration

1min
5min

individual instance
tunnel capacity

10
20
30

40
50
100
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Table 3.5: Effect sizes of the simulation parameters based on a one-way ANOVA.

𝑭 − 𝒓𝒂𝒕𝒊𝒐 𝒑 − 𝒗𝒂𝒍𝒖𝒆 𝜼𝟐 𝝎𝟐

Blocking probability
Individual instance tunnel capacity 104 < 0.001 0.468 0.463
Number of instances 9.29 < 0.001 0.056 0.050
Start/stop duration 0.21 0.931 < 0.001 0.002
Total tunnel capacity 317257 < 0.001 0.999 0.999

Mean number of tunnels
Individual instance tunnel capacity 105.7 < 0.001 0.472 0.467
Number of instances 9.39 < 0.001 0.056 0.050
Start/stop duration 0.25 0.912 < 0.001 0.002
Total tunnel capacity 365753 < 0.001 0.999 0.999

more angles in the investigation. For example, recording every individual signaling message
with all IEs would give hard numbers on the direct signaling overhead, as could measurement
probes located inside the network nodes report on the CPU and memory load in order to
determine the control plane’s processing overhead. A closer investigation of control plane load
in relation to mobility behavior should also prove very interesting, as this is one of the central
motifs in every mobile network.

Learning from this historical data, queuing theoretic models were created that can describe the
control plane load in such networks. These models can be easily used in network dimensioning
and planning processes by means of, e.g., stationary analyses. The novel baseline control plane
load model presented here is a 𝑀(𝑡)/𝐺(𝑡)/𝑐/0 non-stationary Erlang loss model. When used
in conjunction with parameters derived from the measurement traces it can easily be used
for network dimensioning. To improve scaling in the future a further GGSN load model with
features used in virtualization was also proposed.

Due to general solvability issues of non-stationary Erlang models the model is evaluated and
validated using a queuing simulation in terms of their blocking and tunnel state probability
as well as the overall resource utilization. The virtual model provided the added benefit of
being more flexible in its scaling properties and energy efficiency. This might even lead to new
GGSN-as-a-Service business models, removing the need to provide and operate large amounts
of infrastructure for rare cases of peak load.

All of these properties serve to show the complexity of current mobile network systems even
without running media streaming on top of it. Streaming in itself, while not being a real-time
communication protocol, is relatively sensitive to timings and influences from lower network
layers, which can make streaming over mobile networks rather problematic. The next chapters
investigate these issues and methods to evaluate them more closely.
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MEASUR ING AND MODEL ING REL IABLE V IDEO STREAM ING

The Web would not have seen that big an increase in traffic in recent years if it were not for the
tight integration of video streaming into every browser. Most forms of today’s Web-based video
delivery take advantage of HTTP and TCP to transport video. This is a completely different
approach to what was used and was traditionally understood as video streaming in the past.

Streaming itself can be conducted in many ways, resulting in an ever-increasing number of
protocols. Furthermore, the current boom in smartphones creates an increasing plurality of
access network technologies. Each of them exhibits characteristic QoS properties. These are
typically:

• The bandwidth, or the maximum throughput a user can achieve, which is always limited
by at least one link, serving as the bottleneck. In most cases this will be the access link,
but can also be any other link in times of high load. Bandwidth on an access medium can
also be shared between all of its participants as is the case with any radio technology or
cable Internet access.

• The delay is the time data travels between a sender and a recipient. The term jitter is
used for the delay variation and occurs, for example, when successive packets travel on
different routes, through different radio receivers during mobility events, or when packets
pass through excessively sized buffers.

• Loss occurs when data packets do not reach the target. One source of loss can be an
imperfect physical medium that flips some bits in a data packet. The responsible higher
protocol layer will recognize this and drop the packet or repeat the request.

Video streaming needs to cope with all of these circumstances and still work well. This
chapter investigates the model Web streaming uses. It differs significantly from models for
traditional streaming, which are mostly specific to a single protocol.

The presentedmethod rather aims to evaluate the performance by capturing generic behavioral
patterns of streaming mechanisms from the perspective of a streaming application. Specifically,
the model is based on the level of the playback buffer, which is a common attribute to any
media playback. Thus, it can consider any network and playback behavior while maintaining
flexibility with regards to the actual streaming server implementation, the network, and also
the protocol stack.

After defining an appropriate performance metric and researching various playback strategies,
the model is implemented in a network emulation testbed. A measurement campaign is then
conducted, testing the influences of various QoS settings and different playback strategies.

The work in this chapter was originally based on two publications, [F M+11] and [FRT12],
but has been extended to include a broader categorization and modeling effort.

75



76 4 Measuring and Modeling Reliable Video Streaming

4.1 Streaming Definition and Classification

Before diving into the model some technical groundwork has to be laid. The protocols commonly
used in the past and present are described and a classification scheme is set up. This is followed
by a summary of other work related to this approach.

4.1.1 Video Streaming Definition

Any digitally stored video consists of a number of frames, organized into variable-sized groups
of pictures, and audio samples which are played in sequence. Frames, single images of the video,
do not only make use of typical spatial image compression mechanisms but encompass also
temporal motion compensation, creating a dependency between frames. Videos can be encoded
with a bit rate that is constant or variable over time. Typically, a variable bit rate encoding is
chosen as these schemes offer a much higher compression rate. To correctly display a frame, all
previous frames in a group need to be present.
Streaming, or to be more precise video streaming, is the process of playing one part of a

video while subsequent parts are still being transmitted over a medium. As there is no need to
have a file stored locally, received frames are typically put in a buffer to be played at the correct
time. The amount of buffered video depends on the allocated buffer size as well as the video bit
rate, and the transmission bit rate. It can also be controlled by the time offset between receiving
the first frame of a video and actually playing it.

4.1.2 Streaming Classification

Video streaming is a broad term covering a wide spectrum of applications as well as possible
implementations. The following distinction criteria can serve to break down and classify this
field.

4.1.2.1 Video Source

The first criterion is the source of the video transmission, with the two major sources being a
stored file or a live source. Stored video can be streamed and played at any point in time. Live
sources, on the other hand, are transmitting only at a fixed point in time. Depending on the
type of content the timeliness of playback may also be important (imagine watching a game
that is being played right now).

4.1.2.2 Adaptivity of Content

Video streaming can also be distinguished based on its adaptivity. In the simplest case there
is no adaptivity present and the video is available in only one bit rate (which may still be a
variable bit rate).
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But there are cases where an adaptation of the bit rate would be helpful. For example to
accommodate for a client’s screen size. Usually, adaptation is used to tune the video stream to
the currently available connection bandwidth. Adaptation can be achieved in two ways. Either
by preparing and storing several encoding levels beforehand or by encoding the video on-the-fly
for a specific target. While the latter approach has a much higher adaptation capability it cannot
be precomputed and scales linearly with the number of number of clients (as opposed to a
constant, one-off compute time effort for stored quality levels).

Adaptation also increases the necessary amount of control and information exchange. In a
non-adaptive context, streaming would only require a single interaction to start the streaming
while any single adaptation adds another set of interactions to change between quality levels.

4.1.2.3 Location of Control

Another matter is the location of control for a stream, with several possible ways to choose
from. Between horizontal and vertical control can be distinguished.

In a horizontal direction control can be placed either at the streaming server, the streaming
client, or possibly somewhere in the network path in between.

A controller located at the client side typically means that the video player itself is in control
of the streaming process. The player starts the streaming and adjusts its requests to the server
based on the player’s needs. In this situation the server can be very lightweight as no decision
logic needs to be present there. This is called pull-based streaming.

Control can also be placed in the server. This is called a push-based approach as video data is
pushed to the recipient. For this kind of control to work properly, state has to be kept imposing
a certain memory overhead. The amount of state and processing of state can become a limiting
factor for large streaming servers. Contrary, pull-based streaming usually does not require
much or any state at all at the server.

Control information may also need to be exchanged to communicate the state between the
two endpoints. This can happen either explicitly through the exchange of signaling messages, or
implicitly by drawing conclusions on another participants’ resources and behavior, for example
through other protocols in the stack. Push-based protocols usually employ an explicit state
exchange.

While not being able to control everything about streaming, the network may still be able
to influence or manipulate an ongoing video stream. (Non-)transparent proxies come to mind,
which could intercept streaming requests and redirect them to another server located in the
proximity of the requesting client. Alternatively, a network could explicitly expose its QoS
metrics for streaming applications to optimize themselves, or these application could send
bandwidth reservation requests to the network.

Additionally, control can be distributed vertically to different positions in the protocol stack.
While streaming is usually conducted through a dedicated application layer protocol or directly
through an application’s behavior, portions of control functions can also be offloaded to deeper
layers. A typical example would be the use of TCP for reliable streaming as described in the
next paragraphs.
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4.1.2.4 Reliability of the Underlying Transport Protocol

A major differentiation can also be made based on the reliability of streaming. In the simplest
case, streaming can act similar to a simple file download and just progressively download the
video file in question while already starting to display the video contents. This is conducted
by using TCP as a transport protocol, guaranteeing that no packet is lost in the process. TCP
does this by retransmitting packets it thinks are lost at the cost of added latency and reduced
throughput during retransmission. This reliability can however also cause the progress of the
whole video stream to stall if video data does not reach the client in time before its playback
buffer is depleted, and therefore result in a perceptible loss of quality. This situation can be
alleviated or even avoided by carefully planning the playback process and the buffering behavior.

On the other side stand streaming protocols that base themselves on UDP, which offers no
reliability features like TCP and just sends out packets as-is. When packets are lost, the video
can still progress but parts of the video output may be distorted or lost. Additionally, unreliable
streaming protocols must take over other control features that would otherwise have been taken
care of by TCP, for example the adherence to an alloted or fair share bandwidth and congestion
control. Otherwise, a high usage of this protocol could again lead to a scenario of congestive
collapse as described in [RFC896].

Transport protocols that offer congestion control and no reliable delivery might be a de-
sirable middle ground between these two extremes. Datagram Congestion Control Protocol
(DCCP) [KHF06] is an example for such a compromise and might prove beneficial for the
streaming process.

4.1.2.5 Multiplexing of Delivery

Finally, the number of targets of an individual video stream can also differ. A stream is unicast
if the control loop is exactly between one sender and one recipient. Servers can still support
multiple unicast streams at once, they are just completely independent of each other. A multicast
stream is simultaneously sent to a group of recipients, stream control is established at the sender
for the whole group. Therefore, multicasting is always using a push-based approach to control.

4.1.3 Survey of Protocols

With these classification criteria at hand, an investigation for the motifs that are present in
existing protocols can now be undertaken. The section largely describes RTP and compares
it with HTTP-based approaches, including Dynamic Adaptive Streaming over HTTP (DASH),
while also mentioning some other, proprietary, streaming protocols.

4.1.3.1 RTP and Related Protocols

RTP [RFC3550] is typically used in conjunction with its sister-protocol RTP Control Protocol
(RTCP) and often also employs Real Time Streaming Protocol (RTSP) [RFC2326]. According
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to literature, they are the classic approach to video streaming1. The protocol suite employs a
push-based approach with the RTP server application in full control of the streaming process.
Control and information exchange is conducted out of band through RTSP and RTCP. Therefore,
multicast is also easily possible with RTP but not mandatory.

RTP has also no inherent adaptivity nor reliability mechanisms. Neither does it conduct
congestion control on its own. Moreover, RTP generally runs on top of UDP, which also does
not provide congestion control. These must be provided by the server-side application imple-
mentation, if necessary. In case of multicasting the potential to conduct transport adaptations
is very limited, as the server has to take all the recipients into consideration for its decisions.

RTP

RTP itself provides just the packet format and header for the transport of the actual multimedia
data. Every stream type is transported in a separate session. This includes the presence of both
video and audio, which must then be synchronized to each other. Each session uses its own
UDP source-destination port pair.

The RTP specification itself defines only the most basic packet header, with several additional
specs describing dedicated profiles for various content types. For today’s prevalent MPEG-4
protocols, including H.264, multiple profiles, defined in [RFC3640; RFC6184; RFC6416], and
with this many ways to embed video into RTP packets, are available. Common to all is the
variable-size RTP header of at least 16 B. Video codecs may embed their own sub-structure
inside the packet. For example, if dealing with an MPEG-4 Elementary Stream (ES), the payload
may contain one or more Access Units (AUs).

RTCP

RTCP is used to exchange feedback and control information between receivers and sender and
vice versa. These sender and receiver reports are transmitted on a separate UDP connection
at small intervals and are scaled in such a way that the bandwidth should not exceed 5 % of
the actual stream’s bandwidth. The reports will include statistics related to lost packets as well
as the packet delay and its variation. Based on these, a sender can adjust its streams to fit the
current conditions. Likewise, a receiver may tune its video buffering behavior or may even
switch stream sources.

Stream Initiation

RTP and RTCP on their own provide no means to discover, initiate, and control the streaming
process and have to rely on additional protocols. RTSP is one of these, sitting atop of either
UDP or TCP. It provides a set of commands the client can issue to a streaming server to control
a stream and the streaming state at the server.

1 For example, refer to [KRA08, p. 589ff] or [PD07, p. 426ff]
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In case of multicasting, stream management can also be conducted directly by joining
predetermined multicast groups through the use of Internet Group Management Protocol
(IGMP) [RFC4604] without the need for RTSP. However, all intermediary routers have to sup-
port this mode. Therefore, it is usually only seen in closed networks where the whole network
infrastructure is owned by a single organization. For example, this scheme is often employed
by Internet Protocol television (IPTV) providers in their access network.

RTP is also used extensively in conjunction with other protocol suites, including Session
Description Protocol (SDP) [RFC2327] and Session Announcement Protocol (SAP) [RFC2974] for
stream discovery or in realtime communication protocols such as SIP [RFC3261] and Extensible
Messaging and Presence Protocol (XMPP) [RFC6120; RFC6121] with the Jingle multimedia
session control extension2.

The prevalent presence ofmiddleboxes in the Internet also poses issueswith RTP’s requirement
of several simultaneous UDP streams. Network Address Translation (NAT) nodes are especially
problematic because of the difficulty to forward incoming UDP packets to the destined host.
This can be partially circumvented by using NAT traversal techniques like Session Traversal
Utilities for NAT (STUN) [RFC5389] or Interactive Connectivity Establishment (ICE) [RFC5245],
sometimes though unreliably.

4.1.3.2 HTTP Streaming

When compared to RTP, HTTP streaming represents a much less specialized approach by only
reusing existing general purpose protocols. The HTTP/1.1 [RFC2616] application layer protocol
is the basis of the Web and is a request/response protocol mainly to retrieve and pull files from
and to a remote location.3 The protocol is stateless for the server, requests are fully independent
of each other and will be responded to only with the provided metadata.4 This holds true even
when more than one request is sent over the same TCP connection, which can be achieved
using persistent HTTP connections. Additionally, requests can be sent over one connection
without waiting for the answer of the previous request. This is called pipelining and can reduce
the round-trip time delay between two consecutive requests.

HTTP can also be easily exploited for video streaming. The file to be retrieved should of
course contain video and all frames have to be stored sequentially. If there are separate streams
present in file, most commonly at least video and audio, they must be interwoven. Video
metadata necessary for the start of the playback process, which typically includes sub-stream
information and codec parameters, needs to be positioned at the beginning of the file or at least
before the position in the file where its needed. Alternatively, streams can also be stored in

2 The draft standard is available at http://xmpp.org/extensions/xep-0166.html.
3 In June of 2014 the original RFC has been obsoleted and replaced with a new set of specifications in preparation of

HTTP/2. The specifications are: [RFC7230; RFC7231; RFC7232; RFC7233; RFC7234; RFC7235; RFC7236; RFC7237;
RFC7238; RFC7239]

4 State can still be achieved through other paths, like cookies, but this is out of scope.

http://xmpp.org/extensions/xep-0166.html
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separate files, potentially simplifying the file structure. However, this increases the complexity
of synchronizing both streams at the video player.5

The actual streaming is controlled completely by the player application at the client. This
player simply has to issue a HTTP ‘GET’-request for a video file stored at the Web server.
The file can already be read during the transmission process and extracted video data will be
put in the player’s buffer. If there is enough video in the buffer, playback can be started. The
complexity in this process comes from the need to keep track of the amount of video in the
buffer and to avoid to run out of buffered data at any point during playback. Approaches to this
task will be explained in detail in Section 4.3. HTTP also allows so-called range requests, which
allow to download only certain portions of a file, indicated by the Byte position. Streaming
players can exploit this to enable skipping to certain positions. This again needs metadata to
correctly infer the byte position in a file from the video playback position. Otherwise, the range
requests have to be guessed.

Reliability and Adaptivity

HTTP uses TCP as transport protocol, which has implications to HTTP streaming and distin-
guishes itself significantly from RTP/UDP-based approaches. TCP’s three large features are
arguably reliability, congestion control, and flow control.

Reliability means that at the transport layer and above no packets are lost and file requested
by a HTTP application will always be transmitted in full to the client (as long as the connection
is not completely interrupted). TCP’s sender side detects lost packets either by timeouts waiting
for the corresponding acknowledgment or, preferably, through duplicate acknowledgments of
previous packets. If either of this happens, the lost packet is retransmitted, causing a noticeably
increase and variation in latency. But this also means that the transmission of all consecutive
packets has to wait for the lost packet to be retransmitted, causing Head-of-line (HOL) blocking.
On links with high loss the transmission could be stalled to such a degree that the incoming
bitrate is lower than the bitrate of the playing stream, draining the buffer until it runs empty.
Reliability for video streaming means that the whole video (or at least the current segment)
has to be fully played in sequence and no implicit quality adjustments based on the current
bandwidth are possible.

In addition, TCP also employs congestion control and avoidance mechanisms. While the
sending rate of an UDP application is completely controlled by the application’s logic, TCP
detects and throttles the transmission to its fair share of the current bottleneck link bandwidth.
This can also cause the transmission rate to become lower than the video bitrate.

The third transmission rate influencingmechanism is flow control. The receiver (and especially
also the receiving application) can notify the sender how much data it can receive in the next
time window and thus can throttle the transmission rate itself. This is an important method of
control for the player. Usually, TCP’s transmission fair share rate is expected to be much higher
than the stream’s video bitrate. While this makes sense for a simple file download to finish it

5 Stream synchronization issues are for example present in RTP.
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as soon as possible, this behavior is unwanted for streaming. Rather, one wants to match the
stream bitrate, with a bit of additional headroom to compensate for rate variations, to keep the
playback buffer size in certain bounds that neither overwhelm the receiving device nor should
the buffer be in danger of running empty.

client server
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transfer
(HTTP)

client server

paced transfer
(RTP & paced HTTP)

client server

paced block
transfer
(paced HTTP)

client server

request
segmentation
(adaptive HTTP)

Figure 4.1: Comparison of several possible streaming transmission modes depicting the timing of the
sent packets (source: [Ma+11]).

The first of the alternatives to achieve control over the playback buffer using HTTP-streaming
is to appropriately size TCP’s flow control receive window by the application. Alternatively,
the HTTP-server can also manually throttle the download process, through various pacing
strategies. The second and third transmission diagrams in Figure 4.1 depict two possible
strategies compared to a regular HTTP file transmission in the first transmission diagram. A
third way, is to either partition the stream file into smaller evenly-spaced segments, that have
to be requested independently, or use the aforementioned range requests on the stream’s file.
Through this, the receiving application can delay the request of new ranges or segments so that
it matches a targeted bitrate over a longer timeframe.

These mechanism, however, can also result in a very bursty block-like transmission, a so-called
ON-OFF pattern, and can cause undesirably interactions with TCP’s flow and congestion control
mechanisms as observed in [AN11]. Overall, stretching out the transmission may reduce server
load spikes and the required buffer size on the client device but also makes streaming more
vulnerable to insufficient network QoS parameters. These specific approaches to pace to a target
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rate can generally be subsumed under the term Application Layer Flow Control, which is also
being implemented by some Web streaming services, e.g. YouTube [F M+11].

These flow control mechanisms only adapt the transmission rate to the stream’s bit rate but
not vice versa. Having access to the video in different bitrates may be desirable for many use
cases, especially for reacting to changing network conditions. Take a vertical handover from
a high bandwidth WiFi network to a UMTS network with a much lower throughput as an
example.

Quality adaptation with HTTP streaming is generally achieved through the described range
request or file segmentation mechanisms. For both approaches, multiple versions of the file
or the segments have to be generated in different encoding quality levels. Also, the video file
format needs to be able to support switching the stream and have an index to correlate the
video files with their quality level and temporal position. A longer overview is for example
given in [Ma+11] or [BAB11a].

Several formal adaptive streaming protocols have been standardized or are in the process
of standardization. HTTP Live Streaming (HLS) [PM13] defines a playlist format to be stored
separately on a server that links to all available stream variants and segments thereof in sequence.
DASH [Sto11] is a ISO/IEC [MPE12] and 3GPP [3GP13l] standard. Herein, all video segments
are gathered in an alternative XML-based presentation scheme. Using stored video for HTTP
streaming is more appropriate due to the file-based nature of HTTP. But the streaming protocols
have also been successfully employed for live content, for example both HLS as well as DASH
support this.

Other than the two streaming endpoints, the network can also, to a degree, control parts of
HTTP streaming. HTTP allows to have forward and reverse proxies placed in the transmission’s
path. Proxies are usually not employed for video streaming but can potentially alter and adapt
the stream to the needs of certain clients. However, an adaptation inside the network usually
requires much greater efforts with less effects than at the endpoints.

Through DNS video stream requests can also be redirected to a server instance chosen
by the stream source. The content provider has to internally distribute the stream files to
all the caches that are advertised through Domain Name System (DNS). Caches are usually
placed in close vicinity of potential receivers. This creates a so-called Content Distribution
Network (CDN) avoiding both long transmission paths through the Internet and the single
server bottleneck. CDNs can also be used to achieve a multicast-like effect, which TCP-based
streaming cannot provide itself. Only traffic on very few links close to the recipient has to
be replicated. However, the the access links of stream receivers are typically separate entities
anyway, so even actual multicast-enabled streaming would not save any bandwidth there. For
an exemplary investigation of YouTube’s CDN structure refer to [Raf+11].

Currently, HTTP is in the process of receiving major remodeling with the efforts of Web-
Socket6 [RFC6455], SPDY [BP13; BP12], and ultimately also HTTP/2 [BPT14]. All three improve
the flow multiplexing capabilities of HTTP and allow the server to initiate transmissions on its
own. This enables more control possibilities for the server and can improve any segment-based

6 http://www.websocket.org/

http://www.websocket.org/
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adaption scheme as these segments do not need to be requested anymore but could just be
pushed by the server at a convenient time.

4.1.3.3 Other Approaches and Classification Matrix

There are also other proprietary and standardized streaming systems usually tailored to specific
requirements and applications. Multimedia Broadcast Multicast Services (MBMS) [3GP08e;
3GP08f] is a 3GPP specification for multicasting multimedia traffic in the mobile network ar-
chitecture. The explicit control structure of protocol suites like MBMS and also IMS [3GP08c]
weaves application and network layer tightly together. This theoretically allows for an improved
streaming performance at the cost of universally applicable behavior. Real Time Messaging Pro-
tocol (RTMP) [PT12] is a proprietary streaming protocol which in the past has seen widespread
use through its implementation in the Adobe Flash Player plugin in Web browsers.

Also leading a niche existence are Peer-to-Peer (P2P) based streaming approaches. In P2P
there is no explicit server. Instead, connections are made and stream data is exchanged between
equal hosts, avoiding a centralized server’s bottleneck. P2P streaming is used for example,
in Tribler7 and Zattoo8. Table 4.1 attempts to summarize all the protocols of interest to this
research and apply the proposed classification criteria to them.

Table 4.1: Streaming protocol classification matrix.
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7 https://www.tribler.org/trac
8 http://zattoo.com/int/
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4.2 Related Work

Video streaming touches many aspects of computer communication network research. The
technical fundamentals for video streaming have existed for a sufficiently long time so that
there is a large body of existing work. This section attempts to summarize some of the more
closely related research approaches with today’s reliable streaming mechanisms as a central
theme.

The chapter’s focus lies on reliable HTTP streaming to which [BAB11a; BAB11b] and [Ma+11]
gave an introduction and overview the mechanics involved in streaming, e.g., flow control
mechanisms in the video delivery. Akhshabi et al. [ABD11] took a look at real world streaming
implementations and conducted comparative measurements. Initial experiments evaluated the
viability of this kind of approach.

Concerning specific streaming solutions, there are several publications discussing YouTube’s
architecture. In 2007 Gill et al. [Gil+07] made a long-term observation of YouTube traffic
originating from an university network. Their analysis showed detailed characteristics of the
served videos, amongst others file sizes, durations, and bitrates, and revealed a daily number of
video requests. Adhikari et al. [AJZ10] collected data from points of presence of one Internet
Service Provider (ISP) to explore the service’s traffic distribution and load balancing techniques.
However, these were still based on YouTube’s old architecture prior to being acquired by Google.
The new infrastructure exhibited large differences to the old one. For example, load balancing
and content distribution now exclusively use Google’s network and is no longer based on
Akamai’s infrastructure.

Mori et al. described in [Mor+10] distinctive attributes of video traffic flows originating from
YouTube’s new and current setup, while Torres et al. [Tor+11] focused on observations of the
CDN’s server selection process using multi-network passive measurements. Concerning CDNs,
[Lab+10] showed the importance of this new traffic distribution approach in an interdomain
traffic study. The amount of Web and video traffic was seen to be on the rise, both is to be
expected through the presence of large video distribution Web sites.

The authors of [Wan+03] proposed an analytical model for TCP-based video streaming,
differentiating between live and pre-recorded videos. The impact of packet loss on an unreliable
video stream is studied in [CLC10]. However, the loss-hiding properties of reliable streaming
makes this study only somewhat applicable to HTTP streaming. In [Kaw+10], the authors
presented a quality-assessment model for video streaming services, with the quality features
derived from the actual video. The model does not include the network behavior, but it rather
focused on the codec performance instead.

Video quality, or so-called QoE metrics, help in determining the quality of the streaming
process and of models resembling the process. The metrics can be either subjective or objective
and are further discussed in Section 4.3.1. A few select publications are already presented here.

A metric coined “application comfort” was defined and applied to YouTube videos in [Sta+10]
to monitor live network conditions in realtime. It is geared towards a very specific implemen-
tation of streaming, whereas the measurement methodology presented here is more generic.
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While YouTube’s horizontal location of control is originated at the endpoints, some third-party
control unit could also be placed in an access network, manipulating YouTube streams in an
attempt to improve streaming quality. This was conducted in [Sta+11] for a wireless mesh
network.

In 2012, a publication [SHC12] presented approaches to derive YouTube’s playback buffer
and quality from passive measurements inside the network. Approaches like this can be used
by ISPs to check their network quality and estimate the quality customers are achieving.

A publication by Hoßfeld et al. [Hoß+11] identifies QoE influencing factors on YouTube
streams through subjective Mean Opinion Scores (MOSs) collected by a “crowdsourcing” method.
The number of stalling events was revealed to be the factor with the highest impact on the QoE.
This idea was furthered by [Hoß+12] with a comparison between the initial delay of a stream’s
start and the number of interruptions. Stalling resulted in a much lower MOS. Observations
performed in [Ket+10] on the Android platform were also showing that stalling events can
result in a large drop in MOS.

The authors of [MCC11] measured QoE effects of HTTP video streaming in a controlled
test setup and conclude that degraded network QoS increases stalling frequency and decreases
the MOS. Gustafsson et al. [GHP08] investigated the loss in perceived streaming quality and
established a parametric objective opinion model. [SHR12] presents another QoE model that
attempts to estimate the quality of adaptive streaming with a neural network trained through
subjective tests.

Adaptive streaming has also been a topic of intense research. [DMP11] investigated quality
adaptation techniques and proposes a feedback mechanism for quality control. Curiously this
places control solely at the server side, contrary to the current trend of the streaming client
exercising full control. The authors of [CM10] conducted measurements of yet another server-
controlled adaptive streaming mechanism, which is employed by Akamai’s video streaming.
Moreover, according to [HHM11], the circumstance, that TCP throughput does not automati-
cally throttle itself to the current video bitrate, could be problematic. The paper proposes and
tests an additional scaling mechanism in a simulation.

To get a grip on the real-world behavior of streaming mechanisms, many measurement
studies are conducted. In measurements, especially in passive measurements, one typically
cannot measure the application protocol on its own. Rather, the whole network stack, starting
from IP packets and upwards is captured and must be evaluated for the specific property under
investigation. In [Erm+11] such a general traffic study is conducted in a cellular network and
found video streaming traffic as ubiquitous as in wired networks. The authors of [Hua+12]
concluded in their proxy-based active measurements that many adaptive streaming approaches
underutilize the available network bandwidth and achieve a lower quality than they could. An
analytical ON-OFF model was developed in [Rao+11] through the evaluation of active measure-
ments comparing different streaming strategies. And finally, in a survey of several streaming
protocols in [MHM10] the overhead on the transmission of each of them was investigated and
compared based on an analytical approach.
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4.3 Streaming Modeling

As stated, the goal of this chapter is to model the measuring process and reliable streaming.
This section will introduce the proposed reliable streaming measurement model and with it
several reference playback strategies that cover many of the potential aspects of streaming.
It is intended for an easy comparison between different protocol variants and to evaluate all
strategies and network influences in one framework. Because any kind of evaluation requires
metrics, and reliable streaming has special requirements in this regard, appropriate metrics are
researched first.

4.3.1 Metrics for Reliable Transport Streaming

When measuring anything related to video or even just image quality, one has the choice
between conducting a subjective or objective assessment.

During a subjective test, human assessors evaluate and rate video quality in a controlled
environment with the results usually being aggregated into an overall relative quality score
denominated MOS. Through the human element, conducting a subjective assessment is very
time and resource consuming, but it can also serve as the best indicator of the QoE.

This is where objective video quality assessments come into play. Modern objective models
attempt to recreate the features of human visual perception and psychological model and are
usually calibrated by subjective assessments. Most objective models operate on a full reference
approach, meaning that they directly compare the original reference video to the resulting video
after being encoded or transmitted.

Two of the simplest full reference image quality metrics, which can also be applied on video,
are the Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), defined as:

𝑀𝑆𝐸 =
1
𝑁

u�
∑
u�=1

(𝑥u� − 𝑦u�)2 (4.1)

and

𝑃𝑆𝑁𝑅 = 10 log10
𝐿2

𝑀𝑆𝐸, (4.2)

where 𝑁 denotes the number of pixels in a frame, and 𝑥 and 𝑦 the individual pixels from the
reference and output frame respectively. The quantity 𝐿 denotes the maximum value of a pixel.
Usually 𝐿 is from the range [0, 255], corresponding to a bit depth of 8 bit. The image is either
grayscale, or, if it has color information, each color channel is calculated separately. [WSB03]
offers more information on these metrics.

Image quality models can by nature only test for spatial distortions of single images. This
includes artifacts like general blockiness or blurriness, noise, or reduced resolution. Quality
assessments specifically dedicated to video material can additionally take temporal metrics
into account, for examples anomalies in the frame rate. Such models are also being researched
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and standardized by the ITU and Video Quality Experts Group (VQEG) for example in [ITU04;
ITU08b; ITU08c]. Often, a network’s QoS parameters can also be directly mapped onto an
objective QoE metric as described in [FHT10].

Metrics dedicated solely to streaming quality measurements should restrict themselves to
measure only degradations that occur during the streaming process and not the initial encoding
process. Only a specific subset of quality alterations apply here. For example, lost or late packets
can cause missing blocks in a frame or frames to be skipped completely.

Initial thoughts concerning QoE in IPTV systems — which represents an unreliable streaming
solution — QoE have been given in [ITU08a] and the influence of packet delay variations on
playback buffers is investigated in [RFC3393]. The Media Delivery Index (MDI) [RFC4445] is
an attempt to capture this behavior and relate it to the network QoS. Its metric relies on two
properties, the Delay Factor (DF), as a measure of the network’s latency and jitter, and the
media loss rate. Of special interest to this investigation is the DF, which is calculated based on
a Virtual Buffer (VB) of received stream data as

𝑉𝐵 = 𝑟rcv − 𝑟drain (4.3)

𝐷𝐹u� =
max(𝑉𝐵) − min(𝑉𝐵)

𝑟drain
(4.4)

with 𝑟u�u�u� and 𝑟u�u�u�u�u� denoting the buffer’s receiving and draining rates.
Reliable streaming is even less likely to degrade the image quality of a video stream. Packets

can not arrive out of order at the application and loss is fully concealed by TCP. This means
that the transmitted and the played video are always identical and no image reference models
are necessary here. The only thing that can still happen, is that portions of the video data arrive
too late to be played out at their intended point in time. Reliable streaming quality assessment
metrics needs to keep track of the following properties:

• The initial delay, which is the time delta between the start of the transmission and the
start of the video play.

• The number and lengths of interruptions or stalls during playback. More complex metrics
could also keep track of the IAT of stalling events.

• For adaptive streaming, the characteristics of the quality levels the video was played in.
This includes the frequency of quality switching events and the duration of each level.

Few attempts for concise reliable streaming metrics that cover all mentioned properties have
been made to date. The Continuity Index (CI) was defined in [Zha+05] and used to determine
quality in P2P live streaming. It is defined as “the number of segments that arrive before or on
playback deadlines over the total number of segments” and with this partly captures the stalling
property. In [PP11] and [SBP13] a so-called Pause Intensity (PI) is defined and evaluated. The
definition 𝐼u� = 𝑢𝑣 is simply based on the number of stalls 𝑁 and the average stall duration 𝑣.
Very similarly, an ITU recommendation [ITU13] defines a rebuffering artifact value as
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𝑣 = 1 − (
𝑑u�

𝑑u� + 𝑑u�
)

0.0737
, (4.5)

with the total stalling duration 𝑑u� and the video duration 𝑑u�. The model lacks to capture other
stalling characteristics and quality levels. A final metric by Hoßfeld et al. [Hoß+13] remedies
this and incorporates both the length 𝐿 as well as the number 𝑁 of stalls in the computation of
the MOS. It states

𝑓 (𝐿, 𝑁) = 3.50𝑒−(0.15u�+0.19)u� + 1.50 for 𝐿 ∈ ℝ+, 𝑁 ∈ ℕ. (4.6)

The equation was derived from user studies on perceived YouTube video quality. Therefore, it
can serve as a QoE metric for the non-adaptive measurement model introduced in the following
section. Regarding adaptive streaming, work conducted in [Seu+13] gives an overview over
some initial attempts of metrics that include temporal aspects of the image quality. But none of
them includes all necessary aspects to assess reliable adaptive streaming.

The streaming measurement models presented in the following section derive only the basic
properties, including the stalling and quality level characteristics, from the experiment and could
be used for any of the above metrics. For non-adaptive reliable streaming it is recommended
to use the model defined in Equation 4.6. The results of the measurement series in Section 4.4
will also be presented using this equation. Surpassing this model or defining an entirely new
adaptive metric would require extensive user studies and is beyond the scope of this work.

4.3.2 Measurement and Playback Model

Parts of the model presentation were previously published in [BFT12], [F M+11], and [FRT12].
It is based on the desire to compare all in-the-wild variants of reliable streaming protocols in a
simple and concise way. This is achieved by basing the model on the component that is common
to all of the approaches: the playback buffer.

To display a video stream, an application needs to maintain a playback buffer of sufficient
size to at least gather enough data to reconstruct the next portion of the video to be displayed.
From the perspective of a player application, a video consists of a sequence of atomic units,
namely video frames and audio samples, which need to be played back at certain points in time,
predetermined through the video’s frame rate.

The application progressively decodes the video from a source and stores the units temporarily
in a memory buffer before playing them. In reliable streaming, the buffer is filled by the payload
from received TCP segments and subject to the network QoS. The process can be subsumed as:

𝑏𝑢𝑓 𝑓 𝑒𝑟(𝑡) =
u�

∑
0
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u�

∑
0

dataplayed

Both the incoming and outgoing data stream are variable over time. The fill level of the
playback buffer is the critical component in the playback process and the central element of the
model. If the buffer reaches a size of zero the playback process must stop and stalling occurs.
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Figure 4.2: Reliable streaming playback model based on buffer control.

Figure 4.2 overviews the reliable streaming model. The controller, part of the video player,
selects a video from a remote location and the transmission is started, filling the playback buffer.
The model has four degrees of freedom, which are all governed by the controller and together
are coined playback strategies. These degrees of freedom are are:

• Initial playback delay, which is the time between the initiation of the video stream
transmission and the actual stream playback. The larger this is chosen, the bigger the
safety margin on the buffer gets. If the video and transmission bitrate are known to be
constant and and appropriately dimensioned, the initial delay can be chosen to be very
small.

• Playback pause and resume decisions based on the current buffer fill level. This is a
generalization of the initial playback delay, which is in fact only one, albeit always
occurring stalling period.

• If the video is segmented the segment retrieval rate is also a factor. Individual segments
can be requested at a higher rate to fill the buffer more quickly. With this the client can
react to changes in network conditions.

• Selection of the video or segment quality level with a video bitrate chosen according to
the current network throughput. This is only applicable for adaptive streaming of course.

These decisions yield a stalling period distribution for a streamed video. The frequency and
the duration of stalls directly relate to the decision function of the playback strategy. Under
insufficient network conditions the playback strategy has to decide which property is less
likely to negatively impact the user. Therefore, either the frequency or the length of stalling
events will have to be adjusted. The more frequent the stalls are, the shorter they will be. If the
strategy produces longer stalling events, they will be less frequent assuming the same network
conditions.

The time scale on which streaming applications buffer content usually lies in the range of
seconds. This is a necessity in best-effort networks, as the available network bitrate might drop
unexpectedly and cause stalling. To keep the buffer level high, an adaptive streaming client can
also reduce the stream’s quality level. But it is still an open question if playing at low quality
without interruption gives a better QoE than high quality with interruptions.
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The rest of this sections present fundamental playback strategies and strategy building blocks
with features extracted from real world examples, which are given afterwards.

4.3.2.1 Null Strategy

The simplest strategy is having no strategy at all. Playback is started immediately when at least
a single frame fully resides within the buffer and stops again at an empty buffer. The behavior
can be summarized as “Whenever anything can be played from the buffer, do so.”.

This results in frequent stops and a large loss in playback continuity and will therefore not
be used in practice. However, this strategy has some interesting theoretical properties, which
is why it is mentioned here. Both the total stalling time and the required buffer space are
minimized. Moreover, the strategy results in an upper limit for the number of stalls occurring9.
Therefore, it can act as a baseline reference to assess the performance of other strategies.
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Figure 4.3: Buffer fill level with null strategy; 33 s total stalling.

Figure 4.3 depicts an exemplary time series diagram of the contents of a video buffer using
this strategy. The transmission rate was only slightly above the stream’s video bit rate. The
buffer frequently drops down to zero forcing a short stall. According to the related work in
[Hoß+11], on the QoE impact of stalling frequency in comparison to the length of stalls, this is
the worst possible scenario for a person watching the stream.

9 As a video frame is atomic, no other model could possibly need to stop the playback due to buffer drains more often.
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4.3.2.2 Threshold Strategies

Instead of instantly restarting playback a threshold can be introduced. Only after a certain
buffer fill level threshold has been surpassed, playback will be started. Thresholds can be set
independently for the initial playback delay and stalls, with the initial playback delay generally
set to be higher.

The threshold can be chosen in a number of ways. It can either be an absolute data volume
or a buffered video duration. The latter is much more suited for variable bitrate videos as it
automatically adapts itself to the current bitrate. A third option is to buffer for a certain amount
of wallclock time — this can also be seen as threshold — and to start playback after that period
regardless of the volume of the buffer. Additionally, the threshold could either be set to a
constant value or dynamically chosen according to the expected network QoS.

Besides this single-threshold strategy, multi-threshold strategies might make more sense for
segment-based streaming. In addition to the lower threshold, an upper threshold is introduced.
When reached, no new segments will be requested until the buffer arrives at the lower threshold
again. To achieve an hysteresis effect a third threshold, somewhere between the lower and upper
bound, can also be introduced. Through this, the maximum buffer size can also be controlled.
This is important in situations with hard limits on available memory. Mobile devices come to
mind here.
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Figure 4.4: Sample buffer fill level for a 5 s buffered video duration threshold strategy with an additional
2 s initial threshold; 34 s total stalling.
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An example buffer diagram is displayed in Figure 4.4. In this case, the initial delay was
controlled by a buffered video duration threshold of 2 s and a resume condition also based on
buffered video duration but with a 5 s threshold. The strategy produces noticeable less stalls
than the null strategy but slightly increases the total stalling time.

4.3.2.3 Pacing Strategies

For segment-based HTTP streaming, a two-threshold strategy is not the only supplemental
option on top of simple streaming. Here, the controller can pace the request of future segments
to match the overall or the current video bitrate. A safety margin can also be factored in to even
out short temporal fluctuations of either the transmission or the video bitrate. For example,
the controller would request segments with an overall transmission rate of 1.25 times the
video bitrate. The pacing rate can either be statically chosen in advance or can be calculated
dynamically based on current or future conditions. The latter leads to predictive strategies.

4.3.2.4 Predictive Strategies

In predictive strategies, knowledge of the future of the streaming process is used by the controller
to adjust the start/stop and segment retrieval conditions. An exact implementation of this
strategy would require precise information — so-called global knowledge — on future events
and therefore it can only be conducted in a theoretical offline manner. Instead of global
knowledge, heuristics can instead attempt to approximate an expected future state.

A very simple predictive approach is to prolong the initial delay to the point that no interme-
diate buffer underrun and thus no further stall will occur. With global knowledge, the controller
can start the stream at the earliest possible point in time, thus minimizing the total stalling time
while still having only the initial delay.

Figure 4.5 depicts the time series of a sample implementation of this delayed playback
predictive strategy with all necessary stalling occurring upfront.

4.3.2.5 Adaptive Strategies

Most strategies for adaptive streaming are an extension of both the threshold as well as the
pacing strategy. However, instead of a simple transmit-or-no-transmit ruleset, they can make
much finer-grained adjustments. The quality of the stream segment to be requested will be
chosen depending on the current fill level and drain rate of the buffer. This makes a trade-off
between maintaining a certain quality level and putting up with increased waiting times, and
dropping the quality to a level sustainable at the current transmission rate.

A practical attempt at defining an adaptive strategy is made in Section 6.2 for the mobile
streaming testbed.

4.3.2.6 Real World Implementation Examples

Actual streaming player implementations often do not implement just one of these strategies,
but rather combine ideas from several. Herein, thresholds are often set arbitrarily through best
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Figure 4.5: Sample Buffer fill level for the delayed playback predictive strategy, 33 s total stalling.

practices which are not empirically evaluated. Also, often a trade-off between user perceived
quality and the resulting server load is made as a business decision that can further impact the
streaming quality. In general, every streaming service essentially implements its own playback
strategies. This section describes three example applications.

2011 YouTube Flash Player Buffering Strategy

Google’s video streaming site YouTube is constantly changing its appearance and technical
makeup. In recent years, YouTube streams are delivered by one of three players: The Website’s
Flash player, a browser-integrated HTML5-based player, or custom player implementations in
mobile phones, set-top boxes and similar devices. Here, the Flash-based variant used in 2011 is
described.

This player used a single threshold strategy with different threshold values for the initial
delay and any subsequent stalls. The values were already described in Figure 4.4. This model
assumes sufficient network conditions in the beginning, requiring only a short initial playback
delay to pre-fill the playback buffer. If, however, stalling occurs, then it will buffer longer to
keep the stalling frequency down.

Furthermore, YouTube employs a proprietary server-side pacing mechanism outside of the
control of the streaming player. This is hinted at in the encoding of the URLs of the video files
and enforced by the video file cache server. Some of those (not user-changeable) parameters are
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Table 4.2: Transmission related parameters from YouTube’s video URL setup.

URL Part Description

v𝛼.lscache𝛽.c.youtube.com Cache server involved in the delivery.
algorithm=throttle-factor and
burst=40 and factor=1.25

Indicates initial burst plus block sending con-
figuration.

ratebypass=yes Parameter to indicate no rate limiting.

described in Table 4.2. The pacing was in effect for all videos below high definition resolution,
but has since been extended to include all video files.

The throttling method, which was also observed in [AN11], limits the transmission to a rate
slightly above the average media bitrate. Measurements and the URL scheme indicates this to
be 1.25 times the video bitrate. The rate limit is not constant, instead an ON-OFF block-sending
scheme is facilitated. The scheme transmits short packet bursts, typically 64 KiB in size, followed
by long pauses as seen in Figure 4.6. The pause length between two bursts is set dynamically to
reach the targeted bitrate on a larger time scale. The initial phase of the stream transmission is
conducted unthrottled at line speed, presumably to allow for some pre-buffering to occur at the
client’s media player. A possible reason for this server-side pacing is to avoid load spikes, with
the added side effect of keeping the clients’ buffer sizes in check.

Since October 2013 YouTube is serving its HTML5 videos using DASH, albeit without its
adaptive properties. Additionally, in mid 2014, this HTML player has now become the default
player for all capable browsers, effectively making the Flash player obsolete. Some initial
investigations into YouTube’s DASH traffic were conducted in [ASO14].

Firefox’s HTML5 Player Strategy

Video streaming can be directly conducted with the Web browser, through the use of a HTML5
canvas element. The World Wide Web Consortium (W3C) specifies the default technical process
of HTML5 video streaming10 and essentially suggests a predictive strategy. Herein, the Web
browser should estimate and correlate the transmission rate to the video bitrate. A property
called “autoplay” uses this definition to start playback of the associated video “as soon as it
can do so without stopping”. The HTML5 strategy also allows to limit the buffer size through
transmission pacing, negotiated with the server, and appropriately timed range requests.

The open-source Firefox browser represents an implementation of this specification and
substantiates it further. The description of this strategy is based on Firefox’s version 4.0 released
in March 2011. Because it is an online algorithm which does not have global knowledge of the
video and transmission speeds of any point in the future it has to estimate these.

10 http://www.w3.org/TR/html5/embedded-content-0.html#media-elements

http://www.w3.org/TR/html5/embedded-content-0.html#media-elements
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Figure 4.6: Comparison of downloaded and consumed data volume revealing the pacing mechanism used
by YouTube.
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Algorithm 1 Firefox playback (re-)start decision algorithm.
if 𝑠u�u� > 𝑣u�u� then

𝑐 ← (𝑏u� = 20𝑠 ∨ 𝑏u� = 20𝑠)
else

𝑐 ← (𝑏u� = 30𝑠 ∨ 𝑏u� = 30𝑠)
end if

To estimate the current and future rates, the moving average of the transmission rate 𝑠u�u�
and the video bitrate 𝑣u�u� are calculated. The condition 𝑐 Firefox uses to start and resume the
playback process is given in Algorithm 1, with the buffered video duration 𝑏u�, and the duration
spent buffering 𝑏u� .

0

2000

4000

0 50 100
time (s)

bu
ff

er
ed

 d
at

a 
(K

iB
)

Figure 4.7: Sample buffer fill level for the Firefox 4 strategy, 44 s total stalling.

This approach is quite conservative and trades off long stalling periods for fewer stalls. The
test case for the model is shown in Figure 4.7. The playback starts only after a long waiting
period and intermittent stalls cause a long buffering period. Due to the longer overall stalling
time the player needs to buffer more data than other strategies. This may make it unsuitable for
devices with scarce amounts of memory, e.g., mobile phones. A large buffer could, on the other
hand, also increase the chance of continuous playback in such scenarios with insufficient QoS.
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Adaptive Streaming Strategies

Implementations for adaptive streaming players are again mostly proprietary and their behavior
has to be derived from measurements. This is even true for protocols with open specifications.
These typically only define the transport and media format but explicitly do not specify the
players’ behavior. DASH is one of these cases.

Microsoft’s Silverlight player’s strategy is described in [BER11]. It employs a two-threshold
model and rate estimations. When on of the thresholds is reached, the quality will be adjusted
by one step upwards or downwards as long as the transmission rate is sufficient.

The buffering behavior of further protocol variants, including Adobe’s HTTP Dynamic Stream-
ing, Apple’s HTTP Live Streaming and a sample implementation of DASH, are investigated in
[MLT12; ABD11].

4.4 Measurements

With the buffer-based playback model and strategies at hand, this section demonstrates how to
conduct actual evaluations of reliable streaming protocols with it.

As discussed, there are numerous incarnations of reliable streaming protocols in use. Almost
all of them follow the same basic approach but every time with slight variations in execution,
choice of playback strategies, and corresponding parameters. It is exactly these choices that
can have a large impact on the streaming process and resulting quality.

The problem lies in comparing these protocols to each other. Each of them is usually tied to a
specific — and most often proprietary closed source — streaming player. Setting up all these
players in one testbed is a huge effort and requires very specific software environments to be
used on the client computers. Moreover, these players are built with user interaction and not
automation in mind, hampering efforts of directly measuring the outcome. This can still be
achieved through extensive workarounds, but those must be tailored to every individual player
application.

The approach presented here avoids this hassle and provides a concise way to test any
conceivable playback strategy in one single test setup.

4.4.1 Progressive Streaming Measurement Framework

To enable quick evaluations for reliable streaming the framework follows a two-phase approach,
separating the active online recording phase from the passive playback emulation. Recording
network data is very time intensive and cannot be sped up when conducting an investigation of
a real world process, and not relying on simulated data. The framework still replicates the steps
a user would perform to consume a media stream on a playback device, but simply separates
them. Through appropriate configuration different scenarios can be modeled, e.g., network
conditions and behavior or specifics of the user device.



4.4 Measurements 99

Pass 1 - Measurement:
Data Recording Measurement Host

Pass 2 - Emulation: 
Model Based Data Evaluation 

Streaming
Service

Network
Emulator

QoS Model

Statistical
Analysis

bu
ff

er
 fi

ll 
le

ve
l

time

Playback
Emulation

Playback Strategy

Transmission
Trace Recording

time

tr
an

sm
is

si
on

 d
at

a

t0 t1 t2 t3 t4

Video Frame 
Data Extraction

time

vi
de

o 
da

ta

I
t0 t1 t2 t3 t4 t5

P B P B I

Figure 4.8: Overview of the measurement framework for progressive streaming playback strategies.

Figure 4.8 depicts the usage of the framework for a streaming evaluation testbed. In phase
one the actual transmission of the stream is conducted and recorded as a packet level network
trace. These traces should at least consist of the size and timestamp of every incoming packet.

Stream data is transmitted to the client from a server which can be any actual streaming
service on the Internet or a local server under the testbed’s control, eliminating undesired side
effects caused by the Internet connection. The traffic is further directed through a network
emulation node capable of altering the network QoS parameters, i.e., latency, jitter, and packet
loss. The parameters can be set according to stochastic models derived from actual network
architectures such as the 3G mobile network architecture.

Instead of network emulation, any preexisting architecture can also be placed here to achieve
more accurate results for the intended target. This is especially helpful for complex infrastruc-
tures hard to model or with no good and concise models available yet. Of special note for this
work are the previously discussed mobile networks, which encapsulate the user traffic into
tunnels and exhibit complex control plane interactions that can influence the streaming process.

Additionally the received video file is decoded yielding a trace of all video frame sizes and
playback timestamps. All data gained in the process is stored as a basis for the second phase.
More detailed traces can additionally be used to scrutinize other layers of the connection, e.g.,
the dynamics of TCP receive window size.

In the second pass, both the network as well as the video data are then used to feed the
actual reliable streaming playback model described before. This is conducted by a closed-loop
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emulation process calculating the current buffer fill level based on the collected transmission
and video frame traces for every point in time.

All of the non-adaptive reliable streaming strategies can be tested on the same trace set. In the
simplest form of HTTP streaming the transmission is not controlled by the streaming application
and no rate control is conducted. Therefore, recording the packet trace and simulating playback
are completely decoupled, as the latter cannot influence the former. This enables a fast and
efficient comparison of various non-feedback protocols which are all subjected to the same
network conditions.

The emulator then generates playback stalling statistics, specifically their number and duration,
to compare the effect of the different strategies on the same trace. With these results, parameter
settings for playback strategies can also be iteratively tested and improved, leading to an
empirical calibration of playback strategies instead of relying on best practices.

One of the drawbacks of this model-based emulation approach is of course the reliance on
suitable models and playback strategies for the stream protocols under scrutiny. Obtaining
these from proprietary closed source streaming clients can be a difficult and time consuming
reverse-engineering process.

4.4.2 Adaptive Streaming Measurement Framework

Up to this point, the measurement framework is only suitable for simple reliable streaming
strategies but neglects any adaptive strategy. This second iteration of the framework modifies
the base framework and allows for the testing of adaptive playback strategies. However, to
achieve this, the advantageous two-phase setup cannot be employed anymore.
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Figure 4.9: Overview of the measurement framework for adaptive streaming playback strategies.

Figure 4.9 shows the adapted framework. The playback emulation process is now directly
fed with the stream transmission without recording it first. The emulation is now an online
process and has to be conducted in realtime. This enables the emulator to react on the current
streaming state and request an alteration from the server. The adaptation spectrum ranges from
the timing of stream segment retrieval to the chosen quality level of future segments.

While allowing for a wider range of playback strategies, this approach is also inherently
slower as it does not allow individual measurements to be speed-up beyond realtime, limiting
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its usability somewhat. Therefore, a transition to a full simulative approach is suggested. This is
path is further explored and discussed in Section 6.2.

4.4.3 Technical Implementation

To conduct actual measurements, the described two phase progressive streaming measurement
framework has been implemented as a network testbed. The three individual components of the
framework in Figure 4.8 are represented by three interconnected physical nodes running Linux.

The streaming server houses an Apache httpd Web server11, hosting the files that are to be
streamed. Alternatively, traffic from any viable Internet streaming service can also be directly
routed through the network emulation node, making the local streaming server superfluous.

The network emulation node uses existing QoS capabilities of the Linux kernel, dubbed
NetEm [Hem05], to add latency and packet loss to the transmission as well as to act as a
bandwidth bottleneck. The additional delay will be set to a deterministic value for the following
experiments. The loss follows a uniform distribution without any correlation in the transmission.

Curl12 is used to both retrieve the streaming file and record the transmission process at
the client node. If so desired, tcpdump13 can also be facilitated to achieve a higher recording
precision. The video file is then parsed for its frame timings and sizes using mplayer14 with
FFmpeg15.

The traces are then put into the actual playback emulation, which can be run on any computer.
It is implemented by custom Python-based code and statistically evaluated with Python16 as
well as R.

4.4.4 Measurement Series and Evaluations with the Framework

This testbed is now used to conduct a comparative study of two theoretical and two real
world playback strategies. They are tested for their susceptibility to worsening network QoS,
specifically latency and loss. The evaluated strategies are the described YouTube and Firefox
strategies as well as the null strategy and the predictive strategy with perfect knowledge and
an optimally-sized initial pre-buffering phase that compensates for every degradation in the
network conditions.

The video used in the experiment was streamed from the YouTube web site providing a
realistic foundation for the experiments. This also enables a server side pacing mechanism
adjusted to the video bitrate for free. Details on the video used in the experiment are available
in Table 4.3.

11 https://httpd.apache.org/
12 http://curl.haxx.se/
13 http://www.tcpdump.org/
14 http://www.mplayerhq.hu/
15 https://www.ffmpeg.org/
16 The emulation code is publicly available at https://github.com/fmetzger/thesis-bufferemulation.

https://httpd.apache.org/
http://curl.haxx.se/
http://www.tcpdump.org/
http://www.mplayerhq.hu/
https://www.ffmpeg.org/
https://github.com/fmetzger/thesis-bufferemulation
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Table 4.3: Parameters of the video used in the streaming emulation measurement series.

Parameter Value

Video duration 92.5 s
Size 9.61 MiB
Frame rate 23.976 s−1

Average video bitrate 871 kbit s−1

Codec AVC

Two measurement series are performed with this video, both only differ in the network
emulator settings. The first series increasingly adds packet loss to the stream, with the second
series altering the packet delay. In both scenarios the link bandwidth was limited to a typical
Digital Subscriber Line (DSL) value of 16 Mbit s−1 in the downlink direction and 1 Mbit s−1 up.

It can be stated that all playback strategies will generally work similarly well under good
network conditions as long as the TCP “goodput”, i.e., the rate at which the payload is transported
by TCP, is higher than the video bitrate. With sufficient goodput video streams will start with
almost no delay or intermediate buffering.

However, if the achievable throughput is close to the average video bitrate, the buffer can be
quickly drained by short deviations from the average rates. High latency and loss are the typical
limiting factors for TCP as many congestion control algorithms depend on the Round-Trip Time
(RTT). If the RTT is high, the congestion window will increase less quickly. High latency can
also trigger timeouts and retransmissions, which in turn decrease the congestion window again.

Packet loss can affect TCP goodput even more. A lost packet results in duplicate acknowl-
edgments followed by retransmissions and a decrease of the congestion window. The problem
is worsened if the acknowledgments are also lost. The connection could stall on missing old
segments without which the playback cannot proceed. In addition to the reduction of goodput
this results in a delay burst and high jitter for the streaming application. Further influences will
be discussed in Chapter 5.

4.4.4.1 Latency Measurement Series

In the latency measurement series, the emulator delays forwarding the packets for a constant
amount of time. The latency was increased in 100 ms steps, up to a total of 5000 ms. The added
latency is split up evenly between the uplink and the downlink. Each individual experiment
was also replicated five times and corresponding error bars are provided in each figure.

Figure 4.10 depicts the relation between the added latency and the stalling duration of the
playback strategies. The stalling time increases as expected with the additional latency, but
Firefox’s strategy seems to have a slight edge under high latency. Overall, the stalling duration
quickly reaches a length comparable to the actual video duration and even surpasses that.
Someone watching a stream under these conditions might find this not acceptable any longer.
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Figure 4.10: Stalling duration in relation to transmission latency with a polynomial least-squares fit.

0

50

100

0 1000 2000 3000 4000 5000
latency (ms)

nu
m

be
r 

of
 p

la
yb

ac
k 

st
al

ls

playback strategies
Firefox 4
predictive
null strategy
YouTube Flash

Figure 4.11: Number of stalls in relation to transmission latency with a polynomial least-squares fit.
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Figure 4.11 additionally shows number of stalling events occurring during the playback with
the null strategy at the high end and the predictive strategy just showing the expected single
stall before playback start.
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Figure 4.12: Calculated MOS for the latency measurement series.

Using the model from Equation 4.6 the QoE is calculated for this series and depicted in
Figure 4.12. The MOS quickly drops below a value of 3, which is generally accepted as still
being of fair quality, and stays around 2 for the most portion of the latency series. Starting at
around 3000 ms of latency all four strategies achieve virtually the same poor quality, according
to this model. But especially between 1000 ms and 2000 ms the difference in quality of these
strategies is visible, with both the theoretical predictive and the YouTube strategy reaching a
much higher MOS than the other two.

Overall, it can be said that in this specific latency scenario the real world playback strategies
seem to honor the fact that more video interruptions lead to a worse experience than fewer
but longer stalling events. Through mobility and handovers mobile devices fairly commonly
experience short bursts of latency of several seconds. According to the measurement series, the
resulting stalling behavior could still very well be bearable for streaming users if the latency
does not reach too high values on average. For example, at 1000 ms latency a MOS of 3 could
still be easily achievable with the right choice of playback strategy.
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4.4.4.2 Loss Measurement Series

In the loss measurement series, uncorrelated and uniformly distributed loss was added in both
the uplink and the downlink direction. The loss was incrementally increased in 0.5 % steps
up to a total additional loss of 12.5 %. About 4 % of the individual experiments did not finish
correctly, and the video was not completely transmitted. This was caused by the TCP stack,
which at some point terminated the connection after too many packets were lost back to back,
and curl giving up after several retries. This unpredictability and failure rate also leads to the
high variability seen in the results of the loss measurement series. Nonetheless, a certain trend
can still be derived from the results. Again, five experiments for each entry with corresponding
error bars are conducted.
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Figure 4.13: Stalling duration in relation to the packet loss with a polynomial least-squares fit.

Figure 4.13 shows the resulting relative stalling duration in the packet loss measurement
series. Loss of up to about 2.5 % seems to have no discernible impact on the streaming process.
Anything beyond this point sees a large increase in the stalling duration. With a relative stalling
duration of almost four times the actual video length at 12.5 % packet loss any streaming
attempt is practically rendered unusable. Also, all four tested playback strategies handle high
loss equally unsatisfactory, with the exception of some Firefox results producing a lower stalling
duration.

This general behavior could be explained by the transport protocol’s reliable transport feature,
catching any occurring loss. However, the detection and retransmission of lost segments takes
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time and leads to a bursty increase in latency. It also represents a possible reason of the increased
stalling time.

At least it can be safely assumed that in actual production networks high values of packet loss
are usually less likely to occur than high latency. The only major source of packet loss should
be network congestion, which should only occur in moments of high network load. Therefore,
it can be expected that playback strategies are better optimized for scenarios with high latency
than loss.
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Figure 4.14: Number of playback stalls in relation to packet loss with polynomial least-squares fit.

Figure 4.14 clearly shows the extremity of the null strategy in terms of the number of
experienced stalls compared to any other strategy. The same loss measurement series is used
as basis here. The null strategy runs into two orders of magnitude more stalling phases than
the three other strategies. The number of stalling events of the three other strategies remain
relatively low. But the individual stalling events will be rather lengthy ones when keeping the
total stalling duration in mind. Therefore, in the packet loss scenario the factor that will degrade
QoE the most seems to be the duration of the stalling events but not their number, with the
exception of the null strategy.

Looking at the QoE of the loss series, displayed in Figure 4.15, the difference in MOS between
the playback strategies is much smaller than the one observed in the latency series. Additionally,
the MOS degradation happens much more slowly and evenly dispersed across the loss values. A
MOS of 3 is only undercut at around 5 % packet loss. But the fluctuations between the individual
experiments is rather large in this series, often giving results 2 MOS units apart for the same
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Figure 4.15: Calculated MOS for the loss measurement series.

packet loss percentage, making loss a very unpredictable factor as it often triggers secondary
effects.

All in all, when planning a network for streaming applications, the maximum loss should be
kept below the 2.5 % mark to achieve reasonable streaming quality. All the existing strategies
already seem to work rather well for typically experienced network QoS scenarios. Only when
extraordinary network conditions are present the strategies break down. But this is not different
to many other network applications, which work best with pristine QoS.

4.5 Reliable Streaming Summary

In the course of this chapter, a complete toolset to classify, model, emulate, measure, and finally
to evaluate video streaming and interpret the results was given.

The multitude of approaches to reliable HTTP streaming in recent years, required the creation
of specific tools. Previous advances were generally not flexible or fast enough to deal with
the influx of new system parameters. The presented measurement framework, based on a
fundamental playback model, can be an answer to this issue. Implemented as an emulation in a
testbed or a DES it can deal with almost any reliable streaming protocol.

Out of these reliable protocols, a differentiation and categorization solely based on their
playback strategies was made and compared to real world examples. With the help of the
measurement framework and testbed, these strategies were quickly evaluated for their behavior
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under difficult network QoS conditions. Although they might not behave perfectly when
stressed, they probably will still be the way forward in the future, because of their reduced
complexity and the shift of control logic from the server to the client as well as from the protocol
to the application.

This also makes them very interesting for usage on mobile devices, for the growing mobile
application ecosystems, and for the very distinct behavior of streaming in mobile networks in
contrast to classical wireline networks. The description of the mobile streaming environment
and approaches for an investigation will be conducted in the next chapters.



5
REL IABLE V IDEO STREAM ING IN MOB I L E NETWORKS

The previous analyses of mobile networks were entirely based on having access to mobile core
network measurements. Most research groups will in most likelihood not have this access and
have to rely on active end-to-end device measurements or other approaches. Both the load
characteristics of mobile networks as well as reliable streaming models were independently
investigated up until now. But, as discussed in the beginning of this thesis and suggested in
several mobile Internet traffic analyses and forecasts (see for example [Cis14]), video is already
occupying a large portion from mobile traffic and might rise to an even higher ratio in the near
future.

Now that the two independent foundations were laid out in the previous chapters, the next
two chapters once again merge mobile networks and reliable streaming with two further lines
of discussions.

First, the existing higher layer protocols of a mobile device’s reliable video network stack
and the influences of lower layer mobile layers on them are analyzed. Contrary to the popular
scientific belief that the Internet is unable to change and renew itself (so called Internet “ossifi-
cation”, compare, e.g., [Fel10]), protocols in the TCP/IP stack change all the time. Changes are
more likely to occur in the end-to-end stack behavior and not in the packet format, as the latter
is more difficult to change. New application requirements and changing network architectures
always trigger adaptations in the stack in-between. Therefore, new and upcoming protocols
are presented with an additional focus on the rapid changes to the existing network stack that
occurred in the past years.

This also ties in with the mobile network load influencing factors discussed in Section 2.3.
Any behavior exhibited in the device’s stack could also have positive or negative effects on
the network’s control plane and signaling procedures. The section concludes with a theoretic
cross-layer information exchange model that has the potential to improve reliable streaming in
scenarios with fluctuating mobile network connections, e.g., during mobility, by informing the
streaming application about it and making it possible to react upon such events.

After that, in Chapter 6 several approaches to monitor and measure end-to-end mobile
network traffic, and streaming video in particular, are demonstrated and executed. Having
no access to in-network measurement probes limits the level of detail one can deduce from
influence sources inside the network and one has to shift its attention to active measurements.
But this also gives access to a wide range of other device-based information sources, some of
which are crucial to mobile devices, especially when regarding mobility. These methods are also
not limited to particular mobile network architectures and can thus be used to rapidly compare
new architecture evolutions or specific core network implementations to each other. Finally,
a full video streaming mobile network simulation model is also presented with some initial
results.

109
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5.1 Influences of the Existing Stack

This section briefly covers the existing Web protocol stack, which is also used for reliable
streaming, in relation to mobile networks and streaming, new protocols and how they might
influence the stack, and also discusses TCP more closely as an example. Beneficial interactions
between the stack’s layers are presented in a final part.

Superficially, not much has changed in the Web’s protocol stack. There is still IP, TCP, and
HTTP forming effectively the same stack since the development of HTTP/0.9 in 1991. And
this seems hard to change. Especially the transport layer is fixed to UDP and TCP, everything
else will probably get rejected, altered or even dropped by one of the numerous middleboxes,
such as NATs, or forced “traffic optimization” transparent proxies, all of which are prevalent in
mobile networks [Wan+11].

Each protocol, representing a layer in the stack, characteristically contributes to influencing
data transmissions and varies in its degree of impact on the network as well as the intended
goal of the transmission (e.g., streaming and watching a video).
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Figure 5.1: Approximate discernible time scales the networking stack protocols operate on in each layer.

Associated with each layer, and with the actual application running on top of the stack as
well, are different timing constraints or time constants of control. Figure 5.1 overviews the
approximate time scales on which activities take place, spanning a remarkable range of twelve
orders of magnitude. Complexity is introduced by stacking multiple layers on top of each
another, with many layers bringing along their own notion of control and feedback loops.
Functionality might be duplicated across different layers, e.g., flow control in the application
and on transport layer, leading to nested control loops, which might be coupled due to the
timing constraints.
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From the application layer end-to-end perspective the mobile network protocols seem to
simply increase the depths of the protocol stack. This introduces effects intrinsic to wireless
access and differentiate mobile networks from a fixed bit pipe.

Typical effects of wireless connectivity relating to physical phenomena like fading and
interference can be observed. Interruptions in the radio link are a major source of packet loss
and spiking delay. The overall delay in a mobile network is also strongly dependent on the
mobile network technology in use and has considerably decreased over the last few 3GPP
specification evolutions, even in the core network. This was investigated in [Lan+11]. But the
RAB and GTP tunnel setup — as previously described in Section 2.1 — is even with the latest
iteration of specifications sufficiently lengthy to be measurable and influences packet delay
during connection initiation as was observed in [AF10].

To save radio and network resources devices usually have to quickly release their alloted
radio resource slots causing additional delay for applications during connection reestablishment.
Moreover, mobile networks offer many control options and parameters that can further influence
any of the upper layers. Mobile devices have the tendency to be somewhat sensitive to some of
these changes. The authors of [Wan+11] show that mobile devices are sensitive to the impact of
protocol manipulations conducted by middleboxes.

Comparing all these factors to wired protocols such as 802.3 Ethernet it is clear that much
more can happen in the mobile stack. Today Ethernet is a point-to-point protocol, transmission
delay depends only on very few predictable factors, such as the distance. Wired access is
typically not conducted solely through Ethernet, but with access technologies such as DSL
using Point-to-Point Protocol over Ethernet (PPPoE) or cable with DOCSIS. While they also add
more layers to wired access, they should be by far less influencing than the mobile stack. The
latter has to additionally manage mobility and the shared wireless radio medium with protocols
such as RLC and RRC.

A further detail can be found in the interaction between mobile network frame sizes and
the IP Maximum Transmission Unit (MTU). Usually IP adapts its packet size to the shortest
frame size of all the link layer links in the path using Path MTU (PMTU) discovery as described
in [RFC1191]. Unfortunately, this can not work in 3G mobile networks, user packets are
transparently fragmented by the radio protocols to fit into the transmission slots alloted to
the device. For example, a GPRS transmission slot has a length of only 576.9 μs carrying just
114 bit. And in UMTS 40 B of payload are typically carried in each RLC frame (with optional
header compression in the PDCP layer).

This fragmentation is another source of an undesired interaction between 3G’s link layer and
everything above and including the network layer, potentially fragmenting packets over a long
period of time. From an application point of view this will cause additional packet delay.

In a neutral network, all packets are treated the same and should be subject to the same
RTT influencing sources. However, delays in the delivery of certain data to the upper layers
can occur due to certain protocol features, such as TCP retransmissions. After being detected
through timers or duplicate acknowledgments any lost packet is automatically retransmitted
by the sender. Therefore, loss from the lower layers is hidden from the application layer at the
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cost of delay variations and probably increased overall delay. The increase in delay is especially
noteworthy in a 3G cellular network with its notion of link layer Automatic Repeat Request
(ARQ) and mobility. With the latter concept, transmissions originally running through one
radio tower have to be moved to a new tower after a handover, even if the handover period
was lengthy and the data might already be outdated. These two combined can be the source of
very high delay, reaching seconds or even hundreds of seconds, when moving quickly between
coverage areas (e.g., in a car or train). This also causes bad interactions with TCP, as these
long-delayed segments are thought to be lost and subsequently retransmitted, resulting in an
even further increase of delay and delay jitter.

Another undesirable influence factor is caused by each packet buffer in the transmission’s
path. The effect occurs if the size of the buffer is not chosen carefully and the following link
is a bottleneck link. Additionally, memory is very cheap, so hardware vendors tend to plug
in as much as they can. Packets may be kept unnecessarily long in these buffers, heavily
increasing packet delay and diminishing TCP’s ability to adapt itself to its fair share with the
congestion control mechanisms [Jac88; Sch11]. These mechanisms rely on feedback from the
network by inducing packet loss which does not happen in a timely manner in case of large
buffers. This phenomenon has been dubbed Bufferbloat, and can induce latency as high as
several seconds [GN11; GK11]. This has to be considered in addition to the latency in mobile
networks which is already high and unreliable to begin with.

Buffers are necessary to compensate for short-term variations in the traffic load and avoid loss
in these situations. A popular countermeasure are Active Queue Management (AQM) methods
that control the size of the buffer and selectively drop packets if necessary. Although, most of
these are never widely used because of configuration issues and their inability to automatically
adapt changing network conditions. One particular algorithm stands out that is becoming
increasingly popular: CoDel [NJ12; NJ14].

CoDel measures the time it takes for a packet to pass through a buffer and begins dropping
packets once a certain maximum packet service time has been exceeded for a predefined
timespan. This and other similar mechanisms that control queue delay rather than the queue
size have begun to appear and be used in several places, e.g., in the Linux Kernel.

Up to the point of the transport layer the layers are pretty well defined, with only a few select
protocols to choose from, with mostly known influence factors on the mobile network. The
application layer has a different notion, though. Adhering to the end-to-end design principles
most innovation (and therefore change) will take place at the utmost ends, i.e., the application
layer. Even when only considering video streaming applications the protocol variations are
vast as the overview and classification in Section 4.1 demonstrated.

In streaming over mobile networks the video buffer size has to be in the range of seconds
to compensate for most eventualities as seen in Figure 5.1. Also every streaming protocol has
slightly different time scales and feedback loops.

As is the case in any best-effort network no bandwidth, latency, or loss guarantees can be
given. The available bandwidth might get unexpectedly smaller resulting in a quickly draining
video buffer if it was chosen too small. Then again, given sufficient bandwidth stability or
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at least predictability, buffer sizes could also be kept at a bare minimum, thereby enabling or
improving real-time interactivity. In addition to a fitting choice of the buffering and playback
strategies the choice of segment length and quality levels in adaptive streaming also plays an
influential role in mobile networks. Most of these factors were discussed in Chapter 4.

In layered network models individual functions are strictly separated and stacked on top of
each other with well-defined APIs connecting them. To achieve complete separation without
cross-influences, the feedback and control loops of each layer also would need to operate on
completely disjoint time scales. Looking again at Figure 5.1, it can be seen that this notion is
only partly supported and the loops of adjacent layers typically overlap somewhat. Protocols
and implementations need to be aware of this circumstance and able to handle cross-layer
influences.

5.2 Recent and Upcoming Protocols

Protocol development has not stopped in recent years. On the contrary, especially in the appli-
cation and transport layers some interesting changes are occurring. The following paragraphs
highlight some of the changes and their potential influence on or improvements to mobile
streaming.

Beginning at the transport layer some alternative approaches to TCP are available, as es-
pecially the retransmission reliability has proven to be problematic in mobile networks as
discussed. Typically, TCP is used regardless for two reasons: First, having congestion control is
an absolute necessity to achieve an equal fair share bandwidth and avoid congestive collapse. If
no congestion control is present on the transport layer it would need to be implemented else-
where. This generates additional implementation work and simultaneously reduces portability
and compatibility to other congestion control variants — the term TCP friendliness has been
used for this in the literature.

Second, due to many middleboxes simply dropping packets using any unrecognized protocol
— exempting UDP and TCP — the transport layer protocol often can not be changed at will. New
transport protocol approaches would need to layer themselves atop UDP incurring additional
overhead. These following three items are examples of such transport protocols, each created
with different goals in mind:

• DCCP [RFC4340] extends UDP with concepts for data flow and TCP-compatible conges-
tion control but omits a strict packet retransmission feature.

• The Low Extra Delay Background Transport (LEDBAT) [RFC6817] congestion control
algorithmwhich is implemented, amongst others, inMicro Transport Protocol (𝜇TP) [Nor].
Traffic using LEDBAT is generally of high volume, high elasticity, and low priority, such
as for example file sharing traffic. Data handled by this congestion control approach gets
displaced by any other data if the algorithm detects an increase in the transmission buffer
delay. These aspects makes it rather unsuitable for video streaming which generally does
not have elastic properties.
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• Quick UDP Internet Connections (QUIC)1 is a further experimental approach aimed at
reducing sources of latency spikes which would occur in TCP, such as retransmissions
or the initial handshake. Some reliability is achieved through Forward Error Correction
(FEC) schemes if desired. Furthermore, a novel congestion control mechanism based on
packet pacing, not through a traditional congestion window, and encryption by default
are implemented. However, it is not intended as a production protocol but is rather a
testbed for future mechanisms and modifications to existing protocols.

Especially DCCP and QUIC show some interesting prospects for mobile streaming through
their omission of retransmissions, which is the source of most playback stalling in high latency
and loss scenarios. This would return streaming players a degree of freedom which they had
while using the unreliable RTP. A playback strategy could now once again decide what to do in
case of packet loss. The choice would be either to stall and wait for subsequent video data or
drop some frames and continue the playback more rapidly.

In the wake of Edward Snowden’s surveillance and man-in-the-middle reveals, the IETF
announced its position on these issues in [RFC6973] suggesting that all future standardized pro-
tocols should consider surveillance issues and minimize or prevent any attempt on it. Ultimately,
this might lead to a end-to-end crypto-by-default Internet, with every protocol providing at least
opportunistic encryption. The first signs are already visible in today’s traffic mix, with many
Websites only available through HTTPS — using Transport Layer Security (TLS) [RFC5246] —
any more. Similarly, most e-mail providers have moved to IMAPS and SMTPS, even using new
authentication and key exchange techniques like DNS-Based Authentication of Named Entities
(DANE) [RFC6698] which in turn relies on DNS Security Extensions (DNSSEC) [RFC4033] to
authenticate the validity of DNS entries. For example, the current draft version of HTTP/2 —
which will be described in more detail shortly — mandates the presence, albeit not the usage, of
TLS capabilities in both client and server. And even the connectionless UDP can be secured
using Datagram TLS (DTLS) [RFC6347].

Usually, an additional intermediate layer is added through the encryption process, adding
more timing interdependencies to the other layers. However, end-to-end encryption also
diminishes the influence of most middleboxes as they are not able to alter the contents of
the — now encrypted — segment any more. More and more Web streaming services are
also available through HTTP Secure (HTTPS), which causes a large shift of the traffic mix to
encrypted protocols. Even for RTP encrypted variants, in the form of SRTP [RFC3711] and
ZRTP [RFC6189] are available and are being commonly used for communication applications.

Moving on to the application layer, some interesting developments have occurred in the
Web’s stack and in its use of HTTP which almost all reliable streaming methods facilitate.

The original HTTP/1.0 specification is from the year 1996 with only one update to HTTP/1.1
in 1999 thereafter. Since then, no changes have been made to the core protocol. However, the
number of use cases facilitating HTTP has increased significantly, bringing with them a lot of
long-standing issues that were not thought of initially.

1 http://lwn.net/Articles/558826/ and http://www.ietf.org/proceedings/88/slides/slides-88-
tsvarea-10.pdf

http://lwn.net/Articles/558826/
http://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
http://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
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The typical number of individual HTTP requests for one Web page has steadily increased,
reaching today about 100 objects.2 HTTP deals with this through persistent connections and
pipelining to avoid unnecessary connection establishment and request delays. Pipelining is
however disabled in almost every client implementation as it suffers from head-of-line blocking.
To circumvent this problem and increase retrieval speed, browsers have begun to open many
parallel TCP connections per site, invoking significant overhead and general fairness issues
due to the large number of TCP connections displacing other traffic. Segment-based reliable
streaming applications faces similar issues, especially when more than one segment is to be
retrieved simultaneously. In the worst case, this can add additional latency through the need to
establish further connections.

Moreover, the Web’s structure has changed in such a way that it is now common to push data
to the clients to increase a Web page’s interactivity. However, HTTP is a simple client-initiated
request-response protocol and pushing can only be emulated using techniques such as long
polling which imposes several restrictions and state overhead. Both these issues also affect
reliable streaming with HTTP to a certain degree. Streaming can benefit from a reduction of
request latency as well as servers pushing adequate video segments at the correct time without
the need for further requests.

To combat the situation and increase the protocol’s interactivity along with it, several ap-
proaches are being developed. The first, WebSocket [RFC6455], is a transport protocol on top of
TCP (or TLS) that can be established through a regular HTTP connection. It enables full-duplex
communication between the two communication nodes. An additional W3C Application Pro-
gramming Interface (API) [Hic13] enables simple usage in browsers with higher interactivity
than plain HTTP. It is also used to stream content to a browser.

The WebRTC protocol suite3 [W3C13] even goes a step further and provides a complete stack
for multimedia communication. It is intended to be used — through the provided API — for
direct browser-to-browser communication initiated by a central server-side Web page.

Both these techniques aim to enhance or sidestep HTTP. But it is also desirable to improve
the protocol itself for the aforementioned reasons. Therefore, in 2010 Google implemented a
new experimental application protocol called SPDY as an alternative to HTTP in its Chrome
browser accompanied by a draft specification [BP13; BP12]. Every major browser and most
Web servers now support SPDY, many Cloud and CDN providers have it enabled.

SPDY uses the same port as HTTPS (443) and mandates the use of TLS as it also serves to
negotiate the choice between HTTP and SPDY. Compared to HTTP pipelining, SPDY provides
full-duplex time-division multiplexing. After an initial request of a Web page, the server can
anticipate any follow-up requests, push objects on additional streams with assigned priorities
and therefore avoid additional request round trips.

All of the SPDY changes are aimed at reducing the number of established TCP connections
for a Web site retrieval, ideally down to one, and reduce the overall latency of the object

2 http://www.websiteoptimization.com/speed/tweak/average-web-page/ and http://httparchive.
org/trends.php and https://developers.google.com/speed/articles/web-metrics

3 http://www.webrtc.org/

http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://httparchive.org/trends.php
http://httparchive.org/trends.php
https://developers.google.com/speed/articles/web-metrics
http://www.webrtc.org/
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transmissions. Evaluations in [BP12] suggest an average Web page load time reduction of 29 %.
For networks with high latency, e.g., mobile networks, the gain could be even higher as several
round trips are avoided.

Some of the benefits are also applicable to reliable streaming, in that servers are now able to
push video segments to the client. Conjoined with Scalable Video Coding (SVC), SPDY could
multiplex the different video layers in one connection, with the highest priority assigned to the
base layer.

The SPDY draft was later picked up by the IETF Httpbis working group as an initial basis basis
for the HTTP/2 specification [BPT14] currently being finalized as of mid 2014. It follows the
SPDY specs rather closely, with the only major difference being the use of TLS. Its usage is not
mandated anymore, merely its presence and, if used, the application of strong and ephemeral
cipher suites.

In fact, Netflix, one of the largest commercial video streaming providers, already utilizes
the features of the latest HTTP/2 draft in its service. For example, segments are pushed by
the server using HTTP/2 multiplexing and are displayed as HTML5 video. The usage of these
features for video streaming might merit a separate evaluation.

5.3 Additional TCP Changes

In addition to the previously described new transport protocols under development, aiming to
replace and surpass TCP, TCP itself is not as static as it may seem. While the basic wire frame
and data interchange format has already been defined in 1981 in [RFC793], much of the specific
behavior is free to be experimented with by further specifications and implementations. The
most prominent example is the congestion control mechanism where every operating system
takes hugely different approaches.

Every one of these changes can have unforeseen repercussions or benefits for the application
layer. The following paragraphs investigate some of the changes in the last few years and
their implications. Instead of implicitly exploring specific mechanism choices of closed source
OSs and tracking their changes over the years, which would be extremely difficult, the TCP
implementation in the Linux kernel is taken as an example. The changes can be easily tracked
by crawling through the patch sets and their commit logs of every kernel version. Sites
like http://kernelnewbies.org/ and http://lwn.net/ simplify this process even more.
Table 5.1 depicts such an attempt to track the major changes affecting TCP in the kernel.

Most of the changes plainly aim at reducing the number of required round trip times and
increase the overall throughput while still maintaining fairness. This includes both small and
larger changes, some of the more recent are:

• The TCP congestion window defines the maximum amount of data that can be transmitted
without having received any acknowledgments for the data. It is the central knob for all
congestion control mechanisms.

http://kernelnewbies.org/
http://lwn.net/
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Table 5.1: Assorted list of some select network stack changes in the Linux kernel that alter TCP’s
transmission behavior.

Change Related Work Kernel Date

BIC as default congestion avoidance
algorithm (from Reno)

2.6.8 August 2004

CUBIC as default congestion avoid-
ance algorithm

[HRX08] 2.6.19 November 2006

New TCP Slow Start: HyStart [HR11] 2.6.29 March 2009
Multipath TCP [RFC6824] external 2011
TCP User Timeout [RFC5482] 2.6.37 January 2011
Initial Receive Window 10 MSS [RFC6982] 2.6.38 March 2011
Initial Congestion Window 10 MSS [RFC6982] 2.6.39 May 2011
1 s initial RTO (from 3 s) [RFC6298] 3.1 October 2011
Changes to sstresh and CWND be-
vahior

[RFC5681] 3.1 October 2011

TCP Proportional Rate Reduction [RFC6937] 3.2 January 2012
Byte queue limits and TCP buffer lim-
its

3.3 March 2012

CoDel AQM [NJ14] 3.5 July 2012
TCP Early Retransmit [RFC5827] 3.5 July 2012
TCP small queues 3.6 September 2012
TCP Fast Open (client side) [Che+14] 3.6 September 2012
TCP Fast Open (server side) 3.7 December 2012
TCP tail loss probe 3.10 June 2013
TCP Forward RTO-Recovery [RFC5682] 3.10 June 2013
Low latency network polling 3.11 September 2013
Improved RTO calculation and han-
dling of reordering

3.12 November 2013

TCP Fast Open enabled by default 3.13 January 2014
TCP auto corking 3.14 March 2014
PIE AQM 3.14 March 2014
TCP Fast Open over IPv6 3.16 2014
LISP [RFC6830] 3.16 2014
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The initial window size was increased multiple times in the past — from initially one
segment, to three, and now to ten segments [RFC6982] — with the intent to accommodate
for the increase in transmission bandwidth and higher expected traffic volume. With a
ten segment window small HTTP objects can be transferred without any ACK round
trips reducing the average Web page load time. The initial window is also important
for determining the achievable throughput in segmented streaming as the congestion
window is often reset in the idle phase between segments.

• Another TCP round trip can be saved by using the initial handshake itself for data
transmission. TCP Fast Open [Che+14] implements this and is again designed to reduce
Web page load times.

• While the retransmission timeout is calculated through RTT measurements, it is initially
set to 3 s. This could add a high amount of delay if packets are lost during the handshake
at the beginning of a connection. Implementations following [RFC6298] set the default
value to 1 s which may benefit especially mobile networks.

• The classic congestion avoidance algorithms do not work very well with networks with a
large Bandwidth-Delay Product (BDP) as the congestion window scaling entirely depends
on the RTT. Newer approaches reduce this dependence while also departing from the
traditional linear growth congestion avoidance phase. Some of the congestion avoidance
in use in today’s OSs are:

– Reno [RFC5681]

– New Reno [RFC6582]

– Vegas [BOP94]

– Compound [SZS06] (as an option in recent Windows versions)

– CUBIC [HRX08] (default in Linux)

All of these changes should serve to demonstrate the flux TCP is in. It is constantly being
adapted to current network and application needs. However, no adaptation or assumption as to
specific applications are made on the transport layer. These kind of modifications can only be
made on an end-to-end basis, i.e., at the application layer (cf. also the arguments in [SRC84]). All
lower layers must be application-neutral as they could harm other application layer protocols.

All these changes contrast the claims that the Internet is ossified and cannot accommodate
any new applications any more (confer for example in [TT05]). Rather, IP and TCP serve as the
common carrier of every type of data at the waist of the Internet’s protocol hourglass model.

It also demonstrates the difficulties and large optimization space reliable streaming has to
deal with. Finding the correct combination of protocols for every layer, parameters for these
protocols, and playback strategies for every user scenario is a very complex task and needs
proper tools to handle this.
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5.4 Cross-Layer Information Exchange

The Internet has its historic roots deep in wired networks with a slim and well-defined network
stack represented by the ISO/OSI or TCP/IP model. These layers are isolated against each
other. Only predefined information exchange points, or Service Access Point (SAP), at the
layer borders allow for vertical communication. A typical wired TCP/IP Internet environment
rests atop of either an Ethernet or other access technologies, e.g., DSL, DOCSIS or PON, at the
physical and link layers.

Application layer protocols often implicitly rely on the presence and characteristics of specific
lower layer protocols, although through the layer isolation no application can precisely know or
even control the current state of the lower layers. Nonetheless, they usually make assumptions
on the composition and behavior of the lower layers and plan their work accordingly.

But the access technology diversity has strongly increased through the advent of wireless
technologies, and fixed access behavioral patterns, which were examined in the past, may not
be applicable any more today. The protocols used for the radio transmissions behave very
differently when compared to plain Ethernet and higher layers may make false assumptions.
Examples for this were given in the discussion of the stack’s influences in Section 5.1.

It would be very desirable for transport and application layer mechanisms to be able to better
understand these layers and cope with these effects. The term cross-layer interactions or cross
layer information exchange subsumes these approaches. Specific information from one layer
is made available to other interested neighboring or more distant layers. Using cross-layer
techniques many of the previously introduced negative layer influences can be diminished or
neutralized altogether.

The next sections describe related mechanisms in the literature, classifications and then
proceed to describe a new cross-layer approach that facilitates cross-layer information to the
benefit of mobile streaming. The cross-layer work presented here is meant as an initial proposal
to be integrated into future streaming players and their playback and transmission strategies.
Therefore, no complete implementation or evaluation is given.

5.4.1 Related Cross-Layer Approaches and Classifications

The idea of exchanging information between layers is not a particularly new one. Some specific
ideas have been implemented a long time ago. The authors of [RI04a] list a number of scenarios
in which cross-layer information could be used and also talk about the type of information to
be shared between layers. One of the oldest and most well known cross-layer approaches is
probably Explicit Congestion Notification (ECN) [RFC3168]. Here, the IP layer of intermediate
hops can signal the end nodes’ TCP layer that congestion is occurring and TCP does not need
to wait for implicit congestion signals, e.g., duplicate acknowledgments or timeouts. However,
ECN is disabled in almost every implementation by default as it lead to numerous problems and
triggered bugs4. This is a risk that many cross-layer attempts may face.

4 http://lkml.iu.edu//hypermail/linux/kernel/0009.1/0329.html

http://lkml.iu.edu//hypermail/linux/kernel/0009.1/0329.html
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A significant amount of publications is dealing with cross-layer information in wireless and
mobile protocol stacks. A number of architectures have been proposed, e.g., [RI04b], [RI06],
[WA03b], [WA03a], and [KI07], but no actual solution seems to have been implemented in any
of these.

While cross-layer typically implies a solely vertical — meaning between network layers —
exchange flow there can also be horizontal — between network nodes — components present.
Dynamic Link Exchange Protocol (DLEP) [Rat+13; BR12] is such an example of a diagonal
flow, providing information of a lower layer of one entity to a higher layer at another node. For
example, DLEP can forward information available only to the (external) wireless modem or
other interfaces to the routing entity of a node upon which it can act. Link characteristics such
as bandwidth, latency, connection status, or information regarding neighbors can be requested.

Horizontal information flow in cross-layer approaches is more than often an indication
of centralization (also called network-assisted or managed) as apposed to purely vertical
distributed approaches. Concerning this network-assisted cross-layer exchange there are a
number of approaches that aim to integrate layer cooperation into the design of new mobile
network infrastructures, including [Zar+10] and [Pia+11]. Generally, information is retrieved
from the clients and collected at a central manager to be used in any policy decision like mobility
and radio resource management.

Going back to purely distributed approaches, in [HHM10] the concept of mobility awareness
is discussed. The goal is to predict device motion and mobility based on available information
and adapt the individual network layers to react accordingly. One of the easiest mechanisms to
implement the usage of cross-layer information for is the selection of the active network interface.
Current mobile devices have a wide range of network interfaces available, all with specific
characteristics. The management architecture proposed in [BLH09] switches the currently used
interface based on pre-configured profiles. Information from multiple layers is used to support
the decision-making process.

To optimize unreliable video streaming in a WiFi network, the authors of [Har+06] create a
control loop between the video encoder and the 802.11 MAC layer to conduct WiFi rate control
fitted to the output of the encoder. This is an example of a tight cross-layer control loop for one
particular application. The link layer rate control will very likely have adverse affects on other
applications using this node.

The notion of cross-layer can also be applied to non-traditional network stacks. For exam-
ple, the authors of [Mel+08] present a cross-layer model for satellite communication stacks.
They additionally distinguish between two general flavors of cross-layer architectures, one
with direct and the other with indirect communication. Direct exchange implements new
vertical interfaces in the layers and exchanges information directly between them. The indirect
alternative uses an external information broker that handles all communication in parallel
to the existing layers. Similar cross-layer information can be offered to peer-to-peer overlay
networks, as was for example researched in the SmoothIT project5, where routing and topology

5 http://www.smoothit.org

http://www.smoothit.org
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information was collected and made available to interested peers [Oec+09] in order to keep
traffic local and avoid using ISP interdomain links.

5.4.2 Cross-Layer Model and Implications

With these past approaches and classifications at hand, a cross-layer model suitable for video
streaming in mobile networks can now be defined and the information to be exchanged specified.

radio
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Figure 5.2: Model and architecture of the proposed cross-layer information exchange.

Figure 5.2 illustrates the concept with the example of a mobile device. In a fully isolated
model, no information would be passed from the baseband to the OS and the applications.
The cross-layer model permits certain information to pass from one layer to another. Here, a
software broker is responsible to collect information from several sources and layers and make
it available to any interested application in a concise manner.

This is an indirect cross-layer approach bypassing the intermediate layers completely and
leaving them mostly unmodified. Also, information is always collected and used on the same
device, making it purely vertical and distributed. Sharing this kind of information between
different hosts would be accompanied by certain privacy and security implications. Most of
the data is very sensitive and can also be used with malicious intent if it were leaked by the
cross-layer broker.

This architecture is intended to pass data from the physical and link layer directly up to
the application. Especially information specific to 3G mobile networks could be potentially
interesting and used in benefit for applications and the user experience.This could include:

• Information on the occurrence of a horizontal handover between cells.

• Information on neighboring cells and predictions when a handover is most probable to
occur.

• Information on the prediction of the occurrence of a vertical handover and thereby
changes in the active network stack, e.g., to the WiFi layers.

• Information on the current signal strength, bit error rate, and throughput.
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• Detailed mobility information, including current location and travel speed in relation to
base station positioning and availability.

Today, most of this information is only available inside the link layer or even just known to
the mobile network’s control plane. The impact of a lack of this knowledge can be significant
for applications. For example, traffic scheduled during a handover period can be subject to
especially high latency and loss due to the lengthy control plane interactions and traffic rerouting
processes in a mobile network. If a cross-layer exchange would be provided and the application
is made aware when an handover is supposed to occur, traffic could be scheduled around the
event. In addition to that, avoiding retransmissions and buffering during handover events would
also help the mobile network save radio resources and buffer space at the mobility anchors.

Generally speaking, the goal of the cross-layer approach would be to findmeaningful reactions
for every type of state the lower layers reported through the broker. The pool of recipients
is also not necessarily limited solely to the application layer. Especially the transport layer
could be interested into explicit connectivity information and be modified to react accordingly.
In addition to information flow, a path for control flow could also be envisioned. Herein,
applications could directly influence the decision making and policies of the lower layers and
adapt them to their personal needs.

All in all, both the cross-layer data needs as well as the recipient’s reactions have to be well
defined and thoroughly tested to avoid any conflicts and layer separation issues. The impact of
a simple unidirectional information flow on the layering mechanisms is suggested to be rather
low. Only explicit and specific information is revealed keeping most of the isolation intact.
However, a bidirectional control flow could soften up the isolation and have adverse side-effects
through conflicting interests of participating applications.

Either way, when implementing any kind of cross-layer exchange, one always has to keep a
close look on the resulting consequences. One side effect can be the creation of an unintentional
feedback loop between the control mechanisms of protocols of different layers. Moreover,
breaches in the isolation could leak network state that could be exploited by malicious parties
in any number of unforeseeable ways. Therefore, handling these plays an important role in
cross-layer research. In [KK05] the authors present and discuss some of these issues.

5.4.3 Utilizing Cross-Layer Information for Adaptive Reliable Streaming in Mobile Networks

Looking at the model it can be an obvious fit for adaptive reliable streaming. As introduced
in Section 4.1, adaptive streaming usually facilitates a segment-based pull approach on top
of HTTP. A local video buffer is maintained and attempted to be kept between predefined
thresholds. The goal is to never run out of buffered video while still providing the best possible
quality, which could be difficult to achieve in a highly variable mobile network.

Cross-layer information can be fed into the adaptivity model of the streaming player to
better decide the exact schedule and quality level of segment transmissions. Adaptive reliable
streaming can be especially suited to receive cross-layer data for several reasons: First, all
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requests are client-initiated, so available information can be immediately taken into account
and does not need to be transfered elsewhere. Second, adaptive streaming consists of small and
independent video segments, which allows to quickly react on upcoming events.
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(a) Stalling occurs without handover hinting.
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(b) Stalling can be prevented by hinting and proactively filling the playback buffer.

Figure 5.3: Adaptive video streaming scenario with and without handover prediction and cross-layer
hinting.

One of the easiest events to improve upon is the timely knowledge (or prediction) of upcoming
handover procedures, horizontal as well as vertical handovers. Consider the scenario given in
Figure 5.3a. The streaming player consistently retrieves video segments at the highest quality,
maintaining a moderate buffer size but is oblivious to the upcoming handover. This handover
interrupts any transmission for a certain time, during which the buffer is fully drained and the
video playback begins to stall. Only after this phase ends, the remaining portion of the segment
can be received. But the buffered amount is now still below the safety margin and the player
is forced to request several segments in the lowest quality to quickly refill the buffer. Only
after that, the player’s state normalizes and normal quality playback is restored. In summary,
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one unexpected service interruption causes one complete stall and a long period of reduced
quality in this exemplary scenario. This effect can also be easily observed in the mobile reliable
streaming simulation scenario described in Section 6.2.1.3.

Figure 5.3b shows the same scenario but with cross-layer hinting present. As soon as the
notice of a predicted upcoming handover is received, the streaming player can react and switch
to segments with medium quality to increase the buffer size before the event. After the handover
has completed one more medium segment is transmitted to get the buffer level back to normal
before returning to full quality. Both the video stalling period and the drop to the lowest quality
could be avoided here. The general goal in the streaming process is to both stop the buffer
from ever completely emptying and also maintaining the highest possible video quality. To
achieve this, early knowledge of future network conditions is highly desirable for the streaming
controller to correctly adjust the segment retrieval rate and quality.

The end-to-end concept can be applied to cross-layer architectures as well. While cross-layer
information can still be made available to intermediate layers, the achievable effects might
either not be as large as in the highest layer or more complicated to attain. For example, it
requires much more effort to correctly adjust TCP retransmissions and congestion control to
accommodate the cross-layer broker without side-effects to other applications. Nonetheless,
benefits can still be attained at the transport layer to some degree if the adjustments are being
kept application-neutral. This can be especially helpful for applications that have not yet been
adapted to handle cross-layer information.

5.4.4 Benefits for Other Applications

Beyond this work’s central motifs of reliable streaming, other applications could benefit as
well. First, cross-layer information could be utilized to directly improve the user interface and
experience. Any information of upcoming service interruptions or other adverse conditions are
simply displayed to the user. This is specifically helpful for interactive communication — as in
video calls or VoIP. An unsuspecting user might be more startled at a sudden loss of reception
than the one that was informed beforehand. The communication partner can additionally also
be informed. While user hinting and notifications does not improve the actual QoS of the
application it can still positively improve the perceived quality or QoE. But detailed user studies
would need to further verify this.

Generally, any application that can locally exert control over its traffic and does not have to
rely on server-side control will benefit the most. Also, the traffic should ideally be composed of
smaller objects available in multiple versions and free to be reordered. A good candidate would
be Web browsers with their stateless HTTP requests of a Web site, which is comprised of many
small objects that can be, to a certain degree, requested in any order. Those objects could be
requested in such an order to better accommodate network events announced by the lower
layers. On the other hand, RTP-style streaming traffic might not be able to beneficially utilize
cross-layer information as just a stream of continuous data is pushed to onto the client.
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Directly involving the user itself are a further category of cross-layer interactions that are
only available if there is a downward control flow through the broker to the radio layer protocols.
This would require the additional presence of a user-space policy manager. The manager would
offer the user a series of preferences and a configuration interface for a rule-based cross-layer
control engine. With this the user could create complex compound policies such as: “Do not
handover to a stationary WiFi from 3G when moving faster than 50 km h−1, switch only to
in-vehicle WiFi if available.” or “Avoid any vertical handover, which would interrupt my service
for a long time, while a VoIP call is running.”

5.4.5 Implementation Outlook and Approaches

As the model displayed, the target applications should not be directly (or indirectly through
the inclusion of a third-party software library) responsible to retrieve cross-layer information.
Instead, the broker was suggested as the means to implement cross-layer exchange in an actual
software environment. This daemon — located in the user space — collects information from
the lower layer network protocols which usually reside entirely in kernel space. The kernel
typically exposes only some data publicly with a stable API and Application Binary Interface
(ABI). Other data can often be derived from internal data structures which usually change with
every version. The task of adapting to this changes and collecting concise data is handled by
the daemon. Only the actual reactions to these information points must be implemented in the
application itself.

The daemon provides all information through a pre-defined user space interface to interested
parties. This includes the raw data itself, e.g., current latency or bandwidth information, as well
as derived and predicted data points. Examples for the latter are the discussed early handover
warning or mobility predictions. To further improve predicted values the daemon also integrates
data from other device sensors outside the classical network stack, amongst others location and
movement data and as well as system and battery state.

To further decouple the applications from the broker, the information should be provided
through a shared Inter-Process Communication (IPC) bus. Current candidates for the reference
implementation are Android, using the provided Intent6 IPC mechanism, as well as Linux
distributions using D-Bus7. An even higher level implementation might be possible for the
latter case, as the D-Bus-based NetworkManager8 framework already provides some of the
network-related functionality. For example, it would be rather simple to implement switching
the active network interface on the basis of cross-layer data with NetworkManager.

Through these decoupling efforts the broker’s implementation and binary package can be
completely swapped with another and all applications would still work as long as the bus
interface remains the same. Therefore, the user and her chosen applications are not bound
to a specific cross-layer broker provider with predictions conducted by certain algorithms.

6 https://developer.android.com/reference/android/content/Intent.html
7 http://www.freedesktop.org/wiki/Software/dbus/
8 https://wiki.gnome.org/Projects/NetworkManager

https://developer.android.com/reference/android/content/Intent.html
http://www.freedesktop.org/wiki/Software/dbus/
https://wiki.gnome.org/Projects/NetworkManager
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Rather, she can easily supplant the existing provider with a better one. The planned broker is
therefore only meant as a reference implementation. Additionally, multiple brokers could even
be simultaneously active as long as as long as their provided data does not intersect.

The viability of cross-layer information can be evaluated in several ways. A pure network-level
simulation can give initial hints on performance gains and issues. But only the evaluation of
data traces and packet level captures of an actual reference implementation might give good
insights into the implications of diminishing the network stack’s layer encapsulation properties.
A further comparative statistical analysis of several different approaches to cross-layer data
predictions algorithms as well as the specific application’s reactions could also prove to be of
significant interest. Both the testbed and LTE simulation approaches developed in Section 6.2
can help in validating this cross-layer approach.

5.5 Mobile Streaming Summary

To summarize, most application layer protocols are sensitive to circumstances of the lower
protocol layers. Reliable streaming is no exception to this rule. Due to the time constraints
present in media streaming it might even be more sensitive to outside influences than some
other protocol with more relaxed timing constraints. Those protocol layer influences are aplenty,
especially in mobile networks, and are most often unintended side effects of some protocol
feature, behavior, or control loops that occur between protocols due to specific timings.

But this chapter showed that the mobile and Internet protocol stack is still very much in
ongoing development and many of these side effects are known and being worked on. This
happens either through the replacement of old protocols with entirely new versions that attempt
to avoid these influences, or changes to existing protocols, as can be most prominently seen
in the steady changes to TCP. However, as it might not be enough to improve the individual
layers, a concept for cross-layer cooperation between protocols on different layers is also
highly desirable. The framework provided here should serve as a blueprint for future reliable
applications to correctly facilitate information from the mobile network, e.g., handover event
information.



6
EVALUAT ING REL IABLE STREAM ING IN MOB I L E NETWORKS

Testing and evaluation plays a crucial role not just in correctly utilizing cross-layer data but
also for media streaming in mobile networks in general. All of the discussed layer influences,
interactions, and other unintentional side-effects need to be thoroughly understood for the
intended goal of optimizing reliable streaming in mobile networks to be achieved.

The core network trace evaluations undertaken in Chapters 2 and 3 were already able to
highlight the load influencing dynamics of the core network control plane. But many more
aspects remain uninvestigated, some of which may not even be covered by this kind of passive
network-wide measurement type.

To further the understanding of the behavior of reliable streaming in mobile networks and
investigate influence sources, usually either active measurements or simulations are conducted.
Both methods and their drawbacks and benefits are discussed in this chapter. Moreover, an
approach to enhance active measurements for mobile devices that facilitates meta-data of the
device and improve measurement accuracy, is presented in the first section. Afterwards, a full
LTE-based reliable streaming simulation is also introduced and some initial results are given.

6.1 Active Measurements and Testbeds

Active measurements includes any kind of approach that generates its own network traffic and
bases the evaluation on it. Therefore, they are usually conducted on an end-to-end basis, with
at least one side under the control of the experimenter.

Apart from researchers writing their own specialized application for a singular study, active
measurements are most often conducted with the help of existing network testbeds, thereby
reducing the overall effort. Any new protocol or alterations to existing network protocols
are usually best tested in large-scale network testbeds to collect performance data and find
side-effects. The presence of background traffic and a large device heterogeneity and diversity
are often considered an advantage to a testbed as it better resembles real networks.

Testbeds can be either constructed physically by setting up a number of dedicated machines
in a lab or form a virtual overlay spanning over an existing computer network. Both of these
principles workwell for wired networks and there are a lot of examples of successful testbeds con-
structed with these principles. Currently, one of the largest installations is PlanetLab [Chu+03],
consisting of dedicated machines located at a number of University sites. An experimenter can
instantiate a slice — a portion of the overlay network made up of a number of interconnected
VMs hosted on the various machines — and conduct her studies. Thus, many experiments can
run concurrently on the same testbed without causing interference in the other experiments.

127
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Several testbeds devote themselves to wireless and mobile networks. These are usually either
assembled in a closed laboratory environment, SmartLab1 or EmuLab2 come to mind, or hand
out subsidized mobile devices, prepared with custom firmwares, to volunteers which need to
allow running network experiments on them. The approach is taken, e.g., by NetSense [Str+13]
and PhoneLab3 [Nan+13]. The latter approach raises some interesting issues concerning the
volunteers’ privacy which will be covered in the next section.

All of these testbeds consist of rather uniform nodes and access to it requires some amount
of manual administrative effort. Other testbeds take an alternative route on these issues,
for example the Seattle Testbed4 [Cap09]. Its overlay network comprises of small software
sandboxes installable on a wide range of device types. Experimenters gain automatic access
to a portion of the overlay through a clearing house and are resource-restricted to their slice
by a hypervisor. As Seattle is available to both conventional desktop and server computers
as well as Android smartphones, the overlay composition very heterogeneous. Therefore, the
node stability and availability can vary substantially over time, caused amongst other things by
the individual uptime of the computers following typical diurnal cycles and mobility-related
connectivity issues. While this results in a more realistic picture of a network, it simultaneously
makes the execution of the actual study more difficult as these churning issues have to be dealt
with.

The requirements specific to conducting reliable streaming experiments are low. As usually a
fully pull-based approach is utilized, full control over the server containing the streaming files
is not necessary. It is also generally not required to display the actual video on the client in
reliable streaming as it always will be a pixel-perfect representation anyway and no-reference
QoE metrics are usually employed. Therefore, the buffer-emulation measurement approach
presented in Section 4.4 can be utilized here. The measurement devices only have to record the
transmission traces of the streaming process and make them available to the emulation process.
The latter can for example also be performed in a centralized and asynchronous matter as long
as only non-adaptive streaming is measured.

6.1.1 Enriching Mobile Measurements with Additional Metadata

While transmission traces might be the bare minimum amount of data to conduct reliable
streaming measurements, meaningful mobile measurement can include much more metadata,
giving insightful indications of the device’s current state.

Mobile devices have access to a vast array of data. On the one hand, the networking stack
does itself contain much information on its state, as discussed in the previous chapter. The
current radio and mobility state is especially relevant to mobile streaming measurements as it
directly influences the link’s QoS parameters.

1 http://smartlab.cs.ucy.ac.cy/
2 http://www.emulab.net/
3 https://www.phone-lab.org/
4 https://seattle.poly.edu/html/

http://smartlab.cs.ucy.ac.cy/
http://www.emulab.net/
https://www.phone-lab.org/
https://seattle.poly.edu/html/
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But modern mobile devices additionally contain an ever-growing number of sensors, including
GPS, accelerometers, temperature, pressure, luminosity, humidity, fingerprint, heartbeat, and
several cameras and microphones. Moreover, further radio interfaces (WiFi, Bluetooth, NFC)
gather data on network availability and signal quality. Each additional data source can help
in quantifying the physical position, orientation and state of the device and even quantify the
“state” of its user. Even surveillance agencies are allegedly more interested in metadata in
general than actual data for this reason.5

Active measurements in mobile networks should make use of metadata and correlate it to the
regular measurement data to achieve a finer result granularity. Alternatively, sensor data can
also be used for new kinds of evaluations. Questions like “Can this device stream video at a
satisfactory quality at certain locations?” can be raised and answered.

6.1.1.1 Metadata and Privacy

While the actual experiment usually runs in a strict sandboxed environment with no access
to actual data on the device, allowing sensor and metadata access intentionally creates holes
in this isolation model. As informative metadata can be for network studies as intrusive is
unmediated access to this data for the device’s user.

In a pure lab environment this poses no problem as there will be no device owner whose
information can be leaked. However, preserving the privacy of actual device users running
network testbed software is absolutely critical for a number of reasons:

• For ethical reasons as stated in several ethics proclamations, for example in thewell-known
hacker ethics6 which states to “Use public data, protect private data.”. This is often called
the principle of data protection and minimalization, aiming to prevent abuse and minimize
the effects of accidental data leakage.

• User acceptance is a very important aspect. Testbeds need to have a sufficiently large
installation base to achieve meaningful results. But users might choose not to participate if
the testbed application is too intrusive. There needs to be a balance between revealing and
protecting privacy sensitive data. The acceptance can also be increased by information
and disclosing employed data. This serves the additional purpose of educating the user of
privacy sensitive data.

• Lastly, there are legal constraints to consider when dealing with personal information.
In Germany, for example, several fundamental constitutional rights restrict the use of
personal data. These are the “Recht auf informationelle Selbstbestimmung”7 and the
“Grundrecht auf Gewährleistung der Vertraulichkeit und Integrität informationstechnischer
Systeme”8.

5 http://www.wired.com/2013/06/phew-it-was-just-metadata-not-think-again/
6 http://www.ccc.de/hackerethics
7 https://www.bmi.bund.de/DE/Themen/Gesellschaft-Verfassung/Datenschutz/Informationelle-

Selbstbestimmung/informationelle-selbstbestimmung_node.html
8 https://www.bundesverfassungsgericht.de/entscheidungen/rs20080227_1bvr037007.html

http://www.wired.com/2013/06/phew-it-was-just-metadata-not-think-again/
http://www.ccc.de/hackerethics
https://www.bmi.bund.de/DE/Themen/Gesellschaft-Verfassung/Datenschutz/Informationelle-Selbstbestimmung/informationelle-selbstbestimmung_node.html
https://www.bmi.bund.de/DE/Themen/Gesellschaft-Verfassung/Datenschutz/Informationelle-Selbstbestimmung/informationelle-selbstbestimmung_node.html
https://www.bundesverfassungsgericht.de/entscheidungen/rs20080227_1bvr037007.html
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To conclude, network measurement testbeds have to regulate, filter, adjust, or outright
prevent access to sensitive data. Existing testbeds usually do not take a technical but rather
a bureaucratic approach to this problem. For example, all experiments in the aforementioned
PhoneLab require approval from a review board.

But that does not mean that there are no technical means available. Looking outside of the
field of network testbeds, some research and even usable implementations are available.

A very basic and static approach to protecting privacy data is implemented in the regular
versions of both iOS and Android. During installation any application has to request specific
rights for each sensor source to be able to use it in the future. The “Privacy Guard” feature9 in
the custom Android firmware CyanogenMod10 provides the additional capability to monitor
and revoke any sensor permissions at runtime. Other approaches include increasing the sensor
permission granularity [Jeo+12] or tagging sensor data at the source to better track and find
privacy leaks in applications [Enc+14].

6.1.1.2 Sensorium Framework

Even with these approaches at hand, the privacy issue should be mitigated further beyond the
binary allow/deny access approach. Also, it usually is a complicated task for experimenters
to access all the various sensors,each answering to a different API. Sensorium [RFP13], an
application for the Android OS, was created during the course of this thesis to remedy both
of these issues. Sensorium is a generic unified sensor reading framework that interfaces with
other applications as well as network nodes and provides the sensor readout to them. More
importantly, a fine-grained multi-level privacy control model is implemented.

Architecture

Figure 6.1 overviews the components of Sensorium’s architecture. The individual sensor drivers
are placed on top of the operating system and take care of reading sensor values from platform-
specific interfaces and pushing them upwards into a common registry to be read by the sensor
reading API. All sensor data is relayed both to a local display as well as to all outbound interfaces.
Due to the layered architecture, contributors can simply extend or substitute the existing layers.
New drivers or additional outbound interfaces can be easily implemented in this way.

The existing outbound interfaces include an HTTPS client that pushes JSON data to a con-
figurable network experiment server where the data can be further processed. To connect to
programs running locally on the same device, the XML-RPC interface can be polled. Pull-based
access from sources other than the local host is not allowed for security reasons. However, any
data leaving Sensorium must first pass through the privacy layer, which filters the data based
on the user’s preferences.

9 https://plus.google.com/+CyanogenMod/posts/gk7X3HjNvnH
10 http://cyanogenmod.org/

https://plus.google.com/+CyanogenMod/posts/gk7X3HjNvnH
http://cyanogenmod.org/
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Figure 6.1: Sensorium architecture interfacing with other applications. Previously existing components
are marked with a dotted line.

Privacy Model

This privacy layer allows for a fine-grained control over the amount and precision of data that
the system is sharing. A settings GUI provides the user full control over her privacy. Here, she
can choose the amount of information she is willing to reveal for each sensor. Based on this
preference, the privacy layer then either outright prevents access to specific values or reduces
their impact by anonymizing them.

This anonymization task can work in several levels. Apart from completely replacing it with a
running number, the value could also be hashed. In many cases context-sensitive anonymization
approaches are available. For example, the precision of a geo-location could simply be reduced
down to a city-level or even country-level.

As the user is always in firm control of the process, she should be more accepting of actual
network experiments that use this kind of data. However, such studies need also cope with the
fact that they might get incomplete or partially anonymized data.

Implementation

Sensorium is currently targeted at and implemented on the Android platform.11 It can be
installed on any Android system without modification. Screenshots of the sensor display and

11 More information is available at https://github.com/fmetzger/android-sensorium.

https://github.com/fmetzger/android-sensorium
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Figure 6.2: Sensorium sensor values display and settings screenshots.

settings menu of the application are depicted in Figure 6.2. Drivers for most of the typically
available sensors are implemented.

Sensorium was demoed at the NetSys 2013 conference and has since then been available in
various app stores. Data from the Google Play Store suggests at least 50 concurrently running
device installations across several countries, carriers and device types. Albeit a still low number,
as there was no real advertisement conducted, this could indicate its feasibility as a companion
application to a network testbed. Of note are also two related applications that intend to follow
up on Sensorium’s approach in the future: The Sensibility Testbed12, which tightly couples
itself to the aforementioned Seattle platform, and BlurSense13 [Cap+14], aiming to improve the
sensor value anonymization efforts.

12 https://sensibilitytestbed.com/ and https://github.com/SensibilityTestbed
13 https://blursense.poly.edu/

https://sensibilitytestbed.com/
https://github.com/SensibilityTestbed
https://blursense.poly.edu/
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Sensorium Usage

Sensorium was originally written for two specific targets. First, it was intended as a prototype
sensor extension to the Seattle testbed. Pre-anonymized data was to be delivered through the
XML-RPC interface to a locally running Seattle installation. Any experiment running in this
sandbox could then facilitate this sensor data.

Figure 6.3: The O3GM web page, displaying a 3G coverage measurements layer with data collected by
Sensorium on top of the OpenStreetMap base layer.

Second, to present what actually can be done with smartphone sensing data, Open3G Map
(O3GM)1415 was created, which visualizes mobile coverage data. O3GM is a Web service, that
makes use of Sensorium’s JSON upload feature, displaying geo-located 3G radio access quality
information in an OpenStreetMap overlay (using OpenLayers16) as can be seen in Figure 6.3

Coverage data is usually only available to mobile operators, which have no interest in
sharing this information. Other projects such as OpenSignalMaps17 and Sensorly18, as well as
corporations like Google and Apple collect these data, but are very restrictive regarding usage
by third parties. O3GM data is freely available under an open content license.

Coverage data can again also be helpful to determine the viability of mobile reliable streaming.
For example, knowing the RAT and signal strength of a specific path can help make informed

14 https://o3gm.cs.univie.ac.at/o3gm/
15 https://github.com/lukpueh/Open3GMap
16 http://openlayers.org/
17 http://opensignal.com/
18 http://www.sensorly.com/

https://o3gm.cs.univie.ac.at/o3gm/
https://github.com/lukpueh/Open3GMap
http://openlayers.org/
http://opensignal.com/
http://www.sensorly.com/
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decisions on which stream quality to choose at which time for adaptive streaming. If Sensorium
would be combined with the reliable streaming measurement framework of Section 4.4, one
could check rather easily for correlations between stalling phases and mobility events.

6.2 Mobile Reliable Streaming Simulations

Some experiments cannot be easily conducted in active measurement testbeds, for example due
to the necessary scale to achieve meaningful results. Often new protocols or adaptations to
existing ones are preferentially first tested using a network simulation. Simulation frameworks
are especially important for mobile networks, as acquiring packet-level traces and information
about every node in an actual commercially operating cellular network is nigh impossible due
to the users’ privacy and the provider’s business concerns.

While there are some active measurement studies specifically targeted at reliable streaming in
mobile networks, e.g., [MLT12], most are conducted either in fixed networks or using simulation
frameworks. Therefore, to better evaluate reliable streaming, it would be very desirable to find
an existing framework that covers all important aspect in 3G or 4G mobile networks, including
the influences of the core network and control plane signaling.

There are a number of network simulators readily available for use, both commercial as well
as FOSS. But only a small subset of them has the capability (or can be extended) to simulate 3G
or LTE networks. Even further limiting is the circumstance that most radio network capable
simulators only concern themselves with the physical radio link and completely neglect all other
network paths, especially the core and all control plane signaling interactions. The following
list overviews current publicly available simulation frameworks with 3G/LTE support:

• An external UMTS module19 is available for the no longer maintained ns-2 network
simulator. A further, separate collection of patches20 also extends ns-2 with UMTS radio
link capabilities [VŠR11] but it is not publicly available. Both extensions are, as of August
2014, no longer being developed and not up-to-date to the newest 3GPP specifications.
They also focus solely on the user plane radio physical and link layer of UMTS.

• Another third-party radio link layer simulationmodel is available forMATLAB21 [Meh+11].

• A standalone LTE simulation22 [Pir+11] includes models for some LTE nodes, including
the Evolved Node B (eNB) and MME and implements a selection of protocols (PDCP, RLC,
and RRC). However, the implementation of these nodes and protocols is rudimentary at
best and is not even close to the actual specification. Additionally, the simulator lacks a
coherent TCP/IP stack as IP is reduced to its basic functionality and TCP is completely
absent.

19 http://net.infocom.uniroma1.it/reti_files/reti_downloads.htm
20 http://seacorn.cs.ucy.ac.cy/eumtssim/
21 http://www.nt.tuwien.ac.at/research/mobile-communications/lte-simulators/
22 http://telematics.poliba.it/index.php/en/lte-sim

http://net.infocom.uniroma1.it/reti_files/reti_downloads.htm
http://seacorn.cs.ucy.ac.cy/eumtssim/
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• A framework dubbed SimuLTE23 is available forOMNeT++24. Included are the user plane
aspects of the radio link and some basic SGW and PGW functionality.

• The ns-325 simulator already contains an LTE/EPC module called LENA26 [Bal+13] with
features similar to SimuLTE. Again, only user plane SGW/PGW functionality is present
with an initial GTP-U implementation.

The goal here is to simulate reliable streaming in a realistic mobile environment. That would
ideally include both a complete horizontal network path — both the radio link as well as the
core network — as well as vertical network stack — comprising both user plane and control
plane. Unfortunately, none of the above feature a complete representation, which can be at least
partially attributed to the complexity of the 3GPP specifications. Nonetheless, the simulators
could still provide a viable basis for a mobile streaming framework while keeping the limitations
in mind. Between these a decision needs to be made as to the basis of the mobile streaming
simulation framework.

Ultimately, the choice as a basis for reliable streaming simulations fell on ns-3 with the LENA
module. Alongside with SimuLTE it has the most complete LTE representation. And targeting
LTE networks seems to be the more future-proof path in the long term. With the exception
of OMNeT++, which has comparable capabilities, ns-3’s TCP/IP is much more complete and
realistic than that of the other frameworks. Additionally, it can also incorporate the actual
TCP/IP of older Linux kernels with NSC27. As an additional feature, ns-3 can also act as a
network emulator for real network traffic. This can be exploited through the upcoming model.

In the long run, to better represent actual mobile networks the base radio framework in ns-3
would need to be extended with more control plane aspects — which are unfortunately almost
completely absent in any current simulator — and adapted to the latest 3GPP specifications.

6.2.1 Simulating Mobile Reliable Streaming in ns-3

With ns-3 chosen and the core network model set, the task is now to define and simulate reliable
streaming on top of the LTE network. To properly evaluate the setup a number of measurement
series also has to be defined and conducted.

Through this simulation testbed, arbitrary reliable streaming playback models can now be
tested and optimized for the various conditions and pitfalls of mobile networks. Of special
interest could be the relation to mobility phenomenons and issues occurring during handover.

23 https://github.com/inet-framework/simulte
24 http://www.omnetpp.org/
25 http://www.nsnam.org
26 http://networks.cttc.es/mobile-networks/software-tools/lena/
27 http://research.wand.net.nz/software/nsc.php

https://github.com/inet-framework/simulte
http://www.omnetpp.org/
http://www.nsnam.org
http://networks.cttc.es/mobile-networks/software-tools/lena/
http://research.wand.net.nz/software/nsc.php
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6.2.1.1 Simulation and Emulation Setups

To begin, the model behind the progressive streaming measurement framework based on the
playback buffer employed in Section 4.4 can be reused in the simulator. But instead of being an
off-line analysis algorithm for network traces it is used as an actual emulated streaming client
here.

eNodeBUEs SGW/
PGW

streaming
server

streaming
client

ns-3

Figure 6.4: LTE reliable streaming simulation testbed.

The rest of the network model is kept as simple as possible as is apparent in Figure 6.4. LENA
readily provides (incomplete) implementations for the UEs, eNB, and a combined SGW/PGW
node. For the streaming simulation two things were added into this network: a streaming server
and a streaming receiver and player.

For the streaming server a node from which the video segments are pulled was connected
to the Internet-facing link of the PGW. The storage server is kept as simple as possible. Upon
receipt of a request for a specific segment over TCP a dummy segment with the correct size is
immediately sent to the client, reusing the open TCP connection. The TCP congestion avoidance
mechanism implemented by ns-3 is New Reno, which also might not be ideally suited to mobile
environments. Especially when compared to newer congestion avoidance mechanisms that are
optimized for a high BDP like Linux’s CUBIC.

In this setup TCP will be directly used to transport the stream instead of for example the
more commonly used application layer protocol HTTP. This should make no difference on the
streaming process in the long run apart from the absence of a slight protocol overhead (i.e., the
HTTP headers) at the beginning of the transmission and for each segment. Although some
features coming with HTTP/2 cannot be easily tested in this way, especially the application
layer multiplexing aspects. However, using TCP directly simplifies the simulation and makes
the results easier to interpret.

The client’s playback buffering model is implemented as an application running on the UE.
The device also initiates the streaming and takes care of requesting each individual segment.
For the purpose of this simulation the segments do not contain actual video data. Rather, the
playback simulator just reads the list of frames and their size and synchronizes this information
with the received amount of data to correctly calculate the buffer level.

During transmission, the existing LTE framework sets up the lower layer protocols, which
includes the radio stack and the GTP core network bearer, accordingly. In the simplest model,
only one eNB and one UE are present, to avoid interference with other devices. Additionally,
a mobility model has to be selected for the UE, on which the streaming client is running, in
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order to conduct the experiments. The simplest case would be a stationary mobility model at a
close distance to the transceiver, laying more emphasis on testing the influence of the overall
network path rather than mobility factors. This should also give a measure of the upper limit
of the achievable reliable streaming performance, all other mobility models will undoubtedly
reduce the performance.

The scenario can now be easily extended to factor in multiple devices and an actual mobility
model with handovers. The necessary capabilities to set this up are already present in ns-3’s
LTE model. Apart from the described settings the LTE nodes are otherwise left at their default
configuration, which should yield an overall net bandwidth of 80 Mbit s−1 in the LTE radio cell.

eNodeBUEs SGW/
PGW

streaming
server

streaming
client

ns-3

tap/
bridge

tap/
bridge

Figure 6.5: Future testbed iteration: hybrid of ns-3 LTE simulation and actual or emulated streaming
client and server bridged to it.

Beyond its application as a pure simulation, a simulated ns-3 LTE network could additionally
be facilitated as a network emulator. Figure 6.5 demonstrates such a setup. To be able to
use it for a streaming emulation in the style of the measurements conducted in Section 4.4 a
bridging device would need to be added on each side of the network that interfaces with a
real testbed network. The only task of the simulated part is then to alter the QoS parameters
of the link according to its model. This approach is ideally suited to quickly test existing and
already implemented streaming solutions for use with a mobile network and saves the effort of
reimplementing them as a simulation model.

6.2.1.2 Simulated Streaming Models

Following the classifications and playback models from Sections 4.1 and 4.3.2 the simulated
model is a pull-based segmented video streaming system using TCP. Two streaming models
are suggested here, with the first suited for plain reliable streaming and the second modified to
utilize the benefits of adaptive streaming. Other playback models could be easily implemented
as well, but these two should closely resemble the usual approaches taken by real reliable
streaming players as was previously already observed.

Four Threshold Segmented Streaming Strategy

The first playback strategy is governed by four thresholds. They are, ordered according to the
buffer level they represent, from lowest to highest:
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1. Playback stop. Represents the lower limit of the buffer and the player will stop if the level
goes below this threshold. It can be set to as low as 0 s but it defaults to 0.5 s for this
model. When the limit is underrun, stalling will occur.

2. Transmission start. If the transmission is currently stopped due to reaching the buffer
limit, restart it if it falls beyond this threshold. Naturally, at the start of the streaming
process segments are already requested at a buffer level of zero. The default is set to 2.5 s
of video in the buffer. The gap between this and the playback stop threshold should be
large enough to avoid stalls because of transmission restarts occurring too late.

3. Playback start. This threshold takes effect after every stalling event and restarts the player
if at least this amount is in the buffer. It is set to 5 s here.

4. Transmission stop. In some scenarios this last threshold might not be necessary as it
only acts to prevent a buffer overrun and lost video data. But most mobile devices suffer
from rather low memory constraints and therefore need to limit the video buffer. When
this limit is reached, no new segments are requested until the buffer falls below the
transmission start limit again. It is set to 10 s here and is a soft limit that can be exceeded
by already requested segments that have yet to arrive. Therefore, it always should be set
slightly below the buffer’s actual hard limit.
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Figure 6.6: Sample simulation run demonstrating the four threshold strategy.

To demonstrate the strategy an example scenario is displayed in Figure 6.6. Depending on
the relation of TCP goodput to video bitrate a player with this strategy should always bounce
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between the transmission start and stop thresholds and never stop playing intermittently as
in the example. The default threshold values given here may be far from ideal and need to be
optimized in the long run. But this is often the same case in real streaming solutions with the
players arbitrarily preconfigured to values that could make sense from the developer’s point of
view without scientific validation.

Six Threshold Window Scaling Adaptive Streaming Strategy

By adding two additional thresholds the strategy could also be extended to work for adaptive
reliable streaming. As a further prerequisite, all video segments need to be available in a number
of quality levels and therefore video bitrates and seamless switching between levels at the
segment borders needs to be possible. The more quality levels are present the better adaptable
the streaming client can be. It can already work with as low as two levels, but this coarse
switching between a very low number of levels will also be more noticeable by the user and
might disturb her QoE more than a smooth decline in image quality.

The two new thresholds are values to trigger the switch to the next higher and lower segment
quality level respectively. The reduce to lower quality threshold should be located between
transmission start and playback stop, the increase to higher quality situated between playback
start and transmission stop. To accommodate more than two levels these two thresholds can
be triggered multiple times. If the buffer level is still rising after the segment quality has been
raised the quality should be raised again at the next opportunity.

To better find a stable segment level candidate, the player should compute and keep track of
the incline of the buffer level in the last time window. The steeper it gets the higher the chance
for a quality level change should be. The same rule applies also to the lower quality threshold.
Any adaptive streaming strategy should also avoid flapping back and forth between quality
levels. This is usually conducted through some kind of hysteresis.

6.2.1.3 Scenario Evaluation

To test the basic viability of the streaming simulation model (the validity LTE model is taken
as-is and covered by other research [Bal+13]) several test scenarios are defined and subsequently
evaluated. Common to them is the configuration of the video streaming simulation module. In
every case the simpler four threshold strategy is facilitated and tested with the three videos
described in Table 6.1, each representing a different quality profile. Only one simulation run
was conducted for each parameter setting as there are no known random factors involved that
would merit running with different random seeds.

Congested Server Link

This first series of evaluations exclusively looks at the QoS of the streaming server’s link
and leaves the LTE configuration unaltered. The radio subsystem is configured to have a
stationary UE in close vicinity of the single eNB. It should therefore reach the maximum
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Table 6.1: Parameters of the videos used in the streaming simulation scenarios.

Parameter LowQuality StandardQuality HighQuality

Video duration 318 s 602 s 596 s
Size 19.2 MiB 258 MiB 853 MiB
Frame rate 29.97 s−1 29.97 s−1 24 s−1

Average video bitrate 504 kbit s−1 3596 kbit s−1 12 Mbit s−1

Codec H.263 MPEG-4 MPEG-4

attainable performance of the radio link as it will be undisturbed by other users and fading
effects. Therefore, it also represents the best case scenario for mobile streaming. If the streaming
strategies and the associated video files reveal issues under these conditions they will surely
also fail in an environment with a more degraded radio link.

The QoS variables altered here are the link’s bandwidth and delay. Loss will remain unchanged
and at zero, as it will also result in just another source of delay for the reliable streaming process
due to retransmission. Similar to the evaluations with the measurement framework of Section 4.4
the performance will be measured on the basis of the player’s stalling characteristics, i.e., the
total duration and the number of stalling phases. With this, more complex QoE metrics can
then be calculated.

The first series solely alters the bandwidth of the streaming server’s link up to a maximum of
1000 Mbit s−1. The results are depicted in the Figures 6.7 and 6.8.

As soon as the link’s bandwidth exceeds the video’s bit rate, the number and duration of
stalls are reduced. Stall events and duration in both the low and standard quality videos drop to
zero. Only the high quality video does not show the same results. As its bit rate of 12 Mbit s−1

should be perfectly manageable for the radio link some other explanation is required. A possible
hypothesis are issues with the approach to requesting subsequent segments. As these need to
be requested in a timely manner while other segments are still being transmitted, they could be
requested too late and do not saturate the link anymore.

However, this effect is somewhat contrary to the additional effect observed at link speeds of
100 Mbit s−1 and above, where the stalling phases suddenly see an unexpected increase. As
this happens exactly when the transmission speed exceeds the radio links capacity of about
80 Mbit s−1 it might be an indication of the negative interaction of LTE’s loss and congestion
concealment with TCP’s congestion avoidance mechanisms, related to the previously discussed
bufferbloat issues. TCP can not properly detect the bottleneck capacity in a timely manner as
LTE attempts to buffer and retransmit any packet exceeding the radio capacity below the user
IP layer. Through this issue, the effective goodput seems to get reduced to about 5 Mbit s−1,
which is not enough for the high quality video to stream without interruption.

Once again utilizing Equation 4.6 as a validated QoE metric and applying it to the results of
the bandwidth series, it is evident that the perceived quality really suffers in this scenario. The
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Figure 6.7: Relative stalling duration of the simulated reliable streaming player under limited Internet
bandwidth.
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Figure 6.8: Number of stalling events of the simulated reliable streaming player under limited Internet
bandwidth.
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Figure 6.9: Computed QoE of the reliable streaming strategy with limited bandwidth.

MOS of the high quality video never exceeds the equation’s base value of 1.5 and is effectively
unwatchable according to the metric. The other two video profiles manage to achieve a good
quality when sufficient bandwidth is present, with the issues above 80 Mbit s−1 in mind.

In a second series of simulation runs the latency of the streaming server’s link was increased in-
crementally up to an additional latency of 1000 ms with the link’s bandwidth fixed to 1 Gbit s−1.
The values were set deterministically with no probability distribution. Figures 6.10 and 6.11
again show the results in terms of the relative duration and number of stalling phases. The
playback simulation seems to be excessively sensitive to latency increases. Even a small 100 ms
increase makes the high and standard quality videos completely unwatchable as the stalling
duration is more than ten times longer than the actual video. With latencies beyond 100 ms
the high quality video could not be successfully streamed anymore. The computed QoE of this
scenario is not displayed as it essentially never deviates from the base MOS of 1.5, verifying the
detrimental impact of the latency.

This behavior can partially be attributed to the simplistic segment request strategy used in
this experiment. New segment are only requested when the previous one has fully arrived.
As this takes a full round trip, the latency has a significant influence on the arrival time of
subsequent segments. To avoid this kind of stop-and-wait behavior in the segment request
process, new segments need to be requested sufficiently in advance while the previous segment
is still being transmitted, so that the full bandwidth is always utilized. With these improvements
to the retrieval strategy this specific issue can be eliminated. But this just shows one of the
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Figure 6.10: Relative stalling duration of the simulated reliable streaming player under increased Internet
latency.
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Figure 6.11: Number of stalling events of the simulated reliable streaming player under increased Internet
latency.
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many pitfalls and influences of various layers. A simple implementation detail may have large
implications on the streaming quality the user experiences.

Device Mobility

eNodeBsUE SGW/
PGW

streaming
server

X2

d/2

y

d

d/2

Figure 6.12: Simulated handover mobility scenario using waypoints.

Besides altering the server link, the effects of the simulated LTE network can also be investi-
gated through various other means. In the following scenario mobility will be under scrutiny.
For this, a second eNB will be added to the network. Both are interconnected through the X2
interface, which will be used for the eNB-anchored mobility provided by ns-3’s LTE model.
Instead of having a constant position relative to the eNB, the UE will now move back and forth
between two waypoints on a two-dimensional plane in parallel to the two base stations which
are placed at a distance of 𝑑 between each other. A handover is triggered each time the device
leaves the range of one station and enters the other. Furthermore, the horizontal distance on the
2D-plane between the device and the eNBs is controlled by a second parameter 𝑦. Figure 6.12
depicts this scenario and the positioning of the waypoints.

For the purpose of this experiment, the two eNBs were placed at a vertical distance of
𝑑 = 500 m while the horizontal distance to the device was varied between 𝑦 = 0 m and
𝑦 = 150 m. The device is moving at a constant velocity of 20 m s−1. During the movement the
standard quality video was streamed to the device and its playback simulated. The results in
terms of the buffer fill level are displayed in Figure 6.13. The color-coded horizontal lines once
again demark the same thresholds from the previously described four threshold segmented
streaming strategy.

The handover events between the two eNB are denoted by the gray vertical lines and occur
in regular intervals. The actual control transfer usually last for only about 40 ms. But looking
at the figures it is immediately evident that the video buffer, and therefore the throughput of
the video segments, already suffers seconds before this handover event when the edge of the
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Figure 6.13: Playback buffer time series of the simulated mobility experiments with increasing distance
between device and eNBs.

radio range of the currently active eNB is reached. The playback stop threshold is undercut
several times right at the handover mark resulting in a playback stalling phase.

It seems that the throughput at the radio edge drops below the video’s average bitrate of
3596 kbit s−1. Therefore, the buffer cannot be maintained for this quality level. If the buffer
was at a critically low level beforehand, it will run empty and lead to stalling due to the mobility.
Additionally, there seems to be a dependency between the stalling probability and the distance
between device and base station. A farther distance decreases the achievable throughput leading
to an increased chance of the buffer running empty.

Mobile streaming playback strategies can attempt to counteract mobility-related issues in
a number of ways. A simple approach would be to adjust the threshold levels to allow for a
much larger buffer while also restarting transmissions earlier. But this comes at the price of an
increased memory resource usage on the device, which might not possible in every scenario.
Second, the strategy can be exchanged for an adaptive one, for example the described six
threshold window scaling strategy with appropriately chosen threshold values. Here, the stalls
are exchanged for phases of lower quality video, which can be acceptable under circumstances.
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Finally, both non-adaptive and adaptive strategies can be improved by employing the cross-
layer model described in Section 5.4. By utilizing information from the radio network layers,
handover events can be detected sufficiently in advance and an appropriate reaction chosen by
the playback strategy. For example by temporarily increasing the maximum buffer threshold
and requesting segments more rapidly or by quickly dropping to a lower quality level and filling
the buffer up.

Further Scenarios

Apart from the experiments conducted here, some others scenarios listed here are also worth
investigating but out of scope for this work.

If one plans to implement a reliable streaming solution, the simulation can be utilized to test
any kind of playback strategy and transmission mechanics and attune it to mobile networks.
Besides developing entirely new playback strategies, the default thresholds of the four and
six threshold strategies should also be optimized through the iterative simulation of value
combinations.

The opposite approach would also be possible for mobile network operators: The operator’s
mobile network infrastructure can be mapped onto the simulation and the performance of
existing streaming strategies inside this network can be tested. If any issues or performance
bottlenecks are discovered, the operator can make adjustments to the simulated infrastructure
and implement these changes afterwards outside of the simulation.

It would also be worthwhile to see the impact of the cross-layer model described in Section 5.4
as they are specifically intended to reduce the influence this kind of mobile network architecture
has on user applications. An implementation of cross-layer hinting would be relatively simple
here, as the layer isolation boundaries are much easier to circumvent in a network simulator
and information on, e.g., handover events is readily available.

As mentioned earlier, ns-3’s LTE framework does only implemented a limited subset of the
3GPP specifications, mainly related to the user plane and the radio link stack. Almost no
control plane procedures are implemented. This may have only a negligible impact as soon
as a connection is established and remains stable and only a very small number of users are
connected to the system. But this is not the norm for an actual mobile network in operation
with its mobility features and high churn, both in terms of data flows as well as mobile users,
generating a large amount of signaling traffic as was discussed before in Section 2.1. To best
mimic the dataset evaluations related to PDP context and GTP tunnel life cycle management
conducted in Section 3.1, the simulator would need to at least be able to reproduce these tunnel
management and the related RRC PDP context procedures happening on the user traffic path.
Therefore, it is worth to reconduct the above experiments as soon as the framework has made
any progress in this direction.
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6.3 Summary

It is safe to assume that reliable video streaming in mobile networks can be evaluated in a large
number of ways. Besides the previously taken road of passively recorded network-scale traces,
two other approaches are most valuable in investigating reliable streaming, active measurements
and simulations. Both bring along their own set of benefits and drawbacks.

Active measurements are better suited to test the wide range of influence factors present in
actual networks and device protocol stacks. These can usually not be properly represented in a
simulation. In order to increase the viability for mobile measurements, Sensorium was intro-
duced, making it easier to record the precise state the mobile device currently is experiencing
by giving access to all kinds of sensors.

If the goal is rather to investigate the theoretical overarching concepts of certain playback
strategies or to scale up the test environment, one can utilize the simulative approach in the
form of the LTE mobile streaming simulation framework. Initial measurements using this
framework already suggest a high influence of the network QoS on the experienced streaming
quality. A higher stalling probability caused by handovers during mobility was also uncovered.





7
CONCLUS IONS

Reliable streaming deviates from the established media streaming methods in a number of
significant ways. In the past, streaming was dominated by server-controlled push-based ap-
proaches. Specialized and highly complex software and protocols — both proprietary, in the
form of Flash and other players, and standards-based, using RTP — was needed to properly
conduct streaming.

But many video streaming solutions deployed in the past few years have shifted to using
simple client-side players better suited for the Web’s ecosystem. Today, any Web browser can
pull video data and display it directly inside a video element without the help of any additional
software. The popularity of reliable video streaming services has increased in such a way that
they are now one of the largest source of the Internet’s traffic and are predicted to rise even
further. But all these reliable streaming players — so-called due to them operating on top
of the reliable TCP transport protocol — have in common that modeling, optimization, and
measurement techniques used for unreliable streaming can not be applied to them any more
due to their different approaches.

A second development in recent years is the increasing prevalence of cellular mobile networks,
taking the form of UMTS and LTE. Smartphones have become omnipresent and traffic originating
from these devices makes up an increasing portion of the Internet’s total traffic. While the user
plane traffic is still rather low when compared to wired Internet access, mobile networks have a
much more intricate control plane and any user plane traffic causes a number of related control
plane interactions which were discussed in 2.1. The actual volume of these signaling messages
might be low, but they cause secondary load effects in the nodes that need to process the control
plane data and store its state. And these effects are barely investigated or even factored into
any network dimensioning and planning tasks.

When work on this dissertation thesis had started, both of these fields began to grow together.
Smartphones developed to a state where watching video streams on their displays was not
a hassle any more and there was sufficient capacity in the mobile access to transport video
streams of relatively high quality in a timely fashion.

But again both also seemed to lack proper measurement and evaluation methods and models.
This is what was tackled in this work.

One one side, light was shed on the control plane interactions of a typical 3G core network.
The mobile networks’ overly strong focus on signaling procedures and statefulness can be the
source of numerous scalability issues as was previously explored for the radio interface. Here,
through the analysis of network traces of a large operational mobile core network a novel
definition of load in the core network was created. This load was put in relation to GTP tunnel
management signaling between the two central core nodes SGSN and GGSN.

149
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Diurnal variations and dependencies on the user’s device and its user traffic characteristics
could be observed in the trace. A queuing theory model that describes the load at a GGSN the
load properties was derived from these findings and takes the form of a non-stationary Erlang
loss model. With the help of this model a new spin on the GGSN’s makeup using virtualization
was introduced and tested in simulations to provide better load scaling options.

On the other side, a categorization approach and measurement model for reliable progres-
sive video streaming that bases itself on emulating the streaming client’s video playback and
strategies, was introduced. With this at hand, a number of different strategies, modeled after
existing real streaming solutions, were tested in a network emulation testbed and an interaction
of the connection’s latency and loss properties with the video streaming stalling characteristics
was shown. This measurement model can be utilized to test new playback strategies for real
applications.

Testing reliable video streaming in a mobile network and understanding its apparent behavior
might be a very interesting combination of the two seemingly independent fields. But it also
became clear during the evaluation of the mobile dataset that specific user traffic patterns can
have a direct influence on the core’s control plane. Segmented reliable streaming can show
a certain ON-OFF style traffic pattern that may interact badly with the timers governing the
control plane state and increase the core load.

Ultimately, this kind of negative interaction could not be completely verified or refuted during
the course of this thesis due to the lack of data. However, valuable approaches on how to test for
this were still shown in the form of active measurements enhanced with smartphone metadata
and a streaming simulation framework on top of a ns-3-based LTE network.

Once issues, for example negative feedback loops between various components, have been
discovered through these means, they can be mitigated and improved upon. For example, this
can happen by adapting the playback strategies and protocols that are already being utilized —
TCP is the best example of being constantly modified — by employing new protocols, such as
DASH or HTTP/2, or utilizing cross-layer information to its fullest.

And these are also the lessons learned during the course of this thesis’s work. Understand-
ing and optimizing a certain item begins by investigating, evaluating and modeling existing
iterations of it and mapping out the limits and possibilities. As reliable streaming in a mobile
network is a relatively new application displaying very complex interactions and was generally
not very well investigated, a lot of groundwork had to be done. And the measurement models
provided here attempt to do just that. Future research can utilize the work conducted here as a
foundation. It would be great to see, if the work spawns a number of scientific offspring that try
to answer some of the questions and issues raised here. Even without further studies, a lasting
benefit may already be present for both video streaming implementers and mobile network
operators. They have now access to more tools to optimize their products for specific scenarios.

It was also shown that optimization in general does not automatically constitute making
networks and applications more complex or putting more intelligence into the network. On the
contrary, it is often better to uphold some core principles that have driven computer networking
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and the Internet thus far. This includes “Keep it simple, stupid” (KISS), the focus on end-to-end
systems, and also keeping a layered network stack.

Many of the issues with streaming in mobile networks discussed in this work have arisen
by not adhering to these principles. The UMTS control plane is so tremendous, spanning a
large number of dedicated network nodes and merging several protocol layers into one big
specification that many undesirable interactions occur. The original developers could not have
foreseen all future use cases and what side effects they might bring with them. On the flip side,
this thesis would not even have been possible without the many peculiarities found in these 3G
specifications.

7.1 Future Work

Alas, work on all these individual items discussed here is certainly not done. As is often the case
in scientific work, progress will be made in small iterative steps. Therefore, this final section
collects some planned work and ideas that follow up on the thesis’s research angles in the
future.

Concerning mobile core networks, most of the deductions were made on the basis of a single
core network trace from one network and need to be verified with additional and more recent
traces from other networks. This could simultaneously investigate the effects of any changes
to the network in comparison to the original trace, for example regarding traffic and device
composition or the influences of specific network parameters.

That trace did also lack some particular interesting details regarding the actual GTP IE data
from the messages and control plane procedures on off-user-traffic-path links (e.g., to the HLR).
Any subsequent passive measurement trace should therefore factor in more information and
should provide measurements at several synchronized vantage points inside the network to
better correlate the individual message. Additional probes at the radio or backhaul links could
prove especially fruitful in this endeavor.

But as the usage UMTS is declining in favor of LTE, LTE-Advanced and soon even proposed
5G architectures, the core control plane in these networks also needs to be put under close
scrutiny, and not just in a simulator as in this work. A multi-vantage point measurement
campaign in an actual EPC can make an informed comparison to the existing 3G trace and find
improvements or regressions. As the combination of SGSN and GGSN is replaced by SGW/PGW
with a slightly different subset of functionalities a new core load queuing model should also be
created in the course of the trace’s statistical evaluation with these differences in mind. This
can also lead to better load models once more core network elements are evaluated and factored
into the queuing model — especially including the off-user-traffic path elements, including the
HSS, MME, or PCRF.

Through this process, suggestions for future further iterations of the mobile network control
plane specifications can be derived and taken into consideration. Any upcoming measurement
campaign should also consider running a concurrent reliable video streaming active measure-
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ment experiment in the network under study. This way, a correlation between streaming traffic
and occurring control plane signaling could be drawn much more easily.

Moving on to the modeling and measurement of reliable streaming it is important to keep up
with the current flavors of playback strategies. Now that adaptive streaming is being used more
widespread adaptive strategies should also be taken into closer consideration. In addition, the
changes on other protocol layers have to be constantly monitored for their potential influence
on streaming. New protocols should be tested if they are viable for reliable streaming.

For example, HTTP/2’s improved multiplexing features could be worthwhile for the simultane-
ous transport of multiple streaming segments. This is especially helpful when SVC is employed
to provide the various quality levels in adaptive streaming. Multiplexing would allow multiple
layers to be transported with differing priority simultaneously using just one connection.

The more strategies are known and understood the more candidates are available in the search
for the best strategy fitting a given scenario or applicable to most cases. A good candidate here
is probably an adaptive threshold strategy which observes its buffer fill rate in a sliding window.

When the base effects of the stalling characteristics are well understood, more complex
adaptive streaming metrics could also be derived from this to better represent the QoE. A
potential objective MOS computation could relate these basic statistics to subjective quality
impressions gained from user studies as was already conducted in other publications for plain
progressive streaming.

To better observe these interactions between streaming and mobile networks a lot of work
still has to be done to bring mobile network simulators up to parity with actual networks. A
better control plane representation in, for example, ns-3 or OMNeT++ would go a long way
in increasing the validity of the results derived from these simulations. If a new, more fitting
simulation platform arises, the reliable streaming model can also be reimplemented there as it
is kept portable.

Similarly, simulators are also lacking behind in their representation of current higher layer
protocols, especially TCP. Solutions need to be explored to remedy this and make the simulated
stacks more comparable to the fast changing stacks of current OSs. Small changes here can
have a noticeable impact on the application layer and can also falsify simulation results, as they
are not applicable to any actual network.

Finally, regarding the ideas for a cross-layer information exchange, the general cross-layer
information broker should be implemented on different architectures (e.g., an Android smart-
phone and a Linux laptop) to test different protocol stacks and different amounts of cross-layer
information sources and sensory input. An actual implementation of the handover-aware
adaptive playback strategy should also be relatively easy to achieve as a prototype to test the
broker in a practical situation.
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