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Abstract

Quantum optomechanics is one of the most promising approaches to study the quan-
tum behaviour of macroscopic objects and do experimental quantum mechanics in a new
regime (of large mass as well as large size). This allows us to experimentally probe
quantum decoherence theories and might even provide a route to experimental tests of
theories of quantum gravity.
While most of the early attention in this field has gone to the interaction of a continuous
field (in a cavity) with a mechanical resonator, recently other configurations have been
considered as well. In particular, the use of short optical pulses shows great promise to
overcome the limits inherent to the continuous scheme by avoiding any back-action on
the position of the mirror and to thereby perform a quantum-non-demolition measurement
of the mechanical position.
In this thesis we construct a proof-of-concept setup using short optical pulses to perform
a quantum-non-demolition measurement of the position of a mechanical resonator. We
demonstrate the preparation of squashed thermal states with a position uncertainty of
down to 19pm (reduced from an initial uncertainty of 1.2nm) limited only by the optical
quantum noise of the pulses. We furthermore perform a full tomography of these me-
chanical states and reconstruct the Wigner function.
Future enhancements to our setup will allow for the preparation of mechanical quantum
states even at room temperature. Also, as our tomographic scheme is not subjected to
the standard quantum limit, it is possible to perform tomography on mechanical quantum
states containing features smaller than the ground state.



Zusammenfassung

Quanten-Optomechanik erlaubt es, quantenmechanische Eigenschaften von makrosko-
pischen Objekten zu untersuchen und etabliert experimentelle Quantenmechanik in ei-
nem neuen Regime (sowohl bzgl. Masse als auch Größe). Dies ermöglicht experimentelle
Tests von Dekohärenz-Theorien und in naher Zukunft möglicherweise sogar von Theori-
en zur Quantengravitation.
Anfangs wurde hauptsächlich die Wechselwirkung zwischen kontinuierlichen optischen
Feldern und einem mechanischen Resonator untersucht, in den letzten Jahren wurden
aber auch viele alternative Ansätze in Erwägung gezogen. Vor allem die Verwendung kur-
zer optischer Pulse statt eines kontinuierlichen Feldes muss hier erwähnt werden, da bei
diesem Ansatz die mechanische Position während der Wechselwirkung nicht verändert
wird, was eine zerstörungsfreie Quantenmessung (quantum-non-demolition measurement)
der mechanischen Position ermöglicht.
In Verlauf dieser Masterarbeit errichteten wir ein Setup, welches als Nachweis der Mach-
barkeit einer solchen gepulsten Messung dienen soll. Wir zeigen die Vorbereitung me-
chanischer Zustaende mit einer reduzierten Orts-Unsicherheit von 19pm (ausgehend von
1.2nm im thermischen Anfangszustand), welche lediglich durch das Schrotrauschen der
verwendeten optischen Pulse limitiert ist. Weiters implementieren wir einen tomograhi-
schen Algorithmus, welcher die Rekonstruktion der Wignerfunktion des mechanischen
Zustands ermöglicht.
Zukünftige Verbesserungen an unserem Setup werden die Vorbereitung quantenmecha-
nischer Zustände bei Raumtemperatur ermöglichen. Zusätzlich erlaubt uns unsere to-
mographische Messmethode die Rekonstruktion quantenmechanischer Zustände, selbst
wenn die ursprüngliche Wahrscheinlichkeitsverteilung Merkmale auf einer Längenskala
gegeben durch den Grundzustand enthält.
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Introduction

Ever since the early days of quantum mechanics physicists have tried to establish a cor-
respondence between the classical world and the quantum world. While there has been
a tremendous progress in the last century and many of the interpretational problems (like
the measurement problem) can now qualitatively (and often also quantitatively) be ex-
plained by quantum decoherence, there still exists no universally accepted theory and
many open questions remain.
To study these questions experimentally one has to be able to both prepare macroscopic
objects in quantum states and to characterize the time-evolution of these states. The
last years have shown tremendous progress towards the preparation of such states using
cavity-optomechanics leading to the preparation of macroscopic mechanical oscillators
into their quantum ground state [1][2][3]. In addition, entanglement between microwave
fields and the motion of a mechanical resonator has been demonstrated [4].
However, as these techniques are typically based on continuous interaction of a station-
ary coherent optical state with the mechanical resonator and therefore subjected to the
standard quantum limit (SQL), it is generally not possible to prepare and/or measure me-
chanical features smaller than the ground state.
An elegant solution to this problem is pulsed quantum optomechanics [5], which utilizes
short optical pulses to perform a quantum-non-demolition (QND) measurement of the me-
chanical position. Due to the QND character of the measurement, it is in principle possible
to achieve measurement accuracies below the SQL and leave the mechanical oscillator
in a state with squeezed position quadrature. As this squeezing-by-measurement can be
done on a hitherto unreached timescale only limited by the pulse duration, it significantly
relaxes the requirements on shielding the system from the environment.
Furthermore, the pulsed scheme can be used to perform quantum tomography of me-
chanical states with an accuracy below the SQL. This allows for a complete characteriza-
tion of the mechanical state (even for mechanical quantum states described by a Wigner
distribution that takes on negative values) and, in particular, it provides a way to study
decoherence mechanisms.

The purpose of this thesis is the description of a proof-of-concept experiment implement-
ing pulsed optomechanics as described in [5] and to summarize the obtained results. In
the first two sections I am going to introduce the basic theory necessary to understand
the experiment. I am going to assume some familiarity with classical and quantum me-
chanics, but the aim was that this thesis can be read and understood by an advanced
undergraduate student. The first two sections might also serve on their own as an intro-
duction in quantum optomechanics and quantum measurement theory. The third section
concerns itself with more technical aspects and connects the theory of the first two chap-
ters to the implementation of a typical quantum-optomechanics experiment. Finally, in the
fourth section, I am going to apply the theory of section 1 & 2 to our experiment, introduce
the setup and describe the results. The fifth and last section provides a short discussion
of the results and outlines possible future improvements and applications.
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1 Optomechanics

As the name implies, optomechanics is the study of the interaction between optical sys-
tems (i.e. electromagnetic radiation) and (macroscopic) mechanical systems. One of the
main mechanisms by which such systems interact is radiation pressure, i.e. the pres-
sure exerted on surfaces by incident radiation, which can be due to the reflection of the
radiation or the absorption (or a combination of both). In most cases the optical field
is generated by a (single mode) laser and the mechanical system consists of a highly
reflective mechanical oscillator. In this chapter we derive the formalism to describe such
optomechanical systems, both classically and quantum mechanically. Since the harmonic
oscillator plays an important role in the description of mechanical oscillators as well as op-
tical systems, the first section of this chapter is dedicated to provide a quick (but thorough)
introduction in its theory.

1.1 Harmonic oscillators

1.1.1 Classical description

A classical (one-dimensional) harmonic oscillator is a system which is described by the
differential equation

ẍ+ ω2x = 0, (1)

where x is some observable (i.e. measurable quantity) of the system and ω is a con-
stant. Typical examples for (approximately) harmonic oscillators include (in the absence
of dissipation) mechanical harmonic oscillators and LC circuits (the observables are the
mechanical position and the charge, respectively). The general solution of this differential
equation is given by

x(t) = x(0) cos(ωt) +
ẋ(0)

ω
sin(ωt).

We will from now on focus on the case of an ideal mechanical system, where x describes
the position of a test mass m. We can define the spring constant k through ω =

√
k
m

, this
leads to the equation

mẍ = −kx,

which is often used instead of equation 1 as the starting point in the investigation of
mechanical harmonic oscillators.
The energy of such a system is conserved and given by

E =
p2

2m
+
mω2x2

2
,

where we have introduced the momentum p = mẋ.
A more experimentally relevant system is given by the damped harmonic oscillator, which
is described by the equation

ẍ+ γẋ+ ω2x = 0

and provides a realistic model for mechanical harmonic oscillators, if the dominating
cause of dissipation is linear drag. The solution of this differential equation depends
on the sign of γ − 2ω and one therefore has to distinguish between three cases:
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(i) γ < 2ω : x(t) = e−
γ
2
t
[
x(0) cos(Ωt) +

ẋ(0)+ γ
2
x(0)

Ω
sin(Ωt)

]
.

(ii) γ = 2ω : x(t) = e−
γ
2
t
[
x(0) cosh(Ωt) +

ẋ(0)+ γ
2
x(0)

Ω
sinh(Ωt)

]
.

(iii) γ > 2ω : x(t) = e−
γ
2
t
[
x(0) +

(
ẋ(0) + γ

2
x(0)

)
t
]
.

If the dissipation is small (γ < 2ω), one still observes oscillations with a decreasing
amplitude and shifted frequency

Ω =

√
|ω2 − γ2

4
|

compared to the ideal harmonic oscillator (i.e. γ = 0). On the other hand, if γ ≥ 2ω, there
the oscillatory behaviour of the system vanishes. The behaviour of the solutions in each
of the cases can be seen in figure 1. It is interesting to note that (for fixed ω) the fastest
decay can be observed for case (ii), i.e. if γ = 2ω (critical damping).
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Figure 1: Behaviour of a damped harmonic oscillator for x(0) = 1m, ẋ(0) = 0ms , m = 1kg,
ω = 2π · 1kHz and different damping strengths.

An important parameter of a damped harmonic oscillator is its quality factor, which is
defined by

Q =
ω

γ
.

If Q >> 1
2

(i.e. a strongly oscillating system), it makes sense to define the energy of the
damped harmonic oscillator as

E(t) =
m

2

(
ω2x2(t) + ẋ2(t)

)
,

and it follows, that

Q ≈ 2π
E(0)

E(T )− E(0)

or more generally, Q
2π

approximates the ratio of the stored energy to the energy lost in the
next period.
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One can also investigate the behaviour of a harmonic system under the effect of some
force, the associated differential equation is

ẍ+ γẋ+ Ω2x =
F

m
, (2)

where F now stands for the external force acting on the oscillator (note the slight change
in notation, since ω will be used as a variable in the frequency domain). Such a system
is sometimes called a damped and driven harmonic oscillator and can even be used to
describe the thermal motion of mechanical harmonic oscillators. In general, this differ-
ential equation cannot be solved analytically. We will quickly investigate the simple case
of a harmonic driving force, for which a analytic solution exists, and then provide a more
general framework for dealing with equation 2 based on frequency analysis.
Assume for now that

F (t) = Re
[
A(ω) e−iωt

]
and choose the ansatz xp(t) = Re

[
B(ω)e−iωt

]
for the particular solution. The reason for

writing down the complex expressions is solely calculational simplicity, physical equations
can be obtained at any time by taking the real part of the expressions. Note that, while
A(ω) is chosen to be real, B(ω) = |B(ω)|eiφ(ω) has to be complex to include a shift in the
phase of the oscillator (relative to the driving force). This ansatz leads to

B(ω) =
A(ω)

m
(
Ω2 − ω2 − iγω

) = χ(ω)A(ω),

where we have defined the mechanical susceptibility

χ(ω) =
1

m(Ω2 − ω2 − iωγ)
.

The amplitude and phase response are given by

|B(ω)| = |χ(ω)|A(ω)

and

φ(ω) = arctan
(Im[χ(ω)

]
Re
[
χ(ω)

] )
and plotted in figure 2.

The solution of the differential equation can now be obtained by the sum of the ho-
mogeneous solution and the particular solution xp(t). After the initial ring-down only the
particular solution remains.

In the frequency domain, (assuming the Fourier transform of F exists at all), equation
2 reads

x(ω) = χ(ω)F (ω) (3)

with the Fourier transform defined by

f(ω) =

∫ ∞
−∞

dt f(t)eiωt
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Figure 2: Typical amplitude and phase response of a driven, damped harmonic oscillator
(

Ω =

2π · 1kHz, γ = ω
10 , m = 1kg

)
.

and χ(ω) defined as above (note that commonly used definitions of the susceptibility may
differ in the sign of the imaginary part - this is simply due to a different definition of the
Fourier transform). The particular solution in the time-domain can then be expressed as

xp(t) =
1

2π

∫ ∞
−∞

dω χ(ω)F (ω)e−iωt.

Using the convolution theorem we can express this as

xp(t) =

∫ ∞
−∞

dt′ χ(t− t′)F (t),

where χ(t) is of course the inverse Fourier transform of χ(ω), i.e.

χ(t) =
1

2π

∫ ∞
−∞

dω χ(ω)e−iωt.

This expression exists and can be evaluated analytically (see e.g. [18]), in particular one
finds that χ(t− t′) = 0 for t′ > t, i.e. the response of the system is causal.
The work done by the external force (i.e. the energy dissipated) is given by

∆E =

∫ ∞
−∞

dt F (t)ẋ(t).

Expressing this with the respective Fourier transforms and using F (−ω) = F (ω)∗ (i.e.taking
F (t) as real) as well as

∫∞
−∞ dt e

i(ω−ω′)t = 2πδ(ω − ω′) we arrive at

∆E = − i

2π

∫ ∞
−∞

dω ω χ(ω) |F (ω)|2 = − i

2π

∫ ∞
−∞

dω
ω

χ(ω)∗
|x(ω)|2.

Since the real part of the susceptibility fulfills Re
[
χ(ω)

]
= Re

[
χ(−ω)

]
, this expression

depends only on the imaginary part of χ:

∆E = − i

2π

∫ ∞
−∞

dω ω Im
[
χ(ω)

]
|F (ω)|2 =

iγ

2π

∫ ∞
−∞

dω ω2 |x(ω)|2.
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Note that in general the expression for the work doesn’t converge (a finite force acting for
an infinite amount of time obviously leads to an infinite amount of work) and therefore one
often considers the power rather than the energy.
We start by defining the windowed Fourier transform

xT (ω) :=
1√
2T

∫ T

−T
dt x(t) eiωt

and notice, that

1

2π

∫ ∞
−∞

dω |xT (ω)|2 =
1

2T

∫ T

−T
dt x(t)2.

This allows us to connect the power spectral density

Sxx(ω) := limT→∞|xT (ω)|2

to the variance

< x(t)2 >:= limT→∞
1

2T

∫ T

−T
dt x(t)2

by ∫ ∞
−∞

dω Sxx(ω) = 2π < x(t)2 > .

An important application is the thermal force (i.e. the force acting on a harmonic oscillator
in thermal equilibrium), for which the equipartition theorem connects the variance to the
temperature by

< x(t)2 >=
kBT

mΩ2
. (4)

Defining FT (ω) in analogy to xT (ω), we furthermore get

< x(t)2 >=
1

2π

∫ ∞
−∞

dω|χ(ω)|2limT→∞|FT (ω)|2.

Because thermal noise is white (i.e. independent of ω), we can solve for the force power
spectral density limT→∞|FT (ω)|2 and, evaluating the integral and using the equipartition
theorem, this leads to

limT→∞|FT (ω)|2 = 2kBTmγ.

and

Sxx(ω) = 2kBTmγ|χ(ω)|2.

Note that this can be expressed as

Sxx(ω) =
2kBT

ω
Im
[
χ(ω)],

which is a commonly used form of the fluctuation-dissipation theorem.
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Figure 3: Power spectral density of a harmonic oscillator (same properties as in figure 2) at room
temperature (273K).

1.1.2 Quantum mechanical description

Since a rigorous introduction to quantum mechanics is outside the scope of this thesis, I
will assume that the reader is already familiar with it (and, in particular, the Dirac notation).
We will follow the canonical way to pass from classical mechanics to quantum mechanics.
The energy of an ideal harmonic oscillator is given by equation 2. We replace the position
x and the momentum p by the corresponding operators and get the Hamilton operator of
a harmonic oscillator

H =
P 2

2m
+
mω2X2

2
, (5)

where operators are denoted by capital letters (with the exception of the creation/annihilation
operators a and a� defined below). The operators X and P obey the commutation relation

[X,P ] = i~11.

One could now solve the (stationary) Schroedinger equation in a particular representation,
e.g. (note that E denotes the energy of the system and is a scalar, not an operator)

Eψ(x) =
(
− 1

2m

∂2

∂x2
+
mω2x2

2

)
ψ(x), (6)

to obtain the states of the system (and all other quantities of interest). We will however
take the algebraic approach, i.e. instead of solving a second-order differential equation
we will treat the Schroedinger equation as an eigenvalue problem in the Hilbert space,

H|ψ〉 = E|ψ〉, (7)

and use (almost) purely algebraic methods to find the eigenvalues and the corresponding
eigenstates.
Using natural units, i.e. introducing ”new” position and momentum operators as

X0 =

√
mω

2~
X and P0 =

√
1

2m~ω
P,

8



the annihilation operator is now defined by

a = X0 + iP0

and the creation operator is its adjunct and defined by

a� = X0 − iP0.

From these definitions and the commutation relations of X0 and P0,

[X,P ] = i~11 =⇒ [X0, P0] = i
1

2
11,

we obtain the commutation relation for a and a�:

[a, a�] = 11.

The Hamilton operator can now easily be expressed in terms of a and a� and is given by

H = ~ω(X2
0 + P 2

0 ) = ~ω(a�a+
1

2
11). (8)

Note that the eigenvalue problem for the Hamiltonian can now be expressed as an eigen-
value problem for the so called number operator

N = a�a, (9)

which is of the form

N |ψ〉 =
( E
~ω
− 1

2

)
|ψ〉. (10)

Furthermore, all eigenvalues (if there are any) of N are non-negative, because if |ψ〉 is an
eigenvector of N with eigenvalue n, then

n = n〈ψ|ψ〉 = 〈ψ|Nψ〉 = 〈aψ|aψ〉 ≥ 0.

The commutation relations of the ladder operators with the number operator can easily
be evaluated:

[N, a] = −a and [N, a�] = a�. (11)

So, if |ψn〉 is a normalized eigenstate of N with eigenvalue n, then, assuming a|ψn〉 and
a�|ψn〉 don’t vanish, a|ψn〉 is again an eigenstate of N with eigenvalue n− 1 (and a�|ψn〉 is
an eigenstate of N with eigenvalue n+ 1). In other words,

a|ψn〉 =
√
n|ψn−1〉 (12)

and

a�|ψn〉 =
√
n+ 1|ψn+1〉. (13)

The proportionality constants follow from the requirement that the |ψn〉 are normalized
and from the relations

〈aψn|aψn〉 = 〈ψn|N |ψn〉 = n〈ψn|ψn〉

9



and

〈a�ψn|a�ψn〉 = 〈ψn|(N + [a, a�])|ψn〉 = (n+ 1)〈ψn|ψn〉.

Consider now the equation a|ψ〉 = 0 in the x-representation, i.e.(√mω

2~
x+

√
~

2mω

∂

∂x

)
ψ(x) = 0. (14)

This equation has a unique normalizable solution ψ0(x) ∝ e−
mωx2

2~ . On the other hand, the
equation a�|ψ〉 = 0 doesn’t have a normalizable solution. We have therefore obtained a
set of normalized solutions {|ψn〉|n ≥ 0} (these states are called the number states) of
the eigenvalue problem 10, given by

|ψn〉 =
1√
n!

(a�)n|ψ0〉. (15)

These are in fact already all the solutions of this eigenvalue problem, because if there
were a different set of solutions {|φn〉}, then a|φn〉 < 0 for some n. We therefore have a
unique state of lowest energy, |ψ0〉, with a non-zero energy

E0 =
~ω
2
. (16)

The expectation values of position and momentum vanish, as is expected from the cor-
respondence principle, but the variances are finite. The same statement holds for all
the other number states. To get more familiar ”classical” states (i.e. states, whose po-
sition/momentum expectation values are non-zero and follow the classical trajectories),
we have to consider superpositions of number states. The coherent state is defined by
a|ψα〉 = α|ψα〉 and can be expressed as a superposition of number states:

|ψα〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|ψn〉.

Note that α is in general complex (it corresponds to the complex amplitudes, which we
have already used several times) and we can write

α = |α|eiφ.

With this notation, the expectation values for position and momentum are obtained as

〈ψα|X0|ψα〉 = |α|cosφ

and

〈ψα|P0|ψα〉 = |α|sinφ.

For φ = φ0 + ωt the expectation values thus follow the classical trajectories. However,
there is now an inherent uncertainty characterized by the variances

(∆X0)2 = (∆P0)2 =
1

4
.

Note that in SI units (i.e. for X and P instead of X0 and P0) we obtain

∆X ·∆P =
~
2

and the Heisenberg uncertainty relation is fulfilled.
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1.2 Classical description of optomechanical systems

1.2.1 The electromagnetic field

In classical physics light is described as an electromagnetic wave, i.e. by two time-
dependent coupled fields (the electric field ~E and the magnetic field ~H). The fields (and
their coupling) arise mathematically as solutions to the Maxwell equations1. In free space,
the Maxwell equations are given by

∇ ~E = 0, (17)

∇ ~H = 0, (18)

∇× ~E = −µ0
∂

∂t
~H, (19)

∇× ~H = ε0
∂

∂t
~E. (20)

In these equations ε0 and µ0 are constants known as the electric permittivity and the
magnetic permeability of free space. Note that the Maxwell equations already imply the
wave equations for all the components of both ~E and ~H:

∆u =
1

c2

∂2

∂t2
u (21)

where u stands for an arbitrary component of either the electric or the magnetic field. Also
note that, since Maxwells equations are linear, the superposition of an arbitrary number
of solutions is again a solution. As we will see, this has the important consequence that
all (physical) solutions can be obtained as a superposition of particularly simple solutions
oscillating at a fixed frequency.
The energy density of an electromagnetic field in free space is given by

ρ =
1

2
(ε0 ~E

2 + µ0
~H2) (22)

and the corresponding conservation law is

∂ρ

∂t
= −∇~S

with

~S = ~E × ~H.

The energy flux density ~S is also known as the Poynting vector. Another important quantity
is the intensity I = |〈~S〉t|, where 〈.〉t denotes a time-average (taken over a time long
compared to an optical period). The (linear) momentum density of the electromagnetic
wave is given by

~P =
1

c2
~S. (23)

1James Clerk Maxwell obtained these equations in 1865 as modifications to the equations used to
describe the static fields (and Faraday’s law), after noticing inconsistencies in the old equations. Many of
the consequences of his theory were not experimentally verified until years later.
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For more details see any book about electrodynamics, e.g. [6]. Consider now an electro-
magnetic wave of the form

~E(~x, t) = Re
[
~E0(~x)e−iωt

]
, ~H(~x, t) = Re

[
~H0(~x)e−iωt

]
. (24)

Such a wave oscillates at a fixed frequency ω and is therefore called monochromatic.
Note that we will mostly use the complex quantities for calculations. The corresponding
real quantities are obtained by taking the real part of the expression in question after
the evaluation. Since this wave has to satisfy the Maxwell equations, it follows that the
components of ~E0 and ~H0 obey the so called Helmholtz equation

∆u+ k2u = 0, (25)

where k = ω
c

and u denotes any component of ~E0 or ~H0. Note that any physical solution
can be obtained as sum/integral over monochromatic waves by means of Fourier analysis
(this is shown in section 1.3.1).
We will often encounter monochromatic waves of the form (note that the Helmholtz equa-
tion is fulfilled for |~k| = ω

c
)

~E(~x, t) = Re
[
~E0e
−i(ωt−~k~x)

]
, ~H(~x, t) = Re

[
~H0e
−i(ωt−~k~x)

]
. (26)

Waves of this form are called plane waves, the vector ~k is called wave vector (its mag-
nitude is called wave number) and determines the direction of propagation. Again, more
general waves can be analyzed by considering them as superpositions of plane waves
with different wave vectors ~k and different frequencies ω (see section 1.3.1).
Substituting the expression for the plane wave in the Maxwell equations 19 and 20, we
obtain

~k × ~E = −iµ0ω ~H, ~k × ~H = iε0ω ~E (27)

It follows that the fields and the wave vector ~k are mutually perpendicular. We also obtain
the relations

|~k| = ω
√
µ0ε0 =

2π

λ
, (28)

where λ denotes the wavelength, and

|E|
|H|

=

√
µ0

ε0
≈ 377Ω. (29)

The Poynting vector for a plane wave is parallel to the wave vector ~k and the intensity is
given by

I = |〈~S〉t| =
1

2
|E0||H0| =

|E0|2

η
(30)

with

η = 2

√
µ0

ε0
.

Due to the simple relation between the electric and the magnetic field of a plane wave,
it is usually sufficient to consider only one of the fields (by convention the electric field)
during calculations and we will from now on do so.
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1.2.2 Optical cavities

An optical cavity is, generally expressed, a device which confines (stores) electromagnetic
radiation. In practice this is usually realized by two or more mirrors (see figure 4). From
now on we only consider Fabry-Perot cavities, i.e. cavities made from two parallel mirrors.
Due to interference and the boundary conditions at the mirrors, a stationary field in an
ideal cavity takes the form of standing waves and the wavelength is restricted to certain
discrete numbers. As an example consider two perfect mirrors separated by a distance l

Figure 4: Different configurations of optical cavities. Figure originally published on the English
wikipedia by Bob Mellish under the terms of the GNU Free Documentation License.

along the x-axis and assume a monochromatic field ~E(~x, t) = Re
[
~E0(~x)e−iωt

]
is present

in the cavity. We furthermore assume the direction of propagation is perpendicular to the
mirrors and that the electric field has purely transverse components. The solutions to the
Helmholtz equation (with the boundary condition ~E0(x = 0) = ~E0(x = l) = 0) are of the
form

~E0(~x) = ~E0(y, z)sin(kz)

with

k = n
π

l
, n ∈ Z.

The general solution is a linear superposition of such terms. In terms of the angular
frequency ω = kc, this quantization condition reads

ω = n
πc

l

and these frequencies are called the resonance frequencies of the cavity. The separation
between adjacent resonance frequencies,

∆ω =
πc

l
, (31)
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is called the free spectral range of the cavity.
If we include losses in our model, this strict condition on the frequency (wave number,
wavelength) will be relaxed. The permitted frequencies (wave numbers, wavelengths) will
no longer be quantized, but rather have a certain distribution (as we will see, peaked
at and symmetric around the resonance frequencies). I am going to assume that the
different polarization modes don’t couple (this is a good assumption for many types of
cavities, for a more general analysis see e.g. [11]) and for convenience I am going to omit
the vector sign on the electric fields from now on.
Denote the amplitude reflectivity/transmission coefficients of the mirrors by r1, r2/t1, t2 (the
intensity reflection/transmission coefficients are therefore given by r2

i /t2i and r2
i + t2i = 1).

The first mirror (r1, t1) is the input mirror, i.e. an external field, which is assumed to be
a plane wave with amplitude Ein (it is sufficient to only consider the electric field, as
discussed in the last section) and angular frequency ωL, is incident upon it. We are
interested in the reflected field (amplitude Er), the field in the cavity and the output field
(i.e. the field transmitted through the second mirror, amplitude Eout). I choose a phase
convention such that the reflection of the input field on the first mirror results in a phase
shift of π, while an internal reflection doesn’t (see e.g. [9]). Denote the amplitude of the
electric field (traveling in positive x-direction) in the cavity directly after the input mirror by
Ecav. Now consider first the act of cavity filling: Assume that for t < 0 all fields are zero
and for t ≥ 0 Ein = ~const 6= 0. Then, for 0 ≤ t < 2l

c
, the intracavity amplitude directly after

the first mirror is given by E0
cav = t1Ein. For 2l

c
≤ t < 4l

c
we get E1

cav = E0
cav(1 + r1r2e

iδφ),
i.e. the intracavity field is now given as a superposition between the transmitted input
field and the field still in the cavity after one round trip. The phase picked up by the field
during one round trip is given by δφ = 2l

c
ωL. The steady-state value of the intracavity field

amplitude can therefore be expressed as a convergent infinite series,

Ecav =
∞∑
i=0

E0
cavγ

i =
1

1− γ
E0
cav,

where γ = r1r2e
iδφ. The intracavity intensity is given by

Icav =
|Ecav|2

2η
=

Iint
2
1

1 + r2
1r

2
2 − 2Re[γ]

=
Iint

2
1

(1− r1r2)2

1

1 + (2F
π

)2sin2( δφ
2

)
, (32)

where

F =
π
√
r1r2

1− r1r2

is called the finesse of the cavity. It is easy to see that the intracavity intensity has max-
imum values at the resonance frequencies of the corresponding ideal cavity (given by
equation 31). While an ideal cavity can only confine light at these precise frequencies, a
realistic cavity will have a non-zero intracavity field at all frequencies. However, any radia-
tion which is not close to a resonance frequency experiences strong attenuation. Optical
cavities are therefore often used as frequency filters (they can of course also be used
as spatial filters, if their geometry can only sustain certain spatial modes) or spectrum
analyzers.
The intensity and phase distributions of the reflected field and the output field can be
obtained from the relations

Er = −r1Ein + r2t1e
iδφEcav =

γ − r2
1

r1(1− γ)
Ein

14



and

Eout = t2e
−i δφ

2 Ecav =
t1t2e

−i δφ
2

1− γ
Ein.

Of particular interest for us is the phase difference between the input field and the reflected
field, which is given by

φr = arg
( γ − r2

1

r1(1− γ)

)
.

The intensity/phase distributions of the intracavity field and the reflected field are plotted
in figure 5.
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Figure 5: Intensity and phase distributions of the reflected field for a cavity with r1 = r2 = 0.9.

We are now properly prepared to derive the general ”equations of motions” for the
fields (often referred to as input-output formalism) and to treat cavity filling and cavity
decay. Given an input field with amplitude Ein(t) (matched to the geometry of the cavity),
the cavity field (Ecav now denotes the amplitude directly before the input mirror traveling
in negative x-direction, since this makes the calculations clearer) fulfills the relation

Ecav(t+ τ) = γEcav(t) + t1r2e
iδφEin(t), (33)

where τ = 2l
c

denotes the cavity round-trip time. Since τ is usually small compared to
other timescales (e.g. modulation of the input field/mirror position, time resolution of a
measurement), we can replace this equation with the corresponding differential equation,
i.e. making the approximation

Ėcav(t) =
Ecav(t+ τ)− Ecav(t)

τ
.

To further simplify this expression and to obtain consensus with the notation used in the
field of quantum optomechanics, we assume from now on that the frequency input field is
close to a resonance frequency of the cavity (i.e. eiδφ ≈ 1 + iδφ) and that t2i << 1, such
that ri ≈ 1 − t2i

2
. Inserting this approximations in equation 33 and neglecting all terms

which contain a prefactor of the form t2i δφ or tit2j , we arrive at

Ėcav(t) = (i
δφ

τ
− t21 + t22

2τ
)Ecav(t) +

t1
τ
Ein(t).
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Usually one defines the cavity decay rate κ := κ1 + κ2 with κi =
t2i
τ

(in the next paragraph
it should become clear why this is called cavity decay rate) and uses that δφ = τω =
τ(ω − ωc) = τ∆ (mod 2π, since τωc = n2π), where ∆ is called the detuning. The equation
of motion for the cavity field then simply reads

Ėcav(t) = (i∆− κ

2
)Ecav(t) +

√
κ1

τ
Ein(t).

The amplitude of the incident field is often normalized by Ein → 1√
τ
Ein (we will see the

reason for this in the next subsection), in which case one gets

Ėcav(t) = (i∆− κ

2
)Ecav(t) +

√
κ1Ein(t). (34)

This is the form one most often finds in the literature (usually for the corresponding quan-
tum equation). Note that losses other than mirror losses (e.g. scattering of light out of the
cavity) can be included by simply adding another term to the cavity decay rate (formally
such losses aren’t any different than the losses at the second mirror).

An immediate application is cavity decay, i.e. we assume the input field is ”switched
off” at some time t0. Then we can solve the differential equation

İcav(t) = −κ Icav(t)

with Icav(0) = I0 and get the solution

Icav(t) ≈ I0 e
−κt.

Note that (with the approximations we made, i.e. high reflectivity mirrors, small detun-
ing) there are a lot of different equally valid forms for the equations. We have chosen here
the ”conventional” form, i.e. the form which is most often used in the literature.
Also, formulating the equations of motion for the (slowly-changing) amplitudes instead for
the fields is called working in the rotating frame (or sometimes - wrongly - called the ro-
tating wave approximation) and corresponds (classically) to a transformation eiωt.
With these approximations and the corresponding notation, we can reformulate the rela-
tions for the intracavity intensity and the reflected field. First note that

Ecav(ω) =

√
κ1

κ
2
− i(∆ + ω)

Ein(ω)

and therefore the average intensity is

Icav =
κ1

κ2

4
+ ∆2

Iin.

The reflected field (normalized by Er → 1√
τ
Er) can now be written as

Er =
√
κ1Ecav − Ein.

1.2.3 Optomechanics

We will treat classical optomechanics by means of the prototypical optomechanical sys-
tem (figure 6): Consider an optical cavity in which one of the mirrors is perfect and a
mechanical oscillator, while the other mirror is partially transparent. A plane wave with
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Figure 6: Typical optomechanical system. Figure originally published on the english wikipedia
by the user Schmoele under the terms of the ”Creative Commons Attribution-Share Alike 3.0
Unported” license.

constant amplitude and angular frequency ωL is incident on the partially transparent mir-
ror. A field in such a cavity will be in dynamic interplay with the mirror position: On the one
hand, the phase of the radiation reflected at the mirror and therefore also the intracavity
intensity (since the intensity depends on the phase, as we have seen in the last section)
depends on the position of the mirror; on the other hand, the field will effect radiation
pressure on the mirror and thus the position of the mirror depends on the intensity in the
cavity.
We will now express these dynamics in mathematical form and discuss some important
properties of such a system.
From eq. 23 and eq. 30 it follows that the momentum transferred to the mirror per round
trip is just 4 V

c2
I, where V denotes the volume of the cavity and I is the intensity (in SI

units). The momentum transferred per unit time, i.e. the force on the mirror, is then given
by 4V

τc2
I = 2V

lc
I, where l denotes the length of the cavity (note that the dependence of

the force on the cavity length l is strictly through the intensity, as V
l

is independent of l).

Redefining the intracavity field as Ecav →
√

V ε0
~ωL

Ecav, we can write the force on the mirror
as

Frad =
~ωL
l
|Ecav|2.

Note that |Ecav|2 =
∫
V dV ρ

~ωL
(with ρ is given by equation 22) corresponds in the quantum

mechanical picture to the (mean) number of photons in the cavity2.
The reaction of the intracavity intensity to a change in mirror position isn’t instantaneous
but determined by the cavity decay rate. To determine the full dynamics of the optome-
chanical system we assume that the mirror oscillates around some equilibrium position
and that the oscillations x(t) are small compared to the mean length of the cavity L. We
also take τ from now to denote the mean cavity round trip time and we redefine the ampli-
tude of the incident field by Ein →

√
V ε0
τ~ωL

Ein, which means that ~ωL|Ein|2 is the incident
power in SI-units (i.e. in the quantum mechanical picture |Ein|2 is the rate of incident
photons). The equation of motion for the cavity fields then takes the form of equation 34.
We now expand ωcav(x) = n πc

L+x
to the first power of x (i.e. ωcav(x) = ωcav(1 − x

L
) with

2Note that in most treatments of cavity optomechanics the radiation pressure force is written as
~ωcav

l |Ecav|
2 and also |Ecav|2 =

∫
V
dV ρ

~ωcav
. This is allowed as in these treatments a high finesse cavity is

assumed.
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ωcav = nπc
L

) and arrive at the equation

Ėcav =
(
i
(
∆ +

ωcav
L

x
)
− κ

2

)
Ecav +

√
κ1Ein. (35)

Together with the corresponding equation of motion for the mechanical oscillator, which,
according to the preceding discussion, can be written as

meff (ẍ+ γẋ+ ω2
Mx) =

~ωL
L
|Ecav|2, (36)

we now have two coupled equations which describe the dynamics of the system. For a
discussion of the effective mechanical mass meff see section 3.6.
The second equation is often written with the intensity defined as I = |Ecav |2

τ
(i.e. the rate

of photons incident on the mirror) and then reads

meff (ẍ+ γẋ+ ω2
Mx) = 2~k I.

In the frequency domain this becomes

x(ω) = 2~kχ(ω)I(ω).

One effect of the radiation pressure force is a static average shift in the cavity length,
given by

xst = 2~kχ(0) < I(t) >,

where < . > is again a time average.
The non-linear equations 35 and 36 are in general not analytically solvable. However, it
often makes sense to assume that the field amplitudesEin andEcav fluctuate around some
mean value Ēin resp. Ēcav and that the magnitude of the fluctuations is small compared
to the mean values. Furthermore, to achieve consensus with the usual notation, we
will from now on assume a high-finesse cavity and writeFrad = ~ωcav

l
|Ecav|2. Inserting

Ein = Ēin + δEin, Ecav = Ēcav + δEcav in the non-linear equations and neglecting all terms
of the form δEiδEj and xδEi, we get the steady state solution for the mean intracavity
field,

Ēcav =

√
κ1

κ
2
− i∆

Ēin,

as well as the linearized equations

˙δEcav = (i∆− κ

2
)δEcav + i

ωcav
L

x Ēcav +
√
κ1δEin (37)

and

meff (ẍ+ γẋ+ ω2
Mx) =

2~ωcav
L

Re[Ē∗cavδEcav]. (38)

Note that in equation 38 we have already made the substitution x → xst + x, where xst
denotes the (static) shift in the equilibrium position of the cavity due to the mean intensity:

xst =
~ωcav

meffω2
M L
|Ēcav|2.

The linear equations are the starting point for most optomechanics discussions, both
in the classical and in the quantum regime (for a short introduction to non-linear dynamics,
see e.g. [13]). In particular, one can explain cooling (and heating) of the mechanical mo-
tion in this picture by solving the equations (including the thermal force) in the frequency
domain and obtaining a modified mechanical susceptibility, which in a certain parameter
regime leads to attenuation (cooling) or amplification (heating) of the thermal motion. It is
important to note that this is a purely classical effect, in contrast to cooling with the pulsed
scheme (see section 4).
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1.3 Quantum mechanical description of optomechanical systems

In this section I’m going to introduce the quantum mechanical treatment of optomechan-
ics. The first subsection superficially covers the quantum mechanical theory of electro-
magnetic radiation (for a more in-depth treatment see e.g. [8]), after that we are going to
apply that formalism to the interaction of light with a (single mechanical mode of a) moving
mirror in a cavity.

1.3.1 Quantum electrodynamics

In order to pass from classical mechanics to quantum mechanics in the canonical way
we have to use the Hamiltonian formalism for the classical theory, i.e. we have to find
a Hamiltonian such that the field equations arise as the usual Hamilton equations. This
is possible for the electromagnetic theory, but only for fields enclosed in a finite volume.
However, since the volume can be chosen arbitrarily large, the resulting theory does not
depend on the size of this volume.
We will begin with the well-known statement that the electric and magnetic fields in
vacuum can be represented by a single quantity known as the vector potential (in the
Coulomb gauge) and usually denoted by ~A. The derivation of the following results is out-
side of the scope of this thesis and therefore I refer readers unfamiliar with these results to
any textbook about classical electrodynamics, e.g. [6] or [12]. The electric and magnetic
fields are related to ~A by

~E = − ∂

∂t
~A

and

~H =
1

µ0

∇× ~A.

Any component of the vector potential satisfies the wave equation. Therefore (compare
to the quantization of the electric field in section 1.2.2), if we consider the field in a cube
with volume V = L3 and choose periodic boundary conditions for ~A and its derivatives,
we can express the vector potential as the infinite sum

~A(~x, t) =
∑
~k,λ

~e~k,λ
(
A~k,λ(t)e

i~k~x + A∗~k,λ(t)e
−i~k~x),

where ~k = 2π
L
~n and the components of ~n are integers. ~e~k,λ denotes the polarization of

the mode and λ ∈ {0, 1}. The polarization vectors for a given mode are normalized and
perpendicular both to each other and to the wave vector ~k of the mode (the last fact
follows from the Coulomb condition for the vector potential). The wave equation for the
components of the vector potential translates to

∂2

∂t2
A~k,λ(t) = −c2k2A~k,λ(t) = −ω2

kA~k,λ(t),

which is formally equivalent to the equation of motion for a harmonic oscillator. From now
on we take as the solution to this equation A~k,λ(t) = A~k,λe

−iωt. Then, the energy of the
fields in the cubic volume,

E =
1

2

∫
V

dV
(
ε0 ~E

2 + µ0
~H2
)
,
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can be expressed in terms of x~k,λ := A~k,λ(t) + A∗~k,λ(t) and p~k,λ := d
dt
x~k,λ as

E =
1

2
ε0V

∑
~k,λ

(
p2
~k,λ

+ ω2
kx

2
~k,λ

)
.

We can thus treat every mode of the electromagnetic field (confined to periodic boundary
conditions in a box) as a harmonic oscillator. The quantization of (every mode of) the field
now proceeds in exact analogy to the quantization of the harmonic oscillator performed in
section 1.1.2. For a complete derivation and a more detailed discussion of the Hamiltonian
form of the electromagnetic theory see e.g. [8] or [12]. To establish a connection between
this derivation and the expressions given in section 1.2, calculate the electric field as

~E(~x, t) = − ∂

∂t
~A(~x, t) =

∑
~k,λ

~e~k,λ
(
iωA~k,λe

−i(ωt−~k~x) − iωA∗~k,λe
i(ωt−~k~x)

)
.

This also shows that the electric field can indeed be written as a superposition of plane
waves and, even though this is strictly speaking only valid for fields enclosed in some
volume with appropriate boundary conditions, one is free to choose the volume and the
boundary conditions as necessary for the physical situation.
The rest of this section treats the quantum theory of radiation, capital letters will denote
operators. After the quantization one can write down the Hamiltonian in terms of the usual
creation/annihilation operators, i.e.

H =
∑
~k,λ

~ωk(a�~k,λa~k,λ +
1

2
),

which are related to the operators corresponding to the vector potential coefficients by

a~k,λ =

√
~

2ε0V ωk
A~k,λ

and

a�~k,λ =

√
~

2ε0V ωk
A∗~k,λ.

For experiments taking place in a physical cavity one can choose the ’quantization volume’
to coincide with the volume of the cavity, in one dimension and taking one mode this of
course reproduces the results of section 1.2.2).

1.3.2 Quantum optomechanics

We have already seen in the last section, that the Hamiltonian of an electromagnetic field
confined to an ideal cavity (and a good model for a high finesse cavity with an single
excited mode and fixed polarization) is given by

H = ~ωcava�a,

where ωcav denotes a resonance frequency of the cavity and a, a� the familiar annihila-
tion/creation operators. If one of the end mirrors of the cavity acts as a harmonic oscilla-
tor, we have to add a similar term for it and also account for the dependence of the optical
frequency on the position of the mirror. Classically, ωcav(x) (x denoting the displacement
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of the moving mirror from its equilibrium position) is given by equation 31. Furthermore,
if the oscillations of the mirror are small compared to the mean cavity length L, we can
approximate ωcav(x) ≈ ωcav(0) + dωcav(x)

dx
x ≈ ωcav(0) − ωcav

L
x. We will from now on denote

ωcav(0) as ωcav and carrying over to the quantum regime, we arrive at the Hamiltonian

H = ~ωcava�a+ ~ωMb�b− ~
ωcav
L

x0XMa
�a

with ωM being the mechanical frequency and b, b� denoting the annihilation/creation op-
erators of the mechanical system. Note that x0 is determined by the choice of units for
the operator XM = b + b�. Using the same convention as in section 1.1.2 (note however
the difference by a factor of 1

2
in the definition of the quadratures XM resp. X0), we have

x0 =
√

~
2mωM

. The expression ωcav
L
x0 is often denoted by g0 and called the single photon

optomechanical coupling strength. We have also assumed that the free spectral range of
the cavity is much larger than the mechanical frequency and neglected any coupling to
other cavity modes. The Hamiltonian of our optomechanical system thus consists of two
harmonic oscillator terms and the interaction term

Hint = −~g0(b+ b�)a�a.

A full derivation of the Hamiltonian by the canonical procedure is given in [10].
The corresponding Heisenberg equations of motion for the operators a and b are given by

ȧ = −i(ωcav − g0XM)a

and

ḃ = −iωMb+ ig0a
�a.

The equation for the optical ”field” simply describes harmonic evolution with the phase
modulation caused by the oscillating mirror. Taking the expectation values and switching
to the rotating frame, one recovers the classical equation 35 (for a perfect cavity, i.e.
κ = κ1 = 0). The equation for the mechanical annihilation operator is easier to interpret if
we write down the corresponding equations for the position and momentum operators (in
SI-units), namely

ẊSI
M =

1

m
P SI
M

and

Ṗ SI
M = −mω2

MX
SI
M + ~

ωcav
L

a�a.

These are just the classical equations of motion for a harmonic oscillator already including
the momentum transfer due to the electromagnetic field.
So far we have assumed a perfect cavity, i.e. no optical losses and no mechanical dissipa-
tion. These loss mechanisms are formulated on the basis of quantum Langevin equations,
i.e. they are modeled as an interaction with an infinite bath of harmonic oscillators. The
resulting equations for a and b are given by

ȧ = −iωcava+ ig0XMa−
κ

2
a+
√
κain (39)

and

ḃ = −iωMb+ ig0a
�a− γ

2
b. (40)
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The first equation can be easily understood: As before, the first two terms simply describe
the harmonic evolution of the field and the phase modulation due to the change in cav-
ity length. The third term gives the decay and the fourth term describes the coupling to
the incident field. Taking the expectation values and switching to the rotating frame, one
obtains the classical equation for the electric field amplitude (equation 35, assuming no
intracavity losses and perfect reflectivity of the back mirror, i.e. κ = κ1 in the notation of
section 1.2).
The first and second terms of the equation for the mechanical annihilation operator ac-
count for the harmonic evolution and the momentum transfer to the mechanical oscillator,
the third term accounts for mechanical dissipation. Note that this treatment of dissipation
is valid only for γ

2ω
<< 1 and in that case one recovers the classical equations (for the

position/momentum operators in SI units) by taking the expectation values (compare with
section 1.1.1).
It is often convenient to work in a frame rotating at the laser frequency ωL, which corre-
sponds to the treatment given in section 1.2. The Hamiltonian in the new frame reads

H = −~∆a�a+ ~ωMb�b− ~g0XMa
�a,

where we have again used the detuning ∆ = ωL − ωcav. An important case is ωL = ωcav
(i.e. “driving the cavity on resonance”), which is primarily used for interferometric position
measurements and which we will use later on in the pulsed scheme. The Hamiltonian (in
the rotating frame) in this case is simply given by

H = ~ωMb�b− ~g0XMa
�a. (41)

Now we write

a = ā+ δa

with ā denoting the expectation value of a3, i.e. for a given optical state |ψ〉, ā = 〈ψ|a|ψ〉.
For high ā (e.g. for strong coherent states) we can drop all terms in the interaction Hamil-
tonian which are of second order in δa. This is often called the linear approximation. With
this notation and the linear approximation the interaction Hamiltonian reads

Hint = −~g0XM(ā�ā)− ~g0XM(ā�δa+ δa�ā).

The first term simply corresponds to an average radiation pressure force (and resulting
mean shift of the mirror position) and therefore vanishes, if we shift the coordinate system
appropriately. Furthermore, w.l.o.g., we can choose ā to be real. The Hamiltonian then
reads

H = ~ωcava�a+ ~ωMb�b− ~g0

√
n̄XM(δa� + δa), (42)

where n̄ = ā�ā = ā2 is the mean number of photons in the cavity.
The equations of motions for the cavity field introduced here will be the starting point of
our treatment of pulsed cavity optomechanics in appendix A and we will use a procedure
similar to the linearization here to simplify the theory.

3Strictly speaking, one should write a = ā11 + δa with 11 denoting the identity operator. However, the
identity operator is customarily omitted in the literature.
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2 Quantum measurements and quantum state tomogra-
phy

The standard treatment of quantum mechanics describes a pure quantum state by a wave
function (and a mixed state by a density operator), which is related to the probability of
obtaining certain measurement outcomes. For example, if some (point) particle can be
described by a wave function ψ(~x, t) (in the position representation), then the probability
of finding that particle in the volume V ′ at the time T is given by

∫
V ′ |ψ(~x, T )|2dV . By

preparing many particles in the same quantum state and repeatedly measuring the posi-
tion one can reconstruct the probability distribution |ψ(~x, T )|2 with (in principle) arbitrary
accuracy.
However, knowing just the probability distribution for a single observable (e.g. position)
doesn’t allow us to reconstruct the quantum state (i.e. the wave function/density operator).
Consider as an example a wave function

ψ(x) ∝ ex
2+i2p′x,

i.e. a coherent state. Measuring the probability distribution (of position measurement
outcomes) gives us access to the absolute value, but doesn’t tell us anything about the
complex argument of the wave function. Taking the Fourier transform, which in natural
units is given by ψ(p) = 1√

π

∫
dxψ(x) e−i2px, we obtain the wave function in the momentum

representation

ψ(p) ∝ e−(p−p′)2

.

This tells us, that by measuring the distributions of both position and momentum, we can
obtain the absolute value and the complex argument of the wave function and therefore
completely reconstruct the state. The reconstruction of quantum states by measuring
probability distributions of certain observables is called quantum state tomography and
treated in more detail in the next section.
In the discussion above we have left two questions unanswered. The first one is: ”What
happens to the particle (or, more specifically, its quantum state) during a measurement?”
or rather ”What is the quantum state directly after a measurement?”. While this question
can be readily answered for observables with a discrete spectrum and ideal measure-
ments (e.g. spin states, which can be measured with perfect accuracy in a magnetic
field), the answer is not as straightforward for e.g. position measurements, which always
have a measurement dependent resolution. There are, I believe, two reasons for neglect-
ing this question in the usual textbook treatment of quantum mechanics. The first one is
simplicity and the second one is historic: In the olden days measurements on ensembles
of quantum states and the reconstruction of such states was the main focus of scientists
(most likely because measurement techniques in these times were not advanced enough
to repeatedly measure properties of a single quantum object).
The other question we haven’t answered yet is ”How can one prepare an ensemble of
quantum states?”, i.e. how is it possible to repeatedly prepare a given quantum state
(and how can one know that the object is indeed in this state)? We will focus on one pos-
sibility to do quantum state preparation, which is strongly related to the first question. As
we will see, by measuring an observable of a quantum state it is possible to know (from
the result of the measurement) what the quantum state after the measurement is.
The action of measurements on a quantum state and the possibility of using such mea-
surements to prepare quantum states are the subject of the section after the next one.
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2.1 Quantum tomography

In this section we consider how one can experimentally determine a quantum state. For
this we first recall in this section that a general quantum state is characterized by its den-
sity operator and then introduce in the next section an equivalent description via the so
called Wigner function, which is more closely related to actual experimental measure-
ments of continuous variables (i.e. the probability distributions).
We then outline how the Wigner function can be obtained from a finite set of measure-
ments via the (numerical implementation of the) inverse radon transform.
So far in our treatment we have mostly considered pure quantum states, which are repre-
sented by wave functions. In classical mechanics, the analogue to this would be a point
in phase space, which fully describes a physical system. However, as we know, it is not
always feasible or even possible to consider the exact state of an arbitrary system (e.g.
for some finite volume filled with a gas consisting of millions of particles one would have
to know the position and momentum of each particle as well as the exact nature of the
interactions between the particles and the boundary conditions describing the behaviour
of the particles at the boundary of the volume). In classical mechanics a workaround for
this problem is given by statistical mechanics, the art of finding the probabilities that a
physical system behaves in a certain way. The same methods can be applied to quantum
mechanics, i.e. we can describe an arbitrary state of a quantum system by stating the
probabilities that this system is in one of multiple possible pure quantum states.
Mathematically this is done by introducing the density operator ρ of the system as

ρ =
∑
n

pn|ψn〉〈ψn|.

Here, ψn is a possible pure state of the system and pn gives the probability that the system
is in this state. In particular,∑

n

pn = 1.

Note that, while the ψn’s are assumed to be normalized, they don’t have to be orthogonal.
The sum can be either finite or infinite, depending on the state. If the possible states
aren’t described by a discrete parameter but by a continuous one, we can write

ρ =

∫
ds p(s) |ψ(s)〉〈ψ(s)|,

where p(s) is a probability function on the interval of integration (usually R).
It is straightforward to see that the probability of obtaining a measurement outcome q,
when measuring an observable Q (with discrete or continuous spectrum), is given by
〈q|ρ|q〉. The expectation value can be expressed as Tr(ρQ).
If the Hamiltonian can be diagonalized, i.e. if we can find a basis {ψn|n ∈ N}, such that
H|ψn〉 = En|ψn〉, then we can define the matrix elements of the density operator as

ρnm = 〈ψn|ρ|ψm〉.

An important example for the use of a density operator is the thermal state (i.e. the state
of a system in thermal equilibrium with its environment). According to classical statistical
mechanics, we can write the probability for such a system to have the energy E as e−

1
kBT

E,
where kB is the Boltzmann constant and T is the temperature4. If the Hamiltonian H of

4Note that this isn’t valid for all systems in thermal equilibrium - e.g. for systems of identical fermions one
has to use Fermi-Dirac statistics, since some energy states are forbidden by the Pauli exclusion principle.
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the system has non-degenerate eigenvalues En, the density matrix is given as

ρth =

∑
n e
− 1
kBT

En|ψn〉〈ψn|∑
n e
− 1
kBT

En
=

e
− 1
kBT

H

Tr(e
− 1
kBT

H
)
. (43)

The matrix elements are therefore given by

ρthnm =
e
− En
kBT

Tr(e
− 1
kBT

H
)
δnm,

i.e. the density matrix for a thermal state is diagonal and (assuming En > Em for n > m)
the diagonal elements are Boltzmann distributed.

Consider as an example the quantum harmonic oscillator. The expectation value of the
number operator is given by

n̄ := Tr(a�aρ) =

∑
n n e

− ~ωn
kBT∑

n e
− ~ωn
kBT

En
= (e

~ω
kBT − 1)−1. (44)

The expectation values of both the position and momentum quadrature vanish, their vari-
ances are given by

(∆X)2 = (∆P )2 =
1

2
(n̄+

1

2
). (45)

One can now use the equipartition theorem (equation 4) to find the relation between the
temperature T and the mean thermal occupation n̄, in SI-units

T =
~ωM
kB

(n̄+
1

2
). (46)

For large n̄ this of course agrees with the value for T obtained by the explicit inversion of
equation 44.
The above results will be used in section 4 (with a slightly different definition of the me-
chanical quadratures, s.t. (∆XM)2 = (∆PM)2 = 2n̄ + 1) to determine the resulting state
after a pulsed measurement on an initial thermal state.

2.1.1 The Wigner function

The Wigner function has arisen from the desire to do quantum mechanical calculations in
phase space (in analogy to classical statistical mechanics). While it cannot be interpreted
as a probability distribution on phase space (since it may take negative values), it still
has many properties of probability functions and also has been proven extremely useful
for providing graphical illustrations of quantum states and plotting experimental results. I
advise anyone who wishes to understand the Wigner function on a deeper level to read
Wigner’s original paper [14].
The Wigner function for a wave function and for one degree of freedom is defined as

W (x, p) =
1

hπ

∫ ∞
−∞

ds ei
2ps
h ψ∗(x+ s)ψ(x− s)

or, using the Dirac notation,

W (x, p) =
1

hπ

∫ ∞
−∞

ds ei
2ps
h 〈x+ s|ψ〉〈ψ|x− s〉.
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It follows directly that integration with respect to p (resp. x) gives the probability densities
for x (resp p):

P (x) := |ψ(x)|2 =

∫ ∞
−∞

dpW (x, p),

P (p) := |ψ(p)|2 =

∫ ∞
−∞

dxW (x, p).

This also implies normalization, i.e.∫ ∞
−∞

dx

∫ ∞
−∞

dpW (x, p) = 1

and, furthermore, we can express the expectation value of any function of the form
f(x, p) = g(x) + h(p) (where g,h are piecewise integrable functions on R) with the help of
the Wigner function as∫ ∞

−∞
dx

∫ ∞
−∞

dp f(x, p)W (x, p).

For a quantum state described by a density operator

ρ =
∑
n

pn|ψn〉〈ψn|,

we can define the Wigner function as the sum over the pure state Wigner functions, i.e.

W (x, p) =
∑
n

Wn(x, p),

where Wn(x, p) denotes the Wigner function for the pure state ψn. With this definition the
relevant properties of the Wigner function (normalization, giving probability distributions
after integration over x,p, etc..) remain unchanged. Note that the Wigner function for a
general state can be written as

W (x, p) =
1

hπ

∫ ∞
−∞

ds ei
2ps
h 〈x+ s|ρ|x− s〉.

Figure 7 shows the Wigner functions of various states of a harmonic oscillator as a
function of x and p (in natural units).

2.1.2 Reconstruction of the Wigner function

As we have seen in the last section, the Wigner function contains all the information of a
quantum state, i.e. knowledge of the Wigner function fully characterizes a quantum state.
The aim of this section is to outline how one can reconstruct the Wigner function of a
quantum state. A necessary requirement is that one can prepare the same state repeat-
edly to measure the statistical properties (i.e. the probability distributions). To start, we
define the rotated quadrature observables (compare to section 2)

Xφ = X cos(φ) + P sin(φ).

IfX and P are the quadrature operators of a light mode, thenXφ can be directly measured
by homodyne detection, as outlined in the next section. In that case φ is the phase
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Figure 7: Wigner functions of (a)the vacuum state, (b)the n = 1 number state and (c)the n = 5
number state.

difference between the local oscillator and the signal beam.
One can show [15], that the probability distribution P (xφ) can be obtained by integrating
the Wigner distribution over the conjugate variable pφ, i.e.

P (xφ) =

∫ ∞
−∞

dpφW
(
xφcos(φ)− pφsin(φ), xφsin(φ) + pφcos(φ)

)
and that there is a one-to-one correspondence between the set probability distributions
{P (xφ) |φ ∈ [0, π)} and the Wigner function. The explicit inversion (inverse Radon trans-
formation) is however of limited use for practical applications. If, as in a typical experi-
mental situation, the probability distribution is measured only for a finite number of values
of φ, one can still reconstruct the Wigner function by using a numerical implementation
of the inverse Radon transformation. One possibility to do this is to group the obtained
measurement results (for each rotated quadrature) in bins and then to apply the filtered
back-projection algorithm as described in [24]. Most numerical computing packages al-
ready contain an implementation of this algorithm. In our measurement scheme described
in section 4.2.2 we used the MATLAB-function ”iradon” to perform the inversion.

2.2 Quantum measurement

Before we start with the theory of quantum measurements, I am going to write a few
words about the difference between fundamental uncertainties in quantum mechanics
and perturbations due to measurements. The Heisenberg uncertainty relation states that
the values of two canonically conjugate observables cannot be known at the same time
with perfect accuracy. This is a statement about fundamental uncertainties - no matter,
how the state was prepared, one cannot know the values corresponding to both observ-
ables with better accuracy. The Heisenberg uncertainty relation stems from the wave
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description of quantum mechanics and the fact that the bandwidth ∆ω of a wave packet
and its duration τ are related by5 ∆ωτ ≥ 1. Take as an example again a point particle
and consider its position-momentum uncertainty relation (in SI-units) ∆x∆p ≥ ~

2
. One

simple consequence of this relation is the fact that we need to measure the distributions
of the position and the momentum (of an ensemble of identically prepared particles) to
reconstruct the particle state, as we have already seen above. The other direct conse-
quence already hints at state preparation. Assume that the particle is in a state with
∆x∆p = ~

2
and assume that we can measure the position with an accuracy δx better than

∆x. Then the quantum state after the measurement will have an increased momentum
spread δp ≥ ~

2δx
, such that the new quantum state fulfills δxδp ≥ ~

2
. The minimum mo-

mentum spread ~
2δx

occurs independent of the exact nature of the position measurement
(although most measurements lead to a perturbation of the momentum orders of magni-
tude higher than the minimum perturbation).
This fact is often expressed as another uncertainty relation, which states that a measure-
ment of an observable X with measurement accuracy ∆xmeas is inevitably accompanied
by a perturbation ∆ppert in the canonically conjugate variable P , such that ∆xmeas∆ppert ≥
~
2
.

2.2.1 Quantum measurement theory

The standard textbook treatment of quantum measurement consists of the wave func-
tion collapse formalism introduced first by von Neumann. This formalism is only strictly
applicable to observables with a discrete spectrum (e.g. spin), which can be measured
with perfect measurement accuracy. Assume we have an observable Q with eigenvectors
{|ψn〉 |n ∈ N} and corresponding eigenvalues {qn |n ∈ N}. For simplicity we also assume
that Q is non-degenerate (i.e. all eigenvalues are distinct). As the eigenstates of Q form
a (orthonormal) basis of the Hilbert space, any state |ψ〉 of our quantum system can be
written as a linear superposition of the eigenstates, i.e.

|ψ〉 =
∑
n

cn|ψn〉,

where cn = 〈ψn|ψ〉 and |ψ〉 is assumed to be normalized, which corresponds to
∑

n |cn|2 =
1. The von Neumann formalism postulates that an ideal measurement of Q will result
in a measurement outcome qn with probability |〈ψn|ψ〉|2 = |cn|2 and that the state of our
system after the measurement will be |ψn〉.

Note that an actual experimental measurement (even of an observable with discrete spec-
trum) cannot necessarily be described by this formalism. For example, the photon number
observable of a cavity mode has a discrete spectrum and can be measured by absorbing
the photons, which leaves the cavity mode in the vacuum state.

The von Neumann formalism can easily be expanded to systems with two or more de-
grees of freedom. The Hilbert space of the complete system is given by the tensor prod-
uct of the Hilbert spaces belonging to each degree of freedom. For now on we will only
consider systems with two degrees of freedom (corresponding to Hilbert spaces V1 and
V2) and we will use the notation

|ψ, ϕ〉 = |ψ〉 ⊗ |ϕ〉
5Here ∆ω

2π is the standard deviation in frequency and 1
2vτ , v being the group velocity of the wave, is

the standard deviation in position. The wave uncertainty relation given here is only strictly valid for special
cases (which includes most “familiar”waveforms), a general treatment is more complicated. See e.g. [7].
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for a product state in the tensor space V = V1 ⊗ V2 (where |ψ〉 ∈ V1 and |ϕ〉 ∈ V2). States
of this form are also called separable. Note that a basis of the tensor space is given
by {|ψi, ϕj〉 | i, j ∈ N}, where the |ψi〉 and |ϕi〉 form a basis V1 and V2, respectively. An
important feature of the tensor space is that there are states |Φ〉 =

∑
i,j |ψi, ϕj〉, which

cannot be expressed as product states. Such a state is said to be entangled.
The scalar products defined in V1 and V2 can be extended to a scalar product in V by

〈ψ, ϕ|ψ′, ϕ′〉 = 〈ψ|ψ′〉〈ϕ|ϕ′〉.

So far the von Neumann formalism applies directly (we have a Hilbert space with a scalar
product corresponding to measurement probabilities). However, we now also have to
consider what happens to a state of the system if a measurement is performed on just
one degree of freedom, while the other is left unperturbed. Let Q and O be two ob-
servables on V1 and V2 with non-degenerate discrete spectrum and eigenstates |ψn〉
and |ϕn〉, respectively. Any state |Φ〉 in the tensor space can then be expressed as
|Φ〉 =

∑
n,m cnm|ψn, ϕm〉. If a measurement is performed on only one of the subsys-

tems, e.g. Q is measured, then the measurement result will be an eigenvalue qn of Q with
probability

∑
m |〈ψn, ϕm|Φ〉|2 =

∑
m |cnm|2 and the state of the system will be

1

N

∑
m

〈ψn, ϕm|Φ〉 |ψn, ϕm〉 =
1

N

∑
m

cnm|ψn, ϕm〉 = |ψn〉 ⊗
1

N

∑
m

cnm|ϕm〉,

where N =
√∑

m |cnm|2 ensures normalization. The resulting state after the measure-
ment will therefore be a product state and the subsystem the measurement was per-
formed on will be in an eigenstate of the corresponding observable. The state of the other
subsystem is

1

N

∑
m

〈ψn, ϕm|Φ〉|ϕm〉 =
1

N

∑
m

cnm|ϕm〉.

In particular, if the initial state was a product state, the state of the other subsystem will
be unaffected.

We will now start with the treatment of measurements on continuous observables, in
which the uncertainty of the measurement outcomes is in general due to both the fun-
damental uncertainty intrinsic to quantum states and a measurement error introduced by
the measurement apparatus (depending on the exact nature on the measurement). In
this and the subsequent chapter we will closely follow the description of measurements
given in [7] in chapters 2 and 3.
Assume that we want to measure an observable Q of some quantum system described
by a wave function |ψin〉. We will characterize the measurement apparatus by the condi-
tional probability distribution w(q̃|q) describing the probability of obtaining a measurement
outcome q̃, if the quantum system is in an eigenstate |q〉. Note that such eigenstates gen-
erally don’t exist in the Hilbert space, but they are formally defined (in the Dirac notation)
by the relations 〈q|ψ〉 = ψ(q) and 〈q′|q〉 = δ(q − q′) (i.e. as functionals and distributions).
The probability of obtaining a measurement outcome q̃ is given by

w(q̃) =

∫ ∞
−∞

dq w(q̃|q) |ψin(q)|2

= Tr
(
W (q̃) |ψin〉〈ψin|

)
with

W (q̃) :=

∫ ∞
−∞

dq w(q̃|q) |q〉〈q|.
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If the quantum system is initially in a mixed state described by a density operator (see
section 2.1) ρin, we have

w(q̃) =

∫ ∞
−∞

dq w(q̃|q) 〈q|ρin|q〉

= Tr
(
W (q̃) ρin

)
.

To be able to make some statements about the state of the system after obtaining a
measurement outcome q̃ we assume for now (we will derive this in the next section for a
certain type of measurement) that the state after the measurement can be written in the
form

|ψout〉 =
1√
w(q̃)

Ω(q̃) |ψin〉. (47)

Normalization of the state then requires that

Ω(q̃)�Ω(q̃) = W (q̃)

and we can therefore write

Ω(q̃) = U(q̃)W
1
2 (q̃),

where we have defined

W
1
2 (q̃) :=

∫ ∞
−∞

dq
√
w(q̃|q) |q〉〈q|

and U(q̃) is a unitary operator (i.e. U �(q̃)U(q̃) = 11). Mathematically at least, a mea-
surement (that can be described by equation 47) can thus be represented as a two step
procedure

|ψin〉 → |ψ′〉 =
1√
w(q̃)

W
1
2 (q̃)|ψin〉 → |ψout〉 = U(q̃)|ψ′〉.

As [W
1
2 (q̃), Q] = 0, the first step doesn’t perturb the measured quantity. The unitary

operator U(q̃) depends on the exact nature of the measurement. If [U(q̃), Q] = 0 as well
(i.e. Q is left unperturbed by the measurement), one speaks of a quantum non-demolition
(QND) measurement.
The same treatment can be applied to mixed states, leading to

ρin → ρ′ =
1

w(q̃)
W

1
2 (q̃) ρinW

1
2 (q̃) → ρout = U(q̃) ρ′ U �(q̃).

It is instructive to note that

〈q|ρ′|q〉 =
1

w(q̃)
w(q̃|q)〈q|ρin|q〉.

As the second step of the measurement is a unitary process, this is already probability
distribution of the state after the measurement. In particular, if the distribution correspond-
ing to the initial state did not contain any features smaller than the width of the distribution
w(q̃|q), the distribution corresponding to the final state is entirely determined by the mea-
surement procedure, i.e. by w(q̃|q).
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2.2.2 Indirect measurements

Most measurements on quantum systems can be classified as either a direct or indirect
measurement. A direct measurement is one in which the quantum system interacts di-
rectly with a classical measurement apparatus (e.g. a photographic plate). In a direct
measurement the quantum object is generally perturbed by a much higher amount than
required by the uncertainty relation, often the quantum state is even irreversibly lost (e.g.
absorption of a photon).
In an indirect measurement one utilizes a second quantum system, called the quantum
probe, to perform a measurement on the first quantum system. The quantum probe is
prepared in some desired initial state and then interacts with the system (the interaction
is governed by the usual laws of quantum mechanics, i.e. the Schroedinger equation),
before an observable of the quantum probe is measured in a direct measurement. As the
interaction will generally result in entanglement between the two systems, this will also
provide us with information on the first quantum system.
Furthermore, as the measurement on the quantum probe is direct and can therefore be
performed with high measurement accuracy (which we will assume from now on), the only
source of error is due to the fundamental uncertainties of the quantum probe. We will now
derive equation 47 for an indirect measurement by assuming that the measurement on
the probe’s observable is exact (which is a valid assumption as long as the measurement
error is small compared to the initial uncertainties in the probe’s state). This assumption
allows us to use the von Neumann formalism for the measurement on the quantum probe
(replacing the sums with integrals as we now consider observables with continuous spec-
tra).
For simplicity we assume for now that both the quantum system and the quantum probe
are in a pure state at the begin of the interaction. We denote the initial states of the probe
and the system by

|ψin〉 =

∫
dpψin(p) |p〉

and

|ϕin〉
∫
dq ϕin(q) |q〉,

respectively. As the initial states are separable, we can write the state of the combined
system as

|Φin〉 = |ψin, ϕin〉 =

∫
dp

∫
dq ψin(p)ϕin(q) |p, q〉.

After the interaction, the state of the combined system will be given by

|Φout〉 = U |Φin〉,

where U is a unitary operator describing the interaction between the probe and the sys-
tem. Note that U is completely determined by its action on the ’basis states’ |p, q〉, i.e. by
the coefficients β appearing in U |p, q〉 =

∫
dp′
∫
dq′ β(p, q, p′, q′) |p′, q′〉.

Note that, since the measurement on the quantum probe is regarded to be exact, the
probability distribution of obtaining a measurement outcome p̃ is

w(p̃) =

∫
dq̃ |〈p̃, q̃|Φout〉|2.
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After the measurement on the quantum probe has produced a measurement outcome p̃,
the final state of the quantum system is

|ϕout〉 =
1

N

∫
dq̃ 〈p̃, q̃|Φout〉 |q̃〉 =

1

N

∫
dq ϕin(q)

∫
dq′ β(q, q′; p̃) |q′〉

with

β(q, q′; p̃) :=

∫
dpψin(p) β(p, q, p̃, q′)

and N =
√
w(p̃). We can therefore define an operator Ω(p̃) by

Ω(p̃) |q〉 =

∫
dq′ β(q, q′; p̃) |q′〉,

such that

|ϕout〉 =
1√
w(p̃)

Ω(p̃) |ϕin〉

and this equation takes the form of equation 47. If the quantum system is initially in a
mixed state described by a density operator ρin, then the state after the measurement is

ρout =
1

w(p̃)
Ω(p̃) ρin Ω�(p̃).
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3 Experimental techniques

In this section we will introduce some of the more technical aspects necessary to under-
stand our experiment. One aim here is to connect the theory introduced so far to the
actual implementation in an experiment and to show that the application of this theory is
valid for our experimental setup. Another aim is to introduce the most important compo-
nents used in the setup and explain their working principle.

3.1 Lasers and electromagnetic beams

Up until now in our treatment we have mostly considered both electromagnetic radiation
and harmonic oscillators to be one-dimensional. For obvious reasons actual radiation
and actual resonators aren’t one-dimensional. This section is reserved for a motivation of
this treatment for electromagnetic radiation (and provide references for further reading),
a justification of this treatment for the harmonic oscillator and the interaction of radiation
with such an oscillator will be given in section 3.6.
Even though many aspects of laser theory are closely related to concepts presented in
this thesis (for example, the monochromatic properties of laser light stem from the fact that
a cavity can only support discrete wavelengths and the frequency noise of a laser stems
directly from noise in the length of the laser cavity), a deep treatment of lasers is outside
the scope of this thesis. I therefore refer the interested reader to the comprehensive
treatment given in [16] and below I will only motivate the results most important for the
purpose of this thesis.
To justify our theoretical treatment, a laser used in experiments described by our treatment
has to fulfill three conditions. First, the laser should be monochromatic and second, the
frequency shouldn’t change over some given duration (determined by the exact nature
of the experiment). Highly stabilized laser systems have a long term absolute frequency
stability better than 1 part in 1010 with a bandwidth of the order of a few hertz [16], so
these conditions are fulfilled. These properties imply excellent temporal coherence of
electromagnetic radiation produced by such a laser.
The third property the laser should have is transverse spatial coherence. This allows as
to write the (complex) electric field produced by a laser as

~E(x, y, z, t) = v(y, z) ~Ee−i(ωt−kx),

where x denotes the coordinate along the propagation direction and y, z denote coordi-
nates in the plane transverse to the propagation direction. If all optical component in the
experiment are linear and isotropic, and furthermore if the transverse spatial distribution
v(y, z) is small compared to the dimensions of the optical components (and in particular
any photodetectors), then v(y, z) can be integrated over and absorbed in the amplitude,
so we get the familiar expression

~E(x, t) = ~Ee−i(ωt−kx)

for the complex electric field at the output port of the laser. For a more detailed treatment
of the interaction of electromagnetic radiation with a moving mirror see section 3.6.
Most single mode lasers fulfill these criteria, to cite from [16]:
A single-transverse-mode laser oscillator can produce (usually in practice, and always in
principle) an output beam that is more or less uniform in amplitude and constant in phase
(“uniphase ”) across its full output aperture of width or diameter d.
Any Gaussian beam will spread during propagation, but this doesn’t affect the statements
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above. Also, the Rayleigh range (distance after which the cross sectional area of the
beam is twice the original area) of a single mode laser is sometimes much larger than the
propagation distance through the experiment. One can also choose to use fiber optics
(as we have done in our experiment), which of course prohibits any spread of the beam
during propagation. So called single mode fibers don’t affect the transverse distribution
and temporal coherence properties of the beam, also they have very little loss. For more
information on fiber optics see e.g. [17].
A quantum mechanical treatment of such beams of light is done best by choosing an
appropriate quantization volume. In most experiments the path between laser and de-
tector cannot be considered an actual cavity and therefore we characterize the light by a
continuous distribution of wavevectors parallel to the direction of beam propagation. This
corresponds to choosing a quantization volume of infinite length in propagation direction
but finite cross section perpendicular to the propagation direction. Performing the quanti-
zation and assuming that only a narrow bandwidth of frequencies (wavevectors) is excited
around a central frequency ω (as we just have seen this is true for many laser systems),
one finds annihilation/destruction operators such that

a�(t)a(t) =
P (t)

~ω
,

where P (t) denotes the operator corresponding to the optical power. The operator a�a is
now called the photon flux operator. For a more detailed treatment see [8]. From now on
it is understood that the annihiliation/destruction operators are defined in this way. We will
from now on also always use the corresponding normalization for the classical fields, i.e.
P (t) = ~ω|E(t)|2 (with P (t) being the optical power).
Note that this treatment is valid also for electromagnetic pulses as long as the narrow
bandwidth approximation is fulfilled (i.e. the pulses can’t be too short).

3.2 Interferometry

Optical interferometry refers to a method which uses the correlations of (partially) coher-
ent light beams between two space-time points to measure the phase difference between
these two points. It can, in turn, also be used to measure the degree of coherence be-
tween two space-time points. A more specific method, which is used quite often, is to
separate an incident beam, then expose one of the sub-beams to a phase shift relative to
the other sub-beam (e.g. a different path length) and then recombine the two sub-beams.
The electric fields of the two sub beams are superposed and, if the light is correlated,
this results in either amplification (constructive interference) or attenuation (destructive
interference) of the electric field.

3.3 The beam splitter

The beam splitter is one of the key components in most optical interferometric experi-
ments. The working principle of a beam splitter is that two incident beams are brought
to spatially overlap (and therefore interfere), after which the beam is split in two separate
beams again. Beam splitters can be manufactured in many different ways, a particularly
easy one is to simply glue two glass prisms together. To determine the behaviour of
a specific beam splitter one would in principle have to consider the behaviour of electro-
magnetic waves when traveling through the respective materials. However, assuming that
the materials are linear and that the beam splitter is approximately loss-less (in modern
beam splitters a relative loss of 10−4 to 10−2 is common), one can simply treat the beam
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splitter as a black box with two incoming beams E1, E2 and two outgoing beams E3, E4

(see figure 8), which are related by a linear transformation, i.e.(
E3

E4

)
= BS

(
E1

E2

)
=

(
c13 c23

c14 c24

)(
E1

E2

)
,

where the matrix components are in general complex. We will from now on assume that
the Ei’s are the amplitudes of a plane wave at the entry port/output port of the beam
splitter. We can then determine the behaviour of general electromagnetic waves by con-
sidering them as a superposition of plane waves.

Figure 8: Symbolic image of a beam splitter (left) and picture of a aluminum coated glass plate
used as a beam splitter (right).

The condition that the beam splitter is loss-less translates to

|E1|2 + |E2|2 = |E3|2 + |E4|2

and therefore

|c13|2 + |c14|2 = |c23|2 + |c24|2 = 1

and

c13c
∗
23 = c14c

∗
24 = 0.

Writing cnm = |cnm|eiφnm and using the expressions above, we arrive at

φ13 + φ24 − φ23 − φ14 = π

and

|c13| = |c24|, |c23| = |c14|.

Using t := |c13| and r := |c14|, the transformation matrix can be written as

BS =

(
t −r
r t

)
.

For obvious reasons t is denoted transmittance and r is denoted reflectivity.
If we need to describe the electromagnetic fields by quantum theory, most of the above
is still valid, we only have to replace the plane wave electric field amplitudes Ei with the
single mode annihilation operators ai. The main difference to the classical beam splitter
model shows when only one of the input ports is illuminated. In the classical theory one
would simply set the corresponding amplitude to zero, while in the quantum theory the
input is in the vacuum state and has to be considered in the calculations.
The beam splitter model is not only useful for describing physical beam splitters in an
experiment, but also for describing losses of other optical components. This will be used
in the next section to provide a realistic model for photodetectors.
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3.4 Photodetectors

A photodetector is an intensity detector, i.e. it measures not the electric (or magnetic)
field directly, but only the intensity of the light (field measurements using photodetectors
can nevertheless be done using interferometry, see the next section). For low intensities
a photodetector therefore acts as a photon counter and the practical implementation for
photodetectors is quite different depending on the field strength. For example, in semi-
conductor photodiodes the photoeffect is used to create electron-hole pairs which, under
the application of an electric field, constitute a current which can then be measured. In the
single photon regime this current would be far too weak to reliably measure, so one has
to use other methods. A particularly simple method - used in the avalanche photodiode
- is to just increase the applied voltage - once the kinetic energy of the single electron
freed due to the absorption of a photon is high enough it will free other charge carriers in
collisions, creating an ”avalanche” of electrons which can be measured. Of course such
a system saturates easily (i.e. enters a non-linear regime) and can’t be used for high
intensities.
Here we will focus on the properties of photodetectors made for measuring high (rela-

Figure 9: Symbolic image of an ideal photodetector (left) and a realistic photodector (right).

tively speaking, i.e. not in the single photon regime) field intensities, as this is the relevant
case for our experiment. The common characteristic of all such photodetectors is that
they produce an output current (photocurrent) proportional to the optical power P (inten-
sity integrated over detector area) of the incident light, i.e.

ipc = ηdet|P |,

where ηdet is called the detection efficiency or responsivity of the detector.
An important parameter for such a photodetector is the quantum efficiency ηQM , which is
the probability that an incident photon is converted to an electric signal and therefore con-
tributes to the photocurrent (possible reasons that an incident photon might not contribute
to the photocurrent are that it is not absorbed by the material - i.e. reflected, transmitted
or scattered off - or recombination of the electron-hole pair). Assuming that the detector is
designed such that every incident photon is converted to exactly one electron contributing
to the photocurrent with a quantum efficiency ηQM (and doesn’t contribute anything oth-
erwise), we can write the proportionality factor between photocurrent and optical power
as

ηdet = ηQM
e

~ω
,

were e denotes the charge of one electron. Note that these properties are strictly valid
only in the linear dynamic range of the photodetector, outside of this range other effects
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(such as saturation) might play an important role and have to be considered.
Typically an electron (or electron-hole pair) generated by the absorption of a photon will
contribute to the photocurrent for some average time τ . If changes in the optical power
occur on a timescale much larger than τ , we can simply absorb this as an effective gain
G in the power-photocurrent relation:

ipc = Gηdet |P |.

If the gain is only due to τ , we may write

G =
τ

τo
,

where τo is the transit time of the electron around the electrical circuit (connected to the
photodetector).
If the power however changes on a timescale comparable to τ or even τo, the simple
linear relation between photocurrent and optical power isn’t valid. In this case one has to
integrate the optical power over a timescale larger than τ to get the right values for the
photocurrent, i.e.

i(t) = ηdet

∫ t

−∞
dt′p(t, t′)P (t′).

Here p(t, t′) denotes the probability that an electron generated at t′ still contributes to the
photocurrent at t. For simplification we use

i(t) = ηdet

∫ t

t−T
dt′p(t, t′)P (t′),

where T is large compared to τ but still small compared to timescales we are interested
in (it depends on the experimental situation whether such a choice is possible).
The circuit connected to the photodetector is usually designed such that p(t, t′) = 1, i.e.
the current is proportional to the average of the optical power over a time T .
In quantum optical experiments one is often interested in the statistics of the photons
rather than their average number (i.e. the intensity or power). To see which of these
statistics are still available in the photocurrent after detection we have to change to a
quantum mechanical picture. In section 3.1 we have seen that we can define annihila-
tion/destruction operators for a beam such that a�a = P (t)

~ω . The observable (photocount
operator) measured by a photodetector with perfect quantum efficiency can therefore be
written as

C(t) :=

∫ t

t−T
dt′a�(t′)a(t′).

In the case of a finite quantum efficiency it is not sufficient to just add a prefactor to
the preceding equation. As the photons, which do not contribute to the photocurrent,
are assumed to be randomly selected, one can however model such a photodetector by
adding a beam splitter in front of a perfect photodetector (compare to [8]). The resulting
model is graphically shown in figure 9 and the photocount operator can be expressed as

Creal(t) :=

∫ t

t−T
dt′d�(t′)d(t′),

where d :=
√
ηQMa −

√
1− ηQMv and v is the annihilation operator of the vacuum state.

The expectation value of course fulfills

〈Creal(t)〉 = ηQM〈C(t)〉,
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the variance can be expressed as(
∆Creal(t)

)2
= η2

QM(∆C(t))2 + ηQM(1− ηQM)〈C(t)〉.

The first term on the right stems from the inherent optical intensity noise and is often called
shot noise. The second term is due to the random removal of photons by the beam splitter
(non-perfect detector). Note that for a coherent state with time-independent amplitude α
(the argument also holds if α is time-dependent, but doesn’t change appreciably on a
timescale set by T ) we have

〈Creal〉 = ηQMT |α|2

and

(∆Creal)
2 = 〈Creal〉.

In addition to the imprinted optical noise there are other current noise sources related
to the detector and the detection circuit. Two main noise sources are the dark noise of
the detector (i.e. false detection events) and the Johnson noise of the electric circuit.
These noise sources can be easily measured (simply by measuring the current without
any incident light). Often the photocurrent (or the corresponding voltage) is amplified
before the measurement, in which case one has to consider the noise added by the
amplifier (which is in general current-dependent).
In our experimental measurement scheme we are shot noise limited (as shown in section
4.2.5).

3.5 Homodyne detection

A normal photodetector (see the preceding section) measures the intensity (or photon
number) of light. However, using interferometric methods, it is possible to directly mea-
sure the quadratures of the field. The most common methods of doing so are called het-
erodyne and homodyne detection, their working principle is shown in figure 10. An input
beam is combined with a reference beam (local oscillator) at a (usually balanced) beam
splitter. The intensities behind the two output ports of the beam splitter are then measured
and subtracted from each other. For most applications the intensity of the local oscillator
is much stronger than the intensity of the input beam and we are going to assume that in
the following calculations. The difference between heterodyne and homodyne detection

Figure 10: Symbolic setup of heterodyne and homodyne detection.
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is that in homodyne detection the reference beam (local oscillator) stems from the same
source as the signal beam and therefore has the same wavelength, whereas in hetero-
dyne detection the wavelength of the reference beam might differ from the one of the
signal beam. Let us now derive the properties of the measured current, assuming that
both signal beam and reference beam can be modeled as plane waves (with noise) with
a fixed linear polarization, i.e. we write

ES(t) =
(
ES + δES(t)

)
e−i(ωt−

~k~x) +
(
E∗S + δE∗S(t)

)
ei(ωt−

~k~x)

and

ELO(t) =
(
ELO + δELO(t)

)
e−i
(
ωt−~k~x+φ(t)

)
+
(
E∗LO + δE∗LO(t)

)
ei
(
ωt−~k~x+φ(t)

)
.

Here we have written the electric field amplitudes in terms of their mean amplitude (ES
resp. ELO) and an additional noise amplitude

(
δES(t) resp. δELO(t)

)
. This classical

noise can have different origins usually related to the materials in the propagation path
of the beam (e.g. thermal noise of a mirror the beam is reflected off). We will from
now on assume that Arg

(
δE(t)

)
<< 1 ∀t is valid for both the signal beam and the

local oscillator (if the noise stems from the displacement noise of a mirror, this condition
translates to xM(t) << λ ∀t, where xM denotes the displacement of the mirror and
λ is the electromagnetic wavelength). For simplicity we absorb any unwanted phase
difference the beams acquire relative to each other in the parameter φ(t) and we choose
the overall phase such that the mean amplitudes are real. Therefore we can write the
power at the detectors as (assuming a balanced beam splitter)

PD1(t)

~ω
=

1

2

(
|ES(t)|2 + |ELO(t)|2

)
− 1

4

(
E∗S(t)ELO(t) + ES(t)E∗LO(t)

)
and

PD2(t)

~ω
=

1

2

(
|ES(t)|2 + |ELO(t)|2

)
+

1

4

(
E∗S(t)ELO(t) + ES(t)E∗LO(t)

)
.

According to the last section we can write the photocurrent (for equal detection efficiencies
of the photodetectors) as

i(t) ∝ PD2(t)− PD1(t)

= ESELOcos
(
φ(t)

)
+ ELO

[
XS(t)cos

(
φ(t)

)
+ PS(t)sin

(
φ(t)

)]
+ ES

[
XLO(t)cos

(
φ(t)

)
− PLO(t)sin

(
φ(t)

)]
,

where we have neglected terms of second order in the noise amplitudes and the quadra-
tures are defined as

X(t) =
1

2

(
δE∗(t) + δE(t)

)
and

P (t) = i
1

2

(
δE∗(t)− δE(t)

)
.

Often this scheme is used to measure the phase quadrature of the input beam, in which
case one sets φ(t) = π

2
(e.g. by locking the phase below the signal frequency) and

ES << ELO. Then the current becomes

i(t) ∝ ELOPS(t).
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In the quantum mechanical calculations one has to replace the field amplitudes with the
annihilation operator. We choose again the familiar form a(t) = α(t) + δa(t) for both signal
and local oscillator with α(t) denoting the expectation value of a(t) (the overall phase is
chosen such that α is real) and δa(t) being the ”noise operator”. The result is formally the
same as in the classical case and we get for the photocount difference operator (making
the same approximations as above)

C−(t) := a�D2(t)aD2(t)− a�D1(t)aD1(t)

= αLO(t)PS(t),

where we have assumed perfect quantum efficiency of the detectors and already set
φ = π

2
. Note that the quadratures are again defined by

X(t) =
1

2

(
δa�(t) + δa(t)

)
and

P (t) = i
1

2

(
δa�(t)− δa(t)

)
.

The main difference to the classical model in this case is that the beams now have inher-
ent quantum mechanical noise.
The calculations are a little more complicated if one accounts for imperfect detectors (i.e.
in the model one adds a beam splitter in front of each detector), the expression for the
current operator becomes

C−real(t) := d�D2(t)dD2(t)− d�D1(t)dD1(t),

where d is defined as in the last section. If both photodetectors have finite, but equal
quantum efficiencies η, this leads to the expectation value

〈C−real(t)〉 = η〈C−(t)〉

and the variance(
∆C−real(t)

)2
= η2

(
∆C−(t)

)2
+ η(η − 1)

〈
a�S(t)aS(t) + a�LO(t)aLO(t)

〉
.

If it is necessary to account for the finite response time of the detectors, these relations
become

C− =

∫ t

t−T
dt′αLO(t′)PS(t′),

C−real :=

∫ t

t−T
dt′
[
d�D2(t′)dD2(t′)− d�D1(t′)dD1(t′)

]
and (

∆C−real(t)
)2

= η2
(
∆C−(t)

)2
+ η(1− η)

∫ t

t−T
dt′
〈
a�S(t)aS(t) + a�LO(t)aLO(t)

〉
.

In our setup we use homodyne detection to get direct access to the optical phase quadra-
ture. As we will see, coupling of the optical phase to the mechanical position allows us to
measure the mechanical quadratures as well.
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3.6 Mechanical oscillators and the effective mass

So far in our calculation we have always treated the mechanical oscillator as one-dimensional
and with a single resonance frequency. However, the oscillators used in experiments usu-
ally behave quite different and usually have many different resonance frequencies (corre-
sponding to different spatial modes) and they obviously aren’t one-dimensional. A typical
oscillator and one of its mode shapes is shown in figure 11.

Figure 11: (a)Scanning electron micrograph of the resonator. (b)Predicted 11MHz mode shape
using FEM (finite element method). (c)Measured 11MHz mode shape (using optical interferome-
try).

We therefore need to justify the use of the simple model in our calculations (and, on the
way, answer a few remaining questions like ”What is the mass that shows up in the cal-
culations?”). The pioneering work in this area has been done by Pinard et. al. ([19],[20]),
what I am going to present now is mainly a summary of these results.
We have already remarked multiple times that a cavity, depending on its geometry, will
only support certain spatial (transverse) modes. The requirement for some transverse
field distribution to be a stable cavity mode is that the distribution will be reproduced after
one roundtrip. For a derivation of ”usual” cavity modes see e.g. [16]. We will from now on

assume that the fundamental mode of the cavity supports a spatial profile v0(r) ∝ e
−
(
r
w0

)2

(where r denotes the transverse distance from the center, w0 depends on the cavity ge-
ometry and v2

0 is normalized) and that the incident light is matched to the fundamental
mode of the cavity.
We furthermore assume that the displacement6 of the moving mirror can be written as a

6In this section we denote the displacement by ~u, as x is used for a spatial coordinate. Since we also
consider transverse displacements, ~u is a vector quantity.
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sum over independent modes, i.e.7

~u(t, ~x) =
∑
n

βn(t)~un(~x).

Both assumptions are fulfilled for typical optical cavities and mechanical resonators (see
e.g. [16], [20]). It can then be shown [19] that each mode amplitude βn behaves like a
one-dimensional harmonic oscillator characterized by the susceptibility

χn(ω) =
1

mn(Ω2
n − ω2 − iωγ)

with mass

mn = ρ

∫
V

dV |~un(~x)|2, (48)

where the integration runs over the volume of the mirror and ρ denotes the density of the
mirror (which is assumed to be uniform). We have also assumed that each mode experi-
ences the same damping. Including the thermal forces FT,n (related to the susceptibilities
by the fluctuation-dissipation theorem) and the radiation pressure force

~Frad(t, r) = 2~kv2
0(r)I(t)~ex,

where the intensity is defined as the rate of photons incident on the mirror, we have

βn(ω) = χn(ω)
(

2~kI(ω)〈un,x|v2
0〉+ FT,n(ω)

)
.

Here we have used

〈un,x|v2
0〉 :=

∫
dy

∫
dz un,x(0, y, z) v2

0(r).

Denoting the mean displacement (averaged over the optical waist) by

ū(t) =

∫
dy

∫
dz ux(0, y, z, t) v

2
0(r),

we can write

ū(ω) = χeff (ω)
(

2~kI(ω) + FT (ω)
)

with

χeff (ω) =
∑
n

χn(ω)〈un,x|v2
0〉2

and

FT (ω) =
1

χeff (ω)

∑
n

χn(ω)〈un,x|v2
0〉FT,n(ω).

Since the forces FT,n are related to the susceptibilities χn via the fluctuation-dissipation
theorem, it follows that FT is related to χeff via the fluctuation-dissipation theorem as well.

7In Pinard’s papers the mechanical amplitudes have been denoted by an(t). I changed the notation here
to βn(t) to avoid any confusion with the optical annihilation operator.
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The mechanical equation of motion for the mirror takes therefore the same form as in the
one-dimensional treatment.
Furthermore, assuming small displacements and a high-finesse cavity, the effect (per
round trip) of the mirror motion on the field propagating in the cavity is a global phase shift
[19]

φ = 2
ωL
c
ū(t)

and the familiar one-dimensional relations follow. If we are primarily interest in one mode,
we can define

ūn(t) = βn(t)〈un,x|v2
0〉

and get the equation

ūn(ω) = χn,eff (ω)
(

2~kI(ω) +
FT,n(ω)

〈un,x|v2
0〉

)
with

χn,eff (ω) = 〈un,x|v2
0〉2χn(ω) =

1

mn,eff (Ω2
n − ω2 − iωγ)

,

where

mn,eff =
mn

〈un,x|v2
0〉2

, (49)

is called the effective mass of the mode n. Note that

χeff (ω) =
∑
n

χn,eff (ω)

We have seen that we can describe a single mechanical mode (illuminated by a laser
beam) with the theory introduced for a one-dimensional mechanical oscillator using an
effective mass determined by the geometry and the beam position. In section 4.2.3 we
determine the effective mass for the oscillator used in our setup with the help of the above
equations.
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4 Pulsed quantum optomechanics

While most of the theory of quantum optomechanics reviewed in section 2 did not assume
a particular form for the input field, most of the attention so far has gone to the case of a
continuous gaussian input field. The study of this interaction has produced a wide range
of results (see e.g. reference [13] for a review). The focus on this work however lies
on the study of the interaction between a short electromagnetic pulse and a mechanical
oscillator (the main idea here is to measure the mechanical position with a precision better
than the ground state/thermal state width and thereby achieving squeezing/squashing
of the mechanical state). As we will see, this interaction leads to novel results in the
field of quantum optomechanics. In addition, since the electromagnetic pulse is very
short compared to the mechanical period, the harmonic evolution of the mirror can be
neglected, leading to a simple theoretical framework. The first subsection introduces the
theory of the pulsed interaction based on the general optomechanical theory in section
2. In the second subsection I will present the specific setup used for the proof-of-concept
experiment and the third subsection contains the obtained results.

4.1 Theory

The notation is similar to the one already used in the beginning of this thesis. We will work
in the rotating frame and use aLO for the annihilation operator of the reference beam, ain
and aout will denote the annihilation operators of the signal beam prior resp. after the
interaction with the mirror (cavity). For all optical annihilation operators we consider the
division

a(t) = α(t) + δa(t),

where α denotes the expectation value of a and corresponds to the pulse shape. We
will furthermore assume that the optical state is a coherent continuous-mode state (i.e.
α(t) corresponds to the wavepacket amplitude and δa(t) acts on the vacuum state). As
already mentioned in section 3.5 we can choose a phase convention s.t. all the α’s are real
(assuming small mechanical displacements). The optical quadratures are then defined as

X(t) =
1

2

(
δa�(t) + δa(t)

)
and

P (t) = i
1

2

(
δa�(t)− δa(t)

)
.

We will also use the observables

X =

∫
dtX(t)

and

P =

∫
dt P (t).

The statistics of these observables follow directly from the statistics of X(t) and P (t), they
will have a Gaussian distribution with 〈X〉 = 〈P 〉 = 0 and ∆X = ∆P = 1

4
.
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The mechanical annihilation operator is denoted by b and the mechanical quadratures are
defined as (note the factor 1

2
difference to section 1.1.2)

XM(t) = b�(t) + b(t)

and

PM(t) = i
(
b�(t)− b(t)

)
.

In addition, we define the rotated mechanical quadrature operators as

Xφ
M(t) = XM(t) cos(φ) + PM(t) sinφ.

As the interaction between the pulse and the resonator happens on a time scale much
shorter than a mechanical period, one can assume that the position of the resonator is
approximately constant during the interaction [5] and we simply write XM to denote the
position quadrature operator at the interaction time.

4.1.1 General

We consider the theory of the interaction of a short pulse with a reflecting oscillator, which
is not part of a cavity. This is also the case which is relevant for our proof-of-concept
experiment, in which we didn’t use a cavity for simplicity. The theory including a cavity is
treated in the Appendix A.
The theory for this case considerably simplifies compared to the theory of cavity optome-
chanics. Assuming small mechanical displacements, the annihilation operator (in the
rotating frame) corresponding to the reflected beam is given by

aout(t) = (1 + i2kx0XM)ain(t).

or

αout(t) = αin(t)

and

δaout(t) = δain(t) + i2kx0XM

[
αin(t) + δain(t)

]
.

Here x0 is defined as in section 1.3.2. The phase detected in the homodyne measurement
is then given by

Pout(t) = 2kx0XM

[
αin(t) +Xin(t)

]
+ Pin(t)

and the measurement operator is again (see section 3.5)

PL =

∫ ∞
−∞

dt αLO(t)Pout(t).

Assuming a rectangular pulse shape (i.e. small rise/fall time compared to the pulse dura-
tion, s.t. αLO(t) = αLO during the pulse duration and αLO(t) = 0 otherwise), we have

PL = αLO

∫
dt Pout(t),
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where the integration now runs over the pulse duration. Note that this condition on the
local oscillator pulse shape doesn’t limit us in any way in our experiment, as we can
simply restrict our measurement to a time frame where αLO(t) = αLO is fulfilled (i.e. not
measuring during the pulse rise/fall times). As a matter of fact, the local oscillator beam
could in principle also be a continuous wave beam without impacting our scheme in any
way.
We now introduce the observables

Pin =

∫
dt Pin(t)

and

Pout =

∫
dt Pout(t),

where the integration runs again over the pulse duration. I.e., in this sense, Pin denotes
the phase of the pulse prior to the interaction and Pout denotes the phase after the inter-
action. Introducing the coupling parameter

χ = 2kx0

∫
dt αin(t), (50)

we obtain for the measured observable

PL = αLO Pout = αLO (χXM + Pin). (51)

Here we have neglected the term proportional to XM

∫
dtXin(t). This leads to an expec-

tation value

〈PL〉 = αLO χ 〈XM〉

and (since XM and Pin are uncorrelated) to a variance

(∆PL)2 = α2
LO

(
χ2(∆XM)2 + (∆Pin)2

)
.

For non-perfect photodetectors (assuming both photodetectors have finite quantum effi-
ciency η) the variance becomes

(∆PL)2 = η2α2
LO

(
χ2(∆XM)2 + (∆Pin)2

)
+ η(1− η)(NS +NLO)

≈ ηα2
LO

(
ηχ2(∆XM)2 + η(∆Pin)2 + (1− η)T

)
,

where we have introduced the notation NLO =
∫
dt α2

LO(t) = Tα2
LO (where T denotes the

pulse duration or measurement time) and NS =
∫
dt α2

in(t) for the mean photon numbers
of the local oscillator and signal pulse. Note that in the last line we have assumed that
NS << NLO. As the pulse duration is very short, the last term on the right is usually
negligible and we obtain the same results as in the case of perfect photodetectors (with
the local oscillator amplitude scaled by η).

4.1.2 State preparation

Equation 51 tells us that the pulsed measurement can be seen as a position measure-
ment of the mechanical oscillator with the measurement uncertainty determined by the
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optical phase distribution (and, in particular, a rms measurement error of 1
χ
∆Pin). There-

fore, following the discussion of quantum measurements provided in section 2.2, given a
measurement outcome pL, the resulting mechanical state immediately after the measure-
ment (assuming the mechanical probability distribution of the initial state doesn’t change
appreciably on a scale ∆Pin

χ
) has a Gaussian distribution with expectation value

〈XM〉 ≈
pL

αLO χ

and variance

(∆XM)2 ≈ 1

χ2
(∆Pin)2.

The mechanical evolution during the measurement (neglecting harmonic evolution, i.e.
just momentum transfer) is formally determined by

ḃ = if0a
�
inain

with f0 = 2kx0 and describes the momentum transfer to the mechanical oscillator. The
observable corresponding to the transferred momentum is thus

M = 2f0

∫
dt a�inain ≈ 2f0

(∫
dt αin(t)2 + 2

∫
dt αin(t)Xin(t)

)
so the mean momentum transferred per pulse is

M̄ = 4kx0NS,

and the uncertainty is

∆M ≈ 4χ∆Xin. (52)

Note that the uncertainty relation is fulfilled, i.e.

∆XM∆M ≈ 4∆Xin∆Pin = 1.

The factor is due to the different choice of units for the optical and mechanical quadra-
tures (i.e. for the optical quadratures the uncertainty relation reads ∆X∆P = 1

4
and for

the mechanical quadratures it reads ∆XM∆PM = 1).

We will now give a more detailed treatment and apply the theory of section 2.2 to de-
termine the mechanical state after the evolution. The propagator U determining the out-
put state via Pout = U Pin U

� = Pin + χXM (and Xout = U Xin U
� = Xin) as well as

PM,out = U PM,in U
� = PM,in +M (and XM,out = U XM,in U

� = XM,in) is given by

U = ei
M̄
2
XM ei2χXMXin ,

as can be easily seen by noting that [Pin, X
n
in] = −in

2
Xn−1
in and [PM,in, X

n
M,in] = −i2nXn−1

M,in.
We will from now on denote the (formal) eigenstates of the optical observable P (Pin, Pout)
with |p〉.
Let us now switch to the Schroedinger picture and assume for a moment the mechanical
state is a pure state |ϕin〉. Then, acting on the wave function (note that in the optical
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p-representation Xin = i1
2
∂
∂p

due to our choice of units and the optical wave function is
simply the vacuum state), we obtain

〈p, q|U |ψin, ϕin〉 = (
π

2
)−

1
4 ei

1
2
M̄q e−(p−χq)2

ϕin(q),

i.e. in the notation of section 2.2.2 we have

β(q, q′; p̃) = (
π

2
)−

1
4 δ(q − q′) ei

1
2
M̄q e−(p̃−χq)2

and

Ω(p̃) = (
π

2
)−

1
4 ei

1
2
M̄XM e−(p̃−χXM )2

.

This operator determines the output state via

|ϕout〉 =
1√
w(p̃)

Ω(p̃)|ϕin〉,

where

w(p̃) = (
π

2
)−

1
2

∫
dq |ϕin(q)|2 e−2(p̃−χq)2

. (53)

is the probability distribution of measurement outcomes. Note that Ω(p̃) has a straightfor-
ward interpretation, the first factor produces the momentum transfer via

ei
1
2
M̄XM |pM〉 = |pM − M̄〉

(note that XM = i2 ∂
∂pM

in the mechanical momentum representation) and the second
factor narrows the mechanical position probability distribution to a width scaling with 1

χ2 .
If the initial mechanical state is in a mixed state described by a density matrix ρin the
output state is determined by

ρout =
1

w(p̃)
Ω(p̃) ρin Ω�(p̃)

with

w(p̃) = (
π

2
)−

1
2

∫
dq 〈q|ρin|q〉 e−2(p̃−χq)2

.

Note that here p̃ refers to the phase (i.e. a measurement of the observable Pout), which
is measured via homodyne detection as described above (i.e. p̃ = pL

αLO
). In terms of the

measurement outcome pL the resulting mechanical state is thus

ρout(pL) =
1

w( pL
αLO

)
Ω(

pL
αLO

) ρin Ω�(
pL
αLO

)

If the initial mechanical state is a thermal state with large mean occupation n̄, we have
already seen that the state after the first pulse with measurement outcome pL,1 has a
Gaussian position distribution with mean proportional to pL,1

χαLO
and variance 1

4χ2 . Note
that the variance in momentum space after the pulse is given by (∆PM)2 + (∆M)2, where
(∆PM)2 = 2n̄+1 is the initial momentum variance of the thermal state as given in equation
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45 and (∆M)2 = 4χ2 is the uncertainty in the transferred momentum as given in equation
52. We therefore obtain for the rotated quadratures

〈XΘ
M〉 =

pL,1
αLO χ

cos(Θ)− M̄ sin(Θ) (54)

and

(∆XΘ
M)2 =

1

4χ2
cos2(Θ) + (1 + 2n̄+ 4χ2) sin2(Θ). (55)

A full derivation of these results (for an arbitrary initial occupation of the thermal state) by
calculating Ω( pL

αLO
) ρth Ω�( pL

αLO
) (where ρth denotes the density matrix of the thermal state

as given in 43) can be found in [5].
The resulting state after the pulsed interaction has therefore a reduced uncertainty in

Figure 12: Schematic phase-space representation of the measurement scheme utilizing two
pulses. The gray area corresponds to the Wigner function of the mechanical state.

the position quadrature but the uncertainty in the momentum quadrature has not been
changed (assuming χ << n̄). We can achieve a reduced uncertainty in both quadratures
by utilizing a second pulse after the oscillator has evolved harmonically for a quarter
period and the initial momentum uncertainty has turned in position uncertainty (see figure
). Denoting the outcome of the second pulse as pL,2, we find for the resulting state

〈XΘ
M〉 =

pL,2
αLO χ

cos(Θ)− M̄ sin(Θ) (56)

and

(∆XΘ
M)2 ≈ 1

4χ2
cos2(Θ) + (

1

4χ2
+ 4χ2) sin2(Θ). (57)

To quantify the purity of the resulting state we define an effective mechanical occupation
via

1 + 2n̄eff = ∆X0
M∆X

π
2
M .

We can furthermore define an effective temperature in analogy to equation 46, i.e. by

Teff =
~ωM
kB

(n̄eff +
1

2
). (58)

We will use this effective temperature in section 4.3 to compare the states after the pulsed
interaction to the initial thermal states.
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4.1.3 State reconstruction

To quantify the mechanical state after it has been prepared with a pulse as described
above, we have to measure the rotated quadrature probability distributions as described
in section 2.1.
For this we can simply utilize a second pulse after the mechanical oscillator has evolved by
an angle Θ = ωM t. If the first pulse with measurement outcome pL,1 has prepared the os-
cillator in a state ρ(pL,1), the state after this harmonic evolution is given by e−iΘ b�b ρ(pL,1) e−iΘ b�b

and the probability distribution of the measurement outcomes for the second pulse is given
by

w(pL,2) = (
π

2
)−

1
2

∫
dq 〈q|e−iΘ b�b ρ(pL,1) e−iΘ b�b|q〉 e−2(

pL,2
αLO

−χq)2

.

Assuming again that the mechanical probability distribution doesn’t contain any sharp fea-
tures (compared to the optical ground state width, i.e. on a scale 1

2χ
) we can approximate

the mechanical position by the measurement outcomes pL,2
αLO χ

and therefore we have ac-
cess to all mechanical quadratures.
However, the mechanical state after the first pulse has a mean value pL,1

αLO χ
, which has to

be considered in the analysis. One possibility is to post-select the data (i.e. to only use
measurement outcomes pL,2 for which the outcomes pL,1 were in a narrow window). An-
other possibility, which was used in our experiment, is to simply subtract the mean (taking
the harmonic evolution into account), i.e. to transform the second measurement outcome
as

pL,2 → pL,2 − pL,1cos(Θ).

The same measurement protocol can obviously also be applied if the initial mechanical
state was prepared by two pulses as described in the last section. In this case the mea-
surement outcome has to be transformed as

pL,3 → pL,3 − pL,2cos(Θ) + pL,1sin(Θ),

where pL,1 and pL,2 are the measurement outcome of the first and second pulse, respec-
tively.

4.2 Proof-of-concept Experiment

We prepared an experimental setup as outlined below to verify the feasibility of our mea-
surement scheme. The aim here was not to obtain a high measurement strength χ, but
rather to construct a simply working setup which can then provide a solid basis for future
experiments.

4.2.1 Setup

The setup of our experiment is schematically depicted in figure 13a. A single mode laser
with an optical wavelength of 1064nm was used as light source, the beam is coupled into
a single mode optical fiber and the pulses were then generated from the cw beam by
electro-optic amplitude modulation. The pulses are split at an adjustable beam splitter
into an intense pulse (local oscillator) and a weaker pulse (signal beam). The ratio of the
powers of the two beams was adjusted to approximately 1:100, s.t. the approximations
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used in section 3.5 can be applied. The polarization of the signal pulse is adjusted to a
linear polarization (from now on referred to as horizontal polarization) with the help of a
fiber polarization controller and is, after passing a polarizing beam splitter and a quarter
wave plate, focused on and reflected of a micro-mechanical oscillator (shown in figure
13b). The phase of the reflected pulse will therefore depend on the position of the mirror
and, for small mirror displacements, can be interpreted as a change in solely the phase
quadrature. The reflected pulse has vertical polarization after passing the quarter wave
plate and is therefore reflected at the polarizing beam splitter. After this it is recombined
with the local oscillator (the polarization of the local oscillator is matched to the signal
beam be a fiber polarization controller and its phase is adjusted such that the mean phase
is π

2
) at a balanced beam splitter and a homodyne measurement is performed. A typical

output signal is shown in figure 13c. The measured quantity is the area under each pulse
and the corresponding observable is denoted by PL.

Figure 13: (a)Schematic setup of the experiment. (b)Colourized optical micrograph of mirror used
for the experiment. (c)Example time trace of the signal recorded with homodyne detection. The
measurement outcome corresponding to PL is the area under the pulses, not including the rise
and fall times.
Figure reprinted from [21].

The reason for not using a cavity in this setup was solely simplicity. This setup was
meant as a proof-of-concept experiment and a cavity isn’t necessary to proof the feasibility
of our scheme8. The effect of the cavity is an enhancement of the coupling between the
pulse and the mirror (i.e. a stronger shift in the phase of the pulse and more momentum

8At the time of the writing of this thesis, the experiment is continued and modified to include a cavity.
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transferred to the mirror). On average, both the phase shift and the momentum transfer
will be enhanced by a factor corresponding to the times a photon ”bounces” back and
forth in the cavity. The exact theory including a cavity is presented in appendix A.

4.2.2 Measurement

We performed both the two and the three pulse measurement scheme as detailed in
section 4.1.2. For the two pulse scheme, denoting the measurement results of the two
pulses with pL,1 and pL,2 (and Θ = ωM t is the angle of evolution between the first and
second pulse), we calculated the quantity pL = pL,2 − pL,1cos(Θ) to obtain the final mea-
surement result.
For the three pulse scheme, denoting the measurement outcomes of the three pulses
with pL,1, pL,2 and pL,3, respectively (and Θ = ωM t is the angle of evolution between the
second and third pulse), we calculated the quantity pL = pL,3 − pL,2cos(Θ) + pL,1sin(Θ) to
obtain the final measurement result.
These values were then binned (see figure 17(b-c) for the resulting distributions) and the
Wigner function was then numerically reconstructed as outlined in section 2.1. All mea-
surement results are presented in section 4.3.

4.2.3 The mechanical oscillator

We used a micro-mechanical mirror etched from an 6.88µm thick epitaxial AlxGa1−xAs
crystalline multilayer, which exhibits significantly less mechanical damping compared to
conventional mirrors with dielectric optical coating but still provides excellent optical re-
flectivity (uniform 99.982% intensity reflectivity). The cantilever is in total 1.55mm long,
with a head of 100µm diameter connected to a 5µm thick (and 1.45mm long) arm, which
in turn is connected to the substrate (see figure 14b). Its fundamental out-of-plane (as the
cantilever is slightly thicker than wide, the lowest-frequency mode is an in-plane mode)
vibrational mode has a resonance frequency of 984.3Hz.

The mode shape was determined by finite-element analysis of the resonator (see fig-

Figure 14: (a)FEM simulation of the four out-of-plane modes with the four lowest optically proved
effective masses. The simulated frequencies (in brackets) differ slightly from the measured ones.
(b)Schematic of the mechanical resonator and the focused signal beam.
Figure reprinted from [21].

ure 14a) and the effective mass was then calculated with the help of equations 48 and
49, giving an value meff = 260ng (for the beam centered on the mirror head). The
ground state with is thus given by x0 = 5.7 · 10−15m. The quality factor was measured
in vacuum (10−5mbar) at room temperature via a ring-down measurement and found to
be Q = 3.1 · 104.
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The contribution from other out-of-plane modes is already small simply due to the geom-
etry of the mirror (the unconditional RMS amplitudes of modes 4, 8 and 10 are 2.4%,
0.4% and 0.1% that of the fundamental out-of-plane mode, respectively) but can be even
further suppressed by careful alignment of the beam at the center of the mirror head (cor-
responding to a much higher effective mass for these modes, compare to figure 14a).
For more information see e.g. [21], [22], [23].

4.2.4 Calibration

The calibration (i.e. the determination of the proportionality between a pulsed measure-
ment outcome and the mechanical position) is done in two steps. In the first step we use
a cw beam to determine the proportionality between the voltage applied to the piezo and
the displacement of the piezo. For this we focus the beam on a rigid mirror (we used an
edge of the chip which also contained the resonator) attached to the piezo and record the
homodyne measurement outcome, which is (for arbitrarily large displacements x) given
by

i(t) ∝ cos
(
φ− 4π

λ
x(t)

)
where φ is random (due to the large displacements locking wasn’t possible) but approx-
imately constant over a few mechanical periods. This enables us to exactly determine
when the peak-to-peak displacement equals half the optical wavelength, which gives us
the ratio of driving voltage to piezo displacement (see figure 15). We also verified that
response of the piezo to the driving voltage was indeed linear.
In the second step we record the outcome of pulsed measurements for a given driving
voltage (and therefore known displacements) chosen such that x(t) << λ is fulfilled.

Figure 15: Plot of the homodyne output (red, left axis) while a drive voltage (blue, right axis) is
applied to the piezo. The drive voltage corresponds to half an optical wavelength, as can be seen
by the coinciding turning points of the homodyne signal (dashed line).
Figure reprinted from [21].

4.2.5 Verification of the shot noise limit

To verify that our measurement scheme is indeed quantum noise limited, we focused the
beam on a rigid mirror (as in the calibration procedure) to avoid any coupling to mechan-
ical motion, then we step-wise increased the total optical power (i.e. NTot = NS + NLO,
where the ratio NS

NLO
was kept fixed) and measured the conditional variance of two optical

pulses (i.e. we subtracted the measurement outcomes of the two pulses and recorded
the resulting value) separated by 14µs (with a pulse width of 4µs). The quantum noise
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of the pulses is uncorrelated and therefore remains in the conditional variance. Any clas-
sical noise components would be expected to increase quadratically with optical power
[9], whereas quantum noise increases linearly with the optical power. The results of the
measurement (figure 16) clearly show the linear dependence of the conditional variance
on the optical power. Note that the reason for being quantum limited here is not the ab-

Figure 16: Conditional phase quadrature variance as a function of the total optical power. The
linear dependence confirms that the measurement scheme is shot noise limited.
Figure reprinted from [21].

sence of classical phase noise between the pulses, but rather that this classical noise is
low in frequency and therefore stays correlated over the pulse separation used here. By
increasing the pulse separation we lose the linear dependence due to the phase noise,
this also limits us in our three-pulse scheme as described in the next section. Note that
the pulse separation used here (14.1µs) corresponds to 5◦ of mechanical evolution for our
harmonic oscillator.

4.2.6 Coupling to a thermal environment

After the oscillator has been prepared in a state with reduced uncertainty (compared
to the initial thermal state), coupling with the environment (mechanical clamping, gas
molecules, etc..) will increase the uncertainty again until the oscillator’s initial thermal
state has been restored. For our two- and three-pulse state preparation protocols, we
need this rethermalization to be negligible over one mechanical period.
One can model rethermalization of a quantum harmonic oscillator by linear coupling to a
bath of harmonic oscillators. This leads to the usual rethermalization rate Γ = γn̄ (see
e.g. [5]). As γ ≈ 0.2s−1 in our setup and the mechanical period is roughly a millisecond,
rethermalization over the course of one mechanical period is completely negligible (for
the squashed thermal states - if one wants to prepare & characterize quantum states, it’s
a different story).

4.3 Results

All measurement results are summarized in figure 17. We prepared the mechanical os-
cillator in a thermal state with σx = x0 ∆XM = 1.2nm (corresponding to an effective
temperature of Teff =

meffω
2
M

kB
σ2
x ≈ 1100K) by driving with white noise and then character-

ized this state via pulsed tomography (figure 17a).
We then implemented the two- and three-pulse protocols as described above to both pre-
pare and characterize mechanical states with reduced quadrature uncertainties (figure
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17b-c). Note that for the three pulse protocols the uncertainty should not vary with the
mechanical evolution angle Θ (but should be roughly 1

4χ2 , as demonstrated by equation
57). The reason that it does vary here is that the correlation between the pulses reduces
with increasing separation due to low frequency phase noise (caused by the imperfect
lock) as described shortly in the last section.
The effective temperature (which is now defined as in equation 58) for this state,

Teff = 16K,

is therefore due to the classical optical noise and does not accurately describe the me-
chanical state. Were the pulses to remain quantum noise limited for all Θ, the effective
temperature corresponding to our measurement strength would be roughly (also neglect-
ing mechanical thermalization, i.e. simply taking (∆XΘ

M)2 = (∆X0
M)2 ∀Θ) given by

Teff ≈ 4K.

For both the two-pulse scheme and the three-pulse scheme we used the same optical
power and each histogram was constructed using 300 measurement outcomes. In figure
17e we summarized the standard deviation of the probability distributions for each of the
states described above.

Figure 17d shows a reconstructed driven, thermal state as an example of a non-Gaussian
state. This state was generated by sinusoidally driving the piezo at the eigenfrequency
of our mechanical oscillator. Note that, as this state was prepared without a white noise
drive, the two peaks in its marginals are narrower than the marginals of the thermal state
shown in 17a.

The rippling one can observe in the reconstructed Wigner functions is due to the missing
read-out pulse for Θ = 0 and could be reduced by using shorter pulses and measuring
marginals for smaller Θ.

The scaling of our measurement strength is demonstrated in figure 17f, where we plotted
the mechanical position width (standard deviation) as a function of the integrated signal
pulse amplitude

√
2
∫
dt αin(t), which was determined through a separate power mea-

surement. In slight abuse of notation we use
√
N :=

√
2
∫
dt αin(t).

One pulse was used to prepare the state and another pulse, separated from the first one
by 5◦ of mechanical evolution, was used to measure the position. From equation 50 and
55 it follows, that the dependence should be given by

∆XM ∝
1√
N
,

which is indeed the dependence we have obtained in the experiment. For the largest
optical pulse strength the width of the mechanical state was σx = 19pm, corresponding to
a measurement strength of

χ ≈ 1.51 · 10−4

This agrees with the theoretical value χ ≈ 1.53 ·10−4, which was calculated using equation
50.
Note that in [21] due to the different definition of the quadratures the obtained measure-
ment strength differs by a factor of

√
2, i.e. there χ = 2.1 · 10−4.
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Figure 17: The uppermost row shows the pulse protocols (pink - preparation, red - tomography).
The two rows below show a subset of the measured probability distributions of the mechanical
quadratures XΘ

M and the reconstructed Wigner functions, respectively. The phase-space distribu-
tions were reconstructed using nine marginal angles up to 180

π Θ = 90◦ (with a larger number of
bins used than shown for the distributions in this figure). For our current measurement strength,
that is, χ << 1, all the mechanical states reconstructed here can be described classically.
(a) In the first column, tomography and reconstruction of an initial mechanical thermal state driven
by white noise up to a mode temperature of 1100K is shown. The red dashed circle has a radius
equal to the width of the initial thermal distribution.
(b) A single pulsed measurement reduces the mechanical position variance, but leaves the mo-
mentum distribution unchanged.
(c) ’Cooling-by-measurement’ performed with two pulses separated by one quarter of a mechan-
ical period rapidly reduces the mechanical state’s entropy. The effective temperature of the me-
chanical state reconstructed here has been reduced to 16K.
(d) State reconstruction of a non-Gaussian mechanical state of motion generated by resonant si-
nusoidal drive.
(e) The (one s.d.) width of the position distribution observed for states (a-c) with phase-space
angle Θ. The thermal state (red points) shows a position width approximately twice of that when
at room temperature (dashed line). State (b) has a reduced position width for small phase-space
angles (purple points). The position width of state (c) is reduced for all phase-space angles (blue
points). The solid lines are theoretical fits obtained using equation 55 (with χ and n̄ as fitting pa-
rameters).
(f) Plot of the conditional mechanical width versus pulse strength obtained using two pulses sep-
arated by 5◦ of mechanical evolution. The dashed line is a theoretical fit with a model using two
units of optical quantum noise and finite mechanical evolution. The solid line is the inferred con-
ditional mechanical width immediately after the preparation pulse. The vertical line indicates the
pulse strength used for states (a-c). The error bars on (e) and (f) indicate a one s.d. uncertainty.
Figure reprinted from [21].
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5 Discussion & Outlook

In this work we were able to show preparation of mechanical states of motion by measure-
ments of the mechanical position utilizing short optical pulses. Specifically, starting with
an initial thermal state, we have prepared squashed thermal states with a greatly reduced
effective temperature (from initially 1100K to 16K). While all of the states we managed to
prepare during the duration of this thesis can be fully described by classical physics, I am
confident that the methods introduced here will soon lead to the preparation of mechani-
cal quantum states like the squeezed coherent state. I want to highlight once more that (in
contrast to any other methods known to the author) this quantum state preparation does
not require any additional cooling and can in principle be performed at room temperature.

In addition to state preparation we were also able to characterize the resulting state using
pulsed measurements. Again, while all of the reconstructed states were classical, our
measurement scheme can be used for quantum state tomography as well. This is due
to the quantum-non-demolition nature of our measurement that allows us to overcome
the standard quantum limit. For a large measurement strength χ one could, using our
method, easily resolve quantum mechanical features smaller than the mechanical ground
state.

The setup we have prepared is a good basis for future experiments using pulsed op-
tomechanics. The future challenge will be to enhance the measurement strength χ to
a level where quantum mechanical states can be prepared and characterized (which re-
quires χ ≥ 1). One way to do this is to use an optical cavity, which must have both a high
finesse (using otherwise the experimental parameters achieved in this work, a finesse of
104 would be sufficient) and a large bandwidth (to accommodate an optical pulse). Both
of these requirements can be met by optomechanical microcavities.

Future applications of our methods are manifold. Concrete examples include the pro-
posal by Buchmann et. al. [25], who considers pulsed measurements, as realized in this
work, to observe quantum tunneling of a mechanical oscillator in a double well potential,
or the proposal by Sekatski et. al. [26] for the generation of macroscopic quantum super-
position states.
It might even be possible to use our scheme for probing quantum-gravitational phenom-
ena experimentally, as has been proposed by Pikovsky et.al. [27].

In conclusion, we have successfully built a proof-of-concept setup for mechanical state
preparation via measurement and thereby contributed novel results to the field of quan-
tum optomechanics. Our setup might be improved upon and used for various applications,
some of which have been stated above. It is the authors expectation, that it will soon be
possible to both prepare and read-out features of macroscopic quantum states with the
methods introduced here.
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Appendix

A Pulsed cavity optomechanics

The starting point of our treatment here is the quantum Langevin equation for the optical
field (in the rotating frame). Assuming resonant drive, this becomes

ȧ = (ig0XM −
κ

2
)a+

√
κain. (59)

Since the mechanical position can by assumption be approximated as constant over the
pulse duration, this equation is now decoupled from the corresponding equation for the
mechanical oscillator, which can formally be written as

ḃ = ig0a
�a (60)

during the short interaction, where we have neglected harmonic motion and mechanical
damping. Equation 59 accounts for the phase shift of the cavity field reflected of the mirror
as well as cavity decay and coupling to the input field, equation 60 simply describes the
momentum transfer to the mirror during the interaction with the optical pulse.
We now write

a(t) = α(t) + δa(t)

and

ain(t) = αin(t) + δain(t).

Here α(t) is just the expectation value of a at the time t (see also the footnote on page ..)
and corresponds to the slowly varying pulse shape, while δa is the usual noise operator
(and similarly for αin/δain). From equations 59 and 60 we arrive at the linearized equations

α̇ = −κ
2
α +
√
καin

and

δ̇a = −κ
2
δa+

√
κ δain + ig0XMα,

where we have neglected the term igXMδa. The first equation is just the classical equa-
tion describing the evolution of a complex amplitude in a cavity, while the second term
describes the noise processes including the modulation of the amplitude and phase due
to the motion of the mirror. Solving these equations in the time domain yields

α(t) =
√
κ

∫ t

−∞
αin(t′)e−

κ
2

(t−t′) (61)

and

δa =
√
κ

∫ t

−∞
dt′δain(t′)e−

κ
2

(t−t′) + ig0φ(t)XM , (62)

where we defined φ(t) :=
∫ t
−∞ dt

′α(t′)e−
κ
2

(t−t′). The output field is given by

aout =
√
κa− ain
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and its phase quadrature is therefore

Pout(t) = κ

∫ t

−∞
dt′Pin(t′)e−

κ
2

(t−t′) − Pin(t) + 2g0

√
κφ(t)XM .

If the phase is detected via an optical homodyne measurement as described in section
3.5 and the area under the pulse is measured, the measurement operator is given by

PL =

∫ ∞
−∞

dtαLO(t)Pout(t),

where αLO(t) corresponds to the local oscillator pulse. Assuming coherent optical states,
we can evaluate the expectation value and the variance as

〈PL〉 = χ′〈XM〉

and

(∆PL)2 = χ′2(∆XM)2 +
(∫

dt aLO(t)
)2

(∆Pin)2.

Here χ′ depends on the form of the pulses (note that it is defined slightly different than in
the last section and is still dependent on the local oscillator amplitude), for a more detailed
analysis including an optimization of αin and αLO to maximize χ′ see [5]. Together with
equation 60, which determines the momentum transfer to the mirror, we can then proceed
as in the last section.
The results are exactly the same, only the coupling strength χ and the momentum transfer
M̄ will be enhanced due to the use of a cavity.
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