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• Chapter 4 also exists as a working paper (see [68]).
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Abbreviations

AL activity list

SRCPSP single-mode resource-constrained project scheduling problem

MRCPSP multi-mode resource-constrained project scheduling problem

MRCMPSP multi-mode resource-constrained multi-project scheduling problem

RCPSP resource-constrained project scheduling problem

COPs combinatorial optimization problems

RCPS resource-constrained project scheduling

SPRs standard precedence relations

GPRs generalized precedence relations

CP Constraint Programming

CSP constraint satisfaction problem

COP constraint optimization problem

SAT Boolean Satis�ability

AoN Activity-on-Node

MIP Mixed-Integer Programming

TPD total project delay

TMS total makespan

CA Con�ict Analysis

BaB Branch and Bound

LCG lazy clause generation

MPI minimal problem instance
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2 Abbreviations

BCI bound change index

NPV net present value

RPC resource-pro�le cost

LCG lazy clause generation

MPV minimal processing version

SSGS serial schedule generation scheme

BCP backtracking with constraint propagation

TP timetable propagation

UP unit propagation

CA con�ict analysis

UIP unique implication point

VSIDS variable state independent decaying sum

EF edge �nding

DPLL Davis�Putnam�Logemann�Loveland

ER energetic reasoning



Chapter 1

Introduction

The aim of resource-constrained project scheduling (RCPS) is to assign starting
times to a number of jobs subject to precedence and resource constraints such that
a project related objective is optimized. RCPS belongs to the operational level of
project management [43]. In practice it is important to avoid the "escalation" of
a project "in time and budget" (cf. [43, p.27]). The approaches of commercial
software packages to tackle project scheduling problems are based on simple priority
rules [43]. The application of the latter can lead to highly suboptimal solutions
for the underlying problem class. Moreover, for more complex problem variants
it can even be hard to �nd feasible solutions with these techniques. Thus, it is
important to investigate more sophisticated approaches for RCPS to overcome the
above disadvantages.

Variants of the RCPSP arise in a wide range of applications [36]. Scienti�c RCPS
techniques are e.g. applied to plan the production and engineering in the automotive
industry [9], to schedule IT projects [40] and to schedule the outbound baggage at
international airports (see [30]).

In this dissertation, the main research topic is the implementation and analysis
of new exact approaches combining CP and SAT Solving techniques for the SRCPSP
and the MRCPSP with SPRs and GPRs. These problems are known to be highly
complex combinatorial optimization problems (COPs).

Exact approaches for COPs �nd the optimal solution w.r.t. a certain objective
function and prove its optimality for a �nite input within a �nite number of iter-
ations. The main bottleneck of exact approaches is the high computational time,
they need for the solution of large instances of complex COPs. Therefore, in prac-
tice heuristics are preferred to �nd good solutions in acceptable computational times
without proving their optimality.

Nevertheless, exact approaches are of high relevance, as they evaluate lower and
upper bounds for the underlying problem and thus can provide a quality measure for
problem-speci�c heuristics. Moreover, they can be applied for the solution of sub-
problems in hybrid metaheuristics [14] to tackle larger problem instances in practice.

3



4 Chapter 1. Introduction

1.1 Solution approaches

Exact algorithms for variants of the SRCPSP can be divided into procedures applying
general and procedures applying specialized solution concepts. These algorithms are
on both sides Branch and Bound (BaB)-based at which the rules for branching,
bounding, backtracking and the fathoming of nodes di�er. Thereby, the specialized
algorithms integrate principles specially tailored to the variant of the SRCPSP at
hand. On the other hand, the general solution procedures employ a mixture of
concepts from CP, SAT Solving and Mixed-Integer Programming (MIP) which are
generalizable to other problem classes.

The state-of-the-art specialized algorithms for the SRCPSP with SPRs and the
aim of makespan minimization are among others the ones by Demeulemeester and
Herroelen [25] and Sprecher [79] whereas the latter works with a signi�cantly lower
memory usage1.

Recently, it has turned out that also SAT Solving techniques can be successfully
applied for the solution of variants of the SRCPSP. Horbach [44] proposes a stan-
dalone SAT Solving approach for the SRCPSP with SPRs and the aim of makespan
minimization which is based on minimal forbidden sets. His extensive computational
experiments show that his approach is highly competitive to chosen exact algorithms
considered as state-of-the-art in the literature. Furthermore, his approach outper-
forms all of them on certain instance sets from the PSPLIB [50].

Moreover, the experiments of Schutt et al. [76, 77, 75] show, that the combination
of CP and SAT Solving techniques leads to additional improvements. They applied
lazy clause generation (LCG) (a BaB approach integrating CP and SAT solving
techniques [28]) to the SRCPSP with SPRs and GPRs and the aim of makespan
minimization, and to the SRCPSP with SPRs and discounted cash �ows, respectively.
Their computational results show that LCG is at the moment the best exact approach
for the latter variants of the SRCPSP.

Berthold et al. [11] additionally integrate MIP techniques for the solution of the
SRCPSP with SPRs and the aim of makespan minimization. It turns out, that their
combination of CP, SAT Solving and MIP techniques is inferior to LCG regarding
solution time and quality. Nevertheless, an improvement of the lower bounds for
some instances from the literature is reported.

Regarding exact approaches for the SRCPSP with SPRs, it is also important to
mention the work of Koné et al. [51]. They compare di�erent MIP formulations for
the latter problem and test their e�ciency with a state-of-the-art MIP solver.

An overview on heuristic approaches for the SRCPSP with SPRs and GPRs is
given in [49] or [3], and [77], respectively.

Specialized exact approaches for the MRCPSP with SPRs have been summarized
and tested by Hartmann and Drexl [37], whereas they conclude that the approach
of Sprecher and Drexl [81] is the exact method of choice. The most recent exact

1Detailed surveys on exact algorithms for the SRCPSP are given by Demeulemeester and Her-
roelen [26] and Brucker and Knust [16].
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algorithm of Zhu et al. [92] outperforms the latter approach. They implemented
a Branch-and-Cut procedure with a preprocessing and a heuristic step to generate
good upper bounds as an input for their algorithm.

A recent survey on heuristic approaches for the MRCPSP with SPRs and a de-
tailed experimental evaluation is given by [87]. Their computational experiments
show that the scatter search procedure of Van Peteghem and Vanhoucke [86] pro-
duces the best results. In this context, it is also important to mention the approach
of Coelho and Vanhoucke [18] as they combine SAT solving techniques with a meta-
heuristic for the SRCPSP to solve the MRCPSP with SPRs.

De Reyck and Herroelen [24] were the �rst to consider the MRCPSP with GPRs.
Thereafter, Heilmann [39] developed an exact approach for the latter problem, which
is to our knowledge at the moment still state-of-the-art. He proposed a specialized
BaB-algorithm based on the solution of a "minimal problem instance" and branched
on the mode alternative or renewable resource con�ict resolution which is the hardest
w.r.t. a speci�c measure. Lower bounds for the MRCPSP with GPRs have been
evaluated by Brucker and Knust [15].

The procedure of Ballestín et al. [7], a combination of simulated annealing and
an evolutionary algorithm, and the tabu search approach of Nonobe and Ibaraki [61]
are state-of-the-art heuristics for the MRCPSP with GPRs.

1.2 Structure of the thesis

This dissertation begins with two introductory chapters to provide the basics about
the RCPSP and the theory of CP and SAT Solving to the reader.

Chapter 2 contains a problem description and classi�cation of RCPSP variants
relevant for this dissertation. Moreover, it discusses computational complexity
results and well-known preprocessing techniques from the literature. The chap-
ter ends with an example for the MRCPSP with GPRs and a possible solution
of the latter.

Chapter 3 outlines the theory of CP and SAT Solving. Furthermore, it describes
how these two solution principles can be combined to tackle RCPSP instances.

After the introductory part, we summarize our contribution to the research area
of project scheduling.

Chapter 4 discusses a factor leading to a signi�cant performance variability in re-
cent CP-SAT approaches for the SRCPSP with SPRs. We detected a great
variation in the e�ciency of these algorithms depending on the prede�ned
search space given through the initial variable domains. Moreover, the search
space leading to the best results is in most cases not the one de�ned through
the smallest variable domains. A detailed computational analysis of this e�ect
is presented, also w.r.t. an explanation of the latter observation. Furthermore,
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as the variation of the prede�ned search space has highly positive e�ects on
the e�ciency of the analyzed algorithms, we develop a parallel procedure to
take advantage of these e�ects.

The main contribution of this thesis is the extension of state-of-the-art CP-SAT
approaches for the SRCPSP to the MRCPSP.

Chapter 5 proposes three CP models for the MRCPSP with SPRs which can be for-
mulated in optimization frameworks that integrate an exact solution approach
combining CP and SAT Solving techniques. For one modeling formulation, we
implemented a new global constraint cumulativemm within SCIP [2] specially
tailored to renewable resources in the context of multi-mode jobs. The best
of our solution approaches outperforms the state-of-the-art exact approach of
Zhu et al. [92]. Moreover, we close (�nd the optimal solution and prove its
optimality for) 324 open problem instances from the literature.

Chapter 6 proposes new CP-SAT based modeling and solution approaches for the
MRCPSP with GPRs extending the ones presented in Chapter 5. Therefore, we
implemented two new constraint handlers sprecedencemm and gprecedencemm

for SCIP. They guarantee feasibility w.r.t. SPRs and GPRs in the context of
multi-mode activities, respectively. Furthermore, they capture domain prop-
agation and explanation generation algorithms for the latter problem charac-
teristics. We show how our SCIP-models can be strengthened by integrating
sprecedencemm and gprecedencemm, i.e. by adding problem-speci�c knowl-
edge about precedence relations. With our best performing solution approach,
we close 289 open instances and improve the best known makespan for 271
instances from the literature.

Chapter 7 shows how easily our modeling and solution concepts can be extended
to more complex problem classes. In this chapter, we present a SCIP-model
for the MRCMPSP with SPRs which extends our model for the MRCPSP with
SPRs. This chapter was motivated by the MISTA 2013 challenge [90] where
the aim was to solve instances of the latter problem in an e�cient way. Small
challenge instances can be solved exactly with SCIP. To tackle larger problem
instances, we propose a local search method based on the iterative solution of
subproblems by SCIP. Overall, our solution procedure was ranked ninth among
all competition participants.

The dissertation ends with a conclusion on the obtained results and a discussion
of further research topics.



Chapter 2

The RCPSP

2.1 Problem description

In [17], the classi�cation scheme for machine scheduling [35] and resource-constrained
machine scheduling [13] was extended to classify variants of the RCPSP. In the fol-
lowing, we introduce the problems tackled in this dissertation based on a modi�ed
version of the [α|β|γ]-classi�cation scheme in [17]. In this context, α, β and γ char-
acterize the project and resource environment, the jobs, and the objective function,
respectively.

Note that, we only discuss the characteristics of project scheduling problems
important for our applications. For other possible variants the reader is referred to
the survey of Hartmann and Briskorn [36].

2.1.1 Project and resource environment

By integrating the abbreviation PS into the α-classi�cation, it is speci�ed, that
variants of the RCPSP are considered.

The classical RCPSP integrates a set of renewable resources R = {1, . . . , pρ}
and a set of nonrenewable resources N = {1, . . . , pν}. A limited capacity Cρr of
the renewable resource r ∈ R is available in every time interval [t, t + 1[ of the
planning horizon. In practice, this can i.e. correspond to a �xed number of workers
or machines available in every time period of the planning horizon. Cνk denotes
the available amount of the nonrenewable resource r ∈ N for the complete project
planning horizon [0, T [. A �xed budget or an amount of raw material for the project
can be an example of a nonrenewable resource in practice.

For the classi�cation of the resource environment, the notation resνn1, n2, n3 and
resρr1, r2, r3 is used to denote nonrenewable and renewable resources, respectively.
The speci�cation of numbers r1 ∈ N and r2, r3 ∈ R means that we consider a
problem with |R| = r1 renewable resources with the capacity r2 = Cρr , ∀r ∈ R and
each activity consumes at most r3 units of every renewable resource.

7



8 Chapter 2. The RCPSP

If r1, r2 or r3 is substituted by ·, we consider the problem where the respective
parameter is arbitrary, i.e. it is de�ned by the input. If r3 is replaced by ·, we
omit it in the classi�cation. Similarly if r2 and r3, or r1 and r2 and r3 are all re-
placed by ·, we leave out all the respective parameters. For example, if we consider
a project scheduling problem with pρ renewable resources, where the renewable re-
source capacities and the resource consumption of the activities are part of the input,
α corresponds to PS, resρr. Nonrenewable resources are denoted in a similar way. If
selecting the resource amount is part of the decision, we add∞ to the α-classi�cation.

2.1.2 Job characteristics

A project consists of a set of activities or jobs J = {1, . . . , n}. We only consider
problems where the jobs cannot be preempted. So once a job is started, it cannot be
stopped before reaching its complete duration and rescheduled later. If preemption
is allowed we insert pmtn for β.

In real-life projects, there are often various alternatives (modes) in which the
activities can be processed. This corresponds to tradeo�s between processing time
and resource consumption (time-resource) and tradeo�s between the consumption
of di�erent resources (resource-resource) for an activity [27]. Consider for example
the activity "Debugging of a plugin" in the project "Development of a new soft-
ware". If two specialists process the activity, it will approximately take two weeks.
Alternatively, if one specialist and three quali�ed interns are assigned, they will
approximately debug for three weeks. This re�ects the modes and the alternative
duration and resource consumption of an activity.

In this case, we introduce a set of alternatives or modesMi = {1, . . . ,mi} for the
processing of job i ∈ J ,. If there is at least one job i ∈ J with |Mi| > 1, a multi-mode
problem is considered and we add MM to the β−classi�cation. Otherwise, in case
of a single-mode problem, the latter characterization is omitted.

Every multi-mode job's duration di, nonrenewable and renewable resource con-
sumption cνi,r and c

ρ
i,r of resource r equals the duration di,k and resource consump-

tion cνi,k,r and c
ρ
i,k,r corresponding to the mode k ∈ Mi chosen for job i. Note, that

the consideration of nonrenewable resources is only relevant in a multi-mode sit-
uation. In concrete, for variants of the SRCPSP, it can be checked beforehand,
if
∑

i∈J c
ν
i,r ≤ Cνr , r ∈ N , i.e. if the nonrenewable resource capacities are re-

spected by the input data. Thus, w.l.o.g. for variants of the SRCPSP, the notation
resρ n1, n2, n3 can be omitted.

In this dissertation, we only consider deterministic durations. In case, the du-
rations are stochastic, we add dj = stoch to the β−classi�cation. In addition, we
assume that all parameters concerning the durations and resource consumptions are
part of the input. If for example the special case would be considered, where all
duration are equal to one, the notation dj = 1 is inserted.

Note, that cνi,k,r corresponds to the consumption of job i of the nonrenewable
resource r ∈ N if processed in mode k. I.e. if we choose mode k for job i, after its
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processing Cνr − cνi,k,r units remain of the resource r ∈ N for the complete project.
cρi,k,r denotes the renewable resource consumption of job i in mode k from resource
r ∈ R per period of its processing time.

Schedules for a project often have to comply with precedence relations between
the jobs. For non-preemptive jobs, we distinguish between SPRs and GPRs. denoted
by prec and temp in the β−classi�cation. A SPR (i, j) between the single-mode jobs
i and j forces job j to start after the end of job i. If si and sj are the starting times
of job i and j, respectively, the following equation has to be ful�lled:

si + di ≤ sj

With GPRs, more general situations can be modeled. Every GPR (i, j) comes with
a so-called minimal or maximal timelag dmin

i,j or dmax
i,j dependent on both jobs in the

precedence relation. In case of a minimal timelag dmin
i,j , job j must start after job i

has been processed for dmin
i,j time units, i.e.:

si + dmin
i,j ≤ sj

With a maximal timelag dmax
i,j at hand, job j must start before job i has been pro-

cessed for dmax
i,j time units, i.e.:

si + dmax
i,j ≥ sj ⇐⇒ sj − dmax

i,j ≤ si

Thus, we can transform every GPR (i, j) with the maximal timelag dmax
i,j ≥ 0 to the

GPR (j, i) with the minimal timelag −dmax
i,j . Hence, w.l.o.g. it is su�cient to only

consider GPRs with possibly negative minimal timelags δi,j . Additionally, every type
of precedence relation between non-preemptive jobs (start-start, start-�nish, �nish-
start and �nish-�nish) can be transformed to an instance with GPRs and possibly
negative timelags δi,j [10]. Consequently, with problems of the type temp in the
β−classi�cation, one can model quite general situations in practice.

Let us now again look at the above example project "Development of a new
software" to illustrate a practical application of maximal time lags. Assume that a
specialist from another company has to process the activity "Development of plugin
X" and he is only available until a certain deadline after its completion. Then, the
successor activity "Integration of plugin X into software" should be completed before
the availability deadline of the specialist. This can be modelled by a maximal time
lag between the predecessor and successor activity.

In case of a multi-mode instance, we have minimal timelags δi,j,k,l ∈ R for every
GPR (i, j) and the respective modes k ∈ Mi and l ∈ Mj . Hence, in this situation,
the timelags do not only depend on the jobs in the precedence relation but also on
the mode k and l chosen for the job i and j, respectively.

The precedence graph can be visualized through a so-called Activity-on-Node
(AoN) network. For single-mode problems the nodes correspond to jobs. The arcs
connect nodes for jobs which form a precedence relation. Furthermore, the arcs
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1;1

1;2

2;1

2;2

δ1,2,1,1

δ1,2,2,2

δ1,2,1,2

δ1,2,2,1

Figure 2.1: Example: GPR between multi-mode jobs

are weighted by di and δi,j for SPRs and GPRs, respectively. With a multi-mode
instance at hand, the nodes correspond to job-mode combinations i;k. Two nodes
are connected if a precedence relation has to be respected between the corresponding
jobs. Moreover, the arc weights are the durations di,k or the minimal timelags δi,j,k,l
in case of SPRs and GPRs, respectively (See Fig. 2.1).

In the following, we will use a set of successors Si covering all jobs j ∈ J forming
a precedence relation with job i for the formulation of the precedence constraints.
Moreover, for the sake of simplicity we assume, that the durations di,k and renewable
resource consumptions cρi,k,r, C

ρ
r are natural numbers for all i ∈ J , k ∈Mi and r ∈ R,

and that the minimal timelags δi,j,k,l are integers for all i, j ∈ J and the respective
modes k and l. All the presented approaches in this dissertation can be generalized
to the case where the problem parameters are element of Q or R. In every case, all
the approaches have to cope with numerical issues.

2.1.3 Objective functions

Well-known objective functions in the context of project scheduling, similar to the
ones in machine scheduling, are the project duration or makespan Dmax, the max-
imum lateness Lmax of the jobs, the weighted completion time

∑
j∈J wj · (sj + dj)

etc.. Note, that if we omit the parameter γ in the classi�cation, we only consider
the problem of �nding a feasible schedule w.r.t. the given α- and β-classi�cation.
Further objective functions like for example the net present value (NPV), or the
resource-pro�le cost (RPC) have also been extensively studied in the literature [36].
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The net present value is de�ned as

NPV =
∑
j∈J

Cfj · µ
sj+dj (2.1)

A constant Cfj ∈ R is assigned to every job j. Cfj is discounted with the rate
0 < µ < 1 depending on the completion time sj + dj of job j. µ can for example
integrate an in�ation rate.

A constant Cfj < 0 corresponds to a cost, i.e. we have to pay an amount of

money at the completion of the job j (cash out�ow) and Cfj > 0 corresponds to
a revenue, i.e. we receive money at its completion (cash in�ow). With the NPV,
the present value of Cfj when �nishing job j at time sj + dj is approximated. The

present value of the amount |Cfj | decreases with an increasing completion time t.
Roughly speaking, if a job is associated with a cash in�ow (out�ow), one would try
to complete it as soon (late) as possible. The aim is to maximize the NPV, i.e. to
maximize the total present value over all jobs.

The RPC, which has to be minimized, is given as follows:

RPC =
∑
r∈R

Kr · f(kr(s, 0), . . . , kr(s, T − 1)) (2.2)

Kr is a cost associated with the renewable resource r ∈ R and T ∈ N is an upper
bound on the project duration.

kr(s, t) is de�ned as the resource usage of resource r in the schedule s ∈ Rn in
the time interval [t, t + 1[. The function f :RT → R assigns a value to the resource
pro�le (kr(s, 0), . . . , kr(s, T − 1)).

If the RPC is considered as objective, apart from adding the latter abbreviation
to the γ-classi�cation, α integrates∞ to denote that determining the resource usage
is part of the decision. Project scheduling problems integrating RPC are also known
as resource leveling problems [58]. For example the project scheduling problem,
where f(. . . ) corresponds to maxt∈{0,...,T−1} kr(s, t), is called the resource investment
problem.

In this dissertation, we mainly consider the project makespan Dmax =
maxj∈J(sj + dj) as objective. In this situation, it is convenient to introduce dummy
jobs 0 and n + 1 and insert them to the set J . The dummy jobs are used to guar-
antee that the project starts at time point ≥ 0 and to model the project end. For
multi-mode problems, the dummy jobs j ∈ {0, n + 1} can only be processed in one
mode with dj,1 = 0 and cνj,1,r = 0, r ∈ N(cρj,1,r = 0, r ∈ R).

Furthermore, we have to assure that no job starts before job 0 and ends after the
start of job n+1. Therefore, for problems with SPRs we introduce a new precedence
relation (0, j) with the timelags 0 for every job-mode combination j; k if job j has
no predecessor. Moreover, if job i has no successor, we introduce the precedence
relation (i, n+ 1) with the positive timelags di,k, k ∈Mi.
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In the presence of GPRs more care has to be taken. In this case, we introduce
a new precedence relation (0, j) with the timelags δ0,j,1,l = 0 for every job j and
the corresponding modes l ∈ Mj . Moreover, we de�ne a new precedence relation
(i, n + 1) with the non-negative timelags δi,n+1,k,1 = di,k for every job i and the
corresponding modes k ∈Mi.

After the addition of the above data, minimizing Dmax is equal to minimizing the
starting time of sn+1. Note, that the introduction of dummy jobs for single-mode
problem instances is based on the same principles .

In this dissertation, we mainly focus on exact solution approaches
for the problems [PS, resρ|prec|Dmax], [PS, resρ, resν |MM,prec|Dmax] and
[PS, resρ, resν |MM, temp|Dmax]. As they all integrate the same objective function,
we will denote them in the following as the SRCPSP with SPRs, and the MRCPSP
with SPRs and GPRs, respectively.

2.2 General problem formulation

The most general problem considered in this dissertation is the MRCPSP with GPRs.
In the following, we only provide a problem formulation for the above problem, as
all other analyzed problems are special cases of the latter.

Note, that we assume that for the following model, all the parameters, sets and
variables have been updated w.r.t. the principles applied in the last section for the
introduction of the dummy jobs 0 and n+ 1.

With the notation from the last section and the integral decision variables si and
xi corresponding to the starting time and the mode choice of job i ∈ J , respectively,
the MRCPSP with GPRs can be formulated as follows:

min sn+1 (2.3)

s.t. si + δi,j,xi,xj ≤ sj , ∀i ∈ J, ∀j ∈ Sj (2.4)∑
j∈J

cνj,xj ,r ≤ C
ν
r , ∀r ∈ N (2.5)

∑
j∈A(t)

cρj,xj ,r ≤ C
ρ
r , ∀t ≥ 0, ∀r ∈ R

A(t) = {j ∈ J : t− dj,xj + 1 ≤ sj ≤ t}, ∀t ∈ N (2.6)

sj ∈ N, ∀j ∈ J (2.7)

xj ∈Mj , ∀j ∈ J (2.8)

Our aim is the minimization of the makespan Dmax. This is equal to minimizing the
starting time sn+1.

(2.4) model GPRs for the multi-mode jobs. The successor job j ∈ Si must start
after the starting time of job i plus the possibly negative minimal timelag δi,j,xi,xj
which depends on the modes xi and xj chosen for the respective jobs. In case of
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SPRs, it holds that:
δi,j,xi,xj = di,xi , ∀i ∈ J, j ∈ Sj (2.9)

In other words, in the context of SPRs, the minimal timelags which have to be
respected for the precedence relation (i, j) only depend on the duration di,xi of the
mode in which i is processed.

(2.5) guarantees that the total nonrenewable resource consumption of r ∈ N does
not exceed the available capacity Cνr .

With (2.6), we model the renewable resource constraints. We have to respect the
limit of Cρr units for all r ∈ R in every time interval [t, t + 1[, t ∈ N. The total
consumption of the renewable resource r ∈ R over all jobs j ∈ A(t), i.e. active in
the time interval [t, t + 1[, must not exceed Cρr . Note, that this formulation would
lead to an in�nite number of constraints, but we can restrict ourselves to values
t ∈ {0, . . . , Tmax − 1}, where:

Tmax =
∑
i∈J

max{max{di,k : k ∈Mi},max{δi,j,k,l : j ∈ Si, k ∈Mi, l ∈Mj}},

(2.10)
This is due to the fact, that if an optimal solution s∗ for the above problem exists,
it holds that s∗n+1 ≤ Tmax. Clearly, Tmax is also an upper bound for the variables
si, i ∈ J .

Note, that if we omit the mode choice, i.e. the variables xj in (2.8), and the
respective indices in all parameters of the model, we obtain the SRCPSP with GPRs
and as a special case the SRCPSP with SPRs.

The above mathematical formulation is not directly transferable to a MIP or CP
solver. Firstly, it contains variables as indices of parameters. This modeling tech-
nique is usually not available in MIP solvers but normally in CP modeling languages
like e.g. in Zinc [54] or JaCoP [46] (See also Chapter 5). Secondly, in (2.6), we sum
over all j ∈ A(t). The set A(t) itself depends on the variables sj and xj . This adds
nonlinearity to the model and can usually only be tackled by transformations.

The well-known MIP-formulation (See e.g. [50]) of the MRCPSP with GPRs is
based on the ideas of Pritsker et al. [65]. They were the �rst to provide an e�cient
binary integer programming formulation for project scheduling problems which is
extendable to model the above problem.

In the Chapters 4, 5 and 6, we show how the formulation of the SRCPSP with
SPRs, the MRCPSP with SPRs and the MRCPSP with GPRs can be realized in
selected CP-modeling languages.

2.3 Complexity results

The MRCPSP with GPRs can be divided into a mode-assignment and a single-mode
scheduling step [18]. The mode-assignment step is given through the feasibility
problem with the constraint (2.5) and the variables xj ∈ Mj . Thus, we have to
�nd processing modes for every job j ∈ J such that the capacity limits of the
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nonrenewable resources r ∈ N are not exceeded. With a feasible mode-assignment
x̄ at hand, one has to solve a SRCPSP instance with GPRs or as a special case
the SRCPSP with SPRs. The complete problem consists of �nding a feasible mode-
assignment at which the minimal makespan of the resulting SRCPSP is not larger
than the minimal makespan detected for any other feasible mode-assignment.

Kolisch and Drexl [48] introduced a polynomial reduction from the knapsack
problem, known to be NP-complete [33], to the mode-assignment problem with
|N | ≥ 2 nonrenewable resources and |Mj | ≥ 2, ∀j ∈ J\{0, n + 1}. Hence, with the
latter input already the mode-assignment step is NP-complete.

Now, to discuss the complexity of the single-mode scheduling step, let us consider
the optimization problem (2.3), s.t. (2.4) and (2.6) with the variables (2.7) and
the feasible mode-assignment x̄ at hand. W.l.o.g. we can omit all indices x̄j ∈
Mj concerning the mode choice. As mentioned above, the resulting problem is the
SRCPSP with GPRs, and in the special case δi,j = di the SRCPSP with SPRs. The
problem [PS, resρ1, 1, 1|dj = 1, prec|Dmax] is a special case of the SRCPSP with
SPRs with only one renewable resource with capacity one and where all jobs consume
at most one unit of the resource and are of duration one. By a pseudopolynomial
reduction [33] from the strongly NP-hard 3-Partition-Problem, it follows that the
latter problem ([PS, resρ1, 1, 1|dj = 1, prec|Dmax]) is NP-hard in the strong sense
(See [33] and [13]).

The decision version of the latter problem, where a schedule for
[PS, resρ1, 1, 1|dj = 1, prec] has to be found such that Dmax ≤ T for an arbitrary
T is transformable to the special case [PS, resρ1, 1, 1|dj = 1, temp] of the feasibility
problem of the SRCPSP with GPRs [10]. As this is a pseudopolynomial transfor-
mation [33] from a strongly NP-hard problem, we can conclude that already the
problem of �nding a feasible schedule for the SRCPSP with GPRs is NP-hard in
the strong sense. In contrast, a feasible solution for the SRCPSP with SPRs can be
found in polynomial time e.g. by the serial schedule generation scheme (SSGS) [6].

Another important complexity result was deduced by Schwindt [78]. He proposed
a pseudopolynomial transformation from the partially ordered knapsack problem
[33] to the problem of �nding a feasible solution for the resource relaxation of the
MRCPSP with GPRs, i.e. to the problem of �nding mode-assignments xj ∈ Mj

such that (2.4) is ful�lled. Hence, he showed that this problem is NP-complete in
the strong sense. Note, that the resource relaxation of the SRCPSP with SPRs and
GPRs can be solved in polynomial time by longest path algorithms (See also Sect.
2.4).

2.4 Preprocessing techniques

In the following, we describe standard preprocessing techniques for the MRCPSP
with GPRs from the literature which can also be found in [82] or [16]. These tech-
niques can be divided into procedures eliminating modes and nonrenewable resources,
and procedures deducing lower and upper bounds for the starting time variables si.
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Firstly, we consider principles for the elimination of modes and nonrenewable
resources. Note, that the di�erent names for the eliminated parameters are the same
as in [82].

In the �rst step, we can delete modes from the problem instance which are non-
executable w.r.t. renewable and nonrenewable resources. A mode m ∈ Mi is non-
executable w.r.t. the renewable resource r ∈ R, if

cρi,m,r > Cρr

and non-executable w.r.t. the nonrenewable resource r ∈ N , if

cνi,m,r +
∑

j∈J\{i}

min{cνj,k,r : k ∈Mj} > Cνr .

Clearly, if there is one job with only non-executable modes, the respective problem
instance is infeasible.

In the second step, we remove redundant nonrenewable resources. A nonrenew-
able resource is redundant, if∑

j∈J
max{cρj,k,r : k ∈Mj} ≤ Cνr .

Note, that non-executable modes and redundant nonrenewable resources can be
eliminated as this does not change the set of feasible solutions for the MRCPSP with
GPRs.

The third step consists of eliminating ine�cient modes. A mode m ∈ Mi is
de�ned as ine�cient, if there exists another mode m′ ∈Mi such that,

di,m′ ≤ di,m
cρi,m′,r ≤ c

ρ
i,m,r, ∀r ∈ R

cνi,m′,r ≤ cνi,m,r, ∀r ∈ N

If an optimal solution of an instance exists, the removal of ine�cient modes does not
lead to a change of the optimal makespan.

Note, that after the elimination of ine�cient modes, we go back to the third step,
as possibly new nonrenewable resources r ∈ N can be removed.

The complete procedure is summarized in Algorithm 1.
After the application of Algorithm 1, we try to deduce new lower and upper

bounds for the starting time variables si. Therefore we assume that an upper bound
T for the project makespan is known. This can be the project makespan of a known
feasible solution which was for example determined by a heuristic or Tmax from (2.10).

With the above information at hand, the initial domains of the variables si, i.e.
the lower bounds lb(si) and upper bounds ub(si) can be computed as follows (See
also [16]).
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Input: Mode sets Mj , j ∈ J and nonrenewable resource set N
Output: New mode sets M ′j ⊆Mj , j ∈ J and nonrenewable resource set

N ′ ⊆ N
1 ∀j ∈ J, M ′j ←Mj ; N ′ ← N ;
2 Remove non-executable modes w.r.t. renewable resources from M ′j for all
j ∈ J ;

3 Remove non-executable modes w.r.t. nonrenewable resources from M ′j for all
j ∈ J ;

4 if ∃ j ∈ J : M ′j = ∅ then
5 return Instance infeasible
6 end

7 repeat

8 Remove redundant nonrenewable resources from N ′.;
9 Find the set Bj of ine�cient modes in M ′j for all j ∈ J .;

10 ∀j ∈ J, M ′j ←M ′j \Bj ;
11 until (∀j ∈ J : Bj = ∅) ∨N ′ = ∅;
12 return M ′j , j ∈ J and N ′

Algorithm 1: Preprocessing: Elimination of modes and nonrenewable re-
sources

In the presence of GPRs, we �rstly determine the minimum timelag δmin
i,j for all

precedence relations (i, j):

δmin
i,j = min

k∈Mi,l∈Mj

{δi,j,k,l} (2.11)

Then, we generate a graph based on the precedence relations (i, j) with the arc
weights δmin

i,j .
We solve two longest path problems in the above graph with a procedure similar

to the Bellman-Ford algorithm to determine the longest path P (0, i) from the dummy
node 0 to every node i and the longest path P (i, n + 1) from every node i to the
dummy node n+1 unless the underlying MRCPSP instance is infeasible. If a negative
cycle is found, the latter is the case. Otherwise, we can set lb(si) to the length
l(P (0, i)) of the longest path from 0 to i in the precedence network. ub(si) can be
set to T − l(P (i, n+ 1)).

As the dummy nodes 0 and n+1 represent the start and the end of the project (See
Sect 2.1.3), it must hold that l(P (0, i)) ≥ 0 and l(P (i, n+1)) ≥ mink∈Mi

{di,k}. Note
that with SPRs we can use the more e�cient forward-backward recursion procedure
[16] to compute lb(si) and ub(si).

In the mathematical models for the MRCPSP with SPRs and GPRs in Chapt. 5
and Chapt. 6, we assume, that the parameters are those obtained after the applica-
tion of the above preprocessing techniques.
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Figure 2.2: AoN network for example

2.5 An example for the MRCPSP with GPRs

Fig. 2.2 visualizes the precedence network for a small instance of the MRCPSP
with GPRs with �ve jobs and two dummy jobs. For this example, we consider one
renewable resource (machines) and one nonrenewable resource (a project budget)
with maximal capacities Cρ = 3 and Cν = 10, respectively.

The nodes correspond to all possible job-mode combinations and an arc is drawn
between two nodes if there is a precedence relation between the jobs in the respective
nodes1.

Firstly, we apply the preprocessing procedures of the last section. Alg. 1 leads to
the result, that the job-mode combinations 1;2, 3;1, 4;2 and 5;2 are non-executable
w.r.t. the nonrenewable resources, i.e. these job-mode combinations cannot be
included in a feasible schedule with a budget of 10 units. Moreover, the job-mode
combination 2;2 is ine�cient, i.e. the removal of 2;2 does not lead to an increase of
the optimal makespan.

1Note, that in the general version of the MRCPSP with GPRs we would have to connect the
dummy node 0 to every job j ∈ J and every job j ∈ J to the dummy job 6 to correctly model the
start and end of the project. Because of the special structure in this example, this is not necessary
and for the sake of simplicity, we only connect 0 to the jobs with no predecessors and the jobs with
no successors to 6.
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Figure 2.3: AoN network for the resulting SRCPSP

As now, every job can only be processed in one mode and the timelag on the arc
leaving a job corresponds to the duration of the respective job, we are confronted
with an instance of the SRCPSP with SPRs (see Fig. 2.3).

An ordered list L of jobs, which ful�lls

If L[m] ∈ SL[n] =⇒ n < m

is called a precedence-feasible activity list (AL) [16]. The SSGS constructs feasible
schedules for the SRCPSP with SPRs from precedence-feasible ALs [16].

The principle of the SSGS is simple: Iterate through L in ascending index order
and schedule the respective activities at the earliest point in time such that the
resulting schedule is resource and precedence feasible.

For the example of Fig. 2.3, we can determine 30 di�erent precedence-feasible
ALs. Let us for example consider the AL L = (0, 3, 1, 2, 4, 5, 6). If we apply the
SSGS to L we obtain the feasible schedule visualized in Fig. 2.4 with the makespan
Dmax = 6.

The makespan for our example project cannot be shorter than

LB1 =

⌈∑
i∈J c

ρ
i,k · di

Cρ

⌉
Thus, LB1 = 6 is a lower bound on the makespan [16] and our schedule is by chance
optimal.

Note, that in our example, we added two simpli�cations to the MRCPSP with
GPRs. Firstly, there is only one nonrenewable resource, in which case �nding a feasi-
ble mode assignment s.t. nonrenewable resource constraints is solvable in polynomial
time. Secondly, the AoN network is acyclic. In this case, there is a polynomial time
algorithm for the feasibility problem of the SRCPSP with GPRs [59] and of the
resource relaxation of the MRCPSP with GPRs.
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Chapter 3

CP and SAT Solving for the

RCPSP

3.1 Introduction to CP

The following section shall give a short overview over the theory of CP. It is mostly
based on the books of Apt [5], Baptiste et al. [8] and Rossi et al. [66]. This section
does not tackle the theory of CP in complete, i.e. the intent is to only provide the
necessary basics to the reader.

3.1.1 Preliminaries

One can apply CP techniques to solve a constraint satisfaction problem (CSP) or a
constraint optimization problem (COP).

A COP (CSP) is de�ned on a �nite set of variables X = {x1, . . . , xn} with
the domains D1, . . . , Dn, and on a set of constraints C = {Ck(Xk) : k = 1 . . . , p}
containing variables from the sets Xk with the index set Ik:

Xk = {xj : j ∈ Ik} ⊆ X, k = 1, . . . , p.

More precisely, a constraint Ck(Xk) is a subset of the Cartesian product
∏
j∈Ik Dj .

De�nition 3.1.1. Let X be a �nite set of variables with the domain set D =
{D1, . . . , Dn}. Moreover, let C be a �nite set of constraints. With an objective
function o : D1 × · · · × Dn 7→ R to be minimized or maximized, we call the tuple
P = (o,X,D, C) a COP. If the problem P comes without an objective function, we
call P = (X,D, C) a CSP.

In this dissertation, we assume w.l.o.g. that P is a minimization problem. More-
over, we restrict ourselves to �nite integer domains Dk = {lb(xk), . . . , ub(xk)}. Note,
that one can also tackle domains consisting of real values with CP concepts [5].

A vector a = (a1, . . . , an) containing an assignment of the variables xk, k ∈
{1, . . . , n} to the values ak ∈ Dk is called a feasible solution of the COP (CSP) P, if

21
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(aj)j∈Ik ∈ Ck(Xk), ∀k = 1, . . . , p. Moreover, if o(a) ≤ o(a′) for all feasible solutions
a′, a is an optimal solution of the COP P.

Note, that constraints can be stated explicitly by providing a concrete set of
assignments Bk ⊆

∏
j∈Ik Dj or implicitly by giving a formula on certain variables

which has to be ful�lled, e.g. (x1)3 + (x2)3 = (x3)3, xi ∈ {1, . . . , n}, ∀i = 1, 2, 3.
In the context of CSPs, it is also important to de�ne the notion of local and

global consistency:

De�nition 3.1.2. Consistency

1. A CSP P = (X,D, C) is globally consistent, if there exists a feasible solution
to P.

2. A CSP P = (X,D, C) is locally consistent w.r.t. the subset C′ ⊆ C, if
P ′ = (X,D, C′) is globally consistent.

3. The constraint Ck(Xk) is called locally consistent, if P = (X,D, C) is
locally consistent w.r.t. the subset C′ = {Ck(Xk)}.

4. A CSP P = (X,D, C) is inconsistent, if no feasible solution of P exists.

CP solvers apply constraint propagation algorithms to decide about the consis-
tency status of a CSP. A constraint propagation algorithm prop : D → D′ =
{D′1, . . . , D′n} transforms P = (X,D, C) into P ′ = (X,D′, C) such that

prop(Dk) = D′k ⊆ Dk,∀k = 1, . . . , n.

Moreover, it holds that, if a is a feasible solution to P, then a is a feasible solution
to P ′. The aim is to obtain a problem P ′ = (X,D′, C), from which we can deduce a
feasible solution of P or show that no such solution exists. Thus, constraint propaga-
tion algorithms try to prove global consistency or inconsistency of a CSP. Note, that
if a constraint propagation algorithm obtains a problem P ′ such that there exists a
k ∈ {1, . . . , n} with D′k = ∅, we can deduce the inconsistency of the CSP P.

Finding a feasible solution of a CSP is NP-complete, as a CSP is a generaliza-
tion of the SAT-problem [33]. Thus, it is unlikely that there is an e�cient constraint
propagation algorithm, which decides about global consistency or inconsistency of
a CSP [1]. Therefore, in general constraint propagation algorithms aim at trans-
forming a CSP into an equivalent version from which one can decide about the local
consistency of the original CSP.

There are di�erent notions of consistency w.r.t. constraints from which one can
deduce local consistency. For example, constraint propagation algorithms can lead
to hyper-arc consistency or bound consistency of a constraint.



3.1. Introduction to CP 23

De�nition 3.1.3.

1. A constraint Ck(Xk) is hyper-arc consistent, if for all j ∈ Ik and all ajl ∈ Dj,

there exists a vector a = (ai)i∈Ik ∈ Ck(Xk) with aj = ajl .

2. A constraint Ck(Xk) is bound consistent, if for all j ∈ Ik and all ajl ∈
{lb(xj), ub(xj)}, there exists a vector a = (ai)i∈Ik ∈ Ck(Xk) with aj = ajl .

Note, that hyper-arc consistency is a stronger condition than bound consistency,
as {lb(xj), ub(xj)} ⊆ Dj .

Clearly, if a constraint is hyper-arc consistent or bound consistent, the CSP with
only the latter constraint is globally consistent. However, hyper-arc consistency or
bound consistency of every constraint of a CSP does not lead to global consistency of
the latter. Note, that there exist numerous other consistency notions for constraints
(see [5]).

Example 3.1.1. Constraint propagation to obtain hyper-arc (bound) con-

sistency

Consider a CSP with the variables x1 ∈ {1, 2, 3, 4} and x2 ∈ {1, 2, 3} and the con-
straint

x1 = dx2 , where d = (d1, d2, d3) = (3, 4, 5).

The above constraint is also known as the element-constraint in the CP community
[85], as the variable x1 is equal to x2 − th element of the vector d.

A constraint propagation algorithm which �rstly updates the domain of x1 to D1∩
{dx2 : x2 ∈ {1, 2, 3}}, i.e. to {3, 4} and then D2 to {x2 : x2 ∈ {1, 2, 3}∧dx2 ∈ {3, 4}},
i.e. to {1, 2}, leads to hyper-arc consistency (and clearly also bound consistency) of
the above constraint.

As mentioned above, it is unlikely to e�ciently decide about global consistency
or inconsistency of a CSP solely by constraint propagation. Therefore, CP solvers
apply a combination of search and constraint propagation. Backtracking search in
combination with constraint propagation is a well-known algorithm to solve a CSP
(see Algorithm 2).

The idea of backtracking with constraint propagation (BCP) is straightforward.
In one iteration of the repeat-loop starting in line 3, the �rst element is taken from
a list of nodes L at which a node corresponds to a subproblem Pact of P. Firstly,
a constraint propagation algorithm prop updates the variable domains in Dact. If
there exists one variable with empty domain in Dact after propagation, we continue
with the next iteration of the repeat-loop or leave the repeat-loop. If the domains
of all variables only consist of one variable, the respective solution a is tested. If a
is feasible, a is returned and the algorithm is aborted. Otherwise, we proceed with
the next iteration of the repeat-loop. If there exists at least one variable with at
least two values in Dact

i , we choose one of these variable xi and split the integer
domain w.r.t. the value vi ∈ Dact

i . In the next iteration of the repeat-loop, the
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Input: CSP P = (X,D, C).
Output: Feasible solution a or Instance infeasible (no solution exists).

1 L← ∅;
2 Append P to L;
3 repeat

4 Pact ← L[0];
5 Remove L[0] from L;
6 Dact ← prop(Dact);
7 if ∃ xi ∈ X : Dact

i = ∅ then
8 continue;
9 end

10 if ∀ xi ∈ X : Dact
i = {ai} then

11 if a = (a1, . . . , an) is a feasible solution. then
12 return a;
13 else

14 continue;
15 end

16 end

17 Choose unassigned variable xi in Pact = (X,Dact, C) and value vi ∈ Dact
i ;

18 Dact,1
i ← {lb(Dact

i ), . . . , vi}; Dact,2
i ← {vi + 1, . . . , ub(Dact

i )};
19 Prepend P2 = (X,Dact,2, C) to L ; Prepend P1 = (X,Dact,1, C) to L;
20 until L = ∅;
21 return Instance infeasible

Algorithm 2: Backtracking with constraint propagation
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problem Dact
i with the new domain D′i) = {lb(Dact

i ), . . . , vi} is considered, as Pact,1i

is prepended to L after Pact,2i (see line 19 in Algorithm 2). Algorithm 2 terminates
by returning a feasible solution or by returning that the instance P is infeasible.

In our presentation of BCP, we choose a branching strategy known as domain
splitting [66] (see line 17 in Algorithm 2). Other strategies for creating new choice
points in the search tree are 2-way or d-way branching [66]. 2-way branching creates
two new nodes from the incumbent node by selecting a value vi from the domain of
the chosen variable xi and adding the constraint xi = vi to P act in the �rst node
and the constraint xi 6= vi to the second node. d-way branching (also known as
enumeration) creates |Dact

i | new choice points by successively adding the constraints
xi = vi for all vi ∈ Dact

i to P act. Hwang and Mitchell [45] show that 2-way branching
is strictly more powerful than d-way branching. It can be easily seen that d-way
branching can be imitated by 2-way branching without a signi�cant loss of e�ciency.
To prove their claim, the authors show that the claim exchanging 2-way with d-way
in the last statement is not true. In addition, Van Hentenryck [84] compares the
d-way branching strategy to the domain splitting strategy.

To decide about the selection of the unassigned variable and a corresponding
domain value, CP solvers apply variable and value ordering heuristics. Di�erent
variants for ordering the variables and respective domain values are discussed in
[66]. One example for a technique for variable and value selection is to choose the
unassigned variable with the smallest domain and then the �rst value of the associ-
ated variable domain. In Sect. 3.2 and Sect. 3.3, we discuss a more sophisticated
variable and value ordering heuristics which has turned out to be e�cient in SAT
solving and also in the context of the RCPSP.

BCP explores the search tree with a depth-�rst search strategy. This is due
to the fact, that in the repeat-loop, the algorithm always selects a node from the
currently maximal depth level in the search tree based on the variable and value
ordering heuristic.

Limited discrepancy search is another technique for the search tree exploration
which di�ers from the depth-�rst search principle [38]. With this technique, it can
be the case that a node from a depth level m can be processed before a node from
the depth level n, where m < n. Harvey and Ginsberg [38] theoretically and experi-
mentally show, that limited discrepancy search is a more e�ective way to explore the
search tree in the context of globally consistent CSPs compared to the depth-�rst
search strategy used in BCP.

BCP leads to a con�ict or dead end, if both choice points arising from a node
lead to inconsistent CSPs, i.e. if one of the conditions in lines 7 and 13 of Algorithm
2 is true for both choice points. In case of a con�ict, Algorithm 2 backtracks from
at node a the depth level m to a node at the depth level m− 1. Hence, it backtracks
chronologically. In some cases, it can be possible to backtrack from the depth level
m to the depth level n, where n < m− 1, i.e. to backtrack non-chronologically. This
technique is also known as backjumping [66]. We will discuss backjumping in the
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context of SAT solving in Sect. 3.2 and in the context of an exact solution method
for the RCPSP in Sect. 3.3.

BaB algorithms with constraint propagation can be applied to �nd an optimal
solution of a COP (see Algorithm 3). The principle of BaB with constraint prop-
agation is similar to the BaB algorithm implemented in MIP solvers introduced by
Dakin [21].

The node with the highest priority is selected from the list L (see line 6 in Algo-
rithm 3). Achterberg [2] summarizes and evaluates di�erent strategies for calculating
the priority of a node in the context of MIP. These are based on the objective value
of the linear programming relaxation of the MIP formulation stored in a node. His
proposed node selection strategies can be generalized for the application in a BaB
algorithm with constraint propagation.

Therefore, a lower bounding function boundo : 2D1×···×Dn → R depending on the
objective function o has to be given, where 2D1×···×Dn represents the power set of
D1 × · · · ×Dn. boundo has to ful�ll the following two conditions:

F1 ⊆ F2 ⇒ boundo(F1) ≥ boundo(F2) (3.1)

boundo(F1) ≤ o(x), ∀x ∈ F1 (3.2)

boundo is also applied to decide if a node can be pruned (see line 21 in Algorithm 3).
Moreover, every time a better solution is found, we add a constraint to the

constraint set C, forcing the objective value of new solutions to be better than or
equal to the best known value o(a∗) (see line 15 in Algorithm 3). Note, that the
underlying CP solver has to provide a mechanism for the handling of the added
constraint on the objective function.

In many applications the objective function can be modeled as a linear combi-
nation of the decision variables o(x) = µ1 · x1 + · · · + µn · xn. In this case, we can
de�ne boundo as follows:

boundo(Dact
1 × · · · ×Dact

n ) = µ1 · xlb1 + · · ·+ µn · xlbn ,

where xlbk =

{
lb(Dact

k ), if µk ≥ 0
ub(Dact

k ), else

This is a correct lower bounding function for the above objective function, as it ful�lls
(3.1) and (3.2).

Moreover in this case, the constraint µ1 · x1 + · · ·+ µn · xn ≤ o(a∗) can be added
to the constraint set. A constraint propagation algorithm on the above constraint
can deduce the following upper bound update:

ub(Dact
k )←

 min

{
ub(Dact

k ),

⌊
a∗−

∑
i 6=k µj ·xlbj
µk

⌋}
, if µk ≥ 0

ub(Dact
k ), else

(3.3)
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Input: COP P = (o,X,D, C).
Output: Optimal solution a∗ or Instance infeasible (no solution exists).

1 L← ∅;
2 o(a∗)←∞;
3 Calculate priority prio of node P;
4 Append (prio,P) to L // Elements of L sorted by descending prio of nodes;
5 repeat

6 Pact ← (L.first).value;
7 Remove L.first from L;
8 Dact ← prop(Dact);
9 if ∃ xi ∈ X : Dact

i = ∅ then
10 continue;
11 end

12 if ∀ xi ∈ X : Dact
i = {ai} then

13 if (a = (a1, . . . , an) is a feasible solution) ∧ (o(a) < o(a∗)) then
14 a∗ ← a;
15 C ← C ∪ {o(x) ≤ o(a∗)};
16 continue;
17 else

18 continue;
19 end

20 end

21 if boundo(Dact
1 × · · · ×Dact

n ) ≥ o(a∗) then
22 continue;
23 end

24 Choose unassigned variable xi in Pact = (X,Dact, C) and value vi ∈ Dact
i ;

25 Dact,1
i ← {lb(Dact

i ), . . . , vi}; Dact,2
i ← {vi + 1, . . . , ub(Dact

i )};
26 Calculate prio1 and prio2 for P1 = (X,Dact,1, C) and P2 = (X,Dact,2, C);
27 Add (prio1,P1) and (prio2,P2) to L;
28 until L = ∅;
29 if o(a∗) =∞ then

30 return Instance infeasible

31 else

32 return a∗

33 end

Algorithm 3: BaB with constraint propagation
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Moreover, it can deduce the following lower bound update:

lb(Dact
k )←

 max

{
lb(Dact

k ),

⌊
a∗−

∑
i6=k µj ·xubj
µk

⌋}
, if µk < 0

lb(Dact
k ), else

(3.4)

where xubk =

{
ub(Dact

k ), if µk ≥ 0
lb(Dact

k ), else

If the domains of all variables xk ∈ X are updated based on (3.3) and (3.4),
this leads to bound consistency of the constraint on the objective function or to
inconsistency of the latter.

Achterberg [1] describes an e�cient procedure for updating the domains based
on (3.3) and (3.4) in the course of the BaB algorithm without having to recalculate
the complete term on the right hand side of (3.3) and (3.4) in every node of the BaB
tree and to only consider situations, where there is a possibility of an update. He also
proposes strategies to avoid numerical errors, which can appear if the coe�cients µk
are real numbers.

3.1.2 CP for scheduling problems

Standard CP solvers o�er the possibility to model complicated problem speci�c struc-
tures by global constraints [5]. Informally speaking, a problem structure which is nor-
mally expressed by a number of e.g. linear constraints is captured in one expression.
Bessière and Van Hentenryck [12] provide a formal de�nition of global constraints.

cumulative is a well-known global constraint for the modeling of renewable re-
sources in the context of scheduling problems [4]. In case of a SRCPSP, we can
model the renewable resource constraints (2.6) by the following linear constraints
[50]: ∑

t∈{lb(si),...,ub(si)}

yi,t = 1, i ∈ J (3.5)

∑
i∈J

min{t ; ub(si)}∑
s=max{t−di+1 ; lb(si)}

cρi,r · yi,t ≤ C
ρ
r , ∀t = 0, . . . , T − 1, ∀r ∈ R (3.6)

yi,t ∈
{
{0, 1}, if t ∈ {lb(si), . . . , ub(si)}
{0}, if t ∈ {0, . . . , T} \ {lb(si), . . . , ub(si)}

,∀i ∈ J (3.7)

With the binary decision variables yi,t, t = 0, . . . , T , the starting time of job i is
modeled, i.e. yi,t is equal to one if job i starts at time t and zero else.

CP solvers like e.g. Gecode [34] provide the possibility to model renewable re-
source constraints (2.6) in a more compact way through cumulative:

cumulative(s,d, cρr , C
ρ
r ), ∀r ∈ R
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In the above formulation, the usage of |n+ 2| · (ub(si)− lb(si) + 1) binary variables is
omitted, i.e. we can directly use the integer variables si ∈ {lb(si), . . . , ub(si)}. Fur-
thermore, there are only |R| cumulative constraints to model renewable resources,
whereas (3.6) integrates |R| · T linear constraints.

Besides a feasibility check w.r.t. (2.6) (without the index xj in case of the SR-
CPSP), cumulative integrates specialized constraint propagation algorithms like e.g.
TP and edge �nding (EF) [8]. These algorithms lead to stronger domain reductions
compared to propagating every linear constraint from (3.5) - (3.6) separately.

If the deadline T is arbitrary, the problem of �nding a feasible schedule w.r.t.
the renewable resource constraints with sn+1 ≤ T is already NP-complete for the
single mode case with |R| = 1 [73]. Thus, it is unlikely that there exists an e�cient
constraint propagation algorithm which obtains hyper-arc or bound consistency of
cumulative. TP and EF are all polynomial constraint propagation algorithms and
maintain a weaker level of local consistency.

TP works with compulsory parts cpj of the jobs j ∈ J [74]:

cpj =

{
{ub(sj), . . . , lb(sj) + dj − 1} , if lb(sj) + dj > ub(sj)

∅, else
(3.8)

If cpj 6= ∅, we can conclude that job j is surely processed in every time interval
[t, t+ 1[, where t ∈ cpj .

On the one hand, TP can detect an inconsistency, i.e. a time point tκ at which
there is a violation of the renewable resource capacity of r ∈ R:∑

j:tκ∈cpj

cρj,r > Cρr (3.9)

An e�cient algorithm for the inconsistency check can be implemented with a
time complexity of O(|J | · log(|J |)) with data structures called resource pro�les1 [73].

If no inconsistency is detected, TP tries to deduce lower and upper bound up-
dates. If for job i ∈ J there is a time point lb(si) ≤ t∗ ≤ lb(si) + di − 1 such
that

cρi,r +
∑

j 6=i:t∗∈cpj

cρj,r > Cρr , (3.10)

it follows, that si must be greater than t∗, i.e. we can update lb(si)← t∗ + 1.
This procedure can be repeated until there is a time point lb(si) ≤ t∗ = tmax ≤

lb(si) + di − 1 which either ful�lls (3.10) and

∀t : tmax + 1 ≤ t ≤ tmax + di : cρi,r +
∑

j 6=i:t∈cpj

cρj,r ≤ C
ρ
r (3.11)

and tmax < ub(si) (3.12)

1These are also known as eventlists [6].
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or (3.10) and tmax ≥ ub(si). In the �rst case, tmax+1 is the best possible lower bound
for job i deducible by TP. In the second case, TP again found an inconsistency. Note,
that TP applies a symmetric procedure to process upper bound updates.

An e�cient TP algorithm for the deduction of possible domain updates for all
jobs j ∈ J , can be implemented with a time complexity of O(|J |2) again using
resource pro�les [73].

EF applies reasoning based on the energy ei = di · cρi,r of the jobs i ∈ J w.r.t. the
renewable resource r ∈ R. Therefore, let Ψ ⊆ J be a set of jobs and let lb(Ψ), ub(Ψ)
and eΨ be de�ned as follows:

lb(Ψ) = min
i∈Ψ
{lb(si)}

ub(Ψ) = max
i∈Ψ
{ub(si) + di}

eΨ =
∑
i∈Ψ

ei

A SRCPSP instance is energy-feasible w.r.t. resource r ∈ R, if:

∀ Ψ ⊆ J : eΨ ≤ (ub(Ψ)− lb(Ψ)) · Cρr .

Note, that if a SRCPSP instance is resource-feasible w.r.t. r ∈ R, i.e. it ful�lls (2.6),
it is also energy-feasible but the converse does not hold.

Hence, the following theorem can be stated [8]:

Theorem 3.1.1. If there exists a job i ∈ J and a set Ψ ⊆ J\{i}, such that:

(ub(Ψ)− lb(Ψ ∪ {i})) · Cρr < eΨ∪{i}, (3.13)

then all jobs j ∈ Ψ have to end before the end of job i.

Assume now, that we found a job i and a set Ψ ful�lling the above theorem.
Moreover, let rest(Ψ, i) be de�ned as follows:

rest(Ψ, i) = eΨ − (Cρr − c
ρ
i,r) · (ub(Ψ)− lb(Ψ)).

Informally speaking, rest(Ψ, i) is the energy consumed by the jobs j ∈ Ψ which is
above or below the rectangle with the area (Cρr − cρi,r) · (ub(Ψ)− lb(Ψ)).

If rest(Ψ, i) > 0, there are at least drest(Ψ, i)/cρi,re time points in the interval
[lb(Ψ), ub(Ψ)[ at which job i cannot be processed. One can see, that in the above
case job i cannot start at any time point t ∈ {lb(si), . . . , lb(Ψ)+drest(Ψ, i)/cρi,re−1}
as this would lead to a violation of Theorem 3.1.1 or a resource overload. Hence,
lb(si) can be updated to lb(Ψ) + drest(Ψ, i)/cρi,re.

If all jobs j ∈ Ψ must end before the end of i, then also all jobs j ∈ Ψ′ ⊆ Ψ must
end before the end of i. Moreover, there can be di�erent sets Ψ ⊆ J\{i}, ful�lling
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(3.13). An EF algorithm deduces the maximal possible lower bound update for every
job i ∈ J , i.e. it computes:

lbmax(si) = max
Ψ⊆J\{i}:Ψ ful�lls (3.13)

max
Ψ′⊆Ψ:rest(Ψ′,i)>0

{lb(Ψ′) + drest(Ψ′, i)/cρi,re}. (3.14)

Note that similar updates can be deduced for ub(si), if we �invert� the instance,
i.e. maximal ending times ub(si)+di are converted to minimal starting times lb′(si) =
T − (ub(si)+di) and minimal starting times lb(si) to maximal ending times ub′(si)+
di = T − lb(si).

Baptiste et al. [8] propose an EF algorithm with a worst case time complexity
O(|J |2). Mercier and Van Hentenryck [55] show, that this algorithm is incomplete,
i.e. it does not compute the maximal possible lower bound w.r.t. (3.14). They also
provide a complete EF algorithm running in O(|J |2 · k) where k ≤ |J | is the number
of di�erent values in {cρ1,r, . . . , c

ρ
n,r} for r ∈ R. Vilím [88] improves the worst case

time complexity to O(|J | · log(|J |) · k).
Baptiste et al. [8] theoretically compare many di�erent propagation algorithms

for cumulative. Nothing can be said about TP being stronger than EF or vice versa.
However, they show that both TP and EF are weaker than energetic reasoning [8,
p.67] which has a worst case time complexity of O(|J |3).

The following two examples show possible deductions based on EF and TP, and
that neither of the two are better than the other one.

Example 3.1.2. EF is not stronger than TP

One renewable resource with a maximal capacity Cρ = 2 and two jobs with the
following input are given:

(domain(s1), d1, c
ρ
1) = ({3, 4, 5}, 2, 1)

(domain(s2), d2, c
ρ
2) = ({2, 3, 4}, 3, 2)

The compulsory part of job 2 cp2 = {4}. As lb(s1) + d1 = 3 + 2 ≥ 4, starting job 1
at its lower bound would lead to a resource con�ict at the time point tmax = 4. As
tmax ful�lls (3.10), (3.11) and (3.12), tmax + 1 = 5 is the maximal possible lower
bound for job 1 deducible by TP. The respective lower bound update is visualized in
Fig. 3.1.

EF does not lead to a lower bound update of job 1, as

(ub({2})− lb({1, 2})) · 2 ≥ 2 · 1 + 3 · 2

Hence, both jobs 1 and 2 �t in the respective rectangle (see Fig. 3.2). Thus, there is
no set Ψ for job 1 ful�lling the condition of Theorem 3.1.1, which is necessary for a
lower bound update of job 1 based on EF.
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time horizon

resource usage
Update lb(s1)

2 3 4 5

Cρ = 2

cp3

1

Figure 3.1: Example 3.1.2, TP

time horizon

resource usage

2

lb({1, 2}) ub({2})

7

Cρ = 2

cp3

1
2

Figure 3.2: Example 3.1.2, EF, Theorem 3.1.1 not applicable for job 1
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time horizon

resource usage

2 6 8

Cρ = 2

cp2 cp1

Figure 3.3: Example 3.1.3: TP, compulsory parts

time horizon

resource usage

1 4 6 7 10

Cρ = 2

2

3 1in

1out

Figure 3.4: Example 3.1.3, EF, Theorem 3.1.1 applies for job 1

Example 3.1.3. TP is not stronger than EF

One renewable resource with the maximal capacity Cρ = 2 and three jobs with the
following input are given:

(domain(s1), d1, c
ρ
1) = ({1, . . . , 6}, 7, 1)

(domain(s2), d2, c
ρ
2) = ({1, 2}, 5, 1)

(domain(s3), d3, c
ρ
3) = ({1, . . . , 4}, 3, 1)

Job 1, job 2 and job 3 have the compulsory parts cp1 = {6, 7}, cp2 = {2, . . . , 5}
and cp3 = ∅, respectively (see Fig. 3.3). TP does not lead to a lower bound update of
job 1, as it can be scheduled at its lower bound without causing a resource violation.

EF can possibly deduce a lower bound update, as condition (3.13) of Theorem
3.1.1 is ful�lled for job 1 and Ψ = {2, 3} (see also Fig. 3.4):

(ub({2, 3})− lb({1, 2, 3})) · Cρ = 12 < 15 =

3∑
i=1

cρi · di.

As rest({2, 3}, 1) = 2 > 0, it holds, that the starting time of job 1 must be greater
than or equal to three (see Fig. 3.5). One can verify that this is the maximal possible
lower bound for job 1 which can be deduced by EF, i.e. lbmax(s1) = 3.
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time horizon

resource usage

1 3 7 10

Cρ = 2

(ub({2, 3} − lb({2, 3}) · (2− 1)

rest({2, 3}, 1)

Update lb(s1)

1

Figure 3.5: Example 3.1.3, EF, Lower bound update based on (3.14)

Vilím [89] proposes an algorithm combining TP and EF which is stronger than
EF but still weaker than energetic reasoning. TP, EF and the combination of both
are the most widely used constraint propagation rules for cumulative, as they have
a lower worst case time complexity compared to energetic reasoning.

3.2 Introduction to SAT Solving

The SAT problem can be de�ned as follows:

De�nition 3.2.1. Find an assignment for the boolean variables xi ∈ {0, 1}, i =
1, . . . , n, such that a given conjunction of clauses (disjunctions) consisting of the
literals xi or ¬xi is true or prove that no such assignment exists.

The conjunction B under consideration can be written as follows:

B = D1 ∧ · · · ∧Dp,

where Dk = lk1 ∨ · · · ∨ lkik , ∀k = 1, . . . , p,

∃ i ∈ {1, . . . , n} : lkj ∈ {xi,¬xi}, ∀j = 1, . . . , ik, ∀k = 1, . . . , p,

xi ∈ {0, 1}, i = 1, . . . , n.

The SAT-problem was the �rst problem proven to be NP-complete [33]. By
a polynomial transformation of the SAT problem to the 3-SAT-problem, the SAT
problem consisting of clauses with up to three literals, it can be shown that even this
rather small SAT problem is already NP-complete [33].

Davis and Putnam [22] were the �rst to propose a solution approach for the SAT
problem. The re�ned version of the latter approach proposed by Davis, Logemann,
and Loveland [23] is known as the Davis�Putnam�Logemann�Loveland (DPLL) al-
gorithm. The DPLL algorithm is a backtracking algorithm similar to Algorithm 2
in the context of CP solving. In every iteration, it creates two new choice points
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by choosing an unassigned variable xi and assigning it to 0 (false) and 1 (true)
successively (see line 17 in Algorithm 2).

The propagator prop(. . . ) (see line 6 in Algorithm 2) applies unit propagation
(UP). UP processes the following update for the clauses Dk, k = 1, . . . , p:

(∃ j ∈ {1, . . . , ik} :
∨
t6=j

lkt = 0) =⇒ lkj = 1 (3.15)

An e�cient implementation of UP can be realized by the integration of the two
watched literal scheme [56]. An advantage of this procedure is that clauses do not
have to be checked for every assignment of its literals but only when one of the two
watched literals is assigned to zero. Another advantage is that the watched literals do
not have to be changed when the DPLL algorithm backtracks [1]. The experiments
of Moskewicz et al. [56] show that the integration of the two watched literal scheme
for the implementation of UP can lead to signi�cant performance improvements
compared to other state-of-the-art implementations at that time.

The DPLL algorithm additionally applies pure literal elimination. If there exists a
boolean variable xi such that there are no pairs of literals l

k1
j1
, lk2j2 ∈ {xi,¬xi}, k1 6= k2

with lk1j1 = ¬lk2j2 , the clauses containing literals l ∈ {xi,¬xi} can be eliminated. This
is due to the fact, that we can always �nd an assignment for the respective variable
xi such that the clauses containing xi are true.

Modern SAT solvers are based on the DPLL algorithm in combination with
con�ict analysis (CA) techniques (see [53] and [91]). A con�ict occurs if through
UP a clause Ds becomes false, i.e. ls1 ∨ · · · ∨ lsik = 0.

The CA mechanism tries to �nd new clauses for the SAT problem based on the
con�ict at hand. These new clauses can possibly prune nodes of the search tree in
later iterations. Furthermore, CA can deduce backjumps, i.e. with CA, the DPLL
algorithm becomes a non-chronological backtracking procedure. The principles of
CA are outlined in Sect. 3.2.1. Our description of CA is mainly based on the
publications of Marques-Silva and Sakallah [53], Zhang et al. [91], Achterberg [1]
and Schutt [73].

Another important part of the DPLL algorithm is the choice of the boolean
variable and respective value based on which the search continues. Modern SAT
solvers apply a con�ict driven variable and value selection strategy [56]. Moreover,
periodical restarts of the SAT solver with information from the previous run have
turned out to be e�cient [56]. We discuss the concepts of con�ict driven search and
restarts in Sect. 3.2.2.

There exist many di�erent implementations of SAT solvers, which di�er in the
CA procedures and the search strategies. Zhang et al. [91] experimentally evaluate
various implementations.

3.2.1 Con�ict Analysis

Every time the DPLL algorithm detects a con�ict, the CA mechanism is initialized by
building up a con�ict graph G = (N,E). The nodesN ⊆ {x1, . . . , xn,¬x1, . . . ,¬xn}∪
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{κ} of the directed graph G correspond to the literals involved in the con�ict and
the con�ict κ itself. An arc e = (¬lks , lkj ) ∈ E is drawn between the literals ¬lks and
lkj , if UP applied to the clause Dk led to the deduction lkj = 1 and

(
∨
t6=s,j

lkt ) ∨ lks = 0

was the reason for the deduction (see 3.15). Moreover, an arc e = (¬lκj , κ) ∈ E is
drawn from ¬lκj to the con�ict node κ, if lκj is an element of the con�ict clause Dκ,
i.e.

(
∨
t6=j

lκt ) ∨ lκj = 0.

Moreover, we distinguish between branching nodes (literals), i.e. nodes which were
assigned because of a branching decision and deduction nodes, i.e. nodes which were
assigned because of a deduction based on UP.

Every node also integrates information about the decision level, i.e. the depth
level in the search tree, where the respective literal was assigned.

For the deduction of a con�ict clause the node set is partitioned into two sets Nr

and Nc with Nr ∪ Nc = N and Nr ∩ Nc = ∅. Nr contains all branching nodes and
Nc contains the con�ict node. We can deduce the following con�ict clause D for the
problem at hand from the set K = {lr ∈ Nr : ∃ lc ∈ Nc with (lr, lc) ∈ E}:

D =
∨
lr∈K

¬lr

If the clause D is false in an iteration of the DPLL algorithm, this will again lead
to the con�ict κ. In general, every partition of the node set into a set containing
the branching nodes and a set containing the con�ict node leads to a con�ict clause.
State-of-the-art SAT solvers determine the con�ict clause based on an unique impli-
cation point de�ned as follows (see also [53], [91] and [1]):

De�nition 3.2.2. unique implication point (UIP)

A literal l in the con�ict graph G assigned in the decision level d of the search tree is
a UIP, if every path from the decision nodes at decision level d to the con�ict node
leads through l or through an UIP at a decision level d′ > d.

If every literal which was assigned after the UIP is added to the set Nc and the
other literals are added to the set Nr, we call the con�ict clause derived from the
partition {Nr, Nc} a UIP clause. The experiments of Zhang et al. [91] on benchmark
problems from microprocessor formal veri�cation and bounded model checking show
that the addition of the clause derived from the 1-UIP outperforms approaches using
other UIP clauses or other con�ict clause generation techniques. In this context, the
1-UIP is the UIP on the highest decision level which is closest to the con�ict node κ.

To apply non-chronological backtracking, the CA mechanism also generates 1-
UIP reconvergence clauses [1]. Therefore, assume that lud is the 1-UIP and d is the
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respective decision level. 1-UIP reconvergence clauses are based on a partition of the
node set N into Nr which contains all branching nodes and Nc which contains lud but
not necessarily κ. Nodes which are on the frontier of Nr, i.e. in the set R = {lr ∈
Nr : ∃ lc ∈ Nc with (lr, lc) ∈ E} de�ne the respective 1-UIP reconvergence clause
R as follows:

R =
∨
lr∈R
¬lr ∨ lud

Note that the 1-UIP reconvergence clause R is also called a clause not involving
a con�ict [91] as here the set Nc may not contain the con�ict node κ. In contrast to
that, κ must always be an element of the set Nc in a partition {Nr, Nc} leading to
a con�ict clause.

We now consider a special 1-UIP reconvergence clause derived from the partition
of N into the sets N̄r and N̄c which can be useful for non-chronological backtracking.
Assume therefore, that lbd is the branching node on the decision level d. Firstly, we
add lbd to N̄r and the 1-UIP lud to N̄c. All nodes coming after lbd on the paths
connecting lbd with the 1-UIP lud are inserted into the set N̄c and the remaining
nodes in the set N̄r. The respective 1-UIP reconvergence clause R only contains
the branching node lbd in the form ¬lbd from the current decision level d. The other
literals of R are all of smaller decision levels.

After the deduction of the 1-UIP con�ict clause and the special 1-UIP recon-
vergence clause R, the CA mechanism is initialized again with the latter clauses.
The branching decisions made at smaller decision levels which were involved in the
con�ict κ together with the two new clauses will lead to the deductions that lud = 0
and lbd = 0. If these new deductions together with the clause database again lead
to a con�ict, the DPLL algorithm can backtrack to the decision level d′ < d where
the last branching decision was made which led to the con�ict κ. If d′ < d − 1, the
backtracking move is a real backjump, as in contrast to standard backtracking, we
resume the algorithm at a decision level which is more than one unit smaller than
the current decision level.

With the following example, we aim at illustrating the theoretical concepts from
above. It is inspired by the example of Marques-Silva and Sakallah [53].
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Example 3.2.1. Con�ict analysis (clause learning and non-chronological

backtracking)

The following SAT problem is given:

D1 = ¬x1 ∨ x2 D2 = ¬x1 ∨ x3 ∨ x7

D3 = ¬x2 ∨ ¬x3 ∨ x4 D4 = ¬x4 ∨ x5 ∨ x9

D5 = ¬x4 ∨ x6 ∨ x10 D6 = ¬x5 ∨ ¬x6

D7 = ¬x8 ∨ ¬x10 D8 = x11 ∨ ¬x7

D9 = x11 ∨ x12 D10 = x1 ∨ x4 ∨ ¬x12

D11 = x11 ∨ ¬x9 D12 = ¬x11 ∨ ¬x5 ∨ x6

. . . . . .

xi ∈ {0, 1}, ∀i = 1, . . . , n

As indicated by the dots, the problem also consists of other clauses and variables. We
assume, that these are independent of the clauses written above, i.e. they integrate
di�erent variables xi, where i 6= 1, . . . , 12.

The DPLL algorithm makes the following branching decisions:

• x8 = 1 at decision level 1

• x11 = 0 at decision level 2

• At decision level 3 a variable xi, i 6= 1, . . . , 12 from the remaining problem is
chosen

• x1 = 1 at decision level 4

At decision level 4, a con�ict κ is detected by UP leading to the con�ict graph
visualized in Fig. 3.6. Note that the branching decision at level 3 has no e�ect
on the con�ict graph, as the remaining problem consists of clauses independent of
D1, . . . ,D12.

x4 is the 1-UIP, i.e. the UIP on the highest decision level 4 which is nearest to
the con�ict κ. If we add all literals which were assigned after x4 to the set Nc and the
remaining nodes to the set Nr, we obtain the 1-UIP con�ict clause C = x9∨x10∨¬x4.
This clause is added to our problem.

Furthermore, from the partition given by Nc = {x2, x3, x4} and the set Nr con-
sisting of the remaining nodes, we obtain the 1-UIP reconvergence clause R = ¬x1 ∨
x7 ∨ x4. This clause is also added to our problem.

The re-evaluation of the branching decisions at the levels 1 and 2 again leads to
a con�ict with the con�ict graph given in Fig. 3.7. Thus, both branching decisions
x1 = 1 and x1 = 0 at level 4 lead to a con�ict and all relevant branching decisions
have been made at levels smaller than 3. Hence, instead of continuing with the negated
assignment at the decision level 3 as in standard backtracking, the DPLL algorithm
can continue with the assignment x11 = 1 at the decision level 2.
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3.2.2 Con�ict-based variable-value selection strategies and restarts

A well-known variable and value selection strategy for the DPLL algorithm is the
variable state independent decaying sum (VSIDS) decision heuristic proposed by
Moskewicz et al. [56]. To realize this strategy, the SAT solver maintains con�ict
counters k0

i and k
1
i for every variable xi and its respective values 0 and 1 which are

initialized with zero.
Whenever a literal appears in a con�ict clause, the counter of the respective

variable-value combination is increased by one. For example, if the literal ¬xi is part
of a con�ict clause, the counter k0

i for the assignment xi = 0 becomes k0
i + 1. The

DPLL algorithm selects the unassigned variable and assignment with the highest
counter. Ties can be broken by arbitrary strategies. After a prede�ned period the
counters are decreased by a certain factor.

The motivation of this decision heuristic is to ful�ll newly generated con�ict
clauses, i.e. to drive the search away from con�icts. Therefore, the counter of older
con�ict clauses is also periodically decreased.

Restarting the DPLL algorithm is also a commonly applied technique of SAT
solvers. Therefore, the solution process is periodically stopped, i.e. all assignments
are undone, and restarted with the con�ict clauses and counters from the previous
run. The intuition behind this strategy is that in the new run, the SAT solver
has potentially more information about literals involved in con�icts. Therefore, the
DPLL algorithm can possibly circumvent con�ict-prone decisions earlier in the search
tree.

The benchmark results of Moskewicz et al. [56] show, that a SAT solver inte-
grating the VSIDS decision heuristic together with restarts and the two watched
literal scheme produces on average signi�cantly better results compared to other
then state-of-the-art implementations, especially on hard SAT instances.

3.3 Combination of CP and SAT techniques to solve the
RCPSP

The BaB algorithm with constraint propagation (see Sect. 3.1) applied in CP solvers
can be enhanced by SAT solving techniques, i.e. a CA mechanism, a con�ict-based
variable-value selection strategies and restarts. The generation of con�ict clauses in
the context of CP is also known as nogood recording [66].

Two recent optimization frameworks, SCIP [2] and G12 [83], provide a BaB algo-
rithm which combines CP and SAT solving techniques. LCG [62], an exact CP-SAT
hybrid integrated into G12, has turned out to be highly e�cient for variants of the
SRCPSP, i.e. the SRCPSP with SPRs and GPRs and the aim of makespan mini-
mization and the SRCPSP with SPRs and the aim of net present value maximization
(see [74], [77] and [75]).

The main approaches used in this dissertation, i.e. LCG and a SCIP-approach
are described in Sect. 3.3.1 and 3.3.2, respectively.
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3.3.1 Lazy clause generation

LCG was �rstly proposed by Ohrimenko et al. [62] and then re-engineered by Feydy
and Stuckey [28]. This solution procedure combines a BaB algorithm with constraint
propagation and a SAT solver.

Therefore, the domains {lb(si), . . . , ub(si)} of every variable si are encoded by
2 · (ub(si)− lb(si)) + 1 boolean variables in the SAT solver:

Jsi = tK : t = lb(si), . . . , ub(si)

Jsi ≤ tK : t = lb(si), . . . , ub(si)

The variables are true (1) if the respective equations are ful�lled in the recent
state of the BaB algorithm and false (0) otherwise. Moreover, clauses have to be
de�ned in the SAT solver about domain based reasoning:

Jsi = lb(si)K⇐⇒ Jsi ≤ lb(si)K
Jsi = ub(si)K⇐⇒ ¬Jsi ≤ ub(si)− 1K

Jsi = tK⇐⇒ Jsi ≤ tK ∧ ¬Jsi ≤ t− 1K, t ∈ {lb(si)− 1, . . . , ub(si)}
Jsi ≤ tK =⇒ Jsi ≤ t+ 1K, t ∈ {lb(si), . . . , ub(si)− 1}

Furthermore, an assignment of boolean variables in the course of the solution
process can be converted back to a domain of a variable si, i.e. domain(si) consists
of the values t ∈ {lb(si), . . . , ub(si)} for which

Jsi = tK is true,
or Jsi ≤ t′K with t′ ≥ t is true,
or ¬Jsi ≤ t′K with t′ < t is true.

To integrate clause learning, the constraint propagation algorithms have to pro-
vide explanations for their processed domain reductions. These are given as clauses
to the SAT solvers.

If for example cumulative captures TP and EF, it can explain the reasons for
inconsistencies or domain reductions in various di�erent ways, for example with a
naive explanation or a bound widening explanation (see also [74] and [72]). An
explanation for an inconsistency at the time point tκ w.r.t. the renewable resource
r ∈ R detected through TP (see (3.9)) is given as follows:∧

j:tκ∈cpj

Ej =⇒ false (3.16)

(5.35) can be divided into the sub-explanations Ej for every job participating in the
con�ict, i.e. having its compulsory part at time tκ. In a naive explanation, Ej is
given as follows:

Ej = Jlb(sj) ≤ sjK ∧ Jsj ≤ ub(sj)K (3.17)
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In this context lb(sj) and ub(sj) are the lower and upper bounds of the variable si
at the time the con�ict was detected.

In the bound widening explanation Ej is substituted by:

Ej = Jtκ − dj + 1 ≤ sjK ∧ Jsj ≤ tκK (3.18)

Note, that the bound widening explanation is potentially stronger than the naive
explanation, as tκ − dj + 1 ≤ lb(sj) and ub(sj) ≤ tκ.

It is reasonable to create an explanation for the inconsistency with a minimum
number of jobs j ∈ J with tκ ∈ cpj as this leads to a con�ict graph with a small
number of nodes [72]. Finding the explanation (3.16) with the minimum number
of jobs can be done with a time complexity of (O(|J | · log(|J |))) by sorting the
jobs j ∈ J with tκ ∈ cpj in non-increasing order of cρj,r [72]. Jobs j1, . . . , jk are

added to the explanation (3.16) based on this sorting until
∑k

l=1 c
ρ
jl,r
≥ Cρr + 1 and∑k−1

l=1 c
ρ
jl,r
≤ Cρr .

A lower bound update of job i from lb(si) to tmax deduced by TP (see Sect. 3.1.2)
w.r.t. resource r ∈ R is processed and explained in a stepwise manner based on the
time points t0, . . . , ts with

t0 = lb(si) (3.19)

ts = tmax (3.20)

tl − tl−1 ≤ di, ∀l = 1, . . . , s (3.21)∑
j:tl−1∈cpj

cρj,r > Cρr − c
ρ
i,r, ∀l = 1, . . . , s (3.22)

In general, many di�erent alternatives for the selection of the time points t0, . . . , ts
and the jobs j with tl − 1 ∈ cpj exist. The selection of jobs and time points only
has to ful�ll conditions (3.19) - (3.22). In this context, Schulz [72] shows, that it
is strongly NP-hard to �nd time points t0, . . . , ts ful�lling (3.19) - (3.21) and jobs
j ∈ J ful�lling (3.22) such that the total number of jobs involved in at least one of
the s inequalities in (3.22) is minimized.

s explanations Elbl are generated based on the selected time points. These are of
the following form:

Elbl = Jtl−1 ≤ siK ∧
∧

j:tl−1∈cpj

Ej =⇒ Jtl ≤ siK, ∀l = 1, . . . , s (3.23)

Again, one can distinguish between naive or bound widening explanations as in
(3.17), i.e. Ej in (3.23) can be given by:

Enaive
j = Jlb(sj) ≤ sjK ∧ Jsj ≤ ub(sj)K

or Ebw
j = Jtl − dj ≤ sjK ∧ Jsj ≤ tl − 1K

Heinz and Schulz [41] and Schutt et al. [74] provide and evaluate heuristic rules
for the choice of the time points t0, . . . , ts. Note, that after the choice of the time



44 Chapter 3. CP and SAT Solving for the RCPSP

points, we can again determine the explanation Elbl which involves the minimum
number of jobs having their compulsory parts in the time interval [tl − 1, tl[ by a
similar principle as in the inconsistency case. Upper bound updates can be explained
in a symmetric way.

Example 3.3.1. Explanations for TP Assume that we are in the situation of
Example 3.1.2. With the time points t0 = 3 and t1 = 4, the naive explanation for
the lower bound change of job 1 from 3 to 5 is as follows:

J3 ≤ s1K ∧ (J2 ≤ s2K ∧ Js2 ≤ 4K) =⇒ J5 ≤ s1K. (3.24)

In this case, the naive explanation is equivalent to the bound widening explanation
as lb(s2) = 2 = 4− 3 + 1 = t1 − d2 + 1 and ub(s2) = 4 = t1.

A lower bound update of the variable si deduced by EF can again be explained
in a naive way or in a stronger way which applies bound widening [74]. Therefore let
Ψ ⊆ J\{i} be a set ful�lling (3.13) and Ψ′ ⊆ Ψ be a set with rest(Ψ′, i) > 0. The
naive explanation for the update of lb(si) to lb∗(si) = lb(Ψ′) + drest(Ψ′, i)/cρi,re is as
follows:

Jlb(si) ≤ siK ∧
∧
j∈Ψ

Jlb(sj) ≤ sjK ∧ Jsj ≤ ub(sj)K =⇒ Jlb∗(si) ≤ siK

Using bound widening the naive explanation from above can be strengthened as
follows:

Jlb(si) ≤ siK ∧
∧

j∈Ψ\{Ψ′}

Jlb(Ψ) ≤ sj + dj ≤ ub(Ψ)K ∧
∧
j∈Ψ′

Jlb(Ψ′) ≤ sj + dj ≤ ub(Ψ′)K

=⇒ Jlb∗(si) ≤ siK

Example 3.3.2. Explanations for EF

In Example 3.1.3 the lower bound of job 1 is updated to lbmax(s1) = 3. The update
is based on the set of jobs Ψ(Ψ′) = {2, 3}. Therefore the naive explanation is as
follows:

J1 ≤ s1K ∧ (J1 ≤ s2K ∧ Js2 ≤ 2K) ∧ (J1 ≤ s3K ∧ Js3 ≤ 4K) =⇒ J3 ≤ s1K

Again, the bound widening explanation is equal to the naive explanation from above.
If e.g. the upper bound of job 2 ub(s2) is equal to one, this would lead to the same
lower bound update of job 1, but the bound widening explanation would be stronger
than the naive explanation, because then ub(s2) = 1 < 2 = ub({2, 3})− d2 = 2.

State-of-the-art EF algorithms as proposed in [88] and [55] do not compute the
sets Ψ and Ψ′, for which lbmax(si) in (3.14) is attained, explicitly. To store informa-
tion about the sets Ψ and Ψ′ during the EF algorithms, Schutt et al. [74] extend the
state-of-the-art EF algorithms which leads to an increase in complexity by a factor
of |J |.
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In the SCIP-approach of [72] the values lb(Ψ′), ub(Ψ′), lb(Ψ) and ub(Ψ) are stored
in the course of the EF algorithm. Hence, in case the lower bound update of si to
lbmax(si) is part of explanations leading to a con�ict, the latter information can be
accessed to compute the sets Ψ and Ψ′. More precisely, Ψ and Ψ′ consist of jobs j
with lb(Ψ) ≤ sj + dj ≤ ub(Ψ) and lb(Ψ′) ≤ sj + dj ≤ ub(Ψ′) respectively at the time
the propagation took place.

The explanations generated by the global constraints are given as clauses to the
SAT solver. The boolean literals on the left hand side of the explanation, i.e. before
=⇒, are assigned to 1 (true). Thus, the SAT solver deduces by UP, that also the
literal on the right hand side of the explanation, i.e. after =⇒, must be true. In
case of a con�ict, the CA techniques of the SAT solver computes nogoods based on
the resulting con�ict graph2. These nogoods are added to the clause database of
the SAT solver to possibly deduce new domain reductions or cuto�s in the BaB tree.
Note, that in the current implementation of LCG described in [28], non-chronological
backtracking is not supported.

Furthermore, the con�ict statistics of the SAT solver guide the branching de-
cisions in the BaB algorithm. More precisely, the variable-value combination with
the highest con�ict counter is chosen, i.e. if the literal Jy ≤ t∗K has the highest
con�ict counter, two new nodes are created, where y ≤ t∗ or y ≥ t∗ + 1. In other
words, LCG integrates the VSIDS branching heuristic. The computational experi-
ments of Schutt et al. [74] and Schutt et al. [77] on SRCPSP instances with SPRs
and GPRs respectively show the bene�t of a con�ict-driven search strategy with
periodical restarts over a scheduling-speci�c search strategy.

3.3.2 The optimization framework SCIP

The optimization framework SCIP integrates solution techniques from CP, MIP and
SAT solving and combines them in a Branch and Bound (BaB)-algorithm with pre-
processing [1]. In addition, it can be used as a standalone CP, MIP and SAT solver.
Moreover, the user can in�uence the SCIP-intern solution procedure by adding new
constraint handlers (i.e. global constraints), primal heuristics, cutting plane tech-
niques, branching rules etc. [2].

The constraint handler cumulative was introduced by Berthold et al. [11] for
SCIP. This constraint handler captures TP and EF algorithms with a connection to
the SCIP-intern CA mechanism through explanation generation. The explanation
generation principles are described in [72]. These are similar to the ones introduced
in Sect. 3.3.1.

SCIP also integrates a con�ict-driven branching rule called inference branching
[1]. The latter integrates ideas from the VSIDS decision heuristic. Because of the
functionality provided by SCIP, one can apply this tool to solve the SRCPSP with

2An good example for the CA process in the context of LCG for the SRCPSP can be found in
[77].
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an approach similar to LCG. Computational experiments testing the solution of the
SRCPSP with SPRs with SCIP are summarized in Sect. 4.3.

An important di�erence between the solution approach of SCIP and LCG, which
is usable via G12, is the principle of the solver-intern CA mechanism. LCG generates
explanations and adds them to the SAT solver every time a global constraint deduces
a bound update or a con�ict. In SCIP, the CA mechanism is initialized only when a
con�ict is detected by a constraint handler. After the initialization, the CA mecha-
nism searches for variables and respective bounds which are involved in the con�ict.
If a new bound of a variable derived by a certain constraint handler is involved in
a con�ict and the respective constraint handler integrates explanation generation,
the CA mechanism uses this explanation of the bound update to generate a con�ict
graph. If the con�ict graph is fully initialized, the CA mechanism searches for no
goods and backjumps. Informally speaking, in LCG the con�ict graph is constructed
in a forward manner, whereas the con�ict graph in SCIP is generated in a backward
manner. Advantages and disadvantages of the con�ict graph construction strategies
are discussed in [41].

In this context, it is also important to note, that SCIP is the �rst solver to
integrate CA in the context of MIP, i.e. it incorporates con�ict learning based on
infeasible linear programming relaxations [1].

3.3.3 Conclusion on optimization frameworks

To conclude, there are two important optimization frameworks relevant in this dis-
sertation, which incorporate solution principles from CP and SAT solving, namely
SCIP and G12. SCIP o�ers more �exibility to the user, as there is e.g. the possibil-
ity to implement new constraint handlers for speci�c problem characteristics and to
directly in�uence the solution algorithm. In G12, the user can only use the existing
global constraints to formulate a problem at hand in the modeling language Zinc (see
[54]). However, it is possible to choose between di�erent exact solution algorithms
including LCG, the state-of-the-art exact approach for variants of the SRCPSP.



Chapter 4

Performance variability of

CP-SAT solvers for the RCPSP

In this chapter we analyze the e�ect of the prede�ned search space on recent exact
CP-SAT algorithms for the SRCPSP with SPRs. Firstly, Sect. 4.1 provides a well-
known CP model for the SRCPSP with SPRs on which our evaluation is based.
For our computational experiments, we use the optimization frameworks SCIP [2]
and G12 [83], i.e. solvers which provide a solution procedure combining CP and
SAT Solving techniques (see Sect. 3.3). Secondly, Sect. 4.2 presents the procedure
to construct the prede�ned search space and describes our parallel algorithm to
bene�t from the performance variability which results from varying the initial search
space. Finally, Sect. 4.3 shows the architecture and results of our computational
experiments on instances with 60 jobs. Thereby, Sect. 4.3.1 emphasizes the e�ect
of the prede�ned search space on the analyzed exact algorithms and Sect. 4.3.2
shows a comparison of our parallel procedure to recent exact algorithms. Finally,
in Sect. 4.3.3 we explain the observed e�ect on the basis of further computational
experiments. The chapter ends with a conclusion derived from the obtained results.

4.1 A CP model for the SRCPSP with SPRs

Using the integer variables sj for the modeling of the starting time of job j, the
SRCPSP with SPRs can be modeled as follows in chosen CP modeling languages:

min sn+1 (4.1)

s.t. si + di ≤ sj ∀ j ∈ Si,∀ i ∈ J (4.2)

cumulative(s,d, cρr , C
ρ
r ) ∀r = 1, . . . ,m (4.3)

sj ∈ {0, . . . , T}, ∀j ∈ J (4.4)

Our aim is the minimization of the makespan which equals the starting time sn+1

of the dummy job n+ 1 (see Sect. 2.1.3). Moreover, T is a known upper bound on
the project makespan sn+1 and can e.g. be set to

∑
i∈J dj .

47
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For the formulation of the resource constraints, we use the CP scheduling con-
straint cumulative (see also Sect. 3.1.2). This constraint guarantees resource feasi-
bility for a certain resource r = 1, . . . ,m:∑

j∈J,sj≤t<sj+dj

cρj,r ≤ C
ρ
r , ∀t ∈ 0, . . . , T − 1 (4.5)

Thus, the complete usage of resource r in time period [t, t+ 1], 0 ≤ t ≤ T − 1 must
not exceed the maximal capacity Cρr .
If we implement the model within SCIP or G12, the cumulative-constraint cap-
tures scheduling-speci�c propagation and explanation generation algorithms (see
Sect. 3.3).

4.2 Activity List Preprocessing and Independent Parallel
Solution

In the computational experiments of Sect. 4.3, we analyze the e�ect of the pre-
de�ned variable domains on the behavior of recent exact algorithms. Before that,
this section outlines our parallel procedure to exploit the positive e�ect of varying
initial domains on the outcome of the exact algorithms. As the preprocessing step
of our procedure mainly consists of the random generation of a number of prece-
dence feasible permutations of jobs, i.e. activity lists (see Sect. 2.5), we call it AL
preprocessing.

To reduce the search space, one can de�ne feasible lower and upper bounds lb(sj)
and ub(sj) for the starting times (see also Sect. Sect. 2.4). Given an upper bound
(UB) on the makespan sn+1, which is the starting time of the dummy job n+ 1, one
can determine lb(sj)(ub(sj)) by forward (backward) recursion (FBR) [16]:

lb(s0) = 0; lb(sj) = max
i∈Pj
{lb(si) + di} , j ∈ J − {0} (4.6)

ub(sn+1) = UB; ub(sj) = min
i∈Sj
{ub(si)− dj} , j ∈ J − {n+ 1} (4.7)

The above procedure for determining feasible domains for the variables sj is only
based on the precedence constraints (4.2). Thus, lb(sj) is the maximum of the
earliest �nishing times of the direct predecessors Pj of job j and the latest �nishing
time is the minimum of the latest starting times of the direct successors Sj of j.

Once having determined lb(sj), ub(sj) for an upper bound UB by (4.6) and (4.7),
lb′(sj), ub′(sj) can be easily evaluated for another feasible upper bound UB

′
:

lb′(sj) = lb(sj) (4.8)

ub′(sj) = ub(sj)− (UB−UB
′
) (4.9)

Firstly, via the AL preprocessing step, we generate a number of feasible upper
bounds UB1, . . . ,UBl. Afterwards, the upper bounds UBk, k ∈ 1, . . . , l are used for
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the determination of lbk(sj) (ubk(sj)) by (4.6)-(4.9). Finally, for every k ∈ 1, . . . , l,
we de�ne the CP-model RCPSPk of Sect. 4.1 with the variable domains Dk

j =

{lbk(sj), . . . , ubk(sj)} and solve the models RCPSPk, k ∈ 1, . . . , l independently on
l di�erent processors by the solver tools implementing the general exact solution
procedures described in Sect. 4.1.
For the generation of feasible upper bounds UB1, . . . ,UBl, we �rst determine lb(s0)
and ub(s0) based on the trivial upper bound UB0 =

∑
j∈J dj . Then we generate a

number of ALs by a randomized version of the minimum latest �nishing time priority
rule (MINLFT).

Given a set of eligible activities Eu (i.e. activities for which all predecessors
have already been inserted in the current AL), we randomly choose the next activity
ju ∈ Eu for the insertion with the following probability (see also [80]):

prju =
maxk∈Eu {ub(sk) + dk} − (ub(sju) + dju)∑
e∈Eu(maxk∈Eu {ub(sk) + dk} − (ub(se) + de))

(4.10)

After having generated an AL Ak = (j0, . . . , jn+1), we can generate a feasible
upper bound UBk with the SSGS (see [47] and Sect. 2.5). Thereby, SSGS takes the
activities ju, u = 0, . . . , n + 1 from Ak in the given order and schedules them at
the earliest point in time such that resource and precedence feasibility is guaranteed.
This procedure can be implemented with a running time of O(n2 m) (see [6] or [16]),
where m is the number of resources. Finally, we obtain UBk = skn+1.

It has to be mentioned that two di�erent AL can lead to the same upper bound
UB. Clearly, for the generation of the domains Dk

j = {lbk(sj), . . . , ubk(sj)} we only
consider UBs with UBk 6= UBs, ∀k, s with k 6= s.

Fig. 4.1 again summarizes our AL preprocessing and parallel exact solution
procedure (ALPaPES). For the results presented in Sect. 4.3.1 we omit Step 2b),
i.e. we wait for the results of every processor such that the advantage of the parallel
solving runs with di�erent domains Dk

j can be shown.

4.3 Computational Experiments

The following section summarizes the computational results of the ALPaPES proce-
dure of Sect. 4.2. Thereby, the results are based on evaluations with the 480 60-job
instances of the PSPLIB introduced by Kolisch and Sprecher [50]1.

On the one hand, we want to show that our procedure can improve recent gen-
eral exact algorithms. Therefore, we compare our results to the LCG and the
SCIP approach (see Sect. 4.3.2). On the other hand, we want to show the pos-
itive e�ect of generating more AL and using more processors (see Sect. 4.3.1).

1We also carried out evaluations on the 90- and 120-job instances from the PSPLIB which are
beyond the scope of this dissertation. These experiments reinforce the results of the following
sections.
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Input Parameters: Number p of ALs to generate and time limit L

Step 1: AL Preprocessing

a Randomly generate p feasible ALs based on a �xed priority rule (see e.g.
(4.10)).

b Apply the SSGS to the ALs to obtain l di�erent upper bounds UB1, . . . ,UBl

on the makespan.

c Determine the domains Dk
j for all j ∈ J and k = 1, . . . , l based on (4.8) and

(4.9) with lb0(sj) and ub0(sj) calculated from UB0 =
∑

j∈J dj in Step 1a.

Step 2: Parallel exact solution

a Solve the models RCPSPk de�ned by the domains Dk
j , j ∈ J by a general

exact solution procedure on processor k with the time limit L.

b Stop the solution process on all processors with k 6= u as soon as the �rst
model RCPSPu is solved optimally or stop after the time limit L has
elapsed.

Output: Optimal makespan s∗n+1 or upper bound s
′
n+1 = mink=1,...,l

{
skn+1

}
.

Figure 4.1: AL preprocessing and parallel exact solution (ALPaPES)
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Also in Sect. 4.3.1, we computationally verify that the best results of our ap-
proach are mostly not achieved through the smallest search space determined through
UB∗ = mink∈{1,...,l} {UBk}. The experiments of Sect. 4.3.3 give an explanation for
the observed e�ect.

The experiments were carried out on the Vienna Scienti�c Cluster. Thereby,
the cluster nodes integrate a X86-64 architecture running under GNU/Linux with
Intel(R) Xeon(R) X5650 processors of 2,66GHz and with 24GB RAM. The experi-
ments with SCIP were carried out with version 3.0.0 and the additional branching
rule presented in Sect. 4.3.2 which was implemented by the SCIP team.

For the experiments with LCG we used the G12 Constraint Programming Plat-
form (see [83]) (version 2.0.0) provided by the NICTA research group. Thereby, we
used the Zinc-modeling language with a mapping to the g12_fdx LCG solver which
uses MiniSat as the underlying SAT-Solver. A time limit L = 600 s was used for the
solver runs as in the LCG-approach of [74]. For both, the SCIP and the G12 runs,
we implemented the CP-model presented in Sect. 4.1 with di�erent variable domains
obtained through the UBs.

For the parallel SCIP runs, we used Open MPI 1.4.3 (see [32]) in combination
with the C++-programming language. The parallel G12 runs were carried out with
the Python-module mpi4py (see [57]) in combination with the Python programming
language.

4.3.1 Positive E�ects through the Generation of more Activity Lists

For the following experiments, we generated a maximum of 40 AL for each of the
480 60-job instances which lead to an average and maximum number of 9.16 and 24
di�erent UBs, i.e. processors used for the parallel solving runs.

The results of our ALPaPES procedure on all 480 60-job instances from the
PSPLIB can be found in the Tables 4.1 and 4.2. There, we can see

1. the number of instances solved to optimality (# opt)

2. the number of times we reached the best known solution from the PSPLIB (#
best)

3. the average solution time (in seconds)

4. the average solution time on the instances solved to optimality (and solved to
optimality in the 40 AL setting)

5. the average relative gap w.r.t. the best known solutions (PSPLIB) (%)

6. the average gap w.r.t. the critical path lower bound (%)2

2Given through the length of the longest path in the successor-predecessor network.
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when generating 1, 4 and 40 AL and when we use the lowest UB given through the
40 generated AL (Lowest UBM) for the solver runs. Thereby, the solution time is
the CPU-time measured by SCIP and G12.

The measurements regarding 1, 4 and 40 AL correspond to the best results ob-
tained by SCIP or G12 on the respective number of processors.

Table 4.1: Comparison on all 480 instances (SCIP)
Measurements

SCIP

# AL Lowest

UBM1 4 40

# opt 420 421 425 423
# best (PSPLIB) 425 430 434 425

avg.sol.time (all Inst.) 80.82 79.11 74.42 79.79
avg.sol.time opt.(opt.comp.) 6.65 (13.63) 6.12 (11.70) 6.40 9.67 (12.47)

avg.gap (best) 0.61 0.51 0.37 0.59
avg.gap (crit. path LB) 11.34 11.20 11.00 11.32

Table 4.2: Comparison on all 480 instances (G12)
Measurements

G12

# AL Lowest

UBM1 4 40

# opt 430 430 430 429
# best (PSPLIB) 433 433 442 435

avg.sol.time (all Inst.) 68.97 67.70 66.79 69.94
avg.sol.time opt.(opt.comp.) 7.22 (7.22) 5.81 (5.81) 4.79 6.92 (8.30)

avg.gap (best) 0.42 0.30 0.21 0.46
avg.gap (crit. path LB) 11.06 10.87 10.71 11.12

We can observe the following from the Tables 4.1 and 4.2:

# opt (best) The results for the SCIP runs show that it is better to generate more
AL and use more processors. We can solve 5 more instances to optimality and
we attain 9 more best known solutions compared to using only 1 AL. Moreover,
we can see that the results with 40 AL outperform the results when using the
lowest UB. Nevertheless, regarding # opt, performing the SCIP runs with the
lowest upper bounds should be preferred to running our ALPaPES procedure
with 1 or 4 AL.
When we regard the results of the G12 runs, we can observe nearly the same
regarding # best. The best known results are attained 9 times more often than
when we use only 1 AL.
Regarding # opt it does not make any di�erence to use 1,4 or 40 processors.
We can solve 5 more instances to optimality than with SCIP. Surprisingly,
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Table 4.3: Sol.time comparison on the non-easy instances
Measurements

SCIP

# AL Lowest

UBM1 4 40

avg.sol.time 125.63 107.92 58.97 114.96
max.di� sol.time (40 AL) 596.37 446.01 - 465.68

Measurements

G12

# AL Lowest

UBM1 4 40

avg.sol.time 46.29 37.03 30.28 53.55
max.di� sol.time (40 AL) 197.65 79.92 - 492.85

when using only 1 randomly generated AL, we can solve 1 more instance to
optimality than with the lowest of the 40 UB.

Solution Time Regarding the average solution time for all instances and the in-
stances solved to optimality, we can see that the setting with 40 AL clearly
outperforms all other settings both in the SCIP and G12 runs. Moreover, in
the setting with the lowest UB, the average solution time is ≈ 2 times higher
than in the SCIP runs with 40 AL on the 425 instances solved to optimality.
In the G12 runs, this factor is ≈ 1.7. Moreover, the second worst and the worst
average results are obtained in the setting with the lowest UB for SCIP and
G12, respectively.

Gap Again, for the SCIP and the G12 runs, the best results can be detected in the 40
AL setting. In the G12 runs, the worst and in the SCIP runs the second worst
results are obtained with the lowest UB. Moreover, when generating 40 AL
and applying our ALPaPES procedure with G12 (SCIP), we obtain a ≈ 50%
(40%) better relative gap w.r.t. the best known solution from the PSPLIB.

In the above evaluations the use of several processors seems to have only a little
e�ect on the average solution time w.r.t. all 480 instances. This is due to the fact,
that a great percentage of the 480 60-job instances can be considered as easy, i.e.
they can be solved by SCIP or G12 in less than 1 second. To emphasize the gain of
using more processors regarding solution time, we excluded easy instances from our
evaluations, i.e. instances where the maximal solution time of all processors in the
40 AL setting is smaller than 1 second for the used solver.

With SCIP, we could eliminate 379 and with G12, we could eliminate 365 in-
stances. The following tables and �gures are based on the remaining 101 and 115
instances, respectively.

Table 4.3 shows the results regarding solution time on the 46 and 65 non-easy
instances which can be solved to optimality by SCIP and G12, respectively. There,
the gain of generating more AL and the parallel solution becomes even clearer. We
obtain an average improvement of 66.7s and 16.0s in the 40 AL setting compared to
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Table 4.4: Gap comparison on the open instances
Measurements SCIP

(best PSPLIB)

# AL Lowest

UBM1 4 40

avg.gap 5.23 4.46 3.38 5.13
max.dist gap 17.9 17.9 14.3 17.4

Measurements G12 (best

PSPLIB)

# AL Lowest

UBM1 4 40

avg.gap 4.0 2.8 1.9 4.3
max.dist gap 14.9 7.4 5.2 9.8

the setting with 1 AL with SCIP and G12, respectively. The lowest UBM setting
leads to the worst results with G12. In this setting, the average solution time is
by 56.0s and 23.3s higher than in the best setting (40 AL) with SCIP and G12,
respectively. Additionally, we can achieve a maximal improvement in solution time
of 596.37s and 492.85s with SCIP and G12, respectively when using the best found
search space3 for the solver runs.

Table 4.4 shows the results regarding the average gap to the best known solutions
for the 55 and 50 instances which could not be solved to optimality by SCIP and
G12, respectively. We can see that in the 40 AL setting, we can reduce the maximum
relative gap by 3.6% and 9.7% with SCIP and G12, respectively.
Finally, we want to show the versatile distribution of the relative di�erence of the
UBs leading to the best results (UBBest

k , k ∈ K) w.r.t. the lowest of the 40 UBs
(UB∗k, k ∈ K) for the set of non-easy instances w.r.t. SCIP (K = {1, . . . , 101}) and
G12 (K = {1, . . . , 115}):

∆Best
k =

UBBest
k −UB∗k

UB∗k
(4.11)

The histograms in Fig. 4.2 and 4.3 plot
∣∣{k ∈ K : a ≤ ∆Best

k < b
}∣∣ for di�erent

values a ≥ 0 and b ≤ 0.30 for SCIP and G12.
The best found search space comes from ∆Best

k -values in a range of 0−26.0% and
0−20.1% w.r.t. the lowest UB of the considered instance for the SCIP and G12 runs.
Thus, it is not worthwhile to consider UBs with UBl > 1.26 · UB∗l for an instance l
for the solver runs with the 60 jobs instances. Moreover, for a great portion (76%
and 82%) of the instances, ∆Best

k lies within the range of 0− 10%. However, in most
cases (70% and 78%), the smallest ∆Best

k does not lead to the best solver runs.
The above evaluations clearly show the gain of generating more AL and therefore

using more processors. In the 40 AL settings, we achieved the best results. More-
over, the e�ciency of the applied exact solving algorithm strongly depends on the
prede�ned search space given through the UBs. By taking the best found search

3This search space is given through the variable domains leading to the best results on a pro-
cessor.
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space (40 AL setting) which is in most cases not given through the lowest UB, we
achieve a great improvement regarding the average solution time and the relative
gap to the best known solutions. This also emphasizes the increase in e�ciency of
our ALPaPES procedure through the use of more processors.

4.3.2 Comparisons to Recent General Exact Approaches

In this section, we compare the results of our ALPaPES procedure with recent exact
algorithms whose principles are described in Sect. 4.1. At �rst, we compare our
ALPaPES procedure with 40 AL using SCIP (ALPaPES-SCIP) with the state-of-
the-art SCIP approach of [11] (SCIPN) in Table 4.5.

The enormous improvement of ALPaPES-SCIP compared to SCIPN concerning
solution time and quality is due to the following aspects:

1. The MIP techniques applied in the cumulative-constraint have a rather high
computational overhead compared to their impact on the dual bound. When
switching o� all MIP-Plugins in SCIP and using SCIP as a standalone CP+SAT
Solver, additional evaluations show that # opt can be increased by 12 compared
to SCIPN.

2. By a new con�ict-driven branching rule in combination with SCIP 3.0.0 # opt
can be increased by 17. In all existing SCIP versions, the con�ict statistics used
by the inference branching rule (see [1]) are only connected to the variables si
but not to their domains. The variable si with the highest con�ict-based score
is chosen and the following two branches are created (if the domain of si has
more than one value):

si ≤
⌊
lb(si) + ub(si)

2

⌋
si ≥

⌊
lb(si) + ub(si)

2

⌋
+ 1 (4.12)

The new con�ict-driven branching rule which we applied for our experiments
integrates con�ict statistics based on variables and domains. Thereby, the
con�ict-based score is measured and updated for every boolean variable
Jsi ≤ tK, Jsi ≥ tK with lb(si) ≤ t ≤ ub(si). Branching is applied based on the
boolean variable with the highest score.

3. Finally, our ALPaPES procedure leads to the improvement which is described
in Sect. 4.3.1. This improvement can be achieved through generating a number
of di�erent UBs as input for parallel SCIP runs instead of using only 1 run with
a random UB.

Finally, in Table 4.6 our ALPaPES procedure with 40 AL using G12 (ALPaPES-G12)
is compared to the best G12 approach (G12NRg) given by [74]4.

4Note that [74] used LCG via the Mercury programming language, not by a call of the g12_fdx
LCG solver via the Zinc modeling language like in our case.
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Thereby, G12NRg is a LCG-approach with restarts of the VSIDS search of the
underlying SAT solver and with explanations obtained through the timetable prop-
agation algorithm of the cumulative-constraint.

The average solution time of ALPaPES-G12 is approximately the same compared
to G12NRg. The gain of ALPaPES-G12 can be detected when we analyze the ob-
tained solution quality. In nearly the same time we reach 442 best known solutions
compared to the 436 best known solutions of G12NRg. Moreover, we can decrease
the average distance to the best known solutions w.r.t. the open instances by 1.46
units.

All in all, with our ALPaPES procedure we clearly outperform the state-of-the-art
SCIP approach of Berthold et al. [11] and we are competitive with the state-of-the-
art exact approach of [74] and even improve it w.r.t. the obtained solution quality.

4.3.3 E�ect of a di�erent branching rule

In the following, we present the results of a more simple branching rule in combination
with the solver G12 to computationally explain the above e�ect.

This rule chooses an (unassigned) variable based on a �xed order and creates a
new branch by setting the variable to its actual lower bound. The results are outlined
in Table 4.7.

We can see that the use of this branching rule leads to clearly inferior results
regarding solution time and quality. Only 397 instances can be solved to optimality
compared to the 430 instances when using the VSIDS decision heuristic. Moreover,
in most cases (≈ 80%) the lowest UB setting leads to the best results (see Fig. 4.4).
Firstly, we can conclude that the VSIDS decision heuristic is a key factor leading to
the e�ciency of the LCG-approach. Moreover, we can not observe a similar variation
in the outcome of the LCG approach as with the VSIDS decision heuristic. Thus,
the observed variation in the exact algorithms can be explained by the e�ect of the
prede�ned variable domains on the branching decisions obtained through VSIDS.
Variations in the UBs of the variable domains can lead to di�erent values in the
con�ict statistics. At a point in the BaB tree this can lead to completely di�erent
decisions for di�erent initial domains. Varying decisions can infer a more successful
exploration of the search space, i.e. an optimal solution can be found earlier or
stronger nogoods or greater backjumps can be deduced. Both cases can lead to an
improvement in solution time and quality and thus to a better outcome with a higher
UB as input.

4.4 Conclusion

We have analyzed the e�ect of the prede�ned search space on the behavior of recent
exact algorithms for the SRCPSP with SPRs (see [11] and [74]). Moreover, we have
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developed a simple parallel solving procedure to take advantage of the positive e�ects
found in our investigation.

Our computational results show, that the e�ciency of the applied solvers (SCIP
and G12) strongly depends on the prede�ned variable domains which de�ne the
search space. We observed variations in solution times of 582s and an increase of the
maximal gap to the best known solution by 9.7% when a �bad� prede�ned search
space is used for the solver runs. Moreover, the prede�ned search space leading to the
best performance of the underlying solver was rarely given by the variable domains
determined through the lowest UB.

Furthermore, we computationally veri�ed that the above e�ect is mostly due to
the in�uence of the initial variable domains on the branching decisions based on
VSIDS. Varying initial domains can lead to completely di�erent con�ict statistics
which guide the path in the BaB search tree. Thus, larger initial variable domains
can lead to a more successful exploration of the search space, i.e. the exact algorithm
is able to �nd the optimal solution earlier or to derive stronger nogoods or greater
backjumps. As it is hard to predict the e�ect of the prede�ned search space on the
branching decisions in advance, parallel computing was our method of choice. We
developed a simple parallel procedure (ALPaPES) to take advantage of the positive
dimensions of the measured e�ect. This procedure consists of running an exact
algorithm on the same instance with di�erent prede�ned upper bounds on di�erent
processors. Thereby, the best result of all used processors determines the outcome
of our procedure. The gain of our procedure is clearly due to the use of parallel
computing. Sequential testing of the generated UBs would not be e�cient.

By our ALPaPES procedure with SCIP as the underlying solver, we can signi�-
cantly outperform the state-of-the-art SCIP approach of [11] on the 60-job instances
of the PSPLIB. We decrease the average solution time by nearly 92% and solve 34
more instances to optimality.

Furthermore, when using G12 as the underlying solver, we are competitive with
the state-of-the-art exact approach of [74] considering solution time and even out-
perform this approach w.r.t. solution quality. With our approach we reach the best
known solutions on the 60-job instances from the PSPLIB in 6 more cases and we
decrease the average distance to the UBs of the PSPLIB by 1.46 units.

An interesting future direction is a theoretical analysis of the observed e�ect.
The main question to pose is if there is a possibility for the exploitation of the
e�ect without the use of parallel computing. Another point is the analysis of other
initial factors in�uencing the exact algorithms and to exploit them in a parallel
environment.
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Figure 4.2: Distribution of the ∆Best
k -values (SCIP)

Figure 4.3: Distribution of ∆Best
k -values (G12)

Table 4.5: Comparison with recent exact approaches
avg.sol.time (480) avg.s.t. (opt.) #opt #best

SCIPN 892.10 358.60 391 401

ALPaPES-SCIP 74.42 6.40 425 434
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Table 4.6: Comparison with recent exact approaches
avg.s.t.(480) avg.s.t. (opt.) #opt #best avg.dist.b.

G12NRg 66.01 4.01 430 436 3.7
ALPaPES-G12 66.79 4.79 430 442 2.24

Table 4.7: Results with the branching rule: Smallest variable index, smallest domain
value

G12
# AL Lowest

UBM1 4 40

# opt 393 394 397 395
# best (PSPLIB) 393 394 397 395

avg.sol.time (all Inst.) 112.0 111.21 110.24 111.46
avg.sol.time opt.(opt.comp.) 3.97 (9.97) 4.52 (9.03) 7.84 6.34 (9.33)

avg.gap (best) 3.94 4.04 3.11 3.18
avg.gap (crit. path LB) 17.5 16.3 15.0 15.1

Figure 4.4: Distribution of ∆Best
k for the new branching rule





Chapter 5

CP-SAT approaches for the

MRCPSP with SPRs

In this chapter, extensions of the state-of-the-art CP-SAT approaches for the SR-
CPSP with SPRs are proposed with which multi-mode instances of the latter problem
can be solved in an e�cient way. Sect. 5.1 introduces three problem formulations in
optimization frameworks which support the solution by a BaB algorithm integrat-
ing CP and SAT techniques. One of these models integrates cumulativemm, a new
constraint handler which we implemented within SCIP. In Sect. 5.2, we describe
the principles of the latter. Sect. 5.3 discusses the results of our computational
experiments and draws a comparison to the state-of-the-art exact approach for the
MRCPSP with SPRs of Zhu et al. [92]. The chapter ends with a conclusion derived
from the obtained results.

5.1 G12- and SCIP-models for the MRCPSP with SPRs

In the following, we present three CP-models for the MRCPSP with SPRs in the
optimization frameworks G12 and SCIP (see Sect. 3.3). Sect. 5.1.1 contains one
model which can be used within the Zinc-modeling language [54] which is supported
by G12 and Sect. 5.1.2 describes two models which can be implemented within SCIP.

5.1.1 A formulation for the Zinc-modeling language

For the modeling of the starting time of job i and the mode assignment of job i, we
use the integer variables si and xi, respectively. With the latter variables and the
notation of Sect. 2.1, the MRCPSP with SPRs can be formulated as follows in the

61
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CP-modeling language Zinc:

min sn+1 (5.1)

s.t. si + di,xi ≤ sj , ∀j ∈ Si, ∀i ∈ J (5.2)∑
i∈J

cνi,xi,r ≤ C
ν
r , ∀r ∈ N (5.3)

cumulative(s,d, cr, Cρr ), ∀r ∈ R (5.4)

sj ∈ {lb(sj), . . . , ub(sj)} , ∀j ∈ J (5.5)

xj ∈Mj , ∀j ∈ J (5.6)

where

s = [sj : j ∈ J ] (5.7)

d = [dj,xj : j ∈ J ] (5.8)

cr= [cρj,xj ,r : j ∈ J ] (5.9)

The dummy job n+1 represents the end of the project, i.e. minimizing the makespan
is equal to minimizing sn+1 (see 2.1.3 for the detailed characteristics of a dummy job).
Furthermore, as a preprocessing step we can remove special mode combinations and
deduce the lower and upper bounds lb(sj) and ub(sj) for the starting time variables
in (5.5 (see Sect. 2.4).

(5.2) are multi-mode precedence constraints. With (5.3) and (5.4), we assure
that the available capacities of the nonrenewable and renewable resources are not ex-
ceeded. Hereby, in (5.4) we use the scheduling speci�c global constraint cumulative
(see also Sect. 3.1.2)1.

To apply this constraint for the MRCPSP with SPRs, we introduce the variable
vectors s, d and cr in (5.7) - (5.9). In the above formulation, variables appear in
the indices of parameters, like e.g. in di,xi . This modeling technique can only be
applied if the respective solver supports the global element-constraint introduced by
Van Hentenryck and Carillon [85].

In general, the element-constraint has the following form (see also Example 3.1.1
in Sect. 3.1.1):

element(y,x, z) (5.10)

(5.10) guarantees, that the y-th element of the variable (or parameter) vector x equals
the variable z, i.e. xy = z. Clearly, if x has n entries, it must hold that y ≤ n− 1 if
zero is the �rst index. Propagation algorithms captured by the element-constraint
can infer domain updates for the variable z in case of domain updates of y or of the
entries xi of x and vice versa.

1Details regarding the implementation of this constraint in G12 can be found in Schutt [73].
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In the case of our model, the terms di,xi and c
ρ
i,xi,r

are internally transformed to

new variables d′i, c
′ρ
i,r and c

′ν
i,r by posting the following constraints:

element(xi, [di,k : k ∈Mi], d
′
i) (5.11)

element(xi, [c
ρ
i,k,r : k ∈Mi], c

′ρ
i,r), ∀r ∈ R (5.12)

element(xi, [c
ν
i,k,r : k ∈Mi], c

′ν
i,r), ∀r ∈ N (5.13)

Thus, in our application, after a transformation of the respective solver only the
variables d′i and c

′ρ
i,r are used in the cumulative-constraint.

5.1.2 Formulations for SCIP

SCIP provides the optcumulative-constraint introduced by Heinz et al. [42] to model
renewable resource constraints in the context of multi-mode jobs. However, to apply
the above constraint for the MRCPSP, we have to introduce integer starting time
variables si,k for every job i and mode k and the binary variables xi,k for the mode
assignment of job i. Note, that the mode-assignment is modeled by binary variables
as SCIP does not support the element-constraint.

With the latter variables and the notation of Sect. 2.1, the MRCPSP can be
formulated as follows in SCIP with the optcumulative-constraint:

min sn+1,1 (5.14)

s.t.
∑
k∈Mi

xi,k = 1, ∀i ∈ J (5.15)

si,k + di,k · xi,k ≤ sj,l,
∀j ∈ Si, ∀i ∈ J, ∀k ∈Mi, ∀l ∈Mj (5.16)∑
i∈J

∑
k∈Mi

cνi,k,r · xi,k ≤ Cνr , ∀r ∈ N (5.17)

optcumulative(s̄, x̄, d̄, c̄r, Cρr ), ∀r ∈ R (5.18)

sj,k ∈ {lb(sj,k), . . . , ub(sj,k)} , ∀j ∈ J, k ∈Mj (5.19)

xj,k ∈ {0, 1} , ∀j ∈ J, k ∈Mj (5.20)

where

s̄ = s0 ◦ · · · ◦ sn+1, where sik = si,k, ∀k ∈Mi, i ∈ J (5.21)

x̄ = x0 ◦ · · · ◦ xn+1, where xik = xi,k, ∀k ∈Mi, i ∈ J (5.22)

d̄ = d0 ◦ · · · ◦ dn+1, where dik = di,k, ∀k ∈Mi, i ∈ J (5.23)

c̄r = c0,r ◦ · · · ◦ cn+1,r,where ci,rk = cρi,k,r, ∀k ∈Mi, i ∈ J, r ∈ R (5.24)

To guarantee a correct input for optcumulative we have to use the variable
vectors s̄ and x̄ and the parameter vectors d̄ and c̄r which are given in (5.21)-(5.24).
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In this context, the operator ◦ is de�ned as the concatenation of two vectors, whereas
the vector c = a ◦ b is obtained by appending the elements of b coordinate-wise to
a.

Again, we minimize the starting time sn+1,1 of the dummy job n + 1, which
can only be processed in mode 1. With (5.15), (5.16) and (5.17), we formulate the
uniqueness of the mode-assignments, the multi-mode precedence constraints and the
nonrenewable resource constraints, respectively. (5.18) guarantees that the maximal
capacities of the renewable resources are not exceeded.

The above SCIP-formulation has two major disadvantages.
Firstly, we have to introduce starting time variables for every job-mode combi-

nation (i, k), i ∈ J, k ∈Mi.
The second disadvantage has to do with the implementation of the optcumu-

lative-constraint (see Heinz et al. [42]). The domain propagation step and the
inconsistency check for a variable si,m in the optcumulative-constraint only con-
siders variables sj,k, j 6= i for which xj,k = 1 in the recent node of the BaB-tree.
However, also variables sj,k, j 6= i, where the mode-assignment has not been done
yet, can be considered for the domain propagation and the inconsistency check of a
variable si,m.

To overcome the above disadvantages, we aimed at implementing a new global
constraint cumulativemm for SCIP to be able to apply a more general form of domain
propagation and explanation generation for renewable resources in the context of
multi-mode jobs where we only have to introduce starting time variables sj for every
job j ∈ J . The principles of the cumulativemm-constraint are outlined in Sect. 5.2.

With our new constraint and again binary variables xi,k for the mode-assignment,
we formulate the MRCPSP with SPRs as follows in SCIP:

min sn+1 (5.25)

s.t.
∑
k∈Mi

xi,k = 1, ∀i ∈ J (5.26)

si +
∑
k∈Mi

di,k · xi,k ≤ sj , ∀j ∈ Si,∀i ∈ J (5.27)

∑
i∈J

∑
k∈Mi

cνi,k,r · xi,k ≤ Cνr , ∀r ∈ N (5.28)

cumulativemm(s, x̄, d̄, c̄r, Cρr ), ∀r ∈ R (5.29)

sj ∈ {lb(sj), . . . , ub(sj)} , ∀j ∈ J, k ∈Mj (5.30)

xj,k ∈ {0, 1} , ∀j ∈ J, k ∈Mj (5.31)

5.2 Principles of the cumulativemm-constraint

With our cumulativemm-constraint, one can model renewable resource constraints
for multi-mode jobs. The main ingredients of the cumulativemm-constraint are a
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feasibility check and functions for preprocessing (see 2.4), constraint propagation
and explanation generation (see Sect. 5.2.1 and 5.2.2) for a certain resource r ∈ R.

Our constraint enforces feasibility w.r.t. the renewable resource r ∈ R:∑
j∈J, m∈Mj : t−dj,m+1≤sj≤t ∧ xj,m=1

cj,m,r ≤ Cρr , ∀ t ∈ {1, . . . , T}

The other constraints in the SCIP-model of the MRCPSP with SPRs are modeled
by the SCIP-intern constraint handler for linear constraints and can therefore be
handled by the SCIP-intern solution principles.

The constraint propagation procedure consists of a redundancy check and a do-
main reduction step. We �rstly check the multi-mode data for redundancy in the
current node of the BaB tree. In concrete, if we assume the maximal mode duration,
the maximal resource consumption and the maximal processing interval for every job
j ∈ J in the current node and the underlying schedule is feasible w.r.t. the renewable
resource r ∈ R, we can locally remove our constraint from the solution procedure.
This is due to the fact, that in the above case, it cannot be violated anymore in the
succeeding branches of the BaB tree.

The domain reduction step is mainly based on the calculation of a minimal prob-
lem instance (MPI) (see Heilmann [39]) in every processed node of the BaB tree, i.e.
the transformation of the multi-mode data to a single-mode representative.

We assume that the uniqueness of the mode-assignments can still be ful�lled in
the succeeding nodes of the BaB tree, i.e. it is not the case, that:

∃ i ∈ J : |{k ∈Mi : lb(xi,k) = 1}| ≥ 2

or ∃ i ∈ J : ∀k ∈Mi : ub(xi,k) = 0

If one of the above cases is present, we cut o� the current node of the BaB tree and
initialize the SCIP-intern CA and we do not apply our propagation algorithms.

Otherwise, we calculate a minimal processing version MPVj,r =
(domain(sj); d

min
j ; cmin

j,r ) for every job j ∈ J and renewable resource r ∈ R as
follows:

dmin
j = min

k∈Mj

{dj,k : ub(xj,k) > 0} (5.32)

cmin
j,r = min

k∈Mj

{
cρj,k,r : ub(xj,k) > 0

}
(5.33)

In (5.32) and (5.33), we calculate the minimal duration and resource consumption
of resource r ∈ R w.r.t. the modes which have not been excluded (ub(xj,k > 0) in
the recent node of the BaB tree.

With the MPI at hand, we can apply standard constraint propagation algorithms
for renewable resources like e.g. TP and EF (see Sect. 3.1.2). Our current imple-
mentation of the cumulativemm-constraint only integrates TP.
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In case of the MRCPSP, the compulsory part cpj of a job j (see also Sect. 3.1.2)
is de�ned as follows:

cpj =

{ {
ub(sj), . . . , lb(sj) + dmin

j − 1
}
, if lb(sj) + dmin

j > ub(sj)

∅, else
(5.34)

Example 5.2.1. TP for multi-mode jobs Assume that in the course of the BaB-
algorithm of SCIP and after the redundancy check, our constraint propagation pro-
cedure has the following input:

(domain(s1),domain(x1,1), d1,1, c
ρ
1,1,1) = ({3, 4, 5}, {0, 1}, 2, 1)

(domain(s1),domain(x1,2), d1,2, c
ρ
1,2,1) = ({3, 4, 5}, {0, 1}, 3, 2)

(domain(s2),domain(x2,1), d2,1, c
ρ
2,1,1) = ({2, 3, 4}, {1}, 3, 2)

The maximal capacity of the renewable resource 1, Cρ1 = 2. We can see that job 2 is
processed in mode 1, as x2,1 = 1. Thus, dmin2 = 3 and cmin2,1 = 2. Moreover, job 2
is surely processed at the time point 4, as its compulsory part cp2 = {4}. Next, we
consider job 1 with dmin1 = 2 and cmin1,1 = 1. cp1 = ∅ but we can deduce a domain

update. As lb(s1) + dmin1 = 3 + 2 ≥ 4, starting job 1 at its lower bound would lead to
a resource con�ict at the time point 4. The TP algorithm will �nd the largest time
point t1 − 1 = 4 such that the capacity is violated (2 + 1 > 2). After that lb(s1)
would be updated to t1 = 5 which equals ub(s1) and a new compulsory part of job 1
cp1 = {5, 6} is evaluated.

Note, that the principles of our constraint propagation procedure are standard
techniques. These are applied in a similar way in CP solvers like e.g. JaCoP [46]
which provide the cumulative-constraint supporting variable durations and resource
consumptions for every job.

The idea of integrating explanation generation, i.e. of processing reasons for the
deduced domain reductions or inconsistencies to a SAT solving mechanism is rather
new. To our knowledge, there are only two optimization frameworks integrating this
feature, i.e. SCIP and G12.

Schutt [73] describes principles for explanation generation in the context of jobs
having variable durations and resource consumptions. These explanation generation
techniques are integrated in the cumulative-constraint provided by the G12. In
our cumulativemm-constraint, we explain the reasons for the domain reductions or
inconsistencies in a di�erent way. In the next two sections we introduce our strategy
for explanation generation and compare it to the strategy of Schutt [73].

5.2.1 Explanations for TP with multi-mode jobs

In order to integrate our constraint into the SCIP-intern CA mechanism, we have to
provide functions for the cumulativemm-constraint which derive explanations for the
inconsistencies or domain updates detected by the TP algorithm. In addition to the
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Boolean literals integrating sj (see Sect. 3.3.1), the explanations of cumulativemm
also consist of Jxj,k = 0K.

Assume now, the TP algorithm found an inconsistency because of the jobs having
their compulsory parts cpj (see (5.34)) at time tκ and cause a resource violation:∑

j:tκ∈cpj

cminj,r > Cρr

Then, our constraint handler derives the following explanation:∧
j:tκ∈cpj

Ej =⇒ false (5.35)

(5.35) can be divided into the sub-explanations Ej for every job participating in the
con�ict:

Ej = Jtκ − dminj + 1 ≤ sjK ∧ Jsj ≤ tκK

∧
∧

m:m∈Mj and ub(xj,m)=0

Jxj,m = 0K (5.36)

Ej is correct as in a situation, where the variables sj and xj,m have bounds as in
(5.36), the compulsory parts cpj of the involved jobs would again include the time
point tκ and this would again lead to a resource violation. Note, that dminj and cminj,r

are calculated by (5.32) and (5.33), respectively.
In addition to explanations for inconsistencies, our constraint handler also pro-

cesses explanations for domain updates deduced by our TP algorithm to the SCIP-
intern CA mechanism. SCIP stores information about the time the bound changes
took place and about the constraints which processed the domain updates through a
so-called bound change index (BCI). In the course of the BaB-algorithm, the SCIP-
intern CA can ask our constraint handler for an explanation of the new lower bound
lb∗(si) of job i at the BCI b, if it was deduced by the cumulativemm-constraint.

Therefore, we introduce the time point t = lb∗(si) − 1. Jobs j ∈ J\{i} with
compulsory parts cpbj where t ∈ cpbj such that:

cmin,bi,r +
∑

j 6=i:t∈cpj

cmin,bj,r > Cρr

were responsible for the bound change at the BCI b. Additionally the lower bound
lb(si) of job i has to exceed a certain value for the domain update. The complete
explanation consists of two clauses ei and f , where ei contains the minimal lower
bound of si and f the compulsory parts cpbj of jobs j 6= i with t ∈ cpbj . ei is given as
follows:

ei = Jt− dmin,bi + 1 ≤ siK ∧
∧

m:m∈Mi and ub(xbi,m)=0

Jxi,m = 0K
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The clause f is as follows:
f =

∧
j:j 6=i and t∈cpbj

Ej

where Ej is given through a small variation of (5.36). We replace tκ by t, dmin
j by

dmin,b
j and ub(xj,m) by ubb(xj,m). Thus, we evaluate the latter values for the given
BCI b. The complete explanation for the bound change lb(si) → lb∗(si) is given
through:

ei ∧ f =⇒ Jlb∗(si) ≤ siK (5.37)

The argument for the correctness of the above explanation is the same as in the
inconsistency case. Note, that the explanation (5.37) depends on the BCI b.
In our TP algorithm we process the bound changes in a pointwise manner, i.e. we
guarantee that lb∗(si)− lb(si) ≤ dmin,bj . With this, we want to imitate the pointwise
explanations proposed by Schutt et al. [74]. The explanations for the upper bound
changes are processed in a symmetric way.

The following example illustrates a possible outcome of our explanation genera-
tion procedure.

Example 5.2.2. Firstly, we extend Example 5.2.1 by another job with two modes
and the following input:

(domain(s3), domain(x3,1), d3,1, c
ρ
3,1,1) = ({5}, {1}, 2, 2)

Note, that there is a resource con�ict at time point tκ = 6, as 6 ∈ cp1 ∩ cp3 and
cρ3,1,1(= 2) + cmin1,1 (= 1) > 2. The explanation for this inconsistency is as follows:

(J5 ≤ s1K ∧ Js1 ≤ 6K) ∧ (J5 ≤ s3K ∧ Js3 ≤ 6K ∧ Jx3,2 = 0K) =⇒ false (5.38)

Note, that job 3 is processed in mode 1 and for job 1 it holds, that ub(x1,k) > 0, ∀k ∈
M1. After the initialization of the SCIP-intern CA, SCIP asks our constraint handler
for the reason of the lower bound change of s1 from 3 to 5 from Example 5.2.1, i.e.
an explanation for the literal J5 ≤ s1K.

Our constraint handler gives the following explanation:

J3 ≤ s1K ∧ (J3 ≤ s2K ∧ Js2 ≤ 4K ∧ Jx2,2 = 0K) =⇒ J5 ≤ s1K (5.39)

Every boolean literal from (5.38) and (5.39) is added as a new node to the SCIP-
intern con�ict graph. Moreover, an arc is constructed from every boolean literal of
the left-hand side of the explanation to the boolean literal on the right-hand side.

5.2.2 Comparison to other explanation generation techniques and

possible improvements

Schutt [73, p.96] also introduces explanations for the cumulative-constraint where
the durations and the resource consumptions of the jobs can be variables. In our
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G12-model of Sect. 5.1, we use this constraint with the duration vector d and the
resource consumption vector cρr to model the resource constraint for the renewable
resource r ∈ R. After the transformation given by (5.11) and (5.12), the G12 solution
approach will only use the variable vectors d′ and c′ρr in the cumulative-constraint.
These are connected to the original durations and resource consumptions by the
element-constraint (see (5.11) and (5.12)).

With our notation, the preliminary version of the explanations for a lower bound
update of si to lb∗(si) applied in the cumulative-constraint (see Schutt [73, p.96])
are as follows (at the BCI b):

Jlb∗(si)− lbb(d′i) ≤ siK ∧ Jlbb(d′i) ≤ d′i K ∧ Jlbb(c′ρi,r) ≤ c
′ρ
i,r K ∧∧

j:j 6=i and t∈cpbj

Jlb∗(si)− lbb(d′j) ≤ sjK ∧ Jsj ≤ lb∗(si)− 1K ∧ Jlbb(d′j) ≤ d′j K ∧

∧
j:j 6=i and t∈cpbj

Jlbb(c′ρj,r) ≤ c
′ρ
j,r K =⇒ Jlb∗(si) ≤ siK (5.40)

Schutt [73] notes, that these explanations can be strengthened by choosing di�er-
ent values qi and li instead of lbb(d′i) and lb

b(c′ρi,r), respectively. For example consider
the case where the domain of d′i is internally encoded as a range of consecutive values
but the set Di = {di,m, m ∈Mi} consists of nonconsecutive values and it holds that
lbb(d′i) /∈ Di. Then, by using q = min{di,m : di,m ≥ lbb(d′i)}, the explanation (5.40)
can be strengthened. Schutt [73] speci�es the values qi and li which lead to the
strongest explanations.

In our explanation for a domain update (see (5.37)), we omit the part where the
resource consumptions of the involved jobs are explained as in (5.40). This is due
to the fact, that as soon as certain modes are excluded, we can reason about the
minimal duration dmin

j and the minimal resource consumption cmin
j,r . Thus we do not

have to introduce explanations for both durations and resource consumptions. This
can be an advantage compared to the explanations of Schutt [73].

Assume therefore, that we are in a situation in a node c of the BaB tree where
the input is the same for both algorithms, and both algorithms already generated
the explanations (5.37) and (5.40), respectively at node b with the same set of jobs
Jexp involved in both explanations. Additionally,

dmin,b
j = lbb(d′j), ∀j ∈ Jexp (5.41)

cmin,b
j,r = lbb(c′ρj,r), ∀j ∈ Jexp (5.42)

Moreover, the left hand side of (5.37) is true at node c and

∃ k ∈ Jexp : tb ∈ cpck ∧ lbb(c
′ρ
k,r) > lbc(c′ρk,r) (5.43)

whereat the �rst two lines of (5.40) are true. As (5.37) is true, our algorithm will
immediately deduce lb∗(si) ≤ si.
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Because of (5.43), the G12-algorithm will not immediately deduce the latter lower
bound update. As the �rst two lines of (5.40) are true and (5.41) and (5.42) hold,
we can conclude that

xj ∈M b
j = {m : m ∈Mj and ub(x

b
j,m) > 0}, ∀j ∈ Jexp (5.44)

and thus lbb(c′ρk,r) ≤ c
′ρ
k,r, i.e. lb

c(c′ρk,r) can be updated to lbb(c′ρk,r). Now, the complete
left hand side of (5.40) is true and the G12-algorithm will also deduce lb∗(si) ≤ si.

The update of lbc(xk) outlined in (5.44) and the update of lbc(c′ρk,r) have to be
processed by the element-constraints (5.11) and (5.12) in the G12-algorithm before
the explanation (5.40) leads to the update of lb∗(si). As this update happens imme-
diately with our explanation (5.37), there are cases where our explanation generation
strategy can lead to time savings.

Our explanations can also be strengthened.

Example 5.2.3. Consider a job 1 with the following input at the current node:

(domain(x1,1), d1,1, c
ρ
1,1,1) = ({0}, 2, 2)

(domain(x1,2), d1,2, c
ρ
1,2,1) = ({0}, 3, 3)

(domain(x1,3), d1,3, c
ρ
1,3,1) = ({1}, 4, 3)

Assume that our TP algorithm would detect an inconsistency at the time point 4 and
job 1 is involved in the latter inconsistency, i.e. 4 ∈ cp1. As dmin

1 = 4, the part of
the explanation containing job 1 is as follows:

J1 ≤ s1K ∧ Js1 ≤ 4K ∧ Jx1,1 = 0K ∧ Jx1,2 = 0K

If the global domain of s1 equals {2, . . . , 6}, we can strengthen the explanation as

J1 ≤ s1K is globally true,

Jx1,1 = 0K ∧ Jx1,2 = 0K =⇒ Jx1,1 = 0K,
Jx1,1 = 0K ∧ Js1 ≤ 4K =⇒ 4 ∈ cp1,

cρ1,2,1 = cρ1,3,1.

Thus, we can use the following stronger explanation for the compulsory part of job
1:

Js1 ≤ 4K ∧ Jx1,1 = 0K

Motivated by the above example, assume that job i is part of the job set Jexp in-
volved in the explanation (5.37) w.r.t. time point t. Moreover, let lbg(si) be its global
lower bound. We can possibly strengthen the explanation (5.37) by strengthening
the part of the explanation integrating job i ∈ Jexp.

This can done in two steps:
Firstly, if t− dmin

i + 1 < lbg(si), omit Jt− dmin
i + 1 ≤ siK.
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Set dmin
i :← min{dmin

i , t− lbg(si) + 1}.
Secondly, we determine the set B∗i consisting of the modes m ∈Mi which ful�ll:

di,m ≥ dmin
i (5.45)

cρi,m,r +
∑

j∈Jexp\{i}

cmin
j,r > Cρr (5.46)

Now, we can substitute ∧
m:m∈Mi and ub(xbi,m)=0

Jxi,m = 0K

by ∧
m:m∈Mi\B∗i

Jxi,m = 0K

Because of the evaluation of dmin
i and cmin

i,r in (5.32) and (5.33) and because of (5.45)
and (5.46) it holds that

Mi\B∗i ⊆ {m : m ∈Mi and ub(xi,m) = 0}

Thus, the part of the explanation (5.37) integrating job i is possibly stronger. Finally,
we update cmin

i,r :← min{cρi,m,r : m ∈ B∗i }. After the latter update, we continue with
the next non-processed job.

5.3 Computational experiments

The three CP models from Sect. 5.1 were solved on the Vienna Scienti�c Cluster
(VSC). Details about the system architecture can be found in Sect. 4.3.

For the solution of the models from Sect. 5.1.1, we used the G12 Constraint Pro-
gramming Platform [31] 2.0.0 provided by the NICTA research team [60]. Thereby,
we formulated the models in Zinc and solved them by the LCG-plugin g12_fdx.
For the implementation of the constraint handler cumulativemm and the formulation
and solution of the SCIP-models of Sect. 5.1.2, we used SCIP 3.1.0 in combination
with the programming languages C/C++. We set the parameters in SCIP such that
feasibility is detected fast (with SCIP_PARAMEMPHASIS_FEASIBILITY). Furthermore,
we impose a memory limit of 2GB RAM for instances with less than 100 jobs and of
3GB for the 100-job instances.

The three CP-models are denoted by the following abbreviations:

G12 The model from Sect. 5.1.1 formulated in Zinc.

SCIPopt The SCIP-model of Sect. 5.1.2 integrating the existing optcumulative-
constraint.
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SCIP The SCIP-model of Sect. 5.1.2 integrating our cumulativemm-
constraint.

Moreover, for every model we distinguish two solution approaches which di�er in the
generation of the initial domains:

Max The initial domains of the starting time variables are evaluated by forward
(backward) recursion based on the upper bound Tmax given in (2.10).

Best The initial domains are generated based on twelve di�erent upper bounds
T1, . . . , T12 where T1 equals the best known upper bound from the literature
and Tl = Tl−1 +4, ∀l = 2, . . . , 12. A model is run on the processor l = 1, . . . , 12
with initial domains based on Tl. Hence, in this case we apply a parallel ap-
proach which applies twelve processors. In the end, we take the best results
w.r.t. all twelve processors.

Preliminary experiments have shown that like in Sect. 4 varying the initial do-
mains based on di�erent upper bounds on the makespan also leads to a performance
variability of the CP-SAT approaches for the MRCPSP with SPRs. With the parallel
approach, we want to take advantage of this performance variability as proposed in
Sect. 4.

All in all, we compare six di�erent solution approaches to the state-of-the-art
exact approach (Branch-and-Cut) of Zhu et al. [92] for the MRCPSP with SPRs
(MMBAC). All approaches are tested on the 554 and 552 feasible instances with 20 and
30 jobs from the PSPLIB (Kolisch and Sprecher [50]) (J20mm and J30mm). More-
over, we evaluate the approaches which apply our constraint handler (SCIPMax and
SCIPBest) on the new 540 MRCPSP-instances with 50 and 100 jobs (MMLIB50 and
MMLIB100) provided by the Operations Research and Scheduling research group of
the University of Ghent [64]. For instances with 20, 30, 50 and 100 jobs, we abort
the solution process after a time limit of 1200s, 2400s, 5400s and 7200s, respectively.
To assure a fair comparison to the approach of Zhu et al. [92], we used time limits
which are 2/3 of their time limits for the 20- and 30-job instances, as their processor
is ≈ 1.5 times slower than ours.

We compare the di�erent approaches based on the following measurements:

#feas Number of instances where a feasible solution could be found within the
given time limit.

#opt Number of instances solved to optimality within the given time limit.

#best Number of solutions whose makespan equals or improves the best known
makespan from the literature.

ttot Average solution times for all instances (we take the minimal solution times of
all processors for one instance in the parallel approach).



5.3. Computational experiments 73

Gopt(%) The average optimality gap evaluated by SCIP for the instances where a
feasible solution was found (we take the optimality gap of the processor which
found the best makespan in the parallel approach).

#Imp Number of instances where we could improve the best known makespan from
the literature.

Table 5.1 shows the results for our models and the state-of-the-art exact approach
of Zhu et al. [92] (MMBAC) on the J20mm instances. For these instances MMBAC outper-
forms all of our single-core approaches (G12Max, SCIPMax and SCIPoptMax) as they
can solve all feasible instances to optimality. Nevertheless, G12Max is highly compet-
itive to the approach of Zhu et al. [92]. The parallel approach G12Best outperforms
the state-of-the-art exact approach from the literature. We can also solve all feasible
instances to optimality, but MMBAC is three times slower.

Furthermore, the SCIP-approaches using our cumulativemm-constraint signi�-
cantly outperform the SCIP-approaches integrating the existing optcumulative-
constraint. With SCIPBest we can solve 40 more instances to optimality and are
on average approximately �ve times as fast as SCIPoptBest. Moreover, SCIPBest is
competitive to MMBAC and G12Best.

#feas #opt #best ttot Gopt(%) #Imp

G12Max 554 552 554 20.58 0.05 0
G12Best 554 554 554 10.39 0.0 0
SCIPMax 554 547 550 33.96 0.32 0
SCIPBest 554 552 554 22.74 0.07 0

SCIPoptMax 554 504 519 130.37 3.16 0
SCIPoptBest 554 512 543 113.66 2.85 0

MMBAC 554 554 554 32.06 0 -

Table 5.1: Results on the 20-job instances

Table 5.2 shows the results for the J30mm instances. Here, we can already solve
9 more instances to optimality than MMBAC with the single-core approach G12Max.
Moreover, G12Max is almost two times faster than MMBAC. The parallel approach
G12Best signi�cantly outperforms MMBAC both regarding average solution times and
solution quality. Again, SCIPBest (SCIPMax) is considerably better than SCIPoptBest
(SCIPoptMax). We can solve 36 (44) more instances to optimality and are ≈ 42%
(43%) faster.

As the Branch-and-Cut approach of Zhu et al. [92] is based on a MIP formulation
of the MRCPSP, it is highly dependent of a starting solution with a small makespan
to reduce the number of binary variables. They use starting solutions computed
by a problem speci�c heuristic whose makespan on average only deviates by 2.18%
from the best known makespans of the PSPLIB. An advantage of our SCIP- and
G12 approaches is that they still produce good results with the relatively high upper
bound Tmax as input.
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#feas #opt #best ttot Gopt(%) #Imp

G12Max 552 515 521 212.44 2.59 0
G12Best 552 521 537 180.5 1.97 0
SCIPMax 552 500 508 259.71 3.37 0
SCIPBest 552 504 517 232.95 2.96 0
SCIPoptMax 552 456 470 452.46 8.15 0
SCIPoptBest 552 468 480 401.74 7.29 0

MMBAC 552 506 529 393.13 - -

Table 5.2: Results on the 30-job instances

Tables 5.3 and 5.4 contain the results for the runs with the 50- and 100-job
instances, respectively. To our knowledge, these have not been solved exactly before.
For these instance sets, the approaches integrating the best SCIP model signi�cantly
outperform the approaches integrating the G12-model.

We can solve approx. 78% of the 50-job instances and 63% of the 100-job in-
stances to optimality within the given time limits with SCIPBest. Moreover, we
improved the best known makespans of 70 instances with 50 jobs and 106 instances
with 100 jobs. These makespans were reported by the Operations Research and
Scheduling research group of the University of Ghent [64] and were evaluated in the
course of the experiments described by Van Peteghem and Vanhoucke [87].

#feas #opt #best ttot Gopt(%) #Imp

SCIPMax 540 405 422 1409.69 17.73 59
SCIPBest 540 420 445 1252.25 9.86 70
G12Max 532 363 383 1952.36 11.04 61
G12Best 539 367 420 1861.9 8.86 68

Table 5.3: Results on the 50-job instances

#feas #opt #best ttot Gopt(%) #Imp

SCIPMax 518 312 328 3127.93 327.42 98
SCIPBest 535 338 353 2740.31 33.4 106
G12Max 219 150 160 5963.62 8.77 25
G12Best 404 245 270 5255.9 12.82 52

Table 5.4: Results on the 100-job instances

5.4 Conclusion

In this chapter, we introduced a generalization of the exact CP-SAT approaches for
the SRCPSP with SPRs to the MRCPSP with SPRs. This generalization can on
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the one hand be achieved on the modeling level. We introduced formulations of the
MRCPSP with SPRs in optimization frameworks (G12 and SCIP) which integrate
a BaB-algorithm in combination with CP and SAT techniques. One formulation
is usable via the Zinc modeling language which supports the solution of models by
LCG, the state-of-the-art exact approach for variants of the SRCPSP with SPRs.
Moreover, we proposed two formulations for the optimization framework SCIP. One
of the latter is based on our new constraint handler called cumulativemm and the
other one on the existing optcumulative-constraint introduced by Heinz et al. [42].

The computational experiments show that for the 20- and 30-job instances at least
one of our proposed approaches can outperform the state-of-the-art exact algorithm
of Zhu et al. [92] for the MRCPSP with SPRs. Our parallel G12-algorithm is almost
three times faster than their approach on the 20-job instances. Moreover, on the 30-
job instances already our single-core approach using a trivial upper bound as input
for the G12-algorithm can solve 9 more instances to optimality and is almost two
times faster. A clear advantage of our approaches is that they also produce good
results when large upper bounds are used as input. In contrast, the quality of the
approach of Zhu et al. [92] is highly dependent on small UBs as input to reduce the
initial number of variables.

Moreover, the SCIP-approaches which apply our cumulativemm-constraint are
signi�cantly better than the SCIP-approaches integrating the existing optcumula-

tive-constraint. For the 20- and 30-job instances, we could solve 40 and 36 more
problem instances to optimality in approximately �ve and two times smaller average
solution times, respectively.

Furthermore, we are the �rst to exactly solve new instances of the MRCPSP
with SPRs with 50 and 100 jobs from the literature. In contrast to the 20- and
30-job instances, the SCIP approaches integrating cumulativemm are signi�cantly
better than the G12 solution approaches on these instance sets. The best performing
SCIP approach solves approx. 78% of the 50-jobs instances and 63% of the 100-
jobs instances to optimality within the time limit of 5400s and 7200s, respectively.
Moreover, we could improve the best known makespans evaluated by the heuristic
approaches presented by Van Peteghem and Vanhoucke [87] for 70 and 106 instances
with 50 and 100 jobs, respectively.





Chapter 6

CP-SAT approaches for the

MRCPSP with GPRs

6.1 Introduction

The following chapter proposes extensions of the CP-SAT approaches from Chapt.
5 to solve the MRCPSP with GPRs. In Sect. 6.2, we formulate the MRCPSP
with GPRs in SCIP and show how our model can be strengthened by the inte-
gration of linear constraints, sprecedencemm and gprecedencemm. sprecedencemm

and gprecedencemm are two new constraint handler which integrate problem-speci�c
propagation and explanation generation algorithms based on SPRs and GPRs in the
context of multi-mode activities. In Sect. 6.3 and 6.4, we present the key principles
of our new global constraints sprecedencemm and gprecedencemm, respectively. In
Sect. 6.5 the di�erent SCIP-models are computationally evaluated and the chapter
ends with a conclusion on the obtained results in Sect. 6.6.

6.2 A SCIP-model for the MRCPSP with GPRs

For the modeling of the starting time of job i and the mode assignment of job i,
we use the integer variables si and the binary variables xi,k, respectively. With the

77
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notation of Sect. 2.1, the MRCPSP with GPRs can be formulated as follows in SCIP:

min sn+1 (6.1)

s.t.
∑
k∈Mi

xi,k = 1, ∀i ∈ J (6.2)

∑
i∈J

∑
k∈Mi

cνi,k,r · xi,k ≤ Cνr , ∀r ∈ N (6.3)

− (1− xi,k) ·M + si + δi,j,k,l ≤ sj + (1− xj,l) ·M,

∀j ∈ Si,∀i ∈ J, ∀k ∈Mi, ∀l ∈Mj (6.4)

cumulativemm(s,x,d, cr, Cρr ), ∀r ∈ R (6.5)

sj ∈ {lb(sj), . . . , ub(sj)} ,∀j ∈ J (6.6)

xj,k ∈ {0, 1} , ∀j ∈ J, k ∈Mj (6.7)

where

s =©i∈Js
i, where si = [si], i ∈ J (6.8)

x =©i∈Jx
i, where xik = xi,k, ∀k ∈Mi, i ∈ J (6.9)

d =©i∈Jd
i, where dik = di,k, ∀k ∈Mi, i ∈ J (6.10)

cr =©i∈Jc
i,r,where ci,rk = cρi,k,r, ∀k ∈Mi, i ∈ J, r ∈ R (6.11)

In the above model, we use the variable vectors s and x and the parameter vectors
d and cr which are given in (6.8)-(6.11). In this context, the operator ◦ is de�ned
as in Sect. 5.1.2.

With (6.2) and (6.3), we assure the uniqueness of the mode-assignments and
formulate the nonrenewable resource constraints, respectively. With (6.4), we model
GPRs between multi-mode jobs. With a su�ciently big constant M , the constraint
only becomes binding for the variables si and sj , if xi,k = 1 and xj,l = 1.

In (6.5), we apply cumulativemm as in Sect. 5.1.2 to model renewable resource
constraints for multi-mode jobs.

To reduce the initial search space for the solution algorithm, again lower bounds
lb(si) and upper bounds ub(si) are computed for si as proposed in Sect. 2.4.

6.2.1 Strengthening of the mathematical formulation

In the following, we propose three variants for the strengthening of the above formu-
lation of the MRCPSP with GPRs. Firstly, the above model can be strengthened by
the addition of the linear constraints:

si +
∑
k∈Mi

d∗i,k · xi,k ≤ sj , ∀j ∈ Si, ∀i ∈ J (6.12)

where d∗i,k = min
j∈Si,l∈Mj

{δi,j,k,l} (6.13)
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The model (5.14) - (5.20) is equivalent to the model (5.14) - (5.20) with (6.12).
However, the latter model has a potentially stronger LP-relaxation and leads to an
improvement of the propagation algorithms w.r.t. the variables si in the course of
the solution algorithm.

For the second and third strengthening variant, we implemented two new con-
straint handlers for SCIP, namely sprecedencemm and gprecedencemm, which can
be used for the modeling of SPRs and GPRs in the context of multi-mode activities,
respectively.

One can model SPRs as follows:

sprecedencemm(s,x,d,S) (6.14)

Thereby, the input is de�ned by (5.7) - (6.10) and the vector S which contains the
successor sets Si for every activity i.

sprecedencemm guarantees feasibility w.r.t. the following formula:

If xi,k = 1⇒ si + di,k ≤ sj , ∀j ∈ Si, ∀i ∈ J, ∀k ∈Mi (6.15)

Moreover, it also captures propagation and explanation generation algorithms for
SPRs in the context of multi-mode activities (see Sect. 6.3).

sprecedencemm can also be applied in the context of GPRs to strengthen the
model (5.14) - (5.20). Therefore, we substitute the vector d in (6.14) by

d∗ =©i∈Jd
∗
i (6.16)

where d∗i contains the values d
∗
i,k, ∀k ∈Mi de�ned in (6.13). In other words, we add

the constraint
sprecedencemm(s,x,d∗,S) (6.17)

to the model (5.14) - (5.20).

Example 6.2.1. For an illustration of the input needed for the constraint (6.17), we
stick to the data introduced in the example of Sect. 2.5. We restrict ourselves to the
data that has to be collected w.r.t. the precedence relation (1, 4).

For this strengthening variant, we have to determine the duration vector d∗ for
sprecedencemm.

Therefore, we �rstly determine the minimal time lags d∗1,k, k ∈ {1, 2} w.r.t. all
modes of the successor 4:

d∗1,1 = −5, d∗1,2 = −6,

i.e. we obtain the vector d∗1 = [−5,−6].
The computation of d∗j,k, k ∈ {1, 2} for the remaining jobs j ∈ {0, 2, 3, 4, 5, 6, 7}

is similar.
The vectors d∗i , i ∈ {0, . . . , 7} are then concatenated to the vector d∗ and used

as input for sprecedencemm. Note, that if an activity j would have more than one
successor, we would have to determine d∗j,k, k ∈ {1, 2} w.r.t. all successors and all
the respective modes. The generation of the vectors s, x and S is straightforward.
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Again, the formulation (5.14) - (5.20) is equivalent to the formulation (5.14)
- (5.20) with (6.17). However, as sprecedencemm captures problem-speci�c prop-
agation and explanation generation algorithms, the addition of (6.17) potentially
enhances the overall solution procedure applied by SCIP.

The second strengthening variant with (6.17) has an advantage over the �rst
strengthening variant with (6.12). In contrast to the constraint handler of SCIP
which manages linear constraints [1], and thus (6.12), the propagation and explana-
tion generation algorithms of sprecedencemm integrate the knowledge that exactly
one mode has to be chosen for every activity (see Sect. 6.3). This potentially leads
to stronger domain reductions.

GPRs can be modeled by gprecedencemm in the following way:

gprecedencemm(s,x, δ,S), (6.18)

where δ =©i∈J,j∈Siδ
i,j , (6.19)

and δi,j =©k∈Mi
[δi,j,k,l : l ∈Mj ], i ∈ J, j ∈ Si

gprecedencemm guarantees feasibility w.r.t. the following formula:

If xi,k = 1 andxj,l = 1⇒ si + δi,j,k,l ≤ sj ,
∀j ∈ Si, ∀i ∈ J, ∀k ∈Mi,∀l ∈Mj

Furthermore, it extends the propagation and explanation generation algorithms of
sprecedencemm for the application to GPRs in the context of multi-mode activities
(see Sect. 6.4).

In the third strengthening variant, we add (6.18) to the formulation (5.14) -
(5.20). The constraint (6.18) is stronger than (6.17) and (6.12). Firstly, this is
due to the fact, that (6.17) and (6.12) can lead to infeasible solutions w.r.t. GPRs,
whereas (6.18) guarantees feasibility w.r.t. GPRs. Moreover, as outlined in Sect.
6.4, the propagation algorithms implemented in gprecedencemm are also stronger
than the ones of sprecedencemm and the linear constraint handler of SCIP when
applied to the special case of GPRs in the context of multi-mode activities.

Example 6.2.2. Again, we use the data introduced in example of Sect. 2.5 to illus-
trate the input needed for the constraint (6.18).

In the strengthening variant with gprecedencemm, the vector δ has to be deter-
mined (see (6.19)).

Therefore, we �rstly construct the vector δ1,4 for the precedence relation (1, 4):

δ1,2 = [2,−5] ◦ [−6, 8] = [2,−5,−6, 8]

In total, we have to generate the vector δi,j for every precedence relation (i, j) and
then concatenate these vectors to obtain the vector δ.
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6.3 Key Principles of sprecedencemm

Before sprecedencemm applies its domain propagation and explanation generation
algorithms, it determines an MPI (similar to [39] and cumulativemm in Sect. 5.2)
depending on the domains of the variables xi,k in the current node of the BaB tree.

Again, we only integrate activity-mode combinations (i, k) with ub(xi,k) > 0 in
the evaluation of the MPI. If ub(xi,k) = 0, i.e. xi,k = 0, mode k cannot be chosen
anymore in the succeeding nodes of the BaB tree. Thus, the respective data for mode
k can be excluded in the succeeding nodes.

For sprecedencemm we only need a representative duration dmin
i for every activity

i given as follows:

dmin
i = min

k∈Mi

{di,k : ub(xi,k) > 0} (6.20)

which is used for the domain propagation and explanation generation algorithms in
Sect. 6.3.1 and 6.3.2.

As already pointed out in Sect. 5.2, the calculation of an MPI is an important
step to solve the MRCPSP as the multi-mode data is transformed to a single-mode
equivalent. Thus, one can apply well-known techniques for the SRCPSP to solve the
MRCPSP. The idea to calculate an MPI is a standard technique to tackle MRCPSP
instances and is also, e.g., proposed by Brucker and Knust [16].

6.3.1 Domain Propagation

After the calculation of dmin
i from (6.20) for every activity i ∈ J in the current node

of the BaB tree, we iterate through all activity pairs (i, j), where j ∈ Si and try to
propagate the domains of i and j or detect inconsistencies.

Therefore, we compute the following values in the current node:

lb∗j = lbl(si) + dmin
i (6.21)

ub∗i = ubl(sj)− dmin
i (6.22)

lbl(si) and ubl(si) correspond to the local lower and upper bound of si.
An inconsistency is present, if:

lb∗j > ubl(sj), (6.23)

i.e. it is impossible to ful�ll the precedence relations (i, j) in the succeeding nodes
of the BaB tree and we can cuto� the current node.

Otherwise, we try to update the domains of the variable si and sj as follows:

If lb∗j > lbl(sj) : lbl(sj)← lb∗j (6.24)

If ub∗i < ubl(si) : ubl(si)← ub∗i (6.25)



82 Chapter 6. CP-SAT approaches for the MRCPSP with GPRs

6.3.2 Explanation Generation

To bene�t from the SCIP-intern CA mechanism as in the case of the constraint
handler cumulativemm, we have to explain inconsistencies (6.23) and domain updates
(see (6.24) and (6.25)) detected by sprecedencemm.

Now assume, that (i, j) is a precedence relation for which (6.23) holds at the BCI
c (see also Sect. 5.2.1). For the explanation of the latter inconsistency, we determine
dmin,c
i from (6.20), lb∗,cj from (6.21) and the sets U ci for the time point c as follows:

U ci = {m : m ∈Mi and ub
c(xi,m) > 0}. (6.26)

The reasons for the inconsistency are the bounds of the variables si and sj and the
duration dmin,c

i at the BCI c:Jsi ≥ lb∗,cj − d
min,c
i K ∧

∧
m∈Mi\Uci

Jxi,m = 0K

 ∧ Jsj ≤ lb∗,cj − 1K (6.27)

In other words, if (6.27) becomes true because of the domains of the variables
si, sj and xi,k, k ∈Mi in a node of the BaB tree, SCIP knows that this leads to an
inconsistency and prunes the current node of the BaB tree.

Furthermore, the CA mechanism of SCIP also asks for explanations of bound
changes which were processed through sprecedencemm. In concrete, we have to
provide an explanation for the new lower bound lb∗,ej of the variable sj at the BCI e
to the SCIP-intern CA mechanism.

Therefore, we assume that the precedence relation (i, j) led to the latter lower
bound update.

Then the explanation is as follows:

Jsi ≥ lb∗,ej − d
min,e
i K ∧

∧
m∈Mi\Uei

Jxi,m = 0K =⇒ Jsj ≥ lb∗,ej K (6.28)

(6.28) contains the minimum lower bound of the variable si and its necessary duration
value of at least dmin,e

i units which in combination leads to the lower bound update
of sj .

Furthermore, we have to provide explanations for the upper bound change of a
variable si from ube(si) to ub

∗,e
i at the BCI e to the SCIP-intern CA mechanism (see

(6.25)).
Again, we assume that the precedence relation (i, j) led to the upper bound

change of si.
This domain update can be explained as follows:

Jsj ≤ ub∗,ei + dmin,e
i K ∧

∧
m∈Mi\Uei

Jxi,m = 0K =⇒ Jsi ≤ ub∗,ei K (6.29)
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All explanations (6.27), (6.28) and (6.29) can be transformed to possibly stronger
explanations. Assume therefore, that lb(si) and ub(si) are the global lower and upper
bounds of the variable si.

Firstly, if one of the inequalities

lb∗,cj − 1 ≥ ub(sj),

lb∗,cj − d
min,c
i ≤ lb(si),

lb∗,ej − d
min,e
i ≤ lb(si) or

ub∗,ei + dmin,e
i ≥ ub(sj)

is ful�lled, we can omit the respective literal in (6.27), (6.28) or (6.29). This is due
to the fact that it is globally true in the above case.

Secondly, we can determine the sets:

Bt
i = {m : m ∈Mi and di,m ≥ dmin,t

i,new}, t = c, e,

where dmin,c
i,new = min{ub(sj); lb∗,cj − 1} −max{lb∗,cj − d

min,c
i ; lb(si)}+ 1,

dmin,e
i,new = lb∗,ej −max{lb∗,ej − d

min,e
i ; lb(si)},

or dmin,e
i,new = min{ub(sj);ub∗,ei + dmin,e

i } − ub∗,ei .

We can replace ∧
m∈Mi\Uti

Jxi,m = 0K, t = c, e (6.30)

by ∧
m∈Mi\Bti

Jxi,m = 0K, t = c, e. (6.31)

Because of the evaluation of dmin,t
i through (6.20) and as dmin,t

i ≥ dmin,t
i,new, it holds

that:
U ti ⊆ Bt

i , ∀t = c, e.

Thus, in the case that U ti ⊂ Bt
i for t = c or t = e, (6.31) contains less literals than

(6.30) and is therefore stronger.

6.4 Key Principles of gprecedencemm

The propagation rules for the starting time variables si and sj belonging to the
precedence relation (i, j) are similar to the ones outlined in Sect. 6.3.1 for sprece-
dencemm, with the only di�erence that dmin

i has to be substituted by δmin
i,j given as

follows:

δmin
i,j = min

k∈Mi,l∈Mj

{δi,j,k,l : ub(xi,k) > 0 ∧ ub(xj,l) > 0} .
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In concrete, we consider all possible minimal time lags belonging to the prece-
dence relation (i, j) in the current node of the BaB tree. If e.g. it holds that
ub(xi,k) = 0 or ub(xj,l) = 0 for a special mode combination (k, l), k ∈ Mi, l ∈ Mj ,
the respective minimal time lag δi,j,k,l cannot occur for (i, j) in the nodes succeeding
the recent node of the BaB tree and is thus not considered in (6.4).

Assume now, that all variables si and xi,k belonging to the strengthening scenario
with sprecedencemm have the same domains as their counterpart in the strengthening
scenario with gprecedencemm in a node of the BaB tree. Then, it holds, that δmin

i,j ≥
dmin,∗
i . Thus, the propagation algorithms applied for the model with gprecedencemm

potentially lead to stronger domain reductions than the ones applied for the model
with sprecedencemm for an equivalent input.

The explanations generated by gprecedencemm in case of a con�ict, a lower or an
upper bound update are also rather similar to the ones generated by sprecedencemm

(see Sect. 6.3.2) except from the fact that we again substitute dmin,t
i by δmin,t

i,j and
furthermore U ti , t = c, e by U ti,j , t = c, e where:

U ti,j = {(k, l) : k ∈Mi, l ∈Mj and ub
t(xi,k) > 0 ∧ ubt(xj,l) > 0}, t = c, e.

In total, the explanations of gprecedencemm for a con�ict, a lower and an upper
bound update are given by (6.32), (6.33) and (6.34), respectively:

Jsi ≥ lb∗,cj − δ
min,c
i,j K ∧

∧
(k,l)∈(Mi×Mj)\Uci,j

(Jxi,k = 0K ∨ Jxj,l = 0K)

∧ Jsj ≤ lb∗,cj − 1K =⇒ false (6.32)

Jsi ≥ lb∗,ej − δ
min,e
i,j K ∧

∧
(k,l)∈(Mi×Mj)\Uei,j

(Jxi,k = 0K ∨ Jxj,l = 0K)

=⇒ Jsj ≥ lb∗,ej K (6.33)

Jsj ≤ ub∗,ei + δmin,e
i,j K ∧

∧
(k,l)∈(Mi×Mj)\Uei,j

(Jxi,k = 0K ∨ Jxj,l = 0K)

=⇒ Jsi ≤ ub∗,ei K (6.34)

Note, that the concepts introduced in Sect. 6.3.2 to strengthen the explanations
of sprecedencemm can be straightforwardly generalized for the use in gprecedencemm.

6.5 Computational Experiments

As in Sect. 4.3 and 5.3, we carried out our evaluations on the Vienna Scienti�c
Cluster (VSC). Details about the system architecture can be found in Sect. 4.3.
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For the implementation of the constraint handlers sprecedencemm and gprece-

dencemm, and the formulation and solution of the di�erent models we used SCIP
3.1.1 in combination with the programming languages C/C++1 .

We compare four di�erent models denoted by the following abbreviations:

SCIPNoStr denotes the model (5.14) - (5.20), i.e. the model with no strengthening.

SCIPLinStr denotes the model (5.14) - (5.20) with the linear constraint (6.12).

SCIPWeStr denotes the model (5.14) - (5.20) with (6.17)2.

SCIPExStr denotes the model (5.14) - (5.20) with (6.18)3.

Again, as in Sect. 5.3, for every model we distinguish between two solution ap-
proaches, a single-core (Max) and a multi-core (Best) procedure.

In total, we apply eight di�erent solution approaches to 810 benchmark instances
with 30, 50 and 100 activities generated by Schwindt [78]4. Hereby, the solution
process of SCIP was aborted after the time limit of 1h, 2h and 4h, respectively.

Moreover, we compare the two best solution approaches belonging to the best
model to the state-of-the-art exact approach for the MRCPSP with GPRs of Heil-
mann [39] (BABH).

The best known makespans, i.e. upper bounds reported online [63] were com-
puted by BABH and the heuristic approach of Nonobe and Ibaraki [61]. The best
known lower bounds were evaluated by Brucker and Knust [15] and BABH.

We compare our six approaches based on the following measurements:

#feas Number of instances where a feasible solution could be found within the
given time limit.

#opt Number of instances solved to optimality within the given time limit.

#best Number of solutions whose makespan equals or improves the best known
makespan reported online [63].

ttot Average solution time in seconds for all considered instances (we take the min-
imal solution time of all processors for one instance in the parallel approach).

1Note, that for both sprecedencemm and gprecedencemm we implemented the explanation gen-
eration variant which uses the potentially stronger explanations (see Sect. 6.3.2). Preliminary
experiments have shown that this version is slightly better.

2Here, we add sprecedencemm to strengthen our model. Note, that both (6.12) and (6.17) cannot
be used without (6.4) to model GPRs as in this case it is possible to obtain infeasible solutions
w.r.t. GPRs. Therefore, in both scenarios we speak of a "weak" formulation of GPRs.

3 GPRs can be enforced by (6.18) in a valid way, i.e. it can be used in a standalone manner to
model GPRs. Therefore, we speak of an "exact" formulation of GPRs through gprecedencemm.

4These are available online [63].
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Gopt(%) The average optimality gap evaluated by SCIP for the instances where a
feasible solution was found (we take the optimality gap of the processor which
could prove optimality or otherwise could �nd the best makespan in the parallel
approach).

#Imp Number of instances where we could improve the best known makespan re-
ported online [63].

Table 6.1 shows the results for the 30-activity instances.
With all approaches except SCIPNoStrMax, we can solve all 270 30-activity in-

stances to proven optimality with average solution times smaller than 59s. Moreover,
we can improve the best known makespan for nine instances.

We can see that all strengthening variants lead to a more e�cient mathemati-
cal model. In all single-core (multi-core) approaches, SCIPLinStrMax(Best) SCIP-

WeStrMax(Best) and SCIPExStrMax(Best), we observe signi�cantly smaller average
solution times than with SCIPNoPrecMax(Best). Furthermore, with all single-core
approaches except SCIPLinStrMax, we can solve all instances to proven optimality.

The best results are obtained with the model SCIPExStr. SCIPExStrMax(Best)
is on average at least 1.5 times as fast as SCIPWeStrMax(Best) and SCIPLinStr-

Max(Best). This observation is rather intuitive, as (6.18) is stronger than (6.17) and
(6.12) w.r.t. feasibility checking and propagation.

No clear conclusion can be stated about the performance of SCIPWeStr compared
to SCIPLinStr for this instance set. SCIPWeStrBest is on average approximately 5s
faster than SCIPLinStrBest whereas SCIPLinStrMax is on average approximately 6s
faster than SCIPWeStrMax.

#feas #opt #best ttot Gopt(%) #Imp
SCIPNoStrMax 270 267 268 169.77 1.44 8
SCIPNoStrBest 270 270 270 58.61 0.0 9
SCIPLinStrMax 270 270 270 49.44 0.0 9
SCIPLinStrBest 270 270 270 20.71 0.0 9
SCIPWeStrMax 270 270 270 55.66 0.0 9
SCIPWeStrBest 270 270 270 15.88 0.0 9
SCIPExStrMax 270 270 270 32.31 0.0 9
SCIPExStrBest 270 270 270 9.94 0.0 9

Table 6.1: 30 Jobs: Results of our approaches

Table 6.2 compares our approaches obtained with the best model SCIPExStr to
the state-of-the-art exact approach BABH w.r.t. #opt for di�erent time limits.

BABH was tested on an Intel Pentium III 800 MHz personal computer with 256
MB SDRAM running under the operating system Windows 2000. To guarantee
a fair comparison w.r.t. the processors used, we decrease the time limits for our
approaches by a factor of approximately 37.7. This factor is based on the values of
both processors documented in an online CPU benchmark [20].
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We can conclude that for this instance set BABH outperforms our approaches.
However, our parallel approach SCIPExStrBest is highly competitive to BABH for the
highest time limit.

0.027s 0.27s 2.7s 27s
SCIPExStrMax 0 0 63 238
SCIPExStrBest 0 44 208 256

1s 10s 100s 1000s
BABH 158 198 238 257

Table 6.2: 30 Jobs: Comparison to BABH [39] w.r.t. #opt

Table 6.3 shows the results for the 50-activity instances. Again, all strengthening
variants lead to a more e�cient mathematical formulation. Here, the bene�t is even
more signi�cant. For example, with the parallel approach SCIPExStrBest we can
solve 9 more instances to proven optimality and are on average at least three times
as fast as SCIPNoPrecBest.

Moreover, again regarding solution time and quality it is best to implement the
model SCIPExStr which integrates the exact formulation of GPRs through gprece-

dencemm apart from the fact that SCIPExStrMax can solve 2 and 1 less instances to
optimality than SCIPWeStrMax and SCIPLinStrMax, respectively.

Furthermore, for this instance set the model SCIPWeStr should be preferred over
SCIPLinStr.

#feas #opt #best ttot Gopt(%) #Imp
SCIPNoStrMax 270 243 256 1570.5 16.03 51
SCIPNoStrBest 270 257 269 705.94 4.12 58
SCIPLinStrMax 270 256 265 658.84 2.98 57
SCIPLinStrBest 270 263 270 331.3 1.56 61
SCIPWeStrMax 270 257 265 564.15 2.62 58
SCIPWeStrBest 270 265 269 315.4 0.89 62
SCIPExStrMax 270 255 268 540.51 1.03 58
SCIPExStrBest 270 266 270 230.87 0.59 63

Table 6.3: 50 Jobs: Results of our approaches

In Table 6.4, we compare our best approaches SCIPExStrMax and SCIPExStrBest

to BABH on the 50-activity instances. BABH outperforms SCIPExStrMax and
SCIPExStrBest for the �rst three time limits. However, the single-core approach
SCIPExStrMax and the parallel approach SCIPExStrBest produce better results for
the highest time limit. With SCIPWeStrMax and SCIPWeStrBest, we can solve three
and 37 more instances to optimality than BABH in this scenario, respectively.

The poorer results of our approaches for smaller time limits can be explained by
the initialization phase needed until the SAT Solving techniques of SCIP become
e�cient. To deduce strong nogoods and large backjumps, a CA mechanism needs a
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certain amount of information about the problem at hand. That is the more problem-
speci�c explanations are given to the CA mechanism, the better are its deductions.
Similarly, it takes time until the weights used in the VSIDS-based branching rule
become meaningful. Thus, in the beginning the SCIP solution procedure is in a
learning phase in which it behaves rather poor. After a certain period of time, SCIP
has enough problem-speci�c information and behaves signi�cantly better, as can be
seen in the Tables 6.2 and 6.4. BABH uses problem-speci�c nogoods, also known as
dominance rules, and problem-speci�c branching techniques from the start. Hence,
the latter approach has an advantage for the smaller time limits.

0.027s 0.27s 2.7s 27s
SCIPExStrMax 0 0 0 187
SCIPExStrBest 0 0 83 221

1s 10s 100s 1000s
BABH 43 125 160 184

Table 6.4: 50 Jobs: Comparison to BABH [39] w.r.t. #opt

Finally, Table 6.5 shows our results for the 100-activity instances, the instance
set of Schwindt [78] integrating the largest number of activities. Note, that to our
knowledge the exact approach of Heilmann [39] was not tested on these instances.

Again, we can signi�cantly improve the original mathematical model by our
strengthening concepts. As a highlight, we point out that the approach SCIPExStr-

Max solves 160 more instances to optimality than SCIPNoStrMax and is on average
approximately three times as fast.

Moreover, with the parallel approach SCIPExStrBest, we can solve approximately
73% of the instances to optimality with an average solution time of 4006s. Fur-
thermore, we can improve the best known makespans reported online [63] for 199
instances. Only four out of 270 best known solutions had been proven to be opti-
mal before. With SCIPExStrBest, we could �nd the optimal solution and prove its
optimality for 194 more instances within the prede�ned time limit of 4h.

In this case, SCIPExStr is clearly the best model. Furthermore, the model SCIP-
WeStr integrating sprecedencemm is signi�cantly better than the model integrating
the linear constraints (6.12). The only bottleneck of the approaches integrating
sprecedencemm and gprecedencemm for this instance set is that they cannot deter-
mine a feasible solution for all instances. Perhaps, the implementation of a problem-
speci�c primal heuristic for SCIP can overcome this disadvantage.

Detailed benchmark �les for the 30-, 50- and 100-activity instances can be found
online [63]. These also integrate our results on the instances, where we could improve
the best known lower or upper bounds. Moreover, the Online Resources 1, 2 and
3 contain the results obtained through SCIPExStrBest for the instances where we
could improve the best known lower bound or makespan documented in the old
benchmark �les [63] for the 30-, 50- and 100-activity instances, respectively.
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#feas #opt #best ttot Gopt(%) #Imp
SCIPNoStrMax 270 31 41 13696.5 506.78 22
SCIPNoStrBest 270 103 123 10239.0 394.44 86
SCIPLinStrMax 270 115 126 9903.61 166.11 89
SCIPLinStrBest 270 181 217 5985.62 83.28 175
SCIPWeStrMax 245 157 177 8057.41 51.59 134
SCIPWeStrBest 254 193 226 5220.3 29.27 185
SCIPExStrMax 256 191 224 4486.36 13.96 181
SCIPExStrBest 262 198 241 4005.67 11.27 199

Table 6.5: 100 Jobs: Results of our approaches

6.6 Conclusion

In this chapter, we proposed a generalization of the state-of-the-art exact algorithms
for variants of the SRCPSP to the MRCPSP with GPRs. Our approach is an exten-
sion of an exact solution procedure for the MRCPSP with SPRs which was introduced
in Chapt. 5. The respective SCIP-models could be straightforwardly extended for
the formulation of the MRCPSP with GPRs.

Moreover, we introduced two new global constraints sprecedencemm and gprece-

dencemm with which one can model SPRs and GPRs in the context of multi-mode
activities, respectively. The latter integrate constraint propagation and explanation
generation specially tailored to the above problem characteristics.

We analyzed four di�erent mathematical models for the MRCPSP with GPRs.
The �rst is the straightforward extension of the best SCIP-model presented in Chapt.
5. The other three models integrate di�erent constraints to potentially strengthen
the original formulation. One integrates linear constraints to obtain a stronger LP-
relaxation. The other two additionally contain sprecedencemm and gprecedencemm

to model GPRs such that problem-speci�c knowledge is integrated into the solution
process. In two models (SCIPLinStr and SCIPWeStr) the additional constraint is
weaker than in the last model (SCIPExStr) with gprecedencemm. More precisely,
solutions which are feasible w.r.t. the constraint handler gprecedencemm employed
in SCIPExStr, also ful�ll the additional constraints added in SCIPLinStr and SCIP-

WeStr, but not vice versa.
Our computational results show, that the proposed strengthening variants signif-

icantly improve the original mathematical formulation on all benchmark sets. The
best model is the one integrating gprecedencemm.

Moreover, one can observe that especially for the 50- and 100-activity instances
it is clearly better to strengthen the original formulation by sprecedencemm and
gprecedencemm than by the linear constraints (6.12). This can be explained by
the fact, that our constraint handlers integrate problem-speci�c propagation and
explanation generation algorithms. The linear constraint handler of SCIP integrates
more general techniques which potentially lead to smaller search space reductions.
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We also compared a single-core and a parallel solution approach including the best
model SCIPExStr to the state-of-the-art exact algorithm of Heilmann [39] (BABH). For
the three smallest imposed time limits, BABH can solve signi�cantly more instances to
optimality. However, if the time limits and instances become larger, we outperform
the latter approach. E.g. for instances with 50 activities we can solve 37 more
instances to optimality within a comparable time limit. This is explained by a
possibly time-consuming learning phase of the SCIP solution procedure until the
CP-SAT techniques become e�cient. We assume, that when it comes to closing
hard instances and when larger time limits are allowed, our approach should be
preferred over BABH.

Furthermore, our solution approach is more �exible as the applied models can be
extended or changed and we still can use the solution algorithm provided by SCIP.
In contrast, the extension of the specialized approach of Heilmann [39] might not be
straightforward when a new consideration has to be taken into account.

Our parallel approach is dependent on the makespan of a feasible solution. How-
ever, if there is no feasible solution at hand, our single-core approach can be applied
as it uses a pre-computable upper bound for the makespan as input. Our computa-
tional experiments show that also this relatively high upper bound as input leads to
competitive results.

Furthermore, the results for the 100-activity instances, the test set from the
literature containing the largest problem instances, are highly encouraging. We could
�nd the optimal solution and prove its optimality for 198 problem instances. To our
knowledge, only the best solutions of four instances were known to be optimal before.
In addition, we could improve the best known makespan for 199 instances.

In summary, we could close 289 open instances and could improve the best known
makespan for 271 instances from the benchmark of Schwindt [78] with our best
performing solution approach.



Chapter 7

A heuristic for the MRCMPSP

with SPRs

For the MISTA competition [90], we implemented a model within SCIP which applies
our constraint handler cumulativemm (see Sect. 5.2) for the modeling and solution
of the MRCMPSP with SPRs with the objective to lexicographically minimize �rst
the total project delay (TPD) and then the total makespan (TMS). We are able
to solve the competition instances with at most two projects to optimality by the
solution of the model from Sect. 7.1 in less than 15s. For the remaining instances we
implemented a local search algorithm (see Sect. 7.2) whereas the construction and
improvement step are based on the solution of variations of the model of Sect. 7.1.
The results obtained by the exact and heuristic algorithm can be found in Sect. 7.3.

7.1 A SCIP-model for the MRCMPSP with SPRs

When using our cumulativemm-constraint and the notation provided by the MISTA
competition organizers [90], the MRCMPSP to be considered can be formulated as
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follows within SCIP:

min Hmax ·

(∑
i∈P

si,|Ji|+1,1 −
∑
i∈P

(ri + CPDi)

)
+ sg (7.1)

s.t.
∑

k∈Mi,j

xi,j,k = 1,

∀i ∈ P, ∀j ∈ Ji ∪ {0, |Ji|+ 1} (7.2)

si,j,k + di,j,k · xi,j,k ≤ si,j′,k′ ,
∀i ∈ P, j ≺ j′, k ∈Mi,j , k

′ ∈Mi,j′ (7.3)

si,|Ji|+1,1 ≤ sg, ∀i ∈ P (7.4)∑
j∈Ji

∑
k∈Mi,j

rνi,j,k,l · xi,j,k ≤ ci,l, ∀i ∈ P, l ∈ Lνi (7.5)

cumulativemm(ŝi, x̂i, d̂i, r̂il, ci,l), ∀i ∈ P, l ∈ Lρi (7.6)

cumulativemm(ŝ, x̂, d̂, r̂g, cg), ∀g ∈ Gρ (7.7)

si,j,k ∈ {lb(si,j,k), . . . , ub(si,j,k)} ,
xi,j,k ∈ {0, 1} ,
∀i ∈ P, j ∈ Ji ∪ {0, |Ji|+ 1} , k ∈Mi,j (7.8)

where

ŝi = si,0 ◦ · · · ◦ si,|Ji|+1, where si,jk = si,j,k,

∀ i ∈ P, j ∈ Ji ∪ {0, |Ji|+ 1} , k ∈Mi,j (7.9)

x̂i = xi,0 ◦ · · · ◦ xi,|Ji|+1, where xi,jk = xi,j,k,

∀ i ∈ P, j ∈ Ji ∪ {0, |Ji|+ 1} , k ∈Mi,j (7.10)

d̂i = di,0 ◦ · · · ◦ di,|Ji|+1, where di,jk = di,j,k,

∀ i ∈ P, j ∈ Ji ∪ {0, |Ji|+ 1} , k ∈Mi,j (7.11)

r̂il = ri,0,l ◦ · · · ◦ ri,|Ji|+1,l, where ri,j,lk = rρi,j,k,l,

∀ i ∈ P, j ∈ Ji ∪ {0, |Ji|+ 1} , k ∈Mi,j , l ∈ Lρi ∪G
ρ (7.12)

and

ŝ = ŝ0 ◦ · · · ◦ ŝn−1 (7.13)

x̂ = x̂0 ◦ · · · ◦ x̂n−1 (7.14)

d̂ = d̂0 ◦ · · · ◦ d̂n−1 (7.15)

r̂l = r̂0
l ◦ · · · ◦ r̂n−1

l (7.16)

r̂g = r̂0
g ◦ · · · ◦ r̂n−1

g (7.17)

Note that the variables si,j,k represent the starting times of the activity j ∈ J of
project i ∈ P in mode k ∈ Mi,j and the variables xi,j,k model the processing of the
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activity j ∈ J of project i ∈ P in mode k ∈ Mi,j . Hereby, si,|Ji|+1,1 are the starting
time variables for the dummy jobs representing the ending of project i ∈ P with
Mi,|Ji|+1 = {1}.

The objective function (7.1) consists of a combination of the TPD and the TMS
sg, which is evaluated through (7.4). Thereby, we multiply the TPD with a su�-
ciently big makespan Hmax of the complete multi-project instance to guarantee the
lexicographical optimization of the two values.

(7.3) are multi-mode precedence constraints. With (7.5), we assure that the
non-renewable resource limits are not exceeded.

In (7.6) and (7.7), we apply our cumulativemm-constraint to model the resource
constraints for the local and global renewable resources. Thereby, we use the variable
vectors ŝi, ŝ, x̂i and x̂. In this context, the operator ◦ is de�ned as in the Sections
5.1 and 6.2.

7.2 Local Search for the MRCMPSP with SPRs

Our local search algorithm consists of a construction and an improvement step. In
the construction step, we �rstly try to solve every single project separately with
SCIP with the aim of makespan minimization. After a certain time limit L, we stop
the solution process and store the currently best MRCPSP solutions. Then, we try
to �nd the best sequence according to which the projects are ordered. For this we
solve a one-machine problem with given release dates and possible preemption with
the aim of minimizing the complete project delay (equivalent to the �rst term in
(7.1)). From the optimal sequence and the starting times of the solutions of every
single MRCPSP project, we generate a feasible schedule for the MRCMPSP. Based
on this schedule, we generate an activity list, which sorts all MRCMPSP activities
in ascending order of their starting times. After applying the SSGS (see [16, p.144
�.] and Sect. 2.5) to the latter activity list, we obtain a feasible starting solution for
our local search algorithm.

Our improvement step consists of the search for a new solution in one of the four
following neighborhoods. Two neighborhoods are based on the relaxation of at most
2 projects in the currently best schedule. For the �rst one we randomly relax 1-2
projects and for the second one we relax 1-2 projects for which the relaxation would
lead to the smallest lower bound on the objective function (7.1).
The third neighborhood is based on the relaxation of a random number of activities
which are scheduled at the end in the incumbent solution.

For the fourth neighborhood we only relax the mode variables in the incumbent
solution. With this neighborhood we try to �nd a mode-assignment which minimizes
the complete renewable resource energy [8, p.15 �.]. After having found a new
mode-assignment, we apply the SSGS to the incumbent solution with the new mode-
assignment to obtain a new feasible schedule.
The search for a new schedule in the neighborhoods is based on solving a variation
of the model presented in Sect. 7.1 with SCIP within a given time limit. Note, that
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we store information about the models already solved, so that we do not solve the
same model twice.

If a solution in one of the neighborhoods has a better objective value than the
incumbent solution, we update the best solution. Note that the neighborhoods are
randomly chosen, whereas we assign a higher selection probability to the �rst two
neighborhoods.

7.3 Results

Our exact and heuristic approach was tested on the Vienna Scienti�c Cluster (VSC)
(see Sect. 4.3). We implemented our approaches in C/C++ in combination with SCIP
3.0.0.

The Tables 7.1 and 7.2 show the results for the instance sets A and B provided
online by the competition organizers [19]. One can see the average TPD and TMS,
the best TPD and TMS (belonging to the best TPD) based on 10 runs for every
instance. Moreover, the tables contain the total solution times (ttot) and the gaps to
the best known solutions (GBK) for the instance set A. Note, that for the instances
A-1-A-3, we found the optimal solution in less than 15s by solving the model of Sect.
7.1 with SCIP. For the remaining instances, we applied the heuristic algorithm of
Sect. 7.2 with the time limit ttot = 300s given by the competition organizers. Overall,
our solution procedure was ranked ninth among all competition participants.

More detailed comparisons including all solution approaches are provided by
Wauters et al. [90].

avg. TPD avg. TMS best TPD best TMS ttot (s) GBK (%)
A-1 1.00 23.00 1 23 0.67 0.00
A-2 2.00 41.00 2 41 14.35 0.00
A-3 0.00 50.00 0 50 4.83 0.00
A-4 74.73 54.82 65 45 300 0.00
A-5 208.11 123.44 192 121 300 25.49
A-6 273.90 132.00 221 114 300 50.34
A-7 689.60 208.30 676 204 300 13.42
A-8 433.60 172.80 392 168 300 29.80
A-9 404.20 159.40 370 158 300 65.92
A-10 1313.50 369.80 1286 368 300 32.71

21.77

Table 7.1: Results for the instance set A

7.4 Conclusion

For the MISTA competition 2013 [90], we applied the constraint cumulativemm to
exactly and heuristically solve the MRCMPSP with SPRs. We are able to solve the
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avg. TPD avg. TMS best TPD best TMS ttot (s)

B-1 455.60 145.50 441 142 300
B-2 549.10 173.60 520 170 300
B-3 743.80 229.70 727 222 300
B-4 1832.10 328.40 1689 309 300
B-5 1321.90 303.30 1203 289 300
B-6 1290.80 265.80 1222 252 300
B-7 1418.40 297.10 1321 291 300
B-8 3848.90 599.80 3713 604 300
B-9 7600.20 1059.30 6993 1022 300
B-10 3634.70 468.10 3422 466 300

Table 7.2: Results for the instance set B

competition instances with at most two projects to optimality. For the remaining in-
stances, we implemented a local search algorithm which relaxes parts of the complete
problem and tries to solve the remaining problem to optimality with SCIP. With an
increasing number of projects, even the exact solution of the relaxed problems can
take a large amount of time. Thus, we assume a potential for an ample improvement
of the results by relaxing greater parts of the incumbent solutions and optimizing
the relaxed problems by metaheuristics like e.g. genetic algorithms.

This chapter and especially Sect. 7.1 shows, that with SCIP and our constraint
handlers at hand, it is in many cases straightforward to model more complex variants
of the RCPSP, i.e. to generalize the CP-SAT approaches proposed in the preced-
ing chapters to other problem classes which can be found in the area of project
scheduling.





Chapter 8

Conclusion and future research

State-of-the-art exact approaches for variants of the SRCPSP consist of a BaB algo-
rithm combining CP and SAT Solving techniques (see [76], [77] and [75]).

As a �rst contribution, in Chapt. 4, we provided a detailed computational analy-
sis of the performance variability which can be detected in recent CP-SAT approaches
for the SRCPSP with SPRs. We found out that varying the initial domains based
on di�erent prede�ned upper bounds leads to a signi�cant variation in the behavior
of state-of-the-art CP-SAT approaches. Moreover, a run with a higher upper bound
can result in better results than a run with a smaller upper bound.

This e�ect was explained by the di�ering con�ict statistics used for the SAT
Solving based branching heuristics for the di�erent initial domains. When a more
conservative branching heuristic was applied, the above e�ect could not be observed.
Varying con�ict statistics can direct the BaB algorithm to completely di�erent search
paths. Thus, also a run with a high upper bound can lead to excellent results. That
is, also in the latter case, due to bene�cial branching decisions a good feasible solution
can be found early, or strong nogoods or large backjumps can be deduced.

As it is hard to predict the search path for a certain upper bound beforehand,
we proposed a parallel approach to exploit the observed e�ect. The computational
experiments show, that especially for non-easy instances, the parallel approaches
signi�cantly outperform the single-core approaches.

Still, there are many interesting future research directions with regard to the
evaluations in this chapter. Schutt et al. [74] propose an initialization phase for the
con�ict statistics in the CP-SAT approach LCG where branching is based on the
SSGS. The aim is, to improve the initial activity counters for the VSIDS branching
heuristic for the problem at hand. It would be interesting to also implement a
problem speci�c initialization phase of the con�ict statistics and to measure the
e�ect of varying the initial domains in this scenario.

Furthermore, more information should be collected in the course of the solution
algorithm, e.g. the number of nodes, backtracks, detected con�icts etc. should be
measured, to perhaps explain the observed e�ect in a more detailed way.
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Performance variability can also be observed in MIP solvers. Fischetti and
Monaci [29] provide a detailed computational analysis in this context. They dis-
cuss many initial conditions causing performance variability and again propose a
parallel approach to exploit the observed erraticism. Firstly, it would be interesting
to also analyze di�erent initial conditions, not only the initial domains, which lead to
erraticism in the CP-SAT approaches for the RCPSP. For example, these could be
di�erent initial seeds for the SCIP-internal functions which include randomness or
di�erent random orders of the constraints. In addition, an evaluation of the parallel
"bet-and-run" procedure of Fischetti and Monaci [29] in our context is also of great
interest. In general, a more comprehensive literature study about erraticism in CP
or SAT solvers should be considered for further experiments.

The Chapters 5 and 6 contain the main contribution of this dissertation, namely
the extension and application of the state-of-the-art CP-SAT approaches to RCPSP
instances with multi-mode jobs. In Chapt. 5, we proposed three modeling formu-
lations for the MRCPSP with SPRs, one for the optimization framework G12 [83]
and two for the optimization framework SCIP [2]. The latter frameworks both pro-
vide a solution algorithm combining CP and SAT techniques whereat G12 integrates
the state-of-the-art exact algorithm for variants of the SRCPSP, namely lazy clause
generation [28].

For one SCIP-model a new constraint handler cumulativemm was implemented.
The latter captures propagation and explanation generation algorithms specially
tailored to renewable resources in the context of multi-mode jobs. The cumulative
constraint provided by G12 integrates similar techniques [73] and can be applied to
model MRCPSP instances. However, we discussed cases where our implementation
has an advantage over the implementation in G12.

For every model, we tested two approaches, a single-core approach (Max) and a
parallel approach (Best). Thereby, similar to Chapt. 4, Best takes advantage of
the performance variability triggered by the variation of the initial domains based
on di�erent upper bounds. Our computational experiments show that for the 20-
and 30-job instances from the PSPLIB, the G12-model has the best performance.
Moreover, with both our single-core and parallel solution approach, we signi�cantly
outperform the state-of-the-art exact approach for the MRCPSP with SPRs [92].
The best performing single-core approach, i.e. when the G12-model with initial
domains based on a pre-computable upper bound is solved by LCG, can solve nine
more 30-job instances to proven optimality than the latter approach and is one
average approximately 1.8 times as fast. With the parallel approach, signi�cant
improvements can be obtained compared to the single-core approach. We solve 15
more 30-job instances to proven optimality than Zhu et al. [92] and are on average
2.1 times as fast.

The approaches based on the SCIP-model, integrating our constraint handler
cumulativemm, are highly competitive to the state-of-the-art exact approach of Zhu
et al. [92], but outperformed by the latter on the 20- and 30-job instances.
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Furthermore, we were the �rst to exactly solve new instances of the MRCPSP
with SPRs with 50 and 100 jobs from the literature [87]. For these instances, the
solution approaches based on our best SCIP-model should be preferred over the ones
based on the G12-model. In total, we were able to close 324 open 50- and 100-
job instances and improve the best known makespan for 176 of the 50- and 100-job
instances.

The SCIP-model for the MRCPSP with SPRs was straightforwardly generalized
to a formulation of the MRCPSP with GPRs in Chapt. 6. Moreover, in the latter
chapter, we proposed three improved formulations extending the original model of the
MRCPSP with GPRs. One formulation integrates a linear constraint to strengthen
the original model. The other two integrate the constraint handlers sprecedencemm
and gprecedencemm, which we implemented within SCIP. With these, one can model
SPRs and GPRs in the context of multi-mode jobs, respectively. Moreover, they
contain propagation and explanation generation algorithms specially tailored to the
latter problem characteristics.

Regarding the propagation strength, we found out that the application of gprece-
dencemm leads to potentially stronger domain reductions than sprecedencemm and
the latter itself leads to potentially stronger domain reductions than the linear con-
straints when applied for the strengthening of the original formulation. Computa-
tional experiments on instances from the literature [78] supported these �ndings.
The model integrating gprecedencemm performs signi�cantly better than the other
two strengthening variants. Moreover, adding sprecedencemm should be preferred
over adding the proposed linear constraints to the original formulation.

Again, for every model, we analyzed a single-core solution approach and a par-
allel solution approach, which exploits erraticism which can be detected for varying
initial domains. With both the single-core and the parallel approach integrating the
best performing model, we outperform the state-of-the-art exact algorithm for the
MRCPSP with GPRs [39] on instances with 50 jobs when imposing time limits of
27s. With the single-core and the parallel approach, we can solve three and 37 more
50-job instances to proven optimality within the latter time limit. However, when
rather small time limits are given or if the 30-job instances are considered, the exact
approach of Heilmann [39] should be preferred over our approaches. Nonetheless,
the reader should keep in mind that our approaches are more �exible than the latter
approach when it comes to extensions of the considered problem classes.

Another important contribution of Chapt. 6 is the closing of 289 open instances
with 30, 50 and 100 jobs and the improvement of the best known makespan for 271
instances with our best performing approach.

Chapt. 7 was motivated by the MISTA competition 2013 [90]. It shows the
�exibility of our solution concepts, when one is confronted with more general multi-
mode problem classes. We provide a model for the MRCMPSP with SPRs integrating
our constraint cumulativemm. Small instances could be exactly by the CP-SAT
approaches provided by SCIP. For larger problem instances provided by Wauters
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et al. [90], we applied a local search heuristic which iteratively solves variants of the
original formulation.

The implementation of our constraint handlers cumulativemm, sprecedencemm
and gprecedencemm can still be strengthened. For example, one could integrate new
propagation and respective explanation generation algorithms into cumulativemm as
at the moment it solely captures TP. The combination of TP and EF proposed by
Vilím [89] has led to improvements compared to using solely TP when implemented
in a CP-SAT context for the SRCPSP with SPRs [76]. Therefore, this should be the
�rst extension to be tested.

The integration of MIP techniques into our constraint handlers is another in-
teresting future research direction. At the moment our constraints only capture
problem-speci�c propagation and explanation generation algorithms, i.e. the prob-
lem speci�c bound updates and cuto�s are only based on the latter techniques. There
is a potential for further improvements by a strengthening of the node-speci�c LP
relaxation. Therefore, one could think about functions for our constraint handlers
which separate problem-speci�c cuts for the SCIP-internal solution procedure. A
�rst step could be the integration of the cutting plane generation principles for the
MRCPSP with SPRs proposed by Zhu et al. [92]. Moreover, di�erent MIP repre-
sentations for renewable resource constraints, SPRs and GPRs could be stored in
the respective constraint handlers and added lazily when a constraint in the lat-
ter representation is violated. It is also worthwhile to test the in�uence of primal
heuristics which frequently try to construct a feasible solution for the MRCPSP with
SPRs and GPRs in nodes of the BaB tree to possibly improve the global upper
bound. Furthermore, the application of our SCIP-models as the exact plugin in hy-
brid metaheuristics [14] is of interest when one wants to tackle instances arising in
practice.

A further direction for future research is the application of our constraint han-
dlers to model and solve other variants of the RCPSP. In this context, it would be
interesting to evaluate the bene�t of integrating a single-mode version of sprece-
dencemm and gprecedencemm for the modeling of the SRCPSP with SPRs and GPRs,
respectively. Furthermore, it would be worthwhile to test the e�ciency of a model
for the SRCPSP with discounted cash �ows (see Sect. 2.1) which integrates our
constraints. Moreover, it is possible to extend cumulativemm so that the resource
availabilities Cρk , k ∈ R can be variables as in the cumulative constraint of G12 [73].
With this extension, one could evaluate models integrating our constraint handlers
for special variants of resource leveling problems (see Sect. 2.1), i.e. the resource
investment problem with SPRs and GPRs.

Various COPs like e.g. timetabling problems, sports league and machine schedul-
ing problems can be formulated as variants of the RCPSP [16]. An analysis about
how the CP-SAT approaches perform in this context would be interesting. In ad-
dition to an evaluation of the performance of CP-SAT approaches for scheduling
problems, they should also be developed and tested for other Operations Research
problems, like e.g. for vehicle routing problems. In general, an extensive computa-
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tional or theoretical study analyzing properties of COPs which positively correlate
with the performance of CP-SAT approaches applied to these COPs would be of
great interest. In concrete, the last topic also aims at answering the question why
state-of-the-art CP-SAT approaches work that good for variants of the RCPSP but
not for di�erent problem classes.

Currently, Lamas Vilches and Demeulemeester [52] proposed a Branch and Cut
algorithm based on minimal forbidden sets to solve the SRCPSP with SPRs and
stochastic activity durations. One could also think of generalizations of our constraint
handlers and especially sprecedencemm in the context of stochastic activity durations
and compare the e�ciency of the resulting CP-SAT approaches in combination with
sample average approximation to their Branch and Cut algorithm.

To conclude, the results obtained in this dissertation regarding CP-SAT ap-
proaches for variants of the RCPSP pave the path for a number of fruitful future
research directions.
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Abstract

In practice, project managers are confronted with the problem of assigning starting
times to a number of precedence-related project milestones (activities) so that a cer-
tain project deadline is respected. When the amount of available resources is limited
and the number of activities is large, this is a highly complex task. In the scienti�c
literature, this issue is known as the resource-constraint project scheduling problem
(RCPSP). Many variants of the RCPSP introducing various problem characteristics
and optimization goals have been considered in the literature.

In this dissertation, the main research topic is the analysis of new exact solu-
tion approaches for the single-mode RCPSP (SRCPSP) and the multi-mode RCPSP
(MRCPSP) with standard precedence relations (SPRs) and generalized precedence
relations (GPRs). More precisely, we only consider solution approaches which pro-
vide the proven optimal solution of the problem at hand on termination. Exact
algorithms are of high relevance when it comes to evaluate the quality of solutions
determined through heuristics.

In the SRCPSP, every job can be processed in one prede�ned mode. The MR-
CPSP is a generalization of the SRCPSP where every activity can be processed in
multiple modes with varying durations and resource consumptions, i.e. the mode
assignment also becomes part of the problem. If one job can only start after another
job is �nished, the latter two jobs are in a SPR. GPRs arise if the minimum gap
between the starting times of two precedence related jobs can be arbitrary (i.e. also
negative). In this situation, also cases can be modeled where one job has to start
before the end of another job. In general, the occurrence of GPRs makes the RCPSP
more complicated.

Recently, Branch and Bound (BaB) algorithms combining Constraint Program-
ming (CP) and Boolean Satis�ability (SAT) Solving techniques have been highly
successful for variants of the SRCPSP. As a �rst contribution, we analyze these so-
lution approaches w.r.t. performance variability. We vary certain initial conditions
to point out a signi�cant erraticism in the state-of-the-art CP-SAT approaches for
the SRCPSP with SPRs. Moreover, a parallel solution approach is proposed which
takes advantages of this performance variability.

The main contribution is an extension of the success story of the CP-SAT ap-
proaches for the SRCPSP to the MRCPSP with SPRs and GPRs. We provide
and compare various new models of the latter problems in two optimization frame-
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works, which support the solution by a BaB algorithm integrating CP and SAT
techniques. A majority of the models integrate new constraint handlers, namely
cumulativemm, sprecedencemm and gprecedencemm, which we implemented for the
optimization framework SCIP. These constraints o�er the possibility to e�ciently for-
mulate renewable resource constraints, SPRs and GPRs in the context of multi-mode
jobs. Moreover, they capture constraint propagation and explanation generation al-
gorithms to strengthen the overall solution procedure.

Our best performing solution approaches signi�cantly outperform the state-of-
the-art exact algorithms for these MRCPSP classes on certain benchmark sets from
the literature. Furthermore, we close (�nd the optimal solution and prove its opti-
mality for) 324 open 50- and 100-job instances of the MRCPSP with SPRs from the
literature. In addition, we improve the best known makespan for 176 instances from
the latter benchmark set. For the MRCPSP with GPRs, 289 open instances with 30,
50 and 100 jobs can be closed through our CP-SAT approaches and we �nd better
feasible solutions for 271 of these instances. In total, the obtained results are highly
promising.

The dissertation ends with an extensive proposal of future research directions in
the area of CP-SAT approaches for scheduling problems.



Zusammenfassung

In der Praxis sind Projekt Manager oft mit dem Problem konfrontiert, den in Zusam-
menhang stehenden Meilensteinen eines Projekts (auch Vorgänge genannt), Start-
zeitpunkte zuzuweisen, sodass eine termingerechte Fertigstellung des Projekts ge-
währleistet ist. Wenn die verfügbaren Ressourcen beschränkt sind und das Projekt
aus einer groÿen Anzahl von Vorgängen besteht, ist dies eine schwierige Aufgabe.
In der wissenschaftlichen Literatur wird diese Planungsaufgabe das ressourcenbe-
schränkte Projektplanungsproblem (RCPSP) genannt. Eine Vielzahl von Varianten
des RCPSPs mit unterschiedlichen Problemcharakteristiken und Optimierungszielen
wurde bereits von Forschern betrachtet.

In dieser Dissertation geht es hauptsächlich um eine Untersuchung von neuen
exakten Algorithmen für das RCPSP mit einer und mehreren Ausführungsalter-
nativen (SRCPSP und MRCPSP) und mit Vorrangbeziehungen und allgemeinen
Zeitbeziehungen. Wir betrachten hier Verfahren, deren Ziel es ist, nicht nur eine
möglichst gute Lösung zu �nden, sondern auch die Optimalität der besten gefun-
denen Lösung zu beweisen. Die Weiterentwicklung von exakten Algorithmen ist
von groÿer Bedeutung, da sie ein Qualitätsmaÿ für die Bewertung von heuristischen
Lösungen liefern.

Beim SRCPSP kann jeder Vorgang nur in einer fest vorgegebenen Variante durch-
geführt werden. Wenn die Vorgänge in mehreren Varianten mit unterschiedlichen
Bearbeitungszeiten und einem unterschiedlichen Ressourcenverbrauch durchgeführt
werden können, spricht man von dem MRCPSP. Hier stellt sich also auch die Frage
der Bestimmung einer Ausführungsalternative. Auÿerdem werden Problemklassen
mit Vorrangbeziehungen und allgemeinen Zeitbeziehungen betrachtet. Wenn ein
Vorgang erst nach Ende eines anderen Vorgangs beginnen kann, bezeichnet man
dies als Vorrangbeziehung zwischen den beiden Vorgängen. Wenn die zu berück-
sichtigenden Zeitabstände zwischen den Startzeitpunkten zweier in Zusammenhang
stehender Vorgänge beliebig, also möglicherweise auch negativ, sein können, spricht
man von allgemeinen Zeitbeziehungen. Hierbei können auch Fälle modelliert werden,
bei denen ein Vorgang vor dem Ende eines anderen Vorgangs beginnen muss. Im
Allgemeinen steigt die Komplexität des RCPSP, wenn allgemeine Zeitbeziehungen
auftreten.

Erst kürzlich hat sich herausgestellt, dass Branch and Bound-Verfahren, die
Prinzipien aus der Constraintprogrammierung (CP) und dem SAT-Solving integri-
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122 Zusammenfassung

eren, sehr gute Ergebnisse bei der Lösung von Varianten des SRCPSP erzielen. Der
erste Forschungsbeitrag dieser Dissertation beinhaltet eine Analyse dieser Verfahren
in Bezug auf Unregelmäÿigkeiten im Lösungsverlauf. Wir variieren hierzu spezielle
Anfangszustände des Problems um diese Unregelmäÿigkeiten zu veranschaulichen.
Auÿerdem wird ein Lösungsansatz vorgeschlagen, der auf Konzepten der parallelen
Programmierung basiert, um diese Unregelmäÿigkeiten auszunutzen.

Der hauptsächliche Forschungsbeitrag dieser Dissertation besteht in der Anwen-
dung und Erweiterung der bestehenden CP-SAT Verfahren, sodass Instanzen des
MRCPSP mit Vorrangbeziehungen und allgemeinen Zeitbeziehungen in e�zienter
Weise exakt gelöst werden können. Hierzu vergleichen wir zahlreiche neue Modelle
des MRCPSP in zwei Optimierungs-Frameworks, die einen Lösungsansatz beste-
hend aus CP und SAT-Solving Techniken bereitstellen. Der Groÿteil dieser Modelle
verwendet neue globale Constraints mit der Bezeichnung cumulativemm, sprece-
dencemm und gprecedencemm, die wir für das Optimierungs-Framework SCIP im-
plementiert haben. Diese Konstrukte bieten die Möglichkeit Nebenbedingungen zu
erneuerbaren Ressourcen, Vorrangbeziehungen und allgemeinen Zeitbeziehungen im
Kontext von mehreren Ausführungsalternativen in e�zienter Weise mathematisch zu
modellieren. Überdies integrieren sie problemspezi�sche Propagierungsalgorithmen
und Schnittstellen zum internen SAT-Solving Mechanismus von SCIP. Dies dient der
Verbesserung des Standardlösungsverfahrens von SCIP.

Für spezielle Instanzen des MRCPSP mit Vorrangbeziehungen und allgemeinen
Zeitbeziehungen aus der Literatur erzielen wir mit unseren besten Modellen und
zugehörigen Lösungsverfahren bessere Ergebnisse als die besten bekannten exakten
Verfahren für diese Problemstellungen. Wir konnten mit unseren Lösungsverfahren
324 o�ene Instanzen des MRCPSP mit Vorrangbeziehungen schlieÿen. Unser bestes
Verfahren konnte also für diese Instanzen die zuvor nicht bekannte optimale Lösung
�nden und die Optimalität derselben beweisen. Für 176 Instanzen des MRCPSP mit
Vorrangbeziehungen aus der Literatur konnten wir die beste bekannte Gesamtpro-
jektdauer verbessern. Des Weiteren konnten wir 289 o�ene Instanzen des MRCPSP
mit allgemeinen Zeitbeziehungen schlieÿen und die beste bekannte Gesamtprojek-
tdauer für 271 Instanzen verbessern. Insgesamt sind die erzielten Resultate sehr
vielversprechend.

Zum Abschluss der Dissertation liefern wir eine Vielzahl von Vorschlägen für
zukünftige Forschungsthemen im Bereich von CP-SAT Ansätzen für Projektpla-
nungsprobleme.
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