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Part I.

Preamble

1





Classical medical imaging modalities are known to everyone. Computed to-
mography, ultrasound imaging and magnetic resonance imaging have been long-
standing and successful innovations in science. Their contrast is understood very
well by radiologists, the machines and the costs of taking images is constantly
being optimized, and the image formation process is mathematically understood
since longtimes.
Many functional properties and physiological states of the body, though, cannot

be depicted with the classical imaging methods. This disadvantage is tied to the
fact that the images depict physical parameters. This restricts the application
of classical technologies, so that even with addition of chemical contrast agents,
classical imaging remains blind to many diseases.
An example is the stiffness of tissue. As an elastic parameter, it cannot be

directly seen in ultrasound or magnetic resonance imaging. The remedy to this
situation is the sophisticated coupling of several physical modalities. By this,
elasticity imaging, or elastography, is made possible.
This thesis concerns research in the field of elasticity imaging, from an applied

mathematics point of view. The preliminary question

Why do we map elastic properties of tissue? (0.1)

is exposed in more detail in Section 1.2.
Then comes the prime question in elasticity imaging, which is

How can be elastic properties of tissue be mapped? (0.2)

This query is split here into two aspects: One is the engineering aspect. The
imaging technologies used to obtain data are discussed in Section 1.3 from a
technological point of view. – Another aspect is the mathematical part of elas-
tography. This is discussed in Section 2. We expose several of the mathematical
models used in elastography, and present the research fields which are involved.
The last question, most relevant for the reader of the subsequent chapters, is

What are the contributions this thesis gives to elastography? (0.3)

This is treated in Section 3 of the introduction, where we give the methods we
used in this thesis, the results we obtained, and how they interrelate with the
broader field of elasticity imaging.
The thesis itself is cumulative in nature. After the introduction, there follow

four chapters which, after preparation in the introduction, can be read separately.
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1. Introduction to challenges in
elasticity and coupled-physics
imaging

1.1. From classical to hybrid and coupled-physics
imaging methods

We take a look on three well-known classical imaging modalities. Their mathe-
matical structure is an inverse problem with boundary measurements. Given new
challenges to realize imaging of other parameters, we show how novel coupling
methods of modalities lead to inverse problems with data in the interior. Elas-
ticity imaging is one of them, and the various forms of qualitative elastography
are introduced.

Classical imaging modalities

Computed tomography produces slice images of the body. The physical process
underlying is this: X-ray beams, which radially transverse the body, are absorbed
by tissue. This effect is exploited for imaging. If we parametrize a line by x(s),
with 0 ≤ s ≤ S, then along this line the intensity I of the radiation is described
by [95, 118]

∂sI(x(s)) = −κ (x(s))I(x(s)) (1.1)

The radiologist wants to look at images of the absorption κ in the interior of the
body. To obtain knowledge of this quantity, this is the procedure: One emits
radiation I(0) from the boundary into the body. When the radiation beam exits
the body, one measures I(S). Then the values I(0) and I(S) are compared
and collected for a large amount of lines through the body. Considering the
mathematics of the model (1.1), it is then possible to compute the absorption
coefficient κ inside the tissue.
Ultrasound imaging is a technology based on emitting and measuring sound

waves [95]. Viewing the imaging process in a general form, it is similar to com-
puted tomography: Starting from the equation for a compression wave u, we have
the model

∇ · (c(x)∇u(x, t)) = ∂ttu(x, t) . (1.2)

Boundaries of organs in the body manifest themselves in differences in the speed
of sound, c. The first goal is therefore to reveal information on the inhomo-
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1. Introduction to challenges in elasticity and coupled-physics imaging

geneities in c(x). To this purpose, an ultrasound transducer emits a wave from
the boundary of the tissue. Then it travels into the tissue. There it is reflected,
and travels back to the transducer. The signals are measured, compared and
collected. Using physical principles for (1.2), one can compute the interfaces of c.
– The imaging routine converts boundary measurements to a reconstruction of
internal parameters.
Magnetic resonance imaging, the third classical modality we mention, is based

on specific microscopic effects in protons. These effects are macroscopically mea-
surable in a coil outside the body. The signal in this coil is determined by the
magnetization vector field M. Simplifying, the behavior of M is described by the
Bloch equation [55]

∂tM = γM×B. (1.3)

Here, γ denotes the gyromagnetic ratio specific to hydrogen, and B is a magnetic
field. For imaging, one chooses an excitation by several specific fields B. The
tissue reacts, and one measures M|∂Ω at the boundary of the domain [55, 135].
Using elementary transformations of the measured signal, one can reconstruct
M|Ω in the interior. The radiologist then looks at the magnitude images |M|.

Each of the problems in (1.1), (1.2), (1.3) is specific. But they all share a
general mathematical structure of similar type: A differential operator A = A(γ)

depends on some quantity γ of diagnostic interest, with γ playing the role of
κ, c, or M. The model of the differential equation is completed by initial- or
boundary values for a solution v of a differential equation on a domain Ω (space-
or time-dependent). The role of v is played by I, u, or B in (1.1), (1.2), (1.3),
respectively. Then, a quantity M depending on γ and v is measured at the
boundary :

A(γ)v = 0, on Ω, B(γ,v) = g on ∂Ω

M(γ,v) = h on ∂Ω.
(1.4)

The inverse problem is to reconstruct from these boundary measurementsM(γ,v)

the quantity γ|Ω. This is an inverse boundary value problem.

New contrast by new technologies

Many physiological parameters like γ are inaccessible by classical imaging modal-
ities, for example:

• optical

• mechanical

• electrical parameters

There exist variants of the inverse boundary value problem (1.4) for these pa-
rameters, like diffuse optical tomography, or electrical impedance tomography
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1.2. In quest for the elasticity contrast

Young’s modulus E
bone 18 GPa
liver 0.36-0.58 kPa

breast fat 18-24 kPa
breast tumour 100 kPa

Table 1.1.: The elastic contrast in Young’s modulus. Sources: [4, 76, 115, 116]

[3, 15]. But in general, the reconstruction in these boundary value problems
yields images of restricted resolution.
A new strategy evolved, which is tied to hybrid, or coupled-physics imaging

methods (see [9, 16]). These methods use a physical coupling between several
modalities, for different reconstruction problems[14, 68, 135]. The key point is
that these methods exploit interior data for the reconstruction of γ. Instead of
the boundary inverse problem (1.4), one solves problems of the type

A(γ)v = 0, on Ω, B(γ,v) = g on ∂Ω

H(γ,v) = ∂αγ∂βv on Ω.
(1.5)

In contrast to the data M in (1.4), the information which one starts, is in a
way more “ample”. The data H are given on the whole domain Ω (such that one
also speaks of full-field data). This is possible only by some additional modality
looking “in the inside”. The interior data can be several kinds of combinations of
derivatives of γ and v. The effect is that one has a more favourable setting for
reconstructing the parameter γ.

In this work, we consider elastography imaging. In the following introductory
sections, it is explained what the parameter γ, the operator A and the mea-
surement operator H are for elastography. The formal expressions are given in
Section 2. The rest of this section provides an informal explanation.

1.2. In quest for the elasticity contrast

The contrast in elasticity

Classical imaging modalities do not depict elastic parameters. Structures, which
are harder or stiffer than the surrounding tissue, can therefore not be distin-
guished by them very well. For example, ultrasound cannot detect hard inclu-
sions in soft tissue, and therefore for diagnosis of breast cancer, other means have
to be adopted [116]. On the other hand, X-ray based mammography (which can
detect calcifications) has the disadvantages of an overdose of radiation, so here
also one relies on alternatives [95].
In clinical practice, physicians use manual examination, e.g., in breast examina-

tions. While palpating the breast, the physician relies on a sensation of “softness”
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1. Introduction to challenges in elasticity and coupled-physics imaging

Figure 1.1.: Soft tissue and the contrast of Young’s modulus (kPa), green: healthy
state, red: malignante state. Sources: [4, 76, 115, 116]

and “stiffness”. Normally, the tissue is soft, which is the healthy state. Hardness
or stiffness is related to a thickening of the cellular structures. This condition is
often correlated with a pathological state.

If one wants to produce an automatic imaging tool, the sensation of “stiffness”
has to be objectified. There are many material parameters in elasticity, but
it turns out that the changes relevant for diagnostics are closely related to the
so-called Young’s modulus. The changes in Young’s modulus with disease are
depicted in Figure 1.1. A comparison is shown in Table 1.1.

The various organs in Figure 1.1 indicate different application areas of elastog-
raphy. There is marked peak in the graph for the coronary artery. With calcifica-
tions and plaque detrimenting the flow of the blood, the artery gets harder. Note
that the contrast in Young’s modulus between healthy and malignant condition
is in a ratio of about 1:4. In fact, this shows that imaging the Young’s modulus
of the coronary artery could provide an efficient diagnostic tool for the diagnosis
of cardiovascular diseases [40].
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1.3. Current technologies for elasticity imaging and their output

The idea of elasticity imaging

In short, the idea in medical elasticity imaging is to look at the movements of
the tissue through the “glasses” of another modality. If one deforms tissue, this
deformation should be directly visible, say, in an ultrasound image. Assume that
one particle has, at a particular time, the position p(t1) in an ultrasound image.
Then assume that it moves to p(t2) in the next. One wants to record the quantity
u = p(t2)− p(t1), which we call the displacement.
The goal is to realize an inverse problem with interior data (1.5) with a choice

like:

γ ... Young’s modulus, or a quantity proportional to it

A ... an operator describing the elastic deformation

H ... the displacement u of the tissue

(1.6)

In this way, the problem of elasticity imaging is split into two problems:

• Determine u

• Determine the Young’s modulus from u

With this, we obtain quantitative information which then should be directly
accessible to the clinician.
We mention here, that in contrast to relying on (1.5), elasticity imaging is

sometimes realized as inverse problem of type (1.4): This is the case in non-
destructive testing, with mechanical boundary measurements [32]. Often, one
tries to identify cracks by this method, and there are also a host of new methods
aiming at this at a very sophisticated level [10].

1.3. Current technologies for elasticity imaging and
their output

The estimation of the displacement u is referred to as qualitative elastography,
and the following principle is adopted [40, 106]:

– Record an image in a ground modality

– Perturb the tissue mechanically

– Record a second image

We treat here three technologies and their coupling mechanisms. For a more
comprehensive review, see, e.g. [108].
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1. Introduction to challenges in elasticity and coupled-physics imaging

Ultrasound elastography

Ultrasound elastography is the oldest elastography technology [75, 103]. It mea-
sures components of the displacement field and is based on the coupling as-
sumption that the contrast of the ultrasound image is simply advected by the
mechanical deformation [102]. If we consider a whole time series of images f(t),
this means that

f(x(t), t) = const. (1.7)

In the image contrast f , a kind of texture is present, which is referred to as
speckle. Then (1.7), together with additional assumptions, is used to infer one or
several components of the corresponding displacement field u [113, 139].

Magnetic resonance elastography

A first technique in magnetic resonance elastography is this: It was observed
that part of tissue motion is invisible in magnitude images M = |M(x)| because
of homogeneous regions. To overcome this limitation, artificial tags were intro-
duced in the image [49, 110]. Using condition (1.7) for the tagged image contrast
f , motion estimation is made possible possible in regions where no intensity is
initially present. Then one can record the displacement field u.
Another technique in magnetic resonance elastography is to relate the change

of magnetization M(x, t) with a displacement field [81, 93]. This is a nontrivial
process: One records two vector fields, g1(x) = M1(x) eiϕ(x) (before displace-
ment) and

g2(x) = M2(x + u(x))eiϕ(x,u,G) , (1.8)

after mechanical deformation. The magnitude is postulated to be advected with
the deformation u, like in (1.7). For the phase ϕ of a particle at x, one has a
specific expression ϕ(x,u,G), depending on u and the magnetic gradient field G

[93]. Inverting this relation, a more precise estimation of u is possible.

Optical coherence elastography

Optical coherence imaging is in many ways the optical analogue of ultrasound
imaging. The excitation and measurement is by laser beams, and the primary
contrast the refractive index. The beam is sent into the tissue, and it is recorded
when it travels back to the boundary. Using condition (1.7) for the contrast
in elastography, one can with additional regularization determine a suitable dis-
placement field [65, 94, 121, 127]. Similarly to ultrasound imaging, speckle pat-
terns in the OCT image facilitate the estimation of the displacement u.

Limitations

By the elastography methods mentioned, one obtains interior data of the dis-
placement field u. The magnitude of the displacement reveals structures with
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1.3. Current technologies for elasticity imaging and their output

high and low stiffness. In regions, where the stiffness is high, the displacement is
low. But to make the reconstruction of the Young’s modulus precise, the inverse
problem (1.5) along the strategy (1.6) has to be defined precisely, and solved.
The definition is given in the next section.
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2. The quantitative elasticity
imaging problem

Elastographic imaging with ultrasound, MRI or OCT imaging, gives as a first
step the displacement u of the tissue. The goal is to reveal information on elastic
material characteristics of the tissue. Therefore, the problem has to be quantified
with a mathematical model. In this section we introduce a model for this purpose
and survey research in in elastic parameter reconstruction from the last decade.

2.1. Fundamental laws for elastic media

Impulse conservation for elastic media

The principal equations for elasticity imaging can be recovered by fundamental
principles of continuum mechanics, when applied to elastic media [40, 106].
A basic axiom is the principle of conservation of impulse. With ρ the density of

the material, and u the displacement, the impulse is given by ρ∂tu. We assume
that there is a surface force T (the traction vector), and a body force F. Then
the impulse conservation law for a material in domain Ω is given in its integral
form by

∂t

∫
Ω
ρ∂tudx =

∫
∂Ω

Tdx +

∫
Ω
ρFdx .

We write then the traction vector as

T = σ ·n,

Symbol Denotation Unit
u Displacement m

T Traction Pa = N/m2

σ Stress Pa = N/m2

ε Strain 1
f Body force N/m3

ρ Density kg/m3

λ Lamé’s first parameter Pa = N/m2

E Young’s modulus Pa = N/m2

µ shear modulus Pa = N/m2

Table 2.1.: Quantities in elasticity
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2. The quantitative elasticity imaging problem

where σ = σij is the stress tensor. Then the divergence theorem can be invoked
to obtain the differential form of the impulse conservation:

ρ∂ttu = ∇ ·σ + ρF (2.1)

As body forces are not considered, with F only imposed forces or excitations
enter.

Hooke’s law and material parameters in elasticity

Impulse conservation is a basic constituent of any elastic model. The constitutive
equations, on the other hand, can be adapted for the relevant application. In
elastography, one starts with the linearized strain ε given by

ε(u) =
1

2
(∇u +∇u>).

Then one assumes a linear relation between the stress σ and the strain ε. The
basic constitutive equation is Hooke’s law,

σ = C : ε. (2.2)

Here, C is the rank-four elasticity tensor, and operation : is defined as σij =∑
k,l Cijklεkl.
Note that ε 6= 0 distinguishes elastic deformations from rigid deformations. (In

a rigid deformation, there are no mutual changes of distance between particles of
a body, so ε vanishes.)
In general, one assumes that in an isotropic material one can reduce the stress-

strain relation according to

σij = 2µεij + λδij∇ ·u, (2.3)

with two scalar parameters µ and λ.
Young’s modulus (which was discussed in Section 1.2) is denoted by E. It can

be related to the shear modulus µ by

µ =
E

2(1 + ν)
,

where µ is a parameter referred to as Poisson’s ratio. In biological tissue, which
are nearly incompressible, one has that the value of ν is between 0.49 and 0.5,
such that one has

µ −−−−→
ν→0.5

E

3
. (2.4)

In Section 1.2, we described the principal role of Young’s modulus E for diag-
nostic purposes. Because of (2.4), Young’s modulus

E ≈ 3µ (2.5)

can be assumed to be directly proportional to the shear modulus µ. Therefore,
reconstruction of µ gives the relevant diagnostic information for elasticity imag-
ing.
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2.2. Basic imaging model for elastography

2.2. Basic imaging model for elastography

We combine the impulse conservation principle (2.1) with the constitutive equa-
tion for linear isotropic elastic materials (2.3) to obtain

∇(λ∇ ·u) + 2∇ · (µ ε(u)) + F = ρutt (2.6)

This model unifies most approaches to elasticity imaging and can be used as a
basis for the needs of special applications [40, 106].
The most common and easiest setup is quasi-static imaging. Here, the specimen

is deformed either with a low-frequency force, or statically, e.g., by a piston. In
both cases, one can set u(x, t) = u(x), therefore utt = 0 in (2.6). Depending on
the case, one prescribes boundary data u|∂Ω, or additionally, a static force F.
In time-harmonic excitations, model (2.6) is considered with the ansatz u(x, t) =

Re
(
u(x)eiωt

)
, and wave equations for the resulting compressional or shear waves

can be obtained [40]. One prescribes the ingoing wave and therefore can set
F = 0. – In transient excitations, (2.6) is used with a nontrivial F.
For several purposes, one changes the quantity ∇(λ∇ ·u) in (2.6) by substi-

tuting p = λ∇ ·u. In many cases, one completely decouples the problem with
λ and µ, and considers bodily tissue as incompressible media, ∇ ·u = 0. For a
domain Ω ⊂ R3, a quasi-static incompressible model for elastography is then

2∇ · (µ ε(u)) + F = 0 in Ω

u = g on ∂Ω
(2.7)

More complex models are based on other constitutive equations than (2.3)
or (4.2). In visco-elastic equations, for example, (4.2) is augmented with an
additional time-dependent term [86].
In Chapter 4, models based on (2.6) are considered. In Chapter 5, the model

(2.7) will be studied in more detail. This eventually reduces the unknown material
parameters to only one, namely the shear modulus µ.
We mention that one can perform several elastic measurements by using dif-

ferent Fi and gi, 1 ≤ i ≤ k in (2.6), resp. (2.7). Then more data ui can be
collected. In many cases, this facilitates the reconstruction of the shear modu-
lus µ (see Section 3).

2.3. From qualitative to quantitative elastography

To recover the shear modulus µ in (2.6) or (2.7), it is common to split the problem
into two parts, which are qualitative elastography, and quantitative elastography:

Qualitative imaging of the displacement

As mentioned in Section 1.3, the aim in qualitative elastography is to determine
the displacement u|Ω. The basic research question is how and how accurately the
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2. The quantitative elasticity imaging problem

displacement can be retrieved from signals or image data in a ground modality.
There are many ground modalities and specific techniques for extracting the
displacement [106], but often also generic techniques are used, based on (1.7).
These generic techniques can be optical flow techniques or block-matching [31,
49, 109, 110, 121], or the correlation technique in [133]. To this part of research,
also investigations like [24] pertain, who show that indeed, the diagnostic value of
imaging u is restricted, as it indeed yields only qualitative information (revealing
parts where there is ample strain, or no strain at all).

Quantitative imaging of the shear modulus

In quantitative elastography, one determines µ|Ω. This the inverse problem of
type (1.5). The operator A is provided by a suitable variant of the operator in
(2.6). The measurements H are one or several displacements ui|Ω, 1 ≤ i ≤ k in
the domain Ω.
The basic research questions are whether this reconstruction is unique, stable,

what algorithms to use and whether the algorithms used to extract the shear
modulus are convergent. Uniqueness has, e.g., been investigated for different
models in [25, 54, 87, 114]. There are stability analysis for magnetic resonance
elastography [131] and [8]. Much of the research is devoted to devise algorithms,
or refine existent ones, and analyze them, see e.g. [11, 12, 19, 88, 101, 130].
Given the wealth of algorithmic approaches to the elasticity problem, there are
few analyses of convergence of the algorithms. This is a gap the size of which
this thesis aims to reduce.
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3. Contribution of the thesis

Qualitative elasticity imaging exists since more than 20 years. Quantitative elas-
tography, on the other hand, has gathered more and more attention only in the
recent decade.
The new wave with emerging coupled-physics methods gives much inspira-

tion for the treatment of elastography. Ideas from hybrid conductivity imaging,
or photo-acoustic imaging, and general regularization techniques have therefore
shaped many of the approaches adopted here. In this thesis, we look at qualita-
tive and quantitative elastography from the point of view of other coupled-physics
approaches.
In the following, we briefly discuss these methods sketch which results we

obtained. The presentation is kept to a technical minimum here, but references
for the detailed exposition in the latter parts are given.

3.1. Setups reframed, strategies adopted and methods
employed

We discuss the stability approaches to general hybrid imaging problems with
interior data. Then we introduce photoacoustic imaging as a ground modality
for elastography. In view of the numerical realization, regularization methods are
introduced at last.

Overdetermined systems as generic stability approach for hybrid
inverse problems

The use of interior information in inverse problems like (1.5) has been observed
to yield high contrast with high resolution – in contrast to the corresponding
inverse problems using only boundary data like (1.4). The question was raised
whether one can give a generic mathematical explanation for this phenomonon.
The inverse problem (1.5) is in general a nonlinear problem. One strategy,

though, to exhibit the stability of a reconstruction like (1.5) is to use the stability
properties of the linearized inverse problem. For the linearized problems tools
from linear PDE theory can be employed [18, 22, 71, 72].
In several cases, stability of the linearization is formally seen to have the Fred-

holm property, i.e., for A : W → Y being the linearized forward operator between
Banach spaces, one has that there exists a bounded operator R and a compact
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3. Contribution of the thesis

operator T , such that
RA = I − T . (3.1)

This means that R acts on A as a left regularizer, that is, it inverts A up to a
compact perturbation. We note that this property only entails invertibility up
to a finite dimensional kernel.
In [71, 72], a reconstruction problems in conductivity imaging and photoacous-

tic imaging have been treated. The Fredholm property was shown with the help
of pseudodifferential theory. In [18, 22], on the other hand, an general frame-
work was introduced and used using the results on overdetermined systems of
partial differential equations in [126]. In this overdetermined systems approach,
the parameters are considered as variables and the equations for the interior
measurement and the forward problem are recast into a single redundant system
of partial differential equations. (In this case, the operators A and H in (1.5)
are, after linearization of the model, put into a single forward operator L.) Us-
ing more measurements, this overdetermined system can be shown to be elliptic.
Then, with the results in [126], the Fredholm property (3.1) can be shown.
Whereas previous the previous results using a linearization approach concerned

only scalar equations, we wanted to explore and evaluate this method for the
vector-valued elastography problem (2.6).
Linearizing (2.6) with respect to µ a reference state, one obtains a linear map-

ping
Aµ : δµ 7→ δu.

We adapted the same procedure as in [18], recast the forward problem, and
obtained ellipticity criteria and a stability estimate for two experiments u1, u2:

‖δµ‖l+1 ≤ C‖(δu1, δu2)‖l+2 . (3.2)

The ellipticity criteria are conditions on the determinant of the strain :

∀x∃i : det(ui(x)) 6= 0.

Interestingly, these conditions turn out to be generalizations of the conditions in
[19]; a specialization of the condition appears also in a related approach in [8].
Using theory from [86], we were able to show injectivity of the linearized prob-

lem δµ 7→ δu. This treatment is contained in Chapter 4 of this work.
The inversion of nonlinear problem µ → u for the model (2.7) is studied in

Chapter 5. Here, we connected the results on the linearization to convergence
approaches using regularization theory (see below).

Photoacoustic imaging for elastography

The question arises how to obtain interior data u|∂Ω of the mechanical displace-
ment. In this work, this is done using data from photoacoustic imaging, an
emerging modality for medical imaging [118]. The synergistic effects of ultra-
sound elastography and the photoacoustic contrast were already noticed in [43],

18



3.1. Setups reframed, strategies adopted and methods employed

where the relevant images have been fused for diagnostic purposes. Here we
step further and pose the question how photoacoustic elastography is possible.
– Below, we discuss the image formation process in photoacoustic imaging. We
mention briefly the challenges encountered in photoacoustic elastography and the
methods by which we overcame them.
The forward model in photoacoustic imaging is given by the wave equation

with an initial pressure term f :

∂ttp(x, t)−∆p(x, t) = 0, in Rn × (0,∞),

p(x, 0) = f(x), in Rn,

pt(x, 0) = 0, in Rn.

(3.3)

To reconstruct f from measurements of p|∂Ω×T at detectors outside the object,
there exist various reconstruction algorithms [118].
Our goal is to use the reconstructed images f as interior information, and then

reconstruct the displacement u using (1.7). The obstacle is similar to magnetic
resonance images: The images do not contain so much texture as in ultrasonic
images. A similar issue exists in material science, where displacements should be
inferred from objects which are homogeneous in their optical appearance [74, 142].
The solution for photoacoustic elastography is to modify the data p|∂Ω×T in

the reconstruction of f and use a band-pass-limited version. The corresponding
reconstructions can be shown to be equal to

f ∗Ψε

for a particular convoluation kernel Ψε. Then these images are used as a basis
for further processing. The prime characteristic of these images is that they
reveal texture in the images (and is similar to the speckle-like patterns one has
in ultrasound).
A standard method for estimation of motion from images f is optical flow. For

this, one starts with the constraint (1.7),

f(x(t), t) = const.

Differentiating with respect to t yields ∇f ·u + ft = 0, which is known as optical
flow constraint. In the quasi-static case, we use the constraint

∇f1 ·u + (f2 − f1) = 0 (3.4)

and obtain u|Ω by additional regularization (see below eq. (3.11)).
In Chapter 6, we present this method of photoacoustic elastography, together

with experiments using simulated data. We show that the introduction of texture
into the image acts as a regularization in (3.4).
In Chapter 7, the first measurements using this method are used for the re-

construction. These results were obtained in collaboration with the Medical
University of Vienna.
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Regularization methods and analysis

For solving an inverse problem in practice, regularization methods have to be
employed to deal with the problem of measurement noise. A framework for
suitable methods is provided by regularization theory, as exposed, e.g., in [44].
Let A : W → Y be a the forward operator between Banach spaces, corresponding
to some physical process. One wants to solve the (nonlinear or linear) inverse
problem

Ax = y. (3.5)

For y ∈ Y in the range of A, this is possible, and a minimum-norm-solution w†

with
w† = argminW {‖w‖W : Aw = y} .

gives a unique choice. But such a solution is impossible for y 6∈ Ran(A). Appli-
cation of ordinary solution methods (like Newton’s method) with noisy y outside
the range of A results in severe artifacts in the reconstructions.
Regularization methods provide a remedy for this situation. Such a method

is a family {Rα}α>0 of bounded mappings Rα : Y → W , which can be applied
to noisy measurements yδ not necessarily in the range of A. Say that we have
‖y − yδ‖Y < δ. The regularization method is said to be convergent if, for a
sequence yδ with δ → 0, one can choose regularization parameters α = α(δ, yδ)

with α→ 0, such that one has in the limit

Rαyδ −→ w†. (3.6)

for δ → 0 and α → 0. – This convergence gives a kind of “consistency” between
the regularized solutions Rαyδ for the noisy data yδ and the best possible solution
w† for the ideal and clean data y.
The use of regularization theory in this work was threefold:

• The most popular regularization method is Tikhonov regularization, which
is defined by solving a least-squares problem with a simple penality term:

Rαyδ := argmin ‖Aw − yδ‖2Y + α‖w‖2W . (3.7)

While for linear mappings A, the properties of this variational problem
are well understood, this is not the case for nonlinear problems (e.g. the
forward operator µ → u in model (2.7)). Using the estimate (3.2) and
the tools of the geometric theory of G. Chavent [34, 35], we showed well-
posedness of the minimization in (3.7) and the convergence property (3.6).
This analysis can be read in Chapter 5.

• Another strategy for solving nonlinear problems (3.5) is to employ Newton’s
method and iteratively compute

wk+1 = wk + dA−1(y −A(wk)) . (3.8)
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Unfortunately, this does not work well in many inverse problems with y

replaced by noisy yδ, and equation (3.8) has to be solved approximately.
This, of course, can be done using Tikhonov regularization: Applying the
minimization (3.7) to the Newton iteration (3.8), and doing a short com-
putation, one obtains the iterative prescription of the Levenberg-Marquardt
iteration (see also [64, 4.1]):

wδk+1 − wδk = (dA∗dA+ αkId)−1dA∗(yδ −A(wk)). (3.9)

Using this iteration, one wants to show that ideally, for decreasing noise
level δ → 0, there exist parameters αk(δ) such that

wδk(δ) → w†.

Using estimate (3.2) and theory from [59], this convergence property is
shown for the quantitative elasticity problem in Chapter 5.

• Interestingly, we could find an interpretation and justification for our tex-
ture addition method for photoacoustic elastography from the regulariza-
tion point of view: For the motion estimation problem in (3.4), the stan-
dard method is to use Tikhonov regularization for the optical flow alias the
Horn-Schunck model [61]:

u = argmin
v
‖∇f1 ·v + (f2 − f1)‖2L2(Ω) + λ

∫
Ω
|∇xv|2 dx , (3.10)

As mentioned, there is the problem with homogeneous regions and edges.
One immediately sees in the formulation that one has some problem with
∇f = 0 in homogeneous regions and ∇f → ∞ near edges. We proposed
to use different images, therefore different yδ = yε = (f2 − f1) ∗Ψε (which
amounts to the perturbation in the data) and a different Aε = ∇f1 ∗ Ψε

(this amounts to an additional model perturbation). Then we solved

wα,ε := argmin ‖Aεw − yε‖2Y + α‖w‖2W . (3.11)

Using [91, Thm.11, p. 21], we showed that for these regularized solutions,
one has with ε→ 0 and α→ 0 the convergence

wα,ε −→ w† .

This is the third convergence result in this thesis, and it is exposed in
Chapter 6.

3.2. Results obtained and outlook

For easier navigation, we collect here the references where the precise formulation
of results is to be found in the subsequent text.
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• Quantitative elastography linearization,
ellipticity criteria for one and several measurements:

Section 4.4.2 on page 41

• Quantitative elastography linearization,
stability and injectivity results for 2 measurements:

Section 4.4.4 on page 51

• Quantitative elastography,
convergence result for Tikhonov regularization:

Section 5.4 on page 70

• Quantitative elastography,
convergence result for Levenberg Marquardt iteration:

Section 5.5 on page 74

• Quantitative elastography,
reconstructions of shear modulus

Section 5.6 on page 77

• Photoacoustic elastography,
texture introduction into photoacoustic images:

Section 6.5 on page 96

• Photoacoustic elastography,
Interpretation as model-perturbation of Tikhonov regularization:

Section 6.6 on page 99

• Photoacoustic elastography,
qualitative displacement information in simulation experiments:

Section 6.7 on page 104

• Photoacoustic elastography,
displacement information in phantom experiments:

Section 7.2.3 on page 121

Discussion and outlook to further research

In general, the overdetermined theory has been seen as powerful took for theo-
retical analysis of hybrid inverse problems, and the connection to other topics in
regularization theory have been shown. This opens the door to more convergence
analyses, possibly with less requirements on smoothness for other modalities, and
it helps to close the gap between mathematical theory and algorithm develop-
ment. The ellipticity conditions on the diplacements u should be of help in
experimental design of elastography setups.
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3.3. Outline and interrelation of publications

Qualitative
elastography

Quantitative
elastography

6 7

4 5

Methods:

Forward problem Overdetermined theory Geometric theory

Photoacoustic imaging Regularization theory

Figure 3.1.: Diagram of interrelations of chapters

The texturization method we developed for photoacoustic elastography shows
that, unlike the classical exerimental paradigms in photoacoustics, textured data
can be used to extract more information from the images than previously thought.
Instead of only using image fusion, the photoacoustic contrast can be used for
elastography in a genuine coupling.

3.3. Outline and interrelation of publications

In the first part of this thesis, the analysis of quantitative elastography is pre-
sented. In Chapter 4, various linearizations of elastic models are introduced and
studied, and the stability estimates due to the overdetermined approach are pre-
sented. In Chapter 5, these estimates are exploited for deriving convergence re-
sults for the quantitative elastography problem. – In the next part, photoacoustic
elastography is developed in Chapter 6 and experimentally tested in Chapter 7.
The publications are interrelated ase seen in Figure 3.1. From this diagram it

also emerges where the different regularization approaches have been applied.1

1 Apart from the titles of the subsections in 3.1, two other items appear: Regularity theory
such as [86] has been used for the analysis of the elasticity operator, which is denoted as
“forward problem” in the diagram. For treating Tikhonov regularization, the “geometric
theory” of [34, 35] was used.
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4. Stability in the linearized problem
of quantitative elastography

Authors & Contributions The authors are TW and O. Scherzer. The devel-
opment of this article was a gradual, cooperative process, and each of the authors
made significant contributions to every aspect of the paper.
Publication status Published, reference [136]. The original publication is

available at http://dx.doi.org/10.1088/0266-5611/31/3/035005. The ver-
sion printed here is an extension of this version. This concerns additional material
in Sections 4.2.2, 4.2.3, 4.4.3, the table in 4.4.4 and the discussion in Section 4.5.

Abstract:

The goal of quantitative elastography is to identify biomechanical
parameters from interior displacement data, which are provided by
other modalities, such as ultrasound or magnetic resonance imag-
ing. In this paper, we analyze the stability of several linearized
problems in quantitative elastography. Our method is based on
the theory of redundant systems of linear partial differential equa-
tions. We analyze the ellipticity properties of the corresponding
PDE systems augmented with the interior displacement data; we
explicitly characterize the kernel of the forward operators and show
injectivity for particular linearizations. Stability criteria can then
be deduced. While joint reconstruction of all parameters suffers
from non-ellipticity even for more measurements, our results show
stability of the separate reconstruction of shear modulus, pres-
sure and density; they indicate that singular strain fields should
be avoided, and show how additional measurements can help in
ensuring stability of particular linearized problems.
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4.1. Introduction

4.1. Introduction

Elastography is a medical imaging technology; its current applications range
from detection of cancer in the breast and in the prostate, liver cirrhosis and
characterization of artherosclerotic plaque in hardened coronary vessels [7, 30,
40, 106, 132, 134, 137].
Elastography is based on the fact that tissue has high contrast in biomechanical

quantities and the health state of organs is reflected in their elastic properties
[4, 67]. The most important parameter for diagnosis is the shear modulus µ,
which is the dominant factor in the propagation of shear waves in tissue; shear
wave speed in tissue can change up to a factor of 4 with disease [116].
Elastography is performed by coupling with various established imaging tech-

niques, such as ultrasound [75, 103], MRI [81, 93] or OCT [94, 127] – What is
common to these elastography techniques is that they provide interior data of
the displacement u|Ω of the tissue on the imaging domain Ω. According to the
specific excitation used, u can be space or space-time-dependent (both cases are
considered in this work).
In some applications, knowledge of the displacement u already gives qualitative

diagnostic information (see, e.g., [141] for a dermatological application). More
accurate information is provided by quantitative information of the underlying
biomechanical parameters. For this, one formulates the elasticity problem as a
model; various models based on linear elasticity, viscoelasticity or hyperelasticity
have been considered for elastography [40].
To recover the material parameters, an inverse problem based on an elasticity

model has to be solved. Given the displacement u, the mathematical problems
in quantitative elastography are the recovery of parameters such as the Lamé
parameter λ, the shear modulus µ, the density ρ, or recovery of the shear wave
speed

√
µ
ρ [24, 40]. These problems are non-linear inverse problems.

Much effort in elastography research has been concerned with developing ade-
quate numerical inversion schemes for all kind of experimental varieties of elas-
tography (see, e.g., [11, 54, 83, 84, 85] and the reviews in [40, 124]). Among the
proposed algorithms, optimization procedures, which need the linearized inverse
problem, form an important class.
Mathematical results about uniqueness and stability of the inverse problems

in elastography have been gathered recently, mostly for the simplest models in
linear elasticity. In [63, 87], it was proved, that – given one piece of dynamic
interior information u subject to restrictions such as u 6= 0 –, one can uniquely
recover material parameters. Other uniqueness results have been reported in
[25] for two and more measurements, and in [114] for a hyperelastic model. The
recent paper [20] showed unique reconstruction of λ and µ given two sets of exact
measurements subject to some non-trivial conditions on the displacements. The
stability of the nonlinear problem has been studied in [20] using ODE-based and
variational tools.
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4. Stability in the linearized problem of quantitative elastography

Elastography can be seen as part of hybrid (or coupled-physics) imaging meth-
ods (see [14] and the discussion in [82]). The coupling phenomenon can be simple
advection for ultrasound and OCT elastography, or a more complicated coupling
in magnetic resonance elastography [81].
The body of literature in hybrid or couplied-physics imaging centers on novel

imaging methods involving more than one physical modality; emphasis is laid
upon the quantitative imaging problems for mechanical, optical or electrical pa-
rameters that have high diagnostic contrast. For reviews on the typical problems
in coupled-physics imaging, see [9, 14, 16, 68, 69, 135].
In many hybrid inverse problems, high resolution in the reconstructions was

observed. To explain the high resolution in a unified manner, a general strategy
is to linearize the corresponding nonlinear quantitative problems. Then the sta-
bility properties of the linearized problem have been treated with tools of linear
PDE theory [18, 22, 71, 72]. In [71], problems in conductivity imaging and quan-
titative photoacoustic imaging were treated. The linearized forward operators
were studied with pseudodifferential theory and shown to be Fredholm, i.e., with
stable inversion up to a finite-dimensional kernel. In [18], a general framework
was proposed for treating linearizations of quantitative problems with interior
data; in this method, the parameters are considered as variables and the infor-
mation is recast into a single redundant PDE system, to which theory such as
[126] is applied. This method was applied to the power density problem in [18]
and to the problem of acousto-optic imaging in [22]. In these analyses, infor-
mation from multiple experiments has been assumed, as the ellipticity condition
was easier to obtain in this case.
In this article, we treat the linearized problem in quantitative elastography us-

ing the general coupled-physics approach in [18], using [126]. This is the first time
that this technique is applied to a problem in elasticity imaging. We treat stabil-
ity and explicitly characterize the finite-dimensional kernel, and show injectivity
in several versions of the linearized inverse problems.
The structure of the paper is as follows: in Section 4.2, we review the elasticity

model which we are using, and in Section 4.3, we review necessary background of
linear PDE theory. In Section 4.4, we apply this theory to the elasticity equation.
This section contains the main results of the paper. We investigate how several
kinds of linearizations perform analytically, derive the stability results and the
characterization of the kernel. In Section 4.5, we discuss the stability conditions
with respect to the literature. The appendix contains topological lemmas needed
for the investigation of the kernel.

4.2. Modelling quantitative elastography

4.2.1. Experiments and interior information in elastography

The general principle in elastography [40] is to
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4.2. Modelling quantitative elastography

• perturb the tissue using a suitable mechanical source

• determine the internal tissue displacement using an ultrasound, magnetic
resonance or optical displacement estimation method

• infer the mechanical properties from the interior information, using a me-
chanical model

Note that in elastography, there are two forms of excitation: an elastic defor-
mation from the mechanical source, and the excitation from the ground modality.
Also, the reconstruction procedure involves two steps: the recovery of the me-
chanical displacement u(x)|Ω resp. u(x, t)|Ω from measurements on the bound-
ary, and the recovery of the mechanical parameters and properties from u|Ω. In
this last step of quantitative reconstruction (which is treated in this article), the
mechanical displacement u|Ω is also referred to as interior information.

4.2.2. A linear elasticity model for inhomogeneous linear isotropic
media

There exist different variants of elastography using quasi-static, transient or time-
harmonic mechanical excitations, but they can be described by common PDE
models [40, 106].
The elasticity models can be deduced from the equation of motion [79]

∇ ·σ − ρutt = F (4.1)

where F(x, t) is the excitation force density in N/m3. (We use the convention
that letters printed in bold denote vectors in R3.) The mechanical displacement
u(x, t) of the material point which is at position x at time t is measured in
[u] = m. ρ(x) is the density in kg/m3. σ = (σij(x, t))ij is the mechanical (or
Cauchy) stress tensor with unit N/m2. Here, the divergence of a second-rank
tensor A is computed column-wise:

∇ ·A = ∇ · (a1, . . . ,an) := (∇ ·a1, . . . ,∇ ·an).

The constitutive equation in linearized elasticity (also termed Hooke’s law) is

σ = C : ε (4.2)

with the stress tensor σ = σij(x, t) and the dimensionless strain tensor ε =

εkl(x, t). Here, : denotes the tensor multiplication. The material properties are
incorporated into C = Cijkl(x), which is the rank-four stiffness tensor (with unit
N/m2).
Isotropy means that C is reduced to knowledge of two scalar quantites λ and

µ, such that one has
σ = 2µε+ λ tr ε Id, (4.3)
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4. Stability in the linearized problem of quantitative elastography

instead of (4.2). Here, λ(x) is called the first Lamé parameter, and µ(x) is called
the shear modulus or the second Lamé parameter. The physical units of λ and
µ are the same as of σ and C, i.e. N/m2.
In linear elasticity, one works with small deformations, and uses the following

representation of the strain ε:

ε =
1

2
(∇u +∇u>). (4.4)

Note that with this, the quantity tr ε in (4.3) is equal to ∇ ·u.
The equation of motion (4.1), with (4.3) and (4.4) is then augmented with

boundary conditions and appropriate sources. There are different choices for
initial and boundary conditions. One option is

∇(λ∇ ·u) + 2∇ · (µ ε(u))− ρutt = F on Ω

u|∂Ω = 0

u|Ω×{t=0} = g

∂tu|Ω×{t=0} = h.

(4.5)

Existence, uniqueness and regularity properties for this model follow from the
theory in [86] (for an earlier result for elastodynamic problems, see [38]). The
initial and boundary values g and h are prescribed only for the complete mathe-
matical analysis. In practical physical experiments, the varying excitations enter
in the source term F.
The standard problem of quantitative elastography is then to determine the

material parameters λ(x), µ(x) and ρ(x) in the equation (4.5), given the interior
information u(x, t)|Ω.

4.2.3. Adapting the quantities in the compressible model

Models based on (4.3) and (4.5) are widely used in elastography for simulating
the elastic behavior of tissue [40, 106]. Nevertheless, the parameter which one
reconstructs, is often only the shear modulus µ. Sometimes, one assumes the
incompressibility condition ∇ ·u = 0, or one sets λ∇ ·u = 0 [26, 81, 82]. In these
cases, λ does not occur in the model at all.

We propose a different definition of quantities for the reconstruction assuming
a compressible material. Precisely, we change the quantities and use the pressure
p defined by

p(x, t) := λ(x)∇ ·u(x, t). (4.6)

With these quantities, it follows from (4.5) that

∇p+ 2∇ · (µ ε(u))− ρutt = F, (4.7)

The inverse problem is now to recover p(x, t), as well as µ(x) and ρ(x), given
u(x, t)|Ω. It is this problem which we address in our stability analysis.
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4.3. A result from linear PDE theory

Definition (4.6) has been used before, see e.g. [88, 111]). Note that in tissue,
one has that ∇ ·u � 1. Because of ill-posedness of differentiation, the quantity
∇ ·u cannot be computed accurately from the data u in experiments. On the
other hand, one has that λ � 1. In numerical simulations, the pressure p turns
out to be of order 1 and therefore should not be neglected [88].
Note that p(x, t) is an elastic quantity, but not a material parameter: it depends

on the particular displacement field induced by the excitation. Knowledge of p
may or may not prove to be useful for diagnostic purposes. The reason, though,
for introducing this quantity in the inversion model is that it numerically turned
out to be useful. It was numerically observed that keeping p in the model improves
the reconstruction of the shear modulus µ [88].
In our analysis, we will give a mathematical reason for using (4.7) instead of the

first equation in (4.5). Before we come to that, we give the relevant background
from PDE theory which we use in our work.

4.3. A result from linear PDE theory

We first treat the background from the general theory of linear PDE systems in
Rn. This will later be applied to n = 3, n = 4. The essential information for the
quick reader is: We write overdetermined redundant systems of form (4.8) like
(4.21). If they satisfy the conditions in Definition 1 and 2, a stability estimate as
in Theorem 1 holds.
Let Ω be a bounded domain in Rn (smoothness requirements on Ω are specified

later). We consider the redundant system of linear partial differential equations

L(x,
∂

∂x
)w = S on Ω

B(x,
∂

∂x
)w = ϕ on ∂Ω

(4.8)

for m unknown functions w(x) = (w1(x), . . . wm(x)), comprising in total M
equations. Here, L(x, ∂∂x) is a matrix differential operator of dimension M ×m,

L(x,
∂

∂x
) =

 L11(x, ∂∂x) . . . L1m(x, ∂∂x)
...

...
...

LM1(x, ∂∂x) . . . LMm(x, ∂∂x)

 . (4.9)

For each 1 ≤ i ≤M , 1 ≤ j ≤ m and for each point x, Lij(x, ∂∂x) is a polynomial
in ∂

∂x = ( ∂
∂x1

, . . . , ∂
∂xn

). Redundancy of the system means that there are possibly
more equations than unknowns: M ≥ m.
Similarly, B(x, ∂∂x) has entries Bkj(x, ∂∂x) for 1 ≤ k ≤ Q, 1 ≤ j ≤ m, consisting

of Q equations at the boundary. The operations are again polynomial in the
second variable. – S(x) is a vector of length M , and ϕ(x) is a vector of length
Q.
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4. Stability in the linearized problem of quantitative elastography

We now define the notions of ellipticity and the principal part of L and B,
respectively, in the sense of Douglis and Nirenberg [39].

Definition 1. Let integers si, tj ∈ Z be given for each row 1 ≤ i ≤M and column
1 ≤ j ≤ m with the following property: For si + tj ≥ 0, the order of Lij does
not exceed si + tj. For si + tj < 0, one has Lij = 0. Furthermore, the numbers
are normalized so that for all i one has si ≤ 0. Such numbers si, tj are called
Douglis-Nirenberg numbers.
The principal part of L for this choice of numbers si, tj is defined as the matrix

operator L0 whose entries L0,ij are composed of those terms in Lij which are
exactly of order si + tj.
The principal part B0 of B is composed of the entries B0,ij, which are composed

of those terms in Bkj which are exactly of order σk + tj. The numbers σk, 1 ≤
k ≤ Q are computed as

σk := max
1≤j≤m

(bkj − tj), (4.10)

where bkj denotes the order of Bkj.
Real directions ξ 6= 0 with rankL0(x, iξ) < m are called characteristic direc-

tions of L at x. (The complex unit is denoted by the symbol i =
√
−1.) The

operator L(x, ∂∂x) is said to be overdetermined elliptic in Ω if for all x ∈ Ω and
for all real vectors ξ 6= 0 one has that

rankL0(x, iξ) = m (4.11)

for the M ×m matrix L0(x, iξ).

Douglis-Nirenberg numbers allow that terms of order less than max{ordLij}
appear in the symbol L0. The maximum number of entries in the symbol is
attained if one has that si + tj = ordLij .
To illustrate in an example, we can consider the system w1 + ∆w2

∂
∂x1

w1
∂
∂x2

w1

 =

0

f

g

 ,

(
w1|∂Ω

∇w2 ·ν|∂Ω

)
=

(
h

k

)
, (4.12)

where Ω is the unit circle in R2. With ν, we denote the unit normal on ∂Ω.
Here, we have

L(iξ) =

 1 −|ξ|2

iξ1 0

iξ2 0

 , B(iξ) =

(
1 0

0 iξ ·ν

)
. (4.13)

If we choose numbers (tj)
2
j=1 = (1, 3), (si)

3
i=1 = (−1, 0, 0), we have the principal

symbols

L0(iξ) =

 1 −|ξ|2

iξ1 0

iξ2 0

 , B0(iξ) =

(
1 0

0 0

)
(4.14)
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and (σi)
2
i=1 = (−1,−1). – If we choose Douglis Nirenberg numbers (tj)

2
j=1 =

(1, 2), (si)
3
i=1 = (0, 0, 0), we have the principal symbols

L0(iξ) =

 0 −|ξ|2

iξ1 0

iξ2 0

 , B0(iξ) =

(
1 0

0 iξ ·ν

)
(4.15)

and (σi)
2
i=1 = (−1,−1).

Note that the principal symbols differ in this case. Nevertheless, with both
choices of numbers, L is overdetermined elliptic, as there exists a non-vanishing
subdeterminant of L0 in both cases.
Next we define the condition of B covering L, or the Lopatinskii boundary

condition [126].

Definition 2. Fix y ∈ ∂Ω, and let ν be the inward unit normal vector at y. Let ζ
be any non-zero tangential vector to Ω at y. Consider the half-line {y+z ν, z > 0}
and the following system of ordinary differential equations on it:

L0(y, iζ + ν
d

dz
)w̃(z) = 0 z > 0

B0(y, iζ + ν
d

dz
)w̃(z) = 0 z = 0.

(4.16)

Consider the vector space of all solutions w̃ of (4.16) which satisfy w̃(z) → 0

for z → ∞. If this vector space consists just of the trivial solution w̃(z) ≡ 0,
then the Lopatinskii condition is said to be fulfilled for the pair (L,B) at y, or B
covers the operator L at y.

In the example (4.12) above, the equations (4.16), together with the orthogo-
nality condition ν · ζ = 0, yield

(−|ζ|2 +
d2

dz2
)w̃2(z) = 0

(iζ1 + ν1
d

dz
)w̃1(z) = 0

(iζ2 + ν2
d

dz
)w̃1(z) = 0.

The last two equations, together with ζ ·ν = 0, imply w̃1(z) = 0. For w̃2(z),
there is the solution w̃2(z) = Ce−|ζ|z going to 0 for z →∞. – In the case (4.14),
there is no requirement to restrain w2(z), therefore the Lopatinskii boundary
condition is not satisfied with this choice of Douglis-Nirenberg numbers. In the
other case (4.15), the requirement B0(y, iζ + ν d

dz )w̃(z) = 0 leads to d
dz w̃2(z) =

−C|ζ|e−|ζ|z = 0, therefore C = 0 and consequently w̃2(z) = 0. Therefore the
Lopatinskii boundary condition is satisfied in this case.
A typical example of an overdetermined elliptic systems with Lopatinskii bound-

ary conditions is
∇×w = f

∇ ·w = g
(4.17)
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4. Stability in the linearized problem of quantitative elastography

on a domain Ω with normal component w ·v|∂Ω given on the boundary.
In the context of hybrid imaging, examples of overdetermined elliptic systems

with Lopatinskii boundary conditions have been considered in [18, 22].

For investigating the stability for linearized quantitative elastography, we are
going to use the a-priori estimate in [126] for the solutions of system (4.8). This
theory does not need smooth coefficients, but coefficients in the Sobolev spaces
Wα
p (Ω) (for the usual definition, also for noninteger values of α, see [1]). In

the setting of [126] with Douglis-Nirenberg numbers tj , si, σk, one has that the
operator A with

Aw =

(
Lw

Bw

)
(4.18)

acts on the space

D(p, l) := W l+t1
p (Ω)× . . .×W l+tm

p (Ω), (4.19)

where l ≥ 0, p > 1. Under suitable restrictions on the coefficients Lij and Bkj
(specified below in the conditions of the theorem), the operator A is bounded
with range in

R(p, l) := W l−s1
p (Ω)× . . .×W l−sM

p (Ω)×W
l−σ1− 1

p
p (∂Ω)× . . .×W

l−σQ− 1
p

p (∂Ω).

(4.20)
Using the operator A in (4.18), the equations (4.8) read

Aw =

(
S
ϕ

)
. (4.21)

In formulating the restrictions on the coefficients of L and B, we simplify the
version of [126, Thm. 1.1] for the following result.

Theorem 1. Let integers l ≥ 0, p > 1 be given. Let (S, ϕ), the data from (4.8) be
in R(p, l) as defined in (4.20). Let Douglis-Nirenberg numbers si and tj be given
for L in (4.8), and let σk be as in Definition 1. Let Ω be a bounded domain with
boundary in C l+max tj . Assume furthermore that p(l− si) > n and p(l− σk) > n

for all i and k. Let the coefficients of Lij be in W l−si
p (Ω), and let the coefficients

of Bkj be in W l−σk− 1
p (Ω). Then the following statements are equivalent:

1. L in (4.8) is overdetermined elliptic (see (4.11)) and the Lopatinskii cover-
ing condition (4.16) is fulfilled for (L,B) on ∂Ω.

2. There exists a left regularizer R for the operator A = L×B in (4.18), that
is, we have

RA = I − T (4.22)

with T compact from R(p, l) in (4.20) to D(p, l) in (4.19).
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4.4. Stability analysis

3. The following a-priori estimate holds

m∑
j=1

‖wj‖
W
l+tj
p (Ω)

≤ C1(
M∑
i=1

‖Si‖W l−si
p (Ω)

+

Q∑
k=1

‖ϕk‖
W
l−σj−

1
p

p (∂Ω)
)+C2

∑
tj>0

‖wj‖Lp(Ω),

(4.23)
where wj is the j-th component of the solution w of (4.18)

The assertion of the theorem gives a criterion for the existence of a left regular-
izer for the overdetermined redundant systems. For the case of boundary value
problems for square systems with M = m, such an equivalence is established
in the classical work of [5]. For square systems, one has the stronger statement
that ellipticity and Lopatinskii condition are equivalent to the Fredholm property
of a differential operator (which also needs the existence of a right regularizer).
– The criterion for redundant systems with M ≥ m was established in [126],
and investigates the stability estimate, and even gives a representation formula
for the solution, provided it exists. The existence of a right regularizer Q with
AQ = I −T (which would yield local existence) cannot be assured in general for
overdetermined systems.
We will exploit this criterion for the linearized version of quantitative elastog-

raphy.

4.4. Stability analysis

4.4.1. Setting and notation

For treating the hybrid imaging problem described in 4.2.1, we take the adapted
forward model with (4.7) in the first equation in (4.5). We recast the equations
of the forward problem for the displacement, and the interior information, re-
spectively, into a single system of partial differential equations describing one
experiment:

∇p+ 2∇ · (µ ε(u))− ρutt = F

u(x, t) = H

u|∂Ω = 0

u|Ω×{t=0} = g

∂tu|Ω×{t=0} = h

(4.24)

Here, we are given F (the excitation force), g and h, as well as the interior
information H. We formally keep u and H distinct in the second equation, as u

is treated as variable of the system, and H represents the interior information as
a separate object. – In this we keep the analogy with the formalism in [18]. We
aim at a quantitative estimate such as (4.23) with the given interior information
in the inhomogeneity.
We consider the system (4.24), for the variables u, p, µ, ρ; therefore, we con-

sider it as nonlinear, involving multiplication of the unknowns. In order to make
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4. Stability in the linearized problem of quantitative elastography

it tractable for the analysis, we linearize this system to provide equations of the
form (4.8). Several of these linearizations will be considered in the subsequent
theory.
We first consider the forward operator

V : (p(x, t), µ(x), ρ(x)) 7→ u(x, t), (4.25)

which maps the triple (p, µ, ρ) to the displacement field u satisfying (4.24). Then
we consider the linearization of V at a reference state (p, µ, ρ),

V ′(p, µ, ρ) :

δpδµ
δρ

 7−→

δu1

δu2

δu3

 =: δu.

By formal differentiation of (4.24), we find that, at the reference state u =

V(p, µ, ρ), the increment δu satisfies the equations

∇δp+ 2∇ · (δµ ε(u)) + 2∇ · (µ ε(δu))− δρ utt − ρ(δu)tt = 0

δu = δH

δu|∂Ω = 0

δu|Ω×{t=0} = 0

∂tδu|Ω×{t=0} = 0.

(4.26)

Note that F does not depend on the reference state, therefore no inhomogeneity
appears in the first equation in (4.26). The quantity δH is the derivative of the
interior information.
Observe that (4.26) is a system of differential equations for the functions

(δp, δµ, δρ, δu1, δu2, δu3) = (δp, δµ, δρ, δu). The system is linear in these un-
knowns.
We now introduce the operator

Lpµρ(δp, δµ, δρ, δu) :=

(
∇δp+ 2∇ · (δµ ε(u)) + 2∇ · (µ ε(δu))− δρ utt − ρ(δu)tt

δu

)
.

(4.27)
This operator is the linearization of the redundant system (4.24) with respect to
p, µ and ρ. Note that Lpµρ is a matrix differential operator like L in (4.8).
In our analysis, we will treat the operator Lpµρ as well as several specializations,

corresponding to the directional derivatives with respect to only one parameter;
these operators are denoted Lp,Lµ,Lρ. We also treat the combination Lpµ. These
operator specifications are summarized in Table 4.1.
In the model (4.24) which we started from, we incorporated the definition

of the pressure in subsection 4.2.3 in (4.6). An alternative is to use the orig-
inal model (4.5) only, which involved the first Lamé parameter λ. This corre-
sponds to re-substituting p = λ∇ ·u in (4.24). In exact analogy to constructing
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4.4. Stability analysis

Operator name Specification w.r.t. (4.27) Explicit form

Lp(δp, δu) Lpµρ(δp, 0, 0, δu)

(
∇δp+ 2∇ · (µ ε(δu))− ρ(δu)tt

δu

)

Lµ(δµ, δu) Lpµρ(0, δµ, 0, δu)

(
2∇ · (δµ ε(u)) + 2∇ · (µ ε(δu))− ρ(δu)tt

δu

)

Lρ(δµ, δu) Lpµρ(0, 0, δρ, δu)

(
2∇ · (µ ε(δu))− δρ utt − ρ(δu)tt

δu

)

Lpµ(δp, δµ, δu) Lpµρ(δp, δµ, 0, δu)

(
δp+ 2∇ · (δµ ε(u)) + 2∇ · (µ ε(δu))− ρ(δu)tt

δu

)

Table 4.1.: Operators L used to study systems of kind (4.8) resp. (4.18)

Lpµρ one can form the forward operator Vλ. One then considers its linearization
V ′λ(λ, µ, ρ) : (δλ, δµ, δρ) 7→ δu, and introduces the operator Lλµρ. We particularly
will consider

Lλ(δλ, δu) := Lλµρ(δλ, 0, 0, δu) =

(
∇(δλ ∇ ·u) +∇(λ ∇ · δu) + 2∇ · (µ ε(δu))− ρ(δu)tt

δu

)
,

(4.28)
which is also contained in Table 4.1.

We want to apply the methodology of Section 4.4.3 to the various linearizations
and compare their properties. We keep the formalism consistent with (4.8) resp.
(4.21) to study redundant systems of the form:

Aw =

(
Lw

Bw

)
= (L × B)w = (S, 0).

In Table 4.1, we already defined several operators L. What rests is that we have
to explain the operators A and B, as well as the inhomogeneity S.
This is very easily done: Looking at (4.26), the boundary data are for each

case

B(δu) :=

 δu|∂Ω

δu|Ω×{t=0}
∂tδu|Ω×{t=0}

 , (4.29)

For the inhomogeneity S, we have

S = (0, 0, 0, δH1, δH2, δH3)>. (4.30)

All of these are linear differential systems which are redundant systems of form
(4.8) with M ≥ m. These are summarized in Table 4.2.

In the elastography literature, linearizations as in Table 4.1 have been treated
in iterative algorithms to solve the non-linear problem. See, for example the dis-
cussion on the Newton-type algorithms in [40, Sec. 4.1.2], or [101, 130]. In these
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4. Stability in the linearized problem of quantitative elastography

Operator name Explicit form # eqn. in Ω # unknowns

Ap Lp(δp, δu)× B(δu) 6 4
Aµ Lp(δµ, δu)× B(δu) 6 4
Aρ Lp(δρ, δu)× B(δu) 6 4
Apµ Lpµ(δp, δµ, δu)× B(δu) 6 5

A(2)
µ L(2)

µ (δµ, δu1, δu2)× B(δu1)× B(δu2) 12 7

A(r)
pµ L(r)

pµ × B × . . .× B︸ ︷︷ ︸
r times

6r 4r+1

Table 4.2.: Summary of the operators used to study the redundant systems (4.8)
resp. (4.21); specification of the number of equations in the interior
and the number of unknowns; due to space, the arguments of the
operator A(r)

pµ have not been given explicitly

works, the respective linearizations have been computed in their discretized forms,
and for only one experiment. Because most applications aim at reconstructing
the shear modulus, often only the linearization with respect to µ is employed.

In the literature on hybrid imaging, often multiple measurements are consid-
ered. To incorporate the additional information, we can use different excitations
Fi and possibly different functions gi,hi in (4.24) and obtain different versions
of ui(x, t) and interior information Hi(x, t). For each experiment, we also have
a different variable pi in the system. While these quantities change with each
excitation, the material parameters λ, µ and ρ remain the same.

For example, we write Liµ for the operator corresponding to the reference state
ui and

A(2)
µ (δµ, δu1, δu2) :=


L1
µ(δµ, δu1)

B (δu1)|∂Ω

L2
µ(δµ, δu2)

B (δu2)|∂Ω

 =


S1

0

S2

0

 (4.31)

for the system corresponding to 2 experiments. In the inhomogeneity, we have
the quantities Si = (0, 0, 0, δHi) for i = 1, 2.
Note that the superscript in brackets denotes the total number of experi-

ments, not the single equations for the experiments. Similarly, we also write
L(2)
µ (δµ, δu1, δu2) = L1

µ(δµ, δu1)× L2
µ(δµ, δu2).

Comparison of Aµ with A(2)
µ in Table 4.2 shows the effect of adding one more

experiment in the system: there are 6 new equations and 3 new variables: to-
gether 12 equations and 7 unknowns.
The shown procedure of adding experiments can be applied to any of the

operators A previously introduced. For each experiment we add, the inequality
M ≥ m in the formalism of Section 4.3 is fulfilled and the system is redundant.
We summarize these operators also in Table 4.2.
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4.4. Stability analysis

The reason why we study precisely these operators with several measurements
will be apparent from the results in the next Section 4.4.2.

Note that in this section, we have given the general form of the linearization
operators for the dynamic case on a cylindrical domain Ω×T . For (quasi-)static
elastography, we will consider these operators in the stationary case with

utt = (δu)tt = 0, (4.32)

using only the spatial domain Ω. This is specially indicated in each case.

4.4.2. Ellipticity

We want to apply the methodology of Section 4.3, and use the criterion in The-
orem 1. Therefore, we have to determine the ellipticity condition in Definition 1
for the operators Lp, Lµ, Lρ in Table 4.1. We first determine the principal symbol
and possible characteristic directions for the operator Lpµρ, which is treated in
Proposition 1. From this analysis, we then draw some corollaries concerning the
ellipticity of Lp, Lµ, Lρ, as well as ellipticity of Lpµ.
For the analysis of Lpµρ, we choose Douglis-Nirenberg numbers (tj)

6
j=1 =

(1, 1, 0, 2, 2, 2) and corresponding to the variables (δp, δµ, δρ, δu1, δu2, δu3) and
numbers (si)

6
i=1 = (0, 0, 0,−2,−2,−2) corresponding to the six equations. If

there are fewer variables in the system (as in Lp, Lµ, Lρ, Lpµ), then only the
corresponding subset of Douglis-Nirenberg numbers is used (e.g., for the anal-
ysis of Lp, we have the numbers (1, 2, 2, 2) for the variables (δp, δu1, δu2, δu3)

in Lp). – We will see below in Proposition 1 that this choice of the numbers
si + tj equals exactly the order of Lij ; therefore, it is ensured that we treat
the Douglis-Nirenberg symbol L0 with the maximum number of entries (see also
Definition 1).

Proposition 1. Let L be the operator Lpµρ in Table 4.1.

a) The principal symbol of Lpµρ (in the dynamic case) is

L0((x, t), iξ) =

iξ1 2iξs · ε(u)1 −(u1)tt −µξ2
1 − µ|ξ|2 + ρξ2

4 −µξ1ξ2 −µξ1ξ3

iξ2 2iξs · ε(u)2 −(u2)tt −µξ1ξ2 −µξ2
2 − µ|ξ|2 + ρξ2

4 −µξ2ξ3

iξ3 2iξs · ε(u)3 −(u3)tt −µξ1ξ3 −µξ2ξ3 −µξ2
3 − µ|ξ|2 + ρξ2

4

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

(4.33)

where ξs := (ξ1, ξ2, ξ3) for ξ ∈ R4.
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4. Stability in the linearized problem of quantitative elastography

b) For every point (x, t), the operator Lpµρ is not overdetermined elliptic; also,
the operator L(r)

pµρ corresponding to r experiments is not overdetermined
elliptic.

c) In the stationary case (4.32), we have Lpµρ = Lpµ, and the principal symbol
is

L0(x, iξ) =

iξ1 2iξ · ε(u)1 −µξ2
1 − µ|ξ|2 −µξ1ξ2 −µξ1ξ3

iξ2 2iξ · ε(u)2 −µξ1ξ2 −µξ2
2 − µ|ξ|2 −µξ2ξ3

iξ3 2iξ · ε(u)3 −µξ1ξ3 −µξ2ξ3 −µξ2
3 − µ|ξ|2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(4.34)

for ξ ∈ R3.

d) For every point x, consider L = Lpµρ = Lpµ in the stationary case (4.32).
Then L is not overdetermined elliptic at x.

e) For every point x, consider the operator L = L(r)
pµ corresponding to r mea-

surements. Then L is also not overdetermined elliptic at x.

Proof. a) To compute the principal symbol (4.33), we refer to the definition of
Lpµρ in Table 4.1.
We write the first three equations in Lpµρ(δp, δµ, δρ, δu) = S as

∂iδp+ 2 ∇ · (δµ ε(u)i) + 2∇ · (µ ε(δu)i)− δρ(ui)tt − ρ(δui)tt = 0, i = 1, 2, 3

(4.35)
where we denote the columns of the (symmetric) strain as

ε(u) =
1

2
(∇u +∇u>) = (ε(u)1, ε(u)2, ε(u)3).

The meaning of ε(δu)i is analogous.
The last three equations in Lpµρ(δp, δµ, δρ, δu) = S are written as

δui = δHi i = 1, 2, 3 (4.36)

We now want to determine the entries L0,ij of the principal symbol L0((x, t), iξ).
Note that each of the columns in L0 exactly corresponds to one of the variables
(δp, δµ, δρ, δu1, δu2, δu3). Starting with j = 1, we go through the variable list
until j = 6. For each variable, we determine the term where the unknown ap-
pears in the equations (4.35) resp. in (4.36). Then we choose that component
of the term which has order tj + si. Substituting iξ for ∂

∂(x,t) in that component
gives the corresponding entries (L0,ij)

6
i=1 in the j-th column of L0.
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4.4. Stability analysis

For the first column corresponding to δp, the term ∂iδp in (4.35) is translated
to (iξ1, iξ2, iξ3) in (L0,i1)3

i=1. The second column corresponding to δµ, and the
summand of highest order in the term 2 ∇ · (δµ ε(u)i) translates to 2 ξs · ε(u)i
in (L0,i2)3

i=1 with ξs = (ξ1, ξ2, ξ3). In the third column corresponding to δρ, no
differentiation occurs, so we just have −(ui)tt as entries in (L0,i3)3

i=1.

The last three columns correspond to the variables (δu1, δu2, δu3). The relevant
terms in (4.35) are

2 ∇ · (µ ε(δu)i)−ρ(δui)tt = ∇ · (µ

∂1δui
∂2δui
∂3δui

)+∇ · (µ

∂iδu1

∂iδu2

∂iδu3

)−ρ(δui)tt. (4.37)

We substitute iξ for differentiation in (4.37) and take the terms of highest order
to find the entries of the columns (L0)i,j , j = 4, 5, 6; these are the terms −µξ2

i −
µ|ξ|2 + ρξ2

4 in (L0)i,i+3, i = 1, 2, 3, and the term −µξiξj in the entries (L0)i,j , j =

4, 5, 6, j 6= i. – The last three equations (4.36) contain no derivatives and give rise
to the identity matrix in the entries (L0)ij , 4 ≤ i, j ≤ 6 of the principal symbol.

c) The calculations for the symbol (4.34) in the stationary case are exactly the
same as for the dynamic case. The only change in this case is that there is no
temporal derivative. Therefore there is no variable δρ, and one column less than
in (4.33), and ξ4 can be set to zero everywhere.

b) In Lpµρ, we have the characteristic direction ξ = (0, 0, 0, ξ4), ξ4 6= 0. The
same is true of L(r)

pµρ.

d) We first observe that in (4.34), three of the columns are clearly linearly
independent. The first two columns, though, can be linearly dependent:

Consider the symmetric strain ε = ε>. As the entries are real, there always
exists an eigenvector v such that

ε ∗ v =
(
ε1 ·v, ε2 ·v, ε3 ·v

)
= κv, (4.38)

where ∗ denotes matrix multiplication. Choosing (ξ1, ξ2, ξ3) = v gives linear
dependence of L0(iξ) in the first two columns.

In conclusion, at each point (x, t) resp. x, there are choices of ξ such that the
symbols in (4.34) do not have full rank. Therefore Lpµ is not overdetermined
elliptic.

e) Let L = L(r)
pµ be the operator corresponding to r measurements (u1, . . . ,ur).

Organising the unknowns in the order (δµ, δp1, δu1, . . . δpr, δur), we get the fol-
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4. Stability in the linearized problem of quantitative elastography

lowing 6r × 4r + 1 matrix as symbol:

L0(x, iξ) =



2iε(u1) ∗ ξ iξ 0 0 0 . . . 0 0

0 0 Id3x3 0 0 · · · 0 0

2iε(u2) ∗ ξ 0 0 iξ 0 . . . 0 0

0 0 0 0 Id3x3 · · · 0 0
...

...
...

...
...

. . .
...

...
2iε(ur) ∗ ξ 0 0 0 0 . . . iξ 0

0 0 0 0 0 · · · 0 Id3x3


.

(4.39)
Note that each experiment contributes 6 rows to L0. – Ellipticity of L is equiva-
lent to the 4r + 1 columns being linearly independent.
First, the blocks with Id3x3 in the matrix immediately yield that 3r columns

of the matrix are a linearly independent set. Also, these columns are independent
of the remaining r + 1 colums corresponding to (δµ, δp1, . . . , δpr).
To investigate the ellipticity of L(r)

pµ , we therefore build sub-matrices D =

D(x, iξ) of size r + 1 × r + 1 in the following way: We take the indexes of
those remaining r+ 1 colums and make any choice C of r+ 1 row indexes. Then
we analyze whether the rank of such submatrices D can be maximal.
Case 1: In the index choice C, there are 3 consecutive entries (6(j0 − 1) +

k)j=1,2,3, corresponding to one single experiment j0. Taking ξ an eigenvector of
ε(uj0) yields linear dependence of the columns 1 and j0 + 1 in D(x, iξ).
Case 2: There exists an experiment j0 not represented in C. In this case, the

column j0 + 1 of D is degenerate.
Case 3: Of each experiment, there is one row in our choice C, and from one

experiment, there are two rows in C. Without loss of generality, assume that it
is the last experiment of which two rows have been chosen. Then we have that
C = (k1, 6 + k2, . . . , 6(r − 1) + kr, 6(r − 1) + l), (k1, . . . , kr, l) ∈ {1, 2, 3}, l 6= kr.
In this case, the resulting submatrix D = Dr is

Dr(x, iξ) =


2iε(u1)k1 · ξ iξk1 0 . . . 0

2iε(u2)k2 · ξ 0 iξk2 . . . 0
...

...
...

. . .
...

2iε(ur)kr · ξ 0 0 . . . iξkr
2iε(ur)l · ξ 0 0 . . . iξl

 . (4.40)

We now take an eigenvector ξ 6= 0 of ε(ur) and claim that the matrix Dr(x, iξ)

does not have full rank.
Inductively, we begin with r = 1. With κ being the corresponding eigenvalue,

we have that D1 =

(
2iε(u1)k1 · ξ iξk1
2iε(u1)l · ξ iξl

)
=

(
2iκξk1 iξk1
2iκξl iξl

)
is rank-deficient.

Now let detDr−1(x, iξ) = 0 for r − 1. Choosing an experiment j0 6= r, and
evaluating the Laplace expansion of the determinant of (4.40) along the column
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j0 + 1, the only nontrivial cofactor resulting equals iξkj0 · detDr−1 (where Dr−1

is the matrix corresponding to experiments (u1, . . . ,uj0−1,uj0+1, . . . ,ur)). But
the induction assumption tells us that this expression vanishes. Therefore, with
our choice of ξ, the matrix Dr(x, iξ) has a rank-deficiency for any r ≥ 1.
The cases 1-3 exhaust all possibilities of forming the relevant sub-matrices D

of L0. In the proof, we have seen that neither of them has full rank. Therefore,
L = L(r)

pµ is not over-determined elliptic.

We now restrict the focus on linearizations in only one direction, which were
introduced in Section 4.4.1. Then the corresponding principal symbol contains
fewer columns and results on ellipticity can be obtained.

Corollary 1. The operator Lp in Table 4.1, considered in the stationary case, is
elliptic everywhere.

Proof. Let L = Lp. The principal symbol consists of the first and the three last
columns of the matrix in (4.34):

L0(x, iξ) =


iξ1

iξ2 ∗
iξ3

Id3x3

 . (4.41)

For ξ 6= 0, this symbol has maximal rank 4 everywhere, therefore Lp is elliptic.

Corollary 2. The operator Lµ in Table 4.1, considered in the stationary case,
is elliptic exactly at points which satisfy

det(ε(u(x, t)) 6= 0. (4.42)

The operator L(r)
µ , corresponding to r measurements (δu)k, 1 ≤ k ≤ r, is elliptic

exactly at points where at least one of det(ε(uk(x, t)) 6= 0.

Proof. Let L = Lµ (the case of one measurement). Then the principal symbol
consists of the second and the three last columns of the matrix in (4.34):

L0(x, iξ) =


iξs · ε(u)1

iξs · ε(u)2 ∗
iξs · ε(u)3

Id3x3

 (4.43)

This symbol has rank 4 provided that the first column is non-degenerate, which
is equivalent to the condition (4.42) of non-singular strain.
Now let L = L(r)

µ (the case of multiple measurements). This can be treated
by induction on r. Let the principal symbol L(r−1)

0 corresponding to r − 1 mea-
surements have dimension a × b. Adding one measurement means adding three
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4. Stability in the linearized problem of quantitative elastography

more columns (and six new lines) in the matrix, such that it has dimension
(a + 6) × (b + 3). These three new columns are independent because of the
identity component in (L0,ij), a+ 4 ≤ i ≤ a+ 6, b+ 1 ≤ j ≤ b+ 3.
In the first column of L(r)

0 , there are three new entries (2iξr · ε(ur)i)3
i=1 at posi-

tion (L0,i1)3r
i=3r−2. If we have that for 1 ≤ k ≤ r, at least one of det(ε(uk(x, t)) 6=

0 is non-zero, then the principal symbol L(r)
0 has full rank: in the case k < r

because of the induction assumption, and in the case k = r because of non-
degeneracy in the first column due to the new measurement.

Corollary 3. The operator Lρ in Table 4.1 is elliptic exactly at points with
utt 6= 0. For the case of several measurements, L(r)

ρ is elliptic exactly at points
(x, t) where at least one of (uk)tt(x, t) 6= 0, 1 ≤ k ≤ r.

Proof. Let L = Lρ. The principal symbol consists of the last four columns of the
matrix in (4.33):

L0((x, t), iξ) =


−(u1)tt
−(u2)tt ∗
−(u3)tt

Id3x3

 (4.44)

This symbol has rank 4 iff utt is nonzero. The statement for multiple measure-
ments is proved by induction, analogous to the case of L(r)

µ .

Remark 1. As starting point of our analysis, we have choosen the modified model
(4.7) with the substitution p = λ∇ ·u in (4.6). Of course, we could also analyze
the system corresponding to the original model (4.5). Using linearization in
direction of δλ, we have the operator Lλ in (4.28).
Now let L = Lλ in the stationary case. Doing calculations as in Proposition 1,

and restricting the focus on the first and last three columns as in Corollary 1,
one finds the resulting principal symbol as

L0(x, iξ) =


iξ1∇ ·u
iξ2∇ ·u ∗
iξ3∇ ·u

Id3x3

 . (4.45)

But in experiments, it is most likely that there exist points x with ∇ ·u(x) = 0

(in fact, tissue is often approximately assumed to fulfil ∇ ·u|Ω = 0 on the whole
domain). At such points x, a characteristic direction of Lλ occurs, therefore
consideration of the elliptic operator Lp seems preferable (see also the discussion
in Section 4.5).

Remark 2. Corollary 2 gives the criterion (4.42) for the reference state (which
will be used later in Theorem 2). This criterion means that at each point, at
least one of the measured elastic displacement fields has non-singular strain.
The requirement of such qualitative conditions for the solutions is typical for the
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coupled-physics literature.
In fact, the condition (4.42) for r = 2 is a generalization of the invertibility
condition for the nonlinear reconstruction problem in elastography, which was
found in the research of [20], namely

det(t2ε(u1)− t1ε(u2)) 6= 0. (4.46)

Here, we have for k = 1, 2 that tk := tr(ε(uk)) = ∇ ·uk. It can be verified by
simple calculation that violation of (4.42) leads to violation of (4.46).
It is unknown whether (4.46) can be ensured with two vector fields for ev-

ery distribution of material parameters. For several parameter classes, existence
of boundary conditions ensuring (4.46) can be justified, see the discussion and
examples in [20, Sec.3.3]. As (4.67) is a consequence of (4.46), the special argu-
mentation for (4.46) can also be invoked for arguing for the premise of Corollary 2
(and later Theorem 2) in our case.

4.4.3. Lopatinskii condition

We want to use the stability criterion in Theorem 1 for the systems Ap, Aµ and
Aρ in Table 4.2. For this purpose, we are checking the covering condition in
Definition 2 for the various differential operators L introduced in Section 4.4.1,
together with the relevant boundary data where necessary.

Proposition 2. The systems Lp and Lµ in Table 4.1 satisfy the Lopatinskii
condition with arbitrary boundary data.

Proof. For checking the Lopatinskii (or covering) condition in Definition 2, we
have to consider the vector space of functions satisfying the system (4.16) and
show that it is trivial.
Let L = Lp with principal symbol (4.41), and let y be a point on the boundary.

Then the system of equations L0(y, iζ + ν d
dz )w̃(z) = 0 in (4.16) comprises 6

equations for 4 unknowns (w̃1(z), w̃2(z), w̃3(z), w̃4(z)).
In the entries (L0)ij , 4 ≤ i ≤ 6, 2 ≤ j ≤ 4 of (4.41), there is a 3-by-3 identity

matrix. The three last equations of (4.16) therefore mean that

w̃2(z) = w̃3(z) = w̃4(z) = 0. (4.47)

The first three equations in (4.16) then reduce to

(iζk + νk
d

dz
)w̃1(z) = 0, k = 1, 2, 3. (4.48)

Any functions which are in the vector space considered in Definition 2 have to
satisfy (4.48).
The only possible solutions of (4.48) consist of functions of form eiλz, where

the parameter λ = ζi
νi

is a real number; neither of these functions tends to 0 for
z → ∞. In this argument, we did not use any boundary constraint. Therefore
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4. Stability in the linearized problem of quantitative elastography

the vector space to be considered in Definition 2 is trivial for every y ∈ ∂Ω, and
the Lopatinskii covering condition is always satisfied.
Now let L = Lµ with principal symbol (4.43). Then, for y on the boundary,

consider the system L0(y, iζ + ν d
dz )w̃(z) = 0 in (4.16). Similarly to (4.47), the

last three components vanish, and the system reduces to

gj · (iζs + ν
d

dz
)w̃1(z) = 0. j = 1, 2, 3. (4.49)

Here, we use fixed vectors gj = ε(u(y))j , j = 1, 2, 3 and ζs = (ζ1, ζ2, ζ3).
Suppose that the relation gj ·ν 6= 0 holds for all j. Then we have solutions of

(4.49) of form e
i
gi · ζs
gi · ν z. The numbers gi · ζs

gi ·ν are real, so neither of these functions
tends to 0.
Suppose, on the other hand, that we have gj0 ·ν = 0 for one j0. Then, using

ν · ζs = 0, we have gj0 · ζs 6= 0. Inserting this information in (4.49), we directly
get w̃1(z) = 0.
Therefore the Lopatinskii condition for Lµ is satisfied with arbitrary boundary

data.

Proposition 3. The system Lρ in Table 4.1 satisfies the Lopatinskii condition
with arbitrary boundary data if and only if u(y, t)tt 6= 0 for all (y, t) ∈ ∂(Ω×T ).

Proof. Consider the system L0(y, iζ + ν d
dz )w̃(z) = 0 in (4.16) for the operator

Lρ. As in the proof of Proposition 2, we get

w̃2(z) = w̃3(z) = w̃4(z) = 0.

The equations for w̃1(z) therefore reduce to

(ui)ttw̃1(z) = 0 for i = 1, 2, 3 (4.50)

If we suppose u(y, t)tt 6= 0, then (4.50) implies ũ1(z) = 0, therefore the Lopatin-
skii condition is satisfied.
Conversely, suppose that u(y, t)tt = 0 for one (y, t). Then one can choose

w̃(z) = (w1(z), 0, 0, 0) satisfying (4.50) for any function w1 that satisfies w1(z)→
0. Therefore the Lopatinskii condition would be violated.

For the study of Lpµ, we need the following boundary operator

B′(δu) =


δu|∂Ω

δu|Ω×{t=0}
∂tδu|Ω×{t=0}

δp|∂Ω

δµ|∂Ω

 = 0, (4.51)

incorporating additional constraints on δp and δµ.
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Proposition 4. The system Lpµ in Table 4.1 satisfies the Lopatinskii condition
with boundary data (4.51) at y ∈ ∂Ω, provided that the unit normal vector ν(y)

is not an eigenvector of ε(u(y)).

Proof. Let L = Lpµ. The principal symbol L0 consists of the two first and the
three last columns of the matrix in (4.33). Consider then the system of equations

L0(y, iζ + ν
d

dz
)w̃(z) = 0

from (4.16) for the vector w̃(z) = (w̃1(z), . . . , w̃5(z)). The last three equations
of this system yield that w̃3(z) = w̃4(z) = w̃5(z) = 0, similar to (4.47). For the
two remaining functions w̃1(z) and w̃2(z), the equations reduce to

(iζj + νj
d

dz
)w̃1(z) + gj · (iζs + ν

d

dz
)w̃2(z) = 0, j = 1, 2, 3. (4.52)

Here, ζs = (ζ1, ζ2, ζ3) and we use the fixed vectors

gj = ε(u(y))j , j = 1, 2, 3. (4.53)

Now let us assume that there exist non-zero solutions to this system. By elim-
ination of w̃2(z) and d

dz w̃2(z) from (4.52) with j = 1, 2, j = 1, 3, j = 2, 3,
respectively, we find the following three equations which w̃1(z) has to satisfy:

a1,2
d2

dz2
w̃1(z) + b1,2

d

dz
w̃1(z) + c1,2w̃1(z) = 0 (4.54)

a1,3
d2

dz2
w̃1(z) + b1,3

d

dz
w̃1(z) + c1,3w̃1(z) = 0 (4.55)

a2,3
d2

dz2
w̃1(z) + b2,3

d

dz
w̃1(z) + c2,3w̃1(z) = 0, (4.56)

with the coefficients

ap,q = νpgq ·ν − νqgp ·ν (4.57)

bp,q = i(ζpgq ·ν + νpgq · ζs − ζqgp ·ν − νqgp · ζs) (4.58)

cp,q = ζqgp · ζs − ζpgq · ζs. (4.59)

The same equations are obtained for w̃2(z) also, by elimination of w̃1(z) from
(4.52) with j = 1, 2, j = 1, 3, j = 2, 3, respectively.
Let us consider the matrix of the coefficients in (4.54)-(4.56),

A =

a1,2 b1,2 c1,2

a1,3 b1,3 c1,3

a2,3 b2,3 c2,3

 . (4.60)

We claim that under our assumption, the system (4.54)-(4.56) is nontrivial,
which is equivalent to A 6= 0.
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Assume, on the contrary, that all entries in A vanish:

A = 0. (4.61)

Incorporating the information (4.57)-(4.59), the nine equations in (4.61) can be
written in matrix form as

0 0 0 −ν2 ν1 0

0 0 0 −ν3 0 ν1

0 0 0 0 −ν3 ν2

−ν2 ν1 0 −ζ2 ζ1 0

−ν3 0 ν1 −ζ3 0 ζ1

0 −ν3 ν2 0 −ζ3 ζ2

ζ2 −ζ1 0 0 0 0

ζ3 0 −ζ1 0 0 0

0 ζ3 −ζ2 0 0 0


∗



g1 · ζs
g2 · ζs
g3 · ζs
g1 ·ν
g2 ·ν
g3 ·ν


= 0 (4.62)

Here, ∗ denotes matrix multiplication.
The system (4.62) can be seen as linear system of equations for the unknown

variables {g1 · ζs, g2 · ζs, g3 · ζs, g1 ·ν, g2 ·ν, g3 ·ν}. The system can then be
solved by elimination. The one dimensional solution space is generated by the
vector (ζ1, ζ2, ζ3, ν1, ν2, ν3). In particular, we have

gj ·ν = κνj for j = 1, 2, 3.

Using the definition of gj in (4.53), it follows that

ε(u(y)) ∗ ν(y) = κν(y), (4.63)

as we have that ε = ε>. But, by assumption, ν(y) must not be an eigenvector of
the strain ε(u(y)), so this cannot happen. Therefore (4.61) is wrong and A 6= 0.
Consequently, the equations (4.54)-(4.56) are always nontrivial in our case.

As these are linear ordinary differential equations of second order, the basis of
solutions consists of functions of form eλz and z eλz.
We now claim that there can be no solutions of form z eλz to the system of

differential equations in (4.52).
Assume, on the contrary, that a solution of form z eλz exists. According to the

theory of linear ODE, λ is a double zero of the three characteristic polyomials

akλ
2 + bkλ+ ck = 0 for k = (1, 2), (1, 3), (2, 3).

The discriminant has to vanish, so we have λ =
−bk±
√
b2k−4akck

2ak
= −bk

2ak
, thus

bk = −2λak for k = (1, 2), (1, 3), (2, 3); consequently we also have ck = 4λ2ak.
Because of these proportionalities between ak, bk and ck, the matrix A in (4.60)
has rank 1. Therefore we have also a proportionality between the rows in A, i.e.
the relations

a1,3 = γ a1,2

a2,3 = δ a1,2

b1,3 = γ b1,2

b2,3 = δ b1,2

c1,3 = γ c1,2

c2,3 = δ c1,2

(4.64)
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for some constants γ, δ. Using (4.57)-(4.59), the equations in (4.64) can be written
in matrix form as

0 0 0 −ν3 + γν2 −γν1 ν1

0 0 0 0 δν2 −ν3 − δν1 ν2

−ν3 + γν2 −γν1 ν1 −ζ3 + γζ2 −γζ1 ζ1

δν2 −ν3 − δν1 v2 +δζ2 −ζ3 − δζ1 ζ2

ζ3 − γζ2 +γζ1 −ζ1 0 0 0

−δζ2 ζ3 + δζ1 −ζ2 0 0 0


∗



g1 · ζs
g2 · ζs
g3 · ζs
g1 ·ν
g2 ·ν
g3 ·ν


= 0,

(4.65)
which we interpret, as in (4.62), as linear system for the unknown variables
{g1 · ζs, g2 · ζs, g3 · ζs, g1 ·ν, g2 ·ν, g3 ·ν}. Now the matrix in (4.65) has
rank 6, so the equations reduce to

gj · ζs = 0 j = 1, 2, 3 and

gj ·ν = 0 j = 1, 2, 3.
(4.66)

As in (4.63), it follows from the second equation in (4.66) that ν is an eigenvector
of the strain ε(u(y)) corresponding to the eigenvalue 0. But this has been ruled
out by hypothesis.
So the only solutions of (4.52) are of form eλz. The boundary condition (4.51)

then leads to the unique solution of w̃1(z) = 0. The same chain of arguments can
be invoked to obtain w̃2(z) = 0. Therefore the Lopatinskii condition is satisfied
at y.

4.4.4. Stability estimates and kernel characterization

In this section, we derive the main results of the paper. In Sections 4.4.2 and
4.4.3, we collected results about the systems Ap, Aµ and Aρ in Table 4.2. We
now treat these operators on a case-by-case basis. For each operator, we give a
stability estimate. In general, this estimate holds up to a finite dimensional kernel
for operators with one experiment. We characterize this kernel, and show also
injectivity of the operators for a larger number of measurements in the linearized
problem in quantitative elastography.
We choose p = 2 and a number l > 0 with p; l > n, and a bounded and

connected domain Ω with C l+2-boundary.
The theory of [126], which we apply, requires that the solution variables lie in

Sobolev spaces. In the following statements, we therefore suppose that we have
a reference state (p, µ, ρ) with µ ∈ C2l+3(Ω), ρ ∈ C2l+2(Ω) and for the reference
displacement u = V(p, µ, ρ) in (4.25) we require u ∈ H l+2(Ω), utt ∈ H l(Ω). The
existence of such a displacement field u can be ensured by the regularity theory
[86, Thm.8.1]. Moreover, we consider the solutions of the linearized equations
(4.26) as follows: δp ∈ H l+1(Ω), δµ ∈ H l+1(Ω), δρ ∈ H l(Ω), δui ∈ H l+2(Ω) for
i = 1, 2, 3.
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Note that, as exposed in section 4.4.1, the variables of the relevant systems are
(δp, δµ, δρ, δu1, δu2, δu3). For subsequent analysis, we use the Douglis-Nirenberg
numbers (tj)

6
j=1 = (1, 1, 0, 2, 2, 2), corresponding to the variables (δp, δµ, δρ, δu1, δu2, δu3),

as well as (si)
6
i=1 = (0, 0, 0,−2,−2,−2). – Note that for the particular operators

Aµ,Aρ,Ap,Aλ, only four of those variables are used in the corresponding system.
In the following results, we apply Theorem 1 to obtain a left regularizer the

particular operators A, as in (4.22). Another name for A possessing a left regu-
larizer are that A is a left semi-Fredholm operator [37, Ch. XI, §2], [66].

Theorem 2. The operator A(r)
µ for r ≥ 1 measurements, described in (4.31) and

considered in the stationary case, has a left regularizer on Ω precisely when, for
all x ∈ Ω,

det(ε(uk(x))) 6= 0 for at least one measurement 1 ≤ k ≤ r. (4.67)

Then the stability estimate

‖δµ‖Hl+1(Ω)/K1
≤ C

r∑
k=1

‖δuk‖Hl+2(Ω) (4.68)

holds with a finite-dimensional kernel K1.

Proof. We first treat the case of Aµ.
Recall that we are treating the equation

Aµ(δµ, δu) = (S, ϕ),

and that the operator

Aµ = Lµ × B : D(p, l)→ R(p, l)

as described in Table 4.2, Section 4.4.1, has 6 equations in the interior and four
variables (δµ, δu1, δu2, δu3) = (δµ, δu). The inhomogeneity is S = (0, 0, 0, δK1, δK2, δK3)>

and ϕ = 0.
The choice of Douglis-Nirenberg numbers corresponding to these variables is

(tj)
4
j=1 = (1, 2, 2, 2) and (si)

6
i=1 = (0, 0, 0,−2,−2,−2), (σk)

3
k=1 = (−2,−2,−1),

and the principal symbol of Lµ is (4.43). Therefore, we have (according to (4.19)
and (4.20)) the domain and range, respectively, as

D(p, l) = H l+1(Ω)× (H l+2(Ω))3

R(p, l) = H l(Ω)× (H l+2(Ω))3 ×H l+ 5
2 (Ω)×H l+ 5

2 (Ω)×H l+ 3
2 (Ω).

By Corollary 2, the assumption (4.67) on the determinant of the strain ε(u) of
the reference state, is equivalent to Lµ being elliptic. According to Proposition
2, the Lopatinskii condition is satisfied for Aµ = Lµ × B. Therefore, condition 1
of Theorem 1 is precisely when (4.67) holds, and this is true also for the two
equivalent conditions 2-3 in Theorem 1.
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Theorem 1 therefore implies the existence of a bounded operator Rµ : R(p, l)→
D(p, l) with

RµAµ = I − Tµ (4.69)

and compact Tµ : R(p, l)→ D(p, l).
The spectral theory for compact operators asserts that the kernel of I − Tµ is

finite-dimensional [37, Ch.VII, Thm. 7.1]. By (4.69), the kernel K = ker(Aµ) is
a subspace of ker(I −Tµ). Consequently, K is finite-dimensional also, and hence
closed. Therefore we can consider the quotient D(p, l)/K as a Hilbert space.
Existence of the left regularizer in (4.69) implies that ran(Aµ) is closed [37,

Ch.XI, Thm. 2.3(ii)]. Therefore ran(Aµ) is a Hilbert space. We apply the
open mapping theorem [37, Ch.III, Thm. 12.1] to find that the inverse A−1

µ :

ran(Aµ)→ D(p, l)/K is continuous:

‖(δµ, δu)‖D(p,l)/K = ‖A−1
µ Aµ(δµ, δu)‖D(p,l)/K

≤ C‖Aµ(δµ, δu)‖R(p,l) = C‖(S, ϕ)‖R(p,l).
(4.70)

holds. By (4.26), we have δH = δu in S. We set K = K1 × K2 with K1 ⊂
H l+1(Ω). Then from (4.70), we obtain the estimate (4.68) for r = 1.
The case of A(r)

µ follows straight-forwardly by induction.

The availability of reference states satisfying (4.67) for r = 2 has already been
discussed in Remark 2.
Note that the estimate (4.68) shows that there is the loss of only one derivative

in the linearized problem of reconstructing δµ from δu, thus this inverse problem
is mildly ill-posed.
We now give an explicit characterization of the kernel of the operator Aµ =

A(1)
µ , which will be exploited in Corollary 4 to show injectivity of A(2)

µ , the oper-
ator corresponding to two measurements.

Theorem 3. Consider Aµ, and suppose that the condition (4.67) with r = 1

holds. Then the estimate (4.68) holds with a one-dimensional kernel K1. The
subspace K1 is generated by the element

exp

∫ x

p
a(y)dy (4.71)

with fixed p ∈ Ω. Here, the vector field a(x) is uniquely determined by

a · ε(u)i = −∇ · ε(u)i, i = 1, 2, 3, (4.72)

where u is a reference state for which (4.67) holds.

Proof. In the proof of the statement, we derive a representation for δµ on a
connected set and then infer that the representation is valid on Ω by a topological
argument.
Suppose, to begin with, that (δµ, δu) ∈ D(p, l) is in the kernel of Aµ = Lµ×B.
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As we have p l > n, the Sobolev imbedding theorems (see [1, Thm.5.4.C]) imply
that δµ ∈ H l+1(Ω) is continuously differentiable on Ω. In particular, we have
that the set

A = {x ∈ Ω : δµ(x) 6= 0} (4.73)

is open in Ω.
If δµ ≡ 0, then the assertion is trivially satisfied. Otherwise, there exists a

point p ∈ A. In this case, consider the connected component V of p in the
topology of A ⊂ Ω, that is

V =
⋃
{U : p ∈ U ⊂ A with U connected in A}.

Lemma 1 implies that V ⊂ A ⊂ Rn is open; therefore, V is also path-connected.
Suppose now x ∈ V . We analyze the 6 equations

Lµ(δµ, δu) =

(
2∇ · (δµ ε(u)) + 2∇ · (µ ε(δu))

δu

)
= 0 on V.

From the last three equations, we immediately get δu|V = 0. From the first three
equations, we then get that

∇ · (δµ ε(u)) = 0 on V

for the element δµ, and hence

∇δµ · ε(u)i = −δµ∇ · ε(u)i i = 1, 2, 3 on V. (4.74)

Evaluating (4.74) at the point x ∈ V ⊂ A and dividing by δµ(x) (which, by
(4.73), is non-zero) shows that

∇δµ(x)

δµ(x)
= ∇ log δµ(x) = a(x), (4.75)

with a determined by (4.72).
Actually, the conditions (4.67) and (4.72) can be used to define a(x) uniquely

for x ∈ Ω and that a is continuous. To see this, observe that from (4.72), we
have that ε(u) ∗a = −[∇ · ε(u)1,∇ · ε(u)2,∇ · ε(u)3]. With (4.67), we then have

a = −(ε(u))−1 ∗ [∇ · ε(u)1,∇ · ε(u)2,∇ · ε(u)3]. (4.76)

Now u ∈ (H l+2(Ω))3 implies that the entries of ε(u) lie in H l+1(Ω) and that
∇ · ε(u)i ∈ H l(Ω) for i = 1, 2, 3. Applying Cramer’s rule to (4.76) yields that
a ∈ H l(Ω). Using the inequality p l > n and the Sobolev embedding theorem [1,
Thm.5.4.C], we then conclude that a is continuous on Ω.

Now consider the vector field a and calculate the path integral from p to x to
find∫ x

p
a(y)dy

(4.75)
=

∫ x

p
∇ log δµ(y)dy = log δµ(x)− log δµ(p) = log

(δµ(x)

δµ(p)

)
.
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4.4. Stability analysis

From this identity, we have the representation

δµ(x) = δµ(p) exp

∫ x

p
a(y)dy, x ∈ V (4.77)

for the values δµ on the set V ⊂ A ⊂ Ω. Note that the function on the right
hand side of (4.77) is continuous and defined on the whole domain Ω.
We now claim that actually, we have

V = Ω, (4.78)

such that the representation formula (4.77) holds for x ∈ Ω.
Assume, on the contrary, that V  Ω. We then also have that

A  Ω

(otherwise Ω = A = V ∪ V1, with V1 = A \ V open and nontrivial, V ∩ V1 = {},
so Ω would not be connected).
Therefore, the assumptions of Lemma 2 are satisfied. Consequently, there

exists a point q ∈ ∂V \ A, where ∂V is the boundary of V in Ω. As q 6∈ A, we
have, by (4.73), that

δµ(q) = 0. (4.79)

As q ∈ ∂V , there exists a sequence vn ∈ V with

vn → q in Ω. (4.80)

By the representation (4.77), together with (4.80), we have

δµ(vn)
(4.77)

= δµ(p) exp

∫ vn

p
a(y)dy→ δµ(p)︸ ︷︷ ︸

6= 0

exp

∫ q

p
a(y)dy︸ ︷︷ ︸

> 0

6= 0 (4.81)

On the other hand, the continuity of δµ, equation (4.79) and (4.80) imply that

δµ(vn)→ 0. (4.82)

As (4.81) and (4.82) contradict each other, we infer that the assumption V  Ω

is wrong. Therefore, as asserted in (4.78), V = Ω holds.
Therefore, for any (δµ, δu) ∈ kerAµ = K1×{0} with δµ 6= 0, the representation

of δµ in (4.77) is valid for x ∈ Ω. This shows that (4.71) is a generating element
for K1. Therefore dim(K1) = 1.

Corollary 4. Let u1 6= u2 be two quasi-static elastic deformations satisfy-
ing (4.5) with different force terms F1,F2. Let the condition (4.67) hold.
As described in (4.31), let A(2)

µ (δµ, δu1, δu2) be the corresponding linearized
operator. Then we have that

ker(A(2)
µ ) = {(0, 0, 0)}.
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4. Stability in the linearized problem of quantitative elastography

Proof. Let (δµ, δu1, δu2) ∈ ker(A(2)
µ ).

From (4.31), we immediately get that δu1 = δu2 = 0 on Ω. The other equations
in (4.31) yield

∇ · (δµ ε(u1)) = 0

∇ · (δµ ε(u2)) = 0.

such that together with the boundary data we have

∇ · (δµ ε(u1 − u2)) = 0

(u1 − u2)|∂Ω = 0.
(4.83)

Suppose that δµ 6= 0. Then there exists a point p ∈ Ω with δµ(p) 6= 0. As in
the proof of Theorem 3, where we derived the representation formula (4.77) for
x ∈ Ω, there exists a continuous vector field a such that

δµ(x) = δµ(p) exp

∫ x

p
a(y)dy, x ∈ Ω. (4.84)

This implies that δµ(x) > 0 for all x ∈ Ω. Therefore, the condition ess infΩ µ =

ess infΩ µ0 > 0 in [86, (2.2)] is satisfied.
The uniqueness result [86, Thm.5.2] then implies that, from (4.83), we have

that u1 = u2. But this is contradiction to our assumption.
Therefore, we have ker(A(2)

µ ) = {(0, 0, 0)}.

Remark 3. We note that equation (4.74) and the analytical solution (4.77) has
been found in [26] in a different context for the analysis of the non-linear problem
with constant coefficients λ and ρ. Applying the technique of Corollary 4 to the
inverse problem in [26, sec. 4b] yields that for two measurements, the coefficient
µ in [26] can be uniquely reconstructed without prior knowledge of µ(x0).

In the subsequent part of the section we give the stability criteria for the
operators Aρ, Ap and Aλ.

Theorem 4. The operator A(r)
ρ for r measurements has a left regularizer on any

smooth subdomain W ⊂ Ω× [0, T ] precisely when, for all (x, t) ∈W ,

(uk)tt(x, t) 6= 0 for at least one measurement 1 ≤ k ≤ r. (4.85)

One has the stability estimate

‖δρ‖Hl+1(W ) ≤ C

r∑
k=1

‖δuk‖Hl+2(W ). (4.86)

Proof. We first treat Aρ. The case of A(r)
ρ follows by induction.

The stability criterion in Theorem 1 is established for domains with C l+max tj

boundary. Upon careful checking of the proof [126, §6], the only place where
this assumption enters is the existence of a partition of unity. Now our domain is
Ω× [0, T ], The construction of a partition of unity easily generalizes to cylindrical
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4.4. Stability analysis

domains Ω × [0, T ], where Ω has C l+max tj boundary. Therefore, we can apply
Theorem 1 to the problems with cylindrical domains.
The ellipticity condition has been assured in Corollary 3, and the Lopatinskii

condition is satisfied according to Proposition 3. The assumptions in these results
give the requirement utt(x, t)W 6= 0. With that, the equivalent conditions of
Theorem 1 are fulfilled and we apply the result as in the proof of Theorem 2.
There appears no kernel in (4.86) for the following reason: The Douglis-

Nirenberg numbers for the operator Aρ are (tj)
4
j=1 = (0, 2, 2, 2) and (si)

6
i=1 =

(0, 0, 0,−2,−2,−2). On the right hand side of estimate (4.23), only the variables
with tj > 0 appear, which are in this case δuk for k = 1, 2, 3.

Theorem 5. The operator Ap in Table 4.2, considered in the stationary case,
has a left regularizer on Ω, and we have the estimate

‖δp‖Hl+1(Ω)/K3
≤ C‖δu‖Hl+2(Ω). (4.87)

Here, the kernel K3 consists of the (one-dimensional) space of constant functions
on Ω.

Proof. The proof of the stability estimate with a finite-dimensional kernel is the
same as in Theorem 2, using Corollary 1 and Proposition 2 in this case.
Suppose that (δµ, δu) is in the kernel K = ker(Ap) = Lp × B. Consideration

of the system

Lp(δp, δu) =

(
∇δp+ 2∇ · (µ ε(δu))

δu

)
= 0 on Ω

shows that δu = 0, and consequently∇δp = 0. Therefore, we haveK = K3×{0},
with K3 the constant functions on Ω.

Note that, with the same method, but using Remark 1, one obtains a condi-
tional stability result for the operator Aλ:

Theorem 6. The operator A(r)
λ corresponding to r measurements, considered in

the stationary case, has a left regularizer on Ω precisely when, for all x ∈ Ω,

∇ ·uk(x) 6= 0 for at least one measurement 1 ≤ k ≤ r, (4.88)

Then the stability estimate

‖δλ‖Hl+1(Ω)/K4
≤ C

r∑
k=1

‖δuk‖Hl+2(Ω) (4.89)

holds for a finite-dimensional kernel K4.

By the same method or proof as in Theorem 7, one proves the following kernel
characterization for Aλ:
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4. Stability in the linearized problem of quantitative elastography

operator A(r)
µ A(r)

ρ A(r)
p A(r)

λ

ellipticity cond. det(ε(uk)) 6= 0 (uk)tt 6= 0 – ∇·uk 6= 0

stability est. ‖δµ‖Hl+1/K1
≤ ‖δρ‖Hl+1 ≤ ‖δp‖Hl+1/K3

≤ ‖δλ‖Hl+1/K4
≤

C
∑
‖δuk‖Hl+2 C

∑
‖δuk‖Hl+2 C‖δu‖Hl+2 C

∑
‖δuk‖Hl+2

dim(kerA(1)
. ) 1 0 1 1

dim(kerA(2)
. ) 0 0 2 ≤ 1

Table 4.3.: Stabilites estimates for various linearized problems in elastography;
conditions for the reference state in Theorems 2, 4, 5, 6 to hold for
every point for at least one displacement field uk, 1 ≤ k ≤ r in an
imaging experiment in elastography; results of the kernel characteri-
zations in Theorems 3, 4, 5, 7.

Theorem 7. Consider Aλ, and suppose that the condition (4.88) with r = 1

holds. Then the estimate (4.89) holds with a one-dimensional kernel K4. The
subspace K4 is generated by the element

exp

∫ x

p
a(y)dy (4.90)

with fixed p ∈ Ω. Here, the vector field a(x) is uniquely determined by

a = − 1

∇ ·u
∇(∇ ·u), (4.91)

where u is a reference state for which (4.88) holds.

However, for the analysis of A(2)
λ , the technique of Corollary 4 is not applicable,

as the condition ess infΩ µ0 > 0 in [86, (2.2)] is not satisfied.

4.5. Discussion

1. The theorems show that the interior information u provided in elastog-
raphy makes the reconstruction of the biomechanical parameters µ, ρ, as
well as reconstruction of p, stable. While the operators Apµ and Apµρ are
non-elliptic for any number of measurements, we obtained criteria for the
ellipticity of the linearizations Ap, Aµ and Aρ of the quantitative elas-
tography problems defined in Section 4.4.1, see table 4.3. In the stability
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4.5. Discussion

estimates in (4.68), (4.87) and (4.86), one has the loss of only one derivative,
thus mild ill-posedness.

In the research for hybrid conductivity problems, ellipticity has been inves-
tigated theoretically and numerically. Ellipticity was found to yield optimal
stability estimates, avoid blurring effects, accurate reconstruction of edges,
and absence of propagation of singularities [18, 21, 68, 70, 71, 90].

Note that failure of ellipticity in our cases entails non-existence of a left reg-
ularizer non-existence of a left regularizer is equivalent to either dim ker(A) =

∞ or the range of A not being closed for the particular Sobolev spaces
involved [37, XI,Thm. 2.3]. This does not mean that necessarily, the lin-
earized problem will be unstable for all data in any function space. For
example, consider the case of Corollary 2: at a point x, there might be just
one direction ξ for which ellipticity does not hold. Then one can form the
conjecture that reconstruction can still be stable if there is no edge along
this direction (see the related discussion in [71, 6(ii)]). We plan to address
this in future work.

2. The ellipticity conditions for Aλ and Aρ seem to be natural. Concerning λ,
literature actually often assumes the incompressibility condition ∇ ·u = 0

on the whole of Ω [11, 25, 81, 111]. In this case, of course, the measurement
data are not dependent on λ, so this parameter cannot be reconstructed
then. – But in the compressible case, where ∇ ·u 6= 0 on the whole of Ω,
there still might be single points x at which ∇ ·u(x) = 0. Notice that, as
stated in Remark 1, the ellipticity analysis along the lines of this article
then entails that at such points x, ellipticity is lost and every direction is a
characteristic. – Concerning the particular data one has, it might then be
better to reconstruct the pressure p = λ∇ ·u, with the operator Ap being
always elliptic.

Similarly for ρ: If utt = 0 on the whole of Ω, the parameter ρ does not
appear in the model, so it cannot be reconstructed from the measurements.
If, on the other hand, utt(x) = 0 only for particular points x, the analy-
sis says that ellipticity is lost at these points x, and every direction is a
characteristic for Aρ there.

3. The ellipticity condition for reconstruction of µ turned out to be the non-
singular strain condition in (4.42) resp. (4.67); this condition is a gen-
eralization of the condition (4.46), whose relevance for the inversion has
been proposed and discussed in [20, 3.3]. – Apart from this characteriza-
tion, points of singular strain have been found in experiments, namely at
the intersection of nodal lines or surfaces in early experiments of elastog-
raphy using eigenmodes (see [107, 108, 128]). Empirically, it was observed
that these patterns could be avoided by choosing multi-frequency excitation
functions F [108].
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4. Stability in the linearized problem of quantitative elastography

4.6. Conclusion

We have applied a general method of linear PDE to linearized problems in quan-
titative elastography in R3, with interior data given. We analyzed ellipticity
conditions of the PDE problem augmented with the interior data. We deduced
simple criteria for the stability of the linearization. This analysis revealed non-
ellipticity for the joint reconstruction of all parameters, but stable reconstruction
of the shear modulus µ and the hydrostatic pressure p = λ∇ ·u. For the recon-
struction of µ and ρ, the kernel in the linearization was shown to be trivial for
choice of two measurements. The results give a mathematical explanation which
biomechanical parameters can be stably reconstructed from interior measurement
data u.
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4.7. Technical lemmas

We give here the proof of two topological lemmas which we use in the determi-
nation of the kernel in Theorem 3.

Lemma 1. Let A ⊂ Ω be open, and let p ∈ A. Let V be the connected component
of p in the topology of A ⊂ Ω. Then V is open in Ω.

Proof. Let x ∈ V ⊂ A be an arbitrary point in V . As x ∈ A and A is open, there
exists an ε > 0 such that

U1 := {z ∈ Ω : |x− z| < ε} ⊂ A.

Observe that the set U1 is connected and x ∈ V ∩ U1. From [92, Thm.23.3], it
then follows that V ∪ U1 ⊂ A is a connected set.
Among all subsets of A which are connected and contain p, the component V

is maximal. Therefore p ∈ V ∪U1 = V , or equivalently U1 ⊂ V . This shows that
V is open in Ω.

Lemma 2. Let A  Ω ⊂ Rn be open and bounded, and let p ∈ A. Let V be the
connected component of p in the topology of A ⊂ Ω. Let ∂V be the boundary of
V in the topology of Ω. Then there exists a point

q ∈ ∂V \ A.

60



4.7. Technical lemmas

Proof. We use Lemma 1 and prove the statement in two steps: first, we find a
point q ∈ ∂V \ V ; second, we show that q 6∈ A.

Claim 1: There exists a point q ∈ ∂V \ V .
We have that V ⊂ A  Ω. Therefore, there exists an element

y ∈ Ω \ V. (4.92)

Consider the mapping
f : V → R

v 7→ |y − v|.

Observe that V ⊂ Ω is closed and bounded, hence a compact set; observe also
that f is continuous. Therefore, a minimum exists, that is:

∃ q ∈ V : |y − q| = min
v∈V
{|y − v|}. (4.93)

We now show that, actually, the point q ∈ V = V ∪ ∂V is not contained in V .
Once this is shown, Claim 1 is proven.
Assume, on the contrary, that q ∈ V . According to Lemma 1, we then would

have an ε, such that
U2 := {z : |q− z| < ε} ⊂ V.

Without loss of generality, we can assume ε < 2. Now, using the element y from
(4.92), define the point

w := q +
ε

2
(y − q), w ∈ U2.

Then calculate

|y −w| = |y − q− ε

2
(y − q)| = |(y − q)(1− ε

2
)|

≤ |y − q| (1− ε

2
)︸ ︷︷ ︸

< 1

< |y − q|.

This would contradict (4.93). – Therefore, q 6∈ V .

Claim 2: The point q in (4.93) does not belong to A.
We prove this claim indirectly. Assume that

q ∈ A. (4.94)

Recall that, according to Claim 1, q ∈ ∂V , where ∂V is the boundary of V in Ω.
Hence there exists a sequence vn ∈ V with vn → q in the topology of Ω.
We assert that

vn → q in the topology of A. (4.95)
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4. Stability in the linearized problem of quantitative elastography

To see this, choose an open set U3 ⊂ A with q ∈ U3. Because A is open in Ω, U3

is open in Ω as well. Now the elements vn converge to q in Ω; therefore, there
exists an N , such that for all n ≥ N : vn ∈ U3; hence we have (4.95).
The set V , which is the connected component of the point p, is closed in

the topology of A [92, Thm.23.4]. But a closed set contains all its limit points.
Therefore, with (4.95), we would have that the limit of the sequence vn ∈ V lies
in V , so q ∈ V . But this is a contradiction to Claim 1. – Therefore, contrary to
(4.94), we have q 6∈ A.
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Abstract:

Iterative algorithms are widely employed in quantitative elastog-
raphy. However, in most cases they are used without a detailed
convergence analysis. Such an analysis is the scope of this paper.
In particular, in this paper we analyze Tikhonov regularization
and the Levenberg-Marquardt iteration method, respectively. A
convergence analysis for Tikhonov regularization is obtained from
the geometric theory of Chavent and Kunisch, which provides suf-
ficient conditions for global optimization in a neighborhood of the
solution in terms of the curvature of the forward problem. The
convergence analysis for the Levenberg-Marquardt iteration relies
on the tangential cone condition. We apply the theory for both
methods for quasi-static elastography. Numerical experiments are
provided.
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5.1. Introduction

5.1. Introduction

Elastography is a medical imaging technology; its current applications range
from detection of cancer in the breast and in the prostate, liver cirrhosis and
characterization of artherosclerotic plaque in hardened coronary vessels [7, 30, 40,
106, 132, 134, 137]. Medical elastography utilizes the fact that the health state
is reflected by elastic properties [4, 67]. The most important elastic property
for medical diagnosis is the shear modulus µ. The contrast of healthy versus
malignant tissue can change up to a factor of 4 [116].
Besides medical elastography, imaging elastic properties is important in non-

destructive testing, such as the detection of cracks and inclusions, and advanced
applications, such as imaging of nano-particles [10, 32].
In this work, we restrict the focus to elastography as it is used in medicine; this

problem has a peculiar structure, as interior information is used, as explained in
the following:
Medical elastography is performed in combination with various established

imaging techniques, such as ultrasound imaging [75, 103], MRI [81, 93] or OCT
[94, 127]. The measurement principle is this:

1. record data with the ground modality (e.g., US, MRI or OCT);

2. perturb the tissue mechanically, and

3. record data of the perturbed tissue again.

Qualitative elastography (see references just cited) then provides interior data of
the displacement u|Ω of the tissue on the imaging domain Ω. According to the
specific excitation used, u can be space or space-time-dependent. In this arti-
cle, we consider the quasi-static elastography experiment, using space-depencent
u(x). – Using different mechanical excitations (e.g., pushing from different di-
rections), several experiments can be performed, and a family of interior data
ui|Ω, 1 ≤ i ≤ k are collected. Quantitative elastography then determines elastic
parameters from ui|Ω [40].
To recover the material parameters, an inverse problem based on an elasticity

model has to be solved [9, 40]. Various models based on linear elasticity, vis-
coelasticity or hyperelasticity have been considered for elastography [40]. Given
the displacement u, the mathematical problems in quantitative elastography are
the recovery of parameters such as the Lamé parameter λ, the shear modulus µ,
the density ρ, or recovery of the shear wave speed

√
µ
ρ [24, 40]. These problems

are non-linear inverse problems.
Numerical inversion schemes for all kind of experimental varieties of elastogra-

phy (see, e.g., [11, 54, 83, 84, 85] and the reviews in [40, 124]) have been devel-
oped. The proposed algorithms are either direct algorithms, using reconstruction
formulae, or iterative algorithms.
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5. Convergent regularization methods for quantitative elastography

For the simplest models in quantitative elastography, mathematical results
have been obtained also. Uniqueness results, for example have been obtained
in [20, 25, 63, 87, 114]. For particular algorithms, stability and convergence has
been treated. E.g., [20] analyzed an algorithm to recover two material parameters
using ODE-based and variational tools. In [8], the problem of reconstructing
one parameter µ was studied and Lipschitz estimates for the nonlinear problem
are obtained in a quasi-static incompressible setting. This was used to show
convergence of the Landweber iteration.

In the paper [136], we analyzed several models in the framework of [18, 126]
and studied the ellipticity properties of the linearized problem ui → µ. Using
two static measurements u1,u2, injectivity and stability results for the linearized
reconstruction problem have been obtained.

In this paper, we apply those ellipticity results to study the nonlinear recon-
struction problem of µ in a quasi-static incompressible model. In particular,
we apply the theory for an analysis of the Tikhonov regularization and for the
Levenberg-Marquardt iteration for recovery of µ.

The Tikhonov regularization technique is the most popular regularization tech-
nique. For linear inverse problems, it is mathematically well understood, and
well-posedness and convergence of the method is a standard result[44]. For non-
linear problems, the problem has to be studied separately.

We employ here the geometric theory of [34, 35] together with [136] to obtain
well-posedness of Tikhonov regularization for recovery of µ as well as a conver-
gence analysis.

The Levenberg-Marquardt iteration, on the other hand, is a quasi-Newton
method for iterative regularization of inverse problems [64]. A convergence theory
is provided in [59] (see also [64]), and that analysis hinges on the on the tangential
cone condition.

Inspired by [23], we use the ellipticity analysis in [136] to derive the tangen-
tial cone condition. By this, we obtain a convergence result of the Levenberg-
Marquardt iteration to recover µ.

The structure of the paper is as follows: in Section 5.2, we review the elas-
ticity model which we are using. In Section 5.3, we review the results on the
linearized problem and the implications of the implicit function theorem. The
main results are contained in the next two sections: In Section 5.4, the geometric
theory is exposed, and applied to Tikhonov regularization. In Section 5.5, the
convergence analysis of the Levenberg-Marquardt iteration is treated, and we
give a discussion of the results. In Section 5.6, we give numerical experiments
demonstrating the inversion procedure, reconstructing the shear modulus from
two internal measurements. The appendix contains technical results.
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5.2. Model for quantitative elastography for
incompressible media

In [136] we investigated mathematical formulations of quantitative elastography;
we studied the linearization of several imaging models and analyzed their ellip-
ticity properties. For some of the models, we could derive stability estimates and
also injectivity. One of these results concerned the case of incompressible media
and the reconstruction of a single parameter, the shear modulus µ. We therefore
investigate convergence issues for the corresponding nonlinear problem.
We model the response of a linear elastic and isotropic incompressible material

with the shear modulus µ and to (quasi-) static forces f1, f2:

∇ · (µ ε(ui)) = fi, i = 1, 2 (5.1)

ui|∂Ω = gi, i = 1, 2. (5.2)

Here, u is the elastic displacement of the material, and ε(u) = 1
2(∇u +∇u>).

As outlined in the introduction, in quasi-static elastography, the displacement
field u is estimated by a comparison of imaging data before and after mechan-
ical compression. The recovery the shear modulus µ from u is the problem of
quantitative elastography.
For inversion, we assume that gi (on ∂Ω) and fi (on Ω) are determined by the

experiment. Then we define the nonlinear mapping

ϕ : µ 7→ (u1,u2). (5.3)

The inverse problem is to recover µ from knowledge of (u1,u2).
Let Ω be a bounded, domain with smooth boundary in Rn, and let f = (f1, f2)

be in (H l(Ω))2. We have (see appendix 5.8.1) that this is a continuous mapping
in the following spaces:

E := H l+1(Ω) → F := (H l+2(Ω))n. (5.4)

Here, l is chosen such that l > n
2 . Then, according to [1, Thm.5.23], one has that

H l(Ω) is a Banach algebra, which will be needed later.
We will consider the mapping for a defined subset C ⊂ E:

ϕ : C → F, (5.5)

where the subset C consists of bounded parameters:

C = {µ ∈ H l+1(Ω) ∪ L∞(Ω) : 0 < a ≤ ‖µ‖l+1 ≤ b <∞,

0 < c ≤ ess inf(µ) ≤ ess sup(µ) ≤ d <∞} (5.6)

Note that, as in [18, 23], we use the Sobolev setting (5.4) for the theoretical
analysis. For the actual inversion, we compose (5.4) with the embedding i : F =

(H l+1(Ω))n ↪→ (L2(Ω))n.

67



5. Convergent regularization methods for quantitative elastography

5.3. Stability of the linearization and implications of
the implicit function theorem

We recall the setting and results from the theory [136] on the linearized problem
in quantitative elastography.
Consider a reference state µ with two measurements u1,u2 as above. We

calculate for δµ ∈ E = H l+1(Ω) the linearization with respect to µ, denoted by
δui = δui[µ](δµ). (Dependence of δui from µ or δµ is dropped when they are
clear from the context.) As seen from [136, Table 1], this quantity is characterized
by the following equations:

∇ · (µ ε(δui)) = −∇ · (δµ ε(ui)), on Ω, i = 1, 2 (5.7)

δui|∂Ω = 0 i = 1, 2. (5.8)

Fréchet differentiability of ui = ui(µ) is shown in appendix 5.8.2. Therefore, the
forward map ϕ in (5.3), (5.5) is Fréchet differentiable with derivative

δϕ = (δu1, δu2) : E = H l+1 → F = (H l+2)n. (5.9)

If, for a reference state µ and fixed data u1 and u2, we have that the nonsingular
strain condition

∀x det(ε(ui(x))) 6= 0 for one i = 1, 2, (5.10)

holds, we can infer from [136, Thm.2+Cor.4] that for all δµ ∈ E, we have that

‖δµ‖Hl+1 ≤ Kµ‖(δu1, δu2)‖Hl+2 , (5.11)

holds. This, together with boundedness of δϕ = (δu1, δu2) implies that δϕ is a
Banach space isomorphism between E = H l+1(Ω) and F = (H l+2(Ω))3.
The constant Kµ in (5.11) comes from a regularity estimate in [126], which

uses the functional analytic method of the proof in [5], and it does not depend on
δµ. We also assume the dependence of K from µ continuous, at least for bounded
parameters. Given the regularity results in [51, Ch.8], it can be expected that it
is independent of µ, but only depends on the bounds a and b in (5.6).

5.3.1. General approach: implicit function theorem

We now exploit the stability and injectivity results of [136] with the implicit
function theorem.

Implicit function theorem for Banach spaces

The implicit function theorem allows to deduce local invertability of the nonlinear
operator from continuous and invertible linearizations of a nonlinear operator in
a neighborhood of a point. The precise formulation can for instance be found in
[73]:
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Theorem 8. Let E, F be Banach spaces, C ⊂ E an open subset and ϕ : C → F

be a differentiable mapping. Let δϕ : E → F be its Fréchet derivative corre-
sponding to a variable µ, and let δϕ be continuous as well as a Banach space
isomorphism between E and F at a particular point µ0 (i.e., continuously invert-
ible there). Then the mapping ϕ can be uniquely and stably inverted locally with
respect to µ.

The application of the implicit function theorem

We now consider the forward map ϕ. Suppose that we have a reference state
µ ∈ C, and corresponding measurements ϕ(µ) = (u1,u2) given, and that (5.10)
holds for all ϕ(µ) in a neighborhood V ⊂ C.
As mentioned in (5.11), we have shown in [136] that ‖δµ‖l+1 ≤ K‖(δu1, δu2)‖l+2.

Applying additionally Theorem 14 in Appendix 5.8.1 yields the desired inequality
for Banach space isomorphism,

∃C ∈ ∀δµ ∈ H l+1(Ω) :
1

C
‖δµ‖Hl+1 ≤ ‖(δu1, δu2)‖Hl+2 ≤ C‖δµ‖Hl+1 .

We conclude that due to the implicit function theorem, there exist neighborhoods
U ⊂ H l+1(Ω), V ⊂ (H l+2(Ω))6 and a unique solution function g (being also
continuously differentiable)

g : V → U

such that V(µ,u1,u2) = 0 for (u1,u2) ∈ V precisely when µ = g(u1,u2).
Therefore, we get:

Theorem 9. For two measurements satisfying (5.10), the elasticity problem
ϕ(µ) = (u1,u2) is locally stably invertible in a neighborhood V around µ.

Remark 4. Following the proof of the implicit function theorem, one could infer
bounds on the neighborhood V . The implicit function theorem, though, can only
yield a statement for values (u1,u2) in the range of ϕ (see also [34, p.11] for
this discussion). In practice, one is confronted with noisy data (uδ1,u

δ
2) outside

the range, and in all methods of quantitative elastography, regularization has
been necessary to deal with the problem of measurement noise [40]. We there-
fore do not develop the implicit function approach further. Given the need for
regularization in the actual solution of the problem, we consider two methods
based on least-squares minimization: One is the approach for Tikhonov regular-
ization, using the theory [34]. This is the subject of Section 5.4. The other is the
Levenberg-Marquardt regularization, using the tangential cone condition. This
is treated in Section 5.5.
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5. Convergent regularization methods for quantitative elastography

5.4. Convergence for Tikhonov regularization:
Geometric theory

In this section, we develop the tools of the geometric theory [34, 35]. We first
give the quantities needed in the theory. Then we give the conditions the theory
and its statements. We treat the application on the elasticity problem using
the theory [136] in the spaces ϕ : E → F in (5.4). In actual experiments,
the measured data will lie in L2. For the numerical realization, therefore, this
mapping will be combined with the embedding F ↪→ L2 in Section 5.6.

Specification of auxiliary quantities for the geometric theory

For given µ0, µ1 ∈ E, we consider the one-dimensional path

t 7→ P(t) := ϕ(µ0 + t(µ1 − µ0)), (5.12)

together with its derivatives P′(t) := V(t) and P′′(t) := A(t).

Well-posedness according to geometric theory

First some definitions for the parameter set C: The diameter of C:

diamC := sup
x,y∈C

‖x− y‖E (5.13)

and the radius:
radx0C := sup

x∈C
‖x− x0‖E . (5.14)

We now investigate regularization of the least squares problem for the forward
problem in (5.5). The essential conditions in the geometric theory [34, 35] are
that there exist numbers α,R ∈ R such that for all µ0, µ1 ∈ C and for all t ∈ R,
we have

‖V(t)‖F ≤ α‖µ1 − µ0‖E (5.15)

‖A(t)‖F ≤
1

R
‖V(t)‖2F . (5.16)

Once this is assured, one additionally scales the diameter of the set C in such
that one has

α diamC ≤ πR. (5.17)

This condition can be fulfilled by providing more apriori information on the
solution µ, i.e., tighter bounds on the allowed parameters in the minimization in
(5.6).

Theorem 10. Let conditions (5.15)-(5.17) be satisfied. Take ϕ0 as attainable
measurement datum, and µ0 an apriori choice for the recovery of the material
parameter. Let µ† be a minimal-norm solution:

µ† = argminE{‖µ− µ0‖E : ϕ(µ) = ϕ0}
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5.4. Convergence for Tikhonov regularization: Geometric theory

Then there exists a neighborhood W of ϕ0, such that for all ϕR ∈ W , the
Tikhonov regularization

µRγ := argmin
µ∈C

‖ϕ(µ)−ϕR‖2F + γ‖µ− µ0‖2E (5.18)

is well-posed for sufficiently small γ → 0. In particular:

• There exists a solution µRγ ∈ C ⊂ E in (5.18).

• The solution of (5.18) is unique.

• There is only one extremal point in C for the functional (5.18).

Moreover, for ϕ with injective linearization δϕ and for a sequence R/γ → 0, one
has the convergence property

µRγ → µ† for γ → 0. (5.19)

With R as in (5.16), the neighborhoodW can be chosen as {ϕR : ‖ϕR−ϕ0‖ < R}.

For a linear mapping ϕ, (5.18) would be well-posed for every u [44]. The theo-
rem essentially gives conditions (5.15), (5.16) on the nonlinearity which guarantee
that the Tikhonov functional still posesses almost the same-well-posedness prop-
erties as in the linear case. 1

For those ϕ which lie outside the neighborhoodW , one has a minimum amount
of regularization which one should apply [34, Proposition 5.1.16]:

Proposition 5. Let A in (5.12) satisfy ‖A(t)‖F ≤ β‖µ1 − µ0‖2E. Then there
exists a minimum

γmin := β max

{
radµ0C,

2

π
diamC

}
(5.20)

with diam and rad as in (5.13), (5.14) such that the Tikhonov functional (5.18)
is well-posed for γ ≥ γmin on the neighborhood {ϕRγ ∈ C : ‖ϕRγ − ϕ0‖ < dγ},
with dγ = γ

√
γ2

β2 − rad2
µ0C.

Together, Theorem 10 and Proposition 5 imply that the problem (5.18) is a
well-posed and convergent regularization method for ϕ and γ ∈ (0, γ′]∪[γmin,∞).
For a sufficiently high level of regularization, thus, the measurement noise can be
successfully compensated by the Tikhonov regularization. For sufficiently small
levels of measurement noise, the Tikhonov regularization gives a result arbitrarily
close to the minimal-norm solution µ†.

1 The details of the proof of Theorem 10 can be found in [35], or in [34], Theorem 5.15(1-2);
the condition (5.55) in [34] follows for injective δϕ from Def. 4.3.1, Lemma 5.1.12 and
Lemma 5.1.13.
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5. Convergent regularization methods for quantitative elastography

The velocity and acceleration in elasticity

Recall the quantities P(t), V(t) and A(t) which are defined in (5.12).

Lemma 3. a) In the case of our model (5.1), the functions P(t) = (P1(t),P2(t)),
V(t) = (V1(t),V2(t)) and A(t) = (A1(t),A2(t)) are characterized by the follow-
ing equations:

∇ ·
[
(µ0 + t(µ1 − µ0)) ε(Pi(t))

]
= fi i = 1, 2 (5.21)

∇ ·
[
(µ0 + t(µ1 − µ0)) ε(Vi(t))

]
= −∇ ·

[
(µ1 − µ0) ε(Pi(t))

]
i = 1, 2 (5.22)

∇ ·
[
(µ0 + t(µ1 − µ0)) ε(Ai(t))

]
= −2∇ ·

[
(µ1 − µ0) ε(Vi(t))

]
i = 1, 2, (5.23)

together with boundary conditions (5.2) for Pi(t) and homogeneous boundary con-
ditions for V(t) and A(t), respectively.
b) Furthermore, one has that Vi(t) is equal to the linearization δui[µ](δµ), which
is the solution of equation (5.7), with the reference state

µ = µ0 + t(µ1 − µ0) (5.24)

and the increment δµ = µ1 − µ0.

Proof. a) The proof is by combining the definition of ϕ in (5.12) and formal
differentiation of the model equation (5.1).
b) Let ui = ui(µ) satisfy the model (5.1) for given µ and f = fi. Using the
reference state µ in (5.24) and the increment δµ, we have u = Pi(t). Further-
more, with these choices, equation (5.7) reduces to equation (5.22). Therefore
δui[µ](δµ) = Vi(t).

Velocity and acceleration estimates in elasticity

Lemma 4. Let C ′ ⊂ C ⊂ H l+1(Ω) be compact with respect to the H l+1-topology,
where C is as defined in (5.6), satisfying

µ ∈ C ′ =⇒ ui in (5.1), (5.2) satisfy (5.10) (5.25)

The conditions (5.15) and (5.16) for V(t) and A(t) hold with F = (H l+2(Ω))2.

Remark 5. To show the qualitative condition on the displacements ui formally
is an open problem. An informal argumentation is given in [20, 3], see also [136].

Proof. Choose t, µ0, µ1 and take µ as in (5.24). For proving conditions (5.15) and
(5.16), we adopt the following procedure: We first apply the regularity theory in
5.8.1. Then, we apply the linear stability estimates in the article [136]. To get a
uniform estimate, the compactness of C is used.
Consider first the equations for P(t),V(t) and A(t) in Lemma 3. Consider

first equation (5.21). Upon application of the regularity theory 5.8.1, we obtain

‖P(t)‖l+2 ≤ Bµ‖f‖l ≤ Cµ‖f‖l+1.
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5.4. Convergence for Tikhonov regularization: Geometric theory

Let us now turn to equation (5.22). Using regularity theory again, we have

‖Vi(t)‖Hl+2 ≤ Dµ

∥∥∇ · [(µ1 − µ0) ε(Pi(t))
]∥∥
Hl . (5.26)

We invoke the Banach algebra property of H l(Ω), and therefore can estimate the
H l-norm of the right-hand side as follows:∥∥∇ · [(µ1 − µ0) ε(Pi(t))

]∥∥
Hl =

∥∥δµ ∇ · [ ε(Pi(t))
]

+∇δµ : ε(Pi(t))
∥∥
Hl

≤
∥∥δµ‖Hl ‖∇ ·

[
ε(Pi(t))

]
‖Hl + ‖∇δµ‖Hl ‖ε(Pi(t))

∥∥
Hl

≤ 4‖δµ‖Hl+1‖Pi(t)‖Hl+2 i = 1, 2.

(5.27)
Taking the inequalities (5.26) and (5.27) together, we obtain

‖Vi(t)‖Hl+2 ≤ Dµ‖δµ‖Hl+1‖Pi(t)‖Hl+2 for i = 1, 2.

Written with the vector notation, we have the estimate

‖V(t)‖E ≤ Dµ‖δµ‖Hl+1‖P(t)‖F . (5.28)

The same argument can be applied to A(t).
In summary, we obtain for each t:

‖P(t)‖F ≤ Bµ‖f‖l+1 (5.29)

‖V(t)‖F ≤ 4Dµ‖µ1 − µ0‖E ‖P(t)‖F (5.30)

‖A(t)‖F ≤ 4Gµ‖µ1 − µ0‖E ‖V(t)‖F . (5.31)

Insert now estimate (5.29) into (5.30). Assuming continuous dependence of the
constants on µ, we use compactness of C ′ and define

α := sup
µ∈C′

Bµ.

Using the maximal property of α, we obtain inequality (5.15).
Next we apply the stability theory for the linearized problem [136]. Consider

the reference state µ as defined in (5.24). Then we calculate for δµ ∈ H l+1(Ω)

the quantity δui = δuµi (δµ), which, by Lemma 3, equals Vi(t). Therefore the
estimate (5.11) reads:

‖µ1 − µ0‖l+1 ≤ Kµ‖V(t)‖l+2. (5.32)

Inserting this estimate into (5.32), we obtain that

‖A(t)‖l+2 ≤ GµKµ‖V(t)‖2l+2.

Then define

R :=
1

supµ∈C′ GµKµ
.

Then an inequality of form (5.16) results.
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Remark 6. 1. If we assume that the constants Bµ, Dµ and Gµ depend only on
the upper and lower bounds in (5.5), then the assumption of compactness
of C ′ in (5.25) be dropped.

2. The constant α can be interpreted as sensitivity of the problem, see [34,
Ch.4].

3. The constant R can be interpreted as lower bound of the radius of curvature
of any curve in the range ϕ(C ′). Elements in the neighborhood {ϕR :

‖ϕR − ϕ0‖ < R} can be uniquely and stably projected onto ϕ(C ′), which
mimicks the favourable projection properties of convex sets in the case of
linear problems [34, 4.1-4.2].

Application of geometric theory to elasticity problem

We now collect the results of Lemma 3 and Lemma 4, and consider that δϕ is
injective (see Section 5.3). Applying the geometric theory in Theorem 10, we get

Theorem 11. Let C ′ be the parameter set in Lemma 4, and let ϕR ∈ {ϕR ∈
C ′ : ‖ϕR −ϕ0‖ < R}. Consider the functional defined in (5.33),

µRγ := argmin
µ∈C

‖ϕ(µ)−ϕR‖2F + γ‖µ− µ0‖2E . (5.33)

Then this problem has a well-defined solution for sufficiently small γ, with ϕ
specified in equation (5.3) and E,F specified in the lemmas. One has that µRγ →
µ† for γ → 0 provided R/γ → 0.

As stated before, Problem (5.33) is also well-posed for sufficiently high val-
ues of γ. Proposition 5 assures that also for data which satisfy the condition
dist(ϕ(C ′),ϕR) ≥ R, one can choose a minimal γmin in (5.20) for an appropriate
regularization parameter. (Due to (5.15), (5.16), β in the proposition can be cho-
sen as α/R). This result actually justifies the use of choosing the regularization
parameter as high as to compensate for measurement noise.

5.5. The Levenberg Marquardt iteration and its
convergence properties

The Levenberg-Marquardt iteration (see [64]) is defined as

µk+1 − µk = (dϕ∗dϕ+ γkId)−1dϕ∗(ϕδ −ϕ(µ)). (5.34)

Here, γk > 0 are regularization parameters, and the linearization dϕ and the
adjoint dϕ∗ are as in (5.9) and (5.50). Let ϕ0 be attainable measurement data
in F = (H l+2(Ω))n. Then this iterative regularization method serves to approx-
imate a solution of the equation

ϕ(µδ) = ϕδ,
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where ϕδ are noisy measurement data in W = {ϕδ : ‖ϕδ −ϕ0‖ < δ}.
In the theoretical analysis, we prove a condition for convergence of this algo-

rithm due to [59] (see also [64, Section 4.1]). For better readability, we use (5.9)
and write δϕ = (δu1, δu2). We assume that we work in the subset C ′ described
in (5.25).

Proposition 6. Let R be the first order Taylor remainder of the forward mapping
ϕ in (5.3), i.e.,

R[µ](δµ) := ϕ(µ+ δµ)−ϕ(µ)− (δu1, δu2) (5.35)

Then there exists D′ ∈ R and a set V such that for all µ1, µ0 ∈ V ⊂ C ′, the
tangential cone condition

‖R[µ0](µ1 − µ0)‖F ≤ D′‖µ1 − µ0‖E ‖ϕ(µ1)−ϕ(µ0)‖F (5.36)

is satisfied.

Proof. The outline of the proof is as follows: We start with the estimates for
the Taylor remainder in (5.65). Then we use the linear stability theory (5.11) to
obtain a Lipschitz estimate for the nonlinear problem ϕ. From this the tangential
cone condition (5.36) follows.
The forward map with one measurement has been analyzed in the appendix

5.8.2, and Fréchet differentiability was obtained in (5.65). This result straight-
forwardly generalizes to differentiability of the forward map ϕ with two measure-
ments. Therefore, we have for R in (5.35)

∃C ∃W : ∀δµ ∈W ‖R[µ](δµ)‖F ≤ B‖δµ‖2E . (5.37)

Using the definition (5.35) and the reverse triangle inequality, we obtain

‖(δu1, δu2)‖F − ‖ϕ(µ+ δµ)−ϕ(µ)‖F ≤ B‖δµ‖2E ,

and hence we can estimate

‖(δu1, δu2)‖F −B‖δµ‖2E ≤ ‖ϕ(µ+ δµ)−ϕ(µ)‖F . (5.38)

We want to show that ‖δµ‖E is a lower bound for the left hand side of (5.38).
For this purpose, we now turn to the linear stability theory in (5.11): We choose
G ∈ R such that

G‖δµ‖E ≤ ‖(δu1, δu2)‖F . (5.39)

Let δµ be in the neighborhood W ∩BG
B
−D(µ), where D < G

B has been chosen.
For such δµ, one has that

‖δµ‖2E ≤ (
G

B
−D)‖δµ‖E or, equivalently,

B‖δµ‖2E ≤ G‖δµ‖E −BD‖δµ‖E .
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Employing (5.39), it then follows that

B‖δµ‖2E ≤ ‖(δu1, δu2)‖F −BD‖δµ‖E ,

and hence we have the estimate

BD‖δµ‖E ≤ ‖(δu1, δu2)‖F −B‖δµ‖2E . (5.40)

Taking now into account both estimates (5.38) and (5.40), we obtain for H = 1
BD

‖δµ‖E ≤ H‖ϕ(µ+ δµ)−ϕ(µ)‖F . (5.41)

This is the Lipschitz continuity for the nonlinear problem ϕ.
From the estimate on the Taylor remainder (5.37), it then follows from Lips-

chitz continuity (5.41) that for D′ = 1
D and µ ∈ E,

‖R[µ](δµ)‖F ≤ D′‖δµ‖E ‖ϕ(µ+ δµ)−ϕ(µ)‖F .

holds. Assuming continuous dependence of the constants on µ, we obtain the
existence of a neighborhood, such that (5.36) holds.

Hanke [59] suggests to choose the regularization parameters γk in (5.34) a
posteriori according to the discrepancy principle

‖ϕδ −ϕ(µk)− δϕ[µk](µk+1(γk)− µk)‖ = q‖ϕδ −ϕ(µk)‖ (5.42)

for some 0 < q < 1. With this choice of parameters, one has (see also [64, Thm.
4.2]) that the bounds on the Fréchet derivative in (5.8.2) and Proposition 6 imply

Theorem 12. Let 0 < q < 1 and let (5.1) be solvable in Bρ(µ0). The Levenberg
Marquardt iterates (5.34) with exact data ϕδ = ϕ, and a starting value satisfy-
ing ‖µ0 − µ†‖ < q/B and the regularization parameters γk determined as above
converge monotonically towards a solution of ϕ(µ) = ϕ as k →∞.

For noisy data with known noiselevel δ > 0, one has to early stop the iteration
in order not to accumulate artefacts. This, according to [59], can be done using
a discrepancy principle again as a stopping criterion, i.e., one stops the iteration
of µδk after step k∗, when for the residual one has

‖ϕδ −ϕ(µδk∗)‖ ≤ τδ (5.43)

for the first time. Then one has the following convergence property:

Theorem 13. Let the assumptions of Theorem 12 hold, and let ‖µ0 − µ†‖ be
sufficiently small. Then the discrepancy principle (5.43) with τ > 1/q terminates
the iteration after finitely many steps. If δ → 0, the iterates µδk∗ converge to a
solution of ϕ(µ) = ϕ.
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5.5.1. Remarks

• Choosing the set parameter set C ′ larger such that (5.10) is not satisfied at
certain points loses the ellipticity property shown in [136]. For particular
measurement data, this could potentially result in edges or singularities
propagating and artifact production, though there is research on what can
be retrieved when the ellipticity property is only lost at isolated points (see,
e.g. [21]).

• A Lipschitz estimate for the nonlinear problem in incompressible quasi-
static elastography, such as (5.41), has been provided by [8] as well in the
context of a similar approach using the overdetermined theory [126]. The
difference in that approach is that the overdetermined system is obtained
without linearization, but directly for µ. In that proof, it is assumed that
that the difference µ1 − µ0 (in our notation) lies in a finite-dimensional
kernel K, and that an ellipticity condition for n = 3 is that

∃C :

2∑
i=1

|ε((ui(x)) ∗ ξ × ξ| ≥ C|ξ|2,

using two measurements. For dimensions n = 2, apart from µ1 − µ0 ⊥ K,
one can have resort to a condition det(ε(u1)) 6= 0, which is (5.10) with
i = 1. Then, in [8], the resulting Lipschitz stability theorem in H4 is used
to obtain convergence of the Landweber iteration, employing [13].

Note that for every numerical realization of the problem, one cannot expect to
find parameters in E = H l+1(Ω) from data with measurements in L2 (which
would be ill-posed as l + 1 differentiations). We therefore embed F ↪→ L2. This
amounts to smoothing the data before it can enter the inversion process, and, in
the terminology of [34], is also referred as state-space regularization. This method
has been previously employed in other hybrid imaging problems for recovery of
the conductivity, see e.g. [23] and [34, 5.3.1].

5.6. Minimization process

5.6.1. Setting of minimization

In the result on (5.33) in section 5.4, we considered for ϕ : E → F with source
terms (f1, f2) and the measured displacements ϕδ = (uδ1,u

δ
2), which correspond

to true displacement fields (u1,u2) in (5.1) up to a noise level δ.
The general least-squares minimization problem aims to find the minimum

argmin
µ∈C

‖Ψ(µ)‖L2 , (5.44)

where
Ψ(µ) := ϕδ − i ◦ϕ(µ) ∈ L2, (5.45)
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with i : H l+2 ↪→ L2 is the embedding into L2.
If we add a regularization term to the functional in (5.44) , then Tikhonov

regularization results:

argmin
µ∈C

‖ϕ(µ)−ϕδ‖2L2 + γ‖µ− µ0‖2E . (5.46)

Then we can consider two measurements U = {(f1,u
δ
1), (f2,u

δ
2)} and the fol-

lowing operator Ψγ,U : E → L2 × E, mapping

Ψγ,U : µ 7→

(
(uδ1,u

δ
2)−ϕ(µ)

√
γ(µ− µ0)

)
.

Minimizing (5.46) is equivalent with minimizing the least-squares functional

argmin
µ∈C

‖Ψγ,U(µ)‖2L2×E (5.47)

We can either employ minimization algorithms with respect to (5.44), or to
the regularized version to minimize (5.47). This is true for a steepest descent
method, for a Landweber iteration, or a Levenberg Marquardt iteration.

5.6.2. Numerical inversions to recover shear modulus

We first explain the forward simulation and how the gradient is obtained.

Forward simulations

For the forward simulations of (5.1), we use the PS2 Finite Difference scheme
exposed in the article [138] on a regular grid. We therefore use (compare [138,
eq. (A2)]) the following discretization of the primitive terms in the model (5.1):

∂

∂x

(
µ(x)

∂

∂x
f(x)

)
≈ 1

h2
[µW fi−1 + µEfi+1 − (µW + µE)fi]

∂

∂y

(
µ(x)

∂

∂x
f(x, y)

)
≈ 1

4h2
[µNfi+1,j+1 − µNfi−1,j+1

+ (µN − µS)fi+1,j + (µS − µN )fi−1,j

− µSfi+1,j−1 + µSfi−1,j−1]

Here, µN = 1
2(µi,j + µi,j+1), and similar for the other parameters. Shown is the

discretization of the first equation in (5.1); the second equation is obtained by
similar means (see [138].
We used boundary data like in [20, (50)],

g1(x) = 1 + (x · e2)e1 + (x · e1)e2

g2(x) = 1 + (x · e1)e1 + (x · e2)e2

These satisfy the invertibility condition in [20], which is a specialization of (5.10)
(see also [136, 4.2])).
The reconstructions shown here use data from a 100x100 grid. The inversion

is carried out on a 90x90 grid in Figure 5.4 and on a 60x60 grid in Table 5.1.
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(a) Shear modulus (b) Profile at y = −0.01

Figure 5.1.: Original shear modulus

Data and noise

The original shear modulus is shown in Figure 5.1: The measurement data are
shown in Figure 5.2. Reconstructions from noise-free data are shown in (5.3). In
Figure 5.4, noisy data with 1% noise are used. In Table 5.1, different noiselevels
have been compared.

Inversions

Optimization

Landweber iterations for the Tikhonov functional (5.47) consist in the iteration
prescription

µk+1 = µk + κΨ∗(ϕδ −ϕ(µ))) (5.48)

with Ψ as in (5.45), which is actually the steepest descent method with constant
stepsize. We compare this algorithm to the Levenberg Marquardt iteration from
(5.34)

µk+1 = µk + (dϕ∗dϕ+ γkId)−1dϕ∗(ϕδ −ϕ(µ)) (5.49)

In Section 5.5, we described the results of [59], which use in their idealized setting
the discrepancy principles for the choice of the regularization parameter (5.42).
It would, of course, be possible to determine γk according to these a posteriori
choices. Though it is important for the theoretical analysis that such choices exist,
the numerical determination would involve considerable computational effort.
However, in practice, we got already satisfactory results with apriori parameters
chosen ad hoc.
A minimal amount of line search has been used in order to take steps with a

suitable order of magnitude. We note that according to the geometric theory, a
more sophisticated line search involving the curvature of the forward problem is
possible [34, 3.9].
To describe the implementation, note first that the adjoint (δϕ)∗ acting on z

is given by
(δϕ)∗ z = (δu1)∗ z + (δu2)∗ z, (5.50)
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(a) Displacement 1 in x (b) Displacement 1 in y

(c) Displacement 2 in x (d) Displacement 2 in y

Figure 5.2.: Data used for the reconstructions with two measurements

with (δuj)
∗ as in (5.66), i.e. (δu∗j ) z = i∗ (ε(uj) : ε(Vz)) for j = 1, 2.

Whereas theoretically, the state-space regularization F ↪→ L2 could be used in
our setting, the approximation i : H1 ↪→ L2 was used in [23] for a similar problem
and shown to be already responsible for most of the output of the state-space
regularization. In view of the runtime, if is therefore efficient to use H1-adjoints
as an approximation. Here, one takes the scalar product

〈x, y〉H1(Ω) = 〈x, y〉L2(Ω) + β〈∇x,∇y〉L2(Ω),

where β > 0 is a parameter controlling the smoothing in the embedding. As
shown in [23, 3.1], for w ∈ L2(Ω), the embedded (and smoothed) version i∗w is
given by the solution of the following Neumann problem on Ω:

(Id−β2∆)i∗w = w

∂νi
∗w = 0 on ∂Ω

(5.51)

We can therefore compare the results for L2 adjoints (which correspond to
i = Id, and the H1-adjoints (with i given above in (5.51)) in each inversion.
Let us mention at last, that for numerical reasons, we did not implement (5.49)

directly; like in [23], we used the sparse representation of the system. Precisely,
for the step µk+1 − µk =: τk, we rename dϕ∗dϕ τ := w1. Then calculating w1

with (5.50), there appear the quantities yj1 := δuj τk and yj2 := V(δuj τk) for
j = 1, 2.
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(a) Convergence history (b) Reconstructed µ (c) Profile of µ

Figure 5.3.: Levenberg Marquardt iteration in H1, β = 0.001, noise-free data,
convergence procedure and result with 2 meas.

(a) Convergence history (b) Reconstructed µ (c) Profile of µ

Figure 5.4.: Levenberg Marquardt iteration in H1, β = 0.08; data with 0.1%

Gaussian noise, convergence procedure and result with 2 meas.

Instead of (5.49), one solves in each step k of the Levenberg Marquardt itera-
tion the system

w1 + αkτk = δϕ∗(ϕδ −ϕ(µ)) (5.52)

w1 − β2∆w1 − w2 = 0, ∂νw1|∂Ω = 0 (5.53)

w2 −
∑
j

ε(uj) : ε(yj2) = 0 (5.54)

Eµy
1
j + Eτuj = 0, y1

j |∂Ω = 0, j = 1, 2 (5.55)

Eµy
2
j − y1

j = 0, y2
j |∂Ω = 0, j = 1, 2 (5.56)

The advantage of the system (5.52)-(5.56) is that it can be represented sparsely,
such that all computations could be done on a workstation computer.
The stopping criterion (5.43) was used with q = 0.46.

Results and discussion

Two different algorithms have been tested, the Landweber iteration in Table 5.1
and the Levenberg Marquardt iteration in Figure 5.3 and Figure 5.4.
For noise-free data, the Landweber iteration gives satisfactory results, but
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γ = 10−6 γ = 10−4 γ = 10−2

N = 0%

N = 1%

N = 5%

Table 5.1.: Landweber iteration in L2 with 2 meas.: Relation of noise level N
and regularization parameter γ

quicker convergence is obtained by the Levenberg Marquardt iteration. Edges
can, of course, be not preserved ideally with the state-space regularization.
For noisy data, the Landweber iteration can be rendered stable by increasing

the regularization parameter γ, but the fidelity of the reconstructions is not
marked. Though smoothing clearly smears out the edges in the reconstruction,
the Levenberg-Marquardt iteration preserves the information in the image better
than the Landweber iteration.
As seen from comparison of Figure 5.3 and Figure 5.4, additional measurement

noise can be coped with by increasing the value of β for the Levenberg-Marquardt
iteration.
Note that, in comparison to the reconstruction in [23], we have to use higher

values of β to compensate for the measurement noise. The reason of this seems
to lie in the smoothing properties of the forward operator ϕ. This is reflected
also in the different Sobolev orders of the stability estimates. Whereas the for-
ward problem in [23] preserves the Sobolev order and their stability analysis is
in H l(Ω)→ H l(Ω), the forward problem in elasticity adds one order of differen-
tiation, as we have ϕ : H l+1(Ω)→ (H l+2(Ω))2.
A parameter study using the Levenberg-Marquardt iteration is planned for

future work.

5.7. Conclusion

We treated the nonlinear problem of quantitative elastography and applied the
results on the ellipticity and stability of the linearized problem. This yielded
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two convergence analyses involving regularization: the Tikhonov regularization,
which was analyzed with help of the geometric theory of Chavent, and the
Levenberg-Marquardt iteration, which was analyzed with a result from Hanke.
We obtained convergence results, and illustrated them together with data smooth-
ing as an additional regularization strategy, to recover the shear modulus in com-
pressible elastography with 2 measurements.
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5.8. Technical results

5.8.1. Proof of a regularity result

Theorem 14. Consider on the domain Ω the equation ∇ · (µ ε(u)) = f with µ
in H l+1(Ω), 0 < a ≤ ‖µ‖l+1 < b and u = 0 on ∂Ω. Then we have that there
exists a constant C ∈ R such that

‖u‖Hl+2(Ω) ≤ C‖f‖Hl(Ω) (5.57)

for all possible f ∈ H l(Ω).

Proof. By results on elliptic boundary problems [51] (see also [86, Lemma 4.6]),
we have that the solution is unique. Using the result on elliptic operators in [126,
Thm.1], we obtain that the mapping u 7→ f is a Fredholm operator. Using the
uniqueness of the solution, we can invert this mapping. Using the open mapping
theorem [37, Ch.III, Thm. 12.1], we obtain continuity, which is equivalent to the
inequality in the statement.

Lemma 5. Let the conditions of Theorem 14 hold, and let µ lie additionally in
L∞(Ω), and let 0 < ess inf µ < ess supµ <∞. Then we have

‖u‖H1
0
≤ C‖f‖L2 ,

with the constant C depending only on n, Ω, and on the essential bounds on µ.

Proof. Choose the representation of ∇ · (µ ε(u)) = f in the weak form,

B[u,u] =

∫
Ω

u · f dx,

with B[u,v] =
∫

Ω ε(u) : ε(v)dx (cf., eg. [36, 86]).
Now apply the inequalities of Cauchy-Schwarz, and the inequality of Cauchy

with ε > 0, to get

B[u,u] ≤ ε
∫

Ω
|u|2dx +

1

4ε

∫
Ω
|f |2dx. (5.58)
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The termB[u,u] on the left-hand side can be estimated from below with C3‖u‖H1
0

[86, Lemma 3.6]. The constant C3 depends only on the essential supremum of µ.
The term ‖u‖2dx on the right-hand side can be estimated from above by

Poincaré’s inequality [86, Lemma 3.8], as there exists a constant CP , depending
only on Ω and n, such that ‖u‖L2 ≤ Cp‖u‖H1

0
.

Together, these estimates transform the inequality (5.58) to

C3‖u‖H1
0
≤ εCp‖u‖H1

0
+

1

4ε

∫
Ω
‖f‖2dx.

An elementary computation then yields that for ε small enough, one has

‖u‖H1
0
≤ 1

4ε(C3 − εCP )
‖f‖2L2 .

Therefore the statement of the lemma is shown.

Proposition 7. Let the conditions of Theorem 14 and Lemma 5 hold. Then the
estimate (5.57) is uniform in µ, i.e., there exists a C, such that for all possible
µ, the estimate is valid.

Proof. We use the principle of uniform boundedness [37, Ch.III, Thm. 14.1].
With this, we have to show that for fixed f ∈ H l(Ω), the operator Aµ : f → u

satisfies
sup
µ
‖Aµ(f)‖ = sup

µ
‖u‖ <∞.

Assume, on the contrary, that supµ ||u‖ = ∞. Then there exists a sequence
(µk)k ∈ C such that ‖u(µk)‖l+2 −→∞.
First observe that with Lemma 5 we have a uniform bound on ‖u(µk)‖H1 by

f . Therefore ‖u(µk)‖q+2 −→∞ is only possible with q ≥ 0.
Now choose from 0 ≤ q ≤ l the lowest q such that ‖u(µk)‖q+2 −→ ∞. Then

consider the sequence

f = ∇ · (µkε(u(µk))) = µk∇ · ε(u(µk)) + ε(uk) ∗ ∇µk.

As q ≤ l is minimal, the second term (which has only one derivative in u) is
bounded in Hq. In the first term, the factor µk is bounded from below, but the
second diverges. This is a contradiction to f ∈ Hq(Ω).
Therefore supµ ‖Aµ(f)‖ <∞ and we have a uniform estimate in µ.

5.8.2. Proof of Fréchet differentiability

We prove differentiability of the mapping µ 7→ u(µ) for one measurement in the
spaces E → F using regularity theory for elliptic systems with Sobolev coefficients
in [126], i.e. precisely, estimate (5.57). This can then be directly used to obtain
differentiability of ϕ in (5.9), e.g.
First define the operator Eµ : H l+2(Ω)×H l+2(Ω)→ H l(Ω)×H l(Ω):

Eµu := ∇ · (µ ε(u)) (5.59)
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With this definition, the equation for the linearization δui in (5.7) is written

Eµδu(δµ) = −Eδµu. (5.60)

The corresponding first order Taylor remainder for the displacement u is denoted

Re[µ](δµ) := u(µ+ δµ)− u(µ)− δu(δµ). (5.61)

As can be shown using (5.60), the Taylor remainder Re satisfies the equation

Eµ+δµRe[µ](δµ) = −Eδµδu(δµ) (5.62)

with homogeneous boundary data.

We now give two estimates for δu(δµ) and Re[µ](δµ), respectively: First, we
show that δu : δµ 7→ δu(δµ) is bounded:

‖δu(δµ)‖l+2 ≤ C‖∇ · (δµ ε(u))‖l
≤ C‖δµ‖l+1‖u‖l+2

(5.63)

In the inequalities in (5.63), the regularity result (5.57) is used, as well as the
Banach algebra property of H l (see [1, Thm.5.23]).
Secondly, we give an estimate for the Taylor remainder. Using (5.62), (5.57)

and the Banach algebra property of H l(Ω), we have that

‖Re[µ](δµ)‖l+2 ≤ C‖∇ · (δµ ε(δu))‖l
≤ C‖δµ‖l+1‖δu‖l+2

(5.64)

Together with (5.63), we then conclude that

‖Re[µ](δµ)‖Hl+2 ≤ C‖δµ‖2Hl+1 (5.65)

The estimates in (5.63) and (5.64) are uniform for bounded parameters µ. This
proves Fréchet differentiability of u.

5.8.3. Calculation of the adjoint operator

In this section, we calculate the adjoint of the linearized operator δu in (5.7)
resp. (5.60).
Note that δu : H l+1(Ω)→ H l+2(Ω)×H l+2(Ω).
We now claim that the adjoint of δu is

δu∗ : H l+2(Ω)×H l+2(Ω)→ H l+1(Ω)

δu∗ z = i∗ (ε(u) : ε(Vz))
(5.66)

with the linear operator V : H2 → H4 ⊃ H2 given by

EµVz = z on Ω

Vz = 0 on ∂Ω.
(5.67)

85



5. Convergent regularization methods for quantitative elastography

Here, i : H l+1 → L2 is the embedding operator, and the operation A : B denotes
the matrix scalar product: A : B =

∑
ij AijBij .

To see assertion (5.66), we calculate first the L2-adjoint, and then infer (5.66)
using

δu|F = δu|L2 ◦ i (5.68)

Take z ∈ L2 and calculate with the definitions (5.59), equation (5.60), the
definition (5.67) and partial integration in L2:

〈δu(δµ), z〉L2×L2

(5.67)
= 〈δu(δµ),EµVz〉L2×L2

(5.59)
= −

∫
Ω
µ ε(δu(δµ)) : ε(Vz) dx

(5.59)
= 〈Eµδu(δµ),Vz〉L2×L2

(5.60)
= − 〈Eδµu,Vz)〉L2×L2

=

∫
Ω
δµ ε(u) : ε(Vz) dx

= 〈δµ, ε(u) : ε(Vz)〉L2

This shows that the adjoint acts on z ∈ L2 as ε(u) : ε(Vz).
For the embedding: Using, (5.68) we have that

δu|F ∗ = i∗ ◦ δu|L2
∗,

and as claimed in (5.66), we have that the adjoint δu|F ∗ acts as i∗(ε(u) : ε(V z).
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Abstract:

Elastographic imaging is a widely used technique which can in
principle be implemented on top of every imaging modality. In
elastography, the specimen is exposed to a force causing local dis-
placements, and imaging is performed before and during the dis-
placement experiment. The computed mechanical displacements
can either directly be used for clinical diagnosis, or deliver a basis
for the deduction of material parameters. Photoacoustic imaging
is an emerging image modality, which exhibits functional and mor-
phological contrast. However, opposed to ultrasound imaging, for
instance, it is considered a modality which is not suited for elas-
tography, because it does not reveal speckle patterns. However,
this is somehow counter-intuitive, because photoacoustic imaging
makes available the whole frequency spectrum as opposed to sin-
gle frequency standard ultrasound imaging. In this work, we show
that in fact artificial speckle patterns can be introduced by us-
ing only a band-limited part of the measurement data. We also
show that after introduction of artificial speckle patterns, deforma-
tion estimation can be implemented more reliably in photoacoustic
imaging.

87



Texture generation for
photoacoustic elastography

Thomas Glatz1, Otmar Scherzer1,2 and Thomas Widlak1

1 Computational Science Center, University of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

2 RICAM, Austrian Academy of Sciences,
Altenberger Straße 69, 4040 Linz, Austria

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Elastographic imaging . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Photoacoustic imaging . . . . . . . . . . . . . . . . . . . . . 92

6.4 Photoacoustics with band-limited data . . . . . . . . . . . . 94

6.5 PAI elastography using texture information . . . . . . . . . . 96

6.6 Feasibility of texture generation: A regularization point of view 99

6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



6.1. Introduction

6.1. Introduction

Elastography is an imaging technology for visualization of biomechanical proper-
ties; among its current clinical applications are early detection of skin, breast and
prostate cancer, detection of liver cirrhosis, and characterization of artheroscle-
rotic plaque in vascular imaging (see for instance [7, 30, 40, 106, 132, 134, 137]).
Typically, elastography is implemented as an on top imaging method to various

existing imaging techniques, such as ultrasound imaging (see for instance [75,
103]), magnetic resonance imaging (see for instance [81, 93]) or optical coherence
tomography (see for instance [94, 127]). With all these techniques, it is possible
to visualize momentum images, from which mechanical displacements u can be
calculated, which forms the basis of clinical examinations.
For motion estimation in ultrasound elastography (USE), optical coherence

elastography (OCE) and in certain variants of magnetic resonance elastography
(MRE), common techniques are optical flow and motion tracking algorithms
[31, 49, 106, 109, 110, 121]; in USE and OCE, these are specifically referred
to as speckle tracking methods. Speckle tracking can only be realized if the imag-
ing data contains a high amount of correlated pattern information. This is the
predominant structure in ultrasound imaging.
Photoacoustic imaging is an emerging functional and morphological imaging

technology, which, for instance, is particularly suited for imaging of vascular
systems [27, 77, 100]. Opposed to ultrasound imaging, photoacoustic imaging
is considered to reveal few speckle patterns [78], which is considered an ad-
vantage for imaging but a disadvantage for elastography. Passive coupling of
photoacoustic imaging and elastography has been reported in [43], where the
contrasts of photoacoustic imaging, ultrasound, and US-elastography have been
fused (see also [106, sec.4.9]). Active coupling of photoacoustic and elastogra-
phy has not been reported so far. The reason for that is that motion estimation
and speckle tracking cannot be implemented reliably because of homogeneous
regions in monospectral photoacoustic imaging, which do not allow for detection
of microlocal displacements.
In this paper, we provide a mathematically founded way of introducing speckle

in photoacoustic imaging data. Theoretically, photoacoustic imaging is based on
the assumption that the whole frequency spectrum of the pressure can be mea-
sured by the detectors. Common ultrasound imaging, on the contrary, is operat-
ing with a fixed single frequency mode. This superficial comparison motivates us
to investigate, using [56, 57], how much effect band-limited measurements have
on the imaging process. In fact, as we show by mathematical consideration, the
use of band-limited data enforces speckling-like patterns in the reconstructions.
Our suggested approach then consists of carefully choosing a frequency band of
measurements and back-projecting these data. Because these data are speckled,
they can be used to support tracking and optical flow techniques for displacement
estimations.
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Our method of choice for detecting displacements in the photoacoustic imaging
data is the optical flow. In pure mathematical terms, the equation is well-defined
only for smooth imaging data. The high contrast of photoacoustic data causes a
violation of this smoothness assumption. To make the photoacoustic data appli-
cable for optical flow computations one can smooth the data prior to estimating
the optical flow field [33]. In this paper, we show that the proposed method
of texture generation is a convergent regularization method; compared to other
smoothing techniques, like for instance Gaussian filtering, it performs better on
high-contrast image data.
The structure of the article is as follows: We first review the principles of elas-

tography in Section 6.2. In Section 6.3 we review the principles of photoacoustic
imaging and in Section 6.4, we treat the case of band-limited data in photoacous-
tics. Then, in Section 6.5, we describe the methods to create texture patterns
in photoacoustic imaging and use them for motion estimation for photoacous-
tic elastography. Section 6.6 provides a regularization point of view on texture
generation: Anticipating the necessity of smoothing high contrast image data
before optical flow processing, we show that smooth imaging data is in fact very
well approximated by the proposed texture generation process. in Section 6.7,
we show the results of imaging experiments. The paper ends with a discussion
(Section 6.8).

6.2. Elastographic imaging

In this section we explain the basic principles of elastography. In theory, elastog-
raphy can be implemented on top of any imaging technique. Below, we review
mathematical models which are used for qualitative elastography.

6.2.1. Experiments and measurement principle

According to [40], elastography consists of the following consecutive steps:

1. The specimen is exposed to a mechanical source. Imaging is performed
before and during source exposition.

2. Qualitative elastography: From the images the tissue displacement u is
determined.

3. Quantitative elastography: Mechanical properties are computed from
the displacement u.

In the literature there have been documented various ways to perturb the tissue,
such as quasi-static, transient and time-harmonic excitation.
In this paper we focus on qualitative elastography in the quasi-static case,

which is reviewed below.
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6.2.2. Motion estimation in quasi-static qualitative elastography

Although it is theoretically possible to perform quantitative imaging all at once,
in practice, qualitative imaging is performed beforehand. Depending on the used
modalities different models are used for qualitative elastography (see for instance
[106]):
We start from images f(x, t), which are recorded during the mechanical exci-

tation. These images can be B-scan data in US-imaging, MRI magnitude images,
OCT images, or in principle, images from any modality [106, 133].
In a quasi-static experiment, there are two images: before and after the me-

chanical excitation from the exterior. These images we denote as f1(x) = f(x, t1)

and f2(x) = f(x, t2).
In the following, we derive the model for the continuous case, but later we

specialize to the quasi-static case.

The most general model of continuity mechanics is the relation

f(x(t), t) = ρ(t), (6.1)

describing the change of intensity in a particle transported along the trajectory
x(t). The displacement is then given by u = ẋ(t). Taking the derivative in (6.1)
and using ∂ρ

∂t + f∇ ·u = 0 [123], we obtain an equation for the displacement
vector field:

∇f ·u + ft = −f∇ ·u. (6.2)

In the practice of elastography, it is almost always assumed that the tissue is
incompressible, satisfying ∇ ·u = 0, as well as ρ(t) = const.
The common models in elastography therefore are based either on

f(x(t), t) = const. (6.3)

or on the linearization
∇f ·u + ft = 0 , (6.4)

which is also called the optical flow constraint.

A model such as (6.3) can serve as a basis for an image registration model to
recover (also larger) displacements u = ẋ(t) from f (see [89] for general methods
and for the special application [62] for detection of the movement of the heart,
e.g.). In general, these are computationally expensive.
An alternative to registration is block matching [31]. Additionally to (6.3),

one assumes here that the displacement is constant in defined regions; using a
target block, one compares the image patterns in subsequent frames by using a
correlation measure.
Alternatives are optical flow methods [139]. These methods are based on (6.4).

This is the method used and analysed in this article.
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We now consider the variant (6.4) in the quasi-static case. Here we are calcu-
lating the spatial dependent flow u(x) only by solving:

∇f1 ·u + (f2 − f1) = 0 . (6.5)

The equation is underdetermined with respect to u. Optical flow algorithms
are designed to approximate a minimal norm solution u† of (6.5). For instance,
the variational Horn-Schunck model [61], consisting in computing

u = argmin
v
‖∇f1 ·v + (f2 − f1)‖2L2(Ω) + λ

∫
Ω
|∇xv|2 dx , (6.6)

approximates (for λ→ 0) a minimizer of the constrained optimization problem:

∫
Ω
|∇xv|2 dx subject to ∇f1 ·v = f1 − f2 . (6.7)

6.2.3. The role of texture in motion estimation

In ultrasound imaging and optical coherence tomography, texture is provided
by patterns in the images referred to as speckle. These are correlated texture
patterns which provide a signature of the points. Block-matching-type algorithms
are therefore often called as speckle tracking algorithms [31, 105]. Sometimes,
any motion estimation in USE or OCE is comprehensively referred to as speckle
tracking [113, 139].
In MRI, it was observed that part of tissue motion is invisible in magnitude

images because of homogeneous regions. To overcome this limitation, artificial
tags have been introduced in the image [49, 110]. These make motion estimation
possible in regions where no intensity is initially present.
Artificial speckle or texture introduction is a frequently used technique for

deformation detection in material science. Here, often airbrush techniques are
being used as a pre-processing step to correlation techniques [74, 142].
In the next section, we review photoacoustic imaging. In Section 6.4 we demon-

strate that band-limitation of the measurement data creates a speckle-like texture
pattern in photoacoustic image data.

6.3. Photoacoustic imaging

Photoacoustic imaging (PAI) is among the most prominent coupled-physics tech-
niques [14]. It operates with laser excitation and records acoustic pressure, as
the coupled modality. We first review the imaging formation in PAI.
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6.3. Photoacoustic imaging

6.3.1. Mathematical modeling

Commonly, in Photoacoustics, the wave equation is used to describe the propa-
gation of the acoustic pressure p:

ptt −∆xp = Itf, in Rn × (0, T ],

p = 0, in Rn × (−∞, 0).
(6.8)

The function I models the laser excitation and is usually considered a time de-
pendent δ-distribution. The function f represents the capability of the medium
to transfer electromagnetic waves into pressure waves; f is material dependent
and is visualized in photoacoustic imaging.
Details of deduction of (6.8) from the Euler equations and the diffusion equa-

tion of thermodynamics can be found for instance in [118].
If we assume the excitation to be perfectly focused in time (that is I(t) = δ(t)),

equation (6.8) can be reformulated as a homogeneous initial value problem [118]

ptt −∆xp = 0, in Rn × (0,∞),

p(t = 0) = f, in Rn,

pt(t = 0) = 0, in Rn.

(6.9)

This (direct) problem is well-posed under suitable smoothness assumptions on
f (see, e.g., [45]). We denote by

Pf(x, t) = p(x, t), x ∈ Rn, t ∈ (0,∞) , (6.10)

the operator that maps the initial pressure f to the solution of (6.9).

Remark 7. Since we want to apply a convolution to our solution p, we have to
extend it to negative values of t in a way that the wave equation (6.9) is still
fulfilled. We distinguish the causal extension Pf = 0 for t < 0 (that we denote
again with the letter P), and the even extension

Pevenf(x, t) :=

{
Pf(x, t), t ≥ 0,

Pf(x,−t), t < 0.
(6.11)

6.3.2. Photoacoustic imaging as an inverse problem

In Photoacoustics, we assume the pressure to be measured on a surface Γ over
time. The inverse problem now consists of reconstructing the initial pressure f
in (6.9) from these data, ideally given as trace of the solution on Γ. For the sake
of simplicity of notation, we are denoting this operator by

Pf = p
∣∣
Γ×(0,∞) (6.12)

as well. Here, P is mapping f to the trace of the solution p of (6.9) at the surface
Γ. The Photoacoustic inverse problem consists in solving equation (6.12) for f .
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6. Texture generation for photoacoustic elastography

This problem obtains a unique solution, provided Γ is a so-called uniqueness
set (for a review over existing results see [69]). These uniqueness sets contain the
case of a closed measurement surface surrounding the photoacoustic source.
For some of the most important simple geometrical shapes of closed mani-

folds Γ, there exist analytical reconstruction formulae of series expansion and/or
filtered backprojection type (see again [69] and the references therein, for instance
[42, 46, 47, 48, 97, 98, 99, 104, 112]).
This paper focuses on the case where Γ is a sphere in R2 (circle) or R3. For

photoacoustic reconstruction, we make use of the explicit filtered backprojection
formulas established in [47, 48]. Since we will have to deal with initial sources
not necessarily of compact support, we remark that a result in [6] guarantees
injectivity of the photoacoustic problem provided certain integrability conditions
on the source hold. Particularly, the photoacoustic mapping is injective if and
only if the source is Lp-integrable on the entire space, where p ≤ 2n/(n− 1).

6.4. Photoacoustics with band-limited data

We create speckle patterns computationally from photoacoustic data using band-
limited measurements for back-projection and approximating the initial source
f . To be more precise, instead of measuring the exact trace of the solution of
(6.9) at Γ, we instead assume to measure the band-limited data m = φ ∗t p (see
Definition 3).
The mathematical background is an application of some results by Haltmeier

[56, Lmm. 3.1] (see also [57, 58]) to convolution kernels which do not necessarily
have compact support. Before we state the theorem, we define the Radon und
Fourier transform (based on [60, p.1 ff]):

Definition 1. The Radon transform Rϕ(θ, s) maps ϕ(x) to its integrals over
hyperplanes in Rn with distance s ∈ R to the origin and unit normal vector
θ ∈ Sn−1. Namely,

Rϕ(θ, s) =

∫
θ ·y=s

ϕ(y)dy. (6.13)

In the case n = 1, the Radon transform corresponds to the absolute value of the
function. In the case where ϕ is rotationally symmetric, the Radon transform
Rϕ is independent of θ. We can therefore write

Rϕ(θ, s) = φ(s) (6.14)

for a suitable, even function φ : R→ R.

Definition 2. The n-dimensional Fourier transform ϕ̂(κ) of ϕ is defined as

ϕ̂(κ) =
1

(2π)n/2

∫
Rn
ϕ(y)e−iy ·κdy . (6.15)
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6.4. Photoacoustics with band-limited data

If not stated differently, the Fourier transform of a time-dependent function
q(x, t) is with respect to the time variable, i.e.

q̂(x, κ) =
1√
2π

∫
R
q(x, t)e−itκdt .

Definition 3. The n-dimensional convolution f ∗x g is defined, as usual, by

f ∗x g(x) =

∫
Rn
f(y)g(x− y)dy , (6.16)

where f, g functions from Rn to R. The sub-index in ∗x thereby clarifies the
variable, in which the convolution is performed.

In a formal manner, the following theorem has been stated already by Halt-
meier [56]. However, there is a subtle difference to our work, which is that the
convolution function Ψ has compact support in [56, Lemma 3.1], which is not the
case here.

Theorem 15. Let p = Pf be a solution of (6.10) with initial pressure f ∈
H1(Rn), with compact support. Moreover, let Ψ ∈ Lp(Rn), for some p such that
1 ≤ p < n/(n− 1), be radially symmetric, i.e., Ψ(x) = ψ(|x|). Then

(P(Ψ ∗x f))(x, t) = (RΨ ∗t Pevenf)(x, t) , (6.17)

for all x ∈ Rn, t > 0.

Under the assumptions of the theorem the proof is analogous to the proof in
[56, Lemma 3.1]. It employs that the Radon transform, in an almost everywhere
sense, is injective on Lp-functions for 1 ≤ p < n/(n−1) [125]. Note, however, that
because of the non-compactness of the support of the function Ψ, the minimal
smoothness assumptions on the imaging data f and the convolution kernel are
not clarified so far, and are open to basic research.
For application of Theorem 15 to the measured, causal band-limited data, we

need to give a relation to the data even in time, as they appear in the theorem.
This relation is given in the following proposition:

Proposition 1. Let 1 ≤ p < n/(n − 1). Moreover, let Ψ ∈ Lp(Rn) be radially
symmetric. Then (see (6.14)) φ(s) := RΨ(θ, s) is even and independent of θ.
Moreover, let

m(x; t) = (φ ∗t Pf)(x; t) on Γ× (0,∞) .

Then,
meven(x, t) = (φ ∗t Pevenf)(x, t) on Γ× (0,∞) , (6.18)

where x ∈ Γ, t ∈ (0,∞) can be computed from the causal measurement data
m(x, t), via the Fourier relation

m̂even(x, κ) = 2Re (m̂(x, κ)) on Γ× (0,∞) .
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6. Texture generation for photoacoustic elastography

Figure 6.1.: Point source (left) and textured reconstruction (right)

Proof. Let p denote the solution of (6.9). Since p(x; t) is real-valued, it follows
that

p̂(x,−κ) = p̂(x, κ) ∀x ∈ Rn, κ ∈ R ,

and therefore

P̂evenf(x, κ) = 2 Re (p̂(x, κ)) ∀x ∈ Rn, κ ∈ R .

Thus, from (6.18) it follows that

m̂even(x, κ) = φ̂(κ)P̂evenf(x, κ)

= φ̂(κ) 2 Re
(
P̂f(x, κ)

)
= 2 Re

(
φ̂(κ) P̂f(x, κ)

)
= 2 Re (m̂(x, κ)) ∀x ∈ Γ, ∀κ ∈ R ,

where in the third equality we use that φ̂ is real-valued, since φ is a real-valued
and even function.

Proposition 1 gives a simple relation between convolved meven and measure-
ment data m. In fact Theorem 15 and Proposition 1 then show that

(P(Ψ ∗x f))(x, t) = (RΨ ∗t Pf)even(x, t) , (6.19)

which can be computed directly from the measurement data Pf .

6.5. PAI elastography using texture information

The results of Section 6.4 give the theoretical background on the influence of
band-limitation of the measurement data on the photoacoustic imaging. In the
following subsection we describe how to find pairs of filter functions φ and Ψ in
practice. Moreover, we give an example of a pair of oscillating functions, that we
use in what follows to create speckle-like patterns on photoacoustic images. The
rest of the paper treats the case of two spatial dimensions. Since the theoretical
considerations from Section 6.4 are valid in any spatial dimension, the application
to 3D images works in complete analogy to the two-dimensional case described
below.
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6.5. PAI elastography using texture information

6.5.1. Speckle generation in 2D Photoacoustics

We assume to measure the bandpass data

m = φ ∗t Pf ,

where

φ(t) =
2
√

2 cos(κ0t) sin(at)√
πt

, (6.20)

is the Fourier transform of the bandpass filter:

φ̂(x, κ) = χ[κmin,κmax](|κ|) . (6.21)

Here 2a = κmax−κmin is the bandwidth and κ0 = κmin+a is the center frequency
of the filter.
The results of Section 6.4 describe the equivalence relationship of the filter for

the measurement data in time and a resulting filter in space for the imaging data.
But since we actually want to compute this space filter explicitly, it is convenient
to make use of the so-called Fourier-slice theorem for the Radon transform [60,
p.4][125], that relates the Fourier transform of the Radon transform (in radial
direction) to the Fourier transform of the image (in all spatial dimensions).
The corresponding point-spread function Ψ is given by

Ψ(x) =
κmaxJ1 (κmax|x|)− κminJ1 (κmin|x|)√

2π|x|
, (6.22)

where J1 is the first-kind Bessel function of order 1. By using an asymptotic es-
timate of J1 for large arguments, it is easy to check that Ψ ∈ Lp(R2) iff p > 4/3,
which means that Ψ fulfils the integrability requirements demanded in Theo-
rem 15. This ensures that the result actually applies to the used filter.
Note that the function pair (6.20),(6.22) does not have compact support, so

that we really need the extension to Lp functions in Theorem 15.
Our suggested approach for texture generation then is this: We choose κmax

and κmin to determine the impulse response φ. Then we compute meven and solve
the photoacoustic inverse problem with data meven. Theorem 15 then ensures
that this yields the perturbed reconstruction

f ∗x Ψ . (6.23)

With the right choice of κmin and κmax, this is a natural candidate for a textured
variant of the photoacoustic data f .

In Figure 6.1, a point source and its photoacoustic reconstruction from band-
limited data (i.e., data convolved with the impulse response in (6.20)) are shown.
The oscillations introduced by the present band-limited photoacoustic reconstruc-
tion method introduce additional texture on the image.
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6. Texture generation for photoacoustic elastography

(a) no texture (b) κmin = 0 (c) κmin = 0.4

(d) κmin = 0.8 (e) κmin = 1.2 (f) κmin = 1.8

Figure 6.2.: The filling-in-effect of the bandpass limitation: homogeneous regions
are filled by the neighboring structures. Different versions computed
with κmax = 10, with varying κmin.

In Figure 6.2, a sample containing homogeneous regions is shown, together
with the effect of band-limitation for fixed κmax = 10, but varying values of κmin.
In this more complex sample, we see that the oscillations introduced by band-
limitation serve to fill in homogeneous regions of the sample, and the structure
of the edges is propagated locally around the shapes. This exhibits, particular
for larger values, a texture pattern in the image. The use of this texture in
estimating the optical flow between two photoacoustic images is investigated in
the following sections.

6.5.2. Principle of PAI elastography

In the previous subsection, we introduced a texture method for photoacoustic im-
ages. We now will study how motion estimation can be performed and amended
by adding texture to photoacoustic images.
We emphasize that the initial pressure f introduced in (6.9) in the photoacous-

tic forward problem is spatially varying and can either represent the image before
(i.e., f1) or after (f2) mechanical deformation as described in Section 6.2.2.
The main concept in the proposed method of photoacoustic elastography is to

perform the following steps in the first step in Section 6.2.1:

a) record a PAI image f1 using the texture-generating method

b) perturb the tissue using a mechanical source

c) record the perturbed configuration f2 using the texture-generation method

We will now estimate the displacement u as in the second step in Section 6.2.1.

98
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Remark 8. We emphasize that the convolution introduced in (6.23) commutes
with rigid deformations: From (6.16), we have

f ∗x Ψ(x) =

∫
Rn

Ψ(y)f(x− y)dy ,

hence

f ∗x Ψ(x− z) =

∫
Rn

Ψ(y)f(x− y − z)dy

= (f(x− z) ∗x Ψ)(x) ,

which implies commutation with translations.
For a rotation R : x 7→ Rx, we have

f ∗x Ψ(Rx) =

∫
Rn

Ψ(y)f(Rx− y)dy . (6.24)

On the other hand,

(f(Rx) ∗x Ψ)(x) =

∫
Rn

Ψ(y)f(Rx−Ry)dy

=

∫
Rn

Ψ(R−1z)f(Rx− z)dz .

Due to rotation invariance of Ψ, we have that Ψ(R−1y) = Ψ(y), therefore we
have the same result as on the right hand side of (6.24).
For any rigid motion, the texture created by our method behaves strictly as a

material characteristic advected with the vector field.
One might conjecture that for non-linear deformations u, the convolution does

not commute with forward transport along u. An example of the different vari-
ants is given in Figure 6.3 for simulated data and a non-linear vector field (later
employed in Experiment 2). This is shown for two values of the band-width,
κmin = 0.4 and κmin = 1.8

In the first picture, the image f is textured, and then transported. In the
second picture, the image f is transported, then textured. The third picture
shows the difference. In fact, for the deformations we used, this difference in the
optical flow is not significant. This is shown in the experiments of Section 6.7.

6.6. Feasibility of texture generation: A regularization
point of view

The Horn-Schunck method (6.6) is a special instance of Tikhonov regularization
[118, 3.1]. In this section, we show that adapting the Horn-Schunck method
to textured images introduced in Section 6.4, yields a convergent regularization
scheme in the sense of Theorem 16 below.
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6. Texture generation for photoacoustic elastography

(a) Band 0.4 DT (b) Band 0.4 TD (c) Band 0.4 Differ-
ence DT-TD

(d) Band 1.8 DT (e) Band 1.8 TD (f) Band 1.8 Differ-
ence DT-TD

Figure 6.3.: The difference of the order of deformation (D) and texturation (T),
with texture from κmin = 0.4 (first row) and κmin = 1.8 (second
row). See text for discussion.

Note first that the optical flow equation (6.4), (6.5) is only well-defined if the
image data f , f1 and f2, respectively, are smooth enough. This is typically not
the case in photoacoustic imaging, because the images have high contrast, or in
other words f1 and f2 can have jump interfaces. In order to make the smoothness
statement precise we have to formulate the optical flow equation in a function
space setting.

6.6.1. Optical flow equation in a function space setting

Our optical flow algorithm choice for elastography is the Horn-Schunck method
(6.6). To make sure that it is well-posed we have to make sure ensure that (6.5)
holds in an L2-setting, or in other words that the optical flow residual is an
element of L2(Ω) and that the flow is in H1

0 (Ω).
To further proceed we introduce the parameter 0 < ε < 1, and associate

κmax = 1/ε and κmin = ε .

Accordingly we define the parametric family of functions,

Ψε(x) =
1
εJ1

(
1
ε |x|

)
− εJ1 (ε|x|)

√
2π|x|

, (6.25)

and introduce the operators

F : H1
0 (Ω)→ L2(Ω), u 7→ ∇f1 ·u ,

Fε : H1
0 (Ω)→ L2(Ω), u 7→ ∇(f1 ∗Ψε) ·u .

(6.26)

100



6.6. Feasibility of texture generation: A regularization point of view

With these operators the quasi-static optical flow equation (6.5) can be rewritten
as

Fu = f1 − f2 . (6.27)

In contrast, if we base optical flow calculations on speckled data f ∗x Ψε, then
the according quasi-static optical flow equation (6.5) reads as follows:

Fεu = (f1 − f2) ∗x Ψε . (6.28)

In the following we prove that F and Fε are well-defined and continuous:

Lemma 1. Let f1 ∈ H2
0 (Ω). Then the operators F , Fε in (6.27), (6.28) are

well-defined and bounded.

Proof. Let a ∈ H1
0 (Ω).

Then, by using the Euclidean Cauchy-Schwarz inequality, continuity of the the
Sobolev-embedding from H1(Ω) into L4(Ω) and the Poincaré-Friedrichs inequal-
ity [2] it follows that:∫

Ω
|a ·u|2dx ≤

∫
Ω
|a|2|u|2 ≤

(∫
Ω
|a|4

∫
Ω
|u|4

)1/2

(6.29)

≤ C1‖a‖2H1(Ω)C2‖u‖2H1(Ω) ≤ C‖∇u‖2L2(Ω) . (6.30)

Thus for either choice a = ∇f1 and a = ∇f1 ∗x Ψε the continuity assertion
about F and Fε follows.

Moreover, in the following, we derive an estimate for the operator perturbation
‖F − Fε‖. Therefore, we use the following lemma:

Lemma 2. Let Ψε as defined in (6.25). Let f1, f2 ∈ H2
0 (Ω). Then the following

the following statements hold:

1. limε→0 ‖∇ (f1 − f1 ∗x Ψε) ‖2H1(Ω) = 0 .

2. The operator F − Fε is bounded, and the operator norm ‖F − Fε‖ goes to
zero, as ε → 0.

3. The L2-distance ‖fi − fi ∗x Ψε‖L2(Rn) = O(ε), with i = 1, 2 as ε → 0.

Proof. The function fi ∈ H2
0 (Ω), where i = 1, 2, is identified with the function

fi : R2 → R, which is vanishing outside of Ω. With this extension it follows that

‖∇ (f1 − f1 ∗x Ψε) ‖2H1(Ω) ≤ ‖∇ (f1 − f1 ∗x Ψε) ‖2H1(R2) .

In the following let us denote by Br a ball with radius r in R2. Then by using
the equivalence of the Sobolev norm to the Fourier representation [2, p. 252], it
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follows that

‖∇ (f1 − f1 ∗x Ψε) ‖2H1(R2)

≤C‖(1 + |ξ|)|ξ||f̂1|(1−Ψε)‖2L2(Rn)

≤C

∫
Bε

(1 + |ξ|2)|ξ|2|f̂1|2 +

∫
R2\B 1

ε

(1 + |ξ|2)|ξ|2|f̂1|2(1− Ψ̂ε)

 ,

(6.31)

by splitting the integral into an inner and outer part. Since we have Ψ̂ε ≡ 1 on
the annulus |ξ| ∈ (ε, 1

ε ), the integral vanishes in this area. Since f̂ ∈ L∞(R2)

(due to the absolute integrability of f), the integrand in the first term can be
bounded by C(1 + ε2)ε2. This implies that the first integral is of order ε4, as ε
goes to zero. That is,

‖∇ (f1 − f1 ∗x Ψε) ‖2H1(Ω)

≤ C
∫
R2\B 1

ε

(1 + |ξ|2)|ξ|2|f̂1|2(1− Ψ̂ε) +O(ε4) ,

as ε → 0. Due to the Lebesgue dominated convergence theorem and the as-
sumption that f ∈ H2(Rn), the remaining term converges to zero as well. This
shows the first assertion. Statement two then follows immediately from (6.29) by
choosing

a = ∇(f1 − f1 ∗x Ψε) .

To prove the last statement, we use Plancherel’s identity and the fact that fi ∈
H1

0 (Ω) to estimate

‖fi − fi ∗x Ψε‖2L2 = ‖f̂i − Ψ̂εf̂i‖2L2 =

∫
R2

|f̂i|2(1− Ψ̂ε)

=

∫
Bε
|f̂i|2 +

∫
R2\B 1

ε

|f̂i|2

≤
∫
Bε
|f̂i|2 +

1

(1 + 1/ε2)

∫
R2\B 1

ε

(1 + |ξ|2)|f̂i|2

(6.32)

Using the same argumentation as in (6.31), both terms are of order O(ε2) as
ε → 0, which finishes the proof.

Remark 9. In Lemma 2, we try to demand the minimal smoothness assumptions
on f1 necessary to guarantee the validity of statement 1. Note that, analogous to
the considerations in (6.32), we could employ higher smoothness of f to receive
a convergence rate estimate for ‖F − Fε‖.
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6.6.2. General regularization theory

In the following we review a classical result from regularization theory [91, Thm.11,
p. 21] (in a slightly simplified form). The referenced theorem says that Tikhonov
regularization with an operator perturbation is a convergent regularization pro-
cedure.
Let F : W → Y be a bounded operator between Hilbert spaces W and Y . For

y in the range of F a minimum-norm-solution w† satisfies

w† = argminW {‖w‖W : Fw = y} .

Theorem 16. Let F, Fε : W → Y be bounded linear operators between Hilbert
spaces W,Y with

‖F − Fε‖ → 0 . (6.33)

Moreover, let y ∈ R(F ) and yδ satisfy

‖y − yδ‖ → 0 . (6.34)

Let Tikhonov regularized solutions according to Fε be defined as

wδα,ε := argmin ‖Fεw − yδ‖2Y + α‖w‖2W . (6.35)

Then there exists a parameter choice α := α(δ, ε) such that

lim
δ→0,h→0

wδα,h = w† . (6.36)

6.6.3. Application of general regularization theory to the optical
flow problem

We apply the general Theorem 16 to Horn-Schunck regularization. To establish
the coherence we take W = H1

0 (Ω), Y = L2(Ω) and F, Fε as in (6.27),(6.28).
Note that according to Lemma 2, we have that Fε → F . We set

w = u, y = f2 − f1, δ = ε,

yδ = (f2 − f1) ∗x Ψε → y .

Therefore, with ε → 0, both the model perturbation condition (6.33) as well as
the data perturbation condition (6.34) hold.
Define now uα,ε as the regularized solution (6.35) for our case:

uα,ε := argmin
v
‖∇(f1 ∗Ψε) ·v − (f2 − f1) ∗Ψε‖2L2 + α‖v‖2H1

0
. (6.37)

Now we easily derive that the minimizer according (6.37) provides a convergent
regularization scheme:
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Corollary 1. For given f1, f2 ∈ H2
0 (Ω) let there exist a solution u of (6.5).

Then there exists a solution u† of (6.7) (i.e. it is a minimum norm solution).
Moreover, let uα,ε be the minimizer of (6.37). Then there exists a parameter

choice α = α(ε), such that
lim
ε→0+

uα,ε = u†. (6.38)

Remark 10. The above results show that if the input image sequence for the
optical flow is in H2

0 (Ω), then the Horn-Schunck regularized solutions with band-
filtered data approximate the solution of the constrained optimization problem
(6.6) and (6.7) if the band tends to cover the whole frequency range. In practice,
a limited frequency range gives already quite accurate reconstructions. On the
other hand we also have outlined that image data smoothing is indispensable for
optical flow computations because the optical flow equation is not well-defined
when discontinuities or singularities appear in the images.

6.7. Experiments

There are many different varieties of experiments one can perform. In this section,
we present a first selection, using structures which contain homogeneous regions,
similar to vascular structures. The computed displacements (with the parameters
described below) are shown in Figures 5-8.

6.7.1. Simulations

We simulate photoacoustic measurement data using the k-wave toolbox [129].
For reconstruction, we use a filtered back-projection algorithm. Displacement
vector fields have been simulated using the FEM and mesh-generating packages
GetDP and Gmsh [41, 50].

6.7.2. Material, displacement and parameters

The synthetic material was chosen to exhibit homogeneous regions surrounded
by edges. In each experiment, we evaluated a rigid deformation (Experiment 1
and 3) and a non-rigid deformation (Experiment 2 and 4).
In Experiments 1 and 2, we use a tree structure designed by Brian Hurshman

and licensed under CC BY 3.01.

6.7.3. Texture Modes

We compare the proposed texture creation in (6.23) to different alternative ver-
sions of filling in homogeneous regions in the image data. To this purpose, we
choose one the following texture operators T . (We give the different abbreviations
we use for these texture modes in Tables 6.1, 6.2, 6.3.)

1 http://thenounproject.com/term/tree/16622/
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For the band-limitation-induced texture in (6.23), we set κmax = 10, and com-
pare Ψκmin for different values of κmin, precisely we compare

T : f 7→ f ∗Ψ0.4 (6.39)

which is referred to as Band 0.4, and

T : f 7→ f ∗Ψ1.8 (6.40)

which is referred to as Band 1.8.
Other possible operations on the image to fill in homogeneous regions are:

T : f 7→ f + r (6.41)

where r is Gaussian random noise of 30 %, abbreviated as Gaussian 0.3 ;

T : f 7→ f ∗ σ (6.42)

where σ is a Gauss kernel of size 3x3 pixels, abbreviated as Gauss Conv 3x3 ;

T : f 7→ f ∗ χ (6.43)

where χ is constant with supp (χ) being a rectangle of pixel length 3, with
∫

Ω χ =

1, referred to as Aver Conv 3x3 ;

T : f 7→ SP (f) (6.44)

where SP is Salt and Pepper noise applied to the image with parameter p = 0.1.
This is referred to as Salt and Pepper 0.1.
The baseline condition, with which these texture variants are compared, is

taking the original image with no texture at all, that is

T : f 7→ f, (6.45)

abbreviated as none in the tables.

In Tables 6.2, 6.3, the choices for T in (6.39), (6.40), (6.45), (6.41) are com-
pared, along with different variants to mix them with texture, specified below in
(6.46), (6.47).
In Table 6.1, the results for all choices of T outlined above are compared.

6.7.4. Deformation

By forward-projecting and interpolating, we compute, for image data f , the
deformed image W (f,u), for which

W (f,u)(x + u(x)) = f(x)

holds.
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Texture Mode AAE AEEabs AEErel s-warp o-warp

none 0.1780 0.0617 2.9980 0.4886 0.4886
Gauss 0.3 SW 0.1830 0.0628 3.0553 0.5471 0.4886
Band FBP 0.4 0.0905 0.0135 0.6583 0.1285 0.1821
Band FBP 0.4 SW 0.0882 0.0141 0.6909 0.1298 0.1958
Band FBP 1.8 0.0461 0.0190 0.9233 0.0538 0.2313
Band FBP 1.8 SW 0.1217 0.0184 0.8933 0.0536 0.2313
Gauss Conv 3x3 0.1730 0.0544 2.6470 0.4722 0.4886
Gauss Conv 3x3 SW 0.1731 0.0545 2.6480 0.4723 0.4863
Aver Conv 3x3 0.1632 0.0411 1.9985 0.3997 0.4595
Aver Conv 3x3 SW 0.1641 0.0417 2.0298 0.4036 0.4613
SaltPepper 0.1 0.2036 0.0051 0.2473 0.3961 0.0715
SaltPepper 0.1 SW 0.0851 0.0196 0.9552 0.4519 0.2536

Table 6.1.: Different texture modes for Experiment 2, with 10% noise, λ =

11.2202 (see also Figure 6.6)

For computing the data for the optical flow computation, the preferred choice
follows principle 6.5.2, first applying the deformation, then the texture. Therefore
we set

f1 = T (f)

as well as
f2 = T (W (f,u))). (6.46)

Alternatively, we compare these with violating principle 6.5.2, first applying the
texture, then deforming the image:

f2 = W (T (f),u). (6.47)

The latter choice will be referred to with the letters DT in Tables 6.1,6.2,6.3.
We also define

fO1 = f(x), fO2 = W (f,u). (6.48)

for the validation.

6.7.5. Optical flow computation

With f1 and f2 determined as above, we compute

u = argmin
v
‖∇Q(f1) ·v − (Q(f2)−Q(f1))‖2L2 + α‖v‖H1

0
. (6.49)

Here, we apply
Q : f 7→ f + r,

with r being additive Gaussian noise calibrated to 10 % of the maximum value
of f .
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This procedure has been applied to all results in Tables 6.1, 6.2 and 6.3. – The
effect of noise addition to texture is studied separately for the case of Experiment
2 (see Figure 6.4).

6.7.6. Validation

The field which is computed with the optical flow algorithm should approximately
match the correct motion field. In order to study how PAI and textured PAI
images behave under mechanical deformations, we adopt the following validation
procedure to compare the computed vector field with ground-truth data:

Synthetic Data verification

• Choose a particular vector field u0, as well as a reference image f1

• Choose a texture method T

• Compute f1, f2 as in subsection 6.7.4

• Compute the optical flow u(x) as in (6.49)

• Compare the result u against the ground-truth vector field u0

Error measures To compare the computed flows produced to the ground truth
field, we use the angular and distance error, and to assess the prediction quality
of the flow, we calculate the warping error. To define these error measures, write

u0(x) = r0(x) eiϕ0(x)

u(x) = r(x) eiϕ(x).

Then we define the

• average angular error (AAE)∫
Ω
|ϕ(x)− ϕ0(x)|dx

• average endpoint error (AEE)∫
Ω
‖u− u0‖dx

• average relative endpoint error (AEErel)∫
Ω

1

‖u0‖
‖u− u0‖dx

• the warping error w.r.t. the textured images (s-warp)∫
Ω
‖f2(x)−W (f1,u))‖dx,
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• the warping error w.r.t. the original images (o-warp)∫
Ω
‖W (f,u0)(x)−W (f,u)‖dx .

(a) none + 0% noise (b) none + 30% noise

(c) Band 0.4 + 0% noise (d) Band 0.4 + 30% noise

Texture Mode AAE AEEabs AEErel Warping

none + 0% noise 0.2499 0.0445 3.3232 0.3739
none + 5% noise 0.2494 0.0445 3.3233 0.3847
none + 10% noise 0.2492 0.0444 3.3199 0.3949
none + 20% noise 0.2515 0.0445 3.3229 0.4166
none + 30% noise 0.2493 0.0445 3.3270 0.4369
Band 0.4 + 0% noise 0.1880 0.0101 0.7548 0.0737
Band 0.4 + 5% noise 0.1876 0.0101 0.7546 0.0803
Band 0.4 + 10% noise 0.1883 0.0101 0.7560 0.0928
Band 0.4 + 20% noise 0.1929 0.0101 0.7583 0.1224
Band 0.4 + 30% noise 0.1825 0.0101 0.7522 0.1560

(e) Errors for λ = 12.5893

Figure 6.4.: Comparision of different noise levels in Experiment 1 (see also Fig-
ure 6.5), the average over 10 experiments has been taken

6.8. Discussion

As mentioned in the introduction, elastography often relies on speckle tracking
methods, including correlation techniques and optical flow. It is clear that such
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methods have a problem with homogeneous regions. As for the optical flow, this
can be seen from (6.4), where the data term for homogeneous regions provides
no information at all.
In Experiments 1-4, we used several pieces of synthetic data showing homoge-

neous regions and investigated the effect of the homogeneity in several regions of
the data (see Figs. 6.5a-6.8a).
The visualization of the computed motion fields in Figs. 6.5c, 6.6c, 6.7c and

6.8c shows aberrations from the respective ground truth fields. Comparing the
values for the angular, distance and warping errors in Table 6.2 to 6.3 shows these
aberrations, if one restricts to the untextured original images.
We then applied the texture generation methods introduced in Section 6.5.

The results in section 6.7 show that addition of texture is able to alleviate this
problem of homogeneous regions to a considerable amount. The effect shows up
in the different error types.
For the specimens we used, the angular error decreases about 20-30 % compared

to the original error, and in extreme cases the decrease is as high as 75 % (as
seen from Table 6.2). As seen from Figs. 6.5h-6.8h, where the errors were plotted
as a function of the regularization parameters, the distance error reaches its
minimum in the textured variant at lower regularization values than the original
data. In this context, we note that the angular error is a monotonically increasing
function of the regularization parameters in the cases we investigated. In some
cases (as seen from Fig. 6.5h and Fig. 6.7h), the textured versions give also a
lower distance error for the optimal regularization value; in other cases, with the
motion estimation we used, the distance error is about the same magnitude as in
the original versions.
The fact that the displacement estimation using the texture-method results

in a vector field with optimum distance error at smaller regularization values
(therefore also allowing a smaller angular error) points at the fact that the texture
variant itself acts like a regularizer.
The optimum frequency windows for the texture generating method differ for

the rigid and the non-rigid deformations we used. Whereas for the rigid deforma-
tions, the window with κmin = 0.4 gave best results, the non-rigid deformations
best results with κmin = 1.8.
The possible non-commutation, which we mentioned in the Remark of Sub-

section 6.5.2, does not influence the result of the optical flow computations in a
significant way, as seen from Tables 6.2-6.3.
The results are relatively robust to noise, as seen from Figure 6.4. While there

are changes up to one tenth in the angular error, the band-pass-filtered images
perform better than the original images, even with addition of 30% noise.
Notice that, in Experiments 1-4, we studied the addition of noise to a static

image and then deformed it. This does not give a significant change in the
accuracy of the optical flow (see Tables 6.2 and 6.3). See also Table 6.1 for other
results in that direction.
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The effect of adding texture seems to come from a filling-in-effect in the optical
flow equation (6.4). Although the regularization term is responsible for such an
interpolation usually, here this filling-in-effect originates from the data term; the
function Ψ seems to propagate the information from within the objects out across
the edges and boundaries. This seems also to alleviate the aperture problem in
optical flow, as the new texture creates also new gradients around edges. This
may account for the lessening of the angular error.
Overall, the results point at the phenomenon that an effect which has deteri-

orating the image quality in one contrast (here the photoacoustic contrast) can
have an advantageous effect on another contrast (here the mechanical contrast,
which is inherent in the displacement u).

6.9. Conclusion

We studied the topic of texture generation in photoacoustics, and applied band-
width filter techniques for generating such texture in the reconstructed images.
This kind of texture was mathematically characterized. Then we tested an ap-
plication of the PAI texture for elastography purposes. It turned out that the
texture generation technique has the potential to fill in otherwise untextured re-
gions. The displacements can be better measured then, making photoacoustic
elastography viable.
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(a) Visualized mask (b) Ground truth

(c) none (d) Gauss 0.3 SW

(e) Band 0.4 (f) Band 1.8

(g) Angular error (h) Distance error

Figure 6.5.: (Experiment 1) Computed vector fields for λ = 12.5893. a Visualized
mask. b Ground truth. c none. d Gauss Tex 0.3 TD. E Band
0.4 DT. f Band 1.8 DT. g-h Angular distance error measures for
regularization parameter 10−3 ≤ λ ≤ 103, full line: original data;
dashed line: Band-limitation texture κmin = 0.4.
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(a) Visualized mask (b) Ground truth

(c) none (d) Gauss 0.3 SW

(e) Band 0.4 (f) Band 1.8

(g) Angular error (h) Distance error

Figure 6.6.: (Experiment 2) Computed vector fields for λ = 12.5893. a Visualized
mask. b Ground truth. c none. d Gauss Tex 0.3 TD. E Band
0.4 DT. f Band 1.8 DT. g-h Angular distance error measures for
regularization parameter 10−3 ≤ λ ≤ 103, full line: original data;
dashed line: Band-limitation texture κmin = 1.8.
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(a) Visualized mask (b) Ground truth

(c) none (d) Gauss 0.3 SW

(e) Band 0.4 (f) Band 1.8

(g) Angular error (h) Distance error

Figure 6.7.: (Experiment 3) Computed vector fields for λ = 11.2202. a Visualized
mask. b Ground truth. c none. d Gauss Tex 0.3 TD. E Band
0.4 DT. f Band 1.8 DT. g-h Angular distance error measures for
regularization parameter 10−3 ≤ λ ≤ 103, full line: original data;
dashed line: Band-limitation texture κmin = 0.4.
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(a) Visualized mask (b) Ground truth

(c) none (d) Gauss 0.3 SW

(e) Band 0.4 (f) Band 1.8

(g) Angular error (h) Distance error

Figure 6.8.: (Experiment 4) Computed vector fields for λ = 11.2202. a Visualized
mask. b Ground truth. c none. d Gauss Tex 0.3 TD. E Band
0.4 DT. f Band 1.8 DT. g-h Angular distance error measures for
regularization parameter 10−3 ≤ λ ≤ 103, full line: original data;
dashed line: Band-limitation texture κmin = 1.8.
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Table 6.2.: Experiments 1 and 2: Error analysis

Texture Mode AAE AEEabs AEErel Warping

none 0.2499 0.0445 3.3232 0.3739
Gauss 0.3 SW 0.2429 0.0448 3.3480 0.4391
Gauss 0.1 noise 0.2500 0.0447 3.3386 0.3970
Band 0.4 0.1962 0.0105 0.7838 0.0945
Band 1.8 0.2344 0.0114 0.8531 0.0434

(a) Rigid experiment, λ = 12.5893 (see Figure 6.5)

Texture Mode AAE AEEabs AEErel Warping

none 0.1780 0.0617 2.9980 0.4886
Gauss 0.3 SW 0.1761 0.0620 3.0145 0.5393
Gauss 0.1 noise 0.1778 0.0617 3.0013 0.5060
Band 0.4 0.0913 0.0135 0.6607 0.1309
Band 1.8 0.1188 0.0190 0.9231 0.0552

(b) Non-rigid experiment, λ = 12.5893 (see Figure 6.6)

Table 6.3.: Experiments 3 and 4: Error analysis

Texture Mode AAE AEEabs AEErel Warping

none 0.1089 0.0635 4.7460 0.4382
Gauss 0.3 SW 0.1106 0.0637 4.7639 0.4991
Gauss 0.1 noise 0.1084 0.0636 4.7567 0.4580
Band 0.4 0.0805 0.0214 1.5985 0.1829
Band 1.8 0.1313 0.0093 0.6966 0.0556

(a) Rigid experiment, λ = 11.2202 (see Figure 6.7)

Texture Mode AAE AEEabs AEErel Warping

none 0.2962 0.0112 1.3676 0.2053
Gauss 0.3 SW 0.2975 0.0111 1.3577 0.2795
Gauss 0.1 noise 0.3017 0.0114 1.3969 0.2298
Band 0.4 0.3259 0.0024 0.3063 0.0388
Band 1.8 0.2128 0.0044 0.5320 0.0283

(b) Non-rigid experiment, λ = 11.2202 (see Figure 6.8)
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Abstract:

Elastography is implemented by applying a mechanical force to a spec-
imen and visualizing the resulting displacement. As a basis of elas-
tographic imaging typically ultrasound, optical coherence tomography
or magnetic resonance imaging are used. Photoacoustics has not been
viewed as a primary imaging modality for elastography, but only as a
complementary method to enhance the contrast in ultrasound elastog-
raphy. The reason is that photoacoustics is considered speckle free [3],
which hinders application of speckle tracking algorithms. However, while
conventional ultrasound only uses a single frequency, photoacoustics uti-
lizes a broad frequency spectrum. We are therefore able to generate
artificial texture by using a frequency band limited part of the recorded
data. In this work we try to asses the applicability of this technique
to photoacoustic tomography. We use Agar phantoms with predefined
Young’s moduli and laterally apply a 50µm static compression. Pre-
and post compression data are recorded via a Fabry Pérot interferom-
eter planar sensor setup and reconstructed via a non-uniform-FFT re-
construction algorithm. A displacement vector field, between pre- and
post compressed data is then determined via optical flow algorithms.
While the implementation of texture generation during post processing
reduces image quality overall, it turns out that it improves the detection
of moving patterns and is therefore better suited for elastography.

117



Texture generation for
compressional

photoacoustic elastography

J. W. Schmid1,2, B. Zabihian2, T. Widlak1, T. Glatz1, M. Liu2, W.
Drexler2 and O. Scherzer1,3

1 Computational Science Center, University of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

2 Center for Medical Physics and Biomedical Engineering, Medical University of
Vienna,

Währinger Gürtel 18-20, 1090 Vienna, Austria
3 RICAM, Austrian Academy of Sciences,
Altenberger Straße 69, 4040 Linz, Austria

Contents
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . 123



7.1. INTRODUCTION

7.1. INTRODUCTION

Elastography is used for visualizing elastic properties of a specimen or probe.
Clinical applications include the detection of skin, breast and prostate cancer,
detection of liver cirrhosis, and characterization of artherosclerotic plaque in vas-
cular imaging (see for instance [40, 106, 134]). Elastography is an on top imaging
method: Basically, every imaging technique can be used as basis for elastographic
imaging, such as ultrasound imaging (see for instance [75]), magnetic resonance
imaging (see for instance [93]) or optical coherence tomography (see for instance
[127]). With all these techniques, it is possible to visualize momentum images,
from which mechanical displacements u can be calculated, which forms the basis
of clinical examinations.
For motion estimation in ultrasound elastography (USE), optical coherence

elastography (OCE) and in certain variants of magnetic resonance elastogra-
phy (MRE), common techniques are optical flow and motion tracking algorithms
[31, 106] – in USE and OCE, these are specifically referred to as speckle tracking
algorithm. Speckle tracking can only be realized if the imaging data contains a
certain amount of correlated pattern information.
Photoacoustics has as yet not been used as underlying imaging technique for

elastography, but only as supplement to enhance contrast in US-elastography [43].
This can be attributed to the weak speckle patterns in photoacoustics, which gen-
erally is considered advantageous for imaging, but makes it less suited for speckle
tracking algorithms. However, recently it has been shown [52] that an artificial
texture pattern can be introduced by simulating the effect of a band-limited part
of the measurement data on the imaging data. In this way the artificial speckle
patterns improves the deformation estimation with generic speckle tracking al-
gorithms.

7.1.1. Speckle tracking and texture generation in photoacoustic
tomography

Optical flow is the apparent motion of objects in a sequence of images. In math-
ematical terms it is a vector displacement u = dx

dt connecting pixels of the same
intensity in a movie. That is

f(x(t); t) = const . (7.1)

In practice the optical flow is calculated sequentially for two successive images
and under the assumptions of small displacements from the optical flow equation

∇f1 ·u + (f2 − f1) = 0 , (7.2)

which is the linearization of (7.1).
While common ultrasound imaging is operating with a fixed single frequency

mode, in photoacoustics the specimen is excited with a short laser pulse, that is
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mathematically interpreted as a delta pulse. Photoacoustic reconstructions show
clear cut images with large homogeneous regions. Such data are not well suited
for the optical flow algorithm, which consists in determining

uα := argmin
v

{
‖∇f1 ·v + (f2 − f1)‖2L2(Ω) + α‖∇v‖2L2(Ω)

}
, (7.3)

In homogeneous regions where ∇f1 = 0, the optical flow equation allows every
flow u and the optical flow method (7.3) extrapolates values of uα into this
region, which are favored by the regularization functional ‖∇v‖2L2(Ω). Moreover,
mathematically, equation (7.2) is not well-defined if f1 has jumps. This can can
be avoided by convolving the imaging data f , resulting in f ∗Ψ. With such data
the optical flow algorithms becomes:

uα := argmin
v

{
‖∇(f1 ∗Ψ) ·v + (f2 − f1) ∗Ψ‖2L2(Ω) + α‖∇v‖2L2(Ω)

}
. (7.4)

The kernel Ψ is chosen to simulate the speckle pattern of ultrasound images (see
[52]) and has the form:

Ψ(x) =
νmaxJ1 (νmax|x|)− νminJ1 (νmin|x|)√

2π|x|
. (7.5)

In particular this kernel provides the imaging data for band-filtered sensor data
with band [νmin, νmax]. Here J1 is the first-kind Bessel function of order 1.

7.2. Experimental

7.2.1. Photoacoustic Tomography System and Experiment

The photoacoustic tomography (PAT) system consists of a FP (Fabry Pérot)
polymer film sensor for interrogation [28, 29]. A 50 Hz pulsed laser source and a
subsequent optical parametric oscillator (OPO) provide optical pulses. The pho-
toacoustic signal is recorded via the FP-sensor head. The sensor head consists of
an approximately 38µm thick polymer (Parylene C) which is sandwiched between
two dichroic dielectric coatings. These dichroic mirrors have a noteworthy trans-
mission characteristic. Light from 600 to 1200 nm can pass the mirrors largely
unabated, whereas the reflectivity from 1500 to 1650 nm (sensor interrogation
band) is about 95% [140].
The incident photoacoustic wave produces a linear change in the optical thick-

ness of the polymer film. The light from a continuous wave laser is focused on
the surface of the sensor. The laser is operating within the interrogation band
and can now determine the change of thickness at the interrogation point via
FP-interferometry.

7.2.2. Phantoms

Our phantoms consist of Agar with ink inclusions. The inclusions make up 12-
16% of the entire sample mass and themselves contain 2.5-3% of India ink. The
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Figure 7.1.: Top: Maximum intensity projections (MIP) in all 3 dimensions of
a single data set, reconstructed via non-uniform FFT. The left hand
side shows the full reconstruction, whereas the right hand side is
reconstructed using a hard band pass filter. On the right, a Fourier
spectrum averaged over the two spatial dimensions is shown. The
hard high pass filter at 2.5 MHz for the reconstruction is marked.
Bottom: Color wheel encoded optical flow vector fields, derived
via the maximum intensity projection in the xy-plane. This is an
average over 6 consecutive measurements with a displacement of 50
µm. The abating displacement towards the right can be seen. Also
the band limited derived map is more homogeneous. The color shows
the direction of the optical flow, the intensity the vector length.

inclusions are below 1 mm in diameter and have the same agar concentration as
the rest of the sample. All proportions are according to mass and are determined
via an electronic scale with milligram increments.
One slab with 1% agar and one with 1.97% agar have been created. These

samples are wedged into a vice which consisted of a modified translation stage,
with increments of 10 µm. This is then mounted onto the PAT system, where
one jaw is fixed, while the other can move freely in the x-axis.

7.2.3. Evaluation

The two samples have been squeezed consecutively 6 times in 50 µm steps and
recorded. The step size of the data acquisition was 60 µm and the field of view
6.36x6.36 mm. The acquisition time was 250 seconds. The sample was constantly
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Figure 7.2.: Mean Displacements averaged over 6 measurements and along the
y-axis. The blue lines are weighted linear fits over the two regions
with previously known thicknesses. The dashed magenta lines are the
calculated ideal displacement as shown in table 7.1.t The left hand
side shows the results for the full data, whereas on he right hand side
the results for the band limited reconstruction, with added texture
are shown. The error bars on the right are significantly smaller than
on the left.

moisturized during acquisition to prevent the phantom from drying out. The
reconstruction was undertaken with a non-uniform FFT reconstruction algorithm
[119, 122] using an upsampling factor of 2. From the final reconstruction 2.16 mm
of the y-axis had to be cropped, since the sample ended there. Fig.7.1 shows the
resulting MIPs. On the left hand side the full reconstruction is shown, whereas
on the right hand side a hard Bandpass of 2.5 MHz has been used. The optical
flow is calculated using a regularization parameter of α = 0.15. This parameter
was determined using a warping function which would minimize the L2-norm
between f1 warped with the optical flow data and f2.
A color coded optical flow map, averaged over all 6 measurements, is shown at

the bottom of Fig.7.1. Here the abating of the signal, towards the right jaw can
be seen. Also the high pass limited reconstruction map is more homogeneous.

7.2.4. Quantitative Evaluation

For a quantitative analysis we average all x-axis displacements along the y-axis
and over the 6 displacement maps. Using the values of the reduced Young’s mod-
ulus provided by [96] and shown in Table 7.1, for our 1% and 2% concentration
sample. Additionally we use the overall displacement Do=50µm and derive the
thickness of the regions `1 and `2 from the measured data. In our case we are able
to use a simple mechanical spring model in which the stress is proportional to the
relative change in thickness and given by Young’s modulus: σ = E dD

dx . We define
W as the work per unit area which we want to minimize: W = σ dydl = E

(
dD
dl

)2.
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Young’s Calculated 2.5 MHz reconstruction Full reconstruction
modulus (kPa) slope (µm/mm) slope (µm/mm) slope (µm/mm)

Region 1 (2%) 327 5.4 3.7 4.8
Region 2 (1%) 95 18.5 14.4 13.7

Region2/Region1 3.42 3.86 2.85

Table 7.1.: In Column 3 the theoretically calculated slope of the displacement
curve, using the values for E from [3] are shown. In column 4 and 5
the slope of the line fit from the data for a full reconstruction and a
high pass limited reconstruction (added texture) is shown.

Our boundary condition is: `1 dDdx + `2
dD
dx = Do. Using this we are able to derive

the slope of the two regions: dD1
dx = DoE2

E1`2+E2`1
and dD2

dx = DoE2
E1`2+E2`1

.
These quantitative results are compared to line fits as can be seen in Fig. 7.2.

The line fits and the results are compared in Table 7.1.

7.3. Conclusion and Outlook

We were able to show that quantitative elastography via photoacoustics is feasi-
ble and can give reliable results for rather small differences in Young’s modulus
(factor 3) and very small displacements. Further the minimum displacement res-
olution is well below the opto-acoustical resolution of the system and reaches up
to few µm. The speckle free nature of photoacoustic and its adverse effect on the
application on photoacoustic elastography could be ameliorated by generating ar-
tificial texture, which made the optical flow algorithm more reliable and reduced
the variance of the measurements. In the future we will try to automatize our
system and conduct a precise characterization and error analysis. Additionally a
qualitative strain map of biological tissue is planned with this setup.
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Abstracts

Abstract in english

While classical imaging methods, such as ultrasound, computed tomography or
magnetic resonance imaging, are well-known and mathematically understood,
a host of physiological parameters relevant for diagnostic purposes cannot be
obtained by them. This gap is recently being closed by the introduction of hy-
brid, or coupled-physics imaging methods. They connect more then one physical
modality, and aim to provide quantitative information on optical, electrical or
mechanical parameters with high resolution.

Central to this thesis is the mechanical contrast of elastic tissue, especially
Young’s modulus or the shear modulus. Different methods of qualitative elastog-
raphy provide interior information of the mechanical displacement field. From
this interior data the nonlinear inverse problem of quantitative elastography aims
to reconstruct the shear modulus. In this thesis, the elastography problem is seen
from a hybrid imaging perspective; methods from coupled-physics inspired liter-
ature and regularization theory have been employed to recover displacement and
shear modulus information.

The overdetermined systems approach by G. Bal is applied to the quantitative
problem, and ellipticity criteria are deduced, for one and several measurements,
as well as injectivity results. Together with the geometric theory of G. Chavent,
the results are used for analyzing convergence of Tikhonov regularization. Also,
a convergence analysis for the Levenberg Marquardt method is provided.

As a second mainstream project in this thesis, elastography imaging is devel-
oped for extracting displacements from photoacoustic images. A novel method is
provided for texturizing the images, and the optical flow problem for motion es-
timation is shown to be regularized with this texture generation. The results are
tested in cooperation with the Medical University Vienna, and the methods for
quantitative determination of the shear modulus evaluated in first experiments.

In summary, the overdetermined systems approach is seen to have powerful
connections to the theoretical analysis of the elastography problem, and a novel
method for photoacoustic elastography was developed for the qualitative and
quantitative imaging problem.
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Zusammenfassung auf deutsch

Während klassische bildgebende Verfahren wie Ultraschall, Computertomogra-
phie oder magnetische Resonanz-Tomographie wohlbekannt sind und mathema-
tisch gut verstanden werden, gibt es eine Vielzahl an physiologischen Parametern
von diagnostischer Relevanz, die durch jene Verfahren nicht abgebildet werden
können. Diese Lücke wird seit einiger Zeit durch Einführung hybrider Methoden,
bzw. Methoden mit gekoppelter Physik, zu schließen versucht. Diese Methoden
verbinden mehr als eine physikalische Modalität und zielen darauf ab, quanti-
tative Informationen über optische, elektrische oder mechanische Parameter mit
hoher Auflösung zu gewinnen.

Im Mittelpunkt dieser Dissertation steht der mechanische Kontrast elastischer
Gewebe, besonders der Young’sche Modul bzw. der Schermodul.

Verschiedene Methoden der qualitativen Elastographie stellen innere Informa-
tionen des mechanischen Verschiebungsfeldes zur Verfügung. Von diesen inneren
Daten zielt das nichtlineare Problem der quantitativen Elastographie darauf ab,
den Schermodul zu rekonstruieren.

In dieser Dissertation wird das Rekonstruktionsproblem der Elastographie aus
der Perspektive der hybriden Bildgebungsmethoden gesehen; Methoden der Liter-
atur über gekoppelte Physik-Verfahren und die Theorie der Regularisierungsmeth-
oden wurden eingesetzt, um die Information über Verschiebung und den Scher-
modul zu gewinnen.

Der Ansatz von G. Bal, das Problem als überdeterminiertes System zu be-
trachten, wird auf das quantitative Bildgebungsproblem angewendet, und El-
liptizitätskriterien werden für Probleme mit einem oder mehreren Messdaten
abgeleitet, sowie Eindeutigkeitsresultate. Zusammen mit der Theorie von G.
Chavent werden die Resultate dafür verwendet, die Konvergenz der Tikhonov-
Regularisierung zu analysieren. Ebenso wird eine Konvergenzanalyse für das
Levenberg-Marquardt-Verfahren gegeben. Als zweites Hauptstück dieser Dis-
sertation wird elastographische Bildgebung dafür verwendet, die Verschiebung
aus photoakustischen Bildern zu extrahieren. Eine neue Methode wurde gefun-
den, diese Bilder mit Textur zu versehen; es wird gezeigt, dass diese Methode
das optische Fluss-Problem zur Abschätzung der Verschiebung regularisiert. Die
Ergebnisse wurden in Zusammenarbeit mit der Medizinischen Universität Wien
getestet, und die Methoden für quantitative Bestimmung des Schermoduls in
ersten Experimenten evaluiert.

Zusammenfassend wird gezeigt, dass der Ansatz der überdeterminierten Sys-
teme über bedeutende Verbindungen zur theoretischen Analyse des Elastographie-
Problems hat, und eine neue Methode für photoakustische Elastographie wird
entwickelt, die das qualitative als auch das quantitative Bildgebungsproblem
adressiert.
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