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Abstract

Aims: This thesis examines the question how the Moon in�uences the dynamics of
Near-Earth Asteroids. In most former studies the Earth-Moon system was treated as a
single body at the system's barycenter. For certain NEAs it was found that it is essential
to include the Moon as a separate body to accurately follow their motion.
Earth-orbit crossing asteroids have frequent close encounters to the Earth-Moon sys-

tem and are a major source of impacts on both bodies. The main objective is to investi-
gate qualitatively the lunar in�uence on these asteroids. It is quanti�ed to which degree
the Moon is able to modify the trajectories of Near-Earth Asteroids, and whether or not
it can prevent potential impactors from reaching Earth.

Methods: Two types of numerical experiments are carried out. In the �rst kind of
experiments long-time calculations are performed for a large subset of the real NEA
population; the Lie-series and the Mercury hybrid-symplectic integrators are employed
for this part. The pairs of runs span 10 Myr and compare the dynamical behaviour of
NEAs when the Moon is present or not. A series of dynamical models include all main
perturbing planets.
The second kind of experiments investigates asteroids in the vicinity of the Earth-

Moon system in the circular restricted three-body problem. The simulations are divided
into a part investigating the de�ection of incoming impactors, and another part examin-
ing the lunar contribution to impacts. A large number of test particles are set-up using
various random distributions for the initial conditions. Three con�gurations for the
Earth-Moon system are tested: (i) the real system, (ii) a con�guration with increased
lunar mass, and (iii) one with decreased lunar distance.

Results: In the long-term integrations no clear lunar e�ect is discernible for the model
pairs. The number of close encounters and impacts detected show statistical �uctua-
tions, but no evidence for an important lunar contribution. Only P = 0.0052 % of all
encounters ful�ll the constraints for a de�ection by the Moon. As a by-product of the
integrations the impact probability for the Amor, Apollo and Aten groups is determined,
and mixing e�ects between them are studied.
From the impact experiments it turns out that the Moon is able to remove ∼ 0.8 % of

potential impactors, and forces < 0.2 % of previously non-impacting objects to hit Earth.
When the lunar mass is increased and its distance decreased the de�ection e�ciency rises
to 2.2 % and 3.7 %, respectively.
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Zusammenfassung

Ziele: Diese Arbeit untersucht wie der Mond die Dynamik von erdnahen Asteroiden
(NEAs) beein�usst. Die meisten früheren Studien betrachteten das Erde-Mond System
als Einzelkörper im gemeinsamen Schwerpunkt. Für manche NEAs wurde jedoch fest-
gestellt, dass es wesentlich ist den Mond als eigenständiges Objekt zu betrachten, um
ihre Bahnen genau zu bestimmen.
Erdnahe Asteroiden haben häu�g nahe Begegnungen mit dem Erde-Mond System

und sind eine Hauptquelle von Einschlägen auf diesen Körpern. Das Hauptziel ist die
qualitative Untersuchung des Mondein�usses auf diese Asteroiden. Es wird berechnet
inwieweit der Mond in der Lage ist die Bahnen von NEAs zu verändern, und ob er die
Erde vor potentiellen Impaktoren schützen kann oder nicht.

Methoden: Zwei Arten von numerischen Experimenten werden benutzt. Erstens wer-
den Langzeitberechnungen für einen Groÿteil der vorhandenen NEA Population durchge-
führt; dazu werden der Lie-Reihen und Mercury hybrid-symplektische Integrator ver-
wendet. Die Berechnungen erstrecken sich über 10 Millionen Jahre und vergleichen das
dynamische Verhalten der NEAs in An-/Abwesenheit des Mondes. In einer Reihe von
dynamischen Modellen werden alle wichtigen störenden Planeten berücksichtigt.
Die zweite Art von Experimenten untersucht Asteroiden in der Nähe des Erde-Mond

Systems im eingeschränkten kreisförmigen Dreikörperproblem. Die Simulationen sind
aufgeteilt in einen Teil zur Untersuchung der Ablenkung von ankommenden Impak-
toren, und einen anderen Teil, der den lunaren Beitrag zu Einschlägen überprüft. Eine
groÿe Anzahl von Testpartikeln wird erzeugt, deren Anfangsbedingungen verschiedenen
Verteilungen gehorchen. Für das Erde-Mond System werden drei Kon�gurationen getes-
tet: (i) das tatsächliche System, (ii) eine Kon�guration mit erhöhter Mondmasse, sowie
(iii) eine mit reduziertem Mondabstand.

Ergebnisse: Die Langzeitberechnungen zeigen keinen wahrnehmbaren E�ekt des Mon-
des auf die Modellpaare. Es treten zwar statistische Schwankungen bei der Anzahl naher
Begegnungen und der Häu�gkeit von Impakten auf, jedoch gibt es keine eindeutigen Hin-
weise auf einen Beitrag des Mondes. Nur P = 0.0052 % aller naher Begegnungen erfüllen
die Vorbedingungen dafür, dass der Mond für eine Ablenkung sorgen kann. Zusätzlich
werden die Impaktwahrscheinlichkeiten für Amor, Apollo und Aten Asteroiden ermittelt,
und die E�ekte untersucht, welche zu ihrer Durchmischung führen.
Bei den Impaktexperimenten stellt sich heraus, dass der Mond in der Lage ist ∼ 0.8 %
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aller potentiellen Impaktoren zu beseitigen, er lenkt aber auch < 0.2 % jener Objekte
zur Erde, die keine Einschläge erzeugt hätten. Mit einer erhöhten Mondmasse steigt die
Ablenkungse�zienz auf 2.2 %, bei halbierter Mondentfernung ist diese sogar 3.7 %.
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Chapter 1

Introduction

The Earth is target to a number of celestial bodies: asteroids, comets, dust particles,
and nowadays also man-made space debris from former missions returning from or-
bit. Among these objects Earth-orbit crossing asteroids, termed Near-Earth Asteroids
(NEAs), received special attention in recent years, since they are numerous and can rep-
resent an immanent threat to our planet (Chesley, 2006). Observations of the surfaces of
terrestrial planets (e.g. Mercury, Mars) as well as the Moon made clear that they were
subject to impact cratering since the very beginning of the solar system (Ivanov, 2008).
This cratering is still ongoing and NEAs are a major source of the younger craters on
the terrestrial planets (Brown et al., 2002).
As of January 2015 altogether 185 terrestrial impact structures are known1, but this

record is not complete. There is a lack of evidence regarding impact processes in the
�rst 2.5 billion years (Koeberl, 2006); the 2 billion year old Vredefort crater in South
Africa is the oldest preserved impact structure on Earth (Kamo et al., 1996). The Earth
exhibits plate tectonics so that the surface is continuously renewed. In addition, signs
of past impacts are lost by erosion, or are obscured by water that covers two-thirds of
the Earth surface. Thus it is very di�cult to investigate in detail how NEAs a�ected
the Earth. For this reason impact processes and rates in the distant past can be better
studied by means of the lunar surface.

1.1 Minor objects in the solar system

The solar system is dominated by the Sun, the central star which comprises 99.9 % of
the total mass. There are eight planets with very di�erent characteristics in mass and
composition. One can distinguish the four rocky terrestrial planets in the inner part from
the four gas giants in the outer part of the solar system. Additionally, there are a number
of so-called dwarf planets. These objects are orbiting the Sun, they are dominated by
self-gravity, but have not cleared the neighbourhood of their orbits from smaller objects.
All the remaining natural bodies are the minor objects, namely asteroids and comets.

1see Earth impact database at http://www.passc.net/EarthImpactDatabase/
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Chapter 1 Introduction

1.1.1 At the very beginning

To understand where asteroids and comets come from, we need to understand the cir-
cumstances of the beginning and early phases of the solar system. Updated and revised
models of planet formation provide now a consistent scenario for the origin of our solar
system as well as for other extra-solar planetary systems (see reviews of Morbidelli et al.,
2012; Alibert et al., 2010). These models incorporate the new �ndings and improved
knowledge from 20 years of research in the �eld of extra-solar planets. The origin of
asteroids and comets results naturally as a by-product of planet formation.
According to the canonical scenario a planetary system forms from an accretion disk

surrounding a protostellar object. This protoplanetary disk is mainly composed of gas
with some solid material (dust particles) embedded into it. These dust particles are sub-
ject to various processes, which tend to increase their sizes. The continuous growth leads
from nanometer-sized particles to meter-sized objects, which grow further on di�erent
time-scales. They form planetesimals with typical sizes of the order of one kilometer,
the precursors of the asteroids. Some of these planetesimals can quickly increase their
mass by the process of �runaway-growth� (Kokubo and Ida, 2002; Aarseth et al., 1993),
when their gravitational attraction starts to dominate their surroundings. The largest of
these objects form protoplanets (also called planetary embryos) with sizes of the order
of 1000 kilometers. Today the dwarf planets � (1) Ceres and (4) Vesta in the main-belt,
together with the biggest trans-neptunian objects (134340) Pluto, (136108) Haumea,
(136199) Eris, and (136472) Makemake � seem to be the sole remnants of that popula-
tion. Eventually some of the protoplanets grow further to become the cores of the giant
planets, or they collide and merge to form the terrestrial planets. The debris from this
turbulent phase resulted in the population of asteroids and comets in our solar system
with sizes ranging from some meters to hundreds of kilometers (Weidenschilling, 2011).

1.1.2 Comets

Comets are minor bodies that are rich in water and various volatile substances. When
they approach the Sun the increasing temperatures cause a partial sublimation of the
volatiles which results in an outgassing. They develop the typical coma and tail structure
observable with telescopes or bare eyes.
Comets come from the outer parts of the solar system, from beyond the orbit of

Neptune. Following the review of Rickman (2010) on cometary dynamics, it is common
to divide comets into classes based on their orbital periods. Long-period comets have
orbital periods P > 200 years, whereas short-period comets have P < 200 years. The
latter type of comets can be further divided based on their Tisserand parameter (T )
values with respect to Jupiter, for the de�nition see equation (3.2.1) in section 3.2. The
short-period comets with T > 2 are called Jupiter-family comets, those with T < 2 are
the Halley-type comets (Levison and Duncan, 1994).
The main source regions of comets are the Trans-Neptunian Objects (TNO) from
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1.1 Minor objects in the solar system

the Edgeworth-Kuiper belt between 30 − 50 astronomical units (AU), and the Oort
cloud ranging from about 104 − 105 AU. It is believed today that both reservoirs are
of secondary origin, created by large scale chaotic processes associated with the orbital
migration of the giant planets (Tsiganis et al., 2005). After the formation of the gas
planets there remained a disk of icy planetesimals that was subsequently destabilised by
the outward migration of Uranus and Neptune (Levison et al., 2008). These two planets
and their associated orbital resonances created a scattered disk that extended outwards
to several hundred AU. This scattered disk could then have supplied the Kuiper belt
and the Oort cloud.
The dynamics of comets is in�uenced by various external forces, among them are close

encounters to planets (e.g. Jupiter), tides from passing stars or the galactic disk which
are important for Oort cloud comets, and the solar radiation when comets approach
the Sun near perihelion (see Rickman, 2010, and references therein). Secular e�ects can
strongly in�uence the perihelion distances of comets and lead to an exchange of objects
between the di�erent populations in the inner and outer solar system. Such e�ects would
transfer objects from the Oort cloud � in a direct way, or indirectly via the scattered
disk � to the Kuiper belt or vice versa.

1.1.3 Asteroids

Asteroids are minor objects that consist of solid material; they show a wide range of
di�erent compositions involving silicates, carbonaceous or metallic material. Most as-
teroids are located in a region called main asteroid belt between the orbits of Mars and
Jupiter, roughly spanning from 2 − 4 AU. There also exist co-orbital asteroids (called
Trojans) in a 1:1 mean-motion resonance with Mars, Jupiter, or Neptune (they were
also detected for Earth and Uranus), that occupy the region around the Lagrangian
equilateral equilibrium points L4 and L5.
It has been recognised by Kirkwood that there exist certain regions in the main belt

where asteroids are less abundant or completely lacking � these regions are called the
Kirkwood gaps. The gaps are a consequence of mean-motion resonances (MMR) primar-
ily with Jupiter, which occur whenever the orbital frequencies of Jupiter and an asteroid
form an integer ratio. The most prominent MMRs are: 2:1 at ≈ 3.3 AU, 3:1 at 2.5 AU,
4:1 at 2.0 AU, and 5:2 at 2.8 AU. Figure 1.1 plots a histogram for the semi-major axis
distribution2, where the mentioned MMR are clearly visible.
Hirayama has found that at some places in the main belt there is an accumulation of

asteroids. These objects share similar orbital elements and belong to a so-called asteroid
family, which indicates an origin from a common parent body by collisional processes
(see review by Cellino and Dell'Oro, 2010).
A special class of minor objects are planetary orbit crossing objects, called Near-

Earth Objects (NEOs) in case of the Earth. Any minor object that has a perihelion

2based on data from the Minor Planet Center http://www.minorplanetcenter.org/
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Figure 1.1: Semi-major axis distribution of asteroids from the inner solar system to be-
yond the orbit of Jupiter. The vertical lines indicate the major mean-motion
resonances with Jupiter in the main-belt. This image is based on more than
670 000 asteroids from the Minor Planet Center database; the bin-width is
∆a = 0.03 AU.

distance q < 1.3 AU is called a NEO, but sometimes the semi-major axis is constrained
to a < 5 AU to exclude Jupiter family comets. The population of NEOs thus consists of
Near-Earth Asteroids (NEAs, of asteroidal origin) together with the Near-Earth Comets
(NECs). In the following we will mainly be interested in NEAs.

1.2 Dynamics of Near-Earth Asteroids

In this section we review the dynamics of NEAs, in particular their relation to main-belt
asteroids (MBAs) and the mechanisms that are responsible for delivering them to the
near-Earth space.

1.2.1 Orbital classes

Shoemaker et al. (1979) divided the Earth-orbit crossing asteroids into three orbital
classes based on osculating orbital elements: Amors, Apollos, and Atens. Each of these
classes was named after a prototype object: (1221) Amor (= 1932 EA1), (1862) Apollo
(= 1932 HA), (2062) Aten (= 1976 AA). The de�nition of NEA groups is based on
semi-major axis (a), aphelion (Q) and perihelion (q) distances:
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Amors

0.983 AU 1.017 AU 1.3 AU

Atens

Apollos

distance

Figure 1.2: A schematic de�nition of the (classical) NEA groups based on aphelion and
perihelion distances. The Earth moves between 0.983 and 1.017 AU at its
current orbital eccentricity (indicated by the blue rectangle).

Amors have perihelion distances 1.017 < q < 1.3 AU and a > 1 AU
Apollos have perihelion distances q < 1.017 AU and a ≥ 1 AU
Atens have aphelion distances Q > 0.983 AU and a < 1 AU
Atiras have aphelion distances Q < 0.983 AU and a < 1 AU

Amors and Atiras are not Earth-orbit crossing asteroids in the strict sense, but they are
adjacent to the other two groups and can become Earth crossers when their eccentricities
increase during one secular period. Figure 1.2 provides a sketch of the one-dimensional
de�nition of the classical NEA groups.
The above list contains the new class of Atiras that was named after object (163693)

Atira (= 2003 CP20). Atiras belong to the more general class of Interior-Earth Objects
(IEOs, sometimes also denoted as Inner-Earth objects) which move in orbits that are
completely interior to Earth's orbit. Currently, in January 2015, there are only 14 known
Atiras (≈ 0.1 % of the discovered NEA population3). However, Greenstreet et al. (2012)
studied the theoretical steady-state orbital distribution of NEAs interior to Earth's orbit
and estimated that IEOs (Mercury and Venus crossers) should amount to about 1.6 %
of the total NEA population.
The long-term behaviour of NEAs is quite complicated because of resonances and

close-encounters, so the Shoemaker classi�cation based on osculating elements turned
out to be of limited use for a dynamical classi�cation. Milani et al. (1989) proposed a
new classi�cation scheme based on the results of numerical integration of 410 planet orbit
crossing asteroids for 2 × 105 years. They divided NEAs into 6 classes: Alinda, Eros,
Geographos, Kozai, Oljato, and Toro. Each class de�nes a di�erent kind of dynamical
behaviour, like MMR with Earth for the Toro class, or with Jupiter for the Alinda class.

3see Near Earth Object Program discovery statistics at http://neo.jpl.nasa.gov/stats/
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Figure 1.3: The relative frequency of NEA groups in the years 2015 (upper bar) and
2011 (lower bar). Colours distinguish di�erent groups: Amors (red), Apollos
(green), Atens (blue).

Nevertheless, on still longer time-scales also these classes tend to blur and mix, which is
inevitable because of the inherently chaotic nature of the NEAs.
To overcome the di�culties posed by a rigid classi�cation Freistetter (2009) proposed

a new approach based on fuzzy logic. The fuzzy classes for NEAs allow one object to
be a member of di�erent classes at the same time, where the degree of membership to a
speci�c class is quanti�ed by a real number α ∈ [0; 1]. One possible fuzzy classi�cation
would be based on the number of close encounters of NEAs to each of the terrestrial
planets Venus, Earth, and Mars.

1.2.2 Number of NEOs

Figure 1.3 summarises the percentage of asteroids that belong to one of the three classical
NEA groups. In the year 2011, when the data for this work was gathered, there were
about 8000 NEAs, since then their number has increased by 50 % to about 12 000 NEAs
at the end of the year 2014. Table 3.2 in section 3.2 contains the absolute number of
objects for reference. Note that the currently discovered Atiras would not be visible in
that �gure as they make up for only ∼ 0.1 % of the total population.
Shoemaker et al. (1979) reported on the number of NEAs with absolute visual magni-

tude of HV ≤ 18 mag. These are asteroids with diameters larger than about 1 km, apart
from inherent uncertainties in the conversion of absolute magnitude to diameter (which
depends on the albedo). The estimates were based on the Palomar planet-crossing as-
teroid survey (Helin and Shoemaker, 1979) and gave 100 Atens, 700 Apollos, and 500
(Earth-crossing) Amors for a total of 1300 kilometer-sized NEAs; the ratios of these
estimates still describe very well the current numbers (see table 3.2).
The population size of Earth-crossing NEAs was re-examined by Rabinowitz et al.
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(1994). They used a Monte-Carlo model that took into account the orbital evolution of
asteroids, observational biases, and some physical properties (such as the size distribution
and albedos). The resulting overall population was estimated to be 1500 objects with
diameters d ≥ 1 km; currently there are about 860 discovered NEAs exceeding this limit.
Another model for the orbital element and magnitude distribution of NEOs was cre-

ated by Bottke et al. (2002). Their model incorporated NEOs originating from source
regions in the main-belt and from short-period comets. They estimated 960±120 NEOs
to H < 18 mag, of which ∼ 94 % are NEAs (900) and ∼ 6 % (extinct) Near-Earth
comets.
More recently Mainzer et al. (2011) estimated a number of 981±19 NEAs (not NEOs)

larger than 1 km in diameter based on observational data from the wide-�eld infrared
survey explorer spacecraft (NEOWISE).
The amount of cometary contribution to the NEO population is more debated, and

theoretical estimates range from 5 − 15 % (see Lupishko et al., 2007, section 6). The
large-scale observational surveys4 have detected 15 NECs so far, this is merely ∼ 0.1 %
of the total NEO population.

1.2.3 Long-term dynamical evolution and origin

In the reviews of Novakovi¢ (2013) and Morbidelli et al. (2002) the current standard
model for the origin and evolution of NEAs is outlined, which has emerged in the mid-
dle of the 1990s and has superseded the classical model. The following paragraphs
summarise the transition from the classical model to the new one.
The importance of mean-motion resonances (MMR) and secular resonances (SR) in the

main-belt had already been recognized in the 1970s. Shoemaker et al. (1979) explicitly
mentioned regions in the main-belt adjacent to the 3:1 and 5:2 MMR with Jupiter along
with the ν5 and ν6 SR with Jupiter and Saturn, respectively, to be the principal sources
of NEAs. Collisional processes (fragmentation or catastrophic disintegration) lead to
the �creation� of new asteroids in the main-belt, some of which would be transported to
the near-Earth region by the resonances mentioned before.
When Wetherill (1979) discussed the steady-state population of Amors and Apollos he

had to assume a dominant cometary contribution (from Encke-type comets), since the
rate of resupplied asteroids from the main-belt (1.5 objects per million years) would seem
too low to support the required rate of 15 objects per million years. However, in the same
work Wetherill also reported on the amplitude of forced eccentricity oscillations close to
the ν6 resonance. These forced amplitudes can lead to an increase of the eccentricity
of asteroids to values large enough to become Mars-orbit or even Earth-orbit crossers.
Then a subsequent close encounter with a terrestrial planet can change the asteroid's
semi-major axis and displace it from the main-belt to the NEA region.
A similar e�ect was found by Wisdom (1982) for the 3:1 MMR with Jupiter. He could

4see list at http://neo.jpl.nasa.gov/programs/
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recover the formation of the Kirkwood gap for this resonance on a time-scale of 106

years by means of a mapping technique for the dynamical behaviour of test particles.
Even asteroids with low initial eccentricity can obtain values of e > 0.3 when evolving
inside this resonance. The 3:1 MMR with Jupiter is important for its connection to the
delivery of achondrite meteorites that have been shown to be related to (4) Vesta (Binzel
and Xu, 1993; McSween et al., 2011).
Following these results Froeschle and Scholl (1989) reviewed the linear secular reso-

nances ν5, ν6, and ν16 and found indications of chaotic motion due to the overlapping of
these resonances with MMR or other SR. Thus all of these resonances can potentially
supply asteroids from the main-belt to the NEA region via eccentricity pumping on a
rather short time-scale of 105 − 106 years.
Progress was not only made on the theoretical side, but also through direct numerical

integrations of the orbital evolution of NEAs. Hahn and Lagerkvist (1988) investigated
the orbits of 26 NEAs over a timespan of 105 years including perturbations from all
planets except for Mercury. That work was a precursor to the Spaceguard project of
Milani et al. (1989), who investigated 410 NEAs over 2 × 105 years. These studies
helped to better understand the long-term dynamical evolution of NEAs and to identify
important mechanisms such as protection from close encounters by MMR (Toro class)
and SR (Kozai class).
The basic perturbing mechanisms � close encounters, resonances and secular pertur-

bations � were later thoroughly discussed in Michel et al. (1996) for di�erent dynamical
models. They demonstrated that the simpli�ed assumption of a random walk in (a, e, i)
space along a constant value of the Tisserand parameter (for non-resonant objects)
breaks down in a realistic dynamical model including at least Earth, Jupiter, and Sat-
urn as the major perturbers. This was a central assumption in the models of Wetherill
� as summarised in Greenberg and Nolan (1993) � who worked out a number of evo-
lutionary paths for main-belt asteroids to become NEAs on di�erent time-scales (from
105 − 108 years).
Farinella et al. (1994) found that also NEAs can become sun-grazers or hit the Sun;

before this was only known for comets (Bailey et al., 1992). In their integrations 19 out
of 47 NEAs, which were initially located near to the ν6 resonance and various low-order
MMR, collided with the Sun within the integration time of 2× 106 years. These results
showed that the eccentricities of NEAs could in principle increase without bound in
rather short time, which in turn places an upper limit on the dynamical lifetime of these
objects.
As a consequence Gladman et al. (1997) studied the dynamical lifetimes of several

hundred main-belt asteroids from di�erent families located in resonances. They observed
a completely di�erent behaviour for the 3:1 MMR with Jupiter and the ν6 SR in the inner
main-belt when compared to the 5:2, 2:1 MMR and others in the middle to outer main-
belt. In the former cases the median half-lives for the resonant objects are of the order
of 2 million years and most of them (≥ 70 %) impact the Sun, whereas for the 5:2 MMR
the half-life is of the order of only 0.5 million years and objects are preferably scattered
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by Jupiter outwards beyond the orbit of Saturn. Gladman et al. (2000) extended their
study to NEAs and checked the �nal states after an integration time of 60 Myrs. They
found a NEA median life-time of 10 Myr, and that about 50 % of them impact the
Sun, ≤ 15 % impact the terrestrial planets, and another 10 % are ejected from the solar
system.
These results indicate that a large fraction of NEAs would originate from the main-

belt region 2 ≤ a ≤ 2.5 AU (between the ν6 and J3:1 MMR). However, the rather short
dynamical lifetimes pose a di�culty to sustain the observed number of NEAs with sizes
of 1 km or above.
Migliorini et al. (1998) and Michel et al. (2000) emphasized that there are far more

multi-kilometer size Mars-orbit crossing asteroids than Earth-orbit crossing NEAs of
comparable size (by about a factor of 35). They de�ned four groups of potential Mars
crossers (q < 1.78 AU), which are themselves supplied by main-belt regions, e.g. the
Hungaria and Phocaea family. Asteroids become Mars crossers because they are driven
by MMR with Mars, some MMR with Jupiter, and a number of weaker three-body
resonances with either Jupiter/Saturn or Mars/Jupiter.
It was shown by Murray et al. (1998) and Nesvorný and Morbidelli (1998b) that three-

body resonances are dense in the main-belt regions considered, and can lead to a slow
di�usion of the eccentricity to Mars-orbit crossing values. Mars crossers then evolve into
Earth crossing asteroids on timescales of 20 − 60 Myr (Migliorini et al., 1998). Michel
et al. (2000) estimated that 50 % of the large Earth-orbit crossing asteroids evolved from
Mars crossers.
Galiazzo et al. (2013a) investigated the evolution of objects from the Hungaria group

in more detail. They found that about 6 % of the investigated asteroids evolved into Mars
crossers within 100 Myr, among them 25− 50 % will become Earth and Venus crossers
on timescales of 60 Myr. This rather slow evolution to the NEA region is caused by
the inclinations of Hungarias (12 < i < 31 degrees) that make close encounters to Mars
unlikely. Hungarias can reach Earth-orbit crossing semi-major axes by decreasing their
inclinations and being extracted by close encounter with Mars, or by �nding another
�escape route�, e.g. the J4:1 MMR or the ν16 SR with the nodal precession rate of Saturn.
The Yarkovsky e�ect (Hartmann et al., 1999; Vokrouhlický et al., 2000), a non-

gravitational e�ect from the absorption of sun-light and its re-emission at infrared wave-
lengths, was discussed to be another important ingredient for the placement of MBAs
into resonances. Morbidelli et al. (2002) even argue that the Yarkovsky e�ect should be
more e�cient than collisional processes for delivering asteroids to resonances.
Based on all these constraints Bottke et al. (2002) computed the contribution of various

sources to the NEO population, they also included Jupiter-family comets but not the
long-period comets. The model results showed that ∼ 60 % of NEOs originate in the
inner main-belt (up to the J3:1 MMR at a = 2.5 AU), another ∼ 24 % from the middle
main-belt (between J3:1 and J5:2 MMR, 2.5 < a < 2.8 AU), while the other sources
share the rest.
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1.3 Physics of Near-Earth Asteroids

This section summarises a subset of the known physical parameters of asteroids, with
a focus on the spectral classi�cation, their masses and densities. A limited number
of asteroids could be intensely studied by space missions, for these objects a review is
compiled.

1.3.1 Taxonomic classes

Astronomical observations of asteroids rely on the re�ected sunlight and emitted (in-
frared) radiation from their surfaces. The method of photometry measures the intensity
(amplitude) of the lightcurve with time. Spectrometry investigates the (absorption)
spectrum and allows to probe the surface properties and mineralogical composition.
Chapman (1979) summarised the observational progress in the 1970s. He pointed out

that asteroids were readily distinguishable from one another based on photometry using
the Johnson UBV �lters and albedo data. These observations resulted in establishing
three categories: C-type, S-type, and M-type; additionally also an U-type for unclassi�-
able objects was de�ned. The C-type objects have low albedo (< 0.07) and �at spectra;
they are related to carbonaceous chondrite meteorites. S-type asteroids have moderate
albedos (< 0.24) and spectra with a positive slope to the red, spectral absorption bands
indicate olivine and pyroxene. S-types are related to stony-iron meteorites (ordinary
chondrites). M-types were attributed to enstatite chondrites or nickel-iron meteorites.
Tholen introduced a taxonomy for asteroids based on albedo and spectral measure-

ments (using eight data points from 0.31 − 1.06 µm) for almost 1000 asteroids in the
1980s (Tholen, 1989). There were three major groups: C-group, S-group, and X-group,
where each of them contained several subtypes. A total of 14 types were de�ned, but
most asteroids were assigned to the C-type (in the C-group), S-type (or group), or M-
type (in the X-group). Some peculiar asteroids (like Vesta) had a type of their own,
independent from any group.
Later the Tholen taxonomy was enhanced by Bus and Binzel (2002) by including

higher resolution spectra (48 points) for nearly 1500 asteroids in the wavelength range
0.44− 0.92 µm. They kept the C-, S- and X-groups as broad categories, but introduced
26 types which partly di�ered from the former meaning. The C-group still contains
carbonaceous objects, the S-group objects are made of silicates, while the X-group com-
prises metallic asteroids. This scheme introduced combinations of letters (like CG) for
new transition types that combined properties from both previous Tholen types.
Another extension of the taxonomy was presented by DeMeo et al. (2009). They used

the spectral range 0.45−2.45 µm (with 40 data points), which includes the near-infrared
for more useful absorption features. The 24 types are mostly carried on from the Bus &
Binzel scheme, with some minor adjustments.
Reddy et al. (2011) presented four examples for the analysis of the mineralogical

composition of NEAs. They used a ground-based near-IR spectrograph (0.7 − 2.5 µm)
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1993: Galileo
243 Ida

1999: Deep Space 1
9969 Braille

2002: Stardust
5535 Annefrank

2008: Rosetta
2867 Steins

2011: Dawn
4 Vesta

1991: Galileo
951 Gaspra

1997: NEAR
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2000: NEAR
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Figure 1.4: Chronological timeline of spacecraft missions to asteroids; a grey box marks
missions to NEAs. Each entry gives the year of the mission, the name of the
spacecraft, and the catalogue number and name of the asteroid.

to determine the position and width (area) of absorption bands at 1 µm and 2 µm that
are indicative for the presence of olivine and pyroxene. The ratio of the absorption
band-areas allows to determine the relative fraction of olivine to (ortho)pyroxene.

1.3.2 Space missions

The knowledge about the physical properties of asteroids in general � and of NEAs in
particular � has been extended by spacecraft that have investigated some objects in
detail. Some missions were only �y-bys of short duration, but others were devoted to
a long-term survey where the spacecraft would orbit the asteroid, land on it or even
return a sample from its surface. These missions revealed a large diversity of surface
features, and allowed to investigate a number of physical parameters (mass, density,
thermal conductivity, etc.) and the mineralogical composition.
Up to the begin of the year 2015 eight space missions were conducted which made

in-situ measurements of eleven asteroids. In the course of 2015 the Dawn mission will
arrive to Ceres and investigate it as the twelfth asteroid. Figure 1.4 gives a chronological
overview of all those space missions; the three missions to NEAs are emphasized by a
box.
The following paragraphs give a summary of all these missions, most of the data are

taken from the extensive reviews of Bertini (2013) and Shevchenko and Mohamed (2005),
for further references see those publications.
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(951) Gaspra

The Galileo spacecraft's main goal was to orbit Jupiter and to study the planet as well
as its moons. On the way to its destination Galileo had to �y through the main-belt
and was guided to pass two asteroids.
The �y-by to Gaspra on 29 October 1991 was the �rst time that a spacecraft had

visited an asteroid. The minimum �y-by distance was 1600 km; from the images taken
an irregular shape for Gaspra was determined with dimensions of 18.2× 10.5× 8.8 km3.
The surface exhibited many impact craters, the (visual geometric) albedo is 0.23. From
spectral absorption bands at 1 µm and 2 µm the surface composition was inferred to be
90 % olivine and 10 % orthopyroxene. Gaspra belongs to the S-type taxonomic class.

(243) Ida

Galileo's second target was the S-type asteroid Ida, �rst observed in 1884 by J. Palisa in
Vienna. The �y-by took place on 28 August 1993 with a minimum distance of 2400 km.
Ida also turned out to be of irregular shape with 59.8 × 25.4 × 18.6 km3. The albedo
is 0.21 which is consistent with the value found for Gaspra; the surface composition is
65 % olivine plus 35 % orthopyroxene.
The big surprise was that Ida has a small moon named Dactyl of about 1.4 km

diameter. This allowed to determine the mass of Ida (4.2±0.6×1016 kg) and its density
(2.6± 0.5 g/cm3).

(253) Mathilde

The second space mission to visit asteroids was the Near-Earth Asteroid Rendezvous
(NEAR) targeted to investigate for the �rst time a NEA. Before the main target (433)
Eros was reached, the spacecraft had a �y-by to the main-belt asteroid Mathilde. This
asteroid was also detected by J. Palisa in 1885 at the Vienna observatory (Schmadel,
2012).
The �y-by happened on 27 June 1997, the minimum distance was about 1200 km.

Mathilde is a C-type asteroid with very low albedo of 0.047, and dimensions of 66 ×
48 × 44 km3. The mass (1.03 × 1017 kg) and density (1.3 ± 0.2 g/cm3) of the asteroid
could be determined. Several large craters were found; the fact that Mathilde survived
those cratering events and the low bulk density led to speculations about a rubble-pile
internal structure.

(9969) Braille

On 28 July 1999 the Deep Space 1 mission passed the Mars orbit crossing main-belt
asteroid Braille in a distance of 28 km. The spacecraft later also encountered comet
19P/Borrelly.
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Braille is a rather small object with an estimated size of 2×1×1 km3. From the near-
IR spectrum a composition of pyroxene/olivine was deduced, the albedo was measured
to be 0.34. The spectral type is given as Q-type, which is intermediate between S- and
V-type, the spectrum indicated similarities to (4) Vesta.

(433) Eros

The NEAR spacecraft had a �rst �y-by to Eros in December 1998, on 14 February
2000 it entered into an orbit about Eros, and �nally on 12 February 2001 the spacecraft
successfully landed on the asteroid. This was the �rst orbiter and lander mission, and
the �rst one to a NEA.
Eros has dimensions of 34.4× 11.2× 11.2 km3 which make it the second largest NEA

after (1036) Ganymed, both being Amor class NEAs. It was discovered in 1898 and was
the �rst NEA ever known.
The complete surface was mapped, the mass (6.69×1015 kg) and mean density (2.67±

0.03 g/cm3) could be reliably determined due to the long mission duration; the albedo
is 0.25.

(5535) Annefrank

The Stardust mission had the aim to investigate comet 81P/Wild 2, but prior to that
it had a �y-by to the main-belt asteroid Annefrank. The encounter took place on 2
November 2002 in a distance of 3100 km. Although only part of the surface could be
observed the size of the asteroid was �tted as 3.3 × 2.5 × 1.7 km3. An albedo of 0.24
indicates that Annefrank is an S-type, but its size could be a hint for an origin as a
collisional fragment.

(25143) Itokawa

The Apollo class NEA Itokawa was the target for the orbiter and sample return mis-
sion Hayabusa of the Japanese space agency. From September until December 2005
the spacecraft orbited the asteroid, and two touchdowns were attempted for collecting
surface material. In 2010 the samples were returned to Earth and the µm-sized grains
could be analysed in laboratories.
Itokawa is an S-type asteroid, with size of 0.535× 0.294× 0.209 km3. The density is

1.95± 0.14 g/cm3, which is well below the value for LL ordinary chondrites (3.2 g/cm3)
that are analogous to the samples returned. The shape of this NEA was interpreted as a
contact binary, made of at least two larger fragments and having a rubble-pile structure.

(2867) �teins

The Rosetta spacecraft was dedicated to �y to and observe comet 67P/Churyumov-
Gerasimenko. During its ten years of �ight Rosetta had also two �y-bys to asteroids,
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one of them was the main-belt asteroid �teins.
The encounter took place on 5 September 2008, the minimum distance was 800 km.

�teins has an unusual shape with equatorial radius of 3.1 km and polar radius of 2.2 km.
Thanks to the many instruments on-board of Rosetta the spectrum could be measured
in a wide range of wavelengths, spanning from ultraviolet to near infrared. Previously
the asteroid had been determined to be an E-type, a type that is common among the
Hungaria family. As for most E-types the visual albedo of 0.4 is rather high, however,
in the ultraviolet at λ < 200 nm the albedo was as low as 0.04.

(21) Lutetia

Rosetta's second asteroid �y-by was on 10 July 2010 to the main-belt asteroid Lutetia,
which took the spacecraft up to a minimum distance of about 3100 km.
Lutetia has dimensions of 121× 101× 75 km3; its mass was determined to be 1.70±

0.02 × 1018 kg, which results in a density of 3.4 ± 0.3 g/cm3. Observations in the
wavelength range from 0.24 − 3.4 µm gave a mean visual albedo of 0.19, but did not
indicate notable absorption features, thus no evidence was found for olivine to be present
in the surface layer. The composition is believed to be a mixture of enstatite chondrite
and carbonaceous chondrite, although the density is larger than for chondrite meteorites,
so probably Lutetia contains some metal rich regions in its interior. Parts of the surface
were dated to be up to 3.6 Gyrs old from crater counting.

(4) Vesta

The second most massive main-belt object Vesta was the �rst target of the Dawn space-
craft. It arrived at Vesta on 16 July 2011 and orbited the asteroid until 4 September
2012, when Dawn left orbit and headed for Ceres.
Vesta is nearly spherical with a mean diameter of 530 km, but the images revealed

two large impact structures near the southern pole which distort its shape. Those two
impact basins, the ∼ 1 Gyr old Rheasilvia and the underlying ∼ 2 Gyr old Veneneia,
are the probable source for the Vesta family, V-type asteroids, and the HED meteorites
(McSween et al., 2011).
From the Dawn data a density of 3.46 g/cm3 was determined, and the mass is esti-

mated as 2.67± 0.02× 1020 kg, equivalent to 1.34± 0.01× 10−10 solar masses (Baer and
Chesley, 2008). Vesta is large enough to be di�erentiated; the measured J2 moment of
the gravitational �eld indicates a dense (nickel-iron) core of 220 km diameter.

(4179) Toutatis

The Chinese Chang'e 2 spacecraft had a very close �y-by to within 1 km to this Apollo
class NEA on 13 December 2012 (Huang et al., 2013). Toutatis is an S-type asteroid, but
with a moderate albedo of 0.13. On-board visual and ground-based radar observations
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showed that Toutatis consists of at least two parts, which is interpreted as a contact
binary con�guration. The asteroid's length and width are 4.8 and 2.0 km.

1.3.3 Masses and densities

Asteroid masses and (bulk) densities are among the most important physical parameters
that need to be known. Aside from the examples mentioned above the masses have been
determined for a limited number of asteroids.
Hilton (2002) reviewed the advantages of various techniques for mass determinations.

The classical astrometric mass determination method measures an asteroid's gravita-
tional perturbation on another test object, which can be a smaller asteroid, a satellite's
orbit, or a spacecraft. This method is limited by the rather small masses of even the
largest asteroids � being of the order of 10−10 solar masses � and the long observation
time intervals needed (often some decades). Modern methods include radar time-delay
measurements, which are also used in connection with the perturbations of spacecraft
trajectories.
The tables in Hilton (2002) include the published masses for 24 asteroids having masses

between 5 × 10−10 solar masses for (1) Ceres down to 5 × 10−21 solar masses for 2000
UG11 (an Apollo group NEA). He also listed the densities for 16 asteroids, in the range
1.2 − 3.5 g/cm3, but these values depend strongly on an accurate shape model to give
the correct volume. In total the masses and densities for 4 NEAs are given: (433) Eros,
1999 KW4, 2000 DP107, and 2000 UG11.
In Lupishko et al. (2007) the bulk densities for 8 NEAs were reported. The densities

for (433) Eros and (25143) Itokawa are well determined from spacecraft observations;
for the other NEAs values of 1.1− 3.3 g/cm3 are given with rather large error margins
like for (2100) Ra-Shalom (see table 1.1).
Baer and Chesley (2008) used an iterative least-squares process to determine the

masses of large main-belt asteroids from a sample of 300 objects. They found reliable
mass and density estimates for 21 objects, in total they summarised the masses for 38
asteroids of which 5 are NEAs. The relative errors for the masses are on average ≥ 10 %,
except for (1) Ceres and (4) Vesta where the errors are much lower.
They also collected empirical values for the bulk densities of taxonomic classes. The C-

class density is assumed to be between 1.3−2.1 g/cm3, for the S-class it is 2.4−2.8 g/cm3,
while the M-class has 4.0 − 5.3 g/cm3. However, they demonstrated that there is a
correlation between the size of an asteroid and its density, the latter can be expressed
as a linear function of the mean radius.
Carry (2012) reviewed the published masses and densities for 287 minor objects

(NEAs, MBAs, TNOs and comets) and carefully selected the most reliable estimates.
Besides that he also computed the average density for the taxonomic classes. He in-
cluded a section on the measured bulk density of meteorites for comparison to that of
asteroids:
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asteroid mass [M�] density [g cm-3]

(433) Eros (3.36± 0.01)× 10−15 2.67± 0.03
(2100) Ra-Shalom � 1.1− 3.3
(6489) Golevka � 2.7+0.4

−0.6

(25143) Itokawa (1.76± 0.05)× 10−20 1.95± 0.14
1996 FG3 (2.1± 0.7)× 10−18 1.4± 0.3
1999 KW4 (1.1± 0.2)× 10−18 1.97± 0.24 (primary)

� 2.81+0.82
−0.63 (secondary)

2000 DP107 (2.3± 0.4)× 10−19 1.7± 1.1
2000 UG11 (4.7± 0.8)× 10−21 1.5+0.6

−1.3

2002 CE26 (9.8± 1.3)× 10−18 0.9+0.5
−0.4

Table 1.1: Masses (in units of the solar mass) and densities for Near-Earth Asteroids. For
Golevka and Ra-Shalom the densities were derived from radar data (Lupishko
et al., 2007).

• ordinary chondrites have an average density of 3.5 g/cm3,

• carbonaceous chondrite densities range from 1.6 g/cm3 (CI) to 3.1 g/cm3 (CR),

• enstatites have 3.5 g/cm3,

• achondrites (HED type) have 3.3 g/cm3,

• and stony-iron meteorites have densities of ≥ 4.2 g/cm3.

The e�ective density of asteroids will generally be lower than that of meteorites; their
density will be determined by their porosity and whether or not they are monolithic or
rubble-piles.
Table 1.1 collects all available data on masses and densities of Near-Earth Asteroids

from Hilton (2002); Lupishko et al. (2007); Baer and Chesley (2008); Carry (2012).
No masses are available for Ra-Shalom, Golevka and 1996 FG3 in the JPL small-body
database5, but obviously some estimate must exist to calculate the densities. The mass
of 1996 FG3 is taken from Carry (2012). The NEAs 1999 KW4, 2000 DP107 and 2002
CE6 are binary asteroids; for the �rst and third object the primary's mass is given,
whereas the mass for 2000 DP107 is the total mass of the system.

5see online tool at http://ssd.jpl.nasa.gov/sbdb.cgi
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1.4 Motivation

1.4 Motivation

A unique feature of the Earth, as opposed to the other terrestrial planets Mercury, Venus
and Mars, is that it owns a companion�the Moon�of considerable size and mass, that
potentially can alter the orbits of approaching bodies.
The majority of dynamical investigations neglect the Earth's moon, or Earth and

Moon are replaced by their combined center of mass. There are a few exceptions,
though, that point out what a crucial role the presence of the Moon can have.

Outline of current state

Yeomans and Chodas (1994) performed a numerical survey to predict which near-Earth
objects (both asteroids and comets) would approach the Earth in the near future, and
how many of them can become a threat. In their work they used the best available
ephemerides, including radar astrometry data. Although the authors employed a sophis-
ticated dynamical model by using the general relativistic equations of motion, including
perturbations from all planets, Yeomans and Chodas (1994) stated:

For objects making close Earth encounters, the Earth and Moon perturbations
must be treated separately. In extreme cases, a satisfactory orbit cannot be
computed without separating the Earth and Moon perturbations. [. . . ]

The orbital solution for 1991 VG was not successful until we abandoned the
approximation of having the combined Earth and lunar masses located at the
Earth-Moon barycenter.

It must be stressed, however, that this survey searched for close encounters in the next
200 years. On still longer timescales there are other (non-gravitational) e�ects that will
become important.
Kankiewicz (2002) analysed the motion of about 1000 NEAs for up to 1000 years in

two dynamical models including all perturbing planets. In the �rst model the Earth-
Moon barycenter was included as a single body, while the second model handled Earth
and Moon as separate objects. He compared the di�erence in the �nal positions of the
asteroids from both models. The key result was that including the Moon into the models
resulted in a signi�cant change of the �nal positions. This was demonstrated for seven
selected objects that showed the largest di�erence; all of them had close encounters to
the Earth-Moon system with low to moderate relative velocity (vrel ≤ 13 km/s).
The study of Domingos et al. (2004) is of special importance for the current work.

They studied the Moon's contribution to collisions with the Earth. For hypothetical
NEAs with relative velocities below 5 km/s in a planar four-body problem they found
that the Moon is able to de�ect incoming impactors in 2.6 % of cases, but also induces
additional collisions in 0.6 % of cases that otherwise would not have happened without
the Moon.
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Objectives for this work

In this thesis my goal is to investigate qualitatively and quantitatively the in�uence of
the Moon on close encounters of Near-Earth Asteroids to the Earth, and how the impact
frequency depends on the lunar parameters. Here are the key questions that will serve
as a guidance:

1. How does the Moon in�uence the trajectories of real Near-Earth Asteroids in the
long-term?

2. Does the presence of the Moon increase or decrease the number of impacts on
Earth?

3. Would changes in the lunar (orbital or physical) parameters a�ect the impact rate?

The �rst question will be addressed in chapter 3, where the lunar gravitational e�ect on
NEAs is investigated in di�erent dynamical models. For answering the second question
we have to take into consideration results that are spread over both chapters 3 & 4. In
chapter 4 I present the impact simulations that give insight to the third question.
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Chapter 2

Concepts and De�nitions

In this chapter I will introduce the necessary de�nitions on which the following chapters
rely, and will present the concepts applied in this work.
The coordinate systems used in this work are introduced in section 2.1, and the equa-

tions of motion are formulated for barycentric and heliocentric coordinates.
The equations of motion of the N -body problem have to be solved by numerical

integration methods, the two methods applied here (Lie series and symplectic integrator)
are detailed in section 2.2.
Section 2.3 introduces the Circular Restricted Three-body problem as a simpli�ed

dynamical model; additionally it is shown how the accuracy for its numerical solution
can be increased by the method of manifold correction.
In section 2.4 two concepts are presented, that allow to estimate the region of domi-

nating gravitational in�uence of a planet that is orbiting a much more massive star. The
�Hill sphere� and �Sphere of In�uence� are important when motion near a planet (or a
moon) is considered.
The basics of hyperbolic motion in the two-body problem are summarized in sec-

tion 2.5, including the hyperbolic f and g functions and the related hyperbolic Kepler
equation.
Another important issue is the generation of initial conditions with certain properties

for the simulation of virtual impactors. Section 2.6 presents a method for uniformly
distributing points on the surface of a sphere.

2.1 Coordinate systems

A number of di�erent coordinate systems are in use in celestial mechanics, e.g. barycen-
tric, heliocentric, Jacobian, and Poincaré coordinates (also known as democratic helio-
centric) (Beaugé et al., 2007; Milani and Gronchi, 2010). These coordinate systems are
used to express the accelerations (forces) arising from the Newtonian gravitational in-
teraction of several point-masses. Depending on the type of application each of those
systems has certain advantages. Here, the two most common systems are presented, the
barycentric coordinate system and the heliocentric coordinate system.

19
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By Newton's law the gravitational force is a radial-symmetric central-force of the type

F = f(r) er

with some scalar dependence f(r) only on the distance from the attracting mass, the
direction given by the radial unit vector er. In the classical Newtonian case for point
masses m1, m2 the function is

f(r) =
Gm1m2

r2
.

2.1.1 Barycentric coordinates

When describing the motion of N point masses the natural choice would be to use an
inertial system, as for every inertial system the linear momentum is conserved. As a
consequence the barycenter (center of mass) of theN point masses is moving at most with
a constant velocity vector relative to the chosen reference system. A simple formulation
of the equations of motion is obtained by choosing the barycenter as the origin of the
reference system.
Let the position vectors of the N point masses mn be rn (n = 1, . . . , N) in any chosen

inertial system. Then the barycenter is

b0 =
1

M

N∑
n=1

mn rn, M =
N∑
n=1

mn,

with M being the total mass of the system.
We introduce barycentric positions (velocities) by bi = ri − b0 (ḃi = ṙi − ḃ0). The

equations of motion for object i in barycentric coordinates are

b̈i = G
N∑
n=1
n6=i

mn
bn − bi
‖bn − bi‖3

(2.1.1)

where G is the universal gravitational constant.
The barycentric coordinates are used for the numerical integrations of the long-time

dynamics of Near-Earth Asteroids in section 2.2.1.

2.1.2 Heliocentric coordinates

The motion of objects in the solar system can alternatively be described by heliocentric
coordinates. The origin of the reference system is moved into the Sun, and the set of
equations of motion is reduced by three equations for the Sun.
For the following derivation we set m0 to be the mass of the central object (in general

the most massive object, i.e. the Sun) and b0 its position vector (not the barycen-
ter). Then, by subtracting this vector from all barycentric coordinates, we obtain the
heliocentric coordinates of object i as hi = bi − b0 (i = 1, . . . , N).
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The heliocentric equations of motion follow from the second derivatives ḧi = b̈i − b̈0

by inserting the appropriate equations (2.1.1)

ḧi = G
N∑
n=0
n6=i

mn
bn − bi
‖bn − bi‖3

−G
N∑
n=1
n6=0

mn
bn − b0

‖bn − b0‖

and splitting o� parts that involve m0 and mi.
When switching from barycentric to heliocentric coordinates, the vectorial di�erences

transform like bn−bi = hn−hi. Also note that h0 ≡ 0 (the zero vector), as it is chosen
to be the origin of the coordinate system. So we have

ḧi = −Gm0
hi
‖hi‖3

−Gmi
hi
‖hi‖3

+G
N∑
n=1
n6=i

mn
hn − hi
‖hn − hi‖3

−G
N∑
n=1
n6=i

mn
hn
‖hn‖3

.

Finally, the equations of motion for object i in heliocentric coordinates are

ḧi = −G (m0 +mi)
hi
‖hi‖3

+G
N∑
n=1
n6=i

mn

(
hn − hi
‖hn − hi‖3

− hn
‖hn‖3

)
. (2.1.2)

Changing the coordinate system's origin (e.g. to geocentric coordinates) is equally
simple for both barycentric and heliocentric coordinates. This task is performed by sub-
tracting the new central object's position vector from all other vectors (for the velocities
the same procedure holds). We will make use of heliocentric coordinates in the following
section.

2.1.3 Discussion

In contemporary applications there is little di�erence between barycentric and heliocen-
tric coordinates from the point of view of computing speed. The advantage of heliocentric
coordinates is, that the system of di�erential equations is reduced by three equations
for the motion of the Sun. This used to be an advantage only when a small number
of celestial bodies was considered, and where the di�erence in the number of equations
saved a considerable amount of computing time.
Today there remain a limited number of special applications for using one system

exclusively, e.g. barycentric coordinates are more appropriate for observations of exo-
planetary systems, whereas heliocentric coordinates are still preferred for analytical in-
vestigations where the expansion of the disturbing function is required.
Apart from these cases, in most applications there is no signi�cant advantage in com-

puting speed for either coordinate system. The large number (hundreds to thousands)
of objects computed simultaneously in recent numerical studies renders insigni�cant the
savings of three di�erential equations.
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However, there is a minor advantage in favour of the barycentric coordinates. The
barycentric equations of motions (2.1.1) contain fewer terms than their heliocentric coun-
terparts (2.1.2), which allows to translate them into a more compact and potentially more
e�cient computer code.

2.2 Solving the equations of motion

The equations of motion for the N -body problem consist of three di�erential equations
of second-order, or equivalently of six di�erential equations of �rst-order, per object. As
Poincaré has shown a general solution of the equations of motion does not exist for more
than two bodies due to the lack of integrals of motion. Even the most basic case � a
single Near-Earth Asteroid in orbit about the Sun being perturbed by the Earth, posing
a restricted three-body problem � cannot be handled analytically in general.
This obstacle makes it necessary to resort to numerical procedures to calculate the

orbital evolution of Near-Earth Asteroids under the in�uence of the planets. These
numerical procedures have to be rather e�cient, since we consider thousands of asteroids
over millions of orbital periods. A typical numerical integration scheme accumulates all
the accelerations on an individual object by directly summing all contributions from
massive �perturbers�, a process for which the complexity grows quadratically with the
number of involved objects. Once the accelerations have been calculated for every object,
the positions (and eventually velocities) are updated for the next time step. Typically the
time steps are smaller than the orbital period of any body, such that tens to hundreds of
time steps are needed per orbital period, depending on the accuracy of the computation.
In the following sections I describe the two numerical integration methods that were

mainly used to obtain the data for the long-term evolution of Near-Earth Asteroids.

2.2.1 Lie series integrator

The use of Lie-series for solving di�erential equations has been pioneered by Gröbner
and Knapp (1967), while they were introduced as a numerical integration method by
Hanslmeier and Dvorak (1984). A detailed introduction can be found in Eggl and Dvorak
(2010), while just a short summary will be given here.
Let z = (z1, . . . , zn) be the vector of dependent variables. The system of di�erential

equations to be solved is given by

dzi
dt

= fi(z), i = 1 . . . n.

The linear Lie-di�erential operator is de�ned as

D :=
n∑
i=1

fi(z)
∂

∂zi
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which is merely a linear combination of the functions fi, representing the right-hand side
of the system of di�erential equations, and the partial derivatives with respect to the
variables zi.
The Lie-series is de�ned as

L(z, t) :=
∞∑
k=0

tk

k!
Dkf(z) = exp(tD) f(z).

Using these two de�nitions it can be shown (Gröbner and Knapp, 1967; Hanslmeier and
Dvorak, 1984) that the solutions of the di�erential equations become

zi(t) = exp(tD) zi(0) i = 1 . . . n,

where zi(0) represent the initial conditions. It was assumed here that the initial condi-
tions are given at t0 = 0, but the method is not restricted to that. In fact any point
zi(t0) of the trajectory can be used to compute the next time-step zi(t0 + τ).
Essentially the Lie-series method is a Taylor-series expansion of the a-priori unknown

solution z(t), which is why the derivatives Dkf(z) have to be computed. In practice,
this is done by making use of a recurrence relation to calculate Dk+1 from the already
known {D1, . . . , Dk}. The so-called �Taylor� method of Jorba and Zou (2005) also uses
recurrence relations for a high order approximation of the Taylor series, but with the
distinctive di�erence that the latter uses recurrence formulas for the variables zi, while
the Lie-series method applies recurrence formulas for the derivatives Dk (by introducing
auxiliary variables).
The Lie-series method can be classi�ed as an explicit one-step method, i.e. a method

that needs only one single (previous) point of the trajectory, or � in other words � that
does not use or need past information about the solution.
Comparing the Lie-series method to other common numerical methods, like Runge-

Kutta or multistep methods, one can �nd several advantages:

1. The Lie-series method (like the linear multistep methods) only needs one evaluation
of the right-hand side of the di�erential equation system per time-step, which
renders it more e�cient than Runge-Kutta methods that need several substeps
(stages) per time-step.

2. The adaptive adjustment of the step-size is fairly easy, like in the case of (embed-
ded) Runge-Kutta methods. Changing the step-size when needed makes it well
suited for N -body dynamics, especially in the case when the mutual separation
between pairs of objects becomes small.

3. The variable and high-order approximation of the Taylor-series allows for a large
average step-size and small truncation errors at the same time.

The Lie-series method has been applied to the N -body problem given in barycentric
coordinates (as described in section 2.1.1) using the formalism of Hanslmeier and Dvorak
(1984).
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2.2.2 Mercury integrator

A di�erent class of numerical integration methods relies on the fact that for Hamiltonian
systems the phase-space volume is conserved due to a theorem by Liouville. Methods
that conserve the phase-space volume are called symplectic integrators, and they have
been successfully applied to the N -body problem (Kinoshita et al., 1990; Yoshida, 1993).
Hamilton's equations of motion for generalised coordinates qi and momenta pi in a

2n-dimensional phase space (i = 1 . . . n) read

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi

.

The variables can be gathered into a single vector z = (q,p). This allows to write the
above equations as

ż = {z, H(z)}

by de�ning the di�erential operator DH := {·, H} for a given Hamiltonian function H,
and using the Poisson bracket

{A,B} =
n∑
i=1

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
.

In analogy to the Lie-series, the solution can now formally be written as

z(t) = exp(τDH) z(t0)

with τ = t − t0. To actually obtain a solution, the Hamiltonian H has to be separated
into parts that can be solved independently. Often the Hamiltonian will be split into
kinetic and potential energy of the form H = T (p) + U(q), but other forms are also
admissible and can be advantageous.
One such alternative splitting was proposed by Chambers (1999), where he used mixed

coordinate variables, namely heliocentric positions and barycentric velocities. This al-
lows to split the Hamiltonian into three parts H = HA +HB +HC , being the two-body
part HA for Keplerian motion about the Sun, the interaction part HB involving the per-
turbations from all other bodies, and a part HC including the kinetic energy of the Sun.
Apart from close encounters it holds that HA � HB and HA � HC ; as a consequence
the symplectic integrator has a local error of O (ε τ 3), with ε ∝ mi/m0.
Close encounters need a special handling in order to cope with the �xed step size.

When objects α and β approach each other their mutual distance rα,β becomes small
and then HA ∼ HB. Chambers introduced a changeover function K(ri,j), which has the
properties that K → 0 for ri,j � 1 and K → 1 for large separation ri,j. The interaction
terms are split between HA (∝ 1−K(ri,j)) and HB (∝ K(ri,j)), so it is guaranteed that
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HA � HB at all times. When the objects are well separated K → 1 and HA represents
still the two-body motion; on the other hand for a close encounter HA will contain the
three-body problem including Sun and the two objects (α, β). Any objects not involved
in the close encounter will still move on nearly two-body orbits.
The three-body problem cannot be solved analytically, so in practice the close encoun-

ters of two bodies are treated numerically by a conventional Bulirsch-Stoer integrator
(Press et al., 1992). This integrator is able to handle large time-steps by splitting them
into a sequence of (increasingly smaller) sub-steps, and then to extrapolate them to the
limit of step-size τ → 0 (see Eggl and Dvorak, 2010). The accuracy of the Bulirsch-Stoer
extrapolation method can be tuned by a user-de�ned parameter, a typical value for the
local error tolerance is 10−12, but also values close to machine precision are possible.
The changeover function K(ri,j) depends on another free parameter, the critical dis-

tance rcrit, which determines the begin of a close encounter. Chambers (and other
authors) recommend a value of rcrit = 3− 10 times the Hill-radius of the involved bod-
ies.
The hybrid symplectic integrator of the Mercury package (Chambers, 1999) combines a

high speed (and moderately accurate) second-order symplectic method with the accuracy
of the Bulirsch-Stoer method during close encounters, the whole integration method
remains symplectic. The advantage of this method is that the angular momentum of the
system is very well conserved, which is a common property of symplectic integrators.
This integrator has been applied to the N -body problem to follow the orbital evolution
of Near-Earth Asteroids.

2.3 Circular restricted three-body problem

The Circular Restricted Three-Body Problem (CR3BP) is a special case of the general
three-body problem. It might seem to be an overly simplistic model of not much practical
importance, but in fact it serves as a reasonable �rst approximation in many cases, e.g.
for the dynamics of Trojan asteroids in the solar system; for a more complete list of
applications see Dvorak and Lhotka (2013, chapter 6). The CR3BP consists of two
massive objects (m1, m2) � called primary and secondary � that move on circular orbits
about their common barycenter; and one object of negligible mass (the particle).
In the derivation of the equations of motion for the spatial CR3BP I will follow the

example of Murray and Dermott (1999) and Szebehely (1967). Figure 2.1 shows a sketch
of the con�guration of the CR3BP. The graph collects the most important parameters
that are de�ned and used in the following sections.

2.3.1 Equations of motion

The massless particle does not perturb the orbits of m1, m2 which stay on circular
orbits forever. Consequently there is no need to solve for their equations of motion, and
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Figure 2.1: A schematic overview of the CR3BP. This planar view shows the two coordi-
nate systems: the inertial (sidereal) system (ξ, η), and the rotating (synodic)
system (x, y). The latter rotates with constant angular frequency n relative
to the inertial system. The primaries Earth and Moon are �xed on the x-axis
and their distance is normalised to 1. The massless particle P moves under
the in�uence of both primaries.

it is su�cient to solve three coupled second-order ordinary di�erential equations for the
motion of the particle.
Let (ξ, η, ζ) be the coordinates (�sidereal coordinates�) of the particle in an inertial

frame, and let the origin be the center of mass. It is common to use units for which the
gravitational constant becomes unity; this is achieved by setting the unit-distance to the
distance between m1 and m2, and the unit-mass to the sum of masses m1 + m2. Then
the masses can be expressed as µ1 = m1/(m1 +m2), µ2 = m2/(m1 +m2), where usually
µ2 < µ1 is assumed. The unit-time must be chosen appropriately in order to ful�ll the
required condition G ≡ 1.
We can obtain the sidereal equations of motion by using the barycentric coordinate

formulation from equation (2.1.1) (for i = 3, n = 1, 2)

ξ̈ = µ1
ξ1 − ξ
ρ3

1

+ µ2
ξ2 − ξ
ρ3

2

η̈ = µ1
η1 − η
ρ3

1

+ µ2
η2 − η
ρ3

2

ζ̈ = µ1
ζ1 − ζ
ρ3

1

+ µ2
ζ2 − ζ
ρ3

2

,

(2.3.1)

26



2.3 Circular restricted three-body problem

where the distances of the particle to m1 and m2 are given by:

ρ2
1 = (ξ − ξ1)2 + (η − η1)2 + (ζ − ζ1)2

ρ2
2 = (ξ − ξ2)2 + (η − η2)2 + (ζ − ζ2)2 .

The variables (ξn, ηn, ζn) (for n = 1, 2) are the time dependent components of the pri-
maries' position vectors in the inertial frame; explicit expressions will be stated below.
Now, instead of an inertial reference frame, we change to a rotating coordinate sys-

tem. Let (x, y, z) be Cartesian coordinates in a rotating reference system (�synodic
coordinates�), in which both massive objects are always located on the x-axis at

(x1, y1, z1) = (−µ2, 0, 0), (x2, y2, z2) = (µ1, 0, 0).

This setup of the CR3BP uses the de�nition of Murray and Dermott (1999), note that
Szebehely (1967) uses the opposite con�guration with µ1 and µ2 being exchanged in the
formulas above. The coordinate system (x, y, z) rotates with constant angular speed
n = 1 relative to (ξ, η, ζ), because of the normalised units of length, mass, and time.
We use the standard rotation matrix Rz for rotations about the z-axis to transform

between the sidereal and synodic coordinate systems for arbitrary times t: ξ
η
ζ

 =

 cos t − sin t 0
sin t cos t 0

0 0 1

 x
y
z

 . (2.3.2)

From this rotation matrix it is clear that after each complete revolution at times t = 2πk
(k ∈ N) the two coordinate systems are aligned. This coordinate transform also enables
us to express the inertial coordinates of m1 and m2 as functions of time t and the �xed
synodic positions:

(ξ1, η1, ζ1) = (−µ2 cos t,−µ2 sin t, 0)

(ξ2, η2, ζ2) = (+µ1 cos t,+µ1 sin t, 0).

For the accelerations we take the time derivatives d2/dt2 on both sides of equation
(2.3.2) to obtain  ξ̈

η̈

ζ̈

 =

 cos t − sin t 0
sin t cos t 0

0 0 1

 ẍ− 2ẏ − x
ÿ + 2ẋ− y

z̈

 .

Using this last relation and inserting equations (2.3.1) we �nd � after some algebra �
the synodic equations of motion

ẍ− 2ẏ = x− µ1
x+ µ2

r3
1

− µ2
x− µ1

r3
2

ÿ + 2ẋ = y − µ1
y

r3
1

− µ2
y

r3
2

z̈ = −µ1
z

r3
1

− µ2
z

r3
2

,

(2.3.3)
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where now the distances of the particle to the primaries m1 and m2 are given by

r2
1 = (x+ µ2)2 + y2 + z2

r2
2 = (x− µ1)2 + y2 + z2.

The right hand side of equations (2.3.3) can be written as the gradient of the pseudo-
potential

U(x, y, z) =
1

2
(x2 + y2) +

µ1

r1

+
µ2

r2

in which the �rst term is due to the rotating coordinate system, the other terms stem
from the gravitational potential of the massive bodies.
Szebehely (1967) points out that the CR3BP can be de�ned to depend on the single

parameter µ by setting

µ2 → µ ≡ m2

m1 +m2

, µ1 → 1− µ.

In the rotating system there exists a constant of motion, the so called Jacobi constant
(or Jacobi integral)

C = 2U − v2 = x2 + y2 + 2

(
µ1

r1

+
µ2

r2

)
−
(
ẋ2 + ẏ2 + ż2

)
. (2.3.4)

It is this constant that will play an important role in the following section.

2.3.2 Manifold correction

The accurate and e�cient numerical integration of the equations of motion requires
highly skilled solver methods. It is common to monitor some known conserved quanti-
ties (integrals) of the problem � such as the total speci�c energy or the total angular
momentum in the N -body problem � to measure the quality of an integration method.
Instead of only passively monitoring the errors via integrals of motion, it was proposed

by Nacozy (1971) to actually use the integrals to ensure that the numerical solution sat-
is�es the conserved quantities. This is achieved by forcing corrections to the integrated
variables at every integration step; this procedure is equivalent to projecting the vari-
ables back onto the integral's manifold (Hairer et al., 2006), hence the name �manifold
correction� (MFC).
Murison (1989) applied Nacozy's MFC to the CR3BP by using Lagrange multipliers

to correct errors in the integrated coordinates. He demonstrated that with MFC one can
achieve an accuracy of 10−14 in the accumulated Jacobi constant error (in the absence
of collisions), where for comparison with regularisation the error is of order 10−15 (see
his Table 1).
Fukushima (2003) extended the MFC method by including integral invariant relations,

and presented an application to the perturbed two-body problem. An integral invariant
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2.3 Circular restricted three-body problem

is an analytical function I = I(r,v) of position (r) and velocity (v = ṙ). The method
of Fukushima extends the equations of motion by the equation for the time evolution
of the integral invariant, i.e. he adds dI/dt to the system of di�erential equations to
be solved. By integrating it in parallel to the variables, it is possible to compare its
integrated value I(t) with the one obtained from the integrated variables I(r(t),v(t)).
After each integration step (r,v) are modi�ed by a scale transform

(r,v) 7−→ (sr, sv),

where the scale factor s ∈ R must be determined such that the integrated I(t) and the
evaluated I(r(t),v(t)) are identical.
I have derived the necessary transformations to achieve the �Jacobi constant consis-

tency� for the CR3BP. This new MFC method is independent of the work of Murison
(1989), it is rather related to the work of Fukushima (2003) for the �Kepler energy
consistency� in the two-body problem.
The Jacobi constant in equation (2.3.4) can be written in a form similar1 to the total

energy in the two-body problem

−C
2

= T − U =
1

2
v2 −

(
1

2
(x2 + y2) +

µ1

r1

+
µ2

r2

)
with the kinetic energy T and the potential energy −U . When the scaling transform
from above is applied, we have

v2 7−→ v̂2 = s2v2

T 7−→ T̂ = s2T

r2
1 7−→ r̂2

1 = s2
(
x+

µ2

s

)2

+ s2y2 + s2z2 = s2r̃2
1

r2
2 7−→ r̂2

2 = s2
(
x− µ1

s

)2

+ s2y2 + s2z2 = s2r̃2
2

U 7−→ Û =
1

2
s2(x2 + y2) +

µ1

sr̃1

+
µ2

sr̃2

.

To simplify the expressions and to make clear the analogy to Fukushima's paper, let us
de�ne

C̃ = −C
2

; T̃ = T − 1

2
(x2 + y2); Ũ = −µ1

r̃1

− µ2

r̃2

,

so that after executing the scale transform it follows

C̃ = s2T̃ +
Ũ

s
.

1As Murray and Dermott (1999) point out, the Jacobi constant is not an energy integral, in the CR3BP
the energy and angular momentum are not conserved.
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The scale factor s can then be computed from

f(s) = T̃ s3 − C̃s+ Ũ = 0

by some numerical root-�nding procedure, for instance the standard Newton-Raphson
method2. This type of transformation is similar to the near-identity transformations
from perturbation theory, so s0 = 1 is a natural choice. Using this initial guess, the �rst
Newton-Raphson iteration delivers the re�ned approximation

s1 =
2T̃ − Ũ
3T̃ − C̃

.

The iteration process continues until some prescribed accuracy ‖f(sn)‖ < ε is achieved,
usually this happens after one or two iterations (n ≤ 2); the value of s always remains
close to 1.
There are some points worth mentioning:

• It is not necessary to integrate the time evolution of the Jacobi constant, because
dC/dt = 0 anyway. The synodic equations of motion (2.3.3) remain unaltered.

• We need to scale (r(t),v(t)) to �t with C̃ = −C/2, which is a constant obtained
once and for all from the initial conditions C = C(r(t = 0),v(t = 0)).

• The modi�ed distances r̃i involve a rescaling of the masses µi/s, which leads to the
interesting e�ect that not only the coordinates, but also the masses are modi�ed.

Figure 2.2 shows an example of the MFC method. The two-body problem with eccen-
tricity e = 0.8 was integrated with a Runge-Kutta (RK) type method (error tolerance
10−12) without correction (left panel), and with correction of the Kepler energy (right
panel). The RK method exhibits a linear error growth in the conserved quantities (black
curve for the theoretical behaviour). The other constants of motion (green: magnitude
of the angular momentum vector; blue: magnitude of the Laplace-Runge-Lenz vector,
which points to the pericenter) are included to show that they have a similar error
growth. In the corrected case they still show the linear error trend, but note that the
error is lower by about 1−2 orders of magnitude. After MFC the Kepler energy does not
have a linear trend, but the remaining error comes from the accumulation of round-o�
errors (Quinn and Tremaine, 1990).

2.4 Estimating the domain of planetary in�uence

There are di�erent ways to characterise the region around a planet, where its own
gravitational attraction is the major source acting on a test particle. Here the concepts
of the �Hill sphere� and the �sphere of in�uence� (SOI) are presented.
2Fukushima discusses the possibility of using the analytic formula for cubic equations (Cardano's
formula), but prefers the numerical method for its higher speed.
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Figure 2.2: An example for the e�ect of the manifold correction method in the two-body
problem for an eccentricity e = 0.8. On the left no correction is applied, on
the right the Kepler energy is corrected only. MFC improves also the errors
of the uncorrected integrals of motion by about an order of magnitude.

2.4.1 Hill sphere

For the case of a nearly massless object (e.g. a Near-Earth Asteroid) under the grav-
itational in�uence of the Sun and a planet, the latter will a�ect the asteroid's orbit
appreciably only at close approaches. The exact boundary for a �close approach� (or
close encounter) is not well de�ned. Based on the work of Hill the notion of the �Hill
sphere� has become common as an estimate for the region around a planet where it
dominates the dynamics of approaching smaller objects.
The derivation of the Hill sphere starts from the equations of motion (2.3.3) for the

circular restricted three-body problem (CR3BP) in section 2.3 (Murray and Dermott,
1999, chapter 3.13).
We recapitulate the de�nition of the normalised mass-ratio µ of the planet to the total

mass of the system

µ =
m2

m1 +m2

,

and that the synodic reference frame rotates with the constant angular speed of n = 1.
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Then some simpli�cations can be applied, namely:

1. we consider the planar case (z = z̈ = 0) only,

2. the mass-ratio is assumed to be very small µ� 1,

3. and the origin of the coordinate system is shifted to the location of the second
mass (by x 7→ 1 + x, y 7→ y).

The simpli�cations from above result in the transformed equations of motion:

ẍ− 2ẏ − (1 + x) = −
(

1 + x+ µ

r3
1

+ µ
x

r3
2

)
ÿ + 2ẋ− y = −

(
y

r3
1

+ µ
y

r3
2

)
As the mass-ratio µ is very small, terms of O (µ) and higher are neglected, the mutual

distances are expressed as

r1 ≈ (1 + 2x)1/2, r−3
1 ≈ 1− 3x, R ≡ r2 = (x2 + y2)1/2,

and the equations from above are transformed into

ẍ− 2ẏ =
(

3− µ

R3

)
x

ÿ + 2ẋ = − µ

R3
y.

The stationary solutions of this system for ẋ = ẏ = ẍ = ÿ = 0 are

0 =
(

3− µ

R3

)
x

0 = − µ

R3
y

and � excluding the trivial solution (x, y) = (0, 0) � it follows from the �rst equation for
the Hill radius RHill that

RHill =
(µ

3

) 1
3
.

Changing back from normalised units to physical units that involve the planet's distance
a and its eccentricity e,

RHill = a(1− e)
(µ

3

) 1
3

(2.4.1)

with µ being the mass ratio of planet to host star (e.g. Earth to Sun). This form for
the Hill radius is a somewhat conservative estimate, because the eccentricity is usually
negligible for planets, but the perihelion distance q = a (1− e) gives a tighter bound for
the Hill sphere than the distance a alone.
Within the Hill sphere the major gravitational attraction stems from the planet, while

the Sun and all other planets can be considered as perturbers.
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2.4 Estimating the domain of planetary in�uence

2.4.2 Sphere of in�uence

The �sphere of in�uence� (SOI) (Stump�, 1965) is another concept to assess where the
motion of a test particle (considered to be massless) is dominated by a planet instead of
the Sun. Stump� (1965) pointed out that the SOI cannot be expressed unambiguously,
because it depends on the choice of the reference system used (e.g. barycentric or
heliocentric coordinates). The straight-forward way would be to compare the magnitudes
of the resulting forces (accelerations) by the Sun and a planet on the test particle.
If one used barycentric coordinates, one would obtain values that underestimate the
real in�uence of the planet. A better estimate uses heliocentric and planetocentric
coordinates and compares the relative perturbative accelerations in both systems to
estimate a region of a planet's in�uence.
The underlying dynamical model is the restricted three-body problem consisting of

the Sun, a planet (e.g. Earth), and a massless object (e.g. Near-Earth Asteroid), where
the respective masses are m1 � m2 � m3 ≈ 0. The following derivation follows that in
Stump� (1965).

Equations of motion in heliocentric coordinates

In heliocentric coordinates the acceleration ḧ3 of m3, under the in�uence of m1 and m2,
is given by equation (2.1.2)

ḧ3 = −Gm1
h3

r3
1,3

−Gm2

(
h2

r3
1,2

+
h3 − h2

r3
2,3

)
. (2.4.2)

The �rst part FS is the acceleration due to the Sun, and the second part FP is due
to the planet. When comparing the magnitudes one usually �nds that |FP | < |FS|, as
long as the asteroid is not in the vicinity of the planet, so (with |h2| = r1,2, |h3| = r1,3,
|h3 − h2| = r2,3)

FP/FS =

(
m2

∣∣∣∣ h2

r3
1,2

+
h3 − h2

r3
2,3

∣∣∣∣) /(m1

r2
1,3

)
. (2.4.3)

Equations of motion in planetocentric coordinates

The situation is contrary to the one before, when the asteroid has approached the planet
closely enough so that the main source of acceleration is the planet itself, and the Sun
is the perturber.
The heliocentric acceleration of the planet m2 is completely determined by the two-

body problem

ḧ2 = −G (m1 +m2)
h2

r3
1,2

, (2.4.4)

which involves only the Sun m1, as m3 is negligible and does not contribute.
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Switching to planetocentric coordinates p = h3 − h2, the acceleration is now p̈ =
ḧ3 − ḧ2. This expression can be assembled from the heliocentric acceleration ḧ3 of the
asteroid, and the corresponding heliocentric acceleration ḧ2 of the planet.
Combining the two expressions (2.4.2) and (2.4.4) leads to

p̈ = ḧ3 − ḧ2 = −Gm2
p

r3
2,3

−Gm1

(
h3

r3
1,3

− h2

r3
1,2

)
.

Here, the �rst part F ′P is the acceleration from the planet, which is larger in magnitude
than the second part F ′S from the Sun, as long as the asteroid is close enough to the
planet (remember that |p| = |h3 − h2| = r2,3):

F ′S/F
′
P =

(
m2

r2
2,3

)
/

(
m1

∣∣∣∣ h3

r3
1,3

− h2

r3
1,2

∣∣∣∣) . (2.4.5)

Comparison of the perturbations

Now the task is to �nd the distance from the planet at which the relative perturbations
become equal in magnitude. After equating equations (2.4.3) and (2.4.5) and squaring
them, it follows (with the mass-ratio µ = m2/m1)

r4
2,3

(
h3 · h3

r6
1,3

− 2
h2 · h3

r3
1,2r

3
1,3

+
h2 · h2

r6
1,2

)
= µ r4

1,3

(
h2 · h2

r6
1,2

+ 2
h2 · p
r3

1,2r
3
2,3

+
p · p
r6

2,3

)
.

To simplify this equation one introduces the angle θ between h2 and p, and the
parameter u < 1 in r2,3 = u r1,2, which expresses that the asteroid must be closer to the
planet than its distance to the Sun (i.e. r2,3 < r1,2). For the distance of the asteroid to
the Sun r1,3 it follows from trigonometric relations that

r2
1,3 = r2

1,2 + r2
2,3 + 2 r1,2 r2,3 cos θ = r2

1,2(1 + 2u cos θ + u2).

Inserting all the relevant expressions from above and simplifying the formula one
obtains

u8
(

1− 2(1 + u cos θ)
√

1 + 2u cos θ + u2 + (1 + 2u cos θ + u2)2
)

=

= µ4 (1 + 2u cos θ + u2)4 (1 + 2u2 cos θ + u4).

We need to solve the above equation for u = u(µ, θ). Since u is a small parameter, one
can perform a Taylor expansion of the square-root which leads to

u10
(
1 + 3 cos2 θ +O

(
u1
))

= µ4
(
1 +O

(
u1
))

and by ignoring the higher-order terms in u it follows that

u(µ, θ) =
µ2/5

(1 + 3 cos2 θ)10 .

34



2.4 Estimating the domain of planetary in�uence

This can be further simpli�ed by ignoring the denominator, which is bounded between
0.87 and 1. Then the SOI in physical units is obtained from r2,3 = r1,2 u, by using the
semi-major axis a instead of r1,2,

RSOI = a µ
2
5 . (2.4.6)

2.4.3 Comparison

Comparing the two equations (2.4.1) and (2.4.6) one will notice a distinctive di�erence:
the Hill sphere includes the planet's eccentricity while the SOI does not. This asymmetry
is somewhat unfortunate, and a remedy would be to introduce the eccentricity also into
the formula for SOI (or remove it from the Hill sphere formula)3.
Still it has to be remarked that � strictly speaking � the use of µ in both equations

means di�erent things. As the Hill radius has been derived from the restricted three-
body problem, the meaning is µ = m2/(m1 + m2), while for the SOI it is µ = m2/m1.
Remembering the assumption of small mass ratio for the Hill sphere (m2 � m1), it can
be argued that in practice the mass ratio is meaning the same µ ≈ m2/m1.
The admissible parameter range for µ is 0 ≤ µ ≤ 0.5 (using the original form as

for the CR3BP), which means that the higher power of µ for the SOI will result in
smaller values for typical planetary mass ratios of µ < 10−3. For higher mass ratios the
situation changes with the SOI being larger than the Hill sphere (typically for binary
stars or star�brown-dwarf pairs).
Figure 2.3 shows the functional dependence on the mass ratio µ for the case of circular

orbits and using a normalised distance a = 1. Due to the higher power in µ the SOI
grows faster and is bigger for high mass ratios, while the Hill sphere is bigger for small
mass ratios. Both spheres are equal for a planet of about 4 Jupiter masses (at e = 0,
see formula below).
Until this point the eccentricity has been ignored. Now, using the eccentricity in the

equation for the Hill sphere, but not for the SOI, the two expressions (2.4.1) and (2.4.6)
are equal if

µ(e) = (1− e)15/35,

independent of the semi-major axis a (the other case for µ → 0 is not of interest).
Obviously there is a strong dependence on the eccentricity. Consequently one has to
take care of this fact even when low mass ratios are considered.
Figure 2.4 shows how the curve µ(e) behaves for a wide range of eccentricities. In

the area below the curve the Hill sphere is larger than the SOI, while everywhere above
the curve the case is opposite. As an example even a moderate eccentricity of e ≥ 0.1
leads to a transition of RHill < RSOI for mass ratios typical of the solar system (the grey
shaded area).
3Doing so I have to admit that the following discussion becomes pointless, but both de�nitions can be
found in the textbooks like they are given here, so I will go on using the eccentricity only for the
Hill sphere.
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Figure 2.3: Showing the dependence of Hill sphere and SOI on the mass ratio for circular
orbits (e = 0). The di�erent slopes result from the di�erent powers of µ; they
indicate that the SOI is smaller for small µ, but it grows quicker for large
µ. The size of the region is normalised to unit distance a = 1; vertical lines
indicate the corresponding mass ratios for Earth and Jupiter.
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2.5 Hyperbolic trajectories

planet a [AU] eccentricity mass [M�] RHill [106 km] RSOI [106 km]

Mercury 0.39 0.206 1.66× 10−7 0.175 0.112
Venus 0.72 0.007 2.45× 10−6 1.004 0.616
Earth 1.00 0.017 3.00× 10−6 1.472 0.925
Mars 1.52 0.093 3.23× 10−7 0.983 0.577
Jupiter 5.21 0.049 9.55× 10−4 50.56 48.23
Saturn 9.58 0.056 2.86× 10−4 61.83 54.80
Uranus 19.23 0.044 4.37× 10−5 67.15 51.90
Neptune 30.10 0.011 5.18× 10−5 115.1 86.92

Table 2.1: Parameters for the calculation of the Hill radius and SOI radius for the planets
in the solar system. Note that RHill and RSOI depend linearly on a, but only
with some fractional power on the mass.

The transition point, where the SOI becomes larger than the Hill sphere, can be
shifted to such low mass ratios, that the usual assumption of the Hill sphere being
the right measure for the gravitational in�uence of a body might be invalid. This can
be true especially for highly eccentric exo-planetary systems consisting of two or more
Jupiter-size planets.

After this discussion lets compare the two estimates for the solar system, table 2.1
provides the data. The values are visualised in �gure 2.5 for better comparison. Due to
the mostly low eccentricities in general the SOI is smaller than Hill sphere, while Jupiter
is close to the transition mass ratio.

One important use of the Hill sphere and SOI is in numerical integrations of the
motion of minor bodies. A close encounter between a planet and an asteroid is often
de�ned to occur whenever the latter comes closer to the planet than several Hill radii.

2.5 Hyperbolic trajectories

In the two-body problem the trajectory of an object is determined by the initial condi-
tions for all times (in the absence of external perturbations). Depending on the actual
value of the Hamiltonian (total energy) either bounded motion (circular or elliptic) or
unbounded motion (parabolic or hyperbolic) can occur; a third special case is rectilinear
motion that will not be considered here.

To follow the trajectory of an object, (r(t),v(t)) for t ∈ R, the f and g functions
provide an easy way by means of simple analytical formulae.
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Figure 2.5: Comparison of the Hill radius and sphere of in�uence for planets in the solar
system. Note the logarithmic scaling of the vertical axis; units are in millions
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2.5.1 Hyperbolic f and g functions

The f and g functions map a given initial condition (r(t0),v(t0)) = (r0,v0) at time t0
to time t, as long as the angular momentum L 6= 0 (the reason will become clear a bit
later). The new position and velocity are given by

r(t) = f(t, t0) r0 + g(t, t0)v0

v(t) =
∂f(t, t0)

∂t
r0 +

∂g(t, t0)

∂t
v0

The f and g functions can be expressed either in terms of the eccentric anomaly, or of
the true anomaly. In Danby (2003) and other literature preferentially the corresponding
expressions for the elliptical case are discussed. For later purposes the hyperbolic forms
are required here, and a short derivation will be presented.

For hyperbolic motion the eccentricity is e > 1, and hyperbolic trigonometric functions
have to be used (Burkardt and Danby, 1983). Besides the true anomaly ϕ, an auxiliary
variable � called hyperbolic eccentric anomaly H (in analogy to the elliptic eccentric
anomaly E) � is de�ned. In the orbital plane the position and velocity components are
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2.5 Hyperbolic trajectories

parametrised by

x(H) = a(e− coshH)

y(H) = a
√
e2 − 1 sinhH

ẋ(H) = − n a2

r(H)
sinhH

ẏ(H) =
n a2
√
e2 − 1

r(H)
coshH

(2.5.1)

with the radial distance given by r(H) = a(e coshH − 1).
The hyperbolic form of Kepler's equation (KE), relating the time t to the hyperbolic

anomaly H, after Ta� (1985) reads

e sinhH −H = n(t− T ) (2.5.2)

where T is the time of pericenter passage (here it can be regarded as an arbitrary
constant). Like its elliptic counterpart this equation is transcendental, meaning that no
closed-form solution can be given.
To obtain the f , g functions one starts from

f =
1

D
(x ẏ0 − ẋ0 y)

g =
1

D
(x0 y − x y0)

D = x0 ẏ0 − ẋ0 y0 = |L|

and has to insert the corresponding expressions from equation (2.5.1), and must also use
equation (2.5.2). After some time twiddling with the resulting equations we arrive at

f(t, t0) = 1 +
a

r0

(
1− cosh(H −H0)

)
g(t, t0) = (t− t0) +

1

n

(
(H −H0)− sinh(H −H0)

)
ḟ(t, t0) = −n a

2

r r0

sinh(H −H0)

ġ(t, t0) = 1 +
a

r

(
1− cosh(H −H0)

)
(2.5.3)

where we have used ḟ = ∂f
∂t
, ġ = ∂g

∂t
for the third and fourth formula.

2.5.2 Solving the hyperbolic Kepler equation

In the way that the equations (2.5.3) are formulated, the only unknown parameter H
is linked to time t (under the assumption that H0 for t0 has already been calculated).
It would be possible to use directly equation (2.5.2) to determine H, but the slightly
modi�ed version (2.5.4) below proves to be more useful.
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Figure 2.6: The in�uence of the parameters eccentricity e and initial hyperbolic anomaly
H0 on the shape of the modi�ed hyperbolic Kepler equation. Left panel: e
is varied for a �xed value of H0 = −5 rad. Right panel: H0 is varied for two
�xed values of e (solid line: e = 2, dotted line: e = 1.001).

The modi�ed hyperbolic Kepler equation

The original hyperbolic Kepler equation (2.5.2) is written for the times t and t0

e sinhH −H = n(t− T )

e sinhH0 −H0 = n(t0 − T ).

By subtracting the two equations from each other the arbitrary constant T cancels out,
and it remains

e sinhH − e sinhH0 − (H −H0) = n(t− t0).

This can be further simpli�ed with x = ∆H = H −H0, ∆t = t− t0, and using trigono-
metric addition theorems to expand into the modi�ed hyperbolic Kepler equation (or
extended KE)

e coshH0 sinhx+ e sinhH0(coshx− 1)− x = n∆t = ∆M. (2.5.4)

As there are three parameters now (e,H0,∆M), it is not intuitive to get a feeling for
the in�uence of each of them. A visualisation of a few random cases is provided in �gure
2.6. In the left part the initial hyperbolic eccentric anomaly is �xed to H0 = −5 radians,
with increasing eccentricity the curves are shifted horizontally to the right along the
∆M axis. It is obvious that around ∆M ≈ 100 there is a sharp transition; and based
on the exponential nature of the hyperbolic trigonometric functions a little change in
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2.5 Hyperbolic trajectories

∆H has to be compensated by a tremendous increase of ∆M in equation (2.5.4). In
the right part the in�uence of the parameter H0 is shown, where each pair of curves
represents two di�erent eccentricities, namely e = 2 for the solid curves and e = 1.001
for the dotted ones. The third parameter is the mean anomaly di�erence ∆M , from
which, together with the other two parameters, the value of ∆H has to be computed.
Finally the remaining obstacle is to solve the modi�ed (or extended) form of the

hyperbolic Kepler equation

h(x) = ex sinhx+ ey(coshx− 1)− x−∆M = 0,

ex = e coshH0,

ey = e sinhH0,

by any suitable numerical root-�nding procedure, e.g. the well-known Newton-Raphson
method. The computational details are discussed in the paper of Fukushima (1997). It
is important to note that the parameter domain is large compared to the elliptic case,
as 1 < e <∞ and 0 ≤ ∆M <∞ is admissible, which raises the problem to �nd a good
starting value.

Small ∆M region

A suitable starting value x0 is found by the natural choice x0 = 0 and by inserting this
into the Newton-Raphson method. The �rst iteration gives

x0 =
∆M

ex − 1

which is well suited for the �small ∆M region�. By numerical experiments it was found
to be suitable for values of 0 ≤ ∆M < 100 radians. Additionally, this starting value
initially overestimates the hyperbolic eccentric anomaly di�erence x, which has been
shown to be optimal for the convergence of the Newton-Raphson method (Charles and
Tatum, 1997).

Large ∆M region

For larger values of ∆M Burkardt and Danby (1983) have presented the starting value

x0 = ln

(
2∆M + 1.8 e

ex + ey

)
.

It uses the fact that for values of x > 10 the hyperbolic trigonometric functions sinh(x)
and cosh(x) behave like exp(x).
Both starting value formulas can be used successfully for a wide range of ∆M values

(i.e. for long time spans), two examples are shown in �gure 2.7. The small ∆M region
extends to about ∆H = 1 (∆M < 100). The curves present the magnitude of the
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Figure 2.7: The starting values for iteration procedures provide good results only on
limited intervals. Here two cases are shown: on the left for an eccentricity
slightly above 1 and H0 = 1.71, on the right for an eccentricity of e = 2 and
H0 = −5. The black curves show the starting value designed for large ∆M ,
the grey curves represent the small ∆M starting value.

deviation by which the starting value di�ers from the true solution; as a visual aid the
horizontal line for an error equal to 1 is plotted as a dotted line. The grey curve shows
the small ∆M starting value, whereas the black curve shows the large ∆M starting
value. One case is for an eccentricity of e = 2 and H0 = −5, a particularly di�cult case
for the large ∆M formula, which starts to become acceptable only for ∆M > 1000, but
quickly increases in accuracy. The other part of the �gure shows a challenging case for
a very low hyperbolic eccentricity of almost 1, which is typical for an object on a nearly
parabolic orbit hitting the Earth with a speed of just slightly above the escape velocity.
In chapter 4 the hyperbolic f and g functions will be used to trace back the trajectories

of objects that have impacts with the Earth.

2.6 Distribution of points on a sphere

An iterative procedure is applied to uniformly distribute points on the surface of a sphere.
Following the description of Reyes-Ruiz et al. (2012) the Fuller spherical distribution is
constructed using the method of Sa� and Kuijlaars (1997). Starting from the geometrical
�gure of an icosahedron, the number of vertices is increased exponentially to cover the
surface of the sphere with uniformly distributed points.
An icosahedron has 12 vertices, the set of those points is

I = {(0,±1,±ϕ), (±1,±ϕ, 0), (±ϕ, 0,±1)} ,

where ϕ = 1
2
(1 +

√
5) ≈ 1.618 is the golden number. Every vertex point has �ve

neighbouring points, together they form an equilateral pentagon (see �gure 2.9). The

42



2.6 Distribution of points on a sphere

-90

-60

-30

 0

 30

 60

 90

-180 -150 -120 -90 -60 -30  0  30  60  90  120  150  180

la
tit

ud
e 

[d
eg

]

longitude [deg]

Iteration #5

Figure 2.8: Projection of the vertices of a polyhedron onto the plane after 5 iterations.

length of each edge is ‖Pm Pn‖ = 2 (m 6= n), and the radius of the circumscribed sphere
to the icosahedron is r =

√
1 + ϕ2.

The process of constructing additional points consists of the following steps:

1. choose any point Pm ∈ I of the icosahedron and �nd its 5 nearest neighbours Pn;

2. �nd the middle point Mm,n = 1
2

(Pm + Pn) on the line connecting these two points
and add it as a new vertex;

3. repeat this for all other vertices excluding pairs already processed (Mm,n ≡Mn,m);

4. and �nally project all vertices to the (unit) sphere.

Let us denote by Ni the number of vertices at iteration i, so by de�nition N0 = 12.
This procedure gives 30 lines connecting neighbouring vertices and thus 30 new middle
points, leading to N1 = 12 + 30 = 42 vertices after the �rst iteration, N2 = 162 after
the second, and N3 = 642 after the third. Table 2.2 gives an overview of the number of
vertices Ni after i iterations. One can notice that the last digit is always 2, while the
other digits form a number that is a power of 2.
Reyes-Ruiz et al. (2012, eq.(2)) gave a recursive formula to compute the number of

vertices after i iterations. By presuming an (obvious) exponential increase, from the
ansatz Ni ∝ ai, I derived a simple explicit formula:

Ni = 10× 22i + 2.
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iteration i 0 1 2 3 4 5 6 7

vertices Ni 12 42 162 642 2562 10242 40962 163842

Table 2.2: Number of vertices of a polyhedron after i iterations, starting from an icosa-
hedron with 12 vertices. The numbers grow exponentially.

The two-dimensional projection of the point distribution in the latitude-longitude
plane is shown in �gure 2.8 by transforming the Cartesian coordinates into spherical co-
ordinates. The points cover the surface of the sphere uniformly in three-dimensions, but
in a two-dimensional projection this is distorted to an apparently non-uniform coverage.
The distribution of vertices on the surface of a unit sphere is visualised in �gure 2.9.

Four steps from the sequence of iterations are shown: i = 0 for an icosahedron (top left),
i = 2 (top right), i = 4 (bottom left), i = 6 (bottom right). This last step (6th iteration)
gives a mutual distance of two neighbouring points of 2/26, resulting in an angular
separation of approximately 1.8 degrees (or about 200 points along the circumference).
Thus the coverage is quite complete already at this stage, and consequently this number
of vertices will be used in the simulations for the virtual impactors.
The method presented here will be used later in section 4.2.2 to construct initial

conditions with a uniform distribution on the surface of the Earth for virtual impactors.
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2.6 Distribution of points on a sphere

Figure 2.9: Visualisation of the iteration process to construct vertices of polyhedra that
uniformly cover the surface of a sphere. The more iterations are performed,
the closer the shape resembles a sphere. Top left: the initial stage of an
icosahedron, top right: after two iterations, bottom left: after four iterations,
bottom right: after six iterations. A Delaunay triangulation has been used
to construct the faces based on the vertices.
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Chapter 3

Long-time dynamics of Near-Earth

Asteroids

This chapter's purpose is to investigate the dynamical evolution of an extensive subset
of the current Near-Earth Asteroid population over a long period of time by taking into
account the gravitational in�uence of the relevant planets.
A number of di�erent dynamical models is used to quantify the role of the Earth's

moon for the frequency of close encounters and impacts of NEAs with the Earth and
other terrestrial planets. The dynamical models are presented in section 3.1.
In section 3.2 the initial conditions for the simulations are described, including the

osculating elements for the planets, the Moon, and the NEAs. In addition to that, some
properties of the NEA population are shown.
The results of the simulations can be found in section 3.3, and the data obtained is

analysed with respect to the di�erent dynamical models, but also a comparison of the
two integration methods is performed.
Finally, these results are discussed in the context of previous investigations and pub-

lished work in section 3.4.

3.1 Dynamical models

The investigation of the lunar in�uence on Near-Earth Asteroids requires a number of
di�erent dynamical models. The properties of these di�erent models are discussed in
the following.

3.1.1 General aspects

In this section we will always use the term N -body problem regardless of how many
massive objects are involved. Besides the massive bodies � the Sun and a variable
number of planets � every model also includes up to several thousand massless Near-
Earth Asteroids, restricted by the limitations of the numerical integration method.
A common feature of all models is that only point masses are considered. The non-

sphericity (�attening) of the Sun or of individual planets (e.g. the Earth) is neglected

47



Chapter 3 Long-time dynamics of Near-Earth Asteroids

and, as a consequence, no higher order terms are used in the spherical harmonic expan-
sion of the potential.
Another restriction is that only the pure (Newtonian) gravitational N -body problem

is applied. At the required level of accuracy there is no need to add relativistic forces
to the equations of motion, although this would be possible using a modi�ed Lie-series
integrator described in Bancelin et al. (2012).
Various non-gravitational forces also act on asteroids, and it has been shown that

especially the Yarkovsky e�ect � which leads to a slow drift in semi-major axis � is
an important factor (Hartmann et al., 1999; Vokrouhlický et al., 2000). An accurate
description of the Yarkovsky e�ect requires a number of parameters that are currently
not well constrained for the vast majority of asteroids. In order to simplify the analysis
of the lunar gravitational e�ect on Near-Earth Asteroids I have decided to exclude the
Yarkovsky e�ect from the models.
The time interval for the numerical integration is �xed to 107 years. This value is

a compromise that balances the computational cost (and overhead in recalculating the
planetary orbits repeatedly for the di�erent models) and the various dynamical time
scales involved. It was shown in Gladman et al. (1997, 2000) that asteroids, directly
inserted into mean-motion or secular resonances in the main-belt, can evolve into Earth
orbit crossing objects within 106 years. The median dynamical lifetime of these objects
in the near-Earth region was about 10 million years, they were removed by collisions or
ejections. In the published literature there is considerable disagreement on the dynamical
lifetimes, the values range from 106�109 years, and some authors give only collisional
lifetimes, that neglect other e�ects like resonances.
However, according to the results of Gladman et al. (2000) the chosen integration

time seems reasonable, but there is another point to be kept in mind. As the Near-
Earth Asteroids evolve in time, they will be subject to di�erent orbital resonances:
mean-motion resonances have rather short time-scales, while the secular resonances have
associated time-scales of 104 � 106 years. For instance, the secular fundamental frequency
g5 of Jupiter has a period of 3× 105 years, while g8 for Neptune has a period of 2× 106

years (Laskar, 1990). To include the e�ect of these resonances, the integration time has
at least to cover these time-scales, and again the above value represents a sensible choice.
As it is well known the lunar orbit is evolving in time not only due to planetary

perturbations, but also due to the secular tidal acceleration of its orbit (Goldreich, 1966;
Touma andWisdom, 1994). Angular momentum is transferred from the spin of the Earth
to the orbit of the Moon, leading to an increase in the spin period of the Earth and the
orbital period of the Moon. From the Lunar Laser Ranging (LLR) experiments one can
observe that currently the Moon recedes from the Earth at a rate of 38 mm/year (Calame
and Mulholland, 1978; Williams et al., 1978). A quick estimate of the magnitude of this
tidal evolution over 107 years reveals that it would sum-up to an increase of 380 km
in the average lunar distance. Comparing this to the current mean distance of 384 400
km yields a relative error of only 0.1% when neglecting the tidal acceleration in the
dynamical models.
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3.1.2 Details of models

The dynamical models consist of three pairs of models with increasing completeness and
complexity. Completeness means that gradually more and more dynamically relevant
planets are added to the models; while complexity simply means that the phase-space
becomes higher dimensional as more massive objects increase the degrees of freedom and
number of interactions.
Here are the dynamical models:

M2 Sun, Earth, and NEA

M3 Sun, Earth, Moon, and NEA

M4 Sun, Venus, Earth, Mars, and NEA

M5 Sun, Venus, Earth, Mars, Moon, and NEA

M6 Sun, Venus, Earth, Mars, Jupiter, Saturn, and NEA

M7 Sun, Venus, Earth, Mars, Jupiter, Saturn, Moon, and NEA

The number associated to each model indicates the number of massive objects only, as
opposed to the classical sense of giving the total number of objects. For each pair of
models, in one of the models the Moon is present while in the other model it is not.
The �rst pair M2/M3 represents the simplest case of a restricted three-/four-body

problem. These models serve to assess the dynamics of Near-Earth Asteroids in the
absence of any perturbers except for Earth and Moon.
The second pair M4/M5 can be labelled �Inner Solar System� (ISS), it contains the

relevant bodies that in�uence the orbits of NEAs by close encounters.
The last pair of models M6/M7 is the almost complete (in terms of planets) �Solar

System�. Jupiter and Saturn are the major perturbers of Near-Earth Asteroids among
the planets by virtue of their dominating masses.
In the models M2, M4, and M6 the Earth-Moon system is actually modelled as a single

body (called �Earth� henceforth) with the combined mass of Earth and Moon located
at the common barycenter. For the real Earth-Moon system the barycenter is always
located inside the physical radius of the Earth, it lies approximately 1700 km below the
Earth's surface (Roncoli, 2005). In all other models the Earth and Moon are separate
objects with their respective masses.

3.1.3 Justi�cation of models

With the two models M2/M3 statistical e�ects and the qualitative di�erences in the
long-term dynamics of Near-Earth Asteroids can be compared. It is not claimed that
they represent well the dynamics of real NEAs, but they allow to determine the lunar
perturbations most clearly. In many investigations the Earth-Moon system is not treated
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as separated bodies, but as one single object with the combined mass of the two located
at their barycenter (Earth-Moon-Barycenter model, EMB). In contrast to this, it was
shown by Kankiewicz (2002) that it is absolutely necessary to treat the Earth and Moon
as separate objects for asteroids having close encounters with the Earth, or otherwise
the computed orbits are not precise enough.
The models M4/M5 involve those planets, whose orbits are crossed by the majority

of Near-Earth Asteroids. Main-belt asteroids that �rst become Mars crossers can evolve
into Amor group objects. Later these Amors may become Earth crossing Apollo group
or even Aten group asteroids. Finally Atens can also cross the orbit of Venus. Mercury is
excluded from this model partly due to its low mass, but also because there are no close
encounters with this planet, except for some Atens and the very few known Inner Earth
Objects (IEOs, or Atiras). A positive side-e�ect of ignoring Mercury in the models is
that the numerical calculations are faster, the step-size need not be decreased to account
for Mercury's rather short orbital period.
As of the models M6/M7 one has to remark that both Jupiter and Saturn are essential

to get a rather complete picture of the dynamics of asteroids in general. Nesvorný and
Morbidelli (1998a) have shown that main-belt asteroids are not only su�ering from
mean-motion resonances with Jupiter, but that three-body resonances with Jupiter and
Saturn also play a crucial role. Another aspect of the dynamical in�uence of Jupiter
and Saturn on the inner solar system was shown in Pilat-Lohinger et al. (2008), who
found that a strong secular resonance could destabilise the orbits of test particles in
the Venus to Earth region. Contrary to this, Uranus and Neptune do not seem to play
such an important role for the dynamics of the ISS; partly because there are neither
(linear) secular resonances (Michel et al., 1997) nor important mean-motion resonances
with those planets (Gallardo, 2006). In Bazsó et al. (2010) it was shown � by using a
set of dynamical models similar to the present work � that Uranus and Neptune can be
safely ignored when studying the dynamics of the ISS.

3.1.4 Summary

Finally, here I give an overview of the key features and limitations of the models. This
shall serve as a quick reference if questions arise when reading later sections.
The main points about the dynamical models are:

• three pairs of models (M2/M3, M4/M5, M6/M7) including a variable number of
planets are de�ned;

• we can compare models using a combined Earth-Moon barycenter to those with
the separated Earth + Moon;

• neither relativistic e�ects nor non-gravitational forces are taken into account, only
purely Newtonian gravitational forces;
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• all objects are point masses, no higher order terms arising from the spherical
harmonic expansion of the potential are used;

• the integrations cover a time interval of 107 years;

• the tidal acceleration of the lunar orbit is neglected.

3.2 Initial conditions

For the actual integrations a number of preliminary parameters have to be �xed. Among
others, one parameter is the initial epoch that determines the (osculating) orbital ele-
ments for the planets and asteroids. A second important point is the choice of the sample
of NEAs, and the intrinsic properties of the NEA groups.

3.2.1 The Planets

The main focus of this part of the thesis is on the dynamics of Near-Earth Asteroids over
long time intervals, so it is of minor importance on which exact date the integrations
start.
The osculating heliocentric elements of the planets have been obtained from the

JPL Horizons1 on-line ephemeris system (Giorgini et al., 1996) for the Julian date JD
2 451 545.0, corresponding to the calendar date of 2000/January/01 at 12:00 UT. The
reference epoch is J2000.0 for the planets and the Moon.
The osculating heliocentric elements for the given epoch for each planet are shown in

table 3.1; note that the numbers are given only with a limited precision, the full precision
numbers can be retrieved as described above. For the masses of the planets in units of
the solar mass see table 2.1.
The Moon itself is treated as another �planet� in the corresponding models, i.e. it

moves in a heliocentric elliptical orbit about the Sun. Note that the geocentric elements
of the Moon are quite di�erent from what the numbers in table 3.1 suggest: the mean
semi-major axis is 384 400 km or about 0.00257 AU, the mean eccentricity is e = 0.0549,
and the mean inclination to the ecliptical plane is i = 5.15◦. For the Earth-Moon
mass-ratio I used the value 81.3. All these numbers were taken from Roncoli (2005).

3.2.2 The Near-Earth Asteroids

The osculating elements for the Near-Earth Asteroids used in the integrations were also
obtained from the JPL Horizons ephemeris system in the year 2011. The NEA's elements
were de�ned for di�erent epochs, and consequently at the begin of every integration the

1see homepage at http://ssd.jpl.nasa.gov/?horizons
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planet a [AU] e [×102] i [×104, deg] ω [deg] Ω [deg] M [deg]

Venus 0.723 327 0.6756 33946 55.19 76.68 49.31
Earth 1.000 372 1.7042 2.6736 297.77 163.97 358.19
Moon 0.971 418 2.9829 142.61 213.88 359.35 249.94
Mars 1.523 678 9.3315 18499 286.54 49.56 19.09

Jupiter 5.205 109 4.8923 13047 275.12 100.49 18.72
Saturn 9.581 452 5.5599 24843 335.90 113.69 320.38

Table 3.1: The initial osculating heliocentric orbital elements of the planets at JD
2 451 545.0 for the long-term simulations. The orbital elements are: semi-
major axis a, eccentricity e, inclination i, argument of perihelion ω, longitude
of ascending node Ω, mean anomaly M . The numbers are not given to full
accuracy here; also note that the eccentricities and inclinations are scaled by
the indicated number.

NEA group

Amor Apollo Aten total

number of objects (2011) 2940 4291 652 7883
fraction of total [%] 37.3 54.4 8.3 100

number of objects (2015) 4600 6448 888 11936
fraction of total [%] 38.5 54.0 7.4 100

Table 3.2: The absolute and relative frequency of objects belonging to the di�erent NEA
groups. The data for the integrations were acquired in 2011. For comparison
the current number of NEAs (in January 2015) is included.

planetary elements have to be propagated forward in time to meet the NEA's initial
epoch.
In total 7883 Near-Earth Asteroids are contained in the data �les, but they are not

equally distributed among the di�erent NEA groups. Most NEAs belong to the Apollo
group, the Amor group is the second most numerous, and the Atens form the smallest
group. In table 3.2 the absolute number of objects in each group is shown, as well as
the corresponding fraction of this group to the total population for the years 2011 and
2015. Since, at that time and still today, the Near-Earth Asteroids constituted about
99% of all Near-Earth Objects (NEOs), the results and conclusions obtained from the
integrations (discussed later) are only negligibly a�ected by ignoring this minor rest of
1%.
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Another issue is the continuously increasing number of NEAs, due to e�ective au-
tomatic monitoring programs covering large areas of the sky. Although the absolute
numbers were constantly increasing during the last couple of decades2, the relative frac-
tion of the groups did not change appreciably. Comparing the data from 2011 to current
numbers (January 2015) one can see that the total number was only about 66% of
the current population (almost 12 000 objects), but the fractions changed only by some
tenths of a percent (most notably the Amor group fraction increased by ∼ 1 % while
the Aten group fraction decreased by the same amount).

Selection of samples

For the simulations with the Lie-series integrator a sample of 300 objects per NEA group
was chosen, for a total of 900 objects. This had to be done in order to overcome technical
limitations on the number of objects that can be integrated simultaneously. For models
M6 and M7 the sample was further reduced to 100 NEAs per group, due to a lower
performance of the integration process. This reduction of the sample size will play a
role in the calculation of quantities that need to be normalised by the number of objects
in the sample, such that the associated uncertainties will be higher than for a larger
sample.
There was no sophisticated selection process, I took the �rst 300 objects from the data

�les. In those data �les the NEAs were sorted according to their o�cial designation, or
by detection date in case they had no designation yet, so that e�ectively objects with
a higher number of observations and more reliable orbital elements were selected. The
equal number of NEAs in the samples does not take into account the unequal absolute
number of objects of the real NEA groups. In this way 46 % of the Aten group was
sampled, but only 10 % and 7 % of the Amor and Apollo group, respectively. Unless
it is stated otherwise, I will perform comparisons only on a per-object basis, i.e. with
values normalised by the number of objects in the sample.
Using the Mercury package the whole NEA population of 7883 objects was included

into the simulations, since the performance of this method allows for a higher number
of objects than the Lie series integrator.
The results from the Mercury integrations will be interpreted as being representative

for the respective NEA group for two reasons: (i) because the whole population (known
at that time) was considered, (ii) because the validity of the results depends only weakly
on the absolute number of NEAs, but rather on the relative fraction of objects in the
di�erent NEA groups, which (as discussed above) remained quite constant since then.
Bottke et al. (2002) provide a synthetic NEO population that by design should elim-

inate the e�ects of observational bias on the currently detected NEO population. The
orbital element distributions suggest that a considerable fraction of NEOs at high ec-
centricities and moderate to high inclinations have not been discovered yet. For the aim

2see discovery statistics http://neo.jpl.nasa.gov/stats/

53

http://neo.jpl.nasa.gov/stats/


Chapter 3 Long-time dynamics of Near-Earth Asteroids

0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4  5

e
cc

e
n
tr

ic
it

y

semi-major axis [AU]

Amors
Apollos

Atens

q = 1.3

q = 1.017

Q = 0.983

Figure 3.1: In a semi-major axis versus eccentricity plot the NEA groups based on the
Shoemaker classi�cation become apparent. The various curves display the
borders de�ned for the NEA population based on the aphelion distance Q
(for a < 1 AU) and perihelion distance q (for a ≥ 1 AU).

of this work I see no point in considering a population of currently undiscovered objects.
The lunar e�ect on NEAs will become clear already from the known population, any
additional objects would not much improve the results.

Properties of the NEA population

We can take a look at the (osculating) orbital elements of the Near-Earth Asteroids and
derive some properties of the population.
The original Shoemaker classi�cation of the NEA groups (Shoemaker et al., 1979)

depends only on the semi-major axis and eccentricity. In �gure 3.1 the division of the
three NEA groups is shown. An asteroid must have an aphelion distance Q ≥ 0.983 AU
(for a < 1 AU) or a perihelion distance q ≤ 1.3 AU (for a ≥ 1 AU) in order to be quali�ed
as a Near-Earth Asteroid. Apollos and Atens are distinguished by their semi-major axis
being greater and smaller than 1 AU, respectively; Apollos have perihelion distances
smaller than 1.017 AU while Amors have larger values. The �gure shows clearly that
many NEAs actually have semi-major axes that would be considered typical for a main-
belt asteroid (between 2−4 AU), and it is only thanks to their rather high eccentricities
that they are Earth (and/or Mars) orbit crossing asteroids.
In �gure 3.2 the distribution of the di�erent orbital elements is visible, from top to

bottom for semi-major axis, eccentricity, and inclination.
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3.2 Initial conditions

eccentricity inclination

mean ± std. dev. median mean ± std. dev. median

Amors 0.42± 0.14 0.45 14.6± 11.8 10.9
Apollos 0.51± 0.18 0.52 13.5± 12.5 9.4
Atens 0.35± 0.16 0.33 13.6± 10.5 10.7

Table 3.3: A statistical summary of the eccentricity and inclination (in degrees) for the
NEA groups at the initial epoch. These values are based on the entire NEA
population, as given in table 3.2. For easier comparison both the mean plus
standard deviation and the median values are shown.

The histograms in the top row show the semi-major axis distribution extending out
up to a limit of 5 AU for the Amor and Apollo group (with a few objects having even
larger values). The width of the bins is ∆a = 0.1 AU for all three images; but note that
the Atens occupy a much narrower semi-major axis interval. Although these images are
based on osculating elements, there is an indication of some important mean motion
resonances (MMR). One can observe a decrease in the number of Amor and Apollo
objects at 1.5 AU (MMR 1:1 with Mars), at around 2 AU (MMR 4:1 with Jupiter) and
at 2.5 AU (MMR 3:1 with Jupiter). Also observe that the Amors show a pronounced
bimodal distribution for the semi-major axis. Interestingly there seem to be no Atens
with semi-major axes smaller than 0.6 AU. The abrupt cut at 1 AU for Atens and
Apollos is caused by the de�nition of the groups.
In the middle row are the histograms for the eccentricity. They show the di�erent

locations of the peaks of the distribution: the peak for Amors is at around 0.5, that for
the Apollos at 0.6, while for the Atens at 0.35; the width of each bin is ∆e = 0.05. It
follows that on average the Apollos have the highest eccentricities, which in turn is an
important parameter for the relative velocities at close encounters.
The bottom row gives the histograms for the inclination, with a bin-width of ∆i = 5◦.

The maximum value displayed is 90◦, only two objects have higher values and move
on retrograde orbits. All three groups have peak values below 10 degrees, but the tails
extend to relatively high inclinations.
A statistical summary of the eccentricity and inclination of the NEAs is given in table

3.3. The mean and median values are shown based on the data for the entire population
at the given initial epoch. Those numbers underline again, that the Apollos have the
highest eccentricities on average, and that the majority of NEAs (regardless of the group)
have moderately inclined orbits of up to 20 degrees.
Before going on with the discussion of the properties of the NEAs, we have to introduce

two parameters that combine (some of) the orbital elements to form a new relation.

1. The Tisserand parameter T is derived from the conservation of the Jacobi constant
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Figure 3.2: Histograms of the frequency distribution of the orbital elements semi-major
axis (top row), eccentricity (middle row), and inclination (bottom row) for
the di�erent NEA groups: (a) Amors, left column, (b) Apollos, center col-
umn, (c) Atens, right column. The width of the histogram bins is the same
in each row; the vertical axis gives the number of objects per bin, and so it
depends on the number of NEAs per group.
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in the restricted three-body problem. When T is expressed in orbital elements it
reads (Michel et al., 1996)

T (a, e, i) =
aP
a

+ 2 cos i

√
a

aP
(1− e2), (3.2.1)

where (a, e, i) are the orbital elements of the NEA, and aP is the semi-major axis
of the corresponding planet to which the Tisserand parameter is related. It was
shown in Michel et al. (1996) that for small e, i and a ≈ aP = 1 the lowest order
Taylor-expansion becomes T = 3 + O (e2, i2). Consequently, NEAs with nearly
circular and co-planar orbits will stay close to T = 3. The Tisserand parameter is
a constant only in the restricted three-body problem, but while the NEA's orbital
elements are modi�ed by close encounters, it will change only slightly.

2. The w parameter is de�ned after Chapman (1979) as

w(e, i) =
√
e2 + sin2 i. (3.2.2)

This parameter provides a measure of the deviation from a circular and planar
orbit. The natural range of w is 0 ≤ w ≤ 2 for 0 ≤ e ≤ 1, and 0 ≤ i ≤ 180 degrees.
However, note that in Chapman (1979) the de�nition was slightly di�erent, as
it did not include the sine of the inclination, but the inclination itself directly.
The current de�nition seems more appropriate when applying the w parameter to
highly inclined NEAs.

From the de�nitions given above, it is obvious that a relation exists between T and w
via the expression e2 = w2 − sin2 i, that can be inserted into equation (3.2.1) to give
T (a, w, i).
For �gure 3.3 the orbital elements (a, e, i) of the three NEA groups have been trans-

formed to the (w, T ) plane. It is visible that for both Amors and Apollos there is a
sub-population that stays around the horizontal line T = 3, while the parameter w
is increasing. The extended curved tails include objects with high eccentricity and/or
inclination. The plot for the Atens is less dense because of the fewer objects in this
group.

3.3 Results

This section presents the results of the numerical integrations obtained by the Lie and
Mercury integration methods discussed in section 2.2.
A comparison is performed focusing on the qualitative di�erences in the evolution

of Near-Earth Asteroids using the de�ned set of dynamical models. The quantitative
measure of the lunar in�uence on the dynamical evolution of NEAs is then derived from

57



Chapter 3 Long-time dynamics of Near-Earth Asteroids

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5

T
is

se
ra

n
d
 p

a
ra

m
e
te

r

w parameter

(a) Amors

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5

T
is

se
ra

n
d
 p

a
ra

m
e
te

r
w parameter

(b) Apollos

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5

T
is

se
ra

n
d
 p

a
ra

m
e
te

r

w parameter

(c) Atens

Figure 3.3: A plot of the Tisserand parameter T versus parameter w for the di�erent
NEA groups. From left to right Amors, Apollos, and Atens. The value
T = 3, w = 0 indicates a NEA with circular orbit that is co-planar to Earth's
orbit.

the number of close encounters and impacts with terrestrial planets, but mainly with
the Earth.
There is an important di�erence in the de�nition of the close encounter distance for the

Lie and Mercury integrator. In the �rst case, for the Lie integrator, the close encounter
distance was set to 0.00257 AU, which corresponds to the average lunar distance (LD).
In this way only �deep� close encounters are detected where a NEAs would pass the
Earth-Moon system within the lunar distance. For the Mercury integrator the close
encounter distance was relaxed to one Hill radius, which amounts to about 0.01 AU for
Earth (see table 2.1 and �gure 2.5). Since the Mercury integrations include far more
NEAs than the Lie integrations � and also due to this larger close encounter limit �
much more close encounters will be detected in the Mercury data.

3.3.1 Preliminary checks

In a �rst step the reliability of the numerical methods has to be assessed. For this
purpose two test runs were performed:

1. The �rst run checks for the conservation of the integrals of motion, i.e. total energy
and angular momentum in the N -body problem.

2. The second run compares the evolution of the lunar orbit for two models with a
di�erent number of perturbers.
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Figure 3.4: Conservation of the total energy (top) and angular momentum (bottom)
for the two numerical integration methods used: Mercury hybrid-symplectic
integrator (grey), Lie-series integrator (black). The dotted lines show the
typical behaviour of numerical errors in case when round-o� is the dominant
source of error.

Test I: Conservation of the integrals of motion

A standard test for any numerical method used in N -body dynamics is how accurately it
manages to ful�ll the conservation of total energy and total (speci�c) angular momentum.
While the �rst is a scalar quantity, the latter is a vector, but for the test we take only
its absolute value. For our purpose we are interested in the fractional changes ∆E/E
and ∆L/L, i.e. the di�erence ∆E = E(t)− E(0) relative to the initial value E(0) (the
same for L).
The test run was performed by using model M7, including the Sun, the planets Venus

to Saturn, the Moon, and three massless NEAs, namely (1221) Amor (= 1932 EA1),
(1862) Apollo (= 1932 HA), (2062) Aten (= 1976 AA). The total integration time was
set to 107 years, which is the same as for the actual integration runs.
In the analysis of Quinn and Tremaine (1990) it was shown that for long-term integra-

tions of the planetary system round-o� error is the dominant source of error. Round-o�
error leads to a behaviour of the form ∆E/E ' n ε increasing linearly with the number
of integration steps n (or equivalently linear with time), where ε is the �oating-point
precision (ε = 2−53 for double precision calculations).
In �gure 3.4 a log-log plot of time versus the fractional change in total energy (top)

and angular momentum (bottom) is shown. From this �gure it is visible, that both the
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Chapter 3 Long-time dynamics of Near-Earth Asteroids

Lie-series method (black curve) and the hybrid-symplectic method (grey curve) do a
nearly optimal job regarding the conservation of angular momentum. The dotted curves
show the typical log10 t behaviour of round-o� error (shifted vertically by an arbitrary
constant), after a transient time both numerical methods follow this trend for the angular
momentum. In the top panel the fractional change of the total energy is shown, where
the intrinsic properties of the two methods � as discussed in the respective sections 2.2.1
and 2.2.2 � are clearly distinguishable. The Lie-series method shows an energy error that
is dominated by round-o�. The Mercury symplectic method has an oscillating � but on
average constant � energy error, that is due to truncation error. One could decrease
the truncation error either by using a higher order symplectic method or by choosing a
smaller step-size.

Test II: Lunar orbit in two models

This test calculation aims at detecting any inconsistency in the time evolution of the
lunar orbit. Since some of the di�erent dynamical models include a number of perturbing
planets, these perturbations could a�ect the lunar orbit and lead to indirect e�ects on
the motion of NEAs.
As a check let us compute the gravitational forces on the Moon arising from the Sun

or any planet, via
Fi,j = k2mimj r

−2
i,j

where k is the Gaussian gravitational constant (in units of AU, solar masses and days),
mi is the lunar mass, mj and ri,j are the mass and distance of the planet considered
in a coordinate system centered on the Moon. An order-of-magnitude estimate of these
forces (normalised relative to the force exerted by the Sun) reveals that the largest e�ects
are due to Sun and Earth; the force due to Earth is about 40 % of that from the Sun.
The third strongest force comes Jupiter with a magnitude of about 10−5, followed by
Saturn and Venus with 10−6. All other planets contribute with normalised forces of the
order of 10−8. The main point here is that the lunar orbit is mainly determined by the
Sun and Earth, and that the main perturbers are all included in the model M7.
For the computations the two extreme cases were selected. In the �rst case the dy-

namical model is the three-body problem and consists of the Sun, Earth, and Moon. In
the second case the model is the full planetary system, including all planets from Mer-
cury to Neptune. The equations of motion were solved numerically for a time-interval
of 106 years, and the Moon's geocentric distance is used to compare the models. Figure
3.5 shows the results. There is no qualitative di�erence for the lunar orbit for neither
model, furthermore even the quantitative di�erences are small, e.g. the maximum and
minimum distances are almost equal for the observed time span. This shows that it is
possible and accurate to use Earth and Moon as separated objects (as opposed to both
being joined together in the Earth-Moon barycenter) in the various models for at least
107 years.
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Figure 3.5: Time evolution of the geocentric lunar distance in di�erent models. Top:
three-body problem Sun-Earth-Moon; bottom: full planetary system. The
bold horizontal line marks the average lunar distance today: d = 384 400
km.

3.3.2 Models M2/M3

The simplest dynamical models used are M2 and M3. The �rst model is just an elliptic
restricted three-body problem, where the dynamics of Near-Earth Asteroids is either
dominated by close encounters with Earth, or by a slightly perturbed two-body motion in
the absence of close encounters. In the latter model the in�uence of the Moon introduces
more degrees of freedom, but the dynamics is basically still the same. If close encounters
happen, then the NEAs will have to pass both Earth and Moon, as the separation
between the two is roughly 0.00257 AU.

Dynamical behaviour of NEAs with individual examples

For these two models one can observe a qualitative di�erence in the dynamical behaviour
of the Amors and Apollos/Atens. Amor group objects are not Earth orbit crossing
asteroids in the beginning, whereas Apollos and Atens do have frequent close encounters.
The e�ect of close encounters is markedly visible in the time evolution of the semi-major
axis, they appear as discontinuous jumps and lead to a step-function-like behaviour.
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Amor group objects have initial perihelion distances between 1.017 and 1.3 AU that
do not permit close encounters to Earth immediately. First for some period of time the
eccentricity shows a secular variation, and only when it is large enough � or in other
words the perihelion distance is low enough � can close encounters occur3. Many Amors
never reach an eccentricity that is high enough for starting close encounters, and thus
the absolute number of encounters and impacts is lowest for the Amors.
A typical example for the evolution of Amors in these models is the object (1943)

Anteros (= 1973 EC). Figure 3.6 shows how its Tisserand parameter and semi-major axis
(together with the perihelion distance) evolve during the 10 Myr integration time (upper
graph). The top half of the image displays the time evolution of the Tisserand parameter;
as a single parameter it includes the variations of all three relevant (osculating) orbital
elements (a, e, i). This object does not have any �deep� close encounters (closer than
the lunar distance) to Earth for almost 5 Myr and shows a quasi-periodic signal. Then
a sequence of close encounters (indicated by vertical grey lines) modi�es its semi-major
axis. For comparison the bottom half of the image shows the semi-major axis a (in
black) and perihelion distance q (in grey), as well as the line a = 1 (dotted horizontal
line). The vertical grey lines indicate again close encounters within the lunar distance.
Although one can observe from the curve for a that (distant) encounters also occur
before 5 Myr, in the �rst 1 Myr the eccentricity is not large enough for close encounters
to happen anywhere else than in pericenter. After the beginning of the sequence of deep
close encounters the semi-major axis shows a chaotic behaviour, like a random walk. For
the rest of the integration the perihelion distance remains close to 1 AU.
The evolution of a, e is also re�ected by the Tisserand parameter in the lower graph.

During the whole time this object lies between the Tisserand parameter contour lines
2.95 < T < 3 (expressed for an inclination of i = 0◦). The horizontal and vertical exten-
sion of the black dots (that represent the instantaneous Tisserand parameter sampled
every 1000 years) trace the variation of semi-major axis and eccentricity, respectively.
Atens and Apollos, in general, have frequent close encounters with Earth, because

their perihelion distances are initially close to 1 AU, in contract to Amors.
Figure 3.7 compares the time evolution of the semi-major axis for (1862) Apollo, the

prototype object for the Apollo group. After a very short time (only some 1000 years)
this NEA shows a completely di�erent evolution in the two models. The reason is the
stochastic e�ect of an early close encounter: in one model the semi-major axis increases
after the encounter, while in the other model it decreases. It is obvious that close
encounters are the main mechanism for the variation of the semi-major axis, to most of
the jumps there is an associated encounter closer than the lunar distance. In the phases
between close encounters the semi-major axis is constant or shows only small variations,
frequently the NEA is located inside a mean-motion resonance with Earth. This kind of
behaviour has already been described by Milani et al. (1990, section 5) and termed as

3One must be aware about one point: any NEA being initially a member of the Amor group, will
belong technically to the Apollo or Aten group at the time when it has close encounters with Earth.
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Figure 3.6: The upper graph shows the time evolution of the Tisserand parameter, semi-
major axis (black curve) and perihelion distance (grey curve) for the Amor
object (1943) Anteros. The vertical grey lines indicate close encounters to
Earth within the lunar distance. The lower graph gives the Tisserand pa-
rameter evolution in the a − e space. The grey curves show the Tisserand
parameter contours (for i = 0 deg) sampled every 0.05 beginning with T = 3.
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Figure 3.7: Time evolution of the semi-major axis for (1862) Apollo in models M2 (top)
and M3 (bottom). The vertical grey lines indicate close encounters to Earth
within the lunar distance.

�Geographos class�. In the lower part of �gure 3.7 we can see that Apollo is caught in
the 19:33 MMR with Earth (at a ≈ 1.445 AU) for an extended period of time in model
M3.

Variation in the semi-major axis

The main e�ect of the Earth and Moon in these two models is in modifying the semi-
major axis at close encounters. A simple measure of the combined in�uence of these two
bodies is the relative variation of the semi-major axis

log10

∆a

a
= log10

(
max
t≤T

(a)−min
t≤T

(a)
)
/〈a〉

where we take the di�erence between the maximum and minimum value and scale it by
the mean value of a over the whole integration time (T = 107 years). This variation is
then expressed in percent (×100 %) before we take the logarithm of it.
A quick example will clarify the details: Let us suppose that a NEA has

(amin, amean, amax) = (0.98, 1.02, 1.10)

(all values are in AU). Then from the formula above ∆a/a = 0.118, resulting in a
variation of 11.8%. Taking the logarithm of this latter number we obtain log10(∆a/a) =
1.07.
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The collection of graphs in �gure 3.8 show the relative variation in semi-major axis
for all three NEA groups based on the Lie integrator data. We recall that for each group
300 objects were integrated, which are shown along the horizontal axis denoted by their
ID number. On the vertical axis the semi-major axis is plotted; each data point gives
the mean value of a, the error bars give the span from the minimum to the maximum
value of a. If for some points the error bars are not visible (speci�cally this is often the
case for the Amors), then this means that the variation is so tiny that it is hidden by
the point-size (for reasons of visibility). The colour of each point (see the �thermometer�
bar on the right) corresponds to the relative variation in percent, the visible range is
from 0.01 % (dark blue) to 1000 % (red).
In some cases the upper end of the error bar extends outside of the image area, there

are two reasons for this: (i) a close encounter relocated the NEA to an orbit with semi-
major axis well beyond 5 AU, or (ii) the NEA had an �impact� with Earth (or Moon)
and escaped from the system4.
It is remarkable that all three NEA groups have minimal semi-major axes of amin >

0.5 AU, there does not form a population of IEOs. The combination of minimal a
with maximal e for NEAs is still far from being Sun-grazers. NEAs are terminated by
collisions with Earth or by ejections after close encounters, rather than being expulsed by
the Sun. The mechanisms from the study of Gladman et al. (1997, 2000), who found that
the majority of Near-Earth objects become Sun-grazers under the in�uence of orbital
resonances, do not act in the current models.
Studying �gure 3.8 in detail we can observe that the Amors have variations that are

very small (< 0.1%) on average. As discussed above for �gure 3.6, Amors evolve on
di�erent time scales than the other two groups. At �rst they are subject to secular
e�ects increasing their eccentricity, on a time scale of some millions of years. Following
that their evolution speeds up when they start to have encounters to Earth and switch
between various mean-motion resonances.
Apollos and Atens are quite similar regarding the variations in semi-major axis, both

show a wide range of variations. On one hand there are still some objects with negligible
variations of < 1 %, but on the other hand the average variation is above 10 %. This is
another indication that Apollos and Atens are much more in�uenced by close encounters
with the Earth than Amors. However, there is no systematic qualitative di�erence
between the models in the variation of the semi-major axis, so that we must conclude
that the in�uence of the Moon is rather weak in this respect.

Orbital elements at close encounters

We can investigate what happens at close encounters, by recording the orbital elements
(a, e, i) of NEAs at each close encounter. For this task the Mercury integrator data was

4Since all objects are point masses there are no real collisions. The impacts mentioned in the text
happen when a NEA passes the planet in a distance below the planetary radius. An escape is de�ned
here by reaching a distance of ≥ 100 AU from the Sun, or if the eccentricity becomes ≥ 1.
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Figure 3.8: The relative variation in semi-major axis for all NEA groups. The point
marks the average value of a, while the minima and maxima are indicated
by the error bars; colours correspond to the magnitude of the variation.
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selected for the reason that more close encounters were recorded and the whole Near-
Earth Asteroid population was sampled, thus having a better statistics. For details
about the number of close encounters in the di�erent dynamical models see table 3.7.

In �gure 3.9 we can compare the initial distribution (black line, taken from �gure 3.2)
for the respective orbital element to the resulting distribution for models M2 (red line)
and M3 (blue line). The columns are from left to right for Amors, Apollos, and Atens
respectively; the top row shows semi-major axis, the middle row eccentricity, and the
bottom row inclination.

The distributions are normalised in a way such that the area under the curve sums
up to 1, but there is an important di�erence in the normalising procedure. The initial
distribution is normalised by the (�xed) number of asteroids in the group (see table 3.2);
for the other curves I normalised by the (variable) number of close encounters. For each
row the bin-width is the same, namely ∆a = 0.1 AU, ∆e = 0.05, and ∆i = 5◦.

On examining �gure 3.9 we see that the distribution in a for the Amors is shifted
towards the Earth and the peak is around a = 1 AU, while the initial distribution is
completely di�erent. The same shift happens � to a lesser extent � also to the Apollos.
Here, the peak is located already at 1 AU for the initial distribution, but certain parts
of the distribution are less frequently represented at encounters. The Aten distribution
looks in principle the same like for Apollos, except for a steeper decrease in the tail for
a > 2 AU. For Atens the initial distribution is heavily peaked around a . 1 AU, which
a�ects the scaling on the y-axis. The extended tails of the distributions up to (and
beyond) a = 5 AU are produced by only a few objects scattered to such high semi-major
axes (and eccentricities) during previous close encounters. In a model including Jupiter
these objects would be quickly removed from the solar system.

At the approaches not only semi-major axes around 1 AU are more frequent, but
also the eccentricity distributions are signi�cantly di�erent from the initial ones. For
Amors the peak is slightly above 0.2, for Apollos at 0.4, while initially it was at 0.5
and 0.6 respectively, compare �gure 3.2, for mean (median) values see table 3.3. The
distributions in inclination do not show any peculiarities.

It is well known that the discovery of new NEAs is biased towards objects on orbits
similar to the Earth's (Rabinowitz et al., 1994; Muinonen, 1998). NEAs on highly
eccentric and/or inclined orbits tend to have a lower probability for Earth approaches
(Öpik, 1976). In the simulations we clearly see an accumulation in the number of close
encounters for objects with semi-major axes in the range 0.8 < a < 1.5, inclinations
below i < 30◦, and eccentricities around 0.4.

Another important observation is that the histograms for the two models are very
similar. This demonstrates that the distributions are dominated by the Earth in both
cases, and that the Moon hardly makes any contribution.
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Figure 3.9: Comparison of the distribution of orbital elements (a, e, i) at close encounters
for all NEA groups in models M2 (red) and M3 (blue) versus the initial
distribution (black; from �gure 3.2). The vertical axis gives the fraction
of events that fall into this box, normalised by the total number of close
encounters.
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group, model NEA group membership [%]

Amor Apollo Aten other

Amors, M2 91.0 ± 20.5 5.4 ± 17.3 0.04 ± 0.4 3.6 ± 12.5
Amors, M3 91.0 ± 21.2 5.0 ± 17.1 0.02 ± 0.4 4.0 ± 14.0
Apollos, M2 5.8 ± 14.6 90.0 ± 19.2 4.1 ± 13.8 0.1 ± 0.5
Apollos, M3 5.4 ± 14.8 89.4 ± 20.8 4.9 ± 15.5 0.3 ± 3.2
Atens, M2 2.3 ± 7.0 27.9 ± 31.7 67.6 ± 33.8 2.2 ± 6.8
Atens, M3 3.0 ± 9.5 26.0 ± 32.0 68.3 ± 34.7 2.7 ± 7.5

Table 3.4: Statistical summary of the NEA group membership based on Lie-integrator
data. The time-averaged percentage (mean and standard deviation) of group
membership was monitored for objects initially belonging to a speci�c NEA
group (and model). Objects in the �other� category are non-NEOs, see text
for details. All numbers in the table were derived from �gures 3.10, 3.11, 3.12.

NEA group membership and mixing

The Amor, Apollos and Aten groups are not at all separated from each other. As
Freistetter (2009) has shown, the NEA groups tend to mix with time, i.e. a NEA
starting as an Amor group object can become a member of the Apollo or Aten group at
later times, and vice versa. Even the alternative dynamical classi�cation of Milani et al.
(1989) is only valid for time-scales of a few 105 years.
We can investigate this mixing process between the groups over the whole integration

time to derive a qualitative indication of the in�uence of the Moon. Since the group
membership depends on the current values of semi-major axis and eccentricity, and both
can be modi�ed by close encounters, we are dealing with a strongly chaotic process. In
this sense I think that a merely qualitative comparison is justi�ed, without going into
further details about which processes play a role for the mixing.
In �gures 3.10 (for Amors), 3.11 (for Apollos), 3.12 (for Atens) the group membership

is plotted for objects from the Lie sample. The bottom half of each image shows to
which NEA group a certain object (identi�ed by the numbers from 1 to 300) belongs
to at each instant of time during the 107 years (on the y-axis). The membership was
sampled every 103 years. The top half of each image summarises the cumulative fraction
of time (in percent) that an individual object spent in the respective group. The groups
are de�ned as usual; Amor group objects are printed in red, Apollos in green, and Atens
in blue. If an object does not �t into any NEA class, i.e. asteroids with either q > 1.3
AU (possibly a main-belt object) or Q < 0.983 AU (an Atira object), it is classi�ed as
�other� in black colour.
Comparing the images for M2 (top) and M3 (bottom), as well as the statistical sum-

mary in table 3.4, one can observe a fair degree of correlation, meaning that in both
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models the NEAs have very similar orbital evolution. Table 3.4 details the time-averaged
percentage for each group. The large variance in the data follows from the averaging over
objects with very di�erent orbital evolution. It is visible in the �gures that some objects
never change the group, while others do so frequently. Overall the group membership
results are consistent for both models. This in turn means that the e�ect of the Moon
in M3 is negligible.
Let us make a �nal note about the group membership: the data from the table indicate

that Amors and Apollos preferably remain in the same group (≥ 90 %), but for Atens
there is a rather strong migration to the Apollo group. This e�ect is also visible in �gure
3.9, where the Aten semi-major axis distribution forms a tail due to close encounters
that extends outwards to a ≥ 2 AU.

3.3.3 Models M4/M5

The next pair of models includes the planets Venus, Earth, and Mars in M4, with the
addition of the Moon in M5. The dynamical evolution of NEAs is more complex with
the appearance of numerous mean-motion resonances (MMR) and three-body resonances
(TBR); now close encounters can happen to all terrestrial planets.

The in�uence of resonances

Let us start again with an individual example: �gure 3.13 shows the time evolution of
the semi-major axis of (2062) Aten (= 1976 AA) in both models. The two curves diverge
quite early � after about 7×104 years. However, they show a similar qualitative behaviour
regarding the evolution. There are phases of a largely constant semi-major axis (with
only small oscillations around an �average� value) lasting for some ten-thousand to a few
hundred-thousand years, which are interspersed with phases of one or multiple sudden
changes of the semi-major axis cause by close encounters.
This is in principle the same type of dynamical behaviour that we have observed for

Apollo for the previous models (see �gure 3.7). The situation is just more complex due
to the presence of the other terrestrial planets. In the lower part of the �gure we have
two separate panels showing the evolution in the a− e plane.
On the left we can observe how Aten in M4 is gradually shifting to larger semi-major

axes with time. The dots are coloured according to the vertical colour-bar which displays
the time in units of millions of years. The coloured curves indicate planet-orbit crossing
values for the perihelia (q) and aphelia (Q) of NEAs, i.e. in the region bounded by the
curves a NEA can have close approaches to the terrestrial planet (Venus at 0.72 AU,
Earth at 1.00 AU, and Mars at 1.52 AU).
It is also evident from the left graph that in M4 Aten can only have close encounters

with Venus and Earth in the �rst 106 years, because it does not cross the curve for
Mars. From about 8 Myr until the end of the integration time Aten has orbital elements
a, e which allow it to have close encounters to Earth and Mars, but it is unable to
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Figure 3.10: Time evolution of individual objects (lower half) and cumulative total frac-
tion of group membership (top half) for NEAs initially belonging to the
Amor group. The top �gure shows model M2, while the bottom �gure is
for model M3.
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Figure 3.11: Caption like for �gure 3.10, but for NEAs initially belonging to the Apollo
group.
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Figure 3.12: Caption like for �gure 3.10, but for NEAs initially belonging to the Aten
group.
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Figure 3.13: Top graph: Time evolution of the semi-major axis of (2062) Aten in models
M4 (red curve), M5 (blue curve). The two bottom panels show the time
evolution in the a− e parameter space, the vertical bar indicates the time.
The three colour curves represent planet-orbit crossing perihelia and aphelia
of NEAs for the planets Venus (green), Earth (blue), and Mars (red).

approach Venus. When tracing the colours we observe that Aten's eccentricity evolves
along vertical stripes for more or less constant semi-major axis; the eccentricity variation
is limited by the curve q = 1 AU at the bottom, and to values below e ' 0.5.

In the right panel forM5 Aten is restricted inside a region of the parameter space where
it has approaches to Venus and Earth, but � except for a short period of time � not to
Mars. This NEA switches frequently between its original Aten group and the Apollo
group; towards the end of the integration it becomes an Aten again. The qualitative
di�erences between the models can be explained entirely by the random e�ects of close
encounters at di�erent times to the terrestrial planets, the presence of the Moon in M5
does not play a fundamental role.

I have explicitly analysed the NEA (1221) Amor (= 1932 EA1) to study the in�uence
of resonances in detail. Figure 3.14 gives an impression of the time evolution of its semi-
major axis in the two models. In panel (a) the grey curve depicts Amor in M4, in panel
(b) the grey curve shows M5. All the horizontal lines extending across the �gure show
various mean-motion or three-body resonances. The resonances shown here are just a
sample, they were selected from a more comprehensive list of possible resonances, based
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upon the criterion that they ful�ll the relations

p n1 − (p+ q)n2 ≈ 0

c1 n1 + c2 n2 + c3 n3 ≈ 0

where p, q, ci are integers, and ni are the mean motions of planets and NEAs. The order
of the resonance is determined by the value of q for MMR, while it is |c1 + c2 + c3| for
TBR.
As the analysis is based on osculating elements directly obtained from the numerical

integrations, and neither on proper elements (Milani and Knezevic, 1994) nor an analytic
model of resonances (Nesvorný and Morbidelli, 1998a), there is some uncertainty asso-
ciated with the �true� mean motion. The selection of the correct resonance is sometimes
made di�cult as a consequence of that uncertainty, particularly when keeping in mind
that three-body resonances appear as multiplets (Morbidelli and Nesvorný, 1999), and
that each low-order MMR is surrounded by higher order resonances (near-multiples).
For the low order mean-motion resonances visible in �gure 3.14 the critical arguments
for the resonance were checked to librate, an example is shown for the E3:8 resonance.
The labels at the right border of the image correspond to the horizontal lines from top

to bottom, they denote the respective resonance. Blue lines mark MMR with Earth, red
lines are for MMR with Mars, green lines for MMR with Venus, and black lines for the
various TBR. Some of the resonances act for just a very short period of time (e.g. E2:3
and V6:13), while others like the E3:8 are active for some 105 years. It is possible that
besides two-body mean-motion and three-body resonances also four-body resonances are
acting (e.g. Venus�Earth�Mars�NEA), but this type of resonance was not analysed.
We can conclude from the two examples in �gures 3.13 & 3.14 that the dynamics

of NEAs is strongly in�uenced by resonances with the terrestrial planets. The NEAs
spend relatively more time inside or near to resonances than in the models M2/3. Close
encounters are still important to change the semi-major axis and relocate a NEA to
another region of the solar system, but the total number of encounters to Earth in M4/5
is only about 50 % of that in M2/3 for Apollos and Atens (cf. table 3.7). The number
of approaches has increased only for the Amors due to the enhanced scattering of NEAs
to the inner solar system by close encounters to Mars.

Relative velocities at close encounters

Although the absolute number of close encounters has diminished, it proves interesting
to investigate the distribution of relative velocities and minimum distances at those
approaches.
As mentioned earlier two numerical integration methods were used. The Lie series inte-

grator records all close encounters within the lunar distance and provides both geocentric
Cartesian position and velocity vector components as well as heliocentric instantaneous
osculating elements (a, e, i). The Mercury integrator, on the other hand, only supplies
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Figure 3.14: Top: Time evolution of the semi-major axis of (1221) Amor in models M4
(panel (a)), M5 (panel (b)). A selection of mean-motion resonances (red,
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lines. See text for details. Bottom: The critical argument σ3,8 for the E3:8
mean-motion resonance librates around 180◦ with large amplitude in the
time interval 0.2− 0.5× 106 years.
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Figure 3.15: Comparing two methods to compute the relative velocity during a close
encounter: in black Öpik's method is used based on heliocentric orbital
elements, in grey the planetocentric velocity vector components are used
directly (the reference method). The horizontal axis displays the (integer)
number of time steps since the begin of the encounter. In the bottom part
the di�erence between the two methods is plotted as a function of the time
step.

the heliocentric orbital elements (a, e, i) for each encounter, which does not allow to
compare the planetocentric relative velocities directly.
To alleviate the problem I chose to use the Öpik theory (Öpik, 1976) following the

description of Carusi et al. (1990). This theory describes the approach of an asteroid to a
planet on a circular orbit (with normalised semi-major axis a = 1) by a hyperbolic two-
body model. In this way it is possible to compute an approximation of the planetocentric
relative velocity U at a close encounter only from the heliocentric orbital elements a, e, i:

U(a, e, i) =
√

3− T (a, e, i) (3.3.1)

where T is the Tisserand parameter relative to the planet, see equation (3.2.1). One only
needs to convert U to the preferred system of units, here I use kilometers per second
(km/s) instead of the usual astronomical units per day.
To compare the quality of the approximation �gure 3.15 shows the two methods for

obtaining the relative velocity. The data is taken from the Lie integrator Apollo sample,
and corresponds to a deep close encounter where the NEA comes rather close to the
Earth's surface and consequently has a high relative velocity. The Lie integrator can
automatically adjust its global time step over a wide range to accurately follow such
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trajectories, in this case the time steps were decreased to some hours (in physical time),
so there are enough time steps for a comparison.
The Öpik method (black curve) performs quite well and results in a relative velocity

that is close to the reference value (grey curve) computed from the geocentric velocity
vector. However, there are two shortcomings:

• The exact location of the peak velocity does not coincide for the two methods,
in the Öpik method it is slightly shifted. Additionally, the relative velocities at
minimum distance (peak velocities) are also slightly di�erent.

• The other problem is that the curve obtained from the orbital elements is asym-
metric, i.e. the velocities at the beginning and the end of the encounter di�er.

The �rst objection from above is not a big problem in practice. As the Mercury
integrator provides only a single set of orbital elements per close encounter, we would
not be able to detect a shift in the timing of peak velocity. Anyway, we are interested
in the magnitude of the relative velocity, not in the moment when it is extremal. There
could be a systematic di�erence between the two methods regarding the magnitude of
the relative velocity. This deviation can be partly explained by the assumption of a
circular orbit for the planet in Öpik's theory, which is not realised exactly.
Regarding the latter point we must be careful not to mix the di�erent reference frames.

The velocity components are de�ned in a planetocentric reference system, in this frame
the velocity vector is only rotated by an angle which is determined by the encounter
geometry (Greenberg et al., 1988). The orbital elements in turn are de�ned in a helio-
centric frame, for which the velocity at the begin and end of the encounter need not
be equal, instead in general they will be di�erent. This e�ect is regularly exploited in
orbital mechanics as the �gravity assist maneuver� (Chobotov, 1991, chapter 12). The
reason for the asymmetric relative velocity curve based on orbital elements lies in the
fact, that the ingredients for the calculation are de�ned in another reference frame, and
so they illustrate the situation in that frame.
For a thorough check of the systematic velocity di�erence a sample of close encounters

for Apollo group NEAs was analysed. The data from the Lie series integrator was used
to be able to compare both methods. At each close encounter both relative velocities
were computed for every single time step to obtain the sequence of di�erences (analogous
to the bottom part of �gure 3.15). Then the mean di�erence over one encounter and
its standard error5 (SE) were calculated. Figure 3.16 shows this data for nearly 3500
encounters. Every single dot represents the mean di�erence from an encounter, which is
accompanied by the vertical error bars for the standard error of the velocity di�erence. In
general these errors are < 0.01 km/s and are thus negligible. Averaging again the velocity
di�erence over all close encounters we �nd 〈∆v〉 ∼= 0.40 km/s (the dotted horizontal line

5Another name is standard deviation of mean (SDOM); SE = σ/
√
N with N being the number of

time steps that the encounter lasts.
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Figure 3.16: A statistical check of the systematic velocity di�erences between two meth-
ods to compute relative velocities. The average and standard error of the
individual velocity di�erences are plotted for a sample of Apollo encounters;
each point represents a di�erent encounter. The grey-shaded area indicates
the mean di�erence (dotted horizontal line) and the 1-σ standard deviation
over the whole sample.

in the �gure) with standard deviation and σ∆v = 0.33 km/s, whereas the median value
is only 0.32 km/s.
These are just formal values, because one can see from the �gure that di�erences up to

1.7 km/s can occur. Nevertheless they assure us that the Öpik method is applicable to
extract relative velocities from the Mercury integrator data, and they allow to estimate
that on average we will be able to determine the relative velocity with an error less than
10 % for small velocities around 5 km/s, at higher velocities this error will be even lower.
The Öpik method was then applied to the Mercury integrator data to calculate relative

velocities for all NEA groups separately. Figure 3.17 compares the relative velocity
distributions for Apollos in models M4 and M5. The dotted vertical lines indicate the 5
km/s limit used for selecting a sub-sample of the data, which is presented in �gure 3.18.
Figure 3.17 combines data from all close encounters of objects initially in the Apollo

group in models M4/5. In case of the Lie integrator (left panel) the relative velocities
were measured at the entry to the sphere centered on Earth with radius of the Earth-
Moon distance. By choosing a �xed distance avoids to bias the distribution with objects
coming very close to Earth which therefore have a high relative velocity. Still there
remains a sort of bias at larger velocities above 20 km/s, where the distributions do not
decrease monotonically as in the case for the Mercury data. Those spikes are caused by
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Figure 3.17: The relative velocity distribution for models M4 (black) and M5 (grey) for
Apollos based on data from the Lie series integrator (left) and Mercury
integrator (right). The distributions are normalised by the total number
of encounters; the dotted vertical lines indicate the part of the distribution
below 5 km/s.

repeated close encounters of individual Apollo objects, that are not smoothed out due to
the rather small size of the sample, compare table 3.8 for the number of close encounters
inside the lunar distance. The peaks of the distributions are located at 13�14 km/s for
M4 and around 12�13 km/s for M5. There are no events with relative velocities above
40 km/s, at least when the NEAs are at the lunar distance.
For the Mercury integrator data (right panel) the relative velocities in the histograms

represent the velocity at minimum distance to Earth (assumed to be the peak velocity
during the close encounter). The Apollo group was chosen, since this is the most numer-
ous group and exhibits the largest number of encounters (see table 3.7), so the velocity
distributions are expected to be most precise. The minimum distances scatter widely,
though, as they range from the physical surface of the Earth up to one Hill radius.
Therefore it has to be cautioned that the two velocity distributions in �gure 3.17

are not directly comparable, because the relative velocities were not obtained at the
same distance. Apart from this, there is little variation between the two models. Both
distributions have their peaks at 11�12 km/s and the tails extend to approximately
40 km/s; only in < 0.03 % of all cases higher relative velocities occur � mainly in
connection with impacts.
Taking the distributions as they are, no systematic e�ect due to the Moon can be
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Figure 3.18: The normalised distributions of minimum encounter distances less than the
lunar distance for encounters with relative velocities below 5 km/s. From
left to right the panels show the distributions for Amors, Apollos and Atens,
respectively; the black line is for model M4, the grey line for M5.

derived for M5. There are small variations in the height of individual bins, the peak
is shifted by 1 km/s for the Lie data, but overall the data for the two models are too
close together to state that the Moon has any appreciable in�uence on the distribution
of relative velocities at close encounters.

Domingos et al. (2004) stated in their study that the Moon is e�ective in removing
asteroids on Earth-impacting trajectories for relative velocities below 5 km/s in 2.6 % of
the cases they investigated. I extracted all close encounters with relative velocity below
this 5 km/s limit from the Mercury data and checked the distribution of minimum
distances to Earth. Another limit was imposed on the minimum distances, they were
restricted to be less than or equal to the lunar distance (LD). Applying these selection
criteria, the number of close encounter events eligible was reduced from some millions
to only a few thousand cases; on average only 0.2 % of the cases from table 3.7 ful�ll
the constraints.

We can estimate an upper limit for the probability (for independent events) that
a de�ection by the Moon occurs for a close encounter that meets the requirements
(vrel ≤ 5 km/s inside the lunar orbit). Using the percentages from before the probability
is P (d) = 0.002× 0.026 = 0.000052, i.e. in one out of 20 000 cases.

The results are presented in �gure 3.18 and they show no distinctive di�erence for any
of the three NEA groups. Some data bins show an indication for a depletion of close
encounters, but such small di�erences could also occur by chance. Overall there is no
clear sign that the Moon would in�uence these objects.
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Quantitative analysis of NEA groups

In a part of section 3.3.2 it was investigated how certain NEA groups evolve in time and
how the exchange and mixing with other groups works in detail. Here we will extend
those results using the additional information gathered from models M4/M5.
For the discussion let us consider again the Apollo group (the results hold for any

other group, too). Figure 3.19 shows the count of objects versus time for the sample
of 300 Apollo objects in the Lie integrations. In panel (b) we observe the decline of
the Apollo population from initially all 300 NEAs to about 230 objects after 10 million
years. The other groups gain members proportionally; in this case there are about twice
as many Apollos that change to the Amor group (a) than to the Aten group (c). The
non-NEO objects6 in panel (d) remain a small group, but there is a steady �uctuation.
This means there is no net drain to a speci�c end-state, the mixing keeps going on. The
observed decay of the Apollo group is in agreement with the logarithmic decay observed
by Gladman et al. (2000), except that the decrease is not induced by ejections but by the
mixing process with other NEA groups, and ultimately by impacts onto the terrestrial
planets.
In case of the other groups the results are similar. Of the initially 300 Amors about

70 % remained in the group at the end of the integration, 15 % became Apollos, ∼ 1 %
Atens, the rest were non-NEOs. The Aten group decreased more substantially, only 45 %
of the initial population �nished as Atens, the others became Apollos (36 %) or non-
NEOs (14 %, preferentially Atiras). The di�erences between the models were negligible
in all the cases, no increased or decreased transport of NEAs is observable for model
M5.
As in the previous models the primary sink for NEAs in the current models are

impacts with the planets, rather than ejections or collisions with the Sun. In table 3.9
a summary of the di�erent end-states is given for NEAs that did not survive to the end
of the integrations. Figure 3.20 presents the time-evolution of the number of surviving
objects for each NEA group. The �gure is based on Mercury integrator data for the whole
population, scaled with the appropriate numbers from table 3.2. The di�erent impact
rates for Atens through Amors can be explained with the orbital periods (connected to
the mean motions), which are shortest for Atens. In a given time-interval the Atens
will have more revolutions than Apollos or Amors, which in turn increases their impact
probability and leads to a higher decay rate.

3.3.4 Models M6/M7

The last pair of models include the giant planets Jupiter and Saturn and show a number
of features that did not occur until now. Near-Earth Asteroids can now be subject to

6Based on osculating orbital elements sampled every 103 years, a �non-NEO� object does not ful�ll
the q < 1.3 AU and Q > 0.983 AU criteria; these can be Inner Earth Objects (Atiras) or main-belt
asteroids.
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Figure 3.19: The number of objects belonging to a speci�c NEA group versus time, based
on a sample of initially 300 Apollos in (b). Panels (a), (c), (d) show how
many of the Apollos became members of the respective group. Di�erent
colours are used for the dynamical models, M4 in black and M5 in grey. See
text for the de�nition of non-NEOs.
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Figure 3.20: Time versus percentage of objects remaining in the simulations, the other
objects were removed by impacts.

strong secular resonances (g5 and g6) with those planets, leading to a rapid increase of
eccentricity and an enhanced rate of ejections from the solar system. New mean-motion
resonances also occur (e.g. J3:1), and the Kozai resonance can lead to a strong coupling
between eccentricity and inclination variations; many of these e�ects are discussed in
Michel et al. (1996) and Gladman et al. (2000).

Estimating impact velocities from encounter velocity distributions

The current models are best suited among all model pairs to describe the real dynamics
of the solar system. In the previous section the NEA velocity distribution at close
encounters was discussed; now we are interested in the distribution of impact velocities.
Checking tables 3.9 and 3.10 we see that there are too few impacts to extract a reliable
impact velocity distribution.
In the following I describe the procedure to estimate (extrapolate) impact velocities.

Conforming to the Öpik theory I will assume an unperturbed hyperbolic trajectory for
the asteroid relative to the planet. The initial conditions available for the Mercury data
are the Earth mass (in units of the solar mass) µ ' 3×10−6, the minimum planetocentric
distance r0 (in AU), and the (heliocentric) orbital elements (a, e, i) at this distance.

1. Obtain an estimate of the relative velocity v0 at the minimum distance by using
the relation (3.3.1).

2. We also need the planetocentric semi-major axis which can be calculated from the
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Figure 3.21: A test case to assess the method for computing the relative velocity v(r)
from a given initial distance and velocity. The black curve is the reference
velocity obtained directly from the Lie integrator planetocentric velocity
components, the grey curve is the approximation. The horizontal axis dis-
plays the (integer) number of time steps since the begin of the encounter.
In the bottom part the error of the method is plotted.

two-body energy integral

a =

(
2

r0

− v2
0

µ

)−1

.

We will assume that a ≈ const during the whole close encounter! Note that for a
hyperbolic trajectory a < 0.

3. The velocity relation

v2(r) = µ

(
2

r
− 1

a

)
(3.3.2)

then allows to calculate the velocity as a function of the distance.

Minton and Malhotra (2010) used a similar relation based on the vis-viva integral, but
the resulting impact velocities are essentially the same.
Figure 3.21 presents a test case where the above steps have been used to calculate

the relative velocity v(r) for each time step from a single initial point. The data is the
same as for �gure 3.15, the reference velocity vref (in black) is taken directly from the
Lie integrator. The initial point with index 0 is just inside the lunar orbit, from this
point the initial velocity v0 and semi-major axis a0 are determined. All other points
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(grey line) are calculated from equation (3.3.2) for a given distance r that coincides
with the distance of the reference velocity. The lower part of the �gure shows the
di�erence between estimated an reference velocity. This di�erence is almost entirely
dominated by the error with which the initial relative velocity v0 can be computed from
equation (3.3.1). Thus for the approximation errors of the extrapolated velocities with
this method the same results hold as for Öpik's method to compute relative velocities:
from the statistical analysis (see �gure 3.16) the mean error is ∆v = 0.40± 0.33 km/s.
The histograms in �gure 3.22 show the normalised velocity distribution as extra-

polated to the Earth's surface (dark grey bars). The distributions obtained from the
numerical integrations (light grey) in modelsM6 andM7 are also included in the �gure for
comparison. Note that the latter distributions include velocities from di�erent geocentric
distances, which is the reason why also very small relative velocities appear (at large
planetocentric encounter distances). Impact velocities above 45 km/s are present but
amount to less than 0.01 % of all cases.
The impact velocities are consistent with the lower limit of 11.2 km/s for the escape ve-

locity. However, on average in 0.032 % of all cases the method fails and does not provide
a physically valid velocity. About 90 % of those cases are due to a Tisserand parameter
of T > 3 for the asteroid, as a consequence no relative velocity can be determined from
equation (3.3.1). By checking a number of such cases shows that this happens most often
when the Earth's eccentricity is e > 0.025, i.e. close to the peak value in the secular
period. It is obvious that the higher the eccentricity the less valid is the assumption
of circular orbits; Greenberg et al. (1988) discussed a number of conditions where the
Öpik method may fail. In the remaining 10 % of cases the resulting impact velocities
are below the escape velocity; in the distributions these cases � although negligible in
absolute number � were removed.
In �gure 3.23 the data from the previous �gure is plotted again to allow for a com-

parison between the models for each NEA group. Some remarkable features are that for
Atens there are more events falling into the 11�14 km/s bins in model M7 than in M6
(the Amors show the same feature for the 11�13 km/s bins to a lesser degree), moreover
the modal value for Atens is located at 15�16 km/s in M7 in contrast to 16�17 km/s for
M6. Except of these tiny di�erences no qualitative discrepancy can be found, the lunar
e�ect is yet again hardly discernible. For a discussion of the velocity distributions see
section 3.4.5.

Fitting the collision frequency

After having investigated the impact velocity distributions, next we will focus on the
impact frequency. We use the Mercury integrator data to create histograms for the
frequency of encounters with a certain minimum distance. The data then will be �tted
by a linear function like in Dvorak and Pilat-Lohinger (1999), which allows to calculate
the collision frequency with the Earth.
It has to be remarked that � by using an appropriate weighting of the data points
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Figure 3.22: Extrapolation of impact velocity distributions (dark grey) from the given
velocity distribution at minimum distance (light grey). The velocities at
dmin were extrapolated to the corresponding ones at the Earth surface (for
which the escape velocity is vmin = 11.2 km/s).
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Figure 3.23: Direct comparison of the normalised impact velocity distribution in the
models M6 (black curve) and M7 (grey curve). From left to right the Amor,
Apollo, and Aten group is visible.

� the linear function could be forced to better �t at smaller or larger distances, but in
both cases this would introduce an o�set in the residuals. On the one hand it would
be advantageous to have a better �t at large distances (> 106 km), because distant
encounters constitute the majority of the cases and the uncertainty about the encounter
frequency grows as the distance shrinks. On the other hand we are interested in the
frequency at small distances comparable to the Earth radius, so those points could be
assigned a larger weight in the �tting process, which in turn would decrease the accuracy
at large distances. In the end I decided to give all points the same weight in the �tting
process, which does not bias the residuals.

As an example �gure 3.24 shows the two Apollo �ts. On the horizontal axis the
distance ranges from 0− 0.01 AU, this interval is covered using a bin-width of 6 378 km,
equivalent to one Earth radius (R⊕). Along the vertical axis the encounter frequency is
given, which is the absolute number of events per bin normalised by the total number of
encounters per 107 years of integration and by the number of objects. At the bottom the
scatter of the residuals is shown, which increases with growing planetocentric distance.

The results of the �tting process are summarised in �gure 3.25, separately for models
M6 (left) and M7 (right), the collision probabilities (number per year per object) for the
NEA groups are directly comparable. It is also visible that the �ts generally slightly
overestimate the encounter frequency at the smallest distances, except for the Amors in
M7. The dots to the extreme left in the �gures represent the center of the smallest bin
which covers the distance range 0 ≤ r ≤ R⊕. For details about the �t parameters and
their uncertainties see table 3.5. The slopes b are rather well constrained, the relative
uncertainties σb for this parameter are about 0.1 %, while the intercepts a are harder to
determine and the errors are as high as 44 %.
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Figure 3.24: Fits for the encounter frequency versus distance for Apollos. For each dis-
tance bin (using the Earth radius of 6 378 km as bin-width) the normalised
number of encounters per 107 years per object is plotted. The diagonal line
is the linear least-squares �t to the data, the residuals are shown in the
bottom panels.
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Figure 3.25: Collision probabilities (impacts per object per year) for the three NEA
groups (from top to bottom): Atens (blue), Apollos (green), Amors (red).
The continuous line is the linear �t to the data points, while the grey vertical
line indicates the Earth's radius of 6 378 km; note the logarithmic scaling
of both axes.
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group, model parameter a± σa [×10−9] parameter b± σb [×10−13]

Amors, M6 0.96± 0.25 1.392± 0.003
Amors, M7 0.50± 0.22 1.399± 0.003

Apollos, M6 2.20± 0.34 3.869± 0.004
Apollos, M7 2.39± 0.35 3.933± 0.004

Atens, M6 6.69± 1.40 8.762± 0.016
Atens, M7 4.95± 1.33 9.328± 0.015

Table 3.5: Summary of the parameters for the linear �ts f(x) = a+ b x to the encounter
frequencies (x in km) given as the number of encounters per object per year.
The uncertainties for the parameters a (the intercept at x = 0) and b (the
slope) are also included.

3.4 Discussion

This section is intended to summarise and compare data from all models. A statistical
analysis of the Lie and Mercury data will be performed. The results obtained so far will
be compared to already published data and discussed in that context.

3.4.1 Recurrence of close encounters

In the previous sections the investigations were focusing on the lunar in�uence on NEAs
over long time spans. Here the opposite approach will be attempted to reveal any lunar
e�ect on the shortest times scales comparable to the lunar orbital periods (about the
Sun and the Earth).
Although the Mercury integrator produced a vast number of close encounter data, it

was necessary to use the cumulative data set � irrespective of the di�erent models � to
analyse the data for recurrent close encounter events. Here a recurrent close encounter is
de�ned as a Near-Earth Asteroid approaching Earth inside the Hill sphere twice within
a time span of one year7. Great care was taken to really make sure that close encounters
of the same object are considered, and no other asteroid mimics a recurrence.
The extracted data was then binned with a bin-size of 2 days to create the histogram

in �gure 3.26. Since the vertical axis is scaled logarithmically the height of the boxes
is squeezed, but the two most signi�cant peaks are located around the 1/1 and 1/2
fractions of a year. According to that NEAs are � at least temporarily � captured in
(or close to) the co-orbital 1:1 resonance with Earth, and a smaller fraction also in the
2:1 resonance, i.e. they encounter the Earth twice per year. No signi�cant evidence

7For technical reasons I extended the time span to 1.1 years to avoid missing the �stragglers� that
might need a few days more than one year to return to Earth.

90



3.4 Discussion

 1

 10

 100

 1000

 10000

 100000

1/6 1/5 1/4 1/3 1/2 1/10.0 0.4 0.6 0.8

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

fraction of Earth orbital period

lunar orbital periods

Earth orbital period Moon orbital period

n
u
m

b
e
r

Figure 3.26: Histogram of time spans between recurring close encounters of NEAs within
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indicate the fractions 1/6, 1/5, 1/4, 1/3, 1/2, and 1/1 of a year. The top
axis shows multiples of the lunar orbital period with the corresponding grey
vertical lines. Note the logarithmic scaling of the vertical axis.

was found for recurrent encounters for other fractions of the Earth's orbital period, as
well as for the multiples of the lunar sidereal orbital period. There are some spikes
in the histogram close to these resonant values though, but none of them incorporates
enough events to stand out from the noise. Another interesting point is the lack of events
between 0.6− 0.8 years, for which I have no explanation.
In Valsecchi et al. (2003) the authors described an analytical theory for handling

resonant returns of asteroids and comets. They extended Öpik's theory to include the
times of encounters and were able to compute from the �nal state of an approach the
parameters of the following one. It turns out that only the asteroid's semi-major axis
(for a �xed orbit of the planet) plays a role for resonant returns. Although the authors
considered two examples of asteroids, they did not attempt to give a more general
picture, speci�cally they did not suggest or refute that either the 1/1 or 2/1 resonance
could be prominent among the resonant returns.
Schwarz and Dvorak (2012) investigated temporary captures of asteroids by terres-

trial planets into the 1:1 resonance. They found that temporary captures occur more
frequently for the terrestrial planets than in the outer solar system, but captured aster-
oids in stable orbits are rare.
Brasser and Wiegert (2008) estimated the average lifetimes for non-coorbital asteroids

on Earth-like orbits to be shorter than 104 years. I did not check how many times and
for how long a NEA can have recurrent encounters, this remains work for the future.
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model Amors [%] Apollos [%] Atens [%]

Lie Mercury Lie Mercury Lie Mercury

M2 2.0 6.46 56.0 73.15 66.7 76.99
M3 2.0 6.53 55.7 74.43 66.3 79.45
M4 29.7 38.50 87.7 92.82 91.3 93.40
M5 25.7 38.81 88.3 92.45 93.3 93.87
M6 49.0 58.95 90.0 86.16 99.0 98.77
M7 35.0 58.10 92.0 87.02 99.0 98.62

Table 3.6: Percentage of objects from the di�erent NEA groups and models with close
encounters to Earth within the lunar distance. Note that the sample sizes for
the Lie and Mercury integrator were not equal.

3.4.2 Statistics of close encounters

Percentage of NEAs with close encounters

We have seen that close encounters happen in all dynamical models and are an essential
factor in every NEA's evolution. What is still missing is an overview of what fraction of
the NEA population is actually having encounters. Table 3.6 provides the percentage of
objects with close encounters to Earth within the lunar distance.
To interpret the numbers it should be recalled that for the Lie integrator the samples

contained 300 objects, except for the last two models, where only 100 objects were used.
The sample sizes for the Mercury integrator were larger, the numbers can be found in
table 3.2.
First of all it is obvious that overall much less Amors approach Earth than Apollos or

Atens. The reason is that Amors are not Earth orbit crossers from the beginning, but
need some time to evolve and increase their eccentricity under the action of resonances.
The sudden increase of the percentage when Mars is added in model M4 reinforces this
reasoning. Still it is surprising that even in the most complex models only about 3/5 of
Amors have encounters to Earth.
Three runs with the Lie integrator were aborted due to technical problems before

they �nished. Two of these runs concern the Amor group (for models M6/M7), which
partially explains the large di�erence to the Mercury values. The other case is for the
Apollos in M6, but this time the di�erence is much smaller and in good agreement to
the unbiased percentage of the Apollos in M7.
For Apollos and Atens there is quite a good agreement of the percentages, both when

comparing the models and the integrators. In the models M2/M3 we can see that the
smaller sample size for the Lie runs relative to the Mercury runs decreases the percentage
of objects with encounters. The largest di�erences between the Lie and Mercury runs
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are found for Amors and in the models M2/M3, they are probably caused by sampling
e�ects in the Lie runs.

Close encounters within Hill sphere

Now we turn from relative to absolute numbers for close encounters of NEAs. Table 3.7
summarises the Mercury data on close encounters to all planets inside their Hill spheres
for all dynamical models.
Comparing the number of close encounters for the same NEA group between the

models we �nd a gradual decrease when adding more planets. For Apollos and Atens
the numbers drop to nearly 50 % in models M4/5 compared to M2/3. This trend also
holds for Amors, although at �rst the numbers increase when Mars is �rst included into
the dynamical models. The lowest number of encounters to Earth (in total) is found for
models M6/7, which is clearly due to perturbations by Jupiter and Saturn; in parallel
the percentage of escaping objects is highest for these models, this will be discussed
below (see table 3.9).
Earth and Venus have a quite similar number of close encounters when considering

only Aten group objects8. This equivalence also explains why Venus su�ers from more
impacts of Aten group objects than Earth, see table 3.9.
The data in table 3.7 on close encounters to the Moon �t well with the expectations

based on the size of the Hill spheres. The ratio of encounters to the Moon and Earth is
NM/NE = 0.056, computed as the average ratio from models M3, M5, M7 over all NEA
groups. The corresponding ratio of the Hill radii is (RH,M/RH,E)2 = 0.054, computed
from equation (2.4.1) without using the eccentricity (including the eccentricity the ratio
is 0.052). Note that the ratio of close encounters scales as the ratio of the Hill sphere
surfaces, not of the volumes; also note that the lunar Hill sphere is completely embedded
into the Earth's.

Close encounters within lunar distance

In table 3.8 only the subset of close encounters inside the lunar distance is given. These
are the total number of detected close encounters for the Lie integrator, with three
exceptions marked by a star. These exceptions are the three cases mentioned before,
where the integration runs were aborted before the full time was reached, hence those
numbers should not be considered de�nitive. The Lie and Mercury data are not directly
comparable due to di�erent sample sizes.
The numbers in table 3.8 need to be normalised to adjust for the di�erent sample sizes

of the two integrators in order to be able to compare the data. We obtain the normalised
number of encounters (inside the lunar distance) per object by dividing the numbers in
the table by the number of objects in the respective sample (see section 3.2.2 and table

8To make the numbers in table 3.7 really comparable, one would need to rescale them to adjust for
the di�erent planetary Hill sphere sizes.
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planet dynamical model

M2 M3 M4 M5 M6 M7

Amors

Earth 486 574 492 835 1 028 513 1 036 769 729 610 729 251
Moon 28 394 57 676 40 495
Venus 239 720 214 204 238 536 254 442
Mars 619 263 615 974 388 144 388 141

Jupiter 161 124 149 672
Saturn 21 364 20 167

Apollos

Earth 8 146 593 8 222 064 4 919 334 4 911 189 2 955 277 3 003 539
Moon 461 038 272 956 166 707
Venus 2 156 213 2 082 134 1 668 576 1 653 967
Mars 809 170 801 533 480 078 487 240

Jupiter 249 765 261 147
Saturn 33 307 33 164

Atens

Earth 2 459 552 2 689 286 1 310 621 1 281 895 1 019 455 1 081 269
Moon 151 762 71 217 60 384
Venus 1 015 586 1 137 508 949 455 918 327
Mars 86 357 78 475 67 614 76 505

Jupiter 14 779 17 013
Saturn 2 160 2 067

Table 3.7: Summary of the Mercury data on close encounters of NEAs to all planets
(and the Moon) inside the respective Hill spheres depending on the dynamical
model. Empty cells mark unde�ned planet/model combinations. See text for
details.
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model Amors Apollos Atens

Lie Mercury Lie Mercury Lie Mercury

M2 1 269 33 003 32 366 555 586 98 317 167 558
M3 364 34 002 34 040 559 945 88 490 184 182
M4 5 374 69 399 22 485 331 568 45 124 87 858
M5 4 610 69 911 21 024 331 810 43 210 86 140
M6 906? 49 347 1 528? 198 760 15 343 68 698
M7 178? 49 001 4 544 202 577 16 503 73 233

? Integrations aborted before reaching full integration time.

Table 3.8: Absolute number of close encounters to Earth inside the lunar distance in all
dynamical models for Lie and Mercury integrator data. Note that a smaller
sample was used for the Lie integrator than for the Mercury integrator.
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Figure 3.27: Comparison of the normalised number of close encounters per object inside
the lunar distance for di�erent dynamical models. The histogram collects
data for all three NEA groups (Amors in red, Apollos in green, Atens in
blue) and for both integration methods (light colours: Lie integrator, darker
colour: Mercury integrator).
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3.2). These values should be considered as lower limits, since for a rigorous treatment
also the fraction of objects with close encounters (compare table 3.6) must be added as
a correction.
Figure 3.27 shows the normalised number of encounters inside the lunar distance per

object for all dynamical models. Each bar represents one NEA group with one of the
integration methods. The most striking results are a couple of systematic di�erences
between the Lie and Mercury integrator data: (i) in the Lie integrator data the Amors
have less encounters by about a factor of 2, but keep in mind the aborted runs for models
M6/7; (ii) on the other hand the Atens have more encounters in the Lie data relative to
the Mercury data; �nally for Apollos both methods agree fairly well.
In models M2/3 the Apollos and Atens have their maximal value of encounters per

object, even though just 75 − 80 % of the asteroids contribute (see table 3.6). For
these two models it would be easiest to detect any e�ect of the Moon on the encounters
of NEAs, e.g. an enhanced rate of de�ections and consequently fewer encounters. In
contrast to this, the numbers rather indicate a higher number of encounters in model M3
relative to M2: 11.2 vs 11.6 encounters per object for Amors, 129.5 vs 130.5 for Apollos,
and 257.0 vs 282.5 for Atens.
For Amors and Apollos usually the Mercury data agree to ±1 in the number of en-

counters per object, whereas the Atens have a larger scatter. Unsurprisingly, in this
direct comparison the Aten group has roughly two times more encounters per object
than the Apollos regardless of the dynamical model (e.g. 110 vs 47 in models M6/7);
the Amor group has the lowest number (17). The number of encounters per object is
of course related to the orbital periods: the Aten group has shorter orbital periods and
thus more encounters than the Amors.
As a consistency check for the Mercury integrator close encounter data we take the

ratio of the number of close encounters inside the lunar distance NLD (in table 3.8) to
that of all encounters inside the Hill sphere NHS (in table 3.7). When averaged over
all models and all three NEA groups we �nd a value of 〈NLD〉/〈NHS〉 = 0.0677, while
the ratio of the average lunar distance of DM = 384 400 km to the Hill radius of Earth
gives (DM/RH,E)2 = 0.0679. Thus we can be con�dent that the numbers in table 3.8
are neither too high nor too low.

Uncertainties for the number of encounters

It is not straight-forward to estimate the uncertainties in the number of close encounters.
Each dynamical model represents a single data-point, no strict statistical inference can
be made without repeating them several times. Taking spot-checks from the NEA groups
does not necessarily lead to valid results. As table 3.6 shows this would work for Atens
and maybe Apollos, where over 90 % of objects do have close encounters, but it would
be di�cult to choose sub-samples for the Amors, and an appreciable uncertainty would
remain.
I chose the following way to assess the uncertainties: The ratio of close encounters
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inside the lunar distance vs. Hill sphere NLD/NHS = 0.0677 is fairly close to the expected
value of 0.0679; the same is true for encounters to the Moon vs. Earth NM/NE = 0.056
which is close to the expected 0.054 (see above for the calculations). From the slight
deviations we can estimate the relative uncertainty (error) for the number of encounters
to be 100 % × (1 − 0.0677/0.0679) = 0.3 % and 100 % × (1 − 0.054/0.056) = 3.6 %,
respectively. In view of the di�erences in the number of encounters for pairs of models
(see tables 3.7, 3.8) a more conservative estimate for the uncertainty of up to 10 % seems
adequate. This uncertainty is mainly in�uenced by the Aten group for models M2/3,
but neglecting those models would only decrease the uncertainty to a worst case value
of 6 % (again for Atens). In other words, I would consider a di�erence in the number
of close encounters above 6 − 10 % as a signi�cant sign of the lunar in�uence. As a
matter of fact none of the model pairs exhibits such a large di�erence, in most cases
the di�erences are < 1− 3 %, except for the mentioned larger di�erences for Atens. To
decrease the uncertainty one would require a larger natural or synthetic population, or
alternatively longer integration times.
Another check can be performed using the normalised number of encounters per object

ε (derived from table 3.8). The encounters inside the lunar distance can be used to
independently estimate (extrapolate) the absolute number of encounters E inside the
Hill sphere for di�erent groups:

EX
EAt

=
εX
εAt
× NX

NAt

,

where N is the absolute number of asteroids in the respective group (see table 3.2), X
= Amors or Apollos, and the index At indicates the appropriate value for the Atens.
For the Apollos we compute 47/110× 4291/652 = 2.81, and from table 3.7 we �nd the
ratios of encounters in models (M6, M7) to be (2.90, 2.78). In a similar way we have
for the Amors in the same models 0.70 against (0.72, 0.67). This demonstrates that the
quantity �encounters per object� is a useful statistical parameter for NEAs.

3.4.3 Statistics of impacts

In connection with close encounters also the occurrence of collisions (impacts) with the
planets was monitored. When the dynamical models were introduced, it was stated
that in all calculations the Sun, planets and asteroids are treated as point masses.
Nevertheless, collisions are de�ned as encounters for which the planetocentric distance
is smaller than the virtual physical radius of that planet, in case of the Earth the radius
adopted is 6 378 km.

Impacts on planets

Table 3.9 gives an overview of the Mercury integrator data about the number of NEA
impacts to any massive object in the simulations. In addition to impacts also the number
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of ejections9 of NEAs from the solar system is included, because ejections become a
frequent phenomenon in models M6/7.
From the table we see that the impacts on Earth are dominated by the Apollos as the

most numerous NEA group. They are followed by the Atens and then Amors, although
in models M6/7 there is hardly any di�erence between the latter two groups. It is also
evident that the impacts follow the same trend as the encounters in table 3.7: by adding
more planets to the models the number of impacts with Earth decreases. Encounters
and impacts are linked to each other, NEA groups with a large number of encounters
also produce many collisions. When comparing the model pairs there is no clear trend
for collisions with the Earth. Sometimes there are more collisions when the Moon is
present, sometimes the opposite case is true.
For Mars the number of collisions with Amors and Apollos matches, while Atens con-

tribute only to a negligible fraction to collisions. Venus is mainly struck by Apollos and
Atens, although the majority of impacts is caused by the Aten group when considering
the number of impacts relative to the number of objects in the respective group.
In table 3.10 we �nd a summary of Earth impacts for the Lie integrator data. Since

the samples are smaller, so is the number of impacts. The advantage of this data set is
that with equal sample sizes (300 objects in the �rst four models, 100 in the last two) the
number of collisions is directly comparable. The general trend of a decreasing number
of collisions with increasing number of massive objects is observable, too. Similar to the
Mercury integrator data there is no clear indication for a lunar in�uence on the number
of impacts, since the numbers vary by factors of 2− 4 for model pairs.
Figure 3.28 collects the data from tables 3.9 and 3.10 and shows the normalised number

of impacts per object during 107 years of integration time for all dynamical models.
Each bar represents one NEA group with one of the integration methods. The results
are similar to those for the normalised number of close encounters: the Lie integrator
data results in a higher impacts per object value for Atens, but underestimates collisions
of Amors relative to the Mercury integrator data; for Apollos both give essentially the
same results in models M6/7. There are two remarks for the Amors: (i) no impacts
were detected for Amors in M6 in the Lie data, and (ii) the single event in M7 has to be
scaled with 1/100 instead of 1/300 due to the reduced sample size.

Ejections and Sun-grazers

In models M6/7 there are many NEAs that collide with the Sun, termed �Sun-grazers�
by Farinella et al. (1994). This goes along with a strong increase of ejected NEAs,
especially Apollos and Amors are su�ering from this e�ect. Up to 50 % of the objects
from those two groups are removed by ejections (∼ 1400 Amors and ∼ 2200 Apollos),
in contrast to only about 25 % (∼ 160) of all Atens.

9An ejection (or escape) happens when the NEA reaches a distance of ≥ 100 AU from the Sun, or an
eccentricity of e ≥ 1.
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target dynamical model

M2 M3 M4 M5 M6 M7

Amors

Earth 38 52 52 42 45 40
Moon 1 1 1
Venus 20 23 20 20
Mars 13 8 6 3

Jupiter 12 13
Saturn 1 0

Sun 0 0 0 0 103 82
ejected 0 0 0 0 1 386 1 372

Apollos

Earth 420 393 222 216 124 131
Moon 10 7 3
Venus 141 125 114 121
Mars 13 7 6 4

Jupiter 11 13
Saturn 0 1

Sun 0 0 0 0 188 191
ejected 5 5 0 2 2 250 2 261

Atens

Earth 129 131 59 58 49 34
Moon 2 1 3
Venus 70 64 55 51
Mars 0 1 1 2

Jupiter 1 0
Saturn 0 0

Sun 1 0 0 0 23 18
ejected 0 0 0 0 158 173

Table 3.9: Summary of the Mercury integrator data on the number of impacts of NEAs
onto planets as well as the Moon and Sun depending on the dynamical model.
Empty cells mark unde�ned planet/model combinations. See text for details.
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group dynamical model

M2 M3 M4 M5 M6 M7

Amors 1 2 2 8 0? 1?

Apollos 13 39 18 8 3? 3
Atens 73 76 26 32 12 9

? Integrations aborted before reaching full integration time.

Table 3.10: Number of impacts on Earth in all dynamical models for Lie integrator
data. All NEA groups used equal sample sizes, so the numbers should be
comparable, except for those cases marked with a star.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M2 M3 M4 M5 M6 M7

im
pa

ct
s 

(p
er

 o
bj

ec
t)

dynamical model

Amors, Lie
Amors, Mercury

Apollos, Lie
Apollos, Mercury

Atens, Lie
Atens, Mercury
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These results con�rm Gladman et al. (2000), who explain the ejections by the action of
the J3:1 mean-motion resonance with Jupiter and the ν6 secular resonance with Saturn.
These resonances are easily accessible for Amors and Apollos, but not for Atens. Atens
could be in�uenced by the ν5 secular resonance with Jupiter (see Michel et al., 1997).
However, there is a signi�cant di�erence: Gladman et al. (2000) reported that more

than 50 % of their NEA population (65 out of 117 objects) end as Sun-grazers in their
simulations, which is in agreement with the result of 40 % (19 of 47 objects) in Farinella
et al. (1994). Another 10−15 % of the population are ejected on hyperbolic trajectories
(Farinella et al., 1994; Gladman et al., 2000). In my simulations by far most NEAs are
ejected (25 − 50 %, depending on the group) and only 3 − 5 % collide with the Sun
(see table 3.9). Many of the ejected NEAs might have perihelion distances that are
comparable to the solar radius due to large eccentricities, though.
I cannot o�er a complete explanation for this discrepancy. In my integrations I used

exactly one solar radius (∼ 0.005 AU) for the distance to detect a collision. From
my experience with the Swifter RMVS code10 (Levison and Duncan, 1994), which was
employed by Gladman et al. (1997, 2000), I know that there is a parameter for the
heliocentric distance at which a test particle is stopped as being too close to the central
body. Gladman et al. did not specify the value used for this parameter, but it is clear
that the results depend crucially on this parameter. It is also known that symplectic
integrators are limited by their �xed step-size when dealing with highly eccentric orbits
with small perihelion distances (Levison and Duncan, 2000).
There is another line of reasoning. Gladman et al. (1997) did not observe a high solar

impact rate globally, but only for objects injected into the ν6 and J3:1 resonances. In
those two cases 70 − 80 % of the objects impacted the Sun, while for other resonances
typically only 6 − 8 % su�ered from that fate. For objects between the J5:2 and J2:1
resonances ejections were more important, 25 − 90 % of the asteroids were removed in
this way.
In the end the apparent contradiction could be related to the numerical integration

method, or alternatively related to the weighting of di�erent contributions to the per-
centage of Sun-grazers.

Impact frequency

Finally, I will estimate the impact frequency to Earth in models M6 and M7 from the
data acquired so far. The following estimates all rely solely on the Mercury integrator
data, as the larger number of events presumably allows to better constrain the impact
frequency.
Three complementary methods will be applied, in the following each method will be

discussed.

1. The �rst and most basic method directly estimates the impact frequency from the

10see http://www.boulder.swri.edu/swifter/
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number of impacts I in the simulations. This gives the �probability� (or �ux) for
impacts per year and per object as

P1 = I × T−1 ×N−1

which is normalised by the integration time (T = 107 years) and by the number of
objects N of the respective NEA group. This method does not provide a measure
of the uncertainty directly, but using the assumption that the number of impacts
should be the same for any pair of models it is possible to estimate an average
uncertainty of ±12 % (with a worst-case value of up to ±30 %) from table 3.9.

2. In section 3.3.4 the encounter frequencies to the Earth were described by a linear
function depending on the geocentric distance, see table 3.5 for details on the
parameters. This �t is based on the binned number of encounters with bins of the
size of 1 Earth radius (R⊕ = 6 378 km). We can use the �t function f(x) = a+ b x
to calculate as second estimate the impact frequency at the Earth radius

P2 = f(x = R⊕).

The �t functions are already appropriately normalised; they also provide estimates
of the uncertainty for the impact frequency derived from the parameter uncertain-
ties. One must be careful to use the full form of the error propagation formula to
compute the �t uncertainty σf (Walser, 2011)

σ2
f = σ2

a,a + 2σ2
a,bR⊕ + σ2

b,bR
2
⊕.

Here σ2
a,a, σ

2
b,b are the variances of the parameters a, b, and σ

2
a,b is the covariance

of the two uncertainties due to a correlation in the two parameters (found to be
ra,b = −0.866).

3. The �nal estimate also uses the �t functions f(x), but this time the estimate
involves the whole interval 0 ≤ x ≤ R⊕ instead of a single point. It should
be noted that the encounter distance is a continuous variable and as such the
probability for it to have the speci�c value x = R⊕ is zero. Therefore the third
impact frequency estimate is

P3 =
1

R⊕

∫ R⊕

0

f(x) dx.

This integral represents the (continuous) average of f(x) over the integration inter-
val (in this case equal to the bin-width). The uncertainty for the impact frequency
is calculated from the propagation of uncertainty for the �t parameters (variances
and covariances) from the function g(a, b) = P3 by

σ2
g =

(
∂g

∂a

)2

σ2
a,a + 2

(
∂g

∂a

)(
∂g

∂b

)
σ2
a,b +

(
∂g

∂b

)2

σ2
b,b.
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group, model P1[×10−9] I1 P2[×10−9] I2 P3[×10−9] I3

Amors, M6 1.531 45 1.85± 0.25 54± 8 1.40± 0.26 41± 8
Amors, M7 1.361 40 1.39± 0.22 41± 6 0.94± 0.22 28± 6

Apollos, M6 2.890 124 4.67± 0.33 200± 15 3.44± 0.34 147± 15
Apollos, M7 3.053 131 4.90± 0.35 210± 15 3.65± 0.35 157± 15

Atens, M6 7.515 49 12.17± 1.38 80± 9 9.49± 1.40 62± 9
Atens, M7 5.215 34 10.81± 1.31 71± 9 7.92± 1.34 52± 9

Table 3.11: Estimated impact frequencies Pk (impacts per year per object) on Earth
and extrapolated number of impacts Ik for models M6/7 based on Mercury
integrator data. See text for details.

In table 3.11 we �nd the estimated impact frequencies and the extrapolated number of
impacts over 107 years. This extrapolated number of impacts for a given NEA population
size (equal to that used in the simulations) allows to compare the estimates to the actual
data.

The numbers in the columns for P1 and I1 are taken directly from the numerical
integrations, and so no uncertainties are available. As discussed above, a rough estimate
of the uncertainties can be calculated by comparing the pairs of models and would give
relative errors of 12 % (but up to 30 % for a conservative estimate). The uncertainties
for P2, P3 are of the order of 10 %, which is a consequence of the rather large errors
of the �t parameter a for the intercept (see table 3.5); the smaller errors for the better
constrained slopes b have a weak in�uence.

In all cases the extrapolated number of impacts I2, I3 agree to within the error bars
between the models. The reason that I2, I3 have identical errors is that they were derived
from the same �t parameters (and rounded to the nearest integer). The extrapolated
number of impacts I2 is generally too high when using the impact frequencies P2, while
P3 gives results that are closer to the numbers in the simulations (I1).

It is important to note that these impact frequencies (or impact probabilities) represent
an average number over an entire NEA group, they can be used for statistical purposes,
but for individual objects they are less useful.

The Amor impact frequency should be considered as an upper limit, because the
asteroids derived from the Amor group would have become Apollos or Atens once they
impact. An improvement would be to split up the Amor impact frequency and distribute
it among the other groups according to the determined group mixing rates, which were
discussed in sections 3.3.2 and 3.3.3 (see the example for Apollos in �gure 3.19).
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A statistical test

A Pearson chi-squared test was performed to distinguish whether or not the di�erences
in the absolute number of impacts are signi�cant. Four categories were de�ned for a 2×2
contingency table with a single degree-of-freedom: (model M6, model M7) vs (impact,
non-impact). The �impact� category contains the observed number of impacts N1 from
table 3.11, the complementary �non-impact� category then gives the number of objects
without impacts, Ntot −N1, where Ntot is taken from table 3.2 for each group.
The null hypothesis H0 states that the categories �model� and �impact� are inde-

pendent, it shall be tested to the signi�cance-level α = 0.01. Processing the data for
Amors/Apollos/Atens results in χ2 values of 0.3/0.2/2.9 which are clearly smaller than
the critical value χ2

crit = 6.63.
Consequently the hypothesis H0 cannot be rejected, which means that the impacts

(non-impacts) are statistically independent of the model. In turn this means that with
a high probability the Moon has no signi�cant in�uence on the number of impacts of
Near-Earth Asteroids with Earth.

3.4.4 Comparison of collision probabilities

In the following paragraphs it will be compared how the collision probabilities derived
here relate to those published by other authors.
Shoemaker et al. (1979) provided collision probabilities with Earth based on a secular

perturbation theory extending the equations of Öpik. The authors gave probabilities
of collision for individual NEAs (Table I) which range from 0.4 − 14 × 10−9 per year
for a sample of 35 asteroids. The estimates of Shoemaker et al. for the mean collision
probabilities of Atens, Apollos, and Earth-crossing Amors are (9.1, 2.6,≈ 1)× 10−9 per
year (Table II), which agree very well with the data in table 3.11.
Steel and Baggaley (1985) used a method based on the spatial density of asteroids to

determine the collision probability for the then known population of 76 NEAs. From
the individual collision probabilities the authors calculated the mean probabilities and
spreads for Atens and Apollos as 22±26×10−9 and 5.8±11.3×10−9 per year, respectively.
These numbers agree fairly well for the Apollos, but are about two times larger than
my own estimates for the Atens. They noted that the mean probability for Atens would
have been lower by exactly this factor of two, if they had not included a low-inclination
asteroid that biased the Aten sample (4 objects in total).
Later Steel (1995) recalculated the collision probabilities for 169 Apollos and Atens,

and found similar values to the ones before, namely 9.33 × 10−9 and 24.30 × 10−9 per
year for Apollos and Atens. Amors were not included in his calculations, as they are not
Earth-orbit crossers at time t = 0.
Milani et al. (1990) extracted collision probabilities from the data acquired within

�Project Spaceguard�. Originally they integrated numerically the orbits of 410 planet
crossing asteroids for 2 × 105 years, but they used only a subset of 89 asteroids for
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their estimates. Since Milani et al. did not use the Shoemaker classi�cation but de�ned
several new dynamical classes, here only the mean collision probabilities spanning all
classes can be compared. They found a mean probability of 2.82 × 10−9 per year,
whereas their maximum value turns out to be 5.68× 10−9 per year for the Geographos
class. Some of their classes are protected from having approaches to Earth by resonance
mechanisms, so the lowest probabilities are 0.11× 10−9 per year (Kozai class).
Rabinowitz et al. (1994) recalculated the individual collision probabilities for an en-

larged sample of 180 Earth-orbit crossing asteroids using the method of Shoemaker et al.
(1979). They found values that scatter widely between 2.9−42×10−9 per year for Atens,
and 0.4− 30× 10−9 per year for Apollos. From their `Table 1' I estimate a median value
somewhere around 6× 10−9 for Atens, and a mean (median) of 4.6× 10−9 (2.8× 10−9)
per year for Apollos.
Atens and Apollos were also studied in Dvorak and Pilat-Lohinger (1999) by numeri-

cally integrating the orbital evolution of 78 NEAs over 106 years. The approach in that
paper is di�erent from the current one so far as collision probabilities were obtained for
any asteroid separately, and then averaged for the whole group. The reported collision
probabilities are 38.6± 22.5× 10−9 for Atens and 8.2± 5.7× 10−9 for Apollos (units are
collisions per year). In a subsequent paper Dvorak and Freistetter (2001) investigated
an enlarged sample of 720 �ctitious objects for 0.5 million years. They published colli-
sion probabilities that are higher by a factor of 2 − 6 than the results reported earlier;
this could be an artefact of the regular distribution of the initial conditions in the (a, e)
space.
In the paper of Gladman et al. (2000) 117 NEAs were investigated over 60 Myr.

Although they did not specify separate impact rates for the groups (the authors reported
5 impacts to Earth), an overall impact rate of 4.7± 1.3× 10−9 per year per object was
found. That value is very close to the Apollo's impact frequency found here, which leads
me to the speculation that the results of Gladman et al. are dominated by that group.
For the special case of NEAs with Earth-like orbits (0.95 ≤ a ≤ 1.05 AU, 0 ≤ e ≤ 0.1,

and 0 ≤ i ≤ 10 degrees) Brasser and Wiegert (2008) pointed out that the impact rates
can be more than two orders of magnitude higher than the �ordinary� values (up to
5×10−6 per year). However, these orbits are very chaotic, they di�use away from Earth
by close encounters on a typical time scale of 104 years.
Overall there seems to be a good agreement of the impact frequencies obtained from

the Mercury integrator data and the values from the cited references. I am aware of the
possibility that some publications may contain values di�erent from those mentioned
here, but to the best of my knowledge the enumeration above is complete.

3.4.5 Impact velocities

In section 3.3.4 the distribution of impact velocities to Earth was estimated from the
known velocity distribution for close encounters in models M6/M7, see �gures 3.22, 3.23.
Here it will be discussed how the obtained distributions compare to previous results.
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group, model impact velocity [km/s]

mean ± std. dev. median quartile v0.25 quartile v0.75

Amors, M6 16.9± 4.6 15.4 13.6 18.6
Amors, M7 16.8± 4.6 15.3 13.6 18.4

Apollos, M6 17.9± 4.6 16.8 14.4 20.2
Apollos, M7 18.0± 4.6 16.9 14.4 20.5

Atens, M6 17.6± 3.8 17.0 14.8 19.8
Atens, M7 17.4± 3.8 16.8 14.5 19.7

Table 3.12: A statistical summary of the impact velocity distributions for Earth in mod-
els M6/M7; all velocities are in km/s. The numbers in this table refer to the
impact velocity distributions shown in �gure 3.23.

A statistical summary of the impact velocities is provided in table 3.12. The table
gives the mean impact velocity and the 1-σ standard deviation, the median value, and
the values of the 1st and 3rd quartile boundary for each dynamical model. From �gure
3.23 the modal values for Amors, Apollos, Atens are found to be 13�14, 14�15, and
16�17 km/s (in M6) (but 15�16 km/s in M7), respectively. The standard deviations are
rather large due to the tails that extend to impact velocities of v > 45 km/s, but the
cumulative probability for v > 45 km/s is just ≤ 0.01 %. Note that Amors and Apollos
have identical standard deviations (when rounded to one decimal digit, di�erences are
present at the second digit), which indicates that the majority of Earth-crossing Amors
is in fact Apollo group objects. All mean/median values can be considered to be statis-
tically equivalent, the Moon in M7 does not introduce any shift or decrease of velocity
to these distributions.
Bottke et al. (1994, Figure 8) presented the impact velocity-probability distribution

for Earth crossers. The mean (median) impact velocities are 17.2 (16.1) km/s averaged
over all 128 NEAs in their sample. They remarked that the distributions are quite spiky,
as they had to sum separate distributions from their Öpik type method.
Using the method of Steel and Baggaley (1985) collision speeds were calculated in

Steel (1995, see Table 1) for 169 Apollos and Atens. Impact speeds were weighted
by the collision probabilities; for the two NEA groups the mean values are 15.7 km/s
(Apollos) and 15.1 km/s (Atens) � a weighted mean over both groups is 15.5 km/s.
When considering the subset of objects with e < 0.2 (e > 0.2) an average impact speed
of 13.7 (15.8) km/s was determined.
Steel (1998) computed the distributions and moments in impact speeds with an em-

phasis on objects of size ≥ 0.5 km (NEAs and comets). The numbers from his Figure
1 give minimum/mean/maximum impact speeds of 12.6/17.7/40.7 km/s. He also noted
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that the distribution is skewed towards low impact speeds with 75 % of cases having
v < 20 km/s, and just a few percent with v > 30 km/s.
In Gladman et al. (2000) the distribution of impact speeds was calculated by weighting

the encounter velocities with the collision probability, for this they used the velocity
distribution over the entire integration time. The reported median impact speeds are
15 km/s at t = 0 and 19 km/s over 60 Myr (for a sample of 117 NEAs).
Je�ers et al. (2001) computed the impact velocity distribution for NEAs (among other

impactor populations) by means of an Öpik method that handles also eccentric orbits
for both target and impactor. They used a synthetic orbital element distribution to
avoid any observational bias and created a population of 20 000 asteroids, from which
they obtained a mean impact velocity of 21.7 km/s. However, one must caution that by
using a debiased orbital element distribution for NEAs the increased number of objects
with high eccentricity and inclination would de�nitely shift the impact velocity to larger
speeds.
A more recent estimate of impact velocities to the terrestrial planets was given in

Minton and Malhotra (2010). They found mean (median) velocities of 20.3 (18.9) km/s
for an initial population of > 17 000 particles. These particles were initially located
in the asteroid main-belt close to resonances that drive them towards the terrestrial
planets. Minton & Malhotra considered only unique encounters between a particle and
a planet, i.e. the �rst encounter only. They noted that the velocity distribution would
become skewed by multiple encounters. However, it is possible that they overestimated
the velocities for this reason, since at the �rst encounter the particle has just left the
main-belt and probably has a rather high eccentricity which leads to a large impact
velocity.

3.4.6 Surviving objects

Figure 3.29 shows the details about how many objects have survived until the end of the
Mercury integrations. Each NEA is assigned to a group at t = 0 and remains linked to
it, regardless of how many times it might change to another group. Amors are shown in
light grey, Apollos in medium grey, and Atens have dark grey colour. The plot contains
only NEAs that neither had impacts (to a planet, the Moon, or the Sun), nor were
ejected from the solar system by a close approach.
It is visible from the �gure that in the �rst four models the fractions are almost

constant, while the percentage of surviving objects drops sharply below 50 % for models
M6/M7.
In models M2 � M5 objects are predominantly removed by collisions with terrestrial

planets; collisions with the Sun or ejections play a minor role. On average about 90 %
of all objects survive (when compensating for the group sizes), which evidences that
collisions are a rather ine�cient way to decrease the NEA population. The small fraction
of removed objects would lead to an estimate of the dynamical lifetime of the order of 108

years, which is in agreement with calculations using the Öpik theory where resonances are
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Figure 3.29: The percentage of objects that survived the whole integration time of 107

years. The grey coloured bars represent the three NEA groups in each
dynamical models.

neglected. For the same four models the fraction of surviving objects in each NEA group
is dominated by the frequency of approaches, which in turn determines the frequency
of impacts. As Atens have the highest number of encounters (see �gure 3.27) they also
have the lowest fraction of survivors.
The situation changes fundamentally for models M6 and M7, where on average just

42 % of the initial population remains at the end of the integration. In contrast to the
other models the Atens are now the group with most survivors (above 50 %). According
to Gladman et al. (2000), NEAs (in particular Amors and Apollos) are strongly dec-
imated by the ν6 secular resonance with Saturn and the J3:1 mean motion resonance
with Jupiter acting for semi-major axes between 2.0− 2.6 AU � values that are typical
for Amors and Apollos, but not for Atens. The low percentage of surviving Amors and
Apollos � and the large amount of ejected asteroids (see table 3.9) � can be interpreted
in the light of this �nding.
It has already been discussed earlier in connection with impacts, that the presence of

the Moon does not make any di�erence. Also here the percentages of surviving objects
are equal to within ±1 % for all pairs of models.

108



Chapter 4

Impact simulations

This chapter presents the impact simulations that aim to shed light on the lunar in�uence
on possible Earth impacting objects in a simple dynamical model.
At the beginning the dynamical model is introduced in section 4.1. The dynamical

model has two complementary variants that investigate the positive and negative e�ect
of the Moon on possible impactors. The two variants and the related con�gurations are
explained in that section.
In section 4.2 the simulation process is described with a focus on the technical details.

This section presents the numerical methods for solving the equations of motion, and
illustrates the procedures for generating initial conditions for the simulations.
Section 4.3 summarises the results of the simulations. For each variant of the dy-

namical model di�erent con�gurations are compared. The quantitative analysis of the
simulation outcomes allows to derive a statistical average lunar e�ect.
The results are �nally discussed in section 4.4 and they are compared to published

data in the literature.

4.1 Dynamical models

4.1.1 Background

Several studies have investigated the dynamical processes of impacts and impact ejecta
in the Earth-Moon system and beyond. In the following I will point out key features of
those studies that are also relevant for this work.
Gladman et al. (1995) studied the dynamical evolution of lunar impact ejecta to gain

insights on the transport processes of lunar material to Earth. In their numerical in-
tegrations they used a four-body problem including Earth, Moon, Sun and the ejected
particle. They chose initial launch speeds of impact ejecta that are between 2.3 and
3.5 km/s, not very di�erent from the lunar escape speed of 2.4 km/s. They concluded
that the amount of ejecta returning to the Moon or delivered to Earth is strongly de-
pendent on the initial velocity, and that the Moon is very e�cient in scattering away
objects with velocities similar to its orbital speed of ≈ 1 km/s.
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In a follow-up research Gladman et al. (2005) investigated the spreading of Earth-
escaping impact ejecta and the delivery to other planets in the solar system. They
considered impactor speeds ranging from the terrestrial escape speed of 11.2 km/s up
to 16.4 km/s. From test calculations performed with a model including the Moon the
authors found no evidence that it in�uenced the number of objects returning to Earth.
Scheeres et al. (2002) reviewed the topic of ejecta generated by impacts on asteroids.

They discussed the production of ejecta, the relevant dynamical processes and perturbing
forces, and gave a classi�cation scheme for the fate of asteroidal ejecta. Although the
main focus of their work was di�erent, in this thesis several concepts from that paper
are applied.
In Alvarellos et al. (2002) the authors studied the orbital evolution of ejecta from

Jupiter's moon Ganymede. They reported the particularly interesting result that par-
ticles having sub-escape speed (∼ 0.96vesc) could still orbit Ganymede temporarily,
i.e. they do not fall back immediately. The authors chose a launch speed interval
of 0.96 − 1.40 times the escape speed for the simulations (in case of Earth this would
give an interval of 11.2 ≤ v ≤ 15.7 km/s). These simulations used four di�erent launch
angles: 0, 30, 45, and 60 degrees from the vertical.
Another satellite � Saturn's moon Hyperion � was investigated by Dobrovolskis and

Lissauer (2004). This work used a much more complex dynamical model (it included
several other satellites of Saturn as well as the e�ect of its rings) and followed the ejecta
over a time-span of 105 years.
Domingos et al. (2004) analysed the lunar e�ect on collisional processes of asteroids

with the Earth. In a restricted four-body model Sun, Earth, Moon and NEA they
assessed the strength of the lunar in�uence on asteroids with relative velocities below
5 km/s. They concluded that the Moon is more likely to help to avoid collision with
Earth than to cause them (2.6 % vs 0.6 %). However, their study was restricted to only
two dimensions which could severely enhance the interaction probability between Moon
and asteroids, besides they used only some hundred particles for the simulations.
In contrast to the other studies discussed so far, Artemieva and Shuvalov (2008) used

a 3D hydrodynamical code to model high-velocity impacts of asteroids and comets on
the Moon and to estimate the amount of ejecta material generated.
Reyes-Ruiz et al. (2012) continued the research on the collision probability of Earth

impact ejecta with other planets in the lines of the Gladman et al. (1995, 2005) papers.
In their dynamical model the Moon was included, and they used a larger number of test
particles in the simulations than any previous study. They also estimated the e�ect of
the Moon by comparing simulations using separate bodies to the Earth-Moon barycenter
model, but found merely minor di�erences.
Galiazzo et al. (2013b) used a statistical approach to �nd the most probable source

regions of the impactor that created Bosumtwi crater in Ghana. Starting from available
geological constraints a number of test particles were traced backwards in time via
numerical integrations. The evolution of the �ejected� test-particles was followed for
100 Myr under the in�uence of the planets and major main-belt asteroids.

110



4.1 Dynamical models

4.1.2 General aspects

According to Domingos et al. (2004) there are two aspects that need to be taken into
account when investigating the role of the Moon: On the one hand it can shield the Earth
from Near-Earth Asteroids by direct collisions and indirectly by scattering them away
from collision trajectories, but on the other hand it can also contribute to additional
impacts by forcing NEAs towards Earth that otherwise would not have hit the planet.
In order to analyse these e�ects it was necessary to simplify the dynamical model as

much as possible, while still retaining the essential ingredients � the Earth and Moon as
separate objects. The dynamical model chosen for all simulations is the spatial Circular
Restricted Thee-Body Problem (CR3BP) in the rotating frame, using the equations of
motion (2.3.3) which were derived in section 2.3.
One must be aware of the limitations of this model, especially because the Sun acts

as a major perturber on the system (see force estimates on page 60). However, the
simulations cover only a rather short time span of the order of several days and it can be
safely assumed that for this time-scale the model describes the dynamics su�ciently well.
An upper limit for the simulation time-scale can be estimated from the �free-fall� time
τff . An object coming from in�nity (with its initial velocity being zero) would arrive to
Earth's sphere of in�uence (RSOI = 150R⊕) with a velocity of vSOI = v(RSOI) = 0.913
km/s, which is simply the (parabolic) escape velocity at that distance. If we assume the
object to be unaccelerated it will take the free-fall time τff = 2RSOI/vSOI ≈ 24.3 days to
pass through the Earth's SOI. Note that this is a strict upper limit, because real objects
would be accelerated by Earth's gravity and would take less time.
A possible solution for including the perturbation from the Sun while still having a

simple model is to use the Bi-Circular Restricted Four-Body Problem (Simó et al., 1995).
This model still allows to express the perturbations from Earth, Moon, and Sun on a
massless asteroid in compact form without the need to integrate the orbits of any of the
perturbing bodies. A drawback of this model is the fact that it does not ful�l Newton's
laws of motion, as circular orbits are enforced arti�cially. I have not made any attempt
neither to compare the CR3BP to the BCR4BP nor to cross-check the behaviour of the
simulations in both models, but a comparison can be found in Castelli (2011).
Another limitation of the CR3BP is naturally that it cannot account for the Moon's

eccentric orbit. This point was ignored for the sake of having a simple form of the
equations of motion, as the elliptic restricted three-body problem would introduce such
annoyances like an explicit time-dependence into the equations of motion together with
a pulsating coordinate system (see Szebehely, 1967) � consequently the unit-length is
not constant any more.
To analyse both aspects of the lunar in�uence I used two special simulation setups

(models) in the frame of the CR3BP, the details are explained below. Each of the two
model consists of a number of consecutive phases, and depends on certain parameters.
Two key parameters are the Earth-Moon mass ratio µ and the Earth-Moon distance
dEM. It has already been discussed in section 3.1 that the Moon's distance to Earth
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increases with time (Goldreich, 1966; Touma and Wisdom, 1994), so that it must have
been much closer to Earth at the time of the Late Heavy Bombardment (LHB). The
simulations cover three di�erent con�gurations of the Earth-Moon system by varying
the key parameters:

C1 the default con�guration with an Earth-Moon mass ratio of 81.30057 (Roncoli, 2005),
this results in µ = 1/82.30057, and a constant Earth-Moon distance of dEM =
384 400 km;

C2 a con�guration with the lunar mass doubled to µ = 1/40, the Earth-Moon distance
is not changed;

C3 a con�guration where the Moon is at half of its current distance (192 200 km), and
the mass ratio is kept at the default value.

The �rst con�guration C1 uses the default parameters for the Earth-Moon system
as it is today, so that it is possible to derive the lunar e�ciency in de�ecting asteroids.
Con�guration C1 will be used as a benchmark for the other con�gurations. In the second
con�guration C2 a more massive Moon is used to check which role the lunar mass plays
in the process of de�ecting incoming NEAs. The third con�guration C3 serves to assess
how well the Moon could shield the Earth from impacts some 109 years ago when it was
much closer.
The CR3BP uses normalised non-dimensional units such that the gravitational con-

stant is equal to 1. When using di�erent values for the key parameters one must be
careful to choose the right units to satisfy this condition. For the default system the
unit-length is 384 400 km, the unit-mass is the total mass of the Earth-Moon system (its
value is 1/328900.5 solar masses), which �xes the time-unit to roughly 4.34 days (such
that one sidereal revolution of the Moon takes 2π time units).

4.1.3 Model 1: the Moon's role for de�ecting impacts

In this �rst model M1 we are interested in the e�ciency of the Moon to prevent impacts
on Earth, and the circumstances of such successful de�ections. The basic idea is to
assume that an impact has already occurred on Earth and to �replay� the situation
when the Moon is added to the system.
The simulations are then structured into three consecutive phases:

Phase 0 A large number1 of impact sites on the Earth surface is created using a given
random distribution in positions and velocities.

Phase 1 The impactor trajectories are propagated from the Earth surface to a point
outside of the Earth's SOI in a two-body problem (i.e. without lunar in�uence);
for this phase the hyperbolic f and g functions from section 2.5.1 are employed.

1The exact number is 40 962 random initial conditions per simulation, which is derived from the
number of vertices of a polyhedron after 6 iterations, see table 2.2.
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Phase 2 The impactors are released from the SOI towards Earth under the combined
gravitational in�uence of Earth and Moon in the spatial CR3BP.

The �nal outcomes of Phase 2 can be:

1. The object reimpacts on Earth at a location usually distinct from its initial point.

2. The object impacts on the Moon if the two trajectories intersect, this case is
counted as a de�ection.

3. The impactor's trajectory is modi�ed by the Moon in such a way that it misses
the Earth and leaves its SOI; since all initial velocities are hyperbolic with respect
to Earth the simulation is stopped at this point.

4. The impactor's trajectory is modi�ed by the Moon and it misses the Earth, but it
remains captured inside the SOI up to some prescribed time limit.

This model can be considered as analogous to the impact ejecta simulations discussed
above. A number of particles is launched from the surface of the target body and it
must be determined which fraction of them return to the surface. However, the main
goal is slightly di�erent here, since we are interested primarily in those particles that do
not return.

4.1.4 Model 2: the Moon's contribution to impacts

In the second model M2 we investigate the Moon's contribution to impacts on Earth.
The simulation setup is following the concept of a scattering experiment. Particles are
started at the border of Earth's sphere of in�uence on trajectories that avoid impacts
with Earth in the absence of the Moon, but the lunar in�uence could force them to strike
Earth.
The simulations have the following structure:

Phase 0 A large number of particles is set-up at the Earth's SOI using di�erent random
distributions for the impact parameter (miss distance to Earth), the initial velocity,
and the phase angle of the Moon.

Phase 1 The particle trajectories are propagated in the spatial CR3BP under the com-
bined gravitational in�uence of Earth and Moon.

This model does not have a two-body phase, so that the two stages de�ned above are
su�cient.
The �nal outcomes of Phase 1 in this model can be:

1. The particle impacts on Earth, in this case the Moon has caused an additional
impact.
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2. The particle impacts on the Moon, these events are relevant for the statistics but
not for the model.

3. The particle misses the Earth and leaves its SOI; the simulation is stopped at this
point.

4. The particle misses the Earth, but it remains captured inside the SOI up to some
prescribed time limit.

The exact details about the simulations and the choice of the initial conditions are
given in section 4.2.

4.1.5 Summary

The two complementary models M1 and M22 shed light on both aspects of the lunar
in�uence and allow to constrain the dynamical importance of the rather large satellite
of Earth.
Here are the main facts about the models:

• The spatial circular restricted three-body problem Earth�Moon�asteroid is the
basis of all simulations.

• Model M1 investigates the Moon's role for de�ecting impacts.

• Model M2 investigates the Moon's contribution to impacts.

• For each model there are three con�gurations C1, C2, C3 di�ering in the Earth-
Moon distance or the mass ratio.

• A simulation run always consists of 40 962 particles with random initial conditions.
The simulations last until a particle impacts either on Earth or Moon, or it leaves
the Earth's SOI.

The simulation phases for the models were mentioned for the sake of completeness.
The reader should not care about them, they are not important for understanding the
rest of this chapter.

4.2 Simulation

This section describes the numerical methods used to accomplish the simulations. It
covers the method used to integrate the equations of motion for the spatial CR3BP and
the type of distributions for the initial conditions.

2not to be confused with the model of the same name in section 3.1
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4.2.1 Numerical integrator and manifold correction

At the core of the simulations the equations of motion (2.3.3) for the spatial CR3BP
have to be solved by a numerical integration procedure. For this purpose a Runge-Kutta
method introduced by Cash and Karp (1990) was applied following the formulation in
Press et al. (1992). This is an explicit embedded Runge-Kutta method combining two
methods of order 5 and 4 which uses 6 stages (evaluations of the force function) per basic
time step. By construction the method is capable of estimating the local truncation error
and thus to adapt the step-size accordingly. This adaptive step-size control is valuable
whenever the particles are approaching the Earth or Moon, since then the accelerations
grow in magnitude and so would the local errors if a �xed step-size was used; a variable
step-size can partly compensate for this e�ect.
It is well known that explicit Runge-Kutta methods have the tendency to lead to a

long-term shift of the conserved quantities, i.e. they cannot keep the Jacobi constant
really constant � see Eggl and Dvorak (2010) for a discussion and comparison to other
methods.
A way to avoid this behaviour was presented in section 2.3.2 with the manifold cor-

rection method (MFC). After each integration step the position and velocity vector are
rescaled by a scalar number to comply exactly to the requirement that the Jacobi con-
stant remains �xed to its initial value. This correction adds a little overhead to the
numerical method but the increase in accuracy more than compensates the e�ort.
Figure 4.1 shows the e�ect of the MFC on the relative error |C(t)−C(0)|/C(0) of the

Jacobi constant C. On the horizontal axis the number of time steps since the beginning
of the integration is shown, the left vertical axis displays the distance of the particle
to Earth measured in Earth radii (R⊕). The dotted horizontal line marks the Moon's
distance of about 60 R⊕. From the diagonal red curve we can see that the particle comes
closer than the Moon around time step number 250, and that it approaches Earth to
within 10 R⊕ at about time step 375, �nally it hits Earth. The green curve shows the
behaviour of the relative error for C(t) without MFC, while the blue curve is obtained
with active MFC. For this test a �xed step-size was used, which manifests itself in the
strong increase of the integration error for the green curve (note the logarithmic scaling
of the right vertical axis); the chosen step-size is inappropriate from the point where
the green curve starts to rise. The same �xed step-size is used also for the blue curve,
but the MFC keeps the integration errors below 10−15 as long as the particle is more
distant than 10 R⊕, only after that the error increases, but much more moderately than
without MFC. Of course, for the real simulations an adaptive step-size was used which
decreases the �nal error even more; the Jacobi constant is conserved to machine precision
(2−52 ≈ 2× 10−16) when no impacts occur.
One alternative approach to control the integration errors would be to regularise the

equations of motion, which would be particularly helpful in cases with impacts. Érdi
(2004) studied the global regularising transformations of the CR3BP, but the transfor-
mations he discussed are all valid only for the planar case. A Kustaanheimo-Stiefel type
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Figure 4.1: The e�ect of the manifold correction when applied to the CR3BP. A particle
starts outside the SOI at slightly more than 150 Earth radii (left axis), its
radial distance (red curve) shrinks as it approaches Earth. The local relative
error in the Jacobi constant C(t) is monitored (right axis) as a function of
time and distance (green curve: without MFC, blue curve: active MFC).
With MFC the �nal error is 6 orders of magnitude smaller. See text for
details.

regularisation (Stiefel and Scheifele, 1971) is also applicable to the spatial CR3BP, but
it requires an extended four-dimensional space and leads to a set of completely modi�ed
equations of motion.

4.2.2 Model 1: initial positions

The six initial conditions {x, y, z, ẋ, ẏ, ż} for the components of the position and velocity
vector of a particle are equivalent to six degrees of freedom. We can eliminate one degree
of freedom by requiring that the boundary condition

x2 + y2 + z2 = R2
⊕

is satis�ed, since in this model the particles should start at the Earth's surface. The
remaining 5 degrees of freedom must be chosen according to some other constraints given
by physical restrictions (e.g., the initial speed must be larger than the escape velocity).
For the starting position of a particle two degrees of freedom are left, and these will be

represented as the two angles latitude β and longitude λ. The longitude angle is always
treated as a uniform random number from the interval 0 ≤ λ < 360 degrees, whereas
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4.2 Simulation

the latitude angle is subject to three di�erent random distributions: (i) Equatorial
distribution, (ii) Gaussian distribution, and (iii) Spherical distribution.

Equatorial distribution

In the �rst case the latitude is taken to be a uniform random number restricted to the
range −1 ≤ β ≤ +1 degree. This choice will mimic a two-dimensional distribution of
impact sites around the equator, and can be used to compare the results with the purely
two-dimensional simulation of Domingos et al. (2004).
For this case we can expect to observe the highest number of particles to be de�ected

by the Moon. Let us assume the extreme case of a particle starting at |β| = 1 deg in
perfectly radial direction (along the local surface normal). This particle will then pass
the Moon in dEM sin(β) ≈ 6700 km or about 4 lunar radii. For any other value of β
this distance might be even smaller, provided that the particle's longitude is compatible
with the direction to the Moon.

Gaussian distribution

As the second case I have chosen the Gaussian distribution. The latitude now follows
a random normal distribution with mean 〈β〉 = 0 deg (concentration of points around
the equator) and standard deviation of σβ = π/6 rad (30 deg). In this way it is ensured
that 99.7 % of all points will fall into the interval −π/2 ≤ β ≤ +π/2 (3-σ interval), any
points falling outside this range are rejected.
To generate random numbers having a Gaussian distribution I use the Box and Muller

(1958) algorithm that takes a pair of uniform random numbers and transforms them into
a Gaussian (pseudo-)random deviate.
The main reason for using the Gaussian distribution is that it does not overestimate

the density of points at higher latitudes. This can be demonstrated by comparing the
cumulative area integrals for a hemisphere and the Gaussian function:

• The normalised cumulative area integral for a hemisphere is

S(β) =
1

4π

∫ 2π

0

dλ

∫ β

0

cosx dx =
1

2
sin β.

This integral computes the area of the (unit) hemisphere from the equator up to
a given latitude β as a fraction of the total area (4π).

• The normalised integral for the area under the Gaussian function is

G(β) =
1√

2πσ2

∫ β

0

exp

(
−1

2
(
x

σ
)2

)
dx =

1

2
erf

(
1√
2

β

σ

)
.

Here the integral is substituted by the error-function (Abramowitz and Stegun,
1972); β is assumed to be given in radians, and the standard deviation takes the
value σ = π/6 ≈ 0.5236 rad.
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percentage of total area in interval [%]

latitude [deg] 0 ≤ β < 30 30 ≤ β < 60 60 ≤ β ≤ 90

Gauss 34.1 13.6 2.1
Hemisphere 25.0 18.3 6.7

Table 4.1: Percentage of the area in a given latitude interval (β in degrees) relative to
the total area; comparison between the area under the Gauss function and
the surface of a hemisphere.

Table 4.1 compares the fractional area in three di�erent latitude intervals for the
hemisphere and the Gauss function. It is obvious from the table that the Gaussian
function distributes a higher number of points (initial conditions) per unit area at lower
latitudes than would be present on a sphere, whereas at high latitudes it underestimates
the point density. For the current case this behaviour is desired.
Figure 3.2 showed that the majority of NEAs have inclinations i < 50 deg, so impacts

at high latitudes should be less frequent than impacts at low latitudes (neglecting the
Earth's obliquity). By using the Gaussian distribution we will generate initial condi-
tions with preferably small inclinations and will obtain more impacts from near-ecliptic
objects.

Spherical distribution

The third case does not depend on latitude and longitude, but uses the uniform spherical
distribution of points on the surface of a sphere (Sa� and Kuijlaars, 1997) that was
introduced in section 2.6. Table 2.2 summarises the number of vertices of the resulting
polyhedron as a function of the number of iteration steps. I used 6 iterations for 40 962
initial conditions in the simulations.
It must be stressed that all simulations with the spherical distribution will always use

the same starting points by construction, but they will di�er in the initial velocities.
The other two distributions from above result in di�erent starting points for each run
(as long as the random number generator is seeded appropriately).
Figure 4.2 visualises all three of the above distributions. The plots show the projected

points in the latitude-longitude plane. The origin (0, 0) marks the sub-lunar point, i.e.
it is the intersection point of the x-axis (connecting the centers of Earth and Moon) with
the surface.

4.2.3 Model 1: initial velocities

There are three degrees of freedom left for the choice of the initial velocities. In order
to simulate a broad range of impactor parameters (impact angles, velocities) I impose
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4.2 Simulation

Figure 4.2: The three distribution types for the initial positions, from top: (a) equatorial,
(b) Gaussian, and (c) uniform spherical distribution. In each case 40 962
points are distributed on the Earth's surface; note the smaller vertical scale
for case (a).
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Chapter 4 Impact simulations

only two weak constraints on the initial velocity. One of the constraints is that the
impact angle must not be zero, i.e. perpendicular to the surface. If the position and
velocity vectors were parallel, then the angular momentum vector would be zero and the
f�g-functions are not applicable. The other constraint is that the initial velocity must
be larger than the escape velocity from Earth (vesc = 11.18 km/s at the Earth surface).
The velocity vector is generated following the method of Scheeres et al. (2002, eq. (4)).

The two angles β and λ (in analogy to latitude and longitude) determine the orientation
of the velocity vector with respect to the surface normal represented by the position
vector.
The angle β speci�es the tilt relative to the surface normal. In the simulations a

Gaussian distribution is used for this parameter. For Gaussian and Spherical initial
positions the mean impact angle is 〈β〉 = 45 deg with standard deviation σβ = 15 deg.
For Equatorial initial positions the impact angles are restricted to 〈β〉 = 0 with σβ = 1
deg to make sure that the particles remain close to the x�y plane.
Regarding the direction angle λ a uniform random distribution is used, such that

0 ≤ λ < 360 deg. In this way all possible angles λ describe a cone with the �xed
opening angle β for which the surface normal is the symmetry axis.
As the third parameter the initial impact speed must be chosen. In section 3.3.4 �gure

3.23 compares the (extrapolated) impact velocity distributions for the NEA groups; table
3.12 summarises the statistical key parameters based on that data. The median impact
velocity is between 15�17 km/s, but also higher velocities up to 45 km/s occur. In
Gladman et al. (1995) an equation for the residual velocity v∞ �at in�nity� is given, that
relates the initial (v0) and escape velocity (vesc) by

v2
∞ = v2

0 − v2
esc.

When using this relation with v0 = 15 km/s (the lower value for the median impact
speed) we obtain a residual speed of v∞ ≈ 10 km/s at the border of Earth's SOI.
Therefore it is clear that we must restrict the range of initial velocities for the simulation
to the interval v0 ≤ 15 km/s, because the lunar gravitational in�uence becomes very
ine�cient for high relative velocities of 10 km/s or more.
The initial impact speed is given by v0 = vesc + ∆v with 0 ≤ ∆v ≤ 4 km/s, and

is subject to three di�erent random distributions: (i) Gaussian distribution, (ii) Linear
distribution, and (iii) a Poisson-like distribution.

Gaussian distribution

In the �rst case the increments x = ∆v are chosen according to a standard normal
distribution with mean 〈x〉 = 0 and standard deviation σx = 1. The unscaled probability
density function (PDF) is given by

G(x) ∝ exp

(
−x

2

2

)
, 0 ≤ x ≤ 4.
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The scaling constant NG must be chosen such that the integral of G(x) (the cumulative
density function, CDF) over the given interval equals to 1, i.e. the total probability is
normalised. This is achieved by

NG =

∫ 4

0

G(x) dx =

√
π

2
erf(2

√
2) ≈ 1.253235,

such that the Gaussian PDF is

G(x) =
1

NG
exp

(
−x

2

2

)
. (4.2.1)

Random numbers for this PDF are generated from uniformly distributed random num-
bers by using the mentioned Box-Muller transform.

Linear distribution

The second type of distribution is a simple linear PDF, which has a maximum probability
at x = 0 and vanishes at x = 4. The monotonic decrease on the interval 0 ≤ x ≤ 4 is
chosen as a �rst order approximation to the behaviour of the empirically found velocity
distributions in a surrounding of the peak (see �gure 3.23). The scaled probability
density function is

L(x) =
1

8
(4− x), 0 ≤ x ≤ 4. (4.2.2)

From this the CDF can be easily obtained by integration. Then a uniform random
number generator can be used to generate random numbers u that are transformed to
this linear PDF:

x(u) = 4
(
1−
√

1− u
)
, 0 ≤ u ≤ 1.

Poisson distribution

As the third type a Poisson-like distribution was chosen for the reason that the impact
velocity distributions in �gure 3.23 resemble somewhat a truncated Poisson distribu-
tion. This is just a personal impression, in fact other distributions like the Log-Normal
distribution3 could be used as well.
The classical discrete Poisson distribution is de�ned as

P (k) =
λk

k!
e−λ,

for real numbers λ and an integer k ≥ 0 (Walser, 2011).

3see for instance http://mathworld.wolfram.com/LogNormalDistribution.html
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Figure 4.3: A visualisation of the probability density functions for the three velocity
distributions. All PDF are restricted to the interval shown, they are scaled
for a total probability of 1. ∆v is the velocity increment which is added to
the escape velocity to give the initial impact velocity.

The continuous form of the above distribution for mean λ = 1 and standard deviation
σ =
√
λ = 1 is obtained (and simpli�ed by this choice) as

P (x) ∝ 1

Γ(x+ 1)
e−1,

where the Gamma-function (Abramowitz and Stegun, 1972) is used for the continuous
variable x. The scaling constant NP for P (x) cannot be computed analytically, since
this involves an integral of the Gamma-function, but numerically it was determined to
NP ' 0.824361. The scaled Poisson PDF used is the simulations reads

P (x) =
1

NP
e−1

Γ(x+ 1)
, 0 ≤ x ≤ 4. (4.2.3)

This PDF cannot be sampled directly, because most standard random number gen-
erators do not include routines for the Poisson distribution, and in particular not for a
continuous variant. To overcome this problem I used a uniform random number gener-
ator in combination with acceptance-rejection sampling.
In �gure 4.3 one can compare the three normalised PDFs. Note that the linear PDF

vanishes exactly at ∆v = 4, the Gaussian PDF almost vanishes, while the Poisson PDF
is non-zero on the whole interval. The shape of the latter is governed by the choice of
λ = 1; in contrast to the other PDF the peak probability is located at x ≈ 0.462 instead
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Figure 4.4: A 3D view of a sample of initial conditions on the Earth surface. The black
dots mark the initial starting points, the arrows represent the velocity vectors
(not to scale).

of x = 0. Note that the resulting initial impact velocities will fall into the interval
11.2 ≤ v0 ≤ 15.2 km/s in any case.
Figure 4.4 shows a typical initial setup for the simulations in the 3D space. The points

mark the individual impact sites, the arrows indicate the direction and magnitude of the
velocity vector (not to scale). Only a limited number of points is drawn; the coordinate
system is centered on Earth, and the axes are scaled in astronomical units.

4.2.4 Model 2: initial conditions

In this model all particles start at the border of Earth's SOI at a radial distance of
RSOI = 150R⊕. According to the de�nitions for the spatial CR3BP in section 2.3 the
Earth is located at (xE, yE, zE) = (−µ, 0, 0) and the Moon at (xM , yM , zM) = (1−µ, 0, 0).
Both primaries are located on the x-axis in the rotating frame and their mutual distance
is �xed to dEM = 384 400 km (≈ 60R⊕).
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Chapter 4 Impact simulations

Initial positions

Initial positions for particles are generated by the following process:

1. Particles are initially positioned at (xP , yP , zP ) = (RSOI, 0, 0) in the inertial system
centered on Earth.

2. Then they are shifted by the impact parameter b parallel to the positive y-axis.
The impact parameter determines how close a particle would approach Earth in
the absence of the Moon. Impact parameters are generated as uniform random
numbers in the interval 5 ≤ b ≤ 60 R⊕.

3. The shifted particle is then rotated about the z-axis by the phase angle ϕ. This
phase angle helps to randomise the directions of the incoming particles. The
parameter ϕ is a uniform random number in the interval 0 ≤ ϕ < 360 deg.

4. In the next step another rotation is performed to move the particle out of the
x�y plane. This angle β is subject to the Equatorial or Gaussian distribution as
introduced in M1 for the initial positions. The rotation axis a = (− sinϕ, cosϕ, 0)
is the rotated y-axis from the previous step.

5. Subsequently a �nal rotation with angle ϑ is carried out to further randomise the
spatial orientation. This time the rotation axis is the (twice) rotated x-axis; the
angle ϑ is a uniform random number with 0 ≤ ϑ < 360 deg.

6. As the last step the barycentric correction is applied and the initial position is
transformed from the inertial to the rotating system via equation (2.3.2).

The enumeration from above can be summarised in a more formal way. After the �rst
two steps a particle has the planar starting vector

r0 = RSOI êx + b êy = (RSOI, b, 0).

Note that ‖r0‖ > RSOI so that this vector has to be scaled accordingly to represent
a particle's position exactly at the SOI. In total three rotations are performed on this
vector which result in the e�ective starting position in the inertial frame

r̃0 = Rx′′(ϑ)Ry′(β)Rz(ϕ) r0.

The general matrix Ra(α) for a rotation about an axis a = (ax, ay, az) ∈ R3 (which
must be a unit vector with ‖a‖ = 1) through an angle α is given by (Gekeler, 2006)

Ra(α) = cosα13 + (1− cosα)A + sinαC,

where the three sub-matrices are de�ned as

13 =

1 0 0
0 1 0
0 0 1

 , A =

 a2
x axay axaz

axay a2
y ayaz

axaz ayaz a2
z

 , C =

 0 −az ay
az 0 −ax
−ay ax 0

 .
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4.3 Results

Model M2 does not make use of the uniform spherical distribution for initial positions,
because that distribution is incompatible with the construction procedure described
above.

Initial velocities

The velocity vector must not be parallel to the position vector or otherwise the particle
could have an impact with Earth. For this reason the two vectors always form an angle
of tan δ = b/RSOI. It is a consequence of this angle that the velocity vector cannot
be modi�ed by adding a random number to any component, as this would change the
e�ective impact parameter b.
The magnitude of the velocity vector is determined in the same way as in M1:

v0 = vesc + ∆v.

Here vesc = 0.913 km/s is the escape speed at the SOI4. The velocity increment ∆v is a
random number in the interval 0 ≤ ∆v ≤ 4 km/s, it is obtained from one of the three
velocity distributions: Gaussian, Linear, or Poisson. These distributions are applied
exactly in the same way as for the initial velocity in model M1, with the di�erence that
now the initial speeds cover the range 0.913 ≤ v0 ≤ 4.913 km/s.

4.3 Results

This section presents the results of the simulations for both dynamical models. In the
�rst part (M1) the lunar e�ciency in de�ecting incoming impactors is studied using
various combinations of initial conditions. Afterwards, the second part (M2) presents
the results for the lunar contribution to impacts on Earth.

4.3.1 Model 1

Model M1 includes three di�erent con�gurations for the CR3BP, where either the lunar
mass or distance are varied (see section 4.1.2). Each of those con�gurations itself consists
of 9 possible combinations of initial positions and velocities, the details can be found in
sections 4.2.2 and 4.2.3.
It has already been mentioned that each simulation run includes 40 962 particles. To

get statistically meaningful results I repeated each simulation 16 times with random
initial conditions. This will not only increase the number of simulated particles, but also
allows to calculate mean de�ection e�ciencies.
Figure 4.5 shows two examples for successful de�ections by the Moon (in the rotating

frame). The black curves mark the particle's trajectories in Phase 1, where they start

4The exact numerical value of the escape speed vesc depends on the choice of the scaling constants for
the CR3BP; the given value is for C1 with µ = 1/82.30057 and dEM = 384 400 km.
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Figure 4.5: Two examples for successful de�ections of asteroids on impact trajectories by
the Moon. The black curves are the trajectories originating from the Earth's
surface, the grey ones were de�ected by close approaches to the Moon. The
�gures show the projections from 3D onto the x�y plane; the dots for Earth
and Moon are not to scale.

at the Earth surface and move out to the SOI at a radial distance of 2.5 dimensionless
length-units (LU; not shown in the image). The grey curves trace the trajectories in
Phase 2 with the lunar gravitational in�uence added, they move from the SOI towards
Earth. For both examples shown the particles have a close approach to the Moon, but
they do not collide with it; after the de�ection they miss Earth and pass in a distance
of several Earth radii.

Standard con�guration

The con�guration C1 is representative for the Earth-Moon system as it is today. The
lunar mass and distance take their default values (see section 4.1.2), i.e. the CR3BP
mass-ratio is µ = 1/82.30057 and the Earth-Moon distance is dEM = 384 400 km.
Table 4.2 summarises the results of the simulations. The �rst column lists the 9

possible combinations of initial positions and velocities, e.g. E/G means an Equatorial
distribution for the positions with a Gaussian distribution for the velocities. In the
second and third column we �nd the fraction of particles that impact on Earth and
Moon, respectively. The fourth column gives the number of de�ected particles that
leave Earth's SOI, while the last column contains de�ected (non-impacting) particles
that remain inside the SOI. For each entry the mean fraction from 16 simulation runs
is calculated, the standard deviation is indicated in parentheses. In the very last row
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4.3 Results

distribution impact on . . . de�ection, particle . . . SOI

pos./vel. Earth Moon outside inside

E/G 0.99175(39) 0.00075(15) 0.00750(37) 0
E/L 0.99401(39) 0.00058(11) 0.00541(37) 0
E/P 0.99371(27) 0.00063( 9) 0.00567(29) 0

G/G 0.99068(34) 0.00002( 3) 0.00930(34) 0
G/L 0.99284(39) 0.00001( 2) 0.00715(39) 0
G/P 0.99274(34) 0.00001( 1) 0.00726(34) 0

S/G 0.99047(44) 0.00004( 3) 0.00950(42) 0
S/L 0.99260(46) 0.00001( 1) 0.00740(47) 0
S/P 0.99248(50) 0.00002( 2) 0.00751(50) 0

mean 0.99236(119) 0.00023(21) 0.00741(118) 0

Table 4.2: Statistical summary of simulation results for model M1 with con�guration C1.
Each line represents the mean (standard deviation) of 16 simulation runs with
the same combination of position/velocity distribution. The abbreviations for
the distribution types are: (E) = Equatorial pos., (G) = Gaussian pos. or
vel., (S) Spherical pos., (L) Linear vel., (P) Poisson vel.

the arithmetic mean of all entries is calculated; the average standard deviations were
calculated via the error propagation formula. The sum of all numbers in a row should
equal 1, but due to rounding there can be slight deviations.
Note that � irrespective of the simulation conditions � at least 99 % of all particles

still impact on Earth. The Moon is able to remove at most ≈ 0.08 % (on average 0.02 %)
of all approaching particles by direct collision. Indirect de�ections are somewhat more
e�cient with ≈ 0.7 % of all particles missing Earth and leaving the SOI subsequently.
No event occurred where a particle would miss Earth and becomes temporarily captured
inside the SOI.
As it was expected impacts on the Moon occur mainly in the equatorial cases. How-

ever, even there the fraction of impacts on the Moon is only about 10 % of the number
of de�ections. This large di�erence can be explained by the di�erence in the lunar geo-
metrical and gravitational cross-section. The number of impacts on the Moon becomes
insigni�cant when a more realistic (three-dimensional) distribution of particles is used.
From geometrical considerations it follows that the Moon's apparent angular diameter
is α ' 0.52 deg, this amounts to a solid angle of Ω ' 6.4 × 10−5 steradians. In other
words, the ratio of the lunar geometrical cross-section to the surface area of a sphere is
6.4× 10−5, so we would expect this number to be the fraction of impacts on the Moon
in the limit of a perfect coverage of the sphere with particles.
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Figure 4.6: Histogram for the impact velocities on the Moon in case of the Equatorial
distribution of initial positions. The dotted vertical line indicates the lunar
escape speed of 2.38 km/s. Only impacts with v ≥ 2.38 km/s were considered
for this histogram.

When comparing the velocity distributions we �nd that in all cases the Gaussian
distribution reduces the fraction of impacts on Earth. This decrease in the number
of impacts with Gaussian velocities is statistically highly signi�cant; on the contrary
the other distributions (Linear and Poisson) are equal within their 1-σ errors. The
Gaussian velocity distribution (see �gure 4.3) leads to a lack of particles with high impact
velocities, which in turn diminishes the average relative velocity and leads to a higher
de�ection e�ciency. In the other two distributions relatively high impact velocities are
generated with a higher probability.
From the table we see that only in the equatorial case there are enough events for a

statistical check of impacts on the Moon. Figure 4.6 shows the lunar impact velocity
distribution for equatorial initial conditions. In total more than 1000 objects impact
on the Moon and generate this velocity distribution; each bin has a width of 0.5 km/s.
The dotted vertical line marks the lunar escape velocity of 2.38 km/s. In the �rst bin
(2.0−2.5 km/s) only impact speeds above the escape velocity are included; about 1.5 %
of all objects hit the Moon with an impact speed of < 2.5 km/s. The majority of impacts
occur at speeds of more than 4 km/s, though.
This impact velocity distribution for the Moon cannot be compared to other distri-

butions obtained from numerical integrations of NEAs or of returning impact ejecta,
because the impact speeds depend strongly on the assumptions made for the initial
conditions (especially the initial velocity distributions). More realistic lunar impact ve-
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Figure 4.7: A comparison of the minimum distance to Earth versus minimum distance
to Moon of de�ected particles for all three initial position distributions (a-c).
The vertical line indicates Earth's physical radius, while the horizontal line
is the radius for the Moon. Particles that closely approach the Moon tend
to have larger miss distances with respect to Earth.

locity distributions were obtained by Ito and Malhotra (2010) and Yue et al. (2013)
from large-scale numerical integrations (resulting in 14�70 times more impacts). These
simulations show that the impact speeds in �gure 4.6 are located in the very low velocity
regime, usually lunar impact speeds are similar to those on the Earth with mean value
of 〈v〉 > 17 km/s.
Figure 4.7 shows the minimum distances of de�ected particles relative to Earth and

Moon. On the vertical axis it is shown how close a particle approached the Moon, the
horizontal axis shows the distance by which the particle has missed Earth (note that
both axes are scaled logarithmically). The dotted lines indicate the physical radii of the
Earth (vertical line) and Moon (horizontal line). It is visible that the closer a particle
approaches the Moon (the lower it is on the vertical axis), the higher its miss distance
becomes (the farther to the right on the horizontal axis it is situated).
Case (a) is di�erent from cases (b) and (c) in so far as the maximum distance to

the Moon is limited by the choice of the initial coordinates (restricted in latitudes and
impact angles). For the latter two cases a considerable fraction of de�ected particles
never comes close to the Moon, but can avoid to collide with Earth (the clumps at the
top of the vertical line).
The data for the minimum distances can also be dissected in the form of �gure 4.8,

which combines the data from all simulations (for a speci�c initial distribution of posi-
tions) into histograms for the minimum distances to Earth and Moon.
In that �gure the left column shows the minimum distances to Earth in units of the

terrestrial radius; each histogram combines the results for all three velocity distributions.
For the Equatorial case the �rst two bins equal to 56 % and 18 % of all de�ected particles,
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Figure 4.8: Histograms for the minimal distances to Earth and Moon (scaled to the
body's radius). Note the di�erent horizontal scale for the top right image,
and the logarithmic vertical scale for the left column.
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which means that about 3/4 of all particles still approach Earth to within 3 Earth radii.
In contrast to that in the Gaussian and Spherical cases one single bin accumulates
98 % of all de�ections, while larger miss distances above 2R⊕ are negligible (note the
logarithmic scale for the vertical axis).
This fact can be explained by the histograms in the right column, where we can see

how close a particle passed to the Moon prior to its Earth �y-by. In the Equatorial case
the lunar distance is limited to 15 times the lunar radius (for successful de�ections only),
but for the other two cases (Gaussian and Spherical) much larger minimum distances are
possible. When the particles are not restricted to the primaries' orbital plane they need
not approach the Moon, but will de�nitely come back very close to Earth, where they
have started originally. The far side of the Earth (as seen from the Moon) is at a distance
of ∼ 224 lunar radii (the center of Earth at 220). Those particles in the histograms with
minimum distance > 200 RMoon (about 20 %) arrive from inclined orbits that never take
them near the Moon, they pass the Earth on the �far side� and thus form this largest
bar in the histograms.
A special note: in the second and third histogram of �gure 4.8 the very �rst bar (that

extends from 0�10 lunar radii) includes in fact only minimum distances from 1�9 RMoon,
as none of the de�ected particles may have impacts with the Moon.
It is also of interest where the origin of de�ected particles is and how these are dis-

tributed. Figure 4.9 shows the maps of the initial latitudes and longitudes with the
initial speed added as grey-value.
For case (a) the latitudes are limited (note that the vertical scale is di�erent from

the other two images), and there is a gradient in the initial speeds. We have seen in
the previous �gure 4.8 that all de�ected particles encounter the Moon within 15 lunar
radii for equatorial initial conditions. At the begin of the simulation the sub-lunar point
(the Moon's �shadow�) is at (0;0) on the map and it moves from left to right. As all
particles start at the same time, the ones to the right have a shorter arc to the Moon
than those to the left. To meet the Moon with given boundary conditions (distance and
time), particles to the left must compensate by a higher initial speed. However, this does
not mean that on the Earth there would be a similar feature in the distribution of real
impact craters, because of the planet's rotation the given distribution will be smeared
out in longitudes with time.
In cases (b) and (c) it is well visible that particles from higher latitudes are still

de�ected in great number, and there is also a striking de�cit of de�ected particles at
the center of the images. The regions with the lack of de�ected particles seem to agree
roughly with the area from case (a), where de�ections were possible. This would indicate
that direct de�ections by close approaches to the Moon are less e�cient than de�ections
where the Moon is acting as a long-range perturber.
When comparing �gures 4.2 and 4.9 note that the size of the dots has been enlarged

in the latter to make the colours more visible. The overall density of points is not as
large as it would seem from these �gures, since the de�ected particles make up for only
about 0.7 % (on average) of all initial positions per simulation run, but for these �gures
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Figure 4.9: Origin of de�ected particles on the Earth surface for di�erent initial distri-
butions in C1 of M1. The dots (not to scale) indicate the starting positions,
the grey-scale indicates the initial speed.
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Figure 4.10: Comparison of initial velocities of de�ected particles (grey bars) against
the initial velocity distribution (shaded bars). Each of the three panels
shows the averaged initial velocity distributions for di�erent initial position
distributions.

de�ected particles from all runs are collected.
Another interesting aspect about the origin of the de�ected particles is how their

initial velocities relate to the bulk of all particles. Figure 4.10 shows the histograms for
all de�ected particles (grey bars) relative to the combined initial velocity distribution
(shaded bars in the background)5. It becomes evident that at speeds v < 12 km/s
de�ected particles are more abundant, the majority of them even falls into the lowest
speed interval. A consequence is that de�ections mainly depend on the relative speed of
the particle to the Moon, and that the distribution of initial positions is less important.

Increased lunar mass

In con�guration C2 the lunar mass is doubled (Moon/Earth mass ratio µ = 1/40), while
the lunar distance remains at the current value (dEM = 384 400 km). The idea is to
check if a more massive satellite would change the rate of impacts on Earth.
The simulation results are summarised in table 4.3. Similar to the results in table 4.2

also here the vast majority of particles return and impact on Earth. In the Equatorial
case the percentage of impacts is higher by 0.7− 1 % than in the Gaussian or Spherical
case, this di�erence is statistically signi�cant, though. These numbers also implicate
that the percentage of de�ections is lower for near co-planar particles than for inclined
ones.
We can observe again that the Gaussian distribution for velocities consistently leads

to more de�ections; there seems to be a small di�erence between Linear and Poisson
5It has to be remarked that the two histograms are not based on the same population sizes, these are
very di�erent indeed: the shaded bars show the fraction relative to all simulated particles, while the
grey bars are relative to the number of de�ected particles.
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distribution impact on . . . de�ection, particle . . . SOI

pos./vel. Earth Moon outside inside

E/G 0.98015(57) 0.00122(11) 0.01863(54) 0
E/L 0.98439(44) 0.00107(15) 0.01454(43) 0
E/P 0.98352(80) 0.00114(12) 0.01533(75) 0

G/G 0.97120(93) 0.00003( 3) 0.02877(93) 0
G/L 0.97781(67) 0.00003( 3) 0.02217(67) 0
G/P 0.97707(59) 0.00003( 3) 0.02290(58) 0

S/G 0.97130(95) 0.00003( 3) 0.02867(95) 0
S/L 0.97826(79) 0.00002( 2) 0.02172(79) 0
S/P 0.97759(79) 0.00003( 2) 0.02239(79) 0

mean 0.97792(223) 0.00040(23) 0.02168(220) 0

Table 4.3: Statistical summary of simulation results for model M1 with con�guration C2.
Caption as for table 4.2.

distribution, but their 1-σ intervals marginally overlap. On average 2.2 % of incoming
particles were de�ected, which is three times higher than for the standard con�guration.
Impacts on the Moon are still more numerous in the Equatorial case than in the Gaussian
or Spherical case by about a factor of 40. The lunar impacts (on average 0.04 %) make
up for about 2 % of the total number of all de�ections and thus play only a negligible
role. No particle was observed to be de�ected, miss Earth, and then become captured
in the Earth-Moon system (inside the SOI).

All of the �gures for C2 would look very similar to those for C1, which is the reason
why they are not shown. In the following only the deviations from the presented �gures
are discussed.

The distribution of lunar impact velocities is shifted to slightly higher values in C2
when compared to �gure 4.6; the velocity peak is around 5 km/s and the minimum
impact velocity is higher due to the increased lunar mass.

Small Earth miss distances (less than two Earth radii) still dominate with about 98 %
of all cases for Gaussian and Spherical initial positions; also in the histogram of the lunar
minimum distances the bin at 210− 220 lunar radii sticks out with 16 % (cf. �gure 4.8).

There is a deviation in the Equatorial case, though, now particles were de�ected if
they approached the Moon within 30 times its radius. In C1 the de�ection limit was at
15 RMoon � this doubling of the de�ection distance is consistent with the doubling of the
mass.

134



4.3 Results

distribution impact on . . . de�ection, particle . . . SOI

pos./vel. Earth Moon outside inside

E/G 0.99322( 51) 0.00188(22) 0.00489( 48) < 10−5

E/L 0.99425( 39) 0.00179(21) 0.00396( 33) < 10−5

E/P 0.99412( 33) 0.00180(18) 0.00408( 26) < 10−5

G/G 0.93402(103) 0.00004( 3) 0.06594(104) 0
G/L 0.95005(102) 0.00003( 2) 0.04992(102) 0
G/P 0.94760(118) 0.00003( 3) 0.05237(117) 0

S/G 0.94103( 78) 0.00007( 4) 0.05891( 79) 0
S/L 0.95541( 89) 0.00004( 2) 0.04455( 90) 0
S/P 0.95350(100) 0.00005( 3) 0.04645(100) 0

mean 0.96258(253) 0.00064(36) 0.03678(252) 0

Table 4.4: Statistical summary of simulation results for model M1 with con�guration C3.
Caption as for table 4.2.

Decreased lunar distance

For the third con�guration C3 the lunar distance is halved to dEM = 192 200 km, but
the lunar mass remains unchanged. This con�guration would resemble the Earth-Moon
system some 109 years ago, when the two bodies formed a tighter system.
Table 4.4 contains the results for this con�guration. At �rst glance we �nd the usual

situation: on average more than 96 % of the particles impact on Earth, the ratio of
direct to indirect de�ections is about 2 %, and there are (almost) no captures inside the
sphere of in�uence.
Looking in more detail there is a pronounced di�erence of several percent between

the Equatorial case and Gaussian/Spherical cases. In contrast to that the fraction of
impacts used to be quite equal in all cases for both previous con�gurations (see tables
4.2 and 4.3).
The fraction of de�ections in the Gaussian and Spherical cases increases by more

than a factor of 10 when compared to the Equatorial case (see column 4). A possible
explanation is that in the latter case particles experience the lunar gravitation at a later
time � the lunar Hill sphere is smaller as a result of the decreased distance to Earth. At
the time when equatorial particles have their minimum distance to the Moon they have
a larger relative velocity, because they are deeper in the terrestrial potential well. Even
if the Moon modi�es their trajectories the de�ection angle might not be large enough to
avoid impact with Earth, since the remaining distance to Earth has shrunk.
A �gure similar to 4.8 for C3 would show that the Earth-miss distances are in general
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less than 17R⊕, in particular almost exclusively distances of < 2R⊕ occur for Gaussian
and Spherical initial positions (the second highest bin includes only 0.1 % of cases). At
the same time minimum distances of < 7RMoon are needed for successful de�ections in
the Equatorial case.
The di�erences in the velocity distributions are also somewhat more enhanced than

for the previous con�gurations, but the trend continues that the Gaussian velocity dis-
tribution leads to more de�ections.
In the Equatorial case the table now indicates some captured objects. There were

in total 12 particles that stayed inside the SOI until the end of the integrations. A
closer investigation of these particles revealed that all of them had very similar starting
positions (and velocities), and that they approached the Moon to about 3 000 km and
subsequently missed Earth by about 10 000 km. From a recalculation of their orbits it
turned out that they are very sensitive to the integrator time-step size, in the second
simulation most of them hit Earth. Consequently, the numbers in the last column of
table 4.4 for particles inside the SOI are just included as upper limits, they should be
considered to be subject to considerable uncertainty.

4.3.2 Model 2

Model M2 investigates the opposite e�ect to M1. We are interested in the number of
cases where the Moon turns an Earth-approaching asteroid into an Earth-impacting one.
The three con�gurations for the CR3BP are studied again; more details on the initial
conditions for these simulations can be found in section 4.2.4.

Standard con�guration

The simulations results for C1 are summarised in table 4.5, which is similar in structure to
table 4.2, but the roles of impacts and misses (�y-bys) are exchanged. It has already been
mentioned that the uniform spherical distribution for initial positions is not applicable
in this model, such that only Equatorial (E) and Gaussian (G) initial positions are
considered, along with the three types of velocity distributions: Gaussian (G), Linear
(L), and Poisson (P).
The second column in the table shows that impacts on Earth occur on average in

3.5 % of cases, which is a relatively high percentage given the fact that all particles
should miss Earth. Impact fractions in this column depend only weakly � if at all � on
the initial positions, it is rather the initial velocity that has an in�uence. In M1 we could
observe that the Gaussian velocity distribution led to an increase of de�ected particles
relative to the other two velocity distributions; here in M2 it signi�cantly increases the
number of impacts on Earth.
Lunar impacts are still more probable for Equatorial starting positions than for the

Gaussian case, nevertheless they are negligible in total number (< 0.02 %) compared
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distribution impact on . . . de�ection, particle . . . SOI

pos./vel. Earth Moon outside inside

E/G 0.04731(105) 0.00020(6) 0.95249(104) 0
E/L 0.02954(114) 0.00016(5) 0.97030(114) 0
E/P 0.03131( 71) 0.00017(7) 0.96852( 73) 0

G/G 0.04526(100) 0.00008(4) 0.95466(102) 0
G/L 0.02860( 78) 0.00008(3) 0.97132( 79) 0
G/P 0.03022( 78) 0.00008(4) 0.96971( 79) 0

mean 0.03537(226) 0.00013(12) 0.96450(228) 0

Table 4.5: Statistical summary of simulation results for model M2 with con�guration C1.
Each line represents the mean (standard deviation) of 16 simulation runs with
the same combination of position/velocity distribution. The abbreviations for
the distribution types are: (E) = Equatorial pos., (G) = Gaussian pos. or
vel., (L) Linear vel., (P) Poisson vel.
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Figure 4.11: Histograms for the minimal distances to the Moon for both initial position
distributions. The histograms are based on data for all objects that impact
on Earth.
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to the other �nal states. No particles remain inside the Earth's SOI at the end of the
simulations.
Figure 4.11 compares the distribution of minimum distances to the Moon (scaled in

lunar radii, bins of width 10 RMoon) in the Equatorial and Gaussian case for all impacting
particles. The two panels are quite similar qualitatively, both show that the majority of
particles never come close to the Moon before they collide with Earth.
In some details the two cases di�er, though. For panel (a) there is a bump at around

30 lunar radii, which indicates a slightly enhanced number of particles approaching the
Moon (compare to top row in �gure 4.8). For panel (b) the histogram is much smoother,
the minimum distance to the Moon increases monotonically.
This shape of the histograms is a consequence of having selected only the Earth-

impacting objects, which contribute to the large fraction of particles at the 210�230
RMoon bins (remember that the Earth-Moon distance dEM = 384 400 km corresponds to
220 lunar radii).
A more comprehensive analysis of the simulations is given in �gure 4.12. For each

case � Equatorial (left column) or Gaussian (right column) � four panels show (from top
to bottom) the distributions for the initial velocities (at time t = 0 at the SOI), impact
velocities, (initial) impact parameters, and the phase angles of impacting particles.
For the initial velocities in row (a) two types of bars are shown: the shaded bars in the

background show how the velocity distribution would look like for all particles, which is
a combination of Gaussian, Linear, and Poisson velocities ranging from 0.9 to 4.9 km/s
with bins of ∆v = 0.1 km/s; the grey-coloured bars show only the impacting particle's
initial velocities. It is clearly visible that impacting particles form a limited subset of
the velocity interval that extends from the escape velocity up to about 2.5 km/s, with
the distribution being skewed to lower speeds.
From the initial velocity distribution we obtain the related impact velocity distribution

on the Earth in row (b). As the initial speeds were limited to a narrow interval it is
not surprising that the impact speeds are limited, too. They are concentrated around
11.2 km/s with an upper limit of 11.5 km/s. In any case these are particles with low
relative velocity that are rather susceptible to lunar perturbations.
One row below, the plots (c) show the initial impact parameters in units of the Earth's

radius; these are the distances by which the particles should have missed Earth. There
is a clear trend: the smaller the impact parameter is, the higher the impact probability.
A closer examination of the results revealed that almost all impacting particles have
impact parameters b < 15R⊕ (b < 96 000 km or dEM/4). For the Equatorial case the
mean (median) impact parameter is 7.3 (6.9) with the 3rd quartile at 8.4 R⊕, while for
the Gaussian case the values are 7.2 (6.8), and 8.2 R⊕.
In the bottom row (d) we �nd the histograms for the initial phase angles. The phase

angle ϕ � measured from the positive x-axis in counter-clockwise direction � gives the
direction of the incoming asteroid relative to the direction of the Moon (at ϕ = 0). The
bump around ϕ = 300◦ in the Equatorial case is evidence for particles that approached
the Moon; it is also related to the local increase of particles within 50 RMoon in �gure
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Figure 4.12: Histograms for initial parameters of Earth impacting particles in M2: (a)
initial velocity, (b) impact velocity, (c) impact parameter, (d) phase angle;
left column for Equatorial and right column for Gaussian initial positions.
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distribution impact on . . . de�ection, particle . . . SOI

pos./vel. Earth Moon outside inside

E/G 0.04727( 98) 0.00030(6) 0.95243( 97) < 10−5

E/L 0.02989(104) 0.00026(7) 0.96984(105) < 10−5

E/P 0.03169( 69) 0.00028(9) 0.96803( 69) < 10−5

G/G 0.04406( 99) 0.00012(6) 0.95582(101) 0
G/L 0.02803( 61) 0.00012(4) 0.97185( 63) 0
G/P 0.02935( 71) 0.00011(5) 0.97054( 71) 0

mean 0.03505(209) 0.00020(15) 0.96475(211) 0

Table 4.6: Statistical summary of simulation results for model M2 with con�guration C2.
Caption as for table 4.5.

4.11. As of the Gaussian case there is no special feature, all phase angles are more or
less equally represented.

Increased lunar mass

The results of the simulations for C2 are summarised in table 4.6. When comparing
these numbers to C1 (in table 4.5) one can notice that they are very similar, indeed
the number of de�ections (column 3) and impacts on Earth (column 1) are identical to
within one standard deviation between the tables.
There is only an increase of impacts on the Moon by about 50 % as a visible e�ect

of the increased lunar mass, this is compatible with the results from model M1. For
Equatorial positions there were 8 particles that do not leave Earth's SOI until the end
of the integrations.
In analogy to �gure 4.11 also with a more massive Moon there is a bump in the

minimal distance histogram for the Equatorial case, but not for the Gaussian case. Still
most particles have rather large minimum distances with the peaks located at 210�230
lunar radii. Qualitatively there is no di�erence of this con�guration to the standard
con�guration, but also quantitatively the fractions in the histograms are varying only
minimally.
The same is true for the distribution of initial and impact velocities, which are very

similar to �gure 4.12. Some noteworthy features for the Equatorial case are that in the
third row now also particles with impact parameters beyond 15 R⊕ can impact on Earth;
in the phase angle distribution the peak around ϕ = 300◦ is more pronounced as well
when compared to C1.
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distribution impact on . . . de�ection, particle . . . SOI

pos./vel. Earth Moon outside inside

E/G 0.04650(88) 0.00040(7) 0.95295(87) 0.00016(6)
E/L 0.02920(96) 0.00032(9) 0.97039(97) 0.00009(5)
E/P 0.03101(82) 0.00035(8) 0.96852(83) 0.00013(7)

G/G 0.04460(88) 0.00018(9) 0.95511(91) 0.00011(4)
G/L 0.02856(96) 0.00016(6) 0.97123(97) 0.00005(4)
G/P 0.03009(74) 0.00015(4) 0.96970(75) 0.00006(4)

mean 0.03499(214) 0.00026(18) 0.96465(217) 0.00010(12)

Table 4.7: Statistical summary of simulation results for model M2 with con�guration C3.
Caption as for table 4.5.

Decreased lunar distance

In the last con�guration C3 for model M2 the lunar distance is decreased; table 4.7
collects the data from the simulations.

The results are again very similar to both previous con�gurations; the mean percentage
of de�ections is at 96.5 %, and that of forced Earth impacts at 3.5 %. Although impacts
on the Moon are negligible in absolute numbers their percentage seems to increase, but
note the large uncertainty.

In this con�guration the �captured� objects form � for the �rst time � a non-negligible
fraction of the simulation outcomes, similar in magnitude to the lunar impacts. A
possible explanation for this behaviour will be discussed in the following section.

For most of the histograms there is nothing special to mention, except that in the
Equatorial case the peak in the phase angles is shifted near 120◦, but this is a result of
the di�erent scaling of the CR3BP when using dEM = 192 200 km as the unit length.

4.4 Discussion

In this section I summarise the main results from the simulations and show how they
relate to previously published data. We will also address some open questions related
to the de�ection e�ciency in M2, as well as the circumstances of how and why particles
are captured inside the Earth's sphere of in�uence.
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Figure 4.13: Summary of the simulation results for M1 (left) and M2 (right). The three
con�gurations are labelled by C1 for standard con�guration, C2 for in-
creased lunar mass, and C3 for decreased lunar distance. The vertical axis
shows the resulting percentages, the error bars indicate the multiples of the
standard deviation.

4.4.1 Results for Model 1

When comparing the mean values for the de�ection e�ciency in tables 4.2�4.4 we notice
that they depend on the actual values for the basic lunar parameters.

Figure 4.13 collects the data for the two models (left: M1, right: M2) and compares
all three con�gurations.

In M1 the percentage of de�ected particles increases from about 0.7 % for C1 to 2.2 %
with a more massive Moon (C2); if the Moon was at half of its distance today it could
de�ect on average about 3.7 % of incoming asteroids (C3). In the �gure the respective
n-fold standard deviations are indicated by the error bars. It is clearly visible that the
1-σ and 3-σ intervals do not overlap, while the 5-σ intervals overlap only partly.

The con�gurations di�er by such an amount that there is a high statistical signi�cance
for a real physical background. This means that a more massive satellite of Earth would
be able to de�ect more incoming asteroids (which is no surprise), but it also means that
a more compact Earth-Moon system would better shield the Earth from impacts than
the current system.
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4.4.2 Results for Model 2

For M2 always about 3.5 % of all particles impact on Earth, the impact percentage is
independent of the actual con�guration. The three values for the mean impact e�ciency
are nearly identical, also no distinction can be made based on their variance (see �gure
4.13).

Another test case

To address the issue if there is really no correlation of the impact e�ciency with any of
the lunar parameters (mass or distance), I performed a check with a reduced lunar mass.
The chosen mass ratio of µ = 10−4 is intermediate between that of Titan (2.4×10−4) and
Ganymede (7.8 × 10−5), while extreme cases like the moons of Mars (10−8) or Charon
(0.1) were not considered6. In the test simulations the impact e�ciency was still between
3.5 % (Equatorial case) and 3.6 % (Gaussian case), on average the results turn out to
be as high as before.
This raises the question whether or not the observed e�ect is caused by the Moon.

As the three investigated con�gurations (plus the test case) show, the Moon has only
a limited e�ect in focusing asteroids towards Earth. For the test case the observed
impact percentage must be attributed mainly to the terrestrial gravitational focusing.
However, in the following section I will demonstrate that the Moon is able to de�ect
particles strongly enough to impact on Earth, provided that they have low enough
relative velocity and impact parameters.

De�ection angles

In a study on orbital interactions Greenberg (1982, eq. (36)) provides a formula for the
rotation angle (here it is called de�ection angle) by which the relative velocity vector of
an incoming object is rotated towards the central mass. In that formula the de�ection
angle χ depends on the impact parameter b and especially on the relative velocity v,

sinχ =

[
1 +

(
b v2

G(m1 +m2)

)2
]−1/2

. (4.4.1)

A NEA with the lowest impact parameter (b = 5R⊕) at the border of the SOI (d =
150R⊕) would need to be de�ected by at least χ = arctan(b/d) = 1.91◦ to impact on
Earth. Any higher value of b will result in a larger de�ection angle, where at some point
the Moon will not be able to provide the necessary de�ection alone.
Figure 4.14 visualises equation (4.4.1) as a function of the impact parameter for di�er-

ent relative velocities, where the lunar mass is inserted to obtain the de�ection angles.

6see Satellite Fact Sheet at http://nssdc.gsfc.nasa.gov/planetary/factsheet/
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Figure 4.14: The de�ection angle due to the Moon as a function of the impact parameter
(horizontal axis, scaled in Earth radii) for a given relative velocity; curves
are labelled from top to bottom.

The diagonal dotted line (actually this is the more or less linear part of the arctan-
function) gives the lower bound for the angle χ, any de�ection angle below this value is
insu�cient to lead to a collision with Earth.

From the �gure it is visible that impact parameters of b ≤ 15R⊕ are supported at the
lower end of the relative velocity interval (for v = 1 km/s). When the relative velocity
increases slightly to v = 1.5 km/s the maximum impact parameter shrinks to about
10R⊕, while for v = 2.5 km/s only impact parameters b < 7R⊕ are possible.

This must be compared to �gure 4.12, where in the top row graphs we saw that
impacting particles had initial velocities of less than 2.5 km/s. From the third row of
that �gure it followed that the impact parameters for those particles were restricted to
15R⊕ or less. These results are consistent with the curves in �gure 4.14 based on formula
(4.4.1).

Thus it would be conveniently possible to explain the rather high impact e�ciency
simply by the lunar in�uence for any of the three con�gurations of model M2. However,
this explanation does not work for the test calculations with reduced lunar mass (µ =
10−4), where the Moon is unable to provide the de�ection angles necessary for impacts.
In the end it is more likely that the major contribution to the impact e�ciency of 3.5 %
comes from Earth, with the Moon's contribution being much smaller.
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Isolating the lunar contribution to impacts

It is not straightforward to disentangle the contributions of Earth and Moon to the
impact e�ciency. A rough estimate can be attempted by using �gures 4.8 & 4.11.
From the former �gure the Equatorial case (top row, right panel) demonstrated that

de�ections of asteroids occurred whenever they passed the Moon within 15RMoon (lunar
radii). This number changes with the con�guration, e.g. a higher lunar mass increases
the limit to 30RMoon.
The latter �gure gave the distribution of the minimal lunar �y-by distances for im-

pacting particles. From these histograms we can extract the cumulative fraction of
objects that pass the Moon within 30 lunar radii. This number is justi�ed by the fact
that the lunar Hill radius equals about 35 lunar radii for con�guration C1, see equation
(2.4.1). Any particle that passes the Moon within this zone will be subject to strong
lunar perturbations.
It follows that roughly 5.0 % and 0.8 % of all impactors in the simulations (for the

Equatorial and Gaussian case, respectively) pass the Moon closer than the required
limit. We can estimate the Moon's contribution to the mean impact e�ciency of 3.5 %
as 0.035×0.008 = 0.00028 and 0.035×0.05 = 0.00175 by using the fractions from above.
The lunar e�ect is between 0.028 − 0.18 %, i.e. the Moon contributes with (well) less
than 0.2 % to the determined impact e�ciency of 3.5 %; the e�ect due to Earth is then
3.3 %. As a side-note let us emphasize that the ratio of the two contributions is of the
same order as the Moon-Earth mass ratio.

4.4.3 Comparison to other results

In section 4.1.1 a number of previous studies was presented. Among those publications
the one of Domingos et al. (2004) is most closely related to the current thesis and was
part of the motivation for the investigations above.
Domingos et al. found that below a relative velocity of 5 km/s the lunar gravitational

e�ect becomes signi�cant. They reported as a maximum e�ect that 2.6 % of objects on
collision trajectories were removed when the objects had an initial velocity of 1 km/s;
for larger relative velocities the removal percentage decreased to 0.8 % at 5 km/s. In
contrast to their results for several discrete values of the relative velocity I found a
cumulative e�ect of 0.7 % in model M1 for a continuous velocity interval. The second
main result of Domingos et al. is that lunar perturbations induce on average 0.6 % of
the objects to collide with Earth. From my simulations model M2 gives a percentage of
3.5 % for an equivalent case, but as the discussion in the previous section has shown, the
Moon's contribution is only 0.2 % to the collisions. Finally, the authors also reported a
strong dependence of collisions on the impact parameter.
Gladman et al. (1995) performed simulations of lunar impact ejecta. They found that

more than 90 % of the ejecta particles escape to heliocentric orbits for initial speeds larger
than the escape velocity, but there is also a velocity interval that favours transport of
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material to Earth. The percentage of ejecta returning to the Moon depends strongly on
the initial speed, for an initial velocity that is 10 % above escape velocity only 1 % of the
material return. These results are in accordance with the simulation results, although I
was interested in material that returns to Earth and not to the Moon. In the simulations
I considered initial velocities up to 36 % higher than the escape velocity (M1) and found
that on average 0.7 % of the objects return.
Gladman et al. (2005) approached the problem of ejecta from another point of view.

For impact ejecta originating from Earth they determined that material can be trans-
ported to Venus and Mars, and that about 1 % of the original material would return
to Earth within 30 000 years. Also these authors found that the fraction of returning
material is strictly depending on the ejection speeds, the percentage falls below 1 % for
v0 ≈ 11.75 km/s.
Reyes-Ruiz et al. (2012) extended the results of the more recent Gladman et al. paper.

Earth impact ejecta (similar to M1) return to Earth in about 1 % of all cases for ejection
velocities of 11.7 km/s. The authors also reported the collision probability of these ejecta
with the Moon to be 0.02 % which is in excellent agreement with my simulation results
(see table 4.2).
All other publications mentioned in section 4.1.1 cannot be compared to the simula-

tions presented, either because the dynamical models are incompatible or because the
investigated target objects have nothing in common.

4.4.4 Captured objects

One of the possible end states of the simulations is that particles (originally on hyperbolic
trajectories) could be captured temporarily or permanently in the Earth-Moon system.
Tables 4.4 and 4.6 show that this outcome is rather rare and occurs preferably in the
Equatorial case.
It was already mentioned that the particles had very similar initial starting points and

velocities, but also that the trajectories are very chaotic and the outcome is sensitive to
the integrator step size.
Alessi et al. (2010) investigated the Earth-Moon CR3BP and how the lunar surface

is a�ected by incoming asteroids. They considered the hyperbolic invariant manifolds
associated with the central invariant manifold of the L2 libration point as �channels�
that can deliver asteroids to the Earth-Moon system, which eventually impact on the
Moon. For asteroids with appropriate initial conditions there exist tubes that lead or
depart from the (quasi) periodic orbits.
Qualitatively the trajectories of captured particles in the simulations resemble to �gure

3.1 in Alessi et al. (2010). It is possible that the few particles observed to become
captured start close to or inside those tubes that bring them close to L2. However,
before they get captured they must get rid of their excessive velocity. They can do so by
a �yby (or gravity assist maneuver) to the Moon, during which the velocity can decrease
or increase (Chobotov, 1991).
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This process could explain why captures occur preferentially in the equatorial case,
why the initial conditions are so similar, and why the objects need to closely approach
the Moon. This process would not explain the results for C3 in table 4.7, which are
somewhat di�erent in this respect. I did not investigate those cases in detail, since
they belong to a �nal state that is not of primary interest, and the fraction of cases
is negligible compared to the impacts on Earth. One hypothesis is that the decreased
lunar distance could in�uence the geometry of �y-bys in such a way that particles have
two gravity assist maneuvers with Moon and Earth, where in both cases they decrease
their velocity and end in a bounded state.
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Summary

This �nal chapter summarises the main results and conclusions of the main chapters 3
on the dynamics of NEAs and chapter 4 on impact simulations. Section 1.4 established
three key points that will be addressed in the following.

How does the Moon in�uence the trajectories of real

NEAs in the long-term?

The long-term dynamics of NEAs was investigated by means of two numerical integration
methods, the Lie-series integrator (section 2.2.1) and the Mercury integrator (section
2.2.2). Both methods are well suited to handle the frequent close approaches of NEAs
to planets. By using two di�erent types of integrators I intended to exclude spurious
results and to increase the con�dence in the data.
Three pairs of models were de�ned in section 3.1, and then used to investigate the

lunar e�ect on NEAs in increasingly more complex dynamical systems.
In models M2/M3 close encounters to Earth or the Earth-Moon system are very fre-

quent (cf. table 3.7). When comparing the orbital element distributions of NEAs at close
encounters in �gure 3.9, no qualitative di�erence is found apart from small statistical
�uctuations. In all cases the distributions are very similar, which indicates that they are
dominated by the Earth and that the Moon has almost no e�ect. The class membership
statistics (�gures 3.10 � 3.12 and table 3.4) also demonstrates that the percentage of
objects belonging to a speci�c NEA group is independent from the Moon's presence.
The models M4/M5 introduce mean-motion resonances as another key factor for the

dynamics of NEAs. Figure 3.20 shows the percentage of NEAs remaining in the simula-
tion versus time. It is obvious that impacts decrease the total number, but the decrease
is rather slow (≥ 80 % of objects are remaining). The curves have a similar trend for
both models, although there is a slight excess in M4 (≤ 1 %) for all NEA groups. If
this trend continued for a longer integration time (at least until reaching 50 % of the
original population), then one could deduce some lunar in�uence. However, in the close
encounter relative velocity distributions (�gure 3.17) no observable lunar e�ect is visible;
this is true in particular for the vrel ≤ 5 km/s encounters in �gure 3.18. It is possible
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to estimate the lunar de�ection e�ciency from the data in �gure 3.18 which gives a
probability of P (d ≤ 384 400km|vrel ≤ 5km/s) = 0.0052 %; a similar number to this can
be derived for models M6/M7. This shows that the events are rare where the presence
of the Moon would make a di�erence.
The last pair of models M6/M7 include the powerful perturbations of Jupiter and

Saturn. Similar to the previous model pair also this time no qualitative di�erence can
be observed in the relative velocity distributions in �gure 3.22. The same holds for �gure
3.29 when comparing the number of surviving objects. In all cases the percentages agree
to within ±1 % between the models, thus the Moon has only a marginal e�ect on NEAs
over time-spans of 107 years.
In table 3.7 the number of close encounters inside the Hill sphere is summarised, for

most cases the numbers di�er by < 2 %. It is also visible from table 3.6 that the percent-
age of NEAs with close encounters to Earth within the lunar distance agrees to ±1 %
for most models. These data were converted to the normalised number of encounters
per object, shown in �gure 3.27, which demonstrates that there are no systematic e�ects
when the Moon is included into the models.

Does the presence of the Moon increase or decrease

the number of impacts on Earth?

In section 3.3.4 the collision frequency for each NEA group was estimated directly from
the integrations. From the encounter frequency to the Hill sphere the impact frequency
was �tted by a linear model, see �gure 3.24 and table 3.5.
The observed number of impacts in the simulations can be found in table 3.9. Table

3.11 summarises the estimated impact frequencies based on three methods (see section
3.4.3). A Pearson chi-squared test was performed to test the hypothesis that the Moon
signi�cantly modi�es the number of impacts. This test yields a negative result, i.e. the
data imply that the Moon does not increase or decrease the number of impacts.
An alternative approach was taken in section 4.1. The circular restricted three-body

problem Earth�Moon�NEA was employed to simulate impacts on the Earth. For this
task a novel variant of the manifold correction method was implemented (see sections
2.3.2 and 4.2.1).
In the �rst simulation model (M1/C1) I checked how many impactors the Moon could

de�ect (section 4.3.1). The results in table 4.2 show that still 99.2 % of incoming objects
hit the Earth, but in 0.8 % of the cases the Moon could de�ect the impactor. This
percentage is lower than the corresponding value reported in Domingos et al. (2004),
but there it was obtained for a 2D model. In �gure 4.8 the histograms indicate that
successful de�ection mainly occur when the asteroid passes the Moon within 30 times
the lunar radius � which is roughly equal to the Moon's Hill radius.
The second simulation model (M2/C1) was designed to quantify the lunar contribution
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to impacts (section 4.3.2). The results are given in table 4.5, which shows that in about
3.5 % of all cases an impact happens. Section 4.4.2 discusses the reasons for this rather
high percentage. It was shown that for the given limits in impact parameter and relative
velocity the Moon can provide de�ection angles that are large enough to allow for an
impact (�gure 4.14). When the lunar e�ect is isolated then less than 0.2 % of the impacts
can be attributed to its e�ect.
In total I can con�rm that the Moon is slightly more e�ective in removing potentially

impacting NEAs (in ∼ 0.8 % of all simulated cases) than in focussing NEAs towards
Earth (in < 0.2 % of cases). Of course, one should not forget that these de�ections
depend on the relative velocity, and just for 0.2 − 0.3 % of all close encounters the
relative velocity is low enough.

Would changes in the lunar parameters a�ect the

impact rate?

This question was treated along with the simulations in chapter 4. The basic models
(section 4.1) were modi�ed to account for a higher lunar mass or a smaller lunar distance.
In the standard con�guration C1 (with lunar mass and distance as in reality) the

Moon de�ects 0.74 ± 0.12 % of impactors. The percentage of de�ections increases to
2.17±0.22 % with increased lunar mass in C2, these results are consistently higher than
for the default mass in all simulation runs. After decreasing the lunar distance there
are still more de�ections in C3, this time 3.68 ± 0.25 % of all cases. This means that
under special circumstances � preferably for low relative velocity encounters � the Moon
can modify the impact rate, and the e�ect depends on the physical parameters (at least
mass and geocentric distance).
For the complementary model, which investigated the forced impacts, the data were

indecisive (see �gure 4.13). Irrespective of the Moon's actual physical parameters the
simulations have always resulted in 3.5 % of additional impacts. The same percentage
was found for a strongly decreased mass ratio (see section 4.4.2), which indicates that
the Moon's real in�uence would be much weaker than the 3.5 %. An estimate for the
default lunar mass yields a best-case value of 0.2 % additional impacts caused by the
Moon. This analysis was not extended to other parameter values.

As the bottom line and conclusion no real in�uence is detectable for the Moon on
the trajectories of Near-Earth Asteroids. For investigations covering long time intervals
and aimed at a statistical description of NEA dynamics the Moon can be safely ignored.
The lunar gravitational in�uence will become important only in the special case of deep
close encounters with low relative velocity.
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