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1 Introduction

Creating animations is a time consuming process. Making them look natural is even
harder. Animations are a vital part of digital media like movies or computer games.
With the drastic rise in model quality, there has been a growing demand for complex
animations with more and more details to make them seem natural.

In the early years of game development creating animations was sometimes simply done
by showing different 2D graphics of an object successively, like a flipbook. Today, 3D
models are mostly used, which can have simulated bones and muscles to create an even
more realistic look. It is only logical that creating animations for such models is much
more complex. This raises the question of how to deal with these new requirements.

One possible option is to manually produce the animations for these models step by
step, using special software tools for modelling like Blender1 or Maya2. But this costs
a lot of time and requires very skilled and experienced graphic designers. This can be
very expensive and thus might not be possible for small companies or indie developers.
Another way of creating animations is using a motion capture system, which collects
data about movement with some sort of tracking mechanism and applies it to a virtual
model.

Motion capturing is a technology which can be applied to many areas, like [22] and [28],
so it is not surprising that there are numerous publications every year pertaining to
computer vision and motion capture. This thesis puts its focus on combining different
input sources to offer a simple way of generating complex character animations for 3D
humanoid character models.

The prototype for the tracking system was developed with Unity, a free game engine

1https://www.blender.org/, Accessed: 2015-06-07
2http://www.autodesk.de/products/maya/overview, Accessed: 2015-06-07
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1 Introduction

which offers some very useful features, like easy import and export of 3D models and
incorporating various plugins to facilitate the integration of the input technologies. The
current prototype combines motion tracking input from three sources: the body is
tracked via Kinect v2.0 sensor for Windows, face feature points are calculated from
webcam input and hand movement is captured with a 5DT Data Glove.

The goal of this prototype is to offer a new way of tracking multiple features at the
same time since it uses both optical and non optical capturing methods. The gathered
data is combined to a single animation, which can be saved and reapplied to any desired
model. It is possible that future implementations might even be able to improve upon
the quality of the tracking data by comparing and merging the data from different input
technologies.

This thesis is organized as follows: Chapter 2 gives an overview of relevant projects
in the field of motion tracking. Unlike this prototype, most of these projects focus on
a single feature like face tracking or body movement. Since this project makes use of
multiple technologies and methods to capture different parts of the human body, Chap-
ter 3 gives an overview of the individual tracking methods and details how their input
is combined. Chapter 4 documents the implementation process and main design deci-
sions for the prototype, before giving reasons for selecting the chosen technologies and
naming possible alternatives. It also contains a section about the technical difficulties
which came up during the implementation process. After that, in Chapter 5 the results
of the evaluation process will be shown. They will be discussed and compared with
other technologies in Chapter 6. Finally in Chapter 7 there will be a summary of the
improvements and benefits of this project, as well as a review of the limitations and its
most common issues.

2



2 Related Work

Since the goal of this thesis is it to develop a performance capturing system with different
input sources, this section is distributed into three main parts: hand, body and face
tracking. Each section will cover related work for the individual research field. The
combination of these different tracking approaches is then undertaken in the following
chapters.

2.1 Hand Tracking

In [50] a completely markerless approach of hand tracking is introduced. It uses the
Kinect’s depth sensor for obtaining 3D image data. The images are analysed by us-
ing OpenCV functions to find the contours of the hand. Then the hand position is
tracked with a special hand recognition algorithm that detects the center of the palm
and constructs a convex hull around the hand as was described in the work referenced
above.

A similar approach, but with a different algorithm is introduced by [36]. Both methods
manage to correctly track hands in real time. However the obtained information’s level
of detail about the finger movement might not be good enough for applying the data to
a model to generate natural looking finger animations.

Another interesting approach can be found here: [18]. This work is about real-time hand
tracking, which specially sets its focus on tracking robustness. It uses a combination of
the Camshift algorithm and motion velocity, but it does not retrieve enough information
for detailed hand animations.

The approach introduced in [39] uses inverse kinematics to match a model to the 3D

3
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point cloud obtained from the Kinect sensor. The hand movement tracked with this
approach shows promising results: The animations are detailed and look natural, but
the system is prone to tracking errors of the Kinect. But while capturing, it can happen
that the hands are moved faster than they can be tracked by the Kinect sensor. So
in general this approach could be used, but a more robust tracking method would be
appropriate for this prototype.

One of the most promising projects in this area is being developed by Microsoft Research
[40], which has been working on a vision based approach using the Kinect sensor, and
provides a very accurate tracking mechanism. Figure 2.1 shows the project in use from
three different views.

Figure 2.1: Screenshot of Kinect Hand Tracking Demo Video1

This tracking method only makes use of the Kinect’s depth sensor. It has a high tolerance
for changes in lighting and can quickly recover from tracking loss. It can track a user’s
hand, even if he is several meters away from the camera. Also the system does not need
a fixed camera position in order to perform hand tracking. Which means that the Kinect
can be moved freely during the tracking process.

The tracking of the features is very detailed and looks more natural than the hand
animation of the prototype of this thesis. However though it is a vision based only

1https://www.youtube.com/watch?v=A-xXrMpOHyc, Accessed: 2015-07-24
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2.2 Body Tracking

approach there is always the issue that the view of the camera can be blocked by objects
in the scene or the actors body. Therefore a vision based approach might not be accurate
enough for recording an actor’s overall performance.

2.2 Body Tracking

There have been many studies in the field of motion capturing, especially about capturing
the movement of an actor’s body. Therefore, compared to the vast number of methods
available, only a rather small selection of tracking methods will be discussed in this
section.

An interesting and low budget approach to body tracking has been the real-time Inter-
active Shadow Avatar [31] published in 2007. It only uses visual tracking via webcam:
A virtual shadow is constructed from the webcam picture. By tracking hand positions
through the virtual shadow, an estimate can be made as to the most likely position of
the head. However, in this approach there is no information retrieved about the rotation
and position of the body joints, because the tracking is done by using the body outline
of the recorded person. Therefore the data would not satisfy the claims for creating
animations at real time.

Another project from 2012 [45] explores how joint orientations, that are captured by
a Kinect, can be interpreted and applied to a model. This project creates Biovision
Hierarchy (BVH) -files at runtime, which can be used to store animation data and
information about how the bones are connected with each other.

This approach [47] tries to create character animations with a Kinect. This is achieved by
forming semantic skeletons from a motion capture data base. During the process feature
points are calculated, and from this data an appropriate skeleton from the database is
selected for the animation.

A rehabilitation exercise monitoring and guidance system is described here [51]. It uses
the Kinect together with Unity to track patient’s bodies during exercise. The difference
to this thesis is that heuristics are used to check if the exercises are done correctly.

In this paper [52] an approach of mapping optical motion capture data to skeletal motion

5
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is realized. It is described as follows:

To accomplish the mapping, we attach virtual springs to marker positions
located on the appropriate landmarks of a physical simulation and apply
resistive torques to the skeleton’s joints using a simple controller

The results show solid mapping of the tracking data to the model. This approach could
be considered as an alternative to the Kinect tracking of this thesis’s prototype.

These three works [44], [17] and [26] show an approach with surface motion graphs.
Here the surface motion and the pose of the model are used together for a new way of
displaying movement and retrieving additional knowledge. The intensity of the motion is
visualized by different colors. For example jump height, movement speed or the distance
between steps are factors in computing the motion intensity. With this kind of additional
data it is possible to further improve animations, for example by adding rules on how
the actor should be tracked if he moves at a certain speed or when he jumps.

Another interesting technology in this field is Control VR [3], a device to track body
motion. The device uses special sensors to track interesting feature points of the body.
It uses mechanical feature tracking and therefore it even deals well with loss of sight of
the actor.

Figure 2.2: Screenshot of ControlVR Demo Video2

2https://www.youtube.com/watch?v=_jgAJcmmlVs, Accessed: 2015-07-24
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The screenshot of the Demo Video in Figure 2.2 shows the ControlVR wearable controller
used together with the Oculus Rift3. It simulates a scene where the user can interact
with his environment and other players. By adding collides to the model it seems to
the user like he can really affect his surroundings by touching, pushing or even grabbing
objects in the scene. This approach combines motion tracking and augmented reality,
to give the user the feeling that he can interact with the virtual scenery like in real
life. Although the main goal of the prototype presented in this thesis is the recording
and playback of animations, it would be possible to achieve similar results by using and
adjusting some components of the ControlVR hardware and adding Oculus Rift support
to the project.

An alternative, advanced way of motion capturing is performed by Xsens [12]. It uses
mechanical motion capturing, where the actors wear special suits equipped with sensors
that record motion and send the data to the devices used for capturing. With this
approach it is possible to create detailed animations without having any issues of tracking
loss. Also, the actors can move very fast and the tracking is still stable.

Figure 2.3: Screenshot of Xsens Demo Video4

Figure 2.3 shows the tracking of two people performing dance moves in close body
contact with each other. The presented tracking system is very well suited for this

3https://www.oculus.com/en-us/, Accessed: 2015-07-24
4https://www.youtube.com/watch?v=5ZWfIXmI5gY, Accessed: 2015-07-24
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kind of tracking, since it does not rely on visual information. If the same scene was
supposed to be tracked with optical motion tracking methods, multiple cameras would
be needed, because the two actors would frequently cover each other’s body parts by
being in such close proximity to each other. So regardless of whether marker-based or
markerless tracking methods are used, there is always the possibility of tracking loss.
This approach would be a good alternative to visual motion capturing like it is performed
in this thesis’ prototype.

Some further approaches for motion capturing are [42], [48], [24] and [29]. The first one
compares a 3D measuring device with the Kinect sensor. The second one introduces
an approach which combines 3D estimated motion data with 2D data obtained from
posture tracking. The third also uses 2D motion data to reconstruct 3D human motion
from a sequence of images. The last project puts its focus on markerless tracking of
animals.

However, even though motion capturing is a very interesting and diverse field of re-
search,it is not the only focus of this thesis. The capturing of facial expressions is
performed by a separate component of the system.

2.3 Face Tracking

There are a lot of approaches for real time face feature point extraction. This section
will only list references to published scientific work, but later in Chapter 6 the prototype
also will be compared against some commercially used products.

This project from 2013 [30] proposed a way to produce real-time performance-driven
facial animation without having to use markers. It uses Kinect Face input together
with 3ds Max5 and maps 2D features to a face model which contains a skeleton that is
modelled in a special way to simulate face muscles. This project also provides options
to track blinking and pupil motion.

Another approach for vision based face animation can be found here [20]. It first extracts
feature points and additionally to displaying them it also tries to calculate the emotion
of the user.

5http://www.autodesk.de/products/3ds-max/overview, Accessed: 2015-07-03
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This paper [16] from 2006 shows a way how face feature points can be tracked with a
webcam. First the face is detected via an OpenCV, using Haar-like features, which was
also initially attempted by the prototype. Then it records the skin color distribution
and detects face features with the help of edge orientations.

An interesting approach is shown in [21]. This work concentrates on dealing with the
fact that input images might be partially blurred. It introduces new algorithms to
reconstruct the images to high quality using depth information recorded by a binocular
camera setting. An approach like this could greatly help stabilize face feature detection
even when actors move around quickly. On the other hand additional calculations would
be needed for computing the image recovery. This could negatively influence the run time
performance of a tracking system. Alternatively the smoothing and feature capturing
could be done on a video stream. If the tracking is not real time there is no need for
fast calculations.

In [32] a face tracking method is proposed which uses face detection to identify regions of
interest and then extract feature points. It works in real time and performs the tracking
on a stream of input images. The whole approach works with a simple webcam, which
is exactly what this thesis is trying to achieve as well, except that after retrieving the
face feature points this project applies them to a model to generate 3D face animations.
Therefore an approach like this would be suitable to compute the desired face feature
points for the facial animations.

A great state of the art approach for capturing facial animations is Face Plus [6], pro-
vided by Mixamo6. It is a tool which can create 3D character facial animations by
using pre recorded videos or live capturing with a simple webcam. It works with bone
driven characters as well as blend shapes. Recording can be performed at real time and
additional animations can be made even after the data is recorded. Figure 2.4 shows a
snapshot of a live capturing demo.

Face Plus is a highly advanced method of what this project is trying to achieve in terms
of capturing facial animations for 3D characters. Compared to the developed prototype
it supports much more functionality. In its current state the prototype of this thesis
only supports bone driven animation capturing, which means that simulated bones have
to be added to the model which are then moved according to the captured face features.

6https://www.mixamo.com/, Accessed: 2015-07-30
7https://www.youtube.com/watch?v=yNaympgBVpQ, Accessed: 2015-07-24
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Figure 2.4: Screenshot of Face Plus Demo Video7

Furthermore Face Plus supports export formats which can be used with other animation
tools. It is also available as a free trial version for Unity. Even though it is a commercial
product, it is a cheap way of generating high quality facial animations. Therefore it can
be considered as a possible input source for the face tracking component of this thesis’s
prototype.

2.4 Summary

Some of these projects show promising results in their particular area. None of these
projects provide a complete tracking system for all of a person’s features, but if some of
them were to be used in a combined approach, they could show great potential.

10



3 Background and Basics

Since the prototype uses many different technologies, this chapter will give a general
outline of the thesis and will define some terminologies. It also contains an overview of
the development environment and the parts of it which were important for the prototype.

At the end of the chapter there will be a list of the used technologies, an short description
what they are used for and the sections in which they are covered.

3.1 Motion Capture

In [22] motion capture and motion capture systems are referred to as

(...) the process of recording motion data in real time from live actors and
mapping it into computer characters. Motion capture systems include (...)
devices that directly or indirectly track the actor’s movements.

There are many different types of motion capture systems with a variety of tracking
techniques. This section focuses mainly on optical and mechanical tracking methods,
since the prototype is built from a combination of both. But it should be mentioned at
this point, that there are also other techniques like acoustic or magnetic signals.

3.1.1 Optical Motion Capture

With optical motion capturing the features are retrieved through the analysis of a video
stream. Such systems are often prone to tracking loss due to change of lighting or to
objects blocking the view between the camera and the actor. Another issue might be the

11



3 Background and Basics

distance between the actor and the optical device. There are two common approaches
in optical motion capture, marker based and markerless motion capture.

Marker-based Capturing

The marker-based approach uses optical beacons to capture important feature points
of the tracked body. The beacons are often made out of materials which are reflecting
or have a certain color. The so tracked data can be mapped to the model’s joints
corresponding to the position of the respective beacon. Often reflecting spherical markers
are used for the tracking. These markers are attached to the body of the actor in all
the places that are interesting to track. But there are also other marker technologies,
as illustrated in [15], which presents an alternative contour-based marker system. This
system is well-suited for tracking non-rigid motion by attaching the markers to key areas
where the skin is close to the bones of the body.

Motion tracking technologies can also be used in other fields than generating animation
data. For example in [19] a marker-based approach is used to create a system for applying
a dance scoring system to the performers.

In [35] marker based tracking technologies are used to control a humanoid robot.

Even though no marker-based technologies are used for the tracking of the current
prototype of this thesis, in future releases marker-based capturing methods could be
added to improve and stabilize the tracking.

Markerless Capturing

Markerless capturing methods make no use of optical beacons. They often use algorithms
which calculate features just from the bare image. To make calculations more efficient
the image used in most cases is a resized and gray scaled version of the original.

In the last years countless approaches have been made to achieve motion capture with
markerless capturing methods as in [46]. Many of these approaches use multiple cameras
to stabilize the tracking, as for example in the following systems:

In [27] unsynchronized input from multiple cameras is used for generating motion cap-
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3.1 Motion Capture

ture data. The captured data is synchronized after recording by a specially developed
mechanism.

The more cameras are used the better the motion of the actors can be reconstructed. For
example [33] specialized in tracking two performers in close contact. This is especially
challenging, since body parts of the actors might block the view of the camera. However
using multiple cameras also means having a bigger amount of data to process, which
can affect the run time performance.

The prototype exclusively uses markerless capturing methods for face and body tracking.
While the Kinect makes use of the depth camera to calculate the position and rotation
of the body joints the face tracking features are obtained by analysing the bare input
image from a webcam.

3.1.2 Mechanical Motion Capture

Mechanical motion capture uses sensors which move along with the body of the actor to
simulate an exoskeleton, which can represent the movement of the actors joints. These
sensors deliver the desired data which is then used to animate the model. The prototype
uses this kind of technology to track finger movement more accurately.

Using this kind of tracking has the big advantage that the actor does not always have
to be in an area where he can be filmed. Also the mechanical tracking is not limited to
hand tracking only. For example in [43] a full body tracking system is introduced, which
could be used with this thesis’s prototype as an alternative to the visual body tracking
with the Kinect sensor.

Again, a tracking approach like this can have other application areas as well. For example
[34] uses their tracking system to control a robotic puppet in real-time, by tracking a
person’s movement. The data is then interpreted and mapped to a link model of the
human body, which is similar to the strategy used in the prototype of this thesis.

All of these sensor tracking methods produce data that needs to be transmitted to a
computer where it can be processed in some way. For the prototype this is done by
connecting the data gloves to a computer via USB cable, but there are other ways, too.
In reference [25] the data of the motion capture system is transmitted by using a wireless
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3 Background and Basics

MARG (Magnetic, Angular Rate, and Gravity) sensor network, which has a high-speed
update rate and has the advantage of supporting multi user tracking.

But however the data is transmitted, it is clear that mechanical motion capture tech-
nologies are well suited for detailed tracking. Especially in critical tracking areas like
hands, which may be covered by objects held by the actor or by his body.

3.2 Performance Capture

Of course the prototype developed for this study can not be compared to professional
performance capturing studios like for example House of Moves1. Figure 3.1 shows a
professional performance capture in the studios. On the other hand the benefit of a
simpler system is that it is much easier to use and of course it is way less expensive.

Figure 3.1: House of Moves Performance Capturing2

Professional performance capturing systems which are used for creating high quality
animations for movies or video games need a lot of preparation. Every day the actors
have to first be prepared for recording, which means attaching markers all over their
body and face which must exactly match the model’s proportions.

1http://www.moves.com/, Accessed: 2015-07-25
2https://www.youtube.com/watch?v=WmtzTu2rygk, Accessed: 2015-07-30
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3.3 Unity

Also, for the actors to be able to interact with the environment, it is necessary to build
a scenery which must match the proportions of the virtual models.

Another big performance capturing studio is for example Digital Domain3. All these
studios offer a lot of different high quality services: Not only performance capturing but
also specific motion or face capturing animations, scenes with green screens, editing,
rendering and much more.

The prototype targets independent developers or small companies which do not have
the money to hire a professional motion capture company, but still want realistic and
detailed animations for their models. The tradeoff clearly lies in the animation quality,
but the prototype is free to use and can be modified to match individual requirements.

3.3 Unity

Unity4 is a development platform for creating games. It is free of charge and since
version 5 it also supports dynamic linked library (DLL) files, which earlier was only
possible with the professional versions.

Another powerful feature is that projects created in unity can be exported to many
different target platforms. Since the prototype was developed solely with the Unity
environment, this section will cover the aspects of Unity which were relevant during the
implementation process and how they were used in the project.

3.3.1 Projects and Scenes

Every Unity Project contains an Assets folder. This folder contains the materials, mod-
els, prefabs, scripts, plugins and all other assets used by the project. A project can
contain multiple scenes. A Scene represents an arrangement of assets in a 3D or 2D
space.

3http://www.digitaldomain.com/, Accessed: 2015-07-30
4http://unity3d.com/, Accessed: 2015-06-07

15

http://www.digitaldomain.com/
http://unity3d.com/


3 Background and Basics

3.3.2 GameObjects

GameObjects are containers for all the objects inside a scene and are used to composite
and arrange them. For example: in a hierarchy of GameObjects, if the root is moved,
scaled or rotated the same actions apply to all underlying GameObjects as well.

Every GameObject also has a transformation object attached to it. Those objects contain
information about position, rotation and scale of a GameObject. Especially position and
rotation play an important role for the prototype. They are essential for mapping all of
the input sources to the GameObjects, so that their features can be stored as animations.

3.3.3 Joints

In the prototype empty GameObjects are used as joints between the bones of a model.
They can be manually added, positioned and rotated. Then the bones are added as
child nodes of the joints. If done correctly this combination of joints and bones can act
as a skeleton within a model. This process is also referred to as rigging.

3.3.4 Rigging

For the rigging process it is very important to get the bone hierarchy in the right order,
so that all joints that depend on each other are properly connected. The recommended
joint hierarchy from the Unity documentation [9] is composed as follows:

• HIPS - spine - chest - shoulders - arm - forearm - hand

• HIPS - spine - chest - neck - head

• HIPS - UpLeg - Leg - foot - toe - toe_end

However, for the mapping of the Kinect input the bone hierarchy is slightly different
and will be described in detail in Section 4.6.
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3.3.5 Prefabs

If a scene contains a complex GameObject which should be accessible for reuse, Unity
provides the option to save it as a prefab. The prefab object contains all the elements
and specifications made in the editor and it can be used in every scene, as often as
desired.

3.3.6 Scripts

Scripts are executed in Unity by attaching them to GameObjects and calling predefined
functions like:
void Start () {} // when the script is enabled , before Update

is called

void Update () {} // called every frame

In the first implementation all scripts are written in C# language. The prototype heavily
depends on the scripts since they are used for retrieving input data, and interpreting
and applying them to the right joints.

3.4 Integration Overview

This section provides an overview of all technologies, code projects and programs which
were used for this thesis, and lists the specific purpose they were used for and the section
in which they are cited and described in detail.

The entries of Table 3.1 are sorted by name, but will be described grouped by logical
context within the prototype.

The 5DT Data Gloves are special gloves that have sensors to track the finger movement of
the wearer’s hand. For the prototype they are used to record more detailed information
about finger spread and flexure, since the tracking data which is retrieved from the
Kinect sensor is not detailed enough.

The Kinect V2.0 SDK for Windows needs to be installed in order to use the Kinect V2.
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Name Usage Sections
5DT Data Gloves Hand tracking 4.4.2, 4.5
Beyond Reality Face Face tracking(removed from

prototype)
4.4.4

CSIRO Face Analysis SDK Face tracking 4.4.4, 4.7.2
EmguCV OpenCV wrapper (removed

from prototype)
4.4.4

Kinect V2.0 SDK for Win-
dows

Body tracking 4.4.3, 4.6

Kinect v2 with ms-sdk Kinect concepts 4.6
Luxand FaceSDK Face tracking (removed

from prototype)
4.4.4

OpenCVSharp OpenCV wrapper (removed
from prototype)

4.4.4

Unity Development environment 3.3, 4.4.1, 4.9.2

Table 3.1: Integration Overview

It also contains basic examples on how to use the SDK with Unity. The project Kinect
v2 with ms-sdk on the other hand is a code project which is available on Unity’s asset
store. It contains detailed examples and tutorials about how to use the Kinect V2.0
SDK.

In the beginning the face tracking of the prototype was done by using OpenCV. To be
able to use the necessary libraries two different wrappers, OpenCVSharp and EmguCV,
were tested. Even though the OpenCVSharp wrapper was easier to use, the EmguCV
wrappers seemed to be maintained better and proved to have more detailed documenta-
tion. In the end the approach of using OpenCV did not satisfy the needs of the prototype
because the tracking was not stable enough, nor was it possible to retrieve the desired
number of face feature points. Therefore an external SDK had to be integrated for the
tracking. Beyond Reality Face and Luxand FaceSDK provide solutions for face tracking
which can retrieve face feature points by using a simple webcam. However, there were
compatibility issues with the prototype, which are described in Section 4.9. For this
reason the CSIRO Face Analysis SDK was chosen instead.

All these technologies were integrated into Unity and the input from the different sources
was combined to achieve performance tracking of an actor. The following sections de-
scribe the detailed process of how this was attained.
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This section provides deeper insight into the structure and the implementation of the
prototype. It starts by giving an overview of how the tracking is done in general, and then
illustrates the components, the system architecture and general system requirements to
run the prototype.

This is followed by sections about each tracking method and its respective hardware and
software components, as well as one section about how the animation data can be stored
and imported at runtime.

The last section covers issues that might affect the prototype during runtime or cause
problems with the system integration.

4.1 Tracking Process

Figure 4.1 illustrates in detail, how the individual hardware and software components
work together to generate real time character animations, by demonstrating a complete
setup of all supported animation tracking sources and their dependencies.

The prototype consists of three main input devices: Body/Skeleton tracking with Kinect
v2.0, face tracking via a webcam and measuring finger abduction and flexure with 5DT
Data Gloves. The first step of this project was to integrate each of these components into
separate Unity projects. In the second implementation cycle all three of these projects
were combined into one prototype.

In the current state of the project, at runtime, the input from each device is handled
individually before being combined and mapped to the avatar. The resulting animation
data can also be exported by writing it to a file.
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Figure 4.1: Animation Process Pipeline. (Source for the Unity Logo [10])

4.2 Architectural Overview

This section is about the architecture of the prototype and how the hardware is con-
nected to the software parts in the tracking process. Figure 4.2 shows the essential core
components of the prototype, and how they work together while creating animations or
applying them to a model.

Every input device is accessed by a separate SourceManager component. From there the
input data is passed on to the model controller scripts. These scripts can manipulate
the model by calling referenced model manager scripts which are attached to the model
and hold references to its joints.

While a model is manipulated the AnimationManager can record these animations and
store them in an animation file at runtime.

Such an animation file can be loaded and reapplied to any model with model manager
scripts attached to it via the AnimationReader. However it is not possible to track and
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Figure 4.2: Architectural Overview of the Core Components

apply animation data at the same time to the same model. Although if there are multiple
models in one scene each model can have either a controller or AnimationReader script
manipulating it.

Figure 4.3 illustrates how all the modules interact, when all devices are used together in
one tracking session.

The 5DT Data Gloves are also available in a wireless version. This would make it easier
for the actor to move and perform freely. The Kinect should be placed in a way so that
there is enough space for the actor to move around. Also there should be no objects
between the Kinect sensor and the actor. The webcam should be attached in a way that
it can film the actors face from a fixed position to prevent tracking loss of the face. Also
no objects should move between the webcam and the face of the actor.

4.3 Implementation Overview

To visualize how the project is organized, Figure 4.4 gives an overview of the most
important components which were used in building the structure of the code.

For each of the three input sources, there is one individual DeviceManager, ModelCon-
troller and DataManagement component.

21



4 Implementation

(a) Performing Actor

(b) Results in the Unity Editor Window

Figure 4.3: Prototype in Use

The DeviceManagers are responsible for retrieving the input data from the corresponding
device. They usually use included .dll files and wrapper classes and serve as access points
for the ModelController. Every DeviceManager holds a reference to exactly one input
source and should be placed in a separate GameObject to create an organized project
structure.

The ModelController is responsible for interpreting the device input and applying it to
the model via the DataManagement component. Therefore, each ModelController holds
a reference to a DeviceManager and its corresponding Manager component (HandInput-
Source -> HandController <- HandManager).

The DataManagement component contains a Manager script for each part of the model
that can be animated (Body, Hand, Face). The Manager scripts have references to the
model’s joints and also contain individual, additional specifications which influence how
the model components are interpreted by the ModelController.

22



4.3 Implementation Overview

<<component>>
Animation Reader

<<component>>
Model Controller

<<component>>
Filter

<<component>>
Device Manager Apply Animation Data

Device Reference

Model Access

Process Animation Data

Process Input Data

Access Device Data

Use Filter

Filter Input Data

Serialize Animation Data

Import File

<<component>>
Data Management

Model Reference

<<component>>
Animation Manager

Export File

Apply Input Data

Figure 4.4: Component Diagram of the Prototype

The AnimationManager is used for real time animation capturing. Therefore it can hold
a reference to each DataManagement component and retrieve animation data which
then is converted to feature vectors. These vectors are then stored in a file which can
be loaded and interpreted by the AnimationReader component.

If the scene contains an animation, the AnimationReader loads the animation file when
the prototype is started. It can hold a reference to each DataManagement component
in the scene and access their joints to apply the previously loaded animation data to
them.

Both, the ModelController and the AnimationReader components use the same interface
to access the 3D model. Therefore the user has the choice to use the ModelController
to generate animation data, which can be exported by the AnimationManager, or to
apply an animation file to the model via the AnimationReader. As a design decision, it
is not possible to do both at the same time. Consequently, a GameObject which holds
an AnimationReader can not have a ModelController on it.
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4.4 General Requirements and Setup

Multiple technologies were involved to make it possible to use so many different input
sources within a single project. But this also requires certain prerequisites from a system
to be able to run the prototype properly.

The following section covers all the preparatory adjustments that need to be made to
be able to execute all the scripts inside the Unity environment.

4.4.1 Unity

The minimum version to run the prototype is Unity 5. Some of the components also
run with Unity 4.6.5 Pro edition, but the face tracking was exclusively developed with
Unity 5, so there is no guaranty that it will work with earlier versions.

For the prototype to be able to fully utilize all the possible tracking data input sources,
it is necessary to use the 32-bit version of Unity, since some of the .dll files were only
available as x32 builds. Further details about this issue are covered in Chapter 4.9.

4.4.2 Finger Tracking

Before the 5DT Data Gloves can be used with a Unity project, the corresponding drivers
need to be installed. They can be found online on the 5DT homepage [1] in the download
section, where the official SDK is available. The SDK mainly consists of two files, the
FDTGloveUltraCSharpWrapper.dll and the fglove.dll.

In October 2012 a Unity example was added to the website, which demonstrates the
correct way to access the Data Glove and its parameters and also shows how to recognize
finger gestures. The fglove.dll file has to be placed in the Assets/Plugins folder and the
FDTGloveUltraCSharpWrapper.dll needs to be in the same folder as the C# scripts.
Once the setup is complete the input of the gloves can be accessed through the wrapper
class.
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4.4.3 Kinect

The first step is to ensure that the system requirements are met, as recommended on
the official SDK website [4] under Getting Started/System Requirements. The next step
is to download and install the Kinect v2.0 for Windows SDK and the Kinect v2 Unity
packages from the technical documentation and tools section [11]. Notice that it is only
possible to use these packages with the free version of the Unity editor if Unity 5 or later
is installed. Otherwise the .dll files can not be included into the project.

The Unity package is a custom package and can be imported via Assets -> Import
Package -> Custom Package... Once this is done and the Kinect sensor is plugged in
at an USB3.0 port, the SDK can be used to build Kinect-based Unity applications.
However, the current release (Oct 2014) still has some issues that, in some cases, can
even make Unity crash. The most common problems are listed in the known issues
section, which can be found at the SDK website [4].

The .zip file contains the following Unity packages:

• Kinect.2.0.1410.19000.unitypackage

• Kinect.Face.2.0.1410.19000.unitypackage and

• Kinect.VisualGestureBuilder.2.0.1410.19000.unitypackage

The first package is necessary for all the general Kinect functions and also includes some
tutorials about how to use them. The second package contains the Kinect Face scripts
and plugins and the third one contains the visual gesture builder, which was not used
for the implementation of the prototype.

When including these packages to Unity, it is important that the
Kinect.2.0.1410.19000.unitypackage is imported before the Face and the VisualGesture-
Builder packages can be used. If it is not imported first, the project will not work cor-
rectly. Another important thing is that some packages partly import identical scripts in
the Standard Assets folder. This can cause problems with the project structure because
of multiple namespace definitions in the Helper and the Windows.Kinect namespaces.

The affected scripts are the following:
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• Standard Assets/CameraIntrinsics

• Standard Assets/CollectionMap

• Standard Assets/EventPump

• Standard Assets/ExceptionHelper

• Standard Assets/INativeWrapper

• Standard Assets/KinectBuffer

• Standard Assets/NativeObjectCache

• Standard Assets/NativeWrapper

• Standard Assets/SmartGCHandle

• Standard Assets/ThreadSafeDictionary

• Standard Assets/Editor/KinectCopyPluginDataHelper

Early implementations showed, that unfortunately there seems to be a compatibility
issue with the Kinect v2.0 Face scripts and Unity 5 (tested version 5.0.2f1). Due to
memory leak problems the Editor crashed every time the project attempted to retrieve
the face data. For this reason the Face packet was omitted in following implementations.
The current solution to this problem is to set the orientation of the head at a fixed angle,
since the Kinect bones do not reflect the head orientation well enough. Instead, the head
orientation is obtained by using its face tracking feature to make sure the head faces the
correct direction.

The basic Kinect package should work fine right after being imported. The .zip file also
contains some code examples that illustrate how to use the basic features of the Kinect
v2.0 with Unity. For this prototype some of them were extended to build the basic
structure for retrieving the Kinect input data. Once the package is imported the Kinect
features can easily be included with the following statements:

using Windows . Kinect ;

using Microsoft . Kinect .Face;
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4.4.4 Face Tracking

Originally the following methods were considered for face tracking and feature extraction:

• OpenCV together with C# Wrapper

– OpenCVSharp1 –> works with Unity, but no sufficient face feature support,
and tracking is often unstable

– Emgu CV2 –> works with Unity, but no sufficient face feature support, and
tracking is often unstable

• Luxand FaceSDK3–> only native plugins, but Unity 5 needs at least one managed
plugin which contains only .NET code

• Beyond Reality Face4 –> Not supported for C#

• CSIRO Face Analysis SDK5 –> Not supported for Microsoft platforms, but for
Linux and Mac.

OpenCVSharp

The OpenCVSharp project provides the necessary .dll files to integrate OpenCV into
Unity via C#. However, to be able to use it properly the OpenCVSharp master project
must be recompiled. The desired .dll files are then placed into different directories.

The OpenCvSharp.dll can be found under opencvsharp-master/src/OpenCvSharp/bin
and the other .dll files can be obtained from various locations e.g.
opencvsharp-master/src/OpenCvSharp.Sandbox/bin. Depending on the build options
they are then available as x32 or x64 builds.

Once recompiled the .dll files can be copied into Unity’s Assets/Plugins folder. After
that it can be simply imported with the "using OpenCvSharp;" statement.

1https://github.com/shimat/opencvsharp, Accessed: 2015-07-04
2http://www.emgu.com/wiki/index.php/Main_Page, Accessed: 2015-07-04
3https://www.luxand.com/facesdk/, Accessed: 2015-07-04
4http://www.tastenkunst.com/#/home, Accessed: 2015-07-04
5http://face.ci2cv.net//, Accessed: 2015-07-04
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EmguCV Wrapper

Including the EmguCV wrapper is done similarly to including the OpenCVSharp wrap-
per. The only additional step that needs to be performed is switching the API compat-
ibility level from .NET 2.0 Subs to .NET 2.0. The settings for this option can be found
under File->Build Settings... There is a Settings button which can be used to bring up
the Player Settings window in the inspector. In the Other Settings category there is an
under category Optimization where the API Compatibility Level can be selected.

CSIRO Face Analysis SDK

Finally, the CSIRO Face Analysis SDK was chosen for the prototype, even though it
had to be included into Unity by writing a wrapper for it.

The documentation for this SDK can be found here [5] and the source code is available
on Github6. Furthermore, the face tracking component of the SDK is based on [37]. The
expression transfer, which is not supported by the prototype, is based on [38].

To be able to use the functionality of the face tracking component a wrapper class was
added to the project, containing the following functions:

FACETRACKER :: FaceTracker * WrapperLoadFaceTracker (char*

configPath , char* paramsPath , char* trackerPath ) {

cv:: Mat con = FACETRACKER ::IO:: LoadCon ( configPath );

globalParam = FACETRACKER :: LoadFaceTrackerParams ( paramsPath );

FACETRACKER :: FaceTracker * tracker =

FACETRACKER :: LoadFaceTracker ( trackerPath );

return tracker ;

}

FACETRACKER :: FaceTracker * WrapperLoadFaceTrackerDefault () {

FACETRACKER :: FaceTracker * tracker =

FACETRACKER :: LoadFaceTracker ();

6https://github.com/ci2cv/face-analysis-sdk, Accessed: 2015-06-27, M. Cox, J. Nuevo,
J.Saragih and S. Lucey, “CSIRO Face Analysis SDK“, AFGR 2013
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return tracker ;

}

The WrapperLoadFaceTracker and WrapperLoadFaceTrackerDefault methods are re-
sponsible for initializing the face tracker. They are called once, when the prototype
is started. The tracker parameters should be specified through the WrapperLoadFace-
Tracker function, but if there are no specifications available the default settings can be
loaded via the WrapperLoadFaceTrackerDefault function.

FACETRACKER :: FaceTrackerParams * WrapperLoadFaceTrackerParams ()

{

return FACETRACKER :: LoadFaceTrackerParams ();

}

The WrapperLoadFaceTrackerParams method is used together with the WrapperLoad-
FaceTracker function and is responsible for passing the function calls to the actual script
of the SDK which loads the additional tracking parameters.

void WrapperDeleteFaceTracker ( FACETRACKER :: FaceTracker *

tracker ) {

delete tracker ;

}

void

WrapperDeleteFaceTrackerParams ( FACETRACKER :: FaceTrackerParams *

param) {

delete param;

}

When the prototype is stopped the memory that was reserved for the face tracker and
the face tracker parameters has to be freed again. The WrapperDeleteFaceTracker and
WrapperDeleteFaceTrackerParams methods are responsible for passing these calls on,
once the script’s OnDestroy() method is called.

int WrapperTrack ( FACETRACKER :: FaceTracker * tracker , unsigned

char* image , int imageSize , int rows) {

cv:: Mat mat = cv:: Mat(imageSize , 1, CV_8U , image);

mat = mat. reshape (0, rows);

return tracker ->Track(mat , globalParam );
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}

Once the tracker is initialized the WrapperTrack can be called every frame. The input
grayscale image has to be passed on to the method, together with the FaceTracker, size
and rows of the image.

It returns an integer value between 0 and 10 which represents the accuracy of the track-
ing. If 0 is returned, that means that the tracking possibly got lost and that the tracker
should be reset.

void WrapperReset ( FACETRACKER :: FaceTracker * tracker ) {

tracker ->Reset ();

}

In this event the WrapperReset method can be used. In the following implementations a
button was added which calls this function, should the optical feedback of the prototype
show that the tracking is not accurately mapped to the face.

int WrapperGetShape ( FACETRACKER :: FaceTracker * tracker , float*

points ) {

std :: vector <cv:: Point_ <double > > shape = tracker -> getShape ();

int pointCount = shape.size ();

for (int i = 0; i < pointCount ; ++i)

{

points [i * 2] = (float)(shape[i].x);

points [i * 2 + 1] = (float)(shape[i].y);

}

return pointCount ;

}

Finally, the last method of the wrapper, which is called WrapperGetShape, retrieves the
x and y values and inserts them into the passed on array.

It also returns an integer value which states how many feature points were tracked in
the last WrapperTrack call. Usually the value is either 0, which means that something
has gone wrong during the tracking, or 66 which is the exact number of face features.
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A returned number between 0 and 66 very uncommon.

The Wrapper is contained in the libclmTracker.dll file. The following code snippet shows
how to include all the required .dll files which are dependant on each other.

[ DllImport (" kernel32 .dll")]

private static extern System . IntPtr LoadLibrary ( string

dllToLoad );

[ DllImport (" kernel32 .dll")]

private static extern bool FreeLibrary ( System . IntPtr

hModule );

[ DllImport (" libclmTracker ")]

private static extern System . IntPtr

WrapperLoadFaceTracker ( string configPath , string

paramsPath , string trackerPath ) ;

[ DllImport (" libclmTracker ")]

private static extern System . IntPtr

WrapperLoadFaceTrackerDefault () ;

[ DllImport (" libclmTracker ")]

private static extern void WrapperDeleteFaceTracker

( System . IntPtr tracker );

[ DllImport (" libclmTracker ")]

private static extern int WrapperTrack ( System . IntPtr

tracker , byte [] image , int imageSize , int rows);

[ DllImport (" libclmTracker ")]

private static extern int WrapperGetShape ( System . IntPtr

tracker , float [] points );

[ DllImport (" libclmTracker ")]

private static extern void WrapperReset ( System . IntPtr

tracker );

These DLL files have to be added in the same order as shown in the code snippet below,
otherwise the code will probably fail and cause runtime errors. The path parameters
need to be customized according on the structure of the Assets folder.

private System . Collections . Generic .List < System .IntPtr > _DLLS =

new System . Collections . Generic .List < System .IntPtr >();
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void Awake () {

// Load

_DLLS.Add ( LoadLib ( Application . dataPath +

"\\ Plugins \\ FaceTracking \\ x86 \\ libgcc_s_dw2 -1. dll"));

_DLLS.Add ( LoadLib ( Application . dataPath +

"\\ Plugins \\ FaceTracking \\ x86 \\ libstdc ++ -6. dll"));

_DLLS.Add ( LoadLib ( Application . dataPath +

"\\ Plugins \\ FaceTracking \\ x86 \\ libopencv_core2410 .dll"));

_DLLS.Add ( LoadLib ( Application . dataPath +

"\\ Plugins \\ FaceTracking \\ x86 \\ libopencv_highgui2410 .dll"));

_DLLS.Add ( LoadLib ( Application . dataPath +

"\\ Plugins \\ FaceTracking \\ x86 \\ libopencv_imgproc2410 .dll"));

_DLLS.Add ( LoadLib ( Application . dataPath +

"\\ Plugins \\ FaceTracking \\ x86 \\ libopencv_objdetect2410 .dll"));

// _DLLS.Add ( LoadLib ( Application . dataPath +

"\\ Plugins \\ x86_64 \\ libopencv_imgproc2411 .dll "));

}

Once these steps have been completed correctly the rest of the scene needs to be set up
like described in Section 4.7.2.

4.5 Simulating Finger Movement With the 5DT Data
Glove Input

The 5DT Data Gloves are used to track finger flexure as well as finger abduction. Shown
in Figure 4.5 are the 5DT Data Glove 5 Ultra on the left, and the 5DT Data Glove 14
Ultra on the right. The difference is that the 5 Ultra glove does not have the sen-
sors required to track abduction between fingers, as well as the second flexure sensor
responsible for the flexure tracking of the proximal interphalangeal joint. To cater to
both versions of the glove the prototype provides the option to independently turn off
abduction tracking as well as flexure tracking.

Figure 4.6 shows the location, name and abbreviation for each joint.
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Figure 4.5: The 5DT Data Glove 5 Ultra (Left) and the 5DT Data Glove 14 Ultra (Right)

Figure 4.6: Joint Names

As shown in Figure 4.7 and Table 4.1 the 5DT Data Glove 14 Ultra supports all possible
joint movements for the thumb, but it does not provide sensors to track the flexure of
the distal interphalangeal joint. This fact had to be considered in the implementation.
To still be able to simulate a natural movement it was assumed that if the proximal
interphalangeal joint is flexed the distal interphalangeal joint is flexed as well with the
same angle. Despite this solution the prototype does not support every possible finger
placement. But it does cover most of the natural looking poses.

Since the 5DT Data Glove 5 Ultra has only one sensor per finger to track the Metacar-
pophalangeal joint, the approach for the prototype is to apply the same flexure to all
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Figure 4.7: Sensor Mapping for the 5DT Data Glove 14 Ultra [13]

following joints of the same finger as well. To correctly apply the input data a simple
sample model of a 3D human hand was created. Its hierarchical structure is constructed
as follows:

• Wrist joint (Hand)

– Thumb joint (MCP) -> Thumb joint (IP)

– indexFingerJoint (MCP) -> indexFingerJoint (PIP) -> indexFingerJoint (DIP)

– middleFingerJoint (MCP) -> middleFingerJoint (PIP) -> middleFingerJoint
(DIP) -> HandTip

– ringFingerJoint (MCP) -> ringFingerJoint (PIP) -> ringFingerJoint (DIP)

– pinkyJoint (MCP) -> pinkyJoint PIP) -> pinkyJoint (DIP)

The test scene where the hand tracking prototype was developed can be seen in Figure
4.8. The whole scene consists of a left hand and a right hand for testing the tracking
capabilities, and an additional right hand to test animation playback. The root node of
every hand object contains two classes, HandController.cs and HandManager.cs.

The HandManager script contains a reference to every finger joint. It also has a checkbox
to specify if the model is left or right handed and another one to enable abduction
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Sensor Driver Sensor Index Description
0 0 Thumb flexure ( lower joint )
1 1 Thumb flexure ( second joint )
2 2 Thumb-index finger abduction
3 3 Index finger flexure ( at knuckle )
4 4 Index finger flexure ( second joint )
5 5 Index-middle finger abduction
6 6 Middle finger flexure ( at knuckle )
7 7 Middle finger flexure ( second joint )
8 8 Middle-ring finger abduction
9 9 Ring finger flexure ( at knuckle )
10 10 Ring finger flexure ( second joint )
11 11 Ring-little finger abduction
12 12 Little finger flexure ( at knuckle )
13 13 Little finger flexure ( second joint )

Table 4.1: Sensor Mapping for the 5DT Data Glove 14 Ultra [13]

tracking between the fingers. This feature should only be activated if the Data Glove
has the corresponding sensors to track these features. The script also contains references
to a few float variables, that can be used to set a desired bend rotation as well as the
spread angle between two fingers. By default, the bend rotation is set to 90 degrees and
works like euler angles. The rotation will be applied as negative rotation around the
x-axis in the local space of the corresponding finger joint. The spread angle will only
apply if abduction tracking is activated. It is set to a default value of 45 degrees for
every abduction, expect for the the one between thumb and index finger, since this joint
naturally as a wider angle than the others.

The script additionally contains three float variables x, y and z to fix potential problems
with the rotation of the fingers. Since it is possible that the local rotation of the model’s
joints does not match the way they are manipulated in the animation process. Every
variable again is representative for an euler angle and will be applied to the Metacar-
pophalangeal joint of each finger.

The HandManager also contains two other important functions which are both used
together with the animation scripts described in Section 4.8.

The HandController script holds a reference to the HandManager. Through this refer-
ence it has access to the hand joints and all the parameters described above. It also
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Figure 4.8: Hand Model With Structural Hierarchy

receives the glove input data via an instance of the CfdGlove class. In the Start()
method of the script a new instance is created by calling the Open(pPort) function of
the CfdGlove class and passing a string parameter containing "USB" plus the desired
USB number. If a device is connected to the specified port, the script will call the an-
imateHand(float angle) method for every frame, passing on the bendRotation held by
the HandManager.

At the beginning of the animation process the sensor input is refreshed by calling the up-
dateSensorInput() function, which calls the CfdGlove.GetSensorScaled(int index) func-
tion for every possible joint. The return values are temporarily stored in global float
variables to enable access to them during the animation process.

The next step is to determine how the hand should be animated. This is done by looking
at the settings stored in the HandManager script. The stored variables represent abduc-
tions, to decide if their abduction values should be considered during the animation. A
checkbox for rightHand or leftHand lets the user influence how the abduction variables
and bend rotations of the thumb joints are interpreted. Therefore it is not necessary to
distinguish between right handed and left handed Gloves, since the checkboxes allow for
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independent interpretation of the flexure values. This means that a left handed glove
could also be used for tracking right handed data if the rightHand check box is selected.

Once these steps are completed, the last step is to apply the sensor data to the cor-
responding finger joints. To get the correct angle for the rotation, the retrieved float
values are multiplied with the passed on bendRotation.

After that, the HandController uses the HandManager to access its referenced GameOb-
jects, representing the finger joints. For each GameObject its localRotation is set by
calling Unity’s Quaternion.Euler(x,y,z) function.

For the prototype it is assumed that the model’s joints are oriented so, that the rotation
around the x-axis will let the fingers move down. It is also assumed that there is no
upward rotation of the fingers, since the 5DT Data Gloves only detect how much a finger
is bent, but not if it is moved up or down. If abduction tracking is activated the y-axis
will be set to the corresponding tracking data, otherwise it will be set to a fixed default
value. The z-axis is not used because logically it is not possible for the finger joints to
be pushed into each other.

4.6 Using Windows Kinect v2.0 for Body Animation

Since the documentation for the Kinect v2.0 SDK does not cover most of the special cases
that occurred during the integration process into Unity, a lot of other sources (mostly
forum entries) had to be used as support. However the "Kinect v2 with MSSDK" [7],
which is available at the Unity Asset Store, covers a lot of the content this project is
trying to achieve in terms of body animation.

Although none of its code was used for the implementation of this prototype, the idea
of using a Dictionary together with an array of the bones to access them was adopted,
as well as the expansion of the bone model by clavicular joints to be able to correctly
map the shoulder rotations from the Kinect SDK.
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4.6.1 Interpreting Motion Capture Data

To be able to interpret and use the Kinect input data correctly in Unity the following
steps have to be performed:

1. First get body data from Kinect sensor. This can easily be achieved by using the
BodySourceManager script which is available from the KinectView project in the
Kinect Unity package described in Section 4.4.3.

2. Iterate through all available BodyJoints, the GameObjects referenced in the Body-
Manager script. For each of these joints get the matching Kinect.JointOrientation.

3. Transform the JointOrientation object from a Kinect 4D Vector (Kinect repre-
sentation of a Quaternion rotation) to an Unity Quaternion by using JointOri-
entation2Quaternion(), which takes three arguments. The first argument is the
Kinect.JointOrientation object itself. The other two parameters are booleans, that
determine if the X or the W component of the JointOrientation should be inverted
or not. This is important to support the control flow of the avatar movement. If
so desired, it is also possible to make the avatar move like it would be reflected
by a mirror. This is achieved by exchanging the left and right extremities and
converting the Quaternions to the right dimensions.

Each Kinect joint is depending on the rotation of its parent joint. For the mapping this
means that a joint’s rotation is representative for its parents rotation, for example the
rotation of Kinect.JointType.AnkleLeft has to be applied to the models knee joint as
well. To be able to map the bones correctly in step 2 the following map was included
into the code:

private Dictionary < Kinect .JointType , Kinect .JointType > _BoneMap

=

new Dictionary < Kinect .JointType , Kinect .JointType >()

{

{ Kinect . JointType .AnkleLeft , Kinect . JointType . FootLeft },

{ Kinect . JointType .KneeLeft , Kinect . JointType . AnkleLeft },

{ Kinect . JointType .HipLeft , Kinect . JointType . KneeLeft },

{ Kinect . JointType .AnkleRight , Kinect . JointType . FootRight },

{ Kinect . JointType .KneeRight , Kinect . JointType . AnkleRight },
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{ Kinect . JointType .HipRight , Kinect . JointType . KneeRight },

{ Kinect . JointType .HandLeft , Kinect . JointType . HandTipLeft },

{ Kinect . JointType .ThumbLeft , Kinect . JointType . HandLeft },

{ Kinect . JointType .WristLeft , Kinect . JointType . HandLeft },

{ Kinect . JointType .ElbowLeft , Kinect . JointType . WristLeft },

{ Kinect . JointType . ShoulderLeft , Kinect . JointType . ElbowLeft },

{ Kinect . JointType .HandRight , Kinect . JointType . HandTipRight },

{ Kinect . JointType .ThumbRight , Kinect . JointType . HandRight },

{ Kinect . JointType .WristRight , Kinect . JointType . HandRight },

{ Kinect . JointType .ElbowRight , Kinect . JointType . WristRight },

{ Kinect . JointType . ShoulderRight , Kinect . JointType . ElbowRight

},

{ Kinect . JointType .SpineBase , Kinect . JointType . SpineBase },

{ Kinect . JointType .SpineMid , Kinect . JointType . SpineShoulder },

{ Kinect . JointType . SpineShoulder , Kinect . JointType .Neck },

{ Kinect . JointType .Neck , Kinect . JointType .Head },

{ Kinect . JointType .Head , Kinect . JointType .Head },

};

4.6.2 Applying Tracking Data to a 3D Model

This was the most complex issue in the whole body tracking process, since it was not
easy to find a model that matches the requirements that are necessary to apply the
tracking data correctly, even after the interpretation process.

Since the direction of each joint depends on its own rotation, as well as the orienta-
tion of the bones connected to it, applying an animation to a certain body part quickly
turned into a very complex process. Incidentally, the best possible way to achieve proper
mapping was to test each GameObject individually, until its correct rotation was found.
This was done by applying the Kinect JointOrientation to the rotation of each transfor-
mation, but not to its localRotation parameter. Doing this had no big impact on the
animation data, since all bones were still constricted by their bone hierarchy.
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When a new object is created, it needs to be aligned along the y-axis, to make it possible
to map the Kinect JointOrientation joint to the bone. After that they can be rotated in
the desired direction. As an example, Figure 4.9 illustrates this process for the left arm
of the prototype model. In this test scene a cube was created and its size was increased
along the y-axis. After that the bone was rotated to the left to match the orientation of
the joint data returned by the Kinect. Note the different coordinate systems in (a) and
(b).

(a) Rectangle Oriented Along y-axis
(b) Rectangle Rotated to Match Kinect v2.0 In-

put for Left Arm

Figure 4.9: Adaptation of Bone and Joint Rotation

4.7 Capturing Facial Feature Points With Webcam

At the time the prototype was built there was no SDK available for Unity, that would
have been able to meet the needed requirements. Subsequently, two approaches have
been made to achieve accurate and stable face tracking.

First, the attempt was made to write a custom face tracking implementation via OpenCV
and include it into Unity with one of the introduced wrappers. However, as mentioned
before, it soon turned out to be harder than expected to make the face tracking run
stable enough with OpenCV alone.

The second approach was to include an external SDK into Unity, as detailed in Subsec-
tion 4.7.2.
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4.7.1 OpenCV Approach

In the area of face tracking, feature extraction and feature mapping with OpenCV,
there have been multiple approaches, like [53] and [23]. OpenCV gives its users so
many liberties that it seemed to be a good fit with the development of this custom
prototype. For this reason, it seemed reasonable to try to create a custom face tracking
implementation at first. This section details the chosen development approach, and the
reasons why the idea of a custom implementation was discarded at the end.

After including basic OpenCv-examples like [2] and [8], the resulting code was modified
to fit the application requirements. Additional feature tracking filters were added and
optimized. The result of this procedure can be seen in Figure 4.10.

Figure 4.10: Face Feature Tracking With Haar Feature-based Cascade Classifiers

However, the tracking process was still not stable enough for live tracking. Especially
in an unevenly illuminated environment. The next steps were to improve illumination,
extract Face Feature Points and match them to the face mesh.

In the end the Haar-Cascade files where not stable enough without sufficient training.
So the approach was discarded and a professional, more suitable SDK was chosen for
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the project.

4.7.2 External SDK: CSIRO Face Analysis SDK

As a prerequisite for this face tracker, the following GameObjects needed to be added
to the scene:First, the FaceSourceManager, which can hold a reference to a webcam
display, for showing the input image from the webcam, and a reference to a Unity Mesh
Renderer. The Mesh Renderer uses a material with a custom grayscale shader and
converts the webcam input into a grayscale image for processing, for the face tracking.

The FaceRoot needs to be placed in the middle of the face, where the face feature points
should be displayed. For animation capturing the FaceManager and the FaceControl
scripts must be attached to it.

Unlike the BodyManager described in the previous subchapters, the FaceManager of
the prototype does not contain references to any joints. It creates the feature points
for the animation at runtime and sets their position according to the tracking data
received from the FaceSourceManager. The data is applied to the FaceManager by the
FaceControl script, which has a few public variables that have to be specified before
playback: The FaceFeatureCount needs to be set to 66, since that is the exact number
of features returned by the face tracking SDK. The FaceRoot has to match the created
feature points. Optionally, the Head parameter can be used to implement a method for
rotating the model’s head. The FeatureSize is a 3D Vector, which determines how big
the features will be displayed on the screen. By default it has a size of 0.02 FeatureColor
is an optional parameter and can be used to apply a material to the feature points. The
prototype uses a blue colored material for the face features.

Additionally to the FaceManager and the FaceSource reference, the FaceControl script
has some specific parameters that need to be set: GlobalFaceSizeX and GlobalFace-
SizeY are parameters that enable the prototype to consider the global size of the face
when mapping the features of the tracked face to the FaceRoot. These parameters are
necessary, since Unity does not know an object’s size in relation to the world anymore,
when it is part of a hierarchy. The Prefab parameter specifies the GameObjects which
are used to display the referenced face features on the webcam display in the top right
corner of the test scene. A snapshot of this can be seen in Figure 5.10. The prototype
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does not calculate depth values for the face feature points, but provides a DepthValues
parameter which can be used to adjust depth values manually. It contains an array for
all of the 66 possible feature points.

Should the scale or position of the face still not match the model, despite all configu-
rations, it can be adjusted to the size of the avatar by simply changing the size or the
position of the FaceRoot by using the editor window. These changes can be made at
runtime, before starting the recording.

4.8 Exporting and Loading Animation Data

Since Unity does not provide the option to export animation data at runtime just by
memorizing the transform rotations of each component, it was necessary to implement
this part of the application as an individual component.

4.8.1 Data Format

To store the animation data in a way that would make it reusable, a specific file format
was created that uses the Unity Quaternion representation to save the animation’s trans-
formation rotations. In this file format, each main tracking part (hand, body, face) has
its own feature vector, which contains all required values to animate the corresponding
region.

The format also contains time stamps for each frame, that mark the absolute time which
has passed since the start of the recording process. These timestamps might also be used
for queuing, if trying to load the animation progressively, but for the current prototype
the animation file needs to be fully loaded into the main memory before the playback
starts.

Since not every animation file must necessarily consist of each of the three tracking input
sources, each data block is marked by an individual starting mark. A complete list of
all marker tokens can be found in Table 4.2.

In this data model it is assumed that every joint that is supported by the prototype is
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tracked. For this reason, there is an exact amount of separators for each marker. For
example, the seventh separator in the "hr" section always represents the second joint of
the middle finger on the right hand. However, there are a few exceptions that had to be
taken into account.

Token Usage Context
"time:" Calculate time difference retrieved via Time.time
"root:" Position of the root element (SpineBase)
"hr" Hand tracking right hand 5DT Data Gloves
"hl" Hand Tracking left hand 5DT Data Gloves
"f" Face Tracking Webcam
"b" Body Tracking Kinect v2.0
"{" Begin tracking data section after "hr", "hl", "f" or "b" marker
"}" End tracking data section after last Quaternion entry
"*" error in getTrackingData function return value
";" Seperator between Quaternion entries

Table 4.2: Vocabulary for the Animation Data File Format

4.8.2 Saving Animation Data

For the hand tracking it was important to distinguish between left and right hand data
because of the directions of the abduction Quaternions. For example, spreading the
middle finger apart from the other fingers on the right hand is a movement in the
opposite direction on the left hand. The flexure of each finger is not affected, because it
can be interpreted independently. For this reason two markers "hr" and "hl" are needed
so the animation data can be interpreted correctly.

As shown in Table 4.3 the feature vector of the hand tracking data contains all entries
listed in Table 4.1 and Figure 4.7. But it also contains additional tracking data about the
distal interphalangeal joints for the index, middle, ring and little finger. As mentioned
before, these joints are assumed to bend to the same degree as their corresponding
proximal interphalangeal joints.

The body tracking data also has some special characteristics. Since it is not sure that
every body model possesses all of the currently possible 27 joints, which are provided by
the Kinect v2.0, it had to be considered that there might be empty connections, from
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Feature Number Name
0 Wrist joint (root bone for hand animation)
1 Metacarpophalangeal (MCP) joint, thumb
2 Interphalangeal (IP) joint, thumb
3 MCP joint, index Finger
4 Proximal interphalangeal (PIP) joint, index finger
5 Distal interphalangeal (DIP) joint, index finger
6 MCP joint, middle finger
7 PIP joint, middle finger
8 DIP joint, middle finger
9 MCP joint, ring finger
10 PIP joint, ring finger
11 DIP joint, ring finger
12 MCP joint, little finger
13 PIP joint, little finger
14 DIP joint, little finger

Table 4.3: Feature Vector Hand Animation Data

where no Quaternions could be obtained. In the first prototype each body joint got
assigned its own marker token, like "head:", "rightKnee:", "leftWrist:" and so on.

This approach worked, but it was an unhandy solution because it made the parsing
process slower and unnecessarily difficult. To improve the parsing speed, the feature
vectors for empty connections are now filled with dummy Quaternions, that do not
affect the rotation.

Table 4.4 shows the feature vector for the body tracking. It contains every joint provided
by the Kinect v2.0 SDK and an additional root parameter. This parameter is an optional
feature and contains information about where the model was placed in the scene and
what its orientation was at the time the animation was recorded. It can be used to
reset the animated character to its exact initial position and/or rotation. However, this
parameter was mostly kept for debugging reasons.

The feature vector contains no extra fields for the abduction values since they are also
contained in the Quaternion rotations, if abduction tracking is activated.

45



4 Implementation

Feature Number Name
0 Body root node
1 Head
2 Neck
3 Spine Shoulder
4 Spine Mid
5 Spine Base
6 Clavicle Left
7 Shoulder Left
8 Elbow Left
9 Wrist Left
10 Hand Left
11 Clavicle Right
12 Shoulder Right
13 Elbow Right
14 Wrist Right
15 Hand Right
16 Hip Left
17 Knee Left
18 Ankle Left
19 Foot Left
20 Hip Right
21 Knee Right
22 Ankle Right
23 Foot Right
24 Hand Tip Left
25 Hand Tip Right
26 Thumb Left
27 Thumb Right

Table 4.4: Feature Vector Body Animation Data

Since the face features are stored as 3D vectors instead of Quaternions the face feature
vector is slightly different from the body and hand feature vectors. Furthermore, the
getFeatures() - method of the FaceManager only returns a predefined set of GameOb-
jects. Their position can be retrieved from the transform of each element. The feature
vector holds all 66 feature points provided by the face analysis SDK. The mapping of
the feature points can be found in the official SDK documentation7.

7http://face.ci2cv.net/doc/#sec-4-3, Accessed: 2015-07-02
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Finally, to be able to create and store these feature vectors in a file an AnimationManager
script was added to the project. This script can hold a reference to each possible input
source that is supported by the defined data format. The different sources are:

• Left Hand (5DT Data Glove)

• Right Hand (5DT Data Glove)

• Face (Webcam)

• Body (Kinect v2.0)

To make the script easier to use all the essential configurations were added to it as public
variables. The script can simply be added to a GameObject and from there it is possible
to configure the settings. Figure 4.11 shows a snapshot of how the script is displayed in
the Unity Inspector.

Figure 4.11: Interface of the AnimationManager

The location and filename is stored in a string variable and can be specified via the
File Name field. If the Record button is checked the AnimationManager will write the
animation data of the referenced ManagerObjects to the specified file. The Manager-
Objects can be added to the script by dragging the GameObject, which contains the
matching manager script, onto the corresponding field.

The AnimationManager will then call the getTrackingData() method every frame, for all
referenced manager scripts. This method uses the getFeatures() method of the manager
script and stores the string representation of these features individually for each current
frame. The code below shows what this function looks like in the HandManager script:

public Quaternion [] getFeatures (){

Quaternion [] features = new Quaternion [15];
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features [0] = Base. transform . rotation ;

features [1] = Thumb1 . transform . rotation ;

features [2] = Thumb2 . transform . rotation ;

features [3] = IndexFinger1 . transform . rotation ;

features [4] = IndexFinger2 . transform . rotation ;

features [5] = IndexFinger3 . transform . rotation ;

features [6] = MiddleFinger1 . transform . rotation ;

features [7] = MiddleFinger2 . transform . rotation ;

features [8] = MiddleFinger3 . transform . rotation ;

features [9] = RingFinger1 . transform . rotation ;

features [10] = RingFinger2 . transform . rotation ;

features [11] = RingFinger3 . transform . rotation ;

features [12] = Pinky1 . transform . rotation ;

features [13] = Pinky2 . transform . rotation ;

features [14] = Pinky3 . transform . rotation ;

return features ;

}

Note that in this implementation the Base variable is the Unity GameObject which holds
the reference to the root joint. It is equivalent to the wrist joint of the body tracking
process returned by the Kinect, therefore it is only needed if the hand tracking is done
without body tracking.

An example of the animation data for one captured frame is given below:

time :2.17249

root :(0.07061455 , -0.23192610 , 1.44451500)

hl {( -0.05069533 , -0.35007570 , 0.41551870 ,

0.83798670) ;(0.58886610 , 0.21946390 , 0.34244610 , 0.69842930) ;

... }

hr {( -0.34291020 , -0.26722300 , 0.69032680 ,
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0.57832010) ;( -0.47619380 , -0.12531200 , 0.77615680 ,

0.39384990) ; ... }

f {(0.00531995 , -0.02025503 , 0.00000000) ;(0.00487498 ,

0.01646760 , 0.00000000) ; ... }

b{( -0.02991204 , 0.94905940 , -0.09112739 ,

-0.30014610) ;( -0.02991204 , 0.94905940 , -0.09112739 ,

-0.30014610) ;( -0.03580621 , 0.93773010 , -0.09231110 ,

-0.33295510) ; ... }

It shows a snapshot of the captured animation data of one frame as captured by the
prototype. The format is organized in the following order:

• time: for the time passed in seconds since the prototype was started.

• root: the current position of the root node, which in this example is the spine base
joint of the model

• hl... for the left hand, with the previously explained feature vector for the hand
tracking

• hr... for the right, also with the hand feature vector

• f... for the face tracking data. As mentioned before, the entries are 3D Vectors
instead of Quaternions and only represent the position of the face features.

• b... represents the body tracking data. Joints that are not tracked are filled with
empty Quaternions.

During playback all entries are interpreted as float values. They are stored with eight
digits by default. If higher or lower accuracy is desired the number of digits can be
specified in the AnimationManager scripts.

Each marker token is interpreted individually, so if for any reason the tracking of an
input source fails it has almost no effect on the animation file. The position of the
model simply stays the same until the tracking from the failed source can be resumed.
The following examples demonstrate how the captured animation data changes when
certain gestures are made while capturing.
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Hand Tracking Data Example

Flat Hand

time :4.59343

hr {(0.00000000 , 0.00000000 , -0.70710690 ,

0.70710680) ;( -0.13360840 , 0.39066280 , -0.42435270 ,

0.80588850) ;( -0.57123850 , 0.56331650 , -0.12396470 ,

0.58394710) ;(0.01196110 , 0.70700570 , -0.01196110 ,

0.70700570) ;( -0.48917750 , 0.51059310 , 0.48917760 ,

0.51059320) ;( -0.70686930 , 0.01832482 , 0.70686930 ,

0.01832481) ;(0.00152866 , 0.70710520 , -0.00152866 ,

0.70710520) ;( -0.46338300 , 0.53411270 , 0.46338300 ,

0.53411280) ;( -0.70024610 , 0.09826287 , 0.70024610 ,

0.09826288) ;(0.00082776 , 0.70710640 , -0.00082776 ,

0.70710640) ;( -0.49941440 , 0.50058510 , 0.49941450 ,

0.50058510) ;( -0.70710650 , 0.00082776 , 0.70710650 ,

0.00082776) ;(0.08160488 , 0.70238210 , -0.08160488 ,

0.70238210) ;( -0.17296770 , 0.68562540 , 0.17296770 ,

0.68562540) ;( -0.40502400 , 0.57961680 , 0.40502400 ,

0.57961680) ;}

Fist

time :5.052942

hr {(0.25879680 , -0.84076630 , 0.04211672 ,

0.47366960) ;( -0.18032550 , -0.73440750 , -0.09367839 ,

0.64757490) ;( -0.49766060 , -0.57153880 , -0.47060960 ,

0.45188980) ;( -0.52707860 , -0.33480530 , -0.02366283 ,

0.78072670) ;( -0.92093590 , -0.22509930 , -0.24896750 ,

0.19804800) ;( -0.80143090 , 0.01008493 , -0.33548890 ,

-0.49502950) ;( -0.53945930 , -0.33438550 , -0.02899783 ,

0.77222370) ;( -0.91489220 , -0.23213070 , -0.24242490 ,

0.22431700) ;( -0.83547850 , -0.01447018 , -0.33532830 ,

-0.43511080) ;( -0.54078280 , -0.33433520 , -0.02957126 ,

0.77129750) ;( -0.92702400 , -0.21667790 , -0.25633020 ,

0.16724970) ;( -0.77622300 , 0.02650484 , -0.33459220 ,

-0.53368890) ;( -0.45839600 , -0.33560250 , 0.00504987 ,

50



4.8 Exporting and Loading Animation Data

0.82293320) ;( -0.73356120 , -0.31300200 , -0.12117850 ,

0.59096030) ;( -0.90164730 , -0.24471220 , -0.22971810 ,

0.27272400) ;}

The first thing to be noticed in this comparison is that some quaternions, for example
the first one, hold values near or equal to zero when a flat hand is recorded. The values
change drastically when a fist is formed. This is because the initial position of the hand
joints is the flat hand. When forming a fist the fingers are bent and a negative rotation
towards the palm of the hand is applied to the joints.

Body Tracking Data Example

Body in T-position

time :2.788506

root :(0.00000000 , 0.00000000 , 0.00000000)

b {(0.00000000 , -0.00000033 , 0.00000000 ,

-1.00000000) ;(0.00000000 , 1.00000000 , 0.00000000 ,

-0.00000016) ;(0.00000000 , 1.00000000 , 0.00000000 ,

-0.00000016) ;(0.00000000 , 1.00000000 , 0.00000000 ,

-0.00000016) ;(0.00000000 , 1.00000000 , 0.00000000 ,

-0.00000016) ;(0.00000000 , 0.00000000 , 0.70710690 ,

0.70710680) ;(0.00000000 , 0.00000000 , 0.70710690 ,

0.70710680) ;(0.00000000 , 0.00000000 , 0.70710690 , 0.70710680) ;

... }

Body is Recognized by the Kinect Sensor

time :2.844301

root :(0.01320315 , -1.01690200 , 2.71933200)

b{( -0.00457114 , 0.94712690 , -0.17332110 ,

-0.26998110) ;( -0.00457114 , 0.94712690 , -0.17332110 ,

-0.26998110) ;( -0.02046368 , 0.89589760 , -0.23083320 ,

-0.37903170) ;( -0.01640655 , 0.95615300 , -0.14715380 ,

-0.25268200) ;( -0.01130806 , 0.99048640 , -0.06972072 ,

-0.11810090) ;( -0.43366350 , 0.70312290 , 0.51666250 ,

0.22497590) ;( -0.59852040 , 0.51073230 , 0.60890510 ,
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0.10079960) ;( -0.77742050 , 0.23510120 , 0.53364530 ,

0.23572810) ; ... }

This example shows how the values of the body tracking change when the Kinect sensor
recognizes the performing actor in two consecutive frames. The first data set shows
the model in its initial T-position. After recognizing the actor the model jumps to
the relative position and rotation. This is why the position of the root element and
the rotation of the body joints change so drastically. Of course, only a representative
selection of the tracked body joints are shown in this example, since the data set would
consume too much space.

Face Tracking Data Example

Mouth Opened, Grinning

time :7.86412

f{ ... ( -0.01371785 , 0.00098656 , 0.00000000) ;(0.01709121 ,

0.00571176 , 0.00000000) ;(0.04596011 , -0.00100981 ,

0.00000000) ;(0.06547271 , 0.02471725 , 0.00000000) ;(0.07359099 ,

0.05573834 , 0.00000000) ;(0.05986268 , 0.07775412 ,

0.00000000) ;(0.04181895 , 0.09604469 , 0.00000000) ;(0.01709826 ,

0.10589030 , 0.00000000) ;( -0.00909295 , 0.09692510 ,

0.00000000) ;( -0.02936864 , 0.07849124 ,

0.00000000) ;( -0.00985637 , 0.03156788 ,

0.00000000) ;(0.01696140 , 0.03108522 , 0.00000000) ;(0.04127914 ,

0.02983860 , 0.00000000) ;(0.03916199 , 0.05202315 ,

0.00000000) ;(0.01733847 , 0.06481667 ,

0.00000000) ;( -0.00701104 , 0.05341836 , 0.00000000) ;}

Mouth Closed

time :8.50118

f{ ... ( -0.01176107 , 0.00427570 , 0.00000000) ;(0.01872471 ,

0.00870007 , 0.00000000) ;(0.04733468 , 0.00171613 ,

0.00000000) ;(0.06736776 , 0.02654896 , 0.00000000) ;(0.07676663 ,

0.05669533 , 0.00000000) ;(0.06203578 , 0.07639766 ,

0.00000000) ;(0.04363808 , 0.09244032 , 0.00000000) ;(0.01971341 ,
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0.10149400 , 0.00000000) ;( -0.00587023 , 0.09383619 ,

0.00000000) ;( -0.02674355 , 0.07803033 ,

0.00000000) ;( -0.00768339 , 0.03478444 ,

0.00000000) ;(0.01894353 , 0.03430741 , 0.00000000) ;(0.04330693 ,

0.03255747 , 0.00000000) ;(0.04127171 , 0.05004216 ,

0.00000000) ;(0.01963017 , 0.06167261 ,

0.00000000) ;( -0.00456566 , 0.05190928 , 0.00000000) ;}

In this last example representative face tracking points of the mouth are shown. The
other features are not included since the contours of the face do not change much during
capturing, which makes sense considering that the face is tracked from a fixed position.
The first vector shown in this dataset represents the right corner of the mouth. The first
value is the x-coordinate and the second is the y-coordinate. When the mouth is open
the x-value is further away from the center of the face but the y-value is closer, because
the corners of the mouth goes up and apart. The values for z are zero because they are
optional and can be modified via the scripts in the editor.

4.8.3 Loading Animation Data

Each manager class was extended by a setRotations function. This function is used
together with the AnimationReader script. Each part of the model (left/right hand,
body or face) that is going to be animated must have its own AnimationReader script
attached to it. The AnimationReader script needs to hold a reference to the manager
script of its GameObject, so that the animation data can be passed to the manager
script every frame.

The following code snippet shows the setRotation function for the hand animations.
This function works similarly for the hand and body animation scripts. Only the setRo-
tation method for the face animations looks differently, since instead of joints, the face
animations are defined by the position of their feature points, which are stored in 3D
vectors and not in Quaternions.

The code below shows the setRotation function which is used together with the Hand-
Manager script:

public void setRotations ( Quaternion [] r){
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if (r. Length != 15)

return ;

interpolate (r);

Thumb1 . transform . rotation = newFrame [1];

Thumb2 . transform . rotation = newFrame [2];

IndexFinger1 . transform . rotation = newFrame [3];

IndexFinger2 . transform . rotation = newFrame [4];

IndexFinger3 . transform . rotation = newFrame [5];

MiddleFinger1 . transform . rotation = newFrame [6];

MiddleFinger2 . transform . rotation = newFrame [7];

MiddleFinger3 . transform . rotation = newFrame [8];

RingFinger1 . transform . rotation = newFrame [9];

RingFinger2 . transform . rotation = newFrame [10];

RingFinger3 . transform . rotation = newFrame [11];

Pinky1 . transform . rotation = newFrame [12];

Pinky2 . transform . rotation = newFrame [13];

Pinky3 . transform . rotation = newFrame [14];

}

private void interpolate ( Quaternion [] r){

for (int i = 0; i <15; i++) {

newFrame [i] = Quaternion .Slerp( lastFrame [i],

r [i],

smoothFactor *Time. deltaTime );

}

lastFrame = newFrame ;
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}

As mentioned before, the animation file needs to be fully loaded before replay starts.
Consequently, a preloaded set of Quaternions is passed to the setRotations function
every frame. However, if these Quaternions are applied to the model without prior
interpolation, the animation will appear choppy and clipped. For this reason the inter-
polate function is called every frame before the animation data is passed to the transform
rotations.

The interpolation is performed by using Unity’s Quaternion.Slerp function with a pre-
defined smooth factor on the data from the previous frame and the current frame. Sub-
sequently, the computed frame is stored as the new previous frame for the next iteration
circle. Only after that the new frame data is applied as the new joint rotations. At
the beginning of each iteration process the received data is compared to the size of the
feature vector of the corresponding model as an additional precaution to ensure that the
animation process runs smoothly.

4.9 Issues and Adaptation

Because of the number of different technologies and input sources used to create this
prototype, many conflicts and problems arose during the development process. This
section will cover the biggest complications, which needed to be solved during the de-
velopment of the prototype. Some of these problems had direct consequences for the
implementation, but there were also some compatibility issues with the hardware.

4.9.1 Kinect Related Issues

Sometimes an error occurrs with the Kinect, where it reports, that there are not enough
USB controller resources. This is a problem that can occur when a USB hub is used,
that operates with a power source which is not strong enough.
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4.9.2 Bit Version Conflicts

At the beginning the prototype was developed with UNITY 4.6.5, which requires the
pro version of Unity to be able to include and load external libraries. This changed with
the release of Unity 5.

Unfortunately, the .dll files provided by the 5DT Glove SDK were only available in a
x32 precompiled version. Testing proved that these files functioned correctly with the
x32 bit version of Unity 5, and as a consequence the whole prototype was forced to run
in 32bit mode instead of 64bit. Needless to say, that meant that the .dlls of the included
SDKs needed to be x32 versions as well. For example, the OpenCVSharp .dlls needed
to be recompiled for 32bit.

However, after contacting the 5DT support they provided a 64bit build of the .dll files and
the project was rebuilt as a x64 version. Unfortunately, the face tracking had presently
still unresolved issues in 64bit mode, so in the end the project had to be changed back
to x32 again.

4.9.3 Unity Build Settings

For the current version of the prototype it is not possible to build an executable which
runs outside of the Unity editor. If the project is built anywhere else, the dependencies
for the face tracking component seem to get lost and the .dll files are not loaded correctly.

However, this only concerns the face tracking module. When it is removed from the
project the build with only hand and body tracking works correctly.

4.10 Quick Start Guide

The easiest way use the prototype is by importing it as a Unitypackage. The only other
prerequisites are that the previously mentioned system requirements are met and that
Kinect v2 for Windows SDK is installed.

After importing the package the project structure should look like in Figure 4.12.
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Figure 4.12: Project Hierarchy

The left column shows the objects in the scene. The PlayBack object is the demo model
that works together with the AnimationReader object to load and play animation files.
They are both disabled by default, but can be activated in the inspector window of the
Unity editor. The Model object is used for displaying the tracked animations. They
can be recorded by using the AnimationManager object, which holds references to the
Model’s manager scripts for retrieving the animation data.

There are two cameras in the scene. The MainCamera is used for filming the model
during playback and the other Camera shows the helper screen for the face tracking.

The SourceManagers object contains all GameObjects with the scripts for controlling
the input devices attached to them. The Kinect object also contains the DepthManager
and the MultiFrameManager which can be used to configure the Kinect tracking. Also,
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the input from the Kinect’s depth camera can be displayed via the DepthBase object,
but this can impact the runtime performance. For this reason this feature is turned off
by default. The other objects, Profile and Backup, are used for debugging.

The right column shows the assets folder of the prototype. The folder structure is
organized as follows:

• Animations: default location for recorded animations

• FaceTrackingComponents: prefabs and shader used for face tracking

• Materials: materials for the demo model

• Plugins: the .dll files for Kinect, 5DT Data Gloves and the CSIRO Face Analysis
SDK

• Prefabs: predefined models of the body, hands and the complete demo model

• Scripts: scripts, as described in the component diagram

• Standard assets: scripts imported via the Kinect SDK

• Tracker: specification files for the face tracking SDK
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At the beginning of this section an overview of how well the body, face and hand tracking
work together to generate synchronized full body animation data will be given. After
that in this section the prototype will be evaluated in terms of performance and anima-
tion quality. All the evaluations have been performed on the same computer. The tests
have also all used the same Unity scene. For evaluating the single components in section
5.2, all other input sources were excluded before the test was started.

The animation quality analysis is not based on a statistical analysis. It just points out
general aspects that influence the animation output.

5.1 Animation Capturing

Since the prototype can track the facial expressions and detailed finger movements of
an actor, while simultaneously recording his body movements, there is a broad variety
of possible animations that can be recorded. Some example animations are shown in
Figure 5.1.

The actor can move freely inside the field of view of the Kinect sensor. Walking around
and jumping is also not a problem, since the position of the root node is retrieved from
the Kinect.SpineBase bone and applied to the model. Different kinds of emotions such
as joy, fear and anger can be animated by recording the body language, detailed finger
movement and the actor’s facial expressions. It is also possible to capture more complex
motions like dancing or fighting moves. Tracking errors can still occur, but recording
the animations and correcting errors afterwards is still considerably more efficient than
manually creating such detailed animations.
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(a) Jumping
(b) Angry

(c) Afraid
(d) Dancing

Figure 5.1: Capturing Examples

The tracking process can be initiated at the same time the prototype is started, but it
takes some time to calibrate the input sources. It is highly recommended to do so before
recording any animations, because otherwise some input sources might not be tracked at
all or might have a heavy impact on the run time performance or the animation quality.

The 5DT Data Gloves sometimes initially produce random values, but after making fists
and opening the hands again this issue disappears.

It takes some time for the Kinect sensor to recognize the body of the actor. The tracking
process can be supported by taking a T-position or slowly moving the arms up and
down. It is also important that no other person is in the field of view of the sensor while
recording, because otherwise it is possible that the other person is tracked as well. This
results in tracking loss of the actor, and the system then tracks the movements of the
second person.
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When the face tracking is started, at the initial search for the face or when the tracking
of the face is lost, run time performance is greatly impacted. Once the face is recognized
and the feature points are displayed correctly the run time performance increases to an
average of 30 FPS. It is also very unlikely that the tracking of the face is lost while
recording, unless there is a major disturbance, like an object blocking the view of the
face.

Configuring all input sources takes between 10 to 30 seconds, after that the recording can
be started at any time. Figure 5.2 illustrates what animations look like when all input
sources are synchronized by the prototype (a) and in contrast to that, what it would
look like if all animations would be recorded separately and synchronized manually (b),
which can easily result in synchronisation errors.

(a) Synchronisation While Tracking (b) Synchronisation After Tracking

Figure 5.2: Comparison of Synchronisation Methods

In (a) the model raises its hands and shows a surprised expression while turning right
to the camera. In contrast (b) shows, that the model has not completely rotated to
the camera yet, the hands are still facing inwards and the surprised face expression is
delayed as well. The animations should look the same, but because synchronisation after
recording is much harder, the animation is less accurate.
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5.2 Performance

This section evaluates the performance of the prototype. For the analysis the CPU usage,
rendering information and memory usage were observed. The following environment was
used for the tests:

• Unity 5.1.1f1 (32-bit)

• Windows 8.1 Pro

• RAM 12,0 GB

• AMD PhenomTM II X4 955, 3.20 GHz

– L1 Cache Size: 128 KB

– L1 Cache Count: 4

– L2 Cache Size: 512 KB

– L2 Cache Count: 4

– L3 Cache Size: 6144 BK

• AMD RadeonTM HD 7800 Series

All figures were created by taking snapshots from the Unity Profiler. In some of these
snapshots the left columns with CPU Usage, Rendering and Memory are highlighted,
but this does not influence any of the displayed values.

The vertical line represents the selected frame on the horizontal time axis.

A detailed list of the parameters from each section and how to properly interpreted
them can be found in the official Unity documentation1. For the evaluation the most
significant parameter is the execution time of the scripts in milliseconds. It is important,
because many features have to be calculated from the captured input images of the body
and face tracking methods.

1http://docs.unity3d.com/Manual/Profiler.html, Accessed: 2015-06-30
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5.2 Performance

For the test, first every component was evaluated individually. Then the components
were tested together with different settings. Additionally, the playback performance of
the AnimationReader was tested in an isolated environment.

Figure 5.3: Performance of Hand Tracking Only

First the 5DT Data Gloves were tested. For the evaluation shown in Figure 5.3 both
gloves were used. The chart shows that the execution time for the scripts is very short,
because the input is directly retrieved from the gloves themselves and therefore no fur-
ther calculations have to be performed. The input data can be directly applied to the
referenced hand models. As a result, the average frames per second (FPS) are higher
than 60, which is very good and ensures a lag and jitter free playback. There is no
change in the rendering graph, since all objects remain in the scene - they are simply
rotated around the calculated axes.

The mesh memory spikes in the Memory graph are a side effect of using the profile inside
the Unity editor. They do not occur if the project is built and run outside of the editor.
This also applies for all other graphs in this section.

Next, the body tracking with the Kinect v2.0 sensor was evaluated. The results are
plotted in Figure 5.4. The CPU Usage graph shows a drastic increase in execution time
for running the scripts. At the beginning however, the duration is always low and the
FPS are at 60+ since the sensor has not recognized a body yet. After detecting the body,
the FPS drop to a level around 30 to 40, which is still quite reasonable. At the end of
the test the script execution time shows a rapid and constant increase. This is caused by
switching the Kinect source reader from SeperateSourceReader to MultiSourceReader.
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Figure 5.4: Performance of Body Tracking Only

If the MultiSourceReader option is active the scripts have to wait for all frames retrieved
by the sensor to be ready in order to synchronize them.

The effects of the switch can also be seen in the Memory graph, because at the same
time the script execution time increases there is a big increase of the total allocated
memory and the allocated memory in the garbage collector rises as well.

Figure 5.5: Performance of Face Tracking Only

Tested alone the face tracking runs with an average FPS around 30 most of the time,
as can be seen in Figure 5.5. If the tracking is lost, which can happen due to sudden
changes in lighting or if an object covers large parts of the face, the execution time of the
scripts can drastically increase until the algorithm recovers. This can delay the whole
system significantly with an execution time of 316.1 ms or longer per frame.
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Since the wrapper for the face tracking is not optimized the Memory section shows the
occurrence of frequent peaks for the allocated memory in the garbage collector, because
some temporary data storages are not regularly freed.

Figure 5.6: Performance of All Sources With MultiSourceReader

Next, Figure 5.6 shows the first setting that tested tracking all three input sources
simultaneously. Here the SourceReader configuration for the Kinect is set to Multi-
SourceReader which causes additional delay when running the scripts. This is the worst
possible setting for tracking smooth animation data. The CPU Usage graph shows that
the frame rate has dropped to below 15 FPS for most of the test. The marker indicates
a frame where the face tracking algorithm is trying to recover from tracking loss. The
CPU Usage graph shows that recovery in a test with three input sources takes even
longer, which is a result of the CPU simultaneously computing the Kinect input and
waiting for its sources to synchronize.

The drop of the GC Allocated graph in the Memory plot shows the time span in which
the Kinect sensor lost tracking of the body.

A better approach is shown in Figure 5.7. For this test the Kinect SourceReader was
set to SeperateSourceReader, so that the body tracking data could be passed on to
the ModelController component as soon as it was captured by the sensor. To assure
animation tracking that is completely lag free the process still needs to be optimized a
bit for future releases, but a slight improvement in terms of FPS can already be seen.
Since the settings for the face and hand tracker were not changed, the spikes indicating
longer computation durations caused by the face tracker losing the tracking are still very
high.
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Figure 5.7: Performance of All Sources With SeperateSourceReader

Figure 5.8: Performance While Recording Animations (of All Three Sources)

For the last test, tracking with all input sources, the same settings as for the previous
test were chosen, but additionally live animation capturing was activated. The results
are shown in Figure 5.8. This graph is very similar to the test chart without anima-
tion capturing, since face and body tracking still take up a considerable amount of the
resources. The AnimationManager writing the animation data to the animation file re-
duces the computation speed slightly, but it has no significant influence on the overall
performance of the prototype.

Finally, Figure 5.9 shows the playback of a captured animation. The reason the script
execution duration chart spikes at the beginning is that the animation file is first loaded,
parsed and interpreted when the scene is started. After that all information about
rotations and positions of the model’s joints are stored in the main memory and can be
accessed via the AnimationReader component. After that, the data is simply applied to
the model every frame, which is done almost instantly.
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Figure 5.9: Performance Animation Playback

Concluding this section it can be said that, as long as only the body tracking data is
used for the model animation it is more efficient to use the SeperateSourceReader with
the Kinect tracking.

For the face tracking it is important to ensure that the tracking is not lost during the
performance capture process, since face recognition takes a lot of time and can cause a
heavy drop of frame rate. Therefore the calibration should be done before the recording
process is started.

Using the body and face tracking together causes the system to drop below 24 FPS and
should be improved further to ensure the generation of smooth animation data of high
quality standard. But the performance of the hand tracking is sufficient, since it is fast
and has no heavy impact on the frame rate. It needs no further improvement.

The playback of the animation files might take long because of the inefficient parsing,
but it is still efficient enough if the animation file does not get too big.

5.3 Animation Quality

Not only the FPS and memory usage are crucial when it comes to creating animations.
Therefore this sections reflects on how well the prototype can actually interpret and
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map the device input to the 3D models. Figure 5.10 shows the current test scene of the
prototype.

Figure 5.10: Tracking Environment Inside Unity

In the top left corner the input data from the 5DT Data Gloves is displayed. Below
that, there is a button to reset the face tracking. This button is needed to prompt the
initial face detection as soon as the user is positioned and ready. The webcam pictures
and the face feature points are displayed on an extra screen to the right.

Once the Kinect sensor recognizes a body, the avatar automatically jumps to the correct
position on the screen and mirrors the movements of the tracked user.

5.3.1 Hand Tracking Errors

Since the hand tracking uses a mechanical tracking algorithm it is very stable and a
loss of tracking data is not to be expected. Nevertheless it is still possible that issues
occur with the received data. One example can be seen in Figure 5.11. Note how in the
picture the flexure of the fingers does not match the model on the screen.

This can happen if,

• the hand of the user is too small or too big to fit the glove, which is very unlikely
since the gloves are made of elastic materials,

• the glove is not worn correctly, or
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• the sensors inside the glove are not properly placed.

Otherwise the tracking should work just fine.

Figure 5.11: Tracking Errors With 5DT Data Gloves

5.3.2 Body Tracking Errors

As shown in Figure 5.12, it can happen that the Kinect loses track of some of the user’s
body parts, which mostly occurs when the depth sensor doesn’t recognize from which
part of the body the depth information is retrieved. This mainly happens when body
parts are overlapping, e.g. when hands are held in front of the body or when the knee
is pulled up to the chest.

Consequently, another reason for tracking errors is when a body part disappears from
view completely, e.g. holding hands behind the back or setting one foot in front of the
other.
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Figure 5.12: Tracking Errors With Kinect

5.3.3 Face Tracking Errors

With the face tracking procedure there are also some issues which have to be considered.
The first one is that the initial tracking often fails because the user is not in an optimal
position. Other issues are dealing with users wearing glasses with thick frames, users
with beards and mistaking the collar for the edge of the face.

Figure 5.13 shows how a false initial tracking looks like. However, once the face is
recognized correctly the tracking is very stable and unlikely to be lost again. At least as
long the lighting does not drastically change and there are no objects between the face
and the camera.

Concluding this chapter it can be said that the prototype still needs to be improved
in terms of performance. Concerning the animation quality there are also some issues
to be resolved, but if the previously mentioned suggestions for improved tracking are
implemented the number of tracking errors would be reduced significantly.

However, it is also an option to remove the remaining tracking errors from the animation
file recorded by the present prototype, after the capturing is complete.
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Figure 5.13: Webcam Tracking Errors
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6 Discussion and Limitations

In this section the prototype will be compared to other capturing systems. This is done
by listing the main criteria and evaluating if these can be met or not. After this the
strengths and limitations of the prototype will be discussed.

At the end of the chapter there will be a list of possible improvements that could be
made to increase the performance of the prototype, and the animation quality.

6.1 Comparison

This section compares the prototype to some of the tracking solutions presented in
Chapter 2. In Table 6.1 the main criteria are listed. The importance of some of these
criteria was only realized during the development of the prototype. Others were inspired
by [3], but adapted for the evaluation of this thesis.

Each entry of the table has a value between 0 and 2. The following list shows what these
codes stand for:

• 0: the feature is not supported

• 1: the feature is partly available or not well supported

• 2: the feature is fully supported

For the affordability feature a 2 was given for prices under e3.000,– a 1 for prices under
e5.000,– and a 0 for everything with prices of e5.000,– and up.

After comparison, it can be said that the prototype still needs to be improved to keep up
with professional solutions, especially in terms of runtime performance, tracking stability
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Prototype Fastmocap Face Plus Facerig Control
VR

Face tracking 2 0 2 2 0
Body tracking 2 2 0 0 2
Exact hand track-
ing

2 0 0 0 2

Affordable 2 2 2 2 2
Noise resistant 1 1 1 1 2
Distance does not
influence accuracy

0 1 0 0 2

Haptic feedback 0 0 0 0 1
Runtime perfor-
mance

0 2 2 2 2

Established anima-
tion formats

0 2 2 0 2

Table 6.1: Comparison of Different Tracking Systems

and exportable animation formats.

However, the prototype is an affordable solution that is capable of simultaneously track-
ing exact hand movement, and body and face features, which is not possible with any of
the other solutions. Also, since it is only the first version of the prototype there are still
many things that can be improved. A detailed list of possible improvements is given at
the end of this chapter.

6.2 Strengths and Limitations

This section will cover some of the main strengths and limitations of the prototype which
were pointed out during the comparison.

6.2.1 Expandable All in One Tracking

One of the greatest achievements of the prototype is clearly that it combines hand, body
and face tracking in one development environment and makes it possible to individually
adapt the tracking methods to the user’s needs.
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All the components are designed in such a way that they can be expanded with new code
or replaced with new components. This enables the prototype to be extended by new
tracking devices. It is also possible to change the way the input data is interpreted, by
only exchanging one script in the ModelController component. The DataManagement
module is also extendible and can be added to all new controller components as well.

6.2.2 Costs

All prices and exchange rates123 were taken from the official websites by 2015-06-18.

Device Price
5DT Data Glove 5 Ultra (Right) e873,45 ($995)
5DT Data Glove 5 Ultra (Left) e873,45 ($995)
Kinect for Windows v2 sensor e199.99
Logitech HD Pro Webcam C920 e99.99
TOTAL e2046,88

Table 6.2: Estimated Costs for the Equipment

As Table 6.2 shows, the biggest part of the expenses comes from the 5DT Data Gloves. If
they could be exchanged with cheaper tracking devices the price for the tracking system
could be greatly reduced.

6.2.3 Low Runtime Performance

With approximately 15 FPS, in its current state, the prototype is too slow for live
capturing. If only body and hand or hand and face are tracked simultaneously the FPS
rise to around 30.

In order to get tracking data in good quality with enough FPS it would be necessary to
further improve the runtime performance of the prototype. Suggestions about how this
could be accomplished are made in the next section.

1http://www.logitech.com/de-at/product/hd-pro-webcam-c920, Accessed: 2015-06-18
2https://www.microsoft.com/en-us/kinectforwindows/purchase/v2sensor.aspx, Accessed:
2015-06-18

3http://www.5dt.com/?page_id=34, Accessed: 2015-06-18
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6 Discussion and Limitations

6.3 Possible Improvements

Since this is the first version of the prototype and its main goal was to see if it is even
possible to include all this functionality in one project, there are a lot of potential ways
by which its performance could be improved. The following section discusses a few
adjustments that could be made to achieve a higher animation quality.

6.3.1 Increasing Runtime Performance

The project is not optimized for runtime performance yet. One way to improve the
performance would be to move calculations from the CPU to the GPU or to make a x64
build of the project. Also, the prototype was only tested inside the Unity editor. An
optimized release could bring a performance boost as well.

Alternatively, the tracking could be done separately on two different devices. For exam-
ple one PC could be used for performing the face tracking and another one for tracking
hand and body movement. The recorded input data would need to be synchronized
afterwards.

6.3.2 Adding and Improving Filters

Each ModelController provides the option to add a filter component. The current pro-
totype does not include any filters. Adding filters would be an easy way to improve
the tracked animation quality, but the additional calculations could also slow down the
prototype.

Another approach for improving the prototype would be to check the tracking state of
each Kinect JointOrientation before applying its rotation to the joints of the model.
Restrictions could be added that check if the rotation of a joint changes rapidly between
two frames. If it does, the difference between the rotations could be interpolated. Or
another approach would be to keep the rotation of the first frame until the tracking has
recovered. A combination of these two methods would also be possible. On the other
hand, if the tracked rotation values change very often, it can be interpreted as jitter, in
which case the rotations should be smoothed.
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6.3 Possible Improvements

Alternatively it would also be possible to add algorithms for removing jitter from the
animations after they were recorded. The advantage of this approach would be, that it
would not influence the run time performance during the tracking. There is literature
available [49] about how the depth accuracy of the Kinect for Windows v2 can be
evaluated and improved. Another approach [41] shows how to measure body joints and
how to use the collected information to integrate this data into a motion capturing
system.

6.3.3 Joint Restrictions

Adding joint restrictions is a similar approach to adding filters. The main difference is
that checks are only performed if the actual joint orientation is physically possible for
the human body. For example, if applying the tracking data for the new frame would
turn the head farther than humanly possible, the transformation would be discarded.

Therefore a restriction database could be added to the project. Then a check could be
performed in every frame, if the joint rotations are valid or not.

6.3.4 Using More Input Devices for Body Tracking

Extending the current prototype by other or additional tracking devices is another pos-
sibility to increase the animation quality. One approach shown in [14] uses multiple
Kinects for body tracking. This improves the tracking quality significantly.

On the other hand, increasing the number of tracking devices could negatively affect the
run time performance and the FPS.

6.3.5 Adding Colored Markers to Improve Tracking

The current prototype only relies on markerless visual and mechanical tracking. Optical
beacons could be easily added to the project, since OpenCV is already included into the
prototype. Such beacons could be used to ensure that the hands are tracked from the
right side and therefore prevent unnatural hand rotations caused by tracking issues with
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the Kinect.

Then again, adding additional processing steps to the prototype also could mean an
extended script execution time.

6.3.6 Using Kinect Face Tracking for Head Rotation

The current version of the prototype does not support head rotation. This is mainly
because of the fact that for unknown reasons Unity continued to crash when it was tried
to access face tracking data from the Kinect input.

If this issue would be solved the animations would look much more natural. This would
be very beneficial for the animation quality.

6.3.7 Improving Environmental Conditions

Since two third of the tracking is done by optical motion capture, improving the lighting
of the environment could have a positive influence on the stability of the tracking and
therefore increase the quality of the captured animation data.

The only negative aspect is that this improvement would also increase the equipment
costs.

6.3.8 Export Format

The only data format which is currently supported by the prototype is the one specially
developed for it. This file format is not supported by any other applications, which
means that it can’t be exported easily and thus makes it almost impossible to edit the
animation data after recording.

A possible solution would be to replace the current file export format with a more
common format; for example the .FBX file format.
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7 Conclusion

In this thesis, it was shown that it is possible to combine multiple input sources inside
the Unity environment, to achieve a low budget performance capturing system, which
can capture, export and import animations at runtime.

The chosen input sources might not be an optimal composition to track detailed anima-
tions on a professional level, but there are many new technologies like the ones introduced
in Chapter 2 that could be included in future releases of the prototype for more promis-
ing results. Since the prototype was developed in a way that can be extended by as
many input sources as needed, it is possible to try new approaches of motion capturing
with different devices.

However, even if the tracking data has some issues like optical tracking problems with
the Kinect v2.0 and the webcam, as well as inaccurate sensor input from the 5DT Data
Gloves, the data can be manually adapted and corrected after the tracking process. This
would still save a lot of work and be more cost efficient than creating all animations by
hand.

After giving a general overview of the problem field and showing solutions for individual
issues, the general aspects of the work were explained in Chapter 3. Also, the core
technologies were presented that were used for developing the prototype and an overview
of how and where they were used in the prototype was given.

Chapter 4 illustrated how the structure of the prototype was planned and how each of
the tracking components was developed and integrated into the project. The main issues
that occurred were covered, as well as possible solutions and workarounds.

In Chapter 5 the prototype was evaluated in terms of runtime performance, rendering
and memory usage. A special focus was also put on achieving sufficient animation
quality. Subsequently it was shown that the prototype still has issues with its runtime
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7 Conclusion

performance, especially with meeting the required FPS, if all three tracking sources are
used simultaneously.

Finally, the prototype was compared to other capturing solutions in Chapter 6 and its
strengths and limitations were evaluated. Based on these results possible improvements
and extensions might be envisioned for future versions of the prototype.

Concluding this work it can be said that even though the prototype is not suited for
professional use yet, it has the potential to overcome its shortcomings in the near fu-
ture and to be an affordable and adaptable solution for capturing performance based
animation data.

80



Bibliography

[1] 5dt data gloves, c# driver (ms .net 2.0 and upwards, mono and unity). http:
//www.5dt.com/?page_id=34. Accessed: 2015-04-21.

[2] Cascade classifier. http://docs.opencv.org/doc/tutorials/objdetect/
cascade_classifier/cascade_classifier.html. Accessed: 2015-04-21.

[3] Control vr. http://controlvr.com/. Accessed: 2015-04-17.

[4] Development tools and languages, kinect for windows sdk 2.0. https://msdn.
microsoft.com/en-us/library/dn799271.aspx. Accessed: 2015-04-21.

[5] Documentation, csiro face analysis sdk. http://face.ci2cv.net/doc/. Accessed:
2015-06-27.

[6] Face plus. https://www.mixamo.com/faceplus. Accessed: 2015-04-17.

[7] Kinect v2 with ms-sdk. https://www.assetstore.unity3d.com/en/#!/content/
18708. Accessed: 2015-04-22.

[8] Opencv eye tracking with c#. http://www.prodigyproductionsllc.com/
articles/programming/opencv-eye-tracking-with-c/. Accessed: 2015-04-21.

[9] Preparing your own character. http://docs.unity3d.com/Manual/
Preparingacharacterfromscratch.html. Accessed: 2015-05-04.

[10] Press downloads. https://unity3d.com/public-relations/downloads. Ac-
cessed: 2015-07-03.

[11] Technical documentation and tools, kinect for windows v2 essentials. https://www.
microsoft.com/en-us/kinectforwindows/develop/downloads-docs.aspx. Ac-

81

http://www.5dt.com/?page_id=34
http://www.5dt.com/?page_id=34
http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://controlvr.com/
https://msdn.microsoft.com/en-us/library/dn799271.aspx
https://msdn.microsoft.com/en-us/library/dn799271.aspx
http://face.ci2cv.net/doc/
https://www.mixamo.com/faceplus
https://www.assetstore.unity3d.com/en/#!/content/18708
https://www.assetstore.unity3d.com/en/#!/content/18708
http://www.prodigyproductionsllc.com/articles/programming/opencv-eye-tracking-with-c/
http://www.prodigyproductionsllc.com/articles/programming/opencv-eye-tracking-with-c/
http://docs.unity3d.com/Manual/Preparingacharacterfromscratch.html
http://docs.unity3d.com/Manual/Preparingacharacterfromscratch.html
https://unity3d.com/public-relations/downloads
https://www.microsoft.com/en-us/kinectforwindows/develop/downloads-docs.aspx
https://www.microsoft.com/en-us/kinectforwindows/develop/downloads-docs.aspx


BIBLIOGRAPHY

cessed: 2015-04-22.

[12] Xsense. https://www.xsens.com/. Accessed: 2015-07-24.

[13] 5DT (Fifth Dimension Technologies). 5DT Data Glove Ultra Manual v1.3, January
2011.

[14] Seongmin Baek and Myungyu Kim. Real-time performance capture using multiple
kinects. In Information and Communication Technology Convergence (ICTC), 2014
International Conference on, pages 647–648, Oct 2014.

[15] J.C. Barca, G. Rumantir, and R. Koon Li. A new illuminated contour-based marker
system for optical motion capture. In Innovations in Information Technology, 2006,
pages 1–5, Nov 2006.

[16] R. Belaroussi and M. Milgram. Face tracking and facial feature detection with a
webcam. In Visual Media Production, 2006. CVMP 2006. 3rd European Conference
on, pages 122–126, Nov 2006.

[17] D. Casas, M. Tejera, J. Guillemaut, and A. Hilton. Interactive animation of 4d
performance capture. Visualization and Computer Graphics, IEEE Transactions
on, 19(5):762–773, May 2013.

[18] Chenyang Chen, Mingmin Zhang, Kaijia Qiu, and Zhigeng Pan. Real-time robust
hand tracking based on camshift and motion velocity. In Digital Home (ICDH),
2014 5th International Conference on, pages 20–24, Nov 2014.

[19] H. Chen, Gang Qian, and J. James. An autonomous dance scoring system using
marker-based motion capture. In Multimedia Signal Processing, 2005 IEEE 7th
Workshop on, pages 1–4, Oct 2005.

[20] Taehoon Cho, Jin-Ho Choi, Hyeon-Joong Kim, and Soo-Mi Choi. Vision-based
animation of 3d facial avatars. In Big Data and Smart Computing (BIGCOMP),
2014 International Conference on, pages 128–132, Jan 2014.

[21] Jongmoo Choi, Y. Dumortier, Sang-Il Choi, M.B. Ahmad, and G. Medioni. Real-
time 3-d face tracking and modeling from a webcam. In Applications of Computer
Vision (WACV), 2012 IEEE Workshop on, pages 33–40, Jan 2012.

82

https://www.xsens.com/


BIBLIOGRAPHY

[22] Ahmed Elgammal, Bodo Rosenhahn, and Reinhard Klette, editors. Human Motion
– Understanding, Modeling, Capture and Animation. Springer Berlin Heidelberg,
2007.

[23] Xianghua Fan, Fuyou Zhang, Haixia Wang, and Xiao Lu. The system of face
detection based on opencv. In Control and Decision Conference (CCDC), 2012
24th Chinese, pages 648–651, May 2012.

[24] Youngmo Han. 2d-to-3d visual human motion converting system for home optical
motion capture tool and 3-d smart tv. Systems Journal, IEEE, 9(1):131–140, March
2015.

[25] Ye Hu, Wenguang Jin, and Feng Ni. An efficient wireless sensor network for real-
time multiuser motion capture system. In Communication Technology (ICCT),
2012 IEEE 14th International Conference on, pages 155–160, Nov 2012.

[26] Haoda Huang, Jinxiang Chai, Xin Tong, and Hsiang-Tao Wu. Leveraging motion
capture and 3d scanning for high-fidelity facial performance acquisition. In ACM
SIGGRAPH 2011 Papers, SIGGRAPH ’11, pages 74:1–74:10, New York, NY, USA,
2011. ACM.

[27] Li Jia, Miao Zhenjiang, Cheng Hengda, and Zhang Dianyong. Unsynchronized
markerless motion capture with sharp illumination changes. In Image Processing
(ICIP), 2010 17th IEEE International Conference on, pages 1529–1532, Sept 2010.

[28] Dimitrios I. Kosmopoulos and Fillia Makedon. Erratum: A method for online
analysis of structured processes using bayesian filters and echo state networks. In
Computer Vision – ECCV 2012. Workshops and Demonstrations, pages E1–E1.
Springer Science Business Media, 2012.

[29] A. Kyme, S. Se, S. Meikle, G. Angelis, W. Ryder, K. Popovic, D. Yatigammana,
and R. Fulton. Markerless motion tracking of awake animals in positron emission
tomography. Medical Imaging, IEEE Transactions on, 33(11):2180–2190, Nov 2014.

[30] Dongxiao Li, Chen Sun, Fangqin Hu, Dongning Zang, LiangHao Wang, and Ming
Zhang. Real-time performance-driven facial animation with 3ds max and kinect. In
Consumer Electronics, Communications and Networks (CECNet), 2013 3rd Inter-
national Conference on, pages 473–476, Nov 2013.

83



BIBLIOGRAPHY

[31] Yangmi Lim, Jinsu Kim, and Jinseok Chae. Risa: A real-time interactive shadow
avatar. In Multimedia, 2007. ISM 2007. Ninth IEEE International Symposium on,
pages 112–122, Dec 2007.

[32] Guo-Shiang Lin and Tung-Sheng Tsai. A face tracking method using feature point
tracking. In Information Security and Intelligence Control (ISIC), 2012 Interna-
tional Conference on, pages 210–213, Aug 2012.

[33] Yebin Liu, C. Stoll, J. Gall, H.-P. Seidel, and C. Theobalt. Markerless motion
capture of interacting characters using multi-view image segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1249–
1256, June 2011.

[34] Kim Doang Nguyen, I-Ming Chen, Song Huat Yeo, and Been-Lirn Duh. Motion
control of a robotic puppet through a hybrid motion capture device. In Automation
Science and Engineering, 2007. CASE 2007. IEEE International Conference on,
pages 753–758, Sept 2007.

[35] C. Ott, Dongheui Lee, and Y. Nakamura. Motion capture based human motion
recognition and imitation by direct marker control. In Humanoid Robots, 2008.
Humanoids 2008. 8th IEEE-RAS International Conference on, pages 399–405, Dec
2008.

[36] Chia ping Chen, Yu-Ting Chen, Ping-Han Lee, Yu-Pao Tsai, and Shawmin Lei.
Real-time hand tracking on depth images. In Visual Communications and Image
Processing (VCIP), 2011 IEEE, pages 1–4, Nov 2011.

[37] Jason M. Saragih, Simon Lucey, and Jeffrey F. Cohn. Deformable model fitting by
regularized landmark mean-shift. Int. J. Comput. Vision, 91(2):200–215, January
2011.

[38] Jason M. Saragih, Simon Lucey, and J.F. Cohn. Real-time avatar animation from
a single image. In Automatic Face Gesture Recognition and Workshops (FG 2011),
2011 IEEE International Conference on, pages 117–124, March 2011.

[39] M. Schroder, J. Maycock, H. Ritter, and M. Botsch. Real-time hand tracking using
synergistic inverse kinematics. In Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 5447–5454, May 2014.

84



BIBLIOGRAPHY

[40] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton,
David Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, Daniel
Freedman, Pushmeet Kohli, Eyal Krupka, Andrew Fitzgibbon, and Shahram Izadi.
Accurate, robust, and flexible real-time hand tracking. CHI, April 2015.

[41] Jungsu Shin, Kyeong-Ri Ko, and Sung Bum Pan. Automation of human body model
data measurement using kinect in motion capture system. In Consumer Electronics
(ICCE), 2015 IEEE International Conference on, pages 88–89, Jan 2015.

[42] J. Smisek, M. Jancosek, and T. Pajdla. 3d with kinect. In Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International Conference on, pages 1154–
1160, Nov 2011.

[43] Guanhong Tao, Shuyan Sun, Shuai Huang, Zhipei Huang, and Jiankang Wu. Hu-
man modeling and real-time motion reconstruction for micro-sensor motion capture.
In Virtual Environments Human-Computer Interfaces and Measurement Systems
(VECIMS), 2011 IEEE International Conference on, pages 1–5, Sept 2011.

[44] M. Tejera, D. Casas, and A. Hilton. Animation control of surface motion capture.
Cybernetics, IEEE Transactions on, 43(6):1532–1545, Dec 2013.

[45] Xiaolong Tong, Pin Xu, and Xing Yan. Research on skeleton animation motion
data based on kinect. In Computational Intelligence and Design (ISCID), 2012
Fifth International Symposium on, volume 2, pages 347–350, Oct 2012.

[46] Chengkai Wan, Baozong Yuan, and Zhenjiang Miao. Model-based markerless hu-
man body motion capture using multiple cameras. In Multimedia and Expo, 2007
IEEE International Conference on, pages 1099–1102, July 2007.

[47] Xin Wang, Qing Ma, and Wanliang Wang. Kinect driven 3d character animation
using semantical skeleton. In Cloud Computing and Intelligent Systems (CCIS),
2012 IEEE 2nd International Conference on, volume 01, pages 159–163, Oct 2012.

[48] C. Wong, Zhiqiang Zhang, B. Lo, and Guang-Zhong Yang. Markerless motion
capture using appearance and inertial data. In Engineering in Medicine and Biology
Society (EMBC), 2014 36th Annual International Conference of the IEEE, pages
6907–6910, Aug 2014.

85



BIBLIOGRAPHY

[49] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. El Saddik. Evaluating and im-
proving the depth accuracy of kinect for windows v2. Sensors Journal, IEEE,
PP(99):1–1, 2015.

[50] M. Zabri Abu Bakar, R. Samad, D. Pebrianti, and N.L.Y. Aan. Real-time rotation
invariant hand tracking using 3d data. In Control System, Computing and Engi-
neering (ICCSCE), 2014 IEEE International Conference on, pages 490–495, Nov
2014.

[51] Wenbing Zhao, Hai Feng, R. Lun, D.D. Espy, and M.A. Reinthal. A kinect-based
rehabilitation exercise monitoring and guidance system. In Software Engineering
and Service Science (ICSESS), 2014 5th IEEE International Conference on, pages
762–765, June 2014.

[52] Victor Brian Zordan and Nicholas C. Van Der Horst. Mapping optical motion cap-
ture data to skeletal motion using a physical model. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03,
pages 245–250, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Associ-
ation.

[53] Min Zuo, Guangping Zeng, and Xuyan Tu. Research and improvement of face
detection algorithm based on the opencv. In Information Science and Engineering
(ICISE), 2010 2nd International Conference on, pages 1413–1416, Dec 2010.

86



Abstract

Transferring an actor’s movements directly onto a virtual 3D model is an effective ap-
proach to creating animations. But even better is being able to not only transfer move-
ments, but also expressions onto the model. These make the animations seem even more
realistic and natural to the viewer. But creating these kinds of high class animations
is complex and time consuming. The goal of this thesis is the development of a func-
tional prototype, that efficiently realizes such a performance capturing system. It should
enable the user to directly transfer complex motion sequences onto a 3D character by
using live motion capturing, and if so desired, to even record these animations for later
use. The recorded animations are supposed to be transferrable onto any humanoid 3D
model. The capturing process can be segmented into three basic steps: the whole body,
or rather the skeleton, of the user is tracked by a Kinect v2. Hand and finger movements
are registered via 5DT Data Gloves. The face is recorded with a webcam, while feature
points are extracted from it to facilitate the transfer of expressions and emotions onto
the face of the model. The prototype was developed using the Unity game engine and
will likely be available as an Asset Package to enable easy import. For the import to
function correctly it is essential to use Unity version 5 or later, because otherwise the
included plugins are not supported. The prototype was constructed in such a way, that
some of the components are interchangeable, so it is possible to constantly keep adding
new tracking methods. As a result it is possible to customize the prototype and even
to easily extend and improve it. The prototype was performance tested with Unity’s
analytical tools and compared to other tracking solutions through a qualitative analysis.
The results of these tests are documented in this thesis.
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Zusammenfassung

Bewegungen eines Akteurs direkt auf ein virtuelles 3D Modell zu übertragen ist eine ef-
fektive Art um Animationen zu generieren. Doch es gibt noch die Möglichkeit mehr
als nur den Körper, sondern auch Emotionen auf Modell übertragen. Die dadurch
gewonnenen Animationen wirken noch realistischer und sind künstlich sehr schwierig
und Zeitaufwändig in einer solchen Qualität zu erzeugen. Das Ziel der Arbeit ist die
Entwicklung eines lauffähigen Prototypen der ein solches Performance capturing sys-
tem realisiert. Es soll einer Person, durch live Capturing, ermöglich werden komplexe
Bewegungsabläufe und Emotionen auf einen 3D Charakter zu übertragen und diese,
falls gewünscht, aufzunehmen. Diese Animation Daten sollen auf ein beliebiges hu-
manoides 3D Modell anwendbar sein. Der capturing Prozess kann im Wesentlichen in
drei Hauptbereiche unterteilt werden. Der ganze Körper, beziehungsweise das Skelett,
des Acteurs wird mit Hilfe einer Kinect V2 getrackt. Bewegungen der Finger werden
durch 5DT Data Gloves aufgezeichnet. Das Gesicht wird mit einer Webcam gefilmt.
Dabei werden Feature Punkte extrahiert um durch diese Bewegungen/Emotionen auf
das Gesicht des des Modells zu übertragen. Der Prototyp wird für die Unity Engine
entwickelt und voraussichtlich in der Endversion als Asset Package verfügbar sein, um
einen einfachen Import zu gewährleisten. Damit der Import problemlos funktioniert ist
es wichtig, dass mindestens Unity version 5 verwendet wird. Andernfalls werden die
verwendeten Plugins nicht unterstütz. Des Weiteren ist der Prototyp so entwickelt, dass
Komponenten beliebig geändert werden können. Auch das Hinzufügen neuer tracking
verfahren ist möglich. Dadurch ist es möglich den Prototypen individuell an zu passen
und zu verbessern. Mit den Analysetools aus Unity wurde der Prototyp im Hinblick auf
seine Leistungsfähigkeit getestet. Außerdem wurde er anhand einer qualitativen Analyse
anderen Trackinglösungen gegenübergestellt. Die daraus gewonnenen Resultate sind in
der Arbeit dokumentiert.
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