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Abstract

This thesis consists of three research papers which deal with various aspects of random
walks in random environments. In the first part we consider two types of Markov chains
that exhibit trapping, and we study associated scaling limits and the phenomenon of
aging. In the second part we analyze percolative properties of the set of vertices that are
not visited by the simple random walk on a finite graph, the so-called vacant set.

The first paper studies the Metropolis dynamics of the simplest mean-field spin glass
model, the Random Energy Model. We show that this dynamics exhibits aging by showing
that the properly rescaled time-change process between the Metropolis dynamics and a
suitably chosen ‘fast’ Markov chain converges in distribution to a stable Lévy process.
This provides a first proof for aging of a fully ‘asymmetric’ dynamics on the non-modified
Random Energy Model.

The result of the second paper is a complete classification of the possible scaling limits
of randomly trapped random walks on Zd, d ≥ 2. We show that the possible classes of
scaling limits reduce from four in one dimension to only two in higher dimensions. In
particular, in the case when the discrete skeleton of the randomly trapped random walk is
a simple random walk on Zd, the scaling limit is either Brownian motion or the Fractional
Kinetics process.

In the third paper we show that the vacant set left by the simple random walk on the
giant component of a supercritical Erdős-Rényi random graph exhibits a phase transition
similar to the classical phase transition of Bernoulli percolation on the complete graph.
Moreover, we show that the critical point of this phase transition is closely related to the
critical value of random interlacements on the corresponding infinite volume limit, which
is a Poisson-Galton-Watson tree.
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Zusammenfassung

Diese Dissertation besteht aus drei Forschungsartikeln, welche verschiedene Aspekte von
Irrfahrten in zufälligen Umgebungen behandeln. Im ersten Teil betrachten wir zwei Arten
von Markovketten die Fallen aufweisen, und wir studieren dazugehörige Grenzprozesse
und das Phänomen des Alterns. Im zweiten Teil analysieren wir die perkolativen Eigen-
schaften der Menge unbesuchter Knoten einer Irrfahrt auf einem endlichen Graphen.

Der erste Artikel ist dem Studium der Metropolis-Dynamik auf dem einfachsten Mean-
Field Spin-Glas, dem Random Energy Model, gewidmet. Wir zeigen dass diese Dynamik
altert, indem wir zeigen dass der Zeitwechsel-Prozess zwischen der Metropolis-Dynamik
und einer passend gewählten ‘schnellen’ Markovkette in Verteilung zu einem stabilen
Lévy-Prozess konvergiert. Dies liefert einen ersten Beweis für Altern einer gänzlich asym-
metrischen Dynamik auf dem nicht-modifizierten Random Energy Model.

Das Resultat des zweiten Artikels ist eine Klassifikation aller möglichen Grenzprozesse
von Randomly Trapped Random Walks auf Zd, d ≥ 2. Wir zeigen, dass die möglichen
Klassen von Grenzprozessen sich von vier in einer Dimension auf nur mehr zwei in höheren
Dimensionen reduzieren. Insbesondere, wenn das diskrete Skelett des Randomly Trapped
Random Walk die einfache Irrfahrt ist, dann ist der Grenzprozess entweder Braunsche
Bewegung oder der Fractional Kinetics-Prozess.

Im dritten Artikel zeigen wir, dass die Menge unbesuchter Knoten einer Irrfahrt auf der
riesigen Komponente eines Erdős-Rényi Zufallsgraphen einen Phasenübergang durchläuft,
ähnlich wie der klassische Phasenübergang in Bernoulli-Perkolation auf dem vollständigen
Graphen. Zusätzlich zeigen wir, dass der kritische Punkt dieses Phasenübergangs in
engem Bezug steht zum kritischen Wert von Random Interlacements auf dem zugehörigen
Grenzobjekt unendlichen Volumens, einem Poisson-Galton-Watson-Baum.
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Part I

TRAP MODELS AND AGING





1. Introduction to trap models and aging

The first part of this thesis is devoted to the study of certain properties of Markov chains
in random environments that exhibit trapping. While being interesting objects of their
own, these models are mainly motivated by aging of spin-glasses, a problem that has been
intensively studied in both the physics and the mathematics literature.

In the real world, spin-glasses are materials that consist of a non-magnetic matrix in
which somewhat randomly a few magnetic atoms are placed. The magnetic interaction
between those impurities depends on the distance between them, their magnetic spins
have tendency to be aligned at some distances and anti-aligned at others. When cooled
down below their glass transition temperature, spin-glasses relax extremely slowly towards
equilibrium, such that on experimental time scales they are actually never in equilibrium.
In this out-of-equilibrium regime they exhibit interesting dynamical effects such as aging,
rejuvenation, and memory.

The following experiment of [VHO+97] on thermo-remanent magnetization illustrates
the aging phenomenon. A spin-glass is cooled down below its glass transition temperature
Tg and then kept in some external magnetic field for a ‘waiting time’ tw. After this time the
field is switched off and the remanent magnetization of the spin-glass at an ‘observation
time’ tw+ t is measured. Figure 1 shows the results of such an experiment on the AgMn2.6

spin-glass for different waiting times tw.

Figure 1: [VHO+97] The thermo-remanent magnetization of the AgMn2.6

spin-glass at temperature T = 9K < 10.4K = Tg, as a function of
t (Figure 1.a) and as a function of t/tw (Figure 1.b), for waiting times
tw = 300, 1000, 3000, 10000, 30000s.

As is evident from Figure 1.a, the thermo-remanent magnetization depends not only
on the observation time t but also on the waiting time or ‘age’ tw of the system. More
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1. Introduction to trap models and aging

interestingly, Figure 1.b shows that the thermo-remanent magnetization can be approxi-
mated by a function of the ratio t/tw.

Since the first observations of this phenomenon in physical experiments in the 80ies
(e.g. [LSNB83, Cha84]), much effort has been put in explaining it, see e.g. [BCKM97]
for a review of the physics literature. Among the various approaches there is one that
has caught particular attention in the mathematics literature, namely the Bouchaud trap
model, which describes aging of spin-glasses on a phenomenological level, see e.g. [Ben02,
BČ06] for reviews. In Chapter 2 we give a proof for aging of a particular spin-glass model
which confirms the predictions of the phenomenological Bouchaud trap model.

Rather independently of the aging problem, trap models inspired by Bouchaud’s model
evolved as an interesting object of their own, in particular on the integer lattices. In
Chapter 3 we consider a certain general trap model called randomly trapped random walk
and give a classification of all possible scaling limits of the model on the integer lattices
of dimensions d ≥ 2.

In the remainder of this introductory chapter we will outline the history of the analysis
of the aging problem and how this lead to the questions that are answered in Chapters 2
and 3. We first describe the challenges in the modeling of spin-glass dynamics in Sec-
tion 1.1. We then present in Section 1.2 the Bouchaud trap model and in Section 1.3 the
approach of proving aging via the convergence of clock processes. In Section 1.4 we make
an excursion to trap models on integer lattices, where we motivate the model of randomly
trapped random walk and present the results of Chapter 3. We describe the results of
Chapter 2 in more detail in Section 1.5. Finally, we discuss in Section 1.6 the different
methods that were used in the literature to prove convergence of clock processes, and how
our methods in Chapters 2 and 3 compare to them.

1.1. Modeling spin-glass dynamics

The task of modeling the dynamics of a spin-glass system can be decomposed to two main
levels. The first level is to model the statics of the system by choosing a configuration
space and defining a Hamiltonian giving the energy of the configurations. The second
level then consists of modeling the dynamics as a process on this state space whose long-
time equilibrium should be the equilibrium distribution of the static system, i.e. the Gibbs
measure.

Assume that there are N ∈ N magnetic atoms in the spin-glass, each of them with a
spin taking a value of either +1 or −1. The natural space of possible spin configurations
is thus the N -dimensional hypercube HN = {−1, 1}N .

As for the Hamiltonian, we will in this thesis exclusively be dealing with mean-field
spin-glass models. In mean-field models it is assumed that all the magnetic atoms of the
spin-glass interact. The randomness of the positions of atoms in the real spin-glass is
modeled in terms of random interactions. A prominent example of a mean-field spin-glass
is the classical Sherrington-Kirkpatrick (SK) model, proposed in [SK75]. In this model the
Hamiltonian HN(x), which gives the energy of every single configuration x ∈ {−1, 1}N ,
is given by

HN(x) =
1√
N

N∑
i,j=1

Jijxixj.
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1.1. Modeling spin-glass dynamics

The coupling constants (Jij)i,j=1,...,N are random, taken as i.i.d. standard Gaussian random
variables. The normalization by

√
N is chosen such that the typical configurations have

energy of order N . From the Hamiltonian we obtain the (non-normalized) equilibrium
distribution or Gibbs measure of the system at inverse temperature β > 0,

τx = eβHN (x).

A computation shows that the energies HN(x) of the SK model are themselves centered
Gaussian random variables, and their covariance is given by

E[HN(x)HN(y)] = NRN(x, y)2, (1.1.1)

where RN(x, y) is the normalized overlap on the hypercube, RN(x, y) = N−1
∑N

i=1 xiyi. It
is thus convenient to view the energies of the configurations in the SK model as a Gaussian
process indexed on the N -dimensional hypercube with covariance given by (1.1.1).

Though being introduced as a ‘solvable model of a spin-glass’, it took about 30 years
until the statics of the SK model and in particular its Gibbs measure were satisfactorily
understood, see e.g. the monographs [Tal11a, Tal11b, Pan13]. In the meantime other
‘simpler’ models were introduced by somewhat relaxing the dependency structure. The
so-called p-spin SK model is obtained by changing the power 2 in (1.1.1) to p ≥ 3. Further,
by taking the formal limit p → ∞, the energies HN(x) become i.i.d. centered Gaussian
random variables with variance N . This is the so-called Random Energy Model (REM),
introduced in [Der80, Der81].

The REM will be the model considered in Chapter 2, we therefore briefly describe its
main static features. It is well known (e.g. [Eis83, OP84]) that there is a phase transition
for the Gibbs measure of the REM at the critical inverse temperature βc =

√
2 log 2,

reflecting the glass transition of real spin-glasses. Roughly said, in the high-temperature
regime β < βc the Gibbs measure is ‘flat’, i.e. there are no single configurations contribut-
ing considerably to the total mass. In the low-temperature regime β > βc, on the other
hand, a few configurations carry almost all mass of the Gibbs measure, the τx’s behave
like heavy-tailed random variables.

Heuristically, this behavior can be seen by the following computation. For the inverse
temperature β > 0 and an additional parameter α ∈ (0, 1), define the scales

rN = e
α2β2

2
N and gN = eαβ

2N(αβ
√

2πN)−
1
α . (1.1.2)

Using a standard Gaussian tail approximation it follows that

P[τx > ugN ] =
u−α

rN
(1 + o(1)) as N →∞. (1.1.3)

The relation (1.1.3) shows that the finitely many states of highest energy that one can
find upon observing rN states have their rescaled Gibbs mass τx/gN behaving like random
variables in the domain of attraction of an α-stable law. In particular, choosing α = βc/β,
i.e. rN = 2N , implies a heavy-tailed behavior with α < 1 on the whole hypercube if and
only if β > βc. This explains at least the low temperature phase of the phase transition
in the Gibbs measure. The relation (1.1.3) also plays an important role for aging, as we
will see later.

5



1. Introduction to trap models and aging

On the level of the modeling of dynamics of spin-glasses there is a wide variety of
possibilities. We will focus in this thesis on certain usual simplifying assumptions that
are made in the mathematics literature.

The first assumption is to consider only Markovian dynamics, which means that the
process on the hypercube HN can be defined in terms of its transition rates rxy for x, y ∈
HN .

The second simplifying assumption is that the spin-glass system only changes one spin
at a time. Therefore, the transition rates rxy are non-zero only if x and y are neighbors
in the Hamming distance, i.e. they differ in exactly one coordinate, denoted x ∼ y.

Finally, the equilibrium measure of the Markov process on HN should be the equilib-
rium distribution of the system, the Gibbs measure. To this end it is convenient to choose
a Markov process which is reversible with respect to the Gibbs measure, i.e. it satisfies
the detailed balance condition

τxrxy = τyryx.

The class of models satisfying the above simplifying assumptions is still rather large.
We will consider two specific models from the mathematics literature that are ‘realistic’
in the sense that the dynamics is attracted to ‘stable’ states, i.e. states of large Gibbs
measure. The first one, considered in Chapter 2, is the Metropolis dynamics. This is the
Markov chain on HN with transition rates

rxy =

(
1 ∧ τy

τx

)
1{x∼y}. (1.1.4)

This chain chooses its next state with equal probability among more stable neighbors and
changes to less stable neighbors with accordingly smaller probability. Note also, as the
mean waiting time in some state x is the inverse of the total rate out of x, configurations
with very large Gibbs mass (and no equally large neighbor) act as ‘traps’ for the chain,
since the waiting time in these states is much larger than in typical states.

The second model considered in the literature is Bouchaud’s dynamics, which is the
Markov chain with transition rates

rxy = τa−1
x τay 1{x∼y}, (1.1.5)

for some asymmetry parameter a ∈ [0, 1]. For a > 0 the model is referred to as the
Asymmetric Bouchaud Dynamics (ABD).

For a = 0, where there is no attraction to stable states, Bouchaud’s dynamics is
also called the Random Hopping Times (RHT) dynamics. In that case the transition
probabilities to all neighbors of the current state are the same, so that the chain actually
performs a simple random walk on the graph with random waiting times that depend only
on the Gibbs mass of the current state. This independence of the transition probabilities
from the Gibbs measure makes the RHT dynamics particularly tractable, at the expense
of not being very ‘realistic’. In the same way as for the Metropolis dynamics, states with
very large Gibbs mass act as traps for the RHT dynamics.

In what follows we will often refer to the RHT as symmetric and to the ABD and
Metropolis dynamics as asymmetric dynamics.

Having the picture of the ‘non-flat’ Gibbs measure of the REM at low temperature
and the trapping mechanism exhibited by the Metropolis or RHT dynamics in mind, the
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1.2. Bouchaud’s trap model

following heuristic explanation of the aging behavior arises: On a time scale on which the
Markov chain does not reach equilibrium, it does not find the ‘deepest’ of the traps but
evolves among unstable and metastable configurations. The longer the chain is observed,
the more stable are the configurations or the deeper are the traps it will find, thus slowing
the process down. The stability of the configuration of the system at some age becomes
age-dependent, and the older the system, the longer it takes to change its state again,
i.e. the longer it takes to ‘forget its past’, the system ‘ages’.

One approach to make this rough description more precise, inspired by physical ex-
periments like the one described at the beginning of this introduction, is to consider the
evolution of the system between two large times, the ‘waiting time’ tw and the ‘obser-
vation time’ tw + t, and then to analyze appropriate correlation functions Π(tw, tw + t)
of these two time points that measure how much the system forgets its past during that
time. Establishing an aging regime for the two-point function Π then consists of proving
that the limit

lim
tw→∞

Π
(
tw, tw(1 + θ)

)
=: Π(θ) (1.1.6)

exists and is non-trivial, for either a fixed Gibbs measure τ = (τx)x∈HN , or averaged over
the randomness of the Hamiltonian.

1.2. Bouchaud’s trap model

In the early 90ies physicists introduced several approaches to explain aging of spin-glasses.
A prominent example which had a considerable impact in the mathematics literature is
the Bouchaud trap model [Bou92, BD95]. The main idea in this model is to reduce the
state space from the hypercube to the macroscopic network of the metastable states, the
‘traps’, and investigate on this state space the simplest models for the dynamics and the
Hamiltonian, namely the RHT dynamics and an i.i.d. environment for the energies of
configurations.

Formally, the Bouchaud trap model is defined on the space {1, . . . , n}, representing
the n ‘most important’ metastable configurations in the spin-glass. The energies of the
configurations are chosen to be i.i.d. exponentially distributed random variables (Ei)i=1,...,n

with mean one, and the (non-normalized) Gibbs measure of the reduced system at inverse
temperature β > 0 is given by τi = eβEi .

The statics of this system are rather simple, since it is immediate that, for u ≥ 1,

P[τi > u] = u−1/β. (1.2.1)

This means that in the low-temperature regime β > 1, the τi are independent heavy-tailed
random variables in the domain of attraction of a 1/β-stable law, i.e. this Gibbs measure
displays a similar behavior as the Gibbs measure of the REM.

The dynamics of the Bouchaud trap model is assumed to evolve on the complete graph
on n vertices, Kn. This is reasonable since one is not interested in the behavior of the
dynamics outside the ’n most important states’, and any transition among them should,
at least theoretically, be possible.

The RHT dynamics on Kn is chosen as the Markov chain X = (Xt)t≥0 with rates

rij =
1

n− 1
τ−1
i , i 6= j ∈ Kn,

7



1. Introduction to trap models and aging

which means that X performs a simple random walk on Kn but waits at each site i an
exponentially distributed time with mean τi.

To describe aging in terms of a two-point correlation function for this simplified system,
the question is what two-point function to choose. As observable physical quantities such
as the thermo-remanent magnetization are not explicitly describable in the simple model,
Bouchaud proposed to analyze abstract two-point functions, for example the probability
that the RHT dynamics X on a fixed environment τ = (τi)i∈Kn does not change its state
during the time interval [tw, tw + t],

Πτ
n(tw, tw + t) = P τ

n [Xtw = Xtw+s, ∀s < t]. (1.2.2)

For this correlation function aging was shown in [BD95] (see also the introduction to
[BBG03b]). Namely, using renewal arguments, it was shown that for some time scale
tw(n) growing with the size n of the system, for almost every environment τ ,

lim
n→∞

Πτ
n

(
tw(n), tw(n)(1 + θ)

)
= Π(θ). (1.2.3)

The function Π(θ) can be given explicitly, cf. (1.3.2). This aging regime for the correlation
function (1.2.2) means that the systems is successful in escaping a state in a time scale
that is of the same order as the age of the system, i.e. the older the system is, the longer
it takes to forget its past.

The aging result (1.2.3) for the Bouchaud trap model can be seen as the first step
towards the goal of understanding aging in mean-field spin-glasses. The next aim is to
justify the phenomenological simplifications of Bouchaud’s trap model and derive similar
aging results for models where these simplifications are removed, if necessary one at a
time:

• The complete graph Kn should be replaced by the ‘natural’ configuration space, the
hypercube HN .
• The i.i.d. energies should be replaced by the correlated energies of e.g. the p-spin

SK model.
• The symmetric RHT dynamics should be replaced by one of the ‘more realistic’

asymmetric dynamics, ABD or Metropolis.

At the moment of writing this thesis, removing all of the three simplifications at once is still
an open problem. In Chapter 2 we successfully remove the first and third simplification.
We will outline in Section 1.5 what other partial replacements have been successful so far.

1.3. Aging in terms of scaling limits of clock processes

In this section we present the concept that has become the usual approach for proving
aging, namely the convergence of clock processes to stable Lévy processes (or stable sub-
ordinators). This concept was first established in [BČM06, BČ08]. We will motivate it
on the simple example of the Bouchaud trap model and explain how it provides aging in
terms of convergence of two-point functions as in (1.2.3).

The idea is to express the continuous-time Markov chain, e.g. the RHT dynamics, as
a time change of a different process that is easier to analyze. The time-change process is

8



1.3. Aging in terms of scaling limits of clock processes

called clock process. As mentioned before, the RHT dynamics is a time change of simple
random walk. The clock process of the RHT dynamics is the function S : N → [0,∞),
such that S(k) gives the time of the k-th jump of the dynamics.

To be more precise, let (ej)j≥0 be independent exponentially distributed random vari-
ables with mean one, τ = (τi)i∈Kn the non-normalized Gibbs measure of Bouchaud’s trap
model, and Y = (Y (j))j≥0 the simple discrete-time random walk on the complete graph
Kn. Then the clock process of the RHT dynamics is given by

S(k) =
k−1∑
j=0

τY (j)ej.

On the complete graph Kn the simple random walk is essentially ‘ballistic’ on time
scales in which it does not discover the whole graph: Since every vertex has n−1 neighbors,
for large n the probability that once the simple random walk has visited a vertex it will
return again to this vertex in ‘short time’ is very small. Therefore, on such time scales the
consecutively found Gibbs masses τY (j) are essentially independent. Moreover, by (1.2.1)
they lie in the domain of attraction of a stable law. Ignoring the additional randomness
induced by the ej, it is then not surprising that the properly rescaled process S(btkc)
converges to a stable Lévy process.

Indeed, using elementary methods following the general program of [BČ08], it can be
shown that for 0 < κ < 1, for almost every environment τ ,

n−κβS(btnκc) n→∞−−−→ V1/β(t), (1.3.1)

where V1/β is a 1/β-stable Lévy process. The convergence holds in distribution on the
space of cadlag functions on [0,∞) with respect to the standard Skorohod topology.
Heuristically, in nκ steps the simple random walk visits about nκ states and thus finds
deepest traps of depth of order τx = nκβ. The time spent in these deep traps is of order
nκβ, so that in the scaling limit they provide the jumps of unit order of the stable process.

The convergence of the clock process can be used to show aging in terms of convergence
of two-point functions as in (1.2.3) using the generalized arcsine law for stable Lévy
processes: As the range of the clock process S(k) are the time points where the RHT
dynamics jumps, the probability Πτ

n

(
nκβ, nκβ(1 + θ)

)
that the RHT dynamics does not

jump in the time interval
[
nκβ, nκβ(1+θ)

]
can be approximated by the probability that the

range of the process V1/β(t) does not intersect the time interval [1, 1+θ]. This probability
is given by the arcsine law (see e.g. [Ber96, Chapter III.] and the appendix to [BČ06]),
and it follows that for almost every environment τ ,

lim
n→∞

Πτ
n

(
nκβ, nκβ(1 + θ)

)
=

sinαπ

π

∫ 1/(1+θ)

0

uα−1(1− u)−αdu. (1.3.2)

For the RHT dynamics on the REM, following the same general program as for the
complete graph, it can be shown that for scales gN , rN as in (1.1.2), with certain restric-
tions on the parameters α and β,

g−1
N S(btrNc)

n→∞−−−→ Vα(t).

Applying the same heuristics as for the complete graph, in rN � 2N steps the simple
random walk on the REM behaves essentially ‘ballistic’ and finds about rN states, which

9



1. Introduction to trap models and aging

by (1.1.3) implies that the deepest traps observed are of depth of order gN . Then the
time spent in these deep traps is of order gN , so that aging for the RHT dynamics should
occur on the time scale gN . Via the arcsine law, the convergence of the clock process again
provides aging statements for two-point functions as in (1.2.3) on time scales tw(N) = gN .
Note that as in (1.3.1) with κ ∈ (0, 1), the time scales gN can be chosen somewhat freely
by adjusting the parameters α and β.

Let us mention here that so-called extremal aging occurs when the dynamics is ob-
served on very short time scales, and this can be described by convergence of rescaled clock
processes to extremal processes. This has been done not only on the REM [Gü09] but
also on the SK and p-spin models [BG12, BGŠ13]. Extremal processes can be interpreted
as the limit case of an α-stable process for α→ 0.

1.4. Trap models on integer lattices

Besides the hypercube or the complete graph suggested by spin-glass applications, it
is natural to consider Bouchaud’s trap model also on other graphs such as the integer
lattices Zd, d ≥ 1. In fact, incorporating knowledge from related areas such as random
walk among random conductances, the investigation of trap models on the integer lattices
has been, to some extent, more fruitful than on the hypercube, in particular on the level
of asymmetric dynamics.

The random environment for trap models on Zd is mostly given directly by a collection
of i.i.d. random variables τ = (τx)x∈Zd which display a heavy-tailed behavior. The dy-
namics, in this framework sometimes also called a ‘trapped random walk’, is then defined
as a Markov chain reversible with respect to τ . The RHT dynamics on Zd is the Markov
chain with transition rates 1

2d
τ−1
x from x to nearest-neighbors y ∼ x. Analogously as in

(1.1.4) and (1.1.5), Metropolis dynamics and ABD are defined.

Similarly as for spin-glass models one can then try to establish aging in terms of
scaling limits of clock processes and convergence of two-point functions. In addition, the
question of scaling limits of the Markov chain itself arises, in particular whether it differs
from Brownian motion, the scaling limit of simple random walk.

Aging for the RHT dynamics on Zd was studied e.g. in [FIN02, BČ05, BČM06, FM14],
and for the ABD on Zd in [BČ05, GŠ13]. The scaling limit of the RHT dynamics on Z
was found in [FIN02], and in higher dimensions in [BČ07]. For the ABD on Zd, d ≥ 2,
the same scaling limit was established in [Mou11, BČ11, Čer11]. An important role in
most results is played by the convergence of clock processes to stable Lévy processes.
This concept has on Zd been successfully extended from the symmetric RHT dynamics
to asymmetric dynamics, in particular the ABD.

Let us describe next the different scaling limits of trap models and how they motivated
the model that is investigated in Chapter 3.

The scaling limit of the RHT dynamics on Z is the Fontes-Isopi-Newman (FIN) sin-
gular diffusion [FIN02]. The FIN diffusion is a Markov process, and it can be expressed
as the time change of Brownian motion by a functional of the local time `(t, y) of the
Brownian motion and a speed measure ρ, a random discrete measure on R which provides
in some sense a random environment. Given ρ, the FIN diffusion is the time change of

10



1.4. Trap models on integer lattices

Brownian motion by the inverse of

Sρ(t) =

∫
`(t, y)dρ(y). (1.4.1)

As the time-change process depends on the local time of the Brownian motion, it is not
independent of the Brownian motion.

In dimensions d ≥ 2, the scaling limit of the RHT dynamics is completely different.
It is the Fractional Kinetics (FK) process [BČ07], which is non-Markovian and not given
by some random environment. It is the time change of Brownian motion by the inverse
of a stable Lévy process which is independent of the Brownian motion.

There is another classical model that admits both Brownian motion and the FK process
as scaling limits in all Zd, d ≥ 1, namely the continuous-time random walk (CTRW) of
[MW65]. This is a simple random walk on the integer lattice whose waiting times, in
contrary to the RHT dynamics, do not depend on the location. The waiting time at each
step is picked independently from some fixed distribution, so that the clock process is in
fact a sum of i.i.d. random variables. Its scaling limit is thus either linear or a stable
Lévy process, which provides Brownian motion and the FK process as scaling limits of
the CTRW.

To better understand the different scaling limit regimes that arise in the above exam-
ples, [BCČR14] introduced randomly trapped random walk (RTRW). The discrete skeleton
of RTRW in [BCČR14] is simple random walk on some graph G, and the waiting times
are determined in the following two-step procedure. First, a random environment is given
in terms of an i.i.d. collection of probability distributions (πx)x∈G on (0,∞). The waiting
time at some vertex x ∈ G is then picked from the distribution πx, independently at every
visit to x.

In this way the model contains Bouchaud’s RHT dynamics (by taking the πx’s to be
exponential distributions with means that are heavy-tailed random variables) as well as
the CTRW (by taking all πx’s to be deterministically identical). Moreover, it provides a
tool to analyze trap models where the trapping is induced by the geometry of the graph
rather than by a random environment, e.g. the simple random walk on the incipient
critical Galton-Watson tree projected to the backbone.

The model was defined in [BCČR14] on general graphs and studied in detail on the
one-dimensional integer lattice Z. It was shown that on Z there are in fact four different
possibilities for scaling limits:

(i) Brownian motion,
(ii) FK process,

(iii) FIN singular diffusion,
(iv) spatially subordinated Brownian motion.

The new class of spatially subordinated Brownian motion is a generalized version of the
FIN singular diffusion.

It was conjectured in [BCČR14] that among the four classes above, the latter two
cases appear only if the underlying random walk is sufficiently recurrent. In particular,
on the integer lattices in dimensions d ≥ 2 the possible scaling limits should reduce to
Brownian motion and the FK process.

In Chapter 3 we prove this conjecture for an even slightly more general version of
RTRW. We consider the same environment of random probability distributions, but we

11



1. Introduction to trap models and aging

allow the discrete skeleton to be any random walk. The main tool for the analysis of
scaling limits of RTRW are scaling limits of the associated clock processes.

In the main result of Chapter 3 we show, under very weak assumptions on the discrete
skeleton, that for RTRW on Zd, d ≥ 2, the only possible scaling limits of clock processes
are a linear deterministic process or a stable Lévy process, cf. Theorem 3.1.1. As a
consequence, under the additional assumption that the discrete skeleton itself scales to
Brownian motion, the respective scaling limits of the RTRW are Brownian motion or the
FK process, cf. Theorem 3.1.2. Moreover, we give sufficient conditions for convergence in
both cases in Theorems 3.1.3 and 3.1.4.

Let us note that the model of RTRW does not include ABD or Metropolis dynamics,
since it is constructed as the time change of a (not necessarily simple) random walk which
is independent of the random trapping environment. It would be interesting to introduce
a general model in the spirit of RTRW that allows for dependency between environment
and transition probabilities and thus includes asymmetric dynamics such as ABD and
Metropolis.

1.5. Aging of the Metropolis dynamics on the REM

Before describing the main result of Chapter 2, let us outline the main steps towards
understanding aging of mean-field spin glasses that have been taken so far. Recall that
we are aiming at justifying the three simplifications made in Bouchaud’s trap model as
pointed out at the end of Section 1.2.

The first step in this direction was done in [BBG02, BBG03a, BBG03b], where the
authors consider the RHT dynamics on the REM and show, using highly non-trivial
renewal methods, that a certain two-point function similar to Πτ

n as defined in (1.2.2)
exhibits an aging regime in the form of (1.2.3), for time scales that are close to the
equilibration of the system. The results for aging of the RHT dynamics on the REM
were extended in the paper [BČ08], in particular on a broader range of time scales. As
described before, this paper also establishes the convergence of clock processes to stable
Lévy processes as the main tool to prove aging.

After having verified the predictions of Bouchaud’s trap model for RHT dynamics on
the REM, i.e. moving on from the complete graph to the ‘correct’ state space, the hyper-
cube HN , the next step is to try to remove, one at a time, the remaining simplifications
on the two levels of the Hamiltonian and the dynamics.

Replacing the i.i.d. Hamiltonian of the REM by a correlated one was successfully done
in [BBČ08] an strengthened in [BG13], where aging was established for the RHT dynamics
on the p-spin SK model, p ≥ 3.

We next focus on the task of replacing the symmetric RHT dynamics by asymmetric
dynamics. As mentioned in Section 1.4, a rather complete understanding of aging of the
ABD (and implicitly for the Metropolis dynamics) in terms of convergence of two-point
functions as well as in terms of convergence of clock processes is available for i.i.d. environ-
ments on the integer lattices [BČ05, Mou11, BČ11, Čer11, GŠ13]. Aging of the ABD in
the i.i.d. environment of Bouchaud’s model on the complete graph is also well understood
[Gay12]. Since the aging behavior for asymmetric dynamics on these models is the same
as for the RHT dynamics, it is expected that the same aging behavior should occur also
on the mean-field spin glass models, at least in the i.i.d. case of the REM.
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1.5. Aging of the Metropolis dynamics on the REM

Though there have been attempts prior to this thesis to describe aging in terms of
convergence of clock processes for the ABD and the Metropolis dynamics on the REM,
they have been restricted to modified or truncated models:

Mathieu and Mourrat [MM15] consider the ABD on the REM for an asymmetry
parameter aN ∼

√
logN/N (cf. (1.1.5)) which tends to zero with the size N of the

hypercube. This has the effect that this modified ABD asymptotically recovers certain
properties of the RHT dynamics, in the sense that the ‘natural accelerated version’ of the
ABD behaves ‘ballistic’ like the simple random walk.

In the paper [Gay14], Gayrard investigates the non-modified Metropolis dynamics
(1.1.4) but on a truncated REM. In this model all energies Ex for x ∈ HN such that
Ex < uN are set equal to zero, for uN such that P[Ex ≥ uN ] = N−c for some c > 3. Due
to this truncation the discrete skeleton of the Metropolis dynamics is simple random walk
except on sites with non-zero energy which have at least one other non-zero neighbor.
By the choice of the level uN there is only a sparse set of such sites, consisting of small,
disjoint connected components of size smaller than N . Therefore, this model also recovers
useful properties of the simple random walk.

The discrete skeleton of the Metropolis dynamics on the non-truncated REM is how-
ever far from being a simple random walk. Nevertheless, we give in Chapter 2 a first
proof for aging of the Metropolis dynamics on the full REM. The main result in Chap-
ter 2 provides a stable Lévy process as the scaling limit of the clock process between the
Metropolis dynamics (1.1.4) and another continuous-time Markov chain on HN , defined
by the rates

qxy =
τx ∧ τy
1 ∧ τx

1{x∼y}, x, y ∈ HN .

This ‘fast chain’ is an acceleration of the Metropolis dynamics by the factor (1 ∨ τx) at
every state x. The clock process giving the time change between the Metropolis dynamics
and the accelerated chain is given by

S(t) =

∫ t

0

(1 ∨ τYs)ds.

In Theorem 2.1.1 we will show that this clock process, properly rescaled, converges to
an α-stable Lévy process Vα. Namely, we show that

g−1
N S(tRN)

N→∞−−−→ Vα(t), (1.5.1)

where the convergence holds in probability with respect to the environment of the REM,
and in distribution with respect to the law of the process for a fixed environment. The
topology in which the distributional convergence holds is the Skorohod M1-topology.

The scale gN is the same as for the REM, as defined in (1.1.2). An interesting feature
of the convergence (1.5.1) is that the scale RN is random, it depends on the realization
of the environment. However, we show that RN differs from rN as defined in (1.1.2)
eventually only in subexponential prefactors.

Our choice of the accelerated chain differs slightly from the natural choice (taken e.g. in
[MM15]), which would be a Markov chain reversible with respect to the uniform measure
(somewhat analogously to the simple random walk for the RHT dynamics). However,
since the important object for aging in terms of two-point functions is the range of the
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1. Introduction to trap models and aging

limiting stable Lévy process, the exact choice of the accelerated chain is not relevant. The
reason for exactly the above choice is that this chain is still uniform on the relevant deep
traps, and we are able to control its mixing time to be polynomial in N , cf. the remarks
after Theorem 2.1.1.

The convergence (1.5.1) of the rescaled clock process captures the basic aging behavior
and confirms the predictions of Bouchaud’s trap model on that level. We do however not
give an aging statement in terms of a two-point correlation function such as (1.2.3), cf. the
discussion of the method in the next section.

1.6. Methods for obtaining convergence of clock processes

To conclude this introductory chapter, we describe the different methods used in the liter-
ature to prove aging and scaling limit results in terms of scaling limits of clock processes.
In particular, we will outline the novelties in the methods of Chapters 2 and 3.

As already mentioned, the first aging results for the spin-glass models were obtained
using renewal arguments [BD95, BBG02, BBG03a, BBG03b]. A clock process was for the
first time analyzed in [BČM06] in the context of the RHT on the two-dimensional integer
lattice. This paper introduces the so-called coarse-graining, a procedure that relies on
the fact that, for a fixed environment, the clock process is essentially determined by the
visits to certain deep traps. The trajectory of the process is cut into pieces, and it is
shown that in each piece there is typically no such deep trap visited. If one is visited,
then it is the only one, and in different pieces there are always different deep traps visited.
With this, the contributions to the clock process of the consecutively found deep traps
can be approximated by an i.i.d. sequence of random variables. The rescaled partial sum
process of this sequence is then shown to converge to a stable Lévy process, for almost
every realization of the environment.

The coarse-graining procedure was further used in [BČ07] to determine the FK process
as the scaling limit of the RHT dynamics on Zd, d ≥ 2, and it was extended in [BČ11,
Čer11] to analyze asymmetric dynamics on Zd, d ≥ 2. For the RHT dynamics, the
method relies on fine estimates for simple random walk. On the other hand, the treatment
of asymmetric dynamics relies heavily on the knowledge about the random conductance
model on Zd, in particular the regime of heavy-tailed conductances [BD10]. As such
detailed knowledge is not available for the random conductance model on finite graphs,
it is not clear whether the coarse-graining procedure could be successfully adapted to
asymmetric dynamics for example on the REM.

The paper [BČ08], which develops the general scheme for proving convergence of clock
processes for the RHT dynamics, somewhat formalizes the coarse-graining procedure. It
gives abstract conditions on the trapping environment and certain potential theoretic
objects related to the simple random walk on a graph that ensure aging in terms of
convergence of the rescaled clock process. The program is roughly as follows. The first
step is to identify, for a fixed environment, a certain set of vertices which essentially
determine the clock process, the deep traps. The contribution of the remaining vertices
can be ignored. The second step is then to understand how the deep traps contribute
to the clock process. To this end, the simple random walk should hit the deep traps
essentially ‘uniformly’ and in exponentially distributed times. The time spent in deep
traps can be controlled by the diagonal Green function.
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1.6. Methods for obtaining convergence of clock processes

A different method, introduced in [Gay12], was put forward recently. The clock process
is viewed as a partial sum process of dependent random variables, and one then uses
abstract conditions due to Durrett and Resnick [DR78] that provide functional limit
theorems for such sums. Besides the RHT dynamics [Gay10, BG13, BGŠ13], this method
was successfully applied to asymmetric dynamics, for example the ABD on the complete
graph [Gay12] and the integer lattices [GŠ13], and recently to the Metropolis dynamics
on the truncated REM [Gay14].

In contrary to the methods above which provide quenched statements directly,
i.e. statements that hold for almost every realization of the environment, another method
was introduced in [Mou11] that is particularly suitable for obtaining annealed results,
i.e. results that hold averaged over the environment. This method relies on the fact that
when a new trap is visited, in the annealed setting its depth can be determined at the
moment of this first visit. If there are essentially no returns to the relevant deep traps,
the consecutively found Gibbs masses of deep traps are trivially an i.i.d. sequence and
convergence to a stable process can be deduced. The method was used in [Mou11] to
determine the FK process as the scaling limit of the ABD on Zd in dimensions d ≥ 5
with an i.i.d. environment. It was developed further in [MM15] to obtain annealed aging
results for the modified ABD with asymmetry parameter tending to zero.

Let us mention the approach of [FM14], which partly inspired the method of Chapter 3.
In this paper the authors show aging for RHT-like dynamics in i.i.d. environments, where
the discrete skeleton is a not necessarily simple random walk which is independent of the
environment. As the one of [Mou11, MM15], the method of [FM14] works in the annealed
setting and relies on the fact that the depths of newly discovered traps are i.i.d. random
variables. This idea is combined with properties obtained from assumptions on a law of
large numbers for the range and slow variation of the escape probability of the discrete
skeleton.

The proofs for aging on the one-dimensional integer lattice [FIN02, BČ05] use the
property that processes on this discrete one-dimensional space can be expressed as a
‘time-scale change of Brownian motion’. The methods of [BCČR14] to classify the scaling
limits of RTRW in one dimension build up on these techniques. The RTRW process on
the discrete space is expressed as the time change of a simple random walk, where the
time-change process is a functional of the local time of the random walk and a certain
random ‘trap measure’. The convergence of the rescaled RTRW can be deduced from
the convergence of the associated trap measures. The limit process is then expressed as
the time change of Brownian motion by a time-change process which is a functional of
the local time of Brownian motion and the limit measure of the trap measures (as e.g. in
(1.4.1) for the FIN diffusion). The classification of possible limit processes thus reduces
to a classification of the possible limiting trap measures, which is achieved using the well
developed theory on random measures.

Let us now very briefly outline the main ideas and novelties in the methods used in the
first part of this thesis, focusing mainly on those ideas that are common for the Chapters 2
and 3.

Since the methods of [BCČR14] to analyze randomly trapped random walks in one
dimension heavily rely on the local time of Brownian motion, they are not applicable in
dimensions d ≥ 2. The approach in Chapter 3 is inspired by [FM14] and uses the fact that
the range of the random walk and certain related objects satisfy laws of large numbers.

15



1. Introduction to trap models and aging

This allows to control the contribution of frequently visited sites and deduce the possible
scaling limits of the clock process of RTRW on Zd, d ≥ 2, by showing that it must be a
process of independent and identically distributed increments.

The sufficiency criterion for convergence of RTRW to Brownian motion is an easy
consequence of ergodicity. The sufficiency criterion for convergence of RTRW to the FK
process, on the other hand, is rather abstract. It is chosen such that when computing the
Laplace transform of one-dimensional marginals of the clock process, it turns out that
this Laplace transform converges to the Laplace transform of a stable law.

The main idea in the method of Chapter 2 to show convergence of the clock process of
the Metropolis dynamics is inspired by the above approach to give a sufficiency criterion
for convergence of RTRW to the FK process.

In the known methods from the literature, the clock process is mostly somehow sim-
plified, reduced, and approximated, and then it is shown that this approximated process
converges to a stable Lévy process by e.g. computing the Laplace transform. Taking up
the idea from the sufficiency criterion in Chapter 3, we somewhat invert this procedure
and directly compute a certain conditional Laplace transform. We then ask what condi-
tions we might need in order to obtain convergence to the Laplace transform of a stable
law.

It turns out that basically the only thing needed for this convergence is concentration
of a certain ‘local time functional’. This of course requires some detailed analysis, but it
probably requires less work than would be necessary when applying the known methods,
if this is even possible.

The three main technical ingredients for the concentration of the local time functional
are the fast mixing of the fast chain, bounds on the mean hitting time of certain deep
traps by the fast chain, and the choice of the random scale RN . Compared to most of the
other methods presented before, we do not need any control on the local behavior of the
fast chain. We consider this as the main advantage of our method. On the other hand,
the lack of local control brings along the disadvantage that it is not possible to deduce
any reasonable two-point function statement.

The direct computation of the Laplace transform of the clock process and hence the
reduction of the problem to the concentration of the local time functional relies on a
specific property of the Metropolis dynamics. We nevertheless believe that the method
can be extended to also treat the ABD on the REM. Since the method however exploits
the independence structure of the REM, it is not clear whether it can be extended to
treat dependent environments.
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2. Aging of the Metropolis dynamics on the Random

Energy Model

Jiř́ı Černý and Tobias Wassmer

Abstract. We study the Metropolis dynamics of the simplest mean-field spin
glass model, the Random Energy Model. We show that this dynamics exhibits
aging by showing that the properly rescaled time-change process between the
Metropolis dynamics and a suitably chosen ‘fast’ Markov chain converges in dis-
tribution to a stable subordinator. The rescaling might depend on the realization
of the environment, but we show that its exponential growth rate is deterministic.

2.1. Introduction

This paper studies the out-of-equilibrium behavior of the Metropolis dynamics on the
Random Energy Model (REM). Our main goal is to answer one of the remaining important
open questions in the field, namely whether this dynamics exhibits aging, and, if yes,
whether its aging behavior admits the usual description in terms of stable Lévy processes.

Aging is one of the main features appearing in the long-time behavior of complex
disordered systems (see e.g. [BCKM97] for a review). It was for the first time observed
experimentally in the anomalous relaxation patterns of the residual magnetization of
spin-glasses (e.g. [LSNB83, Cha84]). One of the most influential steps in the theoretical
modeling of the aging phenomenon is the introduction of the so-called trap models by
Bouchaud [Bou92] and Bouchaud and Dean [BD95]. These models, while being sufficiently
simple to allow analytical treatment, reproduce the characteristic power law decay seen
experimentally.

Since then a considerable effort has been made in putting the predictions obtained
from the trap models to a solid basis, that is to derive these predictions from an un-
derlying spin-glass dynamics. The first attempt in this direction was made in [BBG02,
BBG03a, BBG03b] where it was shown that, for a very particular Glauber-type dynamics,
at time scales very close to the equilibration, a well chosen two-point correlation function
converges to that given by Bouchaud’s trap model.

With the paper [BČ08], where the same type of dynamics was studied in a more general
framework and on a broader range of time scales, it emerged that aging establishes itself
by the fact that scaling limits of certain additive functionals of Markov chains are stable
Lévy processes, and that the convergence of the two-point correlation functions is just a
manifestation of the classical arcsine law for stable subordinators.
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2. Aging of the Metropolis dynamics on the Random Energy Model

The Glauber-type dynamics used in those papers, sometimes called Random Hopping
Time (RHT) dynamics, is however rather simple and is often considered as ‘non-realistic’,
mainly because its transition rates do not take into account the energy of the target state.
Its advantage is that it can be expressed as a time change of a simple random walk on
the configuration space of the spin-glass, which allows for a certain decoupling of the
randomness of the dynamics from the randomness of the Hamiltonian of the spin-glass,
making its rigorous studies more tractable.

For more realistic Glauber-type dynamics of spin-glasses, like the so-called Bouchaud’s
asymmetric dynamics or the Metropolis dynamics, such decoupling is not possible. As a
consequence, these dynamics are far less understood.

Recently, some progress has been achieved in the context of the simplest mean-field
spin-glass model, the REM. First, in [MM15], the Bouchaud’s asymmetric dynamics have
been considered in the regime where the asymmetry parameter tends to zero with the size
of the system. Building on the techniques started in [Mou11], this papers confirms the
predictions of Bouchaud’s trap model in this regime. Second, the Metropolis dynamics
have been studied in [Gay14], for a truncated version of the REM, using the techniques
developed for the symmetric dynamics in [Gay12, Gay10], again confirming Bouchaud’s
predictions.

The weak asymmetry assumption of [MM15] and the truncation of [Gay14] have both
the same purpose. They aim at overcoming some specific features of the asymmetry and
recovering certain features of symmetric dynamics. Our aim in this work is to get rid of
this simplifications and treat the non-modified REM with the usual Metropolis dynamics.

Let us also mention that Bouchaud’s asymmetric dynamics (and implicitly the Metro-
polis one) is rather well understood in the context of trap models on Zd, see [BČ11, Čer11,
GŠ13], where it is possible to exploit the connections to the random conductance model
with unbounded conductances, [BD10]. Finally, asymmetric dynamics on the complete
graph were considered in [Gay12].

Before stating our main result, let us briefly recall the general scheme for proving
aging in terms of convergence to stable Lévy processes. The actual spin-glass dynamics,
X = (Xt)t≥0, which is reversible with respect to the Gibbs measure of the Hamiltonian,
is compared to another Markov chain Y = (Yt)t≥0 on the same space, which is an ‘accel-
erated’ version of X and whose stationary measure is uniform. The process Y is typically
easier to be understood, e.g. it is a simple random walk for the RHT dynamics, and the
original process X can be written as its time change,

X(t) = Y (S−1(t)), (2.1.1)

for the right continuous inverse S−1 of a certain additive functional S of the Markov chain
Y , called the clock process. The aim is then to show convergence of the properly rescaled
clock process S to an increasing stable Lévy process, that is to a stable subordinator.

We now state our main result. We consider the unmodified REM, as introduced
in [Der80, Der81]. The state space of this model is the N -dimensional hypercube HN =
{−1, 1}N , and its Hamiltonian is a collection (Ex)x∈HN of i.i.d. standard Gaussian random
variables defined on some probability space (Ω,F ,P). The non-normalized Gibbs measure

τx = eβ
√
NEx at inverse temperature β > 0 gives the equilibrium distribution of the system.
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The Metropolis dynamics on the REM is the continuous-time Markov chain X =
(Xt)t≥0 on HN with transition rates

rxy =

(
1 ∧ τy

τx

)
1{x∼y}, x, y ∈ HN . (2.1.2)

Here, x ∼ y means that x and y are neighbors on HN , that is they differ in exactly one
coordinate.

As explained above, we will compare the Metropolis chain X with another ‘fast’
Markov chain Y = (Yt)t≥0 with transition rates

qxy =
τx ∧ τy
1 ∧ τx

1{x∼y}, x, y ∈ HN . (2.1.3)

It can be easily checked using the detailed balance conditions that Y is reversible and
that its equilibrium distribution is

νx =
1 ∧ τx
ZN

, x ∈ HN ,

where ZN =
∑

x∈HN (1∧ τx). Finally, since rxy = (1∨ τx)−1qxy, X can be written as a time
change of Y as in (2.1.1) with the clock process S being given by

S(t) =

∫ t

0

(1 ∨ τYs)ds. (2.1.4)

For the rest of the paper we only deal with the process Y and the clock process S, the
actual Metropolis dynamics X does not appear anymore after this point. For a fixed
environment τ = (τx)x∈HN , let P τ

ν denote the law of the process Y started from its
stationary distribution ν, and let D([0, T ],R) be the space of R-valued cadlag functions
on [0, T ]. We denote by βc =

√
2 log 2 the (static) critical temperature of the REM. Our

main result is the following.

Theorem 2.1.1. Let α ∈ (0, 1) and β > 0 be such that

1

2
<
α2β2

β2
c

< 1, (2.1.5)

and define
gN = eαβ

2N(αβ
√

2πN)−
1
α . (2.1.6)

Then there are random variables RN which depend on the environment (Ex)x∈HN only,
such that for every T > 0 the rescaled clock processes

SN(t) = g−1
N S(tRN), t ∈ [0, T ],

converge in P-probability as N →∞, in P τ
ν -distribution on the space D([0, T ],R) equipped

with the Skorohod M1-topology, to an α-stable subordinator Vα. The random variables RN

satisfy

lim
N→∞

logRN

N
=
α2β2

2
, P-a.s. (2.1.7)
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2. Aging of the Metropolis dynamics on the Random Energy Model

Let us make a few remarks on this result.

1. The result of Theorem 2.1.1 confirms that the predictions of Bouchaud’s trap
model hold for the Metropolis dynamics on the REM, at least at the level of scaling limits
of clock processes. It also compares directly to the results obtained for the symmetric
(RHT) dynamics in [BČ08]. The scales gN and RN are (up to subexponential prefactors)
the same as previously, including the condition (2.1.5) or the range of parameters α, β.
As in [BČ08], the right inequality in (2.1.5) is completely natural, beyond it Y ‘feels’
the finiteness of HN and aging is not expected to occur. The left inequality in (2.1.5) is
technical, it ensures that the relevant deep traps are well separated (cf. Lemma 2.2.1),
introducing certain simplifications in the proof. We believe that this bound might be
improved to α2β2/β2

c > 0, by further exploiting our method. Finally, as previously, note
that (2.1.5) is satisfied also for β < βc for appropriate α, hence aging can occur above the
critical temperature.

2. Our choice of the fast chain Y is rather unusual. In view of the previous papers
[MM15, BČ11], it would be natural to take instead the chain Ỹ with uniform invariant
measure and with transition rates τx ∧ τy, that is without the correction 1 ∧ τx which
appears in (2.1.3). This choice has, however, some deficiencies. On the heuristic level, Ỹ
is not an acceleration of X, since it is much slower than X on sites with very small Gibbs
measure τx � 1. These sites, which are irrelevant for the statics, then ‘act as traps’ on Ỹ ,
making them relevant for the dynamics, which is undesirable. On the technical level, the
trapping on sites with small Gibbs measure has the consequence that the mixing time of
Ỹ is very large.

Our choice of the fast chain Y runs as fast as X on the sites with small Gibbs measure
and thus does not have this deficiency. Moreover, since νx = Z−1

N whenever Ex ≥ 0, the
equilibrium distribution of the fast chain Y is still uniform on the relevant deep traps, so
the clock process S retains its usual importance for aging.

Remark also that in order to overcome similar difficulties with the slowly mixing
chain Ỹ , [MM15] truncate the Hamiltonian of the REM at 0 which effectively sets τx ≥ 1
for all x ∈ HN . We prefer to retain the full REM and use the modified fast chain Y
instead. Finally, [Gay14] uses the discrete skeleton of X as the base chain, which has
some interesting features but introduces similar undesirable effects.

3. We view Theorem 2.1.1 as an aging statement, without further considering any
two-point correlation functions. Actually, it seems hard to derive aging statements for
the usual correlation functions from our result without extending the paper considerably.
Such derivation usually requires some knowledge of the fast chain Y that goes over the
M1-convergence of the clock processes. This knowledge is typically automatically obtained
in the previous approaches. The strength (or the weakness) of our method is that we do
not need to obtain such finer knowledge to show the clock process convergence.

4. A rather unusual feature of Theorem 2.1.1 is the fact that the scaling RN is random,
it depends on the random environment. This is again a consequence of our technique.
Claim (2.1.7) in Theorem 2.1.1 however shows that at least the exponential growth of RN

is deterministic. The random scale RN is explicitly defined in (2.2.10). We will see that its
definition depends on a somewhat free choice of an auxiliary parameter, but nevertheless
the final result does not depend on this parameter. Not only this property makes us
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conjecture that RN should actually satisfy a deterministic law of large numbers,

lim
N→∞

h(N)e−α
2β2N/2RN = 1, P-a.s.,

for some function h(N) growing at most subexponentially.

5. The mode of convergence in Theorem 2.1.1 is not optimal, one would rather like
to obtain the convergence in P τ

ν -distribution for P-almost every environment, which is
usually called quenched convergence. Actually, Theorem 2.1.1 can be strengthened slightly
to a statement which is somewhere between P-a.s. convergence and convergence in P-
probability. Namely, the statement holds for a.e. realization of sites with ‘small’ τx, but
only in probability over sites with ’large’ τx, cf. Remark 2.6.4.

6. Our proof of Theorem 2.1.1 strongly exploits the i.i.d. structure of the Hamiltonian
of the REM. At present we do not know if it is possible to combine our techniques with
those used for the RHT dynamics of the p-spin model in [BBČ08, BG12].

We proceed by commenting on the proof of Theorem 2.1.1, concentrating mainly
on its novelties. The general strategy so far to prove such a result has been to first
reduce the problem to the clock process restricted to a set of deep traps which govern the
behavior of the original clock process. The different methods then all more or less aim at
dividing the contribution of consequently found deep traps into essentially i.i.d. blocks.
For example in [BČ08] or [BČ11], this is achieved by controlling the hitting probabilities
of deep traps, proving that they are hit essentially uniformly in exponentially distributed
times, and controlling the time the chain spends at the deep traps by a sharp control
of the Green function. Similar rather precise estimates on hitting probabilities and/or
Green function are necessary in other approaches. Using this i.i.d. structure, one can
then show convergence of the clock process by standard methods, e.g. computing the
Laplace transform.

The method used in this paper is slightly inspired by the general approach taken in
[FM14] and [ČW15b]. There, models of trapped random walks on Zd are considered where
few information about the discrete skeleton as well as the waiting times of a continuous-
time Markov chain are available, and minimal necessary conditions for convergence of
the clock process are found. Taking up this idea, instead of analyzing in detail the
behavior of the fast chain Y , we extract the minimal amount of information needed to
show convergence of the clock process. In particular, we do not need any exact control of
hitting probabilities and Green functions of deep traps, as most previous work did.

The first step in our proof is standard, namely that the main contribution to the clock
process comes from a small set of vertices with large Gibbs measure τx, the so-called
deep traps, and that in fact the clock process of the deep traps converges to a stable
subordinator. Denote the set of deep traps by DN (see Section 2.2 for details). We will
show that the clock process S can be well approximated by the clock process of the deep
traps

SD(t) =

∫ t

0

(1 ∨ τYs)1{Ys∈DN}ds. (2.1.8)

Then it remains to show that in fact g−1
N SD(tRN) converges to a stable subordinator.

To this end, we will in some sense invert the standard procedure described above.
Instead of approximating the clock process by an i.i.d. block structure and then use
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2. Aging of the Metropolis dynamics on the Random Energy Model

the Laplace transform to show convergence, we will first compute a certain conditional
Laplace transform using some special properties of the Metropolis dynamics. Then we
analyze what is actually needed in order to show convergence of the unconditional Laplace
transform.

A bit more detailed, this will be done as follows. Under condition (2.1.5), the deep
traps are almost surely well separated. This fact and the fact that the definition (2.1.3)
contains the factor τx ∧ τy imply that the transition rates qxy of the fast chain Y do not
depend on the energies Ex of the deep traps, but only on their location. Therefore, one
can condition on the location of all traps and the energies Ex of the non-deep traps, which
determines the law P τ

ν of Y , and take the expectation over the energies of the deep traps.
We call this a quasi-annealed expectation and denote it by ED for the moment. Let `t(x)
denote the local time of the fast chain Y (see Section 2.2 for details). As ED is simply
an expectation over i.i.d. random variables, the quasi-annealed Laplace transform of the
rescaled clock process of the deep traps given Y can be computed. It essentially behaves
like

ED
[
e
−λ 1

gN
SD(tRn) | Y

]
≈ exp

{
−KλαεN

∑
x∈DN

`tRN (x)α
}
. (2.1.9)

Here, εN is a deterministic sequence tending to 0 as N → ∞. The above approximation
shows that the only object related to Y we have to control is the local time functional
εN
∑

x∈DN `tRN (x)α.
We will show that this a priori non-additive functional of Y actually behaves in an

additive way, namely that it converges to t as N →∞, under P τ
ν for P-a.e. environment

τ . For this convergence to hold it is sufficient to have some weak bounds on the mean
hitting time of deep traps as well as some control on the mixing of the chain Y together
with an appropriate choice of the scale RN that depends on the environment.

Using standard methods we then strengthen the quasi-annealed convergence to quen-
ched convergence (in the sense of Theorem 2.1.1).

To conclude the introduction, let us comment on how our method might be extended.
The key argument in the computation of the quasi-annealed Laplace transform, namely
the fact that the chain Y is independent of the depth of the deep traps, seems very specific
for the Metropolis dynamics. However, by adapting the method appropriately and using
network reduction techniques, we believe that one could also treat Bouchaud’s asymmetric
dynamics and Metropolis dynamics in the regime where the left-hand side inequality of
(2.1.5) fails, i.e. there are neighboring deep traps.

The rest of the paper is structured as follows. Detailed definitions and notations used
through the paper are introduced in Section 2.2. In Section 2.3 we analyze the mixing
properties of the fast chain Y , which will be crucial at several points later. In Section 2.4
we give bounds on the mean hitting time of deep traps and on the normalizing scale RN .
Using these bounds and the results on the mixing of Y , we show concentration of the local
time functional εN

∑
x∈DN `tRN (x)α in Section 2.5. We prove convergence of the rescaled

clock process of the deep traps in Section 2.6 with the above mentioned computation of the
quasi-annealed Laplace transform, using the concentration of the local time functional.
Finally, we treat the shallow traps in Section 2.7 by showing that their contribution to the
clock process can be neglected. In Appendix 2.A we give the proof of a technical result
which is used to bound the expected hitting times in Section 2.4.
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2.2. Definitions and notation

2.2. Definitions and notation

In this section we introduce some notation used through the paper and recall a few useful
facts. We use HN to denote the N -dimensional hypercube {−1, 1}N equipped with the
usual distance

d(x, y) =
1

2

N∑
i=1

|xi − yi|,

and write EN for the set of nearest-neighbor edges EN = {{x, y} : d(x, y) = 1}.
For given parameters α and β, let

γ =
α2β2

β2
c

∈ (1/2, 1), (2.2.1)

by condition (2.1.5) in Theorem 2.1.1.
Recall from the introduction that (Ex : x ∈ HN , N ≥ 1), is a family of i.i.d. standard

Gaussian random variables defined on some probability space (Ω,F ,P). Note that we do
not denote the dependence on N explicitly, but we assume that the space (Ω,F ,P) is the

same for all N . For β > 0 the non-normalized Gibbs factor τx is given by τx = eβ
√
NEx .

Using the standard Gaussian tail approximation,

P[Ex ≥ t] =
1

t
√

2π
e−t

2/2
(
1 + o(1)

)
as t→∞, (2.2.2)

we obtain that gN , as defined in Theorem 2.1.1, satisfies

P[τx > ugN ] = u−α2−γN
(
1 + o(1)

)
.

This heuristically important computation explains the appearance of stable laws in the
distribution of sums of τx: If we observe 2γN vertices, then finitely many of them have
their rescaled Gibbs measures τx/gN of order unity, and, moreover, those rescaled Gibbs
measures behave like random variables in the domain of attraction of an α-stable law.

Recall also that Y = (Yt)t≥0 stands for the fast Markov chain whose transition rates
qxy are given in (2.1.3), and that ν = (νx)x∈HN denotes the invariant distribution of this
chain, νx = 1∧τx

ZN
. For a given environment τ = (τx)x∈HN , let P τ

x and P τ
ν denote the

laws of Y started from a vertex x or from ν respectively, and Eτ
x , Eτ

ν the corresponding
expectations.

Note that the normalization factor ZN =
∑

x∈HN (1 ∧ τx) satisfies, for every constant
κ ∈ (0, 1/2),

κ2N ≤ ZN ≤ 2N P-a.s for N large enough. (2.2.3)

Indeed, obviously ZN ≤ 2N , and ZN ≥
∑

x∈HN 1{Ex≥0}. But 1{Ex≥0} are i.i.d. Bernoulli
random variables, therefore the statement follows immediately by the law of large num-
bers.

An important role in the study of properties of Y is played by the conductances defined
by

cxy = νxqxy =
τx ∧ τy
ZN

for x ∼ y. (2.2.4)

Let θs be the left shift on the space of trajectories of Y , that is

(θsY )t = Ys+t. (2.2.5)
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2. Aging of the Metropolis dynamics on the Random Energy Model

Let Hx = inf{t > 0 : Yt = x} be the hitting time of x by Y , J1 the time of the first jump
of Y , and let H+

x = Hx ◦ θJ1 + J1 = inf{t > J1 : Yt = x} be the return time to x by Y .
Similarly define HA and H+

A for a set A ⊂ HN . The local time `t(x) of Y is given by

`t(x) =

∫ t

0

1{Ys=x}ds.

Using this notation the clock process S introduced in (2.1.4) can be written as

S(t) =

∫ t

0

(1 ∨ τYs)ds =
∑
x∈HN

`t(x)(1 ∨ τx).

To define the set of deep traps DN and the random scale RN mentioned in the introduc-
tion we introduce a few additional parameters. For α ∈ (0, 1), β > 0 as in Theorem 2.1.1
and γ as in (2.2.1), we fix γ′ and α′ such that

1

2
< γ′ < γ, and α′ =

βc
β

√
γ′. (2.2.6)

An explicit choice of γ′ will be made later in Section 2.5. We define the auxiliary scale

g′N = eα
′β2N(α′β

√
2πN)−

1
α′ ,

and set
DN = {x ∈ HN : τx ≥ g′N}.

to be the set of deep traps. By the Gaussian tail approximation (2.2.2) it follows that the
density of DN satisfies

P[x ∈ DN ] = 2−γ
′N(1 + o(1)). (2.2.7)

We quote the following observation on the size and sparseness of DN . The sparse-
ness will play a key role in our computation of the quasi-annealed Laplace transform in
Section 2.6.

Lemma 2.2.1 ([BČ08, Lemma 3.7]). For every ε > 0, P-a.s. for N large enough,

|DN |2(γ′−1)N ∈ (1− ε, 1 + ε). (2.2.8)

Moreover, since γ′ > 1/2, there exists δ > 0 such that P-a.s. for N large enough, the
separation event

S = {min{d(x, y) : x, y ∈ DN} ≥ δN} (2.2.9)

holds.

Finally, for the sake of concreteness, let us give the explicit form of the random scale
RN ,

RN = 2(γ−γ′)N

(∑
x∈DN

Eτ
x [`Tmix

(x)α]

Eτ
ν [Hx]

)−1

, (2.2.10)

where Tmix denotes the mixing time of Y , a randomized stopping time which we will con-
struct in Section 2.3. The reason for this definition will become apparent when we prove
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2.3. Mixing properties of the fast chain

the concentration of the local time functional mentioned in the introduction. Although
the definition of RN seems arbitrary by the somewhat free choice of the parameter γ′,
Theorem 2.1.1 actually shows that asymptotically RN will be independent of γ′.

For the rest of the paper, c, c′, c′′ will always denote positive constants whose values
may change from line to line. We will use the notation g = o(1) for a function g(N) that
tends to 0 as N →∞, and g = O(f) for a function g(N) that is asymptotically at most
of order f(N), i.e. limN→∞ |g(N)|/f(N) ≤ c, for some c > 0.

2.3. Mixing properties of the fast chain

The fact that the chain Y mixes fast, namely on a scale polynomial in N , plays a crucial
role in many of our arguments. In this section we analyze the mixing behavior of Y . We
first give a lower bound on the spectral gap λY of Y , which we then use to construct a
strong stationary time Tmix.

Proposition 2.3.1. There are constants κ > 0, K > 0, C0 > 0, such that P-a.s. for N
large enough,

λY ≥
κ

4
N−K−1−βC0 .

We prove this proposition with help of the Poincaré inequality derived in [DS91]. To
state this inequality, let Γ be a complete set of self-avoiding nearest-neighbor paths on
HN , that is for each x 6= y ∈ HN there is exactly one path γxy ∈ Γ connecting x and y. Let
|γ| be the length of the path γ. By Proposition 1’ of [DS91], using also the reversibility
of Y and recalling the definition (2.2.4) of the conductances, it follows that

1

λY
≤ max

e={u,v}∈EN

{
1

cuv

∑
γxy∈Γ:
γxy3e

|γxy|νxνy

}
. (2.3.1)

To minimize the right-hand side of (2.3.1), a special care should be taken of the edges
whose conductance cuv = (τu ∧ τv)/ZN is very small, that is which are incident to vertices
with very small τu. Those ‘bad’ edges should be avoided if possible by paths γ ∈ Γ. They
cannot be avoided completely, since Γ should be a complete set of paths. On the other
hand, if such edge is the first or the last edge of some path γxy, its small conductance is
canceled by equally small νx or νy. Therefore, to apply (2.3.1) efficiently, one should find
a set of paths Γ such that all paths γ ∈ Γ avoid ‘bad’ vertices, except for vertices at both
ends of the paths.

In the context of spin-glass dynamics this method was used before in [FIKP98] to find
the spectral gap of the Metropolis dynamics (2.1.2). Using the same approach, that is
using the same set of paths Γ as in [FIKP98], we could find a lower bound on the spectral
gap of the fast chain Y of leading order exp{−c

√
N logN}. This turns out to be too small

for our purposes, cf. Remark 2.6.4.
In the next lemma we construct a set of paths Γ that avoids more ‘bad’ vertices, which

allows to improve the lower bound on the spectral gap to be polynomial in N . This is
possible by using an embedding of HN into its subgraph of ‘good’ vertices, i.e. vertices
with not too small τx, which is inspired by similar embeddings in [HLN87].
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For a nearest-neighbor path γ = {x0, . . . , xn}, we call the vertices x1, . . . , xn−1 the
interior vertices of γ, and the edges {xi, xi+1}, i = 1, . . . , n− 2, the interior edges of γ.

Lemma 2.3.2. There is an integer K > 0 and a constant C0 > 0, such that P-a.s. for N
large enough there exists a complete set of paths Γ, such that the following three properties
hold.

(i) For every path γ ∈ Γ, every interior edge e = {u, v} satisfies

ZNcuv = τu ∧ τv ≥ N−βC0 .

(ii) |γ| ≤ 8N for all γ ∈ Γ.
(iii) Every edge e ∈ EN is contained in at most NK2N−1 paths γ ∈ Γ.

Proof. For C0 > 0, whose value will be fixed later, we say that x ∈ HN is good if
τx ≥ N−βC0 , and it is bad otherwise. To construct the complete set of paths Γ satisfying
the required properties, we will use the fact that the set of good vertices is very dense in
HN . In particular, we will show that

P-a.s. for N large enough, every x ∈ HN has at least 1
2
C0

√
N good neighbors, (2.3.2)

and

P-a.s. for N large enough, for any pair of vertices x, y at distance 2 or 3,
there is a nearest-neighbor path of length at most 7 connecting x and y,
such that all interior vertices of this path are good,

(2.3.3)

To prove these two claims, note first that for any x ∈ HN , the probability of being
bad is

P
[
τx < N−βC0

]
= P[Ex < −C0N

− 1
2 logN ] =

1

2
−
∫ C0N

− 1
2 logN

0

1√
2π
e−

s2

2 ds.

For N large enough the integrand is larger than 1
2
, and it follows that

P[x is bad] ≤ 1

2

(
1− C0N

− 1
2 logN

)
=:

1

2
(1− qN).

Hence, the number of bad neighbors of a vertex x ∈ HN is stochastically dominated by
a Binomial

(
N, 1

2
(1 − qN)

)
random variable B. For λ > 0, the exponential Chebyshev

inequality yields

P
[
x has more than N − 1

2
C0

√
N bad neighbors

]
≤ P

[
B ≥ N − 1

2
C0

√
N
]

= P
[
eλB ≥ eλ(N− 1

2
C0

√
N)
]

≤ e−λ(N− 1
2
C0

√
N)
(

1 +
1

2
(1− qN)(eλ − 1)

)N
= e−λ(N− 1

2
C0

√
N)

(
eλ

2

(
1− qN + e−λ(1 + qN)

))N
≤ 2−Ne

λ
2
C0

√
N
(

exp{−qN + e−λ(1 + qN)}
)N
.
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Since qN → 0 as N →∞, the last term in the parenthesis is bounded by 2e−λ for N large
enough. Inserting qN and choosing λ = logN , the above is bounded by

2−N exp
{1

2
C0

√
N logN − C0

√
N logN + 2

}
≤ 2−N exp

{
− 1

4
C0

√
N logN

}
,

for N large enough. With a union bound over all x ∈ HN and using the Borel-Cantelli
lemma, (2.3.2) follows.

To prove (2.3.3), we first introduce some notation. For a given vertex x and {i1, . . . , ik}
⊂ {1, . . . , N}, denote by xi1···ik the vertex that differs from x exactly in coordinates
i1, . . . , ik. If two vertices x and y are at distance 2, then y = xkl for some k, l ∈ {1, . . . , N}.
Then for {i, j} ∩ {k, l} = ∅ we define the path γijxy of length 6 as {x, xi, xij, xijk, xijkl =
yij, yj, y}. Similarly, for x, y with d(x, y) = 3, we have y = xklm, and for {i, j}∩{k, l,m} =
∅ we define the path γijxy of length 7 by {x, xi, xij, xijk, xijkl, xijklm = yij, yj, y}. Observe
that for fixed x, y with d(x, y) = 2 or 3 and for different pairs i, j the innermost 3 or 4
vertices of the paths γijxy are disjoint.

We now show that with high probability, for every x, y at distance 2 or 3, we may find
i, j such that γijxy has only good interior vertices. Fix a pair x, y ∈ HN at distance 2 or 3,
and let as above k, l or k, l,m be the coordinates in which x and y differ. Assume for the
moment that both x and y have at least 1

2
C0

√
N good neighbors. Then there are at least

1
4
C2

0N pairs i, j such that the vertices xi and yj are good. Moreover, since it is a matter
of dealing with a constant number of exceptions, we may tacitly assume that i 6= j, and
{i, j} ∩ {k, l} = ∅ or {i, j} ∩ {k, l,m} = ∅, respectively.

The remaining interior vertices {xij, xijk, xijkl = yij} or {xij, xijk, xijkl, xijklm = yij}
are all good with probability strictly larger than 1/2, so the probability that one or more
of these vertices are bad is bounded by 15/16. Since these 3 or 4 innermost vertices are
disjoint for different pairs i, j, by independence the probability that among all 1

4
C2

0N pairs
{i, j} there is none for which all innermost 3 or 4 vertices of γijxy are good is bounded by

(15/16)
1
4
C2

0N . Hence, for one fixed pair x, y ∈ HN at distance 2 or 3, where both x and y
have at least 1

2
C0

√
N good neighbors, the probability that there is no path from x to y

of length 6 or 7 with all interior vertices good is bounded by

(15/16)
1
4
C2

0N .

There are less than 2N(N2 +N3) pairs of vertices at distance 2 or 3 respectively, and

we know from the proof of (2.3.2) that with probability larger than 1− e−c
√
N logN every

x ∈ HN has at least 1
2
C0

√
N good neighbors. It follows that the probability that the

event in (2.3.3) does not happen is bounded by

e−c
√
N logN + 2N(N2 +N3)(15/16)

1
4
C2

0N . (2.3.4)

Choosing C0 >
√

4 log 2
log 15/16

and applying the Borel-Cantelli lemma implies (2.3.3).

We now use the density properties (2.3.2) and (2.3.3) of good vertices to define a
(random) mapping from the hypercube to its subgraph of good vertices. Let

PN =
{
{x0, . . . , xk} : k ≥ 0, d(xi, xi−1) = 1 ∀ i = 1, . . . , k

}
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be the set of finite nearest-neighbor paths on HN , including paths of length zero, which
are just single vertices. Define the mapping ϕN : {HN , EN} → {HN ,PN} in the following
way. For x ∈ HN , let

ϕN(x) =


x, if x is good;

xi, if x and xj, j < i, are bad but xi is good;

x, if x is bad and has no good neighbor.

By (2.3.2), P-a.s. for N large enough the last option will not be used, and therefore ϕN
maps all vertices to good vertices. In this case, for two neighboring vertices x, y, their
good images ϕN(x) and ϕN(y) can either coincide, or be at distance 1, 2, or 3.

For an edge e = {x, y} ∈ EN , let ϕN(e) be

• the ‘path’ {ϕN(x)}, if ϕN(x) is good and ϕN(x) = ϕN(y);
• the path {ϕN(x), ϕN(y)}, if both ϕN(x) and ϕN(y) are good and at distance 1;
• the path γijϕN (x),ϕN (y) with ‘minimal’ i, j such that all vertices of this path are good,

if both ϕN(x) and ϕN(y) are good with distance 2 or 3 and such path exists;
• the path {x, y} in any other case.

From (2.3.2) and (2.3.3) it follows that P-a.s. for N large enough the last option does not
occur and ϕN maps all edges to paths that contain only good vertices.

Finally, we extend ϕN to be a map that sends paths to paths. For γ = {x0, . . . , xn} ∈
PN we define φN(γ) to be a concatenation of paths ϕN({xi−1, xi}), i = 1, . . . , n, with
possible loops erased by an arbitrary fixed loop-erasure algorithm. Note that φN can
make paths shorter or longer, but by construction, for any path γ ∈ PN ,

|φN(γ)| ≤ 7|γ|. (2.3.5)

We can now construct the random set of paths Γ that satisfies the properties of the
lemma. We first define a certain canonical set of paths Γ̃, and then use the mapping φN
to construct Γ from Γ̃.

For any pair of vertices x 6= y ∈ HN , let γ̃xy be the path from x to y obtained by
consequently flipping the disagreeing coordinates, starting at coordinate 1. These paths
are all of length smaller or equal to N , and the set Γ̃ = {γ̃xy : x 6= y ∈ HN} has the
property that any edge e is used by at most 2N−1 paths in Γ̃. Indeed, if e = {u, v}, then
there is a unique i such that ui 6= vi. By construction, e ∈ γ̃xy if

x = (x1, . . . , xi−1, ui, ui+1, . . . , uN),

y = (v1, . . . , vi−1, vi, yi+1, . . . , yN).

It follows that a total of N −1 coordinates of x and y are unknown, and so the number of
possible pairs x, y for paths γ̃xy through e is bounded by 2N−1 (cf. [DS91, Example 2.2]).

For any pair x 6= y ∈ HN , let the path γxy in the set Γ be defined by

γxy =


φN(γ̃xy), if x, y are good,

{x} ◦ φN(γ̃xy), if x is bad and y is good,

φN(γ̃xy) ◦ {y}, if x is good and y is bad,

{x} ◦ φN(γ̃xy) ◦ {y}, if x, y are bad,
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2.3. Mixing properties of the fast chain

where ‘◦’ denotes the path concatenation.
It remains to check that this set of paths Γ indeed satisfies the required properties.

First, by construction, Γ is complete, i.e. every path γxy ∈ Γ connects x with y and is
nearest-neighbor and self-avoiding. Further, by construction of ϕN and the properties
(2.3.2) and (2.3.3), P-a.s. for N large enough, all interior vertices of all γ ∈ Γ are good,
i.e. (i) is satisfied. Moreover, by (2.3.5) and the construction of the paths γ̃ ∈ Γ̃, the
paths γ ∈ Γ have length at most 7N + 2, hence (ii) is satisfied for N ≥ 2. Finally, φN
deforms the paths γ̃ ∈ Γ̃ only locally, so that the number of paths in Γ passing through
an edge e is bounded by the number of paths in Γ̃ passing through the ball of radius 4
around e. But this number is bounded by 2N−1 times the number of edges in that ball,
which is bounded by NK for some integer K > 0. This proves (iii) and thus finishes the
proof of the lemma.

We can now prove the spectral gap estimate.

Proof of Proposition 2.3.1. P-a.s. for every N large enough we can find a complete set of
paths Γ such that (i), (ii) and (iii) of Lemma 2.3.2 and (2.2.3) hold. By (ii), the expression
in (2.3.1) over which the maximum is taken is bounded from above by

8N

ZN

1

τu ∧ τv

∑
γxy3{u,v}

(τx ∧ 1)(τy ∧ 1). (2.3.6)

We distinguish three cases for the position of the edge {u, v} in a path γxy.

(1) If {u, v} is an interior edge of γxy, then τu ∧ τv is larger than N−βC0 by (i) of
Lemma 2.3.2.

(2) If {u, v} is at the end of the path γxy, say at u = x, and v is an interior vertex of
γxy, then τx ∧ τv is either larger than N−βC0 , or it is equal to τx in which case it
cancels with τx ∧ 1. Indeed, if τx ∧ τv was smaller than N−βC0 and equal to τv, then
v would be a bad interior vertex of γ, which contradicts (i) of Lemma 2.3.2.

(3) If γxy only consists of the single edge {x, y}, then τx ∧ τy is either larger than 1, or
the term τx ∧ τy cancels with the smaller one of τx ∧ 1 and τy ∧ 1.

It follows that for every edge {u, v} the expression (2.3.6) is bounded from above by

8N

ZN
NβC0#{paths through e}.

Since, by (iii) of Lemma 2.3.2, the number of paths is bounded by NK2N−1, and, by
(2.2.3), ZN ≥ κ2N , this completes the proof.

In a next step we construct the mixing time Tmix of the fast chain Y . To this end,
define the mixing scale

mN =
8

κ
NK+3+βC0 . (2.3.7)

Then Proposition 2.3.1 reads λN ≥ 2N2m−1
N .

We assume that our probability space (Ω,F ,P) is rich enough so that there exist
infinitely many independent uniformly on [0, 1] distributed random variables, independent
of anything else. A randomized stopping time T is a positive random variable such that
the event {T ≤ t} depends only on {Ys : s ≤ t}, the environment, and on the values of
these additional random variables.

29



2. Aging of the Metropolis dynamics on the Random Energy Model

Proposition 2.3.3. P-a.s. for N large enough, there exists a randomized stopping time
Tmix with values in {mN , 2mN , 3mN , . . . } such that Tmix is a strong stationary time for
Y , that is for any (possibly random) Y0 ∈ HN ,

(i) P τ
Y0

[YTmix
= y] = νy,

(ii) for any k ≥ 1, P τ
Y0

[Tmix ≥ kmN ] = e−(k−1),
(iii) Tmix and YTmix

are independent.

Proof. This construction follows closely [MM15, Proposition 3.1], with only minor adap-
tations. Define the following distances from stationarity,

s(t) = min{s ≥ 0 : ∀x, y ∈ HN , P
τ
x [Yt = y] ≥ (1− s)ν(y)},

d̄(t) = max
x,y∈HN

‖P τ
x [Yt ∈ · ]− P τ

y [Yt ∈ · ]‖TV ,

where ‖ · ‖TV denotes the total variation distance. Define the time

T = inf{t ≥ 0 : d̄(t) ≤ e−1}.

From [AF02, Lemmas 4.5, 4.6 and 4.23] we know that

d̄(t) ≤ e−bt/T c,

s(2t) ≤ 1− (1− d̄(t))2,

T ≤ 1

λY

(
1 +

1

2
log

1

ν∗

)
,

(2.3.8)

where ν∗ = minx νx. Since P[τx ≤ e−N
2
] ≤ ce−c

′N , by the Borel-Cantelli lemma, P-a.s. for
N large enough, log 1

ν∗
≤ N2. Therefore, by Proposition 2.3.1 and (2.3.8), P-a.s. for N

large enough, T ≤ 1
2
mN , d̄(1

2
mN) ≤ e−1, and s(mN) ≤ e−1, which means that for all

Y0, y ∈ HN ,
P τ
Y0

[YmN = y] ≥ (1− e−1)νy.

We can now define the strong stationary time Tmix with values in {mN , 2mN , . . . }.
Let U1, U2, . . . be i.i.d. uniformly on [0, 1] distributed random variables, independent of
anything else. Conditionally on Y0 = x, YmN = y, let Tmix = mN if

U1 ≤
(1− e−1)νy
P τ
x [YmN = y]

(≤ 1).

Otherwise, we define Tmix inductively: for every k ∈ N, conditionally on Tmix > kmN ,
YkmN = z and Y(k+1)mN = y, let Tmix = (k + 1)mN if

Uk+1 ≤
(1− e−1)νy
P τ
z [YmN = y]

(≤ 1).

By construction, we have for every x ∈ HN ,

P τ
x [Tmix = mN | YmN = y] =

(1− e−1)νy
P τ
x [YmN = y]

,

and thus
P τ
Y0

[Tmix = mN , YmN = y | Y0 = x] = (1− e−1)νy.

30



2.4. Bounds on mean hitting time and random scale

Similarly, we have

P τ
Y0

[Tmix = (k + 1)mN , Y(k+1)mN = y | Tmix > kmN , YkmN = x] = (1− e−1)νy.

By induction over k, we obtain that for any k ∈ N and y ∈ HN ,

P τ
Y0

[Tmix = kmN , YkmN = y] = e−(k−1)(1− e−1)νy,

which finishes the proof.

For future reference we collect here two useful statements that follow directly from the
construction of Tmix.

Lemma 2.3.4. For every t > 0 and x ∈ HN and every starting distribution ρ,

P τ
ρ [Yt = x|Tmix < t] = νx,∣∣P τ

ρ [Yt = x]− νx
∣∣ ≤ P τ

ρ [Tmix > t] = e−bt/mN−1c.

2.4. Bounds on mean hitting time and random scale

In this section we prove bounds on the mean hitting time Eτ
ν [Hx] of deep traps x ∈ DN .

As a corollary of the proof we will obtain a useful bound on the Green function in deep
traps. The bounds on the mean hitting times will further imply bounds on the random
scale RN , which will imply the claim (2.1.7) of Theorem 2.1.1.

Proposition 2.4.1. There exists δ ∈ (0, 1/6), such that P-a.s. for N large enough,

2N−N
1−δ ≤ Eτ

ν [Hx] ≤ 2N+N1−δ
for every x ∈ DN .

The proof of Proposition 2.4.1 is split in two parts.

Proof of the upper bound. For the upper bound we use [AF02, Lemma 3.17] which states
that

Eτ
ν [Hx] ≤

1− νx
λY νx

.

Since τx ≥ 1 for deep traps x ∈ DN , this is smaller than ZN
λY

, which by Proposition 2.3.1

and (2.2.3) is bounded by 2N+N1−δ
, P-a.s. for N large enough.

For the lower bound we will use a version of Proposition 3.2 of [ČTW11] which allows
to bound the inverse of the mean hitting time Eτ

ν [Hx] in terms of the effective conductance
from x to a suitable set B. Recall the definition of the conductances cxy from (2.2.4), and
let cx =

∑
y∼x cxy. Following the terminology of [LP14, Chapter 2], we define the effective

conductance between a vertex x and a set B as

C(x→ B) = P τ
x [H+

x > HB]cx.

By Proposition 2.A.1, which is a generalization of [ČTW11, Proposition 3.2] to arbitrary
continuous-time finite-state-space Markov chains,

1

Eτ
ν [Hx]

≤ C(x→ B)ν(B)−2. (2.4.1)

31



2. Aging of the Metropolis dynamics on the Random Energy Model

To apply this bound effectively, we should find a set B such that C(x→ B) is small and
ν(B) close to 1. In the next lemma we construct such sets B for every x ∈ HN . For these
sets we have some control on the conductances connecting B and Bc. Using standard
network reduction techniques we can then give a bound on the effective conductance
C(x→ B), which when plugged into (2.4.1) will imply the lower bound on Eτ

ν [Hx].
Denote by B(x, r) = {y ∈ HN , d(x, y) ≤ r} the ball of radius r around x, and by

∂B(x, r) = {y ∈ HN , d(x, y) = r} the sphere of radius r.

Lemma 2.4.2. For every δ ∈ (0, 1/6), P-a.s. for N large enough, there exist radii
(ρx)x∈HN satisfying 1 ≤ ρx ≤ N3δ, such that for all x ∈ HN and for all y ∈ ∂B(x, ρx),

τy ≤ 2
1
2
N1−δ

.

Proof. Fix δ ∈ (0, 1/6). We say that a sphere ∂B(x, r) is good if τy ≤ 2
1
2
N1−δ

for all
y ∈ ∂B(x, r), otherwise we say that it is bad. Using the Gaussian tail approximation
(2.2.2), we get that

P
[
τy > 2

1
2
N1−δ] ≤ ce

− log2 2

8β2
N1−2δ

.

The size of the sphere ∂B(x, r) is bounded by N r, hence the probability that the sphere
∂B(x, r) is bad is bounded by

N rP
[
τy > 2

1
2
N1−δ] ≤ c exp

{
r logN − log2 2

8β2
N1−2δ

}
.

By independence of the τx, the probability that for one fixed x all the spheres ∂B(x, r),
r = 1, . . . , N3δ, are bad is bounded by

N3δ∏
r=1

N rP
[
τy > 2

1
2
N1−δ] ≤ (NN3δP

[
τy > 2

1
2
N1−δ])N3δ

≤ exp
{
N3δ log c+N6δ logN − log2 2

8β
N1+δ

}
.

Finally, by a union bound, the probability that among all 2N vertices in HN there is one
for which all spheres ∂B(x, r), r = 1, . . . , N3δ, are bad is bounded by

2N
(
NN3δP

[
τy > 2

1
2
N1−δ])N3δ

≤ exp
{
N3δ log c+N6δ logN +N log 2− log2 2

8β
N1+δ

}
.

Since δ < 1/6 this decays faster than exponentially, and so by the Borel-Cantelli lemma
the event occurs P-a.s. only for finitely many N , i.e. P-a.s. for N large enough we can find
for every x ∈ HN a radius ρx ≤ N3δ such that the sphere ∂B(x, ρx) is good.

Proof of the lower bound of Proposition 2.4.1. For every x ∈ DN we define the set Ax =
B(x, ρx) if the radius ρx from Lemma 2.4.2 exists, otherwise we take Ax = {x}. By
Lemma 2.4.2 and (2.2.3), P-a.s. for N large enough, for all x ∈ DN all conductances

cyz = (τy ∧ τz)/ZN connecting Ax and Acx are smaller than 2
1
2
N1−δ

/(κ2N).
By the parallel law (cf. [LP14, Chapter 2.3]), the effective conductance between the

boundaries of Ax and Acx is equal to the sum of all the conductances of edges connecting
Ax and Acx, and so P-a.s. for N large enough,

C(∂Ax → ∂Acx) =
∑
y∈∂Ax
z∈∂Acx

cyz ≤ κ−1Nρx+12
1
2
N1−δ

2−N .
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2.4. Bounds on mean hitting time and random scale

By Rayleigh’s monotonicity principle (cf. [LP14, Chapter 2.4]), comparing the effective
conductances from x to Acx before and after setting all the conductances inside Ax to
infinity, it follows that

C(x→ Acx) ≤ C(∂Ax → ∂Acx) ≤ κ−1Nρx+12
1
2
N1−δ

2−N .

Since δ < 1/6 and ρx ≤ N3δ, we have Nρx+1 ≤ 2
1
2
N1−δ

for N large enough, and thus,
P-a.s. for N large enough,

C(x→ Acx) ≤ c2−N+N1−δ
. (2.4.2)

Moreover, P-a.s. for N large enough, as νy = (1 ∧ τy)/ZN ≤ 1/ZN , using (2.2.3) again,

ν(Acx) = 1− ν(Ax) ≥ 1− Z−1
N |Ax| ≥ 1− c2−NNN3δ N→∞−−−→ 1. (2.4.3)

Plugging (2.4.2) and (2.4.3) into (2.4.1) and readjusting δ to accommodate for constants
easily yields the required lower bound Eτ

ν [Hx] ≥ 2N−N
1−δ

. This completes the proof.

As a corollary we get a lower bound on Eτ
x [`HAcx (x)] for the deep traps x ∈ DN .

Corollary 2.4.3. There are constants δ ∈ (0, 1/6) and c > 0, such that P-a.s. for N
large enough, for all x ∈ DN , under P τ

x the local time of Y in x before leaving Ax,
`HAcx (x), stochastically dominates an exponential random variable with mean c2−N

1−δ
. In

particular, P-a.s. for N large enough,

Eτ
x

[
`HAcx (x)

]
≥ c2−N

1−δ
.

Proof. The local time at x before hitting Acx is an exponential random variable with mean
equal to

Eτ
x

[
#{visits to x before HAcx}

]
· Eτ

x [J1].

The expected number of visits before leaving Ax is P τ
x [H+

x > HAcx ]
−1 = cxC(x → Acx)

−1.
The mean duration of one visit to x is Eτ

x [J1] = (
∑

y∼x qxy)
−1. For the deep traps we have

τx > 1, therefore
∑

y∼x qxy =
∑

y∼x cxy/νx = ZNcx. It follows that the local time at x

before hitting Acx is in fact an exponential random variable with mean Z−1
N C(x→ Acx)

−1.
Using the bounds (2.4.2) and (2.2.3), the claim follows easily.

As a next consequence we give bounds on the random scale RN defined in (2.2.10).
Note that this lemma also proves the statement (2.1.7) about the asymptotic behavior of
RN in Theorem 2.1.1.

Lemma 2.4.4. For every ε > 0, P-a.s. for N large enough,

2(γ−ε)N ≤ RN ≤ 2(γ+ε)N .

Proof. By Proposition 2.3.3, Tmix/mN is a geometric random variable with parameter e−1,
and thus Eτ

x [`Tmix
(x)α] ≤ Eτ

x [Tmix
α] ≤ cmα

N ≤ eεN by (2.3.7), for every ε > 0 and N large
enough. Moreover, |DN | ≤ c′2(1−γ′)N by (2.2.8). Using the lower bound on Eτ

ν [Hx] from
Proposition 2.4.1, we obtain that for every ε > 0, P-a.s. for N large enough,

RN = 2(γ−γ′)N

(∑
x∈DN

Eτ
x [`Tmix

(x)α]

Eτ
ν [Hx]

)−1

≥ 2(γ−ε)N .

33



2. Aging of the Metropolis dynamics on the Random Energy Model

For the upper bound we need a lower bound on Eτ
x [`Tmix

(x)α]. Recall the sets Ax
constructed in the proof of Proposition 2.4.1, and note that

Eτ
x [`Tmix

(x)α] ≥ Eτ
x

[
1{Tmix≥HAcx}`HAcx (x)α

]
. (2.4.4)

By Corollary 2.4.3, P-a.s. for N large enough, the local time at x before hitting Acx
stochastically dominates an exponential random variable with mean c2−N

1−δ
, hence

P τ
x

[
`HAcx (x) ≤ 2−2N1−δ] ≤ 1− e−c2−N

1−δ

≤ c2−N
1−δ
.

Moreover, for every ε > 0, P-a.s. for N large enough,

P τ
x [Tmix < HAcx ] ≤ P τ

x [YTmix
∈ Ax] = ν(Ax) ≤ κ−12−NNN3δ ≤ 2−εN .

Using the last two observations in (2.4.4), P-a.s. for N large enough,

Eτ
x [`Tmix

(x)α] ≥ P τ
x

[
{Tmix ≥ HAcx} ∩ {`HAcx (x) ≥ 2−2N1−δ}

] (
2−2N1−δ

)α
≥ 2−2αN1−δ

(
P τ
x

[
`HAcx (x) ≥ 2−2N1−δ]− P τ

x

[
{`HAcx (x) ≥ 2−2N1−δ} ∩ {Tmix < HAcx}

])
≥ 2−2αN1−δ

(
P τ
x

[
`HAcx (x) ≥ 2−2N1−δ]− P τ

x

[
Tmix < HAcx

])
≥ 2−2αN1−δ

(
(1− c′2−N1−δ

)− 2−εN
)

≥ 2−εN .

Combining this with |DN | ≥ c2(1−γ′)N by (2.2.8) and the upper bound on Eτ
ν [Hx] from

Proposition 2.4.1, we obtain the required upper bound on RN .

2.5. Concentration of the local time functional

In this section we prove the concentration of the local time functional that appears in the
computation of the quasi-annealed Laplace transform of the clock process on the deep
traps, as explained in the introduction (cf. (2.1.9)). We denote this functional by

LN(t) = 2(γ′−γ)N
∑
x∈DN

`tRN (x)α.

So far we had no restriction on the choice of γ′ other than 1/2 < γ′ < γ, see (2.2.6).
We now make an explicit choice as follows. Let ε0 = 1

2

(
(1− γ) ∧ (γ − 1

2
)
)
, and define

γ′ = γ − ε0, such that in particular

1− γ ≥ 2ε0, (2.5.1)

γ − γ′ = ε0. (2.5.2)

The main result of this section is the following proposition.

Proposition 2.5.1. For every fixed t ≥ 0, P-a.s. for N large enough,

P τ
ν

[
|LN(t)− t| ≥ 2−

1
5
ε0N
]
≤ c2−

1
10
ε0N .
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Proof. We approximate LN(t) by the sum of essentially independent random variables as
follows. Let K =

⌊
2ε0N

⌋
. For a fixed t > 0, define

tk =
tRN

K
k, k = 0, . . . , K.

Recall the notation (2.2.5). For every x ∈ DN and k = 1, . . . , K, define Hk
x = tk−1 +Hx ◦

θtk−1
to be the time of the first visit to x after tk−1, and set

`kt,x =

(∫ (Hk
x+N2mN )∧(tk−N2mN )

Hk
x∧(tk−2N2mN )

1{Ys=x}ds

)α

.

The random variable `kt,x gives ‘roughly’ the α-th power of the time that Y spends in x
between tk−1 and tk −N2mN , with some suitable truncations. Let further

Uk
N(t) = 2(γ′−γ)N

∑
x∈DN

`kt,x.

The next lemma, which we prove later, shows that the sum of the Uk
N(t)’s is a good

approximation for LN(t).

Lemma 2.5.2. For every t > 0, P-a.s. for N large enough,

P τ
ν

[
LN(t) 6=

K∑
k=1

Uk
N(t)

]
≤ c2−

1
2
ε0N .

With Lemma 2.5.2, the proof of the proposition reduces to understanding of the ap-
proximating sum

∑K
k=1 U

k
N(t). We will compute its expectation and variance under P τ

ν .
In particular, we will show that there is c <∞ such that for every t > 0,∣∣∣∣Eτ

ν

[ K∑
k=1

Uk
N(t)

]
− t
∣∣∣∣ ≤ c2−2ε0N , P-a.s. as N →∞, (2.5.3)

and

Varτν

( K∑
k=1

Uk
N(t)

)
≤ c2−

1
2
ε0N , P-a.s. as N →∞. (2.5.4)

The statement of the proposition then follows from Lemma 2.5.2, (2.5.3) and (2.5.4) by
routine application of the Chebyshev inequality. Indeed, P-a.s. for N large enough,

P τ
ν

[
|LN(t)− t| ≥ 2−

1
5
ε0N

]
≤ P τ

ν

[
LN(t) 6=

K∑
k=1

Uk
N(t)

]
+ P τ

ν

[∣∣∣∣ K∑
k=1

Uk
N(t)− Eτ

ν

[ K∑
k=1

Uk
N(t)

]∣∣∣∣ ≥ 2 · 2−
1
5
ε0N

]
≤ c2−

1
2
ε0N + c′2−

1
10
ε0N ≤ c′′2−

1
10
ε0N ,

which is the claim of the proposition.
We proceed by computing the expectation (2.5.3). We will need two lemmas which

we show later. The first lemma estimates the probability that a deep trap is visited by
the process Y .
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Lemma 2.5.3. For every tN such that 1 ≤ tN ≤ 2N , for every ε > 0, P-a.s. for N large
enough, for all x ∈ DN ,

P τ
ν [Hx ≤ tN ] =

tN
Eτ
ν [Hx]

+O
(
t2N22(ε−1)N

)
+O

(
2(ε−1)N

)
≤ ctN2(ε−1)N .

The second lemma then gives the expected contribution of a single `kt,x to
∑K

k=1 U
k
N(t).

Lemma 2.5.4. For every fixed t > 0, k = 1, . . . , K and ε > 0, P-a.s. for N large enough,
for all x ∈ DN ,

Eτ
ν

[
`kt,x
]

=
tRN

KEτ
ν [Hx]

Eτ
x

[
`Tmix

(x)α
]

+O
(
2(2γ+3ε−2ε0−2)N

)
.

With Lemma 2.5.4 it is easy to compute the expectation (2.5.3). Using that |DN | ≤
c2(1−γ′)N by (2.2.8), and the definition (2.2.10) of RN , for every ε > 0, P-a.s. for N large
enough,

Eτ
ν

[ K∑
k=1

Uk
N(t)

]
= 2(γ′−γ)N

∑
x∈DN

K∑
k=1

(
tRN

KEτ
ν [Hx]

Eτ
x [`Tmix

(x)α] +O
(
2(2γ+3ε−2ε0−2)N

))
= t+O

(
2(γ′−γ)N2(1−γ′)N2(2γ−2+3ε−ε0)N

)
= t+O

(
2(γ−1+3ε−ε0)N

)
.

Choosing ε < ε0/3 and recalling (2.5.1) implies (2.5.3).
Next, we estimate the variance (2.5.4). Since ν is the stationary measure for Y , the

random variables Uk
N(t), k = 1, . . . , K, are identically distributed under P τ

ν . Hence

Varτν

( K∑
k=1

Uk
N(t)

)
= K Varτν

(
U1
N(t)

)
+ 2

∑
1≤k<j≤K

Covτν
(
Uk
N(t), U j

N(t)
)
. (2.5.5)

The covariances can be neglected easily. Indeed, since by definition Uk
N(t) depends

on the trajectory of Y between times tk−1 and tk − N2mN only, we can use the Markov
property at the later time to write

Covτν
(
Uk
N(t), U j

N(t)
)

= Eτ
ν

[(
Uk
N(t)− Eτ

νU
k
N(t)

)
Eτ [U j

N(t)− Eτ
νU

j
N(t)|Ytk−N2mN ]

]
. (2.5.6)

By Lemma 2.3.4,
∣∣P τ [Ytk = y|Ytk−N2mN ]− νy

∣∣ ≤ e−cN
2
. Using in addition that UN

j ≤ ec
′N

for some sufficiently large c′, we see that the inner expectation satisfies∣∣Eτ [U j
N(t)− Eτ

νU
j
N(t)|Ytk−N2mN ]

∣∣ ≤ e−cN
2/2.

Inserting this inequality back to (2.5.6) and summing over k < j then implies that the
second term in (2.5.5) is O(e−cN

2
) and thus can be neglected when proving (2.5.4).

To control the variance of U1
N(t) in (2.5.5), it is enough to bound its second moment,

which is

Eτ
ν

[
U1
N(t)2

]
= 22(γ′−γ)N

(∑
x∈DN

Eτ
ν

[
(`1
t,x)

2
]

+
∑

x 6=y∈DN

Eτ
ν [`1

t,x`
1
t,y]

)
.
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Since, by definition, `1
t,x ≤ N2mN and `1

t,x 6= 0 implies Hx ≤ tRN/K,

Eτ
ν

[
U1
N(t)2

]
≤ 22(γ′−γ)NN4αm2α

N

( ∑
x∈DN

P τ
ν

[
Hx ≤

tRN

K

]
+

∑
x6=y∈DN

P τ
ν

[
Hx, Hy ≤

tRN

K

])
.

(2.5.7)

By Lemma 2.5.3 and Lemma 2.4.4, for every ε > 0, P-a.s. as N →∞,

P τ
ν

[
Hx ≤

tRN

K

]
≤ c2(γ−1+ε−ε0)N . (2.5.8)

Moreover, by (2.2.8), |DN | ≤ c2(1−γ′)N , and by (2.3.7), N4αm2α
N ≤ 2εN , for every ε > 0

and N large enough. It follows that the contribution of the first sum in (2.5.7) to the
variance, including the prefactor K = 2ε0N from (2.5.5), can be bounded by

c2(2(γ′−γ)+1−γ′+γ−1+2ε)N = c2(γ′−γ+2ε)N .

By (2.5.2), γ′ − γ + 2ε ≤ −ε0 + 2ε < −1
2
ε0 for ε < ε0/4, and hence this contribution is

smaller than c2−
1
2
ε0N as required for (2.5.4).

For the second summation in (2.5.7) we write

P τ
ν

[
Hx, Hy ≤

tRN

K

]
≤ P τ

ν

[
Hx < Hy ≤

tRN

K

]
+ P τ

ν

[
Hy < Hx ≤

tRN

K

]
.

By the Markov property, each of these two probabilities can be bounded by

P τ
ν

[
Hx < Hy ≤

tRN

K

]
=

∫ tRN
K

0

P τ
ν [Hx ∈ du]P τ

x

[
Hy <

tRN

K
− u
]

≤
∫ tRN

K

0

P τ
ν [Hx ∈ du]

(
P τ
x [Hy ≤ Tmix] + P τ

ν

[
Hy ≤

tRN

K

])
≤ P τ

ν

[
Hx ≤

tRN

K

](
P τ
x [Hy ≤ Tmix] + P τ

ν

[
Hy ≤

tRN

K

])
.

Using (2.5.8) and (2.2.8) again, the second sum in (2.5.7) is bounded by

c2(γ−1+ε−ε0)N
(

22(1−γ′)N2(γ−1+ε−ε0)N +
∑

x 6=y∈DN

P τ
x [Hy ≤ Tmix]

)
. (2.5.9)

The first term in the parentheses of (2.5.9) together with the prefactors K from (2.5.5)
and 22(γ′−γ)NN4αm2α

N ≤ 2(2(γ′−γ)+ε)N from (2.5.7), contributes to the variance by at most

c2(ε0+2(γ′−γ)+ε+2(1−γ′)+2(γ−1+ε−ε0))N = c2(3ε−ε0)N ≤ c2−
1
2
ε0N

if ε is small enough, as required by (2.5.4).
For the second term in the parentheses of (2.5.9) we need the following lemma whose

proof is again postponed.
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Lemma 2.5.5. Let Wx
t =

∑
y∈DN ,y 6=x 1{Hy≤t}. Then for every ε > 0, P-a.s. for N large

enough, for every x ∈ DN ,
Eτ
x [Wx

Tmix
] ≤ 2εN .

Using Lemma 2.5.5, and including all the prefactors as before, the contribution of the
second term in (2.5.9) to the variance (2.5.5) is bounded by

c2(ε0+2(γ′−γ)+ε+1−γ′+γ−1+ε−ε0+ε)N = c 2(γ′−γ+3ε)N ≤ 2−
1
2
ε0N ,

where for the last inequality we used (2.5.2) again, and choose ε small enough. This
completes the proof of (2.5.4) and thus of the proposition.

We proceed by proving the lemmas used in the above proof.

Proof of Lemma 2.5.3. By [AB92, Theorem 1] the hitting time Hx is approximately ex-
ponential in the sense that∣∣∣P τ

ν [Hx > t]− e−
t

Eτν [Hx]

∣∣∣ ≤ 1

λYEτ
ν [Hx]

.

Hence, using Propositions 2.3.1 and 2.4.1 to bound λY and Eτ
ν [Hx] respectively, we have

for every ε > 0, P-a.s. for N large enough,

P τ
ν [Hx ≤ tN ] = (1− e−

tN
Eτν [Hx] ) +O

(
2(ε−1)N

)
=

tN
Eτ
ν [Hx]

+O
(
t2N22(ε−1)N

)
+O

(
2(ε−1)N

)
.

Finally, if 1 ≤ tN ≤ 2N this is bounded by ctN2(ε−1)N , which proves the lemma.

Proof of Lemma 2.5.4. By the strong Markov property and the definition of `kt,x,

Eτ
ν

[
`kt,x
]
≥ P τ

ν

[
Hx ∈ [tk−1, tk − 2N2mN ]

]
Eτ
x

[
`N2mN (x)α

]
,

Eτ
ν

[
`kt,x
]
≤ P τ

ν

[
Hx ∈ [tk−1, tk −N2mN ]

]
Eτ
x

[
`N2mN (x)α

]
.

(2.5.10)

We will now give approximations of the expressions appearing in (2.5.10).
Observe that for every s, t > 0,

`t(x)α ≤ `s(x)α + (`t(x)− `s(x))α.

Using this inequality with t = N2mN and s = Tmix and applying the strong Markov
property at Tmix, observing that YTmix

is ν-distributed,

Eτ
x

[
`N2mN (x)α

]
≤ Eτ

x

[
`Tmix

(x)α
]

+ Eτ
ν

[
`N2mN (x)α

]
.

By Lemma 2.5.3, using also that by (2.3.7), `N2mN (x)α ≤ N2αmα
N ≤ 2εN for every ε > 0

and N large enough,

Eτ
ν

[
`N2mN (x)α

]
≤ P τ

ν

[
Hx ≤ N2mN ]2εN ≤ c2(3ε−1)N .

Hence we obtain the upper bound

Eτ
x

[
`N2mN (x)α

]
≤ Eτ

x

[
`Tmix

(x)α
]

+ c2(3ε−1)N . (2.5.11)
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For a matching lower bound, note that

Eτ
x

[
`N2mN (x)α

]
≥ Eτ

x

[
`Tmix

(x)α1{Tmix≤N2mN}
]
.

But from Proposition 2.3.3 it follows that

Eτ
x [`Tmix

(x)α1{Tmix>N2mN}] ≤ Eτ
x [Tmix

α1{Tmix>N2mN}] ≤
∞∑

k=N2

(kmN)αe−k ≤ ce−c
′N2

,

so that
Eτ
x

[
`N2mN (x)α

]
≥ Eτ

x

[
`Tmix

(x)α
]
− ce−cN2

. (2.5.12)

Combining (2.5.11) and (2.5.12), we obtain

Eτ
x

[
`N2mN (x)α

]
= Eτ

x

[
`Tmix

(x)α
]

+O
(
2(3ε−1)N

)
. (2.5.13)

Note also that by (2.3.7), for every ε > 0 and N large enough,

Eτ
x [`Tmix

(x)α] ≤ Eτ
x [Tmix

α] ≤ cmα
N ≤ 2εN . (2.5.14)

To approximate the probabilities in (2.5.10), we apply Lemma 2.5.3 for tN = tk−1 and
tN = tk − iN2mN , for a fixed t > 0 and i = 1, 2. Using Lemma 2.4.4 to bound RN and
Proposition 2.4.1 to bound Eτ

ν [Hx], for every ε > 0, P-a.s. for N large enough, for both
i = 1, 2,

P τ
ν

[
Hx ∈ [tk−1, tk−iN2mN ]

]
=

tRN

KEτ
ν [Hx]

+O
(
22(γ+ε−ε0−1)N

)
= O

(
2(γ+ε−ε0−1)N

)
. (2.5.15)

Inserting both (2.5.15) and (2.5.13) in (2.5.10), and using (2.5.14), for every ε > 0,
P-a.s. for N large enough,

Eτ
ν

[
`kt,x
]

=
tRN

KEτ
ν [Hx]

Eτ
x

[
`Tmix

(x)α
]

+O
(
2(2γ+3ε−2ε0−2)N

)
.

This proves the lemma.

Proof of Lemma 2.5.2. Note first that{
LN(t) 6=

K∑
k=1

Uk
N(t)

}
⊆
{
∃x ∈ DN : `tRN (x)α 6=

K∑
k=1

`kt,x

}
.

To control the probability of this event, we introduce some more notation. Set H
(0)
x = 0,

H
(1)
x = Hx, and for k ≥ 2 define the time of the ‘k-th visit after mixing’ inductively as

H(k)
x = inf{t > Tmix ◦ θH(k−1)

x
+H(k−1)

x : Yt = x}.

Let N x
t = min{k ≥ 0, H

(k)
x ≤ t} be the number of ‘visits after mixing’ to x before time

t. Finally, let Ik = [tk − 2N2mN , tk]. Then

P τ
ν

[
∃x ∈ DN : `tRN (x)α 6=

K∑
k=1

`kt,x

]
≤ P τ

ν

[
Ys ∈ DN for some s ∈

K⋃
k=1

Ik

]
+ P τ

ν

[
∃x ∈ DN : N x

tRN
≥ 2
]

+ P τ
ν

[
∃x ∈ DN : Tmix ◦ θHx > N2mN

]
.

(2.5.16)
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2. Aging of the Metropolis dynamics on the Random Energy Model

We show that each of the three terms on the right-hand side is smaller than c2−
1
2
ε0N ,

which will prove the lemma.
For the first term in (2.5.16), using the stationarity of ν and the Markov property

P τ
ν

[
Ys ∈ DN for some s ∈

K⋃
k=1

Ik

]
≤ K

∑
x∈DN

P τ
ν

[
Hx ≤ 2N2mN

]
. (2.5.17)

By Lemma 2.5.3, P-a.s. for all x ∈ DN , for ε > 0 small and N large enough,

P τ
ν [Hx ≤ 2N2mN ] ≤ 2(ε−1)N .

Since |DN | ≤ c2(1−γ′)N by (2.2.8), the right hand side of (2.5.17) is bounded by c2(ε0+ε−γ′)N .
Since γ′ > 1/2 and by definition ε0 ≤ 1/4, when ε is small enough this is smaller than

c2−
1
2
ε0N as required.

For the second term in (2.5.16), by Lemma 2.5.3 and the strong Markov property at
Tmix, for every ε > 0, P-a.s. for N large enough,

P τ
ν [H(2)

x ≤ tRN ] ≤ P τ
ν [Hx ≤ tRN ]2 ≤ c22(γ−1+ε)N .

Together with (2.2.8) to bound |DN |, and using (2.5.1) and (2.5.2), P-a.s. for N large
enough,

P τ
ν

[
∃x ∈ DN : N x

tRN
≥ 2
]
≤ c2(1−γ′)N22(γ−1+ε)N

= c2(γ−γ′)N+(γ−1)N+εN

≤ c2(−ε0+ε)N ≤ c2−
1
2
ε0N

as required.
Finally we give a bound on the third term in (2.5.16). By Proposition 2.3.3, P τ

x [Tmix >
N2mN ] ≤ e−cN

2
. Thus, with (2.2.8) to bound |DN |, P-a.s. for N large enough,

P τ
ν

[
∃x ∈ DN : Tmix ◦ θHx > N2mN

]
≤ c2(1−γ′)NP τ

x [Tmix > N2mN ]

≤ c′2−
1
2
ε0N .

Together with the previous estimates, this implies that the right-hand side of (2.5.16) is

bounded by c2−
1
2
ε0N , and concludes the proof of the lemma.

Proof of Lemma 2.5.5. Let H0 = 0 and define recursively for i ≥ 1

Hi = inf{t ≥ Hi−1 : Yt ∈ DN \ {YHi−1
}}.

By (2.2.9), P-a.s. for N large enough, the vertices in DN are at least distance δN from
each other. In particular the balls Ax = B(x, ρx), x ∈ DN , constructed in Lemma 2.4.2
are disjoint. Hence, when on y ∈ DN , the random walk Y should first leave Ay in order
to visit DN \ {y}. The strong Markov property and Corollary 2.4.3 then imply that Hi

stochastically dominates a Gamma random variable with parameters i and µ := c2N
1−δ

.
If Wx

t ≥ i, then Hi ≤ t. Hence, for t ≥ µ,

Eτ
x

[
Wx

t

]
=
∑
i≥1

P τ
x [Wx

t ≥ i] ≤
∑
i≥1

P τ
x [Hi ≤ t] ≤

∑
i≥1

∫ t

0

µiui−1e−µuΓ(i)−1du = µt.
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It follows that

Eτ
x

[
Wx

Tmix

]
≤ Eτ

x

[
Wx

N2mN

]
+ |DN |P τ

x [Tmix ≥ N2mN ] ≤ µN2mN + c2(γ′−1)Ne−cN
2 ≤ 2εN

by (2.2.8), (2.3.7) and Proposition 2.3.3. This completes the proof.

For later applications, we state two further consequences of the proof of Lemma 2.5.2.

Lemma 2.5.6. P-a.s. for N large enough,

P τ
ν

[
∃x ∈ DN : `tRN (x) > N2mN

]
≤ c2−

1
2
ε0N ,

and
P τ
ν

[∣∣{x ∈ DN : Hx ≤ tRN}
∣∣ ≥ 2

3
2
ε0N
]
≤ c2−

1
4
ε0N .

Proof. The first claim follows directly from the bounds on the second and third term on
the right hand side of (2.5.16) in the proof of Lemma 2.5.2, since the local time in a vertex
that is only ‘visited once after mixing’ is bounded by Tmix ◦ θHx .

The second assertion can be seen in the following way. Using Lemma 2.5.3 to bound
the probability of a single vertex x ∈ DN to be visited before time tRN and (2.2.8) to
bound the size of DN , for every ε > 0, P-a.s. for N large enough,

Eτ
ν

[
|{x ∈ DN : Hx ≤ tRN}|

]
≤ c2(1−γ′)N2(γ−1+ε)N ≤ c2(γ−γ′+ε)N .

By (2.5.2) this is equal to c2(ε0+ε)N , so choosing ε < ε0/4 this is smaller than c2
5
4
ε0N .

Then by the Markov inequality the probability that there are more than 2
3
2
ε0N vertices

visited is smaller than c2−
1
4
ε0N .

2.6. Clock process of the deep traps

This section contains the main steps leading to the proof of Theorem 2.1.1. Recall from
(2.1.8) that the clock process of deep traps is given by

SD(t) =

∫ t

0

(1 ∨ τYs)1{Ys∈DN}ds =

∫ t

0

τYs1{Ys∈DN}ds.

We now show that SD converges to a stable process.

Proposition 2.6.1. Under the assumptions of Theorem 2.1.1, the rescaled clock processes
of the deep traps, g−1

N SD(tRN), converge in P-probability as N →∞, in P τ
ν distribution on

the space D([0, T ],R) equipped with the Skorohod M1-topology, to an α-stable subordinator
Vα.

The proof of Proposition 2.6.1 consists of three steps. In a first step we show conver-
gence in distribution of one-dimensional marginals by showing that the Laplace transform
of one-dimensional marginals converges. This step contains, to some extent, the principal
insight of this paper and is split in two parts: We first show the quasi-annealed con-
vergence mentioned in the introduction, which is then strengthened to convergence in
probability with respect to the environment. The second and third step of the proof of
Proposition 2.6.1 are rather standard and deal with the joint convergence of increments
and the tightness.
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2. Aging of the Metropolis dynamics on the Random Energy Model

2.6.1. Quasi-annealed convergence

We establish here the connection between the Laplace transform of the clock process of
deep traps and the local time functional LN studied in Section 2.5. The key observation
is that the depths of the deep traps are in some sense independent of the fast chain Y ,
and can be thus averaged out easily.

To formalize this, we introduce a two-step procedure to sample the environment τ .
Let ξ = (ξx)x∈HN be i.i.d. Bernoulli random variables such that, cf. (2.2.7),

P[ξx = 1] = 1− P[ξk = 0] = P[x ∈ DN ] = 2−γ
′N(1 + o(1)).

Further, let E = (Ex)x∈HN be i.i.d. standard Gaussian random variables conditioned to be
larger than 1

β
√
N
g′N , and E = (Ex)x∈HN i.i.d. standard Gaussian random variables condi-

tioned to be smaller than 1
β
√
N
g′N . The collections ξ, E and E are mutually independent.

The Hamiltonian of the REM can be obtained by setting

Ex = Ex1{ξx=1} + Ex1{ξx=0}. (2.6.1)

From now on we always assume that Ex are given by (2.6.1). Observe that in this
procedure the set DN coincides with the set {x ∈ HN : ξx = 1}.

We use G = σ(ξ, E) to denote the σ-algebra generated by the ξ’s and E’s. In particular,
the number and positions of deep traps and all the τy, y /∈ DN , are G-measurable. The
depths of deep traps are however independent of G.

In the next lemma we compute the quasi-annealed Laplace transform of SD. The term
quasi-annealed refers to the fact that we average over the energies of the deep traps Ex

(and over the law of the process), but we keep quenched the positions of the deep traps
ξx and the energies of the remaining traps Ex.

Lemma 2.6.2. There is a constant K ∈ (0,∞) such that for every λ > 0 and t ≥ 0,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]∣∣∣G] N→∞−−−→ e−Kλ
αt, P-a.s.

Proof. Recall the separation event S defined in (2.2.9). This event depends only on ξ
and is therefore G-measurable, and by Lemma 2.2.1 it occurs P-a.s. for N large enough.
On S , no deep traps x ∈ DN are neighbors. Since moreover τx ≥ 1 for x ∈ DN , all the
transition rates

qxy1S =
τx ∧ τy
1 ∧ τx

1S , x, y ∈ HN ,

are G-measurable. That is, on the event S , the law of the chain Y is in fact G-measurable.
Therefore, on S , the order of taking expectations over the depth of the deep traps and
the chain Y can be exchanged. Namely, denoting by E the expectation over the random
variables Ex, on S ,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )] ∣∣∣G] = Eτ
ν

[
E
[
e
− λ
gN

SD(tRN )
]]

= Eτ
ν

[
E
[

exp
{
− λ

gN

∫ tRN

0

τYs1{Ys∈DN}ds
}]]

= Eτ
ν

[
E
[

exp
{
− λ

gN

∑
x∈DN

`tRN (x)τx

}]]
.

(2.6.2)
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We next approximate the inner expectation on the right-hand side of (2.6.2). Since its
argument is bounded by one, it will be sufficient to control it on an event of P τ

ν -probability
tending to 1 as N →∞. Define the event

A =
{

for all x ∈ DN , `tRN (x) ≤ N2mN

}
∩
{∣∣LN(t)− t

∣∣ ≤ 2−
1
5
ε0N
}
. (2.6.3)

By Proposition 2.5.1 and Lemma 2.5.6, P-a.s. for N large enough, P τ
ν [Ac] ≤ e−cN .

When performing the inner expectation of (2.6.2), the local times `tRN (x) of Y as well
as DN are fixed, the expectation is taken only over the energies of the deep traps. By
independence of the Ex it follows that

E
[
e
− λ
gN

SD(tRN )
]

=
∏
x∈DN

E
[
exp

{
− λ

gN
`tRN (x)eβ

√
N Ex

}]

= exp

{∑
x∈DN

logE
[
exp

{
− λ

gN
`tRN (x)eβ

√
N Ex

}]}
.

(2.6.4)

For u ∈ [0, N2mN ], let

ϑ(u) = 1− E
[
exp

{
− λ

gN
ueβ

√
N Ex

}]
.

Since Ex has standard Gaussian distribution conditioned on being larger than 1
β
√
N

log g′N ,

using that by (2.2.7),

P
[
Ex >

1

β
√
N

log g′N

]
= P[x ∈ DN ] = 2−γ

′N(1 + o(1)),

it follows that

ϑ(u) =
2γ
′N

√
2π

(1 + o(1))

∫ ∞
1

β
√
N

log g′N

e−
s2

2

(
1− e−

λu
gN

eβ
√
Ns
)
ds.

We use the substitution s = 1
β
√
N

(βz + log gN − log λ − log u). The lower limit of the

integral then becomes

1

β
(log g′N − log gN + log λ+ log u) =: ω(N).

For u ≤ N2mN , ωN is asymptotically dominated by log g′N − log gN ≤ −cN , and thus
limN→∞ ω(N) = −∞. After the substitution,

ϑ(u) =
2γ
′N

√
2π

(1 + o(1))

∫ ∞
ω(N)

e
− 1

2β2N
(βz+log gN−log λ−log u)2

(
1− e−eβz

) 1√
N
dz. (2.6.5)

For u ∈ [0, N2mN ], using the definition (2.1.6) of gN , the exponent of the first expo-
nential satisfies

− 1

2β2N
(βz + log gN − log λ− log u)2

= − 1

2β2N
(βz + αβ2N − 1

α
log(αβ

√
2πN)− log λ− log u)2

= −α
2β2

2
N + α log λ+ α log u+ log(αβ

√
2πN)− αβz + err(z) + o(1).

(2.6.6)
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2. Aging of the Metropolis dynamics on the Random Energy Model

Here, o(1) is an error independent of the variable z. Note that for the log2 u part to be
o(1) it is important that mN defined in (2.3.7) is not too large, see also Remark 2.6.4.
The second error term is

err(z) = − 1

2N
z2 +

1

βN
z

(
1

α
log(αβ

√
2πN) + log λ+ log u

)
.

Observe that limN→∞ err(z) = 0 for every z ∈ R, and that for every ε there is N0 large
enough, so that for N ≥ N0 and all z ∈ R

err(z) ≤ ε|z|. (2.6.7)

Inserting the results of the computation (2.6.6) back into (2.6.5), using that α2β2/2 =
γ log 2, we obtain

ϑ(u) = αβ2(γ′−γ)Nλαuα
∫ ∞
ω(N)

e−αβz+err(z)
(

1− e−eβz
)
dz (1 + o(1)). (2.6.8)

We now claim that∫ ∞
ω(N)

e−αβz+err(z)
(

1− e−eβz
)
dz

N→∞−−−→
∫
R
e−αβz

(
1− e−eβz

)
dz =: C. (2.6.9)

Indeed, the integrand converges point-wise on R to e−αβz(1− e−eβz) which is integrable if
α < 1. Moreover, by (2.6.7), the integrand is bounded by e−αβz+ε|z|(1 − e−eβz), which is
integrable if we choose ε < β(1 − α) ∧ αβ. The claim (2.6.9) follows by the dominated
convergence theorem.

We now come back to (2.6.4). Since onA, `tRN (x) ≤ N2mN for all x ∈ DN , and γ′ < γ,
we see that ϑ(`tRN (x)) = o(1) uniformly in x ∈ DN on A. With log(1−x) = −x(1+O(x))
as x→ 0 this yields

E
[
e
− λ
gN

SD(tRN )
]

= exp
{ ∑
x∈DN

log
(
1− ϑ(`tRN (x))

)}
= exp

{
−
∑
x∈DN

ϑ(`tRN (x))(1 + o(1))
}
.

The inner sum can be easily computed from (2.6.8). Recalling that on A the local time
functional LN(t) converges, denoting K = αβC, we obtain on A,∑

x∈DN

ϑ(`tRN (x)) = αβCλα2(γ′−γ)N
∑
x∈DN

`tRN (x)α(1 + o(1))

= αβCλαLN(t)(1 + o(1))

= Kλαt+ o(1) as N →∞.

(2.6.10)

It follows that on A

E
[
e
− λ
gN

SD(tRN )
]

= e−Ktλ
α(1+o(1)) = e−Ktλ

α

+ o(1) as N →∞.

Inserting this into (2.6.2), using that P τ
ν [Ac] = O(e−cN), we conclude that, on S , P-a.s. as

N →∞,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )
] ∣∣∣G] = Eτ

ν

[
E
[
e
− λ
gN

SD(tRN )
]

1A

]
+O(e−cN) = e−Ktλ

α

+ o(1).

Since S occurs P-a.s. for N large enough, this completes the proof.
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2.6.2. Quenched convergence

We strengthen the convergence in Lemma 2.6.2 in the following way.

Lemma 2.6.3. The one-dimensional marginals of the rescaled clock processes g−1
N SD(tRN)

converge in P-probability as N → ∞, in P τ
ν -distribution to an α-stable law, that is for

every t > 0 and λ > 0,

Eτ
ν

[
e
− λ
gN

SD(tRN )
]

N→∞−−−→ e−Kλ
αt in P-probability.

Proof. It will be enough to show that P-a.s. for N large enough,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]2∣∣∣G] = e−2Kλαt + o(1). (2.6.11)

Indeed, if (2.6.11) holds, then the conditional variance

Var
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]∣∣∣G] N→∞−−−→ 0, P-a.s.,

and the claim follows by an application of the Chebyshev inequality and Lemma 2.6.2.

To show (2.6.11), we rewrite

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]2∣∣∣G] = E
[
Êτ
ν

[
e
− λ
gN

∑
x∈DN

(`
(1)
tRN

(x)+`
(2)
tRN

(x))τx
]∣∣∣G],

where `(1) and `(2) are the local times of two independent Markov chains Y (1) and Y (2),
both having law P τ

ν , and Êτ
ν is the expectation with respect to the joint law P̂ τ

ν of these
chains. Again P-a.s. for N large enough the separation event S holds, and on this event
the law P̂ τ

ν is G-measurable. Therefore we can exchange the expectations similarly as
before. As in Lemma 2.6.2, it will be enough to control the expression on an event of
P̂ τ
ν -probability tending to 1 as N → ∞. We thus set Â = A(1) ∩ A(2) where A(i) are

defined for both chains Y (i) as in (2.6.3). Applying Proposition 2.5.1 and Lemma 2.5.6
for both independent chains, we have that P-a.s. as N →∞, P̂ τ

ν [Âc] = O(e−cN).

Let C be the event that Y (1) and Y (2) visit disjoint sets of deep traps,

C =
{
{x ∈ DN : `

(1)
tRN

(x) > 0} ∩ {x ∈ DN : `
(2)
tRN

(x) > 0} = ∅
}
.

We claim that P̂ τ
ν [Cc] = O(e−cN), P-a.s. as N → ∞. Indeed, by Lemma 2.5.6, with

probability larger than 1− c2− 1
4
ε0N , the chain Y (1) visits at most 2

3
2
ε0N different vertices

in DN . By Lemma 2.5.3, each of those vertices has probability smaller than c2(γ−1+ε)N

of being hit by Y (2), for every ε > 0, P-a.s. for N large enough. Therefore by the choice
(2.5.1) of ε0, P-a.s. for N large enough,

P̂ τ
ν [Cc] ≤ c2−

1
4
ε0N + 2

3
2
ε0Nc′2(γ−1+ε)N ≤ c2−

1
4
ε0N + c′2−

1
2
ε0N+εN ,

which decays exponentially if ε < ε0/2.
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2. Aging of the Metropolis dynamics on the Random Energy Model

Since on C the τx of the vertices x ∈ DN visited by Y (1) and Y (2) are independent, and
since the integrand is bounded by 1, we have on the separation event S ,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )
]2

| G
]

= Êτ
ν

[
E
[
e
− λ
gN

∑
x∈DN

(`
(1)
tRN

(x)+`
(2)
tRN

(x))τx

]]
= Êτ

ν

[
E
[
e
− λ
gN

∑
x∈DN

(`
(1)
tRN

(x)+`
(2)
tRN

(x))τx

]
1Â∩C

]
+O(e−cN)

= Êτ
ν

[
E
[
e
− λ
gN

∑
x∈DN

`
(1)
tRN

(x)τx

]
E
[
e
− λ
gN

∑
x∈DN

`
(2)
tRN

(x)τx

]
1Â∩C

]
+O(e−cN).

Using the same procedure as in the proof of Lemma 2.6.2, on the event Â, the two inner
expectations, x ∈ DN , both converge to

exp

{
−Kλα2(γ′−γ)N

∑
x∈DN

`
(i)
tRN

(x)α
}

= exp
{
−KλαL(i)

N (t)
}
, i = 1, 2.

Moreover, on Â, the local time functionals L
(i)
N (t) concentrate on t simultaneously. It

follows that on S , P-a.s. as N →∞,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )
]2 ∣∣∣G] = e−2Kλαt + o(1).

Noting again that S occurs P-a.s. for N large enough, this shows (2.6.11), and hence the
lemma.

Remark 2.6.4. (a) Inspecting the last proof carefully, it follows that Lemma 2.6.3 can
be slightly strengthened. Namely, the stated convergence holds a.s. with respect to ξ
and E, and in probability only with respect to E. The same remark then applies to
Theorem 2.1.1.

(b) A closer analysis of the errors made in the computation of the quasi-annealed
Laplace transform, in particular in (2.6.6), shows that the error in Lemma 2.6.2 and
(2.6.11) is of order O(N−1 log2N), where the logarithmic part comes from the log2 u part
in (2.6.6), u being bounded by N2mN , and mN being polynomial in N . Therefore the
variance decay is not enough to apply the Borel-Cantelli lemma and obtain P-a.s. conver-
gence.

(c) Note also that the previous proof, more precisely bounding the log2 u part of (2.6.6),
requires that log(N2mN)� N1/2. This is where our improved techniques to estimate the
spectral gap in Proposition 2.3.1 are necessary. As we already remarked, the techniques
of [FIKP98] show roughly that mN ≤ e

√
N logN only, which is not sufficient.

2.6.3. Joint convergence of increments

In the next step, we extend the convergence to joint convergence of increments.

Lemma 2.6.5. The increments of the rescaled clock processes g−1
N SD(tRN) converge

jointly in P-probability in P τ
ν -distribution to the increments of an α-stable subordinator.
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2.6. Clock process of the deep traps

Proof. Fix k ≥ 1 and 0 = t0 < t1 < · · · < tk. We will show that for every λ1, . . . , λk ∈
(0,∞) and P-a.e. environment τ ,

lim
N→∞

Eτ
ν

[
e
− 1
gN

∑k
i=1 λi(SD(tiRN )−SD(ti−1RN ))

]
= lim

N→∞

k∏
i=1

Eτ
ν

[
e
− λi
gN

SD((ti−ti−1)RN )

]
. (2.6.12)

Then the lemma follows by using the above proved convergence in P-probability in P τ
ν -

distribution of the one-dimensional marginals.
Let I i = [tiRN −N2mN , tiRN ]. For a set I ⊂ [0,∞), let V(I) be the event

V(I) = {Ys /∈ DN for all s ∈ I}.
On the event V

(
∪ki=1I

i
)
, for every i ≤ k,

SD(tiRN)− SD(ti−1RN) = SD(tiRN −N2mN)− SD(ti−1RN). (2.6.13)

Moreover, by Lemma 2.5.3, P-a.s. for all x ∈ DN , for ε > 0 small and N large enough,

P τ
ν [Hx ≤ N2mN ] ≤ 2(ε−1)N .

By (2.2.8), |DN | ≤ c2(1−γ′)N , hence the expected number of vertices x ∈ DN visited in a
time-interval of length N2mN is smaller than c2(ε−γ′)N , P-a.s. for N large enough. This
still holds for a finite union of intervals of length N2mN , and so we conclude that by the
Markov inequality, P τ

ν

[
V
(
∪ki=1I

i
)]
→ 1, P-a.s. as N →∞.

The reason to shorten the time intervals as above is to give the Markov chain Y the
time it needs to mix. Define the event

M = {Tmix ◦ θtiRN−N2mN ≤ N2mN ∀i = 1, . . . , k}.
It is easy to see using Proposition 2.3.3 that P τ

ν [M] → 1, P-a.s. as N → ∞. On the
event M the Markov chain Y always mixes between tiRN − N2mN and tiRN and thus,
by Lemma 2.3.4, for every i = 1, . . . , k and y ∈ HN ,

P τ
ν [YtiRN = y | M] = νy.

Therefore, on M,(
SD(tiRN −N2mN)− SD(ti−1RN)

)
i=1,...,k

d
=
(
S

(i)
D ((ti − ti−1)RN −N2mN)

)
i=1,...,k

,

(2.6.14)

where the S
(i)
D are the clock processes of the deep traps of independent stationary started

processes Y (i) having the same law as Y .
Combining observations (2.6.13) and (2.6.14), with the estimates on the probabilities

of V
(
∪ki=1I

i
)

and M, since the integrand is bounded by 1, we obtain that P-a.s. as
N →∞,

Eτ
ν

[
e
− 1
gN

∑k
i=1 λi(SD(tiRN )−SD(ti−1RN ))

]
= Eτ

ν

[
e
− 1
gN

∑k
i=1 λi(SD(tiRN−N2mN )−SD(ti−1RN ))

1V(∪ki=1I
i)∩M

]
+ o(1)

= Eτ
ν

[
k∏
i=1

Eτ
ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN−N2mN )

]
1V(∪ki=1I

i)∩M

]
+ o(1)

=
k∏
i=1

Eτ
ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN−N2mN )

]
+ o(1).
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Using analogous arguments it can be shown that for every i = 1, . . . , k, P-a.s. as N →∞,

Eτ
ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN−N2mN )

]
= Eτ

ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN )

]
+ o(1).

Combining the last two equations proves (2.6.12) and hence the lemma.

2.6.4. Tightness in the Skorohod topology

The last step in the proof of Proposition 2.6.1 is to show tightness.

Lemma 2.6.6. The sequence of probability measures P τ
ν

[
g−1
N SD(tRN) ∈ ·

]
is P-a.s. tight

with respect to the Skorohod M1-topology on D([0, T ],R).

Proof. The proof is standard but we include it for the sake of completeness. By [Whi02,
Theorem 12.12.3], the tightness in the Skorohod M1-topology on D([0, T ],R) is charac-
terized in the following way: For f ∈ D([0, T ],R), δ > 0, t ∈ [0, T ], let

wf (δ) = sup

{
inf

α∈[0,1]
|f(t)− (αf(t1) + (1− α)f(t2))| : t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ

}
,

vf (t, δ) = sup {|f(t1)− f(t2)| : t1, t2 ∈ [0, T ] ∩ (t− δ, t+ δ)} .

The sequence of probability measures PN = P τ
ν

[
g−1
N SD(tRN) ∈ ·

]
on D([0, T ],R) is tight

in the M1-topology, if

(i) For every ε > 0 there is c such that

PN [f : ‖f‖∞ > c] ≤ ε, N ≥ 1. (2.6.15)

(ii) For every ε > 0 and η > 0, there exist δ ∈ (0, T ) and N0 such that

PN [f : wf (δ) ≥ η] ≤ ε, N ≥ N0, (2.6.16)

and

PN [f : vf (0, δ) ≥ η] ≤ ε and PN [f : vf (T, δ) ≥ η] ≤ ε, N ≥ N0. (2.6.17)

Since the clock processes are increasing, (2.6.15) is equivalent to convergence of the
distribution of g−1

N SD(TRN), which follows from the convergence of the Laplace transform
of the marginal at time T . (2.6.16) is immediate from the fact that the oscillating function
wf (δ) is always zero since the processes g−1

N SD(tRN) are increasing. To check (2.6.17),
again by the monotonicity of the g−1

N SD(tRN) it is enough to check that for δ small enough
and N ≥ N0, P τ

ν [g−1
N SD(δRN) ≥ η] ≤ ε. By the convergence of the marginal at time δ,

we may take δ such that P[Vα(δ) ≥ η] ≤ ε
2

and N0 such that for N ≥ N0,∣∣∣∣P τ
ν

[
1

gN
SD(δRN) ≥ η

]
− P [Vα(δ) ≥ η]

∣∣∣∣ ≤ ε

2
.

The reasoning for vf (T, δ) is similar.
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2.7. Shallow traps

In this section we show that the convergence of the clock process of the deep traps shown
in Section 2.6 is enough for convergence of the clock process itself.

Proposition 2.7.1. Under the assumptions of Theorem 2.1.1, the clock process of the
deep traps approximates the clock process, namely, for every t ≥ 0,

1

gN

(
S(tRN)− SD(tRN)

) N→∞−−−→ 0 P-a.s. in P τ
ν -probability.

Proof. We will split the set of shallow traps SN := HN \DN into two parts and separately
deal with the corresponding contributions to the clock process.

We start with ‘very shallow traps’. Let δ > 0 be a small constant which will be fixed
later and hN = eδαβ

2N . Define the set of very shallow traps as

SN = {x ∈ HN : τx ≤ hN}.

The contribution of this set to the clock process can easily be neglected as follows.
Write

Eτ
ν

[
1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈SN}ds

]
=

1

gN

∑
x∈SN

(1 ∨ τx)Eτ
ν

[
`tRN (x)

]
Note that Eτ

ν [`tRN (x)] = νxtRN = Z−1
N (1∧ τx)tRN , and (1∨ τx)(1∧ τx) = τx ≤ hN on SN .

With (2.2.3) for ZN , and Lemma 2.4.4 for RN , for every ε > 0, P-a.s. for N large enough,
the right-hand side of the last equation can be bounded from above by

g−1
N 2NhNZ

−1
N tRN ≤ cg−1

N eδαβ
2N2(γ+ε)N .

To obtain exponential decay of this expression, it is enough to take account of the ex-
ponential part of gN , which is eαβ

2N . Then, up to subexponential factors, using that
γ = α2β2

2 log 2
, the above is bounded by

exp
{

((δ − 1)αβ2 +
1

2
α2β2 + ε log 2)N

}
.

Since α < 1, by choosing ε and δ small enough this can be made smaller than e−cN for
some c > 0. Applying the Markov inequality and the Borel-Cantelli lemma,

1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈SN}ds
N→∞−−−→ 0 P-a.s. in P τ

ν -probability. (2.7.1)

To control the contribution of the remaining shallow traps SN \ SN , we first split this
set into slices S iN as follows. Set

IN =

⌈
1

log 2
(log g′N − log hN)

⌉
.
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Note that by definition of g′N and hN , for δ small as fixed above, IN = cN+O(1) for some
c > 0. For i = 1, . . . , IN , let

S iN =
{
x ∈ SN \ SN : τx ∈ [2−ig′N , 2

−i+1g′N)
}
,

so that SN \ SN = ∪INi=1S iN .
We next control the sizes of the slices S iN . By the tail approximation (2.2.2), for all

i = 1, . . . , IN ,

P[y ∈ S iN ] ≤ P
[
Ex >

1

β
√
N

(log g′N − i log 2)
]

= f
(1)
N,i exp

{
− 1

2
α′2β2N + α′i log 2− f (2)

N,i − o(1)
}

(1 + o(1)).

(2.7.2)

We separately control the two expressions f
(1)
N,i and f

(2)
N,i. The first one equals

f
(1)
N,i =

α′β
√

2πN
√

2π
β
√
N

(log g′N − i log 2)
.

To control this, note that by definition of IN , for all i = 1, . . . , IN ,

log g′N − i log 2 ≥ log hN − log 2 = δαβ2N − log 2.

It follows that, for all i = 1, . . . , IN , f
(1)
N,i is bounded by some constant c > 0, which can

be chosen to be independent of i. The second expression to control in (2.7.2) is

f
(2)
N,i =

i2 log2 2

2β2N
+
i log 2

α′β2N
log(α′β

√
2πN).

This is strictly positive, so it can be omitted in (2.7.2) in order to obtain an upper bound.

Using the obtained control on f
(1)
N,i and f

(2)
N,i in (2.7.2), as well as the fact that γ′ = α′2β2

2 log 2
,

we conclude that for all i = 1, . . . , IN ,

P[y ∈ S iN ] ≤ c2−γ
′N2α

′i.

In particular, the size |S iN | of the i-th slice is dominated by a binomial random variable
with parameters n = 2N and p = c2α

′i2−γ
′N . Then it follows by the Markov inequality

that for every ε > 0,

P
[
|S iN | > 2εNc2α

′i2(1−γ′)N] ≤ 2−εN .

Since IN = cN +O(1), a union bound and the Borel-Cantelli lemma imply that for every
ε > 0, P-a.s. for N large enough,

|S iN | ≤ 2εN c2α
′i2(1−γ′)N , for all i = 1, . . . , IN . (2.7.3)

Coming back to the contribution of the intermediate traps SN \SN to the clock process,
we use as before that Eτ

ν [`tRN (y)] = νytRN = 1∧τy
ZN

tRN , and (1∨τy)(1∧τy) = τy ≤ 2−i+1g′N
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2.8. Conclusion

on S iN . With (2.2.3) for ZN , Lemma 2.4.4 for RN , and (2.7.3) for the size of S iN , we obtain
that for every ε > 0, P-a.s. for N large enough, for all i = 1, . . . , IN ,

Eτ
ν

[
1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈SiN}ds

]
=

1

gN

∑
y∈SiN

(1 ∨ τy)Eτ
ν [`tRN (y)]

≤ g−1
N |S

i
N |2−i+1g′NZ

−1
N tRN

≤ c
g′N
gN

2(α−1)i2(γ−γ′+2ε)N .

Summing over i = 1, . . . , IN , P-a.s. for N large enough,

Eτ
ν

[
1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈⋃INi=1 SiN}
ds

]
≤ c′

g′N
gN

2(γ−γ′+2ε)N . (2.7.4)

We claim that the right hand side of (2.7.4) decays exponentially in N for ε > 0 small
enough. To this end, as before, it is enough to take account of the exponential parts in
both gN and g′N , which contribute to the right hand side of (2.7.4) by

e(α′−α)β2N = 2(
√
γ′−√γ) 2β

βc
N .

Hence, to show the exponential decay on the right hand side of (2.7.4), it is sufficient to
prove that we can choose ε > 0 small enough, such that

(
√
γ′ −√γ)

2β

βc
+ γ − γ′ + 2ε < 0. (2.7.5)

With a first order approximation of the concave function
√
x at γ,

1

2
√
γ

(γ − γ′) < √γ −
√
γ′.

Since, 1
2
√
γ

= βc
2αβ

> βc
2β

and α < 1, this implies

βc
2β

(γ − γ′) < √γ −
√
γ′,

and (2.7.5) thus holds for ε > 0 small enough. The right hand side of (2.7.4) then decays
exponentially, and with Markov inequality we conclude that

1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈⋃INi=1 SiN}
ds

N→∞−−−→ 0 P-a.s. in P τ
ν -probability.

This together with (2.7.1) finishes the proof of the proposition.

2.8. Conclusion

Theorem 2.1.1 is a direct consequence of Propositions 2.6.1, 2.7.1 and Lemma 2.4.4.
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2. Aging of the Metropolis dynamics on the Random Energy Model

Appendix 2.A. Extremal characterization of mean hitting time

In this appendix we give the proof of the formula (2.4.1) which gives a lower bound on the
mean hitting time of a set when starting from stationarity. This formula is a continuous-
time version of (a half of) Proposition 3.2 from [ČTW11]. This proposition, as well as
the underlying result [AF02, Proposition 3.41], are stated for a continuous-time Markov
chain whose waiting times are mean-one exponential random variables. We were not able
to find analogous statements for general continuous-time Markov chains in the literature,
so we provide short proofs here, for the sake of completeness.

We start by introducing some notation. Let Y be a reversible continuous-time Markov
chain on a finite state space S with transition rates qxy and invariant probability measure
νx, denote by Pν and Px the laws of Y started stationary and from x respectively, and by
Eν , Ex the corresponding expectations. Define the conductances as cxy = νxqxy = νyqyx.
Let qx =

∑
y qxy and cx =

∑
y cxy. The transition probability from x to y is pxy = qxy

qx
=

cxy
cx

. In the same way as in Section 2.2, we define the hitting time Hx and the return time

H+
x to x by Y , and similarly HA and H+

A for sets A ⊂ S.
A function g on S is called harmonic in x, if

∑
y g(y)pxy = g(x). For x ∈ S and

B ⊂ S \ {x}, the equilibrium potential g?x,B is defined as the unique function on S that is
harmonic on (x ∪B)c, 1 on x and 0 on B. It is well known that

g?x,B(y) = Py[Hx ≤ HB].

For a function g : S → R, the Dirichlet form is defined as

D(g, g) =
1

2

∑
z∈S

∑
y∼z

νzqzy(g(z)− g(y))2, (2.A.1)

where y ∼ z means that y and z are neighbors in the sense that qzy > 0.
The following proposition is the required generalization of Proposition 3.2 of [ČTW11].

Proposition 2.A.1. For every x ∈ S and B ⊂ S \ {x}

1

Eν [Hx]
≤ D(g?x,B, g

?
x,B)ν(B)−2 = cxPx[H

+
x > HB]ν(B)−2. (2.A.2)

To prove this proposition we will need a lemma which is a generalization of [AF02,
Proposition 3.41] giving the extremal characterization of the mean hitting time.

Lemma 2.A.2. For every x ∈ S,

1

Eν [Hx]
= inf

{
D(g, g) : g : S → R, g(x) = 1,

∑
y∈S

νyg(y) = 0

}
. (2.A.3)

Proof. The proof follows the lines of [AF02] with some minor changes to fit into the setting
of general continuous-time chains.

We first show that there is a minimizing function g that equals g(y) = Zyx
Zxx

, where

Zyx =

∫ ∞
0

(
Py[Yt = x]− νx

)
dt.
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2.A. Extremal characterization of mean hitting time

To this end, we introduce the Lagrange multiplier γ and consider g as the minimizer
of D(g, g) + γ

∑
z νzg(z) with g(x) = 1. The contribution to this of g(y) for y 6= x is∑

z∼y

νyqyz(g(y)− g(z))2 + γνyg(y),

which is minimized if

2
∑
z∼y

νyqyz(g(y)− g(z)) + γνy = 0.

From this we get for all y ∈ S, by introducing the term including the parameter β for the
case y = x, that

g(y) =
∑
z∼y

qyz
qy
g(z)− γ

2

1

qy
+
β

qy
1{y=x}.

Multiplying by qy and νy, and summing over all y ∈ S,∑
y

∑
z∼y

νyqyzg(y) =
∑
y

∑
z∼y

νyqyzg(z)− γ

2
+ βνx.

By reversibility νyqyz = νzqzy, so the term on the left and the first term on the right are
identical, which gives γ

2
= βνx. Thus there is a minimizing g such that

g(y) =
β

qy

(
1{y=x} − νx

)
+
∑
z∼y

qyz
qy
g(z). (2.A.4)

We now show that up to the factor β the function y 7→ Zyx satisfies the same relation.
Indeed, by the strong Markov property at the time J1 of the first jump of Y , which under
Py is an exponential random variable with mean 1

qy
,

Zyx =

∫ ∞
0

(∫ J1

0

(
1{y=x} − νx

)
dt+

∑
z∼y

qyz
qy

∫ ∞
0

(
Pz[Yt = x]− νx

)
dt

)
dPy(J1)

=
1

qy

(
1{y=x} − νx

)
+
∑
z∼y

qyz
qy
Zzx.

The function g(y) = Zyx
Zxx

thus satisfies the constrains of the variational problem in (2.A.3)
and fulfills (2.A.4) with β = 1/Zxx. It is thus the minimizer of this variational problem.

Moreover, by [AF02, Lemmas 2.11 and 2.12], we have Zxx = Eν [Hx]νx and νxEy[Hx] =
Zxx − Zyx. Denoting h(y) = Ey[Hx] and using these equalities, we obtain

D(g, g) =
1

Eν [Hx]2
D(h, h) =

1

Eν [Hx]
,

where for the last equality we used D(h, h) = Eν [Hx], by e.g. [AB92, Lemma 6]. This
completes the proof.

With this lemma the proof of Proposition 2.A.1 follows the lines of [ČTW11].
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2. Aging of the Metropolis dynamics on the Random Energy Model

Proof of Proposition 2.A.1. To prove the inequality in (2.A.2), it is sufficient to modify the
function g?x,B so that it becomes admissible for the variational problem in Lemma 2.A.2.
Write g? for g?x,B and define g̃ on S as

g̃(z) =
g?(z)−

∑
y∈S νyg

?(y)

1−
∑

y∈S νyg
?(y)

.

Then g̃ equals 1 on x and
∑

z∈S νzg̃(z) = 0. Hence, by Lemma 2.A.2,

1

Eν [Hx]
≤ D(g̃, g̃) = D(g?, g?)

(
1−

∑
y∈S

νyg
?(y)

)−2

.

But g? is non-negative, bounded by 1 and non-zero only on Bc, therefore
∑

y∈S νyg
?(y) ≤

ν(Bc), the first part of Proposition 2.A.1 follows.
To prove the equality in (2.A.2), we show that

D(g?x,B, g
?
x,B) = Px[H

+
x > HB]cx. (2.A.5)

Indeed, let again g? = g?x,B. If g? is harmonic in z, the second sum in the Dirichlet form
(2.A.1) is ∑

y∼z

czy(g
?(z)− g?(y))2 =

∑
y∼z

czy(g
?(y)2 − g?(z)2).

This shows that the contribution to the Dirichlet form of every edge that connects two
vertices in which g? is harmonic or zero vanishes. Therefore D(g?, g?) reduces to

D(g?, g?) =
1

2

(∑
y∼x

cxy(1− g?(y))2 +
∑
y∼x

cxy(1− g?(y)2)

)
=
∑
y∼x

cxy(1− g?(y))

= cx
∑
y∼x

pxyPy[Hx > HB]

= cxPx[H
+
x > HB].

This proves (2.A.5) and thus the proposition.
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3. Randomly trapped random walks on Zd

Jiř́ı Černý and Tobias Wassmer

Abstract. We give a complete classification of scaling limits of randomly
trapped random walks and associated clock processes on Zd, d ≥ 2. Namely,
under the hypothesis that the discrete skeleton of the randomly trapped random
walk has a slowly varying return probability, we show that the scaling limit of its
clock process is either deterministic linearly growing or a stable subordinator. In
the case when the discrete skeleton is a simple random walk on Zd, this implies
that the scaling limit of the randomly trapped random walk is either Brownian
motion or the Fractional Kinetics process, as conjectured in [BCČR14].

3.1. Introduction

Randomly trapped random walks (RTRWs) were introduced in [BCČR14] for two main
reasons. On one hand they generalize several classical models of trapped random walks
such as the continuous-time random walk or the symmetric Bouchaud trap model. On
the other hand they provide a tool for describing random walks on some classical random
structures such as the incipient critical Galton-Watson tree or the invasion percolation
cluster on a regular tree.

In [BCČR14] the authors define the RTRW on general graphs and study in depth
the model on Z. They give a complete classification of scaling limits, showing that the
limit of a RTRW on Z is one of the following four processes: (i) Brownian motion, (ii)
Fractional Kinetics process, (iii) FIN singular diffusion, or (iv) a new class of processes
called spatially subordinated Brownian motion. They further give sufficient conditions for
convergence to the respective limits and study in detail how the different limits arise. For
RTRW on Zd, d ≥ 2, they conjectured that only the first two of the above scaling limits
are possible, that is RTRW on Zd converges after rescaling either to the Brownian motion
or to the Fractional Kinetics process. We prove this conjecture here.

Let us briefly introduce the model, its formal definition is given in Section 3.2 below.
The RTRW on Zd is a particular class of random walk in random environment. Its law
is determined by two inputs: (i) its step distribution, that is a probability measure ν
on Zd, and (ii) a probability distribution µ on the space of all probability measures on
(0,∞) characterizing its waiting times. The random environment of the RTRW is given
by an i.i.d. collection π = (πx)x∈Zd of µ-distributed probability measures. For fixed π,
the RTRW X = (X(t))t≥0 is a continuous-time process such that, whenever at vertex x,
it stays there a random duration sampled from the distribution πx and then moves on
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3. Randomly trapped random walks on Zd

according to the transition kernel ν( · − x). If the process X visits x again at a later
time, the duration of this next visit at x is sampled again and independently from the
distribution πx. We always assume that X starts at 0 ∈ Zd and use P for the annealed
distribution of the process X.

From the description above it is apparent that the RTRW is a time change of the
discrete-time random walk (Y (n))n≥0 on Zd with one-step distribution ν. Formally, X
can be written as

X(t) = Y (S−1(t)), (3.1.1)

where the time-change process S : N → [0,∞), the clock process, measures the time
needed for a given number of steps of the RTRW and S−1 is its right-continuous inverse.
In view of (3.1.1) it should not be surprising that the scaling behavior of X is (essentially)
determined by the scaling behavior of the clock process.

While we are primarily interested in Y being a simple random walk on Zd, d ≥ 2, it
does not complicate the proofs to make the following far less restrictive assumption on
the random walk Y , that is on the one-step distribution ν: Let rn : N → [0, 1] be the
probability that Y does not return to its starting point in n steps,

rn = P[Y (k) 6= Y (0) for k = 1, . . . , n].

Assumption A. The function rn can be written as rn = 1
`∗(n)

for a slowly varying function

`∗ : N→ [1,∞).

Assumption A is obviously fulfilled for all transient random walks, where 1/`∗(n)→ γ
for some γ ∈ (0, 1), but there are also recurrent walks satisfying it with `∗(n) → ∞
as n → ∞. In particular, the classical result of Kesten and Spitzer [KS63, Theorem 3]
implies that this assumption holds for all random walks on d ≥ 2 for which the subgroup
of Zd generated by the set {x : ν(x) > 0} is d-dimensional (we will call this ‘genuinely
d-dimensional’).

We can state our first main theorem giving the complete classification of the scaling
limits of the clock process.

Theorem 3.1.1. Let S : N → [0,∞) be the clock process of the RTRW. Suppose that
Assumption A holds and there is a sequence aN ↗ ∞ such that for all but countably
many t ∈ [0,∞)

SN(t) :=
1

aN
S(bNtc) N→∞−−−→ S(t) in P-distribution, (3.1.2)

where S : [0,∞)→ [0,∞) is a cadlag process satisfying the non-triviality assumption

lim sup
t→∞

S(t) =∞ P-a.s. (3.1.3)

Then one of the following two cases occurs:

(i) The limit clock process is linear, S(t) = Mt for some constant M > 0, and the
normalizing sequence satisfies aN = N`(N) for some slowly varying function `.

(ii) The limit clock process is an α-stable subordinator, S = Vα, α ∈ (0, 1), and the
normalizing sequence satisfies aN = N1/α`(N) for some slowly varying function `.
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3.1. Introduction

In order to study the scaling limits of the RTRW itself, we need a more restrictive
assumption:

Assumption B. The random walk Y is genuinely d-dimensional. Its one-step distri-
bution ν is centered, E[Y (1)] = 0, and has finite range, P[|Y (1)| > C] = 0 for some
C <∞.

This assumption ensures that the scaling limit of Y is a d-dimensional Brownian
motion: There exists a d× d matrix A such that

YN(t) :=
1√
N
AY (bNtc) (3.1.4)

converges to a standard d-dimensional Brownian motion. Note that by the remark after
Assumption A, for d ≥ 2 Assumption A is implied by Assumption B.

Our second main result classifies the possible scaling limits of RTRW and confirms
the conjecture of [BCČR14].

Theorem 3.1.2. Let d ≥ 2 and X : [0,∞) → Zd be the RTRW. Suppose that Assump-
tion B holds and there is a sequence aN ↗∞ such that the processes

XN(t) :=
1√
N
AX(aN t) = YN(S−1

N (t)) (3.1.5)

converge in P-distribution on the space Dd of cadlag Rd-valued functions equipped with
the Skorohod J1-topology to some process X : [0,∞) → Rd satisfying the non-triviality
assumption

lim sup
t→∞

|X (t)| =∞ P-a.s. (3.1.6)

Then one of the following two cases occurs:

(i) aN = N`(N) and X (t) = B(M−1t) for some constant M > 0, some slowly varying
function `, and a standard d-dimensional Brownian motion B.

(ii) aN = N1/α`(N) for some slowly varying function ` and a parameter α ∈ (0, 1),
and X (t) = B(V −1

α (t)), where B is a standard d-dimensional Brownian motion
and V −1

α (t) = inf{s ≥ 0 : Vα(s) > t} is the right-continuous inverse of an α-
stable subordinator Vα which is independent of B (i.e. X is the Fractional Kinetics
process).

Let us make a few remarks about our setting and results. The definition of the RTRW
we give here is slightly more general than the one in [BCČR14] since we allow the discrete
skeleton to be more general than the simple random walk only. Assumption A on the
discrete skeleton is taken from [FM14]. This assumption can be used to show weak laws
of large numbers for the range of the random walk and for some related quantities. We
would like to point out that the only place in the proof of Theorem 3.1.1 where we use Zd-
specific properties of the random walk is in the derivation of these laws of large numbers.
In particular, Theorem 3.1.1 classifying the possible scaling limits of the clock process
can be shown to hold for the RTRW on any countable state space where the discrete-time
skeleton is a Markov chain satisfying such laws of large numbers for the range and the
related quantities.
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3. Randomly trapped random walks on Zd

Our setting generalizes several previous results, let us mention some of them. Mostly,
the models studied in the literature involve trapped random walks with some kind of
heavy-tailed waiting times, with the aim to show convergence of rescaled clock processes
to an α-stable subordinator.

In the so-called continuous-time random walk (CTRW), introduced in [MW65], all
πx are deterministically identical heavy-tailed probability distributions, that is for some
α ∈ (0, 1) and c > 0, and some slowly varying function `,

πx[u,∞) = u−α`(u) as u→∞. (3.1.7)

Independently of the nature of the discrete skeleton Y , the clock process is then a sum of
i.i.d. heavy-tailed random variables, and it is well known that it converges after normal-
ization to a stable subordinator. The scaling limits of the CTRW were studied in more
detail in [MS04].

In the symmetric Bouchaud trap model (BTM) the discrete skeleton Y is simple ran-
dom walk and the πx are exponential random variables with meansmx that are i.i.d. heavy-
tailed random variables satisfying e.g.

P[mx > u] = cu−α(1 + o(1)) as u→∞, (3.1.8)

The BTM on Z2 was for the first time studied in [BČM06] where the authors show
convergence of the clock process to a stable subordinator and use this to derive aging
properties of the model. In [BČ07] it is then shown, in the case of the BTM on Zd, d ≥ 2,
that the rescaled random walks and clock processes converge jointly to a Brownian motion
and a stable subordinator, and therefore the scaling limit of the BTM is the Fractional
Kinetics process.

A general model of trapped random walk where the waiting times are exponential with
heavy-tailed means as in (3.1.8) is studied in [FM14]. As mentioned above, they consider
the discrete skeleton to be an arbitrary random walk on Zd satisfying Assumption A.
Instead of scaling limits, which require additional restrictions as in our Assumption B,
[FM14] focus on the so-called age process, which is related to the clock process and
describes the ‘depth of the trap in which the process stays at a given time’.

Our setting is restricted to the fact that the discrete skeleton Y is independent of the
random environment π. There are however interesting models where this is not the case,
for example the asymmetric Bouchaud trap model (ABTM). In [BČ11] for d ≥ 3 and in
[Mou11] with different methods for d ≥ 5 it is shown that the scaling limit for ABTM
is also Fractional Kinetics. Yet another approach to prove convergence of rescaled clock
processes to a stable subordinator is given in [GŠ13], their setting includes the ABTM as
a special case.

The majority of the above mentioned previous results are quenched, that is the con-
vergence holds for almost every realization of the environment. On the contrary, our
results are annealed, that is averaged over the environment, but this is not an issue for
the classification theorem.

We also believe that when the annealed convergence takes place as in Theorem 3.1.1,
then the quenched convergence holds true as well. In high dimensions (d ≥ 5) this could
be proved similarly as in [Mou11], using techniques from [BS02], see also the additional
condition in [FM14] under which their annealed result holds quenched. In low dimensions
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these methods fail due to many self-intersections of the discrete skeleton. An adaptation
of more complicated methods which give the quenched convergence in low dimensions
(like the coarse-graining procedure of [BČM06, BČ07] or the techniques of [GŠ13]) to the
RTRW seems to be non-trivial and is out of the scope of this paper.

We conclude the introduction by giving sufficient conditions for convergence in both
cases of our main theorems. Given the collection of probability measures π = (πx)x∈Zd , let
mx =

∫
uπx(du) ∈ (0,∞] be the mean and π̂x(λ) =

∫
e−λuπx(du) the Laplace transform

of πx. Note that in the next theorem Assumption A is not needed, we only need Y to be
non-degenerate.

Theorem 3.1.3. Let X be RTRW in d ≥ 1. If ν 6= δ0 and the annealed expected waiting
time is finite, E[m0] = M < ∞, then the rescaled clock processes SN with normalization
aN = N converge in P-distribution on D1 equipped with the Skorohod J1-topology to the
linear process S(t) = Mt. If in addition Assumption B holds, then the rescaled processes
XN with aN = N converge in P-distribution on Dd equipped with the Skorohod J1-topology,
and the limit is X (t) = B(M−1t) as in (i) of Theorem 3.1.2.

For convergence to Fractional Kinetics we have the following sufficient criterion. In
Section 3.5 we will sketch some examples of RTRWs that satisfy this criterion with dif-
ferent functions f .

Theorem 3.1.4. Let X be RTRW with discrete skeleton Y satisfying Assumption A with
slowly varying function `∗. Assume that there is a normalizing sequence aN ↗ ∞ such
that for any positive real number r > 0 and a continuous function f ,

− logE
[
π̂0(λ/aN)r`

∗(N)
]

= f(r)λα
`∗(N)

N
(1 + o(1)) as N →∞. (3.1.9)

Then the rescaled clock processes SN with normalization aN converge in P-distribution
on D1 equipped with the Skorohod M1-topology to an α-stable subordinator Vα. If in
addition Assumption B holds, then the rescaled processes XN converge in P-distribution
on D1 equipped with the Skorohod J1-topology, and the limit is the FK process as in (ii)
of Theorem 3.1.2.

The rest of this paper is structured as follows. In Section 3.2 we give precise definitions
of the model and introduce some notation used through the paper. Theorem 3.1.1 and
Theorem 3.1.2 are proved in Sections 3.3 and 3.4 respectively, and Section 3.5 deals with
Theorems 3.1.3 and 3.1.4. Finally, in Section 3.6 we prove one technical lemma which is
used in the proof of Theorem 3.1.1. In Appendix 3.A we explain how Assumption A on
the escape probability implies the laws of large numbers that we mentioned above.

Acknowledgment. The authors would like to thank the referee for carefully reading the
manuscript and giving important comments that helped to improve the paper.

3.2. Setting and notation

We start by giving a formal definition of the RTRW. Recall that ν is a probability measure
on Zd and µ a probability measure on the space of probability measures on (0,∞). To
avoid trivial situations, we assume that ν 6= δ0.
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Given µ and ν, let π = (πx)x∈Zd be an i.i.d. sequence of probability measures with
marginal µ, and ξ = (ξi)i≥1 an i.i.d. sequence with marginal ν independent of π defined
on some probability space (Ω,F ,P). Define

Y (n) = ξ1 + · · ·+ ξn

to be a random walk with step distribution ν and denote by L(x, n) =
∑n

k=0 1{Y (k)=x} its
local time.

Given a realization of π, let further (τ ix)x∈Zd,i≥1 be a collection of independent random
variables, independent of ξ, such that every τ ix has distribution πx, defined on the same
probability space. The clock process of the RTRW, S : N → [0,∞) is then defined by
S(0) = 0 and

S(n) =
∑
x∈Zd

L(x,n−1)∑
i=1

τ ix =
n−1∑
k=0

τ
L(Y (k),k)
Y (k) for n ≥ 1.

Finally, we define the RTRW X = (X(t))t≥0 by

X(t) = Y (k) for S(k) ≤ t < S(k + 1),

or equivalently

X(t) = Y (S−1(t)),

where S−1(t) = inf{k ≥ 0 : S(k) > t} is the right-continuous inverse of S.
Under P, the process X has exactly the law described in the introduction. The random

variable τ ix denotes the duration of the i-th visit of the vertex x. We refer to P as annealed
distribution of X.

We write Dd for the space of the Rd-valued cadlag functions on [0,∞), and when
needed Dd(J1), Dd(M1), Dd(M ′

1) to point out which of Skorohod topologies we use on
this space. We refer to [Whi02, Chapter 3.3] for an introduction and [Whi02, Chapters 12–
13] for details on these topologies. The less usual M ′

1-topology, which plays a role only
in Proposition 3.4.1, is a modification of the Skorohod M1-topology which is convenient
for dealing with irregularities at the origin, see [Whi02, Section 13.6.2]. In any case, we
will never need to know the actual definitions of these topologies, we only use them when
applying results from [Whi02].

It will be useful to introduce the sequence of successive waiting times

τ̃k = τ
L(Y (k),k)
Y (k) , k ≥ 0.

With this notation,

S(n) =
n−1∑
k=0

τ̃k. (3.2.1)

We now show that τ̃k is ergodic, which will be used in the proof of Theorem 3.1.3. To
this end let P ′ be the law on Ω′ := [0,∞)N of the sequence (τ̃k)k≥0 and let θ be the left
shift on Ω′, θ(τ̃1, τ̃2, . . . ) = (τ̃2, τ̃3, . . . ).

Lemma 3.2.1. The left-shift θ acts ergodically on (Ω′,P ′).
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Proof. To show that θ is measure-preserving we follow the environment as ‘viewed from
the particle’. Namely, let Θ : Ω→ Ω be such that if ω′ = Θ(ω), then

ξi(ω
′) = ξi+1(ω), i ≥ 1,

πx(ω
′) = πx+ξ1(ω)(ω), x ∈ Zd,

τ ix(ω
′) =

{
τ ix+ξ1(ω), if x 6= −ξ1(ω),

τ i+1
x+ξ1(ω), if x = −ξ1(ω).

From the independence of ξ from π and τ , and from the i.i.d. properties of π and τ ·x for
every x, it is easy to see that the law of X ◦ Θ agrees with the law of X, that is Θ is
P-preserving. Since, in addition, τ̃(Θ(ω)) = θ(τ̃(ω)) and P ′ = P ◦ τ̃−1, this implies that θ
is P ′-preserving.

To prove the ergodicity, we show that θ is strongly mixing. To this end it is sufficient
to verify that ∣∣P ′[θ−nA ∩B]− P ′[A]P ′[B]

∣∣ n→∞−−−→ 0 (3.2.2)

for all cylinder sets A = {τ̃i ∈ Ai, i ∈ I}, B = {τ̃j ∈ Bj, j ∈ J}, where I, J ⊂ N
are finite sets and Ai, Bj ⊂ R are Borel sets, see e.g. [Pet83, Prop 2.5.3]. Fix two such
sets A and B and define the event In(A,B) = {Y (i + n) = Y (j) for some i ∈ I, j ∈ J}.
Denote by Gmk = σ(ξk+1, ξk+2, . . . , ξm) the σ-algebra generated by the steps made by the

random walk between time k and m, and write G(n) = G(max I+n)∨max J
0 , G(I,n) = Gmax I+n

min I+n ,
G(J) = Gmax J

min J . By the independence structure of the τ ix we have that

P ′
[
θ−nA ∩B | G(n)

]
1In(A,B)c = P ′

[
θ−nA | G(n)

]
P ′
[
B | G(n)

]
1In(A,B)c . (3.2.3)

Moreover,

P ′
[
θ−nA | G(n)

]
= P ′

[
θ−nA | G(I,n)

]
,

P ′
[
B | G(n)

]
= P ′

[
B | G(J)

]
.

(3.2.4)

By the independence of the ξk, as soon as max J < min I + n the right hand sides of the
above two equations are independent. Denote by E ′ the expectation corresponding to P ′.
Using (3.2.3), (3.2.4) and the independence of the two right hand sides in (3.2.4), and the
fact that P ′[θ−nA] = P ′[A], we have for n large enough,

P ′
[
θ−nA ∩B

]
= E ′

[
P ′
[
θ−nA ∩B | G(n)

] (
1In(A,B) + 1In(A,B)c

)]
= E ′

[
P ′
[
θ−nA | G(n)

]
P ′
[
B | G(n)

]
1In(A,B)c

]
+O (P ′[In(A,B)])

= E ′
[
P ′
[
θ−nA | G(I,n)

]
P ′
[
B | G(J)

]]
+O (P ′[In(A,B)])

= P ′[θ−nA]P ′[B] +O (P ′[In(A,B)])

= P ′[A]P ′[B] +O (P ′[In(A,B)])

(3.2.5)

But
P ′[In(A,B)] ≤

∑
i∈I,j∈J

P[Y (i+ n) = Y (j)],

and for n large enough the Markov property for Y implies that P[Y (i + n) = Y (j)] =
P[Y (i+n− j) = 0], which tends to 0 as n→∞ for every (non-degenerate) random walk,
see e.g. [Spi76, P7.6]. Since I and J are finite, P ′[In(A,B)] → 0 as N → ∞, and thus
(3.2.2) follows from (3.2.5).
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3.3. Proof of Theorem 3.1.1

In this section we prove Theorem 3.1.1. In the next two lemmas we study the properties
of the limit clock process S.

Lemma 3.3.1. If the random walk Y satisfies Assumption A and the rescaled clock pro-
cesses SN converge to S in the way as stated in Theorem 3.1.1, then the limit clock process

S has stationary increments and is self-similar with index ρ > 0, i.e. S(t)
d
= λρS(t/λ).

Moreover, the normalizing sequence is of the form aN = Nρ`(N), for the same ρ > 0 and
some slowly varying function `.

Proof. Stationarity of the increments follows immediately from (3.2.1) and the stationarity
of the sequence τ̃ of successive waiting times which was proved in Lemma 3.2.1. To see
the self-similarity, fix λ > 0 and t such that condition (3.1.2) holds for t and t/λ, and
S(t), S(λt) are not identically zero, which is possible thanks to (3.1.3). Then,

S(t) = lim
N→∞

1

aN
S(Nt) = lim

N→∞

aλN
aN

1

aλN
S

(
λN

t

λ

)
d
= S

(
t

λ

)
lim
N→∞

aλN
aN

.

Since S(t) and S(t/λ) are not identically zero, it follows that aλN
aN

must converge to some
constant c(λ), yielding the scale invariance. Moreover, elementary results of the theory of
regularly varying functions imply that c(λ) = λρ for some ρ ∈ R, and that aN is regularly
varying of index ρ, that is aN = Nρ`(N) for some slowly varying function `(N). Note

that ρ > 0 since ρ = 0 would imply limN→∞
aλN
aN

= 1, hence S(t)
d
= S(t/λ), which violates

the non-triviality assumption (3.1.3).

Lemma 3.3.2. If the random walk Y satisfies Assumption A and the rescaled clock pro-
cesses SN converge to S in the way as stated in Theorem 3.1.1, then the limit clock process
S has independent increments.

Let us postpone the proof of this lemma and show Theorem 3.1.1 first.

Proof of Theorem 3.1.1. By Lemmas 3.3.1 and 3.3.2, S has stationary and independent
increments and is self-similar with index ρ. From this, the fact that S ≥ 0 and the
non-triviality assumption (3.1.3) it follows that either ρ = 1 and S(t) = Mt for some
M ∈ (0,∞), or ρ > 1 and S is an increasing α-stable Lévy process with α = ρ−1 ∈ (0, 1),
that is an α-stable subordinator. Lemma 3.3.1 gives the normalizing sequence aN as
claimed.

In order to show Lemma 3.3.2 we need three technical lemmas which are consequences
of laws of large numbers for the range-like objects related to the random walk Y , as
mentioned in the introduction.

The first lemma states that for any given times 0 = t0 < t1 < · · · < tn = t, the
number of vertices visited by the random walk Y in more than one of the time intervals
[bti−1Nc , btiNc − 1] is small. To this end, let

R(k) = {Y (0), . . . , Y (k − 1)}

be the range of the random walk Y at time k − 1, Ri
N be the ‘range between ti−1N and

tiN ’,
Ri
N = {Y (k) : k = bNti−1c , . . . , bNtic − 1} ,
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3.3. Proof of Theorem 3.1.1

Oi
N be the set of the points visited only in this time interval,

Oi
N =

{
x ∈ Ri

N : x /∈ Rj
N for all j 6= i

}
,

and M i
N be the set of points visited in more than one of them, M i

N = Ri
N \Oi

N .

Lemma 3.3.3. If Y verifies Assumption A, then for any choice of time points 0 = t0 <
t1 < · · · < tn = t,

lim
N→∞

|M i
N |
`∗(N)

N
= 0 in P-probability for all i = 1, . . . , n.

Proof. The size of the sets Oi
N can be bounded by

|R(bNtc)| −

∣∣∣∣∣⋃
j 6=i

Rj
N

∣∣∣∣∣ ≤ |Oi
N | ≤ |R(bNtic)| − |R(bNti−1c)| . (3.3.1)

Applying the laws of large numbers from Lemma 3.A.1 and the Markov property at times
bNtic, it follows that for every i = 1, . . . , n,

|R(bNtic)|
`∗(N)

Nti

N→∞−−−→ 1, and

∣∣∣∣∣⋃
j 6=i

Rj
N

∣∣∣∣∣ `∗(N)

N(tn − ti + ti−1)

N→∞−−−→ 1

in probability. Inserting this into (3.3.1) yields a law of large numbers for |Oi
N |,

|Oi
N |

`∗(N)

N(ti − ti−1)

N→∞−−−→ 1

in probability. By Lemma 3.A.1 and the Markov property again, |Ri
N | satisfies the same

law of large numbers as |Oi
N |. Using |M i

N | = |Ri
N | − |Oi

N | the claim follows.

The second lemma will help to control the contribution of frequently visited vertices
to the clock process. Fix t > 0, and for K > 0 define the set of ‘frequently visited vertices’

FN,K =
{
x : L(x, bNtc − 1) ≥ K`∗(N)

}
. (3.3.2)

Let FN,K be the ‘number of visits to FN,K ’

FN,K =
∑

x∈FN,K

L(x, bNtc − 1). (3.3.3)

Lemma 3.3.4. If Y verifies Assumption A, then there is a constant c > 0 such that for
every ε > 0 and fixed t > 0

P[FN,K ≥ εNt] ≤ ε for all N large enough,

with

K = K(ε) = −c log
(
ε2
)
. (3.3.4)
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3. Randomly trapped random walks on Zd

Proof. We claim that for ε small enough and N large enough,

E [FN,K ] ≤ ε2Nt. (3.3.5)

Applying the Markov inequality then yields the desired result.
To show (3.3.5), let ψk = 1{Y (l)6=Y (k)∀l<k} be the indicator of the event that a ‘new’

vertex is found at time k. Then

FN,K =

bNtc−1∑
k=0

ψkL(Yk, bNtc − 1)1{L(Yk,bNtc−1)≥K`∗(N)}.

Using the Markov property and the fact that L(Yk, bNtc− 1) is stochastically dominated
by L(0, bNtc − 1),

E[FN,K ] ≤ E
[
L(0, bNtc − 1)1{L(0,bNtc−1)≥K`∗(N)}

] bNtc−1∑
k=0

E[ψk]. (3.3.6)

By (3.A.2),
∑bNtc−1

k=0 E[ψk] = E[|R(bNtc)|] = Nt/`∗(bNtc)(1 + o(1)). On the other hand,
denoting by H̃0 the first return time of Y to 0, for every k ≥ 1

P[L(0, bNtc − 1) ≥ k] ≤
(
P[H̃0 ≤ bNtc]

)k−1
= (1− `∗(bNtc)−1)k−1,

and thus L(0, bNtc− 1) is stochastically dominated by a geometric random variable with
parameter 1/`∗(bNtc). If G is a geometric variable with parameter p, then for every
M ∈ N,

E[G1{G≥M}] = (1− p)M−1
(
M − 1 +

1

p

)
.

Hence,

E
[
L(0, bNtc − 1)1{L(0,bNtc−1)≥K`∗(N)}

]
≤
(

1− 1

`∗(bNtc)

)K`∗(N)−1 (
K`∗(N)− 1 + `∗(bNtc)

) (3.3.7)

and the claim (3.3.5) follows by inserting K as in (3.3.4), using the slow variation of `∗

and combining (3.3.6), (3.3.7).

The last of the technical lemmas allows to control the influence of an arbitrary subset
of waiting times to the sum of all waiting times if the subset is small.

Lemma 3.3.5. Let BN ⊂ {0, 1, . . . , bNtc−1} be a random set, depending on the trajectory
of the random walk Y up to time bNtc − 1 only. If Assumption A holds, then for every
t > 0 and δ > 0,

lim
ε→0

lim
N→∞

P

[∑
k∈B

τ̃k ≥ δS(bNtc), |B| ≤ εN

]
= 0.
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The proof of this lemma is surprisingly lengthy and is therefore postponed to Sec-
tion 3.6. The main source of complications comes from the fact that we cannot make
any assumptions on the moments of the waiting times τ ix. It is also essential to use some
properties of the random walk Y , as it is easy to construct counterexamples to the lemma
when τ ix are not summed along the trajectory of Y .

With the above three lemmas we can now show Lemma 3.3.2.

Proof of Lemma 3.3.2. Fix times 0 = t0 < t1 < · · · < tn = t. Consider first the following
alternative construction of the clock process S. On the same space (Ω,F ,P), let for every
x ∈ Zd independently (πx,j)j=1,...,n be i.i.d. µ-distributed probability measures, and given
a realization of these measures, let (τ ix,j)x∈Zd,j,i≥1 be independent random variables such
that every τ ix,j has distribution πx,j. For every vertex x ∈ Zd, let j(x) be be such that the

first visit to x occurs in the time interval [
⌊
Ntj(x)−1

⌋
,
⌊
Ntj(x)

⌋
− 1]. Define a new process

S ′ : N→ [0,∞) by

S ′(k) =
∑
x∈Zd

L(x,k−1)∑
i=1

τ ix,j(x).

One can think of choosing the distributions πx at the time of the first visit in x according
to the time interval in which this first visit occurs. Constructed in this way, S ′ has clearly
the same distribution as the original clock process S.

We now define an approximation S̃ of S ′ which collects time τ
L(x,k)
x,j whenever at a

vertex x at time k ∈ [bNtj−1c , bNtjc − 1],

S̃(m) =
n∑
j=1

(m∧bNtjc)−1∑
k=bNtj−1c

τ
L(Y (k),k)
Y (k),j . (3.3.8)

S̃ can be viewed as the clock for which the whole environment π is being refreshed
at all times bNtjc. Therefore, by the independence structure of the τ ix,j’s, the incre-

ments (S̃(bNtjc) − S̃(bNtj−1c))j=1,...,n are mutually independent. In addition, for every
j, the increment S̃(bNtjc) − S̃(bNtj−1c) is independent of the increments {ξk : k /∈
[bNtj−1c , bNtjc − 1]} of the random walk Y .

To conclude the proof it is now sufficient to show that for all j = 1, . . . , n and every
δ > 0,

lim
N→∞

P
[∣∣∣S̃(bNtjc)− S ′(bNtjc)

∣∣∣ > δS ′(bNtjc)
]

= 0. (3.3.9)

This implies that the limit process S has independent increments. Indeed, note that

(3.3.9) readily implies
S̃(bNtjc)
S′(bNtjc) → 1 in P-probability for all j. This means that whenever

1
aN
S ′(bNtjc)

d→ S(tj), then also 1
aN
S̃(bNtjc)

d→ S ′(tj), and therefore the increments
(S(tj)−S(tj−1))j=1,...,n are independent, whenever (3.1.2) is satisfied for the times tj. By
easy approximation arguments this also holds for the at most countably many tj’s that
do not satisfy (3.1.2). Since the times tj are chosen arbitrarily, it follows that the process
S has independent increments.

In order to show (3.3.9), note that the difference of S̃(bNtjc) and S ′(bNtjc) originates
in the waiting times in vertices visited in multiple time intervals. Recalling the sets M j

N
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from Lemma 3.3.2,

∣∣∣S̃(bNtjc)− S ′(bNtjc)
∣∣∣ ≤ j∑

l=1

∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l.

It is therefore sufficient to show that for each j = 1, . . . , n and 1 ≤ l ≤ j, and every δ > 0,

lim
N→∞

P

 ∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l ≥ δS ′(bNtjc)

 = 0.

The probability above is bounded by

P

(1 + δ)

∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l

 ≥ δ

 ∑
x∈R(bNtjc)\M l

N

L(x,bNtjc−1)∑
i=1

τ ix,j(x) +
∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l

 .
Note that, by definition of the random variables τ ix,j, requiring the above probability to
tend to 0 as N →∞ is the same as requiring

lim
N→∞

P

 ∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix ≥ δS(bNtjc)

 = 0, (3.3.10)

for each j = 1, . . . , n and 1 ≤ l ≤ j, and every δ > 0, where here S is the original clock
process, i.e. the sum of the τ ix’s which have distributions πx.

Fix ε > 0 small, set K as in (3.3.4), recall the definition of FN,K from (3.3.2) (with tj
instead of t), and write

P

 ∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix ≥ δS(bNtjc)


≤ P

 ∑
x∈M l

N\FN,K

L(x,bNtjc−1)∑
i=1

τ ix ≥
δ

2
S(bNtjc)

+ P

 ∑
x∈M l

N∩FN,K

L(x,bNtjc−1)∑
i=1

τ ix ≥
δ

2
S(bNtjc)

 .
(3.3.11)

By Lemma 3.3.3 we can choose N large enough such that P[|M l
N | > εN/`∗(N)] ≤ ε. Then

the first term on the right-hand side of (3.3.11) is bounded by

P

 ∑
x∈M l

N\FN,K

L(x,bNtjc−1)∑
i=1

τ ix ≥
δ

2
S(bNtjc), |M l

N | ≤ εN/`∗(N)

+ ε

= P

[∑
k∈B1

τ̃k ≥
δ

2
S(bNtjc), |M l

N | ≤ εN/`∗(N)

]
+ ε.

Here B1 is the set of all times where a vertex in M l
N \ FN,K , i.e. with L(x, bNtjc − 1) ≤

K`∗(N) is visited. But if |M l
N | ≤ εN/`∗(N), then |B1| ≤ εKN . Since εK → 0 as ε→ 0 by
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3.4. Proof of Theorem 3.1.2

the definition of K, we can apply Lemma 3.3.5 to get that the first term on the right-hand
side of (3.3.11) converges to 0 when N →∞ and then ε→ 0.

The second term on the right-hand side of (3.3.11) can be bounded similarly. Recalling
FN,K (for tj) from (3.3.3), it is bounded from above by

P [FN,K ≥ εN ] + P

[∑
k∈BF

τ̃k ≥
δ

2
S(bNtjc), FN,K ≤ εN

]
.

Here BF is the set of times where a frequently visited vertex is visited, i.e. |BF | = FN,K .
Applying Lemma 3.3.4 to the first term and Lemma 3.3.5 to the second, this converges to
zero as N →∞ and ε→ 0, and (3.3.10) follows. This finishes the proof of the lemma.

3.4. Proof of Theorem 3.1.2

The goal of this section is to prove the classification theorem for the RTRW, Theo-
rem 3.1.2. This will be done using Theorem 3.1.1. At first we should however show that
the assumptions of Theorem 3.1.2 allow to verify the hypotheses of Theorem 3.1.1.

Proposition 3.4.1 (d ≥ 1). Let XN be as in (3.1.5). Suppose that Assumption B holds
and that XN converge in the sense of Theorem 3.1.2. Then the clock processes SN , defined
as in (3.1.2), converge in P-distribution on Dd(M ′

1) to some process S. If S(0) = 0, then
the convergence holds with respect to the Skorohod M1-topology.

We first use this proposition to show Theorem 3.1.2.

Proof of Theorem 3.1.2. By Proposition 3.4.1, SN converge to some process S in distri-
bution on Dd(M ′

1). This convergence implies the convergence of SN(t) to S(t) for all
but countably many t ∈ [0,∞), cf. [Whi02, Theorem 11.6.6 and Corollary 12.2.1]. The
non-triviality assumption (3.1.6) implies (3.1.3). We can thus apply Theorem 3.1.1. By
this theorem there are only two possibilities, either S(t) = Mt or S(t) = Vα(t). Since in
both cases S(0) = 0, the convergence of SN actually holds in the M1-topology.

The possible limits S are in the subspace D1
u,↑↑ of unbounded strictly increasing func-

tions from [0,∞) to R, and their inverses are continuous. By [Whi02, Corollary 13.6.4], the
inverse map from the space D1

u,↑(M1) of unbounded non-decreasing functions to D1(J1)

is continuous at D1
u,↑↑, therefore S−1

N converge to S−1 in P-distribution on D1(J1). More-

over, the rescaled random walks YN converge in P-distribution on Dd(J1) to a standard
d-dimensional Brownian motion B.

To proceed, we need to show that B and the limit clock process S are independent.
This is trivial for the case S(t) = Mt, so we may assume that S = Vα. We will use
[Kal02, Lemma 15.6] which applied to our situation states that if B,S are such that
B(0) = S(0) = 0 and the process (B,S) ∈ Dd+1 has independent increments and no fixed
jumps, S is a.s. a step process and ∆B · ∆S = 0 a.s., then B and S are independent.
The only assumption that remains to be verified is that (B,S) has jointly independent
increments.

For fixed times 0 = t0 < t1 < · · · < tn = t, consider the version S̃(bNtc) from (3.3.8)
in the proof of Lemma 3.3.2. We have seen that every increment S̃(bNtic)− S̃(bNti−1c)
is independent of the increments {ξk : k /∈ [bNtj−1c , bNtjc − 1]} of the random walk
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Y . Since there is such a version of S̃(bNtc) for every choice of times tj, and every such
S̃(bNtc) converges to S after normalization, we obtain that for the limit S every increment
S(t)− S(s) is independent of {B(u) : u /∈ [t, s]}. Since both B and S have independent
increments, this implies that (B,S) has jointly independent increments. Applying [Kal02,
Lemma 15.6] it follows that the two limit processes B and S, and thus also B and S−1

are independent.
It follows that (YN , S

−1
N ) converge in distribution on Dd(J1)×D1

u,↑(J1) to (B,S−1). By

[Whi02, Theorem 13.2.2], the composition map from Dd(J1)×D1
u,↑(J1) to Dd(J1) taking

(y(t), s(t)) to y (s(t)) is continuous at (y, s) if y is continuous and s non-decreasing. From
this we conclude that the compositions XN(t) = YN(S−1

N (t)) converge in distribution on
Dd(J1) to B(S−1(t)) as required.

For the proof of Proposition 3.4.1 we will relate the clock process S to the quadratic
variation process of the RTRW X and then apply [JS03, Corollary VI.6.29] which states
that under some conditions, whenever a sequence of processes converges in distribution,
then so does the sequence of their quadratic variations.

We need some definitions first. For a d-dimensional pure-jump process Z, let Z(i)

denote the i-th coordinate of Z, and let ∆Z(i)(t) = Z(i)(t)− Z(i)(t−) be the jump size of
Z(i) at time t. The quadratic variation process [Z,Z]t is a d × d matrix-valued process,
where the (i, j)-th entry is the quadratic covariation of the i-th and j-th coordinate of Z,
which is

[Z(i), Z(j)]t =
∑

0<s≤t

∆Z(i)(s)∆Z(j)(s).

We proceed by relating the inverse S−1
N of the clock process to the quadratic variation

process of XN .

Lemma 3.4.2. Under Assumption B, let [XN , XN ]t be the quadratic variation process
of XN , and define σ2 = E[|Aξj|2] (recall (3.1.4) and (3.1.5) for the notation). Then for
every t > 0,

trace[XN , XN ]t

σ2S−1
N (t)

N→∞−−−→ 1 in P-probability.

Proof. Easy computation yields

trace[XN , XN ]t =
d∑
i=1

∑
0<s≤t

(∆X
(i)
N (s))2 =

1

N

∑
j≤S−1(aN t)

|Aξj|2.

The process S−1 has increments of size 1, and since the times between increments are
a.s. finite, S−1(aN t) ↗ ∞ a.s. as N → ∞. Therefore, since σ2 = E[|Aξj|2] < ∞ by
Assumption B, the law of large numbers implies

P
[∣∣∣∣ N

S−1(aN t)
trace[XN , XN ]t − σ2

∣∣∣∣ > ε

]
−→ 0 as N →∞ for every ε > 0.

Noting that 1
N
S−1(aN t) = S−1

N (t) finishes the proof.

We now check that the assumptions for [JS03, Corollary VI.6.29] are fulfilled.
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Lemma 3.4.3. If Assumption B holds, then the rescaled processes XN are local martin-
gales (with respect to the natural filtration σ(XN(t))) with bounded increments.

Proof. The increments are bounded by Assumption B. The local martingale property is
unaffected by linear scaling, it is hence sufficient to prove it for the process X.

We show that the sequence of stopping times σl = S(l), l ≥ 1, is a localizing sequence
for X, i.e. we show that (X(t ∧ σl))t≥0 is a martingale for every l ≥ 1.

We introduce the filtration Ft = σ(Y (k), S(k) : k ≤ t). Obviously, Y is an F -
martingale, and S−1(t) is an F -stopping time for every t ≥ 0, with S−1(t) ≥ S−1(s) for
t ≥ s. The natural filtration for X, Gt = σ(X(t)) satisfies Gt = FS−1(t) and is right-
continuous (see [Kal02, Proposition 7.9]). The sequence of random variables σl is indeed
an increasing sequence of G-stopping times (σl is the time at which the process X jumps
for the l-th time). Moreover, by definition S−1(t ∧ σl) = S−1(t) ∧ S−1(σl) ≤ S−1(σl) =
l. Applying Doob’s optional sampling theorem (see e.g. [Kal02, Theorem 7.12]) to the
discrete-time martingale Y and the bounded stopping time S−1(t ∧ σl), we obtain

E [X(t ∧ σl) | Gs] = E
[
Y
(
S−1(t ∧ σl)

)
| FS−1(s)

]
= Y

(
S−1(t ∧ σl) ∧ S−1(s)

)
= X(s ∧ σl).

This completes the proof.

We can now prove Proposition 3.4.1.

Proof of Proposition 3.4.1. By Lemma 3.4.3, XN are local martingales with bounded in-
crements. [JS03, Corollary VI.6.29] then implies that the quadratic variation processes
[XN , XN ]t converge component-wise on D1(J1) to the quadratic variation process [X ,X ]t
of X . Since all jumps of the processes [X

(i)
N , X

(i)
N ]t, i = 1, . . . , d, are positive, [Whi02,

Theorem 12.7.3 (continuity of addition at limits with jumps of common sign)] yields that
trace[XN , XN ]t converges to some non-decreasing process in D1(M1). From Lemma 3.4.2
it then follows that the inverses S−1

N of the rescaled clock processes converge to some
non-decreasing process S−1(t) in D1(M1).

For non-decreasing functions x ∈ D1 the right-continuous inverse satisfies (x−1)−1 = x,
and thus SN = (S−1

N )−1. Hence, by [Whi02, Theorem 13.6.1], which ensures the continuity
of the inverse operation, SN converges to S in D1(M1) provided that S(0) = (S−1)−1(0) =
0.

If we do not know whether S(0) = 0, this theorem does not apply. This issue can be
solved by weakening the topology from M1 to M ′

1 (see [Whi02, Section 13.6.2] for details).
In particular, [Whi02, Theorem 13.6.2] yields that SN converge to S in distribution in
D1(M ′

1).

3.5. Proofs of sufficiency criteria

Theorem 3.1.3, giving a sufficient criterion for convergence to Brownian motion, is an
immediate consequence of the ergodicity of the sequence of successive waiting times.

Proof of Theorem 3.1.3. Consider τ̃ = (τ̃k)k≥0 and let θ : RN → RN be the left-shift along
the sequence, which by Lemma 3.2.1 acts ergodically along τ̃ .
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3. Randomly trapped random walks on Zd

If E[τ̃0] = M is finite, the function f(τ̃) = τ̃0 is integrable, and we can apply the
ergodic theorem to f to get

lim
N→∞

1

N
S(bNtc) = lim

N→∞

1

N

bNtc−1∑
k=0

τ̃k = lim
N→∞

t
1

Nt

bNtc−1∑
k=0

f(θk(τ̃))

= tE [f(τ̃)] = Mt almost surely.

Thus we have that the rescaled clock processes SN converge in distribution on D1(J1) to
Mt, where the normalization is aN = N . If additionally Assumption B holds, using the
same arguments as in the proof of Theorem 3.1.2 we conclude that the XN converge and
the limit X is as in case (i) of Theorem 3.1.2.

Before starting the proof of Theorem 3.1.4, which deals with the convergence to the
Fractional Kinetics, we briefly sketch some examples that illustrate how different functions
f in condition (3.1.9) arise.

First, consider the CTRW defined in (3.1.7). The waiting times τ ix of this model lie
in the domain of attraction of an α-stable law, that is there is a slowly varying function
`0 (in general different from ` of (3.1.7)) such that the sum of N independent waiting
times normalized by aN = N1/α`0(N) converges to an α-stable random variable, see
e.g. [Whi02, Theorem 4.5.1]. Thus the quenched Laplace transform (which is deterministic
here) satisfies

π̂0(λ/aN) = exp
{
−c′λαN−1(1 + o(1))

}
as N →∞

for some c′ > 0. Taking this to the power r`∗(N) it follows that the CTRW satisfies
condition (3.1.9) with aN = N1/α`0(N) and f(r) = r.

Secondly, consider the following simplified Bouchaud trap model (cf. (3.1.8)). Let
πx = δτx where the τx, x ∈ Zd, are heavy-tailed i.i.d. random variables, that is

P[τx > u] = cu−α(1 + o(1)) as u→∞.

Then the quenched Laplace transform satisfies

π̂0(λ/aN) = exp{−λa−1
N τ0}.

Taking this to the power r`∗(N) and taking the expectation over τ0, this is the Laplace
transform of a random variable in the normal domain of attraction of an α-stable law,
evaluated at rλ`∗(N)/aN . By normal domain of attraction we mean that the sum of
N independent such random variables normalized by c′N1/α converges to an α-stable
random variable, see e.g. [Whi02, Theorem 4.5.2]. Thus choosing aN = c′N1/α`∗(N)1−1/α,
the Laplace transform is

E
[
π̂0(λ/aN)r`

∗(N)
]

= E
[
exp

{
− λr

c′`∗(N)−1/α

τx
N1/α

}]
= exp

{
−c′′ `

∗(N)

N
λαrα(1 + o(1))

}
as N →∞.

Condition (3.1.9) is thus satisfied for f(r) = rα.
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To see that f(r) can be more than just a power of r, consider the following mixture
of the above two models. To this end, let us fix the slowly varying function ` of (3.1.7) so
that the normalization aN = N1/α`0(N) of the first example agrees with the normalization
aN = c′N1/α`∗(N)1−1/α of the second example. (This is possible e.g. when 1/`∗(N) →
γ ∈ (0, 1), then also ` converges to a positive constant, or when `∗(N) ∼ c log−1N , as
is the case for simple random walk on Z2, then `(N) ∼ c′`∗(N)α−1.) The mixture is
now defined as follows. For some p ∈ (0, 1), let each πx with probability p be a heavy-
tailed distribution as in (3.1.7), and with probability 1− p, let πx be δτx where the τx are
heavy-tailed random variables with

P[τx > u] = cu−α(1 + o(1)) as u→∞.

Then, by combining the arguments above, condition (3.1.9) is satisfied with the normal-
ization aN = c′N1/α`∗(N)1−1/α and f(r) = pr + (1− p)rα.

Proof of Theorem 3.1.4. By Theorem 3.1.1 it is sufficient to show that

lim
N→∞

E[exp{−λSN(t)}] = e−ctλ
α

(3.5.1)

for some c ∈ (0,∞), this is equivalent to convergence of SN to an α-stable subordinator.
Using the independence of the πx’s, recalling that π̂x denotes the Laplace transform of
πx, we have

E
[

exp
{
− λ

aN
S(bNtc)

}∣∣∣Y ] = E
[

exp
{
− λ

aN

∑
x∈Zd

L(x,bNtc−1)∑
i=1

τ ix

}∣∣∣Y ]
=
∏
x∈Zd

E
[
π̂x(λ/aN)L(x,bNtc−1)

}∣∣∣Y ]. (3.5.2)

Treating the case when Y is transient first, let Rk(Nt) = {x ∈ Zd : L(x, bNtc−1) = k}.
By Lemma 3.A.1, |Rk(Nt)|/(Nt) N→∞−−−→ γ2(1−γ)k−1 in probability. Using the translation
invariance, the right-hand side of (3.5.2) can be written as

exp
{ ∞∑
k=1

|Rk(Nt)| logE
[
π̂0(λ/aN)k

]}
.

For arbitrary M ∈ N, using the law of large numbers for |Rk(Nt)| and assumption (3.1.9)
with the continuity of f ,

M∑
k=1

|Rk(Nt)| logE
[
π̂0(λ/aN)k

] N→∞−−−→ −tλα
M∑
k=1

f(kγ)γ(1− γ)k−1, (3.5.3)

in probability. Applying Jensen’s inequality, it is easy to see that f(k) grows at most
linearly with k, so the right-hand side of the above expression converges as M → ∞ to
a finite value, by assumptions of the theorem. On the other hand, by Jensen’s inequality
again, for every δ > 0

P
[
−

∞∑
k=M

|Rk(Nt)| logE
[
π̂0(λ/aN)k

]
≥ δ
]

≤ P
[
− logE

[
π̂0(λ/aN)

] ∞∑
k=M

|Rk(Nt)|k ≥ δ
]
.

(3.5.4)
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3. Randomly trapped random walks on Zd

By the Markov inequality, for 0 < c1 < − log(1 − γ), P[|Rk(Nt)|/(Nt) ≥ e−c1k] ≤ e−c
′k

uniformly for all k ≥M and N large enough, and thus by a union bound

P
[
∃k ≥M such that |Rk(Nt)|/(Nt) ≥ e−c1k

]
≤ Ce−c

′M (3.5.5)

uniformly in N . Using (3.5.5) and the fact that logE
[
π̂0(λ/aN)

]
is finite by assumption,

it follows that the left-hand side of (3.5.4) converges to 0 in probability when N → ∞
and then M → ∞, and therefore (3.5.3) also holds with M = ∞. Using the bounded
convergence theorem, it then follows that

E
[

exp
{
− λ

aN
S(bNtc)

}]
= E

[
exp

{ ∞∑
k=1

|Rk(Nt)| logE
[
π̂0(λ/aN)k

]}]
N→∞−−−→ exp

{
− tλα

∞∑
k=1

f(kγ)γ(1− γ)k−1
}
,

which proves (3.5.1) in the transient case.
To treat the recurrent case, we fix β > 0 small and define for k ≥ 1

Rk
β(Nt) = {x ∈ Zd : (k − 1)β`∗(N) < L(x, bNtc − 1) ≤ kβ`∗(N)}.

By Lemma 3.A.1, |Rk
β(Nt)|`∗(N)/(Nt)

N→∞−−−→ e−(k−1)β − e−kβ in probability. The right-
hand side of (3.5.2) can be bounded from above by

exp
{ ∞∑
k=1

|Rk
β(Nt)| logE

[
π̂0(λ/aN)β(k−1)`∗(N)

]}
,

and from below by

exp
{ ∞∑
k=1

|Rk
β(Nt)| logE

[
π̂0(λ/aN)βk`

∗(N)
]}
.

Following the same steps as in the transient case, it can be easily shown that

exp
{
− tλα

∞∑
k=1

f(β(k − 1))
(
e−(k−1)β − e−kβ

)}
≤ lim

N→∞
E
[
e−λSN (t)

]
≤ exp

{
− tλα

∞∑
k=1

f(βk)
(
e−(k−1)β − e−kβ

)}
Since f is a monotone function, the sums in the above expression can be viewed as lower
and upper Riemann sums for the integral

∫∞
0
f(x)e−x dx to which they tend when β → 0.

This integral is finite since as argued before f grows at most linearly, and (3.5.1) is proved
in the recurrent case.

3.6. Ignoring small sets

In this section we prove Lemma 3.3.5 which allows us to ignore small sets when dealing
with the clock process.
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We first assume that the random walk Y is transient, that is 1/`∗(n)→ γ ∈ (0, 1) as
n→∞. We start by noting that for every x ∈ R(bNtc) and i ∈ {1, . . . , L(x, bNtc − 1)},
since (τ ix)i≥1 are i.i.d.,

E
[

τ ix
S(bNtc)

∣∣∣ Y ] = E
[

τ 1
x

S(bNtc)

∣∣∣ Y ] . (3.6.1)

For fixed 0 ≤ l < bNtc, let x = Y (l) and i = L(Y (l), l), that is τ̃l = τ ix. Using (3.6.1) and
the fact that (τ 1

x)x∈Zd are i.i.d. under P,

E
[

τ̃l
S(bNtc)

∣∣∣ Y ] = E

[
τ ix∑

y∈R(bNtc)
∑L(x,bNtc−1)

j=1 τ jy

∣∣∣ Y ]

≤ E

[
τ 1
x∑

y∈R(bNtc) τ
1
y

∣∣∣ Y ]

=
1

|R(bNtc)|
∑

z∈R(bNtc)

E

[
τ 1
z∑

y∈R(bNtc) τ
1
y

∣∣∣ Y ]

=
1

|R(bNtc)|
.

(3.6.2)

By the law of large numbers for R(n) (Lemma 3.A.1) in the transient case, there is a
constant C <∞ such that for all N large enough

P [|R(bNtc)| < CN ] < ε.

Hence, for N large enough,

P
[∑
l∈B

τ̃l ≥ δS(bNtc), |B| ≤ εN

]
≤ P

[∑
l∈B

τ̃l ≥ δS(bNtc), |B| ≤ εN, |R(bNtc)| ≥ CN

]
+ ε.

Using the Markov inequality and (3.6.2), this is bounded from above by

≤ 1

δ
E

[∑
l∈B

E
[

τ̃l
S(bNtc)

∣∣∣ Y ]1{|B|≤εN}1{|R(bNtc)|≥CN}

]
+ ε.

≤ 1

δ
E
[

|B|
|R(bNtc)|

1{|B|≤εN}1{|R(bNtc)|≥CN}

]
+ ε

≤ ε

Cδ
+ ε.

Letting N →∞ and then ε→ 0 completes the proof of the lemma in the transient case.
We now consider the recurrent case. Let RB = {Y (l) : l ∈ B}, and for x ∈ RB let

LB(x) = |{l ∈ B : Y (l) = x}|. Fix some small β > 0 and let

R>β = {x ∈ R(bNtc) : L(x, bNtc − 1) > β`∗(N)},
R≤β = {x ∈ R(bNtc) : L(x, bNtc − 1) ≤ β`∗(N)}.
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3. Randomly trapped random walks on Zd

By Lemma 3.A.1, the sizes of R>β and R≤β satisfy weak laws of large numbers with
respective averages Nte−β/`∗(N)(1+o(1)) and Nt(1−e−β)/`∗(N)(1+o(1)). In particular
for Cβ = (1− ε)e−βt and cβ = (1 + ε)(1− e−β)t, for all N large enough,

P
[
|R>β| < Cβ

N

`∗(N)

]
+ P

[
|R≤β| > cβ

N

`∗(N)

]
≤ ε.

Therefore, for N large enough,

P
[∑
l∈B

τ̃l ≥ δS(bNtc), |B| ≤ εN

]

≤ P
[ ∑
x∈RB∩R>β

LB(x)∑
i=1

τ ix ≥
δ

2
S(bNtc), |B| ≤ εN, |R>β| ≥ Cβ

N

logN

]
(3.6.3)

+ P
[ ∑
x∈RB∩R≤β

LB(x)∑
i=1

τ ix ≥
δ

2
S(bNtc), |R>β| ≥ Cβ

N

logN
, |R≤β| ≤ cβ

N

logN

]
+ ε. (3.6.4)

Using (3.6.1) and the similar reasoning as in the transient case, since (
∑β`∗(N)

i=1 τ ix)x∈Zd
are i.i.d. with respect to the annealed measure and independent of Y , we have for x ∈
RB ∩R>β,

E

[∑LB(x)
i=1 τ ix

S(bNtc)

∣∣∣ Y ] =
LB(x)

β`∗(N)
E

[∑β`∗(N)
i=1 τ ix
S(bNtc)

∣∣∣ Y ]

≤ LB(x)

β`∗(N)
E

[ ∑β`∗(N)
i=1 τ ix∑

y∈R>β

∑β`∗(N)
i=1 τ iy

∣∣∣ Y ]

=
LB(x)

|R>β|β`∗(N)
.

Therefore, using the Markov inequality,

(3.6.3) ≤ 2

δ
E

 ∑
x∈RB∩R>β

E

[∑LB(x)
i=1 τ ix

S(bNtc)

∣∣∣ Y ]1{|B|≤εN}1{|R>β |≥Cβ N
`∗(N)

}


≤ 2

δ
E

 ∑
x∈RB∩R>β

LB(x)

|R>β|β`∗(N)
1{|B|≤εN}1{|R>β |≥Cβ N

`∗(N)
}


≤ 2ε

δβCβ
.

(3.6.5)

where for the last inequality we used the fact that
∑

x LB(x) ≤ |B| ≤ εN .

It remains to bound (3.6.4). Using again the fact that (
∑β`∗(N)

i=1 τ ix)x∈Zd are i.i.d. with
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respect to the annealed measure and independent of Y ,

P
[ ∑
x∈RB∩R≤β

LB(x)∑
i=1

τ ix ≥
δ

2
S(bNtc)

∣∣∣ Y ]

≤ P
[(

1 +
δ

2

) ∑
x∈RB∩R≤β

β`∗(N)∑
i=1

τ ix ≥
δ

2

∑
x∈R>β∪(RB∩R≤β)

β`∗(N)∑
i=1

τ ix

∣∣∣ Y ]

≤ 2 + δ

δ
E
[ ∑

x∈RB∩R≤β

∑β`∗(N)
i=1 τ ix∑

x∈R>β∪(RB∩R≤β)

∑β`∗(N)
i=1 τ ix

∣∣∣ Y ]
=

2 + δ

δ

|RB ∩R≤β|
|R>β ∪ (RB ∩R≤β)|

.

Therefore,

(3.6.4) ≤ 2 + δ

δ

cβ
Cβ

=
2 + δ

δ

1 + ε

1− ε
(
eβ − 1

)
. (3.6.6)

Combining (3.6.3)–(3.6.6) and letting N →∞, then ε→ 0 and finally β → 0 finishes
the proof of the lemma in the recurrent case.

Appendix 3.A. Laws of large numbers for range-like objects

We prove here that Assumption A implies weak laws of large numbers for several range-
related quantities. The proofs are based on the classical paper [DE51], see also [Rév13,
Chapter 21].

Recall that
R(n) = {x ∈ Zd : L(x, n− 1) > 0}

is the range of the random walk Y up to time n−1. In the recurrent case, i.e. if `∗(n)→∞,
define for k ≥ 1 and β > 0

Rk
β(n) = {x ∈ Zd : L(x, n− 1) ∈ ((k − 1), k]β`∗(n)}

the set of vertices visited (k − 1)β`∗(n) to kβ`∗ times up to time n− 1. In the transient
case, if 1/`∗(n)→ γ ∈ (0, 1), let for k ≥ 1

Rk(n) = {x ∈ Zd : L(x, n− 1) = k}

the vertices visited exactly k times up to time n− 1.
We say that a sequence of random variables Zn satisfies the weak law of large numbers

if Zn/EZn
n→∞−−−→ 1 in probability.

Lemma 3.A.1.

(i) If Assumption A holds, then |R(n)| satisfies the weak law of large numbers with

E[|R(n)|] =
n

`∗(n)
(1 + o(1)) as n→∞.
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3. Randomly trapped random walks on Zd

(ii) If in addition `∗(n) → ∞ as n → ∞, then |Rk
β(n)| satisfies the weak law of large

numbers for every k ≥ 1 and β > 0, and

E[|Rk
β(n)|] = (e−(k−1)β − e−kβ)

n

`∗(n)
(1 + o(1)) as n→∞.

(iii) If, on the other hand, 1/`∗(n) → γ ∈ (0, 1), then |Rk(n)| satisfies the weak law of
large numbers for every k ≥ 1, and

E[|Rk(n)|] = γ2(1− γ)k−1n(1 + o(1)) as n→∞.

Proof. Note that for the simple random walk in d ≥ 3 and d = 2 respectively, part (i) is
a classical result from [DE51], part (iii) was hinted at in [ET60, Theorem 12] and proved
in [Pit74], whereas part (ii) is a direct consequence of [DE51, Theorem 4] and [Čer07,
Theorem 2]. Part (i) above is proved exactly as in [DE51]. We include its proof, since
proofs of (ii) and (iii) are its extensions. Let ψk be the indicator of the event that a new
vertex is found at time k,

ψk = 1{Y (l)6=Y (k) for all 0≤l<k},

with ψ0 = 1. Recall that ξi denote the i.i.d. increments of the random walk Y . Then,

E[ψk] = P [Y (k) 6= Y (k − 1), Y (k) 6= Y (k − 2), . . . , Y (k) 6= Y (0)]

= P [ξk 6= 0, ξk + ξk−1 6= 0, . . . , ξk + · · ·+ ξ1 6= 0]

= P [ξ1 6= 0, ξ1 + ξ2 6= 0, . . . , ξ1 + · · ·+ ξk 6= 0]

= P[Y (l) 6= 0 for l = 1, . . . , k] = rk.

(3.A.1)

For a slowly varying function `,
∑n

k=1 `(k) = n`(n)(1 + o(1)) as n→∞ (see e.g. [Sen76,
p. 55]). Therefore, by Assumption A,

E[|R(n)|] =
n−1∑
k=0

E[ψk] =
n

`∗(n)
(1 + o(1)) as n→∞. (3.A.2)

To prove the weak law of large numbers, we compute the variance. First note that for
i ≤ j, by the Markov property,

E[ψiψj] = E
[
1{Y (l) 6=Y (i), 0≤l<i}1{Y (l)6=Y (j), 0≤l<j}

]
≤ E

[
1{Y (l)6=Y (i), 0≤l<i}1{Y (l)6=Y (j), i≤l<j}

]
= E[ψi]E[ψj−i].

(3.A.3)

Then,

Var |R(n)| =
∑

0≤i,j≤n−1

E[ψiψj]− E[ψi]E[ψj]

≤ 2
n−1∑
i=0

n−1∑
j=i

E[ψi] (E[ψj−i]− E[ψj])

≤ 2
n−1∑
i=0

E[ψi]

(
max

k=0,...,n−1

n−1∑
j=k

E[ψj−k]− E[ψj]

)
.

(3.A.4)
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3.A. Laws of large numbers for range-like objects

By (3.A.1), E[ψk] is non-increasing, therefore the maximum in (3.A.4) is attained in k = n
2
.

The parenthesis in (3.A.4) can then be estimated using elementary properties of slowly
varying functions,

n−1∑
j=n

2

E[ψj−n
2
]− E[ψj] =

n
2
−1∑
j=0

1

`∗(j)
−

n−1∑
j=n

2

1

`∗(j)

=

n
2
−1∑
j=0

1

`∗(j)
−

n−1∑
j=0

1

`∗(j)
−

n
2
−1∑
j=0

1

`∗(j)


= 2

n
2

`∗(n
2
)
(1 + o(1))− n

`∗(n)
(1 + o(1)) =

n

`∗(n)
o(1) as n→∞.

Inserting this into (3.A.4), we obtain

Var |R(n)| ≤ 2
n−1∑
i=0

E[ψi]
n

`∗(n)
o(1) = o

((
n

`∗(n)

)2
)

as n→∞,

and the weak law of large numbers for |R(n)| follows by usual arguments.
Before turning to part (ii), we note the following fact on return times. Let as before

H1
0 = inf{i > 0 : Y (i) = 0} denote the time of the first return to 0, and Hk

0 =
inf{i > Hk−1

0 : Y (i) = 0} the time of the k-th return to 0. Let Ti = H i
0 − H i−1

0 (with
H0

0 = 0) be the successive return times. By the Markov property the (Ti)i≥1 are i.i.d.,
and P[Ti > n] = rn = 1

`∗(n)
by Assumption A. If `∗(k)→∞, the Ti are a.s. finite and have

slowly varying tail. It is well known (e.g. [Dar52, Theorem 3.2]) that for such i.i.d. random
variables Ti, ∑n

i=1 Ti
maxni=1 Ti

→ 1 in probability as n→∞. (3.A.5)

Since `∗(cn) ∼ `∗(n) as n→∞,

P
[

max{Ti : 1 ≤ i ≤ β`∗(n)} ≤ cn
]

=

(
1− 1

`∗(cn)

)β`∗(n)

= e−β(1 + o(1)) as n→∞.

(3.A.6)
From (3.A.5) and (3.A.6) we obtain for every c > 0 and β > 0

P [L(0, cn) ≥ β`∗(n)] = P

β`∗(n)∑
i=1

Ti ≤ cn

 = e−β(1 + o(1)). (3.A.7)

For part (ii) we only prove the statement for Rβ(n) = R1
β(n), the statement for k > 1

follows easily by subtracting the claims with β replaced by βk and β(k− 1). Consider ψk
as above, and additionally define functions ϕk = 1{L(Y (k),n−1)≤β`∗(n)}. Using the Markov
property and translation invariance,

E[|Rβ(n)|] =
n−1∑
k=0

E[ψkϕk] =
n−1∑
k=0

E[ψk]P [L(0, n− 1− k) ≤ β`∗(n)]

=
n−1∑
k=0

1

`∗(k)
P

β`∗(n)∑
i=1

Ti ≥ n− 1− k

 . (3.A.8)
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3. Randomly trapped random walks on Zd

If k ≤ (1− δ)n for some δ > 0, then we can apply (3.A.7). Bounding the probability by
one in the remaining cases, we see that (3.A.8) is bounded from above by

E[|Rβ(n)|] ≤
(1−δ)n∑
k=0

1

`∗(k)
(1− e−β)(1 + oδ(1)) +

∑
(1−δ)n<k<n

1

`∗(k)

=
(1− δ)n
`∗(n)

(1− e−β)(1 + oδ(1)) +
δn

`∗(n)
,

and from below by

E[|Rβ(n)|] ≥
(1−δ)n∑
k=0

1

`∗(k)
(1− e−β)(1 + oδ(1)) =

(1− δ)n
`∗(n)

(1− e−β)(1 + oδ(1)).

Sending δ → 0 proves the statement for E[|Rβ(n)|].
To bound the variance, we first note that for i < i+ δn ≤ j ≤ (1− δ)n, by the Markov

property and using Assumption A and (3.A.7),

E [ψiϕiψjϕj] ≤ E
[
ψi1{L(Y (i),i+δn)≤β`∗(n)}1{Y (k) 6=Y (j), i+δn≤k<j}1{L(Y (j),n)≤β`∗(n)}

]
≤ E[ψi]P

[
L(0, δn) ≤ β`∗(n)

]
E
[
ψj−i−δn

]
P
[
L(0, δn) ≤ β`∗(n)

]
=

1

`∗(i)
(1− e−β)

1

`∗(j − i− δn)
(1− e−β)(1 + oδ(1)). (3.A.9)

The variance of |Rβ(n)| is

Var |Rβ(n)| = 2
∑

0≤i≤j≤n−1

E[ψiϕiψjϕj]− E[ψiϕi]E[ψjϕj]. (3.A.10)

For i < i+ δn ≤ j ≤ (1− δ)n we can use (3.A.9) and (3.A.8) to get

∑
i<i+δn≤j≤(1−δ)n

E[ψiξiψjξj]− E[ψiξi]E[ψjξj]

≤ (1− e−β)2
∑

i<i+δn≤j≤(1−δ)n

1

`∗(i)

(
1

`∗(j − i− δn)
(1 + oδ(1))− 1

`∗(j)
(1 + oδ(1))

)

= (1− e−β)2

(1−2δ)n∑
i=0

1

`∗(i)

(1−2δ)n−i∑
j=0

1

`∗(j)
(1 + oδ(1))−

(1−δ)n∑
j=i+δn

1

`∗(j)
(1 + oδ(1))


= oδ

((
n

`∗(n)

)2
)
.

(3.A.11)
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For the remaining i, j, using (3.A.3) we have

n−1∑
i=0

∑
i≤j<i+δn

(1−δ)n<j<n

E[ψiξiψjξj]− E[ψiξi]E[ψjξj]

≤
n−1∑
i=0

∑
i≤j<i+δn

(1−δ)n<j<n

E[ψiψj]

≤
n−1∑
i=0

∑
i≤j<i+δn

(1−δ)n<j<n

E[ψi]E[ψj−i]

≤
n−1∑
i=0

1

`∗(i)

i+δn−1∑
j=i

1

`∗(j)
+

n−1∑
j=(1−δ)n+1

1

`∗(j)


≤ 2

δn2

(`∗(n))2 (1 + oδ(1)).

(3.A.12)

Inserting (3.A.11) and (3.A.12) into (3.A.10) and taking δ → 0 yields Var |Rβ(n)| =
o((E|Rβ(n)|)2) and the weak law of large numbers follows.

Finally, part (iii) is proved in the same way as part (ii). The only difference is that in-
stead of using (3.A.7) we note that L(0,∞) is a geometric random variable with parameter
γ, therefore for every c > 0,

P [L(0, cn) = k] = γ(1− γ)k−1(1 + o(1)) as n→∞.

This completes the proof.
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Part II

PERCOLATION OF THE VACANT SET





4. Introduction to percolation of the vacant set

In the second part of the thesis we consider the problem of fragmentation of a finite graph
by random walk. We are interested in the percolative properties of the vacant set, the set
of vertices that have not been visited by a random walk up to a certain time. Intuitively,
for short times the vacant set will consist of a large connected component that is ‘dense’
in the graph and possibly some other small components. On the other hand, after a long
time the trace of the random walk occupies a large part of the graph and the vacant set
should be fragmented into only small connected components. It is thus natural to ask
how the transition between these two phases occurs.

This question is, however, only interesting on large graphs, and we will in fact consider
asymptotics on a diverging sequence of graphs. Therefore, the precise definition of the
model is as follows. Let Gn = (Vn, En) be an increasing sequence of possibly random
connected simple graphs with finite sets of vertices Vn and edges En, such that |Vn| → ∞
as n → ∞. Let X = (Xk)k≥0 be the simple random walk on Gn, i.e. the discrete-time
Markov chain on the state space Vn which chooses its next state uniformly among all
neighbors of the current state in the graph. For u ≥ 0 let

Vn(u) := Vn \ {Xk : 0 ≤ k ≤ u|Vn|}

be the vacant set of the random walk at level u, i.e. the set of vertices that have not been
visited by the random walk up to time u|Vn|. For notational convenience we will use Vn(u)
to denote the set of vertices as well as the subgraph induced by these vertices.

Under some additional assumptions, the vacant set at a time proportional to the size
of the graph indeed defines a non-trivial percolation model. Namely, assuming that the
graphs Gn are sufficiently fast mixing and that they converge locally (roughly in the sense
that every ball of fixed radius in Gn converges to a ball in G, in distribution if the graphs
are random) to an infinite graph G = (V,E) which is transient, it can be shown that for
every x ∈ Gn and u ∈ (0,∞),

P [x ∈ Vn(u)]
n→∞−−−→ e−cu,

for an explicit constant c > 0 (at least in the case where G is vertex-transitive). This
shows that the one-dimensional marginals of the vacant set percolation are non-trivial
Bernoulli random variables. The fact that the vacant set is determined by a random walk
trajectory, however, introduces a complicated dependency structure, which makes this
problem far more involved than independent Bernoulli percolation.

Nevertheless, it is expected that the sizes of connected components of the vacant set,
as macroscopic parameters, behave similarly as in independent Bernoulli percolation. We
state this as a heuristic conjecture.
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4. Introduction to percolation of the vacant set

Conjecture 4.1. The component structure of the vacant set left by random walk on an
increasing sequence of finite graphs satisfying the above assumptions exhibits the following
phase transition: There is a critical value u? ∈ (0,∞), such that for some constant κ > 0,

• whenever u < u?, with probability tending to 1 as n → ∞, the vacant set Vn(u)
consists of one unique ‘giant’ connected component of size of order |Vn|, and all
other connected components are at most of size of order logκ |Vn|;
• whenever u > u?, with probability tending to 1 as n→∞, all connected components

of the vacant set Vn(u) are at most of size of order logκ |Vn|.

In Chapter 5 we will prove Conjecture 4.1 for an increasing sequence of certain random
graphs. In this introductory chapter we first recall some facts on percolation theory and
introduce the random graph considered in Chapter 5. We then outline in Sections 4.2
and 4.3 the history of the problem of fragmentation of a finite graph by random walk and
how the model of random interlacements relates to it. Finally, we describe the result and
method of Chapter 5 in Section 4.4.

4.1. The Erdős-Rényi phase transition

The nature of the phase transition of Conjecture 4.1 is motivated by the classical phase
transition for Bernoulli percolation on the complete graph. Let us recall some facts of this
theory. In Bernoulli edge percolation on a finite or infinite graph G = (V,E), every edge
e ∈ E is independently set open with probability p ∈ (0, 1) and closed otherwise. One is
then interested in the geometry of the open subgraph which is obtained upon removing
all closed edges.

Bernoulli edge percolation on the complete graph on n vertices, Kn, is also known as
the Erdős-Rényi random graph, cf. the monographs [Bol01, J LR00, Dur10]. This random
graph exhibits the following phase transition:

Theorem 4.1.1 ([ER61]). If the probability of edges being open is p = ρ
n

for some ρ > 0,
then

• whenever ρ < 1, with probability tending to 1 as n→∞, all connected components
of the open subgraph are at most of size of order log n;
• whenever ρ > 1, with probability tending to 1 as n→∞, there is one unique ‘giant’

connected component of the open subgraph of size of order n, and all other connected
components are at most of size of order log n.

More is known about the behavior near the critical point ρ = 1. Namely, if p =
1
n

+ λn−
4
3 for some λ ∈ R, then the largest components are of size of order n

2
3 , and

the rescaled ordered component sizes converge in distribution to a process equivalent
to ordered excursion lengths of a drifted and reflected Brownian motion [Ald97]. This

behavior is referred to as the existence of a critical window. The width n−
4
3 of the window

is ‘correct’ in the sense that if λ → −∞, the size of the largest component becomes
considerably smaller than n

2
3 , and if λ → ∞ it becomes larger than of order n

2
3 and the

second largest component becomes much smaller.

The random graph on which we will consider the vacant set of random walk and
prove Conjecture 4.1 is the giant component of the Erdős-Rényi random graph in the
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4.2. Fragmentation of the torus and random interlacements

supercritical phase ρ > 1. To illustrate some of its features, let us briefly sketch one way
how the phase transition of Theorem 4.1.1 can be understood heuristically.

Consider the following exploration of the component containing a given vertex x ∈ Kn.
Since every other vertex is connected to x independently with probability p, the number
of neighbors of x in the open subgraph is a Binomial(n, p) random variable, hence for
p = ρ

n
and large n roughly a Poisson(ρ) random variable. The neighbors of x have a

number of additional neighbors in the open subgraph which is Binomial(n−1, p), i.e. still
roughly Poisson(ρ). Therefore, as long as one does not go too far from the starting point,
the explored connected component looks like a Poisson(ρ)-Galton-Watson tree. This
tree grows infinitely large with positive probability whenever ρ > 1, which after some
additional arguments (sprinkling) leads to the existence of the giant component in that
case. On the other hand, if ρ < 1, then the Poisson(ρ)-Galton-Watson tree goes extinct
with probability 1, which rather directly implies that all components remain small.

The two properties of the supercritical phase ρ > 1 which will be relevant later are
the following. First, the above heuristics explain why the giant component Erdős-Rényi
random graph is of size ξn + o(n), where ξ is the survival probability of a Poisson(ρ)-
Galton-Watson tree. Second, one can think of the giant component as looking locally
like a Poisson(ρ)-Galton-Watson tree conditioned on survival. We will see in Chapter 5
that this can be made precise by using a coupling of the random graph and a Poisson(ρ)-
Galton-Watson tree.

Besides the Erdős-Rényi random graph, i.e. Bernoulli percolation on the complete
graph, a phase transition like the one in Theorem 4.1.1 including the critical window was
also verified for Bernoulli percolation on other sequences of finite graphs, e.g. on random
d-regular graphs [ABS04, NP10] or on finite tori [HvdH07, HvdH11]. Moreover, the same
behavior has been shown to appear in other random graph models such as the random
graph with given degree sequence [MR95, HM12, Rio12].

We have seen that for understanding the Erdős-Rényi random graph it is convenient
to consider the local infinite volume limit, which is the Poisson-Galton-Watson tree. Sim-
ilarly, Bernoulli percolation on Zd can be used to understand percolation on finite tori.
In particular, the sharpness of a phase transition (disregarding its non-triviality) in the
infinite volume limit usually follows from rather soft arguments like the 0-1 law for the
Galton-Watson tree or shift-ergodicity for percolation on Zd. We will come back to this
remark later.

4.2. Fragmentation of the torus and random interlacements

Let us come back to Conjecture 4.1. In the probability literature, the problem of frag-
mentation of a finite graph by random walk was for the first time investigated in [BS08],
namely on the discrete torus, i.e. the graph TdN = (V d

N , E
d
N) with vertex set V d

N = (Z/NZ)d

and nearest-neighbor edges Ed
N , in dimensions d ≥ 3. It was shown that for small values

of u and sufficiently high dimensions d, with high probability as N tends to infinity the
vacant set VN(u) contains a connected component of size of order Nd. This giant com-
ponent is unique in the sense that there might be other components of size of order Nd,
but there is only one containing certain long segments. This result is rather far from the
more detailed statement of Conjecture 4.1.
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4. Introduction to percolation of the vacant set

In order to better understand this problem of the vacant set of random walk on the
torus, Sznitman introduced the model of random interlacements on Zd [Szn10] (cf. also
[ČT12, DRS14a] for introductions and more references). The occupied or closed vertices
in this percolation model are induced by a collection of doubly-infinite nearest-neighbor
paths, given by a Poisson point process on the space of these paths modulo time shift.
The density of occupied vertices is determined by the intensity parameter u > 0 of this
Poisson point process. The set of non-occupied vertices as well as the subgraph induced
by these vertices is called the vacant set of random interlacements at intensity u.

The construction of random interlacements is motivated by the idea to have an infinite
volume analogue for the problem of fragmentation of a finite graph by random walk. As
remarked at the end of the last section, this can be useful for the analysis of phase
transitions. Random interlacements on Zd are the local limit of fragmentation by random
walk of the discrete torus TdN in the sense that the ‘local picture’ is the same. Indeed,
[Win08] showed that the vacant set of random walk at level u, VN(u), converges locally
in law as N →∞ to the vacant set of random interlacements on Zd at intensity u.

In [Szn10, SS09] it was shown that random interlacements on Zd, d ≥ 3, exhibit a phase
transition, similar to Bernoulli percolation. Like in Bernoulli percolation, the existence
of this phase transition follows from shift-ergodicity. The non-triviality of the critical
intensity u?(d) however is highly non-trivial due to the long-range dependency structure
of the model.

Theorem 4.2.1 ([Szn10, SS09]). There exists a critical intensity u?(d) ∈ (0,∞), such
that

• whenever u > u?(d), almost surely all connected components of the vacant set at
intensity u are finite;
• whenever u < u?(d), almost surely there is one unique infinite connected component

in the vacant set at intensity u.

Much more has been proved about random interlacements in the last five years, but
there are important open questions related to the problem of fragmentation of the torus
by random walk which are still open. Namely, besides u?(d) there are at present two other
critical parameters for random interlacements on Zd, d ≥ 3: u1(d) and u2(d) such that
0 < u1(d) ≤ u?(d) ≤ u2(d) < ∞. For all 0 ≤ u ≤ u1(d), the infinite component of the
vacant set is ‘locally unique’ in the sense that any large connected component in a ball
around the origin actually belongs to the infinite component [DRS14b]. For all u > u2(d),
the connectivity function in the vacant set at intensity u has stretched exponential decay
[SS10]. It is believed that u1(d) = u?(d) = u2(d), but a proof of this claim is still missing.

Random interlacements lead to a better understanding of the problem of fragmentation
of the torus TdN by random walk. Using a coupling of random interlacements on Zd and
the random walk on the torus it was possible to extend the results of [BS08]. Namely, in
[TW11] it was shown that in all dimensions d ≥ 3 there are in fact two distinct phases.
More precisely, for u1(d), u?(d), u2(d) as above, it was shown that with high probability
as N tends to infinity,

• for u < u1(d), the largest connected component of VN(u) is of size of order Nd, and
the second largest connected component of VN(u) is at most of size of order logκN ,
for some κ > 0;
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4.3. Locally tree-like and random graphs

• for u > u?(d), the largest connected component of VN(u) is of size of order o(Nd);
• for u > u2(d), the largest connected component of VN(u) is at most of size of order

logκN , for some κ > 0.

The first statement was actually shown in [TW11] only for d ≥ 5 and below a different
intensity ũ1(d), but it can be extended to d ≥ 3 using the results of [DRS14b] for random
interlacements at levels u < u1(d).

The above is still not giving the full picture of Conjecture 4.1, i.e. the sharp phase
transition at u = u?(d). Proving this would require more control on the random interlace-
ments process on Zd in both sub- and supercritical phases, in particular it would follow
from a proof of u1(d) = u?(d) = u2(d).

Let us remark also that recently in [ČT14] an improved coupling of random interlace-
ments on Zd and the random walk on TdN was used to establish a sharp phase transition
at u = u?(d), however not for the size of the components but for the diameter of the
component of the vacant set containing a given point.

4.3. Locally tree-like and random graphs

The model of random interlacements was extended to arbitrary transient weighted graphs
in [Tei09], and conditions involving isoperimetric inequalities were established under which
a non-trivial phase transition like in Theorem 4.2.1 holds on such graphs. This provides the
infinite volume limit of the problem of fragmentation by random walk also on sequences of
finite graphs other than the torus which locally converge to some infinite graph. Motivated
by the relation between random interlacements on Zd and random walk on the torus TdN ,
Conjecture 4.1 can then be extended by the following.

Conjecture 4.2. The critical level of the phase transition in the component structure
of the vacant set of random walk on a sequence of finite graphs should be equal to the
critical intensity of random interlacements on the corresponding infinite volume limit.

Both Conjectures 4.1 and 4.2 have indeed been proved for graphs that are locally tree-
like. For such graphs, random interlacements on the corresponding infinite volume limit
are particularly well understood. Namely, [Tei09] showed that for random interlacements
on an infinite tree, the component of the vacant set containing a given point has the same
law as a certain branching process. As a consequence, it was shown in [Tei09] that a
non-trivial phase transition like in Theorem 4.2.1 holds if the graph is a transient tree
with degree bounded and at least 3, endowed with weights bounded above and below.
The critical intensity for random interlacements on the infinite d-regular tree Td, d ≥ 3,
was obtained explicitly.

The good control available for random interlacements on trees was used in [ČTW11]
to prove both Conjectures 4.1 and 4.2 on sequences of fast mixing finite graphs whose
infinite volume limit is the infinite d-regular tree Td. More precisely, [ČTW11] proved
the phase transition for the vacant set of random walk and identified the critical level
with the critical intensity of random interlacements on Td for sequences of finite graphs
Gn = (Vn, En) such that |Vn| → ∞ as n → ∞, and for some d ≥ 3, α1 ∈ (0, 1), α2 > 0,
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and all n ≥ 1,

(i) Gn is d-regular;
(ii) for any x ∈ Vn, there is at most one cycle contained in the ball of

radius α1 logd−1 |Vn| around x;
(iii) the spectral gap λGn satisfies λGn > α2 > 0.

(4.3.1)

These properties are satisfied e.g. by large girth expanders, and with high probability by
large random d-regular graphs.

Another approach to prove Conjecture 4.1 was discovered in [CF11]. This approach
requires that the graph under consideration is random, and that a certain local construc-
tion of the graph is possible. It was observed by [CF11] that the vacant set left by random
walk on such a random graph satisfies a certain ‘spatial Markov property’. This has the
effect that a phase transition in the random subgraph induced by the vacant set can be
deduced directly from the phase transition in the corresponding random graph model.

This idea was used twice in [CF11]. First, a phase transition similar to the one of
Conjecture 4.1 without the extension of Conjecture 4.2 was obtained for the vacant set
left by random walk on the Erdős-Rényi random graph above the connectivity threshold
p � logn

n
, using that the law of the vacant subgraph is again an Erdős-Rényi random

graph which exhibits the classical phase transition of Theorem 4.1.1.
Second, the phase transition for the vacant set on random d-regular graphs was shown

independently from [ČTW11]. In that case the vacant subgraph has the law of a random
graph with a given degree sequence. For such graphs a phase transition like the one
in Theorem 4.1.1 is known to hold, including the existence of a critical window [MR95,
HM12, Rio12]. The critical point of the phase transition depends on a single parameter
which is computable from the degree sequence of the graph. Note that the phase transition
for the vacant set on random d-regular graphs of [CF11] holds annealed, i.e. averaged over
the randomness in the graph, whereas in [ČTW11] it holds for every realization satisfying
assumptions (4.3.1).

Taking up the idea of [CF11], [ČT13] used the detailed results on random graphs
with given degree sequence to show the existence of a critical window in the phase tran-
sition for the vacant set on random d-regular graphs, by giving sharp estimates on the
random degree sequence of the vacant set, incorporating again the relation to random
interlacements.

4.4. The vacant set on the giant component

In Chapter 5 we will prove Conjecture 4.1 including Conjecture 4.2 for the random walk
on the giant component of the supercritical Erdős-Rényi random graph. That is, we will
show the phase transition for the vacant set and relate the critical level to the critical
intensity of random interlacements on a Poisson(ρ)-Galton-Watson tree conditioned on
non-extinction.

The giant component is a natural candidate for Conjecture 4.1. First, it is fast mixing:
the mixing time of simple random walk on the giant component of size ξn is of order log2 n
[FR08, BKW14]. Second, as described in Section 4.1, the giant component is locally
isomorphic to a Poisson(ρ)-Galton-Watson tree conditioned on non-extinction. Thus the
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problem of fragmentation by random walk can be related to random interlacements on a
Galton-Watson tree.

Besides the fact that the giant component is a natural candidate, the problem of
fragmentation by random walk is particularly interesting on this graph. Conjecture 4.1
with the extension of Conjecture 4.2 has before only been proved on regular graphs on
a deterministic set of vertices. The non-regularity of the giant component brings up
some noteworthy points in the connection to random interlacements on the corresponding
infinite volume limit. Moreover, the fact that the giant component consists of a random
set of vertices introduces certain technical difficulties.

As for the connection to the infinite volume analogue, random interlacements on
Galton-Watson trees were studied in [Tas10]. Relying on the characterization of the
vacant set on trees by [Tei09], it was shown that the critical intensity of random interlace-
ments on a Galton-Watson tree conditioned on non-extinction is almost surely constant,
i.e. it does not depend on the realization of the tree, that it is non-trivial, and that it is
implicitly given as the solution of a certain equation. We will show that the critical level
of the phase transition for the vacant set left by random walk on the giant component
solves the exact same equation as the critical intensity of random interlacements on a
Poisson(ρ)-Galton-Watson tree.

The randomness of the size of the giant component, or rather the randomness of the
set of vertices of which it consists, is an obstacle for applying the idea of the spatial
Markov property of [CF11]. We overcome this problem by introducing a process that
evolves on the whole graph and not only on the giant component and that satisfies the
spatial Markov property. By coupling the random walk on the giant component to this
process, we are then able to deduce the phase transition of Conjecture 4.1 directly from
the classical Erdős-Rényi phase transition of Theorem 4.1.1.
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5. Phase transition for the vacant set left by random

walk on the giant component of a random graph

Tobias Wassmer

Abstract. We study the simple random walk on the giant component of a
supercritical Erdős-Rényi random graph on n vertices, in particular the so-called
vacant set at level u, the complement of the trajectory of the random walk run up
to a time proportional to u and n. We show that the component structure of the
vacant set exhibits a phase transition at a critical parameter u?: For u < u? the
vacant set has with high probability a unique giant component of order n and all
other components small, of order at most log7 n, whereas for u > u? it has with
high probability all components small. Moreover, we show that u? coincides with
the critical parameter of random interlacements on a Poisson-Galton-Watson tree,
which was identified in [Tas10].

5.1. Introduction

Recently, several authors have been studying percolative properties of the vacant set left
by random walk on finite graphs and the connections of this problem to the random
interlacements model introduced in [Szn10]. The topic was initiated with the study of
random walk on the d-dimensional discrete torus in [BS08], which was further investigated
in [TW11]. [ČTW11, ČT13, CF11] studied random walk on the random regular graph, and
[CF11] also studied random walk on the Erdős-Rényi random graph above the connectivity
threshold.

In this work we consider the supercritical Erdős-Rényi random graph below the con-
nectivity threshold. We prove a phase transition in the component structure of the vacant
set left by random walk on the giant component of this graph, and we identify the critical
point of this phase transition with the critical parameter of random interlacements on a
Poisson-Galton-Watson tree.

We start by introducing some notation to precisely state the result. Let Pn,p be the
law of an Erdős-Rényi random graph, i.e. a random graph G such that every possible
edge is present independently with probability p = ρ

n
, defined on the space G(n) of graphs

with vertex set {1, 2, ..., n} endowed with the σ-algebra Gn of all subsets. It is well known
that the component structure of G varies with the parameter ρ (see e.g. [ER61, Bol01,
J LR00, Dur10]). We will in this paper consider such a random graph for a fixed constant
ρ > 1. In this case, with probability tending to 1 as n→∞, the graph G is supercritical:
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5. Phase transition for the vacant set on the giant component

There exists a unique largest connected component C1(G) of size approximately ξn, the
so-called giant component. Here, ξ is the unique solution in (0, 1) of e−ρξ = 1− ξ.

For a graph G on n vertices and its largest connected component C1 = C1(G) (deter-
mined by some arbitrary tie-breaking rule), let P C1 be the law of the simple discrete-time
random walk (Xk)k≥0 on C1 started from its stationary distribution, defined on the space
{1, 2, ..., n}N0 of trajectories on n vertices endowed with the cylinder-σ-algebra Fn. Let
Ωn = G(n)× {1, 2, ..., n}N0 endowed with the product σ-algebra Gn × Fn, and define the
annealed measure by

Pn(A×B) =
∑
G∈A

Pn,p(G)P C1(G)(B) for A ∈ Gn, B ∈ Fn. (5.1.1)

On the product space Ωn we define the vacant set of the random walk at level u as

Vu = C1 \ {Xk : 0 ≤ k ≤ uρ(2− ξ)ξn}. (5.1.2)

We refer to Remark 5.1.2 for an explanation of this somewhat unusual time scaling.
Let C1(Vu) and C2(Vu) be the largest and second largest connected components of the
subgraph induced by Vu.

Theorem 5.1.1. The component structure of the subgraph induced by Vu exhibits a phase
transition at a critical value u?:

• For u < u?, there are positive constants ζ(u, ρ) ∈ (0, 1), C <∞, such that for every
ε > 0,

lim
n→∞

Pn

[∣∣∣∣ |C1(Vu)|
n

− ζ(u, ρ)

∣∣∣∣ ≤ ε

]
= 1, (5.1.3)

lim
n→∞

Pn

[
|C2(Vu)|
log7 n

≤ C

]
= 1. (5.1.4)

• For u > u?, there is a positive constant C <∞, such that

lim
n→∞

Pn

[
|C1(Vu)|
log7 n

≤ C

]
= 1. (5.1.5)

The critical parameter u? is the same as the critical parameter of random interlacements
on a Poisson(ρ)-Galton-Watson tree conditioned on non-extinction, which is by [Tas10]
given as the solution of a certain equation.

We refer to Section 5.2.3 for a short summary of the used results on random interlace-
ments and its critical parameter, and the derivation of the characterizing equation (5.2.15)
for u?. The constant ζ(u, ρ) is given as the solution of equation (5.5.2).

Theorem 5.1.1 confirms the following general principle: The vacant set of random
walk on a sufficiently fast mixing graph exhibits a phase transition and the critical point
is related to the critical value of random interlacements on the corresponding infinite
volume limit.

This principle has been investigated recently in several other situations. Results that
are more detailed than Theorem 5.1.1 are known to hold for random walk on a random d-
regular graph on n vertices run up to time un: [ČTW11] and with different methods [CF11]
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5.1. Introduction

proved the phase transition in the component structure of the vacant graph, [ČTW11]
identified the critical parameter u? with the critical value of random interlacements on
the infinite d-regular tree, and [ČT13] showed that there is a critical window of width n−

1
3

around u? in which the largest component is of order n
2
3 . [CF11] used their methods to

also prove a phase transition for random walk on the Erdős-Rényi random graph above
the connectivity threshold (ρ � log n). Weaker statements are known for random walk
run up to time uNd on the discrete d-dimensional torus of side-length N , see [BS08] and
[TW11]. The statements in this case are proved for u small or large enough respectively,
but it is only conjectured that there is indeed a phase transition at a critical parameter
u? that coincides with the critical value of random interlacements on Zd (cf. Conjecture
2.6 in [ČT12]). We believe that in our case, as in [ČT13] for the random regular graph,
it should be possible to prove the existence of a critical window around the critical point.
We did not further investigate this.

The main difficulties in proving Theorem 5.1.1 compared to previous results are that
our graph, i.e. the giant component of an Erdős-Rényi random graph, is of random size
and non-regular. The proof consists of three main steps. The key idea of the first step
is the following ‘spatial Markov property’ of random walk on a random graph. Instead
of sampling a random graph and performing random walk on the fixed graph, one can
consider sites unvisited by the random walk as not yet sampled sites of the random
graph. Then the unvisited or vacant part of the graph has the law of some random graph,
depending on the random graph model. In the case of a connected Erdős-Rényi random
graph the vacant part is again an Erdős-Rényi random graph, this was used to prove the
phase transition in [CF11]. In the case of a random regular graph the vacant part is a
random graph with a given degree sequence, a well-studied object (see e.g. [HM12]). This
was used to prove the phase transition in [CF11] and the critical behavior in [ČT13].

The situation in our case is more involved, because we consider random walk only on
the giant component of a not connected Erdős-Rényi random graph. This random walk
cannot satisfy such a spatial Markov property, since the graph must be fixed in advance
for the giant component to be known. To be able to still use the idea, we introduce in
Algorithm 5.4.1 a process X̄ = (X̄k)k≥0 on an Erdős-Rényi random graph that behaves
like a random walk but jumps to another component after having covered a component.
In Lemma 5.4.2 we make precise the aforementioned spatial Markov property for this
process X̄, namely that the vacant graph left by X̄ still has the law of an Erdős-Rényi
random graph, but with different parameters. The classical results on random graphs
imply a phase transition for this vacant graph.

In a second step we translate this phase transition to the vacant graph left by the
simple random walk X = (Xk)k≥0 on the giant component. To this end, we introduce in
Proposition 5.4.3 a coupling of X and X̄ where the two processes are with high probability
identified in a certain time interval. This can be done because the process X̄ will typically
‘find’ the giant component after a short time and then stay on it long enough.

The third step, requiring most of the technical work, is the identification of the critical
point of the phase transition. From Lemma 5.4.2 it is clear that the crucial quantity
deciding the critical point is the size of the vacant set left by X̄. The coupling of X
and X̄ has the property that the sizes of the vacant sets of X and X̄ are closely related
(Lemma 5.4.4), which allows to reduce the problem to the investigation of the size of
the vacant set left by X. The first part of this paper, Section 5.3, is devoted to this
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5. Phase transition for the vacant set on the giant component

investigation. In Proposition 5.3.1 we will on one hand compute the expectation of the
size of the vacant set left by X, and on the other hand we will show that the size of the
vacant set left by X is concentrated around its expectation.

We close the introduction with a remark on the connection to random interlacements
and a heuristic explanation of the time scaling uρ(2− ξ)ξn that appears in the definition
(5.1.2) of Vu. For readers unfamiliar with random interlacements and the notation, we
refer to Section 5.2, in particular Section 5.2.3.

Remark 5.1.2. In the giant component C1 of an Erdős-Rényi random graph the balls
B(x, r) around a vertex x with radius r of order log n typically look like balls around the
root ∅ in a Poisson(ρ)-Galton-Watson tree T conditioned on non-extinction. One expects
that random interlacements on T give a good description of the trace of random walk on
C1 locally in such balls, where the intensity u of random interlacements is proportional to
the running time of the walk. To determine the proportionality factor, we compare the
probability that a vertex x ∈ C1 has not been visited by the random walk on C1 up to time
t with the probability that the root ∅ ∈ T is in the vacant set of random interlacements
on T at level u.

Note first that the probability that the random walk on C1 started at x leaves a ball of
large radius around x before returning to x is approximately the same as the probability
that the random walk on T started at the root never returns to the root,

P C1x [H̃x > HB(x,r)c ] ≈ P T∅ [H̃∅ =∞]. (5.1.6)

The main task of Section 5.3 will be rigorous proof of the following approximation for the
random walk on C1,

P C1 [x is vacant at time t] ≈ e−tP
C1
x [H̃x>HB(x,r)c ]π(x). (5.1.7)

We will also show that the average degree of a vertex in C1 is ρ(2−ξ), and so the stationary

distribution π of the random walk on C1 is π(x) ≈ deg(x)
ρ(2−ξ)ξn . On the other hand, according

to [Tei09], the law Qu of the vacant set of random interlacements on the infinite graph T
at level u satisfies

Qu[∅ is vacant] = e−u capT (∅), (5.1.8)

where the capacity is here capT (∅) = deg(∅)P T∅ [H̃∅ = ∞]. As argued above, random
interlacements describe the random walk locally, so the probabilities (5.1.7) and (5.1.8)
should be approximately equal for the time t corresponding to random interlacements at
level u. The approximation of π(x) together with (5.1.6) leads to t = uρ(2 − ξ)ξn if the
parameter u in both models should be the same.

Compared to the time scalings uNd and un in the discussions of random walk on
the torus [BS08, TW11] and random regular graphs [ČTW11, ČT13] respectively, where
only the size of the graph (in our case the factor ξn) appears in the time scaling, the
additional factor ρ(2− ξ) for the average degree might be surprising. It is however only a
consequence of how one defines the uniform edge-weight on the underlying graph, which
scales the capacity by a constant. For the aforementioned 2d-regular graphs the weight
chosen is 1

2d
. For non-regular graphs it is the canonical choice to define edge-weights as

1, as is done in [Tei09] and [Tas10], and we stick to this definition.
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5.2. Notation and preliminaries

The paper is structured as follows. In Section 5.2 we introduce some further notation
and recall some facts on random graphs, random walks, and random interlacements. In
Section 5.3 we investigate the size of the vacant set left by the simple random walk X on
the giant component. In Section 5.4 we introduce the process X̄ and compare it to the
random walk X. Finally, we gather all intermediate results to prove Theorem 5.1.1 in
Section 5.5.

Acknowledgment. The author would like to thank Jǐŕı Černý for suggesting the problem
and for helpful discussions, and the referee for carefully reading the manuscript and giving
important comments that helped to improve the paper.

5.2. Notation and preliminaries

We will denote by c, c′, c′′ positive finite constants with values changing from place to
place. ε will always denote a small positive constant with value changing from place to
place. All these constants may depend on u and ρ, but not on any other object. We will
tacitly assume that values like uρ(2 − ξ)ξn, log5 n, nε etc. are integers, omitting to take
integer parts to ease the notation.

We use the standard o- and O-notation: Given a positive function g(n), a function
f(n) is o(g) if limn→∞ f/g = 0, and it is O(g) if lim supn→∞ |f |/g < ∞. We extend this
notation to random variables in the following way. For a random variable An on a space
(Ωn, Qn) we use the notation ‘An = f(n)+o(g) Qn-asymptotically almost surely’ meaning
‘∀ ε > 0, Qn[|An − f(n)| ≤ εg(n)]→ 1 as n → ∞’, and ‘An = O(g) Qn-asymptotically
almost surely’ meaning ‘∃ C > 0 such that Qn[|An| ≤ Cg(n)]→ 1 as n→∞’.

5.2.1. (Random) graphs

For a non-oriented graph we use the notation G to denote the set of vertices in the graph
as well as the graph itself, consisting of vertex-set and edge-set. For vertices x, y ∈ G,
x ∼ y means that x and y are neighbors, i.e. {x, y} is an edge of G. We denote by deg(x)
the number of neighbors of x in G, and by ∆G = maxx∈G deg(x) the maximum degree. By
dist(x, y) we denote the usual graph distance, and for r ∈ N, B(x, r) is the set of vertices
y with dist(x, y) ≤ r. For a subset A ⊂ G, denote its complement Ac = G \ A and its
(interior) boundary ∂A = {x ∈ A : ∃y ∈ Ac, x ∼ y}.

We denote by Ci(G) the i-th largest connected component of a graph G. If there are
equally large components, we order these arbitrarily. The subgraph induced by a vertex-
set V ⊂ G is defined as the graph with vertices V and edges {x, y} if and only if x, y ∈ V
and x ∼ y in G. Again we use the notation Ci(G) for the set of vertices as well as for
the induced subgraph. Usually (but not necessarily) C1 = C1(G) will be the unique giant
component. A graph or graph component is called simple if it is connected and has at
most one cycle, i.e. the number of edges is at most equal to the number of vertices.

Recall from the introduction that Pn,p denotes the law of an Erdős-Rényi random
graph, i.e. a random graph on n vertices such that every edge is present independently
with probability p = ρ

n
. Let En,p be the corresponding expectation. An event is said

to hold asymptotically almost surely (a.a.s.) if it holds with probability tending to 1 as
n→∞ (cf. the above defined o- and O-notation). Throughout this work ρ > 1 is a fixed
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5. Phase transition for the vacant set on the giant component

constant. It is well known that the following properties then hold Pn,p-a.a.s.

The graph G has a unique giant component C1 of size |C1| satisfying
||C1| − ξn| ≤ n3/4, where ξ is the unique solution in (0, 1) of e−ρξ = 1 − ξ.
All other components are simple and of size smaller than C log n, for some
fixed constant C.

(5.2.1)

The spectral gap λC1 of the random walk on the giant component
(cf. (5.2.12)) satisfies λC1 ≥ c

log2 n
for some fixed constant c. (5.2.2)

The maximum degree ∆G satisfies ∆G ≤ log n. (5.2.3)

(5.2.1) and (5.2.3) are classical results (see e.g. [ER61, Bol01, J LR00, Dur10]), and (5.2.2)
follows from [LPW09, Theorem 12.4 ] with the O(log2 n) bound on the mixing time of the
random walk on the giant component proved in [BKW14]. We use the terminology typical
graphs for graphs G on n vertices satisfying (5.2.1), (5.2.2) and (5.2.3). We will usually
prove our statements for typical graphs only, since we are interested in a.a.s.-behavior.

For a quantitative version of the first statement in (5.2.1) see [vdH08, Theorem 4.8],
which states that

Pn,p
[
||C1| − ξn| > n3/4

]
≤ cn−c

′
. (5.2.4)

The choice of the constant 3/4 is arbitrary.
We will also need a quantitative version of (5.2.3), we therefore briefly present a

proof. Fix a vertex x ∈ G and denote all other vertices by yi, i = 1, ..., n − 1. Let Ei =
1{{x,yi} is an edge}. Then the Ei are i.i.d. Bernoulli(p) random variables, deg(x) =

∑n−1
i=1 Ei,

and for any fixed α > 0 by the exponential Chebyshev inequality,

Pn,p[deg(x) > log n] ≤ n−αEn,p
[
eα

∑
Ei
]

= n−α
(

1 +
ρ

n
(eα − 1)

)n−1

≤ cn−α,

where the constant c depends on α. We choose α = 4, this will be suitable for our
purposes. Then a union bound implies

Pn,p[∆G > log n] ≤ nPn,p[deg(x) > log n] ≤ cn1−α = cn−3. (5.2.5)

5.2.2. Random walks

Let P C1 be the law and EC1 the corresponding expectation of the simple discrete-time
random walk X = (Xk)k≥0 on the component C1 started stationary, i.e. the law of the
Markov chain with state space C1, transition probabilities pxy = 1

deg(x)
1{x∼y} and X0 ∼ π,

where π is the stationary distribution, π(x) = deg(x)∑
y∈C1

deg(y)
. (5.2.1) and the a.a.s. upper

bound (5.2.3) on the maximum degree ∆G imply the following bounds on π. Pn,p-a.a.s.

π(x) =
deg(x)∑
v∈C1 deg(v)

≤ c log n

n
, (5.2.6)

π(x) =
deg(x)∑
v∈C1 deg(v)

≥ c

n log n
. (5.2.7)

For real numbers 0 ≤ s ≤ r denote by X[s,r] = {Xk : s ≤ k ≤ r} the set of vertices
visited by X between times s and r. We let the random walk X run up to time t and
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denote by V(t) = C1 \X[0,t] the vacant set left by the random walk at time t, and again
we use the notation V(t) to also denote the subgraph of C1 induced by these vertices. As
defined in (5.1.2), we will use the short notation Vu for V(uρ(2− ξ)ξn).

We will, where it is clear in the context, drop the superscript from P C1 and EC1 . The
notation Px is then used to denote the law of the random walk on C1 started at vertex x,
Ex is the corresponding expectation. For a set A ⊂ C1 we denote by

HA = inf{t ≥ 0 : Xt ∈ A}, H̃A = inf{t ≥ 1 : Xt ∈ A}

the entrance time and hitting time respectively of A, and we write Hx and H̃x if A = {x}.
From [AB92, Lemma 2] or [AF02, Proposition 3.21] together with (5.2.6) we get the
following bound on E[Hx]. Pn,p-a.a.s. for all x ∈ C1,

E[Hx] ≥
(1− π(x))2

π(x)
≥ cn

log n
. (5.2.8)

For all real valued functions f and g on C1 define the Dirichlet form

D(f, g) =
1

2

∑
x,y∈C1

(f(x)− f(y))(g(x)− g(y))π(x)pxy. (5.2.9)

A function f on C1 is harmonic on A ⊂ C1 if
∑

y pxyf(y) = f(x) for x ∈ A. For x ∈ C1

and r ∈ N define the equilibrium potential g? : C1 → R as the unique function harmonic
on B(x, r) \ {x}, 1 on {x} and 0 on B(x, r)c. The dependence of g? on x and r is kept
implicit. Then it is well known that

g?(y) = Py
[
Hx < HB(x,r)c

]
, (5.2.10)

D(g?, g?) = Px
[
H̃x > HB(x,r)c

]
π(x). (5.2.11)

The spectral gap of the random walk on C1 is given by

λC1 = min{D(f, f) : π(f 2) = 1, π(f) = 0}. (5.2.12)

The relevance of the bound (5.2.2) on λC1 is in the speed of mixing of the random walk
on C1. From [LPW09, Theorem 12.3 and Lemma 6.13] it follows that for all t ∈ N

max
x,y∈C1

|Px[Xt = y]− π(y)| ≤ 1

minz∈C1 π(z)
e−λC1 t. (5.2.13)

5.2.3. Random interlacements

Random interlacements were introduced in [Szn10] on Zd as a model to describe the local
structure of the trace of a random walk on a large discrete torus, and in [Tei09] the model
was generalized to arbitrary transient graphs. It is a special dependent site percolation
model where the occupied vertices on a graph are constructed as the trace left by a Poisson
point process on the space of doubly-infinite trajectories modulo time shift. The density
of this Poisson point process is determined by a parameter u > 0. The critical value u? is
the infimum over the u for which almost surely all connected components of non-occupied
vertices are finite.
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In [Tas10] it is shown that for random Galton-Watson trees the critical value u? is
almost surely constant with respect to the tree measure and is implicitly given as the
solution of a certain equation. Except for the identification of the critical parameter of
Theorem 5.1.1 with this u? as the solution of the same equation, we will not use any results
on random interlacements. We refer to the lecture notes [ČT12] for an introduction to
random interlacements and many more references.

We quote the result from [Tas10] to derive the characterizing equation for u? in the
case of a Poisson-Galton-Watson tree. This requires some more notation. Denote by PT
the law of the supercritical Poisson(ρ)-Galton-Watson rooted tree conditioned on non-
extinction and by ET the corresponding conditional expectation. Let f(s) = eρ(s−1)

be the probability generating function of the Poisson(ρ) distribution, and denote by q
the extinction probability of a (unconditioned) Poisson(ρ)-Galton-Watson tree. It is well
known that q is the unique solution in (0, 1) of the equation f(s) = s, and hence q = 1−ξ,
where ξ is as in (5.2.1). Let

f̃(s) =
f((1− q)s+ q)− q

1− q
. (5.2.14)

This is in fact the probability generating function of the offspring in the subtree of vertices
with infinite line of descent (see e.g. [LP14, Proposition 5.26]).

Consider the simple discrete-time random walk (Xk)k≥0 on the rooted tree T started at
the root ∅, whose law we denote by P T∅ , and let H̃∅ = inf{t ≥ 1 : Xt = ∅} be the hitting

time of the root. Define the capacity of the root by capT (∅) = deg(∅)P T∅ [H̃∅ =∞].

By [Tas10, Theorem 1], the critical parameter u? of random interlacements on the
Galton-Watson tree conditioned on non-extinction is PT -a.s. constant and given as the
unique solution in (0,∞) of the equation

(
f̃−1
)′ (

ET
[
e−u capT (∅)

])
= 1.

In particular for the Poisson(ρ)-Galton-Watson tree,

(
f̃−1
)′

(t) =
1

ρξt+ ρ(1− ξ)
,

and u? is the solution of

ρξET
[
e−u capT (∅)

]
+ ρ(1− ξ) = 1. (5.2.15)

5.3. Size of the vacant set

In this section we investigate the size of the vacant set Vu left by the random walk X on
the giant component C1. As already mentioned we omit the superscripts from P C1 and
EC1 . Recall the definition (5.1.1) of the annealed measure Pn.
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Proposition 5.3.1.

(1) E[|Vu|] can asymptotically be approximated in terms of a Poisson(ρ)-Galton-Watson
tree conditioned on non-extinction:

E[|Vu|] = ξnET
[
e−u capT (∅)

]
+ o(n) Pn,p-a.a.s.

(2) The random variable |Vu| is concentrated around its mean:

|Vu| = E[|Vu|] + o(n) Pn-a.a.s.

5.3.1. Expectation of the size of the vacant set

The proof of part (1) of Proposition 5.3.1 is split up into several steps. We first quote and
extend [JLT14, Proposition 11.2]. It formalizes the well known fact that an Erdős-Rényi
random graph locally looks like a Galton-Watson tree. Here, by locally we mean balls of
radius of order log n. More precisely, fix some γ > 0 such that 6γ log ρ < 1, and set

r = γ log n. (5.3.1)

For a graph G, a vertex x ∈ G and a tree T with root ∅, define the event

Ix(G, T ) =

{
B(x, r+1) ⊂ G is isomorphic to B(∅, r+1) ⊂ T ,
with the isomorphism sending x to ∅

}
. (5.3.2)

Denote by P0
T the law of the unconditioned Poisson(ρ)-Galton-Watson tree T , and by

{|T | < ∞}, {|T | = ∞} the events of extinction and non-extinction respectively of the
tree T .

Proposition 5.3.2.

(1) Given an arbitrary fixed vertex x ∈ {1, 2, ..., n}, there is a coupling Qx of G under
Pn,p and a tree T under P0

T , such that for n large enough

Qx [Ix(G, T )] ≥ 1− cn3γ log ρ−1. (5.3.3)

For n large enough, this coupling satisfies

Qx[x ∈ C1, |T | <∞] ≤ cn−c
′
, (5.3.4)

Qx[x /∈ C1, |T | =∞] ≤ cn−c
′
. (5.3.5)

(2) For an arbitrary point x ∈ G, with r as in (5.3.1),

Pn,p
[
|B(x, r)| ≥ n3γ log ρ

]
≤ cn3γ log ρ−1. (5.3.6)

(3) Given two arbitrary fixed vertices x 6= y, there is a coupling Qx,y of G under Pn,p
and two trees Tx and Ty, each having law P0

T , such that Tx and Ty are independent
and for n large enough

Qx,y [Ix(G, Tx) and Iy(G, Ty)] ≥ 1− cn6γ log ρ−1, (5.3.7)

and statements (5.3.4) and (5.3.5) hold under Qx,y for x, Tx and y, Ty respectively.
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Proof. (5.3.3) is, up to the enlargement of the radius by 1, the statement of [JLT14,
Proposition 11.2], and (5.3.6) is [JLT14, Corollary 11.3]. Note that, in contrary to the
actual statement, [JLT14, Proposition 11.2] is proved for an a priori fixed vertex and not
a randomly chosen one.

For part (1) it remains to show the properties (5.3.4) and (5.3.5). For simplicity write
Bx = B(x, r) ⊂ G and B∅ = B(∅, r) ⊂ T . Denote by {z ↔ Bc

z} the event that z
is connected to the complement of Bz, or equivalently that ∂Bz is non-empty, and by
{z 6↔ Bc

z} its complement. To prove (5.3.4), we first claim that

Pn,p[x ∈ C1, x 6↔ Bc
x] ≤ cn−c

′
. (5.3.8)

To see this, note that if x ∈ C1 and x 6↔ Bc
x, then Bx = C1. But by (5.3.6), Bx is unlikely

to be large: For every small ε > 0, Pn,p[|Bx| ≥ n1−ε] ≤ cn−c
′
. However, if Bx is smaller

than n1−ε and Bx = C1, then C1 is smaller than n1−ε, but this happens with probability
smaller than cn−c

′
by (5.2.4), and (5.3.8) follows.

Note that if the coupling succeeds, i.e. the balls of radius r + 1 are isomorphic, then
{x ↔ Bc

x} = {∅ ↔ Bc
∅}. This happens with probability ≥ 1 − cn−c

′
by (5.3.3), so

together with (5.3.8),

Qx[x ∈ C1, |T | <∞] ≤ Qx[x↔ Bc
x, |T | <∞] + cn−c

′

≤ Qx[∅↔ Bc
∅, |T | <∞] + cn−c

′

= P0
T [∅↔ Bc

∅, |T | <∞] + cn−c
′
.

The tree T conditioned on extinction has the law of a subcritical Galton-Watson tree with
mean offspring number m < 1 (see e.g. [LP14, Proposition 5.26]). If q is the extinction
probability and Zk denotes the size of the k-th generation of the tree, we can use the
Markov inequality to get

P0
T [∅↔ Bc

∅, |T | <∞] = P0
T
[
Zr ≥ 1

∣∣ |T | <∞] q
≤ E0

T
[
Zr
∣∣ |T | <∞] q = qmγ logn = cn−c

′
,

which proves (5.3.4).
For (5.3.5), let Cx be the component of G containing x. Let M > 0 be such that

Mγ > (ρ − 1 − log ρ)−1. Then, by e.g. [Dur10, Theorem 2.6.4], Pn,p[x /∈ C1, |Cx| >
Mγ log n] ≤ cn−c

′
. Using this on the first line and (5.3.3) on the second, it follows that

Qx[x /∈ C1, |T | =∞] ≤ Qx[|Cx| ≤Mγ log n, |T | =∞] + cn−c
′

≤ Qx[|B∅| ≤Mγ log n, |T | =∞] + cn−c
′
.

To bound this latter probability that the ball of radius r = γ log n in a surviving
Poisson(ρ)-Galton-Watson tree is smaller than Mr, let again Zr be the size of the r-th
generation and denote by Z?

r the number of particles in the r-th generation with infinite
line of descent. Then

Qx[|B∅| ≤Mr, |T | =∞] ≤ P0
T [Zr ≤Mr | |T | =∞]P0

T [|T | =∞]

≤ P0
T [Z?

r ≤Mr | |T | =∞]ξ.
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5.3. Size of the vacant set

By e.g. [LP14, Proposition 5.26] or [AN72, Theorem I.12.1]

P0
T [Z?

r ≤Mr | |T | =∞] = P̃T [Z̃r ≤Mr],

where Z̃r under P̃T is the r-th generation size of a Galton-Watson tree with offspring
distribution defined by the probability generating function f̃ as in (5.2.14), a tree with
extinction probability q̃ = 0. Let κ = f̃ ′(0) = f ′(q). Since f , the probability generating
function of Poisson(ρ), is strictly convex and increasing, and by definition of q = 1−ξ, we
have 0 < κ < 1. Let f̃r be the r-th iterate of f̃ , which is in fact the probability generating
function of Z̃r. From [AN72, Corollary I.11.1] we know that

lim
r→∞

κ−rf̃r(s) = Q(s) ∈ (0,∞) exists for 0 ≤ s < 1.

It follows that
f̃r(s) ≤ (Q(s) + ε)κr

for r ≥ r0(s, ε). Using this, for any λ > 0 we obtain for r ≥ r0(e−λ, ε)

P̃T [Z̃r ≤Mr] ≤ P̃T [e−λZ̃r ≥ e−λMr] ≤ eλMrf̃r(e
−λ)

≤ (Q(s) + ε)eλMr+r log κ.

By choosing λ < − log κ
M

we can make this smaller than ce−c
′r, and (5.3.5) follows since

r = γ log n. This finishes the proof of part (1) of the proposition.
We now prove part (3). Define the coupling Qx,y as follows. By using part (1) of

the proposition, we can find a coupling of two independent graphs Gx and Gy, both with
vertex set x, y, 3, ..., n, and two independent Poisson(ρ)-Galton-Watson trees Tx and Ty,
such that with probability larger than 1−2cn3γ log ρ−1 both Ix(Gx, Tx) and Iy(Gy, Ty) hold.

We then construct a graph G with the same vertex set x, y, 3, ..., n in the following
way. We first explore the ball B(x, r + 1) ⊂ G by determining the state of all possible
edges with at least one adjacent vertex in B(x, r) ⊂ Gx according to their state in Gx,
i.e. setting them present or absent. In a second step we determine the ball B(y, r+1) ⊂ G
in the same way by Gy, only that we do not change the state of already determined edges.
The remaining edges in G are set present independently with probability p and absent
otherwise.

By construction this graph G has law Pn,p. If both Ix(Gx, Tx) and Iy(Gy, Ty) hold and
there is no collision in the second step, i.e. we never want to set an edge present that is
already set absent or vice versa, then both Ix(G, Tx) and Iy(G, Ty) hold, and the coupling
succeeds. It thus remains to bound the probability of such a collision.

Note that if there is a collision, then the sets of vertices B(x, r + 1) and B(y, r + 1)
must have non-empty intersection: If B(x, r+1)∩B(y, r+1) = ∅, the only edges possibly
causing a collision are edges {u, v} with u ∈ B(x, r) and v ∈ B(y, r), but these edges
must be set absent by both Gx and Gy, or else u ∈ B(y, r + 1) or v ∈ B(x, r + 1).

The sets B(x, r+1) and B(y, r+1) are smaller than n3γ log ρ with probability larger than
1− cn3γ log ρ−1 by (5.3.6), and they are by construction random subsets of {x, y, 3, ..., n}.
But the probability that two random subsets of {x, y, 3, ..., n} of size k intersect is smaller
than k2

n
, so the probability of a collision is smaller than

Qx,y[B(x, r + 1) ∩B(y, r + 1) 6= ∅] ≤ 2cn3γ log ρ−1 +
1

n
n6γ log ρ ≤ cn6γ log ρ−1.
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5. Phase transition for the vacant set on the giant component

This proves (5.3.7). By construction it is clear that statements (5.3.4) and (5.3.5) hold
analogously under Qx,y.

We will denote by EQx and EQx,y the expectations corresponding to the couplings Qx

and Qx,y. For easier use later we now define some events and estimate their probabilities.
Let Bx on the space of the coupling Qx be the event

Bx = Ix(G, T ) ∩
(
{x ∈ C1, |T | =∞} ∪ {x /∈ C1, |T | <∞}

)
, (5.3.9)

This event can canonically also be defined on the space of the coupling Qx,y when replacing
T by Tx. Then define on the space of Qx,y the event

Bx,y = Bx ∩ By. (5.3.10)

From Proposition 5.3.2 it is immediate that

Qx[Bx] ≥ 1− cn−c′ , (5.3.11)

Qx,y[Bx,y] ≥ 1− cn−c′ . (5.3.12)

On the space of the coupling Qx, and similarly on the space of Qx,y, we further define the
event

{x good} = {x ∈ C1} ∩ {|T | =∞} ∩ Ix(G, T ) = Bx ∩ {x ∈ C1}. (5.3.13)

Since P0
T [|T | =∞] = ξ and 1{x good} = 1{|T |=∞} − 1{|T |=∞, x/∈C1} − 1{|T |=∞, x∈C1, Ix(G,T )c},

it follows with (5.3.3) and (5.3.5) that

Qx[x good] = ξ + o(1) as n→∞.

Note that the probability of x being good is bounded away from zero, so every graph
property holding Pn,p-a.a.s., as well as every property of a ball of radius r in a Galton-
Watson tree holding P0

T -a.a.s. as r →∞ will also hold Qx[ · | x good]-a.a.s.
As a first application of Proposition 5.3.2 we prove a law of large numbers for the sum

of degrees of vertices in the giant component, which leads to an approximation of the
stationary measure π. This result may be well known, we did however not find it in the
literature. The technique of the proof will be used again later.

Lemma 5.3.3.∑
x∈C1

deg(x) =
∑
x∈G

1{x∈C1} deg(x) = ρ(2− ξ)ξn+ o(n) Pn,p-a.a.s.

Proof. Every vertex in the random graph G has Binomial(n− 1, ρ
n
) neighbors, but on C1

their degree is above average and there is some dependency. For x ∈ G denote

Zx = 1{x∈C1} deg(x),

Z̃x = 1{|T |=∞} deg(∅),

where the tree T is defined by the coupling Qx from Proposition 5.3.2, and ∅ is the root
of T . We will approximate En,p[Zx] = EQx [Zx] by EQx [Z̃x] and show that the sum of the
Zx is concentrated around its expectation using the second moment method.
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5.3. Size of the vacant set

Let us first compute the expectation of Z̃x. Recall that PT denotes the law of the
Poisson(ρ)-Galton-Watson tree conditioned on non-extinction, and ET the corresponding
conditional expectation. Then

EQx
[
Z̃x
]

= E0
T
[
deg(∅)

∣∣ |T | =∞]P0
T [|T | =∞] = ET [deg(∅)] ξ. (5.3.14)

Using the same technique as in the proof of [LP14, Proposition 5.26], it is straightforward
to see that the expected offspring in a Galton-Watson tree conditioned on non-extinction
is

ET [deg(∅)] =
1

1− q
(f ′(1)− qf ′(q)),

where f is the probability generating function of the offspring distribution. Here, the
offspring is Poisson(ρ), so q = 1− ξ, f ′(1) = ρ and f ′(q) = ρ(1− ξ), which leads to

ET [deg(∅)] =
1

ξ
(ρ− ρ(1− ξ)2) = ρ(2− ξ). (5.3.15)

We now approximate EQx [Zx] by EQx [Z̃x]. Because Z̃x is unbounded, we will truncate
it by log n. By definition Z̃x is stochastically dominated by a Poisson(ρ) random variable
Λ, in particular it has finite mean, and therefore EQx [Z̃x1{Z̃x<logn}]↗ EQx [Z̃x] as n→∞.

Using E[etΛ] = eρ(et−1) we have P [Λ ≥ log n] = P [etΛ ≥ nt] ≤ eρ(et−1)n−t = cn−c
′
. It

follows that

EQx [Z̃x ∧ log n] = EQx [Z̃x1{Z̃x<logn}] + log nQx[Z̃x ≥ log n]

= EQx [Z̃x] + o(1) as n→∞.

Recall from (5.3.9) the definition of the event Bx, on which Zx = Z̃x, and Zx =
Z̃x ∧ log n if ∆G ≤ log n. With (5.3.11) and (5.2.5) we can bound∣∣∣EQx [Zx]− EQx [Z̃x ∧ log n]

∣∣∣ ≤ nQx [∆G > log n] + log nQx [Bcx] ≤ cn−c
′
. (5.3.16)

With (5.3.14) and (5.3.15) it follows that

En,p
[∑
x∈G

Zx

]
= nEQx [Zx] = ρ(2− ξ)ξn+ o(n) as n→∞.

It remains to show that the sum of the Zx is concentrated. Take x 6= y arbitrary
vertices in G and consider the coupling Qx,y from Proposition 5.3.2. Recall from (5.3.10)
the definition of the event Bx,y. On Bx,y we have Zx = Z̃x and Zy = Z̃y, so with (5.3.12)
and (5.2.5) we get∣∣∣EQx,y [ZxZy]− EQx,y

[
(Z̃x ∧ log n)(Z̃y ∧ log n)

]∣∣∣
≤ n2Qx,y [∆G > log n] + log2 nQx,y

[
Bcx,y

]
≤ cn−c

′
.

(5.3.17)

The trees Tx and Ty are independent, so Z̃x ∧ log n and Z̃y ∧ log n are independent.
Therefore, from (5.3.16) and (5.3.17) we conclude that for two arbitrary vertices x 6= y,

En,p[ZxZy] = En,p[Zx]En,p[Zy] + o(1) as n→∞.
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5. Phase transition for the vacant set on the giant component

Denote Z =
∑

x∈G Zx. It follows from the above, together with (5.2.5), that

En,p
[
Z2
]

=
∑
x∈G

En,p[Z2
x] +

∑
x 6=y

(En,p[Zx]En,p[Zy] + o(1))

= O(n log2 n) +O(n3)Pn,p[∆G > log n] + En,p [Z]2 − nEn,p[Zx]2 + o(n2)

= En,p [Z]2 + o(n2) as n→∞.

Thus VarZ = o(n2) and the Chebyshev inequality implies for any ε > 0

Pn,p [|Z − En,p[Z]| > εn] = o(1) as n→∞.

This finishes the proof of the lemma.

We proceed with the proof of part (1) of Proposition 5.3.1, i.e. the computation of
E[|Vu|]. First observe that

E[|Vu|] =
∑
x∈C1

P [x is vacant at time uρ(2− ξ)ξn] =
∑
x∈C1

P [Hx > uρ(2− ξ)ξn].

The task is therefore to approximate the probabilities P [Hx > uρ(2− ξ)ξn].
Assume that the random walk X is the discrete skeleton of a simple continuous-time

random walk Xc, i.e. the times between jumps of Xc are i.i.d. Exponential(1). Denote
by Hc

x the entrance time of x for this continuous-time walk and by Sk the time of the
k-th jump. It is clear that E[Sk] = k and E[Hc

x] = E[Hx]. From [AB92] or [AF02,
Proposition 3.23] we know that the distribution of the entrance time of such a continuous-
time walk can be approximated by an exponential distribution, namely for all t > 0∣∣∣P [Hc

x > t]− e−
t

E[Hx]

∣∣∣ ≤ 1

λC1E[Hx]
. (5.3.18)

If k = k(n) → ∞ as n → ∞, by the law of large numbers P [|Sk − k| > εk] = o(1) as
n→∞ for all ε > 0. This implies

P [Hx > k] = P [Hc
x > Sk] = P [Hc

x > Sk, Sk ≥ (1− ε)k] + P [Hc
x > Sk, Sk < (1− ε)k]

≤ P [Hc
x > (1− ε)k] + o(1) as n→∞ for all ε > 0,

and similarly

P [Hx > k] ≥ P [Hc
x > (1 + ε)k] + o(1) as n→∞ for all ε > 0.

We obtain P [Hx > k] = P [Hc
x > k] + o(1) as n → ∞, and together with the bounds

(5.2.2) for λC1 and (5.2.8) for E[Hx] it follows from (5.3.18) that Pn,p-a.a.s.∣∣∣P [Hx > uρ(2− ξ)ξn]− e−
uρ(2−ξ)ξn
E[Hx]

∣∣∣ = o(1). (5.3.19)

Approximating the probabilities P [Hx > uρ(2− ξ)ξn] therefore reduces to the investi-
gation of E[Hx]. We will use Proposition 3.2 from [ČTW11], which states that E[Hx] can
be approximated in terms of the Dirichlet form of the equilibrium potential g? (cf. (5.2.10)
and (5.2.11)).
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5.3. Size of the vacant set

Proposition 5.3.4 ([ČTW11, Proposition 3.2]).

D(g?, g?)

(
1− 2 sup

y∈B(x,r)c
|f ?(y)|

)
≤ 1

E[Hx]
≤ D(g?, g?)

1

π(B(x, r)c)2
, (5.3.20)

where f ?(y) = 1− Ey [Hx]

E[Hx]
.

To use this result, we need to control the function f ?. To this end, we give in the next
lemma a bound on the probability that the random walk on C1 started outside B(x, r)
hits x before some time T . Recall the coupling Qx from Proposition 5.3.2, the definition
(5.3.13) of the event {x good}, and the definition (5.3.1) of the radius r.

Lemma 5.3.5. There is a constant c, such that, for T ∈ N possibly depending on n,

Qx

[
sup

y∈B(x,r)c
Py[Hx ≤ T ] ≤ Te−cr

∣∣∣ x good

]
→ 1 as n→∞.

Proof. For x good let T be the infinite Poisson(ρ)-Galton-Watson tree defined by the
coupling Qx to which the neighborhood of x is isomorphic. Let P Tw be the law of the
simple random walk on the tree T started at w ∈ T . To bound the escape probability
of random walk on a Galton-Watson tree we use [JLT14, Proposition 11.5], which states
that

sup
w∈∂B(∅,r)

P Tw [H∅ <∞] ≤ e−cr P0
T -a.a.s. as r →∞.

Since P Tw [H∅ <∞] ≥ P Tw [H∅ < HB(∅,r)c ], this implies

sup
w∈∂B(∅,r)

P Tw [H∅ < HB(∅,r)c ] ≤ e−cr P0
T -a.a.s. as r →∞.

As argued before, since Qx[x good] is bounded away from zero, this also holds Qx[ · | x
good]-a.a.s. For x good, P Tw [H∅ < HB(∅,r)c ] = Pz[Hx < HB(x,r)c ], where z ∈ ∂B(x, r) is
the image of w under the isomorphism between B(x, r+ 1) ⊂ G and B(∅, r+ 1) ⊂ T . It
follows that

Qx

[
sup

z∈∂B(x,r)

Pz
[
Hx < HB(x,r)c

]
≤ e−cr

∣∣∣ x good

]
→ 1 as n→∞.

On the way from y ∈ B(x, r)c to x, the random walk on C1 must visit some z ∈ ∂B(x, r).
From there it either reaches x or leaves B(x, r) again. The probability of the first event
is Qx[ · | x good]-a.a.s. bounded by e−cr, and if the second event occurs, we can repeat
the previous reasoning. But in time T , this procedure can be repeated at most T times,
leading to the required bound on Py[Hx ≤ T ].

With Lemma 5.3.5 we can give a bound on supy∈B(x,r)c |f ?(y)| on the left hand side of
(5.3.20).

Lemma 5.3.6. There are constants c, c′, such that

Qx

[
sup

y∈B(x,r)c

∣∣∣1− Ey[Hx]

E[Hx]

∣∣∣ ≤ cn−c
′
∣∣∣ x good

]
→ 1 as n→∞. (5.3.21)
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5. Phase transition for the vacant set on the giant component

Proof. Note first that by the general O(k3)-bound on the expected cover time CG of a
graph G on k vertices (see e.g. [AKL+79]), we have

sup
z∈C1

Ez[Hx] ≤ CC1 ≤ n3. (5.3.22)

Before considering the expectation of Hx with the random walk started from y ∈
B(x, r)c, we consider the expectation of Hx starting from XT for some time T where the
walk is well mixed. Set T = log4 n. With (5.2.13), (5.2.2), (5.2.7) and (5.3.22) we get
Pn,p-a.a.s. for all z ∈ C1∣∣Ez[EXT [Hx]]− E[Hx]

∣∣ ≤ ∑
z′∈C1

∣∣Pz[XT = z′]− π(z′)
∣∣Ez′ [Hx]

≤
∑
z′∈C1

1

minv∈C1 π(v)
e−λC1TEz′ [Hx] (5.3.23)

≤ cn5 log ne−c
′ log2 n ≤ cn−c

′
.

By the Markov property at time T and using (5.3.23), Pn,p-a.a.s.

Ez[Hx] ≤ T + Ez[EXT [Hx]] ≤ T + E[Hx] + cn−c
′
. (5.3.24)

With (5.2.8) it follows that Pn,p-a.a.s. for all z ∈ C1

Ez[Hx]

E[Hx]
− 1 ≤ (T + cn−c

′
)

1

E[Hx]
≤ cn−c

′
. (5.3.25)

Since everything holding Pn,p-a.a.s. also holds Qx[ · | x good]-a.a.s., (5.3.25) is enough
for one side of (5.3.21).

For the other side take now y ∈ B(x, r)c and apply the Markov property at time T ,
use (5.3.23) on the first line and (5.3.24) for the supremum on the second line to get
Pn,p-a.a.s.

Ey[Hx] ≥ Ey[1{Hx>T}EXT [Hx]] = Ey[EXT [Hx]]− Ey[1{Hx≤T}EXT [Hx]]

≥ E[Hx]− cn−c
′ − Py[Hx ≤ T ] sup

z∈C1
Ez[Hx]

≥ E[Hx]− 2cn−c
′ − Py[Hx ≤ T ](T + E[Hx]).

This holds Pn,p-a.s.s., so as argued before it also holds Qx[ · | x good]-a.a.s. With the
bound (5.2.8) and using Lemma 5.3.5, where we note that e−cr = n−c

′
by (5.3.1), it follows

that Qx[ · | x good]-a.a.s.

Ey[Hx]

E[Hx]
− 1 ≥ −cn−1−c′ log n− log4 ne−c

′′r

(
c′′′ log5 n

n
+ 1

)
≥ −cn−c′ .

Together with (5.3.25) this proves the lemma.

Applying Lemma 5.3.6 in (5.3.20) and using Lemma 5.3.3, we obtain the following
approximation of the probabilities P [Hx > uρ(2− ξ)ξn].
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Lemma 5.3.7. For any fixed u > 0 and every ε > 0,

Qx

[ ∣∣∣P [Hx > uρ(2− ξ)ξn]− e−uPT∅ [H̃∅>HB(∅,r)c ] deg(∅)
∣∣∣ ≤ ε

∣∣∣ x good

]
→ 1 as n→∞.

Proof. First recall (5.2.11) and use (5.2.6) to get Pn,p-a.a.s.

D(g?, g?) = Px
[
H̃x > HB(x,r)c

]
π(x) ≤ c log n

n
. (5.3.26)

For the left hand approximation in (5.3.20), Lemma 5.3.6 and (5.3.26) imply that
Qx[ · | x good]-a.a.s.

1

E[Hx]
≥ D(g?, g?)− cn−1−c′ . (5.3.27)

For the right hand approximation in (5.3.20), first recall that by (5.3.6) Pn,p-a.a.s.,
|B(x, r)| ≤ n1−ε for some ε > 0. Together with (5.2.6) we get Pn,p-a.a.s.

π(B(x, r)c) ≥ 1− |B(x, r)|max
v∈C1

π(v) ≥ 1− cn−ε log n.

Using this and (5.3.26) in (5.3.20) yields Pn,p-a.a.s.

1

E[Hx]
≤ D(g?, g?)

1

(1− cn−ε log n)2
≤ D(g?, g?)

(
1 + cn−ε log n

)
≤ D(g?, g?) + cn−1−ε log2 n ≤ D(g?, g?) + cn−1−c′ .

(5.3.28)

Combining (5.3.27) and (5.3.28) we obtain that Qx[ · | x good]-a.a.s.

e−
uρ(2−ξ)ξn
E[Hx] = e−uρ(2−ξ)ξn(D(g?,g?)+o(n−1)) = e−uρ(2−ξ)ξnD(g?,g?) + o(1).

Together with (5.3.19) it follows that

Qx

[ ∣∣P [Hx > uρ(2− ξ)ξn]− e−uρ(2−ξ)ξnD(g?,g?)
∣∣ ≤ ε

∣∣ x good
]
→ 1 as n→∞. (5.3.29)

Lemma 5.3.3 implies that Pn,p-a.a.s. for x ∈ C1, π(x) = deg(x)
ρ(2−ξ)ξn(1 + o(1)). Recalling

(5.2.11), this implies that Pn,p-a.a.s.

uρ(2− ξ)ξnD(g?, g?) = uPx
[
H̃x > HB(x,r)c

]
deg(x) + o(1).

Using this in (5.3.29), and noting that if x is good,

e−uPx[H̃x>HB(x,r)c ] deg(x) = e−uP
T
∅ [H̃∅>HB(∅,r)c ] deg(∅),

finishes the proof of the lemma.

Proof of part (1) of Proposition 5.3.1. We use the same technique as in the proof of
Lemma 5.3.3: We compute the expectation of E[|Vu|] under Pn,p and then show that
E[|Vu|] is concentrated. Define the random variables

Wx = 1{x∈C1}P [Hx > uρ(2− ξ)ξn],

W̃x = 1{|T |=∞}e
−uPT∅ [H̃∅>HB(∅,r)c ] deg(∅),
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5. Phase transition for the vacant set on the giant component

where the tree T is defined by the coupling Qx from Proposition 5.3.2, and ∅ is the root
of T .

Let us first compute the expectation of W̃x as n→∞. Since r →∞ as n→∞, and
the tree T has law P0

T ,

lim
n→∞

EQx
[
W̃x

]
= lim

n→∞
E0
T

[
e−uP

T
∅ [H̃∅>HB(∅,r)c ] deg(∅)

∣∣ |T | =∞]P0
T [|T | =∞]

= ET
[
e−u capT (∅)

]
ξ.

(5.3.30)

For ε > 0, define on the space of the coupling Qx the event

Ax,ε = {|Wx − W̃x| ≤ ε}. (5.3.31)

By definitions (5.3.9) and (5.3.13) of the events Bx and {x good}, on Bx either Wx =
W̃x = 0 or x is good, i.e. Acx,ε ∩ Bx = Acx,ε ∩ {x good}. With Lemma 5.3.7 and (5.3.11) it
follows that

Qx[Acx,ε] ≤ Qx

[
Acx,ε, Bx

]
+Qx [Bcx]

≤ Qx

[
Acx,ε

∣∣ x good
]
Qx [x good] +Qx [Bcx] = o(1) as n→∞.

(5.3.32)

Since Wx and W̃x are bounded by 1, this implies∣∣∣EQx [Wx]− EQx [W̃x]
∣∣∣ ≤ ε+Qx[Acx,ε] for any ε > 0,

and thus
EQx [Wx] = EQx [W̃x] + o(1) as n→∞. (5.3.33)

With (5.3.30) we conclude that

En,p
[
E[|Vu|]

]
= En,p

[∑
x∈G

Wx

]
= nEQx [Wx] = ξnET

[
e−u capT (∅)

]
+ o(n) as n→∞.

For the concentration of E[|Vu|] we use again the second moment method. Consider
the coupling Qx,y from Proposition 5.3.2 for two fixed vertices x 6= y. The random variable
W̃z as well as the event Az,ε for z ∈ {x, y} are canonically also defined on the space of
Qx,y when replacing T by Tz in the definition of W̃z. Let Ax,y,ε = Ax,ε ∩ Ay,ε, and recall
the definition (5.3.10) of the set Bx,y, on which either Wz = W̃z = 0 or z is good, for both
z ∈ {x, y}. Note that the statement of Lemma 5.3.7 also holds on the space of Qx,y when
replacing T by Tz for both z ∈ {x, y} respectively. As in (5.3.32), with Lemma 5.3.7 and
(5.3.12) we obtain

Qx,y[Acx,y,ε] ≤ Qx,y

[
Acx,ε, Bx,y

]
+Qx,y

[
Acy,ε, Bx,y

]
+Qx,y

[
Bcx,y

]
≤ Qx,y

[
Acx,ε

∣∣ x good
]

+Qx,y

[
Acy,ε

∣∣ y good
]

+Qx,y

[
Bcx,y

]
= o(1) as n→∞.

Since the Wz and W̃z are bounded by 1, it follows that∣∣∣EQx,y [WxWy]− EQx,y [W̃xW̃y]
∣∣∣ ≤ ε+Qx,y[Acx,y,ε] for any 1 > ε > 0,

and thus
EQx,y [WxWy] = EQx,y [W̃xW̃y] + o(1) as n→∞. (5.3.34)

108



5.3. Size of the vacant set

The trees Tx and Ty are independent, so the random variables W̃x and W̃y are independent.
Therefore, (5.3.33) and (5.3.34) imply that for arbitrary vertices x 6= y

En,p[WxWy] = En,p[Wx]En,p[Wy] + o(1) as n→∞.

Recall that E[|Vu|] =
∑

x∈GWx. By the boundedness of the Wx, it follows directly from
the above that

En,p
[
E[|Vu|]2

]
= En,p [E[|Vu|]]2 + o(n2) as n→∞.

Thus VarE[|Vu|] = o(n2) and the Chebyshev inequality implies for any ε > 0

Pn,p [|E[|Vu|]− En,p [E[|Vu|]] | > εn] = o(1) as n→∞.

This finishes the proof of the first part of Proposition 5.3.1.

5.3.2. Concentration of the size of the vacant set

To prove part (2) of Proposition 5.3.1, we use similar techniques as in [ČTW11] and
[ČT13]. We define a sequence of i.i.d. stationary started random walk trajectories of
length nδ and glue them together at the endpoints to obtain a trajectory which is, by the
fast mixing of the random walk, in distribution close to the random walk on C1 but has a
different dependency structure, which allows to apply the following concentration result
by [McD98].

Theorem 5.3.8 ([McD98, Theorem 3.7]). Let W = (W1, ...,WM) be a family of random
variables Wk taking values in a set Ak, and let f be a bounded real-valued function on∏
Ak. Let µ denote the mean of f(W ). Define

rk(y1, ..., yk−1) = sup
y,y′∈Ak

∣∣∣∣E [f(W )
∣∣ Wk = y, Wi = yi ∀i < k

]
− E

[
f(W )

∣∣ Wk = y′, Wi = yi ∀i < k
] ∣∣∣∣,

and let

R2 = sup
y1,...,yM−1

M∑
k=1

r2
k(y1, ..., yk−1).

Then for any t ≥ 0,

P [|f(W )− µ| ≥ t] ≤ 2e−
t2

R2 .

Let us define precisely the above mentioned approximation of the random walk. Denote
by PL

x the restriction of Px to CL+1
1 , i.e. the law of the trajectory (X0, ..., XL) and by PL

x,z

the law of the random walk bridge, that is PL
x conditioned on XL = z. Fix δ > 0 and

let L = nδ. For a given typical random graph G define on an auxiliary probability space
(Ω̂, Â, P̂ ) the i.i.d. random variables (Zi)i≥0 as vertices of C1 chosen according to the
stationary measure π. Given the collection (Zi), let (Y i)i≥1 be conditionally independent
elements of CL+1

1 such that each (Y i
k )k=0,...,L is distributed according to the random walk

bridge PL
Zi−1,Zi . We define the concatenation of the Y i as

Xt = Y i
t−(i−1)L, when (i− 1)L ≤ t < iL.
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5. Phase transition for the vacant set on the giant component

Denote by Pu the law of X on Cuρ(2−ξ)ξn+1
1 and write P u for P uρ(2−ξ)ξn, that is P restricted

to Cuρ(2−ξ)ξn+1
1 . The next lemma shows that Pu approximates P u well if L is large enough.

Lemma 5.3.9. Pn,p-a.a.s. the measures Pu and P u are equivalent, and for n large enough
and constants c, c′ depending on δ,∣∣∣∣dP u

dPu
− 1

∣∣∣∣ ≤ ce−c
′n
δ
2 .

Proof. Let u′ be the smallest number greater or equal to u such that u′ρ(2 − ξ)ξn is an

integer multiple of L and set m = u′ρ(2−ξ)ξn
L

. Since Pu and P u are the restrictions of Pu′

and P u′ to Cuρ(2−ξ)ξn+1
1 , it is sufficient to prove the lemma for Pu′ and P u′ . Let A be any

measurable subset of Cuρ(2−ξ)ξn+1
1 . Then by the Markov property

P u′ [A] =
∑

x0,...,xm∈C1

P u′
[
A
∣∣ XiL = xi, 0 ≤ i ≤ m

]
P u′ [XiL = xi, 0 ≤ i ≤ m]

=
∑

x0,...,xm∈C1

P u′
[
A
∣∣ XiL = xi, 0 ≤ i ≤ m

]
π(x0)

m∏
k=0

PL
xk

[XL = xk+1]. (5.3.35)

Next, note that Pu′ [XiL = xi, 0 ≤ i ≤ m] = 0 if and only if P u′
[
XiL = xi, 0 ≤ i ≤

m
]

= 0: One can always choose the m xi’s, but there might not be any way to connect
them by random walk bridges, whence the probability is zero. In this case, there is also
no random walk trajectory going through this points. On the other hand, when there is
no such trajectory, there are also no bridges.

From this and the construction of the measure P it follows that, whenever this is
well-defined,

Pu′
[
A
∣∣ XiL = xi, 0 ≤ i ≤ m

]
= P u′

[
A
∣∣ XiL = xi, 0 ≤ i ≤ m

]
,

Pu′ [XiL = xi, 0 ≤ i ≤ m] =
m∏
k=0

π(xk).
(5.3.36)

Comparing (5.3.35) and (5.3.36), it remains to control the ratio PLx [XL=y]
π(y)

. We use

(5.2.13), (5.2.7) and (5.2.2) to get Pn,p-a.a.s.∣∣∣∣PL
x [XL = y]

π(y)
− 1

∣∣∣∣ ≤ 1

(minz∈C1 π(z))2
e−λC1L ≤ cn2 log2 ne

− c′
log2 n

L
.

With nδ

log2 n
≥ cn

δ
2 for n large enough it follows that Pn,p-a.a.s.

(
1− cn2 log2 ne−c

′n
δ
2

)m
≤ P u′ [A]

Pu′ [A]
≤
(

1 + cn2 log2 ne−c
′n
δ
2

)m
,

and hence Pn,p-a.a.s. Pu′ and P u′ are equivalent, and the lemma follows by changing
constants to accommodate the terms polynomial in n and log n.
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5.4. Coupling of processes

Proof of part (2) of Proposition 5.3.1. We show that for any δ > 0,

P
[∣∣|Vu| − E[|Vu|]

∣∣ ≥ n
1
2

+δ
]
≤ ce−c

′n
δ
2 Pn,p-a.a.s., (5.3.37)

which implies the statement of the proposition.

Set m =
⌊
uρ(2−ξ)ξn

L

⌋
and u′ = mL

ρ(2−ξ)ξn . Then uρ(2− ξ)ξn− u′ρ(2− ξ)ξn ≤ L, and so∣∣|Vu| − |Vu′ |∣∣ ≤ L. It follows that for n large enough

P
[∣∣|Vu| − E[|Vu|]

∣∣ ≥ n
1
2

+δ
]
≤ P

[∣∣∣|Vu′| − E[|Vu′|]
∣∣∣ ≥ n

1
2

+δ − 2L
]

≤ P

[∣∣∣|Vu′ | − E[|Vu′|]
∣∣∣ ≥ 1

2
n

1
2

+δ

]
.

(5.3.38)

Let Uu′ = C1 \X[0,mL] be the vacant set left by the concatenation X , and denote by E the
expectation corresponding to P . Lemma 5.3.9 implies that Pn,p-a.a.s.∣∣∣P [Vu′ ∈ · ]− P[Uu′ ∈ · ]∣∣∣ ≤ ce−c

′n
δ
2 ,∣∣∣E[|Vu′ |]− E [|Uu′|]

∣∣∣ ≤ cne−c
′n
δ
2 ≤ 1

4
n

1
2

+δ.

From this we obtain that Pn,p-a.a.s.

P

[∣∣∣|Vu′ | − E[|Vu′ |]
∣∣∣ ≥ 1

2
n

1
2

+δ

]
≤ P

[∣∣∣|Uu′ | − E [|Uu′ |]
∣∣∣ ≥ 1

4
n

1
2

+δ

]
+ ce−c

′n
δ
2 . (5.3.39)

We now apply Theorem 5.3.8 with M = m, Ak = CL+1
1 , Wk = Y k and f(W ) = |Uu′|. We

claim that

rk(y1, ..., yk−1)

= sup
y,y′∈Ak

∣∣∣E [|Uu′| ∣∣ Y k = y, Y i = yi ∀i < k
]
− E

[
|Uu′ |

∣∣ Y k = y′, Y i = yi ∀i < k
]∣∣∣

≤ 2L.

Indeed, when conditioning additionally on Y k+2, ..., Y m, the only two different segments
Y k and Y k+1 can change the size of the vacant set by at most the length of two segments,
and the claim follows by integrating over all possible Y k+2, ..., Y m.

Then R2 ≤ m(2L)2 ≤ uρ(2−ξ)ξn
L

4L2 = cn1+δ, and Theorem 5.3.8 implies

P
[∣∣∣|Uu′| − E [|Uu′|]

∣∣∣ ≥ 1

4
n

1
2

+δ

]
≤ 2e−2

1
16n

1+2δ

cn1+δ = ce−c
′nδ .

This together with (5.3.38) and (5.3.39) proves (5.3.37) and hence part (2) of Proposi-
tion 5.3.1.

5.4. Coupling of processes

In this section we introduce a process X̄ which satisfies the spatial Markov property
described in the introduction. We derive a phase transition in the vacant set of this
process, and we compare it with the simple random walk X on the giant component.
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5. Phase transition for the vacant set on the giant component

Consider the following algorithm defined on an auxiliary probability space (Ω̃, Ã, P̃ )
which builds an element of Ωn = G(n)× {1, 2, ..., n}N0 , that is a graph on n vertices and
a random walk-like process on this graph. All the random choices made in the algorithm
are independent variables defined on Ω̃.

Algorithm 5.4.1. At the beginning all n vertices are unvisited, and all
(
n
2

)
possible edges

are unexplored. When the algorithm (or the so defined process) passes an unvisited vertex,
this vertex is marked visited. Edges adjacent to the vertex will be explored and become
either open or closed. After being explored, the state of an edge does not change.

(1) Start at time 0 with a uniformly chosen vertex v0 among all n vertices, mark it
visited.

(2) Being at time k ≥ 0 with current vertex vk, check first if there are any unvisited
vertices left:

• If there are, let any unexplored edge adjacent to vk be explored and marked open
with probability p = ρ

n
and closed otherwise. All vertices w such that the edge

{vk, w} is open are called neighbors of vk.
• If there are no unvisited vertices left, let {vl}l>k be uniformly at random chosen

vertices and terminate the algorithm (this choice of continuation of the process
vk is totally arbitrary and does not influence the reasoning below).

(3) If vk has at least one neighbor, and if there are any unvisited vertices adjacent to
explored edges, choose vertex vk+1 uniformly among all neighbors of vk and mark
vk+1 visited, go to step (2) and proceed with current vertex vk+1.

(4) If vk has no neighbors or if there are no unvisited vertices adjacent to explored edges,
the current component is entirely covered. Then choose vertex vk+1 uniformly among
all n vertices, mark it visited, go to step (2) and proceed with current vertex vk+1.

By construction, the law of the graph explored by this algorithm (edges present if they
are marked open) is Pn,p. Let X̄ be the process defined by X̄k = vk.

It will be helpful to have two different points of view on Algorithm 5.4.1. The first is
to look at the picture at the end of the algorithm: There is a graph G and a trajectory
of X̄ covering all the vertices of the graph. Using this point of view, denote by P̄G the
law on ({1, 2, ..., n}N0 ,Fn) of the process X̄ under P̃ conditioned on the event that the
graph explored by the algorithm is G ∈ G(n) (i.e. conditioned on the random choices in
Algorithm 5.4.1 that determine the states of edges, but not on the random choices that
determine the trajectory of X̄). Under P̄G, the process X̄ is, between two occurrences
of step (4) of the algorithm, a simple random walk on the currently explored component,
started with uniform distribution on this component. Define on Ωn = G(n)×{1, 2, ..., n}N0

the annealed measure (cf. (5.1.1)) by

P̄n(A×B) =
∑
G∈A

Pn,p(G)P̄G(B) for A ∈ Gn, B ∈ Fn.

The second point of view is to look at Algorithm 5.4.1 as building the graph G on-the-
go. Having this in mind, the next lemma, which is crucial for the proof of Theorem 5.1.1,
is straightforward (cf. [CF11, Lemma 6] for a similar statement). Let V̄(t) = G \ X̄[0,t] be
the vacant set left by the process X̄ at time t, defined on (Ωn, P̄n). Once again we use
the same notation V̄(t) for the set of vertices as well as the induced subgraph of G.
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5.4. Coupling of processes

Lemma 5.4.2. Under P̄n conditioned on |V̄(t)| = N the graph V̄(t) has marginal law
PN,p.
Proof. By construction of Algorithm 5.4.1, the vacant graph V̄(t) consists of the |V̄(t)|
unvisited vertices at time t. Edges possibly connecting V̄(t) and the already visited vertices
as well as all edges possibly connecting two already visited vertices are explored. So the
edges eligible to be edges of V̄(t) are exactly all unexplored edges at time t. Because their
state has not yet been decided by the algorithm, all these edges are open with probability
ρ
n
, independently of what happened before, independently of each other. Therefore, the

vacant graph V̄(t) is a standard Erdős-Rényi random graph on N = |V̄(t)| vertices, every
edge present with probability p = ρ

n
, and hence it has law PN,p.

From Lemma 5.4.2 and the classical results on random graphs it follows directly that
the component structure of the vacant graph V̄(t) exhibits a phase transition at the time
t for which |V̄(t)| ρ

n
= 1. To translate this phase transition to the simple random walk X

on the giant component C1(G), we need to couple X to the process X̄. We do this by first
giving a coupling of X and X̄ under P C1 and P̄G respectively on a fixed typical graph G.
In Section 5.5 we will extend this coupling to an ‘annealed coupling’ of X and X̄ under
Pn and P̄n respectively.

Proposition 5.4.3. For n large enough, for every fixed typical graph G ∈ G(n) there
exists a coupling QG of X̄ under P̄G and X under P C1(G) such that

QG
[
{Xk = X̄k+2 log5 n for all k = 0, 1, ..., uρ(2− ξ)ξn}c

]
≤ c

nc′
.

Proof. We first show that X̄ typically is on the largest component C1 at time log5 n, that
it mixes quickly, and then stays on C1 until time uρ(2 − ξ)ξn + 2 log5 n. This will allow
us to identify X with X̄ in this time interval on an event of high probability.

Let G be the typical graph (i.e. a graph satisfying (5.2.1), (5.2.2) and (5.2.3)) explored
by Algorithm 5.4.1 and C1 its giant component, i.e. we look at the picture after completion
of the algorithm. Define the probability distribution π̄ on G as the distribution of X̄2 log5 n,
and view the stationary distribution π of the random walk on C1 as a distribution on the
whole graph G by setting π ≡ 0 on G \ C1. Denote by || · ||TV the total variation norm.
Define τ = min{t ≥ log5 n : step (4) of Algorithm 5.4.1 is performed}. τ is the first
time after log5 n where X̄ does not behave like a random walk. We show that for n large
enough the following properties hold for a typical graph G:

P̄G[X̄log5 n /∈ C1] ≤ c

n1+c′
, (5.4.1)

P̄G[τ ≤ uρ(2− ξ)ξn+ 2 log5 n] ≤ c

n1+c′
, (5.4.2)

‖π̄ − π‖TV ≤
c

nc′
. (5.4.3)

Since G is typical, there is a giant component of size ||C1| − ξn| ≤ n3/4, and all other
components are simple (i.e. they have at most as many edges as vertices) and of size
smaller than C log n. For (5.4.1), since for n large enough the random walk cannot cover
C1 in log4 n steps,

P̄G[X̄log4 n /∈ C1] ≤ P̄G[X̄ starts on a small component and stays on small (5.4.4)

components for time longer than log4 n].
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5. Phase transition for the vacant set on the giant component

Let Ns be the number of small components that X̄ visits before reaching the giant com-
ponent. By construction and since by (5.2.1) |C1| ≥ (ξ − ε)n for some ε > 0, Ns is
stochastically dominated by a Geometric(ξ − ε) random variable, in particular it has a
finite mean. Then by the Markov inequality

P̄G[Ns ≥ log n] ≤ c

log n
. (5.4.5)

Let C
(i)
s be the cover time of the i-th small component covered by X̄. The expected cover

time of a graph on k vertices and m edges is bounded by 2m(k − 1) (see e.g. [AKL+79]),

so the expected cover time ĒG[C
(i)
s ] of a simple component of size smaller than C log n is

bounded by C ′ log2 n. The Markov inequality implies

P̄G

[
logn∑
i=1

C(i)
s ≥ log4 n

]
≤ log nĒG[C

(i)
s ]

log4 n
≤ c

log n
. (5.4.6)

From (5.4.5) and (5.4.6) it follows that the probability on the right hand side of (5.4.4) is
smaller than c

logn
. Given X̄ has not found C1 after log4 n steps, some small components

are partly or entirely covered, but one can use the same line of arguments as above for
the next log4 n steps to get

P̄G
[
X̄2 log4 n /∈ C1 | X̄log4 n /∈ C1

]
≤ P̄G

[
X̄log4 n /∈ C1

]
.

Using this, we have

P̄G
[
X̄2 log4 n /∈ C1

]
= P̄G

[
X̄2 log4 n /∈ C1 | X̄log4 n /∈ C1

]
P̄G
[
X̄log4 n /∈ C1

]
≤ P̄G

[
X̄log4 n /∈ C1

]2
.

Since X̄ cannot cover C1 in log5 n steps we can iterate the above log n times, then

P̄G
[
X̄log5 n /∈ C1

]
≤
(

c

log n

)logn

≤ c

n1+c′
,

which proves (5.4.1).
To prove (5.4.2) first note that P C1 [ · ] =

∑
z∈C1 π(z)P C1z [ · ]. With (5.2.6) it follows

that

sup
z∈C1

P C1z [ · ] ≤ 1

minz∈C1 π(z)
P C1 [ · ] ≤ cn log nP C1 [ · ]. (5.4.7)

Using (5.4.1) we have

P̄G[τ ≤ uρ(2− ξ)ξn+ 2 log5 n]

≤ sup
z∈C1

P C1z [cover time of C1 is smaller than uρ(2− ξ)ξn+ 2 log5 n] + P̄G[X̄log5 n /∈ C1]

≤ sup
z∈C1

P C1 [vacant set V(uρ(2− ξ)ξn+ 2 log5 n) is empty] +
c

n1+c′
.

Since adding a trajectory of length 2 log5 n can decrease the size of the vacant set by
at most 2 log5 n = o(n), it follows that asymptotically |V(uρ(2 − ξ)ξn + 2 log5 n)| =
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|V(uρ(2− ξ)ξn)|+ o(n). Using (5.4.7), from (5.3.37) and part (1) of Proposition 5.3.1 it
follows that for a typical graph and ε small enough

sup
z∈C1

P C1z [|V(uρ(2− ξ)ξn)| < εn] ≤ cn log nP C1 [|V(uρ(2− ξ)ξn)| < εn] ≤ c′n log ne−c
′′n

δ
2 ,

where δ > 0 is the parameter defining the length of the random walk bridges in Sec-
tion 5.3.2. For any choice of δ we can find constants such that the above expression is
smaller than c

n1+c′ , and (5.4.2) follows.

For the proof of (5.4.3) let P C1µ denote the law of the random walk on C1 started at

initial distribution µ. When X̄ is on C1 at time log5 n, it has then some distribution µ
and it cannot cover C1 in time log5 n. Using (5.2.13), we thus get for every y ∈ C1∣∣P̄G[X̄2 log5 n = y]− π(y)

∣∣ ≤ P̄G
[
X̄log5 n /∈ C1

]
+ sup

µ

∣∣P C1µ [Xlog5 n = y]− π(y)
∣∣

≤ P̄G
[
X̄log5 n /∈ C1

]
+

1

minv∈C1 π(v)
e−λC1 log5 n.

With (5.4.1), (5.2.2) and (5.2.7), it follows for every y ∈ C1∣∣P̄G[X̄2 log5 n = y]− π(y)
∣∣ ≤ c

n1+c′
. (5.4.8)

We set π ≡ 0 on G\C1, and by (5.4.1) and (5.4.2), P̄G[X̄2 log5 n = y] ≤ c
n1+c′ for y ∈ G\C1.

Thus (5.4.8) holds for all y ∈ G. (5.4.3) follows from (5.4.8) since by e.g. [LPW09,
Proposition 4.2] we have ‖π̄ − π‖TV ≤ nmaxy∈G

∣∣P̄G[X̄2 log5 n = y]− π(y)
∣∣.

We can now define the coupling of X under P C1 and X̄ under P̄G. Consider again
the (possibly enlarged) auxiliary probability space (Ω̃, Ã, P̃ ), on which originally X̄ was
defined. On this auxiliary space we define a random variable Y on G with distribution π.
Y depends on the graph G (i.e. it depends on the random choices in Algorithm 5.4.1 that
determine the states of edges), and it may depend on the random choices that determine
the trajectory of X̄ up to time 2 log5 n, but it is independent of all the random choices that
determine the trajectory of X̄ at times 2 log5 n+ k, k ≥ 1. By e.g. [LPW09, Proposition
4.7] we can choose Y such that P̃ [X̄2 log5 n 6= Y ] = ‖π̄ − π‖TV. By (5.4.3) it follows that

P̃ [X̄2 log5 n 6= Y ] ≤ c

nc′
. (5.4.9)

Moreover, we define on Ω̃ a collection X̃z, z ∈ G, of independent simple random walks
on G started at z, independent of X̄ and Y (i.e. depending only on the random choices
in Algorithm 5.4.1 that determine the states of edges, but independent of the random
choices that determine the trajectory of X̄).

Define the process X using X̄, Y and X̃z as follows,

Xk = X̄k+2 log5 n for 0 ≤ k ≤ τ,

Xk = X̃X̄τ
k for k > τ,

}
if X̄log5 n ∈ C1 and Y = X̄2 log5 n,

Xk = X̃Y
k for k ≥ 0, if X̄log5 n ∈ C1 and Y 6= X̄2 log5 n,

Xk = X̃Y
k for k ≥ 0, if X̄log5 n /∈ C1.

(5.4.10)
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5. Phase transition for the vacant set on the giant component

Let QG denote the joint law of X̄ and X on {1, 2, ..., n}2N0 . Since Y has distribution π
and X̄ behaves like a random walk between occurrences of step (4) of Algorithm 5.4.1, in
any case X is a simple random walk on C1 started stationary, so QG is indeed a coupling
of simple random walk on the giant component and the process X̄ from Algorithm 5.4.1
with marginal laws P C1 and P̄G respectively.

By (5.4.9), (5.4.1) and (5.4.2) the first case of the coupling (5.4.10) happens with
probability ≥ 1− c

nc′
, and by (5.4.2) also τ > uρ(2− ξ)ξn+ 2 log5 n with high probability,

and the statement of the proposition follows.

The coupling (5.4.10) defined in the proof of Proposition 5.4.3 will allow us to deduce
the phase transition in the vacant set left by X from the phase transition in the vacant
set left by X̄. To apply the results of Section 5.3, we have to find the relation between
the sizes of these vacant sets. This relation is given by the next lemma. Denote V̄u =
V̄(uρ(2− ξ)ξn+ 2 log5 n) = G \ X̄[0,uρ(2−ξ)ξn+2 log5 n] and as before Vu = V(uρ(2− ξ)ξn) =
C1 \X[0,uρ(2−ξ)ξn].

Lemma 5.4.4. For a sequence of typical graphs G and any fixed u > 0, with respect to
the corresponding sequence of couplings QG, the random variables |V̄u| and |Vu| satisfy

|V̄u| = |Vu|+ (1− ξ)n+ o(n) QG-a.a.s.

Proof. Denote W̄u = G \ X̄[2 log5 n,uρ(2−ξ)ξn+2 log5 n]. Then
∣∣|V̄u| − |W̄u|

∣∣ ≤ 2 log5 n, and for

any ε > 0, εn− 2 log5 n ≥ ε
2
n for n large enough, thus

QG
[∣∣|V̄u| − |Vu| − (1− ξ)n

∣∣ > εn
]
≤ QG

[∣∣|W̄u| − |Vu| − (1− ξ)n
∣∣ > ε

2
n
]
.

By Proposition 5.4.3, QG-a.a.s. the sets W̄u and Vu differ only by the small components
of the graph G, i.e. W̄u = Vu ∪

⋃
i≥2 Ci(G). By (5.2.1), in a typical graph G the total size

of small components satisfies
∣∣⋃

i≥2 Ci(G)− (1− ξ)n
∣∣ ≤ ε

2
n for n large enough. Therefore,

for every ε > 0,

QG
[∣∣|W̄u| − |Vu| − (1− ξ)n

∣∣ > ε

2
n
]
≤ QG

[
W̄u 6= Vu ∪

⋃
i≥2

Ci(G)

]
→ 0 as n→∞.

This proves the lemma.

5.5. Proof of main result

We first extend the coupling QG that was defined for typical graphs in Proposition 5.4.3.
Let QG for a non-typical graph G be the joint law on {1, 2, ..., n}2N0 of two independent
processes X and X̄ under P C1(G) and P̄G respectively. We define the annealed coupling
measure Qn on the space Ω′n = G(n) × {1, 2, ..., n}2N0 with the canonical coordinates G,
X̄, X as

Qn(A×B) =
∑
G∈A

Pn,p(G)QG(B),

where A ∈ Gn and B = B1 ×B2 with Bi ∈ Fn for i = 1, 2 (cf. (5.1.1) for the definition of
the σ-algebras Gn and Fn). Then Qn is a coupling of the two processes X and X̄, where
X has marginal law Pn and X̄ has marginal law P̄n, and since every G is Pn,p-a.a.s. a
typical graph the statements of Proposition 5.4.3 and Lemma 5.4.4 hold Qn-a.a.s.
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5.5. Proof of main result

Proof of Theorem 5.1.1. For the proof we use the annealed coupling Qn of X and X̄. As
a direct consequence of Proposition 5.3.1 and Lemma 5.4.4 we obtain that

|V̄u| = ξnET
[
e−u capT (∅)

]
+ (1− ξ)n+ o(n) Qn-a.a.s.

It follows from Lemma 5.4.2 and the classical results on random graphs that the graph
V̄u = G \ X̄[0,uρ(2−ξ)ξn+2 log5 n] exhibits a phase transition at the value u such that

limn→∞ |V̄u| ρn = 1. This value is the solution u? of the equation

ρξET
[
e−u capT (∅)

]
+ ρ(1− ξ) = 1. (5.5.1)

V̄u has therefore Qn-a.a.s. a unique giant component C1(V̄u) of size ζ(u, ρ)n + o(n) and
all other components of size smaller than C̄ log n if u < u?, and it has Qn-a.a.s. all
components of size smaller than C̄ log n for u > u?, where C̄ > 0 is some fixed constant.
For u < u?, the constant ζ(u, ρ) is given as the unique solution in (0, 1) of the equation

exp
{
−ζ
(
ρξET

[
e−u capT (∅)

]
+ ρ(1− ξ)

)}
= 1− ζ. (5.5.2)

It remains to translate this phase transition to the vacant graph Vu of the random walk
on the giant component.

Let us first translate the phase transition to the subgraph induced by the slightly
enlarged set V̄u ∪ X̄[0,2 log5 n]. Adding one vertex of degree d in G to the graph V̄u can

merge at most d components of V̄u. By (5.2.3) the degree d is Qn-a.a.s. bounded by log n,
so adding the vertices of X̄[0,2 log5 n] can Qn-a.a.s. merge at most 2 log6 n components. It

follows that Qn-a.a.s., by adding X̄[0,2 log5 n] to V̄u, any component of size smaller than

C̄ log n in V̄u can either merge with the giant component if there is one, or it can become a
component of size at most 2C̄ log7 n. Also, in the supercritical phase the giant component
can Qn-a.a.s. grow by at most 2C̄ log7 n = o(n). Therefore, the graph induced by V̄u ∪
X̄[0,2 log5 n] exhibits a phase transition at u? with the same size ζ(u, ρ)n+ o(n) of the giant

component for u < u?, and with the bound 2C̄ log7 n for the size of the second largest
component for u < u? and the largest component for u > u?.

Recall that W̄u denotes the set G \ X̄[2 log5 n,uρ(2−ξ)ξn+2 log5 n] as well as the induced
subgraph. We have the following inclusions of sets and induced subgraphs in G,

V̄u ⊂ W̄u ⊂ V̄u ∪ X̄[0,2 log5 n].

Consider the vacant set Vu ⊂ C1 of the random walkX on the giant component. By Propo-
sition 5.4.3 and since every graph is Pn,p-a.a.s. a typical graph, we have Qn-a.a.s. W̄u =
Vu ∪

⋃
i≥2 Ci(G). It follows that

V̄u ⊂ Vu ∪
⋃
i≥2

Ci(G) Qn-a.a.s. (5.5.3)

Vu ⊂ V̄u ∪ X̄[0,2 log5 n] Qn-a.a.s. (5.5.4)

Note that Qn-a.a.s. the union
⋃
i≥2 Ci(G) of all components of G except the largest

are exactly all small components of size smaller than C log n. From this and (5.5.3) it
follows that |C1(Vu)| is Qn-a.a.s. bounded from below by |C1(V̄u)| whenever |C1(V̄u)| is
larger than of order log n. From (5.5.4) it follows that |C1(Vu)| is Qn-a.a.s. bounded from
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5. Phase transition for the vacant set on the giant component

above by
∣∣C1

(
V̄u ∪ X̄[0,2 log5 n]

)∣∣. The respective phase transitions in V̄u and V̄u∪X̄[0,2 log5 n]

thus immediately imply the statements (5.1.3) and (5.1.5) of Theorem 5.1.1.
To prove (5.1.4), i.e. the uniqueness of the giant component in the supercritical phase,

fix u < u? and let Ln be the event that there are two distinct components Ca and Cb in
Vu both of size strictly larger than 2C̄ log7 n, with C̄ as defined below (5.5.1). We show
that Qn[Ln] → 0 as n → ∞, which proves (5.1.4). First note that if Ln happens, then
either Ca ∩ V̄u and Cb ∩ V̄u are distinct components in V̄u or the inclusion in (5.5.3) does
not hold, which is unlikely, so

Qn[Ln] ≤ Qn

[
Ln, Ca ∩ V̄u and Cb ∩ V̄u are distinct components in V̄u

]
+o(1) as n→∞.

But if Ca ∩ V̄u and Cb ∩ V̄u are distinct components in V̄u, at least one of Ca ∩ V̄u or
Cb ∩ V̄u is subset of

⋃
i≥2 Ci(V̄u), which is a union of components that are Qn-a.a.s. all of

size smaller than C̄ log n. On the other hand by (5.5.4), Ca ⊂
(
Ca ∩ V̄u

)
∪ X̄[0,2 log5 n], and

as discussed before this last union cannot be larger than 2C̄ log7 n if Ca∩ V̄u consists only
of components of size smaller than C̄ log n. Thus

Qn[Ln] ≤ Qn

[
Ln, Ca ∩ V̄u or Cb ∩ V̄u is subset of

⋃
i≥2 Ci(V̄u)

]
+ o(1)

≤ Qn

[
at least one of the Ci(V̄u), i ≥ 2, is larger than C̄ log n

]
+ o(1)

= o(1) as n→∞.

This proves (5.1.4).
To see that the critical parameter u? coincides with the critical parameter u? of ran-

dom interlacements on a Poisson(ρ)-Galton-Watson tree conditioned on non-extinction,
it suffices to notice that the characterizing equations (5.5.1) and (5.2.15) of these two
parameters are the same.
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[BČ07] G. Ben Arous and J. Černý, Scaling limit for trap models on Zd, Ann. Probab. 35 (2007),
no. 6, 2356–2384. MR 2353391
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lacements, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 4, 976–990. MR 2744881

[Szn10] A.-S. Sznitman, Vacant set of random interlacements and percolation, Ann. of Math. (2) 171
(2010), no. 3, 2039–2087. MR 2680403

[Tal11a] M. Talagrand, Mean field models for spin glasses. Volume I, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 54, Springer-
Verlag, Berlin, 2011, Basic examples. MR 2731561

[Tal11b] M. Talagrand, Mean field models for spin glasses. Volume II, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 55, Springer,
Heidelberg, 2011, Advanced replica-symmetry and low temperature. MR 3024566

[Tas10] M. Tassy, Random interlacements on Galton-Watson trees, Electron. Commun. Probab. 15
(2010), 562–571. MR 2737713

[Tei09] A. Teixeira, Interlacement percolation on transient weighted graphs, Electron. J. Probab. 14
(2009), no. 54, 1604–1628. MR 2525105

[TW11] A. Teixeira and D. Windisch, On the fragmentation of a torus by random walk, Comm. Pure
Appl. Math. 64 (2011), no. 12, 1599–1646. MR 2838338

123

http://www.ams.org/mathscinet-getitem?mr=1370952
http://www.ams.org/mathscinet-getitem?mr=2074812
http://www.ams.org/mathscinet-getitem?mr=0172344
http://www.ams.org/mathscinet-getitem?mr=2583058
http://www.ams.org/mathscinet-getitem?mr=765963
http://www.ams.org/mathscinet-getitem?mr=3052333
http://www.ams.org/mathscinet-getitem?mr=833286
http://www.ams.org/mathscinet-getitem?mr=0386021
http://www.ams.org/mathscinet-getitem?mr=3060348
http://www.ams.org/mathscinet-getitem?mr=2900063
http://www.ams.org/mathscinet-getitem?mr=0453936
http://www.ams.org/mathscinet-getitem?mr=0388547
http://www.ams.org/mathscinet-getitem?mr=2512613
http://www.ams.org/mathscinet-getitem?mr=2744881
http://www.ams.org/mathscinet-getitem?mr=2680403
http://www.ams.org/mathscinet-getitem?mr=2731561
http://www.ams.org/mathscinet-getitem?mr=3024566
http://www.ams.org/mathscinet-getitem?mr=2737713
http://www.ams.org/mathscinet-getitem?mr=2525105
http://www.ams.org/mathscinet-getitem?mr=2838338


Bibliography

[vdH08] R. van der Hofstad, Random graphs and complex networks, Lecture notes in preparation,
http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf, 2008.

[VHO+97] E. Vincent, J. Hammann, M. Ocio, J.-P. Bouchaud, and L. F. Cugliandolo, Slow dynamics
and aging in spin glasses, Complex Behavior of Glassy Systems (M. Rubi, ed.), Lecture notes
in Physics, vol. 492, Springer-Verlag, Berlin, 1997, (arXiv:cond-mat/9607224), pp. 184–219.

[Was15] T. Wassmer, Phase transition for the vacant set left by random walk on the giant component
of a random graph, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 2, 756–780.
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