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1 Abstract
This Master’s thesis is a theoretical work about the capture of free-floating planets.

Ongoing discoveries of free-floating planetary mass objects rise the question about
what can happen if such an object enters a solar-like system. Is it possible that some
exoplanets are captured free-floating planets which were not born in the disk around
the star they do orbit now?

In order to investigate this questions numerical computations are carried out and
the interaction of a free-floating planetary mass object with a bound star-planet pair
is inspected. The chosen scenario mainly happens in dense clusters where, because of
the higher stellar density, the possibility that a free-floating planet enters an existing
solar-like system is relatively high. (Hurley and Shara, 2002)

Therefore trajectories of a free-floating planet entering a simple bound system
from infinity are calculated. The gravitational bound system consists of a sun and
a Jupiter on a circular orbit. The mass of the intruding planet is varied in the range
of 0.01MJupiter < M < 10MJupiter. The initial inclination of the trajectory of the free-
floating planet with respect to the orbital plane of the Jupiter is varied between 0◦ and
90◦.

The final state of the system is determined after a certain time via calculation of
the energy between the bodies in pairs and shows capture, exchange or flyby as possible
outcomes.

It turns out that the results of the scattering process are fractal which means
that slightly different initial conditions lead to different outcomes of the numerical
calculations. The uncertainty exponent, α, is calculated in order to show that the
process is chaotic.

In order to investigate the probabilities of flyby, capture and exchange a statistical
analysis of the final states is made. This is carried out for different mass ratios and
different initial inclinations of the incoming body. Accordingly different time scales are
taken into account as well.

It is shown that a free-floating planet can be captured on prograde as well as on
retrograde orbits. Furthermore cases where the capture of a free-floating planet on an
orbit with moderate values of semi-major axis, eccentricity and inclination is possible
are discussed. Nevertheless the capture in an orbit with high values of eccentricity or
big semi-major axis is more likely.

Additionally the influence of the initial velocity of the incoming body on the prob-
abilities of the final states is investigated. It is found, that lower velocity leads to a
higher percentage of free-floating planets which end up in the state of capture.
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2 Zusammenfassung
Diese Masterarbeit bearbeitet die Interaktion zwischen einem free-floating planet und
einem gebundenen Stern-Planeten System. Besonders wird dabei auf den Fall einge-
gangen, in dem der free-floating planet vom System eingefangen wird und auf einer
Bahn gravitativ gebunden bleibt.

Sogenannte free-floating planets werden laufend entdeckt. Ihre Existenz ruft einige
Fragen hervor: Was kann passieren, wenn so ein Himmelskörper in ein Sonnensystem
eindringt? Ist es möglich, dass einige Exoplaneten in Wirklichkeit eingefangene free-
floating planets sind, die nicht in der Gas- und Staubscheibe um den Stern entstanden
sind, um den sie jetzt kreisen?

In dieser Masterarbeit werden diese Fragen numerisch untersucht. Die Wechsel-
wirkungen zwischen einem ungebundenen Himmelskörper mit einem gravitativ gebun-
denen Stern-Planeten-System werden berechnet und statistisch ausgewertet.

Das gewählte Szenario findet hauptsächlich in Galaxienhaufen statt, wo die Sterndichte
höher ist und es deswegen wahrscheinlicher ist, dass ein free-floating planet in ein ex-
istierendes Sternsystem eindringt. (Siehe dazu: Hurley and Shara (2002))

Um das nachzustellen wird die Bahn eines gravitativ ungebundenen Planeten berech-
net der in ein vereinfachtes Sternensystem eindringt. Das gravitativ gebundene System
besteht aus einer Sonne und einem Jupiter, der in einer Entfernung von 1 AU auf einer
kreisförmigen Bahn um den Stern kreist. Die Masse des eindringenden Planeten wird
im Bereich von 0.01MJupiter < M < 10MJupiter variiert, ebenso wird die Neigung seiner
Bahn von 0◦ bis zu 90◦ geändert um den Einfluss dieser Parameter auf den Ausgang
der numerischen Berechnungen zu untersuchen.

Der Endzustand des Systems wird nach einer festgelegten Zeit mithilfe der Über-
prüfung der Energie des Systems festgestellt. Dabei ist der Einfang des free-floating
planets sowie ein Vorbeiflug oder auch ein Austausch mit dem Jupiter möglich.

Es stellt sich heraus, dass die Ergebnisse fraktal sind. Das bedeutet, dass leichte Än-
derungen in den Anfangsbedingungen einen anderen Ausgang der numerischen Berech-
nung bewirken. Um die Fraktalität der Ergebnisse nachzuweisen wird der sogenannte
uncertainty exponent berechnet.

Aufgrund der Fraktalität der Daten wird eine statistische Analyse der Egebnisse
vorgenommen und die empirischeWahrscheinlichkeit für die drei möglichen Endzustände
des Systems (Einfang, Vorbeiflug, Austausch) wird berechnet. Dies wird für unter-
schiedliche Masseverhältnisse der beiden Planeten und unterschiedliche Bahnneigungen
des eindringenden Planeten ausgeführt.

Der Einfang des zu Beginn ungebundenen Planeten ist auf prograden und retro-
graden Orbits möglich. Außerdem werden Fälle genauer untersucht, in denen der
free-floating planet in einem Orbit mit niedrigen Werten der großen Halbachse und
Exzentrizität eingefangen wird. Dies ist möglich, obwohl der Einfang in einem Orbit
mit hohen Werten für diese beiden Bahnelemente wahrscheinlicher ist.
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3 Introduction
Motivation: The universe is a huge, not to say infinite, place. It hosts lots of interest-
drawing objects like pulsars, quasars, mysterious nebulae and galaxies. Those huge and
bright structures and objects are more likely to draw our attention, and, to admit, are
relatively easy to observe. But nevertheless, there are tiny objects floating in space,
which are interesting as well. Exoplanets, colourful and each one different, which are
important for our knowledge about the evolution of our own solar system. Think of
our earth, a tiny little planet, at least revolving around a star, so that it is not that
lonely in space as sometimes it looks like in clear nights of new moon. My Master’s
thesis now deals with free-floating planets. Planets, which do not orbit a star, but
travel alone in the deep of our universe. Now the question arises what happens if such
a free-floating object enters a bound solar-like system? Is it possible that it is captured
and stays on an orbit around its new host star? Is it possible that some exoplanets are
truly captured free-floating planets which did not form in the stellar disc around the
star they do orbit now?

Free Floating Planets: Let’s start from the beginning. One of the first reports
about the evidence of such lonely drifting planetary mass objects was from Zapatero
Osorio et al. (2000). They found evidence for planetary mass objects in the range of
8− 15MJupiter in the relatively young (1− 5Myr) σ Orionis cluster. At that time, and
today as well, the boundary between brown dwarfs and planets was not really clear
defined. Only for solar abundances of metallicity, the boundary between giant planets
an brown dwarfs is set to 13MJupiter - the thermonuclear deuterium burning threshold
(see section 4).

The groundbreaking steatement of this report (Zapatero Osorio et al., 2000) was,
that the number of free-floating planets is comparable to the number of brown dwarfs
and therefore brown dwarfs and free-floating planets together could be as numerous as
the stars of our Galaxy.

In the following years some other reports concerning the discovery of free-floating
planetary mass objects followed:

The atmospheric features of SOri47 observed by Zapatero Osorio et al. (1999)
indicate a low surface gravity as good signs for the youth of the object which is part
of the σ Orionis cluster and has a possible mass of 5− 15MJupiter.

Quanz et al. (2010) presented six new free-floating planetary mass candidates in
the Taurus starforming region and for two objects determined the temperature to be
∼ 2100K and the mass to be in the range of 5− 15MJupiter.

In a wide field survey for brown dwarfs (CFBDSIR) Delorme et al. (2012b) found
a late T-type dwarf potentially young because of signs of low gravity. Comparison of
atmosphere models for solar metallicity yield values for the temperature in the range
of 650− 750K and a mass of 4− 7MJupiter.

Liu et al. (2013a) discovered an extremely red L dwarf in a distance of ∼ 25pc
to the earth. For this object models give a temperature of ∼ 1160K and a mass of
∼ 6.5MJupiter.

Nevertheless the formation of these objects was and is still an open question. Pos-
sible mechanisms are described in section 4.1.

But not only observational aspects of free-floating planets (concerning their mass,
atmospheres, ...) yielded interesting knowledge. Also the dynamics of these free-
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floating objects draws attention as scattering and ejection from their original system
is one possible cause for the existence of these objects.

However, for a long time astronomers and astrophysicists have been interested in
the three-body problem and further on more complex calculations of planetary systems.
In the first time this was to get to know the orbits of the planets of our solar system
better. For example in order to predict where Mars or Venus could be seen in the
sky. So it was most important to "just" calculate orbits of planets revolving around
a star and calculating trajectories of planets, which were ejected from their system.
This was done in order to test the long-term stability of our solar system, for example.
Calculations the other way round, where a planet enters an existing system from the
outside, were not really famous. So most of the calculations concerned bound solutions
and the long term stability of such orbits. Very important to mention here is the
work of Poincare (1993), who dealt with the three-body problem in particular. Also
interesting to mention is the work of Marchal and Bozis (1982) concerning the escape
of a planet from its bound orbit.

Nevertheless, there are theories concerning the case of an incoming body, which
enters an existing bound system from infinity. Important to mention here is the work
of Donnison (2006) or Boyd and McMillan (1993). Mainly they focused on two special
forms of the problem:

• Bound binary system and incoming body have similar masses: m1 ∼ m2 ∼ m3

(Interaction of a field star with a binary-star system.)

• Bound system consisting of a massive (m1) and a small body (m2), incoming
body is massive: m1 ∼ m3 >> m2

(Field star (m3) interacts with a bound planetary system.)

The third possibility of a small mass object entering an existing binary-system
consisting of a massive and a small body (m1 >> m2,m3) has not been discussed to
the same extent as the other two. This is probably because in former times planets
were expected to move on bound orbits around a star. The possibility of a small body
coming from infinity and interacting with a bound planetary system did not attract
much of attention since the first report of a free-floating planetary mass population by
Zapatero Osorio et al. (2000). Due to the difficulty to refer to free-floating low mass
objects as ’planets’, which obviously did not fulfil the generally accepted definition
of planets, this report was regarded with scepticism in the first time. Nevertheless
further on observations of such low mass objects (e.g. see Sumi et al. (2011)) and
the assumptions, that such free-floating planetary mass objects are probably more
common than stars (Han et al., 2004) rise the question about what will happen if such
a free-floating planet enters an existing planetary system. Adams et al. (2006)) and
Malmberg et al. (2007) have shown that especially in dense clusters the probability
of an interaction between a free-floating planetary mass object and a bound system is
non negligible.

Very interesting for me, concerning this topic, is the work of Varvoglis et al. (2012),
on which my Master’s thesis is based. In their article Interaction of free-floating planets
with a star-planet pair they concentrated on the simplified coplanar case of a bound
planetary system consisting of a massive star and a Jupiter-sized planet on a circular
orbit and an incoming small mass object.
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Only Donnison (2006), dealt with the case of an incoming planet inclined to the
bound system analytically. The results found in the paper of Donnison (2006), are
used in section 5.1 to determine the maximum value for the impact parameter.

In my thesis I give a brief introduction about free-floating planets. What are they?
How are they created? Then a short overview about the most interesting observations of
free-floating planets (section 4) is given. Afterwards the experimental setup, where the
third dimension is included to the numerical calculations (section 5.1.2) is explained.
In the next section (5.3) it is shown that the scattering process is fractal and the
uncertainty exponent for the dataset is calculated. Then the probability of capture
of a free-floating planet for different mass ratios as well as different initial inclination
angles of the incoming body is given and calculations on longer timescales (section
6) are shown. Afterwards the orbital elements of captured free-floating planets are
investigated into detail and the possible capture of such an object in a retrograde orbit
(see section 7) is discussed. Accordingly a short look on what happens if the initial
velocity of the incoming planet is higher or lower than the used parabolic velocity is
given. In section 8 the results are discussed.

4 Free-floating planets
Free-floating planets are objects with M < 13 MJ which orbits are not bound to a
star. 13 MJ is the critical mass for thermonuclear fusion of deuterium for objects
with solar metallicity. This sets the boundary between brown dwarfs (13 MJ < 75
MJ - hydrogen burning threshold) and giant planets (M < 13 MJ). While brown
dwarfs are able to fuse deuterium to 3He, giant planets do not undergo thermonuclear
fusion in their interiors. Nevertheless this mass limit does not tell anything about the
formation, atmospheric structure nor the interior of free-floating planets. That is why
in some papers free-floating planets are called sub-brown dwarfs or planetary mass
brown dwarfs. (Zapatero Osorio et al., 2001)

They are also referred to as L-dwarfs or late T-type dwarfs because without knowl-
edge about their formation it is nearly impossible to differentiate giant planets from
brown dwarfs. By optical observation it is impossible to say anything about their for-
mation, especially, when such a low mass object orbits a star. Thus knowledge about
the formation mechanisms of such low mass objects is very important to tell if such a
body was formed by initial condensation of solids in a circumstellar disk (planet) or
the collapse of a cloud or disk fragment. (Kroupa and Bouvier, 2003)

Free-floating planets found in the σ Orionis cluster (Zapatero Osorio et al., 2013)
have temperatures between 1000 - 2300 K and dusty low gravity atmospheres of
log(g) ∼ 3.5 which can be taken as signs of youth. Although cooler objects have
been detected now; e.g. CFBDSIR 2149-0403 with a temperature of 650-750 K and
log(g) ∼ 3.75− 4.0. (Delorme et al., 2012a).

In the following examples show how big the diversity of detected free-floating plan-
etary objects is.

An interesting free-floating object was investigated by Joergens et al. (2015): OTS
44 has a mass of ∼ 12MJupiter, an age of ∼ 2Myr and is the coolest known (M9.5)
object formed in a star-like mode. Observations of this object show significant signs of
accretion and a substantial disk of ∼ 10MEarth. The process observed is similar to the
one which characterizes the star-like mode of formation and was the first evidence for
active accretion of a free-floating planet. Additionally this object is a unique possibility
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to study disk evolution and accretion in an extreme environment.
Even more fascinating is the assumption of Badescu (2011), that it is possible, that

a free-floating planet may be able to conserve a optically thick atmosphere consisting
of methane, ethane and carbon dioxide, which reduces the loss of thermal energy and
therefore the cooling of the planet. Thus a Jupiter-type free-floating planet may be
able to keep a solvent (like water, ammonia or ethane) in a liquid state for a reasonable
long time and even sustain the existence of water-based life. A numerical model for
radiative energy transfer in the atmosphere for bodies smaller and larger than Earth
was used and supported the assumptions. Nevertheless it has been found, that the
atmosphere of such an Earth-sized body has to be two or three orders of magnitudes
larger than the mass of the atmosphere of the Earth. (Badescu, 2011)

One of the first observations proving the existence of such free-floating low mass
objects was by Zapatero Osorio et al. (2000). This report followed a deep optical
infrared survey of the young (1 − 5Myr) σ Orionis cluster (distance 352 pc from the
sun), which found 18 objects with masses of 5− 15MJupiter, not bound to stars. Their
belonging to the cluster was confirmed with spectroscopy observations. The conclusions
of the observations of Zapatero Osorio et al. (2000), that free-floating planets might be
as numerous as brown dwarfs, were ground-breaking.

The first theories about the formation of free-floating planets were mostly using
the theory of ejection. A big fraction of low mass stars is born in binary systems.
If the binary has a wide separation (> 30AU - which is valid for 50% of the binary
systems), the formation of planets in a protoplanetary disk around one of the binary
stars is possible. For a planetary object in an orbit around one of the binary stars
it is more likely to be be ejected due to gravitational perturbations by the passing
star (especially if the object has high eccentricity - e.g.: 16 Cygni) than for objects
around single stars. The difficulties for proving this theory are again the technical
restrictions of the observation instruments, to differentiate between Jupiter-mass free-
floating planets and bound Jupiters on wide orbits. Although it can be assumed,
that most Jupiter-massive objects are usually observed on an orbit close to its star.
(Zinnecker, 2001)

Hurley and Shara (2002) investigated this for the cluster M22, and concluded, that
due to dynamical encounters between planetary systems and cluster stars, a large frac-
tion of young low mass planetary objects can be ejected from their originally systems.
Due to a rather low velocity dispersion, they drift outwards to the edge of the cluster
on rather long time scales of ∼ 108 to ∼ 109 yr. This would explain the assumed high
density of planetary mass objects in dense clusters. (Hurley and Shara, 2002)

To mention here is the SONYC Survey (Mužić et al., 2013) of five young star forming
regions (NGC1333, ρ Ophiuchi, Chamaeleon-I, Upper Sco, and Lupus-3), where one
could assume the same high density of low mass objects. In contrary to the other papers
here, they observed that in NGC1333 the number of objects with ∼ 5MJupiter is 20-50
times smaller than the number of stars in this region. This can be an indication for the
correctness of the theory of Kroupa and Bouvier (2003), that the number of low mass
objects in a cluster depends on the mechanism of formation and the circumstances of
their birth.

Nevertheless, a big difficulty remains in determining the exact masses and ages of
free-floating planets and how to differentiate them from brown dwarfs. This results
from the difficulty in observing such faint, cool objects. With spectroscopy one can
measure κ-band andNa1 lines to determine the age of low mass objects. The correlation
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between the surface gravity, the slope of the κ-band and the age is known. Also gravity
sensitive alkali metal-lines can be used to determine the age of low mass objects. The
only problem remaining is, that those indicators are only valid for solar metallicity
(Canty et al., 2013). To determine precise masses of free-floating low mass objects, it
is necessary to know the exact parallax of such an object, which is mostly impossible.

Another possibility for mass determination is, to know if an object is part of a
cluster. An example for application of this method is the extremely red young L-
dwarf PSOJ318.5338-22.8603, due to kinematics a member of the β Pic moving group.
This object was observed with near infrared photometry and is about 12Myr old.
Interesting about this object is, that the unusual red colour, its luminosity and mass
of ∼ 6.5MJupiter coincides with the directly imaged planets HR 8799bcd and 2MASS
J1207-39b and tells of low surface gravity and a dusty atmosphere. (Liu et al., 2013b)

A good example for the difficulty of confirmation of a free-floating planet was de-
scribed by Bennett et al. (2014) who found evidence for the first free-floating exoplanet-
exomoon system. The model fitted to the microlensing event yields a ∼ 4 Jupiter
masses planet hosting a sub-Earth mass moon. Interesting concerning this observation
is, that the data is well fitted by a model which uses a 0.12MSun star with an 18MEarth

companion, too. This example shows on the one hand, how sensitive the microlensing
method is (additionally see section 4.2), but on the other hand, how difficult the de-
termination of free-floating planetary mass objects is in fact. This is really important
to mention and probably is the cause why there is a counter for exoplanets but not for
free-floating planets. The confirmation of free-floating planets still is very difficult.

4.1 Formation of a free-floating planet

As already mentioned, the first theories about the formation of free-floating planets
were theories about the ejection of completely developed planets from their home sys-
tem. Nevertheless, this scenario is not as productive to contribute a significant number
of free-floating planets observed in young clusters, because the cross-section of typical
planetary systems is too small and the potential wells of the clusters are too shallow
to retain the so produced free-floating planets. In the work of Kroupa and Bouvier
(2003) four potential formation processes are described:

star like: collapsing cloud fragments, accretion from an envelope until feedback
from the hydrostatic core halts accretion

ejection from a dynamically unstable multiple-protostellar system and the con-
sequent loss of the accretion envelope

photoevaporation model : removal of the accretion envelope due to photoevapora-
tion through a nearby massive star

collision: hyperbolic encounters in dense embedded clusters and thus separation
of embryos from their accretion envelopes

An interesting scenario is described by Gahm et al. (2013), who made radio obser-
vations combined with near infrared of 16 so called globulettes in H II regions in the
Rosette Nebula. These globulettes are relatively cool (line temperatures from 0.6-6K)
and dense (nH ∼ 104cm−3). The masses of these globulettes were derived from ex-
tinction measurements. It turned out that the majority of globulettes has less than
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13MJupiter. Interesting is, that all this objects show molecular line emissions. Their
formation is probably a consequence of the erosion of larger structures.

Meaning that the radiation pressure of possible young massive stars can lead to a
compression of the interior of the surrounding plasma and thus, to the formation of
denser cloudfragments which are accelerated due to photoevaporation and driven away
from the nebula. Such objects may collapse to brown dwarfs or planetary-mass objects.
Because of their initially high velocities they will eventually escape their surroundings
and become part of the galactic environment. However, from these observations no
evidence of objects embedded in the globulettes was found. (Gahm et al., 2013)

Woolfson (2013), describes a different process concerning the formation of free-
floating planets.The so called capture effect : A binary system of a star and a protostar
(because it is found that most of the stars are born in binary systems or systems with
more companions, (Branch, 1976)) undergoes close encounters with one another and,
as a result, the protostar is ripped into small pieces, so that protoplanets can form from
this small dense cloudfragements. The other theory mentioned in this paper refers to
dense cluster regions, where high density regions, produced by collision of turbulent
gas streams, exist. This region interacts with a new born star and forms filaments
of planetary masses (0.75MJupiter to 20MJupiter), where planets can condense. These
planets can now be either captured by the passing star (in orbits with initial high
semi-major axis (∼ 1000 AU) and high eccentricity (∼ 0.9)) or can escape to become
free-floating planets. (Woolfson, 2013)

4.2 Observations of free-floating planets

Observations of exoplanets, planets orbiting an other star than our sun, are carried
out since the 1990ies. The first potential exoplanet was found in the year 1992, a pair
of rocky objects orbiting the pulsar PSR B1257+12. (Wolszczan and Frail, 1992) The
first confirmation of an exoplanet was achieved in 1995. (Mayor and Queloz, 1995) It
was a giant planet orbiting the main sequence star 51 Pegasi.

You can do transit-observation of the lightcurves or radial-velocity measurement as
well as use the timing method. Those and other techniques are described by Wright
and Gaudi (2013).

However, to detect planetary objects, which do not orbit a star, is much more
difficult. The detection of free-floating planets is very hard because they are very
small, cool and dark objects. The best ways to detect free-floating planets so far are
gravitational microlensing (Han, 2006) and direct imaging (see for example Bihain
et al. (2009)). The challenge in microlensing observations of such low mass objects lies
in the short duration and the rarity of lensing events (better chances of observations
in direction of the galactic bulge - e.g.: Zapatero Osorio et al. (2001)). Follow up
observations with photometry and spectroscopy are possible but very difficult for these
faint objects (J-band magnitude of 18.2-20 e.g. for the objects mentioned by Zapatero
Osorio et al. (2013)).

Photometry observations for example were carried out to find free-floating planetary
objects in the Pleiades. (Zapatero Osorio et al., 2014) They used broad-band filters
from 1 to 5 µm in the J and H -bands, expecting effective temperatures of these objects
in the range of 900 to 2750K.

Photometric observation in the optical and near infrared was also done by Zapatero
Osorio et al. (2001). One problem of using photometry for such faint red objects is
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the contamination by red galaxies or red giants as well as foreground low mass L-type
stars and brown dwarfs.

Spectroscopy was done as follow-up observation e.g. for the free-floating planetary
candidates of the σ Orionis cluster mentioned above. (Zapatero Osorio et al., 2013)
They produced optical and near infrared low resolution spectra with wavelengths cov-
erage of 1.09–1.42 µm and in the visible 825–1000 nm.

The detection of free-floating planets is very hard as described above. Same yields
true for the determination of the proper age, parallax and therefore mass of these
objects which can only be determined with high uncertainty.

Possible solutions for this problems are provided by Han et al. (2004) who propose
combined microlensing observations both ground based and satellite bound, which
could solve the problem of the missing parallax of the observed objects. To determine
the properties of an lensing object three parameters are needed: The Einstein time
scale (equation 4.1), the Einstein ring radius (equation 4.2) and the projected Einstein
radius on the plane of the observer (equation 4.3).

tE =
θE
µrel

(4.1)

θE =

√
4GMπrel
c2AU

(4.2)

r̃ =

√
4GMAU

c2πrel
(4.3)

Where M is the mass of the lensing object. πrel is the relative source-lens parallax
(πrel = AU [ D−1

L −D
−1
S ] where DL and DS are the distances to the lens and the source)

and µrel the proper motion. Only tE is measured from the light curve of the lensing
event and depends on M , πrel and µrel. Which means, that short duration events can
also be produced by low mass stars or brown dwarfs with high proper motions.

So the measurement of θE and r̃ are required. If these values are measured, than
one can calculate the mass of the lensing object by

M =
c2

4G
r̃θE (4.4)

Masses of bound earth-mass planets could be measured by a satellite launched
to the L2 orbit combined with ground based observations. The proper motions can
be determined by analyzing the planet-induced perturbations in lensing light curves
observed from space (if the planet is bound to a host star). (Gould et al., 2003)

Han et al. (2004) show, that despite the small Einstein ring radii, observations of
lensing events caused by unbound planetary masses would also be sufficient enough
to determine the mass of these objects. In this case the earth-satellite baseline is big
enough to measure lens parallaxes.

Concerning observations of free-floating planets are two important surveys dealing
with the detection of free-floating planets via gravitational microlensing: the MOA:
Microlensing Observations in Astrophysics 1 and OGLE: Optical Gravitational Lensing
Experiment survey.2

1http://www.phys.canterbury.ac.nz/moa/index.html
2http://ogle.astrouw.edu.pl/
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There are ongoing observations concerning the questions about formation of un-
bound planetary mass objects and the contribution of free-floating planets to the
Galactic disk mass. A very promising mission is WFIRST (Wild Field Infrared Sur-
vey Telescope), which is part of the new world-new horizons program of NASA and is
expected to launch in 2018. It is designed to perform wide-field imaging and slitless
spectroscopic surveys of the near infrared. It should be sensitive enough to observe
unbound planets with masses as low as Mars. 3 (Sumi, 2014)

Strigari et al. (2012) estimated, that such a high cadence survey of the inner
Galaxy (like WFIRST ) could measure the number of free-floating objects greater than
1 MJupiter per main-sequence-star to ∼ 13% and the number of objects greater than
the mass of Mars to ∼ 25%. Also observations with Gaia could identify planetary mass
objects with ∼ 1Jupier. (Strigari et al., 2012)

Another promising tool for detecting free-floating planets is the Korean Microlens-
ing Telescope Network (KMTNet), which will consist of three 1.6m telescopes in South
America, South Africa and Australia. With this network a 24-hour coverage of the four
target fields located in the central Bulge will be possible and provide the detection of
∼ 2200 microlensing events per year. Predictions say, that the KMTNet will detect
∼ 1 Earth-mass free-floating planet per year. (Here they assume a density of one such
planet per star in our Galaxy.) (Henderson et al., 2014)

4.3 Free-floating planetary mass component

It all began with the report of Zapatero Osorio et al. (2000), who presented their
observations of the σ orionis cluster having an extremely red low luminosity population
of young free-floating objects. They searched an area of 847 square arc minutes and
measured 18 candidates of free-floating planets in this cluster with masses ranging
from 5 to 15 MJupiter. They did photometry on this objects and found out that this
objects fulfil the expectations for very young giant planets: These objects have a very
low surface gravity and therefore a dusty atmosphere, all indicates the young age of
this population. Based on these observations they determined a mass function for the
population of free floating planets in the σ Orionis cluster. The extrapolation of this
function to the galactic disk yields that isolated planets with mass range from 1 to 13
MJupiter could be as numerous as brown dwarfs, so that the number of brown dwarfs
and planets together can outnumber stars. However, the contribution to the total mass
of the disk would be less than 10 %.

Sumi et al. (2011) presented their findings of observations of microlensing events in
10 regions towards the galactic bulge in 2011.

In this joint survey between Japan and New Zealand 50 million stars have been
scanned towards the center of the Milky Way during the years 2006 and 2007, revealing
evidence for up to 10 free-floating planets having roughly the mass of Jupiter. This
may not seem much, but prediction models for their observation samples had only
estimated 1.5 to 2.5 microlensing events for low mass lenses. Thus, in order to fit their
observations they had to add a new mass population to their models. A short overview
over their estimations is presented in the following.

The duration of a microlensing event is given with the following simplified equation:
3http://wfirst.gsfc.nasa.gov/

12

http://wfirst.gsfc.nasa.gov/


tE ∼
√

M

MJ

(4.5)

And tE < 2 d for objects with masses of MJ=9.5· 10−4 M�.
It is to mention here, that the duration of a microlensing event does significantly

depend on the distance and transverse velocity of the lens object (see section 4.2). In
the survey, they measured approximately 50 million stars in bulge fields and found 10
events which refer to low mass objects in the range of 3 to 15 Jupitermasses where
no host star was found within 10 AU of the microlensing detections. With follow up
observations (mainly done by direct imaging) it could be stated, that there were no
host stars within 10 to 500AU .

The data was now compared to two mass functions, where they assumed mod-
els with standard galactic mass density and velocity and included the stellar, stellar
remnant, brown dwarf and planetary mass population.

Therefore Sumi et al. (2011) added a new planetary mass population (derived via
a δ-mass function from likelihood analysis of their data) so that the power law model
now implies 1.9+1.3

−0.8 as many unbound or distant Jupiter mass objects as main sequence
stars in the mass range 0.08 < M/M� < 1. This reveals that these planetary mass
objects are at least 1.5 times as frequent as planets with host stars. (Sumi et al., 2011)

5 Numerical calculations
As shown in section 4.3, space is probably ”full” of free-floating planetary objects. Since
a significant number of unbound planetary mass objects in the Galactic Disk can be
assumed, the probability that such a free-floating planet enters a planetary system is
relatively high. The article Interaction of free-floating planets with a star-planet pair
by Varvoglis et al. (2012), on which this work is based, deals with the different scenarios
which can occur in such a case of invasion.

Varvoglis et al. (2012), did numerical calculations using a bound system consisting
of two bodies: a sun-like star and a bound Jupiter-sized planet. Approaching the
system from infinity is a third body of Jupiter mass. Its interactions with the planetary
system are investigated. All objects were considered as pointmasses. Their calculations
were limited to a 2D set, so that all three objects moved on coplanar orbits. In
order to investigate the outcomes of such interactions between a free-floating planet
and a bound system statistically, they performed numerous numerical experiments for
different initial configurations of their system. The initial state was determined by the
phase of the bound planet and the impact parameter of the incoming body. Those
parameters are explained in the following section. After a certain computation time
they tested the state of the system by calculating the energy between the bodies in
pairs. The three possible outcomes were: flyby, temporary capture and exchange. The
probability for each outcome was estimated for different initial configurations with
different mass and different calculation time. In any case capture and flyby are most
likely to occur compared to exchange. Important to mention is, that the scattering
process is fractal, which will be shown in section 5.3.
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Figure 1: Initial positions of the three bodies: the sun-like star is placed at the origin, the
bound Jupiter-sized planet is initially on a circular orbit with r0 = 1AU around the star and
the incoming free-floating planet is started from a fixed x−distance of x0 = 40AU with a
parabolic velocity. The initial state of the system is determined by the mean anomaly M of
the bound planet and the y− and z−position of the free-floating planet. In this work, the
y−position of the free-floating planet is referred to as impact parameter d of the incoming
planet.

5.1 Experiment setup

Concerning the mentioned numerical calculations of the three body scattering the aim
of this work is to add a third dimension to the existing setup of Varvoglis et al. (2012).
Figure 1 shows the initial position of the three acting objects with respect to the
inertial reference frame 0xyz. The three bodies are considered as pointmasses. The
star has mass M , on an orbit around it moves the bound planet (BP) with mass mJ

and incoming from infinity is the free-floating planet (FFP) with mass m.
Star and BP are moving in the xy-plane, with the BP on an initially circular orbit

with r0 = 1AU . Due to the expanded setup to 3D, the FFP is coming from a position
with a fixed x-distance of 40AU , impact parameter d and initial inclination i, which
is translated to a z−value corresponding to the reference frame. The initial distance
of the FFP is far enough to ensure, that at the beginning of the calculations, the
interaction of the FFP with the bound system is negligible, therefore one can refer to
this position as infinity. The initial velocity, v, of the FFP is calculated as a parabolic
one, via the following equation:

E =
1

2
mv2 −G mM√

402 + d2 + z2
= 0 (5.1)

Keeping the other parameters fixed, the initial state of the system is determined
by the impact parameter d and initial inclination i of the FFP (translated to a z-value
in AU) as well as the mean anomaly M of the BP. x−,y− and z−values have the unit
AU . The velocities of the objects are given in AU/d and the masses M , m and mJ are
given in terms of solar masses. For better understanding, the mass of the free-floating
planet is converted in Jupiter masses, when referred to it in the thesis.

The initial values of the impact parameter d are taken from the interval −7r0 ≤
d ≤ 7r0. This is because in this interval interactions between the FFP and the bound
system are most likely to occur. It results from calculations based on the analytical
analysis of the Hill stability of a three body system. Donnison (2006) provides a set
of equations for finding the stability limits of a bound two body system during the
encounter with a third body moving on an inclined orbit. These calculations provide
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the limits on the range for the values of orbital elements for a system so that it is to
remain Hill stable.

On the other hand these resluts tell the domain for the values of the orbital ele-
ments where close encounters between the components may happen. In my numerical
integrations the values for d derived from the equations in section 5.1.1 are reused in
order to get interesting results.

Hill Stability: Hill Stability is an extension of the concept of zero-velocity surfaces
which were first introduced by Hill (1878) and often used for treatment of the restricted
and general three-body problem (see Donnison (2006) and papers therein).

For motion in the restricted three-body problem (where one has one massless object
and to massive bodies revolving around the center of mass) it is possible to derive an
equation which relates the velocity of the massless particle to its position.

Zero-velocity surfaces in the restricted three-body problem correspond to a certain
Jacobi constant and give the borders of the region of possible motion which cannot be
crossed by an object started in this region. Donnison (2006) compares a parameter c2E
(where E is the energy of the system and c the angular momentum - which corresponds
to the Jacobi constant in the restricted three-body problem) to a critical value which
is found by calculation of c2E at the position of the collinear Lagrangian points. If the
value derived for c2E is greater or equal to the critical value the system is considered
as "Hill stable" which means exchange and disruption or collision of the components
are not possible. (Donnison, 2006)

5.1.1 Values range for the impact parameter

As already mentioned above Donnison (2006) compares the c2E-value of the system
derived from equation 5.3 with a critical value derived from Hill surfaces, which are
an extension of the zero velocity curves. Where c is the angular momentum of the
system and E the total energy of the system. If the c2E value derived is higher than
the critical value, then the system is to remain stable. If the c2E value is lower it is
found that exchange or collision of the incoming bodies is possible.

The set of equations shown in the following is used to calculate the borders of the
range of the orbital elements of the system, for which collision, capture or exchange
can occur.

The respective system consists of three masses. M1 and M2 form the bound system
with semi-major axis a1 and eccentricity e1 which in this case is set to 0, so that the BP
moves on a circular orbit around its star. The third body withM3 moves on a parabolic
orbit relative to the binary barycenter with an inclination i and closest approach a2.

The total energy of the system, E, is calculated via the following equation:

E = −GM1M2

2a1
(5.2)

The critical value for c2E for the system is derived with the following equation:

Scr =
c2|H|
G2

=
f 2(x)g(x)

2M
(5.3)

where M =M1 +M2 +M3 and G is the gravitational constant.
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f(x) = M1M2 +
M1M3

1 + x
+
M2M3

x
(5.4)

g(x) = M1M2 +M1M3(1 + x)2 +M2M3x
2 (5.5)

The value for x is derived as solution of the quintic equation:

(M1+M2)x
5+(3M1+2M2)x

4+(3M1+M2)x
3−(3M3+M2)x

2−(3M3+2M2)x−(M3+M2) = 0
(5.6)

The parameter Sac which controls the topology of the zero-velocity surfaces of the
system can be written as:

Sac =
M1M2M

2
3µ

2

M

(
a2
a1

)
+M3

1M
3
2

(1− e21)
2µ

+M2
1M

2
2M3 cos(i)

[
2µ(1− e21)

M

(
a2
a1

)]1/2
(5.7)

The system should be Hill stable which means Sac − Scr ≥ 0 which leads to the
following form:

M1M2M
2
3µ

2

M

(
a2
a1

)
+M2

1M
2
2M3 cos(i)

[
2µ(1− e21)

M

]1/2(
a2
a1

)1/2

+

[
M3

1M
3
2

(1− e21)
2µ

− Scr
]
≥ 0

(5.8)
One can now determine the critical values of (a2/a1):

(
a2
a1

)
=
M2

1M
2
2M

2M2
3µ

3

{[(
2µScr
M3

1M
3
2

)
− (1− e21) sin2(i)

]1/2
− (1− e21)1/2 cos(i)

}2

(5.9)

where µ = M1 +M2. For 0◦ ≤ i ≤ 180◦ this leads to values for a2 from 1.711r0 to
7.406r0. Which makes me choose values for the impact parameter d like the already
mentioned −7r0 to 7r0.

Impact parameters larger than this will not lead to close encounters or strong in-
teractions between the planets. This reflects the fact, that FFPs passing at larger
distances have minor effects on the planetary system. On the other hand within the
calculated range exchange and capture will most likely occur.

5.1.2 Initial conditions

The initial state of the system is determined by the impact parameter d, and the initial
inclination i of the FFP as well as the mean anomaly M of the BP. The initial values
of the inclination for the trajectory of the FFP are varied from 0◦ to 90◦. The impact
parameter d is varied in the range of −7r0 ≤ d ≤ 7r0. This borders for the values of
the impact parameter are derived from analytical equations, shown in section 5.1. In
any case r0 is set to be 1AU .

The initial conditions of the three bodies are calculated as follows:

The sun is placed at rest in the center of the reference frame: xS = yS = zS = 0
and the components of the initial velocity given as ẋS = ẏS = żS = 0.
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The BP moves on a circular orbit with given initial radius of r0 = 1AU which
corresponds to a period of 1 year around the star. The motion is initially started in
the xy-plane. The starting point of the BP is changed by varying the mean anomaly of
the BP from 0◦ ≤ φ ≤ 360◦. Therefore the initial coordinates of the BP are calculated
as follows:

x = r0 cos(φ); y = r0 sin(φ),z = 0

ẋ = −k sin(φ); ẏ = k cos(φ) and ż = 0

With φ being the phase and in this case comparable to the mean anomaly of the
BP and k, the Gaussian gravitational constant.

The incoming FFP has the following initial conditions:

x = −40r0; y = d; z = tan(i) · x

ẋ = v cos(i); ẏ = 0 and ż = −v sin(i)

The FFP is started on a trajectory parallel to the projected x-axis in a plane that is
inclined with the value i to the xy-plane. The initial velocity v of the FFP is calculated
with equation 5.1 for each initial position of the FFP.

The equations of motion are integrated with a Lie-integration method. (Hanslmeier
and Dvorak, 1984)

5.2 Outcomes

Due to interactions between the incoming FFP and the bound system angular momen-
tum between the objects (FFP and BP) can be exchanged. This can lead to three
different outcomes:

Flyby : There are two types of flyby-motion: indirect and direct flyby. In the first
case the FFP enters the system and stays in the system for some periods before
being ejected back. In the case of a direct flyby, the incoming body passes the
system without strong interactions. In both cases the FFP escapes to infinity
again and the existing two body system stays bound. (For example see figure 3.)

In the following sections both cases are referred to as flyby. It is not distinguished
between direct and indirect flyby in this work. The same yields true for exchange-
orbits. For the analysis of the data the final state of the system after a finite time
period is investigated.

Exchange: There is the possibility of an indirect or direct exchange. In the
indirect case, the FFP is captured on an orbit around the star, forming a triple
system for some periods before due to interactions between the two planets, the
former BP is ejected from its system while the FFP stays on a bound orbit around
the star, forming a new star-planet pair. When a direct exchange happens, the
incoming body kicks the BP from its orbit immediately after entering the system
while itself stays on a bound orbit around the star.(For example see figure 2,
left-hand panel.)

17



Capture: It is the only case of bound motion, where the incoming body is captured
and stays on a closed orbit around the star forming a system with two bound
planets. In this case one has to be cautious, because this state may only be
temporarily stable. It is better to call this final outcome temporary capture. Due
to a close encounter between the two planets it is possible, that one gains enough
energy to leave the system after some more time. In this case temporary capture
can indirectly lead to a flyby or exchange, if calculating the system on longer time
scales. (For example see figure 4 and figure 5.) Capture of the FFP can occur
for both prograde and retrograde motion. This kind of motion will be explained
and discussed in section 7.3.

Since the exit-test determines the state of the system after a certain time, if the
FFP stays in temporary capture at this time this state of the system will be referred
to as capture. But keep in mind, that this does only describe the state of the system
at the time of the exit-test and can develop to flyby or exchange on longer time scales.

To refer all theoretically possible outcomes, the case of disruption has to be men-
tioned. In this event, the bound system breaks up and the three bodies, FFP, BP and
the star would move unbound on different trajectories. This case is only possible, when
the total energy of the system can switch to positive. However, this is ruled out for the
following computations, because the total energy of the system at the center of mass
is always negative.

The state of the system is checked after a certain time ttest, so that the incoming
body with its initial velocity v0 could have travelled twice its initial distance from the
center of mass during this time.

ttest =
2 ·
√
402 + d2 + z2

v0
(5.10)

After this certain time, the relative energy between the three bodies in pairs is
calculated, in order to determine the final state of the system as follows:

Eij... Energy between two bodies at final state for i = 1, 2, 3 and j = 1, 2, 3.
Where the numbers refer to the different masses:

1 - free-floating planet

2 - star

3 - bound planet

• Flyby : E12 > 0, E23 < 0, E13 > 0

• Capture:E12 < 0, E23 < 0, E13 > 0

• Exchange:E12 < 0, E23 > 0, E13 > 0

The pairs of energies are E12 (FFP-star),E23 (star-BP) and E13 between FFP-BP.
Throughout the thesis, when referred to the calculation-time as ttest, the timespan

calculated via equation 5.2 is meant. Longer time scales will be given in terms of ttest.
Since the three possible final states of the system are only identified on the basis of
the calculation of the relative energy of the objects in pairs after a finite time period
it does not distinguish between direct or indirect flyby or exchange.
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Figure 2: Left: Example for a capture - (with initial conditions: i = 2◦, mean anomaly
of Jupiter M = 90◦, impact parameter d = −5.3, for a Jupiter-sized FFP calculated until
t = 4ttest). The green line marks the orbital revolution of the BP, which is slightly perturbed
from its initially circular orbit. The red line draws the trajectory of the incoming FFP, which
is captured on a high eccentric orbit around the star. Right: Example for an exchange orbit
- (with initial conditions: i = 0.1◦, M = 12.1◦, d = −2.6, m = mJ , calculated until t = ttest).
The green line again shows the path of the BP which is ejected from the system after a close
encounter with the FFP (red line), while the perturber takes its place in the bound system.

The case where the incoming body is captured as a moon of the BP (E13 < 0),
did not occur in the calculations, even for masses small as m = 10−8mJ , which is
approximately the mass of our moon.

5.2.1 Outcomes - graphical

As mentioned above, there are three possible outcomes, which can occur after a certain
time ttest. In the following figures some examples of capture,exchange and flyby orbits
are shown, to illustrate the facts.

In figure 2 the pathways of both the FFP (red line) and the BP (green line) are
plotted. In the left-hand panel of the figure a typical case of a capture event is shown.
The FFP enters the bound system and stays on a highly eccentric orbit while the BP
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Figure 3: Example for a direct flyby with initial conditions of i = 10◦,M = 150.1◦, d = −3.3,
m = mJ , calculated until t = ttest. The FFP passes the bound system without interacting
strongly with the star-planet pair.
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Figure 4: Example for a capture - (left-hand) - (with i = 2.4◦,M = 90◦, d = −5.3, m = 5mJ

calculated until t = 4ttest) which develops to an exchange - (right-hand) for t = 54ttest. In
the left-hand panel the green line indicates the path of the BP, which is perturbed from its
circular orbit due to the influence of the captured FFP. In the right-hand panel the BP is
ejected from the system after some highly eccentric revolutions while the FFP’s high eccentric
orbit (red line) is steadied.
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Figure 5: Example of a capture - (left-hand) - (with i = 2.1◦, M = 204.6◦, d = −4.3,
m = 2mJ calculated for t = 6.5ttest) which develops to a flyby - (right-hand) for t = 31.5ttest.
The red line marks the trajectory of the FFP, which is captured on a highly eccentric orbit
with big semi-major axis. After some more revolution periods it gained enough energy to
leave the system again.
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is slightly perturbed from its initial circular orbit. In the right-hand panel of the same
figure an exchange orbit is displayed, where due to a close encounter the BP is pushed
from its original orbit and forced to leave the system, while the FFP stays on a bound
orbit around the star.

An example for a ’single encounter’ event is shown in figure 3. In that case, the FFP
interacts with the BP respectively with the bound system on a very short timescale
(e.g. for a time interval less than one unperturbed revolution period of the BP). The
shown case (figure 3) is a so called direct flyby, where the FFP passes the system of
the star-BP without feeling strong attraction from it and leaving the bound system
unmolested.

Nevertheless the state of the system can change, if the trajectories are calculated
for even longer time scales. Examples for this can be seen in figure 4 and figure 5.
Though there are ’long-time’ captures, the possibility of a permanent capture can not
be guaranteed. Figure 4 shows the path of a FFP which is captured (left-hand panel)
on a highly eccentric orbit while disturbing the BP from its circular orbit. Calculating
the same initial conditions for a longer timespan, the temporary capture ended in the
ejection of the BP while the FFP’s trajectory is relaxed to an orbit with relatively
small eccentricity. This indirect exchange is an example for a ’multiple-encounter’
event, where the FFP enters and interacts with the bound system for an extended
period of time (more than one unperturbed revolution period of the BP). Figure 5
shows the second possible scenario of a ’multiple-encounter’ event. The red line marks
the trajectory of a FFP, captured in a highly eccentric orbit with large semi-major
axis (left-hand panel) which, after some revolution periods leaves the system again to
infinity, representing the case of an indirect flyby.

This illustrates the difficulty for determining a final state of the system and why
the exit-test is done for most calculations after the fixed t = ttest (see equation 5.2).
The computed state of the system (pitched with the signs of the calculated relative
energies) then is referred to as the final state of the system. Calculations for longer
time scales were done as well in the following chapters but will be outlined clearly.

5.2.2 Orbital elements in case of indirect flyby and indirect exchange

The events of capture and exchange are mirrored in the values of the orbital elements of
the acting objects. These elements in case of an indirect flyby is shown in figure 6 and
figure 7. The plotted values show the development of the eccentricity and inclination
for the trajectories of the planets in figure 5. The inclination of the FFP (see figure 6,
right-hand panel) varies slightly around its initial value i = 2.1◦ while the inclination
of the BP is pushed from i = 0◦ to a small value of i ∼ 0.1◦. The same happens to
the eccentricity of the BP (see figure 6, left-hand panel). While the FFP is captured
on a highly eccentric orbit with e > 0.9 the BP is perturbed from its circular orbit to
an orbit with eccentricity e ∼ 0.1. In figure 7 the increasing of the eccentricity of the
BP up to values higher than 0.12 via a sequence of resonances is visible. The arrow
marks the point after 790 years, when due to a close encounter the FFP gains enough
energy to leave the system and escape to infinity. At this point, the eccentricity of the
BP drops to e ∼ 0, but the inclination of the BP, which stays on its orbit increases
slightly to i ∼ 0.2◦.

The orbital elements for the event of an indirect flyby are plotted in figure 8 and
figure 9. In figure 8 the two objects are in the condition of a temporary capture for
the whole calculation time of t = 4ttest. Hence, since the FFP entered the system the
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Figure 6: Left-hand side: Eccentricity of the FFP (upper panel) and the BP (lower panel)
for the temporary capture orbit seen in figure 5. The system was calculated up to t = 6.5ttest
respectively ∼ 190 unperturbed periods of the bound planet. The big jump of the eccentricity
respectively the inclination of the BP after approximately 25 unperturbed periods (of the BP)
in both panels marks the point, where the FFP enters the system.
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Figure 7: Evolution of eccentricity (left-hand panel) and inclination (right-hand panel) of the
two involved objects for a calculation time of t = 31.5ttest. The orbital elements correspond
to the case of an indirect flyby shown in figure 5 - right-hand panel. The upper panel shows
the evolution of inclination and eccentricity of the FFP. The lower panel shows these orbital
elements for the BP. Compared with figure 6, the eccentricity of the BP increases to values
slightly higher than 0.1, before dropping to approximately zero again, at the time, the FFP
is ejected from the system (arrow mark).
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Figure 8: Left-hand side: Eccentricity of the FFP (upper panel) and the BP (lower panel)
for the temporary captured orbit seen in figure 4 (left had sides), calculated up to a time of
t = 4ttest. Right-hand side: Inclination of the two objects for the same orbit and calculation
time. The first jump of the eccentricity at the time of 20 unperturbed periods of the bound
planet marks the entering of the FFP into the bound system. The eccentricities of the bodies
jump from one resonance to another, as do the values of the inclination. The values for the
orbital elements of the BP are affected stronger, than the ones of the FFP.

planets jump from one orbital resonance to another, which is mirrored in the change
of the eccentricity to higher values (for the BP up to ∼ 0.68). This is a sign for the
following ejection of the BP after longer calculation of the trajectories. The same
behaviour can be observed in the inclination of the orbit. In the right-hand panel of
figure 8 the line marks the evolution of the inclination of the BP reaching values as
high as 8.8◦ while the inclination of the FFP’s orbit stays close to it’s initial value of
2.4◦.

Calculating these trajectories for a time as long as t = 54ttest leads to the graphs
shown in figure 9. The orbit of the BP becomes more and more eccentric after a
sequence of resonances until it escapes from the system (see arrow mark), while at that
point the eccentricity of the captured FFP drops to e ∼ 0.78. The increasing of the
semi-major axis and the eccentricity of the BP lead to a decreasing of these orbital
elements of the FFP on the other hand.

A closer look on the orbital elements of the two planets will be given in section 7
for a more statistical approach.

24



 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  200  400  600  800  1000  1200  1400

e
c
c
e

n
tr

ic
it
y

time [yr]

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  200  400  600  800  1000  1200  1400

in
c
lin

a
ti
o

n
 [

d
e

g
]

time [yr]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400

e
c
c
e

n
tr

ic
it
y

time [yr]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  200  400  600  800  1000  1200  1400

in
c
lin

a
ti
o

n
 [

d
e

g
]

time [yr]

Figure 9: Development of the orbital elements of the BP and FFP in case of an indirect
exchange. For this plot the same initial conditions as for figure 8 were calculated but to a
longer time span of t = 31.5ttest. The orbit of the BP becomes more and more eccentric (see
left-hand-side, bottom panel), jumping from one resonance to another, until it is ejected from
the system (arrow mark). This event causes a relaxation of the eccentricity of the orbit of
the FFP to a value of approximately 0.78 (left-hand side, upper panel). The same happens
to the inclination of the FFP (right-hand side, upper panel).
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5.3 Fractal scattering

In order to analyse the data statistically, calculations for the whole grid of initial
conditions (0◦ < M < 360◦ and −7r0 < d < 7r0) for a fixed initial inclination i were
carried out. Therefore 3600 values of M and 1400 values of d uniformly distributed in
the mentioned ranges have been chosen.

Figure 10 shows the pairs of initial conditions (M , d) for an initial inclination of
the FFP of i = 0.1◦ mapped accordingly to the final state of the system after the time
2ttest. Blue represents exchange orbits, red represents capture and green represents
flyby orbits.

Figure 10 shows that flyby and capture are the most likely outcomes. Flyby is the
final state of ∼ 42.1% of systems while capture occures in ∼ 56.1% of all investigated
cases, and is therefore (for this value of the initial inclination of the FFP) the most
likely outcome. The probability of exchange is much smaller (∼ 1.06%). These results,
concerning the probability of the final states, vary with the initial inclination and mass
of the FFP. Influences of these two parameters on the outcomes will be discussed in
more detail in section 6.

Initial conditions leading to exchange are single outcomes populating the clearly
defined border between the basins of the two other final states of capture and flyby
(see figure 10).

In figure 11 interesting areas are enlarged. In the magnifications one can see that the
boundaries do not look smooth any longer. There are scattered initial conditions in the
basin of capture leading to a different outcome; namely flyby or exchange. This causes
a great uncertainty in predicting the final state of the system for initial conditions close
to the border between the basins of flyby and capture. This can be observed on smaller
and smaller scales (figure 11, both panels), which is a clear sign for the fractality of
the scattering process.

This sign of chaos in the results of numerical calculations concerning the interactions
between a free-floating planet and an existing star-planet system was also reported by
Varvoglis et al. (2012).

5.3.1 Estimating the uncertainty exponent

The fractality of the scattering process, which is shown in figures 10 and 11 can be
proved by the final state sensitivity method (see Bleher et al. (1990)). The idea behind
this is, to give the probability of making a wrong prediction of the final state of the
system for initial conditions very close to each other. The separation between this
initial conditions is set to be a very small value ε, which is called uncertainty. Thus,
three pairs of initial conditions are checked for their final state, the two perturbed initial
conditions (±ε) and the unperturbed initial condition. If all three initial conditions
lead to the same outcome, the conditions are called epsilon certain.

If only one of these three initial conditions leads to a different outcome, the set of
initial conditions (the unperturbed and the two perturbed initial conditions) are called
epsilon uncertain.

Doing this for many different sets of initial conditions close to the border and
counting the number of epsilon uncertain cases determines the probability f(ε). The
probability to make a wrong prediction of the final state.

If the boundary between two final states would be a smooth line, f(ε) would be
exactly proportional to ε. Concerning the case of the scattering process, the edges
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Figure 10: Initial Value Space for an experiment setup with m = 3mJ , i = 0.1◦. Each initial
condition (M ,d) is coloured, representing the final state of the system after the time t = 2ttest:
Blue represents exchange, red capture and green flyby. The basins of initial conditions leading
to flyby respectively capture are clearly separated. The borders between these basins are
populated by initial conditions leading to exchange.

Figure 11: The left-hand panel shows a magnification of the initial value space shown in
figure 10 for 156 < M < 156.5 and 1.7 < d < 1.9. The border between flyby and capture
which seemed to look smooth in figure 10 shows signs of fractality which is even clearer
visible in the right-hand panel. Here further magnification shows the initial value space for
156 < M < 156.01 and 1.82 < d < 1.86. Pairs of initial conditions (M ,d) in the basin of
capture (red dots) lead to different outcomes: flyby (green dots) or exchange (blue dots). This
causes a great uncertainty in predicting the final state of a system for initial conditions near
to the border between the basins.
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between the different basins show signs of fractality and therefore the scaling of f(ε)
with ε should be different. This scaling of f(ε) with ε gives the so called co-dimension
of the boundary, α, with which the capacity dimension of the boundary, d, can be
calculated as d = D − α. Where D is the dimension of the embedding space.

In order to do this, 10 boxes [φ, d, z] were selected from the initial value space
shown in figure 12, left-hand panel. In each box central initial conditions (φ, d, z), the
so called unperturbed initial conditions, were picked and perturbed by the amount of
a small value ε along the y-axis. Thus the two perturbed initial conditions look like
the following: (φ, d− ε, z) and (φ, d+ ε, z).

For each of this three initial conditions (1 unperturbed, so called ”central” initial
condition, 2 perturbed initial conditions) the equations of motion have been calculated
up to the time ttest and the exit-test was done in order to determine the final state
of the system. After this, it is investigated if all three initial condition sets, (φ, d −
ε, z),(φ, d, z),(φ, d + ε, z), lead to the same outcome. Once the systems end up in
different states at the time of the exit-test, the central initial condition is considered
as ε-uncertain.

The calculations are carried out for different values of ε. For each value of ε the
fraction f(ε) of ε-uncertain central initial conditions is calculated.

The next step is to plot ε against f(ε) in a log-log diagram (see figure 12, right-hand
panel, for box 1), where all the points (ε,f(ε)) should lie on a straight line given by the
relation:

f(ε) ∼ εα (5.11)

where α is the co-dimension of the boundary, in this case called uncertainty ex-
ponent. If the boundary between the basins is smooth, which means for example a
straight line, α would be 1. In a case of a fractal boundary, f(ε) would scale different
with epsilon, which is the case for the outcomes of the scattering process. Thus α
should be lower than 1 and d > 1. With the knowledge of α, the capacity dimension d
of the boundary can be calculated as follows:

d = D − α (5.12)

Where the dimension of the initial value space in this case is D = 3.
For calculation of the uncertainty dimension for the data set shown in figure 12, 10

boxes with δφ = 0.085, δd = 0.2, δi = 0.009◦ are chosen from the initial value space.
In each box 27.000 initial central conditions were selected and the capacity dimension
of the boundary was calculated as described above for an ε ranging between 10−5 to
10−9.

The function fitted to the data from figure 12, right-hand panel, is the following:

f(e) = 3.68 · ε0.51 (5.13)

which gives the uncertainty exponent α = 0.51 ± 0.056. With this the capacity
dimension d of the boundary is calculated, leading to a value of d ' 2.49, indicating a
clearly fractal boundary. It can be shown, that the value for α < 1 is derived in most
cases here. This means the capacity dimension d > 1 and therefore the boundary is
clearly fractal, as already observed in section 5.3.

The capacity dimension in the other boxes ranges between 2.12 < d < 2.56, which
fits quite well to the assumption of fractal boundaries between the different basins.
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Figure 12: In the left-hand panel, 10 regions in which the uncertainty exponent was cal-
culated are marked. Each box has the dimensions of δφ = 0.085, δd = 0.2, δi = 0.009◦. In
each box 27000 central initial conditions were chosen and perturbed by the small value ε. In
the right-hand panel is a log-log diagramm, plotted, of the fraction of ε - uncertain initial
conditions against the used uncertainty ε, for region 1 (bottom left) of the grid in the left-hand
panel. The green line indicates the fit to the data given by equation 5.13.

In order to show the fractal structure of the scattering process for the three di-
mensional problem the same procedure as described above was carried out for the
z-value of the initial conditions. Thus from the same boxes as shown before again one
central initial condition (φ, d, z) was taken and now the z-value was perturbed by a
certain amount of ε, in order to get the two perturbed initial conditions (φ, d, z − ε)
and (φ, d, z+ε). The values for the capacity dimension derived were again clearly above
1 which proofed the assumption of the fractal structure.

6 Statistics
As is shown in section (5.3), the scattering process is fractal. Thus, for a given value
space of 0◦ < M < 360◦ and −7r0 < d < 7r0 the empirical probability for the three
potential final states (flyby,capture and exchange) after a fixed integration time is
determined in the following. In order to investigate the influence of mass and initial
inclination of the incoming body, these parameters were varied each for a whole run
over the given value space. The motivation behind this was to show how interactions
between the incoming free-floating planet and the bound two-body system depend on
the mass and inclination of the intruding body. The empirical probability is a good
method to summarize the great amount of data derived from the computations and
give a clear picture of what can be expected in case of an interaction event of a bound
system with an unbound incoming planet. Additionally orbital elements in case of a
capture (see section 7) were looked into in detail and it is shown, that retrograde orbits
can occur. Furthermore the influence of the initial velocity of the incoming body on
the number of captures is shown. Therefore, the initial velocity has been changed to
higher or lower values than the parabolic velocity.
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6.1 Initial value space

The initial conditions (0◦ < M < 360◦ with δM = 0.1 and −7r0 < d < 7r0 with δd =
0.1AU) of the system are mapped to the final state (flyby, capture or exchange) after
the scattering process in order to visualize the frequency of occurrence of the different
outcomes. For different mass ratios and inclination each a full set of initial conditions
is computed and the great amount of data summarized by determining the empirical
probability of the three possible final states. Additionally longer integration times are
tested. For better illustration of the outcomes the initial value spaces are plotted in
section 6.1.1, 6.1.2 and section 6.1.3. The probabilities are explained in section 6.2.
The motivation behind this was to give a graphical overview on the possible outcomes
of the scattering process and show how the areas of initial conditions leading to one
specific outcome shift and change with varied mass and inclination of the intruding
object. Derived from this data is the empirical probability of each final state in order
to quantify the graphical output.

6.1.1 Initial value space for different mass of the incoming body

In the following figures the initial value space is plotted for different mass ratios m/mJ .
Each initial condition (M ,d,i = 0.1◦) was calculated until ttest and is coloured due to
the final state of the system where blue dots in the figures represent exchange orbits,
red capture and green flyby orbits. The initial inclination of the incoming free-floating
planet was fixed to i = 0.1◦ in order to reduce the amount of data. This initial
inclination is converted into an initial z−distance of the FFP of 0.07AU from the
xy−plane.

This value has been chosen per chance because it is slightly away from the plane,
so that the request for three dimensional calculations is fulfilled. On the other hand it
is not too far away from the xy−plane in order to not imply effects caused by higher
inclinations. The influence of the initial inclination on the interaction of the FFP with
the bound system is examined in section 6.1.2.

Computations were done for the initial conditions in the given range (0◦ < M <
360◦ with δM = 0.1 and −7r0 < d < 7r0 with δd = 0.1AU) for the fixed initial
inclination of the FFP. The mass of the FFP was varied in the domain of 0.0001mJ <
m < 10mJ .

In order to look for the event of the FFP being captured as a moon of the bound
Jupiter, computations have been carried out for masses as low as m = 10−7mJ , being
approximately the mass of Ganymede. Nevertheless, this case has not occurred and for
this reason masses lower than 0.0001mJ are not taken into account in the following.

The two plots in figure 13 show the initial value space for masses of the FFP of
m = 0.0001mJ (left-hand side) and m = 0.5mJ (left-hand side). It can be seen, that
the basins of initial conditions which lead to capture (red) respectively flyby (green)
do not vary strongly in size and shape. For this low mass of the intruder there are
no exchange orbits yet. Interesting is, that initial conditions leading to flyby are not
equally distributed. This is a consequence of the varied mean anomaly, M , of the
bound planet. For the same M an incoming FFP with positive impact parameter,
d, encounters with different relative distance to the BP, than an incoming FFP with
negative impact parameter. Therefore the exchange of angular momentum is different
and this influences the final state of the system.

The initial value space for an incoming body withm = mJ is plotted in the left-hand
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Figure 13: Left: Initial value space for m = 0.0001mJ . Red dots represent capture, and
green flyby orbits. Right: The mass of the planet is now set to m = 0.5mJ . Exchange orbits
do not occur for this low mass of the incoming planet. If one compares the left-hand panel
with the right-hand panel the basins of initial conditions leading to flyby respectively capture
do not change significantly.

Figure 14: Left: Initial value space for m = 1mJ . Again, red dots represent capture, blue
exchange and green flyby. The first cases of exchange orbits occur at the borders between the
basins of capture and flyby. Right: Initial value space for an intruder with m = 5mJ .

side panel of figure 14. The first blue dots of initial conditions leading to an exchange
appear for values of the impact parameter for d < −2 and d > 4.

The observation, that exchange orbits only occur for intruders with a mass m >
0.5mJ was made by Varvoglis et al. (2012), too and is explained in detail in section
6.2.1.

For the plot in the right-hand side panel of figure 14 the calculations were carried
out for an incoming object with m = 5mJ . Exchange orbits occur for all values of the
impact parameter, d. Nevertheless most exchange orbits are detected for lower values
of the impact parameter: −2 < d < 2.

Figure 15 shows the initial value space for a FFP with m = 10mJ . The initial
conditions leading to an exchange are very dense at the borders between the basins
leading to the other two final states. In the lower half of the plot one can see a further
separation of the features in the basin of flyby (green). As the number of exchange
orbits increases, the number of flybys decreases. The size of the area of initial conditions
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Figure 15: Initial value space for m = 10mJ . The number of exchange orbits for low values
of the impact parameter d is higher than in the right panel of figure 14. For low values of
−1 < d < 1 and the mean anomaly of the BP, M < 20◦, a basin of flyby orbits is produced
and the two arms of flyby orbits (green) on the lower left side of the picture are separated.

leading to capture does not seem to change significantly although one could expect,
that with higher mass of the FFP the probability for a capture would be increasing.
Indeed the probability for a more massive object to be captured increases with mass.
This is shown in section 6.2.1.

Concerning exchange orbits one could expect that the bigger the mass of the FFP,
the more cases occur, where the BP is ejected from its initially bound orbit. In figure
14 and 15 the borders between the basins of flyby and capture get more and more
popoulated by initial conditions leading to exchange. The bigger the mass of the
incoming body, the stronger is the exchange of energy between the two planets. Thus,
for a massive intruder the event of an ejection of the BP becomes more and more likely.
This can be seen quantitatively in section 6.2.1.

6.1.2 Initial value space for different initial inclination of the incoming
body

The influence of a possible inclination of the trajectory of the FFP, related to the
orbital plane of the bound planet, on the scattering process was not investigated by
Varvoglis et al. (2012), and therefore shows new results.

Motivation behind this was to generalize the knowledge about the outcomes of
interactions of an unbound planet object with a bound planet-star system. As space,
naturally, has three dimensions it is obvious, that a free-floating planetary object may
enter an existing bound system from every possible direction. In order to investigate
the influence of the inclination of the trajectory of the FFP (related to the equatorial
plane of the bound system) on the outcomes of the scattering process the next set of
computations was carried out changing the parameter of the initial inclination of the
intruder. Therefore the angle i (see figure 1) is varied in the range of 0◦ < i < 90◦

with δi = 0.1◦. The mass of the FFP is fixed to m = mJ and the state of the system
is determined after the time ttest.

The influence of the initial inclination of the FFP seems to be more dramatic than
the change of mass of the incoming object. The basin of flyby orbits (green) changes
significantly if one compares the initial value space for an incoming planet with initial
inclination of i = 5◦ (see figure 16 - left-hand panel) with an incoming object with
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Figure 16: Left: Initial value space for i = 5◦. Red dots again represent capture, blue
represents exchange and green represents flyby. The picture looks almost the same as figure
13. Right: The initial inclination of the FFP is set to i = 18◦. Here the basin of capture
shrinks to systems with a initial mean anomaly of the BP of M < 180◦. The long lines of
capture which stretch from M = 0◦ to M = 360◦ break up for higher inclinations and on the
right side more separated basins for captured orbits occur.

i = 18◦ (figure 16 - right-hand panel).
The basin of capture grows larger and larger while the big basin of flyby in the left

part of figure 16 - right-hand side - shrinks to systems with initial conditions (M < 180◦,
−4 < d < 4). Additionally for an incoming object with i = 18◦ structures of flyby
(green) on the right-hand side of figure 16 appear for M > 320◦. For an FFP with
i = 35◦, the structures look simpler (see figure 17). The bands of initial inclination
pairs seen in figure 16 leading to flyby, separated by small lines of initial values leading
to capture merge for the computations made for i = 35◦ (see figure 17).

Thus for higher initial inclination of the free-floating planet the pairs of initial
conditions leading to capture (red dots) look more evenly distributed. In figure 17 the
basins are one big area compared to figure 16 (both panels) were the basin of capture is
disconnected by bands of initial conditions leading to flyby. The structure itself, seen
in figure 17 (left hand side) is more symmetrical except for the small gap in the area
of initial conditions leading to flyby for d < −4 and 0◦ < M < 200◦.

For a initial inclination of the FFP of i = 35◦, capture seems to be more likely if
the bound planet is started with 150◦ < M < 280◦. Compared to figure 16 (left-hand
panel, where flyby is the most likely outcome in this range for the mean anomaly of
the BP.)

For higher initial inclination of the FFP the biggest area for initial conditions which
lead to capture concentrates more in the middle of the figure (see figure 17 - right-hand
side) for low values of the impact parameter d. Thus, for FFPs with high initial
inclination and high impact parameter d > 2 it is less likely to be captured.

Only for the initial inclination of i = 5◦ an exchange orbit is stated after t = ttest
(see figure 16 - left-hand side). For higher inclinations (figure 16 - right-hand side and
figure 17) there are no dots which display the occurrence of exchange orbits.

As the exchange of angular momentum depends on the relative distance and relative
velocity of the two interacting bodies one could assume that for higher inclinations of
the incoming body the effect of exchange of angular momentum decreases. Thus the
likelihood for an exchange orbit decreases as well and flyby becomes more probable.
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Figure 17: Initial value space for i = 35◦ on the left-hand side. Red represents capture and
green flyby. The separated basins for captured systems merge on the right an on the left side
of the figure. On the left side of the figure for M < 120◦ the remains of the two lines of
initial conditions leading to flyby orbits are visible above and below the big basin of flyby.
On the left-hand side the initial value space for i = 80◦ is plotted coloured according to the
final state. The features look almost symmetrically. The areas for capture and flyby are big
regions without any interrupting features.

6.1.3 Initial value space for different calculation time

Since it is not possible to determine if after a certain integration time the state of the
system is temporary or final, the calculation time can be seen as additional parameter
influencing the final state of the system. In order to investigate this influence certain
sets of initial conditions have been calculated for different computation times. The
initial inclination of the FFP was set to i = 0.1◦ and the mass ratio was fixed tom/mJ =
1. Values for the computation time were taken from the interval [ttest; 17.5ttest].

In figure 18 the comparison between the shortest and the longest calculation time
can be seen. The initial value space in the left-hand side of figure 18 shows the state
of the system determined after the time ttest. On the right-hand side of figure 18 one
can see the state of the system after 17.5ttest.

In total the shape of the basins does not change. After the long calculation time
seen on the right-hand side panel of figure 18, the features look more fuzzy. There are
dots of initial conditions leading to flyby in the basin of capture. This characteristics is
a sign for fractality of the scattering process (see section 5.3) which interestingly can
be seen without magnification but for long calculation time.

6.2 Probability of flyby, capture and exchange

Figures 13 - 18 show, that for different values for the mass ratio m/mJ , initial inclina-
tion, i, or for the time, after which the energy-test is done in order to determine the
final state of the system, the size and shape of the basins of the different outcomes
vary significantly. In this section the amount of outcomes is aggregated in empirical
probabilities for the three final states in order to estimate the influence of the different
parameters on the final state of the system.

The figures in section 6.1 only show initial value spaces for some representative
values of the investigated parameters. In order to show the effect of increased mass
ratio, inclination and calculation time, empirical probabilities were calculated for values
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Figure 18: Left: Initial value space calculated until t = ttest. Red represents systems, which
end up in capture, blue represents exchange and green flyby. For the right-hand side panel
the trajectories were calculated for a time of t = 17.5ttest, which does not change the shape of
the basins in total. The inner borders of the basins of capture show signs of fractality. Dots
of initial conditions leading to flyby occur in the basin of capture.

all over the given ranges (see following sections).
The probabilities for exchange, capture and flyby in figures 19, 20 and 21 show

the dependency of the likelihood for each state on the specific parameter. Each dot
represents a set of 504000 different initial conditions (M ,d) with M in the range of
0◦ < M < 360◦ (δM = 0.1) and −7r0 < d < 7r0 (with δd = 0.1AU).

With this given probabilities one can estimate how likely exchange, capture and
flyby are for different incoming objects and imagine different scenarios of interaction
with a free floating planet.

This may be useful for deciding if it is possible, that certain exoplanets are originally
captured free-floating planets.

Important to note here again is, that the state of the system after the time ttest is
here taken as final state, although trajectories of the bodies, which are in temporary
captured orbits - which contribute to the percentage of captured free-floating planets -
after this time may decay to indirect flyby or indirect exchange when calculated longer.

6.2.1 Probability of captures depending on the mass of the FFP

The initial inclination for these calculations is fixed to i = 0.1◦ and the determination
of the final state of the system is done after ttest (compare section 6.1.1). The mass of
the planet is chosen from values in the range of 0.0001mJ < m < 10mJ . The chosen
values are not evenly distributed as one can see. For incoming planets with a mass of
m < 2mJ values are chosen in smaller spacing. For planets with mass m > 2mJ the
increment is set to 1mJ with exception of the interval [6mJ ; 8mJ ] in which the mass is
increased by δm = 0.5mJ .

The upper left-hand panel of figure 19 shows, that for a varying ratio m/mJ ap-
proximately 55% of the initial condition sets ends up in capture. For higher masses
(5 MJupiter up to 10 MJupiter) the probability of a capture is higher than for low-mass
FFPs. Interesting is the minimum of the probability of being captured for objects with
a mass of 3 MJupiter.

For free-floating objects with higher masses the stronger gravitational interaction
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with the bound body may be the reason for the higher percentage of bodies in captured
motion. This one would expect in general: higher mass of the incoming object causing
a higher probability for a capture. Nevertheless, the minimum of the percentage for
objects with m = 3mJ needs further investigation, which would have gone beyond the
scope of this Master’s thesis.

Approximately 1% of the calculated sets of initial conditions end up in an exchange
orbit (see figure 19, upper right-hand side panel). The data shows that for incoming
objects with m < 0.5mJ no exchange orbits occur.

This fact is a result of energy conservation and can also be explained analytically,
which was shown by Varvoglis et al. (2012).

Analytical explanation for lack of exchange orbits for incoming objects
with m < 0.5mJ :

The incoming FFP has initially zero binding energy while the energy of the star-
BP pair is given by

E23 = −
GMmJ

2r0
(6.1)

Thus, in case of an exchange, the binding energy of the new pair will be E12 ≤ E23

so that

− GMm

2a
≤ −GMmJ

2r0
(6.2)

With a being the semi-major axis of the captured FFP and r0 the initial radius
of the orbit of the BP. Solving this equation for a gives the following:

a ≤ m

mJ

r0 (6.3)

With this relation the upper boundary for values of the semi-major axis of the
captured FFP can be estimated. For a mass ratio of m/mJ = 1 the semi-major
axis of the FFP could be at most a = 1r0.

These cases can be observed in section 7, which can be taken as a good sign for
the accuracy of the used numerical code.

For a FFP with mass m < 0.5mJ this would mean a semi-major axis of a < 0.5r0.
However, this value would be below the lower bound for the semi-major axis
calculated with the lower bounding curve for a constant pericenter (for a < 1)

e =
1

a
− 1 (6.4)

By setting e = 1 in the last equation a lower bound for the semi-major axis
of a = 0.5r0 is received. Thus a direct exchange is impossible for a FFP with
m < 0.5mJ (see Varvoglis et al. (2012)).
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Figure 19: Upper left-hand side: Probability of capture for different mass for the incoming
FFP. For masses m < 0.5mJ the behaviour seems rather chaotic. From m = mJ to m = 3mJ

the likelihood for a capture drops to its lowest value of 55.84%. In total the probability of
capture varies between 55.84% and 56.12%. The minimum at m = 3mJ and the high value
for m = 8mJ need further investigation. upper right-hand side: Probability of exchange as
function of different mass of the FFP. The probability for an exchange - event stays lower
than 1.2% while for masses of m < 0.5mJ no exchange orbits occur. For values m ≥ 0.5mJ

the probability of exchange seems to be a linear function of the mass. Bottom: Probability
of flyby is decreasing with increasing mass ratio.

The fact, that the results from the numerical calculations reflect the analytical as-
sumptions is a sign for the good quality of the used Lie-Integration Method. (Hanslmeier
and Dvorak, 1984)

For masses m > 0.5mJ the probability of exchange is constantly increasing. In
contrary, the probability of flyby is decreasing with the mass of the FFP and is the
supplement of the other two probabilities. (see figure 19)

However, the probabilities of capture and exchange do not vary strongly. The same
is the case for the probability of flyby, which varies between 42.8% and 44.1% (see
figure 19 - bottom panel). The cause for this are the small masses of the two acting
planets compared to the star.
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6.2.2 Exponential decay of temporary captures with higher initial inclina-
tion

The probabilities for the events of capture, flyby and exchange differ with the initial
inclination of the incoming free-floating planet. Thus, for the calculations of the initial
condition sets the value of the inclination, i, of the incoming FFP is varied in the range
of 0◦ < i < 90◦. The highest inclination, for which the initial value space is calculated
and analysed in order to estimate the empirical probability is i = 88◦. For i = 90◦

the free-floating planet would be started on a plane confining an angle of 90◦ with the
xy−plane. As the FFP is started right away from the bound system this case yields
no results.

For these calculations the mass of the FFP is fixed to m = mJ and again the
energies are calculated in pairs in order to determine the final state of the system after
the time t = ttest.

For i ≤ 30◦ 16 values for the initial inclination of the FFP to perform the calcu-
lations are chosen. This was in order to get more empirical probabilities for intruders
with low initial inclination because of the chaotic behaviour of the scattering process,
which mirrors in the probabilities (see figure 20 - both panels).

For i > 30◦ only 8 values were chosen, because for this higher values of initial
inclination of the free-floating planet the trend of a decreasing probability for capture
is clearly visible (see figure 20 - upper left-hand side).

The probabilities for the three potential outcomes are shown in figure 20. As can be
seen, the probability for capture decreases with rising initial inclination, i, although it
stays between 40%− 50% for initial inclinations with i < 50◦. For higher inclinations,
i > 50◦, there seems to be a rather exponential decay of captures.

Nevertheless, the probability of a capture does not go to zero for values of i up to
88◦. For this high initial inclination of i = 88◦ the probability of a orbit to end as
capture is still 29.85%.

However, it is questionable if FFPs with this high initial inclination stay in the
captured orbit for longer timescales since it is shown in section 7.2.4, that objects with
high initial inclination occupy orbits with high values of eccentricity and semi-major
axis.

On the contrary the probability for an incoming body to pass the system or escape
to infinity again after some periods of revolution is increasing with initial inclination
of the FFP. Thus, in general a higher initial inclination increases the probability of a
flyby. For i < 50◦ the behaviour looks rather chaotic while there seems to be a local
minimum at i = 50◦, which again would need further investigation.

Although already very low, the probability for exchange orbits drops to zero for an
inclination higher than i = 5◦ (see figure 20 - upper right-hand side panel) and a mass
ratio of the planets of m/mJ = 1.

6.2.3 Exponential decay of temporary captures with time

Another factor which influences the number of the three different final state orbits is
the calculation time, after which the energy-test is performed. Therefore computations
for longer time scales are carried out. For these investigation the initial inclination is
fixed to i = 0.1◦ and the mass of the incoming FFP is set to m = mJ .

The bottom panel of figure 21 shows the empirical probability of flyby with time.
The likelihood for an incoming object to pass the system or be ejected again after some
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Figure 20: Upper left-hand side: Probability of capture with different initial inclination for
the incoming FFP. For this computations the mass ratio is set to m/mJ = 1 and the final-
state-test is performed after the time t = ttest. The probability of flyby (bottom panel) is an
increasing function with initial inclination of the free-floating object. Upper right-hand side:
Since the probability for an exchange drops from its already very low values to zero for i > 5◦

the likelihood for a capture is the supplement of the probability of flyby. Interesting is, that
it does not go to zero for very high values of the initial inclination of the FFP.
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revolution periods stays roughly around 42%− 44%. The upper left-hand panel shows
the evolution of the probability of being captured which stays around 56%.

The probability of capture seems to be decreasing with longer integration time while
the probability for flyby (see figure 21 - lower panel) increases by approximately 2%
for integration times longer than 700 unperturbed periods of the bound planet.

The probability of exchange (figure 21 - upper right hand side panel) is the supple-
ment of the other two with very low maximum value of 1.2%. For calculation times
longer than 700 unperturbed periods of the BP the probability for an exchange - event
drops to almost zero.

The reason for the slightly increasing probability up to the maximum value of 1.2%
for an exchange for calculation times shorter than 700 unperturbed periods of the
BP may be close encounters between the two planets (especially for planets which
are captured on highly eccentric orbits) which take place after longer times. Obviously
most of the FFPs captured for longer time scales than the mentioned period are ejected
again from the system or stay in a captured orbit, so that no more exchange orbits
occur.

To sum it up, integration time does not have a big influence on the final state,
which can be seen in figure 21. The percentage of FFPs being in the state of capture at
time of the energy-test which determines the final state of the system does not change
strongly.

This phenomenon does not occur for higher computation times. Which shows, that
the event of an exchange may be a result of a close encounter after a longer time
span, which seems naturally, since free-floating planets with higher initial inclination
are mostly captured on highly eccentric orbits with rather big semi-major axis (see
section 7.2.2). Thus the planet takes longer time to come back close enough to the
bound system to undergo angular momentum exchange due to a close encounter with
the bound planet, which may cause the ejection of the bound Jupiter.

7 Orbital distribution in temporary capture

7.1 Initial value space

In order to show the influence of the different parameters on the final revolution direc-
tion of the FFP in a better illustrated overview the initial value spaces coloured due
to the final revolution direction are shown in the the following sections. As before the
grid of initial conditions is calculated for values of 0◦ < M < 360◦ with δM = 0.1
and −7r0 < d < 7r0 with δd = 0.1AU . For different mass (see section 7.1.2), different
initial inclination of the intruder (see section 7.1.1) and longer integration times (see
section 7.1.3) a full set of initial conditions is computed.

Motivation: As mentioned already the most common site for interaction of free-
floating objects with bound systems is in dense clusters, where it is unlikely that
the FFP enters the orbital plane without inclination. Thus in the following chapter
the impact of the initial inclination of the intruder on its final revolution direction
respectively the final revolution direction after a possible scattering with the bound
planet is investigated.
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Figure 21: Upper left: Probability of flyby for longer calculation times. Time intervalls
on the x − axis here refer to one unperturbed revolution period of the BP. Upper right:
Probability of exchange is a supplement to the other two, whereby the probability of an
exchange drops to zero for calculation times longer than 700 unperturbed periods of the BP.
The shown probabilities are rather constant functions with integration time. Bottom panel:
Probability of flyby orbits shows only variations lower than 2%.
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7.1.1 Different initial inclination of the FFP

Single values for the initial inclination were taken from the range of 0◦ < i < 90◦.
The focus in this chapter lies on the revolution direction of the FFP in case of a

capture.
Comparing figure 30 (for a system with i = 0.1◦, m = mJ after ttest) with figure

22 (for a system with i = 10◦, ceteris paribus) shows no remarkable differences in the
distribution of pro- and retrograde orbits.

The small differences are as follows: Final prograde (red) orbits of FFPs with the
given initial inclination and an impact parameter 0 < d < 0.2 occur in the basin
of retrogade (green) orbits for a mean anomaly of the bound planet of M < 70◦

and M > 330◦. The change of the features in general results from the higher initial
inclination (see section 6.1.2).

Thus, the increase of the initial inclination does not seem to have that much influ-
ence on the final revolution direction of the FFP.

Higher inclination - examples: Qualitatively 48.12% of the captured free-floating
planets with i = 10◦ end up in an orbit with prograde revolution direction compared
to 47.39% of Jupiter mass objects with an initial inclination of i = 0.1◦.

The probability for the FFP of being captured in a prograde orbit shows that the
picture does not change in total if increasing the initial inclination of the FFP: 48.13%
of the free-floating planets with initial inclination of i = 35◦ ceteris paribus end up in
prograde motion.

If increasing the initial inclination of the incoming object up to i = 40◦ (see figure
23), the picture looks almost the same again. In total 48.5% of the captured free-
floating planets end up in prograde motion for this specific initial inclination.

Increasing the inclination up to i = 70◦ increases the probability for an orbit to end
up in prograde motion to 49.89%.

Results: The exchange of angular momentum which can lead to a change in the
revolution direction, depends as already mentioned on the minimum distance and the
relative phase of the two bodies. Both are not that much influenced by a higher initial
inclination of the FFP. Nevertheless a higher initial inclination of the incoming object
makes it more likely for the FFP to be captured on a very eccentric ellipse (see section
7.2.2), which then can lead to close encounters which result in a change of the revolution
direction.

7.1.2 Different mass ratios

For this section computations for free-floating planets with m = mJ and m = 10mJ

were compared.
If the mass of the FFP is set to m = 10mJ while the initial inclination is fixed

to i = 0.1◦ (compare figure 30 for objects with m = mJ) the outcome after the time
ttest is displayed in figure 24. Smooth spikes occur for −0.3 < d < 0.2 in the range
of 0◦ < M < 185◦. Free-floating planets with initial parameters in the given range of
(d,M) may take the opposite revolution direction of which could be expected if only
looking at these initial conditions. (FFPs with an initial impact parameter d > 0
should end up in an retrogade orbit while FFPs with d < 0 should occupy a prograde
orbit.)
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Figure 22: Proportion of prograde and retrograde orbits for i = 10◦ and m = mJ after ttest.
Red dots represent prograde and green represent retrograde orbits. The picture here looks
almost the same as in figure 30 where the border between prograde und retrograde orbits is
clearly defined at low values of the impact parameter of d ∼ 0.

Figure 23: Proportion of prograde and retrograde orbits for i = 40◦ and m = mJ after
ttest. Again red dots represent prograde and green represent retrograde orbits. Notice, that
for 260◦ < M < 350◦ there appears a small uprising, so that in this range of values FFPs
with low positive impact parameter d, end up in prograde orbits. The same uprising can be
observed in figure 22 for 260◦ < M < 350◦.
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Figure 24: Proportion of prograde and retrograde orbits for i = 0.1◦ and m = 10mJ after
ttest. Red dots represent prograde and green dots retrograde orbits. Compared to the other
figures prongs appear for values of M < 150◦ and −0.2 < d < 0.5 where initial value pairs
(M ,d) which should lead to retrograde orbits do lead to the opposite outcome.

In total 48.99% of the captured massive (m = 10mJ) free-floating planets end up
on a prograde orbit, compared to the value of 47.39% derived before for Jupiter-sized
objects.

48.55% of the FFPs end up in prograde orbits when investigating systems with
initial inclination of i = 0.1◦ for the usually used computation time of ttest but but for a
FFP five times the mass of the BP, which is a slight increase compared to computations
with m = mJ .

Results: The more massive an intruder is, the more likely it is, that it is captured
on an orbit with prograde revolution direction although it should take the opposite.
Accordingly, the higher mass of the FFP shows more influence on its final orbit and
the possible scattering of the BP to an orbit with opposite revolution direction.

This can be explained by taking a look on the calculated energies in pairs. For
massive free-floating planetary objects the energy of the FFP-BP pair is non neglible,
so the amount of energy exchanged in case of close encounters is bigger, than for low
massive incoming planets.

7.1.3 Different calculation time

An interesting phenomenon occurs for longer calculation timescales (see figure 25).
Comparing the results of computations lasting for ttest (figure 30) to computations

made for the same initial conditions (m = mJ and i = 0.1◦) but calculated for 16ttest
(figure 25) shows that the picture has changed completely. The occuring spikes marking
trajectories of captured free-floating objects which end up on a different revolution
direction than the one which could be expected concerning their initial conditions
become more elongated. This can be seen in figure 25 for the whole range of mean
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anomaly of the BP (0◦ < M < 360◦) although the spikes are best visible forM < 135◦.
The elongation of the spike can be seen for impact parameters d in the range of −2.2 <
d < 2.2.

This shows that for FFPs with impact parameters 0 < d < 2.2 (which should end
up in retrograde motion) there are trajectories which end up on prograde orbits, as well
as vice versa FFPs with an impact parameter −2.2 < d < 0 do end up in retrograde
orbits.

Nevertheless statistic shows, that longer calculation time does not change the results
significantly.

After 16ttest 48.83% of final orbits of the captured FFPs have prograde motion.
An explanation for this may be, that after longer computation time it is more

probable, that close encounters and resulting exchange of angular momentum happen
which lead to a change of revolution direction of one planet.

Figure 25: Proportion of prograde and retrograde orbits for i = 0.1◦ and m = mJ after
t = 16ttest. Red dots represent prograde and green dots represent retrograde motion. The
spikes are visible for −2.2 < d < 2.2, where impact parameters lead to the opposite outcome
of which would be expected.

Combination of mass, inclination and time: 43.38% of the FFPs end up in orbits
with prograde revolution direction if computating the orbital revolution direction at
time of the energy-test for a combined higher mass (m = 5mJ) and higher inclination
(i = 35◦) of the intruder.

45.73% of the FFPs end up in progade orbits if calculating a system with i = 45◦

and an intruder with mass of m = 5mJ for as long as t = ttest.
This shows that the probability for the FFP in case of a capture to end up on a

prograde orbits increases with increased inclination. Which corresponds to the trend
determined in section 7.1.1.

Computing the systems for i = 5◦ and an intruder with mass of m = 5mJ for as
long as t = 5ttest shows 42.99% of the FFPs ending up on a prograde orbit. Calculating
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the system for t = 50ttest ceteris paribus yields a percentage of 41.79% captured free-
floating planets populating orbits with prograde revolution direction.

Example: Computations of systems with i = 5◦ and m = mJ show that after ttest
none of the bound Jupiters is driven to a revolution direction opposite to the one of
its original orbit.

Calculating the systems with an intruder of m = 10mJ ceteris paribus shows that
0.007% of the BP are driven to change their original revolution direction. For the same
mass and after the same time but for an initial inclination of the FFP of i = 10◦ the
probability drops to 0.004%.

Which shows that mass and initial inclination of the intruder have most influence on
the change of revolution direction of the BP. High mass of the intruder leads to a higher
percentage of bound planets which are scattered to an orbit with opposite revolution
direction. Higher inclination leads to the opposite result. It can be concluded, that
high mass and initial conditions which lead to close encounters support the scattering
of the bound planet to an orbit with different revolution direction.

However it has to be mentioned, that those cases, where the BP takes an orbit with
opposite revolution direction to its initial one may not be stable on longer time scales
cause the determined values are only read out after a certain time, so that the BP may
already be on its way to ejection.

Results: In general it can be said, that varying of the parameters initial inclination
i, impact parameter d and mass of the incoming planet m has a slight influence on
the final revolution direction. An increase of the mass and initial inclination lead to
a slight increase of cases where the FFP ends up on a prograde motion, which on the
other hand means a decrease of the number of retrograde orbits. Longer calculation
time has the same effect. Planets with small positive and negative values of d tend
to rather take the opposite revolution direction as which could be expected from their
given impact parameter. This is because trajectories of these planets more often lead
to close encounters and resulting exchange of angular momentum than trajectories of
free-floating planets with higher impact parameters.

There exist observations of known exoplanetary systems with components moving
on retrogade orbits for example Esposito et al. (2014) found the first exoplanet discov-
ered to move on an retrograde orbit: which is HAT-P-7b. This fact was detected and
calculated by a spin-orbit analysis which is described in Benomar et al. (2014).

As has been shown in the former section, the capture of a free-floating planet in a
retrogade orbit can be reproduced by the model and integration method used for this
thesis. This gives the opportunity to study scenarios of exoplanetary systems with a
planet on a retrogade orbit in detail in order to find out if maybe the planet has not
been formed in its present system originally but is a captured free-floating object.

In section 5.2.1 a short look on the orbital elements of the two acting planets was
given for specific initial conditions in order to monitor the evolution of eccentricity, in-
clination and semi-major axis in case of the three potential outcomes exchange, capture
and flyby. The following section will give a more overall view on the orbital elements
at the time the integration is stopped.
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7.2 Orbital Elements

The focus in this chapter lies on the case of capture. Thus different scenarios with
different combinations of mass ratio, initial inclination and computation time were
conducted. Again the whole grid of initial conditions (M ,d) is computed for certain
values of initial inclination and mass of the FFP. After a certain time the computation
was stopped and the energy-test was performed. Those systems being in the state of
capture at that time were investigated into more detail.

7.2.1 Different mass ratio

In order to investigate the influence of the mass of the incoming planetary object
different masses for the free-floating planet were selected. In particular he outcomes
for objects with one, five and ten Jupiter-masses were compared.

Examples: For Jupiter-sized FFPs entering the system at rather low inclinations (i <
0.2◦) the following parameters for eccentricity and semi-major axis in case of a capture
were found: In most of the cases, the FFP is captured in orbits with high eccentricity
(e > 0.9) and a semi-major axis which varies widely between 1r0 < a < 97622r0.
However, those rare cases with extremely large semi-major axis will most probably
decay to an indirect flyby, after a longer integration time. Nevertheless the incoming
body does not influence the orbital elements of the bound planet significantly since the
results show that the BP is only slightly perturbed from its initial orbit. Nevertheless
rare cases occur, in which the BP is scattered to orbits with high eccentricities and a
semi-major axis up to aJ = 818r0.

If one compares systems calculated for e.g. m = mJ , i = 0.1◦ until t = ttest to
systems calculated for m = 10mJ ceteris paribus 4 the following can be seen:

The values for the semi-major axis measured for trajectories of the lower mass free-
floating planets are determined in the range of 1.3AU < aFFP < 40556AU with a
minimum eccentricity of 0.73. The bound planet is scattered to orbits with semi-major
axis of 0.99AU < a < 4.06AU with a maximum eccentricity of 0.89 and maximum
inclination of 52.3◦.

Determining the values for systems with the more massive intruder of m = 10mJ

yields the following: values of the semi-major axis are derived in the range of 9.95AU <
aFFP < 3398AU with minimum eccentricity of 0.92. Now the BP can be scattered to
orbits with a semi-major axis in the range of 0.98AU < a < 220AU and a maximum
eccentricity of 0.99.

Semi-major axis: In case of a capture, the higher the mass of the incoming planet
is, the lower is the maximum semi-major axis and the larger is the minimum semi-
major axis. Which means, that more massive free-floating planets populate orbits with
semi-major axes in a smaller value range which is shifted away from the star.

The same yields true for the maximum semi-major axis of the final orbit of the
bound planet to which it is scattered. Though the values measured do not differ more
than 0.1AU . Thus the higher the mass of the intruder is, the lower is the value which
can be derived for the semi-major axis of the final orbit of the BP.

4Meaning: other parameters being equal or held constant see: https://en.wikipedia.org/wiki/
Ceteris_paribus
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Results suggest, that it is unlikely that hot Jupiters may be captured objects. This
is based on the mentioned relation between the mass and the minimum semi-major
axis. Low mass FFPs can be captured in orbits with a semi-major axis as low as 1AU
about a star of solar mass, while the more massive ones (here up to m = 10mJ) only
reach orbits with a semi-major axis of minimum 9.95AU . However it is possible, that
the BP is scattered to an orbit with semi-major axis of 0.98AU (in case of an intruder
with m = 10mJ).

The maximum semi-major axis for a FFP with 10 times the mass of the BP is only
3378AU compared to the maximum semi-major axis of 40770AU for a FFP with a
mass ratio of m/mJ = 1. For these orbits it is more than questionable, that this planet
will stay bound on longer time scales.

Eccentricity: More massive bodies tend to be captured on orbits with higher ec-
centricities than intruders with lower mass. Free-floating planets with m = mJ can
be captured in orbits with moderate eccentricities down to 0.29. For incoming objects
with m = 10mJ the lowest measured eccentricity was 0.98.

Inclination: More massive intruders tend to be captured on orbits with lower values
for inclination. Additionally incoming planets with higher mass (up tom = 10mJ) have
less impact on the change of inclination of the bound planet. This may be because of
the in general higher values for the semi-major axis of the orbits on which the FFP is
captured and therefore the low possibility of interaction between the two planets.

It can be seen, that a more massive intruder has a bigger influence on the orbital
elements of the bound planet. The more massive the incoming planet is, the bigger is
the amount of energy exchanged between the two bodies in case of a close encounter.

As can be seen in figure 26, it is more likely, that an incoming FFP with a smaller
mass (respectively m = mJ) stays on an orbit with moderate values of semi-major axis
and eccentricity, than an incoming FFP with higher mass (see an incoming object with
m = 5mJ in figure 27 - left-hand panel).

This proofs the common sense. One could expect, that a more massive body on its
trajectory is less likely attracted by disturbing forces. The gravitational force, it feels
from the smaller body is weaker, even in case of a close encounter. It takes longer to
modify the trajectory of the massive FFP, which leads to high eccentric orbits.

The left-hand panel in figure 26 shows the orbital elements of both the BP (green)
and the FFP (red) after the time ttest for an inclination of i = 0.1◦ and m = mJ . In
the right hand-side panel the inclination of both of the planets at the state t = ttest is
plotted. Here it can be seen, that the BP can be perturbed from its initial coplanar
orbit to an inclination as high as i = 51.4◦. Nevertheless those cases are rare and are
a consequence of a close encounter. For a more massive intruder there are more cases,
in which the BP is scattered to an inclined orbit, see figure 27.

For the FFP prograde as well as retrograde orbits occur (see also section 7.3) and
there are orbits, in which the FFP is pushed to a higher inclination, than its initial
one. Those orbits are again a consequence of close encounters and exchange of energy
between the two planets.

In figure 27 orbital elements for a body withm = 5mJ at the time of the energy-test
(t = ttest) are plottet. Initial inclination i = 0.1◦ is the same used for the plot in figure
26. For this more massive intruder, the final orbits are shifted away from the star. The
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Figure 26: Distribution of orbital elements in the case of capture for initial conditions
of i = 0.1◦, m = mJ after ttest. Left hand-side panel: Semi-major axis plotted against
eccentricity. Red dots represent the orbital elements of FFPs at the time of ttest. Green
dots represent the orbital elements of the bound planet which can be disturbed from the
initial circular orbit to a high extent. Right hand-side panel: Semi-major axis plotted against
inclination. Most of the FFPs are captured in orbits with low inclination. However the BP
may be disturbed from its initial plane orbit to orbits with inclinations up to ∼ 50◦.

semi-major axis of the captured FFP has now values of a > 2.4r0 - compare to a > 1r0
for FFPs with m = mJ .

An incoming body with a given mass of m = 5mJ can even scatter the BP to
retrograde orbits with inclinations of 90◦ < i < 134.2◦, which is remarkable. The energy
exchange at a close encounter can be that large, that the BP changes its revolution
direction.

The solid lines in the plots concerning the orbital elements (left-hand sides of fig-
ure 27 and 26) represent the constant pericenter and apocenter curves, calculated
with the following equations:

e = 1− 1/a for a > 1

e = 1/a− 1 for a < 1

7.2.2 Different initial inclination of the FFP

As described before, the initial inclination of the FFP for the statistical approach was
varied in the range of 0◦ < i < 88◦.

In general, changing the inclination of the incoming planet does not have much
influence on the measured maximum semi-major axis and eccentricity of the final orbits.
However, the higher the initial inclination i of the incoming FFP is, the less likely it is
for the object to be captured on an orbit with moderate values of semi-major axis and
eccentricity. For example for an initial inclination of the FFP of i = 30◦ (with m = mJ

calculated up to ttest) the semi-major axis for this object, if captured in an orbit around
the star lies in the range of 1.93r0 < a < 40360r0 with a minimum eccentricity of 0.71.
The BP stays on an orbit with semi-major axis in the range of 0.99AU < a < 2.1AU
and a maximum eccentricity of 0.56. Accordingly the BP is only scattered to orbits
with an inclination of i < 15.8◦.
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Figure 27: Distribution of orbital elements in the case of capture for initial conditions for
i = 0.1◦, m = 5mJ after ttest. Left: Semi-major axis plotted against eccentricity. Compared
to figure 26 the red dots which represent the orbital elements of the FFPs after ttest are shifted
to orbits with higher values for the semi-major axis. Less free-floating objects are captured in
orbits with moderate values of eccentricity. Right: Semi-major axis plotted against inclination.
For this setup with the more massive free-floating planets, most of the objects stay in the
orbital plane with low inclination.

Compared to the example shown before the value for the minimum semi-major
axis of the FFP is now higher by about 0.6AU while the minimum eccentricity is
approximately the same. The maximum semi-major axis measured for the final orbit
of the BP reduces by ∼ 2AU while the maximum eccentricity drops by 0.19. The
maximum inclination of the final orbit of the bound Jupiter decreases by 23.5◦.

The distribution of orbital elements for a FFP with m = mJ and initial inclination
of i = 30◦ after t = ttest is shown in figure 28. A rather big part of the calculated
trajectories ends up in orbits with moderate values of e and a.

Compared to figure 26 this picture (figure 28) looks almost the same. This leads
to the assumption a higher inclination of the incoming body does not have significant
influence on the orbital elements of the planet in case of capture. Whereas the mass
of the FFP has significant influence on eccentricity, semi-major axis and inclination of
the final orbit (see section 7.2.1).

With increasing initial inclination of the incoming body up to i = 80◦, the semi-
major axis has values in the range of 1000AU < a < 92543AU with additional minimum
eccentricity of 0.99. It is questionable if objects revolving around the star on an orbit
with this values for semi-major axis and eccentricity will not leave the system again
after some time.

On the other hand the BP stays on its circular orbit at 1AU . This shows, that the
two planets do not really interact with each other and the probability for free floating
planets with initial high inclination to stay captured on longterm stable orbits is most
unlikely.

7.2.3 Different calculation time

Different calculation time was applied to the initial value space for an incoming object
with m = mJ and an initial inclination i = 0.1◦. As described above (section 6.1.1) this
value for the initial inclination was taken per chance in order to fulfil the requirement
for three dimensional computations but imply no effects caused by higher inclinations.
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Figure 28: Distribution of orbital elements in the case of capture for initial conditions for
i = 30◦, m = mJ after ttest. Left: Semi-major axis plotted against eccentricity. For planets
with initial high inclination it seems unlikely to be captured in orbits with low eccentricity.
Although the picture does not look that different from the distribution of orbital elements
seen in figure 26. Right: Semi-major axis plotted against inclination shows, that more objects
are captured in orbits with higher inclination.

Integration times were taken from the interval [ttest; 17.5ttest] (see section 6.1.3).

Example: For a system with i = 0.1◦ and m = mJ calculated up to 15ttest the
semi-major axis determined for the captured FFP lies in the range of 0.99AU < a <
319829AU where the minimum eccentricity is 0. The bound planet is scattered to
orbits with semimajor axis in the range of 0.99AU < a < 663AU with a maximum
eccentricity of 0.99.

As can be seen in figure 29 after the longer computation time more objects populate
orbits with low semi-major axis and low eccentricity (compared to the figures shown
before). A wide variety of values for semi-major axis, eccentricity and inclination of the
final orbit can be measured. Nevertheless values for semi-major axis and eccentricity
do reach relatively low values after the long computation time. This shows, that values
for these orbital elements settle down after longer calculation time which can be seen
in section 7.2.4 quantitatively.

7.2.4 Capture in orbits with moderate values of semi-major axis and ec-
centricity

Nevertheless there are not so seldom cases, where the FFP is captured in an orbit with
rather moderate values of a and e. Moderate values of a and e in this thesis refers to
values in the range of 1r0 < a < 10r0 and e < 0.8. If the inclination of the final orbit
is considered as well this means the values of the inclination are taken from the range
of i < 15◦.

Motivation behind this is to show, if it is possible, that a captured free-floating
planet may stay on an orbit about the star, where it may remain for longer times. A
hint for this can be found in the orbital elements of the captured FFP, since orbits
with high eccentricity or semi-major axis may decay to a flyby after longer integration
times.

In order to gain a good overview about the orbital elements of a FFP being captured
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Figure 29: Distribution of orbital elements in the case of capture for initial conditions
for i = 0.1◦, m = mJ after 15ttest. Left hand-side panel: Semi-major axis plotted against
eccentricity. It can be seen, that after this long integration time the BP is scattered to orbits
with higher eccentricity and higher semi-major axis, too. Right hand-side panel: Semi-major
axis plotted against inclination shows, that more objects are captured in orbits with higher
inclination and the BP is scattered to orbits with high inclinations.

by a star-planet system the initial value space described above (see section 6.1 - (M ,d)
with (0◦ < M < 360◦ with δM = 0.1◦ and −7r0 < d < 7r0 with δd = 0.1AU)
is calculated using different values for mass ratio, initial inclination of the FFP and
computation time.

In this case only single runs are executed, meaning, that the given values for mass
of the FFP, initial inclination and computation time are single values picked from the
ranges mentioned in sections 6.1.1, 6.1.2, 6.1.3. With the special value for one of the
parameters (mass, inclination, time) each initial condition from the grid of (M ,d) is
computed.

This means 504000 initial conditions (M ,d) being integrated for each set of param-
eters.

The energy-test is done for each system after the selected computation time. If the
final state of the system is classified as capture, the orbital parameters of both planets
are determined. With this the empirical probabilities for certain ranges of the orbital
elements turning up are calculated.

Examples Calculations of trajectories of FFPs with initial inclination of i = 0.1◦

and m = mJ show that ∼ 0.21% of the captured FFPs end up in orbits with moderate
values of semi-major axis and eccentricity.

However, if one demands, that in case of a capture both planets stay on an orbit
with moderate values of a and e, so that the BP is not scattered to an orbit with high
eccentricity or large semi-major axis - which would possibly result in a exchange for
longer computation time - then the percentage drops to 0.17%.

Comparing these values leads to the assumption, that even if the FFP is captured
with low values for the orbital elements the BP may be disturbed from its initial circular
orbit due to close encounters and resulting exchange of angular momentum.

Different computation time: For the same initial conditions as above (i = 0.1◦,
m = mJ) calculated for longer time-spans of 4ttest the probability for the orbital ele-
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ments of the FFP (measured at the final state of the system) to be moderate rises to
0.22%.

Nevertheless in only 0.15% of the calculated systems both planets are on an orbit
with the demanded values for a and e at time of the energy-test.

If calculated up to 15ttest the probabilities rise to 0.36% respectively 0.25% for both
planets.

Different initial inclination If the inclination is increased to i = 5◦ (ceteris paribus)
0.041% of the FFPs are captured in an orbit with moderate values for a and e and in
0.027% cases both planets have moderate values for semi-major axis and eccentricity.

Increasing the initial inclination of the incoming object up to i = 35◦ lowers the
probability for the two objects to stay in orbits with the mentioned moderate values
for semi-major axis and eccentricity to 0.016%.

For systems with an initial inclination of the FFP of i > 40◦ no cases were found
were the FFP, not to mention both planets stay in orbits with moderate values for
a and e for a calculation time of ttest. This fact includes that the probability for a
free-floating planet with high initial inclination the capture in a long time stable orbit
is negligible.

Different mass ratio of the two planets: The probability of a capture of a more
massive body of m = 10mJ (i = 0.1◦ and energy-test done after ttest) in an orbit with
aFFP < 10r0 and eFFP < 0.8 is negligible. More massive intruders tend to occupy
orbits with high semi-major axis respectively eccentricity.

Inclination of final orbit In comparison to our solar system, where the highest
inclination of an orbit measured is 17.15◦ in case of the orbit of Pluto the highest final
inclination permitted for an orbit in order to be still called orbit with moderate values
of orbital elements is set to i < 15◦.

Comparing the computations from the beginning now yields approximately the
same results:

Different initial inclination: 0.1% of systems integrated for i = 0.1◦, m = mJ up
to ttest end up so that both planets stay on orbits with the demanded moderate values
for semi-major axis, eccentricity and inclination. Increasing the initial inclination of
the FFP up to i = 5◦ (ceteris paribus) decreases the percentage of systems with the
demanded values for the final orbital elements to 0.003%. Increasing the initial incli-
nation to i = 35◦ (ceteris paribus) causes a decrease to 0.002% of systems which end
up with the required values for the orbital elements.

Thus, the higher the initial inclination of the intruder, the less likely it is, that in
case of a capture it occupies an orbit with not only moderate values of a and e but also
i.

Different integration time: Increasing the integration time for the systems and
executing the energy-test after 15ttest causes a slight increase in the percentage of
systems ending up with moderate values of the final orbital elements of the two bodies
to 0.13%.

The same result as observed before is achieved if taking the final inclination of
the orbits into account additionally. Longer computation time causes a settlement of
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the orbital elements so that after longer timespans more systems fulfil the required
restrictions for values of the orbital elements.

Summary: This section shows, that even though the capture of a free-floating object
in an orbit with moderate orbital elements is rather unlikely. Nevertheless, it should
be pointed out such as the capture in those orbits with moderate values for i, a and
e is more likely for lower mass objects with low initial inclination with respect to the
entered system.

Additionally as a result of the longer computation time more systems with both
planets on orbits with moderate values of semi-major axis, eccentricity and inclination
are found.

FFPs being captured on highly eccentric orbits at first (and therefore do not con-
tribute their numbers to the probabilities given for shorter time scales) may settle down
to more circular orbits with time.

Results show that the possibility for both, FFP and BP, to be found on an orbit
with moderate values a and e increases with time.

This means, the longer a captured body stays in the system, the more its orbital
elements seem to level off to values for almost circular orbits, close to the star. Thus it
can be said in general, that longer integration periods ensure that the orbital elements
of both the FFP and the BP reach lower values. There are two possible explanations
for this: Objects which were captured in highly eccentric orbits or orbits with large
semi-major axis have left the system before the energy-test was performed and the
values for the orbital elements of the final orbits were determined. Therefore they
are referred to as flyby or exchange orbits and are not examined here. The second
explanation is valid for less cases. It can be assumed, that the longer the system is
calculated, the longer gravitational effects between the two bodies and the captured
free-floating planet and the star can act, thus the captured body seems to be drawn to
the plane and its values for semi-major axis and eccentricity seem to settle down.

If the initial inclination of the incoming body is increased, the probability to be
captured in an orbit with a < 10r0 and e < 0.8 decreases. Higher inclination of the
FFP leads to capture in more elliptic orbits. These will eventually decay to a flyby
or results in a reducing of the probability of close encounters and exchange of angular
momentum.

7.2.5 Exchange of orbits

It is possible, that both of the planets exchange positions so that the FFP takes an
orbit innermost of the BP.

In ∼ 0.2% of all computations for systems with i = 0.1◦ and m = mJ this exchange
of orbits takes place, where the intruder pushes the bound planet to an orbit outermost
of itself.

Inclination: Rising the initial inclination to i = 35◦ (ceteris paribus), causes a de-
crease in the percentage of systems which end up with the FFP on the innermost orbit
to 0.05%.

Mass: Keeping the initial inclination of the FFP fixed to i = 0.1◦ but rising its mass
to m = 10mJ gives a probability for an exchange of positions of ∼ 0.19%.
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This slightly lower percentage compared to the value for intruders with m = mJ

may be explained by the facts derived in section 7.2.1. Captured bodies with higher
mass tend to populate orbits with higher values of semi-major axis (see figure 27).
Thus a close encounter with the BP and resulting exchange of orbits is unlikely.

Mass, inclination and time: Assuming a mass of m = 10mJ with an inclination
of i = 5◦ results show that in 0.07% of the all systems calculated the FFP takes the
inner orbit, if captured around the star.

For the same system with i = 5◦ and m = 10mJ but now calculated up to 5ttest
results show that in 0.007% of all cases the FFP exchanges its orbit with the bound
planet. Thus it can be assumed that if the FFP is captured in an orbit with lower
semi-major axis than the bound planet (which may be scattered to an orbit outermost
of its initial position) due to the probably high eccentricity of the orbit of the FFP
close encounters occur after longer integration time which cause an ejection of one of
the two planets or a scattering of the FFP to an again outermost orbit.

Results: As a conclusion it is more likely for a lower mass incoming object with low
initial inclination to take the inner orbit in the entered system, as more massive objects
tend to stay farther away from the star.

Intruders entering the system with higher inclination have less impact on the orbit
of the BP. Due to the initial inclination of the trajectory of the FFP the amount of
angular momentum exchanged in case of a close encounter is smaller. This causes
fainter impact on the orbit of the BP and therefore minimizes the chance of pushing
the BP outwards.

7.3 Prograde and retrograde orbits

Prograde and Retrograde Motion: Prograde motion in case of a solar-like system
means motion in the same direction as the rotation of the primary. Retrograde is the
direct opposite and refers to a revolution direction of a body opposed to the rotation
of the primary. 5

In general prograde motion refers to motion in the same direction as the other
bodies. This definition is used here, because the computation calculates the trajectories
for point-masses. In case of a capture the orbit of the FFP is referred to as prograde,
if the revolution direction is the same as of the bound planet. Retrograde motion
describes the revolution direction of the FFP if it is opposed to the one of the BP.6

In case of a capture of the free-floating planet approximately half of the orbits (the
ones with an impact parameter d > 0) end up in retrogade orbits. This is caused by
the combination of the impact parameter taken from the range of −7r0 < d < 7r0 and
the fixed counterclockwise revolution direction of the BP (see section 5.1).

Cases, where the FFP takes a prograde orbit instead of an expected retrogade orbit
or vice versa were observed in general for trajectories with initial conditions where the
impact parameter of the FFP is low (−2r0 < d < 2r0).

However, there are orbits for which the BP changes its original orbital revolution
direction from prograde to retrograde or vice versa, but this only happens in 0.003%

5https://en.wikipedia.org/wiki/Retrograde_and_prograde_motion
6https://en.wikipedia.org/wiki/Retrograde_and_prograde_motion
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Figure 30: Proportion of prograde and retrograde orbits for i = 0.1 and m = mJ after ttest.
Red dots represent prograde and green represent retrograde orbits. The border between orbits
which lead to retrograde respectively prograde orbits seems to be quite clear at d ∼ 0 despite
some outliers for very low impact parameters.

of all cases (for systems with i = 0.1◦, m = mJ and the energy-test carried out after
ttest).

In figure 30 the initial value space for a FFP with m = mJ and an initial inclination
of i = 0.1◦ is shown coded due to the revolution direction at time of the energy-test
of the system. Red dots represent prograde motion of the captured object and green
retrograde revolution direction.

The border between the two basins looks quite smooth at d = 0 despite from
some small spikes between values of the mean anomaly of the bound planet in the
range of 130◦ < M < 210◦. Retrograde orbits (green) occurring marginally under the
borderline to the other basin of d = 0 appear in general for systems with M < 210◦

and for −1 < d < 0.
For changing the revolution direction of a planet the exchange of angular momentum

is necessary. The closer the two bodies get, the more powerful this process is. Thus,
it is more likely for FFPs with a small impact parameter d, where the two planets can
come very close to each other, to take the opposite of its expected revolution direction.

Nevertheless this process depends on the relative phase of the two bodies, too.
This is affected by the mean anomaly M of the initial orbit of the BP. As can be seen
in figure 30, where for M < 210◦ retrogade orbits (green) appear for small negative
values of the impact parameter d. Some isolated green points indicating a retrogade
orbit of the captured free-floating planet in the basin of prograde motion are visible at
M ∼ 205◦ for an impact parameter as small as d = −1.

For initial conditions i = 0.1◦ and m = mJ after ttest 47.39% of the FFPs end up
in prograde orbits. Thus, 52.61% of the incoming objects were captured in retrograde
motion.
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7.3.1 Bound planet driven to retrograde orbit

As mentioned already, the probability for a case, where the BP is driven to an orbit
with different revolution direction, is very low, nevertheless those cases are possible.

This can be observed from figure 27 (see section 7.2.2), where one can see that there
are some cases, where the BP is forced to change its original revolution direction (so
that iBP > 90◦). This cases occur for cases with more massive incoming free-floating
planets and can be explained by the calculated energy between the bodies in pairs,
which shows that for a massive FFP, the energy of the FFP-BP pair becomes non
negligible. So the amount of angular momentum exchanged is higher for more massive
incoming objects.

The same explanation as mentioned above can be used here to explain this phe-
nomenon: Probably a close encounter or the crossing of a resonance and thus strong
interactions between the two acting planets may be the case why the BP changes its
initial revolution direction.

7.4 Different initial velocity of incoming body

For all other computations, as mentioned in the beginning, the trajectories were cal-
culated with a parabolic velocity of the FFP (see section 5.1, equation 5.1).

Motivation: In order to investigate the influence of the initial velocity of the incom-
ing body on the scattering process, two scenarios with an initial velocity higher and
lower than the parabolic one were computed. It was expected to gain knowledge about
cases, where the incoming free-floating planet in the possible surrounding of a cluster
enters a bound system with different velocity then the particular parabolic velocity.
Since it might well be possible that due to gravitational interaction with other stars
or planetary systems the free-floating object has gained or lost speed before it reaches
the regarded system.

The system of three bodies was calculated for all sets of initial conditions of (d,M)
in the already known ranges of 0◦ < M < 360◦ with δM = 0.1 and −7r0 < d < 7r0
with δd = 0.1AU . The initial inclination of the incoming body was set and fixed to
the value of i = 5◦ in order to fulfil the requirement of three dimensional computations
but don’t include effects resulting from high initial inclination.

Computing the trajectories for an initial velocity of the FFP 10% higher than the
parabolic one (a case for which the total Energy of the system still stays negative),
the probability of capture decreases strongly. This corresponds to the expectations. A
higher velocity makes it easier for the object to escape the gravitational influence of
the bound system. Thus the case of flyby becomes more likely.

Only 6.45% of all fast free-floating Jupiter-sized planets with initial inclination of
i = 5◦ are found to stay in the state of capture by executing the energy-test at ttest.
This value is remarkably low compared to 56.64% of captures when using an initial
parabolic velocity of the intruder.

For a velocity 10% lower than the parabolic one the probability of capture increases
to 92.25% if calculating the trajectories for ceteris paribus.

Different mass of intruder with lower velocity: If one considers the mass of
the incoming planet as low as m = 10−7mJ which refers to approximately the mass of
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Figure 31: Distribution of orbital elements in the case of capture for initial conditions for
i = 0.1◦, m = mJ after ttest but for a initial velocity being 0.9v0. Left hand-side panel:
Semi-major axis plotted against eccentricity. Where red dots represent the orbital elements
of the FFP at time of the final state of the system and green dots the orbital parameters of
the bound planet. Constant apocenter- and pericenter-curves are shown as black lines. Right
hand-side panel: Semi-major axis plotted against inclination for the FFP and the BP at time
of the final state of the system.

Ganymede and computes the trajectories for the initial velocity of 10% lower than the
parabolic one, the picture only changes slightly. 92.59% of the free-floating objects end
up on a captured orbit around the star. However the capture of the incoming object
as a moon of the bound Jupiter did not occur in the computations.

Different initial inclination and computation time: Approximately the same
values for the probabilities of capture as shown above were observed for systems calcu-
lated with higher values of the initial inclination of the incoming body up to i = 45◦

and for calculations on longer time scales. For objects with a initial velocity of 10%
higher than the parabolic one probabilities for a capture were always < 10% and for
systems with initial velocity 10% lower than the parabolic one the corresponding values
derived were always > 90%.

The orbital elements of the final orbits of the FFP (red) and the bound planet
(green) are plotted in figure 31. Compared to the figures shown in section 7.2.4 one
can see, that not so few FFPs populate the regions with low semi-major axis coupled
with relatively low eccentricity (see figure 31 - left hand-side panel). On the other hand
a lot of bound planets (green) are scattered to orbits with high eccentricities and even
to orbits with semi-major axes up to more than 10AU .

This can also be reproduced by examining the percentages of systems where the
planets stay on orbits with moderate values of semi-major axis and eccentricity (see
section 7.2.4). In only 0.05% of all cases calculated for i = 0.1◦, m = mJ and an initial
velocity of the incoming object being 0.9v0 both planets stay on orbits with moderate
values of semi-major axis and eccentricity which on the other hand means that in most
cases at least one of the planets inherits an orbit which is highly eccentric or has a
large semi-major axis and is therefore probably not long-time stable.

If one requires the values for the inclination of the final orbits being < 15◦ the
percentage of systems where both planets stay on orbits with additional moderate
values for a and e drops to 0.02%.
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This shows, that despite the lower initial velocity the capture of a free-floating
planet on an orbit which may be stable for longer times does not become more likely
than for FFPs with initial parabolic velocity. On the contrary the percentage of systems
ending up with the required values for semi-major axis and eccentricity drops.
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8 Summary and Conclusions
Observations and extensions of the galactic mass-function show that free-floating ob-
jects with M < 13MJ are more common, than was assumed. (Sumi et al., 2011;
Zapatero Osorio et al., 2000) Thus, it is interesting to investigate, what happens if a
free-floating planet enters a gravitationally bound planetary system. Therefore in the
presented Master’s thesis the interaction of a free-floating planetary object with an
existing simplified planetary system consisting of a star and a Jupiter-sized planet was
studied. Incoming from "infinity" is a free-floating planet interacting with the system.

The impact parameter d, the initial inclination i of the incoming object and the
phase of the bound Jupiter were varied in order to investigate the influence of those
parameters on the scattering process. d was varied in the range of −7r0 ≤ d ≤ 7r0 and
the value for i was picked between 0◦ and 90◦. Additionally the mass of the incoming
object was changed in the range of 10−7mJ < m < 10mJ .

Three possible outcomes occur as there are flyby, exchange and capture.
The first thing to mention is, that the scattering process is chaotic, meaning, that

the prediction of the final state with the knowledge of only the initial values of the
planet’s trajectory is not possible with a hundred percent certainty for all initial con-
ditions and therefore a statistical approach is the best way to deal with the data.

What can be observed is that the probability of capture of the FFP is varying
with its mass. In general it can be said, that the probability for a capture of the
intruding object increases with mass. And is derived in the range of 55.85% to 56.12%.
Interesting is the minimum of the probability of a capture for incoming objects with a
mass of m = 3mJ , which needs further investigation. The probability of exchange of
the two planets, meaning that the incoming planet takes a bound orbit and the initially
bound planet is ejected from its system, is increasing with mass of the intruder. For
an incoming object with m < 0.5mJ exchange is not possible. The percentage of
trajectories ending up as flyby is increasing with mass of the incoming object.

Calculating the probability of capture depending on the initial inclination of the
incoming free-floating object shows an exponential decrease of the values for the prob-
ability which does not go to zero for values as high as i = 88◦. The percentage of
trajectories ending up in a captured orbit varies between 58.98% and 29.85%. Thus the
initial inclination of the incoming free-floating object has the highest measured influ-
ence on the final state besides mass and time. The probability of an exchange is ∼ 0◦

for values of the initial inclination of i > 5◦. However, if calculating the trajectories
for incoming objects with initial inclination i > 5◦ for longer time scales (t > ttest)
shows, that exchange orbits do occur for this values of initial inclination. This may be
because objects which are captured on highly eccentric orbits undergo close encounters
with the bound Jupiter after some longer calculation times which lead to an ejection
of the BP and therefore only contribute to the percentage of exchange if longer time
scales are taken into account.

Time as parameter does not have a strong influence on the probability of the three
outcomes. The percentage of trajectories ending in the final state of capture varies
between 56.13% and 55.46%.

From the previous results it is stated, that the capture of a free-floating planet on
an orbit in an existing bound system is possible. Furthermore it could be shown that
FFPs can be captured in orbits with moderate values of a and e, meaning values of
a < 10AU and e < 0.8 and accordingly i < 15◦. In most of these cases, the BP is
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excited to an orbit with higher values of e and inclination, i. However, there are a few
cases (∼ 0.17% for systems with i = 0.1◦ and m = mJ), where both planets stay on
orbits with low values of a and e around the star. This percentage rises with calculation
time. For example for 15ttest the probability for both planets to stay on orbits with
a < 10AU and e < 0.8 rises to 0.25%.

This result is interesting concerning the perspective on exoplanetary systems be-
cause one could conclude, that maybe some exoplanets are in fact captured free-floating
planets (especially exoplanetary systems with planets on highly inclined or highly ec-
centric orbits. As the capture in orbits with high values for eccentricity and semi-major
axis is more probable).

Important to mention is the fact, that capture in retrograde orbits is possible. This
happens for approximately half of the cases depending on the impact parameter d of
the incoming free-floating planet.

Additionally the investigation of the influence of the initial velocity of the incoming
planetary object confirms the expectations. A velocity 10% lower as the normally
used parabolic velocity leads to a strong increase of the probability of capture while a
velocity 10% higher leads to a strong decrease of the probability of orbits which end
up in capture.

To sum it up the following conclusions can be made: Higher mass of the incoming
free-floating planet causes an increase of the probability of beeing captured. An increase
of the initial inclination of the intruder causes a decrease of the probability of capture.
Higher integration time shows less free-floating planets ending up in the state of capture
after the energy-test. Possible explanation for this may be close encounters or the
crossing of resonances after several revolution periods which cause ejection of one of
the two planets. Capture in both prograde and retrograde orbits is possible.

Concerning the orbital elements in case of a capture it is shown that free-floating
planets with higher mass tend to be captured in orbits with higher semi-major axis
and relatively low eccentricity and inclination. As a consequence of higher initial
inclination of the incoming object the probability of being captured in an orbit with
moderate values of semi-major axis and eccentricity decreases. (Moderate values refer
to values for the semi-major axis a < 10AU , eccentricity e < 0.8 and inclination of the
final orbit i < 15◦.) Longer calculation time shows, that the orbital elements settle
down over time. Thus after longer integration time the captured objects show lower
values for eccentricity and inclination.

An initial velocity different from the parabolic one causes the expected results: lower
initial velocity leads to an increased number of objects ending up in capture while higher
initial velocity causes the opposite. Nevertheless only 0.05% of the systems with an
incoming object with v = 0.9v0 (initial velocity beeing 90% of the parabolic one) end
up with moderate values for the orbital elements of the planets.

Outlook: It would be interesting to study the long term stability of systems which
end up in the state of capture with moderate values of semi-major axis and eccentricity.
Maybe applying the Lyapunov would yield interesting results.

The influence of an incoming planetary object on a solar-like system with more
bodies would be interesting to compute but was unfortunately too time extensive to
be implemented in this thesis.

Another aspect of dealing with the capture of free-floating planets might be to
model existing exoplanetary systems which have known planetary components orbiting
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on retrograde orbits or on orbits with high values for semi-major axis, eccentricity or
inclination in order to find out, if it is possible, that one of the planetary bodies is in
fact a captured free-floating planet.

Orbital parameters can as well be taken in order to show if a FFP may be captured
in an orbit not only with moderate values for its orbital elements but in the habitable
zone of its new host star. And if it is possible that it can stay there on a long-term
stable habitable orbit. Nevertheless this would have gone beyond the volume of this
thesis.

62



9 Acknowledgements
At this point I would like to thank all those people who supported me in the develop-
ment of this Master’s thesis.

It is with immense gratitude, that I acknowledge the support and help of Prof. Dr.
Rudolf Dvorak, who always encouraged me in proceeding with my thesis and had plenty
of patience in waiting for results. I am thankful, that he had time for me whenever I
needed professional advice.

Special thanks to Daniel Steiner, who always had time to offer me advice and
help with Linux- and Latex-matters and to Karl Schwaiger for his critical view and
productive council concerning the writing of my thesis.

Last but not least I want to thank my parents for believing in me and for their
financial support providing me the opportunity to study.

63



References
F. C. Adams, E. M. Proszkow, M. Fatuzzo, and P. C. Myers. Early Evolution of Stellar
Groups and Clusters: Environmental Effects on Forming Planetary Systems. ApJ,
641:504–525, April 2006. doi: 10.1086/500393.

V. Badescu. Free-floating planets as potential seats for aqueous and non-aqueous life.
Icarus, 216:485–491, December 2011. doi: 10.1016/j.icarus.2011.09.013.

D. P. Bennett, V. Batista, I. A. Bond, C. S. Bennett, D. Suzuki, J.-P. Beaulieu, A. Udal-
ski, J. Donatowicz, V. Bozza, F. Abe, C. S. Botzler, M. Freeman, D. Fukunaga,
A. Fukui, Y. Itow, N. Koshimoto, C. H. Ling, K. Masuda, Y. Matsubara, Y. Mu-
raki, S. Namba, K. Ohnishi, N. J. Rattenbury, T. Saito, D. J. Sullivan, T. Sumi,
W. L. Sweatman, P. J. Tristram, N. Tsurumi, K. Wada, P. C. M. Yock, MOA Col-
laboration, M. D. Albrow, E. Bachelet, S. Brillant, J. A. R. Caldwell, A. Cassan,
A. A. Cole, E. Corrales, C. Coutures, S. Dieters, D. Dominis Prester, P. Fouqué,
J. Greenhill, K. Horne, J.-R. Koo, D. Kubas, J.-B. Marquette, R. Martin, J. W.
Menzies, K. C. Sahu, J. Wambsganss, A. Williams, M. Zub, PLANET Collabora-
tion, J. Y. Choi, D. L. DePoy, S. Dong, B. S. Gaudi, A. Gould, C. Han, C. B.
Henderson, D. McGregor, C.-U. Lee, R. W. Pogge, I.-G. Shin, J. C. Yee, µFUN Col-
laboration, M. K. Szymański, J. Skowron, R. Poleski, S. Kozłowski, Ł. Wyrzykowski,
M. Kubiak, P. Pietrukowicz, G. Pietrzyński, I. Soszyński, K. Ulaczyk, OGLE Col-
laboration, Y. Tsapras, R. A. Street, M. Dominik, D. M. Bramich, P. Browne,
M. Hundertmark, N. Kains, C. Snodgrass, I. A. Steele, The RoboNet Collabora-
tion, I. Dekany, O. A. Gonzalez, D. Heyrovský, R. Kandori, E. Kerins, P. W. Lucas,
D. Minniti, T. Nagayama, M. Rejkuba, A. C. Robin, and R. Saito. MOA-2011-
BLG-262Lb: A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High
Velocity Planetary System in the Galactic Bulge. ApJ, 785:155, April 2014. doi:
10.1088/0004-637X/785/2/155.

O. Benomar, K. Masuda, H. Shibahashi, and Y. Suto. Determination of Three-
dimensional Spin-orbit Angle with Joint Analysis of Asteroseismology, Transit
Lightcurve, and the Rossiter-McLaughlin Effect: Cases of HAT-P-7 and Kepler-25.
ArXiv e-prints, July 2014.

G. Bihain, R. Rebolo, M. R. Zapatero Osorio, V. J. S. Béjar, I. Villó-Pérez, A. Díaz-
Sánchez, A. Pérez-Garrido, J. A. Caballero, C. A. L. Bailer-Jones, D. Barrado y
Navascués, J. Eislöffel, T. Forveille, B. Goldman, T. Henning, E. L. Martín, and
R. Mundt. Candidate free-floating super-Jupiters in the young σ Orionis open cluster.
A&A, 506:1169–1182, November 2009. doi: 10.1051/0004-6361/200912210.

S. Bleher, C. Grebogi, and E. Ott. Bifurcation to chaotic scattering. Physica D Non-
linear Phenomena, 46:87–121, October 1990. doi: 10.1016/0167-2789(90)90114-5.

P. T. Boyd and S. L. W. McMillan. Chaotic scattering in the gravitational three-body
problem. Chaos, 3:507–523, October 1993. doi: 10.1063/1.165956.

D. Branch. On the Multiplicity of Solar-Type Stars. ApJ, 210:392–394, December
1976. doi: 10.1086/154841.

64



J. I. Canty, P. W. Lucas, P. F. Roche, and D. J. Pinfield. Towards precise ages and
masses of Free Floating Planetary Mass Brown Dwarfs. MNRAS, 435:2650–2664,
November 2013. doi: 10.1093/mnras/stt1477.

P. Delorme, J. Gagné, L. Malo, C. Reylé, E. Artigau, L. Albert, T. Forveille,
X. Delfosse, F. Allard, and D. Homeier. CFBDSIR2149-0403: a 4-7 Jupiter-mass
free-floating planet in the young moving group AB Doradus? A&A, 548:A26, De-
cember 2012a. doi: 10.1051/0004-6361/201219984.

P. Delorme, J. Gagné, L. Malo, C. Reylé, E. Artigau, L. Albert, T. Forveille,
X. Delfosse, F. Allard, and D. Homeier. CFBDSIR2149-0403: a 4-7 Jupiter-mass
free-floating planet in the young moving group AB Doradus? A&A, 548:A26, De-
cember 2012b. doi: 10.1051/0004-6361/201219984.

J. R. Donnison. The Hill stability of a binary or planetary system during encounters
with a third inclined body. MNRAS, 369:1267–1280, July 2006. doi: 10.1111/j.
1365-2966.2006.10372.x.

M. Esposito, E. Covino, L. Mancini, A. Harutyunyan, J. Southworth, K. Biazzo,
D. Gandolfi, A. F. Lanza, M. Barbieri, A. S. Bonomo, F. Borsa, R. Claudi,
R. Cosentino, S. Desidera, R. Gratton, I. Pagano, A. Sozzetti, C. Boccato, A. Mag-
gio, G. Micela, E. Molinari, V. Nascimbeni, G. Piotto, E. Poretti, and R. Smareglia.
The GAPS Programme with HARPS-N at TNG. III: The retrograde orbit of HAT-
P-18b. A&A, 564:L13, April 2014. doi: 10.1051/0004-6361/201423735.

G. F. Gahm, C. M. Persson, M. M. Mäkelä, and L. K. Haikala. Mass and motion
of globulettes in the Rosette Nebula. A&A, 555:A57, July 2013. doi: 10.1051/
0004-6361/201321547.

A. Gould, J. Pepper, and D. L. DePoy. Sensitivity of Transit Searches to Habitable-
Zone Planets. ApJ, 594:533–537, September 2003. doi: 10.1086/376852.

C. Han. Secure Identification of Free-floating Planets. ApJ, 644:1232–1236, June 2006.
doi: 10.1086/503890.

C. Han, S.-J. Chung, D. Kim, B.-G. Park, Y.-H. Ryu, S. Kang, and D. W. Lee.
Gravitational Microlensing: A Tool for Detecting and Characterizing Free-Floating
Planets. ApJ, 604:372–378, March 2004. doi: 10.1086/381429.

A. Hanslmeier and R. Dvorak. Numerical Integration with Lie Series. A&A, 132:203,
March 1984.

C. B. Henderson, B. S. Gaudi, C. Han, J. Skowron, M. T. Penny, D. Nataf, and
A. P. Gould. Optimal Survey Strategies and Predicted Planet Yields for the Korean
Microlensing Telescope Network. ArXiv e-prints, June 2014.

G. W. Hill. On Dr. Weiler’s Secular Acceleration of the Moon’s mean Motion. As-
tronomische Nachrichten, 91:251, January 1878. doi: 10.1002/asna.18780911605.

J. R. Hurley and M. M. Shara. Free-floating Planets in Stellar Clusters: Not So
Surprising. ApJ, 565:1251–1256, February 2002. doi: 10.1086/337921.

65



V. Joergens, M. Bonnefoy, Y. Liu, A. Bayo, and S. Wolf. The Coolest ‘Stars’ are Free-
Floating Planets. In G. T. van Belle and H. C. Harris, editors, Cambridge Workshop
on Cool Stars, Stellar Systems, and the Sun, volume 18 of Cambridge Workshop on
Cool Stars, Stellar Systems, and the Sun, pages 1019–1026, January 2015.

P. Kroupa and J. Bouvier. On the origin of brown dwarfs and free-floating planetary-
mass objects. MNRAS, 346:369–380, December 2003. doi: 10.1046/j.1365-2966.2003.
07224.x.

M. C. Liu, E. A. Magnier, N. R. Deacon, K. N. Allers, T. J. Dupuy, M. C. Kotson, K. M.
Aller, W. S. Burgett, K. C. Chambers, P. W. Draper, K. W. Hodapp, R. Jedicke,
N. Kaiser, R.-P. Kudritzki, N. Metcalfe, J. S. Morgan, P. A. Price, J. L. Tonry, and
R. J. Wainscoat. The Extremely Red, Young L Dwarf PSO J318.5338-22.8603: A
Free-floating Planetary-mass Analog to Directly Imaged Young Gas-giant Planets.
ApJ, 777:L20, November 2013a. doi: 10.1088/2041-8205/777/2/L20.

M. C. Liu, E. A. Magnier, N. R. Deacon, K. N. Allers, T. J. Dupuy, M. C. Kotson, K. M.
Aller, W. S. Burgett, K. C. Chambers, P. W. Draper, K. W. Hodapp, R. Jedicke,
N. Kaiser, R.-P. Kudritzki, N. Metcalfe, J. S. Morgan, P. A. Price, J. L. Tonry, and
R. J. Wainscoat. The Extremely Red, Young L Dwarf PSO J318.5338-22.8603: A
Free-floating Planetary-mass Analog to Directly Imaged Young Gas-giant Planets.
ApJ, 777:L20, November 2013b. doi: 10.1088/2041-8205/777/2/L20.

D. Malmberg, F. de Angeli, M. B. Davies, R. P. Church, D. Mackey, and M. I.
Wilkinson. Close encounters in young stellar clusters: implications for planetary
systems in the solar neighbourhood. MNRAS, 378:1207–1216, July 2007. doi:
10.1111/j.1365-2966.2007.11885.x.

C. Marchal and G. Bozis. Hill Stability and Distance Curves for the General Three-
Body Problem. Celestial Mechanics, 26:311–333, March 1982. doi: 10.1007/
BF01230725.

M. Mayor and D. Queloz. A Jupiter-mass companion to a solar-type star. Nature, 378:
355–359, November 1995. doi: 10.1038/378355a0.

K. Mužić, A. Scholz, V. C. Geers, R. Jayawardhana, M. Tamura, P. Dawson, and
T. P. Ray. The SONYC survey: Towards a complete census of brown dwarfs in star
forming regions. Mem. Soc. Astron. Italiana, 84:931, 2013.

H. Poincare. New methods of celestial mechanics. 1993.

S. P. Quanz, B. Goldman, T. Henning, W. Brandner, A. Burrows, and L. W. Hofstetter.
Search for Very Low-Mass Brown Dwarfs and Free-Floating Planetary-Mass Objects
in Taurus. ApJ, 708:770–784, January 2010. doi: 10.1088/0004-637X/708/1/770.

L. E. Strigari, M. Barnabè, P. J. Marshall, and R. D. Blandford. Nomads of the Galaxy.
MNRAS, 423:1856–1865, June 2012. doi: 10.1111/j.1365-2966.2012.21009.x.

T. Sumi. Current and Future of Microlensing Exoplanet Search. In N. Haghighipour,
editor, IAU Symposium, volume 293 of IAU Symposium, pages 10–19, April 2014.
doi: 10.1017/S1743921313012453.

66



T. Sumi, K. Kamiya, D. P. Bennett, I. A. Bond, F. Abe, C. S. Botzler, A. Fukui,
K. Furusawa, J. B. Hearnshaw, Y. Itow, P. M. Kilmartin, A. Korpela, W. Lin,
C. H. Ling, K. Masuda, Y. Matsubara, N. Miyake, M. Motomura, Y. Muraki,
M. Nagaya, S. Nakamura, K. Ohnishi, T. Okumura, Y. C. Perrott, N. Rattenbury,
T. Saito, T. Sako, D. J. Sullivan, W. L. Sweatman, P. J. Tristram, A. Udalski, M. K.
Szymański, M. Kubiak, G. Pietrzyński, R. Poleski, I. Soszyński, Ł. Wyrzykowski,
K. Ulaczyk, and Microlensing Observations in Astrophysics (MOA) Collaboration.
Unbound or distant planetary mass population detected by gravitational microlens-
ing. Nature, 473:349–352, May 2011. doi: 10.1038/nature10092.

H. Varvoglis, V. Sgardeli, and K. Tsiganis. Interaction of free-floating planets with
a star-planet pair. Celestial Mechanics and Dynamical Astronomy, 113:"387–402",
August 2012. doi: "10.1007/s10569-012-9429-8".

A. Wolszczan and D. A. Frail. A planetary system around the millisecond pulsar
PSR1257 + 12. Nature, 355:145–147, January 1992. doi: 10.1038/355145a0.

M. M. Woolfson. The capture theory and the inclinations of exoplanet orbits. MNRAS,
436:1492–1496, December 2013. doi: 10.1093/mnras/stt1668.

J. T. Wright and B. S. Gaudi. Exoplanet Detection Methods, page 489. 2013. doi:
10.1007/978-94-007-5606-9_10.

M. R. Zapatero Osorio, V. J. S. Béjar, R. Rebolo, E. L. Martín, and G. Basri. An
L-Type Substellar Object in Orion: Reaching the Mass Boundary between Brown
Dwarfs and Giant Planets. ApJ, 524:L115–L118, October 1999. doi: 10.1086/312317.

M. R. Zapatero Osorio, V. J. S. Béjar, E. L. Martín, R. Rebolo, D. Barrado y Navascués,
C. A. L. Bailer-Jones, and R. Mundt. Discovery of Young, Isolated Planetary Mass
Objects in the σ Orionis Star Cluster. Science, 290:103–107, October 2000. doi:
10.1126/science.290.5489.103.

M. R. Zapatero Osorio, V. J. S. Béjar, E. L. Martín, R. Rebolo, D. Barrado Y Navas-
cués, C. A. L. Bailer-Jones, and R. Mundt. Evidence for Free-floating Planetary-
mass Objects in the σ Orionis Star Cluster (CD-ROM Directory: contribs/osorio). In
R. J. Garcia Lopez, R. Rebolo, and M. R. Zapaterio Osorio, editors, 11th Cambridge
Workshop on Cool Stars, Stellar Systems and the Sun, volume 223 of Astronomical
Society of the Pacific Conference Series, page 70, 2001.

M. R. Zapatero Osorio, V. J. S. Béjar, and K. Peña Ramírez. Optical and near-infrared
spectroscopy of free-floating planets in the sigma Orionis cluster. Mem. Soc. As-
tron. Italiana, 84:926, 2013.

M. R. Zapatero Osorio, M. C. Gálvez Ortiz, G. Bihain, C. A. L. Bailer-Jones, R. Re-
bolo, T. Henning, S. Boudreault, V. J. S. Béjar, B. Goldman, R. Mundt, and J. A
Caballero. Search for free-floating planetary-mass objects in the Pleiades. ArXiv
e-prints, July 2014.

H. Zinnecker. A Free-Floating Planet Population in the Galaxy? In J. W. Menzies and
P. D. Sackett, editors, Microlensing 2000: A New Era of Microlensing Astrophysics,
volume 239 of Astronomical Society of the Pacific Conference Series, page 223, 2001.

67



List of Figures
1 Experimental setup - 3D . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Example for a capture and exchange orbit. . . . . . . . . . . . . . . . . 19
3 Example for a flyby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Example for a capture which develops to an exchange. . . . . . . . . . . 20
5 Example for a capture which develops to a flyby. . . . . . . . . . . . . . 20
6 Evolution of orbital elements for t = 6.5ttest. . . . . . . . . . . . . . . . 22
7 Evolution of orbital elements for t = 31.5ttest. . . . . . . . . . . . . . . 23
8 Evolution of orbital elements for t = 4ttest. . . . . . . . . . . . . . . . . 24
9 Evolution of orbital elements for t = 31.5ttest. . . . . . . . . . . . . . . 25
10 Initial value space for m = 3mJ , i = 0.1◦ after t = 2ttest. . . . . . . . . 27
11 Magnifications of initial value space, fractal borders visible. . . . . . . . 27
12 Epsilon uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13 Initial value space for m = 0.0001mJ and m = 0.5mJ . . . . . . . . . . 31
14 Initial value space for m = 1mJ and m = 5mJ . . . . . . . . . . . . . . . 31
15 Initial value space for m = 10mJ . . . . . . . . . . . . . . . . . . . . . . 32
16 Initial value space for i = 5◦ and i = 18◦. . . . . . . . . . . . . . . . . . 33
17 Initial value space for i = 35◦ . . . . . . . . . . . . . . . . . . . . . . . 34
18 Initial value space for t = test and t = 17.5ttest . . . . . . . . . . . . . . 35
19 Probabilities for capture and exchange as function of the mass of the FFP. 37
20 Probabilities for capture and exchange as function of initial inclination

i of the FFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
21 Probabilities for capture and flyby as function of calculation time. . . . 41
22 Part of prograde and retrograde orbits for i = 10◦ and m = mJ after ttest 43
23 Part of prograde and retrograde orbits for i = 40◦ and m = mJ after ttest 43
24 Part of prograde and retrograde orbits for i = 0.1 and m = 10mJ after ttest 44
25 Part of prograde and retrograde orbits for i = 0.1 and m = mJ after

t = 16ttest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
26 Orbital elements for FFPs with i = 0.1◦, m = mJ after ttest . . . . . . . 49
27 Orbital elements for FFPs with i = 0.1◦, m = 5mJ after ttest . . . . . . 50
28 Orbital elements for FFPs with i = 30◦, m = mJ after ttest . . . . . . . 51
29 Orbital elements for FFPs with i = 0.1◦, m = mJ after 15ttest . . . . . 52
30 Part of prograde and retrograde orbits for i = 0.1 and m = mJ after ttest 56

68



Curriculum Vitae:

Birgit Loibnegger

Education: 

2015 Master of Astronomy

2010 Bachelor of Astronomy

Bachelorthesis on 'Astroseismologische Weltraummissionen'

2006-2015 University Studies of Astronomy,  University of Vienna, Institute for 
Astrophysics, Türkenschanzstraße 17, 1180 Wien

2007-2010 University Studies of Physics and German Philology, University of 
Vienna

1998-2006 High School, Realgymnasium Tulln, Donaulände 72, 3430 Tulln

Employment:

2015 May-Sept. Contract for work within the scope of the NFN project 'Pathways to
Habitability'

Short Title: 'Transport of Water in Early Planetary Systems'
Description: Detailed investigations of the formation of terrestrial 
planets depending on their water content using modified n-body 
integrators on the collision outcome

List of Publications:

Loibnegger, B.
On the Capture of Free-Floating Planets, Master's Thesis, submitted

Dvorak, R.; Maindl, T.I.; Loibnegger, B.
On the probability of the collision of a Mars-sized planet with the Earth to form the Moon, MNRAS,
submitted

Loibnegger, B.; Varvoglis, H.; Dvorak, R.
On the diversity of free-floating planets, CMDA, in preparation


	Abstract
	Zusammenfassung
	Introduction
	Free-floating planets
	Formation of a free-floating planet
	Observations of free-floating planets
	Free-floating planetary mass component

	Numerical calculations
	Experiment setup
	Values range for the impact parameter
	Initial conditions

	Outcomes
	Outcomes - graphical
	Orbital elements in case of indirect flyby and indirect exchange

	Fractal scattering
	Estimating the uncertainty exponent


	Statistics
	Initial value space
	Initial value space for different mass of the incoming body
	Initial value space for different initial inclination of the incoming body
	Initial value space for different calculation time

	Probability of flyby, capture and exchange
	Probability of captures depending on the mass of the FFP
	Exponential decay of temporary captures with higher initial inclination
	Exponential decay of temporary captures with time


	Orbital distribution in temporary capture
	Initial value space
	Different initial inclination of the FFP
	Different mass ratios
	Different calculation time

	Orbital Elements
	Different mass ratio
	Different initial inclination of the FFP
	Different calculation time
	Capture in orbits with moderate values of semi-major axis and eccentricity
	Exchange of orbits

	Prograde and retrograde orbits
	Bound planet driven to retrograde orbit

	Different initial velocity of incoming body

	Summary and Conclusions
	Acknowledgements

