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Abstract

This PhD project is about sampling and reconstruction of signals in distinct

subspaces. The reconstruction method presented in the thesis uses the opti-

mal weighting of the measurements and therefore projects as close as possible

to the orthogonal projection onto the reconstruction space. Furthermore, we

prove that this reconstruction method is the most stable with respect to a

systematic error appearing before the sampling process. Adcock, Gataric

and Hansen weighted the point samples of the Fourier transform in order

to obtain a projection direction closer to the orthogonal projection onto the

reconstruction space. This theory can be used for example to approximate

compactly supported functions from nonuniform point samples of the Fourier

transform.

Weighting the measurements has a major drawback that the stability with

respect to measurement errors is reduced. The approximation calculated

from unweighted measurements is in some sense most stable with respect

to error present in the measurements and is called generalized sampling by

Adcock and Hansen. We investigate how to vary continuously between the

two extreme reconstruction methods.

In the last chapter, we consider the reconstruction of a non-bandlimited

function represented by a finite number of compactly supported generating

functions in wireless sensor networks. Using the theory presented in the first

part, we develop a novel hierarchical reconstruction. The idea is to prepro-

cess the sensor measurements locally by taking inner products with suitable

vectors and to send the resulting data (rather than sensor measurements) to

a global fusion center for further processing. In oversampled regimes, this

approach reduces communication workload.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Approximation von Signalen, wobei die

Messungen dieser Signale in einem anderen Raum liegen als die Rekonstruk-

tionen. Die in dieser Arbeit vorgestellte Rekonstruktionsmethode verwendet

eine optimale Gewichtung der Messungen und projiziert daher so orthogonal

wie möglich auf den Rekonstruktionsraum. Diese Herangehensweise ist auch

optimal, wenn ein systematischer Fehler vor dem Messprozess auftritt.

Adcock, Gataric und Hansen gewichteten die Punktauswertungen der Fourier-

Transformation, um eine bessere Projektionsrichtung auf den Rekonstruk-

tionsraum zu erhalten. Diese Theorie kann zum Beispiel verwendet werden,

um Funktionen mit kompaktem Träger von unregelmäßigen Punktauswer-

tungen der Fourier-Transformation zu approximieren.

Das Gewichten der Messungen hat jedoch einen großen Nachteil: Die Sta-

bilität bezüglich des Fehlers auf den Messwerten wird reduziert. Die Berech-

nung der Approximation ohne Gewichte ist in gewissem Sinne am stabilsten

bezüglich des Fehlers auf den Messwerten und wird von Adcock und Hansen

als ”generalized sampling” bezeichnet. Wir zeigen, wie man stetig zwischen

diesen beiden extremen Rekonstruktionsmethoden variieren kann.

Im letzten Kapitel beschäftigen wir uns mit der Approximation einer

Funktion in drahtlosen Sensornetzwerken, welche durch eine Linearkombina-

tion endlich vieler Basisfunktionen mit kompaktem Träger modelliert wer-

den. Wir verwenden die im ersten Teil der Arbeit präsentierte Theorie, um

einen neuen hierarchischen Rekonstruktionsalgorithmus zu entwickeln. Die

Absicht ist, die Messungen lokal zu verarbeiten (durch Berechnung innerer

Produkte mit bestimmten Vektoren) und die resultierenden Daten anstatt

der Sensormessungen zu übertragen. In überabgetasteten Systemen führt

diese Herangehensweise zu einer Reduktion der Kommunikationsarbeit.

vii





Acknowledgements

First of all, I would like to thank my advisor Professor Karlheinz Gröchenig.
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Chapter 1

Introduction

An important task in sampling theory is the reconstruction of a bandlimited

signal f of finite energy from point samples {f(xk)}k∈N. A function f is an

element of the space of bandlimited functions BΩ, if the Fourier transform

f̂(ξ) =

∫ ∞

−∞
f(x)e−2πiξx dx

has a compact support in the interval Ω = [−ω, ω], i.e., f̂(ξ) = 0 for all

ξ /∈ [−ω, ω]. The classical result of Whittaker [67] states that a function

f ∈ L2(R) ∩B[− 1
2
, 1
2 ]

can be recovered exactly from its samples {f(k)}k∈Z by

the interpolation formula

f(x) =
∑
k∈Z

f(k)sinc(k − x), (1.1)

where sinc(x) = sin(πx)
πx

. We observe that

f(k) =

∫ 1
2

− 1
2

f̂(ξ)e2πiξk dξ = F f̂(−k),

and therefore the reconstruction of a bandlimited signal from point evalua-

tions is equivalent to the reconstruction of a compactly supported function

f̂ from point samples of its Fourier transform F f̂ . This problem has a long

list of applications, such as Magnetic Resonance Imaging (MRI), Computed
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Tomography (CT), microscopy, seismology and geophysical imaging.

Taking the Fourier transform of (1.1), we obtain

f̂(ξ) =
∑
k∈Z

f(k)e−2πikξ =
∑
k∈Z

〈f̂ , χ[− 1
2
, 1
2 ]
e−2πik·〉e−2πikξ.

Therefore, (1.1) follows from the fact that the set {e2πik·}k∈N forms an or-

thonormal basis of L2([−1
2
, 1
2
]), the so called harmonic Fourier basis.

From now on we consider this problem on the Fourier side. This means

that we reconstruct a compactly supported function g ∈ L2([−1
2
, 1
2
]) from

point samples of the Fourier transform 〈g, e2πiωk·〉, where ωk ∈ R, k ∈ N. If

ωk = k + εk and sup |εk| < 1
4
, then {e2πiωk·}k∈Z is a Riesz basis of L2([−1

2
, 1
2
]),

see [44]. A Riesz basis is the image of an orthonormal basis under a bounded

and invertible operator. For a Riesz basis {e2πiωk}k∈Z there exists a unique

dual basis {fk}k∈Z such that for g ∈ L2([−1
2
, 1
2
])

g(ξ) =
∑
k∈Z

〈g, e2πiωk·〉fk(ξ).

Let us assume that we are given the perturbed measurements

dk = 〈g, e2πiωk·〉+ δk,

where {δk}k∈N ∈ l2(N) is the measurement error. The sampling frequencies

are assumed to be fixed and given. Since {e2πiωk·}k∈Z is a Riesz basis, for any

sequence in {dk}k∈N ∈ l2(N), the moment problem

〈
g̃, e2πiωk·

〉
= dk, k ∈ N, (1.2)

has the solution g̃ =
∑

k∈Z dkfk. For a detailed explanation see [68, Sec-

tion 4]. In this case g̃ is called a consistent reconstruction, since the mea-

surements of g̃ coincide with the given data. This concept is treated for

example in [20, 22, 25–28]. In Section 5.1, we review some properties of con-

sistent reconstructions, since the reconstruction operators discussed in this

thesis are generalizations of this concept.

2



Since (1.2) is equivalent to

F g̃(ωk) = dk,

the function F g̃ interpolates the data points {(ωk, dk)}k∈N. Therefore the set
{ωk}k∈N is called a set of interpolation, see for example [38,57].

When dealing with more general sampling sets than perturbation sets

of Z, instead of Riesz bases we need the more general notion of frames,

introduced by Duffin and Schaeffer [23]. A sequence {e2πωk·}k∈N is a frame for

L2([−1
2
, 1
2
]) if there exist constants A,B > 0 such that for all g ∈ L2([−1

2
, 1
2
])

A‖g‖2 6
∑
k∈Z

|〈g, e2πiωk·〉|2 6 B‖g‖2,

or equivalently for all f ∈ L2(R) ∩B[− 1
2
, 1
2 ]

A‖f‖2 6
∑
k∈Z

|f(ωk)|2 6 B‖f‖2.

In this case X := {ωk ∈ R}k∈Z is called a set of stable sampling. For

{e2πiωk·}k∈N to be a frame for L2([−1
2
, 1
2
]) it is sufficient that the lower Beurl-

ing density

D(X) = lim
r→∞

inf
y∈R

card
(
X ∩ (y + [0, r])

)
r

satisfies D(X) > 1, see [16, 17]. Conversely, if {e2πiωk·}k∈N is a frame for

L2([−1
2
, 1
2
]), then D(X) > 1, see [46] and [33].

When {e2πωk·}k∈N is a frame for L2([−1
2
, 1
2
]), then for g ∈ L2([−1

2
, 1
2
])

g(ξ) =
∑
k∈Z

〈g, e2πiωk·〉fk(ξ),

where {fk}k∈N is a so called dual frame of {e2πiωk·}k∈N. Let

S : L2
([

− 1

2
,
1

2

])
→ L2

([
− 1

2
,
1

2

])
, Sg =

∑
k∈Z

〈g, e2πiωk·〉e2πiωk·

3



denote the frame operator of the frame {e2πωk·}k∈N. For any g ∈ L2([−1
2
, 1
2
])

g(ξ) = S−1Sg(ξ) =
∑
k∈Z

〈g, e2πiωk·〉S−1
(
e2πiωk·

)
(ξ).

The frame {S−1e2πiωk·}k∈N is called the canonical dual frame. In general,

not every sequence {dk}k∈N ∈ l2(N) can be realized as a sequence of inner

products of an element g̃ ∈ L2([−1
2
, 1
2
]) with frame vectors. If we choose as

dual frame {fj}j∈N the canonical dual frame, then g̃ =
∑

j∈Z djfj is the least

squares solution of

g̃ = arg min
f∈L2([− 1

2
, 1
2
])

∑
j∈Z

∣∣〈f, e2πiωj ·〉 − dj
∣∣2 .

This least squares fit is also common when dealing with a finite number of

samples {dj}nj=−n. Clearly a function g ∈ L2([−1
2
, 1
2
]) is not determined by a

finite number of samples. Therefore some system model

T =

{
m∑

k=−m

ckgk : ck ∈ C

}

for the function to be approximated is used, followed by solving the (typically

overdetermined) least squares problem

g̃ = arg min
g∈T

n∑
j=−n

∣∣〈g, e2πiωj ·〉 − dj
∣∣2 . (1.3)

We observe that g̃ can be written in the form g̃ =
∑m

k=−m ĉkgk. The vector

ĉ = [ĉ−m, . . . , ĉm]
T ∈ C2m+1 containing the coefficients of the series expansion

of g̃ is the solution of the overdetermined least squares problem

ĉ = arg min
c

‖Ac− d‖, (1.4)

where A ∈ C2n+1×2m+1 is defined by

A(j, k) = 〈gk, e2πiωj ·〉,

4



and d = [d−n, . . . , dn]
T ∈ C2n+1. When reconstructing a bandlimited function

from point samples, it is most common to use as system model trigonometric

polynomials, see for example [29,34,35,60].

On the Fourier side (when reconstructing a compactly supported function

from samples of the Fourier transform), if the function to be reconstructed

is smooth and periodic, the classical approach also uses trigonometric poly-

nomials as a system model, i.e., it computes the truncated Fourier series

representation. However, for non-periodic or discontinuous functions, the

Fourier series representation suffers from the Gibbs phenomenon and slow

convergence. The first approaches to a mitigation of the Gibbs phenomenon

were based on projection and filtering, see [30,32,62,64] for recent contribu-

tions. For reconstruction of compactly supported functions from non-uniform

samples of their Fourier transform see [66]. A new approach to mitigate this

problem is to expand the function in basis functions other than trigonomet-

ric polynomials. Of course, for different classes of functions different basis

functions are needed, and a priori knowledge of the function to reconstruct

should be taken into account. For example, smooth functions are efficiently

approximated by algebraic polynomials. This motivates the Inverse Poly-

nomial Reconstruction Method (IPRM), see [41–43, 58]. Given the first n

Fourier coefficients, the IPRM approximates a compactly supported func-

tion g by an algebraic polynomial of degree at most n− 1. In [39] a modified

IPRM approach is presented, where the authors used n Fourier coefficients

to determine the expansion coefficients of the first m Legendre polynomials

Pk, k = 0, . . . ,m − 1, with n > m. This means that the authors approxi-

mate a compactly supported function g by a linear combination of the first

m Legendre polynomials Pk, k = 0, . . . ,m − 1. Given the first n Fourier

coefficients Fg(l), l = −
⌊
n−1
2

⌋
, . . . ,

⌊
n
2

⌋
, the approximation is calculated by

solving the least squares problem (1.3) for T being the linear span of the

first m Legendre polynomials. In [39] it is shown that the first m Legendre

coefficients can be calculated in a stable way (by solving the least squares

problem (1.4)) from the first n Fourier coefficients, provided that n > m2.

Furthermore, in [39] it is shown that for analytic functions the resulting algo-

rithm has a root-exponential convergence rate in the number of the Fourier

5



coefficients. The fact that there are more samples than reconstruction vec-

tors is extremely important. For example, taking only m = n measurements

(the consistent approach) leads to exponentially growing condition numbers,

see [11].

When solving the least squares problem (1.4) by an iterative method

such as the conjugate gradient method applied to the normal equations, a

condition number κ(A) close to one results in fast convergence. In order to

improve the convergence rate it is common practice to solve a preconditioned

least squares problem

ĉ = arg min
c

‖DAc−Dd‖

instead of (1.4) with a suitable preconditioner D ∈ C2n+1×2n+1. In sampling

problems D is often chosen as a diagonal matrix, see [3, 5, 29, 34,35,60].

In [3–5] and [2] another positive effect of weighting the least squares prob-

lem is observed. By appropriate weights, a projection direction closer to the

orthogonal projection onto the reconstruction space is obtained. Weighting

the measurements has a major drawback that the stability with respect to

measurement errors is reduced. The approximation calculated by solving

the standard least squares problem (1.4) is most stable with respect to error

present in the measurements. This will be explained in Section 1.1.

Let us formulate the least squares approach in an abstract setup. Let

H denote a separable Hilbert space. Let {uj}j∈N be a frame sequence (i.e.

a frame for its closed linear span V) in H. The operator V ∗ : H → l2(N)
defined by the property

V ∗g = {〈g, uj〉}j∈N

is called the analysis operator of the frame sequence {uj}j∈N. The adjoint

operator V : l2(N) → V ,
V c =

∑
k∈N

ckuj,

is called the synthesis operator of the frame sequence {uj}j∈N, where V =

R(V ) = span{uj}j∈N. Let S = V V ∗ denote the frame operator of {uj}j∈N.
Let T be a closed subspace of H. Let the operator Qg : l

2(N) → T be defined

6



by the property

Qgd = arg min
g∈T

∑
j∈N

|〈g, uj〉 − dj|2 = arg min
g∈T

‖V ∗g − d‖2. (1.5)

This means, given perturbed measurements d = V ∗g+δ of an element g ∈ H,

the approximation g̃ of g is given by g̃ = Qgd. When we choose a frame

{gk}k∈N for T with synthesis operator T ,

Qgd =
∞∑
k=1

ĉkgk

where ĉ = {ĉk}k∈N is the minimal norm element of the set

arg min
c

‖V ∗Tc− d‖. (1.6)

This operator is analyzed in detail in [10], and used in order to analyze the

least squares approach with other basis functions than Legendre polynomials,

such as wavelets, for reconstruction, see [1,6–9]. In [10] it is shown that QgV
∗

is an oblique projection onto the reconstruction space T . Specifically,

QgV
∗ = PT ,S(T )⊥ ,

is the oblique projection with range T and null-space S(T )⊥. The authors

named the reconstruction method defined by this least squares approach

generalized sampling. In Section 5.2, we review the concept of generalized

sampling and supplement some additional aspects.

The authors of [10] use two quantities to measure the quality of a mapping

Q : l2(N) → T . The first one is the quasi-optimality constant µ = µ(Q) > 0

which is defined as the smallest number µ, such that

‖f −QV ∗f‖ 6 µ‖f − PT f‖, for all f ∈ H,

where PT denotes the orthogonal projection onto T . The smaller the quasi-

optimality constant, the closer the projection direction is to the orthogonal

7



projection onto the reconstruction space, and for µ = 1, QV ∗ = PT is equal

to the orthogonal projection onto the reconstruction space. As a measure of

stability of the reconstruction, the absolute condition number [10, Definition

2.2] is used. Here we focus on linear reconstructions, in which case this

quantity equals the operator norm ‖Q|R(V ∗)‖ of Q restricted to the subspace

R(V ∗). We show that for all reconstruction operators used throughout the

thesis, the operator norm ‖Q‖ coincides with the absolute condition number

[10, Definition 2.2]. Therefore we use the operator norm ‖Q‖ as a measure

of the stability of an reconstruction operator Q.

1.1 Main contributions of the first part of the

thesis

• Using the operator norm ‖Q‖ as a measure of stability we derive the

error estimate

‖f −Q(V ∗f + c)‖ 6 µ(Q)‖f − PT f‖+ ‖Q‖‖c‖,

for the approximations calculated by a particular reconstruction oper-

ator. This clarifies the meaning of the quasi-optimality constant and

the absolute condition number introduced in [10].

• In Section 3.4, we collect some facts on oblique projections. Oblique

projections are of great importance, because in Theorem 4.0.12 we show

that any quasi-optimal and bounded reconstruction operator

Q : l2(N) → T has the property that the operator P = QV ∗ is an

oblique projection onto the reconstruction space. As shown in [10],

in this case, the quasi-optimality constant is determined by the angle

between the range and nullspace of this oblique projection.

• In [10, Theorem 6.2.] it is shown that the operator Qg has the small-

est possible absolute condition number among all operators Q with

QV ∗g = g for all g ∈ T (i.e. Q recovers elements in the reconstruc-

tion space T in the absence of noise). As an easy consequence of this

8



theorem, we show in Corollary 5.2.9 that the operator Qg (generalized

sampling) has the smallest possible operator norm among all operators

Q with QV ∗g = g for all g ∈ T . We also show that this implies that

the operator Qg has the smallest possible relative condition number

for elements in the reconstruction space, see Corollary 5.2.11. There-

fore this operator is well suited to reconstruct a function f lying inside

the reconstruction space from noisy measurements. This is what we

mean by the approximation calculated by solving the standard least

squares problem (1.6) is most stable with respect to error present in

the measurements.

• In Chapter 4, we point out connections of quasi-optimal and bounded

reconstruction operators to dual frames. We show in Theorem 4.0.12

that any bounded and quasi-optimal operator Q : l2(N) → T is the

synthesis operator of a dual frame of {PT uj}j∈N, where PT uj denotes

the orthogonal projection of the jth sampling vector onto the recon-

struction space.

• In Theorem 5.2.6, we present an alternative description of the recon-

struction operator Qg (generalized sampling) by using dual frames.

Specifically, we show that Qg is the synthesis operator of the canonical

dual frame of {PT uj}j∈N of T . By using the properties of the canon-

ical dual frame we give an alternative proof to the statement that Qg

has the smallest possible operator norm among all operators Q with

QV ∗g = g for all g ∈ T , see Lemma 2.3.11 and Theorem 5.2.6.

• As already mentioned, in [2–5] it is shown that by weighting the least

squares problem, a projection direction closer to the orthogonal pro-

jection onto the reconstruction space is obtained. We present a new

approximation operator Qf , defined by the properties that

QfV
∗ = PT ,PV (T )⊥ , (1.7)

and that Qf is zero on the set R(V ∗)⊥, the orthogonal complement of

the range of V ∗. Let us denote the square root of the pseudoinverse

9



of a positive operator S by S
†
2 := (S†)

1
2 . Let {gk}k∈N be a frame for

T with synthesis operator T . The operator Qf can also be described

by a preconditioned version of the least squares problem (1.4). For

d ∈ l2(N)

Qfd =
∞∑
k=1

ĉkgk,

where ĉ = {ĉk}k∈N is the minimal norm element of the set

ĉ = arg min
c

‖(V ∗V )
†
2V ∗Tc− (V ∗V )

†
2d‖.

In Section 5.3, the operator Qf is analyzed in detail. In Theorem 5.3.8

we show that this reconstruction operator Qf is the operator with the

smallest possible quasi-optimality constant, namely

µ(Qf ) =
1

cos(ϕT ,V)
,

where ϕT ,V is the angle between T and V (defined in (3.9)). This im-

plies that the operator PT ,PV (T )⊥ is as close to the orthogonal projection

onto the reconstruction space T as possible. Therefore our reconstruc-

tion deals very well with the part of the function to reconstruct lying

outside of the reconstruction space. This is tested in numerical exper-

iments in Section 6, where we reconstruct compactly supported func-

tions from nonuniform samples of the Fourier transform. If there are

high irregularities in the sampling frequencies, the operator Qf yields

approximations of much higher accuracy than the operator Qg (defined

by the standard least squares fit (1.5)). This is illustrated in Figure 6.1,

where we approximate the signum function from nonuniform samples

of the Fourier transform.

We refer to the reconstruction operator Qf as frame independent sam-

pling to indicate that QfV
∗ = PT ,PV (T )⊥ does not depend on the se-

quences {uj}j∈N and {gk}k∈N themselves, but only on their closed linear

spans V and T .
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• In Section 5.5, we point out the connection of generalized sampling

and frame independent sampling to unbiased estimators of minimal

variance. Generalized sampling corresponds to an unbiased estimator

of minimal variance for the reconstruction of an element g ∈ T from

measurements perturbed by white noise, see Corollary 5.5.10. Frame

independent sampling corresponds to an unbiased estimator of mini-

mal variance for the reconstruction of an element g ∈ T from mea-

surements of the perturbed object (white noise appearing before the

sampling process), see Corollary 5.5.11. By determining an unbiased

estimator of minimal variance for combinations of the two versions of

noise, we show how to obtain mixtures between the two reconstruc-

tions, see Corollary 5.5.12. In Chapter 6, we compare the different

reconstruction operators in numerical experiments for the reconstruc-

tion of compactly supported functions from nonuniform samples of the

Fourier transform. We observe, that if we increase the standard devi-

ation of the noise appearing before the sampling process (leaving the

standard deviation of the noise appearing after the sampling process

constant) we obtain a smaller quasi-optimality constant of the recon-

struction at the cost of an increasing operator norm. This means that

we investigate how to choose reconstruction operators corresponding to

oblique projections closer to the orthogonal projection at the cost of a

larger operator norm.

• In Section 5.4, we analyze these mixtures between the operators Qg

(generalized sampling) andQf (frame independent sampling). We show

that they can be described by a single tuning parameter λ. Namely,

for A = V ∗T , Σλ = λI + V ∗V , and d ∈ l2(N),

Qλd =
∞∑
k=1

ĉkgk,

where ĉ = {ĉk}k∈N is the solution of the last squares problem

ĉ = arg min
c

‖Σ− 1
2

λ Ac− Σ
− 1

2
λ d‖. (1.8)

11



We observe that Q0 = Qf (frame independent sampling) and Q∞ = Qg

(generalized sampling).

In the presence of noise the operator Qλ with a small value of λ yields

more accurate reconstructions than both, Qf (= Q0) and Qg(= Q∞).

This is illustrated in Figure 6.2, where we reconstruct the signum func-

tions from noisy, nonuniform samples of the Fourier transform.

• In Section 5.6, Lemma 5.6.1, we estimate the condition number of

A∗Σ−1
λ A, the matrix of the normal equations of the least squares prob-

lem (1.8), using an orthonormal system {gk}k∈N as reconstruction vec-

tors. The larger the tuning parameter λ, the larger the upper bound

of the condition number κ(A∗Σ−1
λ A). Therefore we expect

κ(A∗Σ−1
0 A) 6 κ(A∗Σ−1

λ A) 6 κ(A∗A),

which is tested in numerical experiments in Section 6. This means that

the matrix of the least squares problem corresponding to a reconstruc-

tion operator that projects closer to the orthogonal projection has a

smaller condition number. Consequently, we expect faster convergence

of an iterative algorithm when solving these least squares problems. As

already mentioned, this is the motivation for preconditioning.

For λ = 0 we obtain the following bound:

κ(A∗Σ−1
0 A) 6 1

cos2(ϕT ,V)
.

We observe that this bound depends only on the angle between the

reconstruction space and sampling space. If the reconstruction space

is a subspace of the sampling space, then cos(ϕT ,V) = 1. In this case

κ(A∗Σ†
0A) = 1 and Σ†

0 = (V ∗V )† is an ”optimal” preconditioner.

In order to calculate approximations to the solution of these least

squares problems at a low operation count, we first need to calculate

12



approximations Mλ of Σ−1
λ , followed by solving the normal equations

A∗MλAc = A∗Mλd.

The theory of controlled frames, weighted frames and frame multipliers,

see [13, 14, 18], may enable us to obtain approximations Mλ of Σ−1
λ at

a low operation count.

• While in general for different values of λ the reconstruction operators

Qλ are rather different, in Theorem 5.6.5 we show that they coincide

whenever the sampling frame is tight.

• In [2–5] a different version of stability is considered. These papers

consider systematic errors appearing before the sampling process, and

the task is to reconstruct a function f from measurements of the form

sj = 〈f +∆f, uj〉.

The authors reconstruct a compactly supported function from nonuni-

form samples of the Fourier transform. They weight the least squares

problem (1.4) in order to compensate for clustering of the sample

points. The operator Qf can be seen as an optimal solution for this

problem in the following sense. In Theorem 5.3.10 we show that Qf

is the operator with the smallest possible constants µ > 0 and β > 0,

such that

‖f −QV ∗(f +∆f)‖ 6 µ‖f − PT f‖+ β‖∆f‖.

Therefore the operator Qf deals very well with the part of the function

to reconstruct lying outside of the reconstruction space, and also deals

very well with systematic errors appearing before the sampling process.

This is illustrated in Figure 6.3 and Figure 6.4, where we approximate

the signum function and a trigonometric polynomial from nonuniform

samples of the Fourier transform.
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1.2 The geometric idea of frame independent

sampling

We explain our reconstruction method in the following simple example. Let

H = R3, let g ∈ R3 be the reconstruction vector. Let T be the line spanned

by g, the reconstruction space. Let u1, u2 ∈ R3 be two linearly indepen-

dent vectors, the sampling vectors. Let V denote the plane spanned by the

sampling vectors u1, u2, the sampling space. We intend to reconstruct an

element f ∈ R3 from 〈f, u1〉 and 〈f, u2〉. From the measurements 〈f, u1〉 and
〈f, u2〉, we can calculate PVf , the orthogonal projection of f onto the plane

V. Conversely, PVf determines 〈f, u1〉 and 〈f, u2〉.
Thus all the information we have about f is that f lies in the affine

subspace PVf +V⊥, but we do not know the exact location of f in this affine

subspace. Let PT ,PV (T )⊥ denote the oblique projection with range T and

kernel PV(T )⊥.

We assume that f , the element to be reconstructed, is close to the recon-

struction space T . Naturally, we now want to find f̃ , the element of the recon-

struction space T closest to PVf+V⊥. The two spaces PVf+V⊥ and T may,

or may not intersect. In both cases, the element of T closest to PVf + V⊥ is

exactly PT ,PV (T )⊥f . If they intersect, then PT ,PV (T )⊥f = (PVf+V⊥)∩T , and

〈f, u1〉 = 〈f̃ , u1〉 and 〈f, u2〉 = 〈f̃ , u2〉. In this case f̃ is a so called consistent

reconstruction of f , a concept that is treated for example in [20,22,25–28].
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1.3 Short description of the hierarchical re-

construction algorithm

In the last chapter of the thesis, we use the theory of sampling and recon-

struction in distinct subspaces to develop a novel hierarchical reconstruction

method from nonuniform point samples. The idea is to preprocess the sen-

sor measurements locally and to send the resulting data (rather than sensor

measurements) to a global fusion center for further processing. A similar

reconstruction method is presented in [54]. Our reconstruction method can

be seen as a refinement of that approach. The advantage of preprocessing

the sensor measurements locally is that in oversampled regimes the com-

munication workload can be reduced. Specifically, we treat the problem of

reconstructing an unknown continuous function f ∈ L2(Rd), d ∈ N, from
noisy point evaluations

di := f(xi) + δi, i = 1, . . . , n. (1.9)

The value di can be viewed as the measurement of the ith sensor positioned at

xi. As a function model we choose a finite dimensional subspaceW of L2(Rd),

generated by linearly independent continuous functions gk ∈ L2(Rd), k =

1, . . . ,m,

W =

{
m∑
k=1

ckgk : ck ∈ C

}
.

If the sensor positions {xi}ni=1 are known, a common approach to this problem

is to approximate the function f by the linear combination

f̃ =
m∑
k=1

ĉkgk,

where the vector ĉ = [ĉ1, . . . , ĉm]
T is the solution of the least squares problem

ĉ = arg min
c

n∑
i=1

∣∣∣∣∣
m∑
k=1

ckgk(xi)− di

∣∣∣∣∣
2

. (1.10)
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We denote by h = [f(x1), . . . , f(xn)]
T ∈ Cn the vector containing the point

evaluations of f , and by δ ∈ Cn

δ = [δ1, . . . , δn]
T (1.11)

we denote the vector containing the measurement noise. We define the matrix

A ∈ Cn×m by prescribing its elements

A(i, k) = gk(xi), i = 1, . . . , n, k = 1, . . . ,m.

With this notation, the vector ĉ ∈ Cm×1, defined by (1.10), is the solution of

the least squares problem

ĉ = arg min
c

‖Ac− (h+ δ)‖. (1.12)

If the signal is oversampled by a factor of s, i.e. n = sm, then by (1.10) we

calculate m coefficients from n = sm noisy point evaluations. This means

that the information sent is s times redundant. Using more point evaluations

than generating functions often improves the stability of the reconstruction

with respect to noise on the data points. Our intention is to get rid of this

redundancy while maintaining the advantage of oversampling.

The idea of our algorithm is as follows. We assume that we have connected

sets Bj ⊂ Rd, j = 1, . . . , L, such that
⋃

j=1,...,L

Bj = supp(f). For each set Bj,

j = 1, . . . L, we cluster the sensors located in Bj. By Cj we denote the set

of the indices of the sensors located in Bj, Cj = {i : xi ∈ Bj}. This can be

interpreted that sensors in the same cluster are close to each other, and each

sensor is contained in at least one of the clusters. In every cluster the noisy

point evaluations di = f(xi)+ δi, i ∈ Cj, of the sensors are transferred to one

sensor node, called the cluster head.

Let d = h+δ denote the vector containing the noisy point evaluations of

f . Let PCj
denote the orthogonal projection onto the set span{ei : i ∈ Cj},

where {ei}ni=1 denotes the canonical basis of Cn. This means that in PCj
d all

point evaluations from sensors outside the jth cluster are set to zero. The
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idea is to send from each region Bj inner products

si = 〈PCj
d,vi〉 = 〈d, PCj

vi〉 = 〈h+ δ, PCj
vi〉, i = 1, . . . , rj, (1.13)

instead of the noisy point evaluations {di}i∈Cj
. If the number of sensors

located in the jth cluster is larger than the number of transmitted numbers

{si}
rj
i=1, this approach requires fewer long distance transmissions. We observe

that in (1.13), si are inner products of a perturbation h+δ of h with vectors

PCj
vi. Therefore the sampling vectors after the pre-processing (1.13) are

PCj
vi, j = 1, . . . , L, i = 1, . . . , rj.

The strategy is to calculate an approximation h̃ of PR(A)h, the orthogonal

projection onto the range of A. We then calculate the coefficients ĉk for the

approximation
∑m

k=1 ĉkgk of f from h̃ by ĉ = arg min
c

‖Ac− h̃‖. Since h̃ is

an approximation to PR(A)h, it is reasonable to choose R(A) as the recon-

struction space, and the columns of A as reconstruction vectors. We recall

that the operator Qf is optimal when reconstructing from inner products of a

perturbed function. Since the values si are inner products of a perturbation

h+δ of h with vectors PCj
vi, i = 1, . . . , rj, j = 1, . . . , L, we use the operator

Qf to calculate the approximation h̃ to PR(A)h. If we use as sampling vectors

{bj}mj=1 the columns of A, then this reconstruction algorithm simplifies to

solving the normal equations

A∗Aĉ = A∗d. (1.14)

The approximation f̃ to f is given by

f̃ =
m∑
k=1

ĉkgk.

This approach is explained in Section 7.5.1 in detail. With this setup we

require a total number ofm long distance transmissions, namely {〈d,bi〉}mi=1,

to the fusion center. Therefore, if the signal is oversampled by a factor of
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s, i.e. n = sm, then instead of n transmissions, this approach only requires
n
s
transmissions. If we also assume transmission noise when sending the

numbers si to a global fusion center, then calculating the coefficients for the

reconstruction by (1.14) causes stability problems whenever the condition

number κ(A) is large.

In this case the following approach is a good strategy. In Section 7.5.2, we

propose choosing sets {Bj}Lj=1 as a partition of the support of f . From the

jth cluster, we transmit the inner products {〈d,vi,j〉}
rj
i=1, where the vectors

{vi,j}
rj
i=1 are an orthonormal system for R(PCj

A). The coefficients ĉk for the

approximation
∑m

k=1 ĉkgk to f are calculated from {〈d,vi,j〉}
rj
i=1, j = 1, . . . , L,

by solving the least squares problem

ĉ = arg min
c

‖T ∗Ac− T ∗d‖. (1.15)

The columns of T consist of the orthonormal vectors {vi,j}j=1,...,L, i=1,...,rj

stacked together. In Section 7.5.2.1, we give an upper bound on the number of

required long distance transmissions. This bound shows that if the generating

functions gk, k = 1, . . . ,m, have a compact support and the sets Bj are

large enough in comparison to the support of the generating functions, then

r :=
∑L

j=1 rj (the number of required long distance transmissions required by

this approach) is roughly m (the number of generating functions). Therefore,

in this case, if the function is oversampled by a factor of s, i.e. n = sm, the

number of required long distance transmissions is reduced by roughly a factor

of s.

In Section 7.6, we prove stability of the three algorithms. The first is

sending all sensor measurements and solving the global least squares problem

(1.12). The second one is sending the inner products of d with the columns of

A and solving the normal equations (1.14). The third one is sending the inner

products of d with an orthonormal system {vi,j}j=1,...,L, i=1,...,rj , followed by

solving the least squares problem (1.15). We show that from the analytical

point of view all three reconstruction algorithms solve a least squares problem

ĉ = arg min
c

‖Ac− (h+ a)‖
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with different noise vectors a. Using the same upper bound on the signal to

noise ratio of the measurement noise and transmission noise, we determine

an upper bound on the norm of the noise vector a for all three reconstruction

methods. For the approach using an orthonormal system {vi,j}j=1,...,L, i=1,...,rj

we obtain the same upper bound as we obtain by sending all sensor measure-

ments and solving the global least squares problem. Therefore we expect

that these two algorithms have similar reconstruction accuracy. For the hier-

archical reconstruction method which solves the normal equations (1.14), the

condition number κ(A) appears as an additional factor in the upper bound

on ‖a‖. Therefore we expect worse reconstruction accuracy by this strategy,

whenever the condition number κ(A) is large. In Section 7.7 this is confirmed

by numerical experiments, for the special case of integer translates of a basis

spline of a certain order as generating functions gk, k = 1, . . . ,m.

In Section 7.8 we determine the operation count of our algorithm, which

uses an orthonormal system {vi,j}j=1,...,L, i=1,...,rj . We show that it has the

same order as the complexity of solving the global least squares problem

(1.10) (by a direct method such as the QR decomposition), whenever r (the

number of required long distance transmissions required by our approach) is

roughly m (the number of generating functions). As already mentioned, r is

roughly m whenever the local regions Bj, j = 1, . . . , L, are large enough in

comparison to the support of the generating functions. In this case, if the

function is oversampled by a factor of s, we reduce the communication work-

load roughly by a factor of s and obtain reconstructions of similar accuracy

for operation count of the same order.
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1.4 List of used symbols

H : Separable Hilbert space.

T ,V : Closed subspaces of H.

PV : Orthogonal projection onto V .

PV(T ) : The set {PVg : g ∈ T }.

PT ,V : Oblique projection with range T and kernel V .

R(F ) : The range of the operator F .

N (F ) : The null-space of the operator F .

S : The frame operator.

A : The closure of a set A.

A⊥ : The orthogonal complement of a subset A of a Hilbert space.

⊕ : Direct sum (not necessarily orthogonal).
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Chapter 2

Frames and the Pseudoinverse

In this section we list several well known theorems concerning functional

analysis, frames and the pseudoinverse, which are used throughout the thesis.

This chapter can be skipped by an experienced reader. The only Lemma

worth having a short look at is Lemma 2.3.18.

2.1 Collection of Theorems from functional

analysis

The following lemma can be found in [55, 12.33 Theorem].

Lemma 2.1.1. Let H be a Hilbert space. For every positive operator

S : H → H, there exists a unique positive operator S
1
2 such that

(S
1
2 )

2
= S.

If S > 0, then S
1
2 > 0.

We call S
1
2 the square root of S.

The following Lemma is a part of [21, Lemma 2.4.1]

Lemma 2.1.2. Let L and H be Hilbert spaces. If A : L → H is a bounded

operator, then

1. R(A) is closed in H if and only if R(A∗) is closed in L.
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2. ‖A‖ = ‖A∗‖, and ‖AA∗‖ = ‖A‖2.

We also make use of the following well known formulas.

Lemma 2.1.3. Let L and H be Hilbert spaces. For an operator A : L→ H,

the following identities hold,

N (AA∗) = N (A∗), N (A∗A) = N (A).

If A has a closed range, then the following identities hold,

R(AA∗) = R(A), R(A∗A) = R(A∗).

Definition 2.1.4. Let X and Y be normed vector spaces. We denote the set

of all bounded linear operators from X to Y by L(X,Y ). If X = Y , then we

write L(X) instead of L(X,X).

Definition 2.1.5. Let A ∈ L(X). The spectrum of A is the set of all λ ∈ C
for which the operator λI − A has no bounded inverse. We denote the spec-

trum of A by σ(A).

We use the continuous functional calculus, which can be found in [53, Thm

VII.1].

Theorem 2.1.6. If A is a self-adjoint bounded operator on a Hilbert space

H, then there exists a unique map ϕ : C(σ(A)) → L(H) with the following

properties.

• ϕ is an ∗-homomorphism, i.e.

ϕ(fg) = ϕ(f)ϕ(g), ϕ(λf) = λϕ(f), ϕ(1) = I, ϕ(f) = ϕ(f)∗,

• ‖ϕ(f)‖ = ‖f‖∞.

• If f is defined by f(x) = x, then ϕ(f) = A.

Moreover, ϕ has the additional properties:

• If Aψ = λψ, then ϕ(f)ψ = f(λ)ψ,
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• σ[ϕ(f)] = {f(λ) : λ ∈ σ(A)} = f(σ(A)),

• If f > 0, then ϕ(f) > 0,

The following Lemma can be found in [50, Theorem 5.17.2]

Lemma 2.1.7. Let W and H be Hilbert spaces, and let V : H → W be a

bounded operator. There exists an A > 0, such that

A‖c‖ 6 ‖V c‖ for every c ∈ N (V )⊥, (2.1)

if and only if the operator V has a closed range.

2.2 Properties of the pseudoinverse

We need the definition of the pseudoinverse of an operator on Hilbert spaces.

Lemma 2.2.1. Let H and W be Hilbert spaces. If A : W → H is a bounded

operator with a closed range R(A), then there exists a unique bounded oper-

ator A† : H → W such that

N (A†) = R(A)⊥ = N (A∗), (2.2)

R(A†) = N (A)⊥ = R(A∗), and (2.3)

AA†x = x, x ∈ R(A). (2.4)

Definition 2.2.2. Let H and W be Hilbert spaces and let A : W → H be

a bounded operator with a closed range. We call the operator A† satisfying

(2.2), (2.3) and (2.4) the pseudoinverse of A.

The following lemma is a part of [21, Lemma 2.5.2].

Lemma 2.2.3. Let A : W → H be a bounded operator. If A has a closed

range R(A), then the following holds:

1. The orthogonal projection of H onto R(A) is given by AA†.

2. The orthogonal projection of W onto R(A†) is given by A†A.
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3. (A∗)† = (A†)∗.

The following properties are an easy consequence of Lemma 2.2.3, and

often used to define the pseudoinverse.

Corollary 2.2.4. Let A : W → H be a bounded operator. If A has a closed

range R(A), then the following holds:

AA†A = A, (2.5)

A†AA† = A†. (2.6)

The following lemma can be found in [15] as an exercise.

Lemma 2.2.5. Let A : W → H be a bounded operator. If A has a closed

range R(A), then the following holds:

A† = (A∗A)†A∗

A† = A∗(AA∗)†.

Lemma 2.2.6 can be proven using the spectral theorem.

Lemma 2.2.6. Let A be a bounded self-adjoint operator on H with a closed

range. If A > 0 also A† > 0.

The following Lemma can be found in [52].

Lemma 2.2.7. Let H and W be Hilbert spaces and let A : W → H be a

bounded operator with a closed range R(A), and let b ∈ H. We define the

set B by

B := arg min
x∈W

‖Ax− b‖.

Then x := A†b is the unique element of B of minimal norm.
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2.3 Frames in Hilbert Spaces

Definition 2.3.1. Let {fk}k∈N be a sequence in H. If there exists a constant

B > 0, such that∑
j∈N

|〈f, fk〉|2 6 B‖f‖2, for every f ∈ H, (2.7)

then we call {fk}k∈N a Bessel sequence. Any constant B > 0 satisfying (2.7)

is called Bessel bound for {fk}k∈N.

Lemma 2.3.2. If {fk}k∈N is a Bessel sequence in H, then
∑

k∈N ckfk con-

verges unconditionally for every {ck}k∈N ∈ l2(N).

Definition 2.3.3. Let {fk}k∈N be a sequence in H. We say that {fk}k∈N is

a frame for H if there exist constants A,B > 0 such that

A‖f‖2 6
∑
j∈N

|〈f, fk〉|2 6 B‖f‖2, for every f ∈ H. (2.8)

The constant A is called a lower frame bound, and the constant B is called

an upper frame bound.

Definition 2.3.4. Let {fk}k∈N be a sequence in H. We say that {fk}k∈N is

a tight frame for H, if A = B in (2.8).

Definition 2.3.5. Let {uj}j∈N be a frame in H. The operator

V : l2(N) → H, V {cj}j∈N =
∞∑
j=1

cjuj

is called the synthesis operator. The adjoint operator

V ∗ : H → l2(N), V ∗f = {〈f, uj〉}j∈N

is called the analysis operator. The composition

S : H → H, Sf = V V ∗f =
∞∑
j=1

〈f, uj〉uj
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is called the frame operator.

Theorem 2.3.6, which can be found in [21, Theorem 5.1.7], is an impor-

tant result in frame theory. It states that every f ∈ H is an infinite linear

combination of the frame elements.

Theorem 2.3.6. If {fk}k∈N is a frame, then

f =
∑
k∈N

〈f, S−1fk〉fk, for every f ∈ H,

and

f =
∑
k∈N

〈f, fk〉S−1fk, for every f ∈ H. (2.9)

Both series converge unconditionally for all f ∈ H.

Theorem 2.3.7. If {fk}k∈N is a tight frame with frame bound A, then

f =
1

A

∑
k∈N

〈f, fk〉fk, for every f ∈ H.

The following theorem can be found in [21, Theorem 5.3.4]

Theorem 2.3.8. If {fk}k∈N is a frame for H with frame operator S, then

{S− 1
2fk}k∈N is a tight frame with frame bound equal to 1. Every f ∈ H can

be written in the from

f = S− 1
2SS− 1

2f =
∞∑
k=1

〈f, S− 1
2fk〉S− 1

2fk.

The following Lemma can be found in [21, Lemma 5.7.1]

Lemma 2.3.9. Let {fk}k∈N and {gk}k∈N be Bessel sequences in H. The

following are equivalent

1. f =
∑∞

k=1〈f, gk〉fk, for every f ∈ H.

2. f =
∑∞

k=1〈f, fk〉gk, for every f ∈ H.

3. 〈f, g〉 =
∑∞

k=1〈f, fk〉〈gk, g〉, for every f, g ∈ H.
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If B denotes an upper frame bound for {fk}k∈N, then B−1 is a lower frame

bound for {gk}k∈N.

Definition 2.3.10. If one of the three equivalent conditions of Lemma 2.3.9

is satisfied, then {fk}k∈N and {gk}k∈N are called dual frames for H.

We observe that Theorem 2.3.6 shows that {fk}k∈N and {S−1fk}k∈N are

dual frames. The frame {S−1fk}k∈N is called the canonical dual frame of

{fk}k∈N.
The following Lemma can be found in [21, Lemma 5.3.6]

Lemma 2.3.11. Let {fk}k∈N be a frame for H and let f ∈ H. If f has a

representation f =
∑

k∈N ckfk for some coefficients {ck}k∈N, then∑
k∈N

|ck|2 =
∑
k∈N

|〈f, S−1fk〉|2 +
∑
k∈N

|ck − 〈f, S−1fk〉|2.

In our setup, sampling and reconstruction are done in distinct subspaces

of a separable Hilbert space H. We work with sequences which are frames

for their closed linear spans, the so called frame sequences.

Definition 2.3.12. Let {uj}j∈N be a sequence in a separable Hilbert space H.

We say that {uj}j∈N is a frame sequence, if there exist constants A,B > 0,

such that for every f ∈ V := span{uj}j∈N

A‖f‖2 6
∑
j∈N

|〈f, uj〉|2 6 B‖f‖2. (2.10)

Equivalently, {uj}j∈N is a frame for V.

The following lemma can be found in [21, Lemma 5.4.5]

Lemma 2.3.13. Let {uj}j∈N be a sequence in H. {uj}j∈N is a frame sequence

with frame bounds A and B if and only if the synthesis operator V is well

defined on l2(N) and

A‖c‖2 6 ‖V c‖2 6 B‖c‖2 for all c ∈ N (V )⊥ (2.11)
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For a frame sequence {uj}j∈N, the frame operator S is invertible on V ,
its closed linear span, but not necessarily on the whole space H. To state

a counterpart of Theorem 2.3.6 for frame sequences, we need to use the

pseudoinverse of S.

The following Theorem is stated in [37, Section 1] and proven similarly

to Theorem 2.3.6.

Theorem 2.3.14. If {uj}j∈N is a frame sequence for V := span{uj}j∈N, then

PVf =
∑
j∈N

〈f, S†uj〉uj, for every f ∈ H, (2.12)

and

PVf =
∑
j∈N

〈f, uj〉S†uj, for every f ∈ H. (2.13)

Both series converge unconditionally for all f ∈ H.

Theorem 2.3.14 shows that given the measurements {〈f, uj〉}j∈N of f with

a frame sequence {uj}j∈N, it is possible to calculate the orthogonal projection
onto V := span{uj}j∈N.

The following Theorem is the counterpart of Theorem 2.3.7 for frame

sequences and can be proven almost the same way.

Theorem 2.3.15. If {uj}j∈N is a tight frame sequence for V with frame

bound A, then

PVf =
1

A

∑
j∈N

〈f, uj〉uj, for every f ∈ H.

Lemma 2.3.16. Let {uj}j∈N be a frame sequence in H and V be the corre-

sponding synthesis operator. The operator (V V ∗)† and the operator (V ∗V )†

are well defined and bounded, (V V ∗)† > 0 and (V ∗V )† > 0.

Proof. From the upper frame bound of {uj}j∈N we infer that the positive

operators V V ∗ and V ∗V are bounded, and from the lower frame bound of

{uj}j∈N and Lemma 2.1.7 we infer that they have a closed range. Therefore by
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Lemma 2.2.6 the operator (V V ∗)† and the operator (V ∗V )† are well defined

and bounded, (V V ∗)† > 0 and (V ∗V )† > 0.

Lemma 2.3.16 in combination with Lemma 2.1.1 shows that for the oper-

ator A = (V V ∗)† and A = (V ∗V )† the unique positive square root A
1
2 exists.

From now on, we use for the square root of the pseudoinverse of an operator

A the notation

A
†
2 := (A†)

1
2

We need a slightly modified version of Theorem 2.3.8 for frame sequences.

Lemma 2.3.17. Let V be a closed subspace of H, let {uj}j∈N be a frame for

V. By V we denote the corresponding analysis operator and by S = V V ∗ the

corresponding frame operator.

The set

{S
†
2uj}j∈N

forms a tight frame for V with frame bound equal to 1. The synthesis operator

of the tight frame sequence {S †
2uj}j∈N is given by

M := S
†
2V,

and

PV =MM∗ = S
†
2SS

†
2 = S†S = SS†. (2.14)

Lemma 2.3.18 proves the following. Suppose that we are given the inner

products {〈f, uj〉}j∈N of an element f ∈ H with a frame {uj}j∈N for V (a

closed subspace ofH). Applying the operator (V ∗V )
†
2 to these measurements,

we obtain the inner products of f with the tight frame {S †
2uj}j∈N for V .

Lemma 2.3.18. Let V be a closed subspace of H. If {uj}j∈N is a frame for V,
V is the corresponding synthesis operator, V ∗ is the corresponding analysis

operator, and S is the corresponding frame operator, then

(V ∗V )
†
2V ∗ = V ∗(V V ∗)

†
2 . (2.15)

Equivalently, the operator (V ∗V )
†
2V ∗ is the analysis operator of the frame

sequence {S †
2uj}j∈N.
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Proof. Obviously for k ∈ N

(V ∗V )kV ∗ = V ∗(V V ∗)k. (2.16)

Therefore

p(V ∗V )V ∗ = V ∗p(V V ∗)

for every polynomial p. We are going to prove that there exists a sequence

of polynomials {pk}k∈N, such that for i = 1, 2

lim
m→∞

‖pm(Ai)− A
†
2
i ‖ = 0

simultaneously for A1 := V ∗V and A2 := V V ∗.

From the lower bound C1 of the frame sequence we infer that for every

u ∈ V = N (V V ∗)⊥

C1‖u‖2 6 〈V V ∗u, u〉.

Consequently the set σ(V V ∗)\{0} is bounded below by C1. The upper frame

bound C2 ensures that the set σ(V V ∗) has the upper bound C2. This shows

that 0 is an isolated point of the spectrum, and that for K := {0} ∪ [C1, C2]

the function g : K → R

g(x) =

 1√
x

for x ∈ [C1, C2],

0 for x = 0

is continuous on K. Since σ(V V ∗)∪{0} = σ(V ∗V )∪{0}, f is also continuous

on σ(V ∗V ).

By the Weierstrass approximation theorem there exists a sequence of

polynomials {pm}m∈N, such that

lim
m→∞

‖pm − g‖∞ = 0,

uniformly on K. By the continuous functional calculus (Theorem 2.1.6)

lim
m→∞

‖pm(Ai)− g(Ai)‖ = 0
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simultaneously for A1 := V ∗V and A2 := V V ∗.

It remains to prove that g(Ai) = A
†
2
i for i = 1, 2. We show that for

S = V V ∗ it holds g(S) = S
†
2 . By Lemma 2.2.1 we have to prove that

N (g(S)) = R(S)⊥, R(g(S)) = N (S)⊥, S
1
2 g(S)x = x, x ∈ R(S). We

show that by restricting the operator g(S) to the set R(S) = V and the set

R(S)⊥ = V⊥.

On the set V , the operator S : V → V is invertible, and σ(S|V) ⊂ [C1, C2].

Let the function f be defined by f(x) =
√
x. By the continuous functional

calculus and the definition of g, we obtain for u ∈ V

u = ϕ(1)u = ϕ(fg)u = ϕ(f)ϕ(g)u =
√
S|V g(S|V)u.

This shows that on the set V it holds g(S) =
√
S

−1
. Consequently for

x ∈ R(S), S
1
2 g(S)x = x, and V ⊂ R(g(S)).

On the set V⊥ it holds S = 0, and consequently σ(S|V⊥) = 0. By the con-

tinuous functional calculus, on this set g(S) = 0. Consequently V = R(g(S))

and N (g(S)) = V⊥. This proves that g(S) = S
†
2 . That g(V ∗V ) = (V ∗V )

†
2

is proven the same way.
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Chapter 3

Stability, quasi optimality and

error estimates

3.1 Problem formulation and notation

We now describe the reconstruction problem we treat in detail. Let H be a

separable Hilbert space over C. We assume that we are given the measure-

ments

dj = 〈f, uj〉+ δj j ∈ N, (3.1)

of an unknown function f ∈ H, where {uj}j∈N is a fixed frame sequence. We

call {uj}j∈N the sampling frame and

V := span{uj}j∈N,

the sampling space.

We approximate the function f by a series expansion

f̃ =
∑
k∈N

ckgk.

We call {gk}k∈N the reconstruction frame sequence and

T := span{gk}k∈N,
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the reconstruction space. Of course, for different classes of functions different

basis functions {gk} are needed, and a priori knowledge of the function to

reconstruct should be taken into account. Since the orthogonal projection

PT f is the point in T closest possible to f , the sequence {gk}k∈N should be

such that

ρ(f) :=
‖f − PT f‖

‖f‖
(3.2)

is small. In this case we say f is well presented by the subspace T .

Let d ∈ l2(N) denote the vector consisting of the measurements dj, defined

by (3.1). Our objective is to find a linear mapping

Q : l2(N) → T ,

such that

f̃ := Qd

is a good approximation to f for every f ∈ H that is well presented by the

reconstruction space T .

By being f̃ a good approximation to f we mean that the relative error

ν(f) :=
‖f̃ − f‖
‖f‖

is small (depending on the relative measurement error).

We use the notation V for the synthesis operator, V ∗ for the analysis

operator and S = V V ∗ for the frame operator of the sampling frame sequence

{uj}j∈N. With this notation, {uj}j∈N being a frame for V is equivalent to the

statement that there exist constants A,B > 0, such that

A‖f‖2 6 ‖V ∗f‖2 6 B‖f‖2, for every f ∈ V. (3.3)

We use the notation T for the synthesis operator and T ∗ for the analysis

operator of the reconstruction frame sequence {gk}k∈N, and C,D for the
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frame bounds. Consequently

C‖g‖2 6 ‖T ∗g‖2 6 D‖g‖2, for every g ∈ T . (3.4)

In general, to calculate PT f from the vector V ∗f containing the mea-

surements {〈f, uj〉}j∈N, the information is not sufficient (to be able to do so,

T has to be a subset of V). Even if possible, in some cases calculating the

orthogonal projection onto the reconstruction space T is numerically unsta-

ble. In other words, in general, there need not exist an operator Q, such that

QV ∗ = PT . Certain oblique projections onto T can be calculated under much

weaker assumptions. We discuss two such oblique projections. The first one

is the oblique projection with range T and null-space PV(T )⊥, denoted by

PT ,PV (T )⊥ . The second one is PT ,S(T )⊥ , which was introduced in [6, 7, 10].

3.2 Stability, quasi optimality

We use two quantities to measure the quality of a reconstruction operator

Q : l2(N) → H.

In order to measure how well Q deals with the part of the function to recon-

struct lying outside of the reconstruction space, following [10], we introduce

the quasi-optimality constant.

Definition 3.2.1. Let Q : l2(N) → H be an operator. The quasi-optimality

constant µ = µ(Q) > 0 is the smallest number µ, such that

‖f −QV ∗f‖ 6 µ‖f − PT f‖, for all f ∈ H. (3.5)

If there does not exist a µ ∈ R such that (3.5) is fulfilled, we set µ = ∞.

If µ(Q) <∞, Q is called a quasi-optimal reconstruction operator.

We note that PT f is the element of T closest to f . Thus the quasi-

optimality constant µ is a measure of how well QV ∗ performs in comparison

to PT .
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As a measure of stability of the reconstruction, we use the operator norm

‖Q‖ of Q. In [10], instead of the operator norm of Q, the absolute condition

number [10, Definition 2.2] is used. Here we focus on linear reconstructions,

in which case this quantity equals the operator norm ‖Q|R(V ∗)‖ ofQ restricted

to the subspace R(V ∗).

If no additional information about the noise is given, it is reasonable to

expect that Q annihilates everything in R(V ∗)⊥, since the measurements

(3.1) are assumed to form a noisy version of an element in R(V ∗). This

means that for c ∈ l2(N),

Qc = Q(PR(V ∗)c+ PR(V ∗)⊥c) = QPR(V ∗)c.

In this case the following Lemma holds.

Lemma 3.2.2. Let Q : l2(N) → H be a bounded operator. If Qc = 0 for

c ∈ R(V ∗)⊥, then

‖Q‖ = ‖Q|R(V ∗)‖.

3.3 Absolute and relative error

For a quasi-optimal and bounded reconstruction operator we derive the fol-

lowing error estimates.

Lemma 3.3.1. Let Q : l2(N) → H be a bounded and quasi-optimal operator.

For f ∈ H and c ∈ l2(N) it holds

‖f −Q(V ∗f + c)‖ 6 µ(Q)‖f − PT f‖+ ‖Q‖‖c‖. (3.6)

Proof. Follows from Definition 3.2.1 and the triangle-inequality.

Equation (3.6) bounds the absolute error of our reconstruction. We ob-

serve that ‖f − PT f‖ is the norm of the part of f lying outside of the re-

construction space. This term is multiplied by the quasi-optimality constant.

Therefore the quasi-optimality constant is a measure of stability of the recon-

struction with respect to the part lying outside of the reconstruction space.
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The norm of the measurement error c is multiplied by the operator norm of

Q. This is the reason why we use the operator norm of Q as a measure of

stability with respect to error present in the measurements.

The following Theorem gives an estimate for the relative error.

Lemma 3.3.2. Let Q : l2(N) → H be a bounded and quasi-optimal operator

and let B denote the upper frame bound of the sampling frame. For f ∈ H
and c ∈ l2(N)

‖f −Q(V ∗f + c)‖
‖f‖

6 µ
‖f − PT f‖

‖f‖
+ ‖Q‖

√
B

‖c‖
‖V ∗f‖

. (3.7)

Proof. From the frame equation (3.3) it follows that

‖f‖ > 1√
B
‖V ∗f‖. (3.8)

Combining (3.6) and (3.8), we obtain (3.7).

In Section 5.2 we discuss a reconstruction operator Qg with the small-

est possible operator norm in detail, which was introduced in [6, 7, 10]. The

authors called this reconstruction generalized sampling. In Section 5.3 we dis-

cuss a reconstruction operator Qf with the smallest possible quasi-optimality

constant. We call this reconstruction frame independent sampling.

3.4 Oblique projections and subspace angles

3.4.1 Subspace angles

In Theorem 4.0.12 we show that any quasi-optimal and bounded operator

Q : l2(N) → T has the property that the operator P = QV ∗ is an oblique

projection onto the reconstruction space T .

In order to be able to analyze these oblique projections, we need the

concept of subspace angles. There are many different definitions of the angle

between subspaces. The paper [61] is a good collection of different concepts

of angles and points out the connections between them. See also [59].
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Definition 3.4.1. Let T and V be nonzero closed subspaces of a Hilbert space

H. We define the subspace angle ϕ = ϕT ,V ∈ [0, π
2
] between T and V by

cos(ϕT ,V) = inf
g∈T
‖g‖=1

‖PVg‖ = inf
g∈T
‖g‖=1

sup
u∈V
‖u‖=1

|〈g, u〉|. (3.9)

It is important to realize that in general cos(ϕT ,V) 6= cos(ϕV,T ). For

example let H = R3, let V be the x y-plane and let T be the line spaned by

the vector [1, 0, 1]T . In this case ϕT ,V is the angle between the two vectors

[1, 0, 1]T and [1, 0, 0]T and cos(ϕT ,V) = 1√
2
is the cosine of the angle that

is intuitively thought of. We observe that the vector [0, 1, 0]T ∈ V and

[0, 1, 0]T ⊥ T , and consequently cos(ϕV,T ) = 0.

Most of our theorems use the assumption that the cosine of the angle

between the reconstruction and sampling space fulfills cos(ϕT ,V) > 0. The

following theorem shows that this assumption is equivalent to the statement

that the orthogonal projection of the sampling vectors onto the reconstruc-

tion space {PT uj}j∈N is a frame for T .

Lemma 3.4.2. Let T and V be closed subspaces of H, and {uj}j∈N be a frame

for V. Let V denote the synthesis operator of the frame sequence {uj}j∈N and

let V ∗ denote the corresponding analysis operator.

The following are equivalent.

1. cos(ϕT ,V) > 0.

2. {PT uj}j∈N is a frame for T .

Proof. Let cos(ϕT ,V) > 0. Let A and B denote the lower and upper frame

bounds of {uj}j∈N, respectively. From the assumption cos(ϕT ,V) > 0 it fol-

lows that

‖g‖ cos(ϕT ,V) 6 ‖PVg‖ for all g ∈ T . (3.10)

In particular, for g ∈ T we obtain with (3.10)

A‖g‖2 cos2(ϕT ,V) 6 A‖PVg‖2 6 ‖V ∗g‖2 =
∑
j∈N

|〈g, PT uj〉|2 6 B‖g‖2. (3.11)
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This shows that {PT uj}j∈N is a frame for T with upper frame bound B and

lower frame bound A cos2(ϕT ,V).

Let {PT uj}j∈N be a frame for T with lower frame bound C1. Since

〈g, PT uj〉 = 〈PVg, uj〉 for g ∈ T , we obtain

C1‖g‖2 6
∑
j∈N

|〈g, PT uj〉|2 =
∑
j∈N

|〈PVg, uj〉|2 6 B‖PVg‖2.

This implies that

cos(ϕT ,V) = inf
g∈T
‖g‖=1

‖PVg‖ >
√
C1√
B

> 0.

If reconstruction space T is the whole Hilbert space H, and {uj}j∈N ⊂ H
is a frame sequence with the closed linear span V , then cos(ϕT ,V) > 0 if,

and only if {uj}j∈N is a frame for H. For example, when reconstructing a

bandlimited function f ∈ L2([−1
2
, 1
2
]) from point samples

f(xj) = 〈Ff, e−2πixj ·〉, j ∈ N,

one needs to prove that {e2πixj ·}j∈N is a frame for L2([−1
2
, 1
2
]), in order to

guarantee that a stable reconstruction from point evaluations {f(xj)}j∈N is

possible. As mentioned in the introduction, in this case the set {xj}j∈N is

called a set of stable sampling.

If {e2πixj ·}j∈N is a frame for V = L2([−1, 1]), and we use T = L2([−1
2
, 1
2
])

as reconstruction space, we are in the case of sampling and reconstruction

in distinct subspaces where T ⊂ V = H. In this paragraph, functions in

L2([−1
2
, 1
2
]) are treated as elements of L2([−1, 1]) which vanish outside [−1

2
, 1
2
].

In this case cos(ϕT ,V) = 1, and {PT e
2πixj ·}j∈N is a frame for T = L2([−1

2
, 1
2
]).

Clearly a frame for L2([−1
2
, 1
2
]) is not a frame for L2([−1, 1]), and therefore

cos(ϕV,T ) = 0.
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3.4.2 Oblique projections

In Section 4, we show that any quasi-optimal and bounded reconstruction

operator Q : l2(N) → T has the property that the operator P = QV ∗ is an

oblique projection onto the reconstruction space. Therefore we collect some

facts on oblique projections.

Definition 3.4.3. Let X be a vector space and let T and W be subspaces

of X . We say that X is the direct sum of T and W, if every x ∈ X can be

written uniquely as x = s+w with s ∈ T and w ∈ W. If X is the direct sum

of T and W write

X = T ⊕W .

Remark 3.4.4. The decomposition x = s + w with x ∈ T and w ∈ W is

unique if and only if T ∩W = {0}.

Definition 3.4.5. Let X be a vector space and let P : X → X be a linear

mapping. P is called a projection if and only if

P 2 = P.

We also say oblique projection to a projection, to indicate that the projection

need not be the orthogonal projection.

The following lemma collects the main properties of oblique projections.

The first point of Lemma 3.4.6 is stated in [63, Theorem 2.1], the proof of

the second point can be found in [19, Theorem 1], and for the third point

see [10, Corollary 3.5], [61] and [19].

Lemma 3.4.6. Let T and W are closed subspaces of a Hilbert space H. Then

1. cos(ϕT ,W⊥) > 0 if and only if T ∩W = {0} and T ⊕W is closed in H.

2. If T ∩W = {0} and H1 := T ⊕W is a closed subspace of H, then the

oblique projection PT ,W : H1 → T with range T and kernel W is well

defined and bounded on H1.
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3. Let cos(ϕT ,W⊥) > 0 and let H1 := T ⊕W.

For the oblique projection PT ,W : H1 → T it holds

‖PT ,W‖ =
1

cos(ϕT ,W⊥)
(3.12)

and

‖f − PT f‖ 6 ‖f − PT ,Wf‖ 6 1

cos(ϕT ,W⊥)
‖f − PT f‖, (3.13)

for all f ∈ H1. The upper bound in (3.13) is sharp.

From Lemma 3.4.6, (3.), we obtain the following useful Corollary.

Corollary 3.4.7. Let T and V be closed subspaces of H. Let {uj}j∈N be a

frame for V, and let V and V ∗ be the corresponding synthesis and analysis

operator. If Q : l2(N) → T is an operator onto T with the property that QV ∗

is an oblique projection with range T and null-space W⊥, then

µ(Q) = ‖QV ∗‖ =
1

cos(ϕT ,W)
.

Definition 3.4.8. Let {uj}j∈N and {gk}k∈N be Bessel sequences in H. We

call the bounded operator V ∗T the cross-Gramian of {uj}j∈N with respect to

{gk}k∈N.

Lemma 3.4.9. Let T and V be closed subspaces of a separable Hilbert space

H. Let {uj}j∈N be a frame for V, and let V and V ∗ be the corresponding

synthesis and analysis operator. Let {gk}k∈N be a Riesz basis for T , and T

the corresponding synthesis operator of {gk}k∈N.
Then T ∩ V⊥ = {0} if and only if the cross-Gramian V ∗T is injective.

Proof. For c ∈ l2(N),

(V ∗Tc)j =
∑
l∈N

cl〈gl, uj〉 = 〈Tc, uj〉.
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This means that

N (V ∗T ) =

{
c ∈ l2(N) : g =

∑
k∈N

ckgk ∈ V⊥

}
.

Since {gk}k∈N is a Riesz basis for T , this means that N (V ∗T ) = {0} if and

only if T ∩ V⊥ = {0}.

Lemma 3.4.9 implies, that for finite sequences {uj}j∈J and {gk}k∈K with

{gk}k∈K , linearly independent, cos(ϕT ,V) > 0 if and only if the cross-Gramian

V ∗T is injective.
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Chapter 4

Connection of quasi-optimal

operators to dual frames

In this section, we point out the connections of quasi-optimal and bounded

reconstruction operators to dual frames and pseudoframes.

Definition 4.0.10. Let T be a closed subspace of H and let {uj}j∈N and

{gk}k∈N be Bessel sequences in H. We say that {gk}k∈N is a pseudoframe for

the subspace T w.r.t. {uj}j∈N if for every f ∈ T

f =
∑
k∈N

〈f, uk〉gk.

Let {uj}j∈N be a sequence in H and V = span{uj}j∈N. In [48, Proposition

3] it is shown that if {gk}k∈N is a pseudoframe for the subspace T w.r.t.

{uj}j∈N, then T ∩V⊥ = {0}. Therefore T ∩V⊥ = {0} is a necessary condition

for the existence of a pseudoframe for the subspace T w.r.t. {uj}j∈N. The

following Lemma shows that if {uj}j∈N is a frame for V , then cos(ϕT ,V) > 0,

(i.e. T ∩V⊥ = {0} and T ⊕V⊥ is closed inH) is sufficient for the existence of a

pseudoframe for the subspace T w.r.t. {uj}j∈N. In addition the pseudoframes

{gk}k∈N ⊂ T , (i.e. the reconstruction vectors are assumed to lie inside the

reconstruction space) are exactly the dual frames of {PT uk}k∈N.
The proof of the following theorem is similar to [48, Theorem 4]
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Lemma 4.0.11. Let T be a closed subspace of H and let {uj}j∈N be a

Bessel sequence. There exists a pseudoframe {gk}k∈N for the subspace T
w.r.t. {uj}j∈N if and only if {PT uk}k∈N is a frame for T .

The pseudoframes {gk}k∈N ⊂ T for the subspace T w.r.t. {uj}j∈N are

exactly the dual frames of {PT uk}k∈N.

Proof. Let {gk}k∈N be a pseudoframe for the subspace T w.r.t. {uj}j∈N. This
is equivalent to the statement that for g ∈ T

g =
∑
k∈N

〈PT g, uk〉gk =
∑
k∈N

〈f, PT uk〉gk. (4.1)

Equation (4.1) implies that for g ∈ T

g = PT (g) = PT

(∑
k∈N

〈f, PT uk〉gk

)
=
∑
k∈N

〈f, PT uk〉PT gk.

By assumption the sequences {uj}j∈N and {gk}k∈N ⊂ T are both Bessel

sequences. Therefore also the sequences {PT uj}j∈N and {PT gk}k∈N ⊂ T are

Bessel sequences, and by Lemma 2.3.9 {PT uj}j∈N and {PT gk}k∈N ⊂ T are

both frames for T , dual frames of each other.

Conversely, if {PT uk}k∈N is a frame for T , every dual frame {hk}k∈N ⊂ T
fulfills (4.1), and therefore {hk}k∈N is a pseudoframe for the subspace T w.r.t.

{uj}j∈N.
The second statement follows directly from (4.1).

The reconstruction operators Q we treat in this thesis all have the prop-

erty that R(Q) = T , which means that all reconstructions are located inside

the reconstruction space T . Among those operators we are interested in

bounded and quasi-optimal operators. The following theorem gives several

equivalent statements for an operator Q : l2(N) → T being bounded and

quasi-optimal.

Theorem 4.0.12. Let T and V be closed subspaces of H, and {uj}j∈N be a

Bessel sequence with the closed linear span V. For an operator Q : l2(N) → T
the following are equivalent.
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1. There exist constants µ,B > 0, such that for f ∈ H and c ∈ l2(N)

‖f −Q(V ∗f + c)‖ 6 µ‖f − PT f‖+B‖c‖. (4.2)

2. The operator Q is quasi-optimal (with respect to {uj}j∈N) and bounded.

3. QV ∗g = g for g ∈ T and Q is a bounded operator.

4. The sequence {PT uk}k∈N is a frame for T . The operator Q is of the

form

Qc =
∑
k∈N

ckhk, (4.3)

where {hk}k∈N ⊂ T is a dual frame of {PT uk}k∈N, i.e. Q is the syn-

thesis operator of a dual frame of {PT uk}k∈N.

5. The sequence {PT uk}k∈N is a frame for T and Q is the synthesis oper-

ator of a pseudoframe {gk}k∈N ⊂ T for the subspace T w.r.t. {uj}j∈N.

6. The operator Q is bounded and QV ∗ is a bounded oblique projection

onto T .

Proof. That (1) implies (2) is obtained by setting c = 0 and f = 0 in (4.2).

From (2) it follows that QV ∗g = g for g ∈ T , since otherwise µ = ∞.

This implies (3).

Next we show that (3) implies (4). Let Q : l2(N) → T be a bounded

operator with QV ∗g = g for g ∈ T . Let {ek}k∈N be the standard basis of

l2(N) and let hk = Qek. Then

Qc =
∑
k∈N

ckhk.

In particular for g ∈ T ,

QV ∗g =
∑
k∈N

〈g, PT uk〉hk = g. (4.4)

Since Q is bounded also Q∗ is bounded, and consequently {hk}k∈N is a Bessel

sequence in T . By assumption {uk}k∈N is a Bessel sequence in V with Bessel
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bound B and consequently∑
k∈N

|〈f, PT uk〉|2 =
∑
k∈N

|〈PT f, uk〉|2 6 B‖PT f‖2 6 B‖f‖2,

and {PT uk}k∈N is a Bessel sequence. From (4.4) and Lemma 2.3.9 we infer

that {gk}k∈N is a dual frame of {PT uk}k∈N.
The equivalence of (4) and (5) is shown in Lemma 4.0.11.

Next we show that (4) implies (6). Let the operator Q be defined by

Qc =
∑

k∈N ckhk, where {hk}k∈N is a dual frame of {PT uk}k∈N. We define

P := QV ∗. Since R(Q) ⊂ T and QV ∗g = g for g ∈ T , it follows that

R(P ) = T and that

P 2 = QV ∗QV ∗ = QV ∗ = P.

Since both Q and V ∗ are bounded, P is bounded.

Finally we prove that (6) implies (1). Let Q be a bounded operator, and

let P := QV ∗ be a bounded oblique projection onto T . Lemma 3.4.6, (3.),

implies that

‖f − Pf‖ 6 ‖P‖‖f − PT f‖,

and consequently

‖f −Q(V ∗f + c)‖ 6 ‖P‖‖f − PT f‖+ ‖Q‖‖c‖.

The following lemma shows that the synthesis operator of the canonical

dual frame of {PT uk}k∈N is the operator with the smallest operator norm

among all quasi-optimal and bounded operators Q : l2(N) → T .

Lemma 4.0.13. Let T be a closed subspaces of H. Let {uj}j∈N be a Bessel

sequence in H, let V be the corresponding synthesis operator, let V ∗ be the

corresponding analysis operator and let {PT uk}k∈N be a frame for T . Let

{hk}k∈N denote the canonical dual frame of {PT uk}k∈N, let T denote the syn-

thesis operator of {hk}k∈N, let T ∗ denote the corresponding analysis operator
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and let S denote the corresponding frame operator. If Q : l2(N) → H is a

bounded operator with the property that QV ∗g = g for g ∈ T , then

‖Q‖ > ‖T‖.

Proof. Let Q : l2(N) → T be a bounded operator with the property that

QV ∗g = g for g ∈ T . Since for g ∈ T

PTQV
∗g = PT g = g,

and ‖PTQ‖ 6 ‖Q‖ we may assume that R(Q) ⊂ T . By Theorem 4.0.12 Q

is the synthesis operator of a dual frame of {PT uk}k∈N. From Lemma 2.3.11

we infer that for g ∈ T

‖Q∗g‖2 = ‖T ∗g‖2 +
∑
k∈N

∣∣〈g, hk〉 − 〈g, S†PT uk〉
∣∣2 ,

and consequently ‖Q∗
|T ‖ > ‖T ∗

|T ‖. For g⊥ ∈ T ⊥ it holds T ∗g⊥ = 0. Therefore

‖Q∗‖ > ‖T ∗‖. By Lemma 2.1.2 this implies that ‖Q‖ > ‖T‖.
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Chapter 5

Consistent, generalized and

frame independent sampling

We recall the problem of reconstructing a compactly supported function f

from a finite number of perturbed Fourier coefficients

dj = Ff(j) + δj, j = −
⌊n− 1

2

⌋
, . . . ,

⌊n
2

⌋
.

When using the linear span of the first n Legendre polynomials Pk,

k = 0, . . . , n− 1, as reconstruction space T , the moment problem〈
f̃ , e2πij·

〉
= dj, j = −

⌊n− 1

2

⌋
, . . . ,

⌊n
2

⌋
, (5.1)

has a unique solution f̃ ∈ T . We observe that the Fourier coefficients F f̃(j)
of the reconstruction f̃ defined by (5.1), coincide with the given measure-

ments dj, j = −
⌊
n−1
2

⌋
, . . . ,

⌊
n
2

⌋
. Therefore f̃ is a so called consistent recon-

struction. For general sampling vectors {uj}j∈N consistency means that

〈f̃ , uj〉 = dj, j ∈ N. (5.2)

The notion of consistent sampling is introduced in [25,26] and further devel-

oped in [20,22,27,28].

As already mentioned, calculating n Legendre coefficients from n Fourier
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coefficients yields an exponentially growing condition number of the matrix

of the resulting linear problem. Therefore for a stable reconstruction more

Fourier coefficients than Legendre polynomials are needed. If there are more

measurements than reconstruction vectors, there exists no consistent recon-

struction anymore. Therefore a generalization of the concept of consistent

sampling is needed. In this chapter we present several generalizations of the

concept of consistent sampling, but first we review some properties of the

concept of consistent sampling.

5.1 Consistent sampling

The following Lemma can be found in [27, Lemma 1]

Lemma 5.1.1. Let T and V be closed subspaces of a separable Hilbert space

H. The following are equivalent.

1. H = T ⊕ V⊥

2. H = V ⊕ T ⊥

3. cos(ϕT ,V) > 0 and cos(ϕV,T ) > 0.

The following Lemma can be found in [27, Lemma 4]

Lemma 5.1.2. Let T and V be closed subspaces of a separable Hilbert space

H. If H = T ⊕ V⊥, then the oblique projection PT ,V⊥ : H → T with range

T and kernel V⊥ is well defined and bounded. Let H1 be another separable

Hilbert space, let T : H1 :→ T and V : H1 → V be bounded operators with

R(T ) = T and R(V ) = V. Then the following hold.

1. The operator (V ∗T )† is a bounded operator on H1.

2. The oblique projection PT ,V⊥ : H → T with range T and kernel V⊥ can

be written in the form

PT ,V⊥ = T (V ∗T )†V ∗ (5.3)
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3. The operator

Qc := T (V ∗T )†

is independent of the particular choice of the bounded operator T , as

long as R(T ) = T .

If we choose H1 = l2(N), V the synthesis operator of a frame {uj}j∈N for

V and T the synthesis operator of a frame for T , then clearly the assumptions

of Lemma 5.1.2 are fulfilled. Since the following theory is developed for this

setup, we use these assumptions instead of the more general of Lemma 5.1.2.

We use the notation

Qc := T (V ∗T )†. (5.4)

The subscript c of Qc is to indicate that by this operator we obtain a consis-

tent reconstruction.

Lemma 5.1.3. Let T and V be closed subspaces of H. Let {uj}j∈N be a

frame for V and let V be the corresponding synthesis operator. Let {gk}k∈N
be a frame for T and let T be the corresponding synthesis operator. Let

H = T ⊕ V⊥ and let Qc be the operator defined by (5.4). Then

Qc|R(V ∗)⊥ = 0, (5.5)

and consequently

‖Qc|R(V ∗)‖ = ‖Qc‖. (5.6)

Proof. Using that N (A†) = N (A∗) we obtain

R(V ∗)⊥ = N (V ) ⊂ N (T ∗V ) = N ((V ∗T )∗)

= N
(
(V ∗T )†

)
⊂ N (T (V ∗T )†) = N (Qc).

(5.7)

Corollary 5.1.4. Let T and V be closed subspaces of H and Qc be defined

by (5.4). If T ⊕ V⊥ = H, then

µ(Qc) = ‖QcV
∗‖ = ‖PT ,V⊥‖ =

1

cos(ϕT ,V)
. (5.8)
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Proof. Equation (5.8) follows from Corollary 3.4.7 and Lemma 5.1.2.

5.2 Generalized sampling

In this section we treat the concept of generalized sampling. In the finite di-

mensional case, for linearly independent sampling vectors and linearly inde-

pendent reconstruction vectors, a unique consistent reconstruction typically

exists if there are as many sampling vectors as reconstruction vectors. Gen-

eralized sampling is a generalization of the concept of consistent sampling,

where more sampling vectors than reconstruction vectors are allowed.

Given the perturbed measurements

dj = 〈f, uj〉+ δj, j = −n, . . . , n,

of an element f ∈ H, the concept of generalized sampling chooses as approx-

imation f̃ ∈ T the solution of the standard least squares problem

f̃ = arg min
g∈T

n∑
j=−n

|〈g, uj〉 − dj|2 .

The reconstruction operator Qg : l
2(N) → T defined by this property is an-

alyzed in detail in [10]. This reconstruction operator is of great importance,

since it has the smallest operator norm among all quasi-optimal reconstruc-

tions. We review the most important properties of this reconstruction and

supplement some additional aspects.

In order to prove Theorem 5.2.5 we need Lemma 5.2.1, Lemma 5.2.2,

Lemma 5.2.3 and Lemma 5.2.4.

The proof of Lemma 5.2.1 is similar to the proof of [3, Theorem 3.4].

Lemma 5.2.1. Let T and V be closed subspaces of H. Let {uj}j∈N be a

frame for V, with lower and upper frame bound A and B, and corresponding

frame operator S. If cos(ϕT ,V) > 0, then S(T ) is closed, and

cos(ϕT ,S(T )) >
√
A√
B

cos(ϕT ,V). (5.9)
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Proof. Since S is the frame operator of the frame sequence {uj}j∈N, for every
u ∈ V it holds

A‖u‖ 6 ‖Su‖ 6 B‖u‖. (5.10)

We recall inequality (3.10)

‖g‖ cos(ϕT ,V) 6 ‖PVg‖ for all g ∈ T .

Using (5.10) and the fact that S = SPV , we obtain

A cos(ϕT ,V)‖g‖ 6 A‖PVg‖ 6 ‖SPVg‖ = ‖Sg‖ for g ∈ T . (5.11)

Equation (5.11) implies that S|T has a closed range by virtue of Lemma 2.1.7.

Since R(S|T ) = S(T ), the set S(T ) is closed.

By definition

cos(ϕT ,S(T )) = inf
g∈T
g 6=0

sup
h∈T
Sh6=0

|〈g, Sh〉|
‖g‖‖Sh‖

. (5.12)

Equation (5.11) implies that for g ∈ T , g 6= 0, also Sg 6= 0. Combining this

with (5.12) and (5.11) we obtain

cos(ϕT ,S(T )) > inf
g∈T
g 6=0

〈g, Sg〉
‖g‖‖Sg‖

. (5.13)

Using the positive definiteness of S and Cauchy-Schwarz inequality, we obtain

‖Sg‖ = sup
h∈H
‖h‖=1

|〈Sg, h〉| = sup
h∈H
‖h‖=1

|〈
√
Sg,

√
Sh〉| 6 sup

h∈H
‖h‖=1

√
〈Sg, g〉

√
〈Sh, h〉

=
√

〈Sg, g〉 ‖
√
Sh‖ 6

√
〈Sg, g〉

√
B.

(5.14)

Combining (5.14) and (5.13) we obtain

cos(ϕT ,S(T )) >
1√
B

inf
g∈T
g 6=0

√
〈g, Sg〉
‖g‖

(5.15)

53



Using (5.10) and ‖g‖ cos(ϕT ,V) 6 ‖PVg‖, we obtain√
〈g, Sg〉 = ‖

√
Sg‖ = ‖

√
SPVg‖ >

√
A‖PVg‖ >

√
A cos(ϕT ,V)‖g‖. (5.16)

Combining (5.16) with (5.15) we deduce (5.9).

Theorem 5.2.2. Let T be a closed subspace of H and let B : H → H be

a self-adjoint operator, such that B(T ) is closed. If cos(ϕT ,B(T )) > 0, then

H = T ⊕B(T )⊥, and the oblique projection PT ,B(T )⊥ : H → T is well defined

and bounded on H.

Proof. By assumption cos(ϕT ,B(T )) > 0. By Lemma 3.4.6 the oblique pro-

jection PT ,B(T )⊥ is well defined and bounded as a mapping from T ⊕B(T )⊥

onto T .

It remains to prove that

T ⊕B(T )⊥ = H.

Lemma 3.4.6, (1.), implies that T ⊕B(T )⊥ is closed, so it is sufficient to show

that (T ⊕B(T )⊥)
⊥
= {0}. By assumption, B(T ) is closed, and consequently

(T ⊕B(T )⊥)
⊥
= T ⊥ ∩B(T ) = T ⊥ ∩B(T ).

Since cos(ϕT ,B(T )) > 0, by (3.9)

cos(ϕT ,B(T )) = inf
f∈T
‖f‖=1

sup
w∈B(T )
‖w‖=1

|〈f, w〉| = inf
f∈T
f 6=0

sup
s∈T
Bs 6=0

| 〈f,Bs〉 |
‖f‖‖Bs‖

= inf
f∈T
f 6=0

sup
s∈T
Bs 6=0

| 〈Bf, s〉 |
‖f‖‖Bs‖

> 0.

(5.17)

Equation (5.17) implies that for f ∈ T \{0} it holds Bf 6∈ T ⊥, and therefore

T ⊥ ∩B(T ) = {0}.

Lemma 5.2.3. Let {uj}j∈N and {gk}k∈N be frames for H. Let V denote the

synthesis operator of {uj}j∈N and let V ∗ denote the corresponding analysis

operator. Let T denote the synthesis operator of {gk}k∈N.
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The cross-Gramian V ∗T is bounded and has a closed range. Furthermore

N (V ∗T ) = N (T ) and

R(T ∗V ) = R(T ∗).

Proof. Since {uj}j∈N and {gk}k∈N are Bessel sequences, the cross-Gramian

T ∗V is bounded. Let {ũj}j∈N be a dual frame of {uj}j∈N. Let f ∈ H. Setting

cj = 〈f, ũj〉 we obtain

(T ∗V c)k =
∑
j∈N

〈f, ũj〉〈uj, gk〉 = 〈f, gk〉.

In other words, R(T ∗V ) = R(T ∗). Since {gk}k∈N is a frame, R(T ∗) is closed

and so is R(T ∗V ).

That N (V ∗T ) = N (T ) follows from

N (T ) = R(T ∗)⊥ = R(T ∗V )⊥ = N (V ∗T ).

We need a slightly modified version of Lemma 5.2.3 for Bessel sequences.

Lemma 5.2.4. Let T be a closed subspace of H, let {gk}k∈N be a frame for

T and let T denote the corresponding synthesis operator. Let {uj}j∈N be a

Bessel sequence in H. Let V denote the synthesis operator of {uj}j∈N and let

V ∗ denote the corresponding analysis operator.

If {PT uj}j∈N is a frame for T , then the operator V ∗T is bounded and has

a closed range. Furthermore

N (V ∗T ) = N (T ) and (5.18)

R(T ∗V ) = R(T ∗) (5.19)

Proof. Let {PT uj}j∈N be a frame for T . Since {uj}j∈N and {gk}k∈N are both

Bessel sequences, the operators V ∗ and T are bounded, and therefore also
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the composition V ∗T is bounded. Since

(V ∗T )j,k = 〈gk, uj〉 = 〈gk, PT uj〉,

the operator V ∗T is a cross-Gramian of two frames for T , and therefore by

Lemma 5.2.3 V ∗T has a closed range and N (V ∗T ) = N (T ). Since V ∗T has

a closed range, also T ∗V has a closed range. As in Lemma 5.2.3 it is shown

that R(T ∗V ) = R(T ∗).

Equation (5.21) and (5.25) of Theorem 5.2.5 can be found in [10, Theorem

4.2.] and [10, Corollary 4.7.] for T finite dimensional. For the last point of

Theorem 5.2.5 see [10, Section 4.1.].

Theorem 5.2.5. Let T and V be closed subspaces of a separable Hilbert space

H. Let {uj}j∈N be a frame for V and let V be the corresponding synthesis

operator and S be the corresponding frame operator. Let {gk}k∈N be a frame

for T and let T be the corresponding synthesis operator. Furthermore let Qg

be defined by

Qg := T (V ∗T )†. (5.20)

If cos(ϕT ,V) > 0, then H = T ⊕S(T )⊥, the oblique projection PT ,S(T )⊥ is

well defined and bounded and the following holds.

• The operator Qg is defined by

QgV
∗ = PT ,S(T )⊥ (5.21)

and

Qg |R(V ∗)⊥ = 0, (5.22)

and consequently Qg is independent of the particular choice of the frame

{gk}k∈N for T .

• Qg = (V ∗PT )
†. (5.23)

• ‖Qg |R(V ∗)‖ = ‖Qg‖. (5.24)
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• µ(Qg) = ‖QgV
∗‖ = ‖PT ,S(T )⊥‖ =

1

cos(ϕT ,S(T ))
<∞. (5.25)

• For d ∈ l2(N), f̃ := Qgd is the unique least squares solution

f̃ = arg min
f̃∈T

∑
j∈N

|〈f̃ , uj〉 − dj|2. (5.26)

Furthermore it holds

Qgd =
∞∑
k=1

ĉkgk

where ĉ = {ĉk}k∈N is the minimal norm element of the set

arg min
c

‖V ∗Tc− d‖.

Proof. Since cos(ϕT ,V) > 0, from Theorem 5.2.2 and Lemma 5.2.1 we infer

that T ⊕ S(T )⊥ = H, and that the oblique projection PT ,S(T )⊥ : H → T is

well defined and bounded. Since cos(ϕT ,V) > 0, by Lemma 3.4.2 the sequence

{PT uj}j∈N is frame for T . Therefore from Lemma 5.2.4 we infer that the

operator V ∗T is bounded and has a closed range. Lemma 2.2.1 implies

that the operator (V ∗T )† is well defined and bounded, and consequently the

operator T (V ∗T )†V ∗ is well defined and bounded. Next we prove (5.21).

We set R := T (V ∗T )†V ∗. We show

1. R2 = R.

2. R(R) = T ,

3. N (R) = S(T )⊥

The equality R2 = R follows from Corollary 2.2.4.

Clearly R(R) ⊂ T . To prove the inverse implication we show that

R(R|T ) = T . Since V ∗T has a closed range, by Lemma 2.1.2 also T ∗V

has a closed range. Using Lemma 2.2.3 and (5.18) we infer that

RT = T (V ∗T )†V ∗T = TPR(T ∗V ) = TPR(T ∗V )

= TPN (V ∗T )⊥ = TPN (T )⊥ = T.
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Equation (2.3) implies that

R((V ∗T )†) = R(T ∗V ) ⊂ R(T ∗).

Therefore by Lemma 2.1.3 and (2.2)

N (R) = N (T (V ∗T )†V ∗) = N ((V ∗T )†V ∗) = N (T ∗V V ∗). (5.27)

We observe that

S(T )⊥ = R(V V ∗T )⊥ = N (T ∗V V ∗),

which finishes the proof of (5.21).

The proof of (5.22) and (5.24) is similar to the proof of Lemma 5.1.3 and

hence omitted.

Next we prove (5.23). Using Lemma 2.2.5 we obtain

(V ∗PT )
† = PT V (V ∗PT V )†.

Since the synthesis operator of the frame {PT uj}j∈N of T is equal to PT V ,

and the operator Qg is independent of the particular choice of the frame

{gk}k∈N for T , we can write Qg in the form Qg = PT V (V ∗PT V )†, which

proves (5.23).

Equation (5.25) follows from Lemma 3.4.6, (3.), (5.21) and (5.9).

From (5.18) it follows that N (V ∗) ∩ T = {0}. Otherwise there exists an

element g = Tc ∈ T , g 6= 0, with V ∗g = V ∗Tc = 0, a contradiction to (5.18).

Therefore for d ∈ l2(N) there exists a unique least squares solution f̃ ∈ T

f̃ = arg min
g∈T

‖V ∗g − d‖2. (5.28)

Since R(T ) = T , there exists an element c ∈ l2(N), such that f̃ = Tc, and

by (5.28), c is an element of the set

B := arg min
c

‖V ∗Tc− d‖. (5.29)
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From Lemma 2.2.7 we infer that c = (V ∗T )†V ∗f is the unique element of B

of minimal norm. Therefore f̃ = T (V ∗T )†V ∗f .

We observe that the operators Qg and Qc coincide. In Lemma 5.1.2 we

assume that H = T ⊕V⊥, in which case QcV
∗ = PT ,V⊥ , whereas in Theorem

5.2.5 we assume that cos(ϕT ,V) > 0, in which case QgV
∗ = PT ,S(T )⊥ . We use

the distinct subscripts to clarify which assumption on the spaces T and V is

used. To understand the difference between the assumptionsH = T ⊕V⊥ and

cos(ϕT ,V) > 0, we choose again the example of reconstructing a bandlimited

function f ∈ L2(R) ∩B[− 1
2
, 1
2 ]

from point samples

f(xj) = 〈Ff, e−2πixj ·〉, j ∈ N.

Let {e2πixj ·}j∈N be a frame for V = L2([−1, 1]), and let T = L2([−1
2
, 1
2
])

be the reconstruction space. In this case cos(ϕT ,V) = 1, and {PT e
2πixj ·}j∈N

is a frame for T = L2([−1
2
, 1
2
]). A frame for L2([−1

2
, 1
2
]) is not a frame for

L2([−1, 1]), and therefore cos(ϕV,T ) = 0. By Lemma 5.1.1 H = T ⊕ V⊥ is

equivalent to cos(ϕT ,V) > 0 and cos(ϕV,T ) > 0, and therefore not fulfilled.

We further observe that µ(Qg) depends on the operator S, which means

that the kernel of the projection QgV
∗ = PT ,S(T )⊥ depends on the sampling

frame sequence {uj}j∈N.
In Theorem 5.2.6 we present an alternative description of PT ,S(T )⊥ and

Qg using dual frames.

Theorem 5.2.6. Let T and V be closed subspaces of H and let cos(ϕT ,V) > 0.

Let {uk}k∈N be a frame of V, let V be the corresponding synthesis operator

and let S = V V ∗ be the corresponding frame operator.

Let {g̃k}k∈N be the canonical dual frame of {PT uk}k∈N of T . Then

PT ,S(T )⊥f =
∑
k∈N

〈f, uk〉g̃k for every f ∈ H (5.30)

and

Qgc =
∑
k∈N

ckg̃k for every c ∈ l2(N). (5.31)
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Proof. Equation (5.30) follows from (5.31) and QgV
∗ = PT ,S(T )⊥ , see (5.21).

The frame operator S̃ of {PT uk}k∈N can be written in the form

S̃(f) =
∑
k∈N

〈f, PT uk〉PT uk = PT

(∑
k∈N

〈PT f, uk〉uk
)
= PT V V

∗PT f

Consequently we obtain for the synthesis operator L of the canonical dual

frame of {PT uk}k∈N

Lc =
∑
k∈N

ck(PT V V
∗PT )

†PT uk = (PT V V
∗PT )

†PT V c = (V ∗PT )
†c,

where we used A† = (A∗A)†A∗ (see Lemma 2.2.5) for the last equality. By

equation (5.23), Qg = (V ∗PT )
†. This proves (5.31).

Theorem 5.2.7 is stated in [10, Section 4] for T finite dimensional.

Theorem 5.2.7. Let H, T , V, {uj}j∈N, S and {gk}k∈N be as in Theo-

rem 5.2.5. If cos(ϕT ,V) > 0, the mapping PT ,S(T )⊥ is the unique operator

F : H → T that satisfies the equations

〈SFf, gk〉 = 〈Sf, gk〉, k ∈ N, f ∈ H. (5.32)

Proof. We first show that PT ,S(T )⊥ fulfills (5.32). Since cos(ϕT ,V) > 0, from

Theorem 5.2.5 we infer that T ⊕ S(T )⊥ = H. For f ∈ T , PT ,S(T )⊥g = g

and (5.32) is clearly fulfilled. For f ∈ S(T )⊥, PT ,S(T )⊥f = 0 and 〈Sf, gk〉 =
〈f, Sgk〉 = 0.

Finally we prove the uniqueness. We assume that there are two mappings

F1, F2 : H → T that satisfy (5.32). This means for all f ∈ H and Φ ∈ S(T )

〈F1f,Φ〉 = 〈f,Φ〉 = 〈F2f,Φ〉. (5.33)

From (5.33), it follows that R(F1−F2) ⊂ S(T )⊥. By assumption R(F1) ⊂ T
and R(F2) ⊂ T and thus R(F1−F2) ⊂ T ∩S(T )⊥. Since T ∩ S(T )⊥ = {0},
it follows that F1 = F2.
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The following theorem is proven in [10, Theorem 6.2.] in a more general

setup.

Theorem 5.2.8. Let H, T , V, {uj}j∈N, V and Qg be as in Theorem 5.2.5.

Let cos(ϕT ,V) > 0 and let Q : l2(N) → H be a bounded operator.

If QV ∗g = g for g ∈ T , then

‖Qg |R(V ∗)‖ 6 ‖Q|R(V ∗)‖. (5.34)

Corollary 5.2.9. Let H, T , V, {uj}j∈N, V and Qg be as in Theorem 5.2.5.

Let cos(ϕT ,V) > 0 and let Q : l2(N) → H be a bounded operator.

If QV ∗g = g for all g ∈ T , then

‖Q‖ > ‖Qg‖.

Proof. From (5.34) and (5.24) we infer that

‖Qg‖ = ‖Qg |R(V ∗)‖ 6 ‖Q|R(V ∗)‖ 6 ‖Q‖.

It should be mentioned that Corollary 5.2.9 also follows from Theorem

5.2.6 and Lemma 4.0.13.

5.2.1 Relative condition number

Since for a quasi-optimal operator Q : l2(N) → T the corresponding projec-

tion operator P = QV ∗ has in general a kernel, we used the operator norm

‖Q‖ as a measure of stability. When reconstructing only elements in the

reconstruction space T , the operator QV ∗ has a trivial kernel and we can

use the relative condition number.

Definition 5.2.10. Let H, T , V, {uj}j∈N, and V be as in Theorem 5.2.5.

Furthermore let Q : l2(N) → H. We define κT (Q) as

κT (Q) := sup
c∈l2(N)

c6=0
g∈T
g 6=0

‖g −Q(V ∗g + c)‖
‖g‖

/ ‖c‖
‖V ∗g‖

.
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The value κT (Q) is the supremum of the ratio between the relative error

of the reconstruction and the relative coefficient error. Therefore κT (Q)

measures how stable the reconstruction g̃ = Q(V ∗g + c) of g is for elements

g inside the reconstruction space T .

As an easy consequence of Corollary 5.2.9 (respectively [10, Theorem 6.2.])

we obtain the following corollary.

Corollary 5.2.11. Let H, T , V, {uj}j∈N, V and Qg be as in Theorem 5.2.5.

If cos(ϕT ,V) > 0, then for every operator Q : l2(N) → H

κT (Q) > κT (Qg). (5.35)

Proof. Let Q : l2(N) → H. We may assume

QV ∗g = g for g ∈ T . (5.36)

Otherwise

lim
c→0

‖g −Q(V ∗g + c)‖
‖c‖

= lim
c→0

‖g −QV ∗g −Qc‖
‖c‖

= ∞. (5.37)

Using that for g 6= 0 the fraction ‖V ∗g‖
‖g‖ is bounded below by

√
A cos(ϕT ,V),

where A is the lower frame bound of {uj}j∈N (see (3.11)), equation (5.37)

implies that κT (Q) = ∞.

Therefore κT (Q) can be written as

κT (Q) = sup
c∈l2(N)

c6=0

‖Qc‖
‖c‖

· sup
g∈T
g 6=0

‖V ∗g‖
‖g‖

. (5.38)

Since the second term on the right hand side of (5.38) is independent of

Q, it is sufficient to show that ‖Q‖ > ‖Qg‖. This follows from (5.36) and

Corollary 5.2.9

Lemma 5.2.12. Let Q : l2(N) → H be a bounded operator. Let the recon-

struction vectors {gk}k∈N form a Riesz sequence. If QV ∗g = g for g ∈ T ,
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then

κT (Q) = ‖Q‖ ‖V ∗T (T ∗T )−
1
2‖. (5.39)

Proof. By (5.38) we have

κT (Q) = sup
c∈l2(N)

c6=0

‖Qc‖
‖c‖

· sup
g∈T
g 6=0

‖V ∗g‖
‖g‖

.

Therefore it remains to prove that

sup
g∈T
g 6=0

‖V ∗g‖
‖g‖

= ‖V ∗T (T ∗T )−
1
2‖. (5.40)

We observe that T (T ∗T )−
1
2 is an isometry andR(T (T ∗T )−

1
2 ) = T . There-

fore

sup
g∈T
g 6=0

‖V ∗g‖
‖g‖

= sup
g∈T
‖g‖=1

‖V ∗g‖ = sup
c∈l2(N)
‖c‖=1

‖V ∗T (T ∗T )−
1
2 c‖ = ‖V ∗T (T ∗T )−

1
2‖.

Lemma 5.2.13 shows that if the reconstruction vectors {gk}k∈N are an

orthonormal system, then κT (Qg) is equal to the condition number of the

cross-Gramian κ(V ∗T ). From Corollary 5.2.11 we know that the operator

Qg has the smallest relative condition number κT (Qg). Therefore, if we use

an orthonormal system for reconstruction the condition number of the cross-

Gramian κ(V ∗T ) tells us if for elements inside the reconstruction space T a

stable reconstruction is possible.

Lemma 5.2.13. Let H, T , V, {uj}j∈N, V and Qg be as in Theorem 5.2.5.

If cos(ϕT ,V) > 0 and {gk}k∈N is an orthonormal system, then

κT (Qg) = ‖(V ∗T )†‖ ‖V ∗T‖. (5.41)

Proof. From (5.38) and the definiton of Qg we infer that

κT (Qg) = ‖T (V ∗T )†‖‖V ∗T‖ (5.42)
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Equation (5.41) follows from (5.42) and the fact that {gk}k∈N is an orthonor-

mal system.

5.3 Frame independent sampling

In this section we treat the concept of frame independent sampling. In the

last section we have seen that the operator Qg has the minimal operator norm

among all reconstructions with the property that QV ∗g = g for g ∈ T , and

using this property we have seen in Corollary 5.2.11 that Qg has the smallest

possible relative condition number κT (Qg). Therefore Qg is well suited for

reconstructing elements inside the reconstruction space. As mentioned in the

introduction, the function to reconstruct typically has a part outside of the

reconstruction space. In this section we present the reconstruction operator

Qf , defined by (5.44), which has the smallest possible quasi-optimality con-

stant (see Theorem 5.3.8), and therefore deals very well with the part outside

of the reconstruction space. Another important property of the operator Qf

is that it deals very well with systematic errors appearing before the sampling

process, see Theorem 5.3.10.

Equation (5.45) points out the connection of the operator Qf to the

oblique projection PT ,PV (T )⊥ . It is shown that QfV
∗ = PT ,PV (T )⊥ . Since

this oblique projection is independent of the particular choice of the frame

sequences for the sampling and reconstruction space, but only dependent on

their closed linear span V and T , we refer to the reconstruction obtained by

the operator Qf as frame independent sampling.

Lemma 5.3.1. Let T and V be closed subspaces of a Hilbert space H. If

cos(ϕT ,V) > 0, then the subspace PV(T ) is closed. Furthermore,

cos(ϕT ,PV (T )) = cos(ϕT ,V). (5.43)

Proof. We recall equation (3.10)

‖g‖ cos(ϕT ,V) 6 ‖PVg‖ for all g ∈ T .
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Therefore by Lemma 2.1.7 the operator (PV)|T has a closed range and thus

the subspace PV(T ) is closed. The second statement follows from

cos(ϕT ,PV (T )) = inf
g∈T
‖g‖=1

sup
v∈PV (T )

‖v‖=1

|〈g, v〉| = inf
g∈T
‖g‖=1

sup
v∈PV (T )

‖v‖=1

|〈g, PVv〉|

= inf
g∈T
‖g‖=1

sup
v∈PV (T )

‖v‖=1

|〈PVg, v〉| = inf
g∈T
‖g‖=1

‖PVg‖ = cos(ϕT ,V),

using (3.9) for the first equality and last equality.

Theorem 5.3.2. Let T and V be closed subspaces of a separable Hilbert space

H. Let {uj}j∈N be a frame for V and let V be the corresponding synthesis

operator and S be the corresponding frame operator. Let {gk}k∈N be a frame

for T and let T be the corresponding synthesis operator. Furthermore let Qf

be defined by

Qf := T
(
(V ∗V )

†
2V ∗T

)†
(V ∗V )

†
2 . (5.44)

If cos(ϕT ,V) > 0, then H = T ⊕PV(T )⊥, the oblique projection PT ,PV (T )⊥

is well defined and bounded and the following holds.

• The operator Qf is defined by

QfV
∗ = PT ,PV (T )⊥ . (5.45)

and

Qf |R(V ∗)⊥ = 0, (5.46)

and consequently Qf is independent of the particular choice of the frame

{gk}k∈N for T .

• ‖Qf |R(V ∗)‖ = ‖Qf‖. (5.47)

• µ(Qf ) = ‖QfV
∗‖ = ‖PT ,PV (T )⊥‖ =

1

cos(ϕT ,V)
(5.48)

• For d ∈ l2(N)
Qfd =

∞∑
k=1

ĉkgk,
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where ĉ = {ĉk}k∈N is the minimal norm element of the set

arg min
c

‖(V ∗V )
†
2V ∗Tc− (V ∗V )

†
2d‖.

Proof. That H = T ⊕ PV(T )⊥ and that the oblique projection PT ,PV (T )⊥ is

well defined and bounded follows from Lemma 5.3.1 and Theorem 5.2.2.

From Lemma 2.3.18 we know that

L∗ = (V ∗V )
†
2V ∗. (5.49)

is the analysis operator of the tight frame sequence {S †
2uj}j∈N. Using the

notation (5.49), we infer that

QfV
∗ = T (L∗T )†L∗.

From Lemma 2.3.17 we infer that LL∗ = PV . Equation (5.45) follows

now from Theorem 5.2.5, (5.21), applied to the frame {S †
2uj}j∈N instead

of {uj}j∈N and L∗ instead of V ∗.

In order to prove (5.46), we show that R(V ∗)⊥ = N
(
(V ∗V )

†
2

)
. Using

Lemma 2.1.3 and (2.2) we obtain

N
(
(V ∗V )

†
2

)
= N

(
(V ∗V )†

)
= N ((V ∗V )∗)

= N (V ∗V ) = R(V ∗V )⊥ = R(V ∗)⊥.

Equation (5.47) is a direct consequence of (5.46).

By Corollary 3.4.7

µ(Qf ) = ‖QfV
∗‖ = ‖PT ,PV (T )⊥‖ =

1

cos(ϕT ,PV (T ))
.

Combining this with cos(ϕT ,PV (T )) = cos(ϕT ,V) (see (5.43)) we deduce (5.48).

The last point can be shown similarly to the last point of Theorem 5.2.5.
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5.3.1 An abstract definition of PT ,PV(T )⊥

The oblique projection PT ,PV (T )⊥ is characterized as follows.

Theorem 5.3.3. Let cos(ϕT ,V) > 0. The mapping PT ,PV (T )⊥ is the unique

operator F : H → T that satisfies the equations

〈PVFf, gk〉 = 〈PVf, gk〉, k ∈ N, f ∈ H. (5.50)

Proof. Let {uj}j∈N be a frame for V and let V be the corresponding synthesis

operator and let S be the corresponding frame operator. From Lemma 2.3.18

we know that (V ∗V )
†
2V ∗ is the analysis operator of the tight frame sequence

{S †
2uj}j∈N. Since the frame operator of {S †

2uj}j∈N is PV , Theorem 5.2.7

(stated in [10, Section 4]) applied to the frame {S †
2uj}j∈N instead of {uj}j∈N

yields (5.50).

In order to prove Theorem 5.3.5 we need the following well known lemma

for distances of affine subspaces which can be found in [56, 5.2.5. Abstand

affiner Unterräume].

Lemma 5.3.4. Let H1 = x1 + V1 and H2 = x2 + V2 be affine subspaces of

the Hilbert space H, where x1, x2 ∈ H and V1 and V2 are subspaces of H. If

V1 + V2 is closed, then there exists exactly one h ∈ H with the properties:

h = p1 − p2 for some p1 ∈ H1, p2 ∈ H2, (5.51)

h ⊥ V1 and h ⊥ V2. (5.52)

Furthermore the distance between H1 and H2 is given by

dist(H1,H2) = inf{‖q1 − q2‖ : q1 ∈ H1 and q2 ∈ H2} = ‖h‖. (5.53)

Proof. It is straightforward to show that

h := (I − PV1+V2)(x1 − x2) ∈ (V1 + V2)
⊥
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has the properties (5.51), (5.52), and (5.53). To show the uniqueness, let

h = p1 − p2, p1 ∈ H1, p2 ∈ H2, h ⊥ V1,V2 and

k = q1 − q2, q1 ∈ H1, q2 ∈ H2, k ⊥ V1,V2.

From h − k = (p1 − q1) − (p2 − q2) it follows that h − k ∈ V1 + V2. From

h ⊥ V1,V2 and k ⊥ V1,V2, we know that h− k ∈ (V1 + V2)
⊥, which implies

that h− k = 0.

The following lemma shows that the mapping PT ,PV (T )⊥ has the property,

that for every f ∈ H, PT ,PV (T )⊥f is the element in T closest to PVf + V⊥.

This shows that PT ,PV (T )⊥ fulfills the geometric properties described in the

introduction.

Theorem 5.3.5. Let T and V be closed subspaces of a Hilbert space H and

let cos(ϕT ,V) > 0.

For every f ∈ H

dist(PVf + V⊥, T ) = dist(PVf + V⊥, PT ,PV (T )⊥f).

Proof. From Lemma 3.4.6 we infer that T + V⊥ is closed in H. We set

F := PT ,PV (T )⊥ and

h := PVf − PVFf.

We show that h fulfills (5.51) and (5.52). Writing h in the form

h = [PVf + (Ff − PVFf)]− Ff,

we see that h is of the form h = p1 − Ff , with p1 ∈ PVf + V⊥ and

p2 = Ff ∈ T . It remains to prove that h ⊥ V⊥ and h ⊥ T . The orthogo-

nality PVf − PVFf ⊥ T follows from (5.50), and h ⊥ V⊥ follows from the

definition of h.
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5.3.2 Illustration of the difference between generalized

and frame independent sampling

Let us now consider a simple example in H = R2 which illustrates the dif-

ference between the reconstruction operators Qg (generalized sampling) and

Qf (frame independent sampling). Let u1, u2 ∈ R2 be two linearly indepen-

dent vectors, and let g ∈ R2 be an arbitrary vector. With this choice, the

reconstruction space T = span(g) is the line spanned by the vector g. The

sampling space is span(u1, u2) = R2. From (1.7) we infer that QfV
∗ = PT ,

where PT is the orthogonal projection onto T . Both reconstruction operators

Q = Qg (generalized sampling) and Q = Qf (frame independent sampling)

fulfill Q|R(V ∗)⊥ = 0, see Theorem 5.2.5 and Theorem 5.3.2, and therefore for

p ∈ H

‖Q‖ = ‖Q|R(V ∗)‖ = sup
‖V ∗f‖=1

‖QV ∗f‖ = sup
‖V ∗f‖=1

‖QV ∗p−QfV
∗(p− f)‖

= sup
x∈E

‖QV ∗p−QV ∗x‖,

where E is the ellipse

E = {x ∈ R2 : ‖V ∗p− V ∗x‖ 6 1}. (5.54)

Since p is the center of the ellipse, for a projection operator P onto T , P (p) is

the center of the set P (E). This shows that half of the length of QfV
∗(E) =

PT (E) is ‖Qf‖ and that half of the length of QgV
∗(E) = PT ,S(T )⊥(E) is

‖Qg‖, see Figure 5.1.

For our figures we use

u1 = (0, 1), u2 =
(1
2
, 1)

‖(1
2
, 1)‖

, g = (1, 0). (5.55)

The ellipse in Figure 5.1 is the boundary of the set E defined by (5.54) for

p = (5, 3). As we see in Figure 5.1, the length of PT (E) is greater than the

length of PT ,S(T )⊥(E), which shows that ‖Qf‖ > ‖Qg‖.
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The quasi-optimality constant of Qf is

µ(Qf ) = cos(ϕT ,V))
−1 = cos(0)−1 = 1.

The quasi-optimality constant of Qg is µ(Qg) = cos(ϕT ,S(T )))
−1. The angle

α := ϕT S(T ) is plotted in Figure 5.1. Clearly, cos(ϕT ,S(T )) < 1, which shows

that µ(Qf ) < µ(Qg). Therefore QfV
∗ is closer to the orthogonal projection

PT than QgV
∗ (in fact QfV

∗ coincides with the orthogonal projection).

If we approximate p ∈ H from perturbed measurements V ∗p+c with mea-

surement errors satisfying ‖c‖ 6 1, then the approximations p̃ to p calculated

by Q (Q = Qf or Q = Qg) are located in the set

{Q(V ∗p+ c) : ‖c‖ 6 1} = {Q(V ∗p+ PR(V ∗)c) : ‖c‖ 6 1}

= {Q(V ∗p+ V ∗∆p) : ‖V ∗∆p‖ 6 1}

= {QV ∗x : x ∈ E}.

(5.56)

Therefore if the measurement errors are satisfying ‖c‖ 6 1, then the approx-

imations calculated by the operator Qf are located in the set PT (E), and the

approximations calculated by Qg are located in the set PT ,S(T )⊥(E).
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Figure 5.1: PT ,PV (T )⊥ and PT ,S(T )⊥ for p = (5, 3)
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We see in Figure 5.1 that for p = (5, 3) any point in PT (E) is closer

to p than any point in PT ,S(T )⊥(E). Therefore for this position of p and

this magnitude of noise, the operator Qf (frame independent sampling) is

preferable over Qg (generalized sampling).

This changes when the element to reconstruct is closer the reconstruction

space. We compare the two reconstructions for the same setup, with the

only difference that we choose p = (5, 0), i.e., inside the reconstruction space.

Again the approximations calculated by the operator Qf are located in the
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Figure 5.2: PT ,PV (T )⊥ and PT ,S(T )⊥ for p = (5, 0)

set PT (E), and the approximations calculated by Qg are located in the set

PT ,S(T )⊥(E). We observe that the set PT ,S(T )⊥(E) is smaller than PT (E),

and that the centers of both sets lie at p. Therefore

max
‖c‖61

‖p−Qf (V
∗p+ c)‖ > max

‖c‖61
‖p−Qg(V

∗p+ c)‖,

and consequently the operator Qg is preferable.

If we are interested in reconstructing from measurements QV ∗(p + ∆p)

perturbed before the sampling process, according to Theorem 5.3.10, we

expect to obtain more accurate reconstructions by the operator Qf than by
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the operator Qg independently of the position of the element to reconstruct.

We illustrate this by taking the same setup as before, see (5.55). We first

reconstruct the point p = (5, 3) from the measurements V ∗(p + ∆p), with

‖∆p‖ 6 1. The circle in Figure 5.3 is the boundary of the set
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Figure 5.3: PT ,PV (T )⊥ and PT ,S(T )⊥ for p = (5, 3)

C := {p+∆p : ‖∆p‖ 6 1}. (5.57)

For every point c ∈ C, the approximation p̃ = QfV
∗c is located in the set

PT ,PV (T )⊥(C) = PT (C) and p̃ = QgV
∗c is located in PT ,S(T )⊥(C). Since any

point in PT (C) is closer to p than any point in PT ,S(T )⊥(C), the operator Qf

is preferable over the operator Qg.

In Figure 5.4, we reconstruct the point p = (5, 0). The set PT (E) is

smaller than PT ,S(T )⊥(C), and the centers of both sets lie at p. Therefore

max
‖c‖61

‖p−QgV
∗(p+∆p)‖ > max

‖c‖61
‖p−QfV

∗(p+∆p)‖,

and consequently the operator Qf is preferable also for points inside the

reconstruction space T .
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Figures 5.1, 5.2, 5.3 and 5.4 can be interpreted as pictures in R3 by

choosing

u1 = (0, 1, 0), u2 =
(1
2
, 1)

‖(1
2
, 1, 0)‖

, g = (1, 0, z). (5.58)

for z ∈ R. With this choice, the set E is an elliptic cylinder, and C is a ball

with center p and radius 1 and the figures dipict the orthogonal projection

onto the plane spanned by the first two coordinates.
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Figure 5.4: PT ,PV (T )⊥ and PT ,S(T )⊥ for p = (5, 0)

5.3.3 Stability, Quasi-optimality constant and error es-

timates

It can be said that the operator Qf relies more on the measurements V ∗f ,

whereas the operator Qg trusts more in the function to be reconstructed

being close to the reconstruction space. Therefore, if the sampling frame

is ill conditioned (a large ratio B
A
of the upper and lower frame bound), the

operator Qf can be very sensitive to noise. This can be seen in Theorem 5.3.7

from the term
√
B√
A

‖c‖
‖V ∗f‖ , where the relative coefficient error is multiplied by

the square root of the quotient of the upper and lower frame bound of the
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sampling frame sequence. Conversely, it can happen that the operator Qg is

very sensitive to the part outside of the reconstruction space of the function

to reconstruct, whereas QfV
∗ projects onto the reconstruction space almost

orthogonally.

In order to prove Theorem 5.3.7 we need Lemma 5.3.6. The proof of

Lemma 5.3.6 is similar to the proof of [10, Corollary 4.7].

Lemma 5.3.6. Let H, T , V, {uj}j∈N, V , {gk}k∈N and T be as in Theorem

5.3.2. Let A and B denote the lower and the upper frame bound of {uj}j∈N,
and let Qf be defined by (5.44).

If cos(ϕT ,V) > 0, then

1√
B

6 ‖Qf‖ 6 1√
A cos(ϕT ,V)

. (5.59)

Proof. Since ‖Qf |R(V ∗)‖ = ‖Qf‖, it suffices to prove (5.59) for Qf |R(V ∗) in-

stead of Qf . From the definition of cos(ϕT ,V) we know that

‖g‖ cos(ϕT ,V) 6 ‖PVg‖ for every g ∈ T . (5.60)

We define the operator F as

F := PT ,PV (T )⊥ = QfV
∗.

From the Cauchy-Schwarz inequality, and (5.50), it follows that for f ∈ H it

holds

〈PVFf, Ff〉 = 〈PVf, Ff〉 6 〈PVf, f〉
1
2 〈PVFf, Ff〉

1
2 .

This yields

‖PVFf‖ 6 ‖PVf‖. (5.61)

From the frame inequality (3.3), it follows that for f ∈ H it holds

√
A ‖PVf‖ 6 ‖V ∗f‖ 6

√
B ‖PVf‖. (5.62)
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We combine (5.60),(5.61) and (5.62) and obtain

‖Ff‖ cos(ϕT ,V) 6 ‖PVFf‖ 6 ‖PVf‖ 6 1√
A

‖V ∗f‖. (5.63)

Equation (5.63) implies that

‖Qf |R(V ∗)‖ 6 1√
A cos(ϕT ,V)

.

The lower bound of (5.59) follows from

1√
B
‖V ∗Ff ‖ 6 ‖PVFf‖ 6 ‖Ff‖,

where we use (5.62) for the first inequality.

Theorem 5.3.7. Let H, T , V, {uj}j∈N, V and Qf be as in Theorem 5.3.2.

Let A and B denote the lower and the upper frame bound of {uj}j∈N. If

cos(ϕT ,V) > 0 then for f ∈ H

‖f −Qf (V
∗f + c)‖

‖f‖
6 1

cos(ϕT ,V)

(
‖f − PT f‖

‖f‖
+

√
B

A

‖c‖
‖V ∗f‖

)
. (5.64)

Proof. We recall equation (3.7)

‖f −Q(V ∗f + c)‖
‖f‖

6 µ
‖f − PT f‖

‖f‖
+ ‖Q‖

√
B

‖c‖
‖V ∗f‖

.

Combining this with µ(Qf ) =
1

cos(ϕT ,V )
, see (5.48), and ‖Qf‖ 6 1√

A cos(ϕT ,V )
,

see (5.59), we obtain (5.64).

Theorem 5.3.8 shows that the operator Qf has the smallest possible quasi-

optimality constant. Therefore QfV
∗ projects as orthogonally as possible

onto the reconstruction space.

Theorem 5.3.8. Let H, T , V, {uj}j∈N, V and Qf be as in Theorem 5.3.2.

If cos(ϕT ,V) > 0 then for any operator Q : l2(N) → H it holds

µ(Q) > µ(Qf ).
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Proof. We recall that µ(Q) is the smallest α such that for every f ∈ H

‖f −QV ∗f‖ 6 α‖f − PT f‖. (5.65)

Let µ(Q) <∞ and let g ∈ T . Every element f ∈ g+ V⊥ has the same value

V ∗g, and thus

QV ∗f = QV ∗g for all f ∈ g + V⊥. (5.66)

Assumption (5.65), implies that

QV ∗g = g for all g ∈ T , (5.67)

since otherwise µ(Q) = ∞. Therefore

QV ∗(g + u⊥) = g for all g ∈ T and u⊥ ∈ V⊥.

This means that (QV ∗)|T ⊕V⊥ = PT ,V⊥ . From (5.8) it follows that on this

subspace µ(Q) = µ(Qc) = 1
cos(ϕT ,V )

. This implies that for f ∈ T ⊕ V⊥ we

have the sharp upper bound

‖f −QV ∗f‖ 6 1

cos(ϕT ,V)
‖f − PT f‖.

which implies that α > 1
cos(ϕT ,V )

. Since by (5.48) it holds µ(Qf ) =
1

cos(ϕT ,V )
,

this finishes the proof.

5.3.4 Error appearing before the sampling process

In [2–5] the stability to measurement error appearing before the sampling

process is considered. The authors inspect the following two properties of a

mapping Q : l2(N) → H. The first one is again the quasi-optimality constant

µ(Q).

The measure of stability they use is the operator norm ‖QV ∗‖.
We obtain the error estimate

‖f −QV ∗(f +∆f)‖ 6 µ(Q)‖f − PT f‖+ ‖QV ∗‖‖∆f‖. (5.68)
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It is very important to realize a fundamental difference between (5.68) and

‖f −Q(V ∗f + c)‖ 6 µ(Q)‖f − PT f‖+ ‖Q‖‖c‖, (5.69)

which is considered in Lemma 3.3.1. In (5.69), the reconstruction error from

perturbed measurements V ∗f + c is estimated.

By contrast, for (5.68) it is assumed, that the measurements of the per-

turbed function f +∆f are available, and the corresponding reconstruction

error is estimated. This means exact measurements of the perturbed function

f +∆f are available.

Corollary 5.3.9. Let H, T , V, {uj}j∈N, V and Qf be as in Theorem 5.3.2.

Furthermore let cos(ϕT ,V) > 0.

If Q : l2(N) → H is a bounded operator with QV ∗g = g for all g ∈ T ,

then

‖QV ∗‖ > ‖QfV
∗‖.

Proof. The assumption QV ∗g = g implies that (QV ∗)|T ⊕V⊥ = PT ,V⊥ , see

the proof of Theorem 5.3.8. From Lemma 3.4.6, (3.), it follows that on this

subspace ‖(QV ∗)|T ⊕V⊥‖ = 1
cos(ϕT ,V )

, which implies that ‖QV ∗‖ > 1
cos(ϕT ,V )

.

Using (5.48) we obtain

‖QfV
∗‖ =

1

cos(ϕT ,V)
6 ‖QV ∗‖

which completes the proof.

Theorem 5.3.10 shows that the operator Qf is optimal (in the following

sense) for the problem consisdered in [2–5].

Theorem 5.3.10. Let H, T , V, {uj}j∈N, V and Qf be as in Theorem 5.3.2.

Furthermore let cos(ϕT ,V) > 0.

If an operator Q : l2(N) → H satisfies for h ∈ H and ∆h ∈ H

‖h−QV ∗(h+∆h)‖ 6 β1‖h− PT h‖+ β2‖∆h‖ (5.70)

for some 0 < βi <∞, then βi > µ(Qf ), i = 1, 2.
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Proof. Let Q : l2(N) → H be an operator that satisfies (5.70) for some

0 < βi < ∞, i = 1, 2. Setting ∆h = 0 in (5.70), Theorem 5.3.8 implies that

β1 > µ.

Setting ∆h = 0 in (5.70), it follows that QV ∗g = g for g ∈ T . Otherwise

β1 = ∞. Setting h = 0 in (5.70), Corollary 5.3.9 implies that β2 > µ.

In Chapter 7 we need the following slightly modified version of Theorem

5.3.10.

Lemma 5.3.11. Let H, T , V, {uj}j∈N, V and Qf be as in Theorem 5.3.2.

Furthermore let cos(ϕT ,V) > 0 and let µ = µ(Qf ).

For every h ∈ H and ∆h ∈ H it holds

‖PT h−QfV
∗(h+∆h)‖ 6

√
µ2 − 1‖h− PT h‖+ µ‖∆h‖. (5.71)

If an operator Q : l2(N) → H satisfies

‖PT h−QV ∗(h+∆h)‖ 6 α‖h− PT h‖+ β‖∆h‖.

for some 0 < α, β <∞, then α >
√
µ2 − 1 and β > µ.

Proof. Since QfV
∗h ∈ T for h ∈ H, by the Pythagorean theorem

‖PT h−QfV
∗h‖ =

√
‖h−QfV ∗h‖2 − ‖h− PT h‖2. (5.72)

Using (5.72), (5.48), the definition of the quasi-optimality constant and the

triangle-inequality we obtain for h ∈ H and ∆h ∈ H

‖PT h−Qf (V
∗h+ V ∗∆h)‖ 6 ‖PT h−QfV

∗h‖+ ‖QfV
∗∆h‖

=
√
‖h−QfV ∗h‖2 − ‖h− PT h‖2 + ‖QfV

∗∆h‖

6
√
µ2 − 1‖h− PT h‖+ µ‖∆h‖.

The second part of the Lemma follows as in Theorem 5.3.10 by setting h = 0

and ∆h = 0.
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5.4 A combination of generalized and frame

independent sampling

The operator Qg has the smallest possible operator norm among all oper-

ators Q with the property that QV ∗g = Qg for g ∈ T . Consequently, Qg

is the most stable operator among those operators. The operator Qf has

the smallest possible quasi-optimality constant, and therefore deals in this

sense optimally with the part of the function to reconstruct lying outside of

the reconstruction space. Naturally, there arises the question how to obtain

mixtures between the two operators Qf and Qg, i.e., how to obtain oper-

ators Qm with ‖Qg‖ < ‖Qm‖ < ‖Qf‖ and µ(Qf ) < µ(Qm) < µ(Qg). We

see in Corollary 5.5.10 that the operator Qg corresponds to an unbiased es-

timator of minimal variance for the reconstruction of an element in g ∈ T
from measurements perturbed by a random vector ε with E(ε) = 0 and

Σ = Cov(ε) = σ2
1In. We see in Corollary 5.5.11 that the operator Qf corre-

sponds to an unbiased estimator of minimal variance for the reconstruction

of an element g ∈ T from measurements of the perturbed object (noise ap-

pearing before the sampling process). By determining an unbiased estimator

of minimal variance for combinations of the two versions of noise, we obtain

mixtures Qm between the two operators. In this section we analyze these

operators Qm. We observe in numerical experiments in Chapter 6, that if we

increase the standard deviation of the noise appearing before the sampling

process (leaving the standard deviation of the noise appearing after the sam-

pling process constant), we obtain a smaller quasi-optimality constant of the

reconstruction at the cost of an increased operator norm. A proof for this

statement is yet missing.

We set

ũj := (σ1
2I + σ2

2V V ∗)
†
2uj, (5.73)

where I denotes the identity operator on H. Lemma 5.4.1 proves the fol-

lowing. Suppose that we are given the inner products {〈f, uj〉}j∈N of an

element f ∈ H with a frame {uj}j∈N for V (a closed subspace of H). Ap-

plying the operator (σ1
2I + σ2

2V ∗V )
†
2 to these measurements, we obtain the
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inner products of f with the frame {ũj}j∈N for V . Furthermore, Lemma 5.4.1

shows that by increasing σ2
2 and leaving σ1

2 constant, the frame {ũj}j∈N for

V becomes ”tighter”, i.e., the ratio B
A

of the upper and lower frame bound

becomes smaller.

The case σ1
2 = 0 of Lemma 5.4.1 is treated in Lemma 2.3.18. The case

σ1
2 = 0 of Theorem 5.4.2 is treated in Theorem 5.3.2. Therefore we we may

assume that σ1
2 > 0, in order to use the simpler notation (σ1

2I+σ2
2V ∗V )−

1
2

instead of (σ1
2I + σ2

2V ∗V )
†
2 .

Lemma 5.4.1. Let H, T , V, {uj}j∈N and V be as in Theorem 5.3.2.

Furthermore, let σ2
1 > 0, let σ2

2 > 0, and let {ũj}j∈N be defined by (5.73).

If A and B denote the lower and the upper frame bound of {uj}j∈N, then
{ũj}j∈N is a frame for V with lower and upper frame bound A

σ1
2+σ2

2A
and

B
σ1

2+σ2
2B

, respectively, i.e., for every f ∈ V

A

σ12 + σ22A
‖f‖2 6

∑
j∈N

|〈f, ũj〉|2 6
B

σ12 + σ22B
‖f‖2. (5.74)

Furthermore

(σ1
2I + σ2

2V ∗V )−
1
2V ∗ = V ∗(σ1

2I + σ2
2V V ∗)−

1
2 , (5.75)

i.e., the operator Σ− 1
2V ∗ is the analysis operator of the frame {ũj}j∈N for V.

Proof. We observe that for S = V V ∗ and f ∈ V∑
j∈N

|〈f, ũj〉|2 =
∑
j∈N

|〈f, (σ12In + σ2
2V V ∗)−

1
2uj〉|2

=
∑
j∈N

|〈(σ12In + σ2
2V V ∗)−

1
2f, uj〉|2

= ‖V ∗(σ1
2In + σ2

2V V ∗)−
1
2f‖2

= 〈V ∗(σ1
2I + σ2

2S)−
1
2f, V ∗(σ1

2I + σ2
2S)−

1
2f〉

= 〈(σ12I + σ2
2S)−

1
2S(σ1

2I + σ2
2S)−

1
2f, f〉

= 〈S(σ12I + σ2
2S)−1f, f〉.

(5.76)
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From the frame equation A‖f‖2 6 〈Sf, f〉 6 B‖f‖2 we infer that on V
min(σ(S)) = A and max(σ(S)) = B (assuming that the frame bounds A

and B are optimal). Consequently, by the continuous functional calculus

(Theorem 2.1.6), on V

min
(
σ
(
S(σ1

2I + σ2
2S)−1

))
=

A

σ12 + σ22A
,

and

max
(
σ
(
S(σ1

2I + σ2
2S)−1

))
=

B

σ12 + σ22B
.

Combining this with (5.76) we obtain (5.74)

The proof of (5.75) is similar to that of Lemma 2.3.18.

Theorem 5.4.2. Let T and V be closed subspaces of a separable Hilbert space

H. Let {uj}j∈N be a frame for V, and let V be the corresponding synthesis

operator. Let {gk}k∈N be a frame for T , and let T be the corresponding

synthesis operator. Furthermore, let σ2
1 > 0, σ2

2 > 0, and let

Σ = σ1
2I + σ2

2V ∗V.

Let L denote the synthesis operator of the frame {(σ12I+σ22V V ∗)
†
2uj}j∈N for

V, L∗ the corresponding analysis operator, and S = LL∗ the corresponding

frame operator. Furthermore let Qm be defined by

Qm := T (Σ− 1
2V ∗T )†Σ− 1

2 . (5.77)

If cos(ϕT ,V) > 0, then H = T ⊕ S(T )⊥, the oblique projection PT ,PV (T )⊥

is well defined and bounded and the following holds.

• The operator Qm is defined by

QmV
∗ = PT ,S(T )⊥ . (5.78)

and

Qm|R(V ∗)⊥ = 0, (5.79)
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and consequently Qm is independent of the particular choice of the

frame {gk}k∈N for T .

• ‖Qm|R(V ∗)‖ = ‖Qm‖. (5.80)

• For d ∈ l2(N)
Qmd =

∞∑
k=1

ĉkgk,

where ĉ = {ĉk}k∈N is the minimal norm element of the set

arg min
c

‖Σ− 1
2V ∗Tc− Σ− 1

2d‖.

Proof. Using that L∗ = Σ− 1
2V ∗ (see Lemma 5.4.1), we infer that

QmV
∗ = T (Σ− 1

2V ∗T )†Σ− 1
2V ∗ = T (L∗T )†L∗.

Therefore equation (5.78) follows from Theorem 5.2.5, (5.21), applied to the

frame {ũj = (σ1
2In + σ2

2V V ∗)
†
2uj}j∈N instead of {uj}j∈N and L∗ instead of

V ∗.

Next we prove that Qm|R(V ∗)⊥ = 0. Equation (2.3) implies that

R((Σ− 1
2V ∗T )†) = R(T ∗V Σ− 1

2 ) = R(T ∗V ) = R(T ∗),

where we used (5.19) for the last equality. Therefore by Lemma 2.1.3

N (T (Σ− 1
2V ∗T )†Σ− 1

2 ) = N ((Σ− 1
2V ∗T )†Σ− 1

2 ). (5.81)

Consequently, using (2.2) and (5.81)

N (Qm) = N ((Σ− 1
2V ∗T )†Σ− 1

2 ) = N (T ∗V Σ−1).

We show that

N (V ) = N (V Σ−1). (5.82)

Since Σ is invertible, (5.82) is equivalent to N (V Σ) = N (V ). We observe
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that
V Σ = V (σ1

2I + σ2
2V ∗V ) = σ1

2V + σ2
2V V ∗V

= (σ1
2I + σ2

2V V ∗)V.

Since σ1
2 > 0 it holds (σ1

2I + σ2
2V V ∗) > 0, which implies that N (V Σ) =

N (V ). This proves (5.82), and consequently

R(V ∗)⊥ = N (V ) = N (V Σ−1) ⊂ N (T ∗V Σ−1) = N (Qm).

Equation (5.80) is a direct consequence of (5.79).

The last point can be shown similarly to the last point of Theorem 5.2.5.

Lemma 5.4.3. Let H, T , V, {uj}j∈N, {gk}k∈N, V and T be as in Theorem

5.4.2. Let

Qs1,s2 = T
(
(s1I + s2V

∗V )
†
2V ∗T

)†
(s1I + s2V

∗V )
†
2 .

Furthermore let Qf = T
(
(V ∗V )

†
2V ∗T

)†
(V ∗V )

†
2 , let Qg = T (V ∗T )† and let

cos(ϕT ,V) > 0.

Then

Qs1,s2 = Q s1
s2

,1 = Q1,
s2
s1

,

Q0,s2 = Qf , and Qs1,0 = Qg.

Proof. The proof is straightforward and hence omitted.

Lemma 5.4.3 shows that we only need one parameter to describe all op-

erators Qs1,s2 , namely

Qλ = T
(
(V ∗V + λI)

†
2V ∗T

)†
(V ∗V + λI)

†
2 . (5.83)

Furthermore Q0 = Qf and Q∞ = Qg.
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5.5 Connection to Statistics

Let H be a Hilbert space over the real numbers and let {uj}nj=1 and {gk}mk=1

be finite sequences in H. Let T denote the synthesis operator of the sequence

{gk}mk=1, and let T ∗ denote the corresponding analysis operator. By T we

denote

T := span{gk}mk=1 = R(T ).

Let V denote the synthesis operator of the sequence {uj}nk=1, and let V ∗

denote the corresponding analysis operator.

We discuss the problem of estimating an unknown element g ∈ T , i.e.,

an element of the reconstruction space, from perturbed measurements

X = V ∗g + ε,

where ε is a random vector in Rn with E(ε) = 0 and Cov(ε) = Σ. We treat

different versions of measurement noise ε.

In Corollary 5.5.10, we treat the case where ε is a random vector in Rn

with E(ε) = 0 and Σ = Cov(ε) = σ2
1In. We show that the estimator QgX of

g, Qg defined by (5.20), has the minimum expected norm-squared deviation

from g within the class of all linear estimators Q with the property that

QV ∗g = g for g ∈ T .

In Corollary 5.5.11 we treat the case where ε = V ∗∆g, where ∆g is a

random vector in (the finite dimensional Hilbert space) H with E(∆g) = 0

and Cov(∆g) = σ2
2I. In this case Σ = Cov(ε) = σ2

2V
∗V . We show that the

estimator QfX of g, Qf defined by (5.44), has the minimum expected norm-

squared deviation from g within the class of all linear estimators Q with the

property that QV ∗g = g for g ∈ T .

Finally, in Corollary 5.5.12 we treat the combination ε = V ∗∆g+δ of the

two versions of noise. We assume that E(δ) = 0, Cov(δ) = σ2
1In, E(∆g) = 0

and Cov(∆g) = σ2
2I, and that ∆g and δ are independent random vectors.

In this case Σ = Cov(ε) = σ1
2In + σ2

2V ∗V . We show that the estimator

QmX of g, Qm defined by (5.77), has the minimum expected norm-squared

deviation from g within the class of all linear estimators Q with the property
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that QV ∗g = g for g ∈ T .

Since every g ∈ T can be written in the form g = Tc for some c ∈ Rm,

our intention is to reconstruct the unknown element g = Tc ∈ T from the

random vector

X = V ∗Tc+ ε.

We observe that V ∗T ∈ Rn×m.

In order to prove Corollary 5.5.10, Corollary 5.5.11 and Corollary 5.5.12

we need a general version of the Gauss-Markov theorem.

5.5.1 Gauss-Markov theorem

The following discussion can be found in [24, Chapter 4].

First, we formulate a vector space version of the Gauss-Markov theo-

rem. In the following, W is a finite dimensional Hilbert space over the real

numbers.

Definition 5.5.1. Let X be a random vector on W with distribution Q and

let f be a real, Borel measurable function defined on W. If∫
W
|f(x)|Q(dx) <∞,

then we say f(X) has a finite expectation and we write

Ef(X) =

∫
W
f(x)Q(dx).

Definition 5.5.2. Let X be a random vector on W with distribution Q

and let f and g be real, Borel measurable functions defined on W. Let∫
W |f(x)|2Q(dx) <∞ and

∫
W |g(x)|2Q(dx) <∞. We define the covariance

between f(X) and g(X) by

cov(f(X), g(X)) :=

∫
W
f(x)g(x)Q(dx)−

∫
W
f(x)Q(dx)

∫
W
g(x)Q(dx)

= E [f(X)g(X)]− Ef(X)Eg(X).
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Definition 5.5.3. Let X be a random vector on the Hilbert space W, and

let for each x ∈ W the random variable 〈x,X〉 have a finite expectation. The

unique vector µ ∈ W with the property that

E(〈x,X〉) = 〈x, µ〉

is called the mean vector of X and is denoted by µ = EX.

Definition 5.5.4. Let X be a random vector on the Hilbert space W with

E(〈x,X〉)2 <∞ for every x ∈ X. A unique non-negative definite operator Σ

on W that satisfies

cov(〈x,X〉, 〈y,X〉) = 〈x,Σy〉

is called the covariance of X

Let M be a subspace of W . Let Y be a random vector in W with

EY = µ ∈M and Cov(Y ) = Σ for some Σ > 0, i.e.

Y = µ+ ε,

where ε is a random vector with Eε = 0 and Cov(ε) = Σ.

Let H be another Hilbert space over the real numbers (possibly infinite

dimensional) and let B ∈ L(W ,H). Our goal is to estimate the unknown

element Bµ, where µ ∈ M , from the random vector Y = µ + ε with Eε = 0

and Cov(ε) = Σ.

Definition 5.5.5. Let µ ∈M and Y = µ+ ε, with Eε = 0 and Cov(ε) = Σ.

Let A ∈ L(W ,H). We call AY a linear estimator of Bµ.

A linear estimator AY is called an unbiased estimator of Bµ if, and only

if EA(ν + ε) = Bν for every ν ∈M .

The classical Gauss-Markov approach restricts the problem of estimating

Bµ to the class of unbiased linear estimators of Bµ. Within this class, the

Gauss-Markov theorem determines the estimator with the minimum expected

norm-squared deviation from Bµ.
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Since EAY = AEY = Aµ, the estimator AY is an unbiased estimator for

Bµ for µ ∈M , if, and only if Aµ = Bµ for µ ∈M . We denote the set of all

unbiased linear estimators of Bµ, for µ ∈M , by

K1(B) := {A ∈ L(W ,H) : Aµ = Bµ for µ ∈M}.

Theorem 5.5.6. Let Y be a random vector in W with EY = µ ∈ M and

Cov(Y ) = Σ. Let N be a subspace of W with the property that, N ⊕M = W
and Σ(M⊥) ⊂ N . For every A ∈ K1(B),

E‖AY −Bµ‖2 > E‖BPMNY −Bµ‖2. (5.84)

If Cov(ε) = σ2I, then N = M⊥ is the unique subspace with the desired

properties, and there is equality in (5.84) if, and only if A = BPM .

5.5.2 Application of the Gauss-Markov theorem to the

reconstruction operators

We need Lemma 5.5.7 and Lemma 5.5.8 in order to prove Theorem 5.5.9,

Corollary 5.5.10, Corollary 5.5.11 and Corollary 5.5.12.

Lemma 5.5.7. Let V and T be closed subspaces of H. Let {uj}j∈N be a

frame for V and let V be the corresponding synthesis. Let {gk}k∈N be a frame

for T , let T be the corresponding synthesis operator. Furthermore let Σ be a

bounded operator on l2(N) with a closed range, let Σ > 0, and let the operator

Σ
†
2V ∗T have a closed range.

If R(T ∗V Σ) = R(T ∗), then for the operator Q, defined by

Qm := T (Σ
†
2V ∗T )†Σ

†
2 ,

and the operator P , defined by

P = V ∗Qm

the following holds.

87



1. QmP = Qm,

2. The operator R := QmV
∗ is a bounded projection onto T ,

3. P is a bounded projection with R(P ) = R(V ∗T ),

4. N (P ) = N (T ∗V Σ†).

Proof. From Corollary 2.2.4 we infer that

QmP = T (Σ
†
2V ∗T )†Σ

†
2V ∗T (Σ

†
2V ∗T )†Σ

†
2

= T (Σ
†
2V ∗T )†Σ

†
2 = Qm.

Next we show (2). Using again Corollary 2.2.4, we obtain

R2 = T (Σ
†
2V ∗T )†Σ

†
2V ∗T (Σ

†
2V ∗T )†Σ

†
2V ∗

= T (Σ
†
2V ∗T )†Σ

†
2V ∗ = R.

Clearly R(R) ⊂ T . We show that R(R|T ) = T , to prove the inverse impli-

cation,. Since Σ is selfadjoint we obtain

Σ = PR(Σ)Σ = PR(Σ∗)Σ = Σ†ΣΣ = Σ
†
2Σ

†
2ΣΣ,

and

Σ
†
2 = PR(Σ∗)Σ

†
2 = PR(Σ)Σ

†
2 = ΣΣ†Σ

†
2 ,

and consequently

R(T ∗V Σ
†
2 ) = R(T ∗V Σ).

Since by assumption R(T ∗V Σ) = R(T ∗), we infer that

RT = T (Σ
†
2V ∗T )†Σ

†
2V ∗T = TP

R(T ∗V Σ
†
2 )

= TPR(T ∗)

= TPN (T )⊥ = T.
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Next we prove (3). Using Corollary 2.2.4 we obtain

P 2 = V ∗T (Σ
†
2V ∗T )†Σ

†
2V ∗T (Σ

†
2V ∗T )†Σ

†
2

= V ∗T (Σ
†
2V ∗T )†Σ

†
2 = P.

Clearly R(P ) ⊂ T . We show that P|R(V ∗T ) = R(V ∗T ), to prove the inverse

implication. This follows from

PV ∗T = V ∗T (Σ
†
2V ∗T )†Σ

†
2V ∗T = V ∗RT = V ∗T.

We observe that

R((Σ
†
2V ∗T )†) = R(T ∗V Σ

†
2 ) ⊂ R(T ∗V ).

Combining this with Lemma 2.1.3 we infer that

N (P ) = N (V ∗T (Σ
†
2V ∗T )†Σ

†
2 ) = N ((Σ

†
2V ∗T )†Σ

†
2 ) (5.85)

Using that N (Σ
†
2V ∗T )†) = N (Σ

†
2V ∗T )∗) = N (T ∗V Σ

†
2 ) (see (2.2)), we infer

from (5.85) that N (P ) = N (T ∗V Σ†).

Lemma 5.5.8. Let H, T , V, {uj}j∈N, V , {gk}k∈N and T be as in Theorem

5.4.2. Let cos(ϕT ,V) > 0 and σ2 > 0.

For the operator Σ = σ2V ∗V and for any strictly positive operator Σ on

l2(N) it holds
R(T ∗V Σ) = R(T ∗).

Proof. Since cos(ϕT ,V) > 0, {PT uj}j∈N is a frame for T , and consequently

by Lemma 5.2.4 it holds R(T ∗V ) = R(T ∗). Therefore it is sufficient to prove

that R(T ∗V Σ) = R(T ∗V ). If Σ > 0, then Σ is invertible, and consequently

R(T ∗V Σ) = R(T ∗V ). For Σ = σ2V ∗V it holds R(T ∗V Σ) = R(T ∗V V ∗V ).

Clearly R(T ∗V V ∗V ) ⊂ R(T ∗V ). Using Lemma 2.1.3 and Lemma 2.2.3 we

infer that

T ∗V V ∗V (V ∗V )† = T ∗V PR(V ∗V ) = T ∗V PR(V ∗) = T ∗V PN (V )⊥ = T ∗V.
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Consequently also R(T ∗V ) ⊂ R(T ∗V V ∗V ).

Theorem 5.5.9. Let H be a Hilbert space over the real numbers and let

{uj}nj=1 and {gk}mk=1 be finite sequences in H with linear span V and T re-

spectively. Let T denote the synthesis operator of the sequence {gk}mk=1, and

let T ∗ denote the corresponding analysis operator. Let V denote the synthe-

sis operator of the sequence {uj}nk=1, and let V ∗ denote the corresponding

analysis operator. Let g ∈ T and let

Y = V ∗g + ε,

where ε is a random vector in Rn with E(ε) = 0 and Cov(ε) = Σ, with Σ > 0.

Let

Qm := T (Σ− 1
2V ∗T )†Σ− 1

2 .

If cos(ϕT ,V) > 0, for every Q ∈ L(Rn,H) with QV ∗h = h for h ∈ T it

holds

E‖QY − g‖2 > E‖QmY − g‖2.

Proof. Let g = Tc ∈ T . With this notation

Y = V ∗Tc+ ε.

For every g ∈ T , E(Y ) ∈ M with M = R(V ∗T ). Since Σ > 0, Lemma 5.5.8

implies that R(T ∗V Σ) = R(T ∗), and consequently, using Lemma 5.5.7, (2),

we obtain

K1(Qm) = {Q ∈ L(Rn,H) : Qµ = Qmµ for µ ∈ R(V ∗T )}

= {Q ∈ L(Rn,H) : QV ∗Td = QmV
∗Td = Td for d ∈ Rm}

= {Q ∈ L(Rn,H) : QV ∗h = h for h ∈ T }.

Let P be defined by

P = V ∗Qm.

Lemma 5.5.7, (3), implies that P is a bounded projection onto R(V ∗T ) and

consequently for N = N (P ), N ⊕ M = Rn. Lemma 5.5.7, (4), implies
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that Σ(R(V ∗T )⊥) ⊂ N (P ), and consequently Theorem 5.5.6 implies that for

every Q ∈ K1(Qm),

E‖QY − g‖2 > E‖QmPY − g‖2.

Since QmP = Qm by Lemma 5.5.7, (1), this yields the desired result.

From Theorem 5.5.9 we obtain Corollary 5.5.10.

Corollary 5.5.10. Let H, {uj}nj=1, {gk}mk=1, V, T , V and T be as in Theorem

5.5.9. Let g ∈ T and let

Y = V ∗g + ε,

where ε is a random vector in Rn with E(ε) = 0 and Cov(ε) = σ2In, σ
2 > 0.

Let

Qg := T (V ∗T )†.

If cos(ϕT ,V) > 0, for every Q ∈ L(Rn,H) with QV ∗h = h for h ∈ T it

holds

E‖QY − g‖2 > E‖QgY − g‖2,

with equality if, and only if Q = Qg.

Corollary 5.5.11. Let H be a finite dimensional Hilbert space over the real

numbers and let {uj}nj=1 and {gk}mk=1 be finite sequences in H with linear

span V and T respectively. Let T denote the synthesis operator of the se-

quence {gk}mk=1, and let T ∗ denote the corresponding analysis operator. Let

V denote the synthesis operator of the sequence {uj}nk=1, and let V ∗ denote

the corresponding analysis operator. Let g ∈ T and let

Y = V ∗g + V ∗∆g,

where ∆g is a random vector in H with E∆g = 0 and Cov(∆g) = σ2I. Let

Qf := T
(
(V ∗V )

†
2V ∗T

)†
(V ∗V )

†
2 .

If cos(ϕT ,V) > 0, for every Q ∈ L(Rn,H) with QV ∗h = h for h ∈ T it
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holds

E‖QY − g‖2 > E‖QfY − g‖2.

Proof. We observe that Σ := Cov(V ∗∆g) = σ2V ∗V . From Lemma 5.5.8

we obtain R(T ∗V Σ) = R(T ∗), and consequently the assumptions of Lemma

5.5.7 are fulfilled. The proof follows now repeating the arguments of the

proof of Theorem 5.5.9.

Corollary 5.5.12. Let H, {uj}nj=1, {gk}mk=1, V, T , V and T be as in Theorem

5.5.11. Let g ∈ T and let

Y = V ∗g + V ∗∆g + ε, (5.86)

where ∆g and ε are independent random vectors with σ2
1, σ

2
2 > 0, Eε = 0,

Cov(ε) = σ2
1In, E(∆g) = 0 and Cov(∆g) = σ2

2I. Let

Σ = σ1
2In + σ2

2V ∗V,

and let

Qm = T (Σ− 1
2V ∗T )†Σ− 1

2 .

If cos(ϕT ,V) > 0, for every Q ∈ L(Rn,H) with QV ∗h = h for h ∈ T it

holds

E‖QY − g‖2 > E‖QmY − g‖2. (5.87)

Proof. Since ∆g and ε are independent random vectors,

Σ = Cov(V ∗∆g + ε) = σ1
2In + σ2

2V ∗V.

Since σ1
2 > 0, Σ > 0 and the statement follows from Theorem 5.5.9.
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5.6 Calculation of the approximations and con-

ditions for them to coincide

5.6.1 Calculation of the coefficients

We now discuss how to calculate the coefficients of the reconstructions in

the finite dimensional setup. Let {uj}nj=1 and {gk}mk=1 be finite sequences in

H. We recall that our intention is to approximate an element f ∈ H from

measurements

dj = 〈f, uj〉+ δj j = 1, . . . , n,

where δj is noise. Let d ∈ Cn denote the vector consisting of the measure-

ments

d = [d1, . . . , dn]
T .

We choose our approximations f̃ of f as a linear combination

f̃ =
m∑
k=1

ĉkgk, (5.88)

with linearly independent reconstruction vectors {gk}mk=1 and n > m.

In Section 5.2 we discussed the concept of generalized sampling where the

vector ĉ = [ĉ1, . . . , ĉm]
T containing the coefficients of the series expansion of

f̃ is the solution of the overdetermined least squares problem

ĉ = arg min
c

‖Ac− d‖, (5.89)

where A ∈ Cn×m is defined by

A(j, k) = (V ∗T )(j, k) = 〈uj, gk〉.

In Section 5.3 we discussed the concept of frame independent sampling,

where the vector ĉ = [ĉ1, . . . , ĉm]
T containing the coefficients of the series
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expansion of f̃ is the solution of the overdetermined least squares problem

ĉ = arg min
c

‖B
†
2Ac−B

†
2d‖, (5.90)

where B ∈ Cn×n,

B(j, k) = (V ∗V )(j, k) = 〈uj, uk〉.

In Section 5.4 we also mentioned combinations between those two ex-

treme reconstruction methods, where ĉ = [ĉ1, . . . , ĉm]
T is the solution of the

overdetermined least squares problem

ĉ = arg min
c

‖Σ− 1
2

λ Ac− Σ
− 1

2
λ d‖, (5.91)

with Σλ = λI + V ∗V .

We observe that calculating the coefficients {ĉk}mk=1 for the reconstruction

Qgd =
∑m

k=1 ĉkgk amounts to solving the least squares problem (5.89). For

the reconstruction Qfd, the least squares system (5.90) has to be solved, and

for the reconstruction Qλd, the least squares system (5.91) has to be solved.

We observe that (5.90) and (5.91) are (5.89) multiplied by the matrix B
†
2

and Σ
†
2 , respectively.

Solving the overdetermined least squares problem (5.89) by a direct method

as the QR decomposition with pivoting has an operation count of O(nm2).

Solving the least squares problem with a fixed precision ε > 0 can be ac-

complished iteratively in O(log(ε)nm) flops. One can e.g. use the conjugate

gradient method applied to the normal equations as an iterative solver. This

can for example be realized by the LSQR algorithm, see [51]. A condition

number κ(A) close to one results in fast convergence of the conjugate gradi-

ent method. In [31, Theorem 10.2.6] it is shown that the conjugate gradient

method applied to a matrix with condition number κ converges exponen-

tially at the rate of
√
κ−1√
κ+1

. In Lemma 5.6.1 we estimate the condition number

κ(A∗Σ−1
λ A) = ‖A∗Σ−1

λ A‖‖(A∗Σ−1
λ A)−1‖ of the matrix of the normal equa-

tions of the least squares problem (5.91).

We recall that for λ > 0 the reconstruction operators Qλ (including

Q0 = Qf and Q∞ = Qg) are independent of the particular choice of the
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reconstruction vectors {gk}mk=1, but only dependent on T , the linear span.

Therefore we may assume that {gk}mk=1 are an orthonormal system.

Lemma 5.6.1. Let T and V be closed subspaces of a separable Hilbert space

H. Let {uj}j∈N be a frame for V with lower and upper frame bound A and B

respectively, and let V be the corresponding synthesis operator. Let {gk}k∈N be

an orthonormal basis for T , and let T be the corresponding synthesis operator.

Furthermore let λ > 0, and let Σλ = λI + V ∗V . We set B = T ∗V Σ−1V ∗T .

If cos(ϕT ,V) > 0, then

κ(B) 6 1

cos2(ϕT ,V)

B

λ+B

λ+ A

A
. (5.92)

Proof. From Lemma 5.4.1 we know that {ũj = (λI+V V ∗)
†
2uj}j∈N is a frame

for V with lower and upper frame bounds A
λ+A

, and B
λ+B

, and the synthesis

operator L = Σ− 1
2V ∗. In the proof of Lemma 3.4.2 it is shown that for

g = Tc ∈ T

(
A

λ+ A

) 1
2

cos(ϕT ,V)‖Tc‖ 6 ‖L∗Tc‖ 6
(

B

λ+B

) 1
2

‖Tc‖. (5.93)

Since {gk}k∈N is an orthonormal basis, ‖Tc‖ = ‖c‖. This together with (5.93)

implies (5.92).

We observe that the larger the tuning parameter λ, the larger the up-

per bound of the condition number κ(A∗Σ−1
λ A) of the matrix of the normal

equations of the least squares problem (5.91). Therefore we expect that

κ(A∗Σ−1
0 A) 6 κ(A∗Σ−1

λ A) 6 κ(A∗A),

which is tested in numerical experiments in Section 6. Consequently we

expect faster convergence of the conjugate gradient method applied to the

matrix A∗Σ−1
λ A instead of A∗A. This is the general motivation for precondi-

tioning, see [3, 5, 29,34,35,60] for related examples.

In order to calculate approximations of the solution of the least squares

problem (5.90) at low operation count, we first need to calculate approxima-
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tions Mλ of Σ−1
λ followed by solving the normal equations

A∗MλAc = A∗Mλh.

We hope to obtain approximations Mλ of Σ−1
λ at a low operation count

from the theory of controlled frames, weighted frames and frame multipliers,

see [13,14,18].

5.6.2 Conditions for the approximations to coincide

While in general the reconstructions Qg, Qf and Qm are rather different,

they coincide in several situations. Since by (5.22) Qg |R(V ∗)⊥ = 0, by (5.46)

Qf |R(V ∗)⊥ = 0, and by (5.79) Qm|R(V ∗)⊥ = 0, instead of studying Qg, Qf and

Qm we inspect the oblique projections QgV
∗, QfV

∗, and QmV
∗. In Theorem

5.2.5 it is shown that QgV
∗ = PT ,Su(T )⊥ , where Su is the frame operator

of the frame sequence {uj}j∈N of V . In Theorem 5.3.2 it is shown that

QfV
∗ = PT ,Sf (T )⊥ , where Sf is the frame operator of the tight frame sequence

{S †
2uj}j∈N of V . In Theorem 5.4.2 it is shown that QmV

∗ = PT ,Sm(T )⊥ , where

Sm is the frame operator of the frame sequence
{
(σ1

2In + σ2
2V V ∗)−

1
2uj
}
j∈N

of V . Therefore it is sufficient to determine when Sf (T ) = Sg(T ) = Sm(T ).

The following Lemma states that if T ⊕ V⊥ = H, then all operators

Q : l2(N) → H, with QV ∗g = g for g ∈ T , coincide on R(V ∗). This property

follows from [27, Theorem 1].

Lemma 5.6.2. Let T and V be closed subspaces for V. Let {uj}nj=1 be a

frame for V. If T ⊕ V⊥ = H, then for any operator Q : l2(N) → H with the

property that QV ∗g = g for g ∈ T it holds

QV ∗ = PT ,V⊥ , (5.94)

and consequently

Qf = Qg = Qm.

Proof. As in Theorem it is shown that QV ∗g = g for g ∈ T implies that

(QV ∗)|T ⊕V⊥ = PT ,V⊥ . Since by assumption T ⊕ V⊥ = H, this proves (5.94).
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Lemma 5.6.3 is the finite dimensional version of Lemma 5.6.2.

Lemma 5.6.3. Let T and V be finite dimensional subspaces in H and let

dim(T ) = dim(V). If T ∩ V⊥ = {0}, then for any operator Q : l2(N) → H
with the property that QV ∗g = g for g ∈ T it holds

QV ∗ = PT ,V⊥ ,

and consequently

Qf = Qg = Qm.

In order to prove Theorem 5.6.5 we need Lemma 5.6.4.

Lemma 5.6.4. Let V be a closed subspaces of H. Furthermore let {uj}j∈N
be a tight frame for V, with corresponding synthesis operator V and corre-

sponding analysis operator V ∗ and let σ1
2, σ2

2 > 0.

Then also
{
(σ1

2I + σ2
2V V ∗)−

1
2uj
}
j∈N is a tight frame for V.

Proof. Let A denote the frame bound of {uj}j∈N. The synthesis operator of{
(σ1

2I + σ2
2V V ∗)−

1
2uj
}
j∈N is given by

T := (σ1
2I + σ2

2V V ∗)−
1
2V.

We have to prove that there exists a constant C > 0, such that

‖T ∗u‖2 = C‖u‖2 for every u ∈ V .

By Theorem 2.3.15 S = V V ∗ = APV , and consequently for u ∈ V

(σ1
2I + σ2

2V V ∗)u = (σ1
2 + σ2

2A)u.

Therefore for u ∈ V

‖T ∗u‖2 = ‖V ∗(σ1
2I + σ2

2V V ∗)−
1
2u‖2 = 1

σ12 + σ22A
‖V ∗u‖2

=
A

σ12 + σ22A
‖u‖2.
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Theorem 5.6.5 states that the reconstructions coincide whenever the sam-

pling frame is tight. An important case of the sampling frame being tight is

the reconstruction of a compactly supported function from its Fourier coef-

ficients, as mentioned in the introduction.

Theorem 5.6.5. Let T and V be closed subspaces of H and let cos(ϕT ,V) > 0.

If {uj}j∈N is a tight frame for V, then

Qf = Qg = Qm. (5.95)

Proof. If {fj}j∈N is a tight frame for V with frame operator S, then

S(T ) = PV(T ) and consequently

PT ,S(T )⊥ = PT ,PV (T )⊥ .

Equation (5.95) is now a direct consequence of Lemma 5.6.4 and the discus-

sion at the beginning of this section.
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Chapter 6

Numerical experiments for

reconstruction from Fourier

measurements

In this chapter, we compare experimentally accuracy of various reconstruc-

tion methods. We consider a specific setup, where non-uniform samples of

the Fourier transform of a compactly supported function are given. The re-

construction of compactly supported function from a non-uniform sampling

pattern is common in practice. For example, radial sampling of the Fourier

transform is used in MRI and CT, see [47] for a detailed explanation why this

is the case. From the given data, we calculate the Fourier coefficients of the

function, and construct a final approximation by a truncated Fourier series.

This is called the uniform resampling problem, see [10, 66]. For smooth and

periodic functions the Fourier series converges exponentially fast. For non-

periodic or discontinuous functions, the Fourier series representation suffers

from the Gibbs phenomenon and slow convergence. First we approximate

the signum function. Due to the jumps of this function, trigonometric poly-

nomials are a bad choice as reconstruction functions and for this function

other basis functions are much better suited. Our objective in this section is

not to choose optimal reconstruction functions, but rather to show how the

different reconstruction operators deal with the part outside of the recon-

99



struction space. For that purpose, using a function with a jump and using

trigonometric polynomials for reconstruction is a good choice.

In this section we denote by 〈·, ·〉 the standard inner product on the

Hilbert space L2(R) defined by

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx,

and ‖ · ‖ =
√

〈·, ·〉. We use the following definition of the Fourier transform

on L2(R)

Ff(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx.

Let H be the subspace of L2(R) of functions with support in the interval

[−1/2, 1/2], i.e.,

H =
{
f ∈ L2(R) : supp(f) ⊂ [−1/2, 1/2]

}
.

6.1 The noiseless case

We approximate functions f ∈ H from a set of Fourier measurements

Ff(ωj) =
〈
f(·), e2πiωj ·χ[−1/2,1/2](·)

〉
, j = −n, . . . , n,

where ωj ∈ R. This means that the sampling vectors are

uj = e2πiωj ·χ[−1/2,1/2](·), j = −n, . . . , n.

In the special case that we are given the Fourier coefficients

Ff(j), j = −n, . . . , n,

the approximation f̃ of f is the Fourier series

f̃(x) =
n∑

k=−n

Ff(k)e2iπkxχ[−1/2,1/2](x).
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This means that the reconstruction vectors are the complex exponentials

gk = e2πik·χ[−1/2,1/2], k = −m, . . . ,m

with m = n, i.e., we use as many reconstruction vectors as the number of

given measurements.

If we are given irregular Fourier measurements Ff(ωj), j = −n, . . . , n,
then it is natural to calculate the coefficients ck for the approximation

f̃(x) =
n∑

k=−n

cke
2iπkxχ[−1/2,1/2](x) (6.1)

of f such that for every j = −n, . . . , n

F

(
n∑

k=−n

cke
2iπk·χ[−1/2,1/2](·)

)
(ωj) = Ff(ωj),

i.e., a consistent approximation. If the function f to be approximated has a

part outside of the reconstruction space, then this consistent approach can

lead to inaccurate approximations. We approximate the function

f(x) = sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0,

given the Fourier measurements Ff(ωj) at the sampling frequencies

ωj = j + δj, j = −n, . . . , n, (6.2)

for n = 40, with δj ∈ [−1, 1] drawn from the uniform distribution in the in-

terval [−1, 1]. We observe experimentally that the consistent approximation

f̃ = QcV
∗f has an average relative error of ‖f̃ − f‖/‖f‖ = 0.247 (arithmetic

mean over 5000 approximations).

We try to reduce the approximation error by taking fewer reconstruction

vectors than measurements. We choose m = 20, i.e., a total amount of 41
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reconstruction vectors and n = 40, i.e., a total amount of 81 measurements.

We stay with the example in order to demonstrate the difference between

various approximation procedures.

As mentioned in the introduction, a common choice is to calculate the

coefficients for the approximation

f̃(x) =
m∑

k=−m

ĉke
2iπkxχ[−1/2,1/2](x)

of f by the standard least squares problem

ĉ = arg min
c

n∑
j=−n

∣∣∣F( m∑
k=−m

cke
2iπkxχ[− 1

2
, 1
2
](x)
)
(j + δj)−Ff(j + δj)

∣∣∣2.
We use the notation T for the synthesis operator of the reconstruction se-

quence, i.e.,

Tc =
m∑

k=−m

cke
2iπk·χ[−1/2,1/2](·)

Using the notation V ∗ for the analysis operator of the sampling sequence

{uj}nj=−n, we have

h = [Ff(ω−n), . . . ,Ff(ωn)]
T = V ∗f.

Thus the approximation f̃ of f can be written as

f̃ = T (V ∗T )†h = Qgh,

which means that we calculate the approximation f̃ to f by means of gener-

alized sampling, see (5.20).

We approximate by means of generalized sampling, and obtain an average

relative error of ‖f̃ − f‖/‖f‖ = 0.465 (arithmetic mean over 5000 approx-

imations). We observe that the relative approximation error even becomes

larger than in the consistent case. The reason for that is the following. The

operator Qg is constructed in such a way that it deals well with noise, but

not made for dealing with the part outside of the reconstruction space of the
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function to be reconstructed (i.e. cannot cope with the jumps of the signum

function).

The operator Qf (defined by (5.44)) has the smallest possible quasi-

optimality constant µ (see Theorem 5.3.8), and therefore is exactly designed

to deal with the part outside of the reconstruction space (to deal with the

jumps). If we run the same experiment, approximate by means of frame

independent sampling, i.e. f̃ = Qfh, we obtain an average relative error

of ‖f̃ − f‖/‖f‖ = 0.146 (arithmetic mean over 5000 approximations). The

orthogonal projection PT f onto the reconstruction space

T = span{e2πik·χ[−1/2,1/2]}mk=−m (6.3)

has a relative error ‖PT f−f‖
‖f‖ = 0.142, which means that QfV

∗ projects almost

orthogonally onto the reconstruction space.

In Section 5.4 we also discussed mixtures Qλ (Qλ defined by (5.83)) be-

tween the operators Qg and Qf . In Table 6.1 we list the relative reconstruc-

tion error ‖f−Qλh‖
‖f‖ , the operator norm ‖Qλ‖, the quasi-optimality constant

µ(Qλ) and the condition number κ(ΣλV
∗T ) of the matrix of the least squares

problem (5.91) for

λ = 0, 0.0001, 0.001, 0.01, 0.1, ∞.

We recall that Q0 = Qf (frame independent sampling) and Q∞ = Qg (gen-

eralized sampling). We average (arithmetic mean) these quantities over 5000

approximations of the signum function from the random sampling frequencies

(6.2). The operator norm ‖Qλ‖, µ(Qλ) and the condition numbers of ma-

trices of the least squares problems are only dependent on the the sampling

and reconstruction vectors (but neither on the noise level nor on the function

to be approximated). Therefore we only list these quantities in Table 6.1. In

Figure 6.1 we plot the approximations obtained by Qf , Q0.01 and Qg for one

realization of the sampling frequencies (6.2).

We see in Table 6.1 that the operator Qf has the smallest quasi-optimality

constant µ(Q). By increasing the magnitude of λ, the quasi-optimality con-
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error µ(Q) ‖Q‖ κ

Qf (= Q0) 0.146 1.311 784.0 1.311

Q0.0001 0.150 1.790 135.1 2.285

Q0.001 0.162 2.601 94.3 3.980

Q0.01 0.199 4.568 70.4 8.360

Q0.1 0.286 9.116 56.8 19.678

Qg (= Q∞) 0.459 26.070 49.4 80.546

Table 6.1: The relative approximation error, µ(Q) and ‖Q‖, averaged over
5000 approximations, approximating the signum function. We use m = 20
and n = 40.
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Figure 6.1: Approximation of the signum function. The approximations
obtained by Qf , Q0.01 and Qg have a relative error of 0.14, 0.21 and 0.41
respectively.

stant µ(Qλ) is increasing. The quasi-optimality constant is a measure of

how well the operator deals with the part of the function to reconstruct

lying outside of the reconstruction space, and consequently, we expect a

larger reconstruction error with increasing λ, which is in fact the case. We

also observe that the condition number κ((V ∗V )
†
2V ∗T ) of the matrix of the

least squares problem (5.90) corresponding to frame independent sampling
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is equal to the quasi optimality constant µ(Qf ) = 1
cos(ϕT ,V )

. The bound

κ((V ∗V )
†
2V ∗T ) 6 1

cos(ϕT ,V )
is proven in Lemma 5.6.1. Therefore, if the value

1
cos(ϕT ,V )

is close to one, preconditioning the least squares problem (5.89) by

(V ∗V )
†
2 results in a least squares problem with condition number close to one.

A small value 1
cos(ϕT ,V )

is necessary for a stable reconstruction, and therefore

the reconstruction space should always be chosen in such a way that this is

the case.

We observe that with increasing λ, the operator norm of Qλ is decreasing,

and the approximation becomes less sensitive to noise present in the measure-

ments. Since we used no noise in this experiment, the different magnitudes of

the operator norm have no influence on the accuracy of the approximations,

and therefore we obtain the most accurate approximations by the operator

Qf . This changes in the next setup.

6.2 Errors appearing after the sampling pro-

cess

We repeat the same experiment with the only difference that we add some

noise to the vectors

h = [Ff(ω−n), . . . ,Ff(ωn)]
T , (6.4)

containing the Fourier samples, where ωj, j = −n, . . . , n is as in (6.2). Specif-

ically we reconstruct f from d = h+v, with vectors v ∈ C2n+1, where the real

part and imaginary part of the vector entries of v are initially created with

the standard normal distribution (that is with expectation 0 and standard

deviation 1), and then the vectors are normalized so that

‖v‖
‖h‖

= ε (6.5)

for ε = 0.01.
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6.2.1 Approximation of the signum function

First we approximate f = sign. In Table 6.2 we list the relative reconstruc-

tion error ‖Qλd−f‖
‖f‖ for

λ = 0, 0.0001, 0.001, 0.01, 0.1, ∞,

averaged (arithmetic mean) over 5000 approximations calculated from the

random vector d = h + v containing the noisy measurements. For each

realization of the sampling frequencies one realization of the noise vector is

added.

error

Qf (= Q0) 0.64

Q0.0001 0.20

Q0.001 0.19

Q0.01 0.21

Q0.1 0.29

Qg (= Q∞) 0.46

Table 6.2: The relative approximation error averaged over 5000 approxima-
tions, approximating the signum function. We use ε = 0.01, m = 20 and
n = 40.

Since the operator norm of Qf is large, the small amount of noise destroys

the accuracy of the approximations obtained by the operatorQf . On average,

the most accurate approximations are obtained by Q0.001, a slightly regular-

ized version of Qf . The operator Q0.001 has a quite small quasi-optimality

constant µ (on average), such that this operator deals quite well with the

jumps of f = sign, and due to the regularization parameter λ = 0.001 we ob-

tain a smaller operator norm than the one of Qf , and therefore the sensitivity

to noise is reduced.
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Figure 6.2: Approximation of the signum function. The approximations
obtained by Qf , Q0.01 and Qg have a relative error of 0.27, 0.17 and 0.42
respectively.

6.2.2 Approximation of an element lying inside the re-

construction space

When reconstructing a function f lying inside the reconstruction space there

is no advantage in taking an operator with a small quasi-optimality con-

stant. In this case, only the magnitude of the operator norm ‖Q‖ is impor-

tant. Therefore we expect to obtain more accurate reconstructions with the

operator Qg(= Q∞) (having the smallest possible operator norm by Corol-

lary 5.2.9) than with any of the others. As an example we reconstruct the

trigonometric polynomial

f =
m∑

k=−m

e2iπk·χ[−1/2,1/2] (6.6)
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from the random vector d = h+ v, with h as in (6.4) and v as in (6.5) with

ε = 0.01. In Table 6.3 we list the relative reconstruction error ‖Qλd−f‖
‖f‖ for

λ = 0, 0.0001, 0.001, 0.01, 0.1, ∞,

averaged (arithmetic mean) over 5000 approximations calculated from the

random vector d containing the noisy measurements.

error

Qf (= Q0) 4.308

Q0.0001 0.155

Q0.001 0.116

Q0.01 0.089

Q0.1 0.073

Qg (= Q∞) 0.064

Table 6.3: The relative approximation error averaged over 5000 approxima-
tions, approximating the trigonometric polynomial (6.6). We use ε = 0.01,
m = 20 and n = 40.

We see in Table 6.3, that, as expected, the operator Qg has the smallest

relative error. Again, this is the case since the function to be approximated

lies inside the reconstruction space.

6.3 Errors appearing before the sampling pro-

cess

We now assume that we are given a set of Fourier measurements of a pertur-

bation of f ∈ H

h̃ = [F(f +∆f)(ω−n), . . . ,F(f +∆f)(ωn)]
T . (6.7)

According to Theorem 5.3.10, we expect to obtain more accurate reconstruc-

tions with the operator Qf than with any of the others, independently of the

position of the element to be approximated. The sampling frequencies ωj are
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chosen as before, i.e., ωj = j+δj, j = −n, . . . , n, with δj drawn from the uni-

form distribution in the interval [−1, 1]. For each set of sampling frequencies

we choose ∆f as a trigonometric polynomial

∆f =
n∑

k=−n

ake
2iπk·χ[−1/2,1/2].

Let a ∈ C2n+1 denote the vector

a := [a−n, . . . , an]
T .

The real part and imaginary part of the entries of a are initially created with

the standard normal distribution (that is with expectation 0 and standard

deviation 1), and then the vectors are normalized, so that

‖a‖
‖f‖

=
‖∆f‖
‖f‖

= ε, (6.8)

for ε = 0.1.

6.3.1 Approximation of the signum function

First we approximate the signum function f = sgn. In Table 6.4 we list the

relative approximation error ‖f−Qλh̃‖
‖f‖ for

λ = 0, 0.0001, 0.001, 0.01, 0.1, ∞,

averaged (arithmetic mean) over 5000 approximations calculated from the

random vector h̃ defined by (6.7). In Figure 6.3 we plot the approximations

obtained by Qf and Qg for one realization of the Fourier measurements (6.7).
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error

Qf (= Q0) 0.154

Q0.0001 0.159

Q0.001 0.170

Q0.01 0.206

Q0.1 0.296

Qg (= Q∞) 0.508

Table 6.4: The relative approximation error averaged over 5000 approxima-
tions, approximating the signum function. We use ε = 0.1 in (6.8), m = 20
and n = 40.
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Figure 6.3: Approximation of the signum function. We use ε = 0.1 in (6.8),
m = 20 and n = 40. The approximations obtained by Qf and Qg have a
relative error of 0.15 and 1.28 respectively.

6.3.2 Approximation of an element lying inside the re-

construction space

Next we approximate the trigonometric polynomial

f =
m∑

k=−m

e2iπk·χ[−1/2,1/2]. (6.9)
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In Table 6.5 we list the relative approximation error ‖f−Qλh̃‖
‖f‖ for

λ = 0, 0.0001, 0.001, 0.01, 0.1, ∞,

averaged (arithmetic mean) over 5000 approximations calculated from the

random vector h̃ defined by (6.7). In Figure 6.4 we plot the approximations

obtained by Qf and Qg for one realization of the Fourier measurements (6.7).

error

Qf (= Q0) 0.071

Q0.0001 0.073

Q0.001 0.077

Q0.01 0.088

Q0.1 0.121

Qg (= Q∞) 0.285

Table 6.5: The relative approximation error approximating the trigonometric
polynomial (6.9). We use ε = 0.1 in (6.8), m = 20 and n = 40.
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Figure 6.4: Approximation of the trigonometric polynomial (6.9). We use
ε = 0.1 in (6.8), m = 20 and n = 40. The approximations obtained by Qf

and Qg have a relative error of 0.08 and 0.45 respectively.
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We observe that for the trigonometric polynomial (6.9) the operator Qf

yields the most accurate reconstruction, when reconstructing from Fourier

measurements of the perturbed function. This is not the case when we re-

construct the same trigonometric polynomial from perturbed Fourier mea-

surements. Therefore even for functions inside the reconstruction space, the

operator Qf is the optimal choice when systematic errors appear before the

sampling process.

6.4 Summary of the experiments

Summarizing, when the sampling frame is tight or there are as many mea-

surements as reconstruction vectors, then there is no difference between the

reconstruction operators Qλ.

If there are more measurements than reconstruction vectors and the sam-

pling frame is not tight (the sampling frequencies are irregular), then the

reconstructions differ and we have observed the following.

1. The operator Qg gives the most accurate approximations if the func-

tion to be approximated is inside the reconstruction space, and we re-

construct from perturbed measurements (measurement error appearing

after the sampling process).

2. The operator Qf gives the most accurate approximations if the function

to be approximated has a part outside of the reconstruction space and

no measurement error is present.

3. The operator Qf gives the most accurate approximations if we assume

systematic errors appearing before the sampling process, independent

of the amount of the function to reconstruct lying outside of the re-

construction space (no measurement error after the sampling process

is assumed).

4. A mixture Qλ between the two operators gives more accurate approx-

imations than Qg or Qf , if the function to be reconstructed has a
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part outside of the reconstruction space, and we approximate from per-

turbed measurements (measurement error appearing after the sampling

process).
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Chapter 7

A hierarchical reconstruction

algorithm

In this chapter we consider the problem of approximating a non-bandlimited

function represented by a finite number of compactly supported generating

functions in wireless sensor networks. Typically in literature it is assumed

that the function to be approximated is strictly bandlimited, see for exam-

ple [40, 45, 49]. As explained in [54], this assumption is often unrealistic.

For example electrostatic fields, gravitation fields and diffusion fields are in

general non-bandlimited. Therefore the authors of [54] propose to use inte-

ger shifts of B-splines as a function model. Since B-splines have compact

support, we can preprocess the sensor measurements locally, and send the

resulting data (rather than sensor measurements) to a global fusion center

for further processing. In [54] this is done by solving least squares prob-

lems locally, and sending the resulting expansion coefficients rather than the

sensor measurements to a global fusion center.

We use the idea of preprocessing the sensor measurements locally to de-

velop a new hierarchical algorithm. If the signal is oversampled by a factor

s, then by our approach the number of required long distance transmissions

is reduced roughly by a factor s (in comparison to sending the sensor mea-

surements directly). This also holds true for the approach presented in [54].

Their approach has some drawbacks, the biggest being that their algorithm is

115



not applicable if one of the local least squares problems is under-determined.

7.1 Description of the setup

We consider the problem of estimating a continuous function f ∈ L2(Rd),

d ∈ N, from noisy point evaluations

di := f(xi) + δi, i = 1, . . . , n,

where δi ∈ C is measurement noise. The value di can be viewed as measure-

ment of the ith sensor positioned at xi.

As a function model we choose a finite dimensional subspaceW ⊂ L2(Rd),

generated by continuous, linearly independent and compactly supported gen-

erating functions gk ∈ L2(Rd,C), k = 1, . . . ,m,

W =

{
m∑
k=1

ckgk : ck ∈ C

}
. (7.1)

This means that our intention is to calculate coefficients {ĉk}mk=1 from the

point evaluations, such that

f̃ =
m∑
k=1

ĉkgk

is a good approximation to f . It should be mentioned that we do not assume

that f is an element of W .

7.2 Solving the global least squares problem

Let us describe the standard least squares approach to this problem, see for

example [36, Algorithm 1].
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Algorithm 7.2.1.

Input: We assume that the noisy point evaluations

d = [f(x1) + δ1, . . . , f(xn) + δn]
T ,

and the sensor positions {xi}ni=1 are known.

Step1: Calculate the matrix A ∈ Cn×m

A(i, k) = gk(xi), i = 1, . . . , n, k = 1, . . . ,m. (7.2)

Step2: Solve the least squares problem

ĉ = arg min
c

‖Ac− d‖. (7.3)

Step3: The approximation f̃ of f is given by

f̃ =
m∑
k=1

ĉkgk. (7.4)

We observe that f̃ is the least squares solution

f̃ = arg min
g∈W

∑
j∈N

|g(xj)− dj|2 . (7.5)

We assume that the matrix A is injective. In this case the least squares

problem (7.3) is overdetermined. Furthermore, in the absence of noise every

element f ∈ W can be reconstructed from the point evaluations {f(xi)}ni=1 by

Algorithm 7.2.1. A necessary condition for A being injective is that n > m,

i.e. we assume that there are at least as many measurements as generating

functions. Another simple necessary condition is that for each k there must

be at least one sensor located in the support of gk. Otherwise the matrix A

has a zero column and is consequently rank-deficient.
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The equivalent statement for infinite dimensional sampling theory is that

there exist constant A,B > 0 such that for every f ∈ W

A‖f‖2 6
∑
i∈N

|f(xi)|2 6 B‖f‖2.

In this case X = {xi}i∈N is called a set of stable sampling. In order to

guarantee that a stable reconstruction is possible, this property has to be

proven. As mentioned in the introduction, stable sets of sampling for the

space L2(R) ∩ B[− 1
2
, 1
2 ]

are characterized in terms of the Beurling density.

For our numerical experiments we use integer shifts of a one dimensional

B-spline. For this type of generating functions, stable sampling sets are well

understood, see [12, 36]. For a result in the two dimensional case, see [54].

It is important to realize that in this least squares approach all noisy point

evaluations {di}ni=1 have to be sent to one point, called the fusion center. As

already mentioned in the introduction, our intention is to get rid of this

redundancy, maintaining the advantage of oversampling.

7.3 Special case of a reproducing kernel Hilbert

space

This subsection is not needed for the description of our hierarchical algorithm,

but it gives some insight about why it is a good strategy to calculate the

coefficients ĉ for the reconstruction f̃ by (7.3).

What follows is the theory presented in [10], and some additional aspects

worked out in Section 5.2, applied to the problem of reconstructing element

f from point evaluations {f(xj)}j∈N in a reproducing kernel Hilbert space.

Definition 7.3.1. Let H be a Hilbert space of complex-valued functions on

a set X. We call H a reproducing kernel Hilbert space if for every x ∈ X the

point evaluation δx : H → C, δx(f) := f(x) is continuous.

Definition 7.3.2. Let H be a reproducing kernel Hilbert space. For x ∈ X
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we define Kx ∈ H as the unique element in H, such that for every f ∈ H

f(x) = δx(f) = 〈f, Kx〉. (7.6)

The function K : X ×X → C,

K(x, y) := 〈Ky, Kx〉 = Kx(y),

is called the reproducing kernel for the Hilbert space H.

If H is a reproducing kernel Hilbert space, by the Riesz representation

theorem, for every x ∈ X there exists a unique element Kx ∈ H, such that

(7.6) holds for every f ∈ H. The function Kx defined by (7.6) is called the

point-evaluation function at the point x.

Let us assume that the space W ⊂ L2(Rd) used as function model is a

subspace of a reproducing kernel Hilbert space H ⊂ L2(Rd,C). In this case

for every xi, i = 1, . . . , n, there exists a unique element ui = Kxi
∈ H with

the property that for every g ∈ H

g(xi) = 〈g, ui〉.

Let V = span{ui}ni=1. We denote by V the corresponding synthesis operator,

by V ∗ the corresponding analysis operator, and by S the corresponding frame

operator. By T we denote the synthesis operator of {gk}mi=1, so that W =

span{gk}mi=1 = R(T ). With this notation A = V ∗T . We define the operator

Qg by Qg = T (V ∗T )† = TA†. If the function f to be approximated is

an element of H, then the approximation f̃ of f defined by (7.4), and the

coefficients ĉk defined by (7.5) can be written in the form

f̃ = Qgd = TA†d. (7.7)

This shows that the approximation f̃ is obtained by means of generalized

sampling. Since the functions {gk}mk=1 are assumed to be linearly indepen-

dent, the assumption A being injective is equivalent to cos(ϕW,V) > 0 (where

the angle ϕW,V is defined by (3.9)). Consequently by (5.25) the bounded
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operator Qg is quasi-optimal. By (3.6) for f ∈ H

‖f −Qg(V
∗f + δ)‖ 6 µ(Qg)‖f − PWf‖+ ‖Qg‖‖δ‖. (7.8)

By Corollary 5.2.9, if Q : Cn → H is an operator with QV ∗f = f for all

f ∈ W (i.e. Q recovers elements in W in the absence of noise), then

‖Q‖ > ‖Qg‖.

Therefore the calculation of the coefficients by (7.3) gives the most stable

reconstruction in the sense above.

7.4 Preprocessed data

In this section we describe how to calculate coefficients for the approximation

f̃ =
∑m

k=1 ĉkgk of f from inner products

sj = 〈d,vj〉, j = 1, . . . , r, (7.9)

of the vector d containing the noisy point evaluations. This means that

instead of estimating the coefficients {ĉk}mk=1 from noisy point evaluations

f(xi) + δi, i = 1, . . . , n, we estimate them from {sj}rj=1. This is used in

Section 7.5 to describe our hierarchical algorithm.

Algorithm 7.4.1.

Input: We assume that the vectors {vj ∈ Cn×1}rj=1 , the inner products

s = [〈d, v1〉, . . . , 〈d, vr〉]T

and the sensor positions {xi}ni=1 are known.

Step1: Calculate the matrix

(T ∗T )
†
2T ∗A
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and the vector

(T ∗T )
†
2s,

where the matrix T is defined by

T (i, k) = vk(i), i = 1, . . . , n, k = 1, . . . , r, (7.10)

and A is the matrix of the global least squares problem, defined by (7.2).

Step2: Solve the least squares problem

ĉ = arg min
c

‖(T ∗T )
†
2T ∗Ac− (T ∗T )

†
2s‖. (7.11)

Step3: The approximation f̃ of f is given by

f̃ =
m∑
k=1

ĉkgk.

Let us describe the idea behind Algorithm 7.4.1. Let h denote the vector

containing the point evaluations

h = [f(x1), . . . , f(xn)]
T , (7.12)

and let δ denote the vector containing the noise

δ = [δ1, . . . , δn]
T ,

such that d = h + δ is the vector containing the noisy point evaluations of

f . We first observe that the least squares solution

ĉ = arg min
c

‖Ac− d‖. (7.13)

coincides with the least squares solution

ĉ = arg min
c

‖Ac− PR(A)d‖ = arg min
c

‖Ac− (PR(A)h+ PR(A)δ)‖
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The idea is to calculate an approximation h̃ to PR(A)h from sj, and to esti-

mate the coefficients ĉk for the reconstruction f̃ by solving the least squares

problem

ĉ = arg min
c

‖Ac− h̃‖. (7.14)

Since h̃ is an approximation to PR(A)h, it is reasonable to choose R(A) as

the reconstruction space, and the columns of A as reconstruction vectors.

We denote the columns of A by {bk}mk=1. Consequently, A is the synthesis

operator of the sequence {bk}mk=1. We observe that in (7.9), sj are inner

products of a perturbation h+δ of h with vectors vj. Therefore the sampling

vectors are

vj, j = 1, . . . , r.

We recall that the operator Qf is optimal when reconstructing from inner

products of a perturbed function. Since the values si are inner products of

a perturbation h+ δ of h with vectors PCj
vi, i = 1, . . . , rj, j = 1, . . . , L, we

use the operator Qf to calculate the approximation h̃ to PR(A)h.

As in Algorithm 7.4.1, we denote the denote the synthesis operator of the

sampling vectors by T ∈ Cn×r, and the corresponding analysis operator by

T ∗. With this notation the vector s ∈ Cr×1 can be written as

s = T ∗(h+ δ) = T ∗d. (7.15)

We define the operator Qf by

Qf = A
(
(T ∗T )

†
2T ∗A

)†
(T ∗T )

†
2 ,

and the reconstruction h̃ of PRh by

h̃ = Qfs = QfT
∗(h+ δ) = PR,PW (R)⊥(h+ δ). (7.16)

We use the notation

R = R(A) and W = R(T ) = span{vj}rj=1.

122



We assume that cos(ϕR,W ) > 0. Since the columns of A are linearly inde-

pendent, the assumption that T ∗A is injective is equivalent to the assump-

tion that cos(ϕR,W ) > 0, see Lemma 3.4.9. By Theorem 5.3.8, QfT
∗ is

the operator with the smallest possible quasi-optimality constant µ, namely

µ(Qf ) = 1
cos(ϕR,W )

. Lemma 5.3.11 shows that for µ = µ(Qf ) = 1
cos(ϕR,W )

it

holds

‖PR(A)h−Qfs‖ 6
√
µ2 − 1‖h− PR(A)h‖+ µ‖δ‖, (7.17)

and that for any other reconstruction operator Q ∈ Cn×r with

‖PR(A)h−Qs‖ 6 α‖h− PR(A)h‖+ β‖δ‖,

we have α >
√
µ2 − 1 and β > µ.

Solving the least squares problem (7.14) with h̃ defined by (7.16), we

obtain the coefficients

ĉ = A†A
(
(T ∗T )

†
2T ∗A

)†
(T ∗T )

†
2 s. (7.18)

for the approximation f̃ of f . From (7.16) we infer that

ĉ = A†PR,PW (R)⊥(h+ δ).

Therefore the coefficients for the approximation f̃ are independent of the

particular choice of the sampling vectors, but only dependent on W , the

linear span.

Since A†A = PR(A∗) and

R
((

(T ∗T )
†
2T ∗A

)†)
= R

(
A∗T (T ∗T )

†
2

)
⊂ R(A∗),

the matrix A†A in (7.18) can be dropped, and

ĉ =
(
(T ∗T )

†
2T ∗A

)†
(T ∗T )

†
2 s. (7.19)
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This is exactly the approximation f̃ of f as described in Algorithm 7.4.1. If

R = R(A) ⊂ span{vj : j = 1, . . . r} = R(T ) = W, (7.20)

then

ĉ = A†PRd = A†d,

and the vector ĉ defined by (7.11) coincides with the solution of the global

least squares problem (7.13). Consequently the vectors {vj}j∈N should fulfill

(7.20).

In Section 5.6.2 we discussed two cases when the operator (T ∗T )
†
2 in (7.11)

can be dropped, and still the same reconstruction f̃ is obtained. The first one

is when dim(R(A)) = dim(R(T )), i.e., in the case of linearly independent

vectors vj, the number of vectors vj coincides with the number of columns

of A, i.e., r = m. The second one is when the vectors {vj}rj=1 form a tight

frame sequence. In these two cases instead of (7.11) we can use the simpler

formula

ĉ = arg min
c

‖T ∗Ac− s‖. (7.21)

7.5 Hierarchical Algorithm

In this section we describe our hierarchical algorithm in the absence of trans-

mission noise. Let f ∈ L2(Rd) denote the continuous function to be approx-

imated from the noisy point evaluations

d(i) := f(xi) + δi, i = 1, . . . , n.

We assume that we have connected sets Bj ⊂ Rd, j = 1, . . . L, such that⋃
j=1,...,L

Bj = supp(f).
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For each set Bj, j = 1, . . . L, we cluster the sensors located in Bj. By Cj we

denote the set of the indices of the sensors located in Bj

Cj = {i : xi ∈ Bj}.

This can be interpreted that sensors in the same cluster are close to each

other, and each sensor is contained in at least one of the clusters. In every

cluster the noisy point evaluations of the sensors are transferred to one sensor

node, termed the cluster head. This means in every cluster Cj we have access

to the data

d(i) = f(xi) + δi, i ∈ Cj.

Let {ej}nj=1 denote the canonical basis of Cn, and let PCj
denote the

orthogonal projection onto span{ej : j ∈ Cj}

(PCj
b)i =

bi if i ∈ Cj,

0 otherwise.

In every cluster Cj, j = 1, . . . , L, we have access to the data d(i), i ∈ Cj.

Therefore for every j and every v ∈ Cn we can calculate

〈PCj
d,v〉 = 〈d, PCj

v〉.

The idea is to send processed data of the form 〈d, PCj
v〉 from each cluster

head to the fusion center. Precisely, assume that

vi,j ∈ span{ej : j ∈ Cj}, i ∈ Ij,

and

si,j := 〈d,vi,j〉, i ∈ Ij, (7.22)

then si,j uses only point evaluations from sensors inside of the jth cluster.

Therefore only the sensors inside each cluster need to transmit the measured

data to the cluster head. Our aim is to send roughly m numbers si,j, where

m is the number of generating functions. If the signal is oversampled by a
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factor of s, i.e. n = sm, then instead of n transmissions, this approach only

requires roughly n
s
transmissions.

7.5.1 Approximation by solving the normal equations

We recall that if R(A) ⊂ R(T ) we obtain the same coefficients by (7.11) as

by sending all the noisy point evaluations d(i) := f(xi) + δi, i = 1, . . . , n,

and solving the least squares problem (7.13). If either dim(R) = dim(W )

or {vi,j} forms a tight frame sequence, then we can use the simpler formula

(7.21) for the calculation of the expansion coefficients of f̃ .

Since the generating functions gk, k = 1, . . . ,m have a compact support,

the reconstruction space W has a local nature. In this case it is possible to

find reasonable sets Bj, and vectors vi,j ∈ Cn, such that R(A) ⊂ R(T ) is ful-

filled. An interesting choice for the sampling vectors vi,j, is {vi,j} = {bk}mk=1,

the columns of A. In this case T = A. Therefore clearly R(A) ⊂ R(T ) and

dim(R(A)) = dim(R(T )).

Having transmitted the inner products 〈d,bk〉, k = 1, . . .m, to the global

fucion center, the reconstruction algorithm proceeds as follows.

Algorithm 7.5.1.

Input: We assume that the inner products

s = [〈d, b1〉, . . . , 〈d, bm〉]T = A∗d

and the sensor positions {xi}ni=1 are known.

Step1: Calculate the matrix A∗A.

Step2: Solve the normal equations

A∗Aĉ = A∗d.
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Step3: The approximation f̃ of f is given by

f̃ =
m∑
k=1

ĉkgk.

Let us now describe how to choose the sets {Bj}Lj=1 in order to calculate

the inner products 〈d,bk〉, k = 1, . . .m, locally. This can be done by choosing

a partition M1, . . . ,ML of {1, . . . ,m}, and setting

Bj =
⋃
i∈Mj

supp(gi), j = 1, . . . , L.

The supports of the generating functions gi, gk with i, k in the same set Mj

should be close to each other, since otherwise for the local collection of the

point evaluations long distance transmission are necessary.

We assume that at one point in Bj, the sensor locations Cj = {i : xi ∈ Bj}
and measurements f(xi) + δi, i ∈ Bj are known. It is important to realize

that we do not assume that we know the sensor locations and measurements

from sensors outside the region Bj. In each set Bj, j = 1, . . . , L, we calculate

the inner products

si,j = 〈PCj
d,bi〉 = 〈d, PCj

bi〉 = 〈d,bi〉, i ∈Mj,

and transmit them to the fusion center.

Since M1, . . . ,ML is a partition of {1, . . . ,m}, with this setup a total

number of m numbers, namely {〈d,bi〉}mi=1, are transmitted to the fusion

center. Therefore, if the signal is oversampled by a factor of s, i.e. n = sm,

then instead of n transmissions, this approach only requires n
s
transmissions.

It should be mentioned that solving a least squares problem by first cal-

culating the normal equations should be avoided, since κ(A∗A) = κ(A)2.

Therefore the condition number is squared, which causes stability problems

whenever the condition number of A is large. A more stable way to solve

an overdetermined least squares problem is solving it via a pivoted QR-

factorization using Householder transformations, see [31].
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7.5.2 Orthonormal systems locally

We see in our numerical experiments that if we assume transmission noise,

when sending the inner products {〈d,bi〉}mi=1, then solving the normal equa-

tions causes stability problems whenever the condition number κ(A) is large.

This problem is solved by calculating an orthonormal system {vk}rk=1 locally,

with the property that R(A) ⊂ span{vk : k = 1, . . . , r} followed by trans-

mitting the inner products 〈d,vk〉, k = 1, . . . r. Before we discuss how this is

accomplished, we first describe the reconstruction algorithm after transmis-

sion of the inner products 〈d,vk〉, k = 1, . . . r, to the fusion center.

Algorithm 7.5.2.

Input: We assume that the vectors {vj ∈ Cn×1}rj=1 , the inner products

s = [〈d, v1〉, . . . , 〈d, vr〉]T

and the sensor positions {xi}ni=1 are known. Furthermore let {vk}rk=1 be an

orthonormal system with

R(A) ⊂ span{vk : k = 1, . . . , r}.

Step1: Calculate the matrix T ∗A where the matrix T is defined by

T (i, k) = vk(i), i = 1, . . . , n, k = 1, . . . , r.

Step2: Solve the least squares problem

ĉ = arg min
c

‖T ∗Ac− s‖.

Step3: The approximation f̃ of f is given by

f̃ =
m∑
k=1

ĉkgk.

128



Next we describe how to calculate the orthonormal system {vk}rk=1. Let

B1, . . . BL be a partition of B =
⋃

k=1,...,m

supp(gk) and let the set

{Cj}Lj=1 = {i : xi ∈ Bj}Lj=1

be the corresponding partition of {1, . . . , n}. Furthermore let Ij be the indices

of the supports of the generating function gk containing a sensor of cluster

Bj, i.e.,

Ij := {k : supp(gk) ∩ {xi : xi ∈ Bj} 6= ∅}. (7.23)

We define the vectors wk,j ∈ Cn by

wk,j := PCj
bk,

where bk are the columns of A. We define the sets Dj, j = 1, . . . , L by

Dj := span{wk,j : k ∈ Ij}.

Since the sets C1, . . . CL are mutually disjoint

Dm ⊥ Dk for m 6= k.

For each set Dj we choose an orthonormal basis {vi,j}, i ∈ Kj, and transmit

si,j = 〈d,vi,j〉, i ∈ Kj (7.24)

to the global fusion center. Again, we do not use sensor measurements from

sensors outside the region Bj.

The number of long distance transmissions is

r :=
L∑

j=1

card(Kj).

Since R(A) ⊂ span({PCj
bk}j=1,...,L, k∈Ij), {vi,j}j=1,...,L, i∈Kj

is an orthonor-
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mal system with

R(A) ⊂ span({vi,j}j=1,...,L, i∈Kj
). (7.25)

Since the columns of A are assumed to be linearly independent, this implies

that

r > m. (7.26)

This procedure formulated in terms of the matrix A is as follows. We

choose a partition {Cj}Lj=1 of the indices of the rows of A. For each index

set Cj, all rows of A whose index is not contained in Cj are set to zero. We

denote the resulting matrices by Aj

Aj(i, k) =

A(i, k) for i ∈ Cj,

0 otherwise.
(7.27)

The kth column of Aj equals PCj
bk. Since the generating functions gk,

k = 1, . . . ,m, have a compact support, some of the columns of Aj are zero.

The nonzero columns are exactly those whose index is contained in the set

Ij. For each j = 1, . . . , L we calculate an orthonormal basis for R(Aj), for

example by the singular value decomposition, and denote it by {vi,j}, i ∈ Kj.

7.5.2.1 Number of required long distance transmissions

We denote by card(I) the cardinality of a set I. Since at most card(Ij)

columns and at most card(Cj) rows of Aj are nonzero,

card(Kj) 6 min(card(Ij), card(Cj)), j = 1, . . . , L.

We observe that

L∑
j=1

card(Ij) =
L∑

j=1

card({k : ∃ xi ∈ Bj such that xi ∈ supp(gk)})

=
m∑
k=1

card{j : ∃xi ∈ Bj such that xi ∈ supp(gk)},
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and consequently

r =
L∑

j=1

card(Kj) 6
L∑

j=1

card(Ij)

=
m∑
k=1

card{j : ∃xi ∈ Bj such that xi ∈ supp(gk)}.

If the support of the generating function gk has a non empty intersection

with l sets Bj, then card({j : ∃xi ∈ Bj such that xi ∈ supp(gk)}) = l. Con-

sequently, if the support of the generating function gk is contained completely

in a set Bj, then card({j : ∃xi ∈ Bj such that xi ∈ supp(gk)}) = 1. If the

sets Bj are large enough in comparison to the support of the generating func-

tions, most of the functions gk are supported in one set Bj. In this case r, the

number of required long distance transmissions, is roughly m, the number of

generating functions. A concrete example for the count of the long distance

transmissions required is given in Section 7.7.

7.6 Stability of the algorithms

Next we compare the different reconstruction strategies in the presence of

transmission noise. We use for all three setups the same upper bound on the

signal to noise ratio.

7.6.1 Solving the global least squares problem

In the presence of transmission noise, Algorithm 7.2.1 calculates the coeffi-

cients for the reconstruction by solving the least squares problem

ĉ = arg min
c

‖Ac− (h+ δ + ε)‖,

where h = [f(x1), . . . , f(xn)]
T , δ = [δ1, . . . , δn]

T is the measurement noise,

and ε = [ε1, . . . , εn]
T is the transmission noise.
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Lemma 7.6.1. If the relative measurement error is bounded by

‖δ‖
‖h‖

6 C1, (7.28)

and the relative transmission error is bounded by

‖ε‖
‖h+ δ‖

6 C2, (7.29)

then the noise vector a = δ + ε is bounded by

‖a‖ 6 C1‖h‖+ C2(1 + C1)‖h‖. (7.30)

Proof. The proof is straightforward and hence omitted.

7.6.2 Solving the normal equations

Next we bound the noise vector of Algorithm 7.5.1 under the same upper

bounds on the signal to noise ratio. Algorithm 7.5.1 calculates the coefficients

for the reconstruction by solving the normal equations

A∗Aĉ = A∗(h+ δ) + ε,

where again ε is the transmission noise.

We observe that the same solution is obtained when solving the least

squares problem

ĉ = arg min
c

‖Ac− (h+ δ + A(A∗A)−1ε)‖.

Consequently, from the analytical point of view we calculate the solution of

the global least squares

ĉ = arg min
c

‖Ac− (h+ a)‖,
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with the noise vector a defined by

a := δ + A(A∗A)−1ε. (7.31)

Lemma 7.6.2. If the relative measurement error is bounded by

‖δ‖
‖h‖

6 C1,

and the relative transmission error is bounded by

‖ε‖
‖A∗(h+ δ)‖

6 C2,

then the noise vector a defined by (7.31) is bounded by

‖a‖ 6 C1‖h‖+ κ(A)C2(1 + C1)‖h‖. (7.32)

Proof. The proof is straightforward and hence omitted.

We observe that we make the same assumption on the signal to noise

ratio as imposed by (7.28) and (7.29). In contrast to (7.30) in (7.32), the

term C2‖h‖(1 +C1) is multiplied by the factor κ(A). Therefore we expect a

worse reconstruction by this strategy (in the case of transmission noise), than

by sending all noisy point evaluations and solving the global least squares

problem (7.3), whenever the condition number κ(A) is large.

7.6.3 Orthonormal systems locally

Next we discuss the stability of Algorithm 7.5.2. We recall the notation

R = R(A) and W = R(T ). Since the columns of T form an orthonormal

system, they also form a tight frame sequence, and consequently, using The-

orem 5.6.5, equation (5.45) and the fact that R(A) ⊂ R(T ), we obtain

A(T ∗A)†T ∗ = PR,PW (R)⊥ = PR. (7.33)
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We observe that the least squares problem

ĉ = arg min
c

‖T ∗Ac−
(
T ∗(h+ δ) + ε

)
‖.

has the same solution ĉ as

ĉ = arg min
c

‖Ac− (h+ a)‖, (7.34)

with a defined by

a := δ + A(T ∗A)†ε. (7.35)

This can be seen from

A†(h+ a) = A†(h+ δ) + A†A(T ∗A)†ε

= A†PR(h+ δ) + (T ∗A)†ε

= A†A(T ∗A)†T ∗(h+ δ) + (T ∗A)†ε

= (T ∗A)†
(
T ∗(h+ δ) + ε

)
,

using the fact that R((T ∗A)†) = R(A∗T ) ⊂ R(A∗), A†A = PR(A∗) and

(7.33).

Lemma 7.6.3. If the relative measurement error is bounded by

‖δ‖
‖h‖

6 C1,

and the relative transmission error is bounded by

‖ε‖
‖T ∗(h+ δ)‖

6 C2,

then the noise vector a, defined by (7.35), is bounded by

‖a‖ 6 C1‖h‖+ C2(1 + C1)‖h‖. (7.36)
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Proof. We observe that

R(T ∗)⊥ = N (T ) ⊂ N (A∗T ) = N (T ∗A)†.

Consequently

‖A(T ∗A)†‖ = ‖A(T ∗A)†T ∗‖ = ‖PR(A)‖ = 1, (7.37)

where we used (7.33) for the second equality. Using (7.37), we infer that

‖a‖ = ‖δ + A(T ∗A)†ε‖

6 C1‖h‖+ ‖A(T ∗A)†‖ C2 ‖T ∗(h+ δ)‖

= C1‖h‖+ C2‖PR(T )(h+ δ)‖

6 C1‖h‖+ C2(‖PR(T )h‖+ ‖PR(T )δ‖)

6 C1‖h‖+ C2(1 + C1)‖h‖.

This finishes the proof.

We observe that in Lemma 7.6.3 we make the same assumption on the

signal to noise ratio as imposed by (7.28) and (7.29). We observe that (7.36)

is the same bound as obtained in (7.30). Therefore we expect the accuracy

of the approximation f̃ to f obtained by this hierarchical reconstruction

algorithm to be similar to the accuracy of the approximation f̃ to f obtained

by sending all noisy point evaluations and solving the global least squares

problem (7.3).

It should also be mentioned that the matrix T ∗A used for the calculation

of the coefficients ĉ has the same condition number as A. This can be seen

from the following observation. The columns of T are an orthonormal system,

and R(A) ⊂ R(T ). Therefore T ∗ is an isometry on R(A) and consequently

κ(T ∗A) = κ(A). Therefore by calculating orthonormal systems locally we

avoid squaring the condition number.
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7.7 Numerical experiments

For the numerical experiments, we use integer translates of basis-splines of a

certain order as generating functions for the reconstruction space Wp. More

detailed information on shift-invariant spaces generated by a one dimensional

spline can be found in [36].

Definition 7.7.1. Let the function Π be defined for x ∈ R by

Π(x) =

1, −1
2
6 x < 1

2
,

0, otherwise.

The B-spline of order p− 1 ∈ N is defined by the p-fold convolution

bp(x) := Π(x) ∗ Π(x) ∗ · · · ∗ Π(x)︸ ︷︷ ︸
p factors

.

As a function model we choose the m+1-dimensional space Wp ⊂ L2(R)

Wp =

{
m∑
k=0

ckbp(· − k) : ck ∈ R

}
.

For m = 10, in Figure 7.1, Figure 7.2 and Figure 7.3, we plot the generating

functions of Wp for p = 1, p = 2 and p = 3 respectively.

For the experiment we generate random functions fi, i = 1, . . . , P , in Wp

fi =
m∑
k=0

cikbp(· − k). (7.38)

by choosing i.i.d. normally distributed coefficients ck.

For a given oversampling factor s ∈ N, i.e n = s(m + 1), the sensors are

positioned equispaced in the interval [0,m], which means that for

δ =
m

n− 1
,
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Figure 7.1: The generating function b1(· − k), k = 0, . . . , 10
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Figure 7.2: The generating function b2(· − k), k = 0, . . . , 10

the sensor positions are defined by

xi = δ(i− 1) i = 1, . . . , n.
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Figure 7.3: The generating function b3(· − k), k = 0, . . . , 10

We compare the accuracy of the reconstruction obtained by sending all noisy

point evaluations and solving the global least squares problem (as described

in Section 7.2) with the reconstruction method described in Section 7.5.1 and

the reconstruction method described in Section 7.5.2.

For all three setups, we choose m = 80, which means that the sensors are

located in the interval [0, 80].

7.7.0.1 Global least squares problem

The reconstruction method described in Section 7.2 calculates the coefficients

for the approximation f̃i of fi from noisy point evaluations

d̃i = hi + δi + εi,

where hi ∈ Rn,

hi = [fi(x1), . . . , fi(xn)]
T ,

δi ∈ Rn is the vector containing the measurement noise and εi ∈ Rn is the

vector containing the transmission noise. The vector entries of δi and εi are

initially created with the standard normal distribution, and then the vectors
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are normalized, so that
‖δi‖
‖hi‖

= C1,

and the relative transmission error fulfills

‖εi‖
‖hi + δi‖

= C2.

Let the matrix A ∈ Rn×(m+1) be defined by

A(i, k) = bp(xi − k), i = 1, . . . , n, k = 0, . . . ,m.

For simplicity of notation, we index the first column of A by 0. The coeffi-

cients for the approximation

f̃i =
m∑
k=0

ĉikbp(· − k)

of fi are calculated as the least squares solution of

ĉi := arg min
c

‖Ac− d̃i‖.

We average (arithmetic mean) the relative reconstruction error of this ap-

proach over the calculated approximations

r0 :=
1

P

∑
i=1,...,P

‖fi − f̃i‖
‖fi‖

.

Here the norm denotes the standard norm on L2([0,m]), i.e.,

‖f‖ =

(∫ m

0

|f(x)|2dx
) 1

2

.

We choose the L2 norm on the interval [0,m] since the sensor positions {xi}ni=1

are located in this region.
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7.7.0.2 Normal equations

The reconstruction method described in Section 7.5.1, calculates the coeffi-

cients for the approximation f̃i of fi from

si = A∗(hi + δi) + εi,

where we take the same vector δi as in the previous setup (in order to get a fair

comparison of the algorithms). We can not take the same vectors εi as before,

since now εi ∈ Rm. The vector entries of εi, containing the transmission

noise, are initially created with the standard normal distribution, and then

the vectors are normalized, so that

‖εi‖
‖A∗(hi + δi)‖

= C2.

The coefficients for the approximation

f̃i =
m∑
k=0

ĉikbp(· − k)

to fi are calculated as the least squares solution of

ĉi := arg min
c

‖A∗Ac− si‖,

i.e. the solution of the normal equations. Again we average (arithmetic

mean) the relative reconstruction error of this approach over the calculated

approximations

r1 :=
1

P

∑
i=1,...,P

‖fi − f̃i‖
‖fi‖

.

Again the norm denotes the standard norm on L2([0,m]).

7.7.0.3 Orthonormal systems locally

For reconstruction strategy described in Section 7.5.2 we partition the in-

terval [0,m] containing the sensor positions {xi}ni=1 into k Intervals Bj,
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j = 1, . . . , k, of the same size. Except for the last interval, which is closed, all

intervals are left-closed and right-open. We choose k = 4, and consequently

B1 = [0, 20), B2 = [20, 40), I3 = [40, 60] and B4 = [60, 80]. (7.39)

Let Aj be defined by (7.27), i.e., the matrix being formed by zeroing all rows

of A with index not contained Bj. We denote the left endpoint of Bj by

aj and the right endpoint by ej. Since the support of bp is [−p/2, p/2], the
kth column of Aj is zero if k /∈]aj − p/2, ej + p/2[. For example for p = 3

the matrix A1 and A4 have at most 21 nonzero columns, A2 and A3 have at

most 22 nonzero columns. For each matrix Aj we calculate an orthonormal

basis {wi}, i ∈ Kj, for R(Aj), using the singular value decomposition. The

amount of nonzero columns bounds the cardinality card(Kj). Consequently

for p = 3, card(K2), card(K3) 6 23 and card(K1), card(K4) 6 22 and

4∑
j=1

card(Kj) 6 90,

which is the number of generating functions plus 9, i.e., roughly an oversam-

pling rate of 10 percent.

Let us count the number of long distance transmission for intervals Bj,

j = 1, . . . , k, of length R = ej − aj and generating functions bp(· − l),

l = 0, . . . , kR. For k > 2 we obtain the bound

k∑
j=1

card(Kj) 6 2

(
R + 1 +

⌊
p− 1

2

⌋)
+ (k − 2)

(
R + 1 + 2

⌊
p− 1

2

⌋)
= k(R + 1) + 2(k − 1)

⌊
p− 1

2

⌋
Therefore if p is small in comparison to R, the first term k(R+1) is dominant

in relation to the term 2(k − 1)
⌊
p−1
2

⌋
, and the number of long distance

transmissions required by this approach is roughly the number of generating

functions, which is kR + 1 (whenever R is significantly larger than 1).

Let us return to the example of four intervals Bj, j = 1, . . . , 4, defined
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by (7.39). Let T ∈ Rm×r denote the matrix whose columns consist of the

local orthonormal systems, where r is r =
∑4

j=1 card(Kj). The reconstruc-

tion method described in Section 7.5.2, calculates the coefficients for the

approximation f̃i of fi from

si = T ∗(hi + δi) + εi,

where we take the same vector δi ∈ Rn as in the previous two setups. The

vector entries of εi ∈ Rr, containing the transmission noise, are initially

created with the standard normal distribution, and then normalized, so that

‖εi‖
‖T ∗(hi + δi)‖

= C2.

The coefficients for the approximation

f̃i =
m∑
k=0

ĉikbp(· − k)

of fi are calculated as the least squares solution of

ĉi := arg min
c

‖T ∗Ac− si‖.

Again we average (arithmetic mean) the relative reconstruction error of this

approach over the calculated approximations

r3 :=
1

P

∑
i=1,...,P

‖fi − f̃i‖
‖fi‖

.

Again the norm denotes the standard norm on L2([0,m]).

7.7.0.4 Tables

In Table 7.1 we list the relative reconstruction error, averaged over P = 100

reconstructions, of the three reconstruction methods, the number of required

long distance transmissions, the condition number of the matrices used in
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the corresponding least squares problems for C1 = C2 = 0, p = 3 (spline

order 2) and oversampling factor s = 2, and in Table 7.2 we list the same for

p = 3 (spline order 2) and oversampling factor s = 3.

We label the reconstruction strategy of Section 7.7.0.1 by Global, the

reconstruction strategy described in Section 7.7.0.2 by Normal equations,

and the reconstruction strategy described in Section 7.7.0.3 by ON-locally.

error transmissions κ

Global 3.9921e-16 162 κ(A) = 2.7645

ON-locally 6.7481e-16 90 κ(T ∗A) = 2.7645

Normal equations 2.7133e-16 81 κ(A∗A) = 7.6427

Table 7.1: Comparison of the three reconstruction methods without noise,
for p = 3 (spline order 2) and oversampling factor s = 2.

error transmissions κ

Global 4.2020e-16 243 κ(A) = 2.7385

ON-locally 7.0249e-16 90 κ(T ∗A) = 2.7385

Normal equations 2.8216e-16 81 κ(A∗A) = 7.4995

Table 7.2: Comparison of the three reconstruction methods without noise,
for p = 3 (spline order 2) and oversampling factor s = 3.

In Table 7.3 we list the relative reconstruction error of the three recon-

struction methods, averaged over P = 100 reconstructions, the number of

required long distance transmissions, the condition number of the matrices

used in the corresponding least squares problems for C1 = C2 = 0.01, p = 3

(spline order 2) and oversampling factor s = 2, and in Table 7.4 we list the

same for p = 3 (spline order 2) and oversampling factor s = 3.

We observe that for the algorithm described in Section 7.7.0.2 (denoted

by Normal equations) the amount of required long distance transmission is

equal to the number of generating functions, which is a bit smaller than the

amount of long distance transmission required by the algorithm described in

Section 7.7.0.3 (denoted by ON-locally). We further observe that by all three

reconstruction strategies we obtain accurate approximations. Therefore there
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error transmissions κ

Global 9.8537e-03 162 κ(A) = 2.7645

ON-locally 1.1834e-02 90 κ(T ∗A) = 2.7645

Normal equations 1.5869e-02 81 κ(A∗A) = 7.6427

Table 7.3: Comparison of the three reconstruction methods with noise levels
C1 = C2 = 0.01, for p = 3 (spline order 2) and oversampling factor s = 2.

error transmissions κ

Global 8.0576e-03 243 κ(A) = 2.7385

ON-locally 1.1040e-02 90 κ(T ∗A) = 2.7385

Normal equations 1.5292e-02 81 κ(A∗A) = 7.4995

Table 7.4: Comparison of the three reconstruction methods with noise levels
C1 = C2 = 0.01, for p = 3 (spline order 2) and oversampling factor s = 3.

arises the question why should we use the more complicated algorithm de-

scribed in Section 7.7.0.3 (denoted by ON-locally) if the algorithm described

in Section 7.7.0.2 (denoted by Normal equations) requires less long distance

transmissions, and we still obtain accurate approximations. The reason is

that the algorithm described in Section 7.7.0.2 is very sensitive to transmis-

sion noise, whenever the condition number κ(A) is large. This is shown in

the next setup.

Next we compare the three reconstruction methods for a setup where the

condition number of A is large. This is obtained by the following change of

the setup. We leave everything unchanged, with the only difference that as

function model we choose the m+ 5-dimensional space Wp ⊂ L2(R,R)

W5 =

{
m+2∑
k=−2

ckb5(· − k) : ck ∈ R

}
. (7.40)

The support of the four splines b5(· + 2), b5(· + 1), b5(· − (m + 1)) and

b5(·−(m+2)) have only a small overlap with the interval [0,m] containing the

sensor positions. This increases the condition number of A. We reconstruct

functions in W defined by (7.40).
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Using as function model (7.40), in Table 7.5 we list the relative recon-

struction error
1

P

∑
i=1,...,P

‖fi − f̃i‖
‖fi‖

, (7.41)

averaged over P = 100 reconstructions, of the three reconstruction meth-

ods, the number of required long distance transmissions, the condition num-

ber of the matrices used in the corresponding least squares problems for

C1 = C2 = 0, p = 5 (spline order 4), and oversampling factor s = 2. In

Table 7.6 we list the same for p = 5 (spline order 4) and oversampling fac-

tor s = 3. Again the norm denotes the standard norm on L2([0,m]). This

means the reconstruction error (7.41) is only measured in the region where

the samples are located.

error transmissions κ

Global 4.9379e-16 170 κ(A) = 9.0039e+03

ON-locally 7.2133e-16 100 κ(T ∗A) = 9.0039e+03

Normal equations 1.6577e-15 85 κ(A∗A) = 8.1071e+07

Table 7.5: Comparison of the three reconstruction methods without noise,
for p = 5 (spline order 4), oversampling factor s = 2 andW defined by (7.40).

error transmissions κ

Global 4.7793e-16 255 κ(A) = 3.7388e+03

ON-locally 7.0442e-16 100 κ(T ∗A) = 3.7388e+03

Normal equations 5.8080e-16 85 κ(A∗A) = 1.3979e+07

Table 7.6: Comparison of the three reconstruction methods without noise,
for p = 5 (spline order 4), oversampling factor s = 3 andW defined by (7.40).

In Table 7.7 we list the same for C1 = C2 = 0.01, p = 3, and oversampling

factor s = 2, and in Table 7.8 we list the same for p = 3 and oversampling

factor s = 3.

We observe that now the approximations calculated by the algorithm

described in Section 7.7.0.2 (denoted by Normal equations) have a huge ap-

proximation error when we use transmission noise. By using slightly more
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error transmissions κ

Global 1.0625e-02 170 κ(A) = 9.0039e+03

ON-locally 1.2212e-02 100 κ(T ∗A) = 9.0039e+03

Normal equations 5.2123e+01 85 κ(A∗A) = 8.1071e+07

Table 7.7: Comparison of the three reconstruction methods with noise levels
C1 = C2 = 0.01, for p = 5 (spline order 4), oversampling factor s = 2 and W
defined by (7.40).

error transmissions κ

Global 8.1496e-03 255 κ(A) = 3.7388e+03

ON-locally 1.0855e-02 100 κ(T ∗A) = 3.7388e+03

Normal equations 5.4981e+00 85 κ(A∗A) = 1.3979e+07

Table 7.8: Comparison of the three reconstruction methods with noise levels
C1 = C2 = 0.01, for p = 5 (spline order 4), oversampling factor s = 3 and W
defined by (7.40).

long distance transmissions, by the algorithm described in Section 7.7.0.3

(denoted by ON-locally) the sensitivity to noisy is significantly reduced. We

obtain by this algorithm (ON-locally) almost as accurate approximations as

by sending all noisy point evaluations and solving the global least squares

problem with a significantly (the reduction is dependent on the oversampling

factor) reduced amount of long distance transmissions.

7.8 Operation count of the algorithm using

orthonormal systems locally

In this section we determine the operation count of the algorithm described

in Section 7.5.2. Let the matrix A ∈ Cn×m be defined by (7.2). We recall

that we assume n > m, i.e. the number of sensors, is larger or equal to the

number of generating functions. In addition we assume the matrix A to be

injective, i.e., to have full column rank.

We recall that the coefficients for the reconstruction are calculated by
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solving the least squares problem

ĉ = arg min
c

‖T ∗Ac− s‖

with

s = T ∗d+ ε. (7.42)

Therefore we have to determine the operation count of the calculation of A,

of T , of the multiplication T ∗A, of the calculation of T ∗d and of calculating

the solution of the least squares problem.

Using De Boor’s algorithm, the point evaluation of a B-spline of order p−1

has an operation count of O((p− 1)2). By definition (7.7.1), the support of

bp(· − k) is [k− p
2
, k+ p

2
]. Therefore for a point x ∈ R, only those generating

functions bp(· − k) with x − p
2
< k < x + p

2
are nonzero. Therefore for each

point xi, i = 1, . . . , n there are at most p spline evaluations necessary, which

results in a total number of pn spline evaluations in order to create the matrix

A. Therefore creating the matrix A has an operation count of O(p(p−1)2n).

Next we determine the operation count for the creation of the matrix T .

At first, we choose a partition {Cj}Lj=1 of the indices {1, . . . , n} of the rows

of A. For each index set Cj, all rows of A whose index is not contained in

Cj are set to zero. We denote the resulting matrices by Aj, see (7.27). For

each matrix Aj, we calculate an orthonormal system for the range R(Aj).

We define

nj := card(Cj).

As in (7.23) we define

Ij := {k : supp(gk) ∩ {xi : xi ∈ Bj} 6= ∅},

and we define mj by

mj = card(Ij).

We denote by Ãj ∈ Cnj×mj the submatrix of Aj, where we delete the rows

with index {1, . . . , n}\Cj and columns with index {1, . . . ,m}\Ij, which are

zero by construction. We calculate an orthonormal system for the column
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range R(Aj) by calculating an orthonormal system for the column range

of Ãj, using for example the singular value decomposition. Calculating an

orthonormal system for the column range R(Ãj) has an operation count of

O
(
njmj min(nj,mj)

)
, see [65, Lecture 31]. Let {wi,j}, i ∈ Kj denote the

orthonormal system for R(Aj), with

card(Kj) 6 min(nj,mj),

and

r :=
L∑

j=1

card(Kj). (7.43)

The calculation of the matrix T ∈ Cn×r with columns consisting of the

orthonormal systems {wi,j}j=1,...,L, i∈Kj
stacked together, has an operation

count of O
(∑L

j=1 njmj min(nj,mj)
)
.

Next we determine the operation count of the calculation of T ∗A and

T ∗d. For x ∈ Cn×1, each entry of T ∗x ∈ Cr×1 is the inner product of x with

the vector wi,j ∈ Cn×1 for some j ∈ {1, . . . , L}, i ∈ Kj. Since

wi,j(l) = 0 for l /∈ Cj,

the calculation of T ∗A has an operation count ofO
(
m
∑L

j=1 njcard(Kj)
)
, and

the operation count of the calculation of T ∗d is dominated by the operation

count of the calculation of T ∗A.

Finally we determine the operation count of solving the least squares

problem (7.42). We recall that T ∗A ∈ Cr×m and that r > m, see (7.26).

Therefore solving the overdetermined least squares problem (7.42) by a direct

method as the QR decomposition has an operation count of O(rm2).

Since {Cj}Lj=1 is a partition of {1, . . . , n} and nj = card(Cj),
∑L

j=1 nj = n.

Using this and nj 6 n, mj 6 m, m 6 n, m 6 r and (7.43), we see that the
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operation count of the algorithm is

O
(
p(p− 1)2n+ rm2 +

L∑
j=1

(
njmj min(nj,mj) +mnjcard(Kj)

))
= O

(
p3n+ rm2 +m2n+mnr

)
= O

(
p3n+mnr).

We observe that solving the least squares problem (7.3) of the global

setup, described in Section 7.2, by the QR decomposition has an operation

count of O(nm2). Consequently, if r (the number of long distance transmis-

sions) is roughly m (the number of generating functions), then the global

system has the same order of operation count as our algorithm.
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Chapter 8

Conclusions and future research

We have treated the problem of sampling and reconstruction in distinct sub-

spaces, a problem that arises when approximating a compactly supported

function from point samples of the Fourier transform. The approximation

calculated from the standard least squares problem is most stable with re-

spect to errors of the measurements.

We have introduced a novel reconstruction operator which projects as

orthogonally as possible onto the reconstruction space. Furthermore, we

have shown that this reconstruction method is the most stable possible with

respect to systematic error appearing before the sampling process.

This reconstruction operator is more sensitive to errors of the measure-

ments. We have shown how to range continuously between the two extreme

reconstruction methods by a regularization parameter, and therefore we have

a tool to choose reconstruction operators corresponding to oblique projections

closer to the orthogonal projection at the cost of a larger operator norm and

vice versa. An open question is how to determine a good choice for the

regularization parameter.

In Chapter 6 we applied the different reconstruction operators to the

problem of reconstructing a compactly supported function from nonuniform

samples of the Fourier transform. We have used trigonometric polynomi-

als for reconstruction. It is important to realize that the developed theory

is independent of the chosen reconstruction space. Besides trigonometric
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polynomials one can for example use wavelets, algebraic polynomials as well

as important generalizations of wavelets, such as curvelets and shearlets as

reconstruction vectors.

In Chapter 4, we have pointed out the connections of quasi-optimal and

bounded reconstruction operators to dual frames. This opens the possibility

of a new classification of dual frames.

In the last chapter, we have considered the reconstruction of a non-

bandlimited function represented by a finite number of compactly supported

generating functions in wireless sensor networks. Using the theory presented

in the first part, we have developed a novel hierarchical reconstruction. We

have shown that if the local regions are large enough in comparison to the sup-

port of the generating functions, then the number of required long distance

transmissions required by our approach is roughly the number of generat-

ing functions. In this case, if the function is oversampled by a factor of s,

we reduce the communication workload roughly by a factor of s and obtain

reconstructions of similar accuracy for operation count of the same order.
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