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Abstract

Combinatorial auctions allow to simultaneously sell multiple heterogeneous items
with interdependencies. Examples for such auctions are spectrum auctions, where
the government sells licenses for bands of the radio spectrum, and procurement auc-
tions, where the auctioneer buys services or goods (see Blumrosen and Nisan [16]
and Cramton et al. [27]). Another prominent example are auctions for sponsored
search. Here a search engine company shows advertisements next to the search
results on its website and the advertisers bid money for their ads being shown next
to the search results for certain keywords (see Edelman et al. [38] and Lahaie et al.
[78]).

One of the standard mechanisms for combinatorial auctions is the seminal VCG
mechanism (Vickrey [104], Clarke [23], and Groves [57]). is mechanism has the
property that every bidder is incentivized to bid his valuation; this property is called
incentive compatibility. Moreover, it has other desirable properties if bidders in-
deed bid their valuation: (1) No bidder has a negative utility; this property is called
individual rationality. (2) e allocation of the items selected by the mechanism
maximizes social welfare; that is, the allocation maximizes the sum of the valua-
tions. However, these properties can only be achieved under certain conditions. It
is necessary that (1) the utility functions of the bidders are quasi-linear, this im-
plies that they cannot have budget constraints, and that (2) the computation of the
social welfare maximizing allocation is possible in the available time. us, in set-
tings where this is not the case it is not recommended to use the VCG mechanism.
ese are exactly the seings for which we design new auction mechanisms in this
dissertation.

(A) First, we study seings where bidders are budget constrained. We design in-
centive compatible, individually rational, and Pareto-optimal mechanisms for auc-
tions with heterogeneous items and bidders with additive valuations and budget
constraints. (1) Specifically, we first study seings with single-dimensional valua-
tions and prove a positive result for randomized mechanisms and an impossibility
result for deterministic mechanisms. While the positive result allows for private
budgets, the negative result is for public budgets. (2) Next, we study seings with
multi-dimensional valuations. Here, we prove an impossibility result that applies
to deterministic and randomized mechanisms even if budgets are public. Together
with the previous results this shows the power of randomization in certain seings
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with heterogeneous items, but it also shows its limitations. (3) Furthermore, we
study multiple keyword sponsored search auctions with budgets. Here, each key-
word has multiple ad slots with so-called click-through rates. e bidders have
single-dimensional additive valuations, which are linear in the click-through rates.
Additionally, we assume that the number of slots per keyword assigned to a bidder
is bounded. We give the first mechanism for multiple keywords and click-through
rates differing among slots that is incentive compatible in expectation, individually
rational in expectation, and that satisfies Pareto-optimality ex-post.

(B) Next, we study seings with complex valuations for whichmaximizing social
welfare is NP-hard and is thus impracticable for large instances. We consider vari-
ous classes of valuation functions and bidding functions and study the performance
of the VCGmechanism when bidders are forced to choose their bids from a subclass
of the class of valuation functions. us, the auctioneer restricts the class of bidding
functions such that the VCG outcome can be computed efficiently. e performance
of the mechanisms is measured in terms of the Price of Anarchy, which is the ratio
of the maximum social welfare of all allocations and the minimum social welfare
of outcomes when the bids form a strategic equilibrium. We show improved up-
per bounds on the Price of Anarchy for restrictions to additive bids and upper and
lower bounds for restrictions to non-additive bids. Our bounds show that increased
expressiveness can give rise to additional equilibria of poorer efficiency.

(C) Finally, we generalize the standard model for combinatorial auctions where
the utility of a bidder depends solely on the item set assigned to him and on his pay-
ment. For instance, in online advertisement an advertiser might not want his ads to
be displayed on the same page as the ads of his direct competitor. We propose and
analyze several natural, simple graph-theoretic models for combinatorial auctions
that incorporate negative, conflict-based externalities. Here bidders are embedded
into a directed conflict graph, and ∆ is the maximum out-degree of any node. We
design O(∆ log log∆/ log∆)-approximate algorithms and O(∆)-approximate in-
centive compatible mechanisms for social welfare maximization. ese ratios are
almost optimal given existing hardness results for the independent set problem. For
the prominent application of sponsored search, we present several algorithms when
the number of items is small—the most relevant scenario in practice. In particular,
we show how to obtain an approximation ratio that is sublinear in ∆ when the
number of items is only logarithmic in the number of bidders. All our algorithms
for sponsored search can be turned into incentive compatible mechanisms.

Keywords

Algorithmic Game eory, Combinatorial Auctions, Sponsored Search, Approxima-
tion Algorithms
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Zusammenfassung

Kombinatorische Auktionen ermöglichen den zeitgleichen Verkauf mehrerer hete-
rogener Güter mit Abhängigkeiten (bspw. Substitute). Beispiele ür solche Auktio-
nen sind Spektrumauktionen bei welchen Regierungen Lizenzen ür Bänder des
Frequenzspektrums verkaufen und Auragsauktionen bei welchen der Auktionator
Dienstleistungen oder Güter erwirbt (siehe Blumrosen and Nisan [16] and Cramton
et al. [27]). Ein weiteres bedeutendes Beispiel sind Auktionen ür Sponsored-Search.
Hierbei bietenWerbung schaltende Unternehmen Geld an Suchmaschinen damit ih-
re Werbung neben den Suchergebnissen ür bestimmte Suchbegriffe angezeigt wird
(siehe Edelman et al. [38] and Lahaie et al. [78]).

Einer der Standardmechanismen ür kombinatorische Auktionen ist der bekann-
te VCG-Mechanismus (Vickrey [104], Clarke [23], und Groves [57]). Dieser Mecha-
nismus hat die Eigenscha, dass Bieter motiviert werden genau ihre Bewertung
ür die Güter zu bieten. Diese Eigenscha wird Anreizkompatibilität genannt. Dar-
über hinaus besitzt derMechanismusweitere Eigenschaenwenn Bieter tatsächlich
ihre Bewertung bieten: (1) Kein Bieter hat einen negativen Nutzen. Diese Eigen-
scha wird individuelle Rationalität genannt. (2) Die Allokation der Güter die der
Mechanismus bestimmt maximiert die Wohlfahrt. Das bedeutet, dass die Summe
der Bewertungen maximiert wird. Jedoch können diese Eigenschaen nur unter
bestimmten Voraussetzungen erreicht werden: (1) Es ist notwendig, dass die Nut-
zenfunktionen der Bieter quasilinear sind. Die Bieter dürfen daher keine Budget-
beschränkungen haben. (2) Außerdem ist es notwendig, dass die Berechnung der
wohlfahrtsmaximierenden Allokation in der zur Verügung stehenden Zeit möglich
ist. In Fällen wo diese Voraussetzungen verletzt werden ist die Verwendung des
VCG-Mechanismus nicht anzuraten. In dieser Dissertation werden ür genau diese
Fälle neue Auktionsmechanismen entwickelt.

(A) Zuerst befassen wir uns mit Szenarien in denen die Bieter Budgetbeschrän-
kungen haben. Wir entwickeln anreizkompatible, individuell rationale und Pareto-
optimale Mechanismen ür Auktionen mit heterogenen Gütern und Bietern mit
additiven Bewertungen und Budgetbeschränkungen. (1) Insbesondere berücksich-
tigen wir Szenarien mit eindimensionalen Bewertungen und zeigen positive Re-
sultate ür randomisierte Mechanismen. Zudem zeigen wir das Fehlen determinis-
tischer Mechanismen. Die positiven Resultate gelten auch ür private Budgetbe-
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schränkungen und die negativen Resultate selbst ür öffentliche Budgetbeschrän-
kungen. (2) Des Weiteren berücksichtigen wir Szenarien mit mehrdimensionalen
Bewertungen. Wir zeigen das Fehlen von deterministischen und randomisierter Me-
chanismen, selbst im Fall öffentlicher Budgetbeschränkungen. Zusammengenom-
men zeigt das die Wichtigkeit von Randomisierung in bestimmten Szenarien mit
heterogenen Gütern, jedoch zeigt dies auch die Grenzen von Randomisierung auf.
(3) Darüber hinaus berücksichtigen wir Sponsored-Search-Auktionen ür mehre-
re Suchbegriffe und Bieter mit Budgetbeschränkungen. Hierbei hat die Ergebnis-
seite jedes Suchbegriffs mehrere Plätze ür Werbung mit einer sogenannten Click-
rough-Rate. Zusätzlich nehmenwir an, dass die Anzahl derWerbeplätze pro Such-
begriff die einem Bieter zugeteilt werden kann beschränkt ist. Wir präsentieren den
ersten Mechanismus ür mehrere Suchbegriffe und Click-rough-Raten die vom
Werbeplatz abhängen, welcher in Erwartung anreizkompatibel und individuell ra-
tionell ist und der ex-post Pareto-Optimalität erüllt.

(B) Als Nächstes befassen wir uns mit Szenarien mit komplexen Bewertungs-
funktionen ür die das Maximieren der Wohlfahrt NP-schwer und daher ür große
Instanzen nicht praktikabel ist. Wir berücksichtigen zahlreiche Klassen von Bewer-
tungsfunktionen und Gebotsfunktionen und analysieren die Wohlfahrt des VCG-
Mechanismus wenn Bieter gezwungen sind ihre Gebote aus einer Unterklasse der
Klasse der Bewertungsfunktionen zu wählen. Hierbei beschränkt der Auktionator
die Klasse der Gebotsfunktionen damit das VCG-Ergebnis effizient berechnet wer-
den kann. Wir bewerten die durch die Mechanismen erreichte Wohlfahrt mit Hil-
fe des Price-of-Anarchy, dem Verhältnis der maximalen Wohlfahrt über alle Allo-
kationen und der minimalen Wohlfahrt wenn die Gebote ein strategisches Gleich-
gewicht bilden. Wir zeigen verbesserte obere Schranken ür den Price-of-Anarchy
ür Beschränkungen auf additive Gebote und obere und untere Schranken ür Be-
schränkungen auf nicht-additive Gebote. Unsere Schranken zeigen, dass erhöhte
Ausdrucksstärke zur Existenz zusätzlicher Gleichgewichte mit geringer Effizienz
ühren kann.

(C) Zuletzt verallgemeinern wir das Standardmodell ür kombinatorische Auk-
tionen in welchen der Nutzen eines Bieters einzig von den zugeordneten Gütern
und den Kosten hierür abhängt. Beispielsweise mögen manche Werbung schalten-
de Unternehmen im Bereich der Onlinewerbung nicht wenn ihre Werbung auf der
selben Seite angezeigt wird, wie die Werbung eines direkten Konkurrenten. Wir
definieren und analysieren mehrere natürliche und einfache graphentheoretische
Modelle ür kombinatorische Auktionen die negative konfliktbasierte Externalitä-
ten aufweisen. Hierbei bilden Bieter einen gerichteten Konfliktgraphen und ∆ ist
der maximale Ausgangsgrad jedes Knotens. Wir entwickelnO(∆ log log∆/ log∆)-
approximative Algorithmen undO(∆)-approximative anreizkompatible Mechanis-
men bezüglich der maximalen Wohlfahrt. Diese Approximationsfaktoren sind auf-
grund bestehender Komplexitätsresultate ür das Stabilitätsproblem beinahe opti-
mal.
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Für Sponsored-Search-Auktionen zeigen wir mehrere Algorithmen ür eine klei-
ne Anzahl an Gütern, dem in der Praxis relevantesten Szenario. Insbesondere zei-
gen wir wie ein im maximalen Ausgangsgrad ∆ sublinearer Approximationsfaktor
erreicht werden kann wenn die Anzahl der Güter lediglich logarithmisch in der An-
zahl der Bieter ist. Darüber hinaus können alle unsere Algorithmen ür Sponsored-
Search-Auktionen in anreizkompatible Mechanismen umgewandelt werden.

Slagwörter

Algorithmische Spieltheorie, Kombinatorische Auktionen, Sponsored-Search, Ap-
proximative Algorithmen
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CHAPTER 1
Introduction

When selling items to customers it is a challenging problem to determine a suitable
price; the difficulty of this problem increases with the lack of information about the
customers. We consider seings where the valuations of the customers are private
and the seller has no information about their valuations at all. In this dissertation,
we design new auction mechanisms that help the seller to elude their lack of infor-
mation. Our focus lies on combinatorial auctions, which are auctions that simulta-
neously allocate a set of heterogeneous items to bidders who can bid a distinct value
for each subset of items. Such auctions are frequently used between companies or
between the government and companies. Notable examples are spectrum auctions
where the government sells licenses for the right to use some specific bands of the
radio spectrum to telecommunication companies and procurement auctions where
the auctioneer buys services or goods from bidding companies, for instance, trans-
portation services (see Blumrosen and Nisan [16] and Cramton et al. [27]).

Another prominent example are auctions for “sponsored search” (see Edelman
et al. [38] and Lahaie et al. [78]). ese auctions are a special case of combinatorial
auctions where the valuations of the bidders are assumed to be strongly restricted.
Here, the selling company operates a search engine for the World Wide Web; users
can input keywords into a text field and the search engine outputs links to related
websites together with short text samples. See Figure 1.1 for an example of a search
engine’s website. is service is free of charge for the users, and search engine
companies earn money by displaying advertisements together with the search re-
sults on their web sites. e positions for the advertisements are slots shown above
and beside the search results, and the advertisers (the customers) have to pay to the
search engine company when a user clicks on their advertisement (pay-per-click).
e probability of an advertisement being clicked on (or to be recognized by the
user) and, thus, the valuation of the advertiser, depends beside the type and the look
of the advertisement itself also on the location of its slot on the page. e decision
which advertisement to display in which slot and the payments by the advertisers

1



1. I

Figure 1.1: Sponsored search result page for the keyword “car
rental”. e page displays eleven ads and ten search results; the bot-
tom five search results are hidden in the figure. e area in which
an ad is located is called “ad slot” (or simply “slot”) and the probabil-
ity of an ad being clicked on or being seen depends on the location
of the slot. Source: Screenshot taken from www.google.com.

...

ads

.

search results

.

keyword

2



1.1. e VCG Mechanism

are computed by running an auction every time before showing search results to a
user. Advertisers define a budget for a certain time period and the amount they are
at most willing to pay (i.e., their bid) when their advertisement is clicked on. e
influence of a slot’s location on the valuations of the bidders and, thus, the influ-
ence on their willingness to pay, is supposed to be linear and it is determined by the
search engine itself. Furthermore, it is assumed that the influence is independent of
the bidders. e search engine company can now compute the optimal allocation of
the slots to the advertisers and their payments. We will consider sponsored search
auctions whenever those particular restrictions in the valuations and the bids help
to strengthen our results.

1.1 e VCG Meanism

One example of an auction mechanism used for combinatorial auctions is the semi-
nal VCGmechanism byVickrey [104], Clarke [23], andGroves [57] (see alsoAusubel
andMilgrom [7]), which generalizes second-price auctions to combinatorial seings.
e mechanism selects the allocation that maximizes the social welfare and makes
every bidder pay his externality; that is, bidders pay the loss in valuation they induce
to the other bidders. is mechanism has many desirable properties as we discuss
below but, unfortunately, they depend on the structure of the utility functions and
the computation of the allocationmaximizing the social welfare. In this dissertation,
we develop and study new mechanisms for seings in which those limitations arise
and, thus, the usage of the VCG mechanism is not recommended.

We will next present the VCG mechanism, discuss its properties, and use this
as an opportunity to introduce the notation that we use throughout the disserta-
tion. We refer the reader to Nisan [91] for additional details on the game-theoretic
background. We are given a set of bidders N = {1, . . . , n} and a set of items
I = {1, . . . ,m}. Each bidder i ∈ N has a private valuation function vi : P(I) →
R≥0 that defines the value for each item set assigned to him,1 and the goal of the
VCG mechanism is to find an allocation X = (X1, . . . , Xn) that maximizes the
social welfare. To be specific, an allocation X partitions the item set such that no
two bidders share an item (i.e.,

∪
i∈N Xi ⊆ I and Xi ∩ Xj = ∅ for i ̸= j ∈ N )

and VCG is expected to return the allocation that maximizes the social welfare
SW (X) =

∑
i∈N vi(Xi). Note that in some chapters an allocation X is repre-

sented by a matrix. Since the valuations are private the mechanism cannot directly
access them and ask each bidder i to report his valuation; that is, bidder i is asked to
place his bid bi : P(I)→ R≥0. Subsequently, an allocation rule f : B → X , where
B is the set of feasible bids b = (b1, . . . , bn) and X is the set of allocations, selects
the allocation that maximizes

∑
i∈N bi(Xi). us, if we incentivize the bidders to

bid their valuation VCG maximizes social welfare as intended.

1In general, the valuation of a bidder can depend on the whole outcome and not only on his
assigned item set. We will study such a seing in Chapter 5.

3



1. I

Before we introduce a payment rule p that motivates bidders to bid “truthfully”
their valuation, we define their utilities. e utility of a bidder depends on his val-
uation vi(Xi) for his assigned item set Xi and on his payment pi. As we will see
later, it is crucial for the VCG mechanism that utilities have the form ui(Xi, pi) =
vi(Xi) − pi; such utilities are called “quasi-linear”.2 e following payment rule
p : B → Rn

≥0, called Clarke pivot rule,3 causes each bidder i to pay his externality,
which is the loss of valuation that bidder i imposes on the other bidders (assuming
the other bidders bid truthfully); that is,

pi(b) =
∑

i′∈N\{i}

(bi′(fi′(b−i))− bi′(fi′(b))), (1.1)

where fi′(b−i) is bidder i′’s item set when bidder i is excluded from the auction and
fi′(b) is bidder i′’s item set when bidder i takes part in the auction. In general, we de-
note by fi(b) a function that returns the assignmentXi given f(b) = (X1, . . . , Xn);
and we use the notations b−i for (b1, . . . , bi−1, bi+1, . . . , bn) and (bi, b−i) for
(b1, . . . , bn). eorem 1.1 shows that the Clarke pivot rule indeed incentivizes bid-
ders to bid their valuation; that is, for all bids (b1, . . . , bn), the utility of each bidder i
does not decrease when bidding his valuation:

ui(fi((vi, b−i)), pi((vi, b−i))) ≥ ui(fi(b), pi(b)); (1.2)

in other words, bidding the valuation is a “dominant strategy”. A mechanism that
satisfies this condition is called incentive compatible. is property is not only de-
sirable because it enables the auctioneer to compute the social welfare maximizing
allocation but also because bidders know their preferred bid without strategic con-
siderations.

eorem 1.1 (Vickrey-Clarke-Groves). e VCG mechanism described above is in-
centive compatible.

Proof. Let us fix a bidder i ∈ N and consider bids b′ = (b′1, . . . , b
′
n) where every

bidder has an arbitrary bid and, additionally, the bids b = (vi, b
′
−i) where bidder i

bids his valuation and the other bidders do not change their bid. When the bidders

2If we assume the utility of the auctioneer to be the sum of the payments and the utilities of the
bidders to be quasi-linear, then social welfare also corresponds to the sum of the utilities including
the auctioneer’s utility.

3e VCG mechanism also allows the usage of other payment rules that add to each bidder’s pay-
ment a term that does not depend on the bidder’s bid. is is for instance necessary when valuations
are negative like in procurement auctions. However, we will assume, in the following, that the Clarke
pivot is used.
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1.1. e VCG Mechanism

bid b, bidder i’s utility is

ui(fi(b), pi(b)) = vi(fi(b))− pi(b) (1.3)

= bi(fi(b))−
∑

i′∈N\{i}

bi′(fi′(b−i)) +
∑

i′∈N\{i}

bi′(fi′(b)) (1.4)

=
∑
i′∈N

bi′(fi′(b))−
∑

i′∈N\{i}

bi′(fi′(b−i)). (1.5)

While, when the bidders bid b′, bidder i’s utility is

ui(fi(b
′), pi(b

′)) = vi(fi(b
′))− pi(b

′) (1.6)

= bi(fi(b
′))−

∑
i′∈N\{i}

b′i′(fi′(b
′
−i)) +

∑
i′∈N\{i}

b′i′(fi′(b
′)) (1.7)

= bi(fi(b
′))−

∑
i′∈N\{i}

bi′(fi′(b−i)) +
∑

i′∈N\{i}

bi′(fi′(b
′)) (1.8)

=
∑
i′∈N

bi′(fi′(b
′))−

∑
i′∈N\{i}

bi′(fi′(b−i)). (1.9)

In the chains of equalities above, we used in (1.3) and (1.6) that the utilities are
quasi-linear and we used in (1.4) and (1.7) the Clarke pivot rule (1.1).

Certainly,
ui(fi(b), pi(b)) ≥ ui(fi(b

′), pi(b
′)) (1.10)

if and only if ∑
i′∈N

bi′(fi′(b)) ≥
∑
i′∈N

bi′(fi′(b
′)), (1.11)

and this inequality holds since f(b) selects an allocation X ∈ X that maximizes∑
i′∈N bi′(Xi′). If the mechanism selects an allocation that is not optimal this in-

equality might not hold and the mechanism is not incentive compatible.

In the proof of eorem 1.1 it is crucial that (1) utilities are quasi-linear and that
(2) the allocation rule finds the allocation that maximizes the bids. Beside maximiz-
ing social welfare and being incentive compatible under the above conditions, VCG
with Clarke pivot rule satisfies the following additional properties:

• e mechanism makes “no positive transfers” to the bidders; that is; the pay-
ments are non-negative.

• Taking part in the auction is “individually rational”; that is, the utility of each
bidder who bids his valuation cannot be negative. is holds because the
payments are bounded by the bids.

In this dissertation, we design new mechanisms for seings in which quasi-
linearity does not apply to the utility functions or in which an optimal allocation
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cannot be computed in feasible time and, thus, the usage of the VCG mechanism
is not recommended (see Milgrom [84], Chapter 2.5 for other disadvantages of the
VCG mechanism). We will describe these seings and our results in the next two
sections.

1.2 Budget Constraints

We will first consider a seing where the quasi-linearity of the utilities is violated.
To be specific, we study the case when bidders face budget constraints; that is, their
utility drops when their payments exceed their budgets. Consequently, the VCG
mechanism is not incentive compatible in this case and selecting a bid becomes
cumbersome for the bidders as the following example shows. Moreover, the loss of
incentive compatibility implies that the VCG mechanism is not maximizing social
welfare anymore.

Example: Let us study the VCGmechanism with Clarke pivot rule for the following
seing: We are given two bidders, 1 and 2, and three items,A,B andC . e bidders
have the same valuation functions and budget constraints. eir budgets are βi = 1
and their valuations are vi(Xi) = |Xi| for i ∈ {1, 2}. We assume that their utilities
for a set of itemsXi are vi(Xi)−pi if pi ≤ βi and−∞ otherwise, again for i ∈ {1, 2}.
Here,−∞ simply implies the infeasibility of payments that exceed the budget limits.
ese utilities are not quasi-linear.

Certainly, the bidders should not ignore their budget constraints and bid their
valuation as in this case the bidders pay |Xi| for their item sets Xi and the bidder
who gets more than one item has a utility of−∞. us, the VCG mechanism is not
incentive compatible for these utility functions.

One could argue that a bidder should bid min{vi(Xi), βi} for allXi; that is, the
bidder bids his valuation when it does not exceed his budget and, otherwise, his
budget. However, assume that bidder 1 bids min{v1(X1), β1} = 1 for each X1 ̸= ∅
and zero otherwise, and bidder 2 bids |X2| · β2/|{A,B,C}| = |X2|/3 for each X2.
Note that both bids do not distinguish between the items. e VCG mechanism
would assign one item to bidder 1 for a price of 1/3 but two items to bidder 2 for
a price of 0. If bidder 2 were also bidding min{v2(X2), β2} then one of the bidders
gets one item and the other bidder gets two items and both have a payment of zero;
thus, in this case, the bidder who gets only one item could improve his utility by
bidding |Xi|/3 as bidder 2 above. Hence, bidding min{vi(Xi), βi} is not a dominant
strategy.

So should both bidders bid |Xi|·βi/|{A,B,C}| if they do not carewhich specific
items they receive? As one can easily see one of the bidders could improve his utility
by fixing an interest set Si being either {A,B}, {A,C}, or {B,C}, and bidding
|Xi∩Si|/2.4 us, also bidding |Xi| ·βi/|{A,B,C}| is not a good idea. In fact, the

4Also the bid min{|Xi|/2, βi}, which does not distinguish between the items, can improve the
utility of a bidder.
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bids with interest sets above can be used to show that no dominant strategy exists
because the best responses to such a strategy depend on the selected interest set.

is example shows the struggle a bidder faces in the VCG mechanism under
budget restrictions and highlights the need for alternative mechanisms. We present
such alternative mechanisms in Chapter 2 and 3. We aim for mechanism that are
incentive compatible, individually rational, and make no positive transfers. Further-
more, we want the allocation selected by the mechanism to satisfy a suitable opti-
mality criterion.5 However, the budget constraints make the maximization of the
social welfare infeasible for incentive compatible auctions without positive trans-
fers.6 We, thus, relax our optimality criterion to the requirement of Pareto-optimal
allocations. Pareto-optimality guarantees that we cannot increase the utility of a
bidder without decreasing the utility of another bidder or decreasing the sum of the
payments, which is the utility of the auctioneer. Chapter 2 and 3 are inspired by
the seminal work of Ausubel [5] and Dobzinski et al. [30], as our positive results
are based on their (adapted) clinching auction. is type of mechanism increases
a price per unit over time and sells an item to one of the bidders every time the
demand of the other bidders falls below the supply. e demand of the bidders is
computed by the mechanism considering their bids and budgets.

In Chapter 2, we study incentive compatible, individually rational, and Pareto
optimal mechanisms for auctions with heterogeneous items and hard budget con-
straints as in the example above. at means that payments that exceed the budget
constraints are infeasible or induce a utility of −∞. We consider seings where
bidders have valuation functions that are additive; that is, they are of the form
vi(Xi) =

∑
j∈Xi

vi,j .
We first study seings with single-dimensional valuations; that is, we assume

that valuations are restricted to be vi,j = vi · αj for all bidders i and all items j
where vi only depends on the bidder i and αj only depends on the item j. We
prove a positive result for randomized mechanisms and an impossibility result for
deterministic mechanisms. While the positive result allows for private budgets, the
negative result is for public budgets.

Next, we study seings with multi-dimensional valuations. us, we consider
additive valuations without these additional restrictions. Here, we prove an impos-
sibility result that applies to deterministic and randomized mechanisms even if bud-
gets are public. Taken together this shows the power of randomization in certain
seings with heterogeneous items, but it also shows its limitations.

In Chapter 3, we study multiple keyword sponsored search auctions with bud-
gets. Each keyword hasmultiple ad slots with a click-through rate. e bidders have
additive valuations, which are linear in the click-through rate, and budgets, which

5Note that without aiming for an optimal allocation such mechanisms are easy to design. e
mechanism could simply ignore the bids and give the items to one of the bidders for free.

6is follows fromeorem 9.37 inNisan [91] and from the infeasibility of VCGpaymentswithout
positive transfers.
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are restricting their overall payments. us, the valuations are similar to the seing
with single-dimensional valuations studied in Chapter 2. However, we assume addi-
tionally that the number of slots per keyword assigned to a bidder is bounded. is
additional constraint has to be treated separately from the budget constraints. We
deal with those constraints by solving suitable linear programs during the execution
of the auction and by the usage of a correlated randomization based on scheduling
algorithms. We give the first mechanism for multiple keywords and click-through
rates differing among slots that is incentive compatible in expectation, individually
rational in expectation, and that satisfies Pareto-optimality ex-post.

Unfortunately, the impossibility results mentioned above indicate that our tech-
niques cannot be extended to seings with more complex valuation functions such
as those considered in the next section.

1.3 Complex Valuation Functions

In this section we assume that utility functions are quasi-linear and consider the
case of more complex valuations. Recall that we also used a second condition in the
proof of eorem 1.1 for showing the incentive compatibility of the VCG mecha-
nism; to show Equation (1.11), we assumed that the VCG mechanism can select the
social welfare maximizing outcome. is is a rather optimistic assumption when
valuation functions are complex and the number of items m is large. Note that
even under strong restrictions on B (e.g., that the valuation functions are monotone
and submodular set functions; see Lehmann et al. [80]) maximizing social welfare
is NP-hard and, thus, no optimal algorithm that runs in polynomial time is known.
Moreover, using an approximation algorithm might violate incentive compatibility.

We deal with such seings in Chapter 4 and Chapter 5 in different ways. In
Chapter 4 we study the consequences of restricting the allowed bids such that the
auctioneer can solve the optimization problem optimally, while the valuation func-
tions remain unchanged. Furthermore, this solves another problem when valua-
tions are complex; the bids can be expressed using fewer bits than needed for the
valuations.7 In Chapter 5, we consider another challenge. e valuation of a bidder
for an item set depends on the assignment to the other bidders. Here we design
mechanisms that deal with the computational hardness in a different way. e
allocation rules of the mechanisms always select the social welfare maximizing al-
locations of a restricted set of allocations. us, Equation (1.11) in the proof of
eorem 1.1 is still valid. We will next describe the results in those chapters.

In Chapter 4, our results are inspired by the work of Christodoulou et al. [22]
and Bhawalkar and Roughgarden [12] who study the replacement of the VCGmech-
anism for bidders with submodular or subadditive valuations with simultaneous

7Note that valuation functions can need up to 2m many numbers to be expressed, while additive
bids can be expressed by using only m numbers. is implies that even if only small costs are caused
for the bidders when they are computing the value of a single set of items, the VCG mechanism
becomes impracticable for complex bids (see Milgrom [84], Chapter 2.5).
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second price auctions for each item. Note that simultaneous second price auctions
correspond to a VCG auction accepting only additive bids. Certainly, the considered
auctions are not incentive compatible. us, they study the performance of those
auctions in terms of the “Price of Anarchy” (Koutsoupias and Papadimitriou [76]);
that is, they study the ratio between the optimal social welfare and the minimum
social welfare when the bids form a (Bayesian) Nash equilibrium8. us, it is the
task of the bidders to find a Nash equilibrium before bidding.

We generalize this idea and consider various classes of valuation functions and
bidding functions. We thus study the performance of the VCG mechanism when
bidders are forced to choose their bids from a subclass B of the class of valuation
functions V , such that the VCG outcome for the given bids can be computed effi-
ciently. We show improved upper bounds on the welfare loss for restrictions to
additive bids and upper and lower bounds for restrictions to non-additive bids. All
our bounds apply to equilibrium concepts that can be computed in polynomial time
as well as to learning outcomes, which are the result of repeated play of the same
game induced by the auction rules and valuations. Our bounds show that increased
expressiveness can give rise to additional equilibria of poorer efficiency.

In Chapter 5, we will generalize the standard model for combinatorial auctions
where the utility of a bidder depends solely on the item set assigned to him and on
his payment. For instance, in online advertisement an advertiser might not want
his ads to be displayed on the same page as the ads of his direct competitor. We
propose and analyze several natural, simple graph-theoretic models for combina-
torial auctions that incorporate negative, conflict-based externalities. Here bidders
are embedded into a directed conflict graph, and ∆ is the maximum out-degree of
any node. We design algorithms and incentive compatible mechanisms for social
welfare maximization that obtain approximation ratios depending on ∆.

For combinatorial auctions, we apply two algorithmic techniques. e first is via
“loery”; that is, we eliminate conflicts by removing bidders/items independent of
the bids received. It allows to conveniently apply incentive compatible mechanisms
for conflict-free combinatorial auctions as a black-box, thereby increasing the ap-
proximation guarantee only by a factor ofO(∆). e second is via a cone program
relaxation. We design a polynomial-time approximation algorithm for combinato-
rial auctions where bidders have fractionally subadditive valuations; the approach
again can be combined with algorithms for conflict-free combinatorial auctions and
increases the approximation guarantee only by a factor of O(∆ log log∆/ log∆).
is is sublinear in∆ and improves upon our loery algorithm under the same sce-
nario. To the best of our knowledge, our results are the first to use cone programs
in the context of mechanism design. ese ratios are almost optimal given existing
hardness results for the independent set problem.

For the prominent application of sponsored search, we present several algo-
rithms for the case when the number of items is small, which is arguably the most

8A Nash equilibrium is a combination of strategies (bids) where no agent (bidder) can increase
his utility by changing his strategy if the others agents do not change their strategy either.

9



1. I

practically relevant scenario. Among other things, we show how to obtain an ap-
proximation ratio that is sublinear in ∆ when the number of items is only logarith-
mic in the number of bidders. All our algorithms for sponsored search can be turned
into incentive compatible mechanisms.
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CHAPTER 2
Auctions with Heterogeneous

Items and Budget Limits

2.1 Introduction

A canonical problem in mechanism design is the design of economically efficient
auctions that satisfy individual rationality and incentive compatibility. In seings
with quasi-linear utilities these goals are achieved by the VCG mechanism by Vick-
rey [104], Clarke [23], and Groves [57]. In many practical situations, including set-
tings in which the bidders have budget limits, quasi-linearity is violated and, thus,
the VCG mechanism is not applicable.

Ausubel [5] describes an ascending-bid auction for homogeneous items that
yields the same outcome as the sealed-bid Vickrey auction, but offers advantages
in terms of simplicity, transparency, and privacy preservation. In his concluding
remarks he points out that “when budgets impair the bidding of true valuations in a
sealed-bid Vickrey auction, a dynamic auction may facilitate the expression of true
valuations while staying within budget limits” (Ausubel [5], p. 1469). Dobzinski et
al. [30] show that an adaptive version of Ausubel’s “clinching auction” is indeed the
unique mechanism that satisfies individual rationality, Pareto-optimality, and incen-
tive compatibility in seings with public budgets. ey use this fact to show that
there can be no mechanism that achieves those properties for private budgets. An
important restriction of Dobzinski et al.’s impossibility result for private budgets is
that it only applies to deterministic mechanisms. In fact, as Bhaacharya et al. [11]
show, there exists a randomized mechanism for homogeneous items that is individ-
ually rational, Pareto-optimal, and incentive compatible with private budgets.

As Ausubel [6] points out, “situations abound in diverse industries in which
heterogeneous (but related) commodities are auctioned” (Ausubel [6], p. 602). He
also describes an ascending-bid auction, the “crediting and debiting auction”, that
takes the place of the “clinching auction” when items are heterogeneous. Positive
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and negative results for deterministic mechanisms and public budgets that apply to
heterogeneous items are given in Colini-Baldeschi et al. [24], Fiat et al. [42], Goel
et al. [53], and Lavi and May [79]. We focus on randomized mechanisms for hetero-
geneous items, and prove positive results for private budgets and negative results
for public budgets. We thus explore the power and limitations of randomization in
this seing.

2.1.1 Contribution

We analyze two seings with heterogeneous items and additive valuations. In the
first seing the valuations are single-dimensional in that each bidder has a valua-
tion, each item has a quality, and a bidder’s valuation for an item is the product of
the item’s quality and the bidder’s valuation.1 In the second seing the valuations
are multi-dimensional in that each bidder has an arbitrary, non-negative valuation
for each item. In both cases we analyze whether a deterministic or randomized
mechanism exists that satisfies individual rationality (IR), Pareto-optimality (PO),
and incentive compatibility (IC). For both types of mechanisms we distinguish be-
tween seings with public budgets and seings with private budgets. For random-
ized mechanisms the corresponding properties can either be satisfied in expectation
or they can be satisfied ex post. e former requires that the property is satisfied
in expectation over the outcomes the randomized mechanism produces, while the
laer requires that it is satisfied by every possible outcome of the mechanism.

(a) For single-dimensional valuations we present a deterministic mechanism for
divisible items that is IR, PO, and IC with public budgets and a randomized mech-
anism for both divisible and indivisible items that is IR in expectation, PO ex post,
and IC in expectation with private budgets. ese mechanisms also satisfy another
desirable property, namely “no positive transfers” (NPT), which requires that the
individual payments are non-negative. We obtain these mechanisms through a gen-
eral reduction from the seing with multiple, heterogeneous items to the seing of
a single and, by definition, homogeneous item. is allows us to apply the mecha-
nisms for this seing presented by Bhaacharya et al. [11]. e main difficulty in
showing that the resulting deterministic and randomized mechanisms for multiple
items have the desired properties is to show that they satisfy PO resp. PO ex post.
For this we argue that the reduction preserves a certain structural property of the
mechanisms for a single item. We connect this structural property to a novel “no
trade” (NT) condition, and show that it is equivalent to PO resp. PO ex post.

(b) For single-dimensional valuations the impossibility result of Dobzinski et al.
[30] implies that there can be no deterministic mechanism for indivisible items that

1Such valuations arise whenever the bidders agree about the relative values of the items. One
concrete example is an auction in which display ads are sold in bulks consisting of a certain number of
impressions together with per-impression valuations. Another example are auctions in which display
ads of different size are sold and the valuations are proportional to size. In both cases the respective
per-item valuations are the product of the item’s quality, either the number of impressions or the size,
and the bidder’s valuation, either per impression or per pixel.
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is IR, PO, and IC for private budgets. We show that for heterogeneous items there
can also be no deterministic mechanism for indivisible items that is IR, PO, and IC
for public budgets. To this end we extend the “classic” result that IC mechanisms
must satisfy “value monotonicity” (VM) and “payment identity” (PI) from seings
without budgets to seingswith public budgets. To establish the impossibility result,
we then use NT and PI to derive a lower bound on the payments that conflicts with
the upper bounds on the payments required by IR. Our impossibility result is tight
in the sense that if any of the conditions is relaxed such a mechanism exists: (i) For
homogeneous, indivisible items a deterministic mechanism is given by Dobzinski et
al. [30]. (ii) For heterogeneous itemswe give a deterministic mechanism for divisible
and a randomized mechanism for indivisible items as described above. We thus
obtain a strong separation between deterministic mechanisms, that do not exist for
public budgets, and randomized mechanisms, that exist for private budgets. is
separation is stronger than in the homogeneous items seing, where a deterministic
mechanism exists for public budgets.

(c) For multi-dimensional valuations the impossibility result of Fiat et al. [42]
implies that there can be no deterministic mechanism for indivisible items that is
IR, PO, and IC for public budgets. We show that there can also be no deterministic
mechanismwith these properties for divisible items. To prove this we observe that—
just as in seings without budgets—every mechanism that satisfies IC with public
budgets must satisfy “weak monotonicity” (WMON). en we show that in certain
seings this condition will be violated. For this we use that multi-dimensional valu-
ations enable the bidders to manipulate the mechanism’s outcome in a sophisticated
manner. While all previous impossibility results in this area used bidders that either
only overstate or only understate their valuations, we use a bidder that overstates
his valuation for some item and understates his valuation for another item. We
use our impossibility result for deterministic mechanisms to show that for both di-
visible and indivisible items there can be no randomized mechanism that is IR in
expectation, PO in expectation, and IC in expectation with public budgets. is
is the first impossibility result for randomized mechanisms in this domain. It also
establishes an interesting separation between multi-dimensional valuations, where
no such mechanism exists, and single-dimensional valuations, where such a mech-
anism exists.

2.1.2 Related Work

Homogeneous items were studied by Dobzinski et al. [30], Bhaacharya et al. [11],
and Lavi and May [79]. Dobzinski et al. show that for both divisible and indivisible
items there is a deterministic mechanism that is IR, PO, and IC with public bud-
gets, and that no deterministic mechanisms can achieve this with private budgets.
Bhaacharya et al. show that there is a randomized mechanism for both divisible
and indivisible items that is IR in expectation, PO ex post, NPT ex post, and IC
in expectation with private budgets. Lavi and May prove an impossibility result
for non-additive valuations with decreasing marginals. e impossibility result of
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Dobzinski et al. applies to both of our seings, but our impossibility results are
stronger as they are for public budgets and, in the case of multi-dimensional val-
uations, also apply to randomized mechanisms. e positive results of Dobzinski
et al. and Bhaacharya et al. do not apply to our seings as we study heterogeneous
items, not homogeneous items. e impossibility result of Lavi and May does not
apply to our seings as the valuations that we study are additive.

Heterogeneous items were first studied by Fiat et al. [42]. In their model each
bidder has the same valuation for each item in a bidder-dependent interest set and
zero for all other items. ey give a deterministic mechanism for indivisible items
that satisfies IR, NPT, PO, and IC when both, interest sets and budgets, are public.
ey also show that when the interest sets are private, then there can be no deter-
ministic mechanism that satisfies IR, PO, and IC.e positive result of Fiat et al. does
not apply to our seings as it is not always possible to express the valuations that
we consider in terms of per-bidder valuations and interest sets. e impossibility
result of Fiat et al. applies to our multi-dimensional seing and shows that there
can be no deterministic mechanism that satisfies IR, PO, and IC with public budgets
for indivisible items. Our impossibility result for this seing is stronger as it also
applies to randomized mechanisms and divisible items.

Seings with heterogeneous items were subsequently, and in parallel to this pa-
per, studied by Colini-Baldeschi et al. [24]2 and Goel et al. [53]. e former study
problems in sponsored search in which the bidders are interested in a certain num-
ber of slots for each of a set of keywords. e slots are associated with click-through
rates that are assumed to be identical across keywords. e laer study seings in
which the bidders have identical valuations per item but the allocations must sat-
isfy polyhedral or polymatroidal constraints. e seings studied in these papers
are more general than the single-dimensional valuations seing studied here. On
the one hand this implies that our impossibility result for this seing applies to their
seings, showing that in their seings there can be no deterministic mechanism for
indivisible items that is IC with public budgets. On the other hand this implies that
their positive results apply to our seing. is shows the existence of determinis-
tic mechanisms for divisible items and randomized mechanisms for both divisible
and indivisible items that are ICwith public budgets in our single-dimensional valua-
tions seing. Our positive result for this seing is stronger as it shows the existence
of a mechanism that is IC with private budgets. Finally, the impossibility results of
Colini-Baldeschi et al. and Goel et al. either assume non-additive valuations or that
the allocations satisfy arbitrary polyhedral constraints and therefore do not apply
to the multi-dimensional valuations seing that we study here.

We summarize the results from this chapter and the related work along with
open problems in Figure 2.1.

e clinching auction was also studied for more different seings aer the re-
sults in this chapter were published. Goel et al. [51, 52] study the clinching auction
in an online seing and under different liquidity constraints. Dobzinski and Paes

2Note that the major result of this article is part of this thesis and can be found in Chapter 3.
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2.1. Introduction

Leme [32] study other efficiency measures than Pareto-optimality and Devanur et
al. [28] study prior-free auctions for bidders with budget constraints that are based
on the clinching auction.

Valuation functions
(indivisible items)

randomized
mechanisms

deterministic
mechanisms

public
budgets

private
budgets

public
budgets

private
budgets

Homogeneous
additive + [30] + [11] + [30] − [30]
non-additive ? ? −[24, 79] − [30]
Heterogeneous & Additive
public interest set +[42] ? +[42] − [30]
private interest set ? ? − [42] − [30]
multi-keyword

unit demand
+[24, 53] ? ⊖ − [30]

single-dimensional ⊕ ⊕ ⊖ − [30]
multi-dimensional ⊖ ⊖ −[42] − [30]

Valuation functions
(divisible items)

randomized
mechanisms

deterministic
mechanisms

public
budgets

private
budgets

public
budgets

private
budgets

Homogeneous
additive + [11, 30] + [11] + [11, 30] − [30]
non-additive ? ? −[53] − [30]
Heterogeneous & Additive
polymatroid

constraints
+[53] ? +[53] − [30]

multi-keyword
unit demand

+[24, 53] ? +[24, 53] − [30]

single-dimensional ⊕ ⊕ ⊕ − [30]
multi-dimensional ⊖ ⊖ ⊖ − [30]

Table 2.1: Summary of the results for indivisible items (upper table)
and divisible items (lower table) when bidders have budget con-
straints. A plus (+ or ⊕) indicates a positive result, and a minus
(− or ⊖) indicates a negative result. We use + and − for results
from the related work and⊕ and⊖ for results from this chapter. A
question mark (?) indicates that nothing is known for this seing.
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2.2 Preliminaries

We are given a setN = {1, . . . , n} of n bidders and a set I = {1, . . . ,m} ofm items.
We distinguish between seings with divisible items and seings with indivisible
items. In both seings we use X =

∏n
i=1Xi for the allocation space. For divisible

items Xi = [0, 1]m for all bidders i ∈ N and xi,j ∈ [0, 1] denotes the fraction of
item j ∈ I that is allocated to bidder i ∈ N in allocation Xi ∈ Xi. For indivisible
items Xi = {0, 1}m for all bidders i ∈ N and xi,j ∈ {0, 1} indicates whether item
j ∈ I is allocated to bidder i ∈ N in allocation Xi ∈ Xi or not. In both cases we
require that

∑n
i=1 xi,j ≤ 1 for all items j ∈ I . We do not require that

∑m
j=1 xi,j ≤ 1

for all bidders i ∈ N ; that is, we do not assume that the bidders have unit demand.
Each bidder i ∈ N has a type θi = (vi, βi) consisting of a valuation function

vi : Xi → R≥0 and a budget βi ∈ R≥0. We use Θ =
∏n

i=1Θi for the type space.
We consider two seings with heterogeneous items, one with multi-dimensional
valuations and one with single-dimensional valuations. In the first seing, each
bidder i ∈ N has a valuation vi,j ∈ R≥0 for each item j ∈ I and bidder i’s valuation
for allocationXi is vi(Xi) =

∑m
j=1 xi,jvi,j . In the second seing, each bidder i ∈ N

has a valuation vi ∈ R≥0, each item j ∈ I has a quality αj ∈ R≥0, and bidder i’s
valuation for allocation Xi ∈ Xi is vi(Xi) =

∑m
j=1 xi,jαjvi. For simplicity we will

assume in this seing that α1 > α2 > · · · > αm and that v1 > v2 > · · · > vn > 0.
A (direct) mechanism M = (f, p) consisting of an allocation rule f : Θ → X

and a payment rule p : Θ→ Rn is used to compute an outcome (X, p) consisting of
an allocationX ∈ X and payments p ∈ Rn. Given f(θ) = X we define fi(θ) = Xi

and fi,j(θ) = xi,j . A mechanism is deterministic if the computation of (X, p) is
deterministic, and it is randomized if the computation of (X, p) is randomized. We
allow the resulting allocation and payments to be arbitrarily correlated.

We assume that the bidders are utility maximizers and as such need not report
their types truthfully. We consider seings in which both the valuations and bud-
gets are private and seings in which only the valuations are private and the bud-
gets are public. When the budgets are public then they are known to the auctioneer
and all bidders. Private valuations/budgets mean that only the bidder itself knows
its valuation/budget, but not the other bidders or the auctioneer. In the private
valuations and private budgets seing a report by bidder i ∈ N with true type
θi = (vi, βi) can be any type θ′i = (v′i, β

′
i). In the private valuations but public

budgets seing bidder i ∈ N is restricted to reports of the form θ′i = (v′i, βi). In
both seings, if mechanismM = (f, p) is used to compute an outcome for reported
types θ′ = (θ′1, . . . , θ

′
n) and the true types are θ = (θ1, . . . , θn) then the utility of

bidder i ∈ N is

ui(fi(θ
′), pi(θ

′), θi) =

{
vi(fi(θ

′))− pi(θ
′) if pi(θ′) ≤ βi, and

−∞ otherwise.

For deterministic mechanisms and their outcomes, we are interested in the fol-
lowing properties: (a) Individual rationality (IR): A mechanism is IR if it always
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produces an IR outcome. An outcome (X, p) for types θ = (v, β) is IR if it is (i) bid-
der rational: ui(Xi, pi, θi) ≥ 0 for all bidders i ∈ N and (ii) auctioneer rational:∑n

i=1 pi ≥ 0. (b) Pareto-optimality (PO): A mechanism is PO if it always produces
a PO outcome. An outcome (X, p) for types θ = (v, β) is PO if there is no other
outcome (X ′, p′) such that ui(X ′

i, p
′
i, θi) ≥ ui(Xi, pi, θi) for all bidders i ∈ N and∑n

i=1 p
′
i ≥

∑n
i=1 pi, with at least one of the inequalities strict.3 Note that we do

not explicitly require that the alternative outcome is IR, but that only IR outcomes
can dominate an IR outcome. at means that if we consider a PO and IR outcome
then the two definitions are actually equivalent. (c) No positive transfers (NPT): A
mechanism satisfies NPT if it always produces an NPT outcome. An outcome (X, p)
satisfies NPT if pi ≥ 0 for all bidders i ∈ N. (d) Incentive compatibility (IC): A mech-
anism satisfies IC if for all bidders i ∈ N , all true types θ, and all reported types θ′
we have ui(fi(θi, θ′−i), pi(θi, θ

′
−i), θi) ≥ ui(fi(θ

′
i, θ

′
−i), pi(θ

′
i, θ

′
−i), θi).

For randomized mechanisms we are naturally interested in randomized out-
comes, which are distributions over deterministic ones. We then consider the ex-
pected utility a bidder gets and compare it to the expected utility that the bidder
could get with other randomized outcomes. If a randomized outcome satisfies the
above conditions in this way, we say it satisfies them in expectation. Alternatively,
if each deterministic outcome in the support of a randomized outcome has this prop-
erty, we say it satisfies the property ex post. For outcomes that are IR in expectation
and PO in expectation only outcomes that are IR in expectation can be beer. Hence
our negative results for randomized mechanisms also apply under this alternative
definition.

2.2.1 Comparison of PO in expectation and PO ex post

We show that neither PO in expectation implies PO ex post, nor PO ex post implies
PO in expectation. Let us assume that we have two bidders, one or two (in)divisible
items, and a uniformly distributed random variable Y ∼ U(0, 1] that represents the
random decisions taken by an auction.

Consider first the case with one item where bidder 1 has valuation v1,1 = 1 and
budget β1 = 1, bidder 2 has valuation v2,1 = 2 and budget β2 = 1, and we have a
value ỹ ∈ (0, 1]. If we sell the item to bidder 2 for the payment p2 = 1 (and p1 = 0)
for every realization y of Y with y ̸= ỹ the outcome is PO in expectation. However,
only if we sell the item to bidder 2 also for y = ỹ each deterministic outcome in the
support of the randomized outcome is PO in expectation. Hence, PO in expectation
does not imply PO ex post.

Next consider the case with two items where bidder 1 has valuations v1,1 = 2
and v1,2 = 1, and budget β1 = 0, and bidder 2 has valuations v2,1 = 1 and v2,2 = 2,
and budget β2 = 0. Assume we sell both items to bidder 1 for a price of zero with
probability 1/2 and, otherwise, we sell both items to bidder 2 for a price of zero.
Certainly, the randomized outcome is PO ex post. However, in expectation each

3Both IR and PO are defined with respect to the reported types, and are satisfied with respect to
the true types only if the mechanism also satisfies IC.
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bidder gets half of each item and has a utility of 3/2. us, the the randomized
outcome is not PO in expectation as giving item 1 to bidder 1 and item 2 to bidder 2
and charging both bidders a payment of zero increases each bidder’s utility to 2.
Hence, PO ex post does not imply PO in expectation.

2.3 Single-Dimensional Valuations

In this section we present exact characterizations of PO resp. PO ex post outcomes
and deterministic mechanisms that are IC with public budgets. We characterize PO
and PO ex post by a simpler “no trade” condition, and extend the “classic” charac-
terization results for deterministic mechanisms for single-dimensional valuations
(see, e.g., Archer and Tardos [3] and Myerson [90]) that are IC without budgets to
seings with public budgets. We then show our main positive result, that is, the
existence of randomized mechanisms for divisible and indivisible items that are IR
in expectation, PO ex post, and IC in expectation for private budgets. We comple-
ment this positive result with an impossibility result for deterministic mechanisms
for indivisible items that applies even when budgets are public.

2.3.1 Exact Characterizations of PO and IC

We start by characterizing PO and PO ex post outcomes through a simpler “no trade”
condition. In the deterministic seing we consider an outcome (X, p) and compare
it to alternative allocationsX ′. In the randomized seing we consider a determinis-
tic outcome (X, p) and compare it to possibly randomized allocations X ′. In what
follows, we use x′i,j to denote the expected fraction of item j that bidder i gets in
X ′. is allows us to treat the two seings in a unified manner.

We say that an outcome (X, p) for single-dimensional valuations satisfies no
trade (NT) if (a)

∑
i∈N xi,j = 1 for all j ∈ I , and (b) there is no allocation X ′ such

that for δi =
∑

j∈I(x
′
i,j − xi,j)αj for all i ∈ N , W = {i ∈ N | δi > 0}, and

L = {i ∈ N | δi ≤ 0} we have
∑

i∈N δivi > 0 and
∑

i∈W min(βi − pi, δivi) +∑
i∈L δivi ≥ 0. e quantity δivi is how much valuation bidder i gains/loses when

switching from allocation X to X ′. e bidders in W are “winners”, while the
bidders in L are “losers”. Winners are willing to increase their payment by at most
min(βi − pi, δivi), while losers would need to be paid δivi. e definition says
that there should be no alternative allocation that strictly increases the sum of the
valuations and allows the winners to compensate the losers.

Here is an example: Consider a seing with two bidders and a single indivisible
item. Suppose that the bidders have valuations 10 and 5 and budgets 6 and 4, respec-
tively. en the outcome (X, p)which gives the item to bidder 2 at a price of 4 does
not satisfy NT. is is because the alternate allocation X ′ which gives the item to
bidder 1 has δ1v1 = 1 ·10 = 10 and δ2v2 = (−1) ·5 = −5 and thus

∑
i∈N δivi > 0.

Moreover, W = {1} and L = {2} and
∑

i∈W min(βi − pi, δivi) +
∑

i∈L δivi =
min(6, 10) − 5 ≥ 0. Indeed we could re-assign the item from bidder 2 to bidder 1,
increase bidder 1’s payment by 5, and decrease bidder 2’s payment by 5. In the
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resulting outcome bidder 1 would have a strictly higher utility, bidder 2’s utility
would be unchanged, and the sum of payments would increase by one. Hence the
original outcome was not PO.

Proposition 2.1. An outcome (X, p) for single-dimensional valuations and either di-
visible or indivisible items that respects the budget limits is PO or PO ex post, respec-
tively, if and only if it satisfies NT.

Proof. We show the claim for the deterministic seing. e claim for the random-
ized seing follows by interpreting x′i,j as the the expected fraction of item j allo-
cated to bidder i, p′i as bidder i’s expected payment, and u′i as its expected utility.

First, we show that if (X, p) satisfies PO, then it satisfies NT. To this end, we
show that if (X, p) does not satisfy NT, then it is not PO.

Case 1: ¬ NT because ¬ (a). We can assign the unassigned fraction of the item
j ∈ I for which

∑
i∈N xi,j < 1 to any bidder i ∈ N to get a contradiction to PO.

Case 2: ¬NT because¬ (b). ere exists an allocationX ′ such that
∑

i∈N δivi >
0 and

∑
i∈W min(βi−pi, δivi)+

∑
i∈L δivi ≥ 0. Consider the outcome (X ′, p′) for

which p′i = pi +min(βi − pi, δivi) for all bidders i ∈ W and p′i = pi + δivi for all
bidders i ∈ L.

For all bidders i ∈ N we have u′i ≥ ui because

u′i =
∑
j∈I

xi,jαjvi + δivi − pi −min(βi − pi, δivi) ≥ ui for i ∈W , and (2.1)

u′i =
∑
j∈I

xi,jαjvi + δivi − pi − δivi = ui for i ∈ L.

For the auctioneer we have
∑

i∈N p′i ≥
∑

i∈N pi because∑
i∈N

p′i −
∑
i∈N

pi =
∑
i∈W

p′i +
∑
i∈L

p′i −
∑
i∈N

pi =
∑
i∈W

(pi +min(βi − pi, δivi))

+
∑
i∈L

(pi + δivi)−
∑
i∈N

pi =
∑
i∈W

min(βi − pi, δivi) +
∑
i∈L

δivi ≥ 0. (2.2)

If
∑

i∈W min(βi−pi, δivi)+
∑

i∈L δivi > 0, then inequality (2.2) is strict show-
ing that

∑
i∈N p′i >

∑
i∈N pi. Otherwise,

∑
i∈W min(βi−pi, δivi)+

∑
i∈L δivi = 0,

and because
∑

i∈N δivi > 0 we must have βi − pi < δivi for at least one bidder
i ∈ W . For this bidder i inequality (2.1) is strict showing that u′i > ui. Hence in
both cases (X, p) is not PO.

Next, we show that if (X, p) satisfies NT, then it is PO. To this end, we show that
if (X, p) is not PO, then it does not satisfy NT. If (X, p) is not PO, then there exists an
outcome (X ′, p′) such that u′i ≥ ui for all bidders i ∈ N and

∑
i∈N p′i ≥

∑
i∈N pi,

with at least one of the inequalities strict.
If not all items are assigned completely in (X, p), then we have ¬ (a) and so

(X, p) does not satisfy NT. Otherwise, if in (X, p) all items are assigned completely,
then to show that (X, p) does not satisfy NT we have to show ¬ (b). To this end
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consider the allocation X ′ and let δi =
∑

j∈I(x
′
i,j − xi,j)αj for i ∈ N , let W =

{i ∈ N | δi > 0}, and let L = {i ∈ N | δi ≤ 0}.
We begin by showing that

∑
i∈W min(βi−pi, δivi)+

∑
i∈L δivi ≥ 0. For i ∈ N

we have p′i− pi ≤ min(βi− pi, δivi) because p′i ≤ βi implies p′i− pi ≤ βi− pi, and
u′i ≥ ui implies p′i−pi ≤ δivi. It follows that

∑
i∈W min(βi−pi, δivi)+

∑
i∈L δivi ≥∑

i∈W (p′i − pi) +
∑

i∈L(p
′
i − pi) =

∑
i∈N p′i −

∑
i∈N pi ≥ 0.

Next we show that
∑

i∈N δivi > 0. Since u′i ≥ ui for all i ∈ N we have that∑
i∈N u′i ≥

∑
i∈N ui. is implies

∑
i∈N ((

∑
j∈I x

′
i,jαjvi) − p′i) ≥∑

i∈N ((
∑

j∈I xi,jαjvi)− pi), and consequently,
∑

i∈N (
∑

j∈I(x
′
i,j − xi,j)αjvi) ≥∑

i∈N p′i −
∑

i∈N pi. us, it follows by
∑

i∈N p′i ≥
∑

i∈N pi that∑
i∈N

δivi ≥
∑
i∈N

p′i −
∑
i∈N

pi ≥ 0. (2.3)

If u′i > ui for some i ∈ N , then
∑

i∈N u′i >
∑

i∈N ui and, thus, the first inequality
in (2.3) is strict. Otherwise, if

∑
i∈N p′i >

∑
i∈N pi, then the second inequality in

(2.3) is strict. In both cases strictness of the inequality implies that
∑

i∈N δivi > 0.

Next we characterize deterministic mechanisms for indivisible items that are
IC with public budgets by “value monotonicity” and “payment identity”. A de-
terministic mechanism M = (f, p) for single-dimensional valuations and indi-
visible items that respects the publicly known budgets satisfies value monotonic-
ity (VM) if for all i ∈ N , θi = (vi, βi), θ′i = (v′i, βi), and θ−i = (v−i, β−i)
we have that vi ≤ v′i implies

∑
j∈I fi,j(θi, θ−i)αj ≤

∑
j∈I fi,j(θ

′
i, θ−i)αj . A de-

terministic mechanism M = (f, p) for single-dimensional valuations and indi-
visible items that respects the publicly known budgets satisfies payment identity
(PI) if for all i ∈ N and θ = (v, β) with cγt ≤ vi < cγt+1 we have pi(θ) =
pi((0, βi), θ−i)+

∑t
s=1(γs−γs−1)cγs(βi, θ−i), where γ0 < γ1 < . . . are the values∑

j∈I xi,jαj can take and cγs(βi, θ−i) for 1 ≤ s ≤ t are the corresponding critical
valuations. While VM ensures that stating a higher valuation cannot lead to a worse
allocation, PI gives a formula for the payment in terms of the possible allocations
and the critical valuations.

Proposition 2.2. A deterministic mechanism M = (f, p) for single-dimensional val-
uations and indivisible items that respects the publicly known budgets is IC if and only
if it satisfies VM and PI.

Proof. We begin by showing that if M satisfies VM and PI, then it satisfies IC. For
a contradiction assume that M satisfies VM and PI, but that it does not satisfy IC.
en there exists i ∈ N , θi = (vi, βi), θ′i = (v′i, βi), and θ−i = (v−i, β−i) with
vi ̸= v′i such that ui(fi(θ′i, θ−i), p(θ

′
i, θ−i), θi) > ui(fi(θi, θ−i), p(θi, θ−i), θi).

Let cγt(βi, θ−i) ≤ vi < cγt+1(βi, θ−i) and let cγt′ (βi, θ−i) ≤ v′i < cγt′+1
(βi, θ−i).

If vi > v′i then since M satisfies VM and PI the utilities ui and u′i that bid-
der i gets from reports θi and θ′i satisfy ui − u′i = (γt − γt′)vi −

∑t
s=t′+1(γs −

γs−1)cγs(βi, θ−i) ≥ (γt − γt′)vi −
∑t

s=t′+1(γs − γs−1)vi = 0.
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If vi < v′i then since M satisfies VM and PI the utilities u′i and ui that bid-
der i gets from reports θ′i and θi satisfy u′i − ui = (γt′ − γt)vi −

∑t′

s=t+1(γs −
γs−1)cγs(βi, θ−i) ≤ (γt′ − γt)vi −

∑t′

s=t+1(γs − γs−1)vi = 0.
We conclude that in both cases bidder i is weakly beer off when he reports

truthfully. is contradicts our assumption that M does not satisfy IC.
Next we show that if M satisfies IC, then it satisfies VM. By contradiction as-

sume that M satisfies IC, but that it does not satisfy VM. en there exists
i ∈ N , θi = (vi, βi), θ′i = (v′i, βi), and θ−i = (v−i, β−i) with vi < v′i such
that

∑
j∈I fi,j(θi, θ−i)αj >

∑
j∈I fi,j(θ

′
i, θ−i)αj . Since M satisfies IC bidder i

with type θi does not benefit from reporting θ′i, and vice versa. us, it follows∑
j∈I fi,j(θi, θ−i)αjvi − pi(θi, θ−i) ≥

∑
j∈I fi,j(θ

′
i, θ−i)αjvi − pi(θ

′
i, θ−i), and∑

j∈I fi,j(θ
′
i, θ−i)αjv

′
i−pi(θ

′
i, θ−i) ≥

∑
j∈I fi,j(θi, θ−i)αjv

′
i−pi(θi, θ−i). By com-

bining these inequalities we get (
∑

j∈I fi,j(θi, θ−i)αj −
∑

j∈I fi,j(θ
′
i, θ−i)αj)(vi−

v′i) ≥ 0. Since
∑

j∈I fi,j(θi, θ−i)αj >
∑

j∈I fi,j(θ
′
i, θ−i)αj this shows that vi ≥ v′i

and gives a contradiction to our assumption that vi < v′i.

We conclude the proof by showing that if M satisfies IC, then it satisfies PI.
For a contradiction assume that M satisfies IC, but that it does not satisfy PI. en
there exists i ∈ N , θ′i = (v′i, βi), and θ−i = (v−i, β−i) with cγt′ ≤ v′i < cγt′+1

such that pi(θ′i, θ−i) ̸= pi((0, βi), θ−i) +
∑t′

s=1(γs − γs−1)cγs(βi, θ−i), where the
γs are the sum over the α’s of all possible allocations in non-increasing order and
the cγs(βi, θ−i) are the smallest valuations (or critical valuations) that make bidder i
win γs.

Consider the smallest v′i such that this is the case. For this v′i we must have v′i =
cγt′ (βi, θ−i) > cγ0(βi, θ−i) = 0. We must have v′i = cγt′ (βi, θ−i) because by VM
bidder i’s allocation for all reports θ′′i = (v′′i , βi) with v′′i such that cγt′ (βi, θ−i) ≤
v′′i < cγt′+1

(βi, θ−i) is the same and, thus, by IC hemust face the same payment. We
must have cγt′ (βi, θ−i) > cγ0(βi, θ−i) = 0 because for v′i = 0 we have p(θ′i, θ−i) =
p((0, βi), θ−i) by definition.

Case 1: pi(θ′i, θ−i) > pi((0, βi), θ−i) +
∑t′

s=1(γs − γs−1)cγs(βi, θ−i). Consider
θi = (vi, βi) with vi < v′i such that cγt′−1

(βi, θ−i) ≤ vi < cγt′ (βi, θ−i). Since
vi < v′i we have pi(θi, θ−i) = pi((0, βi), θ−i) +

∑t′−1
s=1 (γs − γs−1)cγs(βi, θ−i). If

bidder i’s type is θ′i then for the utilities u′i and ui that he gets for reports θ′i and θi
we have u′i − ui < (γt′ − γt′−1)v

′
i − (γt′ − γt′−1)cγt′ (βi, θ−i) = 0. is shows that

bidder iwith type θ′i has an incentive to misreport his type as θi and contradicts our
assumption that M satisfies IC.

Case 2: pi(θ′i, θ−i) < pi((0, βi), θ−i) +
∑t′

s=1(γs − γs−1)cγs(βi, θ−i). Let ϵ =

pi((0, βi), θ−i)+
∑t′

s=1(γs−γs−1)cγs(βi, θ−i)−pi(θ′i, θ−i) and consider θi = (vi, βi)
with vi < v′i such that cγt′−1

(βi, θ−i) ≤ vi < cγt′ (βi, θ−i). Since vi < v′i we
have pi(θi, θ−i) = pi((0, βi), θ−i) +

∑t′−1
s=1 (γs − γs−1)cγs(βi, θ−i). If bidder i’s

type is θi then for the utilities u′i and ui that he gets from reports θ′i and θi we
have u′i − ui = (γt′ − γt′−1)vi − (γt′ − γt′−1)cγt′ (βi, θ−i) + ϵ. Since this is true
for all vi with cγt′−1

(βi, θ−i) ≤ vi < cγt′ (βi, θ−i) we can choose vi such that
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(γt′ − γt′−1)(vi − cγt′ (βi, θ−i)) > −ϵ. We get u′i − ui > 0. is shows that bid-
der i with type θi has an incentive to misreport his type as θ′i and contradicts our
assumption that M satisfies IC.

2.3.2 Randomized Meanisms for Indivisible and Divisible Items

We obtain our positive result through a reduction to the seing with a single (and
thus homogeneous) item that allows us to apply the following proposition by Bhat-
tacharya et al. [11]. e basic building block of the mechanisms mentioned in this
proposition is the “adaptive clinching auction” for a single divisible item. It is de-
scribed for two bidders by Dobzinski et al. [30] and as a “continuous time process”
for arbitrarily many bidders in [11].

Proposition 2.3 (Bhaacharya et al. [11]). For a single divisible item there exists a
deterministic mechanism that satisfies IR, NPT, PO, and IC for public budgets. Addi-
tionally, for a single divisible or indivisible item there exists a randomized mechanism
that satisfies IR in expectation, NPT ex post, PO ex post, and IC in expectation for pri-
vate budgets.

For indivisible items we reduce the multi-item seing to the single-item seing
by applying the randomized mechanism for a single indivisible item in [11] to a
single indivisible item for which bidder i ∈ N has valuation ṽi =

∑
j∈I αjvi. We

then map the single-item outcome (X̃, p̃) to an outcome (X, p) for the multi-item
seing by seing xi,j = 1 for all j ∈ I if and only if x̃i,1 = 1 and seing pi = p̃i
for all i ∈ N .

A similar reduction works in the case of divisible items. e only difference is
that in this case we use the deterministic or randomized mechanisms of [11] for a
single divisible item, and then map the single-item outcome (X̃, p̃) into a multi-item
outcome by seing xi,j = x̃i,1 for all i ∈ N and all j ∈ I and seing pi = p̃i for all
i ∈ N.

e main difficulty in proving that the resulting mechanisms have the claimed
properties is to establish that they are PO/PO ex post. For this we argue that these
particular ways of mapping the single-item outcome to a multi-item outcome pre-
serve a specific structural property of the single-item outcome which remains to be
sufficient for PO/PO ex post also in the multi-item seing.

Proposition 2.4. For indivisible or divisible items, if (X̃, p̃) denotes the randomized
outcome for a single item by the randomized mechanism given in [11], and (X, p)
denotes the randomized outcome for the multi-item seing constructed as described
above, then E [ui(Xi, pi, (vi, βi))] = E

[
ui(X̃i, p̃i, (ṽi, βi))

]
for all i ∈ N . Simi-

larly, for divisible items, if (X̃, p̃) denotes the deterministic outcome for a single item
of the deterministic mechanism in [11] and (X, p) denotes the deterministic outcome
for the multi-item seing constructed as described above, then ui(Xi, pi, (vi, βi)) =
ui(X̃i, p̃i, (ṽi, βi)) for all i ∈ N .
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Proof. First suppose that the payments are deterministic. If pi > βi then p̃i > βi and
ui(Xi, pi, (vi, βi)) = ui(X̃i, p̃i, (ṽi, βi)) = −∞. Otherwise, ui(Xi, pi, (vi, βi)) =∑m

j=1(xi,jαjvi)− pi = x̃i,1ṽi − p̃i = ui(X̃i, p̃i, (ṽi, βi)).
Next suppose that the payments are randomized. If Pr [pi > βi] > 0 then

Pr [p̃i > βi] > 0 and E [ui(Xi, pi, (vi, βi))] = E
[
ui(X̃i, p̃i, (ṽi, βi))

]
= −∞. Oth-

erwise, E [ui(Xi, pi, (vi, βi))] = E
[∑m

j=1(xi,jαjvi)− pi

]
= E [x̃i,1ṽi − p̃i] =

E
[
ui(X̃i, p̃i, (ṽi, βi))

]
.

eorem 2.5. For single-dimensional valuations, divisible or indivisible items, and
private budgets there is a randomized mechanism that satisfies IR in expectation, NPT
ex post, PO ex post, and IC in expectation. Additionally, for single-dimensional valua-
tions and divisible items there is a deterministic mechanism that satisfies IR, NPT, PO,
and IC for public budgets.

Proof. IR or IR in expectation and IC or IC in expectation follow from Proposition 2.4
and the fact that the corresponding mechanisms in [11] are IR or IR in expectation
and IC or IC in expectation, respectively. NPT or NPT ex post follows from the fact
that the payments in our mechanisms and the mechanisms in [11] are the same, and
the mechanisms in [11] satisfy NPT or NPT ex post, respectively. For PO (ex post)
we argue that the structural property of the outcomes of the mechanisms in [11]
that (a)

∑
i∈N x̃i,1 = 1 and (b) x̃i,1 > 0 and ṽi′ > ṽi imply p̃i′ = βi′ (both ex post)

is preserved by the mapping to the multi-item seing and remains to be sufficient
for PO (ex post).

We first show that the property is preserved. For this observe that
∑

i∈N x̃i,1 =
1 implies that

∑
i∈N xi,j = 1 for all j ∈ I and that “x̃i,1 > 0 and ṽi′ > ṽi imply

p̃i′ = βi′” implies that “
∑

j∈I xi,j > 0 and vi′ > vi imply pi′ = βi′”. Recall that x′i,j
denotes the expected fraction of item j which bidder i gets.

Next we show that the property remains to be sufficient for PO (ex post). For
this assume by contradiction that the outcome (X, p) is not PO (ex post). en, by
Proposition 2.1, there exists a (possibly randomized) X ′ such that

∑
i∈N δivi > 0

and
∑

i∈W min(βi − pi, δivi) +
∑

i∈L δivi ≥ 0, where δi =
∑

j∈I(x
′
i,j − xi,j)αj ,

W = {i ∈ N | δi > 0}, and L = {i ∈ N | δi ≤ 0}.
Since (X, p) satisfies condition (a), i.e.,

∑
i∈N xi,j = 1 for all j ∈ I , and

X ′ is a valid allocation, i.e.,
∑

i∈N x′i,j ≤ 1 for all j ∈ I , we have
∑

i∈N δi =∑
j∈I
∑

i∈N (x′i,j − xi,j)αj ≤ 0. Since
∑

i∈N δivi > 0 we have
∑

i∈W δivi ≥∑
i∈N δivi > 0 and, thus,

∑
i∈W δi > 0. We conclude that

∑
i∈L δi =

∑
i∈N δi −∑

i∈W δi < 0 and, thus,
∑

i∈L δivi < 0.
Since (X, p) satisfies condition (b), i.e.,

∑
j∈I xi,j > 0 and vi′ > vi imply pi′ =

βi′ , there exists a t with 1 ≤ t ≤ n such that (1)
∑

j∈I xi,j ≥ 0 and pi = βi for
1 ≤ i ≤ t, (2)

∑
j∈I xi,j ≥ 0 and pi ≤ βi for i = t + 1, and (3)

∑
j∈I xi,j = 0 and

pi ≤ βi for t+ 2 ≤ i ≤ n.
We complete the proof by distinguishing three cases, and showing that in each

of the three cases we get a contradiction.
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Case 1: t = n. en
∑

i∈W min(βi − pi, δivi) = 0 because βi = pi for all
i ∈ N ⊇W and, thus,

∑
i∈W min(βi − pi, δivi) +

∑
i∈L δivi < 0.

Case 2: t < n and W ∩ {1, . . . , t} = ∅. en
∑

i∈W δivi ≤
∑

i∈W δivt+1

and
∑

i∈L δivi ≤
∑

i∈L δivt+1 because
∑

j∈I xi,j = 0 for all i ≥ t + 2 and, thus,
δi = 0 for all i ∈ L \ {1, . . . , t+2}. us,

∑
i∈N δivi =

∑
i∈W δivi +

∑
i∈L δivi ≤∑

i∈N δivt+1 ≤ 0.
Case 3: t < n and W ∩ {1, . . . , t} ̸= ∅. en

∑
i∈W min(pi − βi, δivi) ≤∑

i∈W\{1,...,t} δivt+1 and
∑

i∈L δivi ≤
∑

i∈L δivt+1 and, thus,
∑

i∈W min(pi −
βi, δivi) +

∑
i∈L δivi ≤ (

∑
i∈N δi −

∑
i∈W∩{1,...,t} δi)vt+1 < 0.

2.3.3 Deterministic Meanisms for Indivisible Items

e proof of our impossibility result uses the characterizations of PO outcomes and
mechanisms that are IC with public budgets as follows: (a) PO is characterized by
NT and NT induces a lower bound on the bidders’ payments for a specific allocation,
namely for the case that bidder 1 only gets item 2. (b) IC, in turn, is characterized by
VM and PI. Now VM and PI can be used to extend the lower bound on the payments
for the specific allocation to all possible allocations. (c) Finally, IR implies upper
bounds on the payments that, with a suitable choice of valuations, conflict with the
lower bounds on the payments induced by NT, VM, and PI.

eorem 2.6. For single-dimensional valuations, indivisible items, and public budgets
there can be no deterministic mechanismM = (f, p) that satisfies IR, PO, and IC.

Proof. For a contradiction suppose that there is a mechanism M = (f, p) that is IR,
PO, and IC for all n and all m. Consider a seing with n = 2 bidders and m = 2
items in which v1 > v2 > 0 and β1 > α1v2.

Observe that if bidder 1’s valuation was v′1 = 0 and he reported his valuation
truthfully, then since M satisfies IR his utility would be u1((0, β1), θ−1, (0, β1)) =
−p1((0, β1), θ−1) ≥ 0. is shows that p1((0, β1), θ−1) ≤ 0.

By PO, which by Proposition 2.1 is characterized by NT, bidder 1 with valuation
v1 > v2 and budget β1 > α1v2 must win at least one item because otherwise he
could buy any item from bidder 2 and compensate him for his loss.

PO, respectively NT, also implies that bidder 1’s payment for item 2 must be
strictly larger than β1−(α1−α2)v2 because otherwise he could trade item 2 against
item 1 and compensate bidder 2 for his loss.

By IC, which by Proposition 2.2 is characterized by VM and PI, bidder 1’s pay-
ment for item 2 is given by p1({2}) = p1((0, β1), θ−1)+α2cα2(β1, θ−1), where cα2

is the critical valuation for winning item 2. Together with p1({2}) > β1 − (α1 −
α2)v2 this shows that cα2(β1, θ−1) > (1/α2)(β1− (α1−α2)v2−p1((0, β1), θ−1)).

IC, respectively VM and PI, also imply that bidder 1’s payment for any non-
empty set of items S in terms of the fractions γt =

∑
j∈S αj > · · · > γ1 = α2 >

γ0 = 0 and corresponding critical valuations cγt(β1, θ−1) ≥ · · · ≥ cγ1(β1, θ−1) =
cα2(β1, θ−1) is p1(S) = p1((0, β1), θ−1) +

∑t
s=1(γs − γs−1)cγs(β1, θ−1). Since
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cγs(β1, θ−1) ≥ cα2(β1, θ−1) for all s and
∑t

s=1(γs − γs−1) =
∑

j∈S αj we obtain
p1(S) ≥ p1((0, β1), θ−1) + (

∑
j∈S αj)cα2(β1, θ−1).

Combining this lower bound on p1(S) with the lower bound on cα2(β1, θ−1)
shows that p1(S) > (

∑
j∈S αj/α2)(β1 − (α1 − α2)v2).

For v1 such that (1/α2)(β1 − (α1 − α2)v2) > v1 > v2 we know that bidder 1
must win some item, but for any non-empty set of items S the lower bound on
bidder 1’s payment for S contradicts IR.

2.4 Multi-Dimensional Valuations

In this section we obtain a partial characterization of deterministic mechanisms that
are IC with public budgets by generalizing the “weak monotonicity” condition of
Bikhchandani et al. [14] from seings without budgets to seings with budgets. We
use this partial characterization together with a sophisticated misreport, in which
a bidder understates his valuation for some item and overstates his valuation for
another item, to prove that there can be no deterministic mechanism for divisible
items that is IR, PO, and IC with public budgets. Aerwards, we use this result to
show that there can be no randomized mechanism for either divisible or indivisible
items that is IR in expectation, PO in expectation, and IC in expectation for public
budgets.

2.4.1 Partial Characterization of IC

For seings without budgets every deterministic mechanism that is incentive com-
patible must satisfy what is known as weak monotonicity (WMON), namely if X ′

i

and Xi are the allocations of bidder i for reports v′i and vi, then the difference in
the valuations for the two allocations must be at least as large under v′i as under
vi, i.e., v′i(fi(θ′i, θ−i))− v′i(fi(θi, θ−i)) ≥ vi(fi(θ

′
i, θ−i))− vi(fi(θi, θ−i)). We show

that this is also true for deterministic mechanisms that respect the public budgets.

Proposition 2.7. If a deterministic mechanism M = (f, p) for multi-dimensional
valuations and either divisible or indivisible items that respects the publicly known
budget limits is IC, then it satisfies WMON.

Proof. Fix i ∈ N and θ−i = (v−i, β−i). By IC bidder i does not benefit from re-
porting θ′i = (v′i, βi) when his true type is θi = (vi, βi), nor does he benefit from
reporting θi = (vi, βi) when his true type is θ′i = (v′i, βi). us, vi(fi(θi, θ−i)) −
pi(θi, θ−i) ≥ vi(fi(θ

′
i, θ−i)) − pi(θ

′
i, θ−i), and v′i(fi(θ

′
i, θ−i)) − pi(θ

′
i, θ−i) ≥

v′i(fi(θi, θ−i))−pi(θi, θ−i). By combining these inequalities we get v′i(fi(θ′i, θ−i))−
v′i(fi(θi, θ−i)) ≥ vi(fi(θ

′
i, θ−i))− vi(fi(θi, θ−i)).

2.4.2 Deterministic Meanisms for Divisible Items

We prove the impossibility result by analyzing a seing with two bidders and two
items. is restriction is without loss of generality as the impossibility result for an
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arbitrary number of bidders n > 2 and an arbitrary number of itemsm > 2 follows
by seing vi,j = 0 if i > 2 or j > 2. In our impossibility proof bidder 2 is not budget
restricted (i.e., β2 > v2,1 + v2,2). Since bidders can misreport their valuations, it is
not sufficient to study a single input to prove the impossibility. Hence, we study the
outcome for three related cases, namely Case 1 where v1,1 < v2,1 and v1,2 < v2,2;
Case 2 where v1,1 > v2,1, v1,2 < v2,2, and β1 > v1,1; and Case 3 where v1,1 > v2,1,
v1,2 > v2,2, and additionally, β1 > v1,1, v1,1v2,2 > v1,2v2,1, and v2,1 + v2,2 > β1.
We give a partial characterization of those cases, which allows us to analyze the
rational behavior of the bidders.

Case 1 is easy: Bidder 2 is not budget restricted and has the highest valuation
for both items; so he will get both items. us, in this case the utility for bidder 1 is
zero.

Lemma 2.8 (Case 1). Given β2 > v2,1 + v2,2, v2,1 > v1,1 and v2,2 > v1,2, then
x1,1 = 0, x1,2 = 0, x2,1 = 1, x2,2 = 1, and u1 = 0 in every IR and PO outcome
selected by an IC mechanism.

Proof. We divide the proof into the following parts: in (a) we show that x1,1 = 0,
x1,2 = 0, x2,1 = 1, and x2,2 = 1, and in (b) we show that u1 = 0.

To (a): Let us assume by contradiction that we have an IR and PO outcome
where x1,1 > 0 or x1,2 > 0. IR requires that p2 ≤ x2,1v2,1 + x2,2v2,2. Hence,
bidder 2 can buy the fractions x1,1 of item 1 and x1,2 of item 2 for a payment pwith
x1,1v2,1 + x1,2v2,2 > p ≥ x1,1v1,1 + x1,2v1,2 from bidder 1. Because of v2,1 > v1,1
and v2,2 > v1,2 such a payment exists and bidder 2 has enough money, since β2 >
v2,1+ v2,2 implies β2 > v2,1+ v2,2 = (x1,1+x2,1)v2,1+(x1,2+x2,2)v2,2 > p2+ p.
e utility of bidder 2 would increase and the utilities of bidder 1 and the auctioneer
would not decrease. Contradiction to PO!

To (b): We have already shown before that bidder 1 gets no fraction of the items,
and therefore, IR implies that his payments cannot be positive.

Let us consider the subcase where v1,1 = v1,2 = 0 and bidder 1 reports truth-
fully. e valuations of bidder 2 are positive. Because of IR the payment of bidder 2
cannot exceed his reported valuation, but (a) holds when his reported valuations
are positive. erefore, bidder 2 would have an incentive to understate his valua-
tion when his payment was positive. Hence, IR of the auctioneer implies that the
payment of both bidders is equal to zero. is means, that the utility of bidder 1 is
zero in this case.

If there existed any other reported valuation of bidder 1, where he gets no items,
but where his payments are negative, then he would have an incentive to lie, when
his valuations are equal to zero. is would contradict IC!

In Case 2, bidder 1 has the higher valuation for item 1, while bidder 2 has the
higher valuation for item 2. us, bidder 1 gets item 1 and bidder 2 gets item 2. Since
the only difference to Case 1 is that in Case 2 v1,1 > v2,1 while in Case 1 v1,1 < v2,1,
the critical value whether bidder 2 gets item 1 or not is v2,1, and thus in every IC
mechanism, bidder 1 has to pay v2,1 and his utility is v1,1 − v2,1.
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Lemma 2.9 (Case 2). Given β2 > v2,1 + v2,2, v1,1 > v2,1, v2,2 > v1,2, and β1 > v1,1,
then x1,1 = 1, x1,2 = 0, x2,1 = 0, x2,2 = 1, and u1 = v1,1 − v2,1 in every IR and PO
outcome selected by an IC mechanism.

Proof. We divide the proof into the following parts: in (a) we show that x1,1 = 1,
x1,2 = 0, x2,1 = 0, and x2,2 = 1, and in (b) we show that u1 = v1,1 − v2,1.

To (a): Let us assume by contradiction that x1,2 > 0. en, bidder 2 can buy
these fractions of item 2 for a payment p with x1,2v2,2 > p ≥ x1,2v1,2, which
exists because of v2,2 > v1,2. IR and β2 > v2,1 + v2,2 ensure that bidder 2 has
enough budget, because β2 > v2,1 + v2,2 = (x1,1 + x2,1)v2,1 + (x1,2 + x2,2)v2,2 ≥
p2 + x1,1v2,1 + x1,2v2,2 > p2 + p. e utility of the bidder 2 would increase, while
the utilities of bidder 1 and the auctioneer would not decrease. Contradiction to PO!

Otherwise, let us assume that x1,1 < 1 and x1,2 = 0. en, bidder 1 can buy
the other fractions of item 1 for a payment p with x2,1v1,1 > p ≥ x2,1v2,1, which
exists because of v1,1 > v2,1. IR and β1 > v1,1 ensure that bidder 1 has enough
budget, because β1 > v1,1 = (x1,1 + x2,1)v1,1 ≥ p1 + x2,1v1,1 > p1 + p. e utility
of bidder 1 would increase, while the utilities of bidder 2 and the auctioneer would
not decrease. Contradiction to PO!

To (b): We show first that p1 ≤ v2,1. Since x1,1 = 1 and x1,2 = 0, IR requires
that p1 ≤ v1,1. If p1 > v2,1, then bidder 1 has an incentive to lie. If he states that his
valuation for item 1 is v′1,1 with p1 > v′1,1 > v2,1, then the allocation of the items
does not change, but he pays less because of IR. Contradiction to IC!

Now, we show that p1 ≥ v2,1. Let us therefore assume by contradiction that
p1 < v2,1. If we have v′1,1 with p1 < v′1,1 < v2,1 instead of v1,1, and all the other
valuations are le unchanged, then Lemma 2.8 implies that u′1 = 0. Hence, in this
case bidder 1 can increase his utility when he lies and states that his valuation is
v1,1, because his utility would be v′1,1 − p1 > 0. Contradiction to IC!

Since bidder 1 gets all fractions of item 1, no fraction of item 2, and has to pay
v2,1, his utility is v1,1 − v2,1.

In Case 3, bidder 1 has a higher valuation than bidder 2 for both items, but he
does not have enough budget to pay for both fully. In Lemma 2.10 we show that
if bidder 1 does not spend his whole budget (p1 < β1) he must fully receive both
items (specifically x1,2 = 1), since if not, he would buy more of them. Additionally,
even if he spent his budget fully (i.e., p1 = β1) his utility ui, which equals x1,1v1,1+
x1,2v1,2 − β1, must be non-negative. Since β1 > v1,1 this implies that x1,1 must
be 1, i.e., he must receive item 1 fully, and x1,2 must be non-zero.

Lemma 2.10 (Case 3, Part a). Given v1,1 > v2,1, v1,2 > v2,2, β1 > v1,1, and v1,1v2,2 >
v1,2v2,1, if p1 < β1 then x1,1 = 1 and x1,2 = 1, else if p1 = β1 then x1,1 = 1 and
x1,2 > 0, in every IR and PO outcome.

Proof. We divide the proof into the following parts: in (a) we show that x1,1 = 1
and x1,2 = 1 if p1 < β1, in (b) we show that x1,2 > (1 − x1,1)

v2,1
v2,2

if p1 = β1, and
in (c) we show that x1,1 = 1 and x1,2 > 0 if p1 = β1.
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To (a): Let us assume by contradiction that p1 < β1 and x1,j < 1 for an item
j ∈ {1, 2}. Bidder 1 can increase his utility by buying min{β1−p1

p , x2,j} fractions
of item j for a unit price p with v1,j > p ≥ v2,j from bidder 2. Such a price exists,
because of v1,1 > v2,1 and v1,2 > v2,2. Bidder 1 has enough money for the trade,
because p1+pmin{β1−p1

p , x2,j} = min{β1, p1+px2,j} ≤ β1. e utility of bidder 1
would increase, and the utilities of bidder 2 and the auctioneer would not decrease.
Contradiction to PO!

To (b): IR requires β1 = p1 ≤ v1,1x1,1 + v1,2x1,2, and therefore, x1,2 ≥
β1−v1,1x1,1

v1,2
. If x1,1 = 1, then β1 > v1,1 implies that (1− x1,1)

v2,1
v2,2

= 0 <
β1−v1,1
v1,2

=
β1−v1,1x1,1

v1,2
. Otherwise, if x1,1 = 0, then β1 > v1,1 and v1,1v2,2 > v1,2v2,1 imply that

(1 − x1,1)
v2,1
v2,2

=
v2,1
v2,2

< β1

v1,2
=

β1−v1,1x1,1

v1,2
, and hence, (1 − x1,1)

v2,1
v2,2

<
β1−v1,1x1,1

v1,2

for all x1,1 ∈ [0, 1]. erefore, we have that (1 − x1,1)
v2,1
v2,2

< x1,2 for all possible
values of x1,1.

To (c): We split the proof into two parts. We assume by contradiction that either
p1 = β1, x1,1 ≤ 1 and x1,2 = 0, or that p1 = β1, x1,1 < 1 and x1,2 > 0.

Let us assume that p1 = β1, x1,1 ≤ 1 and x1,2 = 0. According to β1 > v1,1, the
utility of bidder 1 is negative. Contradiction to IR!

We will now investigate the other case and assume that p1 = β1, x1,1 < 1 and
x1,2 > 0. Bidder 2 has the same valuation for x1,2 = 1−x1,1 fractions of item 1 and
(1−x1,1)v2,1v2,2

fractions of item 2. e valuation of bidder 1 for (1−x1,1)v2,1v2,2
fractions

of item 2 is identical to the valuation for (1 − x1,1)
v2,1v1,2
v2,2v1,1

fractions of item 1. We
know that v2,1v1,2 < v2,2v1,1. at is, that the utility of bidder 1 is increased and
the utilities of bidder 2 and the auctioneer are not decreased, when bidder 1 trades
(1−x1,1)

v2,1
v2,2

fractions of item 2 against x2,1 = 1−x1,1 fractions of item 1. Fact (b)
implies that bidder 1 actually has the required (1 − x1,1)

v2,1
v2,2

fractions of item 2.
Contradiction to PO!

In Lemma 2.11, we show that actually x1,2 < 1, which, combined with
Lemma 2.10, implies that p1 = β1. e fact that x1,2 < 1, i.e, that bidder 1 does not
fully get item 1 and 2 is not surprising because he does not have enough budget to
outbid bidder 2 on both items as β1 < v2,1 + v2,2. However, we are even able to
determine the exact value of x1,2, which is (β1 − v2,1)/v2,2.

Lemma 2.11 (Case 3, Part b). Given β2 > v2,1 + v2,2, v1,1 > v2,1, v1,2 > v2,2,
β1 > v1,1, v1,1v2,2 > v1,2v2,1, and v2,1 + v2,2 > β1, then p1 = β1 and x1,2 =
(β1 − v2,1)/v2,2 < 1 in every IR and PO outcome selected by an IC mechanism.

Proof. We divide the proof into the following parts: in (a) we show that p1 = β1
and x1,2 < 1, in (b) we show that β1−v2,1

v2,2
≥ x1,2 ≥ β1−v2,1

v1,2
, and in (c) we show that

x1,2 =
β1−v2,1
v2,2

.
To (a): Lemma 2.10 implies that the utility of bidder 1 is v1,1 + x1,2v1,2 − p1.

We know that v2,1 + v2,2 > β1. Hence, we can select a sufficiently small ϵ > 0
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such that v2,1 + v2,2 − ϵ > β1. Because of v1,1 > v2,1 and β1 > v1,1, we know that
v2,2−ϵ > 0. Let us consider the case where we have v′1,2 with v2,2 > v′1,2 > v2,2−ϵ
instead of v1,2 and all other valuation are le unchanged. In this case, the utility of
bidder 1 is v1,1 − v2,1, because of Lemma 2.9 and since v2,2 > v′1,2 holds. erefore,
IC implies that

v1,1 − v2,1 ≥ v1,1 + x1,2v
′
1,2 − p1. (2.4)

Let us assume by contradiction that x1,2 = 1, then inequality (2.4) implies p1 ≥
v2,1+v′1,2 > v2,1+v2,2−ϵ > β1, which contradicts the budget constraint. erefore,
x1,2 < 1, and hence, Lemma 2.10 implies that p1 = β1.

To (b): Lemma 2.10 and (a) show that the utility of bidder 1 is v1,1+x1,2v1,2−β1.
We select a sufficiently small ϵ > 0, such that v2,1 + v2,2 − ϵ > β1 and consider
the case where v′1,2 = v2,2 − ϵ and all other valuations are unchanged. Lemma 2.9
implies that the utility of bidder 1 is v1,1 − v2,1 in this case. Hence, IC implies that

v1,1 − v2,1 ≥ v1,1 + x1,2v
′
1,2 − β1, and (2.5)

v1,1 + x1,2v1,2 − β1 ≥ v1,1 − v2,1. (2.6)

Inequality (2.5) implies that β1−v2,1
v2,2−ϵ =

β1−v2,1
v′1,2

≥ x1,2. Since this inequality has to

hold for all sufficiently small ϵ > 0, we know that β1−v2,1
v2,2

≥ x1,2. Inequality (2.6)
implies that β1−v2,1

v1,2
≤ x1,2.

To (c): Let us assume by contradiction that the inequality β1−v2,1
v2,2

≥ x1,2 implied
by (b) is strict, and γ > 0 is defined such that β1−v2,1

v2,2
= x1,2+γ. We select arbitrary

ϵ > 0 and δ with v2,2

(
β1−v2,1

β1−v2,1−γv2,2
− 1
)
> δ > 0 which fulfill v1,2 − ϵ− δ = v2,2.

Such variables ϵ and δ exist because of v1,2 > v2,2, and since it holds by Lemma 2.10
that x1,2 > 0; this implies together with the definition of γ that β1−v2,1

β1−v2,1−γv2,2
> 1.

We consider the alternative case where v′1,2 = v1,2 − ϵ and all other valuations
are unchanged. We use x′1,2 for the fraction of item 2 assigned to bidder 1 in this
case. By (b) it follows that β1−v2,1

v′1,2
≤ x′1,2, and hence, β1−v2,1

v2,2+δ ≤ x′1,2. Furthermore,
Lemma 2.10 and (a) imply that p1 = β1 and x1,1 = 1 in both cases. Now, IC
requires that v1,1 + x1,2v1,2 − β1 ≥ v1,1 + x′1,2v1,2 − β1, and consequently, x1,2 ≥
x′1,2; therefore,

β1−v2,1
v2,2

− γ ≥ β1−v2,1
v2,2+δ . But this inequality can be transformed to

δ ≥ v2,2

(
β1−v2,1

β1−v2,1−γv2,2
− 1
)
. Contradiction!

We combine these characterizations of Case 3 with (a) the WMON property
shown in Proposition 2.7 and (b) a sophisticated way of bidder 2 to misreport: He
overstates his valuation for item 1 by a value ϵ and understates his valuation for
item 2 by a value 0 < ξ < ϵ, but by such small values that Case 3 continues to
hold. us, by Lemma 2.10, x2,1 remains 0 (whether bidder 2 misreports or not),
and thus, the WMON condition implies that x2,2 does not increase. However, by
the dependence of x1,2 on v2,1 and v2,2 shown in Lemma 2.11, x1,2, and thus also
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x2,2 changes when bidder 2misreports. is gives a contradiction to the assumption
that such a mechanism exists.

eorem 2.12. ere is no deterministic ICmechanism for divisible items which selects
for any given input with public budgets an IR and PO outcome.

Proof. Let us assume by contradiction that such a mechanism exists and consider
an input for which β2 > v2,1 + v2,2, v1,1 > v2,1, v1,2 > v2,2, β1 > v1,1, v1,1v2,2 >
v1,2v2,1, and v2,1 + v2,2 > β1 holds. Such an input exists, for example v1,1 = 4,
v1,2 = 5, v2,1 = 3, and v2,2 = 4 with budgets β1 = 5 and β2 = 8 is such an input.
Lemma 2.10 and 2.11 imply that x1,1 = 1, x2,1 = 0, x1,2 = β1−v2,1

v2,2
, x2,2 = 1− x1,2,

and p1 = β1. Let us consider an alternative valuation by bidder 2. We define
v′2,1 = v2,1 + ϵ and v′2,2 = v2,2 − ξ for arbitrary ϵ, ξ > 0 that satisfy ϵ > ξ,
and which are sufficiently small such that the inequalities in Case 3 still hold. In
particular, v1,1v′2,2 > v1,2v

′
2,1 holds, and we denote the fraction of item 2 assigned

to bidder 2 for the alternated valuations by x′2,2. By Proposition 2.7, IC implies
WMON, and therefore, x′2,2v′2,2 − x2,2v

′
2,2 ≥ x′2,2v2,2 − x2,2v2,2. It follows that

x2,2 ≥ x′2,2, and by Lemma 2.11, β1−v2,1
v2,2

≤ β1−v′2,1
v′2,2

. Hence, the budget of bidder 1

has to be large enough, such that β1 ≥
v2,2v′2,1−v2,1v′2,2

v2,2−v′2,2
=

v2,1ξ+v2,2ϵ
ξ > v2,1 + v2,2,

but β1 < v2,1 + v2,2 holds by assumption. Contradiction!

2.4.3 Randomized Meanisms for Divisible and Indivisible Items

We exploit the fact that randomized mechanisms for both divisible and indivisible
items are essentially equivalent to deterministic mechanisms for divisible items.

We show that for bidders with budget constraints every randomized mechanism
M̄ = (f̄ , p̄) for divisible or indivisible items can be mapped bidirectionally to a
deterministic mechanism M = (f, p) for divisible items with identical expected
utility for all the bidders and the auctioneer when the same reported types are used
as input. To turn a randomized mechanism for divisible or indivisible items into
a deterministic mechanism for divisible items simply compute the expected values
of pi and xi,j for all i and j and return them. To turn a deterministic mechanism
for divisible items into a randomized mechanism for divisible or indivisible items
simply assign the items with probability xi,j and keep the same payment as the
deterministic mechanism.

Proposition 2.13. Every randomized mechanism M̄ = (f̄ , p̄) for bidders with finite
budgets, a rational auctioneer, and a limited amount of divisible or indivisible items
can be mapped bidirectionally to a deterministic mechanism M = (f, p) for divisible
items such that ui(fi(θ′), pi(θ′), θi) = E

[
ui(f̄i(θ

′), p̄i(θ
′), θi)

]
and

∑
i∈N pi(θ

′) =
E
[∑

i∈N p̄i(θ
′)
]
for all bidders i, all true types θ = (v, β), and reported types θ′ =

(v′, β′).
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Proof. Let us map M̄ = (f̄ , p̄) to M = (f, p) that assigns for each bidder i ∈ N
and item j ∈ I a fraction of E

[
f̄i,j(θ

′)
]
of item j to bidder i, and makes each

bidder i ∈ N pay E [p̄i(θ
′)]. e expectations exist because the feasible fractions

of items and the feasible payments have an upper bound and a lower bound. For
the other direction, we map M = (f, p) to M̄ = (f̄ , p̄) that randomly picks for
each item j ∈ I a bidder i ∈ N to which it assigns item j in a way such that
bidder i is picked with probability fi,j(θ

′), and makes each bidder i ∈ N pay
pi(θ

′). Since f(θ′) = E
[
f̄(θ′)

]
and p(θ′) = E [p̄(θ′)],

∑
j∈I(fi,j(θ

′)vi,j)− pi(θ
′) =

E
[∑

j∈I(f̄i,j(θ
′)vi,j)− p̄i(θ

′)
]
for all i ∈ N and

∑
i∈N pi(θ

′) = E
[∑

i∈N p̄i(θ
′)
]
.

is proposition implies the non-existence of randomized mechanisms stated in
eorem 2.14.

eorem 2.14. ere can be no randomized mechanism for divisible or indivisible
items that is IR in expectation, PO in expectation, and IC in expectation, and that
satisfies the public budget constraint ex post.

Proof. For a contradiction suppose that there is such a randomized mechanism.
en, by Proposition 2.13, there must be a deterministic mechanism for divisible
items and public budgets that satisfies IR, PO, and IC. is gives a contradiction to
eorem 2.12.

2.5 Conclusion

In this chapter, we analyzed individually rational, Pareto-optimal, and incentive
compatible mechanisms for seings with heterogeneous items. Our main accom-
plishments as follows. We design randomized mechanisms that achieve these prop-
erties for private budgets and a restricted class of additive valuations. Furthermore,
we give an impossibility result for randomizedmechanisms and public budgetswhen
valuations are additive. We are able to circumvent the impossibility result in the re-
stricted seing because our argument for the impossibility result is based on the
ability of a bidder to overstate his valuation for one and understate his valuation
for another item, which is not possible in the restricted seing. Note that we study
another restricted seing that is more general in Chapter 3; this seing is motivated
by multiple keyword sponsored search auctions. A promising direction for future
work is to identify further restrictions for which the known impossibility results do
not apply.
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CHAPTER 3
On Multiple Keyword Sponsored

Sear Auctions with Budgets

3.1 Introduction

Sponsored search auctions (ad-words auctions) are used by firms such as Google,
Yahoo, and Microso for selling ad slots on search result pages (see Edelman et al.
[38] and Lahaie et al. [78]). e ad slots for a query are auctioned between those
advertisers that bid on the keywords of the query. e ad slots are ordered from
top to boom of the page. e value of an ad slot increases with the probability
that the slot is clicked, also called click-through rate (CTR). e true valuation of
the bidders is private knowledge and it is assumed to depend linearly on the CTR.
Moreover, valuations are assumed to be additive; that is, the total valuation of a
bidder is equal to the sum of his valuations for all the slots that are assigned to him.

A further key ingredient of a sponsored search auction is that bidders specify
a budget which bounds the maximum payment chargeable for the ads in a given
time frame (e.g., a day), effectively linking the different keywords. e introduction
of budgets dramatically changes the nature of the auction. For instance, the VCG
mechanism by Vickrey [104], Clarke [23], and Groves [57], which was designed
to maximize social welfare, might not be feasible since the required payment by a
bidder can exceed his budget. Moreover, it was observed in the seminal paper by
Dobzinski et al. [30] that maximizing social welfare cannot be achieved for budgeted
auctions. us, they suggest to consider the weaker optimality criterion of Pareto-
optimality: If an outcome is Pareto-optimal then it is impossible to make a bidder
beer off without making another bidder or the auctioneer worse off.

Dobzinski et al. [30] study budgeted multi-unit auctions with additive valua-
tions; thus, their seing corresponds to sponsored search auctions where each key-
word has only one slot and all slots have identical CTR. ey give an incentive
compatible (IC) auction based on Ausubel’s ascending clinching auction (Ausubel
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[5]) that produces a Pareto-optimal (PO) and individually rational (IR) outcome if
budgets are public. ey also show that this assumption is strictly needed; that is,
that no deterministic mechanism for private budgets exists if we insist on incen-
tive compatibility, individual rationality, and Pareto-optimality. is impossibility
result for deterministic mechanisms was strengthened for our seing to public bud-
gets in Düing et al. [36] (see also Chapter 2). However, the question was openwhat
optimality result can be achieved for randomized mechanisms. us, our question
to study is whether IC, IR, and PO auctions for selling ad slots can be achieved with
randomized mechanisms.

3.1.1 Contribution

We give a positive answer to the above question. e results consider auctions for
keywords with many slots. e participants are selfish agents that report valuations
and have budgets that are public knowledge.

We show that the multi-unit auction of Dobzinski et al. [30] can be general-
ized to a sponsored search auction for multiple keywords having multiple slots, and
budget limits for each bidder. We specifically model the case of several slots with
different CTR, available for each keyword, and a bound on the number of slots per
keyword (usually one) that can be allocated to a bidder. We first provide an IC, IR,
and PO deterministic auction that provides a fractional allocation for the case of one
keyword with divisible slots. Note that the impossibility result by Düing et al. [36]
does not hold for divisible slots. In contrast, the impossibility result by Dobzinski et
al. [30] for multi-unit auctions applies also to this seing, and achieving IC, IR, and
PO deterministic auctions is only possible if budgets are public. us, we restrict
ourselves to the public budget case in this chapter. In our auction each bidder sub-
mits his valuation and budget at the beginning of the auction. e outcome of the
auction defines a fractional allocation of the slots to the bidders and satisfies Pareto-
optimality. We then show how to probabilistically round this fractional allocation
for the divisible case to an integer allocation for the indivisible case with multiple
keywords (i.e., the ad-words seing) and get an auction that is IC in expectation, IR
in expectation, and PO ex post/in expectation.

3.1.2 Related Work

Ascending clinching auctions are used in the FCC spectrum auctions (see Ausubel
[5], Ausubel and Milgrom [8], and Milgrom [85]). For a motivation of sponsored
search auctions see Edelman et al. [38] and Lahaie et al. [78].

We first compare our results with those of a recent work by Goel et al. [53]
that was developed independently at the same time. ey studied IC auctions with
feasible outcomes that must obey public polymatroid constraints and bidders with
identical or separable valuations (see their Lemma 3.10) and public budgets. e
problem of auctions with polymatroid constraints was first studied by Bikhchandani
et al. [13] for unbudgeted bidders and concave utilities. e auction in Goel et al.
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[53] is an adaption of the ascending auction in Bikhchandani et al. [13] to the case
of budgeted bidders. e polymatroid constraints generalize on one hand the multi-
unit case in Dobzinski et al. [30] and the multiple slots with different CTR model
presented in this chapter. On the other hand, the PO ascending auction in Goel et al.
[53] only returns outcomes for divisible items whereas in Section 3.5 of this chapter
we demonstrate that these outcomes can be rounded to outcomes for indivisible items
if we allow the auction to yield incentive compatibility in expectation.

ere are three extensions of Dobzinski et al. [30]: (1) Fiat et al. [42] studied an
extension to a combinatorial seing, where items are distinct and different bidders
may be interested in different items. e auction presented in Fiat et al. [42] is
IC, IR, and PO for additive valuations and single-valued bidders (i.e., every bidder
does not distinguish between the keywords in his public interest set). is result
was generalized in Colini-Baldeschi et al. [24] to a sponsored search seing with
multiple slots for each keyword but identical CTR for all slots.1 (2) Bhaacharya
et al. [11] dealt with private budgets, and gave an auction for one infinitely divisible
item, where bidders cannot improve their utility by underreporting their budget.
is leads to a randomized IC in expectation auction for one infinitely divisible item
with both private valuations and budgets. (3) Several papers (Aggarwal et al. [2],
Ashlagi et al. [4], Düing et al. [37], and Fujishige and Tamura [45]) studied envy-
free outcomes that are bidder optimal, respectively PO, in a one-keyword sponsored
search auction. In this seing they give (under certain conditions on the input) an
IC auction with both private valuations and budgets.

ere are three impossibility results for non-additive valuations: Lavi and May
[79] show that there is no IC, IR, and PO deterministic mechanism for indivisi-
ble items and bidders with monotone valuations. is result was strengthened in
Colini-Baldeschi et al. [24] to an impossibility result that applies to bidders with
non-negative and diminishing marginal valuations. In Goel et al. [53] the same im-
possibility result for divisible items and bidders with monotone and concave utility
functions was given.

3.2 Preliminaries

We have n bidders and m slots. We call the set of bidders N := {1, . . . , n} and the
set of slots I := {1, . . . ,m}. Each bidder i ∈ N has a private valuation vi ≥ 0,
a public budget βi ≥ 0, and a public slot constraint κi ∈ N>0. Each slot j ∈ I
has a public quality αj ∈ Q≥0. e slots are ordered such that αj ≥ αj′ if j > j′,
where ties are broken in some arbitrary but fixed order. We assume that the number
of slots m fulfills m =

∑
i∈N κi as we could add dummy-bidders with valuation

vi = 0, if m >
∑

i∈N κi, or we could add dummy-items with quality αj = 0, if
m <

∑
i∈N κi.

1is result was published together with the results presented in this chapter.
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Divisible case. In the divisible casewe assume that there is only one keywordwith
infinitely divisible slots. us the goal is to assign each bidder i a fraction xi,j ≥ 0 of
each slot j and charge him a payment pi. An allocation matrixX = (xi,j)(i,j)∈N×I

and a payment vector p are called an outcome (X, p). We call ci =
∑

j∈I αjxi,j
the weighted capacity allocated to bidder i. An outcome is feasible if it fulfills the
following conditions: (1) the sum of the fractions assigned to a bidder does not
exceed his slot constraint (

∑
j∈I xi,j ≤ κi ∀i ∈ N ); (2) each of the slots is fully

assigned to the bidders (
∑

i∈N xi,j = 1 ∀j ∈ I); and (3) the payment of a bidder
does not exceed his budget limit (βi ≥ pi ∀i ∈ N ).

Indivisible case. We additionally have a set R of keywords, where |R| is public,
and each keyword has the set of slots I . e goal is to assign each slot j ∈ I of
keyword r ∈ R to one bidder i ∈ N while obeying various constraints. An allo-
cation X = (xi,j,r)(i,j,r)∈N×I×R where xi,j,r = 1 if slot j is assigned to bidder i
in keyword r, and xi,j,r = 0 otherwise, and a payment vector p form an outcome
(X, p). We call ci =

∑
j∈I

αj

|R|(
∑

r∈R xi,j,r) the weighted capacity allocated to bid-
der i. An outcome is feasible if it fulfills the following conditions: (1) the number of
slots of a keyword that are assigned to a bidder does not exceed his slot constraint
(
∑

j∈I xi,j,r ≤ κi ∀i ∈ N, ∀r ∈ R); (2) each slot is assigned to exactly one bidder
(
∑

i∈N xi,j,r = 1 ∀j ∈ I, ∀r ∈ R); and (3) the payment of a bidder does not exceed
his budget limit (βi ≥ pi ∀i ∈ N ).

Properties of the auctions. e utility ui of bidder i for a feasible outcome (X, p)
is civi − pi; the utility of the auctioneer (or mechanism) is

∑
i∈N pi. A feasible

outcome (X ′, p′) is Pareto-superior to the feasible outcome (X, p) if (1) the utility of
no bidder in (X ′, p′) is less than his utility in (X, p), (2) the utility of the auctioneer
in (X ′, p′) is no less than his utility in (X, p), and (3) at least one bidder or the
auctioneer is beer off in (X ′, p′) compared with (X, p).

We study auctions that select feasible outcomes obeying the following condi-
tions: (Bidder rationality) ui ≥ 0 for all bidders i ∈ N , (Auctioneer rationality) the
utility of the auctioneer fulfills

∑
i∈N pi ≥ 0, and (No-positive-transfer) pi ≥ 0 for

all bidders i ∈ N . An auction that on all inputs outputs an outcome that is both
bidder rational and auctioneer rational is called individually rational (IR).

A feasible outcome is Pareto-optimal (PO) if there is no other feasible outcome
(X ′, p′) that is Pareto-superior to (X, p). An auction is said to be Pareto-optimal
(PO) if the outcome it produces is PO. An auction is incentive compatible (IC) if it is
a dominant strategy for all bidders to reveal their true valuation.

A randomized auction is an auction that returns a random outcome. A random-
ized auction is IC in expectation, IR in expectation, respectively PO in expectation
if the above conditions hold in expectation when comparing the random outcome
of the auction with all other randomized outcomes. A randomized outcome satis-
fies PO ex post, if every deterministic outcome that is possibly drawn from the ran-
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domized outcome satisfies the conditions for PO in expectation when comparing it
against all randomized outcomes.2

3.3 Characterization of Pareto-optimality

In this section we present a novel characterization of PO outcomes that allows to
address the case of multiple divisible slots with different CTR. Like previous char-
acterizations of PO for other seings [11, 30, 42] our characterization ensures that
no bidder can resell items (i.e., weighted capacity) to another bidder to increase his
utility. However, in our seing, we have to consider that transferring weighted ca-
pacity between two bidders might result in the fractional exchange of slots between
many bidders. We use the characterization to prove the PO of the auction given in
Section 3.4.

Given a feasible outcome (X, p), a swap between two bidders i and i′ is a frac-
tional exchange of slots, i.e., if there are slots j and j′ and a constant τ > 0 with
xi,j ≥ τ and xi′,j′ ≥ τ then a swap between i and i′ can give a new feasible outcome
(X ′, p) with x′i,j = xi,j − τ , x′i′,j′ = xi′,j′ − τ , x′i,j′ = xi,j′ + τ , and x′i′,j = xi′,j + τ .
If αj < αj′ then the swap increases i’s weighted capacity and reduces i′’s weighted
capacity. To characterize PO outcomes we first define for each bidder i the set Ni

of bidders such that for every bidder a in Ni there exists a swap between i and
a that increases i’s weighted capacity. Given a feasible outcome (X, p) we use
h′(i) := max{j ∈ I|xi,j > 0} for the slot with the highest quality that is assigned
to bidder i and l′(i) := min{j ∈ I|xi,j > 0} for the slot with the lowest qual-
ity that is assigned to bidder i. To consider the case of slots with equal α-value
we define h(i) := min{j ∈ I|αj = αh′(i)} and l(i) := min{j ∈ I|αj = αl′(i)}.
us, Ni is the set of all the bidders a ∈ N with h(a) > l(i). To model sequences
of swaps we define furthermore N1

i := Ni and Nk
i :=

∪
a∈Nk−1

i
Na for k > 1.

Since we have only n bidders,
∪n

k=1N
k
i =

∪n′

k=1N
k
i for all n′ ≥ n. We define

Ñi :=
∪n

k=1N
k
i \ {i} as the set of desired (recursive) trading partners of i. See Fig-

ure 3.1 for an example with five bidders. e bidders a in Ñi are all the bidders such
that through a sequence of trades that “starts” with i and “ends” with a, bidder i
could increase his weighted capacity, bidder a could decrease his weighted capac-
ity, and the capacity of the remaining bidders involved in the sequence would be
unchanged.

e following lemma shows the non-reflexive transitivity of Ñi.

Lemma 3.1. Given an arbitrary allocation, if b ∈ Ña, c ∈ Ñb, and a ̸= c then c ∈ Ña.

Proof. Let us assume that b ∈ Ña, c ∈ Ñb, and a ̸= c. It follows that there exists an
integer kb with b ∈ Nkb

a and an integer kc with c ∈ Nkc
b . We first show by induction

thatN l
b ⊆ Nkb+l

a for all l ≥ 1. For l = 1 we haveN1
b = Nb ⊆

∪
i∈Nkb

a
Ni = Nkb+1

a .
2is definition differs from the definition in Colini-Baldeschi et al. [24] and corresponds to the

definition in Düing et al. [36] and Chapter 2. However, all the results are valid for both definitions.
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slot
number

.

bidder

.

l(1)

.

h(1)

.

l(2)

.

h(2)

. l(3).

h(3)

.
l(4)

.

h(4)

.
l(5)

. h(5).

1

.

2

.

3

.

4

.

5

Bidder i Ni N2
i N3

i Ñi

1 {1, 2} {1, 2, 4} {1, 2, 3, 4} {2, 3, 4}
2 {1, 2, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 3, 4}
3 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 4}
4 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3}
5 {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4}

Figure 3.1: Example of desired trading partners.

For l > 1 we assume inductively that N l−1
b ⊆ Nkb+l−1

a . en N l
b =

∪
i∈N l−1

b
Ni ⊆∪

i∈Nkb+l−1
a

Ni = Nkb+l
a . us, Nkc

b ⊆ Nkb+kc
a . Since c ∈ Nkc

b it follows that
c ∈ Nkb+kc

a , and moreover, since a ̸= c it follows that c ∈ Ña.

Given a feasible outcome (X, p) we use B := {i ∈ N |βi > pi} to denote the
set of bidders who have a positive remaining budget (i.e., each bidder i with budget
βi larger than payment pi). Let ṽi = mina∈Ñi

(va), if Ñi ̸= ∅, and ṽi = ∞ else.
Note that ṽi depends on Ñi and, thus, on the current allocation. As we show below
the ṽi-value and the remaining budget βi − pi for each bidder i suffice to decide
whether a given allocation is PO or not.

We say that a feasible outcome (X, p) contains a trading swap sequence (δ, a)
(for short tss), where δ > 0 is the swapped amount of weighted capacity and a is a
sequence a0, a1, . . . , ak of bidders in N , if the following conditions hold:

(S1) the sequence has no cycles, i.e., aℓ ̸= aℓ′ if ℓ ̸= ℓ′,

(S2) bidder a0 has a higher valuation than bidder ak, i.e., va0 > vak ,

(S3) we can swap weighted capacity δ from aℓ+1 to aℓ for all ℓ ∈ {0, 1, . . . , k −
1} in a certain way, in particular, it holds for all ℓ ∈ {0, 1, . . . , k − 1} that
(αh′(aℓ+1) − αl′(aℓ)) ·min{xaℓ,l′(aℓ), xaℓ+1,h′(aℓ+1)} ≥ δ, and
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..
Slot 1 (α1 = 2)

.

Slot 2 (α2 = 4)

.

Slot 3 (α3 = 6)

.

(δ = 1, a = (2, 3, 1))

Bidder i color valuation vi budget βi payment pi
1 gray 1 2 0
2 black 2 1 0
3 white 3 0 0

Figure 3.2: Example of a trading swap sequence that transfers
weighted capacity from bidder 1 to bidder 2. Before the tss slot 1 is
assigned to bidder 1 and 3, slot 2 is assigned to bidder 1 and 2, and
slot 3 is assigned to bidder 2 and 3. e tss swaps the half of slot 3
assigned to bidder 3 with the half of slot 2 assigned to bidder 2, and
the half of slot 2 assigned to bidder 1 with the half of slot 1 assigned
to bidder 3.

(S4) bidder a0 has a remaining budget that could compensate bidder ak’s loss of
weighted capacity δ, i.e., βa0 − pa0 ≥ δvak .

Furthermore, we say that the outcome (X ′, p′) results from the outcome (X, p)
through the tss (δ, a) where the length of the sequence a is k + 1 if

(A1) p′i = pi for all N \ {a0, ak}, p′a0 = pa0 + δvak , and p′ak = pak − δvak ,

(A2) x′aℓ,l′(aℓ) = xaℓ,l′(aℓ) − τℓ, x′aℓ,h′(aℓ+1)
= xaℓ,h′(aℓ+1) + τℓ, x′aℓ+1,l′(aℓ)

=

xaℓ+1,l′(aℓ) + τℓ, and x′aℓ+1,h′(aℓ+1)
= xaℓ+1,h′(aℓ+1) − τℓ, where τℓ =

δ/(αh′(aℓ+1)−αl′(aℓ)) for all ℓ ∈ {0, 1, . . . , k−1}, and all other entries ofX ′

are identical to the entries of X .

In the remainder of this section we prove the following characterization of
Pareto-optimal outcomes.

eorem 3.2. A feasible outcome is Pareto-optimal, if and only if it contains no trading
swap sequence.

We show first that if an outcome (X, p) is PO, then it contains no trading swap
sequence.

Proposition 3.3. An outcome (X ′, p′) that results from the outcome (X, p) through a
trading swap sequence (δ, a) is Pareto-superior to (X, p).
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Proof. Let k + 1 be the length of the sequence a. By (A1) the sum of the payments,
which is equal to the utility of the auctioneer, does not change. By (A1) and (A2), for
all bidders except a0 and ak neither the payment, nor theweighted capacity changes,
and thus, their utility does not change. By (A2) the weighted capacity assigned to
ak decreases by δ and by (A1) the payment of ak decreases by δvak . us, the utility
of ak does not change. Finally, the utility of a0 increases because p′a0 − pa0 = vakδ
by (A1) and vakδ < va0δ by (S2) implies p′a0−pa0 < va0δ, and by (A2) a0’s weighted
capacity increases by δ.

Next we show that if a feasible outcome does not contain a trading swap se-
quence then it is PO. We show this in two steps, namely, Proposition 3.4 proves
that the non-existence of a trading swap sequence depends on a certain condition
for the ṽi’s of the bidders, and Proposition 3.7 shows that if this condition is fulfilled,
then the outcome is PO.

Proposition 3.4. A feasible outcome contains no trading swap sequences, if and only
if (a) ṽi ≥ vi for each bidder i ∈ B and (b) ṽi > 0 for each bidder i ∈ N with vi > 0.

Proof. (A) We show first that given a feasible outcome (X, p) that contains a tss
(δ, a) where a has length k + 1, it either holds that a0 ∈ B with ṽa0 < va0 or
that a0 ∈ N with ṽa0 = 0 and va0 > 0. is is a consequence of the definition
of a tss as follows. Since δ > 0 it follows by (S3) that αh′(aℓ+1) > αl′(aℓ) for all
ℓ ∈ {0, 1, . . . , k − 1}, and thus, aℓ+1 ∈ Naℓ for all ℓ ∈ {0, . . . , k − 1}. It follows
that ak ∈ Ña0 by Lemma 3.1. Hence, by (S2) holds that va0 > vak ≥ ṽa0 . If a0 ∈ B
this directly proves (A). If a0 ∈ N \B then βa0 = pa0 and thus by (S4) holds vak = 0.
It follows va0 > ṽa0 = 0, which proves (A) for a0 ∈ N \B.

(B) We will show now the other direction, i.e., that given a feasible outcome
(X, p) such that there exists a bidder a0 ∈ B with ṽa0 < va0 or a bidder a0 ∈ N
with ṽa0 = 0 and va0 > 0, there exists a tss in (X, p). us, there is a bidder
a0 ∈ N with ṽa0 < va0 . We select the smallest k ∈ {1, 2, . . . , n} for which there
is a bidder ak ∈ Nk

a0 who has vak = ṽa0 . We define for all ℓ ∈ {1, 2, . . . , k − 1}
the bidder aℓ such that aℓ ∈ N ℓ

a0 and aℓ+1 ∈ Naℓ . By using this construction there
cannot be a cycle in the sequence a which proves (S1) for any tss with sequence a.
Furthermore, it holds that vak = ṽa0 which proves together with ṽa0 < va0 (S2) for
any tss with sequence a. We next define the value δS as the largest possible value for
δ in (S3). We define τℓ = min{xaℓ,l′(aℓ), xaℓ+1,h′(aℓ+1)} for all ℓ ∈ {0, 1, . . . , k − 1}
and δS = minℓ∈{0,1,...,k−1} τℓ · (αh′(aℓ+1) − αl′(aℓ)). Observe that δS > 0 because
aℓ+1 ∈ Naℓ for all ℓ ∈ {0, 1, . . . , k − 1} implies αh′(aℓ+1) > αl′(aℓ). We next define
δB = (βa0 − pa0)/vak if a0 ∈ B and vak > 0 and we define δB = δS otherwise.
us, [0, δB] are feasible values for δ in (S4). Hence, it follows that (min{δS , δB}, a)
satisfies all conditions for a tss.

To show Proposition 3.7 we first need to extend the sets Ñi to deal with bidders
that occupy slots with identical quality. For this purpose we introduce the sets Ti.
e containment relation on the sets Ti gives a total order on these sets (Lemma
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3.5). Additionally these sets are “tight” in the sense that no other feasible allocation
can assign more weighted capacity to them (Lemma 3.6). is fact is crucial when
showing Proposition 3.7.

Definition 3.1. If h(i) = l(i) let Li = {u ∈ N |(vu ≥ vi) ∧ (h(u) = l(u) = h(i))},
and let Li = ∅ otherwise. Let Ti = Ñi ∪ {i} ∪ Li for all i ∈ N .

e next lemma shows that for a given allocation X the relation “⊆” defines a
total order on the sets Ti with i ∈ N .

Lemma 3.5. Given bidders i, u ∈ N , then Ti ⊆ Tu or Tu ⊆ Ti.

Proof. We can restrict our analysis to the case i ̸= u as otherwise Ti = Tu. Let us
first assume that h(u) = l(u) = h(i) = l(i). It follows that Ni = Nu, and thus,
Ñi∪{i, u} = Ñu∪{i, u}. Let us assume additionally that vu ≥ vi. en u ∈ Li and
Lu ⊆ Li, and thus, Tu = Ñu ∪{u}∪Lu ⊆ Ñu ∪{i, u}∪Lu ⊆ Ñi ∪{i}∪Li = Ti.
For the same arguments vi ≥ vu implies Ti ⊆ Tu.

Next assume that h(u) = l(u) = h(i) = l(i) does not apply. If both h(u) ≤ l(i)
and h(i) ≤ l(u) then h(u) ≥ l(u) ≥ h(i) ≥ l(i) ≥ h(u) implies that all “≥” are
“=” which gives us a contradiction. us we can assume w.l.o.g. that h(u) > l(i). It
follows that u ∈ Ni ⊆ Ñi ∪ {i} and i ̸= u implies u ∈ Ñi. By Lemma 3.1 it follows
that all c ∈ Ñu with c ̸= i satisfy c ∈ Ñi, and thus, Ñu ⊆ Ñi ∪ {i}. Furthermore,
all x ∈ Lu satisfy h(x) = h(u) > l(i), and thus, x ∈ Ni ⊆ Ñi ∪ {i}. Hence, we
obtain Tu = Ñu ∪ {u} ∪ Lu ⊆ Ñi ∪ {i} ⊆ Ti.

Moreover, we can show in the next lemma for any i ∈ N that given the set Ti

determined by a feasible allocation X , no other allocation allocates more weighted
capacity to the set of bidders Ti.

Lemma 3.6. Given a feasible allocation X and the set Ti for a bidder i ∈ N deter-
mined byX , then for any other feasible allocationX ′ it holds that

∑
u∈Ti

∑
j∈I αjxu,j

≥
∑

u∈Ti

∑
j∈I αjx

′
u,j .

Proof. We first fix an i ∈ N . Let κ =
∑

u∈Ti
κu and let a = minu∈Ti

l(u). Since
l(i) = l(u) for all u ∈ Li it follows that (Fact a) a = minu∈Ñi∪{i} l(u). Recall
that since X is a feasible allocation it holds that

∑
u∈N xu,j = 1 for all j ∈ I and∑

j∈I xu,j ≤ κu for all u ∈ N by definition. Furthermore, recall that we assume
that

∑
u∈N κu = m. us,∑

u∈Ti

∑
j∈I

xu,j ≤
∑
u∈Ti

κu = κ and

∑
u∈N

κu = m =
∑
j∈I

1 =
∑
j∈I

∑
u∈N

xu,j =
∑
u∈Ti

∑
j∈I

xu,j +
∑

u∈N\Ti

∑
j∈I

xu,j

≤
∑
u∈Ti

∑
j∈I

xu,j +
∑

u∈N\Ti

κu .
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It follows that (Fact b) κ =
∑

j∈I
∑

u∈Ti
xu,j .

Notice that (Fact c) for all j ∈ I with αj > αa it holds that
∑

u∈Ti
xu,j = 1:

Assume by contradiction that
∑

u∈Ti
xu,j < 1. en there exists a w ∈ N \Ti with

xw,j > 0 because feasibility of X implies
∑

u∈N xu,j = 1. us, h(w) > a = l(u)

for some u ∈ Ñi ∪ {i} by Fact a, which implies w ∈ Ñi ∪ {i} ⊆ Ti by Lemma 3.1.
is leads to a contradiction to the assumption w ∈ N \ Ti.

Nextwe argue that (Fact d) for all j ∈ I withαj < αa it holds that
∑

u∈Ti
xu,j =

0. is is the case because otherwise there would be a bidder u ∈ Ti with xu,j > 0
which implies l(u) < a. is is a contradiction to the definition of a.

Note that m− a+ 1 =
∑m

j=a 1 ≥
∑m

j=a

∑
u∈Ti

xu,j =
∑m

j=1

∑
u∈Ti

xu,j = κ,
where the first inequality follows from feasibility of X , the second equality follows
from Fact d, and the third equality follows from Fact b. us, m − κ + 1 ≥ a.
Together with the ordering of the slots by α, this implies (Fact e) αj ≥ αa for all
j ≥ m− κ+ 1.

We now define j∗ = min{j ∈ I|αj > αa}. By the following arguments we
obtain the next sequence of equalities: e first equality follows from Fact d; the
second equality follows from Fact b and Fact c; and the fourth equality follows from
Fact e and αj ≤ αa for all j ≤ j∗ − 1 implied by the definition of j∗.

∑
j∈I:αj=αa

∑
u∈Ti

xu,j =
∑
j∈I

∑
u∈Ti

xu,j −
∑

j∈I:αj>αa

∑
u∈Ti

xu,j

= κ− (m− j∗ + 1) =

j∗−1∑
j=m−κ+1

1 = (1/αa)

j∗−1∑
j=m−κ+1

αj

In the next sequence of equalities the second equality follows from Fact c and Fact d,
and the third equality from the above sequence.

∑
u∈Ti

∑
j∈I

xu,jαj =
∑
j∈I

αj

∑
u∈Ti

xu,j

=

m∑
j=j∗

αj + αa(
∑

j∈I:αj=αa

∑
u∈Ti

xu,j) =

m∑
j=m−κ+1

αj

us, the bidders in Ti have an aggregated weighted capacity equal to the weighted
capacity of the allocation where the most valuable slots fromm down tom−κ+1
and no fraction of a slot below are occupied by Ti. is is the “optimal allocation”
for Ti, i.e., for any other feasible allocation X ′ it holds that

∑
u∈Ti

∑
j∈I αjxu,j ≥∑

u∈Ti

∑
j∈I αjx

′
u,j .

Now we use the previous lemmata in the next proposition that gives a sufficient
condition for the Pareto-optimality of a feasible outcome (X, p).
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Proposition 3.7. 3 Given a feasible outcome (X, p), if (a) ṽi ≥ vi for each i ∈ B
and (b) ṽi > 0 for each i ∈ N with vi > 0 then the respective feasible outcome is
Pareto-optimal.

Proof. Let us assume by contradiction that we have a feasible outcome (X ′, p′) that
is Pareto-superior to (X, p) and (a) and (b) hold. e utility of the auctioneer does
not decrease. us, the sum of the payments of the bidders fulfills

∑
i∈N p′i ≥∑

i∈N pi. If
∑

i∈N p′i >
∑

i∈N pi then an outcome (X ′, p′′) where
∑

i∈N p′′i =∑
i∈N pi exists, which is Pareto-superior compared to (X, p) as well: simply give

the additional payments back to some of the bidders. We can therefore restrict our
analysis to the cases with (Fact a)

∑
i∈N p′i =

∑
i∈N pi.

In the following parts of the proof we study a set N∗ that contains all bidders
with positive valuations, and we define a sequence of subsets of N∗ ordered by “⊆”
that starts with ∅ and ends with N∗. First we show that all bidders in N∗ who
have not spent all their budget in (X, p) and appear the first time in a subset S
of the sequence have the lowest valuation among all bidders in S. en we show
that all bidders inN∗ who spent all their budget in (X, p) cannot get more weighted
capacity inX ′ than inX . Furthermore, we use Lemma 3.6 to show that no subset of
bidders in the sequence can get more weighted capacity inX ′ than inX . Aer this,
we can show by induction over the sequence that the social welfare of X ′ cannot
be higher than the social welfare ofX . is leads immediately to a contradiction to
the assumed Pareto-superiority of (X ′, p′) over (X, p).

For all i ∈ N let the set Ti from Definition 3.1 be determined by X . We define
N∗ =

∪
i∈N :vi>0 Ti and show first some facts aboutN∗ andN \N∗. By Lemma 3.5,

“⊆” induces a total order on the sets Ti and thus there is a “largest” Ti∗ in this order.
For this set Ti∗ it holds that Ti∗ = N∗. us, (Fact b) there exists an i ∈ N with
vi > 0 for which N∗ = Ti. Let i ∈ N be a bidder with vi > 0. By (b) ṽi > 0
holds, implying that no u with vu = 0 is in Ñi. Furthermore, no u with vu = 0
is in Li by the definition of Li. us, no u with vu = 0 is in Ti. It follows that
(Fact c) N∗ = {i ∈ N |vi > 0}. e bidders i ∈ N \ N∗ have vi = 0 and by
Pareto-superiority of (X ′, p′) over (X, p) it follows that x′ivi − p′i ≥ xivi − pi, and
thus, (Fact d) pi ≥ p′i for all i ∈ N \N∗.

Now we introduce an ordered sequence of subsets ofN∗ that we use later in an
induction. By Lemma 3.5 the relation “⊆” forms a total order on the sets Ti with
i ∈ B∗ := B ∩ N∗. Reorder the bidders, such that T1, . . . , T|B∗| are the sets Ti

with i ∈ B∗ ordered by “⊆” and that T1 is the smallest set. We define T0 = ∅
and T|B∗|+1 = N∗. Furthermore, we let vTi = minu∈Ti

vu for i = 1, . . . , |B∗| + 1,
vT0 = vT1 , and vT|B∗|+2

= 0. We will use ∆Ti for Ti \ Ti−1. It is easy to see that
(Fact e) for a bidder u ∈ ∆Ti ∩ B∗ it holds that vu = vTi : Since u ∈ ∆Ti ∩ B∗

it follows that u ̸∈ T0, . . . , Ti−1. us, Tu = Ti′ for some i′ ≥ i because u ∈ B∗

and u ∈ Tu, and moreover, Ti ⊆ Ti′ = Tu = Ñu ∪ {u} ∪ Lu since i′ > i implies
3e idea of the proof for Proposition 3.7 is based on the proof of “⇐” in Lemma 3.8 of Goel et al.

[53]. An independent proof of the proposition can be found in early versions of Colini-Baldeschi et al.
[24] which is the basis of this work.
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that Ti ⊆ Ti′ . e definition of Lu implies that all w ∈ Lu satisfy vw ≥ vu and (a)
implies that all w ∈ Ñu satisfy vw ≥ vu. us all w ∈ Ti satisfy vw ≥ vu which
implies vu = minx∈Ti

vx = vTi .
We partition N∗ into three sets, namely N∗ ∩B, C+, and C−. Recall that ci =∑

j∈I αjxi,j and c′i =
∑

j∈I αjx
′
i,j for all i ∈ N . Formally we define C = N∗ \ B,

C+ := {i ∈ C|c′i > ci}, and C− := C \ C+ and show (Fact f): C+ = ∅. is
implies that the bidders with positive valuations who spent their full budget under
X cannot get more weighted capacity underX ′. e sequence of inequalities below
follows by the following arguments: e first inequality holds since pu = βu ≥ p′u
for all u ∈ C ⊇ C+; the second inequality follows from Pareto-superiority of
(X ′, p′) compared to (X, p); and the third inequality follows because ∆Ti \ C+ =
(∆Ti ∩ B∗) ∪ (∆Ti ∩ C−), all u ∈ ∆Ti ∩ B∗ have vu = vTi by Fact e, all u ∈ C−

have cu ≥ c′u, and all u ∈ Ti have vTi ≤ vu.∑
u∈∆Ti

(pu − p′u) ≥
∑

u∈∆Ti\C+

(pu − p′u) ≥
∑

u∈∆Ti\C+

vu(cu − c′u)

≥
∑

u∈∆Ti\C+

vTi(cu − c′u) =
∑

u∈∆Ti

vTi(cu − c′u) +
∑

u∈∆Ti∩C+

vTi(c
′
u − cu). (3.1)

e next sequence of inequalities holds for the following reason: e first inequality
follows from Fact a and Fact d; the second inequality follows by summing (3.1) for
i = 1, . . . , |B∗|+1; and the third inequality holds since

∑|B∗|+1
i=1

∑
u∈∆Ti

vTi(cu−
c′u) =

∑|B∗|+1
i=1 (vTi − vTi+1)

∑
u∈Ti

(cu − c′u) ≥ 0 as
∑

u∈Ti
(cu − c′u) ≥ 0 for all Ti

by Lemma 3.6, which applies by Fact b also for T|B∗|+1.

0 ≥
|B∗|+1∑
i=1

∑
u∈∆Ti

(pu − p′u) ≥
|B∗|+1∑
i=1

∑
u∈∆Ti

vTi(cu − c′u)

+

|B∗|+1∑
i=1

∑
u∈∆Ti∩C+

vTi(c
′
u − cu) ≥

|B∗|+1∑
i=1

∑
u∈∆Ti∩C+

vTi(c
′
u − cu). (3.2)

It follows that
∑|B∗|+1

i=1

∑
u∈∆Ti∩C+ vTi(c

′
u − cu) ≤ 0. Since vu > 0 for all u ∈ N∗

and Ti ⊆ N∗ it holds that vTi > 0. us, since c′u > cu for all u ∈ C+ it follows
that C+ has to be empty and C = C−.

We can prove now by induction that (Fact g)
∑

u∈Ti
vu(cu − c′u) ≥

vTi

∑
u∈Ti

(cu − c′u) for all Ti. For i = 0 we have that T0 = ∅ and thus the claim
holds. For i > 0 we have that

∑
u∈∆Ti\B∗ vu(cu − c′u) ≥ vTi

∑
u∈∆Ti\B∗(cu − c′u)

because for all u ∈ C− = C ⊇ ∆Ti \ B∗ (by Fact ) holds cu − c′u ≥ 0 and
for all u ∈ Ti holds vu ≥ vTi . Furthermore, we have that

∑
u∈∆Ti∩B∗ vu(cu −

c′u) ≥ vTi

∑
u∈∆Ti∩B∗(cu − c′u) because of Fact e and by induction it holds that∑

u∈Ti−1
vu(cu−c′u) ≥ vTi−1

∑
u∈Ti−1

(cu−c′u). It follows that
∑

u∈Ti
vu(cu−c′u) ≥

vTi

∑
u∈Ti

(cu − c′u) for all Ti.
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Now we finish the proof by generating a contradiction. By Lemma 3.6, which
applies by Fact b also for T|B∗|+1, it holds that

∑
u∈Ti

(cu − c′u) ≥ 0 for all i =
1, . . . , |B∗| + 1, and thus, vTi

∑
u∈Ti

(cu − c′u) ≥ 0. Consequently, it holds that∑
u∈N vucu ≥

∑
u∈N vuc

′
u because

∑
u∈Ti

vu(cu − c′u) ≥ vTi

∑
u∈Ti

(cu − c′u) ≥ 0
by Fact g, T|B∗|+1 = N∗, and vu = 0 for all u ∈ N \ N∗ by Fact c. us, the
social welfare under (X, p) is at least as large as under (X ′, p′). is implies that∑

u∈N (vucu − pu) ≥
∑

u∈N (vuc
′
u − p′u) by Fact a. Pareto-superiority of (X ′, p′)

compared to (X, p) implies that for one bidder w ∈ N it holds that vwcw − pw <
vwc

′
w−p′w. Hence,

∑
u∈N\{w}(vucu−pu) >

∑
u∈N\{w}(vuc

′
u−p′u), which implies

that for a u ∈ N \ {w} it holds that vucu − pu > vuc
′
u − p′u. is, contradicts our

assumption that (X ′, p′) is Pareto-superior.

By Proposition 3.4 and Proposition 3.7 we know that a feasible outcome that
contains no trading swap sequence is Pareto-optimal. Moreover, by Proposition 3.3
an outcome resulting from a trading swap sequence is Pareto-superior, and thus, a
feasible outcome that contains a trading swap is not Pareto-optimal. is concludes
the proof of eorem 3.2.

3.4 Multiple Keyword Auction for the Divisible Case

We describe next our deterministic clinching auction for divisible slots and show
that it is IC, IR, and PO. We assume throughout this section that vi ∈ N≥0 and
βi ∈ Q≥0 for all i ∈ N .4 Furthermore, we assume that the input N is ordered such
that all i ∈ N with bid vi = 0 are in the order before all i ∈ N with bid vi > 0, and
all i ∈ N with vi > 0 are ordered independently of their bids. is order is used by
the for-loop in line 3 of Algorithm 3.1 and is needed to show PO in eorem 3.10;
it is necessary to avoid the existence of trading swaps that do not require monetary
compensation. Finally, recall that we assume that m =

∑
i∈N κi. If m >

∑
i∈N κi

we could add dummy-bidders with valuation vi = 0 and budget βi = 0; that is,
they have to pay no money and they are not competing with the other bidders. If
m <

∑
i∈N κi we could add dummy-items with quality αj = 0, that is, they have

no value for any bidder. us, the slot constraints imply
∑

j∈I xi,j = κi for all
i ∈ N .

e auction repeatedly increases a price “per weighted capacity” and gives dif-
ferent weights to different slots depending on their CTR. To perform the check
whether all remaining unsold weighted capacity can still be sold we solve suitable
linear programs. We will show that if the outcome of the auction did not fulfill the
characterization of Pareto-optimality given in Section 3.3, i.e., if it contained a trad-
ing swap sequence, then one of the linear programs solved by the auction would
not have computed an optimal solution. Since this is not possible, it will follow that
the outcome is PO. A formal description of the auction is given in Algorithm 3.1.

4All the arguments go through if we simply assume that vi ∈ Q≥0 for all i ∈ N and there exists
a publicly known value z ∈ R>0 such that for all bidders i and i′ either vi = vi′ or |vi − vi′ | ≥ z.
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Algorithm 3.1: Clinching auction for divisible slots
Input: N, I, α, κ, v, β

1 π ← 0; ci ← 0, pi ← 0, di ←∞ ∀i ∈ N
2 while

∑
i∈N ci <

∑
j∈I αj do

/* unsold weighted capacity exists */
3 forall the i′ in N with di′ > Di′(βi′ − pi′ , π + 1) do

/* demand of bidder i′ has to be updated */
/* solve linear program for bidder i′ */

4 (X, γ)← Compute solution of LP 3.1 for (c, d, i′)
/* update weighted capacity, payment, and demand

variable of bidder i′ */
5 (ci′ , pi′)← (ci′ + γi′ , pi′ + γi′π)
6 di′ ← Di′(βi′ − pi′ , π + 1)

/* increase price */
7 π ← π + 1

8 return (X, p)

e input values of Algorithm 3.1 are the bids v, budget limits β, and slot con-
straints κ that the bidders communicate to the auctioneer at the beginning of the
auction, and information about the qualities of the slots α. We assume that bidders
bid their valuation because Proposition 3.9 shows that bidding the valuation is a
dominant strategy; thus, we use vi for bidder i’s bid and valuation. Note that the
auction is a so called “one-shot auction”; the bidders are asked once for their bids
at the beginning of the auction and then they cannot input any further data. e
state of the auction is defined by the current price π, the weighted capacity ci that
bidder i ∈ N has clinched so far, and the payment pi that has been charged so far
to bidder i. Moreover, the demand of bidder i for weighted capacity is computed by
the mechanism based on i’s remaining budget βi − pi, the current price π, and the
bid vi: e demandDi(βi−pi, π) is (βi−pi)/π if vi ≥ π > 0, it is infinite if π = 0,
and it is zero otherwise.

At the beginning of the auction the price π is zero and the demand variable
for each bidder i is set to di = ∞. Furthermore, in Linear Program 3.1, bidder i′
and the coefficients c and d change during the auction, while the coefficients α
and κ are fixed. For each iteration of the while-loop the auction first solves Linear
Program 3.1 for one of the bidders i′ who has di′ > Di′(βi′ − pi′ , π + 1). It sells
bidder i′ the respective γi′ for price π. Next it updates bidder i′’s demand variable
di′ . If bidder i′ reported a valuation vi′ less than π + 1 the auction sets di′ = 0
and bidder i′ cannot get further weighted capacity. Otherwise bidder i′ might get
further weighted capacity in the next iteration of the while-loop but has to pay a
price for it of at least π+1. e auction continues the previous step until di of each
bidder i corresponds to his demand for price π + 1. en it sets π to π + 1.
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Linear Program 3.1.

minimize γi′

s.t.: (a)
∑
i∈N

xi,j = 1 ∀j ∈ I ▷ assign all slots

(b)
∑
j∈I

xi,j = κi ∀i ∈ N ▷ slot constraint

(c)
∑
j∈I

xi,j αj − γi = ci ∀i ∈ N ▷ assign value to γi

(d) γi ≤ di ∀i ∈ N ▷ demand constraint

(e) xi,j ≥ 0 ∀i ∈ N,∀j ∈ I

() γi ≥ 0 ∀i ∈ N

e crucial point of the auction is that it sells only weighted capacity γi′ to
bidder i′ at a certain price π, if it can sell

∑
j∈I αj −

∑
i∈N ci − γi′ to the other

bidders but not more. e auction computes γi′ by solving an LP. We use an LP as
there are two types of constraints to consider: the slot constraint in line (b) of the LP,
which constrains “unweighted” capacity, and the demand constraint in line (d) of the
LP, which is implied by the budget limit, and which constrains weighted capacity.
In the homogeneous item seing studied by Dobzinski et al. [30] and Bhaacharya
et al. [11] there are no slot constraints and the demand constraints are unweighted
(i.e., αj = 1 for all j ∈ I). us, no LP is needed to decide what amount to sell to
whom.

To illustrate the mechanism we give the following example.

Example: ere are two slots with qualities α1 = 1 and α2 = 2. Bidder 1 has
valuation v1 = 1, budget β1 = 1, and slot constraint κ1 = 1. Bidder 2 has valuation
v2 = 2, budget β2 = 0.5, and slot constraint κ2 = 1. e auction starts for both
bidders with a price of zero and thus their demand is infinite. First we solve an LP
for bidder 1. He is assigned a weighted capacity of one for price zero, since the most
weighted capacity that we can assign to bidder 2 is the quality of slot 2. en by
updating his demand variable we implicitly set the price of bidder 1 to one. Next, we
solve an LP for bidder 2. Aer this we sell a weighted capacity of one to bidder 2,
since the most weighted capacity that we can assign to bidder 1 is the quality of
slot 2 and he can also afford just an additional weighted capacity of one. en we
set the price of bidder 2 implicitly to one and continue with the next iteration. We
solve an LP for bidder 1; bidder 2 can only afford an additional weighted capacity
of one half. Hence, we have to sell the other half that is le to bidder 1. Next we
sell the remaining half to bidder 2. Each bidder gets a weighted capacity of 1.5 and
pays 0.5. e only possible allocation is that each bidder gets half of the first slot
and half of the second slot.
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It is crucial for the progress and the correctness of the mechanism that there is
a feasible solution for each LP we try to solve.

Lemma 3.8. ere exists a feasible solution for all the linear programs that Algo-
rithm 3.1 has to solve.

Proof. We show the claim by induction on the linear programs that Algorithm 3.1
solves. Let LPt be the t-th such LP.ere is a feasible solution for LP1 as the demand
di of every bidder is unlimited. Hence, we can setX such that

∑
j∈I xi,j = κi ∀i ∈

N and can make γi as large as necessary for every bidder i. Next let us inductively
assume that there was a feasible solution for LPt. As there exists a feasible solution
for LPt, we obtain an optimal solution (X, γ) by solving LPt. Aer the call, ci′ is
increased by γi′ , and thus, (X, γf) with γf

i = γi for i ̸= i′ and γf
i′ = 0 for i = i′ is a

feasible solution of LPt+1, which uses the new c-values. Since γf
i′ = 0, we know that

(X, γf) is a feasible solution for LPt+1 even if the demand variable di′ was decreased.
us the inductive claim holds.

e previous lemma implies that the final allocation X gives a feasible solution
for the final LP. us, X fulfills conditions (1) and (2) for a feasible outcome. Con-
dition (3) is also fulfilled as by the definition of the demand of a bidder, the auction
guarantees that βi ≥ pi for all i ∈ N . us, the outcome (X, p) computed by the
auction is a feasible outcome. As no bidder is assigned weighted capacity if the price
is above his valuation and the mechanism never pays the bidders, the auction is IR.
As it is an increasing price auction, it is also IC. We show this formally in the next
proposition.

Proposition 3.9. e auction in Algorithm 3.1 is individually rational and incentive
compatible.

Proof. Since no bidder will ever pay a higher price than his reported valuation and
the demand is set so that βi ≥ pi, individual rationality follows.

We next show incentive compatibility and use b for the bids and v for the real
valuations. First observe that a bidder i with vi = 0 cannot increase his utility by
bidding bi > 0. Bidder i’s utility is zero when bidding bi = 0 and cannot become
positive by bidding bi > 0.

Let us now consider a bidder i with vi > 0. We first show that our ordering
assumption causes no problems. Observe that if i bids bi = 0 then i is selected in
an earlier or the same iteration of the for-loop during the first iteration of the while-
loopwhen the price for the bidder is zero. at is, the set of bidders processed before
iwhen bi = 0 is a subset of the set of bidders processed before iwhen bi = vi. us,
all the bidders with positive bid still have infinite demand and the optimal solution
of the LP for i cannot increase. More formally, assume first that i bids his valuation
bi = vi, let the solution of the first LP for bidder i be (X, γ), and let the parameters
of the LP be d and c. Next consider the case where i bids bi = 0, let the first LP
for bidder i be LP′, and let the parameters of LP′ be d′ and c′. It holds that c′ ≤ c
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and d′ ≥ d. Moreover, for all u with cu > c′u holds d′u = ∞. It follows that
(1) γ′ := γ + c − c′ ≤ d′ by γ ≤ d and (2) 0 ≤ γ ≤ γ′. us, (X, γ′) is a feasible
solution for LP′ with objective value γ′i = γi. It follows that the optimal value is at
most γi. Since bidder i cannot obtain weighted capacity in the next iterations of the
while-loop if he bids bi = 0 and a bidder never pays a higher price than his reported
valuation it follows that bidding bi = 0 does not increase i’s utility.

Again consider a bidder i with vi > 0 and recall that by the construction of
the auction, each bidder i with vi > 0 never pays a higher price than his reported
valuation. If bidder i’s reported valuation is bi and 0 < bi < vi, his demand variable
di is zero for all prices larger than bi. us, his utility cannot increase by reporting
bi as the weighted capacity he gets for each price π ≤ bi cannot increase and he
will lose all weighted capacity that he clinched at a price larger than bi. Moreover, if
his reported valuation is bi > vi, he gets the same weighted capacity for each price
π ≤ vi. He might receive additional weighted capacity at a price larger vi, but this
cannot increase his utility. us, the auction is IC.

We show finally that the outcome (X, p) our auction computes does not contain
any trading swap sequence, and thus, by eorem 3.2 it is PO. e proof shows that
every trading swap sequence in (X, p) would lead to a superior solution to one
of the linear programs solved by the mechanism. Since the mechanism found an
optimal solution this leads to a contradiction.

eorem3.10. eoutcome returned by the auction in Algorithm 3.1 is Pareto-optimal.

Proof. We will show that the outcome does not contain any tss. Let (X f, pf) be
the final outcome computed by the auction and assume by contradiction that there
exists a tss (δ, a) where the length of a is k + 1. We define u = a0 and w =
ak. Consider the outcome (X ′, p′) that results from (X f, pf) through the tss (δ′, a)
where δ′ = δ/2 and that is Pareto-superior to (X f, pf) by Proposition 3.3. Define
cfi :=

∑
j∈I αjx

f
i,j and c′i :=

∑
j∈I αjx

′
i,j for all bidders i. Note that c′w = cfw − δ′,

c′u = cfu + δ′, and c′i = cfi ∀i ∈ N \ {u,w} by (A2).
We will show that (X ′, p′) can be used to construct a smaller feasible solution

to one of the linear programs solved by the algorithm. Since the linear program has
found the minimal solution this leads to a contradiction with the assumption that
there exists a tss in (X f, pf). e value cw of bidder w increases only when an LP
was trying to minimize γw and returns a non-zero value for γw. Since cfw > c′w,
there exists a unique LP solved for bidder w by the auction that has parameters c∗
and d∗, for which c∗w ≤ c′w, and where the solution (X∗, γ∗) satisfies c∗w+γ∗w > c′w.
We name the linear program LP∗ and show the contradiction for it. Let π∗ be the
price and p∗ be the payment vector at the time when we solve LP∗.

We first show that the outcome of the auction (X f, pf) corresponds to a feasible
solution (X f, γf) for LP∗ where γf

i = cfi− c∗i for all i ∈ N and that (X f, γf) actually
fulfills a stronger version of Constraint (d).
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Claim 3.11. e solution (X f, γf) is feasible for LP∗. It holds that (1) if π∗ > 0 then

γf
i ≤ d∗i −

βi−pf
i

π∗ for all i ∈ N with d∗i > Di(βi − p∗i , π
∗ + 1) and (2) for all i ∈ N

with d∗i ≤ Di(βi − p∗i , π
∗ + 1) and vi ≥ π∗ + 1 it holds that γf

i ≤ d∗i −
βi−pf

i
π∗+1 .

Proof. Let i be a bidder in N . First we show that (X f, γf) fulfills the constraints of
LP∗. Since the outcome (Xf, pf) is derived from the final linear program executed
by the algorithm, Xf fulfills the Constraints (a), (b), and (e). Constraint (c) holds by
definition of γf and Constraint () holds because γf = cf−c∗ ≥ 0. It remains to show
that (d) is fulfilled as well. Recall that if π∗ = 0 the case d∗i > Di(βi − p∗i , π

∗ + 1)
takes place before the demand of bidder i has been updated in the first iteration
of the while-loop. us, if π∗ = 0 and d∗i > Di(βi − p∗i , π

∗ + 1) then d∗i = ∞
and (d) holds. Moreover, d∗i ≤ Di(βi − p∗i , π

∗ + 1) and vi < π∗ + 1 imply d∗i =
Di(βi − p∗i , π

∗ + 1) = 0. It follows that γf
i has to be zero by the condition of the

for-loop, and thus, (d) holds. Otherwise Constraint (d) will follow from (1) and (2).
For (1) and (2) notice that (βi − pfi) is the remaining budget of bidder i at the

end of the auction, which is, the money not spent by i, and that bidder i clinched
γf
i = cfi − c∗i “weighted capacity” aer LP∗ was solved.

To (1): Consider first the case where π∗ > 0 and d∗i > Di(βi−p∗i , π
∗+1). Note

that bidder i has a remaining budget of d∗iπ∗ when LP∗ is solved. us, bidder i
pays d∗iπ∗−(βi−pfi) for all the “weighted capacity” γf

i that was not clinched before
LP∗ was solved. Moreover, the price that he pays per “weighted capacity” in this
and the following iterations is at least π∗. It follows that γf

iπ
∗ ≤ d∗iπ

∗ − (βi − pfi).
To (2): Consider next a bidder i ∈ N with d∗i ≤ Di(βi − p∗i , π

∗ + 1) and
vi ≥ π∗+1. By line 6 it holds that d∗i is equal toDi(βi−p∗i , π∗) orDi(βi−p∗i , π∗+1).
SinceDi(βi− p∗i , π

∗ +1) ≤ Di(βi− p∗i , π
∗) it holds that d∗i = Di(βi− p∗i , π

∗ +1).
Note that every such bidder has a remaining budget of d∗i (π∗ + 1) when LP∗ is
solved. us, bidder i pays d∗i (π∗+1)− (βi− pfi) for all the “weighted capacity” γf

i

that was not clinched before LP∗ was solved. Moreover, the price that he pays per
“weighted capacity” in this and the following iterations is at least π∗ +1. It follows
that γf

i(π
∗ + 1) ≤ d∗i (π

∗ + 1)− (βi − pfi).

Next we define γ′i = c′i − c∗i for all i ∈ N and show that (X ′, γ′) is a feasible
solution of LP∗ and that γ′w < γ∗w, thus leading to a contradiction. By (A2) and Claim
3.11 it holds that X ′ satisfies Constraints (a) and (b) for LP∗. By the definition of γ′
Constraint (c) also holds. Constraint (e) is satisfied for X ′ by Claim 3.11 and since
(S3) holds for (δ, a), and thus, also for (δ′, a). Constraint () is satisfied since c′i ≥ c∗i
for all i ∈ N : LP∗ was selected such that c′w ≥ c∗w, and we have c′i ≥ cfi ≥ c∗i for all
i ∈ N \ {w}. We next show that also Constraint (d) is satisfied. First note that for
all i ∈ N \{u,w}we know that γ′i = γf

i, and thus, Constraint (d) holds for such i by
Claim 3.11. For i = w, it holds that c′i < cfi, and thus, γ′w < γf

w ≤ d∗w by Claim 3.11.
Hence Constraint (d) also holds for i = w. For i = u, we know that γ′u = γf

u + δ′

as c′u = cfu + δ′ and we have to show that d∗u ≥ γ′u.
We first consider the case π∗ = 0. Since vu > vw and vw ≥ 0 we know that

vu ≥ π∗ + 1. Assume first that d∗u > Du(βu − p∗u, π
∗ + 1). us, the demand of
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bidder u was not updated when LP∗ was called and is still infinite. Hence, d∗u ≥ γ′u.
Next assume that d∗u ≤ Du(βu − p∗u, π

∗ + 1). us, the demand of bidder u was
already updated when LP∗ was called forw; by the ordering of the input this implies
that vw > 0, i.e., vw ≥ π∗ + 1. Hence, βu − pfu ≥ p′u − pfu = vwδ

′ ≥ (π∗ + 1)δ′. By
Claim 3.11 and vu ≥ π∗ + 1 it follows that d∗u ≥ γf

u + βu−pf
u

π∗+1 ≥ γf
u + δ′ = γ′u.

Next, we consider the case π∗ > 0. Since we solve LP∗ for w we know that
d∗w > 0 when LP∗ is solved, and thus, vw ≥ π∗. Hence, βu − pfu ≥ (pfu + vwδ) −
pfu = vwδ ≥ π∗δ. Assume first that d∗u > Du(βu − p∗u, π

∗ + 1). By Claim 3.11
it follows that d∗u ≥ γf

u + βu−pf
u

π∗ ≥ γf
u + δ = γ′u + δ − δ′ > γ′u. Next assume

that d∗u ≤ Du(βu − p∗u, π
∗ + 1). By Claim 3.11 and vu ≥ π∗ + 1 it follows that

d∗u ≥ γf
u + βu−pf

u
π∗+1 ≥ γf

u + δ π∗

π∗+1 ≥ γf
u + δ 1

2 = γf
u + δ′ = γ′u.

It remains to show that γ′w < γ∗w. Recall that by the definition of LP∗ it holds
that c∗w +γ∗w > c′w, while, by definition of γ′w, c′w = c∗w +γ′w. us γ′w < γ∗w, which
leads to the desired contradiction.

3.5 Randomized Clining Auction for the Indivisible Case

We will now use the outcome computed by the deterministic auction for divisible
slots to give a randomized auction for multiple keywords with indivisible slots that
ensures that bidder i receives at most κi slots for each keyword. e randomized
auction has to assign to every slot j ∈ I exactly one bidder i ∈ N for each keyword
r ∈ R. We call a distribution over outcomes for the indivisible case Pareto-superior
to another such distribution, if the expected utility of a bidder or the auctioneer is
higher, while the expected utilities of the others are at least as large. If a distribu-
tion has no Pareto-superior distribution, we call it Pareto-optimal. e basic idea is
as follows: given the PO outcome for the divisible case, we construct a distribution
over outcomes of the indivisible case such that the expected utility of every bidder
and of the auctioneer is the same as the utility of the bidder and the auctioneer in
the divisible case. e mechanism for the indivisible case would, thus, first call the
mechanism for the divisible case (with the same input) and then convert the result-
ing outcome (Xd, pd) into a representation of a distribution over PO outcomes for
the indivisible case. It then samples from this representation to receive the outcome
that it outputs. As during all these steps the expected utility of the bidders and the
auctioneer remains unchanged and the mechanism for the divisible case is IR and
IC, the mechanism for the indivisible case is IR in expectation and IC in expectation.
To show that the final outcome is PO in expectation and also PO ex post we use the
following lemma.

Lemma 3.12. For every probability distribution over feasible outcomes in the indivis-
ible case there exists a feasible outcome in the divisible case such that the utilities of
the bidders and the auctioneer in the divisible case equal their corresponding expected
utilities in the indivisible case.
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Proof. We show first that for every feasible outcome (X, p) in the indivisible case
there exists feasible outcome (Xd, p) in the divisible case where all the bidders and
the auctioneer have the same utility. e utility of the auctioneer stays unchanged
because we leave the payments unchanged. We set xdi,j = 1

|R|
∑

r∈R xi,j,r for all
i ∈ N and j ∈ I . e utility of bidder i is the same for (X, p) and (Xd, p) be-
cause the utility of bidder i is

∑
j∈I(

αj

|R|
∑

r∈R xi,j,r)vi − pi =
∑

j∈I αjx
d
i,jvi − pi

for (X, p). e slot constraint for (X, p) implies κi ≥ maxr∈R
∑

j∈I xi,j,r ≥∑
j∈I(

1
|R|
∑

r∈R xi,j,r) =
∑

j∈I x
d
i,j for all i ∈ N , and therefore it implies the slot

constraint in (Xd, p). Since all the slots are fully assigned to the bidders in (X, p),
and consequently for (Xd, p), it follows that (Xd, p) is feasible.

Given a probability distribution over feasible outcomes for the indivisible case,
transform each feasible outcome that has a non-zero probability into a feasible out-
come for the divisible case. en create a new outcome for the divisible case by
adding up all of these feasible outcomes for the divisible case weighted by the prob-
ability distribution. Since the weights are created by a probability distribution, they
add up to one, and thus, the resulting combined outcome fulfills Conditions (1) and
(2) of a feasible outcome. As the payment is identical to the payment for the indi-
visible case, Condition (3) is also fulfilled.

Lemma 3.12 implies that any probability distribution over feasible outcomes in
the indivisible case that is Pareto-superior to the distribution generated by our auc-
tion would lead to a feasible outcome for the divisible case that is Pareto-superior
to (Xd, pd). is is not possible as (Xd, pd) is PO. us, the mechanism for the in-
divisible case described above is PO in expectation. Additionally, since our auction
selects only outcomes having a positive probability, each realized outcome is ex-
post Pareto-optimal: if in the indivisible case there existed an in expectation Pareto-
superior randomized outcome (X̄∗, p̄∗) to one of the outcomes that gets chosenwith
a positive probability in our auction (X̄, p̄), then a randomized outcome (X∗, p∗)
would exist that is in expectation Pareto-superior to the randomized outcome of
the auction (X, p). e randomized outcome (X∗, p∗) equals (X, p) if an allocation
other than (X̄, p̄) gets drawn from (X, p), and it samples from (X̄∗, p̄∗) otherwise.
us, by Lemma 3.12 a Pareto-superior outcome would exist in the divisible case.
By the same argument as above this would lead to a contradiction.

We still need to explain how to use the PO outcome (Xd, pd) for the divisible
case to give a probability distribution for the indivisible case such that the expected
utility of every bidder for the probability distribution is equal to their utility in the
divisible case. We will use the following steps: (a) We will reduce the computation
of the probability distribution to a scheduling problem with preemption on uniform
processors with the objective to minimize the finishing time. (b) We use Birkho’s
theorem [101] to show that an optimal schedule exists and has finishing time one.
(c) en we argue that an algorithm by Gonzalez and Sahni [55] can be used to
compute a schedule with finishing time one. is schedule represents a probability
distribution on feasible outcomes in the indivisible case and we show how to use it
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to sample from the probability distribution. Computing the probability distribution
and sampling from it can be done in time linear in the number of slots m.

We first define the input and the output clearly. For the computation of the
probability distribution the input is the set of slots I , the set of bidders N , the slot
constraints κi for all i ∈ N , the qualities αj for all j ∈ I , and a feasible divis-
ible outcome (Xd, pd) that also defines the weighted capacities cdi for all i ∈ N .
e output is a function that gives us for each number t ∈ (0, 1] an allocation
X(t) of slots to bidders, where each bidder i ∈ N gets κi slots. e allocation
X(t) is a binary matrix where (X(t))i,j = 1 if and only if slot j is assigned to bid-
der i. For a random number T that is uniformly distributed on (0, 1], the expected
weighted capacity E

[∑
j∈I(X(T ))i,jαj

]
for each bidder i ∈ N has to be equal to

cdi . Given the allocation function X(t) it suffices to draw |R| numbers t1, . . . , t|R|
uniformly from (0, 1], use the allocation X(tr) for keyword r, and set p = pd. e
expected utility of all bidders i ∈ N is equal to their utility in (Xd, pd) because
E
[
(
∑

j∈I
αj

|R|
∑

r∈R(X(T ))i,j)vi − pi

]
=
(

1
|R|
∑

r∈R E
[∑

j∈I(X(T ))i,jαj

])
vi−

pi = ( 1
|R|
∑

r∈R cdi )vi − pi = cdi vi − pi.
(a) In the scheduling problemwe consider, we havem jobswith length l1, . . . , lm

and m processors with speed s1, . . . , sm as input. Jobs can be processed on multi-
ple processors, but not at the same time, and preemption is allowed. In a feasi-
ble schedule every job has to be finished. at is, if tλ,j is the time length that
job λ is processed on processor j in the schedule then

∑m
j=1 tλ,jsj = lλ for all

λ ∈ {1, . . . ,m}. e finishing time of a schedule is the time it takes until every job
is finished. e goal in the scheduling problem is to find a schedule with minimal
finishing time.

We first show how to convert the input for the computation of the probability
distribution to the input of the scheduling problem. Recall that we suppose m =∑n

i=1 κi. We setλ0 := 0, replace each bidder i ∈ N with κi jobsλi−1+1, . . . , λi−1+

κi =: λi having length cdi
κi
, set Λ(i) := {λi−1 +1, . . . , λi}, and set Λ :=

∪
i∈N Λ(i).

Furthermore, each slot j ∈ I is a processor with speed αj .
Next we show that a schedule with finishing time one gives us the desired al-

location function. Suppose that we have an allocation of jobs to processors on the
interval (0, 1] where no job is processed on multiple processors at the same time.
As each processor represents one of the slots in I , we get an allocation function
X(t) if we replace for each time t ∈ (0, 1] and for each bidder i ∈ N the jobs in
Λ(i) with bidder i. As |Λ(i)| = κi each bidder i gets κi slots assigned and each slot
is assigned to one bidder. For T ∼ U(0, 1] we have E [(X(T ))i,j ] =

∑
λ∈Λ(i) tλ,j

for all i ∈ N and j ∈ I . us, E
[∑

j∈I(X(T ))i,jαj

]
=
∑

j∈I E [(X(T ))i,j ]αj =∑
j∈I
∑

λ∈Λ(i) tλ,jαj =
∑

λ∈Λ(i)
∑

j∈I tλ,jαj =
∑

λ∈Λ(i)
cdi
κi

= cdi .

(b) We now argue that the minimal finishing time t is one for scheduling prob-
lems when the inputs are generated by the above reduction. First we restate Birk-
ho’s theorem, which we use for the argument.
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eorem 3.13 (Birkho’s theorem [101]). Each doubly stochastic matrix is a convex
combination of permutation matrices.

Recall that |Λ| = |I| because |Λ| =
∑

i∈N κi = m = |I|. We build an
m ×m-dimensional square matrix T as follows. We assign for each bidder i ∈ N

each job λ ∈ Λ(i) to processor j ∈ I for time tλ,j =
xd
i,j

κi
. e matrix T has

the entries tλ,j where λ ∈ Λ and j ∈ I . We show next that T is doubly sto-
chastic, that is, the entries of the matrix are non-negative and for each column
and for each row the sum of the entries is one. e sums are non-negative be-
cause xdi,j ≥ 0 and κi > 0 for all i ∈ N and j ∈ I . As the allocation Xd

is feasible and
∑

j∈I x
d
i,j = κi for all i ∈ N because m =

∑
i∈N κi, it follows

that for each column j ∈ I of T it holds
∑

λ∈Λ tλ,j =
∑

i∈N
∑

λ∈Λ(i)
xd
i,j

κi
=∑

i∈N xdi,j
∑

λ∈Λ(i)
1
κi

=
∑

i∈N xdi,j = 1, and for each row λ ∈ Λ(i) with i ∈ N

of T it holds
∑

j∈I tλ,j =
∑

j∈I
xd
i,j

κi
= 1

κi

∑
j∈I x

d
i,j = 1. Since T is doubly sto-

chastic, we can decompose T by Birkho’s theorem into a convex combination of
permutation matrices. In a permutation matrix there is one entry in each column
and each row that is one and all other entries are zero. Let k be the number of
permutation matrices in the convex combination and ζl be the coefficient of the
l’th permutation matrix Pl for all l ∈ {1, . . . , k}. We construct our schedule in
the following way: for the time interval (

∑l−1
s=1 ζs,

∑l
s=1 ζs] we assign job λ to

processor j if (Pl)λ,j = 1. Every job λ ∈ Λ(i) for all i ∈ N is finished because∑
j∈I(

∑k
l=1(Pl)λ,jζl)αj =

∑
j∈I tλ,jαj =

∑
j∈I

xd
i,j

κi
αj = 1

κi

∑
j∈I x

d
i,jαj =

cdi
κi
.

By the definition of a permutation matrix, it follows that each job is computed on
exactly one processor at the same time, and each processor computes exactly one
job at the same time. e finishing time is one because the time intervals of the
schedule are the coefficients of a convex combination, and thus,

∑k
l=1 ζl = 1. As

the schedule has no idle time, the finishing time cannot be less than one. us, every
optimal schedule has finishing time exactly one.

(c) We can use the scheduling algorithm by Gonzalez and Sahni [55] that min-
imizes the finishing time to compute an optimal schedule with finishing time one.
e schedules computed by the algorithm have at most 2(m− 1) preemptions, and
the computation has a time complexity that is linear in the number of jobs |Λ| = m.
e algorithm outputs a schedule for each job, which is represented by a list of the
processors on which the job gets processed; the lists contain the start time and the
end time of the allocations of the jobs to the processors. us, we can represent the
allocation functionX(t) by merging the lists of all the jobs in Λ(i) to a list for each
bidder i ∈ N . We can evaluate the i’th row of X(t) for a certain t by traversing
the list of bidder i and seing (X(t))i,j = 1 if and only if processor j is in the list
and t ∈ (a, b] where a is the start time and b is the end time in the list entry. To
sample from the probability distribution for the indivisible case we pick |R| random
numbers tr , 1 ≤ r ≤ |R|, uniformly at random from (0, 1] and set for each bidder i
and each slot j the value xi,j,r = X(tr)i,j .
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3.6. Conclusion

e following theorem summarizes the results in this section.

eorem 3.14. A PO and IR outcome for the divisible case can be converted in polyno-
mial time without a change of the (expected) utilities into a randomized outcome for
the indivisible case that is PO in expectation, PO ex post, and IR in expectation. is
results in a mechanism that is PO in expectation, PO ex post, IR in expectation, and IC
in expectation.

3.6 Conclusion

We design an auction for sponsored search where the slots of multiple keywords
are auctioned at the same time. We assume that the number of slots is the same for
all keywords and that the click-through rates only depend on the position of the
slot and not on the keyword. Furthermore, we assume that bidders are interested
in all keywords but can only obtain a limited number of slots of each keyword.
Each bidder defines a budget limit and the auction cannot charge him a payment
above this limit. e auction that we design for this seing is incentive compatible
in expectation, individually rational in expectation, and finds outcomes that are
Pareto-optimal ex post/in expectation.

e possibility to generalize our results to more complex sponsored search set-
tings is restricted by the following impossibility results. We have shown in eo-
rem 2.6 in Chapter 2 that no deterministic auction can achieve incentive compat-
ibility, individual rationality, and Pareto-optimality for the seing studied in this
chapter. is follows by considering a single keyword and bidders who are inter-
ested in all slots of this keyword. Furthermore, no deterministic auction can achieve
incentive compatibility, individual rationality, and Pareto-optimality if the bidders
can bid different amounts for the different keywords; this follows from the impossi-
bility result for multidimensional valuations in Fiat et al. [42]. Moreover, this result
has been extended to randomized mechanisms that achieve incentive compatible in
expectation, individual rationality in expectation, and Pareto-optimality in expec-
tation in eorem 2.14 in Chapter 2. However, as shown in Colini-Baldeschi et al.
[24]5 there exists an auction for bidders that have interest sets for the keywords;
this result holds under the constraint that all slots have the same click-through rate.
e auction generalizes an auction mechanism by Fiat et al. [42]. It is an interest-
ing open question if the auction defined in this chapter can be extended to seings
where slots have different click-through rates and bidders have interest sets for key-
words.

5e results presented in this chapter are published in the same publication.
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CHAPTER 4
Valuation Compressions in
VCG-Based Combinatorial

Auctions

4.1 Introduction

For combinatorial auctions the incentive compatible mechanism that maximizes so-
cial welfare is the VCG mechanism (Vickrey [104], Clarke [23], and Groves [57]).
Unfortunately, for many valuation spaces computing the VCG allocation and pay-
ments is a computationally hard problem. is is, for example, the case for sub-
additive, fractionally subadditive, and submodular valuations (see Lehmann et al.
[80]). We thus study the performance of the VCG mechanism in seings in which
the bidders are forced to use bids from a subspace of the valuation space for which
the allocation and payments can be computed efficiently. is is obviously the case
for additive bids, where the VCG-based mechanism can be interpreted as a sepa-
rate second-price auction for each item. But it is also the case for the syntactically
defined bidding space OXS, which stands for ORs of XORs of singletons, and the
semantically defined bidding space GS, which stands for gross substitutes. For OXS
bids polynomial-time algorithms for finding a maximum weight matching in a bi-
partite graph such as the algorithms of Tarjan [103] and Fredman and Tarjan [44]
can be used. For GS bids there is a fully polynomial-time approximation scheme
due to Kelso and Crawford [74] and polynomial-time algorithms based on linear
programming by Vries et al. [105] and convolutions of M ♮-concave functions (see
Murota [87, 88] and Murota and Tamura [89]).

One consequence of restrictions of this kind, that we refer to as valuation com-
pressions, is that there is typically no longer a truthful dominant-strategy equilib-
rium that maximizes social welfare. We therefore analyze the Price of Anarchy; that
is, the ratio between the optimal welfare and the worst possible social welfare at
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equilibrium. We focus on equilibrium concepts such as correlated equilibria and
coarse correlated equilibria, which can be computed in polynomial time (see Jiang
and Leyton-Brown [71] and Papadimitriou and Roughgarden [95]), and naturally
emerge from learning processes in which the bidders minimize external or internal
regret (see Cesa-Bianchi et al. [20], Foster and Vohra [43], Hart and Mas-Colell [62],
and Lilestone and Warmuth [81]).

4.1.1 Contribution

We start our analysis by showing that for restrictions from subadditive valuations
to additive bids deciding whether a pure Nash equilibrium exists is NP-hard. is
shows the necessity to study other bidding functions or other equilibrium concepts.

We then define a smoothness notion for mechanisms that we refer to as relaxed
smoothness. is smoothness notion is weaker in some aspects and stronger in an-
other aspect than the weak smoothness notion of Syrgkanis and Tardos [102]. It is
weaker in that it allows a bidder’s deviating bid to depend on the distribution of the
bids of the other bidders. It is stronger in that it disallows the bidder’s deviating bid
to depend on his own bid. e former gives us more power to choose the deviating
bid, and thus has the potential to lead to beer bounds. e laer is needed to en-
sure that the bounds on the welfare loss extend to coarse correlated equilibria and
minimization of external regret.

We use relaxed smoothness to prove an upper bound of 4 on the Price of An-
archy with respect to (coarse) correlated equilibria, additive bids, and subadditive
valuations. Similarly, we show that the average welfare obtained by minimization
of internal and external regret converges to 1/4-th of the optimal welfare. e
proofs of these bounds are based on the arguments used by Feldman et al. [41].
e bounds improve the previously known bounds for these solution concepts by
a logarithmic factor. We also use relaxed smoothness to prove bounds for restric-
tions to non-additive bids. For subadditive valuations the bounds are O(log(m))
resp. Ω(1/ log(m)), where m denotes the number of items. For fractionally subad-
ditive valuations the bounds are 2 resp. 1/2. e proofs require novel techniques as
non-additive bids lead to non-additive prices for whichmost of the techniques devel-
oped in prior work fail. e bounds extend the corresponding bounds of Bhawalkar
and Roughgarden [12] and Christodoulou et al. [22] from additive to non-additive
bids.

Finally, we prove lower bounds on the Price of Anarchy. By showing that VCG-
based mechanisms satisfy the outcome closure property of Milgrom [86] we show
that the Price of Anarchy with respect to pure Nash equilibria weakly increases
with expressiveness. We thus extend the lower bound of 2 from Christodoulou et al.
[22] from additive to non-additive bids. is shows that our upper bounds for frac-
tionally subadditive valuations are tight. We prove a lower bound of 2.4 on the Price
of Anarchywith respect to pure Nash equilibria that applies to restrictions from sub-
additive valuations to OXS bids. Together with the upper bound of 2 of Bhawalkar
and Roughgarden [12] for restrictions from subadditive valuations to additive bids
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this shows that more expressiveness can give rise to additional equilibria of poorer
efficiency. Note that non-efficient equilibria can also exist when the valuation and
bidding space coincide.

Bids Valuations
less general subadditive

additive [2, 2] [2, 4]
more general [2, 2] [2.4,O(log(m))]

Table 4.1: Summary of our results (bold) and the related work (reg-
ular) for coarse correlated equilibria and minimization of external
regret through repeated play. e range indicates upper and lower
bounds on the Price of Anarchy.

4.1.2 Related Work

e Price of Anarchy of restrictions to additive bids is analyzed in Bhawalkar and
Roughgarden [12], Christodoulou et al. [22], and Feldman et al. [41] for second-
price auctions and in Feldman et al. [41] and Hassidim et al. [63] for first price
auctions. e case where all items are identical, but additional items contribute less
to the valuation and bidders are forced to place additive bids is analyzed in Keijzer
et al. [73] and Markakis and Telelis [83]. Smooth games are defined and analyzed
in Roughgarden [98, 99]. e smoothness concept is extended to mechanisms in
Syrgkanis and Tardos [102]. An upper bound on the efficiency of the best Nash
equilibrium of a mechanism is given by Benisch et al. [10]; this bound increases
with somemeasure for expressiveness. Babaioff et al. [9] study, independently of our
work, the Price of Anarchy when bidding languages are restricted. A technique for
obtaining lower bounds on the Price of Anarchy that is based on the complexity of
computation and communication is introduced in Roughgarden [97]. Other results
on the hardness of computing equilibria of combinatorial auctions are given by Cai
and Papadimitriou [19].

4.2 Preliminaries

Combinatorial Auctions. In a combinatorial auction there is a set of n biddersN =
{1, . . . , n} and a set of m items I = {1, . . . ,m}. Each bidder i ∈ N employs
preferences over bundles of items, represented by a valuation function vi : P(I)→
R≥0. We use Vi for the class of valuation functions of bidder i, and V =

∏
i∈N Vi

for the class of joint valuations. We write v = (vi, v−i) ∈ V , where vi denotes
bidder i’s valuation and v−i denotes the valuations of all bidders other than i. We
assume that the valuation functions are normalized and monotone, i.e., vi(∅) = 0
and vi(S) ≤ vi(T ) for all S ⊆ T .
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We use the same notation for the bidding functions bi : P(I)→ R≥0. We useBi

for the class of bidding functions of bidder i, and B =
∏

i∈N Bi for the class of joint
bids. We write b = (bi, b−i) ∈ B, where bi denotes bidder i’s bid and b−i denotes
the bids of all bidders other than i. Furthermore, we take the same assumptions for
the bidding functions; we assume that they are normalized and monotone.

A mechanism M = (f, p) is defined by an allocation rule f : B → X (I) and
a payment rule p : B → Rn

≥0, where B is the class of bidding functions and X (I)
denotes the set of allocations consisting of all possible partitions X of the set of
items I into n sets X1, . . . , Xn. Given f(b) = X we set fi(b) = Xi for all i ∈ N
and b ∈ B. We define the social welfare of an allocation X ∈ X (I) as the sum
SW (X) =

∑
i∈N vi(Xi) of the bidders’ valuations and use OPT(v) to denote the

maximal achievable social welfare. We say that an allocation rule f is efficient if
for all bids b it chooses the allocation f(b) that maximizes the sum of the bidder’s
bids, i.e.,

∑
i∈N bi(fi(b)) = maxX∈X (I)

∑
i∈N bi(Xi). We assume quasi-linear pref-

erences, i.e., bidder i’s utility under mechanism M given valuations v and bids b is
ui(b, vi) = vi(fi(b))− pi(b).

We focus on the Vickrey-Clarke-Groves (VCG) mechanism [23, 57, 104]. Define
b̂−i(S) = maxX∈X (S)

∑
j ̸=i bj(Xj) for all S ⊆ I . e VCG mechanism starts

from an efficient allocation rule f and computes the payment of each bidder i as
pi(b) = b̂−i(I)− b̂−i(I \ fi(b)). As the payment pi(b) only depends on the bundle
fi(b) allocated to bidder i and the bids b−i of the bidders other than i, we also use
pi(fi(b), b−i) to denote bidder i’s payment.

If the bids are additive then the VCG prices are additive, i.e., for every bidder i
and every bundle S ⊆ I we have pi(S, b−i) =

∑
j∈S maxk ̸=i bk({j}). Further-

more, the set of items that a bidder wins in the VCG mechanism are the items for
which he has the highest bid, i.e., bidder i wins item j against bids b−i if bi({j}) ≥
maxk ̸=i bk({j}) = pi({j}, b−i) (ignoring ties). Many of the complications in this
chapter come from the fact that these two observations do not apply to non-additive
bids.

Valuation Compressions. Our main object of study in this chapter are valuation
compressions, i.e., restrictions of the class of bidding functions B to a strict subclass
of the class of valuation functions V .1 Specifically, we consider valuations and bids
from the following hierarchy due to Lehmann et al. [80],

OS ⊂ OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF ,

where OS stands for additive, GS for gross substitutes, SM for submodular, and CF
for subadditive.

e classes OXS and XOS are syntactically defined. Define OR (∨) as
(u ∨ w)(S) = maxT⊆S(u(T ) + w(S \ T )) and XOR (⊗) as (u ⊗ w)(S) =
max(u(S), w(S)). Define XS as the class of valuations that assign the same value

1is definition is consistent with the notion of simplification used in Düing et al. [35] and
Milgrom [86].
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to all bundles that contain a specific item and zero otherwise. en OXS is the class
of valuations that can be described by ORs of XORs of XS valuations and XOS is the
class of valuations that can be described by XORs of ORs of XS valuations.

Another important class is the class β-XOS, where β ≥ 1, of β-fractionally sub-
additive valuations. A valuation vi is β-fractionally subadditive if for every subset of
items T there exists an additive valuation ai such that (a)

∑
j∈T ai({j}) ≥ vi(T )/β

and (b)
∑

j∈S ai({j}) ≤ vi(S) for all S ⊆ T . It can be shown that the special
case β = 1 corresponds to the class XOS, and that the class CF is contained in
O(log(m))-XOS (see, e.g., eorem 5.2 in Bhawalkar and Roughgarden [12]). Func-
tions in XOS are called fractionally subadditive.

Solution Concepts. We use game-theoretic reasoning to analyze how bidders in-
teract with the mechanism; a desirable criterion is stability according to some so-
lution concept. In the complete information model that we consider the bidders are
assumed to know each others’ valuations.

e static solution concepts that we consider in this complete information set-
ting are:

DSE ⊂ PNE ⊂ MNE ⊂ CE ⊂ CCE ,

where DSE stands for dominant strategy equilibrium, PNE for pure Nash equilib-
rium, MNE for mixed Nash equilibrium, CE for correlated equilibrium, and CCE for
coarse correlated equilibrium.

In our analysis we only need the definitions of pure Nash and coarse correlated
equilibria. Bids b ∈ B constitute a pure Nash equilibrium (PNE) for valuations v ∈ V
if for every bidder i ∈ N and every bid b′i ∈ Bi, ui((bi, b−i), vi) ≥ ui((b

′
i, b−i), vi).

A distribution B over bids b ∈ B is a coarse correlated equilibrium (CCE) for val-
uations v ∈ V if for every bidder i ∈ N and every pure deviation b′i ∈ Bi,
Eb∼B [ui((bi, b−i), vi)] ≥ Eb∼B [ui((b

′
i, b−i), vi)].

e dynamic solution concept that we consider in this seing is regret mini-
mization. A sequence of bids b1, . . . , bT incurs vanishing average external regret if
for all bidders i,

∑T
t=1 ui((b

t
i, b

t
−i), vi) ≥ maxb′i

∑T
t=1 ui((b

′
i, b

t
−i), vi)− o(T ) holds,

where o(·) denotes the lile-oh notation. e empirical distribution of bids in a se-
quence of bids that incurs vanishing external regret converges to a coarse correlated
equilibrium (see, e.g., Blum and Mansour [15]).

Price of Anary. We quantify the welfare loss from valuation compressions by
means of the Price of Anarchy (PoA).

e PoA with respect to PNE for valuations v ∈ V is defined as the worst ratio
between the optimal social welfare OPT(v) and the welfare SW (f(b)) of a PNE
b ∈ B,

PoA(v) = sup
b: PNE

OPT(v)
SW (f(b))

.

Similarly, the PoAwith respect toMNE, CE, and CCE for valuations v ∈ V is the
worst ratio between the optimal social welfare SW (f(b)) and the expected welfare
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Eb∼B [SW (f(b))] of a MNE, CE, or CCE B,

PoA(v) = sup
B: MNE, CE or CCE

OPT(v)
Eb∼B [SW (f(b))]

.

We require that the bids bi for a given valuation vi are conservative (this re-
quirement is also called no-overbidding), i.e., bi(S) ≤ vi(S) for all bundles S ⊆ I .
Similar assumptions are made in the related work (Bhawalkar and Roughgarden
[12], Christodoulou et al. [22], and Feldman et al. [41]); they are motivated by the
risk of overpaying, for instance, due to uncertainty or strategic retaliation.

4.3 Hardness Result for PNE with Additive Bids

Our first result is that deciding whether there exists a pure Nash equilibrium of
the VCG mechanism for restrictions from subadditive valuations to additive bids is
NP-hard. e proof of this result is by reduction from 3P (see Garey and
Johnson [47]) and uses an example with no pure Nash equilibrium by Bhawalkar
and Roughgarden [12]. e same decision problem is simple for V ⊆ XOS because
pure Nash equilibria are guaranteed to exist (see Christodoulou et al. [22]).

eorem 4.1. Suppose that V = CF, B = OS, that the VCG mechanism is used, and
that bidders bid conservatively. en it is NP-hard to decide whether there exists a PNE.

Proof. Given an instance of 3P consisting of amultiset of 3m positive inte-
gers w1, . . . , w3m ∈ (W/4,W/2) that sum up tomW , we construct in polynomial
time an instance of a combinatorial auction in which the bidders have subadditive
valuations as follows:

e set of bidders is C1, . . . , Cm and D1, . . . , Dm. e set of items is I ∪ J ,
where I = {1, . . . , 3m} and J = {J1, . . . , J3m}. Let Ji = {Ji, Jm+i, J2m+i}.
Every bidder Ci has valuations

vCi(S) = max{vI,Ci(S), vJ ,Ci(S)}, where

vI,Ci(S) =
∑

e∈I∩S
we, and

vJ ,Ci(S) =


10W if |Ji ∩ S| = 3,

5W if |Ji ∩ S| ∈ {1, 2},
0 otherwise.

Every bidder Di has valuations

vDi(S) =


16W if |Ji ∩ S| = 3,

8W if |Ji ∩ S| ∈ {1, 2},
0 otherwise.
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e valuations for the items in J are motivated by an example for valuations with-
out a PNE in [12]. Note that our valuations are subadditive.

We show first that if there is a solution of our 3P instance then the
corresponding auction has a PNE. Let us assume that P1, . . . , Pm is a solution of
3P. We obtain a PNE when every bidder Ci bids wj for each j ∈ Pi and
zero for the other items; and every bidderDi bids 4W for each item in Ji. e first
step is to show that no bidder Ci would change his strategy. e utility of Ci is W ,
because Ci’s payment is zero. As the valuation function of Ci is the maximum of
his valuation for the items in I and the items in J we can study the strategies for I
and J separately. If Ci changed his bid and won another item in I , Ci would have
to pay his valuation for this item because there is a bidder Cj bidding on it, and,
thus, his utility would not increase. AsCi bids conservatively, Ci could win at most
one item of the items in Ji. His value for the item would be 5W , but the payment
would beDi’s bid of 4W . us, his utility would not be larger thanW if Ci won an
item of J . Hence, Ci does not want to change his bid. e second step is to show
that no bidder Di would change his strategy. is follows since the utility of every
bidder Di is 16W , and this is the highest utility that Di can obtain.

We will now show two facts that follow if the auction is in a PNE: (1) We first
show that in every PNE every bidderCi must have a utility of at leastW . To see this
denote the bids of bidderDi for the items Ji, Jm+i, J2m+i inJi by d1, d2, and d3 and
assume w.l.o.g. that d1 ≤ d2 ≤ d3. As bidderDi bids conservatively, d2+d3 ≤ 8W ,
and, thus, d1 ≤ 4W . If bidder Ci bade c1 = 5W for J1, Ci would win J1 and his
utility would be at least W , because Ci has to pay Di’s bid for J1. As Ci’s utility
in a PNE cannot be worse, his utility in a PNE has to be at least W . (2) Next we
show that in a PNE bidderCi cannot win any of the items in Ji. For a contradiction
suppose that bidder Ci wins at least one of the items in Ji by bidding c1, c2, and c3
for the items in Ji. en bidder Di does not win the whole set Ji and his utility is
at most 8W . As bidder Ci bids conservatively, ci + cj ≤ 5W for i ̸= j ∈ {1, 2, 3}.
en, c1 + c2 + c3 ≤ 7.5W . Bidder Di can however bid c1 + ϵ, c2 + ϵ, c3 + ϵ for
some ϵ > 0 without violating conservativeness, to win all items in Ji for a utility
of at least 16W − 7.5W > 8W . us, Di’s utility increases when Di changes his
bid, i.e., the auction is not in a PNE.

Now we use fact (1) and (2) to show that our instance of 3P has a
solution if the auction has a PNE. Let us assume that the auction is in a PNE. By
(1) we know that every bidder Ci gets at least utility W . Furthermore, by (2) we
know that every bidder Ci wins only items in I , pays zero and has exactly utility
W . Recall that all we with e ∈ I satisfy W/4 < wc < W/2. us, the valuation of
a bidderCi is larger than 4 ·W/4 = W for a subset of I withmore than 3 items and
is smaller than 2 ·W/2 = W for a subset of I with less than 3 items. Hence, every
bidderCi gets exactly 3 items in I and the assignment of the items in I corresponds
to a solution of 3P.
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4.4 Smoothness Notion and Extension Results

Next we define a smoothness notion for mechanisms. It is weaker in some aspects
and stronger in another aspect than the weak smoothness notion in Syrgkanis and
Tardos [102]. It is weaker because it allows bidder i’s deviating bid ai to depend on
the marginal distribution B−i of the bids b−i of the bidders other than i. is gives
us more power in choosing the deviating bid, which might lead to beer bounds. It
is stronger because it does not allow bidder i’s deviating bid ai to depend on his own
bid bi. is allows us to prove bounds that extend to coarse correlated equilibria and
not just correlated equilibria.

Definition 4.1. A mechanism is relaxed (λ, µ1, µ2)-smooth for λ, µ1, µ2 ≥ 0 if for
every valuation profile v ∈ V , every distribution over bids B, and every bidder i there
exists a bid ai(v,B−i) such that∑

i∈N
E

b−i∼B−i

[ui((ai, b−i), vi)]

≥ λ · OPT(v)− µ1 ·
∑
i∈N

E
b∼B

[pi(fi(b), b−i)]− µ2 ·
∑
i∈N

E
b∼B

[bi(fi(b))] .

eorem 4.2. If a mechanism is relaxed (λ, µ1, µ2)-smooth, then the Price of Anarchy
under conservative bidding with respect to coarse correlated equilibria is at most

max{µ1, 1}+ µ2

λ
.

Proof. Fix valuations v. Consider a coarse correlated equilibrium B. For each b
from the support of B denote the allocation for b by f(b) = (f1(b), . . . , fn(b)). Let
a = (a1, . . . , an) be defined as in Definition 4.1. en,

E
b∼B

[SW (f(b))] =
∑
i∈N

E
b∼B

[ui(b, vi)] +
∑
i∈N

E
b∼B

[pi(fi(b), b−i)]

≥
∑
i∈N

E
b−i∼B−i

[ui((ai, b−i), vi)] +
∑
i∈N

E
b∼B

[pi(fi(b), b−i)]

≥ λ OPT(v)− (µ1 − 1)
∑
i∈N

E
b∼B

[pi(fi(b), b−i)]− µ2

∑
i∈N

E
b∼B

[bi(fi(b))] ,

where the first equality uses the definition of ui(b, vi) as the difference between
vi(fi(b)) and pi(fi(b), b−i), the first inequality uses the fact that B is a coarse cor-
related equilibrium, and the second inequality holds because a = (a1, . . . , an) is
defined as in Definition 4.1.

Since the bids are conservative this can be rearranged to give

(1 + µ2) E
b∼B

[SW (f(b))] ≥ λ OPT(v)− (µ1 − 1)
∑
i∈N

E
b∼B

[pi(fi(b), b−i)] .
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For µ1 ≤ 1 the second term on the right hand side is lower bounded by zero and
the result follows by rearranging terms. For µ1 > 1we use that Eb∼B [pi(fi(b), b−i)]
≤ Eb∼B [vi(fi(b))] to lower bound the second term on the right hand side and the
result follows by rearranging terms.

eorem 4.3. If a mechanism is relaxed (λ, µ1, µ2)-smooth and (b1, . . . , bT ) is a se-
quence of conservative bids with vanishing external regret, then

1

T

T∑
t=1

SW (bt) ≥ λ

max{µ1, 1}+ µ2
· OPT(v)− o(1) .

Proof. Fix valuations v. Consider a sequence of bids b1, . . . , bT with vanishing av-
erage external regret. For each bt in the sequence of bids denote the corresponding
allocation by f(bt) = (f1(b

t), . . . , fn(b
t)). Let δti(ai) = ui((ai, b

t
−i), vi)−ui(b

t, vi)

and let ∆(a) = 1
T

∑T
t=1

∑n
i=1 δ

t
i(ai). Let a = (a1, . . . , an) be defined as in Defini-

tion 4.1, where B is the empirical distribution of bids. en,

1

T

T∑
t=1

SW (bt) =
1

T

T∑
t=1

n∑
i=1

ui((b
t
i, b

t
−i), vi) +

1

T

T∑
t=1

n∑
i=1

pi(fi(b
t), bt−i)

=
1

T

T∑
t=1

n∑
i=1

ui((ai, b
t
−i), vi) +

1

T

T∑
t=1

n∑
i=1

pi(fi(b
t), bt−i)−∆(a)

≥ λ OPT(v)− (µ1 − 1)
1

T

T∑
t=1

n∑
i=1

pi(fi(b
t), bt−i)

− µ2
1

T

T∑
t=1

n∑
i=1

bi(fi(b
t))−∆(a) ,

where the first equality uses the definition of ui((bti, bt−i), vi) as the difference be-
tween vi(fi(b

t)) and pi(fi(bt), bt−i), the second equality uses the definition of∆(a),
and the third inequality holds because a = (a1, . . . , an) is defined as in Defini-
tion 4.1.

Since the bids are conservative this can be rearranged to give

(1 + µ2)
1

T

T∑
t=1

SW (bt) ≥ λ OPT(v)− (µ1 − 1)
1

T

T∑
t=1

n∑
i=1

pi(fi(b
t), bt−i)−∆(a) .

For µ1 ≤ 1 the second term on the right hand side is lower bounded by zero and
the result follows by rearranging terms provided that ∆(a) = o(1). For µ1 > 1 we
use that 1

T

∑T
t=1

∑n
i=1 pi(fi(b

t), bt−i) ≤ 1
T

∑T
t=1

∑n
i=1 vi(fi(b

t)) to lower bound
the second term on the right hand side and the result follows by rearranging terms
provided that ∆(a) = o(1).
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e term∆(a) is bounded by o(1) because the sequence of bids b1, . . . , bT incurs
vanishing average external regret and, thus,

∆(a) ≤ 1

T

n∑
i=1

[
max
b′i

T∑
t=1

ui((b
′
i, b

t
−i), vi)−

T∑
t=1

ui(b
t, vi)

]
≤ 1

T

n∑
i=1

o(T ) .

4.5 Upper Bounds for CCE and Minimization of External
Regret for Additive Bids

We first show how the argument of Feldman et al. [41] can be adopted to prove
that for restrictions from V = CF to B = OS the VCG mechanism is relaxed
(1/2, 0, 1)-smooth. Using eorem 4.2 we obtain an upper bound of 4 on the Price
of Anarchy with respect to coarse correlated equilibria. Using eorem 4.3 we con-
clude that the average social welfare for sequences of bids with vanishing external
regret converges to at least 1/4 of the optimal social welfare. We thus improve the
best known bounds by a logarithmic factor.

Proposition 4.4. Suppose that V = CF and that B = OS. en the VCG mechanism
is relaxed (1/2, 0, 1)-smooth under conservative bidding.

To prove this result we need two auxiliary lemmata.

Lemma 4.5. Suppose that V = CF, that B = OS, and that the VCG mechanism is
used. en for every bidder i, every bundle Qi, and every distribution B−i on the bids
b−i of the bidders other than i there exists a conservative bid ai such that

E
b−i∼B−i

[ui((ai, b−i), vi)] ≥
1

2
· vi(Qi)− E

b−i∼B−i

[pi(Qi, b−i)] .

Proof. Consider bids b−i of the bidders −i. e bids b−i induce a price pi({j}) =
maxk ̸=i bk({j}) for each item j and pi(S) =

∑
j∈S p({j}) for each subset S ⊆ I .

Let T be a maximal subset of items from Qi such that vi(T ) ≤ pi(T ). Define the
truncated prices qi as follows:

qi({j}) =

{
pi({j}) for j ∈ Qi \ T , and
0 otherwise.

e distribution B−i on the bids b−i induces a distribution Ci on the prices pi as
well as a distribution Di on the truncated prices qi.

We would like to allow bidder i to draw his bid bi from the distribution Di on
the truncated prices qi. For this we need that (1) the truncated prices are additive
and that (2) the truncated prices are conservative. e first condition is satisfied
because additive bids lead to additive prices. To see that the second condition is
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satisfied assume by contradiction that for some set S ⊆ Qi \ T , qi(S) > vi(S). As
pi(S) = qi(S) it follows that

vi(S ∪ T ) ≤ vi(S) + vi(T ) ≤ pi(S) + pi(T ) = pi(S ∪ T ) ,

which contradicts our definition of T as a maximal subset of Qi for which vi(T ) ≤
pi(T ).

Consider an arbitrary bid bi from the support of Di. Let fi(bi, pi) be the set of
items won with bid bi against prices pi. Additionally, let gi(bi, qi) be the subset of
items fromQi won with bid bi against the truncated prices qi. As pi({j}) = qi({j})
for j ∈ Qi \ T and pi({j}) ≥ qi({j}) for j ∈ T we have gi(bi, qi) ⊆ fi(bi, pi) ∪ T .
us, using the fact that vi is subadditive, vi(gi(bi, qi)) ≤ vi(fi(bi, pi)) + vi(T ). By
the definition of the prices pi and the truncated prices qi we have pi(Qi)−qi(Qi) =
pi(T ) ≥ vi(T ). By combining these inequalities we obtain

vi(fi(bi, pi)) + pi(Qi) ≥ vi(gi(bi, qi)) + qi(Qi) .

Taking expectations over the prices pi ∼ Ci and the truncated prices qi ∼ Di gives

E
pi∼Ci

[vi(fi(bi, pi)) + pi(Qi)] ≥ E
qi∼Di

[vi(gi(bi, qi)) + qi(Qi)] .

Next we take expectations over bi ∼ Di on both sides of the inequality. en
we bring the pi(Qi) term to the right and the qi(Qi) term to the le. Finally, we
exploit that the expectation over qi ∼ Di of qi(Qi) is the same as the expectation
over bi ∼ Di of bi(Qi) to obtain

E
bi∼Di

[
E

pi∼Ci
[vi(fi(bi, pi))]

]
− E

bi∼Di

[bi(Qi)]

≥ E
bi∼Di

[
E

qi∼Di

[vi(gi(bi, qi))]

]
− E

pi∼Ci
[pi(Qi)] . (4.1)

Now, using the fact that bi and qi are drawn from the same distribution Di, we
can lower bound the first term on the right-hand side of the preceding inequality
by

E
bi∼Di

[
E

qi∼Di

[vi(gi(bi, qi)]

]
=

1

2
· E
bi∼Di

[
E

qi∼Di

[vi(gi(bi, qi)) + vi(gi(qi, bi))]

]
≥ 1

2
· vi(Qi) , (4.2)

where the inequality in the last step comes from the fact that the subset gi(bi, qi) of
Qi won with bid bi against prices qi and the subset gi(qi, bi) of Qi won with bid qi
against prices bi form a partition ofQi,2 and, thus, because vi is subadditive, it must
be that vi(gi(bi, qi)) + vi(gi(qi, bi)) ≥ vi(Qi).

2We assume tie-breaking in bidder i’s favor, which can be achieved by an infinitesimal increase
of bidder i’s bid.
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Note that bidder i’s utility for bid bi against bids b−i is given by his valuation
for the set of items fi(bi, pi) minus the price pi(fi(bi, pi)). Note further that the
price pi(fi(bi, pi)) that he faces is at most his bid bi(fi(bi, pi)). Finally note that
his bid bi(fi(bi, pi)) is at most bi(Qi) because bi is drawn from Di. Together with
inequality (4.1) and inequality (4.2) this shows that

E
bi∼Di

[
E

b−i∼B−i

[ui((bi, b−i), vi)]

]
≥ E

bi∼Di

[
E

pi∼Ci
[vi(fi(bi, pi))− bi(Qi)]

]
≥ 1

2
· vi(Qi)− E

pi∼Ci
[pi(Qi)] .

Since this inequality is satisfied in expectation if bid bi is drawn from distribu-
tion Di there must be a bid ai from the support of Di that satisfies it.

Lemma 4.6. Suppose that V = CF, that B = OS, and that the VCG mechanism is
used. en for every partition Q1, . . . , Qn of the items and all bids b,∑

i∈N
pi(Qi, b−i) ≤

∑
i∈N

bi(fi(b)) .

Proof. For every bidder i ∈ N and item j ∈ Qi wehave pi({j}, b−i) = maxk ̸=i bk({j})
≤ maxk bk({j}). Hence an upper bound on the sum

∑
i∈N pi(Qi, b−i) is given by∑

i∈N maxk bk({j}). e VCG mechanism selects allocation f1(b), . . . , fn(b) such
that

∑
i∈N bi(fi(b)) is maximized. e claim follows.

We can now prove Proposition 4.4.

Proof of Proposition 4.4. e claim follows by applying Lemma 4.5 to every bid-
der i and the corresponding optimal bundle Oi, summing over all bidders i, and
using Lemma 4.6 to bound Eb−i∼B−i

[∑
i∈N pi(Oi, b−i)

]
by Eb∼B

[∑
i∈N bi(fi(b))

]
.

An important observation is that the proof of the previous proposition requires
that the class of price functions, which is induced by the class of bidding functions
via the formula for the VCG payments, is contained in B. While this is the case for
additive bids that lead to additive (or “per item”) prices this is not the case for more
expressive bids. In fact, as we will see in the next section, even if the bids are from
OXS, the least general class from the hierarchy of Lehmann et al. [80] that strictly
contains the class of additive bids, then the class of price functions that is induced
by B is no longer contained in B. is shows that the techniques that led to the
results in this section cannot be applied to the more expressive bids that we study
next.
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4.6 A Lower Bound for PNE with Non-Additive Bids

For non-additive bids we start our analysis with the following separation result:
While for restrictions from subadditive valuations to additive bids the bound is 2
for pure Nash equilibria (see Bhawalkar and Roughgarden [12]), we show that for
restrictions from subadditive valuations to OXS bids the corresponding bound is at
least 2.4. is shows that more expressiveness can lead to strictly worse bounds.
e proof uses a seing with 2 bidders and 6 items.

eorem 4.7. Suppose that V = CF, that OXS ⊆ B ⊆ XOS, and that the VCG
mechanism is used. en there exist valuations v such that the PoA with respect to
PNE under conservative bidding is at least 2.4.

e proof of this theorem makes use of the following auxiliary lemma.

Lemma 4.8. If bi ∈ XOS, then for any J ⊆ I ,

max
S⊆J,|S|=|J |−1

bi(S) ≥
|J | − 1

|J |
· bi(J) .

Proof. As bi ∈ XOS there exists an additive bid ai such that
∑

j∈J ai({j}) = bi(J)
and for every S ⊆ J we have bi(S) ≥

∑
j∈S ai({j}). ere are |J | many ways to

choose S ⊆ J such that |S| = |J | − 1 and these |J | many sets will contain each of
the items j ∈ J exactly |J |−1 times. us,

∑
S⊆J,|S|=|J |−1 bi(S) ≥ (|J |−1)·bi(J).

For any set T ∈ argmaxS⊆J,|S|=|J |−1 bi(S), using the fact that the maximum is at
least as large as the average, we therefore have bi(T ) ≥ (|J | − 1)/|J | · bi(J).

Proof of eorem 4.7. ere are 2 bidders and 6 items. e items are divided into
two sets I1 and I2, each with 3 items. e valuations of bidder i ∈ {1, 2} are given
by (all indices are modulo two)

vi(S) =



12 for S ⊆ Ii, |S| = 3

6 for S ⊆ Ii, 1 ≤ |S| ≤ 2

5 + 1ϵ for S ⊆ Ii+1, |S| = 3

4 + 2ϵ for S ⊆ Ii+1, |S| = 2

3 + 3ϵ for S ⊆ Ii+1, |S| = 1

maxj∈{1,2}{vi(S ∩ Ij)} otherwise.

e variable ϵ is a sufficiently small positive number. e valuation vi of bidder i is
subadditive, but not fractionally subadditive. (e problem for bidder i is that the
valuation for Ii is too high given the valuations for S ⊂ Ii.)

e welfare maximizing allocation awards set I1 to bidder 1 and set I2 to bidder
2. e resulting welfare is v1(I1) + v2(I2) = 12 + 12 = 24.
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We claim that the following bids b = (b1, b2) are contained in OXS and consti-
tute a pure Nash equilibrium:

bi(S) =



0 for S ⊆ Ii

5 + 1ϵ for S ⊆ Ii+1, |S| = 3

4 + 2ϵ for S ⊆ Ii+1, |S| = 2

3 + 3ϵ for S ⊆ Ii+1, |S| = 1

maxj∈{1,2}{bi(S ∩ Ij)} otherwise.

Given b VCG awards set I2 to bidder 1 and set I1 to bidder 2 for a welfare of
v1(I2) + v2(I1) = 2 · (5 + ϵ) = 10 + 2ϵ, which is by a factor 2.4 − 12ϵ/(25 + 5ϵ)
smaller than the optimumwelfare. For showing the PoA of 2.4 we consider the limit
of the PoA as ϵ approaches 0.

We can express bi as ORs of XORs of XS bids as follows: Let Ii = {a, b, c} and
Ii+1 = {d, e, f}. Let hd, he, hf and ℓd, ℓe, ℓf beXS bids that value d, e, f at 3+ 3ϵ
and 1− ϵ, respectively. en bi(T ) = (hd(T )⊗ he(T )⊗ hf (T ))∨ ℓd(T )∨ ℓe(T )∨
ℓf (T ).

To show that b is a Nash equilibrium we can focus on bidder i (by symmetry)
and on deviating bids ai that win bidder i a subset S of Ii (because bidder i currently
wins Ii+1 and vi(S) = max{vi(S ∩ I1), vi(S ∩ I2)} for sets S that intersect both I1
and I2).

Note that the price that bidder i faces on the subsets S of Ii are superadditive:
For |S| = 1 the price is (5 + ϵ) − (4 + 2ϵ) = 1 − ϵ, for |S| = 2 the price is
(5 + ϵ)− (3 + 3ϵ) = 2− 2ϵ, and for |S| = 3 the price is 5 + ϵ.

Case 1: S = Ii. We claim that this case cannot occur. To see this observe that
because ai ∈ XOS, Lemma 4.8 shows that there must be a 2-element subset T of
S for which ai(T ) ≥ 2/3 · ai(S). On the one hand this shows that ai(S) ≤ 9
because otherwise ai(T ) ≥ 2/3 ·ai(S) > 6 in contradiction to our assumption that
ai is conservative. On the other hand to ensure that VCG assigns S to bidder i we
must have ai(S) ≥ ai(T ) + (3 + 3ϵ) due to the subadditivity of the prices. us
ai(S) ≥ 2/3 · ai(S) + (3 + 3ϵ) and, hence, ai(S) ≥ 9(1 + ϵ). We conclude that
9 ≥ ai(S) ≥ 9(1 + ϵ), which gives a contradiction.

Case 2: S ⊂ Ii. In this case bidder i’s valuation for S is 6 and his payment is at
least 1− ϵ as we have shown above. us, ui(ai, b−i) ≤ 5+ ϵ = ui(bi, b−i), i.e., the
utility does not increase with the deviation.

4.7 Upper Bounds for CCE and Minimization of External
Regret for Non-Additive Bids

Our next group of results concerns upper bounds for the Price of Anarchy for restric-
tions to non-additive bids. For β-fractionally subadditive valuations we show that
the VCGmechanism is relaxed (1/β, 1, 1)-smooth. Byeorem 4.2 this implies that
the PoA with respect to coarse correlated equilibria is at most 2β. By eorem 4.3
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this implies that the average social welfare obtained in sequences of repeated play
with vanishing external regret converges to 1/(2β) of the optimal social welfare.
For subadditive valuations, which are O(log(m))-fractionally subadditive, we thus
obtain bounds of O(log(m)) resp. Ω(1/ log(m)). For fractionally subadditive valu-
ations, which are 1-fractionally subadditive, we thus obtain bounds of 2 resp. 1/2.
We thus extend the results of Bhawalkar and Roughgarden [12] and Christodoulou
et al. [22] from additive to non-additive bids.

Proposition 4.9. Suppose that V ⊆ β-XOS and that OS ⊆ B ⊆ XOS, then the VCG
mechanism is relaxed (1/β, 1, 1)-smooth under conservative bidding.

Wewill prove that the VCGmechanism satisfies the definition of relaxed smooth-
ness point-wise. For this we need two auxiliary lemmata.

Lemma 4.10. Suppose that V ⊆ β-XOS, that OS ⊆ B ⊆ XOS, and that the VCG
mechanism is used. en for all valuations v ∈ V , every bidder i, and every bundle
of items Qi ⊆ I there exists a conservative bid ai ∈ Bi such that for all conservative
bids b−i ∈ B−i,

ui((ai, b−i), vi) ≥
vi(Qi)

β
− pi(Qi, b−i) .

Proof. Fix valuations v, bidder i, and bundle Qi. As vi ∈ β-XOS there exists a
conservative, additive bid ai ∈ OS such that

∑
j∈Xi

ai({j}) ≤ vi(Xi) for all Xi ⊆
Qi, and

∑
j∈Qi

ai({j}) ≥ vi(Qi)
β . Consider conservative bids b−i. Suppose that for

bids (ai, b−i) bidder i wins items Xi and bidders −i win items I \ Xi. As VCG
selects an allocation that maximizes the sum of the bids,

ai(Xi) + b̂−i(I \Xi) ≥ ai(Qi) + b̂−i(I \Qi).

We have chosen ai such that ai(Xi) ≤ vi(Xi) and ai(Qi) ≥ vi(Qi)/β. us,

vi(Xi) + b̂−i(I \Xi) ≥ ai(Xi) + b̂−i(I \Xi)

≥ ai(Qi) + b̂−i(I \Qi) ≥
vi(Qi)

β
+ b̂−i(I \Qi).

Subtracting b̂−i(I) from both sides gives

vi(Xi)− pi(Xi, b−i) ≥
vi(Qi)

β
− pi(Qi, b−i).

As ui((ai, b−i), vi) = vi(Xi) − pi(Xi, b−i) this shows that ui((ai, b−i), vi) ≥
vi(Qi)/β − pi(Qi, b−i) as claimed.

Lemma 4.11. Suppose that OS ⊆ B ⊆ XOS and that the VCG mechanism is used. For
every allocationQ1, . . . , Qn and all conservative bids b ∈ B and allocationX1, . . . , Xn

selected by the VCG mechanism for bids b,
n∑

i=1

(pi(Qi, b−i)− pi(Xi, b−i)) ≤
n∑

i=1

bi(Xi) .
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Proof. We have pi(Qi, b−i) = b̂−i(I) − b̂−i(I \ Qi) and pi(Xi, b−i) = b̂−i(I) −
b̂−i(I \Xi) because the VCG mechanism is used. us,

n∑
i=1

(pi(Qi, b−i)− pi(Xi, b−i)) =

n∑
i=1

(
b̂−i(I \Xi)− b̂−i(I \Qi)

)
. (4.3)

We have b̂−i(I \Xi) =
∑

k ̸=i bk(Xk) and b̂−i(I \ Qi) ≥
∑

k ̸=i bk(Xk ∩ (I \ Qi))
because (Xk ∩ (I \ Qi))i ̸=k is a feasible allocation of the items I \ Qi among the
bidders −i. us,
n∑

i=1

(
b̂−i(I \Xi)− b̂−i(I \Qi)

)
≤

n∑
i=1

(∑
k ̸=i

bk(Xk)−
∑
k ̸=i

bk(Xk ∩ (I \Qi))
)

≤
n∑

i=1

( n∑
k=1

bk(Xk)−
n∑

k=1

bk(Xk ∩ (I \Qi))
)

=

n∑
i=1

n∑
k=1

bk(Xk)−
n∑

i=1

n∑
k=1

bk(Xk ∩ (I \Qi)) .

(4.4)

e second inequality holds due to the monotonicity of the bids. Since XOS =
1-XOS for every bidder k and bid bk ∈ XOS there exists a bid ak,Xk

∈ OS such that
bk(Xk) = ak,Xk

(Xk) =
∑

j∈Xk
ak,Xk

({j}) and bk(Xk ∩ (I \ Qi)) ≥ ak,Xk
(Xk ∩

(I \ Qi)) =
∑

j∈Xk∩(I\Qi)
ak,Xk

({j}) for all k. As Q1, . . . , Qn is a partition of I
every item is contained in exactly one of the sets Q1, . . . , Qn and hence in n− 1 of
the sets I \ Q1, . . . , I \ Qn. By the same argument for every bidder k and set Xk

every item j ∈ Xk is contained in exactly n−1 of the setsXk ∩ (I \Q1), . . . , Xk ∩
(I \Qn). us, for every fixed k we have that

∑n
i=1 bk(Xk ∩ (I \Qi)) ≥ (n− 1) ·∑

j∈Xk
ak,Xk

({j}) = (n− 1) · ak,Xk
(Xk) = (n− 1) · bk(Xk). It follows that

n∑
i=1

n∑
k=1

bk(Xk)−
n∑

i=1

n∑
k=1

bk(Xk ∩ (I \Qi))

≤ n ·
n∑

k=1

bk(Xk)− (n− 1) ·
n∑

k=1

bk(Xk) =

n∑
i=1

bi(Xi) . (4.5)

e claim follows by combining inequalities (4.3), (4.4), and (4.5).

We can now give the proof of Proposition 4.9.

Proof of Proposition 4.9. Applying Lemma 4.10 to the optimal bundlesO1, . . . , On

and summing over all bidders i, we obtain∑
i∈N

ui((ai, b−i), v) ≥
1

β
OPT(v)−

∑
i∈N

pi(Oi, b−i) .
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Applying Lemma 4.11 we obtain

∑
i∈N

ui((ai, b−i), v) ≥
1

β
OPT(v)−

∑
i∈N

pi(fi(b), b−i)−
∑
i∈N

bi(fi(b)) .

4.8 More Lower Bounds for PNE with Non-Additive Bids

We conclude by proving matching lower bounds for the VCG mechanism and re-
strictions from fractionally subadditive valuations to non-additive bids. We prove
this result by showing that the VCG mechanism satisfies the outcome closure prop-
erty of Milgrom [86], which implies that the set of PNE for a less general bidding
space is contained in the set of equilibria for a more general bidding space.

We say that a mechanism satisfies outcome closure for a given class V of valua-
tion functions and a restriction of the class B of bidding functions to a subclass B′

of bidding functions if for every v ∈ V , every i, every conservative b′−i ∈ B′
−i,

and every conservative bi ∈ Bi there exists a conservative b′i ∈ B′
i such that

ui((b
′
i, b

′
−i), vi) ≥ ui((bi, b

′
−i), vi).

Proposition 4.12. If a mechanism satisfies outcome closure for a given class V of
valuation functions and a restriction of the class B of bidding functions to a subclass
B′, then the Price of Anarchy with respect to pure Nash equilibria under conservative
bidding for B is at least as large as for B′.

Proof. It suffices to show that the set of PNE forB′ is contained in the set of PNE for
B. To see this assume by contradiction that, for some v ∈ V , b′ ∈ B′ is a PNE for
B′ but not for B. As b′ is not a PNE for B there exists a bidder i and a bid bi ∈ Bi

such that ui((bi, b′−i), vi) > ui((b
′
i, b

′
−i), vi). By outcome closure, however, there

must be a bid b′′i ∈ B′
i such that ui((b′′i , b′−i), vi) ≥ ui((bi, b

′
−i), vi). It follows that

ui((b
′′
i , b

′
−i), vi) > ui((b

′
i, b

′
−i), vi), which contradicts our assumption that b′ is a

PNE for B′.

Next we use outcome closure to show that the Price of Anarchy in the VCG
mechanism with respect to pure Nash equilibria weakly increases with expressive-
ness for classes of bidding functions below XOS.

Proposition 4.13. Suppose that V ⊆ CF, that OS ⊆ B′ ⊆ B ⊆ XOS, and that the
VCGmechanism is used. en the Price of Anarchy with respect to pure Nash equilibria
under conservative bidding for B is at least as large as for B′.

Proof. By Proposition 4.12 it suffices to show that the VCG mechanism satisfies
outcome closure for V and the restriction of B to B′. For this fix valuations v ∈ V ,
bids b′−i ∈ B′

−i, and consider an arbitrary bid bi ∈ Bi by bidder i. Denote the bundle
that bidder i gets under (bi, b′−i) byXi and denote his payment by pi = pi(Xi, b

′
−i).
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Since bi ∈ Bi ⊆ XOS there exists a bid b′i ∈ OS ⊆ B′ such that∑
j∈Xi

b′i({j}) = bi(Xi) and,

∑
j∈S

b′i({j}) ≤ bi(S) for all S ⊆ Xi.

By seing b′i({j}) = 0 for j ̸∈ Xi we ensure that b′i is conservative. Recall
that the VCG mechanism assigns bidder i the bundle of items that maximizes his
reported utility. We have that b′i(Xi) = bi(Xi) and that b′i(T ) ≤ bi(T ) for all T ⊆ I .
We also know that the prices pi(T, b−i) for all T ⊆ I do not depend on bidder i’s
bid. Hence bidder i’s reported utility for Xi under b′ is as high as under b and his
reported utility for every other bundle T under b′ is no higher than under b. is
shows that bidder i wins bundle Xi and pays pi under bids (b′i, b′−i).

Hence the lower bound of 2 for pure Nash equilibria and additive bids of
Christodoulou et al. [22] translates into a lower bound of 2 for pure Nash equilibria
and non-additive bids.

eorem 4.14. Suppose that OXS ⊆ V ⊆ CF, that OS ⊆ B ⊆ XOS, and that the VCG
mechanism is used. en the PoA with respect to PNE under conservative bidding is at
least 2.

Note that the previous result applies even if valuation and bidding space coin-
cide, and the VCG mechanism has an efficient, dominant-strategy equilibrium. is
is because the VCG mechanism admits other, non-efficient equilibria and the Price
of Anarchy metric does not restrict to dominant-strategy equilibria if they exist.

4.9 Conclusion

For many valuation spaces computing the VCG allocation and payments is a com-
putationally hard problem. We thus study the VCG mechanism in seings in which
the allocation and payments can be computed efficiently. is is the case for addi-
tive bids, where the VCG-based mechanism can be interpreted as a separate second-
price auction for each item, and for the bidding spaces OXS and GS. We measure
the performance of the VCG mechanism by the Price of Anarchy; that is, by the
ratio between the optimal social welfare and the worst possible social welfare at
equilibrium. For subadditive bids we prove an upper bound of 4 on the Price of An-
archy with respect to (coarse) correlated equilibria and additive bids. Furthermore,
we prove upper bounds and lower bounds for bids that are more general and (frac-
tionally) subadditive valuations. ese bounds show that increased expressiveness
can give rise to additional equilibria of poorer efficiency.

Our analysis leaves a number of interesting open questions, both regarding the
computation of equilibria and regarding improved upper and lower bounds. Inter-
esting questions regarding the computation of equilibria include whether or not
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mixed Nash equilibria can be computed efficiently for restrictions from subadditive
to additive bids or whether pure Nash equilibria can be computed efficiently for re-
strictions from fractionally subadditive valuations to additive bids. A particularly
interesting open problem regarding improved bounds is whether the welfare loss
for computable equilibrium concepts and learning outcomes can be shown to be
strictly larger for restrictions to non-additive, say OXS, bids than for restrictions to
additive bids. is would show that additive bids are not only sufficient for the best
possible bound but also necessary.
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CHAPTER 5
Combinatorial Auctions with
Conflict-Based Externalities

5.1 Introduction

Combinatorial auctions are an important area in algorithmic mechanism design due
to their wide-spread applications in resource allocation and e-commerce, such as
spectrum or ad-word auctions (see Cramton et al. [27] and Lahaie et al. [78]). In
the standard model of combinatorial auctions, a set of items is assigned to a set of
bidders in order to maximize social welfare, which is given by the total valuation of
the bidders for their assigned items. e standard model assumes that each bidder
values exclusively the set of items assigned to him; his valuation is independent of
the assignment of the other items to the other bidders. In many applications, however,
such an assumption is not justified since the bidders’ preferences have a significant
dependence on how items are assigned to other bidders.

One of the most popular special cases of combinatorial auctions are sponsored
search auctions, where a search engine company assigns ad slots on a search result
page to advertisers. Obviously, for a car-rental company such an ad slot is of much
smaller value if an ad of another popular rental company is shown right next to
it; this implies a negative externality. For an advertiser there might be a number
of such competitors, and an assignment yields value to the bidder only if the ads
of competitors are not displayed simultaneously. e existence of negative exter-
nalities in sponsored search has been confirmed empirically (see Gomes et al. [54]).
Moreover, similar negative externalities also arise in other prominent applications
of combinatorial auctions, for example, in secondary spectrum auctions where in-
terferences induce negative externalities, or when selling luxury goods, where the
value of a buyer for items from an exclusive brand drops when other bidders also
obtain items from the same brand. ese examples motivate a natural and simple
graph-basedmodel of externalities: (1) Each bidder is a node in a directed graph, and
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a directed edge indicates that a bidder sees another bidder as a competitor. (2) As-
signing an item to a bidder yields value only if none of the competitors receive any
item (or just any “similar” or “beer” item).

Negative externalities in auctions have recently received some aention, but—
perhaps surprisingly—the natural and simple idea sketched above has not been an-
alyzed in a rigorous and general fashion. In this chapter, we study approximation
algorithms and incentive compatible mechanisms for this model and a number of
natural variants. More formally, we assume that there is a directed conflict graph
on the set of bidders with maximum out-degree ∆. Each edge (i, j) indicates a
conflict: bidder i has no value for any assignment in which bidder j receives an
item. Additionally, we also consider cases where conflicts arise only among certain
pairs of items, or cases with different values for assignments that include or avoid
certain conflicts. Our algorithms cope with externalities via new extensions of al-
gorithmic techniques for independent set problems in combination with algorithms
for conflict-free combinatorial auctions. We also provide additional results for the
prominent special case of sponsored search.

5.1.1 Contribution

We study approximation algorithms and incentive compatible mechanisms for com-
binatorial auctions with conflict-based externalities. For combinatorial auctions
with bidder conflicts, we prove two results.

First, we give a reduction to combinatorial auctions without conflicts in Sec-
tion 5.3. For any α-approximation algorithm for the unconflicted problem, we ob-
tain anO(α∆)-approximation algorithm for the model with bidder conflicts. If the
original algorithm is an incentive compatible mechanism, we can also turn our al-
gorithm into an incentive compatible mechanism for the model with conflicts. Our
reduction also preserves the use of randomization (deterministic, incentive com-
patible in the universal sense, incentive compatible in expectation). Moreover, it
extends to auctions with bidder and item conflicts, which will be introduced in Sec-
tion 5.2.

Second, if we do not insist on incentive compatibility, we can extend algorithms
for the unconflicted problem to the case with bidder conflicts and increase the ap-
proximation ratio only by o(∆). A lower bound of the independent set problem
implies that the increase has to be at least Ω(∆/ log4∆) (see Chan [21]), even for
single-parameter unit-demand valuations, because social welfare optimization in
this case generalizes theweighted independent set (WIS) problem. Herewe combine
an approach for independent set based on semidefinite programming with the stan-
dard approach for combinatorial auctions based on linear programming, to design a
cone programming relaxation and a rounding scheme. For fractionally subadditive
(FSA) valuations (see Chapter 4 or Dobzinski and Schapira [33] for a definition), we
can turn an LP-based α-approximation algorithm for the unconflicted problem into
anO(α ·∆ log log∆/ log∆)-approximation algorithm for the problem with bidder
conflicts (eorem 5.9). e dependence on ∆ mirrors the best-known approxi-
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mation ratio for the weighted independent set problem. is implies, for example,
approximation ratios of O(∆ log log∆/ log∆) for sponsored search, unit-demand,
or more general, gross-substitute valuations and bidder conflicts. It is an interesting
open problem if this approach can be turned into an incentive compatible mecha-
nism, or if it can be generalized to auctions with bidder and item conflicts as the
results above.

We then focus on sponsored search with bidder conflicts. Even in this special
case, the hardness bound of Ω(∆/ log4∆) applies. We consider a restriction to a
small number of slots that is natural in the context of sponsored search. For the
case of m ∈ O(logn) slots, where n is the number of bidders, we present an algo-
rithm based on semidefinite programming that obtains anO(∆

√
log log∆/ log∆)-

approximation (eorem 5.18). Furthermore, we get an O(logm)-approxi-
mation based on partial enumeration that runs in timeO((m(∆+ 1))m) (eorem
5.19). e advantage of these algorithms is that both can be turned into in expec-
tation incentive compatible mechanisms with the same approximation guarantee.
e algorithm based on partial enumeration also extends to the model with bidder
and item conflicts.

5.1.2 Related Work

e study of auctions with externalities was initiated in the seminal work by Jehiel
et al. [70], who investigated the single-item seing. Ghosh and Mahdian [48] inves-
tigated externalities in online advertising using a probabilistic model of externalities.
Combinatorial auctions with externalities were presented by Krysta et al. [77] and
Conitzer and Sandholm [25] and it was shown that it is NP-hard to determine an
allocation that maximizes social welfare. For sponsored search, Ghosh and Sayedi
[49] studied the seing where each advertiser has two valuations, one if his ad is
shown exclusively and one if it is shown together with other ads. eir model is
a special case of our model for sponsored search with bidder conflicts where each
advertiser is modeled by two bidders. Further work on analyzing equilibria in single-
item auctions with externalities can be found in Constantin et al. [26], Funk [46],
Giotis and Karlin [50], Gomes et al. [54], Jehiel and Modovanu [69], and Paes Leme
et al. [94]. Gomes et al. [54] also give empirical evidence that externalities exist
in real-life sponsored search auctions. A different line of work considered bidder-
independent externalities in the click-through rates of sponsored search auctions
(Aggarwal et al. [1], Kempe and Mahdian [75], and Roughgarden and Tardos [100]).
All this work considered only the unit-demand seing.

Our model of sponsored search with bidder conflicts has been proposed and
studied before by Papadimitriou andGarcia-Molina [96]. ey consider an approach
based on exact optimization algorithms using ILP, implement incentive compatibil-
ity using VCG, and experimentally evaluate their approach with respect to running
time and revenue on a dataset from Yahoo! Webscope. However, they do not con-
sider polynomial-time algorithms, provable approximation ratios, or extensions to
combinatorial auctions with more general valuation functions.
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Our work is related to approximation algorithms for weighted independent set,
a central problem in the study of approximation algorithms and computational hard-
ness over the past four decades. e literature on the problem is too vast to survey
here, we just mention a number of directly related results. e problem is known
to be NP-hard to approximate within a ratio of n1−ϵ [64], and even in undirected
∆-regular graphs it remains hard for a ratio of O(∆/ log4∆) (Chan [21]). In the
unweighted version, the trivial greedy algorithm obtains a ratio of∆ in graphs with
maximum degree∆, and its idea has been extended and adjusted to bounds based on
average degree (Halldórsson and Radhakrishnan [60]), or to weighted independent
set using notions of weighted degree (Kako et al. [72]). It is, however, not obvious
how to prove non-trivial ratios for such algorithms in directed graphs with bounded
out-degree, which are arising in our application. e best-known approximation al-
gorithms in graphs with maximum degree∆ obtain ratios ofO(∆ log log∆/ log∆)
and are given by Halldórsson [59] and Halperin [61]. ey are based on rounding of
suitable semidefinite programming relaxations, and below we build on these tech-
niques and their analysis to provide algorithms for our case. For a survey on some
of the work on approximation algorithms, see, for instance, Halldórsson [58]. In
addition, independent set has been studied from the perspective of fixed-parameter
tractability and has been shown to be W[1]-hard (Downey and Fellows [34]). How-
ever, there exist special classes of graphs such that cardinality-constrained versions
of the problem can be solved in polynomial time (Cai et al. [18]).

More recently, the study of asymmetric and edge-weighted versions of inde-
pendent set has found interest, especially in the context of combinatorial auctions.
Closely related to our study are secondary spectrum auctions, where bidders are
wireless devices that strive to obtain channel access under interference constraints.
In these scenarios, bidders become vertices in a conflict graph. Each channel is an
item that can be given to any subset of bidders representing an independent set in
the graph. is model has been initially studied by Zhou et al. [107] for determin-
istic algorithms, single-parameter valuations and undirected conflict graphs. More
recently, near-optimal ratios were obtained even for multiple items, general val-
uations, and edge-weighted and directed conflict graphs stemming from realistic
interference models (Hoefer et al. [67]). Instead of maximum degree, the ratios de-
pend linearly on a graph parameter termed inductive independence number (Ye and
Borodin [106]), and the algorithms round suitable linear and convex programs to
maintain incentive compatibility (Hoefer and Kesselheim [66]). In addition, mech-
anisms with incentive compatibility concepts based on more restrictive forms of
randomization have been studied by Hoefer and Kesselheim [65] and Hoefer et al.
[68].

5.2 Preliminaries

We consider several conflict-based models of externalities in sponsored search and
combinatorial auctions with increasing level of generality. In all models, we have
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a bidder set N = {1, . . . , n} and an item set I = {1, . . . ,m}. Each item can be
given to at most one bidder. For each bidder i ∈ N , there is a valuation function
vi(Xi) ≥ 0 that captures the value for receiving item set Xi ⊆ I . is valuation
is extended (due to externalities and conflicts) to vci (X), a valuation that depends
on the complete allocation X = (X1, . . . , Xn) of items. Our goal in all models is
to find an allocation X that maximizes social welfare SW (X) =

∑
i∈N vci (X). Let

us proceed with details on our assumptions and definitions for vi(Xi) and vci (X) in
the different models.

Sponsored Sear with Bidder Conflicts. We have a set N of n bidders, which is
the vertex set V of a (bidder) conflict graph G = (V,E). e graph is directed, and
each bidder i ∈ N has out-degree at most ∆ ≥ 0. We assign a set I of slots to the
bidders. Each slot k ∈ I has a click-through rate αk ≥ 0. Bidder i has a valuation
per click of vi ≥ 0 and is interested in one slot. e unconflicted value of allocating
slot set Xi to bidder i is thus vi(Xi) = maxk∈Xi

vi · αk, a unit-demand valuation
with free disposal.

Given an allocationX = (X1, . . . , Xn) of slots to bidders, slot k ∈ Xi is useless
if there is any slot ℓ ∈ Xj with (i, j) ∈ E, i.e., i has no use for any slot if a com-
petitor j receives a slot. Intuitively, this models the situation that advertiser i is not
interested in showing its ad together with an ad from a competitor. Formally, for an
allocationX bidder i has a setDi of useless slots whereDi = ∅ if

∪
j:(i,j)∈E Xj = ∅

and Di = Xi otherwise. en,

vci (X) = vi(Xi \Di) =

{
maxk∈Xi

vi · αk if
∪

j:(i,j)∈E Xj = ∅
0 otherwise.

(5.1)

Observe that the introduction of conflicts turns social welfare maximization NP-
hard. Even in the special case when all vi = 1 and all αk = 1, it generalizes the
maximum independent set problem.

Sponsored Sear with Bidder and Slot Conflicts. In this extension, we change
the way bidders are in conflict. We again have a (bidder) conflict graphGwith max-
imum degree∆, slots, click-through rates and unit-demand valuations. In addition,
we have a second conflict structure among slots. ere is a directed item conflict
graph GI = (VI , EI) on the slots, where an edge (k, ℓ) ∈ EI implies that slot ℓ can
make slot k useless. We denote the maximum out-degree of any vertex inGI by∆I .

An intuitive example for this extension are ordered conflicts, where ad slots are
ordered on a page top-down, and a bidder has a conflict only if a competitor receives
a slot above him. is can be modeled by numbering slots in the top-down order
and EI = {(k, ℓ) | k, l ∈ I, k > ℓ}.1 We also extend the previous model with
bidder conflicts only, where GI was a complete directed graph.

Given an allocationX = (X1, . . . , Xn) of slots to bidders, slot k ∈ Xi is useless
if there is any slot ℓ ∈ Xj with (i, j) ∈ E and (k, ℓ) ∈ EI , i.e., i has no use for

1Note that we use a different order for the slots in Chapter 3.
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slot k if j receives slot ℓ. e valuation vci (X) is then determined by the best slot
in Xi that is not useless. Formally, the set Di of useless slots is now defined as
Di = {k ∈ Xi | ∃ℓ ∈ Xj : (i, j) ∈ E and (k, ℓ) ∈ EI}. en,

vci (X) = vi(Xi \Di) = max
k∈Xi\Di

vi · αk. (5.2)

Combinatorial Auctions with Bidder Conflicts. We extend the sponsored search
model with unit-demand valuations to general valuation functions. We again have
a (bidder) conflict graphGwith maximum out-degree∆, but here we allocate a set I
of m items to the bidders. Each bidder i ∈ N has a valuation function vi : P(I)→
R≥0 on the set of items. Given an allocationX = (X1, . . . , Xn) of items to bidders,
set Xi is useless if there is Xj ̸= ∅ for some (i, j) ∈ E, i.e., i has no use for any
set of items if j receives an item. Formally, vci (X) = vi(Xi \ Di) using the same
definition of Di for useless items as above. We here extend to general vi instead of
the unit-demand case in (5.1).

Combinatorial Auctions with Bidder and Item Conflicts. We also consider the
extension to conflicts among items in combinatorial auctions, where we have a con-
flict graphG among bidders with maximum out-degree∆ and an item conflict graph
GI on the items with maximum degree∆I . Each bidder i ∈ N has a valuation func-
tion vi : P(I) → R≥0 on the set of items. Given an allocation X = (X1, . . . , Xn)
of items to bidders, item k ∈ Xi is useless if there is an item ℓ ∈ Xj with (i, j) ∈ E
and (k, ℓ) ∈ EI . Formally, vci (X) = vi(Xi \Di) using the same definition ofDi for
useless items as for sponsored search above. We here extend to general vi instead
of the unit-demand case in (5.2).

Combinatorial Auctions with Bidder Conflicts and Conflict Value. Recall that
we assume in Combinatorial Auctions with Bidder Conflicts that the valuation of
a bidder i ∈ N drops to vci (X) = 0 as soon as a competitor receives any item
and

∪
j:(i,j)∈E Xj ̸= ∅. We can generalize this assumption to a second valuation

function wi(Xi):

vci (X) =

{
vi(Xi) if

∪
j:(i,j)∈E Xj = ∅

wi(Xi) otherwise.

is extension can be reduced to the model with bidder-conflicts only. Given an
instance of a combinatorial auction with bidder conflicts and conflict value we build
an instance without conflict value as follows: For each bidder i ∈ N , we add an
auxiliary bidder ic, where vic(Xi) = wi(Xi). In the conflict graph, we add the
edges (i, ic) and (ic, i). is increases ∆ by exactly 1. Now if bidder i is conflicted,
we can take all items assigned to it and assign them to bidder ic instead. In this
way, we can transform any allocation into an instance without conflict value and
obtain the same social welfare. It is straightforward to observe that social welfare
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maximization in both instances is equivalent. is, however, does not directly apply
to incentive compatibility.

Our aim is to provide approximation ratios depending on the maximum degrees
∆ and∆I . Note that one might be tempted to apply a similar transformation also to
reduce themodel with bidder and item conflicts to the one with bidder conflicts only.
Here we could introduce a separate “agent” for each bidder-item pair or pairs of
bidders and item sets. Apart from incentive compatibility, this also creates problems
in the resulting conflict graph for the agents. For general valuations, we would
have to introduce an exponential number of agents (since we represent all subsets
of items), and the maximum degree in this graph would also increase exponentially.
Even for unit-demand valuations, where we only need n ·m agents, the degree of
the graph can become as large as∆ ·∆I . us, if we apply the algorithms for bidder
conflicts to this case, the resulting guarantees are much worse than the ones that
we obtain by working directly on the model with bidder and item conflicts.

ere are numerous further ways to extend our models, for instance, to combi-
nations of item conflicts and conflict values, weighted conflicts, etc., and studying
their properties are interesting directions for future work.

5.3 Combinatorial Auction with Bidder and Item Conflicts
via Lottery

In this section, we present results for combinatorial auctions with bidder and item
conflicts. We assume that ∆ is bounded and GI is arbitrary. At the end of this
section, wewill discuss how the techniques can be extended to the scenario inwhich
∆I is bounded, G is arbitrary, and bidders have fractionally subadditive valuations.

First, we show that a (randomized) α-approximation algorithm f for combina-
torial auctions without conflicts can be turned into a randomized (4∆α)-approxi-
mation algorithm f c for combinatorial auctions with conflicts. e results apply to
arbitrary restrictions on the valuations (e.g., submodular valuations).

Given an allocation X = (X1, . . . , Xn) of items to bidders, we show how to
compute a random set N c ⊆ N such that (1) if (i, j) ∈ E then i ̸∈ N c or j ̸∈ N c,
(2)
∑

i∈N vi(Xi) ≤ (4∆)ENc

[∑
i∈Nc vi(Xi)

]
, and (3) the selection of N c does not

depend on the valuations.
We will use pairwise independent distributions which we define below. Note

that such a distribution always exists as one can pick the elements in N indepen-
dently with probability q.

Definition 5.1. We call a distributionD over subsets of a setN “pairwise independent
with probability q” if for NR ∼ D and i ̸= j ∈ N holds that Pr

[
i ∈ NR

]
= q and

Pr
[
{i, j} ⊆ NR

]
= Pr

[
i ∈ NR

]
· Pr

[
j ∈ NR

]
.

e random set N c computed by Algorithm 5.1 is constructed in the following
way. First, in line 1 the algorithm picks a random subset from a pairwise indepen-
dent distribution with probability 1/(2∆). Next, in line 5 the algorithm resolves all
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Algorithm 5.1: Conflict-free random set
1 Pick a random subset NR from a distribution over subsets of N that is
pairwise independent with probability 1/(2∆)

2 N c ← NR

3 forea bidder i in NR do
4 if a bidder j ∈ NR with (i, j) ∈ E exists then
5 delete i from N c

6 return N c

the remaining conflicts between the bidders. We show that every bidder is in N c

with probability at least 1/(4∆).

Lemma 5.1. In Algorithm 5.1, every bidder is in the returned setN c with a probability
of at least 1/(4∆).

Proof. For all i ∈ N let Qi be the event that i ∈ NR in line 1. us, the probability
for this event is Pr [Qi] = 1/(2∆). e probability that a bidder i ∈ NR gets
deleted in line 5 given that it was selected in NR is Pr

[∪
j∈N(i)Qj | Qi

]
, where

N(i) denotes the set of out-neighbors of bidder i ∈ N .

Pr

 ∪
j∈N(i)

Qj

∣∣∣∣∣ Qi

 =
Pr
[
(
∪

j∈N(i)Qj) ∩Qi

]
Pr [Qi]

=
Pr
[∪

j∈N(i)(Qj ∩Qi)
]

Pr [Qi]

(∗)
≤
∑

j∈N(i) Pr [Qj ∩Qi]

Pr [Qi]

(∗∗)
=

∑
j∈N(i) Pr [Qj ] Pr [Qi]

Pr [Qi]
=
∑

j∈N(i)

Pr [Qj ] ≤
1

2
.

In the above (in)equalities (∗) follows from Boole’s inequality and (∗∗) follows from
pairwise independence.

us, the probability that i ∈ N c at the end of the loop is

Pr [Qi] Pr

( ∪
j∈N(i)

Qj

)C
∣∣∣∣∣ Qi

 (5.3)

= Pr [Qi]

1− Pr

 ∪
j∈N(i)

Qj

∣∣∣∣∣ Qi

 ≥ 1

4∆
.

e next theorem shows that an α-approximation algorithm for combinatorial
auctions without conflicts can be used to give a randomized (4∆α)-approximation
algorithm for combinatorial auctions with conflicts.
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eorem 5.2. A (randomized) α-approximation algorithm f for combinatorial auc-
tions without conflicts can be turned into a randomized (4∆α)-approximation algo-
rithm f c for combinatorial auctions with ∆ bounded and GI arbitrary.

Proof. We define our (4∆α)-approximation algorithm f c as follows: f c first calls
Algorithm 5.1 to compute a random subsetN c and then calls f for the bidders inN c.

Assume that if we use the α-approximation algorithm f on the set of bidders
N ′ ⊆ N and if we set Xi(N

′) = ∅ for all i ̸∈ N ′ then the algorithm returns the
allocation (X1(N

′), . . . , Xn(N
′)). Furthermore, assume that the optimal allocation

is OPT(N ′) = (OPT1(N
′), . . . ,OPTn(N

′)) given the constraints OPTi(N
′) = ∅ if

i ̸∈ N ′. en

E
Nc

[∑
i∈Nc

vi(Xi(N
c))

]
≥ E

Nc

[
1

α

∑
i∈Nc

vi(OPTi(N
c))

]
(∗)
≥ 1

α
E
Nc

[∑
i∈Nc

vi(OPTi(N))

]
=

1

α

∑
i∈N

vi(OPTi(N)) · Pr [i ∈ N c]

≥ 1

4∆α

∑
i∈N

vi(OPTi(N)).

Inequality (∗) holds because OPT(N c) gives the bidders in N c the maximal social
welfare.

Since no bidder can alterN c by changing his valuation, it also holds that we can
turn an in the universal sense incentive compatible (resp. incentive compatible in ex-
pectation) α-approximation mechanism (f, p) for combinatorial auctions without
conflicts into an in the universal sense incentive compatible (resp. incentive com-
patible in expectation) (4∆α)-approximation mechanism (f c, pc) for combinatorial
auctions with conflicts by using the same approach as above. at is, we can first
call Algorithm 5.1 to compute a random subset N c and can then use (f, p) only for
the bidders inN c. Note that bidders not inN c cannot change their utility by chang-
ing their bid; it is always zero. Furthermore, bidders in N c behave like in (f, p),
i.e., they bid truthfully their valuation so as to maximize their own utilities for each
realization of N c. e approximation guarantee follows directly from eorem 5.2.

Corollary 5.3. An in the universal sense incentive compatible (resp. incentive com-
patible in expectation) α-approximation mechanism (f, p) for combinatorial auctions
without conflicts can be turned into an in the universal sense incentive compatible
(resp. incentive compatible in expectation) (4∆α)-approximation mechanism (f c, pc)
for combinatorial auctions with ∆ bounded and GI arbitrary.

5.3.1 Derandomization of the Algorithms

We also show how the results above can be generalized to deterministic approxima-
tion algorithms and deterministic maximal-in-range mechanisms. e cornerstone
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for the derandomization is to show that there exists a pairwise independent dis-
tribution of subsets of N with probability 1/2⌈log2 ∆⌉+1 that has a domain with a
cardinality that is polynomial in n; this follows from [82, Section 1.2]. e idea is
to represent the distribution by a randomization over a family of 2-universal hash
functions that assigns each bidder u.a.r. values from the set {t1, . . . , t2∆} and to
consider the subset of bidders with value t1. Furthermore, this implies that also a
distribution over the random sets N c computed by Algorithm 5.1 exists that has a
domain with a cardinality that is polynomial in n.

Lemma 5.4 (Luby andWigderson [82]). Given a setN with |N | = n and an integer∆
with 1 ≤ ∆ ≤ n−1 then there exists a pairwise independent distribution over subsets
of N with probability 1/2⌈log2 ∆⌉+1 and a domain with a cardinality in O(n2).

Note that we can use the pairwise independent distribution of Lemma 5.4 in
Algorithm 5.1. Moreover, instead of picking a random subset from this distribution
in Algorithm 5.1, we can iterate over the domain of the distribution in polynomial
time; this gives us at least the same social welfare and proves Corollary 5.5.

Corollary 5.5. A deterministic α-approximation algorithm f for combinatorial auc-
tions without conflicts can be turned into a deterministic (16∆α/3)-approximation
algorithm f c for combinatorial auctions with ∆ bounded and GI arbitrary.

Proof. Note that 1/(2∆) ≥ 1/2⌈log2 ∆⌉+1 > 1/(4∆). By slightly modifying the
proof of Lemma 5.1, we can show that every bidder is inN c with a probability of at
least 3/(16∆). In particular, let us assume thatQi is the event that i ∈ NR in line 1
of Algorithm 5.1 like in the proof of Lemma 5.1. en, the probability that i ∈ N c

at the end of the algorithm is at least Pr [Qi] · (1−
∑

j∈N(i) Pr [Qj ]) ≥ y · (1−∆y)
where y = Pr [Qi] for all i ∈ N . Since the slope of y · (1 − ∆y) is positive for
y ≤ 1/(2∆), it follows that i ∈ N c at the end of the algorithm with a probability
of at least 1/(4∆) · (1−∆(1/(4∆))) = 3/(16∆).

Furthermore, we can extend the results to maximal-in-range algorithms (see
Dobzinski and Dughmi [29]) which are important for the design of incentive com-
patible approximation mechanisms.

Definition 5.2. An algorithm f is called “maximal-in-range” if it exists a subset X ′ of
the set of allocations X for which f(v1, . . . , vn) ∈ argmaxX∈X ′(

∑
i∈N vi(Xi)) for

all possible valuations.

Given a maximal-in-range algorithm f for combinatorial auctions without con-
flicts that is a deterministic α-approximation algorithm we show in Algorithm 5.2
how to construct a maximal-in-range algorithm f c for combinatorial auctions with
conflicts that is a deterministic (16∆α/3)-approximation algorithm. Hence, eo-
rem 5.6 follows. Note that Algorithm 5.2 calls f always for the same set of bidders
and set of items, and only the valuations of the bidders change; thus, the target set
X ′ of f is the same in each call.
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Algorithm 5.2: Maximal-in-range algorithm f c over range X ′
D .

1 Let D be the domain of a distribution over the random set N c computed by
Algorithm 5.1 using the distribution from Lemma 5.4 such that |D| ∈ O(n2)

2 Let X ′ ⊆ X be the target set of f
3 Set OPT← (∅, . . . , ∅)
4 forea N ′ ∈ D do
5 forall the i ∈ N do set vN ′

i ← vi if i ∈ N ′ and vN
′

i ← 0 else
6 Set OPT(N ′)← f(vN

′
)

7 if
∑

i∈N vN
′

i (OPTi(N
′)) ≥

∑
i∈N vi(OPTi) then

8 Set OPT to the following assignment:
(1) all i ∈ N ′ get the same items as in OPT(N ′)
(2) others get no items

9 return OPT

eorem 5.6. Given a maximal-in-range deterministic α-approximation algorithm
f for combinatorial auctions without conflicts, Algorithm 5.2 defines a maximal-in-
range, deterministic and incentive compatible (16∆α/3)-approximation mechanism
(f c, pc) for combinatorial auctions with conflicts.

Proof. Let us assume that OPT was set to its final value when N ′ = N∗. Further-
more, assume that N c is a random subset computed by Algorithm 5.1 with a prob-
ability of at least 3/(16∆) by Corollary 5.5. It follows that

∑
i∈N

vi(OPTi) =
∑
i∈N

vN
∗

i (OPTi) =
∑
i∈N

vN
∗

i (OPTi(N
∗))

≥ E
Nc

[∑
i∈N

vN
c

i (OPTi(N
c))

]
(∗)
≥ E

Nc

[∑
i∈N

vN
c

i (OPTi(N))

]

=
∑
i∈N

vi(OPTi(N)) · Pr [i ∈ N c] ≥ 3

16∆
·
∑
i∈N

vi(OPTi(N)) .

Inequality (∗) holds becauseOPT(N c) ∈ argmaxX∈X ′
∑

i∈N vN
c

i (Xi) andOPT(N)
∈ X ′. Since the maximum social welfare is at most α ·

∑
i∈N vi(OPTi(N)) the

claimed approximation factor follows.
We still have to show that the algorithm is maximal-in-range. For eachX ∈ X ′

and N ′ ∈ D let XN ′ be the allocation when all bidders in i ∈ N ′ get the same set
of items as in X and all other bidders get no items. Define X ′

D := {XN ′ |(X,N ′) ∈

87



5. C A  CB E

X ′ ×D}. We show next that f c is maximal on the subset X ′
D ⊆ X . It holds that∑

i∈N
vi(OPTi) = max

N ′∈D

∑
i∈N

vN
′

i (OPTi(N
′))

= max
N ′∈D

max
X∈X ′

∑
i∈N

vN
′

i (Xi) = max
XN′∈X ′

D

∑
i∈N

vi((X
N ′
)i) .

e pricing scheme for an incentive compatible mechanism is given in [91, Propo-
sition 9.31].

5.3.2 Bounded Out-degree in the Item Conflict Graph

We extend our results to the case where ∆I is bounded, G is arbitrary and bidders
have fractionally subadditive valuations. e algorithms for this case are similar to
what we give above, but instead of eliminating bidder conflicts by removing bidders,
they eliminates item conflicts by removing items.

e requirement of fractionally subadditive valuations is necessary as the fol-
lowing example illuminates: Suppose there are two items which are total comple-
ments and have item conflicts. If we remove either of the two, the social welfare
drops to zero, while the optimal allocation aains a positive social welfare by allo-
cating both items to the same bidder.

Also, note that an O(∆)-approximation algorithm for the bounded-∆ case and
an O(∆I)-approximation algorithm for this case can be combined to yield an
O (min{∆,∆I})-approximation algorithm, resulting in the following theorem.

eorem 5.7. Suppose that in eorem 5.2, Corollary 5.3, Corollary 5.5 and eorem
5.6, f works for the class of fractionally subadditive valuations or a subclass. Moreover,
note that the original approximation guarantees of f c in the four theorems/corollaries
are in the form of C∆α, where C is either 4 or 16/3. en f c can be modified so that
the approximation guarantees improve to C ·min{∆,∆I} · α.

Next, we present the proofs for bounded ∆I that are missing for eorem 5.7;
that is, we present the proofs for the case when ∆I is bounded, G is arbitrary, and
valuations are fractionally subadditive. Again, the results apply to arbitrary restric-
tions on the valuations (e.g., submodular valuations).

e missing proofs for eorem 5.7 will use the following proposition by Feige
[39] for fractionally subadditive valuations. In the proposition it is not required that
items in I are selected independently for I ′.

Proposition 5.8 (Prop. 2.3 in Feige [39]). Let k ≥ 1 be an integer and let v be an
arbitrary fractionally subadditive utility function. For a set I , consider a distribution
over subsets I ′ ⊂ I such that each item in I is included in I ′ with probability at least
1/k. en E [v(I ′)] ≥ v(I)/k.

Proof of eorem 5.2 for bounded ∆I . e idea is to restrict the item set I to a
random set Ic that is independent of the valuations of the bidders and then to call
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the α-approximation algorithm for the restricted item set Ic. Note that we can
use Algorithm 5.1 also for items. us, by the same arguments as for bidders we
obtain a random set of items Ic where items have no conflicts and where every
item is in Ic with probability at least 1/(4∆I). Let (X1(I

′), . . . , Xn(I
′)) be the

allocation that f returns when we restrict the set of items to I ′ ⊆ I . Furthermore,
let (OPT1(I

′), . . . ,OPTn(I
′)) be the optimal allocation of the item set I ′. It holds

that

E
Ic

[∑
i∈N

vi(Xi(I
c))

]
≥ E

Ic

[
1

α

∑
i∈N

vi(OPTi(I
c))

]
(∗)
≥ E

Ic

[
1

α

∑
i∈N

vi(OPTi(I) ∩ Ic)

]

≥ 1

α

∑
i∈N

E
Ic
[vi(OPTi(I) ∩ Ic)]

(∗∗)
≥ 1

4∆Iα

∑
i∈N

vi(OPTi(I)) .

Above, inequality (∗) follows because OPTi(I
c) is optimal for item set Ic, and in-

equality (∗∗) follows by Proposition 5.8.

Proof of Corollary 5.3 for bounded ∆I . Again, we restrict the item set I to a ran-
dom set Ic as in the proof of eorem 5.2 for bounded ∆I and then we call the
mechanism (f, p) for the restricted item set. e approximation guarantee follows
fromeorem 5.2 for bounded∆I and incentive compatibility in the universal sense
(resp. incentive compatibility in expectation) follows since truthful bidding is a dom-
inant strategy for each realization of Ic.

Proof of Corollary 5.5 for bounded ∆I . Note that ineorem 5.2 we use the same
randomization technique for N c and for Ic. us, we can apply our derandomiza-
tion technique for N c also to Ic.

Proof of eorem 5.6 for bounded ∆I . Given a maximal-in-range algorithm f for
combinatorial auctions without conflicts that is a deterministic α-approximation
algorithm we show in Algorithm 5.3 how to construct a maximal-in-range algo-
rithm f c for combinatorial auctionswith conflicts that is a deterministic (16∆Iα/3)-
approximation algorithm. As Algorithm 5.2, Algorithm 5.3 calls f always for the
same set of bidders and set of items; thus, the target set X ′ of f is the same in each
call.

Let us assume that OPT was set to its final value when I ′ = I∗. Furthermore,
assume that Ic is a random subset computed by Algorithm 5.1. It follows that∑

i∈N
vi(OPTi) =

∑
i∈N

vI
∗

i (OPTi(I
∗))

≥ E
Ic

[∑
i∈N

vI
c

i (OPTi(I
c))

]
(∗)
≥ E

Ic

[∑
i∈N

vI
c

i (OPTi(I))

]

=
∑
i∈N

E
Ic
[vi(OPTi(I) ∩ Ic)]

(∗∗)
≥ 3

16∆I

∑
i∈N

vi(OPTi(I)) .
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Algorithm 5.3: Maximal-in-range algorithm f c over range X ′
D when ∆I is

bounded.
1 Let D be the domain of a distribution over the random set Ic computed by
Algorithm 5.1 using the distribution from Lemma 5.4 such that |D| ∈ O(m2)

2 Let X ′ ⊆ X be the target set of f
3 Set OPT← (∅, . . . , ∅)
4 forea I ′ ∈ D do
5 Define vI′i (S) := vi(S ∩ I ′) for all S ⊆ I and i ∈ N

6 Set OPT(I ′)← f(vI
′
)

7 if
∑

i∈N vI
′

i (OPTi(I
′)) ≥

∑
i∈N vi(OPTi) then

8 OPTi ← OPTi(I
′) ∩ I ′ for all i ∈ N

9 return OPT

Inequality (∗) holds becauseOPT(Ic) ∈ argmaxX∈X ′
∑

i∈N vI
c

i (Xi) andOPT(I) ∈
X ′, and inequality (∗∗) follows from Proposition 5.8. Since themaximum social wel-
fare it at most α ·

∑
i∈N vi(OPTi(I)) the claimed approximation factor follows.

We still have to show that the algorithm is maximal-in-range. For eachX ∈ X ′

and I ′ ∈ D let XI′ := (X1 ∩ I ′, . . . , Xn ∩ I ′). Define X ′
D := {XI′ |(X, I ′) ∈

X ′ ×D}. e next sequence of equalities shows that f c is maximal on the subset
X ′
D ⊆ X .∑
i∈N

vi(OPTi) = max
I′∈D

∑
i∈N

vI
′

i (OPTi(I
′))

= max
I′∈D

max
X∈X ′

∑
i∈N

vI
′

i (Xi) = max
XI′∈X ′

D

∑
i∈N

vi((X
I′)i)

Again, the pricing scheme for an incentive compatible mechanism is given in [91,
Proposition 9.31].

5.4 Combinatorial Auctions with Bidder Conflicts via Cone
Program Relaxation

We design an approximation algorithm via cone programming relaxation for max-
imizing social welfare in combinatorial auctions with bidder conflicts. Due to the
definition of vci , this problem is equivalent to maximizing

∑
i∈N vi(Xi) subject to

the constraint that for any (i, j) ∈ E, either Xi = ∅ or Xj = ∅. We will show the
following result.

eorem 5.9. For combinatorial auctions with bidder conflicts, suppose that the con-
flict graph G has out-degree at most∆, and the bidders have fractionally subadditive
(FSA) valuations. If there is a demand oracle for each bidder (we will define this later),
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then there exists an O (∆ · (log log∆)/(log∆))-approximation algorithm of social
welfare that runs in poly(m,n)-time.

We include some standard facts of combinatorial auctions without conflicts in
Section 5.4.1. As this is one of the first applications of cone programming relaxations
in the context of algorithmic mechanism design, we include some standard facts of
cone programs in Section 5.4.2. e algorithm and its analysis will be given in
Sections 5.4.3 and 5.4.5 respectively. In the remainder of this section, we use S to
denote a subset of I .

5.4.1 Combinatorial Auction without Conflicts

e optimal social welfare in a combinatorial auction without conflicts can be rep-
resented by the following integral linear program ILP-NC:

max
∑
i∈N

∑
S ̸=∅

vi(S) · xi,S (ILP-NC)

subject to
∑
S ̸=∅

xi,S ≤ 1 ∀i ∈ N,

∑
S:k∈S

∑
i∈N

xi,S ≤ 1 ∀k ∈ I,

xi,S ∈ {0, 1} ∀i ∈ N and S ⊆ I.

In general, solving ILP-NC is NP-hard. e usual remedy is to solve its linear pro-
gramming relaxation LPR-NC, i.e., relaxing the constraint xi,S ∈ {0, 1} to xi,S ∈
[0, 1], to obtain a fractional solution, and round it to an integral solution that aains
a good approximation guarantee.

ere areΩ(2mn)-many variables in LPR-NC, but it can be solved in poly(m,n)-
time if there is a demand oracle for each bidder: Given the prices p1, p2, . . . , pm
of the items, the demand oracle of bidder i returns a set S ⊆ I that maximizes
vi(S) −

∑
k∈S pk. e demand oracles serve as separation oracles for the dual of

LPR-NC; thus, they allow solving LPR-NC efficiently by using the ellipsoid method
(see Nisan and Segal [92]).

For the general class of valuations, the approximation guarantee is worse than
Ω
(
m1/2−ϵ

)
for any positive constant ϵ, unless P=NP. For some restricted classes

of valuations, the approximation guarantee can be much beer. For FSA valuations,
the approximation guarantee is e

e−1 ≈ 1.58 (see [33]). Indeed, the fair contention
resolution algorithm for FSA valuations (see Feige and Vondrák [40, Section 1.2])
takes any feasible point of LPR-NC as input, and gives an allocation such that each
bidder obtains expected welfare of at least

(
1− 1

e

)
times his part in the objective

function value in LPR-NC at the feasible point.
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5.4.2 Cone Programs in a Nutshell

Cone programs (CP) are a generalization of the more familiar linear programs (LP)
and semi-definite programs (SDP). We list the relevant definitions and properties of
CP here. ey are extracted from Chapters 2 and 5 in Boyd and Vandenberghe [17].

A closed set K ⊆ Rq is a proper cone if (a) for any real numbers a1, a2 ≥ 0
and for any k1, k2 ∈ K , a1k1 + a2k2 ∈ K ; (b) it has nonempty interior; and (c) it
is pointed, i.e., if x,−x ∈ K , then x = 0. Two examples of proper cones are the
non-negative orthant (the set of points with non-negative coordinates), and the set
of symmetric positive semi-definite (SPSD) matrices.

ere is a natural partial ordering on Rq associated with any proper cone K ,
which is denoted by ⪰K : For any x1, x2 ∈ Rq , x1 ⪰K x2 if and only if (x1− x2) ∈
K . e corresponding strict partial ordering, ≻K , is defined as follows: For any
x1, x2 ∈ Rq , x1 ≻K x2 if and only if (x1 − x2) is an interior point of K .

e dual cone of a proper cone K , is the set K∗ := {z | k · z ≥ 0 ∀k ∈ K},
where k ·z is the inner product of k and z. e dual cone of the non-negative orthant
is the non-negative orthant itself, and the dual cone of the set of SPSD matrices is
the set of SPSD matrices itself [17, Examples 2.23 and 2.24]. e two proper cones
are said to be self-dual.

ere are various forms of CP, but they can be shown to be equivalent. In this
chapter, we will use two of the forms of CP. e standard form of CP is as follows;
note that c, x ∈ Rq , A is an ℓ× q real matrix, b ∈ Rℓ and K is a proper cone in Rq :

min c · x (CP-STD)
subject to Ax = b

x ⪰K 0

e above CP has two constraints. e first one, Ax = b, is called non-conic
constraint. e second one, x ⪰K 0 or equivalently x ∈ K , is called conic constraint.

LP is a special case of CP, in which K is the non-negative orthant. SDP is a
special case of CP, in which K is the set of SPSD matrices.

As in the cases of LP and SDP, there is a dual for CP too, which is also a CP.
Before describing the dual, we note that the non-conic constraint Ax = b can be
broken into ℓ equality constraintsAhx = bh, whereAh is the h-th row of the matrix
A and bh is the h-th entry of the vector b. Each such equality constraint in the pri-
mal will associate to one distinct real variable in the dual, but the conic constraint
will not associate to any dual variable. is is important since for our problem, we
will introduce a CP with exponentially many variables but only poly(m,n) equal-
ity constraints. en its dual will have only poly(m,n) dual variables, which is a
necessary feature for using ellipsoid method to solve it in poly(m,n)-time.
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e dual of CP-STD, in an inequality form of CP, is (see [17, Example 5.12])

max b · y (CP-DUAL-INEQ)
subject to c ⪰K∗ A⊺y

We may solve CP-STD by solving its dual CP-DUAL-INEQ if strong duality holds
between them. While strong duality always holds for LP, it may not hold for SDP
and CP. e standard method to determine strong duality of CP is to check that
Slater’s condition holds, i.e., there exists an x such that Ax = b and x ≻K 0.

5.4.3 Algorithm

Halperin [61] designed an SDP and a rounding scheme for WIS with approxima-
tion guarantee O

(
∆ · log log∆

log∆

)
. We conglomerate his SDP with LPR-NC for our

problem.

(ICP-C)

max
∑
i∈N

∑
S ̸=∅

vi(S) · xi,S

subject to∑
S ̸=∅

xi,S ≤ 1, ∀i ∈ N

∑
S:k∈S

∑
i∈N

xi,S ≤ 1, ∀k ∈ I

1 + wi

2
=
∑
S ̸=∅

xi,S , ∀i ∈ N

(1 + wi)(1 + wj) = 0, ∀(i, j) ∈ E (5.4)
wi ∈ ±1, ∀i ∈ N

xi,S ∈ {0, 1}, ∀i ∈ N,S ⊆ I.

(CPR-C)

max Z :=
∑
i∈N

∑
S ̸=∅

vi(S) · xi,S

subject to∑
S ̸=∅

xi,S ≤ 1

∑
S:k∈S

∑
i∈N

xi,S ≤ 1

1 + w0 · wi

2
=
∑
S ̸=∅

xi,S (5.5)

(w0 + wi) · (w0 + wj) = 0 (5.6)
∥w0∥ = ∥wi∥ = 1. (5.7)
xi,S ≥ 0.

Note that our problem is equivalent to solving the integer program ICP-C shown
above. As the constraint (5.4) involves a product of variables, LP relaxation is not
admissible. We relax ICP-C to CPR-C, a “mixture” of an LP and an SDP; note that
in CPR-C, w0, wi ∈ Rn+1. CPR-C is a CP. In Section 5.4.4, we will show that strong
duality holds between CPR-C and its dual, and we can solve the dual of CPR-C in
poly(m,n)-time by using the ellipsoid method, assuming that we have a demand
oracle for each bidder.

Let (Z∗, {x∗}, {w∗}) be the optimal solution to CPR-C. Our algorithm, Algo-
rithm 5.4, partitions the bidders according to the value of 1+w∗

0 ·w∗
i into three sets
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Algorithm 5.4: Approximation Algorithm via Cone Program Relaxation.
1 Solve CPR-C to obtain the solution (Z∗, {x∗}, {w∗}).
2 Set τ ← 3 log log∆

4 log∆ , which is less than 1/2.
3 Partition the bidders into three sets N0, N1, N2:
N0 = {i | 0 ≤ 1 + w∗

0 · w∗
i ≤ 2τ},

N1 = {i | 2τ < 1 + w∗
0 · w∗

i ≤ 1},
N2 = {i | 1 < 1 + w∗

0 · w∗
i ≤ 2}

4 Consider bidders in N2:.
5 Let J2 = N2. Solve LPR-NC with the set of bidders restricted to J2. Round
the solution of LPR-NC, i.e., allocate items I to bidders in J2, using the fair
contention resolution algorithm in [40, Section 1.2]. Let A2 denote this
allocation.

6 Consider bidders in N1:
7 Project all vectors w∗

i corresponding to bidders in N1 to the space
orthogonal to w∗

0 , and normalize them. Let w′
i denote the projected normal

vectors. Note that the space orthogonal to w∗
0 has dimension n, so we can

treat each w′
i as an n-dimensional vector.

8 Choose a random n dimensional vector r = (r1, r2, . . . , rn), where each ri
follows the standard normal distribution with density function
ϕ(x) = 1√

2π
e−x2/2, ∀x ∈ R.

9 Let γ := (1− 2τ)/(2− 2τ) and N ′
1 :=

{
i ∈ N1 |w′

i · r ≥
√

2γ
1−γ log∆

}
.

10 Let J1 := N ′
1 \ {i ∈ N ′

1 | ∃j ∈ N ′
1 such that (i, j) ∈ E}. Solve LPR-NC with

the set of bidders restricted to J1. Round the solution of LPR-NC, i.e.,
allocate items I to bidders in J1, using the fair contention resolution
algorithm. Let A1 denote this allocation.

11 Consider bidders in N0:
12 Each bidder i ∈ N0 chooses a target set Xi with the following distribution:

each non-empty set S is chosen with probability qi,S =
x∗
i,S

2τ∆ , and the empty
set is chosen with probability qi,∅ = 1−

∑
S ̸=∅ qi,S . (Since 2τ∆ > 1, q is a

valid probability distribution.)
13 With the target sets generated, use the fair contention resolution algorithm

to allocate each bidder i a set of goods Ti ⊆ Xi, where {Ti}i∈N0 are disjoint.
14 Conflict handling: For each bidder i ∈ N0, if there exists another bidder j

such that (i, j) ∈ E and Tj ̸= ∅, set the allocation of bidder i to the empty set
15 Let A0 denote this allocation.
16 Return the best allocation among A0, A1, A2.
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N0, N1 and N2. Items are allocated to either of the three sets; the best one is cho-
sen. emethods of allocating items toN1 andN2 are well motivated by Halperin’s
algorithm.

e bidders in N2 have high values of 1 + w∗
0 · w∗

i , so (5.6) will guarantee that
N2 is an independent set. us we can use established approximation algorithms
for combinatorial auction without conflicts.

e bidders inN1 have suitably high values of 1+w∗
0 ·w∗

i . e aim is to select a
sufficiently good independent subset ofN1, and then proceed as inN2. e selection
is done via randomized vector rounding w.r.t. the space orthogonal to w∗

0 .
e bidders inN0 will have low values of 1+w∗

0 ·w∗
i

2 =
∑

S ̸=∅ x
∗
i,S . Note that x∗i,S

are typically viewed as probability densities. Low values of 1+w∗
0 ·w∗

i
2 allow room

to “expand” these densities by a factor of 1/τ , where τ < 1
2 . However, to handle

conflicts, we ought to “dwell” these densities by a factor of 1/(2∆) aerwards. en
we apply the fair contention resolution algorithm with the “expanded then dwelled”
probability densities to obtain a sufficiently good allocation to N0 in expectation.

Remark. We conglomerate an LP and an SDP to design our CP relaxation. As LP
is a subclass of SDP, using an SDP suffices to express all the constraints. However,
using this approach introduces exponentially many dual variables.

5.4.4 Solving CPR-C in Polynomial Time

First, we refer the readers to Grötschel et al. [56] (Chapters 2–4) for details of the
ellipsoid method. We will use the following result from fundamental linear algebra:

Lemma 5.10 (Grötschel et al. [56], Section 0.1). Let M be a symmetric q × q real
matrix. M is positive semi-definite if and only if there exists w1, w2, . . . , wq ∈ Rq

such that for 1 ≤ k ≤ q, 1 ≤ ℓ ≤ q, Mkℓ = wk · wℓ. Furthermore, M is positive
definite if and only if the vectors w1, w2, . . . , wq are linearly independent.

For our problem, we define the following proper coneK : K consists of all points
({xi,S}, {αi}, {βk},M), where {xi,S}, {αi}, {βk} are vectors of dimension (2m −
1)n, n, m respectively, and all of them have non-negative entries;M is a symmetric
positive semi-definite (n+1)× (n+1) real matrix. is matrix can be represented
by a vector that lists the coefficients of the matrix in some order and the standard
inner product of two such matrices is the standard inner product of the associated
vectors[17, Appendix A.1.1]. Since the non-negative orthant is a proper cone [17,
Examples 2.14] and the set of symmetric positive semi-definite matrices is a proper
cone [17, Examples 2.15] it follows that K is a proper cone. Furthermore, since
the non-negative orthant is self-dual [17, Examples 2.23] and the set of symmetric
positive semi-definite matrices is self-dual [17, Examples 2.24] it follows that K is
self-dual.

95



5. C A  CB E

Using Lemma 5.10 and introducing slack variables {αi} and {βk}, we can rewrite
CPR-C in the standard CP form CP-STD:

min−
∑
i∈N

∑
S ̸=∅

vi(S) · xi,S (CPR-C’)

subject to −
∑
S ̸=∅

xi,S − αi = −1 ∀i ∈ N, (ui)

−
∑

S:k∈S

∑
i∈N

xi,S − βk = −1 ∀k ∈ I, (pk)

2
∑
S ̸=∅

xi,S −M0,i = 1 ∀i ∈ N, (zi)

M0,i +M0,j +Mmin{i,j},max{i,j} = −1 ∀(i, j) ∈ E, (yi,j)
M0,0 = 1, (q0)
Mi,i = 1 ∀i ∈ N, (qi)

({xi,S}, {αi}, {βk},M) ⪰K 0.

Instead of solving CPR-C’ directly, we will solve its dual. Each equality con-
straint in CPR-C’ will associate to a variable in the dual. We have wrien the vari-
ables down on the right of their corresponding constraints.

To ensure that solving the dual of CPR-C’ is equivalent to solving CPR-C’, we
need to check that strong duality holds between them. We do this at the end of this
subsection.

e dual of CPR-C’ is

max−
∑
i∈N

ui −
∑
k∈I

pk +
∑
i∈N

zi −
∑

(i,j)∈E

yi,j + q0 +
∑
i∈N

qi (CPR-C-DUAL)

subject to vi(S)− ui −
∑
k∈S

pk + 2zi ≤ 0 ∀i ∈ N,S ⊆ I,

ui ≥ 0 ∀i ∈ N,

pk ≥ 0 ∀k ∈ I,

−Q is SPSD.

where Q is the symmetric (n+ 1)× (n+ 1)-matrix determined as follows:

Qi,i = qi, ∀i ∈ N ∪ {0}

Q0,i = Qi,0 = −zi +
∑

j:(i,j)∈E

yi,j +
∑

j:(j,i)∈E

yj,i, ∀i ∈ N

Qi,j = Qj,i =


0 if (i, j) /∈ E and (j, i) /∈ E

yi,j if (i, j) ∈ E and (j, i) /∈ E

yj,i if (i, j) /∈ E and (j, i) ∈ E

yi,j + yj,i if (i, j) ∈ E and (j, i) ∈ E

, ∀ distinct i, j ∈ N.
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e final step is to design a poly-time separation oracle.

• If ui < 0 for some i ∈ N or pk < 0 for some k ∈ I , we have an obvious
separation hyperplane.

• Since the dimension of −Q is poly(n), we can use a standard algorithm to
check whether it is SPSD in poly(n) time, and obtain a separation hyperplane
if −Q is not SPSD. See Oliveira Filho [93, Example 2] for details.

• If vi(S) − ui −
∑

k∈S pk + 2zi > 0 for some i ∈ N and S ⊆ I , then we
can use the demand oracle of bidder i to find S = S∗ that maximizes vi(S)−∑

k∈S pk. en vi(S
∗) − ui −

∑
k∈S∗ pk + 2zi > 0, which provides us a

separation hyperplane. is is almost identical to the separation oracle used
in the ellipsoid method for solving LPR-NC in [92].

Strong duality. While strong duality always holds for LP, it does not always hold
for CP. To check strong duality, we verify that the primal program CPR-C’ satis-
fies Slater’s condition (see Boyd and Vandenberghe [17, Section 5.2.3]), i.e., find a
feasible point which satisfies all equality constraints, and strictly satisfies the conic
constraint. In other words, we need to find a feasible point ({xi,S}, {αi}, {βk},M)
which satisfies all equality constraints, and such that xi,S > 0 for all i ∈ N,S ⊆ I ,
αi > 0 for all i ∈ N , βk > 0 for all k ∈ I , and M is positive definite.

Here, we only consider the cases n ≥ 2; the auction with n = 1 bidder is trivial.
Consider the point with xi,S = 1

4(2m−1)n2 for all i ∈ N and S ⊆ I . en
αi = 1 − (2m − 1) · 1

4(2m−1)n2 > 0 and βk = 1 − 2m−1n · 1
4(2m−1)n2 > 0. Also,

∀i ∈ N ,M0,i = 2(2m−1) · 1
4(2m−1)n2 −1 = 1

2n2 −1, and ∀i, j ∈ N where i ̸= j, we
choose Mi,j = −1−M0,i −M0,j = 1− 1

n2 . Recall that ∀i ∈ N , M0,0 = Mi,i = 1.
For notational convenience, let ϵ = 1

2n2 , i.e., ∀i ∈ N , M0,i = ϵ − 1; ∀i, j ∈ N
where i ̸= j, Mi,j = 1 − 2ϵ. By Lemma 5.10, to check that M is positive definite,
equivalently, we find linearly independentw0, w1, . . . , wn ∈ Rn+1 such that ∀i, j ∈
N ∪ {0}, wi · wj = Mi,j .

Let

w0 = (1, 0, 0, . . . , 0)

w1 = (ϵ− 1, a1, 0, 0, . . . , 0)

w2 = (ϵ− 1, b1, a2, 0, 0, . . . , 0)

w3 = (ϵ− 1, b1, b2, a3, 0, 0, . . . , 0)

...
wn = (ϵ− 1, b1, b2, b3, . . . , bn−1, an).

Note that ∀i ∈ N ∪ {0}, wi has n − i trailing zeroes. Also, ∀i ∈ N , the first entry
of wi is ϵ− 1, followed by b1, b2, . . . , bi−1, and then followed by ai and the trailing
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zeroes. is ensures that w0 · w0 = 1 = M0,0 and w0 · wi = ϵ − 1 = M0,i for all
i ∈ N .

We will determine a1, b1, a2, b2, a3, b3, . . . , an−1, bn−1, an in this order. We will
show that for every i ∈ N , ai ≥

√
133
12n , and bi’s are negative with |bi| ≤ 1

3n3 .
Since w1 · w1 = 1, (ϵ− 1)2 + (a1)

2 = 1 and thus

a1 =
√

2ϵ− ϵ2 =

√
1

n2
− 1

4n4
=

√
1

n2

(
1− 1

4n2

)
≥
√

15

16n2
>

√
133

12n
.

Since for i > 1, w1 ·wi = 1− 2ϵ, (ϵ− 1)2 + a1b1 = 1− 2ϵ. Hence a1b1 = −ϵ2 and
thus b1 is negative with

|b1| = ϵ2/a1 =
1

4n4a1
<

3√
133n3

<
1

3n3
.

Next, we proceed by induction. Suppose that for some q ≥ 1, a1, a2, . . . , aq ≥√
133
12n and b1, b2 . . . , bq are negative with |b1|, |b2|, . . . , |bq| ≤ 1

3n3 .
Since wq+1 · wq+1 = 1, (ϵ− 1)2 +

∑q
ℓ=1(bℓ)

2 + (aq+1)
2 = 1 and thus

aq+1 =

√√√√2ϵ− ϵ2 −
q∑

ℓ=1

(bℓ)2 ≥
√

1

n2
− 1

4n4
− n · 1

9n6

≥
√

1

n2
− 1

4n4
− 1

18n4
=

√
1

n2

(
1− 11

36n2

)
≥
√
133

12n
.

Since for i > q+1 holds thatwq+1 ·wi = 1−2ϵ it follows that (ϵ−1)2+
∑q

ℓ=1(bℓ)
2+

aq+1bq+1 = 1− 2ϵ. Hence

0 > aq+1bq+1 = −ϵ2 −
q∑

ℓ=1

(bℓ)
2 ≥ − 1

4n4
− n · 1

9n6
≥ − 1

4n4
− 1

18n4
= − 11

36n4
,

and thus bq+1 is negative with

|bq+1| ≤
11

36n4aq+1
≤ 11

36n4
· 12n√

133
=

11

3
√
133n3

<
1

3n3
.

is completes the induction.
Since all ai’s are strictly positive, w0, w1, w2, . . . , wn are linearly independent.

5.4.5 Analysis

For the analysis we need some notation. For any set N ′ of bidders, let Z∗(N ′) :=∑
i∈N ′

∑
S ̸=∅ vi(S) ·x∗i,S . Note that Z∗(N0)+Z∗(N1)+Z∗(N2) = Z∗. Given any

independent set J ⊆ N , let LPR(J) denote the program LPR-NC with the set of
items I and the set of bidders restricted to J . Let L∗(J) denote the optimal value of
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LPR(J). Let x∗(J) denote the vector {x∗i,S}i∈J,S⊆I , i.e., it is the vector x∗ restricted
to bidders in J .

We will show that the expected social welfare aained by Aq is at least
Ω((log∆/(∆ log log∆)) ·Z∗(Nq) for q = 0, 1, 2. Our analysis uses some results in
Halperin [61, Lemma 5.2].

Analysis of Line 4. Constraints (5.6) guarantee that J2 = N2 is an independent set.
Since x∗(J2) is a feasible point of LPR(J2), L∗(J2) ≥ Z∗(J2) = Z∗(N2). e fair
contention resolution algorithm gives an allocation which is at least

(
1− 1

e

)
L∗(J2)

≥
(
1− 1

e

)
Z∗(N2) in expectation.

Analysis of Line 6. We note that the selection of an independent set J1 is identical
to the corresponding part in Halperin’s algorithm, modulo that since we are dealing
with a directed graph, we can remove fewer bidders from N ′

1.2 us, we can follow
closely Halperin’s analysis to show that

E [Z∗(J1)] = Ω

(
∆2τ

∆
√

log∆

)
· Z∗(N1) = Ω

(
log∆

∆ log log∆

)
· Z∗(N1).

Since x∗(J1) is a feasible point of LPR(J1), L∗(J1) ≥ Z∗(J1). e fair contention
resolution algorithm gives an allocation which is at least

(
1− 1

e

)
L∗(J1) in expecta-

tion. us, the expected social welfare aained byA1 is at least
(
1− 1

e

)
E [L∗(J1)] =

Ω
(

log∆
∆ log log∆

)
· Z∗(N1).

Analysis of Line 11. Observe that 2τ∆ > 1 for sufficiently large∆, so the vector q,
which contains {qi,S}i∈N0,S⊆I , is a feasible point of LPR(N0). e sets {Ti}i∈N0 are
generated by the fair contention resolution algorithmw.r.t. the vector q, so E [vi(Ti)],
the expected welfare of bidder i (modulo conflicts), is at least

(
1− 1

e

) Z∗({i})
2τ∆ .

To handle conflicts, the algorithm resets the allocation of some bidders to the
empty set. We will show that for each bidder i ∈ N0, at least half of his expected
welfare (modulo conflicts) is retained aer conflict handling.

For every i ∈ N0, let Fi be the event that ∀j with (i, j) ∈ E,Xj = ∅. en F̄i is
the event: ∃j such that (i, j) ∈ E andXj ̸= ∅. We note that before conflict handling,
for all i ∈ N0, E [vi(Ti) |Fi] ≥ E

[
vi(Ti) | F̄i

]
. We will prove the above inequality

formally in Lemma 5.11, but it is indeed intuitive. e target set of each bidder is
the set of items the bidder is competing for. us, the above inequality depicts that
bidder i gets more when facing less competition from bidders he conflicts with.

2Halperin’s analysis is for undirected graphs, but his proof can be reused for directed graphs with
lile modification. In [61, Lemma 5.2], if there is an edge between vertices in N ′

1, both vertices of the
edge are removed from N ′

1. For directed graphs it suffices to remove the outgoing vertex only, so the
bound provided in the lemma is also applicable.
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Lemma 5.11. Let Xi, Xj , Ti be defined as in line 11 of Algorithm 5.4. For every i ∈
N0, let Fi be the event that ∀j with (i, j) ∈ E, Xj = ∅. en E [vi(Ti) |Fi] ≥
E
[
vi(Ti) | F̄i

]
.

Proof. Let Ci be the set of bidders j with (i, j) ∈ E. Fix the target sets of bidders
who are not inCi. For an item k ∈ Xi and every i′ ∈ N0, let pi′(k) :=

∑
S:k∈S x∗i′,S .

Let A(k) := {i′ | k ∈ Xi′}.
In the fair contention resolution algorithm (see [40, Section 1.2]), if |A(k)| = 1,

i.e., A(k) = {i}, then Pr [k ∈ Ti] = 1; if |A(k)| > 1, then

Pr [k ∈ Ti] =
1∑

i′∈N0
pi′(k)

 ∑
i′∈A(k)\{i}

pi′(k)

|A(k)| − 1
+

∑
i′ /∈A(k)

pi′(k)

|A(k)|

 .

Recall that we are fixing the target sets of bidders who are not in Ci. If Fi holds,
then ∀j ∈ Ci, j /∈ A(k). However, if F̄i holds, some bidders in Ci may get into
A(k), i.e.,

(|A(k)| when Fi holds) ≤ (|A(k)| when F̄i holds)
no maer what target sets the bidders in Ci choose. en it follows that

Pr [k ∈ Ti |Fi] ≥ Pr
[
k ∈ Ti | F̄i

]
.

As each item is allocated independently, and each item in Xi is allocated to
bidder i with higher probability when Fi holds, the lemma follows.

Note that E [vi(Ti)] = E [vi(Ti) |Fi] · Pr [Fi] + E
[
vi(Ti) | F̄i

]
· Pr

[
F̄i

]
, i.e.,

E [vi(Ti)] is a weighted average of the two conditional expectations. Since the first
conditional expectation is larger than the second one,

E [vi(Ti) |Fi] ≥ E [vi(Ti)] ≥
(
1− 1

e

)
Z∗ ({i})
2τ∆

.

Next, note that Pr [Fi] = 1− Pr
[
F̄i

]
= 1− Pr

[∪
j:(i,j)∈E (Xj ̸= ∅)

]
is at least

1−
∑

j:(i,j)∈E

Pr [Xj ̸= ∅] = 1−
∑

j:(i,j)∈E

1

2τ∆

∑
S ̸=∅

x∗j,S ≥ 1−
∑

j:(i,j)∈E

1

2τ∆
·τ ≥ 1/2,

since i conflicts with at most ∆ bidders.
Bidder i’s allocation is set to ∅ during conflict handling only if F̄i holds. By the

last two paragraphs, the expected welfare of bidder i aer conflict handling is at
least

E [vi(Ti) |Fi] · Pr [Fi] + 0 · Pr
[
F̄i

]
≥
(
1− 1

e

)
Z∗ ({i})
2τ∆

· 1
2

= Ω

(
log∆

∆ log log∆

)
· Z∗ ({i}) . (5.8)

en the expected social welfare is at least
∑

i∈N0
Ω
(

log∆
∆ log log∆

)
· Z∗ ({i}) =

Ω
(

log∆
∆ log log∆

)
· Z∗ (N0).
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Analysis of Line 16. efinal step is to choose the best allocation amongA0, A1, A2,
which, by the analysis of the previous three steps, is at least

1

3

[(
1− 1

e

)
Z∗(N2) + Ω

(
log∆

∆ log log∆

)
· (Z∗(N1) + Z∗(N0))

]
= Ω

(
log∆

∆ log log∆

)
· Z∗. (5.9)

is concludes the analysis of the algorithm. Observe that we obtain the follow-
ing proposition as a notable special case.

Proposition 5.12. ere is a poly-timeO
(
∆ · log log∆

log∆

)
-approximation algorithm for

the WIS problem in a directed graph G with out-degree at most ∆.

Remark. By eorem 5.2, we have an O (min{∆,∆I})-approximation algorithm
for combinatorial auctions with bidder and item conflicts, in which bidders have
FSA valuations. An interesting open problem is whether we can improve the ap-
proximation guarantee to be sublinear in min{∆,∆I}.

5.5 Sponsored Sear with Limited Number of Slots

In this section we consider sponsored search with bidder conflicts in more detail.
Some of our results extend to ordered conflicts and more general graph-based slot
conflicts. In light of the application, we focus on the case with a small numberm of
slots. Note that a trivial enumeration solves the problem in timeO(nm). Moreover,
it is unlikely that significantly faster algorithms exist that solve the problem exactly,
even for m ≤ logn; it is W[1]-hard to decide Log-Independent-Set, i.e., given k ≤
logn, deciding if G has an independent set of size at least k cannot be done in
time f(k) · nc for constant c unless FPT = W[1] (see Downey and Fellows [34]).
us, we present two approximation algorithms. e first one uses semidefinite
programming and has polynomial running time for m ∈ O(logn). e second
one is a partial enumeration approach and runs in polynomial time if, in addition,
m ∈ O((logn)/(logmin{∆+ 1, logn})).

5.5.1 Sponsored Sear via Semidefinite Programming

We study sponsored search with bidder conflicts andm ∈ O(logn). We assume for
simplicity that n ≥ m ≥ 6. Note that, if m > n, we could add (m − n) dummy
bidderswith valuation zero. Additionally, we assume consistent tie-breaking among
the bidders with the same valuation. Recall that in this seing bidders have unit
demand, and thus we can represent an allocationX of slots to bidders by amatching
MX in a bipartite bidder-slot-graph. We define vi(MX) = vi(Xi) for all i ∈ N . We
call a matching MX conflict-free if Di ∩Xi = ∅ for all i ∈ N . Note that for every
matching there exists a conflict-free matching with the same social welfare; we
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Algorithm 5.5: Sponsored search auction with conflicts
1 Assign all bidders in N independently with probability 1/2 to set N1 and set
N2 ← N \N1. With v1 ≥ v2 ≥ · · · ≥ vn and h = |N1| define the functions
ϕ : {1, . . . , h} → {1, . . . , n} and χ : {1, . . . , n− h} → {1, . . . , n} such that
N1 = {ϕ(1), . . . , ϕ(h)} and ϕ(j) < ϕ(j + 1) for j ∈ {1, . . . , h− 1} and
N2 = {χ(1), . . . , χ(n− h)} and χ(j) < χ(j + 1) for j ∈ {1, . . . , n− h− 1}

2 Set q ← 1 with probability 1
2 and set q ← 2 otherwise

3 if n− h ≥ ⌈m4 ⌉+ 1 then t← χ(⌈m4 ⌉+ 1) else t←∞ and vt ← 0
4 if q = 1 then
5 Set r1 ← vt
6 Set N1

1 ← {ϕ(j)|j ∈ {1, . . . , h} and ϕ(j) < t}
7 if t ≤ m+ 1 then set A to the set of all subsets of N1

1 else A ← ∅
8 else
9 Set r2 ← vt · 18R(∆)
10 Set N2

1 ← {ϕ(j)|j ∈ {1, . . . , h} and vϕ(j) ≥ r2}
11 Set S ← independent set in N2

1 computed by using the WIS algorithm
described in Proposition 5.12 giving bidders in N2

1 in random order and
with equal weights

12 Set A ← {S}
13 Add m dummy-bidders without conflicts and with valuation rq to each set in
A and to N

14 For each set A ∈ A letM(A) define all the conflict-free matchings of
bidders in A to slots; defineM =

∪
A∈AM(A)

15 Select allocation M ′ ∈ argmaxM∈M
∑

i∈N vi(M)
16 Every real-bidder a in N pays pa ← maxM∈M

∑
i∈N\{a}(vi(M)− vi(M

′))

simply unassign all the slots in
∪

i∈N Di∩Xi. Furthermore, we define the expected
social welfare SW (M) := E

[∑
i∈N vi(M)

]
for a (randomized) matching M . In

the following, we also use the notation R(∆) =
√

log log∆/ log∆.
e auction mechanism is presented in Algorithm 5.5 and its approximation

guarantee is analyzed in eorem 5.13.

eorem5.13. ematchingM ′ computed in Algorithm 5.5 is in expectation anO(∆·
R(∆))-approximation of the optimal social-welfare.

We show for the random index t defined in Algorithm 5.5, that if the optimal
conflict-free assignment of bidders to slots OPT was restricted to a random sub-
set OPT′′ of the t − 1 most valuable edges, where each of those edges is picked
with probability 1/2 if t ≤ m + 1 and is discarded otherwise, then SW (OPT′′) ≥
SW (OPT)/16. us, it suffices to compare the performance of a mechanism with
OPT′′. We run two different algorithms, Algorithm 1 and Algorithm 2, each with
probability 1/2, and receive at least 1/2 of the maximum of their social welfares
SW 1 and SW 2, respectively.
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If Algorithm 1 performs very well, i.e., if SW 1 > SW (OPT′′)/(∆R(∆)), we
achieve the result promised in eorem 5.13. Algorithm 1 tries out all possibilities
to find the best non-conflicting matching for bidders inN1

1 . If Algorithm 1 does not
perform very well, we can show that OPT′′ must get at least a quarter of its social
welfare from bidders in N2

1 \ N1
1 . In this case, we build an (unweighted) indepen-

dent setS of all bidders inN2
1 using theWIS algorithm described in Proposition 5.12,

which guarantees that the number of bidders in S is at least an O(1/(∆R(∆)2))-
fraction of the optimal number for bidders in N2

1 \N1
1 . As in OPT′′ every bidder in

N2
1 \ N1

1 contributes at most with valuation r1 to SW (OPT′′) and in Algorithm 2
every bidder in S contributes at least with valuation r2 to SW 2, the overall approx-
imation ratio of Algorithm 2 is O(∆R(∆)2 · r1/r2) = O(∆R(∆)). We show first,
in Lemma 5.14, that the condition in line 7 holds with probability at least 3/4.

Lemma 5.14. It holds that Pr [t ≤ m+ 1] ≥ 3/4.

Proof. Note that t ≤ m + 1 if and only if |N2 ∩ {1, . . . ,m+ 1}| ≥ ⌈m4 ⌉ + 1. is
happens with probability

1− 1

2m+1

⌈m
4
⌉∑

ℓ=0

(
m+ 1

ℓ

)
,

which is at least 3/4 when m ≥ 6.

Proof of eorem 5.13. Assume that the social-welfare-maximizing conflict-free
matching of bidders in N to slots is given by OPT. e valuation of the dummy
bidders will not be considered in the social welfare as they were only included to
guarantee incentive compatibility.

We first analyze the random partition of N into N1 and N2 by the mecha-
nism. Let m∗ be the number of edges in OPT and let us denote those edges by
(i(1), j(1)), . . . , (i(m∗), j(m∗)) such that they are ordered by their value, i.e., vi(1) ·
αj(1) ≥ · · · ≥ vi(m∗) · αj(m∗). Let OPT′ be the random subset of OPT where all the
edges but the t−1most valuable ones are discarded, i.e., OPT′ = {(i(1), j(1)), . . . ,
(i(t−1), j(t−1))}. Furthermore, let OPT′′ be the random subset of OPT′ where (1)
all the edges that contain bidders in N2 are discarded and (2) if t > m+1 all edges
are discarded. We will show that SW (OPT) ≤ 16 · SW (OPT′′). Since, N2 ⊆ N it
holds that t ≥ ⌈m/4⌉+ 1 ≥ m/4 + 1, and thus, it follows by m∗ ≤ m that

SW (OPT)
SW (OPT′)

=

∑t−1
s=1 vi(s) · αj(s) +

∑m∗

s=t vi(s) · αj(s)∑t−1
s=1 vi(s) · αj(s)

≤ 1 +

∑m∗

s=t vi(t) · αj(t)∑t−1
s=1 vi(t) · αj(t)

=
m∗

t− 1
≤ 4 . (5.10)

Now, for all i ∈ N let Ei be the event that bidder i is not in N1 and let T be
the event that t > m + 1. By Lemma 5.14, it holds for each bidder i ∈ N that
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Pr [Ei ∪ T ] ≤ Pr [Ei]+Pr [T ] ≤ 1/2+1/4 = 3/4. us, SW (OPT′′) =
∑t−1

s=1 vi(s)·
αj(s) · (1 − Pr

[
Ei(s) ∪ T

]
) ≥ (1/4) · SW (OPT′). It follows that SW (OPT′′) ≥

(1/16) · SW (OPT).
We will now compare the outcome M ′ of the mechanism with OPT′′. Let M1

or M2 be the matching computed by the mechanism under the condition q = 1 or
q = 2, respectively. It holds that 2 · SW (M ′) ≥ max{SW (M1), SW (M2)}. en
the following claim completes the proof.

Claim 1. For some constant c > 1 it holds that

c ·∆R(∆) ·max{SW (M1), SW (M2)} ≥ SW (OPT′′). (5.11)

Proof. Notice that if SW (OPT′′) < max{4,∆R(∆)} · SW (M1) then (5.11) is satis-
fied. us, we assume that SW (OPT′′) ≥ max{4,∆R(∆)} · SW (M1). Moreover,
we assume that t ≤ m+ 1, as otherwise, SW (OPT′′) = 0.

Next, we define by SW u the optimal social welfare for bidders in N1
1 when

bidder conflicts are ignored. Furthermore, note that eorem 5.2 implies that 4∆ ·
SW (M1) ≥ SW u. us,

SW (OPT′′) ≥ ∆R(∆) · SW (M1)

≥ ∆R(∆) · SW u/(4∆) ≥ (R(∆)/4) · SW u (5.12)

Let us now partition the matching OPT′′ into OPT1 that contains the edges to bid-
ders inN1

1 , OPT2 that contains the edges to bidders inN2
1 \N1

1 , and OPT3 := OPT′′\
(OPT1 ∪ OPT2). us, SW (OPT′′) = SW (OPT1) + SW (OPT2) + SW (OPT3).

As the matching OPT1 is considered when computing M1, SW (M1) ≥
SW (OPT1), and thus, by the assumption taken above holds that SW (OPT1) ≤
SW (M1) ≤ SW (OPT′′)/max{4,∆R(∆)} ≤ SW (OPT′′)/4.

Furthermore, SW (OPT3) ≤ SW (OPT′′)/2, as otherwise,

SW (OPT′′) < 2·SW (OPT3) < 2·r2·
t−1∑
j=1

αj = 2·1
8
·R(∆)·vt·

t−1∑
j=1

αj ≤
R(∆)

4
SW u ,

which contradicts (5.12). Hence, SW (OPT2) ≥ SW (OPT′′)/4. It follows that

SW (OPT2)

SW (M2)
=

∑
(i,j)∈OPT2

vi · αj∑
(i,j)∈M2

vi · αj
≤

r1 ·
∑|OPT2|

j=1 αj

r2 ·
∑|M2|

j=1 αj

≤ 8

R(∆)
·
(
1 +

∑|OPT2|
j=|M2|+1 α|M2|∑|M2|

j=1 α|M2|

)
=

8

R(∆)
· |OPT2|
|M2|

≤ 8

R(∆)
· c′ · (∆ ·R(∆)2) = 8c′ ·∆ ·R(∆), (5.13)

where c′∆R(∆)2 is the approximation factor of Proposition 5.12.
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We show that the runtime of themechanism is polynomial inn and∆ for certain
restrictions on the number of slots m, and that the mechanism is in the universal
sense incentive compatible.

Proposition 5.15. If m ∈ O(logn) the mechanism takes time poly(n,∆).

Proof. We have to show that line 15 and 16 can be computed in polynomial time in
n and ∆.

We first argue that |A| is polynomial in n. Consider the case where q = 1. If
t > m+ 1 then A = ∅; otherwise, A = P(N1

1 ) and |N1
1 | < t ≤ m+ 1. Moreover,

if q = 2 then |A| = 1. us, |A| is bounded by 2m which is polynomial in n.
Next, assume that we are given some A ∈ A. Given q = 1, we can ignore A

if bidders in A have conflicts, because we know that there exists a conflict-free set
of bidders in A that is optimal. Moreover, given q = 2 we know that the bidders
in all sets in A have no conflicts. us, we can assume that the bidders in A are
conflict-free. It follows that computing argmaxM∈M(A)

∑
i∈C vi(M) can be done

in polynomial time in n for all C ⊆ N ; for all i ∈ {1, . . . ,m} the bidder in A with
the i-th largest index has to be matched to the i-th slot.

e crucial idea for showing incentive compatibility is to prove that no bidder
has an incentive to alter the set of matchingsM.

Lemma 5.16. No bidder has an incentive to report a non-truthful bid that altersM.

Proof. We can restrict the proof to bidders in N1 as the other bidders always have
utility zero. Assume that all bidders bid truthful. In both cases, q = 1 and q = 2,
bidders not in N q

1 are in no matching inM, and thus, they are not in M ′ and their
utility is zero. However, they have no incentive to increase their bid because there
are m competing dummy-bidders that have a valuation that is at least the same as
theirs. us, if they increase their valuation, their utility cannot increase because
they have to pay their externality. Furthermore, in both cases, q = 1 and q = 2,
bidders in N q

1 have two possibilities: (i) Bidding high enough to stay in N q
1 and (ii)

bidding below the value that is necessary for staying in N q
1 . In (i), if a bidder bids

high enough to stay in N q
1 , he cannot affect N q

1 . Moreover, he cannot affect the
outcome of the WIS algorithm by his bid because we randomized the order of the
bidders. us, he cannot influence whether he belongs to a subset inA and, in turn,
he cannot influenceM. In (ii), if a bidder bids below the value that is necessary for
staying in N q

1 , he will receive nothing and has utility zero. us, no bidder has an
incentive to change his bid if this altersM.

us, even though the range of allocationsM depends on the valuations of the
bidders (i.e., this is no maximal-in-range algorithm) no bidder has an incentive to
changeM.

Lemma 5.17. e mechanism is in the universal sense incentive compatible.
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Proof. We can assume that all random decision are taken before the bidders report
their bids. We first fix a bidder a. Since by Lemma 5.16 bidder a has no incen-
tive to report a non-truthful bid that changesM we can restrict the analysis to
bidder a’s non-truthful bids that do not changeM. us, we can considerM as
fixed. e utility of bidder a for a matching M ′ is given by ua(M

′) = va(M
′) −

(maxM∈M
∑

i∈N\{a}(vi(M) − vi(M
′))) =

∑
i∈N vi(M

′) − maxM∈M
∑

i∈N\{a}
vi(M) which is maximized when a bids truthful.

e following theorem summarizes the results in this section.

eorem 5.18. For sponsored search with bidder conflicts and m ∈ O(logn), Algo-
rithm 5.5 is an in the universal sense incentive compatible mechanism that yields an

O
(
∆
√

log log∆
log∆

)
-approximation of social welfare and runs in time poly(n,∆).

Proof. e theorem follows from eorem 5.13, Proposition 5.15, and Lemma 5.17.

5.5.2 Sponsored Sear via Partial Enumeration

We treat a slightly more general small-supply case with m ≤ n/(∆ + 1). For this
case we observe that the problem can be solved optimally in linear time when all
bidders i have uniform values vi = v. For non-uniform values vi, we will strive
for an incentive compatible mechanism that solves the problem approximately but
much faster than the trivial enumeration that solves the problem exactly in O(nm)
time. Note that there is an m-approximation algorithm that assigns slot 1 to the
highest bidder, obtains value maxk,i αk · vi, and runs in timeO(n). us, we obtain
the following trade-off.

eorem 5.19. In sponsored search with bidder and slot conflicts, there is an in the uni-
versal sense incentive compatible mechanism that yields an O(logm)-approximation
of social welfare and runs in time O(n+ (m(∆ + 1))m).

Wefirst prove the existence of an approximation algorithm achieving the claimed
approximation ratio.

Proposition 5.20. In sponsored search with bidder conflicts, there is an O(logm)-
approximation algorithm that runs in time O(n+ (m(∆ + 1))m).

Proof. e algorithm is extremely simple for uniform values vi = v for all i ∈
N if m ≤ n/(∆ + 1). Initially, every bidder is active. We assign slot 1 to the
bidder i with smallest out-degree, label i and its all out-neighbors to be inactive.
We repeat this procedure with slots 2, 3, . . . ,m. Since m ≤ n/(∆ + 1), we will be
able to assign all slots in this way. is yields an optimum solution and takes time
O(n). If the vi are different, we apply logarithmic scaling. Let vmax = maxi∈N vi.
We consider ⌈log

2
(2m)⌉ classes, where class k contains bidders i with value vi ∈

(vmax/2
k, vmax/2

k−1]. e unclassified bidders have a value which is at most vi ≤
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vmax/(2m). us, by discarding this set of bidders, we discard at most 1/2 of the
optimum value.

For the remaining bidders, we pick k ∈ {1, 2, . . . , ⌈log
2
(2m)⌉} uniformly at

random and consider Vk = {i ∈ N | vi > vmax/2
k}, the union of all bidders

in classes 1, . . . , k. Let nk = |Vk|. If nk/(∆ + 1) ≥ m, then we can apply the
above algorithm for identical values to Vk. Otherwise, if nk/(∆ + 1) ≤ m, then
nk ≤ (∆+1)m, and a complete enumeration takes time at mostO((m(∆+1))m).
In either case, we obtain the optimum for Vk under the assumption that every bidder
has value vmax/2

k, and hence at least half of the value that the optimum gets from
bidders in class k. In expectation over the random choice of k, this shows that we
recover an O(logm)-fraction of the optimum.

e highest valuation can be found in time O(n). Computing the threshold
and reducing the set of considered bidders can be done in time O(n). Applying
the previous algorithm can be done in time O(n), and the enumeration takes time
O((m(∆ + 1))m).

Note that for a particular choice of k, the algorithm described in the proof of
Proposition 5.20 is applied in the induced subgraph of Vk and produces an optimum
solution under the assumption that all nodes have the same valuation. If this re-
sults from the greedy algorithm for the independent set of bidders, it also remains
an optimum solution with arbitrary additional slot conflicts. If this results from
enumeration, we can apply the enumeration also for additional slot conflicts in the
same asymptotic running time. us, we obtain the same running time and approx-
imation ratio also for sponsored search with bidder and slot conflicts.

By the sampling arguments in Dobzinski et al. [31] and Hoefer and Kesselheim
[65] we can turn the algorithm into an in the universal sense incentive compatible
mechanism with the same asymptotic running time and approximation ratio. e
idea is as follows. First, choose a random bit q. If q = 0, partition N into N1 and
N2 randomly and set vmax be the highest valuation in N1. However, we run the
algorithm in Proposition 5.20 on N2 only; if a bidder i ∈ N2 gets assigned slot ℓ he
has to pay αℓ · vmax/2

k. If q = 1, we keep the best slot and remove all others, and
run a second price auction among all bidders in N . is ensures that the claimed
approximation ratio even if there is a dominant bidder, i.e., a bidder who contributes
at least a constant fraction of the optimal social welfare. is completes the proof
of eorem 5.19.

5.6 Conclusion

We introduced models for goods with negative graph-based externalities and de-
signed combinatorial auctions for selling the goods. Our work lead to an algorithm
for approximating the optimal social welfare that has an approximation ratio that
is sublinear in the out-degree ∆ of the conflict graph. Furthermore, we designed
incentive compatible mechanisms having an approximation ratio that is linear in
∆. For sponsored search, we showed incentive compatible mechanisms under the
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restriction that the number of slots is small compared to the number of bidders.
In particular, we showed an incentive compatible mechanism with approximation
ratio sublinear in∆whenm ∈ O(logn). is result depends strongly on the single-
dimensionality of the problem, which enabled us to select independent sets without
considering the valuations of the bidders.

One obvious question remains open for future research: Does an incentive com-
patible combinatorial auction with an approximation ratio sublinear in∆ that takes
time O(n) exist? Note that the answer for this question is unknown even for the
special case of sponsored search that we studied in Section 5.5.1 if we assume that
the number of items is not in O(logn). Moreover, the answer is unknown for com-
binatorial auctions even if we assume that the number of items m is in O(logn) as
we do in Section 5.5.1. Beside this, we consider the study of auctions for goods with
positive and negative externalities as an interesting future research direction.
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