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Zusammenfassung

Diese Dissertation beinhaltet eine Reihe von theoretischen Untersuchungen von kol-

loidalen Teilchen, die mit Laserlicht wechselwirken. Je nach chemischer Zusammenset-

zung werden die Teilchen entweder von Regionen mit hoher Lichtintensität angezogen

oder sie werden zu aktiven Schwimmern, falls sie beleuchtet werden. Systeme solcher

Teilchen sind Beispiele für “Optische Materiallien”, und bilden eine Untergruppe der

weichen Materie. Das Ziel dieser Dissertation ist es, die entstehenden Strukturen und

das dynamische verhalten zwei-dimensionaler Anordnungen solcher Teilchen zu unter-

suchen, wenn sie von Lichtmustern unterschiedlicher Geometrie und Intensität beleuchtet

werden. Kapitel 1 ist eine Übersicht dieser Dissertation und besteht aus einer kurzen

Einführung in das Gebiet der weichen Materie, einer Aufzählung der typischen Heraus-

forderungen, die sich in der Simulation ergeben, einer Erläuterung der Forschungstrategie

und einer Zusammenfassung der darauf folgenden Kapitel.

In Kapitel 2 wird eine Untersuchung der dynamischen Phasen einer Monolage kol-

loidaler Teilchen, die mittels einer konstanten Kraft über eine externe Potentialland-

schaft getrieben werden, unternommen. Die Bewegung der Teilchen lässt sich in guter

Näherung mit einer überdämpften Langevin Gleichung beschreiben. Die auftretenden

dynamischen Phasen lassen sich abhängig von der Stärke der Teilchen-Teilchen Wech-

selwirkung in drei Regime gliedern. Für schwache Wechselwirkungen bewegt sich die

Monolage durch die Enstehung vieler unhabhängiger Defekte. Wenn man die Wechsel-

wirkungstärke erhöht bewegt sich der Kristall durch Bildung ausgedehnter Kompressions-

und Dekompressionszonen. Für große Teilchen-Teilchen Abstoßung beobachtet man eine

“stick-slip” Bewegung, in der die Monolage als Ganzes über das Lichtmuster gleitet.

Die Vorhersagen dieses Kapitels können mittels kolloidaler Teilchen, die mit periodis-

chen Lichtfeldern bestrahlt werden, experimentell überprüft werden. Die Analyse der

Simulationsergbebnisse zeigt, dass die Teilchen-Teilchen Wechselwirkung Korrelationen

erzeugt, welche den Gleitmechanismus der Monolage bestimmen.

In Kapitel 3 wird eine analytische Theorie präsentiert, die den Gleitmechanismus einer

harten Monolage, die über eine kommensurable Potentiallandschaft getrieben wird,

quantitativ beschreibt. Mittels einer harmonischen Approximation und elementarer

statistischer Mechanik wird die Bewegungsgleichung der Monolage auf eine einfache

Differentialgleichung abgebildet. Die analytischen Ausdrücke, die mit diesem Verfahren

erlangt werden, sagen einen Übergang zwischen einer Serie von thermisch aktivierten

Sprüngen über Energiebarrieren zu “thermischem Gleiten” voraus. Unter starken äußeren

Kräften verschwindet die effektive Barriere aufgrund thermischer Fluktuationen, was zur

Folge hat, dass die Monolage kontinuierlich über das Substrat gleitet. Weiters wurde



festgestellt, dass die mittlere Geschwindigkeit für große Antriebskräfte ein einfaches

Skalierungsverhalten auffweist, das konsistent mit der Existenz einer statischen Rei-

bungskraft ist. Für kleine Antriebskräfte hingegen existiert ein Nukleationsmechanis-

mus, der für eine kleine, aber von Null verschiedene Mobilität sorgt. Die Theorie wurde

mit Hilfe extensiver Simulationsdaten validiert und eine quantitative Übereinstimmung

von Theorie und Simulation wurde gefunden. Die Theorie ist auf Systeme anwende-

bar, in denen die Wechselwirkung zwischen Teilchen sehr groß ist und liefert präzise

Aussagen, die experimentelll überprüft werden können.

In den vorherigen Kapiteln wurde eine Theorie entwickelt, die auf kurzreichweitige,

rein abstoßenden Potentiale zutrifft. In Kapitel 4 werden die dynamischen Phasen

einer Monolage von Teilchen untersucht, die mit einem Lennard-Jones-Potential wech-

selwirken. Das Lennard-Jones-Potential besitzt einen abstoßenden und einen anziehen-

den Anteil, wodurch die Wechselwirkung eine charakteristische Länge aufweist, die mit

dem Abstand der Substratpotentialminima in Konkurrenz steht. Die resultierenden

Veränderungen im Systemverhalten wurden untersucht, in dem die Wechselwirkungsre-

ichweite des Lennard-Jones-Potentials größer, gleich, und kleiner als die Gitterkonstante

des Substratpotentials gesetzt wurde. Wie erwartet, gab es qualitative Ähnlichkeiten zur

vorherigen Arbeit solange die Teilchen im System sich typischerweise abstoßen, während

die dynamischen Phasen im attraktiven Bereich durch Bildung von Rissen in der Mono-

lage gekennzeichnet sind.

Motiviert durch Experimente, in denen kolloidale Teilchen mittels Laserlicht zu aktiven

Schwimmern gemacht werden, wird in Kapitel 5 das Verhalten solcher Teilchen unter-

sucht, wenn sie von einem Lichtmuster bestrahlt werden. Das Lichtmuster bewirkt,

dass nur die Teilchen, die sich in einem stark beleuchteten Teil des Raums befinden,

zu aktiven Schwimmen werden (“Active Patches”). Simulationen dieser Active-Patch-

Systeme und Analyse der Struktur und Dynamik des entstehenden stationären Zustands

wurden durchgeführt. Für symmetrische aktivitätsinduzierende Zonen gibt es eine qual-

itative Ähnlichkeit zu einem rein Brownchen System, das einem Temperaturgradient

unterliegt. Für asymmetrische Active Patches hingegen bricht diese Analogie zusam-

men, da ein Teilchenfluss auftritt. Die Ergebnisse dieser Studie sind experimentelll

zugänglich und könnten zu einem tieferen Verständnis von Chemotaxis beitragen.



Abstract

This thesis is a compilation of a series of projects in which simulations and analytical cal-

culations of colloidal particles that interact with laser light were performed. Depending

upon their chemical composition, these colloidal particles are either attracted to regions

of high laser light intensity or can be made into active swimmers if illuminated. Systems

of these particles therefore belong to a class of new materials called “optical matter”,

which is a subset of the broader field of soft matter. The aim of this thesis is to study

the typical dynamics and structures that arise when a two-dimensional arrangement of

these colloids are subject to light patterns of varying intensity and geometry. The first

chapter of this thesis consists of an introduction to the field of soft matter, a survey of

the typical difficulties encountered by computational physicists, an explanation of the

research philosophy that was employed, and an outline of the ensuing chapters.

In Chapter 2, an examination is made of the dynamical phases of a monolayer of charge-

stabilized colloids driven over a substrate potential by an external dc force acting along

a symmetry axis of the monolayer. Using overdamped Langevin dynamics, the sliding

transition for various inter-particle interaction strengths as a function of the driving force

was studied. For weak interactions, the diffusion of individual defects is responsible for

the motion of the monolayer. As the interaction strength is increased, sliding is induced

by distinct density compression and decompression zones. For very strong interactions,

a type of stick-slip mechanism emerges, in which the sliding of the monolayer is mediated

by the propagation of collective distortion waves. The predictions made in this chapter

can be tested experimentally with two-dimensional arrangements of colloidal particles

exposed to periodic light fields and it is shown that the inter-particle interaction strength

tunes the degree of correlation in the sliding mechanism adopted by a monolayer driven

over a commensurate substrate.

In Chapter 3, an analytical theory and computer simulations to study the effect of

thermal fluctuations on the stick-slip mechanism characteristic for the frictional response

of a stiff colloidal monolayer on a commensurate substrate is presented. By performing

a harmonic expansion of the energy and employing elementary statistical mechanics, the

motion of the monolayer can be mapped onto a simple differential equation. Analytical

expressions derived from this approach predict a transition from nucleation dynamics,

where the monolayer moves in a sequence of activated hops over energy barriers, to

“thermal sliding”, in which the effective substrate barrier opposing the motion of the

monolayer disappears due to thermal fluctuations, leading to continuous, uninterrupted

sliding motion. Furthermore, it is found that the average velocity of the monolayer for

large driving forces obeys a simple scaling behavior that is consistent with the existence of



a static friction. For small driving forces, however, nucleation provides a mode of motion

that leads to a small but non-vanishing mobility of the monolayer. Data obtained from

simulations confirm this picture and agree quantitatively with our analytical formulae.

The theory developed here holds under general conditions for sufficiently strong inter-

particle repulsions and yields specific predictions that can be tested in experiments.

In the previous chapters, a theory was developed that applies to short-ranged, repulsive,

potentials. In Chapter 4 an examination of the dynamical phases of a monolayer of

particles that interact via a Lennard-Jones interactions is undertaken. The Lennard-

Jones interaction is special because it consists of both a repulsive and an attractive part,

which results in a characteristic length scale of the interaction that is in competition

with the length scale of the external substrate potential. The resulting change in the

dynamical phases was probed by simulating systems in which the range of the interaction

was set to larger, equal, and less than the lattice constant of the substrate potential.

As expected, there was a qualitative correspondence to the previous studies if particles

typically repelled each other, whereas the dynamical phases in the attractive regime

were mediated through the formation of cracks in the monolayer.

Motivated by recent experiments in which colloidal particles can be made into active

swimmers through the use of laser light, Chapter 5 is dedicated to studying the effects

of applying a light pattern on the sample, thereby creating activity inducing zones, or

active patches. A system of interacting Brownian diffusers that become active swimmers

if they enter an active patch was simulated and an analysis of the structure and dynamics

of the ensuing stationary state was performed. For symmetric activity zones, the system

reacts qualitatively similar to a system with a temperature differential. For asymmetric

active patches, this analogy breaks down because we observe a net flow in the system.

The predictions herein can be tested experimentally and may form the basis for a deeper

understanding of chemotaxis.
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Chapter 1

Introduction

1.1 An overview of soft matter

Although the objects studied in soft matter are of varied composition and shape, they

invariably consist of building blocks that range from several hundred nanometers to

micrometers in size. Examples of such building blocks include polystyrene spheres,

polymers, and bubbles formed from a multitude of materials. The aggregates formed

by these objects are typically called colloidal suspensions, gels, and foams, respectively.

In this section, it will be argued that the complexity of soft matter systems arises due

to the simultaneous interplay of thermal, hydrodynamic, chemical, geometrical, and in

this thesis, electromagnetic effects.

The three related fields that pre-occupy themselves with the influence of temperature on

a system are the study of stochastic processes, thermodynamics, and statistical physics

and each of them plays a significant role in soft matter. A solitary colloidal particle, for

instance, performs Brownian diffusion because it is so small that the thermal fluctuations

in the fluid it is suspended in are large enough to exert a relevant stochastic force on

the particle, causing it to perform a random walk in space. Furthermore, since one

usually finds large numbers of soft matter objects suspended in a medium, a thorough

investigation requires a knowledge of thermodynamics and statistical physics, with their

predictions of order-disorder transitions. The influence of temperature has a significant

and dramatic effect on both their individual and collective behavior [1].

In addition to inducing the stochastic motion mentioned in the previous paragraph, the

suspending fluid of a soft matter object can also be the origin of steric and hydrodynamic

interactions. An example of steric interactions between soft matter objects are depletion

interactions that usually arise from the interaction between large soft matter objects in

a bath of smaller particles. To illustrate this, micrometer sized beads suspended in

a polymer mixture form a zone around them that is inaccessible to the polymers. If

two such beads are brought close together, then the overlap of these exclusion zones

1



Chapter 1. Introduction 2

results in an osmotic pressure that makes them effectively attractive [2]. Hydrodynamic

interactions between particles are due to the fact that the motion of a particle in a

fluid creates a flow field that propagates through space and influences the motion of

neighboring particles. Both of these effects are due to the fact that the motion of soft

matter objects can be strongly affected by the pressures and flows that they induce in

the fluid they are suspended in [3].

The study of biochemistry also has many important implications for the field of soft

matter. Many processes in biological systems, such as the function of cells and proteins,

occur at a similar length scale of soft matter systems and many advances in biochemistry

can be used to create new soft matter systems. One of the aspirations of the soft matter

community is to build “smart materials” such as the often cited drug delivery system in

which specialized proteins are grafted onto a colloid so that it only bonds to damaged

cells before depositing its payload of medicine [4]. The fact that a deeper understanding

and control of biological systems on a chemical level can be transferred to soft matter

systems is part of the reason why this field is growing so rapidly today [1].

There is a great deal of physics and mathematics that can be observed even when the par-

ticles under consideration are only hard bodies. In this case, the behavior of ensembles

of such particles is entirely determined by the shape of the particles under consideration.

In its simplest incarnation, the study of liquid crystals, which constitutes a large area in

soft matter, preoccupies itself with systems consisting of rod, flat, or bowl-like objects.

At sufficiently high densities, a collection of rods form phases with orientational order.

These structures are called smectic and nematic phases and considerable topological

analysis are necessary to predict and explain the veritable zoo of structures that have

been observed [5].

The final overlap that will be mentioned is the marriage between electromagnetism and

soft matter. By using materials that respond to electric or magnetic fields, one is able to

create systems such as liquid crystals and ferro-fluids that comprise a new generation of

materials that can be manipulated on a per-building block level with reasonably small

field strengths, such as the light emitted from a laser. Here, again, the size of the objects

under considerations is taken advantage of, since the electric and magnetic fields required

to move a bead that is micrometers in size is so small, that laser tweezing is a common

tool of the trade.

In summary, soft matter can be considered a quintessential example of classical physics

since it is a field in which electromagnetism, Newtonian mechanics, hydrodynamics,

statistical physics, and thermodynamics meet.
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1.2 A heuristic description of soft matter

In the previous section, an introduction was made of the specific behaviors typically

encountered in the field of soft matter. In this section, a heuristic derivation of the

name soft matter will be attempted, so that its relation to the other fields of physics

can be made clear.

So far, the working definition of soft matter has been the length scale under consider-

ation. Therefore, one might be tempted to call this field mesoscopic matter instead of

soft matter, since the latter has absolutely no relation to a length scale. In his inaugural

lecture at the University of Vienna, Professor Christos Likos gave an elegant rationale as

to why the term soft matter is appropriate. The qualification soft refers to the hardness

of a material. To relate a hardness to a length scale, consider the following dimensional

analysis of the yield stress, ε, which is a typical measure of the rigidity of an object. The

yield stress is defined as the pressure above which a material begins to deform plasti-

cally (irreversibly) and is therefore a measure of how difficult it is dent an object. The

yield stress is measured in Megapascals for materials such as iron or wood and can be

rewritten as a force per unit area ε = F̃ /L̃2, which in turn be recast as Ẽ/L̃3, where L̃

is the typical length scale of the material and Ẽ is the typical energy required to deform

it. Imagine a crystal with a typical length scale L̃ composed of objects that interact

with an energy Ẽ, where both quantities are given in Joules and meters, respectively,

ε ≈ Ẽ
L̃3

[
J

m3

]
=

4.11× 10−21

10−18

E

L3

[
kBT

µm3

]
=

1.025

250

E

L3

[
kBT

µm3

]
. (1.1)

By rewriting the yield stress in terms of micrometers, µm, which is the typical length

scale encountered in soft matter, and kBT which is the energy of a thermal fluctuation,

one obtains the prefactor 1/250. For soft matter systems, the typical values of E and

L are close to unity in these units, and so the resulting yield stress is of the order ε =

10−3kBT/µm
3. Typical values of ε for steel, brass, and aluminum are ε ≈ 1011kBT/µm

3

(several hundred mega Pascals). This dimensional analysis shows, that the interaction

energy between the elements of a soft matter crystal must be several orders of magnitude

larger than kBT to obtain a large yield stress. Thus, at this length scale, unless the

constituent particles of an aggregate strongly interact with each other, they tend to be

soft.

By decreasing the size of the building blocks to the Angstrom world of atoms and

electrons, L = 10−4µm, not only does one find that the yield stress automatically grows

due to the shift in length scale, but the binding energy between the constituents also
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increases; the typical binding energy between atomic particles is measured in electron

volts, where 1eV ≈ 40kBT . Molecular bond energies, for example range from 1− 10eV ,

corresponding to E = 40 − 400kBT , almost two orders of magnitude larger than soft

matter systems. This rough analysis places the yield stress of a crystal formed by

atoms in the range of ε ≈ 1011kBT/µm
3 which is consistent with the aforementioned

experimental findings.

This dimensional analysis remains unchanged when performed on the bulk modulus,

which represents the resistance of a material to a uniform compression, and on the

Young’s modulus, which relates the elastic extension of a sample due to a force, because

these two quantities are also measured in units of pressure.

Systems made of building blocks in the micron range and larger, usually belong to the

field of granular matter. Examples of granular material include sand, snowflakes, and

billiard balls. Aggregates of such objects are called piles or stacks, and do not have

a meaningful yield stress since it is either impossible to compress an such assortment

of objects, or one creates flows, avalanches, or cascades. The fundamental difference

between soft matter and granular matter is that the interactions between individual

grains vanishes unless they touch and therefore there is no restoring force to keep its

aggregates intact. As a result, one way of thinking of the field of soft matter is, “the

largest objects that are still capable of forming stable phases” [8], and by virtue of their

characteristic energy and length scales, theses phases are typically soft.

1.3 Insight by analogy

In addition to being interesting in and of themselves, soft matter systems also offer an

“insight by analogy”. This is due to the eminent customizability of soft matter systems

that allows one to make experimental realizations of Ising models, toy models for DNA,

and observe the melting transition in two dimensions. In fact, the entirety of this thesis is

dedicated to the analysis of experiments and mathematical models whose behaviors are

intended to mimic completely different systems. In Chapters 2-4, simulations of colloidal

particles in an external field are discussed, and although they describe the behavior

of a mesoscopic system, the main goal is to draw an analogy between the collective

motion of an ensemble of colloidal particles to the collective motion of an ensemble

of atoms. The fact that atoms interact with a much more sophisticated potential or

the fact that quantum effects may influence their motion is not a drawback of the

approach but instead provides us with an insight as to which effects can and cannot be

ignored. By making predictions of simpler models and carefully tracking their “failure”

to describe the real thing, one hopes to discover the missing concept necessary for a

complete understanding. Similarly, the simulations in Chapter 5, were motivated by

experiments on colloidal particles that were modified so that their equations of motion
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resemble those of swimming bacteria, and again, although the system is inspired by

experiments of “dead” soft matter, the aim of this study is to explore the physics of a

biological, non-equilibrium system. As Richard Feynman famously stated, “the same

equations have the same solutions”.

1.4 Salute to experimental prowess and methodology of

the thesis

Since most of the physics in soft matter occurs at the mesoscopic scale, experiments in

this field usually yield very precise measurements with a high level of detail. There are

remarkable experiments of liquid crystals, colloidal particles, and nano-scale materials

that are being conducted, in which one can see an actual image of the physical process

as it unfolds in experiment, oftentimes with a per-particle resolution. As a result, for

a computational physicist, providing new insights can be a challenge. The problem lies

in the fact that, broadly put, most simulations use some sort of physically motivated

algorithm to produce a series of representative configurations (or density fields in the case

of a continuum theory), from which physical quantities such as free energies, specific heat

capacities, or average densities are to be extracted. However, if on the experimental level,

techniques such as video microscopy are used to obtain precisely those configurations

one hopes to obtain from simulations, then it is an open question as to what “added

value” is offered by simulation. The justification that, “our simulation results predict

that the experiment exists” is unlikely to garner gasps of insight.

Given that both simulation and experiment are producing a similar data (i.e. a sequence

of configurations that are representative of the system), there are two philosophies that

have proven helpful in creating this thesis. As discussed in the first section of this in-

troduction, soft matter phenomena are usually the simultaneous interplay of multiple

effects. One avenue available to computer simulation is that each “layer” of physics can

be successively added onto the simulation. Much as the theoretician can set various

coefficients to zero or infinity in an equation, the influence of various effects in a simu-

lation model can be switched on or off at will. For example, one can compare a system

of hard spheres both in the presence and in the absence of gravity by changing a single

line of code. This ease of manipulation allows one to quantitatively isolate the role of

a boundary, defect, or of temperature usually unavailable to other methods of inquiry.

The second facility is related to the first; in any simulation algorithm, there are a series

of parameters that represent the physical details of the system. Once the architecture

of the code is complete, varying these parameter values comes at the cost of electricity

only, and as such, one can not only find the limits of validity of a known effect, but,

ideally, offer interesting regimes in parameter space around which real experiments can
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be designed. A common line of inquiry in our field lies in calculating the phase diagrams

of various models; this family of experiments relies on formulating a sensible interaction

between particles in a simulation cell, and documenting the structures that arise for all

possible temperatures, pressures, and densities.

For each topic that was treated in this thesis, inspiration was drawn from seminal ex-

periments for which the simulation algorithms are well known, simple and precise. The

“added value” that is offered in Chapters 2-4, came from the ability to manipulate the

simulation parameters in such a way as to suppress the influence of temperature on

the system and then to make it the dominant effect. By interpolating between these

two extremes one can then qualitatively and sometimes quantitatively “understand” its

influence. In Chapter 5, this approach is repeated by comparing all of the simulation

results of a system active swimmers with a more conventional diffusive system.

Try as we might, physical phenomena do not always occur in a vacuum, especially in soft

matter. In fact, it is precisely this interplay of temperature, geometry, energy, and shape

that actually gives rise to many exciting and fundamental processes worth exploring. It

is therefore essential that theoretical, virtual, and tangible experiments are designed in

such a way as to be able to compare the role that each of these effects has.

1.5 Summary of this thesis

A great deal of effort was placed into writing clear and precise reports of the research that

was done for this thesis. As a result, the author hopes that the brevity of this section

is not taken amiss, and assures the reader that each chapter is a self contained work.

Chapters 2-4 are reports that have already been published [9–11], whereas Chapter 5 is

a work in progress that is intended to be published at a later date.

Chapters 2-4 of this thesis are dedicated to an exploration of the two-dimensional

Frenkel–Kontorova (FK) model [12]. The original formulation of this model was pro-

posed in the early 20th century, and its aim was to describe friction on an atomic level.

The friction between two surfaces that are in contact with one another, also known as

dry friction, consists of the motion of the atoms of one body as it is pressed against

another and then sheared or driven. The insight of Frenkel and Kontorova was in imag-

ining that one surface can be modeled as a chain of harmonically coupled particles and

the other surface is so rigid that it acts as an external potential. They were then able,

through the use of advanced mathematical methods, to solve this system, and found that

when a force driving force is applied onto the chain of particles, the system evolves so-

called kinks and anti-kinks, which are solitonic solutions of the FK model [12]. Although

this success is profound, the model cannot be easily solved in two dimensions. In 2012

Clemens Bechinger and colleagues were able to create an experimental realization of the

FK model through the use of charge stabilized colloids that can be optically trapped
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by laser light [6]. By applying a hexagonal diffraction pattern onto a two-dimensional

monolayer of these colloids, they created external, sinusoidal, potential that pinned the

monolayer of particles in place. The advantage of the soft matter realization of this

model is that, unlike the experiments that probe the friction of a material on an atomic

scale and in situ (examples include atomic force microscopy and Quartz microbalance

studies), the soft matter version provided an opportunity to observe the kink/anti-kink

excitations in the monolayer in real time.

As discussed in the previous section, it was unclear what interesting questions could

be answered by simulation considering that the data obtained from experiment were

configurations of real particles. At best, it could be expected that the simulations would

produce the same behavior already observed in experiment, and, at worst, deviations

would be attributed to the limits of simulation. In order to arrive at results that com-

plement and extend what was already known, the simulations performed in Chapter 2

were designed to probe the range of behaviors that the system exhibits for all possible

interparticle interaction strengths. At first, this approach might be considered arbitrary,

however, consider that in the complete absence of interparicle interactions, the system

formally becomes an ideal gas of particles traveling in a sinusoidal potential, the be-

havior of which is entirely determined by thermal effects. Furthermore, the analytical

solution of this system is literally a textbook example. As the interaction energies be-

tween particles are gradually increased, the motion of the crystal becomes less dependent

on thermal energy and is more strongly influenced by the potential energy. For infinitely

large interaction strengths, the colloidal monolayer becomes a rigid lattice and thermal

vibrations are completely suppressed. For this extreme, an analytical solution was also

easily obtained. Since these extremal regimes can be well understood, the sliding dy-

namics at intermediate interparticle interaction energies can be understood as varying

degrees of mechanical and thermally activated sliding. The lesson learned in Chapter 2

is that there are three different types of sliding mechanism that a monolayer of repulsive

particles adopts, each of which can be attributed to the relative importance of thermal

to mechanical effects.

Inspired by the analogy to the rigid lattice, a closer look was taken at the motion of

a “stiff” monolayer, i.e. for large, but finite interaction strengths between colloidal

particles. In Chapter 3, it is shown that it is possible to obtain an analytical solution

for a crystal in which the thermal motion is small compared to the typical interaction

energy. By performing a quasi-static harmonic expansion of the two-dimensional FK

model and comparing the predictions to simulations of strongly interacting particles, it

was found that there is both a qualitative and a quantitative correspondence with the

approximation without the need for any fit parameters. It was satisfying to find that

there is a regime of the FK model, in which repulsive particles slide along the substrate



Chapter 1. Introduction 8

in a manner that can be accurately treated using the tenants of nucleation theory and

harmonic crystals.

As mentioned before, the analytical solution that was obtained applies only to repulsive

particles. Having obtained an intuitive understanding of the motion of repulsive parti-

cles, a natural direction for the research was to examine the sliding dynamics of more

complex potentials. In Chapter 4, an analysis is performed on particles that interact via

the Lennard-Jones potential. This potential has both a short range repulsive part, that

is essential to ensure that particles do not overlap, and a long range attractive part. This

property introduces two competing length scales to the problem; the first length scale

is the point at which the interaction potential switches from being repulsive to being

attractive and the second length scale is the distance between two adjacent external

potential minima. It can be shown, for a purely repulsive potential, that the density

does not change the qualitative behavior of the FK model, since rescaling all lengths just

affects the coupling strength of the interaction. For potentials that are attractive and

repulsive, the density of the particles does play a significant role because it determines

whether particles typically attract or repel each other. The first step in such an exami-

nation is to parametrize the Lennard-Jones potential so that particles tend to repel each

other. In this case, it can be expected, at least qualitatively, that the system is similar

to the monolayers considered in the previous chapters. There should even exist a range

of interaction strengths in which the harmonic approximation is valid. However, if the

monolayer is stretched, i.e. the particles typically attract each other if they all sit in

their respective external potential minima, then one can safely predict that a qualitative

change in the dynamics is to occur.

Although the results obtained in these works offer a consistent picture of the motion

of monolayers in two dimensions, it is still adventurous to suggest that much is known

about dry friction. First of all, the overwhelming majority of frictional processes consist

of two objects with a contact surface and a bulk perpendicular to it. If one shears

the two objects, the motion of the solids with respect to each other is governed by a

complex deformation of the contact surface which is responsible for the flow of atoms.

It must be expected that this deformation not only propagates into the bulk, but the

capability of the bulk of the material to accommodate a sliding phase plays a significant

role in the frictional response of a material. At the same time, the work in Chapters

2-4 does not consider mismatches in the geometry or the driving angle between the two

surfaces. Even a cursory examination of the equation of motion of the system shows

that this plays a very important role in the frictional response of the monolayer. What

is offered instead, is a methodology: in the absence of interparticle interactions, one

ought to be able to obtain a quantitative theory describing the simulations results and

the same is true for a completely rigid pair of lattices. These two limits can perhaps
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form a basis with which one can compare results obtain for more detailed simulations

and experiments.

Chapter 5 in this thesis is dedicated to a side project, that is also a work in progress.

Motivated by the experiments of Palacci and Bechinger, the code used for the charge

stabilized colloids was adapted to simulate the motion of active particles. This type of

system is part of a rapidly growing study of mesoscopic particles that swim stochastically

in a preferential direction while performing Brownian diffusion. In addition to mimicking

the behavior of bacteria and actin molecules along proteins, the study of active matter

preoccupies itself with concepts such as swarming and with minimal models of collective

motion by agents propel themselves through space. The experiments of Palacci and

Bechinger in particular, were inspiring in the manner in which activity was achieved;

in both cases, colloidal particles were specially prepared so that the application of laser

light induced them to travel along a particular orientation vector that performed an in-

dependent random walk of its own. Having worked on simulations of particles exposed

to light patterns before, natural question was to ask how this system responds when only

part of the sample is illuminated, thereby creating an activity inducing zone that is con-

nected to a passive region. As before, the comparison with a more “intuitive” system was

made. In this case, the behavior of interacting particles with position dependent activity

was compared to the behavior of a system in with a diffusivity gradient. Furthermore,

to isolate the role of the interparticle interactions, an analysis of the ideal gas version of

this system was also conducted. All of these systems are examples of non-equilibrium

dynamics but each of the gradients are of different origin. The results of this study

can be split into two categories. The phenomenological predictions of the simulation

are that if one embeds a passive, diffusive, zone in an active fluid then, given an easily

realizable activity, one can induce crystallization in the passive region. The shape of the

crystallized domain is entirely determined by the shape of the passive zone. Although

this can, in principle be achieved with a temperature induced diffusivity gradient, the

former mechanism is much easier to realize than the latter. Also, it is to be expected that

sufficiently small arbitrarily shaped, passive particles in an active fluid will naturally be

trapped in the passive zone as well. Finally, unlike the purely diffusive systems, any

asymmetry in the passive zone leads to a net flow in active particles. On a theoretical

level, the treatment of diffusivity and activity gradients is given by the Fokker–Planck

equation (FPE), which relates the evolution of the probability distribution function of

an ensemble of particles to the degree of diffusivity and the classical forces acting on

the particles. One can describe the behavior of a system with a diffusion gradient fairly

well, but the Smolukowski equation (FPE for overdamped particles) for active particles

is far more difficult to solve and ought to be the subject of future study.

It is the sincere hope of the author that the ensuing chapters give the reader, not so

much a series facts to memorize, but instead a sense with which to approach the models
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under consideration.



Chapter 2

Dynamic phases of colloidal

monolayers sliding on

commensurate substrates

We report on numerical simulations of a monolayer of charge-stabilized colloids driven

over a substrate potential by an external dc force acting along a symmetry axis of the

monolayer. Using overdamped Langevin dynamics, we studied the sliding transition

for various inter-particle interaction strengths as a function of the driving force. For

weak interactions, the diffusion of individual defects is responsible for the motion of the

monolayer. As the interaction strength is increased, sliding is induced by distinct density

compression and decompression zones. For very strong interactions, a type of stick-slip

mechanism emerges, in which the sliding of the monolayer is mediated by the propagation

of collective distortion waves. Our predictions can be tested experimentally with two-

dimensional arrangements of colloidal particles exposed to periodic light fields and our

work shows that the inter-particle interaction strength tunes the degree of correlation in

the sliding mechanism adopted by a monolayer driven over a commensurate substrate.

2.1 Introduction

The dynamics of two surfaces that are in contact with each other has been studied

for centuries and empirical approaches based on the Amontons-Coulomb law [13] have

enjoyed great success in predicting the frictional response of macroscopic objects. How-

ever, a truly atomistic understanding of friction remains elusive. At the beginning of

the last century, simplified atomistically resolved descriptions of friction such as the

Frenkel-Kontorova (FK) [12, 14] and Tomlinson-Prandtl [15, 16] models were developed

and have since been the subject of much attention on a theoretical level [17–25]. The

11
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Fd

au
U0x

y

Figure 2.1 Sketch of the model; the colloids are subject to a substrate potential with
lattice constant au and well depth U0. In addition to the forces exerted by the
substrate, colloidal particles also experience inter-particle Yukawa forces, random
buffeting forces due to the solvent, and a constant driving force, Fd.

recent advances in experimental realizations of the FK model through the use of quartz-

crystal microbalance setups [26–28] and atomic force microscopy [29] inspired a number

of simulation studies that extend beyond the classical FK model [30–35].

Furthermore, soft matter systems, and in particular colloidal suspensions of particles

with tunable interactions, provide a way to study condensed phase phenomena with

single-particle resolution usually unavailable to atomistic systems [36, 37]. Recently,

Bechinger and collaborators [6] devised an experiment that is a two-dimensional (2d)

extension of the FK model and Vanossi et al. [38] performed simulations which reproduce

and elucidate the key features of this experiment in which the motion of a monolayer

subjected to a substrate potential is initiated through the formation of kink-antikink

pairs, as predicted by the FK model.

In an attempt to build upon the aforementioned work, we performed computer simula-

tions of overdamped Yukawa particles driven over a commensurate substrate (i. e. the

number of the minima of the external potential is the same as the number of particles in

the monolayer) in order to understand the role that the inter-particle interaction plays

on the dynamical steady state adopted by the monolayer. We have been able to draw

a consistent picture for all possible inter-particle interaction strengths for the particular

substrate we considered, and find that the degree of clustering of the kinks and antikinks

that are formed in the monolayer increases as the inter-particle interaction strength is

increased or the density of colloidal particles is decreased.

2.2 Simulation details

We studied the dynamics of colloidal monolayers driven by a constant force while being

subjected to a commensurate substrate potential, as shown schematically in Fig. 2.1.

The motion of a colloidal particle is governed by the overdamped Langevin equation



Chapter 2. Dynamical phases of monolayers on commensurate substrates 13

[39, 40],

γṙi = FYukawa
i + Fsub

i + Fd + f̃i. (2.1)

Here, ṙi is the velocity of particle i and γ is the friction constant related to the diffusion

coefficient D of a single particle in the fluid by the Einstein relation γ = kBT/D, where

kB is the Boltzmann constant and T is the temperature. In all of our simulations,

we set kBT and γ to unity, but in the following we keep the notation for clarity. We

have neglected hydrodynamic interactions, but obtain good qualitative agreement with

experiment. The particle-particle interactions of charge stabilized colloids are described

by the screened Yukawa potential [41],

UYukawa(r) = [Γaeκa]
e−κr

r
, (2.2)

where r is the inter-particle distance, a is the lattice constant of the ideal monolayer,

and κ is the inverse screening length of the solvent. We set a = 6µm and κa = 37.5,

similar to the values realized in experiments [6]. The prefactor in square brackets is the

coupling strength of the interaction and Γ is the potential energy of two particles that

are separated by one lattice constant.

The substrate is a hexagonal arrangement of potential wells defined as

Usub(r) = −U0

9

3∑
i,j=1

cos [(ki − kj) · r] , (2.3)

where r denotes the position of a colloidal particle. The depth of the potential wells was

set to U0 = 27 kBT , which was chosen because of the good qualitative correspondence

to experiment. The wave vectors, ki/‖k‖ ∈ {(0, 1), (
√

3/2,−1/2), (−
√

3/2,−1/2)}, were

chosen so that the ensuing hexagonal substrate potential has the same orientation as a

colloidal crystal with lattice vectors gi ∈ {(a, 0), (a/2, a
√

3/2)}. The lattice constant of

the substrate potential is au = 4π/3‖k‖, where ‖k‖ is the norm of the wave vectors, and,

since we consider only the commensurate case, is set so that au = a for all simulation

runs. This definition of Usub corresponds to the interference pattern produced by 3

coherent laser beams in experiments [6]. The driving force, Fd = (Fd, 0), is constant in

time. The components of the random buffeting forces, f̃ , that the fluid exerts on the

particle are uncorrelated in time and follow a Gaussian distribution with zero mean and

variance 〈f̃(t)f̃(0)〉 = 2kBTγδ(t), where δ(t) is the Dirac delta function and t is time.

We examined monolayers with interaction strengths ranging from Γ = 0 to 10kBT sub-

ject to various driving forces, Fd. Each monolayer consisted of 5476 particles and periodic

boundary conditions were imposed. For each set of parameters, 5 simulation runs of 106

time steps of length δt = 10−4 γ−1 were conducted and before any measurements were

made, the systems were equilibrated for 2× 105 time steps.
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Figure 2.2 Average drift velocity of the colloidal crystal, 〈vcm〉/aγ, as a function of
the applied driving force, Fd/Fmax. The lines are guides to the eye and the differences
of the mean velocities between simulation runs are of the order of the symbol size.
The points in the curves for Γ = 0.005, 0.2, and 1.0kBT that are closest to the
horizontal line 〈vcm〉/aγ = 0.13 (dot-dashed) are the subject of a detailed discussion.

2.3 Results and discussion

2.3.1 Drift velocity of the monolayer

We begin with the analysis of the average drift velocity 〈vcm〉 of the colloidal particles

in the driving direction, which is presented in Fig. 2.2 as a function of the driving force

Fd. We express Fd in units of Fmax = 8πU0/9a, the maximum force that the substrate

potential can exert on a colloid in the driving direction. In all simulation runs, the

diffusion perpendicular to the direction of driving was indistinguishable to the undriven

case. Before we discuss the sliding mechanisms adopted by the monolayer, we will

present considerations on the particle mobility in the limiting cases of very large and

small inter-particle interaction strengths as well as in the intermediate regime.

2.3.1.1 Infinitely stiff crystal.

The lower bound of all drift velocity profiles is given by the limit of Γ = ∞. For very

large interaction strengths, thermally induced fluctuations of the particles in a crystal

are completely suppressed and inter-particle distances always correspond to those of a

perfect lattice. Hence, the entire monolayer moves as a completely rigid crystal with a

dynamics governed only by the force due to the substrate, F sub, and the driving force,

Fd. Since the driving force acts only in the x-direction, the equation of motion of the
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colloidal monolayer is reduced to an one-dimensional differential equation,

γẋ = F sub(x) + Fd , (2.4)

which can easily be solved. The differential equation (2.4) is periodic, so we can restrict

our analysis to the interval x ∈ [0, a]. The integration of the equation of motion (2.4)

yields the time T that particles need to travel from one potential minimum to the next:

T =


γa√

F 2
d−F 2

max

if Fd > Fmax,

∞ else.

(2.5)

The average velocity is therefore given by

〈vcm〉Γ=∞ =
a

T
=


γ−1

√
F 2
d − F 2

max if Fd > Fmax,

0 else.

(2.6)

The prediction of this equation is shown in Fig. 2.3 as the red dotted line. The limit

is approached already at Γ = 10kBT , as can be seen in Fig. 2.3. This velocity profile

constitutes a lower bound for all of the velocity profiles in Fig. 2.2. For driving forces

smaller than Fmax, such a monolayer is completely pinned to the substrate and no drift

occurs. However, as soon as the driving force Fd exceeds Fmax, the monolayer gains

a non-vanishing average velocity. At non-zero temperatures and finite Γ, this sharp

transition from pinned to drifting monolayer, known as the depinning transition, is a

smooth function in terms of 〈vcm〉.

2.3.1.2 Ideal gas, Γ = 0.

In the limit of vanishing interaction strength, the motion of the colloidal monolayer

can also be understood in a single particle picture. In this case, the particles move

independently of each other and their average drift velocity can be computed analytically

by solving the Fokker-Planck equation of a driven Brownian diffuser in a sinusoidal

potential. In the following, we sketch the derivation of the average velocity presented

by Risken [42]. Again, we restrict the analysis to one dimension. For a system of

non-interacting particles driven over a periodic potential at a given temperature, the

Fokker-Planck equation can be written as

∂W

∂t
= γ−1 ∂

∂x

(
U ′sub − Fd + kBT

∂

∂x

)
W = −∂S

∂x
, (2.7)
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Figure 2.3 Comparison of simulation data to theoretical predictions. Top: The lines
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obtained from simulation for Γ = 0 and Γ = 10. Bottom: Mean velocities of
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where W (x, t) is the probability density distribution of the particle positions and S(x, t)

is the probability current. Since we are only interested in the stationary distribution of

the system, the probability current is a constant given by

γS =
(
Fd − U ′sub

)
W (x)− kBT

∂W (x)

∂x
. (2.8)
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We note that these relations hold for any kind of external potential. One can then

proceed to obtain W (x),

W (x) = e−V (x)/kBT

(
N − γS/kBT

∫ x

0
eV (x̃)/kBTdx̃

)
, (2.9)

where V (x) = Usub(x) − Fdx. If one applies the condition that Usub is periodic, then

the integration constants S and N follow from the requirements that W (x) is also peri-

odic and normalized. Risken [42] applied the method of continued fractions expansion

proposed by Ivanchenko and Zil’berman [43] to obtain W (x) by solving Eq. (2.9) nu-

merically for an external potential described by a cosine function. The average velocity

is then given by

〈vcm〉Γ=0 = γ−1

∫ a

0

(
Fd − U ′sub

)
W (x)dx. (2.10)

The solution obtained numerically for Γ = 0 is shown in Fig. 2.3 as black dotted line

together with our simulation results. Evidently, we recover the analytical solution for

the case of non-interacting particles.

2.3.1.3 Estimation of Γc.

We find that, for the inter-particle interaction strengths that lie between the two limiting

cases discussed above, the frictional response is not monotonic in Γ, as demonstrated

in Fig. 2.2. For large values of Γ, a reduction of the interaction strength increases the

mobility of the monolayer. This is easily explained by noting that particles are hindered

from hopping between substrate minima by the interactions with their neighbors, and a

reduction of Γ eases this restoring force. However, below a certain threshold value Γc,

further reductions of the interaction strength decrease the mobility of the monolayer.

This is due to the fact that, for minuscule values of Γ, it is much more likely that two

or more particles can be trapped in the same substrate potential well, thereby slowing

the sequence of particle hops that are the origin of sliding.

To make a rough estimate of Γc, we derive the highest value of Γ for which a configu-

ration of two particles sharing the same substrate potential minimum is mechanically

stable. For all interaction strengths above this value, if a colloid hops from one substrate

minimum to the next (occupied by another colloid), it will necessarily initiate a sequence

of particle hops by forcing the particle previously residing in this minimum to move out

of it. In the following, we neglect the effects of temperature, driving force, and the

interactions with the surrounding particles and restrict the analysis to one dimension.

We start with the Hamiltonian given by

H = UYukawa(|x1 − x2|) + Usub(x1) + Usub(x2), (2.11)
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where x1 and x2 are the positions of the particles. The equilibrium positions are given

by ∇H = 0, while an evaluation of the Hessian determines whether these configurations

are stable. We find that two particles are bound in a potential minimum if |x1−x2| < a
2 .

Hence, we estimate that

Γc =
2π

9
U0

e−κa/2

1 + κa/2
= 6.866× 10−9kBT, (2.12)

which is the largest value of Γ for which two particles can be trapped in the same

substrate well. For larger inter-particle interaction strengths, small perturbations, e. g.,

due to thermal fluctuations or the driving force, will knock one of the particles out of the

potential well. For smaller inter-particle interaction strengths, the system will tend to

restore the initial configuration, thus, suppress a particle hop. Therefore, all monolayers

with Γ < Γc will move slower than the monolayer with Γ = Γc. To account for the

eventual slowing down of the monolayers at larger interaction strengths, we would have

to consider the influence of the neighboring particles, which increases the complexity of

the calculation significantly.

In the bottom frame of Fig. 2.3, we plotted the mean velocity of the monolayer 〈vcm〉 as

a function of Γ for different driving forces Fd. All monolayers with Γ < Γc are indeed

less mobile than those with Γ = Γc for all driving forces considered. In addition, Fig. 2.3

demonstrates that the effects due to the neighboring particles become perceivable at

interaction strengths a few orders of magnitude above Γc, where the velocity of mono-

layers starts to decrease. It is to be expected that this crossover behavior is particularly

pronounced for potentials that change drastically as particles approach each other, as

in the case of the Yukawa potential.

2.3.2 Sliding mechanisms

An inspection of the trajectories of the monolayers revealed that, for different values of

Γ, characteristic mechanisms (that persist for all driving forces) are responsible for the

sliding motion. In order to investigate these mechanisms, we present a more detailed de-

scription of the motion of the monolayers for Γ = 1.0, 0.2, and 0.005kBT that are driven

by the forces Fd/Fmax = 0.987, 0.948, and 0.717, respectively. These values of Γ span

the range of mechanisms available to the system, and the driving forces were selected

so that they lead to the same average drift velocity for each monolayer (as indicated by

the horizontal line in Fig. 2.2). In the top panel of Fig. 2.4, we show examples of the

average displacement of the selected monolayers in the direction of the driving force as

a function of time for these three cases. The curve for the largest interaction strength,

Γ = 1.0kBT , consists of distinct steps, indicating that the monolayer alternates between

periods of rest and rapid spurts of motion. The difference in the height of two successive

steps is one lattice constant, and the width of the plateaus is irregular, although there
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Figure 2.4 Top: Displacement of the center of mass of the colloidal crystal, d/a, as a
function of time, tγ, for three representative cases at interaction strengths and driving
forces {Γ/kBT, Fd/Fmax} = {0.005, 0.717}, {Γ/kBT, Fd/Fmax} = {0.2, 0.948}, and
{Γ/kBT, Fd/Fmax} = {1.0, 0.987}. Curves are shifted vertically for the sake of clarity.
Bottom: Percentage Hp of the particles undergoing a hop for each of the curves shown
in the top panel.

is a characteristic time between steps [31]. The Γ = 0.2kBT monolayer is perpetually in

motion but there are large fluctuations in its drift velocity, whereas the Γ = 0.005kBT

curve appears as a smooth line at this resolution but is in fact the result of a stochastic

process with very small variance.

To obtain additional insights into the sliding mechanisms, we computed the fraction of

particles undergoing a hop at a particular instant (in percent of the system size), Hp,

as a function of time, for the same trajectories as in the top frame of Fig. 2.4. Particles

are classified as undergoing a hop if the potential energy due to the substrate exceeds
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Figure 2.5 Snapshots (top) and corresponding Voronoi tessellations (bottom) of
typical configurations obtained for monolayers with (a, d)
{Γ/kBT, Fd/Fmax} = {1.0, 0.987}, (b, e) {Γ/kBT, Fd/Fmax} = {0.2, 0.948}, and (c, f)
{Γ/kBT, Fd/Fmax} = {0.005, 0.717}, as they are driven by a force that acts from left
to right. The top color scale corresponds to the substrate potential values of the
colloid colloidal particles shown in (a-c), in units of the well depth, U0. The bottom
color scale corresponds to the area A of the Voronoi cells depicted in (d-f), in units of
the mean area per particle, ρ−1 = (

√
3/2)a2. See Supplemental Material [URL] for

videos of the trajectories from which these snapshots were taken.

−7kBT because we observed in our simulations that colloids entering this energy range

almost invariably go from one substrate well to the next. While the average number of

hopping particles, presented in the bottom frame of Fig. 2.4, is very similar for the three

monolayers (all lie within the range of 1.7% to 2%), the signal continuously loses its

structure as Γ is reduced. For large values of Γ, distinct peaks in the number of hopping

particles separated by periods of rest indicate that many particles move at the same time

in a correlated way. As Γ is decreased, the correlation of particle hops becomes smaller

and the sliding motion becomes the result of independent hopping events leading to an

almost time-independent fraction of hopping particles.

This general picture of a sliding mechanism increasingly dominated by correlations for

growing interaction strength Γ is confirmed by an examination of the configurations

computed over the course of a simulation run. Figure 2.5 shows typical configurations

chosen from trajectories of the discussed monolayers. The upper panels are depictions

of configurations in which the colloids are colored according to their substrate potential

values. The panels at the bottom show the local density compressions and decompres-

sions corresponding to the kinks and anti-kinks of the FK model through the use of the

configurations’ Voronoi tessellations. In order to view movies of the trajectories from

which these configurations were taken, we refer to the Supplemental Material [URL].

For a monolayer with Γ = 1.0 kBT and a driving force of Fd/Fmax = 0.987, there are long
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stretches of time in which each particle oscillates about the point where the substrate

force counteracts the driving force. These particles appear green in the substrate poten-

tial representation of Fig. 2.5a. The hopping mechanism begins when a small cluster of

particles reach the top of their respective substrate potential barriers. This small nucleus

of particles initiates a circular sequence of particle hops that encompasses the entire sys-

tem. In Fig. 2.5a, the particles that appear red are in the process of hopping from

one substrate minimum to the next and this ring of hopping particles will subsequently

continue to grow until each particle has hopped once. After the hopping wave has run its

course, the system remains at rest until a new hopping nucleus spontaneously appears.

The blue particles that form a core in the middle of the wave have recently hopped and

are in the process of diffusing from the bottom of their respective substrate wells to

their new equilibrium positions. The corresponding Voronoi representation, shown in

Fig. 2.5(d), illustrates that the front of the wave is a zone of local compressions (kinks)

whereas the rear of the hopping wave is a decompression (anti-kink) region. As the ring

of hopping particles expands, the compression region propagates in the direction of the

driving force while the decompression zone travels in the opposite direction. Due to peri-

odic boundary conditions used in our simulations, these two zones eventually collide and

annihilate each other. The top and bottom of the hopping wave are not detected by this

representation because the Voronoi cells of those particles are sheared, not compressed.

For large driving forces, the likelihood of forming a hopping wave increases to such an

extent that multiple waves appear simultaneously. This mechanism has been observed

and analyzed in simulations of the 2d FK model[31] aimed at reproducing quartz-crystal

microbalance experiments, in which the activation energy of the slip motion is derived

by means of classical nucleation theory.

For Γ = 0.2kBT and Fd/Fmax = 0.948, the average drift velocity of the colloidal crystal

is almost identical to the previous case, but the motion of the monolayer follows an

entirely different dynamical pattern. Typical configurations, such as the one shown in

Fig. 2.5b, feature a number of clusters of vacancies. For each vacancy cluster, there is a

corresponding island of (red) interstitial particles that are traveling through the system

via inter-well hops, leaving low energy particles (blue) in their wake. As in the previous

case, the blue particles then turn green when they reach their equilibrium position where

the substrate force and the driving force cancel. In the Voronoi representation shown in

Fig. 2.5e, one can clearly see that the traveling interstitials form compression zones or

kinks (red) while the vacancies in the colloidal crystal are decompression zones (blue). In

the course of a simulation run, many clusters of interstitials travel through the system,

whereas the vacancy regions remain virtually stationary.

For Γ = 0.005kBT and a driving force of Fd/Fmax = 0.717, the arrangement of the

defects loses all structure (Fig. 2.5c). Here, vacancies are locked in place while single
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interstitial particles diffuse through the monolayer. As in the previous case, compression

zones (kinks) are mobile whereas decompression zones (anti-kinks) are immobile.

Videos of trajectories from simulations of larger systems (see Supplemental Material

[URL]) reveal conclusively that the hopping waves encountered in the Γ = 1.0kBT case

also display a kink-antikink asymmetry because the kink region (front) of the wave trav-

els more quickly than the anti-kink region (rear) by about a factor 3. This finding is

corroborated by simulations of similar non-driven systems [44], where it was found that

interstitials are more mobile than vacancies. Furthermore, simulation and experimen-

tal measurements of kink and anti-kink velocities demonstrate that, in charge-stabilized

colloidal systems, anti-kinks are consistently slower than kinks [6, 38]. We ascribe the

differences in the kink-antikink mobility to the purely repulsive nature of the Yukawa

potential for which the motion of vacancies incurs larger energy penalties than inter-

stitials. In the FK model, on the other hand, particles in the 1d chain interact via an

harmonic potential, which is perfectly symmetric and we expect this to be the reason

why kinks and anti-kinks are equally mobile in that case.

2.4 Conclusions

In conclusion, we analyzed the mechanisms of thermally induced depinning of colloidal

monolayers driven by an external force over a substrate potential and showed that the

occurrence of different sliding mechanisms is determined by the strength of the inter-

particles interactions. We have also been able to find upper and lower bounds to the

frictional response of the monolayer in terms of the interaction strength and preliminary

results suggest that the approximations remain valid even for significantly weaker field

strengths.

The origins of the various depinning mechanisms involving different degrees of corre-

lation can be explained in terms of the energetics associated with vacancy-interstitial

pairs. For strong inter-particle interactions, the creation of a vacancy-interstitial pair

is energetically so disadvantageous that motion can only be achieved through corre-

lated hopping waves that involve many particles and only weakly distort the hexagonal

structure of the monolayer. As the interaction strength is reduced, smaller clusters of

particles can escape from the local substrate potential minima and diffuse through the

lattice. Finally, for weak interactions, the energetic costs of a defect is so low that cor-

relations are lost and individual particles can travel along one-dimensional channels in

the direction of the driving force.

Further research into the dynamical asymmetry of kinks-antikinks is warranted as well

as a quantitative treatment of the vacancy-interstitial energetics that give rise to the

different sliding phases that have been observed. The role of incommensurabilities,
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variation of direction and frequency of the driving force, as well as the role of the shape

of the substrate are also worth examining.
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Chapter 3

Frictional dynamics of stiff

monolayers: from nucleation

dynamics to thermal sliding

The inherently nonlinear dynamics of two surfaces as they are driven past each other,

a phenomenon known as dry friction, has yet to be fully understood on an atomistic

level. New experiments on colloidal monolayers forced over laser-generated substrates

now offer the opportunity to investigate friction with single-particle resolution. Here,

we use analytical theory and computer simulations to study the effect of thermal fluc-

tuations on the stick-slip mechanism characteristic for the frictional response of a stiff

colloidal monolayer on a commensurate substrate. By performing a harmonic expansion

of the energy and employing elementary statistical mechanics, we map the motion of the

monolayer onto a simple differential equation. Analytical expressions derived from our

approach predict a transition from nucleation dynamics, where the monolayer moves

in a sequence of activated hops over energy barriers, to “thermal sliding”, in which

the effective substrate barrier opposing the motion of the monolayer disappears due

to thermal fluctuations, leading to continuous, uninterrupted sliding motion. Further-

more, we find that the average velocity of the monolayer for large driving forces obeys

a simple scaling behavior that is consistent with the existence of a static friction. For

small forces, however, nucleation provides a mode of motion that leads to a small but

non-vanishing mobility of the monolayer. Data obtained from simulations confirm this

picture and agree quantitatively with our analytical formulae. The theory developed

here holds under general conditions for sufficiently strong inter-particle repulsions and

it yields specific predictions that can be tested in experiments.

24
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Figure 3.1 Snapshot of a stiff monolayer driven by a constant force, Fd, that acts
from top to bottom. Each of the particles is colored according to its substrate
potential value. Red particles are at the top of their substrate potential barriers,
purple particles are at the bottom of the wells, and green particles are somewhere
along the walls.

3.1 Introduction

Although macroscopic laws of friction are centuries old and sufficiently accurate for a

multitude of applications [13], and mesoscopic treatments have yielded great insights

into this phenomenon [45, 46], advances in nanotechnology require an understanding of

friction on length and time scales in which atomistic details become important [30, 33].

Experimentally, several recent approaches, including atomic force microscopy setups [47–

50], quartz-microbalance setups [26–28, 51], and monolayers of charge-stabilized colloidal

particles exposed to light-induced interference patterns [6], have made it possible to

study friction on an atomistic level. In all of these cases, insights are gleaned from

the dynamical response of small samples of particles that are driven across an external

potential landscape. In particular, the remarkable accuracy and level of control achieved

in experiments using two-dimensional crystals in laser fields [6] have shed new light on

the dynamics of collective excitations lying at the origin of friction. These experiments

have been complemented by simulations and analytical studies of the Frenkel-Kontorova

(FK) model [12, 15, 17, 21, 23, 24, 31, 38, 52]. Despite its simplicity, this model captures

the rich dynamical behavior and, more specifically, the soliton and anti-soliton structures

largely determining the magnitude of friction observed in experiments.

Here, our aim is to investigate the effect of thermal fluctuations on the frictional response

of stiff monolayers, i.e., monolayers with large elastic moduli. In a previous work [9], we

had found that the inter-particle interaction regulates how many defects appear in the

monolayer as it slides over a substrate. When the interaction strength is so large that

no defects appear in the system, the monolayer adopts a type of stick-slip motion which

we call a “hopping wave”. This sliding mechanism consists of long periods of virtual

motionlessness which are interrupted by the formation of small nuclei of particles that

have escaped from their respective substrate wells. These particles subsequently initiate



Chapter 3. Frictional dynamics of stiff monolayers 26

a cascade of particle hops which eventually encompass the entire system (Fig. 3.1). The

“hopping wave” mechanism is of particular note, since it accounts for a sliding phase

in which the monolayer remains structurally intact. It also appears to be a feature of

systems of this type because the same mechanism was observed under different conditions

in an earlier simulation study conducted by Reguzzoni et al. [31]. The purpose of our

present work is to provide a general and quantitative understanding of the formation of

these hopping waves.

3.2 Model

We simulated a two-dimensional array of overdamped particles exposed to an external

substrate potential while being driven by a constant force. The particles repel each other

via Yukawa interactions and receive random kicks due to the solvent surrounding them.

The equation of motion for particle i, with position vector ri, is therefore

γ
dri
dt

=Fsub(ri) + Fd +
∑
j 6=i

Fyuk(|ri − rj |) + Fi
random(t). (3.1)

The substrate force, Fsub(ri), acting on particle i is the negative gradient of the exter-

nally applied potential, Usub(ri) = −(U0/9){3 + 2[cos(k1ri) + cos(k2ri) + cos(k3ri)]},
where the k-vectors are chosen

from the set ki/‖k‖ ∈ {(
√

3/2, 1/2), (−
√

3/2, 1/2), (
√

3, 0)} with norm ‖k‖ = 4π/3a.

This choice of the k-vectors produces a hexagonal arrangement of potential wells with

a lattice constant a and lattice vectors g ∈ {(a, 0), (a/2,
√

3a/2)}. The lattice constant

of the substrate was set to a = 6µm and the depth of the potential minima was set

to U0 = 27kBT , where kB is the Boltzmann constant and T is the temperature. As a

result, the maximum force that the substrate can exert on a particle in the x direction is

Fmax = 24πkBT/a. The colloidal particles we study are charge-stabilized and therefore

repel each other via Yukawa interactions. Two particles separated by a distance r from

each other have a potential energy of Uyuk(r) = Γ̃e−κr/r, where the inverse screening

length, κ = 6.25µm−1, determines the range of the Yukawa interaction. The coupling

parameter Γ̃ is related to the effective charge on each colloid. Instead of specifying Γ̃,

we define the interaction strength as Γ = Γ̃e−κa/a, which is the potential energy of two

particles separated by one lattice constant. The choice of the parameter values used here

resulted in the best agreement between simulation and experiment [6, 9]. For particles

obeying overdamped Langevin dynamics, at each moment in time a particle experiences

an uncorrelated Gaussian random force with zero mean and variance 2kBTγ. The fric-

tion constant γ is related to the diffusion constant of a single particle by the Einstein

relation, γ = D/kBT . We prepared a rectangular simulation box with periodic boundary

conditions compatible with N = 6400 hexagonally arranged substrate minima. At the
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beginning of each simulation run, we placed a single particle in each well and applied

a constant driving force, Fd = (Fd, 0), in the x direction. The algorithm presented in

[39] was employed to simulate the motion of the particles with a time discretization of

δt = 10−4. Data were gathered from 100 runs of 2 × 106 time steps for a multitude

of values of Γ and Fd while keeping κ, a, and Fmax constant. Before performing mea-

surements, the systems were equilibrated for 105 time steps. We used the reduced units

γ = kBT = 1 and all distances were rescaled by the lattice constant a and all forces by

Fmax.

3.3 Thermal sliding

The stick-slip mechanism mentioned above appears when the inter-particle interaction

strength Γ is large enough, in comparison to the substrate potential depth, to preserve

the hexagonal structure of the monolayer at all times. The monolayer, if it is to slide,

has no other recourse than to form a distortion wave that travels through the system

until each particle has moved forwards by one lattice constant. This is accomplished

by forming a localized cluster of particles that escape their respective substrate wells.

This cluster of hopping particles is the source of a sequence of particle hops that travels

through the entire system. After such a “hopping wave” has run its course, the monolayer

re-equilibrates and awaits the formation of yet another cluster (see supplementary Videos

S1 and S2).

In Fig. 3.2, this process is illustrated for a monolayer driven at two slightly different

values of Fd. In the top row of the figure, the average displacement of each particle

from its position at t = 0 is plotted as a function of time. One can clearly see that

the trajectories alternate between a “buildup phase”, in which the monolayer is in the

process of forming a hopping wave, and a “slipping phase”, in which a hopping wave

travels through the system until each particle has moved forwards by one lattice constant.

Although the applied driving forces differ by only a fraction of a percent, the velocity

of the monolayer changes almost by a factor 7. Moreover, the regularity with which the

hopping waves appear changes drastically.

We can take advantage of the periodicity of the substrate by considering the “periodic

position of the center of mass” R (middle row of Fig. 3.2), which is defined as the average

displacement in the x direction of each particle from its nearest substrate potential

minimum. During the buildup phase, the value of R is equal to the average displacement

of the monolayer, d, modulo the lattice constant a. During the slipping phase, the value

R does not have a physically meaningful value but the sharp peaks are nonetheless clear

indicators of the existence of a hopping wave. The value R/a = 0.25 is of particular

significance since it is the point of maximum resistance of the substrate. The plots of

R vs. γt not only reveal the repetitive nature of the hopping wave mechanism, but
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Figure 3.2 Motion of a monolayer with Γ/kBT = 0.804. We have depicted (top row)
the absolute displacement of the system, d, (middle row) the “periodic position of the
center of mass”, R/a, and (bottom row) the net force acting on the monolayer,
Fnet/Fmax, as a function of reduced time, γt, for two values of Fd/Fmax. Panels in the
same column belong to the same trajectories. For animations of the data, see
Supplementary Videos S1 and S2.

also show that the monolayer in the middle left panel gets pinned by the substrate and

takes a variable amount of time to evolve a hopping wave, whereas the buildup phase

of the monolayer in the middle right panel consists of an essentially continuous drift

towards the point of maximum resistance of the substrate, and shortly thereafter forms

a hopping wave.

An examination of the net force acting on the monolayer (bottom row of Fig. 3.2) con-

firms that the monolayer driven at Fd/Fmax = 0.980 experiences zero Fnet for significant

periods of time, before a random fluctuation creates a hopping wave. The monolayer

driven at a rate of Fd/Fmax = 0.984, on the other hand, is perpetually in motion. This

is surprising since the substrate potential is clearly capable of applying a larger restor-

ing force on each particle than Fd, yet the monolayer glides unhindered in the driving

direction. In the following section, we will explain the origin of this “thermal sliding”.
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3.4 Mapping onto the harmonic crystal

The trajectories in Fig. 3.2 differ primarily in the character and duration of their buildup

phases. It also turns out that this part of the trajectories is amenable to analytical treat-

ment. Consider the equation of motion of the periodic center of mass of the monolayer

during the buildup phase,

γ
dR(t)

dt
= Fd +

1

N

∑
i

Fsub(ri) + F∗random(t), (3.2)

where the stochastic force F∗random(t) is the average random force acting on the particles

and is a Gaussian uncorrelated noise with zero mean and variance 2kBTγ/N . The

Yukawa forces cancel due to Newton’s third law and so we obtain a stochastic differential

equation describing the motion of a Brownian diffuser in a potential defined by the

driving force and the average substrate force acting on the monolayer. Since there is

no diffusion in the direction perpendicular to the driving force (in the y direction), we

merely need to consider the x component of the equation of motion of the system. The

only unknown in the equation is the average substrate force acting on the monolayer in

the x direction, F eff(R) = N−1
∑

i F
x
sub(ri, R), which depends on the distribution of the

particles’ positions ri and the instantaneous position of the center of mass.

To treat the buildup phase analytically, we make the following two assumptions:

1. During the buildup phase, the monolayer is in quasi-static thermodynamic equilib-

rium. It can be expected that this assumption holds because the monolayer creeps

along the external potential landscape very slowly during the buildup.

2. The total potential energy of the system can be approximated by a second order

Taylor expansion. This approximation is expected to be valid for stiff crystals.

Then, for a given position R, the probability distribution of the particle positions is the

equilibrium distribution with the restriction R = N−1
∑

i r
x
i ,

P ( #»r , R) =
δ
(
N−1

∑
i r
x
i −R

)
e−βUtot(

#»r )

Z(R)
, (3.3)

where β = 1/kBT , δ is the Dirac delta function, and #»r is a 2N -dimensional vector of

x and y coordinates of each particle. Utot(
#»r ) denotes the total potential energy of the

system as a function of all particle positions, and the normalization is given by the 2N

dimensional integral, Z(R) =
∫

d #»r δ
(
N−1

∑
i r
x
i −R

)
exp {−βUtot(

#»r )}. The normal-

ization and expectation values of such distributions typically defy analytical evaluation,

so a further approximation is required.

The second assumption implies that the position of a particle deviates from the location

of the center of mass, R = (R, 0), only by a small displacement, ui. We can therefore
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rewrite the position of each particle as ri = ui + R + Ri, where Ri is the position

vector of the substrate minimum closest to the particle i. The center of mass of the

monolayer is able to oscillate in the y direction but, by construction, the deviations in

the x direction must cancel,
∑

i u
x
i = 0. For small ui, the total potential of the system

can then be approximated by a second order Taylor expansion. Although conceptually

simple, the following calculation is rather cumbersome, thus, we have detailed every

step of the procedure in the SI Appendix S1 and mention only the essential results in

the following. The work by Baumgartl et al. [53] on this approach is recommended for

further reading, and an introduction to the harmonic crystal can be found in Ref. [54].

The second order Taylor expansion of the total potential energy for small ui is

Utot(R) =
∑
j<i

Uyuk(|ui − uj + Ri −Rj |)

+
∑
i

[Usub(ui + R)− Fd uxi ]−NFdR

≈ #»uTD(R) #»u +G(R)
∑
i

uxi +H(R), (3.4)

where the 2N × 2N interaction matrix D(R) encodes how each particle interacts with

the substrate and with all other particles and #»uT is the transpose of the 2N dimensional

vector of the small displacements of the particle positions. Both in simulation and in this

calculation, nearest neighbor cutoffs were used and, hence, the majority of the entries

in D(R) are zero. The function G(R) combines the linear term in the Taylor expansion

of the substrate potential and the driving force Fd, and H(R) is the potential energy of

the system if all ui are zero. Since the interaction matrix is symmetric, it can readily

be brought to diagonal form. Using the discrete Fourier transformation, the 2N × 2N

matrix D(R) can be resolved into N 2× 2 matrices [53]. The total energy of the system

can therefore be rewritten as

Utot(R) =
∑
q

ūT(q) D̄(q, R)ū(q)

+
√
Nūx(0)G(R) +H(R), (3.5)

where ū(q) and D̄(q, R) are the Fourier transforms of u and D(R), respectively, and

the sum over q is the usual sum of the N reciprocal vectors of the Brilloun zone of

the substrate lattice. It turns out that the sum over all uxi appearing in Eqn. 3.4 is
√
Nūx(0), that is, the x component of the Fourier amplitude assigned to q = 0.

Recasting the total potential in this form allows us to evaluate Z(R), the expectation

values of the variances of the particles’ positions, and the average force that the substrate

exerts on the monolayer for a given value of R. The expectation value of the force exerted
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by the substrate in the x direction is

F eff(R) =

∫
d #»uP ( #»u , R)

1

N

∑
i

Fx
sub(ui, R),

= [NZ(R)]−1
∫

dū( #»q)Fx
sub(ū( #»q), R)

×exp

{
−β

2

∑
q

ūT(q) D̄(q, R)ū(q)

}

×exp

{
−β

2

[√
Nūx(0)G(R) +H(R)

]}
δ

(
ūx(0)√
N

)
, (3.6)

where
∫

d #»u and
∫

dū( #»q) are 2N dimensional integrals over all independent degrees of

freedom of the system. The only coordinate appearing in the delta function is ūx(0)

and therefore the corresponding integral over this degree of freedom is unity. Since the

linear term G(R) is only coupled to ūx(0) the result of the integration does not depend

on G(R). The function H(R) can be pulled out of the integral and cancels with the

corresponding term appearing in Z(R). What remains in Eqn. 3.6 is the product of

2N−1 Gaussian integrals that can be evaluated individually for each degree of freedom.

Having calculated the variances of ux, uy, and their cross correlation, we arrive at the

result:

F eff(R) = −Fmax sin

(
2πR

a

)
×exp

{
−2π2

a2

[
σ2
x(R) +

1

3
σ2
y(R)

]}
, (3.7)

where σ2
x(R) and σ2

y(R) are the expectation values of the variances of the particles from

their mean position in x and y directions. It turns out that in the harmonic approxi-

mation of the hexagonal lattice, the cross correlation σxy is 0 which is compatible with

the our findings from simulation. These variances are directly related to the diagonal

elements of the inverse of the dynamical matrix D̄(q):

σ2
µ(R) = δyµ

D̄−1
yy (0, R)

Nβ
+

1

Nβ

∑
q 6=0

D̄−1
µµ(q, R), (3.8)

where µ ∈ {x, y}. The Kronecker delta δyµ term arises from the fact that the monolayer

is free to oscillate in the y direction and ensures that an additional term is added to the

sum when σ2
y(R) is calculated.

We find that the expectation values of the effective substrate force and the variances in

the particles’ displacements are independent of the applied driving force. Furthermore,

the formulae for the variances in Eqn. 3.8 can be interpreted as the average value

of a function and therefore the effective resistance due to the substrate, F eff, is an
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Figure 3.3 Comparison of theoretical prediction (lines) with data gathered from
simulation runs (symbols). Symbols and lines of the same color correspond to the
same value of Γ, whereas different symbols of the same color correspond to different
driving forces. The dashed black line in the bottom panel of the graph is F eff(R) for
T = 0 or, equivalently, Γ =∞. Vertical black lines limit the region in which the
presented theory is applicable.

(essentially) intensive quantity. The functional form of F eff(R) is similar to the original

external potential except that it is exponentially reduced in terms of the variances,

σ2
µ(R), and thus the temperature T . For a sinusoidal substrate, each of the variances

increases monotonically as the monolayer travels along the barrier. We included an

instruction file, code for a C program, a python script, and a pair of sample files in the

SI Appendices S2-S6, with which these formulae can be evaluated.

In Fig. 3.3, we compare the curves generated by Eqns. 3.7 and 3.8 with data obtained

from simulation during the buildup phase. We used 4 monolayers of varying interaction

strengths Γ, and applied various driving forces close to, but less than Fmax. As predicted

by our calculations, there is a range of R/a in which the driving force does not influence

the expectation values of the monolayer, which explains the collapse of the data points

of the same color within the indicated region. Furthermore, the lines, which are our the-

oretical predictions, conform very well with the simulation data. We consider the main

source of error to be the truncation of the Taylor expansion at the second order because

the theoretical curves become more accurate as the interaction strength is increased.

The largest error is incurred in the estimation of σ2
y(R) when Γ/kBT = 0.804, for which

the average distance between a data point and the curve is 13% and the corresponding

error in the estimation of F eff(R) is 6.6%. Although the region of space in which our

formulae are valid may seem small, the monolayers reside in this region for the vast
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majority of the time. The harmonic approximation diverges shortly after R/a = 0.25

because the curvature of the external potential landscape changes sign and therefore

ceases to be a pinning potential. This change of curvature explains why, in simulation,

hopping waves form almost immediately after the monolayer reaches that point (see

middle right panel of Fig. 3.2).

3.5 Discussion

In the previous section, we mapped the buildup phase of the motion of the monolayer

onto the motion of a single overdamped Brownian diffuser subject to an effective sub-

strate force, F eff(R) (Eqn. 3.2). This effective substrate force is necessarily weaker than

the substrate force acting on each particle due to the thermal motion of the particles

in the monolayer. The formula for F eff(R) can be used to find the value of the largest

restoring force due to the effective substrate, F eff
max, which delimits two different dynam-

ical regimes. In the first regime, when Fd > F eff
max, the monolayer slides unhindered

over an effective substrate. Hence we call this motion “thermal sliding”. In the second

regime, when the driving force is lower than the effective barrier, Fd < F eff
max, the mono-

layer becomes pinned and its center of mass fluctuates about an equilibrium position

which can be inferred from Fig. 3.3. In this latter case, a critical number of particles

need to be kicked out of their respective potential wells in order to initiate a hopping

wave. The time taken to form such a critical cluster needs to be treated within the

framework of the classical nucleation theory [31].

The entire trajectory of a monolayer can therefore be resolved into three phases: the

buildup phase, the nucleation phase (where applicable), and the hopping wave phase.

We expect that the distributions of both the time taken to complete the buildup phase

and the time for a hopping wave to travel through the system are Gaussians. Since

the convolution of two Gaussian distributions is also a Gaussian, we define t̃ to be the

mean time that the monolayer takes to complete the buildup phase plus the mean time

the hopping wave takes to travel through the system, and the quantity ζ2 is the sum

of the variances of the aforementioned times. The time taken for nucleation to occur,

on the other hand, obeys an exponential distribution with a characteristic time τ . The

distribution of the total time, ttotal, that the monolayer takes to travel forwards by

one lattice constant is an exponentially modified Gaussian distribution arising from the

convolution of these distributions:
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P (ttotal; t̃, τ, ζ) =Π−1

∫ ∞
0

dt′exp

{
ttotal − t′

τ

}
exp

{
− [t′ − t̃ ]2

2ζ2

}
,

=
1

2τ
exp

{
t̃/τ + ζ2/2τ2 − ttotal/τ

}
×erfc

(
t̃+ ζ2/τ − ttotal√

2ζ

)
, (3.9)
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Figure 3.4 Top: Distribution of waiting times between hopping waves for a
monolayer with Γ/kBT = 0.804 for driving forces below, equal to, and above the
effective barrier height, F eff

max/Fmax = 0.982. The red and black curves have been
shifted horizontally by 15γt and 40γt, respectively, for clarity. Bottom: Nucleation
time, γτ extracted from the distribution of waiting times for multiple monolayers
driven at different rates.

where erfc(x) is the complementary error function and Π is the product of the norms of

the distributions. In the top panel of Fig. 3.4, we have plotted the distribution of the

waiting times between two successive hopping waves, P (ttotal), for a monolayer driven

with a force less than, equal to, and greater than F eff
max. The data were gathered by

finding the time between two successive peaks in the net force acting on the monolayer

(see bottom row of Fig. 3.2). The solid lines are fits of Eqn. 3.9 to the data sets, and

evidently the tail of the distribution (determined by the value of τ) disappears when Fd

becomes larger than F eff
max. In the bottom of Fig. 3.4, we plotted the mean nucleation

time τ , gathered from fits of Eqn. 3.9, for different monolayers as a function of the

driving force. Due to the exponential dependence of the free energy as a function of the

driving force, and the fact that the nucleation barrier is expected to vanish if Fd > F eff
max,

one can observe a change of at least 1 order of magnitude in the nucleation time within
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a window of 0.4% of F eff
max. The shape of the curves in the bottom of Fig. 3.4 indicates

that the dynamical transition from nucleation to thermal sliding is continuous.
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Figure 3.5 Velocity profiles of the simulated monolayers as a function of the reduced

driving force Fd/Fmax. The lines are plots of the function γv = [F 2
d − F eff

max
2
(Γ)]1/2

that terminate at Fd = F eff
max(Γ) and roughly reproduce the velocity of the monolayers

when Fd � F eff
max(Γ). Inset: Mean velocity of a monolayer with Γ/kBT = 1.038 for

different system sizes N .

In Fig. 3.5, we have plotted the mean velocity of a number of monolayers driven at rates

both above and below their respective effective force barriers. All of the considerations

herein lead to the expectation that there are two different scaling regimes of the mean

velocity of the monolayer, γv, with respect to the driving force. In the nucleation regime,

the value of the mean nucleation time, τ , has the largest influence on the velocity of

the monolayer and scales exponentially in the height of the free energy barrier posed by

the substrate. The free energy barrier in turn, is influenced by the driving force and

thus the velocity is expected to decay exponentially as Fd goes to 0. In the thermal

sliding regime, the mean velocity of the monolayer depends primarily on the time the

center of mass takes to diffuse along the potential landscape associated with F eff(R). If

one ignores the random force in Eqn. 3.2 and assumes that the variance in the particle

positions remains constant, then the first order differential equation for the motion of

the monolayer can be solved quite easily. The mean velocity of the monolayer for the

thermal sliding regime is then given by γv = [F 2
d − F eff

max
2
(Γ)]1/2. The lines in Fig. 3.5

are plots of this simplification, and conform surprisingly well with the simulation results

for Fd � F eff
max(Γ), especially with respect to the scaling of γv. As a corollary to this

consideration, if, for some reason one were unable to measure velocities in the regime

close to Fd = F eff
max, where velocities tend to be very small, then the obtained data would

suggest the existence of a static friction located at Fd = F eff
max(Γ). This apparent static

friction obeys Amontons’ law, in that the value of F eff
max(Γ) is independent of the contact
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area, which in this model is the particle number N , and is, to first order, proportional

to the applied load, which is Fmax ∝ U0 [13, 55]. Nonetheless, we have shown that the

atomic details of such monolayers induce a dramatic change in the scaling of the mean

velocity close to Fd = F eff
max and that it decays to small velocities. This finding may

have some bearing on the discussion of the molecular origin of static friction found in

the literature [31, 38, 55–57].

According to nucleation theory, the mean time of observing a nucleation event is inversely

proportional to the product of the nucleation rate and the volume of the system τ =

[JV ]−1. Therefore, when a collective mechanism is responsible for motion, one expects

that an increase of the system size will result in an increase of the monolayer mobility,

contrary to the traditional experiences with friction. The mean velocity is expected to

converge, however, for sufficiently large volumes or high nucleation rates, due to the

appearance of multiple, simultaneous, hopping waves. The inset in Fig. 3.5 is a plot of

the mean velocity of a monolayer with Γ/kBT = 1.038 as a function of Fd for different

system sizes N , and as one can clearly see, the mobility of the monolayer increases with

N in the nucleation regime, which is expected to end at F eff
max/Fmax = 0.9855, and indeed

shortly thereafter, the velocities converge.
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Figure 3.6 Proposed dynamical phase diagram of overdamped monolayers driven by
a constant force. The dashed red line is the theoretical demarcation between thermal
sliding and nucleation-induced motion F eff

max(Γ) vs Γ−1. Empty boxes denote
parameter values for which nucleation of hopping waves was found and filled circles
correspond to simulation runs in which thermal sliding occurred. The green gradient
indicates the region in which the hopping wave mechanism gives way to
defect-induced motion.

We attempted to find a suitable criterion to determine under which conditions the hop-

ping wave mechanism gives way to defect driven motion, but we have been, so far,

unsuccessful. We do expect, however, that the ratio of the substrate potential depth
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(which favors the formation of defects) and the interaction strength (which penalizes de-

fects) is to first order the main factor in determining whether the system moves through

the formation of hopping waves or through correlated defects. Part of the difficulty

in finding a cutoff between these two mechanisms stems from the fact that this is a

continuous transition, as illustrated in Video S3, which shows that monolayers with

Γ/kBT = 0.4 produce both hopping wave and defect induced motion. We summarize

our findings in Fig. 3.6, where we have plotted F eff
max(Γ) for various values of aFmax/Γ

(red dashed line) to delineate the nucleation regime from the thermal gliding regime.

The symbols indicate interaction strengths and driving forces that we simulated. Empty

boxes represent runs in which the net force acting on the monolayer was zero for signif-

icant periods of time, as is necessary for nucleation to occur. Filled circles, on the other

hand, denote simulations in which the net force was positive virtually all the time, as

expected for thermal sliding.

3.6 Conclusion and outlook

In this work, we found that stiff, overdamped monolayers adopt one of two different

dynamic phases and developed a quantitative theory describing them. In particular,

the velocity of the monolayer can be entirely characterized by the time the center of

mass creeps along the effective substrate potential, the time a hopping wave travels

through the system, and, where applicable, the mean nucleation time. While the results

we presented in this work can be used to determine the first of the aforementioned

times, analytical expressions for the hopping wave velocity and the nucleation time need

to be developed. With these three quantities, the velocity profiles of the monolayers

driven over a commensurate substrate can be reconstructed analytically. The driving

force determines which of these times has the largest influence on the velocity of the

system and a crossover occurs at Fd = F eff
max(Γ, Fmax, a, β), which has been computed

analytically. For large driving forces, the mean velocity of this model scales as if there

existed a static friction and for small forces, we indicated that the mobility has an

atypical dependence on the contact area, but a detailed analysis of this finite size effect

is still pending.

There are many further studies worthy of consideration. The theory presented herein

remains entirely unchanged if a different radially symmetric interaction potential is em-

ployed, provided that the particles in the system always repel each other strongly. We

can therefore predict that a density dependent dynamical transition occurs for non-

monotonic potentials even for large interaction strengths. Although the dynamic phases

of the more complex underdamped Langevin dynamics would introduce an additional pa-

rameter to the system, it ought to be manageable under the right conditions, particularly
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in the “onset of sliding simulations” performed in Refs. [23, 31], in which Nosè-Hoover

molecular dynamics and underdamped Langevin dynamics were, respectively, employed.
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Chapter 4

Dynamical phases of attractive

particles sliding on a structured

surface

4.1 Introduction

The first documented studies of the phenomenon of friction date back to the times of

da Vinci, Amontons and Coulomb [58, 59], but the microscopic dynamics underlying

the motion of two surfaces in contact with each other is still not fully understood. In

the beginning of the last century, Frenkel and Kontorova [12, 17, 19, 52, 60] and later

Prandtl [15] and Tomlinson [16] formulated theoretical models to address this issue.

Recent advances in experimental techniques were used to study friction at single particle

resolution by means of colloidal particles [6], atomic force microscopy [47–50], and quartz

crystal microbalance setups [26–28, 51]. Simulations complement the aforementioned

studies by providing an opportunity to sample a wide range of precisely tuned parameters

[30, 33, 38, 55–57]. In particular, the sliding phases of underdamped [21, 23, 24] and

overdamped [61] particles as well as systems with repulsive [62] and with attractive

[31, 63] interactions have been studied. In addition to that, the statics and dynamics

of monolayers exposed to external potential landscapes with different length scales have

also been examined [64, 65].

In our previous works [9, 10], we examined the dynamical response of a monolayer of

particles interacting via the purely repulsive Yukawa potential. Like most simple pair

potentials, the Yukawa potential depends on two parameters, one of which determines

the coupling strength and the other the characteristic length scale of the interaction.

Due to the fact that this potential is monotonic, it stands to reason that changing the

density, or length scale of the potential, does not change the qualitative behavior of the

system. Furthermore, we suggested that our results apply not only to Yukawa particles,

39
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but to all systems in which particles interact with short-ranged, repulsive potentials.

The Lennard-Jones (LJ) potential, however, is more complicated in this respect, since it

has both a repulsive and an attractive regime and should therefore exhibit more complex

dynamical phases. In this work, using a substrate potential with fixed well depth and

lattice constant, we examine the frictional response of monolayers with different inter-

particle interaction strengths, when the lattice constant of the crystal is greater than,

equal to, or less than the lattice constant of the external pinning potential.

If the lattice constant of the LJ monolayer in consideration is equal to or larger than the

lattice constant of the underlying surface (harmonic and compressed monolayers), the

system behaves similar to the Yukawa case. On the other hand, if the length scale of

the Lennard-Jones interactions is smaller than that of the substrate potential (stretched

phase) , there is an ever present length scale mismatch between the LJ interactions and

the external substrate that dramatically changes the dynamics of the system. Not only

does the application of a constant driving force create cracks in the monolayer, but, as

expected, we find that the attractive interactions increase the mobility of the monolayer.

Furthermore, the mobility of the monolayer is non-monotonic in terms of the strength

of the interaction: an increase of the attraction strength between the particles at fixed

driving force results in an initial decrease of the monolayer velocity, which then starts

to grow.

After discussing the simulation details, we present the simulation results, which are

divided in two parts; first, we treat the stretched and harmonic monolayers and then the

compressed ones. In both cases, we investigate the mobility of the monolayers for various

inter-particle interaction strengths and the dynamical phases the monolayer forms when

driven over a structured surface.

4.2 Simulation details

We simulated the motion of a two-dimensional monolayer composed of N = 6400 parti-

cles driven over a structured surface. The size of the simulation box is fixed and chosen

so that it can accommodate 80×80 substrate potential minima arranged in a hexagonal

lattice with lattice constant asub. As a result, the ratio of particles to substrate wells,

the filling fraction, is unity. The motion of the particles in the system is modeled by

overdamped Langevin dynamics [39], which means that at any moment of time their

velocity is given by

γ
dri

dt
= Fsub(ri) +

∑
j 6=i FLJ(|ri − rj |) + Fd + Frand(t). (4.1)
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The substrate force, Fsub(ri), acting on particle i, is the negative gradient of the external

potential,

Usub(ri) = −asubFmax

8π [3 + 4 cos(kxr
x
i ) cos(kyr

y
i ) + 2 cos(2kyr

y
i )], (4.2)

where kx = 2π/asub and ky = 4π/
√

3asub. This choice of kx and ky produces a hexag-

onal arrangement of potential wells with a lattice constant asub and lattice vectors

g ∈ {(asub, 0), (asub/2,
√

3asub/2)}. The lattice constant of the substrate potential de-

termines the length scale of the substrate, which we set to unity. The prefactor Fmax

is the maximum force that the substrate can exert on a particle in the x-direction and

determines the strength of the substrate. We fixed it at Fmax = 8πkBT/9asub, which

corresponds to a substrate potential well depth of 1kBT . The particles interact with each

other via standard LJ interactions, FLJ(|ri − rj |). The corresponding potential energy

of two particles separated by distance r is ULJ(r) = ε
[
(aLJ/r)

12 − 2(aLJ/r)
6
]
. Here, aLJ

is the position of the minimum of the LJ potential and inserting the identity aLJ = 21/6σ

into the definition of the LJ potential recovers the more traditional parametrization in

which σ is the usual LJ radius of the particle. In order to study the effect of the at-

tractive tails on the dynamics of the monolayer, we varied the inter-particle interaction

range aLJ and the interaction strength ε. The LJ interactions were truncated at an

interparticle separation of rc = 2.5aLJ. In all simulations, we applied a constant driving

force, Fd = (Fd, 0), in the x-direction. The thermal motion of the overdamped particles

was simulated by applying a random force Frand(t) on each particle, at each moment in

time. These forces were uncorrelated in time as well as in their x- and y-components and

were represented by Gaussian white noise with zero mean and variance 2γkBT , where kB

is the Boltzmann constant, T is the temperature and γ, which also appears in Eq. (4.1),

is the viscosity of the fluid the particles were suspended in.

To model the overdamped motion of the particles, we employed the algorithm presented

in [39] with a time discretization γδt = 10−4. For each set of parameters, we performed

5 simulation runs, each of which lasted 5× 105 time steps. To ensure equilibration, the

systems were propagated in time for 2× 106 time steps, before any measurements were

made. The long equilibration times are necessary to ensure that the simulations have

converged to the dynamical steady state. We used reduced units in which γ = kBT = 1

and, in the following, all distances will be rescaled by the lattice constant of the substrate,

asub, and all forces by Fmax.
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Figure 4.1 Velocity of monolayers with LJ parameter aLJ = 1.05asub (top) and
aLJ = asub (bottom) as a function of the driving force Fd for different interaction
strengths ε. The straight black line, γv = Fd, corresponds to the motion of a
monolayer in the absence of a substrate. The black curve, γv =

√
F 2
d − F 2

max

corresponds to the formal solution of the motion of an infinitely stiff monolayer and is
the lower bound of the monolayer velocity.

4.3 Results and discussion

4.3.1 Compressed monolayers

First, we consider a relatively dense LJ system, in which the particles have a typical

distance equal to or less than the LJ length scale aLJ. We realized this by setting aLJ =

1.05asub, in order to obtain purely repulsive interactions between nearest neighbors,

and aLJ = asub, in order to obtain harmonic interactions. In this case, the energetic

groundstate of the system, in the absence of a driving force, is realized by placing one

particle in each substrate potential minimum. We expect that the dynamical response

of these types of monolayers to a constant driving force will be similar to that of a

monolayer composed of Yukawa particles.

The friction of the monolayer is defined by the velocity it adopts when a constant

driving force Fd is applied to it. In the absence of an external pinning potential, the

monolayer drifts with a velocity γv = Fd, which is the maximum speed at which the

monolayer can travel. The deviation of the monolayer’s average velocity from the free

case is the frictional response of the system. In Fig. 4.1, we present the average velocity

of different monolayers as a function of the driving force Fd for various inter-particle

interaction strengths. The shapes of the curves of the monolayers with aLJ = 1.05asub

and aLJ = asub are not only similar to each other, but also match those obtained from

simulations of Yukawa particles [9, 10]. As expected, for large values of ε, the monolayers

are pinned to the substrate until the driving force applied becomes comparable to the
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Figure 4.2 Mobility, µ = v/Fd, plotted as a function of the driving force, Fd, for
different interaction strengths, ε, in reduced units. In the top panel, the LJ parameter
is aLJ = 1.05asub and in the bottom panel aLJ = asub.
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Figure 4.3 Velocity of LJ monolayers at repulsive, aLJ = 1.05asub, and harmonic,
aLJ = asub, length scales as a function of the interaction strength ε for different
driving force Fd.

maximal force Fmax that the substrate can exert on a particle. Then, the monolayer

slides as a whole with the velocity closely resembling the velocity of a single particle

driven over a corrugated substrate [15], γv =
√
F 2
d − F 2

max.

An alternative, but equivalent, measure of the frictional response of the system is defined

by the mobility, which is the ratio of the monolayer velocity and the driving force,

µ = v/Fd. When the monolayer is pinned in place, the mobility of the system is zero

and it is unity in the absence of an external potential. In Fig. 4.2, we have plotted the

mobility of the monolayers for various interaction strengths along with the analytical
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Figure 4.4 Top: Average distance traveled by monolayers for aLJ = 1.05asub and
with ε/kBT = 0.1, 0.5, 10 as a function of time. The driving forces were adjusted so
that the different monolayers have roughly the same velocity. Each of the curves has
been shifted vertically by one unit for clarity. Bottom: Instantaneous velocity of the
same representative monolayers obtained from numerical differentiation of the data
above. Here, too, each of the curves have been shifted by one for clarity.

solution for a monolayer with infinitely large ε [9]. As can be seen in Fig. 4.1, in order

to obtain the mobility for small driving forces, one needs to evaluate a small velocity

accurately, and then divide this small number by Fd. This procedure is both numerically

and statistically unstable, as can be seen for the first few points of each curve in Fig.

4.2.

For both the repulsive and the harmonic monolayers, Fig. 4.3 shows that their velocity

decreases monotonically as a function of the interaction strength. This trend can be

explained by the fact that stronger interactions suppress the thermal fluctuations, which

are necessary to induce motion.

In order to ascertain what types of mechanisms are responsible for the motion in the

monolayer, we plotted the average displacement of the particles in a monolayer as a

function of time in the top panel of Fig. 4.4, for three different interaction strengths,

and for aLJ = 1.05asub. The driving forces acting on the monolayers were chosen such

that their mean velocities were similar. One can infer the average velocity of each of

the monolayers from the average slope of their curves. In the bottom panel of Fig. 4.4,

the instantaneous velocity of the system is plotted, also as a function of time and was

obtained through numerical differentiation of the d vs t graph. As one can see, the

motion of monolayers with large interactions, ε = 10kBT , consists of alternating creep-

ing phases and surges of motion. Monolayers with intermediate interaction strengths,

ε = 0.5kBT , perform continuous motion with large fluctuations, and monolayers with

small interaction strengths, ε = 0.1kBT , have a virtually constant velocity with small
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Figure 4.5 Representative configurations of the dynamical phases that LJ monolayers
adopt when aLJ = 0.95asub, for different interaction strengths. Each of the particles in
the system is depicted as a sphere and is colored according to its external substrate
potential value as depicted in the color key on the left. The driving force acts from left
to right. a) For very small interactions, ε = 0.1, the particles barely interact with each
other and therefore the particles lose hexagonal order as they slide in an amorphous
phase over the substrate. b) As the interaction is increased to intermediate values,
ε = 4.0, hexagonal order emerges. This order consists of a compromise between the
lattice constant of the substrate and that of the LJ interactions. In the y-direction,
the monolayer adopts the lattice constant of the substrate. In the x-direction,
however, the typical inter-particle spacing is somewhere between aLJ and asub. c) For
large interactions, ε = 7.0, the cracks that form become rigid and the relative positions
of the particles is aLJ. In the y-direction, however, the monolayer is still stretched. d)
Only for very large interparticle interactions, ε = 10.0, does the monolayer adopt
hexagonal ordering with lattice constant aLJ both in the x-and in y-direction.

fluctuations. In both panels, the curves have been shifted vertically by one, for clarity.

Thus, compressed monolayers of LJ particles behave essentially similar to the monolayers

composed of purely repulsive Yukawa particles, which were examined extensively in

earlier work [9, 10]. The only deviation we find is that the increase of the inter-particle

interactions does not result in an initial increase of the mobility (Fig. 4.3) as observed

for Yukawa particles. This discrepancy is attributed to the fact that we are considering

rather shallow potential wells.

4.3.2 Stretched monolayers

By reducing the LJ parameter to aLJ = 0.95asub, we introduce a length scale competition

between the substrate, that attempts to assert an inter-particle separation asub, and the
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LJ interaction. We find that even though the length scale mismatch is only 5%, the

behavior of the monolayers changes significantly in comparison to the previous cases.

As before, we vary the interaction strength, ε, and find that it tunes the magnitude of

the length scale competition. In the following, we describe the dynamical phases that

the monolayers adopt and then proceed to discuss the frictional response of the system.

We find that the motion of the monolayer is defined by the structures it forms, which in

turn depend upon the compromise between its tendency to be stretched by the substrate

and its inclination to contract due to the inter-particle interactions.

4.3.2.1 Dynamical steady-states

In order to compare our results with the aLJ ≥ asub case, we initialized all of our

simulations by placing a single particle in each substrate minimum. For small ε, this

configuration is close to the equilibrium state of the system. For intermediate and large

interactions, this is less likely to be true. The effects of the initial condition on the

dynamics of the monolayer will be discussed in the next section.

In Fig. 4.5, we depicted four representative configurations of the dynamical steady states

for different LJ interaction strengths ε. Each of the spheres in a configuration represents

a particle in the system, and is colored according to its substrate potential value. As

indicated by the color key in Fig. 4.5, blue particles reside at the bottom of an external

potential well whereas red particles sit at the top of a substrate barrier.

For very small interaction strengths, as one might expect, the particles barely interact

with each other and form an amorphous sliding phase (Fig. 4.5a). This amorphous phase

consists of a random distribution of particles that are either trapped at the bottom of

a substrate potential well (blue) or are currently hopping from one potential well to

the next (red). The white spaces in the figure correspond to temporarily unoccupied

potential wells that are matched by doubly and triple occupied substrate minima.

In Fig. 4.5b, one can see that, as ε increases, the LJ interactions force hexagonal order

onto the monolayer. Furthermore, the voids that were randomly distributed before, are

now clustered. The reason why these voids appear is that the LJ interaction attempts to

impose an inter-particle separation of aLJ = 0.95asub, and partially succeeds in doing so,

but only through the formation of vacancies. These vacancies tend to cluster in order to

minimize the energy penalty associated with them. Perhaps the most striking feature of

this dynamical phase is the stripe pattern of the color scheme. The fact that the particles

in each column have the same substrate potential value implies that the monolayer has

a lattice constant of asub in the y-direction, whereas the continuous change in coloring

along the x-direction suggests that the monolayer is compressed. It appears that the

application of a constant driving force helps the monolayer evolve cracks and thereby
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Figure 4.6 Alternative representation of the dynamical phases. After assigning a
substrate potential well to each particle in the system, we connected neighboring
doubly and triple occupied potential minima by green and red bonds, and the empty
substrate potential minima by blue bonds. If a doubly and triple occupied or empty
potential well has no neighbors, it is represented by a particle using the same color
scheme as the bonds. The network of green bonds correlates with the centers of the
red regions in the previous representation and the blue clusters coincide with the
location of the cracks in the monolayer.

deform in the x-direction, whereas in the y-direction, perpendicular to the driving force,

the substrate is still able to prevent the monolayer from contracting.

For yet larger ε, the clustering of the voids, or cracks, in the monolayer increases further

and the cracks no longer fluctuate (see V2 and V3 in supplementary materials). Thus,

in Fig. 4.5c, only a handful of large cracks remain. Furthermore, there is a very simple

consideration that can be used to describe this dynamical phase. Consider a chain of

equally spaced particles with inter-particle separation aLJ in a periodic potential with

period asub. This arrangement of particles has a period of δl = asub/(asub− aLJ), which

in our case is δl = 20asub. Since the simulation box we considered has a length 80asub in

the x-direction, one can expect that a rigid monolayer with a lattice constant of 0.95asub

in the x-direction should create four stripes, as is the case in this dynamical phase. One

can therefore infer that the inter-particle separation in the x-direction conforms to the

length scale of the LJ potential and not to that of the substrate. Using this consideration,

one can also infer that the average particle separation in the previous dynamical phase

(Fig. 4.5b), which exhibits only three stripes, is 0.9625asub – a compromise between the

length scales of the external potential and the LJ interaction.
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Figure 4.7 Number of unoccupied substrate potential minima as a function of the
interaction strength ε for various driving forces.

Finally, the dynamical phase in Fig. 4.5d appears only for very large interaction strengths.

The colored pattern clearly indicates that the hexagonal lattice formed by the monolayer

does not match that of the underlying substrate both in the x- and in the y-direction.

The fact that the blue spots form a hexagonal pattern indicates that the length scale

of LJ interactions overcomes the influence of the substrate. For animations of these

dynamical phases, we refer to the supplementary videos V1-V4.

In order to make the differences between these dynamical phases more apparent, we as-

signed each particle to the potential well closest to it. By ignoring the external potential

wells that are occupied by a single particle, and depicting wells that are empty (blue)

or occupied by two or more particles (green and red), the panels in Fig. 4.6 capture

the essential structure of the dynamical phases in Fig. 4.5. Two neighboring substrate

minima with no particle assigned to them are connected by a blue bond, while isolated,

empty substrate minima are represented by blue spheres. The same procedure was re-

peated for potential wells with two or three particles in them, but these regions are

colored green and red, respectively. As can be seen in Fig. 4.6a, the arrangement of

empty and doubly and triple occupied lattice sites is essentially random for very small

ε. The cracks begin to coalesce to larger structures as ε increases and the doubly and

triple occupied regions, take on the string-like structure that can be expected from a

monolayer that is distorted in the x-direction only (Fig. 4.6b and Fig. 4.6c). Finally,

when only one or two very large crack regions are visible, the arrangement of doubly

occupied potential minima adopts a hexagonal-like structure of its own (Fig. 4.6d). We

used this representation in the second panel of the supplementary videos V1-V4 in order

to show that the qualitative features of these structures persist over the course of the

simulations.

As a preliminary analysis of the structure of the dynamical phases in the system, we

calculated the average number of unoccupied substrate potential minima over the course

of a trajectory for different interaction strengths and driving forces (blue particles and
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bonds in Fig. 4.6). As might be expected, the curves in Fig. 4.7 show that there is a

dramatic difference between the complete absence of interparticle interactions (ε = 0)

and arbitrarily small but finite interaction strengths.

For small values of ε, increasing the inter-particle interactions decreases the average

number of vacancies in each configuration. This is the case for small ε because the

particles interact with each other only when they share the same substrate potential

well, and when they do, they tend to “stick” together, thereby not only increasing the

number of doubly and triple occupied substrate wells, but also unoccupied wells. In the

complete absence of the LJ interaction, there is no such energetic preference towards

multiple filled substrate wells and therefore fewer vacancies are measured. Then, close

to ε = 3kBT , the length scale of the LJ interaction begins to asserts itself, and instead of

preventing voids from forming, the length scale mismatch between the LJ interactions

and the substrate favors the formation of large, vacancy clusters, i.e. cracks. The

strong overlap of the curves suggests that the dynamical phases that the monolayers

adopt depend primarily on the relative strength of the substrate and the LJ interaction,

as opposed to the driving force.

In summary, there are four dynamical regimes available to the stretched monolayer. For

small interaction strengths, particles in the monolayer display very little order other than

that imposed by the substrate. As the interaction strength increases, hexagonal order-

ing of particles is accompanied by clustering of vacancies in the system. Although these

structures still fluctuate, one can clearly see that the LJ interactions start to assert them-

selves along the direction of the driving force and the monolayer becomes compressed in

the x-direction. For larger interactions, the cracks in the configuration become not only

very large but also rigid, and the crystal eventually adopts the inter-particle spacing

imposed by the LJ interactions in the direction of the driving force. Further increase

of the LJ interaction strength causes the monolayer to develop a perfectly hexagonal

lattice with a uniform lattice constant in both the x- and y-directions.

4.3.2.2 Frictional response

Although the dynamical phases we described are structurally very different, their veloc-

ities are remarkably stationary. To show that the motion of a monolayer is relatively

uniform, apart from some noise, we plotted the distance the center of mass of the mono-

layer has traveled and its instantaneous velocity, as a function of time, in Fig. 4.8. Here,

we use the same representative trajectories as in Fig. 4.5. Again, the driving forces were

chosen such that the speed of the monolayers is roughly the same. It appears that for

attractive monolayers, after they have satisfied the length scale frustration by deform-

ing, glide continuously through space. This is in stark contrast to the harmonic and

repulsive cases, where in two out of three sliding phases the motion proceeds through
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Figure 4.8 Top: Distance the monolayer has traveled as a function of time for LJ
monolayers with aLJ = 0.95asub. The curves have been shifted vertically by one for
clarity. The driving force was adjusted so that the mean velocities are similar.
Bottom: Instantaneous velocities of the monolayers obtained from numerical
differentiation of the curves above, also shifted by one for clarity.

the creation of local kink-antikink pairs, i.e., local distortions of the hexagonal lattice,

which generate large fluctuations in the velocity of the monolayer.

In Figs. 4.9 and 4.10, we present the frictional response of the monolayers as a function

of the applied driving force. In order to make the plots less busy, we split them into

two panels. In the top panels, we plotted data for monolayers with ε ≥ 3kBT . For

these values of ε, the LJ interactions impose their incommensurate length scale on the

system (Figs. 4.5c and 4.5d). There is a jump in the velocity of the monolayer as Fd

overcomes some threshold, which we believe is an artifact of the initial configuration. The

data points connected by solid lines were obtained from simulation runs in which each

particle is placed into its own substrate potential well. During the equilibration phase,

in which no measurements were taken, the monolayer needs to form cracks somewhere in

the configuration in order to relax into its dynamical steady state. Although it becomes

increasingly favorable for the monolayer to contract as ε becomes very large, it also takes

longer for cracks to appear, since the thermal fluctuations which generate such structural

transformations get suppressed as the inter-particle interactions increase. The driving

force assists crack formation since for every interactions strength there is a critical value

of the driving force for which the monolayers depin within the simulation time. Thus,

as the interaction strength grows, so too does the critical driving force necessary for

the monolayer to depin. In order to verify that the initial condition we employed is

the source of this apparent dynamical arrest, we took configurations from trajectories

in which Fd = 0.93Fmax and used them as the initial configurations for another set of

simulation runs (points connected by dashed lines in Figs. 4.9 and 4.10). As expected,
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Figure 4.10 Mobility, µ = v/Fd, plotted as a function of the driving force for
different interaction strengths ε. As in Fig. 4.9, interaction strengths with ε ≥ 3kBT
have been plotted in the top panel, and data for ε ≤ 3kBT is presented in the bottom.

the monolayers that were previously pinned throughout the run, were able to slide if

cracks were present at the beginning of the simulation. This dynamical hysteresis is

caused by the kinetics of crack formation, which we expect to obey a nucleation-like

scenario. In the bottom panels, we plotted the data for the monolayers with ε ≤ 3kBT .

The data for ε = 3kBT was intentionally included a second time to show that this

monolayer has the lowest mobility of all examined interaction strenghts. When ε is
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Figure 4.11 Velocity of LJ monolayers with aLJ = 0.95asub as a function of the
interaction strength ε for different driving force Fd. Unlike its harmonic and repulsive
counterparts, the attractive LJ monolayer has a clear global minimum in its mobility
at ε = 3kBT that does not appear to depend on the driving force.

set to zero, the particles do not interact with each other, and therefore, the system is

equivalent to the motion of a Brownian particle driven over a sinusoidal potential [9],

which can be solved analytically [42]. To compare our simulation results with analytical

predictions, we did not connect the data points for the ε = 0 data points with lines, but

plotted the aforementioned solution (pink lines in the bottom panels labeled “Theory”)

instead. Evidently, the prediction agrees very well with simulation results. We point

out again that the mobility is prone to be numerically unstable for small driving forces.

In order to highlight the scaling of the monolayer velocity as a function of the interaction

strength, we plotted the velocity of the monolayer as a function of ε for various driving

forces Fd in Fig. 4.11. For ε = 0, the particles perform completely independent random

walks through space. For small, but finite ε, the mobility of the monolayer decreases

since the particles interact with each other only when they are close, and therefore

tend to “stick” to each other when they occupy the same substrate minimum. This

effect becomes more pronounced for growing ε until some crossover point at which the

monolayer begins to assemble domains whose length scale does not match the length

scale of the substrate. For interactions beyond this point, the mobility of the monolayer

begins to increase as ε grows, until, finally, its motion is independent of the substrate

and the velocity is given by γv = Fd. Thus, the attractive LJ monolayer has a well

defined global minimum in the mobility that is flanked by a local maximum at ε = 0

and asymptotically approaches γv = Fd as ε goes to infinity. This trend is contrary

to the behavior of repulsive and harmonic particles as shown in Fig. 4.3, in which the

monolayer velocity is, essentially, a monotonically decreasing function bounded by the

ε =∞ limit [9].
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4.4 Summary and outlook

In this paper, we showed that even a slight length scale mismatch between the inter-

particle interactions of a monolayer of particles and the structured surface it is driven

over has a dramatic effect on its dynamical phases. For lattice differences resulting in

locally repulsive or harmonic inter-particle interactions, we recover, qualitatively, the

behavior of Yukawa particles. This therefore suggest that the dynamical behavior of

overdamped monolayers of locally repelling particles is independent of the functional

form of the potential for large distances. The reason for this behavior is that the ex-

ternal substrate suppresses the influence of a particle on all but the nearest neighbors.

On the other hand, for locally attractive particles, the structure that the monolayer

adopts consists of a compromise between, in this case, the LJ interactions and the ex-

ternal substrate potential, and it is the ensuing structure that determines the mobility

of the system. By tuning the strength of the LJ interactions, we found that the length

competition initially reduces mobility, in the amorphous sliding regime, but then en-

hances mobility as the inter-particle interactions enforce hexagonal order on the system.

Although there are two structural transitions the monolayer undergoes as ε is varied,

almost all of the curves presented herein are smooth, which is an indication that the

transitions themselves are continuous, as opposed to Aubry-like [19, 60]. In addition to

the two-step assertion of the LJ length scale in the direction parallel and then perpen-

dicular to the driving force, the formation of cracks is essential in resolving the length

scale competition. The mechanism underlying the emergence of cracks, the dynamical

hysteresis exhibited by the system, and the structural changes parallel and perpendicu-

lar to the driving force are not yet fully understood and may form a basis with which

to study crack formation and the creation of tribo-films in experiment.
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Chapter 5

Crystallization and flow in active

patch systems

Based upon recent experiments in which colloidal particles can be made into active

swimmers through the use of laser light, we explore the effect of applying a light pattern

on the sample, thereby creating activity inducing zones, or active patches. We simulate

a system of interacting Brownian diffusers that become active swimmers if they enter

an active patch and analyze the structure and dynamics of the ensuing stationary state.

For symmetric activity zones, the system reacts qualitatively similar to a system with

a temperature differential. For asymmetric active patches this analogy breaks down

because we observe a net flow in the system. The predictions herein can be tested

experimentally and may form the basis for a deeper understanding of chemotaxis.

The motion of bacteria, the action of molecular motors along proteins, and the collec-

tive motion of flocks are all part of the rapidly growing study of the nonequilibrium

statistics of active matter [66]. Recently, a number of soft matter systems have been

constructed to probe the collective behaviors of such systems [70]. This work is inspired

by the family of experiments in which specially tailored micrometer sized particles can

be made into active swimmers by illuminating them with laser light [7, 71]. In the ex-

periments of Bechinger et al. [7], micrometer sized silica beads were half-coated with

a thin layer of graphite and suspended in a water-lutidine mixture that was kept close

to the critical demixing concentration. By pouring this colloidal suspension in a cavity,

the particles were confined to a quasi two-dimensional geometry and the sample was

then illuminated by laser light. The wavelength of the laser was chosen so that only the

carbon coated hemisphere of the silica beads was heated. At sufficiently high light inten-

sity, the carbon half of the beads heated the surrounding solvent to such an extent that

local demixing occurred. This created an asymmetric concentration gradient around the

bead that induced directed motion perpendicular to the equator connecting the hemi-

spheres. Furthermore, it was shown that the light intensity was directly proportional to

54
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Figure 5.1 The three different types of geometries considered in this work. The red
regions correspond to areas that are illuminated by the activity-inducing laser light,
and the particles in the blue region perform conventional Brownian diffusion. The
bottom row depicts typical configurations of particles for large activity. The particles
are colored according to whether or not they are active.

the swimming speed of the particles and it was ascertained that the activity was primar-

ily diffeophoretic. The aim of this work is to study the effect of partially illuminating

the sample, thereby creating an active and an inactive zone. Whenever a particle leaves

the illuminated zone, it performs conventional Brownian diffusion. If a particle enters

an activity inducing zone it performs active motion in addition to diffusion.

Molecular dynamics simulations discussed in Reference [7], showed that although the

colloidal particles are hard spheres, the Weeks–Chandler–Anderson potential [72] more

accurately reproduces the radial distribution function obtained from experiment because

the quasi two-dimensional geometry that the particles are in allows for a small out of

plane overlap. The potential energy between two particles interacting via the WCA

potential is

UWCA(r) = ε
[
(r0/r)

12 − 2(r0/r)
6
]

+ ε for r < r0, 0 otherwise, (5.1)

where r is the interparticle distance. The total potential energy of the system is U tot =∑
i<j U

WCA(|ri−rj |) where ri and rj are the position vectors of the ith and jth particles

in the system. The interaction strength between particles was set to ε = 100kBT ,

where kB is the Boltzmann constant and T is the temperature. The length scale of

the interaction potential, r0, is related to the Lennard-Jones parametrization by r0 =

21/6σLJ and represents the particle diameter. It was also shown that the particles obey

overdamped Langevin dynamics without hydrodynamic interactions and therefore the
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equation of motion for each particles is,

γṙi = FWCA
i + f̃i + γv(ri)êi, (5.2)

˙̂ei = Γ̃i. (5.3)

Here, ṙi is the velocity of particle i and γ is the friction constant related to the diffusion

constant D0 of a single particle in the fluid by the Einstein relation γ = kBT/D0, where

kB is the Boltzmann constant. The interparticle force, FWCA
i , is the negative gradient

of the total potential U tot with respect to the coordinates of particle i. The particles

experience a random stochastic force f̃i, due to the solvent they are in, which was

simulated by a Gaussian distribution that is delta correlated in time, and has a variance

of 2D0γ
2. The last term, v(ri)êi, is responsible for the active motion of the particle. This

force acts along the orientation êi of the particle with position dependent magnitude

v(ri). In this work, the magnitude of the active force, v(ri), is either a constant v or

0, depending on whether the particle is in the illuminated (red) or unilluminated (blue)

region in Figure 5.1. The orientation vector of each particle, êi = {cos θ, sin θ}, performs

an independent random walk in θ, such that 〈θ(t)θ(0)〉 = 2Drδ(t) and the rotational

diffusion constant of the particles obeys the no slip relation, Dr = 3D0/r
2
0.

In all of our simulations, we set kBT , γ, and r0 to unity. As a result, the bare diffusion

constant of the system, D0 is also unity. We considered a system of 3600 particles

with a global (i.e. across both zones) number density of ρg = 0.2886. The system

was subject to periodic boundary conditions and the simulations were initialized by

arranging the particles in a hexagonal lattice that melts quickly due to the fact that the

packing fraction of the system is far from crystallization. The simulation cell had width

Lx = 120r0 and a height Ly = Lx
√

3/2. The effect of the interparticle interactions and

the phase behavior of the WCA potential can be accounted for by taking advantage of the

fact that, for sufficiently high interaction strengths, the WCA potential can be mapped

onto a hardsphere system with diameter σ2
HS = 2B2/π where B2 is the second Virial

coefficient of the WCA potential [73]. For ε = 100kBT , σ2
HS = 0.9861r0 and therefore,

the hard sphere packing fraction of the system is ηg = ρgπσ
2
HS/4 = 0.2205, similar to

experiment. The systems were equilibrated for 5 × 106 timesteps and data were then

gathered from trajectories of length 1.25 × 107. We shall consider the three different

types of passive zones embedded in an active fluid, as depicted in the top row of Figure

5.1 and analyze the ensuing nonequilibrium stationary state. The passive patches consist

of a halfplane of width Lx/2, a circle with radius 24 r0, and six semicircular stripes of

width 6 r0 and outer radius 24 r0.

In order to compare our results with a more conventional system, and to separate the

effect of the activity from a simple increase in the mean square displacement (MSD),

we also simulated a system of Brownian particles with position dependent diffusion
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constant. Conceptually, this corresponds to a setup in which Brownian particles are

subjected to a temperature difference. Typically, the activity of a particle is quantified

by its Péclet number, Pe = r0v/D0 and in experiments values of about Pe = 200 were

achieved. The highest activities used in this study correspond to Pe = 150 and are

therefore well within experimental accessibility. To compare the system with an activity

difference to the system with a temperature difference, consider the MSD of a solitary

active particle as reported in Refs. [7, 78],

〈∆r2〉 = 4D0t+
v2

2D2
r

(
e−2Drt + 2Drt− 1

)
. (5.4)

For short times, this MSD can be approximated by 〈∆r2〉 = 4D0t + (vt)2, which is

independent of the rotational diffusion constant. On the other hand, in the long time

limit the MSD converges to 〈∆r2〉 = 4
[
D0 + v2/(4Dr)

]
t− v2/(2D2

r). One can therefore

associate, for different levels of activity v, a long time diffusion constant DA = D0 +

v2/4Dr, which is the slope of the mean squared displacement for large t. In the following,

the activity of the particles will be given in terms of DA.

Before we proceed, consider the even simpler reference model of an ideal gas of either

active particles or Brownian diffusers whose mobility is position dependent using the

half plane geometry in the first column of Figure 5.1. Since the particles in the red

region are more mobile than in the blue region, there is a net flow of particles from the

more mobile region to the passive region. The system arrives at a stationary state when

the density difference has compensated the imposed mobility difference. The stationary

state of this system obeys the Smoluchowski equation [76],

∆ [D(x, y)P (x, y, θ)] +Dr
∂2P (x, y, θ)

∂θ2
− ê∇ [v(x, y)P (x, y, θ)] = 0, (5.5)

where ∆ and ∇ are the Laplace and gradient operators, respectively. If one imposes

a diffusivity difference with no activity, v(x, y) = 0, then the equation decouples in

position and orientation angle and one obtains the condition P (x, y)D(x, y) = c where

c is an integration constant. For a step-like diffusion field D(x, y), one therefore obtains

a step-like density profile, and the ratio of the densities grows linearly with the ratio

of the diffusion constants. For the active patch system, D(x, y) = D0, and v(x, y) is a

step function that is v in the left half of the simulation cell and 0 in the right half. The

Smoluchowski equation for an ideal gas of active particles was solved approximately by

Löwen et al. [77] and predicts that the ratio of the densities in the active and passive

zones scale with the square root of the ratio of the long time diffusion constants DA/D0.

In Figure 5.2, we plotted the ratio of the densities, ρ0/ρH/A, in the blue and red regions

as a function of the ratio of the respective diffusion constants, DH/A/D0. The brown

triangles represent the data obtained from simulations of a diffusivity difference, the
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Figure 5.2 Density difference of an ideal gas of particles for a halfplane geometry as
a function of an imposed mobility difference that is either due to a larger diffusion
constant, DH/D0, (triangles) or activity, DA/D0 (pentagons).

orange pentagons were obtained from a system with an activity difference, and the lines

are the theoretical predictions of the Smoluchowski equation that correspond well with

the simulation data.

Having established the behavior of the ideal gas, we now consider the same boundary for

particles with interparticle interactions. Henceforth, in order to account for the excluded

volume due to the interparticle interactions, the density differences will be measured in

terms of packing fractions η = ρπσ2
HS/4. In Figure 5.3, we have plotted the packing

fraction in each zone as a function of the mobility difference for the half plane geometry.

For constant particle number, ηredAred + ηblueAblue = ηgAg, where Ared, Ablue, and Ag

are the areas of the red, blue and entire system, respectively. In the inset, the ratio of the

packing fractions is drawn on a double logarithmic plot and the black lines correspond

to the ideal gas solution. Evidently, the interparticle interactions reduce the efficacy

with which a mobility difference induces a density difference. In the supplemental video

V1, the dynamics of a system with a diffusivity difference is compared to the dynamics

of a system with an activity difference. The values of DH and DA were chosen such

that the density difference for the two systems is the same. Both in the video and in the

bottom left panel of Figure 5.1, one can see that the active particles form characteristic

dynamical clusters for high levels of activity.

In the case of the half plane, ηg was such that in the limit of very large diffusion

differences the density in the blue zone becomes 2ηg, which is below the crystallization

of hard disks. Next we consider a passive circle in an active bath (middle column of

Figure 5.1). The was chosen to be small enough, so that it was possible to obtain such
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Figure 5.3 Density differences of the half-plane geometry as a function of a
temperature difference DH/D0 (top) and activity difference DA/D0 (bottom). The
ratio of the densities is plotted in the insets on a double logarithmic plot and the
black lines represent the ideal gas solutions.

large packing fractions in the passive zone that crystallization occurred. One might

expect that as the density in the passive zone increases due to rising activity differences,

that the mobility of the particles in the passive zone decreases until a freezing transition

takes place, after which the particles oscillate about their lattice sites. The hypothesis

is confirmed in Figure 5.4, where we plotted the effective diffusion constants of the

particles in the active (red squares) and passive (blue circles) particles as a function of the

local packing fraction. The long time diffusion constants were obtained by dividing our

trajectories into short segments in which no particles cross from one zone to another and

then computing the mean square displacements of the particles in each zone separately.
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Figure 5.4 Effective diffusion constant of the particles in the active and inactive
zones as a function of the packing fraction. The vertical gray lines are the freezing
and melting packing fractions for hard disks and the horizontal gray line is the value
of the effective diffusion constant at the freezing transition. The data points in gray
are the effective diffusion constants of the active particles after crystallization has
taken place in the passive zone.

By rescaling the long time diffusion constants of the particles by the diffusion constant

in absence of collisions, DL/Dη=0, we obtained the effective diffusion constant plotted

on the y-axis in Figure 5.4. For a dilute system, this ratio is unity by construction. Two

independent criteria were used to determine whether crystallization took place and are

indicated by the horizontal and vertical lines in the plot. The vertical gray lines represent

the packing fraction at which the freezing (left vertical line, η = 0.674) and the melting

transition takes place (right vertical line η = 0.71) based on the simulation work of

Trokhymchuk et al. [94] and the density region between these two points correspond

to a fluid/solid coexistence regime. The second criterion used to identify the freezing

transition is due to Löwen et al. [93], who found that the effective diffusion constant

of hard disks has a value of DL/Dη=0 = 0.072 (horizontal gray line) at the freezing

transition. The data and the two criteria are consistent with a freezing transition. For

the particles in the active zone, the measurement of the effective diffusion constant is

strongly affected by the presence of the passive zone. For small activity differences, the

effective diffusion constant in the red zone increases because the density in that zone

decreases. However, for large activity differences, after crystallization has taken place,

the active particles travel so quickly that a collision with the boundary of the passive

zone is very likely. After such a collision has taken place, the active particles continue to

swim in the same direction and persists at the boundary of the crystalline domain. The

active particles therefore aggregate at the boundary of the crystalline zone when the
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swimming speed is large. This has the effect of reducing the mean square displacement

of the particles and therefore one observes a reduction in the effective diffusion constant

(gray squares in Figure 5.4) of the particles in the active zone. In the supplemental video

V2 and in the snapshot of the configuration in Figure 5.1, one can observe the aggregation

of active particles at the boundary of the crystalline domain that leads to this reduction

in the effective diffusion constant. To illustrate the aggregation of the active particles

at the boundary of the passive zone we plotted the density of the particles as a function

of the distance from the center of the circle both for the diffusivity (top) and activity

(bottom) induced crystallization in Figure 5.5. For small mobility differences the density

in each region is essentially homogenous. For intermediate mobility differences, there is

a depletion zone of passive particles (blue data points) that has a width of one particle

diameter σHS that is due to the interactions between particles close to the boundary

(we did not observe similar depletion zones in simulations of an ideal gas). For mobility

differences crystallization takes place in both cases and the regularly spaced peaks in

the density profile of the passive zone reflects the periodic are one particle diameter in

width and are a signature of the crystalline domain. The biggest difference between the

diffusive and the active case is seen in the density profile outside of the passive circle,

after crystallization has taken place. The shoulder in the density profile in the bottom

of Figure 5.5 for DA = 1876D0 is two particle diameters wide and is a clear indication of

the aggregation of active particles at the boundary. The active particles that aggregate

at the boundary of the crystalline domain shear and rotate it stochastically, reminiscent

of the dynamical clusters formed by bacteria [95]. Finally, since the circular domain

is incommensurate with a hexagonal crystal, one regularly observes the appearance of

defect and dislocations that travel through the domain and they appear more frequently

in the density range of the fluid-solid coexistence. This type of activity difference induced

crystallization can easily be achieved experimentally, providing an easy opportunity

to study defect and dislocation migration in arbitrarily shaped, hexagonally ordered,

domains. Similar simulations and results have been recently published by Magiera et al.

[96].

The final active patch that we will consider consists of six semicircular passive stripes

embedded in an active fluid, as shown in the third column of Figure 5.1. The significant

difference between this type of patch and the previous two is that each semicircle has a

convex and a concave side, reminiscent of the passive zones considered by Cates et al.

[97]. It was our expectation that the due to this asymmetry, there would be a net flow

of particles and indeed the measurement of the mean velocity of the center of mass in

the x direction (i.e. from left to right in Figure 5.1), vcm, show that in the presence of

asymmetric active patches, the system establishes a net flow. In Figure 5.6, we plotted

vcm for a gas of active particles both in the absence and in the presence of interparticle

interactions. The plot shows that in both cases, there is a flow and the error bars
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Figure 5.5 Local particle density, ρ(r), as a function of the distance from the center
of the circular passive zone, r, for low, intermediate, and high mobility differences.
The x axis has been rescaled by the radius of the passive zone rc = 24 r0 and the data
points in blue correspond to the density inside the passive circle and the red data
points represent the density outside of the passive zone. The effective hardsphere
diameter σHS has been drawn as a guide to the eye.

represent the variance of the observed velocity for 6 independent simulation runs. In

the inset of Figure 5.6, we plotted the progression of the center of mass in the x and

the y direction as a function of time for a large activity difference and with interparticle

interactions. One can see in the inset, that the flow in the x is significantly larger than

the typical fluctuation in the y direction and the irregularity in the displacement time

graph indicates that the flow is stochastic. The comparison between the ideal active

gas and the active hard spheres show that there are two mechanisms at play. In the

ideal gas case, the particles enter and exit the passive zone independently from each
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Figure 5.6 Mean velocity of the center of mass of the system as a function of the
activity difference. Inset: mean displacement of the center of mass of the hard sphere
system in the x- and y-direction for DA = 1876D0, as a function of time.

other and therefore the flow is the result of the interaction of the active particles and

the geometry of the passive zone. When the interparticle interactions are switched on,

the mean velocities are initially the same because the density in the passive zone is

comparatively small, so exclusion effects are negligible. As the activity increases, so too

does the crowding within the passive zone until, eventually, particles trying to enter

the passive zone are kept at the boundary. Therefore, in addition to the geometrically

induced flow of the ideal gas case, we observe active particles that are sliding along the

convex half of the boundary with greater ease than along the concave half, as can be

seen in the supplemental video V3, where a comparison is made between active particles

with and without interparticle interactions using the same levels of activity. In the

limit of very large activities, the particles in the passive zone crystallize and the ensuing

domain acts like a solid boundary, similar to the passive tracers in an active bath that

were studied by Caccutto et al. [98]. In this final case, the analogy between the system

with an activity difference and a temperature difference breaks down completely, since

simulations of the latter did not exhibit any flow.

Although a quantitative theory predicting the response of an activity difference is still

pending, we have found that particles naturally tend to aggregate in regions of low

activity. We examined the behavior of a system of strongly repulsive spheres with an

activity difference, and found that they act qualitatively similar to a system with a

nonuniform temperature profile, provided that the mobility differences are symmetric.

Furthermore, it is possible to induce crystallization if the global density and activity

difference are appropriately chosen and the shape of the crystalline domains is entirely
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determined by the geometry of the activity field. Mismatches in the curvature of the

passive zones, tend to induce a flow in the system, unlike the purely diffusive case.

It is worth noting that this work considers one of the most primitive realizations of active

matter. Although one might extend the model to include more complex potentials or

include hydrodynamics, the most dramatic change is likely to occur if the shape of the

active particles is altered. Active rods, for example, tend to form nematic and smectic

phases, but it is unclear how a smectically ordered domain is affected by a bath of active

rods swimming around it, especially if the shape of the domain is circular or elliptical. It

is likely that a system of rods with an activity difference is a new class of liquid crystal.

Finally, it is also expected that inserting particles of arbitrary composition and shape

in this system will result in them being pushed into regions of low activity.
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the SFB ViCoM (F41). The authors would like to thank Luca Tubiana and Emanuele

Locatelli for many useful discussions and suggestions.



Appendix A

Derivation of the effective

potential acting on stiff

monolayers driven over

commensurate substrates

A.1 Summary

In the following, we shall present a detailed account of our analytical calculation of the

total mean force exerted on the center of mass of the colloidal monolayer in the harmonic

approximation. For the convenience of those readers that are not anxious to delve into

all the details of these derivations, we provide the following quick summary.

For large stiffness of the colloidal layer, i.e., large repulsive Yukawa interaction strength,

we regard the build-up phase of a hopping wave as given by a field of small displacement

vectors ul of the colloidal particles from their ideal lattice sites Rl on top of a collective

rigid translation R of this lattice in the direction x of the external driving force. We argue

that during this build-up phase, the monolayer is in quasistatic equilibrium, such that

statistical mechanics can be employed to compute the thermally averaged mean force

acting on its center of mass. Furthermore, as we assume that the displacements ul will

be small in relation to the ideal lattice constant of the monolayer, it is justified to employ

a harmonic approximation for this task. For periodic boundary conditions, the canonical

distribution of the resulting harmonic Hamiltonian factorizes into independent “phonon”

contributions, whose energy contributions and covariances are completely determined by

the underlying dynamical matrix. It is then straightforward to calculate the averaged

covariances σxx, σxy and σyy of the displacement components. To harmonic accuracy, it

turns out that these covariances also fully determine the effective total force acting on

65
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Figure A.1 Schematic view of the potential landscape (A.12). The direction of the
external driving force Fd is indicated by an arrow.

the center of mass of the monolayer. The final section provides some useful formulas for

a practical numerical implementation.

A.2 Equation of motion of the colloidal monolayer

For overdamped Langevin dynamics, the equations of motion of an N -particle system

can be written as

γ
drp
dt

=Fp(
#»r ) (A.1)

for p = 0, 1, . . . , N − 1, where the total force

Fp(
#»r )=

∑
p′ 6=p

Fyuk(rp′ − rp)+Fsub(rp)+Fd+Fp
rand (A.2)

acting on particle p is the sum of the Yukawa forces exerted by all other particles, the

substrate force, the external homogeneous force and the Langevin random force, and
#»r is the formal 2N -dimensional vector built from all position vectors r0, . . . rN−1. The

substrate force, Fsub(rp), acting on particle i is the negative gradient of the externally

applied potential, Usub(rp) = −(U0/9){3 + 2[cos(k1rp) + cos(k2rp) + cos(k3rp)]}, where

the k-vectors are chosen from the set ki/‖k‖ ∈ {(
√

3/2, 1/2), (−
√

3/2, 1/2), (0, 1)} with

norm ‖k‖ = 4π/a
√

3. This choice of k-vectors produces a hexagonal arrangement of

potential wells with a lattice constant a and lattice vectors g ∈ {(a, 0), (a/2,
√

3a/2)}.
For a schematic view of the system see Fig. A.1.

If we perform an average over all N particles,

γ

N

N−1∑
p=0

drp
dt

=
1

N

N−1∑
p=0

∑
p′ 6=p

Fyuk(rp′ − rp)

+
1

N

N−1∑
p=0

[
Fsub(rp) + Fd + Fp

rand

]
(A.3)
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the Yukawa forces cancel in a pairwise manner due to Newton’s third law, and we are

left with a single equation of motion

γ
dR

dt
=

1

N

N−1∑
p=0

Fsub(rp) + Fd +
1

N

N−1∑
p=0

Fp
rand (A.4)

for the center of mass

R =
1

N

N−1∑
p=0

rp (A.5)

of the overdamped monolayer, which resembles that of a single overdamped Brownian

diffuser in an external potential. The final term in Eqn. (A.4) is the sum of all of the

random forces acting on the system. It is Gaussian distributed and has a variance of

2kBT/
√
N .

Although solving the coupled equations of motion for N interacting particles analytically

without any approximation is an impossible task, our claim is that there are exist a series

of approximations that simplify Equation A.4 sufficiently to obtain accurate theoretical

predictions. The motion of the center of mass of the monolayer is governed by the

constant driving force, the average substrate force, and the total random Langevin force

acting on the monolayer. Although the last two forces are trivial, the first, is not. The

difficulty lies in the fact that the substrate force acting on the center of mass when

it is located at R, F̄(R) = N−1
∑N−1

p=0 Fsub(rp,R) depends on the positions of every

particle in the system, which in turn depend upon their mutual interactions as well

as the external forces acting on them. We therefore propose a statistical treatment of

the problem. If one imagines a trajectory consisting of an arbitrarily large number of

buildup phases, then the mean velocity of the monolayer is,

γ

〈
dR

dt

〉
=
〈
F̄
〉
R

+ Fd, (A.6)

where the average, 〈...〉, is taken over multiple build up phases. So far, no tangible

simplification to the system has been made, other than that the motion of the center

of mass of the monolayer during the build up phase can be thought of as the motion

of a single particle exposed to an effective substrate force Feff(R) =
〈
F̄
〉
R

. If the

distribution of F̄ is narrow, then it can be replaced by its mean value Feff(R) in the

equation of motion for the center of mass,

γ
dR

dt
= Feff(R) + Fd + F̄random, (A.7)
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we justify this simplification a posteriori in the supplement S2.

A.3 Quasistatic equilibrium

In order to learn something about the functional form of Feff(R), we make two assump-

tions. First, we assume that configurations from different buildup phases with the same

R are not only statistically independent, but are drawn from the equilibrium distribution

of the system. We justify this assumption from the fact that the monolayer travels along

the substrate walls very slowly. The second assumption we make is that the interparticle

potential is so large that the total potential energy of the system can be approximated

by a second order Taylor expansion.

The first assumption is that the monolayer, during the buildup phase, moves so slowly

that for a given value of R, the probability of observing a microstate obeys a Boltzmann

distribution,

dρ( #»r ,R) = dNr δ

(
N−1

∑
i

ri −R

)
e−βUtot(

#»r ), (A.8)

where β = 1/kBT . In order to obtain analytical results, the needs to be simplified

further. The second assumption, which is the topic of the next section, will serve this

purpose.

A.4 The harmonic crystal

In the absence of any external potential, colloidal particles that interact with one another

via a screened repulsive Yukawa potential Uyuk tend to form a triangular lattice. In the

present work, the particle density is chosen precisely in such a way that this lattice

is commensurate with the hexagonal structure of the underlying substrate. The total

potential energy of the resulting system is

Utot =
1

2

N−1∑
p 6=p′

Uyuk( |rp − rp′ | ) +

N−1∑
p=0

Usub(rp)

−Fd
N−1∑
p=0

rxp . (A.9)

In order to calculate the Boltzmann average F eff(R) = Fx
eff(R) defined by this potential

analytically further approximations must be made. Among the most successful and

widely used in solid state physics is the harmonic approximation, which rests on the

idea that particles residing in a crystal lattice will mostly perform only small amplitude

vibrations around their equilibrium positions, such that a second order Taylor expansion
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of the potential with respect to the deviations from these equilibrium positions will

already capture most of the relevant physics. By imposing periodic boundary conditions

(PBCs) and exploiting the resulting translational invariance of the system, the dynamical

problem can then be reformulated in terms of certain collective phonon variables defined

in Fourier space, which are completely decoupled from each other. At least to a good

approximation, the whole procedure thus maps the original problem to a non-interacting

one, an enormous simplification for dynamical calculations as well as for doing statistical

mechanics.

For our present purposes, the instantaneous position rp of an individual colloid will be

disassembled as follows. Let R = (R, 0) denote an arbitrary vector, which we will use

to describe the global translation of the triangular colloid layer parallel to the direction

of the driving force. Rp denotes the position of the lattice site that the pth particle is

assigned to, and up denotes a small residual displacement of the particle with respect

to the underlying lattice. Altogether, we then write

rp = R + Rp + up. (A.10)

In terms of this parametrization

Utot =
1

2

N−1∑
p′ 6=p

Uyuk(|Rp + up −Rp′ − up′ |) +

N−1∑
p=0

Usub(R + Rp + up)− Fd
N−1∑
p=0

uxp

−Fd

NR+

N−1∑
p=0

Rxp

 . (A.11)

Since the substrate potential is periodic in Rp and the Yukawa potential depends only

on the relative distance between two particles, this simplifies to

Utot =
1

2

N−1∑
p 6=p′

Uyuk( |Rpp′ + up − up′ | ) +
N−1∑
p=0

Usub(R + up)

−Fd
N−1∑
p=0

uxp − Fd

NR+
N−1∑
p=0

Rxp

 , (A.12)

where Rpp′ = Rp′ −Rp is the difference vector between lattice site p and p′.

In the high coupling limit, when the inter-particle interaction strength is large, the

deviations up of the particle positions from the ideal lattice sites Rp are typically small,
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so a second order Taylor expansion

Utot =
1

2

N−1∑
l,l′=0

∑
µ,ν

uµl φ
ll′
µν u

ν
l′ +

π

a
Fmax

N−1∑
l=0

{
cos

2πR

a

(
(uxl )2 +

1

3
(uyl )

2

)
+

2

3
(uyl )

2

}

+

(
Fmax sin

2πR

a
− Fd

)N−1∑
l=0

uxl + C(R, {Rp}), (A.13)

with respect to up may yield a good approximation to the total energy of the system.

Unlike the particle induces p and p′, the indicies l and l′ denote lattice site induces that

can be equal to each other in the double sum above, as can be seen in the definition of

φll
′
µν ,

φll
′
µν =

∂2

∂uµl ∂u
ν
l′

N−1∑
p 6=p′

Uyuk( |up − up′ +Rpp′ | )|up=up′=0.

(A.14)

C(R, {Rp}) is the value of the total potential when all ul are zero, and Fmax = 24πkBT/a

is the maximum force the substrate is able to exert. Using the definition of the substrate

potential, the 2× 2 matrix of the second derivatives of the external substrate

ψ(R) =
2πFmax

3a

(
3 cos 2πR

a 0

0 cos 2πR
a + 2

)
(A.15)

turns out to be diagonal when evaluated at R = (R, 0). Collecting linear and quadratic

terms, we rewrite (A.13) in the compact form

Utot =
1

2

N−1∑
l,l′=0

∑
µ,ν

uµl D̄
ll′
µν(R)uνl′ (A.16)

+

(
Fmax sin

2πR

a
− Fd

)N−1∑
l=0

uxl + C(R, {Rl})

where we have set

D̄ll
′
µν(R) ≡ φll′µν + δll

′
ψµν(R). (A.17)

Translational invariance allows to further reduce

1

2

N−1∑
l,l′=0

∑
µ,ν

uµl D̄
ll′
µν(R)uνl′ =

N

2

N−1∑
l=0

∑
µ,ν

uµl D̄
l0
µν(R)uν0

(A.18)
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Within equilibrium statistical mechanics, our N -particle system is described by the

unnormalized probability measure

dρ( #»u) = dNu e−βUtot(
#»u), (A.19)

where β = 1/kBT , #»u is the formal 2N -dimensional vector built from all displacement

vectors u0, . . .uN−1, and dNu =
∏N−1
l=0 d2ul. Imposing the constraint that the sum of

all the uxl be zero amounts to considering the restricted probability measure

dρ( #»u |R) = dNu δ

(∑
l

uxl

)
e−βUtot(

#»u)

= dNu δ

(∑
l

uxl

)
exp

{
−β

2
#»uT D̃ #»u

}
. (A.20)

Ensemble averages of observables A({ul}) are given by

〈A( #»u)〉
∣∣
R

=
1

Z(R)

∫
dNuA( #»u)dρ( #»u |R), (A.21)

whose normalization Z(R) =
∫
dNu dρ( #»u |R) may be called a restricted canonical parti-

tion function.

A.5 Discrete Fourier Transform

In contrast to (A.19), the measure (A.20) is not a simple Gaussian one, as the variables

ul are not independent due to the delta constraint imposed. However, we now show that

by virtue of a discrete Fourier transform, (A.20) can actually be factorized into simple

components, which clears the way for analytical calculations.

As a prerequisite, we introduce the first Brilloun zone B of the underlying hexago-

nal lattice with a total number of N = NxNy particles. For simplicity, we choose

Nx = Ny =
√
N , and furthermore, without loss of generality, we assume Nx and Ny

to be even numbers. By definition, B consists of all cosets represented by wave vectors

that are commensurate with the imposed boundary conditions, two such representatives

considered as equivalent if they differ by an arbitrary reciprocal vector. For periodic

boundary conditions in both the x and y direction, the allowed representatives are

qx =
2π

a

nx
Nx

, qy =
4π√
3a

ny
Ny

, (A.22)

where nx and ny are integers. A convenient choice of a set of representative wave vectors

for B is provided by the Voronoi cell around a point in reciprocal space (see Fig. A.2).



Appendix A. Phonon approximtion of stiff monolayers 72

(
0, −4π√

3a

)
(
−2π

a
, −2π√

3a

)

Figure A.2 q-vectors (points) for a 24× 24 hexagonal monolayer. The gray dots are
lattice sites belonging to the reciprocal lattice of the original lattice. The four green
circles mark the special points defined in Eqn. (A.37) and belong to B0. The blue
crosses belong to B+ and the red boxes belong to the set B−. The empty circles at
two of the vertices of the small hexagon are points that must be omitted from to
avoid double counting, since they differ from already included vertex points by a
reciprocal lattice vector.

Now we can introduce the discrete Fourier transform

uµl =
1√
N

∑
q∈B

ũµ(q)eiqRl . (A.23)

We have

N−1∑
l=0

uxl =
1√
N

∑
q∈B

ũx(q)
∑
l

eiqRl

︸ ︷︷ ︸
Nδ(q,0)

=
√
Nũx(0). (A.24)

Furthermore

1

2

N−1∑
l,l′=0

∑
µ,ν

uµl D̄
ll′
µν(R)uνl′ (A.25)

=
1

2N

N−1∑
l,l′=0

∑
q,q′

∑
µ,ν

ũµ(q)eiqRlD̄ll
′
µν(R)ũν(q′)eiq

′R′l

=
1

2

∑
q,q′

∑
µ,ν

ũµ(q)

 1

N

N−1∑
l,l′=0

eiqRlD̄ll
′
µν(R)eiq

′R′l


︸ ︷︷ ︸

≡D̄µν(q,q′,R)

ũν(q′).
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Using translational invariance, we write

D̄µν(q,q′, R) =
1

N

N−1∑
l,l′=0

eiqRlD̄l−l
′,0

µν (R)eiq
′R′l (A.26)

=
1

N

N−1∑
l,l′=0

eiq(Rl+R′l)D̄l,0µν(R)eiq
′R′l

=
1

N

N−1∑
l=0

eiqRlD̄l,0µν(R)
N−1∑
l′=0

ei(q+q′)R′l

︸ ︷︷ ︸
=Nδq+q′,0

This suggests we define

D̄µν(q, R) :=
N−1∑
l=0

D̄l,0µν(R)eiqRl . (A.27)

Additional symmetry of D̄ll′µν(R) under exchange of l↔ l′ also yields D̄l,0µν(R) = D̄0,l
µν(R) =

D̄−l,0µν (R), and thus

[
D̄µν(q, R)

]∗
=

N−1∑
l=0

D̄−l,0µν (R)e−iqRl = D̄µν(±q, R),

(A.28)

i.e., D̄µν(q, R) ∈ R, a fact that could also be anticipated from the manifest reality of

1

2

N−1∑
l=0,l′

∑
µ,ν

uµl D̄
ll′
µν(R)uνl′ (A.29)

=
1

2

∑
q,q′∈B

∑
µ,ν

ũµ(q)D̄µν(q′, R)δq+q′,0ũ
ν(q′)

=
1

2

∑
q∈B

∑
µ,ν

ũµ(−q)D̄µν(q, R)ũν(q). (A.30)

From the definition of the discrete Fourier transform (A.23) it follows immediately that

since the components uµl are real-valued, their Fourier amplitudes must obey

ũµ(−q) = [ũµ(q)]∗. (A.31)

Thus, if we introduce the complex two-dimensional vector

ũ(q) =

(
ũx(q)

ũy(q)

)
(A.32)
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and its adjoint

ũ+(q) =
(
ũx(−q) ũy(−q)

)
, (A.33)

we obtain the compact formula

1

2

N∑
l=1,l′

∑
µ,ν

uµl D̄
ll′
µν(R)uνl′ =

1

2

∑
q∈B

ũ+(q) · D̄(q, R) · ũ(q).

(A.34)

The delta function constraint in the measure (A.20) is rewritten as

δ (ũx(0)) = δ
(√

Nũx(0)
)

=
δ (ũx(0))√

N
. (A.35)

Finally, we need to express the volume element dNu appearing in the measure (A.20) in

terms of the Fourier amplitudes (A.23). Taking the real part of (A.23), we obtain

uµl =
1√
N

∑
q∈B

[<ũµ(q) + i=ũµ(q)][cos(qRl) + i sin(qRl)]

=
∑
q

[
cos(qRl)√

N
<ũµ(q)− sin(qRl)√

N
=ũµ(q)

]
, (A.36)

which is reminiscent of an orthogonal transformation, except that we seem to have

doubled the number of variables. To avoid such a double-counting, note that the reality

condition ũµ(−q) = [ũµ(q)]∗ implies that <ũµ(−q) = <ũµ(q) and =ũµ(−q) = −<ũµ(q),

are linearly dependent. The latter condition requires care. By definition, two vectors of

the first Brilloun zone are regarded as equal if they differ by a reciprocal lattice vector

G. But this implies the possibility that q and −q can well be representatives of the

same coset of B. A trivial case is the zero vector Q0 = 0, but in our hexagonal lattice

this applies to three more so-called “special high-symmetry vectors”. We shall denote

the subset of B that holds these four vectors

Q0 = (0, 0) , Q1 =

(
0,

2π√
3a

)
,

Q2 =

(
π

a
,
π√
3a

)
, Q3 =

(
π

a
,− π√

3a

)
, (A.37)

as B0. Of course, for Q ∈ B0 the Fourier amplitudes ũ(Q) must be real as can be

directly understood from observing that Q ·Rl is an integer multiple of π. The residual

N−4 elements of the Brilloun zone are given by distinct pairs of representatives (q,−q)

and can now be organized into two subsets B± of positive and negative “parity” by any
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convenient definition. This leads to a partition

B = B0 ∪ B+ ∪ B− (A.38)

of the total Brilloun zone. In Fig. A.2, we have illustrated such a partition of B into

subsets with zero (green circled points), positive (blue points) and negative (red points)

parity. In this notation, (A.36) may be rewritten in a more concise way as

uµl =
∑

π(Q)∈B0

(±1)√
N
ũµ(Q) (A.39)

+
∑
q∈B+

[
2 cos(qRl)√

N
<ũµ(q)− 2 sin(qRl)√

N
=ũµ(q)

]
.

As this construction reveals, a new set of 2N = 2[4 + 2 × (N − 4)/2] independent real

variables is given by

ũµ(Q), Q ∈ B0, µ = x, y (A.40)

<ũµ(q), =ũµ(q), q ∈ B+, µ = x, y. (A.41)

In terms of these variables, we can rewrite

1

2

∑
q∈B

ũ+(q) · D̄(q, R) · ũ(q) =
1

2

∑
Q∈B0

ũµ(Q)D̄µν(Q, R)ũν(Q) +
∑
q∈B+

[ũµ(q)]∗D̄µν(q, R)uν(q)

=
1

2

∑
Q∈B0

ũµ(Q)D̄µν(Q, R)ũν(Q)

+
∑
q∈B+

[<ũµ(q)− i[=ũµ(q)]∗]D̄µν(q, R)[<uν(q) + i=uν(q)].

(A.42)

In the last line the imaginary contributions must cancel identically for the sum to be

real, and we obtain

1

2

∑
q∈B

ũ+(q) · D̄(q, R) · ũ(q)

=
1

2

∑
Q∈B0

D̄µν(Q, R)ũµ(Q)ũν(Q) +
∑
q∈B+

D̄µν(q, R)[<ũµ(q)<uν(q) + =ũµ(q)=uν(q)]

=
1

2

∑
Q∈B0

ũT (Q)D̄(Q, R)ũ(Q) +
∑
q∈B+

<ũT (q)D̄(q, R)<ũ(q) +
∑
q∈B+

=ũT (q)D̄(q, R)=ũ(q).

(A.43)
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As to the volume element in the measure (A.20), we have

dNu = J ·
∏

Q∈B0

d2ũ(Q) ·
∏

q∈B+

d2<ũ(Q)d2=ũ(Q) (A.44)

where J is the determinant of the Jacobi matrix of the discrete Fourier transformation,

and an additional factor arises from the delta function constraint, since

δ (ũx(0)) = δ
(√

Nũx(0)
)

=
δ (ũx(0))√

N
. (A.45)

Writing down the unnormalized probability measure

dρ̃({ũ(q)}|R) =
∏

Q∈B0

d2ũ(Q) ·
∏

q∈B+

d2<ũ(q)d2=ũ(q) · δ (ũx(0)) e−
β
2

∑
q∈B ũ+(q)·D̄(q,R)·ũ(q)

(A.46)

which obviously factorizes into

dρ̃({ũ(q)}|R) =
∏

Q∈B0

dρ̃(0)(ũ(Q)|R) ·
∏

q∈B+

dρ̃(R)(ũ(q)|R) · dρ̃(I)(ũ(q)|R) (A.47)

as promised, where

dρ̃(ũ(0)|R) = d2ũ(0)δ (ũx(0)) e−
β
2
ũT (0)D̄(0,R)ũ(0), (A.48)

dρ̃(0)(ũ(Q)|R) = d2ũ(Q)e−
β
2
ũT (Q)D̄(Q,R)ũ(Q), Q ∈ B0 (A.49)

dρ̃(R)(ũ(q)|R) = d2<ũ(q)e−β<ũ
T (q)D̄(q,R)<ũ(q), q ∈ B+ (A.50)

dρ̃(I)(ũ(q)|R) = d2=ũ(q)e−β=ũ
T (q)D̄(q,R)=ũ(q), q ∈ B+. (A.51)

A.6 Explicit Formulae

Having fully characterized the coordinate transformation that transforms the dynamical

matrix of the harmonic crystal into Fourier space, we now present the explicit form of

D̄(q). To this end, we make use of the abbreviations,

Cx(q) = cos
(a

2
qx

)
, Sx(q) = sin

(a
2
qx

)
, (A.52)

Cy(q) = cos

(
a
√

3

2
qy

)
, Sy(q) = sin

(
a
√

3

2
qy

)
, (A.53)

f =
2πFmax

3a
, g =

1

r
U ′yuk(r)|r=a, (A.54)

h =

[
U ′′yuk(r)− 1

r
U ′yuk(r)

]
r=a

. (A.55)
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The quantities are the result of performing a Fourier transformation on a hexagonal

lattice and the quantities in Eqn. (A.55) are the coupling parameters of the particles in

the monolayer. These parameters depend upon the first and second derivatives of the

substrate potential and the inter-particle interactions. For the Yukawa potential,

g = − Γ̃e−κa

a3
[1 + κa] = − Γ

a2
(1 + κa), (A.56)

h =
Γ̃e−κa

a3
[3 + 3κa+ (κa)2] =

Γ

a2
[3 + 3κa+ (κa)2].

(A.57)

As in previous work, the coupling strength between two colloids, Γ, is the potential

energy between two particles that are separated by one lattice constant. Thus Γ :=

Γ̃ e−κa

a . We note that for all allowed values of Γ, a, and κ, the absolute value of g is

strictly larger than that of h. Furthermore, since these expressions are not quadratic

in a, we do not express them in terms of the density of the system, ρ−1 = N−1
√

3
2 a

2,

although that might be a more natural definition.

In terms of this parametrization, we find that

D̄(q) =

(
D0(q, R) +D11(q, R) D12(q, R)

D12(q, R) D0(q, R)

)
(A.58)

where

D0(q, R) =4g
[
2− C2

x(q)− Cx(q)Cy(q)
]

+ 3h [1− Cx(q)Cy(q)] + f [2 + cos(2πR/a)]

(A.59)

D11(q, R) =2h
[
1 + Cx(q)Cy(q)− 2C2

x(q)
]
− 4f sin2(πR/a) (A.60)

D12(q, R) =
√

3hSx(q)Sy(q). (A.61)

The results we shall derive below will involve the elements of the inverse matrix

Ḡ(q, R) := [βD̄(q, R)]−1 =
1

β det D̄(q)

(
D0(q) −D12(q)

−D12(q) D0(q) +D11(q)

)
. (A.62)

A.6.1 Calculation of covariances

We now look at the expectation values

σµν(R) =

〈
1

N

∑
l

uµl u
ν
l

〉∣∣∣∣∣
R

. (A.63)
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Since

1

N

N−1∑
l=0

uµl u
ν
l =

1

N2

∑
q,q′

ũµ(q)ũν(q′)
∑
l

ei(q+q′)Rl

︸ ︷︷ ︸
Nδ(q+q′,0)

=
∑
q

ũµ(q)ũν(−q), (A.64)

this reduces to

σµν(R) =
1

N

∑
q

〈ũµ(q)ũν(−q)〉
∣∣
R

=
1

N

∑
Q∈B0

〈ũµ(Q)ũν(Q)〉
∣∣
R

+
1

N

∑
q∈B+

〈ũµ(q)ũν(−q)〉
∣∣
R

+
1

N

∑
q∈B−

〈ũµ(q)ũν(−q)〉
∣∣
R

=
1

N

∑
Q∈B0

〈ũµ(Q)ũν(Q)〉
∣∣
R

+
2

N

∑
q∈B+

< 〈ũµ(q)ũν(−q)〉
∣∣
R

=
1

N

∑
Q∈B0

〈ũµ(Q)ũν(Q)〉
∣∣
R

+
2

N

∑
q∈B+

〈<ũµ(q)<ũν(q) + =ũµ(q)=ũν(q)〉
∣∣
R
. (A.65)

To compute these expectation values, we use the well-known formula∫
dDxxixj e

− 1
2
xTAx∫

dDx e−
1
2
xTAx

= A−1
ij (A.66)

valid for Gaussian integrals, which yields

〈ũµ(Q)ũν(Q)〉
∣∣
R

= Ḡµν(Q, R), Q ∈ B0 (A.67)

〈<ũµ(q)<ũν(q)〉
∣∣
R

= 〈=ũµ(q)=ũν(q)〉
∣∣
R

=
Ḡµν(q, R)

2
, q ∈ B+ (A.68)

Due to the presence of the delta constraint, special care has to be taken for Q = 0.

Since the matrix D̄(q, R) is actually diagonal for q = 0 (cf. Eqn. (A.61) below), we have

〈ũµ(0)ũν(0)〉
∣∣
R

=

{
1/βD̄yy(0, R), µ = ν = y

0, else
=

{
Ḡyy(0, R), µ = ν = y

0, else
(A.69)

In summary, we have shown that

σyy(R) =
1

N

∑
Q∈B0

Ḡyy(Q, R) +
2

N

∑
q∈B+

Ḡyy(q, R)

2
+

2

N

∑
q∈B+

Ḡyy(q, R)

2

=
1

N

∑
Q∈B0

Ḡyy(Q, R) +
2

N

∑
q∈B+

Ḡyy(q, R)

=
1

N

∑
Q∈B0

Ḡyy(Q, R) +
1

N

∑
q∈B+

Ḡyy(q, R) +
∑
q∈B−

Ḡyy(q, R) (A.70)
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i.e.,

σyy(R) =
1

N

∑
q∈B

Ḡyy(q, R). (A.71)

In the same way we can show that

σxx(R) =
1

N

∑
q∈B\{0}

Ḡxx(q, R). (A.72)

and also

σxy(R) =
1

N

∑
q∈B\{0}

Ḡxy(q, R). (A.73)

However, a closer examination reveals that due to the special structure of the matrix

elements

Ḡxy(q, R) = −
√

3hSx(q)Sy(q)

β det D̄(q)
(A.74)

the sum above actually vanishes. To show this, we first observe that the contributions

of all q-vectors of the types (qx, 0), (0, qy) and (qx, 2π/a
√

3) are zero because of the

vanishing product of the sine functions Sx(q)Sy(q). The remaining contributions from

the wavevectors q ∈ B+ ∪ B− can be organized into pairs of (qx, qy), (qx,−qy), whose

contributions mutually cancel (note that the numerator of (A.74) assumes different signs

for the vectors in each couple, whereas the sign of the determinant in the denominator

remains the same). In retrospect, the fact that the cross correlation σxy(R) is found to

be zero within the harmonic approximation could have been anticipated from the fact

that the dynamical matrix is constructed from (i) the sum of a pairwise central potential

and (ii) a substrate potential with vanishing mixed second derivatives along the path

(R, 0).

In summary we have the covariances

σxx(R) =
1

N

∑
q∈B\{0}

Ḡxx(q, R) (A.75)

σyy(R) =
1

N

∑
q∈B

Ḡyy(q, R) (A.76)

σxy(R) = 0 (A.77)

which are the results announced in Eqn. (8) of the main paper.
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A.7 Mean force

By symmetry, the only nonzero component of the total force acting on the center of mass

of the monolayer (A.7) located at R = (R, 0) is along the x-direction. Before averaging,

this component of is

F eff(R) =
Fmax

N

N−1∑
l=0

sin[kx(uxl +R)] cos(kyu
y
l ). (A.78)

Here kx = 2π/a and ky = 2π/a
√

3. Using the trigonometric identity sin(x + y) =

sinx cos y + cosx sin y, we rewrite this as

F eff(R) =
Fmax

N
cos(kxR)

N−1∑
l=0

sin(kxu
x
l ) cos(kyu

y
l ) +

Fmax

N
sin(kxR)

N−1∑
l=0

cos(kxu
x
l ) cos(kyu

y
l )

=
Fmax

N
cos(kxR)

N−1∑
l=0

eikxu
x
l − e−ikxuxl

2i

eikyu
y
l + e−ikyu

y
l

2

+
Fmax

N
sin(kxR)

N−1∑
l=0

eikxu
x
l + e−ikxu

x
l

2

eikyu
y
l + e−ikyu

y
l

2

=
Fmax cos(kxR)

4i

1

N

N−1∑
l=0

[
ei(kxu

x
l +kyu

y
l ) + ei(kxu

x
l −kyu

y
l ) − ei(−kxuxl +kyu

y
l ) − e−i(kxuxl +kyu

y
l )
]

+
Fmax sin(kxR)

4

1

N

N−1∑
l=0

[
ei(kxu

x
l +kyu

y
l ) + ei(kxu

x
l −kyu

y
l ) + ei(−kxu

x
l +kyu

y
l ) + e−i(kxu

x
l +kyu

y
l )
]
.

If we define the four wave vectors

k(±±) :=

(
±kx
±ky

)
, (A.79)

we can restate this as

F eff(R) =
Fmax cos(kxR)

4i

1

N

N−1∑
l=0

[
eik(++)ul + eik(+−)ul − eik(−+)ul − eik(−−)ul

]
+
Fmax sin(kxR)

4

1

N

N−1∑
l=0

[
eik(++)ul + eik(+−)ul + eik(−+)ul + eik(−−)ul

]
.

(A.80)

To compute the F eff(R) of the mean net force, we work out the averages

〈eik(±±)ul〉|R =

∫
dNuδ (

∑
uxm) exp

{
−β

2
#»uT D̃ #»u + iuTl · k(±±)

}
∫
dNuδ (

∑
uxm) exp

{
−β

2
#»uT D̃ #»u

} . (A.81)
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At this point it would be straightforward to follow the prescription of the preceding para-

graph, i.e., we could rewrite the above integral in terms of the real variables <ũ(q),=ũ(q)

and utilize the well-known Gaussian formula∫
dDx e−

1
2
xTAx+bT ·x∫

dDx e−
1
2
xTAx

= e
1
2

∑
ij biA

−1
ij bj . (A.82)

An alternative evaluation proceeds by completion of squares in (A.81). First, slightly

symmetrize this expression, rewriting it as

〈eik(±±)ul〉|R =

∫
dNuδ (

∑
uxm) exp

{
−β

2
#»uT D̃ #»u + i

2uTl · k(±±) + i
2kT(±±) · ul

}
∫
dNuδ (

∑
uxm) exp

{
−β

2
#»uT D̃ #»u

} . (A.83)

With the help of (A.23) and (A.34) this is restated as

−β
2

#»uTβD̃ #»u +
i

2
uTl k(±±) +

i

2
k(±±)ul (A.84)

=
∑
q

[
ũ+(q) · βD̄(q, R)

2
· ũ(q) +

i

2
ũ+(q)

k(±±)e
−iqRl

√
N

+
i

2

k(±±)e
iqRl

√
N

ũ(q)

]

= −1

2

∑
q

[
ũ+(q) · βD̄(q, R) · ũ(q)− iũ+(q) · Ē(q; l)− iĒ+(q; l) · ũ(q)

]
,

where we have introduced the abbreviation

Ē(q; l) :=
k(±±)e

−iqRl

√
N

. (A.85)

For all nonzero q we now apply the identity

U+DU + U+V + V +U = (U+ + V +D−1)D(U + D−1V )− V +D−1V (A.86)

in the form

ũ+(q) · βD̄(q, R) · ũ(q)− iĒ+(q; l) · ũ(q)− iũ+(q) · Ē(q; l)

=
[
ũ+(q)− iĒ+(q; l)Ḡ(q, R)

]
· βD̄(q, R) ·

[
ũ(q)− iḠ(q, R)Ē(q; l)

]
+ Ē+(q; l) · Ḡ(q, R) · Ē(q; l)

=
[
ũ+(q)− iĒ+(q; l)Ḡ(q, R)

]
· βD̄(q, R) ·

[
ũ(q)− iḠ(q, R)Ē(q; l)

]
+

1

N
kT(±±) · Ḡ(q, R) · k(±±).

(A.87)

Note that the l-dependence has disappeared from the last contribution. On the other

hand, due to the delta function constraint, the q = 0 contribution to the above sum

ũ+(0) · βD̄(0, R) · ũ(0)− iũ+(0) · Ē(0; l)− iĒ+(0; l) · ũ(0) (A.88)
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actually reduces to

βD̄yy(0, R)(ũy(0))2 − 2iũy(0)
ky(±±)√
N

. (A.89)

Since 1/βD̄yy(0, R) = Ḡyy(0, R) (cf. Eqn. (A.69)), we complete the squares as

βD̄yy(0, R)(ũy(0))2 − 2iũy(0)
ky(±±)√
N

= βD̄yy(0, R)

(
ũy(0)− i

Ḡyy(0, R)ky(±±)√
N

)2

+
1

N
Ḡyy(0, R)

(
ky(±±)

)2
, (A.90)

which is also independent of l. As anticipated from (A.82), we end up with

〈eik(±±)ul〉|R = exp

−1

2
kT(±±) ·

1

N

∑
q 6=0

Ḡ(q, R) · k(±±)

 . (A.91)

Comparison with (A.71)-(A.72) reveals that this can be rewritten in the compact form

〈eik(±±)ul〉|R = exp

{
−kT(±±) ·

σ̄(R)

2
· k(±±)

}
, (A.92)

where

σ̄(R) =

(
σxx(R) σxy(R)

σxy(R) σyy(R)

)
(A.93)

is the 2× 2 matrix of covariances.

In applying these results to (A.80), the term ∝ cos(kxR) is identically zero as could

have been anticipated from symmetry arguments, since the contributions from the four

different vectors k(±±) cancel each other. In the second term ∝ sin(kxR), it is also clear

that the terms for k(−−) and k(−+) will give the same result as those for for k(−−) and

k(+−), respectively. Thus we are left with

〈Fnet〉|R = Fd +
Fmax sin(kxR)

2

(
e
−kT

(++)
· σ̄(R)

2
·k(++) + e

−kT
(+−)

· σ̄(R)
2
·k(+−)

)
= Fd +

Fmax sin(kxR)

2

(
e−

1
2
σxxk2

x−σxykxky− 1
2
σyyk2

y + e−
1
2
σxxk2

x+σxykxky− 1
2
σyyk2

y

)
,

(A.94)

i.e.,

F eff(R) = −Fmax sin(kxR) cosh (σxykxky) exp

{
−1

2

(
σxxk

2
x + σyyk

2
y

)}
. (A.95)
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Reverting to the former definitions kx = 2π/a and ky = 2π/a
√

3, we end up with

F eff(R) = −Fmax sin

(
2πa

R

)
cosh

(
4π2

√
3a2

σxy

)
exp

{
−2π2

a2

[
σxx +

σyy
3

]}
.(A.96)

Taking advantage of the fact that σxy is zero, we finally obtain,

F eff(R) = −Fmax sin

(
2πa

R

)
exp

{
−2π2

a2

[
σ2
x +

σ2
y

3

]}
(A.97)

as presented in Equation 7 of the main paper.

A.8 Data analysis

In this section, we present a detailed description of how data were obtained from sim-

ulations and compared to the theoretical results obtained in the previous part of the

appendix.
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Figure A.3 Total displacement (first panel), periodic center of mass (second panel),
variance of the relative displacements of particles, ui, in the x and y directions (third
and fourth panels), and the net substrate force acting on the monolayer (fifth panel),
all plotted as a function of time for part of a trajectory. The inter-particle interaction
strength is Γ/kBT = 1.147 and the driving force Fd/Fmax = 0.989. The data points
are plotted in blue if the monolayer is undergoing a buildup phase.
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As a representative example, we use a part of the trajectory of a monolayer with Γ/kBT =

1.147, driven by a force Fd/Fmax = 0.989. Standard trajectories used for the article

were twice as long as the fragment considered here. Similar to the main article, Figure

A.3 presents the total displacement, the periodic center of mass, the variances of the

particle positions, and the net substrate force acting on the monolayer. Data drawn in

blue belong to the build up phase, whereas data belonging to configurations in which

a hopping wave is traveling through it are colored in red. The periods of rapid motion

(hopping waves) are characterized either by the rapid change of total displacement (top)

or spikes in all of the remaining quantities. The buildup phase coincides with plateaus

in the total displacement and regions with relatively small changes in other quantities.

We used the arbitrarily cutoff, σ2
x/a

2 < 0.85×10−4 in order to differentiate between the

two phases.
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Figure A.4 Variance of the relative displacements of particles, ui, in the x direction,
σ2
x, as a function of the periodic position of the center of mass, R. The inter-particle

interaction strength is Γ/kBT = 1.147 and the driving force Fd/Fmax = 0.989.

As can be seen in Figure A.4, where σ2
x is plotted as a function of the periodic position

of the center of mass, values that correspond to the buildup phase are all bundled in

a small region of R. In Figure A.5, we zoomed in on this region and present σ2
x, σ2

y

and Fsub, all as a function of R. The theoretical predictions of the mean value of these

quantities has been plotted next to the data. Furthermore, our theory predicts that, in

the buildup phase, these distributions are independent of the applied driving force. In

Figure A.6, we compare the simulation results for a trajectory of a monolayer driven

by Fd/Fmax = 0.987, 0.989, and 1.002 with the theoretical prediction. Evidently, the

distributions of the substrate forces of these monolayers overlap strongly.

We have plotted, in Figure A.7, a histogram of the net substrate force Fsub(R) acting

on the monolayer with the intention not only to show that the theoretical prediction

is very close to its expectation value, but that the distribution is also very narrow. As
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Figure A.5 Variances of the relative displacements of particles, ui, in the x and y
directions and the net substrate force acting on the monolayer as a function of the
periodic position of the center of mass, R, restricted the buildup phase. The
inter-particle interaction strength is Γ/kBT = 1.147 and the driving force
Fd/Fmax = 0.989. The theoretical predictions are indicated by the solid black lines.
The threshold value of σ2

x used to differ between the phases is denoted by the dashed
gray line which is located at σ2

x/a
2 = 8.5× 10−4.

a result, one can, to a good approximation, use F eff(R) as the effective substrate force

acting on the monolayer.

So far, we have only considered driving forces Fmax > Fd > F eff
max, where F eff

max is the

maximum restoring force of F eff(R). In this parameter regime, the monolayer is able

to drift up to R = 0.25a, but also remain in quasi-static equilibrium as it does so. If

the driving force is below F eff
max, the monolayer gets pinned by the effective substrate

at the position R0 such that F eff(R0) + Fd = 0. The monolayer then oscillates about

R0 for a while until a small group of particles spontaneously form a critical “hopping

cluster” (red particles in the video) which then initiates a hopping wave. In Figure

A.8, we have plotted the position of the periodic center of mass for the monolayer with

Γ/kBT = 1.147, driven at rates below F eff
max/Fmax = 0.9867. Using our analytical formula

for F eff(R), we found the corresponding value of R0 numerically and plotted it as the

black dashed line in the graph. Each of the monolayers oscillates for a while about R0

before creating a hopping wave, as predicted.

For the results presented in the article, we considered a total of 6 different values of Γ

driven with 10 different Fd. For each pair Γ and Fd values, 100 independent trajectories



Appendix A. Phonon approximtion of stiff monolayers 86

-1.05

-1.00

-0.95

-0.90

-0.85

-0.80

0.18 0.20 0.22 0.24 0.26 0.28

F
su

b/
F
m

ax

R/a

Fd/Fmax = 0.987
Fd/Fmax = 0.989
Fd/Fmax = 1.002

Theory

Figure A.6 Net substrate force acting on the monolayer driven by
Fd/Fmax = 0.987, 0.989, and 1.002 as a function of the periodic position of the center
of mass, R. The inter-particle interaction strength is Γ/kBT = 1.147. The theoretical
prediction is indicated by the solid black line.
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Figure A.7 Distribution of the average substrate forces for multiple build up phases,
gathered from 100 trajectories and several values of the driving forces, as a function of
R. The yellow line indicates the theoretical prediction for F eff(R).

were generated and analyzed.

A.9 System size dependence

As described in the supplement S1, the effective force acting on the monolayer,

F eff(R) = −Fmax sin

(
2πR

a

)
×exp

{
−2π2

a2

[
σ2
x(R) +

1

3
σ2
y(R)

]}
, (A.98)
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Figure A.8 Periodic center of mass, R, as a function of time for a monolayer driven
by Fd/Fmax = 0.9847, 0.9856, and 0.9860, all of which are less than F eff(Γ), where
Γ/kBT = 1.147. Dashed lines indicate theoretical predictions for the position R0, at
which the monolayers become pinned.

is a function of the variances,

σ2
µ(R) = δyµ

D̄−1
yy (0, R)

Nβ
+

1

Nβ

∑
q 6=0

D̄−1
µµ(q, R), (A.99)

which are sums of the elements of the dynamical matrix D(q) divided by the particle

number. These variances can be interpreted as the mean value of the continuous function

D̄(q, R) discretized to N equally spaced points. The number of particles in the system

determines how fine the “mesh” is. Naturally, the value of the variances converges as N

becomes large and in the limit of infinitely large N , the sum over q becomes an integral.

According to our formula, the continuous function D−1
µµ(q, R) has to be evaluated at

the N q-vectors compatible with a simulation of N particles. In order to trace the

convergence of the solution to an infinitely large system, we have plotted, in Figure A.9,

our predictions for the effective force acting on the monolayer. Evidently, we considered

a system size (indicated by a circle) which is quite close to the limit of an infinitely large

system.

As was stated in the paper, the entire trajectory of the monolayer can be resolved into
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Figure A.9 Theoretical predictions for the effective force acting on the monolayer as
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3
4
5
6
7
8
9

γ
t̃

Γ/kBT = 1.038

0
2
4
6
8

10
12

0.984 0.986 0.988 0.990 0.992 0.994 0.996

γ
τ

Fd/Fmax

N = 3136
N = 6724
N = 10000
N = 19600

Figure A.10 Top: Average time the buildup phase plus the hopping wave takes to
travel through the system as a function of driving force Fd for different system sizes
N . Bottom: Average time the system takes to nucleate a hopping wave also as a
function of Fd and N . The dashed line is located at F eff

max.

three times: the drifting time due to the effective substrate t̃1, the nucleation time τ ,

and the hopping wave time t̃2. The mean velocity of the monolayer is exactly equal to

γv = a/(t̃1 + t̃2 +τ) = a/(t̃+τ). The time t̃1, which is the time that the monolayer needs

to reach R0 if Fd < F eff
max or R = 0.25a if Fd > F eff

max, can be calculated by evaluating

the integral using the appropriate limits of integration,
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t̃1 =

∫
dR

Fd + F eff(R)
(A.100)

and is independent of N in the manner discussed above. The hopping wave time is

roughly t̃2 = a
√
N/vwave(Fd), where vwave(Fd) is the velocity with which the radius of

the hopping wave expands and is expected to monotonically increase with the driving

force. The dependance on N stems from the fact that the hopping wave has to cover

larger distances as the system size increases. Finally, the average nucleation time, τ is

predicted to be proportional to the inverse system size τ ∝ N−1 and scales exponentially

in the free energy barrier associated with forming a critical cluster of hopping particles.

This free energy barrier, in turn, depends on Fd and is expected to vanish if it exceeds

F eff(R). Determining the exact functional form of these three times would require the

determination of a series of proportionality terms, such as the kinetic prefactor, the

surface tension due to a hopping wave, and the hopping wave velocity. Although this

is feasible, such a detailed analysis is beyond the scope of this work and would be

tantamount to solving the entire model in this parameter range. We are, nonetheless,

able to make some predictions.

As a result of the aforementioned considerations, the mean velocity of the monolayer

is predicted to scale very differently with the driving force and system size in the two

dynamical regimes that were explored in this work. Since τ is minuscule or 0 in the

thermal sliding regime, and most of the time is spent in the build up phase, t̃1 determines

the mean velocity. As a result, the expression γv =
√

(Fd)2 − (F eff
max)2 is quite accurate

in reproducing the velocity of the monolayer. In the nucleation regime, the average

nucleation time, τ , is the dominant time and therefore the velocity of the monolayer

increases with system size and increases exponentially as Fd grows. In both regimes,

the time the hopping wave takes to travel through the system scales with
√
N and Fd,

but its contribution to the velocity is small since the other two times are much larger

than t̃2. As a result we expect, that t̃ should increase slightly as the system size grows,

whereas the nucleation time τ should decrease by a large amount for growing system

sizes. Our expectations are confirmed in Figure A.10. Finally, from the shape of the

curves, the bottom panel also illustrates that the transition from nucleation dynamics

to thermal sliding is continuous.
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[21] O. M. Braun, A. R. Bishop, and J. Röder, Phys. Rev. Lett., 79, 3692 (1997).

[22] M. Paliy, O. M. Braun, T. Dauxois and B. Hu, Phys. Rev. E, 56, 4025 (1997).
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EPL, 73, 450 (2006).

[36] A. Yethiraj, Soft Matter, 3, 1099 (2007).

[37] D. M. Herlach, I. Klassen, P. Wette, and D. Holland-Moritz, J. Phys.:Condens.

Matter, 22, 153101 (2010).

[38] A. Vanossi, N. Manini, and E. Tosatti, Proc. Natl. Acad. Sci. USA 109, 16426

(2012).

[39] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science

Publications, Oxford, 2008.

[40] M. Lax, Rev. Mod. Phys., 38, 541 (1966).

[41] B. V. Derjaguin and L. Landau, Acta Phys. Chem., 14, 633 (1941).



Bibliography 93

[42] H. Risken, The Fokker-Planck Equation, Springer, Berlin, 2nd edn.,1996.

[43] Yu. M. Ivanchenko and L. A. Zil’berman, Sov. Phys. JETP, 28, 1272 (1969).

[44] A. Libál, C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. E, 75, 011403

(2007).

[45] N. Okamoto and M. Nakazawa, Int. J. Numer. Meth. Engng. 14, 337 (1979).

[46] R.S. Sayles, Tribol. Int. 29, 639 (1996).

[47] B. Saha, E. Liu, and S.B. Tor, Nanotribological phenomena, principles and mech-

anisms for MEMS, (Springer-Verlag Berlin Heidelberg, 2013).

[48] J.A. Ruan and B. Bhushan, J. Tribol. 116, 378 (1994).

[49] M. Langer, M. Kisiel, R. Pawlak, F. Pellegrini, G.E. Santoro, R. Buzio, A. Gerbi,

G. Balakrishnan, A. Baratoff, E. Tosatti, and E. Meyer, Nature Mater. 13, 173

(2014).
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