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Abstract

Shape and Image Matching with Nonconvex Regularization

by José Alberto Iglesias Martínez

In different imaging scenarios, such as medical and biological applications, the alignment of two
or more images of similar objects is of crucial importance. Two such problems are treated in this
work, from the point of view of continuous variational models which are then discretized for
numerical computations. A common feature of the models presented is the use of nonconvex
regularization, in addition to the natural nonconvexity of registration problems.

The first is surface matching, in which the data is given as two different surfaces. In this
framework, we consider surfaces embedded in some computational domain and represented by
their signed distance functions. Our approach is to consider shell energies penalizing expansion,
compression and bending of the first surface, which are simplified using the level set scenario
and the geometry of the second surface. For this problem, two models are proposed. The first
is a direct approach which effectively encodes the geometry of the situation, while the second
formulation is further refined to allow proving weak lower semicontinuity and existence of
minimizers, along with efficient numerical computations on adaptive grids.

The second is the estimation of optical flow along a full sequence of images. For it, a novel
time regularization along the trajectories of the flow is proposed. It penalizes the convective
acceleration of the resulting vector field, instead of the naive time derivative of the Eulerian
velocity field. The resulting problem can then be approximated in a semi-implicit fashion by
a sequence of linear ones. Numerical results show a marked improvement with respect to just
using the time derivative.
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Preamble

This dissertation introduces several methods for the family of problems known as registration
or matching. These attempt to retrieve an unknown deformation relating two or more given
observations. We focus on two particular instances, the matching of two given surfaces and
optical flow in the space-time domain.

Throughout, the emphasis is on continuous modeling and variational approaches, the resulting
match being a vector field defined either on the image domain for the case of optical flow, or on a
computational domain containing the shapes, minimizing an appropriate integral functional on it.
The nature of the registration problem with large deformations naturally leads to nonconvex data
terms. In our case, the models include regularization terms which are also nonconvex, but in turn
reflect desirable properties of the resulting deformations. Since in many cases the nonconvexity
of the data term already has to be treated, the use of nonconvex regularization does not necessarily
incur additional computational costs.

In Chapter 2 we present a first model for the matching of implicit surfaces considered as thin
shells. The use of the level set framework allows to use quantities related to the second surface
to simplify the modelling, even when a soft matching constraint is used. This in turn allows
for a model containing only first-order derivatives that can be discretized with first-order finite
elements and minimized in a cascadic multiscale fashion.

However, the model in Chapter 2 results in an energy functional which is not lower semicon-
tinuous. This may result in nonexistence of solutions, a large amount of nonuniqueness, or (of
special importance when finding numerical solutions) highly-oscillatory minimizing sequences.
This is remedied in the model introduced in Chapter 3, which is based on determinants of minors
along changing directions that depend on the deformed configuration. This construction allows
to model resistance to surface distortion and curvature matching, while allowing to prove weak
lower semicontinuity of the functional. Additionally, simulations are performed on adaptive
grids refined around the surfaces, thereby greatly reducing the number of nonessential degrees of
freedom in the computation.

In Chapter 4, a model for optical flow in the space-time domain is presented. Optical flow
is the name given to the problem of extracting a vector field from the apparent motion in a
sequence of images. It is a naturally ill-posed problem, since motion along object edges can not
be detected, and hence requires regularization. Here, the Eulerian convective acceleration of the
vector field is proposed as a regularity measure, to be included in the variational approach. An
iterative numerical method for its solution is presented, and numerical examples demonstrate the
superiority of our method with respect to the commonly-used plain time derivative of the vector
field.

This is a cumulative dissertation. The status of the different parts is as follows.

• The material in Chapter 2 has been published as [Igl+13]. The non-alphabetical naming
convention reflects the proportion of contributions to the paper.
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• Chapter 3 is a slightly enlarged version of an article submitted for publication to the journal
Foundations of Computational Mathematics in September 2015. It is a collaboration with
my thesis advisor Otmar Scherzer (CSC, Uni. Wien and RICAM, Austrian Academy
of Sciences) and co-advisor Martin Rumpf (INS, Uni. Bonn). It has been submitted as
an article with alphabetically ordered authors, and as such, credit should be distributed
equally.

• The content of Chapter 4 has been accepted for publication (subject to minor revisions)
as a book chapter in the Radon Series in Computational and Applied Mathematics. It is a
collaboration with Clemens Kirisits (RICAM, Austrian Academy of Sciences). It has been
submitted as an article with alphabetically ordered authors, and as such, credit should be
distributed equally.
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1
Introduction and Background

1.1 Problems considered

1.1.1 Shape matching

In shape matching, one is given two curves or surfaces which are in a suitable sense similar to each
other, and the task is to produce a deformation taking every point of one shape to a corresponding
point in the other, in a way that is in some sense natural. Typically, these shapes are extracted
from some imaging procedure, and since the the only available data are the geometric objects, it is
necessary to formulate a criterion for the selection of a particular deformation. In Chapters 2 and
3 we argue that considering the surfaces as thin elastic shells, with deformations minimizing the
corresponding energy, is one effective such criterion. Indeed, the use of membrane and bending
energies reflects desirable properties like low tangential distortion (the deformation should be
nearly isometric whenever possible) and small changes in curvature. An additional advantage is
that if knowledge about the elastic material properties of the objects being imaged is available, it
can be easily incorporated in such a framework.

Our motivation for studying such a problem is twofold. One the one hand, there are direct
practical applications for automatically-found correspondences between imaged objects in the
fields of computer graphics and computer vision. On the other, a matching model can be used as a
stepping stone into more advanced methods of shape analysis, which have a number of promising
applications in areas like computational anatomy [Mil04]. The idea of discrete geodesic calculus
as defined in [RW15] is to provide a meaningful relation between matching models (including
those using nonlinear elasticity ideas) and shape spaces, in which one may interpolate between
shapes and even perform a variety of statistical operations [Fle+04]. The key idea is to replace the
energy of the path, in the sense of Riemannian geometry, with the sums of the matching energies
along the path. That is, infinitesimally the matching energy corresponds to squared Riemannian
length. An advantage of this method is that by giving physical meaning and more structure to the
approximating discrete problems, a far smaller number of time points, and consequently higher
resolution shapes, may be used.

1.1.2 Optical flow

Image registration is the problem of matching two images whose intensity values (or some other
feature) are assumed to be similar, but whose domain has undergone a geometric transformation,
which is the unknown of the problem. That is, if I1, I2 are the given images and φ is the unknown
map, one assumes

I2(φ(x)) ≈ I1(x).

1



2 Chapter 1. Introduction and Background

which when considered as an equation receives the name “brightness constancy assumption”.
Here, once again, one needs to formulate selection criteria to single out particular deformations
among those satisfying the above constraint.

A related applied problem is that of optical flow, that is, finding the apparent motion between two
or more video frames. Typically, since one is considering different frames of the same sequence,
in optical flow the displacements between frames can assumed to be small. In consequence, the
above condition can be linearized around the identity φ(x) = x+ εu(x), arriving at

(I2 − I1)(x) ≈ −∇I2(x) · u(x).

Note that this condition only provides information about u across the edges of objects present
in the image, that is, in the direction of ∇I2(x). This is not surprising, since motion of a non-
textured object along its edge can not be detected. One can think, for example, of a white circle
rotating against a dark background. Even worse, there might be points where ∇I2(x) = 0 but
(I2 − I1)(x) 6= 0, in which case the brightness constancy assumption can never be satisfied. The
availability of only partial information and ensuing nonuniqueness and instability motivates the
use of variational approaches containing regularization. A common starting point is combining
a quadratic penalty for the linear condition above with a Dirichlet energy term that ensures
well-posedness of the resulting problem, resulting in the Horn-Schunck functional [HS81]∫

Ω
|I2(x)− I1(x)−∇I2(x) · u(x)|+ |∇u(x)|2 dx, (1.1.1)

whose optimality conditions can be easily and efficiently solved numerically.

A logical step in the hope of obtaining better results is considering the problem of optical flow
estimation over a whole sequence of images which are all considered to be coupled, in contrast
with the two-frame problem considered above. In this case, the image sequence can be modeled
as depending on an additional continuous time variable, so that correspondingly the fidelity term
reads ∫ T

0

∫
Ω
|∂tI(t, x)−∇I(t, x) · u(t, x)| dx dt.

As for the regularization term, a natural generalization [WS01b] is of the form∫ T

0

∫
Ω

(∂tu(t, x))2 + |∇u(t, x)|2 dx dt.

In comparison to (1.1.1), a time derivative appears. From the modeling perspective, it is desirable
to penalize temporal inconsistencies of the flow. Mathematically, it is required to ensure that the
resulting Euler-Lagrange equation is elliptic. However, the time derivative ∂tu has no natural
meaning in terms of the trajectories of the flow. We try to remedy this problem in Chapter 4
through the introduction of a novel regularization term.
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1.2 Analysis tools employed

1.2.1 Direct method in the calculus of variations

A very successful strategy for proving existence of solutions of variational problems is the
use of topological tools in a global fashion, to find minimizers as limits of readily available
almost-minimizers. The starting point is the choice of a minimizing sequence, that is, a sequence
xk such that limE[xk] = infxE[x]. Then, a topology needs to be chosen, under which the
energy manages to have the two properties:

• Coercivity, stating that sequences whose energy is bounded should be contained in some
compact set for the chosen topology, so that a limit to the xk can be extracted.

• Lower semicontinuity of the energy with respect to the given topology, so that the limit is
the desired minimizer.

Indeed, if both of these properties are present, we may extract a limit x0 for a subsequence of the
xk, and in turn lower semicontinuity implies

E[x0] ≤ lim inf E[xk] = inf
x
E[x],

so that x0 is a minimizer of E. However, these two properties “work against each other”, in the
sense that choosing a stronger topology will make lower semicontinuity easier to attain, but may
destroy coercivity. Conversely, weak topologies are convenient for coercivity, but may prevent
lower semicontinuity.

In our case, we use the weak topology of reflexive Sobolev spaces, in which coercivity is obtained
by comparison with the norm and an application of the Banach-Alaoglu theorem, thereby
displacing the main difficulty to the lower semicontinuity. To obtain it, one needs to look more
closely at the particular nature of the problem. In the case of an integral functional depending on
derivatives of candidate functions u : Rn ⊃ Ω→ RN with Jacobian matrix Du(x) ∈ RN×n,

E[φ] =
∫

Ω
W (x, u(x),Du(x)) dx,

some convexity condition is required of the density W . If n = 1 or N = 1 and under very mild
technical assumptions, convexity of W (y, ξ, ·) for fixed y, ξ is necessary and sufficient for weak
lower semicontinuity [Dac08]. In the genuinely vectorial case n > 1, N > 1 weaker convexity
conditions, which we briefly review in the next subsection, are in many cases either necessary or
sufficient.

1.2.2 Vectorial problems. Quasiconvexity, rank-one convexity, polyconvexity, and
compensated compactness

A density W : RN×n is said to be quasiconvex when

W (A) ≤ 1
|U |

∫
U
W (A+Dϕ(x))dx, for all U ⊂⊂ Ω open, ϕ ∈ C∞0 (U,RN ),
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with |U | the Lebesgue measure of U . Quasiconvexity is an integral condition that can not
be reduced to a pointwise criterion [Kri99], making it extremely hard to check for directly.
However, unlike other conditions which are easier to handle, it is not only sufficient for the lower
semicontinuity of vectorial problems under appropriate technical assumptions, but also in many
cases a necessary condition, as first discovered by Morrey [Mor66]. One limitation of lower
semicontinuity theorems for quasiconvex functionals is that upper bounds on the integrands are
required. Typically, a condition of the form W (A) ≤ C(|A|p + 1) is required for weak lower
semicontinuity in W 1,p(Ω; Rn). This is quite natural, since one needs to recover conditions on
integrals on the whole domain from a local assumption.

Another useful condition is convexity along rank-one matrices of the densityW . The requirement
is that the function t → W (A + t(b ⊗ c)) is convex for any A ∈ RN×n, b ∈ RN and c ∈ Rn,
where b⊗ c = bcT denotes the tensor product. It is implied by quasiconvexity, as may be checked
by using plane wave test functions of the type ϕ(x) = bη(x) sin(k(c ·x)), with η a bump function
supported on U and k � 1. As such, it is a useful condition to prove that a certain energy is not
weakly lower semicontinuous. We make use of this definition in a counterexample in Chapter 3.

We now turn our attention to a subset of quasiconvex functions more amenable to immediate
application. As an example, let u ∈W 1,2(ω; R2) with ω ⊂ R2. Owing to the fact that we may
write

div(u1∂2u
2,−u1∂1u

2) = ∂1u
1∂2u

2 − ∂1u
2∂2u

1 + u1∂1∂2u
2 − u1∂2∂1u

2 = detDu,

and observing that the components of the vector field above are products of one strongly con-
vergent and one weakly convergent sequence, we get that the Jacobian determinant is a weakly
continuous function from W 1,2 to L1, that is

detDuk ⇀ detDu in L1(Ω) whenever Duk ⇀ Du in L2(Ω).

By induction and expansion along a row or column a similar divergence structure can be inferred
for higher-dimensional determinants, so analogous results can be proved in the appropriate
spaces [Dac08]. An energy density W is termed polyconvex when it can be can be written as a
jointly convex function of the matrix argument, its determinant, and the determinants of minors.
The combination of a weakly continuous construction with a convex function preserves lower
semicontinuity, making the direct method still applicable.

In addition to being easier to handle, polyconvexity has the advantage of no longer requiring
upper bounds on the integrands in order to prove lower semicontinuity theorems. In fact, this is
the case in the model introduced in Chapter 3, with a density W for which it is not necessarily
true that W ◦ Dφ ∈ L1(Ω) for all φ ∈ W 1,p(Ω; R3), although the corresponding functional is
weakly lower semicontinuous and possesses minimizers in the latter space.

As may be seen through the sequence u2
k with uk = cos(2πk x) ∈ L2(0, 1), the product of

weakly converging sequences does not necessarily converge to the product of the corresponding
limits. However, there are situations in which products of weakly converging sequences do
converge to the right limit, as in the Jacobian determinant above.

It is natural to ask, then, in which situations a similar phenomenon can be expected. The
systematic study of these situations is is the theory of compensated compactness, first developed
by Murat and Tartar [Tar79; Mur78]. It tells us (very roughly) that a product of weakly converging
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functions does converge to the expected limit, in situations where each of the members of the
sequence satisfies an adequate differential constraint whose form works together with that of the
product in consideration to prevent interference between the different factors. A typical result
consists in considering a sequence of weakly convergent vector fields Uk ⇀ U∞ in L2

loc(Ω; RN )
(with Ω ⊂ Rn) satisfying the first order partial differential equation

n∑
i=1

N∑
j=1

∂
(
Ai,jU

j
k

)
∂xi

= 0, (1.2.1)

and a weakly convergent quadratic form of components of Uk,

Q(Uk) =
N∑

j,l=1
qj,lU

j
kU

l
k
∗−⇀ ν inM(Ω),

whereM(Ω) denotes the space of scalar Radon measures. Then ν = Q(U∞) provided that for
all ξ ∈ Sn−1 and λ ∈ Λξ we have Q(λ) = 0, where

Λξ =
{
λ ∈ RN |

n∑
i=1

N∑
j=1

ξiAi,jλ = 0
}
.

This kind of analysis can be understood as “plane wave analysis at infinite frequencies”. The
cones Λξ represent the directions in phase space that are not controlled by the equation (1.2.1), so
they are required to be directions in which the quadratic form Q applied to our weakly convergent
sequence has to degenerate. As an example, for the two-dimensional Jacobian determinant
we would have n = 2, N = 4, Uk = (∂1u

1
k, ∂2u

1
k, ∂1u

2
k, ∂2u

2
k) and the differential constraint

corresponds to mixed partials commuting.

The theory of H-Measures [Tar90] extends this kind of results to variable coefficients Ai,j , qj,l ∈
C0(Ω). Such a situation appears in the model proposed in Chapter 3, which is formulated in
terms of determinants of minors of the Jacobian, but the directions along which these minors are
taken depend on the position and on the deformed configuration at that position. However, under
the assumption of continuous coefficients, we recover weak continuity of the corresponding
determinants. This weak continuity result again leads to weak lower semicontinuity of the
associated functionals.

1.2.3 Gamma-convergence

In many situations one is led to consider a sequence of functionals that are supposed to approxi-
mate a harder problem, thereby having to consider a limiting procedure such that minimizers or
critical points converge. A particularly productive formalization is the setting of Γ-convergence.
It is indeed the natural (albeit nonlinear) notion of convergence for approximating variational
problems by simpler ones that may be solved through the direct method. It depends on a choice
of topology in the underlying space, and in particular ensures that the resulting limit functional is
lower semicontinuous with respect to this topology. Formally, it consists of the following two
conditions for a sequence fk converging to f , usually called the lim inf and lim sup inequalities,
respectively.
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• For each x ∈ X , and any sequence xk → x we have f(x) ≤ lim infk f(xk).

• For each x ∈ X , there is a sequence xk → x such that f(x) ≥ lim supk f(xk).

It follows from these definitions that the limit functional f is automatically lower semicontinuous
with the chosen topology [Bra02, Proposition 1.28]. In the spirit of the direct method, what
remains in order to prove convergence of minimizers (which is what we are after) is some
sort of coercivity condition. A (quite weak) such condition is mild equi-coercivity of the fk,
stating that there exists some compact set K such that infx∈K fk(x) = infx∈X fk(x) for all k.
In this situation, the compactness of K (which does not depend on k) can be used to obtain
convergence of minimizers [Bra02, Theorem 1.21]. When using weak-* topologies in which the
Banach-Alaoglu theorem is applicable, uniform norm bounds along the sequence of functionals
ensure equi-coerciveness.

In this work, Γ-convergence will only make a brief appearance when exploring the penalization
limit of shape matching in Chapter 3, in which the shapes and their offsets are eventually forced
to correspond exactly.

1.3 Related concepts from continuum mechanics

1.3.1 Nonlinear elasticity

In the setting of so-called hyperelastic materials, equilibrium configurations appear as critical
points of a functional depending on the infinitesimal strain, namely∫

Ω
W (Dφ)− F · φ dx, (1.3.1)

where φ : Ω→ R3 is a deformation of the reference configuration of an elastic body occupying
the domain Ω, W is the so-called stored energy function and F : Ω → R3 is some volumetric
applied force.

The most important feature of this approach is the availability of assumptions on the energy
density W which are simultaneously physically realistic, and allow for the use of the direct
method to prove the existence of minimizers with no size restrictions on the applied force F .
This is in contrast to the solution of the equations for an equilibrium directly using some infinite-
dimensional implicit function theorem, in which bounds on appropriate norms of F have to be
assumed.

When we say physically realistic in a nonlinear setting, significant difficulties arise. A reasonable
assumption is that the model is frame-invariant, that is, it does not depend on the choice of
orthonormal basis chosen to represent the deformed configuration. In terms of the energy, this
means that we should have W (QA) = W (A) for any Q ∈ SO(3), where SO(3) is the group of
proper rotations on R3. But, combined with the natural requirement that the identity should not
be penalized (i.e., it has zero energy), we infer that SO(3) ⊂ arg minW . But if W were convex,
this would mean that 0 ∈ co SO(3) ⊂ arg minW , where co denotes the convex envelope. And
this implies that constant deformations mapping the whole of Ω to a fixed point would also have
zero energy.
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Luckily, as we have seen in the previous section, convexity of the integrand is not necessary for the
direct method to apply. Indeed, polyconvex stored energy functions allow for frame indifference,
and can even ensure that the obtained deformations are invertible (non-interpenetration of matter,
in physical terms) through growth conditions ensuring that W (A) → +∞ fast enough as
detA → 0 [Bal81]. Numerous families of materials have been successfully included in this
framework, like Ogden’s materials [Ogd72] describing nonlinear regimes of rubber and biological
tissue. Such stored energy functions are the main building block for the model of Chapter 2.

Additionally, it is possible to engineer stored energy functions such that the linearized problem
corresponding to a critical point of the energy matches standard representations of parameters of
linear elasticity. This corresponds to the condition for the Hessian of W

D2W (1)(A,A) = 2µ|e|2 + λ tr(e)2, (1.3.2)

where 1 is the identity matrix, e corresponds to the symmetrized gradient e = (A+AT )/2 and
λ, µ are the commonly used Lamé parameters, which are sufficient to parametrize any isotropic
linearly elastic material [Cia78]. Polyconvex energies that ensure non-interpenetration of matter
and satisfy (1.3.2) were introduced in [CG82]. A similar density, but which is continuous on
R3×3, is used in Chapter 3. Observe that it is natural for the linearization to depend only on
the symmetric part of the derivative, since the tangent space to SO(3) at the identity matrix is
precisely the set of antisymmetric matrices.

1.3.2 Plate and shell theories

Often it is required to describe the elastic behavior of an object which is much smaller in one
direction than in the others. One such case is that of plates, whose resting configuration is
assumed to be flat, that is, they can be written as Ω = ω × (− δ

2 ,
δ
2) with ω ⊂ R2, middle surface

ω × {0} ⊂ R3 and width δ > 0. A more general configuration is that of shells, whose resting
configuration is curved, that is, they may be written as a tubular neighborhood of a surface
M⊂ R3, so that Ω = {x ∈ R3 | dist(x,M) < δ/2}, where dist(x,M) = infy |x− y|. In these
cases, one wants a description of the elastic behavior of these structure, formulated only on ω or
M respectively, thereby obtaining a two-dimensional problem.

To accomplish such a dimension reduction, there are two main routes. The first is a phenomeno-
logical one: make some a priori assumptions on the nature of the resulting deformation, and
incorporate them into an ad-hoc variational or PDE model. The problem here is that different sets
of reasonable assumptions lead to different models and different behavior of solutions [Cia00].
One particular set of models arises from the nonlinear Kirchoff assumption, stating that the
normal fibers to the middle surface remain normal after the deformation, and do not suffer any
stretching.

The other, more recent, alternative is to try to derive the two-dimensional model as a limit of
volumetric models whose depth tends to zero. However, since the limit of the volumetric energies
is always zero, for this approach to produce meaningful results, it is necessary to assume that
the energies converge at a certain asymptotic rate, that is, one looks at (in the case of plates) the
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Γ-limit as δ → 0 of

Eδ[φ] = 1
δβ

∫
ω×(− δ2 ,

δ
2 )
W (Dφ) dx = 1

δβ−1

∫
ω×(− 1

2 ,
1
2 )
W (∂1φ | ∂2φ | (1/δ) ∂3φ) dx,

where a|b|c ∈ R3×3 denotes the matrix given columnwise by a, b, c ∈ R3. Therefore, part of
the investigation is displaced to the question of which boundary conditions produce the desired
energy scaling when applied to the original volumetric models, so that the computed limit reflects
the correct physical behavior.

For the exponent β = 1 (constant energy per unit area on the surface ω), the corresponding Lp

Γ-limits were computed in [LDR95a] and [LDR96]. In the case of plates, the resulting functional
can be written as

E[φ] =


∫
ω
QW0(Dφ) dx, if ∂x3φ = 0

+∞ otherwise,

whereQ denotes the quasiconvex envelope, andW0(A) = infζ∈R3 W (A1|A2|ζ), withAi the i-th
column of A. In this expression, two features are immediately evident. The first is the appearance
of a minimization over director vectors ζ, signifying that along minimizing sequences, material
fibers will eventually be oriented in the the most energetically advantageous direction.

The second is the appearance of a quasiconvex envelope [Dac08, Section 6.3]. For an energy
density W of the type usually appearing in nonlinear elasticity, with a single well in SO(3) and
with built-in orientation preservation, the appearance of this quasiconvex envelope has the effect of
nullifying compressional resistance of the material for the obtained limit. Compression resistance
of an elastic shell in fact leads to oscillatory behavior, as in particular explored in Chapters
2 and 3, and also matching the everyday experience of crumpling appearing when applying a
compressional force to a piece of paper. Therefore, the appearance of a quasiconvexification
and lack of oscillations in minimizing sequences should be taken as an artifact of the limiting
procedure, rather than a feature of the physical system that one is trying to model. Indeed,
as already noted an energy obtained by Γ-convergence is lower semicontinuous in the chosen
topology.

In our shape matching models we make use of similar membrane terms in our energies, which
penalize tangential distortion. In Chapter 2 a term that does penalize compression, but is in
exchange not lower semicontinuous, is used. In contrast, the term used in Chapter 3 recovers lower
semicontinuity by measuring and penalizing distortion only along the level sets corresponding to
the target surface. In this way, a functional which penalizes both expansion and compression of
the deformation (measured along the surfaces in question) but does not encourage oscillatory
behavior is obtained. The idea is that making the functional “forget” the normal direction to the
target surface prevents it from compensating compression with oscillations. This construction is
of course only possible in a shape matching scenario, in which the target surface is given as data,
since otherwise this normal direction is not available.

For the exponent β = 3, the limit was obtained in [FJM02; Fri+03] and corresponds to the
Kirchhoff bending regime. In the limit problem, only isometric deformations of ω are allowed,
and differences of curvature are penalized. Heuristically, the exponent can also be justified
through the nonlinear Kirchhoff-Love assumption postulating that the fibers normal to the middle
surface remain normal and are not stretched or compressed through the deformation. To see this,
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one can think of a plate as a collection of massless rods joined by springs attached at points which
are equidistant to the middle surface (see Figure 1.1). From Hooke’s law, the stored energy on
each of these springs is proportional |∆`|2, where ∆` is the difference between the resting and
stretched lengths, analogous to the continuous displacement. On the other hand, the curvature of
the resulting middle surface is proportional to the angle between fibers, so that if δ � 1 we have
that ∆` is proportional to the height y over the middle surface. Finally, integration over y on the
interval (−δ/2, δ/2) brings us to the conclusion that the resulting energy is of order δ3.

FIGURE 1.1: Rough sketch of the energy scaling of bending.

In the case of plates the resulting functional [FJM02] under the assumption that the Hessian of
W satisfies (1.3.2) is the energy

1
24

∫
ω

2µ|II|2 + λµ

µ+ λ/2(tr II)2,

which penalizes the size of the second fundamental form II of the deformed surface with respect
to the parametrization given by the deformation. Observe this is a singular perturbation problem,
since second derivatives of φ are present in the limit but were absent in the original functionals.
The whole procedure depends crucially on the powerful rigidity estimates proved in [FJM02],
stating that for any W 1,2 function ψ : Ω→ Rn we have

‖Dψ −R‖L2(Ω) ≤ C ‖dist(Dψ,SO(3))‖L2(Ω),

where R is an element of SO(3) determined by ψ and the constant C depends only on the domain
Ω.

The case of shells requires taking into account the curvature that was already present in the
surface before the deformation. As it turns out, the correct way to measure this increase of
curvature is through the relative shape operator [Fri+03], defined for a surfaceM and a smooth
parametrization of it r : ω →M as

DφT (r(x))Sφ(M)
(
φ(r(x))

)
Dφ(r(x))− SM

(
r(x)

)
for x ∈ ω and a deformation φ :M→ R3. Here SM,Sφ(M) are the matrix representations of
the Weingarten operators ofM and φ(M) arising from the parametrizations r and (φ ◦ r). The
appearance such an expression is not unexpected, since in it the shape operator of the deformed
surface φ(M) is pulled back through φ as a 2-tensor and compared linearly with the original one.
This fits with the geometric nature of the shape operator and, furthermore, implies that energies
derived from this expression do not depend on the choice of parametrization r.

In Chapter 2 the non-vanishing of the relative shape operator is penalized, but substituting
the shape operator of the deformed surface with that of the target surface, thereby obtaining
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a functional with only first order derivatives. In Chapter 3 this condition is further simplified
through regularization of the shape operators and a kind of tangential factorization, in order to be
able to obtain a lower semicontinuous functional.

1.3.3 Convective acceleration

Convective acceleration arises in the Eulerian description of fluid mechanics. Eulerian coordinates
can be thought to be fixed at particular points of space, in the usual manner. This means that at
a given space position, different material particles will be found at different times. In contrast,
Lagrangian coordinates follow the material, so that the same coordinates at different times
correspond to the same material particles.

Its expression ∂tu+∇u · u, where u is the mentioned Eulerian velocity field (see Chapter 4 for
a derivation) contains a nonlinear term reflecting the fact that the fluid itself is moving, a fact that
needs to be taken into account when computing its acceleration.

The starting observation for Chapter 4 is that, even though time derivatives have been used in the
regularization terms of variational models for optical flow, usually only the time derivative with
respect to the fixed Eulerian frame ∂tu is used, which does not have any meaning in terms of the
flow itself. Instead, we propose to use the convective acceleration as a regularity measure, and
then attempt to minimize it via a semi-implicit iterative scheme.

1.4 Computational methods

1.4.1 Multiscale descent for registration problems

Unlike in optical flow problems, when performing image registration without linearization of the
matching condition, the data terms involved present a dramatic lack of convexity. As an example,
consider the expression ∫

Ω
|I2(φ(x))− I1(x)|2 dx.

Taking second derivatives of the integrand with respect to the unknown φ, we obtain that it is
convex at a point, if and only if the image I2 is. However, the data obtained from any real-world
imaging system is often not only of very low regularity, but also noisy and possibly containing
artifacts manifesting as oscillations.

A common approach to try to mitigate this fundamental nonconvexity without just limiting
oneself to linearized data terms is to implement a multiscale descent. First, one discretizes the
relevant data, obtaining a discrete energy, as opposed to first obtaining optimality conditions
which are then discretized and solved. Next, the problem is severely undersampled to obtain
a formulation on a very coarse grid, and solved as if it were a convex minimization problem.
Then the solution of the coarse problem is extended into a finer grid through an interpolation
procedure, in the hope that one has obtained a good initial guess for the minimization problem
on the higher-detailed data. The last two steps are then repeated until the maximal resolution
is reached or the detail of the obtained deformation is deemed sufficient. A prime example of
application of such methods to registration problems is [Mod04].
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FIGURE 1.2: Idea of multiscale descent. The sampling points are indicated by
vertical lines, and the corresponding discrete energy is dashed. In this example,
even though neither the original energy nor the one in the second discretization

step are convex, a good approximation for the minimum is quickly found.

In Chapters 2 and 3, approaches of this type are used to treat the minimization of the proposed
models. These contain penalization terms for the constraint φ(M1) =M2, whereM1 andM2
are given surfaces, and whose convexity again depends directly on the data. Additionally, the
nonlinear elasticity terms used are also inevitably nonconvex due to their geometric nature.

1.4.2 FEM and adaptivity

Finite element methods are Galerkin approaches to the solution of partial differential equations,
in which the underlying functional space in which the equation is well-posed are replaced by
a chain of finite-dimensional approximations of it. A central feature is that the form of the
problem often does not change when restricted to smaller spaces. One typically looks at the weak
formulation of a PDE problem, which arises as a critical point condition for an associated energy.
All of the discretizations employed in this work are of this type.

This line of thinking fits nicely with the ideas sketched in the previous subsection. Indeed, instead
of using simpler interpolation schemes, one can consider a chain of finite element spaces on
which the minimization problem is considered, together with adequate projections. In this case,
the unknowns of the corresponding discrete problem are the coefficients of the minimizer in an
appropriate basis.

A common topic in FEM research is the use of spaces in which the computational mesh is
subdivided only in particular places of interest, instead of everywhere. This gives rise to the
theory of adaptivity in FEM, in which convergence guarantees for the sequence of approximate
solutions are sought, when the mesh is refined according to properties of the last obtained solution.
In Chapter 3 we use FEM on nonuniform meshes refined around the surfaces of interest, which
are embedded in a higher-dimensional domain on which the energy functional is formulated.
Here the adaptive approach is of great help, since regular discretizations would lead to a very
high number of degrees of freedom.
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2
A Thin Shell Approach to the Registration of

Implicit Surfaces

Abstract

Frequently, one aims at the co-registration of geometries described implicitly by images as level
sets. This paper proposes a novel shape sensitive approach for the matching of such implicit
surfaces. Motivated by physical models of elastic shells a variational approach is proposed,
which distinguishes two different types of energy contributions: a membrane energy measuring
the rate of tangential distortion when deforming the reference surface into the template surface,
and a bending energy reflecting the required amount of bending. The variational model is
formulated via a narrow band approach. The built in tangential distortion energy leads to a
suitable equidistribution of deformed length and area elements, under the optimal matching
deformation, whereas the minimization of the bending energy fosters a proper matching of shape
features such as crests, valleys or bumps. In the implementation, a spatial discretization via
finite elements, a nonlinear conjugate gradient scheme with a Sobolev metric, and a cascadic
multilevel optimization strategy are used. The features of the proposed method are discussed via
applications both for synthetic and realistic examples.

2.1 Introduction and motivation

We address the problem of matching closed surfaces or curves, which are given as the zero level
sets of functions defined in a volume or a planar domain. In vision many geometric objects
are actually extracted from images as level sets. Furthermore, formulating geometric problems
in terms of level sets often simplifies their numerical implementation, since regular grids can
be used. As a consequence, we look for deformations of the whole computational domain
which closely match a template surface to a reference surface, are invertible both on the surfaces
and globally, and match geometric features (e.g. curvatures) of the surfaces while having low
tangential distortion. For the mathematical modeling, we think of the reference surface as a layer
of an elastic material (for example, rubber) embedded in a block of another much softer isotropic
elastic material (foam, say), subject to a matching force that forces it onto the template surface.

With this in mind we derive a variational formulation motivated from the standard mathematical
theories of nonlinear elasticity. However, our model is different from them in some aspects, to
better exploit the specific advantages of our matching scenario, not present in physical situations.
We will point out both the similarities and differences as we introduce and motivate the different
parts of our energy.

15
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FIGURE 2.1: Result obtained with our method, when used for curves in a 2D
domain. We look for a global and invertible deformation, which closely matches
two input shapes, in a way that balances being as isometric as possible on the
shapes, and matching their curvatures. On the left the reference shape is shown
on the undeformed grid, whereas on the right the deformed reference shape
matching the given template shape is rendered together with the deformed mesh.

Undeformed and deformed points are colored identically.

2.2 Related work

In recent years, theories of nonlinear elasticity have found use in many problems of computer
vision and graphics. Some applications are deformation of meshes [Cha+10], shape averages and
geodesics between shapes [RW09; Wir+11], and registration of medical images [BMR13]. In
the last work, the efficient discretization and numerical solution of hyperelastic regularization
energies is studied. The chosen approach is a cascadic minimization scheme involving a Gauss-
Newton method on each level.

Linear elasticity is also used for image registration [Mod04] and shape modeling [Fuc+09],
but the advantage of nonlinear models is that they allow for intuitive deformations when the
displacements are large.

In this paper, the focus is on nonlinear elastic matching of thin shells. A finite element method
for the discretization of bending energies of thin shell type biological interfaces has been studied
in [BNP10]. Their approach uses quadratic isoparametric finite elements to handle the interface
on which an elastic energy of Helfrich type is approximated. In [Sri+09], face matching based
on a matching of corresponding level set curves on the facial surfaces is investigated. To match
pairs of curves an optimal deformation between them is computed using an elastic shape analysis
of curves. Compared to our approach, this model does not take into account dissipation along
deformation paths caused by a bending of the curves. The paper [BPW12] discusses a new
concept for the treatment of higher order variational problems on surfaces described as jump sets
of functions of bounded variation type. This approach in particular enables the analytical rigorous
treatment of elastic energies on such surfaces. The matching of surfaces with elastic energies has
recently been studied in [Win+11]. Their energy splits into a membrane energy depending on the
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Cauchy-Green strain tensor and a bending energy, comparing only the mean curvatures on the
surfaces. The matching problem is phrased in terms of a binary linear program in the product
space of sets of surface patches. A relaxation approach is used to render it computationally
feasible. An approach related to ours is presented in [Lit+05], where nonlinear elastic energies
are proposed for matching of open, parametrized surface patches. Here, we propose a method for
closed surfaces that does not require a parametrization.

A method for matching and blending represented by level sets has been presented in [MR12]. A
level set evolution generates an interpolating family of curves, where the associated propagation
speed of the level sets depends on differences of level set curvatures. In this class of approaches,
geometric evolution problems are formulated, whereas here we focus on variational models for
matching deformations. Registration of implicit surfaces was considered in [LL08], but only
through volumetric terms, in contrast to our tangential distortion and bending terms.

Let us mention that our approach is inspired by the works [DZ94; DZ95] in which partial
differential equations for shell models are derived in terms of distance functions. Shape warping
based on the framework of [DZ94] from a less physical perspective has been discussed in
[CFK04].

2.3 A thin shell matching model

Our model for the shape sensitive matching of surfaces is based on physical models for the elastic
deformation of a thin shell [Cia00]. Thereby, a shellM is considered as the d− 1 dimensional
mid-surface of a layer of material of thickness δ << 1 in Rd.

To match two shell surfacesM1 andM2 via a deformation φ, we take into account the elastic
energy of a deformation φ : M1 → R3 under the constraint φ(M1) = M2. The energy can
be decomposed into a membrane energy (penalizing stretching and compression strain) and a
bending energy (penalizing strain caused by bending). Under this constraint the energy actually
depends only on the Jacobian of the deformation φ and not on second derivatives of φ, since
curvatures for the bending term can be evaluated onM2.

Membrane energy. The rate of tangential distortion at each point is described by the tangential
Cauchy-Green strain tensor (cf. Figure 2.2)

Atg[φ] = Dtgφ
TDtgφ.

Here, the tangential Jacobian of the deformation is defined by Dtgφ = DφextP for an extension
φext of φ onto a neighborhood ofM1, P = 1−N1 ⊗N1 being the projection onto the tangent
space ofM1 with normal N1. Then, the associated membrane energy is given by

Emem[φ] = δ

∫
M1

Wmem(Atg[φ]) da , (2.3.1)

where we choose as the requisite energy density

Wmem(A) = µ

2 trA+ λ− 2µ
8 detA+ 2µ+ λ

8 (detA)−1. (2.3.2)
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Here, λ and µ are the Lamé constants of a St. Venant–Kirchhoff material [Cia88] with trA
and detA denoting the trace and the determinant of A considered as an endomorphism on the
tangent bundle ofM1. Notice that detA describes area distortion, while trA measures length
distortion. The polyconvex function Wmem is rigid body motion invariant, and it can be verified,
using the invariance, that the identity is its only minimizer. Furthermore, the second order Taylor
expansion at the identity reveals the classical quadratic energy of linearized, isotropic elasticity.

A simplification of the functional in (2.3.1) corresponds to the known Γ-limit of volume elasticity
models for vanishing thickness parameter δ [LDR96]. This limit does not account for compression
resistance [FJM06]. In our case, the energy density (2.3.2) does reflect compression resistance
through the term involving (detA)−1, which also avoids self interpenetration, thus giving a more
precise physical model.

FIGURE 2.2: A sketch of the two different modes of deformation of a thin shell:
tangential distortion (left) and bending (right)

Bending energy. The bending energy measures the local rate of bending described by the
change of curvature under the deformation (cf. Figure 2.2). The shape operator ofMi is defined
as the tangential JacobianDtgNi of the normalNi. From the fact that 0 = ∂k‖Ni‖2 = 2∂kNi ·Ni,
one deduces that (DtgNi)(x) is an endomorphism of the tangent space TxMi. Aiming at a
comparison of DtgN1 at some point x ∈M1 and DtgN2 at the deformed position φ(x), we have
to use a corresponding pullback under the deformation φ and with it define the relative shape
operator

Srel[φ](x) := Dtgφ
T (DtgN2)(φ(x))Dtgφ− (DtgN1)(x).

If φ is an isometric deformation of the shellM1, i.e. Atg[φ](x) = 1TxM1 , then we recover the
definition of the relative shape operator used in the rigorous analysis in Friesecke et al. [Fri+03].
In this case, the leading order term of the bending energy as the Γ-limit of 3D elasticity is cubic
in the thickness δ and given by

Ebend[φ] = δ3
∫
M1

Wbend(Srel[φ]) da . (2.3.3)

Although other chodefint ehices are conceivable, we considerWbend(S) = ‖S‖2F , where ‖S(x)‖F
denotes the Frobenius norm of the corresponding linear operator S(x) : TxM→ TxM. Notice
that different from bending energies considered in graphics elsewhere, Srel[φ] takes into account
the full change of the shape operators onM1 andM2, not only the change of their traces (i.e.
mean curvatures), so that changes of bending directions get accounted for appropriately.
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Deformation energy. Combining membrane (2.3.1) and bending (2.3.3) contributions, we
obtain the total elastic shell energy

Esh[φ] = αbendEbend[φ] + αmemEmem[φ] . (2.3.4)

A fundamental insight arising from the analysis of shell models [Cia00] and the recent advances
in a rigorous limit theory [LDR96; Fri+03] is that pure membrane terms and pure bending terms
cannot coexist in the limit of zero thickness, since the scaling of these terms with respect to it
is governed by a different power of the width of the shell δ. However, because of their distinct
properties, in shape matching applications it is beneficial to use both, in particular considering
the bending energy of non-isometric deformations. This formulation is the basis for our level set
method for surface matching discussed in the next section.

2.4 Level set framework

Now we derive the actual variational approach for the matching of implicit surfaces. To this
end, we suppose that the geometriesM1 andM2 are implicitly described hypersurfaces on
a computational domain Ω ⊂ Rd (curves for d = 2 and surfaces for d = 3). Explicitly, we
assumeMi to be described by its signed distance function di, which constitute our input data
(cf. Figure 2.3). For closed surfaces our convention is that di is positive outsideMi. If the
input is not a distance function but any other regular level set function, one can obtain a distance
function via the application of the fast marching method [Set99]. For any c, we denote the
c-offsets to these surfaces by Mc

i = {x ∈ Ω |di(x) = c}. In what follows, we consider a
deformation φ : Ω 7→ R3, which approximately mapsM1 ontoM2. Since the di are distance

FIGURE 2.3: A sketch of the level set framework with the narrow band around
the surface M1 marked in light blue. The dashed lines on the left indicate

different level sets of d1 (left) and their deformed images (right).

functions, we have |∇di| = 1, so that∇di(x) is the unit normal toMdi(x)
i at a point x. Then, the

tangent space toMdi(x)
i at x, denoted by TxMdi(x)

i , consists of all vectors orthogonal to∇di(x).
Projection matrices onto these tangent spaces can be computed by Pi(x) = 1−∇di(x)⊗∇di(x),
which induce, on the whole domain, the tangential derivative Dtgφ(x) = Dφ(x)P1(x) of the
deformation and the tangential Cauchy-Green strain tensor Atg[φ] = Dtgφ

TDtgφ to each level
set. Analogously, we can also compute the shape operators ofMd1(x)

1 at x andMd2(φ(x))
2 at
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φ(x) through S1(x) = D2d1(x) and S2(x) = D2d2(φ(x)) . We can then use these level set
expressions in the energies (2.3.1) and (2.3.3), to rewrite the components of the shell energies
on a single level set in terms of the deformation and the two signed distance functions d1 and
d2. In what follows, we will combine this with a narrow band approach focusing on a small
neighborhood of the actual surfaces of interest.

Narrow band formulation of shell energies. As is customary in level set methods [Set99],
we introduce a narrow band aroundM1, whose deformation we want to capture (cf. Figure 2.3).
This is done by a smooth and even cutoff function ησ such that ησ(0) = 1 and ησ(s) = 0 if
|s| > σ. The support of the composition ησ ◦ d1 then identifies the narrow band.

To formulate a level set variational method, we measure the distortion created by the deformation
φ on each level setMc

1 through the shell energy (2.3.4), obtaining Ecsh[φ] =
∫
Mc

1
Wsh[φ] da .

Here, the energy density Wsh[φ] expressed in terms of d1, d2 and φ is given by

Wsh[φ] = αmemδWmem(Atg[φ]) + αbendδ
3Wbend(Srel[φ]),

where Atg[φ] = Dtgφ
TDtgφ is the tangential Cauchy-Green strain tensor, with Dtgφ = Dφ(1−

∇di⊗∇di) denoting the tangential derivative of the deformation, and Srel[φ] = Dtgφ
T (D2d2 ◦

φ)Dtgφ−D2d1 is the relative shape operator expressed in terms of the distance functions and
the deformation. Now, we weight this energy by ησ(c) and use the coarea formula [EG92] (using
once again that |∇d1| = 1) to integrate the resulting weighted energy over all level sets of
interest and obtain

Esh[φ] =
∫ +∞

−∞
Ecsh[φ] dc =

∫
Ω
ησ(d1)Wsh[φ] dx . (2.4.1)

In this manner we are able to define a global energy, defined as a volume integral over the
computational domain, consistent with the surface energy defined on each of the offsetsMc

1
which fill up the narrow band.

Handling the constraint. In our shell model, we have assumed that φ(Mc
1) = Mc

2. This
allows us to formulate the bending energy in terms of the shape operators of the given surfaces
Mc

1 andMc
2 for |c| ≤ σ. In practice, we use a quadratic penalty on the surfaceMc

1 measuring
the difference between the deformed distance function d2 ◦ φ and the desired distance value c,
leading to the functional 1

ε

∫
Mc

1
|d2 ◦ φ− c|2 da for some small ε > 0. Again using the coarea

formula we obtain the global mismatch penalty

Emismatch[φ] = 1
ε

∫
Ω
ησ(d1)|d2 ◦ φ− d1|2 dx, (2.4.2)

which amounts to the squared L2 distance of the pullback of d2 under the deformation φ and d1,
weighted at each level set by ησ.

Volumetric hyperelastic regularization. So far the resulting energy does not impose any
restriction on the deformation outside the narrow band of thickness 2σ aroundM1. Thus, to
obtain a well-posed variational model on the whole computational domain, we have to take into



Chapter 2. A Thin Shell Approach to the Registration of Implicit Surfaces 21

account some regularization functional outside the narrow band. To this end, we add an additional
volumetric elastic energy evaluated on the deformation φ. Following the usual paradigms of
nonlinear elasticity, we choose

Evol[φ] = ξ

∫
Ω
Wvol(A[φ]) dx (2.4.3)

for ξ > 0 small, where A[φ] = DφTDφ is the usual Cauchy-Green strain tensor. The requisite
energy density is given by

Wvol(A) = µ̃

2 trA+ λ̃− 2µ̃
8 detA+ 2µ̃+ λ̃

8 (detA)−1 (2.4.4)

for the Lamé constants λ̃ and µ̃ of a St. Venant–Kirchhoff material. Notice that the difference
with respect to the membrane energy (2.3.1) is the use of the three-dimensional strain tensor
A, instead of Atg. Physically, the resulting energy corresponds to a soft elastic material outside
the narrow band in which the comparatively rigid surfaces inside the band are embedded. The
addition of this term ensures that the obtained transformations are invertible on the whole domain,
and this in turn implies that the deformed surfaces will not collapse and intersect themselves, a
problem that can not be prevented with a tangential energy density alone.

We can alternatively consider the surfacesM1 andM2 as boundaries of volumetric objects, i.e.
modeling elastic bodies those contours are themselves elastic shells, through

Evol[φ] =
∫

Ω

(
ζ + (1− ζ)χ{d1<0}

)
Wvol[φ] dx . (2.4.5)

The registration energy. Combining the above energy terms we obtain the total thin shell
registration energy for implicit surfaces

Etotal[φ] = Esh[φ] + Emismatch[φ] + Evol[φ] .

The numerical method for the minimization of this energy will be discussed in the following
section.

2.5 Discretization and minimization

In the level set framework investigated here, we can use a straightforward space discretization to
solve the problem numerically. Since the problem only includes first order derivatives of φ in
the energy, we take into account multi-linear finite elements for the spatial discretization of the
involved energy and run an optimization method on the coefficients of the solution in this finite
element basis.

Computation of the curvatures. However, we also need to compute curvatures from the
distance functions di given as data, i.e. we have to robustly compute a suitable approximation of
D2di to evaluate the shape operators. Furthermore, first derivatives of these functions have to
computed when the gradient of the energy is needed in the descent method. Our approach, similar
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to the one used in [PR02], is to compute these derivative matrices by projection onto quadratic
polynomials spanned in a local neighborhood of each point. In explicit, for each node xk we
consider the set of nodes xj in the r neighborhood Br(xk) of xk and compute the quadratic
polynomial x 7→ pk(x) which minimizes

∑
xj∈Br(xk)

(
pk(xj)− dji

)2
.

To solve this quadratic minimization problem, we have to solve a small linear system for every
node xk. The associated system matrix is independent of the node xk on the regular grid lattice.
Thus, we can precompute the LR decomposition of the matrix. Once the polynomial coefficients
are computed, we replace the Hessian of di at every node xk in our matching model by the
Hessian of the polynomial pk.

Cascadic multilevel descent. Because we are solving a highly nonlinear and non convex
registration problem, we apply the standard paradigm of a coarse-to-fine cascadic minimization.
Let us suppose that a dyadic scale of a regular mesh is given, where the grid is is divided by two
on each level of the hierarchy. For the minimization at each level, we used a Fletcher-Reeves
nonlinear conjugate gradient method (see [NW06], section 5.2), in which the gradients are
computed with respect to a Sobolev metric by gradH1E[φ] = (1− β2

2 ∆)−1gradL2E[φ], where
gradL2E[φ] is the usual L2 gradient appearing in the Euler-Lagrange equation. This amounts
to smoothing the descent directions by an approximation of a Gaussian with filter width β. As
indicated in Algorithm 1, the smoothing is reduced gradually to be able to capture details of the
deformation.

Algorithm 1 Coarse-to-fine Sobolev descent
1: φ← 1
2: for l← lmin to lmax do
3: h← 1/(2l + 1)
4: β ← βmax
5: while α > βmin do
6: φ← Sobolev-CG-descent (β, φ)
7: β ← β/2
8: end while
9: end for

10: return φ

Parameter choices. Despite the many parameters present in the energy, the underlying physical
intuition of the model allows to make judicious choices without much effort. We indicate some
example ranges, which were used in all the applications presented. The material properties
αmem, αbend of the shell in (2.3.4) were the ‘reference parameters’, and were taken to be ≈ 1.
One can choose then λ ≈ 2, µ ≈ 0.25. In comparison ε−1 in (2.4.2) should be large, and was
taken to be ≈ 103. The outside parameters should correspond to a comparably soft material,
so picking λ̃ = λ, µ̃ = µ and ξ ≈ 10−3 for (2.4.3) was sufficient. The bending energy (2.3.3)
turned out to have enough influence to induce correct matchings with a shell width parameter
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δ = 0.5. Additionally, we varied the parameters ε and δ when changing from a coarser to the next
finer level by a factor 0.5, the above values being used on the coarsest grid level. This proved to
be a very suitable strategy to ensure thatM1 andM2 are appropriately matched at all scales,
and that geometric details are actually resolved under the deformation on the finest grid level.

2.6 Results

We demonstrate the properties of our method with some numerical results. First, we depict some
interesting qualitative properties of our models. Afterwards, we show some real applications for
the matching of two dimensional surfaces.

Redistribution of tangential distortion. Here we aim to experimentally confirm that the
membrane term (2.3.1) redistributes the tangential strain which necessarily occurs when shapes
of different length or area are matched. This corresponds to the strict convexity of the integrand
(2.3.2) in a neighborhood of the identity. For demonstrating this, we use the simple 2D shapes of
Figure 2.4 and compare the matching of a circle with an ellipse, once solely using the volumetric
elastic energy from (2.4.5) and once using our model energy (2.4.1) with membrane energy but
without bending energy (αmem = 1, αbend = 0). The resulting tangential distortion measures are
presented in Table 2.1. In Figure 2.4, we show the resulting matching for our model.

FIGURE 2.4: Matching problem to explore the redistribution of tangential strain
induced by the membrane term. Upper row: Reference and template shapes
(colors are the same at the undeformed position on the circle and the deformed
position on the ellipse). Lower row: detail of the deformed grid, drawn over the
template shape. On the left side, only the volumetric elastic energy has been
used, whereas in the right side we have used our model without bending energy
(Table 2.1). Observe the localized deformations in the tangential direction to

ensure the equidistribution of tangential strain.



24 Chapter 2. A Thin Shell Approach to the Registration of Implicit Surfaces

Level (h−1) Evol only Esh with αbend = 0
5 (33) 0.8541 0.1758
6 (65) 0.7949 0.0875
7 (129) 0.8053 0.0440
8 (257) 0.7953 0.0234
9 (513) 0.7978 0.0143

TABLE 2.1: Standard deviation of the tangential strain on the narrow band
2− 1

2 ‖Dtgφ
TDtgφχ{|d1|<h}‖F around the reference curve. The ratio between

length of the ellipse and length of the circle is ≈ 2.38. When using only a
volumetric elasticity term, the deformation is basically a stretching in horizontal
direction with large variation of the tangential strain, whereas in our model the

strain is asymptotically equidistributed with decreasing grid size.

Crumpling when minimizing only the membrane energy. One of the main limitations of
using nonlinear membrane terms of the type (2.3.1), that strongly penalize compression, is that
when trying to force a deformation from one shape to a thin neighborhood of a much smaller
one, crumpling becomes unavoidable. Rather than a problem with our particular model, this is an
issue with any realistic physical formulation, as crumpling occurs when crushing a sheet of paper,
for example. If a very strong compression is required to match the reference to the template,
oscillations are created to accommodate the excess of length. In this case, the continuous energy
has no minimizer. We present a numerical example in which crumpling appeared in Figure 2.5. In

FIGURE 2.5: Numerical crumpling on a coarse grid (332 points). Left column,
top to bottom: Template curve, reference curve, and pullback of the template

curve under the deformation φ. Right: Grid deformed through φ.

fact, in this case the penalty parameter ε is not small enough to prevent the crumpling from being
visible. This phenomenon was also observed in [Hee+12], for very small bending resistance.
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FIGURE 2.6: Upper row: Effect of the bending energy Ebend. From left to
right: Textured template shape, reference shape, deformed template (with a push
forward of the template texture) based on a matching with αbend = 0, deformed
template with αbend = 1. Lower row: Matching of constant mean curvature
surfaces. From left to right: Textured template shape, reference shape, deformed
template using the energy E simple

bend , deformed template using a direct comparison
of the shape operators via Ebend.

Shape sensitive matching using the bending energy. We present two examples to underline
the importance of the curvature matching term in Figure 2.6. In the first example, we aim at
matching two rotated versions of a rounded l1 ball. Without incorporating the curvature matching
term Ebend (αbend = 0), the corners are squashed in one position and grown in another via the
deformation. When Ebend is activated, the method finds the right rotation, because the rounded
edges have to be mapped onto each other to reduce the norm of the relative shape operator.

The second example shows the matching of two different sections of an unduloid. Unduloids are
surfaces of constant mean curvature first derived by Delaunay [Del41]. We attempt this both with
the proposed bending energy (2.3.3), and a simpler mean curvature comparison term of the form

E simple
bend =

∫
Ω
ησ(d1)|H2 ◦ φ−H1|2 dx, (2.6.1)

as in [Lit+05], where Hi is the mean curvature of the surfaceMdi
i . Clearly, taking into account

just a comparison of mean curvatures with the above energy is not appropriate, whereas the
proposed shape operator alignment (2.3.3) matches the surfaces correctly.

Applications for shape matching. As a further proof of concept, we investigate a couple of
matching problems in the context of more complicated shapes in Figures 2.7, 2.8 and 2.9. In
particular, we investigate the performance of the cascadic descent and depict matching results
on different grid levels in Figures 2.7 and 2.9. In all these applications, we have used the full
variational model presented above (in Figure 2.8 and 2.9 in comparison with the results for a
pure volume matching energy).
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FIGURE 2.7: From left to right: Textured template shape, and resulting deformed
template after different stages of the cascadic minimization scheme (on 173, 333,

653, 1293 grids, respectively).

FIGURE 2.8: From left to right: textured template surface, reference input
surface, matching results for the full model on a 1293 grid (with a push forward
of the texture), analogous result with only volume elastic regularization and no
shell registration energy. Without the membrane and bending terms, several parts

are incorrectly matched (front of the head, both pairs of legs).

2.7 Conclusions and future work

We have presented a variational method for the matching of implicit surfaces represented as
level sets. The proposed energies penalize both stretching / compression and bending of the
surfaces via physically realistic elastic energies. The level set approach allows a formulation with
only first order derivatives, and computation on regular grids. We have demonstrated qualitative
properties for a set of simple test cases and show the applicability of the chosen approach for
more complex surfaces. In particular, we have shown correct matches in cases where simpler
elastic approaches fail.

A future research direction is to define shape spaces of such implicit shells (cf. [Hee+12] for

FIGURE 2.9: From left to right: Textured template shape, resulting deformed
template after minimization on a grid with 173 nodes and on a grid with 1293

nodes, respectively, when using the full proposed model. Right most image:
matching results based on a purely elastic volume matching. In particular, we

observe artifacts due to a lack of surface deformation energies.
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the case of triangulated shell surfaces). Furthermore, a rigorous mathematical analysis of the
model has to be developed, with criteria for the existence of minimizing deformations. Moreover,
adaptive meshes would allow to treat much more detailed surfaces as they appear for instance in
biological and medical applications.

Acknowledgements

This research was supported by the Austrian Science Fund (FWF) through the National Research
Network ‘Geometry+Simulation’ (NFN S117). The dinosaur and dolphin shapes were taken
from the McGill 3D Shape Benchmark [Sid+08]. The scanned faces are part of the 3D Basel
Face Model data [Pay+09].

References

[BMR13] M. Burger, J. Modersitzki, and L. Ruthotto. “A Hyperelastic Regularization Energy
for Image Registration”. SIAM J. Sci. Comput. 35.1 (2013), B132–B148.

[BNP10] A. Bonito, R. H. Nochetto, and M. S. Pauletti. “Parametric FEM for geometric
biomembranes”. J. Comput. Phys. 229 (2010), pp. 3171–3188.

[BPW12] K. Bredies, T. Pock, and B. Wirth. “Convex Relaxation of a Class of Vertex Penaliz-
ing Functionals”. J. Math. Imaging Vis. (2012), doi: 10.1007/s10851–012–0347–
x.

[CFK04] G. Charpiat, O. Faugeras, and R. Keriven. “Approximations of Shape Metrics and
Application to Shape Warping and Empirical Shape Statistics”. Found. Comp. Math.
5 (2004), pp. 1–58.

[Cha+10] I. Chao, U. Pinkall, P. Sanan, and P. Schröder. “A simple geometric model for
elastic deformations”. ACM Trans. Graph. 29 (4 July 2010), 38:1–38:6.

[Cia00] P. G. Ciarlet. Mathematical elasticity, volume III: Theory of shells. Amsterdam:
North-Holland, 2000.

[Cia88] P. G. Ciarlet. Mathematical elasticity, volume I: Three-dimensional elasticity.
Vol. 20. Mathematics and its Applications. Amsterdam: North-Holland, 1988.

[Del41] Ch. Delaunay. “Sur la surface de révolution dont la courbure moyenne est constante.”
fre. J. Math. Pures Appl. (1841), pp. 309–314.

[DZ94] M.C. Delfour and J.-P. Zolésio. “Shape analysis via oriented distance functions”. J.
Funct. Anal. 123 (1994), pp. 129–201.

[DZ95] M.C. Delfour and J.-P. Zolésio. “A boundary differential equation for thin shells”. J.
Differential Equations 119.2 (1995), pp. 426–449.

[EG92] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions.
Studies in Advanced Mathematics. Boca Raton, FL: CRC Press, 1992. viii+268.



28 REFERENCES

[FJM06] G. Friesecke, R. D. James, and S. Müller. “A Hierarchy of Plate Models Derived
from Nonlinear Elasticity by Gamma-Convergence”. Arch. Ration. Mech. Anal.
180.2 (2006), pp. 183–236.

[Fri+03] G. Friesecke, R.D. James, M.G. Mora, and S. Müller. “Derivation of nonlinear
bending theory for shells from three-dimensional nonlinear elasticity by Gamma-
convergence”. C. R. Acad. Sci. Paris Sér I Math. 336.8 (2003), pp. 697–702.

[Fuc+09] M. Fuchs, B. Jüttler, O. Scherzer, and H. Yang. “Shape metrics based on elastic
deformations”. J. Math. Imaging Vis. 35.1 (2009), pp. 86–102.

[Hee+12] B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth. “Time-Discrete Geodesics in
the Space of Shells”. Computer Graphics Forum 31.5 (2012), pp. 1755–1764.

[LDR96] H. Le Dret and A. Raoult. “The membrane shell model in nonlinear elasticity: A
variational asymptotic derivation”. J. Nonlinear Sci. 6 (1 1996), pp. 59–84.

[Lit+05] N. Litke, M. Droske, M. Rumpf, and P. Schröder. “An Image Processing Approach
to Surface Matching”. In: Symposium on Geometry Processing. Ed. by M. Desbrun
and H. Pottmann. 2005, pp. 207–216.

[LL08] T.-Y. Lee and S.-H. Lai. “3D non-rigid registration for MPU implicit surfaces”. In:
CVPR Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment.
2008.

[Mod04] J. Modersitzki. Numerical Methods for Image Registration. OUP Oxford, 2004.

[MR12] D. P. Mukherjee and N. Ray. “Contour interpolation using level-set analysis”. Int. J.
Img. Graph. 12.1 (2012), p. 1250004.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Second. Springer, 2006.

[Pay+09] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. “A 3D Face Model
for Pose and Illumination Invariant Face Recognition”. In: Proc. Advanced Video
and Signal based Surveillance. 2009.

[PR02] T. Preusser and M. Rumpf. “A level set method for anisotropic geometric diffusion
in 3D image processing”. SIAM J. Appl. Math. 62.5 (2002), pp. 1772–1793.

[RW09] M. Rumpf and B. Wirth. “A nonlinear elastic shape averaging approach”. SIAM J.
Imaging Sci. 2.3 (2009), pp. 800–833.

[Set99] J. A. Sethian. Level set methods and fast marching methods. 2nd ed. Vol. 3. Cam-
bridge Monographs on Applied and Computational Mathematics. Evolving inter-
faces in computational geometry, fluid mechanics, computer vision, and materials
science. Cambridge: Cambridge University Press, 1999. xx+378.

[Sid+08] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson.
“Retrieving articulated 3-D models using medial surfaces”. Machine Vision and
Applications 19.4 (2008), pp. 261–275.



REFERENCES 29

[Sri+09] A. Srivastava, C. Samir, S. H. Joshi, and M. Daoudi. “Elastic Shape Models for
Face Analysis Using Curvilinear Coordinates”. J. Math. Imaging. Vis. 33 (2009),
pp. 253–265.

[Win+11] T. Windheuser, U. Schlickewei, F. R. Schmidt, and D. Cremers. “Geometrically
consistent elastic matching of 3D shapes: A linear programming solution”. In:
International Conference on Computer Vision. 2011, pp. 2134–2141.

[Wir+11] B. Wirth, L. Bar, M. Rumpf, and G. Sapiro. “A Continuum Mechanical Approach
to Geodesics in Shape Space”. Int. J. Comput. Vis. 93.3 (2011), pp. 293–318.





3
Implicit Surface Matching with a Lower

Semicontinuous Shell Energy

Abstract

A shape sensitive, variational approach for the matching of surfaces considered as thin elastic
shells is investigated. The elasticity functional to be minimized takes into account two different
types of nonlinear energies: a membrane energy measuring the rate of tangential distortion when
deforming the reference shell into the template shell, and a bending energy measuring the bending
under the deformation in terms of the change of the shape operators from the undeformed into
the deformed configuration. The variational method applies to surfaces described as level sets.
It is mathematically well-posed and an existence proof of an optimal matching deformation is
given. The variational model is implemented using a finite element discretization combined
with a narrow band approach on an efficient hierarchical grid structure. For the optimization
a regularized nonlinear conjugate gradient scheme and a cascadic multilevel strategy are used.
The features of the proposed approach are studied for synthetic test cases and a collection of
geometry processing applications.

3.1 Introduction

We present a variational model for the matching of surfaces implicitly represented as level sets.
The approach is inspired by the mathematical theory of nonlinear elasticity of thin shells. The
model consists in an energy functional, which is to be minimized among deformations of a
computational domain in which two given surfaces are embedded. A minimizer of this functional
is a deformation that closely maps one (reference) surface onto the other (template) surface. As
the underlying model we consider the reference surface as a thin elastic shell, i.e., a layer of an
elastic material embedded in a volume of another several orders of magnitude softer isotropic
elastic material. Subject to matching forces the volume is deformed is such a way that the
thin shell is mapped onto the template surface. The functional reflects desired phenomena like
resistance to compression and expansion of the surface, resistance to bending, and rotational
invariance, while solely involving the deformation and the Jacobian of the deformation. The
model is formulated in terms of projected derivatives from the tangent space of the reference
surface onto the expected tangent space of the template surface. Taking into account a suitable
factorization of the natural pullback under a deformation of shape operators enables us to
formulate a model with appropriate convexity properties. The actual surface matching constraint
is handled through a penalty, allowing for efficient numerical computation.

31
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Through arguments of compensated compactness, we are able to show weak lower semicontinuity
of the energy and consequently existence of minimizing deformations. We present a numerical
approach based on a multilinear finite element ansatz for the deformation implemented on
adaptive octree grids. The resulting discrete energy is minimized in a multiscale fashion applying
a regularized gradient descent.

In the conference article [Igl+13] (Chapter 2) a preliminary version of this approach was presented.
For the functional in that paper lower semicontinuity could not be ensured for either the membrane
or bending energies. This lack of lower semicontinuity manifests itself in applications, where
compression of the surface is expected, and leads to undesired oscillations in almost-minimizing
deformations, which we explore in the present work through explicit examples and computations.
Additionally, to increase the efficiency the computational meshes are in the present paper adapted
to the surfaces. Consequently the number of degrees of freedom scales asymptotically almost
like that of a surface problem.

The main pillar of our modelling is the use of polyconvex energy densities, first introduced in
[Bal77]. Energies of this type allow for geometric consistency properties like rotation invariance
and the ability to measure area and volume changes. The core insight of this theory is that
integrands consisting of convex functions of subdeterminants of the Jacobian give rise to integral
functionals that are weakly lower semicontinuous in suitable Sobolev spaces. Indeed, this can
be seen as an instance of compensated compactness [Mur87]. A generic polyconvex isotropic
energy density of the type used in this work is

αp‖A‖p + βq‖CofA‖q + Γ(detA), (3.1.1)

for CofA the cofactor matrix of A. Here, the coefficients and the function Γ are such that (3.1.1)
attains its minimum for A ∈ SO(3), indicating that rigid motions have minimal energy. Often in
the modeling of nonlinear elasticity the condition

lim
detA→0+

Γ(A) = +∞ (3.1.2)

is added, to reflect the non-interpenetration of matter [Bal81]. In our model we make use of
densities both with and without this property.

Related work. Linear elasticity has been extensively used in computer vision and in graphics.
Prominent applications are image registration [Mod04; KU03; RSW10; KFF06; KL10], optical
flow extraction [KR05], and shape modeling [Fuc+09].

In recent years, theories of nonlinear elasticity have been applied in many computer vision and
graphics applications such as mesh deformation [Cha+10], shape averaging [RW09], registration
of medical images [BMR13]. The advantage of nonlinear models is that they allow for intuitive
deformations when the displacements are large.

In this paper, we present a model for nonlinear elastic matching of thin shells. A finite element
method for the discretization of bending energies of biological membranes has been introduced
in [BNP10]. Their approach uses quadratic isoparametric finite elements to approximate the
interface on which the gradient flow of an elastic energy of Helfrich type is considered. The
papers [BPW13; BPW15] discuss accurate convex relaxation of higher order variational problems
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on curves described as jump sets of functions of bounded variation. In particular, it enables the
numerical treatment of elastic energies on such curves.

One challenge in polyhedral surface processing is to provide consistent notions of curvatures
and second fundamental forms, i.e., notions that converge (in an appropriate topology or in
a measure theoretic sense) to their smooth counterparts, given a smooth limit surface. One
computationally popular model for discretizing the second fundamental form is Grinspun’s et
al. discrete shells model [Gri+03]. Another efficient, and robust method for nonlinear surface
deformation and shape matching is PriMo [Bot+06]. This approach is based on replacing the
triangles of a polyhedral surfaces by thin prisms. During a deformation, these prisms are required
to stay rigid, while nonlinear elastic forces are acting between neighboring prisms to account for
bending, twisting, and stretching of the surface. We refer to Botsch and Sorkine [BS08] for a
discussion of pros and cons for various such methods.

The matching of surfaces with elastic energies has recently been studied in [Win+11]. Their
energy contains a membrane energy depending on the Cauchy-Green strain tensor and a bending-
type energy comparing the mean curvatures on the surfaces. The matching problem is formulated
in terms of a binary linear program in the product space of sets of surface patches. For computa-
tions, a relaxation approach is used. A surface matching approach related to ours is presented in
[Lit+05], where nonlinear elastic energies are used for matching parametrized surface patches.
In comparison, our approach is non-parametric and allows surfaces of any topology.

In [Sri+09], face matching based on a matching of corresponding level set curves on the facial
surfaces is investigated. To match pairs of curves an optimal deformation between them is
computed using an elastic shape analysis of curves. Compared to our approach, this model does
not take into account bending dissipation of the curves.

A method for matching and blending of curves represented by level sets has been presented in
[MR12]. Thereby, a level set evolution generates an interpolating family of curves, where the
associated propagation speed of the level sets depends on differences of level set curvatures. In
this class of approaches, geometric evolution problems are formulated, whereas here we focus on
variational models for matching deformations. Variational registration of implicit surfaces was
also considered in [LL08], but only through volume elasticity, in contrast to our shell terms.

Our approach is inspired by the articles [DZ94; DZ95] in which surface PDE models are derived
in terms of the signed distance function. Shape warping based on the framework of [DZ94] has
been discussed from a geometric perspective in [CFK04].

Outline. The paper is organized as follows. In Section 2, we review the required preliminaries
about distance functions and formulate the geometric non-distortion and matching conditions
that inspire our model. In Section 3, we present the different contributions to our energy.
Section 4 is devoted to proving the existence of minimizing deformations under suitable Dirichlet
and Neumann boundary conditions. Furthermore, the strong convergence of solutions for
vanishing matching penalty parameter is discussed and counterexamples showing the lack of
lower semicontinuity of related simpler models are given. In Section 5 a numerical strategy for
minimizing the energy on adaptive octree grids is presented. Finally, Section 6 contains a range
of numerical examples demonstrating the behavior of solutions corresponding to our design
criteria, and presents several potential applications.
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Some useful notation. For later usage and the purpose of reference let us collect some useful
notation, mostly introduced in detail in later sections:

• |B| stands for the Lebesgue measure of B ⊂ Rn, and diamB = supx,y∈Z |x− y| for its
diameter.

• Generic matrices are denoted by A,B,M,N . We use 1 for the identity matrix. The set of
rotations is denoted by O(n) and SO(n) is the set of orientation-preserving rotations. The
set of all symmetric and positive definite matrices is SPD(n).

• Components of vectors are denoted with subindices. For v ∈ Rn, |v| denotes its Euclidean
norm. The (n − 1)-dimensional sphere is Sn−1. For a matrix M , |M | is the Frobenius
norm.

• For two column vectors v, w ∈ Rn, v ⊗ w is the tensor product of v and w, that is, the
square matrix vwT . In particular, if |w| = 1 we have the identity (v ⊗ w)w = v.

• P(e) = 1− e⊗ e is the projection onto vectors orthogonal to e ∈ Sn−1.

• Deformations on Rn are denoted by φ, and deformations defined on a curve or surface
M⊂ Rn by ϕ. The identity deformation is id.

• Ω ⊆ R3 denotes the computational domain. Every relevant deformation φ maps Ω into Rn.
Ω has to contain all computationally relevant manifoldsM. Ω has Lipschitz boundary, is
open and bounded.

• We use the notation ∂i for partial derivatives,∇ for the gradient of a scalar function, D for
the Jacobian matrix of a vector function and D2 for the Hessian matrix of a scalar function.

• M1,M2 are closed surfaces with C2,1 boundary. The inside and outside components
being well defined by the Jordan-Brouwer separation theorem ([GP74], Chapter 2, Section
5). The signed distance function toM1,M2 is denoted by d1,d2. The sign convention is
that di is negative on the inside ofMi, so that di(x) = −dist(x,Mi) if x is in the inside
component of Ω \Mi and di(x) = dist(x,Mi) otherwise, where the distance functions
dist(·,Mi), i = 1, 2 are the unique viscosity solutions of 1 − |∇dist(·,Mi)| = 0 and
dist(·,Mi) = 0 onMi. The normal fields to the offsets ofMi at a point x are denoted
by ni(x) := ∇di(x). A superscript next toMi (i = 1, 2), as inMc

i , denotes that we are
talking about a level set of di with value different from zero, so thatMc

i := d−1
i (c).

TxMdi(x)
i denotes the tangent space toMdi(x)

i at x. The outwards normal toMdi(x)
i is

given by ni(x), and the set of points where di is not differentiable is denoted by sing di.

We use Si = D2di for the Hessian of di, which coincides with an extended shape operator
ofMi.

• λ, µ are the Lamé coefficients of an isotropic material in linearized elasticity.

• C0(Ω; R3) is the space of continuous functions from the domain Ω to the range R3, Ck,α

the Hölder spaces in which the k-th derivative is α-Hölder continuous, including the
Lipschitz case α = 1. The range of the spaces is specified unless it is R. Sobolev spaces
are denoted by W 1,p and the closure of compactly supported smooth functions in them by
W 1,p

0 .
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• The letter C is reserved for a generic positive constant that may have different values in
each appearance. Sequence indexing is usually denoted by a superscript k, and limits by
an overline, e.g., φk → φ.

3.2 Deformation and matching of level set surfaces

We are given two compact, connected embedded surfacesM1,M2 of class C2,1, which are
diffeomorphic to each other, and both of which are contained in a bounded Lipschitz domain
Ω ⊂ R3. In this section we deal with the tangential distortion and the change of the shape
operator under a deformation φ : Ω→ Rn.

For any c ∈ R, we denote the c-offsets to the surface Mi by Mc
i := {x ∈ Ω |di(x) = c} .

Furthermore, we define the singularity set sing di as the set of points where di is not twice
differentiable. With the regularity ofMi that we have assumed, it is well known (e.g., Theorem
1.1, Corollary 1.3 and Remark 1.4 of [LN05]) that sing di has Lebesgue measure zero and
dist(Mi, singMi) > 0.

The gradient of the signed distance function ∇di(x) is the outward-pointing unit normal ni(x)
toMdi(x)

i at a point x. The tangent space toMdi(x)
i at x, denoted by TxMdi(x)

i , consists of all
vectors orthogonal to ni(x). Then, the corresponding projection matrices onto the tangent spaces
are defined by

Pi(x) := P(ni(x)) = 1− ni(x)⊗ ni(x).

Note that Si(x) := D2di(x) = Dni(x)Pi(x) is the shape operator of the immersed surface
Mdi(x)

i at a point x. In fact, from |ni(x)|2 = 1 we deduce by differentiation that nTi (x)Si(x) =
0. This, together with the fact that ni ⊗ ni is the projection onto the normal of the surface Si
shows that

Pi(x)Dni(x) = Dni(x).

With our choice of signs for di, the symmetric matrices Si are positive definite for convex
surfacesMi. Further information on tangential calculus for level set functions may be found in
Chapter 9 of [DZ11].

3.2.1 Tangential derivative and area and length distortion

First, let us assume that φ exactly maps Mc
1 onto Mc

2, for all c > 0. Then, TxMd1(x)
1 =

im P1(x) and Tφ(x)φ(Md1(x)
1 ) = Tφ(x)M

d2(φ(x))
2 = im P2(φ(x)) and we define the tangential

derivative induced by the deformation φ as

Dtgφ(x) := P2(φ(x))Dφ(x) P1(x) , (3.2.1)

capturing the tangential variation of φ(x) onM2 along tangential directions onM1. In the
variational model we consider below an energy term depending on Dtgφ(x) will reflect the
tangential distortion of the deformation in the context of a matching of the two surfacesM1 and
M2 even though φ(M1) does not necessarily equalM2. Indeed, in the caseM2 6= φ(M1) the
variation along a tangent direction onM1 is still projected via Dtgφ(x) onto the tangent space



36 Chapter 3. Implicit Surface Matching with a Lower Semicontinuous Shell Energy

Tφ(x)M
d2(φ(x))
2 and not onto the tangent space of the deformed surface φ(M1) (cf. Fig. 3.1).

Therefore there may exist tangential directions v ∈ TxMd1(x)
1 , such that Dtgφ(x)v = 0 even

though Dφv 6= 0. Thus Dtgφ(x) can only be considered a measure of tangential distortion if
φ(M1) is sufficiently close toM2 in the sense of closeness of tangent bundles.

FIGURE 3.1: A sketch of the tangential derivativeDtgφ in the non-exact matching
case with φ(M1) 6=M2.

For a general deformation ψ : Rn → Rn the Cauchy-Green strain tensor DψTDψ describes
(up to first order) the deformation in a frame invariant (with respect to rigid body motions)
way. In the case of deformation of surfaces and for a suitably extended deformation gradient
Dtgφ + n2 ◦ φ ⊗ n1 we define the extended Cauchy-Green strain tensor of the tangential
distortions:(

Dtgφ+ (n2 ◦ φ)⊗ n1
)T (Dtgφ+ (n2 ◦ φ)⊗ n1

)
= Dtgφ

TDtgφ+ n1 ⊗ n1 . (3.2.2)

The term n2(φ(x))⊗n1(x) is used to complement directions that are removed by the projections
in the definition of the tangential distortion Dtgφ and can be seen to realize a nonlinear Kirchhoff-
Love assumption [Cia00, Page 336], which postulates that lines normal to the middle surface of a
shell remain normal after the deformation without stretching.

Next, we investigate the area and length distortion due to the tangential derivative Dtgφ. For a
given vector e ∈ Rn we denote by Q(e) any proper rotation such that Q(e) · en = e, where en
denotes the n-th element of the canonical basis of Rn. Note that this condition does not specify
a unique Q(e). Then, for every B ∈ Rn×n satisfying w ∈ kerB and imB ⊆ v⊥ for some unit
vectors v, w ∈ Sn−1, we have

Q(v)T (B + v ⊗ w)Q(w) = Q(v)TBQ(w) + en ⊗ en =
(
B̃ 0
0 1

)
, (3.2.3)

where B̃ is the upper left (n − 1) × (n − 1) submatrix of Q(w)TBQ(v). Obviously (3.2.3)
implies

det(B + v ⊗ w) = det(B̃) ,
|B + v ⊗ w|2 = tr

(
(B + v ⊗ w)T (B + v ⊗ w)

)
= 1 + |B̃|2 .
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Hence, for φ(M1) =M2 and v = n2(φ(x)), w = n1(x) the area distortion under the surface
matching deformation φ at some position x is described by det(Dtgφ(x) + n2(φ(x))⊗ n1(x)),
which equals the positive square root of the determinant of the above Cauchy-Green strain tensor
Dtgφ

TDtgφ + n1 ⊗ n1. The squared tangential length distortion (in the sense of summing all
squared distortions with respect to an orthogonal basis) is described by |Dtgφ(x) + n2(φ(x))⊗
n1(x))|2 and equals the trace of the Cauchy-Green strain tensor.

3.2.2 Surface bending and curvature mismatch

Now, we quantify the change of curvature directions and magnitudes under the deformation
φ. Our approach is motivated by models describing bending of elastic shells, because in our
application the surfaces are considered as thin shells.

In order to quantify the changes of curvature we first assume that φ(M1) =M2, and compute
the difference of the pull back of the shape operator S2 onM2 ontoM1 under the deformation
φ and the shape operator S1 onM1, which, for two arbitrary directions v, w ∈ Rn, is given by

S2(φ(x))Dφ(x)v · Dφ(x)w − S1(x)v · w =
(
Dφ(x)TS2(φ(x))Dφ(x)− S1(x)

)
v · w .

If v, w are tangent vectors in TxM1, this difference describes the relative shape operator.

We define the extended relative shape operator

Srel(x) := Dφ(x)TS2(φ(x))Dφ(x)− S1(x) . (3.2.4)

For n = 3 when φ is an isometric deformation between M1 and M2 (that is Dφ(x) is an
orthogonal mapping on TxM1 for all x ∈M1) Srel appears in physical models for thin elastic
shells in the context of the Γ−limit of 3D hyperelasticity [Fri+03]. Even though we do not
necessarily expect our deformations to be tangentially isometric, we use this ansatz to compare
curvatures of level sets in deformed and undeformed configuration, respectively. The following
calculations shed some light on the properties of Srel:

D2(d2 ◦ φ)(x) = D(n2(φ(x)) · Dφ(x) = Dφ(x)TS2(φ(x))Dφ(x) +
n∑
k=1

(n2)TkD2φk(x) .

(3.2.5)
The assumption that φ(M1) = M2 can be rewritten as d2 ◦ φ(x) = 0 for x ∈ M1. Let us
assume that in addition d2 ◦ φ is a distance function (that is |∇(d2 ◦ φ)| = 1), then d2 ◦ φ is
again a distance function, and since d2 ◦ φ = 0 it follows that the left hand side of (3.2.5) is the
shape operator of the surfaceM1. The first term in the right hand side is the pullback of S2.

The second term measures the additional curvature induced by φ that is observed onM2, but
was not present in the preimage φ−1(M2) =M1.

Let us remark that the appearance of a second fundamental form is consistent with Koiter’s
nonlinear thin shell theory [Koi66], [Cia00, Section 11.1]. Regardless of whether d2 ◦ φ is a
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distance function or not, (3.2.5) implies that

Dφ(x)TS2(φ(x))Dφ(x)− S1(x) = −
n∑
k=1

(n2)TkD2φk(x) +D2(d2 ◦ φ− d1)(x)

= −
n∑
k=1

(n2)TkD2φk(x),
(3.2.6)

in case d2 ◦ φ = d1.

In what follows, we will use the extended shape operator to derive a variational model for the
mismatch of curvatures.

3.3 Energy functional

Given two surfacesM1 andM2 our ultimate goal is to describe best matching deformations φ,
which mapM1 ontoM2 as the minimizer of a suitable energy. Thereby, different energy terms
will reflect a set of matching conditions for a volumetric deformation φ : Ω→ R3 and without a
hard constraint φ(M1) =M2:

• A membrane deformation energy Emem penalizes the tangential distortion measured
through Dtgφ.

• A bending energy Ebend penalizes bending as reflected by the relative shape operator.

• A matching penalty Ematch ensures a proper matching of the two surfacesM1 ontoM2
via a narrow band approach.

• A volume energy Evol enforces a regular deformation on the whole computational domain
Ω.

Our approach is based on level sets. Hence, we replace the integration over a single surface (i.e.,
,M1) for the first three terms by a weighted integration over a narrow band of width σ with
0 < σ < dist(M1, sing d1). To this end we will make use of a cutoff function ησ ∈ C∞0 (R)
with

∫
R ησ(t)dt = 1 and supp ησ = [−σ, σ]. In what follows we will discuss the four energy

contributions separately.

3.3.1 Tangential distortion energy

Picking up the insight gained in Section 3.2.1 we formulate the membrane energy in terms of the
length and area change associated with the tangential distortion Dtgφ:

Emem[φ] = δ

∫
Ω
ησ(d1(x))W

(
Dtgφ(x) + n2(φ(x))⊗ n1(x)

)
dx, (3.3.1)

where W is a nonnegative polyconvex energy density vanishing at SO(3). The weight δ reflects
the proper scaling of the tangential distortion energy in case of a thin shell model with shell
thickness δ.
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The energy (3.3.1) vanishes only on deformations φ whose Jacobian matrix Dφ(x) maps
TMd1(x)

1 isometrically onto TMd2(φ(x))
2 for every point x ∈ supp ησ ◦ d1. In consequence,

both tangential expansion and compression are penalized.

Let us remark, that the extension Dtgφ(x) + n2(φ(x))⊗ n1(x) of the tangential derivative Dtgφ
defined in (3.2.1) with rank n − 1 can degenerate or be orientation-reversing depending on
the local configuration ofM1 andM2 at x (cf. Figure 3.2 for examples). Therefore, under
the assumption detDφ(x) > 0 (which is in fact enforced almost everywhere by our volume
regularization term (3.3.7) introduced below), the fact that W has a minimum only on SO(3)
means that deformations whose extended tangential derivative may be locally isometric (that is,
Dtgφ(x) + n2(φ(x))⊗ n1(x) ∈ O(3)), but for which n1(x) · n2(φ(x)) ≤ 0, are also penalized.
This does not bring any negative consequences, since we aim for deformations matching the
inside and outside of the surfaces correctly.

In fact, any density which is minimal precisely at O(3) can not lead to lower a semicontinuous
functional. To see this, recall that a necessary condition for lower semicontinuity of the energy is
convexity of the density along lines directed by rank-one matrices ([Dac08, Theorems 5.3 and
8.1]). But a density minimized only on O(3) can not be convex along such a line, since O(3)
may be written as

O(3) = SO(3) ∪DSO(3),

where D := diag (−1, 1, 1), and these components may be joined through such rank-one lines.
Indeed, it is enough to choose 1 ∈ SO(3) and T ∈ DSO(3) to get 1−D = diag (2, 0, . . . , 0),
which has rank one. A similar line of reasoning is exploited in Example 3.4.8 of next section.

FIGURE 3.2: Configurations in which for the (obviously isometric) iden-
tity deformation we have det (Dtg1(x) + n2(1x)⊗ n1(x)) = 0 (left) and
det (Dtg1(x) + n2(1x)⊗ n1(x)) < 0 (right) and thus the extended tangential

derivative degenerates or reverses orientation.

Furthermore, the energy density W should not satisfy W (B)→∞ for detB → 0. A straight-
forward modification of the arguments of Ciarlet and Geymonat ([CG82], [Cia88] Theorem
4.10-2) leads to an isotropic, frame-indifferent integrand W without singularities, and with a
Hessian for B = 1 which matches the quadratic energy integrand of the Lamé-Navier model of
linearized elasticity. Frame indifference refers to the property W (QA) = W (A), and isotropy to
W (AQ) = W (A), both for any A ∈ Rn×n, Q ∈ SO(n). Observe that both of these properties
are needed to ensure invariance with respect to the possible tangent planes toM1 andM2 (cf.
(3.2.3)). With given Lamé coefficients λ, µ > 0, we select the energy

W (A) = µ

2 |A|
2 + λ

4 (detA)2 +
(
µ+ λ

2

)
e−(detA−1) − (n+ 2)µ

2 − 3λ
4 .
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This density fits into the notation of (3.1.1), if we choose p = q = 2 and Γ(t) = ct2 + de−(t−1) .

3.3.2 Bending energy

Now, we discuss a variational formulation penalizing deviation from the curvature matching
condition Dφ(x)TS2(φ(x))Dφ(x) = S1(x), which is equivalent to a vanishing relative shape
operator (cf. (3.2.4)), where Si = DniPi = PiD2diPi for i = 1, 2 are the shape operators on
the surfacesM1 andM2, respectively. At first sight, it appears natural to formulate a quadratic
penalization and to define a bending energy

Ẽbend[φ] =
∫

Ω
ησ(d1(x))|Dφ(x)TS2(φ(x))Dφ(x)− S1(x)|2dx .

The weight δ3 reflects the scaling of the bending energy for thin shells of thickness δ. However,
this energy is in general not weakly lower semicontinuous. Indeed, already in the simple case
S1 ≡ S2 ≡ 1, the integrand reduces to |DφTDφ− 1|2 for which a lack of quasiconvexity is well
known [LDR95b].

Thus, we are asking for an alternative lower semicontinuous energy functional which gives
preference to deformations φ for which DφT (S2 ◦ φ)Dφ is close to S1. We show that this can
be achieved with the extended shape operators Sexti = PiD2diPi + ni ⊗ ni for i = 1, 2 and
factorization. For proving this we make use of the following lemma.
Lemma 3.3.1 (modified curvature matching condition). Assume that M , N are two symmetric,
positive definite matrices satisfying

M = P1MP1 + n1 ⊗ n1 and N = P2NP2 + n2 ⊗ n2 .

Moreover, assume that A ∈ Rn×n satisfies

AP1 = P2A ,

then the following statements are equivalent:

ATP2NP2A = P1MP1 (3.3.2)

and
Λ[M,N,A] = P2N

1
2 P2AP1M

− 1
2 P1 + n2 ⊗ n1 ∈ O(n) . (3.3.3)

Proof. By definition, the matrix Λ[M,N,A] is orthogonal if Λ[M,N,A]TΛ[M,N,A] = 1.
Therefore, if (3.3.3) holds, then

1 = (P2N
1
2 P2AP1M

− 1
2 P1 + n2nT1 )T (P2N

1
2 P2AP1M

− 1
2 P1 + n2nT1 )

= P1M
− 1

2 P1A
TP2N

1
2 P2P2N

1
2 P2AP1M

− 1
2 P1 + n1nT2 n2nT1

= P1M
− 1

2ATP2(P2N
1
2 P2)2P2AM

− 1
2 P1 + n1nT1 .
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If we multiply this equation from left and right by P1M
1
2 P1 and take into account that (P2N

1
2 P2)2 =

P2NP2 and (P1M
1
2 P1)2 = P1MP1 we see that this is equivalent to

P1A
TP2NP2AP1 = P1MP1 .

Applying that AP1 = P2A we finally achieve at the equivalent condition

ATP2NP2A = P1MP1 .

The proof of the converse follows the same steps in opposite direction.

If the assumptions of this lemma apply to M = Sext1 (x), N = Sext2 (y), and A = Dφ(x) with
y = φ(x), then the curvature matching condition

(Dφ(x))TP2(y)Sext2 (y)P2(y)Dφ(x) = P1(x)Sext1 (x)P1(x) (3.3.4)

is equivalent to Λ(Sext1 (x),Sext2 (φ(x)),Dφ(x)) ∈ O(n) and a lower semicontinuous energy
functional penalizing deviations of Λ(Sext1 (x),Sext2 (φ(x)),Dφ(x)) from O(n) would be a proper
choice for realizing curvature matching. Unfortunately, the positive definiteness assumption of
Lemma 3.3.1 is not fulfilled if principal curvatures ofM1 orM2 are negative. Hence, we are
replacing the extended shape operator matrices Sexti by symmetric and positive definite curvature
classification matrices Ci = C(Sexti ), i = 1, 2, respectively.

We have experimented with two different choices for C:

• A simple choice is C(Sexti ) = Sexti +µ1, where−µ is a strict lower bound of the principal
curvatures. But, in applications surfaces are frequently characterized by strong creases or
rather sharp edges leading to very large µ. As a consequence the relative difference of the
eigenvalues is significantly reduces when dealing with the resulting curvature classification
matrices. Thus, the variational approach is less sensitive to different principal curvatures
of the input surfaces.

• Another option is to use a truncation of the absolute value function for the eigenvalues of
symmetric matrices. For a symmetric matrix B ∈ Rn,n with eigenvalues λ1, . . . , λn and a
diagonalization B = QTdiag(λ1, . . . , λn)Q we use the classification operator

C(B) = QTdiag(|λ1|τ , . . . , |λn|τ )Q ,

where |λ|τ = max{|λ|, τ} for some τ > 0. This approach properly represents the exact
shape operator matching objective in case of principal curvatures of equal sign and absolute
value larger than τ . A disadvantage of this construction is that it is not able to force the
deformation to correctly match curvature directions on the surface with the same absolute
value of the principal curvatures but with different signs. In the applications the ansatz
performs well in particular in regions of edges and creases (see Section 3.6).

Like for the membrane energy (3.3.1), ifDφ(x) is ensured to be orientation-preserving (detDφ >
0) and n1 · (n2 ◦ φ) > 0 (cf. Figure 3.2), the curvature matching condition is equivalent to

Λ(C(Sext1 (x)), C(Sext2 (φ(x))),Dφ(x)) ∈ SO(n).



42 Chapter 3. Implicit Surface Matching with a Lower Semicontinuous Shell Energy

Based on these considerations, a suitable choice for the bending energy is

Ebend[φ] = δ3
∫

Ω
ησ(d1(x))W

(
Λ
(
C(Sext1 (x)), C(Sext2 (φ(x))),Dφ(x)

) )
dx, (3.3.5)

where W can be chosen as the same polyconvex density already used for Emem.

3.3.3 Mismatch penalty and volumetric regularization energies

So far, we have defined tangential membrane and bending energies which quantify the appropri-
ateness of deformations φ : Ω→ Rn in a narrow band around the surfaceM1. In the derivation
of these energies we assumed the constraint φ(M1) =M2.

However, such a constraint would be very hard to enforce numerically. Thus we use a weaker
mismatch penalty instead:

Ematch[φ] = 1
ν

∫
Ω

(ησ ◦ d1)
∣∣d2 ◦ φ− d1

∣∣2 dx , (3.3.6)

where 1/ν is a penalization parameter.

Moreover, we aim for a regular deformation on the whole computational domain Ω which is
globally injective. This, in particular, prevents from self-intersections of the deformed surface
φ(M1). To achieve this we introduce the following volume regularization term based on a
polyconvex density Ŵ that enforces orientation preservation

Evol[φ] =
∫

Ω
Ŵ (Dφ,CofDφ, detDφ) dx with

Ŵ (Dφ,CofDφ,detDφ) = αp|Dφ|p + βq|CofDφ|q + γs(detDφ)−s,
(3.3.7)

with p > 3, q > 3, s > 2q/(q − 3), and with αp, βq, γs > 0 ensuring that the density Ŵ has
a unique minimum when DφTDφ = 1. As mentioned in the introduction, such an energy is
weakly lower semicontinuous in W 1,p(Ω; R3) when restricted to deformations whose Jacobian
determinant is positive almost everywhere, and this condition is closed under weak convergence.

3.3.4 Total energy

Summing the above terms, our energy for shape-aware level set matching reads

Eν [φ] = Ematch[φ] + Emem[φ] + Ebend[φ] + Evol[φ], (3.3.8)

where the different terms depend on the fixed input geometriesM1 andM2 through d1 and d2.
We keep the dependence on ν explicit in our notation Eν , since it plays an important role in our
analysis.
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3.4 Existence of optimal matching deformations

First we prove the following weak continuity lemma, which is a generalization of the classical
result given in [Mur87, Theorem 4.1]. Here the coefficients may depend on the deformed
configuration.
Lemma 3.4.1. Let φk ⇀ φ ∈W 1,p(Ω; Rn) and p > n. Moreover, let Vi ∈ C0(Ω× Rn; Sn−1),
i = 1, 2 and we denote

nki (·) := Vi
(
·, φk(·)

)
and ni := Vi

(
·, φ(·)

)
, i = 1, 2 .

Then

det
(
P(nk2)DφkP(nk1) + nk2 ⊗ nk1

) L
p
n−−⇀ det

(
P(n2)DφP(n1) + n2 ⊗ n1

)
. (3.4.1)

Moreover, for everyMi, i = 1, 2 withM
− 1

2
1 ∈ C0(Ω×Rn; Rn×n) andM

1
2

2 ∈ C0(Ω×Rn; Rn×n)
and the corresponding compositions

Mk
i (·) := Mi

(
·, φk(·)

)
and M i := Mi

(
·, φ(·)

)
we have

det Λ(Mk
1 ,M

k
2 ,Dφk) = det

(
P(nk2)(Mk

2 )
1
2 P(nk2)DφkP(nk1)(Mk

1 )−
1
2 P(nk1) + nk2 ⊗ nk1

)
L
p
n−−⇀det

(
P(n2)(M2)

1
2 P(n2)DφP(n1)(M1)−

1
2 P(n1) + n2 ⊗ n1

)
= det Λ(M1,M2,Dφ) .

(3.4.2)

Proof. To prove (3.4.1) let ζ ∈ L
p

p−n (Ω). We show that

Ik :=
∫

Ω
ζ det

(
P(nk2)DφkP(nk1)+nk2⊗nk1

)
dx → I :=

∫
Ω
ζ det

(
P(n2)DφP(n1)+n2⊗n1

)
dx.

Moreover, we denote

I
k :=

∫
Ω
ζ det

(
P(n2)DφkP(n1) + n2 ⊗ n1

)
dx .

Using the inequality (cf. [Fri82, Theorem 4.7])

| detA− detB| ≤ C|A−B|max(|A|, |B|)n−1

and Hölder’s inequality it follows that∣∣∣Ik − Ik∣∣∣ ≤C ∫
Ω
|ζ|
∣∣∣P(nk2)DφkP(nk1)− P(n2)DφkP(n1) + nk2 ⊗ nk1 − n2 ⊗ n1

∣∣∣
·max

(∣∣P(nk2)DφkP(nk1) + nk2 ⊗ nk1
∣∣, ∣∣P(n2)DφkP(n1) + n2 ⊗ n1

∣∣)n−1
dx

≤C ‖ζ‖
L

p
p−n

∥∥∥∣∣Dφk∣∣n−1 + 1
∥∥∥
L

p
n−1

·
∥∥∥P(nk2)DφkP(nk1)− P(n2)DφkP(n1) + nk2 ⊗ nk1 − n2 ⊗ n1

∥∥∥
Lp
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≤C ‖ζ‖
L

p
p−n

(
‖Dφk‖n−1

Lp + 1
)

·
[
‖Dφk‖Lp

(
‖P(nk2)‖L∞‖P(nk1)− P(n1)‖L∞ + ‖P(n1)‖L∞‖P(nk2)− P(n2)‖L∞

)
+
(
‖nk1 − n1‖L∞ + ‖nk2 − n2‖L∞

)]
,

Here, we have used that∣∣P(n2)DφkP(n1) + n2 ⊗ n1
∣∣n−1 ≤ (

∣∣Dφk∣∣+ 1)n−1 ≤ C(
∣∣Dφk∣∣n−1 + 1) .

By the Rellich-Kondrakov embedding theorem ([AF03], Theorem 6.3 III) there exist subse-
quences of nki , i = 1, 2, which for simplicity of notation are again denoted by nki , i = 1, 2, that
converge uniformly to ni, i = 1, 2, respectively. Taking into account the Lipschitz continuity
estimate

|P(e)− P(f)| = |(e− f)⊗ e+ f ⊗ (e− f)| ≤ 2
√
n|e− f |

and that nki → ni, i = 1, 2 in L∞ we obtain |Ik − Ik| → 0 for k →∞.

Next, we replace ni, i = 1, 2 in Īk by a piecewise constant approximation on a grid superimposed
to the computational domain Ω. Explicitly, we consider the finitely many non empty intersection
ωzδ = δ(z + [0, 1]n) ∩ Ω of cubical cells with Ω for z ∈ Zn and define

Īkδ :=
∑
z∈Zn

∫
ωz
δ

ζ det
(
P(n2(zδ))DφkP(n1(zδ)) + n2(zδ)⊗ n1(zδ)

)
dx ,

where zδ is any point in Ω̄ ∩ ωzδ if this set is nonempty. Using analogous estimates as above we
obtain∣∣∣Ikδ − Ik∣∣∣ ≤C‖ζ‖

L
p

p−n

(
‖Dφk‖n−1

Lp + 1
)

·
[
‖Dφk‖Lp

(
‖P(n1,δ)‖L∞‖P(n2,δ)− P(n2)‖L∞ + ‖P(n1)‖L∞‖P(n1,δ)− P(n1)‖L∞

)
+
(
‖n2,δ − n2‖L∞ + ‖n1,δ − n1‖L∞

)]
,

where n1,δ and n2,δ are piecewise constant functions in L∞ with n1,δ|ωzδ = n1(zδ) and n2,δ|ωzδ =
n2(zδ), respectively.

Using the uniform continuity of n2 and n1 on Ω we obtain that
∣∣∣Ikδ − Ik∣∣∣ ≤ β(δ) for a monoton-

ically increasing continuous function β : R+
0 → R with β(0) = 0. In particular the convergence

is uniform with respect to k. The same argument applies for the difference of I and

Īδ :=
∑
z∈Zn

∫
ωz
δ

ζ det
(
P(n2(zδ))DφP(n1(zδ)) + n2(zδ)⊗ n1(zδ)

)
dx

and we get
∣∣∣Īδ − I∣∣∣ < Cβ(δ). Using (3.2.3) it follows that

Q(n1(zδ))T (P(n2(zδ))AP(n1(zδ)) + n1(zδ)⊗ n2(zδ))Q(n2(zδ)) =
(
Ã 0
0 1

)
.
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Thus det(P(n2(zδ))AP(n1(zδ)) + n2(zδ)⊗ n1(zδ)) = det(Ã) represents an (n− 1)× (n− 1)
minor of the linear mapping corresponding to the matrix A with respect to different orthogonal
basis in preimage space (associated with P(n1(zδ)) and n1(zδ)) and the image space (associated
with P(n2(zδ)) and n2(zδ)). Indeed, for each of the terms in Īkδ , denoting Qi := Q(ni(zδ)) we
have ∫

ωz
δ

ζ(x) det
(
P(n2(zδ))Dφk(x)P(n1(zδ)) + n2(zδ)⊗ n1(zδ)

)
dx

=
∫
ωz
δ

ζ(x) det
(
QT2
(
P(n2(zδ))Dφk(x)P(n1(zδ)) + n2(zδ)⊗ n1(zδ)

)
Q1
)
dx

=
∫
ωz
δ

ζ(x) det
(
QT2 P(n2(zδ))Q2Q

T
2Dφk(x)Q1Q

T
1 P(n1(zδ))Q1 + en ⊗ en

)
dx

=
∫
ωz
δ

ζ(x) det
(
P(en)QT2Dφk(x)Q1P(en) + en ⊗ en

)
dx

=
∫
QT1 ω

z
δ

ζ(Q1y) det
(
P(en)D

(
QT2 ◦ φk ◦Q1

)
(y)P(en) + en ⊗ en

)
dy

=
∫
QT1 ω

z
δ

ζ(Q1y)Cofnn
(
D
(
QT2 ◦ φk ◦Q1

)
(y)
)
dy ,

where we have used the orthogonal change of variables y = QT1 x and Cofnn denotes the minor
obtained by erasing the last column and the last row. This change of orthogonal coordinates
is fixed on each cell ωzδ . Since for each δ the domain Ω is covered by finitely many cells ωzδ ,
using the above computation and standard weak continuity results [Dac08, Theorem 8.20] for
determinants of minors of the Jacobian we obtain that Īkδ → Īδ for k →∞. Finally, for given
ε we first choose δ small enough to ensure that

∣∣∣Īδ − I∣∣∣ +
∣∣∣Īkδ − Īk∣∣∣ ≤ ε

2 . Then we choose k

large enough to ensure that
∣∣∣Ik − Īk∣∣∣ +

∣∣∣Īkδ − Īδ∣∣∣ ≤ ε
2 . This proves that a subsequence of Ik

converges to I for k →∞. Since the limit does not depend on the subsequence, we finally obtain
weak convergence for the whole sequence.

To prove (3.4.2), consider the three sequences of matrix functions

P(nk2)(Mk
2 )

1
2 P(nk2)+nk2⊗nk2 , P(nk2)DφkP(nk1)+nk2⊗nk1 and P(nk1)(Mk

1 )−
1
2 P(nk1)+nk1⊗nk1 .

(3.4.3)
The determinant of the second expression above converges weakly as k →∞ by the first part of
the lemma, while the determinants of the first and third can be assumed to converge uniformly.
Moreover, the matrices in (3.4.3) have the block structure shown in (3.2.3), so multiplying the
three together and taking into account that P is a projection (depending on the argument) recovers
the matrix

P(nk2)(Mk
2 )

1
2 P(nk2)DφkP(nk1)(Mk

1 )−
1
2 P(nk1) + nk2 ⊗ nk1

appearing in the statement. Multiplicativity of the determinant and the fact that a product of
strongly converging and one weakly converging sequence converges weakly then finishes the
proof.

An analogous result for minors of dimension smaller than n − 1 can be proved in an entirely
analogous manner, but we only need the statement above. Notice also that the regularity is not
optimal, since the determinants of (n − 1)-dimensional minors (in fixed directions) converge
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weakly in L
p

n−1 , but our proof gives only weak convergence in L
p
n . This can be improved

through a different choice of exponents in the application of Hölder’s inequality, like for example
(p+ 1− n)/p, (n− 1− ε)/p, ε/p, for any ε ∈ (0, 1).

We are now in a position to prove existence of a minimizing deformation for the surface matching
energy E in a suitable set of admissible deformations. Of particular difficulty is that derivatives
of d2 are not defined in the whole of Ω and the in the functional these derivative are evaluated
at deformed positions. We handle this by ensuring that the involved deformations are such that
terms involving these derivatives are not evaluated near the singularities. We obtain the following
theorem:
Theorem 3.4.2 (Existence of minimizing deformations). LetM1,M2 be C2,1 compact embed-
ded surfaces in R3 (n = 3), be such that a C1 diffeomorphism ϕ :M1 →M2 exists between
them.

Assume further that

0 < σ < min(dist(M1, sing d1),dist(M2, sing d2)), (3.4.4)

where sing di is the set of points where di is not twice differentiable, and that r : R3×3 →
SPD(3) is continuous. Then there exists a constant 0 < ν0 := ν0(Ω,M1,M2, σ) such that for
0 < ν ≤ ν0, the functional Eν has at least one minimizer φ among deformations in the space
W 1,p

0 (Ω; R3) + id. Moreover, φ is a homeomorphism of Ω into Ω, and φ−1 ∈ W 1,θ(Ω; R3),
where θ is given by θ = q(1 + s)/(q + s).

Proof. We proceed in several steps.

Step 1: Coercivity. First we point out the coercivity enjoyed by our functional. Using the
Poincaré and Morrey inequalities ([Leo09], Theorem 12.30 and 11.34), and the Dirichlet boundary
conditions we have

‖φ‖C0,α(Ω) ≤ C‖φ‖W 1,p(Ω) ≤ C(1 + ‖Dφ‖Lp(Ω)) ≤ C(1 + Eν [φ]
1
p ), (3.4.5)

for any φ ∈W 1,p
0 (Ω) + id and α = 1− 3/p.

Step 2: Lower semicontinuity along sequences of constrained deformations. For the remainder of
the proof, a deformation φ ∈W 1,p

0 (Ω; R3) + id, p > 3 is termed ρ-admissible for ρ > 0, if

• Evol[φ] < +∞,

• detDφ(x) > 0 for a.e. x ∈ Ω, and

• for all x ∈ supp
(
ησ ◦ d1

)
and every y ∈ sing(d2), we have |φ(x)− y| ≥ ρ.

Notice that since p > 3, φ has a unique continuous representative, so the third property is well
defined.

First, notice that with the assumption (3.4.4) we have

supp (ησ ◦ di) = {|di| ≤ σ} ⊂ Ω \ sing(di) , i = 1, 2. (3.4.6)
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Let φk be a sequence of ρ-admissible deformations with Evol[φk] ≤ C. By (3.4.5) and using
the Banach-Alaoglu and Rellich-Kondrakov theorems, a subsequence (again denoted by (φk))
converges to a deformation φ, both in the W 1,p-weak and uniform topologies.

Now, we have ([Dac08, Theorem 8.20])

(detDφk,CofDφk) ⇀ (detDφ,CofDφ) in L
p
3 (Ω)×

(
L
p
2 (Ω)

)9
. (3.4.7)

Additionally, since (3.4.7) holds and because Eν [φk] is uniformly bounded,
∫

Ω(detDφk)−sdx is
uniformly bounded by the definition of Ŵ and detDφk ≥ 0 a.e. Together with (3.4.7), we have

detDφ(x) > 0 a. e. (3.4.8)

so that φ is again ρ-admissible.

Notice also that by a.e. positivity of the determinants, (3.4.7) and a standard lower semicontinuity
result for convex integrands (see e.g. [Dac08, Theorem 3.23]) implies

Evol[φ] ≤ lim inf
k→∞

Evol[φk],

and uniform convergence of φk immediately leads to

Ematch[φ] = lim
k→∞

Ematch[φk].

We claim that under the assumptions of this theorem, we also have that

Emem [φ ] ≤ lim inf
k→∞

Emem[φk] (3.4.9)

and
Ebend [φ ] ≤ lim inf

k→∞
Ebend[φk]. (3.4.10)

To see this, notice that φk, φ being ρ-admissible ensures that the normal vectors satisfy

n1, n2 ◦ φk, n2 ◦ φ ∈ C0({|d1| ≤ σ}; Rn).

Consequently, the first part of Lemma 3.4.1 implies

χ{|d1|≤σ}
(
Dtgφ

k,det
(
Dtgφ

k))⇀ χ{|d1|≤σ}
(
Dtgφ,det

(
Dtgφ

))
in (Lp(Ω))9 × L

p
3 (Ω),
(3.4.11)

with χ{|d1|≤σ} denoting the indicator function. Combining (3.4.11) with the polyconvexity of
W , defining the function Emem, both introduced in (3.3.1) we find the assertion (3.4.9).

Furthermore, by our assumptions onMi (see section 3.2), we have that

χ{|di|≤σ}Si = χ{|di|≤σ}D
2di ∈ C0,1(Ω; R3×3).

Since C produces uniformly positive matrices, we have χ{|d1|≤σ}(C(Sext1 ))−1 ∈ C0(Ω; R3×3).
We can then use a continuity result for square roots of nonnegative definite matrix-valued
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functions defined on Ω [CH97, Theorem 1.1] to see that

χ{|d1|≤σ}(C(S
ext
1 ))−

1
2 , χ{|d1|≤σ}(C(S

ext
2 ) ◦ φk)

1
2 , χ{|d1|≤σ}(C(S

ext
2 ) ◦ φ)

1
2 ∈ C0(Ω; R3×3).

The second part of Lemma 3.4.1 implies the weak convergence

χ{|d1|≤σ}
(
Λ(C(Sext1 (φk)), C(Sext2 (φk)),Dφk), det Λ(C(Sext1 ), C(Sext2 (φk),Dφk)

)
L
p
n−−⇀ χ{|d1|≤σ}

(
Λ(C(Sext1 ), C(Sext2 (φ)),Dφ),det Λ(C(Sext1 ), C(Sext2 (φ),Dφ)

)
,

from which (3.4.10) follows by using the polyconvexity of W .
Step 3: Existence of minimizers restricted to admissible deformations. Since we have already
seen that the set of ρ-admissible deformations is weakly closed and weakly compact, and that
every term of E is weakly lower semicontinuous on this set, we just need to check that for all
fixed ν > 0, the set of ρ-admissible deformations, with adequate ρ, is not empty.

For some given σ satisfying dist(M2, sing d2)− σ > 0 let ρ satisfy

0 < ρ < dist(M2, sing d2)− σ . (3.4.12)

We construct a deformation ϕ̂, which is ρ-admissible and satisfies Eν [ϕ̂] <∞. By assumption,
there exists a diffeomorphism ϕ : M1 → M2. Thus, we construct an extension of this
diffeomorphism to {|d1| ≤ σ} along the normal directions using

ϕ̂(x+ sn1(x)) := ϕ(x) + sn2(ϕ(x)), for x ∈M1,−σ ≤ s ≤ σ. (3.4.13)

We can then extend ϕ̂ to the inside and outside components Ωi,Ωo of Ω \ {|d1| ≤ σ} by solving
the minimization problems for Evol with Dirichlet boundary conditions given by (3.4.13) on ∂Ωi

and ∂Ωo \ ∂Ω, and by ϕ̂(x) = x on ∂Ω. For the resulting ϕ̂ we have

Ematch[ϕ̂] = 0, Evol[ϕ̂] <∞, Emem[ϕ̂] <∞, Ebend[ϕ̂] <∞,

where the first two statements follow by construction, and the last two by virtue of ϕ being a
diffeomorphism and the choice of σ. Moreover, we note that since ϕ̂ has finite energy and the
growth conditions assumed for Ŵ (see (3.3.7)), the condition detDϕ̂(x) > 0 for a.e. x is also
satisfied [Bal81].
Step 4: A priori estimate to remove the constraint. Next, we show that for any ρ satisfying
(3.4.12) there exists a parameter ν0 > 0 such that for all 0 < ν < ν0 the constrained minimizers
of Eν subject to (3.4.4) solves the unconstrained optimization problem, consisting in minimizing
Eν on W 1,p

0 + id.

To this end, we verify that every φ that satisfies

Eν [φ] ≤ Eν [ϕ̂] (3.4.14)

is ρ-admissible. It is immediate from (3.4.14) that Evol(φ) < +∞, and from the definition of Ŵ
in (3.3.7) it follows with the same arguments as in (3.4.8) that detφ > 0 a.e.
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We prove now that for all deformations φ satisfying (3.4.14) also satisfy

‖d2 ◦ φ‖L∞({|d1|≤σ}) ≤ dist(M2, sing d2)− ρ . (3.4.15)

This is sufficient because from (3.4.15) it follows for all x satisfying |d1(x)| ≤ σ by the triangle
inequality that

ρ ≤ dist(M2, sing d2)− ‖d2 ◦ φ‖L∞({|d1|≤σ})

= dist(M2, sing d2)− dist(φ(x),M2)
≤ dist(φ(x), sing d2),

which is the third property of a ρ-admissible deformation φ.

To prove (3.4.15) we use the triangle inequality and estimate

‖d2 ◦ φ‖L∞({|d1|≤σ}) ≤ σ + ‖d2 ◦ φ− d1‖L∞({|d1|≤σ}). (3.4.16)

By the monotonicity of ησ and the fact that the signed distance functions di are Lipschitz
continuous with constant 1 we have, for each σ̂ ∈ (0, σ) that

‖d2 ◦ φ− d1‖L∞({|d1|≤σ}) (3.4.17)

≤
(
1+‖φ‖C0,α({σ−σ̂≤|d1|≤σ})

)
σ̂α +

‖ησ ◦ d1(d2 ◦ φ− d1)‖L∞({|d1|<σ−σ̂})
ησ(σ − σ̂) .

Estimates (3.4.5) and (3.4.14) imply in turn

‖φ‖C0,α({σ−σ̂≤|d1|≤σ}) ≤ C‖φ‖W 1,p(Ω) ≤ C(1 + Eν [ϕ̂]
1
p ). (3.4.18)

Finally, combining (3.4.16), (3.4.17), and (3.4.18) we obtain

‖d2 ◦ φ‖L∞({|d1|≤σ}) (3.4.19)

≤ σ +
(
1 + C(1 + Eν [ϕ̂]

1
p )
)
σ̂α + 1

ησ(σ − σ̂)‖ησ ◦ d1(d2 ◦ φ− d1)‖L∞({|d1|<σ−σ̂}).

Now we can apply Ehring’s lemma [RR04, Theorem 7.30] for the embeddings W 1,p(Ω) ⊂⊂
L∞(Ω) ⊂ L2(Ω) to control the last term in (3.4.19). Taking into account the Poincaré inequality
and Dirichlet boundary conditions, we obtain for any ε > 0 a constant C(ε) > 0 such that

‖ησ ◦ d1(d2 ◦ φ− d1)‖L∞({|d1|<σ−σ̂}) ≤ ‖ησ ◦ d1(d2 ◦ φ− d1)‖L∞(Ω) (3.4.20)

≤ C(ε)‖ησ ◦ d1(d2 ◦ φ− d1)‖L2(Ω)+ εC
(
‖∇(ησ ◦ d1(d2 ◦ φ− d1))‖Lp(Ω) + 1

)
.

Now, for the first term in the right hand side of (3.4.20) we can estimate

‖ησ ◦ d1(d2 ◦ φ− d1)‖L2(Ω) = ν
1
2Ematch[φ]

1
2 ≤ ν

1
2Eν [ϕ̂]

1
2 . (3.4.21)

For the second term, denoting diam Ω = supx,y∈Ω |x− y|,

‖∇(ησ ◦ d1(d2 ◦ φ− d1))‖Lp(Ω)

≤ ‖∇(ησ ◦ d1)(d2 ◦ φ− d1)‖Lp(Ω) + ‖(ησ ◦ d1)∇(d2 ◦ φ− d1)‖Lp(Ω) + 1
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≤ Cν
1
p

(
‖d2 ◦ φ− d1‖

p−2
p

L∞(Ω)Ematch[φ]
1
p

)
+ C

(
‖Dφ‖Lp(Ω) + ‖∇d1‖Lp(Ω) + 1

)
≤ Cν

1
p

(
(‖φ‖C0,α(Ω) + 2 diam Ω)

p−2
p Eν [ϕ̂]

1
p

)
+ C

(
Eν [ϕ̂]

1
p + 1

)
≤ Cν

1
p

(
(1 + Eν [ϕ̂]

1
p )

p−2
p Eν [ϕ̂]

1
p

)
+ C

(
Eν [ϕ̂]

1
p + 1

)
, (3.4.22)

where we have applied the product rule, the definition of Ematch, ησ ∈ C∞0 , ησ ≤ C, that
|∇di| = 1 a.e., i = 1, 2, the chain rule, and (3.4.14). The use of the chain rule is justified by
[MM72, Theorem 2.2], since d2 has Lipschitz constant 1.

Together, (3.4.20), (3.4.21), and (3.4.22) imply

‖ησ ◦ d1(d2 ◦ φ− d1)‖L∞({|d1|<σ−σ̂})

≤ ν
1
p

(
C(ε)ν

1
2−

1
pEν [ϕ̂]

1
2 + εC(1 + Eν [ϕ̂]

1
p )

p−2
p Eν [ϕ̂]

1
p

)
+ εC

(
Eν [ϕ̂]

1
p + 1

)
. (3.4.23)

In light of (3.4.19) and (3.4.23), and since Eν [ϕ̂] is independent of ν, we can now choose first σ̂,
then ε and finally ν small enough to obtain

‖d2 ◦ φ‖L∞({|d1|≤σ}) ≤ σ + (dist(M2, sing d2)− σ − ρ) ≤ dist(M2, sing d2)− ρ .

Step 5: Injectivity. The injectivity and regularity of the inverse follow by the growth conditions
satisfied by Evol and classical results of Ball [Bal81, Theorems 2 and 3]. Note that although
Theorem 3 in [Bal81] is stated in terms of minimizers, the boundary conditions and finiteness of
the energy are all that is needed.

We have particularized the statement of Theorem 3.4.2 to the case of surfaces (n = 3) and
Dirichlet boundary conditions to use standard growth assumptions on Ŵ that ensure global
invertibility of deformations of finite energy in R3. However, the existence results generalizes
easily to different dimensions n. Furthermore, as stated in Corollary 3.4.3 we also have existence
of minimizing deformations also for the case of Neumann boundary conditions.
Corollary 3.4.3 (Natural boundary conditions). Under the assumptions of Theorem 3.4.2 above,
there exists a constant

0 < νN = νN (Ω,M1,M2, σ)

such that for 0 < ν ≤ νN , the functionalEν possesses at least one minimizer among deformations
in the space W 1,p(Ω; R3).

Proof. The proof follows the same arguments used for Theorem 3.4.2, so we only point out the
necessary modifications. We need a replacement for the coercivity estimate (3.4.5) and claim

‖φ‖W 1,p(Ω) ≤ C(1 + ν
1
2Ematch[φ]

1
2 + ‖Dφ‖Lp(Ω)) ≤ C(1 + ν

1
2Eν [φ]

1
2 + Eν [φ]

1
p ). (3.4.24)

To verify this let us consider ω := {|d1| ≤ σ/2}. An adequate Poincaré inequality (see e.g.
[Leo09, Theorem 12.23]) implies that

‖φ‖W 1,p(Ω) ≤ C
(
‖Dφ‖Lp(Ω) +

∣∣∣∣∫
ω
φ dx

∣∣∣∣ ) ,
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and we estimate the second term in the right hand side by∣∣∣∣∫
ω
φ dx

∣∣∣∣ ≤ ∫
ω
|φ|dx ≤

∫
ω
|d2 ◦ φ|dx+ |ω| sup

x∈M2

|x|

≤
∫
ω
|d2 ◦ φ− d1| dx+

∫
ω
|d1| dx+ |ω| sup

x∈M2

|x|

≤ ησ
(
σ

2

)−1
|ω|−

1
2 (νEmatch[φ])

1
2 +

∫
ω
|d1| dx+ |ω| sup

x∈M2

|x|,

where Hölder’s inequality has been used to compare L1 and L2 norms. Therefore, (3.4.24)
follows.

The proof of the estimate for ‖d2 ◦ φ‖L∞({|d1|≤σ}) (to ensure that deformations stay away
from the singularities of d2) is still valid with minor modifications, since ν appears in (3.4.24)
multiplicatively.

We conclude this section with the following proposition, which explores the penalization limit
in which the parameter ν tends to zero. It is partially based on a computation contained in the
introduction to [EG87a] that is developed in more generality in [EG87b].
Proposition 3.4.4. Let {νk}k∈N, be a sequence of penalty matching parameters such that νk → 0
as k → ∞, and φk be solutions of the Dirichlet minimization problem for Eνk . Then, up to a
choice of subsequence, the φk converge strongly in W 1,p to a solution of the constrained problem
in which the condition φ(M`

1) =M`
2 for all ` ∈ (−σ, σ) is imposed.

Proof. First, notice that the energy E may be written as

Eν [φ] =1
ν

∫
Ω
ησ ◦ d1|d2 ◦ φ− d1|2 + αp|Dφ|p (3.4.25)

+H
(

detDφ,CofDφ,Dtgφ,det(Dtgφ+ n2 ◦ φ⊗ n1),

Λ(C(Sext1 ), C(Sext2 ◦ φ)),Dφ),det
(
Λ(C(Sext1 ), C(Sext2 ◦ φ)),Dφ

))
dx,

where H : R+ × R3×3 × R3×3 × R× R3×3 × R→ R+ is smooth and convex.

Denote by ϕ̂ the extension of a diffeomorphism between M1 and M2 used in the proof of
Theorem 3.4.2. Since Ematch[ϕ̂] = 0, we have that Eνk [φk] ≤ E1[ϕ̂]. By the coercivity estimate
(3.4.5) the φk are then bounded in W 1,p and we may extract a (not relabeled) subsequence
converging uniformly and weakly in W 1,p to some limit φ. Since {Eνk [φk]} is bounded and
νk → 0, the uniform convergence of φk implies that∫

Ω
ησ(d1)|d2 ◦ φk − d1|2 dx −−−→

k→∞

∫
Ω
ησ(d1)|d2 ◦ φ− d1|2 dx = 0. (3.4.26)

In consequence, φ(M`
1) =M`

2 for all for all ` ∈ (−σ, σ). Therefore, φ is admissible for all νk
and Eνk [φk] ≤ E1[φ]. Combined with lower semicontinuity and (3.4.25), the above implies∫

Ω
αp|Dφk|p +H(det(Dφk), . . .) dx −−−→

k→∞

∫
Ω
αp|Dφ|p +H(det(Dφ), . . .) dx. (3.4.27)
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From this convergence, the fact that H is convex and differentiable, and Dφk ⇀ Dφ in Lp it
follows that

0 = lim sup
k→∞

(∫
Ω
αp
(
|Dφk|p − |Dφ|p

)
+H(det(Dφk), . . .)−H(det(Dφ), . . .) dx

)
≥ lim sup

k→∞

(∫
Ω
αp
(
|Dφk|p − |Dφ|p

)
+DH(det(Dφ), . . .) · (det(Dφk)− det(Dφ), . . .) dx

)
= lim sup

k→∞

∫
Ω
αp|Dφk|pdx−

∫
Ω
αp|Dφ|p dx .

This together with the weak lower semicontinuity of the Lp-norm, the above shows that∫
Ω
αp|Dφ|p dx = lim

k→∞

∫
Ω
αp|Dφk|pdx .

Because Lp(Ω) has the Radon-Riesz property ([Meg98, p. 2.5.26]), weak convergence and
convergence of the norm guarantees strong convergence in Lp. Since φk was assumed to
converge uniformly, we have also φk → φ in Lp, and this shows that φk → φ in W 1,p(Ω; R3).

That φ is a minimizer of the constrained problem follows directly ([Bra02], Theorem 1.21) from
the fact that the Eνk are an equicoercive family of functionals, Γ-converging in the weak topology
of W 1,p. Equicoercivity follows easily from the above, while Γ-convergence is implied by the
fact that Eνk is an increasing sequence of weakly lower semicontinuous functionals ([Bra02],
Remark 1.40), since νk → 0 appears as a denominator in Ematch.

Remark 3.4.5. By the coercivity estimate (3.4.24) of Corollary 1, an entirely analogous result
holds for minimizers with Neumann boundary conditions.
Remark 3.4.6. Contrary to what might be expected, the limit problem we have obtained is not a
surface problem, since all the level sets are still coupled through the volume energy Evol. The line
of reasoning above depends heavily on the fact that the coefficients of the volume term are held
fixed, since the equicoercivity and uniform strict quasiconvexity (in the language of [EG87b])
both require the presence of ‖Dφ‖pLp(Ω) in the functional.

3.4.1 Oscillations and lack of rank-one convexity for the naive approach

To model the tangential distortion energy we have considered a frame indifferent energy density
with the argument Dtgφ+ (n2 ◦φ)⊗n1. Let us now consider a simpler version of the membrane
energy (3.3.6), where we use as an argument of the energy density directly the tangential Cauchy-
Green strain tensor (cf (3.2.2)) (D̃tgφ(x))T (D̃tgφ(x))+n1(x)⊗n1(x), and define the membrane
energy

Ẽmem[φ] :=
∫

Ω
ησ(d1(x))W

((
D̃tgφ(x)

)T D̃tgφ(x) + n1(x)⊗ n1(x)
)

dx, (3.4.28)

with D̃tgφ := DφP1 defined as the tangential part of the derivative along TxMd1(x)
1 , and

W : R2×2 → R a frame indifferent energy density that has a strict minimum at SO(2).

The expression det(D̃tgφT D̃tgφ+ n1 ⊗ n1) appearing above can not be reduced to a squared
determinant of a minor of Dφ, in contrast to the corresponding construction (3.2.2) for our
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tangential derivative Dtgφ. In fact, a density which is polyconvex in D̃tgφ would give rise to a
lower semicontinuous energy, but no such energy can be useful for our purpose as a measure
of tangential area distortion. An application of the Binet-Cauchy formula ([EG92, Section 3.2,
Theorem 4]) yields

(
det(D̃tgφT D̃tgφ+ n1 ⊗ n1)

)2 =
3∑
j=1

(
det

(
Cof (D̃tgφQ(n1))j3

))2
,

where the last column of the matrix D̃tgφQ(n1) ∈ R3×3 vanishes. Therefore, the condition for
lack of area distortion det(D̃tgφT D̃tgφ+ n1 ⊗ n1) = 1 expresses that a triplet of determinants
of minors of D̃tgφ belongs to S2, which is not a convex set.

In fact, this energy is no longer lower semicontinuous. To this end, we present explicit counterex-
amples (in dimension n = 2).
Example 3.4.7 (Oscillation patterns). We construct an explicit sequence for which lower semi-
continuity of the membrane energy Ẽmem fails. Fix 0 < R < 1 and M1 = S1 with the
parametrization ξ → eiξ. Consider a sequence of deformations ϕk : S1 → R2 defined in polar
coordinates of (r, θ) by the condition

∂ξϕk(ξ) = (R sin kξ) er
(
r(ϕk(ξ)), θ(ϕk(ξ))

)
+
(
1−R2 sin2 kξ

) 1
2 eθ

(
r(ϕk(ξ)), θ(ϕk(ξ))

)
,

(3.4.29)
where er = (cos θ, sin θ)T , eθ = (− sin θ, cos θ)T for given φk(0). Note that for any k and θ that
|∂θϕk(θ)| = 1, so that the transformations are tangentially isometric. We define ϕk(0) via two
integration constants r0 and θ0 for the initialization of r and θ at ξ = 0. We set θ0 = 0 and choose
r0 such that the curve ϕk is closed and simple, which imposes r0 = r(ϕk(0)) = r(ϕk(2π))
since the first term in (3.4.29) has zero average. From the second term, taking into account that
eθ(r, θ) is independent of r, we get the condition

2πr0 =
∫ 2π

0

(
1−R2 sin2 kξ

) 1
2 dξ = 1

k

∫ 2πk

0

(
1−R2 sin2 ζ

) 1
2 dζ,

where we have applied the change of variables ζ = kξ. By periodicity the right hand side (an
incomplete elliptic integral of the second kind with modulus R) is independent of k and thus
determines r0. The resulting ϕk for several values of k are depicted in Figure 3.3.

We observe that ∂θϕk(θ) ⇀ r0eθ in Lp, for any 1 ≤ p <∞ (and also weak-* in L∞). Therefore,
the weak W 1,p-limit φ of the ϕk is the function defined by ϕ(θ) = r0er and obviously not an
isometry. Assuming 0 < σ < 1 and extending ϕk, ϕ along the radial direction er to the annulus
{1− σ ≤ r ≤ 1 + σ}, we obtain corresponding deformations given by

φk(r, θ) = ϕk(θ) + (r − 1)Qπ
2
∂θϕk(θ), and φ(r, θ) = ϕ(θ) + (r − 1)r0er = r r0er,

where Qπ
2

stands for clockwise rotation by π/2, so that Qπ
2
∂θϕk(θ) is the unit outward normal

to ϕk(S1). Clearly also φk ⇀ φ in W 1,p. From (3.4.29) and since er, eθ are unit vectors, we
have that Ẽmem[φk] = 0, but Ẽmem[φ] > 0, so Ẽmem is not weakly lower semicontinuous for
M1 = S1.

An intuitive explanation for this failure of lower semicontinuity is that we are trying to control
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FIGURE 3.3: Explicit oscillations for a simplified model. ϕk for R = 0.95,
k = 6, 20, 50

through determinants the n components of Tφ(Mc
1) (which is n− 1 dimensional, but we don’t

know a priori in which directions) with just the n− 1 directions in TMc
1. Therefore, we cannot

get enough cancellation (in the sense of compensated compactness [Tar79]) to obtain weak
continuity of the area distortion, nor weak lower semicontinuity of the functionals, and thus
oscillations are encouraged when trying to impose an isometry constraint. In fact, it is well
known that the partial differential relations arising from low-regularity isometric immersion of a
n− 1 dimensional surface in Rn have a large amount of solutions.

The celebrated Nash-Kuiper theorem [Nas54; Kui55] states that it is possible to uniformly
approximate any short C∞ immersion by C1 isometric ones. Our explicit oscillations around
r0S1 is just one example of this phenomenon. Notice that a bending term of the type Ebend

introduced in our model only compares the curvatures ofMd1(x)
1 andMd2(φ(x))

2 . It therefore
does not penalize oscillations, since it does not detect the curvature of φ(M1) at all.

It is, however, plausible that the volume term (3.3.7) penalizes such oscillations strongly enough
to recover lower semicontinuity (notice that the φk in our example are eventually not injective),
but we do not pursue this direction here. Let us mention that the limit theories for thin plates
and shells with energy scaling linearly on their width [LDR95a; LDR96] also do not properly
account for compression resistance, since in the (strong Lp) Γ-limit a quasiconvex envelope
appears, forcing the resulting oscillations to be ‘averaged away’.
Example 3.4.8. [Lack of rank-one convexity] We present an additional example of a configura-
tion for which the integrand of an energy of the type Ẽmem is not rank-one convex. Rank-one
convexity of the complete energy density, i.e., , convexity in t ∈ R when composed with the
function A + tB for any matrix A and any rank one matrix B, is known to be a necessary
condition for quasiconvexity ([Dac08], Theorem 5.3). Quasiconvexity, in turn, is necessary for
weak lower semicontinuity of integral functionals in Sobolev spaces ([Dac08], Theorem 8.1 and
Remark 8.2).

Let Ω = [−1, 1]2, andM1 = [−1, 1]× {0}. In this situation, the tangential derivatives are just
partial derivatives along the first coordinate, yielding

D̃tgφ = DφP(e2) =
(
∂1φ1 0
∂1φ2 0

)
, and D̃tgφT D̃tgφ =

(
(∂1φ1)2 + (∂1φ2)2 0

0 0

)
.
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Hence the tangential area distortion measure reduces to

tr(D̃tgφT D̃tgφ) = det(D̃tgφT D̃tgφ+ e2 ⊗ e2) = (∂1φ1)2 + (∂1φ2)2 , (3.4.30)

where e2 = (0, 1)T . Defining now the convex function

F (a, d) = 1
2a+ 1

2d+ d−1 − 2,

which has a unique minimum with value 0 for a = d = 1, we have that the energy density

WF (B) = F
(
tr(BTB),det(BTB + e2 ⊗ e2)

)
has a pointwise minimum, with value zero, whenever Dφ is such that (∂1φ1)2 + (∂1φ2)2 = 1.
Note that although the length and area distortion measures are the same in the case of curves, the
corresponding energy fits in (3.4.28) in any dimension, and so do the calculations below (with
the obvious modifications).

Consider now, for 0 ≤ λ ≤ 1, the family of matrices

B(λ) =
(

λ 0
(1− λ) 0

)
= λ

(
1 0
0 0

)
+ (1− λ)

(
0 0
1 0

)
. (3.4.31)

Clearly B(λ) is rank one. But we have WF (B(λ)) = λ2 + (1 − λ)2 + 1
λ2+(1−λ)2 − 2 and

therefore
WF (B(0)) = F (B(1)) = 0, but WF (B(1/2)) = 1

2 ,

which demonstrates that WF is not rank-one convex.

Observe that the situation is not improved by adding a simple regularization term, like for
example considering a density of the type Wε(Dφ) := W (Dφ) + ε|Dφ|2, since in this case we
have

W ε
F (B(0)) = W ε

F (B(1)) = ε, and W ε
F (B(1/2)) = 1

2 + ε

4 ,

and therefore if ε < 2
3 , the function W ε

F is also not convex on this particular rank-one segment.

3.5 Finite element discretization based on adaptive octrees

We adopt a ‘discretize, then optimize’ approach and consider a finite element approximation
and optimize for the coefficients of the solution. Since the energy Eν is highly nonlinear and
nonconvex, we use a cascadic multilevel minimization scheme in which the solution for one grid
level is used as the initial data for the minimization on the next finer grid. We use and adaptive
refinement of the underlying meshes around the surfacesM1,M2 (Algorithm 2).

One of the main characteristics of our functional is the pervasive presence of coefficients
depending on the deformed position φ(x). Indeed, this is how the functional takes into account
the geometry of target surface, through the projection P2 and shape operator S2. From an
implementation perspective, however, this means that frequently discrete functions have to
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evaluated at deformed positions. Therefore, the ability to efficiently search the index of an element
containing a given position is of paramount importance, so a hierarchical data structure that
allows for efficient searching is needed. The model only contains first derivatives of the unknown
deformation. Hence, multilinear finite elements already allow a conforming discretization. For
these reasons we use multilinear FEM on octree grids. The grids used are such that all of the
elements are either squares or cubes of side length h = 2−`, for an integer ` to which we refer as
grid level of the element. In what follows let us detail the different ingredients of the algorithm.

Algorithm 2 Cascadic minimization scheme.
Starting grid: Uniform of level `min, h =
2−`min

φ← 1
for l← `min to `max do

Regenerate d1,d2 on grid by aFMM.
Compute n1, n2, S1, S2 from d1,d2.
β ← βmax
while β > βmin do

φ← H1-CG-descent (β, φ)
β ← β/2

end while
Mark all elements intersecting M1 or

M2.
Refine the grid (h← 2−`+1).

end for
return φ

Multilinear Finite Elements on Octrees. We assume n = 3 for the presentation here. Using
an adaptive octree grid based on cubic cells leads to hanging nodes (see Figure 3.4), nodes which
are on the facet of a cell without being one of its vertices. Enforcing continuity of the finite
element functions leads to constraints for function values on hanging nodes and these hanging
nodes are not degrees of freedom. Additionally, to minimize the complexity of the required
interpolation rules, the subdivision is propagated in such a way that the grid level of neighboring
elements sharing a cell facet differs at most by one.

Octrees and the access to degrees of freedom via hashtables. Even though the tree structure
gives a natural hierarchical structure to the elements of the mesh, maintaining consistent linear
indices for degrees of freedom, hanging nodes, and elements can be delicate. Consistent rules
could be devised to maintain consistency with the element octree for a given mesh, but these
would not be easy to update when the grid is refined. In order to keep track of vertex indices in a
simple manner without sacrificing efficiency, hash maps ([Cor+09], Chapter 11) are maintained
to keep track of the indices of degrees of freedom, hanging nodes, and cells. The keys used in
the hashmap are a combination of a level value ` and point coordinates as integer multiples of
h = 2−`. These keys uniquely identify nodes or elements, with the convention that an element
is identified with its lower-left-back corner. Whenever a query for a node or cell is made, there
are two possible outcomes. If it is already contained in the corresponding hash table, a linear
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index for it can be retrieved. Otherwise, a new entry of the hash table is created and the node or
cell is given the next unused index. Since we do not require coarsening of the mesh, this scheme
guarantees a consistent linear set of indices with a computational cost for insertions and queries
that is, on average, independent of the mesh size.

Computing distance functions on octrees. In our model we have assumed that the distance
functions to our surfaces are given. In practice, especially when using adaptive grids, we
need to compute signed distance functions on such grids. This has been accomplished by a
straightforward adaptation of the Fast Marching Method on Cartesian grids [Set99] exploiting the
fact that our grids still are subgrids of a regular Cartesian grid. In the implemented variant hanging
nodes are not taken into account for the propagation, their values being linearly interpolated
to accommodate the constraints needed for conformality. The initialization for the distance
computation has been performed starting from triangular meshes of the surfaces (for n = 3; for
n = 2 two-bit segmentation of interior and exterior of the curves has been used). The signs of
the distance functions have to be computed separately, by detecting which points of the grid are
inside (resp. outside) the initial surface data. In our case, they have been computed with the
provably correct algorithm given in [BA05].

Computation of the coefficients. The discretization for the unknown deformation φ, as already
mentioned, is done by multilinear finite elements. However, the coefficients of our model include
first and second derivatives of the signed distance functions di, for the normal vectors ni and
shape operators Si (i = 1, 2), respectively. The approximations are required to be robust,
since they appear in the highest order terms of the model. For the normal vectors ni, we
compute the L2 projection of the finite element derivative of di to recover the nodal values of a
piecewise multilinear function, followed by a orthogonal projection to the unit sphere to restore
the constraint |ni| = 1.

In the case of the shape operators, our approach is to approximate the distance functions di
by a quadratic polynomial supported on a neighborhood of each point. Given a fixed integer
neighborhood size r, for each non hanging node xk (i.e., the neighborhood Br(xk) contains the
r closest other degrees of freedom of the adaptive grid) the local quadratic polynomial pk is
defined as the one minimizing the least-squares error∑

xj∈Br(xk)
(pk(xj)− di(xj))2 .

which can be easily computed by inverting a small matrix. The Hessian of di at the node xk is
then approximated by the Hessian of pk.

For the computation of matrix square roots and their inverses, we have used the method described
in [Fra89], taking appropriate care to truncate almost-singular matrices, since the resulting square
roots also appear inverted.

Minimization strategy. For the minimization at each level, we have opted for a Fletcher-
Reeves nonlinear conjugate gradient method ([NW06], Section 5.2), with gradients computed
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FIGURE 3.4: Hierarchical grids corresponding to the dolphin surfaces (different
2D slices in 3D, grid level 8, 178584 DOFs, 1.1% of the amount of DOFs in the

full grid case) and leaf contours (2D, level 10).

with respect to a H1
β metric, thereby introducing additional smoothing to mitigate the nonconvex-

ity of the problem,i.e.,

∇H1
β
Eν [φ] = (1 + β2

2 ∆)−1∇L2Eν [φ],

where ∆ is the Laplacian corresponding to the chosen boundary conditions, and∇L2Eν is the
usual L2 gradient appearing in the Euler-Lagrange equation for Eν . The L2 gradient of Eν ,
whose computation is involved but elementary, was implemented directly. The parameter α is
progressively reduced when a further feasible descent step is not found, according to an Armijo
line search ([NW06], Section 3.1).

3.6 Numerical results

All of our results have been computed on the unit cube Ω = [0, 1]3 for the matching of surfaces in
3D, and the unit square [0, 1]2 for the matching of contour curves in 2D. In practice, we have used
homogeneous Neumann boundary conditions, since this allows to have relatively large shapes
Mi in comparison to the size of the domain Ω without creating excessive volume energies near
the boundary (for the justification we refer to Corollary 3.4.3). However, if the boundary is not
fixed, the deformed domain φ(Ω) is not necessarily contained in Ω, so evaluation of coefficients
on deformed positions has to be appropriately handled numerically. We use a projection of
outside position onto the boundary of Ω for sufficient large dist(M2, ∂Ω).

For the membrane and the bending energy we use the material parameters λ = µ = 1, corre-
sponding to the density

W (A) = 1
2 |A|

2 + 1
4(detA)2 + 3

2e
−(detA−1) − 13

4 .
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FIGURE 3.5: Behavior of the optimal (numerical) deformation in the presence of
strong compression. From left to right: TexturedM1,M2, resulting deformed
shape φ(M1) after level 7 with our model, and corresponding result for the final

grid level 4 when P2 is not present in Emem.

In the bending term, the shape operators have been regularized through the truncated absolute
value function with τ = 1. Since we work on the unit cube, this corresponds to a comparatively
large curvature radius.

We have run the stated minimization scheme beginning from a uniform grid of level `min = 2
or `min = 3 with 93 = 729 nodes, and refined up to `max = 7 or 8 for 3D examples. For 2D
cases a reasonable range turned out to be `min = 4, `max = 10. The finest grids used for two
of the examples below are depicted in Figure 3.4. The width of the narrow band was chosen
proportional the finest resolution of the mesh (σ = 2h) since a small value of σ clearly produces
inaccurate results when ησ is evaluated on coarse grids. However, the constraint

∫
Ω ησ = 1

ensures that the overall strength of the surface terms Ematch, Emem and Ebend is not affected. The
value of the penalty constraint ν was divided by 8 for each grid refinement, which is justified by
Proposition 3.4.4. Furthermore, the coefficients αp, βq, γs are also halved per level to allow for
simultaneously higher initial regularization and close final matches. Note that this reduction is
much slower than that of the matching parameter.

All figures have been produced by deforming the input data (polygonal curve or triangulated
surface) via the resulting deformation φ. This is in contrast to deforming the grid and plotting the
resulting extracted level sets (which effectively visualizes the inverse deformation), as commonly
done in the registration literature, and also in [Igl+13].

Test case. First we present a simple test case to underline the qualitative properties of our
model. Figure 3.5 shows a configuration in which a high amount of compression, combined with
rotation, is required. Our model finds the intuitively correct deformation, but oscillations typical
for the lack of lower semicontinuity of the underlying energy are induced when P2 is not used in
the membrane and bending terms. The bending term assists in matching the curvatures even if the
deformation is not rigid. Note, however, that for the optimal match the curvature energy Ebend is
not expected to vanish, as can easily be seen from (3.3.4), (3.2.6) and the related discussion in
3.3.

Shape matching applications. We now turn our attention to high resolution examples with
real data. Figure 3.6 demonstrates the effect of the multilevel descent scheme, in which details
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FIGURE 3.6: Detail is added progressively in the cascadic coarse-to-fine scheme.
From left to right: TexturedM1,M2, resulting deformed shape φ(M1) after

the computation on grid level 4, 6 and 8, respectively.

FIGURE 3.7: From left to right: Textured hand shapeM1, resulting deformed
shape φ(M1) after level 7 in the minimization scheme, comparison of target and

obtained shapes after the computation on grid level 4 and 7, respectively.

are added progressively to avoid spurious local minima. In Figure 3.10 a high-resolution 2D
example is presented. Figures 3.7, 3.8 and 3.9 show 3D examples in which the influence of the
curvature matching is indispensable to obtain shape sensitive matching deformations.

For these examples, the width parameter δ was chosen relatively high with a typical value of
δ = 0.35, since the curvature matching term Ebend is a major driving force to obtain correct
matching of geometric features. The initial values of ν and the coefficients of the volume term
αp, βq, γs were set significantly smaller than δ. For example, for Figure 3.7 the computation was
run from levels `min = 2 to `max = 7, with δ = 0.39, p = s = 2, βq = 0, initial αp = γs = 0.01,
and initial ν = 9.8 · 10−2.
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FIGURE 3.8: From left to right: Textured dolphinM1,M2, resulting deformed
shape φ(M1) after level 8 in the minimization scheme, comparison of target and
obtained shapes after the computation on grid level 4 and 8, respectively. The

corresponding final grid is depicted in Figure 3.4.

FIGURE 3.9: From left to right: Textured sugar beet shape M1, resulting
deformed shape φ(M1) after level 8 in the minimization scheme, comparison of
target sugar beet shape and obtained shapes after the computation on grid level 4

and 8, respectively.

Basel Face Model dataset [Pay+09]. The laser-scanned sugar beets of Figure 3.9 and the original
shapes for Figure 3.7 were kindly provided by Behrend Heeren.
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4
Convective Regularization for Optical Flow

Abstract

We argue that the time derivative in a fixed coordinate frame may not be the most appropriate
measure of time regularity of an optical flow field. Instead, for a given velocity field v we
consider the convective acceleration vt + ∇vv which describes the acceleration of objects
moving according to v. Consequently we investigate the suitability of the nonconvex functional
‖vt+∇vv‖2L2 as a regularization term for optical flow. We demonstrate that this term acts as both
a spatial and a temporal regularizer and has an intrinsic edge-preserving property. We incorporate
it into a contrast invariant and time-regularized variant of the Horn-Schunck functional, prove
existence of minimizers and verify experimentally that it addresses some of the problems of basic
quadratic models. For the minimization we use an iterative scheme that approximates the original
nonlinear problem with a sequence of linear ones. We believe that the convective acceleration
may be gainfully introduced in a variety of optical flow models.

4.1 Introduction

Motivation. Optical flow is the apparent motion in a sequence of images and can be described
by a velocity field. Using variational techniques to estimate this velocity field requires the design
of an appropriate energy functional. Typically such a functional is a sum of two parts. The first
part, sometimes called data term, measures the accuracy with which the velocity field describes
the observable image motion. By ensuring consistency of the flow field, the second part, also
called regularization term, gives information the data term cannot provide and thereby addresses
the inherent ill-posedness of the optical flow problem. Naturally, related research has to a large
degree been concerned with tuning the second term to optimally capture the characteristics of
velocities of real-world image sequences.

Generally speaking regularization terms for optical flow fall into two categories: those which
only penalize spatial derivatives of the velocity field, and those where derivatives in both space
and time are penalized. The first category is by far the more popular one. Its developments have
closely followed those of variational image restoration, because the regularity of images dictates
to a significant degree the spatial regularity of velocity fields describing their motion. In other
words, image discontinuities tend to coincide with motion discontinuities. These, it was found,
can be appropriately dealt with using subquadratic or anisotropic regularization.

Research on the second category, i.e. that of spatiotemporal regularization, is relatively scarce.
Again this is in analogy with the field of image processing, where the joint restoration of image
sequences is quite under-represented as compared to the restoration of single frames. The
inclusion of time derivatives has the obvious disadvantage of turning a series of decoupled 2D

67



68 Chapter 4. Convective Regularization for Optical Flow

problems into one 3D problem. In the early days of computer vision limited computer memory
and processing power was prohibitive to such approaches. Clearly this is no longer the case. On
the contrary, recent publications have articulated and addressed the need for time-coupled models
even for data with three instead of two space dimensions. See for example [AMK13; Sch+13].

FIGURE 4.1: Using partial time derivatives in flow regularization can blur across
object boundaries. Here, the shaded area represents the space-time signature of
a moving object and the time direction points both inside and outside of it at

different points.

It is well-known that indiscriminate smoothing in space can lead to blurring at the boundaries of
objects. This statement is equally true in the space-time domain, if we identify objects with their
space-time signature (Figure 4.1). In particular, blind penalization of the partial time derivative
of a velocity field can lead to a loss of accuracy, especially at the boundaries of moving objects.
Therefore we suggest to take the time derivative only along the movement of the object.

This derivative has a very natural physical interpretation. Let v(t, x) be a time dependent velocity
field on Rd, and let t 7→ γ(t;x0) be the trajectory of a certain object initially located at x0 ∈ Rd

that moves according to v. The translation into mathematical terms of this connection between γ
and v is the following initial value problem

γ′(t;x0) = v(t, γ(t;x0))
γ(0;x0) = x0.

(4.1.1)

Taking time derivatives on both sides of the differential equation above gives a formula in terms
of v for the acceleration of the object moving along γ

γ′′(t;x0) = d

dt
v(t, γ(t;x0))

= ∂

∂t
v(t, γ(t;x0)) +∇v(t, γ(t;x0)) v(t, γ(t;x0))

This expression, which is sometimes called convective acceleration, is to be contrasted with the
partial time derivative of v evaluated at (t, γ(t;x0))

∂

∂t
v(t, γ(t;x0)),

which has a notably different physical meaning. In this article we argue that in some situations
the former can be more appropriate for the regularization of optical flow.
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This work is devoted to investigating the suitability of the functional

v 7→ ‖vt +∇vv‖2L2 (4.1.2)

as a smoothness term for optical flow. We believe a sensible way to do so is to include this
term into a simple optical flow model and to compare the results with those of the same model
without the new term. The reference model we choose for this task is a contrast invariant and
time-regularized version of the Horn-Schunck functional [HS81]. Incorporating (4.1.2) into
our model comes, however, at the cost of leading to a nonconvex functional and to nonlinear
optimality conditions. Numerically, we approximate the problem by a sequence of convex
quadratic ones.

We stress that it is not the aim of the proposed model to compete in the highest ranks of
motion estimation benchmarks. Instead we want to point out a certain aspect of optical flow
regularization, which we feel has not received its due amount of attention. Even though it leads
to a more challenging variational problem, we demonstrate that a reasonable approximation is
numerically tractable and pays off in terms of accuracy.

Related work. Horn and Schunck [HS81] are generally credited with having laid the ground-
work for variational optical flow models. Penalizing the squared L2-norms of the spatial deriva-
tives, their model regularizes the optical flow isotropically as well as homogeneously over the
image domain. In [Nag83] Nagel proposed to suppress smoothing across image discontinuities
by only penalizing the derivatives of the vector field along the level lines of the image. This idea
was subsequently extended to the space-time domain in [Nag90].

A different route to spatiotemporal regularization was taken by Weickert and Schnörr. In [WS01b]
they used an isotropic but essentially subquadratic regularizer. While still convex this approach
leads to nonlinear optimality conditions. In the survey [WS01a] the same authors classify convex
spatial as well as spatiotemporal regularizers for optical flow. According to their nomenclature
our approach would classify as anisotropic and flow-driven. It is, however, fundamentally
different from the regularizers considered there, not only because of nonconvexity. In [WS01a]
the anisotropy of flow-driven regularizers is determined by the Jacobian of the velocity field,
whereas in our approach it is determined by the velocity itself.

Chaudhury and Mehrotra pursue an interesting trajectory-based regularization strategy [CM95].
Motivated by the principle of least action and the inertia of motion they postulate that both
length and curvature of trajectories of moving objects should be minimal. There is a close
connection between a trajectory’s curvature and the convective acceleration of an object moving
along that trajectory. We discuss this connection in the next section. More recently, Salgado and
Sánchez [SS07] as well as Volz and coauthors [Vol+11] have proposed time-discrete models using
explicit trajectorial regularization. The present article tries to capture the essence of trajectorial
regularization for optical flow in an entirely continuous setting.

Finally, we note that for the problem of image sequence reconstruction it is not uncommon to
regularize the sequence along the optical flow, which can be either precomputed or estimated
simultaneously. This derivative along the optical flow is just the convective derivative of the
image sequence. See [CCBT03; Pre+08] for example.



70 Chapter 4. Convective Regularization for Optical Flow

Outline. In Section 4.2 we introduce our model. In Sec. 4.2.1 we discuss the convective
acceleration of vector fields. Section 4.2.2 contains properties of the functional ‖vt +∇vv‖2L2

as a regularization term. The last part of Sec. 4.2 treats our choice of data term. Section 4.3 is
dedicated to discussing our numerical minimization approach. Finally, we present experimental
results in Section 4.4.

4.2 Model

4.2.1 Convective acceleration

Notation. Let Ω ⊂ R2 be a bounded Lipschitz domain, T > 0, and set E = (0, T )× Ω. We
denote points in Ω by x = (x1, x2)>. Let φ : E → Ω be a flow on Ω: That is, for fixed t ∈ (0, T )
the map φ(t, ·) is a diffeomorphism of Ω, while for fixed x0 ∈ Ω the trajectory described by
φ(·, x0) is smooth. The vector field on E that gathers the velocities of all trajectories associated
to φ is defined by

u(t, x) = φt(t, x0)
∣∣∣
x0=φ−1(t,x)

(4.2.1)

where φt is the partial derivative of φ with respect to its first argument and φ−1(t, x) denotes
the inverse of φ(t, ·) evaluated at x. Notice that u(t, x) describes the velocity of the trajectory
passing through x at the time t, so u(s, x) in general corresponds to a different trajectory, if
s 6= t.

Let f : E → RN be a possibly vector-valued quantity on E. We define the convective derivative
of f along φ as

Duf(t, x) = d

dt
f(t, φ(t, x0))

∣∣∣
x0=φ−1(t,x)

= ft(t, x) +∇f(t, x)u(t, x).
(4.2.2)

Here ∇f = (fx1 , fx2) ∈ RN×2 is the spatial gradient of f . Notice that the convective derivative
only depends on u(t, x), thereby justifying the notation Duf . Using the notation ∇̄f = (ft,∇f)
and ū = (1, u>)> we can write Duf = ∇̄fū. If we set f = u, the resulting vector field

Duu = ut +∇uu = ∇̄uū (4.2.3)

is called the convective acceleration of the flow φ.

Flows with vanishing convective acceleration. When proposing a new regularization term, it
is always helpful to know when it is minimal. Therefore, we briefly discuss what conditions must
be met so that a vector field u satisfies

Duu = 0, for all (t, x) ∈ E, (4.2.4)

and give a few examples afterwards.

From the definition of the convective derivative (4.2.2) and (4.2.1) it follows that

Duu(t, φ(t, x0)) = φtt(t, x0),
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for all x0 ∈ Ω and t ∈ (0, T ). Now fix an x0 ∈ Ω and, for simplicity, denote the trajectory
φ(·, x0) by γ(·), so that we have Duu = γ′′. Assuming that γ′ does not vanish on (0, T ), we can
write

γ′′ = d

dt

(∣∣γ′∣∣ γ′
|γ′|

)
= d |γ′|

dt

γ′

|γ′|
+
∣∣γ′∣∣ d

dt

γ′

|γ′|
.

Since the unit tangent vector γ′/|γ′| is always perpendicular to its derivative, the convective
acceleration γ′′ is a sum of two mutually orthogonal vectors. Such a sum can only vanish, if both
vectors vanish. Due to the assumption that γ′ 6= 0, we conclude that

d |γ′|
dt

= 0, and

d

dt

γ′

|γ′|
= 0.

This proves the quite intuitive fact that, if a flow has vanishing convective acceleration, then all
its trajectories must be straight lines and have constant speed. Below we give a few examples of
such vector fields.
Example 1. Let g : R→ R be a differentiable function. The two vector fields v1, v2 : E → R2

defined by

v1(t, x1, x2) =
(

0
g(x1)

)
, v2(t, x1, x2) =

(
g(x2)

0

)
do not depend on time and satisfy ∇vivi = 0. Thus, by formula (4.2.3) they have vanishing
convective acceleration. Their integral curves are parallel to the x2- and x1-axes, respectively.
Example 2. Let 0 /∈ Ω. Denote by er the unit vector in radial direction and let g : R→ R be a
differentiable function with period 2π. The vector field v : E → R2 which in polar coordinates
is given by

v(t, r, ϕ) = g(ϕ)er
has zero convective acceleration. In contrast to the previous example the integral lines of v are
not all mutually parallel.
Example 3. The vector fields in the previous examples were all constant in time. Time-dependent
examples can be constructed from time-dependent solutions u of the inviscid Burgers’ equation
in one space dimension ([Eva10], Section 3.4). That is, let u : E → R solve (4.2.4) with
E = (0, T )× R. Then

v1(t, x1, x2) =
(
u(t, x1)

0

)
, v2(t, x1, x2) =

(
0

u(t, x2)

)

satisfy Dvivi = 0 while having partial time derivatives that do not vanish identically. As in
the first example the integral curves are mutually parallel straight lines. The main difference,
however, is that two trajectories passing through the same point in space but at different times,
might do so at different speeds.
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Relation to curvature. Given a curve γ : (0, T ) → Ω, we can define its curvature as the
normal part of the arclength derivative of the unit tangent vector

κγ =
(
γ′

|γ′|

)⊥
· 1
|γ′|

d

dt

γ′

|γ′|
= γ′⊥ · γ′′

|γ′|3
,

where (a, b)>⊥ = (−b, a)>. If γ is arc length parametrized, that is |γ′| ≡ 1, then the expression
simplifies to κγ = |γ′′|, because in that case γ′⊥ = γ′′/|γ′′|.

For a given x0 ∈ Ω we can apply the formula above to the trajectory t 7→ φ(t, x0) of a flow φ.
Recall that in this case γ′ becomes u and γ′′ becomes Duu. Thus we get

κφ(·,x0) = u⊥ ·Duu

|u|3
.

In particular, whenever |u(t, φ(t, x0))| ≡ 1 on some subinterval of (0, T ), then the norm of the
convective acceleration |Duu| coincides with the absolute value of the curvature of φ(·, x0) on
this subinterval

κφ(·,x0) = ±|Duu|.

4.2.2 Convective regularization

In this section we study some properties of the functional

u 7→ 1
2‖Duu‖2L2 (4.2.5)

as a regularization term for optical flow. By ‖ · ‖L2 we mean the norm of L2(E,R2). Below we
continue to use this shorthand whenever convenient.

Interpretation of the convective term. Functional (4.2.5) has two interpretations, one as
a smoothing term and and another one as a projection term. Recalling the bar-notation we
introduced in Section 4.2.1, the integrand of (4.2.5) can be written as a quadratic form in the
partial derivatives of u

|Duu|2 = (∇̄u1)>ūū>∇̄u1 + (∇̄u2)>ūū>∇̄u2, (4.2.6)

Observe that the diffusion tensor

ūū> =
(

1 u>

u uu>

)
,

is a projection matrix onto the span of ū composed with a scaling by |ū|2. Therefore, minimization
of (4.2.5) leads to smoothing of the vector field u only in direction ū, where precedence is given
to regions where the magnitude of u is relatively large. Clearly, since ū 6= (1, 0, 0)> in general,
the proposed convective regularization term is not a purely temporal regularizer, but it also
enforces spatial smoothness of the vector field in a way that is consistent with the motion. Figure
4.2 illustrates this behaviour.
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FIGURE 4.2: The shaded area represents the space-time signature of a moving
object. The arrows not only indicate the space-time velocity ū of the object but
also the direction of diffusion enforced by the tensor ūū>. As opposed to the
situation with the time derivative (Figure 4.1), object boundaries are respected.

On the other hand, the roles of ū and ∇̄ui can be exchanged so that (4.2.6) rewrites as a sum of
two quadratic forms in ū

|Duu|2 = ū>∇̄u1(∇̄u1)>ū+ ū>∇̄u2(∇̄u2)>ū. (4.2.7)

The matrix ∇̄ui(∇̄ui)> projects onto the span of ∇̄ui and scales by the squared magnitude of
∇̄ui. From this point of view minimizing (4.2.5) amounts to forcing ū to be orthogonal to the
directions of greatest change of both u1 and u2, where precedence is again given whenever this
change is relatively drastic. Note that the outer product of a vector with itself is always a positive
semidefinite matrix, so that there can be no cancellations in (4.2.6), (4.2.7).

The concurrence of the two different interpretations above is made explicit by looking at the
Euler-Lagrange equation of (4.2.5), given by(

∇u1(∇̄u1)> +∇u2(∇̄u2)>
)
ū− ∇̄ ·

(
∇̄uūū>

)
= 0. (4.2.8)

Here, the space-time divergence operator ∇̄ · acts along rows.

Variational properties. In the following we adopt the notationA . B wheneverA ≤ B holds
up to multiplication by a positive constant. According to the basic estimate

‖Duu‖2L2 . ‖ut‖2L2 + ‖u‖2L∞‖∇u‖2L2

a seemingly natural space over which to minimize, for a given image sequence f , the optical flow
functional

F(u) = ‖Duf‖2L2 + α‖Duu‖2L2

would beX = H1(E,R2)∩L∞(E,R2). Now, in order to show existence of minimizers using the
direct method [Dac08], we need to ensure existence of a minimizing sequence which converges.
This is typically done by establishing a coercivity condition of the type

F(u) & ‖u‖pX − b
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for some b ≥ 0 and p ≥ 1. In the examples above we have seen, however, that there are vector
fields u with vanishing convective acceleration but nonzero partial derivatives. This implies that
not even the inequality

‖Duu‖2L2 & ‖∇̄u‖pL2 − b

holds true. Therefore, in order to guarantee existence of minimizers we consider the functional

E : H1(E,R2)→ [0,+∞]
E(u) = ‖λDuf‖2L2 + α‖Duu‖2L2 + β‖∇̄u‖2L2 ,

(4.2.9)

where α, β > 0 and λ : E → R+ is a weighting function which is specified in Sec. 4.2.3. In
addition we have to make the assumption introduced in [Sch91] that the partial derivatives of f
are linearly independent in L2(E), that is

〈fx1 , fx2〉L2 < ‖fx1‖L2‖fx2‖L2 . (4.2.10)

Proposition 1. Let f ∈ W 1,∞(E) satisfy (4.2.10) and assume that λ ∈ L∞(E) is such that
ess inf λ > 0. Then the minimization of E over H1(E,R2) has at least one solution.

Proof. We show that E is proper, coercive and lower semicontinuous with respect to the weak
topology of H1(E,R2). That E is proper follows from nonnegativity and the assumptions on f
and λ.

Next we prove the coercivity estimate

E(u) & ‖u‖2H1 − b

for b ≥ 0. We obviously have E(u) ≥ β‖∇̄u‖2L2 . So it remains to show that E(u) & ‖u‖2L2 − b.
Denoting the average of u by uE = 1/|E|

∫
E u we have

‖u‖2L2 . ‖uE‖2L2 + ‖u− uE‖2L2

. ‖uE · ∇f‖2L2 + ‖∇̄u‖2L2

. ‖u · ∇f‖2L2 + ‖(u− uE) · ∇f‖2L2 + ‖∇̄u‖2L2

. ‖Duf‖2L2 + ‖ft‖2L2 + ‖∇̄u‖2L2

. E(u) + ‖ft‖2L2 ,

(4.2.11)

which proves coercivity. There are three main ingredients in the above estimate. The first one is
a quadratic variant of the triangle inequality

‖v + w‖2 ≤ 2‖v‖2 + 2‖w‖2.

The second one
‖uE‖2L2 . ‖uE · ∇f‖2L2

uses the assumption of linear independence of fx1 and fx2 and is proved in [Sch91, p. 29]. The
third ingredient is the Poincaré inequality ‖u−uE‖L2 . ‖∇̄u‖L2 ([LL01], Theorem 8.11). Also
note that the fourth inequality in (4.2.11) requires the assumption f ∈W 1,∞(E), while the last
one uses ess inf λ > 0.
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Let {un} ⊂ H1(E,R2) converge to û in the weak topology of H1(E,R2). In particular, ∇̄un
converges weakly in L2(E,R6) to the corresponding gradient ∇̄û. By the compact embedding of
H1(E,R2) into L2(E,R2), up to choosing a subsequence we may assume that un also converges
strongly in L2 to û. As is made apparent in (4.2.6), the expression |Duu|2 is convex in ∇̄u
for fixed u, and E is always nonnegative. We can therefore apply a standard result ([Dac08],
Theorem 3.23) to obtain that E is lower semicontinuous.

There is no reason to expect minimizers of E to be unique. The following example demonstrates
that E is not convex in general.
Example 4. Let v1, v2 be the two vector fields from Example 1 with g being the identity, that is

v1(t, x1, x2) =
(

0
x1

)
, v2(t, x1, x2) =

(
x2

0

)

They satisfy Dv1v1 = Dv2v2 ≡ 0, while

Dww = 1
4

(
x1

x2

)
,

where w = (v1 + v2)/2. We conclude

0 = ‖Dv1v1‖2L2 = ‖Dv2v2‖2L2 < ‖Dww‖2L2 = T

16

∫
Ω
|x|2 dx

so that the functional u 7→ ‖Duu‖2L2 cannot be convex. This clearly implies that there are α, β, f
such that E is not convex.

4.2.3 Data term and contrast invariance.

Contrast invariance is a useful property of image processing operators. Let h be a change of
contrast, that is, a differentiable real function with h′ > 0. An operator A is called contrast
invariant, if it commutes with all such contrast changes:

A ◦ h(f) = h ◦A(f)

for all images f ([Alv+93], Sec. 2.3).

A similar property can be postulated for operators estimating image motion, since an order-
preserving rearrangement of the grey values of an image sequence should certainly not change
velocities. Therefore, we call an operator A that maps image sequences f to velocity fields
contrast invariant, if it satisfies

A(f) = A ◦ h(f).

However, a typical optical flow model of the form

f 7→ arg min
u

{
‖Duf‖pLp + αR(u)

}
(4.2.12)
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does not have this property. A simple counterexample is multiplication by a positive number
h(f) = cf . For a model like (4.2.12) this change of contrast effectively amounts to dividing the
regularization parameter α by cp and therefore definitely influences the result. There is, however,
also a local effect of this contrast dependence, which is easy to confirm experimentally. Consider
a scene with a dark background and two moving objects which are similar in shape and size and
which move at similar velocities, but which have significantly different average brightnesses.
This is precisely the case in the example of Figure 4.3. Then, the velocities of the darker object,
i.e. the one with lower values of f , will be regularized more strongly than those of the brighter
one, if a data term like the above is used.

FIGURE 4.3: Effect of the data term weighting for E with α = 0. When it is
omitted, the data term inappropriately favours high-contrast objects. Shown are,
from left to right, one frame of f , the corresponding results without weighting and

β = 0.2, without weighting and β = 0.5, and weighted with ω =
√
|∇̄f |2 + ε2

and β = 0.005.

However, contrast dependence is not an inherent property of optical flow. Observe that, if u
solves Duf = 0, then it also solves Du(h ◦ f) = 0, because Du(h ◦ f) = h′Duf and h′ > 0 by
assumption. Therefore, it should rather be regarded a side-effect of the variational regularization
approach. Contrast invariance can be restored by weighting the data term with λ = 1/ω, where
ω is a positively 1-homogeneous function that depends only on the first order derivatives of f . It
then follows that

Du(h ◦ f)
ω(∇̄(h ◦ f))

= h′Duf

h′ω(∇̄f)
= Duf

ω(∇̄f)
. (4.2.13)

Such weighted data terms have already been used, although it seems with a different reasoning.
In [LV98; ZBW11], for example, the weight was chosen to be ω =

√
|∇f |2 + ε2. In this paper

we experiment with the weight ω =
√
|∇̄f |2 + ε2. With this choice the data term essentially

measures the orthogonal projection of ū onto the span of ∇̄f , since

Duf

ω
≈ ∇̄f
|∇̄f |

· ū.

The effectiveness of this choice is illustrated in Figure 4.3, in which the relative velocities of the
vehicles are recovered correctly even though they have widely different contrast levels.

Finally, observe that weights which do not depend on first derivatives of f (only), like ω = |f |+ε
for instance, do not yield full contrast invariance. While they work fine for the special case of
rescaling h(f) = cf , they fail in general since the factor h′ in (4.2.13) does not cancel.
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4.3 Numerical solution

We now seek to formulate a numerical approach for the minimization of the functional E . As
shown above, the convective regularization term is nonconvex and leads to nonlinear optimality
conditions. Therefore, we propose an iterative scheme to arrive at an adequate flow field.

Iterative scheme. Consider the functional

G(u,w) = ‖λDuf‖2L2 + α‖Dwu‖2L2 + β‖∇̄u‖2L2 ,

which satisfies E(u) = G(u, u). For fixed w ∈ L∞(E,R2), the mapping u 7→ G(u,w) is a
convex and quadratic functional, and G(u,w) < +∞ for any u ∈ H1(E). Our iterative method
then reads as follows.

• Given an image sequence f and parameters β0, α1, β1:

• Find an initial guess u0 by minimizing G(u, 0) over u, with α = 0, β = β0. This induces
isotropic regularization in time and space, corresponding to a time-regularized variant of
the Horn-Schunck model.

• Compute uk+1 by minimizing over the variable u the functional G(u, uk) with parameters
α = α1, β = β1.

Each of these steps corresponds to finding an optical flow field using anisotropic regularization
with the diffusion tensor αw̄w̄> + βId, where Id is the 3 × 3 identity matrix. Therefore, this
particular scheme is based on the diffusion interpretation of the convective regularization term, as
reflected in (4.2.6). Indeed, upon fixing w the first term in the complete Euler-Lagrange equation
(4.2.8) does not appear. In all of our experiments, apparent convergence of uk is attained in a
few iterations, typically by k = 3 or 4. Even though convergence to a minimizer of E is not
guaranteed, the obtained vector fields closely satisfy the desired properties used as a guide for
our modelling.

By the properties of G listed above, each of these minimization problems can be performed by
solving the corresponding linear Euler-Lagrange equation

∇̄ ·
(
∇̄u(αw̄w̄> + βId)

)
− λ2(∇f · u)∇f = λ2ft∇f, (4.3.1)

coupled with natural boundary conditions

n ·
(
∇̄u(αw̄w̄> + βId)

)
= 0 on ∂E,

where n is the outward normal to E. Our approach of discretizing (4.3.1) is specified next.

Discretization. The model has been discretized using a multilinear finite element formulation
on a regular rectangular grid, so that each vertex in the grid corresponds to one pixel of one video
frame. The grid used is such that the spacing between nodes in space is one, while the spacing
in time (from frame to frame) may be smaller. We emphasize that the relation of the two grid
step sizes implicitly controls the relative amount of regularization done in time and space, since
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the derivatives of the functional scale accordingly. Usually, using the same spacing will lead to
results that are highly over-regularized in time. In the presented examples, the time step was
divided by a factor of 8 with respect to that of space.

Both the input f and the unknown vector field u are represented by their nodal values, leading
to continuous piecewise multilinear functions. Since the Euler-Lagrange equation (4.3.1) is
actually a system for the two components u1, u2, the resulting linear system is represented by
a block matrix, with the different blocks describing the interactions between components. The
entries of these blocks are assembled from the integrals over different elements arising in the
weak formulation, as per finite element practice [QV08]. Such integrals are computed exactly
through an adequate Gauss quadrature. Note that boundary conditions do not need to be imposed
explicitly.

A consequence of representing f by a piecewise multilinear function is that the corresponding
partial derivatives fxi , ft appearing in the right hand side λ2ft∇f of (4.3.1) do not belong to the
same finite element space as f . However, our finite element matrices act on the nodal values of
functions in this space, so an interpolation step is needed to obtain functions with the appropriate
smoothness. To this end, we have performed an L2 projection of these partial derivatives into the
space of piecewise multilinear functions, whose nodal values are then multiplied together and
used as the right hand side for our linear system. Computationally each projection requires the
solution of an additional linear system, which needs to be done only once.

4.4 Experiments

In Figures 4.4, 4.5 and 4.6 we present some examples of flows computed through the numerical
scheme of the previous section, approximating minimizers of

E(u) = ‖λDuf‖2L2 + α‖Duu‖2L2 + β‖∇̄u‖2L2 ,

which are compared with corresponding results with basic isotropic regularization, that is,
minimizers of

H(u) = ‖λDuf‖2L2 + β‖∇̄u‖2L2 .

In the sequences used, the time derivative of the vector field at a given position is likely not
appropriate, since isolated objects travel across the images. In the results with isotropic regu-
larization, some of the disadvantages of basic quadratic regularizers are apparent. With lower
regularization parameters (Figures 4.4(b) and 4.5(b)) inner edges of rigidly moving objects are
visible. With higher regularization parameter values, the support of the vector field is enlarged
and interactions between distinct objects moving ensue, creating cancellations when the objects
move in different directions (Figure 4.4(c)) or artificial reinforcement when they move in similar
directions (Figure 4.5(c)). However, with convective regularization both of these disadvantages
can be avoided (Figures 4.4(d) and 4.5(d)).

Additionally, one needs to choose the regularization constant ε for the weight
√
|∇̄f |2 + ε2 in

the data term. Clearly, choosing a too large ε will diminish the effect of the weighting scheme,
while choosing it too small may overemphasize very low contrast regions and potentially amplify
noise. Since the 8-bit input images were normalized so that their values are of the form k/255
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with k = 0 . . . 255, we chose ε = 0.01. That is, ε is roughly of the size of the smallest nonzero
derivative that may appear in the data.

(a) Input (b) Result withH, β = 5e− 4

(c) Result withH, β = 5e− 3 (d) Result with E , α = 5e− 3, β = 5e− 4

FIGURE 4.4: Comparison of isotropic and convective regularization.

In our experiments the parameter β1 may be chosen quite small to preserve the boundaries of
objects, while using a relatively large α1 for the convective regularization term. By using the
convective derivative, the information from other frames is used in a consistent way to correctly
fill the flow field inside objects even in the absence of texture. The initial isotropic parameter β0
for starting the iterative scheme was chosen to be β0 = α1 in all cases.

4.5 Conclusion

In this article we presented an entirely continuous optical flow model that is based on the
assumption that velocities should vary smoothly not at fixed points in space but along motion
trajectories. The resulting regularization term has a variety of different interpretations. First,
this term penalizes the proper acceleration of objects moving according to the velocity field.
Second, it has a direct relation to the curvature of motion trajectories. Finally, when minimized it
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(a) Input (b) Result withH, β = 5e− 5

(c) Result withH, β = 5e− 4 (d) Result with E , α = 1e− 3, β = 5e− 5

FIGURE 4.5: Comparison of isotropic and convective regularization.

acts on the vector field not only as a projection term but also as an edge-preserving anisotropic
regularizer.

We tested the convective regularization term by incorporating it into a reference optical flow
model and comparing the results with and without the new term. In order to make the changes
as apparent as possible and to avoid potential side effects we tried to keep the complexity of
the reference model at a minimum. Therefore, the resulting functional (4.2.9) should mainly
be viewed as a prototype of an optical flow model with convective regularization which can be
improved upon by future research.
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FIGURE 4.6: Cutout from Figure 4.5. The use of convective regularization
allows to obtain nearly-constant optical flow field inside the objects without

excessively enlarging the support.
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A
First Variation of Level Set Shell Energies

For completeness, we include the largely elementary but sometimes involved calculations of
the first variations of the volume, membrane and shell terms in Chapters 2 and 3, expressed in
forms amenable to numerical implementation. Clearly, it is enough to compute the derivatives
of the combined densities with respect to the deformation and derivative arguments (φ and Dφ,
respectively) to be inserted in the Euler-Lagrange equation. In what follows we adopt the notation
of Chapter 3.

We make use of the Frobenius inner product, defined for square matrices A,B ∈ Rn,n by

A : B := tr(ATB) = tr(ABT ),

and the following elementary formulas, which rely on the invariance of the trace under cyclic
permutations of products

A : BCD = tr(ATBCD) = tr(DATBC) = BTADT : C, (A.0.1)

A : BCD = tr(ATBCD) = tr(CDATB) = ADTCT : B, (A.0.2)

A : BC = tr(ATBC) = tr(CATB) = ACT : B, (A.0.3)

A : (v ⊗ w) = tr(AT vwT ) =
∑
ij

Aijviwj = Aijwjvi = (Aw) · v. (A.0.4)

where A,B,C,D ∈ Rn×n and v, w ∈ Rn.

Further, we will also make use of Jacobi’s formula for the derivative of the determinant of a
function A : R→ Rn×n,

d

dt
det(A(t)) = tr

(
AdjA(t)dA(t)

dt

)
,

where Adj denotes the adjoint matrix. Considering the function det : Rn×n → R, the above may
also be expressed as

D det(B) : C = tr(AdjBC) = tr(CofBTC), (A.0.5)

where B,C ∈ Rn×n. Therefore, we have D det(B) = CofB, where D det denotes the gradient
of the function det, written as a square matrix.

For the Frobenius norm | · |, and p > 0, we recall

D(| · |p)(B) : C = D
(
(| · |2)

p
2
)
(B) : C = p

2 |B|
p−2D(| · |2)(B) : C

= p

2 |B|
p−2 tr(BTC + CTB) = p|B|p−2B : C, (A.0.6)
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where B 6= 0 is assumed if p < 1.

And finally, for powers of the Frobenius norm of the cofactor matrix we get

D(|Cof · |q)(B) : C = q|CofB|q−2Z(B) : C, (A.0.7)

where the entries Z(B)ij of the matrix Z(B) ∈ R3×3 are given by

Z(B)11 = B22 +B33 −B32 −B23,

Z(B)12 = B31 +B23 −B33 −B21,

Z(B)13 = B32 +B21 −B31 −B22,

Z(B)21 = B32 +B13 −B33 −B12,

Z(B)22 = B33 +B11 −B31 −B13,

Z(B)23 = B31 +B12 −B32 −B11,

Z(B)31 = B23 +B12 −B22 −B13,

Z(B)32 = B21 +B13 −B11 −B23,

Z(B)33 = B22 +B11 −B21 −B12.

From (A.0.6), (A.0.5), and (A.0.7) the first variation of the volume terms can be computed easily.

A.1 Functionals of Chapter 2

A.1.1 Membrane energy

Let us now compute the first variation of the tangential membrane energy term. We have

∂Dφ(Wm ◦ C1)(φ) = ∂Wm

∂a
∂Dφ

(
tr(P1DφTDφP1)

)
+ ∂Wm

∂d
∂Dφ

(
det(P1DφTDφP1 + n1 ⊗ n1)

)
.

For the first term we compute, for arbitrary V ∈ Rn×n,

∂Dφ tr
(

P1DφTDφP1
)

: V = tr
(

P1V
TDφP1 + P1DφTV P1

)
= 2 tr

(
P1DφTV P1

)
= 2 tr

(
DφP1P1V

T
)

= 2 tr
(
DφP1V

T
)

= 2(DφP1) : V,

where we have used the symmetry of P1 and the fact that it is a projection (P2
1 = P1). For the

second term, we have

∂Dφ det(P1DφTDφP1 + n1 ⊗ n1) : V
= Cof (P1DφTDφP1 + n1 ⊗ n1) : (P1DφTV P1 + P1V

TDφP1)
= 2 Cof (P1DφTDφP1 + n1 ⊗ n1) : (P1DφTV P1)
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= 2 P1Cof (P1DφTDφP1 + n1 ⊗ n1) : (P1DφTV )
= 2DφP1Cof (P1DφTDφP1 + n1 ⊗ n1)P1 : V.

where we have used that the cofactor matrix of a symmetric matrix is again symmetric, the
symmetry of P1, and (A.0.1).

A.1.2 Bending energy

For the squared Frobenius norm of the relative shape operator defined through the tangential
derivative D1φ = DφP1, denote

R (φ,Dφ) = ‖D1φ
T (S2 ◦ φ)D1φ− S1‖2,

we can compute separately the derivatives with respect to the φ and Dφ arguments, which are
afterwards combined for the variation in the standard way.

For the derivative with respect to φ, we can compute directly

∂φjR (φ,Dφ) = 2 tr
((
D1φ

T (S2 ◦ φ)D1φ− S1
)T (
D1φ

T (∂jS2 ◦ φ)D1φ
))

,

where ∂jS2 denotes the matrix composed of the partial derivatives of each entry of S2 with
respect to xj .

And with respect to Dφ for any matrix V ,

∂DφR (φ,Dφ) : V

= 2
(

P1DφT (S2 ◦ φ)DφP1 − S1
)

:
(
∂Dφ

(
P1DφT (S2 ◦ φ)DφP1

)
· V
)

= 2
(

P1V
T (S2 ◦ φ)DφP1 + P1DφT (S2 ◦ φ)V P1

)
:
(

P1DφT (S2 ◦ φ)DφP1 − S1
)

= 4
(

P1DφT (S2 ◦ φ)V P1
)

:
(

P1DφT (S2 ◦ φ)DφP1 − S1
)

= 4V :
(
(S2 ◦ φ)T DφP1

(
P1DφT (S2 ◦ φ)DφP1 − S1

)
P1
)
,

where we have used the symmetry of P1 and D1φ
T (S2 ◦ φ)D1φ− S1, and the relation between

inner product and transposes.

A.2 Functionals of Chapter 3

A.2.1 Membrane energy

We need to deal with the extended tangential derivative

Dtgφ+ (n2 ◦ φ)⊗ n1 = (P2 ◦ φ)DφP1 + (∇d2 ◦ φ)⊗∇d1.

considered as a function of φ and Dφ, that is Rd × Rd×d 7→ Rd×d, so the full derivatives have
three and four indices.
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Defining

� := (P2 ◦ φ)DφP1 + (∇d2 ◦ φ)⊗∇d1 and

F (φ,Dφ) := W (�) = W
(
(P2 ◦ φ)DφP1 +∇(d2 ◦ φ)⊗∇d1

)
,

we get for the derivative with respect to the second argument

∂DφF (φ,Dφ) : V = DW (�) : ((P2 ◦ φ)V P1) = DW (�) : ((P2 ◦ φ)V P1)
= ((P2 ◦ φ)DW (�)P1) : V,

where we have used the symmetry of the Pi and (A.0.1). Here, DW : Rn×n → Rn×n is the
derivative of the density W , which is easily computed using the remarks at the beginning of this
appendix.

For the displacement argument, we fix v ∈ Rn and split the computation as

∂φF (φ,Dφ) · v = I + II,

of which

I : = DW (�) :
(
∂φ((∇d2 ◦ φ)⊗ n1)[v]

)
= DW (�) :

(
((D2d2 ◦ φ)v)⊗∇d1

)
=
(
DW (�)∇d1

)
·
(
(D2d2 ◦ φ)v

)
=
(
(D2d2 ◦ φ)TDW (�)∇d1

)
· v

=
(
(D2d2 ◦ φ)DW (�)∇d1

)
· v, (A.2.1)

using (A.0.4) and symmetry of the Hessian. For the other term, we have

II : = DW (�) :
(
∂φ(P2 ◦ φ)[v]DφP1

)
=
(
DW (�)P1DφT

)
: ∂φ(P2 ◦ φ)[v], (A.2.2)

from which we now compute the matrix ∂φ(P2 ◦ φ)[v]. We obtain

∂φ(P2 ◦ φ)[v] = ((D2d2 ◦ φ)v)∇(d2 ◦ φ)T + (∇d2 ◦ φ)((D2d2 ◦ φ)v)T , (A.2.3)

and therefore, for any M ∈ Rn×n and using (A.0.4) we have

M : (∂φ(P2 ◦ φ)[v]) =
(
M(∇d2 ◦ φ)

)
· (D2d2 ◦ φv) +

(
M(D2d2 ◦ φ)v

)
· (∇d2 ◦ φ)

= (∇d2 ◦ φ)TMT (D2d2 ◦ φ)v + (∇d2 ◦ φ)TM(D2d2 ◦ φ)v
= (∇d2 ◦ φ)T (M +MT )(D2d2 ◦ φ)v
=
(
(D2d2 ◦ φ)(M +MT )(∇d2 ◦ φ)

)
· v. (A.2.4)

Setting M = DW (�)P1DφT we finally get

II =
(
(D2d2 ◦ φ)

(
DW (�)P1DφT +DφTP1DW (�)T

)
(∇d2 ◦ φ)

)
· v. (A.2.5)
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A.2.2 Bending energy

As before, define

♦ := (P2 ◦ φ)(C(Sext2 )
1
2 ◦ φ)(P2 ◦ φ)DφP1C(Sext1 )−

1
2 P1 + (∇d2 ◦ φ)⊗∇d1 and

G(φ,Dφ) := W (♦).

The derivative with respect to the Jacobian variable is again simple to compute,

∂DφG(φ,Dφ) : V = DW (♦) : ((P2 ◦ φ)(C(Sext2 )
1
2 (P2 ◦ φ)V P1CS

− 1
2

1 P1)

= ((P2 ◦ φ)(C(Sext2 )
1
2 (P2 ◦ φ)DW (♦)P1C(Sext1 )−

1
2 P1) : V,

and we split the displacement derivative in four terms,

∂φG(φ,Dφ) · v = I + II.i+ II.o+ III.

Of these,

I : = DW (♦) :
(
∂φ((∇d2 ◦ φ)⊗ n1)[v]

)
=
(
(D2d2 ◦ φ)DW (♦)∇d1

)
· v,

exactly as in (A.2.1). Next,

II.i := DW (♦) :
(
(P2 ◦ φ)(C(Sext2 )

1
2 ◦ φ)∂φ(P2 ◦ φ)[v]DφP1C(Sext1 )−

1
2 P1

)
,

for which, setting

M = (C(Sext2 )
1
2 ◦ φ)(P2 ◦ φ)DW (♦)P1(Sext1 )−

1
2 P1DφT

in (A.2.3), and analogously to (A.2.5) we have

II.i =
(
(D2d2 ◦ φ)(M +MT )(∇d2 ◦ φ)

)
· v.

For the third term,

II.o : = DW (♦) :
(
∂φ(P2 ◦ φ)[v](C(Sext2 )

1
2 ◦ φ)(P2 ◦ φ)DφP1C(Sext1 )−

1
2 P1

)
=
(
DW (♦)P1C(Sext1 )−

1
2 P1DφT (P2 ◦ φ)(C(Sext2 )

1
2 ◦ φ)

)
: ∂φ(P2 ◦ φ)[v],

we again get the above expression, now with

M = DW (♦)P1C(Sext1 )−
1
2 P1DφT (P2 ◦ φ)(C(Sext2 )

1
2 ◦ φ).

The last term appears due to the dependency of (C(Sext2 )
1
2 ◦ φ) on φ and reduces to

III := DW (♦) :
(
(P2 ◦ φ)∂φ(C(Sext2 )

1
2 ◦ φ)[v](P2 ◦ φ)DφP1C(Sext1 )−

1
2 P1

)
=
∑
j

tr
(
(P2 ◦ φ)DφP1C(Sext1 )−

1
2 P1DW (♦)(P2 ◦ φ)(∂j(C(Sext2 )

1
2 ) ◦ φ)

)
vj .





B
Deutsche Kurzfassung

Die Registrierung von zwei oder mehreren Bildern ähnlicher Objekte ist von großer Bedeutung in
verschiedenen Bereichen der Bildverarbeitung (z.B. bei medizinischen oder biologischen Anwen-
dungen). Hier werden zwei derartige Probleme behandelt, zuerst als kontinuierliche Variations-
modelle welche dann für die numerische Behandlung diskretisiert werden. Eine Gemeinsamkeit
der hier vorgestellten Modelle ist die Verwendung von nicht-konvexer Regularisierung, zusätzlich
zur bereits vorhandenen Nicht-Konvexität der Registrierungsprobleme.

Das erste Problem ist Abgleichung von Oberflächen. Hier sind die Daten zwei verschiedene
Oberflächen. In diesem Zusammenhang behandeln wir Oberflächen, welche in einer Rechen-
domäne durch eine vorzeichenbehaftete Distanzfunktion dargestellt werden. Unser Arbeit basiert
auf Schalen-Energien welche Expansion, Kompression und Biegung der ersten Oberfläche penal-
isieren. Diese werden durch Level-Set-Darstellung und die Geometrie der zweiten Oberfläche
vereinfacht. Für dieses Problem werden zwei Modelle vorgeschlagen. Das Erste ist ein direkter
Zugang welcher die Geometrie direkt repräsentiert. Die zweite Formulierung ermöglicht es,
schwache Unterhalbstetigkeit und die Existenz von Minimierern zu beweisen. Numerisch kann
sie effizient auf adaptiven Rastern implementiert werden.

Das zweite Problem ist die Schätzung des optischen Flusses einer Sequenz von Bildern. Hier
schlagen wir eine neuartige Regularisierung entlang der Trajektorien des Flusses vor. Diese
penalisiert konvektive Beschleunigung der enstehenden Vektorfelder anstelle der Zeitableitung
des Eulerschen Geschwindigkeitsfeldes. Das entstehende Problem kann auf semi-implizite Art
durch eine Abfolge linearer Probleme approximiert werden. Verglichen mit der Verwendung der
Zeitableitung, zeigen unsere numerischen Ergebnisse eine deutliche Verbesserung.
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